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Scope 

 
 
The complexity and dynamicity of the plant microtubule (MT) cytoskeleton and the presence of 

plant specific MT structures require the cooperation of many MT-associated proteins (MAP) of which 

some are specific to plants. The goal of this research was to characterize kinesins that function in 

plant specific MT related processes during cell division. Kinesin candidates for these functions are 

listed in chapter 2, where the publicly available Affymetrix microarray of synchronized Arabidopsis 

suspension cells was searched for mitotically regulated kinesins. These include members from 

subfamilies present in animal cells and members of plant specific kinesin groups.  
Cell cycle regulation also includes post-translational modifications like protein phosphorylation by 

cyclin-dependent kinases (CDK). CDKA;1 associates with MTs both in dividing and interphase cells 

and in animal cells, it regulates MT organization by phosphorylation of MT associated proteins. 

Initially, KCA1 was identified as a CDKA;1 interacting protein in a yeast two hybrid screen and later, 

evidence for CDK dependent phosphorylation was provided in insect cells. KCA1 and its homolog 

are plant specific kinesins that belong to the C-terminal/Kinesin-14 subfamily of kinesins, members 

of which have functions related to cell division. For these reasons we anticipated that KCA1 and 

KCA2 were potential candidates to function in MT related processes unique for plant cell division.  

In Chapter 3, we analyzed the interaction between the KCA proteins and CDKA;1 in more detail and 

show evidence for the implication of CDKA;1 phosphorylation in the folding configurations of KCA. 

These structural aspects of KCA may be important for protein function. A study of the intracellular 

localization of KCA1, presented in Chapter 4, illustrates how different protein domains contribute to 

the differential subcellular localization of KCA. Detailed analysis of the distribution of GFP tagged 

KCA1 revealed a region in the plasma membrane that is modified during cell division to define the 

division site in plant cells. 

Kinesin motors often associate with other proteins that regulate their function, activity and cargo 

binding. In Chapter 5, KCA1 was identified as an interactor of trehalose-6-synthase AtTPS1. Here, 

we investigate the occurrence of a protein complex consisting of KCA1, AtTPS1, CDKA;1 and tubulin 

and propose a function for this complex at the start of cell division. 

A genetic analysis of the KCA proteins in plant development is presented in Chapter 6. Plants 

disrupted in the KCA genes, were identified and subjected to a phenotypic analysis.  

 



 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter page: Tobacco BY-2 cells, viewed using confocal microscopy (transmission light). 
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Sessile but not senile; 

Fixed cells within fixed bodies 

 

Imagine us as sessile organisms: not able to go searching for water when thirsty, no shelter if it 

starts raining, and no hideaway from hungry predators. Despite these threats, plants were very 

successful throughout evolution. The sessile lifestyle of plants has challenged these organisms to 

become masters in adaptation. Because they can’t run, plants have learnt to deal with a whole 

range of environmental stresses, like drought, pathogens and predators. This is accomplished by a 

battery of defense response mechanisms and most important of all, their regenerative capability. 

Unlike animals, plants can grow new organs throughout their lifespan. The way organ 

morphogenesis is accomplished in plants depends on the presence of a wall that determines the 

final shape of the plant cell. 

Plant cells are encased by a semi-rigid cell wall that is a complex amalgam of cellulose microfibrils 

bonded non-covalently to a matrix of hemicelluloses, pectins, and structural proteins (Carpita and 

Gibeaut, 1993; Cosgrove, 1997). Cellulose is probably the single most abundant organic molecule in 

the biosphere. The microfibrils they produce have a per weight tensile strength equivalent to steel 

(Wainwright, 1976), thereby providing mechanical support for each cell and the whole plant body. 

However, it also renders plant cells immobile and this fixed nature of plant cells requires that 

morphological and developmental diversity in plants is determined by 2 processes; the orientation 

of cell division planes and the direction of cell expansion (Traas et al., 1995). Spatial regulation of 

division plane alignment allows plants to organize cells in files and layers that are typically observed 

in plant tissues (Lloyd, 1995; Smith et al., 1996). After cells have divided, cell expansion determines 

the final shape of every cell and at the end, of each plant organ. The MT cytoskeleton organizes 

into various arrays to govern these processes. 

 

Microtubule basis of plant morphology 

 

Cell expansion in developing tissues; the microtubule-microfibril enigma 

 

After leaving the cell cycle, differentiating cells expand dramatically and this expansion is driven by 

turgor pressure. The cross-linked cellulose microfibrils in the wall of growing cells are arranged in 

parallel to one another and perpendicular to the direction of cell elongation. Because this 

microfibrillar network resists radial expansion much more than longitudinal expansion, the cells 

react to turgor pressure by elongating perpendicularly to the microfibril orientation. In elongating 

cells, cortical MT align transversely to the axis of cell elongation and parallel the alignment of 

cellulose microfibrils (Ledbetter, 1981). This observation, along with data showing that MT 

depolymerization leads to isotropic cell growth (Green, 1980; Akashi et al., 1988; Baskin et al., 

1994) has led to the idea that cortical MTs relay spatial information to the cellulose microfibrils to 
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mediate cell expansion. The theory is supported by evidence that plant hormones, such as ethylene 

and gibberellins, exert their effects on the expansion of stem cells via the control of cortical MT 

orientation (Shibaoka, 1994). Although this hypothesis has been generally accepted, the mechanism 

by which cortical MTs influence cellulose microfibril deposition remains unclear. The cellulose-

synthase-constraint hypothesis states that MTs, through their close interaction with the plasma 

membrane, form barriers that constrain the paths of cellulose synthase complexes as they deposit 

cellulose chains in the cell wall (Fig. 1.1) (Giddings and Staehelin, 1991). 

However, new drug experiments on elongating cells in a variety of experimental systems showed 

that well organized microfibrils could be produced in the absence of cortical MTs (Baskin, 2001). As 

a result, the hypothesis was adjusted in that MTs deposit a directional scaffold in which established 

microfibrils can continue to grow in absence of MTs (Baskin, 2001). This theory was referred to as 

the ‘template-incorporation theory’ and was supported by later observations in the sensitive mutant 

mor1-1. This mutant shows a loss of growth anisotropy when grown at the restrictive temperature, 

accompanied with cortical MT disorganization (Whittington et al., 2001). However, cellulose 

microfibrils are deposited transverse to the elongation axis even after prolonged disruption of 

cortical MT arrays, supporting the template-incorporation model (Sugimoto et al., 2003). To further 

test this hypothesis, cellulose microfibrils were disrupted in the mor1-1 mutant, then plants were 

shifted to mor1-1’s restrictive temperature and finally, cellulose synthesis was allowed to recover. 

Surprisingly, microfibrils not only recovered a parallel order, their net orientation was perpendicular 

to the elongation axis (Himmelspach et al., 2003). 

 

 

  

 

 

 
Figure 1.1 The cellulose-synthase constraint hypothesis. Relationships between 
cellulose-synthesizing complexes (rosette type), wall microfibrils, plasma membrane and MTs. Figure 
taken from Wasteneys (2004). 
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Recently, the microfibril-length-regulation hypothesis was proposed by Wasteneys (2004). Here, 

MTs ensure the synthesis and integrity of long microfibrils by forming parallel cortical arrays in the 

same direction as cellulose microfibril deposition. This model predicts that intact transverse cortical 

MTs allow the formation/maintenance of long microfibrils resulting in perfect growth anisotropy or 

cell elongation. Altering the MT polymer status, results in short microfibrils. This induces a 

weakness in the cellulose chains, allowing turgor driven separation of microfibrils in two directions, 

while maintaining microfibrils in a transverse orientation (Fig. 1.2). 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The microfibril-length-hypothesis. MT activity at the plasma membrane influences the 
length of cellulose microfibrils, whose separation, which is mediated by the activity of enzymes on inter-microfibril 
polysaccharide tethers, determines the direction of cell-surface expansion (arrows). A, Under normal conditions, in 
which MTs (not shown) are plentiful and oriented in the direction of microfibril synthesis, long microfibrils are 
produced and their separation is only at right angles to their orientation. B, Loss of cortical MTs or their mis-
orientation generates periodic weaknesses in microfibrils, which are prone to breakage, allowing separation of 
microfibrils in the lateral as well as longitudinal direction. C, The loss of well-organized MTs affects the longevity 
or activity of cellulose synthase complexes, resulting in shorter microfibrils. This model explains how cells can 
undergo radial expansion while microfibril orientation remains transverse. Figure taken from Wasteneys (2004). 
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Several mutants stress the importance of MTs in cell expansion and tissue morphology. For 

example, AtKSS is a MT severing protein with an important role in cortical MT organization 

(McClinton et al., 2001; Wasteneys, 2002). Mutant alleles affected in the katanin AtKSS gene show 

defects in cell elongation which has been attributed to an aberrant cortical MT array (Bichet et al., 

2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003). In one of the mutant alleles, fra2, 

these defects were accompanied with a decrease of cellulose content in cell walls, thereby linking 

the transverse organization of cortical MTs in elongating cells to cellulose biosynthesis (Burk et al., 

2001). The occurrence of organ twisting phenotypes has been attributed repeatedly to defects in 

MT organization. Recessive mutations in either of two Arabidopsis thaliana SPIRAL loci, SPR1/SKU6 

or SPR2, reduce anisotropic growth of cells in roots and etiolated hypocotyls, and induce right-

handed helical growth in epidermal cell files of these organs (Furutani et al., 2000; Sedbrook et al., 

2004). Cortical MTs in these cells are arranged in left-handed helical arrays. Recently, the 

SPR1/SKU6 has been identified as a novel plant specific MT associated protein that associates with 

the plus-ends of MTs (Nakajima et al., 2004; Sedbrook et al., 2004). Similarly, the temperature 

sensitive alleles of MOR1 and the semi-dominant tubulin mutants lefty1 and lefty2, generate left-

handed twisting in most organs (Whittington et al., 2001; Thitamadee et al., 2002; Konishi and 

Sugiyama, 2003). In these mutants, MTs are respectively abnormally shortened or are right-handed 

obliquely oriented. Together these mutants show how MT organization is important for cell 

expansion, growth anisotropy and finally plant morphogenesis.  

 

Cell expansion during single cell morphogenesis 

 

Certain types of plant cells with highly specialized functions undergo dramatic cellular 

morphogenesis during differentiation. This group of cells includes pollen tubes, root hairs and 

trichomes, which are extremely elongated cells that are either un-branched in the case of pollen 

tubes and root hairs, or branched in the case of trichomes. Pharmacological studies suggest that 

turgor-driven, MT and cell wall controlled growth mediates the initial outgrowth of root hairs and 

trichomes while at later stages, MTs seem to determine growth directionality (Bibikova et al., 1999; 

Kost et al., 1999). This hypothesis is supported by mutants that have an altered morphology in 

these single cell structures. Tip1 mutants display short, branched root hairs and reduced fertility, 

which is caused by a moderate inhibition of the elongation of morphologically normal pollen tubes. 

The Tip1 defects are strongly reminiscent of the effects observed after treating root hairs and 

pollen tubes with drugs that affect MT organization. The Tip1 gene product may therefore be 

required for MT functions specifically during tip growth (Schiefelbein et al., 1993). The Zwichel 

mutant exhibits a decreased trichome branching, a defect that can be corrected by a short 

treatment with the MT stabilizing drug taxol. This mutant is affected in a MT based motor protein, 

KCBP and shows that MTs in trichomes dictate the branching pattern (Oppenheimer et al., 1997; 

Mathur and Chua, 2000). 
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Division plane alignment 

 

The preprophase band and the phragmoplast 

 

The role of MTs in plant morphogenesis is not limited to cell expansion. Plants have developed 

unique MT arrays that contribute to the positioning of the division plane during cytokinesis 

(Goddard et al., 1994; Mineyuki, 1999; Smith, 1999; Sylvester, 2000; Mayer and Jurgens, 2004). 

Cell plate positioning involves two major steps, first the establishment of the division site early in 

mitosis and guidance of the cell plate during cytokinesis. In the G2 phase of the cell cycle, the first 

sign of the approaching mitosis is the preprophase band (PPB) (Fig. 1.3), which gradually replaces 

the cortical MT array in G2 phase. This ring of transverse MTs and actin filaments encircles the cell 

at the cortex surrounding the prophase nucleus. It first appears as a broad ring-like structure that 

narrows as G2 progresses, and simultaneously perinuclear MTs increase in number and organize 

into a bipolar spindle. As the nuclear envelope disintegrates, the PPB disappears leaving behind a 

Figure 1.3 MT arrays during plant cell division. Schematic illustrations in 3D are 
pictured at two aspects in the upper panels (taken from Wasteneys, 2002). MTs are visualized 
in green and DNA in blue. 2D confocal sections of a GFP-tubulin expressing cell at different 
phases during cell division. Time points are indicated in minutes at the top left corner. A, A 
PPB connected to the nucleus by MTs marks the future division plane. B, Metaphase spindle 
with a dispersed polar region. C, During cytokinesis, the phragmoplast forms a dense cylinder 
of MTs between daughter nuclei. D, The phragmoplast expands centrifugally, guiding the cell 
plate towards attachment sites previously established by the PPB. 
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hallmark to guide the phragmoplast to the division site (Palevitz and Hepler, 1974; Wick and 

Duniec, 1983; Wick, 1991; Mineyuki, 1999). This is supported by data showing that when PPBs are 

experimentally perturbed, the cell plate is either mispositioned or misoriented (Mineyuki et al., 

1991b). 

Although the division site is established at the start of mitosis, it is during cytokinesis that its 

information becomes critical. During cytokinesis, Golgi derived vesicles containing cell wall 

components, are transported along the phragmoplast MTs to form a new cell plate (Verma, 2001). 

Like spindles, phragmoplasts are bipolar MT complexes with their plus-ends meeting at the 

midplane (Fig. 1.3). This structure is thought to be formed from the remnants of spindle MTs 

(Staehelin and Hepler, 1996) that centripetally coalesce at the division plane (Zhang et al., 1993; 

Granger and Cyr, 2000). It first appears as a compact cylindrical bundle, but gradually forms a ring-

like structure that increases in circumference in pace with the cell plate as it expands towards the 

parent wall. 

The cell plate will fuse to the parent cell wall at a site previously demarcated by the PPB; thus some 

form of spatial information must be guiding the phragmoplast to this predetermined site. It has 

been hypothesized that the PPB guides the local deposition of molecules in the plasma membrane 

and/or cell wall that serve as landmarks for phragmoplast guidance (Young et al., 1994; Smith, 

1999). Indeed, kinases and phosphatases (Mineyuki et al., 1991c; Young et al., 1994; Weingartner 

et al., 2001), cyclins (Mews et al., 1997), γ-tubulin (Liu et al., 1993), wall maturation factors 

(Mineyuki and Gunning, 1990), localized wall thickenings (Galatis et al., 1982) and actin filaments 

(Palevitz, 1987) have been shown to associate with or accumulate at the PPB site. The sighting of 

Golgi stacks at the division site during metaphase also supports this idea (Nebenfuhr et al., 2000). 

 

The PPB offers spatial cues for division plane establishment in multicellular tissues 

 

Throughout the landplants, the PPB is absent in cells of reproductive lineages; meiotic 

microsporogenesis and pollen mitosis (Hogan, 1987; Palevitz, 1993), megasporogenesis and 

megagametogenesis (Webb and Gunning, 1990, 1991, 1994) and endosperm development 

(Vanlammeren, 1988; Brown et al., 1994). The PPB is absent from cells entering a developmental 

pathway where they are no longer part of an organized tissue. For example, compare the 

development of the embryo and endosperm in flowering plants. Both originate from fertilization, yet 

the zygote displays a PPB in the first division (Webb and Gunning, 1991). In contrast, endosperm 

develops as a coenocyte (at least in cereals and Arabidopsis thaliana) before becoming cellular and 

does not exhibit a PPB until later when divisions occur in the aleurone layer (Brown et al., 1994). 

Thus the PPB appears in cells inserting spatially predetermined new walls within the pattern of 

neighboring cells during organogenesis. 
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Genes required for cell plate orientation 

 

The importance of the PPB in division plane establishment and plant morphology is strengthened by 

the analysis of plant mutants impaired in their ability to orient cell walls. The Arabidopsis fass and 

tonneau2 (ton2) mutants, as well as the tangled1 mutants of maize are characterized by 

misoriented cell walls. Whereas ton2/fass mutants altogether lack PPBs, these rings of cortical MTs 

are often misoriented in tangled mutants (for review, see Nacry et al., 2000). 

In ton2/fass mutants, both cell expansion as the pattern of cell division are affected (Torresruiz and 

Jurgens, 1994; Traas et al., 1995). This is accompanied by a disorganization of the interphase 

transverse MT array and lack of a preprophase band before mitosis. The mutants grow as short, 

thick misshapen plants with irregular radial swollen cells and in roots and hypocotyls, the ordered 

cell files and layers observed in wild-type plants are completely absent. However, mutants develop 

into tiny adult plants with all parts including floral organs present. These mutants are a perfect 

example of how MTs, through their importance in cell expansion and control of division plane 

alignment, determine the morphology of a plant, without interfering with differentiation patterns. 

Tangled mutants do not perturb overall plant morphology, but illustrate the importance of the PPB 

in division site establishment and phragmoplast guidance. In tan-1 mutant leaves, longitudinal 

divisions that result in leaf widening, are largely substituted by a variety of aberrantly oriented 

divisions, leading to a perturbed cell pattern and more narrow leaves. Accordantly, a 10-fold 

decrease in the proportion of longitudinal PPBs was observed when compared to WT plants and in 

addition phragmoplasts were not guided to sites formerly occupied by PPBs (Smith et al., 1996). 

The TANGLED gene was cloned and shown to bind MTs in vitro. Moreover, anti-TAN1 antibodies 

localize to the PPB, spindle and phragmoplast (Smith et al., 2001). In addition to orienting the PPB, 

TANGLED may be implicated in the establishment of the division site during preprophase and/or 

guide the leading edges of the phragmoplast to this site during cytokinesis. 

 

The role of the nucleus and spindle in division plane alignment 

 

A number of studies point to a role of premitotic nuclei in PPB positioning (Mineyuki et al., 1991b; 

Mineyuki et al., 1991a; Murata and Wada, 1991). Here, cells with premitotic nuclei and a PPB were 

centrifuged and the nucleus was displaced. Remarkably, a new PPB was formed at the new position 

of the nucleus and accordantly a cell plate was formed at the new division site. In addition, when 

binucleate cells were induced upon caffeine treatment, two PPBs were formed, one at each nucleus 

(Murata and Wada, 1993; Gimenez-Abian et al., 1998). These experiments point to a function of 

nuclear positioning in PPB formation and division site establishment. On the other hand, fine 

positioning of the premitotic nucleus relative to the PPB position has also been reported with MTs 

connecting the PPB and the nucleus (Granger and Cyr, 2001). The data suggest that cross-

communication between the nucleus and PPB is important in division plane establishment. 
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After disintegration of the nuclear envelope, the spindle invades the nuclear region to catch and 

align the chromosomes. This bipolar structure, which is composed mainly of MTs and associated 

proteins, assembles first as an unorganized perinuclear MT array with MTs radiating to the broad 

PPB (Mineyuki et al., 1991a). As the PPB narrows, this array is organized into a bipolar spindle with 

MTs only emanating from the poles. Remarkably, inhibition of PPB narrowing using actin 

depolymerizing drugs also prevents formation of the bipolar spindle. These data indicate that the 

PPB not only establishes the division sites at the cell cortex, but also determines the division plane 

by organizing the bipolar spindle relative to the division sites. 

The bipolar plant spindle, like other eukaryotic spindles is composed of an anti-parallel array of 

MTs, whereby slower-growing MT minus-ends are anchored at the spindle poles and the faster 

growing plus-ends are facing the spindle equator (Fig. 1.3) (Euteneuer and McIntosh, 1980). Within 

this structure, there are two different sub-populations of MTs; the kinetochore MTs, which attach to 

the kinetochore and thereby connect chromosomes to the spindle poles, and interpolar MTs, which 

stabilize the spindle by originating at opposite poles and interdigitate at the spindle midzone. This 

MT configuration is found in most eukaryotic spindles, however, plant spindles are unique because 

they lack highly focused MT organizing centers (MTOC) at the spindle poles. Most animal MTOCs 

are defined by the presence of centriole-containing centrosomes, which nucleate MTs at the spindle 

poles (Doxsey, 2001). 

Although plants lack the nucleating activating of centrosomes, bipolar spindles still form in plant 

mitosis. In plants, during spindle pole formation MTs are nucleated off the nuclear envelope 

(Lambert, 1993; Smirnova and Bajer, 1994; Stoppin et al., 1994; Azimzadeh et al., 2001) and form 

MT converging centers (MTCC) (Smirnova and Bajer, 1994, 1998). These MTCCs cluster by an 

unknown mechanism and develop into the spindle poles during prophase. Similar MT patterning is 

also observed in acentrosomal Allium cells (Wick and Duniec, 1983), and this pathway of bipolar 

spindle assembly might be universal among somatic cells of higher plants (Baskin and Cande, 

1990). 

The proper positioning of the spindle is critical to karyokinesis, however, the spindle also plays a 

supportive role in cell plate guidance. In cells treated with the actin inhibiting drug Latrunculin-B, 

some spindles fail to position near the PPB site and as a result phragmoplasts in these cells do not 

fuse at the site predetermined by the PPB (Granger and Cyr, 2001). Thus, the maintenance of 

spatial positioning of the spindle influences the trajectory of the phragmoplast during cytokinesis. 

 

Properties of the microtubular cytoskeleton 

 

MT nucleation 

 

Although the major cytoskeletal components are common to plant and animal cells, plants do not 

possess the centrosome-like organelles found in animal cells (MTOC) and yeast (spindle pole body; 

SPB). In animal and yeast cells, MT nucleation requires the activity of protein complexes containing 
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γ-tubulin, Spc98p and Spc97p (Geissler et al., 1996; Knop and Schiebel, 1997; Murphy et al., 1998; 

Tassin et al., 1998; Moritz and Agard, 2001). These proteins form γ-tubulin ring complexes, γ-TuRC 

(animal) and γ-TuSc (yeast), which are recruited at the structured MT organizing centers. 

Homologues of these proteins are also present in Arabidopsis. γ-tubulin has been localized all over 

the plant nuclear surface and along all MT arrays suggesting the presence of multiple, dispersed 

nucleating sites in plants (Fig. 1.4) (Liu et al., 1993; Joshi and Palevitz, 1996; Panteris et al., 2000). 

Till now, MT nucleating activity has only been characterized at the nuclear surface (Mizuno, 1993; 

Stoppin et al., 1994), which was then considered as the major MTOC in plants (Fig. 1.5). Using 

antibodies against γ-tubulin, the nucleation activity of purified nuclei was inhibited by 70-90%, 

proving that plant γ-tubulin is essential for MT nucleation (Seltzer et al., 2003). The presence of 

plant γ-tubulin has been found along whole MTs length of all plant MT arrays, in different cell types 

and at all stages of the cell cycle led to the idea that plant γ-tubulin is not only involved in MT 

nucleation, but may have a function in MT dynamics (Schmit, 2002). This idea was supported by 

the isolation of γ-tubulin from the cytosol as a single molecule and in association with various 

soluble complexes (Stoppin-Mellet et al., 2000).  

 

 

    

 

 

 

 

 

 

 

 

 

Figure 1.4 Distribution of γ-tubulin along MTs in dividing plant 
cells. Immunolocalisation of γ-tubulin (A, C and E) and β-tubulin (B, D and F) in 
soybean cells. Anti γ-tubulin staining is associated with MTs of the PPB and 
perinuclear spindle (A and B), the metaphase spindle (C and D) and the 
phragmoplast (E and F). Images are taken from Liu et al. (1993). 
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Homologues of the two γ-tubulin interacting proteins Spc98p and Spc97p have also been found in 

the Arabidopsis genome. The plant Spc98p orthologue codistributed with γ-tubulin around the 

nuclear surface of higher plant cells (Erhardt et al., 2002). Accordantly, Spc98p has been shown to 

be essential for MT nucleation activity at purified nuclei (Fig. 1.5) (Erhardt et al., 2002; Seltzer et 

al., 2003). Together these data reinforce the view that γ-TuSC-like components are functional as 

MT-nucleating factors at the perinuclear surface of higher plants, where they initiate minus-end MT 

assembly. 

 

   

 

 

 

 

 

 

 

 

 

MT dynamics 

 

MTs in plant cells were discovered in the early 1960s by Ledbetter and Porter (1963). They form 

anisotropic polymers of α- and β-tubulin heterodimers (each with a molecular mass of 50,000 

Daltons). In cells, these are normally organized by a head-to-tail fashion to form a linear 

protofilament (Fig. 1.6). Typically, 13 protofilaments align laterally to form a hollow, cylindrical 

polymer with a diameter of ∼ 25 nm (Evans et al., 1985). Once assembled, the MT polymer forms 

an asymmetric structure; within each protofilament α- and β-tubulin heterodimers orient such that 

the β-tubulin is exposed on one end of the MT and the α-tubulin is exposed on the other end 

Figure 1.5 Plant Spc98p and γ-tubulin localization at the surface of 
isolated tobacco BY-2 nuclei after in vitro MT nucleation. A and D, 
Confocal images of nuclei labeled either with anti-Spc98pB (A) or anti-γ-tubulin (D). B and 
E, Confocal section at the surface of the respective nuclei labeled with anti-α-tubulin. C 
and F, Merged image showing MT nucleation from perinuclear sites. G and H, Inhibition of 
MT nucleation by preincubation with either anti-γ-tubulin (G) or anti-Spc98pB (H) 
antibodies. Either no or few short MTs are polymerized. I, Following a competition assay 
for 1 hour with preincubation using anti-Spc98pB antibodies and Spc98pB peptide, 
nucleation was not inhibited. Insets, Nomarski images of the isolated nuclei. Bar = 10 µm. 
Figure taken from Erhardt et al. (2002). 
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(Valiron et al., 2001). This results in a kinetic polarity within the MT polymer, creating a faster-

growing end (termed the plus-end) and a slower-growing end (termed the minus-end). 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Structure of MTs and model for MT dynamic instability. A, Diagrams of a MT in cross-
section and side view. The subunits of the MT, dimers of α- and β-tubulin, align head to tail in long parallel columns 
called protofilaments. 13 protofilaments are displaced longitudinally from one another, forming the MT. The dimers 
assemble head to tail, giving MTs a structural polarity; α-tubulin is exposed at the minus-end of the polymer and β-
tubulin at the plus-end. B, Electron micrograph of a MT from a plant cell in cross-section and side view. C and D, 
Model for MT dynamic instability. C, Since hydrolysis of GTP usually lags behind polymerization of new subunits, the 
growing ends of MTs are rich in subunits in which β-tubulin monomers bind GTP. Such MTs are said to have a ‘GTP 
cap’. Hydrolysis of GTP causes a conformational change that tends to bend the protofilament outward, weakening 
lateral contacts between dimers in adjacent protofilaments. In an intact MT, the GDP-subunits in a protofilament are 
held in straight alignment by numerous lateral bonds to adjacent subunits and by the stability of the GTP cap. D, 
However, if the rate of polymerization decreases relative to the rate of hydrolysis, the GTP cap is lost and the GDP-
subunits can more readily assume their bent conformation. In this situation, the destabilized MTs can undergo 
catastrophic depolymerization, during which subunits are released at a rate that far exceeds both the growth rate 
and the normal rate of subunit loss. Figure taken from Baskin (2000).
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MTs undergo random stages of rapid shortening and slow elongation, along with pauses and 

rescues (Mitchison and Kirschner, 1984; Cassimeris et al., 1988; Cassimeris, 1993). This innate 

dynamic character, termed dynamic instability, allows MTs to rapidly assemble, dissemble, and 

linger for various periods of time. Experiments done in mammalian cells have quantified this 

dynamic behavior by measuring the MT elongation velocity, shortening velocity, catastrophic 

frequency (transition from polymerization to depolymerization), and rescue frequency (transition 

from depolymerization to polymerization) (Mitchison and Kirschner, 1984; Cassimeris et al., 1988; 

Walker et al., 1988; Gelfand and Bershadsky, 1991). These studies, along with data showing that 

MT dynamics is GTP-dependent (Macneal and Purich, 1978), have led to the formation of a GTP cap 

model of MT dynamics (Fig. 1.6) (Mitchison and Kirschner, 1984; Nogales, 1999). This model 

proposes that during MT assembly, GTP-tubulin subunits add to the growing end of the MT but are 

subsequently hydrolyzed to GDP. As a result, the MT body is composed of GDP, which energetically 

favors depolymerization, whereas the MT plus-end has a stable GTP cap. If hydrolysis overtakes the 

addition of GTP-tubulin, the cap is removed and MTs quickly depolymerize. 

In living plant cells, injection of fluorescently-labeled brain tubulin, which incorporates into the plant 

MT array, has allowed kinematic analysis of MT dynamics (Zhang et al., 1990). Specifically, by using 

Fluorescence Recovery After Photobleaching (FRAP, Saxton et al., 1984) in injected cells, 

measurements of interphase MT turnover rate can be made by measuring the length of time it 

takes for a photobleached polymer to recover its fluorescence. Data obtained from these studies 

show that the rate of MT turnover in the spindle of Tradescantia stamen hair cells is similar to that 

of mammalian spindles (31s) and twice as fast as the turnover rates found in the PPB, 

phragmoplast, and interphase cortical array (60-67s) (Hush et al., 1994). Notably, the turnover rate 

in the plant cortical MT array was 3.4 fold higher that mammalian interphase MTs, thus implying 

that plant MTs are more dynamic than animal MTs. Further supporting this data are in vitro 

measurements of plant MT dynamics, which show that although the elongation velocity of plant and 

animal MTs is similar, the shortening velocity of plant MTs is about 10 fold higher and plant MTs 

undergo more catastrophes and exhibit no rescues (Moore et al., 1997). Overall, these differences 

in dynamic behavior have been attributed to sequence divergence between plant and animal tubulin 

(Moore et al., 1997) as well as functional differences between plant and animal MTs (Hush et al., 

1994). 

In vivo studies on individual cortical MTs using green fluorescent protein (GFP) fused to tubulin led 

to new insights on cortical MT behavior in plants (Shaw et al., 2003). Using GFP-tubulin in 

Arabidopsis seedlings, Shaw et al. showed that cortical MTs arise de novo at the cell cortex both in 

absence and in association with existing MTs. The leading (plus-) ends of these MTs exhibited 

polymerization biased dynamic instability and the lagging (minus-) ends were found to 

depolymerize slowly. The net effects of these dynamics were that MTs migrated across the cell 

cortex by a so-called hybrid treadmilling mechanism. Motile MTs were observed to cross over other 

MTs or incorporate into bundles of MTs, which remained dynamic through polymerization and 

depolymerization. They also observed that individual MTs rarely detached from the cell cortex, 
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implying that they are securely fastened to the plasma membrane by linker proteins. However, in 

rare cases single MTs detached at their leading end from the cortex, resulting in complete 

depolymerization or re-association accompanied with a reorientation of the MTs. This implies that 

attachment of MTs to cell cortex may be important for array organization. 

In recent studies, MT-associated proteins (MAP) have been adopted to study the behavior of MTs. 

Donukshe and Gadella (2003) used yellow fluorescent protein (YFP) fused to the mammalian plus-

end tracking MAP CLIP-170 to track MT dynamics in transfected cowpea protoplasts and stably 

transformed tobacco cells. They found that PPB MTs were shorter and more dynamic compared to 

interphase MTs. Using MAP4 fused to GFP in Bright Yellow-2 cells (BY-2), Vos et al. (2004) 

confirmed that dynamic instability of MTs increased during PPB formation, however, they argued 

that MTs possibly become longer at this stage. This discrepancy might be explained by the fact that 

the two studies used different MAPs that might interfere differentially with MT stability. Indeed, a 

recent study on cortical MTs in BY-2 cells showed that MT dynamics differ depending on the MAP 

used to track the MTs. Here, MT polymerization and depolymerization rates differed between 

experiments using AtMAP65, MAP4 and EB1 GFP tagged fusions, reflecting stabilizing or 

destabilizing character of the particular MAP (Van Damme et al., 2004b). 

 

Building different MT arrays 

 

Throughout the cell cycle, plant cells reorganize their cytoskeleton into different MT arrays. The 

origin of the MTs that construct these arrays is still under debate. In living cells, the highest 

nucleating activity of the nuclear surface is observed in G2 phase. At that time, the PPB forms and 

the bipolar spindle progressively assembles around the nucleus. In telophase, when sister nuclei are 

reconstructed, a dramatic nucleation of MTs occurs on their nuclear surface and takes part in 

phragmoplast formation and later in the construction of the cortical array (Schmit, 2002). These 

data suggest that the nuclear surface generates the MTs that will constitute the different MT arrays 

after translocation of individual MTs. This is supported by studies done in BY-2 protoplasts. Here, 

MT stabilization by taxol did not prevent MT reorganization during cell wall regeneration, and 

therefore, it was inferred that MT reorganization occurs by the translocation of intact MT polymers 

(Wymer et al., 1996).  

However, indications for MT nucleation within the different MT arrays exist. Fluorescent tubulin 

incorporation in the cortical array (Cyr and Palevitz, 1995) and the co-distribution of γ-tubulin and 

Spc98p in the cell cortex suggests that γ-tubulin complexes are recruited close to the cell 

membrane, where they may act as nucleation sites (Erhardt et al., 2002). Using a marker for MT 

plus- and minus-ends, Chan et al. (2003) were able to affirm that MT nucleation occurs 

simultaneously at numerous sites in the plant cortex, supporting the hypothesis of multiple 

nucleation sites in plants. Furthermore, Panteris et al. (1995) showed that taxol, which impedes MT 

turnover, prevents PPB formation in wheat roots and studies done in Tradescantia, show that the 

PPB predominantly arises from new MT assembly (Cleary et al., 1992; Panteris et al., 1995). 
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Microinjection (Hush et al., 1994) or incorporation of exogenous tubulin in phragmoplasts (Vantard 

et al., 1990) shows an intense MT assembly in the equatorial region, which increases during lateral 

expansion of the phragmoplast, suggesting the existence of phragmoplast-located MTCC in plants. 

The localization of γ-tubulin and Spc98p at plant kinetochores (Binarova et al., 1998) also indicates 

that the spindle does not only originate from a reorganization of perinuclear MTs during prophase, 

but also by de novo assembly at kinetochore MTCCs. 

 

MT regulation 

 

To form complex MT arrays, cells must regulate whether a MT elongates, shortens or maintains a 

steady-state. The mechanism guiding this regulation could come from within the structure of the 

MT polymer itself. In most eukaryotic cells, a variety of α- and β-tubulin isoforms are present in the 

cytosol, and it is hypothesized that cells selectively utilize specific isoforms to regulate MT dynamics 

(Joshi and Cleveland, 1989). Biochemical data support this idea by showing that the various 

isotypes have different dynamic behaviors (Rothwell et al., 1986; Savage et al., 1989). In particular, 

the Arabidopsis plant genome consists of six α- and nine β-tubulins (Kopczak et al., 1992), 

therefore plants, like other eukaryotic cells, could incorporate various isoforms into the MT polymer 

to regulate dynamics (Eun and Wick, 1998). 

MT dynamics might also be regulated by post-translational modification of the α- and β-tubulin 

heterodimers. Tubulins can be detyrosinated/tyrosinated (Barra et al., 1973), acetylated (Piperno et 

al., 1987), glutamated (Edde et al., 1990) and phosphorylated (Lockerbie et al., 1989). These post-

translational modifications, which mainly occur on the C-terminal site of the β-tubulin dimer, could 

alter MT dynamics by regulating tubulins interactions with MAPs (Kierszenbaum, 2002). 

Soluble, unpolymerized tubulin by itself has the ability to assemble onto, or disassemble from a MT. 

A group of auxiliary proteins, termed MAPs, give MTs their biochemical diversity by influencing MT 

dynamicity. MAPs can be divided into two classes- structural MAPs and mechanochemical MAPs. 

Structural MAPs bind to MTs and affect MT organization by stabilizing, destabilizing, cross-linking 

and anchoring MTs (Chapin and Bulinski, 1992; Lee, 1993; Wick, 2000; Wasteneys, 2002). 

Alternatively, mechanochemical MAPs generate force along the MT that propels the MAP, as well as 

any cargo it may carry, forward. These MAPs have been implicated in intracellular transport, MT 

organization and MT dynamics. 

 

Structural MAPs 

 

The initiation, stabilization, cross-linking, anchoring and removal of MTs is mediated by structural 

MAPs. The identity of these MAPs remained elusive for some time in plant cells despite evidence for 

their presence in early electron micrographs (Hardham and Gunning, 1978). Extracting and 

identifying MAPs is hindered by the recalcitrance of plant material to biochemical approaches. 

Whereas MAPs are relatively easy to purify from brain tissue that is teeming with MTs, plant tissues 
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have modest concentrations of tubulins. Plant cells are usually cytoplasm-poor, most cell volume 

being occupied by vacuoles, whose rupture releases proteolytic enzymes that hamper purification 

strategies. Homology searches for plant structural MAPs were at first largely unsuccessful, although 

some candidates, isolated by MT affinity, cross-reacted with antibodies to the animal MAPs tau 

(Vantard et al., 1991) and MAP4 (Maekawa et al., 1990), which are probably one of the best 

documented MAPs in animals (Mandelkow and Mandelkow, 1995). 

Problems encountered with biochemical isolation of plant MAPs were overcome by Cyr and Palevitz 

(1989), who isolated several carrot polypeptides that bound taxol stabilized neuronal MTs. Later, 

Jiang and Sonobe (1993) made protoplasts from tobacco BY-2 suspension culture cells and 

removed the vacuoles to generate ‘miniprotoplasts’. Cycling of MTs from these preparations through 

multiple rounds of MT assembly/disassembly led to the identification of the MAP65, a plant specific 

MAP family of 3 or 4 electrophoretically separable proteins all around 65 kDA in size. Later, 

immunological equivalents of the tobacco MAP65 family were found in cytoskeletal preparations 

from carrot suspension cells (Chan et al., 1996) and a complete Arabidopsis family of nine MAP65 

proteins (AtMAP65-1 to AtMAP65-9) was discovered in the Arabidopsis genome sequence (Hussey 

et al., 2002). MAP65 from tobacco, carrot and the members of the Arabidopsis MAP65 family have 

been expressed in bacteria and shown to bind and bundle plant MTs (Fig.1.7) (Smertenko et al., 

2000; Hussey et al., 2002; Smertenko et al., 2004). However, not all MAP65 proteins show bundling 

in vitro, like the tobacco NtMAP65-1a and NtMAP65-1b that were shown to respectively enhance MT 

polymerization or protect MTs from cold-induced depolymerization (Wicker-Planquart et al., 2004). 

A role in MT stabilization has also been suggested for AtMAP65-1 and -5 (Van Damme et al., 

2004b). As GFP-fusions, these MAPs only associated to co-aligned MTs in elongated BY-2 cells. 

Moreover, AtMAP65-1 and -5 labeled MTs were protected against MT destabilizing drugs and 

displayed reduced depolymerization.  

 

 

   

 

 

 

 

Figure 1.7 Function and differential localization of MAP65 family members. A, 
Longitudinal and B, transverse electron micrograph sections of MTs cross-linked in vitro by purified carrot 
MAP65. MAP65 can be seen as the evenly spaced filamentous cross-bridges. Image taken from Sedbrook 
(2004). C-F, Differential localization of AtMAP65-1 (C), AtMAP65-3 (D), AtMAP65-5 (E) and AtMAP65-8 (F) at 
the phragmoplast MTs. Images taken from Van Damme et al. (2004a). 
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Different members of the MAP65 family have been localized at the subcellular level (Smertenko et 

al., 2000; Muller et al., 2004; Van Damme et al., 2004b; Van Damme et al., 2004a). Although they 

all label MTs, they associate differential to plant MT arrays, indicating that different MAPs have 

different MT-binding activities and are differentially regulated (Fig. 1.7). For instance, a destruction 

box (short sequence present in cell cycle regulated proteins that targets proteins to the ubiquitin 

degradation pathway (Juang et al., 1997) is present in AtMAP65-4, which displays a mitotic specific 

expression during cell cycle.  Accordantly, AtMAP65-4-GFP only labels MTs of the spindle. On the 

other hand, AtMAP65-1 and -5, which are selectively targeted to distinct mitotic configurations, are 

expressed throughout the cell cycle, indicating that MT binding is differentially controlled 

throughout the cell cycle, probably through posttranslational modification (Van Damme et al., 

2004b). The importance of MAP65 proteins in MT organization and cell division is illustrated by the 

mutant pleiade. Pleiade was identified as AtMAP65-3 and has a C-terminal truncation abolishing MT 

binding. This mutant has distorted phragmoplasts and accordantly, cytokinesis is disrupted, leading 

to multinucleated cells and incomplete cell walls (Muller et al., 2004). 

Another well characterized MAP is MOR1, which is the Arabidopsis homologue of Xenopus XMAP215 

(Tournebize et al., 2000; Whittington et al., 2001). XMAP215 as stabilizing factor, and the 

destabilizing factor XKCM1 (a MCAK/Kinesin-13 motor protein) have been shown to regulate MT 

dynamics in Xenopus extracts (Vasquez et al., 1994; Walczak et al., 1996). The sequence of 

XMAP215 contains a CDK phosphorylation site and phosphorylation of the CDK1 site inhibits the 

ability of XMAP215 to promote polymerization of pure tubulin (Vasquez et al., 1999).  Based on 

these data, a model was proposed for XMAP215/XKCM1 controlled regulation of MT dynamics 

during cell cycle. During interphase, XMAP215 is unphosphorylated and its activity predominates 

over that of XKCM1 leading to long MTs. In mitosis, CDK1 activity is high and XMAP215 is 

hyperphosphorylated, its activity reduced and the activity of XKMC1 predominates leading to short 

MTs. In Arabidopsis, mutations in the MOR1 gene lead to severely stunted plants, with radial 

swollen and left-handed twisted organs (Whittington et al., 2001). MTs in the cortical array are 

disorganized and abnormally shortened. MCAK/Kinesin-13 members are present in the Arabidopsis 

genome and AtMOR1 contains a CDK phosphorylation site. Possibly, MOR1 regulates MT dynamics 

in plants in a similar way as in Xenopus (Hussey and Hawkins, 2001). In Arabidopsis, MOR1 

localizes to the cortical array during interphase and in addition, to the midline of spindle and 

phragmoplast. Another mutant gem1, which is allelic to mor1, affects cytokinesis in pollen mitosis I, 

leading to binucleate pollen. This indicates that MOR1/GEM1, like in animal cells, also functions 

during cell division during which it might stabilize the growing ends at the phragmoplast midline 

(Twell et al., 2002). 

A distinct class of MAPs in animals have been called the ‘plus-end-tracking proteins’ or +TIPs 

(Schuyler and Pellman, 2001). They mark the growing plus-ends of MTs and thus give the 

appearance of tracking. To this class belong the interacting proteins EB1 and CLIP170 subfamilies 

which are conserved in animal and yeast. Although Clip170 is absent in plants, it has been used as 

a marker to study MT dynamics in plants (Dhonukshe and Gadella, 2003). Arabidopsis contains 3 
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isoforms of EB1. AtEB1a has been shown to localize to the growing plus-ends of cortical MTs, but 

also marks the minus-end as a site from which MTs can grow and shrink (Chan et al., 2003). In 

contrast, MT minus-end labeling was not observed by Mathur et al. (2003). They found that GFP-

AtEB1a associated to motile membrane networks, which resembles the behavior of CLIP170 in 

animal cells (Pierre et al., 1992). In addition, GFP-AtEB1a was present on the growing plus-ends of 

MTs, from which it disappeared upon MT shrinking, as observed for animal EB1 (Tirnauer et al., 

2002). However, AtEB1a associated to already stabilized MTs, whereas EB1 proteins in animal cells 

and yeast are shown to induce MT stabilization (Mimori-Kiyosue et al., 2000; Tirnauer et al., 2002). 

Another MT plus-end tracking protein is the plant-specific SPIRAL1 (SPR1) (Nakajima et al., 2004; 

Sedbrook et al., 2004). SPR1 may not be a traditional MAP because it does not co-purify in vitro 

with taxol stabilized MTs. However, SPR1 GFP fusions label all four MT arrays with preferential MT 

plus-end labeling in the cortical array. Plus-end label occurred as MTs were growing, but vanished 

upon depolymerization, comparable to the EB1 proteins. Mutations in SPR1 caused axial twisting of 

roots and etiolated hypocotyls as well as reduced anisotropic growth in endodermal and cortical 

cells. Organ twisting and anisotropic growth has been observed in mutants affected in specific 

MAPs. The secondary structure of the 12 kDa SPR1 protein suggests that it might be a structural 

protein that links other proteins, like for instance traditional MAPs. 

 

  

 

 

 

 

 

 

 

Among the many actions of MAPs, is MT severing by katanins. In animal cells, katanins form 

heterodimers, consisting of a catalytic p60 and a regulatory p80 subunit. They sever MTs from the 

Figure 1.8 Katanin function and mutant phenotype. A, Time-lapse video microscopy of 
fluorescent taxol-stabilized MTs. After addition of the katanin p60 subunit and ATP, the MTs are 
fragmented. Bar = 5µm. B, katanin mutant bot1-1 allelic plants (right) are stunted compared to wild type 
plants (left). C and D, Confocal image of a transverse section of a wild type (C) and the katanin mutant 
bot1-1 (D), showing isodiametrically swollen cells in roots. E and F, Cortical MTs in elongating cells of 
roots of bot1-1 plants (F) are less transverse than in wild type plants (E). As a result, cells are shorter. 
Bar = 20 µm. Images taken from Bichet et al. (2001). 
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centrosome, thereby regulating spindle MT dynamics and/or restricting MT lengths (McNally and 

Thomas, 1998; McNally et al., 2000). Katanin p60 and p80 subunits are both present in Arabidopsis 

and were shown to interact in a yeast two-hybrid screen (McClinton et al., 2001; Bouquin et al., 

2003). In addition, the p60 subunit severs MTs in vitro (Fig. 1.8) (Stoppin-Mellet et al., 2002, 

2003). Mutants in the p60 subunit have been characterized as smaller plants with defects in cell 

elongation (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003). 

Accordantly, katanin mutants exhibit a delayed transition from the perinuclear array to a transverse 

orientation after cell division, resulting in isodiametric swollen cells. 

 

Mechanochemical MAPs 

 

Mechanochemical MAPs also called motor proteins, posses the special capability to convert chemical 

energy in the form of ATP into force and movement. During these movements, motor proteins 

transport different kinds of cargo such as vesicles, organelles, chromosomes or other MT polymers. 

Mechanochemical MAPs are divided in two superfamilies: kinesins and dyneins. Dynein was first 

discovered in cilia and flagella as a high molecular weight protein with ATPase activity (Gibbons, 

1963; Gibbons and Rowe, 1965). Cytoplasmic dynein acts as a MT dependent, minus-end directed 

motor and functions in ciliary/flagellar beating, vesicular transport, spindle assembly and 

chromosome movement. It is activated by dynactin that is believed to couple dynein to its cargos. 

