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1.1 BACKGROUND 

 

1.1.1 RADIOCARBON DATING 

 

1.1.1.1 Introduction  

 

Radiocarbon dating provides a means for dating objects independently of stratigraphic 

or typological relationships and made possible a worldwide chronology, thus 

transforming archaeological investigation (Bar Yosef 2000; Taylor et al. 1994). 

Radiocarbon dating provides the most consistent technique for dating materials and 

events that occurred during the last 50,000 years on the surface of the Earth. Moreover, 

radiocarbon dating is also of significant use in other fields than archaeology, including 

environmental studies, ecology, geology, climatology, hydrology, meteorology, and 

oceanography (Bowman 1990; Lowe 1997). 

 

 

1.1.1.2 Definition 

 

Radiocarbon or 14C is the radioactive isotope of carbon. It is the basis for radiocarbon 

dating and is useful for dating materials that contain carbon younger than 50,000 years 

(Fallon 2011).  

Radiocarbon dating is a radiometric technique based on measuring the relative amount 

of radiocarbon in matter containing carbon as a component (Goffer 2007). 

Carbon has three naturally occurring isotopes, i.e. atoms of the same atomic number but 

different atomic weights namely carbon-12 (12C), carbon-13 (13C) and carbon-14 (14C). 

They do not occur equally. Carbon consists of ca. 98.9% of 12C, 1.11% of 13C and 1 part per 

trillion of 14C respectively. Unlike 12C and 13C, 14C is unstable and therefore radioactive 

(Bowman 1990). 
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Carbon-14 has a half-life of 5,730 years. The half-life is the time taken for an amount of a 

radioactive isotope to decay to half its original value. Because this decay is constant it 

can be used as ‘clock’ to measure elapsed time assuming the starting amount is known 

(Fallon 2011).  

 
 

1.1.1.3 Production and decay 

 

The really uncommon characteristic of 14C is that it is being formed continuously. This 

happens in the upper Earth’s atmosphere by the interaction of neutrons produced by 

cosmic rays with nitrogen-14 atoms. After formation, the 14C atoms rapidly react with 

oxygen to form 14CO2, which is chemically not distinguishable from 12CO2 and 13CO2. The 
14C production process can be written as follows: 

 

pCnN  14

6

14

7  
 

Whereby: 

n: neutron 

p: proton. 

 

The 14CO2 then joins the Earth’s carbon cycle (Figure 1.1). Plants incorporate 14CO2 during 

photosynthesis and organisms that eat plant material take up this 14C. Hence 14C gets 

incorporated in components of terrestrial and aquatic ecosystem (e.g. wood, peat, shell, 

bones corals, etc.). When a living organism dies, it does no longer exchange CO2 with the 

atmosphere (i.e. it incorporates no longer 14CO2). This starts the radioactive decay ‘clock’ 

since radiocarbon undergoes radioactive decay, the dead remains start to lose 14C by 

emitting ß- particles, which is the result of the conversion of a neutron to a proton, 

converting 14C back to its original 14N (Bowman 1990; Fallon 2011). 
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Figure 1.1 : Incorporation of 14C into components of terrestrial and aquatic 
ecosystems (A. Terfve © KIK-IRPA) 

 

The 14C decay reaction is as follows: 
 

  eNC 14

7

14

6  

 

Whereby: 
e-: electron 
 - : anti-neutrino 
 

This loss, which is regulated only by the radioactive decay law (see further) results in a 

continuous reduction in the total number of 14C atoms, as well as in the relative amount 

of 14C atoms to those of stable 12C in the dead tissues. Therefore, the age of dead remains, 

or of any carbon-containing matter, can be determined by measuring the relative 

amount of 14C they contain. (Goffer 2007). 

 

 

1.1.1.4 History of radiocarbon dating 

 

The radiocarbon dating method was developed around 1950 by W.F. Libby (1908-1980), 

who received the Nobel Prize in chemistry in 1960 for this important discovery (Libby 

1955; Berger 1983).  

His first publication showed the comparisons between known age samples and 

radiocarbon age (Libby et al. 1949; Libby 1952). 
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1.1.1.5 Radiocarbon age calculation  

 

The 14C level decreases at a rate that is determined by the law of radioactive decay 

(Bowman 1990; Van Strydonck 2012): 

 
teAA .

0 .                                                                                                                                

A

A
t 0ln.

1


  

with  

Whereby 

 = constant equal to the reciprocal of the meanlife 

t = the elapsed time or radiocarbon age; 

A0 = 14C activity at t = 0 or activity of a modern sample; 

A  = activity after time t or activity of the sample with unknown age; 

T1/2 = half-life. 

 

 

1.1.1.6 The Libby half-life time  

 

When the first date-lists were published by Arnold and Libby they used the revised half-

life of 5568±30 years instead of the previously used half-life of 5720±47 years (Arnold and 

Libby 1951) (Figure 1.2). This revised value would, in their opinion, resolve some of the 

problems that arose when new sets of samples were analysed. Unfortunately this result 

was wrong by 3% and it would take until 1962 before the exact half-life of 5730±40 years 

was determined (Godwin 1962). 

Meanwhile, the ‘BP’ (Before Present) term was introduced, using 1950 as the ‘zero year’ 

in the radiocarbon time scale. So 1000 BP would correspond to a calendar date of 1950-

1000 = 950 AD (anno domino). It is clear that by using the wrong half-life this results in a 

wrong age determination. But by 1962 the number of radiocarbon measurements 

produced and published were already so important that changing the half-life in future 

calculations would cause a tremendous chaos. So it was decided to maintain the wrong, 

so-called, Libby half-life in the calculations (Van Strydonck 2012).  

 

1

l
=

T1/2

ln2
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Figure 1.2 : Radioactive decay using the ‘Libby half-life’ of 5568±30 years. This means 
that after: 5568 years only 50% of the original radiocarbon remains, after 
11136 years only 25%, etc. After 10 half-lives (ca. 50,000 year) the remaining 
14C is so low that accurate measurements are almost impossible. 

 
 

1.1.1.7 Isotopic fractionation  

 

Although 12C, 13C and 14C are all carbon isotopes and chemically indistinguishable, there 

will be in any biological pathway a tendency for the lightest isotope 12C to be 

preferentially taken up. Similarly 13C will be taken up in preference to 14C. Growing 

plants and animals, which are still exchanging with the biosphere are therefore 

expected to have a lower 14C level than the atmosphere. This differential uptake is 

referred to as fractionation, and needs to be taken into account if useful radiocarbon 

results are to emerge. Fortunately, the fact that carbon has three isotopes of which two 

are stable enables a correction for fractionation to be applied.  

The isotopic fractionation between the isotopes 14C and 12C is twice that between the 

isotopes 13C and 12C (Craig 1954, Bowman 1990; Van Strydonck 2012), so that by 

measuring the latter the first can be calculated.. 
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The relative 13C content in a sample can be expr 13C values: 
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The 13C/12C ratio represents the carbon isotope ratio of a sample (sample) and the Vienna 

Pee Dee-Belemnite standard (std), respectively. Table 1.1 13C average 

values of different materials. 

 

Table 1.1 : 13C values for some natural materials (Bowman 1990; Van 
Strydonck 1992).   

 
 
Material 

 

13C (‰) 

Wood (C3 type plants like leaf trees) -25 to -30 
Plants from arid environments (C4 type plants) -13 to -10 
Charcoal -25 to -30 
Peat -30 
Bone collagen -19 (depending on the type of diet) 
Freshwater plants -16 
Marine plants -12 
Atmospheric CO2 -8 
Marine carbonate (shells)  0 
  

 

As for the 13C for 

radiocarbon dating must be corrected is -25‰. This is approximately the value for 

wood, although any other value could be chosen if it was universally used.  

The formula for the normalized (fractionation corrected) activity (An) becomes:  

 



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 
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1000

)25.(2
1.

13C
AA mn


                                                                                        

Where: 

An : normalized activity of the sample 

Am : measured activity of the sample 

 

This formula can be simplified to give an approximate age difference, which is the error 

in the radiocarbon measurement (t= tn-tm) when no correction for isotopic 

fractionation is applied would then be: 

t = ( 13C +25).16 years                                                                                                  
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This means an age correction of about 16 years for every 1‰ difference from -25‰. If 

the 13C is larger than -25‰, the corrected age is older than the measured age. In the 

early years of radiocarbon dating this correction was not applied, but nowadays it is 

done automatically by the dating laboratories ( Bowman 1990; Van Strydonck 2012).  

 

 

1.1.1.8 The conventional and the calibrated radiocarbon date   

 

Definition of a radiocarbon date 
 

The information held in a sample by radiocarbon is comparing its present radiocarbon 

concentration to the radiocarbon concentration in the atmosphere, resulting in a 

conventional radiocarbon date of the sample (van der Plicht 2012). 

Although almost all radiocarbon laboratories used the same formula to calculate the 

radiocarbon age, it took the radiocarbon community until 1977 before a formal 

definition of a radiocarbon date was given (Stuiver and Polach 1977). 

Because of the problems inherent in definition of the present day activity of the 

atmosphere, wood from 1890 AD was used as the modern radiocarbon standard, 

extrapolated for decay to 1950 AD. Later this was replaced by an artificial NBS (National 

Bureau of Standards) oxalic acid standard. By definition, a conventional radiocarbon 

date is a radiometric age wherein the radiocarbon content of a sample is compared to 

that of the NBS oxalic acid standard and normalized for isotopic fractionation (see 

above). The Libby half-life is used in the age calculation and the result is expressed in BP 

± 1 standard deviation () (Van Strydonck 2012). 

 
 

n

n

A

A
t 0ln.8033

                                                                                                              

Whereby 

t = radiocarbon age in BP; 

A0n = normalized 14C activity at t = 0 or normalized activity of a modern sample e.g. oxalic 

acid; 

An  = normalized activity after time t  or normalized activity of the sample with 

unknown age; 

8033 = T1/2/ln2 and  half-life T1/2 = 5568 years 
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Calibration of a Radiocarbon date  
 
Past variations in the natural, atmospheric 14C concentration (De Vries 1958) caused that 

radiocarbon years are different (and vary) from calendar years. This problem was solved 

by defining the radiocarbon timescale, which appears to be elastic, but this can not be 

taken literally. We now know that 5,000 14C years ago (BP) corresponds with roughly 

5,000 BC or 7,000 calendar years ago (van der Plicht 2012) (Figure 1.3). It must be clear 

that it was a historical mistake to call a radiocarbon measurement an “age”. Nowadays, 

BP stands for a radiocarbon measurement performed in agreement with the adopted 

definition (Van Strydonck 2012).  

As a consequence, radiocarbon dates need to be calibrated into calendar years. Only 

then the method can be considered ‘absolute’ (e.g. Van der Plicht and Mook 1989). This 

calibration by the means of a calibration curve has been named the “second radiocarbon 

revolution” by Renfrew (1999).  

This calibration (Figure 1.3) curve is drawn by comparison of radiocarbon dates with 

absolute chronologies obtained mainly from dendrochronology, varve counting and 

coral dating. The transformation or calibration of a radiocarbon date can be performed 

by means of computer programs. The most popular are OxCal (Bronk 1995; Bronk 2001; 

Bronk 2013), Calib (Stuiver and Reimer 1995; Reimer 2013). The obtained calendar age is 

expressed as calAD, calBC or calBP (= calendar years before 1950AD) (Figure 1.4) (Van 

Strydonck 2012).  

 

 

Figure 1.3 : Relationship between the radiocarbon time scale in BP and astronomical 
time scale in cal BP (calendar years before 1 950  AD). The curve depicted here 
is the IntCal09 curve. 
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Figure 1.4 : Calibration of a radiocarbon date by the OxCal program 
 1: Gaussian distribution representing a radiocarbon date of 1518±19BP. 
 2: The calibration curve [IntCal09]  
 3: The probability distribution after calibration indicates that within the 

range of 1 standard deviation (68.2% probability) the real age is delimited 
between 535-580 calAD and within the range of 2 standard deviations (95.4%) 
for 10.3% between 440-490 calAD and for 85.1% between 530-610 calAD. 

 

 

1.1.1.9 Measuring 14C 

 

There are 2 methods of measuring 14C: by conventional radiocarbon dating, which 

detects one of the 14C decay, or by Accelerator Mass Spectrometry (AMS) which directly 

analyses the number, or a proportion of the number of 14C atoms relative to 13C or 12C 

atoms in the sample. Although the principles of conventional and AMS dating are 

different, both produce 14C results that are interpretable in the same way (Bowman 

1990). 

 
Conventional radiocarbon dating 
 
The nucleus of a 14C atom is unstable and when it decays to nitrogen (14N) a ß- particle is 

emitted. A ß- particle is an electron resulting from the radioactive decay of a nucleus. 
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The ß- particle can be detected easily because it is electrically charged. The amount of ß- 

particles discharged in unit time by radiocarbon decay in a sample of known weight can 

be counted. 

 

The detection and counting of ß- particles can be done by: 

 Gas proportional counting (GPC)  is a technique where the carbon sample is first 

converted to gas (carbon dioxide or methane or acetylene) before measurement 

in gas proportional counters takes place. A proportional counter uses a 

combination of the mechanisms of a Geiger-Muller tube and an ionisation 

chamber. The principle is based on the distance that decay particles travel in 

matter related to their charge and mass and on the density of the matter that the 

decay particles are interacting with. (Van Strydonck 1992 ; Knoll 2010). 

 Liquid scintillation counting (LSC) is another radiocarbon dating technique that 

became  popular since the 1960s. In this method, the sample is in liquid form and 

a scintillator is added. This scintillator produces photons when it interacts with a 

ß- particle. A vial with a sample is passed between two photomultipliers, and only 

when both devices register photons that a count is made (Bowman 1990). 

The conventional radiocarbon decay counting technique generally provides reliable 

results, but it has some limitations: a relatively large sample (several grams but often 

more) is required to obtain reliable data, and a long (usually several hours) period for e 

counting the ß- radiation emitted by the disintegrating radiocarbon. 

 
 
AMS dating 

 

A more recently developed technique, known as the Accelerator Mass Spectrometry 

(AMS) radiocarbon dating technique, is based on counting the relative amount of 

radiocarbon to stable carbon isotopes (12C and 13C) of a sample, in a mass spectrometer. 

The principle of AMS is based on mass spectrometry: when a magnetich field is applied 

to a moving charged particle, the particle is deflected from the straight path along 

which it was travelling. If charged particles of different mass, but the same velocity, are 

subject to the same magnetic field, the heavier particles are deflected the least and 

detectors at different angles of deflection then receive particles of different mass. 

However, with AMS charged particles are subjected to large voltage differences so that 

they travel at very high speeds. This enables various devices to be used to discriminate 

against the much more abundant elements, such as 14N, and molecules, such as 13CH, 

which would otherwise swamp the 14C signal (Bowman 1990). 
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The AMS technique requires only very small samples (several milligrams) and the time 

necessary to measure the amount of 14C in each sample is much less than that required 

for counting disintegration events in the conventional technique (Goffer 2007). 

The importance of using small samples for AMS makes it possible to radiocarbon date 

valuable objects e.g. art, textiles or parchments etc. (Goffer 2007). 

AMS also enables compound-specific dating such as single amino acids of bone collagen 

that are isolated by High Performance Liquid Chromatgraphy and then 14C dated 

(Gillespie and Hedges 1983; Gillespie et al. 1984; Stafford et al.1987; Stafford et al.1988; 

Van Klinken and Mook 1990; Stafford et al.1991; Van Klinken 1991; Tripp et al. 2006).  

High precision AMS measurements are performed on 0.5 - 1 mg Carbon. However, AMS 

measurements can be achieved at a g level but with a lower precision (Santos et al. 

2007; Delqué-Kolic et al. 2013).  

1.1.2 SAMPLE CONTAMINATION, QUALITY CONTROL AND PRE-

TREATMENT 

 

1.1.2.1 Sample contamination 

 

It is fundamental in radiocarbon dating that no process other than radioactive decay has 

altered the 14C level in a sample since its removal from the biosphere. Any addition of 

carbon-containing material is contamination, and it must be removed before the dating 

process begins otherwise a false result will be obtained (Bowman 1990). 

Protein-containing materials from archaeological and geological sites are susceptible to 

chemical and environmental processes, which can result in degradation (diagenetic 

alteration or breakdown) and introduction of exogenous carbon-containing compounds 

(contamination). In particular, humic substances (HSs) from the soil may interact with 

the material of interest and cause major problems for 14C dating (Stafford et al. 1988; 

Van Klinken and Hedges 1995; Van Klinken 1999; Van Strydonck et al. 2005). 

Bones are one of the most preferable materials for paleodietary and archaeological 

chronology studies because they are often directly related to the prehistoric event. The 

collagen fraction of bones is usually used for stable isotope and 14C analyses.  

Wool, hair and silk are gaining more attention as suitable radiocarbon dating material 

due to their short lifespan (Taylor et al. 1995; Geyh 2001; Van Strydonck et al. 2004). 

For these reasons, contaminated wool, hair, silk and bone collagen will be studied in this 

PhD as a means to detect and remove exogenous carbon contamination. 
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1.1.2.2 Quality control 

 

Quality control of sample material (e.g. collagen) is receiving considerable attention in 

order to obtain more reliable 14C dates (DeNiro 1985; Van Klinken 1999; Van Strydonck 

et al. 2005). This study focus on the quality control of protein-containing material. 

 

Bone Collagen 

 

Extraction of bone collagen for 14C dating is labour-intensive and time-consuming and 

sometimes results in very low protein recovery used for 14C dating. In addition, attempts 

to sample bones for direct dating can result in needless destruction of archaeologically 

significant material where the collagen does not survive (Hublin et al. 2008). 

Therefore, some authors proposed pre-screening techniques to determine the protein 

preservation before extracting the collagen in the laboratory: 

 Correlation between microstructural characteristics, especially porosity, and the 

protein content have been demonstrated by Nielsen-Marsh and Hedges (1999, 

2000), Turner et al. (2002), Tripp et al. (2010); 

 Following Brock et al. (2010, 2012) measuring the %N of the whole bone might be 

useful to predict if the bone would yield sufficient collagen for 14C dating.  

 

The preservation state of the bone collagen can be evaluated by different quality 

indicators. The C:N ratio reflects contamination and/or degradation (De Niro 1985; 

Schoeninger et al. 1989; Ambrose 1990). Ambrose (1993) recommends as additional 

criteria the determination of the weight percentage of extractable collagen (collagen %) 

from whole bone. A minimal weight percentage of 1% collagen should indicate good 

preservation state, while van Klinken (1999) sets the threshold at 0.5%. The percentage 

of carbon (%C) and nitrogen (%N) also provide information about the preservation state 

of the collagen extract. According to Ambrose (1990), well-preserved archaeological 

collagen should have carbon and nitrogen contents greater than 13.1 and 4.8 wt % 

respectively. Higher values than those found in fresh collagen (43%C and 16%N, 

respectively) suggest contamination (van Klinken 1999). 

Other authors also recommend amino acid analysis to judge the collagen quality 

(Stafford et al. 1991, Bocherens et al. 1994). A more detailed option, however less 

studied, is the amino acid racemization, in particular aspartic acid (D/L-asp) has often 

been investigated in this context (e.g. Bada et al. 1999; El Mansouri et al. 1996; Poinar et 

al. 1996; Tuross 2002). After death and during the inhumation period, the D-form of this 

amino acid emerges from the L-form. That racemization is a function of collagen 

degradation rather than of time and temperature has only been demonstrated by Collins 

et al. (1999). 
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The improvement of bone collagen quality via contaminant removal by applying new 

techniques can, hence, be verified by analysing the parameters mentioned above.  

 

 

Hair, wool and silk 

 

Hair and wool consist mainly of the protein keratin which is a -helix structure with 

cystine, leucine, glutamic acid, arginine and serine as the most abundant amino acids 

(Sibley and Jakes 1984). The most significant of the amino acids is cystine because it is 

the source of primary valence inter-and intramolecular disulphide crosslinks. Other 

intermolecular forces which associate one polymer chain to another are hydrogen 

bonds and ion-ion salts (Morton and Hearle 1975). 

Silk protein (fibroin) is a polypeptide polymer of 15 amino acids, the largest percentage 

in the fibre consists of the amino acids glycine, alanine, and serine. These substances are 

small in size, with no large side groups.  Therefore, the polypeptide chains can pack 

together closely as -sheets (Sibley and Jakes 1984). 

For archaeological human and animal analyses, also called “wool and hair isotopic 

analysis”, the C:N ratio can be used to indicate if hair keratin is contaminated or not. 

Analyses of modern human hair defines a C:N range for uncontaminated archaeological 

hair between 2.9 and 3.8 (O’Connell and Hedges 1999a; O’Connell and Hedges 1999b; 

O’Connell et al. 2001). 

Taylor et al. (1995) conducted 14C, C:N and amino acid composition analyses of 

archaeological hair. The Glycine/Glutamine and Glycine/Aspartic acid ratios indicate 

well-preserved chemical structures of the hair. Comparing C:N ratios of archaeological 

samples in this study with modern samples (O’Connell and Hedges 1999a; O’Connell and 

Hedges 1999b; O’Connell et al. 2001)  and due to reasonable 14C dates on archaeological 

samples a C:N range of 2.9 - 3.8 can be defined as a reliability range for uncontaminated 

hair. 

No quality indicators were available in the literature for archaeological dyed wool and 

silk and one aim of this PhD is to develop a quality control tool-kit to define the sample 

quality of archaeological dyed wool and silk because mordanting and dyeing may alter 

the %C, %N and C:N ratio. 
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1.1.2.3 Pre-treatment 

 

Bone collagen 

 

Collagen is composed of a triple helix, which generally consists of two identical chains 

(α1) and an additional chain that differs slightly in its chemical composition (α2). The 

amino acid composition of collagen is atypical for proteins, particularly with respect to 

its high hydroxyproline content. The most common motifs in the amino acid sequence 

of collagen are glycine-proline-X and glycine-X-hydroxyproline, where X is any amino 

acid other than glycine, proline or hydroxyproline (Szpak 2011).  

The collagen fraction from a bone is obtained by dissolving the demineralized bone in 

hot acidic water (Longin 1971). However, this treatment will also lead to the presence of 

other hot water soluble components in the collagen fraction such as HSs (Van Klinken 

and Mook 1990). Adding an alkaline step helps to remove basic soluble organics such as 

humic acids, but not completely (Van Klinken and Hedges 1995; Arslanov et al. 1993).  

Ultrafiltration of bone collagen, dissolved as gelatin (Molecular weight (MW) ~100 000 

Da), has received considerable attention as a means to obtain more reliable 14C dates and 

stable isotope signatures (Brown et al. 1998; Bronk et al. 2004; Higham et al. 2006; 

Mellars 2006). This should be an effective method for the removal of low molecular 

weight contaminants from bone collagen but it does not remove high molecular weight 

contaminants, such as cross-linked humic–collagen complexes (Brock et al. 2007). 

Moreover, comparative dating studies have raised the question of whether this cleaning 

step itself may introduce contamination with carbon from the filters used (Bronk et al. 

2004; Brock et al. 2007; Hüls et al. 2007; Hüls et al. 2009). 

Separation, isolation and 14C dating of individual amino acids hydrolysed from bone 

collagen by preparative high performance liquid chromatography (HPLC) is a good 

strategy for dealing with contamination in proteins but it is a time-consuming and 

labour-intensive technique (Gillespie and Hedges 1983; Gillespie et al. 1984; Stafford et 

al. 1987; Stafford et al. 1988; Van Klinken and Mook 1990; Stafford et al. 1991; Van 

Klinken 1991; Tripp et al. 2006; McCullagh et al. 2010; Marom et al. 2012; Marom et al. 

2013). Most previous studies focused on Hydroxyproline because it constitutes about 

10% of bone collagen and it is not present in significant quantities elsewhere in nature. 

