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SAMENVATTING 

Spieratrofie of het onvrijwillig verlies van spiermassa kan optreden als gevolg van pathologische 

aandoeningen zoals spierdystrofieën, chronische aandoeningen (cachexie), ondervoeding en 

immobilisatie (spier inactiviteit), of als gevolg van veroudering (sarcopenie). Gezien de vitale rol van 

spieren in het behoud van de lichaamshouding, de controle van bewegingen en de regulatie van het 

eiwitmetabolisme, kan een verlies van spiermassa ernstige gevolgen hebben voor de patiënt. Dit 

leidt vaak tot een verminderde levenskwaliteit. Onderzoek naar de preventie of behandeling van 

skeletspieratrofie is daarom van groot belang voor zowel de klinische geneeskunde als voor ouderen 

en atleten. 

Fysieke activiteit, al dan niet gecombineerd met voedingssupplementen, is een effectieve en veilige 

manier om spieratrofie te verminderen of te voorkomen. Deze aanpak is echter niet altijd haalbaar 

voor ernstig zieke patiënten of ouderen. Wanneer men de klinische uitkomst van patiënten met 

skeletspieratrofie wil verbeteren, is het essentieel om inzicht te verwerven in de etiologie en de 

onderliggende mechanismen van verschillende aandoeningen geassocieerd met spieratrofie, alsook 

om de determinanten van spiermassa bij gezonde volwassenen te identificeren. 

Androgenen zijn de belangrijkste geslachtshormonen die de lichaamssamenstelling regelen en zijn 

vooral gekend voor hun anabool effect op de spieren. Hun klinische toepassingen op de behandeling 

van spieratrofie is echter beperkt omwille van de ernstige bijwerkingen. Het is daarom belangrijk om 

therapeutische middelen te ontwikkelen die anabole effecten uitoefenen op de skeletspieren, 

zonder androgene activiteit op andere perifere weefsels. Een betere kennis over de androgene 

regulatie van de skeletspiermassa en van de signalisatiewegen die gereguleerd worden door 

androgenen, kan helpen om nieuwe spier-specifieke therapeutische doelwitten te identificeren voor 

de behandeling of preventie van spieratrofie. 

Een eerste doel van dit proefschrift was om meer inzicht te krijgen in de interindividuele variatie in 

spiermassa. De determinanten van spiermassa en -functie werden uitgebreid onderzocht in een 

cross-sectionele studie (studie 1) bestaande uit een cohorte van 677 gezonde mannen (25-45 jaar). 

Er werd bovendien getracht om genetische variaties in de androgeenreceptor (AR), die geassocieerd 

zijn met serum testosteron (T) concentraties en spiermassa, te identificeren. Onze resultaten 

bevestigden dat spiermassa en –kracht sterk erfelijk bepaald zijn, en beïnvloed worden door leeftijd, 

antropometrie, lichaamssamenstelling, fysieke activiteit en geslachtshormonen. Naast het aantal 

CAG-repeats vonden we 2 single nucleotide polymorphisms (SNPs) (rs5965433 en rs5919392) in de 

AR die geassocieerd zijn met serum T concentraties. Echter, er werd geen bewijs geleverd dat deze 

genetische variaties in de AR ook een invloed hebben op de spiermassa of -functie. 
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In een tweede deel van deze thesis werden de effecten van T en estradiol (E2) onderzocht op de 

signalisatiewegen, die degradatie van spiereiwit reguleren, in een “androgeen deprivatie 

geïnduceerd spieratrofie muismodel” (studie 2). De gen- en eiwitexpressie van drie verschillende 

spieratrofie inducerende targets nl. Atrogin-1, MuRF1 and myostatine werden op 3 verschillende 

tijdsstippen (1, 7 en 30 dagen) en in 3 verschillende spiertypes [extensor digitorum longus (EDL), 

soleus (SOL) en levator ani/bulbocavernosus spieren (LA/BC)] van gecastreerde muizen onderzocht. 

Uit onze resultaten bleek dat er belangrijke verschillen in atrofiesignalisatie bestaan tussen de LA/BC 

en de locomotorische spieren. In de LA/BC resulteerde androgeen deprivatie in een snelle en 

aanhoudende opregulatie van Atrogin-1 en MuRF1 mRNA, en in een neerregulatie van myostatine 

mRNA gedurende een periode van 30 dagen. Deze effecten waren reversibel na toediening van T. In 

de SOL en EDL was er een minder uitgesproken opregulatie van beide atrogenen kort na castratie 

(na 1 dag), terwijl de myostatine genexpressie enkel in de EDL werd opgereguleerd. Expressies van 

de eiwitten Atrogin-1, MuRF1 of myostatine in de EDL bleven ongewijzigd op elk gemeten tijdstip na 

orchidectomie. Deze resultaten stellen de rol van deze atrogenen in de androgene regulatie van de 

locomotorische spiermassa in vraag. Onze resultaten toonden bovendien aan dat het anabool effect 

van E2-behandeling op de LA/BC tijdens androgeen deprivatie gepaard ging met een partiële 

onderdrukking van Atrogin-1 en MuRF1 genexpressie, wat het belang van verder onderzoek naar de 

effecten van E2 op de spiermassa aanduidt. 

In studie 3 werd de androgene regulatie van atrofie en hypertrofie signaalmoleculen onderzocht in 

een “inactiviteit spieratrofie muismodel”. Na 1, 5 en 14 dagen ‘staartophanging’ werden gen- en 

eiwitexpressies van IGF1/Akt/p70S6K, alsook van myostatine, REDD1, atrogin-1 and MurF1 in de SOL 

en EDL onderzocht. Gezien eerdere studies aantoonden dat inactiviteit spieratrofie geassocieerd is 

met verlaagde serum T spiegels, veronderstelden we dat het therapeutisch gebruik van androgenen 

in dit model anabole effecten zou hebben. Staartophanging resulteerde in een verhoging, gevolgd 

door een tijdelijke daling in T spiegels. IGF1 genexpressie was neergereguleerd tijdens 1 dag en 5 

dagen staartophanging, gevolgd door een daling in gefosforyleerd Akt na 14 dagen staartophanging. 

Atrogin-1, MuRF1, myostatine en REDD1 genexpressies waren tijdelijk opgereguleerd al vanaf 1 dag 

immobilisatie, nog voordat spieratrofie werd waargenomen. T behandeling tijdens staartophanging 

was echter niet in staat om de spiermassa te verbeteren, noch om de expressieniveaus van de 

catabole en anabole signaalmoleculen te herstellen. Dit wijst erop dat de anabole effecten van T niet 

voldoende zijn om spiermassa tijdens spier inactiviteit te behouden of te verbeteren. 

Deze thesis draagt bij tot een betere kennis van de moleculaire regulatie van skeletspiermassa door 

T en E2 door gebruik te maken van 3 verschillende modellen, nl. een cohorte van eugonadale 

mannen, een androgeen deprivatie geïnduceerd spieratrofie muismodel (orchidectomie), en een 
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spier inactiviteit muismodel (via staartophanging). Onze resultaten leverden bewijs voor een 

complex mechanisme waarbij T de spiermassa reguleert, met belangrijke tijds- en spiertype 

afhankelijke verschillen. 
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SUMMARY 

Muscle atrophy or the unintended loss of skeletal muscle mass can occur as a consequence of 

pathological disorders e.g. muscular dystrophies, chronic diseases (cachexia), malnutrition, 

immobilisation (disuse), as well as from normal ageing (sarcopenia). As skeletal muscles play vital 

roles in maintaining body posture, controlling movement and regulating whole body protein 

metabolism, muscle atrophy can have debilitating consequences for the patient, often leading to a 

reduced quality of life. The prevention or therapy of skeletal muscle atrophy has been a topic of 

interest for many years and its applications are spreading from sport sciences to ageing and clinical 

medicine. 

Physical exercise, whether or not combined with nutritional supplements, is an effective and safe 

countermeasure to attenuate or prevent muscle wasting. However, this approach is not always 

feasible in seriously ill patients, elderly people or those who have suffered severe injuries. Therefore, 

a thorough understanding of the etiology and underlying mechanisms of different muscle wasting 

conditions, together with the identification of factors determining muscle mass in healthy adults, is 

important to improve the clinical outcome for people suffering from skeletal muscle atrophy.  

Androgens are considered to be the main sex steroids regulating body composition, with decades of 

research highlighting their anabolic effect on muscle mass. However, their clinical application in the 

treatment of muscle wasting is limited because of severe side effects. Therapeutic agents that could 

achieve anabolic effects on skeletal muscle without androgenic activities on other pheripheral 

tissues are of great clinical interest. Enhancing our understanding of the androgenic regulation of 

skeletal muscle mass and of the molecular factors and signalling pathways modulated by androgens, 

may help in the identification of novel muscle-specific therapeutic targets to combat the devastating 

effects of muscle wasting.  

A first aim of this thesis was to gain more insight into the interindividual variation in skeletal muscle 

mass. In a population-based cross-sectional study (study 1), we extensively investigated the 

determinants of muscle mass and function in a cohort of 677 healthy young men (25-45 years). 

Moreover we tried to indentify genetic variations in the androgen receptor (AR) that are associated 

with serum testosterone (T) levels and muscle mass and function. Our results mainly confirmed 

previous findings that skeletal muscle mass and strength are highly heritable and are influenced by 

age, anthropometrics, body composition, physical activity and sex steroid levels. Next to the number 

of CAG repeats, we identified two single nucleotide polymorphisms (SNPs) (rs5965433 and 

rs5919392) in the AR gene that are associated with serum T levels. However, we could not provide 

evidence that these genetic variations in the AR gene also affect muscle mass or function. 
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In a second part of this thesis, we investigated the effects of T and estradiol (E2) administration on 

the signalling pathway regulating muscle protein degradation in an “androgen deprivation-induced 

muscle atrophy mice model” (study 2). The gene and protein expression levels of muscle atrophy-

inducing targets including Atrogin-1, MuRF1 and myostatin were measured at 3 different time-points 

(1, 7, and 30 days) and in 3 different muscle types [extensor digitorum longus (EDL), soleus (SOL) and 

the levator ani/bulcocavernosus muscles (LA/BC)] following orchidectomy of male mice. Our results 

showed important differences in atrophy signalling response between the LA/BC and the locomotor 

muscles. In the LA/BC, androgen deprivation resulted in a rapid and persistent upregulation of 

Atrogin-1 and MuRF1 mRNA and a downregulation of myostatin mRNA during the 30 day period, 

effects which were fully reversed by T. In the SOL and EDL muscle, a less pronounced upregulation of 

both atrogenes was only detectable early after orchidectomy (day 1), while myostatin mRNA levels 

were upregulated in the EDL only. No changes in the protein levels of Atrogin-1, MuRF1 and 

myostatin in EDL were found at any time point following orchidectomy, questioning their role in the 

androgenic regulation of the locomotor muscle mass. Furthermore, our results demonstrated that 

E2-treatment during androgen deprivation has anabolic effects on the LA/BC, which was associated 

with a partial suppression of Atrogin-1 and MuRF1 gene expression, indicating that further 

experiments examining the effects of E2 on skeletal muscle mass are of potential significance. 

In study 3, the regulation of atrophy and hypertrophy signalling molecules by T were examined in a 

“disuse atrophy mice model”. Following 1, 5 and 14 days of tail suspension, gene and protein 

expression levels of IGF1/Akt/p70S6K as well as myostatin, REDD1, Atrogin-1 and MuRF1 were 

examined in the SOL and EDL muscle. Because previous studies have shown that disuse atrophy is 

associated with reductions in serum T levels, we hypothesized that the therapeutic use of androgens 

in this setting would be beneficial. Tail suspension resulted in an increase, followed by a transient 

drop, in T levels and a decrease in muscle mass. IGF1 mRNA levels were downregulated during 1 and 

5 days of tail suspension, and a subsequent reduction in the phosphorylated levels of Akt after 14 

days of tail suspension was observed. Atrogin-1, MuRF1, myostatin and REDD1 gene expression 

levels were rapidly and transiently upregulated as early as 1 day following immobilization, even 

before muscle atrophy was observed. However, T treatment during tail suspension was not able to 

ameliorate muscle mass and did not restore the alterations in expression levels of catabolic and 

anabolic signaling molecules, indicating that the known anabolic effects of T are not sufficient to 

maintain muscle mass during muscle disuse. 

In conclusion, this thesis contributed to the better understanding of the molecular regulation of 

skeletal muscle mass by androgens and estrogens using 3 different models: a cohort of eugonadal 

men, an androgen deprivation-induced muscle atrophy mice model (orchidectomy), and a disuse 
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atrophy mice model (tail suspension). Our results provided evidence for a complex mechanism by 

which T regulates muscle mass, with important time- and muscle type dependent differences.  
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1. BACKGROUND 

Skeletal muscle comprises about 40% of the human body, and the maintenance of skeletal muscle 

mass is crucial for human health. Next to its vital function in maintaining body posture and 

controlling movement, it also plays an important role in thermogenesis and whole body protein 

metabolism (Wolfe 2006; Karagounis and Hawley 2010). By serving as a protein reservoir, skeletal 

muscle is able to provide amino acids for other tissues in which the preservation of protein content 

is essential for survival (i.e. skin, brain, heart, and liver), especially in response to stress. In addition, 

skeletal muscle functions in energy homeostasis via insulin stimulated glucose uptake. It is therefore 

not surprising that the maintenance of adequate skeletal muscle mass is not only important for 

physical independence but also for disease prevention (especially diabetes and heart diseases), and 

thus quality of life (Wolfe 2006).  

The prevention or therapy of skeletal muscle loss or muscle atrophy has been a topic of interest for 

many years in athletes, elderly people, astronauts and patients suffering from metabolic and 

neuromuscular diseases. Until now, only physical exercise, whether or not combined with nutritional 

supplements, appears to be an effective and safe countermeasure to attenuate or prevent muscle 

wasting (Mallinson and Murton 2013). However, this approach is not always feasible in seriously ill 

patients, elderly people or those who have suffered severe injuries. Therefore, a thorough 

understanding of the etiology and underlying mechanisms of different muscle wasting conditions, 

together with the identification of factors determining muscle mass in healthy adults, may lead to 

the development of effective strategies to prevent muscle wasting and to improve the clinical 

outcomes for patients suffering from skeletal muscle atrophy. 

In this introducing chapter, a summary of the current knowledge regarding muscle wasting 

conditions and its countermeasures is described in the first part. In the second part, the recent 

advances in our knowledge regarding the mechanisms regulating muscle mass are discussed, and a 

more detailed overview of the hypertrophy and atrophy signalling pathways is given in part three. 

Finally the regulation and synthesis of sex steroids in men as well as their androgenic action on 

muscle mass and force are presented in the last part. 
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2. SKELETAL MUSCLE ATROPHY AND COUNTERMEASURES 

2.1  Interindividual variation in skeletal muscle mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme illustrating the determinants of skeletal muscle mass and function and their interactions. 

SNPs: single nucleotide polymorphisms, GH: growth hormone, IGF1: insulin-like growth factor 1. Based on data 

from Gerace et al. 1994; Gallagher et al. 1997; Arden and Spector 1997; Gallagher and Heymsfield 1998; 

Baumgartner et al. 1999; Rankinen et al. 2002; Szulc et al. 2004b; Beunen and Thomis 2004; Freitas et al. 2007; 

Geirsdottir et al. 2012. 

 

The determinants of skeletal muscle mass and function and their interactions are illustrated in figure 

1. It is well documented that individual differences in muscle cross-sectional area (CSA) and strength 

performance exist within a population (Hortobágyi and Katch 1990; Hulens et al. 2001). Gender and 

age are obvious determinants of muscle mass (Loos et al. 1997; Gallagher et al. 1997; Gallagher and 

Heymsfield 1998). The physical appearance of males is clearly different from females. Healthy young 

men are taller and heavier, with relatively more lean- and less fat mass. This sexual dimorphism and 

the profound changes in body composition during lifetime suggest a substantial impact of sex 

steroids in the determination of muscle mass (Vermeulen et al. 1999; Wells 2007). From cross-

sectional and longitudinal studies, lean mass is known to be relatively stable during adult life. Muscle 
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mass generally peaks in the 20s or 30s and then declines (Baumgartner et al. 1999; Janssen et al. 

2000), a process which might ultimately lead to sarcopenia (see section 2.2.5).  

Studies in twins have suggested that both muscle mass and muscle strength are largely determined 

by genetic factors, explaining 30-50% of their total variance (Arden and Spector 1997; Peeters et al. 

2009). Genomic factors causing individual variation in muscle mass and strength are determining 

factors in predicting health status, but are also of interest in athletic populations. Over the last 

decade, several (genome-wide) linkage and association studies have screened the human genome 

for chromosomal regions where candidate genes causing variation in muscle mass (Karasik et al. 

2009) and strength are located (De Mars et al. 2008; Bray et al. 2009; Windelinckx et al. 2011; 

Puthucheary et al. 2011). Within these genes, more than 200 single nucleotide polymorphisms 

(SNPs) have been identified, each representing a small portion of the total genetic component 

underlying the variability in health-related fitness and physical performance. Many of these genes 

encode proteins directly involved in the regulation of musculature such as muscle strength, muscle 

mass, fiber type, and muscle collagen. Also variations in genes encoding proteins with a functional 

role in the anatomical, biochemical and physiological systems e.g. in hormonal status, vitamin D 

metabolism, cardiovascular-, skeletal-, and pulmonary health, glucose-, lipid- and protein 

metabolism, inflammation and anthropometry (stature, weight), have been associated with muscle 

fitness. Besides, ethnic differences in muscle mass exist, with African-American subjects having 

significantly greater skeletal muscle mass compared with Caucasian subjects (Gerace et al. 1994; 

Gallagher et al. 1997). A more detailed overview of recent genetic work on muscular strength 

phenotypes can be found in Thomis & Aerssens (2012). 

The majority of the remaining variance in muscle mass and strength can be explained by 

environmental factors. Physical exercise and adequate protein intake are probably the most 

important environmental factors increasing muscle mass at all ages (Larsson 1982; Geirsdottir et al. 

2012). On the other hand, chronic diseases and life-style related factors including tobacco smoking 

(Szulc et al. 2004b), malnutrition and low socioeconomic status (Freitas et al. 2007) are associated 

with lower lean mass. Like all variation in human phenotypes, muscle mass and strength in each 

individual result from an interaction between environmental stimuli and the individual’s unique 

genotype (Beunen and Thomis 2004; Beunen and Thomis 2006). A collaborative research group of 

the FAMuSS study (Pescatello et al. 2013) has recently identified 17 genes that are associated with 

muscle strength and size at baseline and in response to resistance training. Further investigation of 

gene-training interaction effects are thus of potential interest. 
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2.2 Conditions associated with skeletal muscle atrophy  

Muscle atrophy can occur as a consequence of pathological disorders (muscular dystrophies) (Emery 

2002), chronic diseases (cachexia) (Evans et al. 2008), malnutrition or starvation (Pasiakos et al. 

2010), hormonal deficiencies (androgen and growth hormones (GH) deficiency), immobilisation 

(disuse) (Urso 2009) as well as from normal ageing (sarcopenia) (Baumgartner et al. 1999). Ageing 

and several chronic diseases, e.g. chronic obstructive pulmonary diseases (COPD) and chronic heart 

failure, are accompanied with exercise intolerance and malnutrition, which in turn contribute to the 

loss of muscle mass (Glass 2003; Evans et al. 2008).  

 

2.2.1 Muscle disuse  

Muscle disuse atrophy is a consequence of long periods of inactivity as seen following limb 

immobilization, prolonged bed rest, and trauma to the neuromuscular apparatus i.e. denervation, 

paraplegia, amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), as well as in astronauts 

staying in microgravity environments (Glass 2003). All these muscle disuse atrophy conditions are 

caused by reduced neuromuscular activity or external loading, and are characterized by a rapid and 

extensive loss of skeletal muscle mass (up to 30%) and function within 2 days of disuse onset 

(Vandenburgh et al. 1999; Clark 2009; Narici and de Boer 2011). Age, muscle fiber type, and the 

degree of inactivity influence the rate and amount of muscle loss. It is well described that muscle 

disuse induces more pronounced atrophy in slow-twitch muscles when compared to fast-twitch 

muscles (Gardetto et al. 1989; Okamoto et al. 2011; Miokovic et al. 2012). A fiber type transition 

towards a more fast-twitch phenotype can explain the increased susceptibility to fatigue that goes 

along with the muscle atrophy (Kachaeva and Shenkman 2012). 

 

2.2.2 Cachexia and muscular dystrophy 

Muscle atrophy is also a serious complication of many chronic diseases such as heart-, liver- and 

renal failure, COPD, cancer and acquired immunodeficiency syndrome (AIDS). This loss of muscle is 

also known as cachexia, and is caused in part by an increase of inflammatory cytokines such as 

tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) (Evans et al. 2008).  

Muscular dystrophies, e.g. Duchenne muscular dystrophy, are hereditary muscle disorders 

characterized by progressive degeneration of muscle fibers and thus muscle weakness. Genetic 

defects in genes encoding proteins involved in the organization of the muscle membrane, such as 

dystrofine, sarcoglycans and laminins, are the causes of the observed muscle atrophy (Emery 2002). 
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2.2.3 Hormonal deficiency syndromes and female-to-male transsexuality 

Male-to-female transsexual persons or trans women often undergo estrogen therapy, together with 

anti-androgen treatment, to induce the secondary sex characteristics of females and to suppress 

endogenous testosterone (T) production (Hembree et al. 2009). Next to their role in sexual 

development, androgens are well-known regulators of muscle mass (see section 5). Androgen 

deficiency in trans women, as well as in hypogonadal men in which androgen deficiency results from 

testicular dysfunction or defects at the pituitary, is therefore often associated with a signifant loss in 

muscle mass (Bhasin et al. 1997). Although this loss in muscle mass is desired in trans women, it may 

result in important metabolic consequences (Wolfe 2006). 

Adult patients with GH deficiency are also characterized by a reduced lean body mass. GH is 

considered to be the main hormone regulating tissue anabolism during stress and fasting. By direct 

action or by indirect stimulation of insulin growth factor-1 (IGF1) and insulin, GH increases lipolysis 

and free fatty acid levels during fasting, hereby preserving glucose and protein synthesis. Lack of GH 

or diminished GH secretion during stress and fasting are associated with increased protein 

breakdown and thus reduced lean body mass (Moller et al. 2009; Reed et al. 2013). 

 

2.2.4 Food deprivation and malnutrition 

Malnutrition in industrialized countries is a major concern in elderly people and during chronic 

illness, and often results from changes in appetite, chewing or swallowing problems, or 

malabsorption (Bolin et al. 2010). An adequate daily intake of proteins is important in the 

maintenance of muscle mass (Phillips 2011). In fasting conditions, skeletal muscles serve as a protein 

reservoir that is able to provide amino acids for other tissues such as brain, heart, and liver, in which 

the maintenance of protein content is essential for survival (Wolfe 2006; Pasiakos et al. 2010). 

Moreover, amino acids are important for maintaining the blood glucose concentration at 

appropriate levels during starvation, as they supply precursors for the hepatic gluconeogenesis (Felig 

et al. 1969). When muscle protein breakdown becomes inadequate, death from starvation may 

occur (Winick 1979). 

 

2.2.5 Ageing 

The term ‘sarcopenia’ was introduced by Rosenberg and Roubenoff (1995) and refers to the age-

related decline in muscle mass and muscle strength. Sarcopenia is generally diagnosed when the 

percentage of skeletal muscle mass is more than two standard deviations below the mean of young 

healthy adults (Baumgartner et al. 1999). This age-related decrease in muscle mass and strength is 
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greatest in the appendicular skeletal muscles (i.e. the limb muscles), with preferential loss at the 

lower extremities (Gallagher et al. 2000; Visser et al. 2003). The rate of muscle loss is estimated to 

be 10% per decennium after the age of 50 (Hughes et al. 2002), and is related to a higher risk of falls, 

bone fractures, loss of independency and increased mortality. This functional loss, together with the 

age-related decline in maximal oxygen uptake (VO2max) (Astrand et al. 1973), contribute to the 

development of frailty in the elderly. Considering demographic evolutions with ageing of the 

population, sarcopenia has emerged as a relevant public health issue (Janssen et al. 2004).  

The exact mechanism underlying sarcopenia is not entirely understood, but the pathogenesis is 

probably multifactorial and complex (Narici and Maffulli 2010; Lang et al. 2010). Diminished physical 

activity and neuropathic (neurodegeneration), hormonal (sex steroids, GH, IGF1), immunological 

(inflammation) and nutritional (malnutrition) defects contribute to the etiology of sarcopenia 

(Rudman 1985; Dutta and Hadley 1995; Evans 1997; Lexell 1997). In men, age-related muscle loss 

has been attributed in part to the decline of androgen levels with age (Kaufman and Vermeulen 

2005; Orwoll et al. 2006). There is evidence that muscle atrophy in post-menopausal women is 

associated with the decline in estrogen levels (Poehlman et al. 1995), but no consistency exists (see 

section 5.5). In contrast to muscle disuse, there is an apparent selective atrophy of the fast-twitch 

fibers in ageing muscles (Andersen 2003; Léger et al. 2008). This is explained by the age-related 

degeneration of α-motor units, especially of those innervating type II fibers, leading to muscle fiber 

denervation (Brown 1972; Doherty et al. 1993; Faulkner et al. 2007).  

 

2.3  Therapeutic approaches counteracting muscle atrophy 

2.3.1  Exercise  

The anabolic effects of exercise, and in particular resistance exercise, on muscle is well established 

and is currently the most efficient and safe intervention to treat skeletal muscle atrophy (Swift et al. 

2010; Nicastro et al. 2011). The efficiency of exercise training depends on the type, the duration and 

the intensity of the exercise. Physical exercise with high resistance loading appears efficient to 

prevent or counteract muscle atrophy during human bed rest (Shinohara et al. 2003; Trappe et al. 

2007) and during hindlimb suspension in animal models (Herbert et al. 1988; Chopard et al. 2009). 

The beneficial effects of exercise on muscle mass are also well established in the elderly (van der Bij 

et al. 2002; Delecluse et al. 2004). However, it is clear that personalized exercise programs are 

necessary to ensure the feasibility and, more important, the maintenance of regular training in 

ageing people (Delecluse et al. 2004). 
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2.3.2 Nutrition  

Food intake stimulates net muscle protein synthesis (Phillips 2011). However, it is not the higher 

energy intake per se, but the protein and amino acid ingestion in particular that is responsible for 

the increased rate of muscle protein synthesis. Much of the knowledge regarding the beneficial 

effects of protein intake has been derived from studies assessing nutritional interventions in athletes 

(Phillips 2004; Phillips and Van Loon 2011). However, recent studies also provided evidence 

regarding the efficacy of dietary protein intake on disuse muscle atrophy during bed rest (Paddon-

Jones et al. 2004). During disuse, a reduction in energy requirement and/or appetite results in an 

inadequate dietary protein intake. Therefore, an adequate intake of proteins or essential amino 

acids during periods of disuse is important to attenuate muscle atrophy (Wall and van Loon 2013).  

The current dietary reference intake for protein is 0.8 g/kg/day. However, the extent of protein 

synthesis is determined by the amount of protein (Bohé et al. 2001), the type of protein or amino 

acid (Churchward-Venne et al. 2014), and the timing of protein ingestion (Esmarck et al. 2001). 

Moreover, physical activity (resistance exercise) increases energy expenditure and food intake, and 

facilitates muscle protein anabolism (Aguirre et al. 2013).  

Studies suggest that early post-exercise ingestion of 20–25 g (or 1.3-1.5 g/kg/day consumed over 4 

meals) of high-quality protein (i.e. high in leucine content, e.g. whey protein), maximizes the 

response of muscle protein synthesis following resistance exercise in young, resistance-trained 

males. However, more protein may be required during periods of high frequency training (Phillips 

and Van Loon 2011). In elderly people or during periods of inactivity, a state of ‘anabolic resistance’ 

of the muscle, i.e. loss of the ability to build protein, may occur, and a protein dose twice as great as 

that in young persons is recommended for these people to minimize total body protein loss (Tipton 

and Phillips 2013).  

Other nutritional supplements beneficial in promoting muscle mass include vitamin D (Ceglia and 

Harris 2013) and E (Servais et al. 2007), antioxidants (Arbogast et al. 2007) and creatine (Deldicque 

et al. 2005).  

 

2.3.3 Pharmacological interventions 

Several studies have aimed at testing pharmacological interventions to counter muscle wasting; 

however, conclusive results are limited. Available anabolic treatments for attenuating muscle 

wasting, were mostly tested in AIDS wasting and include cytokine modulators (anti-TNF-α, IL-6 

inhibitors), appetite stimulants, clenbuterol (beta-2 adrenoreceptor agonist), growth hormones and 

anabolic steroids (reviewed by Glass and Roubenoff et al. (2010)). However, the effects of most of 

these treatments are not very large and are often accompanied by undesirable side effects. 
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Recombinant human GH and IGF1 have shown efficacy in manipulating skeletal muscle mass 

(Clemmons 2009) and are approved by the U.S. Food and Drugs Administration (FDA) for the 

treatment of AIDS wasting (Serostim, Merck Serono). However, next to its role in the anabolic 

pathways, IGF1 plays a major role in other biological processes including cell survival (Datta et al. 

1999), cell differentiation (Florini et al. 1993; Coleman et al. 1995) cell proliferation (Sato et al. 

2002), and regeneration (Musarò et al. 2001) as such that it can promote tumorigenesis. Another 

effective strategy that has been approved to stimulate muscle mass in AIDS-wasting and 

hypogonadal and elderly men is androgen therapy (Bhasin et al. 1996; Snyder et al. 1999). As will be 

discussed further, androgens are well-known for their anabolic effects, but because of their effects 

on multiple tissues, caution must be taken when treating patients with androgens.  

 

 

actors determining muscle mass give the potential for lifestyle modifications and 

other clinical interventions, such as pharmacotherapy, to modify muscle mass and 

strength.” 

 

 

“F 
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3 CELLULAR MECHANISMS REGULATING SKELETAL MUSCLE MASS 

The maintenance of skeletal muscle mass is regulated by protein turnover and cell turnover, by 

which muscle fibers adapt in CSA and in fiber number respectively. The turnover rate of skeletal 

muscle protein is approximately 1–2% per day (Wall and van Loon 2013). As discussed in more detail 

below, cellular turnover mainly plays a role during embryonic and postnatal growth (Sartorelli and 

Fulco 2004), whereas skeletal muscle mass in adults is mainly determined by processes controlling 

muscle protein synthesis and muscle protein breakdown (section 4). By altering the net balance 

between protein synthesis and protein degradation, skeletal muscle is able to quickly adapt to 

changing environmental conditions such as mechanical stress, physical activity, nutrients, growth 

factors, hormones and pathophysiological states. A chronic imbalance results in either muscle loss 

(atrophy) or muscle growth (hypertrophy) (Phillips 2004) (Figure 2). In the next paragraphs, our 

current knowledge regarding the molecular events regulating skeletal muscle hypertrophy as well as 

muscle atrophy is summarized. 

