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Samenvatting

De kwantumchemie is het deelgebied van de natuurkunde en de theoretische

scheikunde dat tracht chemische verschijnselen zoals chemische binding en

katalyse te beschrijven met behulp van de kwantummechanica. Een van de

meest fundamentele inzichten dat uiteindelijk zal leiden tot de moderne kwan-

tumchemie zoals we die nu kennen, is het feit dat alle materie is opgebouwd uit

gelijkaardige bouwstenen genaamd atomen. Over dit feit werd al gefilosofeerd

in de oudheid door de oude Griekse wijsgeren, en vanaf het begin van de 19de

eeuw werd het als wetenschappelijke theorie gëıntroduceerd door het werk van

Dalton. Een volgende grote doorbraak kwam er in 1869 met de introductie van

de periodieke tabel van Mendeljev, die periodieke trends aantoonde van de toen

bekende elementen en gebaseerd op deze trends kon Mendeljev eigenschappen

voorspellen van toen nog onbekende elementen, waarvan hij verwachtte dat

deze gaten in de tabel zouden vullen. Hierna volgden experimentele resultaten

van Thomson en Rutherford die duidelijk maakten dat atomen niet ondeelbaar

waren en er onderscheid gemaakt kan worden tussen de elektronenwolk en de

kern. Vooral de elektronen die zich verder van de kern bevinden bepalen de

chemische eigenschappen van de atomen. Het bleek echter zeer lastig om het

gedrag van deze elektronenwolk correct te beschrijven, wat nodig is om correcte

voorspellingen over chemische reacties en evenwichtstoestanden te doen.

Het was wachten tot de ontwikkeling van de kwantummechanica, die het eerste

alomvattende kader creëerde voor de chemische beschrijving van atomen en mo-

leculen. De wereld beschreven op het niveau van de kwantummechanica is com-

pleet anders dan wat we gewoon zijn in onze macroscopische wereld. Er zijn en-

kel nog waarschijnlijkheden en er is de deeltje-golf dualiteit. Een van de belang-

rijkste vergelijkingen van de kwantummechanica is de Schrödingervergelijking,

die een niet-relativistisch kwantummechanisch systeem beschrijft. Oplossingen

van deze vergelijking noemt men golffuncties. Deze golffuncties bieden zeer

goede beschrijvingen voor het gedrag van onder andere elektronenwolken. Voor

het waterstofatoom kan men deze vergelijking nog exact oplossen, maar voor

alle zwaardere atomen moet men grijpen naar numerieke hulpmiddelen en/of

benaderende theoretische beschrijvingen. Een ander probleem met de huidige

theorie is dat de meeste atomen en moleculen vele elektronen bevatten en de

complexiteit van het kwantummechanische probleem exponentieel schaalt met

xi



een toenemend aantal deeltjes vanwege de onderlinge interacties.

In deze thesis, die uit twee delen bestaat, wordt in het eerste deel senioriteit

gëıntroduceerd als een hulpmiddel om nieuwe golffuncties te genereren. Het

senioriteitskwantumgetal werd voordien hoofdzakelijk gebruikt in de kernfysica

en is minder bekend in de chemische wereld. Daarna wordt onderzocht wat

de eigenschappen zijn van de verschillende senioriteitsblokken in de exacte

golffunctie voor een eindige basis set. Dit in tegenstelling met de gebruikelijke

excitatie gebaseerde onderverdeling van de golffunctie. Na het bestuderen

van de verschillende blokken in de exacte golffunctie kijken we naar wat er

gebeurt als we enkel subblokken gebruiken als benaderende beter schalende

golffunctie. De laagste in rang van deze hierarchie is de bekende doubly

occupied configuration interaction (DOCI) golffunctie. Deze golffunctie bestaat

enkel uit determinanten met senioriteit nul, wat wil zeggen dat alle elektronen

in paren voorkomen. We bespreken welke soorten correlaties ze adequaat

beschrijven in vergelijking met de excitatie gebaseerde reductie technieken.

We onderzoeken ook of de senioriteitshierarchie sneller naar de exacte limiet

convergeert dan de excitatie gebaseerde hierarchie. De kracht van de senioriteits

gebaseerde hierarchie komt voort uit het feit dat deze niet van een referentie

determinant afhangt en een globale onderverdeling veronderstelt, waardoor ze

zeer geschikt is om statische correlatie correct te beschrijven. Verder zijn deze

senioriteits gebaseerde golffuncties afhankelijk van een unitaire transformatie

van de één-deeltjes basis. Daarom onderzoeken we ook het effect van deze

transformaties op hun eigenschappen. De ideale basis voor senioriteits geba-

seerde golffuncties zal de basis blijken te zijn die de senioriteit van de exacte

golffunctie minimaliseert. Het berekenen van deze basis gaat relatief vlot door

het bestaan van iteratieve algoritmen. Ook senioriteit geminimaliseerde basis-

sen van gerestricteerde golffuncties doen het zeer goed. Verder blijkt dat deze

basis een zeer lage Shannon entropie heeft voor de coefficienten van de exacte

golffunctie, wat een indicatie geeft van de hoge mate van ordening die deze basis

heeft voor de afzonderlijke Slater determinanten. Daarna worden de voordelen

en tekortkomingen van de DOCI golffunctie uitgebreider besproken en wordt er

geprobeerd om de tekortkomingen één voor één te elimineren. Dit wordt gedaan

door dynamische correlatie toe te voegen via extra één deeltjes excitaties, en het

maximale aantal paarexcitaties te beperken zodat de schaling reduceert naar

polynomiaal. Als uiteindelijk resultaat bekomen we een golffunctie opgebouwd

uit enkel en dubbel geëxciteerde Slater determinanten gecombineerd met hogere

paar excitaties die maar een fractie van de computationele capaciteit nodig

heeft van de exacte golffunctie, en toch bijna exact de dissociatie van uitdagende

molecules zoals BeH2 kan beschrijven. Van alle geteste benaderende methoden

gaf deze veruit de beste resultaten over een volledig dissociatie proces. Verder

zal ook blijken dat DOCI als één van de weinige benaderende golffuncties in

staat is om exotische eigenschappen van atomen op oneindige afstand correct te

voorspellen zoals fractionele ladingen, sterke densiteitsveranderingen na infini-

tesimale veranderingen van de Hamiltoniaan en het stapsgewijs lineair gedrag

van de energie in functie van de lading op één van de atomen.
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Samenvatting

In het tweede deel van deze thesis wordt een andere manier om benaderende

golffuncties te bekomen beschouwd, namelijk het vereenvoudigen van de Hamil-

toniaan tot de meest eenvoudige Hamiltoniaan die in staat is om de essentiële

fysische of chemische eigenschappen van het systeem te genereren. Specifiek

focussen we ons op paarHamiltonianen. PaarHamiltonianen worden vooral in

de vaste-stof fysica gebruikt omdat ze een degelijke beschrijving van superge-

leiding bieden. Een bijkomend voordeel van een veelvoorkomende klasse van

paarHamiltonianen is dat ze integreerbaar zijn, wat wil zeggen dat er evenveel

commuterende variabelen bestaan als vrijheidsgraden van het systeem. Deze

integreerbaarheid is ook bruikbaar voor het bekomen van oplossingen voor

de Hamiltoniaan, zoals Richardson en Gaudin onafhankelijk aantoonden. Het

grote voordeel van de Richardson-Gaudin methode is dat ze lineair schaalt met

het aantal deeltjes en toch de exacte oplossingen levert in tegenstelling tot de

conventionele exacte diagonalisatie procedures die tegen een exponentiële muur

aanlopen. Nadeel is dat er sterke singulariteiten opduiken bij het oplossen van

de resulterende Richardson-Gaudin vergelijkingen. Recent is er veel onderzoek

gedaan naar het oplossen van dit probleem. In deze thesis maken we vooral

gebruik van resultaten die gegenereerd zijn door de singulariteiten te ontwijken

door naar het complexe vlak te gaan of de quasi-spin algebra te veranderen.

Na het afleiden van de algemene theorie passen we het formalisme toe op twee

specifieke Hamiltonianen gegenereerd met respectievelijk de zogenaamde XXX

en de XXZ variant. Voor de XXX variant die onder andere de gereduceerde

BCS Hamiltoniaan genereert, onderzoeken we de effecten van perturbaties van

de geometrie op de supergeleidende toestand van nano-korrels. De XXZ variant

genereert een Hamiltoniaan die paring op een tweedimensionaal rooster met een

px + ipy symmetrie beschrijft. Het fase diagram van deze Hamiltoniaan is zeer

interessant door de Read-Green and Moore-Read punten. Er worden enkele

relaties afgeleid tussen deze punten van het fasediagram en de Tamm Dancoff

benaderingen (TDA) die naar de juiste toestanden leiden.

Onderzoek dat volgt op deze thesis kan nagaan in hoeverre mate de resulterende

golffuncties van het XXX model de DOCI golffunctie kan benaderen. Verder

kunnen de effecten van het aanpassen van de één-deeltjes niveaus, de parings-

parameter en het effect van basistransformaties onderzocht worden. Echter

met de ervaring die gedurende het creëeren van deze thesis bekomen is, kunnen

al enkele zaken geconcludeerd worden. Voor twee elektron systemen is het

mogelijk om de exacte resultaten te reproduceren, want ook DOCI is exact

voor het twee elektron probleem. Verder is het benodigde RAM-geheugen

sterk gereduceerd, maar de computationele tijd niet door de huidige trage

implementatie van het multidimensionale optimalisatie probleem om de beste

één-deeltjes niveaus en paringsparameter van de gereduceerde BCS Hamilto-

niaan te bepalen voor niet-relativistische kwantumchemische Hamiltonianen.

Verder kan men verbanden onderzoeken tussen de optimale distributie van

de één-deeltjes niveaus en koppelingsconstante bij verschillende posities op de

potentiaal energie curve zoals bij evenwicht en bij de dissociatie limiet waar

de statische correlatie belangrijker wordt. Voor grote systemen is DOCI nauw-
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keurigheid niet praktisch werkbaar door de multidimensionale optimalisatie.

Dit valt te omzeilen door enkel de paringsparameter te optimaliseren en de

Hartree-Fock gemiddeld-veld basis te gebruiken. In dat geval is men zeker dat

men in het slechtste geval terug de Hartree-Fock energie bekomt, namelijk in

de limiet waar de paringsparameter wegvalt, en wanneer deze in kleine stapjes

oploopt dan bekomt men een gecorreleerde golffunctie met DOCI dimensie en

significant betere energieën dan HF. Deze golffunctie levert voor middelgrote

moleculen een sterk verbeterde beschrijving voor dissociatieprocessen op. Bij

het nog beter onder de knie krijgen van de singulariteiten die optreden bij het

oplossen van de Richardson-Gaudin vergelijkingen en mits meer ervaring bij het

kiezen van de optimale parameters van de Richardson-Gaudin Hamiltonianen

om de kwantumchemische Hamiltoniaan te benaderen, kan deze methode in de

toekomst gebruikt worden om processen te beschrijven waar zeer grote mole-

culen een rol spelen, door de lineaire schaling van de oplossingsmethode met

betere resultaten dan conventionele gemiddeld veld methodes zoals Hartree-

Fock (HF) en densiteits functionaal theorie (DFT).
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Abstract

Nothing is as simple as it seems at first.

Or as hopeless as it seems in the middle.

Or as finished as it seems in the end.

Quantum chemistry lies at the interface between physics and theoretical chem-

istry. The main goal is to describe chemical bonding and catalysis with the

framework provided by quantum mechanics. One of the most fundamental

facts which eventually led to modern quantum chemistry is that all matter is

built from similar building blocks, called atoms. This was already conjectured

by the old Greek philosophers and at the start of the 19the century it became a

scientific theory through the work of Dalton. The next breakthrough occurred

in 1869 with the introduction of the periodic system by Mendeljev. It showed

periodic trends of the known elements and based on those trends it was possible

to predict properties of still unknown elements, which were expected to fill

blanks in the table. Experimentally it was shown by Thomson and Rutherford

that atoms are constituted of a negatively charged cloud consisting of electrons

and a positive nucleus. Of particular importance for the chemical properties

of the atoms are the electrons that are farther from the nuclei. It was and still

is a huge challenge to correctly describe the behaviour of the electron cloud,

which is necessary to predict chemical reactions and equilibrium geometries.

One had to wait till the advent of quantum mechanics, which provided the first

consistent and complete theoretical framework for the description of atoms and

molecules. One of the most important equations of quantum mechanics is the

Schrödinger equation, which describes a non-relativistic quantum mechanical

system. Solutions of this equation are called wave functions. For the hydrogen

atom it is possible to solve the Schrödinger equation exactly, but for all heavier

atoms one has to use numerical tools and approximative descriptions. One of

the main challenges of quantum chemistry is that most atoms and molecules

consist of many electrons and the complexity of the problem scales exponen-

tially with the system size, due to the mutual interactions.

In the first part of this two part thesis, the seniority number is introduced

as a tool to generate new wave functions in quantum chemistry. Previously,

the seniority quantum number was mainly used in nuclear physics and was
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less known in quantum chemistry, which is dominated by an excitation based

approach for the construction of wave functions. The properties of the different

seniority blocks of the exact wave function are analysed for finite basis sets.

After the study of the different wave function blocks we take a look at what

happens when those parts are used as isolated wave functions. Furthermore

we test if the seniority based hierarchy converges faster than the excitation

based hierarchy to the exact limit. The seniority hierarchy starts with the

doubly occupied configuration interaction (DOCI) wave function. This wave

function consists only of seniority zero determinants, meaning that all electrons

form pairs. We discuss which sorts of correlation are adequately described by

seniority approaches in comparison with the excitation based ones. One of the

strong points of the seniority based hierarchy is that it does not depend on a

reference determinant, which makes it especially suitable for the description of

static correlation. These seniority based wave functions depend on a unitary

transformation of the single particle orbitals. Therefore it is investigated which

effect these transformations have on the properties of the seniority based wave

functions. It is concluded that the ideal basis for wave functions with a low

seniority is the seniority minimized basis of the exact wave function. The

calculation of this basis goes relatively smooth and fast because of the existence

of some iterative algorithms. If it is not possible to calculate the exact wave

function for the system one can resort to the seniority minimization of restricted

wave functions, which also works particularly well. Another property of the

seniority minimized basis is that it has a remarkably low Shannon entropy

for the coefficients of the exact wave function, which indicates the high order

it introduces to the different Slater determinants. Finally we discuss more

extensively the properties and shortcomings of the DOCI wave function. It

is checked if it is possible to alleviate the shortcomings one by one. Low

seniority wave functions typically have problems with dynamic correlation and

still scale exponentially. Those two problems can be solved by truncating

the higher pair excitations from a reference determinant and adding extra

seniority broken determinants. In essence we study methods that combine the

configuration interaction method with single and double excitations (CISD)

with higher pair excitations in seniority minimised bases of the CISD wave

function. This wave function describes almost exactly the dissociation of

challenging molecules such as BeH2, and gives the best results compared to

all other approximative methods we have tested. Furthermore we show that

the DOCI wave function correctly describes several exotic properties of atoms

separated by large distances such as fractional charges, strong changes in the

density upon infinitesimal changes in the Hamiltonian, and the piece-wise linear

behaviour of the energy in function of the charge on one of the atoms.

In the second part of this thesis we discuss another way to generate approximate

wave functions by simplifying the Hamiltonian that needs to be solved. A

typical approximation mostly done in physics consists of stripping away all the

non-essential information of the Hamiltonian, and keeping only the simplest

possible form of the Hamiltonian that generates the desired physical properties.
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Abstract

This thesis specifically focusses on pair Hamiltonians for which the seniority

number is an exact quantum number. Pair Hamiltonians are mainly used in

condensed matter physics because they give a suitable description for super-

conductivity. An extra advantage of the pair Hamiltonians is that they can be

integrable, meaning that there are as many commuting variables as there are

degrees of freedom of the system. This exact integrability is exploitable for the

generation of solutions for those Hamiltonians, as is shown by Richardson and

Gaudin independently. The main advantage of the Richardson-Gaudin method

is that it scales linearly with the number of particles in the system and still

generates the exact solution. This is in big contrast with the conventional exact

diagonalisation methods that scale exponentially with the number of particles

in the system. This seems too good to be true and in fact it is, because

additional caveats show up in the Richardson-Gaudin scheme in the form of

strong singularities, when one tries to solve the complex system of non-linear

equations that generate the solutions. However, recently many breakthroughs

occurred that help to deal with those singularities. In this work we mainly

solved this problem by generalizing the interaction constant to the complex

plane or the adaptation of the quasi-spin algebra. After the derivation of

the general theory, the formalism is applied to two specific Hamiltonians that

are derivable respectively from the so-called XXX and XXZ variants of the

Richardson-Gaudin models. For the reduced BCS Hamiltonian generated from

the XXX variant we studied the effects of perturbations of the geometry on the

superconducting state in nano-grains. For the px+ ipy Hamiltonian, generated

from the XXZ model, which describes pairing with px+ ipy symmetry on a two

dimensional grid, is the phase diagram studied. This phase diagram consists of

many interesting points such as the Read-Green and Moore-Read points, which

are connected to particular combinations of solutions of the Tamm-Dancoff

approximation (TDA) by a pseudo-deformation of the quasi spin algebra. This

keeps them more easily tractable for big systems.

Future work based on this thesis can attempt to approximate DOCI wave

functions with resulting wave functions of the XXX model. Furthermore the

effects of changing the single-particle levels, and the pairing parameter can be

investigated together with the effect of basis transformations. However with the

experience obtained during the creation of this thesis some conclusions can be

made already. One of those conclusions is that for small systems Richardson-

Gaudin wave functions are able to reproduce DOCI energies, and for two

electron systems even exact results (because DOCI is exact for the two electron

problem). This with a strongly reduced use of memory, but unfortunately not

reduced computational time, due to the complexity of the multi-dimensional

optimization problem for the parameters of the reduced BCS Hamiltonian, it is

our aim to strongly reduce this time in future implementations. One can also

search for patterns between the optimal distribution of the single-particle levels

and interaction constant at different positions on the potential energy surface,

such as near equilibrium and at the dissociation limit where static correlation

is more important. Currently it is not possible to reproduce DOCI accuracy
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for big systems. But it is possible to improve significantly on the Hartree-

Fock (HF) energies even for very large systems. This is done by using the

Hartree-Fock single-particle bases for the expression of the Richardson-Gaudin

wave function. From this it follows that the Hartree-Fock wave function and

energy are reproduced in the absence of a pairing interaction. When the inter-

action constant is increased until a minimal energy of the quantum chemical

Hamiltonian is obtained, then a significant improvement of the Hartree-Fock

energy and wave function is obtained, with a correlated wave function that

has the same dimension as the DOCI wave function and linear scaling. Even

with very rudimentary guesses for the single-particle levels dissociation curves

are correctly reproduced for some molecules. These results are promising

for the future and with an improved ability to deal with the singularities

and improved experience for the selection of the optimal parameters of the

Richardson-Gaudin models, this method could be used to describe correlated

processes of large molecules more accurately than one can with Hartree-Fock

and density functional theory (DFT) methods.
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Chapter 1

Introduction and

theoretical background

In this first chapter the research program is framed in a broader context, and

the terminology necessary for the next chapters is introduced along with the

theoretical background.

1.1 Framing of the performed research

One of the most fundamental facts, which leads to modern chemistry, is that

all matter is built from similar building blocks, called atoms. Although this

was already conjectured in ancient Greece, it became a scientific theory at the

start of the 19the century by the work of Dalton. Another great breakthrough

occurred in 1869 with the introduction of the periodic system of Mendeljev.

This periodic system revealed periodic trends of the physical and chemical

properties of the known elements and based on those trends it was possible to

predict properties of unknown elements, which were expected to fill blanks in

the table. Experimentally, Thomson and Rutherford showed that atoms are

constituted of a negatively charged cloud consisting of electrons and a positive

nucleus. Particularly important for the chemical properties of the atoms are

the electrons that are the most distant from the nuclei, the so-called valence

electrons. It was and still is a huge challenge to correctly describe the behaviour

of this electron cloud, which is necessary to predict chemical reactions and

equilibrium geometries.

With the advent of computers in the last decades, numerical methods started

to play an increasingly prominent role in chemistry; it even led to a new part

of chemistry called computational chemistry. One can think of computational

chemistry as chemistry performed using computers rather than chemicals. Pow-

erful molecular modelling tools have been developed, which are capable of
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accurately predicting structures, energetics, reactivities and other properties

of molecules. These developments have come about largely due to the dra-

matic increase in computer speed and the design of efficient quantum chemical

algorithms. There are many advantages involved with the use of computers:

simulations are easy to perform, whereas experiments are often difficult. Fur-

thermore calculations are becoming less costly each year, whereas experiments

are becoming more expensive on average. Calculations can be performed on

any system, even those that are currently impossible in the lab, whereas many

experiments are limited to relatively stable molecules. Calculations are safe,

whereas many experiments have an intrinsic danger associated with them. One

of the main disadvantages is that calculations can be very expensive in terms

of the amount of time required. Furthermore it should be emphasized that

computational chemistry is not a replacement for experimental studies, but

plays an important role in enabling chemists to explain and rationalise known

chemistry or to explore new and unknown chemistry.

Computational chemistry can be further subdivided in a range of disciplines

such as statistical mechanics, molecular mechanics, semi-empirical frameworks,

and ab initio quantum chemistry. All the previous frameworks except the

last one rely on empirical input information such as experimental parameters,

energy levels, . . . This thesis focusses only on ab initio quantum chemistry. Ab

initio means “from the beginning” or “from first principles”. This means that

it is based only on established laws of nature such as quantum mechanics. The

theory of quantum mechanics provided the first consistent and complete theo-

retical framework to describe the electronic behaviour of atoms and molecules.

One of the most important equations of quantum mechanics is the Schrödinger

equation. This equation describes a non-relativistic quantum mechanical sys-

tem and its solutions are called wave functions. For the hydrogen atom, it is

possible to solve the Schrödinger equation exactly, but for all heavier atoms one

has to use numerical tools and approximative descriptions. One of the main

challenges of quantum chemistry is that most atoms and molecules contain

many electrons and the complexity of this quantum many-body problem scales

exponentially with the system size, due to the mutual interactions. There-

fore approximations are necessary. Among ab initio methods, wave function

methods play a key role. These explicitly construct wave functions for the

systems under consideration, this in contrast with density based methods such

as density functional theory (DFT) which rely primarily on the functional

dependence of the energy on the electron density. This thesis focuses on wave

function based methods. The first part of this thesis discusses the introduction

of seniority as a new quantum number to partition and build wave functions

in quantum chemistry. The second part discusses the performance of some

model Hamiltonians that have seniority as an exact quantum number for the

description of condensed matter systems, and the variational approximation of

the non-relativistic quantum chemical Hamiltonian.

In the next section the starting-point of all quantum chemistry is discussed,
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that is the Schrödinger equation for a general molecular system. After that,

a short introduction is given about wave function based quantum chemistry

and configuration interaction theory in particular. The aim is to summarize

important results that will be used in subsequent chapters of this thesis and to

introduce the necessary terminology.

1.2 The non-relativistic quantum chemical Hamil-

tonian

As already mentioned in the previous section, quantum mechanics is centered

around the solution of the Schrödinger equation. This equation is given by:

i~
∂Ψ

∂t
= ĤΨ. (1.1)

The operator Ĥ is the Hamiltonian and the expectation value of the wave

function Ψ with respect to Ĥ is the energy of the system under consideration.

When the Hamiltonian does not depend on time, it is convenient to do a

separation of variables, which leads to the stationary Schrödinger equation:

ĤΨ = EΨ (1.2)

The state with the lowest energy is called the ground state, and the other

solutions are called excited states. If there are states with the same energy, they

are called degenerate states. Any linear combination of degenerate states is also

an eigenstate of the Hamiltonian with the same energy, and one needs other

quantum numbers to distinguish between them. This can be done if operators

exist that commute with the Hamiltonian but have different eigenvalues for the

degenerate states, as elementary quantum mechanics teaches us that mutually

commuting operators can be diagonalized with a common eigenbasis[1].

If this wave function is obtained somehow, all the observable properties can

be calculated as the expectation value of that observable with respect to the

wave function. Furthermore many chemical properties can be obtained from

derivatives of the energy with respect to some parameter, an example of this will

be discussed in the last chapter of the first part of this thesis (see Ch. 4). Some

examples of those external parameters are geometric parameters such as bond

lengths, angles, . . ., external electric fields from solvents or other molecules,

external magnetic fields (Nuclear Magnetic Resonance experiments). First and

second order derivatives of the energy are readily available, higher derivatives

are much more complicated and expensive to compute as they require higher

order density matrices. Some molecular properties that can be computed, when

the wave function is known, are bond energies, reaction energies, structures of

ground-, excited- and transition-states, atomic charges and electrostatic poten-

tials, vibrational frequencies (Infrared and Raman spectroscopy), transition

energies, intensities for Ultraviolet and Infrared spectra, Nuclear Magnetic
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Resonance chemical shifts, dipole moments, polarisabilities and hyperpolar-

isabilities, reaction pathways and mechanisms. The Hamiltonian in eq.(1.2)

can be written for molecules with N electrons at positions ri, and M nuclei at

positions RA as:

Ĥ =− 1

2

N∑

i

∇̂2
i −

1

2

M∑

A

∇̂2
A

MA
−

M∑

A

N∑

i

ZA
|ri −RA|

+
1

2

N∑

ij,i 6=j

1

|ri − rj |
+

1

2

M∑

AB,A6=B

ZAZB
|RA −RB |

(1.3)

Atomic units are used in the above equation, this means that the elementary

charge e, the reduced Planck constant ~, the electron mass me, and 4πε0 are

all set identically to one. The individual electrons are labelled with small

latin indices starting from i, and the nuclei with capital latin indices starting

from A. Eq.(1.2) provides such a challenging problem for molecules that many

previous theses and also this thesis consist only out of the design and testing of

approximative solutions to eq.(1.2). This observation made Dirac write already

in 1930 that [2]:

“The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are

thus completely known, and the difficulty is only that the exact

application of these laws leads to equations much too complicated

to be soluble.”

A need for good approximations thus arises. One of the most important

and frequently used approximations to simplify the above Hamiltonian is the

Born-Oppenheimer approximation[3]. It makes use of the fact that nuclei are

much heavier than that of electrons (the mass of a proton is three orders of

magnitude bigger than electrons), and therefore nuclei move much slower than

electrons. From this one can assume that electrons instantaneously adapt their

configuration, upon a change in the nuclear coordinates, and that the derivative

of the electronic wave function with respect to the nuclear coordinates is

approximately zero. These assumptions allow us to factorise the wave function

in a part that only depends on the nuclear coordinates, and a part that

depends on the electron coordinates, where the nuclear coordinates are treated

as parameters, and for all sets of those parameters (geometries of the molecule)

the resulting electron cloud can be calculated. This means that it is possible

to have good approximations of the electron cloud at a given nuclear geometry,

when the nuclear coordinates are kept fixed. From this it follows that the

last term of the above Hamiltonian reduces to an easily computable constant,

and the kinetic energy of the nuclei can be ignored until it is reintroduced

in the Schrödinger equation for the nuclear motion, leading to rotational and

vibrational contributions. The Born-Oppenheimer approximation carries the

essence of the validity of potential energy surfaces (PES). This means that
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Introduction and theoretical background

solving eq.(1.2) reduces to the search for the dependency of the many body wave

function Ψ on the 4N electron coordinates. The coordinates of one electron

are the spatial coordinates r = (x, y, z) and an extra spin coordinate s that

can have the values α and β (sometimes also denoted as up and down). The

resulting wave function depends thus on 4N correlated coordinates, and eq.(1.2)

simplifies to finding the eigenstates, and eigenvalues of


−1

2

N∑

i

∇̂2
i −

M∑

A

N∑

i

ZA
|ri −RA|

+
1

2

N∑

ij,i 6=j

1

|ri − rj |


Ψ(r1, s1, . . . , rN , sN )

= EΨ(r1, s1, . . . , rN , sN ),

(1.4)

where E is the electronic energy. Another approximation is to use finite basis

sets to expand the wave function in order to make practical calculations pos-

sible. It is then assumed that the basis set is big enough to produce relevant

results. A test for the quality of the basis set is comparing the results with those

obtained from larger basis sets. A basis set is a set of functions that can span

orthogonal molecular orbitals (χ(x)). Basis functions are mostly (approximate)

atomic orbitals centered on atoms, but theoretically they can be any function.

For example plane waves are frequently used in condensed matter calculations,

and sometimes grids in real space are also used to express the wave function.

For a concise introduction to basis set theory see Helgaker et.al. [4].

The Pauli principle states that all physical wave functions need to change

sign upon interchange of any two fermions. From this principle it follows

that the most straightforward N electron many-body wave function that can

be generated is an anti-symmetrized direct product of N one-electron wave

functions (orbitals), also called Slater determinants. Slater determinants can

be thought of as determinants where the column indices change the single-

particle orbitals and the rows are associated to the electron-index, thus im-

posing the necessary anti-symmetry rules. One can generate all N electron

Slater determinants supported by a given finite basis set by acting with a

unitary transformation on a starting determinant generated from the finite

basis set. The full space that the finite basis set describes is spanned by all

possible Slater determinants created by distributing the N electrons over all K

orbitals. The dimension of the Hilbert space of a finite basis set is thus equal

to the binomial coefficient
(
K
N

)
. By using Stirlings formula one sees that this

dimension scales exponentially with the number of electrons and single-particle

orbitals, at half-filling
(
K
K
2

)
≈ eKln(2). This makes it only feasible to calculate

the exact solution for small molecules and basis sets. A powerful formalism

to reason and derive expressions for many-body systems is the formalism of

second quantization [5] (see also appendix A). This formalism makes it possible

to leave all explicit spatial dependencies over to the basis set by projecting all

many-body operators under consideration onto this basis set. The operators

depend in second quantization on the chosen spin-orbital basis, as they are
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projected operators. This is in contrast with the first quantized case where

operators are independent of the spin-orbital basis, but depend explicitly on

the number of electrons. The Hamiltonian of eq. (1.3 ) can be written in second

quantization after projecting it on a given finite basis set. This projection

is done by integrating out the spatial and spin dependencies. The obtained

integrals that incorporate all the spatial and spin dependencies become:

hpq =

∫
χ∗p (x)

(
−1

2
∇̂2 −

∑

A

ZA
|x−RA|

)
χq(x)dx (1.5)

gpqrs =

∫ ∫
χ∗p(x1)χ∗r(x2)χq(x1)χs(x2)

|x1 − x2|
dx1dx2 (1.6)

hnuc =
1

2

∑

A 6=B

ZAZB
|RA −RB |

(1.7)

Chemical notation is used for the two body integrals. Thus the Hamiltonian

of eq.(1.3) in second quantization becomes:

Ĥ =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

gpqrsa
†
pa
†
rasaq + hnuc, (1.8)

where a†p creates an electron in single-particle spin orbital p and ap annihilates

a particle in single-particle spin orbital p (see also appendix A). They fulfill the

fermion anti-commutation relations[6]:

a†iaj + aja
†
i = δij (1.9)

a†ia
†
j + a†ja

†
i = 0 (1.10)

aiaj + ajai = 0. (1.11)

The non-relativistic Hamiltonian does not mix states with different spin and

spin-projection, therefore one can express the Hamiltonian in block-diagonal

form when expanded in configuration state functions that have a good spin and

spin-projection or in determinants which have only a definite spin-projection.

The advantage of using configuration state functions (CSF’s) is that less mem-

ory is needed to construct the Hamiltonian, the disadvantage is that they are

more difficult to construct and more difficult to handle than determinants

resulting in a speed deficit. Furthermore Slater determinants can be effi-

ciently, stored in a computer program as integers, and generating excitations

is efficiently done by bit operations and built-in functions on any platform.

Such an implementation increases the speed considerably. The number of

Slater determinants with a correct spin-projection (ignoring spatial point-group

symmetry) can be calculated as:

Dim(K,Nα, Nβ) =

(
K

Nα

)(
K

Nβ

)
, (1.12)

with K as before the number of single-particle orbitals and Nα the number

of particles with spin up, and Nβ the number of particles with spin down.
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For configuration state functions this dimension can be calculated with Weyl’s

dimension formula, with S the total spin, K the number of orbitals, and N the

number of electrons, the dimension of the CI-space in CSF’s is [7–9]:

Dim(S,K,N) =
2S + 1

K + 1

(
K + 1
N
2 − S

)(
K + 1

N
2 + S + 1

)
(1.13)

From Slater determinants it is a small step to the next topic configuration

interaction theory.

1.3 Introduction to configuration interaction the-

ory

In this section a short introduction to configuration interaction (CI) theory and

the conventional single-particle based truncation methods is given . Of all ab-

initio methods, configuration interaction theory is one of the most accurate and

easiest to understand conceptually, but one of the most difficult to implement

efficiently on a computer. A more elaborate introduction can be found in the

excellent book of Helgaker, Jorgensen and Olsen [4], and the online introduction

of D. Sherrill [10]. In essence, CI-theory is a projection of the Hamiltonian

(eq. 1.8) on a finite basis of Slater determinants, after which a diagonalization

follows to generate the optimal coefficients of the linear expansion. Below

the variational optimization problem is discussed together with the standard

excitation based truncation methods, the amount of correlation they are able to

account for and their scaling. The traditional scope of CI theory is to improve

the Hartree-Fock (HF) solution by increasing the space for the variational

optimization of all possible many-electron wave functions from a single Slater

determinant to a larger set of Slater determinants constructed from a given

basis set. For this basis set, the wave function can be expanded in a basis of

N-electron Slater determinants.

|Ψ〉 =
∑

i

|φi〉 〈φi|Ψ〉 =
∑

i

Ci |φi〉 (1.14)

For HF-theory this summation reduces to a single element, the Slater deter-

minant made from the occupied HF one-electron orbitals [6]. In general, an

arbitrary N -electron wave function can be expressed as a linear combination

of all possible N -electron Slater determinants formed from a complete set of

spin orbitals χi (x). If the matrix mechanics problem of eq.(1.4) is solved in a

complete basis of N -electron functions, all electronic eigenstates of the system

are obtained. Therefore all eigenstates can be expressed as:

|Ψj〉 =
∑

i

Cji |φi〉 . (1.15)
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Here the upper index j indicates the order of the eigenstate. If there are M

N -electron Slater determinants, the matrix H is constructed so that

Hij = 〈φi|Ĥ|φj〉 (1.16)

for i, j = 1, 2, . . . ,M . These matrix elements are constructed from the one- and

two-electron integrals according to the Slater-Condon rules[6]. It is possible to

write the N -electron basis functions φi as substitutions or excitations from the

Hartree-Fock reference determinant (|φ0〉).

|Ψ〉 = c0 |φ0〉+
∑

ar

cra |φra〉+
∑

a<b,r<s

crsab |φrsab〉

+
∑

r<s<t,a<b<c

crstabc |φrstabc〉+ . . .
(1.17)

|φra〉 stands for the Slater determinant where the a-th occupied spin-orbital is

replaced by the empty spin-orbital r. Every N -electron Slater determinant

can be described by the set of N occupied spin-orbitals from which it is

formed. A graphical representation of different determinants together with

their excitation based labelling is given by Fig. 2.1. The Hamiltonian matrix

is a Hermitian matrix and expanded in a Slater determinant basis ordered by

blocks corresponding to the different excitation levels of (eq. 1.17) the sparsity

is revealed.

H =




〈φ0|Ĥ|φ0〉 0 〈φ0|Ĥ|D〉 0 . . .

0 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 . . .

〈D|Ĥ|φ0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 . . .

0 〈T |Ĥ|S〉 〈T |Ĥ|D〉 〈T |Ĥ|T 〉 . . .
...

...
...

...
...




(1.18)

Where the S, D and T stand respectively for all single, double and triple excited

determinants. This sparsity can be exploited by using sparse matrix classes to

construct the Hamiltonian matrix, which significantly reduces the necessary

RAM-memory.

Another way of viewing the configuration interaction method is as the matrix

mechanics solution of the time independent Schrödinger equation. One typi-

cally variationally optimizes the coefficients of eq. (1.17) to minimize the total

energy:

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (1.19)

If the energy is variationally optimized in a basis of all possible Slater determi-

nants for a given single-particle basis set, the procedure is called full-CI (FCI).

When the basis set is complete, the method is called complete-CI. In practice

however, complete-CI calculations are virtually never possible. A big advantage

of CI methods is their generality, they can be applied to open-shell systems, to
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systems far from their equilibrium geometries, and for excited states. This is in

big contrast with traditional single-reference perturbation theory and coupled-

cluster approaches [4] that generally assume that the reference configuration

is dominant, and they fail considerably when this is not the case. However,

FCI is intractable for all but the smallest systems, as the scaling is exponential

(see eq. 1.12). For larger systems it becomes necessary to reduce the FCI

space somehow, while retaining a desired accuracy. One of the most common

approaches is the CISD method that includes only those determinants that

can be mapped onto a reference determinant by single or double excitations.

This reference determinant is mostly the Hartree-Fock determinant. This is

a good approximation around equilibrium geometries because the dominant

reference determinant includes already most of the dynamics of the total wave

function, and through the Hamiltonian it can only interact with singly and

doubly excited determinants, so including these determinants already accounts

for the bulk of the correlation energy (typically around 95 %). The correlation

energy is defined as the energy difference between the HF-wave function and

the FCI wave function [11]

EFCI − EHF = Ecorr, (1.20)

for a complete basis set. HF treats the electron repulsion in an averaged way as

it is essentially a mean-field method. The correlation energy is further divided

in two parts, a part coming from the electron repulsion (the electrons trying

to avoid each other) the so-called dynamic correlation, and a part that reflects

the inadequacy of a single reference determinant when degeneracies arise, or

rearrangements in partially filled shells called static correlation. When a bond

is dissociated, the correlation energy typically increases gradually due to the

fact that the static correlation increases faster than the dynamic correlation

decreases. One can also truncate the wave function in (eq. 1.17) at higher ex-

citation level. This creates the CISDT, CISDTQ, . . . wave functions. Another

approximation that is often used is to excite only from the valence electrons

(frozen core CI), and/or excite only to the energetically lowest virtual orbitals.

1.3.1 Calculation of properties

It is of chemical interest to efficiently calculate observables and response prop-

erties from wave functions. This can be done easily for CI wave functions.

All properties that can be represented as linear combinations of creation and

annihilation operators that maximally change two electrons after acting on a

Slater determinant, can be calculated by taking the trace with the two electron

reduced density matrix (2RDM). The one and two electron reduced density

matrices are compact representations of a wave function, which contain all

the information necessary to calculate respectively the one and two electron

properties of this wave function. They can be constructed from a wave function
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by applying the following formulas.

ρpq = 〈Ψ|Êpq|Ψ〉 (1.21)

Γpqrs = 〈Ψ|ÊpqÊrs − δrqÊps|Ψ〉 = 〈Ψ|êpqrs|Ψ〉
=

∑

στ

〈Ψ|a†pσa†rτasτaqσ|Ψ〉, (1.22)

where the Êpq = a†pαaqα+a†pβaqβ is the singlet excitation operator. The density

matrices obey many permutational symmetries. An observable consisting of a

constant, a one electron piece and a two electron piece (such as the Hamilto-

nian) can always be written as:

Ω̂ =
∑

pq

ΩpqÊpq +
1

2

∑

pqrs

Ωpqrsêpqrs + Ω0 (1.23)

The expectation value under the normalized wave function Ψ thus becomes:

〈Ψ|Ω̂|Ψ〉 =
∑

pq

Ωpqρpq +
1

2

∑

pqrs

ΩpqrsΓpqrs + Ω0 (1.24)

The quantities ωp = ρpp can be interpreted as the occupation number of a

single orbital p, and the ωpq = Γppqq are interpreted as the simultaneous (pair)

occupations of two orbitals. Those orbital occupation numbers are restricted

to the following intervals:

0 ≤ ωp ≤ 2 (1.25)

0 ≤ ωpq ≤ 2(2− δpq) (1.26)

Furthermore the sum of the diagonal elements of the first order reduced density

matrix is equal to the total number of electrons in the system under consid-

eration, and the sum of the diagonal elements of the second order reduced

density matrix is equal to the number of pairs N(N−1)
2 . A particularly useful

set of occupation numbers is obtained by diagonalizing the one-electron density

matrix with a unitary matrix:

ρ = UηU† (1.27)

The eigenvalues ηp are the so-called natural-orbital occupation numbers and

the eigenvectors of ρ (columns of U) are the natural orbitals of the system.

The eigenvalues of the density matrices have straightforward interpretations as

orbital occupation numbers.

1.3.2 The size extensivity problem

The size extensivity of a quantum chemical method guarantees that the calcu-

lated energy scales linearly with the system size. The term “size consistency
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error“ is used for the differences that arise for a system consisting of isolated

parts and the sum of the treatments of the parts. This happens when sub-

systems are separated to a large distance ( e.g. for bond breaking[12]). A

physical wave function Ψab that consists of two isolated fragments a and b can

be written as a direct product of the wave functions of the fragments.

|Ψab〉 = |Ψa〉 ⊗ |Ψb〉 (1.28)

The Hamiltonian Ĥab = Ĥa + Ĥb is the sum of those fragments because all

coupling terms are zero due to the fact that there is no interaction between the

fragments. Acting with the above product wave function on the Hamiltonian

gives Eab = Ea + Eb. Size consistency implies the correct description of the

dissociation products. For example restricted HF is size extensive but not size

consistent. Most truncated CI methods are not size extensive, which leads to

large errors for dissociation problems and chemical reactions. This is one of

the main reasons CISD became less popular after the discovery of this error by

Pople in 1973 [13], as its accuracy degrades with increasing system size. The

deficiencies of truncated excitation based CI can be linked to product terms

in the CI projection equations that correspond to unlinked diagrams in the

diagrammatic expansion of the theory. In contrast, coupled-cluster methods

are always size extensive because their excitation operator is an exponential

operator[4], but coupled cluster methods have the disadvantage that they are

not variational, and they are less straightforwardly adapted to multi-reference

problems[4]. There even exists a contested conjecture that states that there are

no tractable approximate methods that are both variational and size-consistent

[14]. However, the size-extensivity error decreases rapidly with increasing size

of the CI expansion. Another way of reducing the size-extensivity error is

using multiple reference determinants to excite from, leading to multi-reference

CI [4]. A third way of reducing the size-extensivity error consists of adding

correction terms. The best known correction term is the Langhoff-Davidson

correction [15], which accounts for the correlation effects of unlinked quadruple

excitations, which is a major part of the size-extensivity error of CID, and

CISD. The correction term is given by:

∆ELD = (ECISD − EHF ) (1− c20), (1.29)

where c0 is the coefficient of the HF determinant in the expansion. Another

interesting view to the size extensivity problem is the one from Duch and

Diercksen [16]. They pointed out that quantum mechanics is a holistic theory

and therefore fails to provide a well-defined way of describing subsystems.

Taking this into account, they stated that size consistency is not the most

important property of a quantum chemical method. Methods can be valuable as

long as one properly accounts for the size-consistency error, and the dissociation

process is correctly described. Another key issue of approximate CI methods

is their convergence to the FCI-limit upon which will be expanded in the next

section.
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Introduction to configuration interaction theory

1.3.3 Convergence rates

The orbitals occupied in the reference Slater determinant are called internal or-

bitals. Those that substitute the internal orbitals in the CI expansion are called

external orbitals[12]. The HF canonical orbitals, natural orbitals, Brueckner

orbitals, localized orbitals are typically used as internal orbitals. The external

orbitals are mostly the virtual orbitals of a HF calculation or any type of

improved virtual orbitals [12]. In 1955, Löwdin introduced the natural orbitals

(NO’s) [17] which helped to analyze and understand the wave function of a CI

calculation. NO’s are obtained by diagonalizing the one-electron density matrix

of the CI wave function, as explained in section 1.3.1. Löwdin showed that using

the NO’s led to the most rapid convergence of the CI expansion by effectively

reducing the number of configurations to obtain the FCI energy. The problem is

that one needs first the FCI wave function to calculate the first order reduced

density matrix, so this is not practically useful. Bender and Davidson [18]

solved this problem by introducing in 1966 the iterative natural orbital (INO)

method. They were able to exploit the advantageous properties of the natural

orbitals without constructing the first order reduced density matrix of the FCI

wave function. This was done by first calculating an approximative truncated

CI wave function of which the occupation numbers were analyzed to reduce

the number of unimportant configurations, and adding new more important

configurations. This procedure was repeated until convergence, which arose

when the CI expansion did not change anymore (mostly four or five cycles). In

this way they were able to obtain 89 % of the correlation energy of LiH with

only 45 configurations. The NO approach made an important contribution

to the development of more efficient CI methods. However, it became clear

that using NO’s only pays off for a relatively small amount of configurations.

For more configurations, in the order of millions, they became less useful. In

modern quantum chemistry packages they are used indirectly to setup basis

sets for CI calculations, because they improve the convergence to the basis set

limit. This is done by calculating generally contracted Gaussian basis sets from

the atomic natural orbitals extracted from CISD calculations on atoms [19].

In the next chapter a global convergence approach to the FCI wave function

that does not depend on a reference determinant is discussed. This convergence

criterion is based on the seniority number. Here seniority means the number

of spatial single-particle orbitals occupied by a single electron. Truncating CI

expansions based on the seniority number converges faster to the FCI energy

than the excitation based hierarchy in NO when static correlation is prevalent.

Furthermore the generation and effects are discussed of the recently introduced

[20–23] seniority minimizing single-particle basis. This basis exploits maximally

the rapid convergence of the seniority number hierarchy for systems with a

considerable amount of static correlation.
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Chapter 2

Seniority hierarchy

From a historical point of view, configuration interaction theory is mostly

thought of as sequentially adding more and more one-electron excitations, based

on a reference determinant or on a set of reference determinants (MRCI) [4] (see

chapter: 1). FCI aside, this implies an explicit distinction between occupied

and virtual spaces. However, for strongly correlated systems, and systems

where no dominant determinant exists, a significant amount of correlation is

missed when this distinction is made. The need for a global criterion thus arises.

