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Overview and Objectives 

In the beginning of winter 2013, a gigantic haze that shrouded north and east China 

lasted for over a month. Particulate matter (PM) is the main constituent of air pollutant 

in haze. Millions of people in China breathe a cocktail of hazardous chemicals every 

day. These chemicals are produced by coal-fired power plants, factories and vehicles. 

Unsurprisingly, such air pollution events occur in many places around the world 

including London, Los Angeles, New Delhi and others. PM 2.5 (diameter lesser than 

2.5 µm) containing genotoxic chemicals is proven to be harmful for plant and animal 

cells (André et al., 2011; Brito et al., 2013). There is accumulating epidemiologic 

evidence that exposure to air pollutants, including particulate matter (PM) and 

polyaromatic hydro carbons (PAHs) could induce oxidative DNA damage, eventually 

causing significant reductions in both crop quality and yield, or inducing cancers and 

other diseases in humans and animals.(Sørensen et al., 2003; Huang et al., 2012)  

Pollution has been found to be present widely in the environment. Soil contamination 

from metal elements and xenobiotic (human-made) chemicals are dangerous to health or 

to the environment. The metal ion such as aluminium (Al), iron (Fe), copper (Cu), and 

cobalt (Co) or chemicals toxicity involves the production of superoxide radicals and 

hydroxyl radicals (Jomova and Valko, 2011) which cause DNA damage (Dizdaroglu et 

al., 2002; Roldán-Arjona and Ariza, 2009). 

To counteract the risks of DNA damage, eukaryotic organism developed a complex 

mechanism to maintain the integrity of their genome. Generally, upon detection of DNA 

damage, three different responses can occur: cell cycle arrest, DNA damage repair or 

apoptosis if DNA can’t be repaired sufficiently. Cell cycle checkpoints are the control 

mechanisms that ensure the fidelity of the cell cycle process. An important function of 

checkpoints is to assess DNA damage (Veylder et al., 2003; Cools and De Veylder, 

2009). However, we know very little about the molecular players that adjust the plant 

cell cycle in response to DNA stress. In Arabidopsis thaliana, the cell cycle inhibitor 

WEE1 interacts with CDKA;1 upon replication stress (Cools and De Veylder, 2009; 

Cools et al., 2011). However, this mechanism was found to be essential only under 

replication stress and single strand breaks. 
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The objectives of this study were to understand cell cycle regulation in response to 

DNA damage and identify new components and mechanisms in DNA damage related 

stress in plants. Therefore, the first part of this work was focused on determining new 

CDK inhibitors (CKI) belonging to SIAMESE/SIAMESE RELATED (SIM/SMR) 

family (Peres et al., 2007). Three family members (SMR4, SMR5, and SMR7) respond 

specifically towards DNA damaging drugs, suggesting that they control the cell cycle 

checkpoint upon the occurrence of DNA stress. We focused on the function and 

transcriptional regulation of SMR genes upon DNA damage. To this end, we have 

developed an independent strategy to identify signal transduction components driving 

SMR7 expression, We opt to use a positive selection strategy, making use of the D-

amino acid oxidase (DAO1) selection marker (Erikson et al., 2004). We generated 

transgenic lines that hold the DAO1 selector under control of the SMR7 promoter. 

E2F transcription factors act as transcriptional regulators of cell cycle, and are known to 

play important roles upon DNA damage response in animals (Martinez et al., 2010; 

Chen et al., 2012). Plants possess a set of E2F transcription factors, but there are no 

adequate reports that describe their role upon DNA stress (Cools and De Veylder, 

2009). The second part of this work focused on investigating new elements of the DNA 

damage pathway in plants. Thus we investigated the E2FKO phenotypes and 

transcriptome upon DNA stress to connect E2Fs with environmental or endogenous 

DNA damage stress.  
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INTRODUCTION 

DNA, Deoxyribonucleic acid, is the basic blueprint for all life. It provides the starting 

template for every new cell. In cells, DNA exists as long structured macromolecules 

called chromosomes. These contain the genetic instructions for all of the traits that 

control organism growth, development and reproduction. DNA reproduction is the 

primary process of cell division. During cell division, the genome is duplicated in a 

process called DNA replication, providing each cell with its own complete set of the 

genome. In eukaryotic cells, DNA replication usually occurs as part of a cell cycle 

process. Multiple cell cycle checkpoints have been identified, which make sure each 

phase of cell cycle is completed before progression into the next phase (Watson and 

Berry, 2009). 

Cyclins and cyclin-dependent kinases (CDKs) combine to form kinase complexes that 

are conserved in all eukaryotes. Several distinct CDKs and cyclins have been shown to 

work in different stages of the cell cycle in animals (Morgan, 2007). Similar to animals, 

there are several types of CDKs and cyclins in plants (Veylder et al., 2003). Besides 

CDKs and cyclins, other key regulators like CAK (CDK-activating kinase), CKI 

(cyclin-dependent kinase inhibitor), and RBR/E2F control the cell cycle through 

interacting with CDK/Cylin complexes (van den Heuvel and Dyson, 2008) (Figure 1). 

In the first part of this chapter, we will focus on the functions of cell cycle regulation 

elements and the differences between plants and animals. 

DNA can be damaged by many kinds of mutagens from exogenous and endogenous 

sources, which change the DNA sequence or break the DNA structure. Double stranded 

breaks (DSBs) and single stranded breaks (SSBs) are the two main types of DNA 

damage which are produced by these different types of mutagens. These mutagens 

include physical mutagens like ionizing radiation (IR) or ultraviolet light (UV) and 

DNA reactive chemicals agents such as reactive oxygen species (ROS), metal ions or 

intercalating agents (De Bont and van Larebeke, 2004; Harper and Elledge, 2007). 

To maintain the integrity of the genome, organisms have developed a DNA damage 

response system that is involved in a variety of responses including cell cycle 

regulation, DNA repair and apoptosis. When damage is detected, the DNA damage 

checkpoint is activated and a cell cycle arrest is induced, allowing the cell time to repair 
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the damage. If the damage is too extensive, programmed cell death (PCD) is induced 

(Nyberg et al., 2002).  

The DNA damage response pathway and cell cycle checkpoints are conserved but not 

exactly the same in all eukaryotes. ATM and ATR are two important conserved DNA 

damage sensing mechanisms in animals and plants. After ATM/ATR are activated by 

DNA damage, they will modulate the cell cycle through controlling the CDK/cyclin 

complexes. In animals, this process has been described in detail, with the identification 

of CHK1/CHK2, p53, CDC25 and WEE1 as downstream elements of ATM/ATR. In 

contrast, much less is known about this process in plants. Plant specific regulators such 

as SOG1 and SIM/SMRs have been investigated in recent reports. In the second part of 

this chapter, we will mainly describe the DNA damage response and the recent 

discoveries of DDR in plants (Harper and Elledge, 2007). 
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Figure 1. Schematic representation of cell cycle control in plants.  

Progression through the mitotic cycle involves the successive formation, activation and 

subsequent inactivation of cyclin-dependent protein kinases (CDKs). The kinases bind 

sequentially to a series of cyclins, which are responsible for differential activation of the kinase 

during the cell cycle. The G1 to S transition is thought to be controlled by CDKs containing D-

type cyclins that phosphorylate the retinoblastoma protein, releasing E2F transcription factors. 

E2F are involved in the transcription of genes needed for the G1 to S transition. The G2 to M 

transition is carried by CDK complexes containing CycA and CycB cyclins. CDK complexes 

are kept in inactive state by phosphorylation by the WEE1 kinase, and by interaction with 

inhibiting proteins (CKIs). At the G2 to M boundary activation of the kinase is brought about by 

release of the CKI protein.(base on the Mironov et al., 1999) 
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CELL CYCLE REGULATION 

The cell cycle represents the series of events that take place in a cell leading to its 

duplication and division, resulting in a parent cell dividing into two daughter cells . In 

prokaryotes, the cell cycle is termed binary fission, which takes place without the 

formation of spindles. In contrast to the prokaryotic cell division, the eukaryotic cell 

cycle is more complex (Morgan, 2007). 

There are two distinct types of eukaryotic cell division: a vegetative division, whereby 

each daughter cell obtains the complete genome from the parent cell (mitosis) and a 

reductive cell division, whereby the number of chromosomes in the daughter cells is 

reduced by half, to produce haploid gametes (meiosis). The vegetative cell cycle 

consists of four consecutive phases: G1 phase, S phase (synthesis), G2 phase and M 

phase (mitosis). G1, S and G2 phases are collectively referred to as interphase. For 

multicellular organisms, the cell-division cycle is a critical process by which a single 

zygote cell develops into a mature organism. Due to its importance for development and 

multiplication of the organism, it is crucial to understand the molecular mechanisms 

regulating the eukaryotic cell cycle (Inzé and De Veylder, 2006; Morgan, 2007). 

CDKs and Cyclins 

Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases regulating the 

cell cycle process together with their binding partners, the cyclin proteins. The first 

CDK member was identified from yeast in 1975 (Nurse, 1975). For their enzymatic 

activation CDKs need to associate with a cyclin regulatory subunit, which determines 

the temporal CDK activation and substrate specificity (Gopinathan et al., 2011).  

In animals 

Up to date, there are more than 20 CDK family members described in the human 

genome (Malumbres et al., 2009). Throughout the CDK gene family, a number of 

domains are conserved and essential for their function during the cell cycle. Basically, 

we can distinguish 3 core motives in the CDKs protein sequences: 1) an ATP-binding 

pocket, 2) a cyclin-binding domain and 3) an activating T-loop motif. There are 

inhibitory phosphorylation sites in the ATP-binding pocket, and an activating 
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phosphorylation site in the T-loop motif. Collectively, these domains control the 

temporal activation of CDKs (Lim and Kaldis, 2013).  

The size of the CDK and cyclin gene families suggest that they exert many related but 

different roles during cell cycle regulation. For example, the M phase is controlled by 

CDK1/CycA and CDK1/CycD complexes. CDK4/CDK6 are mostly working on G1 and 

S phase and respond to DNA stress by interacting with cyclin D. (Dean et al., 2012).  

In plants 

CDKs in plants were found based on the homology analysis with CDKs in animals and 

yeasts. CDKs in arabidopsis can be classified into at least six subsets (CDKA-F) based 

on protein sequences (Inzé and De Veylder, 2006; Wang et al., 2008). Two classes of 

them, CDKAs and CDKBs, participate in core cell-cycle regulation in arabidopsis. A-

type CDKs contain the conserved PSTAIRE cyclin domain pocket, which is present in 

animals and yeast CDKs as well (Ferreira et al., 1991; Takashi et al., 1991; Porceddua 

et al., 1999). CDKA activity controls both the G1-S and G2-M transitions of the cell 

cycle. CDKBs contain a PPTALRE or PPTTLRE motif instead of the PSTAIRE motif 

in their cyclin binding domain (Joubès et al., 2000; Boudolf et al., 2001). This group of 

CDKs responds to light and plant hormones such as brassinosteroid, gibberellic acid and 

jasmonic acid (Yoshizumi et al., 1999; Fabian et al., 2000; Świątek et al., 2004). There 

are two subgroups of CDKB. CDKB1 with the PPTALRE motif is expressed in the S, 

G2 and M phase, and CDKB2 with the PPTTLRE motif is expressed during the G2 to 

M phase. Both regulate the G2-M transition (Umeda et al., 1999; Oakenfull et al., 

2002). Two other kinds of CDKs named CDKC and CDKE exist in plants, but no clear 

roles for them have been described in the cell cycle so far (Inzé and De Veylder, 2006). 

CDKD and CDKF are to classes CDK-activating kinase (CAK) which activates the 

cyclin-CDK complex by phosphorylation (Inzé and De Veylder, 2006) 

In Arabidopsis, the cyclins constitute a large gene family. There are at least 32 members 

predicted to be involved in cell cycle progression (Vandepoele et al., 2005). According 

to their sequence similarity to animals, cyclins in Arabidopsis can be divided into 10 A-

type cyclins, 11 B-type cyclins, 10 D-type cyclins and 1 H-type cyclin. Generally, 

cyclin A proteins are involved during S-to-M phase, whereas cyclin B proteins mainly 

control the G2-M and intra-M phase. D-type cyclins are thought to regulate the G1-S 
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transition, but there is numerous data indicating that D-type cyclins also take part in the 

G2-M transition (Schnittger et al., 2002; Kono et al., 2003).  

CKI  

CDK inhibitors (CKI) are a group of proteins that tightly interact with CDK/cyclin 

complexes which broadly exist in animals (Lim and Kaldis, 2013) and plants (Wang et 

al., 2008). They have been described as important factors for organism development and 

external signal response, during which they modulate the cell cycle process by 

influencing the CDK/cyclin complexes.  

In animals 

In animals, CKIs can be categorized into two gene families based on their evolutionary 

origins, structure, and CDK specificities, namely INK4 and Cip/Kip. The INK4 gene 

family contains p16INK4a (Cdkn2a), p15INK4b (Cdkn2b), p18INK4c (Cdkn2c) and p19INK4d 

(Cdkn2d), all of which target CDK4/CDK6 and inhibit their kinase activities by 

interfering with their ability to interact with D-type cyclins. Conversely, Cip/Kip family 

proteins, including p21Cip1 (Cdkn1a), p27Kip1 (Cdkn1b) and p57Kip2 (Cdkn1c), widely 

interfere with both cyclin and CDK subunits and modulate the activity of cyclin D, E, 

A, and B/CDK complexes (Sherr and Roberts, 1999). 