 

 

 

 

 

 

 

 

 

Figure 2. Adaptation of skeletal muscle to changing environmental conditions. (A) Influences of amino acid 

(AA) consumption at rest, performance of resistance exercise (RE), and AA consumption after RE on muscle 

protein synthesis and breakdown. (B) Net protein balance (synthesis minus breakdown) under the same 

conditions. Values are means ± standard deviation. Adopted from Phillips et al. (2004).  

 

 

3.1  Skeletal muscle hypertrophy 

3.1.1 The role of satellite cells 

During the embryonic development of skeletal muscle, muscle progenitor cells originate from the 

mesodermal lineage and differentiate into myoblasts. These myoblasts subsequently become 

terminally differentiated myocytes and fuse to form multinucleated myotubes, which can mature 

into contracting muscle fibers. A distinct population of myoblasts fails to differentiate and remains 
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associated to the surface of the myofiber as satellite cells, where they play an important role in 

postnatal growth (Hawke and Garry 2001).  

In adults, these satellite cells may become activated during muscle regeneration. Upon inflammatory 

stimulation after myotrauma from injury or exercise (Ciciliot and Schiaffino 2010; Macaluso and 

Myburgh 2012), quiescent satellite cells (Pax7+/MyoD-) become activated and enter an intermediate 

progenitor stage. Subsequent expression of MyoD and Myf5, transcriptional activators of the 

myogenic regulatory factor family, promotes progenitor cells to proliferate into myoblasts 

(Pax7+/MyoD+). Later on, these proliferating myoblast express p21, a cell cycle arrest protein, and 

Myogenin and MRF4, two myogenic regulatory factors, resulting in terminal differentiation into 

myotubes (Pax7-/Myogenin). Fusion of the myotubes with the damaged fibers results in the addition 

of new myonuclei and increased fiber size. Activated satellite cells that do not express MyoD but 

continue to express Pax7 are able to self renew by returning to a quiescent state for the 

maintenance of a satellite cell pool (Figure 3) (Kadi and Thornell 2000; Chargé and Rudnicki 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Satellite cell response to myotrauma in adult muscles. In response to injury, satellite cells become 

active and proliferate. Some of the satellite cells will re-establish a quiescent satellite cell pool via self-renewal. 

Satellite cells will migrate to the damaged region and fuse to the existing myofiber. Adopted from Hawke and 

Garry (2001). 

 

Two signalling pathways, namely Notch and Wnt, play a critical role in muscle development and 

postnatal myogenesis. While Notch promotes the transition of activated satellite cells to highly 

proliferative myogenic precursor cells and myoblasts, Wnt plays a main role in myoblast 

differentiation and myotube fusion during muscle regeneration. Upon muscle injury, Notch signalling 

is activated which ultimately leads to the expression of its target genes Hey and Hes, both encoding 
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proteins involved in myogenesis such as Delta-1 and Notch-1. As long as Notch signalling is active, 

the differentiation of myoblasts into myotubes is prevented trough inhibition of Myogenin 

transcriptional activity. Cessation of Notch activity by Numb results in activation of Wnt signalling 

and subsequently upregulation of Wnt downstream target genes c-myc and Cyclin D1 (Tsivitse 2010; 

Buas and Kadesch 2010). Recently, also the Hippo pathway member Yap has been identified as an 

important promotor of satellite cell proliferation (Judson et al. 2012). 

Although satellite cells play a role in adult muscle homeostasis, their contribution in cellular turnover 

during muscle hypertrophy in adulthood remains equivocal (McCarthy and Esser 2007; Rehfeldt 

2007; Amthor et al. 2009; Blaauw et al. 2009; McCarthy et al. 2011). However, there is growing 

evidence supporting the idea that satellite cells play a key role in determining the potential for 

skeletal muscle hypertrophy. As each single myonucleus controls cellular processes for a certain 

amount of cytoplasm within a muscle fiber (i.e. myonuclear domain), an increased incorporation of 

new myonuclei seems to be necessary to allow muscle fiber hypertrophy (Zammit et al. 2006; 

Petrella et al. 2008; Snijders et al. 2009; Bruusgaard et al. 2010; Verdijk et al. 2013).  

 

3.2  Skeletal muscle atrophy 

Muscle atrophy is characterized by shrinkage of the muscle fibers caused by a loss of contractile 

proteins. Next to its role in controlling muscle mass, muscle protein breakdown is also an essential 

mechanism that prevents the accumulation of damaged or misfolded proteins (Wolfe 2006). 

Although Lexell et al. (1997) provided evidence for a loss in fiber number during sarcopenia, the 

contribution of cellular turnover during muscle atrophy seems unlikely. 

Up to date, four proteolytic systems involved in protein degradation are described: the adenosine 

triphosphate (ATP)-dependent ubiquitin-proteasome pathway (UPP), the autophagy-lysosomal 

pathway, the Ca2+-dependent calpain system, and the caspase system, with the first two being the 

most important cell proteolytic systems that control protein turnover in muscle (Figure 4). Because 

this thesis only focuses on the UPP, a more detailed overview of this pathway will be given. 
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Figure 4. Four main proteolytic systems implicated in muscle atrophy. The caspase system (A), the Ca
2+

-

dependent calpain system (B), the autophagy-lysosomal system (C), and the ubiquitin-proteasome system 

(UPP) (D). Recent evidence points toward interactive involvement of these 4 systems in proteolysis. Adapted 

from Jackman and Kandarian (2004) and Bonaldo and Sandri (2013). 

 

3.2.1 The ubiquitin-proteasome pathway (UPP) 

In 2004, Aaron Ciechanover won the Nobel Prize in Chemistry for his discovery of the involvement of 

ubiquitin in protein degradation (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/) 

(Ciechanover et al. 1980b; Ciechanover et al. 1980a). Wing et al. (2005) were the first to describe 

increased levels of ubiquitinated proteins in rat skeletal muscles during denervation and starvation, 

implicating a role for the ubiquitin system in atrophying skeletal muscle. Ubiquitin is a small 

conserved protein that functions as a signalling molecule for protein degradation. Substrates 

covalently bound to a polyubiquitin chain are recognized and degraded into small peptides by the 

proteasome. This process involves a series of sequential reactions (Figure 5).  

Ubiquitin-activating enzymes (E1) mediate the first step in the ubiquitin-proteasome-dependent 

proteolysis process by activating ubiquitin monomers using ATP. This is subsequently followed by 

the transfer of the ubiquitin to a ubiquitin-carrying enzyme (E2). Finally, a ubiquitin-ligase enzyme 

(E3) transfers the ubiquitin from the E2 enzyme to the protein substrate (Solomon and Goldberg 

1996; Jagoe and Goldberg 2001). The repetition of these reactions leads to the formation of a 

C. Lysosomes

D. UPP

B. CalpainsA. Caspases

Myofilament degradation
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polyubiquitin chain that allows recognition of the protein substrate by the proteasome 26S (Pickart 

2000; Jagoe and Goldberg 2001; Wing 2005). The 26S proteasome is a large complex (2000kDa) 

made up of at least 50 subunits (Jagoe and Goldberg 2001). The most important subunits are 19S 

and 20S. 19S is a regulatory subunit that recognizes, unfolds and translocates the protein substrate 

to the 20S subunit, the central proteolytic core of the proteasome. The polyubiquitin chain is 

subsequently broken into free ubiquitin molecules, by specific deubiquitinating enzymes, which can 

then be re-used in the degradation of other proteins. The rate-limiting step in the degradation 

process is believed to be determined by the action of E3s, which are responsible for the specificity of 

substrate recognition. The human genome encodes more than 650 ubiquitin ligases (E3), from which 

Muscle Atrophy F-Box (MAFbx, also known as Atrogin-1 and Fbxo32), Muscle Really interesting new 

gene Finger-1 (MuRF1, also known as Trim63) (Bodine et al. 2001a; Gomes et al. 2001), and recently 

F-box protein 40 (Fbxo40) (Shi et al. 2011) were identified to be muscle-specific (see section 4.3.2). 

Nedd4, E3α, Mdm2, CHIP, XIAP, Trim32, TRAF6, Mul1 and ASB2β are other ubiquitin ligases which 

seem to play an important role in a variety of atrophy conditions including denervation, hindlimb 

unloading and starvation (Cao et al. 2005; Bello et al. 2009; Paul et al. 2010; Cohen et al. 2012; 

Lokireddy et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The Ubiquitin-proteasome system for degrading target protein. Ubiquitin-activating enzymes (E1) 

activate ubiquitin proteins (Ub) after the cleavage of ATP. The ubiquitin is then moved from E1 to members of 

the ubiquitin-carrying enzyme (E2) class. The final ubiquitylation reaction is catalysed by members of the 

ubiquitin-ligase enzyme (E3) class. E3 binds to E2 and the protein substrate, inducing the transfer of ubiquitin 

from E2 to the substrate. Once the substrate is polyubiquitylated, it is docked to the proteasome for 

degradation. Adapted from Bonaldo and Marco (2013).  
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The UPP system is believed to degrade mainly unbound myofibrillar proteins, and most soluble 

short-lived proteins. Under normal physiological conditions, the ATP-dependent UPP constantly 

degrades damaged or misfolded proteins to mediate normal protein turnover. Moreover, it is 

involved in a variety of cellular processes such as inflammatory response, immune surveillance, 

degradation of transcriptional regulators and cell cycle regulation (Solomon and Goldberg 1996; 

Clarke et al. 2007; Fielitz et al. 2007; Cohen et al. 2009).  

 

3.2.2 The autophagy-lysosomal pathway 

Autophagy is a catabolic mechanism through which intracellular components are delivered to 

lysosomes for their breakdown (Figure 4C). These lysosomes are cellular organelles that contain 

hydrolases necessary for degradation. The autophagy-lysosome system was described many years 

ago during denervation-induced muscle atrophy in rats (Schiaffino and Hanzlíková 1972; Furuno et 

al. 1990), but its involvement in muscle catabolism has only recently been recognized. Autophagy is 

constitutively active in skeletal muscle and plays a crucial role in cellular remodelling by removal of 

long-lived soluble proteins, damaged organelles and protein aggregates (Bechet et al. 2005; Kirkin et 

al. 2009). Three different forms of autophagy have been described in mammals: macroautophagy, 

chaperone-mediated autophagy and microautophagy, each form having its own substrate selectivity 

and mechanism for delivering its target to the lysosomes. Macroautophagy is believed to be the 

main mechanism involved in lysosomal degradation (Bejarano and Cuervo 2010). Recent studies 

have shown that the autophagy-lysosome and ubiquitin-proteasome systems are coordinately 

regulated during muscle wasting (Mammucari et al. 2007; Zhao et al. 2007). 

 

3.2.3 The calpain pathway  

The Ca2+-dependent calpains are implicated in many physiological functions, including apoptosis, 

cytoskeleton organization, signal transduction and proteolysis of proteins involved in cell cycle. The 

role of Ca2+-mediated protein degradation during skeletal muscle atrophy was firstly reported by 

Tischler et al. (1990), who showed that inhibitors of Ca2+-dependent proteolysis were able to 

attenuate protein degradation rates in skeletal muscle of unloaded rats. However, inconsistency 

exists about whether there rather is a change in mRNA or in activity of the calpains during different 

atrophy conditions (Taillandier et al. 1996; Spencer et al. 1997; Ikemoto et al. 2001; Haddad et al. 

2003; Stevenson et al. 2003). Nevertheless, the calpains remain likely involved in myofibrillar 

disassembly by selective cleavage of sarcomere anchoring proteins, hereby providing muscle 

proteins, such as actin and myosin, to the ubiquitin proteasome system (Jackman and Kandarian 

2004; Wing 2005) (Figure 4B).  
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3.2.4 The caspase system  

The caspases, member of the family of cysteine proteases, are enzymes which cleave substrates 

preferentially after aspartic acid residues. They play an essential role in programmed cell death, but 

are also involved in several non-apoptotic functions (Kuranaga 2012). Caspase-3 was shown to 

cleave the actomyosin complex in skeletal muscles and may therefore, like calpains, be involved in 

providing substrates to the ubiquitin proteasome system (Du et al. 2004) (Figure 4A). 

 

ore insight into the muscle-specific molecules involved in the regulation of 

muscle mass could lead to the identification of potential novel muscle-specific 

therapeutic targets for the prevention and treatment of muscle atrophy” 
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4 HYPERTROPHY AND ATROPHY SIGNALLING PATHWAYS  

Below, the current identified proteins involved in hypertrophy and atrophy signalling regulating 

muscle mass will be introduced, with emphasis on those regulating the UPP and those relevant to 

understand this thesis. It has recently become clear that muscle atrophy and hypertrophy signalling 

pathways are coordinately regulated by crosstalk and modulation at different levels, demonstrating 

that skeletal muscle atrophy is not simply the converse of hypertrophy (Hoffman and Nader 2004; 

Russell 2010) (Figure 6). The commonly up- or downregulated genes in different catabolic states are 

believed to regulate the loss of muscle components and are termed atrophy-related genes or 

‘atrogenes’ (Sacheck et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Main signalling pathways regulating muscle mass. Protein synthesis and degradation are regulated 

by multiple signalling pathways which are co-ordinately regulated. Green lines depict activation, red lines 

depict inhibition. Based on data from Bonaldo and Sandri (2013). 

 

4.1  The pivotal role of Akt  

IGF1 is one of the most well-characterized muscle growth-promoting factors and is produced under 

influence of GH in many tissues including the skeletal muscle itself. After binding to its receptor, 

phosphatidylinositol-3,4,5-triphosphate (PIP3) is generated by the recruitment of phosphoinositide 

3-kinase (PI3K) which, in turn, recruits Akt (also known as protein kinase B) to the membrane where 
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it is activated by phosphorylation (Schiaffino and Mammucari 2011). Akt plays a role in muscle 

hypertrophy by both increasing protein synthesis and repressing protein degradation: 

1. Akt promotes muscle hypertrophy via its phosphorylation and hence activation of the 

mammalian target of rapamycin (mTOR) (section 4.2).  

2. Another downstream pathway of Akt is the glycogen synthase kinase 3β (GSK3β) pathway 

which regulates eukaryotic initiation factor 2B (eIF2B), a translation initiation factor involved in 

protein synthesis (Welsh et al. 1997; Jefferson et al. 1999).  

3. Akt interacts with the atrophy signalling pathway by phosphorylating and inhibiting the 

forkhead box containing proteins, O-subclass (FoxO) family of transcription factors (Sandri et al. 

2004) (section 4.3).  

 

4.2  IGF1-Akt-mTOR signalling pathway 

In vivo studies have shown that muscle hypertrophy can be blocked by rapamycin, an inhibitor of 

mTOR, demonstrating the rapamycin-dependent role of mTOR in muscle growth (Bodine et al. 

2001b; Pallafacchina et al. 2002). In fact, mTOR is a major sensor of nutritional status, cellular stress 

and growth factor signals (Rivas et al. 2009; Shimizu et al. 2011; Xu et al. 2012). The serine/threonine 

kinase mTOR is part of two different complexes: mTORC1 and mTORC2 (Laplante and Sabatini 2012). 

mTORC1 regulates protein synthesis through the posphorylation of its downstream targets p70-

ribosomal S6 kinase (p70S6K) and factor 4E binding protein 1 (4EBP1). Phosphorylated p70S6K is able 

to activate S6, a ribosomal protein which is involved in protein translation (Ohanna et al. 2005), 

whereas phosphorylation of 4EBP1 releases its inhibitory effect on eukaryotic initiation factor 4E 

(eIF4E), which is involved in protein translation (Hara et al. 1997). Active mTORC1 is also believed to 

inhibit autophagy by phosphorylation and subsequenlty suppression of autophagy-related proteins 

such as ULK1 (Kim et al. 2011; Sanchez et al. 2012). 

Regulated in Development and DNA damage responses 1 (REDD1), is believed to play a role in 

muscle atrophy by inhibiting mTOR activity (Brugarolas et al. 2004). REDD1 was first identified in 

response to hypoxia (Shoshani et al. 2002) and DNA damage (Ellisen et al. 2002) and its gene 

expression was subsequently found to be upregulated in different cell types in response to other 

stress stimuli such as endoplasmic reticulum stress, serum deprivation, and treatment with 

glucocorticoid, hydrogen peroxide or dexamethasone (Wang et al. 2003; Lee et al. 2004; Whitney et 

al. 2009). In skeletal muscles, REDD1 mRNA was recently shown to be upregulated in hindlimb 

immobilized rats (Kelleher et al. 2013) and following glucocorticoid treatment (Wang et al. 2006).  
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4.3  IGF1-Akt-FoxO signalling pathway 

4.3.1 FoxO transcription factors 

In skeletal muscle, three isoforms of FoxO have been described: FoxO1, FoxO3 en FoxO4, with FoxO3 

being the best known isoform. The role of FoxO3 in the control of proteolysis was shown by Sandri 

et al. (2004) and Stitt et al. (2004) who demonstrated that blocking of FoxO3 function prevented 

muscle atrophy in mice and mouse myoblast cell line C2C12 respectively. Activation of FoxO3, on the 

other hand, induced loss of muscle mass.  

The transcriptional activity of FoxO is determined by its phosphorylation state (Van Der Heide et al. 

2004). When phosphorylated, FoxO is retained in the cytosol, whereas dephosphorylation promotes 

its translocation to the nucleus where it binds to the promoter region of its target genes and 

subsequently activates transcription. Studies in C2C12 cells and rodents have demonstrated that 

FoxO controls the expression of ubiquitin ligases of the UPP (Sandri et al. 2004) and key genes 

involved in the autophay-lysosomal pathway, e.g. LC3, Atg12 and ULK2 (Zhao et al. 2007). The role of 

two muscle-specific ubiquitin protein ligases Atrogin-1 (Sandri et al. 2004) and MuRF1 (Stitt et al. 

2004) in skeletal muscle atrophy will be discussed in more detail below (section 4.3.2). FoxO also 

represses the hypertrophy-promoting protein mTOR and subsequently upregulates the hypertrophy-

inhibiting protein 4EBP1 (Southgate et al. 2007; Demontis and Perrimon 2010), hereby mediating 

another crosstalk between protein breakdown and protein synthesis. As previously mentioned, a 

main negative regulator of FoxO function is Akt (Sandri et al. 2004). 

FoxO transcriptional activity is also inhibited by peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC1α), a critical cofactor for mitochondrial biogenesis (Puigserver and 

Spiegelman 2003). Finally, the transcription factor JunB has been reported to block atrophy by 

interacting with FoxO on the one hand, and by inhibiting the myostatin signalling pathway on the 

other hand (section 4.4) (Raffaello et al. 2010). 

  

4.3.2 The role of Atrogin-1 and MuRF1 in skeletal muscle atrophy 

In 2001, Gomes et al. (2001) and Bodine et al. (2001a) identified two muscle-specific ubiquitin 

protein ligases, Atrogin-1 and MuRF1, which genes were found to be commonly upregulated in 

different models of muscle atrophy. Mice knocked out (KO) for Atrogin-1 were subsequently shown 

to be partially protected against muscle atrophy induced by denervation (Bodine et al. 2001a) and 

fasting (Cong et al. 2011), whereas MuRF1 KO mice were shown to be resistant to dexamethasone-

induced (Baehr et al. 2011) and denervation-induced muscle atrophy (Bodine et al. 2001a). From 
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then on, extensive progress has been made in understanding the molecular mechanisms of the UPP-

dependent muscle atrophy system. Increased Atrogin-1 gene expression has been observed in more 

than 13 in vitro and in vivo rodent models of muscle atrophy including uremia, ageing, denervation, 

diabetes, burn injury, underweighting, sepsis, hindlimb suspension, cancer, renal failure, and 

treatment with dexamethasone, cytokines and TNF-α (Sacheck et al. 2007). 

Although both ubiquitin protein ligases appeared to be promising therapeutic targets, a number of 

reports were unable to show a correlation between Atrogin-1 gene expression levels and rates of 

protein breakdown (Krawiec et al. 2005; Fareed et al. 2006; Dehoux et al. 2007). Moreover, few 

studies have measured changes in protein levels under atrophic conditions (Doucet et al. 2007; 

Léger et al. 2009; Nedergaard et al. 2012), or have investigated the actual functional role of 

Atrogin-1 and MuRF1. The identification of substrates of Atrogin-1 and MuRF1 are still under intense 

investigation, and will certainly aid in our knowledge of their regulation and function.  

  

4.4  Myostatin, a negative regulator of muscle growth 

Myostatin is a member of the transforming growth factor-β (TGF-β) and acts as a negative regulator 

of myogenic differentiation (Rios et al. 2002) and postnatal muscle growth (Taylor et al. 2001). 

Myostatin is secreted by the skeletal muscle itself, and binds to its activin recepor II B (Lee et al. 

2005). Several studies in animals and humans have demonstrated that loss-of-function and other 

mutations in the myostatin gene result in a hypertrophic phenotype (McPherron and Lee 1997; 

Schuelke et al. 2004; Clop et al. 2006; Li et al. 2010). In addition, blocking of myostatin in adult 

muscles has been shown to increase muscle mass (Whittemore et al. 2003). Although there is 

evidence that myostatin treatment of muscle cell cultures activates FoxO and subsequently 

upregulates the ubiquitin ligases Atrogin-1 and MuRF1 (McFarlane et al. 2006), its role in atrophy in 

vivo is less clear as muscle-specific overexpression of myostatin in transgenic mice and rats resulted 

in only 20% of muscle loss in males, but not in females (Reisz-Porszasz et al. 2003; Durieux et al. 

2007). The mechanisms of its action on the hypertrophy and atrophy signalling cascades are thus far 

from elucidated, but recent reports suggest that myostatin-induced muscle atrophy in adulthood is 

established via blockade of Akt signalling (Trendelenburg et al. 2009) and may depend on the 

transcription factors Smad2 and Smad3 (Sartori et al. 2009). 

 

4.5  NF-κB signalling pathway 

The nuclear factor kappa B (NF-κB) is involved in a variety of cellular processes including immunity 

and inflammation. In skeletal muscle, NF-κB plays a major role in mediating the effect of 



 
21|  General introduction   
 

 

 
 

inflammatory cytokines on muscle wasting (Peterson et al. 2011), which was primarily described 

during TNF-α cytokine-mediated atrophy (Li and Reid 2000). Under basal conditions, NF-κB is 

retained in the cytosol by the inhibitor of nuclear factor of kappa B (IκB). TNFα is able to activate NF-

κB by phosphorylation of IκB kinase (IKK) which subsequently degradates IκB, allowing NF-κB to 

translocate into the nucleus. Inhibition of NF-κB during denervation has shown to inhibit atrophy 

(Judge et al. 2007), whereas muscle-specific overexpression of IKK in transgenic mice resulted in 

severe muscle wasting (Cai et al. 2004). The atrophic effect of NF-κB is believed to be partly 

mediated by activation of MuRF1 (Cai et al. 2004) and by upregulation of autophagy-related genes 

(Mofarrahi et al. 2012). 

TNFα is also known to regulate the transcription of suppressor of cytokine signalling-3 (SOCS-3) 

(Emanuelli et al. 2001), hereby inhibiting GH signalling which possibly results in a reduction of IGF1 

transcription (Hansen et al. 1999; Ram and Waxman 1999).  

 

4.6  Signalling pathways involved in disuse muscle atrophy  

Several rodent and human models have been developed in order to study muscle disuse atrophy 

including (head-down) bed rest, casting, denervation, joint immobilisation and hindlimb unloading. 

Tail suspension in rodents, in which the hindlimbs are unloaded by caudal elevation via the tail, has 

been frequently used to mimic microgravity (Morey-Holton and Globus 2002). New insights in the 

molecular and cellular mechanisms of disuse-induced muscle loss have been derived from those 

models, as reviewed by Urso et al. (2009) and Chopard et al. (2009). The majority of them have 

provided evidence that muscle disuse atrophy results from a decreased rate in protein synthesis. 

Decreased signalling through PI3K-Akt-mTOR and consequently decreased phosphorylation of S6K1 

and 4EBP1 have been reported in rodent models of immobilization and hindlimb unloading 

(Hornberger et al. 2001; Haddad et al. 2003; Kelleher et al. 2013; Bodine 2013). In addition, 

increased myostatin gene and protein expression (Wehling et al. 2000) and increased activation of 

NF-κB (Hunter et al. 2002) have been described in rats subjected to hindlimb unloading. Although 

some researchers believe that a reduction in protein synthesis is the only cause for the disuse-

induced muscle atrophy (Phillips et al. 2009; Rennie et al. 2010), there are some arguments for a role 

of protein degradation. Increases in the mRNA levels of Atrogin-1 and MuRF1 have been reported in 

rodents and humans following immobilization (Jones et al. 2004; Krawiec et al. 2005; Haddad et al. 

2006; Okamoto et al. 2011). Moreover, Labeit et al. (2010) have shown an attenuated atrophic 

response in MuRF1 KO mice subjected to unloading, whereas two other studies (Bodine et al. 2001a; 

Gomes et al. 2012) were able to modulate denervation-induced muscle atrophy in Atrogin-1- and 

MuRF1-null mice. Nevertheless, further research is needed to understand the regulation of MuRF1 
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and Atrogin-1 under disuse conditions and future studies looking for additional genes affecting both 

protein degradation and protein synthesis are required. 

 

4.7 Promising therapeutic targets 

The recent advances in our knowledge of the molecular regulation of skeletal muscle mass have led 

to promising pharmacological interventions to counteract muscle wasting. Targeting the myostatin 

pathway has become of major interest in the search for novel treatments. Different anti-myostatin 

compounds that block myostatin’s function have been tested in different models (Wagner et al. 

2008; Watt et al. 2010; Kawakami et al. 2011). However, blocking the signalling pathways 

downstream the activin receptor seems to be a better strategy (Tsuchida et al. 2009). Molecules that 

inhibit the activin II receptors have shown their positive effect on muscle mass (Sun et al. 2008; 

Ohsawa et al. 2012) and are currently being investigated in early phase clinical trials (Acceleron 

Pharmaceuticals and Novartis). Another class of promising drugs showing successful results in 

blocking atrophy in different animal models (Supinski et al. 2009; Caron et al. 2011; Jamart et al. 

2011) are proteasome inhibitors. However, as mentioned earlier, protein breakdown is an important 

mechanism that prevents the build-up of damaged or misfolded proteins (Wolfe 2006), as such that 

prolonged inhibition of protein degradation can be detrimental for muscle cells.  

A consideration in the development of muscle atrophy counteracting agents, is that there is growing 

evidence that the regulation of each individual skeletal muscle atrophy model depends on unique 

atrophic stimuli, as such that apparent differences exist concerning transcriptional and translational 

adaptations (Urso 2009). Moreover, studies in rodents and humans have suggested that muscles 

with differences in fiber type distribution respond differently in the same atrophic conditions 

(Degens and Alway 2006; Goodman et al. 2012).  

 

 thorough understanding of the specific molecular alterations involved in each 

atrophic condition and in each muscle fiber type may be important for the 

development of effective therapies to attenuate muscle atrophy.” 
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5 SEX STEROIDS AND THE MALE SKELETAL MUSCULATURE 

In the following section, we will describe the regulation and synthesis of sex steroids in men as well 

as their androgenic action on muscle mass and force. Further, the molecular mechanisms of the 

androgenic and estrogenic action on skeletal muscle will be discussed in detail. 

 

5.1  Sex steroid metabolism   

Androgens are male sex hormones of the steroid family which are involved in sexual and 

reproductive functions. These male sex steroids are also essential for the development and 

maintenance of secondary sexual characteristics, including muscular development (Wilson et al. 

1995). Furthermore, androgens are known for their metabolic effects on protein, carbohydrate, and 

fat metabolism and therefore contribute to the determination of muscle mass and strength, next to 

that of bone and fat mass (Mårin 1995; Urban et al. 1995; Köhn 2006). The major biologically active 

male sex steroid is T, which can be further metabolized into several biologically active hormones, 

such as dihydrotestosterone (DHT) (Horton and Tait 1967) and 17β-estradiol (E2) (Gooren and 

Toorians 2003). Only 1 to 2% of the circulating T is free (FT), and together with the albumin bound T 

(40-50%), it represents the bio-available T, which has rapid access to the target cells (Vermeulen et 

al. 1971; Hammond et al. 1980). The remaining T is strongly bound to sex hormone binding globulin 

(SHBG) (50-60%) which is believed not to be readily available for biological action (Dunn et al. 1981). 

In men, T is produced and secreted almost exclusively by the testes (95%) and to a lesser extent by 

the adrenals (5%). The synthesis of T is mediated through sequential cytochrome P450-dependent 

(CYP) and hydroxysteroid dehydrogenase-dependent (HSD) enzymatic reactions (Figure 7). The first 

and rate-limiting step is the conversion of cholesterol to pregnenolone, which is regulated by a 

negative feedback mechanism involving the hypothalamo-pituitary-gonadal axis (HPG). 

Gonadotropin-releasing hormone (GnRH) is secreted by the hypothalamus and stimulates the 

secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the pituitary. LH 

and FSH are responsible for the stimulation of T production and for spermatogenesis respectively. In 

turn, circulating T exerts a negative feedback at hypothalamic and pituitary level by inhibiting the 

release of GnRH and LH (Stocco and Clark 1996). 

From the daily produced amount of T, approximately 1% is converted into E2 by the aromatase 

enzyme (CYP19). This enzyme is mainly present in adipose tissue, but can also be found in other 

peripheral tissues such as liver, brain, muscle, bone and gonads. The remaining E2 (20%) existing in 

the circulation is directly secreted by the testes (Thompson and Siiteri 1973). In peripheral tissues, T 

can also be irreversibly converted into DHT by the enzyme 5α-reductase. DHT is a biologically more 
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potent androgen which is able to locally activate the androgen receptor (AR). Next to the testes, 5α-

reductase is also present in the brain, skin and prostate gland, and its gene expression has been 

found in muscle tissue (Sato et al. 2008), although its activity in the latter remains uncertain. 20% of 

the circulating DHT originates from direct conversion of T in the testes, whereas the remaining 80% 

is the result of 5α-reduction of T in peripheral tissues (Russell and Wilson 1994; Aizawa et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The major sex steroid hormone biosynthesis pathways. CYP11A1: Cholesterol side chain cleavage 

enzyme, 3β-HSD: 3β-hydroxysteroid dehydrogenase, CYP17: 17α-hydroxylase, 17β-HSD: 17β-hydroxysteroid 

dehydrogenase, DHEA: Dehydroepiandrosteron. Based on data from Federman et al. (2006). 
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5.2  Mechanism of androgen action  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The mechanisms of action of sex steroids. In the classical genomic action (a), androgens (T) diffuse 

into the cell and bind to their respective steroid hormone receptor (AR). This steroid-receptor complex 

translocates to the nucleus where it dimerizes with another steroid-bound receptor, which stimulates gene 

transcription of target genes by binding to an androgen respons element (ARE). In the non-transcriptional 

mechanism (b), the steroid-AR complex cross-talks with other signalling molecules. Based on data from Chang 

et al. (1995) and Baron et al. (2004). 