In most physical systems electrons tend to pair. This makes it physically inter-

esting to answer the question: “What happens when we group the determinants

according to the number of paired electrons?”. In this chapter we try to answer

this question for configuration interaction theory, by means of a partitioning of

the FCI wave function using the seniority quantum number, which is a measure

of the number of unpaired electrons. This will lead to a sequential approach

to the FCI wave function based on a global criterion, the seniority number.

Furthermore, it will be shown that, for some cases, the seniority hierarchy

converges quicker to the FCI limit then a hierarchy based on natural orbitals.

The weight of the rapidly converging Hilbert subspaces diminishes quickly for

higher seniority blocks, and only retaining the lowest seniority blocks provides

already a good approximation to the static correlation present in the FCI wave

function[20–22, 24].

It is well known that only the FCI wave function is invariant under any unitary

transformation of the single-particle orbitals. To avoid any confusion in the

following chapters, the used non-orthogonal basis functions such as STO-3G,

6-31G, . . . will be referred to as the used basis set and the orthonormal orbitals

used to generate the wave function such as molecular orbitals coming from

a restricted Hartree-Fock calculation (MO), the natural orbitals of the FCI

wave function (FNO), seniority minimizing orbitals of the FCI wave function

(Mmin), . . . are refered to as the used basis. This basis dependency of truncated

CI methods is a serious extra complication for wave functions constructed
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The seniority number

based on the seniority hierarchy. For one electron excitation based methods

very good single-particle bases are already available such as the Hartree-Fock

single-particle basis or the natural orbitals of a multi-determinant calculation.

Another issue that will be shown to play an important role for the seniority

based hierarchy is spatial point-group symmetry (see chapter 3). Breaking

the spatial point-group symmetry of the orbitals will have a big impact on

the energy and the convergence of the seniority hierarchy [24]. Another im-

portant point is that any wave function based method can take advantage

of the seniority concept introduced in this chapter. In fact, other ab initio

approaches also benefited recently from the seniority number approach such as

the projected Schrödinger equation approach [25–27] and the coupled cluster

approach[28, 29]. Furthermore the seniority number concept is closely related

to the one of particle pairing, which has deep roots in condensed matter

and nuclear physics, where it is used for the description of superconductivity,

superfluidity, pairing of nucleons and other exotic quantum phenomena that

depend on strong electron correlation. In the second part of this thesis some

of these techniques are discussed and applied to selected problems.

2.1 The seniority number

The seniority number operator Ω̂ is defined as:

Ω̂ =
∑

i,σ

a†iσaiσ −
∑

iσ1σ2

a†iσ1
a†iσ2

aiσ2aiσ1 (2.1)

Expressed in a spin-free formulation this becomes:

Ω̂ =
∑

i

Êii − êiiii, (2.2)

where Êii the usual singlet excitation operator (see section 1.3.1) and êpqrs =

ÊpqÊrs − δrqÊps is the second-order replacement operator. If a chosen orbital

contains one and only one electron, it contributes one to the seniority expecta-

tion value, otherwise it contributes zero. The total seniority for a single Slater

determinant can be calculated as the sum of the seniorities of the single-particle

orbitals. Seniority can therefore be seen as a representation of an SU(2) algebra

and is often thought of as quasi-spin[30]. The expectation value of the seniority

operator of a Slater determinant is thus equal to the difference of the number

of electrons N with the number of electrons in doubly occupied orbitals in that

determinant, which is equal to the number of unpaired electrons in the Slater

determinant. Fig. 2.1 illustrates the seniority number concept for a number of

Slater determinants with 3 up and 3 down electrons in 6 orbitals. The number of

particle hole excitations, necessary to generate the Slater determinants from the

reference determinant, is also given to compare the seniority number labeling

with the excitation based one. The reference determinant is the one with

the three energetically lowest single-particle orbitals doubly occupied. The
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Ω=0
(nph=0)

Ω=0
(nph=2)

Ω=2
(nph=1)

Ω=2
(nph=2)

Ω=2
(nph=3)

Ω=4
(nph=2)

Ω=6
(nph=3)

Ω=0
(nph=6)

Figure 2.1: Examples of Slater determinants with 3 up and 3 down electrons

in 6 single-particle levels that belong to different parts of the excitation and

seniority partitioning of the wave function. Ω stands for the seniority number

of the determinant and nph stands for the number of particle hole excitations

with respect to the RHF reference determinant.

extension to general multiconfigurational wave functions is straightforward as

the weighted sum of the seniority number of all determinants in the expansion

of the wave function,

Ω = 〈Ω̂〉Ψ = 〈Ψ|Ω̂|Ψ〉
=

∑

i

ρii − 2
∑

i

Γiiii

= N − 2
∑

i

Γiiii. (2.3)
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The seniority number

Here, the ρii, and Γiiii are elements of the spin-free first and second order

reduced density matrices (see eq. (1.21) and (1.22)), corresponding to Ψ. N

is the number of electrons in the wave function. It can be straightforwardly

checked that the seniority number operator does not commute with the elec-

tronic Hamiltonian eq.(1.8). The seniority number is thus not a good quantum

number for electronic wave functions. This is mainly due to the second term

in eq. (2.3) as the particle number operator commutes with the electronic

Hamiltonian, and is a constant for a given wave function, independent of the

single-particle basis used. The second term 2
∑
i Γiiii does not commute with Ĥ

and depends on the used single-particle basis, a basis transformation changes

its value. Therefore the seniority number also depends on the used single-

particle basis. Maximizing the second term in eq.(2.3) by an appropriate

unitary transformation will minimize the seniority number of the wave function.

This will be exploited in section 2.4, where some algorithms are discussed to

minimize the seniority number.

Fortunately there are operators that do commute with the seniority number

operator, and also with the electronic Hamiltonian such as the Ŝ2 (spin-squared

operator), and Ŝz (projected spin-operator)[4].

Ŝ+ =
∑

p

a†pαapβ (2.4)

Ŝ− =
∑

p

a†pβapα (2.5)

Ŝz =
1

2

∑

p

(a†pαapα − a†pβapβ) (2.6)

Ŝ2 = Ŝ−Ŝ+ + Ŝz(Ŝz + 1) (2.7)

Their quantum numbers can be used to label the exact eigenstates of the

electronic Hamiltonian. Furthermore, linear combination of degenerate spin

eigenstates can be used to construct states with distinct seniority numbers.

Alternatively, one can also create linear combinations of states corresponding

to the same seniority eigenvalues to generate distinct eigenstates of the Ŝ2 and

Ŝz operator. This can be easily seen by noting that the seniority operator

can be expressed in a spin-free formulation eq.(2.2), and recalling the fact that

singlet-operators commute with both spin-operators.

[
Ŝ2, Ω̂

]
= 0, (2.8)

[
Ŝz, Ω̂

]
= 0. (2.9)

Unfortunately the electronic Hamiltonian does not commute with the seniority

number, but many model Hamiltonians exist that have seniority as an exact

quantum number. Those Hamiltonians are mainly used in condensed matter

and nuclear physics. An example is the Reduced BCS Hamiltonian (also known
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as the picket-fence Hamiltonian):

Ĥ =
∑

jσ

εja
†
jσajσ + g

∑

ij

a†iαa
†
iβajβajα (2.10)

This Hamiltonian captures the essential physics of singlet pairing between

fermions. It is also a member of an entire class of exactly solvable models, and

exact solution methods that scale linearly with the system size are available

for it using Bethe ansatz techniques (see Part II, Chapter: 6). Although this

Hamiltonian is a drastic approximation to the electronic structure Hamiltonian,

in the 2nd part of this thesis results are presented of approximations to the full

electronic Hamiltonian by wave functions that are variational solutions of the

picket-fence model.

By selecting all determinants corresponding to a given seniority number or a

set of seniority numbers, it is possible to build new wave functions based on

the seniority quantum number. As an example all seniority zero determinants

describe the Ω = 0 sector of the Hilbert space which incorporates all paired ex-

citations, and is equal to the doubly occupied configuration interaction (DOCI)

wave function[31]. DOCI wave functions are already extensively studied and

their value for chemical purposes lies in its connections with Geminal-based

theories for chemical bonding[32]. From a FCI point of view, DOCI is a singlet

wave function that is able to describe any possible pairing structure of the

chemical bond. As a matter of fact, recent calculations[24] have established

that DOCI wave functions are perfectly suited to capture the static correlation

associated to chemical bonds. Furthermore, DOCI wave functions are size

consistent. The DOCI wave function can also be written as:

|ΨDOCI〉 =

(KN
2

)∑

j=1

cj

N
2∏

i=1

S†j(i) |θ〉 (2.11)

where |θ〉 is the pair vacuum, and S†i = a†iαa
†
iβ is the pair creation operator

of the i-th orbital. j is a vector that maps the N
2 pairs to a selected set of

occupied orbitals of the K spatial single-particle orbitals. Recently a seniority

zero based perturbation theory was introduced [33], by means of pair-orbital

energies, which are analogous to the known orbital energies (eigenvalues of the

Fock matrix) [6].

εi = fi + fī − Vīiīi (2.12)

εa = fa + fā + Vaāaā. (2.13)

The i index stands for occupied orbitals of a reference determinant, and a for

a virtual orbital. The fi are the diagonal elements of the Fock matrix. They

can also be seen in the context of double ionization potentials (εi) or double

electron affinities (εa). This approach suffers less from intruder states, through

the extra V terms in comparison with conventional Møller-Plesset or Epstein-

Nesbet perturbation theory[6].
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Two electron problem

The seniority two determinants span the Ω = 2 sector. This sector represents

all paired excitations plus one broken pair. The seniority four determinants

span the Ω = 4 sector, which represents all paired excitations plus two broken

pairs and so on for the seniority 6, 8, . . . sectors. Besides constructing wave

functions based only on one seniority sector one can also combine them. This

generates wave functions consisting of all Ω = 0, 2, Ω = 0, 2, 4, . . . determinants.

When all seniority sectors are used one has the entire full CI Hilbert space. This

makes it possible to investigate the convergence of the seniority hierarchy to

the full CI solution in a given basis set. The minimum seniority value for

a sector of the electronic Hilbert space with spin-projected value 〈ŜZ〉 = sz
is Ωmin = 2sz, and the maximum value depends on whether the number of

orbitals K is larger than the total amount of electrons N . If this is the case

then Ωmax = N otherwise Ωmax = 2K − N . Potential energy curves of wave

functions constructed by selecting determinants according to their seniority

number, together with a study of the convergence rate is given in section 2.5.

But first the special case of the two electron problem is discussed in the next

section.

2.2 Two electron problem

For all two-electron problems the DOCI wave function with optimized orbitals

is equal to the exact singlet wave function. This implies that the minimal

seniority of the exact singlet wave function is zero, and the seniority minimized

orbitals (see section 2.4) are equal to the orbitals that minimize the energy of

the DOCI wave function. This can be seen by expanding the exact two electron

wave function in a Slater determinant basis:

Ψ =
∑

i,j

ci,ja
†
iαa
†
jβ |θ〉 (2.14)

It is now possible to diagonalize the symmetric matrix C = UDU† and express

the exact wave function in this basis as:

Ψ =
∑

i

dib
†
iαb
†
iβ |θ〉 (2.15)

Where the new creation operators are expressed as linear combinations of the

old according to the columns of the unitary transformation U that diagonalize

the coefficient matrix of the exact wave function: b†iα =
∑
a†jαUji. This boils

down to the fact that one can rotate the orbitals in such a way that the seniority

two determinants no longer contribute to the exact wave function, which implies

that the DOCI wave function is invariant to the addition of single excitations

from all the DOCI determinants. It is important to emphasize the fact that

the subspace spanned by determinants of a given seniority depends strongly

on orbital rotations. In the next section formulas for the dimensions of the

seniority spaces are derived.
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2.3 Dimensions of the seniority spaces

In this section formulas are derived for the sizes of the seniority Hilbert spaces

from which the full CI Hilbert space can be built [24]. As previously mentioned,

the size of the FCI space is: Dim(K, Nα , Nβ) =
(
K
Nα

) (
K
Nβ

)
for a system

with K spatial single-particle orbitals, and Nα up- and Nβ down-electrons.

It is assumed in the following that Nα = Nβ = N
2 = M . The dimension

corresponding to a space with seniority Ω = 2z, with z equal to the number

of unpaired α electrons, can be calculated by constructing determinants with

seniority 2z stepwise, adding first the α electrons and then the β electrons. One

can generate
(
K
M

)
determinants with M α electrons spread over K orbitals. To

add the β electrons one should take into account the desired seniority of 2z

which can be created by selecting z unpaired α electrons. This can be done

in
(
M
z

)
ways for each of the α determinants. Now the position of (M − z) β

electrons is already fixed as they need to form pairs with the (M − z) paired

α electrons. What is left is to put the remaining z unpaired β electrons in

the remaining (K −M) orbitals. This can be done in
(
K−M
z

)
ways. The total

number of determinants corresponding to a sector with seniority 2z is thus:

Dim(Ω=2z) =

(
K

M

)(
M

z

)(
K −M

z

)
(2.16)

The above formula can be generalized for the case that Nα is not equal to Nβ .

The number of α electrons is then equal to Nα = M + sz and the number of β

electrons is equal to Nβ = M − sz. The above formula thus generalizes to:

Dim(Ω=2(z−sz)) =

(
K

M + sz

)(
M + sz
z + sz

)(
K − (M + sz)

z − sz

)
(2.17)

To obtain the dimension that all combined seniority spaces span, one must sum

over z.

Dim(All Ω) =

M∑

z=0

(
K

M

)(
M

z

)(
K −M

z

)
(2.18)

This can be simplified by Vandermonde’s identity:

r∑

z=0

(
K −M

z

)(
M

r − z

)
=

(
K

r

)
, (2.19)

where r can be any number positive integer larger than 0. If we use the

special case r = M and the identity
(
M
M−z

)
=
(
M
z

)
, one sees that Dim(All Ω) =(

K
M

)(
K
M

)
= Dim(FCI).

2.4 Minimization of the seniority number

Truncated configuration interaction wave functions based on the expectation

value of the seniority number operator depend strongly on the single-particle
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basis used. This makes it of great interest to find a single-particle basis that

gives maximal weight to low seniority determinants. A good candidate for this

is the seniority minimized basis of a well chosen wave function that contains

determinants with higher seniorities. Ideally, this is the FCI wave function,

but this wave function can only be used for proof of principle calculations and

benchmarking. Therefore it is also of interest to determine how the seniority

minimized basis of wave functions such as the CISD wave function behave for

DOCI and other low seniority wave functions. The algorithm used revolves

around the lemma[34] that given an invertible matrix R the function f(U) =

Tr(RU) has exactly one local (and global) maximum if U is special orthogonal

(UUT = 1 and det(U) = 1), with the global maximum given by

U = R(R†R)−
1
2 . (2.20)

The second part of eq.(2.20) is guaranteed to be unitary because of the po-

lar decomposition of a square complex matrix[35]. As the first term in the

definition of the seniority number operator (eq. (2.1)) is independent of a

unitary transformation of the single-particle basis, it is possible to minimize

the seniority of a wave function by maximizing the second part,

ξ(φ1, . . . , φM ) =

M∑

i

Γiiii. (2.21)

Here, the diagonal elements of the second order reduced density matrix ex-

plicitly depend on the used single-particle orbitals. A favorable point for

the seniority minimization scheme is that a fast iterative procedure exists for

this minimization [34]. This can be further accelerated by applying a direct

inversion of the iterative subspace (DIIS) accelerator. If a start basis of m

orthonormal occupied molecular orbitals is denoted as {φ0
i }mi=1, which are most

often orbitals coming from a restricted Hartree-Fock calculation or Löwdin

orthonormalized atomic orbitals, the orbital dependent part of the seniority

can be written as a function of an orthogonal matrix:

ξ(U) =
∑

ijklr

UjiUkiUliUriΓ
0
jklr, (2.22)

where the second order reduced density matrix is expressed in the start or-

thonormal basis {φ0
i }mi=1. The seniority of the wave function is now minimized,

when the U ∈ SO(m) is found that maximizes eq.(2.22). The seniority mini-

mizing orbitals are then given by:

φ∗i =
∑

j

φ0
jU

max
ji (2.23)

To do this we parametrize the SO(K) group by its antisymmetric generators

∆.

U = e∆. (2.24)
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Differentiating eq.(2.22) with respect to ∆ab we find.

∂ξ

∂∆ab
|∆=0 =

∑

ijklr

4(δjaδib − δjbδia)δikδliδriΓjklr (2.25)

= 4(Γabbb − Γbaaa) (2.26)

The stationary points of ξ thus correspond to those orthonormal orbitals for

which the matrix Rij = Γijjj is symmetric.

Unfortunately it is not possible to analytically maximize eq.(2.22). This can be

circumvented by introducing an alternative function with the same first order

derivatives.

η(U) =
∑

ij

UjiΓjiii =
∑

ij

RjiUji = Tr(RTU) (2.27)

The above mentioned lemma (see eq.(2.20)) now guarantees that eq.(2.27) has

a unique global maximum at U = R(R†R)
−1
2 . Both functions have the same

stationary points, but the loss of control over the higher derivatives makes it

impossible to guarantee a maximization instead of a minimization. However

by making use of the proportionality of both equations one can deduce that:

ξ(U) = ξ(Id + ∆) (2.28)

= ξ(Id) +
∑

i<j

∂ξ

∂∆ij
|∆=0 ·∆ij (2.29)

= ξ(Id) +
∑

i<j

4
∂η

∂∆ij
|∆=0 ·∆ij (2.30)

≈ ξ(Id) + 4δη (2.31)

In each step δη > 0, which implies that if the starting orbitals are chosen close

enough to the seniority minimizing orbitals such that the step sizes are small

ξ increases with each step. However, one has to be cautious because ξ and η

have different second and higher derivatives. Thus it can occur that when the

iterative steps are to large that ξ decreases.

A summary of the iterative scheme thus boils down to the following steps:

1. Start with a set of orthonormal orbitals, e.g. the RHF molecular orbitals.

2. For k ≥ 0 (k indicates the number of cycles) determine the 2-RDM (Γ )

for which we want to minimise the seniority number.

3. Construct the matrix R
(k)
ji = Γ

(k)
ji,ii

4. Construct the unitary transformation U (k+1) = R(k)
[(
R(k)

)†
R(k)

]− 1
2

.

5. Transform the current orbitals to the new basis with the unitary matrix

U (k+1).
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6. Set k = k+1, repeat steps 2-6 untilR(k) is sufficiently close to a symmetric

matrix and the process has converged.

The total transformation from the start orbitals to the final seniority minimiz-

ing orbitals is thus given by:

D(k+1) = D(k) ·U(k+1) = U(1) ·U(2) . . .U(k) ·U(k+1) (2.32)

When the iteration converges we must have:

lim
k→∞

U (k) = lim
k→∞

R(k)(R†
(k)

R(k))
−1
2 = Id (2.33)

which implies that R = R†. In the remainder of this thesis, the orbitals

produced by minimizing the seniority number of a FCI wave function are

denoted by the labels Mmin and Mmin-c1, depending respectively on whether

only rotations between orbitals of the same irreducible representation of the

spatial point-group are considered or symmetry breaking is allowed. If the

seniority number is minimized using a wave function other than FCI, a subscript

is added to denote the wave function used (e.g. MminCISD ).

2.4.1 Acceleration with the direct inverse of the iterative
subspace (DIIS)

It is possible to speed up the algorithm above by introducing a direct inverse of

the iterative subspace (DIIS) method [36, 37]. These algorithms are prevalent

in SCF theory[4]. In this case it is our goal to search for orthogonal MxM

matrices (D) for which the corresponding R matrices are symmetric.

The error matrix for this problem is defined as the lack of symmetry of R(D).

Eij(D) = Rij(D)−Rji(D) (2.34)

The assumption of DIIS-algorithms is that for small changes in D, the changes

in the error matrix are linear. The algorithm boils down to the following

iterative cycle.

1. Start with a set of orthonormal orbitals, e.g. the RHF molecular orbitals.

2. For k ≥ 0 (k indicates the number of cycles) determine the 2-RDM (Γ ),

calculate R
(k)
ij and the error matrix E

(k)
ij = R

(k)
ij −R

(k)
ji .

3. Construct the DIIS B-matrix for 1 ≤ i, j ≤ k: Bij = 〈E(i)|E(j)〉 =∑
r,s = E

(i)
rs E

(j)
rs
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4. Set up the standard DIIS equations and solve for the coefficients ci:




B11 B12 . . . B1k −1

B21 B22 . . . B2k −1
...

...
. . .

... −1

Bk1 Bk2 . . . Bkk −1

−1 −1 . . . −1 0







c1
c2
. . .

ck
λ




=




0

0

. . .

0

−1




(2.35)

The Lagrange multiplier λ makes sure that the coefficients ci add to one.

5. Construct the extrapolated matrix C(k+1) =
∑k
a=1 caD

(a).

6. At the extrapolated C(k+1) construct an extrapolated R, by noting that

to first order around the identity:

R̃
(k+1)
ij =

k∑

a=1

caR
(a)
ji (2.36)

7. Perform a generalized η step that rotates the non-orthogonal orbitals back

to orthogonal orbitals while minimizing the seniority. More precisely,

construct:

Ṽ(k+1) = (S̃(k+1))−1R̃(k+1)((R̃(k+1))T (S̃(k+1))−1R̃(k+1))
−1
2 . (2.37)

Then D(k+1) = C(k+1)Ṽ(k+1), with the new improved orbitals φ
(k+1)
i =∑

j φ
(0)
j D

(k+1)
ji .

8. Set k = k+1, repeat steps 2-7 untilR(k) is sufficiently close to a symmetric

matrix and the error matrix is close to zero.

However by constructing the transformation C(k+1) by extrapolation, an extra

complication arises: the intermediate orbitals φ̃ obtained by the transformation

C(k+1) are non-orthogonal. The generalized η step then minimizes the seniority

while acknowledging the fact that the starting orbitals (φ̃) are not orthonormal,

but have overlap matrix S̃. One can understand the generalized η step by

the following arguments. Given the non-orthogonal set of orbitals φ̃i, the

orthonormal orbitals φi =
∑
j φ̃jVji that maximize the η function:

ηV =
∑

i

Γĩĩĩi =
∑

ij

VjiΓj̃ ĩ̃ĩi (2.38)

It is possible to enforce orthogonality by writing: V = S
−1
2 U for U orthogonal.

Therefore the above equation can be written as:

η(U) =
∑

ijk

S
−1
2

jk UkiΓj̃ ĩ̃ĩi = Tr(RTS
−1
2 U) (2.39)
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Application of lemma eq.(2.20) shows that η is maximized for

U = S
−1
2 R(RTS−1R)

−1
2 , which gives the total generalized η transformation:

V = S−1R(RTS−1R)
−1
2 .

The DIIS procedure is significantly faster than the previous procedure, but

extra caution is required because a good guess is necessary before the DIIS can

be used. This is because by constructing the R̃ matrices an extra approximation

is made. The implementation used to generate the results presented in this

thesis, starts with a number of normal minimization steps and if a given

accuracy is obtained the DIIS kicks in. This significantly speeds up the final

iterations. This is important because experimentally it was observed that very

small reductions of the seniority, could have an impact on the DOCI energy

that is several orders of magnitude larger. Therefore very good convergence of

the minimal seniority is required typically up to 1e-8.

In the following section the convergence of the seniority based hierarchy to the

FCI limit is investigated for a number of different single-particle bases includ-

ing the seniority minimized basis. Furthermore the contribution of different

seniority blocks to the FCI wave function are compared. Potential energy

surfaces of wave functions constructed by selecting different seniority parts of

the Hilbert space of some selected molecules are also analyzed and depicted.

Seniority minimized orbitals are also compared with the natural orbitals and

the canonical molecular orbitals.

2.5 Results of convergence and energy proper-

ties

In this section, the results are represented of selected calculations on a test set

consisting of atoms and small molecules. In some cases the seniority results are

compared with those obtained with the standard excitation based hierarchy.

All configuration interaction calculations presented in this thesis are done with

CIFlow, a flexible and general configuration interaction solver developed at the

UGent, see appendix B for more details. The one and two electron integrals are

obtained from the Psi4 package [38], or by using an in house developed Obara-

Saika integrator, and to read those integrals into memory the Hamiltonian class

of CheMPS2 is used [39, 40].
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Figure 2.2: The first 5 MO orbitals according to a restricted Hartree-Fock

calculation for the LiH(Rst) molecule with the 6-31G basis set, with Rst equal

to two times the experimental geometry. The colors indicate the relative sign.
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Figure 2.3: The first 5 Mmin orbitals according to a seniority minimization

of the FCI wave function for the LiH(Rst) molecule with the 6-31G basis set,

with Rst equal to two times the experimental geometry. The colors indicate

the relative sign.
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To test what the effect is of the single-particle orbital basis on the seniority

number of the FCI wave function, table 2.1 depicts the seniority of the FCI

wave function expanded in a basis coming from a restricted Hartree-Fock

calculation (MO), seniority minimization procedure (MMin), or the natural

orbital basis (FNO) all starting from the 6-31G basis set. A similar table is

presented in [20] for the STO-3G basis set. The seniority number concept is

important when static correlation is prevalent therefore results are depicted

for comparison at experimental equilibrium distances and at stretched ones.

Together with the Be atom, which is a prime example of static correlation[24],

and for comparison the Ne atom is presented where dynamic correlation is

the dominant factor. An aspect of table 2.1 that deserves to be highlighted

is the effect of electron correlation on the expectation value of the seniority

operator. Most molecules presented in table 2.1 have larger seniority values at

equilibrium geometries than at stretched bond distances when the MO basis is

used. This can be explained as increased importance of excited determinants

with higher seniority in the wave function expansion. This also means that

one needs less determinants with higher seniority to describe molecules at

stretched distances. This is a result in contrast with [20], where it was stated

that higher seniority values arise for stretched geometries when the MO basis

is used, which is probably an artefact of using minimal basis sets such as

STO-3G. For the seniority minimized and FNO bases the opposite is the

case, but no real trend can be seen. Furthermore it is confirmed that the

seniority minimized basis gives the lowest seniority values for the FCI wave

functions. These seniority values are considerably lower than for the MO basis.

The seniority values of the FNO basis come close except for the BH molecule

at stretched distance and the BeH2 molecule at equilibrium distance. These

results were to be expected as the Mmin basis generated by maximizing the

sum
∑M
i Γiiii, maximises the importance of determinants with repeated indices

leading to a lower total seniority and consequently a decrease of the importance

of determinants with larger seniority values. A general point to note is that

all the expectation values of the seniority number operator presented in table

2.1 are quite small. Consequently this means that the contribution of higher

seniority determinants to the FCI wave function is also small. This validates

the claim of fast converging expansions by truncating wave functions based on

seniority number. Furthermore it shows that the seniority number operator as

expressed by eq.(2.1) can be used as a measure for the compactness of the CI

expansion in terms of Slater determinants.

To compare the MO with the MMin ones Fig. 2.2 and Fig. 2.3 show the first 5

orbitals of the LiH(Rst) molecule for respectively the MO basis and the MMin

orthonormal single-particle bases. This is done with Jmol[41]. The isosurfaces

f(x, y, z) = 0.05 are shown in red and the isosurfaces f(x, y, z) = −0.05 in

blue. The shape of the 1s orbitals of Li is the same for both bases, but the

main observation here is that for all other orbitals, the Mmin orbitals seem to

have a similar shape as the MO ones though with a larger probability of being

found close to the Li atom. It is concluded then that being found slightly closer
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Table 2.1: The number of electrons N , spatial orbitals K, seniority of the

FCI wave function (〈ψFCI |Ω̂|ψFCI〉 ) for the MO, Mmin and FNO bases, for

both experimental equilibrium distances (Re) and symmetrically stretched ones

(Rst). The stretched distances correspond to: Rst = 2 Re for all molecules.
〈ψFCI |Ω̂|ψFCI〉

system N K MO Mmin FNO

Be 4 9 0.0369 0.0003 0.0003

Ne 10 9 0.0590 0.0546 0.0589

LiH(Re) 4 11 0.3871 0.0002 0.0003

LiH(Rst) 4 11 0.0364 0.0002 0.0002

BH(Re) 6 11 0.1315 0.0112 0.0119

BH(Rst) 6 11 0.0968 0.0210 0.0321

BeH2(Re) 6 13 0.0423 0.0143 0.0423

BeH2(Rst) 6 13 0.5030 0.2852 0.2873

to the Li atom enhances the probability to form a pair with another electron.

Probably the second orbital of the Mmin set that is more prolonged over the

H-Li axis plays a crucial role for the improvement of the pairing scheme if one

changes from the MO orbitals to the MMin orbitals, because it makes it easier

to pair electrons in a bond between the H and Li atoms.

Next the FCI wave function is scrutinized, by partitioning it by its seniority

components.

2.5.1 Seniority weights in the FCI wave function

In this section, it is investigated how large the contributions of the different

seniority blocks are to the FCI wave function and what their basis dependencies

are. The contribution of each seniority sector is measured as the part of the

total norm of the FCI wave function that can be attributed to it. Thus

the weight of the seniority 0, 2, . . . sectors can be calculated respectively as

w0 =
∑
i(0) |ci|2, w2 =

∑
i(2) |ci|2, . . . . The ci are the coefficients of the

Slater determinants in the FCI wave function, and the summations run over all

seniority zero (i(0)), seniority two (i(2)), . . . determinants. Those weights can

also be interpreted as probabilities that after measurement the system can be

found in a seniority zero, two, . . . state. Table 2.2 contains the probability that

the system is found in a state associated to a particular seniority sector. The

results shown are for the Be and Ne atoms, the LiH, BH, and BeH2 molecules.

For the molecules again results at equilibrium distance (Re) and at stretched

distance (Rst = 2Re) are given. Three orthonormal single-particle bases are

considered: the MO, Mmin, and FNO bases.

It can be concluded that for all three orthonormal bases and for all atoms

and molecules the bulk of the norm is claimed by the seniority zero sector.

However, for the MO basis the contributions of the seniority zero sector to the

norm are significantly lower than the other two bases, and the MMin basis

gives the largest contribution of the seniority zero sector to the norm of the
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FCI wave function for all atoms and molecules, except for the Ne atom. For

the special case of the Ne atom the contribution of the seniority zero sector

is larger for the MO bases, but this is compensated by the decrease of the

seniority four contributions of the Mmin basis. Resulting in the fact that when

all contributions are added the seniority number of the FCI wave function

in the Mmin basis is also for the Ne atom the lowest. The FNO basis also

significantly enhances the contribution of the seniority zero sector as compared

with the MO basis. Furthermore the FNO basis is cheaper to compute than

the Mmin basis. However for some systems the seniority zero contribution to

the norm of the FCI wave function of the FNO basis is significantly less than

the MMin basis. If one wants to use the FNO basis as an approximation to the

Mmin basis, one should be very cautious. For some systems it is possible to

reduce the contributions of other sectors to values under 1e-4, when the MMin

basis is used.

Table 2.2: Partitioning of the 6-31G FCI wave function in parts with different

seniority number for the MO, Mmin and FNO bases. The contribution to the

norm of the FCI wave function of all seniority zero, two and four determinants

is denoted respectively by
∑
i(0) |ci|2,

∑
i(2) |ci|2 and

∑
i(4) |ci|2. For both

experimental equilibrium distances (Re) and symmetrically stretched ones

(Rst). The stretched distances are given by: Rst = 2 Re for all molecules.
MO Mmin FNO

system
∑
i(0) |ci|2

∑
i(2) |ci|2

∑
i(4) |ci|2

∑
i(0) |ci|2

∑
i(2) |ci|2

∑
i(4) |ci|2

∑
i(0) |ci|2

∑
i(2) |ci|2

∑
i(4) |ci|2

Be 0.9816 0.0184 4.7886e-05 0.9999 3.4073e-05 5.6519e-05 0.9999 3.4031e-05 5.6589e-05

Ne 0.9851 0.0004 0.0144 0.9861 0.0007 0.0132 0.9835 0.0037 0.0127

LiH(Re) 0.8065 0.1935 4.1148e-05 0.9999 4.3197e-05 3.3675e-05 0.9999 5.2936e-05 3.6659e-05

LiH(Rst) 0.9818 0.0182 2.7470e-05 0.9999 3.3052e-05 2.8245e-05 0.9999 3.3973e-05 2.8094e-05

BH(Re) 0.9374 0.0595 0.0031828 0.9964 0.0016 0.0020 0.9960 0.0021 0.0019

BH(Rst) 0.9554 0.0408 0.0038 0.9925 0.0046 0.0020 0.9881 0.0077 0.0042

BeH2(Re) 0.9832 0.0064 0.0104 0.9941 0.0047 0.0012 0.9891 0.0005 0.0103

BeH2(Rst) 0.8308 0.0870 0.0823 0.9233 0.0108 0.0660 0.9223 0.0118 0.0660

Fig. 2.4 shows the contribution to the 6-31G FCI wave function of the BeH2

molecule for the three lowest seniority sectors. The orthonormal bases com-

pared are the canonical molecular orbitals (MO), the seniority minimized CISD

basis (MminCISD), the natural orbitals (FNO) and the seniority minimized

basis of the FCI wave function (Mmin). The seniority minimized CISD basis

(MminCISD) is the orthonormal basis that minimizes the seniority of the CISD

wave function, in contrast with the MMin basis that minimizes the seniority of

the FCI wave function. The advantage of using the seniority minimized CISD

basis is that during the iterative minimization procedure only CISD calculations

are required which are computationally less expensive than FCI calculations.

At short bond distances the FCI wave function is clearly dominated by the

seniority zero sector of the Hilbert space. This is mainly due to the dominance

of the Hartree-Fock determinant in this regime. However, when the bond is

stretched, the contribution of the seniority zero sector decreases in favor of the

seniority four sector and to a lesser extent the seniority two sector. At even
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Figure 2.4: Partitioning of the norm of the 6-31G FCI wave function over the 3

lowest seniority sectors, for the linear BeH2 molecule versus the Be-H distance.

This for four different orthonormal bases namely the MO, FNO, MminCISD

and Mmin bases.

larger distances the contribution of the seniority zero sector to the FCI wave

function starts to increase again and grows slowly towards one. If the different

orthonormal bases are compared, it can be seen that the contribution of the

seniority zero sector to the FCI wave function in the MO basis is much lower

than the FNO, MminCISD, and Mmin bases at stretched distances.

For intermediate distances this decrease is mainly due to an increase of the im-

portance of the seniority four sector, and for longer distances the seniority two

sector quickly gains importance for the MO basis. The basis with the largest

contributions of the seniority zero sector is the Mmin basis and consequently

this basis has the lowest contributions of the seniority two and four sectors,

as can be expected because the basis was generated by seniority minimizing

the FCI wave function. The Mmin basis is also the most expensive basis to

compute as many FCI calculations are needed to generate it, and as can be seen

by Fig. 2.4 the improvements to the FNO and MminCISD bases are minimal

for the symmetric stretch of the BeH2 molecule. The contributions of the FNO

and MminCISD bases are very similar with slightly larger contributions to the
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seniority zero sector of the FNO basis. This is a remarkable fact because the

generation of the FNO basis needs a FCI calculation while the generation of

the MminCISD basis only needs CISD calculations. So the construction of the

MminCISD requires much less effort for a similar exploitation of the seniority

number hierarchy.

In general the seniority zero sector dominates the FCI wave function for all

bases under consideration for both short and long distances. Only between 4

and 5 bohr there is a small decrease of the contribution of the seniority zero

sector in favor of the seniority four sector. But beyond 5 bohr the seniority

four sector goes very fast to zero. The seniority two sector is negligible during

the entire bond dissociation of the BeH2 molecule for the FNO, MminCISD and

Mmin bases. This is also the biggest difference with the MO basis as for this

basis beyond 4 bohr the seniority two sector gains a lot of importance and

its contribution passes even the one from the seniority four sector. Another

difference is that the contribution of the seniority four sector for the MO basis

decreases much slower beyond 5 bohr than those from the FNO, MminCISD

and Mmin bases. The biggest difference between the MO basis and the better

performing bases is that when static correlation becomes important at stretched

distances the FCI wave function in the MO basis receives a large contribution

from pair broken terms, while the other two bases are optimized such that those

pair broken terms remain negligible. To conclude, the above results show that

the seniority number together with the seniority minimized bases can be used

for the formulation of rapidly converging CI expansions with a minimal cost.

2.5.2 Energy properties of the seniority hierarchy

In the following subsections, energies obtained from seniority number trun-

cating configuration interaction wave functions are presented. The results are

generated for a number of different orthonormal single-particle bases, such as

the natural orbitals (FNO), canonical orbitals coming from a previous restricted

Hartree-Fock calculation (MO), seniority minimized orbitals (Mmin) coming

from minimizing the seniority of the FCI wave function or the seniority of

the CISD wave function, and orbitals coming from a local optimization of the

DOCI wave function (LOCAL) through minimizing the gradient by subsequent

Jacobi rotations of the single-particle orbitals as presented in [42] and discussed

in section 5.3. Specifically it is aimed to answer the question if the seniority

based scheme converges faster to the FCI limit than the excitation based one

and for which cases it can be an efficient method for truncating configuration

interaction wave functions. Furthermore in chapter 3 the effects of spatial sym-

metry breaking on the behaviour of seniority based wave functions is studied.

Below a similar presentation of results will be given as in [21, 24] extended

with some new results. Mostly the 6-31G basis set will be used and for some

cases also the CC-PVDZ basis set. Furthermore to denote the seniority based

wave functions: DOCI stands as usual for the seniority 0 case, SEN(0,2) for
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the combination of the seniority zero and two sectors of the Hilbert space,

SEN(0,2,4) for the seniority zero, two and four sectors combined, and so on for

higher steps of the seniority hierarchy....

I. The Be and Ne atoms

Studying the beryllium and neon atom is of importance because they are

two simple systems with very different behaviour. The beryllium atom is a

prime example of a system where static correlation is prevalent. It has near-

degeneracies of the 2s, 2px, 2py, and 2pz orbitals. The CI active space to

describe 2 electrons in 4 orbitals is sufficient to describe the strong correlation.

In contrast the neon atom is an example where all orbitals are doubly occupied.

The neon atom has no problems with near-degeneracies and therefore the

correlation involved is mainly dynamic. Hence, the RHF determinant is a very

good approximation for the neon atom, this means that for the neon atom the

excitation based hierarchy will outperform the seniority based hierarchy. This

is confirmed by table 2.3. This table shows the energy values of the MO, FNO,

Mmin, MminCISD, and LOCAL bases for the excitation and seniority based

hierarchies. It is clear that for the Ne atom the excitation based hierarchy

outperforms the seniority based hierarchy. With much fewer determinants a

significantly better energy is obtained. In contrast, for the Be atom it can be

seen that the low seniority wave functions provide energies that are comparable

to the energies coming from the excitation based ones provided a suitable basis

is choosen. Furthermore it is remarkable that those energies are obtained

with much less determinants for the low seniority wave functions. Another

observation that can be made is that the energies of all methods for the Ne

atom have almost no dependence on the used orthonormal bases. For the Be

atom the improvement of using the FNO or Mmin basis is significant for the

seniority zero sector.

Table 2.3: The energies of the Be and Ne atoms in the CC-PVDZ (14 basis

functions) basis for the excitation and seniority based partitions of the Hilbert

space together with the number of determinants contained in their expansion.

The RHF energy for the Be atom is -14.5723 hartree, and for the Ne atom:

-128.48878 hartree. The 1s orbital of the Ne atom is kept frozen during the

calculations. The compared bases are the MO, FNO, Mmin, MminCISD, and

LOCAL bases.
Be Ne

partitioning # determinants MO FNO Mmin # determinants MO LOCAL MminCISD

nph = 1,2 757 -14.61736 -14.61735 -14.61735 1801 -128.67362 -128.67365 -128.67343

nph = 1,2,3 3925 -14.61740 -14.61739 -14.61739 18025 -128.67458 -128.67465 -128.67461

nph = 1,2,3,4 8281 -14.61741 -14.61741 -14.61741 89125 -128.67891 -128.67897 -128.67890

Ω = 0 91 -14.60056 -14.61706 -14.61707 715 -128.55055 -128.55080 -128.55061

Ω = 0,2 2275 -14.61723 -14.61720 -14.61720 26455 -128.55360 -128.55362 -128.55368

Ω = 0,2,4 8281 -14.61741 -14.61741 -14.61741 180895 -128.67773 -128.67776 -128.67762
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II. The BeH2 molecule

The dissociation of the BeH2 molecule is another prime example of the intro-

duction of a significant amount of static correlation by dissociating the bond.

For this reason it is an interesting molecule to include in this study.

Table 2.4 reports the number of determinants together with the percentage

of the total number of FCI determinants used by the wave function for the

BeH2 molecule in the 6-31G atomic basis set when the 1s orbitals are always

kept doubly occupied. It can be seen that for this case the number of DOCI

determinants is significantly smaller than the number of CISD determinants.

This indicates that the cost of generating the DOCI wave function is smaller

than the CISD wave function for the BeH2 molecule. This trend is the same

for the next step of both hierarchies as the number of CISDT determinants is

almost twice as high as the number of SEN(0,2) determinants.

Table 2.4: Number of determinants, Ndet, for a selection of discussed methods

for the BeH2, CO and H6 molecules in the 6-31G atomic basis set, and the cor-

responding fraction of the FCI Hilbert space expanded by those determinants.

The 1s orbitals are kept doubly occupied for BeH2 and CO.
BeH2 CO H6

Methods Ndet
Ndet

Ndet(FCI)100 Ndet
Ndet

Ndet(FCI)100 Ndet
Ndet

Ndet(FCI)100

CISD 531 12 4236 0.02 1000 2

CISDT 2331 54 68036 0.36 7000 14

CISDTQ 4356 100 555336 3 23200 48

DOCI 66 2 4368 0.02 220 0.45

SEN(0,2) 1386 32 244608 1 6160 13

SEN(0,4) 3036 70 2406768 13 23980 50

SEN(0,2,4) 4356 100 2647008 14 29920 62

FCI 4356 100 19079424 100 48400 100

Fig. 2.5(a) depicts the first two steps in the excitation based hierarchy together

with the first three steps in the seniority based hierarchy in the MO basis. One

can see that near the equilibrium distance the excitation hierarchy performs

much better, but near the dissociation limit the SEN(0,2) wave function gains

importance due to the increased importance of static correlation when the bond

is stretched. The energy of the SEN(0,2) wave function crosses the one of the

CISD wave function and comes close to the energy of the CISDT wave function.

Furthermore the energy of the DOCI wave function approaches the FCI limit

slowly at larger bond distances. These are interesting results as the seniority

based hierarchy gives good results at bond dissociation even when the MO

basis is used, although this is an orthonormal basis optimized for the excita-

tion based hierarchy. The second plot of the seniority hierarchy of the bond

dissociation of the BeH2 molecule using the 6-31G basis set shows the impact

of different orthonormal bases. The orthonormal bases under consideration are

the LOCAL, FNO, and MminCISD bases. As can be seen the impact on the
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energy of the DOCI wave function is quite big. Again in correspondence with

results obtained by Bytautas, et. al. [24] and Alcoba et. al. [21]. The FNO

basis is already a considerable improvement over the MO basis for the DOCI

wave function and during dissociation the energy of the DOCI wave function

goes rapidly towards the FCI limit when the FNO basis is used. But during the

intermediate dynamic correlation regime the DOCI energy in the FNO basis

has still a small bump above all the other energies. Only the DOCI energy

in the MO basis is still higher. The LOCAL and MminCISD bases give the

lowest energy values for the DOCI wave function and are indistinguishable on

the curve, so only one of them is depicted. The energy values are even lower

than the SEN(0,2) wave function in the MO basis during the entire dissociation

process.