The dynein superfamily has not evolutionarily diverged and the yeast genome consist of only 1 

dynein, Drosophila 1-2, mammals 3-5 (Goldstein, 2001) and no dynein homologs exist in 

Arabidopsis (Lawrence et al., 2001). In contrast, kinesins, which were originally isolated from squid 

axoplasm due to their ability to bind MTs in an ATP-dependent manner (Brady, 1985; Vale et al., 

1985), are evolutionary and functionally divergent (Goldstein, 2001). Kinesins share sequence 

homology in a conserved region of about 340 amino acids within the motor domain (Bloom and 

Endow, 1994). The conserved motor domain, with highly diverged non-motor flanking regions, is 

consistent with an evolutionary model in which the ancestral motor function is retained by all 

kinesins, but a variety of more derived functions have evolved outside this region. 

 

 

   
 

 

 

 

 

Figure 1.9 Structure of conventional kinesin. Conventional kinesin is a homodimeric 
motor protein. The motor heads bind to the MT and ATP. Each head is connected to a flexible neck 
that enables motor stepping. The neck is connected to a long coiled-coil stalk that holds two heads 
together. At the end of the stalk, kinesin has a cargo-binding domain, called the tail domain. 
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The kinesin superfamily 

 

Kinesins occur in a variety of quaternary structures, depending on the subfamily. Although some 

kinesins operate as monomers, many form homo- or heterodimers, heterotrimers or bipolar 

homotetramers (Reilein et al., 2001). Conventional kinesin consists of two heavy chains and two 

light chains (Vale et al., 1985). Within most kinesin heavy chains are four domains arranged in a 

modular fashion; the motor domain, neck, stalk and tail (Fig. 1.9). Each domain of the kinesin 

heavy chain has a defined function. The motor (frequently called the head domain) binds MTs in a 

ATP dependent manner (Scholey et al., 1989; Yang et al., 1989; Yang et al., 1990). Together with 

the neck region that attaches the motor domain to the rest of the protein, it is required for kinesin 

movement (Case et al., 2000). Kinesin stalks are comprised of α-helical coiled-coils and are highly 

variable in both sequence and length. In some kinesins, a terminal portion of the stalk is referred to 

as the tail. It is this tail domain which interacts with the two light chains or other kinesin-associated 

proteins (KAP) to bind the cargo that a particular kinesin carries (Reddy, 2001). 

Budding yeast has 6 kinesins, humans have 45 kinesins (Miki et al., 2001), C. elegans and 

Drosophila 20-25 (Goldstein, 2001), mice 30 (Miki et al., 2001) and over 60 kinesins are present in 

Arabidopsis (Reddy and Day, 2001). Several kinesin family trees have been generated in the past, 

based upon sequence similarity among the various kinesins in their motor domains (Moore and 

Endow, 1996; Kim and Endow, 2000; Reddy and Day, 2001; Lawrence et al., 2002; Dagenbach and 

Endow, 2004). These include nine basic kinesin subfamilies together with several unclassified 

kinesins. Recently, a standardized nomenclature has been proposed that unifies all previous 

phylogenies and nomenclature proposals and that allocates unclassified kinesins to defined groups 

(Lawrence et al., 2004). This nomenclature identifies 14 recognized kinesin groups, each with 

unique structural and functional characteristics. 

 

Kinesin directionality 

 

A property intrinsic to molecular motors is their abilitiy to move unidirectionally along cytoskeletal 

filaments. Motor domains can be positioned either N-terminal, C-terminal or internal to the 

polypeptide chain (Vale and Fletterick, 1997). To date, all studies regarding kinesin movement have 

shown that kinesins with an N-terminal motor domain move towards the plus-end of MTs, while 

kinesins with a C-terminal motor are minus-end directed (Higuchi and Endow, 2002). This suggests 

that domain organization, particularly the position of the motor domain, is important for polarity of 

force generation. Indeed, replacement of the motor domain of a plus-end motor (conventional 

kinesin) with the motor domain of a minus-end directed kinesin (Ncd) did not change the 

directionality of the chimeric kinesin (Higuchi and Endow, 2002), also suggesting that the other 

determinants of directionality lie in the neck outside the motor domain (Case et al., 1997). This 

neck domain is located N-terminal to the motor domain in minus-end directed kinesins, and is 

situated C-terminal to the motor domain in plus-end directed kinesins (Vale and Fletterick, 1997). 
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Moreover, neck sequences are conserved within the N- and C-terminal kinesins and Endow and 

Wagilora (1998) determined that the GN residues at the neck/motor core junction are necessary for 

minus-end directed movement. In addition, there is also a difference at the structural level. 

Whereas plus-end kinesins have neck domains consisting of a coiled-coil and a β-sheet, the latter 

called neck linker, minus-end kinesins do not have a neck linker (Higuchi and Endow, 2002). In 

Arabidopsis, 21 out of the 61 kinesins belong to the C-terminal/Kinesin-14 subfamily and minus-end 

directed movement has been demonstrated in vitro for three members of this subfamily (Song et 

al., 1997; Marcus et al., 2002; Ambrose et al., 2005). It is remarkable that structurally, 11 members 

of the Arabidopsis C-terminal subfamily have internal motor domains and five have N-terminal 

motor domains (Reddy and Day, 2001). Although the directionality of these structurally divergent 

kinesins remains to be determined experimentally, all kinesins belonging to this subfamily have a 

typical neck for minus-end kinesins (including the GN residues) that is located N-terminally to the 

motor domain. Thus it seems that the position of the neck relative to the motor domain is the main 

determinant for directionality.  

Despite the differences in neck structure and sequence, analysis of chimeric motors implicates both 

the conventional kinesin and Ncd stalk/neck in determination of motor directionality. Fusing the 

conventional kinesin stalk/neck, including the neck linker, to the motor core of the minus-end 

directed kinesin Ncd resulted in a plus-end directed chimeric motor (Case et al., 1997; Henningsen 

et al., 1997), whereas fusing the Ncd stalk/neck to the motor core of plus-end kinesin resulted in 

minus-end directed chimeric motor (Endow and Waligora, 1998).  

How does the stalk/neck region determine directionality? Single motor laser trap assays show that a 

conformation or angle change of the stalk/neck region relative to the motor domain occurs when 

Ncd binds to the MT. In wild type Ncd motors, the final stalk/neck position is biased to the minus-

end. Ncd mutants with point mutations in the stalk/neck region reveal a bi-directional movement, 

and the stalk/neck position is not biased to the minus-end, but appears to be ad random (Endow 

and Higuchi, 2000). Thus, it comes out that the directionality of minus-end motors is due to the 

position of the stalk/neck region relative to the motor domain. In plus-end motors, the neck linker 

undergoes nucleotide-dependent conformational changes, thereby causing the neck linker to be 

docked pointing towards the plus end of MTs. This conformation mediates plus-end directed 

movement by pulling the other head forward. Thus plus-end directed motors cannot orient towards 

the minus-end, thereby making plus-end directionality the default mode (Endow, 1999). 

 

Kinesin processivity 

 

One molecule of ATP provides kinesin with the energy to take 8 nm steps between adjacent tubulin 

dimers (Coy et al., 1999). Some kinesins step processively and hydrolyze hundreds of ATP 

molecules without disassociating from the MT (Howard et al., 1989; Block et al., 1990). To do this, 

it is predicted that the two kinesin heads act in a coordinated manner, such that the binding and 

hydrolysis of ATP by one head, promotes ADP release in the other head (Lohman et al., 1998). 
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Thus, in this hand-over-hand model of kinesin movement, there is an alternation of head catalysis, 

whereby at least one head always remains bound to the MT substrate, preventing the disassociation 

of the kinesin from the MT in between steps (Block et al., 1990; Schnapp et al., 1990; Hackney, 

1994). 

For this model to hold true, a transient two-heads-bound state must exist. This has been seen in a 

structurally similar actin-binding motor protein, myosin (Walker et al., 2000). Cryoelectron 

micrograph reconstructions of a two-heads bound state for kinesins have not been reproducible 

(Hoenger et al., 2000). Nonetheless, support for this model comes from data obtained using single-

headed kinesins, most of which cannot retain attached to the MT for long distances (Berliner et al., 

1995; Hancock and Howard, 1998; Higuchi and Endow, 2002). This implies that two heads are 

required for processive movement and is therefore consistent with the hand over hand model for 

kinesin movement. 

The simplest example of the hand-over-hand model is a ‘symmetric model’, meaning that the motor 

reverts to exactly the same 3D conformation after each step (Howard, 1996). This would enable 

each head to repeat the ATPase cycle starting from the same physical condition and to create 

identical steps. However, it also implies that the stalk rotates 180° every step. Because the tail 

region is fixed when attached to cargo, rotation along one direction would overwind the stalk and 

prevent the kinesin from walking after several steps. To test the rotation of the stalk, tail regions of 

kinesin motors were fixed on a glass surface (Hua et al., 2002). When a single kinesin translates 

the MT, the torsion would rotate the MT instead of twisting the stalk. MTs did not show 180° 

rotation and a new mechanism was proposed as the ‘inchworm model’. This model suggests that 

only one head is catalytically active. One head always leads and the other head follows. However, 

motility assays and fluorescence imaging with one-nanometer accuracy (FIONA) experiments 

rejected the inchworm model and the results directly showed that kinesin walks in a hand-over-

hand manner (Asbury et al., 2003; Kaseda et al., 2003; Yildiz et al., 2003). 

To avoid twisting of the stalk in the symmetric hand-over-hand model, Hoenger et al (2000) 

proposed an asymmetric model. It suggests that the trailing head can move forward alternately 

from the right and the left side of the stalk, without stalk rotation. In other words, the kinesin 

moves in much the same way as humans walk. 

Notably, some two headed kinesins are non-processive and disassociate from the MT without taking 

successive steps. Biochemical data obtained with one non-processive motor, Ncd, show that it 

releases its bound head from the MT before binding its second head, and therefore, diffuses away 

from the MT after one step (Pechatnikova and Taylor, 1999; Mackey and Gilbert, 2000). Though it 

would seem that non-processive motors are functionally inefficient, they are predicted to generate a 

productive movement by working cooperatively (Howard, 1997). Motility data shows that the non-

processive kinesin, Ncd, requires at least four kinesin molecules bound to the MT to generate a 

continuous force on the MT (deCastro et al., 1999). The mechanism by which non-processive 

kinesins orchestrate these cooperative movements is not known, however, it is hypothesized that a 
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second motor must bind to the MT before the first motor releases to generate a continuous force 

(Endow and Higuchi, 2000). 

In order for all kinesins to exhibit motility they must be able to translate the chemical energy stored 

in ATP into mechanical energy. Studies investigating the crystal structure of plus-end directed 

conventional kinesins propose that two structural elements, switch I and II, which flank the 

nucleotide binding sites, are critical to this process (Vale and Milligan, 2000; Schliwa and Woehlke, 

2001). These regions are thought to act as relays and transfer ATP hydrolysis information to the 

rest of the kinesin molecule. In particular, it is thought that a subdomain of the kinesin head, 

termed the switch II cluster, transduces the energy into a conformational change that increases its 

length and rotates it 20° relative to the kinesin molecule (Kikkawa et al., 2001). These 

reconfigurations are subsequently translated to the neck linker region (a 15 amino acid stretch 

found within the kinesin neck region), which becomes docked onto the motor domain and acts as a 

mechanical amplifier to drive the kinesin forward (Rice et al., 1999; Case et al., 2000). Notably, this 

scheme of events is only true for plus-end directed motors, because minus-end motors lack a neck 

linker region. As stated previously, the basis of minus-end directed movement is thought to lie in 

the position of the neck/stalk region relative to the motor domain (Endow and Higuchi, 2000). 

 

Kinesin function 

 

The first kinesin, conventional kinesin, was identified in squid giant axons as a protein involved in 

transport of vesicles (Vale et al., 1985). Since then, many more kinesins were identified and their 

roles in intracellular transport expanded. To date, kinesins have been shown to transport a 

multitude of cellular elements including: lysosomes (Hollenbeck and Swanson, 1990), melanosomes 

(Rogers et al., 1997), vesicles (Hall and Hedgecock, 1991), mitochondria (Tanaka et al., 1998), 

cargo bearing rafts (Cole et al., 1998) and possibly RNA (Carson et al., 1998). In addition, kinesins 

are also involved in various aspects of mitotic and meiotic spindle assembly and maintenance, and 

are proposed to generate sufficient force to assemble and maintain spindles as well as drive 

chromosome movement to and from the spindle equator (Sharp et al., 2000b; Scholey et al., 2003; 

Kline-Smith and Walczak, 2004). 

In animals, the mechanisms by which kinesins operate in mitotic spindle functioning are well 

understood. It appears that mitotic motors use at least three distinct mechanisms: (1) cross-

bridging and sliding MTs relative to adjacent MTs (2) transporting specific mitotic cargoes along the 

spindle MTs and (3) regulating MT assembly dynamics and coupling movement to MT growth and 

shrinkage. In addition, analysis of the functional inter-relationships between multiple mitotic motors 

have revealed that specific mitotic movements are not driven by individual motors but, instead, 

result from shifts in a dynamic balance of complementary and antagonistic forces generated by 

multiple motors functioning co-operatively. Below, examples are given from the animal field of how 

different kinesins from the same or different subfamilies cooperate to control functioning of the 

mitotic spindle and chromosome movement (Sharp et al., 2000a). 
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At the start of mitosis, a spindle is formed around the still intact nucleus. This involves the 

establishment of a bipolar array with MT plus-ends overlapping at the centre and the organization 

of the MT minus-ends into spindle poles that are separated along with the duplicated centrosomes 

towards opposing sides of the nucleus. Cytoplasmic dynein focuses MT minus-ends by forming a 

multi-protein complex with dynactin to transport the MT cross-linking protein NuMA to the spindle 

poles (Merdes et al., 2000). In addition, the minus-end directed kinesin Ncd (C-terminal/Kinesin-14 

subfamily) cross-links MTs in vitro and localizes to spindle poles during mitosis (Endow and Komma, 

1996). Mutants of this motor have multipolar spindles with broad or splayed poles, indicating that 

Ncd functions cooperatively with dynein to organize spindle poles (Hatsumi and Endow, 1992).  

In Drosophila, these motors collaborate along with KLP61F to establish the bipolar spindle (Sharp et 

al., 2000a). KLP61F belongs to the BimC/Kinesin-5 subfamily of plus-end directed motors that form 

bipolar homotetramers, with two motor domains positioned at opposite ends of a central stalk. At 

the central spindle, these motors bind, cross-link and slide antiparallel MTs, thereby generating 

poleward-directed forces. In this way, they organize MTs of opposite polarity into a bipolar structure 

and push spindle poles apart during mitosis (Sharp et al., 2000a). This is supported by studies 

showing that when KLP61F or other BimC kinesins are mutated, spindles are monopolar and 

collapse inwards (Saunders and Hoyt, 1992; O'Connell et al., 1993; Blangy et al., 1995). Spindle 

pole separation by KLP61F is reinforced by dynein that pulls on spindle poles via astral MTs, but 

counterbalanced by Ncd (Fig. 1.10) (Sharp et al., 2000a). In addition to a spindle pole association, 

Ncd also localizes to the interpolar MTs (Endow and Komma, 1996). As this kinesin moves towards 

the minus-end of MTs, it pulls spindle poles together thus providing opposite forces to the plus-end 

directed BimC kinesins. The idea that a balance of forces from BimC and minus-end directed 

kinesins is important for spindle functioning is supported by data showing that mutations in minus-

end directed kinesins, such as Ncd, can suppress the monopolar spindle phenotype of BimC 

mutants (such as KLP61F) (Wilson et al., 2004). Similar results were obtained in yeast and fungi 

(Saunders and Hoyt, 1992; O'Connell et al., 1993), suggesting that this mechanism is conserved 

among eukaryotes. In addition, it is noteworthy that during anaphase, Ncd appears to have no 

effect on spindle pole movements, suggesting that its activity is down-regulated at this time, 

allowing dynein and KLP61F to drive spindle elongation during anaphase B (Sharp et al., 2000a).  

During metaphase, paired chromosomes oscillate until they are aligned at the metaphase plate with 

sister chromatids attached to opposite poles. A specialized subfamily of kinesins, the MCAK/Kinesin-

13 subfamily, have internal motor domains and contribute to various aspects of chromosome 

movement (reviewed in Moore and Wordeman, 2004). Remarkably, these motors do not move 

along MTs as other kinesins do, but instead destabilize MTs at their plus- or minus-ends (Desai et 

al., 1999). Members of this subfamily, among which the mammalian MCAK, are enriched on 

centrosomes, centromeres and the spindle midzone during mitosis. Accordantly, they are involved 

in bipolar spindle formation, correcting improper kinetochore-MT attachments before anaphase, 

suppressing the oscillating behavior of chromatids once they have aligned at the metaphase plate 

and the segregation of chromosomes towards their respective poles. A nice example of functional 
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cooperation is illustrated by two members of this subfamily in Drosophila (Rogers et al., 2004). One 

of them, KLP59C, localizes to the centromeric regions of chromosomes during anaphase and is 

required to depolymerize kinetochore MTs at their plus-ends. This allows chromatids to move 

towards the pole by ‘chewing up’ MTs tracks, a mechanism called the ‘Pac-Man’ model (Fig. 1.10). 

Contrary, KLP10A labels the spindle poles during anaphase and is required to depolymerize MTs at 

their minus ends. In this ‘pole ward flux’ model, chromatids are pulled towards the poles through 

depolymerization at the minus-ends (Fig. 1.10). 

Another kinetochore-associated kinesin is CENP-E. This motor is required for stability of 

kinetochore-MT attachments during chromosome congression and segregation. Accordantly, 

depletion of CENP-E results in unaligned chromosomes during mitosis and missegregation due to a 

reduced kinetochore MT binding at aligned and unaligned chromosomes (Schaar et al., 1997; 

McEwen et al., 2001; Tanudji et al., 2004). It is hypothesized that CENP-E uses its plus-end directed 

transport properties in two ways; to transport kinetochores toward the plus-ends through 

metaphase and subsequently anchor kinetochores to the plus-ends of MTs that are depolymerized 

through the action of depolymerizing kinesins as MCAK during anaphase (Sharp et al., 2000b). 

Another subfamily of kinesins involved in chromosome movement is the chromokinesin/Kinesin-4 

subfamily, which contain MT- and DNA-binding domains and localize to the chromosome arms. 

These kinesins are thought to push chromosomes away from spindle poles, thus creating polar-

ejection forces (Fig. 1.10) (Mountain and Compton, 2000). 

In animal cells, cytokinesis does not involve the formation of a MT-based phragmoplast that 

laterally expands simultaneously guiding vesicle trafficking to the midline for cell plate construction. 

Instead, an actomyosin ring is formed at the division plane that constricts the cell resulting in the 

partitioning of the cytoplasm. Ingression continues until the contractile ring compresses the central 

spindle into a compact midbody. It is proposed that midbody MTs serve as tracks for motor-

mediated transport of Golgi derived vesicles and signaling molecules to the furrow during cell-cell 

abscission (Finger and White, 2002; Shuster and Burgess, 2002). Such a motor function has been 

suggested for the kinesin Rab6-KIFL, which functions in membrane traffic within the Golgi 

apparatus during interphase. Introduction of anti-Rab6-KIFL antibodies into dividing cells blocks 

cytokinesis, suggesting that this motor is involved in transporting Golgi-derived vesicles during 

cytokinesis in animal cells (Echard et al., 1998; Hill et al., 2000). Two other kinesins, Boursin (a 

BimC kinesin) and Pavarotti (also called MKLP1, CHO1 and ZEN4) are essential for the completion of 

cytokinesis. These motors are crucial in organizing the arrays of anti-parallel MTs that form the 

compressed central spindle during cytokinesis (Glotzer, 2001; Touitou et al., 2001). 
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Figure 1.10 Diverse activities of motors in the spindle. A, Plus- (red) and minus-end 
(yellow) directed cross-linking motors that increase or decrease the overlap of antiparallel MTs determine 
spindle pole separation. Cytoplasmic dynein (dark green) in the cortex pulls on astral MTs or focus MT 
minus-ends into poles. Chromokinesins (light green) push chromosomes away from the spindle poles. B, 
Pac-Man model. Dynein (green) helps in the delivery of MTs to depolymerizing kinesins (purple) by 
moving MTs with their plus-ends leading. The plus-end directed motor CENP-E (light blue) assures the 
attachment of the MT with the kinetochore. C, Pole-ward flux model. Minus-end directed movement of 
MTs driven by the flux motor Eg5 (red) is coordinated with minus-end depolymerization by a 
depolymerizing kinesin (purple). Figure taken from Gadde and Heald (2004). 
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Plant kinesins 

 

Like in animal cells, plant kinesins have been found that function in mitosis and cytokinesis, 

although the information is less elaborate compared to the animal field. In cells of higher plants 

which do not have centrosomes, bipolar spindle formation does not involve the separation of 

spindle poles, but requires the premitotic organization of a perinuclear bipolar array of MTs (Wick 

and Duniec, 1983). The tobacco TKRP125 kinesin belongs to the BimC/Kinesin-5 subfamily (Asada 

et al., 1997). It localizes to the perinuclear bipolar MTs at prophase and at the spindle MTs during 

metaphase with enrichment at the midzone. These data suggest that TKRP125, like BimC kinesins 

in animals and yeast, binds and slides anti-parallel MTs in the spindle midzone to establish the 

bipolar spindle structure. In addition, it localizes to the anaphase spindle mainly at the midzone, 

indicating that sliding of anti-parallel MTs by TKRP125 during anaphase B might result in spindle 

elongation. Homologues of this protein are present in carrot and Arabidopsis (Barroso et al., 2000; 

Liu and Lee, 2001). The latter contains four BimC/Kinesin-5 kinesins, which might explain why 

molecular genetic approaches supporting the proposed function for TKRP125 homologues have not 

yet been reported. 

Minus-end directed kinesins counterbalance the outward force of BimC kinesins to construct a 

bipolar spindle. The Arabidopsis kinesins ATK1/2/3 and ATK5 (C-terminal/Kinesin-14 subfamily) are 

closely related to Ncd from Drosophila (Lee and Liu, 2004). Similar to Ncd, ATK1 behaves as a non-

processive MT minus-end directed motor (Marcus et al., 2002). During mitosis, it concentrates to 

the midzone of the metaphase and anaphase spindle, suggesting that ATK1 works antagonistically 

to BimC-like kinesins, establishing a balance of forces necessary for spindle bipolarity (Liu et al., 

1996). This is supported by mutant atk1-1 plants that are defective in male meiosis. Meiotic 

spindles were abnormally broad with unfocused poles during metaphase I (Chen et al., 2002). 

Defects in spindle pole formation and reduced spindle bipolarity were also observed in somatic cells. 

However by anaphase, spindle abnormalities were rectified resulting in normal somatic cell division 

(Marcus et al., 2003). In animal and yeast, the minus-end directed motors Ncd and Kar3 

respectively, are involved in focusing the minus-end of MTs into spindle poles. As spindle poles in 

both male meiotic and mitotic atk1-1 cells were unfocussed, it is likely that ATK1 is needed to 

organize MTs at the two poles. A function in spindle pole formation has also been proposed for 

ATK5, which is 83% identical (91% similar) to ATK1 (Ambrose et al., 2005). This minus-end 

directed motor localizes to the spindle midzone by a plus-end tracking mechanism that does not 

involve the motor domain. Mitotic spindles in atk5-1 null mutants are abnormally broad with 

unfocussed poles. Perhaps ATK5 cross-links MTs of the same polarity at the midzone and the poles 

of the spindle. The authors also suggested a role for ATK5 in cross-linking interdigitating anti-

parallel MTs to construct a bipolar spindle. However no defects in spindle bipolarity were observed 

in the atk5-1 mutant. 

TKRP125, ATK1 and ATK5 also localize to the phragmoplast MTs during cytokinesis, suggesting that 

the same balance of forces that construct the bipolar spindle is involved in the construction of the 
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bipolar phragmoplast. Using plasma membrane-permeabilized BY-2 cells, Asada et al (1991) 

showed that fluorescein-labeled tubulin, applied together with GTP was incorporated into the 

equatorial region of phragmoplasts and this fluorescent band separated towards the poles when 

labeled tubulin was replaced with unlabeled tubulin. When an antibody raised against TKRP125 was 

added together with GTP, the translocation of phragmoplast MTs reduced in a dose dependent 

manner (Asada et al., 1997). This illustrated that TKRP125 addresses its BimC function to construct 

the bipolar phragmoplast, where it slides anti-parallel MTs apart. In contrast, atk1-1 and atk5-1 

mutants did not reveal any defects in phragmoplast formation and cytokinesis occurred normally in 

mitotic cells suggesting that other minus-end directed kinesins balance the forces of TKRP125 

during cytokinesis. 

Another minus-end directed motor which localizes to the phragmoplast is KCBP (Bowser and Reddy, 

1997; Smirnova et al., 1998). This kinesin is unique in that its motor activity and MT binding is 

inhibited upon Ca2+/calmodulin binding (Deavours et al., 1998). KCBP’s association with anaphase 

spindle poles and minus-ends of phragmoplast MTs suggests that it may be involved in organizing 

MT minus-ends. An antibody was raised against the calmodulin binding domain, which constitutively 

activates the motor activity of KCBP (Vos et al., 2000). Microinjection experiments resulted in the 

formation of aberrant phragmoplasts and delayed the completion of cytokinesis significantly. 

Therefore it was proposed that KCBP’s activity is down-regulated in the phragmoplast by a rise of 

Ca2+ concentration in the phragmoplast region. However, earlier in mitosis, KCBP might be 

activated and contribute to converging MT minus-ends in the spindle poles. 

AtPAKRP1/AtKinesin-12A specifically associates with the plus-end of phragmoplast MTs (Lee and 

Liu, 2000). This localization pattern was dependent on the integrity of the MTs. The homologues 

AtPAKRP1L/AtKinesin-12B behaves similar to AtPAKRP1 (Pan et al., 2004). It is proposed that both 

motors are required to maintain the bipolar structure of the phragmoplast once BimC/Kinesin-5 

motors, like TKRP125 have established bipolarity. AtPAKRP1 bears neck sequences conserved 

among plus-end directed kinesins, suggesting that this motor maintains the integrity of 

phragmoplast MTs by keeping MTs plus-ends in position while new MT segments are added to the 

ends (Liu and Lee, 2001). Such a function would require a second MT binding domain outside the 

motor domain, however, co-sedimentation with MTs only occurred with the motor domain of 

AtPAKRP1 and not with regions outside the motor domain (Lee and Liu, 2000). 

During plant cytokinesis, Golgi-derived vesicles are transported to the phragmoplast midline and 

fuse there to form a cell plate (Verma, 2001). AtPAKRP2 appears in a punctuate pattern along 

phragmoplast MTs and is enriched in the midline (Lee et al., 2001). This localization pattern is 

dependent on both MTs and an intact vesicle trafficking system. In addition, AtPAKRP2 is proposed 

to be a plus-end directed kinesin that follows the centrifugal expansion of the phragmoplast and 

disappears where MTs have depolymerized. AtPAKRP2 is thus a likely motor candidate that 

transports Golgi-derived vesicles to the phragmoplast midline (Lee and Liu, 2004). 

Following the initial formation of the cell plate in the centre of the cell, phragmoplast MTs 

reorganize to the cell plate edges and depolymerize in the centre. Expansion of these MTs results in 
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delivery of additional vesicles to the growing margin of the cell plate (Staehelin and Hepler, 1996; 

Heese et al., 1998; Otegui and Staehelin, 2000). AtNACK1/HIK was independently identified to be 

essential for phragmoplast expansion during vegetative cytokinesis (Nishihama et al., 2002; 

Strompen et al., 2002). The corresponding Arabidopsis mutants nack1-1 and hinkel cease growth at 

respectively the vegetative and seedling stage, and embryos in both cases contain multinucleate 

cells with incomplete cell walls. Tubulin staining in hinkel embryos revealed that phragmoplast MTs 

are not depolymerized at the centre when the initial cell plate is already formed (Strompen et al., 

2002). Initially, cell plate/phragmoplast expansion occurred, but ceased afterwards (Nishihama et 

al., 2002). These data suggest that NACK1/HIK function in the reorganization of phragmoplast MTs 

during cytokinesis. It is noteworthy that NACK1 interacts with NPK1, which is a MAPKKK required 

for phragmoplast expansion.  Both NPK1 and NACK1 localize to the phragmoplast midline. 

Moreover, NACK1 is required for the correct localization of NPK1 during cytokinesis and activates 

the kinase activity of NPK1 (Nishihama et al., 2002). 

NACK2 is the closest homologue of NACK1 and was identified as an interactor of NPK1 (Nishihama 

et al., 2002). Whether NACK2 also localizes to the phragmoplast midline is not reported. Similar to 

NACK1, its expression is up-regulated during mitosis. Vegetative cytokinesis is not disrupted in 

tetraspore/stud mutants, which are allelic to NACK2. However cytokinesis is disrupted during male 

meiosis due to a failure to establish the radial MT array associated with cytokinesis of tetrads 

(Hulskamp et al., 1997; Yang et al., 2003). Thus, whereas NACK1 functions in phragmoplast MT 

organization in somatic tissues, its homologue NACK2 is required to organize the MT arrays to 

separate microspores in male meiosis. Surprisingly, double heterozygous atnack1/atnack2 mutants 

affected cellularization (cytokinesis) synergistically during megagametogenesis, indicating that these 

motors function redundantly to some extent (Tanaka et al., 2004). 

In addition to functions during cell division, plant kinesins have been found at mitochondria (Itoh et 

al., 2001), Golgi (Lu et al., 2004), pollen organelles (Cai et al., 1993; Romagnoli et al., 2003), actin 

(Preuss et al., 2004) and MTs (Preuss et al., 2003) during interphase. They have been shown to 

function in trichome morphogenesis through either MT stabilization resulting in trichome branching 

(Zwichel/KCBP) (Oppenheimer et al., 1997) or by organizing Golgi stacks (AtKinesin-13A) (Lu et al., 

2004). AtKinesin-13A contains an internal motor domain, which shares a high degree of similarity to 

the motor domain of internal motor kinesin in animals, like MCAK. However, their functions are 

unrelated as internal kinesins in animals are involved in spindle functioning and chromosome 

movements during mitosis (Moore and Wordeman, 2004). Another kinesin, AtFRA1 belongs to the 

chromokinesins/Kinesin-4 subfamily (Zhong et al., 2002). Animal kinesins in this subfamily typically 

play roles in chromatid motility and chromosome condensation, activities associated with mitosis 

(Mountain and Compton, 2000). The fra1 mutant, however, does not show defects in cell division, 

but the orientation of cellulose microfibrils is altered in fiber walls which resulted in a reduced 

mechanical strength of cell walls in fra1 mutants (Zhong et al., 2002).  
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Chapter page: Arabidopsis thaliana leaf epidermal cells, expressing free GFP, imaged using confocal 

microscopy (GFP filter settings). 
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Abstract 

 

During cell division, plant cells make unique MT structures such as the PPB and the phragmoplast 

that contribute to aspects of division orientation and cytokinesis. MAPs play an important role in 

regulating MT behavior to establish these plant specific MT arrays. We searched for kinesins in the 

Arabidopsis genome that are cell cycle controlled. In the publicly available Affymetrix microarray 

data of synchronized Arabidopsis tissue culture cells, 22 kinesin genes were found that show 

increased expression during mitosis. The presence of putative phosphorylation sites, protein 

degradation boxes and regulatory promoter elements support a function for these motors in cell 

division. A comparison between kinesins from plants, animal, yeast and fungi kinesins suggests that 

functions for kinesins in establishing spindle bipolarity are conserved between eukaryotes. Some 

homologues of animal kinesins that function in chromosome movement play unrelated roles in plant 

cells and appear to be involved in processes during interphase. Seven mitotic kinesins belong to the 

C-terminal subfamily. Because C-terminal kinesins typically show minus-end directed movement, 

one can assume that some of their functions relate to that of dyneins for which no homologues are 

found in plants. Also, plants lack centrosomes at spindle poles where MT minus-ends congregate 

and therefore may require specially adapted kinesins. Finally, nine kinesins that are transcriptionally 

up-regulated during mitosis may be plant specific. Some of these were shown to function in 

phragmoplast dynamics during cytokinesis. The analysis of uncharacterized plant specific kinesins 

with a mitotic expression profile may shed light on the function of motor proteins in PPB formation, 

a structure that is not very well understood. 
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Introduction 

 

During cell division, the plant cytoskeleton rearranges into different conformations to segregate the 

sister chromatids and to align and build the cell plate (Wasteneys, 2002). The organization of MTs 

into different arrays requires the cooperation of MAPs. Numerous MAPs, both structural as motor 

MAPs have already been discovered in plants (Gardiner and Marc, 2003). The diversity of these 

MAPs indicates that the cellular machinery regulating MT organization is complex. In animal mitosis, 

kinesins play many roles in MT organization and dynamics and chromosome movement. The 

knowledge of plant kinesins in these processes is limited. In addition, plant cells use specialized MT 

arrays such as the PPB and the phragmoplast that are absent in other kingdoms. The functioning of 

these plant specific structures suggest specialized functions for kinesins in plants as well as the 

presence of plant specific motor proteins. 

 

Results and Discussion 

 

22 kinesins are specifically transcribed during M-phase 

 

The development of synchronization methods for A. thaliana suspension cultures facilitated 

transcript profiling of cell cycle regulation on genome scale (Menges and Murray, 2002). We 

consulted the publicly available Affymetrix microarray data of synchronized Arabidopsis tissue 

culture cells (Menges et al., 2003) and identified 22 kinesin genes that were up-regulated during 

mitosis (Fig. 2.1, Table 2.1). More recently, Menges et al. (2005) used the expression profiles of A- 

and B-type cyclins to identify genes involved in early mitosis. 10 out the 22 selected mitotic kinesins 

showed peaks at the G2/M boundary (Table 2.1).  

The expression of mitotic cyclins during cell cycle depends on the presence of cis-acting elements in 

the promotors, called the MSA (mitosis specific activation) elements. These are necessary and 

sufficient for periodic promoter activation at the G2/M boundary (Ito et al., 1998; Araki et al., 

2004). Two MSA motifs are present in the promoter of the plant specific kinesin NACK1. Tobacco 

NACK1 transcript is almost undetectable before mitosis. It accumulates during M-phase and peaks 

when the mitotic index (MI) is highest. Mutant NACK1 promoters, in which both MSA motifs were 

destroyed, showed that the MSA elements in the promoter drove G2/M specific transcription (Ito et 

al., 2001). This illustrates that MSA elements also determine transcriptional expression of kinesin 

genes. Consistent with the NACK1 transcription level, the NACK1 protein accumulated during M-

phase and peaked one time point later than the MI. In tabak and Arabidopsis, NACK1 functions in 

the lateral expansion of the phragmoplast MTs (Nishihama et al., 2002). 

We analyzed the promoters of the 22 mitotically up-regulated kinesins in Arabidopsis and found that 

MSA motifs were strongly represented. In total, 48 MSA motifs were identified and 19 of the 22 

mitotic kinesin promoters contained at least one MSA element (Table 2.1).  
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Figure 2.1 Transcript levels of 22 mitotic up-regulated kinesins through the cell cycle. 
Arabidopsis cell suspension cultures were chemically synchronized in the presence of DNA polymerase inhibitor 
aphidicolin. Transcript levels of all 61 Arabidopsis kinesins were quantified before and after release from the S-
phase block with Affymetrix microarray chips, as described by Menges et al. (2003). Profiles are only shown for 
those that were found up-regulated during mitosis. 

Figure 2.2 Alignment of the bimC box in BimC/Kinesin-5 members. Alignment of bimC 
boxes from tobacco (TKRP125), Arabidopsis (AtKRP125a-c), human (HsEg5), Xenopus (XlEg5), Drosophila 
(KLP61F) and yeast (Cut7 and bimC). The consensus site for CDK (S/TPxK/R) is highlighted in red and the 
phosphorylated threonine is indicated by an arrow. Other amino acids that are identical are highlighted in grey. 
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Cell cycle regulation by protein phosphorylation 

 

Cell cycle progression is controlled by reversible phosphorylation by protein kinases and 

phosphatases, and in particular the serine-threonine kinase activity of cyclin dependent kinase 

(CDK) complexes are of key importance (Morgan, 1997). In yeast and animal cells, CDK regulates 

MT organization and dynamics by phosphorylation of proteins that function in MT arrangement and 

transport activities (Cassimeris, 1999; Andersen, 2000). Kinesins are one of the targets for CDK 

phosphorylation. Members of the BimC/Kinesin-5 subfamily contain a phosphorylation site around a 

conserved sequence motif, called the BimC box. Phosphorylation of the human BimC kinesin Eg5 

regulates binding to the mitotic spindle, which ensures the formation of a bipolar spindle (Blangy et 

al., 1995; Sawin and Mitchison, 1995). The cytoskeleton in plants is also under control of CDK 

kinases (Vantard et al., 2000). Plant A-type CDKs, such as CDKA;1 associate with MTs in dividing 

cells, including the PPB and the phragmoplast (Stals et al., 1997; Weingartner et al., 2001). 

Microinjection of CDK1 in Tradescantia cells causes rapid disassembly of the PPB MTs (Hush et al., 

1996) and treatment of metaphase cells with inhibitors of CDKs results in abnormal spindles 

(Binarova et al., 1998a). The tobacco kinesin TKRP125 belongs to the BimC/Kinesin-5 subfamily and 

consistent with this, it contains a CDK phoshorylation site in the BimC box (Asada et al., 1997). 

TKRP125 localizes to the PPB, spindle and phragmoplast. It is possible that association of TKRP125 

with these mitotic structures is under control of CDK phosphorylation. 

We looked for the occurrence of CDKA;1 phosphorylation sites in the set of 22 kinesins up-regulated 

during mitosis. In addition to cell cycle controlled accumulation during M-phase, 13 out 22 kinesins 

contained at least one CDKA;1 phosphorylation site (Table 2.1). Amongst these were the three 

Arabidopsis homologues of the tobacco TKRP125. Alignment of the BimC boxes from tobacco 

TKRP125, the three Arabidopsis homologues and those in animal and yeast shows that the bimC 

boxes of tobacco TKRP125 and Arabidopsis AtKRP125b are closest related to those of yeast and 

animal (Fig. 2.2).  

Other animal kinesins that are phosphorylated by CDKA;1 belong to the Chromokinesin/Kinesin-4, 

CENP-E/Kinesin-7 and MKLP1/Kinesin-6 subfamilies (Reilein et al., 2001). According to the 

nomenclature of Lawrence et al. (2004), there are no Arabidopsis kinesins that belong to the 

MKLP/Kinesin-6 subfamily. Chromokinesins and CENP-E family members are present in Arabidopsis 

and according to our analysis, each subfamily contains one mitotic kinesin. These did not contain a 

CDKA;1 phosphorylation site, suggesting that in contrast to their animal counterparts, they are not 

regulated by CDK phosphorylation. 

 

Cell cycle control of kinesin protein level 

 

Several key cell cycle regulators are rapidly degraded during anaphase to allow exit from mitosis. 

These carry a destruction box (D-box) in their protein sequence that is essential for its degradation 

at the onset of anaphase by the 26S proteasome complex (Glotzer et al., 1991). Among the many 
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functions of the proteasome is the regulation of MT arrays during mitosis. The yeast MAP Ase1 

localizes to the anaphase spindle midzone and is required for the elongation of the spindle during 

anaphase B. Mutations in the D-box of Ase1 delayed spindle disassembly, indicating that the 

proteasome mediates spindle disintegration by degradation of MAPs (Juang et al., 1997). A 

conserved D-box is also present in members of the plant specific subfamily of MAP65 proteins. 

AtMAP65-1 and the tobacco homologue NtMAP65-1 localize to the PPB, spindle and phragmoplast 

MTs during mitosis (Smertenko et al., 2000; Smertenko et al., 2004; Van Damme et al., 2004a and 

b). AtMAP65-4 only localizes to the spindle MTs, predominantly at the spindle poles and disappears 

at the end of anaphase (Van Damme et al., 2004b). The presence of a D-box in these MAPs, 

suggests that in plants proteolytic degradation of MAPs also controls the organization of MTs in the 

spindle and in plant specific MT arrays like the PPB and phragmoplast (Hussey et al., 2002; Van 

Damme et al., 2004b). We found at least one conserved D-box in all the 22 mitotic kinesins, 

suggesting that plant kinesins are substrates of the proteasome complex (Table 2.1). Whether their 

protein products are subjected to proteolytic degradation in vivo awaits further experimental 

confirmation. 

During mitosis, APC substrates are degraded to allow sister chromatid separation during anaphase. 

For instance chromokinesins generate polar ejection forces during animal mitosis thereby 

contributing to chromosome alignment (Levesque and Compton, 2001; Kapoor and Compton, 

2002). Degradation of chromokinesins, like Xkid at anaphase down regulates antipolar forces, 

allowing the separated chromatids to be transported to the opposite spindle poles (Funabiki and 

Murray, 2000; Scholey et al., 2003). Xenopus Xkid contains 5 putative D-box sequences; however it 

is degraded by the proteasome in a D-box independent pathway (Castro et al., 2003). To date, it is 

not known whether the single mitotically up-regulated chromokinesin of Arabidopsis functions in 

chromosome movements during metaphase. We found 4 D-boxes in the protein sequence of this 

kinesin. Experimental data will determine whether this chromokinesin is degraded by the 

proteasome in D-box dependent or independent pathway to allow sister chromatid separation. 

For several plant kinesins, protein levels have been investigated throughout cell cycle in 

synchronized BY-2 cells (Mitsui et al., 1996; Asada et al., 1997; Bowser and Reddy, 1997; 

Nishihama et al., 2002). The tobacco kinesins ATK2, ATK3, TKRP125, KCBP and NACK1 protein 

levels increased during M-phase, reached the highest level at the MI peak, and decreased 

afterwards. TKRP125 and NACK1 function in phragmoplast dynamics (Asada et al., 1997; Nishihama 

et al., 2002). Arabidopsis homologues of these kinesins are transcriptionally up-regulated during 

mitosis (Table 2.1) and their protein sequences contain respectively, 4-5 and 3 D-boxes. The 

Arabidopsis counterparts of ATK2, ATK3 and KCBP were not recognized as mitotic kinesins based on 

transcript levels during cell division. They all contain one or more D-boxes, pointing to a possible 

control of protein level during M-phase by proteolytic degradation. KCBP localizes to all mitotic 

arrays during cell division and a function in spindle pole formation has been proposed based on 

antibody microinjection experiments (Bowser and Reddy, 1997; Vos et al., 2000). The intracellular 

localization and involvement of the ATK2 and ATK3 kinesins in cell division still remains to be 
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determined. Thus, absence of kinesins from the list of mitotically up-regulated kinesins does not 

exclude a function in cell division. For instance, KCA1 and KCA2 are not transcriptionally up-

regulated during mitosis. Yet, the proteins interact with the cell cycle kinase CDKA;1, suggesting 

control of these proteins during cell division (Vanstraelen et al., 2004). 

 

M-phase specific kinesins related to animal kinesins 

 

The Arabidopsis genome counts 21 C-terminal/Kinesin-14 members of which 7 are transcriptionally 

up-regulated during mitosis. In vitro experiments for three members of the Arabidopsis C-terminal 

subfamily, including ATK1 and ATK5, shows that they move towards the minus-end of MTs (Song et 

al., 1997; Marcus et al., 2002; Ambrose et al., 2005), suggesting that C-terminal kinesins in plants 

also display minus-end directed motility. In animal cells, minus-end directed kinesins, like Ncd 

function in several aspects of the formation of the bipolar spindle. Ncd localizes to the spindle poles 

and cooperates with dynein to bundle MTs into spindle poles which are attached to the centrosome 

(Hatsumi and Endow, 1992; Merdes et al., 2000). The Arabidopsis kinesins ATK1 and ATK5 are 

related to animal Ncd (Reddy and Day, 2001) and are mitosis specific (Table 2.1). Both localize to 

the spindle MTs (Chen et al., 2002; Marcus et al., 2003; Ambrose et al., 2005). Knock-out mutants 

form spindles with abnormally broad poles, similar to Ncd defective spindles, suggesting that ATK1 

and ATK5 focus the minus-ends of spindle MTs into spindle poles. 

In animal cells, kinesins of the C-terminal/Kinesin-14 subfamily antagonize the forces of 

BimC/Kinesin-5 members to establish the bipolar mirror-like structure of the spindle (Sharp et al., 

2000b). BimC-like kinesins, like Drosophila KLP61F are plus-end directed bipolar homotetramers 

that cross-link and slide antiparallel MTs of spindle midzone, thereby generating poleward forces. 

Failure of BimC-like kinesins to associate with the spindle, results in the formation of monopolar 

spindles (Blangy et al., 1995; Wilson et al., 2004). This phenotype can be partially rescued by 

mutations in the C-terminal kinesin Ncd, suggesting that a balance of plus- and minus-end directed 

forces establishes the bipolar spindle (Wilson et al., 2004). These results were obtained for C-

terminal and BimC-like kinesins from animal, yeast and fungi (Saunders and Hoyt, 1992; O'Connell 

et al., 1993; Wilson et al., 2004), suggesting that functions for kinesins in establishing spindle 

bipolarity are conserved among eukaryotes. Three out of the four BimC-like kinesins of Arabidopsis 

are transcriptionally up-regulated during M-phase. These are homologues of the tobacco TKRP125, 

which localizes to MTs of the PPB, spindle and phragmoplast (Asada et al., 1997). In addition, 

poleward translocation of phragmoplast MTs was inhibited upon microinjection of an antibody 

against TKRP125, suggesting that plant BimC kinesins slide antiparallel MTs polewards, similar to 

animal BimC kinesins. Mutations in the C-terminal kinesin ATK1 not only cause spindle poles to 

broaden, but also result in reduced bipolarity of the spindle, suggesting that ATK1 functions in both 

establishing bipolarity and spindle pole formation (Chen et al., 2002). It is possible that ATK1 and 

AtKRP125 function antagonistically in the spindle midzone to establish a bipolar spindle during 

metaphase in plant cells. By anaphase, Ncd appears to have no effect on spindle pole movements, 
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suggesting that its activity is down-regulated at this time, to allow BimC-like kinesins to drive 

spindle elongation during anaphase B (Sharp et al., 2000a). This might explain why spindle 

abnormalities in ATK1 mutants were rectified by anaphase in somatic cells and is consistent with 

the presence of a D-box in the protein sequence of ATK1 (Marcus et al., 2003). 

