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1.1 Radiation protection: coming to a justified and optimized use of ionizing 

radiation 

1.1.1 What is ionizing radiation? 

Ionizing radiation is everywhere, from Earth to space. It is a type of energy, in the form of 

particles or waves, which is characterized by its ability to ionize, i.e. the ejection of one or 

more electrons of an atom [1]. Naturally occurring substances with unstable nuclei undergo 

spontaneous transformation to become stable. These substances are radioactive and the 

transformation is called radioactive decay. Radioactive decay is accompanied with the release 

of ionizing radiation in the form of electromagnetic γ-rays and charged particles such as α- 

and β-particles [2]. Another sort of electromagnetic ionizing radiation is X-radiation, which is 

extensively used for medical applications. X-rays, although in most aspects identical to γ-

rays, differ in their origin. Whereas γ-rays result from the natural decay of a radioactive 

element, X-rays are produced artificially in X-ray generators [3]. Electrons are accelerated to 

a high energy after which they interact with a specific material such as gold or tungsten, 

knocking electrons from the inner shell of the metal atom. To replace the loss an electron 

passes from a high to a lower energy state while emitting X-rays [1]. Besides α- and β-

particles, other charged particles exist such as neutrons, accelerated ions and fission fragments 

[4]. For instance, the novel hadrontherapy for cancer treatment uses proton or carbon ion 

beams produced by proton or ion accelerators, respectively [5]. Also, in space a 

heterogeneous mixture of charged particles is present [6].  

1.1.2 The notion of dose  

To assess the impact of ionizing radiation on human health and to set guidelines in 

radioprotection, units to measure dose and its biological effects are required. Biological 

effects are related to the energy deposition by ionizing radiation in the matter of concern.  

The absorbed energy dose is defined as the amount of energy delivered by ionizing radiation 

to a unit of mass and is measured in Gray (Gy), with 1 Gy = 1 Joule (J) / 1 kilogram (kg)
1
. 

The absorbed dose is, however, a pure physical description of absorbed energy and does not 

consider the quality of the ionizing radiation type and the extent of biological damage it 

                                                 
1
 To note, Gy corresponds to the old unit rad (= radiation absorbed dose) as follows: 1 Gy = 100 rad. 
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inflicts in a certain type of tissue or organ. Therefore, the terms equivalent and effective dose 

have been introduced [4, 7].  

The equivalent dose takes into account the ability of a particular kind of ionizing radiation to 

cause damage and is obtained by multiplying the absorbed dose with a radiation weighting 

factor (wr). This factor is based on the linear energy transfer (LET) which represents the 

average energy loss of an ionizing particle per unit length of its trajectory in the matter [1]. 

For example, the wr for low-LET electromagnetic ionizing radiation (X- and γ-rays) is 

assigned 1 whereas for high-LET α-particles it is assigned 20.  

Since tissues and organs have different sensitivities to ionizing radiation, tissue weighting 

factors (wt) are established to determine the effective dose for the whole human body. The 

effective dose is obtained by summing the equivalent doses to all tissues and organs 

multiplied by their respective wt. This measure of radiation exposure is also assigned a 

different unit, Sievert (Sv), and expresses the biological effect that a certain type of ionizing 

radiation has on the human body [2]. It should be stressed that the used wt are averaged over 

both genders and all adult ages, making effective dose a reflection of the radiation burden of 

an average human adult [8]. Furthermore, Sv can only be used for stochastic effects and not 

for deterministic tissue reactions [9].  

The focus in this PhD will be on cardiovascular effects related to low-LET X- and γ-radiation. 

As radiation-induced cardiovascular disease (CVD) is, thus far, assumed not to be stochastic 

in nature, one should use absorbed dose (Gy) [10]. Nevertheless, many epidemiological 

studies use effective dose (Sv) for a variety of reasons [10]. In this PhD, we will use both Gy 

and Sv depending on the original formulation in the study cited.  

1.1.3 Brief history of radiation protection 

The first discoveries of ionizing radiation were made in the 1890s. X-rays were detected by 

Wilhelm Konrad Roentgen [11]. Natural emanating radiation from uranium was identified by 

Henri Becquerel which was explored further by Pierre and Marie Curie who managed to 

purify radium from uranium. Intertwined with the discovery of ionizing radiation and the 

development of its applications, the field of radiation protection progressed. 

The development of X-ray machines, resulting from the first discovery of X-rays in 1895, was 

embraced in the field of medicine as they were, and still are, very useful in imaging internal 
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structures of the human body and in treating health conditions. In the beginning, X-rays were 

praised for their beneficial effects and extensively used for the treatment of a wide range of 

diseases, from birthmarks to syphilis, but without consideration of possible hazards for human 

health. Though, from the early 20
th

 century, there were already various cases in which adverse 

health effects related to the use of ionizing radiation became apparent. A text-book example 

concerns Clarence Dally whose death is considered the first to be associated with man-made 

radiation [11, 12]. Dally worked at Thomas Edison's lab developing an X-ray-powered light 

bulb. Edison put a stop on his work as he explained later 'I soon found that the X-ray had 

affected poisonously my assistant, Mr. Dally, so that his hair came out and his flesh 

commenced to ulcerate'. Dally developed a degenerative skin disease that progressed into a 

carcinoma leading to his death in 1904 [12]. The extensive use of X-rays at the turn of the 

century manifested itself as a wave of deaths in the 1920s, due to blood diseases and cancers 

with long latency, amongst the pioneering radiologists and their patients [12]. Another 

insidious danger for human health was the use of radium which was originally also thought to 

have only beneficial health effects. Doctors prescribed radium solutions or injected radium 

intravenously for a wide range of health disorders. The recognition of adverse health effects 

of radium started in the 1920s with the so-called "radium girls". Young women who had 

worked in factories painting radium dials on watches and clocks became seriously ill. Further 

investigation attributed the ingestion of large cumulative doses of radium, upon licking the 

painting brushes, to the illnesses and death [13, 14].  

Progressively, awareness of adverse (late) health effects of ionizing radiation started to sink in 

and national and international conferences were held to discuss possible protection measures 

against ionizing radiation. The Second International Congress of Radiology in 1928 led to the 

establishment of the International X-ray and Radium Protection Committee who issued their 

first protection guidelines, although only for professionals in the medical field. The American 

counterpart, the Advisory Committee on X-ray and Radium Protection, also found its origin 

in this epoch [13].  

At the same time, progress was made in experimental physics leading to the discovery of 

nuclear fission in 1939 [15]. This led soon to the use of nuclear power in the military field 

with, as an example, the notorious atomic explosions in Hiroshima and Nagasaki in 1945 

which remains one of the most controversial events in the 20
th

 century [16]. It ended the 

Second World War, but in such a deadly and destructive manner that it unleashed the threat of 
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more deadly wars to come. Nevertheless, following these bombings, more nuclear weapons 

were developed and stored in many countries over the world creating a fragile situation of 

continuous fear for destruction of civilizations. Next to this fear of nuclear destruction, the 

large amount of nuclear tests and the construction of nuclear reactors (for both peaceful and 

warlike purposes) in the 1950s and 60s led to uncontrolled releases of radioactive waste in the 

environment. Furthermore, the use of X-rays and radio-isotopes for medical and industrial 

purposes increased as well, adding to the contamination of soil and water [13, 15]. This raised 

new questions for radiation protection of human health and also the environment. In 

particular, since nuclear fission created new radioactive substances for which health and 

environmental effects were unknown. Also, while before radiation protection only concerned 

those exposed in their profession, and mainly in the medical field, now, the whole population 

became of concern. In addition, the public became aware of, and started to worry about, 

health risks related to exposure to ionizing radiation.  

In the early beginnings of radiation biology research it was already apparent that ionizing 

radiation caused damage to cells [17]. The conventional biological understanding is that 

ionizing radiation damages biological molecules, and in particular DNA, ultimately leading to 

cell death or transformation [18]. From the 1950s onwards, radiation protection philosophy 

started to change. Whereas before it was believed there was a threshold dose below which no 

biological harm was caused, radiobiological advances soon pointed out that even small doses 

of radiation could damage cells. Progressively radiation protection bodies acknowledged 

these findings and abandoned the use of "tolerance dose" and replaced it with "maximum 

permissible dose". This dose, based on the available knowledge, is expected not to cause 

appreciable health effects to a person during his lifetime [13]. The question "How much 

exposure should a human be allowed?" which is preceded with the question "How much is 

harmful?" became the foundation of radiation protection guidelines. The two major 

committees established in the 1920s adopted new names to reflect the change in philosophy 

and were renamed the International Commission on Radiological Protection (ICRP) and the 

US National Committee on Radiation Protection (NCRP) [13]. New organizations were 

formed as well, such as the United Nations Scientific Committee on the Effects of Atomic 

Radiation (UNSCEAR) established in 1955 which was assigned the task to study the effects 

of atomic radiations on human and environment [15].  
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1.1.4 The current issue of low doses in radiation protection 

 Use of the LNT model for radiation protection purposes 1.1.4.1

Nowadays, radiation protection bodies still struggle with the question 'How much is 

harmful?', in particular in the low dose range. Even though a large number of epidemiological 

and radiobiological studies are dedicated to investigate the effects of low doses of ionizing 

radiation their health impact is not yet fully elucidated, thus hampering an accurate risk 

assessment.  

Health effects of ionizing radiation can be divided into so-called deterministic and stochastic 

effects. Deterministic effects, these days also referred to as tissue reactions, prevail with high 

doses of radiation, whereas stochastic effects prevail with low doses. In brief, high dose 

irradiation causes a substantial amount of cell killing leading to clinical detectable tissue 

reactions. These tissue reactions are characterized by a threshold-dose and an increase in their 

severity with increasing dose above this threshold. With stochastic effects it is not the severity 

but the probability that increases with dose. Two diseases of concern, which are stochastic in 

nature, are cancer and hereditary disease [19, 20]. Hereditary disease manifests itself in the 

offspring of exposed humans when radiation-induced mutations occur in the reproductive 

cells (eggs and sperm) of the body [11]. 

Current radiation protection guidelines for low dose exposures are based on cancer and 

hereditary disease risk estimates. For clarity, the current consensus is to define a low dose as 

100 mSv or less and a low dose rate as 0.1 mGy/min or less [11, 21, 22]. Epidemiological 

findings form the basis for risk estimation. Epidemiological cohorts include the Japanese 

atomic bomb survivors, occupationally exposed groups (radiologists, nuclear industry 

workers, etc.), patients exposed during treatment or diagnostic procedures, and groups 

exposed to environmental sources of radiation [23]. The most informative cohort is formed by 

the Japanese atomic bomb survivors for whom an excess cancer risk was statistically 

evidenced for doses above 100 mSv. Below 100 mSv, however, epidemiological data are 

inconclusive. This is mainly because of practical limits of epidemiological studies. Indeed, 

larger, and practically not feasible, cohorts would be needed to quantify excess cancer risks 

due to radiation at these lower doses with sufficient statistical power [24]. Risk assessment in 

the low dose region (< 100 mSv) is therefore based on extrapolations made from high dose 

risk estimates. The high dose risk estimates are reduced by a dose and dose rate effectiveness 
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factor (DDREF) to account for the more efficient biological repair mechanisms with low dose 

and low dose rate exposure [11, 22]. Additional risk-modulating factors such as gender, age at 

exposure, radiation quality, dose rate, genetic background and lifestyle factors of the exposed 

individual also have an influence on risk estimates. 

Currently it is agreed to consider the extrapolation from high to low dose based on the 

assumption that the risk of developing cancer increases with dose and without the presence of 

a threshold dose. This is referred to as the linear non-threshold (LNT) model and implies that 

no dose can be considered absolutely safe, although risks are considered negligible below a 

certain dose [25]. The use of the LNT model for radiation protection purposes at low doses is 

in agreement with the "as low as reasonable achievable" (ALARA) principle that is 

commonly used to protect human health from harmful agents. In recent years, radiobiological 

and epidemiological findings have questioned the validity of the LNT model as a basis for 

radiation protection guidelines, although evidence is insufficient [26]. Other possible high to 

low dose risk extrapolations that have been proposed include the linear threshold model, the 

linear quadratic model, the hormetic model, and a downward curving model (Figure 1).   

However, until proven otherwise it is not advised to discard the implementation of the LNT 

model in radiation protection guidelines for cancer and hereditary risks. 
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Figure 1: Schematic representation of different possible extrapolations to estimate radiation risks of cancer 

down to very low doses (< 100 mSv). In principle all the proposed extrapolations could be consistent with the 

known high dose riks estimates from epidemiological studies, although some models are less credible than 

others. The LNT model has been adopted as radiation protection standard for radiation-induced cancer and as 

long there is insufficient scientific credibility for the other models, it is not advised to discard the LNT model as 

radiation protection standard. A. linear non-threshold (LNT) model for high dose rate, B. LNT model for low 

dose rate (after adjustment with DDREF) C. downward curving (decreasing slope), D. linear quadratic model 

(increasing slope), E. linear threshold model, F. hormetic model. Figure based on [11, 24].  

 

Based on the LNT model, ICRP has set current effective dose limits, for protection against 

stochastic effects, to 20 mSv/year for occupational exposures and to 1 mSv/year for the 

general public [22]. It should be mentioned that these dose limits are not valid for patients 

exposed to ionizing radiation for medical purposes. In this case, exposure is not restricted in 

terms of dose but is based on the principle of justification. Exposure to ionizing radiation 

should be justified in term of health benefit for the patient and requires a sound judgment to 

decide whether the expected benefits will outweigh the likely radiation risks [27].  

 Radiobiological findings that question the LNT model 1.1.4.2

The classical radiobiological paradigm considers DNA as the critical cellular target of 

ionizing radiation, the so-called "target theory". In this theory, biological effects are 

considered the consequence of the cellular response to radiation-induced DNA damage. This 

damage can be inflicted directly but also indirectly by the action of free radicals which are 

formed upon interaction of ionizing radiation with water [28]. The target theory forms the 
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radiobiological basis of the LNT model. Indeed, at the tissue level, this theory presumes that 

with exposure to higher doses of ionizing radiation more cells are hit and deleterious effects 

consequently increase proportionally. At the cellular level, the yield of DNA damage is 

assumed to increase in proportion to dose and as a consequence the probability of mutagenic 

damage in the irradiated cell increases linearly with dose [29, 30].  

Since cancer is considered the major health risk of low doses of radiation, the current 

radiation protection system is aimed at limiting the incidence of radiation-induced cancer. In 

general, the LNT model, based on the target theory, is used for cancer risk estimation in the 

low dose region. However, cancer development is not a single cell event but a complex 

process modulated by various factors such as genetics, environment and the target organ. 

Cancer may be initiated by a radiation-induced mutagenic event in a single cell, but several 

other steps need to be overtaken for full cancer development [31]. How low doses of ionizing 

radiation influences cancer development is not fully known but more and more attention is 

given to the role of so-called "non-targeted effects" comprising bystander effects and genomic 

instability. Non-targeted effects are defined as biological responses to ionizing radiation 

observed in cells that were not directly hit [29, 30, 32]. These effects question thus the target 

theory on which the LNT model is based. 

Bystander effects describe biological effects of ionizing radiation which are found in cells that 

were not irradiated, but which are in close proximity of those that were [29]. They are 

proposed to be mediated by some sort of communication between irradiated and non-

irradiated cells, most likely by means of secreted soluble factors which are diffused through 

the culture medium or by cell-to-cell gap junction communication [30]. Bystander effects 

manifest themselves as a wide range of biological endpoints including, but not limited to, 

DNA damage, cell killing, chromosomal aberrations and transformation. Another non-

targeted effect is genomic instability which describes the increasing rate of genetic alterations 

in the progeny of irradiated cells, multiple generations after the initial insult. Many biological 

endpoints of genomic instability are in common with those of the bystander effect and it has 

been proposed that the two are interlinked [29]. The mechanisms leading to both bystander 

effects and genomic instability, and their interrelationship, are not yet fully understood. 

Experimental findings suggest a role for a wide range of factors including reactive oxygen 

and nitrogen species (ROS/RNS), cytokines, mitochondrial dysfunction, deficient DNA 

damage repair system, changes in gene expression, perturbations in cellular homeostasis and 

epigenetic mechanisms [29, 31-33].  
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Another phenomenon is the adaptive response in which a low dose of ionizing radiation 

(adaptive dose) given prior to a higher (challenging) dose attenuates the deleterious effects of 

the challenging dose. The excess risk of the challenging dose is reduced by the prior adapting 

dose, but is still generally increased. The priming dose should be capable of inducing 

effective protective signaling mechanisms, such as up-regulation of DNA repair mechanisms, 

and is usually between 0.01-0.2 Gy of low LET radiation [34]. The protective effects of the 

priming dose ahead of a higher dose are transitory and last usually between 4 and 48 h [35]. 

The adaptive response has been considered as a component of non-targeted effects, although 

this remains under discussion [29].  

Non-targeted effects could have implications for the current evaluation of cancer risk at low 

doses. It is very likely that they challenge the linearity of cancer risk in the low dose region 

but it is not clear in which way. For example, bystander effects may lead to an increased 

number of mutagenic cells and thus an increased risk. On the other hand, they may decrease 

risk when lethal effects are propagated to other cells [36]. So far, most experimental work on 

non-targeted effects is performed in vitro and the relevance in vivo and ultimately their impact 

on radiation-induced detrimental health outcome are even less understood. Therefore, the 

significance of non-targeted effects on radiation risk assessment is still under discussion.  

 Non-cancer disease risks and radiation protection  1.1.4.3

Traditionally, non-cancer diseases are not considered as health risks following exposure to 

low doses of radiation. Indeed, non-cancer diseases are classified as deterministic tissue 

reactions which are characterized by a threshold dose [37]. The ICRP has judged that below 

an absorbed dose of 100 mGy no clinical relevant tissue damage occurs [22]. Recent 

epidemiological findings point, however, to an excess risk of non-cancer diseases following 

exposure to lower doses as previously thought [37]. The evidence is the most sound for 

cardiovascular diseases (CVD) and cataract. At present, an excess risk of CVD mortality 

above 0.5 Gy has been evidenced by epidemiological studies (more detailed explanation in 

section 1.2.). The dose-risk relationship is undetermined below 0.5 Gy, but if this relationship 

proves to be without a threshold it may have considerable impact on current low dose health 

risk estimates. The overall excess risk of mortality following low dose exposures may then be 

about twice the risk currently assumed, based on radiation-induced cancers alone [38].  
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In the next chapter, a more detailed overview is given of epidemiological findings. 

Furthermore the societal concern of a possible excess risk of CVD mortality, and also 

morbidity, following low dose exposures is discussed.  

For the definition of low and high dose radiation in this thesis we followed the definitions set 

by the Health Protection Agency in the following report "Circulatory disease risk. Report of 

the independent Advisory Group on Ionising Radiation. 2010". In this report low doses of 

radiation are defined as being below 0.5 Gy (since epidemiological findings concerning CVD 

are inconclusive for doses below 0.5 Gy), and high doses as 5 Gy and above [10]. 
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1.2 Cardiovascular disease risk related to low doses of ionizing radiation  

1.2.1 Recognition of radiation-related cardiovascular disease risk 

The recognition that exposure of the heart and the vasculature to high doses of ionizing 

radiation can cause CVD started in the late 1960s [39]. This was mainly related to the clinical 

observation of cardiovascular complications in radiation-treated survivors of Hodgkin's 

lymphoma and other childhood cancers. Later, larger-scale epidemiological studies have 

found a clear association between therapeutic doses of thoracic irradiation and an increased 

risk of cardiovascular disease in these long-term cancer survivors, confirming the earlier 

observations [40].  

An excess risk of CVD was also observed after postoperative radiotherapy for breast cancer. 

In these patients, a part of the heart received accumulated doses of ≥ 40 Gy (fractionated 20 x 

2 Gy). After correction for fractionation effects using the linear quadratic model and an α/β 

ratio of 1–3 Gy, determined in experimental studies in the rat heart, Schultz-Hector and Trott 

have calculated that this corresponds to equivalent single doses to the total heart of about 1-2 

Gy [41]. The Early Breast Cancer Trialists' Collaborative Group has performed a meta-

analysis on mortality data of more than 30.000 breast cancer patients 15 years after treatment. 

The mortality of heart disease was increased with 27 % in patients treated with surgery and 

subsequent radiotherapy compared to patients treated with surgery alone [42]. Evaluation of 

long-term mortality in breast cancer survivors may however be influenced by the varying 

prognosis of the different treatment regimes (surgery versus radiotherapy). This can be 

circumvented by comparing women irradiated for left-sided tumors with women irradiated for 

right-sided tumors. Cardiac radiation doses are larger in radiotherapy patients with left-sided 

tumors than in radiotherapy patients with right-sided tumors [43]. Analysis of 308 861 women 

with breast cancer registered in the Surveillance, Epidemiology and End-Results cancer 

registries database from the United States has revealed an increased heart disease mortality 

ratio for women irradiated for left-sided breast cancer compared to right-sided breast cancer 

[44]. A study related to 72 134 women diagnosed with breast cancer in Denmark and Sweden 

during 1976-2006 and followed-up for 30 years revealed an increased risk of ischemic heart 

disease, pericarditis and valvular disease in irradiated women with left-sided tumors (mean 

cardiac dose 6.3 Gy) compared to right-sided tumors (mean cardiac dose 2.7 Gy) [45]. 
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Also, radiotherapy patients with benign diseases such as the peptic ulcer patients form 

interesting study cohorts. For instance, coronary heart disease mortality was compared 

between peptic ulcer patients treated with radiotherapy (n = 1859) and treated by other means 

(n = 1860) [46]. The calculated received volume-weighted cardiac doses ranged from 1.6 to 

3.9 Gy and the portion of the heart directly in the field received doses of 7.6-18.4 Gy. A 

significantly increased risk of coronary heart disease mortality was observed with increasing 

dose. Only recently, various epidemiological findings, in particular from the Japanese atomic 

bomb survivors, have raised awareness of possible CVD risk following exposure to low and 

moderate doses of radiation [41]. Below an overview is given of the major epidemiological 

findings related to CVD risk following low dose exposure. 

1.2.2 Low dose exposed epidemiological cohorts 

 Classification of cardiovascular diseases in epidemiology 1.2.2.1

Reviewing the epidemiological literature related to CVD and low dose ionizing radiation is 

complicated by the different classifications of CVD, also referred to as heart disease. 

Moreover, all CVD are often pooled in one diagnosis in epidemiological studies. However, 

this hampers thorough understanding of radiation-related CVD risk, and distinction should be 

made between the different clinical manifestations (see detailed explanation of the different 

clinical manifestations in section 1.3.) [47]. In addition, many epidemiological studies face 

the problem of misclassification of the cause of death, except for stroke, for which the 

diagnosis tends to be reasonably good [10]. In fact, stroke is not considered a CVD, but a 

circulatory disease since it involves the blood circulation in the brain and is unrelated to the 

heart. It is defined by brain injury which occurs when a blood vessel in the brain ruptures or is 

blocked leading to loss of blood supply in the brain area of concern. 

 Survivors of the atomic bombings of Hiroshima and Nagasaki  1.2.2.2

The most informative cohort is the Life Span Study (LSS), consisting of 120 321 exposed and 

non-exposed individuals selected from respondents to the national census of Japan in 1950 

calling for survivors exposed to the bombings in Hiroshima and Nagasaki, and from 

residential surveys in the cities after the national census. Mortality in this population has been 

investigated since 1950 by collecting information through the national population registry 

(koseki) and death certificates obtained throughout Japan. Cancer incidence data was available 
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from population-based cancer registries since 1957 in Hiroshima and since 1958 in Nagasaki 

[48]. Next to the availability of these data, the large size, the presence of both sexes and all 

ages, and well-characterized individual dose estimates
2
 makes this cohort a valuable source 

for risk estimation. Another cohort, the Adult Health Study (AHS), was established in 1958 

and consists of 19 961 subjects from the LSS cohort. These survivors undergo biennial health 

examinations which provide additional clinical and sub-clinical information to the death and 

cancer registries data. In this way, disease morbidity for a variety of conditions can be 

investigated [50].  

Preston and coworkers have evaluated non-cancer mortality based on the LSS report 13 

published by the Radiation Effects Research Foundation (RERF), which spans the time period 

1950-1997 [51]. In this study, the weighted colon doses from the DS86 dosimetry system was 

used for individual dose estimates. Only the period 1968-1997 was included to account for the 

"healthy survivor" selection effect. Individuals had to be alive in 1950 to enter the LSS cohort 

and have thus survived the difficult conditions after the bombing, which means that the health 

experience of this cohort may not be typical for a normal population. This is reflected as a 

decrease in non-cancer mortality during 1950-1960 in the LSS members that received doses 

below 2 Sv, as shown by Shimizu and coworkers [52]. This "healthy survivor" selection effect 

had largely disappeared by the mid-1960s. To exclude this confounding effect, Preston and 

coworkers advised to restrict the analyses to proximal survivors who were within 3 km of the 

hypocenter of the bombing, and to a follow-up period starting from 1968 [51]. Based on the 

LNT model, excess relative risk (ERR)
3
 estimates were calculated to be 0.17 with 90% 

confidence intervals (CI) (0.08;0.26) for heart disease and 0.12 (90% CI 0.02;0.22) for stroke, 

for the period 1968-1997 [51]. 

Shimizu and coworkers have evaluated ERR of mortality from heart disease and stroke in the 

LSS cohort with a follow-up of 53 years (1950-2003) [53]. For individual dose estimates, 

                                                 
2
 Since 1957, the Radiation Effects Research Foundation has developed several dosimetry systems to determine 

neutron and gamma doses received by the atomic bomb survivors. The DS86 system represents the calculated 

organ doses (active marrow, bladder, bone, brain, female breast, eye, foetus/uterus, large intestine, liver, lung, 

ovary, pancreas, stomach, testes and thyroid) taking shielding, provided by structures and the human body, into 

account. The DS86 was implemented in 1986. The most recent dosimetry system is the DS02 system 

implemented in 2003, which has tackled the discrepancies between the measured and calculated values for 

neutron activation in Hiroshima observed in the DS86 system [49]. 
3
 The excess relative risk (ERR) is an epidemiological risk measure that quantifies how much the level of risk 

among persons with a given level of exposure, in this case of ionizing radiation exposure, exceeds the risk of 

non-exposed persons [10]. 
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weighted colon doses (Gy) from the DS02 dosimetry system were used. In addition, they have 

obtained, by a mail survey, information regarding sociodemographic (education, occupation 

type), lifestyle (smoking, alcohol intake) and health variables (obesity, diabetes mellitus) from 

36 468 members of the LSS cohort. This allowed them to evaluate the effect of these 

confounding factors on ERR estimates. It should be noted that they included the full follow-

up period from 1950-2003 and all survivors, thus not taking into account the "healthy 

survivor" selection effect. They found an ERR of 0.14 (95% CI 0.06;0.23) for heart disease 

and an ERR of 0.09 (95% CI 0.01;0.17) for stroke based on the LNT model. Whereas the 

LNT model fitted best the data for heart disease, the quadratic model was best to fit the data 

for stroke (Figure 2). The latter model implies relatively little risk at lower doses. Indeed 

calculation of ERR for stroke over restricted dose ranges revealed a ERR of 0.03 (95% CI -

0.10;0.16) for 0-1 Gy and -0.07 (95% CI -0.28;0.16) for 0-0.5 Gy. Furthermore, they showed 

that the association of dose with CVD risk in the LSS cohort is unlikely to be an artifact from 

confounding by sociodemographic, lifestyle or disease risk factors.  

 

 

Figure 2: Radiation dose-response relationship (ERR/Gy) in the LSS cohort for death from stroke (left panel) 

and death from heart disease (right panel), showing linear-quadratic and linear functions. Shaded areas represent 

95% confidence region for the fitted linear line. Error bars represent 95% CI for each dose category risks and the 

bullet represents the point estimate of risk for each dose category. The participants were divided in several dose 

categories according to their weighted colon dose (in Gy = γ dose plus 10 times neutron dose) [53].  

 

The abovementioned studies have used the LSS cohort for CVD risk estimations. Takahashi 

and coworkers have examined the association with dose and the incidence of stroke in the 

AHS cohort [50]. For their study, information of health examinations from the follow-up from 

1980 onwards has been used, resulting in 9515 AHS participants. For individual dose 
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estimates, weighted colon doses (Gy) from the DS02 dosimetry system were used. In this 

study population, risk for hemorrhagic stroke was observed to increase with dose. This was 

across the full range of doses for men, while in women there seems to be a threshold of about 

1.3 Gy.  

 Occupational exposure 1.2.2.3

Studies in radiation workers are of interest since they generally involve relatively low doses 

received over repeated exposures, although in some cases accumulated doses may be high. 

Various studies have been performed, of which the most important will be discussed. The 

largest studied cohort consists of 275 000 nuclear industry workers from 15 countries, 

referred to as the 15-country study [54]. The average cumulative dose received was 20.7 mSv. 

An overall increasing trend, although not significant, for circulatory disease mortality was 

observed. It was concluded that their findings are compatible with both no increased risk and 

with an increased risk comparable to that observed in A-bomb survivors. A more recent study 

by Muirhead and coworkers has revealed an increasing circulatory disease mortality risk with 

dose, which was borderline significant, in the UK National Registry of Radiation Workers in 

the industrial and medical field [55]. The average cumulative dose received was 24.9 mSv. 

This finding should, however, be interpreted with caution seeing the lack of information on 

confounding factors. Another large cohort consists of 206 620 radiation workers in the 

industrial and medical field, registered in the National Dose Registry of Canada [56]. Average 

exposure of all workers was 6.3 mSv, with large differences between males (10.6 mSv) and 

females (1.7 mSv). A significant increasing trend of circulatory disease mortality with dose 

was observed in males. Again, there is a lack of information on confounding factors and there 

is also incompleteness of dose records. The Chernobyl liquidator cohort consists of 61 017 

individuals with an average cumulative dose of 0.109 Gy. An ERR/Gy of 0.41 (95% CI 

0.05;0.78) was found for ischemic heart disease morbidity and stroke, though not adjusted for 

recognized risk factors such as excessive weight, hypercholesterolemia, smoking, alcohol 

consumption, and others [57]. 

The Mayak cohort is of particular interest since it includes information both on mortality and 

morbidity, and information on confounding factors [58]. In 1948, the first nuclear energy 

enterprise in Russia, Mayak Plutonium Association, was put in operation. Since 1948 the 

Mayak personnel undergo regular routine medical examinations. In addition, every 3-5 years 

a more detailed examination is carried out in a specialized hospital. This examination system 
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led to a unique archive of medical data which was used to create the 'Clinic' medical-

dosimetric database. Also, from a dosimetric point of view, the database is sound. Individual 

dosimetry for external gamma exposure was introduced in 1948 and for internal exposure 

during the 1960s [58]. Complete data are available for 12 585 Mayak workers employed 

during 1948-1958 and followed-up until December 2000. The mean cumulated external dose 

was 0.91 ± 0.95 Gy (99% percentile 3.9 Gy) for men and 0.65 ± 0.75 Gy (99% percentile 2.99 

Gy) for women. In this cohort, a significant increasing trend in ischemic heart disease 

morbidity was observed with increasing total external dose (ERR/Gy = 0.11 (95% CI 

0.049;0.168)). Influence of confounding factors on this trend was minimal [59]. The most 

recent analysis of the Mayak cohort includes 18 763 workers with an additional follow-up of 

5 years [60]. Overall, risk estimates for ischemic heart disease are similar to the earlier study 

(ERR/Gy = 0.10 (95% CI 0.045;0.153). Remarkable though, a statistically significant 

decrease in ischemic heart disease incidence was found among workers exposed to external 

doses of 0.2-0.5 Gy compared to workers exposed to external doses below 0.2 Gy. This 

decreased risk is heavily influenced by the observations in female workers. The authors 

remark that this finding should be interpreted with caution since it has never been reported in 

other studies.  

It must be noted that besides the classical CVD-related confounding factors, occupational 

studies have to deal with the "healthy worker" selection effect, similar to the "healthy 

survivor" selection effect in A-bomb survivors. The "healthy worker" selection effect occurs 

when workers who are healthier and have lower mortality and morbidity rates are selectively 

retained in the workplace, as such accumulating higher doses. One can adjust for this 

confounding by considering duration of employment as a confounding factor in the analysis, 

as done in the 15-country study [54].  

 Meta-analysis  1.2.2.4

The Advisory Group on Ionising Radiation has reviewed the available epidemiological data 

for low and moderate dose exposure in 2010. Taking all the studies together, they reported a 

small but statistically significant overall ERR/Gy of 0.09 (95% CI 0.07;0.12). They remarked, 

however, that there was a lot of heterogeneity in risk estimates of the different studies 

included in their meta-analysis [10]. Little and coworkers have recently extended this meta-

analysis [38]. They estimated excess risks for four subgroups of circulatory disease, classified 
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according to the 'International Classification of Diseases, 10
th

 revision': ischemic
4
 heart 

disease (IHD), non-ischemic heart disease (non-IHD), cerebrovascular disease (CVA), and all 

other circulatory diseases. Significant effect of heterogeneity between the different studies 

was found for CVA and other circulatory diseases, but not for IHD and non-IHD. ERR were 

calculated based on the LNT model, which implicitly assumes a linear association of CVD 

risk at low doses and dose rates. They noted that this assumption is reasonable since there is 

little evidence for non-linearity in the Japanese atomic bomb survivors and Mayak workers 

data. Furthermore, at least for IHD and non-IHD, the ERR/Sv was consistent between the 

Japanese atomic bomb survivors, Mayak workers and other occupational cohorts [38]. 

Although it should be noted that Schollnberger and coworkers advocate for, at least in the 

LSS data, the consideration and testing of other dose-response models for non-cancer effects 

[61]. To conclude, the overall consensus of the abovementioned reports is that there is a 

significant elevated CVD risk for doses above 0.5 Gy [10, 62].  