INK4 gene family 

The INK4 family consists out of proteins that have conserved sequences containing 

ankyrin repeats. Expression analysis revealed distinct tissue-specificity and 

developmental expression of the different family members in mice (Ortega et al., 2002; 

Pei and Xiong, 2005). The different expression patterns of INK4 genes imply there are 

various functions for each INK4 protein in the DNA damage response, cellular 

processes and development through regulation of the cell cycle. 

Regulation of INK4 is mainly controlled at the transcription level by transcription 

factors such as ETS, FOXO and SP1, resulting in stable INK4 protein levels in the cell 

(Ohtani et al., 2001; Xue et al., 2004; Katayama et al., 2007). Besides inhibiting 

CDK4/CDK6 directly, INK4 proteins can interact with the p53 and E2F transcription 

factors to modulate the cell cycle.  
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Cip/Kip family  

Cip/Kip family proteins are more broad regulators of CDK/Cylin complexes in cell 

cycle regulation process, compared to the INK4 family. The three members of the 

Cip/kip family, p21Cip1 (Cdkn1a), p27Kip1 (Cdkn1b) and p57Kip2 (Cdkn1c), have related 

but different functions in cellular processes and organism development. p21Cip1 

(Cdkn1a) mostly responds to DNA damage under transcriptional control of p53 tumor 

suppressor. Activated p21 arrests cells in the G1 or G2 phases to allow DNA damage 

repair (Dulić et al., 1998; Nakayama and Nakayama, 1998). Accumulation of p27Kip1 

(Cdkn1b) causes cells to exit the cell cycle and enter a quiescent state, and it will be 

rapidly degraded when cells re-enter the cell cycle (Chu et al., 2008). p57Kip2 (Cdkn1c) 

plays a very important role in embryonic development, because embryos lacking a 

functional p57 die off due to the inability to promote cell differentiation. Besides 

interaction with CDKs, Cip/Kip proteins also modulate cell cycle gene expression by 

CDK-independent functions in transcriptional regulation (Besson et al., 2008). Control 

of Cip/Kip protein activity occurs mainly on the protein level, such as through 

phosphorylation (Dash and El-Deiry, 2005; Chu et al., 2007) and proteasomal 

degradation through ubiquitination by E3-ubiquitin ligases (Glickman and Ciechanover, 

2002). Cip/Kip inhibitors can be redistributed under the influence of INK4 proteins to 

repress the kinase activity of Cdk2/cyclinE complexes (Sherr and Roberts, 1999). INK4 

proteins compete with Cip/Kip proteins for CDK4/cyclin D. Increased INK4 protein 

results in formation of INK4–CDK complexes and destabilization of cyclin D. 

Consequently, release of Cip/Kip proteins from the complexes inhibits cyclin E (and 

A)-dependent CDK2. 

In plants 

In contrast to animals, little is known about CKIs in plants. Three groups of CKIs have 

been discovered: the Inhibitor of CDK/Kip Related Protein (ICK/KRP) CDK inhibitor 

family (Wang et al., 1998; De Veylder et al., 2001); the SIAMESE/SIAMESE-

RELATED (SIM/SMR) gene family (Churchman et al., 2006; Peres et al., 2007) and 

the tissue-specific inhibitors of CDK (TIC) (DePaoli et al., 2011; 2012). They are three 

different but related groups of CDK inhibitors. 
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KRPs 

The most studied family of plant CDK inhibitors family is the ICK/KRP CDK inhibitor 

family. This CKI family was discovered through a plant yeast two-hybrid library screen 

using Arabidopsis thaliana CDKA;1 and CYCD3;1 as bait. In Arabidopsis, the 

ICK/KRP family consists of seven members (De Veylder et al., 2001).  

All seven ICK/KRP proteins in Arabidopsis contain a CDK inhibitory region which 

shows amino acid sequence homology to the mammalian cyclin-dependent kinase 

inhibitor p27Kip1 (Wang et al., 1998; Lui et al., 2000; De Veylder et al., 2001; Zhou et 

al., 2002) This conserved C-terminal domain was proven to interact with CDKA (De 

Veylder et al., 2001). In addition, another shorter conserved domain adjacent to the 

CDK inhibitory motif (Zhou et al., 2002) was shown to interact with D-type cyclin 

(Wang et al., 1998; Jakoby et al., 2006). Based on their evolutionary conservation, the 

ICK/KRP family genes in Arabidopsis can be classified into 3 groups: (i) KRP1 and 

KRP2, (ii) KRP6 and KRP7 and (iii) KRP3, KRP4 and KRP5 (Wang et al., 2008). 

The ICK/KRP family of CDK inhibitors plays an important role in cellular processes 

and plant development, through its interaction and regulation of the CDKA and D-type 

cyclin proteins. Several reports confirm that ICK/KRP proteins are cell division 

inhibitors, as seen by the reduction in cell number and growth inhibition upon 

overexpression of ICK/KRP genes. Overexpressing ICK/KRP Arabidopsis plants 

display all similar phenotypes including smaller plant size, serrated leaves, reduced cell 

number and enlarged cells.(Wang et al., 2000; De Veylder et al., 2001; Jasinski et al., 

2002; Zhou et al., 2002; Barrôco et al., 2006). Interestingly, the influence of ICK/KRP 

on endoreduplication is dose-dependent. Although overexpression of ICK/KRP mainly 

inhibits endoreduplication, weak overexpression of ICK1/KRP1 or ICK2/KRP2 has the 

opposite effect on endoreduplication (Verkest et al., 2005; Weinl et al., 2005). In 

contrast to overexpression, downregulation of multiple ICK/KRPs in plants leads to 

enhancement of seedling dry weight and cotyledon and leaf size (Cheng et al., 2013). 

ick3/krp5 mutants display a decrease in the 16C population both in etiolated seedlings 

and roots (Jégu et al., 2013; Wen et al., 2013). This suggests that KRP5 promotes higher 

endoreduplication levels. Corresponding with the role of endoreduplication in 

promoting growth, ick3/krp5 primary roots show a growth reduction compared to wild 

type controls (Wen et al., 2013) .  
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ICK/KRP genes show different expression patterns. In the shoot apex, KRP1 and KRP2 

expression can solely be detected in the tissues that are undergoing endoreduplication, 

but KRP4 and KRP5 are mainly expressed in mitotically dividing cells. Expression of 

the other KRPs (KRP3, KRP6 and KRP7) can be detected in both mitotically active and 

endoreduplicating tissues (De Veylder et al., 2001; Wen et al., 2013). This classification 

result is partially compatible with the evolutionary conservation analysis of KRP 

proteins (Wang et al., 2008). Besides transcriptional regulation, the level of ICK/KRP 

proteins is also regulated post-translationally. The N-terminal region of KRP1 protein 

controls the stability, while the C-terminal region is important for CDK inhibition 

activity through interacting with the kinase complex. Interestingly, the central domain 

of ICK1 is responsible for nuclear localization (Zhou et al., 2003). ICK/KRP proteins 

are degraded through the ubiquitin–proteasome pathway. Two different ubiquitin 

protein ligases, SCFSKP2 and the RING protein RKP, work on its degradation(Ren et 

al., 2008). Furthermore, similar as KRP1, KRP6 and KRP7 proteins are also degraded 

by RING-finger E3 ligases RHF1a and RHF2a or the SKP1–Cullin1–F-box protein 

FBL17, which is involved in gametocyte development. Subcellular localization studies 

using the GFP reporter proved that the Arabidopsis ICK/KRP family proteins are all 

localized in the nucleus, which is important for CKI function or to regulate their 

functions(Zhou et al., 2003; Bird et al., 2007). Interestingly, these seven ICK/KRP 

proteins show two types of nuclear localization, KRP1, KRP3, KRP4 and KRP5 present 

a punctate pattern distribution in nucleus, and KRP2, KRP6 and KRP7 always exist 

throughout the nucleoplasm. However, there is no detail on the relation between these 

two type sub-unclear localization patterns and the functions of the ICK/KRP proteins.  

SMRs 

The SIAMESE/SIAMESE-RELATED (SIM/SMR) gene family encodes for a new group 

of plant-specific CKIs. Homologs of SIM/SMR were detected both in dicots and in 

monocots (Churchman 2006; Peres et al 2007 Walker 2000). Based on protein analysis, 

SIM/SMRs have a conserved motif that resembles the cyclin-binding domain of 

ICK/KRP proteins. Peres et al. (2007) reported that the Arabidopsis genome encodes 

five SIAMESE-RELATED genes, and recent research expanded this to 13 family 

members (Yi et al., 2014). Besides Arabidopsis thaliana, SIM/SMR also exist in other 

plants. There are at least four conserved motifs in the SIM/SMR gene family. As 

discussed before, Motif 4 of the SIM/SMR proteins is similar to the motif of the 
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ICK/KRP CDK-inhibitory proteins (De Veylder et al., 2001). Motif 3, containing the 

Cy or zRxL motif, is predicted to interact with some CYCA and CYCD/CDK 

complexes (Adams et al., 1996; Wohlschlegel et al., 2001). Motifs 1 and 2 show no 

obvious similarity to any domain with known function.  

According to subcellular localization experiments, we know that all the investigated 

SIM/SMR proteins (SIM, SMR1, SMR2, SMR3, SMR4, SMR5, SMR7; Orysa;EL2) are 

localized in the nucleus (Churchman et al., 2006; Peres et al., 2007). These results 

support the function of SIM/SMRs as CDK inhibitors. 

In accordance to being a part of the family of CKI proteins, SIM/SMR proteins 

influence the cell cycle process. In the meantime, there is data showing that SIM/SMR 

proteins not only exist in proliferating tissues like the root and shoot apical meristem 

and in leaf primordia, but also in differentiated cells such as vascular cells and in the 

root elongation zone (Churchman et al., 2006; Peres et al., 2007; Yi et al., 2014), 

indicating there are different functions of SIM/SMRs in plants. This speculation has 

been supported by the report from Van Leene et al (2010). Based on their co-

purification with CDK/Cyclin, we can discern at least two groups of SIM/SMR 

proteins. The first group contains the SIM, SMR1 and certain SMR family members 

linked with endocycle onset as CKIs function to inhibit the activity of B1-type of CDKs 

(Boudolf et al., 2004; 2009). The second group of SIM/SMR proteins, including SMR4, 

SMR5 and SMR7, only co-purified with A-type CDK and D-type cyclins (Van Leene et 

al., 2010).  

Mutation of the SIAMESE gene triggers multi-cellular trichomes and a decreased in the 

DNA content in these cells, which indicates that the SIM gene can block mitosis and 

trigger endoreduplication. (Churchman 2006). SIAMESE RELATED 1(SMR1) gene is 

also named LGO (loss of giant cells from organs) (Roeder et al., 2010). In the lgo 

mutant, high ploidy epidermis cells in both leaves and sepals are reduced, but 

overexpressing LGO gene produces excess giant cells. We can predict that the SIM and 

SMR1, standing by the first group SIM/SMR protein, inhibit CDK kinase activity to 

trigger endocycle onset.  

New research showed that the second group of SIM/SMR genes including SMR4, SMR5 

and SMR7 respond to abiotic stress (Peres et al., 2007; Yi et al., 2014). This result can 

be confirmed by the functions of CYCD/CDKA complex. This complex is responsible 



Cell Cycle Regulation In DNA Damage Response 

 - 20 - 

for control of cell cycle onset in response to intrinsic and extrinsic signals, and 

specifically G1-to-S phase progression (Riou-Khamlichi et al., 2000; Dewitte and 

Murray, 2003; Nowack et al., 2010; Nowack et al., 2012). Specifically, it was 

confirmed that SMR5 and SMR7 respond to oxidative stress together with genotoxic 

stress (Yi et al., 2014). In this process, expression of SMR5 and SMR7 is under control 

of ATM and SOG1, which are involved in the double-stranded DNA damage response 

(DDR), but not under control of ATR that responds to single-stranded DNA damage. In 

summary, SMR4, SMR5 and SMR7 are important factors linking abiotic stress signals 

to cell cycle checkpoint activation. Meanwhile, a SIM-related gene in rice (Oryza 

sativa), Orysa;EL2 also is considered to belong to the second group. Orysa;EL2 protein 

interacts with CDKA1;1 and D-type cyclins, but not with B-type CDKs (Peres et al., 

2007).  

SCI1 

Stigma/style cell cycle inhibitor 1 (SCI1) is the first and unique tissue-specific inhibitor 

of CDK (TIC) described in plants (DePaoli et al., 2011; 2012). The SCI1 gene encodes 

a 156 amino acids protein, which is mainly expressed in the early stages of tobacco 

stigma/styles. SCI1 controls the development of stigma/style through modulating cell 

proliferation/differentiation(DePaoli et al., 2011), a process which depends on auxin 

signaling (DePaoli et al., 2012). In Arabidopsis, SCI1 expression is both cell cycle- and 

auxin signaling-dependent through the cis-acting elements in its upstream regulatory 

region (URR) (DePaoli et al., 2012) Both in silico and experimental observations 

suggest that SCI1 protein functions as a CDK inhibitor. From protein sequence analysis, 

SCI1 shows no sequence similarity with ICK/KRP proteins and only very limited 

similarity region with the SIM/SMR family. In summary, SCI is proposed to be a new 

kind CDK inhibitor, giving us new insights about cell cycle regulation and tissue-

specific development (DePaoli et al., 2011; DePaoli et al., 2012). 