In plant cells, spindles are formed in absence of centrosomes and consistent with this spindle poles 

in plants are broader than in animal cells (Wasteneys, 2002). Centrosomes are also absent from 

Drosophila oocytes (Merdes and Cleveland, 1997; Kwon and Scholey, 2004; Manandhar et al., 

2005). Here, acentrosomal spindle assembly is accomplished in two steps; spontaneous nucleation 

of MTs around condensed chromatin followed by sorting of randomly oriented MTs into a bipolar 

spindle (Manandhar et al., 2005). The latter involves the antagonizing action of BimC and C-

terminal kinesins to establish spindle bipolarity and the cooperation between C-terminal kinesin and 

dynein to bundle MT minus-ends into spindle poles. In this way, spindle organization in plants might 

resemble acentrosomal spindle formation in Drosophila oocytes. γ-tubulin and Spc98p have been 

localized to plant kinetochores (Binarova et al., 1998b) indicating that spindle MTs arise by de novo 

assembly at kinetochore MTOCs. AtKRP125 and ATK1 could be involved in establishing spindle 

bipolarity while ATK5 and ATK1 focus minus-ends of spindle MTs into poles (Marcus et al., 2003; 

Ambrose et al., 2005). Dynein on the other hand is not present in plant cells (Lawrence et al., 

2001), which seem to have employed unique kinesins to focus spindle poles. The minus-end 

directed motor KCBP is special in that its MT binding and motor activity is inhibited upon binding 

Ca++/calmodulin (Narasimhulu et al., 1997; Song et al., 1997; Deavours et al., 1998). This motor 

localizes to the spindle poles in Haemanthus endosperm and is proposed to converge MT minus-

ends into spindle poles by sliding and bundling MTs during nuclear envelope breakdown and 

anaphase (Smirnova et al., 1998; Vos et al., 2000). 

After nuclear envelope breakdown in animal cells, pairs of sister chromatids associate with the 

spindle and oscillate until they are bi-oriented (attached to both spindle poles) and aligned at the 

metaphase plate (Murray and Mitchison, 1994). Chromosome alignment requires the cooperative 

action of kinesins from different subfamilies, generating poleward or antipoleward forces. Members 

of the Chromokinesin/Kinesin-4, CENP-E/Kinesin-7, Kip3/Kinesin-8 and MCAK/Kinesin-13 subfamily 

contribute to chromosome alignment (Schaar et al., 1997; Antonio et al., 2000; Yucel et al., 2000; 

West et al., 2002; Kline-Smith et al., 2004). Chromosome oscillation till metaphase alignment has 

also been observed in plants and members of the kinesin subfamilies that function in chromosome 

alignment are present in Arabidopsis (Yu et al., 1997; Reddy and Day, 2001). We looked for mitotic 

kinesins in subfamilies that are implicated in chromosome movements in animal cells. Arabidopsis 

contains three chromokinesins of which one is up-regulated during mitosis (Table 2.1). 

Chromokinesins push chromosome arms towards the spindle equator and generate a force gradient 

that diminishes with increasing distance from the spindle pole (Levesque and Compton, 2001; 

Kapoor and Compton, 2002). For instance, immunodepletion of Xkid in frog egg extracts results in 

chromosome misalignment during metaphase (Castro et al., 2003). Other chromokinesins, like 

Xklp1 and KLP-18 orient the MT plus-ends towards the chromosomes and the minus-ends away, 
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thereby contributing to bipolar spindle assembly in Drosophila oocytes (Vernos et al., 1995; Segbert 

et al., 2003). The single mitotic chromokinesin in Arabidopsis might fulfill a related function in 

plants. AtFRA1 is an Arabidopsis chromokinesin that is not up-regulated during cell division. 

Consistent with this, AtFRA1 is not implicated in cell division but functions in orientating cellulose 

microfibrils in fiber walls (Zhong et al., 2002).  

MCAK/Kinesin-13 family members (also called Kin-I in animals) depolymerize MTs and contribute to 

multiple aspects of chromosome movement. They localize to the centromeres, centrosomes and 

spindle midzone during mitosis. Depletion or disruption of MCAK activity has shown that they 

function in spindle maintenance, chromosome alignment and segregation and in controlling the 

proper attachment of MTs to sister chromatids (Moore and Wordeman, 2004). Mammals have three 

Kin-I kinesins: Kif2A, Kif2B and MCAK and Drosophila melanogaster has four: Klp10A, Klp59C, 

Klp59D and Klp67A. Kif2A and Klp10A depolymerize MTs from the centrosome, whereas MCAK and 

Klp59C depolymerize MTs from the centromere and Klp67A functions in spindle assembly. 

Arabidopsis contains two members of the MCAK/Kinesin-13 subfamily, AtKinesin-13A and AtKinesin-

13B (Lawrence et al., 2004). Only Kinesin-13B is transcriptionally up-regulated during mitosis. This 

suggests that in contrast to animal cells, functions for MT depolymerizing kinesins in plant mitosis 

are limited. The similarity of Kinesin13-A and Kinesin13-B to family members from other kingdoms 

is restricted to the catalytic core. They lack a Lys-rich neck motif that is commonly found in animal 

Kinesin-13s, implying that they function different from their animal counterparts (Lee and Liu, 

2004). Indeed, Kinesin-13A is not up-regulated during mitosis. It localizes to Golgi stacks and 

contributes to their distribution in Arabidopsis trichomes (Lu et al., 2004). 

Members of the Kinesin-7/CENP-E subfamily function in chromosome alignment and segregation. 

They control the interaction of the MT plus-ends of the spindle with the kinetochores of the 

chromosomes both during metaphase congression and anaphase segregation (Schaar et al., 1997; 

McEwen et al., 2001; Tanudji et al., 2004). Two members of this subfamily are represented in 

Arabidopsis of which one is up-regulated during mitosis (Table 2.1). 

The survey of mitotic kinesins conserved in plants indicates that kinesin subfamilies involved in 

chromosome movement are present except for the Kip3/Kinesin-8 subfamily (Lawrence et al., 

2004). Although these kinesins are represented by several copies in Arabidopsis, only a subset is 

mitotically regulated. However, transcript levels do not always reflect protein accumulation and 

functions for these kinesin members related to chromosome movement may be controlled at the 

protein level. Arabidopsis has 21 C-terminal/Kinesin-14 members of which 7 are up-regulated during 

mitosis (Table 2.1). This high number might compensate for functions carried out by dyneins in 

other organisms. In addition, C-terminal motors like Ncd function in chromosome segregation 

(Endow et al., 1990; Ali et al., 2000). Possibly, the contribution of C-terminal motors in 

chromosome movements has expanded in plants. 
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M-phase specific kinesins unique to plants 

 

At first sight, cytokinesis in plant cells differs substantially from animals cells. In animal cells, 

cytokinesis is accomplished by an actin-myosin ring that forms around the cell equator and 

constricts inwards at telophase. As a consequence, interpolar MTs from the anaphase spindle 

bundle into a central spindle which is further compressed into a compact midbody at the end of 

cytokinesis (Glotzer, 2001). In contrast, plants construct a phragmoplast consisting of anti-parallel 

MTs. They guide Golgi-derived vesicles to the midline, and fusion of these vesicles forms a cell plate 

which will divide the daughter cells as the phragmoplast expands to the parent wall (Verma, 2001). 

Thus, animal cells appear to emphasize the use of a contractile ring, while plant cells appear more 

partial to membrane addition (Glotzer, 2001). However, the central spindle in animal cells seems to 

play a similar role as the phragmoplast in plant cells (Bowerman and Severson, 1999). During 

furrow ingression, membrane vesicles accumulate at the leading edge of the cleavage furrows and 

MT depolymerization blocks addition of new membrane during cytokinesis (Bluemink and Delaat, 

1973; Danilchik et al., 1998). In addition, brefeldin A, an inhibitor of the vesicle traffic machinery, 

blocks cell plate formation in plants and inhibits the terminal phase of cytokinesis in C. elegans 

(Yasuhara et al., 1995; Yasuhara and Shibaoka, 2000; Skop et al., 2001). These findings emphasize 

an overlap to some extent in the roles that MT based motor proteins play in animal and plant 

cytokinesis. Several members of the BimC subfamily, localize to the midbody during cleavage furrow 

ingression in animal cells and to the phragmoplast in plant cells, suggesting that in addition to 

spindle formation, they perform a role in cytokinesis as well (Asada et al., 1997; Whitehead and 

Rattner, 1998; Giet et al., 1999; Uzbekov et al., 1999). In particular, sea urchin Boursin is required 

to complete cytokinesis, which was shown by expression of rigor-type mutant of Boursin in sea 

urchin embryos (Touitou et al., 2001). In BY-2 cells, TKRP125 localizes to the phragmoplast MTs 

and injection of an antibody directed against TKRP125 inhibited MT translocation in the 

phragmoplast (Asada et al., 1997). The Arabidopsis homologues of TKRP125 were up-regulated in 

mitosis and might also function in the establishment of the bipolar phragmoplast. MKLP1, CHO1, 

PavKLP and Zen4 are animal members from different organisms that belong to the MKLP1 subfamily 

(Glotzer, 2001). They localize to a narrow zone of the central spindle and are essential to 

cytokinesis by their role in central spindle assembly. Human Rab6-KIFL is related to MKLP1. It 

accumulates at the central spindle and becomes highly concentrated in the midbody. Although this 

kinesin is involved in membrane traffic through the Golgi apparatus during interphase, it is also 

required for completion of cytokinesis (Echard et al., 1998; Hill et al., 2000; Fontijn et al., 2001). It 

is possible that Rab6-KIFL functions in the delivery of vesicles from the Golgi apparatus to the site 

of membrane fusion.  

Members of the MKLP1/Kinesin-6 subfamily are absent from Arabidopsis, suggesting that plants and 

animals mainly employ different kinesins to exert their divergent modes of cytokinesis. Arabidopsis 

counts 29 kinesins that do not belong to any of the established kinesin subfamilies and are unique 

to Arabidopsis (Lawrence et al., 2004). Nine of these (Table 2.1; numbers 14 – 22) are up-
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regulated during mitosis, suggesting that these might be implicated in plant specific MT related 

processes linked with the PPB and the phragmoplast. Indeed all plant specific kinesins that are 

known to function in phragmoplast dynamics are mitotically up-regulated (Table 2.1). 

AtPAKRP1 and the related AtPAKRP1L are associated with the MTs of the cylinder- and ring-like 

phragmoplast (Lee and Liu, 2000; Pan et al., 2004). It was proposed that they maintain the bipolar 

structure of the phragmoplast once BimC motors have established bipolarity (Lee and Liu, 2000). 

Single mutants do not reveal any phenotype suggesting that they can compensate for their loss of 

function (Pan et al., 2004). AtPAKRP2 is not related to any other kinesin. It localizes to the 

phragmoplast in a punctuate manner and accumulates at the cell plate. Membrane association and 

disruption of the localization after BFA treatment, suggest that AtPAKRP2 delivers Golgi-derived 

vesicles to the phragmoplast midline (Lee et al., 2001). NACK1 and NACK2 play a role in 

phragmoplast dynamics. NACK1/HIK is essential to somatic cytokinesis and functions in the 

reorganization of MTs during the lateral expansion of the cell plate (Nishihama et al., 2002; 

Strompen et al., 2002). NACK2/TES/STUD is the closest homologue of NACK1 and takes part in the 

assembly of the radial MT array in male meiotic cytokinesis (Hulskamp et al., 1997; Yang et al., 

2003). Both NACK1 and NACK2 interact with NPK1 which is a MAPKKK, required for phragmoplast 

expansion (Nishihama et al., 2002).  

Till now, roles for kinesin motors in the formation and dynamics of the PPB are lacking. This circular 

band of MTs is formed at the start of mitosis and at the same time MTs elsewhere in the cortex 

largely disappear (Mineyuki, 1999). It can be hypothesized that MTs are translocated by motor 

proteins from elsewhere in the cortex to congregate at the PPB site (Wymer et al., 1996; Asada et 

al., 1997). Recent studies however did not observe MT sliding during PPB formation and the authors 

concluded that molecular motors are not involved (Vos et al., 2004). Instead, the PPB is formed by 

an increase in dynamic instability of cortical MTs, which are preferentially bundled and stabilized at 

the PPB site (Dhonukshe and Gadella, 2003; Vos et al., 2004). MT stabilizing, bundling and 

dynamics are typical functions for structural MAPs. However, kinesins also play a role in MT 

dynamics and bundling (Goldstein and Philp, 1999; Hunter and Wordeman, 2000; Moore and 

Wordeman, 2004). Several plant kinesins have been localized to the PPB, among which tobacco 

TKRP125 (Liu et al., 1996; Asada et al., 1997; Bowser and Reddy, 1997; Barroso et al., 2000). At 

the PPB, kinesins could bundle the parallel MTs by a MT sliding mechanism. Four mitotically up-

regulated plant specific kinesins that do not belong to the classic kinesin subfamilies remain 

uncharacterized to date. These might reveal functions for kinesins in PPB formation. 

Arabidopsis kinesins that do not belong to any of the established kinesin subfamilies are assigned to 

different Arabidopsis subgroups and those that remain ungrouped are called orphan kinesins 

(Lawrence et al., 2004). Two Arabidopsis specific kinesin groups, At2 and group 1 do not have 

representatives that are mitotically up-regulated. These motor proteins may have functions more 

related to plant specific processes taking place during interphase. 
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General conclusions 

 

We report that 22 out of 61 Arabidopsis kinesins are up-regulated during mitosis. Most of the 

kinesins that function in cell division in Arabidopsis or in other plants with homologues in 

Arabidopsis are represented in our dataset. MSA elements, CDKA;1 phosphorylation sites and D-

boxes were strongly represented in the mitosis specific kinesins, supporting a role for these kinesins 

during cell division. 

A comparison between plant-like and animal-like functions of kinesins during cell division suggests 

that functions for kinesins in bipolar spindle assembly are conserved among eukaryotes. For 

instance, the cooperation between C-terminal/Kinesin-14 and BimC/Kinesin-5 is documented in 

animal cells, yeast and fungi and data in the plant field also point in that direction.   

However, many aspects of cell division addressed in the animal field remain unresolved in plants. 

Till now, no plant kinesins have been identified that function in chromosomal movements during 

mitosis, while numerous kinesins from different subfamilies contribute to these motions in animal 

cells (Kline-Smith and Walczak, 2004; Moore and Wordeman, 2004). In addition, non-mitotic plant 

members of these subfamilies fulfill unrelated functions when compared to their animal 

counterparts and function during interphase (Zhong et al., 2002; Lu et al., 2004). Finally, several 

aspects of cell division are unique to plants. MT arrays, like the PPB and phragmoplast play an 

important role in cell plate formation and alignment. A whole range of plant specific kinesins are 

present in Arabidopsis. Several of these function in phragmoplast and cell plate formation and were 

up-regulated during mitosis. Four other are not yet characterized and might shed light on the 

functions of motor proteins in PPBs. 
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Table 2.1 Arabidopsis kinesins that are transcriptionally up-regulated during mitosis. 

 

Kinesin  
subfamily 

Nr MIPs code MSA elements CDK 
sites 

Destruction 
boxes 

Chromokinesin/ 
Kinesin-4 

1 At5g60930 cgtAACGgtct  RLKELLDN 
RETLSGAN 
RNADGKEN 
RGAMLLQN 

2 At2g37420 
AtKRP125a 

tacAACGgtac 
cccAACGgtta 

TPKK RTADTLLN 
RSAQEISN 
REEKQALN 
RTPFLEVN 

3 At2g36200 
AtKRP125b 

gcgAACGgacg 
ttaAACGgcga 

TPTK REVAVSQN 
RTAETFLN 
RLHKANAN 
RFVLLLHN 

BimC/Kinesin-5 

4 At2g28620 
AtKRP125c 

cacAACGgtcg 
catAACGgttc 
gctAACGgcgt 
cgtAACGgctc 
atcAACGgaga 

TPRK RDFRVDSN 
RTAETLLN 
RQLELLNN 
RFDPFLYN 
RPPLTAIN 

CENPE/ 
Kinesin-7 

5 At1g59540 tcaAACGgctt 
taaAACGgtaa 
tcaAACGgcac 

 RKQKEQEN 
RLSESVAN 

MCAK/ 
Kinesin-13 

6 At3g16060 tttAACGgatc  RPTNQRKN 
RSRVLAEN 
RGADTTDN 
RLEGAEIN 
RPDMKKSN 

7 At4g21270 
ATK1 

  RQAFSAVN 

8 At2g47500 tgaAACGgaaa 
ccaAACGgtag 
agaAACGgtag 

 RESTSSQN 
RSVLDGYN 
RSPQSRNN 

9 At2g22610 gttAACGgtaa 
cttAACGgtcg 

SPTR RVRFEGIN 
RRETISYN 
REFPEVAN 
RHDSLNLN 
RSGETENN 

10 At3g10310 tgtAACGgttt 
gtcAACGgctt 

TPPR 
TPVK 
TPFR 

RNGMILCN 
RDLMELGN 
RSVMDGYN 
RTIGKLIN 
RSPLGVAN 

11 At4g05190 
ATK5 

  RAPLPSPN 
RQVLSTVN 

12 At1g72250 tcaAACGgcac 
atcAACGgtcg 
cgcAACGgaaa 

TPQK RECEEALN 
RVRLSIGN 

C-terminal/ 
Kinesin-14 

13 At5g27550   RVTVKGEN 
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Kinesin  
subfamily 

Nr MIPs code MSA elements CDK 
sites 

Destruction 
boxes 

At1 14 At1g18370 
AtNACK1 

caaAACGgtca 
tctAACGgcta 

TPER 
TPQK 
TPAR 

RSYMASLN 
RNTLYFAN 
RAKEVTNN 

At1 15 At3g43210 
AtNACK2 

cacAACGgtca 
ttgAACGgtca 
gagAACGggaa 
tgtAACGgaaa 

TPPK RMNRMYKN 
RKEMFELN 

/ 16 At3g44050 atgAACGgctg  RSQSFEFN 
RAKLIKNN 
RGMGGVDN 
RLQKLVDN 
RAKDVHTN 

 17 At3g17360 attAACGgcct SPSR 
TPTR 

RSRFARLN 
RAKLIQNN 
RVKVKNMN 
RILVAEMN 
RKQVITPN 

/ 18 At4g14150 
AtPAKRP1 

cgtAACGggtc 
tccAACGgagg 
tttAACGgctc 

 RTGATSVN 
RSLSQLGN 
RMKNDGNN 
RSLPHEDN 
RTQEEVEN 
RQYLRDEN 

/ 19 At3g20150 tatAACGgtcg SPCR RDALSGYN 
RGLDIIDN 
RLPSANEN 
RDLLKKEN 

/ 20 At3g23670 
AtPAKRP1L 

tcaAACGgtcg 
tctAACGgata 
atcAACGgaga 
attAACGgctc 

SPAK 
SPSK 

RTGATSVN 
RSLSQLGN 
RVKDDKGN 
RWTEAESN 

21 At4g14330 
AtPAKRP2 

ctaAACGgcta 
cacAACGgtta 

TPNK 
SPDK 

RVVESIAN Orphan 

22 At5g23910 ataAACGgaaa 
cacAACGgcaa 
agaAACGgtac 
agaAACGggaa 
taaAACGgtgc 
cttAACGgctc 

TPRK 
TPEK 
SPWK 
SPFK 

RKLFGEAN 
RLQELSNN 
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Methods 

 

Sequence analysis 

 

CDK phosphorylation sites and D-box sequences were identified with PATTINPROT, available at the 

ExPASy server (http://www.expasy.org/tools/). The patterns [ST]-P-x-[KR] and R-x(2)-L-x(4)-N 

were used respectively to seach for these sites. MatInspector (version 2.2) was used to search for 

MSA motifs within the promoter region 1000 bp upstream of the ATG start codon of the selected 

genes (BIOBASE, Biological Databases, http://www.gene-regulation.com/) (Quandt et al., 1995). 
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Abstract 

 

Cyclin-dependent kinases (CDKs) control cell cycle progression through timely coordinated 

phosphorylation events. Two kinesin-like proteins that interact with CDKA;1 were identified and 

designated KCA1 and KCA2. They are 81% identical and have a similar three-partite domain 

organization. The N-terminal domain contains an ATP and MT-binding site typical for kinesin motors. A 

green fluorescent protein (GFP) fusion of the N-terminal domain of KCA1 decorated MTs in Bright 

Yellow-2 (BY-2) cells, demonstrating MT-binding activity. During cytokinesis the full-length GFP-fusion 

protein accumulated at the midline of young and mature expanding phragmoplasts. Two-hybrid analysis 

and co-immunoprecipitation experiments showed that coiled coil structures of the central stalk were 

responsible for homo- and heterodimerization of KCA1 and KCA2. By Western blot analysis, high 

molecular weight KCA molecules were detected in extracts from BY-2 cells overproducing the full-length 

GFP fusion. Treatment of these cultures with the phosphatase inhibitor vanadate caused an 

accumulation of these KCA molecules. In addition to dimerization, interactions within the C-terminally 

located tail domain were revealed, indicating that the tail could fold onto itself. The tail domains of KCA1 

and KCA2 contained two adjacent putative CDKA;1 phosphorylation sites one of which is conserved in 

KCA homologs from other plant species. Site-directed mutagenesis of the conserved phosphorylation 

sites in KCA1 resulted in a reduced binding with CDKA;1 and abolished intramolecular tail interactions. 

The data show that phosphorylation of the CDKA;1 site provokes a conformational change in the 

structure of KCA with implications in folding and dimerization. 
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Introduction 

 

Although cell division is elementary to growth, the process itself only claims a small part of the complete 

plant cell cycle period. During that short time, the MT cytoskeleton undergoes major transitions and 

consecutively a PPB, spindle, and phragmoplast are formed (Vantard et al., 2000; Hasezawa and 

Kumagai, 2002). These MT arrays are the basis for scaffolds along which chromosomes are aligned and 

separated into daughter nuclei and cell wall material is transported to the site where the new cell plate 

emerges. The exact order of event demands for a perfect orchestration of the action of many proteins. 

Phosphorylation is an important regulatory mechanism in the control of MT organization during the 

mitotic processes. 

Plant A-type CDKs, such as CDKA;1 in Arabidopsis thaliana, are the principal regulators of the orderly 

progression of the cell cycle. CDKA;1 is associated with MTs in dividing and interphase cells (Stals et al., 

1997; Hemsley et al., 2001; Weingartner et al., 2001) and is involved in the organization of the 

cytoskeleton during cell division. Short association of the CDKA;1-cyclin B complex to the PPB causes 

desintegration of this structure before nuclear envelope breakdown (Hush et al., 1996). Treatment of 

metaphase cells with inhibitors of CDKs results in abnormal spindles with chromosomes not aligned at 

the metaphase plate (Binarová et al., 1998). Therefore, CDK plays a major role in the regulation of 

some of the steps that lead to MT rearrangements in dividing cells. 

In yeast and animal cells, CDK regulates MT organization and function by controlling the activity or 

distribution of multiple proteins that are involved in MT arrangement and transport activities. CDK 

phosphorylates MT-associated proteins, which are important for MT dynamics and stability (Cassimeris, 

1999; Andersen, 2000). MT-based motors, such as kinesins, are one of the targets phosphorylated by 

CDK (Liao et al., 1994; Blangy et al., 1995). Kinesins belong to a large class of conserved genes that fall 

into nine subfamilies. In general, the different classes are involved in separate cellular processes related 

to cytoskeleton organization and intracellular transport (Moore and Endow, 1996). In dividing cells, they 

are implicated in the organization and stabilization of the spindle and phragmoplast structures, 

chromosome movement, and vesicular transport to the site of division (Reddy, 2001). The majority of 

kinesins consist of a motor domain with a catalytic core that binds MTs and hydrolyzes ATP to generate 

force and a tail domain that interacts with the cargo (Vale and Fletterick, 1997). The conformational 

organization and the quaternary structure of kinesins vary, depending on the subfamily, and reflect the 

wide range of functions with which they are associated and the complex regulatory mechanisms to 

which they are subjected as well. Although some kinesins operate as monomers, many form homo- or 

heterodimers, heterotrimers, or bipolar homotetramers (Reilein et al., 2001). Oligomerization usually 

takes place by means of the interactions of a series of coiled coils that are located in the stalk domain. 

In addition to oligomerization, kinesins also have complex folding properties that provide the driving 

force to bind cargo or to control the activity of the motor domain. 

Several kinesins carry one or more putative CDK consensus serine/threonine phosphorylation sites. For 

example, the BimC/Kinesin-5 kinesin subfamily contains a phosphorylation site around a conserved 

sequence motif, called the bimC box. Phosphorylation of the embedded threonine in the human BimC 



 A CDKA;1 phosphorylation site implicated in KCA folding  

 69 

kinesin Eg5 is a prerequisite for Eg5 to localize to the mitotic spindle and to ensure the formation of a 

bipolar organization of the spindle (Blangy et al., 1995; Sawin and Mitchinson, 1995). The BimC kinesins 

contain a second MT-binding site outside the motor domain that mediates the cross-linking of 

antiparallel MTs at the spindle mid-zone to provide sliding forces (Kashina et al., 1997). BimC-type 

representatives have been found in plant species, including Arabidopsis, carrot, and tobacco (Asada et 

al., 1997; Barroso et al., 2000; Lawrence et al., 2002). In these instances, phosphorylation or a 

potential interaction with CDK kinase has not been investigated and remains therefore elusive. 

Nevertheless, a function analogous to the BimC kinesins has been shown in tobacco. The kinesin 

TKRP125 is targeted to the mid-zone of the spindle and the phragmoplast where it provides the 

mechanic force for sliding of antiparallelly arranged MTs (Asada et al., 1997). Phosphorylation may also 

be implicated in localization and functioning of KCBP, a minus-end directed kinesin required for correct 

trichome branching (Oppenheimer et al., 1997). Besides the presence of a putative CDK consensus 

phosphorylation site, KCBP interacts with a plant-specific protein kinase KIPK, suggesting that KCBP is 

phosphorylated by KIPK (Day et al., 2000). 

We report the isolation and characterization of two Arabidopsis kinesin-like proteins that interact with 

CDKA;1, designated KCA1 and KCA2 (acronym for kinesin CDKA;1-associated). KCA1 and KCA2 are 

unusual kinesins in that they are unique to plants and possess an N-terminal motor domain that is most 

similar to that of the C-terminal subfamily of kinesins. We show that KCA1 and KCA2 dimerize through a 

coiled-coil region in the center and fold intramolecularly through interactions within the tail domain. 

These conformational properties are regulated by a phosphorylation dependent control mechanism that 

involves a putative CDKA consensus phosphorylation site. 

 

Results 

 

Cloning of KCA1 and KCA2 

 

We screened a cDNA λ phage library with a partial kinesin fragment TH65 that had been isolated 

previously in a two-hybrid screen with CDKA;1 (De Veylder et al., 1997). Partial cDNAs were isolated 

that were elongated to a putative full-length cDNA of 3816 bp by RACE-PCR, and designated KCA1 

(Arabidopsis gene At5g10470). Recently, the same TH65 fragment has been isolated in two other 

two-hybrid screens with the geminivirus AL1 protein and the Arabidopsis katanin p60 subunit as baits 

(Kong and Hanley-Bowdoin, 2002; Bouquin et al., 2003). A second, homologous cDNA was isolated 

from the library, corresponding to a gene designated KCA2, also on chromosome 5 (gene At5g65460). 

The comparison of the cDNA sequences with genomic DNA revealed a conservation of their gene 

structures, consisting of 23 exons that encoded putative proteins with 81% identity and 89% similarity. 

The deduced protein sequences carried an N-terminally located motor domain with the signature 

sequence SKLSLVDLAGSE and an ATP-binding motif or P-loop, which are the most common features of 

kinesin motor domains. The motor domain was preceded by a short stretch of approximately 140 amino 

acids that contained a coiled coil and a neck sequence carrying a conserved GN motif that is confined to  
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minus-end directed kinesins (Fig. 3.1B). The KCA proteins consisted of two additional domains, a coiled 

coil region at the center, designated stalk domain, and a C-terminal tail domain containing a single 

coiled coil, a nuclear localization signal (NLS), and two glycine-rich regions of low complexity commonly 

present in kinesins (Fig. 3.1, A and B). The structural organization of the KCA kinesins was more closely 

related to the tripartite structure of plus-end directed kinesins that have a N-terminally located motor 

domain. Because of sequence similarity with the group of C-terminal kinesins, KCA were tentatively 

classified within that group (Kim and Endow, 2000). Database sequence comparison of the tail domain 

to other kinesins and proteins indicated that although KCA1 and KCA2 were conserved in higher plant 

Figure 3.1 Secondary structure and domain organization of the Arabidopsis KCAs. A, 
Coiled coil domains of KCA1 (dotted line) and KCA2 (dashed line) predicted by the algorithm of Lupas et al. 
(2001). The abscissa represents the amino acid residue number and the ordinate the probability of coiled coil 
formation. B, Composition of KCA1 and KCA2; the N-terminal head contains the motor domain (light grey box), 
preceded by a neck region (black box) with the residues –GN-. Coiled coil domains (dark grey boxes) were found 
in the centrally located stalk domain. Additional coiled coils were present in the head and tail domain. The 
C-terminal tail carries a NLS sequence –HKRRK- and two hinge regions (H). KCA1 and KCA2 share two adjacent 
consensus CDK phosphorylation sites (S/T-P-x-K/R) in the tail domain (black arrowheads). An additional 
phosphorylation site is present in the tail of KCA1 (grey arrowhead). C, Alignment of the conserved CDK 
phosphorylation sites -SPGR- (underlined) in KCA-related kinesins in Glycine max (GlymaKCA, accession 
AW200832), Oryza sativa (OrysaKCA, accession AQ794870), and Solanum tuberosum (SoltuKCA, accession 
BF053293). 
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species, they did not share significant homology with any other currently described protein domain. A 

recent phylogenetic analysis of kinesin motor domains separates KCA1 and KCA2 in a distinct subclass 

with the minus-end kinesin KCBP from Arabidopsis as the closest relative (Dagenbach and Endow, 

2004). 

Because KCA1 is potentially phosphorylated by CDKA;1, the presence of consensus CDK phosphorylation 

sites (S/T-P-X-K/R) was searched for. The tail contained putative A-type CDK phosphorylation sites at 

positions 698, 849, and 853 in KCA1 and at positions 827 and 831 in KCA2 (Fig. 3.1B). A single SPGR 

site in the N-terminal part of the tail domain was fully conserved in KCA-like sequences of other species 

(Fig. 3.1C). 

 

Transcriptional expression patterns of KCA1 and KCA2 

 

The presence of KCA mRNA transcripts was analyzed in different plant organs and developmental stages 

by RT-PCR with gene specific primers. DNA fragments of the expected size corresponding to KCA1 or 

KCA2 transcripts were visualized after hybridization (Fig. 3.2A). KCA1 and KCA2 mRNA were detected in 

young seedlings and in log-phase cell suspension cultures. KCA1 transcripts were more abundant and 

required a shorter film exposure to be visualized. Expression of KCA1 and KCA2 transcripts was found in 

all the organs tested (roots, leaves, stems, and flowers) and was more elevated in roots and flowers. 

Steady state expression levels were observed for the ACT2 gene, which served as a loading control. 

 

 

Figure 3.2 Expression analysis 
of KCAs in different organs and 
in synchronized Arabidopsis 
cells. A, Semi-quantitative RT-PCR 
analysis of the transcript levels of KCA1 
and KCA2 mRNA in 3-week-old 
Arabidopsis organs, 1-week-old 
seedlings, and 3-day-old cell suspension. 
RNA was extracted from roots (R), 
leaves (L), stems (St), flowers (F), 
seedlings (S), and cell suspensions (C). 
The Arabidopsis gene actin 2 (ACT2) 
was used as loading control. B, KCA 
mRNA levels during cell cycle. 
Aphidicolin-treated Arabidopsis MM2d 
cells were released from the G1/S block 
and RNA samples analyzed by semi-
quantitative RT-PCR (top panel) at the 
indicated successive time points. The 
metaphase/anaphase index is shown in 
the lower panel. 
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To determine the transcriptional activity of KCA1 and KCA2 during the course of the cell cycle, an 

Arabidopsis cell suspension culture was synchronized at G1/S by applying aphidicolin (Menges and 

Murray, 2002). Samples were prepared from 1-hour intervals after drug release and RNA subjected to 

semi-quantitative RT-PCR analysis. The transcriptional levels of KCA1 and KCA2 were constant 

throughout the cell cycle (Fig. 3.2B). This is consistent with the ubiquitous expression pattern revealed 

by immunoblot and immunolocalization by Kong and Hanley-Bowdoin (2002). 

 

Interaction of KCA with CDKA;1 

 

The CDKA;1-binding sites of KCA1 and KCA2 were determined by two-hybrid analysis whereby positive 

interactions were defined by the ability to grow on medium without histidine. The different KCA1 and 

KCA2 fragments used for the analysis are presented in Figure 3.3A. The CDKA;1-binding sites were 

mapped to the head domain (KCA11-497 and KCA236-507), the centrally located stalk region (KCA1395-926, 

KCA1473-866, KCA2425-617, and KCA2425-864), and the N-terminal part of the tail domain (KCA1660-862 and 

KCA2655-864). In addition, the full-length KCA1 protein showed CDKA;1-binding affinity (Fig. 3.3A). The 

interaction strength of the individual peptide fragments and full length was estimated by including the 

HIS3 competitive inhibitor 3-AT in the growth medium. The strongest interactions were observed with 

KCA fragments that included the conserved CDK phosphorylation site SPGR, with the exception of the 

complete tail domain (KCA1660-1273) that did not interact with CDKA;1. These data indicate that the three 

separate KCA domains contribute to the interaction with CDKA;1 and that the C-terminal part of the tail 

has an inhibitory effect on the binding with CDKA;1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Identification of CDKA;1-binding sites in KCA1 and KCA2. A, The various KCA 
fragments fused with the GAL4 DNA-binding domain (pGBT9), are shown at the left. The CDKA;1 gene was 
cloned in frame with the GAL4 transcription activation domain (pGAD424). Co-transformants (+) were spotted 
from an equal cell suspension culture on selective medium (-Leu, -Trp, and –His). As a negative control, the 
pGBT9-KCA fragments were co-transformed with the empty pGAD424 vector (-) and spotted on the same 
medium. Different concentrations of 3-AT were tested. The associated numbers correspond to the maximum 
dose of 3-AT (in mM) that allowed growth. B, Co-immunoprecipitation of 35S-methionine-labeled HA-tagged 
CDKA;1 with different 35S-methionine-labeled c-Myc tagged versions of KCA1 (KCA11-497, KCA1660-862 and 
KCA1875-1273; left) and KCA2 (KCA2425-617, KCA2655-864 and KCA2855-1267; right). C-Myc-KCA fragments (circles) 
were immunoprecipitated with anti-c-Myc antibody (left column of each panel) or with an anti-HA antibody 
after mixing with the HA-CDKA;1 (middle column of each panel). As positive control, HA-CDKA;1 (arrow) was 
incubated with the anti-HA antibody (right column of left panel). Molecular markers indicate protein size in kDa 
at the left of each panel. C, Western blotting of p10CKS1At affinity purifications of WT BY-2 cells (WT) and 
transgenic lines carrying GFP-KCA1660-1273 (tail), GFP-KCA11-497 (motor), and non-induced (-) and induced 
GFP-KCA11-1273 (KCA1). 30 µg of protein from crude extract (CE) and p10CKS1At supernatant (SN) was loaded on 
gel. The p10 CKS1At pellet (P) corresponds to purified protein from 300 µg of crude extract. In the lower panel, 
CDKA is detected after stripping and probing the membrane with an anti-PSTAIRE antibody (1/2500). The 
right panel shows a Western blot of 30 µg GFP-KCA11-1273 protein extracts from control cells (Co) and cells 
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The KCA-CDKA;1 interaction was also analyzed by co-immunoprecipitation experiments using a coupled 

transcription-translation system in which the KCA1 and KCA2 fragments were tagged with c-Myc and 

CDKA;1 with HA (Fig. 3.3B). In the control experiment, the c-Myc-tagged peptides precipitated with a 

c-Myc monoclonal antibody, confirming the correct synthesis of the KCA peptide fragments. Next, the 

c-Myc- and HA-tagged translation products were mixed and pulled down with monoclonal anti-HA 

antibodies. The KCA1 peptide fragments containing either the N-terminal tail (KCA1660-862) or the head 

(KCA11-497) co-sedimented with HA-CDKA;1, whereas the fragment containing the C-terminal tail domain 

(KCA1875-1273) did not (Fig. 3.3B, left panel). Similar results were obtained with peptide fragments of 

KCA2. The stalk (KCA2425-617) and the N-terminal part of the tail (KCA2655-864) were pulled down together 

with HA-CDKA;1, whereas the C-terminal tail (KCA2855-1267) was not (Fig. 3.3B, right panel). The results 

confirmed the interactions between KCA and CDKA;1 interactions that had been revealed by the 

two-hybrid analysis. None of the KCA fragments were able to bind with the anti-HA antibody in the 

absence of HA-CDKA;1 (data not shown). 

To investigate the association of KCA1 with CDKA;1 in vivo, CDK-protein complexes were purified from 

BY-2 transgenic cell cultures that produced GFP-tagged versions of the full-length and fragments 

containing the motor (KCA11-497) or the tail domain (KCA1660-1273) (Fig. 3.3C). Extracts of the transgenic 

cultures and control wild type (WT) BY-2 cells were mixed with p10CKS1AtCDKA;1 affinity beads. Crude 

extract, pellet, and supernatant were analyzed by Western blot and developed with polyclonal GFP 

antibody. As shown in Figure 3.3C, GFP-fusion products corresponding to the predicted molecular 

weight were detected in the separated crude BY-2 extracts. Compared to the non-induced protein 

extract (-) three kinesin-related protein products were present in the preparations from dexamethasone 

induced cells producing the full-length kinesin GFP-fusion protein. The 160-kD band corresponded to the 

intact GFP-KCA protein, whereas the smallest 40-kD protein resulted from degradation or prematurely 

arrested translation. The high molecular weight band at approximately 250 kD may represent a 

GFP-KCA1 dimer. The presence of kinesin dimers in denaturing polyacrylamide gels has been reported 

before (Fontijn et al., 2001). Pull-down assays with p10CKS1At beads indicated a strong interaction of 

CDKA;1 with KCA1, confirming the interaction between the full-length construct and CDKA;1 in 

two-hybrid experiments (Fig. 3.3, A and C). The head also interacted with CDKA;1, whereas the tail 

GFP-fusion did not co-sediment and remained in the soluble fraction. In light of the two-hybrid 

interaction data and the co-immunoprecipitation experiments, KCA1 seems to be arranged into multiple 

folding configurations with differential CDKA;1-binding capacities. Together, three CDKA;1-binding sites 

were revealed by these experiments, one in the motor domain, one in the stalk, and one in the 

N-terminal half of the tail. 

 

Localization of KCA1 in BY-2 cells 

 

An important property of kinesin molecules is their ability to attach to MTs either for transport or control 

of MT organization (Walczak, 2003). To investigate the in vivo protein localization, we fused KCA1 and 

KCA1 subdomains to the C-terminal end of GFP and transformed tobacco BY-2 suspension cells. The 
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GFP-KCA1 fusion product (KCA11-1273) resided in the cytoplasmic space excluded from the vacuoles and 

the nucleus (Fig. 3.4A). Scanning of the cell periphery and center by confocal optical sectioning did not 

reveal specific labeling of the cortical or endosomal MTs, indicating that the full-length GFP-fusion 

protein did not bind the interphase MT structures. In contrast, the N-terminal half of KCA1 containing 

the motor domain (KCA11-497) associated with MTs (Fig. 3.4B). Cortical and endocytoplasmic MTs were 

brightly fluorescent in freshly transformed calli. These observations demonstrated that the motor 

domain as a separate entity exhibited MT-binding activity. Some kinesins, such as the 

calmodulin-binding kinesin KCBP, carry a nucleotide-independent MT-binding site outside of their motor 

domain to facilitate MT sliding (Narasimhulu and Reddy, 1998; Kao et al., 2000). Therefore, we 

analyzed the KCA1 tail domain (KCA1660-1273) and expressed it as a GFP fusion protein in BY-2 cells. 

Fluorescence was observed in the cytoplasm and in the nucleus without association with MT structures 

(Fig. 3.4C). Surprisingly, both the motor and the tail GFP-fusion proteins were present in the nucleus, 

although the motor accumulated at much higher concentrations than the tail (Fig. 3.4C). Putative 

nuclear localization signals were identified in the tail domain, but not in the motor (Fig. 3.1). CDKA;1 

also concentrates in the nucleus without a classic NLS-targeting signal and associates tightly with 

interphase chromatin (Weingartner et al., 2001). In addition, it binds MTs similarly to what we observed 

with the GFP-fused KCA1 motor domain (Geelen and Inzé, 2001). Because CDKA;1 interaction with 

chromatin is resistant to mild nonionic detergent extraction, we performed a similar extraction 

procedure on BY-2 cells that produced the GFP-motor or the GFP-tail domains. Figure 3.4 (D-I) shows 

that GFP-CDKA;1 and GFP-motor were retained in the nucleus, whereas free GFP (data not shown) or 

the GFP-tail was readily and completely removed upon the detergent washes. Therefore, the motor 

protein must be tightly bound to the nuclear matrix, presumably as part of a protein complex that 

possibly also contains the CDKA;1 protein. 

 The full-length GFP-KCA1 fusion protein was followed during cell division (Fig. 3.4J). 

Throughout mitosis, the fusion protein remained in the cortical cytoplasm and the cytoplasmic strands, 

and it invaded the unrestricted space of the spindle in metaphase and anaphase cells (Fig. 3.4J). 

Fluorescence was diffuse and did not reveal fibrous structures, indicating that the fusion protein did not 

attach to MTs (Fig. 3.4J). Once the daughter chromosomes were separated, GFP-KCA1 fluorescence 

accumulated at the midline of the emerging phragmoplast where Golgi-derived vesicles accumulate to 

form the cell plate (Fig. 3.4J). In a second stage of cell plate development, concomitant with expansion 

of the phragmoplast, fluorescence was most bright at the leading edges (Fig. 3.4J). Reduced 

fluorescence was observed at the centre of the centrifugally expanding phragmoplast, where the cell 

plate starts to mature and MTs are depolymerized.  

In contrast to the findings of Kong and Hanley-Bowdoin (2002), GFP-KCA1 did not concentrate in the 

nucleus nor did it associate with condensed chromosomes in metaphase cells. As the N-terminal domain 

in front of the motor domain may be implicated in nuclear targeting or chromosome binding, we 

analyzed the subcellular localization of a C-terminal fusion of KCA1 in BY-2 cells. KCA1-GFP was 

excluded from the nucleus and vacuoles (Fig 3.4K). In the cytoplasm, it was associated with a 

reticulated network resembling the endoplasmatic reticulum (ER) (Fig. 3.4K). During division (Fig. 3.4L), 
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KCA1-GFP was distributed to the polar sides of the spindle and the midline of the phragmoplast 

reminiscent to the subcellular localization of an ER-targeted marker in BY-2 cells (Saint-Jore et al., 

2002). 

 

 

 

 

 

 

Figure  3.4 Intracellular 
localization of GFP-fused KCA 
derivatives in BY-2 cells. A, 
Localization of GFP-KCA11-1273 (full length) 
in the cytoplasm and exclusion from the 
nucleus. B, Labeling of the cytoplasmic and 
cortical MTs (inset) by the motor domain 
(GFP-KCA11-497). The motor domain is 
abundantly present in the nucleus. C, 
Presence of the tail domain 
(GFP-KCA1660-1273) throughout nucleus and 
cytoplasm. D-I, Detergent extraction of 
BY-2 cells carrying GFP-CDKA;1 (D, E), 
GFP-KCA11-497 (F, G), and GFP-KCA1660-1273 
(H, I). Images were taken before (D, F, and 
H), and after (E, G, and I), extraction with 
Triton X-100 (0.1%). GFP-CDKA;1 and 
GFP-KCA11-497 were removed from the 
cytoplasm, but remained attached to the 
nuclear matrix. In contrast, GFP-KCA1660-1273 
was removed both from the nucleus and 
the cytoplasm. J, Time series of N-
terminally tagged GFP-KCA11-1273 

fluorescence throughout cell division. At 
metaphase (0') and anaphase (5'), 
GFP-KCA1 is present in the cytoplasm of the 
cell cortex and spindle region. During 
cytokinesis (16'- 41'), GFP-KCA1 labels the 
midline (arrow) and the forming cell plate 
(arrowhead). Cell plate labeling decreases 
when the cell plate has reached the mother 
cell wall (84'). K, Association of C-terminally 
tagged KCA11-1273-GFP to a reticulate 
network at the cell periphery. L, Time series 
of KCA1-GFP subcellular localization 
throughout the cell cycle. Interphase (0’), 
metaphase (21’), early cytokinesis (92’), 
late cytokinesis (99’) and completed cell 
plate (114’).  Bar = 10 µm. 
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KCA1 and KCA2 display complex oligomerization 

 

Several observations suggested that the KCA kinesins adopt different folding configurations with distinct 

properties in terms of interaction with CDKA;1 and in relation to their subcellular localization. Firstly, the 

N-terminal part of the tail domain could bind CDKA;1 only when the C-terminal part was not included. 

The inhibitory activity of the C-terminal part of the tail was not evident when the full-length proteins 

were tested, indicating that these had taken on an alternative configuration immune to control by the 

tail domain. Secondly, the full-length KCA1 GFP-fusion product was excluded from the nucleus while the 

head and tail as separate GFP fusion fragments entered the nucleus. Thirdly, MTs were not associated 

with GFP fused to full-length proteins, but with the GFP-head fusion product. Therefore, we examined 

the intra- and intermolecular interactions of KCA1 and KCA2 peptides by two-hybrid and 

immunoprecipitation assays. 

Full-length KCA and peptide fragments containing the complete or part of the central coiled-coil region 

resulted in yeast growth (combinations pGBT-KCA1395-926 with pGAD-KCA1473-866 and pGBT-KCA2425-617 

with pGAD-KCA2425-864), indicating that both KCA1 and KCA2 could form homodimers (Fig. 3.5A). 

Evidence for heterodimerization through the central coiled coil region followed from yeast growth when 

the stalk domains of both kinesins were tested against each other (combinations of both 

pGBT-KCA2425-617 and pGBT-KCA2425-864 with pGAD-KCA1473-866). 

