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1. Introduction and taxonomy 

Members of the family of the Chlamydiaceae are obligate intracellular Gram-negative 

bacteria that cause a variety of diseases in humans, other mammals and birds. They have a 

serious impact on both human and animal health and are therefore of major economic 

importance worldwide. The primary sites of replication are mucosal epithelial cells of the 

respiratory, urogenital and gastrointestinal tract, the conjunctival epithelium, as well as 

monocytes and macrophages (Pospischil et al., 2010). Currently, eleven Chlamydia species 

have been identified (Table 1.1) and the pylogenetic classification of the Chlamydiaceae is 

shown in Figure 1.1 (Sachse et al., 2015).  

Table 1.1: The family Chlamydiaceae. Adapted from Kerr et al. (2005), Longbottom and 

Livingstone (2006), and Sachse et al. (2015). 

Species Natural host Other hosts Clinical signs 

C. trachomatis Human  

Chronic conjunctivitis and blindness 
(trachoma), infection of urogenital tract, 

infertility 

C. pneumoniae Human,horse, 
koala 

Amphibians, 
reptiles 

Pneumonia, bronchitis, 
encephalomyelitis, laryngitis, 

atherosclerosis, reactive arthritis 

C. abortus a Sheep, goat Cattle, swine Reproductive disorders, abortion and 
bad semen quality 

C. psittaci a Birds Mammals Respiratory tract infection, rhinitis, 
conjunctivitis, diarrhoea 

C. caviae b Guinea pig Horse Ocular and urogenital tract infection 

C. felis b Cat  
Conjunctivitis, rhinitis and respiratory 

tract infection 
C. muridarum Rodents  Respiratory and genital tract infection 

C. pecorum Cattle, koala Sheep, goat, swine 

Reproductive disorders, infertility, 
infection of the urine tract (koala) and 

abortion, enteritis, polyarthritis, 
encephomyelitis, metritis, mastitis, 
conjunctivitis and pneumonia (other 

animals) 

C. suis b Swine Ruminants Diarrhea, pneumonia, conjunctivitis, 
reproductive disorders 

C. gallinacea b Chicken Other poultry Respiratory tract infection 

C. avium b Pigeon, parrot  
Enteritis, respiratory tract infection, 

diarrhea 

a Zoonotic pathogen, b Potential zoonotic pathogen 
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Figure 1.1: Phylogenetic tree of the family of Chlamydiaceae. The construction of the tree 

was based on an alignment of almost complete 16S rRNA genes from the type strains of all 

established Chlamydiaceae species. RaxML generated the tree starting from that alignment. 

Bootstrap values indicate the stability of the branches based on 100 replicates. The bar 

indicates 1% sequence divergence (Sachse et al., 2015). 

2. Chlamydia psittaci 

C. psittaci infections have been reported in over 500 species of birds, where infection is either 

latent or can become systemic and clinically overt in the respiratory tract (Stewardson and 

Grayson, 2010). The symptoms include conjunctivitis, anorexia, nasal discharge, rhinitis, 

diarrhea, polyuria, dyspnea and dullness (Vanrompay et al., 1995a). C. psittaci is an important 

zoonotic pathogen. In humans, C. psittaci infections can vary from mild flu-like symptoms to 

a life-threatening pneumonia (Beeckman and Vanrompay, 2009; Smith et al., 2011). 

Symptoms commonly reported are high fever, difficulty breathing and a non-productive 

cough, low pulse, chills, headache, and myalgia. Transmission of C. psittaci occurs horizontal 

via inhalation of infected aerosols of pharyngeal or nasal secretions or dried feces and vertical 

via the eggshell (Ahmed et al., 2015). Sequencing of the C. psittaci major outer membrane 

protein (ompA) gene identified 9 genotypes (A to F, E/B, M56, and WC) (Geens et al., 2005). 

The genotypes cluster with host species (Pannekoek et al., 2008). Genotype A and B are 

associated with psittacine birds (cockatoos, parrots, parakeets and lories) and pigeons, 

respectively. Genotype C has been isolated from ducks and geese, whereas genotype D was 

found mainly in turkeys. The host range of genotype E is more diverse, since it has been 

isolated from pigeons, ratites, ducks, turkeys and occasionally humans. Genotype F was 

isolated from psittacine birds and turkeys. Genotype E/B has been isolated mainly from ducks 

(Geens et al., 2005; Pannekoek et al., 2010). Genotypes WC and M56 represent isolates from 

epizootics in cattle and muskrats, respectively (Spalatin et al., 1966; Everett et al., 1999).  
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2.1 Treatment 

Chlamydial infections in animals are currently mainly treated by tetracycline and its 

derivatives (chlortetracycline, oxytetracycline, doxycycline), because it is a cheap, broad 

spectrum antibiotic with an excellent tissue distribution and low toxicity, which easily 

resolves the infection (Sandoz and Rockey, 2011). However, the extensive use of the 

antibiotic also for other bacterial infections in animals, both as therapy and in the past also as 

a prophylaxis, led to the fast spread of tetracycline resistant Gram-positive and Gram-negative 

bacteria (Michalova et al., 2004). Chlamydia suis is the first intracellular bacterium in which a 

horizontally acquired resistance gene was observed (Dugan et al., 2004). Pigs are the natural 

host of C. suis, but also C. abortus, C. pecorum and C. psittaci occur in pigs (Schautteet and 

Vanrompay, 2011). This might suggest that transfer of the tetracycline resistence, tet(C), gene 

to other Chlamydia species is feasible. However, intuitively we would expect that the 

Chlamydia species should be present at the same site of infection and that the inclusion of two 

different species should fuse before horizontal gene transfer might occur.  

Chlamydiaceae replicate in mucosal epithelial cells of  the conjunctivae, the respiratory, 

urogenital and gastrointestinal tract (Schautteet and Vanrompay, 2011), thus if a host is 

infected by multiple Chlamydia species, the different species can be present simultaneously at 

the same infection site. However, different fusogenic properties were observed. Multiple C. 

trachomatis inclusions present in the same infected cell mostly fuse (Matsumoto et al., 1991; 

Rockey et al., 2002), while many C. psittaci strains are non-fusogenic (Rockey et al., 1996). 

The tet(C) gene recombined in the C. trachomatis genome when cocultured with a 

tetracycline-resistent C. suis strain in vitro, while the resistence gene was not succesfully 

transferred to C. caviae (Suchland et al., 2009). This might either be due to the non-

recombigenic activity of C. caviae, or the sequences at potential recombination sites might 

differ too much between these species or it might be that the C. suis inclusion could not fuse 

with the C. caviae inclusions and that this event is essential for recombination. All latter 

hypotheses are possible, as it is currently unknown how an intracellular bacteria acquired a 

resistance gene through horizontal gene transfer. Unexpectedly, preliminary results by 

Suchland et al. (unpublished data) suggested that fusion of inclusions is not required for 

recombination, which favors the other two possible explanations. C. caviae clusters 

phylogenetically together with C. psittaci, and therefore C. psittaci might show similar results 

as C. caviae in recombination experiments. However, up to now no experiments on the 
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possible transfer of the tet(C) gene from C. suis to C. psittaci have been performed neither in 

vitro nor in vivo. Further research is needed to unravel the horizontal gene transfer mechanism 

in Chlamydia spp., to find out whether or not the tet(C) could be transferred to C. psittaci. 

However, the presence of the tet(C) gene in C. suis is not always associated with a 

tetracycline-resistant phenotype, so MIC-values for tetracycline should be determined for 

strains containing the tet(C) gene to confirm that the resistant gene is functional (Di Francesco 

et al., 2008).  

The occurence of the tet(C) gene in one Chlamydia species should warn us that the wide use 

of antibiotics in veterinary medicine creates an environment in which pathogens acquire and 

maintain antibiotic resistance genes (Dugan et al., 2004). Antibiotics are widespread in the 

poultry industry and spreading of the tet(C) gene is possible, as tetracycline resistant 

Salmonella (Kidie et al., 2013; Chotinun et al., 2014), Campylobacter jejuni (Deckert et al., 

2010; Thibodeau et al., 2011) and Staphylococcus aureus isolates (Yucel et al., 2011; 

Argudín et al., 2013; Nemeghaire et al., 2013) have been observed in a high proportion in 

poultry. These observations, together with the systemic infection capacity of C. psittaci, 

highlight the possiblity that C. psittaci might acquire tetracycline resistence. Therefore, 

vaccination is regarded the best option to prevent chlamydial infections (Longbottom and 

Livingstone, 2006).  

3. Developmental cycle 

Chlamydiaceae are obligate intracellular bacteria, which means that they are completely 

dependent on eukaryotic host cells to replicate. The chlamydial developmental cycle is a 

unique biphasic developmental cycle, which involves predominantly two distinct 

morphological forms: the extracellular, infectious elementary bodies (EBs) and the 

intracellular, non-infectious, metabolically active reticulate bodies (RBs) (Figure 1.2). In 

addition, intermediate bodies (IBs) can be formed during the maturation from RBs to EBs 

(Vanrompay et al., 1996). 
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Figure 1.2: Schematic representation of the developmental cycle of the Chlamydiaceae. 

Numbers refer to hours post infection, however, the timing of the different stages varies 

depending on the chlamydial species and the host cell. The cycle starts when the infectious 

elementary bodies (EBs) attach to the host cell. Upon binding, EBs are internalized in tight, 

endocytic vesicles, called inclusions. The EBs differentiate to the metabolically active 

reticulate bodies (RBs), which divide by binary fission. The normal developmental cycle can 

be interrupted by different conditions and agents, which lead to persistence. During the 

persistent infection, no growth of the chlamydial organisms can be observed. Once the stress-

induced factor is removed, the normal developmental cycle can be completed. The RBs 

continue to replicate until they detach from the inclusion membrane and consequently revert 

into EBs again. The EBs are released from the host cell through lysis or inclusion extrusion 

(Geens, 2005).  
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The EBs are small (diameter 0.2-0.3 µm), coccoid shaped particles that have a highly 

condensed chromosome and an unusual rigid ultrastructure due to disulfide cross-linking of 

cysteine-rich proteins in the envelope (Raulston, 1995; Hatch, 1996). That cell envelope 

makes the EBs osmotically stable and poorly permeable and protects the particles to survive 

up to several months in the hostile extracelullar environment (Longbottom and Coulter, 2003). 

The EBs initiate infection by attachment to a eukaryotic host cell, by which the EBs are 

endocytosed and in which they reside within a membrane-bound vacuole, called an inclusion. 

The EBs convert to the much larger (0.5-1.6 µm) RBs, which are also coccoid shaped, but 

have a low electron density and their cell envelope is less rigid and more permeable because 

the disulfide bonds are reduced and some cysteine-rich proteins are absent (Raulston, 1995). 

In addition, the major outer membrane protein (MOMP) is predominantly present in a 

monomeric form in RBs, while in EBs the protein has been identified as dimers, trimers and 

multimeric complexes (Newhall and Jones, 1983; Hatch et al., 1984). The RBs divide by 

binary fission and the inclusion expands (Moulder, 1991). After 20-48h, depending on the 

species, RBs differentiate asynchronously into EBs (Moulder, 1991; Hatch, 1996), which are 

then released from the infected host cell through cell lysis or inclusion extrusion, thereby 

closing the developmental cycle (Hybiske and Stephens, 2007b).  

4. Persistence 

A recurrent chlamydial infection might either be the result of a repeated infection or of a 

persistent infection that manifests after an unresolved primary infection (Hogan et al., 2004). 

The detection of chlamydial macromolecules in the absence of cultivability, recurrences that 

occur when reinfection is unlikely and clinical antibiotic resistance are evidences for 

persistence in vivo. Holland et al. (1992) detected C. trachomatis by either tissue culture or 

direct fluorescence cytology for a shorter period after a primary and secondary infection of 

primates than they detected chlamydial RNA. Dean et al. (2000) studied seven women with 

more than three recurrent infections over two to five years. Four women had identical 

genotypes at each recurrence and plenty culture-negative samples were positive by ligase 

chain reaction. All these experiment suggest that chlamydial persistence exists in vivo.  

Chlamydial persistence has been induced in vitro through deviations of conventional cell 

culture conditions, such as amino acid deprivation (Coles et al., 1993), iron depletion 

(Raulston, 1997), antibiotic treatment (Goellner et al., 2006; Hu et al., 2015), phage infection 

(Hsia et al., 2000), co-infection with virus (Borel et al., 2010) and tryptophan depletion by 
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IFN-γ treatment (Beatty et al., 1994; Goellner et al., 2006). Small inclusions, which contain a 

smaller amount of abnormally enlarged RBs, called aberrant bodies, and loss of infectivity are 

common characteristics of the different persistent models. The aberrant bodies are formed due 

to the inability of the RBs to divide, while DNA and protein synthesis continues. Removal of 

the stressors results in septum formation, RB division and differentation to EBs (Hogan et al., 

2004). Further research is needed to determine whether the persistent state induced in vitro 

resembles the latent and chronic infections that are observed in vivo (Wyrick, 2010).  

5. A chlamydial infection from outside to inside 

Multiple membranes have a key function during the developmental cycle of the 

Chlamydiaceae (Figure 1.3). In a first step, the EB attaches to the host plasma membrane 

and invades the host cell (Figure 1.3, a). Subsequently, the EB differentiates to RB, which 

divide inside the inclusion. The inclusion membrane is quickly modified by Chlamydia-

derived proteins (Bastidas et al., 2013). It is hypothesized that the modified inclusion 

membrane is essential to ensure the escape of the inclusion from the endolysosomal pathway, 

while selective interactions with other cellular compartments are maintained to acquire 

essential nutrients and allow intracellular survival (Valdivia, 2008; Saka and Valdivia, 2010). 

The lipids that are needed for the growing membranes (inclusion, RB and EB membranes) are 

scavenged from the host (Figure 1.3,b; Elwell et al., 2011; Scidmore, 2012). While the 

proteins present in those membranes, are Chlamydia-specific (Taraska et al., 1996). EB and 
RB membrane compositions differ significantly, which could be expected based on their 

different role during the developmental cycle (Figure 1.3, c and d; Raulston, 1995; Marques et 

al., 2010; Saka et al., 2011). In what follows, the events occuring at the plasma and inclusion 

membranes as well as the composition of inclusion, EB and RB membranes will be discussed 

in detail. There are significant species- and strain-specific differences in the way that 

Chlamydia interacts with the host cell, so results can not always be extrapolated and caution 

should be exercised (Valdivia, 2008).  
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Figure 1.3: Overview of Chlamydia and host-cellular interactions. (a) Chlamydiacea enter 
the host cell in an actin-dependent way, that involves both chlamydial and host factors. The 
EBs are enclosed by a vacuole membrane, named the inclusion membrane. Chlamydiacea 
modify the inclusion membrane by inserting chlamydial proteins and thereby they prevent the 
fusion with lysosomes. The inclusion migrates across microtubuli toward the microtubule 
organizing center (MTOC). (b) The EBs differentiate to RBs that divide by binary fission, 
leading to an expansion of the inclusion. The inclusion interacts with multiple host-cell 
organelles such as fragmented Golgi ministacks, the ER, lipid droplets and multivesicular 
bodies (MVBs). (c, d) Eventually, most of the cytoplasmic space is filled by the inclusion, in 
which RBs differentiate back to EBs, which are released from the host cell and are ready to 
infect neighbouring host cells. Adapted from Bastidas et al. (2013). 

5.1 Plasma membrane 

5.1.1 Attachment 

Bacterial attachment to a host cell is characterized by a two-step process in which primary, 

reversible, electrostatic interactions (Heckels et al., 1976; Hatch et al., 1981) are followed by 

a stronger, more specific binding of adhesins to their cognate receptors present on the surface 

of the host cell (Boyle and Finlay, 2003; Elwell et al., 2008; Lambert and Smith, 2009). The 

primary interaction of Chlamydia species to their host cells is mediated through electrostatic 

interaction of EBs with host heparan sulfate containing glycosaminoglycans (Zhang and 

Stephens, 1992; Su et al., 1996). Different bacterial adhesins: MOMP (Caldwell and Perry, 

1982; Su et al., 1996), OmcB (Fadel and Eley, 2007; Moelleken and Hegemann, 2008), 
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Hsp70 (Mamelak et al., 2001), Polymorphic membrane protein 6 (Pmp), Pmp20 and Pmp21 

(orthologs of PmpG, PmpB and PmpD of C.trachomatis, respectively) of C. pneumoniae 

(Mölleken et al., 2010), all Pmps of C. trachomatis (Becker and Hegemann, 2014) and host 

receptors: mannose receptor, mannose 6-phosphate receptor and estrogen receptor (reviewed 

in Campbell and Kuo, 2006; Cocchiaro and Valdivia, 2011) have been suggested. Protein 

disulfide isomerase (PDI) is structurally required for EB attachment and PDI-mediated 

reduction at the cell surface is essential for invasion (Abromaitis and Stephens, 2009). In 

addition, growth factors and their receptors, such as the platelet-derived growth factor 

receptor (PDGFR) and Abelson (Abl) kinase are essential host factors for chlamydial binding 

(Elwell et al., 2008). Most likely, adhesion will be mediated by multiple cell surface proteins 

(Cocchiaro and Valdivia, 2009). 

5.1.2 Internalization 

Chlamydia species carry a functional type III secretion (T3S) system, through which the 

pathogen translocates effector proteins directly into the host cell (Peters et al., 2007). The 

translocated actin recruitment protein (Tarp) is an early effector protein that mediates actin 

remodelling by either direct contact with actin (Jewett et al., 2006) or through a Rac1-

dependent actin remodelling at the attachment sites (Carabeo et al., 2004; Clifton et al., 2004). 

Host Src (Jewett et al., 2008), Syk (Mehlitz et al., 2008) and Abl (Elwell et al., 2008) kinases 

phosphorylate the N-terminal tyrosine-rich tandem repeats of Tarp from C. trachomatis, 

which leads to the recruitment of guanine nucleotide exhange factors (GEFs), Sos1 and Vav2, 

which activate Rac1 (Lane et al., 2008). The activated Rac1 subsequently leads to the 

activation of the Arp2/3 complex and actin reorganization (Carabeo et al., 2007). Tarp from 

other Chlamydia species cannot be targeted for tyrosine phosphorylation, which highlights the 

differences in the pathogenesis of different Chlamydia species. Clathrin is an additional host 

factors that contributes to invasion in nonphagocytic cells (Hybiske and Stephens, 2007a). 

The actin rearrangement induced by Tarp is transient and it is hypothesized that other 

effectors, such as CT166 (Thalmann et al., 2010) and CT694 (Hower et al., 2009) in C. 

trachomatis might regulate the actin depolymerization. The EBs are immediately after entry 

sequestered in a membrane-bound vacuole, called the inclusion. The inclusion quickly 

dissociates from the endosomal pathway, avoiding lysosomal fusion, through remodelling of 

the inclusion membrane by insertion of bacterial proteins (Scidmore et al., 1996; Scidmore et 

al., 2003). The remodelled membrane subsequently promotes migration of the inclusion along 
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microtubuli to the MTOC, nearby the peri-Golgi region (Scidmore et al., 1996; Grieshaber et 

al., 2003). This transport is dynein-dependent but dynactin-independent. It is suggested that 

chlamydial effector proteins in the inclusion membrane mimic dynactin (Scidmore, 2011).  

5.2 Inclusion membrane 

Chlamydiacea acquire most of their metabolic needs from the host cell. These essential 

factors include nutrients, such as amino acids and iron, and lipids. The arginin transporter ArtJ, 

the metal transporter zntA, the ATP-ADP transporter Ntp1 and the cytochrome oxidase 

subunit I CydA may be present in the inclusion membrane (Saka et al., 2011). In addition, the 

inclusion selectively interacts with organelles in the peri-Golgi niche to sequester essential 

factors for chlamydial development (Figure 1.3, b). Sphingolipids (Hackstadt et al., 1996), 

cholesterol (Carabeo et al., 2003) and glycerophospholipids (Wylie et al., 1997) are essential 

eukaryotic lipids for chlamydial development. Chlamydiae interact with various host 

pathways to acquire those lipids and nutrients, which will be discussed below.  

5.2.1 Vesicular pathway 

Several endosome and Golgi-related Rab GTPases, which regulate organelle identity and 

vesicular trafficking (Seabra and Wasmeier, 2004), associate with the inclusion membrane 

(Rzomp et al., 2003). Rab proteins were observed in association with the inclusion membrane 

in both a species-dependent and species-independent manner (Rzomp et al., 2003; Scidmore, 

2011). Rab1 and 14 are required in C. trachomatis development (Elwell et al., 2008), while 

Rab11 is required for C. caviae development (Derré et al., 2007). Rab1, 4 and 11 are recruited 

to C. trachomatis, C. pneumoniae and C. muridarum inclusions. Rab6 is associated with the C. 

trachomatis inclusion and not with C. pneumoniae and C. muridarum inclusions, while for 

Rab10 the opposite was observed (Rzomp et al., 2003). Rab GTPases function in different 

pathways and the recruitment of different Rabs is suggested to promote selective 

interaction/fusion with host vesicles containing essential nutrients (Bastidas et al., 2013): 

Rab4, 11 and 14 are endocytic, while Rab6 and 10 are endoplasmatic reticulum (ER) - Golgi 

related (Rzomp et al., 2003). Rab6 and 11 mediate fragmentation of the Golgi into ministacks 

(Heuer et al., 2009; Rejman Lipinski et al., 2009) and Rab14 mediates delivery of Golgi-

derived sphingomyelin to the inclusion (Capmany and Damiani, 2010). In contrast, Rab4 and 

11 may participate in iron acquisition (Ouellette and Carabeo, 2010).  
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It is suggested that chlamydial proteins which differ between species, may be involved in Rab 

recruitment (Rzomp et al., 2003). The C. trachomatis CT229 interacts with Rab4 (Rzomp et 

al., 2006), while the C. pneumoniae Cpn0585 interacts with Rab1, 10 and 11 (Cortes et al., 

2007). CT229 and Cpn0585 are both inclusion membrane proteins (Inc). Incs are identified 

by a large hydrophobic region, which encodes two transmembrane domains and by a type III 

secretion signal, that allows the secretion and subsequent insertion of the protein in the 

inclusion membrane. Bioinformatic studies have predicted that the amount of inc genes in 

chlamydial genomes varies between 50 and 90 genes in C. trachomatis and C. pneumoniae 

respectively (Lutter et al., 2012). This high amount of genes in the highly reduced chlamydial 

genomes suggests that Inc proteins mediate an important function in the chlamydial 

developmental cycle (Moore and Ouellette, 2014). Inc proteins are expressed at different time 

points during the developmental cycle (early and mid-cycle) (Nicholson et al., 2003). In 

addition to recruiting Rab GTPases, the fusion of vesicles might also be regulated by 

recruiting host soluble NSF-sensitive attachment receptor (SNARE) proteins, which are key 

components of the intracellular fusion machinery (Südhof and Rothman, 2009). Multiple Inc 

proteins, such as IncA, CT813 and CT223, contain SNARE-like motifs. IncA interacts with 

host endocytic SNARE proteins Vamp3, Vamp7 and Vamp8, through its SNARE motif.  

The Brefeldin A (BFA)-sensitive vesicular-trafficking pathway is another vesicular pathway 

that is mediated by Chlamydiaceae to intercept cholesterol and sphingomyelin from the Golgi 

apparatus. Chlamydiacea use GBF1, a BFA-sensitive GEF that activates ADP ribosylation 

factors (Arfs) to acquire sphingomyelin. The activated Arfs recruit namely coat proteins 

necessary for vesicle formation. The sphingomyelin acquired through this vesicle-mediated 

pathway is essential for inclusion growth and stability, but not for bacterial replication (Elwell 

et al., 2011).  

5.2.2 Non-Vesicular pathway 

Host-sphingomyelin is essential for progeny production and inclusion biogenesis (Van Ooij et 

al., 2000; Robertson et al., 2009), however, BFA-mediated inhibition of vesicular transport 

had no effect on the production of infectious progeny (Hackstadt et al., 1996). That paradox is 

solved by the observation that the ceramide transfer protein (CERT) is recruited to the 

inclusion by C. trachomatis, possibly through interaction with IncD (Derré et al., 2011). 

CERT is a cytosolic lipid transfer protein that transports ceramide, the precursor of 

sphingomyelin, from the ER to the trans-Golgi region, where it is converted to sphingomyelin 
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by sphingomyelin synthases 1 or 2 (Hanada, 2010). C. trachomatis creates a sphingomyelin 

synthesis factory at the inclusion membrane by recruiting both CERT and at least one 

sphingomyelin synthase to the inclusion membrane. It is suggested that the CERT-recruitment 

leads to the formation of an ER-inclusion membrane contact site (Derré et al., 2011). 

Sphingomyelin acquired through this vesicle-independent pathway is essential for C. 

trachomatis replication. Phosphatidylinositol (PI) and phosphatidylcholine (PC), two 

eukaryotic glycerophospholipids which are present in purified EBs, are also acquired from the 

host cell through the non-vesicular transport pathway, which is mediated by ERK and the 

cytosolic phospholipase A2 (PLA2). Chlamydia modifies the sequestered 

glycerophospholipids by replacing the non-branched chain fatty acids by Chlamydia-derived 

branched chain fatty-acids (Wylie et al., 1997; Su et al., 2004), which is in contrast to 

cholesterol and sphingomyelin that are not modified (Wylie et al., 1997; Su et al., 2004).  

5.2.3 Lipid droplets 

Lipid droplets (LD) are ER-derived storage organelles for neutral lipids or long chain fatty 

acids (Kumar et al., 2006; Cocchiaro et al., 2008). Lipid droplet-associated protein (Lda) 1 

and 3 are translocated to the host cytosol and localize to LDs that are adjacent to the inclusion 

membrane (Kumar et al., 2006). The captured LDs are translocated intact across the inclusion 

membrane (Cocchiaro et al., 2008). The observations that the LDs do not accumulate in the 

inclusion lumen and the presence of neutral lipids in RBs, led to the suggestion that the 

associated lipids are either directly scavenged or metabolized by RBs (Scidmore, 2011). IncA 

cofractionated with LDs and partially colocalized with intraluminal LDs. Therefore, it was 

suggested that IncA might mark entry sites for LDs at the inclusion membrane (Cocchiaro et 

al., 2008).  

5.2.4 Multivesicular bodies 

Multivescular bodies (MVB) are part of the endolysosomal pathway (Beatty, 2006). MVB are 

important for the sorting and processing of proteins and lipids that are destined for lysosomal 

degradation or recycling to the Golgi or plasma membrane exocytosis (Denzer et al., 2000; 

Piper and Luzio, 2001; Woodman and Futter, 2008). Chlamydiacea might use the MVBs as 

an additional lipid (sphingolipids, phospholipids and cholesterol) source (Beatty, 2006; 

Gambarte Tudela et al., 2015). MVBs migrate along microtubuli to the inclusion. Different 

MVB markers, such as CD63 and LBPA, reside within the C. trachomatis inclusion lumen. 
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Rab39a, which labels a subset of late endosomal vesicles – mainly MVB - , participates in the 

delivery of the MVBs to the inclusion (Gambarte Tudela et al., 2015). However, the 

chlamydial effectors involved in the transport of MVB into the inclusion lumen are unknown 

(Gambarte Tudela et al., 2015; Dumoux and Hayward, 2016).  

5.2.5 Mitochondria 

Mitochondria were found in close association with C. psittaci and C. caviae inclusions, but 

this assocation was not observed in C. trachomatis and C. pneumoniae-infected cells 

(Matsumoto et al., 1991; Derré et al., 2011). The mitochondrial transporter inner/outer 

membrane (TIM-TOM) complex, which is involved in the recognition and transport of host 

mitochondrial proteins into the mitochondria, is essential for C. caviae inclusion biogenesis 

and the production of infectious progeny. Consequently, depletion of the complex affected C. 

caviae replication and differentiation, but the C. trachomatis development was unaffected 

(Derré et al., 2011). The functional significance of the association of C. caviae and C. psittaci 

inclusions with mitochondria is currently unknown (Knittler et al., 2014) . It might be related 

to acquire energy. Although Chlamydia species have the capacity to produce ATP (Iliffe-Lee 

and McClarty, 1999), mimic-ATP/ADP transporters Npt1 and Npt2 are observed in EBs and 

RBs (Tjaden et al., 1999; Saka et al., 2011) and the ATP/ADP transporters might also be 

present in the inclusion membrane (Saka et al., 2011), it might be that C. caviae and C. 

psittaci have an additional, redundant pathway to acquire energy, as the genes required for 

ATP production are only transcribed starting from 6 hpi. Therefore, energy needed for the 

early differentation of EBs to RBs might either come from chlamydial ATP reserves, but also 

from the host (Iliffe-Lee and McClarty, 1999).  

Prevention of apoptosis could be a second reason for the observed association of the inclusion 

with the mitochondria. The release of mitochondrial cytochrome c into the cytoplasm is 

essential to induce apoptosis (Yang, 1997). One of the observed effects of chlamydial 

effectors is the prevention of mitochondrial cytochrome c release into the host cytoplasm, 

which is normally induded by pro-apoptotic factors (Fan et al., 1998).  

5.2.6 Lysosomes 

Although Chlamydiaceae modify the inclusion membrane to prevent fusion with the 

endolysosomal pathway, lysosomes reside in close approximation to the inclusion membrane. 
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Ouellette et al. (2011) suggested that the lysosomes might be a source of essential amino 

acids early in the developmental cycle of C. trachomatis, while free amino acids are used later 

in the cycle. However, C. pneumoniae requires lysosomal degradation products throughout 

the developmental cycle (Ouellette et al., 2011).  

5.3 EB and RB membranes 

The functions of the two predominant morphological forms, EBs and RBs, differ significantly 

(paragraph 3). So it is not surprising that the lipid and protein composition of their membranes 

differ significantly and knowledge regarding their membrane compositions will give insight in 

their different functions (Stephens and Lammel, 2001). In what follows, a detailed description 

of the proteins and lipids present in membranes of both EB and RB will be discussed. If a 

protein or lipid is specific for one developmental form, it will be mentioned in the text.  