However, some of these methods introduced extraneous carbon into the 14C-dated 

fractions since column bleeding is a common phenomenon in chromatography. 

Therefore, sample blanks should be measured. McCullagh et al. (2010) and Marom et al. 

(2012, 2013) showed the potential of individual amino acid dating.   

 

 

 

 

http://en.wikipedia.org/wiki/Hydroxyproline
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Proline
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Hair, wool and silk 

 

Wool, silk and hair are pre-treated with solvents followed by acid-base-acid treatment 

for stable isotopes and 14C analyses, but this pre-treatment may not be adequate for 

removing all contaminants (Kim et al. 2008). 
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1.2 RESEARCH OBJECTIVES AND THESIS OUTLINE 

 
14C dating of contaminated protein-containing material e.g. bone collagen, hair, wool 

and silk usually results in unreliable results if conventional pre-treatment methods are 

used.  

The objective of this thesis was to develop a method to detect 14C contamination in 

protein-containing archaeological material and develop a method to improve sample 

quality of contaminated samples to obtain more accurate 14C dates. Quality control is 

gaining more attention in the 14C community; hence a quality control system was 

introduced. 

 

This thesis has the following specific objectives: 

(1) To develop a protocol to detect 14C contamination in protein-containing material 

for archaeological use, e.g. bone collagen, wool, hair and silk; 

(2) To develop a new nanofiltration method to improve the sample quality of 

contaminated samples, i.e. remove contaminants, and to obtain more accurate 
14C dates; 

(3) To develop a quality control tool-kit to check for sample quality improvement; 

(4) Application of the new method on protein-containing samples from a well-

documented archaeological site. 

 

Chapter 1 aims providing background information for radiocarbon dating, sample 

contamination, sample quality control and sample pre-treatment protocols for bone 

collagen, wool, hair and silk of archaeological origin.  

 

Chapter 2 describes a non-destructive fluorescence spectroscopy method developed to 

monitor the presence of humic substances, one of the major 14C contaminants in wool, 

hair, silk and collagen. 

 

Chapter 3 focuses on the development of a new nanofiltration method in order to 

improve bone collagen quality for 14C AMS dating. Two nanofiltration types were tested: 

dead-end and cross-flow filtration.   

 

In Chapter 4 the cross-flow nanofiltration technique was applied in combination with a 

quality control procedure on real archaeological samples. Quality control parameters 

for protein-containing material were analysed before and after cross-flow nanofiltration 

of hydrolysed protein-containing archaeological samples.. 
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Chapter 5 demonstrates the applicability of the cross-flow nanofiltration method by 

means of a case study of two skeletons and their gars of two bishops, with known age of 

death. 

 

Finally, the main findings and conclusions from this study and future research are 

summarized in Chapter 6. 
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destructive fluorescence spectroscopy: quality 

control for 14C dating of wool and silk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
This chapter has been edited from: 
 
Boudin M, Boeckx P, Vandenabeele P, Mitschke S, Van Strydonck M. 2011. Monitoring 

the presence of humic substances in wool and silk by the use of non-destructive 

fluorescence spectroscopy: quality control for 14C dating of wool and silk. Radiocarbon 

53(3): 429-442. 
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2.1 ABSTRACT 

Radiocarbon dating of degraded wool and silk still provides 14C results of questionable 

reliability. In most cases, degraded wool/silk contains humic substances (HSs). Thus, a 

non-destructive fluorescence spectroscopy method, using a fiber-optic probe, was 

developed to monitor the presence of HSs in degraded wool and silk. 

This method can provide information about the presence of HSs before and after pre-

treatment and about the 14C age reliability.  

Modern silk and wool were contaminated with HSs and alkali treated during different 

durations. Fluorescence spectroscopy was used to monitor the successs of the alkali-

treatment of HSs removal indicating that a NaOH-wash is not sufficient in full removal 

of HSs.  

As a result we suggest to consider wool/silk samples with an assumed HSs 

contamination with care for 14C dating. C 

 

2.2 INTRODUCTION 

 

Wool and silk are proteinic fibers. Wool is an animal fiber that consists mainly of 

keratin. Raw silk is obtained from the cocoons of the larvae of the mulberry silkworm 

Bombyx mori and consists of the proteins fibroin and sericin. In order to make silk fabric 

soft and glassy, a degumming process is necessary to remove sericin, leaving only 

fibroin in silk to manufacture textiles (Sashina et al. 2006). 

 

Wool and silk are gaining more attention as suitable 14C dating material due to their 

short lifespan, potentially presenting the true age of an object is made of these materials 

(Van Strydonck et al. 2004). However, wool and silk are susceptible to rapid 

decomposition and are rarely excavated in archaeological sites. Archaeological wool and 

silk fibers can be degraded by microorganisms (Janaway 1985; Gillard et al. 1994). 

Moreover; humidity and heat accelerate the degradation of these textiles (Sibley and 

Jakes 1984). Only if the growth of microorganism is hindered in a special environment 

can the textile survive (Sibley and Jakes 1984; Cronyn 2001). Such special environments 

include peat bogs, the lake bottoms, deserts, the salt mines, and permafrost soils. In 

such cases, the activity of the microorganisms is slowed down due to anaerobic 
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conditions, the absence of available water, and the presence of metals such as copper 

(Kars and Smit 2003).  

 

Degraded wool and silk may contain contaminants such as mold, fungus, dirt, humic 

substances (HSs), or other carbon-containing materials (Kim et al. 2008), which may 

affect the 14C date. Conventional pre-treatment methods (solvent treatment followed by 

acid-base-acid treatment) for 14C analyses may not be adequate for removing all 

contaminants (Kim et al. 2008). HS contamination of wool or silk is a major problem in 

obtaining reliable 14C dates. Thus, HSs can be classified according to the ease in which 

they are soluble in alkaline or acidic solutions (Head 1987): 

1. humic acid is the fraction extracted by alkaline solution that becomes insoluble 

after acidification; 

2. fulvic acids are soluble both in acid and alkaline solutions; 

3. the residue insoluble in acid and alkaline solutions has been termed “humin.” 

 

Quality control of sample material (e.g. charcoal, collagen) is receiving considerable 

attention in order to obtain more reliable 14C dates  (DeNiro 1985; Alon et al. 2002; Van 

Strydonck et al. 2005). A fluorescence spectroscopy method is developed in this study 

for screening textiles for humic substance presence in order to obtain reliable 14C dates. 

 

Fluorescence spectroscopy should be ideal for independently detecting HSs present in 

archaeological wool and silk samples. Fluorescence is the result of a three-stage process 

(excitation, excited-state lifetime, emission) that occurs in certain molecules, generally 

polyaromatic hydrocarbons or heterocycles, called fluorophores (Lakowicz 1999). HSs 

are thought to be complex  aromatic macromolecules with amino acids, amino sugars, 

peptides, and aliphatic compounds involved in linkages between the aromatic groups 

(Stevenson 1982). Thus, HSs have fluorescent properties. Fluorescence spectroscopy is a 

common technique in soil science by analyzing HSs in solution (Bachelier 1980-1981; 

Simpson et al.1997). The technique is applied on solid material (e.g. wool or silk 

fabric/fiber) using a fiber-optic probe to detect HSs.  

 

This technique has the advantage over solution studies in avoiding the formation of any 

new fluorophores and/or the destruction of others during protein hydrolysis or 

solubilization. For example, some of the fluorophores easily detected in solid-state 

studies on wool keratin or silk fibroin are barely detectable after protein hydrolysis or 

solubilization (Millington et al. 2002). These chemical treatments are necessary in order 

to measure the fluorescence of a solution. Fluorescence spectroscopy is favoured over 

other techniques because it is non-destructive technique. The fiber-optic probe takes 

light to the sample via an optical light guide (excitation). The sample absorbs this light 
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and emits light back via an optical light guide to the spectrofluorometer (fluorescence) 

(Figure2.1). 

 

 
 

Figure 2.1 : a) Varian Cary Eclipse Fluorescence Spectrophotometer with a fiber-optic 
probe and b) Fiber-optic probe on textile sample. 

 

In this study, a qualitative/semiquantitative fluorescence spectroscopy technique is 

developed that distinguishes the (naturally dyed) textile or fiber from the HSs by 

choosing the appropriate excitation and emission wavelengths (Bachelier 1980-1981; 

Simpson et al.1997; Clarke 2002).  

 

2.3 MATERIALS AND METHODS 

 

2.3.1 Sample selection 

 

 

Modern, undyed silk fabric was acquired from a textile shop (La Fourmi, Brussels, 

Belgium). The modern wool fibers were delivered by a Belgian farmer (Galle, Emelgem). 

The undyed silk fabric and wool were analyzed using spectrofluorescence spectroscopy 

as a means to obtain reference spectra, free of humic substances (HSs). 
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Commercially available HSs were used: humic acid depur, called “HA Roth” in this paper 

(Carl Roth, Karlsruhe, Germany), humic acid practical grade, called “HA MP 

Biomedicals” (MP biomedicals, Brussels, Belgium) and humic acid sodium salt, “HA 

Sigma” (Sigma-Aldrich, Bornem, Belgium) . These commercially prepared HSs were 

analyzed using fluorescence spectroscopy in order to determine similarities and/or 

differences in their spectra. 

 

Archaeological samples, chosen to represent various ages and preservation 

environments, were obtained from sites listed in Table 2.1, and analyzed with 

fluorescence spectrometry before 14C pre-treatment and 14C dating. All the 

archaeological samples were naturally dyed fabrics. Some of these samples were 

examined with fluorescence spectroscopy before and after 14C pre-treatment in order to 

determine the extent to which HSs were removed by the pre-treatment. 

 

 

Table 2.1 : Archaeological samples, chosen to represent various ages and preservation 
environments, were obtained from different sites. 
 

Sample name Archaeological 
site 

Country Material 
type 

Preservation 
environment 

Presumed 
historical date 

Mainz 1 
 

Mainz Germany Wool Waterlogged 
soil  

5 BC (Roman) 

Mainz 2 
 

Mainz Germany Wool Waterlogged 
soil 

5 BC (Roman) 

Mainz 3 
 

Mainz Germany Wool Waterlogged 
soil 

5 BC (Roman) 

Mainz 4 
 

Mainz Germany Wool Waterlogged 
soil 

5 BC (Roman) 

Beerlegem Beerlegem Belgium Wool Presence of 
metal 

AD 600-650 
(Merovingian) 

Ieper Ieper Belgium Wool Waterlogged 
soil 

13th century 

OS2562 Oudenburg Belgium Wool well Late Roman 
OS24909 Oudenburg Belgium Wool well Late Roman 
1924-01 Unknown Afghanistan Wool sand AD 1000-1200 
Bourelet Unknown Egypt Wool sand AD 200-450 

(Coptic) 
1923-02 Unknown Egypt Silk sand AD 700-1000 

(Coptic) 
Hallstat 79429 Hallstat Austria Wool Salt mine 800-400  BC 
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2.3.2 Sample preparation 

 

Modern silk fabric and modern wool fibers were washed separately: 

1. With a 1%Neutral, non-ionic soap solution (ETS-René Dejonghe, Ghent, Belgium) 

with a maximum temperature of 80°C for the wool and 60°C for the silk to remove 

chemical products applied on the wool or silk by the manufacturer to make the textile 

shiny;  

    2. With Milli-Q water and;  

 3. Finally dried at 60°C. 

This washing procedure has no influence on the amino acid composition of the silk and 

wool. This was internally tested and confirmed by the textile laboratory in the Royal 

Institute of Cultural Heritage (Brussels, Belgium). 

 

About 650 mg of each HS was dissolved in 125 ml Milli-Q (Millipore) water. The pH of the 

HS solution was ca. 5. To this solution, we added ca. 450 mg of silk and slowly agitated 

the mixture at room temperature for different durations (3 hr, 64 hr and 188 hr). About 

500 mg of wool was added to the HS solution and the mixture was slowly agitated for 

120 hr or 200 hr at 80°C. Wool has greater stability in acid environment due to its 

disulphide bonds. Therefore, a temperature of 80°C was used to accelerate wool 

degradation.  

 
The wool or silk was then removed from the HS solution, rinsed several times with Milli-

Q water and finally washed with MilliQ-water for 15 min in an ultrasonic bath before 

drying at 40°C. Samples names consist of material type (wool or silk), brand of HS and 

agitation duration (e.g. Silk HA Roth 3 hr). 

 

The wool and silk contaminated with HS were analyzed with fluorescence spectroscopy 

in order to register reference spectra. The HS-contaminated wool (fibers) and silk 

(fabric and yarn) were pre-treated with 1%NaOH for different durations to remove the 

HSs, and finally analyzed with spectrofluorescence to determine the degree of HS 

removal. 

 

2.3.3  Fluorescence spectroscopy 

 

Analyses were made in natural atmosphere at room temperature using a Varian Cary 

Eclipse Fluorescence Spectrophotometer. Non-destructive analysis of the textile fibers 
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was carried out using a fiber-optic probe. Spectra were acquired in the excitation 

wavelength range of 340-475 or 400-475 nanometer (nm) and 509 nm as the emission 

wavelength. The following wavelengths were chosen: the main excitation bands of 

humic acids at 465, 480 and 490 nm (Simpson et al.1996); the principal emission bands of 

humic acids in the wavelength range of 509-515 nm (Bachelier 1980-1981). 

 

No interfering fluorescence, originated from the natural organic dyes, are observed at 

these wavelengths (Clarke 2002). Synthetic organic dyes were introduced in the mid-19th 

century, with mauveïne being the first synthetic organic dye produced in 1856 (Holme 

2006; Herbst et al. 1997). Therefore, all archaeological dyed textiles samples 

manufactured before 1856 can be analyzed with our method. 

 

Excitation was produced by a 15W Xenon pulse lamp. The excitation and emission band 

width were set at 10 nm. Scan control (medium) consisted of 600 nm min-1, average time 

of 0.1 s, and data interval of 1 nm. The software automatically chose the excitation and 

emission filter during analysis. Fluorescence intensity was measured in arbitrary units 

(au). The fluorescence spectrophotometer also has room light immunity that excludes 

fluorescence contributed by ambient light. 

 

2.3.4  14C dating 

 

Archaeological wool and silk samples were pre-treated as follows: 

1. Extraction in an ultrasonic bath for 15 min with hexane (twice); 

2. Rinsing with acetone; 

3. Extraction in an ultrasonic bath for 15 min with acetone (twice); 

4. Rinsing with acetone; 

5. Extraction in an ultrasonic bath for 15 min with ethanol (twice); 

6. Rinsing with Milli-Q water; 

7. Extraction in an ultrasonic bath for 15 min with Milli-Q water; 

8. Rinsing with Milli-Q water; 

9. 15 min in cold 1%NaOH; 

10. Rinsing with Milli-Q water; 

11. 15 min in cold 1% HCl; 

12. Rinsing with Milli-Q water; 

13. Drying of sample at 40°C. 

All chemical products were purchased from Merck (Belgium). 
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The solvent pre-treatment started with the most apolar solvent (hexane) and ended 

with the most polar solvent (ethanol). Rinsing with acetone is necessary after hexane 

and acetone extraction and with Milli-Q water after ethanol extraction in order to 

remove organic solvent remains. The duration of the NaOH step depends on the quality 

of the sample. This step was stopped when the sample started to fall apart or eventually 

started dissolving. The wool samples from Ieper and Beerlegem dissolved completely in 

the NaOH-step due their degraded state. They could only be pre-treated with the 

solvents. 

 

CO2 was obtained by sample combustion in the presence of CuO and Ag. Graphitisation 

was done with H2 over a Fe catalyst and between 1 and 2 mg graphite was prepared. 

Targets were prepared at the Royal Institute for Cultural Heritage in Brussels (Belgium) 

(Van Strydonck et al. 1990). 14C dates were measured on the AMS at the Leibniz Labor für 

Altersbestimmung und Isotopenforschung in Kiel, Germany (Nadeau et al. 1998). 14C  

calibrations were performed using OxCal 3 (Bronk Ramsey 1995, 2001) and IntCal09 

calibration curve date (Reimer et al. 2009). 

 

 

2.4 RESULTS AND DISCUSSION 

 

2.4.1 Fluorescence spectroscopy 

 
The uncontaminated wool in this study shows two excitation band centres (Figure 2.2): 

 at 380 nm. This fluorescence has previously been assigned to N-formyl 

kynurenine which is a known oxidation product of the amino acid tryptophan 

(Smith 1995). 

 at 430nm. Previous work has shown that oxidised wool contains -carboline 

fluorophores derived from tryptophan in exactly this position (Smith et al. 1994) 
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Figure 2.2 : Excitation spectrum between 340 and 475 nm of uncontaminated 
wool fibers. Excitation band centers are observed at 380 and 430 nm, 
indicated by an arrow. 

 

 

Figure 2.3 : Excitation spectrum between 340 and 475 nm of uncontaminated silk fabric. 
Excitation band centers are observed at 378 and 440 nm, indicated by an 
arrow. 

 

The uncontaminated silk fabric has excitation band centres at 378 and 440 nm (Figure 

2.3). These positions were observed in silk fabric exposed to UV light. Untreated silk has 

very little visible fluorescence, but after exposure to UV light a new feature develops 

which is very similar in position and appearance to the fluorescence in reduced wool. It 

is likely that both features are due to protein oxidation products that are nonreducible 

(Millington and Kirschenbaum 2002). All analyzed HSs show a clear fluorescence 

increase between excitation wavelength 430 and 475 nm (Figure 2.4). 
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Figure 2.4 : Excitation spectrum between 400 and 475 nm of the humic substance HA 
Roth, HA Sigma, and HA MP Biomedicals. 

 

Further analyses started at an excitation wavelength of 400 nm instead of 340nm in 

order to detect mainly the HS and minimize the fluorescence interference of the textile 

(Table 2.2), and to make the analysis faster and more straightforward. 

 

Table 2.2 :  Excitation and emission band centres (nm) of different materials (Bachelier 
1980-1981, Millington et al. 2002, Simpson et al. 1996) 

 
 

Excitation band center (nm) Emission band center (nm) 

Wool 375 450 
Oxidised wool 430 500 
Silk after UV light 370 440 
Humic acids 465, 480 and 490 509-515 
 

If we compare the spectra of the HS-contaminated silk samples (Silk HA Roth 64 hr 

(Figure 2.5a) and silk HA Roth 188 hr (Figure 2.5b) with those of HS (Figure 2.4) and 

uncontaminated silk (Figure 2.3), we observe a linear increase in fluorescence between 

460 and 475 nm in both contaminated samples. This is not the case for uncontaminated 

silk (Figure 2.3) but it is for HA Roth (Figure 2.4). This fluorescence can be explained by 
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the presence of HSs in the fiber (Table 2.2). Silk HA Roth 64hr (Figure 2.5a) was still well-

preserved and a little contaminated with HS, indicated by the light brown coloured silk 

fabric. The uncontaminated silk fabric was white. Silk HA Roth 188 hr (Figure 2.5b) 

started falling apart, indicating degradation, and probably consequently fluorophore 

degradati of the silk. The sik fabric was dark brown, indicating a large HS contamination 

The observed fluorescence between 440 and 475 nm can be assigned to the fluorophores 

of the silk and of the HS. Depending on the preservation state of the silk fabric, either 

the silk fluorophores or the HS fluorophores are mainly detected in a particular 

wavelength range. The fluorescence of Silk HA Roth 64hr (Figure 2.5a) can be mainly 

assigned to the fluorophores of the silk between 440 and 460 nm and to HS fluorophores 

between 460 and 475 nm. The fluorescence of Silk HA Roth 188 hr (Figure 2.5b) is mainly 

coming from the fluorophores of the HS between 440 and 475nm. 
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Figure 2.5 :  Excitation spectrum of modern silk fabric immersed in mixture of humic 
substance (Roth) and Milli-Q water during 64 hr (a) and 188hr (b). 

 

a 

b 
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Therefore, the slope was calculated using a linear fit (least squares) to the curve 

between 465 and 475 nm (Table 2.3). All analyzed HSs (HA Roth, HA MP Biomedicals and 

HA Sigma) have a positive slope. Uncontaminated wool and silk have both a negative 

slope, while HS contaminated samples (Silk HA Roth 3 hr, Silk HA Roth 64 hr, Silk HA 

Roth 188 hr, Wool HA Roth 120 hr, and Wool HA Roth 200 hr) have a positive slope. Thus, 

the slope can be used as a qualitative indicator for the presence of HS: a negative slope 

indicating  HS absence and a positive slope indicating HS presence. 

 

 

Table 2.3 : Spectrofluorescence slope values of analyzed HSs and HS-contaminated silk 
or wool samples, applied PMT detector voltage. The slope was calculated using a linear fit 
(least squares) to the curve between 465 and 475 nm. 
 

Sample name Slope  PMT detector voltage (V) 
HA Roth  +2.63 950 
HA MP Biomedicals  +3.60 950 
HA Sigma +1.73 950 
Non-contaminated Silk  -0.67 650 
Silk HA Roth 3 hr +0.77 650 
Silk HA Roth 64 hr +0.76 650 
Silk HA Roth 188 hr +3.05 800 
Silk HA Aldrich 64 hr +0.01 650 
Non-contaminated Wool  -0.22 750 
Wool HA Roth 120 hr +0.20 750 
Wool HA Roth 200 hr +0.77 1000 
 

The chosen photomultiplier tube (PMT) detector voltage influences the slope value. If a 

higher voltage was applied on the same sample, it resulted in a higher slope. This can be 

explained by the disproportionate fluorescence intensity increase when a higher PMT 

voltage is applied (Lawaetz and Stedmon 2009). A fluorescence intensity calibration is 

necessary to compare slope values measured with different PMT voltages. Lawaetz and 

Stedmon (2009) developed a fluorescence intensity calibration using the Raman scatter 

peak of water for liquid samples. Research is ongoing to develop a fluorescence intensity 

calibration method for solid samples using a fiber-optic probe.  

 

For wool/silk samples in a degraded state and a positive slope value a higher PMT 

voltage was necessary. Possible explanation is mineralization of the fibers. This can be 

defined as the combination and/or replacement of the organic matrix, including the 

fluorophores, of the fiber with an inorganic one (Gillard et al. 1994). Another possibility 

could be protein degradation (fluorophores are part of the protein) caused by microbial 

attack or by microenvironmental conditions (Sibley et al. 1984). 
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If we want to compare slopes of the same sample before and after 14C pre-treatment, the 

same voltage must be applied. In this case, the slope can be used as a semiquantitative 

indicator for HS presence. In case of a significant HSs removal due to the NaOH wash the 

slope between 465 and 475 should decrease. This HS removal is shown in Table 2.4 

where the slope value of the contaminated test samples decreases as a function of the 

NaOH wash duration. However, no complete HS removal was obtained. 

 

In case of a significant HSs removal due to the NaOH wash the slope between 465 and 475 

should decrease 

 

Table 2.4 : Spectrofluorescence slope value of Silk HA Roth 188 hr (fabric and yarn) and 
of Wool HA Roth 200 hr (fibers) as a function of NaOH wash duration (min). 
The slope was calculated using a linear fit (least squares) to the curve 
between 465 and 475 nm. PMT voltage was 800V for the silk samples and 
1000V for the wool samples 

 

Slope value as a function of NaOH-wash duration (min) 

Sample  name 0 15 30 45 60 90 

Silk HA Roth 188 hr – Fabric 

 

3.05 2.61 1.69 1.27 0.53 0.49 

Wool HA Roth 200 hr - Fibers 0.77 0.67 0.05 n.a. n.a. n.a. 

 

Table 2.5 demonstrates a dependency of the NaOH-treatment duration on the sample 

type e.g. HS-contaminated silk fabric can be pre-treated longer than HS contaminated 

silk yarns taken from fabric. HS-contaminated wool fibers are especially susceptible to 

NaOH: ca. 85% of the sample is lost after 30 min of treatment. It is really exceptional that 

archaeological samples can be fully treated with 1%NaOH during 15 min in our 

laboratory. 