Two-hybrid interactions were also observed between the N-terminal and the C-terminal halves of the tail 

of KCA1 (combination pBGT-KCA1660-862 with pGAD-KCA1875-1273) and KCA2 (combination 

pGBT-KCA2425-864 with pGAD-KCA2855-1267), pointing out that the tail domains had a tendency to fold onto 

themselves. A similar type of interaction also occurred between the N- and C-terminal tail domains of 

KCA1 and KCA2 (combinations pGBT-KCA1660-862 with pGAD-KCA2855-1267 and pBGT-KCA1875-1273 with 

pGAD-KCA2425-864). The folding of the KCA tails probably occurred via bending of two predicted hinge 

regions that were present in the tail domain (Fig. 3.1B). The tail fragment upstream of the first hinge 

region was essential for the interaction (Fig. 3.5), whereas that downstream of the second hinge did not 

interact in two-hybrid tests, indicating that the tail fragment between the two hinges was responsible for 

the interactions observed (combination pGBT-KCA11067-1273 and pGAD-KCA1473-866; and pGBT-KCA21052-1267 

with pGAD-KCA2425-864, and the reciprocal combinations). The tail interactions of KCA1 and KCA2 were 

confirmed by co-immunoprecipitation assays (Fig. 3.5B). Protein fragments containing the N-terminal 

part of the tail of KCA1 or KCA2 pulled down a KCA1 fragment containing sequences downstream of the 

first hinge region (Fig. 3.5B). 
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Figure 3.5 Oligomerization of the various KCA1 and KCA2 fragments. A, Yeast two-hybrid 
analysis of KCA1 and KCA2 fragments. The KCA fragments used are described in Figure 3. The KCA 
derivates in the pGBT9 vector are indicated on the left, those in the pGAD242 at the top. Positive 
protein-protein interactions were identified by colony growth on selective medium. As control, the 
pGTB9-KCA and pGAD242-KCA constructs were co-transformed with the pGAD424 and pGTB9 empty 
vectors (referred to as empty bait and prey), respectively. The number above each dot represents the 
maximum dose of 3-AT (in mM) that still allowed growth. B, Co-immunoprecipitation assay confirming 
the yeast two-hybrid interactions. In vitro-translated 35S-methionine-labeled HA-KCA1875-1273, 
c-Myc-KCA1660-862, and c-Myc-KCA2655-864 were immunoprecipitated with anti-HA (left) or anti-c-Myc 
antibodies (middle and right). 35S-Methionine-labeled c-Myc-KCA1660-862 and c-Myc-KCA2425-864 were 
co-immunoprecipitated in the presence of 35S-methionine-labeled HA-CDKA;1 with an anti-c-Myc 
antibody (right panel). Circles indicate the c-Myc-KCA1660-862 and c-Myc-KCA2425-617 fragments and the 
arrow indicates the HA-KCA1875-1273 band. Molecular markers (kDa) are shown on the left. 
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Site-directed mutagenesis of the conserved CDKA;1 phosphorylation site affects tail folding 

 

We showed that KCA1 and KCA2 formed homo- or heterodimers and that both proteins can occur in a 

folded conformation. In addition, both proteins bind to CDKA;1 and contain CDKA;1 phosphorylation 

sites in the tail domain. Hence, we investigated whether CDKA;1 phosphorylation was implicated in KCA 

dimerization and folding. 

Western blot of BY-2 cells transformed with GFP fused to the full-length KCA1 protein (Fig. 3.3C) 

revealed two high molecular weight bands, one of which probably represents a dimeric form of 

GFP-KCA1. To test the role of phosphorylation in dimer formation, a phosphatase inhibitor was applied 

to the cells. BY-2 cells transformed with GFP-KCA1 were treated with vanadate (10 mM) (Brown et al., 

1999) and equal amounts of proteins of control non-treated and treated cells were loaded on a 

polyacrylamide gel and blotted (Fig. 3.3C). The concentration of the 250-kD band increased, at the 

expense of the 160-kD band (Fig. 3.3C). These results show that phosphatase inhibition favored the 

formation of KCA dimers. 

To investigate whether CDKA;1 phosphorylation could have implications for CDKA;1 binding and KCA 

folding, we introduced mutations in the putative phosphorylation sites at positions 698-701 [TPNK] and 

841-848 [SPGR/SPVR] in the pGBT-KCA1660-862 sequence that contains the N-terminal tail of KCA1. 

Threonine (T698] and serine (S841 and S845) were replaced by either an alanine (A) as a 

nonphosphorylable residue or by a glutamate (E) that mimics the phosphorylated residue (Table 3.1). 

We assessed the effects these changes had on the ability to interact with either CDKA;1 or with the KCA 

tail by means of two-hybrid analysis. Replacement of T698 by either an A or E had no consequences on  

 

Table I. Mutational analysis in the stalk region of the KCA1 
________________________________________________________________________ 
Point mutations CDKA;1 KCA1875-1273 KCA2855-1267 Empty vector 
________________________________________________________________________ 
T698 S841 S845 ++ +++ ++ - 
T698 → A698 ++ +++ ++ - 
T698 → E698 ++ +++ ++ - 
S841 → A841 ++ +++ ++ - 
S841 → E841 - + + - 
S841 S845 → A841 A845 + +++ ++ - 
S841 S845 → E841 E845 - - - - 
________________________________________________________________________ 
 
 

 

 

 

 

 

Point mutations were introduced at the CDKA;1 phosporylation sites 698-701 (TPNK), 841-844 (SPGR), and 845-848 
(SPVR) into the KCA1660-862 fragment in the pGBT9 backbone. The nucleotide changes resulted in nonphosphorylable 
or phosphorylation mimicry CDKA;1 sites. The resulting amino acid residue substitutions in the pGTB9-KCA1660-862 are 
shown on the left. The mutated pGTB9-KCA1660-862 vectors were tested in two-hybrid assays against the CDKA;1, 
KCA1875-1273, and KCA2855-1267 in the pGAD424 vector and against the empty pGAD424 vector to check for 
self-activation (last column). As control, the non-mutated pGTB9-KCA1660-862 was used (first row). (+) and (–) refer 
to positive and negative interactions, respectively. The increments in "+" correspond to the different 3-AT 
concentrations (0, 5, 10, and 15 mM) that allowed growth on the selective medium. 
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the interaction with CDKA;1. On the contrary, substitution of the consensus sequences further 

downstream, S841 or S841/845 (S841 and S845 double substitution) with E residues, disallowed the yeast 

strain to grow on selective medium. Replacement of these residues by an A had little or no effect. These 

results indicated that CDKA;1 binding was sensitive to the phosphorylation status of residues S841 and 

S845. 

The same mutagenized KCA1660-862 fragments were tested against the C-terminal tail fragments 

KCA1875-1273 and KCA2855-1267 in the pGAD vector. Alteration of T698 in either A or E had no effect on the 

tail interactions. However, substitution of S841 into an E residue strongly reduced the interaction with the 

C-terminal tail regions of both KCA1 and KCA2, while replacement of both S841 and S845 completely 

abolished the interaction (Table I). Changing these residues by an A did not alter the growth of yeast. 

The results suggest that phosphorylation at the consensus sequences 841-844 and 845-848 in KCA1 

influences the protein conformation that has important consequences concerning their activity. 

 

Discussion 

 

CDKA governs control over the progression of the cell division processes through the interaction with 

several partners and selective phosphorylation of target proteins. Despite considerable efforts, only few 

potential targets phosphorylated by CDKA complexes have been identified in plants so far (Reindl et al., 

1997; Nakagami et al., 1999; Boniotti and Gutierrez, 2001). The kinesin KCA1 is a novel candidate 

target that is phosphorylated in a cell cycle kinase-dependent manner in insect cells (Kong and 

Hanley-Bowdoin, 2002). We report on the interaction of KCA1, and a highly homologous protein KCA2, 

with CDKA;1 and the role of a conserved CDKA phosphorylation site in dimerization and folding. 

KCA1 and KCA2 share high sequence identity and have a conserved structural organization that is 

reminiscent to classic kinesin molecules. The N-terminal region contains an ATP-loop and an MT-binding 

site and is most similar to the motor domain of the C-terminal subfamily of kinesins (Kim and Endow, 

2000). This class of kinesins typically has a conserved neck sequence that precedes the core motor 

domain, which is sufficient and necessary to direct these molecules toward the minus-end of MTs (Vale 

and Fletterick, 1997). The same motif has been found in that of KCA1 and KCA2, suggesting that these 

kinesins confer minus-end directed motility. 

The calmodulin-binding protein KCBP is a minus-end kinesin that belongs to the C-terminal clad, which 

is nearest to that containing KCA1 and KCA2 (Dagenbach and Endow, 2004). The KCA kinesins are 

peculiar because they consist of N-terminal motor proteins that are all of plant origin. We searched the 

publicly available databases for KCA-like sequences and found representatives from plant species only. 

Therefore, the KCA kinesins seem to have evolved to a separate class of kinesins unique to plants. To 

prove that KCA kinesins are able to bind MTs, we have demonstrated that the GFP-tagged KCA1 head 

was associated with cortical and endocytic MTs in BY-2 cells. The association with MTs occurs when the 

motor domain is fused to GFP independently from the tail domain and is not observed with a fusion 

containing the full-length protein. Thus, MT-binding activity is strictly regulated through an activity 

residing in the C-terminally located tail domain. 
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Binding of MTs with KCBP is controlled by calcium through the interaction with calcium calmodulin 

(Narasimhulu et al., 1997), which binds next to the motor domain near the C-terminal end, thereby 

preventing the MT binding of KCBP and disallowing stimulation of motor ATPase activity (Deavours et 

al., 1988). The KCA1 and KCA2 sequences do not contain a predicted calmodulin-binding site, 

suggesting that MT binding is controlled by another molecule. Alternatively, MT binding and motor 

activity could also be controlled directly by an interaction between the tail and motor domains, a 

phenomenon referred to as tail inhibition (Coy et al., 1999). However, two-hybrid experiments with 

different peptide fragments did not uncover the existence of such a type of interaction in KCA. At this 

point, we do not know what controls the MT-binding activity. It has been well established that 

phosphorylation regulates motor activity in a number of cases (Reilein et al., 2001). The stimulation of 

the human kinesin Eg5, for example, is accomplished by phosphorylation of a serine in the motor 

domain. Upon phosphorylation of this particular residue by the cell cycle kinase p34cdc2, association with 

the spindle MTs is stimulated and the bipolar organization of the spindle ascertained (Blangy et al., 

1995). In the case of other motor proteins, such as dynein and kinesin II, phosphorylation events 

control MT-binding and motor activity indirectly by modulating the interacting proteins dynactin and 

kinesin light chain, respectively (Lindesmith et al., 1997; Reese and Haimo, 2000). The Arabidopsis 

KCBP interacts with a protein kinase KIPK, suggesting that in addition to control by calcium KCBP 

targeting is regulated by KIPK-mediated phosphorylation (Day et al., 2000). To test whether 

phosphorylation is important for the targeting of KCA, we applied drugs that inhibit phosphorylation to 

BY-2-producing GFP-tagged KCA full-length protein or fragments. No effect on the localization was 

observed suggesting that modulation of the phosphorylation status of KCA was not crucial for the 

interaction with MTs (data not shown). Because the MT-binding property of the GFP-KCA head was lost 

upon continuous propagation of the transgenic BY-2 cell lines, we decided to analyze the properties of 

the tail domain in more detail. 

KCBP carries an MT-binding site in the N-terminally located tail domain that is independent from 

calmodulin (Narasimhulu and Reddy, 1998). A computer-assisted analysis of the KCA1 and KCA2 tails 

did not reveal a known MT-binding signature. Instead, we found a NLS motif and hinge regions that are 

important for the flexibility and, hence, the folding properties of the tail (Kirchner et al., 1999). The 

GFP-tagged KCA1 tail leads to an accumulation of fluorescence in the nucleus in agreement with the 

presence of an NLS. However, GFP-tagged full-length KCA1 was totally excluded from the nucleus. 

Neither the N- nor C-terminally tagged KCA1 entered the nucleus, indicating that the NLS was not 

activated in these protein fusions. Kong and Hanley-Bowdoin (2002) demonstrated by means of 

immunolocalization experiments, in which an antiserum was used that did not discriminate KCA1 and 

KCA2, that abundant KCA epitopes are concentrated in the nuclei of N. benthamiana leaves and root 

cells. In addition, they showed accumulation of label at the chromosomes in chemically fixed mitotic 

cells. We interpret the absence of the full-length GFP-KCA1 protein in BY-2 nuclei and from condensed 

chromosomes as an inability of these fusion molecules to undergo the necessary refolding and/or 

interactions that are needed for nuclear import and chromosome binding.  
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As certain folding configurations may no longer have been possible because of the presence of the GFP-

moiety, a different subcellular localization of KCA was revealed. C-terminally tagged KCA1-GFP appeared 

to associate with the ER. It concentrated at the polar sides of the metaphase spindle where ER and 

Golgi derived organelles are known to congregate (Nebenführ et al., 2000; Saint-Jore et al., 2002). KCA 

antiserum also decorated the spindle poles in N. benthamiana immunolocalizations reported by Kong 

and Hanley-Bowdoin (2002). During cytokinesis, N-terminally tagged GFP-KCA1 labeled the 

phragmoplast midline and fluorescence intensity was strongest at the edges of the expanding 

phragmoplast. This localization pattern is reminiscent to that of Golgi-derived vesicles accumulating at 

the phragmoplast midline through an MT-dependent transport mechanism, involving the action of one 

or more kinesins (Smith, 2002). At this point however, it is uncertain whether KCA1 contributes to the 

transport of Golgi vesicles. Targeting of vesicular compartments to the midline would require a plus-end 

directed kinesin because of the antiparallel organization of the phragmoplast MTs. The AtPAKRP2 

kinesin is in that respect a more likely candidate for Golgi-vesicle transport to the growing cell plate (Lee 

et al., 2001). The ER, to which the KCA1-GFP was targeted, also accumulates at the phragmoplast 

midline and may have functions that are unrelated to deposition of cell plate forming vesicles 

(Nebenführ et al., 2000; Saint-Jore et al., 2002). To resolve a possible function in cytokinesis it will be 

necessary to investigate cell lines or plants in which KCA is inactivated. 

The KCA proteins have been shown to interact with CDKA;1 in two-hybrid assays (De Veylder et al., 

1997; Kong and Hanley-Bowdoin, 2002; own results). Because kinesin motor activity is often tightly 

coupled to regulatory phosphorylation and because the tail domains of KCA1 and KCA2 carry putative 

CDKA;1 phosphorylation sites, we analyzed the KCA domains responsible for CDKA;1 binding. 

Two-hybrid experiments and immunoprecipitation assays indicated that the motor domain, the central 

region, and the tail domain interacted independently with CKDA;1. For two proteins to interact, they 

have to co-localize at a given point in time. Several studies have shown that CDKA;1 is predominantly 

nuclear (Stals et al., 1997; Weingartner et al., 2001). We found that the N-terminal motor (head) and 

the tail fragments were both targeted to the nucleus. GFP-CDKA;1 and the GFP-tagged KCA1 head 

fragment were attached to the nuclear content in a Triton X-100-resistant manner. This observation 

points toward a possibility that both proteins are in a complex in interphase nuclei. Further support 

came from pull-down experiments that show a strong interaction between the KCA1 head and CDKA;1. 

CDKA;1 has also been shown to interact with interphase and mitotic MTs presumably because of 

dynamic association with cellular targets attached to the MT cytoskeleton (Stals et al., 1997; Hemsley et 

al., 20001; Weingartner et al., 2001; Joubès et al., 2003). Throughout mitosis, GFP-tagged KCA1 

remained in the cytoplasm and did not appear to associate with the PPB, spindle, or phragmoplast MTs. 

Because immunolocalization data and the GFP-fusion analysis did not indicate a prevailing association of 

KCA with MTs, other proteins than KCA must be responsible for targeting CDKA;1 to the MTs (Kong and 

Hanley-Bowdoin, 2002). 

The coiled coils in the stalk region have been implicated in kinesin oligomerization that is necessary for 

proper control of motility and cargo binding (Vale and Fletterick, 1997). The conventional kinesin I from 

neurons is a typical example that forms homodimers for progressive movement along the MT with at 
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least one motor domain in contact with the MT at all times (Bloom et al., 1988). KCA1 and KCA2 carry 

three coiled coils in the stalk domain. Two-hybrid and immunoprecipitation experiments suggested that 

the stalk contributes to homo- and/or heterodimerization of KCA1 and KCA2. Indeed, a doublet protein 

band with molecular weights corresponding to theoretically predicted weights of homomeric and dimeric 

fusion protein appeared in Western blots from BY-2 extracts that produced GFP-KCA1. In the presence 

of the broad phosphatase inhibitor vanadate, cell extracts contained more dimers, indicating that 

phosphorylation events play a role in the control over the ratio of dimers and homomers. The 

fluorescence pattern was unaltered in the vanadate-treated cells, indicating that dimerization was not 

sufficient to target KCA to MTs. Because CDKA;1 may phosphorylate the KCA tail to trigger a 

conformational shift, which, in turn, drives the dimerization of KCA1, it is possible that in the presence of 

the phosphatase inhibitor less dimer is cycled back to the monomeric form. Alternatively, CDKA;1 may 

bind to the stalk domain and compete with stalk-stalk interactions under conditions that are affected by 

vanadate. 

The KCA tail domain carries a CDKA;1 phosphorylation site that is conserved in all KCA-like kinesins 

found in the publicly available databases. Therefore, this site is the best candidate for a general role in 

the functioning of the KCA kinesins. Two-hybrid and immunoprecipitation experiments revealed that the 

N-terminal part of the tail domain interacted with CDKA;1 as well as intramolecularly between the 

N-terminal part of the tail and a downstream region flanked by the two hinges. These interactions are 

probably mutually exclusive because the tail, when tested in its entirety, did not bind CDKA;1. The 

folding of the tail fragment would have prevented an interaction with CDKA;1. 

How could CDKA;1 affect the conformational changes and functioning of KCA? The phosphorylation, 

dimerization, and the internal tail interactions are probably interdependent and may be implicated in 

phosphorylation controlled activation and/or binding of cargo. Point mutations in the putative CDKA 

phosphorylation sites of the KCA1 tail abolished the intramolecular tail interaction. Thus, KCA molecules 

not phosphorylated at the serine residues in the tail would have a compact folding conformation. This 

conformational stage might keep the KCA inactive until modulated by the cell cycle-controlled CDKA;1 

kinase. The opening up of the tail would prepare the single KCA molecules to bind the cargo they need 

to transport. Alternatively to the stimulation of cargo binding upon phosphorylation, it is also possible 

that the "opened up" kinesin tail no longer prevents the homo- or heterodimerization that is driven by 

the stalk domain. 

 

Materials and methods 

 

Isolation and cDNA characterization of KCA1 and KCA2 

 

A cDNA λ phage library of Arabidopsis thaliana (L.) Heynh. ecotype Columbia 0 was used to screen for 

the full-length clone matching fragment TH65 that had been isolated previously in a two-hybrid 

experiment with CDKA;1 as bait (De Veylder et al., 1997). Two new cDNA fragments were isolated and 

sequenced that corresponded to the C-terminal region of the KCA1 gene, including a poly(A) tail region 
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of 226 bp. The KCA2 gene was found by sequence homology with KCA1. The complete 5' terminus of 

KCA1 and the full length of KCA2 were isolated by RACE-PCR according to the manufacturer's 

instructions (Clontech, Palo Alto, CA) with the primers 5' –ATGGCCGATCAGAGAAGTAAAACC-3' and 

5'-GCCCACAACCTCTTGTTTCAGATTCTG-3' for KCA1 and 5' ATGGCGGAGCAGAAGAGTACCAA 3' and 5' 

GGATTTACTCTCGGGTTGTCAGAG 3' for KCA2. The reported nucleotide sequences have been submitted 

to the GenBank/EMBL Data Bank under accession numbers AX449336 and AX449307. 

 

Sequence analysis 

 

The Arabidopsis KCA proteins and KCA homologs were aligned by the CLUSTAL method (PILEUP) from 

the GCG Wisconsin package version 10.1 program (Accelrys, San Diego, CA) without penalizing gaps. A 

set of analysis tools was applied for a compressive sequence interpretation. As BLAST browsers, the 

programs AtBlast (http://www.arabidopsis.org/blast/) (Huala et al., 2001) and WU-BLAST2 

(http://dove.embl-heidelberg.de/Blast2/) (Altschul et al., 1990) were used to search databases for 

homologous sequences in Arabidopsis and other organisms. The Arabidopsis sequence map and gene 

redundancy were studied with different tools from the Munich Institute for Protein Sequences 

(Martiensried, Germany) (http://mips.gsf.de/proj/thal/db/index.html). Protein domains were analyzed 

with SMART (http://smart.embl-heidelberg.de/) (Schultz et al., 2000), general motifs were predicted 

and CDKA;1 phosphorylation sites were identified with ScanProsite 

(http://hits.isb-sib.ch/cgi-bin/PFSCAN) (Sternberg, 1991), and coiled coils were estimated with the 

algorithm of Lupas et al. (1991) by using the program COILS, 

(http://www.ch.embnet.org/software/COILS_form.html). 

 

Reverse transcription (RT)-PCR 

 

RNA was prepared from 200 mg of 3-day-old Arabidopsis cell suspensions, 3-week-old plants (roots, 

rosette leaves, stems, and flowers), and 1-week-old seedlings. Total RNA was isolated with the RNeasy 

Plant Mini Kit (Qiagen, Hilden, Germany) and used as template for semi-quantitative RT-PCR with 

Superscript RT II reverse transcriptase (Invitrogen, Carlsbad, CA) and oligo d(T)18. From the 50 µl PCR 

reaction, 10 µl was separated on a 1% tris-acetate ethylenediaminetetraacetic acid agarose gel and 

transferred onto Hybond N+ membranes (Amersham Bioscience, Little Chalfont, UK). The membranes 

were hybridized at 65°C with fluorescein-labeled probes (Gene Images random prime module; 

Amersham Biosciences) and detected with the CDP Star detection module (Amersham Biosciences). For 

RT-PCR, the following primers were used: 5' GTGCCGGTTTTATCCTCGTTGACATCC 3' and 

5' CGTATCAAGATATCGAACAGGGG 3' for the KCA1 gene (position 1185-2556 bp); 

5' CCGATGATCGTCAACATTTGTCCAAGTGC 3' and 5' ACGGATTCTTGAAACTACAGATACC 3' for the KCA2 

gene (position 1275-2592 bp); and 5' CTAAGCTCTCAAGATCAAAGGCTTA 3' and 

5' TTAACATTGCAAAGAGTTTCAAGGT 3' for Arath;ACT2 (U41998). 
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For cell cycle dependent expression analysis, a suspension culture of the Arabidopsis cell line 

MM2d (Menges and Murray, 2002) was grown in 1 x Murashige and Skoog medium, supplemented with 

3% sucrose, 0.5 mg/mg/l naphthalene acetic acid, 0.05 mg l-1 kinetin (pH 5.7). MM2d cells were 

maintained weekly by subculturing of 5 ml stationary culture in 45 ml of fresh medium in 250 ml 

Erlenmeyer flasks and grown at 27°C in the dark on a shaker (130 rpm). The cells were synchronized at 

the G1/S boundary by treating them with 4 µg/ml aphidicolin for 14 h. To obtain cell populations at 

different stages of the cell cycle, cells were washed twice and then released into complete medium. 

They were incubated under cultivation conditions as above, and samples were taken hourly after release 

of the drug. The metaphase/anaphase index was determined according to Menges and Murray (2002). 

RNA was prepared following the method described by Leyman et al. (2000) and used as a 

template for the SuperScriptTM First-Strand Synthesis System for RT-PCR (Invitrogen). RT-PCR primers 

for quantification of the mRNA level were as follows; 5' CCGGAGACCCTCATTAGAA 3' and 5' 

ACTCCAGTTCACTAACAAGGTC 3' for KCA1; 5' TCGACTGAAACCGATGTGTC 3' and 5' 

CTAGAGTATCGAGCCCGTGTG 3' for KCA2; 5'GGTGAAGGAACTTACGGTGTGG 3' and 5' 

GCTCCAGGGCGGCTCTTGCG 3' for CDKA;1. For semi-quantitave RT-PCR analysis, 27 cycles were run for 

KCA1 and KCA2 and 24 cycles were run for CDKA;1. 

 

Two-hybrid experiments 

 

The CDKA;1 interaction site was mapped by constructing deletion fragments of the KCA genes. The 

DNA fragments were created by PCR with the Pfu polymerase (Stratagene, La Jolla, CA) and subcloned 

in the pGBT9 vector. The CDKA;1 was inserted into the pGAD424 vector (Clontech). A series of deletion 

fragments of KCA1 and KCA2 cDNA were amplified with primers containing EcoRI and BamHI enzyme 

restriction sites. The amplified DNA fragments were inserted into the EcoRI and BamHI sites of the 

pGBT9 and pGAD424 vectors. The original pGADTH65 clone (residues 473-866) was also included as a 

positive control for CDKA;1 binding. Yeast strain HF7c reporter strain (MATa ura3-52 his3-200 ade2-101 

lys2-801 trp1-901 leu2-3112 gal4-542 gal80-538 LYS2::GAL1UAS-GAL1TATA-HIS3, 

URA3::GAL417-mers(x3)-CYC-1TATA_Lacz (Clontech) was co-transformed with pGADKCAx (x is deletion 

fragment) and pGADCDKA;1 or the empty vector as described previously (De Veylder et al., 2001). After 

incubation on medium without leucine and tryptophan, colonies were plated on histidine-lacking 

medium. The strength of the protein-protein interactions were measured by the ability to grow on 

histidine-free medium supplemented with 0, 5, 10, or 15 mM of 3-amino-1,2,4-triazole (3-AT; 

Sigma-Aldrich, St. Louis, MO). 

 

In vitro transcription-translation and immunoprecipitation 

 

The same KCA deletion fragments generated by PCR for the two-hybrid assays were used to generate 

the pBSK-c-Myc and pBSK-HA vectors (Stratagene). The Arabidopsis CDKA;1 was recloned from the 
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pGADCDKA;1 vector in the pBSK-HA vector with EcoRI and BamHI restriction sites. Plasmids were 

sequenced to verify in-frame cloning with the c-Myc-tag and hemaglutinin (HA) tag. 

In vitro transcription and translation experiments were performed separately for each construct 

with the TNT®T7-coupled wheat germ extract kit (Promega, Madison, WI) primed with the appropriate 

template for 90 min at 30°C. For immunoprecipitation assays, 10 µl of the c-Myc-KCA total in vitro 

translated extract (50 µl) was mixed with 5 µl of the HA-CDKA;1 total in vitro translated extract, diluted 

at 1:5 in Nonidet P40 buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Nonidet P40, 1 mM 

phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin/aprotinin/pepstatin), and incubated for 2 h at 4°C 

with anti-HA antibodies (9E10; BabCo-Covance, Berkeley, CA). Protein-A-Sepharose beads (40 µl 25% 

[v/v]] were added and incubated for 1 h at 4°C. The beads were washed four times with 1 ml Nonidet 

P40 buffer. Immune complexes were eluted with 10 µl of 2× sodium dodecyl sulfate sample buffer, 

analyzed by a 13% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiographed. 

The same procedure was followed using the c-Myc-KCAs and HA-KCAs constructs to test for 

dimerization. 

 

Construction of GFP-fusion proteins 

 

The KCA1 full-length open reading frame and fragments were cloned behind the open reading frame of 

enhanced GFP by using the GATEWAY® system (Invitrogen). GATEWAY-compatible vectors were 

designed by inserting the EGFP-coding region and the GATEWAY rfA cassette into the pBin19 backbone. 

The expression of the fusion was under the control of the cauliflower mosaic virus 35S promoter and 

35S polyadenylation signal. For the construction of the inducible vector, a similar strategy was followed. 

The EGFP-rfA cassette was cloned into the pTA7002 vector allowing dexamethasone 

(Sigma-Aldrich)-inducible expression of the fusion protein (Aoyama and Chua, 1997). 

The KCA1 full-length and fragments were amplified with GATEWAY attB-flanked primers with 

the Pfx polymerase (Invitrogen). Via BP and subsequent LR reactions, the fragments were introduced 

into the destination vectors described above. The borders of the inserted fragments were sequenced 

prior to further analysis.  

 

Growth, transformation, and fluorescence microscopy 

 

Growth of BY-2 cells was according to Nagata et al. (1992). The transformation was performed with 

Agrobacterium tumefaciens strain LBA4404.pBBR1MCS-5.virGN54D (van der Fits et al., 2000). For 

co-cultivation, 4 ml of a 3-day-old culture (10 times diluted) was mixed with Agrobacterium cultures. 

After 3 days at 28°C, the cells were plated on BY-2 medium containing 500 µg/ml carbenicillin, 

200 µg/ml vancomycin, and 100 µg/ml kanamycin for the constitutive vector or 30 µg/ml hygromycin 

for the inducible vector. 

BY-2 cultures were transformed with pBin19GFP carrying the KCA1 motor (KCA11-497), and the 

KCA1 tail (KCA1660-1273), leading to constitutive expression of fusion protein.  For subcellular localization 
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of the full-length KCA1 protein, the dexamethasone inducible vector pTA7002GFP carrying the KCA11-1273 

fragment was used. Calli producing GFP fusion proteins were identified by fluorescence microscopy. 

BY-2 cells transformed with the inducible expression vector were induced overnight on BY-2 agar 

containing 10 µM dexamethasone. Callus material was transferred on a slide with a coverslip, and 

observed with an epifluorescence microscope (Axioplan 2; Zeiss, Jena, Germany) equipped with a 

fluorescein isothiocyanate filter set. GFP-positive calli were transferred to liquid BY-2 medium with 

selection and grown as cell suspensions. 

Confocal images were taken with a scanning confocal  microscope (LSM  510; Zeiss) with  argon laser  

illumination at 488 nm and a fluorescein isothiocyanate filter set. For transmission light images, 

differential interference contrast optics was used. Images were taken with 25% laser power to reduce 

photobleaching. 

 

Detergent extraction of cells 

 

Cells were incubated in liquid BY-2 medium containing 0.1% Triton X-100 (Sigma-Aldrich) for 15 min 

with gentle agitation. Cells were washed twice in BY-2 medium, transferred to a slide, and covered with 

a coverslip. The detergent-extracted cells were observed directly with the confocal microscope. 

 

Protein gel blot analysis 

 

Three day old liquid cultures of BY-2 transgenic lines, also used for GFP-localization experiments, and 

wild type BY-2 cells, were ground in liquid nitrogen with a mortar and pestle and homogenized in 

ice-cold P10 buffer (25 mM Tris-HCl, pH 7.6, 15 mM ethyleneglycol-bis(ß-aminoethyl)tetra-acetate, 

1 mM dithiothreitol, 15 mM MgCl2, 85 mM NaCl, 15 mM pNO2PhePO4, 60 mM glycerol phosphate, 0.1% 

NP40, 1 mM NaF, 0.1 mM Na3VO4, and 100 µl protease inhibitor cocktail; Sigma-Aldrich). The 

homogenate was centrifuged at 10,000 g for 10 min in an Eppendorf centrifuge 5417 at 4°C to remove 

cell debris. The supernatant was then centrifuged at 14,000 g for 10 min. A sample was taken and kept 

on ice as crude extract. Then, 50 µl of 50% (v/v) p10CKS1At Sepharose beads was added to 300 µg of 

proteins and incubated at 4°C for 1 h on a rotating wheel. The beads were collected by centrifugation; 

the supernatant was removed and kept on ice. Beads were washed three times with bead buffer 

(50 mM Tris-HCl pH 7.5, 5 mM NaF, 250 mM NaCl, 5 mM EGTA, 5 mM EDTA, 10 µg/ml leupeptin, 

10 µg/ml aprotinin, 0.1 mM benzamidine, and 0.1 mM Na3VO4). Loading buffer (Laemmli, 1970) was 

added and the samples were heated for 10 min at 95°C. After centrifugation at 14,000 g for 4 min, 30 

µg crude extract protein, 30 µg p10CKS1At supernatant, and  p10CKS1At pellet purified from 300 µg initial 

crude extract was separated on a 12% gel. The amount protein loaded was verified in a separate gel 

by coomassie staining. Gels were blotted onto nitrocellulose membranes (Hybond-C super; Amersham 

Biosciences) in 190 mM glycine and 25 mM Tris with a liquid mini-blotting system (Bio-Rad, Hercules, 

CA) for 1 h. The protein on the blotted membrane was verified by Ponceau red staining. Membranes 

were blocked overnight at 4°C in Tris buffered saline with 0.1% Tween-20 (TBST) and 5% skimmed milk 
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(BD Difco; Becton Dickinson, Franklin Lakes, NJ). For immunodetection, an anti-GFP rabbit serum 

(Chemicon, Temecula, CA) was applied in the blocking buffer at a dilution of 1:1000 and anti-rabbit Ig 

horseradish peroxidase from donkey (Amersham Biosciences) was used as a second antibody at a 

dilution of 1:10000. Membranes were stripped at 60 C° for 30 min. in buffer containing 100mM β-

mercapto-ethanol, 2% SDS, and 62,5 mM Tris-HCl pH 6.7. They were washed twice with TBST for 10 

min., blocked in TBST containing 3% skimmed milk for 2 h. at room temperature. CDKA protein was 

detected using a 1/2500 dilution of cdc2 PSTAIRE antibody (Santa Cruz Biotechnology, Santa Cruz, 

California) and a 1/10000 dilution of secondary anti-rabbit Ig horseradish peroxidase from donkey in 

TBST with 3% skim milk. Proteins were detected by the chemiluminescence procedure (Bio-Rad). 

For drug analysis, 10 mM Na3VO4 was added to a 2-day-old BY-2 culture, transformed with the inducible 

GFP-KCA1 construct. As control, a non-treated culture was cultured simultaneously. After 24 h of growth 

at 28°C, crude protein extracts were prepared in the P10 homogenization buffer. Thirty µg of proteins 

was loaded on a 12% gel and processed as described above. 

 

Site-directed mutagenesis 

 

Point mutations were introduced by PCR site-directed mutagenesis in the pGTB-KCA1660-852 plasmid with 

the Advantage® polymerase mix (Clontech). The linear PCR product was circularized by ligation. The 

nucleotide changes were verified by sequencing the KCA1 inserts in two directions. 
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Chapter page: Tobacco BY-2 cells expressing GFP fused to the KCA1-del-Nstalk fragment, imaged 

using confocal microscopy (GFP filter settings). 
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Abstract 

 

Surrounded by a rigid cell wall plant cells are stationary and require a strict regulation of the 

division plane to control the direction of growth and the spatial organization of their organs. The 

mechanisms that underlie division plane establishment are poorly understood. The kinesin KCA1 

was previously shown to associate with the developing cell plate at the phragmoplast midline in BY-

2 cells. Here, we report that KCA1 is also targeted to the plasma membrane. Cell plate and plasma 

membrane accumulation was independent of the MT binding motor domain. Brefeldin A prevented 

association to these compartments, indicating that a Golgi derived vesicle traffic route was required. 

Different peptide domains in the KCA1 stalk/tail domain were responsible for cell plate and plasma 

membrane targeting, suggesting that two separate targeting mechanisms control the localization of 

the KCA1 protein. At the onset of mitosis, GFP-KCA1 accumulated at the plasma membrane. 

Simultaneously, a region depleted in GFP-KCA1 fluorescence appeared at the plasma membrane 

corresponding to the site of the preprophase band. We designated this plasma membrane domain 

the KCA1 depleted zone or KDZ. Throughout mitosis, the KDZ revealed the division site and served 

as guide for phragmoplast and cell plate expansion. Upon plasmolysis, strong connections were 

revealed between the cell wall and plasma membrane at the KDZ. In conclusion, the data show that 

KCA1 reveals a subdomain of the plasma membrane that defines the division site in plant cells. 

 



Chapter 4 

96 

Introduction 

 

In plants, the presence of a cell wall shared with neighboring cells permanently defines spatial 

relationships between cells and puts considerable constraints on the type of shaping that can be 

achieved during cell expansion. Thus for morphogenesis to proceed normally, it is necessary for 

plants to regulate the positioning of the new wall that partitions the parent cell at cytokinesis.  

Control of cell plate alignment involves two steps, the establishment of the site at the cortex where 

the cell plate will insert in the mother cell wall, called the division site, and guidance of the 

phragmoplast to the division site during cytokinesis. The establishment of the division site occurs 

long before cytokinesis and involves the formation of the PPB. This ring of transverse MTs and actin 

filaments encircles the cell at the cortex. The PPB appears first as a broad band, which then 

narrows to a thinner ring. Simultaneously the prophase spindle is formed around the nucleus, 

prepared to catch the chromosomes once the nuclear membrane dissolves. When this occurs, the 

PPB disappears leaving the cell cortex devoid of cortical MTs for the rest of cell division (Wick, 

1991).  

After PPB breakdown a hallmark is left behind to guide the phragmoplast to the plasma membrane 

at the division site. How the division site is marked remains elusive. Cyclin-dependent kinases 

(CDKs) have been localized to PPB (Colasanti et al., 1993; Stals et al., 1997; Weingartner et al., 

2001). One hypothesis is that marker proteins are phosphorylated by CDKs (Cleary, 1995). 

Moreover, injection of CDKs accelerates the disassembly of the PPB, also suggesting that cell cycle 

progression is involved in marking the site (Hush et al., 1996). At the cytological level, the division 

site is marked by cell wall thickenings. Thus the function of the PPB in division site establishment 

could be to direct the local deposition of membranes and molecules in the plasma membrane 

and/or cell wall that serve as landmarks for the guidance of the phragmoplast during cytokinesis 

(Smith, 1999). The importance of the PPB in division plane establishment is supported by ton/fass 

mutants lacking a PPB, that fail to correctly align new cell plates (Torresruiz and Jurgens, 1994; 

Traas et al., 1995).   

When the PPB disappears, actin filaments at the division site also dissemble but are retained 

elsewhere in the cell cortex. The region of its depletion at the division site is called the actin 

depleted zone (ADZ) (Staehelin and Hepler, 1996). Persistent cortical actin in mitotic cells define 

two cytoplasmic domains separated by the ADZ, which will be portioned during cytokinesis (Cleary 

et al., 1992; Cleary, 1995; Pickett-Heaps et al., 1999). Apart from actin, there are no other proteins 

known that differentially label the division site throughout cell division. 

During cytokinesis, Golgi derived vesicles containing cell wall components, are transported along 

the phragmoplast MTs to the midline where fusion of these vesicles initiates the formation of a new 

cell plate. To complete cytokinesis, the phragmoplast expands centrifugally until it reaches the 

mother cell wall at the division site (Verma, 2001). The guiding mechanisms that direct the 

phragmoplast to the division site remain largely unknown. Actin-myosin complexes are believed to 

be involved in this process. Through its absence at the division site, actin can balance pulling forces 
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from either side of the ADZ to guide the cell plate towards the division site (Wick, 1991). A number 

of kinesins have been localized to the phragmoplast. Till now, their functions seem to be more 

related to the organization and dynamics of the phragmoplast structure and the transport of Golgi 

derived vesicles to the midline (Bednarek and Falbel, 2002). 

The kinesin KCA1 was previously found at the phragmoplast midline (Vanstraelen et al., 2004). 

Here, we show that KCA1 also labels the plasma membrane. Both cell plate and plasma membrane 

association were motor independent but required controlled vesicle trafficking. KCA1 accumulated 

at the plasma membrane in a cell cycle controlled manner, except at the division site where it 

remained absent from preprophase till the end of cytokinesis. During cytokinesis, the cell plate was 

guided to the KCA1 depleted zone at the plasma membrane. Differential localization of KCA1 at the 

division site was invariable linked to the presence of the PPB MTs and occurred independent of the 

presence of actin filaments at the cell cortex. Moreover, strong connections are maintained between 

the plasma membrane and the cell wall at the division site upon plasmolysis. The data show for the 

first time that the plasma membrane is differentially marked by a kinesin motor protein that marks 

the division site in plant cells. 

 

Results 

 

KCA1 is localized to the midline of the cylindrical and ring-like phragmoplast 

 

Previously, we reported the localization of KCA1 in BY-2 cells and showed that GFP-KCA1 

accumulated at the midline of the expanding phragmoplast (Vanstraelen et al., 2004). To study the 

behavior of the GFP-KCA1 in relation to MT organization, we used a monomeric red fluorescent 

protein tagged tubulin (TUA2-RFP) that labels all MT arrays throughout cell division (Van Damme et 

al., 2004). Stably transformed BY-2 cells expressing the GFP-KCA1 construct were transformed with 

the TUA2-RFP construct and green and red fluorescence was followed in time using the confocal 

microscope.  

During prophase, TUA2-RFP labeled the PPB, a ring of MTs seen as two wide marks on either side 

of the nucleus in confocal optical sections (Fig. 4.1, 0’). As the PPB narrowed to a thinner band, the 

prophase spindle assembled around the still intact nucleus at the centre of the cell (Fig. 4.1, 60’). 

Subsequently, the nucleus dissolved and MTs invaded the space previously occupied by the nucleus, 

forming the spindle. During meta- and anaphase, TUA2-RFP labeled the spindle MTs (Fig. 4.1, 100’-

125’). In contrast, GFP-KCA1 did not associate to MTs of the PPB or spindle. It remained present in 

the cortical and endoplasmic cytoplasm during prophase (Fig. 4.1). The GFP signal invaded the 

spindle area after nucleus breakdown but was not associated to MTs. At the start of cytokinesis, 

TUA2-RFP labeled the MTs of the cylindrical phragmoplast, except at the midline where the cell 

plate was formed (Fig. 4.1, 135’-140’). As cell plate formation proceeded, the TUA2-RFP labeled 

phragmoplast reorganized into a ring–like structure and expanded further towards the mother cell 

wall (Fig. 4.1, 144’-154’). GFP-KCA1 was not associated with the phragmoplast MTs. It highlighted  



Chapter 4 

98 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The localization of GFP-KCA1 relative to MTs during cell division. A, Time-lapse 
photography recording of a BY-2 cell expressing GFP-KCA1 and TUA2-RFP. Subsequent images show different 
stages throughout mitosis: early preprophase (0’), late preprophase (60’), metaphase (100’), anaphase (125’) and 
cytokinesis with cylindrical (135’-140’) and ring-like (144’-154’) phragmoplast. The left column shows the merged 
fluorescence, the middle GFP-KCA1 in green and the right TUA2-RFP in red. Time points are indicated in the top 
left corner in minutes. Bar = 10 µm. B, Accumulation of GFP-KCA1 at the plasma membrane during mitosis. The 
absolute fluorescent intensity (y-axis) indicated as arbitrary units in the Y-axis, from a 5 µm long plasma 
membrane stretch was plotted as a function time (x-axis). The corresponding mitotic phase is indicated below. 
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the midline of the cylindrical phragmoplast and the signal expanded simultaneously with 

phragmoplast growth. GFP-KCA1 remained present at the cell plate where MTs had depolymerized 

suggesting that KCA1 was not associated with the MT plus-ends of the phragmoplast (Fig. 4.1, 

152’). However, GFP signal was highest at the leading edges of the cell plate, where phragmoplast 

MTs guide the delivery of Golgi derived vesicles to the cell plate (Fig. 4.1, 154’). Areas of highest 

GFP-KCA1 fluorescence coincided with peaks of TUA2-RFP fluorescence, suggesting that KCA1 

arrives at the cell plate via MTs (data not shown). Absence of yellow color in the overlays indicates 

that KCA1 is not concentrated at the MTs of mitotic arrays. The labeling of KCA1 at the cell cortex is 

discussed later. 

 

The KCA1 tail domain confers targeting to the cell plate  

 

Comparison of the predicted structure of the KCA1 kinesin revealed a tripartite domain organization 

typical for kinesins, consisting of a head, stalk and tail domain (Fig. 4.2A). To identify the region 

responsible for midline localization, we constructed deletion fragments of the KCA1 open reading 

frame. 

  

 

 

 

 

 

Figure 4.2 Identification of the KCA1 domain responsible for subcellular targeting. A, 
Secondary structure and domain organization of KCA1. Neck with conserved GN motif for minus-end directed 
motility; black box, motor domain; dashed box, coiled coils; grey boxes, conserved CDKA;1 phosphorylation sites; 
black arrowheads and hinge regions, H1 and H2. B, nested KCA1 deletion fragments form the N-terminus. GFP 
was fused N-terminally to the full length and deletion fragments. C, Schematic diagram of the nested KCA1 
deletion fragments from the C-terminus. GFP was fused C-terminally to these fragments. D-K, GFP-localizations of 
the KCA1 fragments. BY-2 cells, stably expressing respectively GFP-KCA1 (D), GFP-KCA1-del-Ncoil (E), GFP-KCA1-
del-Nmotor (F), GFP-KCA1-del-Nstalk (G), GFP-KCA1-del-NH1 (H) GFP-KCA1-del-NH2 (I), KCA1-del-C-GFP (J) and 
KCA1-del-CH2-GFP (K) were imaged at cytokinesis. The accumulation of GFP signal at the cell plate (arrow) and 
the presence of the KDZ (arrowhead) are indicated. Bar = 10 µm. 99 
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Figure 4.2B shows the nested deletions from the N-terminal end of KCA1 that were fused to the C-

terminus of GFP. The fusions were stably transformed in BY-2 cells and their localization patterns 

were observed throughout cell division (Fig. 4.2, D-I). Deletion of the N-terminal motor up to the 

beginning of the tail domain did not abolish accumulation of GFP signal at the phragmoplast midline 

(Fig. 4.2, D-G). However, the midline was not labeled when the N-terminal part of the tail domain 

was removed (Fig. 4.2H). The results indicated that the tail domain of KCA1 was sufficient for 

midline localization, and that the N-terminal part of the tail domain contains sequences that are 

essential for targeting to the midline. Surprisingly, neither the motor domain nor the stalk domain 

was necessary for midline localization. The importance of the KCA1 tail was further tested by a 

series of C-terminal deletion fragments fused to the N-terminus of GFP (Fig. 4.2C). The removal of 

a small part of the C-terminus up to the second hinge abolished accumulation at the cell plate (Fig. 

4.2, J and K). Thus the N- and the C-terminal part of the tail domain are essential for cell plate 

targeting. 

 

KCA1 localizes to a membrane compartment in the cell plate 

 

As motor activity was not required for KCA1 to concentrate at the phragmoplast midline and since 

there were no indications for the MT binding activity in the stalk or tail domain, we tested whether 

KCA1 travels via the vesicle trafficking machinery similar to the cytokinesis specific SNARE protein 

KNOLLE (Lukowitz et al., 1996). Brefeldin A (BFA) was applied to GFP-KCA1 expressing cells to 

inhibit the vesicle trafficking pathway and prevent the coating of vesicles at the Golgi apparatus. As 

a consequence, Golgi derived vesicles no longer accumulate at the phragmoplast midline during 

cytokinesis and no cell plate is formed (Yasuhara et al., 1995; Yasuhara and Shibaoka, 2000).  

GFP-KCA1 expressing cells were treated in prophase and monitored throughout cytokinesis (Fig. 

4.3A). Cytokinesis started around 81 min after adding BFA and a phragmoplast was formed as 

indicated by the diffuse green fluorescence in the centre of the cell between the two negatively 

stained daughter nuclei. The corresponding differential interference contrast (dic) image shows that 

no cell plate is formed (compare with first dic image of Fig. 4.3B) and consistent with this, GFP-

KCA1 signal was absent from the phragmoplast midline. Despite the absence of a forming cell plate, 

the phragmoplast reorganized in a ring-like structure (Fig. 4.3A, 124’) and expanded till it reached 

the mother cell wall (Fig. 4.3A, 155’). Thus, KCA1 travels via the vesicle traffic pathway towards the 

phragmoplast midline, but phragmoplast expansion did not require the formation of a cell plate. 

Taxol is an inhibitor of MT depolymerization and therefore promotes the stability of MTs. In 

cytokinetic cells, taxol treatments cause an increase in the accumulation of vesicles at the midline 

while simultaneously inhibiting the centrifugal growth of the phragmoplast (Yasuhara et al., 1993). 

Applying this drug to young phragmoplasts froze the outward growth of the phragmoplast within 10 

minutes (Fig. 4.3B).  