Like all Gram-negative bacteria, Chlamydiaceae are surrounded by an outer membrane (OM) 

and a cytoplasmatic inner membrane (IM) (Tamura et al., 1971), which is separated by a 

periplasmatic space (Figure 1.4).The inner and outer membrane differ morphologically and 

chemically (Glauert and Thornley, 1969). Both membranes contain phospolipids and proteins 

and the outer membrane contains on top of that also lipopolysaccharides (LPS) (Filip et al., 

1973). The phospholipids present in the inner and outer membrane of EBs and RBs is a 

mixture of lipids typically found in prokaryotes (phosphatidylethanolamine [PE], 

phosphatidylglycerol [PG] and phosphatidylserine [PS] and eukaryotes (PC, PI, 

sphingomyelin and cholesterol) (Wylie et al., 1997). C. trachomatis can synthesize the PE, 

PG and PS de novo and the eukaryotic lipids are acquired from the host cell (Wylie et al., 

1997). The host-derived straight-chain unsaturated fatty acids are replaced by chlamydial 

branched-chain fatty acids (Wylie et al., 1997). Hatch and Mcclarty (1998) suggested that 

chlamydiae do not regulate the types of phospholipids trafficked and Wylie et al. (1997) 

showed that the host phospholipid synthesis did not alter following an infection with 

chlamydiae. Another remarkable observation by Wylie et al. (1997) is that C. trachomatis 

does not require de novo host phospholipids synthesis nor exogenous phospholipids to 

replicate. However, as mentioned in paragraph 5.2.2, sphingomyelin is essential for 

chlamydial replication. The ratio of PC to PE differs in EBs and RBs and the number of 

branched-chained phospholipids is lower in RBs. In general, EBs have a higher phospholipid 

content and membrane fluidity is greater in RBs (Manire and Tamura, 1967; Raulston, 1995). 

Chlamydial LPS is composed of a pentasaccharide containing a lipid A core and it contains 
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multiple cross-reacting epitopes with LPS of enterobacterial Re mutants (Ingalls et al., 1995; 

Vanrompay et al., 1995a). However, chlamydial LPS contains also a genus-specific epitope, 

which is composed of a 3-deoxy-D-mannose-oct-2 ulopyranosonic acids (Kdo) trisaccharide 

with the sequence αKdo-(2-8)- αKdo-(2-4)-αKdo (Caldwell and Hitchcock, 1984; Brade et al., 

1987; Vanrompay et al., 1995a). Chlamydial LPS is immunogenic, however, it is at least 10 

times less immunogenic than typical endobacterial LPS, such as Salmonella and Neisseria 
(Birkelund et al., 1989; Ingalls et al., 1995; Heine et al., 2003). The strength of the Gram-

negative cell wall is usually provided by peptidoglycan in the periplasmic space, which is 

critical for cell division, maintaining cell shape and hydrostatic pressure (Egan and Vollmer, 

2013). However, presence of peptidoglycan in the chlamydial cell envelope was a matter of 

debate for a long time. Although the chlamydial genomes encode the genes for peptidoglycan 

biosynthesis (Hesse et al., 2003; McCoy et al., 2003; McCoy and Maurelli, 2005; McCoy et 

al., 2006; Patin et al., 2009; Patin et al., 2012) and chlamydial growth is affected by 

antibiotics targetting peptidoglycan biosynthesis (Moulder et al., 1963; Tamura and Manire, 

1968), attempts to detect peptidoglycan were unsuccessful. The latter was called ‘the 

chlamydial anomaly’ (Moulder, 1993). However, Liechti et al. (2014) were able to detect 

chlamydial peptidoglycan by the use of a new labeling approach, which uses D-amino acid 

dipeptide probes and click chemistry. So the rigidity of the chlamydial cell wall is mediated 

both by highly cross-linked proteins and peptidoglycan. 

 

Figure 1.4: Model of the envelope of chlamydial EBs. In the outer membrane, MOMP, 
Omp3 and Pmps are shown. Omp 2 is the major constituent of the periplasmic space. 
Peptidoglycan is also a component of the periplasmic space. Specific proteins of the inner 
membrane are not yet identified. Adapted from Hatch (1996). 
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5.3.1 Chlamydial outer membrane complex 

The location of proteins in the inner or outer membrane in Gram-negative bacteria was 

previously determined by separation of those membranes on density gradients (Ito et al., 

1977). However, that method and variations of that method were for unknown reasons not 

succesfully applied to chlamydiae (Hatch, unpublished data). Therefore, an alternative method 

has been used to characterize the location of proteins in the chlamydial cell envelope. That 

method is based on the principle that hydrophobic outer membrane proteins can be separated 

from many soluble EB proteins by the use of mild detergents, such as Triton X-114 (Everett 

and Hatch, 1995; Bini et al., 1996; Nally et al., 2007; Aistleitner et al., 2014), Sarkosyl 

(Caldwell et al., 1981; Bavoil et al., 1984; Bini et al., 1996; Liu et al., 2010; Aistleitner et al., 

2014) and octylglucoside (Bavoil et al., 1984; Kawa and Stephens, 2002; Yeung et al., 2008). 

The Sarkosyl-insoluble fraction isolated from purified EBs was called the chlamydial outer 

membrane complex (COMC) by Caldwell et al. (1981). This protein complex consists 

predominantly of MOMP, two cysteine rich proteins (CRP), which both have been given 

different names EnvA/OmcA/small CRP/Omp3 and EnvB/OmcB/large CRP/Omp2, and some 

Pmps (Figure 1.4) (Hatch et al., 1984; Stephens et al., 1987; Sardinia et al., 1988; Liu et al., 

2010). Other proteins present in the COMC are PorB, Omp85, YscC, CTL0887, CTL0541, 

CTL0645, OprB and Pal (Liu et al., 2010).  

5.3.1.1 Major outer membrane protein 

Caldwell et al. (1981) identified a 39 500-dalton outer membrane protein in the Sarkosyl-

insoluble fraction of purified C. trachomatis EBs. The insolubility is due to the extensive 

disulphide cross-linking (Caldwell et al., 1981; Newhall and Jones, 1983; Hatch et al., 1986). 

The protein was called MOMP and it accounts for 60% of total envelope proteins in both EBs 

and RBs (Caldwell et al., 1981; Bavoil et al., 1984). MOMP is cross-linked to itself in the 

chlamydial EB and is therefore essential for the structure and morphology of the chlamydial 

EB (Caldwell et al., 1981; Newhall and Jones, 1983), it functions as a porin which is only 

active in the chlamydial RB (Bavoil et al., 1984) and has a potential function as adhesin (Su et 

al., 1990; Su and Caldwell, 1991). The protein consists of five conserved (CS1-CS5) and four 

variable sequence (VS1-VS4) regions, which are exposed in the periplasmic and extracellular 

space, respectively (Figure 1.5) (Baehr et al., 1988; Kim and DeMars, 2001). MOMP plays an 

important role in eliciting an immune response. Monoclonal as well as polyclonal antibodies 

against MOMP, C. pneumoniae MOMP is an exception as it is not immunodominant probably 
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because it is not surface exposed (Campbell et al., 1990), are able to neutralize the infectivity 

of Chlamydiacea in vitro and in vivo (Caldwell and Perry, 1982; Zhang, Watkins, et al., 1987; 

Zhang et al., 1989). MOMP contains genus-, species- and serovar-specific epitopes (Caldwell 

et al., 1981). Protective epitopes locate in VS1 and VS2 (Baehr et al., 1988), serovar specific 

epitopes are also present in those domains and in VS4, while genus- and species specific-

epitopes are located in the CSs and some species-specific epitopes are found in the most 

conserved regions of VS4 (Baehr et al., 1988; Yuan et al., 1989; Batteiger, 1996). The surface 

exposure (Baehr et al., 1988; Collett et al., 1989; Wang et al., 2006), high immunogenicity 

(Caldwell et al., 1981), and the observation that MOMP elicits both neutralizing antibodies 

and T-cell responses (Su and Caldwell, 1992) prompted the suggestion that MOMP would be 

an ideal vaccine candidate (Stephens et al., 1987; Baehr et al., 1988). However, experimental 

vaccines based on native MOMP (Pal et al., 2005; Kari et al., 2009), purified recombinant 

MOMP (Tuffrey et al., 1992; Shaw et al., 2002), synthetic peptides corresponding to B- and 

T-cell epitopes (Su et al., 1995) or DNA based immunogens (Pal et al., 1999) have not 

achieved complete nor consistent protection in none of the various animal models (Shaw et al., 

2002). Therefore, further research for more efficacious vaccine candidates is necessary 

(Vasilevsky et al., 2016). 

 

Figure 1.5: Schematic representation of MOMP in the outer membrane of the 
chlamydial cell wall. Full lines represent the conserved regions (CS1-CS5) and alternating 

lines represent the variable domains (VS1-VS4). Adapted from Baehr et al. (1988) and Kim 

and DeMars (2001). 
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5.3.1.2 OmcA and OmcB 

OmcA and OmcB, which have previously also been called EnvA/small CRP/Omp3 and 

EnvB/large CRP/Omp2 respectively, are two other, besides MOMP, abundant proteins 

present in the COMC (Liu et al., 2010). The genes encoding these two proteins are tandemly 

arranged in a bicistronic operon, that is only transcribed late in the infectious cycle (Lambden 

et al., 1990), while MOMP is located separately and the transcription starts earlier (Raulston, 

1995). Both proteins are cysteine-rich and are only present in chlamydial EBs and in RBs 

when they start to asynchronously differentiate to EBs (around 21-24 hpi) (Hatch et al., 1984). 

The cysteine-rich proteins form disulfide-cross-linked complexes, which are responsible for 

membrane rigidity. Whether or not the MOMP is linked by disulfide bridges to the cysteine-

rich proteins is unknown (Raulston, 1995; Hatch, 1996). The mechanism for crosslinking is 

also currently unknown. Reduction occurs very rapidly, probably simultaneously with 

internalization, and it requires chlamydial protein synthesis (Hatch et al., 1986). In addition, 

Hatch et al. (1986) observed that MOMP and the two CRPs were intracellularly 

predominantly observed in the reduced state and the proteins were spontaneously cross-linked 

after host cell lysis. However, Newhall (1987) observed that cross-linking occured late in the 

developmental cycle, but before cell lysis and therefore it was suggested disulfide bond 

formation is enzym-mediated. Membrane-associated and periplasmic protein disulfide 

isomerases, which are also present in other Gram-negative bacteria (Bardwell, 1994), might 

be involved in the cross-linking process. OmcB is a possible candidate for this function, as it 

has a potential sulfydryl-oxidoreductase active site (Hatch, 1996). Similar to MOMP, both 

proteins possess genus- and species-specific epitopes, in addition only OmcA has serovar-

specific epitopes, but none of the epitopes were accessible to antibodies on the native 

chlamydial cell surface (Batteiger et al., 1985; Zhang, Watkins, et al., 1987; Watson et al., 

1994).  

OmcA has a molecular mass of 12-15 kDa, is a  highly conserved hydrophilic lipoprotein, 

which is anchored in the outer membrane by its lipid moiety and the proteinaceous portion 

faces the periplasmic space (Figure 1.4) (Allen et al., 1990; Everett et al., 1994; Raulston, 

1995; Hatch, 1996). OmcA of C. psittaci 6BC contains 14 cysteine residues, which is 17% of 

the total amino acid content (Everett et al., 1994). 
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OmcB has a molecular mass of 57-62 kDa and it is a major immunogen in chlamydial 

infections (Mygind et al., 1998b; Sanchez-Campillo et al., 1999). The protein is highly 

conserved among Chlamydia species, with a highly variable N-terminal region (Newhall, 

1987; Allen et al., 1990; Watson et al., 1991), is involved in the conversion of the chlamydial 

RB to EB (Mygind et al., 1998a) and it is believed to be a key structural component to 

maintain cell-wall rigidity and osmotic stability via disulfide bonding of outer membrane 

proteins (Newhall, 1987; Allen and Stephens, 1989). The protein migrates as a singlet in the C. 

trachomatis trachoma biovar and as a doublet in C. psittaci, C. caviae GPIC and the C. 

trachomatis lymphogranuloma venereum (LGV) biovar by SDS-PAGE, which is due to post-

translational signal peptide cleavage sites in its amino-terminal region (Batteiger et al., 1985; 

Hatch et al., 1986; Allen and Stephens, 1989; Raulston, 1995; Ting et al., 1995). The mature 

form of the larger pair of OmcB of C. psittaci 6BC has 37 cysteine residues, which is 7.2% of 

the total amino acid content (Hatch, 1996), and has a net positive charge, which is in contrast 

to most chlamydial proteins that are neutral or acidic (Batteiger et al., 1985; Allen and 

Stephens, 1989). Although both members of the doublet were basic in the LGV biovar, the 

protein has a neutral charge in the trachoma biovar (Batteiger et al., 1985). There has been a 

controversy regarding the OmcB localization. The OmcB protein of C. psittaci is hydrophilic, 

not embedded in a lipid bilayer and susceptible to digestion with trypsin after incubation in 

Tris–EDTA, which all together suggest a periplasmic localization of the protein in C. psittaci 

(Everett and Hatch, 1995). However, Ting et al. (1995) observed that the larger of the CRP 

doublet proteins of C. caviae GPIC was degraded by trypsin, without incubation in Tris-

EDTA, to peptides of approximately the same size as the short doublet of the protein. They 

therefore suggested that at least the N-terminal portion of the larger doublet protein is surface 

exposed and they observed that the protein plays a role in adhesion of C. caviae to host cells. 

Stephens et al. (2001) confirmed that OmcB of C. trachomatis LGV is surface exposed and 

accessible to antibodies and identified a heparin-binding motif in the N-terminal region of 

OmcB in both C. trachomatis LGV and trachoma (serovar B) biovars and in C. pneumoniae 

and C. psittaci. Synthetic peptides of this regions in the different Chlamydia species and 

strains bound to heparin (Stephens et al., 2001). However, the OmcB of C. trachomatis LGV 

was shown to function as an heparin-dependent adhesin which can be neutralized by anti-

OmcB antibodies (Fadel and Eley, 2007), while C. trachomatis serovar E (trachoma biovar) 

was shown not to be dependent on heparin for adhesion (Fadel and Eley, 2008). Further 

research is needed to elucidate whether the heparin-binding motifs identified by Stephens et al. 

(2001) are surface exposed and functional in different C. trachomatis serovars and to decide 
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whether differences in OmcB binding properties might be related to the different invasiveness 

observed for those biovars (Allen et al., 1990). Moelleken and Hegemann (2008) confirmed 

that OmcB is a heparin-dependent adhesin in C. pneumoniae. No research has been done on 

adhesion capacities of C. psittaci OmcB.  

5.3.1.3 Polymorphic membrane proteins 

Whole-genome sequencing has revealed the polymorphic membrane protein (Pmp) gene 

family. This is the largest protein family of Chlamydia species and it is a unique feature of the 

genus (Horn et al., 2004; Vandahl et al., 2004). The Pmp proteins were first identified in C. 

abortus through their immunogenicity (Longbottom et al., 1996; Longbottom et al., 1998b) 

and later it was noticed that the family is present in all currently sequenced chlamydial 

genomes (Read et al., 2000; Read, 2003; Thomson et al., 2005; Azuma et al., 2006; Voigt et 

al., 2012). The Pmps have been identified as autotransporter (type V secretion system) 

proteins, based on their cleavable N-terminal signal sequence (type II secretion) for 

translocation across the inner membrane, a central passenger domain which is responsible for 

the protein’s function and a C-terminal transporter domain that forms a β-barrel and with a 

phenylalanine at the end, which is suggestive for outer membrane localization, for 

translocation across the outer membrane (Struyve et al., 1991; Henderson and Lam, 2001; 

Dautin and Bernstein, 2007). Experimental evidence for several Pmps confirmed this in silico 

prediction (Longbottom et al., 1998a; Vandahl et al., 2002; Wehrl et al., 2004; Kiselev et al., 

2007; Liu et al., 2010). Most autotransported proteins contribute to the virulence of many 

Gram-negative pathogens (Henderson et al., 2004; Dautin and Bernstein, 2007; Tseng et al., 

2009). Adhesins (e.g. AIDA-I and Ag43 of Escherichia coli, Hia of Haemophilus influenzae), 

toxins (e.g. VacA of Helicobacter pylori) and proteases (e.g. IgA protease of Neisseria 

gonorrheae) are some functions of the autotransported proteins (Henderson et al., 2001; 

Tseng et al., 2009). The autotransported Pmp proteins account for 3.15% and 5.1% of the 

total coding capacity of C. trachomatis and C. pneumoniae, respectively (Grimwood and 

Stephens, 1999). This is a relatively high proportion of the highly reduced genome and 

therefore it is suggested that the Pmps might play an important function in chlamydial biology.  

The size and amino acid sequences of the Pmp proteins are highly variable, but grouping of 

those proteins in one family is based on the conserved motifs FxxN and GGA (with I, L or V 

in the 4th position). The C. trachomatis and C. muridarum genomes encode nine pmp genes, 

named pmpA to pmpI (Stephens, 1998; Read et al., 2000). They have been divided in six 



Chlamydial infection biology                                                                                                    23 

phylogenetically related subtypes (PmpA, B/C, D, E/F, G/I and H), which may be able to 

substitute structurally and functionally for one another (Grimwood and Stephens, 1999). The 

number of pmp genes is variable, ranging from 9 to 16 full length genes in the Chlamydia 

reference strains C. abortus S26/3 (Thomson et al., 2005), C. avium 10DC88 (Sachse et al., 

2014), C. caviae GPIC (Read, 2003), C. felis FE/C-56 (Azuma et al., 2006), C. gallinacea 08-

1274/3 (Sachse et al., 2014), C. muridarum Nigg (Read et al., 2000), C. pecorum DBDeUG 

(Bachmann et al., 2014), C. pneumoniae CWL029 (Kalman et al., 1999), C. psittaci ATCC 

VR-125/6BC (Voigt et al., 2011) and C. trachomatis D/UW-3/Cx (Stephens, 1998) (Figure 

1.6). In addition, truncated and frame shifted pmp genes have also been observed in several 

chlamydia genomes.  
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Figure 1.6: Schematic overview of putative Pmp proteins in Chlamydia reference strains. 
FxxN motifs (yellow), GGA (I,L,V) motifs (blue), central PMP_M region (green) and 
autotransporter domain (red) are shown. The passenger domain is located in between the N-
terminal secretion signal (not shown, it is predicted to comprise around 20 amino acids at the 
N-terminus) and the C-terminal autotransporter domain. The passenger domain is transported 
across the outer membrane through the autotransporter domain. Frame shifted pmp genes are 
not shown. For each Chlamydia species it should be tested experimentally whether the 
truncated, putative proteins are produced and functional (Vasilevsky et al., 2016).  
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Figure 1.6: continued 
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Figure 1.6: continued 
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noticed that preexisting anti-MOMP and anti-LPS antibodies blocked significantly the 

neutralizing activity of anti-PmpD serum in vitro. MOMP and LPS are highly abundant and 

immunodominant antigens on the EB surface (Su et al., 1990) and therefore they suggested 

that MOMP and LPS might act as decoys for the immune system, as binding of neutralizing 

antibodies to both structures blocks the binding of neutralizing anti-PmpD antibodies (Crane 

et al., 2006). However, anti-MOMP and anti-LPS antibodies do not block anti-PmpD 

neutralization in vitro when anti-PmpD antibodies were preexisting. It is therefore suggested 

that a vaccine that generates PmpD neutralizing antibodies might be effective (Crane et al., 

2006). Recently, Becker and Hegemann (2014) showed that all Pmps of C. trachomatis, 

although in a varying degree, mediate adhesion to human epithelial and endothelial cells. In 

addition, all nine recombinant Pmp proteins can neutralize C. trachomatis infections, which 

suggests that all of the Pmp adhesins are important in the infection process. It was also 

observed that the Pmp proteins inhibit chlamydial infections in a species-specific manner, as 

incubation of human epithelial and endothelial cells with C. trachomatis Pmp proteins was 

not effective to block a subsequent C. pneumoniae infection and vice versa. The latter 

experiment and the different levels of adhesion of Pmp proteins to different cell types 

confirmed the previously suggested hypothesis that Pmp proteins are involved in host and 
tissue tropism (Becker and Hegemann, 2014). All nine Pmp proteins of C. trachomatis have 

been shown to be surface localized (Tan et al., 2010). A different surface localization of 

PmpD on EBs and RBs of C. trachomatis has been observed by different research groups. 

Crane et al. (2006) and Swanson et al. (2009) observed PmpD on EBs, while Kiselev et al. 

(2007, 2009) observed PmpD on RBs but not on EBs. This difference may be attributed to 

different epitopes that may be recognized by the different anti-sera (Crane et al., 2006). 

Pmp21 (ortholog of PmpD of C. trachomatis) was also observed to be surface localized on C. 

pneumoniae EBs and RBs (Vandahl et al., 2002; Wehrl et al., 2004; Mölleken et al., 2010). In 

addition, Pmp6, Pmp8, Pmp10, Pmp11 (all orthologs of PmpG of C. trachomatis) were also 

observed at the surface of C. pneumoniae EBs (Knudsen et al., 1999; Vandahl et al., 2002). 

Other Pmp proteins might also be present at the surface, but the epitopes recognized by their 

antibodies were either unable to be detected, which might be due to destruction of those 

epitopes by the fixation method used or it might be due to the inaccessibility of the epitopes 

(Vandahl et al., 2002). The 90kDa Pmps (orthologs of pmpG of C. trachomatis) were 

observed at the surface of both C. abortus RBs and EBs (Longbottom et al., 1998a). At least 

some Pmp proteins are surface localized antigens on EBs and have been shown to neutralize 

infectivity in vitro. However, vaccine candidates should also be highly immunogenic in vivo. 
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Longbottom et al. (1998b) observed that the 90kDa Pmps of C. abortus were highly 

immunogenic components of COMC, although they are only minor components of COMC. 

In addition, Knudsen et al. (1999) observed that conformational epitopes of C. pneumoniae 

Pmp10 (PmpG ortholog of C. trachomatis) were dominant antigens in experimentally infected 

mice and Bunk et al. (2008) found that Pmp6 (also a PmpG orthologs of C. trachomatis) is 

immunodominant. Up to now, only sera from patients infected with C. trachomatis have been 

tested for their immunogenicity against a panel of recombinant Pmp proteins. Tan et al. (2009) 

observed that patients infected with C. trachomatis elicited high titer antibodies against a 

subset of Pmp proteins, that varies between infected individuals. It is suggested that the 

variable antibody profiles may reflect the variation in transcription and protein production 

profiles along the developmental cycle (Grimwood and Olinger, 2001; Vandahl et al., 2002; 

Tan et al., 2009; Wheelhouse et al., 2009; Carrasco et al., 2011; Wheelhouse et al., 2012b), 

which suggests that the Pmp may be involved in antigenic variation and contribute to 

immune evasion in the infected host (Carrasco et al., 2011; Tan et al., 2009). Other, minor 

investigated potential functions of the Pmp proteins are: induction of apoptosis in 

neighbouring uninfected cells and suppression of T-cells  (Swanson et al., 2009). The Pmps 

have also been shown to be involved in the induction of cytokine production (Niessner et al., 

2003) in infected cells and in pelvic inflammatory disease and infertility (Taylor et al., 2011).  

Previous studies have mainly focused on the Pmp proteins of C. trachomatis (Belland et al., 

2003b; Crane et al., 2006; Kiselev et al., 2007; Tan et al., 2009; Kiselev et al., 2009; 

Swanson et al., 2009; Tan et al., 2010; Carrasco et al., 2011; Saka et al., 2011; Humphrys et 

al., 2013; Becker and Hegemann, 2014) and C. pneumoniae (Knudsen et al., 1999; Vandahl et 

al., 2002; Wehrl et al., 2004; Mölleken et al., 2010; Mölleken et al., 2013), both human 

pathogens, and on the zoonotic C. abortus (Longbottom et al., 1998a,b; Wheelhouse et al., 

2009; Wheelhouse et al., 2012a,b; Forsbach-Birk et al., 2013). Up to now, the Pmp proteins 

of C. psittaci have not been molecularly analyzed. C. psittaci infects pet birds and poultry and 

infections lead to financial losses, particularly in duck, turkey (Vanrompay et al., 1997) and 

more recently also chicken production (Dickx et al., 2010), as they cause mortality, reduced 

feed conversion, reduced egg production, high expenses for antibiotic treatment and carcass 

condemnation at slaughter (Vanrompay et al., 1997). In addition, C. psittaci is the most 

common zoonotic animal chlamydiosis, which can cause a life-threatening pneumonia 

(Vanrompay et al., 1997; Longbottom and Livingstone, 2006; Grinblat-Huse et al., 2011). A 

thorough molecular characterization of the Pmp proteins of C. psittaci is an essential step to 
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further unravel the host-pathogen interaction. Generated knowledge might indicate whether 

one or more members of this family might be potential vaccine candidates for C. psittaci or 

not. 

5.3.1.4 PorB 

PorB, also called OmpB, is a protein of 38 kDa that was not readily detected by biochemical 

methods, as it has approximately the same molecular weight as well as the same isoelectric 

point as the abundant MOMP (Kubo and Stephens, 2000). The protein is, although in lower 

amounts than MOMP, present in the COMC of EBs and is surface accessible by PorB-specific 

antisera (Sanchez-campillo et al., 1999; Kubo and Stephens, 2000; Kubo and Stephens, 2001; 

Kawa and Stephens, 2002). Anti-PorB antibodies neutralized C. trachomatis infectivity in 

vitro (Kawa and Stephens, 2002). The sequence of PorB is highly conserved among 

Chlamydia species (Kubo and Stephens, 2000; Kawa and Stephens, 2002). It has been 

suggested that PorB is a substrate-specific porin, which is responsible for the diffusion of 

some specific metabolites like dicarboxylic acids such as 2-oxoglytarate to complete the 

tricarboxylic adic cycle and as such to provide carbon and energy production intermediates to 

chlamydiae (Iliffe-Lee and McClarty, 1999; Kubo and Stephens, 2001). This is in contract to 

MOMP, that functions as a general porin and permits the diffusion of a wide variety of 

compounds, such as polysaccharides and amino acids (Kubo and Stephens, 2001). 

5.3.1.5 Omp85 

Omp85 is an outer membrane protein that is conserved in Gram-negative bacteria and 

organelles of bacterial origin, such as mitochondria (Gentle et al., 2005). Omp85 proteins 

have an N-terminal periplasmic domain and a C-terminal β-barrel domain, which is embedded 

in the outer membrane (Gentle et al., 2005). Omp85 is essential for the assembly of protein in 

the outer membrane (Voulhoux et al., 2003) and it might also be involved in lipid assembly in 

the outer membrane (Gentle et al., 2005). Chlamydial Omp85 has been shown to be part of 

the C. trachomatis COMC (Liu et al., 2010). Omp85 is surface-accessible and anti-Omp85 

antibodies neutralize chlamydial infectivity in vitro (Kubo and Stephens, unpublished data). 
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5.3.1.6 YscC 

YscC is the only T3S system protein that is clearly localized in the outer membrane. For C. 

trachomatis YstC has been shown to be membrane localized (Fields et al., 2003) and to be 

part of the COMC (Liu et al., 2010).  

5.3.1.7 OprB 

OprB is a porin with a carbohydrate-selective porin motif in its C-terminal part. The protein is 

well conserved in Chlamydia species. Anti-OprB antibodies reacted with ring-shaped 

structures, similar to anti-MOMP stainings, which indicated that the protein is located in a 

membrane. More specifically, OprB is part of the C. trachomatis COMC (Birkelund et al., 

2009; Liu et al., 2010). It is currently unknown whether OprB is surface localized (Birkelund 

et al., 2009).  

5.3.1.8 Pal 

Peptidoglycan-associated lipoprotein (Pal) is an outer membrane lipoprotein (Parsons et al., 

2006), which is a component of the C. trachomatis outer membrane complex (Liu et al., 

2010). Orthologs of Pal anchor the outer membrane to peptidoglycan (Parsons et al., 2006) 

and are part of the Tol complex, which connects the inner and outer membranes in other 

Gram-negative bacteria. Pal is essential for the survival and pathogenesis of certain Gram-

negative bacteria (Godlewska et al., 2009). 

5.3.2 Heat shock proteins 

Three chamydial heat shock proteins (Hsp) have been identified: Hsp10, Hsp60 and Hsp70, 

which are chlamydial homologues of Escherichia coli GroES, GroEL and DnaK (Danilition et 

al., 1990; Cerrone et al., 1991; LaVerda et al., 1999). Hsp are among the most abundant 

proteins in nature and are highly conserved among both eukaryotes and prokaryotes (Peeling 

and Mabey, 1999). Hsp are highly conserved chlamydial proteins (>95% amino-acid identity) 

and share approximately 50% homology with human Hsps (Peeling and Mabey, 1999). The 

proteins are constitutively expressed throughout the chlamydial developmental cycle and the 

expression is up-regulated during stress (Peeling and Mabey, 1999). Hsp are suggested to 

function as chaperones (Zugel and Kaufmann, 1999). Antibodies against Hsp10 and Hsp60 

have been shown to contribute to immunopathologic manifestations of the severe upper 
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genital tract complications of chlamydial disease in women (LaVerda et al., 1999). Hsp70 is 

associated with isolated COMC of C. trachomatis (Raulston et al., 2002). However, not all 

proteins associated with COMC are component of the COMC. Liu et al. (2010) elucidated 

which proteins are enriched in the COMC and in the sarkosyl-soluble phase compared to 

whole EB protein lysates. Hsp70 and Hsp60 are overrepresented in the sarkosyl-soluble 

fraction, which suggest that they are not components of the COMC (Liu et al., 2010). 

Raulston et al. (2002) showed that chlamydial Hsp70 is not surface exposed on purified EBs. 

The results of their experiments suggested that the structural integrity of the outer membrane 

of C. trachomatis EBs, which is maintained by protein disulfide bonds, is essential for 

attachment to the host epithelial cell, but after the first initial attachment, reduction of the 

disulfide-cross-linked outer membrane proteins leads to the exposure of the chlamydial Hsp70 

substrate-binding domain, which is suggested to be essential for chlamydial infectivity 

(Raulston et al., 2002). 

5.3.3 Nutrient transporters 

Saka et al. (2011) quantified the proteome of C. trachomatis EBs and RBs. Transporters, 

permeases and translocators account for 7% and 2.5% of the RB and EB proteome of C. 

trachomatis, respectively. Npt1 and Npt2, two integral membrane ATP/ADP antiporters, were 

more abundant in the RB . Npt1 mediates the import of host cell ATP, through the export of 

chlamydial ADP. Npt2 transports ATP, CTP, GTP and UTP in a proton-dependent manner 

(Stephens, 1998; Tjaden et al., 1999). Oligopeptide, amino acid and sugar transporters were 

also more abundant in the RB. Components of the ABC-type oligopeptides transport system, 

Na+-linked D-alanine glycine permease DagA_2 and the hexose phosphate transport protein 

UhpC were more prominent in the RB. YtgA, which is possibly involved in iron transport 

(Miller et al., 2009), was also enriched in the RB. It is suggested that the EB uses glucose to 

cope with the high demand for energy at the early stage of the infection, while the RB 

switches to ATP synthesis by generating an ion gradient through eukaryotic like vacuolar (V)-

type ATPases (Saka et al., 2011). Six predicted V-type ATPase subunits were enriched in the 

RB. These results suggest that the RB acquires energy both by ATP synthesis and ATP 

transport from the host. Saka et al. (2011) proposed that the ATP is used both by the 

replicating RB and loaded in the EBs, to fuel early processes such as protein secretion. The 

above mentioned results are consistent with the functions of RBs, as the actively replicating 

RB has a high demand for nutrients.  
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Virulence factors account for 5% and 14% of the RB and EB proteome, respectively. Two 

components of the basal aparatus of the T3S system, the C-ring component CdsQ and the 

ATPase CdsN were largely absent in the RB. The relative abscence of these components may 

either be substituted by additional factors or the RB may have a reduced T3S capacity. This 

might prevent that an excess of T3S effectors would be secreted, as such excess could harm 

the host cell, disrupt the development of the inclusion or provide substrates for antigen 

presentation by the host (Saka et al., 2011). 
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Study objectives 

The present study aims to fundamentally characterize the polymorphic membrane protein 

(Pmp) family of Chlamydia psittaci. C. psittaci is a Gram negative obligate intracellular 

pathogen of birds and an important zoonotic agent via inhalation of infected aerosols of 

pharyngeal or nasal secretions or dried feces (Dickx and Vanrompay, 2011).  