1.2.3 Epidemiology alone is not the answer 

CVD are the leading cause of mortality and morbidity and account for 30-50% of all deaths in 

most developed countries. It is a multifactorial disease with many risk factors such as lifestyle 

and other personal factors [63]. The most established risk factors include male sex, elevated 

low-density lipoproteins (LDL), smoking, hypertension, family history of premature coronary 

disease, and diabetes mellitus [64]. Epidemiological studies, as presented above, have limited 

statistical power to detect a possible excess risk of CVD following low dose exposure (0.5 

Gy), due to the high background level of CVD in the population as a whole and many 

potentially confounding risk factors [10]. For example, it has been calculated that, if excess 

risk is in proportion to dose, a cohort of 5 million people would be needed to quantify the 

excess risk of a 10 mSv dose [24]. Other factors that have an influence on epidemiological 

results are the distribution of the dose range, accuracy of dosimetry, the duration of follow-up 

after exposure and correct assignment of cause of mortality [65].  

Although epidemiological studies have led to a better insight in radiation-related CVD risk, 

there are still many uncertainties that need to be clarified. Is there a threshold dose? Does the 

latency of CVD development depend on the dose? What are the sensitive targets in the heart 

and vasculature? Does exposure has an impact on CVD incidence or progression, or both? 

                                                 
4
 Ischemia describes the phenomenon when tissues are deprived of oxygen due to restricted blood supply. 
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What is the impact of acute, fractionated or chronic exposure on risk estimates? For an 

accurate dose risk assessment, these questions need to be answered. 

Classical epidemiological studies, as described above, will not provide all the needed insight 

to answer these questions. A more targeted approach such as the integration of epidemiology 

and biology is required. For example, the assessment of subclinical endpoints and other 

cardiovascular biomarkers by functional imaging in patients receiving radiotherapy will offer 

insight into the development and progression of CVD following radiation exposure [63, 65]. 

Single-photon emission computed tomography (SPECT) or positron emission 

tomography (PET) imaging of micro-vascular perfusion has already been applied in breast 

cancer studies. The outcome differed between the studies.  For instance, whereas in one study 

perfusion defects were observed within 6-12 months after radiotherapy, no significant 

differences in perfusion defects were found in another study [66, 67]. Also, the evaluation of 

cardiovascular biomarkers in radiotherapy patients may be useful. For instance, elevated 

levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP)
5
 have been shown to be 

predictive for heart failure and/or CVD mortality across a broad range of individuals [70]. 

Higher values of NT-proBNP were found in patients treated with radiotherapy for left-sided 

breast cancer compared to patients treated with other means [71]. 

Next to epidemiology, radiobiological research is essential for understanding CVD risk in the 

low dose region. Since epidemiological findings for low and moderate doses are suggestive 

and not persuasive, their use in dose risk assessment is limited. A thorough understanding of 

the biological mechanisms is thus needed to complement the epidemiological findings. And 

once there is a comprehensive biological understanding, the inclusion of biologically based 

dose-response models will be of benefit for accurate risk estimation in the low dose region 

[72].  

1.2.4 Societal concern  

The possible excess risk of CVD following exposure to low doses is of great societal concern. 

According to the ICRP, a dose of 0.5 Sv may lead to approximately 1% of exposed 

individuals developing cardiovascular or cerebrovascular disease, more than 10 years after the 

                                                 
5
 As a result of wall stress, induced by amongst others IHD, pulmonary thromboembolism and congestive heart 

failure, the B-type natriuretic peptide (BNP) gene is upregulated in cardiomyocytes. The propeptide proBNP is 

cleaved into the physiologically active BNP and the biologically inactive N-terminal fragment (NT-proBNP). 

The BNP hormone has various natriuretic vasodilatory effects on the heart and the vascular system [68, 69]. 
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exposure, in addition to the 30-50% suffering from disease without being exposed to ionizing 

radiation [73]. Although the assumed risk is rather small, it may have serious implications for 

public health. Indeed, seeing the high background rate of CVD, the absolute number of excess 

cases would be substantial [65].  

Various issues such as occupational radiation exposures, future of nuclear power, manned 

space flights, and threat of radiological terrorism, call for a thorough understanding of low 

dose health risks [24]. The main concern is, however, the increasing use of ionizing radiation 

for diagnostic medical purposes (Figure 3). For instance, since 1993 the number of computed 

tomography (CT) scans has quadrupled in the US and similar trends are observed in Europe 

[74].  

 

 

Figure 3: Average annual effective dose per person received in 1980 (left panel) and 2006 (right panel) in the 

United States. The large increase in the use of ionizing radiation for medical purposes, in the period 1980-2006, 

contributed to a total increase from 3.0 mSv in 1980 to 6.2 mSv in 2006. Similar trends are observed in other 

industrialized countries [75]. 

 

In particular, the increased use of non-invasive cardiovascular imaging techniques such as 

cardiac CT scans and myocardial perfusion imaging with radionuclides, are of importance. 

Indeed, effective doses range from 1 to 20 mSv depending on the procedure (Table 1) [9]. 

Although one cannot deny the huge health benefits of these improved diagnostic procedures, 

concerns are raised regarding the 'overuse' and potential associated health risks [76]. For 

example, it has been observed that 14-22% of cardiac imaging tests were inappropriate in the 

US [77, 78]. 
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Examination 
Representative 
Effective Dose 
Value (mSv) 

Range of 
Reported 
Effective Dose 
Values (mSv) 

Administered 
Activity 
(MBq) 

Chest X-ray posteroanterior and lateral 0.1 0.05-0.24 N/A 
Diagnostic invasive coronary angiogram 7 2-16 N/A 

Coronary CT angiogram 
  

  

 64-slice multidetector, retrospective gating 12  9-19 N/A 

 64-slice multidetector, reduced tube voltage (100 kVp) 6  3-8 N/A 

 64-slice multidetector, prospective triggering 3  2-4 N/A 

 Dual-source high pitch < 1 < 1 N/A 

 264 or 320 multidetector row CT 4  2-8 N/A 

Nuclear medecine studies 
  

  

Myocardial perfusion 
  

  

 Sestamibi (1-day) stress/rest 12 N/A 1480 

 Tetrofosmin (1-day) stress/rest 10 N/A 1480 

 Thallium stress/redistribution 29 N/A 130 

 Rubidium-82 rest/stress 10 N/A 2960 

Myocardial viability 
  

  

 PET F-18 FDG 14 N/A 740 

 Thallium stress/reinjection 41 N/A 185 

Table 1: Overview of typical ionizing radiation doses in cardiac imaging procedures [79]. CT = computed 

tomography, FDG = fluorodeoxyglucose, N/A = not applicable, PET = positron emission photography. 

 

As mentioned before, radiation protection of patients is not based on dose limits but on the 

principle of justification which states that the benefits and risks from the use of ionizing 

radiation should be carefully evaluated. However, this risk/benefit balance is highly patient-

dependent and the decision for the use of a specific imaging test relies on the physician's 

judgment. Several guidelines have been published by various societies such as the European 

Society of Cardiology and the American College of Cardiology Foundation, to aid in this 

decision [9, 80]. These guidelines offer information regarding the accuracy of the tests, the 

usefulness of the information obtained from the test, but also regarding the risks of the tests 

including those related to radiation adverse health effects. Also, the implementation of 

informed consent, in which the patient is informed of possible risks and decides if he will give 

his consent, will stimulate physicians to more carefully balance benefits and risks of a specific 

imaging procedure [76, 79]. Furthermore, the development and implementation of dose-

lowering techniques will be of benefit not only for the patient [81], but also for the physician. 

Also, the identification of biomarkers of susceptibility allows screening for sensitive patients, 

aiding in the evaluation of the risk/benefit balance [82].  
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1.3  Clinical manifestation and pathology of radiation-induced 

cardiovascular diseases 

1.3.1 Overview 

As mentioned above, radiotherapy patients who received doses above 40 Gy to part of the 

heart may develop cardiovascular complications later in life [43]. More recently, 

epidemiological findings also point to an excess risk of CVD following exposure to lower 

doses. CVD, also commonly referred to as heart disease, comprise a broad range of different 

clinical manifestations. Radiation-induced clinical manifestation of CVD is dependent on 

various factors such as dose, the volume of the heart exposed, age at exposure, latency of 

disease, length of follow-up and other confounding factors (e.g. smoking and diet) [83]. The 

major clinical manifestations of radiation-related CVD, pericarditis, congestive heart failure 

and coronary artery disease, will be discussed below. Ionizing radiation may also cause 

valvular disease, arrhythmias and conduction abnormalities, but the evidence for a direct 

causal relationship is not strong [43, 84].  

 

 

Figure 4: Overview of the heart anatomy. A. Illustration of the external anatomy with the major cardiac veins 

and arteries. B. More detailed illustration of the pericardial sac that surrounds the heart. Figure adapted from 

http://cnx.org/content/m46676/latest/ and http://medtech1.com/attack/heart_anatomy.cfm.   

 

 

 

http://cnx.org/content/m46676/latest/
http://medtech1.com/attack/heart_anatomy.cfm
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1.3.2 Pericarditis 

The earliest sign of radiation-related heart disease is acute pericarditis which occurs already 

months after high dose irradiation of the heart (> 40 Gy). Since 1970, advances in 

radiotherapy treatments have led to significant reduction of both the dose and the volume of 

the heart exposed [41]. Therefore, radiation-induced pericarditis is not common anymore 

these days. Acute pericarditis is inflammation of the pericardium, the membrane that 

surrounds the heart (Figure 4), and is characterized by the exudation of protein-rich fluid in 

the pericardial sac. On longer term, this can lead to chronic constrictive pericarditis due to 

fibrin deposition causing a thickened, rigid pericardial sac [40, 85]. The development of acute 

pericarditis was also observed in rabbits, rats and dogs after single doses to the heart of 16 to 

20 Gy [86-88]. These experimental studies showed a threshold dose of about 15 Gy with a 

steep dose-response relationship (incidence of 100 % at 20 Gy).  

1.3.3 Coronary artery disease 

Obstruction of the blood flow in coronary arteries, responsible for blood supply to the heart, is 

referred to as coronary artery disease [10]. Mild obstruction due to narrowing of the coronary 

arteries leads to angina (discomfort due to ischemia of the heart muscle) whereas severe 

blockage leads to myocardial infarction (heart attack) which on its turn leads to acute heart 

failure. Atherosclerosis is the major underlying pathogenesis causing coronary artery disease. 

It can be described as a chronic inflammatory disease of the arterial wall in which the buildup 

of plaques in the intima impairs normal vascular functioning (Figure 5). These plaques are 

characterized by accumulation of lipids and fibrous elements [89]. The development and 

progression of atherosclerosis is a complex process with many players. The presence of 

plaques leads to narrowing of the artery and, upon rupture of a plaque, even to blockage of the 

artery [90].  
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Figure 5: Schematic overview of the development of an atherosclerotic lesion. In all steps, inflammation plays 

an important role. A. A healthy artery with a well-functioning intact endothelium, a tunica intima, media and 

adventitia. Vascular smooth muscle cells (VSMC) are mainly found in the tunica media but also in the tunica 

intima. B. One of the initiating steps is the expression of adhesion molecules on the endothelium and the 

subsequent attraction of inflammatory blood cells (mainly monocytes). These monocytes will transmigrate to the 

intima where they will maturate to macrophages which will then transform to foam cells upon the uptake of ox-

LDL. C. Further progression to an atherosclerotic plaque includes the transmigration of VSMC from the tunica 

media into the intima and the proliferation of VSMC in the intima. There is also an enhanced production of 

extracellular matrix molecules such as collagen, elastin and proteoglycans. Macrophages, foam cells and VSMC 

can die, and released lipids will accumulate in the central region of the plaque, also denoted the lipid or necrotic 

core. D. When a plaque ruptures it will induce thrombosis which is the major complication. The blood 

component will get in contact with the tissue factors present in the interior of the plaque triggering the formation 

of a thrombus which will hamper or even obstruct blood flow. Figure based on [91]. VSCM = vascular smooth 

muscle cell, ox-LDL = oxidized low density lipoprotein 

 

Normal rodents are resistant to atherosclerosis since they have low plasma levels of pro-

atherosclerotic low-density lipoprotein (LDL). Therefore, atherosclerosis-prone animal 

models were developed. For example, ApoE -/- and LDL receptor -/- mouse models are 

commonly used [92, 93]. Apolipoprotein E (ApoE) is an important glycoprotein in the 

transport and metabolism of lipids and lack of a functional ApoE gene leads to an altered 

plasma lipid profile, and the rapid development of atherosclerotic lesions. Mice that lack a 

functional LDL receptor gene also have an altered plasma lipid profile, with elevated LDL 
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levels. LDL receptor deficient mice will develop atherosclerosis when fed with a lipid-rich 

diet.  

The effect of ionizing radiation on the development and progression of atherosclerosis has 

been investigated in various animal models, which has been reviewed in [10]. For example, 

Stewart and coworkers have examined the development and progression of atherosclerotic 

lesions in ApoE -/- mice after single dose irradiation (14 Gy) of the neck region [94]. There 

was no major increase in the total plaque burden in the exposed carotid arteries but the quality 

of the plaques was changed, having inflammatory characteristics. Indeed, plaques showed a 

macrophage-rich core, low collagen content and intraplaque hemorrhage, which are known to 

render human atherosclerotic plaques instable and prone to rupture. They also observed the 

presence of atypical swollen endothelial cells. It is hypothesized that radiation-induced 

changes of endothelial function together with radiation-induced endothelial cell death and 

exposure of thrombotic elements of the underlying subendothelium leads to chronic 

inflammation and the development of a vulnerable plaque [94]. Gene expression profiling of 

ApoE -/- mice exposed to an acute dose of 16 Gy also revealed the up-regulation of 

inflammation-related pathways [95]. Further research in the lab of Stewart showed that a 

more clinically relevant fractioned irradiation scheme (20 x 2 Gy in 4 weeks) also predisposes 

to the formation of an inflammatory plaque [96]. Remarkable, acute lower dose irradiation (8 

Gy) of ApoE -/- mice did not predispose to an inflammatory plaque, but did accelerate the 

development of atherosclerosis, as demonstrated by an increased number of plaques. Overall, 

they concluded that exposure to high dose ionizing radiation accelerates the atherosclerotic 

process in the presence of other risk factors (e.g. high fat diet), and predisposes to the 

development of a vulnerable inflammatory plaque prone to rupture [10].  

With low doses and dose rates of radiation, the picture is different. Mitchel and coworkers 

have exposed ApoE -/- mice to low doses of radiation (0.025 – 0.5 Gy) at either high (150 

mGy/min) or low (1 mGy/min) dose rate [97]. The mice were exposed at an early stage of 

atherosclerotic disease (2 months old) or at a late stage of atherosclerotic disease (8 months 

old). Doses of 0.025 to 0.050 Gy, given in both low and high dose rate, induced a protective 

effect by slowing the formation of new lesions and the increase in the size of existing lesions, 

in mice exposed at an early stage. High dose rate exposure increased, however, the 

progression of lesion severity. The effect for mice exposed at a late stage of atherosclerotic 

disease with low dose rate was similar as that for mice exposed at an early stage. On the other 

hand, high dose rate exposures protected against progression of lesion severity, opposite to 
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what was observed in mice exposed at an early stage. Additional experiments with ApoE -/- 

mice with reduced p53 functionality (Trp53 +/-) revealed an important role for p53 in 

atherosclerosis progression [98]. For example, protective effects of low dose radiation 

delivered at both low and high dose rate were observed in Trp53 normal mice exposed at a 

late stage of atherosclerotic disease.  On the other hand, with the same irradiation procedure, 

detrimental effects were observed in Trp53 +/- mice exposed at a late stage of atherosclerotic 

disease. Overall, these findings raised the importance of dose rate effects and p53 

functionality on the development of atherosclerosis. Furthermore, their findings point out that 

a linear extrapolation of the effects at high doses to low doses is not appropriate.  

1.3.4 Congestive heart failure 

Congestive heart failure is described by a compromised blood pumping function of the heart, 

due to a reduced capacity of the heart muscles, causing under-perfusion of the body tissues. 

The underlying pathologies are various and include IHD, hypertension, valvular heart disease, 

cardiomyopathies, and congenital heart disease [99]. Rats that received single doses of at least 

15 Gy to the heart developed congestive heart failure within their normal lifespan [88]. 

Further radiobiological research has revealed an important role for radiation-induced decrease 

in capillary density. Areas of decreased capillary density in the heart are characterized by 

focal loss of the endothelial cell marker alkaline phosphatase [100]. Progressive reduction of 

capillary density leads to ischemic necrosis, fibrosis and death of cardiac myocytes (muscle 

cells) in these areas. This myocardial degeneration is associated with the first symptomatic 

signs of congestive heart failure, a slight drop in left ventricle ejection fraction [40]. This 

reduced cardiac function is maintained in a steady-state for a certain period, due to in vivo 

compensatory mechanisms, and fatal congestive heart failure is only observed on the long-

term [101]. Indeed, with ex vivo experiments, cardiac function deteriorated more rapidly 

[102].  

Also with lower doses, myocardial damage has been observed. For instance, mild alterations 

in cardiac function in ApoE -/- mice after exposure to 2 Gy was observed, which was 

however not deteriorated over time [103]. Histological examination revealed functional 

damage to the microvasculature as indicated by a focal loss of alkaline phosphatase. More 

recently, Monceau and coworkers have exposed the heart of ApoE -/- and wild-type mice to 

doses of 0.2 Gy [104]. Mild but significant alterations in cardiac function were observed in 
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both mouse strains after exposure to 0.2 Gy. The progression of cardiac dysfunction 

remained, however, stable over the whole study period (60 weeks) suggesting the occurrence 

of compensatory mechanisms. Whereas in ApoE -/- mice cardiac damage was the 

consequence of reactive fibrosis in response of inflammatory signaling, this was the 

consequence of reparative fibrosis induced by the loss of cardiac myocytes in wild-type mice. 

Overall, ApoE -/- mice were more radiosensitive. This implies that atherosclerosis 

predisposition enhances and accelerates the structural deterioration of the heart after exposure 

to low doses of ionizing radiation, and can thus be considered as a risk factor.  

1.3.5 Hypotheses for underlying molecular and cellular mechanisms 

Nowadays, coronary artery disease is considered the major cardiovascular complication in 

patients that have received radiotherapy for thoracic malignancies [98]. Schultz-Hector and 

Trott have created a schematic representation of the most important steps in coronary artery 

disease (consequence of atherosclerosis in the coronary arteries), and the interaction with 

radiation effects (Figure 6) [43]. There are two hypotheses for the molecular and cellular 

mechanisms that increase the morbidity and mortality of coronary artery disease following 

high to moderate dose radiation exposure. The first hypothesis states that radiation interacts 

with the pathogenesis of age-related atherosclerosis, as such accelerating atherosclerosis 

development.  
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Figure 6: Overview of the major steps in the pathogenesis of coronary artery disease on the local and systemic 

level. Flashes indicate events that were also observed after radiation exposure, and which are mainly related to 

inflammation [41]. ECs: endothelial cells, LDL: low density lipoprotein, IL-6: interleukin 6, CRP: C-reactive 

protein 

 

The second hypothesis is that radiation increases the lethality of age-related myocardial 

infarction by decreasing the heart tolerance to acute infarctions as a result of microvascular 

damage in the myocardium. These hypotheses do not stand alone, and both macro- and 

microvascular effects will most likely act together to produce clinical heart disease (Figure 7).  

 

 

Figure 7: A theoretical overview of how radiation-induced macrovascular and microvascular pathologies can 

interact to cause myocardial ischemia, which may ultimately develop into clinical heart disease [43]. 
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 The role of inflammation  1.3.5.1

As indicated in Figure 6, ionizing radiation acts on the atherosclerotic process by enhancing 

pro-inflammatory signaling [37, 41]. Atherosclerotic plaques are formed by the migration of 

inflammatory cells from the bloodstream into the intima where they transform to foam cells. 

Endothelial expression of adhesion molecules plays an important role in this process. 

Radiation has been shown to up-regulate E-selectin, intercellular adhesion molecule 1 

(ICAM-1) and vascular cellular adhesion molecule 1 (VCAM-1) following irradiation of 

endothelial cells, in a time- and dose-dependent manner [41]. For instance, exposure of 

endothelial cells with 5 Gy induced an increase in ICAM-1 and E-selectin expression 6 h after 

irradiation [105]. The transcription factor NF-κβ is involved in radiation-induced up-

regulation of adhesion molecules [106]. Besides induction of adhesion molecules, cytokines 

such as IL-6 and IL-8, and other inflammatory molecules such as TGF-β, were shown to 

increase after high and moderate irradiation [107, 108]. Also, the Japanese atomic bomb 

survivors' cohort showed signs of a general increased state of inflammation, with increased 

levels of IL-6 and C-reactive protein (CRP) [109]. In addition to pro-inflammatory responses, 

there is evidence of pro-thrombotic changes after irradiation of the endothelium. For example, 

several in vitro and in vivo studies demonstrated increased levels of von Willebrand factor 

(VWF) and decreased levels of the anticoagulant thrombomodulin [41, 110].   

 What about low doses? 1.3.5.2

Although epidemiological findings suggest an increased risk of CVD after low dose radiation 

exposure, there is hardly knowledge about the underlying biological mechanisms. So far, 

experimental findings question the abovementioned hypotheses for low dose radiation 

exposure. For example, whereas it is assumed that high and moderate dose exposure 

accelerates the development of age-related atherosclerosis, Mitchel and coworkers have 

demonstrated that low dose exposure of mice has protective effects on atherosclerosis 

development and progression [97].  

Furthermore, there is evidence that radiation-induced pro-inflammatory signaling holds not 

true for low dose irradiation. Indeed, no induction of ICAM-1 and E-selectin was observed up 

to 24 h after exposure to 0.3 Gy and 1 Gy, and was even decreased 4 h after irradiation [105]. 

This results in a decreased mononuclear cell adhesion onto the endothelium [105, 111]. There 

is also clinical evidence for anti-inflammatory responses of low dose radiation exposure in 

individuals who experience inflammatory diseases. Indeed, for decades, low dose 
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radiotherapy has been used for the treatment of benign inflammatory diseases [112, 113]. 

However, due to the debate regarding possible cancer and non-cancer risks of low dose 

radiation exposure, the use of low dose radiotherapy has become out of fashion nowadays 

[114].  

Overall, it seems that effects of low dose radiation on the cardiovascular system differ to 

those of high dose radiation. Further research is essential to elucidate the low dose effects on 

the cardiovascular system, and the impact on CVD risk. This is, however, not straightforward 

due to the subtlety of low dose effects and the, most likely, little impact on clinical outcome.  

Besides the integration of epidemiology and biology, as mentioned above, pure 

radiobiological studies are needed. These include mechanistic studies in animal models and in 

vitro studies focused on the elucidation of molecular signaling pathways. In these studies 

attention should be paid, not only to dose, but also to dose-rate, fractionated exposures and 

radiation quality.   
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1.4 Endothelium as a critical target in radiation-related cardiovascular 

disease 

1.4.1 Endothelium is the safeguard of normal vascular functioning 

The endothelium is a single layer of cells that lines the interior of the vascular system and has 

thus a strategic position between the blood and the surrounding tissues. Endothelial cells are 

involved in a wide range of physiological processes, such as the regulation of vascular tone, 

vascular permeability, blood coagulation/fibrinolysis and inflammation, which are needed to 

maintain proper vascular functioning (Figure 8) [115]. Endothelial dysfunction has been 

observed in patients with atherosclerosis and in patients that exhibit CVD risk factors such as 

smoking, dyslipidaemia, obesitas, and diabetes mellitus [116], and is considered one of the 

first indicators of future cardiovascular morbidity and mortality [117]. It should be noted that 

the endothelium is also needed for angiogenesis, the process of forming new blood vessels 

from existing vessels [118].  

 

 

Figure 8: Overview of the major physiological functions of the arterial endothelium. A. The endothelium forms 

a selective barrier regulating the solute flux and fluid permeability between the blood and surrounding tissues 

[117]. B. The formation of a thrombus or blood clot is referred to as coagulation and the breakdown of a 

thrombus is referred to as fibrinolysis. Normal endothelium has anti-thrombotic and pro-fibrinolysis properties, 

and actively represses platelet adhesion and aggregation. Vessel damage or exposure to pro-inflammatory 

molecules will shift the balance towards more pro-thrombotic/anti-fibrinolysis actions [119, 120]. C. To regulate 

vascular tone, the endothelium releases various vasodilatory factors such as NO and EDHF, or vasoconstrictive 

factors such as ET-1 which will modify VSMC function [121]. D. In the case of inflammation, endothelial 
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permeability will be increased. Endothelial cells will also recruit immune cells via the expression of adhesion 

molecules, and mediate their transmigration towards the inner vascular wall [120]. Figure based on [115]. ECs: 

endothelial cells, VSMC: vascular smooth muscle cells, NO: nitric oxide, EDHF: endothelium-derived 

hyperpolarizing factor, ET-1: endothelin 1. 

 

The endothelium displays phenotypical and functional heterogeneity depending on the 

vascular bed and tissue it is situated in [122, 123]. The major function of arteries and veins is 

the conduit of blood through the body. Capillaries, on the other hand, are the major exchange 

vessels and the capillary endothelium is thus very thin and usually fenestrated to ensure 

optimal diffusion of oxygen and nutrients between the blood and underlying tissue [123]. 

Arterial endothelial cells are sensible to disturbed flow at branching points and curvatures in 

the arterial system, which are, consequently, 'hotspots' for inflammation, coagulation and 

atherosclerosis [123]. A healthy arterial endothelium mediates vasodilatation and actively 

suppresses thrombosis, vascular inflammation and inhibits vascular smooth muscle cell 

proliferation and migration [124].  

Nitric oxide (NO) is a key signaling molecule produced by endothelial cells [125]. NO is 

produced by the enzyme NO synthase (NOS) through the conversion of L-arginine to L-

citrulline. Four isoforms of NOS exists: neuronal NOS (nNOS), inducible NOS (iNOS), 

endothelial NOS (eNOS) and mitochondrial NOS (mNOS) [125]. Production of NO by eNOS 

is stimulated by shear stress and compounds such as acetylcholine, arachidonic acid, 

bradykinin, thrombin, and 5-hydroxytryptamine [116, 126]. Besides being the most potent 

vasodilator, NO has anti-inflammatory and anti-atherosclerotic actions. It inhibits, amongst 

others, leukocyte adhesion, vascular smooth muscle cell proliferation and limits platelet 

adhesion and aggregation [116]. Reduced NO bioactivity, due to an imbalance between its 

synthesis and breakdown or due to an impaired response of vascular smooth muscle cells, is 

associated with endothelial dysfunction and it will render the blood vessel prone to 

vasoconstriction. Furthermore, it will promote inflammation, thrombosis and the proliferation 

of vascular smooth muscle cells [116, 125].  

1.4.2 Endothelial dysfunction: molecular and cellular mechanisms 

CVD risk factors associated with endothelial dysfunction include hypertension, smoking, 

dyslipidaemia, and aging. A common underlying cellular mechanism leading to endothelial 
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dysfunction is oxidative stress [127]. Oxidative stress is defined as an imbalance between the 

generation of reactive oxygen species (ROS) (Figure 9) and the activity of enzymatic and 

non-enzymatic antioxidant systems [128]. At physiological levels, ROS are important 

signaling molecules but at higher concentrations, ROS causes cell injury by oxidative damage 

to DNA, lipids and proteins, and may result in cell death [129]. Besides cellular damage, 

oxidative stress leads to a decrease in NO bioavailability, premature senescence and 

mitochondrial dysfunction in endothelial cells. 

 

 

Figure 9: Electron structures of common ROS. Below each structure, its name and chemical formula are given. • 

represents an unpaired electron [130].  

 

 Decreased NO bioavailability 1.4.2.1

When there is overproduction of superoxide radicals (O2
-
), it interacts with NO to form the 

reactive nitrogen species (RNS) peroxynitrite (ONOO
-
) which decomposes to form the 

harmful ROS hydroxyl radical (
•
OH) and nitrogen dioxide radical (NO2

•
) [129]. NO levels are 

reduced because superoxide and NO react with each other three times faster than superoxide 

would react with superoxide dismutase (SOD), the major antioxidant enzyme that regulates 

superoxide levels [131]. Besides the cellular injury induced by 
•
OH and NO2

•
, peroxynitrite 

can lead to eNOS uncoupling. In this phenomenon, eNOS will produce superoxide at the 

expense of NO [132]. The enzyme requires tetrahydrobiopterin for the formation of NO. 

Peroxynitrite oxidises tetrahydrobiopterin to its inactive form causing in this way eNOS 

uncoupling. Other ROS such as hydrogen peroxide can also cause eNOS uncoupling. Thus, in 

a situation of oxidative stress, eNOS loses its function as an essential regulator for proper 
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cardiovascular functioning and becomes a superoxide producing enzyme. This creates a 

vicious circle, further aggravating oxidative stress [127].  

 Premature senescence 1.4.2.2

Vascular ageing predisposes to CVD, even in the absence of other risk factors [133]. At the 

cellular level, vascular ageing is related to senescence of endothelial cells [134]. Endothelial 

senescence is associated with increased ROS production, decreased NO availability and 

increased production of pro-inflammatory molecules thus favoring an atherosclerotic 

endothelium [135]. There is in vivo evidence for the presence of senescent endothelium in 

atherosclerotic lesions. Markers of senescence such as senescence-associated β-galactosidase 

(SA-β-gal) activity and telomere shortening have been used to identify senescent endothelial 

cells in atherosclerotic lesions [136]. Using SA-β-gal activity as a marker, the presence of 

senescent endothelial cells was observed in atherosclerotic lesions in human aorta and 

coronary arteries [137, 138]. Examination of telomere length of endothelial cells revealed that 

those originating from diseased portions of arteries had shorter telomeres compared to those 

from healthy parts [139].   

Senescence has been described for the first time by Hayflick and colleagues in 1965 who 

observed proliferation arrest of fibroblasts after a certain period in culture [140]. Later it has 

been discovered that this was due to the attrition of telomeres, and is referred to as replicative 

senescence. Telomeres are specialized structures at the 3' end of chromosomes existing of 

non-coding double-stranded repeats of guanine-rich DNA sequences (TTAGGG) [141]. The 

presence of telomeres ensure that the stability and integrity of the genome is maintained 

[142]. During DNA replication, DNA polymerases cannot copy all bases in the 3' end which 

makes that this end is not replicated completely. As a consequence, telomere length decreases 

gradually with each replication and eventually leads to telomere uncapping, which is a 

disruption of the protective cap at the end of a telomere. This seems to be sensed as DNA 

damage by the cell and induces a DNA damage response, which can initiate senescence [143].  

On the molecular level, senescence is established and maintained by the p53 and p16-

retinoblastoma protein (pRB) pathways [144] (Figure 10). The DNA damage response will 

mainly engage the p53 pathway, although secondary engagement of the p16-pRB pathway 

has been reported as well. 
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Figure 10: Simplified overview of two major senescence-inducing molecular pathways, the p53 and the p16-

pRB pathway. Both pathways seem to act reciprocally. When p53 is active, it will induce the expression of p21, 

a CDK inhibitor. CDKs phosphorylate pRB leading to its inactivation. Thus, p53 induces senescence mainly 

through pRB activation via p21. p16 is also a known CDK inhibitor that prevents pRB phosphorylation and 

inactivation. pRB activates senescence by suppressing E2F, a transcription factor that stimulates the expression 

of genes needed for cell proliferation. E2F can also induce ARF expression, which negatively regulates HDM2. 

p53 is negatively regulated by HDM2. Figure adapted from [144]. pRB = retinoblastoma protein, CDK = cyclin-

dependent kinase, E2F = E2F transcription factor, ARF = ADP-ribosylation factor, HDM2 = E3-ubiquitin-

protein ligase 

 

Senescence can also occur independently of telomere shortening, which is then referred to as 

stress-induced premature senescence. Indeed, various stresses such as lack of nutrients and 

growth factors, chromatin perturbations, improper cell contacts or oxidative stress can 

activate the intracellular senescence cascade prematurely [143]. In particular, oxidative stress 

is of importance and induces or accelerates senescence on many levels. For instance, 

oxidative stress has been demonstrated to accelerate telomere shortening in endothelial cells 

[145]. Furthermore, ROS induce DNA damage initiating a DNA damage response with 

engagement of p53 as a consequence [146]. NO availability, which has been shown to inhibit 

senescence in endothelial cells, is decreased by ROS [147]. Finally, ROS-related 

mitochondrial dysfunction has been suggested to be associated with endothelial senescence 

[135].  
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 Mitochondrial dysfunction 1.4.2.3

Mitochondria are considered the powerhouse of the cell as they produce adenosine-

triphosphate (ATP), the ultimate cellular fuel, by a process called oxidative phosphorylation 

[148]. In this process, electrons are shuttled within the respiratory transport chain on the inner 

mitochondrial membrane through four complexes, I (NADH dehydrogenase), II (succinate 

dehydrogenase), III (cytochrome c oxidoreductase) and IV (cytochrome c oxidase). In the 

final step, when the electrons are transferred, molecular oxygen is reduced to water at 

complex IV. As a consequence, a proton gradient is established along the respiratory transport 

chain which leads to the conversion of adenosine-diphosphate (ADP) to ATP. As a byproduct 

of the respiratory chain, ROS are formed, making mitochondria the major source of 

endogenous ROS [148, 149]. Lately, mitochondria have been recognized not only to be 

responsible for energy generation but also to be involved in other cellular processes [150]. In 

endothelial cells, these include the regulation of cellular calcium levels for signal 

transduction, sensing blood oxygen levels, production of NO, the activation of apoptosis, i.e. 

cellular death, or the induction of senescence [151, 152]. 

Mitochondria are not only a major source, but also a critical target of ROS. Many CVD risk 

factors can affect endothelial mitochondria via various mechanisms resulting in an increased 

ROS production [153]. Excessive mitochondrial ROS production will cause damage to the 

mitochondrial proteins, membranes and DNA, resulting in even more ROS production. In this 

vicious circle, mitochondrial dysfunction is further enhanced [154].  