 

5.2.1 The classical mechanism of action 

The classical genomic action of sex steroids on tissues occurs through binding to their respective 

steroid hormone receptor, located in the cytoplasmic compartment in the form of a multicomplex 

protein. When activated, this family of nuclear receptors is able to translocate into the nucleus 

where they can stimulate gene transcription of target genes (Figure 8a). According to this classical 

mechanism of sex steroid action, androgens first diffuse into the cell where they bind with high 

affinity to their intracellular AR. This causes a conformational change in the receptor protein 

structure, resulting in activation and subsequently translocation of the steroid-receptor complex into 

the nucleus, where it dimerizes with another hormone-bound receptor. This complex can then bind 

to an androgen response element (ARE), a specific DNA sequence present within the promoter 

region of the target gene. In this way, it affects transcription through direct binding with the 

transcriptional machinery and via recruitment of chromatin structure modifying enzymes and 

interaction of additional transcriptional factors (Giorgi and Stein 1981; Chang et al. 1995). Tissue-

specific coregulators can further affect the transcriptional activity of the AR, by which transcription 

may be up- (coactivators) or downregulated (corepressors) (Tsai and O’Malley 1994; Tenbaum and 

Baniahmad 1997). A considerable number of AR coregulators have been identified to date (Heinlein 
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and Chang 2002; Heemers and Tindall 2007; van de Wijngaart et al. 2012), but the exact mode of 

action remains unclear for most of them. The corepressor Ankrd1 (Wu et al. 2013), the coactivators 

PGC-1 (Knutti et al. 2000) and some actin-binding proteins (Gelsolin, supervillin, filamin A, ARA55 

and Paxillin) (Nishimura et al. 2003; Ting and Chang 2008) were found to be predominantly active in 

skeletal muscle.  

Alternatively, androgens can indirectly affect gene expression of target genes by regulating 

microRNA transcription by binding to the ARE in microRNA-encoding genes (Wyce et al. 2010). 

MicroRNAs are small non-coding RNAs which are able to degrade mRNA and inhibit protein 

translation of target mRNAs (Hamilton and Baulcombe 1999; Bartel 2004). They are highly present in 

skeletal muscle and a large number of miRNAs in rat levator ani (LA) muscle were shown to be 

reduced by orchidectomy (Narayanan et al. 2010), suggesting that microRNAs are targeted by 

androgens in skeletal muscle. Complete description of the role and regulation of microRNA in 

skeletal muscle is beyond the scope of this thesis, hence we refer to the review of Guller et al. 

(2010). 

 

5.2.2 The non-canonical mechanisms of action  

As further described (section 6.2), the T-AR complex can also mediate fast non-transcriptional 

actions through cross-talking with other signalling molecules such as IGF1 (Weissberger and Ho 

1993; Hobbs et al. 1993) and Akt (Baron et al. 2004). Akt can be activated and subsequently 

phosphorylated by a direct interaction of the T-bound AR with the regulatory subunit of PI3K (Baron 

et al. 2004) (Figure 8b).  

 

5.2.3 The androgen receptor gene and structure  

As mentioned previously, androgens act on various organs due to the presence of the AR in these 

tissues. Expression of the AR has been found in the hypothalamus, adrenal gland, epididymis, 

prostate, pituitary gland, skeletal muscle, kidney, liver, heart and bone (Sar et al. 1990; Burgess and 

Handa 1993; Abu et al. 1997). Evidence exists that androgens can autoregulate AR expression as 

such that the presence of its ligand downregulates or upregulates AR mRNA (Gonzalez-Cadavid et al. 

1991; Burgess and Handa 1993). In skeletal muscle, resistance exercise (Ratamess et al. 2005) and 

administration of T (Ferrando et al. 2002) resulted in a transient increase in AR protein expression. 

The AR gene is located on the X-chromosome, and its sequence is more than 90kbp long (Figure 9). 

The protein structure of a steroid receptor consists of several regions including (1) an NH2-terminal 

domain (NTD), which is entirely encoded by the first exon and is involved in transcriptional activation 
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and protein-protein interactions, (2) a DNA-binding domain (DBD), consisting of two zinc fingers 

directing target gene specificity, (3) a hinge region, important for nuclear localization, and (4) a 

highly conserved ligand-binding domain (LBD) which has several functions such as hormone binding, 

receptor dimerization and nuclear translocation in addition to transcriptional activation (Evans 1988; 

Freedman 1992). 

 

 

 

 

 

 

 

 

 

Figure 9. Schematic view of the androgen receptor gene and protein. NTD: NH2-terminal domain DBD: DNA-

binding domain, LBD: ligand-binding domain. Based on data from Lonergan et al. (2011). 

 

5.3  Inter- and intraindividual variations in testosterone levels in healthy men  

In healthy men, large interindividual variations in serum T and FT levels exists (Crabbe et al. 2007). 

This between-subjects variability in T levels has been related to age, body mass index and 

environmental conditions such as smoking (Ukkola et al. 2001), and is considerably influenced by 

genetic factors (Meikle et al. 1988; Ring et al. 2005). 

It is well-known that T secretion increases at the onset of puberty in boys. In fact, there is an earlier 

transient production of T during the prenatal period which drives the differentiation of primary 

reproductive tissues. After puberty, T secretion stabilizes until the fourth decade of life, after which 

T levels start to decline (Kaufman and Vermeulen 2005). Next to these age-related changes in 

androgen levels, the between-subject variation in T levels appears to be genetically determined, 

explaining 60% of the total variation of T levels, as shown by family, twin and sib-pair studies (Meikle 

et al. 1982; Meikle et al. 1986; Harris et al. 1998; Bogaert et al. 2008). A large number of candidate 

genes contributing to the genetic determination of T levels have been identified. Next to many 

enzymes involved in biosynthesis and degradation, also the AR gene plays a role in the 

determination of serum androgen levels. Polymorphisms in the AR gene have been described to 

modify its activity, resulting in an altered sensitivity to T and thus influencing the hypothalamic-

pituitary feedback regulation. Diminished androgen feedback, and consequently higher serum T 
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concentrations have been associated with the CAG repeat length, and to a lesser extent with the 

GGN repeat length (Crabbe et al. 2007; Bogaert et al. 2009). Both repeats are located in exon 1 

encoding the NTD of the AR (Figure 9). Variability in the repeat length imposes changes in the 

absolute number of amino acids in the AR protein, hereby altering its transcriptional activity and 

thus androgen sensitivity (Sleddens et al. 1992). Furthermore, several SNPs located in the AR gene 

have been linked with the androgen insensitivity syndrome (AIS). These SNPs induce altered binding 

with cofactors and could therefore affect androgen action and circulating androgen levels (Quigley 

et al. 2004; Black et al. 2004; Li et al. 2005).  

In healthy men, also an intraindividual variability in serum T levels exists. The release of T from the 

testes is episodic and occurs in response to a pulsatile LH stimulus, with peak levels between 7 am 

and 10 am (Mitamura et al. 1999). Different physiological conditions have been shown to 

temporarily alter androgen levels. Heavy resistance exercise training in men is known to induce an 

acute increase in serum T and FT levels, which return back to baseline within 30 min of recovery 

(Vingren et al. 2010). On the other hand, prolonged submaximal exercise was shown to result in a 

decline in serum T concentrations until 1 or 2 days following recovery. Spaceflights (Amann et al. 

1992), severe injuries (Ferrando 2000), reduced caloric intake and chronic stress (Demura et al. 

1989) are also reported to be associated with marked reductions in serum T levels.  

 

5.4  Androgens and the male skeletal musculature  

Next to their role in sexual development and function, secondary sex characteristics, and 

spermatogenesis, androgens are considered to be the main sex steroids regulating body 

composition. When boys enter puberty they develop more muscle mass (±35% gain in muscle mass) 

and strength, resulting from an increase in the CSA of muscle fibers. Next to GH and IGF1, androgens 

are particularly required to maintain muscle mass and strength in men. The relationship between 

androgens and muscle mass in conditions outside the physiological range is well-described. Boys 

with delayed puberty have lower T levels and lower lean mass when compared with age-matched 

controls (Han et al. 2006). A similar observation has been made in men with hypogonadism 

(Katznelson et al. 1996) or with suppressed serum T by administration of a GnRH-agonist (Mauras et 

al. 1998). Also the age-related loss in muscle mass and strength (sarcopenia) has been attributed in 

part to the decline of androgen levels with age (Kaufman and Vermeulen 2005; Orwoll et al. 2006). 

Androgen replacement therapy is well-known to be an effective therapy to improve muscle mass 

and function in hypogonadal (Bhasin et al. 1997), elderly (Allan et al.; Snyder et al. 1999; Storer et al. 

2008) and normal men (Bhasin et al. 1996) as well as in those suffering from catabolic diseases such 

as cancer, human immunodeficiency virus (HIV)/AIDS, COPD and burn injuries (Hart et al. 2001; Gold 
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et al. 2006). The effect of androgens is dose dependent (Zitzmann and Nieschlag 2003a) and may be 

fiber type specific. However, it is unclear whether androgens predominantly affect fast- or slow-

twitch muscles (Sinha-Hikim et al. 2002; Axell et al. 2006; Hulmi et al. 2008; Ophoff et al. 2009).  

The effect of androgens on muscle strength is less clear. Reports of the effect of androgens on 

muscle force in both human and animal studies remain contradictory, with some studies 

demonstrating enhanced muscle strength following androgen administration (Jiang and Klueber 

1989; Bhasin et al. 1996; Bhasin et al. 1997; Ferrando et al. 2002; Schroeder et al. 2003), whereas 

others failed to detect any significant effects on muscle strength despite gains in muscle mass 

(Tingus and Carlsen 1993; Snyder et al. 1999; Blackman et al. 2002; Wang et al. 2004). 

 

5.5  Estrogens and the male skeletal musculature 

E2 is considered to be the main sex steroid involved in the development and maintenance of bone 

mass in both men and women (Lapauw et al. 2009). In addition, E2 is important to initiate epiphyseal 

closure of long bones (Weise et al. 2001). As skeletal muscle myoblasts and mature fibers express 

functional estrogen receptors (ER), with two isoforms ERα and ERβ been described, a direct effect of 

E2 on muscle cells may occur (Kahlert et al. 1997; Barros et al. 2006). Both animal and human studies 

suggest a role for E2 in regulating glucose homeostasis (Heine et al. 2000; Barros et al. 2006), 

decreasing oxidative damage (Baltgalvis et al. 2010), stimulating muscle differentiation (Pedraza-Alva 

et al. 2009) and exerting anti-apoptotic effects (Vasconsuelo et al. 2008). Moreover, studies in rats 

demonstrated that E2 is involved in the reduction of contraction-induced damage in skeletal muscle 

in both males and females (Bär et al. 1988; Koot et al. 1991; Tiidus 2003; Enns and Tiidus 2010), and 

hindlimb unloading experiments in ovariectomized rats have also shown that E2 is involved in muscle 

recovery (Brown et al. 2001; McClung et al. 2006; Sitnick et al. 2006).  

However, the possible effects of E2 on the regulation of muscle mass and function in females are 

controversial. Hormone replacement therapy in female mice (Moran et al. 2007) and 

postmenopausal women (Phillips et al. 1993; Sipilä et al. 2013) have not always shown anabolic 

effects on muscle mass (Messier et al. 2011). Also a negative role of E2 on the musculature in 

females has been suggested. Several studies observed a decrease in muscle mass and force after E2 

administration to ovariectomized rats (Ihemelandu 1981; Suzuki and Yamamuro 1985; Kobori and 

Yamamuro 1989; McCormick et al. 2004), while Brown et al. (2009) found an increase in muscle 

mass and function in ER KO female mice.  

Research focusing on the association between muscle mass and serum E2 levels in men are scarce. In 

elderly men, serum E2 levels have been positively associated with lean and muscle mass, 
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independently from T levels (Vandenput et al. 2010; Auyeung et al. 2011), although not all studies 

could support this (van den Beld et al. 2000; Szulc et al. 2004b). Interestingly, intervention studies 

have shown that E2 treatment resulted in increased lean mass and muscle mass in orchidectomized 

rodents (Vandenput et al. 2002; Svensson et al. 2010), indicating that further experiments examining 

the effects of E2, following T aromatization, on skeletal muscle mass in men are of potential 

significance. 

 

5.6  The (mis)use of anabolic steroids and its side effects 

Because of its anabolic effects, androgens and its synthetic derivates are widely abused by athletes, 

especially weightlifters and bodybuilders, but also by recreational fitness sportsmen to enhance 

their physical appearance. However, this is not without risks. Androgens exert their effects 

systemically, hereby regulating many physiological processes including secondary sex characteristics, 

fat metabolism, bone metabolism, sexual and cognitive functions, cardiovascular functions and skin 

metabolism in a dose-dependent manner (Rhoden and Morgentaler 2004). Therefore, androgen 

therapy can induce important side effects.  

Short- and long-term testosterone replacement therapy in men with androgen deficiency syndrome 

is generally safe but adverse effects such as an increase in hematocrit levels, acne and breast 

tenderness may occur. On the other hand, administration of androgens in eugonadal men results in 

supraphysiological testosteron blood levels which disrupt the normal production of hormones in the 

body. This often coincides with several side events depending on the dose, manner and frequency of 

administration. Acute adverse effects include acne, testicular atrophy, hypertension, jaundice, 

headaches, fluid retention, gastrointestinal irritation, diarrhea, stomach pains and oily skin, whereas 

chronic adverse effects include urogenital problems (impotence, reduced sperm production, 

shrinking of the testes, difficulty in urinating), acne, cardiovascular (hypertension, heart attack and 

stroke) and hepatic diseases, prostate cancer and neuropsychiatric effects. Moreover, the higher 

availability of T for the aromatase enzyme results in higher E2 levels which can lead to breast pain 

and irreversible breast development (van Amsterdam et al. 2010; Fernández-Balsells et al. 2010). 

Although most of these side effects only become irreversible when androgens are used in high dose 

over a prolonged time, they limit the use in clinical applications. Moreover, it is well-known that the 

use of anabolic steroids to enhance muscle mass in females will result in the development of more 

masculine characteristics and many of these side effects can become of major concern in the elderly 

(Spitzer et al. 2013). A first approach to encounter these side effects in the treatment of muscle 

atrophy is the development of a promising class of drugs, namely the selective androgen receptor 
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modulators (SARMs) which are tissue-selective AR-ligands with minimal androgenic action on other 

tissues (Thevis and Schanzer 2010). They bind to the AR with a high affinity and, unlike T, they are 

not substrates for aromatase and 5α-reductase. At the moment, several SARMs have successfully 

completed phase-II-clinical trials. Although none of these therapeutics have been clinically approved, 

they are already available on the black-market (Thevis et al. 2009). A second approach to achieve 

muscle selectivity is to identify muscle-specific signalling molecules downstream of the AR, which 

can give rise to novel therapeutic targets. Hence, understanding these signalling pathways and their 

cross-talk with other pathways will be important to reduce the potential side effects that can occur 

with SARM treatments. 

 

he undesirable effects of androgens limit their use in clinical applications. 

Therapeutic agents that could achieve anabolic effects on skeletal muscle without 

androgenic activities on other pheripheral tissues are of great clinical interest.”

“T 
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6 THE MOLECULAR REGULATION OF SKELETAL MUSCLE MASS BY ANDROGENS 

6.1  Androgenic effects on satellite cells 

As muscle satellite cells express a functional AR, a direct action of androgens may occur (Sinha-Hikim 

et al. 2004). Androgen-induced muscle hypertrophy has been reported to be associated with 

increased satellite cell number and increased myonuclear incorporation in young and older men 

(Kadi and Thornell 2000; Sinha-Hikim et al. 2003; Chen et al. 2005; Sinha-Hikim et al. 2006). 

Furthermore, androgens may act on the myogenic pathway by stimulating the differentiation of 

mesenchymal pluripotent progenitor cells to the generation of new satellite cells, and by inhibiting 

adipogenesis during muscle regeneration or hypertrophy (Jankowski et al. 2002; Singh et al. 2003). 

Although there is some evidence that androgens can activate satellite cell differentiation and 

proliferation, their contribution in increasing muscle mass is believed to be limited. 

 

6.2  Androgenic effects on hypertrophy and atrophy signalling pathways  

Studies in young and elderly men have shown that T administration increases skeletal muscle protein 

synthesis (Urban et al. 1995; Ferrando et al. 1998) and decreases muscle protein breakdown 

(Ferrando et al. 2002; Ferrando et al. 2003), at least for long-term androgen treatment. The effects 

of short-term treatment on the protein breakdown rate are less clear (Ferrando et al. 1998; 

Sheffield-Moore 2000).  

The stimulation of the growth factors GH and IGF1 by T has been studied extensively. Several clinical 

studies have demonstrated that T therapy in healthy and elderly men is associated with increased 

serum IGF1 levels (Hobbs et al. 1993; Urban et al. 1995; Bhasin et al. 2001; Ferrando et al. 2002), 

whereas T administration to healthy rats was shown to increase intramuscular IGF1 mRNA 

expression (Yin et al. 2009). On the other hand, T deficiency in humans and androgen loss in rodents 

are associated with a reduction in both circulating (Grinspoon et al. 1996) and intramuscular IGF1 

mRNA expression (Mauras et al. 1998). These results suggest that androgens can possibly affect the 

downstream signalling pathways of IGF1 i.e. Akt/mTOR and Akt/FoxO signaling pathways. In support 

of this hypothesis, an in vitro study using C2C12 cells demonstrated that T administration attenuates 

Atrogin-1 mRNA expression (Zhao et al. 2008b). Moreover, Xu et al. (2004) found increased levels of 

phosphorylated p70S6K in the LA muscle of castrated rats following DHT administration. Evidence for 

an androgenic regulation of myostatin signalling was provided by McMahon et al. (2003) who found 

lower myostatin protein levels in male mice compared with female mice. However, intervention 

studies have demonstrated either increased (Diel et al. 2007; Diel et al. 2008b; Diel et al. 2008a) or 
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decreased (Mendler et al. 2007) myostatin mRNA and protein levels in rodents or C2C12 cells 

treated with T or other anabolic steroids.  

Hence, it is interesting to further investigate the in vivo effects of T on skeletal muscle atrophy and 

hypertrophy signalling pathways. During the course of this PhD-project, a number of other research 

groups similarly looked at the possible effects of androgens on signalling molecules regulating 

muscle mass, albeit with different methodological approaches compared to the current thesis (Pires-

Oliveira et al. 2010; Svensson et al. 2010; Haren et al. 2011; Ibebunjo et al. 2011; White et al. 2013). 

The results of these studies, combined with the results of the present thesis, will be discussed in the 

general discussion.  

 

he muscle-specific molecular factors targeted by androgen therapy have not been 

completely elucidated but can give rise to novel therapeutic targets.” 

  

“T 
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7 AIMS 

The maintenance of skeletal muscle mass is a critical component for health. Androgens are well-

known for their anabolic effects on muscle mass, but their clinical application in the treatment of 

muscle wasting is limited because of its severe side effects. Investigating the molecular mechanisms 

involved in the androgenic regulation of skeletal muscle hypertrophy and atrophy can lead to the 

development of effective therapeutic strategies to combat the devastating effects of muscle 

atrophy. In the past few years, considerable progress has been made in understanding the molecular 

events that regulate skeletal muscle mass. 

However, from the introduction it became clear that inconsistency exists regarding the signalling 

molecules involved among different atrophy models. These differences in results have raised the 

idea that the signalling pathways involved in muscle wasting are unique to the atrophy model, and 

depend on the muscle type, and the time course following the atrophic stimulus. The molecular 

regulation of skeletal muscle mass by androgens has only recently been investigated and is still 

poorly understood. Current available knowledge has mostly been derived from gene-expression 

analyses which do not necessarily correlate to the protein expression. Therefore, a thorough 

understanding of how gene and protein expression of atrophy and hypertrophy inducing molecules 

is regulated by androgens in different fiber types and in different atrophy models remains important 

to extend our knowledge of how skeletal muscles adapt to anabolic stimuli. We have conducted a 

series of studies in order to gain more insight into the androgenic regulation of muscle mass and the 

signalling molecules and pathways involved. 

In study 1, we investigated the relationship between androgens and muscle mass and function, as 

well as the influence of environmental and some genetic factors in a cohort of healthy young men. 

Next to age, physical activity, anthropometrics and circulating sex steroids, we tried to identify 

genetic variations in the AR that are associated with muscle mass and function. Next, the effects of T 

treatment on the signalling pathways regulating muscle protein degradation and synthesis in two 

different mice atrophy models were explored in study 2 and 3. Study 2 focused on the regulation of 

muscle atrophy-inducing targets (Atrogin-1, MuRF1 and myostatin) in an “androgen deprivation-

induced muscle atrophy model”, with or without T or E2 supplementation. In study 3 atrophy and 

hypertrophy signalling molecules including IGF1/Akt/p70s6k, as well as myostatin, REDD1, atrogin-1 

and MuRF1 were examined during “disuse atrophy” with or without T supplementation (Figure 10).  
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Figure 10. Schematic overview of the studies presented in this thesis. Study 1: Determinants of skeletal 

muscle mass and force in eugonadal men. Study 2: Effects of androgen deprivation with or without 

testosterone (T) or estradiol (E2) treatment on skeletal muscle atrophy inducing targets. Study 3: Effects of tail 

suspension with or without testosterone (T) treatment on skeletal muscle atrophy and hypertrophy inducing 

targets. Targets shown in grey were not measured. 
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The following aims and underlying hypotheses were investigated in this thesis: 

 

1. In study 1, we aimed to gain more insight into the interindividual variation in muscle mass in 

young healthy men. As polymorphisms in the AR gene causes differences in androgen 

sensitivity, we hypothesized that genetic variations in the AR contribute to the variation in 

muscle mass in young healthy men. 

 

2. The anabolic effects of T administration during androgen deprivation-induced muscle 

atrophy and disuse atrophy were examined in study 2 and 3. We expected that T 

replacement would result in complete recovery of muscle mass following orchidectomy and 

that T supplementation during tail suspension would be able to ameliorate muscle mass. 

Also the potential of E2 to induce anabolic effects was investigated following androgen 

deprivation (study 2). 

 

3. Furthermore, we aimed to explore whether tail suspension was associated with changes in 

circulating T levels (study 3). Based on the literature, tail suspension was supposed to be 

associated with, although not invariably, reductions in serum T levels.  

 

4. The aim of both study 2 and 3 was to investigate the regulation of atrophy-inducing targets 

during orchidectomy and tail suspension at 3 different time-points and in 3 different muscle 

types (extensor digitorum longus (EDL), soleus (SOL) and levator ani/bulbocavernosus 

muscles (LA/BC)). We hypothesized that changes in Atrogin-1, MuRF1, myostatin and REDD1 

expression during muscle atrophy depend on muscle type and the time course following 

androgen loss and tail suspension.  

 

5. The regulation of atrophy and hypertrophy inducing molecular factors by sex steroids was 

further elucidated in our 2 muscle atrophy models (study 2 and 3). An increase in 

IGF1/Akt/p70s6k levels and a decrease in REDD1, myostatin, Atrogin-1 and MurF1 gene and 

protein expression levels was expected following T treatment. 
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II. STUDY DESIGN  

In this chapter, an overview of the study population and animal models is given. For more technical 

details on the methodologies, we refer to chapter 3 to 5. 
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1. SIBLOS POPULATION (STUDY 1) 

Participants included in the analysis were part from a larger population recruited for the SIBLing-

paired OSteo-study (SIBLOS study). This study is a population-based cross-sectional study, designed 

at the Departement of Endocrinology of Ghent University Hospital to investigate the determinants of 

bone mass and sex steroid levels in young brothers, focusing on general lifestyle, body composition 

and genetic background. Previous findings have been the subject of several publications (Crabbe et 

al. 2007; Bogaert et al. 2008; Lapauw et al. 2009; Bogaert et al. 2009; Taes et al. 2009b; Taes et al. 

2009a; Vanbillemont et al. 2010; Taes et al. 2010b; Taes et al. 2010a; Roef et al. 2012; Vanbillemont 

et al. 2012). The study protocol was approved by the ethical committee of the Ghent University 

Hospital. 

Participants of the SIBLOS study were recruited from the population registries of 3 semi-rural to 

suburban communities around Ghent, Belgium. A total of 12446 men between 25 and 45 years old 

were contacted by direct mailing, briefly describing the study purpose and asking if they had a 

brother within the same age range also willing to participate (maximal age difference between 

brothers was set at 12 yrs). The response rate was 30%. Finally, 768 young healthy men who fulfilled 

the primary inclusion criterion of having a brother within the same age range agreed to participate.  

Exclusion criteria were defined as illnesses or medication use affecting body composition, hormone 

levels or bone metabolism. After exclusions, 677 men were included in study 1 (Figure 11). Two 

hundred and ninety six pairs of brothers (for a total of 592 men) were included in addition to 64 

single participants, when their brother could not participate in the study, 19 men were included as 

third brother in a family and 2 as fourth brother. All participants gave their written informed consent 

and completed questionnaires about previous illness and medication use.  

Relations between genetic variation in the AR gene (CAGn, GGNn and SNPs, determined by 

genotyping analysis), sex steroid levels (T and E2, measured by liquid chromatography tandem mass 

spectrometry (LC-MS/MS)), body composition (lean and fat mass, measured by dual-energy x-ray 

absorptiometry (DXA)), muscle cross-sectional area (CSA) at radius and tibia (measured by peripheral 

quantitative computed tomography (pQCT)), muscle force (grip strength and isokinetic peak torque 

of biceps and quadriceps, measured by a dynamometer) and anthropometrics (body weight, height, 

armspan, sternum height, finger- and hand length) were studied using linear mixed-effect modelling. 

 

Figure 11. Overview of the SIBLOS population 
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2. EXPERIMENTAL ANIMAL MODELS 

Mice used in study 2 and 3 were adult male C57BL/6JOla inbred mice (8w). All experimental 

protocols were approved by the Ethical Committee for Animal Research of Ghent University. 

2.1  Androgen deprivation-induced skeletal muscle atrophy model (study 2) 

Androgen deprivation in study 2 was induced by orchidectomy, i.e. surgical removal of the testicles 

under isoflurane inhalation. After making an incision at the tip of the scrotum, the testis and 

epididymis were pulled out and the vas deferens and blood vessels were ligated. Finally, the testes 

were cut and removed, and the incisions were sutured. A total of 100 mice were included in this 

study and were randomly assigned into 4 intervention groups: sham-operated (SHAM), 

orchidectomized with control vehicle (ORX+V) or orchidectomized and treated with testosterone 

(ORX+T) or β-estradiol (ORX+E2) via subcutaneous silastic implants at the cervical region (Figure 12). 

Sham surgery was performed to omit the incidental effects caused by anesthesia or incisional 

trauma. Under isoflurane inhalation, an incision was made at the tip of the scrotum and the testes 

were pulled out and then replaced. Sham surgery was also performed at the cervical region to isolate 

the effects of the silastic tubes implantation.  

Animals were killed 1 day, 7 days or 30 days after surgery. The twitch and tetanus contractile 

properties of the SOL and EDL muscles were measured in vitro by stimulation with capacitor 

discharges between platinum electrodes following 30 days of orchidectomy. Muscle biopsies from 

LA/BC, SOL and EDL were carefully dissected at the end of each intervention period, were weighted, 

and were used for gene and protein expression analysis by qPCR- and Western blot respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 12. Summary of the experimental design of study 2. 
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2.2 Disuse-induced skeletal muscle atrophy model (study 3) 

Muscle disuse in study 3 was imposed by tail suspension by a modification of the protocol described 

by Morey-Holton and Globus (2002). Tail suspension was performed by lifting the tail up so that the 

hindlimbs were unloaded. The mice were maintained in approximately 30° head-down tilt, so that 

the forelimbs remained loaded. The tail was suspended with adhesive tape on a metallic wire which 

was connected to a 360° free rotating hook. The hook was hung on a rail system above the cage (type 

III), which allowed free movement along the rail.  

Animals were randomly assigned into 3 intervention groups: Sham-operated control group (SHAM, 

n=30), tail suspended (TS) with control vehicle treatment group (TS+V, n=30), and tail suspended 

with testosterone (T) (TS+T, n=30), administered via subcutaneous silastic implants at the cervical 

region (Figure 13). Sham surgery was performed at the cervical region to omit the effects of the 

silastic tubes implantation (section 2.2). Hindlimb unloading was imposed for 1, 5 and 14 days. 

Blood was collected by cardiac puncture and analysed by LC/MSMS for the determination of serum T 

levels. The EDL and SOL muscles of both legs were carefully dissected, weighed, and used for qPCR 

and Western blotting analyses.  

 

  

 

 

 

 

 

Figure 13. Summary of the experimental design of study 3.  
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III. STUDY 1: GENETIC VARIATIONS IN THE ANDROGEN RECEPTOR ARE ASSOCIATED WITH 

STEROID CONCENTRATIONS AND ANTHROPOMETRICS BUT NOT WITH MUSCLE MASS IN 

HEALTHY YOUNG MEN  

De Naeyer H, Bogaert V, De Spaey A, Roef G, Vandewalle S, Derave W, Taes Y, Kaufman JM 

Based on PLoS One. 2014; 9(1):e86235.
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ABSTRACT  

 

Objective: The relationship between serum testosterone (T) levels, muscle mass and muscle force in 

eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene 

causes differences in androgen sensitivity, no straightforward correlation can be observed between 

the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate 

the relationship between genetic variations in the AR, circulating androgens and muscle mass and 

function in young healthy male siblings. 

Design: 677 men (25-45 years) were recruited in a cross-sectional, population-based sibling pair 

study.  

Methods: Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels 

(by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle 

force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-

effect modelling.  

Results: Muscle mass and force were highly heritable and related to age, physical activity, body 

composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to 

muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with 

muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and 

FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 

SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations 

were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass 

and force were not associated with the number of CAG repeats.  