In the last decade, the Pmp proteins have been studied intensively, particularly because the C. 

trachomatis and C. pneumoniae Pmp families represent a relatively high proportion of the 

coding capacity (3.15 to 5.1%, respectively) in the highly reduced chlamydial genome. 

Moreover the occurrence of the pmp gene family in all currently sequenced chlamydial 

genomes (Grimwood and Stephens, 1999) suggests an important function in chlamydial 

biology. Previous studies have mainly focused on the Pmps of C. trachomatis (Belland et al., 

2003b; Crane et al., 2006; Kiselev et al., 2007; Tan et al., 2009; Kiselev et al., 2009; 

Swanson et al., 2009; Tan et al., 2010; Carrasco et al., 2011; Saka et al., 2011; Humphrys et 

al., 2013; Becker and Hegemann, 2014) and C. pneumoniae (Vandahl et al., 2002; Wehrl et 

al., 2004; Mölleken et al., 2010; Mölleken et al., 2013), both human pathogens, and on the 

zoonotic C. abortus (Longbottom et al., 1998a; Longbottom et al., 1998b; Wheelhouse et al., 

2009; Wheelhouse et al., 2012a; Wheelhouse et al., 2012b; Forsbach-Birk et al., 2013). 

However, the pmp gene family of C. psittaci has not been investigated so far.  

Whole genome-sequencing of Chlamydia spp. has revealed the Pmp family, which is the 

largest membrane protein family in Chlamydia spp. and it is a unique feature of the genus 

(Horn et al., 2004; Vandahl et al., 2004). Pmps are grouped into a family based on the 

conserved repetitive motifs FxxN and GGA (with I, L or V at the 4th position). In C. 

trachomatis, they have been further divided into six phylogenetically related subtypes (PmpA, 

B/C, D, E/F, G/I, and H) which may be able to substitute structurally and functionally for one 

another (Grimwood and Stephens, 1999). The passenger domain is responsible for the 

protein’s function (Henderson and Lam, 2001). Pmp6, Pmp20 and Pmp21 of C. pneumoniae 

(orthologs of PmpG, PmpB and PmpD of C. trachomatis, respectively) and all Pmp proteins 

of C. trachomatis are proposed to function as adhesins, based on adhesion assays and specific 

neutralization of the infection by incubation of the host cells with the recombinant Pmp 

proteins (Crane et al., 2006; Mölleken et al., 2010; Becker and Hegemann, 2014). Up to now, 

anti-PmpD and anti-Pmp21 antibodies are the only Pmp-specific antibodies that are tested for 
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their possible neutralizing capacity. Specific anti-PmpD and anti-Pmp21 antibodies can 

partially neutralize C. trachomatis and C. pneumoniae infection, respectively, in vitro (Wehrl 

et al., 2004; Crane et al., 2006; Mölleken et al., 2010).  

Patients infected with C. trachomatis usually elicit high titer antibodies against a subset of the 

Pmp proteins, that varies between infected individuals (Tan et al., 2009). The different 

antibody profiles in patients may reflect different transcription and protein production profiles 

along the developmental cycle or it may be a result of strain variation or site specificity 

(Grimwood and Olinger, 2001; Vandahl et al., 2002; Tan et al., 2009; Wheelhouse et al., 

2009; Carrasco et al., 2011; Wheelhouse et al., 2012b). An attractive hypothesis is that 

variation of pmp gene expression and the resulting antigenic variation phenotype contributes 

to immune evasion in the infected host. Finally, Pmp proteins were reported to be involved in 

host and tissue tropism (Becker and Hegemann, 2014).  

The first objective of this thesis was to determine the number, organization and size of pmp 

coding sequences (CDSs) in different C. trachomatis, C. pneumoniae, C. abortus and C. 

psittaci genomes. Therefore, the pmp CDSs were annotated by a Hidden Markov Model and 

all CDSs were drawn to scale. Furthermore, conserved proteins are hypothesized to be 

indispensable for the pathogenesis of an organism. So the level of conservation of the Pmp 

proteins within and across the above-mentioned 4 Chlamydia species was determined.  

Quantitative real-time polymerase chain reaction (RT-qPCR) is a major tool to gain insight in 

the molecular pathogenesis of C. psittaci (Vandesompele et al., 2002). However, validated 

reference genes are needed to avoid biases in RT-qPCR. This normalization step is the most 

problematic and most neglected part in RT-qPCR. Up to now, stably expressed genes for 

normalization of RT-qPCR data in Chlamydia species have only been determined for C. 

trachomatis (Borges et al., 2010). Therefore, the second objective of this study was to 

validate reference genes for RT-qPCR in C. psittaci during the normal developmental cycle, 

during penicillin-induced persistence and for normal + penicillin conditions. Reference genes 

validated for normal + penicillin should be used to check whether a certain gene is up- or 

down-regulated during the persistent state compared to during normal development. The latter 

could help to further unravel the molecular mechanism of the persistent state and thus by 

preventing Chlamydia spp. to go into the persistent state, this would help to treat chlamydial 

infections.  
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Chlamydial infections can easily be resolved by treatment with antibiotics. However, C. suis 

acquired stable tetracycline resistance by horizontal gene transfer (Dugan et al., 2004; Dugan 

et al., 2007). Pigs are the natural host of C. suis, but C. abortus, C. pecorum and C. psittaci 

also occur in the pig (Schautteet and Vanrompay, 2011). Consequently, spreading of the 

tetracycline resistance gene is possible. As chlamydial infections are economically 

devastating (Everett, 2000; Harris et al., 2012; Forsbach-Birk et al., 2013; Kalmar et al., 

2015), the need for an effective vaccine is high. Vaccine development is not the aim of this 

thesis. However, as the Pmp proteins have been hypothesized to be vaccine candidates (Crane 

et al., 2006; Mölleken et al., 2010), a thorough analysis of these proteins in C. psittaci is a 

first fundamental step to unravel the host-pathogen interactions and generated knowledge can 

be applied for future vaccine research. As previous studies suggested a unique role in 

chlamydial pathogenesis for virulence genes expressed during stress (Carrasco et al., 2011), 

the third objective of this study was to determine the expression and production profile of the 

pmp CDSs and Pmp proteins during the normal developmental cycle and during penicillin-

induced persistence by RT-qPCR and immunofluorescence (IF) microscopy. In addition, as 

RT-qPCR determines the expression level in the population and IF in individual inclusions, 

immuno-electron microscopy (IEM) was used to assess the subcellular localization of the 

Pmps at late developmental times on individual chlamydiae.  

Vaccination of pregnant ewes by the C. abortus outer membrane complex conferred 

protective immunity (Tan et al., 1990). In addition, a multisubunit vaccine encompassing the 

major outer membrane protein and multiple Pmp proteins conferred better immunity than the 

single antigens (Yu et al., 2014). The Pmps present in the multisubunit vaccine are 

overrepresented in the C. trachomatis outer membrane complex (Liu et al., 2010). Overall, 

Pmp proteins present in the chlamydial outer membrane complex are suggested to be potential 

vaccine candidates. As the composition of the chlamydial outer membrane complex was 

previously only determined for C. trachomatis (Mygind et al., 2000; Birkelund et al., 2009; 

Liu et al., 2010), C. pneumoniae (Knudsen et al., 1999) and C. abortus (Tan et al., 1990; 

Cevenini et al., 1991; McCafferty et al., 1995; Longbottom et al., 1996), the fourth objective 

of this study was to determine which Pmp proteins are present in the C. psittaci outer 

membrane complex by IEM.  
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Abstract 

Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of 

pmp coding sequences differ between Chlamydia species, but it is unknown if the number of 

pmp coding sequences is constant within a Chlamydia species. The level of conservation of 

the Pmp proteins has previously only been determined for C. trachomatis. As different Pmp 

proteins might be indispensible for the pathogenesis of different Chlamydia species, this study 

investigated the conservation of the Pmp proteins both within and across C. trachomatis, C. 

pneumoniae, C. abortus and C. psittaci. The pmp coding sequences were annotated in 16 C. 

trachomatis, 6 C. pneumoniae, 2 C. abortus and 16 C. psittaci genomes by a Hidden Markov 

Model. The number and organization of polymorphic membrane coding sequences differed 

within and across the analyzed Chlamydia species. The length of coding sequences of pmpA, 

pmpB and pmpH was conserved among all analyzed genomes, while the length of the 

expanded subtypes pmpE/F and pmpG, and remarkably also of subtype pmpD differed among 

the analyzed genomes. PmpD, PmpA, PmpH and PmpA were the most conserved 

polymorphic membrane proteins in C. trachomatis, C. pneumoniae, C. abortus and C. psittaci, 

respectively. PmpB was the most conserved polymorphic membrane protein across the four 

analyzed Chlamydia species.  
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1. Introduction 

Members of the Chlamydiaceae are well known pathogens, causing a wide variety of 

infectious diseases in both animals and humans (Longbottom and Coulter, 2003). Chlamydia 

trachomatis and C. pneumoniae are the most prevalent species in humans. C. trachomatis is 

the leading cause of preventable blindness and sexually transmitted disease (Schachter and 

Dawson, 1990), while C. pneumoniae causes pneumonia, bronchitis, and sinusitis, with 

chronic infections contributing to atherosclerosis (Hanh et al., 2002; Belland et al., 2004). 

The most common chlamydial species infecting animals are C. psittaci (birds), C. abortus 

(sheep and goats), C. suis (pigs) and C. pecorum (mammals and marsupials). These infections 

can result in conjunctivitis, cardiovascular or systemic disease, abortion, infertility, enteritis, 

encephalitis, arthritis or respiratory disease (Everett, 2000). However, the molecular 

mechanisms behind this observed host tropism has not been unraveled. As variation is a 

central trait of the members of the polymorphic membrane protein (Pmp) family (Grimwood 

and Stephens, 1999), these proteins were hypothesized to play a role in host and tissue 

tropism, which is recently confirmed by Becker et al. (2014). Pmp variation is evidenced, for 

example, by a diversity in the number of Pmp coding sequences (CDSs); for example, the C. 

trachomatis genome encodes only 9 pmp CDSs, while the Pmp family is expanded in C. 

pneumoniae, C. abortus and C. psittaci. The expansion of the Pmp family can be specifically 

attributed to the expansion of the pmpE/F and pmpG subtypes. This raises the question 

whether the number of pmp CDSs varies only across species, or also within a species. 

Therefore, we re-examined the previously published number of pmp CDSs of C. trachomatis, 

C. pneumoniae, C. abortus and C. psittaci in 16, 6, 2, and 16 genomes, respectively, as those 

are the two main human Chlamydia pathogens and the two most devastating animal 

Chlamydia species with available genome sequences. More generally, conserved proteins are 

hypothesized to be indispensable for the pathogenesis of an organism. Consequently, if the 

Pmp proteins are important for host tropism, it can be hypothesized that different Pmp 

subtypes may be differentially conserved within different Chlamydia species. Until now, the 

level of conservation of the Pmp proteins had only been determined for C. trachomatis 

(Gomes et al., 2006; Carrasco et al., 2011). Adding to their possible role in adhesion to 

different host cells, we hypothesize that some Pmp subtypes may also have a redundant, 

essential function in different hosts. For this reason, in this study we have determined the 

level of conservation within and across four key Chlamydia species.  
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2. Materials and methods 

2.1 Chlamydia species and strains 

Genomes of 4 different Chlamydia species, namely C. trachomatis, C. pneumoniae, C. 

abortus and C. psittaci, were analyzed. Sixteen complete C. trachomatis genomes were 

selected. Strains belonging to the ocular serovar (A/HAR-13, A/363 and C/TW-3), urogenital 

serovar (D/13-96, E/150, E/11023, F/1-93, F/6-94, G/9301, G/9768 and J/31-98) and LGV 

biovar (L1/115, L2/25667R, L2c, L2b/8200/07 and 434/Bu) were included. All C. 

pneumoniae and C. abortus genomes available at the moment of analysis were included (B21, 

AR39, CWL029, J138, LPCoLN, TW-183 and LLG, S26/3 respectively). Sixteen C. psittaci 

genomes were selected, comprising all complete genome sequences that were available at the 

moment of analysis (01DC11, 02DC15, 08DC60, C19/98, 6BC, 84/55, CP3, GR9, M56, MN, 

NJ1, VS225, WC and WSRTE30), the previously well-characterized, prototypic C. psittaci 

strain Cal10 (Matsumoto, 1982; Hovis et al., 2013; Mojica et al., 2015) and the first 

sequenced C. psittaci genome, namely strain RD1 (Seth-Smith et al., 2011). 

2.2 Bioinformatics analyses 

A phylogenetic tree of the above-mentioned C. trachomatis, C. pneumoniae, C. abortus and C. 

psittaci genomes was constructed. Whole genome maximum likelihood trees were constructed 

as described in Sahl et al. (2011). Sequences were aligned with Mugsy v1r2.3 (Angiuoli and 

Salzberg, 2011) which generates blocks of conserved aligned sequence. Blocks were then 

joined together and converted to a concatenated multifasta alignment file with the bx-python 

toolkit (http://bitbucket.org/james_taylor/bx-python/wiki/Home). The alignment file was 

filtered using mothur filter.seqs (Schloss et al., 2009). A maximum likelihood based 

phylogenetic tree was inferred using RaxML (raxmlHPC-PTHREADS v8.2.5) (Stamatakis, 

2014), using the GTRGAMMA model, with 100 independent runs on distinct starting trees 

and rapid bootstrap analysis. 

We annotated the pmp CDSs in the above-mentioned genomes using a newly developed 

Hidden Markov Model (HMM) and an additional manual search of the NCBI database (Table 

2.1). The HMM was developed by individual clustal alignments, which were independently 

run on each pmp subfamily within the seed set, consisting of manually curated pmp genes 

from six sequenced C. psittaci genomes (6BC, RD1, 01DC11, 02DC15, 08DC60 and C19/98). 
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Alignments were reviewed manually and it was determined that no trimming was necessary. 

The HMMER package (hmmbuild) was used to build a separate model for each pmp 

subfamily. All HMMs were validated using the HMMER package (hmmsearch) against a 

larger set of C. psittaci and C. caviae sequences. The protein sequences of each Pmp subtype 

were aligned with ClustalW2 and the percentage of conserved amino acids was calculated 

both within and across Chlamydia species. 
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Table 2.1: All C. trachomatis, C. pneumoniae, C. abortus and C. psittaci strains that were used for the comparative analysis of the pmp 
coding sequences.  

Species Strain Length (Mb) CDS (#) Protein (#) Pseudogene % GC Reference Accession number 
C. trachomatis L2c 1.04 949 900 5 41.3 (Somboonna et al., 2011) CP002024.1 

L2/25667R 1.04 948 899 4 41.3 (Harris et al., 2012) HE601954.1 

L2b/8200/07 1.04 949 899 5 41.3 (Harris et al., 2012) HE601795.1 

L1/115 1.04 947 895 7 41.3 (Harris et al., 2012) HE601952.1 

D/13-96 1.04 953 903 6 41.3 (Putman et al., 2013) CP006676.1 

J/31-98 1.04 955 908 3 41.3 (Putman et al., 2013) CP006680.1 

F/1-93 1.04 956 895 17 41.3 (Putman et al., 2013) CP006671.1 

F/6-94 1.04 955 905 6 41.3 (Putman et al., 2013) CP006673.1 

434/Bu 1.04 937 880 11 41.3 (Thomson et al., 2008) AM884176.1 

A/363 1.04 958 905 8 41.3 (Harris et al., 2012) HE601796.2 

A/HAR-13 1.04 958 905 8 41.3 (Harris et al., 2012) CP000051.1 

C/TW-3 1.04 957 897 16 41.3 (Borges et al., 2014) CP006945.1 

E/11023 1.04 953 902 7 41.3 (Jeffrey et al., 2010) CP001890.1 

E/150 1.04 955 904 7 41.3 (Jeffrey et al., 2010) CP001886.1 

G/9301 1.04 953 903 6 41.3 (Jeffrey et al., 2010) CP001930.1 

G/9768 1.04 953 903 6 41.3 (Jeffrey et al., 2010) CP001887.1 

C. pneumoniae B21 1.22 1219 1182 not mentioned 40.5 (Roulis et al., 2014) AZNB01000082.1 
AR39 1.23 1165 1110 not mentioned 40.6 (Read et al., 2000) AE002161.1 

CWL029 1.23 1091 1029 19 40.6 (Kalman et al., 1999) AE001363.1 

J138 1.23 1113 1060 11 40.6 
(Shirai, et al., 2000a; 
Shirai et al., 2000b) BA000008.3 

LPCoLN 1.24 1102 1006 54 40.5 (Myers et al., 2009) CP001713.1 

TW-183 1.23 1109 1059 8 40.6 (Geng, et al., 2002) AE009440.1 

C. abortus LLG 1.14 1001 936 23 39.9 (Sait et al., 2011) CM001168.1 

S26/3 1.14 1006 930 34 39.9 (Thomson et al., 2005) CR848038.1 
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C. psittaci 01DC11 1.17 1019 965 12 39.1 (Schöfl et al., 2011) CP002805.1 

02DC15 1.17 1021 972 7 39.1 (Schöfl et al., 2011) CP002806.1 

08DC60 1.17 1018 963 13 39.1 (Schöfl et al., 2011) CP002807.1 

6BC 1.17 1018 971 5 39.1 
(Grinblat-Huse et al., 

2011) CP002586.1 

C19/98 1.17 1016 968 6 39.0 (Schöfl et al., 2011) CP002804.1 

Cal10 1.18 1038 982 14 39.0 
(Grinblat-Huse et al., 

2011) AEZD00000000 
RD1 1.16 1001 943 16 39.1 (Seth-Smith et al., 2011) FQ482149.1 

84/55 1.17 1037 893 102 39.1 (Van Lent et al., 2012) CP003790.1 

CP3 1.17 1121 950 21 39.0 (Van Lent et al., 2012) CP003797.1 

GR9 1.15 1010 949 19 39.1 (Van Lent et al., 2012) CP003791.1 

M56 1.16 1008 946 20 38.8 (Van Lent et al., 2012) CP003795.1 

MN 1.17 1019 956 21 39.1 (Van Lent et al., 2012) CP003792.1 

NJ1 1.16 1015 955 18 39.0 (Van Lent et al., 2012) CP003798.1 

VS225 1.16 1025 898 85 39.0 (Van Lent et al., 2012) CP003793.1 

WC 1.17 1026 963 21 39.1 (Van Lent et al., 2012) CP003796.1 

WSRTE30 1.14 1008 934 32 39.0 (Van Lent et al., 2012) CP003794.1 
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3. Results 

3.1 The number, organization and size of pmp coding sequences (CDSs) in the genome 
varied within and across Chlamydia species 

A phylogenetic tree of all analyzed genomes was constructed (Figure 2.1). The number of 

pmp CDSs encoded in the genome varied within Chlamydia species, ranging from 17 to 28 

(including both full length and truncated genes) for C. pneumoniae, from 12 to 14 for C. 

abortus, and from 11 to 21 in C. psittaci (Figure 2.2 and Tables 2.2 and 2.3). All C. 

trachomatis genomes encoded 9 pmp CDSs, except strain F/1-93 which had 8 full length and 

1 truncated pmpE/F CDS. The number of pmpE/F CDSs ranged from 2 to 6 (including both 

full length and truncated CDSs) in C. pneumoniae, from 2 to 3 in C. abortus and from 1 to 2 

in C. psittaci genomes and the number of pmpG CDSs ranged from 9 to 18 for C. pneumoniae, 

from 6 to 7 for C. abortus, and from 5 to 15 for C. psittaci. The above-mentioned ranges 

included full length and truncated pmp CDSs. Frame shifted CDSs were only observed for 

pmpE/F CDSs, pmpG CDSs and exceptionally for pmpB CDSs in C. pneumoniae B21 draft 

genome.
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Figure 2.1: A phylogenetic tree of all analyzed C. trachomatis, C. pneumoniae, C. abortus 
and C. psittaci genomes. The genomes clustered by Chlamydia species. For C. trachomatis, 

the LGV serovars clustered together and the urogenital and ocular serovars clustered together. 

Bootstrap values are added on each branch. All branches have high bootstrap values (> 75) 

except for some C. psittaci strains (01DC11, C19/98, RD1, 84/55, Cal10 and 02DC15).  
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Figure 2.2: Genome organization of pmp CDSs in C. trachomatis, C. pneumoniae, C. abortus and 
C. psittaci. All pmp CDSs and inter-CDS regions encoded in (A) C. trachomatis, C. pneumoniae and 
C. abortus genomes, (B) in C. psittaci reference strains and (C) in C. psittaci strains are drawn to scale. 
A break (//) is added if the inter-CDS region is bigger than 5000 bp. Both full length and truncated 
CDSs are shown for all genomes, except for C. pneumoniae B21 for which only full length CDS are 
drawn, as only contigs instead of a complete genome sequence are available and the positions of the 
pmp CDSs are incorrect. If pmp CDSs were overlapping, then an additional line was added for that 
genome. 

(A) 

(B) 

(C) 
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Table 2.2: The amount of full length, truncated and frame shifted pmp CDSs in C. 

trachomatis, C. pneumoniae, C. abortus and C. psittaci genomes. 

Species Strain 
Full length pmp 

CDSs 
Truncated pmp 

CDSs 
Frame shifted pmp 

CDSs 

C. trachomatis 
 

A/HAR-13 9 / / 
  F/1-93 8 1 / 

C. pneumoniae B21 10 7 / 
AR39 16 1 4 

CWL029 16 1 8 
J138 15 6 7 

LPCoLN 18 / 1 
  TW-183 17 11 / 

C. abortus LLG 10 2 / 
  S26/3 14 / 3 

C. psittaci 84/55 12 7 / 
CP3 13 1 / 
GR9 14 4 / 
M56 13 2 / 
MN 17 3 / 
NJ1 16 / / 

VS225 13 1 / 
WC 17 4 / 

WSRTE30 14 1 / 
01DC11 16 / 2 
02DC15 16 / 3 
08DC60 14 / 3 

6BC 16 / 2 
C19/98 15 / 3 
Cal10 15 2 / 

  RD1 11 / 1 
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Table 2.3: The accession numbers of all pmp CDSs of C. trachomatis, C. pneumoniae, C. abortus and C. psittaci. Full length CDSs are written in plain, black, truncated CDSs in bold and frame shifted CDSs are underlined. 

Species Strain A B C D E/F 

C. trachomatis 

L2c ctl2c_703 ctl2c_704 ctl2c_705 ctl2c_203 ctl2c_270 ctl2c_271     
L2/25667R L2225667_428 L2225667_429 L2225667_430 L2225667_866 L2225667_933 L2225667_934     

L2b/8200/07 L2B8200_00426 L2B8200_00427 L2B8200_00428 L2B8200_00863 L2B8200_00929 L2B8200_00930     
L1/115 L1115_427 L1115_428 L1115_429 L1115_865 L1115_932 L1115_933     
D/13-96 O176_02240 O176_02245 O176_02250 O176_04535 O176_04865 O176_04870     
J/31-98 O180_02235 O180_02240 O180_02245 O180_04525 O180_04855 O180_04860     
F/1-93 O169_02250 O169_02255 O169_02260 O169_04545 O169_04875 O169_04880     
F/6-94 O172_02235 O172_02240 O172_02245 O172_04530 O172_04860 O172_04865     
434/Bu ct434bu_701 ct434bu_702 ct434bu_703 ct434bu_201 ct434bu_268 ct434bu_269     
A/363 A363_440 A363_441 A363_442 A363_878 A363_943 A363_944     

A/HAR-13 ctahar_444 ctahar_445 ctahar_446 ctahar_881 ctahar_946 ctahar_947     
C/TW-3 CTW3_02250 CTW3_02255 CTW3_02260 CTW3_04555 CTW3_04900 CTW3_04905     
E/11023 cte11023_431 cte11023_432 cte11023_433 cte11023_868 cte11023_933 cte11023_934     
E/150 cte150_432 cte150_433 cte150_434 cte150_869 cte150_935 cte150_936     

G/9301 ctg9301_431 ctg9301_432 ctg9301_433 ctg9301_870 ctg9301_935 ctg9301_936     
G/9768 ctg9768_431 ctg9768_432 ctg9768_433 ctg9768_869 ctg9768_934 ctg9768_935     

C. pneumoniae 

B21 gi|572024350|gb|ET
R80440.1| 

X556_0232; 
X556_0233  

gi|572023388|gb|E
TR79739.1| 

gi|572024253|gb|ETR
80366.1| gi|572024246|gb|ETR80363.1|     

AR39 CP_0213 CP_0212  CP_0897 CP_0286 CP_0285 CP_0283 CP_0284   
CWL029 CPn_0539 CPn_0540  CPn_0963 CPn_0466 CPn_0467 CPn_0471    

J138 pmp_19 pmp_20  pmp_21 pmp_15 pmp_16 pmp_17_1 pmp_17_2 pmp_17_3 pmp_18 

LPCoLN CPK_ORF01054 CPK_ORF01055  CPK_ORF00378 CPK_ORF00981 CPK_ORF00983 CPK_ORF00982 CPK_ORF00984   
TW-183 CpB0560 CpB0561  CpB1000 CpB0484 CpB0485 CpB0486 CpB0487 CpB0488 CpB0489 

C. abortus 
LLG gi|333409995|gb|EG

K68982.1| 
gi|333409994|gb|E

GK68981.1|  
gi|333410522|gb|E

GK69509.1| 
gi|333410058|gb|EG

K69045.1| gi|333410059|gb|EGK69046.1|     
S26/3 CAB201 CAB200  CAB776 CAB265 CAB266 CAB267    

C. psittaci 

01DC11 CPS0A_0238 CPS0A_0237  CPS0A_0875 CPS0A_0303 CPS0A_0304     
02DC15 CPS0B_0234 CPS0B_0233  CPS0B_0862 CPS0B_0299 CPS0B_0300     
08DC60 CPS0D_0235 CPS0D_0234  CPS0D_0872 CPS0D_0302 CPS0D_0303     

6BC G5O_0236 G5O_0235  G5O_0845 G5O_0302 G5O_0303     
C19/98 CPS0C_0236 CPS0C_0235  CPS0C_0874 CPS0C_0302 CPS0C_0303     
Cal10 G5Q_0224 G5Q_0223  G5Q_0827 G5Q_0290 G5Q_0291     
RD1 Cpsi_2191 Cpsi_2181  Cpsi_7911 Cpsi_2811 Cpsi_2821     

84_55 B595_0240 B595_0239  B595_0921 B595_0307      
CP3 B711_0240 B711_0239  B711_0922 B711_0310 B711_0311     
GR9 B598_0235 B598_0234  B598_0860 B598_0301 B598_0302     
M56 B602_0233 B602_0232  B602_0866 B602_0299 B602_0300     
MN B599_0234 B599_0233  B599_0861 B599_0299 B599_0300     
NJ1 B712_0235 B712_0234  B712_0865 B712_0300 B712_0301     

VS225 B600_0246 B600_0245  B600_0919 B600_0317 B600_0318     
WC B603_0235 B603_0234  B603_0864 B603_0301 B603_0302     

WSRTE30 B601_0233 B601_0232  B601_0863 B601_0300 B601_0301     
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Species Strain G 

C. trachomatis 

L2c ctl2c_272          
L2/25667R L2225667_935          

L2b/8200/07 L2B8200_0093
1          

L1/115 L1115_934          
D/13-96 O176_04875          
J/31-98 O180_04865          
F/1-93 O169_04885          
F/6-94 O172_04870          
434/Bu ct434bu_270          
A/363 A363_945          

A/HAR-13 ctahar_948          
C/TW-3 CTW3_04910          
E/11023 cte11023_935          
E/150 cte150_937          

G/9301 ctg9301_937          
G/9768 ctg9768_936          

C. pneumoniae 

B21 gi|572023612|g
b|ETR79887.1| 

gi|572024215|g
b|ETR80340.1| 

gi|572023613|g
b|ETR79888.1| 

gi|572024213|g
b|ETR80338.1| 

gi|572024214|g
b|ETR80339.1| 

gi|572024223|g
b|ETR80344.1| 

gi|572024240|gb|E
TR80359.1| 

gi|572023587|gb|
ETR79873.1| 

gi|572023605|gb|
ETR79883.1| 

gi|572024220|gb|
ETR80343.1| 

AR39 CP_0306 CP_0303 CP_0308 CP_0302 CP_0307 CP_0761 CP_0757 CP_0309 CP_0770 CP_0759 
CWL029 CPn_0447 CPn_0445 CPn_0451 CPn_0446 CPn_0015 CPn_0013 CPn_0444 CPn_0005 CPn_0453 CPn_0449 

J138 pmp_1 pmp_2_1 pmp_2_2 pmp_3_1 pmp_3_2 pmp_4_1 pmp_4_1_2 pmp_4_2 pmp_5_1 pmp_5_2 

LPCoLN CPK_ORF0051
6 

CPK_ORF0096
0 

CPK_ORF0051
5 

CPK_ORF0096
3 

CPK_ORF0096
5 

CPK_ORF0095
8 CPK_ORF00959 CPK_ORF00514 CPK_ORF00956 CPK_ORF00506 

TW-183 CpB0464 CpB0467 CpB0462 CpB0468 CpB0463 CpB0018 CpB0460 CpB0006 CpB0470 CpB0015 

C. abortus 
LLG gi|333410066|g

b|EGK69053.1| 
gi|333410063|g
b|EGK69050.1| 

gi|333410064|g
b|EGK69051.1| 

gi|333410062|g
b|EGK69049.1| 

gi|333410067|g
b|EGK69054.1| 

gi|333410355|g
b|EGK69342.1|     

S26/3 CAB281 CAB598 CAB282 CAB277 CAB278 CAB269 CAB283    

C. psittaci 

01DC11 CPS0A_0315 CPS0A_0318 CPS0A_0317 CPS0A_0316 CPS0A_0677 CPS0A_0684 CPS0A_0307 CPS0A_0314 CPS0A_0320 CPS0A_0309 
02DC15 CPS0B_0313 CPS0B_0315 CPS0B_0314 CPS0B_0675 CPS0B_0316 CPS0B_0676 CPS0B_0304 CPS0B_0311 CPS0B_0319 CPS0B_0306 
08DC60 CPS0D_0316 CPS0D_0681 CPS0D_0317 CPS0D_0318 CPS0D_0320 CPS0D_0307 CPS0D_0314 CPS0D_0324 CPS0D_0309 CPS0D_0323 