 
Table 2.5 : Weight (mg) of Silk HA Roth 188 hr (fabric and yarn) and of Wool HA Roth 

200 hr (fibers) as a function of NaOH wash duration (min). 

 

Weight (mg) as a function of NaOH-wash duration (min) 

Sample  name 0 15 30 45 60 90 

Silk HA Roth 188 hr – Fabric 

 

4.78 4.21 3.8 3.65 3.25 2.93 

Silk HA Roth 188 hr –Yarn 

 

5.82 4.31 1.62 n.a. n.a. n.a. 

Wool HA Roth 200 hr - Fibers 41.2 29.1 6.4 n.a. n.a. n.a. 
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The slopes of different unknown samples contaminated with HSs can not be compared 

even with the same PMT voltage since the chemical composition of the HSs is unknown 

and fluorescence depends on the amount of fluorophores (polyaromatic hydrocarbons 

or heterocycles) present in the HS. These assessments are supported by the analyses of 3 

HSs: HA Roth, HA Biomedicals, and HA Sigma. These samples were analyzed applying 

the same voltage (950V). The calculated fluorescence slope is different for the three HSs 

(Table 2.3).  

 

The analyzed archaeological samples (Table 2.1) can be divided into 2 groups: 

1. The first group showing an excitation spectrum comparable to the spectrum of 

sample Silk HA Roth 188 hr (Figure 2.5b): Mainz 1, Mainz 2, Mainz 3, Mainz 4, 

Beerlegem, Ieper, OS2562 and OS24909. This is an indication for HS presence;  

2. the second group has an excitation spectrum matching the spectrum of the 

uncontaminated silk (Figure 2.3): 1924-01, Bourelet, 1923-02 and Hallstat 79429. 

This indicates HS absence. 

 

The slope of these archaeological samples (Table 2.1) was calculated (Table 2.6). 

Analytical precision for the slope was greater than 0.30 (pooled standard deviation), as 

determined by multiple measurements of four samples (Silk HA Roth 3hr, Beerlegem, 

Hallstat 79429 and Mainz 2) at 750V. Positive and negative slopes indicate the presence 

and absence of HSs, respectively. Thus, without a proper cleaning for HSs removal less 

reliable 14C dates for archaeological silk or wool samples with a positive fluorescence 

slope can be expected unless in situ humification has occurred.  

 

The samples Mainz 1, Mainz 2, Mainz 3, Mainz 4, Beerlegem, Ieper, OS2562 and OS24909 

show a positive slope and consequently HS presence in the textile. The samples 1924-01, 

Bourelet, 1923-02 and Hallstat 79429 have a negative slope that indicates HS absence in 

the textile. 
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Table 2.6 : Spectrofluorescence slope values of analyzed archaeological samples, 
applied PMT detector voltagen and difference of slope values before and after 
14C pre-treatment. The slope was calculated using a linear fit (least squares) to 
the curve between 465 and 475 nm. 

Sample name Slope  PMT 
detector 
Voltage 

(V) 

Slope difference  between 
untreated and 14C pre-

treated sample 

Mainz 1 untreated  +4.37 950  
Mainz 3 untreated  +3.98 950  
Mainz 2 untreated +5.44 950  
Mainz 2 after 14C pre-treatment +2.97 950 2.47 
Mainz 4 untreated +3.73 950  
Mainz 4 after 14C pre-treatment +2.45 950 1.28 
Beerlegem untreated +13.54 950  
Beerlegem after 14C pre-
treatment 

+9.89 950 3.65 

Ieper untreated +4.51 950  
Ieper after 14C pre-treatment +3.00 950 1.51 
OS2562 untreated +2.15 950  
OS24909 untreated +1.08 950  
1924-01 untreated -1.16 650  
Bourelet untreated -0.53 800  
1923-02 untreated -1.03 650  
Hallstat 79429 untreated -3.69 750  
 

 

Four archaeological samples (Mainz 2, Mainz 4, Beerlegem and Ieper) were analyzed 

before and after 14C pre-treatment applying the same voltage (950V). The slope 

difference of the uncontaminated and pre-treated textiles was calculated (Table 2.6). A 

slope decrease for the 4 samples is noted, meaning that the amount of HSs decreases 

after pre-treatment. However, the slope for the 4 samples remains positive, which 

means that there were still HSs present in the four samples after 14C pre-treatment. 

The samples Mainz 2 and Mainz 4 underwent the full pre-treatment including the NaOH 

wash. Partial dissolution of the fulvic acid likely occurred during the 15-min sample 

treatment with Milli-Q water in the ultrasonic bath. The NaOH-step should be able to 

remove fulvic and humic acids because fulvic acids are soluble in acid and alkaline 

solutions and humic acid is the fraction extracted by alkaline solution (Head 1987). 

However, the NaOH wash is not sufficient to remove all HSs as indicated by a positive 

fluorescence slope after 14C pre-treatment. A harsher NaOH wash results in completely 

dissolving of the textile-humic mixture, more quickly than releasing HSs from the 

contaminated textile. Therefore, most of the protein-humic linkages are at least 

similarly strong as the forces that keep the -helices (wool) or -sheets (silk) together 

(and thus soluble). Van Klinken and Hedges (1995) noted this phenomenon for collagen- 



Chapter 2             Monitoring the presence of humic substances in wool and silk by the use of non-
destructive fluorescence spectroscopy: quality control for 14C dating of wool and silk 

 

34 

 

 

 

 

 

humic mixtures. In the case of wool, alkalis act simultaneously on 3 bond types of the 

keratin: the peptide bond, the S-bridges and the salt bonds (Sibley and Jakes 1984) 

causing a fast decomposition of wool. The fibroin silk fibers are even susceptible to 

decomposition by alkalis and acids: alkalis only breaks the bond between the last amino 

acid and the rest of the polymer, while acids break the bonds between the amino acids 

on random places in the polymer (Tímar-Balázsy and Eastop 1998).   

 

The samples Beerlegem and Ieper could not be pre-treated with NaOH due to sample 

dissolving in NaOH. However, the slope decrease can be assigned to dissolution of fulvic 

acids during the 15-min sample treatment with Milli-Q water in the ultrasonic bath, 

since fulvic acids are soluble in acid and alkaline solutions (Head 1987). 

 

2.4.2  AMS dating 

Two groups of textiles were obtained after fluorescence analyses (Table 2.4): 

1. The first group containing HSs: Mainz 1, Mainz 2, Mainz 3, Mainz 4, 

Beerlegem and Ieper; 

2. The second group where no HSs were detected: samples 1924-01, Bourelet, 

1923-02, Hallstat 79429. 

 

The 14C dates of the Mainz samples (Table 2.7) are older than the expected 

archaeological date for the textiles based on the dated coins and the 

typochronologically dated Italic Samian pottery found in association with the dated 

textiles (ca. 5BC) (Böhme-Schönberger and Mitschke 2005) . Moreover, all 14C dates for 

the Mainz samples are very close to each other. This seems to indicate a uniform HS 

contamination, even after pre-treatment. The average 14C date of the four Mainz 

samples is 2116±13BP (2-Test: df=3 T=4.2(5% 7.8)). The difference of the average 14C date 

and the presumed archaeological (5BC) date is 105 (68.2%) 175; 50 (1.3%) 70, 80 (94.1%) 

200 at 95,4% probability. 
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Table 2.7 : 14C age and calibrated age and presumed historical data of archaeological 
textile samples. 

Sample 
name 

Archaeological 
site 

Lab code 14C age 
(BP) 

Calibrated age 

(2) 

Presumed 
historical 

date 
Mainz 1  Mainz KIA-41534 2120±25 340 (1.1%) 320BC 

210 (94.3%) 50BC 
 

5 BC 

Mainz 2 Mainz KIA-41535 2075±25 180 (94.5%) 30BC 5 BC 
 

Mainz 3 
 

Mainz KIA-41536 2145±25 360 (23.7%) 290BC 
230 (71.7%) 90BC 

5 BC 
 
 

Mainz 4 
 

Mainz KIA-41537 2125±25 350 (4.6%) 320BC 
210 (90.8%) 50BC 

5 BC 
 
 

Beerlegem Beerlegem KIA-42365 1705±30 AD 250 (95.4%) 410 AD 587 
 

Ieper Ieper KIA-43347 750±25 AD 1220 (95.4%) 
1285 

13th century 
AD 
 

1924-01 Unknown KIA-40874 980±20 AD 1010 (54.5%) 
1060 
AD 1080 (40.9%) 
1160 

AD1000-1200 
 
 

Bourelet Unknown KIA-39433 1675±30 AD 250 (11.8%) 300 
AD 320 (83.6%) 430 
 

AD 200-450 

1923-02 Unknown KIA-42114 1090±30 AD 890 (95.4%) 
1020 
 

AD 700-1000 

 

From Table 2.7 above, the following conclusions can be made: 1) The difference is 

provoked by HS contamination of the textiles and the 14C age is older than the expected 

archaeological date. 2) But the presence of HSs is not always an indication for 14C 

contamination. In situ humification of the material is not influencing the 14C date. An 

archaeological hypothesis is that the textile fragments were used to fortify the bog 

ground when the Romans built their camp. Therefore, the use of older, worn out textiles 

is assumed and can also explain the calculated difference. 

 

The wool of Ieper has been excavated from a watercourse. Two archaeological 

hypotheses can be proposed: 1) Textile manufacturing started in the mid-13th century at 

that site (Haneca et al. 2009). It is possible that the excavated wool was deposed in the 

watercourse during that period. In this case, the 14C date is in agreement with this 

archaeological date (Table 2.7). However, fluorescence spectroscopy proved the 
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presence of HS. In situ humification of the material can explain the presence and the 

agreement between the 14C and the archaeological date. 2) Nevertheless, it is also 

possible that the textile deposit occurred when a new port was built in AD 1290 

(dendrochronological date of the felling of an oak tree used in the construction, with 

bark still present, Haneca et al. 2009). Then, the 14C date is a bit too old. This can be due 

to HS contamination and may explain the difference of the 14C date and the 

dendrochronological date (AD 1290) that is between 5 and 70 years (95.4% probability). 
 

14C dating of wool or silk, showing HS presence by fluorescence analysis, does not aid 

archaeologists in clarifying the archaeological context where different archaeological 

considerations (e.g. in Mainz and Ieper) can be made. 

 
The 14C date of Beerlegem (AD 250-410 with 95.4% probability) is older than the 

archaeological date ( late 6th century - first half of the 7th century) (Table 2.7). The older 
14C date confirms the HS contamination of the textile analyzed by spectrofluorometry. 

The archaeological evidences and information suggest the unreliability of the 14C date: 

1. The textile was found in a burial chamber. The features of the grave goods (glass 

beakers, an urn, fragments of a bronze dish, beads, a golden ring, a bronze 

decorative disc, a silver necklace with a bone pendant) date this grave to the first 

half of the 7th century AD and indicate that a wealthy woman was buried in this 

chamber (Roosens 1959).  

2. The felling date of a bottom plank of the grave was AD 587 ± 10, obtained by 

dendrochronology (Roosens 1977). 

3. The study of textile fragments resulted in spinning and weaving techniques with 

a great diversity and demonstrated a high development degree of the 

Merovingian textile technique in Belgium (Lefève 1959).  

4. The Merovingians arrived in Belgium in the second half of the 5th Century 

(Wightman 1985). 

 

The samples Beerlegem and Ieper could not be pre-treated with NaOH to remove humic 

acids from the fiber. 14C dating of these texiles can provide more unreliable results than 

textiles pre-treated with a NaOH wash. The fluorescence analysis of Mainz 2 and Mainz 4 

before and after 14C pre-treatment showed that the solvent pre-treatment with NaOH 

and HCl wash is not sufficient to remove all the HS in the textile sample (Table 2.6). 

Therefore, 14C dates made on HSs contaminated wool/silk should be interpreted with 

care. 

The 14C dates of the samples 1924-01, Bourelet, 1923-02 and Hallstat 79429 (Grömer 

2005), without detected HSs contamiantion, are in agreement with the determined 

archaeological dates (Table 2.7).  
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2.5 CONCLUSION 

 

Fluorescence spectrometry is a quick and non-destructive pre-screening method to 

detect the presence of contaminant HSs in naturally (un)dyed wool and silk and gives 

information about the reliability of the 14C dates. However, one must carefully consider 

wool/silk samples wherein HSs are detected with fluorescence analyses for 14C dating, 

because the conventional solvent pre-treatment method with NaOH wash is in most 

cases not sufficient to remove all HS contaminants. As a result, unreliable 14C dates can 

be provided. 

 

Compound-specific 14C dating of individual amino acids (Van Klinken et al. 1990, Tripp et 

al. 2006, McCullagh et al. 2010) of the silk/wool protein can be a potential method for 

dating proteinic textiles showing HS contamination. However, the conventional pre-

treatment method yields reliable 14C dates of proteinic textiles, wherein no HSs were 

observed with spectrofluorescence. 
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3.1 ABSTRACT 

 

Radiocarbon dating of bones is usually performed on the collagen fraction. However, 

this collagen can contain exogenous molecules, including humic substances (HSs) 

and/or other soil components that may have a different age than the bone. Incomplete 

removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin 

(molecular weight (MW) ~100,000 Dalton), has received considerable attention to obtain 

more reliable dates. Ultrafiltration is an effective method of removal of low-molecular 

weight contaminants from bone collagen but it does not remove high-molecular weight 

contaminants, such as cross-linked humic collagen complexes. However, comparative 

dating studies have raised the question whether this cleaning step itself may introduce 

contamination with carbon from the filters used. 

In this study, a nanofiltration method was developed using a ceramic filter to avoid a 

possible extraneous carbon contamination introduced by the filter. This method should 

be applicable to various protein materials such as collagen, silk, wool, leather and 

should be able to remove low-molecular and high molecular weight HSs. In this study 

bone collagen was hot acid hydrolysed to amino acids and nanofiltrated. A filter with a 

molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino 

acids in the permeate and the HSs  in the retentate.  

Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: 

dead-end and cross-flow filtration. Humic substance (HS)-solutions with fossil carbon 

and modern hydrolysed collagen contaminated with HSs were filtrated and analyzed 

with spectrofluorescence to determine the HS removal. Cross-flow nanofiltration 

showed the most efficient HS removal. A second pilot study based upon these results 

was set up wherein only cross-flow filtration was performed. 14C measurements of the 

permeates of hydrolysed  modern collagen contaminated with fossil HSs demonstrate a 

significant but  incomplete removal of HSs (between 63 and 85%).     
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3.2 INTRODUCTION 

 

Bones from archaeological and geological sites are susceptible to chemical and 

environmental processes which can result in bone degradation and introduction of 

exogenous carbon-containing compounds, in particular HSs from the soil interacting 

with the bone collagen (Arslanov and Svezehentsev 1993; Van Klinken and Hedges 

1995). 

The collagen fraction of the bones is usually used for 14C dating. This fraction is obtained 

by dissolving the demineralized bone in hot acidic water (Longin 1974). This treatment 

will also lead to the presence of other hot water soluble components in the collagen 

such as HSs and degraded protein fragments (Van Klinken and Mook 1990). Adding an 

alkaline step helps to remove base soluble organics such as humic acid (Van Klinken and 

Hedges 1995). 

It has been suggested that ultrafiltration is an effective method to remove low-

molecular weight contaminants and degraded proteins from the high-molecular weight 

collagen protein (Brown et al. 1988; Bronk et al. 2004). Ultrafiltration is a membrane 

process whose nature lies between nanofiltration and microfiltration. The pore sizes of 

m (on the microfiltration side) to 2 nm (on the 

nanofiltration side). Ultrafiltration is typically used to retain macromolecules and 

colloids from a solution, the lower limit being solutes. A low pressure between 1 - 10 bar 

is applied and separation is based on particle size. Ultrafiltration clean-up of bone 

collagen has gained recent attention.Redating of previously dated bones using 

ultrafiltration yielded significant older and more consistent 14C ages (Bronk et al. 2004; 

Higham et al. 2006) Nevertheless, other dating studies proved the introduction of 

contamination via the filters (Bronk et al. 2004; Brock et al. 2007; Hüls et al. 2007; Hüls et 

al. 2009). 

Compound-specific 14C dating of individual amino acids upon collagen hydrolysis and 

obtained by preparative High Performance Liquid Chromatography (HPLC), has been 

performed in the past  (Gillespie and Hedges 1983; Gillespie et al. 1984; Stafford et 

al.1987; Stafford et al.1988; Van Klinken and Mook 1990; Stafford et al.1991; Van Klinken 

1991; Tripp et al. 2006). Some of these methods introduced extraneous carbon into the 
14C dated fractions and sample blanks were not always reported.  However, since column 

bleeding is a common phenomenon in chromatography sample blanks should be 

measured. McCullagh et al. (2010) showed the potential of individual amino acid dating. 

The drawback of the technique is that it is time consuming. 

Nanofiltration is more straightforward and less labour intensive than individual amino 

acid isolation by HPLC. Nanofiltration is an intermediate filtration process between 

reverse osmosis (RO) and ultrafiltration (UF) that rejects molecules having a size of 
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about one nanometer (Eriksson 1988). The pore sizes of the membranes used range from 

0.5 to 2 nm and corresponds with MWCO of 300-500 Dalton (Mulder 1996). A high 

pressure between 10-50 bar is applied and separation is based on differences in 

solubility and diffusivity (Mulder 1996). It has been introduced since 1980s, mainly used 

for softening water and removing organics. It has found many applications in various 

water purification and treatment as well as product separation processes because of its 

two remarkable features: one is the MWCO which ranges from 200 to 2000 Da; the other 

is the separation of electrolytes due to the membrane materials containing charged 

groups (Schafer et al. 2004; Wang et al. 2009).  

In this study a nanofiltration method was developed using a ceramic filter as a means to 

avoid extraneous carbon contamination possibly introduced by typical ultrafilters. This 

method should be applicable on various protein materials e.g. collagen, silk, wool, 

leather. Hot acid hydrolysis releases the amino acids of the protein material. It should 

be able to remove low-molecular and high molecular weight HSs, depending on the 

choice of MWCO membrane cut-off and the fraction (permeate/filtrate or retentate). 

Here  a filter membrane with a cutoff of 450 Dalton was used in order to collect the 

amino acids in the permeate (MW of amino acids varies between 75.07 and 204.23 Dalton 

(Asquith 1977)) and the humic substances (HSs) in the retentate (MW of HSs varies 

between 1000 and 300000 Dalton) (Stevenson 1982).  

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Sample selection 

 

An archaeological human bone of the site Punta de Los Gavilanes (Murcia, Spain) was 

selected for pilot study 1. A modern bovine bone was chosen for pilot study 2.  

A commercially available HS was used ( humic acid depur, referred as HA Roth in this 

paper (Carl Roth, Karlsruhe, Germany) to artificially contaminate the bone material in 

pilot study 1 and 2. 
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3.3.2 Sample preparation 

 

Two pilot studies were set up. An overview of the analyzed sample types for both pilot 

studies is listed in Table 3.1. 

Two nanofiltration systems were tested in pilot study 1: dead-end and cross-flow 

filtration. The samples prepared for pilot study 1 were analysed with 

spectrofluorescence before and after nanofiltration to determine the best filtration 

technique to remove HSs (Boudin et al. 2011). Based upon the results of these analyses it 

was decided to set up pilot study 2 wherein the samples were cross-flow nanofiltrated 

on a downscaled installation and 14C dated to verify the HS removal and the filter 

efficiency (Figure 3.1). 

 

Table 3.1 : An overview of the analyzed samples, sample names and definition, used for 
pilot studies 1 and 2. 

 

Pilot study 1 : Spectrofluorescence analysis  

Sample name Sample definition 

HA Roth_H2O HA Roth dissolved in RO water 

HA Roth_ H2O_cross-flow Cross-flow permeate of HA Roth_H2O 

HA Roth_ H2O_dead-end Dead-end permeate of HA Roth_H2O 

HA Roth_NaOH HA Roth dissolved in NaOH 

HA Roth_ NaOH_cross-flow Cross-flow permeate of HA Roth_NaOH 

HA Roth_ NaOH_ dead-end Dead-end permeate of HA Roth_NaOH 

AA_collagen_ HA Roth  Amino acids after hydrolysis of collagen/HA Roth mixture (before nanofiltration)   

AA_collagen_ HA Roth_ cross-flow Cross-flow permeate of amino acids after hydrolysis of collagen/HA Roth mixture 

AA_ collagen_ HA Roth_ dead-end Dead-end permeate of amino acids after hydrolysis of collagen/HA Roth mixture 

  

Pilot study 2 : 14C analysis 

Sample name Sample definition 

HA Roth_ fulvic acids HA Roth dissolved in Milli-Q water, filtrated over a 0.7 m glass filter and freeze-dried 

Collagen Sample Collagen extracted from a modern bovine bone via the Longin method 

Collagen_NaOH Sample Collagen extracted from a  modern bovine  bone via the Longin method plus a NaOH-wash 

Collagen_HA Roth Sample Collagen contaminated with HA Roth 

Collagen_ NaOH_HA Roth Sample Collagen_NaOH contaminated with HA Roth 

AA_Collagen_cross-flow Cross-flow permeate of amino acids after hydrolysis of sample Collagen 

AA_Collagen_NaOH_cross-flow Cross-flow permeate of amino acids after hydrolysis of sample Collagen_NaOH 

AA_Collagen_HA Roth_cross-flow_1 First collected fraction of cross-flow permeate of amino acids after hydrolysis of sample Collagen_HA Roth 

AA_Collagen_HA Roth_cross-flow_2 Second collected fraction of cross-flow permeate of amino acids after hydrolysis of  sample Collagen_HA Roth 

AA_Collagen_NaOH_ HA Roth_cross-flow Cross-flow permeate of amino acids after hydrolysis of sample Collagen_ NaOH_HA Roth 
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Collagen was extracted from the bones following the Longin method (Longin 1971). For 

pilot study 1 and for one bone of pilot study 2 a NaOH-wash was introduced between the 

demineralization and hydrolisation step.  After hydrolysation, the samples were freeze-

dried.  

Aliquots of HA Roth, of about 650 mg each, were dissolved in 1000 ml reverse osmosis 

(RO) water and 0.125 %NaOH for pilot study 1. These HS-mixture contained fulvic acids 

when dissolved in RO water (pH = 7.15), and fulvic and humic acids when NaOH was the 

solvent.  

An aliquot of  about 650 mg HA Roth was also dissolved in 125 ml Milli-Q water and 

slowly agitated at room temperature during 24 hours. The mixture was filtrated over a 

m glass filter (Millipore), then freeze-dried and finally 14C dated in pilot study 2. 

This sample was named HA Roth_fulvic acids. 

 

 

Figure 3.1  : Flowchart of sample preparation for pilot study 2 
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Aliquots of HA Roth, of about 650 mg each, were dissolved in 125 ml RO water. These HS-

solutions were added to about 200 - 750 mg of collagen and slowly agitated at room 

temperature during 24 hours. The mixture was filtrated over a 0.7 mm glass filter 

(Millipore) and then freeze-dried.  

In a next step, the collagen-HS mixtures were hydrolysed into amino acids. Hydrolysis 

was carried out for approximately 70 – 200 mg aliquots of collagen-HS using 6M HCl  in a 

sealed tube in a nitrogen atmosphere at 105°C for 24 hours. HCl was removed using a 

solvent evaporator (Genevac EZ-2, Genevac, UK). The dry hydrolysate was diluted with 

RO water to 1000 ml for pilot study 1 and to 300 ml for pilot study 2.  

Aliquots of HA Roth, of about 5 - 10 mg each, were dissolved in 10 ml Milli-Q water for 

chromatographic analysis with HPLC-PDA to register a reference chromatogram and 

retention times for non-hydrolysed fulvic acids.  

l Milli-Q water 

was  added to the dry hydrolysate before injection and then analysed with High 

performance liquid chromatography Photo diode array detector (HPLC-PDA) to verify if 

HS remained intact after hydrolysis or not. 