Conclusions: Age, physical activity, body composition, sex steroid levels and anthropometrics are 

determinants of muscle mass and function in young men. Although the number of CAG repeats of 

the AR is related to sex steroid levels and anthropometrics, we have no evidence that these 

variations in the AR gene also affect muscle mass or function. 

 

Keywords: sex steroids, muscle mass, muscle function, androgen receptor, androgens  
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INTRODUCTION 

Skeletal muscle mass and function are highly heritable [1] and influenced by age, anthropometrics, 

sex steroid status and lifestyle-related factors [2–4]. The clinical relationship between androgens and 

muscle mass is well-described. Androgen deficiency (i.e. hypogonadism) leads to significant muscle 

loss and weakness [5], whereas testosterone (T) supplementation has dose-dependent anabolic 

effects [6,7]. Moreover, impaired steroid production or low androgen sensitivity could interfere with 

normal bone development and closure of the epiphyseal growth plates at the end of puberty. 

However, the interrelationship between T levels, muscle mass and muscle force in eugonadal men is 

less clear [8]. Serum T levels are maintained at appropriate levels by the hypothalamic-pituitary-

gonadal feedback loop. In healthy men, a large interindividual variation in serum T levels exists [9]. 

This between-subject variability in T levels has been related to age, BMI, environmental conditions 

such as smoking [10], and is considerably influenced by genetic factors [11,12]. The sensitivity to 

circulating T is determined in part by the transcriptional activity of the androgen receptor (AR). 

Polymorphisms in the AR gene have been described to alter this activity. We have previously shown 

that diminished androgen feedback, and consequently higher serum T concentrations, are associated 

with the CAG repeat length, and to a lesser extend with the GGN repeat length [9,13]. Furthermore, 

some single nucleotide polymorphisms (SNP) in the AR gene, resulting in an altered binding with 

cofactors, have been linked with the androgen insensitivity syndrome (AIS) [14–16] and could 

therefore affect androgen action and circulating androgen levels.  

In order to gain more insight into the between subject variation in muscle mass in young healthy 

men, we investigated the relationship between androgens and muscle mass and function, as well as 

the influence of genetic components. We hypothesized that genetic variations in the AR, causing 

differences in androgen sensitivity, contribute to the variation in muscle mass in young healthy men. 
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MATERIALS AND METHODS 

Ethics statement 

The study protocol was conducted according to the Helsinki Declaration and was approved by the 

ethical committee of the Ghent University Hospital. All participants gave their written informed 

consent and questionnaires about previous illness and medication use were completed. Physical 

activity was scored using the questionnaire as proposed by Baecke et al. [17].  

 

Study design and population 

This population-based cross-sectional study is part of a larger study, from which inclusion criteria and 

study design were described previously [18]. Participants were recruited from the population 

registries of 3 semi-rural to suburban communities around Ghent, Belgium. Men (n = 12446), 25-45 

years of age were contacted by direct mailing, briefly describing the study purpose and asking if they 

had a brother within the same age range also willing to participate (maximal age difference between 

brothers was set at 12 yrs). The overall response rate was 30.2%. Finally, a sample of 768 young 

healthy men who fulfilled the primary inclusion criterion of having a brother within the same age 

range agreed to participate. After exclusions, 677 men in total were included in the study. Two 

hundred ninety six pairs of brothers (for a total of 592 men) were included in addition to 64 men as 

single participants, when their brother could not participate in the study; 19 men were included as 

third brother in a family and 2 as fourth brother. Exclusion criteria were defined as illnesses or 

medication use affecting body composition, hormone levels or bone metabolism.  

 

Body composition and muscle strength  

Body weight and anthropometrics (arm span, hand and finger length) were measured in light indoor 

clothing without shoes. Sternum height was measured using a wall-mounted Harpenden stadiometer 

(Holtain, Crymych, UK). Lean and fat mass of the whole body were measured using dual-energy x-ray 

absorptiometry (DXA) with a Hologic QDR-4500A device (software version 11.2.1; Hologic, Bedford, 

MA, USA). Isokinetic peak torque of biceps and quadriceps muscles was assessed at the dominant 

limbs using an isokinetic dynamometer (Biodex, New York, NY, USA). Grip strength at the dominant 

hand was measured using an adjustable hand-held standard grip device (JAMAR hand dynamometer; 

Sammons & Preston, Bolingbrook, IL, USA). Their maximum performance was assumed to best reflect 

the current status and the history of their musculoskeletal adaptation.  
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Cross-sectional muscle area  

A peripheral quantitative computed tomography (pQCT) device (XCT-2000, software version 5.4; 

Stratec Medizintechnik, Pforzheim, Germany) was used to scan the dominant leg (tibia) and forearm 

(radius). Muscle cross-sectional area (CSA) was estimated using a threshold below water equivalent 

linear attenuation set at 0.22/cm. This threshold eliminated skin and fat mass with lower linear 

attenuation in the cross-sectional slice. From the remaining area, bone area was subtracted, 

revealing the muscle at its maximum CSA.  

 

Biochemical determinations 

Venous blood samples were obtained between 08:00 and 10:00 AM after overnight fasting. All serum 

samples were stored at –80°C until batch analysis. Serum total testosterone (TT) and estradiol (E2) 

levels were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) (AB Sciex 

5500 triple-quadrupole mass spectrometer; AB Sciex, Toronto, Canada). Serum limit of quantification 

was <0.5pg/mL (1.9 pmol/L) for E2 and 1.2 ng/dL (0.04 nmol/L) for T. The interassay coefficients of 

variation (CV) were 4.0% at 21 pg/mL (77 pmol/L) for E2, and 8.3% at 36.7 ng/dL (1.3 nmol/L) and 

3.1% at 307.8 ng/dL (10.7 nmol/L) for T [19]. Commercial radioimmunoassays were used to 

determine serum levels of sex hormone binding globulin (SHBG) (Orion Diagnostica, Espoo, Finland), 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (ECLIA; Roche Diagnostics, 

Mannheim, Germany). Free testosterone (FT) and free estradiol (FE2) concentrations were calculated 

from serum TT, E2, SHBG and albumin concentrations using a previously validated equation derived 

from the mass action law [20, 21]. 

 

Genotyping of the androgen receptor  

Genomic DNA was extracted from EDTA-treated blood using a commercial kit (Puregene kit; Gentra 

Systems, Minneapolis, MN, USA). The CAG and GGN repeats were determined as previously 

described [13]. 

Genotyping data for the AR gene for the Caucasian CEPH population was downloaded from the 

International Haplotype Mapping Project web site (http://www.hapmap.org) and the data was 

incorporated into the Haploview program [22]. The tagger function within Haploview was used to 

assign Tag SNPs. The tagging SNPs were chosen, by aggressive tagging (use 2- or 3-marker 

haplotypes), to capture the variations within the gene and the surrounding area with minor allele 

frequency (MAF) 0.01 and a minimum r² of 0.80 (for their location and the SNPs which they tag). For 

the SNP analyses, SNPlex [23] was carried out on fragmented gDNA at a final concentration of 25 

ng/μl (total volume of 9 μl). Samples were run on an ABI 3730xl DNA Analyzer (Applied Biosystems, 
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Foster City, CA, USA) and data were analysed using Gene Mapper v. 3.7 software (Applied 

Biosystems). Genotype analysis was performed based on the SNPlex_Rules_3730 method following 

the factory default rules. Missing genotypes in the SNPlex analysis were obtained using TagMan Pre-

Designed SNP Genotyping Assays® (Applied Biosystems) which were run on the StepOne System 

(Applied Biosystems). In total, 5 SNPs of the AR gene were genotyped. 

 

Statistics 

Descriptives are expressed as mean ± standard deviation or median [1st-3rd quartile] when criteria for 

normality were not fulfilled (Kolmogorov-Smirnov) and variables were log-transformed in subsequent 

linear models. Linear mixed-effects modelling with random intercepts and a simple residual 

correlation structure was used to study the effect of anthropometrics, sex steroid concentrations and 

genetic variations in the AR on muscle mass and function, with adjustment for the confounding effect 

of age, adult height and weight or fat mass and taking into account the interdependence of 

measurements between brothers. Parameters of fixed effects were estimated via restricted 

maximum likelihood estimation and reported as estimates of effect size (β) with their respective 

standard error. A sample size of 677 subjects allowed us a 81% power to detect a minimum effect 

size of 0.01 at a two-sided significance level of 5%. Validity of the models was assessed by exploring 

normality of distribution of the residuals. SNPs were considered as a categorical variable, whereas 

CAG and GGN lengths were analysed as continuous variables for assessing association, and as 

categorical variable (quartiles) with groups compared by one-way analysis of variance (ANOVA). 

Associations were considered significant at p-values less than 0.05. Statistical analyses were 

performed using S-Plus 7.0 (Insightful, Seattle, WA, USA). The polygenic program in SOLAR 2.0 

(Southwest Foundation for Biomedical Research, San Antonio, TX, USA) was used to estimate upper-

limit heritability (t²), using a variance component model. 
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RESULTS 

Study population and characteristics 

Six hundred seventy seven subjects with a mean age of 34.5 ± 5.5 years are included in the study. 

Mean height is 1.79 ± 0.06 m and mean weight 81.4 ± 11.8 kg, with a body mass index of 25.3 ± 3.5 

kg/m2. Body composition and muscle function parameters are given in Table 1. 

 

 

Table 1 General characteristics and hormone concentrations of all study participants (n = 677) 

 

Non-Gaussian distribution: data presented as median [1
st

-3
rd

 quartile]. Free testosterone and free estradiol 

serum concentrations were calculated using previously validated equations [20, 21].

 Mean ± SD 

Age (yr)  34.5 ± 5.5 

Weight (kg)  81.4 ± 11.8 

Height (m)  1.79 ± 0.06 

BMI (kg/m
2
)  25.3 ± 3.5 

Testosterone (ng/dL) (nmol/L) 579 (20.1) [467.0-703.8] 

Free testosterone (ng/dL) (nmol/L) 14.2 (0.49) [11.9-17.0] 

Estradiol (pg/mL) (pmol/L) 21.2 (77.8) [16.7-25.7] 

Free estradiol (pg/mL) (pmol/L) 0.4 (1.5) [0.3-0.5] 

SHBG (nmol/L) 23 [18.4-29.7] 

LH (U/L) 4.3 [3.1-5.5] 

FSH (U/L) 3.8 [2.7-5.4] 

Whole body lean mass (kg) 62.2 ± 6.6 

Whole body fat mass (kg) 16.4 ± 6.4 

Radius 66 % muscle area (cm
2
) 45.2 ± 5.9 

Tibia 66 % muscle area (cm
2
) 82.6 ± 11.1 

Grip strength (kg) 51.7 ± 8.0 

Biceps force (Nm) 57.3 ± 10.5 

Quadriceps force (Nm) 203 ± 42 

Arm span (cm) 182.7 ± 7.3 

Hand length (cm) 20.5 ± 1.0 

Digit 2 finger length (cm) 7.4 ± 0.5 

Digit 4 finger length (cm) 7.6 ± 0.5 

Sternum height (cm) 61.5 ± 2.7 
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As expected, the level of physical activity was associated with muscle mass. Biceps force was 

positively associated with the level of physical activity during work (β : 0.18 ± 0.03; p<0.0001) but not 

related to physical activity during sports (p=0.96), whereas quadriceps force was related to sports (β : 

0.11 ± 0.04; p=0.004) and not to physical activity during work (p=0.52), independent from age, height 

and weight. 

 

Age, weight and height in relation to muscle mass and force 

Both fat (β : 0.2 ± 0.05 kg/y; p=0.0001) and lean mass (β : 0.1 ± 0.05 kg/y; p=0.03) increased with age, 

as well as muscle CSA at the radius (β : 21 mm²/y ± 4; p<0.0001) and tibia (β : 32 mm²/y ± 8; 

p=0.0001), which remained positive after additional adjustment for height, physical activity level and 

body fat (radius: p<0.0001 and tibia: p=0.004). With increasing age, lower limb muscle force indices 

slightly decreased after adjustment for height and weight (p=0.02). Biceps muscle force and maximal 

grip strength were unrelated to age. 

Whole body lean mass was positively associated with height (β : 0.22 ± 0.02; p<0.0001) and weight (β 

: 0.78 ± 0.02; p<0.0001). Also a close relationship between muscle CSA and weight (β : 0.54 ± 0.03; 

p<0.0001 for radius, and β : 0.56 ± 0.03; p<0.0001 for tibia) was found. Moreover, maximal grip 

strength and muscle force indices at upper (biceps) and lower limb (quadriceps) were all positively 

related to height (all p<0.0001) and weight (all p<0.001).  

Whole body lean mass exhibited a strong positive association with muscle CSA and muscle function 

(all p<0.0001), whereas whole body fat mass was inversely related to muscle CSA at radius 

(p<0.0001) and grip strength and muscle force of biceps (p<0.001). 

The relationship of muscle CSA and muscle force (grip, biceps and quadriceps) with height and weight 

are represented in Figure 1. 

 

Heritability of muscle mass and function 

Table 2 illustrates the upper-limit heritabilities (t²) of muscle mass and function parameters. All 

parameters are highly heritable (p<0.0001), with the highest t2 observed for whole body lean mass. 
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Table 2 Upper-limit heritability estimates of selected muscle parameters 
(
*

)
 

 

 

 

 

 

 

 

 

 

 

Muscle mass and force in relation to anthropometric measurements 

Whole body lean mass and muscle CSA at the radius were positively associated with arm span (β : 

0.29 ± 0.05; p<0.0001 and β : 0.31 ± 0.07; p<0.0001 respectively) as well as with finger (p=0.0001 to 

0.04) and hand length (all p<0.0001) adjusted for height, weight and age. Fat mass was negatively 

associated with arm span (β : -0.23 ± 0.03; p<0.0001). Moreover, biceps flexion and hand grip force 

were related to arm span (β : 0.46 ± 0.06; p<0.0001 for biceps and β : 0.48 ± 0.07; p<0.0001 for grip), 

even more strongly than to hand length (β : 0.32 to 0.34 ± 0.05; p<0.0001 for biceps and β : 0.33 ± 

0.05; p<0.0001 for grip) and finger length (β : 0.19 to 0.24 ± 0.04 ; p<0.0001 for biceps and β : 0.25 to 

0.30 ± 0.04; p<0.0001 for grip). Muscle force and muscle CSA were unrelated to sternum height (data 

not shown). All associations remained positive after additional adjustment for fat or lean mass. 

 

Sex steroids in relation to muscle mass and function 

TT and FT concentrations were positively related to whole body lean mass (β : 0.07 ± 0.02; p=0.0002 

and β : 0.08 ± 0.02; p<0.0001 respectively) and inversely to fat mass (β : -0.07 ± 0.02; p=0.0001 and β 

: -0.08 ± 0.02; p<0.0001 respectively), adjusted for age, weight and height. TT concentrations were 

positively related to muscle CSA at the tibia (β : 0.07 ± 0.04; p=0.04), and FT was positively associated 

with muscle CSA at the radius (β : 0.07 ± 0.04; p=0.03). E2 and FE2 concentrations were negatively 

associated with maximal grip strength (β : -0.08 ± 0.04; p=0.04 and β : -0.10 ± 0.04; p=0.007 

respectively) and quadriceps force (β : -0.08 ± 0.04; p=0.02 and β : -0.11 ± 0.04; p=0.002 

respectively), even after additional adjustment for T. No influence of TT or FT on muscle force was 

observed (data not shown). The 2D:4D finger length ratio and arm span were unrelated to circulating 

steroid concentrations (data not shown).  

 t
2
 

Whole body lean mass (kg) 0.86 ± 0.09 

Whole body fat mass (kg) 0.73 ± 0.10 

Radius 66 % muscle area (mm
2
) 0.67 ± 0.10 

Tibia 66 % muscle area (mm
2
) 0.63 ± 0.10 

Grip strength (kg) 0.56 ± 0.10 

Biceps force (Nm) 0.76 ± 0.10 

Quadriceps force (Nm) 0.67 ± 0.10 
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Figure 1 Muscle CSA and muscle force (grip, biceps and quadriceps) according to quartiles of height and 

weight. P-values result from ANOVA (overall difference between categories). Each bar represents the mean ± 

standard deviation (SD). 

 

Genetic variation in AR in relation to circulating sex steroids, anthropometrics and muscle mass and 

function 

The influence of genetic variation in the AR on circulating gonadal steroids, body composition and 

muscle function is shown in Table 3. The CAG repeat demonstrated a positive association with 

circulating TT and FT concentration, as well as with E2 and FE2 concentrations. Weak associations 

were found for the rs5965433 and rs5919392 polymorphisms in the AR. However, only the 

association between CAG repeat and TT and FT remained significant after Bonferroni correction. No 



 
55 |  Study 1: Androgens and muscle mass in young men   
 
 

 
 

associations between GGN repeat polymorphism and TT or FT concentrations, as determined by LC-

MS/MS, were found. 

No consistent effects of the AR polymorphisms or CAG/GGN repeats were found on either body 

composition, muscle mass or muscle force (Table 3). Figure 2 illustrates the influence of the CAG 

repeat polymorphism on anthropometrics. Arm span was inversely associated with the number of 

CAG repeats (β : -0.09 ± 0.02; p=0.0001). Adult height (Figure 2), hand and digit 4 length (data not 

shown) were unrelated to CAG length, but digit 2 length at both left and right hand was inversely 

related to the CAG polymorphism (right β : -0.04 ± 0.01; p=0.0002 and left β : -0.04 ± 0.01; p=0.002 

adjusted for age and height). From the 7 genetic variations analysed, only the CAG repeat length was 

found to be negatively related to the 2D:4D finger length ratio (right β : -0.05 ± 0.01; p=0.0006 and 

left β: -0.03 ± 0.01; p=0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Anthropometrics according to quartiles of AR CAG repeat polymorphism. P-values result from 

ANOVA (overall difference between categories). Each bar represents the mean ± standard deviation (SD) 
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 Table 3 Androgen receptor polymorphisms in relation to circulating gonadal steroids and muscle parameters.  
Data are presented as standardized estimate ± SD (p-value). Results from mixed effects accounted for family structure and adjusted for age, height and weight. 

 

 CAG repeat GGN repeat rs17217069 rs5965433 rs5919392 rs6152 rs12011793 

Testosterone (ng/dL) 0.10 ± 0.04 
(p=0.004) 

0.06 ± 0.04 
(p=0.09) 

0.44 ± 0.26 
(p=0.10) 

-0.28 ± 0.14  
(p=0.05) 

0.27 ± 0.16 
(p=0.10) 

0.16 ± 0.11  
(p=0.12) 

0.03 ± 0.14 
(p=0.84) 

Free testosterone (ng/dL) 0.17 ± 0.04 
(p<0.0001) 

0.06 ± 0.04 
(p=0.08) 

0.41 ± 0.28 
(p=0.14) 

-0.30 ± 0.14 
(p=0.04) 

0.35 ± 0.17 
(p=0.04) 

0.19 ± 0.11 
(p=0.08) 

0.12 ± 0.14 
(p=0.40) 

Estradiol (pg/mL) 0.08 ± 0.04 
(p=0.05) 

0.07 ± 0.04 
(p=0.07) 

0.32 ± 0.30 
(p=0.029) 

0.07 ± 0.15 
(p=0.65) 

0.16 ± 0.18 
(p=0.39) 

0.11 ± 0.12 
(p=0.36) 

0.25 ± 0.15 
(p=0.09) 

Free estradiol (pg/mL) 0.10 ± 0.04 
(p=0.014) 

0.07 ± 0.04 
(p=0.07) 

0.29 ± 0.29 
(p=0.33) 

0.06 ± 0.15 
(p=0.68) 

0.17 ± 0.18 
(p=0.35) 

0.10 ± 0.12 
(p=0.37) 

0.26 ± 0.15 
(p=0.08) 

SHBG (nmol/L) -0.05 ± 0.04 
(p=0.21) 

0.02 ± 0.04 
(p=0.52) 

0.40 ± 0.27 
(p=0.14) 

-0.13 ± 0.14 
(p=0.35) 

0.02 ± 0.17 
(p=0.89) 

0.04 ± 0.11 
(p=0.69) 

-0.14 ± 0.14 
(p=0.31) 

LH (U/L) 0.06 ± 0.04 
(p=0.14) 

0.05 ± 0.04 
(p=0.23) 

0.22 ± 0.30 
(p=0.45) 

-0.12 ± 0.15 
(p=0.42) 

-0.05 ± 0.18 
(p=0.80) 

0.23 ± 0.12 
(p=0.05) 

0.22 ± 0.15 
(p=0.14) 

FSH (U/L) -0.07 ± 0.04 
(p=0.07) 

0.06 ± 0.04 
(p=0.15) 

-0.34 ± 0.29 
(p=0.24) 

0.29 ± 0.15 
(p=0.05) 

-0.12 ± 0.18 
(p=0.49) 

-0.04 ± 0.11 
(p=0.70) 

0.10 ± 0.15 
(p=0.51) 

Whole body lean mass (kg) -0.004 ± 0.017 
(p=0.80) 

0.02 ± 0.02 
(p=0.20) 

-0.17 ± 0.12 
(p=0.17) 

-0.08 ± 0.07 
(p=0.24) 

0.10 ± 0.08 
(p=0.22) 

0.09 ± 0.05 
(p=0.08) 

0.10 ± 0.06 
(p=0.11) 

Whole body fat mass (kg) -0.005 ± 0.018 
(p=0.80) 

-0.02 ± 0.02 
(p=0.30) 

0.23 ± 0.13 
(p=0.08) 

0.06 ± 0.07 
(p=0.40) 

-0.08 ± 0.08 
(p=0.34) 

-0.10 ± 0.05 
(p=0.05) 

-0.12 ± 0.07 
(p=0.07) 

Radius 66 % muscle area (mm
2
) -0.04 ± 0.03 

(p=0.17) 
0.04 ± 0.03 
(p=0.22) 

-0.03 ± 0.24 
(p=0.89) 

-0.07 ± 0.12 
(p=0.57) 

0.33 ± 0.15 
(p=0.02) 

0.15 ± 0.09 
(p=0.11) 

0.17 ± 0.12 
(p=0.15) 

Tibia 66 % muscle area (mm
2
) 0.005 ± 0.033 

(p=0.90) 
0.01 ± 0.03 
(p=0.75) 

-0.05 ± 0.24 
(p=0.84) 

-0.11 ± 0.12 
(p=0.36) 

-0.07 ± 0.15 
(p=0.66) 

0.08 ± 0.10 
(p=0.39) 

0.07 ± 0.12 
(p=0.59) 

Grip strength (kg) -0.02 ± 0.04 
(p=0.53) 

-0.002 ± 0.036 
(p=0.97) 

-0.004 ± 0.271 
(p=0.99) 

-0.002 ± 0.140 
(p=0.99) 

-0.02 ± 0.17 
(p=0.90) 

0.09 ± 0.11 
(p=0.41) 

0.14 ± 0.14 
(p=0.32) 

Biceps force   (Nm) -0.05 ± 0.04 
(p=0.21) 

0.03 ± 0.03 
(p=0.42) 

-0.09 ± 0.27 
(p=0.73) 

-0.18 ± 0.13 
(p=0.17) 

0.29 ± 0.16 
(p=0.07) 

0.04 ± 0.10 
(p=0.69) 

0.04 ± 0.13 
(p=0.77) 

Quadriceps force (Nm) -0.02 ± 0.04 
(p=0.51) 

0.03 ± 0.04 
(p=0.38) 

-0.16 ± 0.28 
(p=0.56) 

-0.07 ± 0.14 
(p=0.59) 

0.19 ± 0.16 
(p=0.24) 

-0.007 ± 0.104 
(p=0.95) 

0.02 ± 0.13 
(p=0.87) 
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DISCUSSION 

In this cross-sectional study we investigated the interrelation between androgen sensitivity, 

heritability, circulating sex steroids, anthropometrics and muscle mass and function in a cohort of 

young men. We observed that the number of CAG repeats is associated with TT, FT, E2 and FE2 levels, 

and the 2D:4D finger length ratio and arm span. In contrast with the observed associations with 

circulating sex steroids, these genetic variations in the AR did not influence muscle mass or function 

in this cohort of young healthy men. 

Our results are in agreement with twin studies reporting that muscle mass and strength are highly 

heritable [1]. Some of the remaining variance in muscle mass might be explained by antropometry, 

which is also under genetic control [2–4]. Height and weight were closely related to lean mass in our 

study. As taller subjects have longer bones, it is reasonable that they have longer muscles and thus 

higher muscle mass. Biceps force and hand grip force were also found to be related with 

anthropometric measurements, demonstrating that the strength of an individual is strongly 

determined by its body size. 

Age has also an influence on skeletal muscle mass and function [3]. However, few studies have 

examined the relationship between age and lean mass in (young) adults [24,25]. In our study, we 

found a small but positive association between lean mass, muscle CSA and age. The lack of 

association between age and grip and biceps force, and the small inverse relationship with 

quadriceps force supports the results of Janssen et al. [25] which state that the muscle strength of 

the upper body is preserved better with increasing age than the muscle strength of the lower body. 

The alterations in body composition with ageing are thought to be related to changes in sex steroid 

levels [26]. A loss of lean mass and an increase in fat mass are observed in elderly and hypogonadal 

men, whereas puberty in boys is associated with a remarkable gain in muscle mass [3,5]. However, 

the clinical relationship between androgens and muscle mass for variations within the normal range 

is less clear. In this cohort of eugonadal men, we demonstrated that whole body lean mass and 

muscle CSA are positively associated with both TT and FT. It is noteworthy that physical activity was 

also positively associated with serum T concentrations, indicating a higher impact of physical activity 

on muscle mass in men with higher serum T levels. However, and in agreement with Folland et al. 

[8], further analysis revealed that neither TT nor FT had any relation with muscle strength.  

As mentioned earlier, between-subject differences in serum T levels within the physiological range 

are related in part to differences in androgen sensitivity and hypothalamus-pituitary feedback 

setpoint [9]. Genetic variations in the AR gene, in particulary CAG repeat polymorphisms, have been 
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associated with disorders linked to a reduced androgen activity [27]. We have previously shown that 

serum T levels are positively associated with the CAG and GGN repeat length in young, middle-aged 

and elderly men [9,13]. This is in contrast with the present study, in which we did not find any 

correlation between TT or FT and the GGN repeat length. It is noteworthy that the subjects of the 

current study are partly overlapping (358 unrelated men i.e. a single representative of the nuclear 

families out of 677 men) with the cohort of young men published by Crabbe et al. [9] and Bogaert et 

al. [13]. However, the serum concentrations of T have been re-determined by a highly precise LC-

MS/MS method, as these were previously determined using less specific commercial immunoassay 

kits. Reports on associations between the GGN repeat and AR function are limited and inconsistent, 

with one study describing a positive association in a cohort of men with prostate cancer [28], 

whereas another study in young men could not find an association between the GGN repeat and 

serum T levels [29]. 

Based on studies reporting mutations in the AR gene related to AIS [14–16] we further screened for 

genetic polymorphisms in the AR that may affect the AR activity and thus circulating androgen levels. 

Interestingly, two SNPs (rs5965433 and rs5919392) were found to be significantly associated with 

FT, with the first also borderline significantly associated with TT. However, it is noteworthy that 

these associations did not remain significant after Bonferroni correction. Two recent genome-wide 

association studies [30,31] have identified several SNPs at different loci that were associated with 

serum T levels in middle-aged and elderly men. However, the AR gene was not described in these 

studies. Considering our relatively limited sample size, we suggest that analysis of our SNPs in those 

larger study populations may be required to confirm our findings. 

Genetic variation in the AR gene influences circulating androgen levels, but may also affect body 

composition, muscularity or anthropometrics. Data on the association between CAG repeat length 

and muscle mass is limited and has been contradictory [8,32,33]. In our study, we could not find any 

relationship of CAG, GGN repeat length or the analysed SNPs in the AR with either body composition 

or measurements of muscularity. This might indicate that the relation of T with the muscle CSA is not 

related to genetic factors influencing androgen sensitivity, most likely because lower androgen 

sensitivity is compensated by elevated T levels. 

Interestingly, we found that arm span and the 2D:4D finger length ratio were inversely associated 

with the number of CAG repeats, but not with the GGN repeat length or the analysed SNPs. The 

2D:4D finger length ratio has been proposed as a marker of prenatal androgen action and of 

sensitivity to T, with a lower 2D:4D being associated with high androgen exposure [34,35]. Given the 

hypothesis that elevated T levels in men with lower androgen sensitivity do not necessary show 
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differences in androgen action, we can speculate that the negative effects on arm span and finger 

length might be mediated by the higher levels of FE2 levels found in men with longer CAG repeat 

length, as suggested by Huhtamieni IT et al. [36]. As most E2 produced in normal men is formed by 

aromatization of androgens [37], the higher T substrate availability in men with lower androgen 

sensitivity can explain the higher serum E2 levels. E2 is considered to be the main sex steroid involved 

in the development and maintenance of bone mass [18]. In addition, it is also important to initiate 

epiphyseal closure of long bones [38]. Therefore, we speculate that the presence of higher levels of 

E2 in men with lower androgen sensitivity, but preserved estrogen action, resulted in earlier 

termination of longitudinal bone growth during puberty, an event wich is clearly observed in boys 

with aromatase excess syndrome or familiar hyperestrogenism [39,40].  

To date, several studies have examined the possible relation of adult sex hormone concentrations 

[41,42] and AR CAG number [43–45] with 2D:4D, but results are controversial. To our knowledge, 

there is only one study that has examined the relationship between GGN repeat variation in the AR 

and 2D:4D ratios [46], but no reports on the relationship between SNPs in AR and 2D:4D ratios exist. 

The higher serum E2 levels found in men with a higher CAG repeat number might also play a direct 

role on muscle force since the negative association between E2 and grip strength and biceps force, 

and between FE2 and grip strength and biceps force in our study persisted after adjustment for T. 

Also Auyeung et al. [47] reported that E2 levels, though positively related to muscle mass, were 

negatively related to muscle strength. However, it should be noted that the participants of the latter 

study were much older, with lower T levels. 

Possible effects of E2 on the regulation of muscle mass and function are still poorly understood. As 

skeletal muscle myoblasts and mature fibers express functional estrogen receptors (ER), a direct 

effect of E2 in muscle cells may occur [48,49]. Although some studies have shown that E2 is involved 

in muscle recovery [50,51] and has anabolic effects [52,53], a negative role of E2 on the musculature 

has also been suggested by others. Several studies observed a decrease in muscle mass and force 

after E2 administration of ovariectomized rats [54–57], and Brown M et al. [50] found an increase in 

muscle mass and function in ER knockout mice. However, the exact mechanism by which estrogens 

regulate muscle mass still has to be elucidated.   