GFP-KCA1 associated fluorescence accumulated at the phragmoplast midline without any centrifugal 

expansion of the signal, indicating that delivery of GFP-KCA1 containing vesicles was maintained. 
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The results support a MT dependent transport of KCA1 to the cell plate presumably via Golgi-

derived vesicles. 

 

 

 

 

 

 

 

 

 

Figure 4.3 GFP-KCA1 is associated with membranes of the cell plate. A, BFA was added to a 
final concentration of 20 µg/mL to a GFP-KCA1 prophase cell. Images were made afterwards during cytokinesis 
of the cylindrical (81’- 84’) and ring-like (124’) phragmoplast till the end of cytokinesis (155’). The image to the 
left is a differential interference contrast (dic) image corresponding to 81’ after BFA was added. Bars indicate the 
position of the phragmoplast leading edges and arrowheads designate the nucleus. B, Taxol treatment of a GFP-
KCA1 expressing cell showing accumulation of GFP fluorescence at the phragmoplast midline. The dic image 
corresponds to time point 20’. Taxol (20µM) was added to the sample after the first fluorescent image taken. 
Arrows indicate the cell plate. C – F show the fluorescent (C and E) and corresponding dic (D and F) images of 
detergent treated GFP-KCA1 and MAP65-3-GFP cells. First image of each row is taken before adding 0,1% Triton-
x-100. GFP-KCA1 is extracted from the cell plate 4’ after adding the detergent, whereas MAP65-3-GFP remains 
associated with the MT plus-ends of the phragmoplast. Black (D and F) and white (C and E) arrows indicate the 
cell plate. Time points after adding BFA, Taxol or Triton-X-100 are indicated at the top right corner. Bar = 10µm. 
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To investigate the association of KCA1 with membranes, we treated GFP-KCA1 cells with the 

detergent Triton X-100 (Fig. 4.3, C and D). After four minutes of detergent extraction, GFP-KCA1 

disappeared from the phragmoplast midline while the cell plate was still present. Eight minutes 

later, the cell plate itself was completely dissolved and GFP-KCA1 appeared in a punctate pattern 

around the former cell plate position and at the cell cortex, close to the perforated plasma 

membrane. To test the specificity of the extraction method, BY-2 cells expressing AtMAP65-3-GFP 

were also treated with detergent (Fig. 4.3, E and F). AtMAP65-3 is a MT-associated protein that 

accumulates at the midline of the phragmoplast (Hussey et al., 2002). Fused to GFP, it specifically 

accumulates during cytokinesis and labels the center of the phragmoplast where MTs overlap (Van 

Damme et al., 2004a). Application of Triton X-100 to cytokinetic cells did not remove MAP65-3-GFP 

from the midline (Fig. 4.3, E and F). However, the phragmoplast did not enlarge in these cells, 

suggesting that interference with membrane structure was detrimental to cell plate formation and 

expansion. The results show that GFP-KCA1 is bound to membranes of the cell plate and prove that 

MTs do not anchor GFP-KCA1 at phragmoplast midline. 

To provide further evidence that KCA1 was associated to a membrane compartment of the cell 

plate, we localized the endogenous KCA protein using an antibody raised against the KCA2 stalk 

domain (anti-KCA2;stalk), which recognizes both KCA1 and 2 on a western blot (data not shown). 

Root tips of Arabidopsis seedlings were processed for cryofixation and gold labeling was performed 

on the sections with the anti-KCA2;stalk serum and pre-immune serum as control. Panels of Figure 

4.4 are derived from a dividing cell with an expanding cell plate at the centre of the cell.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Endogenous KCA1 is localized to the developing cell plate and the plasma 
membrane. Immunogold labeling of 5 days old Arabidopsis root tips with anti-KCA2;stalk antiserum (A, C and 
E) and pre immune serum (B, D and F) viewed by the transmission electron microscope. Images A, C and E and 
images B, D and F are each derived from a single dividing cell with a ring-like phragmoplast. Gold particles 
(indicated by arrows) are present both at the cell plate region of the ring-like phragmoplast (A) and at the centre 
of the cell plate where phragmoplast MTs have depolymerized (C). MTs were not conserved in these 
preparations. Gold label was also observed at the plasma membrane (E). Label was absent from the cell plate (B 
and D) and the plasma membrane (F) in cells incubated with the pre-immune serum. Bar = 200 nm. 
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The pre-immune serum did not reveal any label at the cell plate (Fig. 4.4, B and D). On the 

contrary, KCA associated Gold label was present both at the centre of the cell plate and at the 

leading edges (Fig. 4.4, A and C), in agreement with the localization of GFP-KCA1 in expanding cell 

plates (Fig. 4.1, 152’). The large majority of the Gold label occurred at the periphery of the dense 

cell plate material, suggesting it was bound to the cytoplasmic side of the cell plate membrane. The 

Golgi was only scarcely labeled, indicating that KCA1 is not resident to this compartment. Together 

the data confidently show that the KCA1 kinesin is a membrane-associated protein traveling on 

vesicles to the cell plate.  

 

KCA1 is associated with the plasma membrane 

 

In addition to cell plate labeling, we observed bright GFP-KCA1 fluorescence at the cell cortex (Fig. 

4.1, Fig. 4.2D and Fig. 4.3C). Upon detergent treatment, cortical labeling was lost, whereas 

fluorescence in the cytoplasm remained (Fig. 4.3C, 4’). Therefore we analyzed the association of 

GFP-KCA1 with the plasma membrane. 

To visualize the plasma membrane, GFP-KCA1 BY-2 cells were stained with FM4-64 that exhibits 

long-wavelength red fluorescence. FM4-64 belongs to a group of styryl FM dyes that have 

previously been used to demonstrate endocytosis in animals (Betz et al., 1996), yeast (Vida and 

Emr, 1995) and plant cells (Emans et al., 2002). The green fluorescent analog FM1-43 showed a 

gradual distribution in BY-2 cells, first staining the plasma membrane, later after 30 min it 

accumulated in cytoplasmic vesicles and subsequently after 120 minutes it labeled the vacuolar 

membrane (Emans et al., 2002). FM4-64 showed a similar behavior in BY-2 cells expressing GFP-

KCA1 (data not shown). During the first 20-30 min, red fluorescence was exclusively present at the 

plasma membrane (Fig. 4.5A). The yellow/orange color in Figure 4.5 indicates colocalization of GFP-

KCA1 and FM4-64 at the plasma membrane. To assess the level of co-localization, green and red 

fluorescence intensity was measured in FM4-64 stained cells expressing untagged GFP, GFP-KCA1, 

or AtFH6-GFP, a fusion protein that is targeted to the plasma membrane (Favery et al., 2004; Van 

Damme et al., 2004). Figure 4.5 shows the fluorescence levels along a line that sections the plasma 

membrane at both sides of the observed cell. At the position where the plasma membrane is 

crossed, green and red signal intensified and partially overlapped. In cells that expressed GFP-KCA1 

and AtFH6-GFP, the fluorescence peaks of GFP and FM4-64 perfectly coincided (Fig. 4.5, A and C). 

This was not the case for cells producing free GFP molecules, in which fluorescence was also 

abundant at the cell periphery, but the green and red fluorescence peaks were clearly separated 

(Fig. 4.5B). These results indicated that GFP-KCA1 was closely associated with the plasma 

membrane in BY-2 cells. The presence of endogenous KCA1 protein at the plasma membrane was 

also investigated by immunolocalisation. In EM sections of dividing Arabidopsis root cells, anti-

KCA2;stalk serum was concentrated at the plasma membrane (Fig. 4.4E). Pre-immune serum did 

not label the plasma membrane (Fig. 4.4F). Thus, KCA kinesin is bound to the plasma membrane. 
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GFP-KCA1 displays a mitosis specific differential localization at the plasma membrane 

 

We noticed that GFP-KCA1 fluorescence at the plasma membrane was most prominent in cells that 

were dividing (Fig. 4.1A). Therefore, the localization of KCA1 at the plasma membrane was followed 

throughout the cell cycle. The plot in Figure 4.1B shows the fluorescence intensity at the plasma 

membrane of a GFP-KCA1 transformed cell from G2 until the next G1 phase. During prophase, GFP-

fluorescence gradually increased and reached a maximum at metaphase that was maintained until 

cytokinesis. Once the cell plate reached the mother cell wall, plasma membrane fluorescence 

quickly decreased to the levels from before mitosis. During the period of strong fluorescence at the 

plasma membrane, GFP-KCA1 was not homogenously distributed along the plasma membrane, but 

showed a zone at the equatorial plane where it was depleted (Fig. 4.1 and Fig. 4.6, A and D). This 

zone of about 7 µm wide (n=35) occurred at a position opposite to the leading edges of the 

Figure 4.5 KCA1 is associated with the plasma membrane. A-C, FM4-64 
staining (red) of cells expressing GFP-KCA1 (A), free GFP (B) and AtFH6-GFP (C) in green. 
Orange-yellow signal in A and C indicates colocalization of FM4-64 with GFP-KCA1 and AtFH6-
GFP respectively. The corresponding fluorescence intensity graph is shown at the right. 
Intensity was measured along the white intersecting line shown in the fluorescence image. 
Numbers in the fluorescent images correspond to the fluorescent peaks in the intensity graph. 
Bar = 10µm. 
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developing cell plate. To analyze the distribution of GFP-KCA1 at the plasma membrane it was 

compared to that of FM4-64 and AtFH6-GFP. In contrast to GFP-KCA1, FM4-64 (Fig. 4.6, B and E) 

nor AtFH6-GFP (Fig. 4.6, C and F) revealed a depleted zone and evenly labeled the plasma 

membrane. Green and red fluorescence were quantified at the plasma membrane in a cross section 

through the equatorial plane (point 1 in Fig. 4.6, G and H) and elsewhere (point 2 in Fig. 4.6, G and 

H) in a GFP-KCA1 cell stained with FM4-64. GFP-KCA1 fluorescence peak was absent from the 

region near the equatorial plane and therefore this region was called the KCA1 depleted zone or 

KDZ. The yellow/orange color in Figure 4.6G indicates co-localization of GFP-KCA1 and FM4-64 at 

the plasma membrane in cells that are dividing, except at a location opposing the cell plate edges. 

Thus, GFP-KCA1 is differentially targeted to the plasma membrane throughout the cell cycle, 

revealing a divergent subdomain in the plasma membrane during mitosis.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 GFP-KCA1 is excluded from a cortical zone at the equator during 
division. A-B, fluorescent images of a cytokinetic GFP-KCA1 cell (A) stained with FM4-64 (B) and a 
cytokinetic cell expressing AtFH6-GFP (C). GFP-KCA1 was absent form the plasma membrane at either 
side opposing the cell plate (A, bars). The image in D displays the fluorescence intensity measured 
within the image and shows that the fluorescence intensity is minimal in the KDZ. Label along the 
plasma membrane was constant for FM4-64 (B) and AtFH6-GFP (C). Consistent with this, fluorescence 
intensity as visualized within the image (E and F) remained high along the plasma membrane. The 
overlay of (A) and (B) is shown in (G) and the fluorescence measured along the intersecting line 
drawn in (G) is shown in (H). Colocalisation was observed at the plasma membrane (2) but not at 
regions opposing the cell plate (1). Bar = 10µm. 
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KDZ co-localizes with the PPB and marks the position to which the cell plate is guided 

 

Next the dynamic behavior of the expanding cell plate in relation to the KDZ was analyzed. It 

appeared that the phragmoplast was guided towards the region where GFP-KCA1 fluorescence was 

reduced and that cell plates fused with the mother cell wall exactly at the center of the KDZ (Fig. 

4.1). In several occasions, we observed that at first the axis of the growing cell plate did not align 

with the position of the KDZ. However, in each case the position of the cell plate was readjusted to 

fit with the KDZ so that the plate eventually fused with the mother cell wall indicated by the KDZ. 

An example of such an event is shown in Figure 4.1. At time point 135’ in mitosis, the cell plate 

matched with the KDZ at one side of the cell but not at the other. Subsequently, the plate moved 

slightly so that both the leading edges pointed toward the KDZ. Thus, the KDZ appeared to mark a 

zone to which the cell plate was guided.  

In plant cells, a ring of MTs also known as the PPB determines the division site. The PPB disappears 

at nucleus disintegration but its former position predicts where the cell plate will insert the mother 

wall during cytokinesis (Wick, 1991). These features of the PPB prompted us to ask two questions; 

does the KDZ match with the former position of the PPB and is KDZ formation coincident with PPB 

formation? Figure 4.1 shows that the KDZ appeared after the PPB was formed and then started to 

narrow down (compare time points 0’ and 60’ in Fig. 4.1). Moreover, the position of the KDZ exactly 

corresponded to the position of the PPB. However, after the PPB had disappeared, the KDZ 

remained at the plasma membrane till the end of cell division. In conclusion, the KDZ matches with 

the position of the PPB and thus marks the division site from preprophase till the end of cell 

division. 

 

The formation of the KDZ depends on MT organization 

 

During preprophase, the PPB establishes the division site by steering the localized deposition of 

factors necessary for cell plate guidance and insertion (Mineyuki and Gunning, 1990). As the 

nucleus disintegrates, the PPB disappears leaving the cell cortex devoid of MTs throughout the rest 

of cell division (Staehelin and Hepler, 1996). The time series in Figure 4.1 showed that the KDZ was 

formed during preprophase and unlike the PPB, the KDZ lingered till cell plate insertion. These data 

suggested that the PPB MTs are involved in the construction of the KDZ, but that MTs are not 

engaged in its preservation. To check this hypothesis we added MT depolymerizing drugs to 

dividing GFP-KCA1/TUA2-RFP cells. Disappearance of TUA2/RFP red fluorescence was indicative for 

the depolymerization of the MTs. Amiprophos-methyl (APM) added to a cell in early cytokinesis, 

cleared phragmoplast MTs within 16 minutes (Fig. 4.7A). The KDZ was unaffected by the addition 

of AMP and even after 60’ of treatment only a small reduction in GFP-KCA1 concentration at the cell 

plate and the plasma membrane was noticed. MTs were therefore not needed to keep GFP-KCA1 at 

the cell plate or to maintain the KDZ at the plasma membrane. 
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To investigate the contribution of PPB MTs in the construction of the KDZ, cells showing a broad 

PPB that had not yet developed a KDZ, were treated with MT depolymerizing drugs and allowed to 

continue throughout mitosis by washing the drug out. The washing steps were started as soon as 

all MTs labeled with TUA2-RFP had disappeared. Cells did not cycle further when APM was used 

(data not shown). Instead, MT depolymerization and inhibition of mitosis by propyzamide were 

reversible (Nagata et al., 1994). Propyzamide was added to a cell with a broad PPB and no KDZ and 

MT depolymerization was monitored in time. After one hour, TUA2-RFP associated label at the site 

previously taken by the broad PPB had disappeared and the drug was washed out. Subsequent 

imaging showed that in most cases the PPB was reconstructed, narrowed and accordantly the KDZ 

Figure 4.7 The KDZ formation is invariably linked to cell plate positioning. 
A, The MT depolymerizing drug, APM was added to a GFP-KCA1/TUA2-RFP expressing cell in 
cytokinesis (-). GFP-KCA1 cell plate label (arrow) and the KDZ (bar) remained present 16’ and 
60’ after adding APM. Time points after adding APM are indicated in the upper right corner. B, 
Propyzamide treatment of GFP-KCA1/TUA2-RFP cells in preprophase. Propyzamide was added to 
cells in early preprophase when the KDZ was not yet formed (B, -). The drug was washed out 
after TUA2-RFP labeled MTs were depolymerized and cells were followed throughout cell division 
(B, 36’-148’). Bars indicate the former position of the PPB. Time points in the upper right corner 
indicate the time after washing out the drug solution. The PPB was not reconstructed in B, 36’ 
and consequently the KDZ was not established. During cytokinesis, the division plane had 
changed by 90° (B, 86’-148’). The ring-like phragmoplast (arrow) (B, 86’-148’) expanded and the 
cell plate was not inserted at the previous PPB site (B, 148’). Bar = 10µm. 
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appeared. These cells cycled further throughout cell division with division planes correctly aligned at 

the KDZ (data not shown). However, in several recordings, a 90° tilting of the division plane had 

occurred during drug treatment. Figure 4.7B shows such an event. The first image (Fig. 4.7B, -) is 

taken before adding propyzamide. The PPB marks the plasma membrane at either site of the cell, 

but a KDZ is not yet formed. Propyzamide was added to the cell at this stage and was washed out 

after PPB MTs had completely depolymerized. Subsequently, the cell was followed throughout 

mitosis. Remarkably, the PPB was not reconstructed at the original site and confirming our 

hypothesis, the KDZ did not emerge at the plasma membrane (Fig. 4.7B, 36’). Later, during 

cytokiness (Fig. 4.7B, 86’-148’) the cell plate was not formed in the original division plane as 

determined by the PPB in Fig. 4.7B, -. In contrast, both the phragmoplast and the cell plate were 

expanding in a 90° angle with the original division plane. This is evident in the confocal section by 

the fact that the ring-like phragmoplast is actually visible as a ring and not as two discrete parts 

(compare with Fig. 4.1, 152’). Accordingly, the cell plate was not recognizable as a fluorescent line 

that expanded towards opposing sites of the parent wall, but as a GFP labeled plane within the 

phragmoplast ring that expanded in circumference as the ring-like phragmoplast broadened (Fig. 

4.7, 86’-148’). This suggests that in absence of the KDZ, the cell plate is not guided to the position 

originally marked by the PPB. It is of course possible that a new PPB and a subsequent KDZ was 

reconstructed in 90° to the original PPB. Even so, it would still indicate that cell plates are invariable 

guided to the KDZ. 

In conclusion, the data show that PPB MTs differentially mark the plasma membrane, thereby 

creating the KDZ. After PPB disintegration, the cell cortex lacks MTs and the KDZ exists independent 

of cortical MTs. In absence of a KDZ, cell plates are not guided to a region initially marked by the 

PPB. 

 

The central coiled coil is involved in KDZ formation 

 

To investigate the peptide domains of KCA1 responsible for the differential localization at the 

plasma membrane, we reexamined the GFP-KCA1 deletion fragments and looked for the presence 

of a KDZ (Fig. 4.2). Deleting the N-terminal sequence and motor domain did not effect KDZ 

formation indicating that motor activity was not required (Fig. 4.2, E and F). Deletion of the central 

stalk caused a loss of differential fluorescence at the plasma membrane (Fig. 4.2G). The latter 

result was also obtained with the nested deletions from the C-terminal end (Fig. 4.2, J and K).  

To analyse the accumulation of the deletion fragments at the plasma membrane, GFP-KCA1;del-

Nmot, GFP-KCA1;del-Nstalk, KCA1;delC-GFP and KCA1;delCH2-GFP expressing cells were stained 

with FM4-64 (Fig. 4.8). During interphase, neither of the GFP fusions colocalized with FM4-64 (data 

not shown). However during mitosis, GFP-KCA1;del-Nmotor colocalized with the FM dye at the 

plasma membrane, whereas the other GFP-fusions did not. Thus the KCA1 stalk domain is required 

for plasma membrane association during cell division and consequently the marking of a depleted 

zone at the division site. The coiled coils in the stalk domain have been shown to be implicated in 
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dimerization of KCA1 (Vanstraelen et al., 2004), suggesting that dimerization is a prerequisite for 

plasma membrane association. In addition, the small C-terminal sequence is necessary for the 

association of KCA1 with both the plasma membrane and the cell plate, and thus probably contains 

sequences essential for membrane association. 

 

  

 

 

 

 

 

 

 

 

Figure 4.8 The KCA1 dimerization domain is required for targeting 
to the plasma membrane. Fluorescent images and corresponding fluorescent 
intensity graphs of dividing cells expressing GFP fused to KCA1-del-Nmotor (A), del-
Nstalk (B), del-C (C) and del-CH2 (D). Intensity was measured along the white 
intersecting line shown in the fluorescence image. Numbers in the fluorescent images 
correspond to the fluorescent peaks in the intensity graph. Bar = 10µm. 
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The KDZ colocalizes with the position of the actin depleted zone, but does not depend 

on actin 

 

As mentioned above, the cell cortex becomes devoid of MTs as the PPB disappears. Actin filaments 

at the division site also dissemble but are retained elsewhere in the cell cortex (Staehelin and 

Hepler, 1996). This region is called the actin depleted zone (ADZ) and marks the division site from 

PPB break down till cell plate insertion. This behavior resembles that of GFP-KCA1 and thus we 

investigated whether the KDZ and ADZ coincided and whether the persistence of the KDZ 

throughout mitosis was supported by the differential localization of actin filaments at the cell cortex. 

To this end, the actin binding domain 2 of fimbrin was fused N-terminally to RFP (ABD2-RFP) and 

stably transformed in GFP-KCA1 cells. Figure 4.9 shows a metaphase cell expressing GFP-KCA1 (Fig. 

4.9A) and ABD2-RFP (Fig. 4.9B). ABD2-RFP was associated with the fine meshwork of actin 

filaments at the cell cortex except at the sides facing the metaphase plate, the ADZ. Compressed 3 

dimensional imaging showed that the ADZ actually forms a band encircling the cell at the cortex 

(Fig 4.9B, inset). The merged image shows that the KDZ colocalizes with the ADZ (Fig. 4.9C).  

 

   

 

 

 

 

 

Figure 4.9 The KDZ coincides with the actin depleted zone, but is not dependent on 
actin distribution. A-C, Mitotic cell expressing GFP-KCA1 (A) and ABD2-RFP (B) with overlay in (C). 
Inset in (B) shows collapsed Z-stack revealing the fine actin network at the cell cortex, that is absent from 
the equatorial zone. Bars indicate the position of KDZ and ADZ. D-E, Treatment of metaphase cells, 
expressing ABD2-GFP (D, -) or GFP-KCA1/TUA2-RFP (E, -) with LatB. Bars indicate the position of the ADZ in 
(D) and the KDZ in (E). Time points after drug addition are indicated in the top right corner in minutes. D, 
Mitotic actin filaments and the ADZ disappear 10’ after adding LatB, but a cell plate (arrow) is still formed (D, 
172’). E, The KDZ remains intact after LatB treatment and a GFP-KCA1 labeled cell plate (arrow) is formed 
(164’) that expands towards the KDZ (bar) (175’).  Bar = 10 µm. 
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Next, the dependence of the KDZ on actin filaments was studied. In a control experiment, GFP-

ABD2 expressing cells revealing an ADZ were treated with Latrunculin B (Lat B), an actin 

depolymerizing agent (Fig. 4.9D). Within 10 min of treatment, the network of actin filaments at the 

cortex had depolymerized and the ADZ had disappeared.  

LatB was then added to GFP-KCA1/TUA2-RFP cells in metaphase and the cells were followed till the 

end of cytokinesis (Fig. 4.9E). Breakdown of the actin filament network did not seem to affect the 

accumulation of GFP-KCA1 at the plasma membrane or the cell plate and the KDZ was still intact. 

Moreover, KCA1 labeled cell plates were still guided to the KDZ and finally fused with the mother 

cell wall at these sites (Fig. 4.9E, 175’). The process took 3h26 from metaphase till the end of 

cytokinesis, which is much longer than in non-treated cells (65 minutes; Fig. 4.1). In some 

occasions, aberrations in cell plate expansion were observed, with cell plates that arrived at the 

mother cell wall at the KDZ continuing to expand into an S shaped form or a 90° tilting of the plane 

of cell division (data not shown). Lat B was also added to cells in interphase, before a KDZ or ADZ 

was present (data not shown). The cells however managed to form a KDZ and passed through cell 

division with the cell plate aligned with the position of the KDZs. Also here, cell division as 

measured from the formation of the PPB till completion of cell plate formation took much longer 

than in untreated cells. The data show that distribution of GFP-KCA1 and actin filaments at the cell 

cortex are similar during mitosis, however, actin filaments are not required to form the KDZ.  

 

The KDZ is physically attached to the cell wall 

 

When cells are plasmolysed, the plasma membrane detaches from the cell wall and the cell shrinks 

within the cell wall cage. Adding 0.3M sucrose induces a mild plasmolysis, allowing the plasma 

membrane to detach slightly from the cell wall (Cleary, 2001). BY-2 cells expressing GFP-KCA1, 

AtFH6-GFP and free GFP were plasmolysed and stained with FM4-64 (Fig. 4.10, A-C). GFP-KCA1 

and AtFH6-GFP localized to the plasma membrane and no staining was observed at the cell wall. 

The results confirm that KCA1 and AtFH6 are exclusively localized to the plasma membrane and not 

to the cell wall.  

When cells were treated with 0.6% NaCl, cells are more severely plasmolysed. The plasma 

membrane shrinks further away from the cell wall and the connections between the plasma 

membrane and cell wall, known as Hechtian strands, become evident (Zhu et al., 1993). Plasma 

membrane proteins appear in these Hechtian strands. Both GFP-KCA1 and GFP-AtFH6 colocalized 

with FM4-64 in the plasma membrane-cell wall connections, whereas free GFP did not (Fig. 4.10, D-

F). The results confirm that KCA1 is associated to the plasma membrane and reveal the presence of 

KCA1 in plasma membrane-cell wall connections. 

During mitosis, localized wall thickenings have been observed at the PPB site, suggesting that the 

PPB modifies the plasma membrane and/or cell wall in preparation for cell plate guidance and 

insertion (Galatis et al., 1982). In addition, plasmolysis revealed adhesion of the plasma membrane 

to the cell wall at the PPB (Cleary, 2001). As the position of the KDZ corresponds to the PPB site, 
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dividing GFP-KCA1 cells were plasmolysed to investigate whether these plasma membrane-cell wall 

connections persisted at the KDZ after PPB breakdown. 

Dividing cells revealing a KDZ were selected and stained with FM4-64. Then BY-2 medium 

containing 0.6 % NaCl was added and cells were imaged further. The cell in Figure 4.10G is in 

anaphase and the FM4-64 associated red fluorescence at the plasma membrane indicates the 

position of the KDZ. Upon plasmolysis, Hechtian strands, labeled with FM4-64 and GFP-KCA1 were 

formed. By this time, the cell entered cytokinesis and a GFP-KCA1/FM4-64 fluorescent cell plate was 

constructed (Fig. 4.10H). More intriguingly, the plasma membrane remained connected to the cell 

wall at the regions of the cortex previously marked by the KDZ. The data suggest that PPB 

mediated modifications at the plasma membrane include the firm attachment of the plasma 

membrane to the cell wall. These adhesion points are maintained throughout mitosis, possibly 

ensuring that the cell plate is inserted at correct sites both at the plasma membrane and cell wall. 

 

  

 

 

 

 

 

 

 

Figure 4.10 Plasmolysis reveals GFP-KCA1 in plasma membrane-cell wall 
connections and the position of the division site. A-F, Plasmolysis of FM4-64 stained 
cells shows co-localization of GFP-KCA1 and AtFH6-GFP at the plasma membrane after mild salt 
treatment (A and C) and at the Hechtian strands (arrows) after stringent salt treatment (D and F). Co-
localization was not observed in free GFP expressing cells at these positions (B and E, respectively). G-
I, Plasmolysis of the GFP-KCA1 dividing cell, stained with FM4-64 (G) reveals persistent plasma 
membrane-cell wall attachment at the division site (H). Bars indicate the position of the division site 
before (G) and after (H and I) treatment. The corresponding dic image of (H) is shown in (I). Bar = 
10µm. 
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Discussion 

 

Because plant cells are surrounded by a ridgid cell wall, plant morphology is controlled by the strict 

regulation of cell plate alignment. This process involves two steps, first the establishment of the site 

where the cell plate will insert into the mother cell wall, called the division site and secondly 

guidance of the cell plate to the division site during cytokinesis. Aside from actin and the so-called 

Golgi belt (Nebenfuhr et al., 2000), other markers for the division site after PPB breakdown remain 

elusive (Smith, 1999). Previously we showed that KCA1 localizes to the phragmoplast midline. Here, 

we report that KCA1 accumulates at the plasma membrane in a cell cycle controlled manner 

revealing the division site at the plasma membrane from preprophase till the end of cytokinesis. Cell 

plates were invariably inserted at the KCA1 marked region of the plasma membrane. Moreover, 

strong connections are maintained between the plasma membrane and the cell wall after 

plasmolysis at the division site. The data show for the first time that the plasma membrane is 

differentially marked at the division site, where strong adhesion with the cell wall probably assures 

a correct insertion of the cell plate within a given tissue context. 

KCA1 labeled the phragmoplast midline during cytokinesis and expansion of GFP-KCA1 signal 

followed the leading edges of the phragmoplast MTs. Several plant kinesins have been shown to 

localize at the phragmoplast midline during cytokinesis. All follow the dynamic expansion of 

phragmoplast MTs and disappear from the centre of the cell plate where MTs have depolymerized. 

AtPAKRP1, AtPAKRP1L and NACK1 are specifically associated with MTs at the phragmoplast 

midzone and they are believed to be involved in the dynamic organization of the phragmoplast MTs 

(Lee and Liu, 2000; Lee et al., 2001; Nishihama et al., 2002; Pan et al., 2004). Another 

phragmoplast-associated kinesin, AtPAKRP2, is associated with Golgi derived vesicles at the midline 

(Lee et al., 2001). AtPAKRP2 is a plus-end directed kinesin and its relocalisation along with 

phragmoplast MTs supports the hypothesis that this kinesin transports the vesicles containing cell 

wall material, to the equator. Unlike these motor proteins, KCA1 remains associated with the cell 

plate where MTs have depolymerized, suggesting that KCA1 is involved in later steps of cell plate 

formation. KCA1 is likely a minus-end directed kinesin. If KCA1 is mobile, it moves away from the 

midline, supporting the possibility that KCA function takes care of the recycling of excess membrane 

away from the cell plate (Otegui and Staehelin, 2000). 

In plants and animals, motor proteins drive the transport of a wide variety of organelles and 

vesicular cargoes including endoplasmic reticulum (ER), Golgi, endosomes, lysosomes, mitochondria 

and transport vesicles (Goldstein and Yang, 2000; Lee and Liu, 2004). However, this is the first 

report on the localization of a kinesin at the plasma membrane. Immunogold labeling with an 

antibody directed against the stalk domain of KCA localized endogenous KCA to the cell plate and 

plasma membrane, confirming the GFP analysis. GFP-KCA1 accumulation at the plasma membrane 

or cell plate does not involve the MT binding motor domain as GFP fused to the stalk-tail domain of 

KCA1 managed to localize at these positions during cell division. The tail domain as a separate GFP 

fusion only labeled the phragmoplast midline. This indicates that targeting of KCA1 to the plasma 
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membrane differs from that to the cell plate. In contrast to secretable GFP, which is transported via 

the default secretion pathway towards both the cell plate and plasma membrane for secretion 

(Batoko et al., 2000), two separate targeting mechanisms control the localization of the KCA1 

protein. The stalk domain of KCA1 contains several coiled coil domains. This central region of KCA1 

was shown to be involved in dimerization of KCA1 in homo- or heterodimers with its closest 

homologue KCA2 (Vanstraelen et al., 2004). The data suggest that monomeric KCA1 molecules 

accumulate at the phragmoplast midline whereas only dimeric KCA1 arrives at the plasma 

membrane. On the other hand, other modifications than dimerization can drive KCA1 to the plasma 

membrane. In this case, dimerized KCA1 is transported to the phragmoplast midline during 

cytokinesis. An extra transport signal sequence in the stalk domain or molecular interaction of 

another protein with the KCA1 stalk domain drives KCA1 to the plasma membrane.  

Accumulation of KCA1 to the cell plate and plasma membrane was not dependent on MTs, but was 

membrane associated. Treatment of cells with a mild detergent or BFA abolished KCA1 signal at the 

plasma membrane and midline. Wortmannin also removed KCA1 from the plasma membrane (data 

not shown). Although both drugs affect endocytosis, BFA stimulates endocytosis whereas 

wortmannin inhibits this process (Clague et al., 1995; Emans et al., 2002). Thus a well-controlled 

and dynamic membrane trafficking system supports KCA1 localization at the plasma membrane. 

Upon deletion of a small C-terminal part of the KCA1 tail domain, cell plate and plasma membrane 

localization was lost, suggesting that this part of KCA1 contains sequences essential for membrane 

association. Targeting domains for the protein sorting machinery are often located at the N-terminal 

end of a protein but may be present in the C-terminus (Raikhel and Chrispeels, 2000). However, 

signal peptides were absent from the C terminus or elsewhere in the protein. In addition, there are 

no transmembrane regions, suggesting that KCA1 is a soluble protein. This is supported by the 

absence of KCA1 in microsomal fractions (data not shown) and argues that KCA1 binds via other 

proteins to the membranes of the cell plate and the plasma membrane. Accumulation of GFP-KCA1 

at the cell plate upon taxol treatment can then be interpreted as an accumulation of target 

membrane at the midline. On the other hand, it is possible that KCA1 arrives at the cell plate at the 

surface of Golgi derived vesicles along the phragmoplast MTs. The latter is most likely the case for 

AtPAKRP2, which is present in membrane fractions of protein extractions and in addition contains a 

signal peptide for Golgi targeting (Lee et al., 2001). 

KCA1 displays a dynamic association to the plasma membrane with a gradual accumulation of GFP-

KCA1 at the beginning of mitosis. Cell division dependent accumulation of GFP signal was more 

prominent with the stalk-tail fragment of KCA1 that only associated to the plasma membrane during 

cell division. KCA1 contains two adjacent conserved CDKA;1 phosphorylation sites in the N-terminal 

part of the tail domain and interaction of KCA1 with CDKA;1 has been repeatedly reported (De 

Veylder et al., 1997; Vanstraelen et al., 2004). CDKA;1 phosphorylation prevented tail folding and 

favored the dimeric form of KCA1 over the monomeric form. It is known for several kinesins that 

MT and cargo binding are controlled by phosphorylation (Reilein et al., 2001) and in case of 

conventional kinesin, it involves the unfolding of the tail domain (Cross and Scholey, 1999). 
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Phosphorylation of KCA1 during cell division could therefore lead to an accumulation of unfolded 

KCA1, allowing protein dimerization and accumulation of KCA1 at the plasma membrane. 

During cell division, GFP-KCA1 revealed a differential localization at the plasma membrane. At the 

level of the cell equator, a region depleted of KCA1 fluorescence, called the KDZ, persisted till the 

end of cytokinesis. This differential behavior at the plasma membrane was specific to KCA1 as 

neither the FM dye or the formin AtFH6 revealed a similar pattern. The KDZ was formed during 

preprophase and became more obvious during PPB narrowing. It colocalized with the PPB and ADZ 

and is thus the first protein shown to reveal the division site at the level of the plasma membrane 

throughout cell division. The KDZ also supports the idea that the plasma membrane is modified at 

the division site to serve as a landmark for guidance of phragmoplasts during cytokinesis (Smith, 

1999; Cleary, 2001). Indeed, expanding cell plates invariably fused with the plasma membrane 

exactly at the KDZ. The PPB would then direct the local deposition of membrane bound molecules 

at the plasma membrane (Mineyuki and Gunning, 1990) and this matches with the formation of the 

KDZ during PPB maturation. The appearance of the KDZ was invariably linked to the presence of 

the PPB and when both were absent, cell plates were misguided, suggesting a function for the KDZ 

in cell plate guidance. 

When plant cells are plasmolysed, membrane strands connect the cell wall to the disconnected 

plasma membrane at certain points. GFP-KCA1 colocalized with the FM4-64 dye in these strands, 

consolidating the plasma membrane association of KCA1 and suggesting that KCA1 could act as a 

sensor or linker molecule between the cytoskeleton and plasma membrane/cell wall continuum. 

Remarkably, during cell division the plasma membrane remained attached to the cell wall at exactly 

the KDZ/division site when cells were plasmolysed. The result corresponds to observations made in 

epidermal peels of Tradescantia cells with sustained plasma membrane-cell wall attachments at the 

PPB site (Cleary, 2001). Here, it was claimed that cytoskeleton-transmembrane complexes are 

involved in the preservation of the division plane. It seems however more likely that the function of 

the cytoskeleton is limited to the establishment of the division site and not in its conservation. 

Depolymerization of MTs or actin filaments during cytokinesis did not obliterate the KDZ. In 

contrast, the formation of the KDZ was independent of actin filaments, but consistently linked to the 

presence of PPB MTs. Thus, the PPB MTs seem to establish the division site before metaphase and 

then disappear. This is consistent with observations made in wheat root tips, where initial formation 

of the actin filament band in the PPB was sensitive to drugs that depolymerized MTs, whereas later 

the conservation of this actin band was independent of MTs (Mccurdy and Gunning, 1990). Whether 

the plasma membrane-cell wall connections mark the division site before the PPB does, is not 

known. Anyway, its persistence at the division site after PPB breakdown indicates its involvement in 

the maintenance of this site. In a developmental contex, these connections might assure that 

developing cell plates arrive at the right place of the rigid cell wall within a given tissue context. 

Does the absence of KCA1 at the division site indicate a function of KCA1 in phragmoplast guidance 

or does it reflect the absence of scaffolding protein at the plasma membrane? Two hybrid 

experiments revealed an interaction of the tail domain of KCA1 with a tropomyosin and a myosin-
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like protein (Torres Acosta, De Veylder and Inzé, unpublished data). KCA1 could act as a linker 

protein between the plasma membrane and myosin-actin complexes. The absence of KCA1 at the 

division site then results in a depletion of myosin-actin complexes in the division site, thereby 

allowing actin pulling forces at the phragmoplast edges from either site of the division site (Wick, 

1991; Smith, 1999; Sylvester, 2000). On the other hand, an interaction of KCA1 with the katanin 

P60 subunit AtKSS has been reported (Bouquin et al., 2003). In animal cells, katanins act as 

heterodimers of a catalytic P60 subunit and a regulatory P80 subunit and sever MTs from 

centrosomes (Hartman et al., 1998; McNally et al., 2000). Several mutants in the AtKSS gene have 

been analysed (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003). 

Their most common features are defects in cell elongation accompanied by failure to align the 

cortical MTs in a transverse array as cells leave the mitotic zone. In vitro MT-severing activity of 

AtKSS has been reported (Stoppin-Mellet et al., 2002). The interaction between KCA1 and AtKSS, 

can be interpreted as KCA1 acting as a sensor protein between the plasma membrane and the 

microtubular cytoskeleton, driving AtKSS towards MTs that do not co-align with transverse 

microfibers for MT severing. In this way, the KCA1-AtKSS complex contributes to the transverse 

alignment of cortical MTs leading to cell elongation. In the katanin mutants, reorganization of MTs 

during mitosis occurred normally, however, misaligned cell plates were observed in some tissues 

(Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002). During cell division, KCA1 is 

phoshorylated by CDKA;1, resulting in an accumulation of unfolded KCA1, allowing dimerization. 

This results in an accumulation of KCA1 at plasma membrane during cell division and an increased 

MT severing activity at the cell cortex. As a result, cortical MTs along the entire plasma membrane 

are severed except at the site of the PPB, from where KCA1 is excluded. It would thus be 

interesting to cross katanin and KCA mutants and investigate whether the katanin phenotype is 

reinforced. 

 

Materials and methods 

 

Construction of GFP fusion proteins 

 

The expression of the inducible KCA1 full-length open reading frame, pTANGKCA1 was done as 

previously described (Vanstraelen et al., 2004). For constitutive expression, the KCA1 full length 

was cloned into the GATEWAY vector pK7WGF2 leading to 35S driven expression of the insert 

(Karimi et al., 2002). Nested deletion fragments from the N-terminus were cloned by PCR. The gene 

specific sequences used as forward primers were: KCA1-FWD CAATGGCCGATCAGAGAAGTAAAA; 

KCA1-del-Ncoil GGATATCTCCACTTATCAAT; KCA1-del-Nmotor TTGGCAATCGAGATACAATC; KCA1-

del-Nstalk CAATGGCTGTTTCGACCCAG; KCA1-del-NH1 TTCTGTCCGAGTATGCAAAA; KCA1-del-NH2 

TAAAATGTGGAGGCAACAAC. The reverse primer was: KCA1-REV TTACTCCAGTTCACTAACAA. For 

nested deletion fragments from the C-terminus, the KCA1-FWD was the forward primer. The gene 
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specific sequences for the reverse primers were: KCA1-del-C TTATGATGAATGGGGCTGAA and 

KCA1-del-CH2 GAAGCTGCCCGAGAGCATCT. 

35S promoter-driven GFP fusion constructs were generated in the destination vector pK7WGF2 for 

N-terminal fusions via GATEWAY LR reactions (Karimi et al., 2002). For the construction of the actin 

marker, a fimbrin sequence was used to subclone an actin binding domain, using primers: ABD2-

FWD CCTCTTGAAAGAGCTGAATTGGTT and ABD2-REV TTCGATGGATGCTTCCTCTGAGA. PCR 

products were cloned in the pDONR211 vector and transferred via LR reactions to the pK7FWG2 

and pK7RWG2 vector. AtFH6-GFP, TUA2-RFP and MAP65-3-RFP were described previously (Van 

Damme et al., 2004a; Van Damme et al., 2004b). 

 

Growth, transformation, and fluorescence microscopy 

 

Culturing of BY-2 cells was according to Nagata et al. (1992) and stable BY-2 transformation was carried 

out as described (Geelen and Inze, 2001). Transgenic calli were screened for the production of GFP 

fusions using fluorescence microscopy. For GFP/RFP colocalization, BY-2 cells stably transformed with 

the inducible pTANGKCA1 construct were transformed with the RFP constructs pK7RWG2-ABD2 and 

pK7RWG2-TUA2. BY-2 cells transformed with the inducible pTANGKCA1 vector were induced overnight 

on BY-2 agar containing 10 µM dexamethasone.  

Confocal images were taken with a scanning confocal microscope 100M with software package LSM 510 

version 3.2 (Zeiss) equipped with a 63x water corrected objective (numerical aperture of 1.2). GFP 

fluorescence was imaged with argon laser illumination at 488 nm and 500-530 nm band emission filter. 

Dual GFP and RFP fluorescence was imaged in a multichannel setting with 488 nm and 543 nm light for 

GFP and RFP excitation, respectively. Emission fluorescence was captured in the line-scanning mode, 

altering GFP fluorescence via a 500-530 nm band pass emission filter and RFP via a 560 nm cut-off 

filter. Fluorescence intensity measurements along cross-sections or within images were obtained using 

the LSM software under respectively the profile or 2.5D option tool. For transmission light images, 

differential interference contrast optics was used. Images were taken with 25% laser power to minimize 

photobleaching. 

 

Sample preparation 

 

For life cell recordings, samples were applied to a chambered cover glass (Lab-Tek, Naperville, IL, USA) 

coated with 5 mg/mL poly-L-lysine (Sigma-Aldrich) and immobilized in a thin layer of 100-200 µL of BY-

2 medium containing vitamins and 0.8% of low melting point agar (Invitrogen). For time experiments 

without drug treatments, 1mL of BY-2 medium containing vitamins was added to the sample after 

polymerization of the agar and the chambered cover glass was sealed with parafilm to prevent 

dehydration of the sample. 
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For detergent extraction, selected cells were imaged before adding Triton X-100 (Sigma-Aldrich). Then 

100 µL of BY-2 medium containing vitamins and 0.1% Triton X-100 was added on top of the agar and 

cells were followed immediately after adding the detergent in a time sequence. 

For drug experiments, selected cells were imaged before addition of amiprophos-methyl (10µM final 

concentration; Duchefa, Haarlem, The Nederlands), propyzamide (6 µM final concentration; Chem 

Service, West Chester, USA), Latrunculin D (24µM, Calbiochem, Darmstadt, Germany), Taxol (20µM, 

Sigma-Aldrich) or Brefeldin A (20µg/mL, Molecular Probes, Leiden, The Nederlands). Drugs were added 

in a volume of 1000 µL of BY-2 medium with added vitamins and the drug at a concentration adjusted 

to a final volume of 1100-1200 µL. Stock solutions of APM (10mM), propyzamide (600 µM) were 

dissolved in dimethylsulfoxide, Taxol (10mg/mL) and LatB (24mM) in ethanol and BFA (50mg/mL) in 

methanol respectively. As control, 1000x and 100x dilutions of the solvent in BY-2 medium were used. 

The behavior of KCA1 at the cell plate and plasma membrane was monitored in time series taken 

directly after drug application. 

 

FM4-64 labeling 

 

FM4-64 (Molecular Probes, Leiden, The Nederlands) was kept as a 33mM stock in sterile nanopure 

water. To label the plasma membrane of GFP expressing BY-2 cells, FM4-64 dye was freshly diluted 100 

x from the stock solution in BY-2 medium containing vitamins. Cells were added to this solution and 

imaged directly under the confocal microscope using the same settings as for dual GFP/RFP 

visualization. Fluorescence intensity along an intersecting line was measured using the LSM software 

under the profile option. 

 

Plasmolysis experiments 

 

For mild plasmolysis 0.3M sucrose solutions and for stringent plasmolysis 4% NaCl solutions were made 

in BY-2 medium containing vitamins. Cells were added to the solution and used directly for imaging. 

To study the behavior of dividing cells upon plasmolysis, samples were prepared in chambered cover 

glasses with low melting point agar as described above. Selected cells were imaged before starting 

plasmolysis. Then, 100 µL of BY-2 medium containing vitamins and FM4-64 dye was added and cells 

were imaged again. Finally, 1000 µL of BY-2 medium containing vitamins and 0.3M sucrose was added 

to the sample and the cells were followed further. 

 

EM analysis 

 

Rabbit polyclonal antibodies were raised against the KCA stalk domain (425-864aa). The specificity of 

the antiserum was tested on western blot against GST tagged KCA1 and KCA2 from induced and non-

induced bacterial pellets. 



 KCA1 defines the division site in plant cells 

 119 

For EM analysis, root tips of 4-day-old Arabidopsis seedlings Columbia ecotype were excised, 

immersed in dextrane (20%) and frozen immediately in a high pressure freezer (EM Pact, Leica 

Microsystems, Vienna, Austria). Freeze substitution was carried out in a Leica EM AFS. Over a 

period of 4 days, root tips were substituted in dry acetone+ 0.1% OsOs4. Samples were infiltrated 

at 4°C stepwise in spurr and embedded in molds. The polymerisation was performed at 70°C for 16 

h. Ultra thin sections of gold interference color were cut using an ultramicrotome (ultracut E / 

Reichert-Jung) and collected on formvar-coated copper slot grids. 