 

3.3.3 Nanofiltration 

 

Nanofiltration is a pressure driven membrane process and is characterised by a 

membrane pore size between 0.5 and 2 nm and operating pressures between 5 and 40 

bar. 

In general nanofiltration has two distinct properties:  

 The pore size of the membrane corresponds to a MWCO value of approximately 

300-500 Da. Therefore, the separation of components with these molecular 

weights from higher molecular weight components can be accomplished.  

 Nanofiltration membranes have a slightly charged surface. Because the 

dimensions of the pores are less than one order of magnitude larger than the size 

of ions, charge interaction plays a dominant role. This effect can be used to 

separate ions with different valences (Rautenbach and Gröschl 1990). 

Two nanofiltration types were tested: dead-end filtration and cross-flow filtration. 

Dead-end filtration is the simplest filtration (Figure 3.2). Here all the feed is forced 

through the membrane, so that contamination in the retentate, e.g. > 450 Da fraction 

increases, and consequently the quality of the permeate decreases with time (Mulder 

1996). During cross-flow filtration the feed flow travels tangentially across the surface of 

the filter (Figure 3.2). The principle advantage of this filtration is that the filter cake 
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(which can block the filter) is substantially washed away during the filtration process, 

increasing the length of time that a filter unit can be operational (Koros et al. 1996). 

 

 

Figure 3.2  : Scheme of dead-end and cross-flow filtration. 

 

Two home-made filtration installations were set up using a stainless steel centrifugal 

pump (Speck Pumps, Belgium), Swagelock accessories (tubings, fittings, flexibles) and a 

ceramic filter with a 450 Dalton cut off (Inopor, Germany) (Figure 3.3).  

A pressure of 10 bar (nitrogen) was applied in dead-end and cross-flow mode. 

The centrifugal pump is only required in cross-flow mode as a means to obtain a 

tangential feed flow.  

Cross-flow velocity was 3.0 m/s for pilot study 1 and 2. 

A filter with a cutoff of 450 Dalton was used in order to collect the amino acids in the 

permeate (MW of amino acids varies between 75.07 and 204.23 Dalton) and the HSs in 

the retentate (MW of HSs varies between 1000 and 300000Dalton) (Stevenson 1982).  

The filtration setup can easily be rebuilt from dead-end operation into cross-flow mode 

and vice versa. 

A minimum feed volume must remain in the filtration installation to prevent  the pump 

from stopping in cross-flow mode. This volume was 800 ml for the installation used in 

pilot study 1 and 100 ml in pilot study 2.  

The feed volume for pilot study 1 was 1000 ml and 200 ml for pilot study 2. 

The volume of permeate collected for analysis in this study was 200 ml for pilot study 1 

and 100 ml for pilot study 2.   

To verify the filter reproducibility, two consecutive permeate fractions of sample 

AA_Collagen_HA Roth were collected during cross-flow filtration and referred to as 

Collagen_HA Roth_cross-flow_1 and Collagen_HA Roth_cross-flow_2 in this paper 

(Table 3.1 and Figure 3.1). 

Cleaning of the filtration installation was done after every filtration by consecutively 

rinsing with RO-water, then with 1%NaOH and finally with Milli-Q water. The cleaning 
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efficiency was tested by measuring the flux after every rinsing step. The flux obtained 

after the NaOH step was equal as the flux of Milli-Q water before performing the 

filtrations.  

 

 

Figure 3.3  : Filtration setup in cross-flow mode used for pilot study 2. 

 

3.3.4 Fluorescence spectroscopy 

 

Fluorescence spectroscopic measurements (Varian Cary Eclipse, Belgium) of solutions 

produced during pilot study 1 were performed using quartz cells (Table 3.1). A scan 

speed of 600 nm.min-1 was used with a slit width opening of 10 nm. Spectra for HSs were 

acquired in the excitation wavelength 340-475 nm and an emission wavelength of 509 

nm (Bachelier 1980-1981; Bloom and Leenheer 1989; Simpson et al. 1997).  

Three aromatic amino acids with fluorescent properties (tryptophan, tyrosine and 

phenylalanine) are not detected with the chosen excitation and emission wavelength 

(Lakowicz 1999). 

Fluorescence spectra for blanks (RO water) were also obtained for Raman spectral 

overlap. Since all the spectra were recorded on the same instrument using the same 

experimental parameters, a comparative discussion of the spectra is acceptable, 

although no corrections for fluctuation of instrumental factors and for scattering effects 

(e.g. primary and secondary inner filter effects) were applied to the data. The software 

automatically chose the excitation and emission filter during analysis. Fluorescence 

intensity was measured in arbitrary units (a.u.). 

 

 Filter  
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3.3.5 High perf ormance liquid chromatography Photo diode array 

detector (HPLC-PDA) 

 

Chromatography was performed on a Waters HPLC system consisting of a multi-solvent 

pump 625, a 600E controller and a PDA detector, all controlled by Empower 1 PC 

software.  

Humic substance and amino acid analyses were done using the method described in 

Smith et al. ( 2009), except that detection in this study was performed with PDA instead 

of an Isotope Ratio Mass Spectrometer. 

In this study scanning was done between 200 and 800 nm; chromatograms were 

registered at 210 nm. UV/VIS absorption intensity was measured in absorption units 

(a.u.). 

 

3.3.6 14C AMS dating 

 
14C dating was performed on samples of pilot study 2 (Table 3.1 and Figure 3.1). 

The permeates of the hydrolysed collagen-HS mixture and of the hydrolysed collagen, 

thus amino acids alone, were freeze dried, dissolved in 2 ml Milli-Q water, transferred 

into quartz tubes with CuO and Ag and dried in a desiccator before combustion to CO2. 

Graphitisation of CO2 was carried out using H2 over a Fe catalyst. Targets were prepared 

at the Royal Institute for Cultural Heritage in Brussels (Belgium) (Van Strydonck and 

Van der Borg 1990-1991) and 14C concentrations were measured on the AMS at the 

Leibniz Labor für Altersbestimmung und Isotopenforschung in Kiel (Germany) (Nadeau 

et al. 1998). 14C results are expressed in pMC (percent modern carbon) and indicate the 

percent of modern (1950) carbon corrected for fractionation using the 13C 

measurement. 

The HS removal via cross-flow filtration can be determined by calculating the percent C 

contamination using the 14C results. 

The percent C contamination was calculated as follows: 

Non-filtrated collagen-HS-mixtures (Collagen_HA Roth and Collagen_NaOH_HA Roth) 

 
14C collagen_(NaOH)_HA Roth = 14C HA  oth_fulvic acids × x + (1 – x) × 14C collagen_(NaOH) 

 

Hydrolysed, cross-flow filtrated samples (AA_Collagen_HA Roth_cross-flow and 

AA_Collagen_NaOH_HA Roth_cross-flow) 
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14C AA_Collagen_(NaOH)_HA Roth_cross-flow = 14C HA Roth_fulvic acids × x + (1 – x) × 14C AA_Collagen_(NaOH)_cross-flow  

 

Percent C contamination  is x × 100. 

The 14C concentrations of the filtrated amino acids of collagen (AA_collagen_cross-flow 

and AA_collagen_NaOH_cross-flow) were used to calculate the percent C contamination 

in the hydrolysed, cross-flow filtrated samples. 

The ceramic filter used has a cutoff of 450 Dalton, which means that theoretically 90% of 

450 Dalton (and larger) molecules should be retained by the filter. 

The percent contamination removal can be calculated using the following assumptions: 

1. HSs remain intact after hydrolysis, 

2.  all HSs are larger than 1000 Dalton, 

3.  the ratio amino acids/HSs is equal in the hydrolysed and  the non-hydrolysed 

solution. 

 

% Removal = (%C contamination collagen-HS mixture - %C contamination amino acids after cross-flow)  × 100 

                                                  %C contamination collagen-HS mixture 

 

Wherein collagen-HS mixture refers to sample Collagen_HA Roth or Collagen_NaOH_ 

HA Roth, and amino acids after cross-flow filtration refers to sample AA_Collagen_HA 

Roth_cross-flow or AA_Collagen_NaOH_HA Roth_cross-flow. 

 

3.4 RESULTS AND DISCUSSION 

 

3.4.1 Pilot Study 1 - Fluorescence spectroscopy 

 

The flux is proportional to the driving force which is pressure in the case of 

nanofiltration. A lower flux can be the consequence of concentration polarisation. 

However, it should be mentioned that fouling is the dominating factor in flux decline in 

the case of nanofiltration (Mulder 1996). 

The fluxes of HA Roth_H2O_cross-flow, HA Roth_ NaOH_cross-flow and AA_collagen_HA 

Roth_cross-flow are in the same magnitude order of the flux of RO water after cross-

flow filtration indicating minor contribution of fouling and concentration polarisation. 
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Nevertheless, the fluxes observed during dead-end filtration are lower compared to the 

fluxes of cross-flow nanofiltration for the same samples (see Table 3.2) indicating 

concentration polarisation. 

The decrease in fluorescence intensity after cross-flow and dead-end filtration 

compared to the feed solution, observed in all the samples of pilot study 1, indicates HS 

removal (Table 3.2). However, cross-flow filtration seems to retain more of the HSs 

compared to dead-end filtration mode as the measured fluorescence intensity is closer 

to the values for the blank (RO water) (Table 3.1 and 3.2). 

As a result, cross-flow nanofiltration was used in pilot study 2. 

 

 
Table 3.2 : Flux (kg/m2.h), fluorescence excitation range (nm), minimum and maximum 

fluorescence intensity (arbitrary unit) of the samples before and after 
nanofiltration in pilot study 1. 

 
 

Sample name 

 

Flux (kg/m2.h) 

Fluorescence 

(excitation range - nm) 

Minimum and maximum  

Fluorescence intensity 

(arbitrary unit) 

HA Roth_H2O  340 to 390 200 – 400 

HA Roth_ H2O_cross-flow 110 340 to390 2,5 – 6 

HA Roth_ H2O_dead-end 75 340 to 390 25 – 50 

    

HA Roth_NaOH  415 to 470 200 – 600 

HA Roth_ NaOH_cross-flow 125 340 to 390 8 – 13 

HA Roth_ NaOH_ dead-end 55 340 to 390 210 -250 

    

AA_collagen_ HA Roth   340 to 390 60 – 170 

AA_collagen_ HA Roth_ cross-flow 70 340 to 390 4 – 19 

AA_ collagen_ HA Roth_ dead-end 30 340 to 390 15 – 60 

RO water  340 to 390 1 - 2 

RO water_cross flow 100 n.a. n.a. 

 

3.4.2 Pilot Study 2 - 14C AMS dating 

 

The percent C contamination in the non-filtrated, non-hydrolysed collagen-HS samples, 

Collagen_HA Roth and Collagen_NaOH_HA Roth, were 7.44 % and 24.90 % respectively 

(Tables 3.1 and 3.3). 

The 14C concentrations of the hydrolysed, cross-flow filtrated samples are shown in 

Table 3.3. Measured pMC-values of the uncontaminated, filtrated amino acids of 

collagen (AA_collagen_cross-flow and AA_collagen_NaOH_cross-flow) demonstrate a 14C 

decrease of 1.90 pMC for AA_collagen_cross-flow and 1.61 pMC for AA_collagen_  
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NaOH_cross-flow compared to their original 14C-values of non-hydrolysed collagen. A 

contamination may have  occurred during hydrolysis and/or filtration. It is possible that 

the extraneous carbon was introduced due to a dirty filter or remaining carbon in the 

pump system from previous experiments. Some solution always remains in the pump 

and is not removed with the rinsing step. These two contamination phenomena are 

highly possible because the tests were performed at The Flemish Institute for 

Technological Research where the filtration setup is mainly used for organic 

compounds. However, partly contamination probably occurred (circa 0.002%) when 

diluting the samples with RO water to the necessary volume to perform cross-flow 

filtration because total organic carbon analyses of the RO water revealed values of 2 

ppm (parts per million). 

Two samples of the same feed, respectively AA_Collagen_HA Roth_cross-flow_1 and 

AA_Collagen_HA Roth_cross-flow_2, were collected and 14C dated. Percent C 

contamination after cross-flow filtration was 1.53% and 2.73%, respectively, clearly 

demonstrating HS removal compared to starting contamination of 7.44 %C (measured in 

the non-filtrated, non-hydrolysed collagen-HS sample (Collagen_HA Roth)). Increased 

percent C contamination can be observed between the first collected fraction 

(AA_Collagen_ HA Roth_cross-flow_1) and the second collected fraction 

(AA_Collagen_HA Roth_cross-flow_2). A possible explanation is the formation of a 

clogging layer of HSs on the filter followed by HSs of the clogging layer that pass the 

filter and consequently cause an increase in contamination in fraction AA_Collagen_HA 

Roth_cross-flow_2. If this is the case, a removal of the retentate and performing the 

cleaning step are required in order to perform a second filtration.  

Further analyses should clarify these hypothesis. 

The percent C contamination of the non-filtrated, non-hydrolysed sample 

Collagen_NaOH_HA Roth showed a decrease from 24.90% to 3.70% after cross-flow 

filtration of the hydrolysate (AA_Collagen_NaOH_ HA Roth_cross-flow). This 

demonstrated a significant, but incomplete, HS removal of 85 %. 
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Table 3.3 : 14C AMS (percent modern carbon, pMC) results of samples prepared for pilot study 
2 and percent C contamination of the collagen-HS mixture and the hydrolysed collagen-HS 
mixture after cross-flow filtration. 
 

 

Sample name 

LAB-code 14C 

(pMC) 

Stdev 14C 

(pMC) 

%C contamination 

 

Humic substances 

HA Roth_ fulvic acids KIA-42747 0.28 0.17  

 

Collagen 

Collagen KIA-42745 105.41 0.32  

Collagen_NaOH KIA-42744 104.64 0.29  

Collagen_HA Roth KIA-42746 97.59 0.30 7.44 

Collagen_ NaOH_HA Roth KIA-42748 78.68 0.27 24.90 

 

Amino acids after cross-flow filtration 

AA_Collagen_cross-flow KIA-43046 103.51 0.30 1.80 

AA_Collagen_NaOH_cross-flow KIA-43047 103.03 0.37 1.54 

AA_Collagen_HA Roth_cross-flow_1 KIA-43049 101.93 0.30 1.53 

AA_Collagen_HA Roth_cross-flow_2 KIA-43050 100.69 0.36 2.73 

AA_Collagen_NaOH_ HA Roth_cross-flow KIA-43048  99.25 0.40 3.70 

 

 

The percent contamination removal of sample AA_Collagen_NaOH_HA Roth_cross-flow 

amounts to 85% which is close to the theoretically expected 90%. The results of 

AA_Collagen_HA Roth_cross-flow_1 and AA_Collagen_HA Roth_cross-flow_2 are more 

disturbing. The percent removal of both samples, respectively 79% and 63% (Table 3.4), 

shows a considerable difference with the theoretically expected value of 90%. This 

difference was probably provoked by not emptying the pump between every filtration 

indicated by the decreasing percent contamination removal after every filtration (first 

85%, then 79% and finally 63%). Some solution always remains in the pump and is not 

removed with the rinsing step. This phenomenon was observed during later 

experiments, described in Chapter 4.  

 

Table 3.4 : Percent contamination removal of the hydrolysed, cross-flow filtrated 
collagen-HS mixtures. 

Sample name %Contamination removal 

AA_Collagen_HA Roth_cross-flow_1 79 

AA_Collagen_HA Roth_cross-flow_2 63 

AA_Collagen_NaOH_HA Roth_cross-flow 85 
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3.4.3 High performance liquid chromatography Photo Diode Array 

detector (HPLC-PDA) 

 

The chromatograms of non-hydrolysed and hydrolysed HA Roth are shown in Figure 3.4 

and 3.5. The HS compound present at retention time 110 minutes in non-hydrolysed HA 

Roth (Figure 3.4) disappears after hydrolysis but new compounds appear in the 

chromatogram of hydrolysed HA Roth, respectively at retention time 78 minutes, 87 

minutes and 91 minutes (Figure 3.5). If we assume that these three compounds released 

by hydrolysis  may be smaller than 450 Dalton and pass the filter, this phenomenon 

could explain: 

1.  the “too old” 14C dates of samples AA_Collagen_HA Roth_cross-flow_1, 

AA_Collagen_HA Roth_cross-flow_2  and AA_Collagen_NaOH_HA Roth_cross-

flow, 

2.  the “too low” % removal for the samples  AA_Collagen_HA Roth_ cross-flow_1 

and AA_Collagen_HA Roth_cross-flow_2 (Table 3.4). 

If this assumption is correct, the calculated percent removal (Table 3.4) is only an 

estimation of the real percent removal.  

MW determination of hydrolysed HA Roth should clarify if compounds smaller than 450 

Dalton are released and pass the filter. If this is correct, a filter with a cutoff 200 Dalton 

can be used instead of 450 Dalton. 
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Figure 3.4 : Chromatogram of non-hydrolysed  HA Roth 
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Figure 3.5 : Chromatogram of hydrolysed HA Roth 

 

 

3.5 CONCLUSION 

 

The nanofiltration methods described in this paper showed some advantages over 

ultrafiltration. There is no risk of carbon contamination coming from the filter because 

the filter material is ceramic. It is suitable for all types of proteinaceous material, not 

only collagen.  Unlike ultrafiltration where only low-molecular HSs are eliminated, it 

should remove low-molecular and high-molecular weight HSs. 

Spectofluorescence analyses indicated that cross-flow filtration was a more efficient 

technique than dead-end filtration to remove HSs. 

Cross-flow filtration has the disadvantage that a minimum feed volume must remain in 

the installation during filtration to prevent the pump from stopping. This means that 

not all the feed volume can be filtered, which causes sample loss. Consequently, the 

sample size needed for 14C dating increases.  
14C AMS dating of cross-flow filtrated hydrolysed collagen-HS mixtures, i.e.  amino 

acids-HS mixtures, demonstrated a significant but yet  incomplete removal of HSs 

(between 63 and 85%). Hot acid hydrolysis of HS may form new chemical compounds, as 

demonstrated by HPLC analysis. It is possible that these compounds are smaller than the 

filter cutoff of 450 Dalton  and pass through the filter. Further research should clarify 

this issue.  

Further cross-flow filtrations using a filter with a 200 Dalton cutoff  will be carried out 

to improve HSs removal and verified by 14C analyses.  
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ABSTRACT 

 

Radiocarbon dating and stable isotope analyses of bone collagen, wool, hair and silk 

contaminated with extraneous carbon(e.g. humic substances (HS)) does not yield 

reliable results if these materials are pre-treated using conventional methods.  

A cross-flow nanofiltration method was developed that can be applied to various 

protein materials like collagen, hair, silk, wool and leather, and should be able to 

remove low-molecular and high-molecular weight contaminants. To avoid extraneous 

carbon contamination via the filter a ceramic filter (molecular weight cut-off of 200 

Dalton) was used. As such, amino acids, released by hot acid hydrolysis of the protein 

material, were collected in the permeate and contaminants in the retentate (> 200 

Dalton).  
14C dating results for various contaminated archaeological samples were compared for 

bulk material (pre-treated with the conventional methods) and for cross-flow 

nanofiltrated amino acids (permeate) originating from the same samples. 

Contamination and quality control of 14C dates of bulk and permeate samples were 

obtained by measuring C:N ratios, fluorescence spectra, 13C and 15N values of the 

samples. Cross-flow nanofiltration decreases the C:N ratio which means  that 

contaminants have been removed. 

Cross-flow nanofiltration clearly improved sample quality and 14C results. It is a quick 

and non-labor intensive technique and can easily be implemented in any 14C and stable 

isotope laboratory for routine sample pre-treatment analyses. 

4.1 INTRODUCTION 

 

Protein containing materials from archaeological and geological sites are susceptible to 

chemical and environmental processes which can result in degradation (diagenetic 

alteration/breakdown) and introduction of exogenous carbon-containing compounds 

(contamination). In particular, humic substances (HSs) from the soil may interact with 

the material of interest and cause major problems for any isotopic application such as 
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14C dating (Stafford et al. 1988; Van Klinken and Hedges 1995; Van Klinken 1999; Van 

Strydonck et al. 2005; Boudin et al. 2011).  

Bones are one of the most preferable materials for paleodietary and archaeological 

chronology studies since they are often directly related to the prehistoric event. The 

collagen fraction of bones is usually used for stable isotope and 14C analyses. 

Ultrafiltration of bone collagen, dissolved as gelatin (Molecular weight (MW) ~100,000 

D), has received considerable attention as a means to obtain more reliable 14C dates and 

stable isotope signatures (Brown et al. 1988; Bronk Ramsey et al. 2004; Higham et al. 

2006; Mellars 2006). This is an effective method for removal of low-molecular weight 

contaminants from bone collagen but it does not remove high-molecular weight 

contaminants, such as cross-linked humic-collagen complexes (Brock et al. 2007). 

Moreover, comparative dating studies have raised the question whether this cleaning 

step itself may introduce contamination with carbon from the filters used (Bronk 

Ramsey et al. 2004; Brock et al. 2007; Hüls et al. 2007; Hüls et al. 2009). 

Wool, hair and silk are gaining more attention as suitable radiocarbon dating material 

due to their short lifespan (Taylor et al. 1995; Geyh 2001; Van Strydonck et al. 2004).  

Wool, silk and hair are pre-treated with solvents, followed by an acid-base-acid 

treatment for stable isotopes and 14C analyses. However, this pre-treatment may not be 

adequate for removing all contaminants (Kim et al. 2008; Boudin et al. 2011). 

Separation, isolation  and 14C dating of individual amino acids hydrolysed from bone 

collagen by preparative high performance liquid chromatography (HPLC) is a good 

strategy for dealing with contamination in proteins but it is a time consuming and 

labour intensive technique. (Gillespie and Hedges 1983; Gillespie et al. 1984; Stafford et 

al. 1987;Stafford et al.1988; Van Klinken and Mook 1990; Stafford et al. 1991; Van Klinken 

1991; Tripp et al. 2006; McCullagh et al. 2010)    

Most previous studies focused on the amino acid hydroxyproline because it constitutes 

about 10% of bone collagen and it is not present in significant quantities elsewhere in 

nature (Ward and Courts 1997). However, some of these methods introduced extraneous 

carbon into the 14C dated fractions since column bleeding is a common phenomenon in 

chromatography. Therefore, sample blanks should be measured. Nevertheless, 

McCullagh et al. and Marom et al. showed the potential of individual amino acid dating 

(McCullagh et al. 2010; Marom et al. 2012). 

Another option is nanofiltration of hydrolysed proteins, i.e. amino acids, which is more 

straightforward and less labour-intensive than individual amino acid isolation by HPLC. 

Another advantage is the possibility of using a ceramic filter to avoid exogenous carbon 

contamination via the filter.  

In a previous study a filter membrane with a molecular weight cut-off (MWCO) of 450 

Dalton was used to collect the amino acids in the permeate and the HSs in the retentate 

(Boudin et al. 2013). That study also showed that cross-flow nanofiltration is more 

efficient in retaining HSs than dead-end nanofiltration. However, hot acid hydrolysis of 
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contaminant HSs also causes formation of low molecular weight contaminant 

compounds which passed the 450 Dalton ceramic filter (Boudin et al. 2013a). 

In this study, cross-flow nanofiltration with a ceramic filter membrane with a MWCO of 

200 Dalton was used, which should improve the retention of contaminants. The 

efficiency of the cross-flow nanofiltration was verified by comparing: 

1. C:N ratio of the bulk sample (before nanofiltration) with C:N ratio of the cross-

flow nanofiltrated amino acids (referred to as permeate in this paper). 

2. 14C date of permeate with the presumed historical date. 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Sample selection 

 

Protein-containing samples from different material types (wool, hair, silk and bone 

collagen), selected to represent various ages and preservation conditions, were obtained 

from sites listed in Table 4.1. Different material types and preservation conditions were 

selected to test the robustness of the cross-flow nanofiltration method to improve 14C 

dating.  