We recognize that our study has some limitations. First, our study may have been limited by the 

relatively small sample size, by which small but significant associations might have been missed, 

especially for the genetics analysis. Secondly, observations within brothers are not completely 

independent from each other. However, all analyses in this study were performed using linear 
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mixed-effects modelling with random intercepts to account for this interdependence. Furthermore, 

the cross-sectional design of this study does not allow us to draw conclusions on causality.  

A major strength of this study is that we have used a highly precise LC-MS/MS method to determine 

T and E2 serum concentrations. Most other studies used direct immunoassays, which are thought to 

have a reduced specificity at lower concentrations, especially those for serum E2 [58,59], which 

could explain some of the conflicting results reported. Also, our cohort of healthy men in a well-

defined age range may have strengthened our results. 

 In summary, in this study we showed that age, physical activity, body composition, sex steroid levels 

and anthropometrics are all determinants of muscle mass and function in young men. Although the 

number of CAG repeats were related to sex steriod levels and anthropometrics, we have no 

evidence that variations in the AR gene also contributes to the between subject variation in muscle 

mass or muscle function in young healthy men. 
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Note added to manuscript in thesis:  

Heritability estimates from sibling pairs do not only represent the genetic heritability, but also 

include a common environmental factor. These heritability estimates are therefore presented as 

upper-limit heritabilities or transmissibilities (t²) rather than genetic heritabilities (h²), as described 

in the publication.  

Hormone levels are presented according to conventional units for laboratory testing and according 

SI units. 
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ABSTRACT  

Purpose: The molecular factors targeted by androgens and estrogens on muscle mass are not fully 

understood. The current study aimed to explore gene and protein expression of Atrogin-1, MuRF1, 

and myostatin in an androgen deprivation-induced muscle atrophy model.  

Methods: We examined the effects of orchidectomy either with or without testosterone (T) or 

estradiol (E2) administration on Atrogin-1 gene expression, and MuRF1 and myostatin gene and 

protein expression. Measurements were made in soleus (SOL), extensor digitorum longus (EDL) and 

levator ani/bulbocavernosus (LA/BC) of male C57BL/6 mice.  

Results: Thirty days of orchidectomy resulted in a reduction in weight gain and muscle mass. These 

effects were prevented by T. In LA/BC, Atrogin-1 and MuRF1 mRNA was increased throughout 30 

days of orchidectomy, which was fully reversed by T and partially by E2 administration. In EDL and 

SOL, a less pronounced upregulation of both genes was only detectable at the early stages of 

orchidectomy. Myostatin mRNA levels were downregulated in LA/BC and upregulated in EDL 

following orchidectomy. T, but not E2, reversed these effects. No changes in protein levels of MuRF1 

and myostatin were found in EDL at any time point following orchidectomy. 

Conclusions: The atrophy in SOL and EDL in response to androgen deprivation, and its restoration by 

T, is accompanied by only minimal changes in atrogenes and myostatin gene expression. The marked 

differences in muscle atrophy and atrogene and myostatin mRNA between LA/BC and the locomotor 

muscles suggest that the murine LA/BC is not an optimal model to study orchidectomy-induced 

muscle atrophy. 

 

Keywords: Atrogin-1, MuRF1, Myostatin, Skeletal muscle atrophy, Androgens 
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INTRODUCTION 

Androgen deficiency refers to a significant decrease in circulating testosterone (T) levels and is 

associated with skeletal muscle loss and weakness (Mauras et al. 1998). T replacement therapy 

improves muscle mass and function in hypogonadal and elderly men (Bhasin et al. 1997, Snyder et al. 

1999, Allan et al. 2008). Additionally, T and its synthetic derivatives stimulate anabolic effects in 

patients suffering from catabolic diseases, such as cancer, HIV/AIDS, COPD and burn injuries (Hart et 

al. 2001, Gold et al. 2006, Glass and Roubenoff 2010). Estrogen replacement therapy also has 

positive effects on skeletal muscle in post-menopausal women (Messier et al. 2011, Ahtiainen et al. 

2012, Sipilä et al. 2013), while serum estradiol (E2) levels in men are positively associated with lean- 

and muscle mass (Svensson et al. 2010, Vandenput et al. 2010, Auyeung et al. 2011). While androgen 

therapy has positive effects on muscle mass, it can have undesirable side effects such as increasing 

the risk of developing prostate cancer, cardiovascular disease, hepatotoxicity and infertility (Rhoden 

and Morgentaler 2004). Androgens and estrogens exert their effects by binding to their respective 

androgen (AR) (Lee and Chang 2003) and estrogen receptors (ER), with two ER isoforms in muscle 

(ERα or ESR1 and ERβ or ESR2) (Couse et al. 1997, Wiik et al. 2009). The molecular factors targeted by 

androgen and estrogen therapy that attenuate skeletal muscle loss and improve muscle function 

have not been completely elucidated. A better understanding of the muscle-specific molecules that 

are sensitive to androgen and estrogen therapy, and that regulate muscle atrophy, may identify 

therapeutic targets to improve clinical outcomes for patients suffering from diseases associated with 

skeletal muscle wasting (Glass and Roubenoff 2010, Sakuma and Yamaguchi 2010). 

Skeletal muscle types have different levels of sensitivity to androgen deprivation and T 

administration (Axell et al. 2006, Hulmi et al. 2008, Ustunel et al. 2003). For example, the levator 

ani/bulbocavernosus muscle (LA/BC) is highly sensitive to androgen levels and is frequently 

investigated in androgen deprivation studies (Xu et al. 2004, Mendler et al. 2007, Pires-Oliveira et al. 

2010, Serra et al. 2011). While both fast-twitch [extensor digitorum longus (EDL), tibialis anterior (TA) 

and plantaris] and slow-twitch [soleus (SOL)] muscles show androgen-dependent changes in muscle 

mass, the slow-twitch muscle appears to be more responsive to androgen deprivation and therapy 

(Axell et al. 2006). Therefore, when identifying muscle-specific molecules that may be sensitive to 

androgen deprivation and therapy, investigations should be completed in muscles with varying levels 

of androgen sensitivity, such as the LA/BC, EDL and SOL.  

MAFbx/Atrogin-1 and MuRF1, muscle-specific ubiquitin ligases (Bodine et al. 2001, Gomes et al. 

2001), are upregulated in numerous conditions of muscle atrophy (Foletta et al. 2011) and degrade 

proteins involved in muscle protein synthesis, regeneration and contraction (Lagirand-Cantaloube et 
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al. 2008, Li et al. 2004, Tintignac et al. 2005, Centner et al. 2001, Cohen et al. 2009, Fielitz et al. 

2007). Myostatin, a member of the transforming growth factor-β (TGF-β) family, increases 

MAFbx/Atrogin-1 and MuRF1 mRNA levels (Lokireddy et al. 2011) and induces muscle atrophy; the 

latter a consequence of increased protein degradation and attenuated muscle protein synthesis 

(McPherron et al. 1997, Trendelenburg et al. 2009). The regulation of MAFbx/Atrogin-1, MuRF1 and 

myostatin in conditions of androgen deprivation and following androgen therapy remains equivocal, 

while little is known about the effects of E2 administration. For example, orchidectomy causes an 

increase in MAFbx/Atrogin-1, MuRF1 and myostatin mRNA in triceps brachii (Ibebunjo et al. 2011), 

gastrocnemius (White et al. 2013) and LA muscles (Mendler et al. 2007, Pires-Oliveira et al. 2010); a 

response attenuated by the administration of T (Ibebunjo et al. 2011, Mendler et al. 2007, Pires-

Oliveira et al. 2010) or nandrolone decanoate (White et al. 2013). However, others have observed no 

change in MAFbx/Atrogin-1 or MuRF1 mRNA levels in EDL muscle (Pires-Oliveira et al. 2010) or even 

a reduction in the mRNA levels of MAFbx/Atrogin-1 (Haren et al. 2011) and myostatin (Ibebunjo et al. 

2011) in gastrocnemius and triceps brachii muscles of orchidectomized rats and mice. 

MAFbx/Atrogin-1 (Pires-Oliveira et al. 2010) and myostatin (Mendler et al. 2007) protein levels are 

upregulated in LA muscle following orchidectomy and return to baseline following T administration. 

No changes in MAFbx/Atrogin-1 protein in EDL muscle were reported (Pires-Oliveira et al. 2010) 

while MuRF1 protein levels were not measured. One week of E2 administration in orchidectomized 

mice partially suppressed MAFbx/Atrogin-1 mRNA levels in gastrocnemius and LA muscle (Svensson 

et al. 2010).  The effect of E2 on MuRF1 and myostatin mRNA and protein levels has not been 

reported. Clearly further research is required to determine if MAFbx/Atrogin-1, MuRF1 and 

myostatin mRNA and protein levels are sensitive to androgen deprivation as well as T and E2 therapy. 

The aim of this study was to investigate the effect of androgen deprivation and T and E2 

administration on muscle mass and MAFbx/Atrogin-1, MuRF1, and myostatin mRNA and protein 

expression. All measurements were performed in muscles with varying androgen sensitivity, 

including the androgen-sensitive LA/BC, the slow-twitch SOL muscle and the fast-twitch EDL 

locomotor muscles, at three different time-points following orchidectomy.  



 
71|  Study 2: Androgenic regulation of Atrogin-1, MuRF1 and myostatin   

 
 

 
 

MATERIALS AND METHODS 

Animals and treatment 

Adult male C57BL/6JOla inbred mice (8 weeks) were purchased from Harlan laboratories. Upon 

arrival, animals were allowed to acclimatize to their new surrounding for 2 weeks before surgery. All 

animals were given free access to water and food. 

A total of 100 mice were included in this study and were randomly assigned into four intervention 

groups. Under isoflurane inhalation, 8-week-old mice were Sham-operated (Sham), orchidectomized 

(Orx+v) or were orchidectomized and treated with testosterone (Orx+T) or β-estradiol (Orx+E2) 

(Sigma-Aldrich). Both hormones were administered using 0.5 cm subcutaneous silastic implants 

(Silclear tubing 1.57 × 2.41 mm, Degania, Israel) in the cervical region. A physiological rate of 

hormone release was obtained by diluting T and E2 with cholesterol (respectively 1/2 and 1/16) as 

calculated by Vanderschueren et al. (2000), releasing 11.5 µg of T and 0.03 µg of E2 daily. Empty 

silastic tubes were implanted in the ‘Orx+v’ group. Purity of the E2 preparations was checked and no 

detectable contamination in the steroid preparations was found using LC-MS/MS (Applied 

Biosystems 5500). The efficacy of orchidectomy and dose of T treatment were verified by 

measurement of the seminal vesicles mass. To validate the dose of E2 administration, the uterus 

weight of four mature female mice that were ovariectomized, and treated with the same dose of E2 , 

was analyzed. Animals were killed at 7 days (n=8 for Sham, n=9 for Orx+v, Orx+T and Orx+E2) or 30 

days (n=11 for Sham, n=13 for Orx+v, n=23 for Orx+T and n=12 for Orx+E2) after surgery to examine 

the short- and long-term effects of androgen deprivation and treatment. The ultrashort effects of 

androgen deprivation were determined at 24h after orchidectomy of six mice. Because data from a 

pilot experiment were found to be effective, they were included in the study. All experimental 

protocols were approved by the Ethical Committee for Animal Research of Ghent University. 

 

Muscle excision and tissue biopsy 

At the end of each intervention period, mice were weighed and anesthetized with an intra-

abdominal injection containing a mixture of 80 % Ketamine (50 mg/ml, 100 mg/kg) and 20 % Xylazine 

(20 mg/ml, 10mg/kg). As described in detail below, after a 4-week intervention period, EDL and SOL 

of the right hindlimb were carefully dissected, and incubated for 15 min in Krebs-Henseleit solution, 

before contractility measurements were carried out. Animals were then euthanatized by cervical 

dislocation, and muscles of the left lower hindlimb, the LA/BC and seminal vesicles were removed 

and immediately frozen in liquid nitrogen. Biopsies were stored at -80 °C prior to weight 

determination, qPCR- and Western blot analysis. 
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Muscle contractile properties 

After 30 days of Orx, twitch and tetanus contractile properties of the right hindlimb muscles were 

measured in vitro by stimulation with capacitor discharges between platinum electrodes (Radnoti), 

as previously described (Derave et al. 2005). In detail, after dissection, wires were attached to the 

tendons of EDL and SOL of the right hindlimb and were mounted on a heated (37 °C) incubation bath 

filled with Krebs-Henseleit-buffer (117 mM NaCl, 24.6 mM NaHCO3, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 

mM KH2PO4, 2.5 mM CaCl2, 8 mM Mannitol and 2 mM Pyruvate). This solution was continuously 

oxygenated with a gaseous mixture of 95 % O2 and 5 % CO2. At the start of the experiment, muscles 

were set to their optimal length at which maximal isometric twitch forces are produced. 

Subsequently, the muscles were subjected to a series of five single twitch pulses of 500 μs duration 

with 1 Hz stimulation frequency and the average absolute force was calculated. A force-frequency 

curve was obtained by tetanic stimulation of the muscles at different frequencies (10, 20, 35, 50, 75, 

100 Hz for SOL and 25, 40, 55, 70, 100, 125 Hz for EDL). A resting interval of 60 and 120s was allowed 

between each frequency for SOL and EDL, respectively. Because of the time-consuming technique of 

measuring in vitro muscle force, we have chosen to limit the measurements to the main intervention 

(orchidectomy) and only one time-point, at 30 days. Yet, we have measured muscle force of both SOL 

and EDL muscle. 

 

RNA-isolation and qPCR 

Total RNA was isolated from SOL, EDL and LA/BC using the TriPure Isolation Reagent (Roche 

Diagnostics, Vilvoorde, Belgium), followed by a purification with the RNeasy Mini Kit (Qiagen, Venlo, 

Netherlands). An on-column DNase treatment was performed using the RNase-Free DNase Set 

(Qiagen). RNA was quantified by a Nanodrop 2000C spectrophotometer (Thermo Scientific), and RNA 

purity was assessed by calculating the A260/A280 ratio. Using a blend of oligo (dT) and random 

primers, 500 ng RNA was reverse transcribed with the iScript cDNA Synthesis kit (Biorad, Nazareth, 

Belgium), according to the manufacturer’s instructions. qPCR was carried out on a Lightcycler 480 

system (Roche) using an 8 μl reaction mix containing 3 μl template cDNA (1/10 dilution), 300 nM 

forward and reverse primers and 4 μl SYBR Green PCR Master Mix (Applied Biosystems, Halle, 

Belgium). Samples were analyzed according to the maximization method (Hellemans et al. 2007). The 

cycling conditions comprised a polymerase activation at 95 °C for 10 min, followed by 45 cycles at 95 

°C for 15s, 60 °C for 60s. Primer sequences for MAFbx/Atrogin-1 and MuRF1 were adapted from the 

literature or selected from the RTprimerDB site (http://medgen.ugent.be/rtprimerdb/). Primers for 

myostatin, AR, estrogen receptor α (ESR1) and estrogen receptor β (ESR2) were designed using 

Primer Express software 3.0 (Applied Biosystems) (Table 1). Sequence specificity was confirmed using 
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NCBI Blast analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To control the specificity of amplification, 

data melting curves were inspected, and PCR efficiency was calculated (between 90 and 110 % for all 

genes). Normalised gene expression values were calculated by dividing the relative gene expression 

values (calculated by the delta-Ct method) for each sample by the geometric mean of Ppia, Rplp0 and 

B2m as selected by GeNorm (Vandesompele et al. 2002).  

 

Protein isolation and Western blots 

Protein extraction was performed according to previously described procedures (Wallace et al. 

2011). Total protein was extracted from ~ 11 mg of EDL using 1x RIPA buffer (15μl/mg sample) 

(Millipore, North Ryde, NSW, Australia) with the addition of protease inhibitor cocktail (Sigma, Castle 

Hill, NSW, Australia) and Halt Phosphatase Inhibitor Single-Use Cocktail (Thermo Scientific, Rockford, 

IL, USA). Following homogenization, the lysate was rotated at 4 °C for 60 min before being 

centrifuged at 13,000 rpm at 4 °C for 15 min. Total protein content of the supernatant was 

determined using the BCA protein assay kit (Pierce Biotechnology, Rockford, IL, USA) according to the 

manufacturer's instructions. Since the LA/BC complex was extremely atrophied after Orx, in 

particularly for the LA itself, there was not enough muscle left to carry out protein isolation. As no 

differences in protein expression were found in de EDL, we did not expect to find any differences in 

the SOL muscle.  

 

Protein samples (30 μg) were denaturated in loading buffer and were separated by a 12 % SDS-PAGE 

gel in a buffer containing 25 mM Trisbase, 192 mM glycine and 0.1 % SDS, pH 8.8. Following 

separation, proteins were transferred to a PVDF membrane (Millipore, Billerica, MA, USA) in a cold (4 

°C) transfer buffer (25 mM Tris, 192 mM glycine, 10 % methanol, pH 8.3) during 2h, and membranes 

were then blocked for 1 h at room temperature in 5 % BSA or 5 % skim milk in PBS. Membranes were 

subsequently incubated overnight by gentle shaking at 4 °C with the following primary antibodies 

diluted 1:1,000 in 5 % BSA/PBS for myostatin (Millipore), and in 5 % skim milk/PBS for MuRF1 (ECM 

Biosciences, Versailles, KY, USA). After 4 x 5 min washing with PBS, the membranes were incubated 

for 1 h with a goat anti-rabbit IgG antibody labeled with an infrared-fluorescent 800-nm dye (Alexa 

Fluor 800; Invitrogen, Carlsbad, CA, USA) diluted 1:5,000 in PBS containing 50 % Odyssey blocking 

buffer (LI-COR Biosciences) and 0.01 % SDS. After washing, the specific proteins were visualized using 

the Odyssey Imaging System (LI-COR Biosciences) and individual protein band optical densities were 

quantified with the Odyssey software. Samples were alternately loaded and an internal control 

sample was loaded on each gel to account for run-to-run variation between the samples. To control 
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for protein loading, blots were normalized against glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) protein (G8795; Sigma-Aldrich, Sydney, Australia). 

 

Statistical analysis 

Statistical analyses were performed using SPSS statistical software (SPSS 19.0, Chicago, IL). Statistical 

differences between the Sham and the three intervention groups (Orx+v, Orx+T and Orx+E2) at day 1, 

day 7 and day 30 were determined via a one-way analysis of variance (ANOVA) and a subsequent 

post hoc LSD test when a significant group effect was observed. An independent sample T test was 

used to compare the muscle twitch force between orchidectomized and control mice for the SOL and 

the EDL muscle. The effect of orchidectomy on absolute tetanic muscle force was assessed using a 

repeated measurements two-way ANOVA (frequency x intervention) for the SOL and EDL muscle. 

Normalized mRNA expression data were log-transformed to fulfill criteria for normality. Values are 

presented as means ± SD, and P ≤ 0.05 was considered significant. 

 

Table 1 Primers used in qPCR analysis 

Gene symbol
a
  Source Forward primer 5'-->3' 

Reverse primer 5'-->3' 
GenBank 

accession number 

Ppia RTprimerDB 
CAA-ATG-CTG-GAC-CAA-ACA-CAA-ACG 

GTT-CAT-GCC-TTC-TTT-CAC-CTT-CCC 
NM_008907 

Rplp0 
RTprimerDB 

 
GGA-CCC-GAG-AAG-ACC-TCC-TT 

GCA-CAT-CAC-TCA-GAA-TTT-CAA-TGG 
NM_007475 

B2m 
RTprimerDB 

 
CAT-GGC-TCG-CTC-GGT-GAC-C 

AAT-GTG-AGG-CGG-GTG-GAA-CTG 
NM_009735 

Fbxo32/MAFbx/ 

Atrogin-1 
Pires-Oliveira et al. 

(2010) 
GCA-GAG-AGT-CGG-CAA-GTC 
CAG-GTC-GGT-GAT-CGT-GAG 

NM_026346 

Myostatin 
Primer express 

 
TGC-TAT-AAG-ACA-ACT-TCT-GCC-AAG-A 

AAG-AGC-CAT-CAC-TGC-TGT-CAT-C 
NM_010834 

Trim63/MuRF1 Tang et al. (2010) 
TGG-AAA-CGC-TAT-GGA-GAA-CC 
ATT-CGC-AGC-CTG-GAA-GAT-G 

NM_001039048 

Ar Primer express 
 

TCT-ACT-TTG-CAC-CTG-ACT-TGG-TTT 
ACT-CTT-GAG-ACA-GGT-GCC-TCA-TC 

NM_013476.3 
 

Esr1 Primer express 
 

ACT-ACA-TAC-CCC-CGG-AAG-CA 
CAG-GGA-TTC-TCA-GAA-CCT-TTC-G 

NM_007956.4 

Esr2 Primer express 
 

TGA-TGG-TCA-GAA-GTG-GGA-CAT-G 

AAG-CGC-AAC-GTG-GGT-AAG-G 
NM_010157.3 

 
a
Ppia Peptidylprolyl isomerase A, Rplp0 Ribosomal protein large P0, B2m Beta-2 microglobulin, Fbxo32 F-box 

protein 32, MAFbx Muscle Atrophy F-box, Trim63 Tripartite motif-containing 63, MuRF1 Muscle RING Finger 1, 

Myostatin Myostatin, Ar Androgen receptor, Esr1 Estrogen receptor α, Esr2 Estrogen receptor β
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RESULTS  

Regulation of body weight and muscle mass  

Compared to the Sham group, body weight gain was attenuated in Orx+v mice when measured 30-

day post-operation. Administration of T for 30 days, but not E2, prevented the Orx-induced 

attenuation in body weight gain (Fig. 1a). Androgen deprivation was successfully induced as 

confirmed by measuring seminal vesicle mass which was reduced by 68 and 89 % at 7- and 30-day 

post-operation, respectively. T, but not E2, administration prevented seminal vesicle atrophy at both 

time points (Fig. 1b). 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Effect of short- (7 days) and long-term (30 days) orchidectomy (Orx+v), orchidectomy and 

testosterone treatment (Orx+T), and orchidectomy and estradiol treatment (Orx+E2) on body weight (a) and 

seminal vesicles (b). Each bar represents the mean ± standard deviation (SD). Differences between groups were 

assessed by one-way analysis of variance (ANOVA). * (P<0.05), † (P<0.01), ‡ (P<0.001): significantly different 

from Shams.  

 

 

LA/BC muscle mass was reduced by 22 and 63 % when measured 7- and 30-day post-Orx, 

respectively; an effect blocked by T treatment at both time points. E2 treatment for 7, but not 30 

days, blocked the loss of LA/BC muscle mass (Fig. 2a). SOL and EDL muscle mass was also reduced by 

13 and 14 % respectively in the Orx+v group, 30-day post-intervention; an effect attenuated by T, but 

not E2 (Fig. 2b, c). No difference in body weight or SOL and EDL muscle weights was observed 

between treatment groups when measured 7-day post-intervention (data not shown). 
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Figure 2.  Effect of orchidectomy (Orx+v), orchidectomy and testosterone treatment (Orx+T), and orchidectomy 

and estradiol treatment (Orx+E2) on LA/BC muscle mass, 7- and 30-day post-intervention (a), and SOL and EDL 

muscle mass, 30-day post-intervention (b). Differences between groups were assessed by one-way analysis of 

variance (ANOVA). *(P < 0.05), †(P < 0.01), ‡(P < 0.001): significantly different from Shams. 

 

 

It was of interest to determine if the different response to T and E2 for the muscle types was 

associated with the expression levels of AR and estrogen (ESR1 and ESR2) receptors. AR mRNA 

expression was 300 % higher in the LA/BC muscle when compared with SOL (P < 0.00001) and EDL 

muscles (P < 0.00001) in Sham-operated mice (Fig. 3a). No difference in AR mRNA expression 

between EDL and SOL was found (P = 0.40). ESR1 mRNA levels were 110 and 550 % higher in EDL 

when compared with the SOL and LA/BC muscle, respectively (Fig. 3b). ESR1 expression was also 210 

% higher in the SOL compared with the LA/BC muscle.  ESR2 mRNA levels were 620 and 480 % higher 

in LA/BC muscle when compared with the SOL and EDL muscle, respectively; the latter two muscles 

having similar ESR2 expression levels (Fig. 3c). 

 

 

 

 

 

 

 

 

 

Figure 3. Relative mRNA expression levels of  the androgen receptor (AR) (a), estrogen receptor α (ESR1) (b), 

and estrogen receptor β (ESR2) (c) in LA/BC, SOL and EDL muscle. Differences between groups were assessed 

by one-way analysis of variance (ANOVA). ‡(P < 0.001): significantly different from SOL, $(P < 0.001): 

significantly different from EDL 
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Influence of testosterone on skeletal muscle force production   

A 37 % reduction (P = 0.02) in absolute twitch force and a decrease in contraction and relaxation 

speed in SOL muscle were observed 30-day post-Orx; no significant effect was observed for the EDL 

muscle (Fig. 4a). As presented in the force-frequency curve (Fig. 4b), a main effect (P = 0.042) for 

group indicated that absolute tetanic force was also reduced in the SOL muscle of the Orx+v mice 

when compared with Sham mice. When expressing the SOL muscle twitch and tetanic force relative 

to muscle mass, there was no difference between the Orx+v and Sham-treated mice (data not 

shown). Orx did not affect absolute or relative EDL muscle force production (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Absolute twitch force in SOL and EDL (a) and force-frequency relationship of SOL (b) muscle in Sham-

operated (Sham) and orchidectomized (Orx+v) mice, 30-day post-intervention. Differences in absolute twitch 

force between groups were assessed by independent sample T tests and differences in absolute tetanic force 

between groups were assessed by two-way ANOVA repeated measurements (frequency x intervention). *(P < 

0.05) significantly different from Shams. 

 

 

LA/BC muscle 

In the LA/BC muscle, MAFbx/Atrogin-1 mRNA increased by 300-900 % when measured 1, 7 and 30 

days following Orx (Fig. 5a). A similar mRNA expression pattern was observed for MuRF1 (Fig. 5b). In 

contrast, myostatin mRNA levels were reduced by 86, 79 and 77 % when measured 1, 7 and 30 days 

after Orx (Fig. 5c). Administration of T blocked, while E2 attenuated, the Orx-induced increase in 

MAFbx/Atrogin-1 and MuRF1 mRNA (Fig. 5a, b). Only T administration for 30 days was able to 

maintain myostatin levels when compared to the Sham group (Fig. 5c).  
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Figure 5. Effect of ultrashort (1 day), short- (7 days) and long-term (30 days) orchidectomy (Orx+v), 

orchidectomy and testosterone treatment (Orx+T), and orchidectomy and estradiol treatment (Orx+E2) on 

MAFbx/Atrogin-1 mRNA expression (a), MuRF1 mRNA expression (b), and myostatin mRNA expression (c) in 

levator ani/bulbocavernosus (LA/BC) muscle. Data are shown as fold change from the control group for each 

gene. Differences between groups were assessed by one-way analysis of variance (ANOVA). *(P < 0.05), †(P < 

0.01), ‡(P < 0.001): significantly different from Shams. $(P ≤ 0.001): significantly different from Orx+v. 

 

 

SOL muscle 

In the SOL muscle, Orx did not alter MAFbx/Atrogin-1 mRNA levels; however, treatment with E2 for 7 

days increased MAFbx/Atrogin-1 mRNA by 60 % (P = 0.02) (Fig. 6a). MuRF1 mRNA was increased by 

38 % (P = 0.04) 7 days, but not 30 days, post-Orx (Fig. 6b). At 30-day post-Orx, T and E2 administration 

reduced MuRF1 mRNA in the Orx group (Fig. 6b). There was no effect on myostatin mRNA in any of 

the treatment groups (data not shown). 
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Figure 6. Effect of ultrashort (1 day), short- (7 days) and long-term (30 days) orchidectomy (Orx+v), 

orchidectomy and testosterone treatment (Orx+T), and orchidectomy and estradiol treatment (Orx+E2) on 

MAFbx/Atrogin-1 mRNA expression (a), and MuRF1 mRNA expression (b) in soleus (SOL) muscle. Data are 

shown as fold change from the control group for each gene. Differences between groups were assessed by 

one-way analysis of variance (ANOVA). *(P < 0.05), †(P < 0.01), ‡(P < 0.001): significantly different from Shams. 

 

EDL muscle 

In EDL muscle, there was 100 % increase in MAFbx/Atrogin-1 and MuRF1 mRNA 1 day following Orx 

when compared with the Sham group. This increase was not detectable when measured at 7 or 30 

days following Orx (Fig. 7a, b). T and E2 administration did not influence the MAFbx/Atrogin-1 and 

MuRF1 mRNA levels (Fig. 7a, b). Myostatin mRNA levels were upregulated by 50 % 7 days following 

Orx, an effect suppressed by T administration (Fig. 7c).  

MuRF1 or myostatin protein levels were not altered in the EDL muscle in any of the intervention 

group studied (data not shown). Representative blots are shown in Figure 8. 

 

 

 

 

 

 

Figure 8. Protein blots of MuRF1 and myostatin measured in EDL muscle 
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Figure 7. Effect of ultrashort (1 day), short- (7 days) and long-term (30 days) orchidectomy (Orx+v), 

orchidectomy and testosterone treatment (Orx+T), and orchidectomy and estradiol treatment (Orx+E2) on 

MAFbx/Atrogin-1 mRNA expression (a), MuRF1 mRNA expression (b), and myostatin mRNA expression (c) in 

extensor digitorum longus (EDL) muscle. Data are shown as fold change from the control group for each gene. 

Differences between groups were assessed by one-way analysis of variance (ANOVA). *(P < 0.05), †(P < 0.01): 

significantly different from Shams. 
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DISCUSSION  

 

Skeletal muscle atrophy occurs following androgen deprivation. While androgen and estrogen 

therapy can improve muscle mass, these therapies come with considerable side effects. 

Understanding the muscle atrophy-stimulating factors regulated by both androgen deprivation and 

androgen and estrogen therapy is important for the identification of potential muscle-specific 

therapeutic targets to improve the clinical outcomes of muscle wasting diseases. The present study 

used an orchidectomy (Orx)-induced skeletal muscle atrophy mouse model, with and without T and 

E2 treatment, to establish the expression levels of key targets that stimulate skeletal muscle atrophy. 

 

Orx resulted in an expected reduction in body weight as well as a rapid and continual decrease in 

LA/BC muscle weight, demonstrating the successful manipulation of our experiment model. 