All steps of immunolabeling were performed in a humid chamber at RT. Samples were blocked in 

blocking solution (5 % BSA, 1% FSG in PBS) for 15 min followed by a wash step for 5 min (1% BSA 

in PBS ). Incubation in a dilution (1% BSA in PBS) of primary antibodies for 60 min (anti-KCA;stalk, 

1:100; pre-immune, 1:100) was followed by washing four times 5 min (0.1 % BSA in PBS). The 

grids were then incubated with PAG10nm (Cell Biology, Utrecht, University) and washed twice 5 min 

each (0.1 % BSA in PBS, PBS and ddH2O ). Sections were post stained in a LKB ultra stainer for 30 

min in uranylacetate at 40º C and 5 min in lead stain at 20º C. Control experiments consisted of 

treating sections with PAG10nm alone. Grids were viewed by using a JEOL 1010 TEM operating 

system at 80 kV. 
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Abstract 

 

The trehalose-6-phosphate synthase AtTPS1 is involved in regulating sugar metabolism and 

partitioning in connection with plant morphogenesis and development in an as yet unknown 

fashion.  AtTPS1 expressed in yeast supports the synthesis of trehalose as well as an essential 

regulatory function in glucose consumption. The gene is essential for embryo development in 

Arabidopsis and its overproduction leads to sugar insensitivity as well as increased drought 

tolerance. Here we report on the physical interactions of the AtTPS1 protein with cell cycle related 

proteins. AtTPS1 formed a protein complex in yeast and Arabidopsis and was part of a 600-800 kDa 

particle in FPLC separated extracts. The Arabidopsis AtTPS1 co-migrated with the cell cycle kinase 

CDKA;1 and tubulin. In two hybrid experiments, AtTPS1 interacted with CDKA;1 and the CDKA;1 

interacting protein KCA1. KCA1 is a kinesin motor protein implicated in CDKA;1 dependent 

phosphoregulation of cell division. The AtTPS1 domain responsible for the interaction with KCA1 

and CDKA;1 was mapped to an N-terminal extension of the AtTPS1 protein that controls the 

trehalose synthase enzymatic activity. AtTPS1 co-precipitated with CDKA;1 affinity beads indicating 

that it is part of a protein complex that contains KCA1 and tubulin. The data presented here provide 

the first physical link between control of cell division and sugar metabolism. 
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Introduction 

 

Trehalose is a disaccharide (alpha, alpha 1,1-diglucose) with unusual stress-protective properties 

that is accumulated to high levels in many bacteria, fungi and in some desert resurrection plants. In 

vitro it protects membranes and proteins against denaturation under different stress conditions, in 

particular during dehydration. Accumulation of trehalose apparently helps to survive the cells 

against harsh conditions (Paiva and Panek, 1996). Trehalose is synthesized via the intermediate 

trehalose-6-phosphate (T6P). In a first step UDP-glucose and glucose-6-phosphate are converted to 

T6P, a reaction catalyzed by TPS (T6P synthase) (Cabib and Leloir, 1958). In a second step, T6P is 

dephosphorylated by TPP (T6P phosphatase). In Saccharomyces cerevisiae, both reactions are 

catalyzed by a large oligomeric enzyme, consisting of Tps1 (TPS), Tps2 (TPP) and a third, 

regulatory protein redundantly encoded by TPS3 and TSL1, in an unknown stoichiometric ratio 

(Reinders et al., 1997; Bell et al., 1998). All components have a part with sequence similarity to 

Tps1 and these parts might be involved in the build-up of the oligomeric complex. In S. cerevisiae 

trehalose metabolism, and in particular the level of T6P, also exerts an essential control on the 

influx of glucose into glycolysis through restriction of hexokinase activity (Blazquez et al., 1993; 

Neves et al., 1995). Therefore, deletion of the TPS1 gene not only causes undetectable levels of 

trehalose but also inability to grow on fast fermented sugars like glucose. How the T6P 

synthase/phosphatase complex is able to control the level of free T6P is unclear although additional 

Tps1, not present in the complex, might be involved (Bell et al., 1998).  

The disaccharide trehalose is barely detectable in higher plants like Arabidopsis (Vogel et al., 2001). 

Hence, trehalose levels are clearly not sufficiently high for a function as stress protectant. However 

in the Arabidopsis genome, 11 TPS-related genes have been identified that fall into two classes 

(Leyman et al., 2001). The genes AtTPS1 to 4 of the first class show high similarity with the T6P 

synthase Tps1 of yeast, while the genes of the second class AtTPS 5 to 11 exhibit higher similarity 

to the T6P phosphatase Tps2 of yeast and also contain the typical phosphatase domains. So far, 

only AtTPS1 has been characterized in more detail. AtTPS1 can be functionally interchanged to 

some extent with Tps1 in yeast (Blazquez et al., 1998; Van Dijck et al., 2002). Expression of AtTPS1 

in a Sctps1∆ strain restores growth on glucose and increases the level of trehalose, albeit to a 

minor extent. This indicates that AtTPS1 can complement not only for the catalytic function but also 

the regulatory function of Tps1. However complementation and activity of AtTPS1 is weak. 

Truncation of the plant specific N-terminal extension of AtTPS1 increases its TPS activity, resulting 

in higher accumulation of trehalose upon expression in yeast and improved growth on glucose. 

Proper homeostasis of the glycolytic intermediates was not restored indicating that AtTPS1 was 

unable to substitute fully for the yeast enzyme in the regulation of hexokinase (Van Dijck et al., 

2002). 

Because of the absence of substantial trehalose accumulation in Arabidopsis, its TPS genes and 

trehalose metabolism are more likely to play a regulatory role. However, it has not been possible to 

relate this role in a straightforward way to the regulatory role of yeast TPS in restricting the influx 
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of glucose into glycolysis. For instance, T6P does not inhibit Arabidopsis hexokinase activity in vitro 

(Eastmond et al., 2002). Nevertheless, modification of T6P levels causes dramatic effects on 

carbohydrate metabolism and partitioning as well as on morphogenesis and development in 

Arabidopsis (Goddijn and van Dun, 1999; Paul et al., 2001; Schluepmann et al., 2003). 

Interestingly, AtTPS1 is an essential gene, and knocking the gene out results in an embryo lethal 

phenotype (Eastmond et al., 2002). Embryo development is blocked early in the phase of cell 

expansion and storage reserve accumulation. This phenotype can be partially suppressed by 

reducing external sugar levels, indicating a hypersensitivity to sugar. In vegetative stage, AtTPS1 is 

essential for normal growth in particular for the development of the flowers (van Dijken et al., 

2004). Consistently, overexpression of AtTPS1 in Arabidopsis reduces sensitivity to external sugar 

(Avonce et al., 2004; Avonce et al., 2005). This sugar insensitivity may be due to the altered 

expression level of the glucose sensor hexokinase HXK1 and of the ABI4 transcription factor, which 

is also involved in sugar signaling. In addition, those transgenic plants also displayed insensitivity to 

the abscisic acid (ABA) hormone and a higher tolerance for drought in comparison to wild type 

plants.  

These results point towards a central function of AtTPS1 in the regulation of sugar and ABA 

signaling. However the mode of action as well as any components interacting with AtTPS1, are still 

unknown. Therefore, we have investigated the possible molecular environment of AtTPS1 in vivo. 

We have identified an oligomeric protein complex in extracts from Arabidopsis flowers and stem, 

with a composition clearly different from the yeast trehalose synthase complex. Interestingly, the 

presence of AtTPS1 in a complex with the cell cycle proteins kinesin KCA1 and CDKA;1 helps us to 

understand how AtTPS1 connects plant sugar metabolism to the control of cell growth, 

morphogenesis and development.  

 

Results 
 

Complementation of tps1∆ yeast strains by AtTPS1 derivatives 

 

The Arabidopsis AtTPS1 protein has an unusual N-terminal extension that largely prevents 

trehalose-6-phosphate synthase activity (Van Dijck et al., 2002). To identify proteins interacting 

with AtTPS1, the AtTPS1 gene and the allele encoding its N-terminal truncated form ∆NAtTPS1 were 

fused to the HA-tag in the pSAL6 vector. The activity of the chimeric constructs was tested in the 

trehalose deficient tps1∆ strain, which is unable to grow on glucose as sole carbon source 

(Breitenbach-Schmitt et al., 1984; Van Aelst et al., 1993). The AtTPS1 derivatives were placed 

under the control of the CUP1 promoter driving copper inducible gene expression. Expression of the 

HA-tagged proteins AtTPS1HA and ∆NAtTPS1HA was tested by immuno-blot analysis of yeast crude 

protein extracts using the anti-HA antibody (Fig. 5.1C). The empty pSAL6 vector failed to 

complement the growth and trehalose synthesis defects of tps1∆. A low level of ∆NAtTPS1 or 

∆NAtTPS1HA expression restored the growth on glucose slightly (Fig. 5.1A). Increasing the 
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expression with Cu2+ was sufficient to fully complement growth. Without the Cu2+ inducer, full 

length AtTPS1 or AtTPS1HA completely failed to complement the tps1∆ growth defect. When Cu2+ 

was added, the transgenic yeast still grew poorly on glucose (Fig. 5.1A) (Van Dijck et al., 2002). In 

addition, the transformants also produced different levels of trehalose. The full length AtTPS1 and 

AtTPS1HA constructs complemented the trehalose synthesis defect of tps1∆ partially whereas the 

N-terminal truncated ∆NAtTPS1 or ∆NAtTPS1HA showed almost complete complementation (Fig. 

5.1B) (Van Dijck et al., 2002). The addition of a HA tag had no apparent effect on the capacity to 

complement the tps1∆ growth and trehalose synthesis defects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 A, Functional complementation of yeast tps1∆ strain for growth on glucose-containing 
medium by AtTPS1, AtTPS1HA, ∆NAtTPS1 and ∆NAtTPS1HA. Media contained 2% glucose (SGlu) or 2% 
galactose (SGal) lacking Uracil (-URA) or Histidine (-HIS) supplemented with 100 µM CUSO4 as indicated. 
B, Trehalose levels in yeast strains grown in 2% galactose (SGal)  with CUSO4. Grey bars represent non-
tagged and white bars represent HA-tagged TPS1 alleles. 1. wild type; 2. tps1∆; 3. tps1∆ 
(YCplac33/ScTPS1); 4. tps1∆ (pSAL6/AtTPS1); 5. tps1∆ (pSAL6/∆NAtTPS1). C, Western blot analysis of 
tps1∆ yeast protein extracts using the anti-HA antibody. The tps1∆ strains were transformed with 1. 
pSAL6/AtTPS1HA (AtTPS1 ± 106 kDa); 2. pSAL6/ ∆NAtTPS1HA; 3. YCplac33/ScTPS1HA. 
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AtTPS1 forms a protein complex in yeast of 600-800 kDa different from the endogenous 

TPS complex. 

 

AtTPS1 is, at least in part, functionally interchangeable with ScTPS1 in S. cerevisiae, raising the 

question whether AtTPS1 forms a protein complex similar to ScTPS1 (Bell et al., 1998). FPLC gel 

exclusion chromatography was used to fractionate native crude yeast protein extract. The molecular 

mass of the yeast trehalose synthase complex was estimated to be 600-800 kDa (Bell et al., 1998). 

Calibration of the FPLC column indicated a molecular weight (MW) of 600-800 kDa for proteins 

eluting in the fractions 11 to 13. Protein extract of the tps1∆ strains expressing AtTPS1HA and 

∆NAtTPS1HA were fractionated by FPLC and equal volumes of each fraction were separated by 

SDS-PAGE for immuno-blot analysis. Both plant proteins were mainly detected in fractions 11 to 15, 

indicating the presence of a protein complex with a high MW similar in size to the wild type ScTps1 

containing complex (Fig. 5.2A) (Bell et al., 1998). AtTPS1HA and ∆NAtTPS1HA were also present to 

a small extent in fractions 16 to 18, containing proteins with a lower MW, corresponding to that of 

the monomeric proteins (Fig. 5.2A). The immuno-blot results with the full length AtTPS1HA 

displayed a second band with a lower MW. This band is apparently due to protein degradation 

during experimental treatment, as this band is absent when the yeast cells were immediately boiled 

in protein sample buffer before for further analysis (data not shown).  

The endogenous ScTps1 complex contains the TPP ScTps2, that dephosphorylates the intermediate 

T6P, and it contains the regulatory proteins encoded by ScTPS3 and ScTSL1 (Bell et al., 1998). We 

checked for the presence of these proteins in the AtTPS1HA and ∆NAtTPS1HA protein complex. For 

this purpose, the AtTPS1HA and ∆NAtTPS1HA proteins were expressed in the M5 fil1 tps1∆ hxk2∆ 

strain. This was necessary to allow proper detection on western blot of the other yeast TPS proteins 

as these were more abundantly produced in this background (Versele et al., 2004). Analysis of the 

FPLC protein fractions using different specific antisera revealed that the yeast TPS proteins ScTsl1, 

ScTps3 and ScTps2 were present in a protein complex in fractions 11 to 15 (Fig. 5.2B). In the same 

fractions, AtTPS1HA and ∆NAtTPS1HA were eluted. To determine whether the co-elution was due 

to the presence of AtTPS1HA and ∆NAtTPS1HA in the same complex as the other yeast proteins, 

similar experiments were performed with different ScTPS deletion strains. Removal of one of the 

contributing partners would be expected to lead to a shift to smaller MW fractions or absence of the 

complex all together in the case the proteins reside in the same complex. We analyzed the FPLC 

profile of the tps1∆ tps2∆ double mutant strain transformed with the pSAL6 constructs containing 

the plant TPS1 ORFs. In both strains, the protein complex with AtTPS1HA or ∆NAtTPS1HA was not 

affected by the deletion of the ScTPS2 gene (Fig. 5.2C). In a second approach, the AtTPS1HA and 

∆NAtTPS1HA alleles were expressed in the quadruple deletion strain tps1∆ tps2∆ tps3∆ tsl1∆ that 

lacks all endogenous TPS protein. For this experiment, the plant genes were cloned in the 

YEplac195/KanMX vector containing the dominant KanMX marker because no auxotrophic marker 

could be used.  FPLC fractionation of the protein extracts followed by immuno-blot analysis of the 

fractions revealed no shift in the size of the AtTPS1HA and ∆NAtTPS1HA containing high MW 



Chapter 5 

130 

protein complexes (Fig. 5.2D). The formation of AtTPS1HA and ∆NAtTPS1HA protein complexes 

therefore did not require any endogenous TPS protein. 

 

 

 

 

 

 

 

 

 

Figure 5.2 Western blot analysis of FPLC elution fractions 11 to 18. A, Proteins were extracted 
from W303-1A tps1∆ strains containing the pSAL6/AtTPS1HA or pSAL6/∆NAtTPS1HA constructs. B, Protein 
extracts were obtained from the M5fil1tps1∆hxk2∆ strain containing pSAL4/AtTPS1HA or pSAL4/∆NAtTPS1HA 
constructs. Specific polyclonal antibodies were used against the Saccharomyces cerevisiae Tsl1, Tps3 and Tps2 
proteins and against AtTPS1. C, Proteins were extracted from W303-1A tps1∆ tps2∆ strains containing the 
pSAL6/AtTPS1HA or pSAL6/∆NAtTPS1HA constructs. D, Proteins were extracted from the quadruple yeast deletion 
strain W303-1A tps1∆ tps2∆ tps3∆ tsl1∆ containing either pYEplac/KanMX/AtTPS1 or YEplac/KanMX/∆NAtTPS1. In 
A, B, and C, an anti-HA antibody was used. Bars represent the 97 kDa marker protein. The triangle points towards 
the expected AtTPS1HA protein. 
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AtTPS1 is expressed in inflorescence tissue predominantly as part of a protein complex  

 

The presence of AtTPS1 protein in extracts of Arabidopsis plant tissue was analyzed via 

immunodetection using AtTPS1 specific polyclonal antibody. In total extract from Arabidopsis 

seedlings a single protein band was detected on western blot with a MW of approximately 100 kDa, 

corresponding to the predicted MW of AtTPS1 (Fig. 5.3A). Arabidopsis transgenic lines carrying an 

antisense AtTPS1 construct showed reduced levels of the 100 kDa protein band. Arabidopsis plants 

with a 35S::AtTPS1 construct overproduced the AtTPS1 protein. The distribution of AtTPS1 was 

analyzed with protein extracts of different organs from wild type Arabidopsis. Considerable amounts 

of AtTPS1 were detected in inflorescence tissue including flowers, stems and cauline leaves. Little or 

no AtTPS1 protein was observed in rosette leaves and roots (Fig. 5.3A). Hence, FPLC separation 

experiments to analyze the occurrence of AtTPS1 protein complexes were performed with extracts  

 

  

 

 

 

 

 

 

 

 

of inflorescence tissue. The AtTPS1 protein was found in the FPLC fractions 11 to 16 corresponding 

to components with a MW ranging from 600-800 kDa in fractions 11-13 to 300 kDa in fraction 16 

(Fig. 5.3B). AtTPS1 overproducing lines contained higher amounts of AtTPS1 protein that showed a 

Figure 5.3 Western blot analysis using the specific anti-AtTPS1 antibody. A, 
Protein extracts from different Arabidopsis organs: 1.flowers, 2. stems, 3. cauline leaves, 4. rosette 
leaves, 5. roots, 6. crude extract. B, Extracts from stem plus flower and cauline leaves fractionated 
by FPLC. Wild type plants (WT), AtTPS1 antisense plants (35S::AtTPS1anti), AtTPS1 overexpressing 
plants (35S::AtTPS1), and ∆NAtTPS1 overexpressing plants (35S:: ∆NAtTPS1). CE = crude extracts. 
Arrows and dotted arrow indicate wild type and truncated AtTPS1 protein respectively. Bars 
represent the 114 kDa marker protein. 



Chapter 5 

132 

FPLC separation profile similar to that of wild type extracts. As expected, less AtTPS1 protein 

complex was found in extracts from antisense plants (Avonce et al., 2004). To analyze a possible 

role of the N-terminal end of AtTPS1 in the formation of the protein complex, protein extracts from 

Arabidopsis carrying a 35S::∆NAtTPS1 construct were subjected to FPLC chromatography. Both the 

wild type and truncated AtTPS1 protein were detected in the extracts (Fig. 5.3B). The N-terminally 

deleted AtTPS1 protein was present in the high MW fractions 13 to 15, indicating slightly smaller 

protein complexes than with the wild type protein. Thus, the N-terminal end of AtTPS1 may 

contribute to the formation of a 600-800 kDa complex, but it is not an essential part. 

 

Purification of AtTPS1 complex by affinity chromatography 

 
AtTPS1 antibody was immobilized to an agarose support matrix to trap AtTPS1 protein together 

with associated proteins from a plant cell extract. Figure 5.4A shows Silver stain visualization of the 

different phases obtained after affinity purification of AtTPS1 from wild type inflorescence tissue.  

 

  

 

 

 

 

 

 

 

Figure 5.4 SDS page analysis of fractions collected after Affi-Gel® Hz immuno-
affinity chromatography. Proteins were stained using a Brilliant Blue G colloidal staining (A and B) or 
using silver staining solution (C). Lanes represent elution of Sample buffer (1), crude protein extract (2), 0.5 
M NaCl wash buffer (3 and 4), 0.2 M NaCl wash buffer (5), NaSCN-urea-guanidine HCL elution buffer (6) 
and regeneration buffer (7). B, 5 different samples (0 as a negative control and 1-4), have been cut out of 
the gel and purified for further identification. White arrow represents a protein the size of AtTPS1. 
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Crude extracts were applied to the affinity column and subsequently unbound material was 

removed with 0.5 M and 0.2 M NaCl washing buffers (Fig. 5.4, lane 1-5). The bound fraction was 

eluted from the column with NaSCN-urea-guanidine HCl buffer (Fig. 5.4, lane 6). A protein band 

was detected in the eluate with a MW corresponding to that of the AtTPS1 protein (Fig. 5.4C). A 

large amount of smaller and higher molecular weight proteins appeared also to be present in the 

eluted fraction. In order to isolate and identify these proteins, an SDS-PAGE gel was run with a 

wide slot to increase the amount of protein loaded and improve their separation (Fig. 5.4B). Four 

prominent bands were detected upon coomassie staining that corresponded to proteins with a MW 

of approximately 28, 33, 45 and 55 kDa. The gel slices referred to as fractions 1 to 4 in Figure 5.4B 

were subjected to MALDI-TOF mass spectrometry. As a reference, similar fractions were taken from 

the separated NaCl wash steps. Fraction 1 contained ribulosebisphosphate caboxylase, a highly 

abundant protein that was also identified in the corresponding fraction in NaCl eluted extract. The 

analysis of fraction 2 identified tubulin that was not found in the corresponding fraction in NaCl 

eluate, suggesting that this protein was specifically retained in the AtTPS1 affinity column. Fractions 

3 and 4 did not give predictive sequence data. We concluded that tubulin might be an interaction 

partner of AtTPS1 but that the affinity purification was not powerful enough to allow identification 

of other interaction partners. 

 

AtTPS1 interacts with KCA1 

 

As an alternative approach to identify AtTPS1 interacting proteins, we performed a two hybrid 

screen using an Arabidopsis cDNA library of mature leaves fused to the GAL4 activating domain in 

pGAD424 as prey. Truncation of AtTPS1 at its N-terminal end, leads to a prominent increase in its 

regulatory and catalytic activity upon expression in yeast (Van Dijck et al., 2002). Hence, we 

concluded that the 88 amino acid domain of AtTPS1, plays a crucial role in the regulation of AtTPS1 

activity. The full length AtTPS1, the truncated ∆NAtTPS1, and the 264 bp 5’ oligomer encoding the 

inhibitory N-terminal domain of AtTPS1 were fused to the DNA binding domain of the GAL4 

transcription factor in the pGBT9 vector. The yeast AH109 strain, containing these bait constructs, 

was transformed with the library and the transformants were grown on medium without leucine, 

tryptophane and histidine to select for clones with interacting proteins. Full-length AtTPS1 and 

∆NAtTPS1 baits did not result in any yeast colony growing on the auxotrophic medium. However, 

the regulatory domain of AtTPS1(1-264) yielded yeast colonies that contained a prey plasmid 

containing a sequence corresponding to a cDNA fragment previously referred to as TH65 (De 

Veylder et al., 1997). The TH65 fragment is derived from the Arabidopsis gene KCA1 with a 

predicted amino acid sequence that reveals three major domains: a head containing the kinesin 

motor domain (N-terminal), a coiled coil stalk domain (central), and a C-terminal tail domain (Fig. 

5.5A) (Vanstraelen et al., 2004). The TH65 fragment encodes the peptide from amino acid 473 to 

866 containing the stalk domain and the N-terminal part of the tail domain. To define the region of 

KCA1 that interacts with AtTPS1, various deletion fragments were tested in two hybrid assays. 
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Figure 5.5A shows the different KCA1 fragments that were used for the analysis: the full length 

protein KCA1(1-1273), the head KCA1(1-463), TH65 KCA1(473-866), the N-terminal part of the tail 

(660-862), and the tail KCA1(875-1273). Full length AtTPS1 and the catalytic domain separately did 

not interact with any of the KCA1 fragments in agreement with the absence of yeast colonies in the 

library screen (Fig. 5.5B). The regulatory domain AtTPS1(1-264) exclusively interacted with the 

stalk KCA1473-866, resulting in yeast colony formation on selective medium containing up to 5 mM 3-

AT. No growth was detected of transformants containing either plasmid separately, indicating the 

absence of auto-activation. When bait and prey fusion constructs were reciprocally exchanged, the 

interaction was lost, suggesting that the binding of AtTPS1(1-264) with KCA1473-866 is probably 

weak. The two-hybrid interaction pointed to KCA1 as a potential candidate to form a complex with 

AtTPS1. 

 

 

 

 

 

 

Figure 5.5. A, Scheme of KCA1, and map of two-hybrid constructs. The head consist of a coiled coil domain 
(dashed box) and a motor domain (dotted box) with ATP binding site and preceded by a G141N142 neck. The stalk 
domain contains three different coiled coil regions (dashed boxes). The tail domain carries three different CDK 
phosphorylation sites (small white boxes) as well as a nuclear localization site (NLS) B, Two hybrid analysis of 
AtTPS1(1-264), the full length AtTPS1, and ∆NAtTPS1 with parts of KCA1 ranging from 473 to 866 and 857 to 
1273 amino acids. GPA1 and STE5 were used as a positive control. 
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AtTPS1 interacts with the cyclin dependent kinase CDKA;1  

 

Previously it has been suggested that KCA1 is a target for phosphorylation by the cyclin dependent 

kinase CKDA;1 (De Veylder et al., 1997; Kong and Hanley-Bowdoin, 2002). KCA1 and CDKA;1 

interact in two-hybrid and immunoprecipitation experiments, and mutagenesis of a putative 

phosphorylation site at serine 841 and serine 845 abolishes this interaction (Vanstraelen et al., 

2004). To analyze a possible interaction between AtTPS1 and CDKA;1, we performed a two-hybrid 

test. The N-terminal domain of AtTPS1 (1-264) showed an interaction with CDKA;1 whereas the full 

length protein and the ∆NAtTPS1 domain did not (Fig. 5.6A). Since the interaction appeared very 

weak, an alternative method was chosen to evaluate the findings. CDKA;1 binds to p10CKSAt affinity 

beads and co-purifies with GFP-tagged KCA1 protein (Vanstraelen et al., 2004). We therefore used 

p10CKSAt beads  to  pellet  CDKA;1  from  Arabidopsis  wild type protein extract and tested whether 

AtTPS1 was co-precipitated. The binding of CDKA;1 to p10CKSAt affinity beads was verified with a 

 

  

 

 

 

 

 

 

Figure 5.6 A, Two hybrid analysis of AtTPS1, with CDKA;1. Yeast growth on control 
medium is shown to the left and growth on selective medium is shown in the right 
panel. B, Western blot detection of CDKA;1, β-tubulin, and AtTPS1 in wild type (WT) 
and 35S::AtTPS1 protein extracts. Crude extracts (CE) were compared with supernatant 
(SN) and pellet (P) after pull down experiments using p10CKSAt affinity beads. Antibodies 
used were (PSTAIRE), β-tubulin and AtTPS1 antiserum.  
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PSTAIRE specific antibody. AtTPS1 antiserum detected a single protein band associated with the 

p10CKSAt bead pellet (Fig. 5.6B). A similar experiment was done with extracts from Arabidopsis plants 

overproducing AtTPS1 protein. Here a slightly higher amount of AtTPS1 was precipitated (Fig. 

5.6B). Next, we tested whether tubulin co-purifies with the p10CKSAt affinity beads. β-tubulin was 

found in the pellet indicating that it indeed interacts with the CKS binding complex. The AtTPS1 

protein that precipitated with the p10CKSAt beads represented only a fraction of the total amount 

detected in the untreated extract. It did not increase upon addition of more p10CKSAt affinity beads. 

This indicates that AtTPS1 binds indirectly to the p10CKSAt affinity beads, perhaps via CDKA;1 and/or 

KCA1. 

 

The AtTPS1 protein complex from inflorescence tissue contains CDKA;1 and tubulin 

 

Two hybrid and affinity chromatography experiments pointed toward the possibility that CDKA;1 

and tubulin were part of a protein complex containing the AtTPS1 protein. We therefore analyzed 

the presence of CDKA;1 and tubulin in FPLC separated extracts from Arabidopsis inflorescence 

tissue. CDKA;1 was detected in high as well as low MW fractions (Fig. 5.7). The concentration of 

CDKA;1 peaked in fractions 16 to 20 that corresponds to components with a MW below 300 kDa. 

However, CDKA;1 also occurred in fractions 11 to 16 that contain AtTPS1. β-tubulin was also 

present in fractions 11 to 16 and showed the highest concentration in fractions 13 to 17 (Fig. 5.7). 

The presence of AtTPS1, CDKA;1 and β-tubulin was also analyzed in FPLC separations of extracts 

isolated from a KCA1 T-DNA insertion mutant (Vanstraelen et al., unpublished data). Because there 

was no change in the distribution of these proteins in the KCA1 mutant extracts (results not 

shown), the KCA1 kinesin may not be an essential component of the complex or alternatively it was 

replaced by the kinesin homolog KCA2. The occurrence of CDKA;1 and β-tubulin in the high MW 

fractions suggest that these proteins might contribute to a complex with AtTPS1, albeit that they 

also associate with other proteins into smaller units. 

 

  
 
 
 
 
 

Figure 5.7 Western blot analysis of CDKA;1 and tubulin in 
Arabidopsis FPLC fractions. Proteins were extracted from the aerial parts 
of wild type Arabidopsis and analyzed by Western blot. CDKA;1 was detected with 
PSTAIRE antibody (upper panel), and tubulin using anti-β-tubulin antibody (lower 
panel). CE = crude extracts. 
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Localization of GFP-tagged AtTPS1 

 

To analyze the localization of AtTPS1 in vivo in Arabidopsis cells, the full length protein and the 

regulatory N-terminal domain were N-terminally fused to the green fluorescent protein. Tobacco 

leaves were transiently transfected with the GFP fusion constructs driven by the 35S promoter. Full-

length fusion protein was present in the cytoplasm and excluded from the nucleus, whereas the N-

terminal domain was present also in the nucleus (data not shown). Similar localization patterns 

were observed in stably transformed BY-2 tobacco suspension cultures (data not shown). To 

determine the localization of AtTPS1 and KCA1 in dividing cells, BY-2 cultures were co-transformed 

with GFP-KCA1 and RFP- AtTPS1 constructs. The BY-2 cultures were also transformed to produce 

free GFP and GFP fused to a MT-binding domain of the mouse MAP4 protein, GFP-MBD for 

comparison (Van Damme et al., 2004). Localization patterns were determined at different phases of 

the cell cycle (Fig. 5.8). Free GFP filled all accessible space except for the vacuolar compartments, 

while GFP-MBD was predominantly associated with the MTs of the PPB (G2-phase), the spindle  

 

 

 

 

 

 

Figure 5.8 Subcellular localization of AtTPS1 and KCA1 in interphase and dividing 
BY-2 cells. Confocal sections are shown of stably transformed BY-2 cells producing free GFP, GFP-MBD or 
GFP-KCA1 together with RFP-AtTPS1. Free GFP accumulates in the cytoplasm and the nucleus whereas GFP-
MBD binds to MTs. GFP-KCA1 fluorescence is shown in green and RFP-AtTPS1 is shown in red. The column 
at the right shows the merged images. GFP-KCA1 and RFP-AtTPS1 are co-localized in the cytoplasm, the 
spindle and the phragmoplast area (yellow signal). During mitosis, RFP-AtTPS1 does not concentrate at the 
plasma membrane or at the cell plate. Bar = 20 µm. 
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(metaphase and anaphase) and the phragmoplast (telophase). GFP-KCA1 and RFP-AtTPS1 were 

excluded from the nucleus and colocalized in the cytoplasm. During mitosis they accumulated in the 

area of the spindle and the phragmoplast. In addition, GFP-KCA1 was targeted to the cell plate and 

the plasma membrane as expected (Vanstraelen et al., 2004). RFP-AtTPS1 however, was not 

targeted to the cell plate or plasma membrane and remained distributed in the cytoplasm (Fig. 5.8). 

To determine the localization of the endogenous AtTPS1 protein, antiserum was used in 

immunostainings on electron microscopic sections of Arabidopsis seedlings. Gold particles were 

detected mainly in the cytoplasm and not at the membranes of the developing cell plate or plasma 

membrane (data not shown). 

 

Discussion 

 

We have uncovered a physical interaction between AtTPS1, a protein implicated in the control of 

sugar metabolism, and two cell division proteins, kinesin KCA1 and the cyclin dependent kinase 

CDKA;1. These proteins are present in the cytoplasm, presumably in loose association with the MT 

cytoskeleton. The AtTPS1 protein is most abundant in inflorescence tissue and may regulate cell 

division in relation to carbon source availability and flower development in Arabidopsis. 

Trehalose is widely accepted as a protective molecule in stress response and more recently it has 

been implicated in processes related to carbon storage. Because trehalose is not produced in 

detectable amounts in all plant species, its general role in plants has been questioned. The 

discovery of a family of 11 trehalose synthase like genes in Arabidopsis (Leyman et al., 2001) and 

the identification of an Arabidopsis embryo lethal mutant carrying an insertion in the AtTPS1 gene 

(Eastmond et al., 2002), has invigorated the importance of the trehalose molecule in plant growth 

and development. In AtTPS1 knock-out mutants, embryo development is impaired at the late 

hart/torpedo stage during which storage reserves accumulate. More recently, it was demonstrated 

by temporally complementing the insertion mutation that the AtTPS1 gene also has an important 

function outside the seed-filling stage and is required for normal root growth and for development 

of inflorescence tissue (van Dijken et al., 2004).  

AtTPS1 was previous shown to functionally replace the T6P-synthase Tps1 gene from 

Saccharomyces cerevisiae (Blazquez et al., 1998; Van Dijck et al., 2002). The Tps1 protein is 

present in extracts both as a free monomeric protein with a MW of 56 kDa and as part of a protein 

complex of approximately 630-800 kDa. This complex is called the trehalose biosynthesis complex 

and also includes the T6P-phosphatase Tps2 (102 kDa), Tps3 (115 kDa) and Tsl1 (123 kDa) (Bell et 

al., 1998). Upon deletion of both TPS3 or TSL1 the complex disintegrated partially and a complex 

with lower MW could be detected. Deleting TPS2 caused the trehalose complex to destabilize 

completely (Bell et al., 1998). Apart form the trehalose synthase complex, trehalose biosynthesis 

proteins have been shown to interact with some other proteins. For example, Tps1 binds Rim15, a 

protein kinase in the glucose signaling pathway (Pedruzzi et al., 2003). In addition there is evidence 
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from large-scale two-hybrid screens for Tps2 binding with YAR066w, SBH2 and YDL100C (Ho et al., 

2002). However these interactions need to be affirmed by additional experiments. 

We initially analyzed Arabidopsis AtTPS1 protein complex formation in a yeast background. 

Although AtTPS1 was present in a complex similar in size to the endogenous ScTPS1 complex, none 

of the other yeast Tps components seemed to be involved. Moreover, the hexokinase and 

hexokinase-like genes AtHXK1, AtHXK2, AtHKL1, AtHKL2, AtHKL3 were negative in two hybrid tests 

using AtTPS1 as bait, indicating that AtTPS1 is not strongly associating with sugar metabolizing 

enzymes (data not shown). Therefore, the identity of the AtTPS1 complex isolated from the AtTPS1 

producing yeast is unsolved. In its natural background, AtTPS1 was also incorporated in a protein 

complex. Increasing the expression of AtTPS1 led to higher amounts of purified protein complex 

whereas reducing the production of AtTPS1 in antisense transformants led to lower amounts of the 

complex. These results are expected if AtTPS1 is the rate-limiting factor corroborating the formation 

of a complex consisting of predominantly the AtTPS1 protein. Note that the antisense line used here 

shows reduced expression of AtTPS1 as the disruption of the AtTPS1 gene is lethal (Eastmond et 

al., 2002). AtTPS1 protein complex formation did not require the N-terminal domain as ∆NAtTPS1 

co-migrated with the high MW fractions. Strong ∆NAtTPS1 expression did not stimulate an increase 

in the production of AtTPS1 complex. Therefore, the higher amounts of complex detected in 35S:: 

AtTPS1 lines was the consequence of higher incorporation of the overproduced AtTPS1 protein 

rather than a stimulation of complex formation.  

In order to identify AtTPS1 interacting proteins, two-hybrid and chromatography experiments were 

performed. Affinity purified proteins retained on an AtTPS1 column, migrated as four major protein 

bands. One of these contained β-tubulin. The two-hybrid screen resulted in the identification of the 

tubulin binding kinesin KCA1. This protein is a plant specific kinesin motor protein with the capacity 

to bind MTs and was previously shown to bind CDKA;1 (De Veylder et al., 1997; Vanstraelen et al., 

2004). Additional immunological experiments showed that CDKA;1 interacts with AtTPS1. β-Tubulin 

was pulled down together with AtTPS1, and CDKA;1 by p10 affinity beads. This AtTPS1 complex 

including β-tubulin and CDKA;1 was detected in high MW fractions from Arabidopsis inflorescence 

tissue. The AtTPS1 complex was also found in Arabidopsis mutants that carry a T-DNA insertion in 

KCA1 (data not shown). The purified AtTPS1 complex may not require KCA1 or it could incorporate 

the highly similar KCA2 protein. The strong similarity between KCA1 and KCA2 and the high KCA2 

expression levels found in inflorescence tissue (Zimmermann et al., 2004) supports this possibility. 

Taken together, the data indicate that AtTPS1 is part of a protein complex containing β-tubulin, 

CDKA;1 and KCA1 or KCA2. 

The AtTPS1 protein was most abundant in the flowers and stems, less concentrated in cauline 

leaves, and undetected in mature rosette leaves and roots. These findings are in agreement with 

earlier RNA expression results (Blazquez et al., 1998) and the AtTPS1 promoter activity, that is 

highest in sink organs and in particular flower buds and ripening siliques (Blazquez et al., 1998; van 

Dijken et al., 2004). Interestingly, even though trehalose itself is present in minute quantities in 

Arabidopsis, peak levels of the disaccharide have been detected in flowers (Vogel et al., 2001). 
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KCA1 RNA and protein are also present in aerial parts of Arabidopsis although high transcript levels 

have been detected in the roots (Kong and Hanley-Bowdoin, 2002; Vanstraelen et al., 2004). In 

contrast, KCA2 is more abundant in inflorescence tissue and much lower in roots. Thus AtTPS1 and 

KCA1/KCA2 likely coexist in the same tissue, a prerequisite to form a complex.  

RFP tagged AtTPS1 and GFP tagged KCA1 co-localized in the cytoplasm and were excluded from the 

nucleus. Despite the presence of a MT-binding domain in KCA1, GFP-tagged protein and RFP- 

AtTPS1 did not bind to MTs but appeared to be more loosely associated with the spindle and the 

phragmoplast area. The subcellular pattern of KCA1 depends on its C-terminal end, as removal of 

the tail domain permits specific binding to microtubules (Vanstraelen et al., 2004). The tail domain 

contains a putative serine/threonine phosphorylation site and may be modified by CDKA;1. CDKA;1 

itself is associated with mitotic MTs depending on experimental conditions (Stals et al., 1997; 

Weingartner et al., 2001). A subpopulation of AtTPS1, KCA1 and CDKA;1 may therefore be 

temporarily bound to MTs. At the onset of cytokinesis when a new cell plate is formed, KCA1 but 

not AtTPS1 concentrated at the midline. Here, proteins implicated in vesicular targeting and fusion 

concentrate (Van Damme et al., 2004a). Immunolocalization of the endogenous AtTPS1 protein 

confirmed the localization in the cytoplasm and the absence from the cell plate. It therefore appears 

that KCA1 has a role in cytokinesis and cell plate formation that does not require the interaction 

with AtTPS1. The interaction of AtTPS1 and KCA1 in two-hybrid analysis could only be observed 

when parts of both proteins were tested, not when full-length proteins were used. Likewise, the 

interaction with CDKA;1 could only be established with the N-terminus of AtTPS1 (1-264). The KCA1 

protein, and perhaps AtTPS1 as well, occur in different folding configurations that display different 

subcellular localization patterns (Vanstraelen et al., 2004). The full length AtTPS1 and KCA1 fused 

to the Gal4 domain may not fold correctly to allow for proper protein interaction. The in vivo 

interaction between AtTPS1, KCA1 and CDKA;1 is therefore conditional.  

The finding that AtTPS1 binds to a core regulator of the cell cycle was unexpected. Overexpression 

of AtTPS1 in Arabidopsis renders the plants insensitive to externally applied sugars (Avonce et al., 

2004). Thus, AtTPS1 is implicated in some aspects of sugar signaling (Avonce et al., 2005). The 

glucose insensitivity could be the consequence of deviating glucose into the trehalose synthesis 

pathway, or more likely, AtTPS1 is a negative regulator of sugar signaling, and when overproduced, 

it impedes the sugar sensing mechanism. This mechanism has not been elucidated yet, but likely 

involves T6P as changes in T6P levels in Arabidopsis plants influences carbohydrate utilization and 

has dramatic effects on growth and leaf morphology (Schluepmann et al., 2003). The interaction of 

AtTPS1 with cell cycle proteins CDKA;1 and kinesin KCA1 may provide a link between sugar 

availability and control over cell division. Because AtTPS1 is essential for embryo maturation, the 

transition to the flowering stage, and contributes to root growth (Eastmond et al., 2002; van Dijken 

et al., 2004), it seems to control high energy demanding processes that require sufficient storage 

reserve in order to be successfully completed. In the absence of required sugar levels, commitment 

to rounds of cell division is to be prevented. A recent study now shows that in Arabidopsis AtTPS1 

null mutants, storage reserve gene expression is not dramatically altered (Gomez et al., 2005). The 
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principal function of AtTPS1 in development may therefore not be related to the acquisition of 

carbon sources per se but rather the communication of its availability to the cell cycle machinery. 

Our findings may provide the necessary connection by which information on available carbohydrate 

energy is conveyed to the cell cycle regulatory machinery.  

 

Material and Methods 

 

Plant growth conditions 

 

 Arabidopsis ecotype Col-0 was grown in a 12h day and night regime at 22/19°C. The 

overexpressing and antisense plants 35S::AtTPS1 and 35S::AtTPS1anti have been described  

previously (Avonce et al., 2004). The truncated 35S::∆NAtTPS1 was ligated from pSAL6/∆NAtTPS1 

into the pBN35S. Bright Yellow 2 (BY-2) cells were transformed and grown in conditions as 

described previously (Vanstraelen et al., 2004). 

 

Constructs, strains and two-hybrid libraries 

 

The pSAL4 and pSAL6 are shuttle vectors between E. coli (AmpR) and S. cerevisiae. The pSAL4 

vector contains the URA3 and pSAL6 the HIS3 auxotrophic marker (Van Dijck et al., 2002). The 

construction of pSAL6/AtTPS1 and pSAL6/∆NAtTPS1 has been reported previously (Van Dijck et al., 

2002). For the construction of the HA-tagged AtTPS1HA and ∆NAtTPS1HA alleles, the C-terminal 

part of AtTPS1 was PCR amplified using the pSAL6/AtTPS1 construct as template with forward 

primer 5’CCAAGGAAGCCGCTCTGTGGAAG3’ and reverse primer: 
5’CTGCATGCTCATGCGTAGTCAGGCACATCATACGGATAAGGTGAGGAAGTGGTGTC3’. The PCR fragment 

together with pSAL6/AtTPS1 and pSAL6/∆NAtTPS1 were digested with the ClaI/SphI restriction 

enzymes and ligated to become respectively pSAL6/AtTPS1HA and pSAL6/∆NAtTPS1HA. The 

pSAL4/AtTPS1HA and pSAL4/∆NAtTPS1HA were constructed using the pSAL6/AtTPS1HA and 

pSAL6/∆NAtTPS1HA. These plasmids were digested with BrsGI and SpeI and the AtTPS1HA and 

∆NAtTPS1HA alleles were ligated into the same endonuclease sequence sites in the pSAL4 vector. 

To obtain YEplac195/KanMX/AtTPS1HA and YEplac195/KanMX/∆NAtTPS1HA, the C-terminal part of 

the AtTPS1HA was PCR amplified from the pSAL6/AtTPS1HA plasmid with forward primer 
5’GGATCAAAATCCTCATCATCC3’ and reverse primer 5’CCGGAATTCGCTATTACGCCAGCG3’. The PCR 

fragment was digested with BamHI and EcoRI and ligated to the 3084bp BamHI fragment of 

pSAL6/AtTPS1HA or the 2820bp BamHI fragment of pSAL6/∆NAtTPS1HA and further ligated into 

the BamHI and EcoRI digested YEplac195/KanMX plasmid (Tanghe et al., 2002).  

The bacterial E. coli DH5α was used for subcloning and assembly of constructs. The yeast strains 

used were: wild type W303-1A (Mata leu 2-3,112 ura3-1 trp1-1 his3-11,15 ade2-1 can1-100 GAL 

SUC2) (Thomas and Rothstein, 1989); tps1∆, YSH290 (W303-1A, tps1∆::TRP1) (Hohmann et al., 

1993); tps1∆  tps2∆ YSH652 (W303-1A, tps1∆::TRP1, tps2∆::LEU2) (Neves et al., 1995) and tps1∆  
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tps2∆  tps3∆ tsl1∆ YSH662 (W303-1A, tps1∆::TRP1, tps2∆::LEU2 tps3∆::URA3 tsl1∆::HIS3) 

(Hohmann, MCB laboratory stock) and  in a different background: M5 fil1 tps1∆ hxk2∆ (Matα leu2-

3,112 ura3-52 trp1-92 fil1 hxk2∆::LEU2 tps1∆::TRP1) (Van Dijck et al., 2000). 

The two-hybrid plasmids pGBT9 and pGAD242 were obtained from Clontech. Constructs were made 

starting with a NcoI digestion of pSAL6/AtTPS1 and pSAL6/∆NAtTPS1, followed by Klenow DNA 

polymerase activity and by another digestion with BamHI. The obtained AtTPS1 and ∆NAtTPS1 

fragments were ligated into the SmaI/BamHI cut pGBT9 and pGAD242 to result in the 

pGBT9/AtTPS1, pGBT9/∆NAtTPS1, pGAD242/AtTPS1 and pGAD242/∆NAtTPS1. The 264bp fragment 

at the 5’ end of AtTPS1 was amplified with the following primers: forward primer 
5’TATAGAATTCATGCCTGGAAATAAGTAC3’ and reverse primer 
5’TATAGGATCCTTACCTAACTTCTTGCCTC3’. The PCR fragment together with the pGBT9 and 

pGAD242 vector were digested with EcoRI and BamHI and ligated resulting in pGBT9/AtTPS1(1-

264) and pGAD242/AtTPS1(1-264). The pGBT9 and pGAD242 constructs containing full length and 

fragments of KCA1, KCA2 and CDKA;1 have been described before (Vanstraelen et al., 2004). The 

cDNA library obtained from Clontech was made of 3 week old vegetative Arabidopsis plants and 

cDNA fragments were fused to the GAL4 activation domain in the pGAD424 vector. The strain used 

in the two hybrid experiment was the AH109 strain (Mata trp1-901 leu2-3,112 ura3-52 his3-200 

gal4∆ gal80∆ LYS::GAL1UAS-GAL1TATA-HIS, GAL2UAS-GAL2TATA-ADE URA::MEL1UAS-MEL1TATA-lacZ MEL1) 

(Clontech). The pGBT9 and pGAD242 constructs were cotransformed into the AH109 strain, 

selected on medium without Leu and Trp. Single colonies were grown in liquid medium –Leu and –

Trp overnight at 30°C and 7 µl drops of a dilution series (OD600 1, 0.2, 0.1, 0.05, 0.025) were 

spotted on selective medium –Leu, -Trp, -His or –Leu, -Trp, -Ade. as indicated. Medium –Leu, -Trp, 

-His was supplemented with 0, 2.5, 5 or 10 mM 3AT (Sigma-Aldrich, St. Louis). Plates were grown 

at 30°C. 

GFP-fusion constructs were generated by PCR using primers extended with Gateway® adaptors 

attB1 and attB2 and recombination into the vector pK7GWF2 and pHGWR2 (Karimi et al., 2002; 

Karimi et al., 2005). 