The effect of using these bases for the SEN(0,2) wave function is lower than

for the DOCI wave function but the same relative order of the orthonormal

bases remains with the FNO basis giving a sizeable improvement over the MO

one and the LOCAL and MminCISD bases giving further improvements. It is

remarkable that the DOCI wave function in a good basis can become lower

in energy than the SEN(0,2) wave function in the MO basis as the MO basis

is not the worst basis and the SEN(0,2) sector contains thirty times more

determinants. However when also a suitable basis for the SEN(0,2) sector

is chosen the energy of the SEN(0,2) wave function remains below all DOCI

energies, but with a relatively small difference. This hints to the fact that

optimizing the DOCI wave function means in essence decoupling the seniority

zero and two blocks from each other such that the effects of pair breaking

become negligible. If the SEN(0,2) wave function is then expanded in those

optimized DOCI bases, one can see that the contribution and added value of

the seniority two sector on top of the seniority zero sector becomes negligible,

especially if one takes into consideration the extra cost of adding the one pair

broken determinants. This is also revealed by looking at the relative energies

of the DOCI and SEN(0,2) wave function. This is in accordance with the

results of Fig. 2.4, which showed the partitions of contributions of the different

seniority sectors to the FCI wave function. From this it can be seen that

the seniority four sector has significantly larger contributions to the FCI wave

function than the seniority two sector for the optimized bases, giving further

evidence for the fact that optimizing the DOCI wave function mainly consists

of minimizing the contribution of the seniority two sector. In fact one can

use the SEN(0,2) energies in the MO basis as good guesses for the energies of

the DOCI wave function in orbital optimized bases. As always this reveals a

trade-off between memory and speed; the SEN(0,2) wave function needs more

memory as more determinants are needed to expand the Hamiltonian in, but

the orbital optimized DOCI wave functions needs more calculations to generate

the optimized orbitals. To conclude: FCI accuracy is reached at the dissociation

limit for all seniority based wave function if a proper orthonormal basis is used,

again supporting the validity to use seniority based wave functions when static

correlation becomes important.
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Figure 2.5: Comparison of excitation based energies with seniority based

energies for the linear BeH2 molecule as a function of the Be-H distance. In a)

all results use the MO basis, and for b) the results are depicted for four different

orthonormal bases namely the MO, FNO, MminCISD and LOCAL bases. The

used single-particle basis set is 6-31G The 1s orbitals are kept doubly occupied.
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III. The CO molecule

The results for the CO molecule in the 6-31 single-particle basis set are depicted

in Fig. 2.6. The dissociation of the CO molecule is an interesting example

because it consists of breaking a triple bond. Therefore it is of interest to know

how the seniority based hierarchy performs in comparison with the excitation

based hierarchy for this problem. In general the energetic dependence of the

DOCI wave functions is not very smooth. This is probably due to convergence

issues or changes in the underlying single-particle bases (MO) in combination

with the big dependence of the energy values of the DOCI wave function upon

the used single-particle bases. The interesting point to note is the big im-

provement of the SEN(0,2) energies when the MMinCISD is used. Furthermore

when the bond is stretched the effect of minimizing the seniority of the CISD

wave function is the highest. The SEN(0,2) wave function has no jumps and

goes slightly towards lower energies near the dissociation limit. The SEN(0,2,4)

wave function is already very smooth and the best wave function over the entire

dissociation process, even if the MO basis is used. This is in agreement with

the fact that when a larger percentage of the FCI Hilbert space is spanned

by the Slater determinants, orbital optimizations become less important. For

small molecular systems as studied in this thesis orbital optimizations are only

necessary for the lowest steps in the seniority hierarchy such as the DOCI and

SEN(0,2) wave functions. Comparing the excitation based wave functions with

the seniority based ones for the CO molecule, it can be concluded that the

excitation based hierarchy performs better for this molecule than the seniority

based hierarchy. One needs the SEN(0,2,4) wave function to improve slightly

on the CISDT wave function, and as table 2.4 shows the SEN(0,2,4) wave

function contains almost three million Slater determinants in comparison with

the seven thousand of the CISDT wave function.

IV. The H6 linear chain

Another prime example of systems with a lot of static correlation are stretched

hydrogen chains. Many studies of those chains are already published in the

literature, some of them even including studies of the effects of breaking the

spatial point-group symmetry on the energy values and quality of seniority

based wave functions for the H8 chain[24, 42]. Those previous studies stated

that considerable improvements of the wave function can be made by breaking

the spatial point-group symmetry. Below results are presented for the H6 chain

using the 6-31G basis set (see Fig. 2.7). Interesting points to observe from this

figure are the fact that the energy values of the DOCI wave function in the FNO

basis are worse then if one had used the MO basis. So one should be cautious

with using FNO orbitals, they are able to give good guesses for the optimized

DOCI orbitals, but there is no guarantee for it. Another interesting fact that

becomes clear from the figure is the dependence on the starting orbitals for

generating the LOCAL orbitals [42]. E.g., a sudden jump in energy around 2.5
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Figure 2.6: Comparison of excitation based and seniority based frozen core

energies for the CO molecule as a function of the C-O distance. The results are

depicted for different orthonormal bases namely the MO and MminCISD bases.

bohr is found. This follows from the fact that the starting orbitals, from which

the LOCAL optimization starts, change dramatically around 2.5 bohr from

delocalized molecular orbitals to localized orbitals. The restricted Hartee-Fock

routine that is used to obtain the starting orbitals for the LOCAL procedure

is responsible for this. The applied Hartree-Fock routine makes use of the

Generalized Wolfsberg-Helmholtz (GWH) guess implemented in psi4 [38]. The

GWH guess is a simple Huckel-Theory-like method based on the overlap and

core Hamiltonian matrices. It can be useful for open-shell systems and makes

the psi4 restricted Hartree-Fock calculations converge in the dissociation limit.

This guess makes the Hartree-Fock orbitals change from delocalized to localized

ones when the 2.5 bohr point is crossed. Starting from the localized HF

orbitals gives big improvements for the energy of the DOCI(LOCAL) wave

function, at stretched bonds. Another interesting observation is the fact that

the energy of the SEN(0,2) wave function in the MO basis goes below the energy

coming from a CISD calculation although the CISD wave function contains

more determinants. Furthermore the SEN(0,2,4) wave function has energy

values that are almost indistinguishable from the FCI values, and it is the
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best approximative wave function tested. As a last observation, it is remarked

that the SEN(0,4) wave function is higher in energy than the CISDT wave

function around equilibrium, but when the bounds are stretched the situation

is reversed.
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Figure 2.7: Comparison of excitation based energies with seniority based

energies over the 3 lowest seniority sectors, for the linear H6 molecule as a

function of the H-H distance. The results are depicted for three different

orthonormal bases namely the MO, FNO and LOCAL bases. The used atomic

basis set is 6-31G.

V. The benzene molecule

Pierrefixe et. al. [43] derived a molecular orbital model of aromaticity. From

this model it can be deduced that the π-electron system does not favour a

symmetric, delocalized ring in benzene, confirming previous results obtained

by Hiberty, Shaik, et. al. [44][45]. Furthermore it was stated that the reg-

ular symmetric structure of benzene has the same cause as that of planar

cyclohexane, namely the σ-electron system. However, the π-system dictates if
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de-localization occurs through qualitatively different dependency of the overlap

of the deformed π-system on the geometry.

The deformation of the benzene molecule from a D6h system to a D3h system

as described in [43] constitutes an interesting test for seniority truncated CI

methods. The transformation groups the C atoms two by two and the angle

between the two C atoms in a group is decreased from 60 degrees to 55 degrees

while the distance to the center is kept fixed. This effectively reduces the D6h

symmetry to a D3h system. Further it is assumed that the H-atoms remain on

the line connecting the centre of the molecule to it’s corresponding C-atom on

the same distance. Furthermore the bonds change from 1.398 Å to 1.338 Å

for C-atoms in a group and 1.581 Å for neighbouring C-atoms belonging to a

different group. Fig. 2.8 is a graphical representation of the above described

transformation.
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Figure 2.8: The symmetry breaking of the benzene molecule from a) D6h to

b) D3h.

The π-system of benzene is easily isolated by using spatial symmetry. Psi4

[38] and the CI-solver developed for this thesis [46] make only use of Abelian

symmetry groups for simplicity. The largest abelian supgroup of D6h is D2h

and the largest abelian subgroup of D3h is C2v. The reducible representation

of the π-system for the D2h group of benzene can be decomposed to the

following irreducible representations ΓRV (D3h) = B2g + 2B3g + Au + 2B1u,

and for the deformed benzene molecule with C2v as its largest abelian point-

group: ΓRV (C2v) = 3A2 + 3B1. This makes it easy to perform active space

calculations with the π-system of benzene, and the deformed benzene molecule,

as the π-system can be selected by selecting all the orbitals corresponding

to the irreducible representations of the spatial point-group that transform

the same as the π-orbitals. Fig. 2.9 depicts the energies of the HF, CISD,

DOCI(MO), DOCI(OO) and FCI wavefunctions as a function of the angle (in
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radians) between two carbon atoms in a group. For the CI-wave functions

an active space of 6 electrons in 12 orbitals is used corresponding to the π-

system of benzene in the 6-31G basis set. An interesting observation is that

DOCI(OO) is the only wave function for which the benzene molecule is not

energetically stable when the π-system is chosen as active space. The OO

basis is a global optimization procedure coming from a simulated annealing

procedure as described in chapter: 3. It is remarkable that the energy for orbital

optimized DOCI wave functions in a CAS(12,6) of π orbitals leads to a lower

energy for the D3h system. While the benzene molecule is energetically stable

for the DOCI wave function that uses canonical molecular orbitals coming

from a previous restricted Hartree-Fock calculation. Pointing out that the best

orthonormal bases for the seniority based wave functions are not always the

bases for which the energy of the DOCI wave function is the lowest. This

result is also interesting as it shows the destabilizing character of the π-orbitals

for a complex orbital optimized CI calculation such as DOCI(OO), confirming

the results of the molecular orbital model by Pierrefixe et. al. It should be

emphasized that those characteristics of the benzene molecule are only visible

for seniority based wave functions (DOCI(OO)) and not for the excitation based

ones as represented by the CISD(MO) wave function. Those characteristics are

also not visible for the FCI wave function.
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Figure 2.9: The HF, CISD, DOCI(MO), DOCI(OO), and FCI energies of

the benzene deformation from D6h symmetry to D3h symmetry as a function

of the smallest angle between two neighbouring carbon atoms in radians. The

benzene molecule corresponds to 1.05 rad = 60o. For the CI wave functions the

π-system is used as an active space corresponding to 6 electrons in 12 orbitals

or equivalently a CAS(6,12).

42



Seniority hierarchy

2.6 Entropy

A wave function is more compact when fewer determinants have coefficients

significantly different from zero. The concept of compactness has high relevance

in quantum chemistry, as it has long been recognized that much of the FCI space

consists of unimportant determinants (so called dead-wood). This observation

inspired work to find optimally sparse wave functions [47, 48]. A measure of the

compactness of a wave function is the informational content (Ic) index which

is defined as:

Ic = −
dimH∑

i

|ci|2log2(|ci|2). (2.40)

Where the ci are the coefficients of a wave function that is expanded in Slater

determinants like: Ψ =
∑
i ciφi. It is derived in the context of Shannon’s

information entropy theory [49]. The Shannon entropy has the properties that

the contribution from a Slater determinant gives 0 for ci = 0 or 1 and 1
2 for ci =

1
2 . These indices have been used previously both for the excitation based case

[50] and for the seniority based case [51]. In this section a basis is established in

which the FCI wave function becomes as sparse as possible. The hypothesis that

will be tested is: are bases that generate compact expansions of the FCI wave

function a good starting point for truncated CI approaches by converging faster

to the FCI limit for both the excitation based and seniority based approaches.

The basis that leads to the lowest Ic value for the FCI wave function can be

obtained by a simulated annealing procedure. In short the simulated annealing

procedure performs random Jacobi rotations on a starting orthonormal basis

such as the MO, always accepting a rotation when the Ic value is decreased.

When the Ic value increases, the Jacobi rotation is only accepted based on

a criterion that depends on the absolute value of the Ic difference and the

number of iterations already performed (it becomes less and less likely to accept

Jacobi rotations that increase the Ic values). A detailed explanation of the

simulated annealing procedure is given in section I. of chapter: 3. The Ic
minimized basis obtained when only Jacobi rotations between orbitals with

the same spatial-symmetry are considered is denoted as Ic(sym) and in the

case symmetry breaking is allowed they are denoted as Ic(c1).

For two electron systems the FNO, MMin, OO, Ic bases are all equal and have

consistently lower Ic values than the MO orbitals. This follows from section 2.2.

Table 2.5 gives the Shannon Ic values for a number of different molecules and

bases. The main conclusion is that the MMin basis is consistently more compact

than the FNO and MO ones for the studied molecules. Another observation is

that breaking the spatial symmetry can improve the compactness of the basis

significantly. Furthermore the Mmin basis has Shannon indices that are almost

equal to the Shannon index minimized basis when spatial symmetry breaking

is allowed.

The possible relationship between the Ic value and truncated CI energies such

as CIS, CISD, CISDT, . . ., was computed starting from reference determinants
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Table 2.5: Calculated Ic values for the FCI ground state wave functions in

several orthonormal bases using the STO-3G basis set, for both equilibrium

distances (Re) and symmetrically stretched ones (Rst). The stretched distances

are given by: Rst = 1.750 Re (BH3), Rst = 1.750 Re (CH4), Rst = 1.894 Re

(NH3), Rst = 1.995 Re (H2O), Rst = 2.00 Re (HF)
BH3(Re) BH3(Rst) CH4(Re) CH4(Rst) NH3(Re) NH3(Rst) H2O(Re) H2O(Rst) HF(Re) HF(Rst)

MO 0.358 2.803 0.495 3.850 0.462 4.788 0.281 2.442 0.132 0.860

FNO 0.357 2.792 0.515 3.822 0.443 4.142 0.261 2.362 0.117 0.829

Mmin 0.312 2.599 0.417 3.239 0.383 3.660 0.234 2.031 0.117 0.829

Ic(sym) 0.331 2.619 0.495 3.812 0.408 4.141 0.260 2.362 0.117 0.829

Ic(c1) 0.312 2.598 0.417 3.239 0.383 3.659 0.234 2.030 0.117 0.829
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Figure 2.10: STO-3G excitation based truncated CI energies for different

orthonormal bases versus their FCI Ic for BeH2 at equilibrium distance. The

red dots indicate the MO, FNO, Mmin and Ic bases, which are indistinguishable

on the scale of the plot.
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Figure 2.11: STO-3G seniority based CI energies for different orthonormal

bases versus their FCI Ic for BeH2 at equilibrium distance. The red dots

indicate the MO, FNO, Mmin and Ic bases, which are indistinguishable on the

scale of the plot.

obtained from MO’s, FNO’s, seniority minimizing, Ic minimizing orbitals and

1000 randomly chosen sets. The “special” MO, FNO, Mmin, and Ic bases are

depicted by red dots, the random bases by blue dots. All special bases are

situated at the same area in the scatter plot and are visually indistinguishable

on the scale of the plot. The random bases are obtained by random Jacobi

rotations starting from the MO orbitals. For each basis the FCI coefficients were

computed, from which the Ic values followed. Fig. 2.10 shows the scatterplot

for the truncated CI energies of BeH2 versus the Ic values computed using the

STO-3G basis set at equilibrium distance. There is no clear trend visible. This

means that there is either no relationship between the Ic values and truncated

CI energies or that some hidden ordering of the orbitals remains unknown or

another reference determinant than the one with the highest coefficient should

be taken to obtain rapid convergence. The original hypothesis is thus false and

it is very difficult to improve upon the MO, FNO basis. Another interesting

result is that the MMin basis is consistently more compact than the MO, and

FNO basis with values that are indistinguishable from the Ic minimized bases.

To conclude it is stated that the study of entropy of truncated configuration

interaction wave functions revealed that the MMin basis is very close to the

entropy minimized basis for the systems under consideration. This means

that the MMin basis generates very compact expansions of the FCI wave
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function, indicating a fast convergence to the FCI limit. In the case of the

MMin basis this can be exploited because the corresponding convergence to

the FCI wave function is known, namely the seniority scheme. For random

bases, however, there seems to be almost no correlation between the entropy

and the convergence in either the excitation or seniority based schemes. This

means that the hypothesis that a more compact FCI wave function would

allow us to both extract a better single reference determinant to initiate a fast

converging one electron excitation based truncated CI and an improved basis

for the seniority scheme is shown to be false. This finalizes the overview of the

seniority quantum number in configuration interaction theory.

In the next chapter a more thorough study of the zero’th order term of the

seniority expansion, namely the DOCI wave function is presented. Special

emphasis is made on the orbital optimization problem, and the lack of dynamic

correlation. An attempt to solve the dynamic correlation problem is presented,

adding extra seniority breaking determinants to the DOCI wave function by

exciting from a reference determinant. Furthermore the effects of truncating

the DOCI wave function are investigated for some small molecules and basis

sets.
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Chapter 3

Approximations and

extensions to DOCI

1 A class of polynomial scaling methods that approximate Doubly Occupied

Configuration Interaction (DOCI) wave functions and improve the description

of dynamic correlation is introduced. The accuracy of the resulting wave

functions is analysed by comparing energies and studying the overlap between

the newly developed methods and full configuration interaction (FCI) wave

functions, showing that a low energy does not necessarily entail a good ap-

proximation of the exact wave function. Due to the dependence of DOCI

wave functions on the single-particle basis chosen, several orbital optimisation

algorithms are introduced. An energy-based algorithm using the simulated

annealing (SA) method is used as a benchmark. As a computationally more

affordable alternative, a seniority number minimising algorithm is developed

and compared to the energy based one, revealing that the seniority minimising

orbital set performs well. Given a well-chosen orbital basis, it is shown that

the newly developed DOCI based wave functions are especially suitable for

the computationally efficient description of static correlation and, to a lesser

extent, dynamic correlation.

3.1 Introduction

The exact solution of the Schrödinger equation [4, 6] for an N -electron system

is given, within any basis set, by the full configuration interaction (FCI) pro-

cedure. Unfortunately, the FCI method is usually intractable except for small

1Has been previously published as: M. Van Raemdonck, D. R. Alcoba, W. Poelmans,
S. De Baerdemacker, A. Torre, L. Lain, G. E. Massaccesi, D. Van Neck, and P. Bult-
inck. Polynomial scaling approximations and dynamic correlation corrections to doubly
occupied configuration interaction wave functions 2015: The Journal of Chemical Physics
143:10104106.
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systems. Typically, the computational cost is reduced by incorporating only a

selected set of N -electron Slater determinants in the configuration interaction

(CI) wave functions, leading to the so-called truncated CI methods, for example

CI with only single and double electron excitations (CISD). These excitations

are defined with respect to a given reference, e.g. the restricted Hartree-Fock

(RHF) determinant [4]. This kind of methods is typically well suited to account

for dynamic correlation as they are closely related to performing perturbation

theory around a good reference state.

A different way of reducing the FCI space is by projecting the wave function

only on the determinants with a specified seniority number, where the seniority

number equals the number of singly occupied orbitals in a determinant [30].

The seniority number operator may be formulated as:

Ω̂ =
∑

i,σ

a†iσaiσ −
∑

i,σ1,σ2

a†iσ1
a†iσ2

aiσ2
aiσ1

, (3.1)

where a†iσ creates a particle in the i-th orbital of an orthonormal basis with spin

σ (α or β type) and aiσ is the corresponding annihilation operator. In terms

of reduced density matrices, the expectation value of the seniority number

operator can be obtained as:

〈
Ω̂
〉

= 〈Ψ|Ω̂|Ψ〉

=
∑

i

ρii − 2
∑

Γiiii (3.2)

where
∑
i ρii is the trace over the first-order spin summed reduced density

matrix ρ, which equals the number of electrons N , and
∑
i Γiiii is the partial

trace of the second order spin-summed reduced density matrix (2-RDM) Γ . The

Doubly Occupied Configuration Interaction (DOCI) method is an example of

this class of seniority number based methods, as it lies in the seniority zero

sector of the FCI wave function[21, 24]. For a system with K orbitals, and N
2

electron pairs, the DOCI wave function is given by

|ΨDOCI〉 =

(KN
2

)∑

j=1

cj

N
2∏

i=1

S†j(i) |θ〉 (3.3)

where |θ〉 is the pair vacuum, and S†i = a†iαa
†
iβ are the pair creation operators

in the i-th orbital. Each j value corresponds to a vector j that refers to the

string of doubly occupied orbitals for all N
2 pairs. The complexity of a DOCI

wave function is much reduced compared to a FCI wave function and therefore

comes with a lower computational cost. The interest in DOCI wave functions

for chemical purposes lies in its connections with Geminal-based theories for

chemical bonding[32]. From a FCI point of view, DOCI is a singlet wave

function that is able to describe any possible pairing structure of the chemical

bond. As a matter of fact, recent calculations[24] have established that DOCI
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wave functions are perfectly suited to capture the static correlations associated

with chemical bonds. Furthermore, DOCI wave functions are size extensive.

Unfortunately, several problems remain with the DOCI method. Although the

number of determinants expanding the DOCI wave function is strongly reduced

compared to that of the FCI wave function, the factorial scaling persists. The

first goal of this chapter is to examine whether truncated DOCI solutions

give comparably good quality results at polynomial scaling computational cost.

Reduced-cost DOCI solutions have previously been obtained either by a pro-

jected Schrödinger equation approach [25, 28], or by using exactly solvable

models [52] or a variant of the variational 2-RDM method projected on the

seniority zero sector of the Hilbert space [42].

DOCI performs well at accounting for static correlation but fails in describing

dynamic correlation[24] whereas CISD wave functions perform rather well for

the latter[4]. A second aim of this chapter is therefore to establish how methods

based on the union of truncated DOCI and truncated one-electron excitations

based CI spaces perform for both types of electron correlation at reduced

computational cost. We report several DOCI variants and examine the quality

of the corresponding wave functions by computing not only their corresponding

energies but also their overlap with more advanced wave functions.

An important feature that is typical for non-FCI wave functions is that their

quality depends on the single-particle basis chosen. FCI wave functions always

lead to equivalent wave functions irrespective of the (orthonormal) basis chosen,

be it e.g. natural orbitals, RHF molecular orbitals or any other orthonormal ba-

sis. This is no longer true for approximate wave functions such as DOCI and its

variants. Hence the need to find the solution with the lowest energy obtainable

through a unitary transformation of the orthonormal orbitals. Another aim of

this chapter is therefore to develop an orbital optimisation algorithm well suited

to escape from local energy minima. A good candidate for this purpose was

found to be simulated annealing (SA)[53]. Although the SA procedure works

very well for small systems, we found that it is not practically usable in those

cases where the number of active orbitals or electrons is large (N > 20), so

we also propose a new orbital basis suitable for DOCI and its variants. It was

previously shown that the orbital basis that minimises the seniority number

of a FCI wave function can be used to achieve a more compact determinantal

expansion, where the determinants with zero seniority number are the dominant

contributions to the FCI wave function[20] (see also chapter: 2). In practice,

this means that this orbital basis can be used as a good approximation to the

energy optimised DOCI orbitals. As FCI wave functions are hardly tractable

for larger systems, we examine whether a seniority number minimising basis

derived from a truncated CI wave function serves equally well.

The different wave functions corresponding to the methods reported in this

chapter can be elegantly summarised using the Venn diagram in Fig. 3.1. In

all cases, a bar (̄ ) notation means that each excitation involves two paired

electrons. CIS̄ for example, means that only excitations of a single electron
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pair with respect to a closed-shell reference Slater determinant are considered,

whereas CISDD̄ means that all single and double electron excitations plus all

double electron-pair excitations are taken into account. CIS̄ is therefore a

subset of CID, CISDD̄ is a subset of CISDQ, etc.. In Fig. 3.1, the green circle

Figure 3.1: Overview of the wave functions used for approximations and

extensions of the DOCI wave function.

stands for the DOCI space which comprises up to N̄
2 electron-pair excitations,

and the yellow ellipse underneath for the CISD space. The intersection of the

DOCI and the CISD spaces is the CIS̄ space. Furthermore we can distinguish

within the DOCI space the double electron-pair excitations (with respect to

the same reference as the CISD determinants). We will also discuss hybrid

methods that consider the union of the DOCI and truncated CI spaces, such

as CISD, which will be denoted as (CISD ∪ DOCI), and is contained in

the red boundary, and the polynomial scaling approximate hybrid methods

such as CISDD̄, enclosed by a blue dotted line. All methods from Fig. 3.1

can be used with any choice of (orthonormal) orbitals. We choose for either

molecular orbitals as obtained from a preceding Self Consistent Field (SCF)

calculation, (globally) energy optimised orbitals by means of SA, or seniority

number minimising orbitals.
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3.2 Algorithms

3.2.1 Computational details and CI solver

In order to assess the accuracy of the methods reported in section 3.1, we

consider the symmetric bond stretching of the BeH2, H2O and N2 molecules,

which are standard tests for methods that aim at describing strongly correlated

systems. The used atomic basis sets range from minimal STO-3G to split

valence cc-pVDZ. The use of minimal basis sets is considered appropriate here

given the nature of the methods tested. All one- and two-particle integrals

needed are generated by the PSI4 package [38]. For the interface with PSI4 we

used the Hamiltonian class of CheMPS2[39, 40].

For all DOCI, truncated DOCI and hybrid DOCI calculations a general CI

solver is used that takes as argument a list of Slater determinants. These

Slater determinants, in turn, are built from an orthonormal set of orbitals

that may correspond to molecular orbitals or some other orthonormal set.

All determinants are encoded as binary strings in terms of this set and the

Hamiltonian is represented in the Slater determinant basis. The variational

problem of determining the Slater determinant coefficients is solved using an

implicitly restarted Arnoldi algorithm [54] to locate the chosen number of low

lying energy states. All potential energy curves reported below describe the

ground state.

3.2.2 Orbital optimisation algorithms

DOCI and its variants depend on the chosen orthonormal orbital basis used

in the Slater determinants entering the CI expansion. Limacher et al. [31]

have shown that the basis-dependent DOCI energy surface has many local

minima. To cope with those local minimum problems, we now introduce an

orbital optimisation algorithm tailored at locating the global energy minimum.

For this, the simulated annealing algorithm is chosen as an orbital optimiser.

Such techniques have been used previously in quantum chemistry[55] albeit

to limited extent, often because of their prohibitive computational cost. Here

such calculations are nevertheless used whenever feasible because they give

good benchmark results.

I. Energy based orbital optimisation through simulated annealing

SA is a probabilistic method introduced by Kirkpatrick et al. [53] for finding

the global minimum of a cost function that may possess several local minima. It

does so by emulating the physical process where a solid is gradually cooled and

eventually freezes in a minimum energy configuration. This method performs

particularly well when there are many local energy minima, as in the case of

DOCI wave functions [31]. The work flow for the SA procedure pertaining
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to the orbital optimisation of CI methods is depicted in Fig. 3.2. In our

implementation, we perform a sequence of elementary Jacobi rotations [56]

between randomly selected pairs of orbitals over a randomly chosen angle α.

These rotations result in a new orthonormal basis that yields a new energy

value. The new basis is then, depending on its energy, accepted or rejected

with a certain probability depending on a “temperature” T . The rotation

angles α are drawn from a normal distribution around zero, and are limited

to the interval [−αmax, αmax]. Both the temperature T and the maximal angle

αmax decrease in the consecutive steps. The starting temperature T is chosen

high enough to explore the entire energy surface. Based on our experience, a

good choice is T = 0.5 Eh. The rate at which T decreases after each step is

chosen as δT = 0.99. For αmax, an initial value αmax = 1.4 rad is chosen, and

the rate of decrease of the maximum angle is set to δαmax = 0.9999 as we have

found that it is convenient to decrease the maximum angle very slowly so that

the flexibility to escape local minima remains. This process is repeated until

convergence. For simplicity, we initialise the same T , αmax, δT , δαmax for all

pairs of orbitals.

After the rotation of two orbitals, the energy is calculated (Enew) with the

chosen level of theory and compared to the energy of the previous orbital

configuration (Eold). If Enew < Eold, the change in the orbitals is always

accepted. If Enew ≥ Eold, a uniform random number R0,1 between zero and

one is drawn, and if

R0,1 <
exp

Eold−Enew
T

exp
Eold−Enew

T +1
(3.4)

the change is also accepted. This means that the energy may occasionally

increase which helps escaping local minima. When T has lowered sufficiently,

the chances of such energy increases become negligibly small.

After each step i the temperature and maximum rotation angle are reduced for

the next step i+ 1:

T (i+1) = T (i)δT (3.5)

α(i+1)
max = α(i)

maxδαmax (3.6)

At the end of each cycle two convergence criteria are checked:

1. Has the maximum number of cycles been reached (here 20000)?

2. Has the maximum number of consecutive non-acceptance steps been

reached (here 1000)?

If one of them is fulfilled, the simulated annealing loop is stopped. Otherwise

the procedure is repeated.

In order to increase the chances of locating the global minimum, several sepa-

rate SA calculations are performed and the optimal unitary matrix and energy
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Figure 3.2: The work flow of the simulated annealing (SA) orbital optimisation

procedure for CI methods as implemented for this thesis.
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are selected. After this, an extra SA run is performed with very low T and very

small maximum angle, in order to locally optimise the minimum further. Our

calculations point out that the SA procedure is very effective, as it consistently

produces lower energies than those obtained from methods using the orbital

gradient and Hessian or the generalised Brillouin theorem [4, 57–59]. The SA

results may therefore serve as a benchmark for other optimisation schemes.

In practice, we first perform all DOCI and related calculations using Hartree-

Fock molecular orbitals and henceforth results obtained using this basis are

labelled with the caption MO. Subsequently, the orbital basis is optimised. A

first SA procedure allows only rotations among orbitals that belong to the same

irreducible representation. Results using this optimised basis are denoted by

OO. In a second procedure, rotations among all orbitals are allowed thereby

permitting symmetry breaking. Results with this basis are denoted OO-c1.

II. Seniority based orbital optimisation

For large systems SA is no longer viable. It was previously shown[20] that a

promising basis is the one that minimises the seniority number (Eq. (3.2)) of a

FCI wave function. Unfortunately, the computational cost of a FCI calculation

severely limits the applicability of this method. Here we propose to use an

orbital basis that minimises the seniority number of a wave function that scales

more favorably, e.g., CISD.

Our procedure to minimise the seniority number of a wave function is a very

fast converging iterative process based on the algorithm of Subotnik et al.[34],

originally introduced for the determination of localised molecular orbitals such

as Edmiston-Ruedenberg orbitals [60]. It follows from Eq. (3.2) that if the

partial trace of the spin summed second order reduced density matrix is max-

imised, the seniority number of the total wave function is minimised. Our

adaptation of the procedure of Subotnik et al.[34] to minimise the seniority

number proceeds as follows [20]:

1. Start with a set of orthonormal orbitals, e.g. the RHF molecular orbitals.

2. For k ≥ 0 (k indicates the number of cycles) determine the 2-RDM for

which we want to minimise the seniority number.

3. Construct the matrix R
(k)
ji = Γ

(k)
ji,ii

4. Construct the unitary transformation U (k+1) = R(k)
[(
R(k)

)†
R(k)

]− 1
2

.

5. Transform the current orbitals to the new basis with the unitary matrix

U (k+1).

6. Set k = k+1, repeat steps 2-6 untilR(k) is sufficiently close to a symmetric

matrix and the process has converged.
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The matrix U in step 4 is guaranteed to be unitary through the polar decompo-

sition of a square complex matrix [35]. The orbitals produced by minimising the

seniority number of a FCI wave function are denoted by the labels Mmin and

Mmin-c1, depending respectively on whether only rotations between orbitals

of the same irreducible representation are considered or symmetry breaking is

allowed. If the seniority number is minimised using a wave function other than

FCI, a subscript is added to denote the wave function used (e.g., MminCISD

when the seniority of a CISD wave function is minimised without symmetry

breaking).

3.3 Results and Discussion

In the following, both the orbital optimisation algorithms and newly described

DOCI methods are tested for a set of small molecules with emphasis on their

dissociation curves for the ground state. In the first section 3.3.1, the bond

breaking curve of BeH2 through linear symmetric stretching is examined with

focus on the effect of different bases on the one hand (subsection I.) and the

effect of extending DOCI with non-seniority conserving excitations on the

other hand (subsection II.). As in both cases the OO basis is used, only a

minimal basis set is considered. In the second section 3.3.2, we report on the

performance of truncated DOCI methods (subsection I.) and truncated DOCI

supplemented with non-seniority conserving excitations (subsection II.). Due

to the fact that the truncation reduces the computational cost significantly

while adding only limited non-seniority conserving excitations, we report results

obtained using larger basis sets thereby allowing more insight in dynamic

electron correlation effects.

3.3.1 Orbital optimisation and dynamic correlation in BeH2

I. Basis dependence of DOCI wave functions and energies

We first describe the impact of the chosen orthonormal orbital basis on the

DOCI energy in case of bond breaking in BeH2 through linear symmetric

stretching. This small molecule is computationally tractable for FCI meth-

ods and has significant multireference character at bond breaking, making

it an ideal test for proof of principle calculations. Table 3.1 reports DOCI

energies using the STO-3G atomic basis set for orbitals optimised with the

SA approach (OO and OO-c1) and for the seniority number minimising ones

(Mmin and Mmin-c1 derived from both FCI and CISD), along with the DOCI

energy obtained using restricted Hartree-Fock (RHF) based molecular orbitals

(MO). Although the STO-3G basis set has its shortcomings due to its size, it

still captures the essence of the physics as the shape of the potential energy

curve for BeH2 remains similar for larger basis sets (see below). The lowest
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energies, obtained using the OO-c1 basis arising from the energy driven global

optimisation, can be considered reference values.

Figs. 3.3(a) and 3.3(b) show the DOCI potential energy curves in the selected

bases with the RHF and FCI curves as references. Fig. 3.4 depicts DOCI

energy differences for the different bases considered.

Table 3.1: STO-3G DOCI energy values and differences for the symmetric

stretch of BeH2 using different orthonormal bases. R is the length of the Be-H

bonds.
DOCI Energy/Eh

R (Å) MO OO Mmin MminCISD MminCISD - OO OO-c1 Mmin-c1 MminCISD-c1 MminCISD-c1 - OO-c1

0.86 -15.29597 -15.29648 -15.29647 -15.29647 0.00001 -15.29964 -15.29454 -15.29455 0.00509

1.02 -15.49048 -15.49092 -15.49091 -15.49091 0.00001 -15.49626 -15.48941 -15.48942 0.00684

1.34 -15.57800 -15.57846 -15.57844 -15.57842 0.00004 -15.59036 -15.59014 -15.59020 0.00016

1.66 -15.51072 -15.51152 -15.51141 -15.51134 0.00017 -15.53372 -15.53315 -15.53333 0.00039

1.98 -15.40203 -15.40454 -15.40378 -15.40351 0.00103 -15.44094 -15.43965 -15.43938 0.00156

2.13 -15.34717 -15.35387 -15.35079 -15.35021 0.00366 -15.39550 -15.39106 -15.39166 0.00384

2.29 -15.29703 -15.32807 -15.30690 -15.30555 0.02251 -15.35453 -15.34260 -15.34297 0.01156

2.45 -15.25516 -15.32598 -15.28808 -15.28297 0.04301 -15.32598 -15.28808 -15.28297 0.04301

2.61 -15.22536 -15.32812 -15.30732 -15.28890 0.03923 -15.32812 -15.30732 -15.28890 0.03923

2.77 -15.21072 -15.33064 -15.32517 -15.30703 0.02361 -15.33064 -15.32517 -15.30703 0.02361

3.09 -15.22627 -15.33419 -15.33378 -15.33096 0.00323 -15.33419 -15.33378 -15.33096 0.00323

Table 3.1 and Figs. 3.3 and 3.4 illustrate several important points. First,

the MO basis is found to perform quite well for small interatomic distances

compared to the computationally much more expensive OO basis. Beyond an

internuclear distance of 1.66 Å the energies start to differ dramatically with

differences going up to 120 mEh at 2.77 Å(see Fig. 3.4(a)). Optimising the

orbitals is therefore of utmost importance at longer bond distances although

the differences decrease again at still longer distances. (see Fig. 3.4(a)). Fig.

3.4(b) shows that the energy obtained from the Mmin basis lies much closer

to the OO energy over a larger range of interatomic distances, with differences

up to only 38 mEh near 2.45 Å. Moreover, the difference between energies

obtained with the MminCISD and the Mmin bases is rather small as can be

seen from Table 3.1. Fig. 3.3(c), which depicts the overlap of the DOCI wave

function with the FCI wave function, illustrates the deficiencies of the DOCI

wave function in the MO, OO and OO-c1 basis to approximate the FCI wave

function around a bond distance of 2.45 Å.

Symmetry breaking has an effect at slightly shorter bond lengths than those

where the highest deviations between the Mmin and OO based energies occur

(see Fig. 3.4(c)). As expected for a variational method, symmetry-breaking

may lower the energy. Note that the sharp angle in the DOCI(OO-c1) energy

curve is not due to states crossing but due to a sudden change in the basis. A

similar finding was reported previously by Bytautas et al.[24] for H8. In the case

of the OO-c1 versus OO basis, symmetry breaking leads to a maximum energy

lowering of 42 mEh at an internuclear distance of 2.13 Å. Such an effect does not

necessarily occur for the Mmin and Mmin-c1 bases. Here symmetry breaking

may result in higher energies especially at short bond lengths. Although

counterintuitive, this is not in contradiction to the minimisation condition
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Figure 3.3: Symmetric stretch potential energy curves as a function of the Be-H

distance (R) in BeH2 for the (a) RHF, DOCI(MO), DOCI(OO), DOCI(OO-

c1), and FCI wave functions, and (b) DOCI(MO), DOCI(MminCISD),

DOCI(Mmin), DOCI(OO), and FCI wave functions in the STO-3G atomic

basis set. (c) overlap between the STO-3G DOCI and FCI wave functions in

the MO, OO, and OO-c1 bases. (d) overlap of the STO-3G DOCI and FCI

wave functions in the OO, Mmin, and MminCISD bases.

behind the Mmin procedure, as this procedure searches for a minimum in

seniority number, rather than in energy. By breaking the symmetry, the

method can better pair the electrons, irrespective of the energy. Still, the energy

increase is marginal with a maximum of 2 mEh while for the vast majority of

the energy curve symmetry breaking still lowers the energy.

As a whole, for most of the interatomic distances, the seniority-number min-

imising basis is a good alternative to the energy based optimised orbitals with
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Figure 3.4: STO-3G DOCI energy differences between different bases as a

function of the Be-H distance (R) in BeH2. (a) effect of energy based

orbital optimisation, (b) comparison between energies obtained with the energy

optimised (OO) and Mmin and MminCISD seniority optimised orbitals, and (c)

effect of symmetry breaking.

the computationally cheap MminCISD basis also performing rather well.

II. Dynamic correlation and hybrid DOCI wave functions.

It is clear from Table 3.1 and Figs. 3.3(a) and 3.3(b), that one can distinguish

between three different regimes during bond breaking. At small bond distances

Hartree-Fock theory yields a fairly good wave function. Indeed, near the equi-

librium bond length the RHF determinant is the most important determinant

in the FCI expansion. This regime extends well across the valley of the FCI
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potential minimum. This is consistent with the observation that, in this regime,

the FCI natural orbitals have occupations roughly zero or two (see Fig. 3.5).
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Figure 3.5: Occupation numbers of the STO-3G FCI natural orbitals as a

function of the Be-H bond length (R) for the symmetric bond stretching of

BeH2. The symmetry labels used are based on the D2h Abelian point group

used in the calculations.

As soon as bond breaking starts, dynamic correlation becomes increasingly im-

portant, while farther towards dissociation static correlation gains importance.

The interval where in BeH2 dynamic correlation dominates corresponds approx-

imately to [1.8 Å, 2.5 Å]. In this interval the occupation number of the natural

orbitals closest to the Fermi level (between the highest occupied (HOMO) and

lowest unoccupied molecular orbital (LUMO) levels from Hartree-Fock) start

to differ from zero or two, although the complete smearing out of occupation

numbers as in the strong correlation limit does not occur.

In the so-called static correlation regime it is no longer possible to find a

good single reference approximation to the general wave function, e.g. the

RHF energy deviates strongly from the FCI energy (see Fig. 3.3(a)). This

is well reflected in the fact that many more natural orbitals have significant

occupation numbers and hence, the distinction between occupied and virtual

orbitals vanishes. The strong static correlation regime is characterised by

degenerate strongly-occupied molecular orbitals. The particular structure of

the DOCI wave function turns out to be very suitable to describe this, since the

DOCI wave function is a complete CI expansion in terms of electron pairs[24].

As can be observed from Fig. 3.3(a), the peculiar hump in the DOCI(MO)

potential energy curve within the dynamic correlation regime reflects the dif-

ficulties of the DOCI wave function to describe dynamic correlation properly

in the MO basis. The hump itself is not an artefact of the minimal basis set

as DOCI(MO) calculations using the 6-31G and cc-pVDZ basis set also show

a similar feature (see below). Using the OO and OO-c1 bases reduces the

extent of the problem but does not completely alleviate it. As the importance
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of dynamic correlation increases, the FCI and DOCI energies differ more.

Once static correlation becomes more important than dynamic correlation,

the particular structure of the DOCI wave functions causes this difference to

decrease. The problems of the DOCI wave function in the dynamic correlation

regime can be solved by applying multi-reference perturbation theory [61, 62],

or by adding extra determinants in its expansion[22].

To better understand the correspondence between the DOCI wave function

in different bases and the FCI wave function, Fig. 3.3(c) shows the overlap

between both wave functions in the MO, OO, and OO-c1 bases in the STO-

3G basis set. This figure illustrates the failure of DOCI in the dynamic

correlation regime. At shorter bond distances and near equilibrium, DOCI

performs well as it basically acts as a correction for the dominant RHF ground-

state. At large internuclear separation, in the strong correlation limit, we

again find high overlap between DOCI and FCI wave functions. In the dy-

namic correlation regime the overlap is much lower with a minimum of about

|〈DOCI(OO)|FCI〉|2 = (0.86)2 = 0.74 around 1.7 Å, pointing out that the FCI

wave function carries important contributions from configurations outside the

DOCI space. Note that orbital optimisation from the MO to the OO basis

does reduce the range of bond distances where these problems occur, but does

not eliminate the effects of dynamic correlations completely. Also note that

the poor overlap persists, however shifted towards shorter R. Remarkably, the

overlap between the Mmin or MminCISD based DOCI wave function and the

FCI wave function is significantly better than the OO based one (see Fig.

3.3(d)) although the Mmin and MminCISD based DOCI wave functions do not

yield the lowest energies (see Fig. 3.3(b)). This is consistent with the previous

reports [63, 64] that energy minimisation alone does not guarantee finding

the wave function most similar to the FCI one. The OO basis is designed

to lower the energy and will do so by focussing on those determinants that

assist it maximally whereas the treatment of (incipient) static correlation is less

important. The Mmin basis, on the other hand, capitalises maximally on zero

seniority determinants typically important to properly treat static correlation.

Breaking the symmetry as in the OO-c1 basis does improve the quality of

the wave function in the dynamic correlation regime. Note that Fig. 3.3(c)

shows that even the DOCI(MO) wave function has significantly higher overlap

with the FCI wave function than the DOCI(OO) one for 2.1Å ≤ R ≤ 2.5Å.

To conclude, one should be cautious when performing energy optimisation, as

this process may reduce the overlap with the exact wave function, even if a

variational method is used (see Fig. 3.3(c)).

Although the Mmin and MminCISD bases significantly improve the overlap

of the DOCI wave function with the FCI wave function in the dynamic cor-

relation regime compared with the OO, and even OO-c1 orbitals, there still

remains a small discrepancy at intermediate bond distances (with a minimum

of |〈DOCI(Mmin)|FCI〉|2 = (0.94)2 = 0.88). In an attempt to improve the

DOCI wave function, extra determinants from the CIS and CISD spaces are
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Figure 3.6: Overlap of the DOCI, (CIS ∪ DOCI), (CISD ∪ DOCI) wave

function with the FCI wave function in the (a) MO and (b) OO bases for

the BeH2 molecule in the STO-3G atomic basis set. R is the distance of the

stretched Be-H bonds.

now added to the Slater determinant expansion. This leads to the hybrid (CIS

∪ DOCI) and (CISD ∪ DOCI) wave functions, respectively. Fig. 3.6 shows the

overlap between the DOCI, (CIS ∪ DOCI), and (CISD ∪ DOCI) wave functions

and the FCI one, for the MO (Fig. 3.6(a)) and OO bases (Fig. 3.6(b)). These

figures show that the overlap improves dramatically upon inclusion of broken

pair excitations, again consistent with the described importance of dynamic

correlation. This agrees with the fact that second order perturbation theory

(MP2) improves on the description of dynamic correlation by including doubly

excited determinants both inside and outside DOCI space. The advantage of

methods that unite DOCI and truncated CI spaces is that, compared to FCI,

the number of determinants remains smaller. For instance, in the case of BeH2,

the number of determinants required in the STO-3G (CISD ∪ DOCI) and FCI

methods are 227 and 1225, respectively, while the overlap between the (CISD

∪ DOCI) and FCI wave functions remains consistently large over the entire

bond-breaking curve (see Fig. 3.6(b)).

3.3.2 New approximate DOCI methods

I. Truncated DOCI

DOCI is a powerful method for the description of static correlation, but unfortu-

nately still scales exponentially as it is a complete CI method albeit in electron-

pair space. As in standard one-electron excitation based CI, it is therefore of

interest to examine whether a truncated DOCI approach is viable. Henceforth,
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truncated DOCI wave functions will be denoted by CIS̄, CIS̄D̄, etc., for a single

reference closed-shell determinant supplemented with either all single electron-

pair excitations or all single and double electron-pair excitations respectively.

DOCI then corresponds to CIS̄D̄T̄Q̄ . . . K̄. To analyse how much information

of the DOCI wave function remains in the truncated DOCI wave functions, the

overlap between both is computed as well as the corresponding energies during

the bond breaking of the N2 molecule and the symmetric stretch of the BeH2

molecule (see Figs. 3.7, 3.8, and 3.9). The MO basis obtained from a Hartree-

Fock calculation with the 6-31G atomic basis set is used for all analyses in this

subsection as the MO basis is the commonly used reference for one-electron

excitation based CI.
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−109.5

−109.0

−108.5

−108.0

−107.5

−107.0

−106.5
E

n
er

gy
(E

h
)

HF

CIS̄(MO)

CIS̄D̄(MO)

CIS̄D̄T̄(MO)

DOCI(MO)

FCI

(b) N2

Figure 3.7: Potential energy curves for the symmetric stretch of (a) linear

BeH2 and (b) the N2 molecule, at the RHF, CIS̄, CIS̄D̄, DOCI and FCI levels

of theory with 6-31G based MO orbitals. For N2 the CIS̄D̄T̄ method is also

included. R is the length of the stretched bond.

Fig. 3.7 shows that the truncated DOCI methods yield energies fairly close to

the DOCI result although the required level of truncation varies (N2 requiring

up to three electron-pair excitations whereas for the other molecule CIS̄D̄

largely suffices). Note that Fig. 3.7(a) shows a clear hump in the DOCI(MO)

energy, reminiscent of what was found in Fig. 3.3(a) where a minimal basis

set was used. The overlap of the truncated DOCI and DOCI wave functions

is depicted in Fig. 3.8. It is clear that at small and intermediate bond

distances single electron-pair excitations alone are able to describe the DOCI

wave function with high accuracy. However, at larger bond distances single

and double electron-pair excitations are needed for BeH2, and even single,

double and triple electron-pair excitations must be considered for N2. There

the overlap with DOCI is almost perfect over the entire range of distances.