The mitochondrial DNA (mtDNA) is a particular vulnerable radiation target due to its 

location close to the respiratory transport chain, the major source of endogenous ROS. 

Furthermore, it lacks protective histones, it has a limited repair capacity and it has a high exon 

to intron ratio [155]. The mtDNA is a 16 kb circular double stranded genome that codes for 

13 proteins that are part of the electron transport chain and for mitochondrial-specific rRNAs 

and tRNAs [156] (Figure 11).  
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Figure 11: Schematic overview of the human mitochondrial genome. The coloured blocks represent the 22 

tRNA genes (white), two ribosomal RNA genes (light grey) and genes encoding for 13 polypetides that are part 

of the respiratory transport chain: complex I (dark grey), complex III (crosshatched), complex IV (white dotted) 

and ATP synthetase (black dotted). The position of the common deletion (5 kb deletion) is indicated as well. 

Figure adapted from [157]. 

 

Since mtDNA codes for components of the electron chain, mutations in these genes may lead 

to impairment of oxidative phosphorylation which may further increase ROS production 

which in turn will even generate more mitochondrial and cellular damage [33]. Damage to the 

mitochondrial genome, and in particular the common deletion (CD), has also been observed 

in atherosclerotic lesions [158, 159]. The CD is a deletion of a site of 4977 bp that is flanked 

by two 13 bp direct repeats [160]. It is proposed that DNA damage between these repeats 

results in inappropriate pairing during mtDNA replication causing the deletion. In this way 

the lesion is amplified during mtDNA replication which makes it a very useful marker for 

even very low levels of damage. 

 

1.4.3 In vitro endothelial models 

The recognition of the endothelium as a central regulator of the cardiovascular system has led 

to a boom in endothelium-related research. One of the milestones was the first successful 

isolation and subsequent cultivation and characterization of endothelial cells in vitro, in the 

1970s [122]. Jaffe and colleagues and Gimbrone and colleagues reported independently the 



   Chapter 1 

 

39 

 

isolation of endothelial cells from human umbilical veins (HUVEC – human umbilical vein 

endothelial cells) [161, 162]. Since then many studies have relied on the use of HUVEC since 

they are relatively easy to obtain. Although originating from large vessels, HUVEC are 

unique since they exhibit endothelial properties that are intermediate between those of large 

vessels (e.g. the aorta) and those of the microvasculature [163]. EA.hy926 cells, which are an 

immortalized derivate from HUVEC, are commonly used as well [164]. Both HUVEC and 

EA.hy926 cells were used in this PhD project. A more extensive discussion of their 

characteristics can be found in chapter three. 

It should be noted that in vitro endothelial cell models are not limited to HUVEC and 

EA.hy926 cells. Endothelial cells may be isolated from other sources in the human body as 

well, such as the dermal microvasculature, coronary arteries and the pulmonary vasculature. 

However, these are usually not easy to obtain and at best only a small amount of material will 

be available [165]. In addition, these primary cell cultures cannot be kept in long-term 

cultures as they start to lose their endothelial cell characteristics. Therefore, immortalized 

derivates of these primary cells have been established; like EA.hy926 cells are a derivate from 

HUVEC. Immortalized cells are characterized by their ability to overcome senescence and 

can be kept in culture for long times [166]. These immortalized derivates, however, also 

exhibit tumor cell characteristics [167]. For instance, immortalized human coronary artery 

endothelial cells (transfected with human telomerase reverse transcriptase (hTERT)) showed 

40% of aneuploidy at low passage number and 100% of aneuploidy at high passage number 

[167].  

Of course, in vitro endothelial models, although useful, are not fully representative for the in 

vivo situation. Yet, advances have been made such as the development of co-culture models 

where endothelial cells are cultured with vascular smooth muscle cells to study the 

atherosclerotic process [168, 169]. Also, 3-D cultures, where endothelial cells are grown in a 

sort of matrix allowing the formation of tubule-like structures are more and more used to 

study angiogenesis [170, 171]. A recent review has described in detail the use of these co-

culture and 3-D culture models in radiation research [172]. For practical and time-related 

reasons we decided, however, to focus on traditional single layer culture of endothelial cells. 
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1.4.4 The effect of ionizing radiation on the endothelium 

Gaining insight into the endothelial response to ionizing radiation exposure is not only of 

importance for understanding the development of radiation-related CVD, but also for 

optimizing cancer treatment. For instance, adverse reactions in the surrounding healthy tissue 

of the tumor are related to the radiation-response of the microvasculature in the tissue of 

concern. Also, tumor growth is highly dependent on abundant blood supply which is 

maintained by a rich vascular network [173]. The tumor vasculature has thus received 

attention as a potential target in radiotherapy [174]. Understanding the effects of radiotherapy 

on tumor endothelium can improve treatment regimes. Since tumor endothelium differs in 

many aspects to normal endothelium [175], this is not in the scope of this PhD research.  

The interest of this PhD lies in the characterization of the endothelium radiation response, in 

particular to low doses, in the context of radiation-related CVD. Below, an overview is given 

of classical cellular radiation effects and how these may affect endothelial functioning. Next, 

the impact of ionizing radiation on mitochondrial function and on senescence is discussed. 

Finally, attention is paid to the contribution of new technologies such as high throughput 

transcriptomic profiling which allow a better understanding of the underlying molecular 

signaling pathways. 

 DNA-targeted effects  1.4.4.1

Ionizing radiation is known to induce a wide range of DNA lesions, such as base damage, 

DNA cross links, single strand breaks and double strand breaks (DSB), in a direct manner but 

also indirectly through the formation of ROS [176, 177]. Upon DNA damage, a DNA damage 

response is initiated and the cells will activate cell cycle checkpoints which can slow down or 

stop cell cycle progression [178]. This gives cells the time to repair the damaged DNA or 

prevents division when chromosomes are damaged or incompletely replicated. If the cells fail 

to repair the DNA, they can go into apoptosis [179].   

In particular, DSB will lead to a high lethality of the affected cells [180]. At the site of DSB 

damage, the histone H2AX is phosphorylated (referred to as γ-H2AX) by kinases such as 

ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein 

(ATR) resulting in the formation of γ-H2AX foci [176]. These foci will recruit DNA repair 

proteins to the DSB sites. It has been shown that there is a 1:1 relationship between the 
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amount of DSB and the γ-H2AX foci formed [181]. Visualization and quantification of γ-

H2AX foci has been become standard in assessing radiation-induced DNA damage.  

Irreparable DSB can cause cellular apoptosis, or premature senescence (described below). 

Endothelial apoptosis has implications on both the micro- and macrovasculature. Namely, 

endothelial cell death in the microvasculature leads to a decrease in capillary density. Also, 

endothelial apoptosis has been related to the development of atherosclerosis [182, 183] as it 

may compromise regulation of vascular tone, and increase the proliferation and migration of 

VSMC [184]. Furthermore, thrombosis, the major complication of atherosclerosis, can be 

triggered by endothelial cell death [183]. It should be noted that radiation-induced endothelial 

cell apoptosis is not solely a consequence of DNA damage. Indeed, ionizing radiation can act 

on the cellular membrane of endothelial cells as well, generating ceramide which can induce 

apoptosis [185].  

Whereas high doses are known to induce apoptosis in endothelial cells [186], less is known 

about the effect of low doses. There are indications that, regarding apoptosis, endothelial cells 

display a non-linear dose relationship. Rödel and coworker have demonstrated a 

discontinuous induction of apoptosis with a relative maximum at 0.3 and 3 Gy and a relative 

minimum at 0.5 Gy, in endothelial cells activated with TNF-α [187]. Another study, showed 

no increase in apoptotic endothelial cells after exposure to 0.2 Gy, but only after exposure to 5 

Gy [188]. 

 Radiation-induced mitochondrial dysfunction 1.4.4.2

There is a lot of interest in radiation-induced mitochondrial dysfunction seeing the 

implications it has on CVD [148]. Mitochondrial dysfunction is closely related to oxidative 

stress, being both a target and source of ROS. Initially, ionizing radiation causes the formation 

of water radiolysis products including hydroxyl radicals (
•
OH), hydroperoxyl radicals (HO2

•
) 

and hydrogen peroxide (H2O2). These are unstable and disappear within less than 10
-3

 

seconds, except for H2O2 [189]. However, following irradiation, oxidative stress is observed 

after longer time periods due to an increase in the endogenous cellular production of ROS 

[190]. Mitochondria are believed to be the major source of these radiation-induced secondary 

ROS, although other sources may contribute as well. For instance, Leach and coworkers have 

demonstrated that, between 1 and 10 Gy, the amount of ROS producing cells increased with 
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the dose, which they suggested was dependent on radiation-induced propagation of 

mitochondrial permeability transition
6
 via a Ca

2+
-dependent mechanism [192].  

Since mitochondria, and in particular mtDNA, are also a critical target of ROS, measures of 

mtDNA damage has been used to determine deleterious effects of ionizing radiation. 

Increased accumulation of the CD following exposure to ionizing radiation has been detected 

in various studies [160, 193, 194]. The measurement of CD by quantitative real-time 

polymerase chain reaction (PCR) has been proposed as a sensitive marker to detect low levels 

of oxidative damage to the mtDNA [160]. An increased accumulation of the CD was observed 

in several human fibroblast cell lines, after exposure to doses as low as 0.1 Gy [194]. 

Interestingly, increased accumulation of the CD was also observed in bystander cells, i.e. cells 

that were cultured in conditioned medium coming from 0.1 Gy irradiated cells.   

However, whether low doses of ionizing radiation have an impact on mitochondrial function 

is not fully resolved yet. For instance, an in vivo study by Barjaktarovic and coworkers 

investigated the effects of 0.2 and 2 Gy irradiation on cardiac mitochondria [195]. Four weeks 

after exposure, cardiac mitochondria were isolated from C57BL/6N mice and subjected to 

proteomic and functional analysis. Whereas with 2 Gy both functional impairment of 

mitochondria and alterations in the mitochondrial proteome were observed, only a few 

alterations in the mitochondrial proteome and no effect on mitochondrial function was 

observed with 0.2 Gy.  

 Radiation-induced premature senescence 1.4.4.3

Ionizing radiation is a well-known stressor that induces premature senescence in cells (Figure 

10). The culprit is most likely severe irreparable radiation-induced DSB [196], but also 

radiation-induced accelerated telomere attrition has been suggested [197]. Also, oxidative 

stress is a major player in radiation-induced senescence and is involved in both radiation-

induced DNA damage and accelerated telomere attrition [145, 197].  

In several in vitro studies, it has been demonstrated that ionizing radiation induces endothelial 

cell senescence, mainly with exposure to higher radiation doses [198-201]. Most studies 

confirm that radiation-induced premature endothelial senescence is implemented by 

                                                 
6
 The mitochondrial permeability transition occurs when the mitochondria open permeability pores, present in 

the inner mitochondrial membrane, as such increasing the permeability to ions and solutes with a mass up to 

about 1500 Da. Opening of the mitochondrial permeability pores is associated with the loss of mitochondrial 

membrane potential which is known to induce the formation of ROS [191]. 
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engagement of the classical DNA damage response pathways, similar to replicative 

senescence [198, 199, 202]. For instance, Kim and coworkers observed that exposure to 4 Gy 

lead to a senescent phenotype in endothelial cells. An increased formation of γ-H2AX foci 

and consequent activation of the DNA damage response was measured, as indicated by up-

regulation of p53 and p21 and down-regulation of cyclins and Rb phosphorylation [203].  

An interesting study was carried out to examine the effect of chronic low dose rate (LDR) 

irradiation (1.4, 2.4 and 4.1 mGy/h) [204, 205]. Endothelial cells were exposed for one, three 

and six weeks, to see whether chronic LDR radiation changes the onset of replicative 

senescence, as measured by SA-β-gal activity and proliferation rate. Their findings are 

indicative of a threshold dose rate for the induction of premature senescence. Exposure to 1.4 

mGy/h did not accelerate the onset of senescence, whereas exposure to 2.4 mGy/h and 4.1 

mGy/h did. Remarkably, a senescent profile was observed when the accumulated doses 

received by the cells reached 4 Gy. Proteomic analysis revealed a role for radiation-induced 

oxidative stress and DNA damage, resulting in the induction of the p53/p21 pathway [204]. 

Also, a role for the PI3K/Akt/mTOR pathway was suggested [205]. In the current PhD 

project, the gene expression profile of these chronic irradiated endothelial cells was analyzed 

by means of high throughput transcriptomic profiling.  

1.4.5 High throughput transcriptomic profiling 

Evaluation of the subtle cellular effects of low doses of ionizing radiation is challenging. The 

cellular radiation response involves an intricate network of signaling pathways, governed by 

radiation-induced changes in gene expression [206]. Traditionally, changes in gene expression 

are determined by means of quantitative PCR. Since the 1990s, high throughput technologies 

have been developed in which the entire transcriptome can be analyzed in one go [207]. One 

such technology is DNA microarray which consists of a collection of individual 

oligonucleotide probes fixed to a solid surface [208]. These probes represent specific mRNA 

sequences and upon hybridization of complementary sample mRNA, the relative mRNA 

expression of a sample can be quantified. These new high throughput technologies are very 

useful as they allow a global monitoring of the complex cellular radiation response, and have 

thus been extensively used in radiobiology since its initial development [209]. For example, 

microarray technology was used to monitor the transcriptional response of endothelial cells 

exposed to low doses of ionizing radiation (0.02 – 0.2 Gy) [210]. Overall, they revealed 



General introduction  

44 

 

radiation-induced up-regulated expression of genes such as antioxidants (e.g. superoxide 

dismutase 1), heat shock proteins (e.g. HSPA8 and HSPCB), and coagulation-related genes 

(e.g. SERPINE1 and thrombin receptor F2R). Also, endothelin 1, an important 

vasoconstrictor, was up-regulated at all doses. Another study (mentioned in 1.4.3.3) has used 

microarray technology to investigate gene expression changes related to radiation-induced 

senescence (4 Gy) in endothelial cells [203]. Genes that were differentially expressed in their 

study were mainly related to DNA damage response and immune responses.  

 Microarray data analysis 1.4.5.1

Usually, microarray results are focused on single genes that are differentially expressed based 

on an arbitrary cut-off in terms of fold change (FC) or significance. Although this approach 

can reveal interesting information, the drawback is that the interaction between different 

genes is not taken into account. As such, single-gene analysis may miss important effects on 

pathways. Indeed, cellular processes often affect sets of genes acting in concert. In this way, 

there may be genes that are not considered important according to the pre-determined cut-offs 

in single gene-analysis, but that can still lead, together, to a significant change in a signaling 

pathway [211]. As an answer to this issue, other statistical methods for analysis of microarray 

data have been developed [212]. For example, Gene Set Enrichment Analysis (GSEA) is 

commonly used for additional analysis of microarray results [213, 214]. This method 

considers all of the genes in an experiment, and not only those above an arbitrary cut-off in 

terms of fold change or significance. In essence, GSEA ranks all the genes according to their 

differential expression between two conditions (e.g. irradiated versus control), after which it 

calculates to which extent a gene set is represented at the top or bottom of the gene ranking. 

The gene sets are defined based on prior biological knowledge: e.g. published information 

about biochemical pathways or coexpression in previous experiments [211].  
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Traditionally, cancer is considered the main health issue associated with exposure to low dose 

ionizing radiation. Epidemiological findings suggest that non-cancer diseases, and in 

particular cardiovascular disease (CVD), may be of concern as well. However, these 

epidemiological studies lack statistical power to evidence an increased risk of CVD following 

exposure to radiation doses < 0.5 Gy. Complementary radiobiological research is needed to 

clarify the dose-risk relationship for CVD in this low dose region.  

In this PhD, it was intended to contribute to the elucidation of the underlying cellular and 

biological mechanisms of radiation-related CVD, with a focus on low (≤ 0.5 Gy) doses of X-

rays. Since the endothelium is essential for normal vascular functioning, we chose to study the 

low dose radiation response of the endothelium. We used the primary human umbilical vein 

endothelial cells (HUVEC) and the thereof derived immortalized endothelial cell line 

EA.hy926 as in vitro endothelial cell models. In the first part of the PhD, the effects of acute 

low dose radiation exposure and in the second part, the effects of chronic low dose rate 

radiation exposure were studied.  

Both HUVEC and EA.hy926 cells are commonly used in endothelial research. However, their 

radiation response is not fully known and it is most likely that it will differ. Therefore, we 

evaluated and compared, in chapter three, the response of HUVEC and EA.hy926 cells 

following acute radiation exposure, with a focus on low doses. For this, various well-defined 

endpoints were investigated including DNA damage and repair, cell cycle and apoptosis. 

Furthermore, we determined intracellular reactive oxygen species (ROS) levels in both 

HUVEC and EA.hy926 cells, in chapter four. Oxidative stress, defined as an imbalance 

between ROS and antioxidant defenses, is a well-known underlying factor leading to 

endothelial dysfunction. It is thus of interest to know whether low doses of radiation have an 

influence on intracellular ROS levels. Since intracellular ROS levels are closely related to 

mitochondrial function, it was also aimed to evaluate the effect of ionizing radiation on the 

mitochondrion. Optimization experiments were carried out to assess mitochondrial DNA 

(mtDNA), which is a vulnerable target of ionizing radiation. 

In the second part, a study, in collaboration with the University of Stockholm, in the context 

of the European Network of Excellence DoReMi (Low Dose Research towards 

Multidisciplinary Integration, grant agreement 249689; 2010-2016), was carried out to 

investigate the effects of chronic low dose rate (LDR) γ-irradiation on HUVEC. It was 

observed that chronic LDR irradiation induces premature senescence which is of interest since 
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this is one of the underlying cellular mechanisms proposed to contribute to the development 

of CVD. Using microarray technology, genome-wide gene expression profiling was 

performed to get more insight in the underlying molecular pathways by which ionizing 

radiation induces premature senescence.  

On the long-term, it is aimed to contribute with this PhD research to an improved assessment 

of CVD risk following exposure to acute and chronic low dose radiation. In particular, it is 

aimed to find selective biomarkers that can be used to assess cardiovascular effects in humans 

exposed to radiation. These biomarkers can be integrated into epidemiological studies that 

will be carried out to improve risk assessment. Furthermore, they can be used for risk 

reducing strategies such as exposure monitoring, individual risk characterization and the 

development of countermeasures. 
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R., Baatout S. Differential response to acute low dose radiation in primary and immortalized 

endothelial cells. International Journal of Radiation Biology. 2013 Oct;89(10):841-50. doi: 

10.3109/09553002.2013.806831.
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3.1 Abstract 

The low dose radiation response of primary human umbilical vein endothelial cells (HUVEC) 

and the immortalized derivative, the EA.hy926 cell line, was evaluated and compared. DNA 

damage and repair, cell cycle progression, apoptosis and cellular morphology in HUVEC and 

EA.hy926 were evaluated after exposure to low (≤ 0.5 Gy), intermediate (2 Gy) and high 

doses (5 Gy) of acute X-rays. Subtle, but significant, increases in DNA double strand breaks 

(DSB) were observed in HUVEC and EA.hy926 30 min after low dose irradiation (0.05 Gy). 

Compared to high dose irradiation (2 Gy), relatively more DSB/Gy were formed after low 

dose irradiation. Also, we observed a dose-dependent increase in apoptotic cells, down to 0.5 

Gy in HUVEC and 0.1 Gy in EA.hy926 cells. Furthermore, radiation induced significantly 

more apoptosis in EA.hy926 compared to HUVEC. In conclusion, we demonstrated for the 

first time that acute low doses of X-rays induce DNA damage and apoptosis in endothelial 

cells. Our results point to a non-linear dose-response relationship for DSB formation in 

endothelial cells. Furthermore, the observed difference in radiation-induced apoptosis points 

to a higher radiosensitivity of EA.hy926 compared to HUVEC, which should be taken into 

account when using these cells as models for studying the endothelium radiation response.  



Low dose radiation response in endothelial cells  

52 

 

3.2 Introduction 

High radiation doses (> 5 Gy) are known to increase the risk of CVD [41]. In recent years, 

epidemiological data support the fact that lower radiation doses could increase the risk of 

CVD as well and this after much longer intervals than previously expected [215]. However 

for radiation doses below 0.5 Gy, these epidemiological findings are not persuasive and a 

better understanding of the underlying biological and molecular mechanisms is needed [53, 

215]. The possible existence of a low dose risk of CVD would challenge the current radiation 

protection system which is based on the assumption that for non-cancer effects there is a 

threshold of low dose radiation below which no significant effects are observed. 

It is proposed that the endothelium, the thin layer of cells that line the interior surface of the 

vascular system and the heart, is a critical target in ionizing radiation-related CVD [41]. The 

endothelium is a highly active organ system that is constantly sensing and responding to 

changes in the extracellular environment to maintain a normal functioning of the vascular 

system [120]. Endothelial dysfunction is known to be a major player in the development and 

progression of CVD, and in particular atherosclerosis [124, 216]. High doses of ionizing 

radiation are known to disturb normal functioning of the endothelium by inducing a pro-

inflammatory state and inducing loss of endothelial cells [41, 217, 218]. The effects of low 

doses of ionizing radiation on the endothelium are only partially understood. However, the 

available evidence suggests that the low dose response is not a simple linear extrapolation 

from the high dose response. For example, low doses of ionizing radiation seem to have anti-

inflammatory actions as demonstrated in vitro by an inhibition of leukocyte adhesion to 

activated endothelial cells that have been irradiated [105]. Further research, as presented in 

this study, is thus essential for a comprehensive understanding of the endothelium response in 

the low dose region, and in particular below 0.5 Gy.  

There is a wide range of primary endothelial cells or immortalized endothelial cell lines 

available for use as in vitro models to study cellular and molecular changes of the 

endothelium upon low dose irradiation. The use of immortalized endothelial cell lines offer 

several advantages compared to their primary counterparts. First, the use of endothelial 

primary cultures is compromised by their limited lifespan and the change of endothelial 

characteristics during long-term culture [167]. Immortalized cell lines, on the other hand, 

grow faster and are easier to handle [219]. Second, experiments with primary cells obtained 

from different donors cannot be compared since their results may differ [220]. Immortalized 
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cell lines are well characterized and are proven useful in the development of standardized 

experimental set-ups yielding reproducible results. Nevertheless, immortalized cell lines may 

substantially differ from the in vivo situation in important aspects, due to activation of 

oncogenes or deactivation of tumor suppressor genes [221]. 

Two commonly used endothelial cell types are the primary human umbilical vein endothelial 

cells (HUVEC) and the EA.hy926 cell line, an immortalized derivative from a HUVEC 

culture. HUVEC were first isolated in 1973 by Jaffe and coworkers, which started a new area 

of vascular biology research acknowledging endothelial cells as important regulators of 

normal vascular functioning [161]. Since then, HUVEC are widely isolated and used as in 

vitro models of the endothelium. EA.hy926 is a well-established endothelial cell line derived 

from HUVEC. EA.hy926 was created by fusing HUVEC with human lung carcinoma cells 

(A549/8) [164]. The cell line has been shown to maintain, during long-term culture, 

endothelial characteristics such as expression of von Willebrand factor, thrombomodulin 

production, prostacyclin synthesis and the release of platelet-activating factor, tissue 

plasminogen activator and plasminogen activator inhibitor type-1 [164]. Furthermore, 

EA.hy926 cells have retained the capacity to form tube-like structures when cultured in 

Matrigel [222, 223]. However, due to the carcinoma background, these cells also have 

additional features that may interfere with their endothelial origin. For example, a whole 

genome comparative study between EA.hy926 with HUVEC indicates that more genes are 

constitutively expressed in EA.hy926 cells than HUVEC [224]. Assessment of endothelial 

phenotypical characteristics revealed a significantly higher expression of thrombomodulin and 

significantly higher protein C activation in EA.hy926 cells compared to HUVEC [224]. 

Furthermore, Claise and coworkers reported that EA.hy926 cells are more sensitive than 

HUVEC to the cytotoxic effects of oxidized low density lipoprotein which was associated 

with significantly lower activities of superoxide dismutase, catalase and selenium-glutathione 

peroxidase [225]. Also differences between HUVEC and EA.hy926 regarding induced 

expression of certain molecules important for leukocyte/endothelium interactions such as E-

selectin and vascular cell adhesion molecule 1 were shown [226]. These studies seem to 

suggest that EA.hy926 cells are not always a suitable alternative for HUVEC depending on 

the aim of the research. Bearing this in mind, we compared HUVEC and EA.hy926 cells for 

their use in low dose radiation research. 

On the cellular level, DNA is a critical target of ionizing radiation and can be damaged both 

in a direct and in an indirect manner. Indirect damage occurs as a result of the interaction of 
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DNA with reactive oxygen species that are formed in the cell following radiation exposure 

[177]. Subsequent cellular responses to DNA damage include gene expression changes that 

elicit cell cycle arrest, DNA repair and (if repair fails) apoptosis [227]. A study of these 

endpoints is thus essential to better understand the endothelium response towards low dose 

radiation. Hence we compared the radiation effects, with a particular focus on lower doses of 

X-rays (0.05 – 0.5 Gy), in HUVEC and EA.hy926 cells with respect to abovementioned 

endpoints. 
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3.3 Material and methods 

3.3.1 Cell culture and irradiation 

EA.hy926 cells (ATCC, Molsheim Cedex, France) were grown in Dulbecco's Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (pen/strep). HUVEC (Human Umbilical Vein Endothelial Cells, 

ATCC) were cultivated in Medium 200 supplemented with 10 ml Low Serum Growth 

Supplement (LSGS) and 1% pen/strep. All cell culture supplies were purchased from 

Invitrogen NV/SA (Ghent, Belgium). Cell cultures were regularly tested for mycoplasma 

using the LookOut® Mycoplasma PCR Detection Kit (Sigma-Aldrich Co. LLC, Diegem, 

Belgium). Under the microscope, the cell cultures exhibited a cobblestone pattern, 

representative for endothelial cells. For cell cycle, apoptosis and cell morphology analysis, 

EA.hy926 cells were plated in T25 flasks with a density of 500,000 cells 24 h prior to X-

irradiation. HUVEC were plated in T25 flasks with a density of 100,000 cells 5 days prior to 

X-irradiation. Medium was refreshed every two days. Cell cultures were subconfluent (i.e. a 

cell density of 80%) at the time of X-irradiation. Irradiation was performed with a series of X-

ray doses (0.05, 0.1, 0.5 and 5 Gy) at a dose rate of 0.25 Gy/min from a Pantak HF420 RX 

machine (Tungsten target, 250 kV, 15 mA, 1.2 mm Al inherent and 1 mm Cu additional 

filtration) (Branford, Connecticut, USA). For all experiments the passage number ranged 

between 10 and 20 for EA.hy926 cells, and between 5 and 7 for HUVEC. The population 

doubling time (PDT) was defined with I, the number of cells seeded, F, the number of cells 

obtained, and T, the incubation time which was 2 days for EA.hy926 cells and 1 week for 

HUVEC: 

              
 

 
  

 

The population doubling time was on average 7 h for EA.hy926 cells and 25 h for HUVEC.  
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3.3.2 Immunocytochemistry for phosphorylated H2AX histone (γ-H2AX) 

analysis 

EA.hy926 cells and HUVEC were plated onto glass coverslips in 4-well plates with a density 

of 50,000 and 35,000 cells per coverslip, respectively, and grown to confluence. X-irradiation 

was then performed with a series of doses (0.05, 0.1, 0.25, 0.5 and 2 Gy). At various time 

points after irradiation (30 min, 2 h and 24 h), cells were fixed in 4% paraformaldehyde 

(Merck KGaA, Darmstadt, Germany) in phosphate-buffered saline (PBS) (Invitrogen NV/SA) 

(pH 7.4) for 10 min at room temperature. Afterwards cells were washed with PBS and 

permeabilized in 0.25% Triton (Sigma-Aldrich Co. LLC) in PBS for 5 min. Subsequently, 

cells were probed with mouse anti-γ-H2AX antibody (ab18311, Abcam, Cambridge, UK) 

(1:300 dilution) and incubated overnight at 4°C. The next day cells were washed with PBS 

and stained with goat anti-mouse fluorescein isothiocyanate (FITC)-labeled antibody (Sigma-

Aldrich Co. LLC) (1:300 dilution) for 1 h at 37°C. Both antibody dilutions were prepared in 

3% bovine serum albumin (BSA) (Sigma-Aldrich Co. LLC) in PBS. Following this, three 

washing steps were performed with PBS and two with MilliQ after which the coverslips were 

mounted on a microscopic slide with Vectashield containing 4',6-diamidino-2-phenylindole 

(DAPI) (Vector Laboratories, Brussels, Belgium). 

3.3.3 Automated fluorescence microscopy and image analysis 

A fully automated inverted fluorescence microscope (Nikon, TE2000-E, Nikon Instruments, 

Paris, France), equipped with motorized XYZ stage, emission and excitation filter wheels, 

shutters and a triple dichroic mirror (436/514/604) was used (UGent). Samples were 

magnified with a 40X Plan Fluor oil objective (numerical aperture 1.3) and images were 

acquired with an Andor Ixon EMCCD camera. For each coverslip, a mosaic of 25 fields was 

acquired with a lateral spacing of 190 µm between fields (corresponding to the size of the 

field of view) and each field was acquired as a z-stack of 5 planes axially separated by 1 µm. 

Images were analyzed with ImageJ software [228] using the INSCYDE toolbox (available 

from http://www.limid.ugent.be/downloads) [229]. This toolbox uses pre-defined algorithms 

to segment nuclei and γ-H2AX spots in the DAPI and FITC channel, respectively. Only those 

spots that are present inside a nucleus are included in the calculation of γ-H2AX spot number. 

Furthermore, spot occupancy, which reflects the area of the nucleus that is covered with spots, 

is calculated. A manual check-up of the analysed images has been performed to exclude errors 
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in the segmentation process. On average 250 nuclei for HUVEC and 800 nuclei for EA.hy926 

cells were analyzed per sample and 2 biological replicates were screened per condition.  

3.3.4 Cell cycle analysis 

Cells were trypsinized 24 h or 48 h after X-irradiation (0.1, 0.5 and 5 Gy), washed with PBS 

and then fixed with ethanol (80%) for minimum 1 h at 4°C. Afterwards, cells were washed 

with PBS and stained with propidium iodide (PI) solution (50 µg/ml PI + 1% RNase A) 

(Sigma-Aldrich Co. LLC) for 45 min at 37°C. PI fluorescence of a minimum of 10,000 cells 

was measured by flow cytometry (Coulter Epics XL-MCL, Beckman Coulter, Suarlée, 

Belgium). Cells in G0/G1, S and G2/M phase were determined after filtering for doublets and 

aggregates. First, the peak that represents G0/G1 phase (n) was decided based on the intensity 

of the PI signal. Next, the G2/M phase (2n) was identified as being two times the mean 

intensity of the PI signal of the G0/G1 peak. The S-phase relates to the intensity signal 

between the two peaks (G0/G1 and G2/M). Finally, sub G1 cells were identified as cells with 

a DNA content situated between half the mean value of G1 phase and the minimum value of 

G1 phase.  

3.3.5 Annexin-V/PI costaining for apoptosis analysis 

Cells were collected by trypsinization 24 h, 48 h and 72 h after X-irradiation (0.1, 0.5 and 5 

Gy). To include cells that already have died and detached, the medium was collected as well. 

Next, cells were stained with FITC-labeled Annexin-V and PI using the Annexin V-FITC 

Apoptosis Detection Kit (eBioscience, Vienna, Austria) according to the manufacturer's 

instructions. Fluorescence of a minimum of 10,000 cells was measured by flow cytometry 

(Coulter Epics XL-MCL, Beckman Coulter). The mean percentages of living (Annexin-V 

negative, PI negative), apoptotic (Annexin-V positive, PI negative) and non-apoptotic dead 

(Annexin-V positive, PI positive) cells were calculated. The gating was set to have around 5 

% of apoptotic cells in control cells. This percentage was chosen based on previous 

experience in the lab. 
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3.3.6 Cytospin and May-Grünwald Giemsa staining for determination of cell 

morphology 

Cells were trypsinized 24 h after X-irradiation (0.1, 0.5 and 5 Gy). Next, 250,000 cells were 

resuspended in 1 ml cold PBS containing 10% FBS and after centrifugation washed in 1 ml 

cold PBS containing 10% FBS. Cell pellets were diluted in 1 ml cold PBS containing 1% FBS 

and 100 µl of these cell suspensions were cytospinned on a glass slide prior to May-Grünwald 

Giemsa staining. Cells (n=400-700) were then counted from each of the 3 technical replicates 

prepared for each dose and scored for normality, the presence of polynuclei, DNA 

fragmentation, nuclear bodies and the absence of a cellular membrane. Cell size was 

measured as well using a home-written script for ImageJ software (GiemsaSegmentation 

macro, available from www.limid.ugent.be/downloads) [230]. 

3.3.7 Statistical analysis 

Analysis of γ-H2AX spot count data was performed using Kruskal-Wallis and post-hoc test 

according to Chan and Walmsley [231]. Cell cycle and apoptosis data were analyzed by three-

way analysis of variance (ANOVA) with dose, time point and cell type as independent 

variables. For cytospin data analysis, two-way ANOVA, with dose and cell type as 

independent variables, was performed. Sidak post-hoc test was used for determining statistical 

significance of dose and cell type. All analyses were performed using SPSS software package 

version 19 (IBM Corp., New York, USA). For all tests, a value of p < 0.05 was considered 

statistically significant. 
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3.4 Results 

3.4.1 Acute low dose X-irradiation causes DNA damage in HUVEC and 

EA.hy926 cells 

Ionizing irradiation induces double strand breaks (DSB) which can be visualized 

microscopically by immunofluorescent staining of phosphorylated H2AX histones (γ-H2AX), 

that specifically localize around the site of the break (Figure 12).  