Table 4.1 : List of archaeological samples, chosen to represent various potential ages 
and preservation conditions 

 
Sample name 

 Archaeological 
site 

Country Presumed 
historical date 

 COLLAGEN   
 Bone type    
MOO304 Human Moorsel Belgium AD 900-1150 
A243 nr.819 Animal Antwerp Belgium AD 700-1000 
Gent V1B-S12-S4 Human Ghent Belgium AD 900-1000 
Leffinge D50 Animal Leffinge Belgium AD 900-1050 
Andorra UE1311 Human Canillo Andorra AD 700-1100 
Italy 1 Human Falacrinae Italy 300-100 BC 
Entrée 4 Animal 

 
Tiène des 
Maulins 

Belgium Circa 40000 BC 

Basel 11-2/20/22 Animal Basel Belgium 4000-3700 BC 
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Continued Table 4.1     
 

Sample name 
 Archaeological 

site 
Country Presumed 

historical date 
Grijpskerke  Animal Grijpskerke The 

Netherland
s 

250-12 BC 

Beerse 199 Human Beerse Belgium AD 700-1000 
Baldwin femur Human Tournai Belgium  AD 1068 
Baldwin skull Human Tournai Belgium AD 1068 
Beerse 58 Human Beerse Belgium AD 700-1300 
Radbot skull Human Tournai Belgium AD 1098 
KK 316 skull Human Kruishoutem Belgium AD 900-1400 
KK 316 sponge Human Kruishoutem Belgium AD900-1400 
     
 SILK    
Fuji Silk  unknown unknown Modern 
Crepeline  unknown unknown Modern 
DM 1923-01  unknown Egypt AD 600-900 
Baldwin 43  Tournai Belgium AD 1068 
Baldwin 46  Tournai Belgium AD 1068 
     

KERATIN (HAIR AND WOOL) 
 Material type    
North Ronaldsay sheep  Hair North 

Ronaldsay 
Orkney 
Islands 

Modern 

BM53912  Wool unknown Egypt AD 100-400 
Beerlegem  Wool Beerlegem Belgium AD 587 
OS2562  Wool Oudenburg Belgium AD 319-380 
E29479  Wool unknown Egypt AD 400-700 
Emelgem sheep  Hair Emelgem Belgium  Modern 
     
Mainz 2  Wool  Mainz Germany 5 BC (Roman) 
Mainz 5  Wool Mainz Germany 5 BC (Roman) 
Radbot hair  Hair Tournai Belgium AD 1098 
Ieper  Wool Ieper Belgium AD 1200-1300 
 

 

Lacking references from the literature, modern undyed, mordanted, non-mordanted 

and naturally dyed silk (Bombyx mori) samples were obtained from the Textile 

laboratory at the Royal Institute for Cultural Heritage (Brussels, Belgium) and used to 

establish a C:N range for silk samples as a quality. 

 

 

 

 



Chapter 4 Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair 
samples via cross-flow nanofiltrated amino acids 

 

60 

4.2.2 Sample preparation 

 

4.2.2.1 For bulk analyses 

 

Collagen was extracted from the bones following the Longin method (Longin 1971).  A 

NaOH-wash was introduced between the demineralization and hydrolisation step.   

Wool, silk and hair samples were pre-treated with hexane, acetone, ethanol, Milli-Q 

water (Merck Millipore, Belgium), 1%NaOH and 1% HCl as described in detail in Boudin 

et al.  for bulk 14C and stable isotope analysis (Boudin et al. 2011). The samples ‘OS2562’,  

‘Baldwin 43’ and ‘Baldwin 46’, ‘Ieper’ and ‘Beerlegem’ could only be pre-treated with 

solvents as they dissolved completely during the NaOH step. 

 

4.2.2.2 Cross-flow nanofiltrated amino acid analyses  

 

Pre-treated bulk samples underwent the following steps:  

1. hydrolysis was carried out on ca 15 - 50 mg material using 2 ml 6M HCl  in a 

sealed tube under nitrogen atmosphere at 110°C for 24 hours; 

2. the hydrolysate was filtrated over a 0.7 m glass fiber filter (Millipore 

APFF03700); 

3. the filtrate was diluted till 100 ml with Milli-Q water;  

4. cross-flow nanofiltration; 

5. freeze drying of the permeate; 

6. freeze dried permeate was dissolved in 1 ml Milli-Q water; 

7. l solution was transferred in a tin-cup and dried at 50°C for stable isotope 

and C:N analysis; 

8. the remaining solution was transferred into a quartz-tube with CuO and Ag and 

dried in a desiccator for combustion, then for graphite production and 

subsequent 14C analysis. 
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Figure 4.1 : Workflow for archaeological wool, silk, hair and bone collagen for  14C dating. 

 

I 

I Sample I 

Conventional pretreutment methods: 

I) Si/k!wool/hair: 
• Solvents (hexane, aceton, ethanol) and Milli-Q water in ultrasonic 

bath 
• 1% HCI, 1% NaOH, 1% HCI 

2) Bone: 
Collagen extraction: Longin metbod + NaOH-wash 

Quality control : 

Samples were categorized as uncontaminated: 
• Collagen: 

C:N ratio between 2.9 and 3.6 
• Keratin (hair/wool) : 

C:N ratio between 2.9 and 3.8 and negative 
fluorescence slope 

• Silk: 
C:N ratio between 2.9 and 3.4 and negative 
fluorescence slope 

Samples with a higher C:N than the upper boundary were 
defined as contaminated and with a positive fluorescence 
slope for silk and wool /hair. 
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4.2.3 Sample categorisation: uncontaminated or contaminated 

 

Spectrofluorescence analyses and C:N ratio determinations were carried out on pre-

treated bulk silk, wool and hair samples, listed in Table 3.1, to classify the samples as 

uncontaminated or contaminated. 

The C:N ratio of the bone collagen samples was measured to categorize the collagen 

sample as uncontaminated or contaminated (Table 4.1).  

The applied criteria to define uncontaminated archaeological samples were (Figure 4.1): 

1. collagen: C:N ratio between 2.9 and 3.6 (De Niro 1985; Ambrose 1990);   

2. wool and hair: C:N between 2.9 and 3.8 and a negative fluorescence slope 

(O’Connell and Hedges 1999a, 1999b, 2001; Boudin et al. 2011); 

3. silk: C:N between 2.9 and 3.4 and a negative fluorescence slope (Boudin et al. 

2011). This C:N range was based on our own analyses. 

Samples not fulfilling these conditions (i.e. higher C:N, positive fluorescence slope) were 

defined as contaminated. A higher C:N is the result of introduction of exogenous 

carbon-containing compounds (i.e. contamination).  

 

4.2.4 Design 

 

This study was designed to be undertaken in 3 phases: 

1. stable isotope (15 13C values) analyses were carried out on a series of 

uncontaminated archaeological samples in order to determine if contamination 

and/or isotope fractionation occurred during nanofiltration. These phenomena, 

contamination and fractionation, can influence and alter the stable isotope 

values.  

2. a series of uncontaminated archaeological samples were analyzed for 14C to verify 

if contamination occurred during cross-flow nanofiltration. 

3. stable isotope (15 13C values), C:N ratio determinations and 14C analyses of 

contaminated archaeological bulk samples and their permeate were performed. 

Comparing the bulk C:N with the C:N of the permeate provides information 

concerning the efficiency and specificity of the cross-flow nanofiltration and the 

obtained sample quality after nanofiltration. A C:N decrease indicates 

contaminant removal and if the C:N falls within the boundaries of 

uncontaminated samples, a more accurate 14C date should be obtained.  
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4.2.5 Methods 

 

4.2.5.1 Fluorescence spectroscopy 

 

Non-destructive fluorescence spectroscopy (Cary Eclipse, Varian, Belgium) analyses of 

the textile samples were carried out using a fiber-optic probe as described in 2.3.3. 

Therefore, the slope was calculated using a linear fit (least squares) to the curve 

between 465 and 475 nm. The fluorescence slope can be used as a qualitative indicator 

for the presence of HS:  

1. a negative slope indicates absence of HSs and consequently an uncontaminated 

sample; and 

a positive slope indicates the presence of HS and thus sample contamination. 

The method is described in detail in Boudin et al. (2011).   

 

4.2.5.2 Cross-flow nanofiltration 

 

An in-house developed filtration installation was set up using a stainless steel 

centrifugal pump (NPY-2251-MK, Speck Pumps, Belgium), Swagelock accessories 

(tubings, fittings, flexibles, Belgian Fluid System Technologies, Belgium) and a ceramic 

filter with a 200 Da MWCO (Inopor, Germany)). A pressure of 10 Bar (nitrogen) was 

applied in cross-flow mode. The centrifugal pump is required in cross-flow mode as a 

means to obtain a tangential feed flow.  

Used cross-flow velocity was 6.5 m/s. 

A filter with a MWCO of 200 Da was used in order to selectively collect amino acids in 

the permeate (MW of amino acids varies between 75.07 and 204.23 Da) and the HSs (MW 

of HSs varies between ca. 1000 and 300,000 Da) in the retentate (Stevenson 1982).  

The feed volume was 100 ml. The collected permeate volume amounted to 80-90 ml 

because a minimum feed volume must remain in the filtration installation to avoid  the 

pump stopping in cross-flow mode. This volume was minimum 10 ml. 

Cleaning of the filtration installation was carried out after every filtration sequence by 

consecutively rinsing with Milli-Q water (200 ml), 1%NaOH (300 ml) and finally three 

times with Milli-Q water (300, 200 and 200 ml). The pump was then disconnected from 

the system because some liquid always remains in the pump. The pump was emptied 

and rinsed several times with Milli-Q water, emptied again and finally connected again 

to the filtration setup. Finally, the filtration system was flushed (dried) with nitrogen 

gas. 
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4.2.5.3 Stable isotopes (13C and 15N) and C:N ratio  

 

Stable Isotope ratios (13C and 15N) values, C:N ratios were determined on the pre-

treated bulk samples and the permeate. 

Carbon and nitrogen stable isotope compositions were measured as the ratios of the 

heavier isotope to the lighter isotopes (13C/12C or 15N/14N) and are reported in delta () 

notation as parts per thousand (‰), where 13C or 15N = ([Rsample/Rstandard] - 1) × 

1000, and R is 13C/12C or 15N/14N,  relative to internationally defined standards for carbon 

(Vienna Pee Dee Belemnite, VPDB) and nitrogen (Ambient Inhalable Reservoir, AIR).  

Analyses were performed in duplicate on a Thermo Flash EA/HT elemental analyser, 

coupled to a Thermo DeltaV Advantage Isotope Ratio Mass Spectrometer via ConfloIV 

interface (all supplied by ThermoFisher Scientific, Bremen, Germany). Standards used 

were IAEA-N1, IAEA-C6, and internally calibrated acetanilide. 

The analytical precision was smaller than 0.25‰ for both 13C and 15N values, based on 

multiple measurements. 

 

4.2.5.4 14C dating 

 

The necessary sample size for a 14C analysis of cross-flow  nanofiltrated amino acids 

must be ca. 20% higher than for a bulk 14C analysis. The losses occur during hydrolysis 

(ca. 10%) and another 10% due to the minimum feed volume necessary in the filtration 

setup  to avoid the pump stopping. 

Dried samples were transferred into quartz tubes with CuO and Ag and combusted to 

CO2. Graphitization of CO2 was carried out using H2 over a Fe catalyst. Targets were 

prepared at the Royal Institute for Cultural Heritage in Brussels (Belgium) and 14C 

concentrations were measured with Accelerated Mass Spectrometry (AMS) at the 

Leibniz Labor für Altersbestimmung und Isotopenforschung in Kiel (Germany) (Van 

Strydonck and van der Borg 1990-1991; Nadeau et al.1998). The 14C results are expressed 

in pMC (percentage modern carbon) and indicate the percent of modern (1950) carbon 

corrected for fractionation using the 13C measurement. Calibrations of 14C dates and 2-

test (weighted mean) calculations were performed using OxCal 3 and the IntCal09 

calibration curve data (Bronk Ramsey 1995; 2001; Reimer et al. 2009).  

A 2-test was done to obtain a weighted mean (average 14C date) (Shennan 1988). An 

error message was generated if the confidence limits dropped below 5%. The value 

given for T is the 2-value calculated and the value given in brackets is the level above 

which T it should not rise (the degrees of freedom are given by df). 
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4.3 RESULTS AND DISCUSSION 

 

4.3.1 C:N ratio of silk 

  

Stable isotope values and C:N ratios of modern undyed, mordanted, non-mordanted and 

naturally dyed silk (all Bombyx mori) are listed in Table 4.2. 

The lowest C:N ratio was 2.9 and the highest 3.4. In this study archaeological silk 

samples, which fell in this range, were defined as uncontaminated. Silk samples with C:N 

ratios higher than 3.4 were classified as contaminated.  

The mordanting and dyeing process did not change the isotopic signature or the C:N 

ratio (Table 4.2).  

 

Table 4.2  : Stable isotope (13C and 15N values) and atomic C:N ratio analyses of modern 
undyed, mordanted, non-mordanted and naturally dyed silk (all Bombyx 
mori). 

Sample name 13C (‰) 15N (‰) atomic C:N 

Fuji silk fabric -26.0 3.9 3.2 

Fuji silk 19 fabric -26.1 4.3 3.4 

Silk michelle fabric -25.3 5.0 3.2 

Silk crepeline fabric -25.9 2.4 3.1 

Silk yarn A untreated -23.8 6.0 3.1 

Silk yarn B untreated -24.8 4.3 3.1 

Silk yarn B indigo -24.1 4.4 3.0 

Silk yarn B redwood-alum mordant -24.2 4.4 3.0 

Silk yarn C cochinea-alum mordant -24.0 5.4 3.0 

Silk yarn C indigo on silk -unmordanted -24.1 5.1 3.0 

Silk yarn C mordanted (alum+ cream of 

tartar) -24.1 5.4 3.0 

Silk yarn C dyer's greenweed-alum 

mordanted (with potash) -24.7 6.0 3.1 

Fabric untreated silk -26.2 2.3 2.9 

Fabric alum mordant silk-dyer's greenweed -26.2 2.3 3.1 

Average 

  

3.1 

Standard deviation 

  

0.1 
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4.3.2 Phase 1 analyses: Stable isotope analysis of uncontaminated 

samples 

 

The bulk and permeate stable isotope values of uncontaminated samples were in good 

agreement (Table 4.3). These results indicate that no isotope fractionation and/or 

contamination occurred during filtration.  

 

Table 4.3 : Stable isotope analysis (13C and 15N values) and atomic C:N ratio of 
uncontaminated wool, hair, silk and bone collagen samples before (bulk) and 
after (permeate) cross-flow nanofiltration. Fluorescence slope values for bulk 
silk, hair and wool samples. 

Sample name 13C (‰) 15N (‰) atomic C:N 

Fluorescence 

Slope 

  

COLLAGEN 

  MOO304  

    bulk -20.3 10.2 3.2 

 permeate -20.5 10.2 3.2 

 A243 nr 819 

    bulk -22.2 6.5 3.3 

 permeate -22.3 6.4 3.1 

 Gent V1B-S12-S4 

    bulk -20.1 9.6 3.1 

 permeate -20.0 9.8 3.1 

 Leffinge D50 

    bulk -21.5 6.4 3.1 

 permeate -21.4 6.4 3.1 

 Andorra UE1311 

    bulk -18.8 9.2 3.1 

 permeate -18.6 9.2 3.1 

 Italy 1 

    bulk -19.1 9.6 3.2 

 permeate -18.7 9.5 3.1 

 Entrée 4 

    bulk -20.5 4.8 3.2 

 permeate -20.4 4.7 3.3 

 Basel 11-2/20/22 

    bulk -19.8 6.6 3.2 

 permeate -19.7 6.6 3.2 
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Continued Table 4.3     

Sample name 13C (‰) 15N (‰) atomic C:N 

Fluorescence 

Slope 

Grijpskerke 

(oviscapra) 

    bulk -21.6 11.6 3.3 

 permeate -22.3 11.3 3.2 

 

  

SILK 

  Fuji Silk 

    bulk -26.0 3.9 3.1 -0.67 

permeate -25.9 3.9 3.1 

 Crepeline  

    bulk -25.9 2.4 3.1 -0.11 

permeate -25.7 2.4 3.1 

 

 

KERATIN (HAIR AND WOOL) 

 Emelgem sheep 

    bulk -26.5 8.1 3.7 -0.22 

permeate -26.5 7.7 3.4 

 North Ronaldsay 

sheep 

    bulk -16.9 9.8 3.5 -0.06 

permeate -16.4 9.8 3.5 

 E29479 

    bulk -16.3 9.3 3.7 -3.09 

permeate -16.4 9.5 3.6 

  

 

4.3.3 Phase 2 analyses: 14C  analysis of uncontaminated samples 

 

There is a good agreement between the 14C date of the bulk and of the permeate of the 

uncontaminated samples. Their weighted mean (average 14C date) are calculated 

applying the 2-test.  The weighted mean of every uncontaminated sample was in 

agreement with the presumed historical date. (Tables 4.1 and 4.4). This indicates that no 
14C contamination occurred during filtration.  
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Table 4.4 : Laboratory code, radiocarbon ages (BP), calibrated ages (2 ), 2-test and 
atomic C:N ratio of uncontaminated wool, hair, silk and bone collagen 
samples before (bulk) and after (permeate) cross-flow nanofiltration. 
Fluorescence slope values for bulk silk, hair and wool samples. (n.a.: not 
analysed) 

 

Sample name Lab-code 

14C  age 

(BP) Calibrated age (2 ) 

2-test 

(Pass/Fail) 

atomic 

C:N 

Fluorescence 

Slope 

   

COLLAGEN 

   MOO304  

      bulk KIA-44329 945±25 AD1020 (95.4%) 1160 

 

3.2 

 permeate KIA-45494 950±25 AD1020 (95.4%) 1160 

 

3.2 

 Average (weighted) 

 

948±18 AD1020 (95.4%) 1160 Pass 

  

       Grijpskerke (oviscapra) 

     bulk KIA-39616 2200±25 370 (95.4%) 190BC 

 

3.3 

 permeate KIA-46102 2195±25 370 (95.4%) 180BC 

 

3.2 

 Average (weighted) 

 

2198±18 360BC (95.4%) 190BC Pass 

  

       A243 nr 819 

      bulk KIA-42342 1265±30 AD660 (93.1%) 830 

 

3.3 

 

   

AD840 ( 2.3%) 860 

   permeate KIA-46382 1345±30 AD640 (85.2%) 720 

 

3.1 

 

   

AD740 (10.2%) 770 

   Average (weighted) 

 

1305±21 AD660 (95.4%) 780 Pass 

  

       Beerse nr.199 

      bulk KIA-41892 1125±25 AD860 (95.4%) 990 

 

3.4 

 permeate KIA-46806 1060±25 AD890 (13.1%) 920 

 

n.a. 

 

   

AD940 (82.3%) 1030 

   Average (weighted) 

 

1093±18 AD890 (95.4%) 995 Pass 

  

       

   

SILK 

   DM1923-01 

      bulk KIA-42113 1220±35 AD680 (95.4%) 890 

 

3.1 -0.66 

permeate KIA-46101 1180±25 AD770 (90.8%) 900 

 

n.a. 

 

   

AD920 ( 4.6%) 950 

   Average (weighted) 

 

1194±25 AD720 ( 1.7%) 740 Pass 

  

   

AD770 (93.7%) 900 
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Continued Table 4.4 

     

Sample name Lab-code 

14C  age 

(BP) Calibrated age (2 ) 

2-test 

(Pass/Fail) 

atomic 

C:N 

Fluorescence 

Slope 

  KERATIN (HAIR AND WOOL)   

E29479 

      bulk KIA-42363 1555±30 AD420 (95.4%) 580 

 

3.6 -3.09 

permeate KIA-46192 1475±30 AD540 (95.4%) 645 

 

3.6 

 Average (weighted) 

 

1515±30 AD430 (95.4%) 620 Pass 

  

       BM53912 

      bulk KIA-45788 1815±25 AD120 (94.2%) 260 

 

n.a. n.a. 

   

AD300 ( 1.2%) 320 

   permeate KIA-46194 1810±20 AD130 (95.4%) 260 

 

n.a. 

 Average (weighted) 

 

1812±19 AD130 (95.4%) 250 Pass 

                

 

 

4.3.4 Phase 3 analyses: Stable isotope analysis and 14C analysis of 

contaminated samples 

 
14C analyses were carried out on a series of contaminated samples (Tables 4.5, 4.6 and 

4.7). The permeate C:N ratio was always lower than the bulk C:N ratio, which indicates 

contaminant removal and thus improved sample quality for 14C dating after cross-flow 

nanofiltration. However, not all permeate C:N ratios were within the C:N boundaries of 

uncontaminated samples and thus unreliable 14C data are expected. 

 

 

4.3.4.1 Contaminated wool and hair  

 

Table 4.5 lists the results of contaminated wool and hair samples. The bulk C:N ratios of 

the wool and hair samples indicate contamination, except for ‘Radbot hair’. The positive 

fluorescence slope of all samples confirms this and signifies that the samples are 

contaminated with HSs. The HS contamination is also proven by 13C enrichment of the 

permeate relative to the bulk, except for ‘Beerlegem’, because peat HSs have 13C values 

around -27 ‰ which is more negative than wool and hair 13C values. However, 15N 

enrichment occurred for ‘Beerlegem’ after cross-flow nanofiltration. This could also be 

due to HS contamination, as confirmed by the positive fluorescence slope. Indeed the 
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15N values of peat HS are around 0‰ and thus more negative than wool and hair 15N 

value (Kract and Gleixner 2000; Francioso et al. 2005). Therefore, the 14C dates of all the 

bulk samples, except for ‘Radbot hair’, are considered as unreliable. This is also 

supported by the presumed historical dates, which are not in agreement with the 

calibrated 14C dates (Table 4.5).  

 

Table 4.5 : Laboratory code, radiocarbon ages (BP), calibrated ages (2 ), presumed historical date, 

stable isotope values ( 13C and 15N) and atomic C:N ratio of contaminated wool and hair  

samples before (bulk) and after (permeate) cross-flow nanofiltration. Fluorescence 

slope values for bulk hair and wool samples. (n.a.: not analysed) 

 

Sample 

name Lab-code 

14C age 

(BP) Calibrated age (2 ) 

13C 

(‰) 

15N 

(‰) 

atomic 

C:N 

Fluorescence 

Slope 

Presumed 

historical 

date 

Beerlegem 

       

 

bulk KIA-42365 1705±30 AD250 (95.4%) 410 -23.2 4.5 3.9 9.89 AD587 

permeate KIA-46083 1510±25 AD430 (10.3%) 490 -23.3 5.6 3.4 

 

 

   

AD530 (85.1%) 620 

    

 

OS2562 

       

 

bulk n.a. n.a. 

 

n.a. n.a. n.a. 2.15 AD319-380 

permeate KIA-46100 1750±25 AD230 (95.4%) 390 n.a. n.a. n.a. 

 

 

        

 

Mainz 2 

       

 

bulk KIA-41535 2075±25 180 (95.4%) 30BC -23.4 5.3 4.0 2.97 5BC 

permeate KIA-46193 2005±20 50BC (95.4%) 55AD -21.9 5.1 3.5 

 

 

        

 

Mainz 5 

       

 

bulk KIA-37616 2080±30 200 (94.3%) 20BC -24.5 8.8 4.0 1.98 5BC 

   

10BC ( 1.1%) AD 

    

 

permeate KIA-47417 1915±35 AD (92.8%) 180 -22.7 8.5 3.5 

 

 

   

AD 190 ( 2.6%) 220 

    

 

Radbot 

hair 

       

 

bulk KIA-46953 1025±25 AD 970 (95.4%) 1040 -21.6 12.8 3.8 0.25 AD1098 

permeate KIA-46955 1040±20 AD 970 (95.4%) 1025 -20.3 12.8 3.4 

 

 

Average 

(weighted) 

 

1034±16 AD 985 (95.4%) 1025 

    

 

        

 

Ieper 

       

 

bulk KIA-43347 750±25 AD 1220 (95.4%) 1285 -26.1 12.2 43.3 3.00 

AD1200-

1300 

permeate n.a. n.a. 