Finally, Fig. 3.9 shows the sum of the squares of the coefficients of the RHF
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Figure 3.8: Overlap of the CIS̄ and CIS̄D̄ wave function with the DOCI one

using 6-31G based MO orbitals for the symmetric stretch of (a) linear BeH2

and (b) the N2 molecule. For N2 the overlap with the CIS̄D̄T̄ wave function is

also included. R is the length of the stretched bond.
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Figure 3.9: Sums of squared Slater determinant coefficients of different

excitation levels in the DOCI wave function using 6-31G based MO orbitals

for the symmetric stretch of (a) linear BeH2 and (b) the N2 molecule. R is the

length of the stretched bond.

determinant (RHF(DET)), and all single (S̄(DET)) and double (D̄(DET))

electron-pair excited determinants of the DOCI wave function for the BeH2

and N2 molecules. For N2, also the sum of the squares of the coefficients of

triple electron-pair excited determinants (T̄(DET)) are included. This reflects

the amount of information of the DOCI wave function that is contained in its
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parts. The figure confirms the trends expected from the earlier findings: RHF

performs well at short bond distances and the contributions of higher excited

determinants to the DOCI wave function become larger as the bond distance

increases.

II. Approximate hybrid DOCI
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Figure 3.10: Potential energy curve for symmetric stretching of BeH2 using the

CIS̄D̄, DOCI and CISDD̄ methods in the seniority number minimising basis

(MminCISD) and CISD, CISDD̄ and CCSD(T) methods in the MO basis with

FCI as reference. All calculations were performed with the cc-pVDZ atomic

basis set. R denotes the Be-H bond length.

On the one hand, hybrid methods based on the addition of disjoint determinant

spaces to supplement the DOCI wave function, as described above in section

II. and previously in [22], still scale in a less than desirable way with system

size. On the other hand, fairly good approximations to DOCI are possible by

truncating DOCI to lower excitation levels only, as put forward in section I..

Combining truncation of DOCI and extending it with electron-pair breaking de-

terminants from standard one-electron excitation based CI, we come naturally

to approximate methods that incorporate some lower one-electron excitations of

a reference along with electron-pair excited determinants from DOCI. Examples
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of such combinations are the CISDD̄ and CISDD̄T̄ levels of theory, where CISD

is augmented with two electron-pair excited determinants or two and three

electron-pair excited determinants respectively. CISDD̄ is therefore a subset of

CISDQ where, among the quadruple excitations, only those determinants are

included that correspond to excitations of two electron-pairs. In this way, it is

possible to add many relevant higher excitations in a computationally feasible

way. This can be combined with the seniority number minimising basis which

is obtained through a fast iterative process and yet improves the description

of the electronic structure in the static correlation regime (see Fig. 3.10).

Seniority minimisation using a CISD wave function allows a further gain in

speed compared to seniority number minimising directly in the approximate

hybrid space as the CISD wave function contains fewer determinants compared

to most approximate hybrid methods. The advantage of the present type of

approximate hybrid methods is thus that the computational cost scales much

more favourably with system size (in this case polynomial scaling, see Table

3.2) providing accurate energies at much smaller cost (e.g., CISDD̄ for BeH2

in the cc-pVDZ basis set contains 5986 Slater determinants compared to the

4096576 Slater determinants included in the FCI wave function).

Table 3.2: Number of determinants, Ndet, for a selection of discussed methods

for BeH2 and N2 in cc-pVDZ, together with the percentage of the FCI

determinants contained.
BeH2 N2

Methods Ndet
Ndet

Ndet(FCI)100 Ndet
Ndet

Ndet(FCI)100

CIS̄ 64 0.002 148 1.100 10−8

CIS̄D̄ 694 0.017 4558 3.250 10−7

CIS̄D̄T̄ 2024 0.049 51108 3.645 10−6

DOCI 2024 0.049 1184040 8.446 10−5

CISD 5356 0.131 30724 2.192 10−6

CISDD̄ 5986 0.146 35134 2.506 10−6

CISDD̄T̄ 7316 0.179 81684 5.826 10−6

(CISD ∪ DOCI) 7316 0.179 1214616 8.664 10−5

FCI 4096576 100 1401950721600 100

Fig. 3.10 shows the symmetric stretching potential energy curve for BeH2 ob-

tained using the CIS̄D̄(MminCISD), DOCI(MminCISD), CISD(MO), CISDD̄(MO),

CISDD̄(MminCISD) methods for the cc-pVDZ atomic basis set, and the FCI

and coupled cluster CCSD(T) methods as references. It shows the improved

description of the dissociation limit by adding extra pair excitations to the

CISD wave function, and the enhancing effect of the MminCISD basis on those

pair excitations. Both CISDD̄ curves lie fairly close to the FCI one but with

still a relevant improvement from using the seniority number minimising basis

(MminCISD). The remaining errors lie in the mEh scale. Note that CCSD(T)

[65, 66] (in the MO basis) does not perform well when static correlation is

important. The most significant deviation of the CISDD̄(MminCISD) energy

from the FCI one is in the regime where dynamic correlation is dominant. This

is most likely a remnant of the fact that the MminCISD basis does not yield very
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Figure 3.11: Potential energy curve for symmetric stretching of the H-O bonds

in H2O using the RHF, DOCI, CISD, (CISD ∪ DOCI), CISDD̄, and FCI

methods using MO obtained from the cc-pVDZ atomic basis set. R denotes

the H-O bond length.
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Figure 3.12: Potential energy curve for the N2 dimer for CCSD(T) in the

MO basis, CISDD̄T̄ (MminCISD, CAS(10,18)) and DMRG [39, 40] using the

cc-pVDZ atomic basis set. R is the interatomic distance.

good energies in this regime. Note also that CISDD̄(MO) still results in a hump

somewhat reminiscent of that observed earlier albeit now at larger distances

and that it is much smaller. This is thanks to the inclusion of the one electron

and unpaired two electron excitations that assist in properly accounting for

dynamic correlation. The most important observation in Fig. 3.10 is that

the CISDD̄(MminCISD) energies follow closely the CISD(MO) energy curve

wherever the latter method lies close to FCI and that it lies very close to

the DOCI(MminCISD) results towards dissociation. In the area between both

regimes, the energy error with respect to FCI is the smallest among all methods

tested.

Fig. 3.11 shows the potential energy curve of the symmetric stretching of the

H2O molecule at several levels of theory for the cc-pVDZ atomic basis set.

It shows that the (CISD ∪ DOCI) and CISDD̄ potential energy curves are

indistinguishable over the entire bond length range, and that both methods

improve significantly on CISD in the static correlation regime. In general, for

systems with not too many electrons, such as H2O, the difference in energy

between this approximate hybrid (CISDD̄) method and the hybrid method

(CISD ∪ DOCI) is negligible.
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Finally, Fig. 3.12 shows the potential energy surface for N2 in the cc-pVDZ

basis. The methods compared are CCSD(T) in the MO basis and the CISDD̄T̄

(MminCISD, CAS(10,18)). Density matrix renormalisation group (DMRG)[39,

40] energies with FCI accuracy are added as a reference. CCSD(T) performs

better at equilibrium and intermediate bond distances, but the approximate

hybrid method outperforms CCSD(T) in the dissociation limit. The basic

implementation of our routines made us resort to an active space of 10 electrons

in 18 orbitals for N2 in cc-pVDZ. This was probably the reason why CISDD̄T̄

(MminCISD) is less accurate at equilibrium (see Fig. 3.12).

3.4 Conclusions

The orbital dependence of DOCI wave functions and energies has been scru-

tinised. This is done firstly by comparing the DOCI energies, obtained using

different bases, among each other and with reference FCI energies, and secondly

by studying wave function overlaps. The straightforward use of molecular

orbitals often results in rather poor DOCI energies and wave functions. To

ameliorate this, a technique based on simulated annealing (SA) is described to

search for the optimal single-particle basis that globally minimises the energy.

This approach is found to significantly reduce the energy difference between

DOCI and the FCI wave function, especially in the dynamic correlation regime.

The SA approach is computationally, however, too costly and it is shown that

an orbital optimisation algorithm minimising the seniority of the CISD wave

function, is an efficient alternative yielding nearly as good results, especially

in the static correlation regime. Moreover, this basis often results in better

overlap with the reference wave functions despite a slightly higher energy than

that obtained with the SA optimised basis. This shows that better agreement

in wave function and energy do not always coincide.

Next, a set of new methods related to DOCI has been introduced. The first

type of methods are truncated DOCI methods where the level of pair exci-

tations considered is reduced to e.g., only one pair, two pairs etc., much like

in one electron excitation based CIS, CISD, ... The results obtained using

this method show that static correlation, as present near bond dissociation, is

already captured with a limited level of excitations. Dynamic correlation is

not properly accounted for at this level. In order to properly describe dynamic

correlation, in the second set of methods these truncated DOCI methods are

supplemented with determinants obtained from unpaired electron excitations

resulting in methods that combine e.g., one and two pair excitations from

the determinants contained in DOCI with all unpaired one and two electron

excitations. The resulting methods scale polynomially with system size, making

them computationally attractive and affordable for larger systems.

In the next chapter we delve deeper into the realms of reaction mechanism,

and charge transfer. This is done by constraining the configuration interaction
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solutions to a fixed particle number on parts of the molecule. This allows a

study of the charge transfer behavior of different methods during dissociation

and at the dissociation limit. Interestingly enough, low seniority wave functions

such as DOCI provide more accurate and better chemical predictions than

CISD, for chemically relevant observables such as the chemical potential and

hardness. DOCI also predicts the correct integer charges at the dissociation

limit as opposed to most approximative methods, which fail to generate a

derivative discontinuity at integer charges and consequently predict fractional

charges at the dissociation limit.
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Chapter 4

Constrained Configuration

Interaction Theory

In this chapter, wave functions are constrained to a given Mulliken population

on specific atoms in the molecule. This makes it possible to investigate the

behaviour of approximative methods with respect to reaction mechanisms,

charge transfer, the chemical potential and hardness. These are all concepts

used, among others, in the context of conceptual density functional theory

(DFT)[67, 68]. A method to extract them for multiconfigurational wave func-

tions is discussed.

The Mulliken population constrained CI calculations are performed by adding

a Lagrangian multiplier to the non-relativistic quantum chemical Hamilto-

nian. Results are shown for a set of constrained CI-calculations that impose

different Mulliken populations on parts of the NO+ molecule. Particularly

interesting are the constrained full configuration interaction (FCI) calculations

of strongly stretched molecules and atoms separated by an infinite distance.

These calculations reveal derivative discontinuities and jumps of the chemical

potential caused by the integer nature of electrons, those results provide also

a direct computational proof of the piece-wise linear behavior of the energy

for fractionally charged atoms without the use of ensembles as predicted by

Perdew et. al. [69]. These results have deep implications for the electronega-

tivity equalization method (EEM) [70, 71]. This method assumes a quadratic

dependence of the energy on the charge, however Cioslowski et. al. [72] showed

that for some molecules such as LiH this quadratic dependence is constrained

to a very small region, leading to inaccurate predictions of the electronegativity

equalization method. Furthermore, it is shown how infinitesimal perturbations

of the Hamiltonian can cause very big changes in the electron density of the

wave function. Improved understanding of those effects can lead to an extra

criterion for the validation of new functionals for density functional theory

(DFT), and other approximative methods. As an example different truncated
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CI methods are compared with the FCI results. It is shown that configuration

interaction with single and double excitations from a reference (CISD) fails

completely for the description of charge transfer at large bond lengths. This

is in contrast with the doubly occupied configuration interaction (DOCI) wave

function, which provides a qualitatively correct description of charge transfer,

and a chemical potential which is quantitatively closer to the exact one. This

supports the claim that wave functions based on the seniority quantum number

are better suited to describe dissociation processes than wave functions based

on the excitation procedure (see chapter 2).

4.1 Introduction

The pioneering work of Perdew et. al. [69, 73] proved that the exact energy

of fractionally charged systems should be piece-wise linear between subsequent

integer electron values, and that derivative discontinuities occur with corre-

sponding jumps of the chemical potential (related to the orbital energies). This

work boosted interest in fractionally charged systems, which recently increased

further after it was shown that many currently available approximative methods

fail to describe dissociated systems [74–76]. Furthermore, problems arise for

systems as small as infinitely stretched H2 and H2
+ in a minimal basis set

due to static correlation, and self-interaction error respectively. This strongly

reduces the faith one could have for applying those approximative methods to

more challenging problems such as transition metal complexes, charge transfer

in complex organic molecules, . . . where no comparison with exact methods

is available. Many approximate methods such as density functional theory

(DFT), and variational 2rdm find a minimum of the potential energy curve

somewhere between two integer populations because of the convex character of

their potential energy curve [42, 77–79] instead of the piece-wise linear energy

curve of the exact energy. Hartree-Fock (HF) obtains the minimal energy at

the correct integer electron charge but for the wrong reasons, the potential

energy curve as a function of the electron population is concave. A better

understanding of the charge dependence of the molecular energy already led

to new and improved functionals for DFT[80], and adaptations of the EEM to

correctly predict integer charges for the dissociated parts of a molecule [81].

The fractional charge problem has also led to the concept of many electron

self-interaction [82]. A reason for this is that approximative methods do not

have the flexibility to describe the discontinuous behavior of the exchange-

correlation functional in strongly correlated systems [83]. Furthermore recently

exact conditions for the energy of systems with fractional populations were

derived [74, 77, 84], and some theoretical extensions of many body theory and

the approximate density functionals were made to fractional populations [85].

In this work, a method is proposed that gives access to the chemical potential

of particular atoms in a molecule in the form of a set of Lagrange multipliers
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associated with the constraints of particular populations on the atoms. Disso-

ciating an atom from the rest of the molecule allows us to investigate the charge

transfer process for a number of different wave functions for fractionally charged

atoms and how they approach the dissociation limit. Essentially we use part

of the molecule as a reservoir of electrons for the atom of interest, so the entire

system remains integer charged but almost dissociated parts can be fractionally

populated, and the charge on all parts is tunable with Lagrange multipliers.

This makes it possible to perform calculations without using an ensemble to

generate the exact energies and wave functions for fractionally charged atoms.

The derivative discontinuities and piece-wise linear character show up, and the

predicted gaps exhibited by the chemical potential when an integer number of

electrons is crossed, is found. This improves the understanding of fractionally

charged systems in a CI setting, and can boost further improvements of ap-

proximative methods such as the development of new functionals to adequately

describe the features presented underneath. In the next section, the theory is

introduced, starting with the formalism of Lagrange multipliers after which

the constraints are derived to impose Mulliken populations on a predefined set

of atoms. However one should be cautious because the absolute magnitude

of the atomic Mulliken populations yielded by population analysis have little

physical meaning, since they display a high degree of sensitivity to the atomic

basis set with which they were calculated[86], but consideration of their relative

values can yield useful information[87], provided a consistent basis set is used

for their calculation. Furthermore when the overlap between the different

orbital sets, upon which the constraint is imposed is low or zero as is the case

for the dissociation limit, the Mulliken populations coincide unambiguously

with the exact value of the electron population obtained from the electron

number operator for the relative fragments. After the theory the results are

discussed, they mainly focus on the dissociation of some selected dimers because

many interesting things happen in the dissociation limit, while the fractional

populations that occur naturally around equilibrium are restored to integer

populations of electrons on all dissociated fragments. This formalism allows us

to generate exact computational results of systems with a fractional electron

number without using ensembles. The fractional charges shift gradually to

integer charges when the bonds are dissociated towards the non-interacting

limit. The more interaction between orbitals, the easier charge transfer can be

forced as will be visible through the increasing slope of the chemical potential,

upon dissociation. The exact results are compared with results from truncated

CI wave functions with different properties such as the configuration interaction

wave function based on single and double excitations from a reference (CISD)

which is good for dynamic correlation but is not size extensive and fails for

strongly correlated systems, and the doubly occupied configuration interaction

wave function (DOCI) which is a better wave function for the description of

static correlation [23]. It is shown that the DOCI wave functions describes

much better the charge transfer process and the properties at infinite distance

in comparison with excitation based wave functions such as CISD. Furthermore
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it will be shown that infinitesimal changes in the Hamiltonian can cause huge

changes in the density. This is similar to the big changes in the electronic struc-

ture that occur for fractionally charged nuclei[88]. From all this, it becomes

more and more clear that there is a need for better scaling methods, that are

able to describe significant changes in the density upon infinitesimal changes

in the Hamiltonian.

4.2 Theory

It is possible to diagonalize a Hamiltonian under a given set of constraints for

the resulting wave function. These constraints can always be expressed as the

vanishing expectation value of an operator f̂i for a given wave function ψ.

〈ψ|f̂i|ψ〉 = 0 (4.1)

The constraints can be added to the original Hamiltonian and multiplied by a

Lagrange multiplier (λ) which makes it possible to tune the importance of the

constraints.

Ĥ = Ĥ + Σiλif̂i (4.2)

The eigenstates and eigenvalues of the augmented Hamiltonian are explicitly

dependent on the Lagrange multiplier.

Ĥ(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 (4.3)

After deriving with respect to the Lagrange multipliers, it follows straightfor-

wardly that the constraints are fulfilled at the local extrema of En(λ).

∂En(λ)

∂λi
=
∂〈ψn(λ)|Ĥ(λ)|ψn(λ)〉

∂λi
= 〈ψn(λ)|f̂i|ψn(λ)〉 = 0 (4.4)

Where we made use of the Hellmann-Feynman theorem[4]. From this it also

follows that the expectation value of the wave function with respect to the

constrained Hamiltonian at these extremal values is equal to the one of the

original Hamiltonian. A point to note is that different eigenstates ψn(λ) have

different solutions for the extremal Lagrange multipliers λn. However, one is

mostly interested in the ground state. Another important point is that the

Hamiltonian in eq.(4.2) for λ = 0 reduces to the original Hamiltonian from

which it follows that En(0) = En, with En the eigenvalues of the original

Hamiltonian.

For this chapter, we are mainly interested in eigenstates of the non-relativistic

quantum chemical Hamiltonian with constraints on the Mulliken populations of

the different atoms in the molecule. This makes it possible to study the energy

dependence of selected molecules on the electron population assigned to par-

ticular atoms in this molecule. A study of this can increase the understanding

of reaction mechanisms, chemical bonding, and charge transfer. This chapter
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focusses particularly on simulations that gradually dissociate the constrained

atoms from the rest of the molecule. Results presented in the next section

show the gradual transition of a quadratic to a linear dependence of the energy

on the number of electrons. It is found that quadratic energy interpolation

models[89] are ideally suited to describe the charge transfer between atoms in

a molecule close to their equilibrium distances, while farther apart the ideal

energy interpolation model becomes linear. In what follows Greek indices

(µ, σ) will denote non-orthogonal atomic orbitals, and latin-indices will denote

orthonormal orbitals.

The Mulliken operator is given by[90]:

ŵmulA =
∑

σ∈A,µ
S−1
σ,µ |σ〉 〈µ| (4.5)

Where S−1 is the matrix inverse of the overlap of the atomic orbitals and

S−1
σµ is a matrix element of S−1. The summation over σ only goes over the

atomic orbitals defined centered on A. This is nothing else than the projection

operator onto the set of non-orthogonal orbitals defined by A [91]. This follows

from the fact that for non-orthogonal bases the dual basis is represented by

|µ∗〉 = ΣσS
−1
σ,µ |σ〉 (4.6)

The identity operator is thus:

Î =
∑

σ

|σ∗〉 〈σ| =
∑

σ,µ

S−1
µ,σ |µ〉 〈σ| . (4.7)

The projection operator on a set of orbitals A can be constructed from the

above equation by limiting one of the summations to orbitals centered on A. If

A in eq.(4.5) is equal to the entire set of orbitals, the expectation value of this

operator is for any canonical wave function equal to the number of electrons

N . The expectation value of the Mulliken operator after acting on it with a

many-body wave function becomes:

〈ψ|ŵmulA |ψ〉 =
∑

ν∈A
(PS)νν . (4.8)

Where P̄ is the one body reduced density matrix in the atomic orbitals, and

the trace is limited to indices corresponding to orbitals contained in A. For

the diagonalisation of the Hamiltonian (see eq. (4.2)), one relies mostly on

orthonormal single-particle bases such as those from Löwdin orthogonalized

orbitals or the molecular orbitals. The basis transformation that transforms the

atomic orbitals to an orthonormal set typically consists of an overlap dependent

part and an extra unitary transformation.

|i〉 = ΣµCi,µ |µ〉 = Σj′ ,µUi,j′S
− 1

2

j′ ,µ
|µ〉 (4.9)
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Transforming the Mulliken operator to this basis we obtain:

ŵmulA = Σi,jΣσ∈A,µS
−1
σ,µ |i〉 〈i|σ〉〈µ|j〉 〈j| (4.10)

= Σi,j |i〉 〈j| (C̄S̄D̄AC̄†)i,j

Where the¯ bar denotes matrices and D̄A is a diagonal matrix with ones when

the orbital indices correspond to orbitals in the set A and otherwise only zeros.

Using the above operator as a constraint in the Hamiltonian causes problems

as this operator is not Hermitian. Therefore we construct our constraints based

on the Hermitian operator:

ŵmul,HermA =
ŵmulA + ŵmul†A

2
(4.11)

The constrained Hamiltonian becomes thus:

Ĥ(λ) = Ĥ + Σiλi(ŵ
mul,Herm
i −Ni) (4.12)

Where Ni stands for the Mulliken population one wants to find on atom i.

Note also that one should take care that always ΣiNi = N , from this it follows

that for diatomic systems only one constraint is necessary as the population on

the other atom is trivially N −N0.

The energies obtained by diagonalizing the Hamiltonian in eq.(4.12) can be

decomposed into atomic and interaction contributions[92][93]. If this is done

when the constraints are exactly fulfilled, one can study the dependency of

atomic energies as a function of fractional electron number. The total energy

expressed as a function of the first and second order density matrices expressed

in atomic orbitals using chemical notation and rearranged by atomic contribu-

tions becomes:

Etot =
∑

A<B

ZAZB
RAB

+
∑

µν

ρµν〈ν|T̂ |µ〉 −
∑

A

∑

µν

ρµν〈ν|
ZA
rA
|µ〉 (4.13)

+
1

2

∑

A

∑

B

∑

µ∈A

∑

ρ∈B

all∑

νσ

Γµνρσ〈µν|ρσ〉.

According to Mayer et. al. [92] the above energy can be decomposed in atomic

and interaction contributions. Performing this decomposition the energy that

can be assigned to a particular atom can be written as:

EA =
∑

µ∈Aν∈A
ρµν〈ν|T̂ |µ〉−

∑

µ∈Aν∈A
ρµν〈ν|

ZA
rA
|µ〉+ 1

2

∑

µ∈A

∑

ρ∈A

all∑

νσ

Γµνρσ〈µν|ρσ〉.

(4.14)

Accordingly the interaction energy of two atoms A and B can be written as:

EAB =
ZAZB
RAB

+ 2
∑

µ∈A,ν∈B
ρµν〈ν|T̂ |µ〉 −

∑

µ∈A,ν
ρµν〈ν|

ZB
rB
|µ〉 (4.15)

−
∑

µ∈B,ν
ρµν〈ν|

ZA
rA
|µ〉+

∑

µ∈A

∑

ρ∈B

all∑

νσ

Γµνρσ〈µν|ρσ〉.
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4.2.1 Computational details

In order to improve the understanding of charge transfer, charge distribution,

derivative discontinuities, fractionally charged systems and strong changes in

the density upon infinitesimal changes in the Hamiltonian (see eq. (4.12) ), the

bond stretching of the NO+ molecule is considered. The used atomic basis set

is minimal STO-3G. This is sufficient because the studied effects are similar

in all basis sets. To check this we did some limited calculations in 6-31G

that indicated the same effects. Another reason to use small basis sets that

contain no diffuse functions is the use of the Mulliken operator as the operator

that counts the number of electrons that can be contributed to a particular

atom, as it is well known that problems arise when the Mulliken operator is

used in combination with diffuse basis functions [94]. A further limitation of

this approach is that when the number of electrons on a particular atom is

increased above the threshold where the free electron energies start to mingle

in the energy spectrum, the energy keeps increasing while it should become

plateau-wise, fortunately for not too large electron numbers on a particular

atom this effect plays no role. The energies shown are the energies of the total

molecular system and of atomic energies obtained by the energy decomposition

eq. (4.14) and eq. (4.15). However, one should be cautious as there is no

unambiguous way to assign energies to the bath and system separately when

a lot of interaction is present, as the energy of the system always depends on

the properties of the electron bath when correlation is involved. Fortunately at

stretched distances when the interaction is low the differences between different

energy decomposition algorithms diminish quickly. All one- and two-particle

integrals needed are generated by the PSI4 package [38]. For the interface with

PSI4 we used the Hamiltonian class of CheMPS2[39, 40].

For all CI calculations a general CI solver is used that takes as argument a list

of Slater determinants. These Slater determinants, in turn, are built from an

orthonormal set of orbitals that may correspond to molecular orbitals or some

other orthonormal set. All determinants are encoded as binary strings in terms

of this set and the Hamiltonian is represented in the Slater determinant basis.

After providing the Lagrange multipliers and the Mulliken populations that

act as constraints, the extra terms of eq.(4.12) are added to the corresponding

one-particle matrix elements that already incorporate the nuclear attraction

and the kinetic energy. The variational problem of determining the Slater

determinant coefficients is then solved using an implicitly restarted Arnoldi

algorithm [54] to locate the chosen number of low lying energy states. For

every set of populations that one wants to find on the atoms, it is necessary

to scan the energy surface that depends on the set of Lagrange multipliers

for those multipliers where the energy is extremal for all multipliers, At those

points in the Lagrange multiplier parameter space all the constraints of the

wave function are fulfilled and the expectation value of the Hamiltonian in

eq.(4.12) will be equal to the expectation value of the non-relativistic quantum

chemical Hamiltonian. To efficiently find those extremal values a golden section
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search method or conjugate gradient method is used. In the next section we

investigate the dependence of FCI energies and some truncated CI energies as

a function of changes of the Mulliken populations of dimers with geometries

ranging from equilibrium to the dissociation limit. In this limit one of the

atoms will act as an electron basin for the other. This makes it possible to

investigate fractionally charged atoms, derivative discontinuities, avoided level

crossings and other interesting phenomena, which depend on the integer nature

of the electron. In the next section the results that were obtained by solving

eq.(4.12) are shown and discussed.

4.3 Results and Discussion
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Figure 4.1: The dependency of the FCI energy and the Mulliken population

on the Lagrangian multiplier λ is depicted for the NO+ molecule, the rows

of subplots correspond to internuclear distances of 3, 5 bohr and an infinite

distance respectively, and the columns correspond to constrained populations

on the nitrogen atom of N0 = 6.8, 7.3 and 7.98 respectively.
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Figure 4.2: The dependency of the FCI energy on the Lagrangian multiplier λ

is depicted, when N0 = 7.3 for the lowest energies corresponding to different

Mulliken populations in the forty lowest eigenvalues at an internuclear distance

of ∞ bohr.

To obtain a first impression of the problem at hand, the λ dependence of the

expectation value of eq.(4.12) is depicted in Fig. 4.1 for the NO+ molecule

at bond distances of 3, 5 bohr and at the limit of an infinite separation.

This is nothing more than the energy of the constrained Hamiltonian as a

function of λ. To construct the matrix elements for the infinite separation

limit we have generated the matrix elements and overlaps for a N-atom and

for a O-atom separately, and have combined them in one molecule by shifting

the labelling of the oxygen matrix elements and overlap with the number of

orbitals centered on the N-atom, this creates a molecule in which the orbitals

corresponding to the O atom are not aware of the orbitals on the N atom
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neither by the matrix elements nor in the overlap. This setup simulates exactly

the infinitely separated NO+ molecule when the number of electrons is set to

14. The calculations are performed for three different constrained Mulliken

populations N0 =: 6.8, 7.3 and 7.98. For all bond distances close enough to

the equilibrium distance (1.225 Å), such as three bohr, this energy dependence

will be parabolic with a unique well defined maximum, at this maximum the

constrained Mulliken population is fulfilled for the resulting wave function,

and the expectation value of the constrained Hamiltonian (eq. 4.12) is equal

to the Hamiltonian without constraints. This maximum is linearly shifted as a

function of the constraint N0, when N0 becomes larger it shifts to lower λ, when

N0 becomes lower it shifts to larger λ. This happens because the λ parameter

is a measure for the energy shift of the single-particle levels on which the

Mulliken operator of eq.(4.11) is assigned to act. Higher single-particle energy

means less occupied and a lower contribution to the Mulliken population. If

one looks at the behaviour of the Mulliken population as a function of λ, one

also sees this linear behaviour, except for the two extrema of small and big

Mulliken populations, which are in fact finite size effects because the used

basis set only supports a maximum of 10 electrons on one atom, luckily the

Mulliken populations of interest are between 6 and 8, this has no further effect

on our results of interest. If one increases the bond distance to 5 bohr, the λ

dependence of the Mulliken charge is still continuous, but a stepwise character

becomes noticeable. At the infinite distance limit, one sees that the Mulliken

charge as a function of λ has become a real step-wise function. This implies

that the λ dependence of the Mulliken charge has become discontinuous, which

is a remarkable result because it shows that infinitely small changes of the

Hamiltonian (eq. 4.12), can cause very large changes in the electron density

of the resulting wave function. This also goes for the original non-relativistic

Hamiltonian as the results of N0 = 6.8 show, the Mulliken charge on N for the

dimer on an infinite distance is 7. We see that introducing a small perturbation

of a positive λ will make the wave function jump to an electron distribution of

6 electrons on the N atom and 8 on the O atom. Introducing a small negative

λ will not change the Mulliken charge and it remains at 7, until λ has become

negative enough to conquer the threshold to jump to an electron distribution

of 8 electrons. The behaviour of the energy at infinite distance as a function

of λ is piece-wise linear between different integer Mulliken populations, and

the extrema of the curve depend on the value of N0 as it becomes the point

where the value shifts from the Mulliken population defined by bN0c to the

Mulliken population defined by dN0e. The constraints also determine the slope

of the piece-wise linear pieces neighbouring the extrema as they become more

and more flat when an integer is approached (see the results of N0 = 7.98 at

infinite distance). This is because when N0 passes through 8 the next maximum

should occur at the λ value where the Mulliken population jumps from 8 to

9, and the slope of the piece between 8 and 9 has changed from positive to

negative, while going through zero at the integer point. This makes it difficult

to accurately determine maxima of the curve when the constraints approach
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integer points.

The angles of the piece-wise linear parts of the λ dependency of the FCI energy

on an infinite distance are created by avoided level crossings. This is clearly

revealed by Fig. 4.2, which depicts all the lowest eigenvalues corresponding

to eigenstates with a different Mulliken population in the 40 eigenstates with

the lowest energy values for a constraint of N0 = 7.3. The figure can be

understood by remarking that changing λ has no influence on the relative

position of states corresponding to the same Mulliken population they remain

parallel for all values of λ, but states with different Mulliken populations have

different slopes as a function of λ, and the absolute value of the slope increases

the farther away the Mulliken population of the state is from the constraint

NO, with a positive slope for larger Mulliken populations and a negative slope

for smaller Mulliken populations. From this it follows that the lowest energy

corresponding to states with a higher Mulliken population grows faster for

increasing λ than for those with a smaller Mulliken population. So states

with a different Mulliken population grow to each other, intersect and switch

their relative position. This dynamics generates the typical piece-wise linear

behaviour of the ground-state energy. Another observation that one can make

from Fig. 4.2 is that far from those intersection points all 40 energetically lowest

states have the same Mulliken population, near the intersection points states

with Mulliken populations that differ by one with the Mulliken population of

the lowest eigenstate start to enter the window of the 40 energetically lowest

eigenstates. The λ values where those events happen can be easily deduced from

the figure. Finally for convenience we have added a dashed vertical line to the

figure at λ = 0, to make it easier to see where the unperturbed Hamiltonian

is situated for the NO+ molecule at infinite distance. The ground state has

Mulliken population seven (as expected), but states with Mulliken population

six are not much higher in energy, and the intersection point of the states with

Mulliken populations 6 and 7 lays very close to the unperturbed Hamiltonian.

It can be concluded that a well behaved maximum value of the energy as a

function of the Lagrange multiplier of the constrained Hamiltonian can almost

always be found, except for the integer electron populations at infinite distance.

This concludes the study of the λ dependency of the expectation value of the

constrained Hamiltonian (see eq.(4.12)).

Next the energy dependence on some relevant chemical parameters such as

the electron number and chemical potential is studied. Those results are

generated from wave functions that are converged to one of the above described

maxima. This means that the used wave functions have the same expectation

values for the constrained and unconstrained non-relativistic quantum chemical

Hamiltonian, and the constraints are exactly fulfilled (except for the infinite

distance limit). Figs. 4.3, 4.4, 4.5 depict the behaviour of the constrained

ground-state FCI wave function when the bonded NO+ molecule is gradually

dissociated to infinity. The dependency of the ground-state FCI energy on the

Mulliken population and the Lagrange multiplier λ (chemical potential) that
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Figure 4.3: Depicts the FCI energy of the NO+ molecule as a function of the

Mulliken population on the N atom.
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Figure 4.4: Fig. 4.4 depicts the relative chemical potential of the NO+ molecule

as a function of the Mulliken population on N.
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Figure 4.5: Fig. 4.5 depicts the FCI energy of the NO+ molecule as a function

of the chemical potential λ (in a.u.) at fulfilled constraints.

maximizes the energy for a given constrained (Mulliken population on the N

atom) are depicted, together with the dependency of the chemical potential on

the Mulliken population at fulfilled constraints. Fulfilled constraints means that

every point represented in each of the graphs of Figs. 4.3, 4.4, 4.5 corresponds

to a maximum of the energy as a function of λ for a given constraint. All

constraints are fulfilled except in the case of infinitely separated atoms. For

this case the Mulliken population of the wave function is always integer, and it

is impossible to generate fractional populations due to the fact that the wave

function will always collapse to one of the neighbouring integer populations.

This happens due to computer limitations, which make it impossible to reach

the desired accuracy to make states with neighbouring integer Mulliken pop-

ulations exactly degenerate at an infinite distance. If this would be possible,

all states with fractional populations between the two integer points can be

constructed with the same energy, as linear combinations of the two integer

states. But because of floating point round off errors the degeneracy is never

exactly reachable and the wave function collapses to one of the neighbouring

integer populations. However the energy remains continuous and therefore it is

possible to assign the obtained energies to those that would arise if the necessary

degeneracies could be obtained exactly to generate the fractional populations

at infinity.

The dissociation limit is investigated by comparing the results from bond

distances ranging from equilibrium to the infinite distance limit. Fig. 4.3
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depicts the energy dependence as a function of the Mulliken charge on the atoms

for the chosen bond distances for NO+. At equilibrium distance this behaviour

is a nice broad parabola with the minimum at fractional population. When

the bond distance is gradually increased the minimum is gradually shifted to

the integer value of 7 as expected. The curvature is also changing and becomes

gradually piece-wise linear, with each piece having a different slope. There

are no intersections of curves corresponding to different distances and it seems

that for a given Mulliken charge the energy at higher distances starting from

equilibrium is always higher because of the reduced possibilities to reduce the

energy by charge transfer. The gap between the FCI energy at equilibrium

distance and the one at an infinite distance is the lowest at Mulliken charge

7. This is logical because the equilibrium curve needs to move away from its

minimal value to reach a Mulliken charge of 7 (so the energy increases), and

for the system at an infinite distance it is the minimal value. Furthermore

as remarked above, the relative ordering in energy is preserved and all other

curves are sandwiched in this interval. Fig. 4.3 gives in fact a computational

proof of the piece-wise linear character of the dependency of the FCI energy on

the number of electrons (As there is no overlap between orbitals associated to

the nitrogen atom with orbitals associated to the oxygen atom, the Mulliken

population of the nitrogen atom corresponds exactly to the number operator

on the nitrogen atom). We repeat the remark that all constraints are exactly

fulfilled for all curves in Fig. 4.3 except for the system at infinite distance, but

because the energy remains continuous upon infinitesimal changes of λ (only

big changes of the Mulliken value occur) the energy depicted in Fig. 4.3 can

be trusted as the real energy of the wave function with the fractional charge.

Another view of observing this is by looking to the other curves that gradually

approach the infinite distance limit and remarking that for all other curves the

constraints are exactly satisfied.

Also of interest are the effects of dissociating a bond on the dependency of the

chemical potential on the Mulliken distribution of the two atoms. Taking a

look to Fig. 4.4 reveals that at small bond distances it is easier to transfer

charges from one atom to the other, this is revealed in a linear dependence of

the chemical potential on the Mulliken population with a small slope. When the

bond distance is increased the slope of the chemical potential increases. This

can be understood by noting that at a larger bond distance one needs to have a

larger chemical potential to reduce the population at a given atom, or a stronger

negative chemical potential to increase the population on the atom, because it

becomes more and more difficult to generate the desired population transfer for

larger bond distances. The slope of the chemical potential as a function of the

Mulliken population can be seen as the difficulty for population transfer. The

larger the more difficult population transfer will be. Remark that for bond

distances around equilibrium geometry the willingness to transfer charges is

equal for all Mulliken populations. At larger bond distances the λ dependency

becomes wavy. In between integer values there is more willingness to transfer

charges (smaller differences of the chemical potential are sufficient), because
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the wave function starts to dislike more and more fractional populations. And

there is also a very small willingness to transfer charges when the population is

close to an integer value. In fact the slope of the chemical potential as a function

of the Mulliken population for long bond distances can be seen as the chemical

hardness [67, 95]. Because for large bond distances the Mulliken operator on an

atom becomes equal to the number operator on this atom. This means that the

slope corresponds in fact to the second derivative of the FCI energy with respect

to the particle number on that atom, which is equal to the chemical hardness

and that is a measure of the possibility of charge transport. At the infinite

distance limit the willingness to transfer charges is zero at integer populations

(slope of the chemical potential is ∞), and for fractional populations the

charge transfer is instantaneous as the blockade to transfer charges is zero.

This shows that fractional populations at an infinite distance are extremely

unstable as the wave function will always collapse towards neighbouring integer

populations and then remain there. All fractional populations are compressed

to an infinitely small interval at the same chemical potential defined by the shift

necessary to make the energies corresponding to neighbouring integer Mulliken

populations degenerate.

Fig. 4.5 shows the dependence of the FCI energy on the chemical potential.

A first remark is that at smaller bond distances the resulting curves have less

width than for bigger distances. This means that at smaller distances one needs

a smaller range of the chemical potential to cover the Mulliken populations

from 5 till 8. Furthermore one sees that at smaller distances the curve is a well

behaving parabola, but at larger distances it gets smeared out and the curve

starts to make strange quirks. The curves with a lower minimum also cross all

the curves with a higher minimum. This means that for smaller bond distances,

increasing the chemical potential has a strong effect on the FCI energy. Also

for larger distances the effect becomes less continuous and different regimes

arise, one where small changes in the chemical potential can induce large shifts

of the energy while there are also areas were changing the chemical potential

has not much effect on the energy.

It is important to note that all energy values given in Fig. 4.3 are for the total

NO+ molecule. This is because the energy of the constrained system (N) always

depend on the properties of the bath (ionization potential and electron affinity

of the bath) when entanglement is present. It is only possible to disentangle

them unambiguously when the system is separated from the environment/bath

by an infinite distance. However at an infinite distance it is impossible to impose

the constraints exactly. The bath acts in this approximation as a pure reservoir

of electrons and the properties of the bath have no influence on the energy of

the constrained system. However based on eq.(4.14) it is possible to calculate

the energy that can be attributed to a particular atom. The results of this

decomposition for a nitrogen atom separated from a oxygen atom with distances

2.32 bohr (experimental equilibrium geometry), 3 bohr, 4 bohr, 5 bohr, 8 bohr

and the infinite distance limit is represented by Fig. 4.6. The corresponding
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results for the oxygen atom are represented by Fig. 4.7. Finally the interaction

energy between both atoms calculated with eq.(4.15) is depicted in Fig. 4.8.

This figure gives a direct computational proof without the use of ensembles

of the piece-wise linear dependency of the atomic energy on the number of

electrons. Another interesting observation is that for stretched distances the

interaction between the atoms is significantly lower for integer electron values

that correspond to one neutral atom. This in correspondence with the above

described results that indicated an increased stability of the integer electron

values at stretched distances.
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Figure 4.6: The contribution of the nitrogen atom to the FCI energy of the NO+

molecule at 5 bohr as a function of the Mulliken population on the nitrogen

atom. The dashed line is the linear interpolation of the atomic nitrogen energies

with integer electron number in a basis set consisting of the STO-3G nitrogen

basis functions together with the STO-3G oxygen basis functions at a distance

of 5 bohr.
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Figure 4.7: The contribution of the oxygen atom to the FCI energy of the NO+

molecule at 5 bohr as a function of the Mulliken population on the oxygen atom.

The dashed line is the linear interpolation of the atomic oxygen energies with

integer electron number in a basis set consisting of the STO-3G oxygen basis

functions together with the STO-3G nitrogen basis functions at a distance of

5 bohr.
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Figure 4.8: The interaction energy of the oxygen atom and the nitrogen atom

of the NO+ molecule at 5 bohr as a function of the Mulliken population on the

nitrogen atom.

Table 4.1: Bond distances in Å and formation enthalpies in kJmol−1 for NO+,

N2, CN− and CO.

NO+ N2 CN– CO

Hf (kJmol−1) 198.22 0. 195.98 -110.53

Bond distance (Å) 1.066 1.098 1.177 1.128

Furthermore the derived chemical potential is relative with respect to the

reservoir used. As an example Fig. 4.9 depict the EFCI as a function of

the Mulliken population and chemical potential, and the chemical potential

as a function of the Mulliken population for constrained populations on the

N atom for a O, C and N environment at 2, 3 and 4 bohr, together with the

effect of constraining the Mulliken population on the C atom in a CO molecule.

The interesting point to note is that the energy depends still quadratically on

the Mulliken population for the NO+ molecule at those distances but the CN–

molecule is already in the stepwise regime. This can be related to the fact that

the bond of CN– is weaker, and more easily broken. In fact one can see that

the bond-distance where the linear dependence of the chemical potential on

the population starts to shift to a stepwise character as the start of the bond

breaking, and one can state that the bond is fully broken when the full stepwise
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regime is reached. As a reference Table (4.1) depicts the bond distances and

formation enthalpies of CN–, N2, NO+, and CO.

Table 4.2: Energies and Mulliken populations (in a.u.) of truncated CI methods

for the NO+ molecule at 100 bohr in the STO-3G atomic basis-set. The used

orthonormal basis is the one coming from a previous restricted Hartree-Fock

calculation unless otherwise given.
CISD CISDD̄ SEN(0,2) DOCI DOCI(FNO) DOCI(OO) DOCI(MMIN) FCI

E - EFCI (mEh) 115 115 177 273 272 133 134 0

Mul. pop. (N atom) 6.85 6.85 6.75 6.79 6.78 7. 7. 7.

To conclude this chapter the above derived machinery is used to compare

some selected truncated CI methods. First table 4.2 compares the Mulliken

populations and energy values of different truncated CI wave functions for the

NO+ molecule with a bond length of 100 bohr. As can be seen the DOCI

wave function is the only truncated CI wave function that has the correct

Mulliken population of 7 on each atom separately, provided the MMin and

OO bases are used. This indicates again the importance of using appropriate

single-particle bases for the DOCI wave function. Another interesting fact is

that both DOCI(OO) and DOCI(MMIN) have higher energies than the CISD

wave function but they have correct Mulliken populations while the CISD wave

function has fractional charges. Secondly Fig. 4.10 compares DOCI(OO),

and CISD to the FCI behaviour under the constrained of particular Mulliken

populations. It is remarkable that CISD has lower energy (see Fig. 4.10(a))

but the chemical potential of DOCI(OO) is closer to the FCI value (see Fig.

4.10(b)). Furthermore, the λ dependency of the energy of the DOCI wave

function is more similar to the FCI one. CISD predicts the minimum energy

at a fractional Mulliken population of 6.018 while the FCI and DOCI wave

function correctly predict a Mulliken population of 7. From the above and Fig.

4.10 one can conclude that DOCI performs better than CISD for this problem

as the DOCI wave function gives much better estimates for important chemical

descriptors such as the chemical potential, Mulliken population and the charge

transfer process. As a final conclusion, it can be stated that it is more relevant

to test an approximative method on the accuracy of chemical descriptors such as

the chemical potential, charge transfer and distribution than absolute energy

values as they do not provide any guarantee for the correctness of the wave

function.