 

 

Figure 12: Detection of DSB by immunostaining of γ-H2AX spots followed by fluorescence microscopy. 

Representative fluorescence microscopic images (40X, oil) of EA.hy926 cells in control conditions (top panels) 

and irradiated with 2 Gy (bottom panels). Cells were fixed 30 min after exposure. A. Nuclei are stained with 

DAPI (blue). B. γ-H2AX spots are visualized with γ-H2AX antibody coupled with FITC (green). C. Merged 

images of DAPI and FITC channel for quantification of the number of γ-H2AX spots per nucleus.  

 

We quantified the number of γ-H2AX spots in the nucleus by automated image analysis at 

several time points (30 min, 2 h and 24 h) after acute X-irradiation (0.05, 0.1, 0.25, 0.5 and 2 

Gy). A significant dose-dependent increase in spot number was observed 30 min and 2 h post 

A B C 



Low dose radiation response in endothelial cells  

60 

 

irradiation (p.i.) in both HUVEC and EA.hy926 cells (Figure 13). Comparing spot numbers in 

HUVEC and EA.hy926 cells reveals that more γ-H2AX spots are formed in EA.hy926 cells 

(e.g. a median of 37 spots in EA.hy926 cells versus 23 spots in HUVEC 30 min p.i. with 2 

Gy). Spot occupancy, which reflects the percentage of the area of the nucleus that is covered 

with spots [229] tends to follow a similar pattern as spot number, both in HUVEC and 

EA.hy926 cells, 30 min and 24 h p.i. (Figure 14). 

 

 

Figure 13: Quantification of γ-H2AX spot number. Boxplots representing median γ-H2AX spot number per 

nucleus vs. irradiation dose in  HUVEC and EA.hy926 cells 30 min (A, B) and 24 h (C, D) after exposure to a 

range of acute X-ray doses (0.05, 0.1, 0.25, 0.5 and 2 Gy). The box boundaries represent the upper and lower 

quartiles and the thick black line within represents the median. Extreme outliers were removed. ImageJ software 

was used to count the number of nuclei and foci in each nucleus. In total, around 250 nuclei for HUVEC and 800 

nuclei for EA.hy926 cells were scored and the mean and median of foci per nucleus was calculated. Kruskal-

Wallis analysis and post-hoc test according to Chan and Walmsley were performed in SPSS with * = p<0.05 

(versus control cells). 
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Figure 14: Quantification of γ-H2AX spot occupancy. Boxplots representing mean spot occupancy per nucleus 

vs. irradiation dose in  HUVEC and EA.hy926 cells 30 min (A, B) and 24 h (C, D) after exposure to a range of 

acute X-ray doses (0.05, 0.1, 0.25, 0.5 and 2 Gy). The box boundaries represent the upper and lower quartiles 

and the thick black line within represents the median. Extreme outliers were removed. ImageJ software was used 

to determine the spot occupancy, i.e. the fraction of the nucleus that is covered in spots (%). In total, around 250 

nuclei for HUVEC and 800 nuclei for EA.hy926 cells were scored. Kruskal-Wallis analysis and post-hoc test 

according to Chan and Walmsley were performed in SPSS with * = p<0.05 (versus control cells). 

 

Follow-up in time shows that the decrease in spot number tends to differ between irradiated 

HUVEC and EA.hy926 cells (Figure 15). In irradiated HUVEC the maximum in spot number 

was observed at 30 min for all doses, which decreased after 2 h and 24 h. Interestingly, in 

EA.hy926 cells irradiated with 0.05 and 0.5 Gy, the maximum in spot number was observed 

after 2 h instead of 30 min. For control cells, however, a similar curve was followed in both 

cell lines with a slight increase in spot number observed after 24 h compared to 30 min and 2 

h.  
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Figure 15: Dissapearance of γ-H2AX spot number over time. Graphical overview of mean γ-H2AX spot number 

per nucleus for HUVEC (A) and EA.hy926 cells (B), 30 min, 2 h and 24 h after exposure to a range of acute X-

ray doses (0.05, 0.1, 0.25, 0.5 and 2 Gy). Error bars represent ± 2 standard error of the mean (SEM). 

A 

B 
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3.4.2 Acute X-irradiation induces cell cycle arrest in HUVEC and EA.hy926 

cells 

Radiation-induced changes in cell cycle were analyzed by flow cytometry 24 h and 48 h after 

acute X-irradiation (0.1, 0.5 and 5 Gy) using PI staining. Following high dose irradiation (5 

Gy), the cell cycle distribution shifted towards a significant decreased percentage of cells in 

G1/G0 and S phase and a significant increased percentage in G2/M phase in both HUVEC 

and EA.hy926 cells at both tested time points (Figure 16). These findings indicate a persistent 

arrest in G2 phase which was more pronounced in EA.hy926 cells compared to HUVEC (non-

significant). For example, the ratio 5 Gy/control of the percentages of G2/M cells was 1.8 for 

EA.hy926 cells compared to 1.3 for HUVEC, 24 h after irradiation. At lower doses, the 

typical cell cycle distribution observed after exposure to 5 Gy was less clear. Nevertheless, a 

subtle, but significant, decrease in the amount of cells in S-phase 24 h p.i. for 0.1 and 0.5 Gy 

and 48 h p.i. for 0.5 Gy was observed in EA.hy926 cells.  

 

 

Figure 16: Cell cycle distribution assessed by PI staining and flow cytometry. Bar graphs representing 

percentages of cells per cell cycle phase in HUVEC (A, C) and EA.hy926 cells (B, D) 24 h and 48 h after 
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exposure to 0.1, 0.5 and 5 Gy. Bars represent an average of three biological replicates. Three-way ANOVA with 

Sidak post-hoc test was performed in SPSS with * =  p < 0.05 (versus control cells). Error bars represent ± 2 

SEM. 

 

In addition, a trend towards an increase in sub G1 peak, which we assume to represent the 

apoptotic fraction, was seen with all doses after 24 h in EA.hy926 cells. A significant increase 

in sub G1 peak was observed with 5 Gy after 48 h in EA.hy926 cells. This was confirmed by 

the Annexin-V/PI assay for apoptosis detection (see section 3.4.3). It has been reported that 

when apoptotic cells are fixed in ethanol, which induces pores in the membrane, small size 

fragments of DNA can then leave the cells during staining in an aqueous solution. Moreover 

the shedding of apoptotic bodies which contain fragments of nuclear DNA, contribute to the 

loss of DNA content of apoptotic cells [232]. Due to this DNA loss, and since a high 

percentage of cells are in G1 phase, apoptotic cells that have a deficit in DNA content can be 

visualized as a 'sub G1 peak' upon DNA staining.  

 

3.4.3 Acute low dose X-irradiation induces apoptosis in HUVEC and EA.hy926 

cells 

Annexin-V/PI co-staining was used to determine the percentage of living, apoptotic and non-

apoptotic dead cells 24 h, 48 h and 72 h after exposure to a range of acute X-ray doses (0.1, 

0.5 and 5 Gy). Overall, a dose-dependent increase in apoptotic cells was observed (Figure 17) 

that was significant for doses as low as 0.1 Gy for EA.hy926 cells and as low as 0.5 Gy for 

HUVEC 48 h after exposure. The results show also that a significant higher percentage of 

EA.hy926 cells underwent apoptosis following radiation exposure (0.5 and 5 Gy) compared to 

HUVEC. For example, the ratio 0.5 Gy/control of the percentage of apoptotic cells was 2.1 

for EA.hy926 cells compared to 1.2 for HUVEC, and the ratio 5 Gy/control was 2.4 for 

EA.hy926 cells compared to 1.2 for HUVEC, 48 hours after irradiation. Interestingly, in 

EA.hy926 cells a drop in apoptosis was seen after 72 h, in particular for the lower doses (0.1 

and 0.5 Gy), opposed to HUVEC where there is still an increase in apoptosis at that time point 

(non-significant). 
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Figure 17: Apoptosis assessed by the Annexin-V/PI assay and flow cytometry. Bar graph representing 

percentage of apoptotic cells (Annexin-V positive, PI negative) and non-apoptotic dead cells (Annexin-V 

positive, PI positive) as measured by flow cytometry and Annexin-V/PI costaining in HUVEC (A, C) and 

EA.hy926 cells (B, D) 24 h, 48 h and 72 h after exposure to 0.1, 0.5 and 5 Gy. Bars represent an average of three 

biological replicates. Three-way ANOVA with Sidak post-hoc test was performed in SPSS with *= p<0.05 

(versus control cells). Error bars represent ± 2 SEM.  

 

The dose-response relationship for cells that had died in a non-apoptotic manner was less 

clear. In EA.hy926 cells exposure to 5 Gy significantly increased the percentage of non-

apoptotic dead cells at all time points tested. For the lower doses (0.1 and 0.5 Gy) a 

significant increase of non-apoptotic dead cells was observed after 48 h which decreased at 72 

h. The latter observation is in accordance with the trend observed for apoptotic cells. In 

HUVEC, no relevant differences in the percentages of non-apoptotic cells were observed 

between control and irradiated cells, although a small increase 24 h after exposure to 0.5 and 

5 Gy seem to have occured.  
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3.4.4 Acute X-irradiation induces morphological changes in HUVEC and 

EA.hy926 cells 

Cytospin followed by May-Grünwald Giemsa staining was performed on HUVEC and 

EA.hy926 cells 24 h after exposure to 0.1, 0.5 and 5 Gy in order to study radiation-induced 

morphological changes. Cell size was assessed quantitatively using ImageJ software with the 

home-written Giemsa Segmentation macro (www.limid.ugent.be/downloads). In addition, 

both HUVEC and EA.hy926 cells were scored manually for other morphological parameters 

that are indicative of cellular damage or death: polynuclei, DNA fragmentation, cells lacking 

a cellular membrane, presence of nuclear bodies and of polynuclei (Figure 18).  

 

 

Figure 18: Morphological analysis of HUVEC and EA.hy926 cells. Representative microscopic pictures (40X) 

of May-Grünwald Giemsa stained slides performed on cytospinned HUVEC (A, C) and EA.hy926 cells (B, D) 

24 h after exposure to 5 Gy and in control conditions. Cells were manually scored for polynuclei (grey arrow), 

DNA fragmentation (dashed black arrow), nuclear bodies (dashed grey arrow) and cells without membrane 

(black arrow). Automated image analysis using ImageJ software was used for cell size quantification. 

Quantitative data are summarized in Table 2. 
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For both HUVEC and EA.hy926 cells, a significant increase in cell size was observed 24 h 

after exposure to 5 Gy (Table 2). Comparing both cell lines, it was observed that this increase 

in cell size after exposure to 5 Gy was larger in HUVEC (ratio 5 Gy/control 1.16) than in 

EA.hy926 cells (ratio 5 Gy/control 1.10) (non-significant). Evaluation of other morphological 

parameters revealed that there tends to be more normal HUVEC (91.7 %) compared to normal 

EA.hy926 cells (83.5 %) after exposure to 5 Gy. However, following exposure to lower doses, 

the percentage of normal cells inclines towards similarity in both cell lines. After 0.5 Gy, a 

significant rise in cells that lack a cellular membrane was observed in HUVEC. Next, we 

observed that the presence of polynuclei tends to increase with radiation dose in both HUVEC 

and EA.hy926 cells. Furthermore, a significantly increased number of cells containing nuclear 

bodies was observed in EA.hy926 cells after exposure to 5 Gy. Lastly, it was noticed that 

DNA fragmentation tends to occur more frequently in EA.hy926 cells compared to HUVEC 

in both control and irradiated conditions.  

 

EA.hy926 

 
cell size (µm) 

 
 

polynuclei 
(%) 

 
DNA 

fragmentation (%) 

 
cells lacking 

membrane (%) 

 
nuclear bodies 

(%) 

 
normal cells 

(%) 

      

CTRL 81.3 ± 0.6 1.2 ± 0.5 1.2 ± 0.5 1.0 ± 0.4 0.6 ± 0.4 95.9 ± 0.9 

0.1 Gy 81.2 ± 0.5 2.6 ± 0.8 1.2 ± 0.5 1.1 ± 0.6 1.7 ± 0.6 93.4 ± 1.4 

0.5 Gy 82.2 ± 0.5 2.2 ± 0.5 2.4 ± 0.4 2.2 ± 0.6 0.6 ± 0.2 92.5 ± 0.8 

5 Gy 89.0* ± 0.7 4.1 ±1.0 2.1 ± 0.9 1.7 ± 0.6 8.7* ± 1.2 83.5* ± 2.2 

HUVEC       

CTRL 93.3 ± 1.1 1.7 ± 0.6 0.6 ± 0.4 1.4 ± 0.9 1.0 ± 0.5 95.4 ± 1.4 

0.1 Gy 84.8* ± 1.0 2.6 ± 0.8 0.3 ± 0.2 1.4 ± 0.9 0.7 ± 0.4 95.1 ± 1.0  

0.5 Gy 95.4 ± 1.5 3.5 ± 0.9 0.0 ± 0.0 5.5* ± 1.0 0.8 ± 0.4 90.3 ± 1.6 

5 Gy 107.9* ± 1.5 4.7 ± 0.8 0.4 ± 0.3 1.9 ± 0.7 1.4 ± 0.5 91.7 ± 1.3 

Table 2: Morphological analysis of HUVEC and EA.hy926 cells. Overview of morphological changes evaluated 

in HUVEC and EA.hy926 cells 24 h after exposure to a range of acute X-ray doses (0.1, 0.5 and 5 Gy). 

Automated image analysis using ImageJ software was used for cell size quantification. Other features were 

assessed manually. On average between 400 and 700 cells were evaluated per condition, spread over three 

technical replicates. Values represent the mean of three technical replicates ± SEM. Two-way ANOVA with 

Sidak post-hoc test was performed in SPSS with *= p<0.05 (versus control cells). A visual representation is 

given in Figure 17. 
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3.5 Discussion 

Epidemiological studies indicate an increased risk of CVD following the exposure to lower 

doses of ionizing radiation, although uncertainty exists below 0.5 Gy [53, 215]. Therefore, to 

enable an accurate risk assessment in the low dose range (< 0.5 Gy), an understanding of the 

underlying biological and molecular mechanisms is needed. Both radiation-induced 

acceleration of age-related atherosclerosis and microvascular damage are hypothesized to 

underlie radiation-related CVD morbidity [43]. Given the important role of endothelium 

dysfunction in the development of CVD, the endothelium is considered a critical target in 

radiation-related CVD [124, 216]. In vitro research using endothelial cell cultures is thus 

useful to better understand the radiation response of the endothelium. However, the choice of 

the endothelial cell type for in vitro studies should be well considered since their 

characteristics may differ [122, 233-235].  

In this study, the radiation response, with a focus on the low dose range (0.05 – 0.5 Gy), of 

two commonly used endothelial cell types, the primary HUVEC and the thereof derived 

immortalized EA.hy926 was evaluated. HUVEC was chosen since it is considered as a good 

general model of the endothelium, displaying characteristics of both micro- and 

microvasculature [165] and its derivate, EA.hy926, was chosen for its ease of use. To our 

good knowledge, this is the first direct comparison made in the low dose range of ionizing 

radiation between HUVEC and the thereof derived EA.hy926 regarding DNA damage, cell 

cycle, apoptosis and morphology.  

In both HUVEC and EA.hy926 cells, we observed 30 min after exposure a significant 

increase in DSB, as represented by γ-H2AX spot number, down to the lowest dose tested 

(0.05 Gy). The observed increase in DSB was not proportional to the dose, but relatively 

higher with the lower doses tested. This was more pronounced in EA.hy926 cells (e.g. 55 

spots/Gy after 0.05 Gy vs 19 spots/Gy after 2 Gy) compared to HUVEC (e.g. 14 spots/Gy 

after 0.05 Gy vs 12 spots/Gy after 2 Gy). A non-linear relationship with dose has also been 

demonstrated by Neumaier and coworkers [236]. Although these authors used a different 

experimental approach, they also observed that the relative spot number (per Gy) is much 

smaller at higher than at lower doses. They explain this by the fact that at higher doses 

multiple nearby DSB (1 to 2 µm apart) can rapidly cluster into repair centers, which are 

visualized as one spot. Consequently, this implies that average spot size is larger with high 

doses compared to low doses. The size of individual spots is not calculated by the INSCYDE 
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toolbox that we used for this analysis, but the parameter 'spot occupancy' can be used as an 

alternative measure [229]. This parameter reflects the area of the nuclei that is covered by γ-

H2AX spots and gives thus an indirect indication for the size of the spots. Since we observed 

a similar dose-response curve for spot occupancy as for spot number, the influence of 

clustered DSB was most likely rather subtle. An alternative explanation may be that low 

radiation doses induce a global chromatin reorganization that is associated with the formation 

of γ-H2AX foci, but which do not necessarily reflect a higher amount of DNA damage [237]. 

Therefore, the observed non-linear relationship with dose for γ-H2AX spot number does not 

necessarly reflects a non-linear relationship with dose for DSB.  

The disappearance of γ-H2AX spots in irradiated cells with time, as observed in our study, 

represents effective DSB repair [238]. Remarkably, 24 h after exposure, we observed less 

spots in cells irradiated with lower doses (0.05 - 0.5 Gy for EA.hy926 cells and 0.05 - 0.1 Gy 

for HUVEC) compared to control cells. This may be explained by the observation that spot 

number inclined to be higher in control cells at 24 h compared to control cells at 30 min. With 

higher doses (2 Gy for EA.hy926 cells and 0.25 - 2 Gy for HUVEC), the spot number 

remained still elevated compared to controls 24 h after exposure. In a study by Kraemer and 

coworkers, elevated spot number in EA.hy926 cells was observed as well 24 h after exposure 

to 2.5 Gy [239]. This may indicate that with more extensive DNA damage, repair is slower or 

that unrepaired DSB remain present. It has been suggested that slower repair with higher 

doses reflects the presence of more complex breaks and the possibility of more DSB clustered 

in one repair center, as explained above [236]. 

Following DNA damage, a DNA damage response is activated, with p53 as a major regulator, 

leading to cell cycle arrest until the damage is repaired or until cells undergo apoptosis [183, 

240]. Exposure to 5 Gy induced significant accumulation of cells in G2/M phase in both 

HUVEC and EA.hy926 after 24 h, which tends to be more pronounced in EA.hy926 cells. 

Likewise, morphological analysis of murine fibroblasts has shown that the cell area increased 

24 h after exposure to 5 Gy, concomitantly to a G2/M phase arrest [241]. In our study, this 

effect was slightly more pronounced in HUVEC compared to EA.hy926 cells. We observed 

that the significant accumulation of cells in G2/M phase after exposure to 5 Gy was coupled 

to a decrease of cells in G0/G1 and S phase. This typical cell cycle distribution was also 

observed, in other studies, HUVEC 24 h after exposure to 3 Gy [174] and in EA.hy926 cells 

24 h after exposure to 2.5 Gy [239]. With the lower doses used in our study, this typical cell 

cycle distribution was less clear. 
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It has been reported that the accumulation of cells in G2/M phase assayed with PI staining 

represents cells that were irradiated in G1 or S phase and that were subsequently arrested in 

their progression from G2 into mitosis [242, 243]. Cells irradiated in G1 phase will quickly 

repair the induced DNA damage by the error-prone non-homologous DNA end-joining 

(NHEJ) that is known to predominate in G1 phase [176]. Remaining DNA damage, however, 

could then lead to a G2-arrest where the error-free homologous recombination (HR) takes 

care of repair [241]. Indeed, analysis of γ-H2AX spot number has shown that with higher 

doses, a small number of DSB remains present at 24 h in both EA.hy926 cells and HUVEC in 

our study.  

Next, we evaluated the induction of apoptosis following low dose radiation exposure. 

Apoptosis, having both proadhesive and procoagulant properties in endothelial cells, is 

regarded as an important determinant in atherosclerosis progression [244]. Membrane blebs 

from apoptotic endothelial cells contain biologically active oxidized phospholipids that induce 

monocyte adhesion to the endothelium [245]. Moreover, thrombus formation is favored due to 

the exposure of phosphatidylserine, which has procoagulant properties, on the surface of 

apoptotic endothelial cells [246]. Overall, we observed a dose-dependent increase in apoptotic 

cells, down to 0.5 Gy in HUVEC and 0.1 Gy in EA.hy926 cells. In contrast, a study by Pluder 

and coworkers showed no increase in apoptotic EA.hy926 cells after exposure to 0.2 Gy, but 

only after exposure to 5 Gy [188]. It is should be noted that they measured caspase-3 activity 

as an indicator of apoptosis, whereas we used the Annexin-V/PI assay. It may be that after 

low dose irradiation, apoptosis is induced in a caspase-3 independent manner, or that the 

Annexin-V/PI assay is more sensitive than the caspase-3 assay. It is worth mentioning that 

preliminary data in our lab regarding flow cytometric assessment of caspase-3 activity in 

EA.hy926 cells showed an absence of caspase-3 activation. This finding may point to a 

caspase-3 independent induction of apoptosis in EA.hy926 cells, although further research is 

required. In the study by Pluder and coworkers, sub G1 analysis indicated an increase in sub 

G1 peak only following exposure to 5 Gy [188], which is in accordance to our observations. 

Sub G1 analysis may underestimate the total number of apoptotic cells since apoptotic cells in 

S and G2 phase will not be visualized through this assay [232]. On the other hand, it has been 

reported that the sub G1 peak may overestimate the number of apoptotic cells since the DNA 

content of apoptotic bodies or chromatin fragments can be misclassified as single apoptotic 

cells [247].  
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Finally, we have evaluated several morphological characteristics related to cell damage and 

death. Loss of endothelial cells, through apoptosis but also in a non-apoptotic manner 

(necrosis, autophagy, mitotic catastrophe), will compromise the integrity and function of the 

endothelium [148, 248]. For example, necrosis is known to be involved in atherosclerosis 

progression by causing massive inflammation following the loss of intracellular contents 

[249-251]. By means of Annexin-V/PI staining we showed that in HUVEC the percentage of 

cells died in a non-apoptotic manner 24 h after irradiation was more or less similar to that of 

cells died through apoptosis. In EA.hy926 cells, on the other hand, more apoptotic cells than 

non-apoptotic dead cells were observed 24 h after irradiation. It should be noted that there is 

no consensus regarding the definition of Annexin-V positive and PI positive cells, as they 

have also been regarded as late apoptotic cells [252, 253]. Morphological analysis indicated a 

significant increase in damaged or death cells after exposure to 5 Gy in both HUVEC and 

EA.hy926 cells. Furthermore, 24 h after exposure to 0.5 Gy, a significant rise in cells lacking 

a cellular membrane, which may represent necrotic cells [250], has been observed with 

HUVEC, but not with EA.hy926 cells. Also, a significantly increase in nuclear bodies, 

indicative of mitotic catastrophe [249], was observed in EA.hy926 cells after exposure to 5 

Gy, but not in HUVEC. It should be noted that these characteristics only give an indication of 

the cellular process ultimately leading to the cell's death, and require a molecular validation. 

This is in particular needed since a rather heterogeneous mixture of the assessed 

morphological characteristics was observed. Overall, our findings indicate that radiation-

induced endothelial cell death is not limited to apoptosis. 

Comparing the radiation response of HUVEC and EA.hy926 cells, a larger radiosensitivity of 

the latter was revealed. A smaller number of γ-H2AX spots tend to be formed in HUVEC 

compared to EA.hy926 cells. In this regard, it has been reported that transformed cells 

frequently have high endogenous spot numbers due to their genomic instability [238, 254] 

which may well explain the higher spot number found in control and irradiated conditions for 

the immortalized EA.hy926 cells compared to the primary HUVEC. Also, EA.hy926 cells 

have weaker enzymatic antioxidant defenses compared to HUVEC [225]. This renders 

EA.hy926 cells less protected against radiation-induced reactive oxygen species (ROS) 

formation and thus more susceptible to indirect DNA damage. In addition, the disappearance 

of spot number over time was not similar in both cell lines. Whereas in HUVEC a plateau of 

maximum spot number was observed after 30 min, this seemed to be only between 30 min 

and 2 h for lower doses (< 2 Gy) in EA.hy926 cells suggesting slower DNA repair in the 
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latter. Subsequent cell cycle arrest in G2/M phase was inclined to be more pronounced in 

EA.hy926 cells compared to HUVEC. Furthermore, significantly more apoptosis was induced 

in EA.hy926 cells compared to HUVEC 24 h and 48 h following exposure to 0.5 and 5 Gy. In 

this context, we observed also that DNA fragmentation, a morphological characteristic of 

apoptosis, tends to occur more in EA.hy926 cells compared to HUVEC. It has been reported 

that radiosensitive tissues have a high basal level of p53 mRNA and are more prone to induce 

apoptosis following radiation exposure [255]. Gene expression profiling performed by 

Boerma and coworkers has showed a higher basal TP53 expression in EA.hy926 cells 

compared to HUVEC [224]. Other possible molecules that could influence the difference in 

radiation-induced apoptosis between HUVEC and EA.hy926 are caspases, traditionally 

considered as the central executers of apoptosis [256]. As mentioned above, preliminary data 

suggest that apoptosis is induced in a caspase-3 independent manner in EA.hy926 cells. It 

would be interesting to investigate whether this is also the case for HUVEC. Furthermore, it 

would be of interest to investigate molecular players that are involved in radiation-induced 

necrosis, autophagy or mitotic catastrophe. 

One could reason that all parameters should be indentical between the two cell cultures to 

make an unbiased comparison. In our study, it was chosen to use culture conditions which 

were not identical between HUVEC and EA.hy926 but optimal for each cell type. Indeed, 

using culture conditions that are not adapted to the specific needs of a cell can have 

unfavorable consequences (e.g. more easily increase in apoptosis) as such biasing the 

comparison. On the other hand, an effect of differing culture conditions cannot be excluded. 

For instance, it has been observed previously that the percentage of FBS influences the 

amount of apoptosis induced by lectins in MCF-7 breast cancer cells; lectins induced less 

apoptosis in cell cultures with high FBS concentration (20 %) opposed to low FBS 

concentration (1 %) [257]. This finding suggests that FBS may also influence the effect of 

ionizing radiation on the induction of apoptosis. It would thus be useful to investigate the 

effect of FBS concentration on radiation-induced endothelial cell apoptosis. 
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3.6 Conclusion 

The low dose acute radiation response of primary endothelial cells (HUVEC) and the thereof 

derived immortalized endothelial cell line (EA.hy926) with regard to DNA damage, 

apoptosis, cell cycle and morphological changes was studied and compared between the two 

cell lines. We observed that DNA damage was induced in both HUVEC and EA.hy926 cells 

following exposure to doses as low as 0.05 Gy. This low dose radiation-induced DNA 

damage was repaired after 24 h without a significant arrest of cell cycle progression. Even 

though cell cycle progression was not arrested, apoptosis was induced after exposure to doses 

as low as 0.1 Gy in EA.hy926 cells and 0.5 Gy in HUVEC. Comparing HUVEC and 

EA.hy926 cells, we observed a greater radiosensitivity of the latter, mainly with respect to the 

induction of apoptosis. The differences in radiosensitivity of EA.hy926 cells and HUVEC 

should be taken into account when studying the radiation response of the endothelium. 

Moreover, it is advised to include multiple endothelial cell models. Seeing also the important 

role of endothelial cell apoptosis in atherosclerosis, our finding also indicates that the use of 

either HUVEC or EA.hy926 cells may in particular influence in vitro research regarding 

radiation-related atherosclerosis. Finally, our results regarding the formation of DSB show 

that at low doses a relatively higher number of DSB is formed compared to high doses. This 

may imply a non-linear dose response relationship for DSB formation in endothelial cells 

supporting thus the notion that the low dose endothelium response is not a simple linear 

extrapolation from the high dose response. However, practical limitations inherent to the γ-

H2AX assay that question the 1:1 relationship between a DSB and a γ-H2AX spot cannot be 

excluded. Further research is required to resolve this matter as it will have major implications 

on the assessment of low dose risk.  
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4.1 Abstract 

Based on epidemiological findings it is not clear whether radiation doses below < 0.5 Gy 

increase the risk of cardiovascular diseases (CVD), thus further biological research is needed. 

The endothelium is believed to be a critical target in the development of radiation-related 

CVD. The major cause of endothelial dysfunction is oxidative stress, which is closely related 

to mitochondrial function. Moreover, mitochondrial dysfunction is linked to processes such as 

apoptosis, senescence and inflammation, which are involved in the development of CVD. We 

hypothesize that low radiation doses (< 0.5 Gy) will induce oxidative stress and alter 

mitochondrial function in endothelial cells, which may ultimately lead to the development and 

progression of CVD. The primary human umbilical vein endothelial cells (HUVEC) and the 

thereof derived immortalized cell line EA.hy926 were used to assess intracellular reactive 

oxygen species (ROS) levels 30 min after exposure to acute low (< 0.5 Gy) and high doses (5 

Gy) of X-irradiation. Intracellular ROS levels were evaluated using the fluorometric CM-

H2DCFDA assay. No clear dose-response relationship was observed for intracellular ROS 

levels with low dose radiation (< 0.5 Gy). Furthermore, intracellular ROS levels were higher 

in EA.hy926 cells compared to HUVEC. In the latter, intracellular ROS levels tend to be 

below background levels. Next, we have carried out optimization experiments for the 

evaluation of mitochondrial DNA (mtDNA) damage. To this end, we developed PCR 

protocols for the assessment of the accumulation of a 4977 bp deletion (common deletion), a 

sensitive marker for mtDNA damage. It should be noted that this chapter represents 

preliminary work which will be continued in our lab. The results are thus not submitted to 

peer-reviewed journals.   
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4.2 Introduction 

Epidemiological findings are inconclusive about whether there is an elevated risk of 

cardiovascular disease (CVD) after exposure to low doses of ionizing radiation (< 0.5 Gy). 

For an accurate risk assessment, insight in the underlying biological and molecular 

mechanisms is required including an understanding of the endothelial radiation response [41].  

Oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidant 

defenses, plays a major role in endothelial dysfunction, and in the onset and progression of 

atherosclerosis [129, 258]. For example, it will impair vasodilatation by decreasing nitric 

oxide (NO) bioavailability, the most potent vasodilatator [125]. Indeed, super oxide radicals 

(O2
•-
) interact with NO to form the unstable and harmful peroxynitrite (ONOO

-
), a reactive 

nitrogen species (RNS). This can lead to a state of so-called 'nitrosative' stress [259]. It has 

been observed in a number of studies that impaired NO-dependent vasodilatation is associated 

with atherosclerosis [115]. Besides impaired vasodilatation, oxidative stress has been 

associated with increased endothelial permeability and increased leukocyte adhesion onto the 

endothelium [132], which is a critical step in the development of atherosclerosis [260]. On the 

molecular level, oxidative stress is characterized by oxidative damage to macromolecules 

such as DNA, proteins and lipids. Furthermore, it alters the cellular redox state as such 

modulating the activity of diverse intracellular molecules and signaling pathways [128, 261]. 

For instance, alterations in the redox state of protein cysteinyl residues cause changes in 

protein conformation and function. Also, ROS have an impact on gene expression via 

modulation of transcription factors such as nuclear factor kappaB (NF-κβ), activator protein 1 

(AP-1) and the peroxisome proliferator-activated receptor (PPAR) family of transcriptional 

activators [261] determining cellular outcome. For example, NF-κβ is known to be involved 

in the regulation of inflammation, stress responses, apoptosis and the expression of cytokines 

and cell adhesion molecules [262]. All these processes are known to play an important role in 

the development and progression of atherosclerosis. 

Cellular exposure to ionizing radiation results in the formation of ROS that last a matter of 

milliseconds [263]. Radiation-induced ROS, with the majority being hydroxyl radicals, will 

cause immediate oxidative damage to nearby macromolecules (DNA, proteins and lipids), as 

such contributing to the biological effects of ionizing radiation. However, it has been 

calculated that the amount of ROS generated by ionizing radiation is relatively small 
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compared to endogenously produced ROS [264]. Consequently, it can be argued whether low 

dose radiation-induced ROS will have a significant impact on cellular outcome. Though, there 

are indications that low-level ionizing events are 'amplified'. Indeed, experimental findings 

pointed to a cellular 'amplification' of radiation-induced ROS/RNS since much more 

ROS/RNS was detected as could be accounted for with the primary ionizing events [265-267]. 

The exact mechanisms are not yet resolved but there is an important role for RNS such as NO. 

Whereas radiation-induced ROS are the initiators, NO
 
and derivates are believed to be the 

effectors activating signal transduction pathways, defining cellular outcome such as apoptosis 

or senescence [259].  

Mitochondria are also considered to play a key role in the amplification of ROS/RNS. Indeed, 

it has been demonstrated that ionizing radiation can promote mitochondrial ROS production 

[190, 192, 268-270]. The mechanisms by which ionizing radiation increases mitochondrial 

ROS production are not yet fully understood. It is hypothesized that the mtDNA is a critical 

radiation target that is involved in the amplification of intracellular ROS levels. The mtDNA 

is a sensitive target of ionizing radiation for various reasons including lack of protective 

histones, high exon to intron ratio and limited repair capacity [155]. The mtDNA contains 

genes that, amongst others, code for polypeptides involved in the electron transport chain 

[148]. Electrons are transferred through the electron transport chain ultimately leading to the 

production of ATP, a process called oxidative phosphorylation. During this process, electrons 

can also react with oxygen or other electron acceptors, and generate free radicals [149]. 

Damage to the mtDNA can thus result in the dysfunction of the electron transport chain 

followed by an enhanced leakage of ROS (in particular superoxide anion radicals) [271]. 

Superoxide, on its turn, can further damage the mtDNA and can diffuse to nearby 

mitochondria (passively or by yet unknown active pathways) amplifying mitochondrial 

damage in the cell resulting in further superoxide production [272]. In this way a situation of 

persistent mitochondrial dysfunction is created. Interestingly, it is observed that cells respond 

to mtDNA damage by increasing cellular mitochondrial mass or by synthesizing new mtDNA 

[272, 273].  