6BC G5O_0661 G5O_0314 G5O_0316 G5O_0315 G5O_0660 G5O_0657 G5O_0317 G5O_0307 G5O_0313 G5O_0309 
C19/98 CPS0C_0317 CPS0C_0681 CPS0C_0683 CPS0C_0315 CPS0C_0318 CPS0C_0307 CPS0C_0314 CPS0C_0321 CPS0C_0309 CPS0C_0320 
Cal10 G5Q_0648 G5Q_0303 G5Q_0306 G5Q_0302 G5Q_0294 G5Q_0300 G5Q_0308 G5Q_0296 G5Q_0307 G5Q_0299 
RD1 Cpsi_6121 Cpsi_2851 Cpsi_2891 Cpsi_2911 Cpsi_2901 Cpsi_2881     

84_55 B595_0726 B595_0330 B595_0722 B595_0724 B595_0332 B595_0328 B595_0326 B595_0316 B595_0324 B595_0334 
CP3 B711_0330 B711_0316 B711_0327 B711_0339 B711_0338 B711_0324 B711_0337 B711_0333   
GR9 B598_0313 B598_0315 B598_0667 B598_0669 B598_0306 B598_0310 B598_0318 B598_0307 B598_0317 B598_0309 
M56 B602_0678 B602_0312 B602_0676 B602_0303 B602_0311 B602_0316 B602_0306 B602_0315 B602_0310  
MN B599_0311 B599_0670 B599_0671 B599_0313 B599_0315 B599_0672 B599_0304 B599_0310 B599_0317 B599_0306 
NJ1 B712_0673 B712_0314 B712_0672 B712_0306 B712_0313 B712_0316 B712_0308 B712_0315 B712_0312 B712_0309 

VS225 B600_0332 B600_0324 B600_0331 B600_0335 B600_0326 B600_0333 B600_0330 B600_0328   
WC B603_0319 B603_0680 B603_0677 B603_0318 B603_0678 B603_0316 B603_0314 B603_0306 B603_0311 B603_0321 

WSRTE30 B601_0314 B601_0671 B601_0305 B601_0310 B601_0316 B601_0306 B601_0315 B601_0308 B601_0307  
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Species Strain G Middle domain H I 

C. trachomatis 

L2c ctl2c_273 ctl2c_275 
L2/25667R L2225667_936 L2225667_938 

L2b/8200/07 L2B8200_00932 L2B8200_00934 
L1/115 L1115_935 L1115_937 
D/13-96 O176_04880 O176_04895 
J/31-98 O180_04870 O180_04885 
F/1-93 O169_04890 O169_04905 
F/6-94 O172_04875 O172_04890 
434/Bu ct434bu_271 ct434bu_273 
A/363 A363_946 A363_948 

A/HAR-13 ctahar_949 ctahar_951 
C/TW-3 CTW3_04915 CTW3_04930 
E/11023 cte11023_936 cte11023_939 
E/150 cte150_938 cte150_941 

G/9301 ctg9301_938 ctg9301_941 
G/9768 ctg9768_937 ctg9768_940 

C. pneumoniae 

B21 
gi|572024239|gb|ETR80358.1| 

AR39 CP_0299 CP_0301 CP_0760 CP_0298 
CWL029 CPn_0019 CPn_0016 Cpn_0452 CPn_0454 

J138 pmp_6 pmp_7 pmp_8 pmp_9 pmp_10 pmp_11 pmp_13 pmp_12 pmp_14 
LPCoLN CPK_ORF00967 CPK_ORF00968 
TW-183 CpB0023 CpB0019 CpB_0471 CpB_0024 CpB0469 CpB0471 

C. abortus 
LLG 

gi|333410061|gb|EGK69048.1| 
S26/3 CAB268 

C. psittaci 

01DC11 CPS0A_0319 CPS0A_0313 CPS0A_0306 
02DC15 CPS0B_0318 CPS0B_0310 CPS0B_0303 
08DC60 CPS0D_0313 CPS0D_0306 

6BC G5O_0320 G5O_0312 G5O_0305 
C19/98 CPS0C_0313 CPS0C_0306 
Cal10 G5Q_0297 G5Q_0293 
RD1 Cpsi_2841 

84_55 B595_0318 B595_0333 B595_0323 B595_0320 B595_0315 
CP3 B711_0315 
GR9 B598_0308 B598_0668 B598_0305 
M56 B602_0302 
MN B599_0316 B599_0309 B599_0308 B599_0314 B599_0303 
NJ1 B712_0305 

VS225 B600_0322 
WC B603_0307 B603_0320 B603_0310 B603_0308 B603_0317 B603_0305 

WSRTE30 B601_0304 
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In addition to the different number of pmp CDSs between strains of the same Chlamydia 

species, the organization of the pmp CDSs varied within and across Chlamydia species. 

Within the species C. pneumoniae, most pmp CDSs were encoded on the sense strand, while 

in strains AR39 and LPCoLN most pmp CDSs were coded on the antisense strand. However, 

the order of the CDSs stayed identical. In all analyzed strains of the C. psittaci and C. abortus 

species, most pmp CDSs were coded on the antisense strand. The CDSs organization was the 

same in all analyzed C. trachomatis strains (only strain A/HAR-13 is shown in Figure 2.2). 

However, C. trachomatis is the only species in which a similar number of pmp CDSs were 

encoded on both strands, and the genome organization of the pmp CDSs in C. trachomatis is 

different from the organization observed in the other 3 species, as the pmpD CDS is encoded 

between the pmpB and pmpE/F CDSs and the pmpB and pmpG CDSs for C. trachomatis and 

the other 3 species, respectively.  

The pmp CDSs are drawn to scale in Figure 2.2. The size of pmpA, pmpB and pmpH CDSs 

was identical in all analyzed genomes, while C. abortus S26/3 encoded a shorter pmpE/F 

CDS compared to the other pmpE/F CDSs in that genome and all other genomes. The size of 

the CDSs of the highly expanded pmpG subtype varied within and across genomes. The most 

striking observation was the shorter pmpD CDSs in C. abortus S26/3 and in three C. psittaci 

strains (84/55, CP3 and VS225). pmpC and pmpI CDSs were only observed in C. trachomatis 

genomes, while truncated pmp middle domain CDSs were only observed in C. pneumoniae 

genomes. Moreover, C. pneumoniae is the only species that encoded truncated pmpE/F CDSs. 

3.2 Different Pmp proteins are highly conserved within and across different Chlamydia 
species 

The amino acid sequences of Pmp proteins of the same subtype were aligned and levels of 

conserved amino acids assessed within and across the C. trachomatis, C. pneumoniae, C. 

abortus and C. psittaci genomes (Tables 2.4 and 2.5). PmpD was highly conserved within all 

analyzed species (= in top 3 of most conserved Pmps), and PmpA and B in three out of four 

analyzed species. The level of conservation of PmpD in C. psittaci was analyzed across 13, 

rather than 16, PmpD amino acid sequences. Three C. psittaci strains (84/55, CP3 and VS225) 

were excluded from this analysis due to a large deletion within PmpD that skewed 

conservation analysis. It is striking that PmpH is the most conserved Pmp protein in C. 

abortus, while it is among the least conserved in the other 3 species. As the Pmps were least 
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conserved in C. psittaci (Table 2.4), the most conserved Pmps across Chlamydia species were 

determined both including and excluding C. psittaci Pmps. Remarkably, in both cases, PmpB 

is the most conserved Pmp and PmpD is only the 4th most conserved Pmp (Table 2.5).  

Table 2.4: The level of conservation of the amino acid sequence of Pmp proteins in 16 C. 

trachomatis, 6 C. pneumoniae, 2 C. abortus and 16 C. psittaci genomes. 
Species Pmp % AA conserved Range (%) 

C. trachomatis D 98.37 83.27-98.37 

A 97.64 

I 97.61 

C 95.74 

B 95.72 

G 95.36 

E 91.85 

H 90.63 

F 83.27 

C. pneumoniae A 99.37 0.34-99.37 

B 98.25 

D 98.20 

H 96.42 

E 15.99 

G 0.34 

C. abortus H 99.69 3.57-99.69 

D 99.35 

B 99.16 

A 99.14 

E 38.26 

G 3.57 

C. psittaci A 94.21 0-94.21 

D 86.13 

B 82.23 

H 81.03 

E 25.81 

G 0 
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Table 2.5: The level of conservation of Pmp proteins across C. trachomatis, C. 

pneumoniae, C. abortus and (C. psittaci). 

% AA conserved when Pmp amino acid sequences were included from:  

C. trachomatis, C. pneumoniae, 
C. abortus and C. psittaci 

C. trachomatis, C. pneumoniae and 
C. abortus  

PmpB (25.08%) PmpB (26.03%) 
PmpA (24.27%) PmpH (25.53%) 
PmpH (22.71%) PmpA (24.77%) 
PmpD (21.42%) PmpD (21.95%) 
PmpE (5.72%) PmpE (7.40%) 

PmpG (0%) PmpG (0.22%) 

4. Discussion 

As the degree of conservation of the Pmp proteins was until now only determined for C. 

trachomatis, most studies on C. trachomatis, C. pneumoniae and C. abortus Pmp proteins 

have focused mainly on PmpD (Wehrl et al., 2004; Crane et al., 2006; Kiselev et al., 2009; 

Wheelhouse et al., 2012a), due to its being highly conserved in C. trachomatis (Gomes et al., 

2006; Carrasco et al., 2011) and highly immunogenic (Caldwell et al., 1975a,b; Caldwell and 

Kuo, 1977; Crane et al., 2006; Tan et al., 2009). Gomes et al. (2006) reported PmpD as the 

second most conserved Pmp of C. trachomatis at amino acid level, while Carrasco et al. 

(2011) reported it as the third. In this study, we identified PmpD as the most conserved Pmp. 

This can be explained by the use of genomes of different C. trachomatis strains for analyses. 

However, the two previous studies and the current study have all identified PmpA, PmpD and 

PmpI as the three most conserved Pmp proteins in C. trachomatis, suggesting that these three 

Pmps are highly conserved in C. trachomatis.  

Becker et al. (2014) recently demonstrated that PmpD is the strongest adhesin of C. 

trachomatis and referred to Tan et al. (2010) to document that PmpD was the only Pmp that 

was expressed in almost all inclusions in C. trachomatis infected cells and to Gomes et al. 

(2006) to report that PmpD is the second most conserved Pmp in C. trachomatis, thereby 

arguing for a crucial function of PmpD in the infection cycle of C. trachomatis. However, 

PmpA and PmpI were equally abundantly expressed and equally highly conserved as PmpD 

(Tan et al., 2010). This might indicate equally important functions for PmpA and PmpI and 

highlights the need to analyze also Pmp proteins other than PmpD.  
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As variation is the central theme in the Pmp family, we hypothesize that the Pmp proteins 

might play a role in the observed difference in host and tissue preferences of different 

Chlamydia species. Consequently, we suggested that different Pmp proteins may be most 

conserved in different Chlamydia species. Indeed, different Pmp proteins were most 

conserved in each Chlamydia species (PmpD, PmpA, PmpH and PmpA in C. trachomatis, C. 

pneumoniae, C. abortus and C. psittaci respectively), with PmpA being most conserved Pmp 

protein in both C. pneumoniae and C. psittaci, which is different from what we suggested 

before. However, multiple proteins likely mediate adhesion and the most conserved Pmp 

proteins might still play a role for that. The different organization of the pmp CDSs within 

genomes of the same Chlamydia species (C. pneumoniae) and across Chlamydia species, 

indicate that pmp CDSs were located in regions of the genome where high levels of 

recombination have occurred. The pmp CDSs were mainly encoded on the antisense strand of 

C. pneumoniae strain AR39 and LPCoLN. These two genomes also clustered closely together 

phylogenetically, which may indicate that those genomes were subject to similar 

recombination events also on loci other than the pmp CDSs.  

The Pmp proteins were most conserved in C. abortus, which can be explained by the 

availability of only two completed C. abortus genome sequences at the time of analyses. 

Therefore, the level of conservation can only be compared for C. trachomatis and C. psittaci, 

as for those species an equal amount of genomes (16) were analyzed. The Pmp proteins were 

more conserved in C. trachomatis compared to C. psittaci, which might be explained by the 

zoonotic nature of C. psittaci. C. psittaci might have adapted to its numerous different hosts 

through expression of variation in its Pmps and through expansion of the number of pmp 

genes. However, this does not explain why C. pneumoniae encodes the largest number of pmp 

CDSs and why the number of pmpE/F and pmpG subtype CDSs is highest in C. pneumoniae, 

as it is not a zoonotic bacterium. However, previous comparative genomic analyses of human 

C. pneumoniae strains (AR39, TW-183, J138 and CWL029) and the koala C. pneumoniae 

LPCoLN strain by Myers et al. (2009) suggested that C. pneumoniae has an animal origin. 

The observed truncated pmp and inc CDSs in the human C. pneumoniae strains were assigned 

to a reductive evolution of this species after it adapted to its human host (Myers et al., 2009). 

The current study supports that hypothesis, as C. pneumoniae LPCoLN encodes the largest 

amount of full length pmp CDSs of all analyzed C. pneumoniae strains. This is in contrast to 

C. psittaci, where the strains isolated from mammals (C. psittaci MN and WC) encode the 

largest amount of full length pmp CDSs. The latter might be explained by the fact that 
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mammalian C. psittaci infection is a zoonosis. Truncated CDSs were mostly observed in C. 

pneumoniae and C. psittaci. In C. pneumoniae those truncated CDSs might be the result of 

reductive evolution processes (Myers et al., 2009), while for C. psittaci we suggest that these 

truncated pmp CDSs might recombine to another region, resulting in a full length, functional 

pmp CDS. 

In contrast to the hypothesis that different Pmp proteins might mediate adhesion in different 

Chlamydia species, some Pmp subtypes might have the same redundant, critical function in 

different hosts. Hence, we determined the level of conservation of the Pmp proteins across 

different Chlamydia species. In our analysis PmpB is the most conserved Pmp protein, with 

PmpA, PmpH and PmpD being the second, third and fourth most conserved Pmp proteins, 

respectively.  

PmpD is considered to be a vaccine candidate, however, our analysis shows that PmpD is not 

the most conserved Pmp protein across Chlamydia species. It is also not the most conserved 

Pmp protein within all Chlamydia species and in some C. abortus and C. psittaci strains, the 

PmpD protein was truncated. This raises the possibility that PmpD is not essential for the 

pathogenesis of C. psittaci and C. abortus. Our study highlights that, rather than focusing on 

PmpD, all Pmp proteins should be examined to accurately determine their utility as vaccine 

candidates. 
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Abstract 

Chlamydia psittaci is a Gram-negative obligate intracellular pathogen of birds. Infections lead 

to economic losses in the poultry industry and the infection can be transmitted to humans. No 

vaccine is available and the bacterium host-cell interaction is not completely understood. The 

replicating bacteria cause pneumonia, but they can also be present as non-replicating, 

persistent bacteria inside the cytoplasm of avian cells. Quantitative real-time polymerase 

chain reaction (RT-qPCR) is a major tool to gain a better insight into the molecular 

pathogenesis of C. psittaci in birds. However, identification of stably expressed reference 

genes is required to avoid biases in RT-qPCR, when studying active replicating and persistent 

C. psittaci. The expression stability of ten candidate reference genes was investigated for 

performing gene expression analysis in C. psittaci during normal growth and during 

penicillin-induced persistence, using geNorm. The genes tyrS, gidA, radA and 16S rRNA 

ranked among the most stably expressed genes. The final selected reference genes differed 

according to the bacterial growth status (normal growth versus persistent status), and the time 

points selected during the duration of a normal chlamydial developmental cycle.  
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1. Introduction 

Quantitative real-time PCR (RT-qPCR) has become a major tool to better understand the 

molecular pathogenesis of bacterial infections. RT-qPCR is a sensitive, efficient and accurate 

technique for gene expression studies and it is an established technique for studying bacterium 

host cell interactions (Vandesompele et al., 2002). However, the accuracy and reproducibility 

of RT-qPCR is influenced by: i) the sample amount, ii) yield of the extraction process, iii) the 

RNA quality, iv) sample to sample variation and v) reverse transcriptase efficiency (Bustin, 

2001). The expression of reference genes is affected by all sources of variation during the 

experimental workflow, in the same way as the expression of the genes of interest is 

influenced. Therefore, the use of reference genes is the preferred method to reduce the non-

biological variation. However, the normalization step is the most problematic and ignored part 

of RT-qPCR. A commonly used normalization strategy involves normalization to a single, 

non-validated bacterial reference gene, such as the 16S rRNA gene (Mannonen et al., 2011), 

which is generally regarded as the universal bacterial reference gene for data normalization. 

However, evaluation of RT-qPCR candidate reference genes for expression studies in 

Lactobacillus casei (Zhao et al., 2011), Escherichia coli (Zhou et al., 2011), Bacillus cereus 

(Reiter et al., 2011), Corynebacterium pseudotuberculosis (Carvalho et al., 2014), 

Clostridium botulinum (Kirk et al., 2014), Listeria monocytogenes (Tasara and Stephan, 

2007), and Staphylococcus aureus (Valihrach and Demnerova, 2012; Sihto et al., 2014) 

revealed that the 16S rRNA gene cannot be regarded as a universal reference gene. In fact, the 

expression stability of candidate reference genes should be validated specifically for each 

bacterial species and each experimental setting (Vandesompele et al., 2002).  

RT-qPCR analyses could help to understand the molecular pathogenesis of C. psittaci.           

C. psittaci is an obligate intracellular Gram-negative bacterium that is responsible for 

respiratory disease in birds. A C. psittaci infection leads to significant economic losses due to 

reduced feed conversion, mortality, carcass condemnation at slaughter, reduced egg 

production and/or the expense of antibiotic treatment (Vanrompay et al., 1997). Currently, no 

vaccine is available. C. psittaci is also an important zoonotic agent via inhalation of infected 

aerosols of pharyngeal or nasal secretions or dried feces. The bacterium replicates by binary 

fission inside the cytoplasm of host cells but when stressed (iron depletion, exposure to 

interferon gamma and/or penicillin), the pathogen can go into a non-replicative, persistent 

status, and once stressors are removed, replication and bacterial excretion starts again. 
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So far, stably expressed genes, i.e. genes that are expressed at the same level at all analyzed 

time points and conditions, for normalization of RT-qPCR data in Chlamydia have only been 

determined for the human pathogen C. trachomatis (Borges et al., 2010). In this study, we 

present the selection and validation of reference genes for RT-qPCR studies in C. psittaci 

during the normal developmental cycle and during penicillin-induced persistence. Reference 

genes determined for normal + penicillin should be used to check whether a certain gene is 

up- or down-regulated during the persistent state compared to during normal development. 

This is important to further understand the persistent state, which could help to prevent 

Chlamydia spp. to go into the persistent state and therewith this would help to treat 

chlamydial infections. 

2. Material and methods 

2.1 Chlamydia psittaci strain, cell culture and infection 

The previously well-characterized, prototypic strain C. psittaci Cal10 (Matsumoto, 1982; 

Hovis et al., 2013; Mojica et al., 2015), which was isolated from ferrets inoculated with throat 

washings from humans with an influenza-like respiratory infection (Francis and Magill, 1938), 

and with a complete genome sequence available (Grinblat-Huse et al., 2011) was used in this 

study. The bacterium was grown in HeLa 229 cells, the first human cell line established in 

culture (Gey et al., 1952), starting from human cervical cancer cells. The cells were seeded in 

100 mm² tissue culture dishes for 24h at 37°C with 5% CO2 in Dulbecco’s modified Eagle’s 

medium (DMEM, Mediatech, Herndon, VA) supplemented with 10% heat inactivated fetal 

bovine serum (Atlanta Biologicals, Lawrenceville, GA), gentamycin (25 µg ml-1; Quality 

Biological, Gaithersburg, MD) and fungizone (1.25 µg ml-1; Invitrogen, Carlsbad, CA). The 

medium was aspirated and cells were inoculated with C. psittaci Cal10 in SPG (0.25 M 

sucrose, 10 mM sodium phosphate and 5mM L-glutamic acid) at a multiplicity of infection 

(MOI) of 1 followed by incubation on a rocking platform for 2 h at 37°C. The unbound 

organisms were washed away with PBS and the bacterium was grown either under normal 

conditions using the above-mentioned medium, or by adding penicillin (100U ml-1) to the 

above-mentioned medium as a way to induce Chlamydia persistence (Hu et al., 2015). One ml 

SPG was added to a mock-infected dish. For all cells, addition of medium after rocking and 

washing marked time 0 hpi of the experiment. 
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2.2 Total RNA extraction and cDNA synthesis 

At 2, 6, 12, 18, 24, 32, and 48 hours post infection (hpi), total RNA was extracted from the 

monolayers according to the manufacturer’s instructions (TRIzol, Invitrogen). Total RNA was 

quantified (Nanodrop 2000, Thermo Scientific, Wilmington, DE) and the samples were 

treated with RNase-free amplification grade DNase I (Promega, Madison, WI) following the 

manufacturer’s protocol and confirmed to be DNA-free by PCR (Table 3.1) for the C. psittaci 

Cal10 16S rRNA gene. One µg of total RNA was reverse transcribed (Superscript II RT, 

Invitrogen) with random hexamer primers (Invitrogen) following the manufacturer’s protocol. 

RNA and cDNA samples were stored at -80°C and -20°C, respectively. 

Table 3.1: Primers to check the RNase-free DNase I treatment. 

Gene Primer  Primer sequence (5’ to 3’) Amplicon size (bp) 

16S rRNA 16S-QPCR-F TGTACAAGGCCCGGGAACGTA 156 

 16S-QPCR-R GGCCAGTACAGAAGGTAGCA  

2.3 Primer design and validation for RT-qPCR 

Primers for the candidate reference genes were designed using Primer3 software with the 

following settings: amplicon size of 100-200 bp, optimal melting temperature of 60°C and a 

GC content of 50-60% (Table 3.2). For each primer pair, different primer concentrations (100 

nM, 150 nM, 200 nM, 300 nM, 400 nM and 500nM) were tested in duplicate. The 

concentration resulting in the best sigmoid expression curve was chosen (Table 3.2). Melt 

curve analysis was used to ensure the specificity of the primers. The RT-qPCR efficiency was 

determined for each gene using slope analysis with a linear regression model. Standard curves 

were generated with serial dilutions of genomic DNA of purified EBs (1/5 = 8 ng µl-1, 1/25, 1/ 

125, 1/625, 1/3125, 1/15625). The corresponding RT-qPCR efficiencies (E) were calculated 

according to the equation E = (10(-1/slope)-1) x 100 (Pfaffl, 2001). Primers selected for RT-

qPCR displayed an efficiency between 90 and 110% and a coefficient of correlation greater 

than 0.98.  
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Table 3.2: Primers used to determine the stability of candidate reference genes. 

Gene Primer Primer sequence(5'-3') Amplicon size (bp) Tm (°C) GC (%) Primer concentration (nM) Efficiency (%) 
16S rRNA 16SrRNA-1 TGTACAAGGCCCGGGAACGTA 156 59,9 57,1 200 95,4 

 16SrRNA-2 GGCCAGTACAGAAGGTAGCA  58,0 55,0 200  
enoA  enoA-1  AGCCGCAACTTTAGGACGA 187 60,9 52,6 500 90,1 

 enoA-2  ATCAGCACCCATACGCACAG  62,1 55,0 500  
gatA gatA-1 GCGTTAGGTTCCGATACAG 165 55,9 52,6 200 94,9 

 gatA-2 GGCGACATCTTCAACAAC  54,9 50,0 200  
hemN hemN-1 TTTACACATGCGGCCTGAC 170 60,7 52,6 500 101,2 

 hemN-2 CAATGGCTTGGTAACCTGCT  60,1 50,0 500  
tyrS tyrS-1 TGGGACAGGCTTATGGTTTG 169 60,9 50,0 200 96,6 

 tyrS-2 CGTGCGACTTTAGGCACTTC  61,0 55,0 200  
fumC fumC-1 CTTGCATACCGCCAGAGAGT 170 60,4 55,0 200 103,9 

 fumC-2 CAACCCAACGCAATGTGA  60,1 50,0 200  
gidA gidA-1 GATCTCCGGGTTGTTCTTCA 100 60,1 50,0 400 97,9 

 gidA-2 GAACGTGGTTTCCCAATCAG  60,4 50,0 400  
hflX hflX-1 CGTAAGGCTAAAGAG 181 57,3 55,0 500 97,8 

 hflX-2 TTGCCCACTAGGAAG  57,2 55,0 500  
radA radA-1 GTCGCCGCCTAATAGGGTAA 108 61,3 55,0 500 105,6 

 radA-2 ACCATAGAGCTGCGAGAGGA  60,1 55,0 500  
map map-1 AAACGCGTCTGTCAAGCATC 156 61,4 50,0 200 92,2 

  map-2 ACCCACACCGTGACCTACAA   61,3 55,0 200   
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2.4 Real-time quantitative PCR (RT-qPCR) 

The expression level of each candidate reference gene was examined by RT-qPCR on an 

Rotor-Gene Q Real-Time PCR Detection System (Qiagen, Hilden, Germany). Each reaction 

mixture contained 1 µl cDNA, the optimal primer concentration for each primer pair (Table 

3.2), 10 µl iQ SYBR Green Supermix (Bio-Rad, Richmond, CA) and ddH2O to a final volume 

of 20 µl. RT-qPCR reaction conditions were as follows: initial denaturation at 95°C for 3 min, 

40 cycles each consisting of 30 s at 95°C and 30 s at 58°C, followed by the melting curve 

program (95°C for 1 min, 55°C-95°C in steps of 0.5°C each 10 s). Two biological replicates 

of each sample (normal infection vs. penicillin-induced persistence, each at 7 different time 

points during the developmental cycle) were tested in duplicate. C. psittaci Cal10 genomic 

DNA was used as a positive control, while HeLa 229 cDNA, non-reverse-transcribed C. 

psittaci Cal10 total RNA, and ddH2O were used as negative controls. Data analyses were 

carried out with geNorm software (version 2.4, Biogazelle, Ghent, Belgium) on normal, 

penicillin and normal + penicillin samples. Expression categories were defined as early (2–6 

hpi), middle (12–18 hpi) and late (> 24 hpi). 

2.5 Selection of reference genes 

The expression level of 10 candidate reference genes (16S rRNA, map, tyrS, hemN, hflX, gidA, 

gatA, fumC, radA and enoA) was measured for the two biological replicates of each sample. 

The Cq-values were used to analyze the expression stability of candidate reference genes by 

geNorm, implemented in the qBasePLUS software. geNorm is based on the principle that the 

expression ratio of two ideal reference genes are identical in all samples tested, independent 

of the experimental conditions. Variation in those ratios indicates the non-stable expression of 

one or both reference genes. Therefore, geNorm determines the level of pairwise variation for 

each candidate reference gene with all other candidate reference genes (M-value). Genes with 

a low M-value are the most stably expressed. Sequential removal of the least stable gene 

generates a ranking of the candidate reference genes according to their stable expression. 

geNorm also calculates the pairwise variation Vn/n+1 to determine the ideal number of 

reference genes for normalization (Vandesompele et al., 2002). The cut-off value below 

which the inclusion of an additional control gene was considered not to result in a significant 

improvement of the normalization, was set at 0.15 (Vandesompele et al., 2002).  
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3. Results 

3.1 Choice and transcript profiles of candidate reference genes 

Reference genes for C. psittaci during normal and penicillin-induced persistence conditions, 

at early (2 and 6 hpi), mid (12 and 18 hpi) and late (24, 32 and 48 hpi) time points, were 

validated in this study. The candidate reference genes were chosen based on the reference 

genes tested for C. trachomatis and the housekeeping genes used for the multi locus sequence 

typing of Chlamydiales (Pannekoek et al., 2008; Borges et al., 2010). To minimize the risk of 

co-regulation, ten candidate genes were selected by the following criteria: i) widely spread on 

the chromosome, ii) involved in different pathways, and iii) not adjacent to putative outer 

membrane, secreted or hypothetical proteins that might be under diversifying selection (Table 

3.3). The gene encoding the 16S rRNA was the most abundantly expressed (only 3.97 cycles 

to reach the cycle treshold), while enoA and fumC were the least abundant transcripts (31.83 

and 31.2 cycles respectively) (Figure 3.1). radA and tyrS transcript levels showed the lowest 

and enoA and fumC transcript levels the highest variation in Cq-values (10.67, 10.59, 15.99 

and 19.84 cycles respectively). The wide range of transcript levels of the candidate reference 

genes confirmed that no single candidate reference gene was constantly expressed at the 

different conditions and time points analyzed. This implicated the need for using multiple 

reference genes.  

Table 3.3: Candidate reference genes.  

Gene symbol Function Pathways 
map Mitogen-activated protein kinase Protein phoshorylation 

tyrS Tyrosine-tRNA ligase 
Catalysation of the attachment of an amino acid 

to its cognate tRNA molecule 
16S rRNA 16S ribosomal RNA subunit Translation 
hemN Coproporphyrinogen III oxidase  Coproporphyrinogen III decarboxyation 

hflX GTPase 
May have a role during protein synthesis or 

ribosome biogenesis 
radA DNA recombination/repair protein DNA repair, homologous recombination 
enoA Component of enolase Glycolysis 
fumC Fumarase C Citric acid cycle 
gatA Belongs to the GATA transcription factor family Transcription 
gidA Glucose-inhibited division protein A Protein involved in tRNA modification 



C. psittaci reference genes differ depending on culture conditions and time points                65 

 
Figure 3.1: Transcript levels of candidate reference genes. The transcript levels for each 

reference gene in all C. psittaci samples (normal + penicillin condition at all time points) are 

shown. The data are expressed as box plots: the box represents the 25th-75th percentiles, the 

median is depicted by a bar across the box and the whiskers on each box represent minimum 

and maximum value (excluding outliers which are depicted as dots). 