 

Fast Performance Liquid Chromatography (FPLC fractionation) 

 

Flowers, stems and cauline leaves of plants were cut and grinded thoroughly into a chilled mortar in 

homogenization buffer (50 mM Tris pH 8.2, 2 mM EDTA, 5 mM DTT and 20% glycerol) to obtain the 

plant extracts. Fresh plant extracts and yeast protein extracts (Bell et al., 1998) were filtered 

through a 0.20 µm filter and concentrated using a vivaspin concentrator column (10 kDa MWCO) by 

centrifugation for 30 min at 3500 rpm. The superdex 200 HR 10/30 Sepharose-6 FPLC column was 

washed with 40 ml Phosphate buffer at pH 7.0 (10.7 g/l Na2HPO4.2H2O, 5.5 g/l NaH2PO4.H2O, 7.5 

g/l KCl, and 246 mg MgSO4.7H2O) for yeast and 40 ml homogenization buffer for plant extracts. 1 

ml of the concentrated protein extract was applied onto the column and fractions of 750 µl were 
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collected. FPLC-fractions were further used in immuno-blot analysis. The column was washed with 

40 ml 20% EtOH.  

 

Immuno-blot analysis 

 

Antibodies were either commercially available: Anti-HA High affinity rat IgG (used in a concentration 

of 1:10000 (v/v); Roche), anti-βTUB mouse IgG (concentration: 1:1000; ab7792, Abcam Ltd, 

Cambridge), or previously generated against yeast proteins: Anti-Tps2 and anti-Tps3 and anti-Tsl1 

rabbit serum, all used in a 1:500 dilution (Bell et al., 1998). Anti-AtTPS1 was generated in rabbit 

against an epitope in the C-terminal region of AtTPS1. Workable concentration for western blot 

analysis was determined at a dilution of 1:500. 

Proteins were separated by denaturing SDS-PAGE (Laemmli, 1970) and blotted on a nitrocellulose 

filter (HybondC extra, Amersham) with a liquid miniblotting system (Bio-Rad, Hercules, CA). Filters 

were blocked in TBST (Tris buffered saline with 0.05% Tween-20) supplemented with 2% BSA 

(anti-HA and anti-βTUB) or 5% skimmed milk (anti-Tps2, anti-Tps3, anti-Tsl1) for 2h. Primary 

antibody was added to the same buffer and incubated overnight at 4°C. After washing with TBST (3 

x 10 min), the membranes were incubated in fresh buffer with an appropriate alkaline phosphatase 

linked secondary antibody: goat anti-rat IgG, goat anti-mouse IgG (Sigma, Aldrich) or goat anti-

rabbit IgG (Bio-Rad) used in a concentration of 1:1000. For detection, membranes were washed (3 

x TBST 10 min) and incubated with 50 mg/ml BCIP and 75 mg/ml NBT in developing buffer (100 

mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl) in the dark until bands were visualized. Filters were 

rinsed with water and air-dried. The CDKA;1 protein was detected using a 1:2500 dilution of cdc2 

PSTAIRE antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and a 1:10000 dilution of secondary 

anti rabbit Ig horseradish peroxidase from donkey in TBST with 3% skimmed milk. Proteins were 

detected using a chemiluminescence procedure (Bio-Rad). 

 

Affinity chromatography 

 

AntiAtTPS1 antibody was coupled to an agarose support matrix Affi-Gel® Hz Immunoaffinity kit 

(Biorad) using manufacturers instructions. All following manipulations were performed at room 

temperature. To wash the column prior to each experiment, 3 bed volumes of elution buffer (2 M 

NaSCN, 3 M urea, 2.5 M guanidine HCl) were put on the column. The column was regenerated with 

5 volumes of homogenization buffer (see FPLC fractionation) without DTT and the filtered protein 

extract was applied to the immobilized IgG column. The column was washed twice with 2 volumes 

of 0.5 M NaCl, followed by 2 volumes of 0.2 M NaCl in homogenization buffer minus DTT. Retained 

proteins were eluted in 2 bed volumes of elution buffer. The column was regenerated with 2 

volumes homogenization buffer and stored at 4 °C adding 0.02% NaN3. Collected fractions were 

dialyzed with Spectra/Por® Membrane, MWCO 6-8 kDa in homogenization buffer without DTT. 
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Proteins were TCA precipitated and dissolved in 300 µl homogenization buffer and analyzed by 

immuno-blot. 

 

Pull down p10CKSAt beads 

 

Arabidopsis plants were homogenized with mortar and pestle. Homogenate was centrifuged at 

10,000g for 10 min to remove cell debris. The supernatant was centrifuged at 14,000g for 10 min. 

A sample was kept on ice and used as crude extract. Then, incubation of 300 µg of proteins with 

50% (v/v) p10CKS1At Sepharose beads and pull down was performed as described before 

(Vanstraelen et al., 2004). Samples were analyzed via immuno-blot. 

 

Microscopy 

 

Transgenic BY-2 cells from liquid cultures were transferred to the bottom of a coverglass chamber 

(Lab-Tek, Naperville, IL, USA) and imaged using a Zeiss 100M confocal microscope equipped with 

LSM510 software (version 3.2). Images were recorded and analyzed as described previously (Van 

Damme et al., 2004a; Van Damme et al., 2004b). For the analysis of transiently transfected tobacco 

epidermal cells, leaf blades were injected with dilutions of an Agrobacterium culture (O.D.600 = 0.5) 

and 3 days later mounted on a microslide in water.  
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Chapter page: Confocal microscopy image of the root tip of an Arabidopsis thaliana seedling, 

stained with FM4-64. The cell in the center of the picture is dividing and the forming cell plate has 

not yet reached the mother cell wall. 
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Abstract 

 

KCA1 interacts with AtTPS1 and the katanin p60 subunit AtKSS, which are implicated in the 

development and morphology of Arabidopsis plants. To study the function of KCA in plant growth, 

plants that carried a T-DNA insertion in intron 10 of KCA1 and exon 1 of KCA2 were identified. Both 

single and double mutant were investigated. Molecular characterization of the mutant alleles 

showed that KCA2 transcript was absent from mutant plants. Despite of the T-DNA insertion in 

KCA1 mutants, KCA1 transcripts of full-length size and a shorter fragment were detected. Western 

blotting using an antibody that recognizes both KCA1 and KCA2, revealed the absence of KCA 

proteins in double mutants, but not in single insertion mutants. KCA mutants were phenotypically 

characterized and compared to plants mutated in the genes that encode for the KCA1 interaction 

partners katanin and AtTPS1. Processes related to cell division and cell expansion were not 

perturbed in the kca mutants under the conditions tested. It is possible that the T-DNA insertion in 

the KCA1 gene is not a knock out and that functional KCA1 protein is still produced. Alternatively, 

other kinesins or parallel mechanisms can take over KCA activity. It is also possible that phenotypes 

were too subtle and growth conditions not apt to uncover phenotypic aberrations.  
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Introduction 

 

Plant cells are unique in that they build three MT structures that are absent in other eukaryotes. 

The cortical array is typical for interphase cells and directs cell expansion. Dividing cells produce 

different configurations that contribute to cell division. The PPB and the phragmoplast are 

implicated in the alignment and construction of the cell plate during cytokinesis (Wasteneys, 2002). 

Consistent with this, plant specific MAPs, both structural MAPs and kinesins, associate with these 

MT structures and disruption of their respective genes affects MT organization leading to altered 

growth morphologies (Torresruiz and Jurgens, 1994; Traas et al., 1995; Oppenheimer et al., 1997; 

Furutani et al., 2000; Nishihama et al., 2002; Strompen et al., 2002; Yang et al., 2003; Muller et al., 

2004). 

In plants, kinesins function in intracellular transport of vesicles and organelles and MT organization 

during interphase and mitosis (Lee and Liu, 2004). The minus-end directed kinesin KCBP is involved 

in trichome morphogenesis in Arabidopsis, probably by organizing the cortical MTs in these 

specialized cell types (Oppenheimer et al., 1997; Mathur and Chua, 2000). In addition, KCBP plays 

a role during cell division. It localizes to all mitotic MT arrays and a function in spindle pole 

formation has been proposed based on antibody microinjection experiments (Bowser and Reddy, 

1997; Vos et al., 2000). Arabidopsis plants that are mutated in the kinesin genes ATK1 or ATK5 

have broad spindle poles, suggesting that other minus-end directed kinesins are also implicated in 

spindle pole formation (Chen et al., 2002; Marcus et al., 2002; Marcus et al., 2003; Ambrose et al., 

2005). In addition, ATK1 functions in the construction of the bipolar spindle as atk1 mutant spindles 

displayed a reduced bipolarity. Probably, ATK1 plays antagonistic roles to BimC/Kinesin-5 like 

kinesins in spindle formation. The tobacco TKRP125 is a BimC like kinesin that has been localized to 

the PPB, spindle and phragmoplast. Antibodies raised against the motor domain of this kinesin 

inhibit sliding of phragmoplast MTs in BY-2 cells, indicating that TKRP125 functions in phragmoplast 

MT organization (Asada et al., 1997). Several plant specific kinesins play distinct roles during 

cytokinesis. AtPAKRP1 and its homologue AtPAKRP1L localize to the midzone of the phragmoplast 

(Lee and Liu, 2000; Pan et al., 2004). It was proposed that they function in the maintenance of the 

bipolar phragmoplast structure, once it is constructed. AtPAKRP2 also localizes to the phragmoplast 

midline, but in a Brefeldin A dependent punctate manner. This kinesin is membrane associated and 

is a good candidate to deliver Golgi-derived vesicles to the phragmoplast midline (Lee et al., 2001). 

NACK1/HIK and NACK2/TES are essential to respectively mitotic and meiotic cytokinesis (Hulskamp 

et al., 1997; Nishihama et al., 2002; Yang et al., 2003). MT reorganization during phragmoplast 

expansion was impaired in hik mutants, indicating that they function in MT dynamics leading to cell 

plate expansion (Strompen et al., 2002). 

The KCA motor proteins are strongly related proteins. Based on homology within the motor domain, 

they were classified in a distinct subclass with the kinesin KCBP in the C-terminal/Kinesin-14 

subfamily (Dagenbach and Endow, 2004; Lawrence et al., 2004). Homologues of the KCA proteins 

are restricted to the plant kingdom, suggesting that they play a role in MT based processes that are 
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unique to plants. Expression and immunofluorescence data suggested that the KCA proteins 

function in both interphase and mitosis (Kong and Hanley-Bowdoin, 2002; Vanstraelen et al., 2004). 

A function in cell division is supported by the interaction with the cell cycle kinase CDKA;1 and the 

differential localization of KCA1 during cell division (Chapter 3 and 4). In addition, KCA1 marks the 

division site throughout cell division, pointing to a role for KCA1 in cell plate guidance (Chapter 4). 

Two hybrid assays identified several binding partners of KCA1 (De Veylder et al., 1997; Kong and 

Hanley-Bowdoin, 2002; Bouquin et al., 2003). KCA1 was identified as an interaction partner of the 

katanin p60 subunit, AtKSS (Bouquin et al., 2003). Arabidopsis mutants of the katanin are affected 

in cell elongation leading to anisotropic growth. In addition, misaligned cell plates were observed in 

certain tissues (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003). 

More recently, the trehalose phosphate synthase AtTPS1 was found to interact with KCA1, CDKA;1 

and β-tubulin (Chapter 5). AtTPS1 mutant plants are embryo lethal. Rescue of the mutation by 

temporal expression of wild type gene until seed maturation resulted in plants with impaired 

flowering induction, indicating a role in plant development (Eastmond et al., 2002; van Dijken et al., 

2004). 

To unravel the function of the KCA proteins in plant growth, we inspected KCA T-DNA mutants for 

phenotypes that fit with the molecular data and phenotypes of the AtKSS and the AtTPS1 mutants. 

 

Results 

 

Isolation and molecular characterization of KCA T-DNA insertion mutants 

 

The Salk collection of Arabidopsis T-DNA insertion lines was searched for mutants in the KCA genes. 

Two independent mutant lines were identified for KCA1, with insertions respectively in the 5’ UTR 

(kca1-1) and in intron 10 (kca1-2; stalk domain) (Fig. 6.1A). A single mutant was identified for the 

KCA2 gene with an insertion in exon 1 (kca2-1; N-terminal region preceding the motor domain) 

(Fig. 6.1A).  

Plants homozygous for these T-DNA insertions were identified by PCR analysis. Genomic right 

border (RB) and left border (LB) primers flanking the T-DNA insertions were designed to amplify 

wild type (WT) KCA1 and KCA2 alleles. In WT samples, bands of 957 and 954 base pairs (bp) were 

observed with primers specific for respectively KCA1 and KCA2 (Fig. 6.1B). These bands were 

absent from respectively kca1-2 and kca2-1 samples, confirming the absence of wild type genomic 

sequences for these genes. Next, the RB primer was used in combination with the LBb1 primer to 

identify the presence of the T-DNA in the target genes. PCR products of respectively 907 and 609 

bp were observed in kca1-2 and kca2-1 samples and not in WT samples (Fig. 6.1B). Kca1-2 and 

kca2-1 lines homozygous for the respective T-DNA insertions were therefore identified. 

Semi-quantitative RT-PCR was performed on two weeks old seedlings to analyse KCA1 and KCA2 

transcripts in the mutant lines. cDNA specific primers were designed for KCA1 and KCA2 that 

flanked the T-DNA insertion site. Two bands were detected in kca1-2 lines when KCA1 specific 
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primers were used (Fig. 6.1C). Sequence inspection indicated that the T-DNA insert in the KCA1 

gene was located in intron 10. The higher MW band was similar in size to the full length KCA1 

transcript. The abundance of this PCR product was lower relative to reaction products obtained with 

WT samples. The two cDNA fragments were cloned and the sequence determined. The sequence of 

the higher MW band matched with the endogenous KCA1 full-length cDNA sequence. Sequencing of 

the lower MW band revealed a deletion of 650 bp at nucleotide position 766-1416 bp corresponding 

to the amino acids 255-472. The deletion resulted in the loss of exons 7-10 and part of exon 6 that 

together encode for the major part of the KCA1 motor domain (bp 420-1386 or aa 140-462). Thus, 

the T-DNA caused aberrant splicing by which a coding region upstream of the insertion and the 

insertion itself were removed. The KCA2 T-DNA insertion mutant showed a less complex 

transcriptional pattern (Fig. 6.1C). No KCA2 transcript was detected in kca2-1 samples using cDNA 

primers that flanked the kca2-1 T-DNA insertion site. Kca1-1 homozygous lines with a T-DNA in the 

5’UTR of KCA1 were also identified and subjected to RT-PCR (data not shown). As there was no 

change in KCA1 transcript levels in the kca1-1 lines compared to WT plants (data not shown), 

further analysis was restricted to kca1-2 and kca2-1 mutants. 

KCA protein levels were assessed in WT and mutant plants using an antibody raised against the 

motor domain of KCA2, anti-KCA2;motor. Specificity of the antibody was tested against bacterial 

extracts containing either His tagged KCA1 or KCA2. The anti-KCA1;motor serum detected a 143 

kDa band in His-KCA1 and His-KCA2 extracts, indicating that the antiserum could not discriminate 

between KCA1 and KCA2 (data not shown). The anti-KCA2;motor serum cross-reacted with a 

protein band of similar size in WT plant extracts (Fig. 6.1D). Addition of a 6 x His tag increases the 

MW with 2 kDa, a difference that is difficult to detect on protein acrylamide gel electrophoresis 

(PAGE). In kca1-2 and kca2-1 extracts, a similar band was observed. Because the antiserum lacks 

specificity, this protein could represent either of the two homologous kinesins. 

A first inspection of the kca1-2 and kca2-1 plants did not reveal gross morphological defects that 

are expected when cell division or expansion is drastically affected. Mutant seedlings and soil grown 

plants were similar in size to WT plants (Fig. 6.2, A and B). Organ growth and morphology was 

followed throughout plant development. Stems, cauline and rosette leaves, flowers, siliques 

appeared simultaneously in WT and mutant plants and the morphology was comparable.  

Other strategies to affect the protein level of KCA1 and KCA2 were undertaken. These included the 

construction of hairpin constructs and overexpression vectors to respectively down regulate or 

increase the expression of KCA1 and/or KCA2 (Karimi et al., 2002). Expression of hairpin constructs 

results in the formation of double stranded RNA that specifically triggers high-level PTGS of 

homologous sequences (Waterhouse et al., 1998; Smith et al., 2000). In that way, we anticipated 

down-regulation of both KCA1 and KCA2 simultaneously. However, KCA protein was detected by the 

anti-KCA2:motor serum (data not shown). Overexpression of either KCA1 or KCA2 did not result in 

an increase of KCA protein level, indicating that the expression level of KCA1 and 2 is strictly 

regulated and limited to a given threshold. Consistent with this, plant morphology and development 

was similar between RNAi, overexpression and WT plants (data not shown).  
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To down regulate both KCA genes, single homozygous kca mutants were crossed and the selfed 

progeny was screened for double homozygous kca1-2/kca2-1 plants using the primer sets indicated 

above (Fig. 6.1B). PCR reactions using the LB-RB primers for KCA1 and KCA2 gave no PCR product, 

confirming the absence of WT genomic sequences for these genes in the kca1-2/kca2-1 plants (Fig. 

6.1B). The presence of T-DNA insertions in the KCA genes was studied by PCR, using the LBb1 

primer in combination with the respective RB primers. This yielded PCR products of respectively 907 

and 609 bp, showing that kca1-2/kca2-1 plants were homozygous for both insertions (Fig. 6.1B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Structure of the KCA1 and KCA2 genes and molecular characterization of 
the kca mutant alleles. A, Exon and intron organization of the KCA genes. The positions and lengths 
of exons and introns are indicated by closed rectangles and lines, respectively. The positions of T-DNA 
inserts associated with kca1-1, kca1-2 and kca2-1 alleles are shown above the gene diagrams. B, PCR 
identification of single and double mutants for the kca1-2 and kca2-1 alleles. PCR primers specific to KCA1 
(LB-RB; 957bp) and KCA2 (LB-RB; 954bp) that flank the respective T-DNAs were used to amplify WT alleles. 
The T-DNA specific primer (LBb1) was used in combination with the gene specific primer RB from 
respectively KCA1 (RB-LBb1; 907bp) and KCA2 (RB-LBb1; 609bp) to amplify the T-DNA insertion site. C, 
Expression of the KCA genes. RT-PCR analysis shows KCA1 mRNA accumulation (2.5 kb) in WT and mutant 
plants. The lower band in kca1-2 and kca1-2/kca2-1 probably represents aberrant splicing events. KCA2 
mRNA (995 bp) is present in WT and kca1-2, but absent from kca2-1 and kca1-2/kca2-1 plants. Gene 
specific primers for the ACT7 gene were used as a control (138bp). D, KCA protein levels in kca plants. 
Western blot analysis using the non discriminative anti-KCA2;motor antibody shows the presence of the KCA 
protein (141 kD) in WT and single mutant plants. KCA protein is not detected in double mutant plants. 
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To analyse KCA transcripts in the double mutant kca1-2/kca2-1 lines, semi-quantitative RT-PCR was 

performed as described for the single mutants (Fig. 6.1C). KCA1 related mRNA doublet was present 

as observed in the single kca1-2 plants. No transcripts were detected for KCA2 in the samples using 

cDNA primers that flanked the kca2-1 T-DNA insertion site. To check whether the residual KCA1 

mRNA was translated into protein, the anti-KCA2;motor serum was tested against protein extracts 

from double homozygous kca plants. The 141 kDa protein band was not detected in these extracts 

(Fig. 6.1D). This indicates that KCA1 transcripts are not translated into protein, or the recombinant 

KCA1 protein is less stable. Alternatively, the residual amount of KCA1 transcripts in the kca1-

2/kca2-1 mutant was too low for detection with the anti-KCA2;motor serum. The absence of the 

141 kDa band confirms non-discriminative binding of the serum to KCA1 and KCA2 and further 

identifies the respective band as KCA proteins.  

 

Investigating a role for KCA in cell expansion 

 

KCA1 was previously shown to interact with AtKSS, the MT severing p60 subunit of katanin 

(Bouquin et al., 2003). Arabidopsis mutants that carry mutations in the AtKSS gene exhibit a 

delayed transition of cortical MTs in a transverse orientation in elongating cells. Accordantly, cell 

elongation is impaired resulting in isotropic cell growth, shorter and thicker organs and smaller 

plants (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003). Therefore, 

we analysed cell elongation and growth abnormalities that were previously correlated with the 

AtKSS protein. 

To this end WT and mutant lines were germinated on MS agar and transferred to soil. Aerial parts 

of the plants were screened for smaller plants with a general reduction in organ length as shown for 

the katanin mutants (Bichet et al., 2001; Burk et al., 2001; Bouquin et al., 2003). Inflorescence 

stems, rosette leaves, flowers and siliques in single and double kca1-2/kca2 plants all appeared 

normal with sizes comparable to WT plants (Fig. 6.2A). 

Semi-quantative RT-PCR analysis revealed that KCA1 is highly expressed in roots where KCA2 is 

also abundantly present (Vanstraelen et al., 2004). As increase in root length is mainly determined 

by cell expansion in the elongation zone, we compared root sizes between WT plants and kca 

mutant lines. Wild type plants, single and double kca1-2 and kca2-1 lines were grown on tilted agar 

plates under continuous light. Fig. 6.2B shows that root length was comparable between WT and 

mutant plants. Root length was measured 7 days after transfer of agar plates to the growth 

chambers. WT plants had an average root length of 6.53 cm (n=30) and kca1-2, kca2-1 and double 

mutant roots were respectively 6.11cm, 6.47 cm and 6.50 cm in length (n=30) (Fig. 6.2C). 

Statistical analysis (ANOVA tests) indicated that the minor differences in root length were not 

significant to separate WT plants from mutant lines. Cell expansion leading to root growth was 

therefore not impaired in kca single and double mutants.  
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Investigating a role for KCA in cell expansion upon hormone treatment 

 

The katanin mutant lue1 was initially isolated in a screen for genes involved in gibberellin (GA) 

responses. Hormonal responses to GA were impaired such that stem elongation and leaf length 

were insensitive to GA treatment, whereas flowering induction remained sensitive similar to WT 

plants (Bouquin et al., 2003). To asses whether kca mutants showed altered GA sensitivity, the GA 

related responses flowering time and stem elongation, were compared with GA-treated WT plants 

under long day conditions. Flowering time was induced 18.0 days (n=50) after transfer of WT 

seedlings to soil (Fig. 6.3A). In kca1-2 and kca2-1 single and double mutants, flowering induction 

was achieved after respectively 19.0, 19.4 and 19.0 days (n=50). Stem length was measured at the 

time of flowering induction (Fig. 6.3B). WT stems measured 68.6 mm, kca1-2 plants 70.8 mm, 

kca2-1 plants 70,9 mm and double kca mutants 72.9 mm (n=50). Other GA related responses, like 

length of rosette leaves (both petiole and blade) were also comparable between kca mutants and 

WT (data not shown). The results indicate that, in contrast to the katanin leu1 mutant, kca alleles 

are not impaired in their response to GA. 

Figure 6.2 Growth of the kca mutant plants. A, The general morphology of 
four week old single and double kca plants is not altered compared to WT plants. B, 5 
day old seedlings of WT and mutant plants have comparative root lengths when grown 
on tilted agar plates. C, Mean root length of 30 seedlings, grown 7 days on tilted agar 
under continuous light of WT and kca mutant plants.  
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Hypocotyl length is often considered as a standard test in elongation and cell expansion studies 

(Tanimoto et al., 1995; Ramirez-Parra et al., 2004; Yang et al., 2005). We therefore measured 

hypocotyls of kca and WT plants, grown in the dark. Ethylene is a determinative element in this 

process (Kieber, 1997). In addition, leu1 mutants reveal impaired hypocotyl hook formation upon 

ACC treatment (Bouquin et al., 2003). Therefore we included the ethylene precursor ACC in the 

analysis. WT and kca seeds were plated on MS with or without 50 µM ACC and allowed to 

germinate in the dark. After 3, 4, 5 and 6 days, agar plates were retained from the dark and 

inspected. In a pilot experiment, very few seeds germinated under these conditions, for both WT 

and kca. However, from the few seeds that germinated it was clear that hypocotyl elongation 

occurred normally in kca single and double mutants (Fig. 6.3C). Both WT and kca seedlings 

exhibited a typical hook that could be increased upon ACC treatment. Other ethylene induced 

morphological changes were also unchanged in kca mutants, including hypocotyl thickening, and 

hypocotyl and root shortening. Because the pilot experiment did not indicate impaired plant 

responses in the kca mutants, no further analysis were undertaken. 

 

 

 

 

Figure 6.3 Kca responses 
to GA3 and ACC 
treatments. A, Flowering time 
(expressed in days) of WT and 
kca plants sprayed with 10 µM 
GA3 every 4 days until bolting. B, 
WT and kca stem elongation 
(expressed in mm) upon GA3 
treatment was measured at 
bolting. C, WT and mutant 
seedlings were grown in the dark 
on MS plates with (+) or without 
(-) 50 µM ACC. After 4 days, 
hypocotyl elongation in absence 
of ACC and hook formation upon 
ACC treatment were similar for 
WT and mutant plants. Wt: WT 
plants, k1: kca1-2, k2: kca2-1 
and k12: kca1-2/kca2-1. Bar = 
1mm. 
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KCA and cell plate alignment in Arabidopsis root tips 

 

The potential role for KCA1 in marking the division site in dividing BY-2 cells (Chapter 4), prompted 

us to investigate cell wall organization in kca mutants. The katanin mutants, erh3 and bot1 

contained misaligned cell plates in root tips and fra1 has irregular placed cell division planes in 

parenchyma cells of pith and petioles (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002). 

Therefore, we inspected root tips of 2 days old WT and mutant seedlings for the occurrence of 

misaligned cell plates. Compressed 3D images of mutant roots showed that the general architecture 

at the tip was similar to WT root tips (Fig. 6.4). Longitudinal sections taken at the centre or 

epidermis of the root tip showed that the majority of the walls are aligned either transverse or 

longitudinal to the root axis. Higher magnifications of cells in cytokinesis showed that cell plates 

were formed with a normal appearance and alignment (data not shown). In conclusion, no 

apparent dysfunction in cell plate alignment in kca mutants could be observed in the root tips. In 

botero1, the occurrence of misaligned cell plates was explained as a result of the altered cell 

volume and/or geometry. In the different allelic katanin mutants, defects in cell elongation are 

accompanied with an increased radial swelling of the cells. The absence of a cell elongation 

phenotype in the kca mutants can explain why aberrant cell plates were not observed.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.4 Root architecture of WT and kca plants. Root tips of 2 days old 
seedlings of WT (A), kca1-2 (B), kca2-1 (C) and kca1-2/kca2-1 (D) plants were stained with 
FM4-64 and imaged by confocal microscopy. Compressed 3D images (left column) and a 2D 
section in the middle of the root (right column) are shown. Bar = 10µm.  
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KCA and AtTPS1 

 

In Chapter 4, we demonstrated that KCA1 interacts with AtTPS1 and show evidence that both occur 

in a complex together with CDKA;1 and β-tubulin. To investigate a possible role for this interaction 

in Arabidopsis plants, we analysed the kca1-2/kca2-1 mutants for phenotypes observed in the 

AtTPS1 mutant alleles tps1-1 and tps1-2.  

Homozygous tps1 mutants are embryo lethal and embryo development was arrested beyond the 

hart stage. Segregating seed batches display a wrinkled seed phenotype in the ratio of 3:1 and in 

developing TPS1/tps1-1 siliques arrested embryos were recognizable as pale seeds among the 

green colored heterozygous tps1-1 mutants and WT (Eastmond et al., 2002). Kca single and double 

mutants were not embryo lethal. Nevertheless we checked seed pods of single and double 

homozygous kca plants for aberrant appearance of seeds and embryos. Dry seed batches did not 

contain wrinkled seeds, nor did we observe other malformed embryonic structures. This observation 

is in agreement with the fact that the KCA genes are poorly expressed in embryos 

(https://www.genevestigator.ethz.ch/). In contrast, AtTPS1 is highly expressed in developing 

embryos (van Dijken et al., 2004). 

The tps1 embryonic defect could be rescued by dexamethasone (DEX) induced expression of the 

AtTPS1 gene. In this way, viable homozygous tps1-2 plants were generated that produced seeds 

that germinated and developed into fertile plants without further DEX induction of WT AtTPS1 gene. 

When seeds were germinated on MS without DEX and sugars, tps1 seedlings displayed a short root 

compared to WT accompanied with a reduction in length of the meristematic region at the root tip 

(van Dijken et al., 2004). In the kca single and double mutants, growth of seedlings on MS without 

sugar did not result in shorter roots (data not shown). Furthermore, plants generated from rescued 

tps1-2 seeds revealed an overall growth delay in absence of DEX induction and produced small 

rosettes. In addition, flowering induction was inhibited resulting in plants consisting of only a 

rosette and no stem or flowers. Although both AtTPS1 and KCA2 were strongly expressed upon the 

appearance of the inflorescence stem (https://www.genevestigator.ethz.ch/), no phenotype 

correlated with floral transition or rosette morphology was observed in the single or double kca 

mutants under normal growth conditions (Fig. 6.2A). 

 

Discussion 

 

For more than a decade, Arabidopsis mutants have been used to characterize the molecular bases 

of development in flowering plants, and several mutants impaired in cytoskeletal organization 

resulting in defects in cell expansion and cell division have been isolated. To address the question 

whether the kinesins KCA1 and KCA2 play a role in plant growth, we isolated single and double kca 

mutants that carried T-DNA insertions in the respective genes. RT-PCR confirmed absence of KCA2 

transcript. In contrast, the mutant plants produced KCA1 transcripts of full length size and an 
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aberrant truncated transcript was detected. Sequencing identified both transcripts as KCA1, 

indicating that kca1-2 single and double mutants still produce KCA1 transcript. 

On western blot, anti-KCA2;motor detected KCA proteins in WT and single kca mutant plants. The 

serum recognized both KCA1 and KCA2 in bacterial extracts expressing either His tagged KCA1 or 

KCA2, suggesting that the high MW proteins in the single mutants represent the homologous 

kinesin. No KCA proteins were detected in double kca mutants. This confirms the identity of the 

high MW protein band as KCA proteins. In contrast, RT-PCR indicated that KCA1 full length 

transcripts are still present. The truncated KCA1 transcript contains a deletion of exon 6-10 and 

probably results from an aberrant splicing event due to the T-DNA in intron 10. The novel transcript 

had a major part of the KCA1 motor domain deleted. As the anti-KCA2:motor antibody was raised 

against the KCA motor domain, truncated KCA1 proteins were not detected on western blot.  

To investigate the significance of the interaction of KCA1 with the katanin or AtTPS1 we analysed 

kca mutants for phenotypes observed in plants mutated in the genes encoding the interaction 

partners of KCA. Mutations that affected the interactors resulted in cell division and elongation 

phenotypes. Katanin p60 mutants are stunted plants with a general reduction in organ size as a 

result of defects in cell elongation (Bouquin et al., 2003). In addition misalignment of cell division 

planes was observed in certain tissues (Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002). 

Tps1 mutants are embryo lethal and temporal rescue of the phenotype to mature seeds results in a 

generation of plants with impaired flower induction (Eastmond et al., 2002; Schluepmann et al., 

2003; van Dijken et al., 2004). A first inspection of kca mutants showed no gross defects. Growth 

conditions that alter cell elongation (GA, growth in dark) did not reveal an impaired response in cell 

expansion when compared to WT plants. In addition, cell plate positioning in root tips was normal. 

The kca mutants are not embryo lethal and plants produced flowers simultaneously with WT plants. 

The KCA proteins share 89% similarity and have similar domain organization. They behave similarly 

in terms of subcellular localization, conformational changes and interaction with CDKA;1 and are 

expressed in the same plant organs (Vanstraelen et al., 2004). These data suggest that the KCA 

proteins are functionally redundant. Unfortunately, double kca mutants did not reveal a phenotype. 

Either there exist other kinesins or proteins that can take over the KCA activity. It is also possible 

that our growth conditions did not reveal a need for normal activity of the KCA protein. As no 

phenotypes were observed under in vitro conditions or in green house grown plants, it seems more 

likely that the T-DNA insertion in KCA1 is not a true knock out and functional KCA1 protein may still 

be produced. Indeed, the T-DNA in KCA1 appeared to be spliced out in kca1-2 plants, resulting in a 

KCA1 transcript that may suffice for production of KCA protein not detected in western analysis. We 

also analyzed the insertion in the 5’UTR of KCA1 (data not shown). RT-PCR analysis revealed no 

decrease in KCA1 transcript. No T-DNA insertions are currently available in the KCA1 coding 

sequence that could knock out KCA1.  

Till now, 13 of the 61 Arabidopsis kinesins have been characterized (Table 6.1). Phenotypic studies 

of several of these kinesins show that only 2 kinesins reveal strong defects in plant development 

and morphology (Strompen et al., 2002; Zhong et al., 2002). Abnormalities in 6 other kinesins are 
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restricted to specialized tissues, like pollen grains or trichomes (Oppenheimer et al., 1997; Chen et 

al., 2002; Yang et al., 2003; Lu et al., 2005) or reveal abnormalities in MT arrays during mitotic cell 

division (Vos et al., 2000; Marcus et al., 2003; Ambrose et al., 2005). The fact that the latter 

defects do not affect plant growth or development suggests the existence of an error correcting 

mechanism. The Arabidopsis genome contains 61 kinesins of which 21 belong to the C-terminal 

subfamily. Phylogenetic analyses of the motor domains of these kinesins also indicate that they are 

more closely related to each other than to other Arabidopsis kinesins. Additionally, their functions 

seem to be involving aspects of cell division, suggesting functional redundancy. Thus other minus-

end directed kinesins could act as a functional substitute of KCA. Another error correcting 

mechanism has been proposed by Marcus et al. (2003). They observed that plants defective in the 

ATK1 kinesin have an abnormal spindle morphology leading to defective male meiosis, whilst 

mitosis in the vegetative parts of the plant was unaffected. The authors proposed that in mitosis, 

abnormalities in the spindle are targeted for depolymerization or severing possibly by katanin 

proteins. If the interaction between KCA and the katanin is significant in such a process, then kca 

mutants should be crossed into other MT defective mutants, like ATK1, in order to check whether a 

stronger phenotype is revealed due to a defective error correcting system. 

The presence of KCA transcript throughout the plant suggests that the KCA proteins have functions 

both in dividing and non dividing tissues. To unravel the function of the KCA proteins in better 

detail, it might be necessary to study the kinetics of cell division in the kca mutants with more 

precision. Defects in MT organization or cell plate formation, which do not affect cell morphology or 

organ architecture, can be visualized using GFP markers. We therefore crossed kca mutants with 

MT GFP markers (work in progress). On the other hand, it might be necessary to find other 

strategies to affect the KCA proteins than overexpression or knock down. For instance, the kinesin 

KCBP localizes to the spindle and phragmoplast, suggesting a function in cell division (Bowser and 

Reddy, 1997). However, mutant plants (Zwichel) have defects in trichome branching as a results of 

MT disorganisation (Oppenheimer et al., 1997). Using an antibody that constitutively activates the 

KCBP protein, defects in spindle and phragmoplast formation were revealed (Vos et al., 2000). 

Phosphorylation mutants for KCA that mimic a constitutive activation by CDKA;1 are under 

construction and might help to tackle the KCA functional analysis. 
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Material and methods 

 

Plant growth and treatments 

 

Arabidopsis thaliana (Columbia) seedlings were grown on MS medium supplemented with 1% 

sucrose, 0.5% MES, 0.1% myo-inositol and 0.8% agar and transferred to soil under 18h-6h day/ 

night in growth chambers at 21°C. For root measurements, seeds were plated on the medium 

described above, vernalized for 3 days in the dark and then grown under continuous light at 21°C 

on plates tilted backwards for about 5°. For gibberellin treatments, 1-week-old seedlings were 

transferred to soil and grown under long day conditions. Plants were sprayed twice a week with 10 

µM GA3 (Sigma-Aldrich) until bolting. Sensitivity to ethylene in the dark was investigated by plating 

WT and kca mutant seeds on MS medium supplied with 0.7% agar, 1% sucrose with or without 50 

µM ACC (Sigma-Aldrich). Plates were incubated vertically at 21°C in the dark. Seedlings were 

photographed after 4 days of incubation.  

 

FM4-64 staining 

 

2 day old WT and mutant seedlings were stained for 10 minutes in a solution of 0.33 mM FM4-64 

(Molecular Probes, Leiden, The Nederlands) in liquid MS medium on ice (to prevent endocytosis). 

Then, seedlings were washed three times in MS medium and immediately analysed by confocal 

microscopy. Red fluorescence from FM4-64 was imaged with 543 nm light for excitation and 

emission fluorescence was captured via a 560 nm cut-off filter. 

  

Genotyping 

 

T-DNA insertional mutants were identified in the Salk collection (La Jolla, CA). Salk_036411 (T-DNA 

insertion in the 5’ UTR of kca1) and Salk_014609 (T-DNA insertion at intron 10 of kca1) were 

designated kca1-1 and kca1-2 respectively. Salk_099639 (T-DNA insertion at exon 1 of kca2) was 

named kca2-1. Genotyping was performed in two separate PCR reactions. The following gene 

specific primers were used to amplify WT KCA alleles; KCA1-LB AACTTTCCACGCTCTCTGC and 

KCA2-LB TTTTATCAGCCAGAACACCT as forward primers and KCA1-RB TGTGCTTGAATACCTCCTTCG 

and KCA2-RB CCGAACAATGAACTGAAATC as reverse primers. To identify the presence of the T-

DNA, the RB primers were used in combination with the LBb1 primer GCGTGGACCGCTTGCTGCAACT 

in a separate PCR reaction.  

 

RNA analysis 

 

RNA was extracted with TRIzol reagent from WT and kca seedlings. To this end, grinded plant 

tissue was homogenized in 1 mL TRIzol and samples were incubated 2 minutes on ice after addition 
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of 200 µL chloroform. After centrifugation at 11000 rpm in an Eppendorf centrifuge 5417 for 15 

minutes at 4°, the aqueous phase was transferred to an Rnase free tube and RNA was precipitated 

by adding 500 µL isopropanol. After incubation for 10 minutes, samples were centrifuged at 11000 

rpm at 4° for 10 minutes. The RNA pellet was washed with 1 mL 75% ethanol and centrifuged at 

11000 rpm for 5 minutes at 4°C. 

1 µg of RNA was used as a template for the SuperScript first-strand synthesis system for RT-PCR 

(Invitrogen). RT-PCR was performed by combining gene-specific primers salkTH65-RTPCRFP 

AATAGATGGAACTGGGAGGT as forward primer and AtKLP2-9F2 TGGATCTGCGTATCAAGATATCGAA 

as reverse primer for KCA1; AtKLP1-33R3 GGGTCACAGTAGACTTTGATTTATCATTC as forward 

primer and S9-RT-PCR-F ATGGCGGAGCAGAAGAGTAC as reverse primer for KCA2; and ACT2-FW  

TTGACTACGAGCAGGAGATGG  and ACT2-REV ACAAACGAGGGCTGGAACAAG  for ACT2. In total, 28 

cycles were run for to amplify KCA and actin2 RNA. 

 

Protein Gel-Blot Analysis 

 

Crude extracts of one week old were grinded in liquid nitrogen with a mortar and pestle and 

homogenized in ice cold P10 buffer (25 mM Tris-HCl, pH 7.6, 15 mM ethyleneglycol-bis(β-

aminoethyl)tetra-acetate, 1 mM dithiothreitol, 15 mM MgCl2, 85 mM NaCl, 15 mM pNO2PhePO4, 

60 mM glycerol phosphate, 0.1% NP40, 1 mM NaF, 0.1 mM Na3VO4, and 100 µl protease inhibitor 

cocktail; Sigma-Aldrich). The homogenate was centrifuged twice at 10,000 g for 10 min in an 

Eppendorf centrifuge 5417 at 4°C to remove cell debris. The supernatant was then centrifuged at 

14,000 g for 10 min. Loading buffer (Laemmli, 1970) was added and the samples were heated for 

10 min at 95°C. After centrifugation at 14,000 g for 4 min, samples were separated on a 12% gel 

and blotted onto nitrocellulose membranes (Hybond-C super; Amersham Biosciences) in 190 mM 

glycine and 25 mM Tris with a liquid mini-blotting system (Bio-Rad, Hercules, CA) for 1 h. 

Membranes were blocked overnight at 4°C in phosphate buffer with 0.1% Tween-20 and 5% skin 

milk (BD Difco; Becton Dickinson, Franklin Lakes, NJ). For immunodetection, anti-KCA2;motor was 

applied in the blocking buffer at a dilution of 1:1000 and anti-rabbit Ig horseradish peroxidase from 

donkey (Amersham Biosciences) was used as a second antibody at a dilution of 1:10000. Proteins 

were detected by the chemiluminescence procedure (Bio-Rad). 
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The complexity and dynamics of the plant MT cytoskeleton and the presence of plant specific MT 

structures require the cooperation of many MAPs of which some are specific to plants. The goal of 

this research was to characterize kinesins that function in plant specific MT related processes during 

cell division. Initially, KCA1 was identified as a CDKA;1 interacting protein in a yeast two hybrid 

screen (De Veylder et al., 1997) and later, evidence for CDK dependent phosphorylation was 

provided in insect cells (Kong and Hanley-Bowdoin, 2002). KCA1 and its homolog are plant specific 

kinesins that belong to the C-terminal/Kinesin-14 subfamily of kinesins, members of which have 

functions related to cell division (Moore and Endow, 1996; Dagenbach and Endow, 2004). For these 

reasons we anticipated that KCA1 and KCA2 were potential candidates to function in MT related 

processes during plant cell division.  

The KCA proteins are strongly related to each other, sharing 81% identity and 89% similarity. 

Based on homology within the motor domain, they were classified in a distinct subclass with the 

kinesin KCBP within the C-terminal/Kinesin-14 subfamily (Dagenbach and Endow, 2004). 

Homologues of the KCA proteins and KCBP are restricted to the plant kingdom, suggesting that they 

play a role in MT based processes unique to plants. KCBP is unique among all known kinesins in 

having a CaM binding domain that regulates the MT binding capacity of the motor domain (Song et 

al., 1997). In addition, KCBP contains a region that is also present in some members of myosin-like 

proteins (Reddy and Reddy, 1999). Myosins are motor proteins that exert transport activities along 

the actin filaments. The N-terminal tail of KCBP contains a MyTH4 domain and the talin-like domain. 

Thus KCBP is a molecular hybrid consisting of a motor domain from MT based motors and a tail 

region of actin-based motors. The KCA proteins do not contain a MyTH4 or talin-like domain; 

however, the N-terminal part of the KCA tail domain interacts with a tropomyosin and a myosin-like 

protein in yeast two hybrid and co-immunoprecipitation assays (Torres-Acosta, De Veylder and 

Inzé, unpublished data). The significance of myosin-like domains in KCBP or the interaction of the 

KCA proteins with putative actin binding proteins is not known at this time. It is possible that they 

function in cross-bridging the MT and actin cytoskeleton or they facilitate cargo exchange between 

two types of motors. On the other hand, KCA1 is associated to membranes of the cell plate and the 

plasma membrane (Chapter 3 and 4). Thus, interaction between KCA and the tropomyosin and the 

myosin-like protein may be required for anchoring actin filaments to the plasma membrane. 

The founding member of the C-terminal/Kinesin-14 family is Ncd that moves towards the minus-end 

of MTs. Minus-end directed movement has been demonstrated in vitro for three plant members of 

this subfamily, including KCBP. They typically carry the motor domain at the C-terminal side of the 

peptide, just like it is for Ncd. Arabidopsis has 21 C-terminal/Kinesin-14 members, of which 11 have 

internal motors and five have N-terminal motors. The latter includes KCA1 and KCA2. Direction of 

movement has not been tested for these motors yet, but all contain a neck sequence typical for 

minus-end directed motors (Reddy and Day, 2001). This neck domain is located N-terminal to the 

motor domain and contains the conserved GN residues at the neck/motor core junction (Endow and 

Waligora, 1998), suggesting that they move towards the minus-end of MTs. Interestingly, at least 

one coiled coil domain precedes the motor domain in 7 out of 11 internal and in 3 out of 5 N-
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terminal positioned motors of the C-terminal subfamily. This N-terminal placed coiled coil might be 

implicated in the motility of minus-end directed motors. Plus-end directed kinesins do not contain a 

coiled coil N-terminally to the motor domain. Therefore it is possible that this coiled coil in 

combination with the neck domain functions as the stalk/neck of minus-end directed motors, which 

is essential for minus-end directed movement (Endow and Waligora, 1998). Another peculiarity in 

the KCA1 and KCA2 sequence is a divergence from other kinesins in the nucleotide flanking site, 

switch I (respectively FNVTH and STVTH instead of SSRSH). The switch I site communicates the 

nucleotide state to the motor domain, and thus translates the chemical energy of ATP into 

mechanical energy, which is essential for kinesin movement (Klumpp et al., 2003). It is thus 

possible that the KCA proteins cannot transfer the ATP hydrolysis status to the motor domain with 

the consequence that they will never take a walk. From this point of view, KCA might act more as 

an anchor protein than as a motor protein. 

During cytokinesis, KCBP, KCA1 and KCA2 (data not shown) localize to the phragmoplast. In 

contrast to KCBP, which associates to the phragmoplast MTs, KCA labeled the phragmoplast midline 

and expansion of GFP-KCA1 signal followed the leading edges of the phragmoplast MTs. Several 

plant kinesins have been shown to localize at the phragmoplast midline during cytokinesis (Lee and 

Liu, 2000; Lee et al., 2001; Nishihama et al., 2002; Pan et al., 2004). These motors were proposed 

to function in the organization and dynamics of phragmoplast MTs or the delivery of membrane 

material to the midline. Unlike these motors, KCA1 remains associated with the cell plate where MTs 

have depolymerized, suggesting a different function for KCA during cytokinesis. 

In plants and animals, motor proteins drive the transport of a wide variety of organelles and 

vesicular cargoes (Goldstein and Yang, 2000; Lee and Liu, 2004). However, this is the first report 

on the localization of a kinesin at the plasma membrane. Immunogold labeling with an antibody 

directed against the stalk domain of KCA confirmed the association of KCA to the cell plate and 

plasma membrane. GFP-KCA1 accumulation at the plasma membrane or cell plate does not involve 

the MT binding motor domain. On the other hand, the stalk domain of KCA1 was essential to 

plasma membrane association and the N-terminal tail was a prerequisite for label at the cell plate. 

These domains are implicated in respectively dimerization and folding of the KCA proteins, 

suggesting that different folding conformations determine the localization of KCA. When GFP was 

fused to the C-terminus of KCA1, yet another subcellular localization was revealed, showing 

accumulation at the ER. EM images however did not affirm an enrichment of endogenous KCA 

protein at these membranes. Possibly, the presence of GFP at the C-terminus of KCA interfered with 

the correct folding of KCA, resulting in mistargeting of the protein. Because GFP-KCA1 travels to the 

cell plate on Golgi-derived vesicles, it could also be that KCA1 is loaded onto ER membranes for its 

distribution, and that the C-terminal KCA1-GFP fusion is hindered in its path to move to the Golgi, 

resulting in accumulation at the ER. Upon deletion of a small C-terminal part of the KCA1 tail 

domain, cell plate and plasma membrane localization was lost, suggesting that this part of KCA1 

contains sequences essential for membrane association. Signal peptides for secretion were absent 

from the C terminus or elsewhere in the protein. Moreover, there are no transmembrane regions, 
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suggesting that KCA1 is a soluble protein. Membrane association is therefore likely to occur 

indirectly via other proteins. 