A sensitive measure of mtDNA damage is the assessment of the accumulation of the common 

deletion (CD). This is a specific mtDNA deletion that spans 4977 bp and is flanked by two 13 

bp repeats. DNA damage between these repeats can lead to inappropriate pairing during DNA 

replication, via a slip-replication mechanism, thus causing the deletion [274, 275]. Presence of 

the CD is often observed in diseases that involve a premature aging process such as the 
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Kearns-Sayre syndrome
7
 [277], indicating the important role of mitochondria in the aging 

process. Atherosclerosis is also an age-related disease in which mitochondrial dysfunction is 

believed to play an important role. In several studies, an accumulation of the CD has been 

observed in human atherosclerotic lesions [159, 278]. Assessment of the accumulation of the 

CD has also been proposed as a sensitive marker for the evaluation of low dose radiation-

induced effects. For instance, Schilling-Tóth and coworkers have demonstrated an increase in 

CD levels 72 h after exposure to doses as low as 0.1 Gy in both primary and immortalized 

fibroblast cell lines [194].  

Seeing the importance of oxidative stress in the development of CVD, we aimed in this study 

to determine intracellular ROS levels following low dose radiation exposure in endothelial 

cells. For this, we have established the fluorometric CM-H2DCFDA assay for the detection of 

intracellular ROS levels in HUVEC and EA.hy926 cells. Furthermore, it is clear that 

oxidative stress and mitochondrial dysfunction are interlinked in an additive way, contributing 

to the development and progression of CVD. To study the effect of low dose radiation 

exposure on the mitochondria, and in particular the mtDNA, we aimed to detect the CD in 

EA.hy926 cells following exposure to low doses of ionizing radiation.  

                                                 
7
 Kearns-Sayre syndrome is a rare metabolic disorder with clinical manifestation of chronic progressive external 

ophthalmoplegia, bilateral atypical pigmentary retinopathy and cardiac conduction abnormalities. The 

underlying causes of this disease are spontaneous mtDNA rearrangements [276]. 
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4.3 Material and methods 

4.3.1 Cell culture and irradiation 

Cell culture and irradiation procedures are as described in 3.3.1. For measurement of 

intracellular ROS levels, EA.hy926 cells were plated in T175 flasks with a density of 4 x 10
6
 

cells 48 h prior to X-irradiation (0.25 ± 0.01 Gy/min, 250 keV, 15mA, 1mm Cu) and HUVEC 

were plated in T175 flasks with a density of 2 x 10
6
 cells 5 days prior to X-irradiation. 

Medium was refreshed every two days. For detection of the CD, EA.hy926 cells were plated 

in T25 flasks with a density of 350,000 cells 24 h prior to X-irradiation. 

4.3.2 Fluorometric CM-H2DCFDA assay for measurement of intracellular ROS 

levels  

CM-H2DCFDA, a chemically reduced and chloromethylated derivate of 2',7'-

dichlorofluorescein (DCF) was used for the measurement of intracellular ROS levels (Figure 

19). A 1 mM CM-H2DCFDA (Invitrogen NV/SA) stock solution was prepared in dimethyl 

sulfoxide (DMSO) and a 1 µM CM-H2DCFDA working solution was freshly prepared in 

PBS. Before X-irradiation, cells were trypsinized and washed with PBS. For each sample, 

300,000 cells were collected in an eppendorf tube and incubated with 200 µL of the 1 µM 

CM-H2DCFDA working solution, for 30 min at 37°C. After the incubation period, X-

irradiation was performed with a series of doses (0.05, 0.1, 0.25, 0.5 and 5 Gy). As a positive 

control, cells incubated for 1 h with 150 µM tert-butylhydroperoxide (tBHP, a known inducer 

of ROS) were included. The cells were transported from the irradiation facility to the lab on 

ice and DCF fluorescence was measured on the flow cytometer in channel FL1, about 30 min 

after irradiation. Since it was practically not feasible to include all doses in one experiment, 

the experiment was repeated several times so that at least three biological replicates for each 

dose were obtained. For CTRL, 5 Gy and tBHP, six biological replicates were obtained. Two-

way analysis of variance (ANOVA) was performed in SPSS software package version 19 

(IBM Corp., New York, USA) with dose and cell type as independent variables. Sidak post-

hoc test was used for determining statistical significance of dose and cell type. A value of p < 

0.05 was considered statistically significant. Fluorescence data are presented as the mean ratio 

of DCF fluorescence intensity between control and irradiated samples (control adjusted to 1). 
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Figure 19: Overview of the CM-H2DCFDA assay. CM-H2DCFDA passively diffuses through the cell membrane 

into cells. Inside the cell its acetate groups are cleaved by intracellular esterases forming H2DCF. Subsequent 

oxidation of this product yields a fluorescent adduct, DCF, that is trapped inside the cell and that can be 

visualized by flow cytometry. 

 

4.3.3 DNA extraction 

EA.hy926 cells were trypsinized 72 h after X-irradiation (0.1 and 5 Gy). Furthermore, cells 

treated for 2 h with 200 µM H202 in serum-free medium were included in the experimental 

set-up. H202 is a known inducer of mtDNA damage. Cells were washed with PBS and 1 x 10
6
 

cells were collected in 200 µL PBS. Immediately after the collection of cells, DNA extraction 

was performed with the High Pure PCR Template Preparation Kit (Roche Applied Science, 

Vilvoorde, Belgium) according to the manufacturer's instructions. DNA quantity was 

measured using a NanoDrop-2000 spectrophotometer (Thermo Scientific, Erembodegem, 

Belgium) and the quality was assessed by gel electrophoresis. The extract, containing both 

nuclear and mitochondrial DNA, was used for PCR analysis without further purification. 

4.3.4 PCR detection of the CD 

Oligonucleotide sequence of primer pairs F1/R1, F3/R3 and F4/R4 were obtained from Wang 

and coworkers [193] and primer pair F2/R2 from Santos and coworkers [279] (Figure 20 and 

Table 3). Their binding sites were checked with the human mtDNA sequence available on 

MITOMAP [280]. Primers were synthesized by Eurogentec (Eurogentec, Seraing, Belgium).  
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Figure 20: Schematic representation of mtDNA that consists of 16 569 bp. The large circle represents full-length 

wild-type mtDNA with the region of the CD (4977 bp) situated between the two bars. The smaller circle 

represents mtDNA after loss of the CD sequence. Primer pair F1/R1 will amplify the region where the CD is 

situated. Primer pairs F2/R2 and F3/R3 are used as controls for mtDNA copy number since it is not likely for a 

mutation to occur in these small regions.  

 

name  oligonucleotide sequence  mtDNA position 

F1 5' ATGGCCCACCATAATTACCC 3' NC_012920 : 8389-8408 

R1 5' TCGATGATGTGGTCTTTGGA 3' NC_012920 : 13507-13526 

F2 5' CCCCACAAACCCCATTACTAAACCCA 3' NC_012920 : 14620-14645 

R2 5' TTTCATCATGCGGAGATGTTGGATGG 3' NC_012920 : 14816-14841 

F3 5' TATCCGCCATCCCATACATT 3' NC_012920 : 15195-15214 

R3 5' GGTGATTCCTAGGGGGTTGT 3' NC_012920 : 15363-15382 

name  oligonucleotide sequence (nuclear)   

F4 5' TTCTACAATGAGCTGCGTGTGG 3'  

R4 5' TCCTACGGAAAACGGCAGAAGA 3'  

Table 3: Overview of primer oligonucleotide sequences used for the assessment of mtDNA damage. Primer pair 

F1/R1 will amplify the region where the CD is situated. Primer pairs F2/R2 (encompasses parts of NADH 

dehydrogenase subunit 6, mitochondrially encoded tRNA glutamic acid and cytochrome b gene) and F3/R3 

(encompasses a part of cytochrome b gene) are used as controls for mtDNA copy. The mtDNA position of 

primer pairs F1/R1, F2/R2 and F3/R3 are given. Primer pair F4/R4 amplifies the nuclear β-actin gene. 

 

To detect the CD, two different PCR programs were used with primer pair F1/R1 that flanks 

the region of the CD: a program with a short extension time that allows formation of a product 

when the deletion had occurred, and a program with a longer extension time to amplify the 
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region of the CD without loss of the CD (Table 4). For the assessment of mtDNA copy 

number, two small mtDNA regions, where mutations rarely occur, are amplified with the use 

of primer pairs F2/R2 and F3/R3. To normalize the copy number of mtDNA relative to the 

copy number of nuclear DNA, a primer pair that amplifies the nuclear β-actin gene was used 

(F4/R4). The PCR mixture contained 40 ng of genomic DNA as template, 1X Taq&Load 

(mastermix that contains Taq DNA polymerase, dNTPs, MgCl2 and direct loading buffer) 

(MP Biomedicals, Brussels, Belgium), 0.4 µM of each primer and RNAse free H2O.  

 

F1/F1 
 

F3/R3 

Step Time T(°C) 
 

Step Time T(°C) 

Initial activation step 3 min 94 

 
Initial activation step 3 min 94 

35 cycles     

 
35 cycles     

denaturation 15 s 94 

 
denaturation 15 s 94 

annealing 30 s 55 

 
annealing 30 s 57 

extension 6 min / 15 s 72 

 
extension 15 s 72 

End of PCR cycle indefinite 4 

 
End of PCR cycle indefinite 4 

       F2/R2 
 

F4/R4 

Step Time T(°C) 
 

Step Time T(°C) 

Initial activation step 3 min 94 

 
Initial activation step 3 min 94 

35 cycles     

 
35 cycles     

denaturation 15 s 94 

 
denaturation 15 s 94 

annealing 30 s 50 

 
annealing 30 s 50 

extension 15 s 72 

 
extension 15 s 72 

End of PCR cycle indefinite 4 

 
End of PCR cycle indefinite 4 

 

Table 4: Overview of the PCR programs used for the assessment of mtDNA damage. For primer pair F1/R1, two 

different programs were used. One with a long extension time (6 min) to amplify the region of the CD without 

loss of the CD and one with a short extension time (15 s) that allows the formation of a product when the 

deletion had occurred.  
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4.4 Results 

4.4.1 Intracellular ROS levels 

Optimization experiments pointed out that the most consistent results are obtained when cells 

are trypsinized and loaded with CM-H2DCFDA before irradiation takes place. Accumulation 

of intracellular ROS was evaluated 30 min after exposure to acute low (0.05 – 0.5 Gy) and 

high (5 Gy) doses of X-rays in HUVEC and EA.hy926 cells (Figure 21). As a positive 

control, cells incubated for 1 h with 150 µM tBHP were included in the experimental set-up. 

Regarding low dose radiation (< 0.5 Gy), no clear dose-response relationship was observed. 

Overall, EA.hy926 contained more intracellular ROS than HUVEC, which was statistically 

significant for tBHP. In HUVEC, low doses of radiation tend to reduce intracellular ROS 

levels. 

 

 

Figure 21: Intracellular ROS levels measured in EA.hy926 cells and HUVEC using the CM-H2DCFDA assay. 

Bar graphs represent the mean ratio (CTRL/IR) of fluorescence intensity of intracellular DCF measured by flow 

cytometry in HUVEC (left panel) and EA.hy926 cells (right panel) 30 min after X-irradiation, or 30 min after 1 h 

incubation with 150 µM tBHP. For each condition, data were obtained from at least three biological replicates 

(measured in different experiments). One-way ANOVA was performed in SPSS. Significance of differences 

between the control and treated samples was determined using Sidak post-hoc test with * =  p < 0.05 (versus 

control cells). Error bars represent the standard error (SE) of the mean.  
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4.4.2 Mitochondrial DNA damage 

Amplification of the mtDNA region where the CD is situated (without loss of the CD) using 

the PCR program with long extension time and primer pair F1/R1 succeeded with high 

specificity in all experiments (Figure 22). Varying results were obtained for the detection of 

the loss of the CD using the PCR program with short extension time. Indeed, amplification of 

the short amplicon (corresponding to the occurrence of the CD) was not always observed 

when the experiment was repeated. Furthermore, the observed amplicon size (± 250 bp) does 

not correspond to the expected amplicon size (161 bp). The regions flanked by primer pairs 

F2/R2 and F3/R3, which will be used to normalize for mtDNA copy number, have been 

successfully amplified (Figure 23) with high specificity. Amplification of a small fragment of 

a nuclear reference gene, β-actin (F4/R4) succeeded with high specificity as well.  

 

 

Figure 22: Electrophoresis gels of PCR products obtained after amplification with primer pair F1/R1 for control 

(lanes 1-3), 0.1 Gy (lanes 4-6), 5 Gy (lanes 7-9) and H2O2 treated samples (lanes 10-12) from EA.hy926 cells. 

On the left panel, PCR was programmed to allow amplification of the whole region without deletion (amplicon 

size 4960 bp). On the right panel, PCR was programmed to allow amplification to happen only if the deletion 

had occurred (observed amplicon size ± 250 bp, expected amplicon size 161 bp). 
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Figure 23: Electrophoresis gels of PCR products obtained after amplification with primers pairs F2/R2, F3/R3 

and F4/R4. A. primer pair F2/R2 (amplicon size 230 bp) for control (lanes 1, 2 and 4), 5 Gy (lanes 3 and 5) and 

negative control (H2O) B. primer pair F3/R3 (amplicon size 188 bp) and C. primer pair F4/R4 (amplicon size 

199 bp) for control (lanes 1-3), 0.1 Gy (lanes 4-6), 5 Gy (lanes 7-9) and H2O2 treated samples (lanes 10-12) and 

with negative control in lane 13 (H2O).  
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4.5 Discussion  

This chapter presents preliminary data regarding the assessment of oxidative stress and 

mitochondrial DNA damage in endothelial cells following low dose radiation exposure. 

Therefore, in the discussion, we will not only discuss the present findings but we will also 

focus on additional steps to be undertaken for a more complete assessment of radiation-

induced oxidative stress and mitochondrial dysfunction. 

4.5.1 CM-H2DCFDA assay for the measurement of intracellular ROS levels 

The fluorometric CM-H2DCFDA assay for the measurement of intracellular ROS levels was 

optimized. For measurement as soon as possible after irradiation, cells need to be loaded with 

the dye before irradiation takes place. The optimal loading time was 30 min at 37°C. After the 

irradiation, the cells were kept on ice. When cells are hit by ionizing radiation, also radiolysis 

of the water which is present in the buffer where the cells reside will occur. Hydrogen 

peroxide which is a stable product of radiolysis is capable of entering the cell and can thus 

also contribute to H2DCF oxidation, interfering with the measurement of intracellular 

radiation-induced ROS. By keeping the cells on ice, extracellular hydrogen peroxide will only 

penetrate into the cells very slowly because of membrane rigidity [281]. Furthermore, since 

there will always be differences between the samples regarding the time after irradiation they 

are measured, ROS produced by normal oxidative metabolism can produce artifacts as well. 

This is, however, minimized by keeping the samples on ice [282]. 

Intracellular ROS levels were measured 30 minutes after irradiation: due to practical 

constraints (transport from the irradiation building) it was only possible to measure DCF 

fluorescence as early as 30 minutes after irradiation. Seeing the complexity of the 

experimental procedure, the lack of significant results can be explained by the use of a 

relative low number of replicates. Regarding low dose radiation (< 0.5 Gy), no clear dose-

response relationship was observed. In HUVEC, low doses of radiation tend to reduce 

intracellular ROS levels, although not significant. Overall, EA.hy926 tends to contain more 

intracellular ROS than HUVEC. This can be explained by the weaker enzymatic antioxidant 

defense mechanisms in EA.hy926 [225]. Furthermore, the higher level of radiation-induced 

ROS may be related to our previously observed higher radiosensitivity of EA.hy926 cells 

compared to HUVEC, in terms of DNA damage and apoptosis [283].   
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Although the CM-H2DCFDA assay can be of value, results should be interpreted with 

caution. For instance, H2DCFA is directly oxidized by e.g. NO2
•
 and CO3

•-
 but oxidation by 

H2O2 requires a catalysator [284]. Oxidation of H2DCFA by H2O2 is fast in the presence of 

peroxidase and of similar catalysts such as cytochrome c. This is of importance since 

cytochrome c is released from the mitochondria in the cytosol during apoptosis. Therefore, 

changes in DCF fluorescence may reflect this phenomenon rather than real changes in 

intracellular ROS levels. The CM-H2DCFDA assay was carried out with flow cytometry. 

However, it would be interesting to perform the experiment using fluorescence microscopy 

too since this would give a better insight in the cellular distribution of ROS formation. It has 

been reported that the laser used in both fluorescence microscopy and flow cytometry induces 

ROS formation. This side effect is more pronounced in fluorescence microscopy compared to 

flow cytometry [285]. Although, the ROS-inducing effect can neither be excluded in the 

latter. Therefore, it would be interesting to check the effect of laser intensity on ROS 

formation. The inclusion of control samples should, however, rule out this side effect in the 

analysis of our results. 

Besides the above mentioned limitations of the CM-H2DCFDA assay, there may also be a 

biological explanation for the subtle effects observed following low dose radiation exposure. 

ROS formed due to the primary ionizing events are known to disappear quickly (in less than 

10
-3

 s) and are thus not present anymore after 30 min. On the other hand, it has been shown 

that these 'primary' ROS can be amplified by the cell [265-267], although it may be that this 

requires longer time than 30 min. To investigate the long-term effect of radiation exposure on 

cellular oxidative stress, measurements at longer timepoints after irradiation, e.g. days and 

weeks, should be carried out. Furthermore, other markers of cellular oxidative stress should 

be included. For instance, oxidative damage to lipids, proteins and DNA, can be assessed by 

measuring the levels of 8-isoprostane, p-tyrosine and 8-hydroxydeoxyguanosine, respectively 

[286, 287]. Furthermore, it is of interest to asses NO levels. First, it is hypothesized that NO 

concentration will decrease after IR exposure since superoxide is known to inactivate NO. For 

regulating the vascular tone, endothelial cells produce NO which mediates vascular smooth 

muscle cell relaxation. Decreased NO availability will impair maintenance of the vascular 

tone and can thus worsen atherosclerosis-related health symptoms [125]. Next, the interaction 

of NO with superoxide leads to the formation of peroxynitrite and consequently 3-

nitrotyrosine, which is a known marker of nitrative stress [259, 286].  



Oxidative stress and mitochondrial DNA damage following low dose radiation exposure  

90 

 

Finally, to investigate further the effect of radiation-induced oxidative stress on cellular 

endpoints such as DNA damage and the induction of apoptosis or senescence, the use of ROS 

scavengers in the experimental set-up would be of interest. In this way, one can also elucidate 

underlying molecular signaling pathways. For instance, Ma and coworkers have revealed a 

protective role of ferulic acid in radiation-induced (10 Gy) oxidative stress in HUVEC, 

through upregulation of cellular glutathione (GSH) and nicotinamide adenine dinucleotide 

phosphate (NAPDH) levels [288]. They reported an involvement of the phosphatidylinositol 

3-kinase (PI3K) and extracellular signal regulated kinase (ERK), which were responsible for 

the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus where it 

could bind with anti-oxidant response element (ARE) within the promotor regions of the 

genes GSH and NAPDH, leading to their up-regulation. Other ROS scavengers that are used 

in molecular biology to assess oxidative stress are sodium pyruvate, mannitol and 

manganese(III)-tetrakis(4-benzoic acid)porphyrin [289, 290]. 

4.5.2 PCR for the assessment of the CD, a marker for mtDNA damage 

PCR quantification of the CD, for assessment of radiation-induced mtDNA damage, was 

worked out. Since the CD is amplified during mtDNA replication, it has been proposed as a 

sensitive marker for low levels of mtDNA damage, as induced by low dose of ionizing 

radiation [194]. PCR detection of the CD was inconsistent in our experiments. The presence 

of the CD was not always observed when the experiment was repeated. In addition, the 

observed amplicon size was not as expected. This may be because the mtDNA sequence of 

the cell line EA.hy926 and the primers we used, does not fully correspond to the human 

mtDNA sequence from MITOMAP [280]. Therefore, it would be good to test the primers on 

other cell lines as well, such as HUVEC. Furthermore, the PCR product could represent a 

different mtDNA deletion. For example, Wang and coworkers have identified a novel mtDNA 

deletion with break points close to that of the CD [193]. For further research in our lab it 

would be of interest to sequence the full mtDNA from the EA.hy926 cell line which will aid 

in the development of new primers. Furthermore, sequencing of the mtDNA, before and after 

exposure to low dose radiation, can reveal radiation-induced point mutations. Another 

technique that can be used to determine mtDNA damage is restriction fragment length 

polymorphism. With this technique, the mtDNA is digested into different fragments by 

restriction enzymes and the resulting restriction fragments are separated according to their 

length by gel electrophoresis [291].  
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Besides the induction of mtDNA damage, ionizing radiation-induced amplification of 

intracellular ROS levels can also be mediated via other mechanisms. For instance, Leach and 

coworkers have speculated that clinical significant doses of ionizing radiation (1-10 Gy) may 

amplify mitochondrial ROS/RNS production via a mechanism that involves mitochondrial 

permeability transition [192]. They proposed that a radiation-induced oxidative event in a 

mitochondrion initiates the localized release of Ca
2+

. Adjacent 'non-hit' mitochondria can take 

up this Ca
2+

, resulting in transient mitochondrial permeability transition (demonstrated by 

membrane depolarization) and release of Ca
2+

. In this way, a single oxidizing event induced 

by ionizing radiation can be further propagated in the cell. Associated increase in Ca
2+

 release 

and membrane depolarization can thus enhance ROS/RNS generation. Another mechanism 

that is proposed to play a role in delayed mitochondrial ROS production is radiation-induced 

mitochondrial fission, which is associated with an increased expression of the dynamin-like 

protein DRP1 [292, 293]. This increase in mitochondrial fission was correlated with an 

impaired function of the respiratory chain, being the cause of the delayed ROS production. It 

is however, not elucidated how the increase in mitochondrial fission is related to impaired 

respiratory chain function.  
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4.6 Conclusion and perspectives 

Regarding the assessment of intracellular ROS levels, the CM-H2DCFDA assay was 

successfully established. However, considering the limitations of the assay it is advised to 

include other methods for the assessment of oxidative stress. Furthermore, in a new PhD 

project, other probes will be used to measure intracellular NO and mitochondrial superoxide 

levels, to have a better insight in radiation-induced oxidative/nitrosative stress. NO levels 

following radiation exposure can be assessed using the 4-amino-5-methylamino-2',7'-

difluorofluorescein diacetate (DAF-FM diacetate) probe by flow cytometry. In the context of 

mitochondrial induced amplification of intracellular ROS levels, it is of interest to use the 

MitoSOX Red probe, which is targeted to the mitochondria and specifically measures 

mitochondrial superoxide by flow cytometry. Finally, it would be interesting to assess 

whether ionizing radiation induces amplification of intracellular ROS on the longer term, how 

it alters redox signaling and its impact on final cellular outcome (e.g. induction of 

senescence).  

Seeing the importance of the mitochondria in the cellular response to radiation, further 

research in the effects of radiation on mitochondria is required. Besides the assessment of 

mtDNA damage, knowledge regarding mitochondrial function is needed. Therefore it is 

planned, in a new PhD project, to assess mitochondrial activity by, amongst others, the 

measurement of fusion and fission events, the mitochondrial potential, and the production of 

the TCA cycle (Krebs cyclus) intermediates citrate, succinate and 2-oxoglutarate using 

validated enzymatic kit protocols.  
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5.1 Abstract 

Ionizing radiation has been recognized to increase the risk of CVD. However, there is no 

consensus concerning the dose-risk relationship for low radiation doses and a mechanistic 

understanding of low dose effects is needed. Endothelial senescence is implicated in the 

development of atherosclerosis, a major cause of CVD morbidity. A European consortium 

was set-up in which human umbilical vein endothelial cells (HUVEC) were exposed to 

chronic low dose rate (LDR) radiation (1.4 and 4.1 mGy/h) during one, three and six weeks. It 

was observed that exposure to 4.1 mGy/h resulted in premature senescence. To gain more 

insight in the underlying signaling pathways, we analyzed gene expression changes in these 

cells using microarray technology. The obtained data were analyzed in a dual approach, 

combining single gene expression analysis and Gene Set Enrichment Analysis. An early stress 

response was observed after one week of exposure to 4.1 mGy/h which was replaced by a 

more inflammation-related expression profile after three weeks and onwards. This early stress 

response may trigger the radiation-induced premature senescence previously observed in 

HUVEC irradiated with 4.1 mGy/h. A dedicated transcriptomic analysis in our study pointed 

to the involvement of insulin-like growth factor binding protein 5 (IGFBP5) signaling in 

radiation-induced premature senescence. Our findings, together with those from the other 

consortium partners, will be integrated in a systems biology approach to obtain a better 

mechanistic understanding of chronic LDR radiation-induced premature senescence in 

HUVEC.  
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5.2 Introduction 

Several epidemiological studies have pointed to an excess risk of cardiovascular diseases 

(CVD) following radiation exposure [65]. Major sources of information are the Life Span 

Study (LSS) cohort and the Adult Health Study (AHS) cohort from Japanese atomic bomb 

survivors, which revealed an excess risk of stroke and heart disease following exposure to 

lower doses of ionizing radiation [53, 61]. However, there is still considerable uncertainty 

about the dose-risk relationship, in particular for low (< 0.5 Gy) doses [53]. Recently, a new 

method of analysis by fitting multiple dose-response models on LSS data has been proposed 

by Schöllnberger and coworkers to produce more reliable risk estimates. Their findings 

support a linear non-threshold type of response for mortalities related to CVD in the LSS 

cohort, with risk estimates consistent with zero risk below 2.2 Gy based on 90% confidence 

intervals [61]. Regarding cardiovascular risks related to protracted exposures, major sources 

of information are occupational cohorts and cohorts living in areas with high level 

background radiation [294]. For example, an excess risk for ischemic heart disease and stroke 

morbidity was observed among the Chernobyl liquidator cohort [57]. Also, an increasing 

trend in circulatory disease mortality with dose was revealed by studying the records of the 

National Dose Registry of Canada (individual dose registries of all occupationally exposed 

workers in Canada) and the records of male workers at the British Nuclear Fuels plc [56, 

295]. A valuable well-established cohort is that of the Mayak nuclear facility workers because 

information is available for both mortality and morbidity as well as for confounding factors 

such as smoking and alcohol consumption. The latest analysis of the Mayak worker data 

revealed an increasing trend in ischemic heart disease incidence with both total external γ-ray 

dose and internal liver dose [59]. Meta-analysis of all published epidemiological studies 

suggested a positive association between dose and an excess risk of CVD. However, this 

could not be statistically evidenced for low doses. The large heterogeneity between the 

different studies, lack of dosimetry data and/or not eliminating confounding factors hampered 

a correct evaluation of the dose-risk relationship [10, 38].  

To improve the judgment of radiation-related CVD risk it will be crucial to integrate 

biological knowledge into epidemiological studies, pointing out the necessity of biological 

research [82]. Fundamental biological research regarding the underlying mechanisms of 

radiation-related cardiovascular diseases can serve two major goals: (i) identification of 

suitable biomarkers for use in molecular epidemiological studies, and (ii) identification of 
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molecular targets that can be used in the development of countermeasures. Genome-wide 

gene expression profiling has proven to be a useful tool in the quest for biomarkers as well as 

for the understanding of molecular pathways involved in the radiation response [82, 206].  

The endothelium, which constitutes the inner lining of the cardiovascular system, is 

considered to be a critical target for radiation-related CVD [296]. Endothelial cells are 

involved in processes such as coagulation, fibrinolysis, vascular tone regulation and 

inflammation, and are considered safeguards for normal vascular functioning [120]. 

Consequently, endothelial dysfunction plays a critical role in the development and 

progression of CVD, and in particular atherosclerosis [124]. Atherosclerosis is a chronic 

disease of the arterial wall characterized by the formation of a so-called 'plaque' which will 

impair normal blood flow and can lead to complications such as myocardial infarction and 

stroke [91]. Aging of the vasculature is a well-known risk factor of atherosclerosis and is 

associated with impairment of normal endothelial function [147].  

There is in vivo evidence for the involvement of senescence of endothelial cells in age-related 

atherosclerosis [137-139, 297]. Senescence is a particular state in which cells enter a 

permanent form of growth arrest, are incapable of synthesizing DNA and are unresponsive to 

growth stimuli. Nevertheless, they remain metabolically active [298]. In the case of senescent 

endothelial cells, this results in a pro-inflammatory, pro-atherosclerotic and pro-thrombotic 

phenotype [135]. Senescence was observed for the first time by Hayflick and Moorhead as a 

state in which cells lose their ability to proliferate in culture  [140]. This is termed replicative 

senescence and is due to telomere shortening that occurs during each cell division until a 

critical length is reached that triggers specific cell signaling pathways [147]. Senescence, 

however, can also occur in a telomere independent manner following cellular insults causing 

amongst others intracellular oxidative stress and inflammation. This is called stress-induced 

senescence and can also be induced following ionizing radiation exposure [196]. 

It has been hypothesized that chronic low dose rate (LDR) radiation exposure may accelerate 

the onset of senescence in endothelial cells (personal communication). This radiation-induced 

premature senescence may indirectly lead to an increased risk of CVD by accelerating the 

progression of age-related atherosclerosis.  

A European consortium to study the response of human umbilical vein endothelial cells 

(HUVEC) after chronic exposure during one, three or six weeks to γ-radiation (
137

Cs) at 

different dose rates, 1.4 mGy/h and 4.1 mGy/h, was set-up (FP7 DoReMi project (task 7.3.), 
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grant agreement 295823). The long-term goal of this project is to analyse the mechanisms 

underlying chronic LDR radiation-induced responses in HUVEC in a systems biology 

approach. The irradiations were carried out at Stockholm University after which the necessary 

samples were distributed to the partners. Each partner was responsible for a specific endpoint 

which included proteomics, senescence markers, oxidative stress markers (8-oxo-dG and 

hMTH1), inflammatory response, capacity to form vascular networks in Matrigel, DNA 

damage and genomic instability (chromosomal aberration and telomere length). We were 

responsible for the genome-wide gene expression analysis. Overall, we aimed to gather 

information about changes in signaling pathways and radiation response mechanisms in 

HUVEC during chronic LDR γ-irradiation, with a particular focus on radiation-induced 

premature senescence.  

Indeed, consortium partners observed premature senescence in HUVEC after six weeks of 

exposure to 4.1 mGy/h, but not 1.4 mGy/h (Figure 24). This was determined by a progressive 

loss of replicative capacity and increased activity of senescence-associated-β-galactosidase 

(SA-β-gal) [204, 205]. They also carried out proteomic analysis which revealed that several 

senescence-related pathways were influenced by 4.1 mGy/h, such as cytoskeletal 

organization, cell-cell communication and adhesion, and inflammation. Furthermore, their 

proteomic data suggest that chronic radiation-induced DNA damage and oxidative stress 

resulted in the induction of p53/p21 pathway, ultimately leading to premature senescence 

[204]. The current chapter is embedded in this European project and gives an overview of the 

transcriptomic analysis performed on mRNA obtained from the same chronic LDR irradiated 

HUVEC cultures. The presented results should thus be regarded complementary to two papers 

which describe the results regarding senescence markers and proteomic changes in these 

chronic LDR irradiated HUVEC [204, 205]. Moreover, our results together with the results 

obtained by the other partners will be integrated by modellers, in a systems biology approach, 

to obtain an understanding of the mechanisms underlying chronic LDR radiation-induced 

premature senescence.  
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Figure 24: Chronic γ-radiation (
137

Cs) of HUVEC. A. Proliferation rate of HUVEC exposed to different dose 

rates determined by cumulative population doublings. B. Activity of SA-β-gal in HUVEC exposed to different 

dose rates. Results are the mean value of three independent biological experiments. Results are obtained by the 

partners at Stockholm University in the EU FP7 DoReMi project. The authors have permitted the use of these 

figures. * = p-value ≤ 0.01 between sham and 4.1 (week 3) and # = p-value ≤ 0.005 between sham and 4.1 (week 

6). 

A 

B 
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# 
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5.3 Materials and methods 

5.3.1 Cell culture conditions 

Cell culture conditions were as previously described [204]. HUVEC (Invitrogen, Paisley, UK) 

were obtained from a single donor, and cultures were started from an early passage on (P2). 

They were cultured in Media 200 (Invitrogen) supplemented with low serum growth 

supplement containing 2% fetal bovine serum, 1 µg/µl hydrocortisone, 10 ng/ml epidermal 

growth factor, 10 µg/ml heparin, 100 U/ml penicillin and 0.1 mg/ml streptomycin at 37ºC in a 

95% air / 5% CO2 humidified atmosphere. All cell culture media supplements were obtained 

from Invitrogen. Cells were passaged every seven days (5000 cells/cm
2
) with culture medium 

being changed every two days. Accutase (Invitrogen) was used to detach cells during 

passaging and harvesting of cells.  

5.3.2 Chronic gamma radiation exposure  

Chronic gamma radiation exposure was performed at Stockholm University as previously 

described [204]. A cell culture incubator equipped with a 
137

Cs-gamma source was used to 

expose HUVEC to chronic ionizing radiation (1.4 and 4.1 mGy/h). The cells were irradiated 

until they lost their proliferative potential. Irradiation was carried out continuously except 

during the replacement of culture medium and sub-culturing of cells which lasted between 30 

minutes and 1 hour. Control cells were grown in an identical incubator, but without exposure 

to ionizing radiation. The irradiations were performed in triplicate in three separate, 

subsequent experiments generating three biological replicate samples for each treatment.  