 

3.2 Stability of reference genes expression 

The stability of the transcript levels of the candidate reference genes was determined using 

geNorm. The program calculated the average expression stability value (M-value) for each 

candidate reference gene during normal, penicillin and normal + penicillin conditions (Figure 

3.2). For each condition, the stability value for each candidate reference gene was determined 

for early, mid, late and all time points. In addition to the M-value, geNorm calculated also a 

Vn/n+1-value to determine the optimal number of reference genes for accurate normalization 

for each condition (Figure 3.3). A Vn/n+1 smaller than 0.15 indicates that an additional 

reference gene (Vn+1) has no significant effect (Vandesompele et al., 2002). If the pairwise 

variation was bigger than 0.15, than geNorm advised to use the number of reference genes 

with the lowest Vn/n+1 value. 
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Figure 3.2: Stability ranking of candidate reference genes during normal, penicillin and normal + penicillin conditions by geNorm. 
Candidate reference genes are ranked from left to right in order of increasing expression stability (decreasing M-value). 
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Figure 3.3: Determination of the optimal number of reference genes required for 
reliable normalization by geNorm. The pairwise variation (Vn/n+1) was calculated stepwise 

between normalization factors based on the n and (n+1) most stable expressed reference genes. 

According to the geNorm developers, a variation of <0.15 indicates no significant 

contribution of an additional control gene to the normalization factor. If Vn/n+1 is higher than 

0.15, than the lowest Vn/n+1 is the optimal number. The optimal number of control genes are 

illustrated by arrows. 

The lowest and highest M-value of the reference genes for all the samples (normal + 

penicillin) and for normal and penicillin conditions separately, as well as which reference 

genes to use for each condition, are listed in Table 3.4. gatA was excluded from the analysis, 

as it was not transcribed in all samples. In general, gidA had the lowest M-value (highest 

stability) for six conditions, while enoA had the highest M-value (lowest stability) for 6 

conditions. Genes tyrS, gidA, radA and 16S rRNA were among the reference genes suggested 

to be used in 11, 9, 8 and 8 out of the 12 tested conditions respectively, while genes map, hflX, 
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enoA, hemN and fumC were suggested to be used in 5, 4, 2, 1 and none of the tested 

conditions. enoA and hemN were unique reference genes for the normal condition. No gene 

was unique for the penicillin-induced persistence condition, although in general the reference 

genes proposed for use during the normal condition at a specific time point differed from the 

ones proposed for the penicillin-induced persistent condition at the corresponding time point. 

Including more different samples resulted in less stably expressed reference genes. For 

example, the lowest M-value of the normal + penicillin condition was higher than the one of 

normal and penicillin separately for early, mid, late and all time points. In addition, the lowest 

M-value of normal, penicillin and normal + penicillin was the highest for all time points 

together compared to early, mid and late time points separately. Late and all time point 

samples were less stable than early and mid time point samples, as late and all time points 

showed the highest M-values. Consequently, the more conditions analyzed, the more 

reference genes were needed to normalize the data accurately (2-5 reference genes for normal 

and penicillin conditions separately, while 4-5 reference genes for normal + penicillin 

conditions together). 
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Table 3.4: Overview of reference genes for three conditions: normal, penicillin and normal + penicillin. The most suitable reference genes 

for each condition are shown. Reference genes are listed from least to most stable. 

Condition Time point Lowest M-value Highest M-value Reference genes Vn/n+1 < 0.15? 

Normal 

 

early 0,432 (hemN) 2,126 (hflX) enoA, tyrS, hemN No 
mid 0,398 (16S rRNA) 2,204 (map) gidA, tyrS, hflX, 16S rRNA No 
late 0,718 (gidA) 2,832 (enoA) 16S rRNA, map, tyrS, radA, gidA No 
all  1,024 (tyrS) 3,012 (enoA) hflX, radA, gidA, tyrS No 

Penicillin 

early 0,488 (gidA) 2,243 (hemN) tyrS, map, gidA Yes 
mid 0,151(gidA) 1,169 (fumC) radA, gidA Yes 
late 0,631 (tyrS) 2,657 (enoA) radA, hflX, 16S rRNA, tyrS No 
all  0,997 (tyrS) 2,719 (enoA) map, 16S rRNA, radA, tyrS No 

Normal + 
penicillin 

early 0,817 (gidA) 2,263 (fumC) enoA, 16S rRNA, map, tyrS, gidA No 
mid 0,502 (gidA) 1,822 (fumC) 16S rRNA, tyrS, radA, gidA No 
late 1,081 (gidA) 2,745 (enoA) hflX, 16S rRNA, tyrS, radA, gidA No 
all  1,226 (tyrS) 2,846 (enoA) 16S rRNA, map, radA, gidA, tyrS No 
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4. Discussion 

RT-qPCR is an accurate and sensitive tool for studying gene expression in bacterial pathogens 

(Bustin, 2005). Unfortunately, normalization is still the most obstinate problem for real-time 

quantification. Different normalization methods are available. The use of genomic DNA is 

less suited to normalize for experimental variations, as the gDNA is determined on DNA 

samples. So, it cannot be used to correct for differences in RNA extraction and RT-PCR 

efficiencies (Borges et al., 2010). Therefore, the use of reference genes is advised 

(Vandesompele et al., 2002). However, it is essential to validate reference genes for each 

bacterial species and each specific experiment to be able to control for non-biological 

variation and therewith obtain accurate and reliable gene expression data. Selection of 

unstable, unvalidated reference genes can result in miscalculations of gene expression levels 

and lead to incorrect conclusions (Dheda et al., 2005). Several publications underlined the 

importance to use multiple reference genes, as no single, universal reference gene exists. 

Nevertheless, many recently published papers still normalized mRNA levels by a single 

reference gene (Bustin, 2005; Kiselev et al., 2009; Almeida et al., 2012; Ferreira et al., 2013), 

mostly 16S rRNA. In fact, none of the previously mentioned studies that used 16S rRNA as a 

reference gene, showed data on the stability of the gene in the experimental setting utilized. 

Other reports justified the choice of the 16S rRNA as reference gene only by referring to 

another study, usually performed under different experimental conditions with other strains.  

Borges et al. (2010), validated reference genes for performing gene expression analyses in C. 

trachomatis, but reference genes have not been validated for gene expression studies in other 

Chlamydia species. Therefore, we investigated the suitability of ten candidate reference genes 

for future gene expression analysis in C. psittaci Cal10. The expression of the 16S rRNA gene, 

extensively used as reference gene in Chlamydia spp. gene expression studies (Douglas and 

Hatch, 2000; Mathews et al., 2001; Belland et al., 2003a; Nicholson et al., 2004; Goellner et 

al., 2006; Suchland et al., 2008; Ferreira et al., 2013), and of nine other C. psittaci genes (map, 

tyrS, hemN, hflX, gidA, gatA, fumC, radA and enoA) was studied during both normal bacterial 

growth conditions and penicillin-induced persistence.  

Our data confirmed the finding that the best-suited reference genes differ among experimental 

conditions, as the most stably expressed reference gene (lowest M-value) varied for each 

experimental group. The most striking observation was that the tyrS gene was suggested as a 
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reference gene for all but one conditions, thus not for the mid time point during penicillin-

induced persistence. We have no reasonable explanation for the latter observation. 16S rRNA 

was suggested as reference gene in only 8 out of the 12 tested conditions. This result is in 

alignment with an earlier study, in which they found that 16S rRNA was the most stable 

reference gene for C. trachomatis under normal conditions, but its expression was highly 

unstable during stress conditions (Borges et al., 2010). In addition, the reference genes to be 

used for C. psittaci gene expression analyses differ from those described for C. trachomatis 

gene expression analysis (Borges et al., 2010). As also demonstrated by Vandesompele et al. 

(2002), measuring expression levels by using multiple reference genes was more accurate 

than just using one. The effect of potential regulations of single genes is decreased by the use 

of multiple reference genes, and improves the reproducibility of relative gene expression 

analysis.  

In conclusion, we successfully identified reference genes, which can be used for C. psittaci 

gene expression analysis during the normal developmental cycle and during penicillin-

induced persistence. The importance of proper reference gene evaluation for RT-qPCR data 

normalization is emphasized by our data and therewith we strongly advise to make systematic 

validation of reference genes to confirm their stability within the strains and under the 

conditions selected. 
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P., Hsia R. Analysis of polymorphic membrane protein expression in cultured cells identifies 

PmpA and PmpH of Chlamydia psittaci as candidate factors in pathogenesis and immunity to 

infection. Plos One. Accepted with minor revisions. 
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Abstract 

Studies of the polymorphic membrane protein (Pmp) paralogous families of Chlamydia 

trachomatis, Chlamydia pneumoniae and Chlamydia abortus have suggested the potential of 

these proteins for the development of a Chlamydia vaccine. To determine if members of the 

Pmp family of C. psittaci are also vaccine candidates, we analyzed transcription levels, 

protein production and localization of several Pmps of C. psittaci under normal en stress 

conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in 

all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to 

antibodies as determined by both immunofluorescence and immuno-electron microscopy. 

These results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and 

make them promising candidates in vaccine development. 
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1. Introduction 

The Chlamydiaceae are a family of Gram-negative obligate intracellular bacteria that infect 

animals and humans, causing diseases with a wide range of symptoms. Among these, a 

significant species is C. psittaci that may cause respiratory disease in poultry and pet birds, 

and may also cause zoonotic psittacosis in humans. Psittacosis, or parrot fever, is usually 

characterized by fever chills, headache, dyspnea and cough. Chest X-rays often show an 

infiltrate (Beeckman and Vanrompay, 2009). However, the disease seems to vary 

considerably in severity as the clinical features of the infection can range from none to sepsis 

with multi-organ failure requiring admission in an intensive-care-unit (Heddema et al., 2006). 

People usually contract the infection via inhalation of an aerosol from droppings of infected 

birds. Epidemics of C. psittaci infections in turkeys are economically devastating due to high 

mortality rates, carcass condemnation at slaughter, reduced egg production and/or the cost of 

antibiotic treatment to reduce mortality and allow marketing of turkeys (Vanrompay et al., 

1997). Little is known about the mechanisms by which Chlamydia species manipulate host 

cells and induce disease in different hosts. In spite of diverse infection strategies and 

symptoms, all Chlamydia spp. share a unique, conserved, biphasic developmental cycle. The 

elementary body (EB) is the infectious, metabolically dormant form of Chlamydia, which 

differentiates into the metabolically active reticulate body (RB) after internalization by the 

eukaryotic host cell. The developmental cycle takes place entirely inside a vacuole, called the 

inclusion. After several rounds of exponential growth, the RBs asynchronously differentiate 

into EBs. The infectious EBs are then released from infected host cell through cell lysis or 

inclusion extrusion, thereby closing the developmental cycle.  

Chlamydial proteins are differentially produced in EBs and RBs (Marques et al., 2010; Saka 

et al., 2011). Proteins present on the surface of EBs are of particular interest for vaccine 

development, as they are putative targets for neutralizing antibodies. For many years, 

antibodies against polymorphic membrane proteins (Pmps; previously known as 90-kDa 

protein family) have been detected during natural infections of humans, turkeys and sheep 

(Campbell et al., 1990; Cevenini et al., 1991; Souriau et al., 1994; Giannikopoulou et al., 

1997; Longbottom et al., 1998b; Knudsen et al., 1999) and during experimental infections of 

specific pathogen-free turkeys (Vanrompay et al., 1994; Verminnen et al., 2006). Longbottom 

et al., (1998b), were first to clone and sequence four genes of the 90-kDa gene family. 

Genome sequencing revealed that the pmp genes encode the largest membrane protein family 
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in Chlamydia spp., a unique feature of the genus (Horn et al., 2004; Vandahl et al., 2004). In 

the last decade, the Pmps have been studied intensively, particularly because the Chlamydia 

trachomatis and Chlamydia pneumoniae Pmp families represent a relatively high proportion 

of the coding capacity (3.15 to 5.1%, respectively) in the highly reduced chlamydial genome. 

Moreover the occurrence of the pmp gene family in all currently sequenced chlamydial 

genomes (Grimwood and Stephens, 1999) suggests an important function in chlamydial 

biology. The observed diversity in the number of alleles, gene and protein sequences, size 

(90-190 kDa), and expression levels within and across Chlamydia spp. also suggests that 

Pmps may be responsible for differences in the pathogenesis across Chlamydia species.  

Pmps were classified as autotransported (type V secretion) proteins, based on their N-terminal 

signal sequence (type II secretion), a central passenger domain and a C-terminal putative 

transporter domain, predicted to form a β-barrel through which the protein is secreted to the 

chlamydial surface (Vandahl et al., 2001; Henderson and Lam, 2001). This prediction is 

supported by experimental evidence for several Pmps (Longbottom et al., 1998a; Vandahl et 

al., 2002; Wehrl et al., 2004; Kiselev et al., 2007; Liu et al., 2010). Pmps are grouped into a 

family based on the conserved repetitive motifs FxxN and GGA (with I, L or V at the 4th 

position). In C. trachomatis, they have been further divided into six phylogenetically related 

subtypes (PmpA, B/C, D, E/F, G/I, and H) which may be able to substitute structurally and 

functionally for one another (Grimwood and Stephens, 1999). The passenger domain is 

responsible for the protein’s function (Henderson and Lam, 2001). Pmp6, Pmp20 and Pmp21 

of C. pneumoniae (orthologs of PmpG, PmpB and PmpD of C. trachomatis, respectively) and 

all Pmps of C. trachomatis are proposed to function as adhesins, based on adhesion assays 

and specific neutralization of the infection by incubation of the host cells with the 

recombinant Pmps (Crane et al., 2006; Mölleken et al., 2010; Becker and Hegemann, 2014). 

Up to now, anti-PmpD and anti-Pmp21 antibodies are the only Pmp-specific antibodies that 

are tested for their possible neutralizing capacity. Specific anti-PmpD and anti-Pmp21 

antibodies can partially neutralize C. trachomatis and C. pneumoniae infection, respectively, 

in vitro (Wehrl et al., 2004; Crane et al., 2006; Mölleken et al., 2010). Patients infected with 

C. trachomatis usually elicit high titer antibodies against a subset of the Pmps, that varies 

between infected individuals (Tan et al., 2009). The different antibody profiles in patients 

may reflect different transcription and protein production profiles along the developmental 

cycle or as a result of strain variation or site specificity (Grimwood and Olinger, 2001; 

Vandahl et al., 2002; Tan et al., 2009; Wheelhouse et al., 2009; Carrasco et al., 2011; 
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Wheelhouse et al., 2012b). An attractive hypothesis is that variation of pmp gene expression 

and the resulting antigenic variation phenotype contribute to immune evasion in the infected 

host. Finally, Pmps were reported to be involved in host and tissue tropism (Becker and 

Hegemann, 2014). Previous studies have mainly focused on the Pmps of C. trachomatis 

(Belland et al., 2003b; Crane et al., 2006; Kiselev et al., 2007; Tan et al., 2009; Kiselev et al., 

2009; Swanson et al., 2009; Tan et al., 2010; Carrasco et al., 2011; Saka et al., 2011; 

Humphrys et al., 2013; Becker and Hegemann, 2014) and C. pneumoniae (Vandahl et al., 

2002; Wehrl et al., 2004; Mölleken et al., 2010; Mölleken et al., 2013), both human 

pathogens, and on the zoonotic C. abortus (Longbottom et al., 1998a,b; Wheelhouse et al., 

2009; Wheelhouse et al., 2012a,b; Forsbach-Birk et al., 2013). However, the pmp gene family 

of C. psittaci has not been investigated so far.  

In this study, we hypothesize that Pmps play an important role in C. psittaci pathogenesis and 

in immunity to infection. To test this hypothesis, we studied developmental expression and 

abundance profiles of different Pmps using quantitative real-time PCR (RT-qPCR) and 

immunofluorescence microscopy (IF), respectively, for C. psittaci strain Cal10. Immuno-

electron microscopy (IEM) was used to assess subcellular localization of the Pmps on 

individual chlamydiae. As previous studies suggested a unique role in chlamydial 

pathogenesis for virulence genes expressed during stress, RT-qPCR, IF and EM analyses of 

the pmp transcripts and Pmp products of C. psittaci were conducted under both normal and 

stressed conditions (Carrasco et al., 2011).  
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2. Material and methods 

2.1 Bioinformatics analyses 

We re-annotated the pmp genes of the C. psittaci Cal10 genome (AEZD00000000.1) using the 

Hidden Markov Model that was described in paragraph 2.2 of chapter II. 

2.2 Chlamydia psittaci cell culture conditions 

HeLa 229 cells were seeded in 100 mm² tissue culture dishes for 24h at 37°C with 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM, Mediatech, Herndon, VA) supplemented with 

10% heat inactivated fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 

gentamycin (25 µg ml-1; Quality Biological, Gaithersburg, MD) and fungizone (1.25 µg ml-1; 

Invitrogen, Carlsbad, CA). The medium was aspirated and cells were inoculated with C. 

psittaci Cal10 in SPG (0.25 M sucrose, 10 mM sodium phosphate and 5mM L-glutamic acid) 

at a multiplicity of infection (MOI) of 1 followed by incubation on a rocking platform for 2 h 

at 37°C. The unbound organisms were washed away with PBS and the bacterium was grown 

either under normal conditions using the above-mentioned medium, or by adding penicillin 

(100U ml-1) to the above-mentioned medium as a way to induce Chlamydia persistence (Hu et 

al., 2015). One ml SPG was added to a mock-infected dish. For all cells, addition of medium 

after rocking and washing marked time 0 hpi of the experiment. 

2.3 Total RNA extraction and cDNA synthesis 

At 2, 6, 12, 18, 24, 32, and 48 hours post infection (hpi), total RNA was extracted from the 

monolayers according to the manufacturer’s instructions (TRIzol, Invitrogen). Total RNA was 

quantified (Nanodrop 2000, Thermo Scientific, Wilmington, DE) and the samples were 

treated with RNase-free amplification grade DNase I (Promega, Madison, WI) following the 

manufacturer’s protocol and confirmed to be DNA-free by PCR (Table 3.1) for the C. psittaci 

Cal10 16S rRNA gene. One µg of total RNA was reverse transcribed (Superscript II RT, 

Invitrogen) with random hexamer primers (Invitrogen) following the manufacturer’s protocol. 

RNA and cDNA samples were stored at -80°C and -20°C, respectively. 
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2.4 Primer design and validation for RT-qPCR 

Pmp-specific regions were identified by ClustalW2 alignment. Primers for all pmp genes were 

designed using Primer3 software with the following settings: amplicon size of 100-200 bp, 

optimal melting temperature of 60°C and a GC content of 50-60% (Table 4.1). For each 

primer pair, different primer concentrations (100 nM, 150 nM and 200 nM) were tested in 

duplicate. The concentration resulting in the best sigmoid expression curve was chosen (Table 

4.1). Melt curve analysis was used to ensure the specificity of the primers. RT-qPCR 

efficiencies for each gene were determined using slope analysis with a linear regression model. 

Serial dilutions of genomic DNA of purified EBs (1/5 = 8 ng µl-1, 1/25, 1/ 125, 1/625, 1/3125, 

1/15625) were used to generate standard curves. Corresponding RT-qPCR efficiencies (E) 

were calculated according to the equation E = (10(-1/slope)-1) x 100(Pfaffl, 2001). Ideally, 

efficiencies should be between 90-110%, but because of the difficulty to find specific regions 

in the pmp genes, primer pairs with efficiencies outside this range were also used (Table 4.1). 

Obtained Cq-values were corrected for the differences in PCR-efficiencies. Primers that 

displayed a coefficient of correlation greater than 0.98 were selected for RT-qPCR.
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Table 4.1: Primers used for RT-qPCR analysis. 

Gene Primer Primer sequence(5'-3') Amplicon size (bp) Tm (°C) GC (%) Primer concentration (nM) Efficiency (%) 
pmpA pmpA-1 GTCGCCAGAGAAGGTGTTCC 112 62,2 60,0 200 85,6 

 
pmpA-2 GGGACAAGAAGCACTCAACCT 

 
60,7 52,4 200 

 
pmpB pmpB-1 TGCTGCAGCGTTAAGAGTGA 116 56,9 50,0 200 66,9 

 
pmpB-2 CCCTAGGCGGTAGCATTACA 

 
56,4 55,0 200 

 
pmpD pmpD-1 CCAAGACCCTTTGGATTCACC 115 62,9 52,4 200 95,4 

 
pmpD-2 GGGTATCTTTGCTGGGTCGT 

 
61,3 55,0 200 

 
pmpE1 pmpE1-1 CGTGGTAGTATCGATGGTGGAA 101 56,2 50,0 200 88,1 

 
pmpE1-2 GCAGCTGCAACTCGAACAG 

 
57,0 57,9 200 

 
pmpE2 pmpE2-1 GGGTTGAGTGGAGGGCATT 112 57,6 57,9 200 77,2 

 
pmpE2-2 CATGGAGACGCACCCAAGT 

 
57,7 57,9 200 

 
pmpH pmpH-1 GCAGCTGGATTATCGCCTGT 105 62,6 55,0 200 86,6 

 
pmpH-2 CGCTAACCTCAATGTCCTTGGT 

 
62,6 50,0 200 

 
pmpG1a pmpG1a-1 CCTCCAAATCTGAAGGGACA 119 54,3 50,0 200 69,9 

 
pmpG1a-2 GGCAAGGTTACCAGCAGTATCA 

 
57,0 50,0 200 

 
pmpG1b pmpG1b-1 GATAGCGTGGCTGTTCGAGT 178 60,4 55,0 200 66,8 

 
pmpG1b-2 ATCCCATACTCTCCGCATCA 

 
60,5 50,0 200 

 
pmpG1c pmpG1c-1 AGAAGGTCCCTCTCCGTCAG 174 60,8 60,0 200 63,3 

 
pmpG1c-2 GGTAGAAGCGATCCCGATGT 

 
61,4 55,0 200 

 
pmpG1d pmpG1d-1 TGACTGTTGCAGCACTGTCTCT 128 58,7 50,0 200 73,6 

 
pmpG1d-2 CCCTACAGGCGGAGCTATTT 

 
56,7 55,0 200 
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pmpG2 pmpG2-1 CACCACTAATACGGCGGAAA 108 55,0 50,0 200 81,2 

 
pmpG2-2 GCTGTGATGGCTTTGGCTAC 

 
56,7 55,0 200 

 
pmpG3 pmpG3-1 CGTAAGGATAGGCGCTTTGG 156 61,9 55,0 200 68,2 

 
pmpG3-2 GACATTCGCGGACCTGTAGT 

 
60,1 55,0 200 

 
pmpG4 pmpG4-1 GAGGGTTGCACGTCGATTAG 171 60,7 55,0 200 68,7 

 
pmpG4-2 ATCCATACCGAGGGCTTCA 

 
60,4 52,6 200 

 
pmpG5 pmpG5-1 GCGCCTATATGGCTGATGAA 177 61,1 50,0 200 61,2 

 
pmpG5-2 TGATCAAGATTCCCGTCCTG 

 
61,0 50,0 200 

 
pmpG6 pmpG6-1 TAGAACCCGCATAGACGTTTCC 131 62,5 50,0 100 63,3 

 
pmpG6-2  GGGATATGTGTTAGGAGCCACA 

 
61,1 50,0 100 

 
pmpG7 pmpG7-1  CCCAGAATCCTTCAGAACACAG 194 61,0 50,0 200 66,5 

 
pmpG7-2  GGTGACTACTCTTGGCACGAAA 

 
61,6 50,0 200 

 
pmpG8 pmpG8-1  CTGGAGAGTCCTCCCAGGTT 111 60,6 60,0 200 73,3 

 
pmpG8-2  TATCCGCTACAGGGCAAGTC 

 
60,2 55,0 200 

 
tufA  ef-tu-1 ACATAGCTTGCATCGCCTTC 125 60,4 50,0 200 92,2 

 
ef-tu-2 GATGCCGAGCTTGTAGACTTG 

 
60,0 52,4 200 
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2.5 Developmental expression of pmp genes (RT-qPCR) 

The expression of the pmp genes was examined by RT-qPCR on an iQ5 Real-Time PCR 

Detection System (Bio-Rad, Richmond, CA). Each reaction mixture contained 1 µl cDNA, 

the optimal primer concentration for each primer pair (Table 4.1), 10 µl iQ SYBR Green 

Supermix (Bio-Rad) and ddH2O to a final volume of 20 µl. RT-qPCR reaction conditions 

were as follows: initial denaturation at 95°C for 3 min, 40 cycles each consisting of 30 s at 

95°C and 30 s at 58°C, followed by the melting curve program (95°C for 1 min, 55°C-95°C in 

steps of 0.5°C each 10 s). Two biological replicates of each sample (normal infection vs. 

penicillin-induced persistence, each at 7 different time points during the developmental cycle) 

were tested in duplicate. Genomic DNA of C. psittaci Cal10 was used as a positive control. In 

addition, tufA encoding the elongation factor EF-Tu involved in protein synthesis was also 

included as a positive control, because the gene is constitutively expressed throughout the 

developmental cycle and it is a reliable indicator of exponential growth (Carrasco et al., 2011). 

cDNA of HeLa 229 cells, non-reverse-transcribed total RNA of C. psittaci Cal10, and ddH2O 

were used as negative controls. Data analyses were carried out with qBasePLUS software 

(version 2.4, Biogazelle, Ghent, Belgium) and validated reference genes (Table 3.4) were 

used for normalization. Expression categories were defined as early (2–6 hpi), middle (12–18 

hpi) and late (> 24 hpi). 

2.6 RT-PCR 

An RT-PCR was performed on cDNA samples (24, 32 and 48 hpi normal condition) to 

evaluate the putative organization of the pmp genes in operons in the C. psittaci Cal10 

genome. Primers spanning the intergenic regions were designed using Primer3 software 

(http://bioinfo.ut.ee/primer3-0.4.0/) (Table 4.2). C. psittaci Cal10 genomic DNA was used as 

a positive control while cDNA from uninfected HeLa 229 cells, non-reverse-transcribed C. 

psittaci Cal10 total RNA and ddH2O were used as negative controls. 
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Table 4.2: Primers spanning the intergenic regions, used for RT-PCR to test the putative organization of pmp genes in operons. 

Intergenic region Primer Primer sequence (5'-3') Amplicon size (bp) Tm (°C) GC (%) 
pmpA, pmpB A-B-F ACCTACTGCGAATATTCACTGTC 225 58.32 43.5 

 
A-B-R GCGACGCTTTTGGTGGTATA 

 
58.64 50 

pmpE1, pmpE2 E1-E2-F CTGAGAAATTGGGCAGGTAAAGA 197 58.66 43.5 

 
E1-E2-R TCCAGATCCACATTATGCAACT 

 
57.49 40.9 

pmpH, pmpG2 H-G2-F GCATGCCTCAACCCTATCGT 207 60.18 55 

 
H-G2-R CAACGGCGCTAGATGGAAAA 

 
58.92 50 

pmpG2, pmpG5 G2-G5-F TGCTAGACAGGATGCAACAAG 260 58.3 47.6 

 
G2-G5-R GGGATCTGGGAAGCCAATTG 

 
58.59 55 

pmpG5, pmpG8 G5-G8-F TTGTCGCCGCTACATTTTGT 561 61.58 45 

 
G5-G8-R AAGACATGCTGCACGATTCG 

 
62.35 50 

pmpG8, pmpG7 G8-G7-F ATATAGCCCCGCCGTTATCG 902 59.54 55 

 
G8-G7-R GAGGGTTAGCTCCATGGACA 

 
58.8 55 

pmpG7, pmpG3 G7-G3-F TAAATTGCCCGCCTCCTGTA 408 59.09 50 

 
G7-G3-R GCTCTGTTGCAAGGATCGAG 

 
58.99 55 

pmpG1d, pmpG1b G1d-G1b-F TGTTGTTCCTTGAGGTGCAG 366 59.87 50 

 
G1d-G1b-R TTGAGCTCCGAGGTTCTTGT 

 
59.99 50 

pmpG1c, pmpG6 G1c-G6-F TTGATCCCCAGCTGTATTCC 419 54.4 50 

 
G1c-G6-R GGTTAACCACAGCGACGAAT 

 
55.4 50 

pmpG6, pmpG4 G6-G4-F GCTCCATTTGCATCGAGAAT 299 60.19 45 

  G6-G4-R CGTTGACATAGGAGGCAGGT   60.13 55 
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2.7 Cloning of pmp genes 

Fragments of pmpA, B, D, E1, G3 and H were amplified from C. psittaci Cal10 genomic DNA 

by PCR using Pfu polymerase (St. Leon-Roth, Germany) and primers flanked with specific 

restriction sites (Table 4.3) for subsequent cloning. The pmpA (aa 309-898) and pmpH (aa 

420-942) fragments were cloned in pGEX-2T (Amersham Pharmacia Biotech, Piscataway, 

NJ), while pmpB (aa 296-955), pmpD (aa 321-1193), pmpE1 (aa 313-958) and pmpG3 

(aa323-791) fragments were cloned in pET-19b (Novagen, Madison, WI) (Figure 4.1). Clone 

inserts were completely sequenced to confirm correct in-frame insertion and N-terminal 

fusion with the GST-tag (pGEX-2T) or His6-tag (pET-19b). 

 

Figure 4.1: Graphical representation of the protein structure of PmpA, PmpB, PmpD 
and PmpH and the cloned fragment of these proteins. FxxN and GGA (I,L,V) motifs are 

shown as orange and black vertical lines, respectively. 
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Table 4.3: Primers and restriction enzymes used for the cloning of the pmp genes. 

Gene Primer Primer sequence (5'-3') Vector 
Restriction 

enzymes 

Molecular mass (kDa) 

Calculated 

pmpA pmpA-F CCCGGGTGCGGAATTTCAGGTTGAGTGC pGEX-2T XmaI 96 

 pmpA-R GGATCCAGCCAAAACTCCGCAGAAGG  BamHI  

pmpB pmpB-F GGATCCAGTGTGAAGCTCGTCTTAGC pET-19b BamHI 74 

 pmpB-R CTCGAGGCTGAATCTGGAATTGGCGG  XhoI  

pmpD pmpD-F CTCGAGCATGCGGATATCCAGTACC pET-19b XhoI 95 

 pmpD-R AAGCTTTTAAGACCACGTTCCCATATGTCC  HindIII  

pmpE1 pmpE1-F AAGCTTTTAAGCATGTCGTGAGTTTGGCG pET-19b HindIII 74 

 pmpE1-R CATATGGCAGACCTTAACGGTGGAGC  NdeI  

pmpG3 pmpG3-F GGATCCAGGGGAGTAGGCCTCCAGA pET-19b BamHI 60 

 pmpG3-R CATATGAACTTTTTCATTCATTCCCCTGA  NdeI  

pmpH pmpH-F GAATTCTCCATTACGAGCGATATGCGC pGEX-2T EcoRI 88 

  pmpH-R GGATCCGGGGATATGGTCTTTATCGGC  BamHI   
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2.8 Expression and purification of recombinant Pmps 

Escherichia coli BL21 cells were transformed by electroporation and Pmp expression was 

induced at an OD600 of 0.5-0.8 upon the addition of 0.1 mM isopropyl β-D-thiogalactoside for 

4 h at 28°C. GST or His6-tagged protein expressing cells were centrifuged (6 000 x g for 15 

min at 4°C), resuspended in ice-cold PBS or in 50 mM sodium phosphate, and 300 mM NaCl 

respectively. Cells were lysed by passing them twice through a French Press cell (American 

Instrument Co., Urbana, IL) followed by sonication (3 x 30 s). One percent Triton X-100 

(Sigma, St Louis, MO) was added and the lysates were placed on ice on a rocking platform 

for 30 min. Soluble and insoluble proteins were separated by centrifugation (16 000 x g for 20 

min at 4°C) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE). Recombinant Pmps were present in the insoluble fractions, which were 

resuspended in buffer (50 mM Tris-HCl, 1 mM EDTA, 1 mM DTT, and 8 M urea) and placed 

on a rocking platform (1 h, RT). Refolding of the recombinant Pmps was established by 

overnight incubation (42°C) in the non-ionic detergent n-octyl-b-D-glucopyranoside 

(Biosynth, Staad, Switzerland) (McConnell and Pachón, 2011). The samples were dialyzed 

three times against 1x PBS with 0.1% Triton X-100 and subsequently subjected to affinity 

chromatography using a Glutathione-Sepharose 4B (GE Healthcare, Little Chalfont, UK) 

column for GST-tagged proteins, and a TALON metal affinity resin (Clontech, Palo Alto, CA) 

was used for His6-tagged proteins according to the manufacturers’ instructions. The recovered 

recombinant protein fractions were subjected to SDS-PAGE and stained by Coomassie blue. 