4.4 Conclusions

It is computationally proven that the energy of a system with fractional elec-

tron number is given by straight lines with different slopes connecting integer

electron numbers. From this it follows that at the integers the energy has a

derivative discontinuity and the density is discontinuous. It was also shown that
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at the extremal values of the energy as a function of the Lagrange multiplier

for two infinitely separated systems very small perturbations can produce very

big changes in the density. The derived method allows also to investigate the

willingness of charge transfer by capturing electrons from other atoms. An in-

vestigation of the dissociation limit revealed that around equilibrium distances

this possibility is large. For intermediate bond distances this possibility lowers,

and for the biggest bond distances an asymmetry arises between fractional and

integer populations. Far from integer populations it becomes easier and easier

to transport charges, but closer to integer populations it becomes increasingly

difficult. This results in stable integer populations and unstable fractional

populations. The method proposed in this chapter can also be used to improve

the understanding of chemical bonds, how far they reach, when they are broken

and when charge transfer is possible. The results of constraining the population

on the N atom coupled to a selected number of different baths revealed that

the charge transfer of CN– becomes suboptimal at much shorter distances

than for example N2 and NO+. It is remarkable that many approximative

methods (such as CISD) predict ground-state wave functions with a fractional

population for infinitely separated pieces while this behaviour is in denial of

the dynamics of the exact wave function. It could be interesting to create more

approximative methods that have the correct behaviour for this problem, as

this is important for many chemical relevant observables such as charge transfer

and reaction mechanics, instead of focussing blindly on lower energies. The

comparison of the CISD, and the DOCI(OO) behaviour with the FCI wave

function showed that the DOCI wave function predicts chemical potentials

closer to the FCI one, and has a better description of the charge transfer

process, with a correct value of 7 for the Mulliken population of the infinitely

separated system. It is expected that this is due to the size consistency of the

DOCI wave function. Finally it is concluded that fractional charge behaviour

and transport over large bond distances is a challenging test for the accuracy

of approximate methods.
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Figure 4.9: The first column of Fig. 4.9(a), 4.9(b) and 4.9(c) depicts the FCI

energy with respect to the molecular ground-state energy as a function of the

Mulliken population 〈ŵmul〉, the second column depicts the Lagrange multiplier

λ at fulfilled constraints as a function of 〈ŵmul〉. The bond distances considered

are 2, 3 and 4 bohr respectively for each row of plots. 〈ŵmul〉 corresponds to

the Mulliken population on N (except for C in CO).
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Figure 4.10: Fig. 4.10(a) depicts the DOCI(OO), CISD, and FCI energy as a

function of the Mulliken population on the N atom at a distance of 10 bohr from

the O atom, and Fig. 4.10(b) depicts the dependency of the chemical potential

of the DOCI(OO), CISD and FCI wave function on the Mulliken population

on N at a distance of 10 bohr from the O atom.
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Chapter 5

Variational optimization of

the second order density

matrix corresponding to a

seniority-zero configuration

interaction wave function

1 In this chapter, a different approach to the electronic structure problem is

studied. A direct variational determination of the second order (two-particle)

reduced density matrix is performed. The second order reduced density matrix

corresponds to a many-electron system, under the restricted set of the two-index

N -representability P-, Q-, and G-conditions. In addition, a set of necessary con-

straints is imposed such that the two-particle density matrix must be derivable

from a DOCI wave function, i.e. a singlet wave function for which the Slater

determinant decomposition only contains determinants in which spatial orbitals

are doubly occupied. We rederive the two-index N -representability conditions

first found by Weinhold and Wilson and apply them to various benchmark

systems (linear hydrogen chains, He, N2 and CN−). This work is motivated

by the fact that a DOCI wave function captures in many cases the bulk of

the static correlation. Compared to the general case, the structure of doubly-

occupied two-particle density matrices causes the associated semidefinite pro-

gram to have a very favorable scaling as K3, where K is the number of spatial

1Has been previously published as: W. Poelmans, M. Van Raemdonck, B. Verstichel, S.
De Baerdemacker, A. Torre, L. Lain, G. E. Massaccesi, D. R. Alcoba, P. Bultinck, and D.
Van Neck. Variational optimization of the second order density matrix corresponding to a
seniority-zero configuration interaction wave function, 2015: Journal of Chemical Theory
and Computation, 11:4064-4076.
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orbitals. Since the doubly-occupied Hilbert space depends on the choice of the

orbitals, variational steps for the two-particle density matrix optimisation are

interspersed with orbital-optimization steps (based on Jacobi rotations in the

space of the spatial orbitals). We also point to the importance of symmetry

breaking of the orbitals when performing calculations in a doubly-occupied

framework.

5.1 Introduction

The main problem in many-body quantum mechanics, which comprises nuclear

physics, quantum chemistry and condensed matter physics, is the exponential

increase of the dimension of the Hilbert space with the number of particles. Of

course, a complete diagonalization in many-electron space, Full Configuration

Interaction (FullCI), will provide the exact answer, but is prohibitively expen-

sive except for small systems[4]. The challenge has therefore been to develop

approximate methods capturing the relevant degrees of freedom in the system

without an excessive computational cost, i.e., with a polynomial increase.

Many approximate methods have been developed over the years[4, 6]. A

standard approach is to start from a mean-field (Hartree-Fock) solution and

improve on this by adding excitations of increasing complexity (Coupled Cluster

Theory[96, 97], Perturbation Theory[97], etc.). These single-reference methods

only work well when the wave function is dominated by a single Slater deter-

minant. In bond-breaking processes, e.g., the Hartree-Fock (HF) approxima-

tion is qualitatively wrong and a multi-reference approximation is needed[98].

In Multiconfiguration Self-Consistent Field (MCSCF)[4, 99], one expands the

wave function as a linear combination of Slater determinants (configurations),

and the Configuration Interaction (CI) coefficients and the orbitals building

the Slater determinants are optimized together.

In the last decades, new methods for strongly correlated systems were devel-

oped. Density Matrix Renormalization Group (DMRG)[100–103] can be made

as accurate as FullCI while extending the computational limits far beyond what

is possible with classical FullCI. Projected symmetry-broken Hartree-Fock[104–

106] is a mean-field scaling method in which all symmetries are broken. While it

is difficult to recover symmetries once they are lost, a self-consistent variation-

after-projection technique can overcome these issues[107].

Another technique, which has received renewed interest, is Doubly-Occupied

Configuration Interaction (DOCI)[24, 25, 28, 29, 52, 108]. In DOCI, all spatial

orbitals are doubly occupied by two (spin-up/down) electrons. This is also

called a seniority-zero wave function, where the seniority number equals the

number of unpaired electrons[20, 24, 109]. FullDOCI is an exact diagonalization

of the Hamiltonian (like FullCI), but in the Hilbert space restricted to Slater

determinants where every spatial orbital is doubly occupied or empty. However,

FullDOCI still suffers from factorial scaling. The interest in DOCI is motivated
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Figure 5.1: Overview of the methods used in this chapter. SD denotes a Slater

determinant, Γ is the two-particle density matrix and K the associated reduced

Hamiltonian. Ω̂ is the seniority-number operator.

by its ability to describe the static correlation[21, 24]. It was also realized

that DOCI is the lowest rung on the ladder in a seniority hierarchy leading

to FullCI[21, 110]: If one adds configurations of higher seniority (2, 4, . . . ) in

the wave function expansion, one will eventually reach the FullCI limit[21, 24].

Furthermore, the chemical relevance of this approach is supported by the fact

that General Valence Bond with perfect pairing is a special case of DOCI[25].

An efficient and low-scaling approximation to DOCI is available, the so-called

AP1roG (antisymmetric product of 1-reference-orbital geminals)[25, 108, 111]

or pair-Coupled Cluster Doubles[28, 29] (which are equivalent). However, like

any truncated CI wave function, DOCI is orbital dependent[21, 24, 110] and

approximations such as AP1roG need an orbital optimizer. This leads to a

deterioration of the scaling.

In this chapter, the focus lies on an alternative way to approximate the ground

state of an N -electron system, that concentrates on the two-particle reduced

density matrix (2RDM)[112, 113]. The 2RDM contains all relevant information,

such as all expectation values of two-particle operators, but its dimension

only scales as K4, with K the dimension of spatial orbital space. Unlike

Density (Matrix) functional theory, the energy can be expressed as an exact

yet simple linear function of the 2RDM and a variational optimization can be

used to find the ground-state energy (v2RDM)[114] where the optimization

should be constrained to the class of 2RDM’s[115, 116] that can be derived

from an antisymmetric wave function, the so-called N -representable 2RDM’s.

The wave function is not used in this method and we directly start from a

2RDM. The burden is shifted to the characterization of the N -representable

class of 2RDM’s. Since the complete characterization is known to be a QMA

complete problem[117], one has to use a set of necessary but not (in general)

sufficient conditions on the 2RDM. The role of the necessary N -representability
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conditions is to enforce that the resulting 2RDM approximates a wave function

derivable 2RDM as good as possible. Since the minimization of the energy

is carried out over a too large set, one obtains lower bounds to the exact

energy[116].

The most commonly used conditions are derived from positive semidefinite

Hamiltonians and express the fact that their expectation value in any wave

function should be positive. Examples are the standard P, Q and G two-index

conditions[116, 118] and the T1 and T2 three-index conditions[119]. Other

kinds of conditions exist, such as subsystem constraints[120] or active-space

constraints[121]. The resulting constrained optimization problem is known as

a semidefinite program (SDP). This is a well-known class of convex optimization

problems[122–124] for which a large collection of solvers exists[125]. We created

a SDP solver tailored to v2RDM[126–134]: for the two-index conditions, basic

matrix operations exhibit a scaling of (2K)6 and for the three-index conditions,

(2K)9. Unfortunately, on the whole the v2RDM approach is not competitive

with e.g. CCSD methods[135, 136].

In this chapter, it is aimed to study the 2RDM variational optimization re-

stricted to DOCI space, henceforth called v2RDM-DOCI. In Figure 5.1, we

give an overview of all relevant methods. We impose necessary conditions that

the wave function from which the 2RDM was derived has the form of a DOCI

wave function. This greatly simplifies the structure of the 2RDM[137, 138]

and leads to a much better scaling. We need an orbital optimization scheme,

which is far from trivial as the energy landscape contains a large number

of local minima, many very close to or even degenerate with the ground-

state energy[110]. The same problem is also encountered in MCSCF[139, 140]

and Valence Bond Self-Consistent Field[141] where several solutions are at

hand[139, 142, 143]. Most wave-function based methods[25, 28, 29, 52, 108]

construct the 2RDM in order to perform the orbital optimization. In contrast,

the v2RDM method works directly with the 2RDM, although the 2RDM is not

completely N -representable. If a good starting point in the orbital space is

available, a simple local minimizer can generate good results. In this chapter

an algorithm utilizing Jacobi rotations[144] to avoid the full simultaneous four-

index transformation of the two-electron integrals is utilized.

In section 5.2, we introduce the v2RDM framework and apply it to the case

of a DOCI wave function, leading to v2RDM-DOCI. In section 5.3 the orbital

optimization scheme is presented in detail, and in section 5.4 results are shown

for several illustrative test cases, including situations where a multi-reference

description is needed. A summary and discussion is presented in section 5.5.

5.2 Variational 2RDM

We use Greek letters α, β, . . . to denote a general spinorbital (2K in total), and

Roman letters a, b, . . . to denote the spatial part of the orbital (K in total).
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With the bar symbol, the pairing partner of a state is denoted: a and ā form

a pair of the same spatial orbital with opposite spin, e.g. a ≡ a ↑ and ā ≡ a ↓.
All summations run over either the spinorbitals or the orbitals depending on

whether Greek or Roman summation indices were used. We use the second-

quantization formalism: â†α (âα) denotes a creation (annihilation) operator for

a fermion in the single particle state α. It is also assumed that the many-

electron wave function is real.

5.2.1 General v2RDM

In second quantization a Hamiltonian with pairwise interactions can be written

as[5]

Ĥ =
∑

αβ

〈α|T̂ |β〉 â†αâβ +
1

4

∑

αβγδ

〈αβ|V̂ |γδ〉 â†αâ†β âδâγ , (5.1)

where T̂ and V̂ are the one- and two-particle operators. It should be noted

that the formalism is completely general for Hamiltonians up to two-body in-

teractions. However, all operators discussed concern field-free, non-relativistic

electronic structure Hamiltonians, i.e. T̂ is the sum of the electronic kinetic

energy and the nuclei-electron attraction, whereas V̂ represents the interelec-

tronic Coulomb repulsion. The ground-state energy can be expressed solely in

terms of the second order reduced density matrix (2RDM)[112] Γ,

E = Tr (KΓ) =
1

4

∑

αβγδ

Kαβ;γδΓαβ;γδ , (5.2)

where

Γαβ;γδ = 〈ψ|â†αâ†β âδâγ |ψ〉 , (5.3)

Kαβ;γδ =
1

N − 1
(Tαγδβδ − Tβγδαδ − Tαδδβγ

+Tβδδαγ) + Vαβγδ , (5.4)

with |ψ〉 the ground-state wave function for the Hamiltonian (5.1) with matrix

elements Tαβ = 〈α|T̂ |β〉 and Vαβγδ = 〈αβ|V̂ |γδ〉. N is the number of particles,

and (5.3) and (5.4) define matrix elements of the 2RDM and the reduced Hamil-

tonian Kαβ;γδ, respectively. Some elementary properties are easily derived,

Γαβ;γδ = −Γβα;γδ = −Γαβ;δγ = Γβα;δγ , (5.5)

Γαβ;γδ = Γγδ;αβ , (5.6)

Tr (Γ) =
1

2

∑

αβ

Γαβ;αβ =
N(N − 1)

2
. (5.7)

The idea of variational 2RDM is to minimize the energy functional (5.2). The

2RDM is a much more compact object than the wave function as its matrix
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dimension scales as K2. However, a direct approach produces unrealistic

energies[114]. The variation has to be limited to the class of N -representable

2RDM’s[115, 116]: for every 2RDM, there must exist a wave function |ψ〉
such that (5.3) is satisfied. Unfortunately there is no straightforward way of

establishing whether a 2RDM is N -representable. The necessary and sufficient

conditions are formally known[145, 146]: a 2RDM is N -representable if and

only if, for every two-particle Hamiltonian Ĥφ, the following inequality is true:

Tr (KφΓ) ≥ E0(Ĥφ) , (5.8)

with Kφ the reduced Hamiltonian and E0(Ĥφ) the exact ground-state energy

of the Hamiltonian Ĥφ. This theorem cannot be used as a sufficient condition

for N -representability as that would require the ground-state energy of every

possible two-particle Hamiltonian Ĥφ, but it can be used as a necessary con-

dition: the theorem (5.8) can be relaxed to Hamiltonians for which a lower

bound to its ground-state energy is known. A straightforward choice is

Ĥ = B̂†B̂, (5.9)

a class of manifestly positive semidefinite Hamiltonians. If we restrict B̂ to the

two-particle space, we find the well-known P, Q and G two-index conditions:

1. The P condition: B̂ =
∑
αβ pαβ âαâβ , for arbitrary pαβ . This trivial

condition imposes the positive semidefiniteness of the 2RDM itself:

P(Γ)αβ;γδ = 〈ψ|â†αâ†β âδâγ |ψ〉
P(Γ) = Γ � 0 (5.10)

2. The Q condition[116]: B̂ =
∑
αβ qαβ â

†
αâ
†
β , for arbitrary qαβ leading to

Q(Γ) � 0 , (5.11)

where

Q(Γ)αβ;γδ = 〈ψ|âαâβ â†δâ†γ |ψ〉 (5.12)

= Γαβ;γδ + (δαγδβδ − δβγδαδ)
2Tr (Γ)

N(N − 1)

−δαγρβδ + δβγραδ + δαδρβγ − δβδραγ .

and the single-particle density matrix (1DM) is defined as

ραβ = 〈ψ|â†αâβ |ψ〉 =
1

N − 1

∑

λ

Γαλ;βλ . (5.13)

3. The G condition[118]: B̂ =
∑
αβ gαβ â

†
αâβ , for arbitrary gαβ ,

G(Γ) � 0 (5.14)

with

G(Γ)αβ;γδ = 〈ψ|â†αâβ â†δâγ |ψ〉 = δβδραγ − Γαδ;γβ . (5.15)
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Furthermore, there are the so-called three-index commutator conditions[119,

134, 147–150] which are computationally much more demanding and are not

used here. All these conditions are necessary but not sufficient: the true N -

representable space is much more restricted. Because of this, v2RDM will

always find a lower bound to the FullCI energy.

The variational optimization of the 2RDM can now be expressed as:

min [Tr (KΓ)] while (5.16)

P(Γ)⊕ Q(Γ)⊕ G(Γ) � 0

Tr (Γ) =
N(N − 1)

2
.

This optimization problem can be formulated as a semidefinite program (SDP)[132,

133], a class of well-known convex optimization problems[122] for which general-

purpose solvers exists[125, 151, 152]. Earlier we developed SDP solvers cus-

tomized for v2RDM that exploit the specific structure of the problem[126,

129, 130, 153]. Such solvers are much more efficient than the general-purpose

solvers. In this chapter a boundary point method[127, 154, 155] is used to solve

the SDP problem. In this method, the primal-dual gap is zero by definition, and

convergence is reached when both primal and dual feasibility is achieved. The

computationally most intensive step in this algorithm is the calculation of the

eigenvalues and eigenvectors of the constraint matrices. The computational cost

of the program scales as K6 for floating-point operations and K4 for memory

when using the two-index conditions. A detailed explanation of the solvers can

be found in Ref 153.

5.2.2 DOCI tailored v2RDM

We now impose the additional condition that |ψ〉 in (5.3) is a DOCI wave

function. In principle any pairing scheme can be used, but the natural choice

is the singlet pairing scheme, in which each spatial orbital is occupied by two

electrons of opposite spin. This is based on the assumption that the most

important static correlations in a closed-shell molecule can be captured in this

way[24]. In CI terms, the wave function can be expanded in Slater determinants

where all spatial orbitals are doubly occupied. This is also called a seniority-

zero wave function. Formally, the DOCI wave function can be written as

|ΨDOCI〉 =

(KN
2

)∑

j=1

cj

N
2∏

i=1

S†j(i) |θ〉 (5.17)

where |θ〉 is the pair vacuum, and S†i = a†iαa
†
iβ is the pair creation operator

of the i-th orbital. j is a vector that maps the N
2 pairs to a selected set of
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occupied orbitals of the K spatial single-particle orbitals.

|ψ〉 =
∑

a1...a(N/2)

ca1...a(N/2)

N/2∏

k=1

â†ak â
†
āk |〉 , (5.18)

A simple approach would be to project the reduced Hamiltonian (5.4) onto

DOCI space and use existing v2RDM codes. However, this does not lead to

the desired result as internal consistency conditions on the 2RDM are needed

(see below). Also, any computational advantages due to the DOCI structure

are lost as the scaling of the program remains unaltered.

It is much more efficient to adapt the N -representability conditions to the

DOCI case as they are drastically simplified. The adapted DOCI conditions

were already derived by Weinhold and Wilson[137, 138] but to the best of our

knowledge never exploited in practical calculations.

Since we work in DOCI space, all operators evaluated between two DOCI wave

functions need to have seniority-zero, i.e. they cannot change the number of

broken pairs. This immediately implies that the 1DM is diagonal and that the

chosen set of orbitals is also the set of natural orbitals of |ψ〉:

ρab = 〈ψ|â†aâb|ψ〉 = 〈ψ|â†āâb̄|ψ〉 = δabρa , (5.19)

〈ψ|â†aâb̄|ψ〉 = 〈ψ|â†āâb|ψ〉 = 0 .

Furthermore, it is clear that

ρa ≥ 0 , (5.20)
∑

a

ρa =
N

2
. (5.21)

A similar simplification occurs for the 2RDM and the PQG conditions:

1. The P condition. The operator B̂ in eq. (5.9) acting on a DOCI wave

functions can create both a seniority-0 and seniority-2 state. The corre-

sponding B̂† operator can only connect states of the same seniority and

therefore block diagonalization will occur. The seniority-0 block is the

pair density matrix,

∀a, b : 〈ψ|â†aâ†āâb̄âb|ψ〉 = Γaā;bb̄ = Πab . (5.22)

From the positivity of the Hamiltonian B̂†B̂ with

B̂† =
∑

a

paâ
†
aâ
†
ā , (5.23)

it follows that the K ×K pair density matrix has to be positive semidef-

inite,

Π � 0 . (5.24)
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The seniority-2 block is a part of the diagonal of the 2RDM:

∀a 6= b : 〈ψ|â†aâ†bâbâa|ψ〉 = 〈ψ|â†āâ†bâbâā|ψ〉 =

〈ψ|â†aâ†b̄âb̄âa|ψ〉 = 〈ψ|â†āâ†b̄âb̄âā|ψ〉 =

Γab;ab = Dab ≥ 0 (5.25)

For convenience we put Daa = 0. Equation (5.25) provides K(K−1)
2 linear

inequalities that have to be imposed. There are now two independent

ways of obtaining the 1DM out of the 2RDM: via the trace relation (5.13)

and via the diagonal part of the pairing matrix:

ρa =
2

N − 2

∑

b

Dab , (5.26)

ρa = Πaa , (5.27)

as the operators â†aâa = â†āâā = â†aâ
†
āâāâa have the same expectation

value for a DOCI wave function. These consistency conditions have to be

separately enforced. Note that the trace condition (5.7) can be written

in two alternative ways:

∑

a

Πaa =
N

2
, and

∑

ab

Dab =
N

4
(N − 2) . (5.28)

2. The Q condition has exactly the same structure as the P condition. The

constraint for the seniority-0 block is derived from
∑

ab

qa 〈ψ|âaâāâ†b̄â
†
b|ψ〉 qb ≥ 0 , (5.29)

which leads to the positivity condition QΠ � 0 on a K ×K matrix QΠ,

with elements

QΠ
ab = δab(1− ρa − ρb) + Πab . (5.30)

The seniority-2 part gives rise to a set of linear inequalities,

∀a 6= b : 〈ψ|âaâbâ†bâ†a|ψ〉 = 1− ρa − ρb +Dab ≥ 0 . (5.31)

3. The G condition is somewhat more complex as more combinations are

non-zero. We work systematically according to seniority and spin.

Spin projections MS = ±1 are equivalent, so we only consider the MS =

+1 case and always assume a 6= b, since in DOCI space â†aâā |ψ〉 = 0. The

particle-hole operators generating this constraint are of the form B̂† =∑
ab gabâ

†
aâb̄ which leads to the following seniority-2 positivity condition:

∑

abcd

gab [δbdδac(ρa −Dab)− δadδbcΠab] gcd =

∑

ab

gab [(ρa −Dab)gab −Πabgba] ≥ 0 (5.32)

101



Variational 2RDM

This condition is almost diagonal, as gab is only connected with itself and

gba, leading to the following 2× 2 positivity condition:

∀a < b

[
ρa −Dab −Πab

−Πab ρb −Dab

]
� 0 . (5.33)

For the MS = 0 and seniority-2 case, the particle-hole operators are of

the form B̂†1 =
∑
ab gabâ

†
aâb and B̂†2 =

∑
ab gabâ

†
āâb̄, with a 6= b. These

terms are coupled to each other. The diagonal terms (B̂†1B̂1 and B̂†2B̂2)

are

〈ψ|â†aâbâ†dâc|ψ〉 = δacδbd(ρa −Dab) . (5.34)

The off-diagonal terms (B̂†1B̂2 and B̂†2B̂1) are

〈ψ|â†aâbâ†d̄âc̄|ψ〉 = δadδbcΠab , (5.35)

which leads to the 2× 2 constraint matrix

∀a < b

[
ρa −Dab Πab

Πab ρb −Dab

]
� 0 , (5.36)

which is equivalent to (5.33).

The MS = 0 and seniority-0 part is built by two particle-hole operators

B̂†1 =
∑
a gaâ

†
aâa and B̂†2 =

∑
b gbâ

†
b̄
âb̄. This leads to a 2K × 2K matrix

with diagonal elements (B̂†1B̂1 and B̂†2B̂2)

〈ψ|â†aâaâ†bâb|ψ〉 = δabρa +Dab , (5.37)

and off-diagonal elements (B̂†1B̂2 and B̂†2B̂1)

〈ψ|â†aâaâ†b̄âb̄|ψ〉 = Dab + δabΠab

= δabρa +Dab . (5.38)

Both blocks are identical, which means that K eigenvalues will be zero

and we only have to impose the positivity GΠ � 0 of a K ×K matrix:

GΠ
ab = δabρa +Dab . (5.39)

The P conditions correspond to eq. (24a) and (30) in Weinhold and Wil-

son[138], the Q conditions to eq. (24b) and (34) and the G conditions to eq.

(24c), (44) and (18).

We now look at the reduced Hamiltonian (5.4) which simplifies to the same

structure as the P condition. The DOCI reduced Hamiltonian is

KΠ
ab =

2

N − 1
Taaδab + Vaabb ,

KD
ab =

1

N − 1
(Taa + Tbb) + Vabab −

1

2
Vabba .

(5.40)
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The energy functional (5.2) for DOCI becomes

E =
∑

ab

(
KΠ
abΠab + 2KD

abDab

)
. (5.41)

An advantage of v2RDM-DOCI is that the resulting 2RDM belongs to a singlet

state, while the general v2RDM needs additional constraints to ensure the

singlet:

〈ψ|â†αâβŜz|ψ〉 = 0 , (5.42)

with the Ŝz operator defined as,

Ŝz =
1

2

∑

a

(
â†aâa − â†āâā

)
. (5.43)

In full v2RDM, this constraint needs to be enforced by a zero eigenvalue in the

G matrix[135, 153]. In v2RDM-DOCI however,

〈ψ|â†câdŜz|ψ〉 =

=
1

2
δcd

K∑

a

(
〈ψ|â†câdâ†aâa|ψ〉 − 〈ψ|â†câdâ†āâā|ψ〉

)

=
1

2

K∑

a

(
〈ψ|â†aâa|ψ〉 − 〈ψ|â†câ†aâcâa|ψ〉 − 〈ψ|â†câ†āâcâā|ψ〉

)

=
1

2

K∑

a

(ρa + (1− δac)Dac −Πacδac − (1− δac)Dca)

= 0 ,

which means that the singlet condition is automatically fulfilled. It must be

noted that (5.42) is a necessary but not sufficient condition for the 2RDM to

be derivable from a S = 0 wave function.

In these DOCI N -representability conditions, the largest matrix dimension

encountered is K as compared to (2K)2 in the general case. The remainder of

the conditions are linear inequalities and the positive semidefiniteness of 2× 2

matrices which are trivial to impose. The scaling of our code has been reduced

from K6 to K3 for the floating point operations and from K4 to K2 for the

memory. In Figure 5.2 the scaling of the v2RDM and v2RDM-DOCI (with

and without orbital optimization) is shown for a growing chain of equidistant

hydrogen atoms (interatomic distance = 2 bohr) in the STO-3G basis. Note

that for 30 H-atoms the v2RDM-DOCI is already three orders of magnitude

faster than the general v2RDM code. We used a v2RDM code that exploits

spin symmetry and the singlet conditions are enforced, so we can make a fair

comparison with v2RDM-DOCI. The v2RDM-DOCI starts to exhibit a smooth

scaling with the number of hydrogen atoms when the runtime was at least 104

seconds whereas the general v2RDM reaches this point sooner (103 seconds).
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α β

v2RDM 2.602 10−5 6.485

v2RDM-DOCI 5.268 10−5 3.954

v2RDM-DOCI OPT 2.726 10−4 4.200

Table 5.1: The resulting coefficients of the linear fit in Figure 5.2
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Figure 5.2: Scaling of v2RDM vs v2RDM-DOCI (with and without orbital

optimization) on a hydrogen chain (interatomic distance = 2 bohr) in the STO-

3G basis on a log-log plot. We fitted a linear curve (βx+ α) to the data.

We performed a linear fit on a log-log plot to find the power of the leading term

in the scaling (αxβ) resulting in the coefficients found in table 5.1. The scaling

is two orders better while the prefactor changes little. If we include the orbital

optimization introduced in the next section, the scaling deteriorates with 0.25.

We cannot draw any general conclusion from this about the scaling of the entire

method (including the orbital optimization) as a hydrogen chain in STO-3G is

a fairly special case. Note that the actual scaling parameters β = 6.4 (v2RDM)

and β = 3.9 (v2RDM-DOCI) deviate from the theoretical scaling parameters

β = 6 (v2RDM) and β = 3 (v2RDM-DOCI) involved in the v2RDM floating

point operations as any v2RDM algorithm contains an iterative scheme with a

number of loops that slowly increases with K.

5.3 Orbital Optimization

The DOCI energy is orbital dependent, therefore the choice of the orbitals is

crucial. Like in many MCSCF methods, we use an iterative two-step algorithm

[4, 140, 143, 156–158] in which we first optimize the 2RDM and then the
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orbitals. Orbital optimization is a hard problem as it requires finding the

global minimum in a rough and uncharted landscape[110]. There are no known

computationally feasible techniques for achieving this in a general way. The

most often used approach is to pick a good starting point and use a Newton-

Raphson based algorithm to find a local minimum[142, 143]. This involves

calculating the computationally expensive Jacobian and Hessian. Furthermore,

the four-index transformation of the two-electron integrals is not cheap.

We use a different approach: a Jacobi rotation is performed in every step.

A Jacobi rotation[144, 159] is a unitary transformation that rotates in a two-

dimensional subspace of the orbital space. While in a Newton-Raphson method

all orbitals are updated at every step, in a Jacobi rotation only two orbitals are

updated in each step. Jacobi rotations have the advantage of simplicity: only

2 rows and columns need to be updated, which makes the transformation of

the two-electron integrals much faster. The Jacobi rotation of orbitals k and l

over an angle θ is determined by the rotation matrix

Qkl =




k l

1
. . .

k cos θ · · · − sin θ
...

. . .
...

l sin θ · · · cos θ
. . .

1




, (5.44)

or more formally,

Qklij = δij + (δikδjk + δilδjl)(cos θ − 1)

+(δikδjl − δilδjk) sin θ
(5.45)

If we apply a unitary transformation to the matrix elements (5.40) and insert

them in the energy functional (5.41), we find

E′ =
2

N − 1

∑

ab

∑

a′b′

[δabQaa′Qab′Πab+

(Qaa′Qab′ +Qba′Qbb′)Dab]Ta′b′+∑

ab

∑

a′b′c′d′

Qaa′Qab′Qbc′Qbd′Va′b′c′d′Πab+

∑

ab

∑

a′b′c′d′

Qaa′Qbb′ (2Qac′Qbd′ −Qbc′Qad′)

Va′b′c′d′Dab .

(5.46)

Substituting eq. (5.54) into eq. (5.40) yields, after some work, the following

expression for the energy,

E′(θ)kl = A cos 4θ +B cos 2θ + C sin 4θ

+D sin 2θ + F
(5.47)
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for the rotation over of an angle θ between orbitals k and l. The constants

A,B,C,D, F , of which the complete expression is given in the next section

(that section contains mathematical details that are not important for the

remainder of this chapter), depend on the elements of the 2RDM, Tab and

Vabcd. As eq. (5.47) has a period of π, we only consider the interval [−π2 , π2 ].

The N -representability conditions of section 5.2 are unitarily invariant, so we

are guaranteed that a Jacobi rotation does not affect the N -representability,

but the energy is not necessarily minimal. This means that the calculated

energy (5.47) will always be greater than or equal to the optimized v2RDM

minimum.

It is easy and cheap to calculate the gradient and Hessian of this equation.

Using a Newton-Raphson algorithm, we can thus easily find the angle for

which eq. (5.47) is minimal. The constant term (F ) in eq. (5.47) is the

only one involving a double sum over the orbitals: it is the original double sum

appearing in eq. (5.41) over all orbitals except orbitals k and l. This implies

that an evaluation of the energy scales asK2, but the energy difference, gradient

and the Hessian only scale computationally as K. If we iterate over all pairs of

orbitals (scaling as K2) and find the optimal angle for minimization, we have an

K3 algorithm to find the new Jacobi rotation optimizing the energy decrease.

If symmetry-adapted orbitals are used, only rotations between orbitals in the

same irreducible representation are allowed, which simplifies the two-electron

integral transformation even more. A schematic overview is given in Algorithm

1. In the previous section we measured the scaling of the v2RDM-DOCI

algorithm combined with the Jacobi orbital optimizer and found a scaling of

4.200. The starting point were the molecular orbitals coming from a previous

restricted Hartree-Fock calculation. One should be careful to draw general

conclusions from this. It merely shows that, given a suitable starting point,

the algorithm has an interesting scaling.

Algorithm 1 The algorithm used to find the optimal Jacobi rotation in

pseudocode

procedure FindOptimalRotation(Γ, T, V )

for i← 1, nirrep do . Loop over all irreducible representations

for all (a, b) ∈ irrepi do . Loop over all pairs of orbitals belonging

to irrep i

(Eab, θab) = FindMinimum(Γ, T, V, a, b) . Minimum of (5.47)

end for

end for

(k, l, θ) = min (E, θ) . Find the lowest energy over all pairs

return (k, l, θkl) . Return the pair of orbitals and the angle

end procedure

As an example, we consider the BH molecule at equilibrium distance (2.32

bohr) in the STO-3G basis. Figure 5.3 contains the energy as a function of

the rotation angle between several pairs of orbitals starting from the Hartree-
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Fock molecular orbitals. The full (red) curve is the energy as calculated

with eq. (5.47) keeping the 2RDM fixed, whereas the dashed (blue) curve

involves a 2RDM optimization at each point. We used C2v symmetry for BH

(the largest Abelian point group of BH) and we only consider the 4 orbitals

that transform according to irreducible representation A1 (the other 2 orbitals

transform according to B1 and B2). The orbital energies (in Hartree) of the

restricted Hartree-Fock solution are given in Table 5.2.

Doubly occupied orbitals

1A1 -7.339428

2A1 -0.573370

3A1 -0.246546

Virtual orbitals

1B1 0.269938

1B2 0.269938

4A1 0.701123

Table 5.2: The restricted Hartree-Fock solution for BH. The orbital energies

are in Hartree. We use C2v symmetry, the orbitals are labelled according to

irreducible representations A1, B1 or B2.

The pictures shown for the BH molecule are characteristic for most calculations

that we have done. For most pairs of orbitals, the lowest energy is obtained for

very small rotation angles except for a few where a larger decrease in energy

can be achieved. In Figure 5.3(b) there is a clear new minimum and the angle

found using (5.47) is very close to the v2RDM optimized minimum. The 1A1

orbital is the localized 1s orbital on the Boron atom. The 2A1 and 3A1 orbitals

are a mixture of the 1s on the hydrogen atom and the 2s and 2pz on the Boron

atom. The largest energy gain can be achieved by mixing these orbitals and

this already brings us very close to the FullCI energy (−24.810 Eh).

5.3.1 Derivation of the formulas for the local DOCI opti-
mization

All summations in this document run over all spatial orbitals (except when

explicitly noted otherwise). The 2RDM energy functional for the DOCI case

is,

E =
∑

ab

(
Kaā;bb̄Γaā;bb̄ + 2Kab;abΓab;ab

)
. (5.48)

The reduced Hamiltonian K has the form,

Kaā;bb̄ =
2

N − 1
Taaδab + Vaabb , (5.49)

Kab;ab =
1

N − 1
(Taa + Tbb) + Vabab −

1

2
Vabba , (5.50)
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(c) Orbitals 2A1 and 4A1, min ≈ -0.005 rad

Figure 5.3: The red curve has been calculated using (5.47) while the blue

curve uses the same transformed reduced Hamiltonian but an optimized 2RDM-

DOCI. These results are for BH in STO-3G. We used an interatomic distance

of 2.32 bohr. The min refers to the minimum of the eq. (5.47) (red curve).

The FullCI energy is -24.810 Eh.
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with Tab and Vabcd the one- and two-electron integrals. Under a general unitary

transformation U , the reduced Hamiltonian transforms as,

K ′aā;bb̄ =
2

N − 1
δab
∑

a′b′

Uaa′Uab′Ta′b′ +
∑

a′b′c′d′

Uaa′Uab′Ubc′Ubd′Va′b′c′d′ , (5.51)

K ′ab;ab =
1

N − 1

∑

a′b′

(Uaa′Uab′ + Uba′Ubb′)Ta′b′+

∑

a′b′c′d′

Uaa′Ubb′

(
Uac′Ubd′ −

1

2
Ubc′Uad′

)
Va′b′c′d′ . (5.52)

Substituting eq. (5.51),(5.52) in the energy functional (5.48), we find,

E′ =
2

N − 1

∑

ab

∑

a′b′

(δabUaa′Uab′Γaā;aā + (Uaa′Uab′ + Uba′Ubb′) Γab;ab)Ta′b′+

∑

ab

∑

a′b′c′d′

Uaa′Uab′Ubc′Ubd′Va′b′c′d′Γaā;bb̄+

∑

ab

∑

a′b′c′d′

Uaa′Ubb′ (2Uac′Ubd′ − Ubc′Uad′)Va′b′c′d′Γab;ab . (5.53)

Let now the unitary transform be a Jacobi rotation between orbitals k and l

over an angle θ,

Uklij = δij + (δikδjk + δilδjl)(cos θ − 1) + (δikδjl − δilδjk) sin θ (5.54)
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After some work, we can find the expression for the energy functional under a

Jacobi rotation:

E(θ) =

∑

ab
a,b/∈{k,l}

{(
2

N − 1
Taaδab + Vaabb

)
Γaā;bb̄ +

(
2Vabab − Vabba +

2

N − 1
(Taa + Tbb)

)
Γab;ab

}
+

∑

a
a/∈{k,l}

{
2
(
cos2 θVkkaa − 2 cos θ sin θVklaa + sin2 θVllaa

)
Γkk̄;aā+

2

[
cos2 θVllaa + 2 cos θ sin θVklaa + sin2 θVkkaa

]
Γll̄;aā+

2

[
cos2 θ (2Vkaka − Vkaak)− 2 cos θ sin θ (2Vkala − Vkaal) + sin2 θ (2Vlala − Vlaal)

]
Γka;ka+

2

[
cos2 θ (2Vlala − Vlaal) + 2 cos θ sin θ (2Vkala − Vkaal) + sin2 θ (2Vkaka − Vkaak)

]
Γla;la+

4

N − 1

(
Taa + cos2 θTkk − 2 cos θ sin θTkl + sin2 θTll

)
Γka;ka+

4

N − 1

(
Taa + cos2 θTll + 2 cos θ sin θTkl + sin2 θTkk

)
Γla;la

}
+

2

N − 1

(
cos2 θTkk − 2 cos θ sin θTkl + sin2 θTll

)
Γkk̄;kk̄+

2

N − 1

(
cos2 θTll + 2 cos θ sin θTkl + sin2 θTkk

)
Γll̄;ll̄ +

4

N − 1
(Tkk + Tll) Γkl;kl

+

[
cos4 θVkkkk + sin4 θVllll + 2 cos2 θ sin2 θ (2Vkkll + Vklkl)− 4 sin3 θ cos θVklll

− 4 cos3 θ sin θVklkk

]
Γkk̄;kk̄

+

[
cos4 θVllll + sin4 θVkkkk + 2 cos2 θ sin2 θ (2Vkkll + Vklkl) + 4 sin3 θ cos θVklkk+

4 cos3 θ sin θVklll

]
Γll̄;ll̄

+ 2

[
cos2 θ sin2 θ (Vkkkk + Vllll − 2 (Vkkll + Vklkl)) +

(
sin4 θ + cos4 θ

)
Vkkll+

2
(
sin θ cos3 θ − cos θ sin3 θ

)
(Vklkk − Vklll)

]
Γkk̄;ll̄

+ 2

[
cos2 θ sin2 θ (Vkkkk + Vllll − 6Vkkll + 2Vklkl) +

(
sin4 θ + cos4 θ

)
(2Vklkl − Vkkll)

− 2
(
sin θ cos3 θ − cos θ sin3 θ

)
(Vklkk − Vklll)

]
Γkl;kl (5.55)
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If we reorder to the powers of sin θ and cos θ, we find,

E(θ) =

∑

ab
a,b/∈{k,l}

{
VaabbΓaā;bb̄ +

(
2Vabab − Vabba +

2

N − 1
(Taa + Tbb)

)
Γab;ab

}
+

∑

a
a/∈{k,l}

{
2

N − 1
TaaΓaā;aā +

4

N − 1
Taa (Γak;ak + Γal;al)

}
+

4

N − 1
(Tkk + Tll) Γkl;kl+

cos4 θ

[
VkkkkΓkk̄;kk̄ + VllllΓll̄;ll̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl

]
+

sin4 θ

[
VkkkkΓll̄;ll̄ + VllllΓkk̄;kk̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl

]
+

cos2 θ

[ ∑

a
a/∈{k,l}

{
2VkkaaΓkk̄;aā + 2VllaaΓll̄;aā + 2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γka;ka

+ 2

(
2Vlala − Vlaal +

2

N − 1
Tll

)
Γla;la

}
+

2

N − 1

(
TkkΓkk̄;kk̄ + TllΓll̄;ll̄

) ]
+

sin2 θ

[ ∑

a
a/∈{k,l}

{
2VkkaaΓll̄;aā + 2VllaaΓkk̄;aā+

2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γla;la + 2 (2Vlala − Vlaal) Γka;ka

+
4

N − 1
TllΓka;ka

}
+

2

N − 1

(
TllΓkk̄;kk̄ + TkkΓll̄;ll̄

) ]
+

2 cos θ sin θ

[ ∑

a
a/∈{k,l}

{
2Vklaa

(
Γll̄;aā − Γkk̄;aā

)

+ 2

(
2Vkala − Vkaal +

2

N − 1
Tkl

)
(Γla;la − Γka;ka)

}

+
2

N − 1
Tkl
(
Γll̄;ll̄ − Γkk̄;kk̄

) ]
+

2 cos2 θ sin2 θ

[
(2Vkkll + Vklkl)

(
Γkk̄;kk̄ + Γll̄;ll̄

)
+ (Vkkkk + Vllll − 2 (Vkkll + Vklkl)) Γkk̄;ll̄+

(Vkkkk + Vllll − 6Vkkll + 2Vklkl) Γkl;kl

]
+

4 sin3 θ cos θ

[
VklkkΓll̄;ll̄ − VklllΓkk̄;kk̄ − (Vklkk − Vklll)

(
Γkk̄;ll̄ + Γkl;kl

) ]
+

4 cos3 θ sin θ

[
VklllΓll̄;ll̄ − VklkkΓkk̄;kk̄ + (Vklkk − Vklll)

(
Γkk̄;ll̄ + Γkl;kl

) ]

(5.56)
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In a compact form, this boils down to,

E(θ) = Ã cos4 θ + B̃ sin4 θ + C̃ cos2 θ + D̃ sin2 θ + 2Ẽ cos θ sin θ + 2F̃ cos2 θ sin2 θ

+4G̃ sin θ cos3 θ + 4H̃ sin3 θ cos θ + I
(5.57)

where,

Ã =VkkkkΓkk̄;kk̄ + VllllΓll̄;ll̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl (5.58)

B̃ =VkkkkΓll̄;ll̄ + VllllΓkk̄;kk̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl (5.59)

C̃ =
∑

a
a/∈{k,l}

{
2VkkaaΓkk̄;aā + 2VllaaΓll̄;aā + 2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γka;ka+

2

(
2Vlala − Vlaal +

2

N − 1
Tll

)
Γla;la

}
+

2

N − 1

(
TkkΓkk̄;kk̄ + TllΓll̄;ll̄

)

(5.60)

D̃ =
∑

a
a/∈{k,l}

{
2VkkaaΓll̄;aā + 2VllaaΓkk̄;aā + 2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γla;la+

2

(
2Vlala − Vlaal +

2

N − 1
Tll

)
Γka;ka

}
+

2

N − 1

(
TllΓkk̄;kk̄ + TkkΓll̄;ll̄

) ]
+

(5.61)

Ẽ =
∑

a
a/∈{k,l}

{
2Vklaa

(
Γll̄;aā − Γkk̄;aā

)
+ 2

(
2Vkala − Vkaal +

2

N − 1
Tkl

)
(Γla;la − Γka;ka)

}

+
2

N − 1
Tkl
(
Γll̄;ll̄ − Γkk̄;kk̄

)
(5.62)

F̃ = (2Vkkll + Vklkl)
(
Γkk̄;kk̄ + Γll̄;ll̄

)
+ (Vkkkk + Vllll − 2 (Vkkll + Vklkl)) Γkk̄;ll̄+

(Vkkkk + Vllll − 6Vkkll + 2Vklkl) Γkl;kl (5.63)

G̃ =VklllΓll̄;ll̄ − VklkkΓkk̄;kk̄ + (Vklkk − Vklll)
(
Γkk̄;ll̄ + Γkl;kl

)
(5.64)

H̃ =VklkkΓll̄;ll̄ − VklllΓkk̄;kk̄ − (Vklkk − Vklll)
(
Γkk̄;ll̄ + Γkl;kl

)
(5.65)

Ĩ =
∑

ab
a,b/∈{k,l}

{
VaabbΓaā;bb̄ +

(
2Vabab − Vabba +

2

N − 1
(Taa + Tbb)

)
Γab;ab

}

(5.66)

Eq. (5.57) can be made more compact:

E(θ) = A cos 4θ +B cos 2θ + C sin 4θ +D sin 2θ + F (5.67)
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with,

A =
Ã+ B̃

8
− F̃

4
(5.68)

B =
G̃− H̃

2
(5.69)

C =
Ã− B̃ + C̃

2
− D̃

2
(5.70)

D =Ẽ + G̃+ H̃ (5.71)

F =
3

8

(
Ã+ B̃

)
+
C̃ + D̃

2
+
F̃

4
+ Ĩ (5.72)

On this form, we can easily calculate the gradient and the Hessian of (5.56),

dE (θ)

dθ
=− 4A sin 4θ − 2B sin 2θ + 4C cos 4θ + 2D cos 2θ (5.73)

d2E (θ)

dθ2
=− 16A cos 4θ − 4B cos 2θ − 16C sin 4θ − 4D sin 2θ (5.74)

It is interesting to note that the calculation of the gradient and the Hessian

scales as K while the constant part of the energy (5.66) scales as K2. This

means that it is computationally cheaper to calculate the gradient and Hessian

than the actual energy.

5.4 Results

A code is developed to perform variational 2RDM optimizations using the

DOCI constraints derived in section 5.2.2 in conjunction with orbital opti-

mization according to eq. (5.47). The one- and two-particle integrals are

transformed with the optimized Jacobi rotation (see Algorithm 1) and a new

v2RDM optimization is started. This loop continues until the ground-state

energy is converged to within 10−6 Eh during at least 25 steps. For the

v2RDM calculations, we used a boundary point method with a primal and

dual convergence criterion of 10−7 [153]. The flow of our program is shown in

Algorithm 2.