 

-24.2 n.a. 4.1 
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The 14C dates of the permeate of ‘Beerlegem’, ‘OS2562’, ‘Mainz 2’ and ‘Mainz 4’ are 

considered as reliable because the permeate C:N ratio falls within the specified C:N 

boundaries for uncontaminated wool and hair. The calibrated 14C dates also correspond 

with the presumed historical dates (Table 4.5) (Roosens 1977; Bohme-Schonberger and 

Mitschke 2005, Vanhoutte et al. 2009). 

The permeate C:N ratio of ‘Ieper’ was still out of the C:N range of uncontaminated 

samples (Table 4.5) and should result in an unreliable 14C date. However, the permeate of 

‘Ieper’ could not be 14C dated because the carbon yield after combustion was too low to 

graphitize.   

The bulk C:N ratio of ‘Radbot hair’ (=3.8)  indicates an uncontaminated  sample, while 

the positive fluorescence slope indicates HS contamination. Moreover, HS 

contamination is also proven by the 13C  enrichment of permeate relative to the bulk 

sample. The 14C dates of the bulk and the permeate are in accord and an average can be 

calculated (Table 4.5). The possible HS contamination can be explained by in situ 

humification where hair organic matter (predominantly keratin) generates HSs through 

the Maillard reaction (Maillard 1913; Van Klinken and Hedges 1995). The average 14C 

date is too old compared to the historical date (1098AD) but stable isotope analysis 

suggests that freshwater fish was an important part of this individual’s diet (Brulet et al. 

2012). A reservoir effect for freshwater organisms could thus explain the anomaly in the 
14C date and will be discussed  further in this paper using the results of bone collagen, 

extracted from the skull of the ‘Radbot’ sample (Table 4.5).  

 

4.3.4.2 Contaminated silk 

 

 

Two contaminated silk samples were analyzed (Table 4.6). The C:N ratio and positive 

fluorescence slope indicate contaminated bulk samples and the fluorescence slope 

suggests HS contamination. The HS contamination is also confirmed by 13C  enrichment 

of permeate compared to the bulk for both samples.  

The bulk 14C dates of both samples are therefore considered unreliable. 

The permeate 14C dates of both silk samples are considered as reliable because the C:N 

ratio of the permeate falls within the specified C:N boundaries for uncontaminated silk. 

However, the bulk and permeate 14C dates of ‘Baldwin 43’ are statistically not different, 

applying the 2-test (2-Test: df=1 T=0.5(5% 3.8)). The possible HS contamination can be 

explained by in situ humification. 

The permeate 14C dates of both silk samples are too old compared to the presumed 

historical date (AD 1068) (Brulet et al. 2012). However, previous research has shown that 
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in several cases (parts of) textiles were re-used and this may explain the older 14C dates 

of the permeate compared with the presumed historical date (Bénazeth et al. 2006). 

 

 

Table 4.6 : Laboratory code, radiocarbon ages (BP), calibrated ages (2 ), presumed historical 

date, stable isotope values (13C and 15N) and atomic C:N ratio of contaminated silk 

samples before (bulk) and after (permeate) cross-flow nanofiltration. Fluorescence 

slope values for bulk silk samples. (n.a.: not analysed) 

 

 

Sample 

name Lab-code 

14C age 

(BP) Calibrated age (2 ) 

13C 

(‰) 

15N 

(‰) 

atomic 

C:N 

Fluorescence 

Slope 

Presumed 

historical 

date 

Baldwin 46 

       

 

bulk KIA-47415 1260±30 AD 660 (91.9%) 830 -24.9 6.3 3.6 2.62 AD1068 

   

AD 840 ( 3.5%) 870 

    

 

permeate KIA-47418 1175±30 AD 770 (83.1%) 900 -24.1 6.1 2.9 

 

 

   

AD 910 (12.3%) 970 

    

 

        

 

Baldwin 43 

       

 

bulk KIA-47414 1210±30 AD 690 (12.2%) 750 -24.5 6.8 3.7 2.07 AD1068A 

   

AD 760 (83.2%) 900 

    

 

        

 

permeate KIA-47811 1180±30 AD 770 (86.0%) 900 -23.5 6.2 2.9 

 

 

   

AD910 ( 9.4%) 970 

    

 

                 

 

 

 

4.3.4.3 Contaminated bone collagen 

Table 4.7 depicts the results of contaminated bone collagen. The bulk C:N ratio of the 

bone collagen samples indicates contamination, except for ‘Radbot skull fragment B’ 

and ‘KK316 skull’. These two samples yielded uncontaminated collagen  and were used 

as a reference sample to evaluate the isotopic data of the permeates of ‘Radbot skull 

fragment A’ and ‘KK316 sponge extraction B’. 

The bulk 14C results of the contaminated bone collagen samples are considered as 

unreliable due to an elevated C:N ratio, not falling in the specified C:N range for 

uncontaminated bone collagen (Table 4.7). 
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Table 4.7 : Laboratory code, radiocarbon ages (BP), calibrated ages (2 ), presumed 

historical date, stable isotope values (13C and 15N) and atomic C:N ratio of 
contaminated bone collagen samples before (bulk) and after (permeate) cross-
flow nanofiltration. Bone samples yielding uncontaminated collagen and used 
as a reference sample to evaluate the isotopic data of bulk and permeate of 
contaminated collagen, extracted from the same skeleton, are depicted in 
bold italic. (n.a.: not analysed) 

Sample name Lab-code 

14C age 

(BP) Calibrated age (2 ) 

13C 

(‰) 

15N 

(‰) 

atomic 

C:N 

Presumed 

historical 

date 

Radbot skull fragment A 

      

 

bulk KIA-46954 1165±25 AD 770 (77.4%) 900 -20.4 13.7 3.7 AD1098 

   

AD 910 (18.0%) 970 

   

 

permeate KIA-46957 1025±25 AD 970 (95.4%) 1040 -19.9 14.2 3.4  

Radbot skull fragment B 

      

 

bulk KIA-47968 995±25 AD 980 (70.4%) 1050 -20.4 14.5 3.6 AD1098 

 

   

 

AD1080 (25.0%) 1160 

   

 

KK 316 sponge 

extraction A 

      

 

bulk KIA-47810 525±35 AD 1310 (20.1%) 1360 -22.3 11.4 4.4 AD900-1400 

   

AD 1380 (75.3%) 1450 

   

 

permeate KIA-47815 490±25 AD1410 (95.4%) 1445 -21.6 11.3 3.7  

KK 316 sponge 

extraction B 

      

 

bulk n.a. n.a. n.a. -21.2 11.7 3.7 AD900-1400 

permeate KIA-48201 610±30 AD 1290 (95.4%) 1410 -20.8 11.6 3.3  

KK 316 skull 

      

 

bulk KIA-47809 655±35 AD 1270 (45.7%) 1330 -20.8 11.5 3.2  

   

AD 1340 (49.7%) 1400 

   

 

Baldwin femur 

      

 

bulk KIA-47421 1510±30 AD 430 (14.9%) 490 -19.7 15.0 3.9 AD1068 

   

AD 500 (80.5%) 630 

   

 

permeate KIA-47423 1080±30 AD 890 (95.4%) 1020 -20.4 15.0 3.4  

Baldwin skull 

      

 

bulk KIA-47420 1185±30 AD 720 (1.9%) 740 -19.5 16.6 4.8 AD1068 

   

AD 770 (87.7%) 900 

   

 

   

AD 910 (5.8%) 950 

   

 

permeate KIA-47422 930±30 AD 1020 (95.4%) 1170 -19.2 16.5 3.9  

Beerse 58 

      

 

bulk KIA-41894 1065±25 AD 890 (16.1%) 920 -21.5 11.1 4 AD700-1300 

   

AD 940 (79.3%) 1020 

   

 

permeate 

KIA-

47035 800±20 AD1210 (95.4%) 1270 n.a. n.a. 3.2 
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Radbot 

 

Cross-flow nanofiltration of the hydrolysate of ‘Radbot skull fragment A’ resulted in a 

C:N decrease (Table 4.7). A more accurate 14C date should be obtained with this C:N ratio. 

Good agreement between the 14C date of the permeate of the contaminated collagen of 

‘Radbot skull fragment A’ and the bulk 14C date of the uncontaminated collagen of 

reference sample ‘Radbot skull fragment B’ was observed (a weighted mean can be 

calculated: 1010±18BP, 2-Test: df=1 T=0.7(5% 3.8)). The calibrated 14C date is too old, 

however, compared with the presumed historical date (AD 1098) (Brulet et al. 2012).  

Stable isotope (13C and 15N) ratios indicate that freshwater fish was part of the diet, 

which provokes a reservoir effect on the 14C date, explaining the too old 14C date  (Table 

4.7): 

 the elevated 15N value indicates aquatic (marine or freshwater) food 

consumption but cannot distinguish marine from freshwater; the negative 13C 

value indicates freshwater fish consumption mixed with terrestrial food while 

marine food have a more  positive 13C value and thus can be excluded here 

(Lanting and van der Plicht 1996; Lanting and van der Plicht 1998; Cook et al. 

2001; Cook et al. 2002;); stable isotope comparison of ‘Radbot’ with the Belgian 

medieval human bones indicates a difference in diet between ‘Radbot’ and the 

Belgian medieval individuals because freshwater fish was a part of Radbot’s diet 

(Figure 4.2).   

 

Figure 4.2 : Stable isotope data (13C and 15N) from Radbot and Baldwin compared with 
(unpublished) measurements from medieval animal (n=115) and human 
(n=253) bones (n: number of analyzed samples). 



Chapter 4 Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair 
samples via cross-flow nanofiltrated amino acids 

 

75 

 

KK316 

 

Two collagen extractions were carried out on selected spongeous bone parts of skeleton 

‘KK316’. The collagen of sample ‘KK316 sponge extraction A’ is more contaminated, 

shown by a higher C:N ratio than for the collagen of sample ‘KK316 sponge extraction B’ 

(Table 4.7).  

Cross-flow nanofiltration of the hydrolysates of both collagen samples resulted in a 

decrease in C:N ratio.  

However, the permeate C:N ratio of sample ‘KK316 sponge extraction A’ falls outside the 

C:N boundaries of uncontaminated collagen. The contaminant is probably HSs, indicated 

by higher 13C value of the than of the bulk sample. The permeate 13C is, however, still 

more negative than the bulk 13C value of the uncontaminated collagen of reference 

sample ‘KK316 skull’, indicating that not all the HSs were removed during 

nanofiltration. This, therefore, also resulted in an unreliable 14C date which is younger 

than the reliable bulk 14C date of ‘KK316 skull’. Maybe double cross-flow nanofiltration 

might be the solution to obtain a lower C:N ratio and consequently a more accurate 14C 

date.  

The permeate C:N ratio of sample ‘KK316 sponge extraction B’ is within the C:N 

boundaries of uncontaminated collagen. The 13C value and 14C date of permeate are in 

good agreement with 13C and 14C bulk values of reference sample ‘KK316 skull’. The 

calibrated 14C date is also in agreement with the presumed historical date (AD 900-1400) 

(Vermeulen et al. 1993).  

 

Baldwin 

 

Cross-flow nanofiltration of the hydrolysates of the samples ‘Baldwin femur’ and 

‘Baldwin skull” resulted in a C:N decrease comparedwith the bulk C:N. 

The permeate C:N ratio of the ‘Baldwin skull’ is out of the C:N range for uncontaminated 

bone collagen and consequently an unreliable 14C date is obtained. The permeate C:N 

ratio of ‘Baldwin femur’ falls within this C:N range and results in a reliable 14C date. 

However, the calibrated 14C date is too old relative to the presumed historical date (AD 

1068) (Brulet et al. 2012). However, stable isotope values indicate that freshwater fish 

was part of the diet, which provokes a reservoir effect on the 14C date (Table 4.7 and 

Figure 4.2). 
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Beerse 58 

 

The sample ‘Beerse 58’ showed after nanofiltration a C:N ratio within the range for 

uncontaminated collagen. The obtained 14C date of the permeate of ‘Beerse 58’ is in 

agreement with the presumed historical date (AD 700-1300) (Table 4.7).  

 

4.4 CONCLUSION 

 

Cross-flow nanofiltration of hydrolysed contaminated protein-containing samples e.g. 

bone collagen, hair, wool and silk, decreases the C:N ratio which indicates contaminant 

removal and improvement of the sample quality for 14C dating. If the C:N ratio of the 

permeate falls within  the boundaries of uncontaminated samples, more accurate 14C 

dates are obtained. 

In some cases, single cross-flow filtration may not be sufficient to obtain a C:N ratio 

within the boundaries of uncontaminated samples. Double cross-flow nanofiltration 

might be the solution and will be further investigated. 

Cross-flow nanofiltration is a quick and non-labor intensive technique and can easily be 

implemented in any 14C laboratory for routine sample pre-treatment analyses. 
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amino acids derived from bone collagen, silk and 

hair: The case study of the bishops Baldwin I and 

Radbot II from Noyon-Tournai. 
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mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived 

from bone collagen, silk andhair: The case study of the bishops Baldwin I and Radbot II  

from Noyon-Tournai. Radiocarbon 56(2) : 603-617. 
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5.1 ABSTRACT 

 

Excavations in the cathedral of Tournai revealed two sepultures which were assigned by 

the excavators to bishops because of the special location in the cathedral. 

One burial was assigned to Baldwin I, who died in AD 1068, because: 

1. a ring with the inscription “BAL” was found; 

2. a funeral stone with text was present on top of the grave mentioning the name 

“Baldewinus”. 

The second burial probably belongs to Radbot II who was the successor of Baldwin I and 

died in AD 1098.  

 

Both burials contained textiles (silk), the skeleton, and a wooden pastoral staff. Human 

hair was still present on the skull of what was presumed to be Radbot II. 

All the protein-containing materials were degraded and/or contaminated. Standard 

sample pre-treatment methods were not able to remove all the contaminants 

demonstrated by quality assessment. 

Single and double cross-flow nanofiltration of the hydrolysed protein-containing 

materials were performed. The sample quality for 14C dating was improved and 14C data 

revealed interesting and surprising results: 

1. The 14C dates of the wooden pastoral staff and permeate ‘Femur’ confirm that the 

skeleton and tomb may belong to bishop Baldwin I.  

2. The 14C dates of ‘Hair ’ and permeate‘Skull’ indicate that the skeleton may indeed 

belong to bishop Radbot II. The younger 14C dates of the wooden pastoral staff 

and silk samples indicate a post-burial disturbance of the site burial during the 

12th -13th century. 
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5.2 INTRODUCTION 

 

Tournai Cathedral is one of Belgium’s heritage sites and was listed in 2000 as a UNESCO 

World Heritage site. A team of CRAN (Centre de recherche d’archéologie nationale) of 

Université Catholique de Louvain (Belgium) excavated in the cathedral and its 

surroundings between 1996 and 2010 in order to understand the configuration of the 

monuments that preceded the present cathedral (Brulet et al. 2012a). The 12th century 

cathedral was preceded by a fairly large 11th century cathedral, a smaller Carolingian 

church and by a basilica from the beginning of the Early Middle Ages.   

The complete plan of the 11th century cathedral could be reconstructed; it was the first 

cathedral whose existence was attested in the written sources. In that church, a flight of 

stairs gave access to the split-level choir. At the foot of the second flight of steps, the 

intact tombs of two 11th century bishops were excavated: Baldwin I (year of death: AD 

1068) and probably Radbot II (year of death: AD 1098) (Brulet et al. 2012 a, b). This was 

quite surprising because normally the bishops of Noyon-Tournai were buried in Noyon 

(France) before the autonomy of the diocese of Tournai in AD 1146. Both tombs 

contained textiles (silk), the skeleton, a wooden pastoral staff and human hair was still 

present on the skull of Radbot II. The wooden pastoral staff is a symbol of the pastoral 

care of the bishop for the faithful and was added to the tomb of bishops during the 

middle ages (den Hartog 2012). 

The aim of this research was to verify whether the skeletons could be assigned to 

Baldwin I and Radbot II. This study presents the results of the analysis of protein-

containing samples after standard pre-treatment as well as after hydrolysis into amino 

acids and cross-flow nanofiltration. Cross-flow nanofiltration of the hydrolysed protein 

leads to more accurate 14C results, as described in Boudin et al. (2013b).  
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5.3 MATERIALS AND METHODS  

 

5.3.1 Sample selection 

 

Table 5.1 lists the bone, hair and silk samples for analyses derived from the burials of 

Baldwin I and Radbot II, chosen to represent different preservation states. The table also 

refers to our sampling of the wooden pastoral staff, probably a branch or young tree 

which excludes an old-wood effect. 

 

 

Table 5.1 : Samples derived from the burials of Baldwin I and Radbot II , chosen to 
represent different preservation states, in order to determine if the skeletons 
can belong to Baldwin I and Radbot II. 

 

                                   Sample name 

Analysed material Baldwin (AD 1068)  Radbot II (AD 1098) 

   HAIR (Keratin) 

 

Hair 

   BONE COLLAGEN Skull Skull fragment A 

 

Femur Skull fragment B 

  

Bone 80 Tibia 

   SILK 43A 20 

 

43B 22 

 

46 49 

   WOOD Wooden pastoral staff Wooden pastoral staff  

 

 species: Prunus species: probably Ligustrum vulgare 
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5.3.2 Sample preparation 

 

5.3.2.1 Bulk analyses 

 

Collagen was extracted from the bones following the Longin method (Longin 1971). A 1 

%NaOH-wash was introduced between the demineralization and hydrolisation step for 

15 minutes.  

The hair sample was pre-treated with hexane, acetone, ethanol, Milli-Q water (Merck 

Millipore, Belgium), 1%NaOH and 1% HCl as described in detail in Boudin et al. (2011) for 

bulk 14C and stable isotope analysis.  

All silk samples could only be pre-treated with hexane, acetone, ethanol, Milli-Q water 

(Merck Millipore, Belgium) as they dissolved completely during the NaOH step. 

 

Extracted bone collagen, pre-treated hair and silk samples will be referred as bulk in this 

paper. 

 

The wood samples underwent AAA (acid-alkali-acid) treatment by using 1%  HCl and 

1%NaOH in 1 hour washes at 90°C. 

 

 

5.3.2.2 Treatment for cross-flow nanofiltrated amino acid analyses 

 

The in house developed filtration installation and the used protocol are described in  

4.2.5.2. and in Boudin et al. (2013b). 

A ceramic filter with a cutoff of 200 Dalton was used in order to selectively collect amino 

acids in the permeate of hydrolysed protein samples and the HSs in the retentate. This 

filter should theoretically retain 90% of > 200 Dalton sized molecules by a single cross-

flow nanofiltration. Performing a second cross-flow nanofiltration of permeate (double 

cross-flow nanofiltration) should increase the retention of contaminants. Consequently, 

a better C:N ratio should be obtained and a more accurate 14C date. 

 

For cross-flow nanofiltrated amino acid analyses the pre-treated bulk samples 

underwent the steps described in 4.2.2.2.  
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5.3.3 Sample quality assessment  

 

5.3.3.1 Stable isotopes (13C and 15N), %C, %N and C:N ratio  

 

Stable Isotopes (13C and 15N), C:N ratio analyses were done on the pre-treated bulk 

samples and the permeate of the hydrolysed protein sample as described in 4.2.5.3. %C 

and %N were determined from the pre-treated bulk samples.  

 

5.3.3.2 Fluorescence spectroscopy 

 

Non-destructive fluorescence spectroscopy (Cary Eclipse, Varian, Belgium) analyses of 

the textile samples were carried out using a fiber optic probe as described in 2.3.3.  

The fluorescence slope can be used as a qualitative indicator for HS presence:  

 

1. Negative slopes indicate HS absence and consequently an uncontaminated 

sample; 

2. Positive slopes indicate HS presence indicating, sample contamination. 

The method is described in detail in Boudin et al. (2011).   

 

5.3.3.3 Classification of uncontaminated vs. contaminated 

 

Spectrofluorescence analyses and C:N ratio determinations were obtained on pre-

treated bulk silk and hair samples to classify the samples as uncontaminated or 

contaminated. 

The C:N ratio of the bone collagen samples was used to classify the collagen samples as 

uncontaminated or contaminated.  

The applied criteria to define uncontaminated archaeological samples were as follows: 

1. Collagen: C:N ratio between 2.9 and 3.6 (De Niro 1985; Ambrose 1990);   

2. Wool and hair: C:N between 2.9 and 3.8 and a negative fluorescence slope (Boudin 

et al. 2011; O’Connell and Hedges 1999a; O’Connell and Hedges 1999b; O’Connell 

et al. 2001); 

3. Silk: C:N between 2.9 and 3.4 and a negative fluorescence slope (Boudin et al. 

2011; Boudin et al. 2013). 
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Samples not fulfilling these conditions were defined as contaminated. A higher C:N is 

the result of introduction of exogenous carbon-containing compounds (i.e. 

contamination).  

 

5.3.3.4 Classification of well-preserved vs. poorly preserved (degraded) 

 

The amount of carbon and nitrogen present in the bulk sample (bone gelatin, hair or 

silk) in relation to the bulk weight was determined and will be referred to as carbon and 

nitrogen weight proportion in percent (%C and %N). These two quality indicators 

provide information on protein degradation. A higher %C than the average %C of 

modern bulk may indicate contamination. 

The %C and %N of modern un-dyed, mordanted, non-mordanted and naturally dyed silk 

(n=14, all Bombyx mori) were determined, as there were no data available in the 

literature and were 44.3±2.6 and 16.7±0.7 respectively. 

Ambrose (1990) cites a collagen weight %C and %N range for modern bone and tooth 

between 15.3% to 47% and 5.5 to 17.3% for C and N, respectively.  

Hair protein contains circa 45 %C and 15 %N (Benfer et  al. 1978). 

e amount of extracted collagen (gelatin) in relation to the weight of the whole bone 

sample will be referred to as collagen weight proportion in percent (%Collagen). The 

%Collagen is a quality indicator for collagen preservation. The threshold used in our 

laboratory is 2% and bones containing less than 2%Collagen are considered as poorly 

preserved. 

 

5.3.4 14C dating 

 

Samples (e.g. collagen, silk and hair) were prepared for 14C dating as described in 4.2.5.4. 
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5.4 RESULTS AND DISCUSSION 

 

5.4.1  Baldwin I 

 

Table 5.2 lists the results of the analyses of the samples from the burial of Baldwin I. 

Table 5.2 : Laboratory codes , 14C ages (BP), calibrated ages (2), stable isotopes (13C 

and 15N) , C:N before (bulk) and after cross-flow nanofiltration (permeate), 
%C, %N, %Collagen and fluorescence slope (Fo Slope) values of samples 
derived from Baldwin I’s burial’ (presumed historical date : AD 1068). 

Sample 

name Lab-code 

14C age 

(BP) Calibrated age (2) 

13C 

(‰) 

15N 

(‰) 

atomic 

C:N %C %N 

Collagen 

yield (%) 

Fo 

Slope 

   

BONE COLLAGEN 

       Skull 

          bulk  KIA-47420 1185±30 AD 720 ( 1.9%) 740 -19.5 16.6 4.8 14.0 3.4 0.55 

 

   

AD 770 (87.7%) 900 

       

   

AD 910 ( 5.8%) 950 

       permeate KIA-47422 930±30 AD 1020(95.4%)1170 -19.2 16.4 3.9     

Femur 

          bulk  KIA-47421 1510±30 AD 430 (14.9%) 490 -19.7 15.0 3.8 15.2 4.7 0.71 

 

   

AD 500 (80.5%) 630 

       permeate KIA-47423 1080±30 AD890 (95.4%) 1020 -20.4 15.0 3.4     

 
  

SILK 

       43A 

          bulk 

 

n.a. 