E2F transcription factors 

E2F transcription factors are well-studied cell cycle regulators. In the beginning, E2F 

was identified as a cellular factor that promotes the expression of the adenovirus E2 

promoter (Kovesdi et al., 1986). Then E2F proteins were been found to stimulate the 

expression of a wide variety of genes that are mostly involved cell cycle process 
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(Pagano et al., 1992; Ramírez-Parra et al., 1999). Retinoblastoma/Retinoblastoma 

related protein (RB/RBR) acts as a repressor that binds E2F/DP complexes, inhibiting 

their activity and therefore inhibiting cell cycle progression (Murphree and Benedict, 

1984; Weinberg, 1995). Typically, E2F proteins associate with dimerization partners 

(DP) proteins to form a heterodimeric complex that binds to the promoter of a multitude 

of target genes (van den Heuvel and Dyson, 2008).  

Over the last decades, the core functions of E2F/DP have been partially characterized. 

These transcription factors are crucial for the regulation of DNA replication, 

endoreduplication onset and maintenance, checkpoint control, apoptosis, and cell 

differentiation. Specifically, E2Fs play a crucial role in the regulation of G1-to-S-phase 

transition(Ren et al., 2002). In mammals, deregulation of E2F/DP activity has a big 

impact on health and disease by controlling transcription of a wide range of genes 

which are involved in cell-cycle progression and DNA synthesis, replication and repair. 

(Tsuge et al., 2005; DeGregori and Johnson, 2006; Hoglinger et al., 2007). In contrast, 

there is few report investigated their functions in DNA damage response. 

In human, there are eight E2F (E2F1-8) and three DP proteins (DP1, DP2/3, and DP4) 

present and in Arabidopsis there are six E2F (E2Fa-f) proteins and two DP (DPa and 

DPb) proteins. (Mariconti et al., 2002; Attwooll et al., 2004; Christensen et al., 2005; 

Dimova and Dyson, 2005; Maiti et al., 2005). The E2Fs can be classified into typical 

(E2F1–6 in mammals and E2Fa, E2Fb, E2Fc in Arabidopsis) and atypical (E2F7, E2F8 

in mammals and DEL1/E2Fe, DEL2/E2Fd, and DEL3/E2Ff in Arabidopsis) subgroups 

based on their structure and function (Lammens et al., 2009).  

Typical E2F members 

Typical E2F proteins contain a DNA binding domain, a dimerization domain and a 

transcriptional activation domain that includes an RBR binding domain. DP proteins. 

E2F and DP interact with each other as a heterodimer to regulate downstream gene 

expression. In mammals, six classical E2F proteins have been described (E2F1–6). 

According to whether E2Fs act positively or negatively on gene transcription, they are 

grouped into transcriptional activators (E2F1–3) or suppressors (E2F4–6). E2F 

transcription factors play an integral role in the coordination of DNA replication events. 

The activators E2F behave as sequence-specific transcriptional activators of cellular 

genes, including those associated with growth and proliferation, whereas the repressors 
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play opposing roles (Wong et al., 2011). E2Fs regulate CYC/CDK to trigger DNA 

damage checkpoints or apoptosis. This process can be regulated by CDK4/6 , RB or 

CHKs (Martinez et al., 2010; Dean et al., 2012). Furthermore, E2Fs can mediate DDR 

that centers on activation of the ATM kinase and p53 (Rogoff et al., 2002; E et al., 

2011). 

As typical E2Fs in Arabidopsis, E2Fa, E2Fb and E2Fc need to cooperate with a 

dimerization partner, being DPa or DPb, which assists E2F protein binding to defined 

DNA sequences to induce gene expression (Mariconti et al., 2002). E2Fa and E2Fb are 

two positive regulators that promote S-phase entry and progression. They are mostly 

expressed in proliferating tissues, have specific expression patterns and play similar but 

distinct roles during cell cycle progression (De Veylder et al., 2002; Mariconti et al., 

2002; Sozzani et al., 2006). Co-overexpressing E2Fa and DPa plants show extreme cell 

proliferation and increased endoreduplication, resulting into severe developmental 

defects. A clear induction of S-phase specific gene expression could be observed in 

E2Fa–DPa co-overexpressing seedlings (Vandepoele et al., 2005). These results 

indicate the E2Fa-DPa complex is a key regulator controlling cell proliferation, 

differentiation and endoreduplication in plants. E2Fb and E2Fa recognize the same E2F 

consensus cis-regulatory elements in the promoter of target genes(Kosugi and Ohashi, 

2002). Therefore it is very difficult to indicate the different specific target genes of 

E2Fa and E2Fb, respectively. But some evidence suggests non-overlapping regulation 

exists between E2Fa and E2Fb. E2Fa and E2Fb overexpression lines show a different 

reaction to auxin in cell suspension cultures(Magyar et al., 2005). E2Fa and E2Fb have 

a different function in lateral root development (Sozzani et al., 2006; Berckmans et al., 

2011b). Moreover, chromatine-IP experiments shows there are E2Fa- and E2Fb-specific 

target genes in the Arabidopsis genome (Naouar et al., 2009).  

In contrast to E2Fa and E2Fb, E2Fc is a transcriptional repressor (del Pozo et al., 2002). 

There is no transcription activator domain in E2Fc, but it can combine with DPb to bind 

DNA sequences with E2F binding sites (Mariconti et al., 2002). Thus, the reasonable 

conclusion is that E2Fc operates as a competitive inhibitor of E2Fa and E2Fb. As a 

repressor, E2Fc blocks entry into S-phase to arrest the cell cycle, and reduced E2Fc 

activity increases cell proliferation (del Pozo et al., 2002; del Pozo et al., 2006). 

Consequently, there are studies which reveal the competitive relation between E2Fb and 

E2Fc in regulation of the target gene expression (Berckmans et al., 2011a). Such kind of 
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relation also exists between E2F1 and E2F2 in animals (Frolov et al., 2001; Cayirlioglu 

et al., 2003). This means that interplay between positive regulators and repressors of 

E2F is conserved and an important way to balance the modulation in cell cycle onset. 

Atypical E2F members 

Atypical E2Fs are a set of novel E2F transcription factors, which includes E2Fd/DEL 

(DP–E2F-like) 2, E2Fe/DEL1, and E2Ff/DEL3 in Arabidopsis and E2F7 and E2F8 in 

mammals. However, the sequence similarity between typical E2Fs and atypical E2Fs is 

relatively low, showing about 20% similarity (Lammens et al., 2009). In contrast to 

typical E2Fs, atypical E2F proteins contain two DNA binding domains instead of a 

dimerization domain, which indicates that atypical E2Fs can bind to DNA containing 

the consensus E2F binding site without the help from a DP dimerization partner. The 

absence of a transcriptional activation domains ensures that atypical E2Fs can’t perform 

all the functions of typical E2F proteins, therefore they negatively modulate 

downstream gene expression, acting as transcription repressors. 

E2Fe/DEL1 controls the onset of the endocycle through a direct transcriptional 

repression of CCS52A2 that is involved in controlling the switch from cell division to 

endoreduplication by regulating APC/C activity (Lammens et al., 2008). E2Fe/DEL1KO 

plants show higher UV-B tolerance compared to wild type, due to increased expression 

of the photolyase photoreactivating enzyme PHR1, which is a type-II cyclobutane 

pyrimidine dimer-photolyase DNA repair gene, being under control conditions 

repressed by DEL1 (Radziejwoski et al., 2011). E2Fd/DEL2 is a factor that has been 

shown to promote cell proliferation and reduce cell size. This protein accumulates by 

the auxin signaling pathway at the post-transcriptional level (Sozzani et al., 2010). 

E2Ff/DEL3, without RB binding domain, negative regulates cell size but does not 

influence the DNA ploidy level distribution and cell proliferation(Ramirez-Parra et al., 

2004). Similarly to E2Fe/DEL1, the mammalian atypical E2F7 and E2F8 also have 

crucial roles in endocycle control. Loss of E2F7 and E2F8 results in endocycle defects 

in the trophoblast giant cells and probably governing the maintenance of endocycle 

progression (Lammens et al., 2009; Meserve and Duronio, 2012). 
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Regulations of E2F 

In animals, as a group of transcription factors, E2Fs can regulate each other on the 

transcriptional level. E2F3 acts upstream of E2F1. E2F1 in turn acts upstream of E2F2. 

Upon DNA damage, E2F2 responds to the DNA damage through E2F3, initializing 

apoptosis, making E2F3 a key regulator of DNA damage-induced apoptosis (Martinez 

et al., 2010). Such cross regulation also exist between typical and atypical E2Fs. 

Atypical members E2F7 and E2F8 are under the control of typical E2F1(Christensen et 

al., 2005). Furthermore, the increase of E2F7 and E2F8 protein level can give a 

feedback to reduce E2F1 expression. In contrast, low level of E2F7/E2F8 proteins 

increases E2F1 expression (Chen et al., 2012). In Arabidopsis, E2Fb accumulates in 

E2FaOE plants, both on the transcriptional and post-transcriptional level (Sozzani et al., 

2006). Overexpression of E2FD/DEL2 increases the expression of E2Fa (Sozzani et al., 

2010). Meanwhile, DEL1, the homologue of E2F7 and E2F8, is a transcriptional target 

of the E2Fb and E2Fc, which are regulated by light signal(Berckmans et al., 2011a). 

Furthermore, E2Fa expression is regulated by the auxin-signaling pathway through the 

LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY 

DOMAIN33 (LBD18/LBD33) dimer to mediate lateral root organogenesis (Berckmans 

et al., 2011b). 

At the post-transcriptional level, two distinct mechanisms have been described. One of 

them is based on the RB protein. Under genotoxic conditions, the interaction between 

E2F and RB protein is enhanced by ATM-CHK1/2 mediated phosphorylation (Inoue et 

al., 2007). Through an independent mechanism, E2F1 protein can be phosphorylated by 

ATM and CHK2 kinases upon DNA damage (Stevens et al., 2003). So far, in plants 

there has been no data on transcriptional and posttranscriptional control of E2Fs in 

response to DNA stress. Under the stimulation of glucose, target-of-rapamycin (TOR) 

kinase phosphorylates E2Fa, which leads to activate E2Fa target gene expression to 

promote cell proliferation in the root (Xiong et al., 2013). 

RBR 

E2Fs can be regulated by RBs, present both in animals and plants. The Retinoblastoma 

protein (RB) is a tumor suppressor discovered in humans (Murphree and Benedict, 

1984) which can interact with E2F proteins (Cobrinik, 2005). It belongs to the pocket 

protein family, containing RB, Retinoblastoma-like protein 1 (RBL1) (Ewen et al., 
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1991) and Retinoblastoma-like protein 2 (RBL2) (Soprano et al., 2006). In plants, RB 

homologues (RBR, retinoblastoma-related) have been isolated from maize (Grafi et al., 

1996), tobacco (Nakagami et al., 1999), and Arabidopsis(Kong et al., 2000; Ebel et al., 

2004). Yeast-two-hybrid assays showed that RBs interacts with E2F proteins through 

two pocket domains (Ramírez-Parra et al., 1999). This type of interaction normally 

happens using the C-terminal domain of the E2F, repressing the transcriptional 

activation of the E2F/DP complex. RB proteins in plants and animals contain conserved 

pocket domains A and B. Due to the high degree of conservation of the E2F/DP/RB 

pathway, RB proteins from plants can inactivate the transactivation activity of human 

E2F (Huntley et al., 1998).  

RBR is a crucial regulator of cell cycle, DNA damage response and organ development. 

Apparently, the main regulatory activity of RB proteins operates through the E2F/DP 

pathway. In animals, mutants of p105(Rb1) can be detected in nearly all cancerous 

specimens, implying its functions as tumor suppressor (Nguyen and McCance, 2005). 

RB proteins are phosphorylated by CDK/cyclin complexes in the G1-S phase (Harbour 

and Dean, 2000; Nakagami et al., 2002; Magyar et al., 2012). After phosphorylation, 

RB protein detaches from E2F/DP complexes. These complexes can subsequently 

promote downstream gene expression and thus drive the cell into S-phase. In animals, 

RBR defective mutants can form gametes, but homozygous embryos fail to develop and 

initialize apoptosis (Jacks et al., 1992; Du and Dyson, 1999). Actually, E2F proteins are 

not the unique targets of RB proteins. Besides E2F proteins, RB can also regulate 

several other transcription factors (Korenjak and Brehm, 2005; Nguyen and McCance, 

2005; Calo et al., 2010). In animals, RB can interact with the α-globin promoter by 

recruiting a tissue-specific transcription factor PU.1 (Rekhtman et al., 2003). It can also 

cooperate with Mitf1 to regulate p21CIP gene expression (Carreira et al., 2005). 