However, the reduction in muscle mass of the locomotor SOL and EDL muscles was less severe. The 

strong and rapid androgenic response in muscle mass in the LA/BC may have been influenced by the 

higher mRNA levels of AR found in this muscle when compared to the SOL and EDL muscle. AR knock-

out mice (ARKO) (MacLean et al. 2008) and myocyte-specific ARKO mice (Ophoff et al. 2009) 

demonstrated severe atrophy of the LA muscle compared to only a slight atrophy in the locomotor 

muscles such as the tibialis anterior, gastrocnemius, EDL and SOL muscle. 

 

T administration is known to attenuate Orx-stimulated body weight loss and muscle atrophy in the 

LA/BC, SOL and EDL muscles (Axell et al. 2006, Mendler et al. 2007); a response observed in the 

present study. Interestingly, we observed that E2 treatment in our Orx mice partially suppressed 

muscle loss in the LA/BC, but not in SOL and EDL muscles. Our observation that ESR2 mRNA levels are 

highly expressed in the LA/BC muscle, with very low expression levels in the SOL and EDL muscle, 

suggests that ERβ may be involved in the estrogen-mediated anabolic effects on LA/BC muscle mass. 

However, it is clear that more studies are needed before conclusive statements may be drawn. 

 

In light of these changes in muscle mass, functional analysis of the SOL and EDL muscles 

demonstrated that Orx reduced absolute, but not relative, twitch force in the SOL muscle, supporting 

previous observations (Axell et al. 2006). This suggests that the reduction in muscle force in the SOL 

muscle following Orx is predominantly due to muscle wasting. Surprisingly, even though the EDL 

muscle had the same amount of muscle wasting as the SOL, Orx did not influence absolute or relative 

force production. The reason for this is unclear and may be caused by larger methodological 

variability of the in vitro contractility measures as compared to the determination of muscle mass. 

Orx resulted in a rapid and persistent upregulation of MAFbx/Atrogin-1 and MuRF1 mRNA in the 

LA/BC during the 30-day period; an observation supporting others (Pires-Oliveira et al. 2010, 
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Svensson et al. 2010). However, we observed for the first time that this response was less 

pronounced and transient in the locomotor SOL and EDL muscles following Orx. Myostatin mRNA 

levels were decreased in the LA/BC muscle, whereas it was upregulated in the EDL following Orx. In 

contrast to the present study, a reduction in myostatin mRNA in the triceps brachii muscle of 

orchidectomized mice (Ibebunjo et al. 2011) and an increase in myostatin mRNA in the LA of 

orchidectomized rats (Mendler et al. 2007) have been observed. Why such discrepancy in androgenic 

modulation of myostatin mRNA levels among muscle types exist is not clear. The regulation of 

MAFbx/Atrogin-1 and MuRF1 mRNA levels by androgens in different locomotor muscles remains 

equivocal. Ibebunjo et al. (2011) and White et al. (2013) found an upregulation of MAFbx/Atrogin-1 

and MuRF1 mRNA in triceps brachii and gastrocnemius of mice after 7- and 30-day Orx, an effect 

which was fully reversed by T (Ibebunjo et al. 2011) or nandrolone decanoate (White et al. 2013). In 

contrast, other studies did not observe altered MAFbx/Atrogin-1 and MuRF1 mRNA levels in the EDL 

muscle (Pires-Oliveira et al. 2010), while others observed a reduction in MAFbx/Atrogin-1 mRNA 

(Haren et al. 2011) in the gastrocnemius of orchidectomized rats. These differences are most likely 

due to the androgen-sensitivity levels of the different locomotor muscles as well as the different 

study designs. It is noteworthy that the mice in our study were still growing during the experimental 

period. Therefore, Orx-stimulated muscle atrophy coincided with a reduction in growth, which could 

have influenced the expression levels of the molecular targets measured. 

 

Discordance between mRNA and protein levels of MuRF1 has already been described in other 

skeletal muscle atrophy models (Drummond et al. 2008) and highlights the need to measure both 

mRNA and protein levels when investigating MuRF1 in muscle atrophy conditions. Unlike the mRNA 

levels, we observed no change in MuRF1 or myostatin protein in the EDL muscle. In contrast, an 

increase in myostatin protein has been observed in the LA/BC muscle (Mendler et al. 2007). It is 

noteworthy that previous studies have not examined MuRF1 protein levels during androgen 

deprivation. However, we were unable to validate a specific antibody for MAFbx/Atrogin-1 protein. It 

must be noted that the lack of activity assays MAFbx/Atrogin-1 and MuRF1 remains a limitation in 

this field of research.  

 

Androgen and estrogen therapy is able to attenuate the loss in muscle (Bhasin et al. 1997, Messier et 

al. 2011). In the present study, T administration blunted Orx-induced changes in MAFbx/Atrogin-1 

and MuRF1 mRNA in LA/BC muscle only, with no effect on MAFbx/Atrogin-1 mRNA or MuRF1 mRNA 

in the SOL and mRNA and protein in EDL muscles. Therefore, we could not provide evidence that 

MAFbx/Atrogin-1 and MuRF1 are regulated by T during Orx-induced atrophy in locomotor SOL and 

EDL muscles. In the LA/BC muscle, E2 administration also attenuated the increase in MAFbx/Atrogin-1 
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supporting observations by Svensson et al. (2010). However, we also observed that E2 attenuated the 

increase in MuRF1 mRNA. Our findings indicate that the androgenic and estrogenic regulation of 

LA/BC muscle mass is likely influenced by transcriptional modulation of both MAFbx/Atrogin-1 and 

MuRF1. 

 

CONCLUSIONS 

 

Based on the different regulatory profile of MAFbx/Atrogin-1, MuRF1 and myostatin mRNA levels 

between the SOL and EDL locomotor muscles and the LA/BC muscle, we suggest that the murine 

LA/BC muscle is not an appropriate muscle to study skeletal muscle atrophy as it is not 

representative for the androgen sensitivity of other more functionally and clinically relevant skeletal 

muscle types. Furthermore, the lack of changes in MuRF1 and myostatin protein levels in EDL 

questions the involvement of these proteins in the regulation of the locomotor muscle mass by 

androgens. Finally, our data indicate that further experiments examining the effects of E2 on skeletal 

muscle mass are of potential significance. 
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ABSTRACT  

Introduction: The contribution of reduced testosterone levels on tail suspension (TS)-induced muscle 

atrophy remains equivocal. The molecular mechanism by which testosterone regulates muscle mass 

during TS has not been investigated. 

Methods: Effects of TS on serum testosterone levels (by LC-MS/MS), muscle mass and expression of 

muscle atrophy and hypertrophy inducing targets were measured in soleus (SOL) and extensor 

digitorum longus (EDL) muscles following testosterone administration during 1, 5 and 14 days of TS 

in male mice. 

Results: TS resulted in an increase, followed by a transient drop, in testosterone levels and a 

decrease in muscle mass. Testosterone supplementation did not affect muscle mass or IGF1, p-AKT, 

p-p70S6K, REDD1, Atrogin-1 and MuRF1 protein expression during TS. Apparent differences in Igf1, 

Mstn and MAFbx/Atrogin-1 gene expression between SOL and EDL following TS were found. 

Discussion: The known anabolic effects of testosterone are not sufficient to ameliorate muscle mass 

in TS-induced muscle atrophy. 

 

 

Keywords: Tail suspension, Testosterone, Disuse atrophy, Atrogin-1, AKT 
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INTRODUCTION 

Tail suspension (TS) in rodents is a commonly used muscle atrophy model causing a rapid and 

extensive loss of skeletal muscle mass and function.1,2 Previous studies have shown that TS is 

associated with,³,4 although not invariably,5,6 reductions in serum testosterone levels. In male 

rodents the inguinal canal remains open throughout life so the testes can periodically move into the 

abdomen when subjected to TS. Because of the increased testicular temperature in this new 

environment testosterone production can be affected.7 However reduced caloric consumption and 

stress can also interfere with testosterone production.8 

Testosterone deficiency (i.e. hypogonadism, castration) is associated with significant skeletal muscle 

loss and weakness,9 suggesting that hormonal changes associated with TS can contribute to skeletal 

muscle atrophy. In support of this hypothesis, supplementation of nandrolone decanoate, a 

synthetic analog of testosterone, can attenuate, but not inhibit, TS-induced skeletal muscle atrophy 

in rats.10-12   

Skeletal muscle mass is determined by the balance between protein synthesis and breakdown.13 

AKT, a serine/threonine kinase, plays a pivotal role in the regulation of skeletal muscle mass. In the 

canonical insulin-like growth factor 1 (IGF1)/AKT/mammalian target of rapamycin (mTOR) pathway, 

AKT activates mTOR, which subsequently phosphorylates p70-ribosomal S6 kinase (p70S6K) and 

factor 4E-binding protein 1 (4E-BP1), resulting in protein synthesis.14 Testosterone administration 

increases Igf1 mRNA in rat muscle,15 but the androgenic effect on AKT signaling remains 

equivocal.16,17 In addition to protein synthesis regulation, AKT can inhibit protein degradation. AKT 

phosphorylates the forkhead family (FoxO) of transcription factors,18 whereby they are sequestered 

to the cytoplasm and unable to transcribe the two muscle-specific ubiquitin protein ligases, muscle 

atrophy F-box (MAFbx/Atrogin-1) and muscle RING (really interesting new gene) finger-1 (MuRF1).19 

Both genes are rapidly upregulated in rodent muscle during different atrophy models including 

disuse-induced20,21 and castration-induced muscle atrophy,17,22 although not all reports have 

confirmed the latter.16,23 Myostatin (MSTN), a member of the transforming growth factor-β (TGF-β) 

family, attenuates muscle growth by inhibiting AKT signaling.24 However, the regulation of MSTN 

during disuse25-28 or androgen treatment29,30 has been controversial. Regulated in Development and 

DNA Damage responses 1 (REDD1), is another negative regulator of muscle mass as it represses 

mTOR activity.31 Redd1 gene expression is increased in hindlimb muscles during casting,32 and is 

inhibited by testosterone in dexamethasone treated rats.33  

Determination of gonadal steroids in mice can be cumbersome as a circulating sex hormone binding 

globulin is absent in adult rodents, resulting in a high individual variation in serum testosterone 
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levels.34 Moreover, only a limited amount of blood sample can be derived from those small animals. 

Radioimmunoassays are commonly used for the determination of serum testosterone levels,3,5-7 

although this technique has low sensitivity and specificity.35 So far, no studies measuring 

testosterone levels in rodents following tail suspension-induced muscle atrophy have used the highly 

sensitive liquid chromatography tandem mass spectrometry method (LC-MS/MS).36 Accurate 

measurement of testosterone levels by LC-MS/MS may therefore help in clarifying the potential 

change in testosterone levels associated with TS.  

To date, the muscle-specific molecular factors targeted by androgen therapy that attenuate skeletal 

muscle mass loss during TS have not been studied. Understanding the molecular factors involved, 

may identify therapeutic targets to improve clinical outcomes for patients suffering disuse muscle 

atrophy.37 Therefore, we aimed to investigate the effects of 1, 5 and 14 days of TS, without and with 

testosterone supplementation, on serum testosterone levels, skeletal muscle mass and gene and 

protein expression levels of the molecular factors that regulate muscle mass including 

IGF/AKT/p70S6K, MSTN, REDD1, MAFbx/Atrogin-1 and MuRF1. As different muscle types respond 

differently to TS induced atrophy38 and testosterone supplementation,39 both slow-twitch soleus 

(SOL) and fast-twitch extensor digitorum longus (EDL) muscles were analysed.  
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MATERIALS AND METHODS  

Animals  

Ninety 8-week old male C57BL/6JOla inbred mice (Harlan laboratories) were included in this study. 

The mice were housed two animals per cage and were allowed to acclimatize to their new 

surrounding for 2 weeks before surgery. All mice were given free access to water (hydrogel) and 

standard chow on the ground, and were maintained under a 12/12h light/dark cycle. The welfare of 

the animals, body weight and damage to the TS-material was monitored daily. The experimental 

protocol was approved by the Ethical Committee for Animal Research of Ghent University, and the 

housing conditions were as specified by the Belgian Law of November 14, 1993, on the protection of 

laboratory animals. 

 

Tail suspension 

Animals were randomly assigned into 3 intervention groups: Sham-operated control group (SHAM, 

n=30), tail suspended (TS) with control vehicle (V) group (TS+V, n=30), and tail suspended with 

testosterone (T) treatment group (TS+T, n=30). Testosterone (Sigma-Aldrich) was administered using 

1 cm subcutaneous silastic tubes (Silclear tubing 1.57 × 2.41 mm, Degania, Israel) implanted in the 

cervical region under isoflurane inhalation. A daily hormone release of 23 µg/day was obtained, as 

calculated by Vanderschueren et al.40 The efficacy of androgen treatment was verified by 

measurement of the seminal vesicles mass and serum testosterone levels (see below). Empty silastic 

tubes were implanted in the ‘TS+V’ group. To allow recovery of the surgery, silastic tubes were 

implanted 2 days before the start of the TS protocol. 

TS was performed by lifting the tail up so that the hindlimbs were unloaded.1 The mice were 

maintained in approximately 30° head-down tilt, so that the forelimbs remained loaded. The tail was 

suspended with adhesive tape on a metallic wire which was connected to a 360° free rotating hook. 

The hook was hung on a rail system above the cage, which allowed free movement along the rail.  

Hindlimb unloading was imposed for 1, 5 and 14 days. At the end of each intervention period, mice 

(n=10 per intervention group) were anesthetized with an intra-abdominal injection containing a 

mixture of 80% Ketamine (50 mg/ml, 100 mg/kg) and 20% Xylazine (20 mg/ml, 10 mg/kg). Special 

care was taken so that no weight bearing occurred before extraction of muscles. Mice were 

subsequently weighed and blood was collected by cardiac puncture. These samples were 

centrifuged at 2000 rpm for 10 min, and serum was collected and stored at -80 C prior to analysis of 

testosterone levels. Mice were then euthanatized by cervical dislocation. The EDL and SOL muscles 

of both legs and the seminal vesicles were carefully dissected, weighed, and immediately frozen in 
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liquid nitrogen for storage at -80°C. Muscles from the right leg were used for qPCR analysis and the 

contralateral muscles were used for immunoblotting. 

 

LC-MS/MS for serum testosterone  

Serum testosterone levels were determined using liquid chromatography tandem mass 

spectrometry (LC-MS/MS). One hundred µl of serum samples with added testosterone-d3 (internal 

standard) were extracted with diethylether. Ten µl was injected onto a High-Performance liquid 

chromatography system for 2D-LC operation (Shimadzu Scientific Instruments, Columbia, MD, USA) 

coupled to an AB Sciex Triple Quad mass spectrometer (AB SCIEX 5500 triple-quadrupole mass 

spectrometer, Toronto, Canada). The serum limit of quantification (LOQ) for testosterone was 1.2 

ng/dL (0.04nmol/L), and was considered as the lowest measurable point where compounds could be 

detected with an intra-assay coefficient of variation (CV) of <=20% determined on a minimum of 5-6 

measurements of a sample. The intra-assay CVs were 2.7% at 9 ng/dL (0.3 nmol/L), 1.7% at 318 

ng/dL (11 nmol/L) and 1% at 634 ng/dL (22 nmol/L), and the inter-assay CVs were 8.3% at 36.7 ng/dL 

(1.3 nmol/L) and 3.1% at 307.8 ng/dL (10.7 nmol/L) respectively.41 The bias, defined as the 

percentual difference between the measured concentration and the theoretical concentration, was 

8.6% for 2 ng/mL, 4% for 20 ng/ml, -0.5% for 100 ng/mL and -1.3% for 2000 ng/ml. 

 

RNA-isolation and qPCR 

Total RNA was isolated using the TriPure Isolation Reagent (Roche Diagnostics, Vilvoorde, Belgium), 

followed by purification with the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). An on-column DNase 

treatment was performed using the RNase-Free DNase Set (Qiagen). RNA was quantified by a 

Nanodrop 2000C spectrophotometer (Thermo Scientific), and RNA purity was assessed by calculating 

the A260/A280 ratio. Using a blend of oligo(dT) and random primers, 500 ng RNA was reverse 

transcribed with the iScript cDNA Synthesis kit (Biorad, Nazareth, Belgium), according to the 

manufacturer’s instructions. qPCR was carried out on a Lightcycler 480 system (Roche) using an 8 μl 

reaction mix containing 3 μl template cDNA (1/10 dilution), 300 nM forward and reverse primers and 

4 μl SYBR Green PCR Master Mix (Applied Biosystems, Halle, Belgium). The cycling conditions 

comprised a polymerase activation at 95°C for 10 min, followed by 45 cycles at 95°C for 15 s, 60°C 

for 60s. Primer sequences for MAFbx/Atrogin-1, Murf1, Mstn, Igf1 and Redd1 are shown in table 1. 

Sequence specificity was confirmed using NCBI Blast analysis 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). To control the specificity of amplification, data melting 

curves were inspected and PCR efficiency was calculated (between 90 and 110% for all genes). 

Normalised gene expression values were calculated by dividing the relative gene expression values 
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(calculated by the delta-Ct method) for each sample by the geometric mean of peptidylprolyl 

isomerase A (Ppia), ribosomal protein large P0 (Rplp0) and beta-2 microglobulin (B2m) as selected by 

GeNorm.42 

 

Protein isolation and Western blots 

Protein isolation 

Protein extraction was performed according to previously described procedures.44 Total protein was 

extracted from approximately 9 mg of SOL using 1x RIPA buffer (15 μl/mg sample) (Millipore, North 

Ryde, NSW, Australia) with the addition of protease inhibitor cocktail (Sigma, Castle Hill, NSW, 

Australia) and Halt Phosphatase Inhibitor Single-Use Cocktail (Thermo Scientific, Rockford, IL, USA). 

Following homogenisation, the lysate was rotated at 4°C for 60 min before being centrifuged at 

13,000 rpm at 4°C for 15 min. Total protein content of the supernatant was determined using the 

BCA protein assay kit (Pierce Biotechnology, Rockford, IL, USA) according to the manufacturer's 

instructions.  

 

Western blots 

Protein samples (30 μg) were denaturated in loading buffer and were separated on a 12% SDS-PAGE 

gel in a buffer containing 25 mM Trisbase, 192 mM glycine and 0.1% SDS, pH 8.8. Following 

separation, proteins were transferred to a PVDF membrane (Millipore, Billerica, MA, USA) in a cold 

(4°C) transfer buffer (25 mM Tris, 192 mM glycine, 10% methanol, pH 8.3) for 2h then blocked for 1 

hour at room temperature in 5% BSA or 5% skim milk in PBS. Membranes were subsequently 

incubated with the following primary antibodies diluted 1:1000 in 5% BSA/PBS for MSTN (Millipore, 

#AB3239), total p70S6K (Cell Signaling Technology, Inc., Beverly, MA, USA, #9202), total AKT (Cell 

Signaling, #9272), phospho-p70S6K (Cell Signaling, #9234), phospho-AKT (Cell Signaling, #9271), and 

1:1000 in 5% skim milk/PBS for MuRF1 (ECM Biosciences, Versailles, KY, USA, #MP3401) overnight 

with gentle shaking at 4°C. After 4 x 5 minutes washing with PBS, the membranes were incubated for 

1 h with a goat anti-rabbit IgG antibody labelled with an infrared-fluorescent 800-nm dye (Alexa 

Fluor 800; Invitrogen, Carlsbad, CA, USA) diluted 1:5,000 in PBS containing 50% Odyssey blocking 

buffer (LI-COR Biosciences) and 0.01% SDS. After washing, the specific proteins were visualized using 

the Odyssey Imaging System (LI-COR Biosciences) and individual protein band optical densities were 

quantified with the Odyssey software. An internal control sample was loaded on each gel to account 

for run-to-run variation between the samples. To control for protein loading, blots were normalized 

against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein (G8795; Sigma-Aldrich, 

Sydney, Australia).  
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Statistical analysis 

The statistical analyses were performed using SPSS statistical software (SPSS 19.0, Chicago, IL). A 

two-way between-groups analysis of variance (ANOVA) test was conducted to test the interaction of 

time and intervention. In case of a significant interaction effect, a subsequent one-way ANOVA was 

performed to test for differences between group means of SHAM, TS+V and TS+T for each of the 

time points measured. Differences between 1, 5 and 14 days were assessed by an one-way ANOVA 

on the difference scores of the TS+V and TS+T groups (i.e. the amount of change compared to 

SHAM). Differences in muscle mass and gene expression levels between SOL and EDL for the TS+V 

and TS+T groups (difference scores) were evaluated via one-way ANOVA for each time-point. A post-

hoc LSD test was used when a significant group effect was observed. Normalized gene expression 

data and serum testosterone values were log-transformed to fulfil criteria for normality. Values are 

presented as means ± SD. P≤0.05 was considered signifcant.  

 

Table 1 Primers used in qPCR analysis 

 

Gene symbol* Source 
Forward primer 5'-->3' 

Reverse primer 5'-->3' 

Ppia RTprimerDB CAA-ATG-CTG-GAC-CAA-ACA-CAA-ACG 

GTT-CAT-GCC-TTC-TTT-CAC-CTT-CCC 

Rplp0 
RTprimerDB 

 

GGA-CCC-GAG-AAG-ACC-TCC-TT 

GCA-CAT-CAC-TCA-GAA-TTT-CAA-TGG 

B2m RTprimerDB 
CAT-GGC-TCG-CTC-GGT-GAC-C 

AAT-GTG-AGG-CGG-GTG-GAA-CTG 

MAFbx/Atrogin-1 Pires-Oliveira et al.
23

 
GCA-GAG-AGT-CGG-CAA-GTC 

CAG-GTC-GGT-GAT-CGT-GAG 

Mstn Primer express 
TGC-TAT-AAG-ACA-ACT-TCT-GCC-AAG-A 

AAG-AGC-CAT-CAC-TGC-TGT-CAT-C 

Trim63/Murf1 Tang et al.
64

 
TGG-AAA-CGC-TAT-GGA-GAA-CC 

ATT-CGC-AGC-CTG-GAA-GAT-G 

Igf1 Primer express 
TCA-ACA-AGC-CCA-CAG-GCT-ATG 

ACA-GCT-CCG-GAA-GCA-ACA-CT 

Ddit4/Redd1 Primer express 
GGT-GCC-CAC-CTT-TCA-GTT-GA 

CAG-AAC-TTA-ACA-GCC-CCT-GGA-T 

 

* Ppia: peptidylprolyl isomerase A; Rplp0: ribosomal protein large P0; B2m: beta-2 microglobulin; 

MAFbx/Atrogin-1: Muscle Atrophy F-box; Mstn: myostatin; Trim63: tripartite motif-containing 63/Murf1: 

Muscle RING Finger 1; Igf1: insulin-like growth factor 1, Ddit4: DNA-damage-inducible transcript 4/Redd1: 

regulated in development and DNA damage responses 1. 
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RESULTS  

Effect of TS on serum testosterone levels 

Compared to the SHAM group, serum testosterone levels in the TS+V mice increased 2-fold at day 1, 

then dropped to very low values (8.8ng/dl or 0.3nmol/L) at day 5 of TS (Fig. 1A). The reduction in 

testosterone levels at day 5 of TS was accompanied with a reduction in the mass of testes and 

seminal vesicles by 16% and 22% respectively, when compared to SHAM (Fig. 1B,C). After 14 days of 

TS, circulating testosterone in the TS+V group subsequently raised towards SHAM levels (Fig. 1A). 

This occurred despite a lower testes and seminal vesicles mass measured at that time (Fig. 1B,C). In 

the TS+T group a 40-fold increase in serum testosterone levels and a 33% increase in seminal 

vesicles mass was observed as early as 1 day and was maintained after 5 and 14 days of TS when 

compared to SHAM (Fig. 1A,C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effect of 1, 5 and 14 day of TS (TS+V), and testosterone treatment (TS+T) on serum testosterone 

levels (A), testes (B) and seminal vesicle (C) mass. Each bar represents the mean ± standard deviation (SD). 

Differences between intervention groups for each time point were assessed by one-way analysis of variance 

(ANOVA). * (P<0.05), † (P<0.01), ‡ (P<0.001): significantly different from SHAM. Differences between 1, 5 and 

14 days of tail suspension for each intervention group were assessed by one-way analysis of variance (ANOVA). 

(#) (P<0.05): significantly different from previous time point. 



 
Study 3: Tail suspension, testosterone and muscle mass  |100 

     
  

Effect of TS and testosterone treatment on body weight and muscle mass 

Body weight as well as SOL and EDL muscle mass were not significantly affected by testosterone 

treatment during the entire TS period (Fig. 2). Following 5 and 14 days of TS, body weight decreased 

by 24% and 19% in the TS+V and by 21% and 12% in the TS+T group, compared to the SHAM group. 

No significant differences were observed between the TS+V and TS+T treated mice (Fig. 2A). When 

compared to SHAM, SOL muscle mass decreased by 20% and 32% in the TS+V group after 5 and 14 

days of TS respectively (Fig. 2B). EDL muscle mass decreased by 21% and 22% in the TS+V group after 

5 and 14 days unloading respectively (Fig. 2C). The loss in both SOL and EDL muscle mass in the TS+V 

and TS+T groups became more pronounced from day 1 to day 5 of TS, but only the mass of the SOL 

muscle further atrophied between 5 and 14 days of TS. A significant difference between SOL and EDL 

muscle loss was found for the TS+T group, but not the TS+V group, at 14 days of TS (P=0.006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of 1, 5 and 14 day of TS (TS+V), and testosterone treatment (TS+T) on body weight (A), SOL 

mass (B) and EDL mass (C). Data are shown as percent change from the control group. Each bar represents the 

mean ± standard deviation (SD). Differences between intervention groups for each time point were assessed 

by one-way analysis of variance (ANOVA). * (P<0.05), † (P<0.01), ‡ (P<0.001): significantly different from 

SHAM. Differences between 1, 5 and 14 days of tail suspension for each intervention group were assessed by 

one-way analysis of variance (ANOVA). (#) (P<0.05): significantly different from previous time point. 
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IGF1, AKT and p70S6K gene and protein expression during TS and testosterone treatment 

After 5 days of TS, Igf1 mRNA levels in SOL muscle (Fig. 3A) were reduced by 50% in the TS+V group 

when compared to SHAM, and raised back to SHAM levels following 14 days of TS. In the EDL muscle 

(Fig. 3B), Igf1 mRNA in the TS+V group was downregulated by 38% and 62% when measured at day 1 

and day 5 respectively, but not at day 14 of TS when compared to SHAM. A significant difference 

(P<0.001) in Igf1 mRNA expression was found between SOL and EDL in the TS+V group, as Igf1 mRNA 

was already reduced at day 1 of TS in EDL but not in SOL. Although testosterone supplementation 

tended to prevent the reduction in Igf1 mRNA in EDL at day 5 of unloading (p=0.09), none of the 

differences in Igf1 mRNA levels between TS+V and TS+T groups were statistically significant in SOL or 

EDL at any of the time points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of 1, 5 and 14 day of TS (TS+V), and testosterone treatment (TS+T) on Igf1 mRNA expression in 

SOL muscle (A) and EDL muscle (B), and on phospho-AKT (C) and total p70
S6K

 (D) protein expression in SOL 

muscle . Data are shown as fold change from the control group for each muscle. Differences between 

intervention groups for each were assessed by one-way analysis of variance (ANOVA). * (P<0.05), † (P<0.01), ‡ 

(P<0.001): significantly different from SHAM. Differences between 1, 5 and 14 days of tail suspension for each 

intervention group were assessed by one-way analysis of variance (ANOVA). (#) (P<0.05): significantly different 

from previous time point. 
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In SOL, total AKT did not vary between groups over the 14 days of the study. However, when 

compared to SHAM, the phosphorylated levels of AKT were reduced by 36% and 50% in the SOL of 

TS+V and TS+T mice respectively, at the end of the TS period (Fig. 3C). Total p70S6K was slightly but 

significantly downregulated by 25% in the SOL muscle of TS+V mice on day 5 of TS when compared 

to SHAM (Fig. 3D). No significant changes in the phosphorylated levels of p70S6K among groups were 

found during the entire TS period.  

 

MSTN and REDD1 gene and protein expression during TS and testosterone treatment 

In SOL, Mstn mRNA levels were upregulated by 240% after 1 day of TS in the TS+V and TS+T mice 

when compared to SHAM (Fig. 4A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of 1, 5 and 14 day of TS (TS+V), and testosterone treatment (TS+T) on Mstn mRNA expression 

in SOL muscle (A) and EDL muscle (B) and on REDD1 mRNA expression in SOL muscle (C) and EDL muscle (D). 

Data are shown as fold change from the control group for each muscle. Differences between intervention 

groups for each time point were assessed by one-way analysis of variance (ANOVA). * (P<0.05), † (P<0.01), ‡ 

(P<0.001): significantly different from SHAM. Differences between 1, 5 and 14 days of tail suspension for each 

intervention group were assessed by one-way analysis of variance (ANOVA). (#) (P<0.05): significantly different 

from previous time point. 
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In EDL, Mstn mRNA levels were increased in the TS+V group by 100% and 70% after 1 and 5 days 

respectively, but were decreased by 38% after 14 days of TS when compared to SHAM (Fig. 4B). In 

EDL, but not in SOL, testosterone supplementation during TS (TS+T) suppressed the increase in Mstn 

mRNA by 50% after 1 day of TS. These differences in Mstn mRNA expression response to TS between 

SOL and EDL were significant at day 5 for both TS+V (P=0.003) and TS+T groups (P=0.025). MSTN 

protein level in SOL was unchanged between all groups during the entire TS period. 

In SOL, Redd1 mRNA levels were increased by 300% and 540% in the TS+V group after 1 and 5 days 

of TS respectively, when compared to SHAM (Fig. 4C), and returned back to baseline levels after 14 

days of TS. A similar expression pattern was observed in EDL muscle (Fig. 4D). No effect of 

testosterone treatment on Redd1 mRNA levels was observed in either muscle during the entire TS 

period (Fig. 4C,D).  