 

-25.9 7.5 3.8 45.2 13.9 

 

2.33 

permeate KIA-47419 1305±30 AD 650 (95.4%) 780 -24.9 6.6 3.0 

    43B 

          bulk KIA-47414 1210±30 AD 690 (12.2%) 750 -24.5 6.8 3.7 45.6 14.4 

 

2.07 

   

760AD(83.2%)900AD 

       permeate KIA-47811 1180±30 AD 770 (86.0%) 900 -23.5 6.2 2.9 

    

   

AD 910 ( 9.4%) 970 

       46 

          bulk KIA-47415 1260±30 660 (91.9%) 830AD -24.9 6.3 3.6 42.4 13.9 

 

2.62 

   

AD 840 ( 3.5%) 870 

       permeate KIA-47418 1175±30 AD 770 (83.1%) 900 -24.1 6.1 2.9 

    

   

AD 910 (12.3%) 970 

       

   

WOOD 

       Wooden 

pastoral 

staff KIA-47416 1010±30 AD 960 (95.4%) 1160 
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5.4.1.1 Bone collagen 

 

The %C, %N and %Collagen of the bulk (collagen) samples indicate degradation 

(diagenetic alteration or breakdown) while introduction of exogenous carbon-

containing compounds (contamination) is observed from their C:N ratio (Table 5.2). 

The permeate C:N ratio of sample ‘Skull’ was not within the C:N boundaries of 

uncontaminated samples, hence an unreliable 14C date is obtained (Table 5.2). On the 

other hand, the permeate C:N of ‘Femur’ falls with the desired C:N range and results in a 

more accurate 14C date (Table 5.2).  

However, the calibrated 14C date (AD 890 (95.4%) 1020) of sample ‘Femur’ is too old 

compared to the presumed historical date (AD 1068) (Brulet et al. 2012b). The stable 

isotope values (13 15N) indicate that freshwater fish was part of the diet, which 

provokes a reservoir effect on the 14C date, explaining the too old 14C date  (Table 5.2):  

1.  15N indicates aquatic (marine or freshwater) food consumption but 

can not distinguish marine from freshwater;  

2. 13C indicates freshwater fish consumption mixed with terrestrial food 

13C and thus can be excluded here 

(Lanting and van der Plicht 1996; Lanting and van der Plicht 1998; Cook et al. 

2001; Cook et al. 2002). 
  

Stable isotope values of ‘Femur’ permeate compared to the average values of Belgian 

medieval human bones indicates a diet enriched in freshwater fish above that of 

individuals who likely ate a mainly vegetable and terrestrial animal diet. In Figure 5.1, 

 13  15N for animal and human bones from a Belgian medieval context 

(Ervynck et al. 2014) which indicate human diet unaffected by fish consumption. 

Elevated 15N values for both Baldwin I and Radbot II samples seem to indicate a 

significant contribution of freshwater fish to their diet (Figure 5.1).  

 

Strikingly, stable isotopes of permeate of Baldwin I’s femur are almost equal to 

Waldetrudis’ stable isotopes (Table 5.3 and Figure 5.1). Waldetrudis, and her husband, 

Vincentius, are known as 7th century AD promoters of the Christian faith and became 

saints shortly after their death (Deveseleer 1999; Deveseleer 2001). The published 14C 

date for Vincentius coincides with the historical context for this saint (Deveseleer 1999; 

Deveseleer 2001, Van Strydonck et al. 2009) and his stable isotope values indicate a 

mixed diet of terrestrial plant and animal products (Müldner 2009), while the 14C date 

for Waldetrudis, who is known to have died around the same date as her husband, was 
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significantly older than expected (5th–6th century AD) (Van Strydonck et al. 2009) but 

which could be explained by a freshwater reservoir effect suggested by the stable 

isotope values (Table 5.3 and Figure 5.1). At first sight, the difference in diet between 

wife and husband might seem surprising, but historical records indicate that both 

persons ended their lives staying in 2 (separate) monasteries (Deveseleer 1999; 

Deveseleer 2001), in which food habits or rules could well have been rather different 

(Van Strydonck et al. 2009).   

Tournai is located next to the river Scheldt and Soignies, the city of Vincentius and 

Waldetrudis, is situated on the river Senne. The Senne is an affluent of the river Dyle, 

while the Dyle is an affluent of the Scheldt. It is therefore highly probable that a similar 

reservoir effect was present in these two rivers. A reservoir correction was done on the 
14C date of the permeate of Baldwin I’s femur applying a simple linear relationship 

between  13C or  15N and the calculated age offset between the 14C dates of Vincentius 

and Waldetridus (Table 5.3) (Cook et al. 2001). For the permeate from Baldwin I’s femur 

the corrected 14C age determined with 13C is in accord with the corrected 14C age 

determined with 15N and their calibrated ages correspond with the presumed 

historical date (AD 1068) (Table 5.3). 

 
 

Figure 5.1 : Stable isotope data (13C and 15N) from Radbot II, Baldwin I, Bone 80 Tibia 
derived from Radbot II’s burial and Vincentius, Waldetrudis compared with 
measurements from medieval animal (n=107) and human (n=234) bones (n: 
number of analyzed samples) (Ervynck et al. 2014). 
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Table 5.3 : Laboratory codes , uncorrected and freshwater reservoir corrected14C ages of 

bone samples from Baldwin I and Radbot II (BP), calibrated ages (2), stable 

isotopes (13C and 15N) , C:N, age offset (BP) in bone from Vincentius and 
Waldetrudis. 

 

Sample 

name Lab-code 

13C 

(‰) 

15N 

(‰) 

atomic 

C:N 

14C age 

(BP) 

age 

offset 

(BP) 

corrected 
14C age 

(BP) 

Calibrated 

age 

(2) 

corrected 
14C age 

(BP) 

Calibrated 

age 

(2) 

              with 15N   with13C   

           Vincentius KIA-10575 -19.6 11.9 3.3 1385±35 

     Waldetrudis UtC-9694 -20.6 15.4 n.a. 1530±40 145±53 

    Radbot II 

skull 

fragment A 

permeate KIA-46957 -19.9 14.2 3.4 1025±25  891±59 

AD 1020 

(95.4%) 

1260 885±59 

AD 1020 

(95.4%) 

1260 

Radbot II 

skull 

fragment B 

bulk KIA-47968 -20.4 14.5 3.6 995±25  858±59 

AD 1030 

(95.4%) 

1280 851±59 

AD 1020 

(95.4%) 

1260 

 Baldwin I 

femur 

permeate KIA-47423  -20.4  15.0 3.4 1080±30   938±61 

AD 980 

(95.4%) 

1220 936±61 

AD 990 

(95.4%) 

1230 

 

 

 

5.4.1.2 Silk 

 

Three archaeological silk samples were analyzed (Table 5.2).  

The %C, %N of the archaeological bulk silk samples correspond to the values of modern 

analysed silk samples. This indicates good preservation of the archaeological silk 

samples.  

However, the C:N ratio and positive fluorescence slope indicate contaminated bulk 

samples and the fluorescence slope suggests HS contamination. The bulk 14C dates of 

these samples are therefore considered unreliable. 

The permeate 14C dates of the silk samples are considered as reliable because the C:N of 

the permeate falls within the specified C:N boundaries for uncontaminated silk. 

However, the bulk and permeate 14C date of ‘43 B’ are not statistically different, applying 

2-test ( 2-Test: df=1 T=0.5(5% 3.8)). The possible HS contamination can be 

explained by in situ humification. 
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The permeate 14C dates of the silk samples ‘43A’, ‘43B’ and ‘46’ are too old compared to 

the presumed historical date (AD 1068) for Baldwin I’s death (Brulet et al. 2012b).  

A possible explanation may be re-use of older (parts of) textiles as suggested by 

Bénazeth and Van Strydonck 2006 . 

 

 

5.4.1.3 Wood 

 

The 14C date of the wooden pastoral staff, probably a branch or young tree which 

excludes an old-wood effect, is in agreement with the presumed historical date (AD 

1068). 

 

5.4.1.4 Conclusion for Baldwin I 

 

The 14C dates of the wooden pastoral staff and permeate of ‘Femur’ indicate that the 

burial can be assigned to Baldwin I, supported by the associated grave goods. The latter 

were a ring with the inscription “BAL” and a funeral stone with text was present on top 

of the grave. The name “Baldewinus” and his burial date, 28 april AD 1068 , are 

mentioned (Brulet et al. 2012b). An average of 14C date of the wooden pastoral staff (KIA-

47416: 1010±30BP, Table 5.2) and corrected 14C date of ‘femur’ permeate (938±61BP or 

936±61BP, Table 5.4) can be calculated: Baldwin I : 996±27BP (95.4% probability: AD 970 - 

1170; 2-Test: df=1 T=1.1(5% 3.8)) and is in perfect agreement with presumed historical 

date (AD 1068).  
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5.4.2 Radbot II  

 

Table 5.4 summarizes the results of the analyses of the samples from the burial of the 

results of Radbot II. 

 

Table 5.4 : Laboratory codes, 14C ages (BP), calibrated ages (2), stable isotopes (13C and 

15N) , C:N before (bulk) and after cross-flow nanofiltration (permeate), %C, 
%N, %Collagen and fluorescence slope (Fo slope) values of samples derived 
from Radbot II his burial’ (presumed historical date : AD 1098). 

 

 

Sample 

name Lab-code 

14C  age 

(BP) Calibrated age (2) 

13C 

(‰)

15N 

(‰)

atomic 

C:N %C %N 

Collagen 

yield 

(%) 

Fo 

Slope 

   

HAIR (Keratin) 

       Hair 

          
bulk  KIA-46953 1025±25 AD 970 (95.4%) 1040 -21.6 12.8 3.8 40.8 12.8  0.25 

permeate KIA-46955 1040±20 AD 970 (95.4%) 1025 -20.3 12.8 3.4     

Average 

(weighted) 

 

1034±16 AD 985 (95.4%) 1025 

       
 

  

BONE COLLAGEN 

       Skull 

fragment A 

          bulk  KIA-46954 1165±25 AD 770 (77.4%) 900 -20.4 13.7 3.7 11.3 3.5 1.70 

 

   

AD 910 (18.0%) 970 

       permeate KIA-46957 1025±25 AD 970 (95.4%) 1040 -19.9 14.2 3.4 

    Skull 

fragment B 

          bulk  KIA-47968 995±25 AD 970 (95.4%) 1040 -20.4 14.5 3.6 33.5 10.6 1.23 

 

 

   

 

AD 1080(25.0%) 1160 

       Average 

(weighted) 

 

1010±18 AD 985 (95.4%) 1035 

       of KIA-46957 

and KIA-

47968 
 

 

 

       Bone 80 

Tibia 

  

 

       bulk  KIA-46959 980±25 AD 990 (48.6%) 1060 -20.4 11.7 3.1 41.4 15.6 8 

 

   

AD 1070(46.8%) 1160 
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Continued Table 5.4          

 

Sample 

name Lab-code 

14C  age 

(BP) Calibrated age (2) 

13C 

(‰)

15N 

(‰)

atomic 

C:N %C %N 

Collagen 

yield 

(%) 

Fo 

Slope 

   

SILK 

       20 

          bulk KIA-46960 900±25 AD 1040(95.4%) 1220 -20.7 8.1 4.4 41.1 10.9 

 

2.07 

permeate 

single 

filtration KIA-46979 845±25 AD 1150(95.4%) 1260 -19.5 7.2 3.8 

    permeate 

double 

filtration KIA-47574 775±25 AD 1215(95.4%) 1280 -19.4 7.3 3.6 

    22 

          bulk KIA-46958 890±35 AD 1030(95.4%) 1220 -20.6 8.1 4.1 41.9 11.8 

 

1.49 

permeate 

single 

filtration KIA-46970 875±25 AD 1040(17.8%) 1100 -20 7.8 3.6 

    

   

AD 1120(77.6%) 1230 

       49 

          bulk KIA-46952 910±25 AD 1030(95.4%) 1210 -20.6 7.5 4.5 41.7 10.8 

 

1.95 

permeate 

single 

filtration KIA-46956 815±25 AD 1175(95.4%) 1270 -20.4 7 3.6 

    

   

WOOD 

       Wooden 

pastoral 

staff KIA-46574 815±25 AD 1175(95.4%) 1270 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

 

KIA-47969 850±35 AD 1040 (8.8%) 1090 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

   

AD  1120 (2.6%) 1140 

       

   

AD 1150(84.0%) 1270 

       Weighted 

mean 

 

827±20 AD 1170(95.4%) 1260 

        

5.4.2.1 Hair 

 

The %C and %N of the archeological  ‘hair’ sample correspond with the percentages of 

well-preserved hair protein 45%C and 15%N respectively (Benfer  et al. 1978). 

The bulk C:N of ‘Hair’ (=3.8) indicates an uncontaminated sample, while the positive 

fluorescence slope indicates HS contamination.  

The 14C dates of the bulk and permeate ‘Hair’ samples match and an average can be 

calculated (Table 5.4). The possible HS contamination can be explained by in situ 

humification where hair organic matter (predominantly keratin) generates HS through 

the Maillard reaction (Maillard 1913; Gillespie and Hedges 1983). However, the average 
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14C date is too old compared to the historical date (AD 1098). Stable isotope analysis 

suggests that freshwater fish could have been an important part of this individual’s diet 

(Figure 5.1). A reservoir effect for freshwater organisms could thus explain the anomaly 

in the 14C date and will be discussed  further using the results of bone collagen, 

extracted from the skull of the ‘Radbot II’ sample (Table 5.4).  

 

5.4.2.2 Bone collagen 

 

The %C, %N and %Collagen of  the collagen of ‘Skull fragment A’ indicate degradation 

while introduction of exogenous carbon-containing compounds (contamination) is 

observed from its C:N ratio (Table 5.4). 

The collagen of ‘Skull fragment B’ is quite well-preserved, shown by %C and %N and 

uncontaminated shown by its C:N which is at the top  of the acceptable C:N range for 

uncontaminated collagen. The collagen of ‘Bone 80 Tibia’ is very well-preserved as 

indicated by %C, %N and %Collagen and uncontaminated, proven by its C:N.  

Cross-flow nanofiltration of the hydrolysate of ‘Skull fragment A’  resulted in a C:N 

decrease (Table 5.4) and a more accurate 14C date should be obtained. A good agreement 

between the 14C date of the permeate of the contaminated collagen of ‘Skull fragment A’ 

and the bulk 14C date of the uncontaminated collagen of reference sample ‘Skull 

2-Test: 

df=1 T=0.7(5% 3.8)). But the calibrated 14C date (AD 985 - 1035, 95.4% probability) is too 

old compared to the presumed historical date (AD 1098) (Brulet et al. 2012b). The stable 

isotope values indicate that freshwater fish was part of the diet which provokes a 

reservoir effect on the 14C date, explaining the too old 14C date  (Figure 5.1 and Table 5.4). 

The same reservoir correction is applied on permeate of ‘Skull fragment A’ and on the 

bulk of ‘Skull fragment B’ as with ‘Baldwin I’ (Table 5.3). The corrected 14C ages for both 

samples determined with 13C and 15N  are now in accord with each other and the 

calibrated ages correspond with the presumed historical date (AD 1098) (Table 5.3). 

The calibrated aged of ‘bone 80 Tibia’ is also in agreement with the presumed historical 

date (AD 1098) (Table 5.4). However, this bone seem to come from another individual, as 

indicated by: 

1. Aberrant stable isotopes compared to permeate of ‘Skull fragment A’. Stable 

isotope values of ‘bone 80 Tibia’ fall into the cluster of Belgian medieval humans  

indicating a mixed diet of terrestrial plant and animal products and no fish 

consumption (Figure 5.1 and Table 5.4).  

2. Collagen yield (8%) is much higher than from the skull (1.23-1.70%) (Table 5.4). 

3. ‘Bone 80 Tibia’ was visually very different than all the other bones from Radbot 

II. 
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4.  Bone 80 was very hard (only possible to cut it with a microdrill) due to better 

preservation , e.g. higher collagen content and thus a better preservation of 

collagen-apatite-composite. All the other bones were very fragile (breakable 

manually).  

We therefore speculate that ‘Bone 80 Tibia’ was added to the burial and this practice was 

not uncommon in relic shrines (Van Strydonck et al. 2006; Van Strydonck et al. 2009). 

 

5.4.2.3 Silk 

 

Three archaeological silk samples were analyzed (Table 5.4).  

The %C, %N of the bulk archaeological silk samples correspond with the values of the 

modern analysed silk samples. This corroborates the good preservation of the 

archaeological silk samples. However, C:N ratio and positive fluorescence slope indicate 

contaminated bulk samples and the fluorescence slope suggests HS contamination. The 

bulk 14C dates of these samples are therefore considered unreliable. 

The permeate C:N ratio of all the silk samples was still not within the C:N boundaries of 

uncontaminated samples; even not after double cross-flow nanofiltration for sample ‘20’ 

(Table 5.4). Thus, all the 14C dates should be treated with extreme caution.  

Increasing the number of cross-flow nanofiltrations results in a lower C:N for sample 

‘20’ and thus improved sample quality for 14C dating (Table 5.4). The C:N decrease 

between bulk, permeate of single cross-flow nanofiltration and permeate of double 

cross-flow nanofiltration corresponds with a decreasing 14C date. The 14C date of the 

permeate after double cross-flow filtration can not be considered as reliable due to its 

still too high C:N,.unless this C:N value is caused by in situ humification. If in situ 

humification is not the case, introduction of exogenous carbon-contaminants explain 

this C:N value. In the latter case, the 14C date of the permeate after double cross-flow 

filtration should be considered as a terminus post quem date. 

The bulk and permeate 14C dates of sample ‘22’ are statistically not different, applying 

2-test (2-Test: df=1 T=0.1(5% 3.8)) despite the C:N decrease and thus better 14C 

sample quality after filtration. The removed contamination is therefore possibly HS, 

which were formed by in situ humification.  

For sample ‘49’ the permeate 14C date is younger than the bulk 14C date which indicates 

contamination by older exogenous carbon. Hereby, the less reliable 14C date of the 

permeate due to their C:N can be considered as terminus post quem date. Unless the C:N 

values, out of C:N range for uncontaminated silk, is provoked by in situ humification.  

None of the silk dates is in agreement with the presumed historical date of AD 1098. 
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5.4.2.4 Wood 

 

The calibrated 14C date from the weighted mean of the wooden pastoral staff was AD 

1170-1260 (95.4% probability; Table 5.4), is not in agreement with the presumed 

historical date of Radbot II’s death (AD 1098). The wooden pastoral staff was a small 

branch or young tree which excludes an old-wood effect.  

 

5.4.2.5 Conclusion for Radbot II 

 

The 14C dates of the bulk and permeate of ‘Hair’, 14C date of permeate ‘Skull fragment A’ 

and 14C date of bulk ‘Skull fragment B’ indicate that the skeleton can be assigned to 

Radbot II. 

 

If we assume that the C:N ratios of the silk samples are caused by in situ humification, 

then we observe a good agreement between wood 14C date and 2 of the 3 silk 14C dates 

(Figure 5.2). 

 

 
 

Figure 5.2 : Calibrated 14C ages of weighted mean of wooden pastoral staff and of the 
permeates of silk samples derived from the burial of Radbot II in case of in situ 
humification. 

But if C:N ratios, out of the expected range for uncontaminated samples, of the silk 

samples are caused by younger exogenous carbon younger 14C dates for the silk samples 

are expected. 

Atmospheric data from Reimer et al (2009);OxCal v3.10 Bronk Ramsey (2005); cub r:5 sd:12 prob usp[chron]

800CalAD 1000CalAD 1200CalAD 1400CalAD

Calibrated date

KIA-47457 Silk 20 permeate double filtration  775±25BP

KIA-46970 Silk 22 permeate single filtration  875±25BP

KIA-46956 Silk 49 permeate single filtration  815±25BP

Wooden staff weighted mean  827±20BP

AD 1242 – 1255 
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The wood 14C date and the silk 14C dates indicate that perhaps a “disturbance” occurred 

between AD 1170 and 1260  (which is the calibrated 14C date for the wooden pastoral 

staff): 

 Was Radbot II re-buried there in the 13th century? or 

 Were the clothes and the wooden pastoral staff added to the burial in the 13th 

century?  

It is, though, an interesting coincidence that the 14C dates correspond well with the 

construction of the new choir which began in AD 1242 and ended in AD 1255, shown by 

the black vertical line in Figure 5.2) and several arguments support the possibility of a 

13th century activity in the burial site: 

1. Bishop Gautier de Marvis (AD 1219 - 1252) had the original Romanesque choir 

demolished in the 13th century, in order to replace it with a Gothic choir of larger 

dimensions, inspired by the likes of Amiens Cathedral (Icomos 2000). 

2. Both episcopal burials were explored in the two ancient choirs of the new 

cathedral and were situated in the 11th cathedral, in the narthex and at the 

bottom of the stairs which leads to the choir of the current cathedral (Brulet et 

al. 2012b). 

3. The two burials were placed in the axe of the building. Two blue stone plates 

without inscription marked the location of the tombs. The concrete floor which 

enclosed them was restorated after the insertion of these funerary stone plates 

(Brulet et al. 2012b). 

 

This 13th century activity in the grave was really unexpected as the cathedral,  

constructed during the 12th century, is located 2.5m higher than the eleventh century 

cathedral. The ancient structures were completely buried by a layer of rubble and also 

the episcopal tombs. But the concrete floor of the roman church was not conserved at 

this location which can indicate the presence of an element that localized these 

episcopal tombs (Brulet et al. 2012b). 

 

 

http://en.wikipedia.org/wiki/Amiens_Cathedral
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5.5 CONCLUSION 

 

The degraded bone collagen and silk material derived from Baldwin I and Radbot II were 

contaminated. Carbon, nitrogen and fluorescence spectroscopy on pre-treated “bulk” 

samples indicated that standard sample pre-treatment methods were insufficient to 

remove all the contamination for 14C dating. Similar results from analyses of “permeate” 

samples treated by cross-flow nanofiltration of hydrolysed contaminated protein-

containing samples indicate that it is a viable technique to improve sample quality for 
14C dating. However, single cross-flow nanofiltration may not be sufficient to obtain a 

C:N ratio within the boundaries of uncontaminated sample. Double or triple cross-flow 

nanofiltration may be a solution as shown by silk sample ’20’ of Radbot II but requires 

further investigation. 

 

Regarding Baldwin I, the 14C date of the wooden pastoral staff, the for freshwater 

reservoir corrected 14C date of permeate ‘Femur’, the excavated ring with the inscription 

‘BAL’ and the funeral stone with the inscription “Baldewinus” indicate that the skeleton 

and tomb belong to bishop Baldwin I. The older permeate 14C dates of the silk samples 

indicate re-use. 

 

For Radbot II, the for freshwater reservoir corrected 14C dates of ‘Skull’ indicate that the 

skeleton may belong to bishop Radbot II. The younger 14C dates of the wooden pastoral 

staff and silk samples indicate a post-burial disturbance of the site burial during the 12th 

-13th century, which is supported by several historical arguments. For example, a bone 

was also added to this burial, which was a practice not uncommon in relic shrines. 
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Carbon-14 dating of contaminated protein-containing material (e.g. bone collagen, hair, 

wool and silk) may result in unreliable 14C dates if conventional pre-treatment methods 

are used. Quality control is gaining more attention in the 14C community. Hence, the 

objectives of this thesis were to develop an integrated method to screen for presence of 

contamination and to increase sample quality of contaminated protein-containing 

archaeological samples in order to obtain more accurate 14C dates. 