In Arabidopsis, RETINOBLASTOMA RELATED (RBR) is the single homologue of 

pRB, and the pRB-E2F pathway is largely conserved. There are 3 T-DNA insertion 

knockout lines available of rbrKO mutant alleles (rbr1-1, rbr1-2 and rbr1-3). There is no 

rbr1-1 and rbr1-3 homozygous line because these alleles cause lethality in 

gametophytes, especially in female gametophytes (Ebel et al., 2004). Recent work 

demonstrated that RBR genetically interact with the conserved epigenetic regulators of 

the Polycomb Repressive Complex 2 (PRC2) to control the development of both male 

and female gametophytes (Johnston et al., 2008) Homozygous rbr1-2 plants are viable, 
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though they are not fully knockout, but have a strong temperature-sensitive phenotype 

(Nowack et al., 2012). Therefore an RBR RNA interference system has been developed 

to research the function of RBR protein (Borghi et al., 2010). This report shows that 

decreasing the RBR expression level leads to repression of cell differentiation and 

disruption of stem cell niche and meristem maintenance, thus arresting root growth, leaf 

development and inflorescence development. RBR protein interacts with cytokinin 

signaling to stimulate cell differentiation in the root meristem (Perilli et al., 2013). In 

these processes, inhibition of RBR expression will drive cell ploidy switch from 2C to 

4C, but will not increase the endoreduplication further. Similar phenotypes also are 

detected in other plants such as maize (Sabelli et al., 2013). In Arabidopsis, pRB is 

known to interact with members of the E2Fs transcription factor proteins, thus 

interfering with their ability to activate transcription of genes necessary for the G1-to-S 

transition (Magyar et al., 2012). Whereas, the report from Cruz-Ramírez et al. (2012) 

shows that in Arabidopsis root, RBR1 can directly interact with the SCARECROW 

transcription factor to modulate asymmetric stem cell division in stem cells. Together, 

these reports suggested that the RBR regulatory network can function differently 

depending on the developmental context. The developmental role of RBR during 

sporophytic development remains poorly understood, primarily due to the lack of 

genetic tools. 

DNA DAMAGE AND DNA DAMAGE RESPONSE 

As the genome contains all the information required for development and maintenance 

of an organism, it is of utmost importance that the DNA content is efficiently repaired 

upon the occurrence of DNA breaks or replication mistakes. These breaks and errors 

can arise from environmental stresses, including drought, soil contamination by heavy 

metals, and increasing genotoxic chemicals owing to pollution from industry (Ma et al., 

2012; Xu et al., 2012). These conditions often result in the production of DNA damage 

in the cell, eventually causing significant reductions in both crop quality and yield. 

Reactive oxygen species (ROS) are mainly direct agents that inhibit DNA replication 

and cause DNA damage (De Bont and van Larebeke, 2004). In absence of a cell 

division arrest, cells would proceed with damaged DNA into mitosis, causing cell death 

or oncogenesis. Therefore, a functional DNA stress cell cycle checkpoint is of utter 

importance for cell survival. To cope with these stress conditions, cells have developed 
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a set of complicated mechanisms that monitor the status and structure of the DNA 

during cell cycle progression. DNA damage checkpoints are biochemical pathways that 

delay or arrest cell cycle progression in response to DNA damage.(Nyberg et al., 2002) 

Mutagens 

DNA damage can occur spontaneously or be induced by external mutagens which is is a 

physical or chemical agent like metal ions, IR, or UV to break DNA directly or through 

the ROS (Table 1).  

ROS inducing DNA damage 

Reactive oxygen species can oxidize and damage a wide range of organic 

macromolecules, including lipids, proteins and nucleic acids (Dizdaroglu et al., 2002; 

Roldán-Arjona and Ariza, 2009). In living cells, ROS are produced by exogenous and 

endogenous sources. Exogenous elements are mainly environmental genotoxic agents, 

including high-light conditions, ultraviolet light (UV) and pollutants in the air and soil, 

e.g. heavy metal ions and toxic chemicals. Endogenous sources are mainly chloroplasts, 

mitochondria and peroxisomes (Foyer and Noctor, 2003) 

Aerobic respiration is crucial for many organisms, especially for eukaryotes. In this 

process, ROS are continuously produced from mitochondria. In humans, excessive ROS 

will lead to many kinds of diseases such as Parkinson’s and amyotrophic lateral 

sclerosis(Emerit et al., 2004). In plants, besides mitochondria, ROS are also generated 

by photosynthesis as byproducts in chloroplasts. H2O2 and O2 are the products of O2
− 

disproportionation (Asada, 2006). Oxidative attacks on DNA generate altered bases and 

damage sugar residues causing fragmentation and consequently single-strand breaks 

(SSB) (Roldán-Arjona and Ariza, 2009). Thus organisms will initialize the processes of 

base excision repair (BER) and nucleotide excision repair (NER) to remove the oxidized 

nucleotides (Dizdaroglu, 2005). In these processes, the poly (ADP-ribose) polymerase 

(PARP) superfamily proteins are considered as a group of modulating elements both in 

animal and plants cells (Lindahl et al., 1995; Babiychuk et al., 1998). Furthermore, 

oxidative DNA damage generated by ionizing radiation can also cause double-strand 

breaks (DSB) through the generation of clusters of radicals that affect nearby sites on 

both strands(Culligan et al., 2006). This leads to a DNA damage response involving 
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both ATM and ATR. ATM can also be activated by oxidative stress directly in the form 

of exposure to H2O2 in human cells (Guo et al., 2010b).  

HU induced genotoxicity 

Hydroxyurea (HU) is a ribonucleotide reductase inhibitor, which inhibits class 1 

ribonucleotide reductase and limits the cellular supply of deoxyribonucleotides 

(Timson, 1975; Lopes et al., 2001; Sogo et al., 2002). Depletion of dNTP pools through 

HU leads to DNA replication fork arrest and subsequent genomic instability, most likely 

through substrate starvation (Foti et al., 2005). 

Besides inhibition of DNA replication, HU also causes DNA damage through the 

formation of DSBs(Kurose et al., 2006). This means that HU can initialize two kinds of 

DNA damage response pathways, which are based on ATM and ATR. Furthermore, 

besides damaging the DNA, HU also shows more broad possibilities as a cytotoxic 

compound. According to recent research, HU can directly target and inhibit catalase that 

catalyzes the decomposition of H2O2 to water and oxygen (Juul et al., 2010). This 

inhibition leads to an increasing H2O2 concentration in vivo. Additionally, there are 

studies that have demonstrated that HU causes H2O2 induction in the presence of Cu(II) 

and Fe in E.Coli (Sakano et al., 2001; Davies et al., 2009). After H2O2 accumulation, 

ROS-derived DNA oxidation will lead to DNA damage (Vanderauwera et al., 2011).  

Metal ion induced DNA damage 

Metal elements like aluminium (Al), iron (Fe), copper (Cu), chromium (Cr) and cobalt 

(Co) are important nutrients for organisms. They play important roles in many 

biological processes and organism development. However, an excess of heavy metal 

ions is toxic for cells. Heavy metal ion toxicity involves the production of superoxide 

radicals and hydroxyl radicals (Jomova and Valko, 2011). Meanwhile, accumulation of 

these ion will repress DNA damage repair and influence cell cycle process (Hartwig et 

al., 2002).  

Fe (II) and (III) are soluble in biological fluids and produce highly reactive hydroxyl 

radicals through the Fenton reaction. This leads to free radical-mediated DNA damage 

(Dizdaroglu et al., 2002). Cu(II) ions occur in nuclei and bind to DNA (Kamunde and 

MacPhail, 2011; Linder, 2012). Copper ions will damage DNA and chromatin by 

oxidative activity, producing DNA single and double strand breaks, crosslinks and 
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adducts, point mutations, and even chromosome instability (Cao and Wang, 2007; Ruiz 

et al., 2010; Buchtik et al., 2011). Even more, copper also can alter DNA methylation 

and histone acetylation to influence gene expression on an epigenetic level (Tang and 

Ho, 2007; Fragou et al., 2011; Ziech et al., 2011). Co(II) ions produce DNA DSBs 

through production of ROS that results in the activation of ATM, p53 and Rad51 

(Galanis et al., 2009). The same research also describes that exposure to non-toxic doses 

of Co nanoparticles will result in oxidative DNA damage. 

Aluminum (Al) is the most abundant metal element in the Earth’s crust. Al (III) is a 

strong hydroxide ion, which can produce oxidative stress and DNA damage (Yamamoto 

et al., 2002; Panda et al., 2009). In agriculture, aluminum toxicity is a serious factor 

limiting crop productivity, especially in acid soil. Besides ROS, aluminum binding to 

DNA causes condensation of DNA molecules, blocking DNA replication and repressing 

gene transcription by reducing the capacity to provide a viable template (Rounds and 

Larsen, 2008). In Arabidopsis, the als3-mutant is hypersensitive to aluminium and a 

suppressor screen revealed the alt1-1 mutant, which showed increased root growth on 

the heavy metal. This could later be attributed to a partial loss of function of ATR in the 

mutant. Further research showed that the atr-mutant is impaired in the detection of 

DNA damage caused by aluminium and subsequently fails to respond to the stress. 

Aluminium leads to the terminal differentiation of stem cells in the root meristem in an 

ATR-dependent manner (Rounds and Larsen, 2008). This could mean that the brittle 

root system in wild type plants is the result of a plant defense mechanism and not 

because of the aluminium stress itself. The modulation of this defense mechanism could 

therefore lead to plants that grow better on marginal soils. 

Boron (B) is an essential nutrient in plants. It is involved in the cell wall and membrane 

structure and function, which are important for plant root growth. There is an 

antagonistic effect between B and Al. Supplementing boron can rescue aluminum stress 

in root growth and cell culture (Lukaszewski and Blevins, 1996; Koshiba et al., 2009; 

Horst et al., 2010). However, in high concentrations B is harmful to both plants and 

animals. In animals, B can cause reproductive abnormalities, such as a decrease in the 

X:Y sperm ratio (Robbins et al., 2008). In plants, excess B induces DNA damage by 

producing ROS (Cervilla et al., 2007). But this is not the only mechanism of action of 

boron to induce genotoxicity. In the report from Sakamoto et al. (2011), they found two 

knockout mutants heb1-1 and heb2-1, which are hypersensitive to high concentration of 
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B and the genotoxic chemicals zeocin and aphidicolin, but not to ROS generating 

agents. HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits of condensin II 

(Fujimoto et al., 2005), which is an important component to ameliorate DSBs. 

Supplemented excess B combined with defect of condensin II induces the accumulation 

of DSBs which lead to hypersensitive heb mutants. Taken together, these data indicate 

that B toxicity might be caused by a combination of DSBs and replication stress, which 

is induced by some unidentified (new) mechanism besides the production of ROS. 

Table 1. Overview of genotoxic agents 

Type Agents Action 

Ionizing radiations 
X-rays, Gamma rays, Alpha 
particles 

Cause DNA breakage and 
other damages 

Ultraviolet   

Absorbed strongly by bases, 
producing pyrimidine dimers, 
which can cause error in 
replication if left uncorrected. 

Reactive oxygen species 
(ROS) 

Superoxide, Hydroxyl 
radicals, Hydrogen peroxide 

Production of many base 
adducts, as well as DNA 
strand breaks and crosslinks. 

Alkylating 
Ethylmethylsulfone (EMS), 
Nitrosamines  

Transfer methyl or ethyl group 
to bases or the backbone 
phosphate groups. 

Intercalation Ethidium bromide, Proflavine 

Insert between bases in DNA, 
causing frameshift mutation, 
block transcription and 
replication. 

Metals 
Arsenic, Cadmium, 
Chromium, Nickel, Iron 

Associated with the 
production of ROS, alter the 
fidelity of DNA replication, 
DNA hypermethylation and 
histone deacetylation 

DNA replication inhibitor  
Hydroxyurea, Aphidicolin, 
Actinomycin D 

Block the cell cycle process 

Cytotoxic antibiotics Bleomycin, Mitomycin 

DNA intercalation, generation 
of highly reactive free radicals 
that damage intercellular 
molecules 
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DNA Damage Response 

After DNA damage occurred, the DNA damage response (DDR) mechanism will be 

activated to arrest cell division. DDR is a conserved bio-process in eukaryotes. When 

damage is detected, the DNA damage checkpoint is activated and a cell cycle arrest is 

induced, allowing the cell time to repair the damage. If the damage is too extensive, 

programmed cell death (PCD) is induced (Nyberg et al., 2002)But such kind 

conservation just a part conservation. There are lots of related but different components 

existing in animals and plants (Figure 2). 

DDR in animals 

ATM and ATR 

The first important step in the DDR is initializing Ataxia Telangiectasia Mutated 

(ATM) and Ataxia telangiectasia mutated and Rad3-related (ATR), which are two 

important conserved DNA damage sensing mechanisms. Subsequently, a set of DDR 

genes will be promoted to rescue the damage cells. ATM and ATR are two 

phosphotidylinositol-3-kinase (PI3K)-related protein kinases that trigger the activation, 

stabilization or degradation of a number of transducer and effector proteins in the DNA 

damage response to arrest cell division and allow cells to repair damaged DNA before 

entering mitosis (Zhou and Elledge, 2000; Abraham, 2001; Bartek and Lukas, 2001; 

Kurz and Lees-Miller, 2004). These PI3K regulators have different but related functions 

in the DNA damage response. ATM mainly senses double-strand breaks (DSBs) and 

ATR responds to replication inhibition and single-strand breaks (SSBs) generated by 

processing of DSBs (Kastan and Bartek, 2004) (Figure 2A).  
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Figure 2. DNA damage response.  