5.3.3 RNA extraction   

For the two first experiments RNA was extracted at the Helmholtz Zentrum München using 

the mirVana™ miRNA Isolation Kit (Ambion Inc., Austin, TX, USA). The protocol for total 

RNA extraction was followed according to the manufacturer's instructions. For the third 

experiment, RNA was extracted in our lab using the AllPrep DNA/RNA/Protein Mini kit 

according to manufacturer's instructions (QIAGEN, Hamburg, Germany). RNA quantity was 

measured using a NanoDrop-2000 spectrophotometer (Thermo Scientific, Erembodegem, 

Belgium) and the quality was assessed using an Agilent 2100 Bioanalyzer (Agilent 
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Technologies, Santa Clara, CA, USA). The RNA integrity number (RIN) was at least 8.6 for 

all samples. 

5.3.4 Microarray assay  

Microarray assay was performed as previously described [204]. Using the Ambion® WT 

Expression Kit (Ambion Inc.), cRNA was prepared from cDNA, originally synthesized and 

purified from 0.25 μg of total RNA following the manufacturer’s instructions. Next, cRNA 

was purified and used for synthesis of 2
nd

 cycle DNA of which 2.75 μg was then used for 

fragmentation and labeling using the GeneChip® Terminal Labeling Kit (Affymetrix, Santa 

Clara, CA, USA). Using GeneChip® Hybridization, Wash and Stain Kit (Hybridization 

module) (Affymetrix), and Hybridization Controls (Affymetrix), fragmented and labeled 

cDNA was hybridized to Human Gene 1.0 ST Arrays (Affymetrix). After hybridization with 

rotation for 16 hours at 45°C, arrays were washed and stained using GeneChip® 

Hybridization, Wash and Stain Kit (Stain module) (Affymetrix) according to the 

manufacturer’s instructions. Finally, arrays were scanned immediately using the Affymetrix 

GeneChip® Scanner (Affymetrix). 

5.3.5 Microarray data analysis 

Analysis of microarray data was performed by importing the raw data (CEL-files) in Partek 

Genomics Suite v6.6 (Partek Incorporated, St. Louis, Mo., USA). In brief, Robust Multi-array 

Average background correction was applied, data were normalized by Quantile Normalization 

and probe set summarization was performed by the Median Polish method. Samples were 

categorized according to following attributes: time, dose rate, treatment (dose rate*time = 

accumulated dose) and experiment. Exon expression data were summarized as gene 

expression values using the one-step Tukey method. To identify the factors that have the 

biggest influence on individual gene expression, a 5-way analysis of variance (ANOVA) was 

run with experiment, scan date, dose rate, time and treatment as factors. No interactions were 

included in the ANOVA model. The experimental set-up (most likely the RNA extraction 

method) had the largest effect on differential gene expression, followed by scan date, which 

we considered as batch effects. Therefore, these batch effects were removed using the Partek 

Batch Effect Removal tool to create a new gene expression list and the 5-way ANOVA was 

reran. As a result, the gene expression values were adjusted to what they would have been if 
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there had been no batch effects. Other signals and noise remained in the data set. Visual 

assessment by means of Principal Component Analysis (PCA), demonstrated that the batch 

effects could be effectively removed (Figure 26). After removal of the batch effects, it was 

observed that time had the largest effect on differential gene expression (Figure 25). 

Comparisons between the different treatments were made by unpaired sample t-tests and 

genes with an unadjusted p-value below 0.05 and a fold change (FC) below -1.5 or over 1.5 

were considered as differentially expressed.  

 

 

Figure 25: Bar chart of the sources of variation, after batch removal, which gives an overview of the relative 

contribution of each factor in the 5-way ANOVA. Time is the biggest source of variation. 

5.3.6 Principal component analysis (PCA) 

PCA is a statistical tool that calculates principal components that account for the variability 

observed in a specific dataset. PCA can be visualized in a graph (Figure 26). Each sphere in 

the graph represents a sample of our microarray chip. In total 27 samples were included in our 

experiment. The axes represent the three major principal components which are directed 

towards increasing variation of the dataset [299]. The spheres are thus spread in the graph 

based on their variation: i.e. closely located spheres have more similar intensity values across 
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the probesets on the whole chip (genome) than further away located spheres [300]. Finally, 

one can attribute a factor to each sphere (in this case experiment and scan date) as such 

identifying clustering according to a specific factor. Before removal of the batch effects, the 

spheres are highly clustered on experiment and, to a lesser extent, scan date (Figure 26). This 

clustering has disappeared after removal of the batch effects (experiment and scan date), 

indicating an effective removal.   
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Figure 26: PCA plots which give a visualization of the variation in intensity values across the probesets on the whole chip (genome) between the different samples. In each of 

the four plots, all samples (27 in total) are represented as separate spheres. The upper plots visualize the variation between the samples before removal of the batch effects 

(experiment and scan date) and the lower plots represents the variation between the samples after removal of the batch effects. Closely located spheres have a more similar 

transcriptome than further away located spheres. The spheres are colored by experiment (plots on the left) or scan date (plots on the right).  
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5.3.7 Analysis of senescence-related differential gene expression 

To investigate genes that may be involved in the radiation-induced acceleration of the 

senescence process, we identified the genes that were differentially expressed between week 

six and week one (unadjusted p-value < 0.001, no threshold for FC), and in common for 

control and 4.1 mGy/h irradiated HUVEC. More specifically, we were interested in the genes 

of which the differential expression between week six and week one were more pronounced 

in cells irradiated with 4.1 mGy/h compared to control. Therefore, no threshold was set for 

FC. In this way, genes that are, for example, not differentially expressed between week six 

and one for control, but that are for 4.1 mGy/h, are included. A more stringent p-value as 

compared to the one of section 5.3.5 was used (p < 0.05). Next, we calculated the ratio 

between the FC of irradiated genes and the FC of control genes. 

 

      
                              

                            
 

The genes having a ratio that deviate the most from 1 were then considered candidate genes 

involved in the acceleration of the senescence process. From these genes, insulin-like growth 

factor binding protein 5 (IGFBP5) was revealed as an important candidate gene. Using a 

Pearson correlation (in Partek Genomics Suite v6.6), we explored genes of which the 

expression profile mostly correlated (positively or negatively) with that of IGFBP5.  

5.3.8 Gene Set Enrichment Analysis (GSEA) 

The microarray data were further analyzed using GSEA to investigate whether predefined 

gene sets were significantly enriched between control and irradiated cells. GSEA is an 

analytical method for interpreting gene expression data on the level of gene sets and is used to 

generate hypotheses for biological interpretation [213]. In essence, GSEA determines whether 

an a priori defined gene set is overrepresented at the top or the bottom of a ranked list of 

genes that are found in the expression data set of two phenotypes (in this case irradiated and 

control cells). Genes are ranked using signal-to-noise ratio. Next, an enrichment score, which 

reflects the overrepresentation of a given gene set in the ranked list of genes, is calculated 

based on normalized Kolmogorov-Smirnov statistics [213, 214]. In this study, we kept the 

default parameters in the GSEA software. Normally, the statistical significance of the 

normalized enrichment score associated to each gene set is assessed through 1000 random 
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permutations of the phenotype labels. However, since this study has less than seven samples 

in each phenotype (only three per treatment), permutations were based on gene sets instead of 

phenotype labels [301], as is recommended in the GSEA guidelines. Enriched gene sets with a 

false discovery rate (FDR) value below 0.05 were used for driving further biological 

interpretation. FDR-value is preferred over p-value for gene sets since it gives the statistical 

significance of an enriched gene set corrected for gene set size and multiple hypotheses 

testing [213]. The gene set databases used in our study are Kegg PATHWAY and Gene 

Ontology Biological Process (GO BP) gene set databases (downloaded from 

http://www.broadinstitute.org/gsea/msigdb/index.jsp (v.4.0)). GSEA results based on GO BP 

were visualized using Enrichment Map, (downloaded from 

http://baderlab.org/Software/EnrichmentMap/) as a plugin in Cytoscape [302]. Given that 

Enrichment Map visualization is only useful when using hierarchically organized gene sets 

like GO [302], GSEA results based on the Kegg PATHWAY database are presented in table 

format.  

5.3.9 Quantitative real-time PCR validation  

Expression of IGFBP5 was validated with quantitative real-time PCR using the TaqMan® 

Gene Expression Assay (catalogue number: Hs00181213_m1) (Applied Biosystems, Foster 

City, CA, USA) which contains gene-specific primers and a FAM
TM

 (6-carboxyfluorescein) 

dye-labeled MGB (minor groove binder) probe. For each sample, diluted cDNA originating 

from the microarray experiment was used and each reaction was ran in technical triplicates 

using TaqMan® Fast Advanced Master Mix on a 7500 Fast Real-Time PCR system (Applied 

Biosystems). Cycling conditions were set according to manufacturer's guidelines for a fast 96-

well run: hold-step for 20 seconds at 95°C, followed by 40 cycles with 3 seconds at 95°C and 

30 seconds at 60°C. Relative expression levels were calculated using the Pfaffl method [303] 

using ribosomal protein, large, P0 (RPLP0) (catalogue number: Hs99999902_m1) (Applied 

Biosystems) as reference gene. 
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5.4 Results 

5.4.1 Chronic LDR radiation-induced differential gene expression in HUVEC 

Differential gene expression was analyzed after one, three and six weeks (Figure 27 and Table 

5) by comparing control cells with irradiated cells. The number of differentially expressed 

genes (p-value < 0.05 and |FC| > 1.5) between control and irradiated cells at each time point 

was limited (Figure 27) with absolute FC that never exceeded 3-fold, indicating that the 

transcriptional effects of chronic LDR radiation on HUVEC are rather subtle. Most genes 

were differentially expressed after one week (46 genes for 1.4 mGy/h, and 58 genes for 4.1 

mGy/h). This number dropped after three weeks (3 genes for 1.4 mGy/h, and 2 genes for 4.1 

mGy/h) after which it increased again after six weeks (14 genes for 1.4 mGy/h, and 25 genes 

for 4.1 mGy/h). The highest dose rate (4.1 mGy/h) induced a higher number of differentially 

expressed genes as opposed to the lowest dose rate (1.4 mGy/h). Six annotated genes that 

were differentially expressed after one week were in common for both dose rates: epithelial 

cell adhesion molecule (EPCAM); patched 2 (PTCH2), chromosome 15 open reading frame 

51 (C15orf51); ankyrin repeat domain 20B (ANKRD20B); ankyrin repeat domain 20 family, 

member A12, pseudogene (LOC375010) and RNA, U4 small nuclear 2 (RNU4-2). After three 

weeks, only one gene was in common for both dose rates: small nucleolar RNA, C/D box 20 

(SNORD20), a small nucleolar RNA involved in RNA modification, whereas no genes were 

in common after six weeks. Remarkably, a large number of genes were not annotated. For 

these non-annotated genes, transcript ID analysis using the NetAffxTM Analysis Center and 

USCS Genome Browser was performed. This revealed that these non-annotated genes are 

mostly small RNAs such as mitochondrial transfer RNA, small cytoplasmic RNA, small 

nuclear RNA and small nucleolar RNA.  
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Figure 27: Venn diagrams representing differentially expressed genes (including non-annotated genes) with a p-

value < 0.05 and a |FC| > 1.5. Comparisons are made between 1.4 mGy/h and control (left panel) and 4.1 mGy/h 

and control (right panel) at each time point (week 1, 3 and 6). 

 

WEEK 1 WEEK 3 WEEK 6 

1.4 mGy/h vs CTRL 1.4 mGy/h vs CTRL 1.4 mGy/h vs CTRL 

Gene Symbol p-value FC Gene Symbol p-value FC Gene Symbol p-value FC 

UGT2B7 4,17E-03 -1.68 SNORD20 0.01 -1.62 PAPPA2 2,10E-04 -1.56 

SNORD20 0.01 1.66   
 

  PRSS2 1,03E-03 -1.67 

C15orf51 0.01 -1.87   
 

  LOC143188 3,06E-03 1.58 

LOC375010 0.02 -1.61   
 

  JHDM1D 3,80E-03 -1.54 

ANKRD20B 0.02 -1.55   
 

  SNORA62 0.02 1.62 

BAGE2 0.02 -1.81   
 

  ND6 0.04 -1.57 

ANKRD20B 0.02 -1.57   
 

  GPAM 0.05 -1.58 

GSTM2 0.03 -1.60   
 

    
 

  

C15orf51 0.03 -1.79   
 

    
 

  

EPCAM 0.03 -1.57   
 

    
 

  

ACTR3BP2 0.04 -1.54   
 

    
 

  

OR4K2 0.04 -1.50   
 

    
 

  

OR4F16 0.04 -1.84   
 

    
 

  

RNU4-2 0.05 1.73   
 

    
 

  

PTCH2 0.05 1.76   
 

    
 

  

SNORA75 0.05 1.75             

4.1 mGy/h vs CTRL  4.1 mGy/h vs CTRL  4.1 mGy/h vs CTRL  

Gene Symbol p-value FC Gene Symbol p-value FC Gene Symbol p-value FC 

FERMT3 1,72E-03 1.80 SNORD20 0.02 -1.57 PHGDH 8,47E-05 -2.41 

PLIN3 3,82E-03 1.53   
 

  AARS 3,50E-04 -1.53 

USP18 3,98E-03 1.59   
 

  SELP 4,97E-04 1.55 

VTRNA1-1 0.01 2.34   
 

  IFITM1 5,07E-04 -1.59 

SERPIND1 0.01 1.61   
 

  HBEGF 6,11E-04 1.64 

CCNA1 0.01 1.52   
 

  CHAC1 6,34E-04 -1.64 

EPCAM 0.01 -1.75   
 

  PSAT1 1,76E-03 -1.87 

PTCH2 0.01 2.10   
 

  LYVE1 0.01 1.65 

UBE2MP1 0.01 1.51   
 

  HEY2 0.01 1.55 

EFTUD1 0.02 1.54   
 

  IGFBP5 0.01 2.03 

LOC100130876 0.02 -1.57   
 

  ID2 0.01 1.56 

C15orf51 0.03 -1.73   
 

  CYBRD1 0.01 -1.52 



 Chapter 5 

109 

 

RNU4ATAC 0.03 1.74   
 

  EFNB2 0.01 1.56 

RNU5D 0.03 2.69   
 

  LOC151760 0.01 1.56 

CENPV 0.03 1.53   
 

  ASNS 0.01 -1.68 

HSD3BP4 0.03 -1.54   
 

  PLAT 0.01 2.42 

SNORD4A 0.03 1.72   
 

  TGFB2 0.02 1.95 

GCLM 0.03 1.58   
 

  CCDC68 0.02 1.56 

RNU5E 0.03 1.56   
 

  HIST1H2BK 0.04 1.62 

KRT19 0.03 1.58   
 

  CST1 0.04 -1.95 

ANKRD20B 0.03 -1.50   
 

    
 

  

LOC375010 0.03 -1.54   
 

    
 

  

ACOT7 0.04 1.54   
 

    
 

  

C15orf51 0.04 -1.75   
 

    
 

  

PLAT 0.04 2.08   
 

    
 

  

RNU4-2 0.05 1.72             

Table 5: Differentially expressed annotated genes with a p-value < 0.05 and a |FC| > 1.5. Comparisons are made 

between 1.4 mGy/h and control, and 4.1 mGy/h and control at each time point (week 1, 3 and 6). Genes are 

ranked according to increasing p-value. Genes in bold are further discussed. 

5.4.2  GSEA and Enrichment Map 

To evaluate the effect of chronic LDR radiation at the level of pathways, GSEA, using Kegg 

PATHWAY and GO BP as gene set databases, was performed. For each time point (week 1, 3 

and 6), the following comparisons were made: control versus 1.4 mGy/h and control versus 

4.1 mGy/h. This allowed the identification of up-regulated (= enriched in irradiated cells) and 

down-regulated (= enriched in control cells) gene sets in exposed cells at each time point 

(week 1, 3 and 6). Overall, GSEA results obtained from Kegg PATHWAY and GO BP were 

highly similar and pointed to the same pathways.  

For both dose rates, one week of exposure led to the up-regulation of a large number of gene 

sets of which the majority was down-regulated after three weeks of exposure (Table 6 and 

Figure 28). These gene sets are related to classical radiation response processes such as DNA 

damage response, p53 signaling, apoptosis and cell cycle. Other gene sets are mostly involved 

in cell metabolism. After three weeks of exposure, only a small number of gene sets, related 

to cytokine production and adhesion molecules, was up-regulated. Remarkably, most of the 

genes sets that were up-regulated after one week were down-regulated after three weeks.  
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WEEK 1 up-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 

Basal transcription factors Alanine aspartate and glutamate 
metabolism 

Acute myeloid leukemia 

Glycosaminoglycan biosynthesis 
keratan sulfate 

Biosynthesis of unsaturated fatty 
acids 

Alzheimer's disease 

Homologous recombination Cytosolic DNA sensing pathway Amino sugar and nucleotide sugar 
metabolism 

Renal cell carcinoma Fatty acid metabolism Aminoacyl tRNA biosynthesis 

Small cell lung cancer Glutathione metabolism Apoptosis 

 Glycerophospholipid metabolism Base excision repair 

 Glycosylphosphatidylinositol (GPI)- 
anchor biosynthesis 

Cell cycle 

 Insulin signaling pathway Chronic myeloid leukemia 

 Lysosome Citrate cycle (TCA cycle) 

 mTOR signaling pathway Colorectal cancer 

 One carbon pool by folate DNA replication 

 Peroxisome Epithelial cell signaling in 
helicobacter pylori infection 

 Protein export Huntington's disease 

 Pyruvate metabolism Inositol phosphate metabolism 

 Ribosome Mismatch repair 

 Snare interactions in vesicular 
transport 

N-glycan biosynthesis 

 Steroid biosynthesis Nucleotide excision repair 

 Vibrio cholerae infection Oxidative phosphorylation 

  P53 signaling pathway 

  Pancreatic cancer 
  Parkinson's disease 

  Pentose phosphate pathway 

  Progesterone mediated oocyte 
maturation 

  Proteasome 

  Purine metabolism 

  Pyrimidine metabolism 

  RNA degradation 

  RNA polymerase 

  Selenoamino acid metabolism 

  Spliceosome 

  Systemic lupus erythematosus 

  Ubiquitin mediated proteolysis 

  Valine leucine and isoleucine 
degradation 

WEEK 1 down-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 

Drug metabolism cytochrome p450 None Metabolism of xenobiotics by 
cytochrome p450 

  Neuroactive ligand receptor 
interaction 

  Olfactory transduction 

  Steroid hormone biosynthesis 

  Taste transduction 

WEEK 3 up-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 
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Allograft rejection ATP-binding cassette (ABC) 
transporters 

Cell adhesion molecules (CAMS) 

Autoimmune thyroid disease Extracellular matrix (ECM)- receptor 
interaction 

Cytokine cytokine receptor 
interaction 

Complement and coagulation 
cascades 

  

Graft versus host disease   

Hematopoietic cell lineage   

Intestinal immune network for IgA 
production 

  

Linoleic acid metabolism   

Neuroactive ligand receptor 
interaction 

  

Olfactory transduction   

Taste transduction   

Type 1 diabetes mellitus   

WEEK 3 down-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 

Alzheimer's disease Homologous recombination Aminoacyl tRNA biosynthesis 

Amino sugar and nucleotide sugar 
metabolism 

One carbon pool by folate Base excision repair 

Arginine and proline metabolism Progesterone mediated oocyte 
maturation 

Cell cycle 

B-cell receptor signaling pathway Steroid biosynthesis Cysteine and methionine 
metabolism 

Basal transcription factors Systemic lupus erythematosus DNA replication 

Chronic myeloid leukemia  Drug metabolism other enzymes 

Citrate cycle (TCA cycle)  Glycine serine and threonine 
metabolism 

Colorectal cancer  Lysine degradation 

Endocytosis  Mismatch repair 

Fatty acid metabolism  mTOR signaling pathway 

Fc gamma receptor-mediated 
phagocytosis 

 Nucleotide excision repair 

Glutathione metabolism  Oocyte meiosis 

Glycosylphosphatidylinositol (GPI)-
anchor biosynthesis 

 Purine metabolism 

Histidine metabolism  Pyrimidine metabolism 

Huntington's disease  Ribosome 

Inositol phosphate metabolism  RNA degradation 

Insulin signaling pathway  Spliceosome 

Neurotrophin signaling pathway   

WEEK 6 up-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 

None Hypertrophic cardiomyopathy 
(HCM) 

None 

WEEK 6 down-regulated gene sets 

1.4 mGy/h 4.1 mGy/h common 

None Aminoacyl tRNA biosynthesis None 

 DNA replication  

 Glycine serine and threonine 
metabolism 

 

 Mismatch repair  

 One carbon pool by folate  
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 Ribosome  

 Spliceosome 
Systemic lupus erythematosus 

 

Table 6: Overview of up- and down-regulated pathways in irradiated HUVEC (1.4 and 4.1 mGy/h) compared to 

control conditions, defined by GSEA using Kegg PATHWAY as a gene set database, and with an FDR-value < 

0.05. Gene sets are ordered alphabetically. Differentially regulated gene sets that are specific for 1.4 mGy/h are 

presented in the left column, and differentially regulated gene sets that are specific for 4.1 mGy/h are presented 

in the middle column. The right column represents differentially regulated gene sets that were in common for 

both dose rates (1.4 and 4.1 mGy/h). 

 

At week one and three, many up- and down-regulated gene sets were in common for the two 

dose rates, 1.4 and 4.1 mGy/h, although additional gene sets were enriched in the latter. For 

example, one week of exposure to 4.1 mGy/h led to the up-regulation of lipid biosynthesis, 

mammalian target of rapamycin (mTOR) signaling and oxidative stress response (glutathione 

metabolism). After six weeks of exposure to 4.1 mGy/h, a small number of gene sets, 

involved in DNA damage response and cell cycle, was down-regulated. No relevant down- or 

up-regulation was observed after six weeks of exposure to 1.4 mGy/h. 
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Figure 28 A: Enrichment map for 1.4 mGy/h versus control HUVEC at week one, based on GSEA result for GO BP.
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Figure 28 B: Enrichment map for 1.4 mGy/h versus control HUVEC at week three, based on GSEA result for GO BP.
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Figure 28 C: Enrichment map for 1.4 mGy/h versus control HUVEC at week six, based on GSEA result for GO BP.

 



Transcriptomic profiling of endothelial cells exposed to chronic low dose rate irradiation  

116 

 

 

Figure 28 D: Enrichment map for 4.1 mGy/h versus control HUVEC at week one, based on GSEA result for GO BP.
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Figure 28 E: Enrichment map for 4.1 mGy/h versus control HUVEC at week three, based on GSEA result for GO BP.
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Figure 26 F: Enrichment map for 4.1 mGy/h versus control HUVEC at week six, based on GSEA result for GO BP. 
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Figure 28: Enrichment Maps for HUVECs exposed to 1.4 mGy/h (A, B, C) and 4.1 mGy/h (D, E, F)  at week 1, 

3 and 6 based on GSEA results using GO BP. Node size is representative for the number of genes in the 

respective gene set. Nodes are linked to each other based on the overlap of the number of genes that two gene 

sets share and is calculated using the overlap coefficient. The thickness of the link corresponds to the degree of 

overlap. Red nodes represent enriched gene sets in irradiated cells (i.e. upregulated in irradiated HUVECs) 

whereas blue nodes represent enriched gene sets in control cells (i.e. down-regulated in irradiated HUVECs). 

Enriched gene sets included in the Enrichment Maps have a FDR value < 0.05. A cut-off value of 0.5 was chosen 

for the overlap coefficient. Clusters of functionally related gene-sets were manually circled and assigned a label.  

5.4.3 Senescence-related differential gene expression in HUVEC 

Assessment of the proliferation rate and SA-β-gal activity of chronic LDR irradiated HUVEC 

revealed a senescent profile after six weeks of exposure to 4.1 mGy/h [204] (Figure 24). 

Senescence was only observed after fourteen weeks in control cells, and in cells irradiated 

with 1.4 mGy/h [205]. This implies that chronic exposure to 4.1 mGy/h induces premature 

senescence in HUVEC, opposed to natural occurring replicative senescence in control 

HUVEC. Cells exposed to 1.4 mGy/h also underwent senescence, but at the same week as for 

control cell. Therefore we consider that 1.4 mGy/h did not induce premature senescence.  

The onset of replicative senescence in control cells was already apparent after six weeks as 

observed by a slight increase in SA-β-gal activity, but without decrease in their proliferation 

rate. Therefore, to investigate genes that are involved in the acceleration of the senescence 

process, we identified the genes that were differentially expressed between week six and week 

one (unadjusted p-value < 0.001, no threshold for FC). For control cells 124 genes, and for 

4.1 mGy/h irradiated samples 167 genes were differentially expressed between week six and 

week one (Figure 29). Twenty six genes were in common between control and irradiated 

cells, and are therefore most likely to be important for the senescent phenotype. We 

speculated that genes which are responsible for accelerating senescence in irradiated cells, 

would have more pronounced expression changes in irradiated cells compared to controls. 

Therefore, we calculated the ratio between the FC of irradiated cells and the FC of control 

cells, for the 26 common genes (Table 8) as explained in the methods section. Genes with a 

ratio < 0.83 or > 1.20 are presented in Table 8. Genes of interest include IGFBP5 and cystatin 

SN (CST1), which are further discussed.  
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Figure 29: Venn diagram representing differentially expressed genes (including non-annotated genes) between 

week six and week one for 4.1 mGy/h and control with an unadjusted p-value < 0.001. 

 

Gene Symbol FC W6 vs W1 

ZFHX4 3.40 

ABI3BP 2.55 

LOC151760 2.37 

ZNF717 -2.01 

PYGL -2.10 

PHGDH -2.35 

P2RX4 -2.38 

PGF -2.55 

TSPAN7 -2.91 

RASSF2 -3.11 

ZNF737 -3.33 

Table 7: Differentially expressed (p < 0.001; |FC| > 2) annotated genes between week six and week one specific 

for irradiated cells (4.1 mGy/h). Genes are ranked according to their FC. Genes in bold are further discussed. 

 

 

Gene Symbol FC W6 vs W1 IRR FC W6 vs W1 CTRL ratio FCIRR/FCCTRL 

CST1 21.80 40.49 0.54 

FGF5 2.24 1.83 1.23 

TGFBI 3.56 2.85 1.25 

IGFBP5 9.89 5.09 1.94 

Table 8: Gene list created based on the genes that were differentially expressed between week six and week one 

with a p-value < 0.001 and that were in common between control and irradiated (4.1 mGy/h) HUVEC 

(overlapping genes in the Venn diagram in Figure 28). The ratio between the FC of irradiated and the FC of 

control genes was calculated. The genes having a ratio that deviate the most from 1 are considered candidate 

genes involved in radiation-induced premature senescence. Genes with a ratio < 0.83 or > 1.20 are presented in 

the table. Genes in bold are further discussed. 
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From the common genes between control and irradiated cells that were differentially 

expressed between week six and week one, IGFBP5 was considered a candidate gene 

involved in radiation-induced premature senescence. Its expression increased over time both 

in control and irradiated cells, but this induction was more pronounced in irradiated cells. 

Using quantitative PCR analysis, the expression profile of IGFBP5 was validated (Figure 30). 

Since IGFBP5 is a well-known regulator of cellular senescence in HUVEC [304, 305], we 

performed a linear correlation analysis to explore the genes whose expression profile was 

most similar (positively or negatively) with that of IGFBP5 (Table 9). Genes with a |R-value| 

> 0.88 are included in Table 9. This analysis revealed several other interesting genes with a 

similar or reversed expression profile that may be involved in radiation-induced premature 

senescence, including pirin (PIR), urokinase-type plasminogen activator (PLAU), intercellular 

adhesion molecule 1 (ICAM1), SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) and 

a CNOT6L (CCR4-NOT transcription complex, subunit 6-like) pseudogene. 

Finally, the genes that were differentially expressed specifically due to radiation exposure 

(141 genes) are also of interest since they may play a specific role in radiation-induced 

premature senescence (Table 7). Annotated genes with a p-value below 0.001 and a |FC| > 2 

are listed in Table V. Genes of interest include ABI family, member 3 (NESH) binding 

protein (ABI3BP); phosphorylase, glycogen, liver (PYGL) and Ras association (RalGDS/AF-

6) domain family member 2 (RASSF2), and are further discussed in the next section. 

 

 

 

Figure 30: Comparison of Affymetrix Human 1.0 ST arrays data (A) to quantitative real-time PCR (B) for 

IGFBP5. Fold changes were calculated using control samples at week one as a reference. Error bars represents 

standard deviations. Statistical T-test was performed in Excel with * = p < 0.05 and # = p < 0.1 (comparing 

control and irradiated cells at each week) 

A       B 
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Gene Symbol R 

ICAM1 0.93 

PIR -0.93 

SCN8A 0.90 

SMURF2 0.89 

PLAU 0.89 

LAMA3 0.89 

AFF3 0.88 

CNOT6L -0.88 

ABLIM3 0.88 

RN56356 0.88 

Table 9: Top-10 genes of which the expression profile was most similar to that of IGFBP5. Genes in bold are 

further discussed. R = correlation coefficient  
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5.5 Discussion  

An interdisciplinary European study was set-up to evaluate the mechanisms underlying 

chronic LDR radiation-induced premature senescence in HUVEC. To this end, HUVEC were 

chronically exposed to two different dose rates (1.4 and 4.1 mGy/h) during one, three and six 

weeks at Stockholm University after which samples were distributed to all the partners for 

analysis of specific endpoints. For example, consortium partners have carried out functional 

assays for the evaluation of senescence (replicative capacity and SA-β-gal-assay). In addition, 

proteomic changes were assessed [204, 205]. They observed that exposure to 4.1 mGy/h 

induced premature senescence in HUVEC. In this chapter, we present the data of the genome-

wide transcriptomic analysis from the same cells, thus complementing the previously 

published findings. Moreover, these results, together with the results from the other partners, 

are being used now by mathematicians, in a systems biology approach, to model the 

mechanisms that underlie the observed radiation-induced premature senescence in HUVEC.  

The traditional approach of gene expression analysis is based on the generation of gene lists 

consisting of differentially expressed genes that have passed a predefined threshold (p-value, 

FC) [306]. In this study, our ANOVA model used for differential single gene expression 

analysis revealed that, after removal of the batch effects, culture time had the biggest 

influence on differential gene expression followed by dose rate (Figure 25). In order to 

determine differentially expressed genes in a microarray experiment, an FDR-adjusted p-

value is recommended. An FDR-adjusted p-value is corrected for type I errors, also referred 

to as 'false discovery', which is an error due to false rejection of a null hypothesis that is true. 

Since single gene analysis tests for differential expression of each of the probes on the chip, it 

is confronted with the problem of multiple hypothesis testing where type I errors tend to over 

occur [307]. Ideally, one should thus use an FDR-adjusted p-value, however, using this 

approach for our data revealed zero differentially expressed genes, most likely due to a too 

low power. Therefore, it was decided to use an unadjusted p-value (not adjusted for multiple 

testing), which revealed several differential expressed genes. Seeing the use of unadjusted p-

values the results should be interpreted with care since the presence of false discoveries 

cannot be excluded 

Since our study has a low number of replicates (n = 3) per condition, the use of more 

moderated statistical methods such as LIMMA and Significance Analysis of Microarrays 

(SAM) would have been far more suitable [308]. LIMMA is a package available in R to 
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analyse microarray data. Its central idea is to fit a linear model to the expression data for each 

gene [309]. To determine differential expressed genes LIMMA employs a moderated t-

statistic, in which the standard errors have been moderated across all the genes, as opposed to 

an ordinary t-statistic as used in our study. In SAM, differentially expressed genes are defined 

by assigning a score to on the basis of its change in gene expression relative to the standard 

deviation of repeated measurements for that gene [310]. Genes with scores that exceed a 

certain threshold are considered as differential expressed. For these genes of interest, an FDR 

is calculated, based on sample permutations, to define the percentage of genes of interest 

identified by chance.  

Overall, changes in gene expression between control and irradiated cells at the different time 

points were still rather subtle both in terms of number of differentially expressed genes as in 

the extent of differential expression (i.e. fold changes). Since we observed subtle differential 

gene expression, additional analysis was carried out. Indeed, the small changes that we 

observed at the level of single genes do not necessarily imply that there is no LDR radiation-

induced response in HUVEC. It is well known that most biological processes occur through 

the concerted expression of multiple genes [211]. A modest change in the expression of a 

group of genes can therefore have greater biological importance than a high change in the 

expression of a single gene. GSEA is a statistical analysis method that takes this notion into 

account and focuses on gene sets, groups of genes that share a common biological function, 

instead of individual genes [213] and has already been proven useful in unraveling the subtle 

responses induced by low doses of radiation [311].  

In this study, we used for GSEA gene set permutation instead of phenotype permutation to 

assess the statistical significance of the enrichment score, due to the low number of samples 

per treatment (n = 3 for each treatment), as is recommended in the GSEA guidelines (for n < 

7). In the case of gene set permutation, random gene sets having sizes that match the actual 

gene sets are created and their enrichments scores are calculated. Next, a null distribution, 

based on these enrichment scores, is created which is used to determine the significance of the 

enrichment score of the gene set of interest. Ideally, when you have enough samples (n > 7), 

one should, however, use phenotype permutation which shuffles the phenotype labels across 

the samples. For each random phenotype the genes are ranked and enrichments cores are 

calculated for all gene sets. These enrichment scores are used to create the null distribution 

which is used to determine the significance of the enrichment score of the gene set of interest. 

The advantage of phenotype permutation is that it does not modify the gene sets, preserving 
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the correlation between the genes in the dataset and the genes in a gene set. With gene set 

permutation, on the other hand, the gene-to-gene correlation is not preserved since the genes 

are randomly shuffled in 'new' gene sets. Since the use of gene set permutation is a less 

reasonable biological assessment of significance, a more stringent FDR cut-off was used: 5 % 

instead of 25 % [301]. Although this approach is not ideal, it should be noted that GSEA is a 

tool that is used to generate biological hypotheses which need to be independently validated 

later-on (see section 5.5.6).  