Contaminated test samples were selected from archaeological sites where the presumed 

historical date was known by a dendrochronological date, a dated coin, a stylistic date, a 

funeral stone with inscripted name, written historical sources and typrochonological 

dated pottery. 

 

 

6.1 CONCLUSIONS 

 

The workflow developed during this study for 14C dating of archaeological wool, silk, 

hair and bone collagen is depicted in Figure 6.1. All protein-containing samples were 

pre-treated with standard methods before the quality assessment tests. Samples 

categorized as uncontaminated could be 14C dated after pre-treatment with the standard 

protocols. Hence, contaminated samples were treated with cross-flow nanofiltration 

and subsequently quality control parameters were measured on permeate to verify 

whether permeate fulfils the criteria for uncontaminated samples or not. Contaminated 

permeate samples were rejected for 14C dating while uncontaminated underwent 14C 

analysis. (Figure 6.1) 
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6.1.1 Sample quality assessment 

 

6.1.1.1 Monitoring the presence of humic substances in wool and silk by the use 

of non-destructive fluorescence spectroscopy 

 

Fluorescence spectrometry is a quick and non-destructive method to detect the 

presence of contaminant humic substances (HSs) in naturally (un)dyed wool and silk. It 

provides information on the reliability of eventual 14C dates. 

A positive fluorescence slope, calculated using a linear fit (least squares) of the 

fluorescence intensity measured between the excitation wavelengths 460 and 475nm, 

indicates presence of HSs while a negative slope is an indication of absence of HSs. Wool 

and silk samples wherein no HSs were detected can be pre-treated with the 

conventional methods and reliable 14C results are obtained. However, wool and silk 

samples contaminated with HSs will be subjected to cross-flow nanofiltration (Figure 

6.1) 

 

 

6.1.1.2 C:N ratio determination as a means to identify 14C contamination 

 

The C:N ratio of pre-treated wool, hair, silk and bone (collagen) samples was measured 

to categorize the collagen sample as uncontaminated or contaminated (Figure 6.1).  

 

The applied criteria to define uncontaminated archaeological samples were (Figure 6.1): 

 collagen: C:N ratio between 2.9 and 3.6 (De Niro 1985; Ambrose 1990);   

 wool and hair: C:N between 2.9 and 3.8 (O’Connell and Hedges 1999a, 1999b, 

2001); 

 silk: C:N between 2.9 and 3.4 . This C:N range was based on own analyses. 

 

Samples with a higher C:N ratio were defined as contaminated.  

Uncontaminated samples can undergo directly 14C analyses and reliable 14C dates should 

be obtained. However, cross-flow nanofiltration must be carried out on contaminated 

samples and subsequently the C:N ratio of the permeate must be checked. If the C:N 

ratio of the permeate falls within the C:N range of uncontaminated samples, the 

permeate can be 14C dated resulting in a more accurate 14C date (Figure 6.1).    
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6.1.2 Initial development of a 450 Dalton nanofiltration method for 

bone collagen used for 14C dating 

 

The nanofiltration methods described in this thesis showed some advantages over 

ultrafiltration. There is no risk of carbon contamination coming from the filter because 

the filter material is ceramic. It is suitable for all types of protein-containing material, 

not only collagen. Unlike ultrafiltration where only low-molecular HSs are eliminated, 

nanofiltration should remove low-molecular and high-molecular weight HSs. 

Fluorescence analyses indicated that cross-flow filtration was a more efficient technique 

than dead-end filtration to remove HSs. Cross-flow filtration has the disadvantage that a 

minimum feed volume must remain in the installation during filtration to prevent the 

pump from stopping. This means that not all the feed volume can be filtered, which 

causes sample loss. Consequently, the sample size needed for 14C dating increases. 

However, 14C dating of cross-flow filtrated hydrolysed collagen-HS mixtures, i.e. amino 

acids-HS mixtures, demonstrated a significant but yet incomplete removal of HSs. Hot 

acid hydrolysis of HS may form new chemical compounds, as demonstrated by HPLC 

analysis. It is possible that these compounds are smaller than the filter cut off of 450 

Dalton and pass through the filter and, hence, causes contamination.  

 

6.1.3 Improved radiocarbon dating for contaminated archaeological 

bone collagen, silk, wool and hair samples via 200 Dalton cross-

flow nanofiltrated amino acids 

 

A membrane with a molecular weight cut-off of 200 Dalton was used, instead of 450 

Dalton, as a means to retain more carbon-containing contaminants e.g. the new formed 

chemical compounds after hot acid hydrolysis and obtain only amino acids from the 

protein-containing archaeological material.  

Cross-flow nanofiltration was used because of the better retention of contaminants 

compared to dead-end nanofiltration. The efficiency of the cross-flow nanofiltration 

was verified by comparing: 

1. C:N ratio of the bulk sample (before nanofiltration) with C:N ratio of the cross-

flow nanofiltrated amino acids (permeate) to indicate the quality sample 

improvement. 

2. the 14C date of permeate with the presumed historical date. 

Cross-flow nanofiltration, with a filter cut-off of 200 Dalton, of hydrolysed contaminated 

archaeological protein-containing samples, e.g. bone collagen, hair, wool and silk, 
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decreases the C:N ratio, which indicates contaminant removal and improvement of 

sample quality for 14C dating. If the C:N ratio of the permeate falls within the boundaries 

of uncontaminated samples, more accurate 14C dates were obtained. 

 

Cross-flow nanofiltration is a quick and non-labour intensive technique and can easily 

be implemented in any 14C laboratory for routine sample pre-treatment analyses.  

 

 
 

Figure 6.1 : Workflow for archaeological wool, silk, hair and bone collagen for 14C dating. 



Chapter 6                                                                                            Conclusions and future research perspectives 
 

102 

 

 

 

6.1.4 Application of the developed cross-flow nanofiltration method on 

a well-documented archaeological site: The case study of the 

bishops Baldwin I and Radbot II from Noyon-Tournai 

 

The degraded bone collagen and silk material derived from Baldwin I and Radbot II were 

contaminated based on C:N ratio and spectrofluorescence analyses. Carbon, nitrogen 

and fluorescence spectroscopy data on pre-treated samples indicated that conventional 

sample pre-treatment methods were insufficient to remove all contamination for 14C 

dating. Results from analyses of permeate samples treated by cross-flow nanofiltration 

of hydrolysed contaminated protein-containing samples indicated that sample quality 

was improved and became suitable for 14C dating, supported by the decrease in C:N ratio 

after cross-flow nanofiltration and  good agreement of the 14C dates with the presumed 

historical dates. However, single cross-flow nanofiltration may not always be sufficient 

to obtain a C:N ratio within the boundaries of uncontaminated samples. Double cross-

flow nanofiltration may be a solution as shown by silk sample ’20’ of Radbot II, but 

requires further investigation. 

 

For Baldwin I, The 14C date of the wooden pastoral staff, the for freshwater reservoir 

corrected 14C date of ‘Femur’, the excavated ring with the inscription ‘BAL’ and the 

funeral stone with the inscription “Baldewinus” indicate that the skeleton and tomb 

belong to bishop Baldwin I. Surprisingly, the older 14C dates of the silk samples indicate 

that the cloths of Baldwin I used for burial were re-used from an older bishop. 

 

Regarding Radbot II, the for freshwater reservoir corrected 14C dates of  ‘Skull’ indicate 

that the skeleton could belong to bishop Radbot II. Surprisingly, the younger 14C dates of 

the wooden pastoral staff and silk samples indicate a post-burial disturbance of the 

burial site during the 12th -13th century, which is supported by several historical 

arguments. For example, a bone was also added to this burial, which was a practice not 

uncommon in relic shrines. 
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6.2 FUTURE RESEARCH PERSPECTIVES 

 

 Fluorescence spectroscopy for 

1) Solid samples (wool and silk): The fluorescence slope, as described in Chapter 2, 

can be used as a qualitative indicator for the presence or absence of HSs in wool 

or silk samples. Future research will be carried out to develop a fluorescence 

intensity calibration method for wool and silk samples as a means to quantify HS 

contamination in archaeological wool and silk.  

2) Liquid samples: the fluorescence method, as described in Chapter 3, was used to 

detect and semi-quantify HSs in the hydrolysate of collagen contaminated with 

HS before and after nanofiltration. Future study will focus on developing a 

fluorescence intensity calibration method for hydrolysed collagen samples in 

order to quantify the HS contamination in the hydrolysed bone collagen. 

However, the method will also be tested for other sample matrices e.g. NaOH-

extracts of charcoal and soils. Charcoal and soils are subjected to acid-alkali-acid 

treatment before 14C analysis in order to remove exogenous carbonates (by acid 

wash) and humic acids (by alkali wash). Analyses of NaOH-extracts of charcoal 

and soils can provide information about the quantity of HS, and thus 

contamination, present in charcoal and soils. HSs may alter and in most cases 

probably cause younger 14C dates by HS intrusion of upper layers into the to be 

dated material.  

 Shampoos and dye products, produced from petroleum (hence absence of 14C), make 
14C dates of human hair older. Accurate 14C dates are necessary for forensic 

investigations. But standard pre-treatment laboratory protocols are unable to 

remove the introduced older 14C of the shampoos and dye products. The developed 

cross-flow nanofiltration method may be able to remove these contaminants and 

yield reliable 14C results. 

 A new case study will be set up to further corroborate the developed methodology. 

Remainder of a wooden box was excavated in the Sint-Rumbold’s cathedral 

(Mechelen, Belgium). The box contained relics: two skulls, a femur and some bone 

fragments. The skulls were dressed in textiles (mostly silk and some linen). The 

workflow for these protein-containing samples will be like depicted in Figure 6.1.  

 In the case study of Baldwin I and Radbot II (Chapter 5) one sample was single and 

double cross-flow nanofiltrated. Double cross-flow nanofiltration resulted in better 

sample quality, shown by the C:N ratio, than single cross-flow nanofiltration. 

Therefore, single, double and triple cross-flow nanofiltration could be carried out on 

contaminated archaeological samples with a well-known presumed historical date. 

The sample quality will be checked by C:N analyses.  
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 Ultrafiltration of bone collagen is a commonly used technique in 14C laboratories. 

This technique removes the low-molecular contaminants and not the high-

molecular contaminants e.g. if the MWCO of the filter is 10 kDalton, all the 

contaminants < 10kDalton will be removed but not the HSs cross-linked with the 

collagen (> 10kDalton). Although the nanofiltration method developed in this study 

retains all compounds after hydrolysis > 200 Dalton (MWCO of filter) there is still a 

risk that extraneous carbon-containing compounds < 200 Dalton passes the filter and 

contaminate the permeate used for 14C dating.  

Ultrafiltration requires less time than nanofiltration where hydrolysis into amino 

acids is necessary, which takes 24 hours. However, the current used ultra-filters are 

also the middle point of discussion as they may introduce carbon from the filter into 

the sample and alter the 14C date. The filters are made of cellulose (modern carbon 

contamination) or polyethersulfone (fossil carbon contamination). Therefore, 

ceramic filters of 40 kDalton will be used in the in-house built filtration set-up and 

the retentate, which should only contain the bone collagen, will be 14C dated.   

However, a comparative study between ultrafiltration and cross-flow nanofiltration 

should be carried out on contaminated bone collagen samples with a well-known 

presumed historical date derived from archaeological sites with different 

preservation environment. This study may clarify which filtration technique is the 

most suited for contaminated bone collagen depending on the preservation 

environment.  
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Summary 

 

Carbon-14 (14C) dating of contaminated protein-containing material e.g. bone collagen, 

hair, wool and silk usually results in unreliable results if conventional pre-treatment 

methods are used. Therefore, the objective of this PhD thesis was to develop a method 

to detect 14C contamination in protein-containing archaeological material and develop a 

method to improve sample quality of contaminated samples to obtain more accurate 14C 

dates. Quality control is gaining more attention in the 14C community; hence a quality 

control system was introduced. 

Contaminated test samples were selected from archaeological sites where the presumed 

historical date was known by a dendrochronological date, a dated coin, a stylistic date, a 

funeral stone with inscripted name, written historical sources or typrochonological 

dated pottery. 

A non-destructive fluorescence spectroscopy method was developed to monitor the 

presence of humic substances, one of the major 14C contaminants in archaeological 

material, in wool, hair and silk. A positive fluorescence slope, calculated using a linear 

fit (least squares) of the fluorescence intensity measured between the excitation 

wavelengths 460 and 475nm, indicates presence of humic substances in the sample, 

while a negative slope is an indication of absence of humic substances 

All protein-containing samples were pre-treated with standard methods before 

subjected to the quality assessment tests. The quality control was checked by analyzing 

the C:N ratio for bone collagen, silk, wool and hair.  

The applied C:N ratios to define uncontaminated archaeological samples were: 

1. collagen C:N ratio between 2.9 and 3.6;  

2. wool and hair C:N ratio between 2.9 and 3.8; 

3. silk: C:N ratio between 2.9 and 3.4 . 

Samples with a higher C:N ratio were defined as contaminated.  

Uncontaminated samples can be used directly 14C analyses and reliable 14C dates should 

be obtained. However, contaminated samples need more clean-up to improve the 

sample quality. Nanofiltration is an option because it is suitable for all types of protein-
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containing material and should remove low-molecular and high-molecular weight 

contaminants unlike ultrafiltration that only suits for bone collagen and only eliminates 

low-molecular contaminants.  

A new nanofiltration method to improve quality for 14C dating was developed for bone 

collagen as test material. First, two nanofiltration types were tested: dead-end and 

cross-flow filtration using a ceramic filter with a molecular weight cut-off of 450 Dalton. 

Nanofiltration should remove low-and high-molecular weight humic substances. 

Fluorescence analyses indicated that cross-flow filtration was a more efficient technique 

than dead-end filtration to remove humic substances. However, 14C dating of cross-flow 

filtrated hydrolysed artificial collagen-humic substance mixtures, demonstrated a 

significant but yet incomplete removal of humic material. Hot acid hydrolysis of humic 

substances may form new chemical compounds, as demonstrated by HPLC analysis. It is 

possible that these compounds are smaller than the filter cut-off of 450 Dalton and pass 

through the filter and, hence, causes contamination. 

Second, cross-flow nanofiltration technique was applied in combination with a quality 

control procedure on real contaminated archaeological samples. However, a membrane 

with a molecular weight cut-off of 200 Dalton was used as a means to retain more 14C-

containing contaminants, i.e. chemical compounds formed after hot acid hydrolysis and 

obtain only amino acids from the protein-containing archaeological material. The 

efficiency of the cross-flow nanofiltration was verified by comparing: 

1. C:N ratio of the bulk sample (before nanofiltration) with C:N ratio of the 

cross-flow nanofiltrated amino acids (permeate) to indicate the quality 

sample improvement; 

2. compare the 14C date of permeate with the presumed historical date. 

Cross-flow nanofiltration, with a filter cut off of 200 Dalton, of hydrolysed contaminated 

archaeological protein-containing samples, e.g. bone collagen, hair, wool and silk, 

decreases the C:N ratio, which indicates contaminant removal and improvement of 

sample quality for 14C dating. If the C:N ratio of the permeate falls within the boundaries 

of uncontaminated samples more accurate 14C dates were obtained. 

Finally the applicability of the cross-flow nanofiltration method was demonstrated on 

contaminated protein-containing samples by means of a case study of two skeletons and 

their gars of two bishops from Noyon-Tournai. One burial was assigned to Baldwin I, 

who died in AD 1068, because: 

1. a ring with the inscription “BAL” was found; 

2. a funeral stone with text was present on top of the grave mentioning the name 

“Baldewinus”. 

The second burial probably belongs to Radbot II who was the successor of Baldwin I and 

died in AD 1098.  

However, single cross-flow nanofiltration may not always be sufficient to obtain a C:N 

ratio within the quality boundaries for uncontaminated samples. Double cross-flow 
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nanofiltration may be a solution as shown by silk sample ’20’ of Radbot II, but requires 

further investigation. 

 

This study resulted in a workflow for 14C dating of archaeological wool, silk, hair and 

bone collagen. All protein-containing samples are pre-treated with standard methods 

before quality assessment tests. Samples categorized as uncontaminated can be 14C 

dated after pre-treatment with the standard protocols. Hence, contaminated samples 

are treated with cross-flow nanofiltration and subsequently quality control parameters 

are measured on permeate to verify whether permeate fulfills the criteria for 

uncontaminated samples or not. Contaminated permeate samples are rejected for 14C 

dating while uncontaminated undergo 14C analysis. 



 
 

108 

 

 



Samenvatting 
 

109 

Samenvatting 

 

Radiokoolstofdatering (14C) van gecontamineerd proteïnbevattend materiaal zoals 

beendercollageen, haar, wol en zijde levert onbetrouwbare resultaten op indien ze 

behandeld zijn met de standaard voorbehandelingsmethodes. Daarom was het doel van 

dit proefschrift om een methode te ontwikkelen om radiokoolstofcontaminatie in 

proteïnbevattende materialen te detecteren en om een methode te ontwikkelen om de 

staalkwaliteit van gecontamineerde stalen te verbeteren zodat meer accurate 

radiokoolstofdateringen worden verkregen. Kwaliteitscontrole krijgt meer en meer 

aandacht in de radiokoolstofgemeenschap en bijgevolg werd een 

kwaliteitscontrolesysteem geïntroduceerd. 

Gecontamineerde teststalen werden geselecteerd van archeologische sites waarvan de 

vermoedelijke historische datum was gekend door middel van een 

dendrochronologische datering, een muntstuk met datum, een stilistische datering, een 

grafsteen met een naam als inscriptie, geschreven historische bronnen of 

typochronologische potscherfdateringen. 

Een niet-destructieve spectrofluorescentiemethode werd ontwikkeld om de 

aanwezigheid van humussubstanties, een van de belangrijkste 

radiokoolstofdateringscontaminanten in archeologisch materiaal, in wol, haar en zijde 

te monitoren. Een positieve fluorescentierichtingscoëfficiënt, berekend door middel van 

een lineaire regressie van de fluorescentieintensiteit gemeten tussen de 

excitatiegolflengtes 460 en 475nm, wijst op de aanwezigheid van humussubstanties in 

het staal terwijl een negatieve fluorescentierichtingscoëfficiënt een indicatie is van 

afwezigheid van humussubstanties. 

Alle proteïnbevattende stalen werden voorbehandeld met de standaardmethodes 

vooraleer onderworpen te worden aan de kwaliteitsevaluatietesten. De 

kwaliteitscontrole werd geverifieerd door C:N ratio analyses van beendercollageen, 

zijde, wol en haar 

De toegepaste C:N ratio criteria om ongecontamineerde archeologische stalen te 

definiëren zijn: 
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1. Collageen: C:N ratio tussen 2.9 en 3.6; 

2. Wol en haar: C:N ratio tussen 2.9 en 3.8; 

3. Zijde: C:N ratio tussen 2.9 en 3.4. 

Stalen met een hogere C:N ratio werden gedefinieerd als gecontamineerd. 

Niet-gecontamineerde stalen kunnen onmiddellijk geanalyseerd worden op 14C en 

betrouwbare resultaten zouden verkregen moeten worden. Daarentegen, moeten 

gecontamineerde stalen meer voorbehandeld worden om de staalkwaliteit te 

verbeteren. Nanofiltratie is een optie omdat het geschikt is voor alle types van 

proteïnbevattend materiaal en het zowel laagmoleculaire als hoogmoleculaire 

contaminanten zou moeten verwijderen, niet zoals ultrafiltratie dat enkel geschikt is 

voor beendercollageen en alleen de laagmoleculaire contaminanten elimineert. 

Een nieuwe nanofiltratiemethode voor beendercollageen werd ontwikkeld om de 

kwaliteit voor 14C AMS datering te verbeteren. Eerst werden twee nanofiltratietypes 

getest: dead-end en cross-flow nanofiltratie door middel van het gebruik van een 

keramische filter met een molecular weight cut-off van 450 Dalton. Nanofiltratie zou 

laagmoleculair-en hoogmoleculair-gewicht humussubstanties moeten verwijderen. 

Fluorescentieanalyses duidden aan dat cross-flow nanofiltratie efficiënter was dan dead-

end filtratie om humussubstanties te verwijderen. Niettemin, 14C datering van 

gehydrolyzeerde, met cross-flow genanofiltreerde artificiële collageen-humussubstantie 

mengels toonden een significante maar onvolledige verwijdering van de 

humussubstanties aan. Zuurhydrolyse van humussubstanties kan nieuwe chemische 

verbindingen vormen, zoals aangetoond met HPLC analyses. Het is mogelijk dat deze 

verbindingen kleiner zijn dan de filter cut off van 450 Dalton en de filter passeren, en 

bijgevolg contaminatie veroorzaken. 

Daarna werd cross-flow nanofiltratie toegepast op echte archeologische stalen in 

combinatie met kwaliteitscontroleprocedures. Er werd echter een membraan met 

moleculair weight cut off van 200 Dalton gebruikt om meer koolstofhoudende 

contaminanten te weerhouden zoals de nieuwgevormde chemische verbindingen na 

zuurhydrolyse en zodoende alleen de aminozuren afkomstig van het proteinhoudend 

archeologisch materiaal door de filter te laten. 

De efficiëntie van de cross-flow nanofiltratie werd gecontroleerd door vergelijking van 

de:  

1. C:N ratio van het bulkstaal (voor nanofiltratie) met de C:N ratio van de met cross-

flow nanogefiltreerde aminozuren (permeaat) om de staalkwaliteitsverbetering 

na te gaan; 

2. Radiokoolstofdatering met de veronderstelde historische datering. 

Cross-flow nanofiltratie, met een filter cut off van 200 Dalton, van gehydrolyzeerd 

gecontamineerd archeologisch proteinbevattend materiaal, zoals beendercollageen, 

haar, wol en zijde, doet de C:N ratio afnemen, wat wijst op contaminatieverwijdering en 

bijgevolg staalkwaliteitsverbetering voor 14C datering. Indien de C:N ratio van het 
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permeaat in het C:N bereik valt van ongecontamineerde stalen, werden accuratere 

radiokoolstofdateringen verkregen. 

Finaal wordt de toepasbaarheid van de cross-flow nanofiltratiemethode op 

gecontamineerd proteinhoudende stalen aangetoond door middel van een case study 

van twee skeletten en de gewaden van bisschoppen van Noyon-Tournai. Een graf werd 

toegewezen aan Baldwin I, die overleed in AD 1068, omdat: 

1. een ring met de inscriptie “BAL” werd gevonden; 

2. een grafsteen met tekst was aanwezig op het graf waarin de naam “Baldewinus” 

vermeld staat. 

Het tweede graf behoort waarschijnlijk toe aan Radbot II die de opvolger was van 

Baldwin I en overleed in AD 1098.  

Daarentegen kan een enkele cross-flow nanofiltratie niet altijd voldoende zijn om een 

C:N ratio te verkrijgen die in het C:N bereik valt van ongecontamineerde stalen. Een 

dubbele cross-flow nanofiltratie kan de oplossing zijn zoals aangetoond door het 

zijdestaal ‘20’ van Radbot II maar verder onderzoek is vereist. 

 

Dit onderzoek leidde tot een werkschema voor 14C datering van archeologische wol, 

zijde, haar en beendercollageen. Alle proteinbevattende stalen worden voorbehandeld 

met de standaardmethodes voor de kwaliteitscontroletesten. Stalen gecategoriseerd als 

niet-gecontamineerd kunnen onmiddelijk gedateerd worden met 14C na 

voorbehandeling met de standaardprotocols. Niettemin, gecontamineerde stalen 

moeten behandeld worden met cross-flow nanofiltratie en daarna wordt de kwaliteit 

van het permeaat geanalyseerd om na te gaan of het permeat voldoet aan de criteria van 

ongecontamineerde stalen of niet. Gecontamineerde permeaatstalen worden 

weerhouden van radiokoolstofdatering terwijl niet-gecontamineerde stalen 

geanalyseerd worden met 14C. 
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