(A) In animals, the ATM ATR signaling pathway is activated, which leads to the 

phosphorylation and activation of Chk1 and Chk2 and to the subsequent modulation of Cdc25, 

p53 and WEE1.As cell cycle regulators, E2Fs also take part in the DDR process. (B) In plants, 

several key components of DDR existing in the animal are absent (p53, CHK1, and CHK2) or 

non-functional homologs (CDC25). DNA damage signals through ATM/ATR transducing 

kinases, SOG1 transcription factor and WEE1 leading to DNA repair, cell-cycle checkpoint or 

programmed cell death.   
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Under normal conditions, ATM is not essential for cell survival and differentiation, 

however, ATM mutations lead to predispose carriers to cancer formation by facilitating 

senescence and bypassing apoptosis and cellular proliferation despite the accumulation 

of DNA damage(Shiloh and Kastan, 2001; Luo et al., 2009). Meanwhile, atm-null mice 

show meiotic defects because of absence of ATM-dependent DSBs repair during 

meiotic recombination (Lange et al., 2011; Daniel et al., 2012). Beyond the DNA 

damage response, there are experiments that demonstrate the direct ATM activation in 

the presence of hydrogen peroxide (H2O2) independently of both DNA and MRN (Guo 

et al., 2010a; Guo et al., 2010b). ATM protein is constitutively expressed in cells. This 

means that ATM needs some kind of posttranslational activation under genotoxic stress. 

First step to initialize the DNA damage response is detecting the DNA damage. Reports 

show that the Mre11/Rad50/Nbs1 (MRN) complex detects DSBs and recruits ATM to 

the site of the damage (Carson et al., 2003; Lee and Paull, 2004). Upon the modulation 

of the MRN complex, DSBs stimulate the ATM homodimer to autophosphorylate its 

subunits. This leads to the dissociation into two active ATM monomers that can 

promote the downstream DNA damage response genes (Bakkenist and Kastan, 2003).  

ATR is another PI3K which contains a motif that is conserved between both ATM and 

SpRad3 (Cimprich et al., 1996). ATR controls and co-ordinates DNA replication origin 

firing, replication fork stability, cell cycle checkpoints and DNA repair (Nam and 

Cortez, 2011). Unlike ATM, ATR is crucial for cell development and differentiation. 

Absence of ATR in mice results in early embryonic death (Brown and Baltimore, 2000) 

and deletion of ATR in adult mice has also shown to lead to stem cell loss and premature 

aging (Ruzankina et al., 2007) ATR exists in a form that is constitutively ready to 

phosphorylate substrates. Furthermore, its kinase activity doesn’t increase during DNA 

damage stress. It appears the activation to ATR is largely controlled through its 

subcellular localization (Abraham, 2001; Kastan and Bartek, 2004). In human cells, 

there is an ATR interacting protein (ATRIP) that forms a stable complex with ATR, and 

this protein is considered as a potential regulatory partner for ATR (Cortez et al., 2001; 

Ünsal-Kaçmaz and Sancar, 2004). Replication protein A (RPA), an ssDNA-binding 

protein, can recruit ATR-ATRIP complexes to ssDNA produced by DNA damage (Lee 

et al., 2003; Zou and Elledge, 2003). Recruitment of ATR–ATRIP to DNA lesions or 

stalled forks is not the only reaction for checkpoint signalling. A new ATR activator 

TOPBP1 which contains a region termed the AAD (ATR-activating domain) binds 
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surfaces on both ATR and ATRIP ant it is recruited independently of ATR–ATRIP 

localization. (Mordes et al., 2008). 

CHK1 CHK2 

The ATM and ATR kinases transduce the DNA stress signal to the checkpoint kinases 

CHK1 (Walworth et al., 1993) and CHK2 (Murakami and Okayama, 1995), which in 

turn arrest the cell cycle by directly modulating the activity of the effectors that control 

cell cycle progression (Chen and Sanchez, 2004). CHK1 and CHK2 are regulated by 

ATR and ATM, respectively, in response to DNA replication blocks or DNA damage 

(Liu et al., 2000). 

When ATR is translocated to DNA replication foci, this kinase phosphorylates CHK1 to 

activate it. Consequently, activated CHK1 phosphorylates downstream elements such as 

Cdc25-A, Cdc25-B and Cdc25-C. Apparently, phosphorylation of CHK1 will be 

blocked in cells that lack the ATR kinase. Like ATR, a deficiency in CHK1 will block 

mice embryo development, which implies an essential role of the ATR-CHK1 pathway 

in the cell cycle (Liu et al., 2000).  

In contrast to CHK1, CHK2 is dispensable for prenatal embryo development in mice. 

CHK2 responds in an ATM-dependent way to DSBs (Hirao et al., 2000; Melchionna et 

al., 2000). Biochemical analysis indicates that activated CHK2 phosphorylates Cdc25A, 

Cdc25C, BRCA1 and p53 (Bartek and Lukas, 2003). The ATM–CHK2 pathway is 

important during the DNA damage checkpoint, resulting in cell cycle arrest and DNA 

repair, or induction of apoptosis (Smith et al., 2010). 

WEE1 and CDC25 

In mammals, CDC25 and WEE1 are two other key factors. They are a pair of analogous 

opposites. At the G2/M transition, Cdk1 is activated by Cdc25 through 

dephosphorylation of Tyr15 and inactivated by WEE1 through phosphorylation at its C-

terminus. Under genotoxic conditions, they are modulated by ATM and ATR directly or 

through CHK1 and CHK2 (Lee et al., 2001; Harper and Elledge, 2007). 

CDC25 was first described in yeast Schizosaccharomyces pombe as a cell cycle 

defective mutant (Strausfeld et al., 1991). The CDC25 proteins represent a group of 

phosphotyrosine phosphatases, which activates CDKs by removing inhibitory 
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phosphates from residues in the CDK active site to promote cell cycle. There are 3 

members of CDC25 (CDC25A CDC25B CDC25C) in animals. 

Under genotoxic conditions, CDC25 proteins are phosphorylated by CHK1/CHK2. The 

consequent binding of 14-3-3 proteins to phosphorylated CDC25 leads to 

downregulation of their phosphatase activity (Blasina et al., 1999; Uto et al., 2004), 

through their exclusion from the nucleus (Peng et al., 1997), and degradation by the 

ubiquitin-proteasome pathway (Falck et al., 2001).  

WEE1 encodes a tyrosine kinase that through phosphorylation of CDKs inhibits their 

activity. Nurse (1975) described this kinase first in yeast. In yeast and animal cells, 

WEE1 kinase regulates CDK/cyclin activity together with CDC25 (Harper and Elledge, 

2007). Knockout of WEE1 in yeast results in premature entry in mitosis. In contrast, 

constitutive expression blocks cells in the G2 phase (Nurse, 1975; Russell and Nurse, 

1987). Under replication stress conditions, WEE1 and CDC25 will be phosphorylated 

by ATR-CHK1/2. After phosphorylation, CDC25 will be degraded through the 

ubiquitin-proteasome pathway to arrest cell entry into mitosis. In contrast, 

phosphorylated WEE1 can interact with 14-3-3 to bind mitotic CDK/cyclin and repress 

complex activity (Lee et al., 2001; Rothblum-Oviatt et al., 2001). 

p53 

The mammalian tumor suppressor p53 protein is a key regulator in preventing cancer 

(Prives and Hall, 1999; Green and Chipuk, 2006). The activity of p53 is mainly 

regulated by post-transcriptional modifications like phosphorylation, SUMOlylation, 

neddylation and acetylation (Appella and Anderson, 2001). Under normal conditions, 

p53 protein is degraded though the Mdm2-mediated ubiquitin-proteasomes pathway 

(Liang and Clarke, 2001). Upon DNA damage stress, p53 protein degradation is 

inhibited by its hyperphosphorylation by ATR/ATM directly and through CHK1/CHK2 

(Maya et al., 2001). Activated p53 arrests cells in the G1 phase through the induction of 

expression of p21CKI. Meanwhile, p53 promotes many DNA damage response genes to 

initialize cell cycle arrest, DNA repair or apoptosis (Wahl and Carr, 2001; Green and 

Chipuk, 2006) . 
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DDR in plants 

The sedentary nature and plasticity of plants has resulted in specific adjustments of the 

checkpoints (Cools and De Veylder, 2009). In plants, ATM/ATR-dependent signaling 

pathways also control the activation of a cell cycle checkpoint upon DNA stress (Garcia 

et al., 2000; Garcia et al., 2003; Culligan et al., 2004; Culligan et al., 2006). Besides 

ATM and ATR, several key components of the animal signaling pathways appear to be 

absent (p53, CHK1, and CHK2) or non-functional homolog (CDC25) in plants (Figure 

2B), indicating that fundamental differences exist between distantly related phyla in the 

recognition and signaling of DNA stress. Insight into the plant DNA damage response 

will be described below, with a focus on the differences with animals. 

ATM 

Similar as in animals, ATM plays a very important role in plants. ATM in Arabidopsis 

was isolated based on sequence homology cloning (Garcia et al., 2000). ATM protein in 

plants is highly similar to human ATM (67 and 45% similarity in the PI3K-l and rad3 

domains, respectively).  

As one of core DNA damage response reactors in plants, ATM is playing a similar role 

as in animals. ATM controls a DSB checkpoint in Arabidopsis. ATMKO mutants are 

hypersensitive to γ-radiation and methylmethane sulfonate but not to UV-B light 

(Garcia et al., 2003). Activated ATM proteins induce the expression of downstream 

genes involved in cell cycle arrest and DNA repair (Ricaud et al., 2007b). Specifically, 

ATM phosphorylates the transcription factor SOG1, which is an important plant-

specific transcription factor involved in the DNA damage response (Adachi et al., 2011; 

Yoshiyama et al., 2013). If DNA damage can’t be repaired effectively, ATM can induce 

a SOG1-dependent apoptosis program (Fulcher and Sablowski, 2009; Furukawa et al., 

2010).  

In response to DNA damage, ATM is mostly regulated at the protein level (Garcia et al., 

2000). Like animals, the Mre11-Rad50-Nbs1 (MRN) complex in Arabidopsis cells is 

the first sensor of double-strand breaks, which will subsequently activate ATM during 

the DNA damage response. (Waterworth et al., 2007; Amiard et al., 2010). Different 

with animals, an ATM defect in Arabidopsis leads only to partial sterility (Garcia et al., 

2003), indicating that ATM activity is crucial during meiosis. ATM deficient 
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Arabidopsis plants show a fragmentation of chromosomes in the early prophase I. This 

fragmentation is generated by SPO11, a topoisomerase-like endonuclease, to form 

recombinations between homologous chromosomes during the prophase of the first 

meiotic division. ATM is needed to induce the repair process of these endogenous 

DSBs. Without functional ATM this will lead to a semisterile phenotype (Culligan and 

Britt, 2008). 

ATR 

ATR in Arabidopsis is highly conserved with ATR proteins in other species. Besides its 

conserved parts, it contains motifs that are partially similar to ATM. Interestingly, 

different with animals, Arabidopsis ATRKO lines show the same phenotype as wild type 

plants under normal growth conditions (Culligan et al., 2004). However, ATRKO mutants 

show hypersensitivity to replication stress inducing agents such as HU, aphidicolin and 

UV-B light, and only mild sensitivity to DSB-inducing agents like γ-radiation, which 

implies that ATR is primarily required to respond to replication stress, and secondary to 

double-strand breaks. Together with ATM, ATR is involved in the maintenance of 

chromosomal stability (Amiard et al., 2010; 2011). ATR, cooperating with a telomere 

constituent CTC1/STN1/TEN1 (CST) complex, is an essential element to maintain plant 

telomeres (Boltz et al., 2012). Upon genotoxic stress, or lacking functional CST, ATR 

activates a G2 checkpoint or induces cell death (Furukawa et al., 2010; Amiard et al., 

2011; Boltz et al., 2012). Similar with animals, ATR is also regulated by an ATRIP 

protein. The HUS2 gene encodes an ATRIP ortholog protein in Arabidopsis. hus2-1 

mutants have been identified as mutants showing hypersensitivy to HU treatment 

(Sweeney et al., 2009). 

WEE1 

In plants, WEE1-related kinases have been described in maize (Zea mays) (Sun et al., 

1999), tomato (Solanum lycopersicum) (Gonzalez et al., 2004) and Arabidopsis (Sorrell 

et al., 2002). Similar to animals and yeast, plant WEE1 kinase also plays an important 

role in the DNA damage response. HU increases WEE1 expression at the transcriptional 

level in an ATR-dependent way (De Schutter et al., 2007). This result in an arrest of cell 

cycle progression during S-phase. WEE1KO mutant plants on the other hand are 

hypersensitive to HU and show a large amount of dead cells. After a prolonged and 

strong HU treatment, WEE1KO plants show disorganization in the xylem tissue (Cools et 
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al., 2011). Meanwhile, WEE1 expression induced by γ-irradiation was shown to be 

controlled by ATM, but WEE1KO plants do not show sensitivity to BM (Cools et al., 

2011), which means that the WEE1 pathway is dispensable in response to DSBs. In 

other words, there should be other mechanisms to control the DSB response besides 

WEE1. Above all, WEE1 is regulating the S-phase process under DNA damage 

conditions.  

SOG1 

Besides WEE1, SOG1 is the other important cell cycle regulator in the DNA damage 

response and cell cycle regulation. SOG1 (suppressor of gamma response) encodes a 

transcription factor. It is required for the induction of a large amount of transcripts in 

response to gamma radiation (Yoshiyama et al., 2009). Although the amino‐acid 

sequences of SOG1 are unrelated to those of mammalian p53, the two proteins 

functions are similar to each other (Yoshiyama et al., 2013). SOG1KO plants show 

resistance to DNA double stranded break (DSB) inducing agents such as 

bleomycin/zeocin and γ-irradiation (Yoshiyama et al., 2009). Furthermore, 

endoreduplication under DNA damage is repressed in SOG1KO (Adachi et al., 2011). 