Elution fractions containing the recombinant proteins were dialyzed and concentrated with a 

vacuum concentrator (Spectrum Laboratories, Rancho Dominguez, CA). 

2.9 Generation and characterization of Pmp-specific polyclonal antibodies 

Polyclonal antibodies (pAbs) against purified recombinant Pmp E1, H and G3 of C. psittaci 

Cal 10 were generated by immunization of guinea pigs. Animal maintenance and 

experimental treatments were conducted in accordance with the ethical guidelines for animal 

research established and approved by the institutional Animal Care and Use Committee at 

University of Arkansas for Medical Sciences, more specifically this study has been approved 

in protocol number 2975. Two female guinea pigs (strain Hartley) were immunized with each 

antigen. The guinea pigs were housed individually, fed with Harlan Teklad guinea pig diet, 

checked twice a day and sacrificed by carbon dioxide. For each animal, 500 µg of immunogen 
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was mixed with the same volume of Freund’s Complete Adjuvant for primary immunization 

and two subsequent boosters with immunogen and Freund’s Incomplete Adjuvant were 

administered. Previously, pAbs against recombinant PmpA, B and D of C. caviae had been 

generated in the same way (P. Bavoil, unpublished data). All pAbs were characterized by 

immunoblotting using purified recombinant PmpA, B, D, E1, G3 and H of C. psittaci Cal10 

as well as density gradient purified EBs of C. psittaci Cal10 as antigens. The pAbs were pre-

adsorbed with HeLa 229 cells and with inclusion bodies of E.coli BL21 expressing an 

irrelevant antigen (His6-tagged recombinant β-galactosidase or GST, purified by the same 

protocol as the recombinant Pmps) to remove any non-specific reactivity. Secondary HRP-

rabbit anti-guinea pig antibody (Invitrogen) was used for detection.  

2.10 Immunofluorescence microscopy 

At 12, 18, 24, 32 and 48 hpi infected HeLa 229 cell cultures (with or without penicillin) were 

washed with PBS and fixed for 30 min at -20°C with 100% methanol. Monolayers were 

blocked for 1 h with 5% fetal bovine serum and subsequently double-labelled; Chlamydiae 

were stained by anti-LPS-FITC (IMAGEN chlamydia test, Novo Nordisk Diagnostics, 

Cambridge, UK) and Pmps were observed by indirect immunofluorescence after staining with 

anti-PmpA, anti-PmpB, anti-PmpD or anti-PmpH primary antibodies in combination with 

Alexa Fluor 568-conjugated goat anti-guinea pig IgG (Invitrogen), and counterstaining with 

DAPI. Images were acquired and recorded manually via confocal laser scanning microscopy 

(Nikon A1R, Nikon Instruments Inc., Paris, France), using a 40x Plan Apo oil objective with 

a numerical aperture of 1.3. DAPI, FITC and AF568 were respectively excited with a 405 nm 

diode, a 488 nm Ar and a 561 diode laser and their fluorescence emission was respectively 

detected through a 440/50 nm, 525/50 nm and 595/50 nm bandpass filter. The pinhole was set 

to 1 Airy unit and acquisition settings (laser power, gain and offset, scan speed) were kept 

constant throughout the experiment. Image analysis was conducted with ImageJ freeware 

(Schneider et al., 2012) on ten independent experiments by an in-house written colocalization 

script for Image J to determine the percentage of inclusions expressing PmpA, B, D and H, as 

described before (Verdoodt et al., 2012). In brief, the analyses determined the percentage of 

inclusions that is positive for specific Pmp proteins (i.e. above an intensity threshold) by 

calculating the overlap of both binarized channels per object (inclusion). The analysis 

was benchmarked using a manually curated image data set with varying number of positive 

inclusions and varying intensity levels. Two different settings were used: setting 1 with both 
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normal and smaller size inclusions and setting 2 with normal size inclusions only for late 

developmental times.  

2.11 Immuno-electron microscopy 

Infected HeLa 229 cell cultures (with or without penicillin) were fixed in 4% 

paraformaldehyde and 0.1 M PIPES buffer (pH 7.35) at 24 and 48 hpi. Cells were removed 

with a cell scraper, washed, pelleted, and enrobed in 2.5% low-melting-temperature agarose. 

Agarose blocks were trimmed into ~1mm3 size, washed, dehydrated, infiltrated, and 

embedded in unicryl at -20°C under UV from 24 to 48 h. Ultrathin sections were cut on a 

Leica UC6 ultramicrotome (Leica Microsystems, Inc., Bannockburn, IL) and collected onto 

formvar-coated Nickel grids. Immunogold labeling was performed using the guinea pig anti-

PmpA, B, D and H specific pAbs followed by a secondary gold conjugated goat anti-guinea 

pig IgG (H&L) antibody (Electron Microscopy Sciences, Hatfield, PA). Sections were also 

stained using a rabbit anti-MOMP-specific serum followed by a secondary gold conjugated 

goat anti-rabbit IgG (H&L) antibody (Electron Microscopy Sciences). Images were acquired 

using a Tecnai T12 transmission electron microscope (FEI, Hillsboro, OR) at 80 keV and an 

AMT digital camera (Advanced Microscopy Techniques, Woburn, MA).  

2.12 Statistics 

Statistical analyses were performed using R (version 3.0.3). The percentage of positive 

inclusions for PmpA, PmpB, PmpD and PmpH (median for PmpA, B and H and average for 

PmpD) at different times post-infection were compared based on 10 biological replicates by 

use of the non-parametric Kruskal-Wallis test (PmpA, B and H) followed by the Mann-

Whitney test or the parametric one-way ANOVA followed by Tukey’s post hoc analysis 

(PmpD). For 24, 32 and 48hpi the median percentage of positive inclusions for PmpA, PmpB, 

PmpD and PmpH, with both normal size and smaller inclusions included was compared with 

the median percentage of positive inclusions with only normal size inclusions, by the 

Wilcoxon signed rank test. The abundance of the immunogold labeling for PmpA, PmpH and 

MOMP was compared on 10 biological replicates by use of the Kruskal-Wallis test followed 

by the Mann-Whitney test. For all tests, results were considered significantly different if P < 

0.05.  
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3. Results 

3.1 The C. psittaci Cal10 genome encodes 17 predicted pmp coding sequences (CDSs) 

We developed a Hidden Markov Model for the identification of the pmp CDSs in the C. 

psittaci Cal10 genome. Seventeen pmp CDS were identified (Table 4.4), representing 4.1% of 

the genome size at 4 distant genomic loci (Figure 4.2A). All predicted pmp CDSs of C. 

psittaci Cal10, except for pmpG1a, are encoded on the complementary strand (Figure 4.2B). 

Eleven pmpG alleles are present in the genome, two of which (pmpG1c and G1d) are 

predicted to encode truncated products. The pmpG8 allele codes for a 75.81 kDa protein, 

therewith reducing the previously determined lower molecular mass boundary (90 kDa) for 

Pmps (Grimwood and Stephens, 1999). 
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Table 4.4: pmp genes and gene products of C. psittaci Cal10 

a The Chlamydia psittaci Cal10 pmpG sequences were used to search for pmpG sequences across the collection of isolates currently in the NCBI database. All 
hits were parsed, and protein sequences were aligned using ClustalW. The alignments were used to manually subdivide the pmpG family into subfamilies. 

b The theoretical Mw includes the signal sequence.  

Pmp subtypea Start position Stop position Size (bp) Theoretical pI Theoretical Mw (kDa)b Locus tag 

A 222944 225745 2799 8.82 101.84 G5Q_0224 
B 217351 222744 5391 6.04 190.48 G5Q_0223 
D 924237 928841 4602 5.22 163.72 G5Q_0827 
E1 293884 296886 3000 5.86 109.95 G5Q_0290 
E2 296908 299793 2883 6.60 106.57 G5Q_0291 
G1a 710413 712956 2541 5.25 91.27 G5Q_0648 
G1b 322009 324513 2502 5.81 89.39 G5Q_0303 
G1c 326413 327735 1320 5.16 45.85 G5Q_0306 
G1d 320559 321878 1317 4.96 45.34 G5Q_0302 
G2 304565 307696 3129 7.55 110.88 G5Q_0294 
G3 316390 318924 2532 8.01 92.34 G5Q_0300 
G4 330783 333605 2820 6.24 100.51 G5Q_0308 
G5 307929 310211 2280 7.94 83.90 G5Q_0296 
G6 327859 330555 2694 5.79 95.08 G5Q_0307 
G7 313712 316234 2520 6.50 90.12 G5Q_0299 
G8 310741 312858 2115 6.77 75.81 G5Q_0297 
H 301585 304539 2952 7.06 105.05 G5Q_0293 
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Figure 4.2: pmp CDS organization in the C. psittaci Cal10 genome. (A) The pmp CDSs map to 4 distinct loci on the C. psittaci Cal10 genome. 

Distances (bp) between nearest loci are indicated. (B) Linear representation of the pmp loci. CDSs and inter-CDS regions are drawn to scale. 

Number of bp between 2 nearest CDSs are indicated. A break (//) is added if the inter-CDS region is bigger than 5000 bp. 
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3.2 Transcription of pmp CDSs 

To start unravelling Pmp function, we first determined the timing of pmp transcription during 

chlamydial development. To this end, pmp transcript levels were measured under normal 

culture conditions at early (2 and 6 hpi), mid (12 and 18 hpi), and late (24, 32 and 48 hpi) 

stages of the developmental cycle (Figure 4.3). Analysis at very late developmental times (e.g. 

72 hpi) was not possible because of gradual loss of viability and lysis of the host cells. The 

gene tufA (encoding Elongation Factor Tu, EF-Tu) was included for comparative purposes as 

a house-keeping gene presumed to be expressed throughout the developmental cycle 

(Carrasco et al., 2011). Unexpectedly, transcript levels for tufA peaked at 6 hpi, then gradually 

diminished until 32 hpi, and rose again at 48 hpi. Overall, all pmp CDSs were transcribed at a 

detectable level at some stage of the developmental cycle. All pmp genes, were transcribed at 

very low levels early in the developmental cycle (2 hpi), except pmpA, pmpH, and pmpG5, 

that were transcribed at or near peak levels. For most pmp genes (pmpE1, pmpE2, pmpG1a, 

pmpG1b, pmpG1c, pmpG1d, pmpG2, pmpG3, pmpG6, pmpG8, and pmpH), transcript levels 

were highest at 24, 32 and 48 hpi, typically peaking at 24 hpi except for pmpG3 and pmpG6 

that peaked at 32 and 48 hpi respectively, and pmpG8 that remained high from 24 hpi onward. 

Surprisingly, pmpH transcription was highest at 2-6 hpi, minimal at 12-18 hpi and rose again 

to similar high level from 24 hpi onward. Somewhat similarly, pmpA transcript levels were 

highest between 2 and 18 hpi, and, although lower, rose again from 24 hpi onward. pmpB 

transcription was highest between 18 and 32 hpi. Transcription of pmpD and pmpG4 peaked 

at 48 hpi. 
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Figure 4.3: Relative expression of the pmp genes during normal C. psittaci culture 
conditions. At 2, 6, 12, 18, 24, 32 and 48 hpi, transcript levels were measured by real-time 

RT-qPCR in C. psittaci grown under normal conditions. For each gene, the average 

expression level of all samples was determined and the expression level of each sample of that 

gene is represented relative to the average expression level. Therefore, the expression level of 

a sample can only be compared to the expression level of another sample of the same gene. 

Two biological and two technical replicates were analyzed for each sample. Error bars are 

based on the standard error of the mean. 
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3.3 pmp transcription is altered during penicillin-induced stress in C. psittaci  

Previous studies suggested a unique role for pmpA, pmpD and pmpI in C. trachomatis 

intracellular pathogenesis as the transcription of these genes remained unaffected during 

penicillin-induced stress, while the expression of all other pmp genes was down-regulated 

(Carrasco et al., 2011). Therefore, we compared transcript levels of all pmp genes during 

normal C. psittaci culture conditions and penicillin-induced stress (Figure 4.4). Transcription 

of tufA, pmpB, pmpD, pmpG2, pmpG4 and pmpG8 was up-regulated, while that of pmpA, the 

co-regulated pmpE1-E2, pmpH, pmpG1a-d, pmpG3 and pmpG6 was down-regulated. 

 

Figure 4.4: Fold change of the pmp genes during penicillin-induced stress compared 
normal C. psittaci culture conditions. At 2, 6, 12, 18, 24, 32 and 48 hpi, transcript levels 

were measured by real-time RT-qPCR in C. psittaci grown under normal conditions and in the 

presence of penicillin. For all samples, the fold change of the penicillin-induced stress 

condition compared to the normal condition is shown.  
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3.4 Most pmp genes of C. psittaci Cal10 are not co-transcribed 

The genetic linkage and colinearity of pmpG4-G6-G1c, pmpG1b-G1d, pmpG3-G7, pmpG8-

G5-G2-H, pmpE2-E1 and pmpA-B (Figure 4.2) suggested that these genes might be organized 

in operons, leading to co-transcription. To partially test this hypothesis, we performed RT-

PCR using primers designed to span the relevant intergenic regions (Table 4.3) on cDNA 

samples generated during normal cell culture conditions at 24, 32 and 48 hpi. The latter time 

points were selected as the pmp genes of C. trachomatis, C. pneumoniae and C. abortus were 

highly transcribed at mid and late time points (Grimwood and Olinger, 2001; Wheelhouse et 

al., 2009; Carrasco et al., 2011). Only intergenic regions between pmpE1-E2 and pmpH-G2 

were amplified (Figure 4.5), suggesting that pmpE1-E2 and pmpG2-H are arranged in operons, 

whereas that pmpG4-G6-G1c, pmpG1b-G1d, pmpG3-G7, pmpG8-G5, and pmpA-B are not.  

 
Figure 4.5: pmpE1-E2 and pmpH-G2 are organized in operons. Based on co-linearity, 6 

putative operons were identified: pmpE2-E1, pmpG8-G5-G2-H, pmpG3-G7, pmpG1b-G1d 

pmpG4-G6-G1c, and pmpA-B. cDNAs generated at 24, 32 and 48 hpi were amplified by RT-

PCR using specific primers spanning the intergenic regions (Table 2). Only results for 

pmpE1-E2 and pmpH-G2 are presented as amplicons were not detected for all other intergenic 

regions. M: MassRuler Low Range DNA ladder (Thermo Scientific); +C: positive control C. 

psittaci Cal10 genomic DNA; -C HeLa: negative control cDNA from uninfected HeLa cells; 

RT/NRT: with or without reverse transcriptase. 
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3.5 Protein production profiles differ between C. psittaci Pmps 

RT-qPCR profiles provide an indication of when the pmp genes are transcribed at the 

population level. To assess expression at the protein level in individual inclusions, polyclonal, 

monospecific antibodies against PmpA, PmpB, PmpD, PmpE1, PmpG3, and PmpH were 

generated in guinea pigs. Analysis of the specificity of the antisera by immunoblot against a 

panel of recombinant Pmps (rPmps) and gradient-purified C. psittaci EBs indicated that 

PmpA-, PmpB-, PmpD- and PmpH-specific antibodies reacted with high molecular mass 

bands (Figure 4.6A) in the corresponding immunizing antigen lane, while PmpE1- and 

PmpG3-specific antibodies cross-reacted with multiple bands in multiple lanes (not shown). 

Therefore, PmpA-, PmpB-, PmpD- and PmpH-specific antisera were selected for further 

analysis. The observed molecular masses of rPmpA and rPmpH were smaller than the 

calculated molecular masses of the corresponding recombinant polypeptides. This may be 

caused by the instability of the full-length recombinant polypeptides. rPmpH was detected as 

a triplet of bands of 75, 70 and 60 kDa. However, the 70kDa band was also detected in the 

rPmpD and rPmpG lanes, suggesting that it is an Escherichia coli cross-reactive contaminant. 

Antibody-reactive bands detected in Western blots against purified EB proteins, were also 

smaller than the calculated molecular masses of each Pmp (Figure 4.6B), suggesting that 

proteolytic processing or degradation of these Pmps may have occurred pre- or post-EB 

purification. 
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Figure 4.6: Guinea pig polyclonal antibodies against PmpA, B, D and H are specific for 
their respective immunizing antigens. (A) The specificity of polyclonal antibodies raised 

against rPmpA (α PmpA), rPmpB (α PmpB), rPmpD (α PmpD) and rPmpH (α PmpH) was 

verified by immunoblotting using (A) partially purified recombinant PmpA, B, D, E1, G3 and 

H as well as (B) density gradient purified EBs of C. psittaci Cal10. The calculated molecular 

masses of recombinant PmpA, PmpB, PmpD, PmpE1, PmpH and PmpG3 are 92 kDa, 74 kDa, 

95 kDa, 74 kDa, 88 kDa and 60 kDa, respectively. The observed molecular masses were 75 

kDa, 74 kDa, 95 kDa, 70 kDa, 75 kDa and 60 kDa, respectively. (B) The calculated and 

observed molecular masses of the protein bands detected in EBs are shown. 
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Immunofluorescence microscopy (IF) was used to investigate the PmpA, PmpB, PmpD and 

PmpH protein production profiles in individual inclusions in 10 biological replicates, and to 

examine potential post-transcriptional and post-translational regulation. Inclusions positive for 

a specific Pmp subtype were determined under normal C. psittaci culture conditions and 

during penicillin-induced stress (Figure 4.7). The same time points as used for RT-qPCR were 

analyzed. At 24 and 48 hpi, both large size and smaller, ovoid and irregularly shaped 

inclusions were observed during normal culture conditions, possibly the result of the 

asynchronous start and/or growth of these inclusions.  

A macro excluding the smaller inclusions was used to quantify the percentage of inclusions 

producing PmpA, PmpB, PmpD and PmpH, as the large inclusions are representative for the 

late developmental times (Figure 4.8). At 12 hpi, under normal C. psittaci culture conditions, 

PmpA was highly produced in all 10 biological replicates, with a median of 90% PmpA 

positive inclusions (Figure 4.8). At the same developmental time, PmpH was not equally 

produced in all replicates, such that in 3 replicates, PmpH was detected in 88% of the 

inclusions, while in 7 replicates, it was only detected with a median of 4% positive inclusions. 

Thus, PmpH production displayed substantial variation between cultures inoculated with the 

same seed. Neither PmpB- nor PmpD-positive inclusions were detected at 12 hpi and PmpB-

positive inclusions were also not detected at 18 hpi. At 24, 32 and 48 hpi, PmpA and PmpH 

were highly expressed in all replicates with a median percentage of positive inclusions of 

100%. PmpB was first detected at 24 hpi in a median of 67% of the inclusions and was highly 

expressed in all inclusions at 32 and 48 hpi (median of 100%). Noticeably, the expression of 

PmpD varied significantly between biological replicates at 18 and 24 hpi, as PmpD was not 

detectably produced in 1 replicate at both times and between 88% and 99% in the other 9 

replicates.  
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Figure 4.7: The Pmp production profile differs for different Pmp subtypes. C. psittaci-infected 
HeLa cells were fixed at 12, 18, 24, 32 and 48 hpi, and double-stained with chlamydial LPS-specific 
antibody (FITC-conjugated, green) and Pmp-specific antibody (Alexa Fluor 568-conjugated, red). At 
12 and 18 hpi, only colored merged images are shown under normal and penicillin-induced persistence 
culture conditions (top row). At 24 and 48 hpi, single channel images are shown in black and white (2 
left-most columns), while merged images and insets thereof are shown in color (2 right-most columns). 
Representative micrographs for (A) PmpA, (B) PmpB, (C) PmpD and (D) PmpH are shown. Staining 
patterns at 32 hpi (not shown) were similar to those at 48 hpi. Bar = 2 µm for the 12 and 18 hpi times, 
and 24 and 48 hpi insets (i.e. top row and right-most column) and 10 µm for all remaining images. 
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Figure 4.8: PmpA, B, D and H production differs under normal (n) C. psittaci and 
during penicillin-induced stress (p) culture conditions. C. psittaci infected HeLa cells were 
fixed at 12, 18, 24, 32 and 48 hpi, and double-stained with a chlamydial LPS-specific 
antibody and Pmp-specific antibody. For each Pmp subtype, the percentage of positive 
inclusions was determined by a macro based on co-localization of the two antigens. The 
results shown here did not take into account smaller inclusions that are formed at 24, 32 and 
48 hpi. The data are expressed as box plots: the box represents the 25th-75th percentiles, the 
median is depicted by a bar across the box and the whiskers on each box represent minimum 
and maximum value. Outliers are depicted by dots. Statistically significant differences (P < 
0.05) are indicated with an asterix. 

 

3.6 Penicillin-induced stress differentially alters protein production profiles of specific C. 

psittaci Pmps 

Because of their obligate intracellular life style, the pathogenesis of chlamydiae is intimately 

linked to their capacity to grow inside cells and on their specific physiologic properties in 

response to threats such as innate host defenses or nutrient deprivation. To start evaluating 

potential differential production of Pmp subtypes under different growth conditions, we used 

penicillin-induced stress as a previously well-defined modulator of pmp gene expression in C. 

trachomatis (Carrasco et al., 2011). Under penicillin-induced stress, PmpA was the only 

detectable Pmp at the early developmental time of 12 hpi (Figures 4.7 & 4.8). PmpA 

production was observed in all 10 biological replicates, yielding a median of 61% PmpA 

positive inclusions, which is significantly lower than the 90% observed during the normal 
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condition (Figure 4.8). At the same developmental time, PmpH was unevenly expressed with 

100% of the inclusions staining positive for PmpH in 1 biological replicate, but only 0.3% in 

the other nine, yielding a median of 0.5% PmpH-positive inclusions (Figure 4.8) Thus, we 

showed a substantial variation in PmpH production. PmpB and PmpD, which were not 

expressed at 12-18 hpi, and 12 hpi respectively in unstressed cultures, were also not detected 

at these times during penicillin-induced stress (Figures 4.7 & 4.8).  

At 18, 24, 32 and 48 hpi, PmpA, PmpD and PmpH were expressed in all biological replicates 

experiencing penicillin-induced stress at levels at or near those of unstressed cultures (Figure 

4.8). The median percentage of Pmp positive inclusions was 100% for PmpA at all time 

points and 91%, 100%, 100% and 100% at 18, 24, 32 and 48 hpi respectively for PmpH. 

Relatively fewer PmpD-positive inclusions (59%) were observed at 18 hpi, i.e. significantly 

less than for PmpA and PmpH (P < 0.05), while 93%, 84% and 88% of the inclusions were 

PmpD-positive at 24, 32, 48 hpi, respectively, under penicillin-induced stress. Interestingly, at 

18 hpi and 32 hpi, the level of PmpD expression also varied among the biological replicates 

experiencing penicillin-induced stress, with no expression in 1 replicate, and 65% to 88% 

respectively in the remaining nine. PmpB expression was significantly down-regulated at all 

developmental times during penicillin-induced stress (Figure 4.8). It is noteworthy that the 

median percentages of inclusions producing PmpB, PmpD or PmpH rose significantly (P < 

0.05) when smaller inclusions were omitted from the analysis. However, this was not the case 

for PmpA, highlighting the very high level of expression of PmpA at early stages of the C. 

psittaci developmental cycle. 

3.7 PmpA, PmpD and PmpH target the chlamydial cell envelope 

Immuno-electron microscopy (IEM) was used to assess the subcellular localization of PmpA, 

PmpB, PmpD and PmpH at the late developmental times under both normal conditions and 

under penicillin-induced stress. Probably due to compromised antigen recognition or 

accessibility during dehydration and fixing for IEM, PmpB staining was poor preventing 

further analysis of ths Pmp subtype by this method. In general, the levels and topology of the 

three remaining Pmps were grossly similar under both unstressed and stressed conditions. 

IEM revealed strong PmpA-specific signal mostly localized at the chlamydial cell envelope in 

both unstressed and stressed cultures (Figure 4.9A). PmpH IEM staining was similar to that of 

PmpA in localization and relative abundance in both unstressed and stressed cultures (Figure 

4.9A). PmpD-specific labeling was also observed at the chlamydial envelope, but less 
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abundant than PmpA and H (Figure 4.9A). To evaluate relative antigenicity and immuno-

accessibility, we compared IEM staining of MOMP, the most abundant chlamydial protein 

and a strong antigen during infection in other Chlamydia spp. (Caldwell et al., 1981; Caldwell 

et al., 1987), with that of C. psittaci PmpA and PmpH at 24 hpi (Figure 4.9B). Surprisingly, 

PmpA and PmpH were significantly more labeled at the cell envelope than MOMP (P < 0.05, 

Figure 4.9C). PmpA was also significantly more labeled than PmpH (P < 0.05).  

  



106                                                                                                                               Chapter IV 

     
Figure. 4.9: PmpA and PmpH stain more heavily in the chlamydial envelope than 
MOMP. (A) Immuno-electron microscopic images of C. psittaci infected HeLa cells, which 
were fixed at 24 and 48 hpi both during normal cell culture conditions and during penicillin-
induced persistence, and stained with the primary Pmp-specific antibody and the secondary 
gold conjugated goat anti-guinea pig antibody. Only results for 24 hpi are shown, as the 
subcellular localization did not change at 48 hpi. (B) Immuno-electron microscopic image at 
24 hpi during normal cell culture conditions only, the cells were also labeled with MOMP-
specific antibody and the secondary gold conjugated goat anti-rabbit antibody. (C) C. psittaci 
infected HeLa cells were fixed 24 hpi, labeled with MOMP-, PmpA- and PmpH- specific 
antibodies and secondary gold conjugated goat anti-rabbit (MOMP) or gold conjugated goat 
anti-guinea pig (PmpA and H) antibody and the number of immunogold particles was counted 
on 100 chlamydiae. Error bars are based on standard error of the mean. Different letters 
indicate statistically significant differences (P < 0.05). Bars = 0.1 µm. 
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Detailed examination of higher magnification images revealed inclusion membrane labeling 

and suggested inner and outer membrane labeling of all analyzed Pmps (Figure 4.10). At 48 

hpi, most of the penicillin-stressed aberrant bodies were lysed, probably due to the harsh EM 

fixation technique. Therefore, only normal culture conditions IEM images were analyzed. As 

observed at 24hpi, the order of the Pmps in decreasing amount of immunogold labeling was 

PmpA, PmpH and PmpD. PmpA-, PmpD- and PmpH-specific staining of small vesicles, 

possibly corresponding to outer membrane vesicles (OMVs) was observed at 48 hpi during 

normal cell culture conditions (Figure 4.11). Both labeled and unlabeled vesicles were 

observed. 

 

Figure 4.10: PmpA, PmpD and PmpH localize to the inclusion membrane and probably 
also to the inner membrane (IM), outer membranes (OM). Immuno-electron microscopic 
images of C. psittaci infected HeLa cells, which were fixed at 24 hpi and stained with the 
primary PmpA-, PmpD- or PmpH- specific antibody and secondary gold conjugated goat anti-
guinea pig antibody. The suggested IM and OM localization is shown for PmpA only (A, long 
arrows). Inclusion membrane labeling (short arrows) is displayed for PmpA, D and H (B, C 
and D respectively). Bars = 0.1 µm.  
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Figure 4.11: PmpA, PmpD and PmpH localize to vesicles observed at 48 hpi. Immuno-

electron microscopic images of C. psittaci infected HeLa cells, which were fixed at 48 hpi and 

stained with primary PmpA-, PmpD- or PmpH-specific antibodies and secondary gold 

conjugated goat anti-guinea pig antibody. Arrows point to the vesicles. Bar = 0.1 µm. 
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4. Discussion 

4.1 Transcription of pmp genes 

An ultimate assessment of the involvement of the Pmp family in C. psittaci virulence and 

their potential use as vaccine candidates requires the fundamental characterization of the 

expression and topology properties of these proteins. We used C. psittaci Cal10, a previously 

well-characterized, prototypic strain (Narita et al., 1976; Matsumoto, 1982; Hovis et al., 2013; 

Mojica et al., 2015), with a complete genome sequence (Grinblat-Huse et al., 2011). 

Consistent with observations of pmp gene expression in other Chlamydia species (Grimwood 

and Olinger, 2001; Wheelhouse et al., 2009; Carrasco et al., 2011), transcripts were 

detectable for all 17 C. psittaci pmp CDSs, although the level of transcription varied over a 

wide range between pmps and with developmental time for each pmp. Although nearly all 

pmp transcript levels were high at late developmental times (24-48 hpi; typically with a dip at 

48 hpi), pmpA transcript levels were high at early-to-mid developmental times (2-18 hpi), 

similar to the pmpA ortholog of C. trachomatis, but opposite to the late expressed pmpA 

ortholog of C. abortus (Wheelhouse et al., 2009; Carrasco et al., 2011). Transcript levels for 

pmpH stood out in that they were high at early (2-6 hpi), low at mid (12-18 hpi) and high 

again at late developmental times (24-32 hpi). This feature appears to be unique for pmpH of 

C. psittaci as in all other species, pmpH is characteristically transcribed late (Wheelhouse et 

al., 2009; Carrasco et al., 2011) and suggests PmpH plays an important role at both ends of 

the C. psittaci developmental cycle. It also indicates that pmpH transcript is relatively 

unstable during mid-cycle development. These observations and the additional observation 

that pmpH is co-transcribed with pmpG2 suggest that the regulation of pmpH expression may 

follow a complex, multi-level mechanism, and may betray a key role of PmpH in overall Pmp 

function in C. psittaci.  