 

MAFbx/Atrogin-1 and MuRF1 gene and protein expression during TS and testosterone treatment 

In the TS+V group, MAFbx/Atrogin-1 mRNA levels in SOL and EDL muscles were increased by 180% 

and 90% respectively after 1 day of TS, and by 200% and 480% respectively after 5 days of TS when 

compared to SHAM (Fig. 5A,B). The increase in MAFbx/Atrogin-1 mRNA expression in response to TS 

in EDL was significantly different from SOL at day 1 for the TS+V group (P<0.001) and the TS+T group 

(P=0.033) but not at day 5 or day 14 of TS. MuRF1 mRNA expression in SOL and EDL muscles were 

also increased following 1 and 5 days of tail-suspension in both TS+V and TS+T groups, but no muscle 

type specific response was found (Fig. 5C,D). No significant differences in MAFbx/Atrogin-1 and 

Murf1 gene expression were found between the TS+V and TS+T treated mice. The changes in Murf1 

mRNA levels in SOL were not paralleled by changes in MuRF1 protein levels at any time point 

measured during TS.  
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Figure 5. Effect of 1, 5 and 14 day of TS (TS+V), and testosterone treatment (TS+T) on MAFbx/Atrogin-1 mRNA 

expression in SOL muscle (A) and EDL muscle (B), and on Murf1 mRNA expression in SOL muscle (C) and EDL 

muscle (D)  . Data are shown as fold change from the control group for each muscle. Differences between 

intervention groups for each time point were assessed by one-way analysis of variance (ANOVA). * (P<0.05), † 

(P<0.01), ‡ (P<0.001): significantly different from Shams. Differences between 1, 5 and 14 days of tail 

suspension for each intervention group were assessed by one-way analysis of variance (ANOVA). (#) (P<0.05): 

significantly different from previous time point. 
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DISCUSSION 

The present study investigated testosterone supplementation in a tail suspension (TS)-induced 

skeletal muscle atrophy mouse model, with specific interest in key molecular targets that regulate 

muscle mass. By analysing both slow-twitch (SOL) and fast-twitch (EDL) muscles at different time-

points following TS, our data demonstrated time- and muscle type dependent changes in gene 

expression levels of atrophy and hypertrophy inducing targets. The salient observation of our study 

is that TS in mice is associated with a transient increase, followed by a transient drop in serum 

testosterone levels. However, testosterone administration during TS did not restore muscle mass 

and only induced minimal changes in the mRNA and protein levels of the atrophy and hypertrophy 

molecular targets measured.  

An important finding of this study is the transient changes in circulating testosterone levels 

measured following TS. Using a highly sensitive LC-MS/MS method we observed that circulating 

testosterone levels increased after 1 day of TS, rapidly and markedly decreased at day 5 of the TS 

period, but returned to baseline levels at the end of the 14 day intervention period. Acute stress is 

associated with a rapid but transient increase in circulating testosterone,45,46 which may explain the 

increased testosterone levels observed after 1 day of TS in this study. On the other hand, chronic 

interference of stress-related hormones (e.g. corticosteroids) with the hypothalamic-pituitary-

gonadal axis decreases sex steroid levels.8,47 This may clarify the observed decrease in testosterone 

concentrations at day 5 of TS in our study. Next to stress, testicular retraction into the abdomen can 

be pointed out as the origin for the decline in testosterone production during TS in rodents.7 

However, this does not support the recovery of the testosterone levels at the end of the 14 day TS 

period which rather reflect a reduction in stress due to adaptation to the unloading protocol. 

A rapid and extensive loss in muscle mass, with preferential atrophy of the slow-twitch muscles 

when compared to fast-twitch muscles, has been widely described in several disuse models including 

hindlimb suspension,48 bed rest49 and casting.38 The greatest loss of muscle mass of both SOL and 

EDL muscle was observed between 1 and 5 days of TS in our study. This is also the time point at 

which the lowest testosterone levels in the non-treated TS group was observed. Although only SOL 

muscle further atrophied between 5 and 14 days of TS, we could not show statistically difference in 

percentage decreases in muscle loss between SOL and EDL. 

Despite the major role testosterone plays in the regulation of skeletal muscle mass,9 restoration of 

testosterone concentrations above physiological concentrations did not attenuate the TS-induced 

loss of muscle mass in the testosterone-treated group. Previous studies in androgen deficient 

models reported muscle atrophy only after a long-term castration period of 4 or 5 weeks.17,50 
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Therefore, the transient lower circulating testosterone levels during TS are unlikely to contribute to 

TS-induced muscle atrophy as the duration might have been too short to observe catabolic effects 

on muscle mass. Another possible explanation for the lack of androgenic effect could be a change in 

androgen receptor sensitivity. Previous studies in rodents have demonstrated that increased muscle 

activity resulted in increased AR expression in skeletal muscle and an enhancement of the sensitivity 

of androgen receptors. 51,52 It can therefore be speculated that TS might have resulted in androgen 

resistance at the level of the disused muscles. 

An additional aim of the present study was to investigate the effects of testosterone on the gene 

and protein expression levels of some muscle hypertrophy and atrophy molecular targets following 

TS. TS resulted in a downregulation of Igf1 mRNA in the SOL and EDL, an effect previously 

reported.53,54 We additionally could show that this effect was more rapidly induced in the EDL 

muscle than in the SOL muscle, suggesting that IGF1 may contribute more to the initiation of the 

muscle loss in fast-twitch muscles compared to slow-twitch muscles during TS. Although we found a 

reduction in the downstream phophorylated levels of AKT after 14 days of TS, SOL muscle levels of 

phospho-p70S6K remained unaltered. Similar findings have been observed in SOL and tibialis anterior 

muscle of mice and rats after 10 and 14 days of tail suspension,54-56 however other studies could not 

show such changes57 or reported a decrease in phosphorylation levels of both AKT and p70S6K.58 

Nevertheless, although androgen treatment of normal and castrated mice is associated with an 

upregulation of targets of the IGF1/AKT/p70S6K pathway,17,22 we could not provide evidence for such 

anabolic effects in our TS model. The reduction in total p70S6K levels after 5 days of TS remains 

unexplained. Hence, more studies are needed to clarify the inconsistency in muscle AKT/p70S6K 

signaling during different periods of TS.  

Apparent differences in Mstn mRNA expression between SOL and EDL muscle were found following 

TS. The upregulation of Mstn mRNA levels observed after 1 and 5 days of TS in EDL, but only after 1 

day in SOL, suggest that muscle loss in fast-twitch muscles may depend more on Mstn than slow-

twitch muscles. Moreover, we could show that Mstn mRNA expression was partially inhibited by 

testosterone treatment, only in EDL muscle. However, increased Mstn mRNA levels in SOL during TS 

were not associated with elevated MSTN protein levels; an observation previously reported in the 

literature.30 Overall, the effect of muscle disuse on MSTN regulation remains unclear, and some 

studies have described increased levels,25,26 whereas others failed to detect any changes in Mstn 

mRNA or protein content.27,28  

Redd1, another negative regulator of muscle mass, seems to be rapidly and transiently induced by 

tail-suspension. Accordingly,  Kelleher et al.32 reported a 3.5-fold increase in Redd1 mRNA content in 
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the SOL of rats subjected to 1, 2 and 3 days of unlilateral hindlimb casting, but did not investigate 

the effect of longer periods of disuse. Although there is evidence that Redd1 is regulated by 

androgens,17 our data indicate that testosterone does not influence Redd1 gene expression during 

TS. 

Similarly, studies in both humans and rodents demonstrated that the mRNA levels of the ubiquitin 

ligases MAFbx/Atrogin-1 and Murf1 are rapidly and transiently upregulated as early as 1 day 

following immobilization,38,59,60 although muscle atrophy is only observed 2 days following 

immobilization.54,61 Our results demonstrated a higher increase in MAFbx/Atrogin-1 gene expression 

in SOL when compared to EDL after 1 day of TS, whereas no muscle type dependent differences in 

MuRF1 gene expression were detected. This is in contrast to a study by Okamoto et al.38 suggesting 

that MAFbx/Atrogin-1 and MuRF1 may contribute more to skeletal muscle atrophy in fast-twitch 

muscle fibers than in slow-twitch muscle fibers in cast immobilization-induced atrophy models. 

We could not find any significant differences in the mRNA expression of these genes in the SOL and 

EDL of our testosterone treated mice when compared to non-treated mice. This suggests that 

testosterone does not regulate MAFbx/Atrogin-1 and Murf1 gene expression during TS. Moreover, 

the rapid and transient increase of Murf1 mRNA levels observed in the SOL of TS+V and TS+T treated 

mice was not paralleled by changes in protein expression levels. The expression of MAFbx/Atrogin-1 

and MuRF1 protein has been investigated during hindlbimb unloading,62-64 and discrepancies 

between Murf1 mRNA and MuRF1 protein levels have previously been described in paraplegic rat 

muscle and human bed rest models.65,66  

In conclusion, our data indicate that decreased levels of circulating testosterone associated with TS 

do not contribute to TS-induced muscle atrophy in the slow-twitch SOL and the fast-twitch EDL 

muscle. Moreover, this study demonstrated apparent differences in Igf1, Mstn and MAFbx/Atrogin-1 

gene expression levels between SOL and EDL muscle following TS. These results suggest that the 

molecular regulation of disuse-induced muscle atrophy might be muscle type specific. Furthermore, 

testosterone treatment during TS does not restore alterations in the expression levels of catabolic 

and anabolic signaling molecules. Therefore, we suggest that the known anabolic effects of 

testosterone are not sufficient to maintain or ameliorate muscle mass in TS-induced muscle atrophy. 
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1. OUTLINE 

The prevention and therapy of skeletal muscle atrophy has been a topic of interest for many years 

and its applications are spreading from sport sciences to ageing and clinical medicine. Androgen 

treatment can be an effective therapeutic strategy, especially for patients incapable to exercise, but 

its application has been limited because of severe side effects. Enhancing our understanding of the 

androgenic regulation of skeletal muscle mass and the molecular factors modulated by androgens 

may help in the identification of novel muscle-specific therapeutic targets to combat the devastating 

effects of muscle wasting. In the first study of this thesis, we extensively investigated the 

determinants of muscle mass and function in healthy young men, as well as the influence of genetic 

variations in the AR. In addition, using two different muscle atrophy mice models, our results 

provided evidence for a complex mechanism by which T regulates muscle mass. 

In the sections below, the determinants of muscle mass and its regulation by androgens in three 

different conditions (eugonadal, orchidectomy and tail suspension), and three different muscle 

types, are discussed with regard to the findings in this thesis. Second, the role of Atrogin-1 and 

MuRF1 during atrophy is questioned and other signalling molecules affected by androgens in skeletal 

muscle are summarized. Finally, the regulation of skeletal muscle mass by estrogens is discussed 

(Figure 14). 

 

 

 

 

 

 

 

 

 

 

Figure 14. Overview of the topics discussed. 
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2. DETERMINANTS OF SKELETAL MUSCLE MASS IN HEALTHY YOUNG MEN AND THE INFLUENCE OF 

GENETIC FACTORS 

2.1 Determinants of skeletal muscle mass in healthy young men 

In study 1, we aimed at identifying environmental and genetic determinants of skeletal muscle mass 

and strength in young men. Our results confirmed that skeletal muscle mass and strength are highly 

heritable (Arden and Spector 1997). It is noteworthy that the heritability estimates are presented as 

upper-limit heritabilities or transmissibilities (t²) rather than genetic heritabilities (h²). In contrast to 

classical twin studies, genetic and environmental factors contributing to the total phenotypic 

variance between sibling pairs can not be distinguished (Huygens et al. 2004). The heritability 

estimates found in study 1 therefore not only represent the genetic heritability, but also include a 

common environmental factor by which the heritabilities might be overestimated. However, 

Huygens et al. (2004) argued that the transmissibility estimates for muscle mass phenotypes might 

be close to the true genetic heritability, since twin studies have shown that the common 

environmental component for muscle mass phenotype is small or negligible (Thomis et al. 1998).  

Our results are also in line with previous findings that skeletal muscle mass and strength are 

influenced by age (Baumgartner et al. 1999), anthropometrics, body composition (Gallagher and 

Heymsfield 1998), physical activity (Geirsdottir et al. 2012) and sex steroid levels. However, we 

expanded our analyses with an extensive characterization of body composition (weight, fat mass), 

anthropometrics (height, armspan, hand length, finger length) and several measurements of muscle 

mass (lean mass, muscle CSA at tibia and radius) and muscle force (biceps, quadriceps and grip) by 

which we provided a more detailed overview of the determinants of muscle mass and force in 

healthy young men.  

First, in our cohort of healthy men in a narrow age range (25-45y) (study 1), we found a small but 

positive association between age and lean mass and muscle CSA at the radius and tibia, whereas a 

small inverse relationship between age and quadriceps force was observed. Muscle mass generally 

peaks in the 20s or 30s and then declines (Baumgartner et al. 1999; Janssen et al. 2000). Our results 

suggest that this decline is preceded by a loss in muscle force of the lower body. Second, body 

weight was positively associated with all indices of muscle mass and force, whereas a negative 

relation between whole body fat mass and muscle CSA and force was found. Fat mass is known to 

have adverse effects on muscle function (Abdul-Ghani et al. 2008), and it is noteworthy that the 

negative association between fat mass and muscle CSA and force was only found in the upper body 

of our healthy men, probably because of the known male pattern of fat distribution around the 

trunk and upper body. Third, we demonstrated that taller men and subjects with longer armspan, 
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hand- and finger length have higher muscle mass and force. Finally, a relationship between serum T 

levels and muscle CSA was shown in our cohort of eugonadal men.  

It is somewhat surprising that age and TT/FT were associated with muscle CSA, but not with the 

muscular strength measures. A possible explanation for this inconsistency might be that biceps force 

and quadriceps force are not the best representive measurements for muscle CSA at forearm and 

lower leg, respectively. Additional analysis indeed showed a rather small relationship between 

muscle CSA at the tibia and quadriceps force (β : 0,12 ± 0.04; p=0.0013); however, strong 

relationships were found between muscle CSA at the radius and biceps force (β : 0.49 ± 0.03; 

p<0.0001) and between muscle CSA at the radius and grip strength (β : 0.40 ± 0.03; p<0.0001). 

Methodological issues such as subject familiarization, limb position and subject motivation can lower 

the accuracy of the muscle force test protocol and could be another reason for the observed 

discrepancy.  

 

2.2 The relationship between serum testosterone levels and muscle mass in eugonadal men is not 

influenced by genetic variations in the AR gene 

As mentioned in the introduction, an interindividual variation in serum T levels exist in healthy young 

men. This between-subject variability can be attributed, in part, to polymorphisms in the AR gene. 

We confirmed previous findings (Crabbe et al. 2007; Bogaert et al. 2009) that the CAG repeat length 

of the AR gene is positively associated with serum T levels in healthy young men. As these 

polymorphisms likely affect androgen sensitivity, it is expected that a diminished negative feedback 

control of the hypothalamic-pituitary-gonadal axis results in subsequently higher T levels (Crabbe et 

al. 2007). Because of its influence on AR activity, the CAG repeat length has been associated with a 

series of androgen-related clinical effects such as prostate cancer risk, spermatogenesis, bone 

density, hair growth and cardiovascular risk factors (Zitzmann and Nieschlag 2003b). Next to this 

polymorphism, we demonstrated an association between serum T levels and two SNPs of the AR 

gene (rs5965433 and rs5919392), which have previously been linked with AIS. However, we could 

not find any relationship between the CAG repeat length or the analysed SNPs in the AR and either 

body composition or measurements of muscularity in our cohort of healty men. Lower androgen 

sensitivity of the AR, due to longer CAG repeats, likely causes a modulated setpoint in the negative 

feedback regulation of the hypothalamic-pituitary-gonadal axis. This means that the lower AR 

sensitivity might be compensated by higher levels of T (Crabbe et al. 2007), without changing impact 

on its target tissues. Therefore, other factors responsible for the remaining variation in T levels 

within the physiological range might contribute to the association of T with muscle CSA, especially 

because the variation in T explained by the CAG repeat is rather limited. Thus, part of the 
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interindividual variation in T levels in healthy men can be attributed to differences in androgen 

sensitivity, but no straightforward correlation between this variation in T levels and different 

phenotypes can be observed.  

Interestingly, we found that anthropometric measurements i.e. arm span and the 2D:4D finger 

length ratio, were inversely associated with the number of CAG repeats in the AR gene. The 2D:4D 

finger length ratio has been proposed as a marker of prenatal androgen action and of sensitivity to T, 

with a lower 2D:4D being associated with high androgen exposure (McIntyre 2006). Given the 

hypothesis that elevated T levels in men with lower androgen sensitivity are not necessary 

associated with differences in androgen action, we speculate that the negative effects on arm span 

and finger length might be mediated by the higher levels of FE2 levels found in men with longer CAG 

repeat length (Huhtaniemi et al. 2009). As most E2 produced in normal men is formed by 

aromatization of androgens (MacDonald et al. 1979), the higher T substrate availability in men with 

lower androgen sensitivity can explain the higher serum E2 levels. E2 is considered to be the main sex 

steroid involved in the development and maintenance of bone mass (Lapauw et al. 2009). In 

addition, it is also important to initiate epiphyseal closure of long bones (Weise et al. 2001). 

Therefore, we hypothesize that the presence of higher levels of E2 in men with lower androgen 

sensitivity, but preserved estrogen action, result in earlier termination of longitudinal bone growth 

during puberty, an event wich is clearly observed in boys with aromatase excess syndrome or 

familiar hyperestrogenism (Martin 2003). 

 

ge, physical activity, body composition, sex steroid levels and anthropometrics are 

determinants of muscle mass and function in young men. Although the number of 

CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have 

no evidence that these variations in the AR gene also affect muscle mass or function.” 

“A 
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3. ANDROGENIC REGULATION OF SKELETAL MUSCLE MASS  

3.1 Testosterone and its effect on muscle mass and strength in different conditions 

The anabolic effects of androgens are mainly observed when serum levels are inadequate as seen in 

elderly and hypogonadal men (Katznelson et al. 1996; Kaufman and Vermeulen 2005). Indeed, in 

study 2, we showed that orchidectomy resulted in tremendous atrophy of the LA/BC (-63%) and a 

significant loss in locomotor muscle weight (-13%), whereas T replacement completely negated the 

orchidectomy-induced muscle atrophy. These findings were strengthened by the observation that 

absolute, but not relative, twitch and tetanic force were reduced after androgen deprivation, 

indicating that the altered muscle force is predominantly due to changes in muscle mass. It is 

noteworthy that the anabolic effects of androgens on muscle mass in animal models are not 

straightforward. Orchidectomy or androgen treatment of male mice or rats have not always been 

shown to result in changes in muscle mass (Antonio et al. 1999; Brown et al. 2001; Pires-Oliveira et 

al. 2010; Haren et al. 2011) and function (Tingus and Carlsen 1993; Ophoff et al. 2009), which can be 

due to a lower AR expression found in rodent skeletal muscle when compared to humans. 

In our cohort of eugonadal men (study 1), we could not show any association between T and muscle 

strength, despite a positive relation between T and muscle CSA. Inconsistency in the literature can 

possibly be attributed to different methodologies used to measure muscle strength, or may result 

from the muscle-specific and dose-dependent actions of androgens on muscle strength (Friedl et al. 

1991; Storer et al. 2003; Schroeder et al. 2003; Sinha-Hikim et al. 2006).  

An interesting finding from study 3 is the marked decrease in circulating testosterone levels 

following 5 days of tail suspension. Other studies investigating hindlimb suspension (Deaver et al. 

1992; Ortiz et al. 1999; Wimalawansa and Wimalawansa 1999; Kamiya et al. 2003), but also studies 

using other disuse models like spaceflights (Philpott et al. 1985; Grindeland et al. 1990; Amann et al. 

1992), severe injury (Ferrando 2000), head-down bed rest (Nichiporuk et al. 1998) and SCI (Clark et 

al. 2008) provided evidence for reduced serum T levels during muscle disuse. It is therefore likely 

that these hormonal changes contribute to the skeletal muscle atrophy. Therapeutic use of 

androgens in this setting could thus be beneficial. Several studies addressed this issue in a variety of 

muscle disuse atrophy models, but inconsistencies in the results have been reported (Table 1).  
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Table 1. Overview of studies investigating the effects of androgen supplementation in different muscle disuse 

atrophy models 

STUDY STRAIN 

ANDROGEN 

(administration) DOSE (frequency) DURATION MUSCLE  

AMELIORATION 

OF MUSCLE 

ATROPHY? 

Tail suspension 

De Naeyer et al. 

(study 3) 
mice T (silastic tubes) 1mg/kg (daily) 1, 5, 14d SOL/EDL NO 

Tsika et al. (1987) rats ND (pellets) 2mg/kg (daily) 6w 
SOL NO 

PLT YES 

Wimalawansa et al. 

(1999) 
rats 

T (inj) 6mg/kg (once) 12d QUADR YES 

ND (inj) 6mg/kg (once) 12d QUADR YES 

Bricout et al. (1999) rats T heptylate (inj) 
10 mg/kg 

(weekly) 
3w 

SOL/PLT

/EDL 
NO 

Joumaa et al. (2002) rats ND (inj) 15mg/kg (weekly) 

6w pre-

treatment + 

3w TS 

EDL NO 

SOL YES 

Casting 

Witzmann et al. (1988) rats ND (inj) 7mg/kg (weekly) 5w SOL NO 

Taylor et al. (1999) rabbits ND (IM inj) 15mg/kg (weekly) 8w TA/EDL YES 

Denervation 

Zhao et al. (2008) rats ND + T (pumps) 

0.75mg/kg 

(weekly) + 

2.8mg/kg (daily)  

3, 7, 14 d GC NO 

28d 

denervation  

+ 3, 7, 28d 

treatment 

GC YES 

Spinal cord injury 

Gregory et al. (2003) rats T (capsule) 
replacement 

therapy 
11w 

SOL/GC/

TA/VL 
YES  

Ung et al. (2010) mice TP (inj) 5mg/kg (daily) 8w EDL/SOL NO 

Amyotrophic lateral sclerosis 

Yoo et al. (2012) mice 
DHT  

(silastic implant) 
NA 120d TA/GC YES 

Head-down bed rest 

Zachwieja et al. (1999) human T enanthate (inj) 200mg (daily) 28d 
lean 

mass 
YES 

T:testosterone, ND:Nandrolone decanoate, DHT:dihydrotestosterone, TP:testosterone propionate, SOL:soleus muscle, 

EDL:extersor digitorum longus muscle, TA:tibialis anterior muscle, VL:vastus lateralis muscle, PLT:plantaris muscle, 

QUADR:quadriceps muscle, GC:gastrocnemius muscle, d:days, w:weeks, inj:injection, IM:intra-muscular, NA: not available. 

 

Androgen supplementation during tail suspension, casting, denervation and SCI in rodents has been 

shown to either improve muscle mass or to have no effects on the disuse atrophy (Table 1). In our 

tail suspended mice (study 3), T treatment showed no efficacy in manipulating skeletal muscle mass, 

even though the dose of T was double the amount as that used in our orchidectomized mice (study 

2). There are several possible explanations for the conflicting results reported in the literature. First, 

it is possible that the duration of transient lower circulating testosterone levels during tail 

suspension in study 3 was too short to induce atrophy by androgen deprivation, and despite the high 
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dose of T administered (5- to 40-fold the physiological amount) it might have been not sufficient to 

prevent or ameliorate the tremendous muscle atrophy induced by disuse. It is often suggested that 

anabolic androgenic steroids increase muscle mass only in combination with muscle activity or with 

muscle loading. This would explain the anabolic effects found during casting and bed rest, since 

weight bearing contractile activity (isometric contraction in case of casting) is still possible under 

these conditions (Taylor et al. 1999). However, studies providing evidence for this statement are 

lacking. Moreover, this hypothesis is not supported by the beneficial effects of androgen treatment 

found following denervation (Zhao et al. 2008a), SCI (Gregory et al. 2003) or ALS (Yoo and Ko 2012). 

The efficiency of androgen treatment might also depend on the anabolic agent used. Nandrolone, 

DHT, and synthetic derivates of T are known to be biologically more potent androgens than T, due to 

a greater affinity for the AR or because aromatization into E2 is impossible (Evans 2004). In addition, 

also other study variables such as species differences and the investigated muscle type may 

contribute to the discrepancies among studies. 

It is noteworthy that no studies have used the highly sensitive LC-MS/MS method for measuring T 

levels in rodents following disuse-induced muscle atrophy. The clinical use of LC-MS/MS instruments 

for the measurement of serum sex steroid levels has grown during the last decade, and it has 

become the method of choice for detecting anabolic steroid usage in athletes (Thevis et al. 2008; 

Pozo et al. 2008). However, radioimmunoassays are still widely used, despite their lack of sensitivity 

and specificity. This leads to unreliable measurements, especially in the lower range concentrations 

(Taieb et al. 2003; Wang et al. 2004). These limitations are particularly problematic when measuring 

E2 levels in men or T levels in rodent serum. In rodents, a circulating sex hormone binding globulin is 

absent, resulting in a high individual variation in serum testosterone levels (Sullivan et al. 1991). 

Another advantage of LC-MS/MS is that only a small amount of sample is needed for the analysis, 

which is especially interesting in the determination of sex steroid levels in rodents. Thus, by using 

the LC-MS/MS method we were able to accurately measure T levels in our tail suspended mice 

(study 3), and E2 levels in our cohort of healthy men (study 1). 

 

estosterone therapy is effective in restoring muscle mass and absolute muscle 

strength during androgen deprivation, but its effects during muscle disuse atrophy 

remains equivocal.” 

 

 

 

“T 
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3.2  Muscle atrophy is determined by the atrophic stimulus and is muscle type-dependent 

As mentioned in the introduction, there is evidence that the extent of muscle loss depends on the 

muscle fiber type distribution and on the atrophic conditions (Degens and Alway 2006). Indeed, the 

rapid and extensive loss in skeletal muscle mass found following tail suspension in study 3 (-22 to -32 

%), is in contrast with the slow and limited muscle loss induced by androgen deprivation as observed 

in study 2 (-13%). Other muscle disuse atrophy models, e.g. casting and bed rest, have confirmed the 

preferential loss of the SOL muscle when compared to the EDL muscle following our tail suspension 

experiment (Gardetto et al. 1989; Okamoto et al. 2011; Miokovic et al. 2012). A possible explanation 

for this fiber type specific atrophic response during disuse might be the functional role of the 

muscles. The SOL is a constantly active tonic muscle, important in maintaining body posture, 

whereas the EDL is mainly active during dynamic movements. As a consequence, there is a 

difference in the extension of change in activity level between the muscles during disuse, with the 

SOL muscle undergoing a relatively larger reduction in activity than the EDL (Degens and Alway 

2006). 

Another remarkable difference in atrophy response was found between the LA/BC and the 

locomotor muscles following androgen deprivation (study 2). The perineal LA and BC skeletal 

muscles are highly androgen responsive and depend on androgens for their normal maintenance 

and function (MacLean et al. 2008). It is well established that the LA muscle displays rapid and 

extensive muscle loss in response to androgen deprivation which is likely due to high AR protein 

expression and/or high androgen sensitivity (Monks et al. 2004; Johansen et al. 2007; Ophoff et al. 

2009; MacLean et al. 2010). Indeed, in study 1 we showed that the mRNA level of the AR is 4-fold 

higher in the LA/BC when compared with SOL and EDL muscles, supporting previous observations 

(Monks et al. 2004; Johansen et al. 2007). These observations indicate that the diverse response of 

different muscle types to androgens possibly reflects differences in AR expression between muscles. 

However, despite this well-kown muscle type dependent difference in androgenic-anabolic 

responsiveness, the LA muscle is still widely used in preclinical studies. 

Whether muscles with differences in their twitch properties respond differently to T could not be 

deduced from study 2, as SOL and EDL lost an equal amount of muscle mass following androgen 

deprivation. Reports in the literature are not univocal, with some describing predominant changes in 

type I fibers, others in type II fibers and some reports finding no differential changes in CSA between 

fiber types following androgen withdrawal or androgen administration in humans and rodents  

(Table 2).  
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Table 2. Overview of studies investigating the effects of androgen withdrawal and androgen treatment in 

different muscle types. 

 

STUDY STRAIN INTERVENTION MUSCLE TYPE MOSTLY AFFECTED 

Androgen withdrawal 

Axell et al. (2006) mice orx Type II (TA, biceps branchii, EDL vs SOL) 

Ophoff et al. (2009) mice mARKO Type II (EDL vs SOL, GC, QUADR) 

Rowe et al. (1968) mice orx Type II (TA, biceps branchii, EDL vs SOL) 

Brown et al. (2001) rats orx No effect (SOL, EDL,PLT, GC, PER) 

De Naeyer et al. 

(2014) (study 2) 
mice orx No differences (between EDL and SOL) 

Sinha-Hikim et al. 

(2002) 
human GnRH agonist 

No differences (within VL) 

Androgen treatment 

Axell et al. (2006) mice orx+T Type I (SOL vs TA, biceps branchii, EDL) 

Eriksson et al. 

(2005) 
human 

power lifting + T and anabolic 

steroids 

Type I (within VL) 

Kadi et al. (1999) 
human 

power lifting + anabolic 

steroids  

Type I (within trapezius) 

Sinha-Hikim et al. 

(2006) 
Human  GnRH agonist + T enathate 

Type I (within VL) 

Ustunel et al. 

(2003) 
rats T 

Type I (within GC) 

Tsika et al. (1987) rats ND Type II (PLT vs SOL) 

Sinha-Hikim et al. 

(2002) 
human GnRH agonist+ T  

No differences (within VL) 

Frese et al. (2011) rats orx+DMT/NOR/TP No differences (within GC) 

Bricout et al. 

(1999) 
rats T 

No effect (SOL, PLT, EDL) 

T:testosterone, ND:Nandrolone decanoate, TP:testosterone propionate, SOL:soleus muscle, EDL:extersor digitorum longus 

muscle, TA:tibialis anterior muscle, VL:vastus lateralis muscle, PLT:plantaris muscle, QUADR:quadriceps muscle, 

GC:gastrocnemius muscle, PER: peroneus longus muscle, orx: oerchidectomy, mARKO:myocyte-specific androgen receptor 

knockout,GnRH: gonadotropin-releasing hormone , DMT: desoxymethyltestosterone NOR: norandrostenedione. 

 

However, when taking a closer look to these reports, it seems that the slow-twitch fibers may be 

particularly responsive to androgen administration whereas the fast-twitch fibers are probably more 

sensitive to androgen withdrawal (Axell et al. 2006). Atlhough we did not find any differences in AR 

expression levels between SOL and EDL muscle (study 2), Hulmi et al. (2008) demonstrated a more 

intensive AR-specific immunofluorescence staining at the cell borders of type I muscle fibers 

compared to type II fibers in the vastus lateralis (VL) muscle of men, indicating that type I muscle 

fibers might be more responsive to the effects of T. On the other hand, myocyte-specific ARKO mice, 

with AR deletions only in mature postproliferative myofibers, showed a decrease in EDL weight but 

not in SOL (Ophoff et al. 2009), suggesting that type II muscles may depend more on androgens for 
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their growth than type I muscles. It is reasonable to assume that the androgen response may also 

depend on various factors, such as contractile activity (Hennig and Lømo 1985; Inoue et al. 1994), 

metabolic activity (Pette and Spamer 1986), and the dose (Storer et al. 2008) or type of androgen 

administered (Frese et al. 2011). 