Based on transcriptional levels throughout the cell cycle, KCA and KCBP were not recognized as 

mitotic motors (chapter 2). Indeed, disruption of the KCBP gene results in aberrant trichome 

morphogenesis, which is attributed to defects in MT organization in trichomes (Oppenheimer et al., 

1997; Mathur and Chua, 2000). However, KCBP protein accumulates during mitosis, suggesting an 

additional role for KCBP in cell division (Bowser and Reddy, 1997). KCBP localizes to the mitotic 

spindle and microinjection experiments suggest that KCBP functions in spindle pole formation 

during nuclear envelope breakdown and anaphase (Vos et al., 2000). KCA protein levels have not 

been studied throughout cell cycle. KCA mRNA is present throughout the cell cycle and in all plant 

organs (Chapter 3). Immunofluorescence located the KCA proteins both in meristematic tissues and 

in young and mature leaves (Kong and Hanley-Bowdoin, 2002), suggesting that the KCA proteins 

play a role in both interphase and mitosis. This is also supported by several observations within this 

study. Firstly, KCA interacts with the cell cycle dependent kinase CDKA;1. KCA1 and KCA2 share two 

CDKA;1 phosphorylation sites in the N-terminal portion of the tail domain and CDK dependent 

phosphorylation has been demonstrated within insect cells (Kong and Hanley-Bowdoin, 2002). In 

addition, mutagenesis and inhibitor studies pointed to a role for CDKA;1 phosphorylation in the 

conformational changes of the KCA molecules. Phosphorylation prevented tail folding and favored 

the accumulation of KCA dimers, suggesting that CDKA;1 phosphorylation drives KCA dimerization, 

that is known to trigger MT mobility of certain kinesins (chapter 3). 

Secondly, at the start of mitosis, GFP-KCA1 fluorescence accumulated at the plasma membrane and 

simultaneously a region depleted of GFP-KCA1 fluorescence (KDZ) was formed at the division site 

(chapter 4). This suggests that localization of GFP-KCA1 is dependent on mitosis specific signals. 

Later, during cytokinesis, KCA1 accumulated at the forming cell plate. Localization at the cell plate 

and plasma membrane and the formation of a KDZ was also observed for KCA2 (data not shown). 

Thirdly, different peptide domains of KCA1 were responsible for cell plate targeting and KDZ 

formation, suggesting that two separate targeting mechanisms control the localization of the KCA1 

protein. The dimerization domain was a prerequisite for the accumulation of the protein at the 

plasma membrane and the complete tail domain has been shown to be involved in cell plate 

targeting. Two hybrid assays indicated that the tail domain could fold onto itself and that CDKA;1 

was unable to bind to the tail domain as a separate unit. Therefore, it is conceivable that CDKA;1 

only binds unfolded KCA and that subsequent phosphorylation prevents tail folding and allows KCA 

dimerization. At the start of mitosis, this would lead to different conformations of KCA molecules 

that result in different intracellular localizations with distinct purposes. Phosphorylation mutants of 

KCA1 are under construction to determine whether CDK phosphorylation is required for the 

accumulation of KCA1 molecules at the plasma membrane during cell division. 

KCA1 has been identified in two hybrid assays as an interactor of CDKA;1 (De Veylder, 1997), the 

geminivirus protein AL1 (Kong and Hanley-Bowdoin, 2002), the MT severing katanin AtKSS 
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(Bouquin et al., 2003), the trehalose-6-phosphate synthase AtTPS1 (chapter 4) and a tropomyosin 

and myosin-like protein (Torres Acosta, De Veylder and Inzé, unpublished data).  

Geminiviruses are a group of DNA viruses that rely on host factors to support their replication. 

Because they infect terminally differentiated cells, they first have to induce their plant hosts to 

express the replication machinery. The viral protein AL1 is essential for viral DNA replication and 

interacts with the retinoblastoma host protein RBR1 in plants (Kong et al., 2000). This disrupts 

E2F/RBR1 regulation, allowing G1/S transition (Egelkrout et al., 2001). As a consequence viral and 

chromosomal DNA are replicated, but cells do not proceed to complete mitosis (Nagar et al., 1995). 

The premature inhibition of mitosis is somewhat reminiscent to endoreduplication, the onset of 

which is correlated with the inhibition of M-phase-associated CDK activity (Grafi and Larkins, 1995; 

Joubes et al., 1999). In light of the interaction between AL1 and KCA1, the following model is 

proposed (Fig. 7.1A). During virus infection, AL1 interacts with RBR1, thereby allowing E2F to drive 

G1/S transition and replication of viral and chromosomal DNA (Egelkrout et al., 2001). Cells pass 

through S phase, but are arrested in early prophase. Perhaps AL1 binds KCA1, thereby preventing  

 

   

 

 

 

 

 

 

 

Figure 7.1 Putative model for KCA1 action upon geminivirus infection. A, Upon 
geminivirus infection, AL1 interacts with RBR1. This allows E2F to drive G1/S transition and infected 
cells to enter S-phase, resulting in the replication of viral and chromosomal DNA. AL1 also binds 
KCA1. This interaction could prevent CDKA;1 phosphorylation of KCA1, which might prevent KCA1 
molecules to accumulate at the plasma membrane. If KCA1 would be involved in the reorganization 
of the cytoskeleton at the start of mitosis, binding of AL1 to KCA1 prevents cells to reorganize their 
cytoskeleton. B, Alternatively, if the action of KCA1 were to stimulate M-phase associated CDKA;1 
activity,  than AL1 may block the CDK mitotic checkpoint by binding KCA1 and preventing KCA1 
from activating M-phase associated CDKA;1 activity. 
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its phosphorylation by CDKA;1. Progression throughout mitosis requires the reorganization of the 

cytoskeleton into different MT arrays. The binding of AL1 and block of CDK phosphorylation of KCA1 

might prevent KCA1 molecules to accumulate at the plasma membrane. As a result, cortical MTs are 

not reorganized into mitotic arrays upon virus infection. It is therefore worthwhile investigating 

whether KCA1 still accumulates at the plasma membrane in infected cells that have re-entered the 

cell cycle. In an alternative scenario, the AL1 protein may control the progression through cell cycle 

by preventing M-phase associated CDKA;1 activation (Fig. 7.1B). If the action of KCA1 were to 

stimulate CDKA;1 activity, than its association with AL1 may block the mitotic progression. This 

mechanism would place KCA1 upstream of the CDK mitotic checkpoint. Progression of cytokinesis is 

controlled by a similar mechanism, involving the kinesin NACK1. NACK1 targets a MAPK signaling 

cascade to the phragmoplast, which is required for expansion of the cell plate (Nishihama et al., 

2002). As virus infection had no apparent effect on KCA1 protein level in mature Arabidopsis leaves, 

the function of KCA1 is most likely not restricted to viral infected cells (Kong and Hanley-Bowdoin, 

2002). 

A function for KCA1 to control mitosis has also been suggested in chapter 5. Here, a protein 

complex was proposed consisting of AtTPS1, KCA1, CDKA;1 and tubulin. This interaction may 

provide a link between sugar availability and control over cell division. Tubulin was immunopurified 

with AtTPS1 antibody from plant extracts, suggesting a link with the MT cytoskeleton. CDKA;1 binds 

MTs both during interphase and mitosis (Stals et al., 1997; Hemsley et al., 2001; Weingartner et 

al., 2001). Thus, control of carbon availability over cell division with regards to the proposed protein 

complex, is likely to occur at the level of MT organization. Colocalisation experiments of AtTPS1 and 

KCA1 suggested that the largest overlap in distribution occurs at prophase, when AtTPS1 and KCA1 

mainly reside in the cytoplasm. Thus, when sufficient carbon sources support the process of cell 

division, AtTPS1 might direct CDKA;1-activated KCA1 to the cell cortex to induce reorganization of 

the cortical MTs, which is required to support successful mitosis. On the other hand, AtTPS1 is a 

stress molecule and might be activated when carbon sources are insufficient. It then prevents cells 

from entering the cell division by interaction with CDKA;1 and KCA1. This model is opposite to the 

former hypothesis and experimental data should be gathered to gain further insight in this issue. 

Probably, the interaction between AtTPS1 and KCA1 is restricted to the beginning of cell division as 

KCA1 but not AtTPS1 accumulates at the plasma membrane and cell plate during M-phase 

progression.  

During the course of mitosis, GFP-KCA1 accumulated at the plasma membrane and simultaneously, 

a region depleted of GFP-KCA1 appeared at the division site, consequently termed the KDZ (KCA 

depleted zone). Later, during cytokinesis GFP-KCA1 was associated to the entire length of the cell 

plate, which was guided towards the KDZ. This localization pattern was also observed for KCA2 

(data not shown). The data suggests a function for KCA in cell plate guidance. During mitosis, actin 

filaments remain present at the cell cortex during mitosis except at the division site (Cleary et al., 

1992). At the cell plate, actin filaments parallel the organization of the phragmoplast MTs. During 

expansion, they remain associated with the central parts of the cell plate where MTs have 
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depolymerized. Thus, the distribution of KCA during cytokinesis resembles that of actin filaments. 

However, actin depolymerizing drugs did not alter the association of KCA1 at the plasma membrane 

or cell plate. Yeast two hybrid experiments revealed an interaction of the tail domain of KCA1and 

KCA2 with a tropomyosin and a myosin-like protein (Torres Acosta, De Veylder and Inzé, 

unpublished data). The myosin-like protein does not contain a myosin motor domain but could be a 

subunit of a myosin complex or function as an actin binding protein. Therefore, KCA could act as an 

anchor protein between myosin-actin complexes and membranes of the cell plate and plasma 

membrane. In other words, KCA operates as a template for the localization of actin filaments along 

the cell cortex and cell plate during cell division (Fig. 7.2). It has been hypothesized that actin 

filaments link the cell plate edges with the cell cortex and guide the cell plate towards the plasma 

membrane. KCA1 is absent from the division site, allowing actin filaments to create a balance of 

pulling forces that guides the cell plate towards the division site (Wick, 1991; Smith, 1999; 

Sylvester, 2000). The necessity for a KDZ in cell plate guidance was supported by drug application. 

The MT depolymerizing drug propyzamide occasionally prevented the formation of the KDZ, which 

resulted in misguidance of the cell plate. As KCA might function as an anchor for actin filament 

distribution during cell division, it might be interesting to look at actin filaments in dividing cells of 

plants that do not contain the KCA proteins. 

 

 

 

 

 

 

 

 

 

The requirement of PPB MTs to create the KDZ provides a clear link with the MT cytoskeleton. 

Despite the intrinsic capacity of the KCA1 protein to bind MTs, neither the GFP tagged full-length or 

immunolocalization provided evidence for the association of KCA with the MT cytoskeleton. The 

Figure 7.2 Model for KCA1 as a scaffold for actin 
filament organization during cell division. The sketch 
represents a plant cell in cytokinesis with a cell plate at the centre 
of the cell. GFP-KCA1 (green) is located along the cell plate and at 
the plasma membrane and serves as a template for the distribution 
of actin filaments (dotted lines) along these membranes. At the 
plasma membrane, KCA1 is absent from the division site. As a 
result, actin filaments are depleted from this region too (ADZ). At 
the rim of the actin depleted zone, actin filaments dive into the 
cytoplasm and connect with the leading edges of the expanding cell 
plate. During cell plate expansion, a balance of actin pulling forces 
from either side of the division site leads to guidance of the cell 
plate to the division site. 
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motor domain as a separate GFP fusion did label MTs in BY-2 cells. Deletion of a small C-terminal 

sequence from the full-length KCA1 protein prevented membrane association, but did not allow MT 

binding. This indicates that membrane association does not inhibit MT binding and that 

conformational changes of the stalk and tail domain would be required for MT association.  

Finally, an interaction of KCA1 with the katanin P60 subunit AtKSS has been reported (Bouquin et 

al., 2003). Katanins form a family of MAPs that regulate MT dynamics and organization by MT 

severing. In animal cells, they consist of a catalytic p60 subunit that binds and severs MTs and a 

regulatory p80 subunit (Sedbrook et al., 2004). Both subunits are present in Arabidopsis and MT 

severing has been demonstrated in vitro for AtKSS (Stoppin-Mellet et al., 2002). Arabidopsis 

mutants have been characterized that carry mutations in the AtKSS gene; leu1, botero1, ectopic 

root hair 3 (erh3) and fragile fiber 2 (fra2) (Bichet et al., 2001; Burk et al., 2001; Webb et al., 

2002; Bouquin et al., 2003). AtKSS mutants exhibit a delayed transition of cortical MTs in a 

transverse orientation in cells that exit mitosis. In accordance, cell elongation is impaired resulting 

in isotropic cell growth, shorter and thicker organs and smaller plants. In animal cells, katanin is 

responsible for the majority of M-phase severing activity (McNally and Thomas, 1998). In addition, 

MT-severing is activated by cyclin B/CDK during M-phase, although katanin itself is not directly 

activated by cyclinB/cdc2 (McNally and Thomas, 1998). In Arabidopsis, evidence that katanin is 

controlled by CDKA;1 is missing. However, CDKA;1 interacts with KCA1 and phosphorylation induces 

conformational changes that favor the dimeric form of KCA1 over the monomeric form. As KCA1 

binds AtKSS, the latter might be indirectly controlled by CDKA;1. At the onset of mitosis, KCA1 

accumulates at the plasma membrane. Both CDKA;1 and AtKSS associate with the cortical MTs 

(Hemsley et al., 2001; Bouquin et al., 2003). In addition AtKSS and KCA1 are absent from the PPB 

and the KDZ is formed during PPB formation (McClinton et al., 2001). To situate the relationship 

between KCA1 and AtKSS, we propose the following model. At the onset of mitosis, CDKA;1 

phophorylates KCA1, resulting in the accumulation of KCA1 dimers. These gather at the plasma 

membrane and direct the katanin AtKSS to the cortical MTs resulting in controlled MT severing and 

breakdown of the cortical array. KCA1 may therefore acts as a scaffold for proteins that accumulate 

at the cortex. As KCA1 accumulates at the cortex during the G2/M transition, katanin mutants could 

be delayed in the reorganization of MTs at the start of mitosis. As a result, katanin mutants would 

show reduced growth, that at least in part accounts for their smaller growth phenotype.  

After cell division, AtKSS mutants exhibit a delayed transition of cortical MTs in a transverse 

orientation in elongating cells. At this time, CDKA;1 activity is inhibited and less dimeric KCA1 

molecules accumulate at the plasma membrane. Instead of driving depolymerization of cortical 

MTs, KCA1 might function in the organization of cortical MTs into a transverse array. Acting as a 

sensor between the cell wall microfibrils and the cortical MTs, KCA1 could direct AtKSS towards MTs 

that are not co-aligned with transverse microfibers in the cell wall. In this way, the KCA1-AtKSS 

complex contributes to the transverse alignment of cortical MTs leading to cell elongation.  

In conclusion, it appears that KCA interacts with several proteins through the stalk domain and N-

terminal part of the tail domain (Fig. 7.3). These domains are proposed to be involved in 
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dimerization and folding. The fact that several proteins can independently bind to this central part 

of KCA, together with the differential subcellular localization and the different folding conformations 

of KCA, suggest that different regulatory pathways converge onto KCA1 and that this protein 

therefore may operate as a landing site for mitosis-related processes. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 7.3 Interaction of KCA1 with its binding partners. Secondary structure and 
domain organization of KCA1. Neck with conserved GN motif for putative minus-end directed 
motility; black box, motor domain; dashed box, coiled coils; grey boxes, conserved CDKA;1 
phosphorylation sites; black arrowheads and hinge regions, H1 and H2. KCA1 interacts with several 
proteins that bind to the central part of the KCA1 protein consisting of the dimerization domain and 
the N-terminal tail domain. Bars indicate the site of interaction with KCA1. Interaction with CDKA;1 
was also tested for the stalk domain of KCA2 as a separate unit (dotted bar).  
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Chapter page: Leaf epidermal cells of an Arabidopsis thaliana seedling expressing GFP fused to a 

peroxisomal targeting signal. Cells were stained with FM4-64 and imaged using confocal microscopy 

(GFP/RFP filter settings). In the centre of the picture are two stomatal cells. 
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Summary 

 

Plant cells are encased by a rigid cell wall that provides mechanical support for each cell and the 

whole plant body. It also renders plant cells immobile and this fixed nature of plant cells requires 

that morphological and developmental diversity in plants is determined by the strict regulation of 

the division plane alignment and the direction of cell expansion. The microtubule (MT) cytoskeleton 

organizes into various arrays to govern these processes. MT-associated proteins (MAP) associate 

with MTs and cooperate to organize them into different structures throughout the cell cycle. 

During cell division, plant cells make unique MT structures such as the preprophase band (PPB) and 

the phragmoplast that contribute to aspects of division orientation and cytokinesis. MAPs play an 

important role in regulating MT behavior to establish these plant specific MT arrays. In Chapter 2, 

we searched for kinesins in the Arabidopsis genome that are cell cycle controlled. In the publicly 

available Affymetrix microarray data of synchronized Arabidopsis tissue culture cells (Menges et al., 

2003), 22 kinesin genes were found that show increased expression during mitosis (Table 2.1). The 

presence of putative phosphorylation sites, protein degradation boxes and regulatory promoter 

elements support a function for these motors in cell division. A comparison between kinesins from 

plants, animal, yeast and fungi kinesins suggests that functions for kinesins in establishing spindle 

bipolarity are conserved between eukaryotes. Some homologues of animal kinesins that function in 

chromosome movement play unrelated roles in plant cells and appear to be involved in processes 

during interphase. The highest number of mitotic kinesins belongs to the C-terminal subfamily. 

Because C-terminal kinesins typically show minus-end directed movement, one can assume that 

some of their functions relate to that of dyneins for which no homologues are found in plants 

(Lawrence et al., 2001). Also, plants lack centrosomes at spindle poles where MT minus-ends 

congregate and therefore may require specially adapted kinesins. Finally, nine kinesins that are 

transcriptionally up-regulated during mitosis may be plant specific. Some of these were shown to 

function in phragmoplast dynamics during cytokinesis. The analysis of uncharacterized plant specific 

kinesins with a mitotic expression profile may shed light on the function of motor proteins in PPB 

formation, a structure that is not very well understood. 

Cyclin-dependent kinases (CDKs) control cell cycle progression through timely coordinated 

phosphorylation events. CDKA;1 associates with MTs both in dividing and interphase cells and 

regulates MT organization by phosphorylation of MT-associated proteins (Stals et al., 1997; 

Cassimeris, 1999; Andersen, 2000; Hemsley et al., 2001; Weingartner et al., 2001). Two kinesins 

that interact with CDKA;1 were previously identified (De Veylder et al., 1997) and were designated 

KCA1 and KCA2. These kinesins were chosen for this study because they carry a potential 

phosphorylation site, interact with CDKA;1 and are plant specific, suggesting that they function in 

MT processes during plant cell division. The KCA kinesins are classified into the C-terminal/Kinesin-14 

subfamily and carry a typical neck sequence for minus-end directed kinesins. The KCA proteins are 81% 

identical and have a similar three-partite domain organization, consisting of a motor, stalk and tail 

domain. A green fluorescent protein (GFP) fusion of the N-terminal domain of KCA1 containing the N-
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terminal motor domain decorated MTs in BY-2 cells, demonstrating MT-binding activity (chapter 3). 

During cytokinesis the full-length GFP-fusion protein accumulated at the midline of cylindrical and ring-

like phragmoplasts. Two-hybrid analysis and co-immunoprecipitation experiments showed that 

coiled-coil structures of the central stalk were responsible for homo- and heterodimerization of KCA1 

and KCA2. By Western blot analysis, high molecular weight KCA molecules were detected in extracts 

from BY-2 cells overproducing the full-length GFP fusion. Treatment of these cultures with the 

phosphatase inhibitor vanadate caused an accumulation of these KCA molecules. In addition to 

dimerization, interactions within the C-terminally located tail domain were revealed, indicating that the 

tail could fold onto itself. The tail domains of KCA1 and KCA2 contained two adjacent putative CDKA;1 

phosphorylation sites one of which is conserved in KCA homologues from other plant species. 

Site-directed mutagenesis of the conserved phosphorylation sites in KCA1 resulted in a reduced binding 

to CDKA;1 and abolished intramolecular tail interactions. The data highlight that phosphorylation of the 

CDKA;1 site provokes a conformational change in the structure of KCA with implications in folding and 

dimerization. 

Using GFP-KCA1 markers, we found remarkable localization patterns that support the complexity of KCA 

protein configurations. First (chapter 3), we demonstrated that the kinesin KCA1 associates with the 

developing cell plate at the midline of the phragmoplast in BY-2 cells. In addition, KCA1 was targeted to 

the plasma membrane (chapter 4). Cell plate and plasma membrane accumulation was independent 

of the MT-binding motor domain. In contrast, this domain, fused to GFP labeled MTs in BY-2 cells, 

suggesting that the conformation of the full length GFP-KCA1 prevented MT association. The KCA1 

stalk and tail domains were required for respectively plasma membrane and cell plate targeting. 

Thus two separate targeting mechanisms seem to control the localization of the KCA1 protein. As 

these domains are implicated in respectively dimerization and folding of the KCA proteins, 

localization of GFP-KCA1 to the different subcellular compartments likely involves different 

conformations of the KCA proteins. Brefeldin A prevented association to both the cell plate and the 

plasma membrane, indicating that a Golgi derived vesicle traffic route was required. The same 

result was obtained when a small C-terminal part of KCA1 was deleted, suggesting that this domain 

is essential for membrane association. 

Surrounded by a rigid cell wall plant cells are stationary and require a strict regulation of the 

division plane to control the direction of growth and the spatial organization of their organs (Traas 

et al., 1995). The underlying mechanisms of division plane establishment are poorly understood 

(Smith, 1999). Using GFP-KCA1, we demonstrate in chapter 4 that a region within the plasma 

membrane predicts the division site before cytokinesis. At the onset of mitosis, GFP-KCA1 

associated fluorescence increased at the plasma membrane. Simultaneously, a region depleted in 

GFP-KCA1 fluorescence appeared at the plasma membrane corresponding to the site of the PPB. 

We designated this plasma membrane domain the KCA1 depleted zone or KDZ. Throughout mitosis, 

the KDZ marked the division site and served as guide for phragmoplast and cell plate expansion. 

The KDZ was formed at preprophase and this required the presence of PPB MTs. However, later 

during mitosis, MTs or actin filaments did not support the preservation of the KDZ at the plasma 
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membrane. The KDZ was further characterized by the appearance of strong connections between 

the cell wall and plasma membrane upon plasmolysis. In conclusion, the data show that KCA1 

reveals a subdomain of the plasma membrane that defines the division site in plant cells.  

Kinesin motor proteins often associate with kinesin light chains, kinesin associated proteins (KAP), 

regulatory proteins and other proteins, to regulate their activity and cargo binding (Reilein et al., 

2001). Using trehalose-6-phosphate synthase AtTPS1 as bate in yeast two hybrid experiments, 

KCA1 was identified (chapter 5). AtTPS1 catalyzes the first step of trehalose formation from UDP-

glucose and is involved in the regulation of the sugar metabolism. Plants produce low levels of 

trehalose (Vogel et al., 2001), suggesting that AtTPS1 is likely to play a regulatory role. Indeed, 

knocking out the AtTPS1 gene in Arabidopsis causes an embryo lethal phenotype and demonstrates 

the importance for trehalose in plant development (Eastmond et al., 2002). AtTPS1 forms a protein 

complex in yeast of a 600-800 kDa particle in FPLC separated extracts. We found evidence that a 

complex is also formed in Arabidopsis, albeit that the contributing components may be different. 

The Arabidopsis AtTPS1 co-migrated with the cell cycle kinase CDKA;1 and tubulin. In two hybrid 

experiments, AtTPS1 interacted with CDKA;1 and the CDKA;1 interacting protein KCA1. The AtTPS1 

domain responsible for the interaction with KCA1 and CDKA;1 was mapped to an N-terminal 

extension of the AtTPS1 protein that controls the trehalose synthase enzymatic activity. AtTPS1 co-

precipitated with CDKA;1 affinity beads indicating that it is part of a protein complex that contains 

KCA1 and tubulin. The data presented in this chapter provided the first physical link between 

control of cell division and sugar metabolism. 

KCA1 interacts with AtTPS1 (Chapter 5) and the katanin p60 subunit AtKSS (Bouquin et al., 2003), 

two genes that are implicated in development and morphology of Arabidopsis. To study the function 

of KCA in plant growth, plants were identified that carried a T-DNA insertion within intron 10 of 

KCA1 and exon 1 of KCA2 (Chapter 6). Molecular characterization of the mutant alleles showed 

that KCA2 transcript was absent from the mutant plants. Despite of the T-DNA insertion in KCA1 

mutants, KCA1 transcripts of both full length size and a shorter fragment were detected. Western 

blotting using an antibody that recognizes both KCA1 and KCA2, revealed the absence of KCA 

proteins in double mutants, but not in single insertion mutants. KCA mutants were phenotypically 

characterized and compared to plants mutated in the genes that encode for the KCA1 interaction 

partners AtKSS and AtTPS1. Processes related to cell division and cell expansion were not perturbed 

in the kca mutants under the conditions tested. It is possible that the T-DNA insertion in the KCA1 

gene is not a knock out and that functional KCA1 protein is still produced. Alternatively, other 

kinesins or parallel mechanisms can take over KCA activity. It is also possible that phenotypes were 

too subtle and growth conditions not apt to uncover phenotypic aberrations. 
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Plantencellen zijn omgeven door een stevige celwand die mechanische ondersteuning biedt aan 

elke cel en aan de plant in zijn geheel. Het maakt dat plantencellen tevens onbeweeglijk zijn. De 

morfologie en de ontwikkeling van planten wordt bepaald door de stricte regulatie van het 

delingsvlak en de richting van expansie. Het microtubulair (MT) cytoskelet wordt georganiseerd in 

verschillende structuren om deze processen te coordineren. De organizatie van deze MT structuren 

vereist de samenwerking van MT geassociëerde proteïnen (MAP). 

De unieke MT structuren die planten maken tijdens de celdeling zijn de preprophase band (PPB) en 

de fragmoplast. Ze dragen bij tot de orientatie van het celdelingsvlak en de cytokinese. MAPs 

spelen een belangrijke rol in de organizatie van deze plant specifieke MT structuren. Hoofdstuk 2 

beschrijft de zoektocht in het genoom van Arabidopsis naar kinesines die celcyclus gecontroleerd 

zijn. In de publiek beschikbare Affymetrix microarray data van gesynchroniseerde Arabidopsis cel 

culturen (Menges et al., 2003), werden 22 kinesines gevonden met een verhoogde expressie tijdens 

de mitose (Table 2.1). De aanwezigheid van mogelijke fosforylatieplaatsen, proteïne-degradatie 

boxen en regulatorische promoter elementen ondersteunt een functie voor deze motor proteïnen 

tijdens celdeling. Een vergelijking tussen kinesines van planten, dieren, gist en fungi veronderstelt 

dat functies voor kinesines in de opbouw van de bipolariteit van de spoelfiguur geconserveerd zijn 

bij eukaryoten. Sommige homologen van dierlijke kinesines, die betrokken zijn in chromosomale 

bewegingen tijdens de mitose, spelen klaarblijkelijk een andere rol tijdens de interfase in planten 

cellen. Het grootste aantal mitotische kinesines behoort tot de C-terminale subfamilie. Omdat 

dergelijke kinesines typisch naar het min-uiteinde van de MT bewegen, is het mogelijk dat sommige 

hiervan functies uitoefenen die gerelateerd zijn aan dat van dyneïnes, waarvan er geen homologen 

bestaan in Arabidopsis (Lawrence et al., 2001). Daarenboven zijn er in planten geen centrosomen. 

In dierlijke cellen verankeren de centrosomen de min-uiteinden van MT met de polen van de 

spoelfiguur en dus kunnen speciaal aangepaste kinesines een vervanging hiervoor vormen in 

planten. Negen kinesines, die transcriptioneel opgereguleerd zijn tijdens mitose, blijken specifiek te 

zijn voor planten. Voor sommige hiervan werd er een functie aangetoond in de dynamiek van de 

fragmoplast MT tijdens de cytokinese. De analyse van de tot nog toe ongekarakteriseerde plant 

specifieke kinesines met een mitotisch expressie profiel zou een tipje van de sluier kunnen oplichten 

in verband met de functie van motor proteïnen bij de vorming van de PPB. 

Cycline-afhankelijke kinasen (CDK) controleren de progressie doorheen de celcyclus via 

gecoordineerde fosforylatie van doeleiwitten. CDKA;1 associeert met MT in delende en interfase 

cellen en reguleert de organizatie van MT door fosforylatie van MAPs, zoals kinesines (Stals et al., 

1997; Cassimeris, 1999; Andersen, 2000; Hemsley et al., 2001; Weingartner et al., 2001). Twee 

kinesines die interageren met CDKA;1 werden voordien geïdentificeerd (De Veylder, 1997) en 

werden KCA1 en KCA2 genoemd. Deze kinesines werden gekozen voor deze studie omdat ze een 

potentiële fosforylatieplaats dragen, interageren met CDKA;1 en plant specifiek zijn, hetgeen 

veronderstelt dat ze betrokken zijn in de celdeling bij planten. De KCA kinesines behoren tot de C-
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terminale/Kinesine-14 subfamilie en dragen een neksequentie die typisch voorkomt bij kinesines die 

naar het min-uiteinde bewegen. KCA1 en KCA2 zijn 81% identisch en hebben een gelijkaardige 

drie-delige domein organizatie, bestaande uit een motor-, steel- en staartdomein. Een proteïnefusie 

bestaande uit het groen fluorescerend proteïne (GFP) en het N-terminaal domein van KCA1, dat het 

N-terminale motor domein bevat, kleurde MT in BY-2 cellen, waardoor het MT bindend karakter van 

dit domein aangetoond werd (hoofdstuk 3). Tijdens de cytokinese accumuleerde het volledige 

KCA1 eiwit, gefusioneerd aan GFP (GFP-KCA1), ter hoogte van de middellijn van de cilindrische en 

ring-vormige fragmoplast. Twee-hybride analyse en co-immunoprecipitatie experimenten toonden 

aan dat coiled coils in het centraal gelegen steel domein verantwoordelijk zijn voor homo- of 

heterodimerizatie van KCA1 en KCA2. In western blots werden hoog moleculaire gewicht KCA 

moleculen gedetecteerd in BY-2 extracten die GFP-KCA1 bevatten. Behandeling van deze cellen met 

de fosfataseinhibitor vanadaat, veroorzaakte een accumulatie van deze KCA moleculen. Naast 

dimerizatie werden tevens interacties vastgesteld tussen onderdelen van het C-terminaal geplaatste 

staartdomein, hetgeen suggereert dat het staartdomein kan dichtvouwen. De staartdomeinen van 

KCA1 en KCA2 bevatten twee naast elkaar geplaatste potentiele CDKA;1 fosforylatieplaatsen, 

waarvan er één geconserveerd bij ander KCA homologen in andere plantensoorten. Plaats-gerichtte 

mutagenese van de geconserveerde fosforylatieplaatsen KCA1 resulteerde in een verlaagde binding 

met CDKA;1 en verhinderde de intramoleculaire staartinteracties. De resultaten tonen dat 

fosforylatie van de CDKA;1 plaats een conformationele verandering teweegbrengt in de structuur 

van KCA met gevolgen voor de opvouwing en dimerizatie. 

Aan de hand van GFP-KCA1 merkers werden opmerkelijke lokalizatiepatronen verkregen die de 

complexiteit van conformationele opvouwing van de KCA kinesines weerspiegelt. Voordien 

(hoofdstuk 3) werd aangetoond dat het kinesine KCA1 associëerde met de ontwikkelende celplaat 

ter hoogte van de middellijn van de fragmoplast in BY-2 cellen. Daarenboven lokalizeert KCA1 ook 

op de plasmamembraan (hoofdstuk 4). Celplaat en plasmamembraan accumulatie gebeurde 

onafhankelijk van het MT bindende motordomein. Dit motordomein, gefusioneerd aan GFP, kleurde 

MT in BY-2 cellen, hetgeen suggereert dat de opvouwing van het intacte KCA1 kinesine associatie 

met MT verhindert. De KCA1 steel- en staartdomeinen waren essentiëel voor lokalizatie ter hoogte 

van de plasmamembraan en de celplaat respectievelijk. Dus twee verschillende mechanismen 

controleren de lokalizatie van de KCA proteïnen. Vermits deze domeinen betrokken zijn in 

respectievelijk de dimerizatie en opvouwing van KCA, weerspiegelt de lokalizatie van GFP-KCA1 ter 

hoogte van deze verschillende subcellulaire compartimenten waarschijnlijk de verschillende 

conformationele vouwingen van de KCA proteïnen. Brefeldine A verhinderde associatie met zowel 

de celplaat als de plasma membraan, hetgeen aanduidt dat KCA1 via een Golgi afhankelijke 

transportroute deze compartimenten bereikt. Hetzelfde resultaat werd verkregen wanneer een korte 

C-terminale sequentie werd verwijderd van de GFP-KCA1 fusie, wat aantoont dat deze sequentie 

essentieel is voor membraanassociatie. 

Het immobiele karakter van planten cellen vereist een stricte regulatie van het celdelingsvlak om zo 

de groeirichting en ruimtelijke organizatie van de plant onderdelen te controleren (Traas et al., 
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1995). De mechanismen die het celdelingsvlak bepalen zijn tot heden grotendeels ongekend (Smith, 

1999). Aan de hand van GFP-KCA1 tonen we in hoofdstuk 4 aan dat een regio binnen de 

plasmamembraan de delingszone voorspelt alvorens cytokinese aanvangt. Bij de aanvang van de 

mitose accumuleerde GFP-KCA1 ter hoogte van de plasmamembraan. Gelijktijdig werd een 

plasmamembraan regio, vrij van GFP-KCA1 fluorescentie, zichtbaar ter hoogte van de PPB. Dit 

domein werd de ‘KCA1 depleted zone’ of KDZ genoemd. Doorheen mitose duidde de KDZ de 

delingszone aan en opeerde als een leidraad voor fragmoplast- en celplaatexpansie. De KDZ werd 

gevormd tijdens preprofase en hiervoor was de aanwezigheid van PPB MT noodzakelijk. Later 

tijdens de mitose waren MT en actine filamenten niet essentiëel voor het behoud van de KDZ in de 

plasmamembraan. Verder werd de KDZ nog gekarakteriseerd door een sterke hechting tussen de 

plasmamembraan en de celwand die zichtbaar werden na plasmolyse. Als conclusie kunnen we 

stellen dat KCA1 een subdomein van de plasma membraan afbakent dat overeenstemt met de 

delingszone in plantencellen. 

In het algemeen associëren kinesines met kinesine lichte ketens, kinesine geassociëerde proteïnen, 

regulatorische proteïnen en andere, welke de activiteit en interactie met de te transporteren vracht 

controleren. In twee-hybride testen waarbij het trehalose-6-fosfaat syntase AtTPS1 gebruikt werd 

als aas, werd KCA1 geïdentificeerd (hoofdstuk 5). AtTPS1 katalyseert de eerste stap van 

trehalosevorming uitgaande van UDP-glucose en is betrokken in de regulatie van het suiker 

metabolisme. Planten produceren kleine hoeveelheden trehalose (Vogel et al., 2001), en dus speelt 

AtTPS1 waarschijnlijk eerder een regulatorische rol. Inderdaad, de uitschakeling van het AtTPS1 

gen in Arabidopsisis is lethaal voor het embryo. Dit demonstreert het belang van trehalose in de 

ontwikkeling van planten (Eastmond et al., 2002). AtTPS1 vormt een 600-800 kDa proteïne complex 

in gist extracten gescheiden via FPLC. In dit hoofdstuk werd bewijs gevonden voor een AtTPS1 

complex in Arabidopsis, waarvan de componenten kunnen verschillen. Het Arabidopsis AtTPS1 co-

migreerde met het celcyclus kinase CDKA;1 en tubuline. In twee-hybride experimenten interageerde 

AtTPS1 met CDKA;1 en het CDKA;1 interagerende proteïne KCA1. De N-terminale extentie van 

AtTPS1, dat de enzymatische activiteit controleert van AtTPS1, was verantwoordelijk voor de 

interaktie met KCA1 en CDKA;1. AtTPS1 werd met CDKA;1 affiniteits korrels geprecipiteerd, wat 

duidt op zijn aanwezigheid in een proteïne complex dat tevens KCA1 en tubuline bevat. De 

resultaten van dit hoodstuk verschaffen het eerste fysische verband tussen suiker metabolisme en 

controle over celdeling. 

KCA1 interageert met AtTPS1 (hoofdstuk 5) en de katanine p60 onderdeel AtKSS, twee genen die 

essentieel zijn voor de ontwikkeling en morfologie van Arabidopsis. Om de functie van KCA in 

planten te bestuderen, werden planten geïdentificeerd welke een T-DNA insertie dragen in intron 10 

van KCA1 en exon 1 van KCA2 (hoofdstuk 6). Moleculaire karakterizatie van de mutante allelen 

toonde aan dat KCA2 transcript afwezig was in de KCA2 mutante planten. Ondanks de T-DNA 

insertie in KCA1 mutanten, waren transcripten van volledige lengte en een korter fragment 

aanwezig. Via western blot analyse met een antilichaam dat geen onderscheid maakt tussen KCA1 

en KCA2, werd aangetoond dat KCA proteïnen afwezig waren in de dubbele mutanten, maar niet in 
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de enkelvoudige mutanten. KCA mutante planten werden fenotypisch gekarakteriseerd en 

vergeleken met planten die gemuteerd zijn in de genen die coderen voor de KCA1 

interactiepartners. Processen die verband houden met celdeling en celexpansie waren niet 

verstoord in de kca mutanten onder de geteste condities. Het is mogelijk dat de T-DNA insertie in 

het KCA1 gen geen ‘knock out’ is en dat functioneel KCA1 proteïne nog steeds geproduceerd word. 

Het is tevens mogelijk dat andere kinesines of parallele mechanismen de aktiviteit van KCA 

overnemen. Mogelijks waren de fenotypes te subtiel en de groei condities niet geschikt om 

fenotypische abnormaliteiten aan het licht te brengen.  
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Nawoord 
 

De laatste kleine aanpassingen zijn gebeurd, het is ’s ochtends vroeg en er rest me ‘enkel’ nog 

woorden van dank uit te spreken naar een hele hoop mensen toe die dit, op verschillende nivo’s, 

mogelijk hebben gemaakt. Ik herinner me nog de dag dat ik, kakelvers afgestudeerd, met mijn 

diploma binnenstapte in het labo Genetica op de Ledeganckstraat (via mijn bijen-thesis had ik 

vernomen dat daar vooral onderzoek werd verricht op ‘cuccaracha’s ☺) om te kijken of er daar 

ergens een plaats voor me was om een doctoraat te beginnen. Zo kwam ik bij Danny Geelen 

terecht. Jouw enthousiasme had me snel overtuigd en de daaropvolgende 4 jaar heb ik uren onder 

de confocale naar BY-2 cellekes gekeken (of keken zij naar mij?). Je stond steeds open voor 

nieuwe ideeën en vond altijd wel de tijd om deze kritisch en met kennis van zaken te bepreken. 

Bedankt om me doorheen dit werk te loodsen. 

Ik wil ook graag Dirk Inzé bedanken om me de mogelijkheid te bieden in dit labo mijn onderzoek 

te kunnen starten. Dankzij deze kans heb ik de complexe en (soms on-)vatbare wereld van de 

wetenschap kunnen exploreren, in al haar aspecten. Ook mijn dank aan het IWT dat mijn 

onderzoek financieel mogelijk maakte. 

De reis begon eerst in de Ledeganckstraat, op de vijfde verdieping. Mijn thesis startte daar in de 

microscopie groep met Gilbert, Rosa, Riet, Janice, Ruth, Marleen B., Kris en Danny. Na heel wat 

dynamiek is hieruit de cell biology groep ontstaan met Daniel (ik heb altijd genoten van onze 

kleine discussies, jammer dat we niet de kans hadden om wat meer samen te werken), Silvie (wat 

ik enorm waardaar is je enthousiasme waarmee je studenten begeleidt. Keep on doing that!) en 

Kris. You and (Professor) Mansour were two partners in crime, a dangerous combination in one 

room (especially in the setting of the Ledeganck). Anyway, you learned me all about making little 

explosives and I’m sure you enjoyed scaring me to death once and a while. Bartel, jouw 

specialisatie in RNA extractie breide zich wel eens uit van nematode spit naar ‘cuccaracha’s. Het 

was steeds leuk een stille (alhoewel; Ramstein) venoot te hebben ’s avonds en in het weekend. Dan 

was er natuurlijk ook mijn buurvrouwtje Eva, die nu de plantjes vaarwel heeft gezegd om 

zebravisjes te bestuderen in Boston en sinds kort ook de ontwikkeling van de mens. Manu, ik heb je 

wat laat leren waarderen, maar ik weet nu dat er achter dat groot bakkes ne goeie gast zit. 

Daarnaast waren er natuurlijk een heleboel mensen die steeds vol enthousiasme bereid waren een 

handje toe te steken. Wilson, you managed to make sequence analysis actually a fun part of 

research. Your smile and of course the Spanish radio cheered me up when sequences were not so 

nice. Thanks for all the help, you’re a good friend. Rebecca, bedankt voor die honderden prepjes. 

Het zijn ‘kleine’ dingen zoals deze die zware periodes steeds een beetje lichter maakten. Ook 

iedereen die instaat voor het draaiende houden van het labo (Jackie, Nancy, Ann, Jacques, 

Christine, Diane, Hilde, Nico...), bedankt. Martine en Karel, zonder jullie zouden er geen papers zijn, 

high impact of niet. Merci! Ook Nino en Blancheke wil ik bedanken voor het in stand houden van 

exotische dialecten... 



De gezelligheid (eufimisme voor het wereldrecord materiaal proppen in een gang) van de 

Ledeganck nodigde wekelijks uit tot een feestje. Vaste afspraak, vrijdagavond in het Petunia kot. 

Discolichtjes, kleuren plakband, een oude stereo keten, pintjes en de attributen van jan’s bureau 

waren vaste ingredienten voor weer een avondje lol op het labo. Vaste ‘tooghangers’ waren 

Zetje, Michiel (& Suzanne later), Griet, Ward en Wivel. Jan en Michiel, ik mis jullie allebei hoor, 

maar ik denk dat we elkaar gaan blijven zien en dat het steeds weer even leuk zal zijn. Griet, je 

bent er ook bijna. Het zal wel hard werken worden, maar ik ben er zeker van dat je het 

schitterend zal doen. Vince, your famous laugh and English (‘raiver’) were contagious and I hope to 

enjoy it again this summer in Argenton. De Bio-informatici vrienden Jeroen (je bambi ogen en 

continue smile blijven in het geheugen gegrift) en Stephane (California here we come!) brachten 

het dry-lab een beetje dichter bij. 

Door de jaren heen is er heel wat veranderd, veel mensen zijn weggegaan en nieuwe zijn 

gekomen. De verhuis naar Zwijnaarde (ondertussen wereldberoemd als ‘Pig-earth’, de officiele e-

mail signature met ‘Ghent’ heeft dit niet kunnen verhinderen...) leek eerst een beetje het sociaal 

contact te bekoelen, maar we bleven werken aan een terugbeweging. Ryan, I’m very happy to 

have met you. You have become not only a great colleague, but also a great friend. I look very 

much forward to explore Australia together with you and Willem and of course to surf on those 

great waves you always tell us about. Delphine, we only really met last autumn, but since then 

many things have happened. I know you went through a hard time, but you did well and I am 

really happy that things are better (great) for you now. Een dikke knipoog naar de Plant 

Microbes, die er altijd waren met een luisterend oor, sciencewise of niet. Juperke, you and your 

lovely wife Sofie brought salsa in our lives. I really hope you can continue working on that fantastic 

project in our lab. Paul was always there to provide us with shocking e-mails. I heard you’re 

having a good time in London, but don’t miss out on your plans to go to Sydney. Tom, jij bracht 

Holland terug in het labo. Bedankt voor de vele schouderklopjes tijdens de lange uren in de bib. 

Ook in onze groep veranderde de samenstelling. Evelien, bedankt om zo door te zetten met het 

KCA werk. Ook al stond ik niet steeds open voor discussie deze laatste maanden, ik waardeer je 

doorzettingsvermogen enorm. Bertje (Bibber), mijn favoriete thesis studentje, je slaagde erin je 

weg te vinden in mijn chaotisch begeleiding. Je hebt dat goed gedaan, but don’t spell the word 

PNAS anymore when you’re drunk… Sinds Zwijnaarde deelden we ons lab met de ‘Roots’. Het 

was altijd gezellig met jullie erbij en Ives, keep on wearing those white socks, I adore them! 

De laatste maanden is de PSB bib mijn vaste stek geworden. Mits wat eigen decoratie en stapels 

artikels ben ik erin geslaagd een van de bureautjes te kolonialiseren. Bedankt aan iedereen die 

af eens langskwam om te checken of het wel ging of me wegsleurde voor een kopje thee. Hendrik, 

duizend maal dank om mij steeds uit de nood te redden wanneer mijn labtopke weer eens zijn 

kuren had. Mo, ik vond het heel geestig dat jij hier ook regelmatig zat. Onze kleine gesprekjes 

doorbraken ’s avonds de lange uren. 



Aan mijn tijd in Gent als doctoraatstudent zijn eerst heel wat wilde jaren vooraf gegaan. Katleen, 

die tijden dat we Limburg, Italie, Zwitzerland en Frankrijk afschuimden, op zoek naar avontuur zijn 

onvergetelijk. We hebben elkaar een beetje uit het oog verloren later, en ik vind het fantastisch 

dat we elkaar weer tegengekomen zijn, al waren de omstandigheden niet altijd de beste. We 

spreken binnenkort weer af. In Diepenbeek werkte ik mijn kandidaturen Biologie af. Ik denk dan 

vooral terug aan al mijn vrienden in kot Miezerik en kot Bère en dan vooral aan Kerlijne, JP en 

Katrien,  de realiteit bleek ver, ver weg en dat was heerlijk. Ook in de studentenvereniging heb ik 

snel mijn weg gevonden. Totter, Pirre, Sara, Sigrid en Annick, jullie hebben van mijn Diepenbeek 

jaren een feest gemaakt (afgezien van die examenperiodes tijdens de welke ik wel eens van de 

aardbol leek verdwenen). Annick en Sigrid, jullie zijn twee prachtvriendinnen. Ik weet dat ik jullie 

veel te weinig heb opgezocht de laatste tijd. Jullie vriendschap is onvoorwaardelijk en betekent 

erg veel voor me. Binnenkort, als dit hier voorbij is gaan we ne keer goe profiteren. 

Na twee jaar Diepenbeek kwam Gent. Na de lesuren werd er vast afgesproken in de Sala, waar 

Rita steeds weer met evenveel plezier de pintjes tapte. Met Patje, Katrien, Seppe, Dries, Jordi, en 
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