Late transcription of most pmp genes is in general agreement with the results of pmp 

transcription analyses for C. abortus and C. trachomatis where all pmp genes, with the 

exception of pmp5E for C. abortus and pmpA and I for C. trachomatis, were differentially 

highly expressed during late development (Wheelhouse et al., 2009; Carrasco et al., 2011). It 

is also consistent with transcription of the pmp gene family in C. pneumoniae, where 

transcripts could be detected for all known pmp genes at 72 hpi (Grimwood and Olinger, 

2001). Globally, transcription analyses of pmp gene families across several Chlamydia 
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species suggests an important role for these proteins either at late stages of development or, 

upon storage of late-expressed Pmps in EBs during the early steps of infection. The 

expression level of a large subgroup of pmp genes, including pmpE and most pmpG alleles 

parallels that observed for their respective pmp orthologs in other Chlamydia species 

(Wheelhouse et al., 2009; Carrasco et al., 2011). Conversely, differences at the species level 

(e.g. pmpA and pmpH of C. psittaci Cal10 versus orthologs in C. trachomatis and C. abortus) 

may reveal functional differences that are intrinsic to the properties of each species. 

Multiple types of stress have been shown to affect chlamydial growth and morphology and to 

down- or up-regulate various chlamydial genes important in virulence (Hogan et al., 2004; 

Mpiga and Ravaoarinoro, 2006; Goellner et al., 2006). We used penicillin-induced stress to 

comparatively investigate pmp transcription and Pmp production in C. psittaci inclusions, 

because the expression of pmpA, pmpD and pmpI genes of C. trachomatis, was uniquely not 

affected by penicillin-induced stress and therefore they were previously hypothesized to play 

a critical role in the pathogenesis of C. trachomatis (Carrasco et al., 2011). In C. psittaci 

Cal10, the expression of all pmp genes was affected by penicillin, as it either resulted in a 

down- or an up-regulated expression level but unaffected expression was not observed. 

Adding penicillin resulted in a lower transcript level for all pmp genes except for pmpB, 

pmpD, pmpG2, pmpG4 and pmpG8, as their transcript levels were augmented as for tufA. This 

might be an indication for being even more important in the biology of C. psittaci and/or it is 

a (survival) response to stress, by creating antibiotic resistance, like described for the 

expression of prokaryotic heat shock proteins in the presence of penicillin in other bacteria, 

like for instance Streptococcus pneumoniae. The major heat shock protein and molecular 

chaperon Clpl of S. pneumoniae play a role in increased resistance to penicillin by 

augmenting the expression and translocation of the penicillin-binding protein PBP2x to the 

bacterial cell wall, leading to increased resistance to penicillin (Tran et al., 2011). In our study, 

C. psittaci Cal10 remained susceptible to penicillin, but less susceptible than C. trachomatis, 

as more and smaller aberrant bodies were observed for C. psittaci compared to C. trachomatis 

(data not shown). This indicates that aberrant RBs of C. psittaci can divide in the presence of 

penicillin and therewith suggest that C. psittaci is less susceptible to penicillin. This is 

confirmed by a minimal inhibitory concentration (MIC) of 0.1 µg/ml and 1 µg/ml for 

penicillin for C. trachomatis and C. psittaci respectively (Tamura and Manire, 1968; Kuo et 

al., 1977). The possible involvement of PmpB, PmpD, PmpG2, PmpG4 and PmpG8 in 

mediating penicillin-resistance should further be examined, for example by inducing stress 
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through iron depletion or IFN-ɣ, where we do not expect up-regulation of the corresponding 

pmp genes. 

To assess transcriptional regulation, we examined the putative organization of the C. psittaci 

pmp CDSs in operons. Remarkably, only the pmpE2-E1 and pmpG2-H intergenic regions 

were amplified. Thus, it seems like most pmp genes of C. psittaci Cal10 are not cotranscribed. 

As the expression of all pmp genes at late time points was confirmed by RT-qPCR, the 

negative result is not due to the chosen time points. Our results differ from the ones obtained 

for C. trachomatis, where the intergenic regions of pmpA-B-C, pmpF-E and pmpG-H were 

cotranscribed indicating their organization in operons. Although pmpG2 and pmpH are 

organized in an operon, the two genes have a distinct developmental profile at 2 and 6 hpi, 

which might be the result of a second promoter in addition to the operon promoter. The latter 

was also suggested for the pmpABC operon of C. trachomatis (Carrasco et al., 2011).  

4.2 Protein production profiles differ for different C. psittaci Pmp proteins 

The expression level of the pmp genes in the population is determined by RT-qPCR. However, 

different variants may be present in the population (e.g. due to SNPs) (Read et al., 2000; 

Jasper et al., 2015). To address this issue, we investigated pmp expression at the protein level 

both during normal and during penicillin-induced stress cultures, using immunofluorescence 

(IF) and immuno-electron microscopy (IEM) to determine Pmp production respectively at the 

inclusion and at the chlamydial cell levels, in multiple biological replicates. We will first 

focus on the normal culture condition. The early high-level pmpA transcription was matched 

by high-level production of PmpA during all stages of development in all biological replicates, 

indicating the relative stability of the pmpA mRNA and PmpA protein and suggesting a 

relative absence of pmpA variation at the genomic level in the study population (the C. 

psittaci culture). PmpB, whose transcript level peaked mid-cycle was detectably produced late 

in the majority of inclusions in all replicates. Production of PmpD was also detected at 

developmental times generally corresponding to maximum transcription levels, but was 

undetectable in one of ten biological replicates at 18 and 24 hpi. The latter was also observed 

for PmpH, whose transcript exhibited discontinuous high-low-high levels during development, 

was strongly produced late in all replicates, but only in some of the replicates at mid 

developmental cycle. This may be loosely comparable to the on-off phase-like variation 

described for Pmps of C. trachomatis (Tan et al., 2010).  
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Next, we focus on the penicillin induced-stress condition. Similar to its ortholog in C. 

trachomatis (Carrasco et al., 2011), production of PmpA was not significantly affected by 

penicillin-induced stress. PmpB production was also similarly down-regulated in C. psittaci 

and C. trachomatis. PmpD and PmpH productions however, whose orthologs are down-

regulated in C. trachomatis (Carrasco et al., 2011), were unaffected by penicillin in C. psittaci. 

This may again highlight a yet-to-be-determined species-specific function of PmpD and 

PmpH in C. psittaci. It is noteworthy that transcript and protein levels observed for the Pmps 

during penicillin-induced stress culture conditions were not always concordant. For example, 

pmpA and pmpH transcript levels were lower during stress, but the protein levels showed no 

significant difference (except 12 hpi for PmpA). Similar findings were observed for C. 

trachomatis, in which pmpF transcription was shut down during stress, while the same 

amount of PmpF protein was present during both normal and stress conditions (Carrasco et al., 

2011). These results implicate the existence of unknown posttranscriptional and 

posttranslational mechanisms in Chlamydia spp. and suggest the occurrence of multiple 

transcripts and proteins, which can display a different stability under specific conditions.  

The infectious EB was previously suggested to determine the on/off status of each Pmp 

subtype in an inclusion, as the off frequency did not change over developmental times in C. 

trachomatis (except for pmpG) (Carrasco et al., 2011). However, the off frequency of C. 

psittaci Pmps did change over time, as was the case for C. abortus (Wheelhouse et al., 2012b). 

Furthermore, 10 biological replicates were analyzed in this study and the percentage of PmpD 

and PmpH positive inclusions ranged from 0% to 100% in some replicates. This is 

reminiscent of PmpG production in C. trachomatis cultures, where the percentage of PmpG-

positive inclusions varied between 90 and 99% between experiments (Tan et al., 2010). In 

contrast, the observed high rate of variation of PmpD production at the inclusion level at two 

developmental times is entirely discordant from that observed for PmpD of C. trachomatis, 

which was the least frequently “off” Pmp subtype in this species (Tan et al., 2010). It is 

unlikely that individual replicates were infected with EBs with PmpD or PmpH in either on- 

or off- status, as all replicates were infected with the same seed. These results suggest that it is 

not the incoming EB that determines the on/off status of Pmp production in an inclusion in C. 

psittaci. We postulate that another mechanism determines the on/off status of Pmps and we 

suggest a mechanism which is both tightly regulated and involves variable factors. For 

example, frame shifts, SNPs and reversible recombination of pmp gene fragments from 
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transcriptionally silent CDSs into expressed pmp genes, might explain the variation between 

biological replicates.  

4.3 PmpA, PmpD and PmpH target the chlamydial cell envelope 

IEM was used to assess the subcellular localization of the Pmps. PmpA, D and H localized at 

the C. psittaci cell envelope. This is consistent with the observed surface localization for all 

nine Pmps of C. trachomatis (Crane et al., 2006; Swanson et al., 2009; Tan et al., 2010), 

Pmp6, 8, 10, 11, 18 and 21 of C. pneumoniae (orthologs of PmpGs [Pmp6, 8, 10 and 11], 

PmpE and PmpD of C. trachomatis, respectively) (Vandahl et al., 2002; Wehrl et al., 2004) 

and the 90kDa Pmp (ortholog of PmpG of C. trachomatis) of C. abortus (Longbottom et al., 

1998a). However, there have not been any thorough investigations to distinguish inner and 

outer membrane labeling. The IEM images suggested labeling of PmpA, D and H at the inner 

and outer membrane, but better resolution images are needed to provide conclusive evidence. 

Remarkably, we observed more abundant antibody labeling of PmpA and H at the chlamydial 

cell envelope compared to MOMP, the major surface-accessible protein in all Chlamydia 

species. Although this observation may owe to differential properties of the antibodies or the 

influence of the post-embedding immunolabeling techniques used in our analysis, it may also 

relate to the unusual antigenicity and immuno-accessibility of these 2 proteins in C. psittaci. 

Similar abundant Pmp labeling at the cell envelope has not been observed for C. trachomatis 

and C. pneumoniae, which are phylogenetic relatively distant from C. psittaci (Sachse et al., 

2015). However, the 90kDa Pmp of C. abortus, a close phylogenetic relative of C. psittaci, 

was also abundantly labeled at the chlamydial surface (Longbottom et al., 1998a). We also 

detected PmpA-, D- and H-specific immunogold-labeling of small vesicles within the 

inclusion and of the inclusion membrane itself, which was not observed before for other 

Chlamydia species. We speculate that the observed vesicles may have pinched-off from the 

outer membranes of RBs and fused to the inclusion membrane. Similarly, Vanrompay et al., 

(1996) observed the small vesicles within the inclusion of four different C. psittaci strains and 

suggested that the fusion of these vesicles with the inclusion membrane could account for its 

labeling by the polyclonal antibodies used in their study. Similar results were also reported by 

Taraska et al., (1996), who suggested that the expansion of the inclusion membrane of C. 

trachomatis and C. psittaci is driven by fusion with bacterium-derived material. Comparable 

shedding of vesicular material and the contiguous localization of these vesicles with the 

vacuolar membrane has also been observed for intracellular protozoan parasites (Sibley et al., 
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1986; Speer and Whitmire, 1989). More thorough IEM analyses are needed to confirm 

whether inclusion membrane and small vesicle labeling is unique for C. psittaci Pmps and if 

the remaining C. psittaci Pmps are also found at those membranes. Further research is needed 

to elucidate the function of Pmps present at those membranes. 

In conclusion, C. psittaci Cal10 has 17 pmp genes. Our experiments confirmed that variation 

is a central requisite of the C. psittaci Pmp family as gene transcription profiles and protein 

expression profiles differed along development and in different biological replicates. We 

detected PmpA-, D- and H- specific immunogold-labeling of the inclusion membrane and of 

small vesicles within the inclusion membrane. In addition, the IEM images suggested PmpA-, 

D- and H- specific immunogold-labeling of the inner and outer membrane of Chlamydia 

particles. PmpA and PmpH of C. psittaci, by virtue of their unique expression properties 

emerge as important players in pathogenesis and their apparent 

immunoaccessibility/antigenicity suggest their potential in vaccine design.  
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Abstract 

Chlamydiaceae are very successful pathogens and up to now no vaccine is available for none 

of the Chlamydia species. As the infections lead to significant economic losses in animal 

production, the need for an effective vaccine is high. Immunity to Chlamydia infections is 

mainly mediated by cellular immune responses. In general, the proteins present in the 

Chlamydia outer membrane complex are expected to be important for vaccine design. The 

composition of the chlamydial outer membrane complex was previously only determined for 

C. trachomatis, C. abortus and C. pneumoniae. We therefore determined whether PmpA, 

PmpB, PmpD and PmpH proteins of C. psittaci are present in the C. psittaci outer membrane 

complex by immuno-electron microscopy. Those four Pmp proteins are the most conserved 

Pmp proteins of C. psittaci and we therefore hypothesize that they are essential for the 

pathogenesis of C. psittaci. For all analyzed Pmp proteins specific labeling was observed at 

the C. psittaci outer membrane complex. 
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1. Introduction 

Chlamydia psittaci causes respiratory disease in birds. Birds show symptoms such as 

conjunctivitis, pneumonia and rhinitis (Vanrompay et al., 1997). The pathogen has a unique 

biphasic developmental cycle. The infectious elementary body (EB) attaches to the host cell 

and after the subsequent endocytosis, mainly at clathrin-coated pits, it differentiates to the 

metabolic active reticulate body (RB) within an inclusion, which is derived from the host cell 

membrane during the internalization (Vanrompay et al., 1996; Harkinezhad et al., 2009). 

Infections lead to significant economic losses in the duck and turkey industry due to mortality, 

reduced egg production and the expense of antibiotic treatment (Vanrompay et al., 1997). 

Nowadays, C. psittaci is also emerging on chicken farms (Dickx et al., 2010; Dickx and 

Vanrompay, 2011; Yin et al., 2013). An efficacious vaccine is needed to control C. psittaci 

infections. An ideal vaccine should generate long-lasting and sterilizing immunity while 

avoiding immunopathology. Previous studies showed that vaccines for intracellular bacteria, 

such as Chlamydia, require cell-mediated immune responses (Seder and Hill, 2000). CD4+ T 

cells are essential to resolve a chlamydial infection (Ramsey and Rank, 1991; Su and 

Caldwell, 1995; Morrison et al., 2000), while CD8+ T cells and B cells are not necessary to 

clear a primary infection (Ramsey et al., 1988; Su and Caldwell, 1995; Su et al., 1997), 

however, they can contribute to clear the infection by the release of gamma interferon 

(Igietseme et al., 1994) and they play an important role in resistance to chlamydial reinfection 

(Su et al., 1997; Morrison et al., 2000; Rank and Whittum-Hudson, 2010), respectively.  

The polymorphic membrane protein (Pmp) family is the largest membrane protein family in 

Chlamydia species and it is a unique feature of the genus (Horn et al., 2004; Vandahl et al., 

2004). The Pmps have been studied intensively because of their relatively high proportion of 

the coding capacity (3.15 and 5.1% in C. trachomatis and C. pneumoniae, respectively) and 

the presence of the protein family in all currently sequenced chlamydial genomes (Grimwood 

and Stephens, 1999). Some Pmp proteins are highly immunogenic (Caldwell et al., 1975a,b; 

Kuo et al., 1977; Longbottom et al., 1996; Livingstone et al., 2005; Tan et al., 2010; Marques 

et al., 2010), all Pmps of C. trachomatis are proposed to function as adhesins (Becker and 

Hegemann, 2014) and anti-PmpD antibodies can partially neutralize a C. trachomatis 

infection (Crane et al., 2006). Therefore, the Pmps are hypothesized to be vaccine candidates 

(Crane et al., 2006; Mölleken et al., 2010; Carrasco et al., 2011).  
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Karunakaran et al. (2008) identified four Pmp proteins (PmpE, PmpF, PmpG and PmpH) in C. 

muridarum, which is phylogenetically highly related to C. trachomatis (Read et al., 2000), as 

CD4+ T cell vaccine candidates by an immunoproteomic approach. Briefly, bone marrow-

derived dendritic cells were infected with C. muridarum, subsequently MHC–II bound 

peptides were purified by affinity chromatography using monoclonal antibodies specific to 

mouse B cells and those peptides were identified by mass spectrometry. Those MHC-II 

peptides were recognized by CD4+ T cells harvested from immune mice and transfer of 

dendritic cells pulsed ex vivo with those peptides partially protected mice against a chlamydial 

infection. Yu et al. (2014) compared the single antigen (PmpE, PmpF, PmpG and PmpH) 

vaccines to multisubunit vaccines (PmpE, PmpF, PmpG, PmpH with or without the major 

outer membrane protein, MOMP). The multisubunit vaccines were more immunogenic and 

cleared the infection faster than the single antigen vaccines (Yu et al., 2014). Remarkably, 

those four Pmp proteins are overrepresented in the C. trachomatis outer membrane complex 

(COMC), purified from EBs, compared to the Sarkosyl soluble fraction (Liu et al., 2010), 

while PmpD and PmpI were overrepresented in the soluble fraction and PmpA was not 

detected in the experiment. The absence of PmpA was explained by reports that showed the 

RB specificity of this protein (Skipp et al., 2005; Saka et al., 2011) and by the finding that it 

is not an outer membrane protein in C. trachomatis (Grimwood and Stephens, 1999). PmpD 

and PmpI were also shown to be RB specific proteins by Saka et al. (2011). In addition, Tan 

et al. (1990) showed that the C. abortus outer membrane complex conferred protective 

immunity when used in an experimental vaccine. Overall these results suggest that proteins 

present in the chlamydial outer membrane complex might be potential vaccine candidates. Up 

to now, the chlamydial outer membrane complex was only studied for C. trachomatis 

(Mygind et al., 2000; Birkelund et al., 2009; Liu et al., 2010), C. pneumoniae (Knudsen et al., 

1999) and C. abortus (Tan et al., 1990; Cevenini et al., 1991; McCafferty et al., 1995; 

Longbottom et al., 1996). In this study the presence or absence of PmpA, PmpB, PmpD and 

PmpH in the Chlamydia psittaci outer membrane complex was analyzed by immuno-electron 

microscopy. Those are the four most conserved Pmp proteins of C. psittaci and therefore we 

hypothesize that they are essential for the pathogenesis of C. psittaci. 
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2. Material and methods 

2.1 Chlamydia psittaci strain and growth curve 

The previously well-characterized, prototypic C. psittaci strain Cal10 (Narita et al., 1976; 

Matsumoto, 1982; Hovis et al., 2013; Mojica et al., 2015), was used in this study. The strain 

was isolated from ferrets inoculated with throat washings from humans with an influenza-like 

respiratory infection (Francis and Magill, 1938). The bacterium was grown in HeLa 229 cells, 

the first human cell line established in culture, starting from human cervical carcinoma cells 

(Gey et al., 1952). HeLa 229 cells were seeded on a sterile glass coverslip (13mm) at the 

bottom of Chlamydia Trac Bottles (Bibby Sterilin Ltd., Stone, UK) and grown for 24h at 

37°C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, Merelbeke, 

Belgium) supplemented with 10% heat inactivated fetal bovine serum (Greiner Bio One, 

Wemmel, Belgium), gentamycin (25 µg ml-1; Invitrogen) and fungizone (1.25 µg ml-1; 

Invitrogen). The medium was aspirated and cells were inoculated with C. psittaci Cal10 in 

SPG at an MOI of 1 followed by a centrifugation of 3000 rpm for 30 min at 37°C. The 

inoculum was removed, the cells were washed with PBS and DMEM was added, which was 

marked time 0 hpi of the experiment. At 2, 8, 15, 24, 32, 38, 48, 54 and 60 hours post 

infection (hpi) SPG was added to the Chlamydia Trac Bottle, which was subsequently stored 

at -80°C. Titration of the EBs present in the supernatant at each time point was performed on 

HeLa 229 cells by the method of Spearman and Kaerber (Mayr et al., 1974) determining the 

tissue culture infective dose 50 (TCID50) per ml.  

2.2 Chlamydia psittaci mass production and purification 

HeLa 229 cells were seeded in 25 cm2 culture dishes and incubated for 24h at 37°C with 5% 

CO2 in DMEM (Invitrogen) supplemented with 10% heat inactivated fetal bovine serum 

(Greiner Bio One), gentamycin (25 µg ml-1; Invitrogen) and fungizone (1.25 µg ml-1; 

Invitrogen). The medium was aspirated and the monolayer was inoculated with C. psittaci 

Cal10 in SPG (0.25 M sucrose, 10 mM sodium phosphate and 5mM L-glutamic acid) at a 

multiplicity of infection (MOI) of 1 followed by incubation on a rocking platform for 2 h at 

37°C. The unbound organisms were washed away with PBS and the above-mentioned 

medium was added to each tissue culture flask. Elementary bodies were harvested at the 

developmental time at which most EBs were determined (growth curve result, see paragraphs 

2.1 and 3.1) and purified by discontinuous gradient centrifugation following standard 
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protocols (Caldwell et al., 1981), with minor modifications. Briefly, renografin was replaced 

by Omnipaque 350 (GE Healthcare, Princeton, New Jersey) supplemented with NaCl 160 

mM. The gradients were prepared by diluting Omnipaque 350-160 mM NaCl in SPG buffer, 

such that final concentrations of Omnipaque 350 were 30%, 40%, 44% and 54%. Titration of 

the EBs was performed on HeLa 229 cells by the method of Spearman and Kaerber (Mayr et 

al., 1974).  

2.3 Chlamydia psittaci whole cell lysate and isolation of C. psittaci outer membrane 
complex  

Two protocols to isolate the Chlamydia psittaci outer membrane complex (COMC) were 

compared. Envelope proteins constitute only 4-16% of the proteome. So a clean extract is 

expected to produce a distinctive band pattern with very little overlap with that generated by a 

whole cell extraction (Quan et al., 2013). The whole cell extract was prepared by the protocol 

described by Marques et al. (2010) with minor modifications. In short, 2 x 109 EBs were 

centrifuged (16 000 x g for 30 min at 4°C), the pellet was washed twice by Tris-EDTA (TE; 

10mM Tris-HCl, 1 mM EDTA, pH 8.0) buffer and afterwards resuspended by lysis buffer (7 

M urea [Sigma-Aldrich, Bornem, Belgium], 2 M thiourea (Sigma-Aldrich), 1% ASB-14 

(Sigma-Aldrich) and protease inhibitor (Roche Diagnostics, Mannheim, Germany)). The 

sample was incubated at room temperature for 30 min and centrifuged (16 000 x g for 30 min 

at 4°C) to remove insoluble material. The two COMC isolation procedures are the Sarkosyl 

method (Caldwell et al., 1981) and the Tris-sucrose-EDTA method (Quan et al., 2013). In 

brief, during the first method 2 x 109 EBs were resuspended in Sarkosyl buffer (2% sodium 

lauryl sarkosinate (Sarkosyl; Sigma-Aldrich), 1.5 mM EDTA, PBS, pH 8). The samples were 

sonicated for 2 min and incubated at 37°C for 1 h. The Sarkosyl insoluble fraction was 

pelleted by centrifugation (16 000 x g for 30 min) and the supernatant was collected as the 

Sarkosyl soluble fraction. The procedure was repeated one more time and the two soluble and 

insoluble fractions were pooled. The resulting insoluble pellet was washed twice with PBS to 

remove the detergent and was resuspended in resuspension buffer (0.02 mM sodium 

phosphate, 10 mM magnesium chloride, 25 µg deoxyribonuclease I [Sigma-Aldrich] and 25 

µg ribonuclease [Sigma-Aldrich]) and incubated for 2 h at 37°C. Pellets from these digestions 

(16 000 g for 10 min) were sonicated (10 x 1 min, with intermittent cooling of the samples on 

ice) and washed with PBS to remove the nucleases (16 000 g for 10 min). The pellet, 

containing the COMC, was resuspended in digestion buffer (50 mM ammonium bicarbonate, 
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8 M urea, protease inhibitor). During the second method resuspended 2 x 109 EBs in Tris-

sucrose-EDTA buffer (TSE; 200 mM Tris-HCl, pH 8.0, 500 mM sucrose, 1 mM EDTA, and 

add protease inhibitor before use). The samples were incubated on ice for 30 min and 

centrifuged (16 000 x g for 30 min at 4°C). The supernatant contained periplasmic and outer 

membrane proteins, while the pellet contained the inner membrane and cytoplasmic proteins. 

The fractions were analyzed by SDS-PAGE (4.5 µg protein was loaded of each sample). 

2.4 Immuno-electron microscopy  

COMC pellets were fixed in 4% paraformaldehyde. Cells were washed, pelleted, and 

embedded in 2.5% low-melting-temperature agarose. Agarose blocks were trimmed into 

~1mm3 size, washed, dehydrated, infiltrated, and embedded in unicryl at -20°C under UV 

from 24 to 48 h. Ultrathin sections were cut on a Leica UC6 ultramicrotome (Leica 

Microsystems, Inc., Bannockburn, IL) and collected onto formvar-coated Nickel grids. 

Immunogold labeling was performed using the guinea pig anti-PmpA, B, D and H specific 

polyclonal antibodies (pAbs) (generated by immunization of guinea pigs with the purified 

recombinant proteins) followed by a secondary gold conjugated goat anti-guinea pig IgG 

(H&L) antibody (Electron Microscopy Sciences, Hatfield, PA). Sections were also stained 

using a rabbit anti-MOMP-specific serum followed by a secondary gold conjugated goat anti-

rabbit IgG (H&L) antibody (Electron Microscopy Sciences). Images were acquired using a 

Tecnai T12 transmission electron microscope (FEI, Hillsboro, OR) at 80 keV and an AMT 

digital camera (Advanced Microscopy Techniques, Woburn, MA). 
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3. Results 

3.1 Choice of time point and isolation method for Chlamydia psittaci outer membrane 
complex analysis 

C. psittaci grows asynchronically, so a high amount of EBs is difficult to obtain when using 

discontinuous gradient centrifugation as such, without determining the optimal cell culture 

harvest time point. Therefore, the growth curve of C. psittaci Cal10 was first determined. 

Enrichment of EBs was successfully achieved by harvesting C. psittaci Cal10 at 54 hpi 

(Figure 5.1) and subsequent discontinuous gradient centrifugation of the cell culture harvest.  

 

Figure 5.1: Growth curve of C. psittaci Cal10. Titration of C. psittaci Cal10 grown in HeLa 

cells was performed at 2, 8, 15, 24, 32, 38, 48, 54 and 60 hpi. Errors are based on standard 

deviation of the mean. 
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Two different outer membrane complex extraction methods for Gram-negative bacteria were 

compared. The method using the detergent Sarkosyl was best to isolate the C. psittaci outer 

membrane complex (Figure 5.2). 

 

Figure 5.2: Isolation of the C. psittaci outer membrane complex (COMC) by two 
methods using either Sarkosyl detergent or Tris-sucrose-EDTA. The protein profile 

observed in lane 5 (encompassing the COMC) resembled the profile of the whole cell lysate 

(lanes 1 and 4), while the protein profile in lane 2 (encompassing the COMC) clearly differed 

from the whole cell lysate. Three predominant protein bands were observed in the Sarkosyl 

insoluble lane (~ 38 kDa, ~55 kDa and ~ 90 kDa). The use of Sarkosyl was optimal to extract 

the C. psittaci outer membrane complex. 
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The SDS-PAGE gel (Figure 5.2) showed a distinctive profile of the outer membrane fraction 

compared to the whole cell lysate, but the presence of the outer membrane fraction could also 

successfully be verified by IEM (Figure 5.3). 

 

Figure 5.3: The extraction of the C. psittaci outer membrane complex (COMC), starting 
from enriched C. psittaci Cal10 EBs and visualized by IEM. Arrows point to the C. psittaci 

outer membrane complexes. Bar = 0.5 µm. 

3.2 PmpA, PmpB, PmpD and PmpH localize to the Chlamydia psittaci outer membrane 
complex 

The localization of PmpA, PmpB, PmpD and PmpH in the C. psittaci outer membrane 

complex (COMC) was analyzed by IEM (Figure 5.4). PmpA localized most abundantly at the 

COMC (Figure 5.4 A), while PmpH was present at a lower abundance than PmpA. However, 

PmpH was observed in all COMCs (Figure 5.4 B), which is different from the other three 

analyzed proteins, which are only present in a few COMCs.  
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Figure 5.4: PmpA (1), PmpB (2), PmpD (3) and PmpH (4) localize to the C. psittaci Cal10 outer membrane complex. Bars = 0.1 µm.
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4. Discussion 

Chlamydiaceae are very successful intracellular pathogens and up to now, no vaccine is 

available for none of the different Chlamydia species. Liu et al. (2010) suggested previously 

that antibodies to COMC might neutralize Chlamydia infections. This was confirmed by 

vaccination of pregnant ewes by C. abortus outer membrane complex, which conferred 

protective immunity (Tan et al., 1990). Yu et al. (2014) showed that a multisubunit vaccine 

comprising the major outer membrane protein and PmpE, PmpF, PmpG and PmpH, which 

were previously detected in the COMC of C. trachomatis (Liu et al., 2010), conferred better 

protection than the single protein antigens. Therefore, knowing the composition of the COMC 

is relevant for vaccine design. As variation is a central trait of the Pmp family, it was 

hypothesized that the Pmp proteins might play a role in the observed host and tissue tropism 

among Chlamydia species, which was confirmed by Becker et al. (2014). If the proteins 

present in the COMC determine the host or tissue to which the Chlamydia species might 

adhere and subsequently infect, we expect that the COMC composition would differ between 

Chlamydia species. The composition of the C. psittaci outer membrane complex was not 

determined before, and we hypothesize that other Pmp proteins might be present in the 

COMC of C. psittaci. 

In a first step, we compared two different COMC extraction methods to isolate the C. psittaci 

outer membrane complex. Quan et al. (2013) compared three different outer membrane 

extraction methods for Gram-negative bacteria and reported that the Tris–sucrose–EDTA 

method produced the cleanest extract of periplasmic and outer membrane proteins from 

Escherichia coli. However, we were unable to enrich the outer membrane proteins of C. 

psittaci by the method of Quan et al. (2013), as the SDS-PAGE protein profile looked similar 

to the one of the whole cell lysate of the C. psittaci Cal10 strain. The cell wall of 

Chlamydiaceae is different compared to other Gram-negative bacteria, as the peptidoglycan 

synthesis is minimal early and late in the developmental cycle and it peaks at 18 hpi (Packiam 

et al., 2015). The low amount of peptidoglycan present in the EBs harvested at 54 hpi might 

contribute to failure of the Tris-sucrose-EDTA method. In contrast, the SDS-PAGE protein 

pattern obtained by using the Sarkosyl method, was similar to the ones obtained during 

previous COMC purifications of C. trachomatis and C. abortus (Caldwell et al., 1981; 

McCafferty et al., 1995). Three predominant protein bands were observed, which were 

previously identified as the major outer membrane protein (MOMP; ~ 38 kDa), the outer 
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membrane protein 2 (Omp2; ~ 55 kDa) and the polymorphic membrane proteins (Pmps; 90 

kDa) (McCafferty et al., 1995; Mygind et al., 2000; Liu et al., 2010). The C. psittaci COMC 

morphology observed in our study by IEM was indistinguishable from the electron 

microscopic images of the C. trachomatis outer membrane complex demonstrated by other 

researchers (Caldwell et al., 1981; Liu et al., 2010). 