 

low-twitch muscles are particularly responsive to muscle disuse and androgen 

administration whereas the fast-twitch muscles are likely more sensitive to androgen 

withdrawal. The extent of muscle loss highly depends on the atrophic stimuli." 

 

“S 
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4. THE MOLECULAR REGULATION OF SKELETAL MUSCLE MASS DURING ANDROGEN DEPRIVATION 

AND TAIL SUSPENSION, AND THE INFLUENCE OF TESTOSTERONE TREATMENT 

 

The main purpose of study 2 and study 3 was to investigate the regulation of muscle atrophy and 

hypertrophy inducing targets following orchidectomy and following tail suspension with or without T 

supplementation (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Effects of androgen deprivation (A), testosterone treatment following androgen deprivation (B) and 

tail suspension (C) on skeletal muscle atrophy and hypertrophy inducing targets. Genes (italic) or proteins in 

green were positively regulated, and genes or proteins in red were negatively regulated. The other genes or 

proteins shown were not measured (in grey) or were not regulated (in black) by the intervention. 
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4.1  Atrogene signalling  

4.1.1 Atrogene signalling is time- and muscle type-dependent 

Because Atrogin-1 and MuRF1 gene expression levels were, after their discovery, quickly believed to 

serve as a convenient marker of enhanced muscle protein breakdown (Sacheck et al. 2007), we 

hypothesized that T treatment would ameliorate muscle atrophy by suppressing atrogene 

expression. However, to date, inconsistencies in the involvement of the atrogenes in the atrophy 

process exist. A number of reports show no change in the mRNA levels of Atrogin-1 and MuRF1 

during different catabolic conditions  (Fareed et al. 2006; Léger et al. 2006a; Léger et al. 2008; 

Sakuma et al. 2009). Also, currently, little is known about the androgenic regulation of the ubiquitin 

ligases. Some very recent studies confirmed an upregulation of both Atrogin-1 and MuRF1 after 

orchidectomy and a downregulation of these genes after T supplementation (Ibebunjo et al. 2011; 

White et al. 2013), whereas others have reported no change (MacLean et al. 2008; Pires-Oliveira et 

al. 2010) or even a reduction (Svensson et al. 2010; Haren et al. 2011) in the mRNA levels of Atrogin-

1 and MuRF1 in orchidectomized and ARKO mice.  

With gene expression levels in both study 2 and 3 measured at multiple time-points, we provides 

evidence for a transient increase in Atrogin-1 and MuRF1 gene expression found in the SOL and the 

EDL muscles following androgen deprivation (Figure 16) and tail suspension (Figure 5 from study 3) 

respectively, even before muscle weight loss was observed.  

 

 

 

 

 

 

 

 

 

 

Figure 16. Effects of 1, 7 and 30 days of orchidectomy on MAFbx/Atrogin-1 (a) and MuRF1 (b) mRNA 

expression in SOL, EDL and LA/BC muscle. Data are shown as fold change from the control group for each 

muscle. Differences between Sham and Orx mice were assessed by independent sample T-tests. * (P<0.05), † 

(P<0.01), ‡ (P<0.001): significantly different from Shams. Interconnecting lines are drawn to indicate time 

effects (no other time-points measurements were made). 
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This important finding may clarify the contradictory results reported in the literature. Since most 

studies have measured gene expression levels at only one time-point, it is likely that transient 

changes could were missed. However, this only seems to be the case for the locomotor muscles, as 

results from study 2 demonstrated a rapid and sustained increase in Atrogin-1 and MuRF1 gene 

expression in the LA/BC muscle following androgen deprivation (Figure 16). The remarkably distinct 

response of Atrogin-1 and MuRF1 to androgen deprivation between the LA/BC and the locomotor 

muscles clearly point to a muscle type dependent regulation of gene expression. Moreover, our 

results suggest small differences in atrogene expression between slow- and fast-twitch muscles, as 

no upregulation of Atrogin-1 mRNA in SOL was found following orchidectomy, despite a significant 

upregulation of MuRF1 and a loss of muscle mass. In addition, as atrogene expression levels and 

kinetics differ between androgen deprivation- and tail suspension induced muscle loss, the changes 

in gene expression levels may also depend on the atrophic stimuli. 

As mentioned in the introduction, the androgenic regulation of Atrogin-1 and MuRF1 gene 

expression can occur through direct action of the AR on the ARE of the atrogene (Lee and Chang 

2003), or via indirect action through cross-talking with upstream signalling molecules like FoxO3 

(Weissberger and Ho 1993; Hobbs et al. 1993; Baron et al. 2004). Studies in castrated mice 

demonstrated that Atrogin-1 and MuRF1 genes are upregulated with a concomitant decrease in 

phosphorylated and thus inactive levels of FoxO (Ibebunjo et al. 2011; White et al. 2013). However, a 

study in human C2C12 cells (Zhao et al. 2008b) provided evidence that the regulation of Atrogin-1 by 

testosterone is independent of FoxO3. In fact, human atrophy models including ALS (Léger et al. 

2006b), COPD (Doucet et al. 2007) and ageing (Léger et al. 2008) have not yet supported a role for 

the FoxO transcription factors in the transcriptional regulation of Atrogin-1 and MuRF1. 

 

trogene signalling is time- and muscle type-dependent and is determined by the 

atrophic stimuli. Because Atrogin-1 and MuRF1 mRNA seems to be rapidly and 

transiently upregulated and precedes the loss of muscle mass, we and others 

(Murton, Foletta, Gomes MD 2001) believe that they might be involved in the 

initiation of the atrophy programme in the locomotor muscles.” 

 

4.1.2 Atrogin-1 and MuRF1: Lost in translation? 

Although androgen deprivation is associated with transiently increased atrogene expression levels, 

results of our Western blot analyses and the lack of effects of T treatment in the locomotor muscles 

indicate that the regulation of the atrogenes by androgens is not as straightforward as previously 

“A 
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assumed. First, T treatment was able to completely inhibit the increase in Atrogin-1 and MuRF1 gene 

expression in the LA/BC, but did not alter atrogene expression levels following orchidectomy in the 

locomotor muscles (study 2), nor following tail suspension (study 3). However, the latter may be 

explained by the fact that also no differences in muscle mass were detected following T treatment in 

our tail-suspended mice. Second, the transient increase in MuRF1 mRNA levels in EDL following 

orchidectomy was not paralleled by changes in their protein expression, while Atrogin-1 protein 

expression was not measured due to technical problems in validating a specific antibody. Only one 

study has investigated the protein expression level of Atrogin-1 following androgen deprivation in 

rats (Pires-Oliveira et al. 2010). The authors found no changes in Atrogin-1 gene and protein 

expression which is reasonable since no muscle atrophy was detected in the latter study. In fact, 

very few studies have measured changes in protein levels of atrogin-1 and MuRF1 under atrophic 

conditions (Doucet et al. 2007; Léger et al. 2009; Nedergaard et al. 2012), and no data on MuRF1 

protein levels during androgen deprivation and/or treatment were found in the literature. From 

both studies 2 and 3, it became clear that changes in MuRF1 gene expressions levels do not reflect 

changes in MuRF1 protein expression. Discordance between mRNA and protein levels of MuRF1 

have already been described in other skeletal muscle atrophy models (Drummond et al. 2008). Lack 

of associations between gene and protein expression levels is commonly described (Chen et al. 

2002; Lichtinghagen et al. 2002) and can be explained by different factors. Various molecular 

processes, such as microRNAs, post-transcriptional splicing, translational regulation and 

modifications can influence the quantity of proteins and thus results into true biological differences 

between mRNA and protein levels. In addition, E3 ligases are known to have a short half-life time 

due to auto-ubiquitination (Chen et al. 2012), making the proteins unstable (Cardozo and Pagano 

2004; Bdolah et al. 2007). It is therefore reasonable to assume that the increase in mRNA expression 

allows rapid protein turnover, without affecting or mildly affecting protein levels. Also, the power to 

detect significant changes in protein levels could have been limited due to the lower sensitivity of 

the Western blotting technique compared to qPCR. Thus, finding no differences in protein 

expression levels does not rule out that MuRF1 plays a role in muscle atrophy.  

It is noteworthy that growing doubt exists about the role of both E3 ligases in muscle atrophy. Both 

E3 ligases target different proteins that are mainly involved in protein synthesis instead of protein 

degradation (Attaix and Baracos 2010; Baehr et al. 2011; Murton 2011). MuRF1 was shown to 

interact with myofibrillar proteins such as myosin heavy chain (MHC) (Clarke et al. 2007), troponin I 

(Kedar et al. 2004), myosin binding protein C and myosin light chain (Cohen et al. 2009) and more 

recently actin (Polge et al. 2011), suggesting its role in muscle breakdown. On the other hand, the 

only identified substrates for Atrogin-1 are MyoD, a key transcription factor (Tintignac et al. 2005; 



 
General discussion  |130 

 
     

Lagirand-Cantaloube et al. 2009), and eIF3F, an eukaryotic initiation factor of protein synthesis 

(Lagirand-Cantaloube et al. 2008; Csibi et al. 2010). Both proteins play key roles in the control of 

muscle differentiation and protein synthesis, questioning the role of Atrogin-1 in muscle proteolysis 

(Attaix and Baracos 2010).  

 

lthough both Atrogin-1 and MuRF1 are strongly regulated by T in the LA/BC 

muscle, the molecular regulation of these atrogenes by sex steroids in the locomotor 

muscles remains unclear, suggesting that both atrogenes are not the major mediators 

of androgen deprivation-induced muscle atrophy as initially believed.” 

 

4.2 IGF1 is involved in the maintainance of muscle mass 

Studies in transgenic mice overexpressing Akt in skeletal muscle have demonstrated that Akt plays a 

pivotal role in the regulation of muscle mass by promoting muscle hypertrophy, via mTOR, and by 

simultaneously blocking muscle atrophy, via FoxO (Bodine et al. 2001b; Lai et al. 2004). Akt is known 

to be activated by IGF1, one of the most well-characterized muscle growth-promoting factors.  

The stimulation of IGF1 by androgens is well documented (Hobbs et al. 1993; Urban et al. 1995; 

Grinspoon et al. 1996; Mauras et al. 1998; Reisz-Porszasz et al. 2003; Yin et al. 2009). Testosterone 

administration to our orchidectomized mice in study 2 resulted in increased intramuscular IGF1 

mRNA expression in SOL, whereas orchidectomy was associated with a reduction in IGF1 mRNA 

expression in the EDL muscle (Figure 17, unpublished data from study 1).  

 

 

 

 

 

 

 

Figure 17. Effects of ultrashort (1 day), short- (7 days) and long-term (30 days) orchidectomy (Orx+v), 

orchidectomy and testosterone treatment (Orx+T), and orchidectomy and estradiol treatment (Orx+E2) on 

IGF1 mRNA expression in SOL (a) and EDL muscle (b). Data are shown as fold change from the control group 

for each muscle. Differences between groups were assessed by one-way analysis of variance (ANOVA).  

* (P<0.05), † (P<0.01), ‡ (P<0.001): significantly different from Shams (Unpublished data from study 2). 
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However, results from study 3 could not provide evidence for such an androgenic regulation during 

disuse atrophy, as no effects of T treatment on the IGF1-Akt-p70S6K (phospho-) levels were found in 

our tail-suspended mice. More intriguing, very recent research has suggested that the IGF1 axis is 

not essential to mediate the anabolic effects of androgens, as T was found to increase muscle mass 

in GH-deficient rats, with low IGF1 serum levels (Serra et al. 2011). However, these controversial 

results do not exclude that locally produced IGF1, as measured in study 2 (Figure 17) is important in 

mediating the androgen action in muscle. This hypothesis is supported by a study of Ohlosson et al. 

(2009) demonstrating normal muscle development in liver-specific IGF1 KO mice in which muscle 

IGF1 production is still possible. The presence of two AREs in the upstream promoter region of the 

IGF1 gene (Wu et al. 2007) suggest that, next to the indirect crosstalk between androgens and 

circulating IGF1 by direct binding of the AR to the regulatory subunit of PI3K (Baron et al. 2004), T 

can locally influence IGF1 production by transcriptional activation.  

Tail suspension in study 3 resulted in a downregulation of IGF1 mRNA during 1 and 5 days of tail 

suspension, and a subsequent reduction in the phosphorylated levels of Akt in the SOL and EDL after 

14 days of tail suspension (Figure 15a). It is well established that IGF1 mRNA levels decrease during 

disuse (Adams et al. 2000; Litvinova and Shenkman 2007), and that muscle hypertrophy, induced by 

increased mechanical loading, is associated with elevated IGF1 mRNA and protein expression 

(Adams and Haddad 1996). However, the importance of IGF1 in regulating muscle mass was 

questioned by the experiments of Spangenburg et al. (2008), which revealed that loading induced 

muscle hypertrophy via Akt and p70S6K can occur independently of a functional IGF1 receptor in 

transgenic mice. Also, Criswell et al. (1998) found that overexpression of IGF1 in skeletal muscle does 

not prevent unloading-induced muscle atrophy. So, although experiments in IGF1 KO and IGF1 

receptor KO mice demonstrated a pivotal role of IGF1 in promoting myofiber hypertrophy during 

development and postnatal growth (Liu et al. 1993), its role as a major regulator of adult muscle 

mass during acute muscle unloading and reloading has been a subject of debate (Spangenburg et al. 

2010). However, despite this controversy, these results do not rule out that IGF1 might be beneficial 

for optimizing long-term adaptive remodelling during altering mechanical loading via enhanced 

protein synthesis or through increased satellite cell activation.  

 

From the literature it became clear that the effect of either tail suspension or androgens on muscle 

Akt signalling is uncertain. Tail suspension and androgen loss have demonstrated either reduced 

(Childs et al. 2003; Sugiura et al. 2005; Haddad et al. 2006; Ibebunjo et al. 2011; White et al. 2013), 

increased (Haren et al. 2011) or unchanged (Krawiec et al. 2005; Hourdé et al. 2009; Maki et al. 

2012) phosphorylation of Akt and its downstream target p70S6K. Such conflicting results could be 



 
General discussion  |132 

 
     

explained by the different disuse atrophy models used, the organism studied and the fact that the 

protein expression levels were measured at different time points during the atrophy process. 

However, it is interesting to note that Akt activity indirectly depends on the dietary state, as it 

contributes to the regulation of glycogen synthesis in the skeletal muscle (Cross et al. 1995; Hajduch 

et al. 2001). Upon food intake, insulin binds to its receptor, which activates insulin receptor 

substrate (IRS) and subsequently PI3K, Akt and 5’- adenosine monophosphate-activated protein 

kinase (AMPK), leading to the translocation of glucose transporter 4 (GLUT4) to the cell membrane. 

Once docked on the plasma membrane, GLUT4 is able to transport glucose into the cell (Tsakiridis et 

al. 1995; Zhou et al. 1999). As tail suspension is associated with increased stress, and as T is known 

to increase dietary intake (Ferreira et al. 2012), these research models are unavoidably associated 

with alterations in insulin secretion, hereby inducing changes in phospho-Akt levels. 

 

 diminished local production of IGF1 appears to be involved in the atrophy process 

in both androgen deprivation and muscle disuse models. However, activation of Akt 

and subsequently p70S6K during tail suspension remains equivocal.” 

 

4.3  Myostatin expression is under androgenic control but differs among muscle type 

Next to atrogene signalling, it is likely that other molecules are responsible for the loss in skeletal 

muscle mass during T deprivation. As removal of androgens results in a decrease in anabolic stimuli, 

it is likely that signalling molecules involved in hypertrophy signalling are modulated. Therefore, we 

investigated the gene and protein expression levels of myostatin, an endogenous inhibitor of muscle 

growth, following orchidectomy (study 2) and tail suspension (study 3) (Figure 15). Our findings that 

androgen deprivation induced an upregulation of myostatin gene expression and that T 

administration following orchidectomy and tail suspension was able to inhibit this increase in 

myostatin mRNA in the EDL muscle let us believe that myostatin is indeed under control of 

androgens.  

There are some indications in the literature for the involvement of androgens in the regulation of 

myostatin. An apparent difference in myostatin protein expression exists between males en females, 

with the higher muscle mass in males being associated with a decreased abundance of myostatin 

protein when compared to females (McMahon et al. 2003). Moreover, muscle-specific 

overexpression of myostatin in mice resulted in lowered muscle mass, which was more pronounced 

in males than in females (Reisz-Porszasz et al. 2003). The androgenic regulation of myostatin could 

be reasonable as the research group of Bhasin (Ma et al. 2001) has identified ARE in the myostatin 

promoter suggesting an AR-dependent transcriptional modulation of myostatin expression. 
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However, this may only be true in fast-twitch muscles as no upregulation in myostatin gene 

expression was found in SOL following orchidectomy (study 2), nor following T treatment during tail 

suspension (study 3). More intriguingly, in the LA/BC, a striking opposite direction of change in 

myostatin gene expression was found in comparison with the EDL. Muscle myostatin mRNA was 

paradoxically decreased following orchidectomy and increased following T treatment. This surprising 

finding was also reported by Ibebunjo et al. (2011) in mice triceps brachii muscles, and more recently 

by Dubois et al. (2014) in the LA and GC muscle of castrated mice. Comparably, Diel et al. (2007, 

2008a, 2008b) demonstrated an increase in myostatin mRNA expression in the rat GC muscle and 

C2C12 cells after treatment with T or other anabolic androgenic steroids. A possible, yet not 

conclusive, explanation could be that the decreased expression of myostatin counteracts the fast 

and progressive atrophy of the LA/BC in order to prevent total muscle loss. Conversely, increased 

myostatin induced by T may prevent excessive hypertrophy. This may also explain the 

downregulation of myostatin in EDL following 14 days of tail suspension (study 3). However, 

conclusions are difficult to make, as no differences in muscle mass were found by T administration in 

the latter study. 

An effect of androgen action could not be deduced from our Western blot data, as no significant 

differences in myostatin protein expression in SOL and EDL were found in study 2 and 3, 

respectively. Differences between myostatin mRNA and protein levels were also observed by 

Mendler et al. (2000) and McMahon et al. (2003) in regenerating rat muscles and male mice 

respectively. Possible reasons for this discrepancy are described above but other modifications such 

as cleavage of promyostatin into active myostatin (Lee and McPherron 2001), might also be 

responsible. Actually, only one study by Mendler et al. (2007) investigated the myostatin protein 

levels in the LA, but not the locomotor muscles, in an androgen-deprivation rat model. They showed 

a significant increase of the myostatin protein after orchidectomy and a downregulation of the 

myostatin protein levels back to baseline by T treatment of the orchidectomized rats.  

 

yostatin gene expression is clearly under androgenic control, but the marked 

differences in the modulation of myostatin gene expression by T among muscle types 

questions its role in the regulation of muscle mass.” 

 

4.4  REDD1 is involved in muscle disuse atrophy 

Similar to the ubiquitin ligases, REDD1 showed a similar transient expression pattern following tail 

suspension in both SOL and EDL. The gene expression levels of this mTOR inhibitor quickly increased 

“M 
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(3- to 4-fold) and were further upregulated (7- to 9-fold) at day 5 of tail suspension, but did not differ 

from controls 14 days after the start of tail suspension. One research group recently investigated the 

gene expression levels of REDD1 during 3 days of unilateral hindlimb casting of rats (Kelleher et al. 

2013), and found a similar increase in REDD1 mRNA content in the SOL. In fact, this rapid and 

substantial increase of REDD1 gene expression was also observed in the first days following 

starvation (McGhee et al. 2009) and dexamethasone treatment (Wang et al. 2006). It is noteworthy 

that long-term effects were not addressed in these latter studies, by which they were unable to 

observe the late drop in gene expression level. 

Interestingly, Harvey et al. (2008) suggested that REDD1, like Atrogin-1 and MuRF1, is a 

transcriptional target of FoxO. We can therefore hypothesize that the rapid and transient increase in 

REDD1 mRNA, as well as Atrogin-1 and MuRF1 mRNA, might be induced by an acute activation of 

FoxO following the atrophic stimulus. 
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5. ESTROGENIC REGULATION OF SKELETAL MUSCLE MASS  

5.1 Estradiol and its effects on muscle mass and strength  

While the anabolic effects of T on muscle mass are quite established, a role for estrogens in 

regulating muscle mass remains unclear. E2 treatment in our orchidectomized mice (study 2) 

partially suppressed LA/BC but not SOL and EDL muscle loss. As ERβ mRNA levels were higher in the 

LA/BC muscle compared with the SOL and EDL muscles, in which only a very low expression was 

observed (study 2), we might speculate that the estrogenic effect found on LA/BC muscle mass, but 

not in the locomotor muscles, is ERβ-mediated. Studies in ERs KO mice indicated that both ERα and 

ERβ receptors may have distinct actions on skeletal muscle, although their exact physiological 

responses remain unclear (Barros and Gustafsson 2011). Using ERs KO female rats, Velders et al. 

(2012) provided evidence for the involvement of ERβ signalling in the regulation of locomotor 

skeletal muscle growth by stimulating anabolic pathways. Our results may also clarify why Goyal et 

al. (2007) could not show any effects of ERα KO on the LA mass in male mice.  

Most of our knowledge regarding E2-responsiveness of male muscles has been derived from studies 

performed in elderly men, with studies finding a positive association (Vandenput et al. 2010; 

Auyeung et al. 2011), and studies finding no association (van den Beld et al. 2000; Szulc et al. 2004a) 

between E2 and lean- and muscle mass. In our cohort of eugonadal men (study 1) we could not find 

an association between E2 and the CSA of the locomotor muscles, and most intriguingly, the negative 

association between E2 and grip strength and biceps force found in study 1 suggest a negative role of 

E2 on muscle strength of the upper body of healthy men.  

 

5.2  The molecular regulation of skeletal muscle mass by estradiol 

The mechanism by which skeletal muscle functions are regulated by estrogens has received 

considerably little attention. Over the last 5 years, studies have tried to investigate the intracellular 

signalling molecules involved in estrogen-regulated muscle processes such as cell survival (Ronda et 

al. 2007; Boland et al. 2008; Vasconsuelo et al. 2008; Ronda et al. 2010) and myogenic 

differentiation (Galluzzo et al. 2009), as well as transcripts involved in muscle lipid metabolism 

(Maher et al. 2010; Rogers et al. 2010), fiber type distribution (Rogers et al. 2010) and energy 

metabolism (Riedl et al. 2010). There are only a limited number of studies that have examined the 

estrogenic effects on muscle atrophy and hypertrophy signalling pathways. The research group of 

Kovanen (Pollanen et al. 2010; Ahtiainen et al. 2012) showed that estrogen replacement therapy 

exerts anti-catabolic effects on ageing skeletal muscle by increasing gene expression levels of IGF1, 

mTOR and FoxO3. Interestingly, similar to Svensson et al. (2010) we demonstrated that E2 is able to 
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suppress the increased gene expression levels of both MAFbx/Atrogin-1 and MuRF1 in the LA/BC 

muscle of orchidectomized mice, suggesting that E2 is also involved in the modulation of atrophy 

inducing targets. However, this is in strong contrast with the results of Rogers et al. (2010), who 

found that 12 weeks of ovariectomy was associated with decreased gene expression of both 

ubiquitin ligases in the quadriceps muscle of female mice. While we could not show any effects of E2 

supplementation on myostatin gene and protein levels in our orchidectomized mice (study 2), 

results about the regulation of myostatin by estrogens in postmenopausal women (Dieli-Conwright 

et al. 2012) and ovariectomized rats (Tsai et al. 2007) have been controversial.  

 

2-treatment is able to attenuate LA/BC muscle atrophy during androgen-

deprivation, presumable by suppressing Atrogin-1 and MuRF1 gene expression. This 

effect might be mediated via ERβ activation. However, it is clear that more functional 

studies are needed before conclusive statements may be drawn.”  
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6. LIMITATIONS AND PERSPECTIVES 

This thesis contributed to the better understanding of the molecular regulation of skeletal muscle 

mass by androgens; however, our findings also resulted in several new research questions and still a 

lot of ambiguities remain. 

Although we could demonstrate important changes in the mRNA expression of various signalling 

molecules in two different atrophy models, their ‘role’ in the atrophy process was not examined. 

Western blot and qPCR are widely accepted techniques for determining protein and mRNA 

expression levels, respectively. However, they do not provide information on the specific function of 

the protein or gene examined, as such that results should strictly be interpreted according to the 

expression levels only. Activity assays, KO, knock-down and overexpression experiments in 

transgenic mice are required to assess the contribution of each molecule in the muscle atrophy and 

hypertrophy pathways regulated by T. Furthermore, it is important to identify novel transcriptional 

regulators and novel substrates for Atrogin-1 and MuRF1, to better understand their regulation and 

exact function. This is possible using protein-protein interaction approaches such as yeast two- 

hybrid screening, co-immunoprecipitation assays and affinity purification assays. 

In addition, most of our understanding of the molecular targets regulating muscle mass has been 

derived from animal and in vitro models. However, there is growing evidence that considerable 

differences exist between rodents and humans. For example, in contrast to observations in rodents, 

human studies using clinical models of muscle atrophy have not demonstrated a predominant role 

of the FoxO transcription factors in the regulation of Atrogin-1 and MuRF1 so far. Also discordance in 

the alterations in gene expression levels of Atrogin-1 and MuRF1 during limb immobilisation 

(Gustafsson et al. 2010), running (Louis et al. 2007; Harber et al. 2009), fasting (Gomes et al. 2001; 

Larsen et al. 2006) and ageing (Clavel et al. 2006; Foletta et al. 2011) exist between rodents and 

humans. Regarding these species differences, it is necessary to verify whether the signalling 

molecules investigated in this thesis are also physiologically relevant to human muscle wasting, in 

order to validate their potential as therapeutic targets. 

Furthermore, numerous other key factors of the ubiquitin-proteasome pathway have not been 

measured in the present thesis e.g. FoxO, mTOR, 4EBP1, GSK3, eIF2B, but could lead to a better 

understanding of the signalling cascades activated by T. FoxO, an upstream regulator of Atrogin-1 

and MuRF1, and mTOR, a downstream target of IGF1-PI3K-Akt signalling, are key regulators whose 

role during androgen deprivation and tail suspension should be addressed. Moreover, mTOR is 

implicated in the control of autophagy, hereby providing a link between the ubiquitin-proteasome 

pathway and the autophagy-lysosomal pathway. Therefore, measurement of key targets of the 
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autophagy-lysosomal pathway in our androgen deprivation model would be of potential significance. 

Indeed, Serra et al. (2013) have recently provided evidence for changes in both proteasomal and 

lyosomal activity in the LA of castrated mice. 

Moreover, study 1 may have been limited by the relatively small sample size, by which small but 

significant associations might have been missed, especially for the genetic analyses. The conduction 

of genome wide association studies may provide additional relevant SNPs associated with serum T 

levels and muscle mass. 

Finally, by using the LC-MS/MS method we were able to show transient changes in circulating 

testosterone levels following tail suspension in mice (study 3) and to provide reliable serum E2 levels 

in men (study 1). The use of this state of the art technique for the measurement of T and E2 should 

be encouraged in future research in both rodent and human studies to overcome the lack of both 

specificity and sensitivity of the still widely used radioimmunoassays. 
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7. GENERAL CONCLUSIONS 

With decades of research highlighting the anabolic effect of T on skeletal muscle growth, the present 

thesis aimed at exploring the androgenic and estrogenic regulation of known muscle atrophy- and 

hypertrophy-inducing proteins, in order to identify novel muscle-specific therapeutic targets to 

improve the clinical outcomes of muscle wasting diseases.  

With this work we have shown that the androgenic regulation of skeletal muscle and its underlying 

mechanism are not straightforward. The following conclusions are drawn from the present thesis:  

1) Genetic variations in the androgen receptor are not associated with muscle mass or function. 

Heritability, age, physical activity, body composition and anthropometrics in eugonadal men 

contribute to the interindividual variations in muscle mass. Although variations in serum T levels 

are associated with the number of CAG repeats and 2 SNPs (rs5965433 and rs5919392) in the AR, 

these genetic variations do not seem to influence muscle mass or function.  

 

2) Testosterone treatment is not effective in ameliorating SOL and EDL muscle mass during tail 

suspension in mice. 

T therapy is effective in restoring muscle mass and absolute muscle strength during androgen 

deprivation, but does not ameliorate muscle mass during tail suspenion, despite transient lower 

serum T levels measured in this disuse atrophy model. The mechanisms underlying this lack of 

anabolic effects remain unclear. 

 

3) Atrogin-1, MuRF1 and REDD1 are rapidly activated before muscle atrophy is observed.  

By measuring gene expression levels at different time points, Atrogin-1, MuRF1 and REDD1 mRNA 

levels were shown to be rapidly and transiently activated upon androgen deprivation and tail 

suspension, suggesting that they may contribute to the initiation of the atrophy program. 

 

4) The murine LA/BC muscle is not an optimal model to study muscle atrophy. 

Based on the important kinetic differences in Atrogin-1, MuRF1 and myostatin expression 

between the LA/BC and EDL and SOL muscle, we suggest that the murine LA/BC is not an optimal 

model to study muscle atrophy since it is not representative for the androgen sensitivity of other 

more functionally and clinically relevant skeletal muscle types.  
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5) Myostatin and IGF1 are under androgenic control but the regulation of Atrogin-1 and MuRF1 by 

testosterone in the locomotor muscles is unclear. 

Locally produced myostatin and IGF1 are mediators of muscle mass and are regulated by T. 

However, T treatment during androgen deprivation or tail suspension was not able to alter 

Atrogin-1 and MuRF1 gene or protein expression levels in the locomotor muscles, questioning 

their regulation by sex steroids.  

 

6) Estradiol is effective in regulating LA/BC muscle mass but not the locomotor muscle mass. 

E2-treatment during androgen deprivation clearly showed anabolic effect on the LA/BC, but not 

on the locomotor muscles. Evidence for its anabolic effects is provided by its effect on Atrogin-1 

and MuRF1 gene expression, which is likely mediated via ERβ activation. 

 

Using two different muscle atrophy models, the present work has contributed to the better 

understanding of the androgenic regulation of skeletal muscle mass. However, it is clear that the 

application of therapeutic agents to inhibit skeletal muscle atrophy is still in its infancy. As more 

evidence exists that the regulation of muscle atrophy depends upon the atrophic stimuli, it will be 

important to develop specific therapies for each muscle wasting condition. Moreover, since muscle 

loss results from an interplay between multiple signalling pathways, it is reasonable to assume that 

the use of multiple medications, whether or not combined with exercise or protein intake, will be 

necessary for an effective treatment of muscle atrophy.  
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