Meanwhile there is only a low level of cell death in root stem cells in SOG1KO during 

genotoxic stress (Furukawa et al., 2010). Taken together, SOG1 plays an important role 

in the DNA damage response, especially in the DSB response. SOG1 promotes 

hundreds of transcripts in response to DNA damage to arrest cell proliferation for DNA 

repair. On the other hand, if DNA damage can’t be rescued efficiently, SOG1 will 

initialize programmed cell death (PCD) progress(Furukawa et al., 2010).  

SOG1 is activated by ATM (Preuss and Britt, 2003; Culligan et al., 2006; Ricaud et al., 

2007a). Expression of SOG1 was significantly increased by 100 Gy γ-irradiation in wild 

type and ATRKO mutants, but not in ATMKO. Besides regulation on the transcriptional 

level, SOG1 is also activated post-translationally by ATM. A serine-glutamine (SQ) 

domain in SOG1 protein is phosphorylated in an ATM-dependent manner under 

genotoxic stress, including γ-irradiation, zeocin or ROS (Yoshiyama et al., 2013; Yi et 

al., 2014). Interestingly, there is no evidence that SOG1 is directly regulated by ATR, 

but several reports showed that the ATR-SOG1 pathway still exists (Yoshiyama et al., 

2009; Furukawa et al., 2010). DDR-induced cell expansion occurred in ATMKO or 

ATRKO single mutants, but was significantly suppressed in the ATMKO/ATRKO double 
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mutant or in the SOG1KO (Adachi et al., 2011). In the long-term response to irradiation, 

ATRKO mutants but not ATMKO exhibit a similar phenotype to SOG1KO seedlings. It 

suggests that SOG1 is activated in response to the activation of ATR by some 

replication-blocking lesions (Yoshiyama et al., 2009). SOG1 also triggers stem-cell 

death by gamma irradiation or UVB, which is activated in both cases by either ATR or 

ATM (Furukawa et al., 2010). These results emphasize the importance and complexity 

of SOG1 during the DNA damage response. 

CONCLUSION 

The regulation of cell cycle process and DNA damage response is conserved in 

eukaryotes. Because of that, the main elements involved in cell cycle and DNA damage 

in plants are identified based on comparative research with animal and yeast. For 

example, CDKA proteins exhibit high similarity to the CDKs in animal and yeast, both 

on a structural and functional level. ICK/KRP proteins contain the CDK inhibitory 

region that is analogous to the mammalian CKI protein p27Kip1. The E2F/RBR pathway, 

which is crucial to regulate cell cycle process both in eukaryotic growth and 

development or response of environmental signaling, shows resemblance from 

functional mechanisms to regulatory pathways.  

However, in pace with recent research results, it appears that plants have evolved 

different specific elements and regulatory pathways involved in cell cycle regulation 

and DNA damage response. For instance, there is a special CDKB family in plants that 

regulates cell division under the control of plant specific hormones. New CKI members 

e.g SIM/SMR and SCI1 are found in Arabidopsis. They are involved in plant 

organogenesis including stigma and trichomes, or response to abiotic stress. Besides the 

new elements of cell cycle regulation, new components involved in the DNA damage 

response also are identified. In plants, SOG1 plays a core role to inhibition of cell cycle, 

DNA repair and initialization of programmed cell death, analogously to the role of p53 

in mammals.  

The discovery of new components and mechanisms of cell cycle regulation and DNA 

damage response in plants is just beginning. It is foreseeable that to reveal more such 

mechanisms should be based on the understanding of plant features. These features can 

include plant hormone signaling pathways, cell wall formation, heavy metal ion 
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accumulation from soil, or photoperiodism and photosynthesis regulation. Identifying 

the pathway involved in DDR and cell cycle regulation is important to understand the 

reaction network of plants when they face extrinsic and intrinsic stresses. 
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ABSTRACT 

Whereas our knowledge about the diverse pathways aiding DNA repair upon 

genome damage is steadily increasing, little is known about the molecular players 

that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of 

DNA stress microarray datasets, three family members of the 

SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase 

inhibitors were discovered that react strongly to genotoxicity. Transcriptional 

reporter constructs corroborated specific and strong activation of the three 

SIM/SMR genes in the meristems upon DNA stress, whereas overexpression 

analysis confirmed their cell cycle inhibitory potential. In agreement with being 

checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired 

checkpoint in leaf cells upon treatment with the replication inhibitory drug 

hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on 

ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF 

GAMMA RESPONSE 1 (SOG1), rather than on the anticipated replication stress-

activated ATM AND RAD3-RELATED (ATR) kinase. This apparent discrepancy 

was explained by demonstrating that, in addition to its effect on replication, HU 

triggers the formation of reactive oxygen species (ROS). ROS-dependent 

transcriptional activation of the SMR genes was confirmed by different ROS-

inducing conditions, including high-light treatment. We conclude that the 

identified SMR genes are part of a signaling cascade inducing a cell cycle 

checkpoint in response to ROS-induced DNA damage. 

Adapted from manuscript published online before print January 2014, doi: 

http://dx.doi.org/10.1105/tpc.113.118943. The Plant Cell, 2014 tpc.113.118943. 
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INTRODUCTION  

Being sessile, plants are continuously exposed to changing environmental conditions 

that can impose biotic and abiotic stresses. One of the consequences observed in plants 

subjected to altered growth conditions is the disruption of the reactive oxygen species 

(ROS) homeostasis (Mittler et al., 2004). Under steady-state conditions, ROS are 

efficiently scavenged by different non-enzymatic and enzymatic antioxidant systems, 

involving the activity of catalases, peroxidases, and glutathione reductases. However, 

when stress prevails, the ROS production rate can exceed the scavenging mechanisms, 

resulting into a cell- or tissue-specific rise in ROS. These oxygen derivatives possess a 

strong oxidizing potential that can damage a wide diversity of biological molecules, 

including the electron-rich bases of DNA, which results into single- and double-

stranded breaks (Amor et al., 1998; Dizdaroglu et al., 2002; Roldán-Arjona and Ariza, 

2009). Hydrogen peroxide (H2O2) is a major ROS compound and is able to transverse 

cellular membranes, migrating into different compartments. This feature grants H2O2 

not only the potential to damage a variety of cellular structures, but also to serve as a 

signaling molecule, allowing the activation of pathways that modulate developmental, 

metabolic and defence pathways (Dizdaroglu, 2005). One of the signaling effects of 

H2O2 is the activation of a cell division arrest by cell cycle checkpoint activation 

(Tsukagoshi, 2012), however the molecular mechanisms involved remain unknown.  

Cell cycle checkpoints adjust cellular proliferation to changing growth conditions, 

arresting it by the inhibition of the main cell cycle controllers: the heterodimeric 

complexes between the cyclin-dependent kinases (CDK) and the regulatory cyclins (Lee 

and Nurse, 1987; Norbury and Nurse, 1992). The activators of these checkpoints are the 

highly conserved ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND 

RAD3-RELATED (ATR) kinases that are recruited in accordance with the type of DNA 

damage (Zhou and Elledge, 2000; Abraham, 2001; Bartek and Lukas, 2001; Kurz and 

Lees-Miller, 2004). ATM is activated by double-stranded breaks (DSBs); whereas ATR 

is activated by single-strand breaks or stalled replication forks, causing inhibition of 

DNA replication. In mammals, ATM and ATR activation result in the phosphorylation 

of the Chk2 and Chk1 kinases, respectively. Both kinases subsequently phosphorylate 

p53, a central transcription factor in the DNA damage response (Chaturvedi et al., 1999; 
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Shieh et al., 2000; Chen and Sanchez, 2004; Rozan and El-Deiry, 2006). Chk1, Chk2, 

and p53 seemingly appear to have no plant ortholog, although an analogous role for p53 

is suggested for the plant-specific SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) 

transcription factor that is under direct posttranscriptional control of ATM (Yoshiyama 

et al., 2009; Yoshiyama et al., 2013). Another distinct plant feature relates to the 

inactivation of CDKs in response to DNA stress. CDK activity is in part controlled by 

its phosphorylation status at the N-terminus, determined by the interplay of the CDC25 

phosphatase and the antagonistic WEE1 kinase, acting as the “on” and “off” switches of 

CDK activity, respectively (Francis, 2011). Whereas in mammals and budding yeast the 

activation of the DNA replication checkpoint, leading to a cell cycle arrest, is 

predominantly achieved by the inactivation of the CDC25 phosphatase, plant cells 

respond to replication stress by transcriptional induction of WEE1 (Horst et al., 2010). 

In absence of WEE1, Arabidopsis thaliana plants become hypersensitive to replication 

inhibitory drugs such as hydroxyurea (HU), which causes a depletion of dNTPs by 

inhibiting the ribonucleotide reductase (RNR) protein. However, WEE1-deficient plants 

respond similarly as control plants to other types of DNA damage (Dissmeyer et al., 

2009; Horst et al., 2010). These data suggest the existence of yet to be identified 

pathways controlling cell cycle progression under DNA stress, operating independently 

of WEE1.  

Potential candidates to operate in checkpoint activation upon DNA stress are CDK 

inhibitors (CKIs). CKI proteins are mostly low molecular weight proteins that inhibit 

cell division by their direct interaction with the CDK and/or cyclin subunit (Sherr and 

Roberts, 1995; Marnett, 2000). The first identified class of plant CKIs was the 

ICK/KRP (interactors of CDK/Kip-related protein) protein family comprising seven 

members in A. thaliana, all sharing a conserved C-terminal domain being similar to the 

CDK-binding domain of the animal CIP/KIP proteins (Dulić et al., 1998; Xue et al., 

2004; Koshiba et al., 2009). The TIC (tissue-specific inhibitors of CDK) is the most 

recently suggested class of CKIs (DePaoli et al., 2012) and encompasses SCI1 in 

tobacco (DePaoli et al., 2011). SCI1 shares no apparent sequence similarity with the 

other classes of CKIs in plants, and has been suggested to connect cell cycle progression 

and auxin signaling in pistils (DePaoli et al., 2012). The third class of CKIs is the plant-

specific SIAMESE/SIAMESE-RELATED (SIM/SMR) gene family. SIM has been 

identified as a cell cycle inhibitor with a role in trichome development and endocycle
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 control (Jomova and Valko, 2011). Based on sequence analysis, five additional gene 

family members have been identified in A. thaliana, and together with EL2 from rice, 

been suggested to act as cell cycle inhibitors modulated by biotic and abiotic stresses 

(Peres et al., 2007). Plants subjected to treatments inducing DSBs showed a rapid and 

strong induction of specific family members (Culligan et al., 2006; Buchtik et al., 

2011), suggesting that SIM/SMR proteins might include interesting candidates to 

complement WEE1 in the global response to DNA stress.  

In this work we identified three SMR genes (SMR4, SMR5 and SMR7) that are 

transcriptionally activated by DNA damage. Cell cycle inhibitory activity was 

demonstrated by overexpression analysis, whereas knockout data illustrated that both 

SMR5 and SMR7 are essential for DNA cell cycle checkpoint activation in leaves of 

plants grown in the presence of HU. Remarkably, we found that SMR induction mainly 

depends on ATM and SOG1, rather than ATR as would be expected for a drug that 

triggers replication fork defects. Correspondingly, we demonstrate that the HU-

dependent activation of SMR genes is triggered by ROS rather than replication 

problems, linking SMR genes with cell cycle checkpoint activation upon the occurrence 

of DNA damage-inducing oxidative stress. 

RESULTS 

Meta-Analysis of DNA Stress Datasets Identifies DNA Damage-Induced 

SMR Genes 

When DNA damage occurs, two global cellular responses are essential for cell survival: 

activation of the DNA repair machinery, and delay or arrest of cell cycle progression. In 

recent years, gene expression inventories have been collected that focus on the 

transcriptional changes in response to different types of DNA stress (Culligan et al., 

2006; Ricaud et al., 2007; Panda et al., 2009; Yoshiyama et al., 2009). To identify novel 

key signaling components that contribute to cell cycle checkpoint activation, we 

compared bleomycin-induced genes to those induced by HU treatment (Panda et al., 

2009) and γ-radiation (Culligan et al., 2006; Yoshiyama et al., 2009). Twenty-two genes 

were upregulated in all DNA stress experiments and can be considered as transcriptional 

hallmarks of the DNA damage response (DDR), regardless of the type of DNA stress 
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(Figure 1; Table 1). Within this selection, genes known to be involved in DNA stress 

and DNA repair are predominantly present, including PARP2, BRCA1 and RAD51. In 

addition, we recognized one member of the SIM/SMR gene family, being SMR5 

(At1g07500). When expanding the selection by considering genes induced in at least 

two of the three DNA stress experiments, we identified a total of 61 genes 

(Supplemental Table 1). Besides DDR-related genes, this expanded dataset included an 

additional SMR family member (SMR4; At5g02220) being expressed upon HU 

treatment and γ-radiation. 

 

 

Figure 1. DNA stress meta-analysis.  