In this study we observed immunogold labeling of PmpA, PmpB, PmpD and PmpH in the C. 

psittaci outer membrane complex. Birkelund et al. (2009), detected all Pmps except PmpA 

and PmpI in the C. trachomatis outer membrane complex, while Liu et al. (2010) observed all 

Pmps except PmpA, PmpD and PmpI. Tanzer et al. (2001) detected PmpE, PmpG and PmpH 

and Mygind et al. (2000) detected only PmpG and H in the C. trachomatis L2 outer 

membrane complex. Different COMC extraction and analyses methods might explain these 

differences. Mygind et al. (2000), Birkelund et al. (2009) and Liu et al. (2010) extracted the 

COMC by the previously described Sarkosyl method, while Tanzer et al. (2001), labeled the 

outer membrane proteins with a photoactivatable lipophilic reagent after which the Sarkosyl 

extraction method was applied. Tanzer et al. (2001) subsequently separated the COMC by 

SDS-PAGE and protein bands were visualized on the dried gel by phosphorimaging. Mygind 

et al. (2000) stained the SDS-PAGE gel by silver staining. Birkelund et al. (2009) applied a 

combined fractional diagonal chromatography to the COMC, as described by Gevaert et al. 

(2003). In a final step, they all identified the separated proteins by matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, while Liu et al. (2010) 

immediately determined the composition of the COMC by liquid chromatography-tandem 

mass spectrometry without first separating the proteins. Despite the differences, PmpG and 

PmpH were observed in all studies that examined the C. trachomatis outer membrane 

complex. 

Few studies examined the localization of the Pmps in other Chlamydia species. In C. abortus 

three 90 kDa Pmp proteins were identified in the COMC (Cevenini et al., 1991; McCafferty et 

al., 1995; Longbottom et al., 1996), which are orthologs of PmpG of C. trachomatis. Knudsen 

et al. (1999) detected Omp4 and Omp5, also referred to as Pmp10 and Pmp11 (both orthologs 

of PmpG of C. trachomatis) in the C. pneumoniae outer membrane complex. The labeling of 

PmpA in the C. psittaci outer membrane complex is unique as it was not observed in the 

above-mentioned studies on other Chlamydia species. This might suggest an important 

function for PmpA in the pathogenesis of C. psittaci, as it is present on the surface of C. 
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psittaci EBs while it is RB specific in C. trachomatis. It is also remarkable that PmpG was 

detected in the COMC of C. trachomatis, C. pneumoniae and C. abortus. The presence of 

PmpG in C. psittaci COMC could not be confirmed in this study, as specific pAb for C. 

psittaci PmpG were not available. It might be possible that PmpG has a redundant function in 

all Chlamydia species and that other Pmps have a more species-specific function such as 

antigenic variation or adhesion to a specific tissue or host. However, the COMC composition 

of multiple C. psittaci strains, including avian strains, should be determined.  
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General discussion and perspectives 

Members of the family of the Chlamydiaceae are important pathogens of both 

animals and humans. Abortion, carcass condemnation, bad semen quality and reduced 

egg production are only some of the sequelae of animal chlamydial infections, which 

lead to significant economic losses (Vanrompay et al., 1997; Kerr et al., 2005; 

Longbottom and Livingstone, 2006). Chlamydial infections in animals are currently 

mainly treated by tetracycline and its derivatives (chlortetracycline, oxytetracycline, 

doxycycline), because it is a cheap, broad spectrum antibiotic with an excellent tissue 

distribution and low toxicity, which easily resolves the infection (Sandoz and Rockey, 

2011). However, the extensive use of the antibiotic also for other bacterial infections 

in animals, both as therapy and in the past also as a prophylaxis, led to the fast spread 

of tetracycline resistant Gram-positive and Gram-negative bacteria (Michalova et al., 

2004). Tetracycline-resistant C. suis isolates have been detected (Dugan et al., 2004). 

The potential transfer of the tetracycline resistence, tet(C), gene to other Chlamydia 

species highlights the need for an effective vaccine.  

As both humoral and cellular immune responses are essential for an efficient and 

long-lasting immunity, the ideal vaccin should contain both B- and T-cell epitopes 

(Su and Caldwell, 1992; Morrison et al., 2000). For decades, MOMP was the focus of 

vaccination studies, as the protein accounts for 60% of the protein content of the EB 

envelope (Caldwell et al., 1981), it is highly immunogenic (Caldwell et al., 1981; 

Anderson et al., 1990; Miettinen et al., 1990; Pal et al., 2005; Marques et al., 2010), 

anti-MOMP antibodies neutralized the infection in vitro and in vivo (Caldwell and 

Perry, 1982; Zhang, Stewart, et al., 1987; Zhang et al., 1989) and it has both B- and 

T- cell epitopes (Su and Caldwell, 1992; Batteiger, 1996), which made this protein a 

very promising vaccine candidate. However, none of the studies, with either DNA-

vaccines (Pal et al., 1999), recombinant protein (Tuffrey et al., 1992; Shaw et al., 

2002), synthetic peptides corresponding to B- and T-cell epitopes (Su et al., 1995) or 

even native protein (Pal et al., 2005; Kari et al., 2009), resulted in a complete 

protection against one or more Chlamydia species. Complete protection might not be 

feasible. However, a significant reduction in the excretion of Chlamydia particles 

might already reduce the infection pressure, which might consequently result in a 

lower chance that the population get infected. Therefore, the use of additional 
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candidate vaccine antigens needs to be explored to increase the protection level. The 

Pmp family has been suggested as vaccine candidate, based on their surface 

localization (Longbottom et al., 1998a; Knudsen et al., 1999; Vandahl et al., 2002; 

Wehrl et al., 2004; Tan et al., 2010; Mölleken et al., 2010), immunogenicity 

(Caldwell and Kuo, 1977; Longbottom et al., 1998b; Knudsen et al., 1999; Bunk et 

al., 2008; Marques et al., 2010; Forsbach-Birk et al., 2013), function as adhesins 

(Mölleken et al., 2010; Becker and Hegemann, 2014) and because neutralizing anti-

Pmp antibodies were observed (Wehrl et al., 2004; Crane et al., 2006; Mölleken et al., 

2010). However, up to now only some Pmp proteins of C. pneumoniae and all Pmps 

of C. trachomatis are confirmed to be adhesins, but the Pmp family is subdivided in 

different subtypes and it is currently unknown whether all subtypes are involved in 

the same function, whether Pmps of the same subtype have similar or different 

functions across Chlamydia species, whether all Pmps are surface localized in all 

Chlamydiaceae,…  

Previously, researchers focused mainly on PmpD. This can be attributed to its high 

level of conservation (Gomes et al., 2006; Carrasco et al., 2011) and immunogenicity 

(Caldwell et al., 1975a,b; Caldwell and Kuo, 1977; Crane et al., 2006; Tan et al., 

2009) for C. trachomatis. However, although the Chlamydiaceae share a unique 

biphasic developmental cycle, different species manipulate different hosts and tissues 

which manifest in different symptoms, indicating diverse infection strategies. Hence, 

results of one species cannot always be extrapolated. Based on the variation observed 

in the Pmp family, we hypothesized at the beginning of this doctoral thesis that host 

and tissue preferences of different Chlamydia species might be mediated through the 

Pmp proteins, which was recently confirmed by Becker et al. (2014). Pre-incubation 

of host cells with C. pneumoniae Pmp proteins did protect against a subsequent C. 

pneumoniae infection but not against a subsequent C. trachomatis infection and vice 

versa, which indicate that Pmp proteins of different Chlamydia species use different 

receptors (Becker and Hegemann, 2014). Consequently, we suggested that if different 

Pmp proteins might be responsible for the adherence to different hosts and tissues, the 

most conserved Pmp protein might differ within and among Chlamydia species. 

Therefore, we determined the level of conservation of all Pmp proteins both within 

and across four Chlamydia species in chapter II. As expected, different Pmp proteins 

were most conserved in the different Chlamydia species. PmpD was the most 
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conserved Pmp protein only in C. trachomatis and it was not the most conserved Pmp 

protein across all analyzed Chlamydia species. This confirmed our expectation, Pmp 

analyses should not be restricted to PmpD analyses. In addition, it also supports our 

hypothesis that the most conserved Pmp protein might be important for adhesion, as 

PmpD showed the strongest adhesion capacity of all C. trachomatis Pmp proteins 

(Becker and Hegemann, 2014). PmpA was an exception, as it is the only Pmp protein 

that was the most conserved Pmp protein in more than one species, namely in both C. 

psittaci and C. pneumoniae. Our observation that PmpA is present in the C. psittaci 

outer membrane complex (chapter V) supports our hypothesis that the most conserved 

Pmp protein, PmpA in C. psittaci, might be involved in adhesion. However, PmpA of 

C. pneumoniae did not mediate adhesion in vitro (Mölleken et al., 2010), anti-PmpA 

antibodies did not react with any EB protein (Vandahl et al., 2002) and PmpA was not 

observed in the C. pneumoniae outer membrane complex (Knudsen et al., 1999). 

These results suggest that PmpA is involved in another, essential function than 

adhesion in C. pneumoniae. However, as transcript and protein levels of Pmp proteins 

in C. pneumoniae have only been tested at 72 hpi (Grimwood and Olinger, 2001) and 

not along the developmental cycle, we cannot suggest what the function of PmpA 

might be in C. pneumoniae. This further highlights the need to molecularly 

characterize all the Pmp proteins of each Chlamydia species along the developmental 

cycle, as the latter will give us insight in the function of the Pmp proteins in different 

Chlamydia species. This is also why we sequenced the genomes of all C. psittaci 

genotype reference strains (Van Lent et al., 2012).  

A first step to gain insight in the function of chlamydial genes is to determine the 

transcript profile along the developmental cycle, as timing can give a clue about the 

function. However, before the start of this work, reference genes for the normalization 

of gene expression data were only determined for C. trachomatis (Borges et al., 2010). 

Furthermore, Borges et al. (2010) induced stress by D-cycloserine treatment, while 

the transcript level of pmp genes in C. trachomatis during normal and stress 

conditions was previously compared by Carrasco et al. (2011), who induced stress by 

penicillin treatment. There is no general persistence model, as the type of stress (e.g. 

iron depletion, penicillin treatment and IFN-γ exposure) influences the transcript level 

of chlamydial genes differently (Mukhopadhyay et al., 2006; Goellner et al., 2006). It 

was previously suggested that pmpA, pmpD and pmpI, whose transcript levels are 
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unaffected during penicillin-induced stress, might play a critical role in the 

pathogenesis of C. trachomatis (Carrasco et al., 2011). As we wanted to compare the 

influence of stress on the transcript level of the pmp genes of C. psittaci with those of 

C. trachomatis, it was required that we used the same stressor. In chapter III we 

determined the stability of transcript levels of ten potential reference genes during 

both normal conditions and penicillin-induced stress. The 16S rRNA and opp2_A gene 

were the most stably expressed genes during normal and stress conditions, 

respectively, in C. trachomatis (Borges et al., 2010). However, the ideal number of 

reference genes that should be used for normalization was not determined, neither 

were the most stable reference genes during normal+stress conditions defined. The 

latter are needed in order to compare the expression level of a gene during normal and 

stress conditions. We had to use five reference genes (16S rRNA, map, radA, gidA and 

tyrS), of which 16S rRNA and tyrsS were the least and most stable reference gene, 

respectively, to compare the transcript levels of the pmp CDSs of C. psittaci at 

different time points (early, mid and late) during normal and penicillin-induced stress 

conditions. This highlights the need to use multiple, validated reference genes, instead 

of using a single, unvalidated reference gene such as 16S rRNA (Vandesompele et al., 

2002). For each different setting, which can be a different species or a different strain, 

time point, stressor,… new reference genes should be validated.  

We determined the transcript level of the pmp CDSs under both normal and 

penicillin-induced stress conditions in chapter IV. One remarkable finding was that 

pmpA was transcribed early both in C. psittaci and C. trachomatis, while in C. 

abortus pmpA is transcribed late. This is different from our expectations, as C. psittaci 

is phylogenetically closely related to C. abortus and PmpA is highly conserved in 

both species. This suggests that Pmp subtypes might have different functions in 

different Chlamydia species and that the function does not seem to be similar in more 

closely related species. The high expression levels of pmpA and pmpH early, and for 

pmpH late as well, in the normal developmental cycle attracted our attention.  

However, in contrast to C. trachomatis, all C. psittaci pmp genes were affected by 

penicilin, as the transcript levels were either up- or down-regulated. The pmpA and 

pmpH genes were down-regulated during the stress condition. However, in chapters II, 

IV and V we observed that PmpA is the most conserved Pmp protein in C. psittaci, 

and that PmpA and H labeling was abundant at the chlamydial envelope, the inclusion 
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membrane and in the COMC. Those results suggested that PmpA and PmpH are 

strong antigenic proteins in C. psittaci and that they are potential vaccine candidates. 

Therefore, we suggest that the genes whose transcript levels are unaffected during 

stress, might not be most important for the pathogenesis of a Chlamydia species, as 

the transcript level as such does not tell us something about the stability and turn-over 

of the transcript, the post-transcriptional and post-translational modifications that 

occur in the cell. Intuitively we would think that Pmp proteins whose production level 

is unaffected during stress might be most important for the pathogenesis. However, 

the protein level of C. trachomatis PmpD is affected by penicillin, while the protein is 

immunogenic (Caldwell and Kuo, 1977) and the partially neutralizing capacity of 

anti-PmpD antibodies (Crane et al., 2006) suggest an important function for this Pmp 

protein in C. trachomatis. In general, the result of our RT-qPCR experiment 

highlights peak transcript levels of most pmp genes in different Chlamydia species 

late in the developmental cycle, however, there are also species-specific differences, 

which might indicate both redundant and different functions throughout the 

developmental cycle of different Pmp subtypes. However, before we can make that 

conclusion, more thorough analyses on the production level of Pmp proteins should 

be performed, as currently only for C. trachomatis the production level of all Pmp 

proteins is determined along the developmental cycle (Carrasco et al., 2011), while 

for C. psittaci the production profile along the developmental cycle was only 

determined for a subset (PmpA, PmpB, PmpD and PmpH) of Pmp proteins. The C. 

abortus Pmp production profile was also only determined for a subset of Pmp proteins 

(PmpD and 4 PmpG’s), and the production level was only determined at late time 

points (36 hpi – 72 hpi) (Wheelhouse et al., 2012b). For C. pneumoniae the 

production of Pmp proteins was only analyzed at 72 hpi (Grimwood and Olinger, 

2001). The protein level determined by IF suggest that both C. trachomatis and C. 

psittaci use multiple post-transcriptional and post-translational regulation mechanisms, 

as the transcript and protein level are not always comparable (Carrasco et al., 2011). 

The protein performs the function in the cell, however, IF is less sensitive than RT-

qPCR and not all antibodies have the same affinity for their corresponding antigen 

and also the immunoaccessibility of different proteins can differ. Consequently, not 

all antibodies are equally suited for IF and IEM, and a negative staining result does 

not proof the absence of the protein as it might be due to the limitations of the 
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microscopy techniques. Therefore, both the transcript and protein results are 

important.  

To further unravel the function of the Pmp proteins, a thorough analyses of all Pmp 

proteins of different Chlamydia species is necessary. Ideally, polyclonal antibodies 

should be generated against multiple surface localized epitopes, as some epitopes 

might lead to low affinity antibodies and other epitopes might not be 

immunoaccessible. Thorough IEM analyses are needed to find out whether inclusion 

membrane labeling of Pmp proteins is unique for C. psittaci and to elucidate the 

possible function of the Pmp proteins at that location. Proteomic analysis of the 

inclusion membrane fraction of C. trachomatis revealed the presence of PmpD in this 

fraction. However, that analysis can not distinguish whether PmpD is associated with 

the inclusion membrane or if it is inserted in the inclusion membrane. We hypothesize 

that Pmp proteins are only present in the inclusion membrane of more virulent C. 

psittaci strains, as it was previously observed that virulent strains were often found 

devoid of inclusion membranes scattered throughout the cytoplasm (Vanrompay et al., 

1996). Therefore, cells infected with more and less virulent C. psittaci strains should 

be analyzed by IEM. In addition, thorough IEM analyses should be performed to 

determine whether all Pmps of different Chlamydia species can be found at both the 

inner and outer membrane of the cell envelope. Pre- and post-embedding IEM 

analyses should be compared, as the first one preserves the antigenicity and the last 

one is better for localization (Longbottom et al., 1998a). As IEM is not quantitative, 

LC/MS-MS analyses should be performed, in addition to IEM analyses, to 

quantitatively determine the protein composition of EBs, RBs, COMC and the 

sarkosyl soluble fractions. Saka et al. (2011) noticed that PmpA is absent in EBs, 

which is consistent with the results of Liu et al. (2010), who observed that PmpA is 

absent in the C. trachomatis outer membrane complex. These results clarify why 

PmpA antibodies are rare in C. trachomatis-infected patients, while PmpA is 

produced in nearly all C. trachomatis-infected inclusions (off frequency < 1%) (Tan 

et al., 2010). Therefore, we suggest that PmpA does not play a key role in the 

pathogenesis of C. trachomatis and that it is not a vaccine candidate for C. 

trachomatis, which is in contrast to our results for C. psittaci.  
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In conclusion, the main result of this thesis is that PmpA and PmpH are potential 

vaccine candidates for C. psittaci. However, the immunogenicity  of these proteins 

and the neutralizing capacity of the PmpA and PmpH specific antibodies should be 

tested. This can be done by immunoblotting with sera from C. psittaci infected 

specified pathogen free chickens and by pre-incubating C. psittaci EBs with the Pmp 

antibodies. If the proteins are immunodominant and the specific antibodies neutralize 

the infectivity by at least 50% in vitro, then the vaccine candidate should be tested in 

vivo. The in vivo experiment will reveal whether the vaccine candidates 

reduce/eliminate C. psittaci excretion, which should be linked to a strong B- and T-

cell response to the corresponding vaccine candidates. The latter should be tested by 

an antibody ELISA and T-cell proliferation tests, respectively. 
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Summary 

Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause a variety 

of diseases in humans and animals. This thesis focuses on Chlamydia psittaci, which 

is an avian respiratory pathogen that is able to cause zoonotic disease in human. 

Chlamydia psittaci is mainly spread via inhalation of infected aerosols of pharyngeal 

or nasal secretions or dried feces. Infections of C. psittaci lead to significant economic 

losses due to reduced feed conversion, carcass condemnation at slaughter, mortality, 

reduced egg production and/or the expense of antibiotic treatment (Vanrompay et al., 

1997). Avian psittacosis is often systemic. Symptoms vary from inapparent to severe, 

including respiratory problems, conjunctivitis, diarrhea and polyuria. The sequelae of 

a human psittacosis are highly variable, ranging from inapparent to flu-like symptoms 

or pneumonia (Harkinezhad et al., 2009). 

Vaccination is the best approach to control the spreading of chlamydial infections, 

both in animals and humans (Longbottom and Livingstone, 2006). Currently, eleven 

Chlamydia species have been identified (Sachse et al., 2015) and for none of them a 

vaccine is available. Members of the polymorphic membrane protein (Pmp) family 

have been suggested as vaccine candidates (Vasilevsky et al., 2016).  

Chapter I gives an overview of the biology of chlamydial infections, with a focus on 

the composition and events occuring at different membranes that play a key function 

during the chlamydial developmental cycle. 

Conserved proteins are suggested to be essential for the pathogenesis of an organism. 

Therefore, in chapter II, we determined the conservation of the Pmp proteins both 

within and across C. trachomatis, C. pneumoniae, C. abortus and C. psittaci. The first 

two are the main human Chlamydia pathogens and the last two are the most 

devastating animal Chlamydia species. The pmp coding sequences were identified in 

16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus and 16 C. psittaci genomes by a 

Hidden Markov Model. PmpD, PmpA, PmpH and PmpA were the most conserved 

Pmp protein in C. trachomatis, C. pneumoniae, C. abortus and C. psittaci, 

respectively. While PmpB was the most conserved Pmp protein across the four 

analyzed Chlamydia species. Previously, researchers focused mainly on PmpD, as it 
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is the most conserved and also an immunogenic Pmp protein in C. trachomatis. 

However, PmpD is not the most conserved in all analyzed Chlamydia species and also 

not across Chlamydia species, which highlights the need to analyze all Pmp proteins 

to accurately determine their utility as vaccine candidates. 

The transcript profile of the pmp coding sequences across the chlamydial 

developmental cycle can give us a first indication about their function. Validated 

reference genes are necessary to accurately normalize RT-qPCR data. Up to now, 

reference genes were only validated for C. trachomatis. Therefore, in chapter III, we 

validated reference genes for both normal and persistent C. psittaci Cal10 infections 

at early, mid and late time points during the developmental cycle. The reference genes 

for normalization of expression data differed depending on the culture conditions and 

interestingly also on the selected time points. We are the first to show that different 

reference genes should be used along the developmental cycle. Therefore, our results 

stress the importance to systematically validate reference genes for the specific 

culture conditions and examined time points of an experiment, instead of using a 

single, unvalidated reference gene throughout an experiment. 

In chapter IV, we used the reference genes validated in chapter III to normalize the 

transcript level of all 17 C. psittaci pmp coding sequences during both normal and 

persistent culture conditions, at early, mid and late time points during the 

developmental cycle. RT-qPCR profiles provide an indication of when the pmp genes 

are transcribed at the population level. However, different variants may be present in 

the population (e.g. due to SNPs). Therefore, we determined the Pmp production 

profile at the inclusion level and at the chlamydial cell level by immunofluorescence 

microscopy and immuno-electron microscopy, respectively. PmpA and PmpH 

emerged as important players in C. psittaci pathogenesis by virtue of their unique 

expression properties, both at the transcript and protein level and their apparent 

immunoaccessiblity and antigenicity suggest their potential in vaccine design. 

Proteins present in the chlamydial outer membrane complex (COMC) might be 

potential vaccine candidates. The composition of the COMC was previously only 

determined for C. trachomatis, C. abortus and C. pneumoniae. Therefore, in chapter 
V, we determined whether the four most conserved C. psittaci Pmp proteins (PmpA, 

PmpD, PmpB and PmpH, in order of decreasing conservation) localized in the C. 
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psittaci outer membrane complex. Two different outer membrane complex extraction 

methods for Gram-negative bacteria were compared. The method using the detergent 

Sarkosyl was best to isolate the C. psittaci outer membrane complex All four Pmp 

proteins localized in the C. psittaci outer membrane complex, however, PmpA was 

previously not determined to be present in the COMC of another Chlamydia species 

and therefore we hypothesize that PmpA is important for adhesion of C. psittaci. 

Further analyses are needed to confirm that. 

Finally, in chapter IV, we described our conclusions and perspectives for further 

research. The overall conclusion of this thesis is that PmpA and PmpH are potential 

vaccine candidates for C. psittaci, however, further in vitro and in vivo experiments 

are needed to confirm this hypothesis. 
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Samenvatting 

Chlamydiaceae zijn obligaat intracellulaire, Gram-negatieve bacteriën die 

verscheidene ziekten veroorzaken bij mens en dier. In deze thesis onderzochten we 

specifiek Chlamydia psittaci, een ziekteverwekker die voornamelijk 

ademhalingsinfecties veroorzaakt bij vogels, maar deze zoönotische bacterie kan ook 

infecties bij de mens veroorzaken. Infecties met C. psittaci worden voornamelijk 

veroorzaakt door het inademen van aërosols van faryngeale of nasale excreties of van 

uitwerpselen afkomstig van geïnfecteerde dieren. C. psittaci infecties leiden tot grote 

economische verliezen door een verlaagde voederconversie, de afkeuring van 

karkassen bij het slachten, een verhoogd sterftecijfer, een verlaagde eierproductie 

en/of de kosten van antibioticabehandelingen (Vanrompay et al., 1997). Psittacosis in 

vogels leidt vaak tot een systemische infectie waarbij de symptomen sterk variëren 

van ademhalingsproblemen, conjunctivitis, diarree tot polyurie. Humane psittacosis 

heeft een zeer divers klinisch beeld dat varieert van onbeduidend tot griep-achtige 

symptomen of  een longontsteking (Harkinezhad et al., 2009).  

Vaccinatie wordt aanzien als de beste manier om de verspreiding van Chlamydia 

infecties, zowel in dieren als in mensen, te voorkomen (Longbottom and Livingstone, 

2006). Momenteel zijn er elf Chlamydia soorten geïdentificeerd (Sachse et al., 2015), 

maar voor geen enkele soort is een vaccin beschikbaar. Eiwitten van de polymorfe 

membraan eiwitfamilie (Pmp) worden gesuggereerd als kandidaat vaccinantigenen 

(Vasilevsky et al., 2016).  

Hoofdstuk I van deze thesis geeft een overzicht van de biologie van Chlamydia 

infecties, met focus op de samenstelling van de verschillende bacteriële membranen 

en de geassocieerde kiem-gastheerinteracties die een sleutelfunctie vervullen in de 

ontwikkelingscyclus van Chlamydia.  

Er wordt gedacht dat geconserveerde eiwitten een essentiële rol vervullen in het 

ziekteproces van een pathogeen. Daarom werd in hoofdstuk II de conservering van 

de Pmp eiwitten zowel in als tussen vier Chlamydia soorten bepaald, namelijk C. 

trachomatis, C. pneumoniae, C. abortus en C. psittaci. C. trachomatis en C. 

pneumoniae zijn de belangrijkste humane pathogenen en C. abortus en C. psittaci zijn 



 

de meest virulente zoönotische Chlamydia soorten, die een dier als primaire gastheer 

hebben. De pmp coderende sequenties werden geïdentificeerd in 16 C. trachomatis, 6 

C. pneumoniae, 2 C. abortus en 16 C. psittaci genomen. PmpD, PmpA, PmpH en 

PmpA waren het sterkst geconserveerd in C. trachomatis, C. pneumoniae, C. abortus 

en C. psittaci, respectievelijk. PmpB daarentegen was het sterkst geconserveerd 

tussen de vier geanalyseerde Chlamydia soorten. Eerdere studies waren voornamelijk 

toegespitst op PmpD, omdat dit het meest geconserveerde Pmp eiwit is in C. 

trachomatis en dit een immunogeen eiwit is. PmpD is echter niet het meest 

geconserveerde Pmp eiwit binnen en tussen de andere geanalyseerde Chlamydia 

soorten. Dit resultaat toont aan dat het noodzakelijk is om alle Pmp eiwitten te 

bestuderen om te kunnen bepalen of de Pmp eiwitten al dan niet mogelijke kandidaat 

vaccinantigenen zijn. 

Het transcript profiel van de pmp coderende sequenties doorheen de chlamydiale 

ontwikkelingscyclus geeft een eerste indicatie wat betreft hun functionele rol. Het 

transcriptie profiel kan bepaald worden via een “reverse transcriptase quantitative 

polymerase chain reaction” (RT-qPCR), maar deze techniek vereist echter 

gevalideerde referentiegenen – genen die stabiel tot expressie gebracht worden tijdens 

de vermeningvuldigingscyclus van de bacterie - om accuraat RT-qPCR data te kunnen 

normaliseren. Voorafgaand aan deze studie waren enkel voor C. trachomatis 

gevalideerde referentiegenen voorhanden. Daarom werden in hoofdstuk III 

referentiegenen gevalideerd voor twee verschillende cultuurcondities, met name een 

standaard infectie en een persistente C. psittaci infectie op vroege, middenste en late 

tijdstippen van de chlamydiale ontwikkelingscyclus. De referentiegenen die nodig 

zijn om expressiedata te normaliseren verschillen per conditie en tijdstip. Dit is de 

eerste studie die aantoont dat verschillende referentiegenen gebruikt moeten worden 

op verschillende tijdstippen gedurende de vermenigvuldigingscyclus. Deze resultaten 

bevestigen daarom de noodzaak om steeds referentiegenen te valideren voor de 

specifieke cultuurcondities en de onderzochte tijdstippen, in plaats van één, niet-

gevalideerd gen te gebruiken als referentiegen doorheen de cyclus.  

De referentiegenen die gevalideerd werden in hoofdstuk III, werden vervolgens 

gebruikt in hoofdstuk IV om het transcriptniveau van alle 17 C. psittaci pmp 

coderende sequenties tijdens zowel standaard als persistente cultuurcondities op 
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vroege, middenste en late tijdstippen van de ontwikkelingscyclus te bepalen. De RT-

qPCR profielen geven een indicatie van wanneer de pmp genen afgeschreven worden 

op populatieniveau, maar er kunnen echter verschillende varianten voorkomen in de 

populatie (bijvoorbeeld ten gevolge van mutaties). Daarom werd ook het Pmp 

productieniveau bepaald, zowel op het niveau van de inclusie als op het niveau van 

individuele chlamydiale partikels door middel van immunofluorescentiemicroscopie 

en immuno-electronenmicroscopie, respectievelijk. PmpA en PmpH traden naar voor 

als mogelijke belangrijke spelers in het ziekteproces van C. psittaci. Door hun unieke 

expressie eigenschappen, zowel op het transcript als op het eiwitniveau en door hun 

duidelijke immunotoegankelijkheid en antigeniciteit zijn deze twee Pmp eiwitten 

mogelijke kandidaat vaccinantigenen. 

Eiwitten die onderdeel uitmaken van het chlamydiale buitenste membraan complex 

(COMC) zijn mogelijks kandidaat vaccinantigenen. De samenstelling van het COMC 

was voordien enkel bepaald voor C. trachomatis, C. abortus en C. pneumoniae. In 

hoofdstuk V werd nagegaan of de vier meest geconserveerde Pmp eiwitten (PmpA, 

PmpD, PmpB and PmpH, geordend volgens dalende conservering) aanwezig waren in 

het C. psittaci buitenste membraan complex. Eerst en vooral werden twee 

verschillende buitenste membraan extractiemethoden voor Gram-negatieve bacteriën 

vergeleken, waarbij de methode die gebruik maakt van het detergent Sarkosyl de 

beste bleek. Alle vier Pmp eiwitten bevonden zich in het C. psittaci buitenste 

membraan complex. PmpA werd nooit eerder gedetecteerd in het COMC van een 

andere Chlamydia soort en daarom suggereren wij dat PmpA belangrijk is voor de 

vasthechting van C. psittaci aan zijn gastheercel. Verder onderzoek is echter nodig 

om deze hypothese te bevestigen. 

Ten slotte brengt hoofdstuk VI de conclusies en toekomstperspectieven. De 

algemene conclusie van deze thesis is dat PmpA en PmpH potentiële kandidaat 

vaccinantigenen zijn voor C. psittaci, maar er zijn nog aanvullende in vitro en in vivo 

experimenten nodig om deze hypothese te bevestigen.  
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