5.5.1 One week of chronic LDR radiation exposure induces an early stress 

response 

Ionizing radiation is known to induce damage to DNA and other cellular components creating 

a situation of cellular stress [177]. GSEA indicates that after one week of exposure to both 

dose rates (1.4 and 4.1 mGy/h) cells reacted to the radiation-induced damage by engaging 

classical DNA damage response mechanisms such as p53 signaling, cell cycle changes, DNA 

repair and apoptosis (Table 6, Figure 28). On the level of single genes, two cell cycle related 

genes were differentially expressed, cyclin A1 (CCNA1) and interferon-induced trans 

membrane protein (IFITM1). CCNA1 is required for cell proliferation and its expression is 

normally induced at the entry of the S phase to overcome G1 arrest [312]. In this study, 

CCNA1 expression was upregulated after one week of exposure to 4.1 mGy/h (FC 1.52). This 

can be explained as a reaction of chronically irradiated HUVECs to overcome cell cycle 

arrest. IFITM1 expression is repressed after 6 weeks exposure to 4.1 mGy/h. Induction of 

IFITM1 has been related to activation of p53 and subsequent inhibition of cell proliferation 

[313].  

To cope with the damage-induced stress situation, energy is needed. This energy is most 

likely produced by, as GSEA indicated, energy-generating processes such as oxidative 

phosphorylation, tricarboxylic acid cycle (TCA) cycle and pentose phosphate pathway. 

Metabolism of amino acids and the breakdown and transport of proteins was up-regulated as 

well. 

Next to these DNA damage response and energy-related processes that were in common for 

both dose rates, additional pathways were found up-regulated after one week of exposure to 

4.1 mGy/h (Table 6, Figure 28). These are involved in, amongst others, lipid metabolism, 

glutathione metabolism and mTOR signaling, and also point to a stress situation in the cells. 
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For example, the biosynthesis of fatty acids was up-regulated as was also indicated by single 

gene analysis (Table 5). Indeed, acyl-CoA thioesterase 7 (ACOT7), which catalyzes the 

hydrolysis of long-chain acyl-CoA thioesters to free fatty acids and coenzyme A [314] was 

up-regulated after one week of exposure to 4.1 mGy/h (FC 1.54). Likewise, perilipin 3 

(PLIN3) (FC 1.53) was up-regulated, which is, as a carrier protein of free fatty acids, involved 

in lipid droplet formation, stabilization and functioning [315]. Next, the observed up-

regulation of glutathione (GSH) metabolism can be considered as a defense mechanism 

against radiation-induced oxidative stress since GSH is the predominant antioxidant in cells 

[316]. Glutamate cysteine ligase modifier subunit (GCLM) plays a role in GSH metabolism 

by promoting the catalytic properties of GCL, a rate-limiting enzyme in the production of 

GSH [317]. Expression of GCLM was induced in HUVEC after one week of exposure to 4.1 

mGy/h (FC 1.58). It should be noted that lack of GCLM has been shown to induce premature 

senescence in murine primary fibroblasts probably accompanied by an enhanced level of 

oxidative stress [317]. Finally, mTOR signaling was up-regulated after one week of exposure 

to 4.1 mGy/h, which can be considered as a general stress sensor as it gathers the input of a 

wide range of signals – growth factors, stress, energy status, oxygen, and amino acids – to 

determine many major processes including energy metabolism, cell growth and proliferation, 

but also senescence and autophagy [318, 319]. 

Also, at the protein level, an early stress response was observed in chronic LDR irradiated 

HUVEC by consortium partners [204]. For instance, "free radical scavenging" was 

demonstrated to be differentially regulated after one week of exposure to 4.1 mGy/h.  

5.5.2 The stress response disappears after three and six weeks of chronic LDR 

radiation exposure  

The stress response observed after one week of exposure to chronic LDR radiation can be 

considered an early stress response. Indeed, this response observed after one week 

disappeared after three weeks of exposure. Moreover, GSEA indicated that for both dose 

rates, most of the DNA damage response pathways, energy-generating processes and stress-

related responses were down-regulated after three weeks (Table 6, Figure 28). After six 

weeks, changes seem to be more dose-rate dependent as opposed to weeks one and three for 

which most of the enriched pathways were similar between both dose rates. HUVEC that 

were exposed during six weeks to 1.4 mGy/h did not seem to differ substantially from non-

exposed HUVEC as no significantly up- or down-regulated gene sets were observed with 
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GSEA. Also, with single gene expression analysis, only seven annotated genes were found to 

be differentially expressed after six weeks of exposure to 1.4 mGy/h (Table 5). Six weeks of 

exposure to 4.1 mGy/h on the other hand led to down-regulation of gene sets that were mostly 

related to cell cycle, DNA repair and replication, metabolism of amino acids and aminoacyl 

tRNA biosynthesis, as was also observed for week three. Furthermore, single gene analysis 

points to a suppression of amino acid metabolism after six weeks of exposure to 4.1 mGy/h by 

the down-regulation of phosphoglycerate dehydrogenase (PHGDH) (FC -2.41) and 

phosphoserine aminotransferase 1 (PSAT1) (FC -1.87), which are key enzymes in the 

biosynthesis of serine [320, 321]. Another down-regulated gene after six weeks of exposure to 

4.1 mGy/h is asparagine synthetase (ASNS) (FC -1.68), which is involved in asparagine 

biosynthesis [322].  

5.5.3 Development of an inflammation-related profile starts after three 

weeks of exposure to 4.1 mGy/h 

According to GSEA, three weeks of exposure to chronic LDR radiation induces an 

inflammation-related response in HUVEC. Analysis using Kegg PATHWAY database 

revealed the up-regulation of immune and inflammation-related gene-sets such as cytokine 

secretion and cell adhesion molecules with both dose rates (Table 6). There were subtle 

differences between the two dose rates, such as for example additional up-regulation of 

complement and coagulation cascades with 1.4 mGy/h and additional up-regulation of 

extracellular matrix receptor (ECM) interaction with 4.1 mGy/h. In contrast to Kegg 

PATHWAY based analysis, GO BP database based analysis showed cytokine secretion and 

cell-cell adhesion only to be up-regulated with 4.1 mGy/h (Figure 28).  

Also, with single gene analysis, several genes of interest related to inflammation were found 

to be differentially expressed, although only for 4.1 mGy/h and with the majority being 

significant after six weeks (Table 5). For example, several up-regulated genes related to the 

adhesion of leukocytes onto the endothelium, which is an essential step in the initiation of 

atherosclerosis, were found [323]. Expression of selectin P (SELP), a member of the selectin 

family of adhesion molecules that initiates leukocyte rolling and interaction of leukocytes 

with the endothelium [324, 325] was induced over time for 4.1 mGy/h, which was significant 

after six weeks (FC 1.55). Expression of another gene, ephrin B2 (EFNB2), has been shown 

to promote atherosclerosis development by enhancing monocyte adhesion to the endothelium 

and by up-regulating cytokine expression in monocytes [326, 327]. In this study, expression 
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of EFNB2 tended to decrease over time in non-irradiated cells, whereas in HUVEC exposed 

to 4.1 mGy/h the expression remained constant over time. Therefore, the expression of 

EFNB2 was significantly increased in irradiated cells compared to control after six weeks (FC 

1.56). Finally, fermitin family member 3 (FERMT3), also known as kindlin 3, is involved in 

integrin mediated adhesion [328]. Loss of kindlin 3 expression has been associated with 

decreased adhesion of neutrophils on activated endothelial cells in vitro and in vivo [329]. 

After one week of exposure to 4.1 mGy/h FERMT3 expression was increased (FC 1.80). 

Regarding complement and coagulation cascades, single gene expression analysis is 

supportive of anti-thrombotic actions as indicated by a significantly increased expression of 

plasminogen activator tissue-type (PLAT) and serin peptidase inhibitor, clade D, member 1 

(SERPIND1; FC 1.61 at week one for 1.4 mGy/h) [330-332]. In particular, PLAT expression 

is greatly induced over time in HUVEC exposed to 4.1 mGy/h (FC 2.08 at week one, and FC 

2.42 at week six).   

Overall, based on GSEA and single gene analysis, it seemed that HUVEC exposed to 4.1 

mGy/h start to acquire an inflammation-related profile after three weeks onwards. This was 

also observed on the level of proteins by consortium partners [204]. Ingenuity Pathway 

Analysis (IPA) analysis revealed "inflammation" and "leukocyte extravasation signaling" to 

be differentially regulated after three and six weeks, respectively, in HUVEC exposed to 4.1 

mGy/h.  

5.5.4 Early stress response leads to premature senescence, associated with 

inflammation, after six weeks of exposure to 4.1 mGy/h 

As mentioned before, Yentrapalli and coworkers observed radiation-induced premature 

senescence, determined by a progressive loss of replicative capacity and an increasing activity 

of SA-β-gal in HUVEC after six weeks of exposure to 4.1 mGy/h, but not 1.4 mGy/h [204, 

205]. A wide range of stressors can induce senescence, usually referred to as stress-induced 

senescence. Senescent cells have a typical secretory profile, secreting various factors such as 

pro-inflammatory cytokines, growth factors and their inhibitors, plasminogen activators and 

their inhibitors, matrix metalloproteinases and fibronectin [196]. Senescence is known to be 

implicated in various age-related diseases. For instance, vascular ageing, related to senescence 

of endothelial cells, predisposes to CVD [133, 134]. Endothelial senescence is associated with 

increased ROS production, decreased NO availability and increased production of pro-

inflammatory molecules [144] thus favoring an atherosclerotic endothelium. Various studies 
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provide in vivo evidence for the presence of senescent endothelium in atherosclerotic lesions 

[137-139]. Since senescence has been associated with the development of CVD, the 

observation that chronic LDR radiation induces premature senescence in endothelial cells is 

of particular interest in the search for an understanding of the cellular and molecular 

mechanisms that underlie an increased radiation-induced risk of CVD. 

Using GSEA, we revealed an early stress response in HUVEC exposed to chronic LDR 

radiation, as pointed out by the activation of DNA damage responses and energy-related 

processes, and which was more pronounced with 4.1 mGy/h (Figure 28, Table 6). Indeed 

additional up-regulation of mTOR signaling and glutathione metabolism was observed after 

one week of exposure to 4.1 mGy/h. The specific engagement of antioxidant defenses such as 

glutathione in HUVEC exposed for one week to 4.1 mGy/h suggests that these cells have to 

deal with a greater level of oxidative stress, which is known to cause senescence in the long-

term [143, 145]. Also, proteomic analysis by Yentrapalli and coworkers revealed an increase 

in oxidative stress after one week of exposure to 4.1 mGy/h [204]. Furthermore, they 

demonstrated a role for mTOR signaling in premature senescence induced by exposure to 2.4 

mGy/h [205].  

We hypothesize that, overall, this early stress response laid the basis for the induction of 

premature senescence observed in HUVEC exposed to 4.1 mGy/h. After three weeks of 

exposure, especially to 4.1 mGy/h, GSEA indicates that this stress response is suppressed and 

replaced by a more inflammation-related response (Figure 28, Table 6). This inflammatory 

profile with the secretion of cytokines and expression of cell adhesion molecules is typical for 

endothelial senescence [146, 196].  

Usually, senescence is associated with a sustained DNA damage response due to slow, 

incomplete or faulty repair [144, 333]. Remarkably, we observed, with GSEA, a down-

regulation of DNA damage response after three and six weeks of exposure to 4.1 mGy/h. This 

is in accordance to a study by Schneider and coworkers who have also observed the induction 

of senescence together with a suppression of DNA damage response signaling in neural stem 

cells [334].  
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5.5.5 Candidate genes involved in radiation-induced premature senescence 

following exposure to 4.1 mGy/h 

To identify genes that may be involved in chronic LDR radiation-induced premature 

senescence (4.1 mGy/h) we performed a dedicated single gene expression analysis, focusing 

on genes with a high differential expression between week six and week one.  

Three genes with a high differential expression between weeks six and one, and specific in 

HUVEC exposed to 4.1 mGy/h, are of interest in the context of radiation-induced premature 

senescence (Table 7). ABI Family, Member 3 (NESH) Binding Protein (ABI3BP) is a binding 

partner of ABI3 protein, which has been associated with increased senescence in colon and 

thyroid carcinoma cells [335] and was up-regulated between weeks six and one in irradiated 

HUVEC (FC 2.55). Phosphorylase, Glycogen, Liver (PYGL) is an enzyme responsible for the 

phosphorylation of glycogen and depletion of this enzyme leads to accumulation of glycogen. 

This accumulation causes a situation of oxidative stress and contributes to a p53-dependent 

induction of senescence in cancer cells [336]. In our study PYGL expression was down-

regulated between weeks six and one in irradiated HUVEC (FC -2.10). At last, Ras 

Association (RalGDS/AF-6) Domain Family Member 2 (RASSF2) was also down-regulated 

between weeks six and one in irradiated HUVEC (FC -3.11). RASSF2 has been shown to 

promote apoptosis and cell cycle arrest [230, 337]. Its role in radiation-induced senescence 

remains a speculation. 

Of the genes differentially expressed between week six and week one, and in common 

between control and irradiated cells, cystatin SN (CST1) and insulin-like growth factor 

binding protein 5 (IGFBP5) are of interest (Table 8, Figure 29). CST1 expression has been 

defined as a candidate senescence marker following a study by Keppler and co-workers. They 

observed an increased expression of CST1 associated with cellular senescence independent of 

the initial trigger of senescence in normal human fibroblasts [338]. Yet, in our study CST1 

expression was more increased in control cells (FC 17.68) compared to cells irradiated with 

4.1 mGy/h (FC 8.3).  

The expression of IGFBP5 increases between weeks six and one in control cells (FC 3.76), 

but this change was more pronounced in cells irradiated with 4.1 mGy/h (FC 8.04). Further 

investigation of the expression profile over time showed that IGFBP5 expression in both 

control and irradiated cells starts to increase at week three, for both microarray and 

quantitative real-time PCR analysis (Figure 30). Already at week three, the expression profile 
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of IGFBP5 in irradiated cells is more pronounced than in control cells, which was in 

particular apparent in the quantitative real-time PCR results. IGFBP5 encodes for one of the 

six insulin-like growth factor binding proteins that have a role in insulin-like growth factor 

(IGF) transport (Figure 31). Although these IGFB proteins are structurally related they each 

have different cell and tissue type-dependent expression patterns. In general they bind IGF 

and restrict in this way the bioavailability of this protein [339]. IGF induces an intracellular 

signaling cascade, which is followed by a wide range of cellular activities. For example, IGF 

is involved in inhibition of apoptosis and stimulation of cell growth and proliferation [340]. 

The family of IGFBP genes is known to be involved in senescence, and is believed to be even 

key regulators [298]. For example, IGFBP3 has been shown to be preferentially expressed in 

senescent HUVEC expression [341]. Transcriptomic analysis of replicative senescent 

HUVEC by Shelton and coworkers revealed a highly increased expression of IGFBP5 [304]. 

A study by Kim and co-workers investigated the role of IGFBP5 in the regulation of 

senescence in HUVEC. They showed that IGFBP5 accelerates senescence in young HUVECs 

in a p53-dependent manner [305]. This is in accordance to the proteomic study carried out by 

consortium partners and who showed an activation of the p53/p21 pathway leading to 

premature senescence in HUVEC irradiated with 4.1 mGy/h [204]. More specific, 

immunoblot validation showed an increased expression of total p53, phosphorylated-p53 and 

p21 protein over time in HUVEC exposed to 4.1 mGy/h [204]. A recent study also showed 

the up-regulation of IGFBP5 in senescent HUVEC that were exposed to an acute dose of 4 Gy 

[203] which corresponds to the accumulated dose in our study after six weeks of exposure to 

4.1 mGy/h. 

Furthermore, we observed that pappalysin 2 (PAPPA2) was decreased after six weeks of 

exposure to 4.1 mGy/h. PAPPA2 is a known protease of IGFBP5 [342] and its down-

regulation may thus lead to higher levels of IGFBP5. Proteomic analysis on chronic LDR 

irradiated HUVEC suggested earlier that inactivation of the phosphatidylinositol 3-kinase 

(PI3K)/Akt/mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) pathway is involved 

in the induction of premature senescence [205]. IGFBP5 reduces the bioavailability of IGF, a 

known activator of the PI3K/AKT pathway. The significant increase in IGFBP5 gene 

expression over time in exposed HUVEC observed here can be related to inactivation of the 

PI3K/Akt/mTOR pathway. Thus, both on the level of proteomics and transcriptomics there 

are indications for the implication of the IGF and the PI3K/AKT/mTOR pathway, and their 

interplay, in the induction of radiation-induced premature senescence.  
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Figure 31: Schematic overview of the possible role of IGFBP5 in radiation-induced premature senescence. Six 

weeks of exposure to 4.1 mGy/h led to a down-regulated expression of PAPPA2 and CNOT6L, which are both 

demonstrated to decrease IGFBP5 levels [342, 343]. Their down-regulated expression is in accordance with the 

up-regulation of IGFBP5 observed after six weeks of exposure to 4.1 mGy/h. IGFBP5 may lead to senescence 

through the p53 signaling pathway [305] or through decreasing IGF availability [339]. p53/p21 signaling has 

previously been demonstrated to lead to premature senescence in HUVEC exposed to 4.1 mGy/h [204]. IGF 

signaling is known to inhibit apoptosis and to stimulate cell growth and proliferation. Furthermore, IGF is a 

known activator of the PI3K/AKT pathway of which the inhibition has been hypothesized to induce premature 

senescence in HUVEC exposed to chronic LDR radiation [205].  

 

Analysis of genes with similar or reversed expression profiles as IGFBP5 revealed several 

other interesting genes that may be involved in radiation-induced premature senescence 

(Table 9). The expression of these genes gradually increases or decreases over time (week 

one, three and six), and more pronounced in cells irradiated with 4.1 mGy/h. Genes with a 

correlated expression profile include intracellular adhesion molecule 1 (ICAM1), SMAD 

Specific E3 Ubiquitin Protein Ligase 2 (SMURF2), urokinase-type plasminogen activator 

(PLAU), pirin (PIR) and CCR4-NOT Transcription Complex, Subunit 6-Like (CNOT6L). 

ICAM1, SMURF2 and PLAU have similar expression profiles as IGFBP5 and their increased 

expression has been associated with senescence in various studies. ICAM1 is well-known to 

be increased in senescent endothelial cells and is associated with the typical pro-inflammatory 

profile [304, 344]. SMURF2 expression is increased during telomere shortening in senescent 

cells and it acts by the activation of p53/p21 and p16/Rb pathways [345, 346]. PLAU is 
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involved in extracellular matrix degradation as such increasing the bioavailability of growth 

factors and promoting cell proliferation [347]. PLAU activity is inhibited by plasminogen 

activator inhibitor-1 (PAI-1). Several studies have revealed that altered regulation of the 

plasminogen activator system plays a role in the induction of replicative senescence [347]. 

Both overexpression of PLAU and PAI-1 have been observed in senescent cells [348]. In our 

study, PLAU expression is increased over time in irradiated HUVEC. Interestingly, it was 

previously demonstrated that X-rays induces the expression of PLAU [349, 350].  

The expression profile of PIR and CNOT6L were the inverse of that of IGFBP5, but also in 

accordance to the increased senescence observed in HUVEC exposed to 4.1 mGy/h. Down-

regulation of PIR expression is observed in senescent melanocytic cells [351] and has also 

been shown in our study to be down-regulated over time with exposure to 4.1 mGy/h. 

Regarding CNOT6L, the functional CNOT6L gene showed a similar expression profile as its 

pseudogene which was also down-regulated over time. CNOT6L has been demonstrated to be 

a key negative regulator of IGFBP5 as knockdown of this gene in MCF7 cells was associated 

with increased expression of IGFBP5 [343]. The decreased expression of CNOT6L over time 

in our study is in accordance with the increased expression of IGFBP5 and can thus be related 

with increased senescence (Figure 31). 

5.5.6 Remarks on the study 

The current work is embedded in a European project with different partners all assessing 

different biological endpoints after chronic LDR of HUVEC. The transcriptomic results 

presented in this chapter should be regarded as exploratory work. Based on statistical and 

biological criteria promising targets for further research were defined which include the 

induction of an early stress response followed by the acquirement of an inflammatory profile 

upon chronic LDR radiation exposure. These processes are suggested to underlie the chronic 

LDR radiation-induced premature senescence previously observed within this European 

project and which was determined by a progressive loss of replicative capacity, an increasing 

activity of SA-β-gal, and proteomics [204]. Also, a role for IFGBP5 signaling in radiation-

induced premature senescence was suggested in our manuscript.  

The statistics used for analysis of microarray data faced some limitations which were 

discussed in detail on page 126-127. The main concerns are the use of unadjusted p-values, 
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which were not corrected for multiple testing, for single gene analysis, and the use of gene set 

permutation instead of phenotype permutation for GSEA.   

Seeing the statistical limitations of this study (as described in the discussion on p 126-127), 

independent validation is, however, required. We have performed qPCR analysis of the 

IFGBP5 gene which constitutes a technical validation since it examines IFGBP5 expression 

on the mRNA level, like in the microarray. Moreover, it is performed on the same samples 

used for the microarray. An independent validation requires the use of primary cells from new 

donors, new samples, other techniques and is in ideal cases performed by other laboratories 

[307]. As mentioned in the introduction, the gene expression results presented here are part of 

an interdisciplinary European project which aims, in a systems biology approach, to obtain a 

better understanding of the molecular mechanisms of chronic LDR radiation-induced 

premature senescence in HUVEC. Within this project, several functional endpoints were 

assessed by the different partners including proteomics, senescence markers, oxidative stress 

markers (8-oxo-dG and hMTH1), inflammatory response, capacity to form vascular networks 

in Matrigel, DNA damage and genomic instability (chromosomal aberration and telomere 

length). Although these do not provide a full independent validation since they are performed 

on the same samples, they are important as they strengthen our findings from the microarray 

data. In addition, a bioinformatics group at Pavia University will couple the raw proteomics 

data with the raw transcriptomics data to investigate the overlap and differences between the 

two levels in a quantitative manner. Finally, it should be remarked that ideally one should 

start with the exploratory work, as is presented by the transcriptomic analysis, after which the 

fields of interest should be chosen for further biological research.  
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5.6   Conclusion 

In the context of an interdisciplinary European project, the response of HUVEC to chronic 

LDR radiation (1.4 and 4.1 mGy/h) was studied, by applying single gene expression analysis 

combined with GSEA. An early stress response was observed after one week of exposure to 

4.1 mGy/h which was replaced by a more inflammation-related expression profile after three 

weeks and onwards. This early stress response may trigger the radiation-induced premature 

senescence previously observed in HUVEC irradiated with 4.1 mGy/h. With a dedicated 

single gene analysis we suggested a role for IGFBP5 signaling in radiation-induced premature 

senescence. Further biological validation of our findings is, however, required to ascertain our 

findings. Finally, in a systems biology approach, our findings will be used together with the 

results from the other partners in the project to come to an understanding of the mechanisms 

leading to radiation-induced premature senescence, which is suggested to be partially 

responsible for a radiation-related increased risk of CVD. 

5.7 Acknowledgments  

This study was funded by the EU FP7 DoReMi (grant agreement 249689) on ‘low dose 

research towards multidisciplinary integration’, the EU FP7 Procardio project (grant 

agreement 295823) and by the Federal Agency of Nuclear Control (FANC-AFCN, Belgium), 

(grant agreement: CO-90-13-3289-00). Harms-Ringdahl M. has received support for these 

studies from the Swedish Radiation Safety Authority.  Rombouts C. is supported by a doctoral 

SCK•CEN/Ghent University grant. Special thanks to Dr. Pieter Monsieur for the statistical 

support. 



 

136 

 

 

 

 

 



 

137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Chapter 6: General discussion and perspectives 



 

138 

 



 

139 

 

Protecting humans and the environment against the hazardous effects of ionizing radiation is 

the essence of radiation protection. Since the first radiation protection recommendations 

proposed in 1928, the radiation protection system has evolved steadily, intertwined with the 

discovery of new sources of radiation exposure and an improved understanding of radiation-

related health risks [352]. Epidemiological studies, such as the Life Span Study from the 

survivors of the atomic bombings in Japan, have raised awareness of possible health effects 

following exposure to lower doses of ionizing radiation. In particular, an increased risk for 

cancer was evidenced following exposure to doses above 100 mGy. A milestone in the history 

of radiation protection is the adoption of the linear non-threshold (LNT) model for the 

estimation of low dose radiation-related cancer risk (< 100 mGy) [24]. The LNT model, in 

which no dose is considered absolutely safe, regarding stochastisch effects, forms the 

fundament for current radiation protections standards that are in agreement with the as low as 

reasonable achievable (ALARA) philosophy [353]. The radiobiological rationale of the LNT 

model relates to the notion that physical energy deposition of ionizing radiation increases 

carcinogenic risk linearly with increasing dose, with DNA being the critical target. This is 

referred to as the target theory [354].  

The current radiation protection standards, based on the LNT model for cancer induction, are 

challenged. Experimentally observed responses such as bystander effects, genomic instability 

and the adaptive response undermine the target theory [29]. It is likely that these responses 

have implications for the linearity of cancer risk in the low dose region, but it is not clear in 

which way. Furthermore, epidemiological findings suggest that also non-cancer effects, and in 

particular cardiovascular effects, are possible health risks related to low dose radiation 

exposure [215]. However, like for cancer, epidemiological studies lack statistical power to 

determine CVD risk following low dose radiation exposure (< 0.5 Gy for CVD). If radiation-

induced risk of CVD proves to be without a threshold, thus being stochastic in nature instead 

of deterministic, this would impact current health risk estimations. According to the ICRP, a 

dose of 0.5 Sv may lead to approximately 1% of exposed individuals developing 

cardiovascular or cerebrovascular disease, more than 10 years after the exposure, in addition 

to the 30-50% suffering from disease without being exposed to ionizing radiation [73]. 

Although relative excess risk may be small, the absolute number of excess cases would be 

substantial due to the high background rate of CVD [65]. Indeed, current health risk 

estimation in the low dose region is only based on the stochastic effects, cancer and hereditary 

disease. Since epidemiology alone will not answer the question whether there exists an excess 
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risk of CVD following low dose radiation exposure or not, complementary radiobiological 

research is needed.  

Based on the current available experimental evidence, two hypotheses have been formulated 

for possible biological mechanisms underlying an increased risk of radiation-related CVD, 

which are not mutually exclusive [43]. The first states that ionizing radiation interacts with the 

pathogenesis of age-related atherosclerosis, as such accelerating atherosclerosis development. 

The second states that ionizing radiation increases the lethality of age-related myocardial 

infarction by decreasing the heart tolerance to acute infarctions due to damage to the 

microvasculature of the heart. The endothelium, which forms the inner layer of the 

cardiovascular system, is involved in both hypotheses. Loss of endothelial cells and pro-

inflammatory responses are believed to be the underlying cellular and molecular events 

involved in the development and progression of radiation-related CVD. Nevertheless, it is not 

certain whether these hypotheses hold true for low doses and low dose rates. For instance, 

pro-inflammatory responses of the endothelium following exposure to low doses of ionizing 

radiation (< 1 Gy) were not observed in several in vitro experiments [105, 111]. Also, a recent 

in vivo study with ApoE -/- mice has revealed protective effects of low doses (< 0.05 Gy), 

given at a low dose rate (1 mGy/h), on atherosclerosis development [97].  

The aim of this PhD was to investigate the endothelial response to low doses of ionizing 

radiation using in vitro endothelial cell cultures as a model. Although in vitro endothelial 

models are not fully representative for the complex in vivo situation, it offers several practical 

advantages. For instance, in vitro experiments are usually cheaper, less time-consuming, and 

less laborious which makes results relatively easily to obtain. Nevertheless, translation of the 

obtained results to an in vivo situation should be done with care. Furthermore, it is important 

to choose the endothelial cell model wisely, seeing the considerable heterogeneity in 

endothelial cells derived from different sites in the vascular tree and from different organs 

[355]. For our experiments, we have chosen to use the primary human umbilical vein 

endothelial cells (HUVEC) and the thereof derived immortalized EA.hy926 cells. Although 

originating from large vessels, HUVEC are unique since they exhibit endothelial properties 

that are intermediate between those of large vessels (e.g. aorta) and those of the 

microvasculature [163]. Hence, HUVEC depict a good general endothelial cell model. 

Furthermore, they are primary cells and thus more related to the in vivo situation than an 

immortalized cell line. However, the use of endothelial primary cultures is compromised by 

their limited lifespan and the change of endothelial characteristics during long-term culture 
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[167]. Immortalized cell lines, on the other hand, grow faster and are easier to handle [219], 

but differ even more from the in vivo situation than primary cells. It should be noted that for 

more specific research such as the investigation of coronary artery disease it is advised to use 

more appropriate cell models such as human coronary endothelial cells.  

In the first part of this PhD, in chapter three, we have observed that the acute radiation 

response of EA.hy926 cells was more pronounced compared to HUVEC, with respect to the 

induction of double strand breaks (DSB) and apoptosis. Indeed, radiation exposure induced 

more DSB, the most lethal DNA lesion, in EA.hy926 cells which also repaired more slowly. 

Consequently, more EA.hy926 cells underwent apoptosis compared to HUVEC. In addition, 

investigation of intracellular ROS levels, in chapter four, revealed that these levels appear to 

be slightly higher in EA.hy926 cells compared to HUVEC. Since 60–70% of radiation-

induced DNA damage is estimated to result from indirect actions by ROS [1], the higher level 

of intracellular ROS in EA.hy926 can be associated to the higher number of DSB formed 

following irradiation. Furthermore, this finding is in agreement with the previously observed 

lower anti-oxidant defenses in EA.hy926 cells compared to HUVEC [225]. Overall, our 

findings indicate that the choice of the in vitro endothelial cell model for a specific study can 

influence the outcome, and it is advised to include more than one cell model. Also, in the 

work presented here, the inclusion of additional endothelial cell lines such as human coronary 

artery endothelial cells and human dermal microvascular cells would have strengthened the 

research carried out. For instance, it is known that microvascular endothelial cells have a 

larger radiosensitivity than macrovascular endothelial cells [356].  

The use of three dimensional (3D) endothelial models is advised as well since they are more 

related to the in vivo situation of endothelial cells as compared to 2D monolayer cultures 

[172]. Current knowledge regarding ionizing radiation effects on 3D-models is rather sparse 

and reveals conflicting results as both increased [357-359] and decreased migration of 

endothelial cells [360, 361] (an essential step in angiogenesis) has been observed following 

irradiation. Moreover, the role of angiogenesis in CVD is a controversial issue. Stimulation of 

angiogenesis is regarded as a promising therapy for vascular diseases such as ischemic heart 

disease and peripheral arterial disease [118]. On the other hand, it has been suggested that 

angiogenesis of microvessels an atherosclerotic plaque might contribute to plaque instability 

and thus rupture [360]. Therefore it is difficult to hypothesize to which extent angiogenesis 

plays a role in radiation-induced cardiovascular disease and what the effect of radiation on 

this process is. 
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In chapter three, we have found important differences between the endothelial response 

following low (≤ 0.5 Gy) and high (2, 5 Gy) acute dose X-irradiation, with respect to the 

formation of DSB. Exposure to acute low doses induced proportionally more DSB, 30 min 

after irradiation, as quantified by the number of γ-H2AX foci, compared to high dose acute 

exposure. This was most apparent in EA.hy926 cells. In another study at Ghent University, 

blood samples from pediatric patients with congenital heart disease who underwent cardiac 

catherization procedures were taken before and shortly after the procedure, and the number of 

γ-H2AX foci was quantified [362]. In addition, they assessed γ-H2AX foci in peripheral 

blood lymphocytes irradiated in vitro. Both their in vivo and in vitro findings indicated a 

proportionally higher induction of DSB at lower doses. It should, however, be noted that 

practical reasons inherent to the methodology may be an explanation as well for a 

proportionally lower number of γ-H2AX foci observed at high doses. Like Neumaier and 

coworkers have suggested, multiple nearby DSB (1 to 2 µm apart) induced by high dose 

radiation exposure may rapidly cluster into repair centers, which are visualized as one foci 

[236]. Nevertheless, evaluation of spot occupancy, which reflects the area of the nucleus 

covered by spots, indicates that the clustering of DSB at high doses has a rather subtle effect 

on the observed disproportional induction of DSB.  

Follow-up of γ-H2AX foci number over time revealed that, 24 h after irradiation, exposure to 

high doses (2 Gy) leads to an increased foci number compared to control cells. It is generally 

assumed that loss of γ-H2AX foci represents effective DNA repair [238], although there are 

indications that this is limited to low level DNA damage. Indeed, a study by Bouquet and 

coworkers have revealed that disappearance of γ-H2AX foci is only representative of DSB 

repair when less than 100-150 foci were induced per nucleus [363]. Since, the highest dose 

used (2 Gy) only induced an average of 38 foci per nucleus we assume that in our study loss 

of foci number represents effective DSB repair. Our findings thus indicate that not all DNA 

damage is repaired following high dose exposure, which consequently leads to increased 

levels of apoptosis, as evaluated by the Annexin-V/PI assay. Following low dose exposure, on 

the other hand, most DNA damage seems repaired after 24 h, since the number of γ-H2AX 

foci is even reduced below background level in control cells. This may be explained by the 

observation that a slight increase in spot number was observed in control cells at 24 h 

compared to 30 min. In EA.hy926 cells, DNA repair kinetics seems to be different for lower 

doses (0.05 and 0.5 Gy), since 2 h after exposure the number of γ-H2AX foci was still 

increased as opposed to the high dose (2 Gy). Interestingly, in the literature, DNA repair 
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efficiencies are reported to be lower with very low doses (< 0.05 Gy), most likely reflecting 

the inability of the cell to induce a DNA damage response with these low levels of DNA 

damage [364, 365]. However, this phenomenon is observed with doses which were not 

included in our study and it would be interesting to study the effect of these very low doses (< 

0.05 Gy) on DNA repair in endothelial cells. 

Furthermore, in chapter three, we observed an increase in apoptosis following exposure to 

acute doses as low as 0.5 Gy in HUVEC and 0.1 Gy in EA.hy926 cells, although without cell 

cycle arrest. This finding suggests that acute doses below 0.5 Gy can cause endothelial cell 

loss, which is known to be involved in the development and progression of radiation-related 

CVD. For example, endothelial cell loss causes a decrease in capillary density in the heart. In 

addition, endothelial apoptosis has been related to the development of atherosclerosis [364, 

365] as it may compromise regulation of vascular tone, and increase the proliferation and 

migration of vascular smooth muscle cells (VSMC) [182, 183]. Thrombosis, the major 

complication of atherosclerosis, can also be triggered by endothelial cell death [184]. 