Venn diagram showing the overlap between transcripts induced by hydroxyurea (HU), 

bleomycin (Bm), and γ-radiation (γ-rays). In total, 61 genes were positively regulated in at least 

two DNA stress experiments, and 22 genes accumulated in all DNA stress experiments.  
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Table 1: Overview of the transcriptionally induced core DNA damage genes 

AGI locus Annotation HU 24h/0ha γ-rays - 1b γ-rays - 2c Bleo-mycin 

AT4G21070 Breast cancer susceptibility1 10.375 581.570 57.803 2.386 

AT5G60250 
Zinc finger (C3HC4-type RING finger) 
family protein 

8.907 34.918 40.000 2.352 

AT1G07500 Siamese-related 5 7.863 38.160 35.842 1.595 

AT4G02390 Poly(ADP-ribose) polymerase 7.701 131.865 59.172 2.663 

AT3G07800 Thymidine kinase 7.160 46.179 20.492 2.759 

AT5G03780 TRF-like 10 7.111 108.316 23.474 1.600 

AT5G64060 NAC domain containing protein 103 5.579 28.086 13.755 2.153 

AT2G18600 
Ubiquitin-conjugating enzyme family 
protein 

5.521 21.462 11.481 1.972 

AT4G22960 Unknown function (DUF544) 5.315 36.380 14.451 2.282 

AT5G48720 X-ray induced transcript 1 5.296 285.166 65.789 2.228 

AT5G24280 
Gamma-irradiation and mitomycin c 
induced 1 

4.823 108.578 42.918 2.584 

AT5G20850 RAS associated with diabetes protein 51 4.643 186.456 31.250 1.765 

AT3G27060 
Ferritin/ribonucleotide reductase-like 
family protein 

4.595 37.351 8.741 1.970 

AT2G46610 
RNA-binding (RRM/RBD/RNP motifs) 
family protein 

3.593 19.913 7.331 1.546 

AT5G40840 Rad21/Rec8-like family protein 3.375 113.919 27.473 1.692 

AT1G13330 Hop2 homolog 2.949 17.349 13.495 1.580 

AT5G66130 RADIATION SENSITIVE 17 2.888 30.411 10.384 1.627 

AT1G17460 TRF-like 3 2.378 18.925 10.661 1.681 

AT2G45460 SMAD/FHA domain-containing protein 2.378 45.673 21.053 1.575 

AT5G49480 Ca2+-binding protein 1 1.952 15.106 5.851 1.580 

AT3G25250 
AGC (cAMP-dependent, cGMP-
dependent and protein kinase C) kinase 
family protein 

1.853 12.995 17.794 1.517 

AT5G55490 Gamete expressed protein 1 1.670 71.489 34.722 2.407 

 

a: According to Cools et al., 2011 

b: According to Culligan et al., 2006 

c: According to Yoshiyama et al., 2009 
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Figure 2. Hierarchical average linkage clustering of SIM/SMR genes induced in 

response to different abiotic (A) and biotic stresses (B).  

Data comprise the SIM/SMR represented in publicly available Affymetrix ATH1 microarrays 

obtained with the Genevestigator toolbox. Blue and yellow indicate down- and up-regulation, 

respectively, whereas black indicates no change in expression. 
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Figure 3. SIM/SMR induction in response to HU. 

One-week-old transgenic Arabidopsis seedlings were transferred to control (-HU) medium or 

medium supplemented with 1 mM HU (+HU). GUS assays were performed 24 h after transfer. 
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The SMR Gene Family Comprises 14 Family Members that Respond to 

Different Stresses 

Previously, we reported on the existence of one SIM and five SMR genes (SMR1-SMR5) 

in the A. thaliana genome (Peres et al., 2007), whereas protein purification of 

CDK/cyclin complexes resulted into the identification of two additional family 

members (SMR6 and SMR8) (Ohtani et al., 2001). With the availability of newly 

sequenced plant genomes, we re-examined the Arabidopsis genome using iterative 

BLAST searches for the presence of additional SMR genes, resulting in the 

identification of six non-annotated family members, nominated SMR7 to SMR13 

(Supplemental Table 2). With the Genevestigator toolbox (Maxwell et al., 1999), the 

expression pattern of the twelve SIM/SMR genes represented on the Affymetrix ATH1 

microarray platform was analyzed in response to different biotic and abiotic stress 

treatments. Distinct family members were induced under various stress conditions, 

albeit with different specificity (Figure 2). Every SMR gene appeared to be 

transcriptionally active under at least a number of stress conditions, with SMR5 

responding to most diverse types of abiotic stresses. In response to DNA stress 

(genotoxic stress and UV-B treatment), two SMR genes responded strongly, namely 

SMR4 and SMR5, corresponding with their presence among the DNA stress genes 

identified by our microarray meta-analysis. 

To confirm their involvement in the genotoxic stress response, transcriptional reporter 

lines containing the putative upstream promoter sequences were constructed for all 

SIM/SMR genes. After selection of representative reporter lines, one-week-old seedlings 

were transferred to control medium, or medium supplemented with HU (resulting into 

stalled replication forks) or bleomycin (causing DSBs). Focusing on the root tips 

revealed distinct expression patterns (Figure 3; Supplemental Figure 1), with some 

family members being restricted to the root elongation zone (including SIM and SMR1), 

while others were confined to vascular tissue (e.g. SMR2 and SMR8), or columella cells 

(e.g. SMR5). When plants were exposed to HU, three SMR genes showed transcriptional 

induction in the root meristem, being SMR4, SMR5 and SMR7, with the latter two 

displaying the strongest response (Figure 3). In the presence of bleomycin, an additional 

weak cell-specific induction of SMR6 was observed (Supplemental Figure 1). 

Transcriptional induction of SMR4, SMR5 and SMR7 by HU and bleomycin was 
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confirmed by qRT-PCR experiments (Supplemental Figure 2). These data fit the above 

described microarray analysis, with the lack of SMR7 (At3g27630) being explained by 

its absence on the ATH1 microarray of the HU and γ-irradiation experiments, although 

being induced 5.68-fold in the bleomycin experiment performed using the Aragene 

array. Next to HU and bleomycin, we confirmed transcriptional activation of SMR4, 

SMR5 and SMR7 by γ-irradiation (Supplemental Figure 3).  

 

 

Figure 4. Ectopic SMR4, SMR5 and SMR7 expression inhibits cell division.  

(A-D) Four-week-old rosettes of control (A), SMR4OE (B), SMR5OE (C) and SMR7OE (D) plants. 

(E-H) Leaf abaxial epidermal cell images of in vitro-grown 3-week-old control (E), SMR4OE 

(F), SMR5OE (G) and SMR7OE (H) plants. (I-L)  Ploidy level distribution of the first leaves of 3-

week-old in vitro-grown control (I) , SMR4OE (J), SMR5OE (K)  and SMR7OE (L)  plants.  
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DNA Stress-Induced SMR Genes Encode Potent Cell Cycle Inhibitors 

SIM had been proven to encode a potent cell cycle inhibitor, since its ectopic expression 

results into dwarf plants holding less cells compared to control plants (Jomova and 

Valko, 2011). To test whether the DNA stress-induced SMR genes encode proteins with 

cell division inhibitory activity, SMR4-, SMR5- and SMR7-overexpressing (SMR4OE, 

SMR5OE and SMR7OE) plants were generated. For each gene, multiple lines with high 

transcript levels were isolated, all showing a reduction in rosette size compared to wild-

type plants (Figures 4A to 4D). This decrease in leaf size correlated with an increase in 

cell size (Figures 4E to H), indicative of a strong inhibition of cell division. Similar to 

SIM (Jomova and Valko, 2011), ectopic expression did not only inhibit cell division but 

also triggered an increase in the DNA content by stimulation of endoreplication 

(Figures 4I to L; Supplemental Table 3), likely representing a premature onset of cell 

differentiation. Together with the previously described biochemical interaction between 

SMR4 and SMR5, and CDKA;1 and D-type cyclins (Ohtani et al., 2001), it can be 

concluded that the DNA stress-induced SMR genes encode potent cell cycle inhibitors.  

SMR5 and SMR7 Control a HU-Dependent Checkpoint in Leaves 

To address the role of the different SMR genes in DNA stress checkpoint control, the 

growth response to HU treatment of plants being knocked out for SMR5 or SMR7 

(Supplemental Figure 4) was compared to that of control plants (Col-0). No significant 

difference in leaf size was observed for plants grown under standard conditions. In 

contrast, when comparing plants grown for 3 weeks in the presence of HU, the size of 

the SMR5KO and SMR7KO leaves was significantly bigger than that of the control plants 

(Figure 5A). This difference was attributed to a difference in cell number. Control 

plants responded to the HU treatment with a 47% reduction in epidermal cell number, 

reflecting an activation of a stringent cell cycle checkpoint. In contrast, in SMR5KO and 

SMR7KO plants this reduction was restricted to 29% and 30%, respectively (Figure 5B). 

Within the SMR5KO SMR7KO double mutant, the reduction in leaf size and cell number 

was even less (Figures 5A and 5B), suggesting that both inhibitors contribute to the cell 

cycle arrest observed in the control plants by checkpoint activation upon HU stress. A 

similar role of SMR4 could not be tested due to the lack of an available knockout. 



SMRs control the DNA damage checkpoint in response to ROS 

 - 72 - 

 

Figure 5. SMR5 and SMR7 are required for an HU-dependent cell cycle 

checkpoint.  

(A-B) Leaf size (A) and abaxial epidermal cell number (B) of the first leaves of 3-week-old 

plants grown on control medium (circles) or medium supplemented with 1 mM HU (squares). 

Data represent mean with 95% confidence interval (2-way ANOVA, n = 10).  
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SMR5 and SMR7 Expression is Triggered by Oxidative Stress 

Because of the observed role of the SMR5 and SMR7 genes in DNA stress checkpoint 

control, we analyzed the dependence of their expression on the ATM and ATR 

signaling kinases and the SOG1 transcription factor by introducing the SMR5 and SMR7 

GUS reporter lines into the atr-2, atm-1 and sog1-1 mutant backgrounds. Both genes 

were induced in the proliferating leaf upon HU and bleomycin treatment (Figure 6). 

Moreover, as would be expected for a DSB-inducing agent, the transcriptional 

activation of SMR5 and SMR7 by bleomycin depended on ATM and SOG1. 

Surprisingly, the same pattern was observed for HU, whereas one would expect that 

SMR5/SMR7 induction after arrest of the replication fork would rely on ATR-dependent 

signaling. These data indicate that the HU-dependent activation of the SMR5 and SMR7 

genes might be caused by a genotoxic effect of HU being unrelated to replication stress 

induced by the depletion of dNTPs. A recent study demonstrated that HU directly 

inhibits catalase-mediated H2O2 decomposition (Juul et al., 2010). Analogously, in 

combination with H2O2, HU has been demonstrated to act as a suicide inhibitor of 

ascorbate peroxidase (Chen and Asada, 1990). Combined, both mechanisms are likely 

responsible for an increase in the cellular H2O2 concentration, which might trigger DNA 

damage and consequently transcriptional induction of the SMR5 and SMR7 genes. 

Indeed, extracts of control plants treated with HU displayed a reduced H2O2 

decomposition rate (Figure 7A). As catalase and ascorbate peroxidase activity are 

essential for the scavenging of H2O2 that is generated upon high-light exposure, we 

subsequently tested the effects of HU treatment on photosystem II (PSII) efficiency in 

one-week-old seedlings after transfer from low- to high-light conditions. As illustrated 

in Figure 7B, transfer for 48 h to high light resulted in a decrease of maximum quantum 

efficiency of PSII (Fv’/Fm’). In the presence of HU, the Fv’/Fm’decrease was even 

more pronounced, which again corroborates the idea that HU might interfere with H2O2 

scavenging. Macroscopically, plants grown in the presence of HU showed visible 

anthocyanin pigmentation in the young leaf tissue within 48 h after transfer, whereas 

plants grown on control medium showed no effect of the transfer to high light (Figure 

7C). 
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Figure 6. SMR5 and SMR7 expression is ATM- and SOG1-dependent.  

(A-B) PSMR5:GUS (A) and PSMR7:GUS (B) reporter constructs introgressed into atr-2, atm-1 

and sog-1 mutant backgrounds were control-treated (Ctrl), or treated with 2 mM HU or 0.3 

µg/ml bleomycin (Bm) for 24 h. 

 

Figure 7. HU triggers 

oxidative stress.  

(A) H2O2 scavenging of in extracts 

from one-week-old control (Ctrl), 

HU-treated (1 mM) and 3AT-

treated (6 µM) (positive control) 

plants. Error bars show SE (n = 3-

4). *, P-value < 0.05; **, P-value 

< 0.01 (two-tailed student’s T-

test). (B) Maximum quantum 

efficiency of PSII (Fv’/Fm’) of 6-

day-old seedlings grown under 

low (LL) and high light (HL) for 

48 hrs, in absence (-HU) and 

presence (+HU) of 1 mM HU. (C) 

Light microscope pictures of 

plants shown in (B). 
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To examine whether an increase in H2O2 might trigger expression of SMR genes, SMR5 

and SMR7 expression levels were analyzed in plants that are knockout for CAT2 and/or 

APX1, encoding two enzymes important for the scavenging of H2O2. Whereas SMR5 

transcript levels appeared to be stable over all genotypes, SMR7 expression levels were 

clearly induced in the single apx1 and apx1 cat2 double mutant (Figure 8A). As an 

independent strategy to induce ROS, SMR5 and SMR7 GUS reporter lines were 

transferred from control to high light conditions for two days. Whereas PSMR7:GUS 

plants displayed little to no increase in GUS activity, SMR5 promoter activity was 

strongly stimulated under high light, as confirmed by RT-PCR (Figure 8B; 

Supplemental Figure 5). To examine whether this transcriptional induction contributed 

to a high light-induced cell cycle checkpoint, we measured epidermal cell numbers in 

mature first leaves of control (Col-0), SMR5KO and SMR7KO plants that were transferred 

for 4 days to high light condition at the moment that their leaves were proliferating. 