The code used to generate the data presented can be found online[160] under

the GPLv3 license. All simulations were run single-threaded on a Intel Xeon

E5-2680 v3 with 64GB of RAM. Psi4[38] is used to generate the one- and two-

electron integrals in the Gaussian basis set and the Hartree-Fock molecular

orbitals. Unless specified otherwise, the Hartree-Fock molecular orbitals are

the starting point for the orbital optimization. In all calculations, the cc-pVDZ

basis was used. Benchmark results are provided by CheMPS2[39, 40, 161, 162],

an open-source spin-adapted implementation of Density Matrix Renormaliza-

tion Group (DMRG) for ab initio quantum chemistry, that generates results

with FullCI accuracy. To monitor the convergence in CheMPS2, we increased
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Algorithm 2 Schematic overview of the complete v2RDM-DOCI algorithm

converged← 0

while converged < 25 do . Do 25 steps within convergence criteria

Enew,Γ = v2RDM(T, V ) . Do a v2RDM-DOCI optimization with

electron integrals T and V

(k, l, θ) = FindOptimalRotation(Γ, T, V ) . Find the optimal rotation

T, V = TransformIntegrals(k, l, θ, T, V ) . Rotate the integrals

if |Enew − Eold| < 10−6 then . Check convergence

converged← converged + 1

end if

Eold ← Enew

end while

the bond dimension in steps from 500 to 2500 for all calculations. FullDOCI is

the result of a CI solver restricted to the doubly-occupied Slater determinants,

combined with the same orbital optimization scheme as v2RDM-DOCI (unless

specified otherwise).

5.4.1 Two- and four-electron systems

The DOCI wavefunction for a two-electron system is exact provided that the

orbitals are optimized[24]. General v2RDM using only the P condition is also

exact for a two-electron system[116, 135]. It is easy to prove that v2RDM-

DOCI combined with orbital optimization also generates exact results for any

two-electron system. This is illustrated by the numerical results in Table 5.3

for H2 and He. Note that in Table 5.3 the FullDOCI results were obtained with

the optimal orbitals produced by v2RDM-DOCI.

In the dissociated He2 dimer, the effect of symmetry breaking can be seen

in the third and fourth row of Table 5.3. When we allow the point-group

symmetry to lower from D2h to C1, the orbital optimization algorithm is no

longer restricted to orbitals transforming according to the same irreducible

representation. When the symmetry is not broken (D2h), the s orbitals of the

two He atoms are coupled, in the sense that only (anti-)symmetric combinations

are retained. In this case v2RDM-DOCI cannot recover the FullCI energy.

When we decouple the orbitals and use C1 symmetry, the full correlation

energy is found. It is important to note the difference with the general v2RDM

optimization: general v2RDM always gives a lower bound to the exact ground-

state energy, but in the v2RDM-DOCI case, the energy is orbital dependent.

The v2RDM-DOCI energy can be higher or lower than the FullCI result. We

almost always find a higher energy. It is still true, however, that the v2RDM-

DOCI must be lower than or equal to FullDOCI with the same set of orbitals.

In principle we combine a lower-bound method (v2RDM) with an upper-bound

method (Jacobi rotations). A cancelation of errors can occur and that is why

we always compare to FullDOCI as it uses an exact energy solver.
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System Sym. d HF FullCI ∆v2RDM-DOCI ∆FullDOCI

H2 D2h 1.438 -1128.629 -1163.673 0.000 0.000

He D2h -2855.160 -2887.595 0.000 0.000

He2 D2h 10.000 -5710.321 -5775.190 40.013 40.022

He2 C1 10.000 -5710.321 -5775.190 0.000 0.000

Table 5.3: Ground-state energy for some small systems in the cc-pVDZ basis.

Energies are in milliHartree, interatomic distance (d) in bohr. The columns

labeled v2RDM-DOCI and FullDOCI contain the deviation from FullCI. The

orbital optimization is done with the specified Abelian symmetry in the column

labeled ’Sym.’

5.4.2 Hydrogen chain

The symmetric stretching of an equidistant chain of hydrogen atoms is a

standard test case for a new method aimed at strong static electron corre-

lation. It is simple yet challenging, because of the strong correlation effects

in the transition from metallic hydrogen to dissociated hydrogen. We use a

H8 chain[24, 25] in the cc-pVDZ basis with D2h (symmetry-adapted) or C1

(symmetry-broken) orbitals. The results shown in Figure 5.4 indicate the

importance of the choice of the starting point in the orbital optimization scheme

as this dictates the valley in which the local minimizer is active. The underlying

basis for the one- and two-electron integrals is always taken to be the Löwdin

orthogonalized Gaussian basis set (symmetry-adapted if specified). For the HF-

D2h curve, we first performed a calculation at equilibrium distance starting from

the Hartree-Fock molecular orbitals. The resulting orthogonal transformation

matrix, describing the transition from the Löwdin orthogonalized Gaussian

basis set to the optimal set of orbitals at equilibrium, was used as a starting

point in the orbital optimization for all other points on the curve. It is clear

from the figure that this procedure does not lead to a satisfactory description

of the metallic to the non-interacting region, as the dissociation limit is much

higher in energy than the FullCI curve.

For the curve labeled dis-D2h, we performed a calculation at 10 bohr deter-

mining the optimal orbital transformation with a random search and used

this orbital transformation as a starting point for all other distances in the

curve. This procedure correctly describes the dissociation limit but the energy

rises artificially when we go into the metallic regime. So symmetry-adapted

D2h orbitals cannot describe the transition from metallic to non-interacting,

localized hydrogen atoms. When starting from several random points, we could

not find a lower energy curve for the D2h case. The whole picture changes

when we break the symmetry (the curve labeled C1), and v2RDM-DOCI now

gives a physically correct description of the transition. This curve was found by

starting from the optimal orbital transformation of a v2RDM-DOCI calculation

at 10 bohr using localized orbitals as starting point. Similar results were already
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Figure 5.4: The symmetric stretch of H8 in the cc-pVDZ basis. Not all

calculated points are included. For the C1 curve, the largest deviation from

DMRG is 45 milliHartree around the minimum at 1.8 bohr.

reported by Bytautas et al.[24]: they verified that the behaviour is not a two-

state crossing or avoided crossing between the ground state and an excited

state.

In Figure 5.5, we have plotted the natural orbital occupation numbers from the

1DM extracted from v2RDM-DOCI, for both symmetries. In the C1 symmetry

there is a smooth transition from doubly-occupied hydrogen to singly-occupied

hydrogen. In the D2h symmetry the ’localized’ orbitals corresponding to dis-

D2h curve in Figure 5.4 have a branch of singly-occupied hydrogen that is not

present in the C1 symmetry. The ’molecular orbitals’ corresponding to the HF-

D2h curve in Figure 5.4 also have branches with no counterpart in the localized

orbitals. It is clear that only v2RDM-DOCI results with symmetry-broken

optimized orbitals provide a correct description of the transition.

As far as the details of the orbital optimization scheme are concerned, we

found that the procedure can be accelerated by not performing a v2RDM-DOCI

optimization at each rotation: in practice we see that the energy decreases

considerably in the first steps. In subsequent steps, the convergence goes more

slowly as the algorithm can only update two orbitals at a time. In this tail of the

minimization, we can safely skip the optimization of the 2RDM for a number

of updates as all rotation angles are small, only to restart the algorithm with

the optimal solution from the previous step at the very end. This technique

partially circumvents the downside of the Jacobi rotations, i.e. that only two

orbitals are updated at the same time.
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Figure 5.5: The v2RDM-DOCI natural orbital occupation numbers for both

symmetries of the symmetric stretch of H8. Only points with an occupation

number larger than 10−3 are shown. The black line marks the energy crossing

of the D2h curves in Figure 5.4. The colors also match the curves in Figure 5.4.
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Figure 5.6: The dissociation of N2 in the cc-pVDZ basis. The DOCI curves

shown are for the C1 symmetry. Note that three curves (v2RDM-DOCI,

FullDOCI, FullDOCI/v2RDM-DOCI) coincide visually.

5.4.3 Molecular systems

Another interesting test is the dissociation of a diatomic molecule in which

static correlation is of paramount importance at dissociation. The cc-pVDZ

basis is used for all molecules. The nomenclature used for the results is

as follows: v2RDM-DOCI refers to v2RDM with the DOCI constraints on

the 2RDM (see section 5.2.2) and with the Jacobi orbital optimization (see

section 5.3). FullDOCI uses the same orbital optimization algorithm. v2RDM-

DOCI/FullDOCI is a single-shot v2RDM-DOCI calculation using the optimal

set of orbitals from a FullDOCI calculation. FullDOCI/v2RDM-DOCI is ex-

actly the opposite: a single-shot FullDOCI calculation using the optimal set of

orbitals from v2RDM-DOCI.

We first present the dissociation of N2. This is challenging because of the

breaking of a triple bond and is often used as a test case[24, 163–166]. In the

cc-pVDZ basis, N2 has 28 orbitals and we perform calculations with both D2h

and C1 symmetry. The results are presented in Figure 5.6 and detailed in Table

5.4. The results are to be compared to DMRG calculations[39, 40, 161, 162]

which are to be considered as the FullCI reference. In order to appreciate

the performance of v2RDM-DOCI, results of other methods such as Coupled-

Cluster with Singles, Doubles and perturbative Triples (CCSD(T))[167] and

density functional theory with B3LYP functional[168, 169] are also presented.

All DOCI curves give a qualitatively correct description of the dissociation

process. In Table 5.4 one can notice that v2RDM-DOCI is a better approxima-

tion to FullDOCI than v2RDM is to FullCI. The effect of symmetry breaking
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d Sym. DMRG ∆v2RDM ∆v2RDM-DOCI ∆FullDOCI

2.2 D2h -109.278 -77.375 222.578 224.455

2.2 C1 -109.278 -77.375 209.891 214.787

4.0 D2h -108.975 -96.213 257.013 258.842

4.0 C1 -108.975 -96.213 248.396 250.991

10.0 D2h -108.960 -66.384 282.966 283.108

10.0 C1 -108.960 -66.384 273.371 273.464

Table 5.4: Some points on the N2 curve from Figure 5.6. The interatomic

distance (d) is in bohr. The DMRG energy is in Hartree. For v2RDM, v2RDM-

DOCI and FullDOCI, the deviation (M) from DMRG is given in milliHartree.
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Figure 5.7: The dissociation of CN− in the cc-PVDZ basis. The DOCI curves

shown are for the C1 symmetry.

is very small for N2: the energy gains are in the milliHartree region. Note

that N2 dissociates into two N atoms with an odd number of electrons. This

forms no problem for FullDOCI as the orbital optimization can handle this[110].

The difference between the DOCI curves and the DMRG reference is due to

dynamical correlations and can be added in a subsequent stage, as shown in

Ref. 170.

Another interesting case is cyanide, CN−. This heteronuclear molecule also

has a triple bond and dissociates in C− and N. The effect of breaking the

C2v symmetry is again minimal (see results in Table 5.5) so in Figure 5.7

we restrict ourself to the C1 curve. For this heteronuclear molecule, the

dissociation limit for v2RDM and v2RDM-DOCI is incorrect. This is a known

failure for v2RDM-based techniques[171]: the energy of the isolated atoms as

a function of fractional charge is a convex curve in v2RDM whereas it should
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d Sym. DMRG ∆v2RDM ∆v2RDM-DOCI ∆FullDOCI

2.2 C2v -92.596 -70.208 186.967 192.202

2.2 C1 -92.596 -70.208 186.967 192.192

4.0 C2v -92.324 -101.281 219.639 228.307

4.0 C1 -92.324 -101.281 219.639 228.300

10.0 C2v -92.246 -116.686 218.333 253.131

10.0 C1 -92.246 -116.686 218.333 253.130

20.0 C2v -92.246 -127.996 209.275 253.135

20.0 C1 -92.246 -127.996 209.275 253.133

Table 5.5: Some points on the CN− curve from Figure 5.7. The interatomic

distance (d) is in bohr. The DMRG energy is in Hartree. For v2RDM, v2RDM-

DOCI and FullDOCI, the deviation from DMRG is given in milliHartree.

be a piecewise linear curve[172]. Because of this, v2RDM will favour fractional

charges on dissociated atoms and thus give a physically incorrect picture.

This can be seen clearly on the FullDOCI/v2RDM-DOCI curve: if we use

the optimal basis of v2RDM-DOCI, the FullDOCI energy is much higher than

the true FullDOCI energy as the FullDOCI solution cannot use the artificial

non-integer atomic charges. A Mulliken population analysis[173] confirms this:

at an interatomic distance of 20 bohr, the net charges are C−0.48N−0.52. Using

so-called subsystem constraints[120, 174] one can force the E vs N curve to be

piecewise linear. However, this would require a v2RDM(-DOCI) optimization

at each nearby integer value of N . In Figure 5.8, we have used the FullDOCI

optimal orbitals for the v2RDM-DOCI calculation. In this case, v2RDM-DOCI

gives the correct DOCI dissociation limit. This suggests that it might be

possible to find specific DOCI constraints to solve the problem of fractional

charges in v2RDM-DOCI.

5.5 Conclusions

In this chapter specific necessary N -representability constraints for a second

order density matrix were derived for a seniority-zero CI wavefunction. The

standard two-particle conditions P, Q and G reduce to a simpler form that

allows for a better theoretical scaling: K3 instead of K6. As any truncated

CI wavefunction is orbital dependent, an orbital optimization scheme has been

included. An orbital optimizer based on elementary Jacobi rotations is used.

Only two orbitals are optimized at each step, implying that the associated

two-electron integral transformation is much more efficient. The theoretical

scaling of the orbital optimizer is K3. In practice, the molecular systems

in this manuscript needed less than 50 Jacobi rotations with optimization

to convergence. The runtime was on average less than one hour. Both of

course are very dependent on the used starting point. We have tested our
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Figure 5.8: The dissociation of CN− in the cc-PVDZ basis: comparing

the v2RDM-DOCI/FullDOCI results with v2RDM-DOCI and FullDOCI. The

deviation from DMRG is plotted.

method on several challenging cases. For the H8 equidistant chain, we find

that the symmetry of the system must be broken in order to find the correct

DOCI energy curve. The orbital optimizer needs the additional degrees of

freedom to find the physically correct set of orbitals. For the dissociation of

N2, v2RDM-DOCI gives good results, and symmetry breaking hardly gives any

improvement. It is seen that v2RDM-DOCI provides a good approximation to

FullDOCI: the v2RDM-DOCI and FullDOCI energies are consistently closer to

each other than the v2RDM and FullCI energies. In the dissociation of CN−,

v2RDM and v2RDM-DOCI fail due to fractional charges although FullDOCI

still gives a good description. We note that v2RDM-DOCI with the FullDOCI

optimal basis can reproduce the correct FullDOCI energy. This indicates that

there could exist specific DOCI constraints to fix the problem of fractional

charges in v2RDM-DOCI.

The orbital optimizer works well provided it is given a suitable starting point.

Near equilibrium, the Hartree-Fock molecular orbitals are usually a good choice,

whereas in the dissociation limit localized orbitals often give a better starting

point. Unfortunately this does not always hold: for instance for the H8 chain

the equilibrium energy could only be found by starting from the localized

orbitals. However, if a single optimal point is found in the correct DOCI valley,

it can usually be used as a starting point for all other calculations on the same

system.

The main results of this chapter support the idea that DOCI combined with

orbital optimization captures the lion’s share of the static correlations. Subse-
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quently, the missing dynamic correlations could be added through perturbation

theory[170]. We find that v2RDM-DOCI is a good and fast approximation to

FullDOCI.
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Exactly solvable pairing

Hamiltonians
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Chapter 6

The Richardson-Gaudin

models

As discussed in the first part of this thesis, the exact solution of the non-

relativistic quantum chemical Hamiltonian is only feasible for very small sys-

tems due to the exponential scaling of the problem. A way of dealing with this

problem is resorting to approximative wave functions that scale better with

system size.

However, another approach exists. One could approximate the non-relativistic

quantum chemical Hamiltonian with one that grasps the essential physics and

chemistry of the problem. In this part some selected pairing Hamiltonians are

discussed. These Hamiltonians aim to describe strongly correlated electron

effects in nuclei and solid state systems where pairing plays a major role, such

as superconductivity and superfluidity.

What makes these Hamiltonians interesting for this thesis is that seniority

is an exact quantum number for these systems, as unpaired electrons do not

interact with the rest of the system and the pairing Hamiltonian does not

allow pair breaking. The Hamiltonian thus becomes block diagonal in sectors

labeled by the seniority quantum number. Another remarkable fact of a subset

of these models is that they are derivable from an exactly integrable model,

the so-called Richardson-Gaudin (RG) models. The reason for this is that

they can be constructed as a linear combination of the integrals of motion

of the RG models. This makes it, in principle, possible to design a solution

method that scales linearly with the system size. In the subsequent chapters

two particular pairing models that are derivable from the Richardson-Gaudin

models are studied, namely the XXX and the XXZ RG model. The most

general pairing Hamiltonian is given by [175]:

Ĥ =
∑

j

εj n̂j +
∑

ij

VijS
†
i Sj +

∑

ij

Wij n̂in̂j (6.1)
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Here, the operator (n̂j) counts the number of particles contained by level j:

n̂j =
∑

m>0

(a†jmajm + a†j−maj−m), (6.2)

where a†jm and ajm denote the standard fermion creation and annihilation

operators for Dj = 2j + 1 fold degenerate single-particle level j and spin-

projection m, fulfilling the standard fermion anti-commutation relations. This

thesis focusses on electrons and therefore it is assumed that in the following

the single-particle levels j are all two-fold degenerate, with maximum spin

projection 1
2 . To ease the notation creation and annihilation operators are not

denoted with a hat.

{ajm, a†j′m′} = δjj′δmm′ (6.3)

Vij is the strength of the pairing interaction between single-particle levels i

and j, and Wij tunes the probability to find single-particle levels i and j

simultaneously occupied. The quasispin operators S†j and Sj are given by

S†j =
∑

m>0

(−1)(j−m)a†jma
†
j,−m (6.4)

Sj =
∑

m>0

(−1)(j−m)aj,−majm (6.5)

These operators create or destroy a single pair of electrons or nucleons in the

time-reversed states of single-particle level j. To close the quasi-spin su(2)

algebra the following operator is defined:

S0
j =

1

2

∑

m>0

(a†jmajm + a†j−maj−m − 1). (6.6)

Together with the operators defined by eq.(6.4) and eq.(6.5) we have a set of

orthogonal su(2) algebras:

[
S0
i , S

†
j

]
= δijS

†
j ,

[
S0
i , Sj

]
= −δijSj ,

[
S†i , Sj

]
= 2δijS

0
i (6.7)

It is possible to rewrite S0
j as:

S0
j =

1

2
n̂j −

1

4
Dj , (6.8)

with Dj the total degeneracy of level j. It is thus possible to rewrite the

Hamiltonian as:

Ĥ =
∑

j

εj

(
2S0

j +
1

2
Dj

)
+
∑

jj′

Vjj′S
†
jSj′ (6.9)

If we define dj = 1
2Ωj − 1

4Dj with Ωj the seniority of the single-particle level j,

which can have the values 0 or 1 for systems with twofold degenerate levels. One
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can see that the Hamiltonian (eq. 6.1) only couples Slater determinants with

equal seniority. The single-particle levels with maximal seniority are blocked

in the sense that they do not interact with other single-particle levels for the

determination of the energy. The interaction terms never break or create pairs

and the Hamiltonian becomes effectively block diagonal in the seniority number.

6.1 The quasi-spin algebra

The pair creation and annihilation operators introduced in the previous section,

fulfill the commutation laws of a quasi-spin su(2) algebra. The basis functions

are given by:

|Sj ,MSj 〉 = |1
4
Dj −

1

2
Ωj ;

1

2
nj −

1

4
Dj〉 , (6.10)

with Sj = −dj . The state with the lowest Sj is the vacuum, which represents

a state without pairs.

|θ〉 := |Sj ,−Sj〉 = |1
4
Dj −

1

2
Ωj ;

1

2
Ωj −

1

4
Dj〉 (6.11)

The action of the generators on the basisfunctions is given by:

S† |S,M〉 =
√

(S −M)(S +M + 1) |S,M + 1〉 (6.12)

S |S,M〉 =
√

(S +M)(S −M + 1) |S,M − 1〉 (6.13)

S0 |S,M〉 = M |S,M〉 . (6.14)

6.2 Integrability

The pairing model supports an integrable model. This means that its Hamil-

tonian can be rewritten as a sum of K commuting operators, where K denotes

the total number of degrees of freedom. If the following set of operators is

defined as:

R̂i = S0
i + g

K∑

k 6=i

1

2
Xik(S†i Sk + S†kSi) + ZikS

0
i S

0
k (6.15)

The index i runs over the K single-particle levels, g is an arbitrary parameter,

and X and Z are matrix parameters that have as dimension the number of

degrees of freedom. It is now possible to derive a set of conditions that makes

them commute mutually:

[R̂i, R̂j ] = 0 ∀i ∈ [1, . . . ,K]. (6.16)

After a tedious derivation one can see that the above commutation relations

are fulfilled if element wise conditions of the matrices Xik and Zik are fulfilled.
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The integrability conditions are given by:

Xij = −Xji, Zij = −Zji (6.17)

XijXjk −Xik(Zij + Zjk) = 0 (6.18)

This gives rise to the integrable XXZ models. All Ri commute when the above

conditions are fulfilled, this means that finding the eigenstates of one of them

will give us the eigenstates of all.

6.3 Bethe ansatz wave function

In this section the Richardson-Gaudin equations and eigenvalues are derived

together with the eigenstates of the integrals of motion Ri. The Gaudin algebra

is defined as:

S†α =

K∑

i=1

XiαS
†
i (6.19)

Sα =

K∑

i=1

X∗iαSi (6.20)

S0
α =

K∑

i=1

ZiαS
0
i (6.21)

The index α is not referring to one of the spatial orbitals, but to generalized

electron pairs in the context of pairing Hamiltonians. At this moment it is

sufficient to know that they stand for a different category of indices. Both

categories obey the integrability conditions of eq. (6.17). The commutation

relations of the generalized pair operators can be calculated as:

[S†α, Sβ ] =
∑

i

ZiαXiβS
†
i (6.22)

= 2Xαβ(S0
α − S0

β) (6.23)
[
S0
α, S

†
β

]
=

∑

i

XiαX
∗
iβ2S0

i (6.24)

= XαβS
†
α − ZαβS†β (6.25)

Furthermore it can be shown that the eigenstates of the operators defined by

eq. (6.15) are given by product states of the following form:

|ψ〉 =

N∏

α=1

S†α |θ〉 (6.26)
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Acting with the Ri operator on the above product state gives:

Ri

N∏

α=1

S†α |θ〉 =

N∑

α=1

N∑

β=α+1




N∏

γ 6=α,β

S†γ



[[
Ri, S

†
α

]
, S†β

]
|θ〉 (6.27)

+

N∑

α=1




N∏

β 6=α

S†β


[Ri, S†α

]
|θ〉+

(
N∏

α=1

S†α

)
Ri |θ〉 (6.28)

Explicitly calculating the commutators of the above expressions gives:

[
Ri, S

†
α

]
= XiαS

†
i (1− gS0

α)− gZαiS†αS0
i (6.29)

[[
Ri, S

†
α

]
, S†β

]
= −gS†iZαβ(XiβS

†
α −XiαS

†
β) (6.30)

The action on the vacuum is given by:

R̂i |θ〉 = di


−1 + g

∑

k 6=i

Zikdk


 |θ〉 (6.31)

[
R̂i, S

†
α

]
|θ〉 =

[
XiαS

†
i (1 + gdα) + gZαiS

†
αdi

]
|θ〉 (6.32)

[[
R̂i, S

†
α

]
, S†β

]
|θ〉 = −gS†iZαβ(XiβS

†
α −XiαS

†
β) |θ〉 (6.33)

To simplify the following expressions the variables dα =
∑m
i=1 Ziαdi are defined,

and after combining all of the above, it can be seen that:

R̂i

N∏

α=1

S†α |θ〉 =

N∑

α=1


Xiα(1 + gdα)− g

N∑

β 6=α

ZβαXiα


S†i

N∏

γ 6=α

S†γ |θ〉(6.34)

+ di


−1 + g

∑

k 6=i

Zikdk + g

N∑

β=1

Zβi




N∏

α=1

S†α |θ〉 . (6.35)

It can now be concluded that the Bethe ansatz product state is an eigenstate

of R̂i with eigenvalue given by:

ri = di(−1 + g

K∑

k 6=i

Zikdk + g

N∑

β=1

Zβi), (6.36)

if the following set of equations

1 + gdα − g
N∑

β 6=α

Zβα = 0 ∀α (6.37)

is fulfilled for all N Richardson-Gaudin variables. The set of N equations (6.37)

is also known in the literature as the Richardson-Gaudin equations [176].
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6.4 Integrability of the reduced BCS Hamilto-

nian

The rational model is a special variant of the integrable pairing models that

can be built from the integrals of motion eq.(6.15). The parametrization of the

Gaudin matrices is given by:

Xij = Zij =
1

2(εi − εj)
(6.38)

It can be checked that the above parametrization fulfills the integrability con-

ditions (see eq. (6.17) and (6.18)). Because the Z Gaudin matrix is equal to

the X matrix, for this model, it is also known as the XXX model. The integrals

of motion of the XXX model are given by:

R̂i = S0
i + g

∑

k 6=i

1
2 (S†i Sk + S†kSi) + S0

i S
0
k

εi − εk
(6.39)

It is now possible to construct the reduced Bardeen-Cooper-Schrieffer (BCS)

Hamiltonian, as a linear combination of the above integrals of motion. From

this linear combination it follows that the reduced BCS Hamiltonian is exact

integrable, and has the same eigenstates as the R̂i operators of the XXX model.

The reduced BCS Hamiltonian is given by the spherical linear contraction:

Ĥred =
∑

j

εj(2S
0
j +

1

2
Dj) + g

∑

ij

S†jSi (6.40)

The reduced BCS Hamiltonian can be seen as a simplified version of the

generalized pairing Hamiltonian, with a level independent coupling constant

g. The linear combination of the integrals of motion of the XXX model that

generates the reduced BCS Hamiltonian is given by:

Ĥred =
∑

i

2εiR̂i (6.41)

If the above summation is expanded and simplified, one sees the reduced BCS

Hamiltonian appearing up to some irrelevant constants. The integrability of

the reduced BCS Hamiltonian follows from the above derivation, together with

the fact that the eigenstates and eigenvalues of this Hamiltonian can be found

by solving eq. (6.37). The reduced BCS Hamiltonian is of great significance as

it is used to describe the essential physics of a range of systems ranging from

superconductivity, superfluidity, pairing in nuclei, . . .. The exact integrability

of the reduced BCS Hamiltonian is exploited in chapter 7 to study the effects

of geometry perturbations on the superconducting state of nano-grains.
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6.5 Integrability of the px + ipy Hamiltonian

Another Hamiltonian that can be formed with a linear combination of the

integrals of motion of the XXZ Richardson-Gaudin models is the px + ipy
pairing Hamiltonian. The px + ipy pairing Hamiltonian is given by:

Ĥfac = η

K∑

i=1

D2
i S

0
i + g̃

K∑

ij=1

DiD
∗
jS
†
i Sj . (6.42)

This Hamiltonian describes p-wave pairing which is found in fermionic super-

fluids (3He), ultra-cold atomic gases and p-wave superconductivity. If one takes

the parametrization of the Gaudin matrices [177] as:

Xij =
2DiDj

(D2
i −D2

j )
(6.43)

Zij =
D2
i +D2

j

(D2
i −D2

j )
. (6.44)

It can be straightforwardly checked that the integrability conditions are fulfilled

(see eq. 6.17). The integrals of motion then become:

R̂i = S0
i + g

∑

k 6=i

DiDj

(D2
i −D2

j )
(S†i Sk + S†kSi) +

D2
i +D2

j

D2
i −D2

j

S0
i S

0
k. (6.45)

The linear combination of the R̂i operators that generates the px + ipy Hamil-

tonian is given by:

Ĥfac = λ
∑

i

D2
i R̂i, (6.46)

with λ = η

1+2γ(1−N)+γ(L−
∑
i vi)

, where γ is a parameter proportional to the

interaction constant g = −2λγ, and N the number of pairs. After some

straightforward algebraical calculations and subtraction of the diagonal term

g
∑
i S

2
iD

2
i , the px + ipy pairing Hamiltonian appears (see eq. 6.42). The g̃

parameter that determines the strength of the p-wave pairing interaction (see

eq. 6.42) is related to the parameter g of the integrals of motion of eq.(6.45)

by: g̃ = gλ. The exact integrability of the px + ipy pairing Hamiltonian is

exploited in chapter 8 to study its interesting phase diagram.

To conclude, it is stated that the generality of eq.(6.37) can be exploited to

create a general computer program that is able to solve all kinds of different

pairing Hamiltonians with the same underlying machinery. One just needs to

provide the specific form of the Gaudin matrices together with the explicit

mapping of the parameter g of eq.(6.37) to the parameters of the Hamiltonian

one wants to solve. A short summary and link to an implementation can be

found in appendix B.
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6.6 Exactly integrable models in quantum chem-

istry?

Imagine that a method could be found that makes it possible to map molecular

Hamiltonians on exactly integrable pairing Hamiltonians such that the accuracy

of the resulting wave function approximates the one of the seniority zero wave

function for the molecular system, then a new powerful method able to describe

the correlation of big molecular systems would have been created. Preliminary

results have been obtained that indicate that it is possible to obtain DOCI

quality energies for small molecular systems such as the hydrogen dimer and

BeH2 with wave functions generated by solving the XXX Richardson-Gaudin

model. This can be done by varying the K single-particle energy levels and the

pairing constant g of the reduced BCS Hamiltonian such that the solution of

this Hamiltonian gives the lowest energy possible for a given quantum chemical

Hamiltonian for a respective orthonormal basis in a given atomic basis set.

Unfortunately the procedure to obtain those results is very slow at the moment

due to the slow convergence of the conjugate gradient method with K + 1

degrees of freedom. However, the small amount of memory necessary for this

procedure encourages further research. A quicker approach is possible if one

weakens the desire to have DOCI quality energies to better than HF quality

energies. This can be done by generating the set of single-particle energies

of the reduced BCS Hamiltonian with a fast optimal function of the Hartree-

Fock single-particle levels and using the restricted orthonormal Hartree-Fock

orbitals as single-particle basis. The reduced BCS Hamiltonian with zero

pairing constant gives the Hartree-Fock wave function as a solution. Now

turning on the pairing constant g will lead to a seniority zero wave function

(with the same dimension as the DOCI wave function) and with lower energy

than the HF wave function but higher energy than the DOCI wave function.

This reduces the problem to finding the minimum of a one dimensional problem

for which fast algorithms exist.
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Chapter 7

Geometry dependence of

superconducting

nano-grains

1

In a seminal paper, P. W. Anderson [178] addressed the question of how

small a metallic grain would have to be such that a superconducting state

would cease to exist. He argued that quantum confinement would force the

single-particle (sp) spectrum to become discretely resolved. The mean sp

energy spacing will increase with decreasing size of the grain, until it becomes

comparable to the superconducting gap in the bulk phase. At that point, the

bulk gap looses its significance as a clear gap between a single superconducting

state and a continuum of excited states, and the superconducting phase would

evaporate. The single-electron transistor (SET) experiments of Ralph, Black

and Tinkham [179] demonstrated that the energy spectrum of nanometer-scale

Al particles is discretely resolved, and moreover, the spectrum was found to be

dependent on number parity and externally applied magnetic fields [180, 181],

establishing the persistence of pairing correlations at the nanoscale. Bardeen,

Cooper and Schrieffer (BCS) [182] had identified an effective electron-electron

pairing interaction as the driving force behind the superconducting state in

bulk materials. A key feature of BCS theory is that the superconducting

ground state of a superconductor is modeled as a coherent condensation of

Cooper pairs [183]. While this approximation is essentially valid in the bulk

limit, it is no longer sound for finite-size systems because inaccuracies induced

by particle-number fluctuations become relatively large. This opened a call for

1Has been previously published as: M. Van Raemdonck, S. De Baerdemacker, and D.
Van Neck. Perturbations on the superconducting state of metallic nanoparticles: influence
of geometry and impurities. 2013: The European Physical Journal D 67:14.
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theoretical approaches in the canonical regime, such as Lanczos diagonalisation

[184], projected-BCS [185], Density Matrix Renormalization Group [186], or the

Richardson-Gaudin (RG) formalism [187]. Richardson had shown, within the

context of pairing in nuclear structure physics [188], that the reduced, level-

independent, BCS Hamiltonian is exactly diagonalizable by means of a Bethe

Ansatz product state, provided the RG variables, which occur as rapidities in

the Ansatz, form a solution to the set of RG equations [189, 190]. Later, Gaudin

decomposed the reduced BCS Hamiltonian into a complete set of commuting

conserved charges, adding it to the class of integrable models [191]. The main

significance of these results is that, as long as a level-independent pair scattering

term is considered, the BCS Hamiltonian can be solved exactly for a general

sp spectrum, within polynomially scaling computing time. Therefore, in meso-

scopic systems it is a practical tool for the investigation of pairing correlations

as a function of the sp spectrum. First investigations were performed with

a uniform sp energy spacing [184, 185], however, studies with randomly gen-

erated spectra showed an enhancement of pairing correlations by randomness

[187, 192]. This is related to the observation that pairing correlations are

significantly stronger around the Fermi level, such that a random increase of

the level density around the Fermi level will have a stronger impact on the mean

pair correlations in a uniform sampling. The result of this study triggers the

question whether pairing correlations could be enhanced in a controlled fashion.

A sensible control parameter for the sp spectrum would be the shape and size

of the nanoparticle. In a free-wave ”particle in a box” picture, the geometric

boundary conditions at the surface of the nanoparticle will fix the spectrum of

the particles. The variations in pairing correlations of a rectangularly shaped

nanoparticle were investigated in this way as a function of the aspect ratio [193],

and more recently, the shell structure in spherically shaped nanostructures has

been assessed [194–196] in connection with the scanning tunneling experiments

(STM) on deposited Pb [197] and Sn [198] nanoclusters. The reduction from

three to two dimensions, relevant for the description of pairing correlations in

superconducting spherical coatings or multielectron bubbles in liquid helium,

has also been investigated [199, 200]. The theoretical results in rectangular

geometries showed a strongly volatile behavior of the pairing condensation as

a function of the shape control parameter (see e.g. Fig. 1 in [193]), which is

understood to be a direct consequence of rapid fluctuations in the density of

active sp levels around the Fermi level (also referred to as the Debye window)

[198]. This chapter focuses on how the pairing condensation energy varies as

a function of an external control parameter. The purpose of this chapter is to

investigate whether there exists such a control parameter which is less prone

to strong fluctuations and allows for a more controlled manipulation of the

condensation energy. Our calculations will be performed within the canonical

RG formalism [189, 190], using a recently proposed pseudo-deformed quasispin

algorithm [201]. In the next section, the necessary theoretical results of the

RG formalism for metallic nanograins are recapitulated. The following section

is devoted to a scrutiny of the effect of the fluctuating level densities on the
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condensation energy for a small and easily fathomable system. This section is

divided into two parts. In close parallel to the work of Gladilin et. al. [193], the

geometrical effects on the condensation energy are briefly discussed in a first

part. In a second part, an impurity in otherwise clean nanograins is introduced.

For a good review on the developments in the field of superconducting metallic

nanograins until 2001, the reader is referred to the review paper of von Delft

and Ralph [202].

7.1 Richardson-Gaudin

The reduced BCS Hamiltonian is given by

Ĥ =

M∑

i=1

εin̂i + g

M∑

i,j=1

Ŝ†i Ŝj , (7.1)

with the latin indices {i, j = 1 . . .M} referring to a set of doubly-degenerate

sp energies within the Debye window around the Fermi level. The number

operator

n̂i = a†iai + a†
ī
aī, (7.2)

counts the number of particles within a level i and the pair scattering term is

represented by the pair creation/annihilation operators

Ŝ†i = a†ia
†
ī
, Ŝi = (Ŝ†i )

† = aīai, (7.3)

with a†i (ai) the standard fermion creation (annihilation) operators. The bar

notation refers to the time-reversed partner of the corresponding operator. The

set of operators (7.2) and (7.3) span an su(2) quasispin algebra

[Ŝ0
i , Ŝ

†
j ] = δijS

†
i , [Ŝ0

i , Ŝj ] = −δijSi, [Ŝ†i , Ŝj ] = 2δijS
0
i , (7.4)

with Ŝ0
i = 1

2 (n̂i−1). This algebra supports two different su(2) representations,

corresponding to unblocked (open) and blocked (pair-broken) levels. This

chapter, only open levels will be considered. Richardson’s result [189, 190]

states that the reduced BCS Hamiltonian can be diagonalised exactly by means

of a product state of generalised pairs, acting on the pair vacuum |θ〉

|ψ({x})〉 =

N∏

α=1

(
M∑

i=1

Ŝ†i
2εi − xα

)
|θ〉, (7.5)

provided the set of RG variables {x} = {x1, x2, . . . xN}, with N the total

number of pairs, form a solution of the set of non-linear RG equations

1 + g

M∑

i=1

1

2εi − xα
− 2g

∑

β 6=α

1

xβ − xα
= 0, (7.6)
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for α = 1, 2, . . . , N . Since blocked levels are discarded, N is taken as half the

total number of particles. Once the RG equations have been solved for {x},
the eigenstate energy of the Hamiltonian is given by

E =

N∑

α=1

xα. (7.7)

It is convenient to introduce the concept of condensation energy, which is

defined as the ground state energy E of the system at a given pairing interaction

g, corrected by the ground state energy of the system in the non-interacting

limit E0

EC = 〈ψ(g)|Ĥ(g)|ψ(g)〉 − 〈ψ(0)|Ĥ(0)|ψ(0)〉 (7.8)

Because the ground state of the non-interacting system corresponds to a simple

filling of the sp levels until the Fermi energy, the condensation energy of the

reduced BCS Hamiltonian reduces to

EC =

N∑

α=1

xα −
N∑

i=1

2εi. (7.9)

The benefit of using the condensation energy over the ground state energy is

that the former quantity corrects for global fluctuations in the sp energy, so it

is a direct probe for pairing correlations.

7.2 Perturbations

We will employ a simplified ”particle in a box” approach to study the effect of

perturbations. In this approach, it is assumed that the conductance electrons

are completely delocalised from the atoms in the crystal, and move as free

particles within a box, only confined by the boundaries. Regarding the quali-

tative nature of our study, this approach satisfies our needs, however one should

consider more sophisticated methods, such as Density Functional Theory [203],

if more realistic results are desired.

7.2.1 Geometric perturbations

In a first part, the condensation energy EC is studied and compared within

a rectangular, cylindrical and spherical geometry. The single-particle energies

are taken as the solutions to the Schrödinger equation with the infinite-well sp

potential V (r)

V (r) =

{
0, ∀r ∈ the box

+∞, ∀r /∈ the box
(7.10)

The wavefunctions and corresponding eigenvalues for rectangular, cylindrical

and spherical infinite wells can be found in introductory quantum mechanics
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textbooks [1]. For rectangular geometries, the sp energies are given by

ε(nx,ny,nz) =
~2π2

2me

(
n2
x

l2x
+
n2
y

l2y
+
n2
z

l2z

)
, (7.11)

with (nx, ny, nz) ∈ N3
0 the set of quantum numbers, me the effective mass of

the electron, and (lx, ly, lz) the dimensions of the rectangular box. We will

define a length scale l, such that all lengths will be given relative to l, and

energies relative to ~2

2mel2
. The sp spectrum (7.11) is given in Figure 7.1(a)

as a function of lx, with lz = l kept as a constant, and ly defined as such

that the volume of the rectangular box also remains a constant lxlylz = l3. In

addition, Figures 7.1(b) and 7.1(c) show the condensation energy for a system

of N = 5 pairs living in the m = 10 lowest sp levels of the rectangular box with

respectively a weak- (g = −1.0[~2/2mel
2]) and strong (g = −400.0[~2/2mel

2])

pairing interaction. Figure 7.1(a) not only depicts the 10 active sp levels, but

also the next 10 levels outside of the Debye window (in dotted lines) to illustrate

how the sp levels enter and leave the Debye window as a function of lx. It can

be seen that the steep exits and enterings of the sp levels into the Debye window

give rise to strong fluctuations in the sp densities, especially higher up in the

spectrum. This has an effect on the condensation energies, as can be inferred

from Figures 7.1(b) and 7.1(c).

Before discussing the numerical results, it is worthwhile to distill the general

features in both regimes of the pairing strength using perturbative techniques.

For the weak-coupling regime, standard second order perturbation theory [1]

is used to calculate the condensation energy

lim
g→0

EC = Ng + g2
kF∑

a=1

M∑

b=kF+1

1

2εa − 2εb
+ O(g3), (7.12)

with kF the Fermi level index, and the dummy indices a and b running over

respectively occupied and unoccupied sp levels in the non-interacting limit. For

the strong-coupling regime, an approximate expression can be derived for the

condensation energy using the RG equations [201, 204]

lim
g→∞

EC = gN(M −N + 1) +N(〈2ε〉 − 〈2ε〉F ) + O( 1
g ), (7.13)

with 〈2ε〉 = 1
M

∑M
i=1 2εi the mean pair sp energy and 〈2ε〉F = 1

N

∑kF
i=1 2εi the

mean pair sp energy up to the Fermi level. Close inspection of the functional

behavior of expressions (7.12) and (7.13) with respect to the sp spectrum gives

away the gross features in the corresponding regime. In the strong-coupling

regime, the condensation energy is dependent on 〈2ε〉 and 〈2ε〉F . Therefore,

the contributions of the sp levels on the condensation energy only depend on

the position of the level with respect to the Fermi level, i.e. levels beneath

the Fermi level contribute negatively with a weight factor (NM − 1), and levels

above the Fermi level contribute positively with weight factor (NM ). There is no
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Figure 7.1: The sp spectrum (a) of a rectangular box as a function of one of the

dimensions lx. The lowest 10 levels within the active Debye window are plotted

in full lines, whereas the dotted lines depict the next 10 levels outside the Debye

window. Figure (b) and (c) depict the condensation energy EC in full lines for a

system of N = 5 pairs in the m = 10 active levels of Figure (a), for respectively

the weak- and strong-coupling regime. The dotted lines are approximations

in respective regimes (eqs. (7.12) and (7.13)). Note that the lx axis is plotted

in logarithmic scale to highlight the lx ↔ 1/lx symmetry. Deviations of this

symmetry are due to differences in resolution on the logarithmic scale.

direct dependency of local sp-level densities on the condensation energy, rather

an indirect dependency entering via the mean sp energy above and below the

Fermi level. For instance, it can be seen from Figure 7.1(c) that the local

increase in sp-level density around the Fermi level in the vicinity of lx ∼ 0.8,

1.0 and 1.25 induces an increase of 〈2ε〉F , and therefore contributes to the
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pairing condensation. Similarly, the local increase in sp-level density at the top

of the Debye window around lx ∼ 0.6 and 1.6 contributes positively to 〈2ε〉
and therefore decreases the pairing correlations. The situation is different for

the weak-coupling regime, where local density fluctuations around the Fermi

level contribute more strongly than those away from the Fermi level. This

can be verified in Figure 7.1(b), where, in contrast to the strong-coupling

regime, the local density increase at lx ∼ 0.6 and 1.6 does not influence the

condensation energy, whereas the the local density increase at lx ∼ 0.8, 1.0 and

1.25 considerably enhances the pairing correlations.

The previous discussion highlights the importance of local sp-level density fluc-

tuations entering directly, or indirectly into the condensation energy. Therefore,

it would be desirable to have a more manageable control parameter at hand for

the sp-energy levels. As is clear from Ref. [193] and Figure 7.1(a), rectangular

geometries are very prone to local density fluctuations and will consequently

remain hard to control. For this reason, a similar study is performed of the

condensation energy within a cylindrical and spherical configuration. Without

going into much detail, the conclusions of these studies agreed well with the

results from the previous discussion. The sp spectrum of free particle waves,

bounded within a cylinder with radius ρ0 and height lz is given by

ε(nρ,nφ,nz) =
~2

2me

(
α2
|nφ|nρ
ρ2

0

+
n2
zπ

2

l2z

)
, (7.14)

with (nρ, nφ, nz) ∈ N×Z×N, and α|nφ|nρ the nρ-th root of the Bessel function

J|nφ|(α). It is clear that the spectrum (7.14) and its density fluctuations has

a qualitatively similar dependency on the control parameter lz as eq. (7.11),

when volume conservation is imposed πρ2
0lz = l3. Therefore similar conclusions

could be drawn for cylindrical as for rectangular geometries.

Unfortunately, the sphere has no shape control parameter if volume conser-

vation is applied 4πρ3
0 = l3. However, one can notice a gain in condensation

energy in comparison with a cube and cylinder with the same dimensions (see

Table 7.1).

Table 7.1: The condensation energy EC (7.9) of a cube, cylinder and sphere

with volume l3 for 3 different values of the pairing interaction strength (g),

corresponding to a weak-, intermediate- and strong-coupling regime. The

radius ρ0 of the cylinder is fixed such that the height lz = l. All calculations

have been performed with N = 6 pairs in the M = 12 first sp levels. Energies

are given in units [~2/2mel
2]

g cube cylinder sphere

-1.000 -8.851 -6.850 -13.067

-10.000 -222.254 -226.183 -246.037

-20.000 -600.819 -608.382 -626.128
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This is nicely understood via symmetry considerations; the sphere is more

symmetric than the cube, and will therefore exhibit more degeneracies in the

sp spectrum, leading to an enhancement of the pair correlations. Analogously, a

cylinder is more symmetric than a cube (2D rotational vs dihedral symmetry),

which generally translates into an enhancement for the pairing correlations, as

illustrated in Table 7.1. The symmetry argument can be tested by breaking

the symmetry of the sphere or cylinder to spheroidal shapes. Although such a

study is of relevance for the experiments on spherical nanodroplets [197, 198],

no significant qualitative differences from our study with rectangular grains are

expected and therefore this subject is left for future investigations.