Translation of our observed increase in low dose radiation-induced endothelial cell apoptosis 

to the in vivo situation should, however, be done with care. Indeed, the impact of this, rather 

small, increase in endothelial cell apoptosis on the final health outcome in vivo is uncertain.  

Besides the classical DNA-targeted effects, we were also interested in the effect of acute low 

dose X-irradiation on oxidative stress and on the mitochondrion. It has been proposed that the 

biological effects of low doses are mainly mediated via the induction of oxidative stress, an 

imbalance between intracellular ROS and antioxidants, rather than direct DNA damage [183]. 

Also, in the context of CVD, it is most likely that low dose ionizing radiations mediates their 

effects by creating a state of oxidative stress. The actions of ROS are various and include the 

induction of cellular damage which can lead to apoptosis and necrosis [366]. For instance, 

Kumar and coworkers have shown that reduction of ROS levels increased the survival rate of 

cardiac fibroblasts [367]. Oxidative stress is also a known cause of cellular senescence [129]. 

Furthermore, ROS can create an inflammatory situation, decrease NO bioavailability, damage 

the mitochondrion, and cause oxidative modification of circulating low density lipoprotein 

(LDL) to form the harmful oxLDL. All these processes play a major role in the development 

and progression of CVD [145, 146].  

Using the fluorometric CM-H2DCFDA assay, we measured intracellular ROS levels in both 

HUVEC and EA.hy926 cells 30 min after acute X-irradiation, in chapter four. High dose 
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exposure (5 Gy) increased intracellular ROS levels in both HUVEC and EA.hy926 cells. It 

has been observed previously that irradiated cells arrested in G2/M phase have higher 

mitochondrial content, which has been associated with higher intracellular ROS levels [261, 

368]. We have also observed a G2/M arrest in both HUVEC and EA.hy926 cells following 

exposure to 5 Gy, which may be related to the observed increased intracellular ROS levels. 

For low dose irradiation (≤ 0.5 Gy) we observed no clear dose-relationship for intracellular 

ROS levels. It should be noted that, due to limitations of the CM-H2DCFDA assay, additional 

methodologies for the assessment of oxidative stress should be included as well in future 

research. For instance, the detection of extracellular 8-oxo-7,8-dihydro-2-deoxyguanosine (8-

oxo-dG) has been successfully used for the assessment of oxidative stress after exposure to 

low doses of ionizing radiation [190]. 8-oxo-7,8-dihydro-2-deoxyguanosine triphosphate (8-

oxo-dGTP) is a mutagenic lesion in the DNA and in the nucleotide pool that is induced by 

ROS. The lesion is removed from the DNA by base excision repair and from the nucleotide 

pool by the nucleotide sanitization enzyme Human MutT homologue (hMTH1)8, and is 

exported from the intracellular to the extracellular milieu as 8-oxo-dG, where it can be easily 

detected. Interestingly, in this study it was found that a dose as low as 1 mGy could increase 

8-oxo-dG levels in whole blood samples, 1 h after irradiation. They speculated that this low 

dose, which results in about one hit per cell9, could trigger an endogenous stress response 

leading to an increased ROS production. Another promising tool that can be applied in 

radiation research to monitor cellular redox changes are genetically encoded fluorescence 

probes such as redox-sensitive yellow fluorescent proteins (rxYFP), redox-sensitive green 

fluorescent proteins (roGFPs), and the hydrogen peroxide sensor HyPer [369, 370]. These 

probes have many advantages including high sensitivity, subcellular targeting and the 

possibility of live-cell imaging. For instance, roGFP equilibrates with the total thiol pool and 

can thus be used as an indicator for the glutathione redox state [370]. Also, these probes allow 

single cell redox measurements which can be of interest in the investigation of bystander 

effects. As far as we know, these genetically encoded fluorescence probes have not been used 

yet in ionizing radiation studies, and offers thus an interesting approach for the measurement 

of radiation-induced oxidative stress. 

In our study, we measured intracellular ROS levels 30 min after irradiation. Since it is 

believed that low dose ionizing radiation may lead to persistent oxidative stress, it would be 

                                                 
8
 hMTH1 inhibits the incorporation of 8-oxo-dGTP in DNA by hydrolysing it to 8-oxo-dGMP [190]. 

9
 The descriptor 'one hit per cell' was originally taken from an article from Feinendegen and coworkers. They 

defined a hit as the energy deposited by a single radiation (particle) track in a cell [381]. 
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interesting to evaluate intracellular ROS levels longer times (e.g. weeks) after radiation 

exposure. Furthermore, in vivo studies are required as well. The above-mentioned genetically 

encoded fluorescence probes are a promising step towards measurement of redox status in 

vivo [369, 370]. However, there remain many technical challenges that need to be overcome. 

For instance, redox-imaging in non-transparent species poses a problem which needs to be 

overcome first. Solutions can be provided by the use of two-photon imaging or the 

development of techniques for a chemical conservation of the biosensor redox state of the 

probe which can then be analyzed in tissue sections [369]. Another way to assess oxidative 

stress in animal models is the use of biomarkers of oxidative stress such as p-tyrosine, L-

DOPA and 8-hydroxydeoxyguanosine in the plasma. Specific markers for nitrative stress, 

such as 3-nitrotyrosine, can also be used. For instance, using these nitrative stress biomarkers, 

Kumarathasan and coworkers have revealed persistent nitrative stress in ApoE -/- mice three 

to six months after exposure to acute and chronic irradiation (total doses of 0.5 and 2 Gy) 

[286]. Finally, one can also investigate oxidative stress by studying the anti-oxidant 

mechanisms of the cell. For example, measurement of anti-oxidant enzymes such as 

superoxide dismutase (SOD) and catalase, and the measurement of glutathione levels are 

frequently used to assess oxidative stress [225].  

Mitochondria are proposed to play an important role in the amplification of radiation-induced 

intracellular ROS levels. Indeed, mitochondria are the major source of endogenously 

produced ROS, as a byproduct of oxidative phosphorylation, and the total cellular 

mitochondrial volume (4-25 % depending on the cell) represents a substantial radiation target 

volume in the cell [287]. In particular, the mitochondrial DNA (mtDNA) is a vulnerable 

radiation target due to the lack of protective histones and limited DNA repair capacity. Since 

mtDNA encodes for several components from the electron transport chain, mtDNA damage 

may lead to impairment of oxidative phosphorylation and as a consequence to an increased 

ROS production causing even more mitochondrial and cellular damage [192]. We have 

initiated the development of a PCR-based assay to quantify the common deletion, the most 

abundant large-scale deletion reported in mtDNA [33]. Next to mtDNA damage assessment, it 

is of interest to evaluate more in-depth mitochondrial function, and in particular the 

association between mitochondrial function and ROS production, following low dose 

radiation exposure. For instance, assessment of the respiratory chain function via the 

determination of cytochrome c (complex IV) and succinate dehydrogenase (complex II) 

activity after cytoplasmatic exposure to α-particles has revealed a reduced activity which 
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consequently leads to an increase in ROS levels [193]. Also, the activity of complex I and III 

was significantly decreased in mice exposed to 2 Gy [293]. Furthermore, the induction of 

mitochondrial permeability transition has been demonstrated to increase ROS production 

[195]. The permeability transition occurs when permeability pores of the inner mitochondrial 

membrane open, as such increasing the permeability to ions and solutes with a mass up to 

1500 Da. This is associated with loss of the mitochondrial membrane potential which is 

known to induce the formation of ROS [192]. With low dose exposure it is unlikely that many 

mitochondria will undergo a permeability transition as a direct consequence of a primary 

ionizing event. However, it has been shown that propagation of this mitochondrial 

permeability transition from one mitochondrion to another is possible and is believed to be 

mediated via a Ca
2+

-dependent mechanism [191]. At last, it is of interest to evaluate 

mitochondrial protein import following low dose radiation exposure. Many mitochondrial 

proteins are encoded by nuclear DNA and need to be imported for the maintenance and 

regeneration of mitochondria. Mitochondrial protein import is dependent on the inner 

mitochondrial membrane potential and a proper functioning of the import machinery. 

Radiation-induced defects in protein import may amplify oxidative stress and assessment of 

mitochondrial protein import may thus also be used as a marker for low dose radiation effects 

[192].  

 

To conclude the first part of this PhD (chapters three and four) where we have 

evaluated the response of HUVEC and EA.hy926 to acute low dose X-irradiation:  

1.) Relevant differences between the radiation response of HUVEC and EA.hy926 

cells have been found, pointing out the importance of the choice of endothelial cell model 

for in vitro research.  

2.) Our findings regarding DSB formation and repair suggest that the low dose 

response may not be a simple linear extrapolation of the high dose response, although 

practical limitations of the γ-H2AX assay underlying the observed differences between 

γ-H2AX foci formation induced by low and high dose radiation cannot be excluded. 

3.) Exposure to lower doses (down to 0.05 Gy) led to an increased number of DSB, 

which was associated with an increase in endothelial cell apoptosis (down to 0.1 Gy). 
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Endothelial cell loss is known to be involved in the development and progression of 

CVD. 

4.) Since it is believed that the actions of low dose irradiation are mediated by 

creating a state of oxidative stress and impacting mitochondrial function, and seeing the 

importance of these events in the development and progression of CVD, further research 

should focus on these topics. 

 

Whereas the above described results concern acute low dose radiation exposures, we were 

also interested in the effects of chronic low dose rate (LDR) radiation exposure. Indeed, the 

biological effects of ionizing radiation exposure are also dependent on the dose rate by which 

it is delivered. Experimental animals and humans usually can tolerate higher total doses of 

chronic LDR irradiation than of acute single doses [273] due to repair of sublethal injury and 

adaptive reactions on the cellular, tissue and whole body level [371]. For example, it has been 

strongly suggested that DNA damage is efficiently repaired during chronic LDR irradiation 

(
137

Cs, 0.3 mGy/h for 1, 6 and 13 days) in human immortalized fibroblast cells [73]. 

Nevertheless, some epidemiological cohorts that are chronically exposed to low doses of 

radiation in their occupation are suggestive of detrimental health effects of chronic low dose 

radiation exposure. For instance, a significant increasing trend in ischemic heart disease 

morbidity was observed with increasing total external dose in Mayak nuclear workers [372].  

In the second part of this PhD, in chapter five, we have examined the effect of chronic LDR 

irradiation (
137

Cs, 1.4 and 4.1 mGy/h) during one, three and six weeks on HUVEC by means 

of transcriptomic profiling. This study was embedded in a large European interdisciplinary 

project (FP7 DoReMi project (grant agreement 295823)), which is a feasibility study towards 

a systems biology approach of LDR radiation response of the endothelium. It was observed at 

Stockholm University that irradiation at a dose rate of 4.1 mGy/h induces premature 

senescence in HUVEC [59]. Senescence of endothelial cells is related to vascular aging, 

which predisposes to CVD. Indeed, endothelial senescence is associated with increased ROS 

production, decreased NO bioavailability and increased production of pro-inflammatory 

mediators [204]. Moreover, there is in vivo evidence for the presence of senescent 

endothelium in human atherosclerotic lesions [144]. The final aim of this European 

interdisciplinary project is the integration of all studied biological endpoints in a specific 
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model explaining the mechanisms underlying radiation-induced premature senescence in 

HUVEC.    

We were interested in elucidating the underlying mechanisms on the transcriptomic level that 

could be involved in the previously observed chronic LDR radiation-induced premature 

senescence in HUVEC. Analysis of single gene expression has revealed a rather subtle 

response of HUVEC following chronic LDR radiation exposure, as determined by a low 

number of differentially expressed genes. Moreover, the differentially expressed genes have 

small fold changes that never exceeded |3|. Amundson and coworkers performed microarray 

analysis on LDR irradiated human myeloid leukemia cells with wild-type p53 function [373]. 

They revealed several genes, including GADD45A and CDKN1A, of which differential 

expression was dose rate dependent. In our study, these genes were not differentially 

expressed which may be explained by differences in duration of exposure and in total dose 

received. In the study of Amundson and coworkers total exposure time was in the range of 

several hours (with highest total dose = 0.5 Gy), as opposed to our study where total exposure 

time was in the range of weeks (with highest total dose = 4 Gy).   

Seeing the subtle effects on the level of single genes, we decided to use a complementary 

approach for the evaluation of transcriptomic changes in our study: Gene Set Enrichment 

Analysis (GSEA). GSEA is a statistical analysis method that focuses on gene sets, groups of 

genes that share a common biological function, instead of individual genes [135, 137, 138]. In 

essence, this method determines how the members of a given gene set, based on a priori 

biological knowledge, are distributed among the list of genes ranked according to their 

differential expression between specific treatments, in this case chronic LDR irradiation 

versus control. If they tend to occur at the top (or bottom) of this gene list, the gene set is 

considered to be associated with the specific treatment [213]. The advantage of GSEA is that 

it takes all genes into account without an arbitrary cut-off. Since most biological processes 

occur through the concerted expression of multiple genes, a modest change in the expression 

of a group of genes can have greater biological importance than a high change in the 

expression of a single gene [213]. The validity of GSEA results is highly dependent on the 

quality of the gene set databases used. Gene sets are based on a specific biological pathway or 

process, and genes annotated to that gene set are usually also associated with each other in a 

meaningful way [211]. In our study, we used the Kegg PATHWAY and Gene Ontology 

Biological Process (GO BP) gene set databases obtained from the MSigDB website (v4.0). 

The Kegg PATHWAY database contains gene sets representing a network of gene products 
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involved in biological processes and pathways. It is curated by humans and constantly 

updated with the latest information from published literature and is thus considered a good 

quality database [211]. The biological processes represented in the gene sets of the GO BP 

database are defined as a chemical or physical transformation and comprises broad (e.g. cell 

growth and maintenance) and more specific processes (e.g. pyrimidine metabolism) [211, 

374]. The GO BP is a commonly used database but care should be taken since the genes in a 

specific gene set are not necessarily associated with each other in a meaningful way.  

Based on single gene analysis and GSEA, we hypothesized that one week of exposure 

triggered an early stress response which was followed by the acquirement of an inflammatory-

related profile after three weeks. In particular, exposure of HUVEC to 4.1 mGy/h led to the 

engagement of antioxidant mechanisms indicating that these cells had to deal with a greater 

level of oxidative stress. We suggested that this early stress response led to the observed 

premature senescence in HUVEC exposed to 4.1 mGy/h. Looking in more detail, we revealed 

an important role for IGFBP5 in the induction of radiation-induced premature senescence. It 

has been shown previously that IGFBP5 can induce senescence in HUVEC by engaging the 

p53 pathway [375]. In addition, another study revealed an increased IGFBP5 expression in 

HUVEC following acute exposure to 4 Gy, which corresponds to the accumulated dose that 

HUVEC received after six weeks of exposure to 4.1 mGy/h in our study [305]. In future 

research, it would be interesting to include HUVEC knock-out for IGFBP5 to determine 

whether IGFBP5 plays an essential role in radiation-induced premature senescence. Finally, it 

is also advised to confirm the generated hypotheses (i.e. the induction of an early stress 

response followed by the acquirement of an inflammatory profile) by means of functional 

assays, which has already been done partially. Indeed, within the project several biological 

endpoints such as senescence and inflammatory response are assessed as well by the other 

partners.  

 

To conclude the second part of this PhD (chapter five) where we investigated the effect 

of chronic LDR radiation on HUVEC by means of transcriptomic profiling:  

1.) Single gene analysis revealed a rather subtle response of chronic LDR 

irradiation.  
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2.) GSEA indicated that chronic LDR irradiation induces an early stress response 

after one week which is replaced by an inflammatory profile after three weeks. These 

are suggested to underlie the observed premature senescence. 

3.) A role for IGFBP5 signaling is suggested for the previously observed premature 

senescence in HUVEC exposed to 4.1 mGy/h.  

 

This PhD was embedded in the search for a cellular and molecular understanding of low dose 

radiation effects on the development and progression of CVD. The ultimate goal of this 

research is an improved assessment of CVD risk related to acute and chronic low dose 

radiation exposures. Epidemiological studies are limited in their statistical capacity to prove 

either the absence or presence of an increased risk of CVD following low dose exposure (< 

0.5 Gy). The integration of cellular and molecular biomarkers in epidemiological research is a 

promising way to attain an improved risk assessment [82]. It is, however, challenging to find 

a reliable, easily measurable and specific biomarker to assess radiation-induced 

cardiovascular effects in epidemiological cohorts. Understanding of the cellular and molecular 

mechanisms underlying radiation-induced cardiovascular effects by means of in vitro and in 

vivo research will aid in the discovery of such biomarkers. 

The results presented in this thesis can be considered as a step forward in the search for 

biomarkers for radiation-related CVD. In the context of radiation-related CVD, the main 

interest is to find specific biomarkers that provide an early detection of radiation-induced 

CVD, before clinical detection, with the possibility for early treatment and prevention [82]. 

The subtlety of low dose health effects and the multifactorial nature of CVD makes this quest 

very complex. The ideal biomarker will, most likely, be a mix of several biomarkers. 

Furthermore, this multi-biomarker should be rather easily obtained (e.g. collection of a blood 

or DNA sample). Although specific biomarkers were not identified in this work, several fields 

of research were explored including the assessment of DNA-targeted effects, oxidative stress, 

mitochondrial dysfunction and senescence, which may provide biomarkers upon further 

research. Animal studies are needed as they provide a step-forward in the translation of the in 

vitro findings towards the human situation. The use of atherosclerosis prone mice models 

such as ApoE -/- or LDL -/- mice have been extensively used to assess the effect of ionizing 

radiation on the development and progression of atherosclerosis [95, 97, 104, 286]. Ideally, 

candidate biomarkers should be assessed in humans as well. Recently, the phenomenon of so-
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called endothelial microparticles gains more attention. A microparticle is a membrane vesicle 

that is released by the endothelial cell upon apoptosis or activation (i.e. the acquirement of a 

pro-inflammatory and pro-thrombotic state) [376]. They can be measured in the plasma by 

detection of their phospholipid content (mainly phosphatidylserine) and proteins specific for 

endothelial cells such as E-selectin and vascular endothelial cadherin [377]. The level of these 

endothelial microparticles has been shown to be elevated in coronary artery disease, diabetes, 

hypertension, etc. [378]. It is proposed as a surrogate marker for endothelial health, although 

further research is required to assess their prognostic value for clinical events [376]. If these 

microparticles are proven to be a good marker for endothelial health, it would be interesting to 

explore their possible use as biomarker for radiation-related CVD.  

Besides improving risk assessment, biomarkers can be used for the implementation of 

strategies to reduce radiation-induced CVD risk, such as individual risk characterization and 

the development of countermeasures [82]. These strategies are of particular interest for 

radiotherapy patients, such as breast cancer patients, who receive a dose to the heart. Also, 

health practitioners, such as radiologists and interventional cardiologists, may benefit from 

these risk reducing strategies.  

Besides the search for biomarkers, biological research is needed to ascertain the dose-

response relationship in the low dose region. Currently the LNT model based on the stochastic 

effects, cancer and hereditary disease, is employed as basis for risk assessment. Our findings 

regarding radiation-induced DNA damage may point to a non-linear dose-relationship which 

questions the LNT model. CVD, which is considered as a deterministic effect, is at the 

moment not included in low dose risk assessment. Indeed, epidemiological findings are only 

certain about elevated CVD risk after exposure to doses higher than 0.5 Gy. Up till now, there 

is not sufficient scientific evidence for a relevant increased risk of CVD following low dose 

radiation exposure (< 0.5 Gy). And as long as there is not sufficient scientific evidence, the 

current radiation protection standards (based on stochastic effects) that limit the effective dose 

exposures of the public and workers, are not adapted. However, one could set equivalent dose 

limits for specific exposure to the cardiovascular system, like the equivalent dose limits issued 

by the ICRP for the lens of the eye, skin, hands and feet [379]. These dose limits can be based 

on the threshold doses for radiation-related CVD determined by epidemiological and 

radiobiological findings. At last, it should be noted that, although scientific knowledge is 

crucial for the implementation of radiation protection standards, it also involves a societal, 

economic and political judgment [380].  
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To conclude, this PhD aimed to partially unravel the endothelial radiation response 

using in vitro endothelial cell cultures as model. Indeed, the endothelium is considered a 

critical target in radiation-related CVD. Overall, for all investigated endpoints, a rather 

subtle response was found in endothelial cells following exposure to low doses of ionizing 

radiation. It was observed that acute low dose irradiation (0.05 Gy) induces a small, but 

significant, increase in DNA damage in both HUVEC and EA.hy926 cells which seemed 

to be fully repaired. In addition, a small, but significant, increase in apoptosis (0.01 Gy) 

was demonstrated. Furthermore, it was seen, 30 min after exposure, that intracellular 

ROS levels were not much influenced by acute low doses. Finally, we demonstrated 

subtle effects of chronic low dose rate (LDR) radiation on differential gene expression in 

HUVEC. We showed that chronic LDR radiation (4.1 mGy/h) induced premature 

senescence, in which IGFBP5 signaling seems to play an important role. To fully grasp 

the impact of these subtle effects on final health outcome, with respect to CVD, further 

research is required, as discussed throughout the last chapter.  
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Humans can be exposed to low doses of ionizing radiation during medical diagnostics and in 

their occupation. Also, nuclear accidents such as Chernobyl and the recent event in 

Fukushima form a source of radiation exposure. The implementation of radiation protection 

guidelines aids in the protection of humans against possible detrimental health effects. Over 

time, these guidelines have evolved, intertwined with scientific advances made in the 

understanding of radiation-induced health effects. Nowadays, radiation protection guidelines 

comply with the 'as low as reasonable achievable' (ALARA) principle. For low doses of 

ionizing radiation (< 100 mGy), it is believed that only stochastic effects such as cancer and 

hereditary disease are of importance. Low dose risk estimations for cancer are based on a 

linear non-threshold (LNT) extrapolation of high dose risks known from epidemiological 

studies. Recently, epidemiological findings suggest that also non-cancer diseases, and in 

particular cardiovascular diseases (CVD), may be a health risk associated with low dose 

radiation exposure. However, below 0.5 Gy an increased risk of CVD cannot be evidenced by 

epidemiology and a biological understanding is needed. Indeed, if there proves to be an 

increased risk of CVD following low dose exposure, it may have considerable impact on 

current low dose health risk estimates. 

The endothelium, which forms the inner lining of the cardiovascular system, is a critical target 

in the development and progression of radiation-related CVD. The acceleration of age-related 

atherosclerosis and the increase of the lethality of age-related myocardial infarction, in which 

endothelial cells play an important role, are hypothesized to underlie an increased CVD risk 

following high dose exposure. However, it is not known whether these hypotheses hold true 

for low dose radiation exposure and other mechanisms may play a role. Therefore, in this 

PhD, the endothelial response to acute low doses of ionizing radiation and to doses delivered 

at chronic low dose rate were investigated in vitro, using two endothelial cell models, primary 

human umbilical vein endothelial cells (HUVEC) and the immortalized derivate EA.hy926 

cells. The different radiation response of HUVEC compared to EA.hy926 cells, observed in 

this study after acute low dose exposure, point out the importance of the choice of the 

endothelial cell model for in vitro research.  

It was observed that acute low dose radiation exposure (0.05 Gy) induced an increase in 

double strand breaks, the most lethal DNA lesions. This was associated with an increase in 

apoptosis following exposure to doses down to 0.1 Gy, suggesting a role for endothelial loss 

in the development and progression of CVD following low dose radiation exposure. 

Nevertheless, translation of this finding to the in vivo situation should be done with care and 
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in vivo experiments should be performed for confirmation. Next to endothelial cell loss, 

radiation-induced endothelium dysfunction is proposed to be of importance.  

Oxidative stress, an imbalance between intracellular ROS levels and antioxidant defenses, is a 

well-known cause of endothelial dysfunction. No clear dose-relationship was found between 

intracellular ROS levels 30 minutes after exposure to acute low dose radiation exposure in 

HUVEC and EA.hy926 cells. However, it is hypothesized that there exist radiation-induced 

mechanisms by which the cell 'amplifies' the formation of intracellular ROS on the long-term, 

in which mitochondria play an essential role. Detection of the common deletion, a sensitive 

marker of mtDNA damage, aids in the determination of radiation-induced mitochondrial 

damage and has been optimized for further use in the lab. For future research, it would be of 

interest to evaluate oxidative stress and mitochondrial function in endothelial cells exposed to 

low doses of ionizing radiation after longer periods (e.g. weeks). 

Whereas above investigations concerned acute low dose radiation exposures, the effects of 

chronic low dose rate (LDR) radiation exposure on HUVEC were investigated as well. This 

study was carried out in the context of the FP7 DoReMi project. In this project it was 

observed that chronic LDR radiation induced premature senescence in HUVEC. Since several 

studies have observed endothelial senescence in human atherosclerotic lesions, this finding 

supports the idea that radiation-induced premature senescence contributes to the development 

and progression of CVD. In this PhD, transcriptomic profiling was carried out to investigate 

the underlying pathways of radiation-induced premature senescence. Gene Set Enrichment 

Analysis revealed that chronic LDR radiation induced an early stress response after one week, 

followed by the acquirement of an inflammatory profile after three weeks. We suggested that 

this early stress response laid the basis for the induction of premature senescence. A more 

detailed single gene analysis has suggested a role for insulin growth factor binding protein 5 

(IGFBP5) signaling in radiation-induced premature senescence.  

In conclusion, this PhD was embedded in the search for an understanding of the cellular and 

molecular mechanisms underlying the effects of low dose radiation exposure on the 

development and progression of CVD. The ultimate goal is an improved assessment of CVD 

risk related to acute and chronic low dose radiation exposures. In particular, it is aimed to find 

specific biomarkers for radiation-related cardiovascular effects for use in molecular 

epidemiological studies and for risk reducing strategies such as individual risk 

characterization and the development of countermeasures. These risk reducing strategies will 
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be of particular interest for radiotherapy patients and occupational workers, who receive a 

certain dose to the cardiovascular system.  
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Mensen kunnen blootgesteld worden aan lage dosis ioniserende straling tijdens diagnostische 

procedures in de geneeskunde en tijdens specifieke beroepsactiviteiten. Nucleaire ongevallen 

zoals in Tsjernobyl, en de recente gebeurtenis in Fukushima kunnen eveneens leiden tot 

blootstelling aan straling. Om mensen te beschermen tegen ongewenste blootstelling aan 

straling zijn er bepaalde richtlijnen opgesteld. Deze richtlijnen zijn sterk geevoleerd in de tijd 

en worden beïnvloed door de alsmaar betere kennis van de schadelijke gezondheidseffecten 

van ioniserende straling. De huidige richtlijnen hanteren het 'as low as reasonable achievable' 

(ALARA) principe. Momenteel wordt aangenomen dat voor lage dosis straling (< 100 mGy) 

enkel stochastische effecten, zoals kanker en genetisch overdraagbare aandoeningen, van 

belang zijn. Om het risico op kanker na blootstelling aan lage dosis straling in te schatten 

gebruikt men een lineaire extrapolatie, zonder drempelwaarde, van het risico na blootstelling 

aan hoge dosis straling. Deze laatste is gekend uit epidemiologische studies. Recent hebben 

epidemiologische studies echter aangewezen dat ook andere ziekten, en vooral 

cardiovasculaire aandoeningen, een mogelijk gezondheidsrisico vormen na blootstelling aan 

lage dosis straling. Echter, voor dosissen lager dan 0.5 Gy is het statistisch niet haalbaar om 

een significant verhoogd risico vast te stellen in epidemiologische studies. Radiobiologisch 

onderzoek is daarom nodig om een mogelijk risico op cardiovasculaire aandoeningen na 

blootstelling aan lage dosis straling vast te stellen of eventueel uit te sluiten. Als er een 

verhoogd risico blijkt te zijn, zal dit een belangrijke impact hebben op de huidige inschatting 

van gezondheidsrisico's verbonden aan lage dosis straling.  

Het endotheel, dat de binnenkant van het cardiovasculaire systeem bekleedt, speelt een 

belangrijke rol in het ontstaan en de verdere ontwikkeling van cardiovasculaire aandoeningen. 

Een verhoogd risico op cardiovasculaire aandoeningen na hoge dosis bestraling is het gevolg 

van een versnelling van ouderdoms-gerelateerde atherosclerose en van een verhoogde 

letaliteit van ouderdoms-gerelateerde hartinfarcten. In beide processen speelt het endotheel 

een belangrijke rol. Het is echter niet geweten of dezelfde processen betrokken zijn bij de 

effecten van lage dosis bestraling. Daarom onderzochten we in dit PhD project de respons van 

het endotheel in vitro na blootstelling aan acute lage dosis straling of aan dosissen gegeven 

aan chronische laag dosistempo met behulp van twee endotheelcel modellen: de primaire 

humane endotheelcellen afkomstig van de venen in de navelstreng (HUVEC) en de daarvan 

geïmmortalizeerde cellijn EA.hy926. We toonden aan dat de respons na bestraling met een 

acute lage dosis verschilt tussen HUVEC en EA.hy926, wat wijst op het belang van het type 

endotheelcel model voor in vitro onderzoek.  
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We toonden aan dat acute lage dosis straling (0.5 Gy) het aantal dubbelstrengige DNA 

breuken, de meest lethale DNA schade, verhoogde. Dit was geassocieerd met een verhoging 

in apoptosis na bestraling met dosissen tot 0.1 Gy. Deze bevinding suggereert een rol voor het 

verlies van endotheelcellen in het ontstaan en de verdere ontwikkeling van cardiovasculaire 

aandoeningen na lage dosis bestraling. Het belang van deze bevindingen moet echter 

bevestigd worden met in vivo onderzoek. Naast het verlies van endotheelcellen, is er een 

belangrijke rol weggelegd voor dysfunctie van het endotheel.  

Oxidatieve stress, gekarakteriseerd door een verstoord evenwicht tussen het intracellulaire 

peil van reactieve zuurstofverbindingen (ROS) en anti-oxidatieve afweermechanismen, is een 

belangrijke oorzaak van dysfunctie van endotheelcellen. We hebben geen duidelijk verband 

gevonden tussen stralingsdosis en de waarden van intracellulaire ROS, 30 minuten na 

bestraling van HUVEC en EA.hy926 cellen. Desondanks wordt verondersteld dat door 

straling op langere termijn het niveau van intracellulaire ROS wordt verhoogd via bepaalde 

mechanismen van amplificatie waarbij de mitochondriën een belangrijke rol spelen. In deze 

context hebben we de ons gericht op detectie van de 'common deletion', een gevoelige merker 

om schade aan het mitochondriaal DNA vast te stellen, en deze geoptimaliseerd voor verder 

gebruik. Voor toekomstig onderzoek zou het interessant zijn om in endotheelcellen oxidatieve 

stress in meer detail te bestuderen, en te bepalen hoe en in welke mate de mitochondriale 

functie wordt verstoord, en dit langere perioden (bv. weken) na bestraling met lage dosissen. 

Naast acute lage dosis straling, zijn ook de effecten van chronisch lage dosis straling, gegeven 

aan een laag dosistempo, bestudeerd in HUVEC. Deze studie maakt onderdeel uit van het FP7 

DoReMi project. In dit project heeft men waargenomen dat lage dosis chronische bestraling 

prematuur senescentie induceert in HUVEC. Aangezien in verscheidene studies senescentie 

van het endotheel is aangetoond in humane atherosclerotische laesies, wijst deze bevinding op 

een mogelijk mechanisme waarmee lage dosis straling kan bijdragen tot de ontwikkeling van 

cardiovasculaire aandoeningen. In dit PhD project hebben we het transcriptoom van deze 

chronisch bestraalde HUVEC geanalyseerd om onderliggende moleculaire 

signaaltransductiewegen bloot te leggen. Met behulp van Gene Set Enrichment Analysis 

hebben we aangetoond dat lage dosistempo chronische bestraling een vroege stress respons 

initieert in HUVEC na een week, gevolgd door een inflammatoire reactie na drie weken. Dit 

wordt verondersteld aan de basis te liggen van de voordien waargenomen premature 

senescentie. Door een doorgedreven genexpressie analyse konden we een sleutelrol suggeren 
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voor "insulin growth factor binding protein 5" (IGFBP5) en IGFBP5-gerelateerde 

signaaltransductiewegen in premature senescentie.  

Om te besluiten, deze PhD maakt deel uit van de zoektocht naar een beter begrip van de 

cellulaire en moleculaire mechanismen die aan de basis liggen van de effecten van lage dosis 

straling op de ontwikkeling van cardiovasculaire aandoeningen. Het uiteindelijke doel is om 

tot een verbeterde beoordeling te komen van het risico op cardiovasculaire aandoeningen na 

blootselling aan acute en chronische lage dosissen straling. In het bijzonder wil men 

specifieke biomerkers vinden voor gebruik in moleculaire epidemiologische studies en voor 

de ontwikkeling van strategien om het risico op cardiovasculaire aandoeningen te 

verminderen. Bijvoorbeeld, door characterisatie van het individuele risico en de ontwikkeling 

van tegenmaatregelingen. Deze strategieën zouden dan kunnen toegepast worden om onder 

andere radiotherapie patiënten, radiologen en interventionele cardiologen te beschermen tegen 

een ongewenst risico op cardiovasculaire aandoeningen.  
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