The conclusion of the present subsection is that the condensation energy of a

rectangular (and cylindrical) nanograin is highly sensitive to the fluctuations in

the sp-level densities, and that these fluctuations are rather strong as a function

of the shape control parameter. With this respect, it would be interesting to

find a more gentle control parameter such that the pairing correlations can be

probed in a more controlable fashion. In the next subsection, impurities are

introduced for this particular purpose.

7.2.2 Impurities

From a ”particle in a box” perspective, an impurity can be modeled by means of

an ”obstacle” in the otherwise constant potential of the box. Let this obstacle

be a Dirac δ(r) potential. For a 1D system, the potential in the Schrödinger

equation becomes

V (x) =

{
v0lδ(x− x0) 0 < x < l

∞ x ≤ 0 and x ≥ l (7.15)

with 0 < x0 < l and v0 a weighted strength parameter of the impurity which can

be either positive or negative, depending on whether the impurity is considered

repulsive or attractive. The solution to the Schrödinger equation can be found

by solving the following transcendental equation

2mel
2

~2 v0 sin(k[l − x0]) sin(kx0) + kl sin(kl) = 0, (7.16)

for k ∈ R, leading to the sp spectrum

εn =
~2k2

n

2me
. (7.17)

If v0 < 0, there may also exist a negative energy state, which is the solution of

Eq. (7.16), with the substitution ik → κ

2mel
2

~2 v0 sinh(κ[l − x0]) sinh(κx0) + κl sinh(κl) = 0. (7.18)

The remainder of this chapter only deals with repulsive impurities (v0 > 0).

The transcendental equation (7.16) has a few remarkable symmetries. For
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instance, it can be verified that for x0 = l
p with p ∈ N0, k = qπ

l is always

a solution of (7.16) independent from v0, as long as q is a multiple of p.

This feature explains the quasi-periodic structure as a function of x0 in the

sp spectrum, which is plotted in Figure 7.2(a) for v0 = 100.0[~2/2mel
2]. It

can be seen that each level has its own frequency modulation: the first level

undergoes one full quasi-period oscillation, the second level a double quasi-

period oscillation, and so on. Therefore, by probing the oscillations in the

condensation energy, it can be inferred which sp levels contribute strongly

to the final structure. We can recall from the previous discussion that the

condensation energy is more sensitive to local sp-level density fluctuations

around the Fermi level in the weak-coupling regime, whereas global fluctuations

contribute more in the strong-coupling regime. This can be observed in Figures

7.2(b)-(d), where the condensation energy is plotted for a system ofN = 5 pairs,

living in the first m = 10 sp levels of Figure 7.2(a), with g = −1.0, −200.0,

and −100000.0 in units [~2/2mel
2]. Taking into account that the mean sp-

energy spacing is approximately 100.0(~2/2mel
2), these interaction strengths

correspond respectively to the weak, intermediate, and strong-coupling regime.

In the weak-coupling limit (Figure 7.2(b)), the condensation energy displays 5

peaks of enhanced pairing correlations, corresponding to the 5 quasi periods

of the Fermi level. On the other side, the 10 quasi periods at the top of the

Debye window are visible in the condensation energy of the strong-coupling

limit (Figure 7.2(d)). The intermediate regime (Figure 7.2(c)) displays only 5

quasi periods, but it can be inferred from the shape of the modulations, that

the signature of the top level is already present.

The reason why the impurity is a much more gentle control parameter than

the shape of a nanograin can be related to the relative impact of the control

parameter on the sp spectrum. Whereas altering the size of the nanograin has

a large relative effect on the available space of the particles-in-a-box, adding a

δ(x) only perturbs the particles marginally. The question is now whether δ(r)

perturbations are not becoming too weak when going to higher dimensions. In

order to study this, some exploratory calculations of the condensation energy

with one δ(r − r0) on a line (1D), in a square (2D), and in a cube (3D) are

performed. The number of levels m = 10 and pairs N = 5 were chosen equal for

each dimension, as well as the strength of the impurity v0 = 100.0[~2/2mel
2],

and the pairing strength g. These preliminary calculations pointed out that

the condensation energy was enhanced with approximately 20% and 25% for

the 2D and 3D systems respectively compared to the 1D case, whereas the

relative fluctuations in the condensation energy decreased with 75% and 85%.

These numbers hint at a possible survival of impurity induced fluctuations

in the condensation energy in higher dimensions, but further investigations

are required. More in particular, given the strong influence of the geometry

on the condensation energy of the particle, it is unclear whether the gentle

impurity-induced perturbations will be observable against the large geometric

fluctuations one could encounter by picking different samples in a realistic

experimental setting.
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The δ(x) potential has zero-range character, in contrast to the spatial finite-

range nature of realistic impurities in 1D systems, which may become relatively

large for nano-sized systems [205]. Therefore, the following potential is selected

V (x) =

{
v0
kl
2 exp(−k|x− x0|) 0 < x < l

∞ x ≤ 0 and x ≥ l , (7.19)

to investigate the effect of the spatial extent of the impurity on the condensation

energy of the 1D system. Besides being a solution of the Helmholtz equation

for screened Coulomb potentials of a point-like charged particle in 1D, the

potential (7.19) acts as a distribution, including the δ(x− x0) potential (7.15)

and unperturbed system in the k →∞ and k → 0 limit respectively. Therefore,

the parameter 1/k is a control parameter for the spatial extent of the impurity.

We have carried out the same calculation as in Figure 7.2 with the same values

for v0 and g, but for different values of k ranging from very large (δ(x)-like) to

very small (unperturbed-like) values. The results for k = 20/l are depicted in

Figure 7.3. The potential (7.19) will deviate from the δ(x − x0) potential as

k decreases, so the typical modulations in the sp spectrum and condensation

energy of the δ(x−x0) case are expected to gradually evaporate as the potential

(7.19) broadens. For the sp spectrum, it was observed that the modulations

were more suppressed for the high-lying states, compared to the low-lying

states. Because the normalization of the potentials (7.19) and (7.15) has been

chosen equal, the potential (7.19) has a finite height Vmax = v0lk/2, in contrast

with the infinite height of the δ(x) potential. As a result, the higher-lying

excitation sp levels will be less affected by the impurity than the lower-lying

sp levels (see Figure 7.3(a) with Vmax = 1000[~2/2mel
2]). This has an effect

on the modulations of the condensation energy in the strong-interaction limit.

Because the modulations of the condensation energy in the strong-interaction

limit depends approximately on the relative weighting of the sp levels above

and beneath the Fermi level εF , the fingerprints of the higher sp levels will

gradually disappear as k decreases. The value k = 20/l has been chosen for

Figure 7.3 because this is the point where the higher sp level modulations start

to (visually) disappear from the condensation energy in the strong-interaction

limit (see Figure 7.3(d)). The condensation energy in the weak-interacting limit

is only dependent on the modulations around the Fermi level (see eq. (7.12)).

So, modulations in the condensation energy are observed as long as the levels

around the Fermi level are affected by the impurity. Again, this is strongly

dependent on the relative position of the Fermi level with respect to the height

and strength of the impurity potential. In the limit of k → 0, all impurity

induced structure will be lost.

Finally, a calculation of the condensation energy for N = 128 pairs living in

m = 256 levels of the 1D system with a δ(x−x0) impurity is performed. From

a physics point of view, this particular size of system corresponds to a realistic

number of active electron pairs within the Debye window of a nanograin.

The Richardson-Gaudin proves particularly useful in this particular situation

because the size of the Hilbert space (dim ∼ 5.7×1075) is far beyond the capa-
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bilities of standard diagonalisation approaches. The result of the calculation is

presented in Figure 7.4. The effect of the larger number of particles and levels

on the condensation energy is immediately visible in the modulation, which has

increased to 128 quasi periods, corresponding to the number of quasi periods

of the Fermi level. Therefore, our analysis for the smaller system appears to

be valid in larger systems as well.

7.3 Conclusions

We have studied the effect of two qualitatively different control parameters

on the pair condensation energy of a finite-size superconducting particle. The

control parameters enter into the system via the single-particle spectrum, which

is based on a straightforward particle-in-a-box principle. The first control

parameter is the shape of the particle, which induces strong fluctuations in

the single-particle level densities, precipitating into the condensation energy.

By means of perturbation theory, it was found that the condensation energy

in the weak-coupling regime is mainly dependent on local single-particle level

density fluctuations, whereas the strong-coupling regime is also affected by

global level density fluctuations. Introducing impurities, as a second control

parameter, proved to be a more gradual probe for pairing correlations. An

impurity gives a unique quasi-periodic structure to each single particle level

as a function of the position of the impurity, such that it becomes possible to

weigh the contributions of the single-particle levels to the condensation energy

by investigating the frequency of oscillations.
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Figure 7.2: In panel (a), the sp spectrum (7.17) of a 1D particle-in-a-

box with a δ(x − x0) impurity at x0 is depicted. Panels (b)-(d) show the

condensation energy as a function of x0, for the weak- (b), intermediate- (c),

and strong-coupling (d) regime. For the weak-, and strong-coupling regime,

the approximative predictions, given in respectively Eqs. (7.12) and (7.13), are

plotted in dashed lines.
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Figure 7.3: In panel (a), the sp spectrum (7.17) of a 1D particle-in-a-box with a

exp (−k|x− x0|) impurity at x0 and k = 20/l is depicted. Panels (b)-(d) show

the condensation energy as a function of x0, for the weak- (b), intermediate-

(c), and strong-coupling (d) regime. For the weak-, and strong-coupling regime,

the approximative predictions, given in respectively Eqs. (7.12) and (7.13), are

plotted in dashed lines.
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Figure 7.4: The condensation energy of a system consisting of N = 128 pair

in m = 256 levels, with a δ(x − x0) impurity, as a function of the position

x0. The strength of the impurity has been chosen as v0 = 100.0[~2/2mel
2]

and the pairing strength is g = −2000.0[~2/2mel
2]. For graphical reasons, the

condensation energy is only given in the interval x0 ∈ [0, 0.1].
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Chapter 8

Exploration of the

phase-diagram of the

px + ipy Hamiltonian

1

Recently, interest has increased in the hyperbolic family of integrable Richardson-

Gaudin (RG) models. It was pointed out that a particular linear combination

of the integrals of motion of the hyperbolic RG model leads to a Hamiltonian

that describes p-wave pairing in a two dimensional system [206, 207]. Such

an interaction is found to be present in fermionic superfluids (3He), ultra-cold

atomic gases and p-wave superconductivity. Furthermore the phase diagram

is intriguing, with the presence of the Moore-Read and Read-Green lines. At

the Read-Green line a rare third-order quantum phase transition occurs. In

this chapter a connection is made between collective bosonic states and the

exact solutions of the px + ipy pairing Hamiltonian. This makes it possible

to investigate the effects of the Pauli principle on the energy spectrum, by

gradually reintroducing the Pauli principle. It also introduces an efficient and

stable numerical method to probe all the eigenstates of this class of Hamiltoni-

ans. We extend the phase diagram to repulsive interactions, an area that was

not previously explored due to the lack of a proper mean-field solution in this

region. We found a connection between the point in the phase diagram where

the ground state connects to the bosonic state with the highest collectivity, and

the Moore-Read line where all the Richardson-Gaudin (RG) variables collapse

to zero. In contrast with the reduced BCS case, the overlap between the ground

state and the highest collective state at the Moore-Read line is not the largest.

1Has been previously published as: M. Van Raemdonck, S. De Baerdemacker, and D. Van
Neck. Exact solution of the px + ipy pairing hamiltonian by deforming the pairing algebra.
2014: Physical Review B 89:155136.
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In fact, it shows a minimum when most other bosonic states show a maximum

of the overlap. By investigating the total spectrum, we found remnants of

the Read-Green line for finite systems. A symmetry was found between the

Hamiltonian with and without single-particle part. When the interaction is

repulsive 4 different classes of trajectories of the RG variables are found.

8.1 Introduction

Pairing plays an important role in the description of many phenomena as

diverse as superconductivity in condensed matter systems [182], neutron stars

[188], and the interaction of nucleons in atomic nuclei [188]. Probably the

most notorious Hamiltonian that describes paired fermions is the reduced BCS

Hamiltonian [182], which has an exact Bethe ansatz solution obtained by

Richardson in 1963 [189]. The Richardson-Gaudin (RG) model belongs to a

more general class of integrable Hamiltonians, [177, 208] which can be catego-

rized into three families: the rational (or XXX), hyperbolic (or XXZ) and ellip-

tic (or XYZ) RG models. The reduced BCS Hamiltonian is part of the rational

family. The rational model has attracted more interest during the last decade

because it describes pairing correlations in finite-size (mesoscopic) metallic

nanograins [202]. This has lead to applications in superconductivity[202],

quantum optics, cold-atomic physics, quantum dots[177], etc. The other two

families remained obscure until recently applications for the hyperbolic model

were found in the context of p-wave pairing in ultra-cold Fermi gases [209, 210],

exotic superconductors such as Sr2RuO4 [211] and in the context of pairing in

heavy nuclei. [212]. The long standing importance of p-wave pairing in the 3He

superfluid state [213] should also be kept in mind.

Two-dimensional p-wave pairing can be described by means of the p + ip

Hamiltonian

H =
∑

k

k2

2m
c†kck −

G

4m

∑

kk′

k ·k′c†kc
†
−kc−k′ck′ , (8.1)

with k ·k′ = kxk
′
x + kyk

′
y. Its ”chiral” variant

H =
∑

k

k2

2m
c†kck −

G

4m

∑

kk′

(kx − iky)(k′x + ik′y)c†kc
†
−kc−k′ck′ , (8.2)

also referred to as the px + ipy Hamiltonian, essentially captures the same

physics [214], and is derivable as a linear combination of the integrals of motion

of the hyperbolic RG model [215] (see section(8.2)), opposed to the time-

reversal symmetric p + ip Hamiltonian. It follows that it is possible to diago-

nalise the above schematic Hamiltonian by product wave functions of general-

ized pair creation operators, the so-called Bethe Ansatz states. This solution

of the px + ipy Hamiltonian was pioneered by Ibañez et al. [206] and further

studied by Rombouts et. al.[207] and Dunning et. al.[216]. The latter serves
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as a comprehensive review about the px + ipy pairing Hamiltonian and related

integrable models. The free parameters of the Bethe ansatz wave functions (the

so called RG variables) are determined through the solution of a system of N

RG equations where N is the number of active pairs in the system. This system

of equations is highly non linear and solving it for arbitrary excited states

and a realistic number of pairs and single-particle levels has been a subject

of active research [207, 216–219]. One of the main difficulties of solving the

RG equations is circumventing the singular points, also called critical points.

These singular points arise when two or more RG variables become equal, and

lead to singularities in the RG equations.

The Hamiltonian in Eq. (8.2) has an interesting phase diagram: because of the

non-zero rotational order, the ground state exhibits a quantum phase transition

between qualitatively different superfluid states [207, 220]. The ground-state

energy shows corresponding non-analytical behaviour, as opposed to s-wave

pairing of which it is well understood that by increasing the interaction strength

there is a crossover (and not a quantum phase transition) between a weak-

coupling Bardeen-Cooper-Schrieffer [182] (BCS) and a quasimolecular Bose-

Einstein condensate (BEC) phase [221]. In the case of the px + ipy spinless

fermion pairing Hamiltonian, this quantum phase transition is only present

for sufficiently dilute gases ρ < 1
2 with ρ the fermion density. The transition

itself is continuous, third order and occurs at the so called Read-Green line,

defined as the points in the phase-diagram where the chemical potential µ

vanishes and BCS mean-field theory predicts a gapless excitation spectrum

[206]. The Read-Green line separates the weak pairing regime from the strong

pairing regime. The fingerprint of the Read-Green line is clearly visible in the

spectrum of finite systems (see section(8.7)). Another interesting line in the

phase diagram at weaker interaction constant is the Moore-Read line where the

total energy equals zero because all the RG variables collapse to zero, giving rise

to a boson-like condensate of equal generalised pairs. The condensation of all

distinct generalised pairs into a power of equal generalised pairs is reminiscent

of a bosonic state. At stronger interaction constant a second regime occurs,

the so-called ‘condensate regime’; where a number of RG variables collapse to

zero at particular interaction constants. The Moore-Read line is a special case

of these dynamics where all the RG variables collapse to zero. In contrast

with the Read-Green line there is no quantum phase transition at the Moore-

Read line [207]. A particular technique that can be used to get more insight

into the dynamics of the system and the phase diagram is ’bosonization’. The

process of bosonization maps the hard-core bosons present in the system (RG

variables) adiabatically onto real bosons. With this method it is also possible

to investigate the effects of the Pauli principle on the system, because it allows

us to gradually reintroduce the Pauli principle. This technique has already

proven its value for the reduced BCS model [201, 222].

The goal of this chapter is to extend the results of Ibañez [206] and Rombouts

[207], employing a new view to the phase diagram by linking the eigenstates
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to associated bosonic states of the Tamm Dancoff Approximation (TDA), by

deforming the quasi-spin algebra. This technique, introduced in a study [201]

of the collectivity of the reduced BCS model, can serve as an RG solver, in

addition to existing methods [217, 219]. The method is computationally stable

and fast. In essence, the singular points are avoided by linking the solution of

the N RG equations to the solution of one non-linear secular TDA equation,

which is easily solvable. It gives straightforward solutions in the limit of strong

and weak interaction constant. In the limit of intermediate interaction constant

the situation is more complex, but obtaining all solutions in this regime remains

possible, even for large systems.

In the following section (8.2) the basic notions and terminology of the hyper-

bolic RG model are introduced. To be self-contained, the link with the px+ ipy
pairing Hamiltonian is shown and the nonlinear RG equations are derived.

The concept of the quasi-spin pseudo deformation parameter is introduced

in section(8.3), and the connection with collective and bosonic states in the

Tamm-Dancoff approximation (TDA) are discussed. In section 8.6 a number

of different regimes of the px+ipy Hamiltonian are discussed. It starts with the

discussion of the infinite interaction regime for which a symmetry with the finite

interaction regime is derived. Some results for the special points of the phase

diagram: the Moore-Read and Read-Green line, which define the boundaries

of the ‘condensation regime’ are recalled and derived. Then the associated

bosonic states of the ground state of a spinless Fermigas with px + ipy pairing

interaction living on a two-dimensional disk is studied[207]. Some interesting

shifts of the associated TDA states occur when the interaction constant is varied

in particular when the system crosses the Moore-Read line. We calculate the

overlaps of the RG ground state with a selection of TDA states to improve

our understanding of the three different regimes: the weak pairing regime, the

condensation regime, and the strong pairing regime. To finish this section, the

properties and peculiarities of a positive interaction constant are discussed. At

the end, excited states are discussed. We depict for a small system the RG

variables of all the fully paired states in the complex plane. The availability of

the entire spectrum of modestly sized systems, makes it possible to investigate

the reminiscence of the Read-Green line for finite-size systems. A pattern for

the TDA state that connects to the first excited state at the Read-Green line

is found.

8.2 The hyperbolic Richardson-Gaudin model

The families of integrable Richardson-Gaudin models have their roots in a

generalised Gaudin algebra [191, 208] which is based on the su(2) algebra of

the quasi-spin operators [223]. The generators of su(2) with spin representation
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sj such that 〈S2
j 〉 = sj(sj + 1) are given by:

S0
j =

1

2

( j∑

m=−j
c†jmcjm −

Ωj
2

)
, S+

j =

j∑

m>0

c†jmc
†
jm̄, (8.3)

S−j =
(
S+
j

)†
, (8.4)

with c†jm an operator creating a fermion in single-particle state jm, with m

the projection of the Ωj = 2j + 1 degenerate level j, and jm̄ denotes the time

reverse of jm. These operators span the standard su(2) algebra which can be

straightforwardly deduced from the anticommutation relations of the fermion

creation and annihilation operators [223].

[
S0
i , S

†
j

]
= δijS

†
j ,

[
S0
i , Sj

]
= −δijSj ,

[
S†i , Sj

]
= 2δijS

0
j (8.5)

Each su(2) copy is associated with a single-particle level i. The irreducible

representations (irreps) are given by

|si, µi〉 = | 14Ωi − 1
2vi,

1
2ni − 1

4Ωi〉 , (8.6)

where vi stands for the seniority (the number of unpaired fermions) of the i

th level and ni is the number of fermions present in the ith level. For doubly

degenerate levels (Ω = 2), there are only two distinct irreps: si = 0 or si = 1
2 ,

corresponding respectively with seniority vi = 1 or vi = 0, which are commonly

referred to as ‘blocked’ or ‘unblocked’ levels. An RG integrable model is defined

by L Hermitian, number-conserving, and mutually commuting operators with

linear and quadratic terms of L copies of su(2) generators.

Ri = S0
i − 2γ

L∑

j 6=i

[
Xij

2

(
S†jSj + SiS

†
j

)
+ ZijS

0
i S

0
j

]
(8.7)

The number-conservation symmetry is very useful because we only need to

search in Hilbert spaces with a fixed particle number to find the eigenstates

of the Ri operators, which reduces the complexity of the problem significantly.

Following Gaudin [191] it is now possible to find conditions for the X and Z

matrices so all the Ri operators commute mutually. There are two families

of conditions, the rational and hyperbolic families respectively. The rational

model has the conditions,

Xij = Zij =
1

D2
i −D2

j

, (8.8)

whereas the hyperbolic model is represented by

Xij = 2
DiDj

D2
i −D2

j

, Zij =
D2
i +D2

j

D2
i −D2

j

. (8.9)
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Any linear combination of the Ri operators with the X and Z matrices fulfilling

one of the above conditions gives rise to an integrable model. It is possible to

construct a schematic px + ipy pairing Hamiltonian out of the above operators

with the X and Z matrices fulfilling the hyperbolic conditions,

Ĥ = λ
∑

i

D2
iRi (8.10)

with λ =
η

1 + 2γ (1−N) + γ (L−∑i vi)
, (8.11)

where γ is a parameter proportional to the interaction constant g = −2λγ,

η an arbitrary parameter that can be absorbed in λ and N the number of

pairs. After some straightforward algebraical calculations and subtraction of

the diagonal term g
∑
i S

2
iD

2
i , the following Hamiltonian appears:

Ĥfac = η

L∑

i=1

D2
i S

0
i + g

L∑

ij=1

DiD
∗
jS
†
i Sj . (8.12)

The link with the px + ipy Hamiltonian in eq.(8.2) is made by redefining

Di =
kx−iky√

2m
eiφ and g = −Gη

2 . The phase factor φ is chosen such that Di

is real and the residual phase factor is absorbed in the corresponding pair

creation and annihilation operators (8.3) without affecting the su(2) quasi-

spin algebra. Since ‘blocked’ levels (seniority vi = 1) do not contribute to the

pairing interaction, we focus on a full seniority zero space, or equivalently, the

fully paired space. So the number of active levels Lc = L −∑i vi equals L in

our examples.

The Hamiltonian (8.12) is built out of L integrals of motion of the hyperbolic

RG model. It follows that the Hamiltonian, the L integrals of motionRi and the

z component of the total quasi-spin, Sz =
∑L
i=1 S

z
i have a common eigenbasis.

The eigenstates are parametrised by the ansatz [216]

|ψ〉 =

N∏

α=1

K†α |θ〉 (8.13)

with K†α a generalised pair creation operator defined as

K†α =

L∑

k=1

DkS
†
k

ηD2
k − Eα

. (8.14)

The state (8.13) is an eigenstate of Ĥfac if the parameters Eα are solutions of

the following system of equations [208]

1 + 2g

L∑

i=1

D2
i si

ηD2
i − Eα

− 2
g

η

N∑

β 6=α

Eβ
Eβ − Eα

= 0, ∀α = 1 . . . N (8.15)
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The above equations are the RG equations for the px+ipy pairing Hamiltonian.

The total energy of the eigenstate is given by:

E =

N∑

α=1

Eα − η
L∑

k=1

D2
ksk (8.16)

The system of equations as described in eq.(8.15) is equivalent with the RG

equations in [207], with the definition Di =
√
ηi, g = −G, and a rearrangement

of Eα in the numerator of the third term of eq.(8.15). We have opted for the

form in eq.(8.15) for numerical stability, because the constant number 1 in

(8.15) acts as a reference point for the solver, as opposed to the form in [207]

where the RG variables have an attractor at infinity. Remark that the RG

equations are ill-defined for η = 0, however, it is possible to make a connection

with a η 6= 0 state (see section (8.6.1)). Furthermore the η = 0 state is already

extensively discussed by [224, 225]. The path of the real and imaginary part

of the RG variables of a toy model, with 12 doubly degenerate levels, and

equidistant Di = i, occupied by 6 pairs, as a function of the interaction constant

is depicted in Fig. 8.1.

An aspect of the RG models not much touched upon is the evolution of the

integrals of motion see eq.(8.7). If the solution of eq.(8.15) is obtained, and the

ground state |ψ〉 =
∏N
α=1K

†
α |θ〉 is constructed. It is possible to calculate the

integrals of motion corresponding to a particular eigenstate. Acting with Ri on

an eigenstate of the factorisable interaction Hamiltonian eq.(8.12), yields the

following eigenvalue:

ri = si


−1− 2γ

L∑

k 6=i

Zikdk − 2γ

N∑

β=1

Zβi


 (8.17)

with Zβi =
Eβ
η +D2

i
Eβ
η −D

2
i

and −2γ = 1
η
g+(1−N)+Lc

2

. The Eβ are the RG variables

of the eigenstate. A remarkable fact is that the integrals of motion associated

to particular eigenstates exhibit singularities at particular g as can be seen in

Fig.8.2. The Hamiltonian (8.12) uniquely defines a set of conserved charges

Ri (Eq. (8.7)) via the definition of Xik, Zik, and the parameters (λ, γ). As

such, the eigenvalues ri of Ri exhibit singularities for those values of g where γ

becomes singular. For example it is clear that when η = 1, zero seniority and

half filling the integrals of motion exhibit a singularity at g = −1, see also Fig.

8.2.

Nevertheless, the eigenvalues of the Hamiltonian contain no traces of these

singularities because they cancel exactly by construction via g = −2λγ.

8.3 Collective and pseudo deformed states

The eigenstate (8.13) is a product state of generalised pair creation operators

K†α (8.14). Opposed to the constituent fermions, the generalized pair creation
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Collective and pseudo deformed states

Figure 8.1: For a system with 12 doubly degenerate single-particle levels

occupied by 6 pairs, and Di = i, we depict: the real part of the RG variables

and the imaginary part of the RG variables as a function of the interaction

constant g. Note the qualitative differences between the RG variables of the

factorisable Hamiltonian depicted here, and those of the rational picket-fence

model (cfr. Fig. 1 in Ref [201 ]).

generators K†α commute, and are therefore commonly referred to as ‘hard-

core’ bosonic states. The product wave structure is reminiscent of bosonic

approximations, such as the Random Phase Approximation (RPA) and pp-

Tamm Dancoff Approximation (TDA) [30, 175]. Recent investigations on

the relation between the pp-TDA and the rational RG model [201, 222] have

shown that a one-to-one correspondence is possible between the bosonic-like

TDA states and the Bethe ansatz states of the rational RG model, either by
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Figure 8.2: The integrals of motion of all the eigenstates of a px + ipy pairing

Hamiltonian consisting of 12 doubly degenerate sp levels occupied by 6 pairs

as a function of the interaction strength. Colour coded according to the energy

of the eigenstate to which they correspond.

calculating overlaps [222], or a pseudo deformation of the algebra [201]. The

ground state of the reduced BCS Hamiltonian in the strong interaction regime

has a clear-cut connection to a condensate of the collective TDA eigenmode,

whereas the weak-interaction regime corresponds to a regular filling of the TDA

eigenmodes, as dictated by the Pauli principle. The one-to-one correspondence

in the strong interaction limit is particularly remarkable because it is well

established that the RG variables in the strong interaction limit are distributed

along an arc in the complex plane, which is not a condensate of equal generalised

pairs. In contrast to the rational model, the hyperbolic model supports a fully

condensed state at the Moore-Read line (and fractionally condensed states).

Therefore it is of interest to see whether a similar picture as in the rational

model applies for the hyperbolic model. The basic idea behind the TDA is

that it approximates the interacting system as a simple product state of single

excitation eigenmodes of the pairing Hamiltonian (see eq. (8.18)). In the next

subsections we elaborate on the method that is used to link those bosonic

states with the ‘hard-core’ bosonic states which are the N pair eigenstates of

the px + ipy pairing Hamiltonian. This is done by adiabatically increasing the
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Collective and pseudo deformed states

degeneracy of the levels to infinity by means of a deformation parameter in

the algebra of the factorisable Hamiltonian, linking the collective TDA states

adiabatically with the eigenstates of the px + ipy Hamiltonian. The method

turns out to be a very efficient solver of the highly singular system of eq.(8.15).

Even for some hundreds of pairs and levels this method stays stable. The only

drawback is that in the critical regime corresponding to medium interaction

constants the combination of TDA solutions which will lead to a solution of

the Hamiltonian is not known a priori.

8.3.1 TDA states

The elementary eigenmodes of the pp-TDA are determined by the 1-pair exci-

tation eigenvalue equation.

Ĥfac

L∑

i=1

YiS
†
i |θ〉 = E

L∑

i=1

YiS
†
i |θ〉 (8.18)

This equation is exact for the N = 1 pair system, and therefore has the Bethe

Ansatz eigenstate eq.(8.13) with ETDA as the solution of the RG equation for

N = 1.

1 +
g

2

∑

i

D2
iΩi

ηD2
i − ETDA

= 0. (8.19)

which is also commonly referred to as the secular TDA equation. This equation

has a geometric interpretation [30]; there are L−1 real solutions bound between

the successive poles η|Di|2 (i = 1 . . . L) and one unbound solution below

η|D1|2, also called the ‘collective’ TDA solution. Each solution defines a TDA

eigenmode, so a general TDA state can be built by picking N eigenmodes out

of the L elementary (repetition is possible). A TDA state can be written as:

|ψTDA〉 =

N∏

i=1

(
L∑

k=1

DkS
†
k

ηD2
k − ETDAi

)
|θ〉 , (8.20)

which is structurally equivalent to the Bethe Ansatz state (8.13), but instead

of using the RG variables as pair energy parameters, the energy of the TDA

eigenmodes are used.

The physical interpretation of eq.(8.20) is a state ofN 1-pair excitations with no

correlations between the pairs. If the pair creation and annihilation operators

of eq.(8.12) would have bosonic commutation relations, the above state would

be an exact eigenstate of eq.(8.12).

8.3.2 Pseudo-deformation

The pseudo deformation of the quasi-spin algebra provides a convenient means

to adiabatically connect the exact RG Bethe Ansatz states with the bosonic
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TDA states. The algebra is given by [201, 226]

[
S0
i , S

†
j

]
= δijS

†
j ,

[
S0
i , Sj

]
= −δijSj , (8.21)

[
S†i , Sj

]
= δij

(
ξn̂j −

1

2
Ωj

)

= δij

(
ξ2S0

i + (ξ − 1)
1

2
Ωj

)
, (8.22)

where ξ is the pseudo deformation parameter, tuning the Pauli principle be-

tween the full quasi-spin su(2) algebra for ξ = 1 and a bosonic hw(1) Heisenberg-

Weyl (ξ = 0) algebra. We employ the term pseudo deformation, because the

algebra eq.(8.21,8.22) is transformable to a genuine su(2) algebra for ξ 6= 0,

with irreducible representations labelled by

|si(ξ), µi(ξ)〉 = | 1
4ξΩi − 1

2vi,
1
2ni − 1

4ξΩi〉 . (8.23)

The physical picture associated with the pseudo deformed irreducible repre-

sentations is an opening of the sp orbitals by a factor of 1
ξ , giving rise to an

increased degeneracy of the orbital, with the possibility to accommodate an

arbitrary amount of pairs in the ξ → 0 limit. Because the pseudo deformed

algebra is eventually isomorphic to a genuine su(2) quasi-spin algebra, the

Hamiltonian eq.(8.12) remains RG integrable with associated pseudo-deformed

RG equations:

1 + 2g
∑

i

D2
i ξsi (ξ)

ηD2
i − Eα

− 2ξ
g

η

∑

β 6=α

Eβ
Eβ − Eα

= 0. ∀α = 1 . . . N (8.24)

It is easily verified that ξ = 1 gives rise to the original RG equations (8.15),

whereas the ξ = 0 limit decouples the RG equations into N independent 1-

pair excitation equations (8.19). To make the connection from the ξ = 0

state to the ξ = 1 state in which we are interested it is necessary to have

the ξ � 1 limit under control. This is because putting more than one pair

in the same TDA eigenstate will blow up the third term of eq.(8.24) at any

ξ 6= 0. Fortunately, there exists an approximate solution for very small ξ

which depends on the collective solutions by making use of the Heine-Stieltjes

connection [227, 228]. It resolves the divergences by adding an imaginary part

to the collective solutions associated to sp levels that are occupied by more

then one pair (see section(8.3.3)).

Eνα (ξ) ≈ Eα (0)− i
√

2Eα (0)

ηa
zν ξ � 1 ∀ν = 1 . . . n (8.25)
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With zνα the ν-th root of the ‘physicists’ Hermite polynomials Hn (z), aα given

by: aα = 1
2

∑
i

D2
iΩi

(ηD2
i−Eα(0))

2 and ν ∈ [1, . . . , n] where n is the number of

pairs associated with a collective solution Eα (0). Eq.(8.25) contains a lot of

information about the underlying structure of the RG variables. By choosing a

TDA distribution corresponding to an eigenstate of eq.(8.12), eq.(8.25) answers

immediately the question if a RG variable will be complex or real when the

system is not in the ’condensate’ regime. So the imaginary character of a RG

variable depends on the roots of the Hermite polynomials, the number of pairs

associated to a TDA level n and the sign of the corresponding TDA solution

Eα(0). As an example, in the weak interaction limit, where the structure of

the system can be regarded as a simple filling of the Fermi sea with hard-core

bosons, with only doubly degenerate levels, all the solutions are real because

n = 1 ∀α, and the roots of the Hermite polynomial of first order are zero.

In the strong interaction limit all pairs are associated with the lowest TDA

eigenmode which is negative for g → −∞. Therefore we see from eq.(8.25)

that all the RG variables are real. So for a set of doubly degenerate levels we

can only have complex RG variables at intermediate interaction constant.

8.3.3 The near-contraction limit

Here an approximate solution is derived to the generalised Richardson-Gaudin

equations eq.(8.24) for very small ξ. Recall that the RG equations with ξ = 0

are given by:

1 +
g

2

∑

i

D2
iΩi

ηD2
i − Eα(0)

= 0. (8.26)

The following form of the RG variables for very small ξ is assumed.

Eα (ξ) = Eα (0) +
√
ξxα (8.27)

ξ is chosen very small so it is possible to perform a series expansion in
√
ξ in

the second term of eq.(8.24)

1 + 2g
∑

i

D2
i

(
1
4Ωi − 1

2ξvi
)

ηD2
i − Eα (0)

[
1 +

√
ξxα

ηD2
i − Eα (0)

+ . . .

]

− 2
ξg

η

∑

β 6=α

Eβ (0) +
√
ξxβ

Eβ (0)− Eα (0) +
√
ξ (xβ − xα)

≈ 0. (8.28)
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Now we split the summation of the third term in the above equation into a

part for which Eβ (0) = Eα (0) and a part for which Eβ′ (0) 6= Eα (0).

1 + 2g
∑

i

D2
i

(
1
4Ωi − 1

2ξvi
)

ηD2
i − Eα (0)

[
1 +

√
ξxα

ηD2
i − Eα (0)

+ . . .

]

− 2

√
ξg

η

∑

β 6= α

Eα (0) +
√
ξxβ

(xβ − xα)

− 2ξg

η

∑

β′ 6= α

Eβ′ (0) +
√
ξxβ′

Eβ′ (0)− Eα (0) +
√
ξ (xβ′ − xα)

≈ 0. (8.29)

After gathering the terms of order O (1), we see that they are zero because of

eq.(8.26). For the O
(√
ξ
)

terms we obtain:

axα +
Eα (0)

η

∑

β 6=α

2

xα − xβ
= 0 (8.30)

The index β runs only over the n indices such that Eβ (0) = Eα (0), and

a = 1
2

∑
i

D2
iΩi

(ηD2
i−Eα(0))

2 . The equation above is of the Stieltjes type [229], so we

can define a Stieltjes polynomial.

P (x) =

n∏

i

(x− xi) , (8.31)

with xi the roots of the Stieltjes equations. Remark that
∑n
j 6=i

2
xi−xj = P ′′(x)

P ′(x) ,

multiply eq.(8.30) with P ′(x) and take into account the fact that polynomials

of the same order, with the same zeros are equal up to a scale factor which

in this case is an. This gives finally the following corresponding differential

equation.
Eα (0)

η
P ′′ (x) + axP ′ (x) = anP (x) (8.32)

If we now apply the transformation z = i
√

ηa
2E(0)x, we can transform this

equation into a ‘physicists’ Hermite differential equation.

H ′′ − 2zH ′ (z) + 2nH (z) = 0 (8.33)

So finally we get for the Eα (ξ) variables in the ξ → 0 limit:

Eα (ξ) ≈ Eα (0) + i

√
2Eα (0) ξ

ηa
zνα ξ � 1, ν = 1 . . . n (8.34)

with zνα the ν-th root of the ‘physicists’ Hermite polynomial Hn (z).
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8.4 Condensation points

The condition is determined for which p pairs with zero energy and q general

RG pairs form an eigenstate of the px+ipy pairing Hamiltonian (see eq.(8.12)).

For the Eα = 0 pairs the generalised pair operators become:

K†0 =

m∑

k=1

S†k
ηD∗k

, K0 =
(
K†0

)†
(8.35)

K0
0 =

m∑

k=1

S0
k

η
(8.36)

So we have to derive under which conditions the state:

|ψ〉 =
(
K†0

)p q∏

α=1

K†α |θ〉 (8.37)

is an eigenstate of the factorisable Hamiltonian (8.12). This will be done by

commuting the Hamiltonian through the product state (8.37), and breaking

down the resulting state into the eigenstate and the orthogonal part. Pulling

the Hamiltonian through the p condensed pairs gives:

H
(
K†0

)p
=

1

2
p (p− 1)

(
K†0

)p−2 [[
H,K†0

]
,K†0

]

+ p
(
K†0

)p−1 [
H,K†0

]
+
(
K†0

)p
H (8.38)

The commutators in the above expression are given by:
[
H,K†0

]
= −2

g

η
K†DK

†
0 (8.39)

[[
H,K†0

]
,K†0

]
= K†D

(
1− 2

g

η
K0

0

)
(8.40)

Where K†D =
∑
kDkS

†
k. We already know how the Hamiltonian commutes

through the product state
∏q
α=1K

†
α yielding the RG equations for q pairs, so

we only need to calculate the additional commutator.
[
K0

0 ,

q∏

α=1

K†α

]
= q

q∏

α=1

K†α (8.41)

At the end we get the following relation;

H
(
K†0

)p
(

q∏

α=1

K†α

)
|θ〉 =

(
K†0

)p
H

(
q∏

α=1

K†α

)
|θ〉

+
(
K†0

)p−1

K†D

q∏

α=1

K†α

[
−2

g

η
pq − g

η
p (p− 1) + p

(
1 + 2

g

η

m∑

k=1

sk

)]
|θ〉 (8.42)
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The first line corresponds to the standard RG equations for the q remaining

pairs, whereas the second line gives an additional constraint if we want the

state eq.(8.37) to be an eigenstate:

η

g
= 2q + p− 1− 2

m∑

k=1

sk. (8.43)

RG variables are only allowed to ’condense’ at N discrete ratios of the interac-

tion constant g and η if one of the two is held constant, where N is the total

number of pairs present in the system under investigation, because the number

p of condensed pairs can be any number between zero and N and q = N − p.

8.5 Around the condensation points

At the condensation points (8.43), p of the N RG variables are condensed to

zero, leading to singularities in the RG equations (8.15). However, it is possible

to extract the qualitative behaviour of the RG variables around the conden-

sation points by expanding the RG equations (8.15) around the condensation

points (8.43). For our purpose, it is convenient to rewrite the RG equations

(8.15) in the following form

1

Eα

[
η

2g
+
∑

i

si − (N − 1)

]
+
∑

i

si
ηD2

i − Eα

−
∑

β 6=α

1

Eβ − Eα
= 0, ∀α = 1 . . . N. (8.44)

Expanding the interaction constant g + δg around the condensation points

eq.(8.43)
η

g + δg
≈ η

g
− ηδg

g2
(8.45)

the equations become

1

Eα

[−p+ 1

2
− ηδg

g2

]
+
∑

i

si
ηD2

i − Eα

−
∑

β 6=α

1

Eβ − Eα
= 0, ∀α = 1 . . . N. (8.46)

It is reasonable to assume that the p condensed variables Eα (with α = 1 . . . p)

in the vicinity of the condensation points can be developed in a series expansion

of δgγ with γ a yet unknown exponent, whereas the other q = N − p variables

can be assumed finite.

Eα =

{
xαδg

γ α = 1 . . . p

yα α = p+ 1 . . . N
(8.47)
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The equations break down into two coupled sets

1

xαδgγ

[−p+ 1

2
− ηδg

g2

]
+
∑

i

si
ηD2

i − xαδgγ

−
p∑

β 6=α

1

(xβ − xα)δgγ
−

N∑

β=p+1

1

yβ − xαδgγ
= 0, (8.48)

1

yα

[−p+ 1

2
− ηδg

g2

]
+
∑

i

si
ηD2

i − yα

−
p∑

β=1

1

xβδgγ − yα
−

N∑

β=p+1 6=α

1

yβ − yα
= 0, (8.49)

with the first set (8.48) related to the condensed variables (α = 1 . . . p) and the

second set (8.49) referring to the non-condensed variables (α = p+ 1 . . . N). In

lowest order in δgγ , these equations become decoupled

p− 1

2xα
+

p∑

β 6=α

1

xβ − xα
= 0, ∀α = 1 . . . p (8.50)

p+ 1

2yα
+
∑

i

si
ηD2

i − yα
−

N∑

β=p+16=α

1

yβ − yα
= 0, (8.51)

The latter set of equations depend on the parameters in the model, whereas

the former set is purely geometric. It can be shown that the variables xα are

located at the corners of a regular p-polygon in the complex plain.

xα = x0ω
α−1, ∀α = 1 . . . p (8.52)

with ωp = 1. Substituting (8.52) into (8.50) yields the set of equations

p− 1

2
+

p∑

β 6=α

1

ωβ−α − 1
= 0, ∀α = 1 . . . p (8.53)

Because of the periodicity ωα+p = ωα, this set of equations is equivalent to one

single equation

p− 1

2
+

p−1∑

β=1

1

ωβ − 1
= 0, (8.54)

which can be shown to hold identically for periodic solutions ωp = 1. As a

result, the variables xα around the condensation point approach xα = 0 along

the corners of a regular p-polygon (See Figure 8.4). It is worth pointing out

that the geometric solution (8.52) is independent of the free variable x0 or the

scaling parameter γ, for which higher orders in the series expansion should be

considered. We leave this for further investigations.
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8.5.1 RG solver

The solution method described above for eq.(8.24) can be used as an efficient

solver for the hyperbolic RG equations. The absence of correlations in the

TDA states reduces the computational complexity of the problem significantly,

because only one equation (8.19) needs to be solved as opposed to N coupled

equations(8.15). This is the key idea behind the RG solver. The uncorrelated

system is solved and then the full pairing problem is retained by adiabati-

cally reintroducing the Pauli principle. We label the TDA eigenstates with

a partitioning of N out L integers. This means that the state is labelled by

vectors of integers (ν1, ν2, . . . , νl) with length L and νi = 0, . . . , N , with the

additional constraint that
∑L
i=1 νi = N . Two interesting cases are the fully

collective case (N, 0, . . . , 0) corresponding with the ground-state in the strong-

interaction regime, and




Ω1

2
, . . . ,

Ωn−1

2
, νn

︸ ︷︷ ︸
n(νn<Ωn

2 )

, 0, . . . , 0︸ ︷︷ ︸
L−n


 corresponding with the

ground-state in the weak interaction regime, which has proven to play a pivotal

role in the rational case [201]. When the interaction constant approaches zero,

the TDA collective states and the actual physical eigenstates become equal to

a filling of pairs of the lowest sp levels up to the Fermi surface. This is because

the pairing interaction behaves as a very small perturbation on the sp levels

in that case. This makes it possible to label a RG eigenstate with the TDA

distribution of pairs that connects to that RG state in the weak interacting

limit. The maximum number of pairs that can be associated to a TDA-solution

in the weak interaction regime, is never more then the total pair degeneracy

of the corresponding sp level. In the intermediate interaction regime the RG

states connect to TDA states with some eigenmode multiplicities larger than

the degeneracy of the corresponding levels, but lower than or equal to the total

number of (collective) pairs. When the interaction constant becomes stronger

the collectivity of the TDA state associated to the RG groundstate increases

gradually. Until the most collective TDA state connects to the RG ground

state, in this TDA state all pairs occupy the collective TDA eigenmode. In the

very weak and strong pairing regime it is clear which state connects to the RG

ground state. For the intermediate regime this is not the case, and an educated

guess for the TDA start distribution has to be made. An alternative solution

method is to obtain a solution in the very weak or strong interaction limit

and then changing g with small steps until the desired interaction constant

is reached. Singular points can be circumvented by a continuation of g in

the complex plane [230], or reducing the ξ value which enhances the effective

degeneracy of the single-particle levels (si (ξ) = 1
4ξΩi − 1

2vi), and therefore it

has a softening effect on the singular points. Using this approach it is possible

to solve systems of hundreds of levels occupied by hundreds of pairs [231]. In

practice we use our method to obtain a solution in a limit where the TDA

distribution for the state of interest is known and then gradually change the
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interaction constant to the interaction constant of interest. Critical points

are circumvented by giving the interaction constant a small complex phase or

deforming the pairing algebra.

All calculations presented in this chapter were performed on a standard desktop

computer. Results for a system with 256 levels and 128 pairs were obtained

for a full range of the interaction constant in a few hours. If solutions for

a full range of the interaction constant need to be calculated, then most of

the calculation time is spent in the circumvention of critical points. When

critical points are circumvented it is also necessary to check the continuity

of the energy regularly, because the possibility exists that the RG variables

jump to a different state. The Newton-Raphson method was used to solve the

pseudo-deformed and normal RG equations. The proposed method is very fast

and stable if the associated TDA distribution is known a priori for the state of

interest, for example for the first excited and ground state at the Read-Green

point (Section 8.7).

8.6 Different regimes

In this section we first investigate the connection between the η = 0 and η 6= 0

systems. Next we use the tools developed in the previous section to learn more

about the Moore-Read line and the two regimes of which the Moore-Read line

is the line of demarcation.

8.6.1 The η = 0 Hamiltonian

A connection is made between the η = 0 state and the state with η = −2g.

This is relevant because eq.(8.15) diverges when η → 0. So by having a method

to solve the η 6= 0 case we are able to generate the solutions of the η = 0 case.

The Bethe ansatz solution of the η = 0 state was first explored by Pan et.

al. [224] and later by Balantekin et. al. [225] who explored some symmetry

properties of the Bethe-ansatz equations. Two separate sets of Bethe-ansatz

equations were found, solutions of the first set were zero and the solutions of

the other set were not constricted to zero.

Suppose that we have found the eigenstate of the factorisable Hamiltonian

|ψ〉 =
∏N
α K

†
α |θ〉 with η = −2g for N pairs. Then we can write the Hamiltonian

as Ĥ = −2gK0
D + gK†DKD ≡ gKDK

†
D, with

K†D =
∑

k

DkS
†
k KD =

∑

k

D∗kSk K0
D =

∑

k

D2
kS

0
k. (8.55)

Note that K†D can not be written in the conventional K†α form (8.14). By

multiplying the eigenvalue equation Ĥ |ψ〉 = E |ψ〉 with K†D, we obtain:

K†DgKDK
†
D

∏

α

K†α |θ〉 = EK†D
∏

α

K†α |θ〉 (8.56)
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So it is clear that the state K†D
∏N
α K

†
α |θ〉 is an eigenstate of the Hamiltonian

(8.12) with η = 0 and N + 1 pairs. At this point the only question that

remains to be solved is: “What accounts for the mismatch in Hilbert space

dimensions?”. If L denotes the number of levels then the Hamiltonian with

η = −2g has
(
L
N

)
states in the fully paired space and the Hamiltonian with

η = 0 has
(
L

N+1

)
eigenstates. The resolution of this apparant paradox resides

in the fact that with ρ lower than half-filling the extra eigenstates of the system

with η = 0 have zero eigenvalue [224, 225] and these extra eigenstates match

exactly the number of missing eigenstates in the η = −2g case. Above half-

filling the opposite situation occurs, which indicates a symmetry between those

states. Another interesting feature is that the RG variables of a particular state

with the same energy in both systems are not equal but add up to the same

energy eq.(8.16). See Fig. 8.3 for a picture that shows the behaviour of the RG

variables as η approaches zero for a system with parameters given in Table 8.1

at quarter filling.

Figure 8.3: Depicted is the evolution of the real part of the RG variables of the

ground state when η evolves from zero to one for a system with level parameters

as described in Table 8.1 occupied by 10 pairs and g = −0.075. Note that the

RG variables remain real during the entire trajectory of η because the system

remains in the strong pairing regime.

8.6.2 Three regimes at attractive interaction constant

The RG equations become singular when two or more RG variables are equal as

can be seen in eq.(8.15). More in particular, at the singular points 2si + 1 RG

variables occupy only one single-particle level i and are therefore equal [232].

Those singular points correspond to a reordering of the corresponding bosonic
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states in the case of the rational RG model [201]. This is in contrast with

the factorisable interaction model, where this is only the case for interaction

constants weaker than the Moore-Read point, as we will show in the next

subsection. Another difference with the rational RG model is the occurrence

of the so called ‘condensate regime’ where a number of RG variables collapse

to zero at particular interaction constants:

Figure 8.4: The behaviour of the RG variables in the neighbourhood of the

Moore-Read point is depicted for a system with 6 pairs in 12 two-fold degenerate

levels, and η = 1 (see Fig. 8.1). The evolution of the corners of the two regular

hexagons are depicted respectively by a dashed, and a dot-dashed line. The

Moore-Read point occurs at η
g = −7.

η

g
= 2q + p− 1− 2

∑

k

sk (8.57)

with p the number of RG variables which have condensed to zero and q the

number of generic non-zero RG variables[207] (see subsection 8.4 for an alter-

nate derivation of this formula). In the continuum limit, the above formula

becomes: η
gL = ρ − 1 and η

gL = 2ρ − 1 respectively for N and 1 condensed

pairs with ρ = N
L and gL kept constant when L,N → ∞. It follows that the

points in phase space with N and 1 condensed pairs correspond to the Moore-

Read and Read-Green line for finite systems. The Read-Green and Moore-Read

points form the boundaries of the condensation regime. The Read-Green line

separates the strong pairing regime and the condensation regime, the Moore-

Read line separates the weak pairing regime and the condensation regime. The

strong pairing regime only exists below or at half-filling, above half-filling the

system never exits the condensate regime. Around those condensation points

it is possible to split up the RG equations in two separate sets in lowest order
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perturbation theory, a set for the condensed RG variables and one for the non-

condensed RG variables. The dynamics of the condensed RG variables in the

neighbourhood of their condensation points is described by regular polygons

and the requirement that the RG variables need to obey a mirror symmetry

with respect to the real axis. To fix ideas, if there are 6 pairs which condense

to zero then they approach a condensation point on the corners of a regular

hexagon, with all corners in the complex plane. After the condensation point,

an extra RG pair stays real, and only an even number of pairs can become

complex, so the RG variables leave the condensation point on a regular hexagon

with two corners on the real axis (see Fig. 8.4). The system that describes the

non-zero RG variables in the neighbourhood of a condensation point is given

by:

p+ 1

2Eα
+
∑

i

si
η|Di|2 − Eα

−
N∑

β 6=α,β=p+1

1

Eβ − Eα
= 0. ∀α = p+ 1, . . . , N

(8.58)

Remark that the labelling of the RG variables is arranged so the first p RG

variables correspond to the condensed RG variables and the last N − p RG

variables are non-condensed. The position of the collapsed RG variables in the

neighbourhood of their condensation point is determined by

Eα = z0e
2πiα
p , α = 1 . . . p. (8.59)

z0 = |z0|eiφ has a phase that forces mirror symmetry around the x-axis, e.g.

for 6 condensed pairs φ = 0 for g < gcon and φ = −π6 for g > gcon, and |z0|
approaches zero. The behaviour of the condensed RG variables around their

condensation points is only influenced by the other pairs through their number,

and the number of pairs which are real. At the Moore-Read line there are only

condensed pairs, and the position of all pairs is determined by eq.(8.59). (For a

derivation see subsection 8.5.) In the next two subsections the goal is to gain a

better understanding of the three regimes (weak, strong pairing and condensate

regime), by investigating, the RG variables and their associated TDA states.

8.6.3 Connecting the TDA state with the RG ground
state

We apply the machinery developed above on a spinless Fermi gas with px+ ipy
pairing interaction symmetry on a disk with a radius of five unit cells in a

two-dimensional square lattice of which we found the sp characteristics in [207]

(see table(8.1) for the sp characteristics).

From table(8.2), and Fig. 8.5, we notice that the amount of collectivity, as mea-

sured by the occupation of the lowest TDA solutions, gradually increases with
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|Di|2 0.04 0.08 0.16 0.20 0.32 0.36 0.40 0. 52 0.64 0.68 0.72 0.80 1.00

Ωk 4 4 4 8 4 4 8 8 4 8 4 8 12

sk 1 1 1 2 1 1 2 2 1 2 1 2 3

Table 8.1: Level parameters ηk and Ωk for a disk with a radius of five unit

cells in a two-dimensional square lattice [207]

g ν1 ν2 ν3 ν4 . . . ν12

0.00000 2 2 2 4 . . . 0

-0.01518 2 2 6 0 . . . 0

-0.02329 2 8 0 0 . . . 0

-0.02525 6 4 0 0 . . . 0

-0.02550 7 3 0 0 . . . 0

-0.02564 8 2 0 0 . . . 0

-0.02690 9 1 0 0 . . . 0

-0.02750 10 0 0 0 . . . 0

Table 8.2: The associated collective states of the ground state of a spinless

Fermi gas with px + ipy pairing interaction symmetry as a function of the

interaction constant g. With single-particle levels given by table(8.1). νn
corresponds to the occupation of the nth TDA solution. The Moore-Read

point is located at g = −0.03225.

stronger interaction constant. A particularly interesting result is the fact that

the most collective TDA state connects to the RG ground state just before the

Moore-Read line where all pairs collapse to zero. However, the connection there

is not very stable, and this remains during the entire ’condensation’ regime. We

have to resort to an imaginary deformation parameter ξ at particular points

to make the connection. Outside the ’condensation’ regime the connection is

stable, and imaginary deformation parameters are not necessary. It is also

clear that because of the degeneracy of the sp levels the ground state at low

interaction constant corresponds to a TDA distribution of (22240...0) for 10

pairs. Every single-particle level is able to contain an even number of pairs, so

if we turn the Pauli principle on by increasing ξ, the RG variables combine into

complex conjugate pairs even at very weak interaction constant, as opposed

to systems with only two-fold degenerate sp levels where the RG variables are

real for small interaction constants. In that case, only one pair is associated to

each TDA eigenmode, and the RG variables can only recombine into complex

conjugate pairs if two neighbouring pseudo-deformed RG variables approach a

singularity, and recombine in a complex conjugate pair. The connection with

the (730...) and (910...) state is only present for a very small interval of the

interaction constant, and should be seen as a boundary for a transition of the

system of one even state to another.

Recapitulating the findings of this section, we find at small interaction constant

a regime for which the ground state gradually connects to more collective
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Figure 8.5: The path of the deformed RG variables Eα (ξ) in the complex plane

for the two-dimensional Fermigas of which the levels are depicted in Table 8.1,

for some well chosen values of g: g = -0.01, g = -0.02, g = -0.0252, g= -0.0254,

g = -0.026, g= -0.03600, g=-0.038, g = -0.0434 , g=-0.0435. The path starts

from the bosonic eigenmodes (Eα (0)) = (~ω) depicted with thick dots and

ends at the exact RG variables depicted with open dots. The vertical dashed

lines indicate the singularities in eq.(8.19).

TDA states with increasing interaction constant. The reordering of pairs of
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the associated bosonic state occur at singular points or in between singular

points. Whenever a singular point occurs there always is a reordering of the

associated TDA state. This happens until the Moore-Read line where the

TDA-state is in the most collective form. In the weak pairing regime the

connection and the associated TDA states have strong similarities with the

reduced BCS Hamiltonian [201]. During the ’condensate’ regime when the

interaction constant fulfils 2N − 2 − Lc ≥ η
g ≥ N − 1 − Lc, the connection

with the most collective TDA state remains but we have to resort to a complex

deformation parameter, until the last condensation point is passed. In the

strong pairing regime, the connection with the most collective TDA state is

firmly established.

8.6.4 Overlaps with the collective states

In this subsection we investigate the overlap of the ground state of a factorisable

interaction Hamiltonian with some selected TDA states over an entire range of

the interaction constant. Such overlap has proven to provide valuable informa-

tion about the RG states and their collective character [201, 222]. Investigations

of the overlap shows that at weak interaction constant the behaviour of the

RG variables resembles that of the reduced BCS Hamiltonian[201]. Beyond

the Moore-Read line this is not the case anymore. Fig. 8.6 depicts the overlap

of some well chosen TDA states with the ground state of the system consisting

of 6 pairs in 12 doubly degenerate sp levels (cfr. Fig. 8.1). We find that

for very small interaction constant the overlap of the RG grounstate with the

TDA ground state (1111110 . . . 0) is almost equal to one, as expected. Then

there is an intermediate regime where some other TDA states with increasing

collectivity have the highest overlap with the RG ground state. The interaction

constants where this occurs are the same as the interaction constants where the

TDA state that connects to the ground state changes. Until this point similar

behaviour as in the reduced BCS case is observed. However, the situation alters

as the condensation regime is approached. Here, the most collective TDA state

(60 . . . 0) goes to a local minimum, while most other states exhibit a maximum

in that region. The TDA state with 1 pair in the lowest TDA solution and 5

pairs in the first excited TDA state has the largest overlap, although the most

collective TDA state connects to the RG ground state. This peculiar behaviour

starts around the Moore-Read point, so in the ’condensate regime’ it is no longer

true that the TDA state with the highest overlap with the RG ground state

connects to the RG ground state according to our scheme. The reason for this

is that after the Moore-Read point some RG variables that are still complex

have very small negative real part. The overlap with the (150 . . . 0) state is

largest here because 5 RG variables are very close to the 1st excited TDA state

and 1 is strongly negative close to the lowest TDA level. The reason why that

TDA state does not connect to the RG ground state is probably caused by

the singularity in eq.(8.24) when some RG variables approach zero. Therefore,

all the deformed RG variables have to depart from the lowest TDA solution
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Figure 8.6: Depicted are the overlaps of a selected set of bosonic states with

the ground state of a system with 12 doubly degenerate levels, η = 1, and

|Di| = 1 as a function of the interaction constant. The bosonic states are

labelled according to their TDA eigenmode occupation. The notation is as

follows (ν1ν20 . . . 0) means that the bosonic state is constituted of ν1 bosons in

the TDA state with the lowest ETDA and ν2 bosons in the first excited TDA

state.

to connect with the RG ground state of eq.(8.12). With increasing interaction

constant, the most collective TDA-state gradually becomes the TDA state with

the largest overlap with the ground state of the px + ipy pairing Hamiltonian.

This happens after the condensate regime when all the RG pairs become real.

From then on, the TDA state with the highest overlap with the RG ground

state is again the state which connects to the RG ground state, by the pseudo

deformation. However, the overlap of the most collective TDA state in the

strong interaction regime with the RG ground state is not as prominent as in

the reduced BCS case [201]. The natural question that occurs is: “Will the

overlap of the most collective TDA state with the RG ground state approach

one in the limit of a very strong interaction constant?”. If we calculate the

overlap of the system depicted in Fig. 8.6 but with η � 1 (which corresponds

to the limit of large interaction constant), we see that in this limit all the

overlaps of the TDA states with the RG ground state have a value around

0.660 and the (60 . . . 0) state has the largest overlap with a value of 0.668. This

indicates that even at very big interaction constant the overlap of the most

collective TDA state with the RG ground state will never approach one. This

plateau appears to be density dependent, increasing with decreasing density.

We conclude that according to the overlaps there are three different regimes:

at low interaction constant a regime that shows similarities with the reduced

BCS Hamiltonian and after the Moore-Read point a regime that is significantly
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different with a minimum of the overlap of the TDA state which connects to the

RG ground state. After the Read-Green line this is restored and the TDA state

that connects to the RG ground state has the largest overlap again. Opposed to

the rational case, there is no consistent isomorphism between the TDA states

connecting to the RG ground state via the pseudo deformation, and the TDA

state with a maximal overlap.
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(a) The ground state

(b) The (0 1 1 1 1 1 1 0 0 0 0 0) state

(c) The (0 1 0 1 1 0 1 0 1 0 1 0) state

(d) The (1 1 1 0 0 0 0 1 0 0 1 1) state

(e) The (0 0 1 1 1 1 0 0 1 0 1 0) state

Figure 8.7: The real and imaginary part of the RG variables of a system with

12 doubly degenerate sp levels and 6 pairs as a function of a positive interaction

constant g of some well chosen eigenstates.
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8.6.5 Repulsive p-wave interactions

There is no mean-field solution in the yet unexplored repulsive case available.

So the exact solution method presented above offers a unique tool to investigate

repulsive p-wave interactions. A difference compared to attractive pairing

interaction is that the RG variables now recombine to higher TDA states

instead of lower, as the interaction strength is increased. Pairs in isolated

sp levels can not recombine, so the RG variables corresponding to those sp

levels that remain real and close to the TDA solution for the entire range of

the interaction strength. There are even start TDA states with neighbouring

occupied sp levels that remain real during the entire trajectory, and which do

not couple to complex conjugate pairs, as is visible in the trajectories of the

RG variables of the ground-state energy in Fig. 8.7a. The RG variables of

some excited states follow similar trajectories. In general the trajectories of

the RG variables for the hyperbolic RG Hamiltonian with repulsive interaction

constant exhibit three different features.

• A RG variable can remain real during the entire trajectory of the inter-

action constant, see Fig. 8.7(a).

• Two real RG variables can recombine into a pair of complex conjugate

variables by creating a singular point in the trajectory space, after which

the complex part gradually increases, see Fig. 8.7(b).

• Two complex conjugate RG variables can become real again through a

sudden jump in complex space and a similar jump in real space. Remark

that the jump of the real parts of the RG variables is in the opposite

direction so the energy stays continuous and the path of the other RG

variables is not affected.

In general, a trajectory of the RG variables contains all possible combinations

of these events. Some trajectories are very similar to the ones of the rational

RG model with a positive interaction (see for example the trajectory of the

(011111100000) state Fig. 8.7b, in contrast with a negative interaction constant

where this similarity is only present before the Moore-Read line. For a nice

example of recombinations see Fig. 8.7c for the (010110101010) state. There

is no condensate regime at positive interaction constant, and the RG variables

do not need to become real for large g. There is a category of trajectories

that do not exist in the spectrum of the rational RG model that we shall refer

to as ‘sudden complex’ (sc) trajectories (see Fig. 8.7d). In those trajectories

we see that two real RG variables suddenly become a complex conjugate pair

with significant complex part, as opposed to the rational RG model, where

the formation of complex conjugate pairs of RG variables is a gradual process

resulting from a singular point. Finally, we refer to Fig. 8.7e for a combination

of the different events described above. Notice also that the energy remains

continuous during all those trajectories as is required. We found that the sc
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trajectories only occur above half filling, the RG variables under half filling

remain real and analytical during the whole trajectory. Furthermore the Read-

Green point at positive interaction constant occurs only for filling fractions

above half-filling. The system at half-filling seems to have characteristics of

a transitional region, because the ground state has the same behaviour as

below half-filling but some excited states start to exhibit ’sudden collapses’

and singular points as is typical for above half-filling (see Fig. 8.7).

Figure 8.8: This figure shows all the RG variables of the full spectrum with 6

pairs in 12 doubly degenerate equidistant levels and zero seniority as a function

of increasing attraction strength. Colour coded according to the energy of the

eigenstate to which they correspond.
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(a) 3 pair (b) 6 pair

(c) 9 pair

Figure 8.9: All excitation energies of a system with 12 doubly degenerate single

particle levels occupied by a) 3, b) 6 and c) 9 pairs and equidistant Di = i as

a function of the interaction constant g.

8.7 Excited states

12 levels 1p 2p 3p 4p 5p 6p

Read-Green point g -0.0833 -0.1000 -0.1250 -0.1666 -0.2500 -0.5000

TDA label (010. . .) (0110. . .) (01110. . .) (011110. . .) (0111110. . .) (01111110. . .)

TDA Read-Green (010. . .) (110. . .) (210. . .) (310. . .) (410. . .) (510. . .)

Energy 2.108110 4.323544 7.257231 11.627856 20.383734 42.779908

Table 8.3: The interaction constant (g) at the Read-Green point is calculated,

for a system with 12 doubly degenerate sp levels and η = 1. The first excited

state reaches a minimum around the Read-Green point, the energy normalized

to the ground-state energy at the Read-Green point is given, together with the

start TDA distribution (label), and the TDA state that connects to the first

excited state at the Read-Green point.

The above proposed algorithm to solve the RG equations is very robust and

fast. This makes it possible to study entire spectra of mesoscopic systems.

It catches the eye that the RG variables of all states have the same typical
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(a) 1 pair (b) 2 pair

(c) 3 pair (d) 4 pair

(e) 5 pair (f) 6 pair

Figure 8.10: The excitation energies of a system with 12 doubly degenerate sp

levels occupied by 1 to 6 pairs (a-f) as a function of the interaction constant

g. The Read-Green point is depicted by a vertical line that divides the weak

from the strong pairing regime.

evolution for changing interaction constant see Fig. 8.8. See reference [233] for

a movie that shows the evolution of the RG variables of all seniority zero states

as the interaction strength is increased. Another interesting feature of the

px+ ipy Hamiltonian at half-filling is the fact that the gap between the ground

state energy and the energy of the first excited state is of the same order as gaps

between higher excited states for an entire range of the interaction constant.
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Figure 8.11: The energy differences between the ground state and the first

excited state at the Read-Green point are depicted, this for several systems with

an increasing number of pairs, all at quarter-filling, Di = i with i = 1 . . . 4N

and η = 1. The excitation energies are rescaled with a factor (4N)2 and the

interaction constant is shifted so the Read-Green point occurs for all systems

at 0 (see eq. (8.57)).

Fig. 8.9 depicts the entire spectrum of a system with 12 doubly degenerate

levels occupied by respectively 3,6 and 9 pairs with η = 1. The Read-Green

line for 3 pairs in 12 levels is crossed at g = −0.125, which is exactly where

the energy difference of the ground state with the excited states reaches a local

minimum and starts to increase rapidly. Before the Read-Green line it is also

possible for excited states to decrease the energy difference with the ground

state, after the Read-Green line this is not allowed any more. This is also

the case for 1, 2, 4, and 5 pairs as can be seen in Fig. 8.10. The TDA label

associated to the state with the local minimum excitation energy seems to have

a pattern namely (0 1 . . . 1︸ ︷︷ ︸
N

0 . . .), and the TDA state that connects to the first

excited state at the Read-Green interaction constant has the form (N−1 1 0 . . .)

(see Table 8.3). For 5 and 6 pairs, the minimum of the 1st excited state occurs

a bit before the Read-Green point. If the number of levels and pairs is increased

while keeping the occupancy constant, the pattern remains and the increase of

the excitation energies after the Read-Green point becomes much steeper, and

more and more states reach their minimum in excitation energy at the Read-

Green point. In the continuum limit BCS theory predicts a strongly degenerate

ground-state at the Read-Green point [206]. In order to investigate numerically

the gap for growing system sizes approaching the thermodynamic limit, one

would need to calculate a combinatorial number of excited states. Because
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of the systematic (0 1 . . . 1︸ ︷︷ ︸
N

0 . . .) TDA state labelling, observed in the small

system (Fig. 8.10), we conjecture that the same phenomenon holds for larger

systems, so we only need to calculate two states to determine the minimum

excitation energy at the Read-Green point. Therefore, it is possible to explore

the behaviour of the gap for large system sizes. Fig. 8.11 shows the results

for a system with an increasing number of pairs at quarter-filling. We take

Di = i,with i = 1 . . . 4N for N = 6 . . . 40. (Note that a full scan of the Hilbert

space would require the calculation of
(

160
40

)
≈ 8.6 · 1037 states for N = 40.) The

Read-Green point is predicted to be at g
η = −1

2N+2 . After rescaling the spectrum

with (4N)2, in order to guarantee a consistent definition of the thermodynamic

limit with the highest sp level at D2
4N = 1, we see that the gap decreases for

increasing system size as expected. Another remarkable fact is that for bigger

systems the gap, after the Read-Green point, increases much faster than for

smaller systems. This effect is stronger for lower filling fractions. Above half

filling the system remains weakly paired over the entire range of the interaction

constant and there is no hint of the formation of a gap.

8.8 Conclusions

In conclusion, we presented an efficient and stable method to solve a class of

integrable pairing Hamiltonians. This makes it possible to probe entire spectra

of systems with Hilbert spaces way beyond the realm of exact diagonalisation

techniques. The method solves the Bethe ansatz equations by means of a

deformation parameter that adiabatically connects the genuine boson limit to

the hard-core boson limit. Furthermore, we related the singular points of the

RG variables to a change in the associated TDA distribution and corresponding

overlaps. The ground state connects with the most collective TDA state slightly

before the Moore-Read line. In the low interaction regime, the path of the RG

variables of the factorisable interaction has some resemblances with the reduced

BCS Hamiltonian which also appeared in the overlaps with the bosonic states.

However, after the low interaction regime, an entirely different regime arises

that has no resemblance with a regime of the reduced BCS case. Remnants of

the Read-Green line for finite size systems are found as a local minimum of the

first excited state, before the Read-Green point excited states can lower their

energy difference with the ground-state energy after the Read-Green point this

is no longer possible. Finite-size effects cause this minimum to shift to weaker

interaction strength when half-filling is approached. With an increasing amount

of sp levels this shift gets noticeable for higher filling fractions only. A pattern

is found for the label of the TDA state that becomes the first excited state

at the Read-Green point and the TDA state that connects to the first excited

state at the Read-Green point.
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In this thesis the applicability of the seniority number as a new tool to create

many body wave functions is investigated. This was done in two parts. The first

part dealt with the seniority number as a tool to truncate the Hilbert space and

create a hierarchy of methods with rapid convergence towards the FCI limit. In

the second part the non-relativistic quantum chemical Hamiltonian was further

simplified to grasp the essential physics of electron pairing. These pairing

phenomena are important in areas ranging from condensed matter physics and

nuclear physics to quantum chemistry. Interestingly, the seniority number is

an exact quantum number for pair Hamiltonians and there exist fast linear

scaling solution methods for some of those Hamiltonians based on their exact

integrability, allowing to obtain solutions for systems with hundreds of electron

pairs in hundreds of single-particle levels.

Truncating the full configuration interaction wave functions by the seniority

number revealed that the bulk of the static correlation can be attributed to

the seniority zero determinants for many molecular systems. It was shown

that the optimization of the basis was of upmost importance to obtain good

results with this hierarchy. Good bases are the seniority minimized basis of the

FCI wave function that turned out to be the best orthonormal basis for wave

functions that contain many seniority zero determinants such as the DOCI wave

function. Furthermore the natural orbital basis and the seniority minimized

basis of the CISD wave function turned out to be good approximations to

the seniority minimized basis of the FCI wave function. Another alternative

is the orthonormal basis coming from a local optimization using sequences of

Jacobi rotations that minimize the energy by rotating to the optimal angle

for two randomly chosen orbitals in a self consistent manner. This local

basis has the problem that when the starting point was not sufficiently well

chosen it got stuck in local minima. A further basis originates from a global

optimization procedure such as simulated annealing. This approach yielded the

lowest energies, but unfortunately it was the slowest optimization procedure,

and to obtain the lowest energies the quality of the wave function is sometimes

reduced. Another point is that the DOCI wave function is sensitive with respect

to symmetry breaking. Significantly better wave functions and energies are

found when the spatial point-group symmetry of the single-particle orbitals is

allowed to be broken during the optimization process.

The main advantage of the seniority based procedure is its rapid convergence

towards the FCI limit and that to a very low order in this hierarchy the bulk of

the static correlation is adequately described. This is probably due to the fact

that truncating based on seniority is reference independent, in big contrast

with the standard excitation based truncated CI methods. A problem that

arises with using the seniority hierarchy is that one needs pair broken terms

to describe the dynamic correlation. If dynamic correlation is important, the

DOCI wave function alone is not sufficient and one can add CISD determinants

or use perturbation theory. Another possible approach is to go towards higher

orders of the seniority hierarchy and add the seniority four sector, as we found

181



that when a well optimized DOCI basis is used the seniority two sector plays

very little to no role. Furthermore variationally optimizing the density matrix

coming from a seniority zero wave function leads to a more favourable scaling

with the system size than the standard variational optimization of the second

order reduced density matrix. This method obtains very accurate potential

energy curves with a very good scaling. As a last test for the seniority hierarchy

constrained CI calculations were performed. Those calculations showed that

the DOCI wave function gave the same integer Mulliken populations at infinite

distance as the FCI wave function in big contrast with the CISD wave function

which obtained fractional mulliken populations. This is probably due to the

size consistency of the DOCI wave function.

The main conclusions for the second part are that very fast linear scaling

solution methods exist for a class of integrable Richardson-Gaudin models

based on a deformation of the quasi spin algebra. This technique was used to

obtain solutions for the reduced BCS Hamiltonian and the px+ipy Hamiltonian.

For the reduced BCS Hamiltonian the dependency of the superconducting

state on the geometry of nano-grains was studied. The dependency on the

geometry is introduced by adaptations of the single-particle spectrum based

on parameters coming from the geometry as seen by the ’particle in a box’

concept. By means of perturbation theory, it was found that the condensation

energy in the weak-coupling regime is mainly dependent on local single-particle

level density fluctuations, whereas the strong-coupling regime is also affected

by global level density fluctuations. Introducing impurities, as a second control

parameter, proved to be a more gradual probe for pairing correlations. An

impurity gives a unique quasi-periodic structure to each single particle level

as a function of the position of the impurity, such that it becomes possible to

weigh the contributions of the single-particle levels to the condensation energy

by investigating the frequency of oscillations. For the px+ ipy Hamiltonian the

interesting phase diagram was studied. The singular points of the Richardson-

Gaudin (RG) variables were related to a change in the associated Tamm-

Dancoff approximation (TDA) distribution and corresponding overlaps. The

ground state connects with the most collective TDA state slightly before the

Moore-Read line. In the low interaction regime, the path of the RG variables

of the factorisable interaction has some resemblances with the reduced BCS

Hamiltonian which also appeared in the overlaps with the bosonic states.

However, after the low interaction regime, an entirely different regime arises

which has no resemblance with a regime of the reduced BCS case. Remnants of

the Read-Green line for finite size systems are found as a local minimum of the

first excited state, before the Read-Green point excited states can lower their

energy difference with the ground-state energy after the Read-Green point this

is no longer possible. Finite-size effects cause this minimum to shift to weaker

interaction strength when half-filling is approached, with an increasing amount

of sp levels this shift gets noticeable for higher filling fractions only. A pattern is

found for the label of the TDA state that becomes the first excited state at the

Read-Green point and the TDA state that connects to the first excited state at
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the Read-Green point. Those applications show the power of the exact solution

method based on the integrability of the Richardson-Gaudin models, as many

systems were solved during the process that consisted of ten till hundreds of

pairs with similar amounts of single-particle levels leading to gigantic Hilbert

spaces.

The results of the two parts can be combined in future work. The first part

showed that the seniority based hierarchy grasps the bulk of the static cor-

relation if a suitable orthonormal basis is used and the second part showed

that there exist fast linear scaling solution methods of approximate pairing

Hamiltonians that live in the seniority zero sector of the Hilbert space. This

hints on the interesting approach of variationally optimizing the parameters

of the Richardson-Gaudin Hamiltonians such that the resulting Richardson-

Gaudin wave function approximates as close as possible the DOCI wave func-

tion for a given molecular system. Good candidates for the orthonormal basis

used for those variational optimized Richardson-Gaudin wave functions are the

orthonormal bases that minimize the seniority of the CISD or sen(0,2) wave

functions or the LOCAL optimized bases. If this succeeds, a solver for the

molecular problem that scales linearly with the system size and that grasps the

bulk of the static correlation of many molecules will be available. Promising

results were already obtained for the hydrogen dimer and the BeH2 molecules,

but much more work remains to be done, before final conclusions can be made.
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Appendix A

Second quantization

Let φi(x) be a basis of M orthonormal spin orbitals. x stands for the spatial

and spin coordinates. A Slater determinant is an antisymmetrized product of

one or more spin orbitals.

Ψdet =
1√
N !

∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)

φ1(x2) φ2(x2) . . . φN (x2)
...

...
. . .

...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣
(A.1)

In the second quantization approach an abstract vector space is introduced

called the Fock space, where each determinant is represented by an occupation-

number vector k,

|k〉 = |k1, k2, . . . , km〉 , (A.2)

with kp = 1 when φp is occupied and otherwise kp = 0. The occupation number

vectors are orthonormal. Creation and annihilation operators are defined by

the following relations on the occupation number vectors:

a†i |k1, k2, . . . , 0i . . . , km〉 =

i−1∏

q=1

−1kq |k1, k2, . . . , 1i . . . , km〉 (A.3)

a†i |k1, k2, . . . , 1i . . . , km〉 = 0 (A.4)

ai |k1, k2, . . . , 0i . . . , km〉 = 0 (A.5)

ai |k1, k2, . . . , 1i . . . , km〉 =

i−1∏

q=1

−1kq |k1, k2, . . . , 0i . . . , km〉 . (A.6)

These creation and annihilation operators fulfill the following anti-commutation

relations:

a†iaj + aja
†
i = δij (A.7)

a†ia
†
j + a†ja

†
i = 0 (A.8)

aiaj + ajai = 0. (A.9)
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Furthermore a vacuum state is defined such that for every annihilation operator:

ai |vac〉 = 0 (A.10)

〈vac|vac〉 = 1. (A.11)

This representation has straightforward formulations for the particle-number

operator N̂ and the excitation operators X̂p
i .

N̂ |k〉 =

M∑

i=1

N̂i |k〉 =

M∑

i=1

a†iai |k〉 =

M∑

i=1

ki |k〉 (A.12)

X̂p
i = a†pai, (A.13)

where M is as before the number of single-particle orbitals.
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Appendix B

Computer codes

In this appendix some background information is given about the computer

codes developed and used in this work. The two main software packages that

were developed are: CIFlow for the configuration interaction theory part, and

RG for the Richardson-Gaudin part.

B.1 CIFlow

CIFlow is a very flexible and general configuration interaction program that

is available as open source at [46]. It is written in C++ using the BLAS

and LAPACK libraries for linear algebra operations and the HDF5 library for

storing data. The one- and two-electron integrals are calculated using PSI4 [38]

and stored in a HDF5 file using the Hamiltonian class of CheMPS2 [39, 40].

Furthermore, it comes with many python scripts that can be used as examples

for preparing input, postprocessing, visualization, . . ..

The main selling point of CIFlow is its flexibility. In essence all possible

Hamiltonians can be solved as long as the one and two body integral matrix

elements are known. CIFlow has already been used to generate results for the

non-relativistic quantum chemical Hamiltonian (with and without constraints),

the Hubbard Hamiltonian, the reduced BCS Hamiltonian, and the px + ipy
pairing Hamiltonian. Furthermore it has the flexibility to solve for all possible

CI wave functions for all Hamiltonians, this can be done by providing a list of

Slater determinants in binary string format. This flexibility makes it possible to

test quickly new multi-reference CI methods for interesting Hamiltonians one

might encounter. CIFlow makes it also easy to perform basis transformations,

keywords for many important orthonormal bases are provided such as the

seniority minimized ones, the natural orbitals, the RHF orbitals, . . .. CIFlow

also has the ability to take into account non-orthogonal bases. Furthermore

basis sets with up to 512 orbitals are supported. This is in contrast with many
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CIFlow

of the big quantum chemistry packages of which the CI solver is mostly limited

to 32 or 64 orbitals.

Four main CI routines are available: doci, fci, file, big. The first three are faster

than the last because the first three keep the Hamiltonian matrix in a sparse

matrix format in memory. If this is no longer possible, only the big option

works, which builds the Hamiltonian on the fly while iteratively diagonalizing

it. Model Hamiltonians such as the Hubbard model or pairing Hamiltonians

can be kept in memory for larger dimensions because the increased sparsity is

exploited by the SparseMatrix classes. The DOCI code is quite fast, and most

orbital optimization routines are only tailored towards DOCI. The intended use

for the FCI code is testing, benchmarking, and generating interesting bases for

the other methods. With the file option, one can provide Slater determinants

in binary string format contained in a file of which the name should be on the

next line in the input file. The combined flexibility of user provided/created

integrals and random non-ordered determinants makes it very difficult for speed

optimization. Therefore the intended use for the file and big options is to test

quickly new fancy multi-reference CI methods and calculate some properties of

their wave functions, if they perform well it is always possible to create another

program specifically optimized for those methods.

Many orbital optimizations are implemented, however, most are specifically

tailored towards low seniority wave functions, as CIFlow was originally intended

to be a DOCI solver, and orbital optimization is of utmost importance for

DOCI. The following keywords are important:

• local: Very fast optimizer with good results based on a subsequent ro-

tation to the minimum energy of pairs of Jacobi orbitals, but with no

guarantee one reaches the global minimum. It is probably the best

choice if one is just interested in low DOCI energies for big systems. It

needs typically a decent starting base (RHF orbitals are enough around

equilibrium geometry).

• sim: Slow optimizer based on a simulated annealing procedure, only

suitable for small systems in the STO-3G basis with no point-group

symmetry or 6-31g when only orbital rotations are allowed of orbitals

corresponding to the same irreducible representation of the point-group.

High chance of reaching the global minimum for small systems, and for

these systems it generates lower energies than local. Sim can be used for

benchmarking.

• fmmin: Generates the seniority minimized FCI bases and uses this basis

to calculate the CI energy for the requested wave function. As explained

in the thesis, the seniority minimized FCI basis generates the best DOCI

wave functions, but is slow because it has to perform many FCI calcula-

tions.
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• fno: Calculates the CI energy and the wave function in the natural orbital

basis.

• hmmin: This keyword seniority minimizes the orthonormal basis for the

current CI wave function. It can be used in the following workflow:

seniority minimize the basis for a truncated CI wave function such as

CISD and use the resulting basis as input for a low seniority method such

as DOCI. This also gives very good DOCI wave functions and energies

with smaller computational effort than seniority minimizing the full FCI

wave function.

• mmind: Is a similar keyword it seniority minimizes the current CI wave

function and then uses the resulting basis to generate the DOCI energy

and wave function.

When all keywords are provided the general procedure goes as follows. The CI

Hamiltonian is built with the Slater-Condon rules for a given orthonormal basis.

This Hamiltonian can be kept in memory as a sparse matrix or recalculated

on the fly dependent on the method keyword. For the diagonalisation an

implicitly restarted Arnoldi algorithm is used[54]. This algorithm finds the

ground state energy by using only a sparse matrix-vector product. Every

N-particle state is represented by a bit string. Calculating a single element

of the Hamiltonian is very quick and as all elements are independent, this

is very well suited for parallelization. It is this parallelization that makes

it possible to perform CI calculations routinely for Hilbert dimensions of a

couple of million determinants. Furthermore, efficient addressing schemes are

implemented to find the rank of a particular bitstring (as presented in Helgaker

et. al.[4]). To conclude this appendix, some final practical remarks for working

with CIFlow are given. The debug flags are default on in the Makefiles: -g

-ggdb3 -D DEBUG. This will slow down the code significantly because many

extra checks will be performed during execution, comment this line out and

recompile if speed is important. At the moment the code is only tested and

stable when the number of up and down electrons is equal. If one wants to use

more than 64 orbitals one has to change the type definition in include/Options.h

instead of #define TL → #define TLL and recompile everything. This makes

it possible to handle determinants with 64-128 orbitals (add an extra L for

every extra power of 2). But be warned: this reduces the speed significantly,

so if you have a large number of determinants it is best to keep the number of

interacting orbitals lower than 64.

B.2 RG

RG is an open source python implementation that solves the general Richardson-

Gaudin equations for the XXX, XXZ and Dicke models. It includes rou-

tines to variational approximate the general pairing Hamiltonian and the non-
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relativistic quantum chemical Hamiltonian by means of RG eigenstates. RG is

freely available and can be downloaded at [234].
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Appendix C

List of publications

A1 publications

Publications incorporated in this thesis

1. M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck. Perturba-

tions on the superconducting state of metallic nanoparticles: influence of

geometry and impurities. 2013: The European Physical Journal D 67:14.

MVR generated all results; MVR and SDB wrote the software; SDB wrote the

paper and came up with the original idea. All authors edited the manuscript

and provided scientific support.

2. M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck. Exact

solution of the px + ipy pairing hamiltonian by deforming the pairing

algebra. 2014: Physical Review B 89:155136.

MVR wrote the software, generated all results and wrote a first version of the

paper; SDB performed most of the theoretical derivations and had the initial

idea. All authors edited the manuscript and provided scientific support.

3. M. Van Raemdonck, D. R. Alcoba, W. Poelmans, S. De Baerdemacker,

A. Torre, L. Lain, G. E. Massaccesi, D. Van Neck, and P. Bultinck.

Polynomial scaling approximations and dynamic correlation corrections

to doubly occupied configuration interaction wave functions 2015: The

Journal of Chemical Physics 143:10104106.

MVR wrote the software, generated the results and wrote a first draft of the

paper; the simulated annealing procedure was an idea of DRA and PB; the

approximations and extensions of DOCI were ideas of DRA and MVR; WP was

invaluable for optimizing the software; SDB had the idea of looking to wave

function overlaps; PB had a major part in the editing process. All authors

edited the manuscript and provided scientific support.
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4. W. Poelmans, M. Van Raemdonck, B. Verstichel, S. De Baerdemacker,

A. Torre, L. Lain, G. E. Massaccesi, D. R. Alcoba, P. Bultinck, and D.

Van Neck. Variational optimization of the second order density matrix

corresponding to a seniority-zero configuration interaction wave function,

2015: Journal of Chemical Theory and Computation, 11:4064-4076.

WP wrote the software, generated results and wrote a first version of the

manuscript; MVR contributed to the orbital optimization and DOCI part of the

software; DRA, BV, DVN, SDB, and PB were involved with the 2RDM part of

the project. In comparison to the original article the derivation of the optimal

Jacobi rotations for the DOCI wave function is incorporated in the body of the

text for this thesis. All authors edited the manuscript and provided scientific

support.

5. D. R. Alcoba, A. Torre, L. Lain, G. E. Massaccesi, O. B. Oña, P. W. Ay-

ers, M. Van Raemdonck, P. Bultinck, and D. Van Neck. Performance of

Shannon-entropy compacted N-electron wave functions for configuration

interaction methods 2016: Theoretical Chemistry Accounts 135:153.

DRA, TA, LL, MGE, OOB, PA wrote the initial version of the manuscript,

generated the first results and had the idea of a Shannon entropy minimized

basis; MVR generated the results to test the relationship between Shannon

entropy and energy convergence and confirmed the first results; PB had the

idea to test the relationship between Shannon entropy and energy convergence.

All authors edited the manuscript and provided scientific support.

Other publications

6. D. R. Alcoba, A. Torre, L. Lain, O. B. Oña, P. Capuzzi, M. Van Raem-

donck, P. Bultinck, and D. Van Neck. A hybrid configuration interaction

treatment based on seniority number and excitation schemes 2014: The

Journal of Chemical Physics 141:244118.

7. P. Claeys, S. De Baerdemacker, M. Van Raemdonck, and D. Van Neck.

Eigenvalue-based method and form-factor determinant representations for

integrable XXZ Richardson-Gaudin models 2015: Physical Review B 91:155102.

8. P. Claeys, S. De Baerdemacker, M. Van Raemdonck, and D. Van Neck.

Eigenvalue-based determinants for scalar products and form factors in

Richardson-Gaudin integrable models coupled to a bosonic mode 2015:

Journal of Physics A-mathematical and Theoretical 48:425201.

9. G. Acke, S. De Baerdemacker, P. Claeys, M. Van Raemdonck, W. Poel-

mans, D. Van Neck, and P. Bultinck. Maximum probability domains for

Hubbard models 2016: Molecular Physics 114:1392-1405

P1 publications
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List of publications

1. P. Claeys, S. De Baerdemacker, M. Van Raemdonck, and D. Van Neck.

The Dicke model as the contraction limit of a pseudo-deformed Richardson-

Gaudin model 2015: Journal of Physics : Conference Series 597.

2. S. De Baerdemacker, V. Hellemans, R. van den Berg, J.-S. Caux, K.

Heyde, M. Van Raemdonck, D. Van Neck, and P. A. Johnson. Probing

pairing correlations in Sn isotopes using Richardson-Gaudin integrability

2014: Journal of Physics: Conference series 533:012058.

Oral presentations

1. M. Van Raemdonck, S. De Baerdemacker, F. De Proft, D. Van Neck, and

P. Bultinck. Constrained CI calculations to investigate charge transfer

and the effects of the integer nature of the electron Conceptual Quantum

Chemistry: Present Aspects and Challenges for the Future; 4-8 April

2016, Brussels, Belgium.

2. S. De Baerdemacker, P. W. Ayers, P. Bultinck, P. A. Johnson, P. A.

Limacher, D. Van Neck, and M. Van Raemdonck. Richardson-Gaudin

Integrable Systems (and Beyond) for Strongly Correlated Quantum Many-

Body Systems. MQM 2013; 2-6 June 2013, Lugano, Switzerland.

Poster presentations

1. M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck. Exploring

the phase diagram of the px+ipy pairing Hamiltonian by linking the eigen-

states to associated bosonic states 14-18 July 2014: XXXth International

Colloquium on Group Theoretical Methods in Physics: Ghent, Belgium.

2. M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck. Interpreting

the phase diagram of the px + ipy pairing Hamiltonian by deforming the

pairing algebra 21-23 November 2013: The ”March” meeting: Namur,

Belgium.

3. M. Van Raemdonck, S. De Baerdemacker, and D. Van Neck. Perturba-

tions on the superconducting state of metallic nanoparticles 08-13 July

2012: International symposium on small particles and inorganic clusters

XVI: Leuven , Belgium.
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