This high light treatment resulted into a 34% and 38% reduction in cell number in 

control and SMR7KO plants, respectively (Figure 8C). In contrast, SMR5KO plants 

displayed only a 13% reduction in cell number, illustrating that SMR5 is essential to 

activate a high light-dependent cell cycle checkpoint. 
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Figure 8. SMR5 and SMR7 are induced by oxidative stress-inducing stimuli. 

(A) Relative SMR5 and SMR7 expression levels in shoots of 6-day-old wild-type (Col-0), apx1, 

cat2 and apx cat2 mutant plants. Data represent least square means ± SE, normalized to wild 

type levels that were arbitrary set to one (n = 3, *P-value < 0.01). (B) One–week-old 

PSMR5:GUS and PSMR7:GUS seedlings grown under low- versus high-light conditions for 48 

hrs. (C) Abaxial epidermal cell number of the first leaves of 3-week-old plants transferred at the 

age of 8 days for 96 h to control (circles) or high light (squares) conditions. Data represent mean 

with 95% confidence interval (2-way ANOVA, n = 8).  
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SMR5 and SMR7 are under Direct Control of SOG1 

Recently, it was found that the SOG1 transcription factor becomes hyperphosphorylated 

in an ATM-dependent manner upon the occurrence of DSBs, such as induced by γ–

irradiation or treatment with the radiomimetic drug zeocin, and that this 

phosphorylation is essential for SOG1 activity (Yoshiyama et al., 2013). As SMR5 and 

SMR7 transcription was found to depend on SOG1, and because both SMR genes 

respond to oxidative stress, we tested whether SOG1 phosphorylation occurs in 

response to H2O2 treatment. Lines expressing a Myc-tagged SOG1 under control of its 

own promoter (PSOG1:SOG1-Myc) were either control-treated or treated with H2O2. As 

described previously, immunoblotting using anti-Myc antibody detected two bands 

under control conditions (Figure 9A), with the upper band corresponding to SOG1 

being phosphorylated in a DNA stress-independent manner by a yet to be identified 

kinase (Yoshiyama et al., 2013). Upon H2O2 treatment, a third slowly migrating band 

appeared at a similar position as detected by zeocin treatment (Yoshiyama et al., 2013). 

This band disappeared when protein extracts were treated with the λ protein 

phosphatase (λPP), indicating that it corresponds to a phosphorylated form of SOG1 

(Figure 9A). 

Subsequently, as SMR5 and SMR7 transcription was found to depend on SOG1 (Figure 

6), it was tested whether both genes are under direct control of SOG1. Direct binding of 

SOG1 to the SMR5 and SMR7 promoters was tested through chromatin-

immunoprecipitation using PSOG1:SOG1-Myc seedlings being control-treated or 

treated for 2 h with the DSB-inducing drug zeocin. Promoter scanning revealed that 

SOG1 binds in a DNA stress-dependent manner to both SMR promoters in close 

proximity to their transcription start site (Figures 9B and 9C). These data illustrate that 

both SMR genes are under direct control of SOG1. 
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Figure 9. In vivo phosphorylation of SOG1 by H2O2 and its association to the SMR5 

and SMR7 promoters.  

(A) Total protein was immunoblotted with anti-Myc antibody. Plants harboring PSOG1:SOG1-

Myc were treated with or without H2O2, and total protein was extracted. Total protein from 

H2O2-treated plants was incubated with λ protein phosphatase (λPP). The phosphorylated forms 

of SOG1 were separated in an SDS-PAGE gel containing Phos-tag. Non-phosphorylated, 

phosphorylated and hyperphosphorylated SOG1-Myc (band a, b and c, respectively) are 

indicated by arrowheads. (B-C) Chromatin bound to the promoter regions of SMR5 (B) and 

SMR7 (C) was collected by immunoprecipitation with anti-Myc antibodies from PSOG1:SOG1-

MYC plants treated with (black bars) and without (white bars) 15 µM zeocin and subjected to 

qPCR analysis. Fold enrichment for each DNA fragment was determined by dividing the 

recovery rate with that of wild-type plants (WT=1). Bar graphs represent the average of two 

biological replicate ChIP experiments ± SE. Positions of PCR amplicons 1–4 are also shown. 
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DISCUSSION 

SMRs Categorize to Minimally Two Different Functional Groups 

In this work, we analyzed the SIM/SMR group of CKIs. All share mutually only a 

limited sequence homology, being restricted to short amino-acid (AA) regions scattered 

along the protein sequences, among which is a six-AA domain corresponding to a 

cyclin-binding motif (Peres et al., 2007). Although this poor sequence alignment does 

not allow a clear phylogenetic analysis, biochemically it appears that SIM/SMR 

proteins fall into at least two different categories. A first category includes the founding 

members SIM and SMR1 that both have been linked to endocycle onset (Roeder et al., 

2010; Jomova and Valko, 2011), being an alternative cell cycle in which mitosis is 

repressed in favour of repetitive rounds of DNA replication, resulting in an increase in 

DNA ploidy level. Through protein purification, these two SMRs were found to co-

purify with the B-type CDKB1;1 (Ohtani et al., 2001), in agreement with the 

observation that this particular CDK needs to be inhibited for endocycle onset (Boudolf 

et al., 2004; 2007). A role in endocycle onset is supported by their expression pattern in 

the root, showing specific transcription in the cell elongation zone, likely representing 

the zone where cells start the endocycle. Next to SIM and SMR1, also SMR2 

exclusively co-purifies with CDKB1;1, suggesting that this particular CKI might also be 

an SMR family member linked with endocycle onset. As second category, other SMRs, 

including SMR4 and SMR5, exclusively co-purify with the A-type CDK and D-type 

cyclins (Ohtani et al., 2001). CDKA;1 is the main driver of S-phase progression (1998; 

Nowack et al., 2010), whereas the CYCD/CDKA;1 complex is responsible for control 

of cell cycle onset in response to intrinsic and extrinsic signals (Lukaszewski and 

Blevins, 1996; Riou-Khamlichi et al., 2000). Therefore, CYCD/CDKA;1 appears to be 

the most logical CYC/CDK complex to be targeted by those SMRs that aim to link 

DNA stress signals with cell cycle checkpoint activation.  

HU Affects DNA Integrity in Multiple Ways 

HU is known for its inhibitory effect on RNR activity, resulting into a depletion of the 

available dNTPs, causing impaired progression of the replication fork and activation of 

an ATR-dependent replication checkpoint. However, the observed ATM-dependent 

induction of SMR5 and SMR7 upon HU treatment suggests that HU affects DNA 
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integrity also in an RNR-independent manner. In particular, our data indicate that ROS 

might be the primary trigger of SMR5 and SMR7 expression upon HU treatment. A link 

between HU and oxidative stress has been observed previously in Saccharomyces 

cerevisiae, where, next to a DNA replication arrest caused by RNR inhibition, exposure 

to HU results in the activation of the Yap regulon that reacts to oxidative stress and 

encompasses genes involved in cellular redox homeostasis (Dubacq et al., 2006). In 

Arabidopsis, Juul et al. (2010) reported a direct interaction between HU and catalase, 

resulting in a stereo-inhibition of the detoxifying capabilities of the catalase protein. 

Analogously, HU was demonstrated to be a suicide inhibitor of ascorbate peroxidase 

(Chen and Asada, 1990). In agreement, we demonstrated that HU treatment results in a 

decrease in the H2O2 scavenging rate. A second source of HU-induced ROS might 

originate from displacement of the essential cofactor iron from the RNR catalytic site 

(Nyholm et al., 1993), probably resulting into an increase in the intracellular iron 

concentration. This increase might contribute to the raise in ROS, as iron catalyzes the 

production of hydroxyl radicals from H2O2 through the Fenton reaction. Together, the 

increased H2O2 and iron levels after HU treatment represent a potent source of oxidative 

stress. The HU-induced oxidative state results into an accumulation of anthocyanin 

pigments and the reduction in PSII efficiency. The latter is likely due to the deceleration 

of PSII repair, consequently resulting in further increased levels of intracellular ROS 

and enhanced photo-inhibition (Murata et al., 2013).  

Because of its relatively long life and permeability, H2O2 is able to migrate into 

different cellular compartments. Besides PSII inhibition, H2O2 and hydroxyl radicals are 

known to affect the DNA in multiple ways, including the oxidation of bases, the 

creation of DNA interstrand cross-links and DSBs (Cadet et al., 2012), being different 

types of DNA damage that induce ATM-dependent signaling. In mammals, oxidation of 

ATM directly induces its activation (Guo et al., 2010), however, whether a similar 

mechanism is functional in plants is unknown. In agreement with H2O2 acting as a 

putative DNA stress-inducing compound, it has been reported that the lack of both 

catalase and cytosolic ascorbate peroxidase activity results in the transcriptional 

activation of DNA stress genes, including PARP2 and BRCA1 (Katayama et al., 2007). 

The fact that within these apx1 cat2 double mutants no detectable rise in ROS levels 

could be measured suggests that experimentally undetectable levels of H2O2 can already 

trigger a DNA damage response. Interestingly, the resulting constitutive DNA damage 
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response of the apx1 cat2 plant grants them enhanced tolerance to DNA stress inducing 

conditions.  

SMR5 and SMR7 Respond to ROS-Induced DNA Damage 

Next to their ATM-dependent transcriptional activation upon HU treatment, expression 

analysis under different ROS accumulating conditions strongly indicates that the 

transcriptional activation of SMR5 and SMR7 in response to HU is primarily mediated 

through changes in ROS homeostasis rather than by replication stress. Interestingly, 

SMR5 and SMR7 appear to display a differential transcriptional response towards 

distinct sources of ROS. Under high light treatment, likely generating singlet oxygen 

rather than H2O2 (Mittler et al., 2002), it is mainly SMR5 that is induced, in agreement 

with the observation a high light induced cell cycle checkpoint was only abrogated in 

the SMR5KO plants. In contrast, SMR7 is the main gene induced the apx1 and apx1 cat2 

mutants. Similar to mature apx1 cat2 double mutant plants, young apx1 mutants display 

an activated DNA stress response, as supported by the elevated expression of DNA 

damage reporter genes under control conditions in 8-day-old seedlings (see 

Supplemental Figure 2 in Vanderauwera et al., 2011). This constitutive DNA damage 

response likely results from H2O2 leakage from the chloroplast (Davletova et al., 2005), 

being able to traverse to the nucleus in the absence of cytosolic scavenging by APX1. 

The mechanisms by which different SMR genes respond to different types of ROS are 

currently unknown. 

From our data it can be concluded that HU triggers simultaneously two different cell 

cycle checkpoint cascades, one related to replication stress and one responding to H2O2, 

controlled by ATR and ATM, respectively (Figure 10). Roots of plants being knockout 

for the replication stress checkpoint activators ATR or WEE1 are hypersensitive towards 

HU, indicating that in roots the HU-induced replication defect prevails. In contrast, 

despite their transcriptional induction, no outspoken root phenotype was observed for 

the SMR5KO and SMR7KO plants (Supplemental Figure S6). The restriction of a HU-

sensitive phenotype to tissues with photosynthetic activity therefore suggests that the 

primary response of HU in the shoot tissue might be ROS accumulation (Figure 10). 

Remarkably, our data indicate that the signaling pathway by which oxidative stress 

induces SMR5/SMR7 expression is relatively short, with ATM phosphorylating the 

SOG1 transcription factor that binds directly to the SMR promoters to activate their 
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transcription, as supported by the observation that no SMR5/SMR7 expression is 

observed in the sog1-1 mutant background. Because SOG1 only associates to the SMR5 

and SMR7 promoters in the samples in which DNA stress was induced, we can 

speculate that phosphorylation of SOG1 is a prerequisite for binding to its target genes. 

 

 

Figure 10. Model for HU-dependent cell cycle checkpoint activation.  

HU treatment results in replication stress and an increase in the cellular H2O2 concentration, 

likely resulting in DNA damage sensed by the ATR and ATM signaling cascades, respectively. 

ATR activates a checkpoint response through transcriptional induction of WEE1, whereas ATM 

does the same through activation of SMR5 and SMR7. Both pathways allow cells to adapt to the 

occurring DNA stress, and contribute in that way to meristem maintenance.  
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Next to being induced by genotoxic stress, SMR5 displays a strong transcriptional 

response toward many different abiotic stress conditions that share the involvement of 

ROS signaling, including drought, high light and salt (Figure 2). Therefore, SMR5 

might be a general integrator of ROS signaling with cell cycle progression. ROS 

signaling has been linked with cell cycle progression before. Treatment of tobacco cells 

with a ROS-inducing agent results into an impaired G1-to-S transition, retarded S-phase 

progression and delayed entry into M-phase, being correlated with a downregulation of 

CDK activity (Reichheld et al., 1999). Moreover, it has been demonstrated that the G1-

to-S transition requires adequate levels of the antioxidant glutathione. Accordingly, the 

ROOT MERISTEMLESS1 gene, encoding a gluthatione biosynthetic enzyme, is required 

to establish an active meristem (Vernoux et al., 2000). Additionally, recent evidence 

indicates that the balance of ROS controls the transition from proliferation to 

differentiation: the basic helix-loop-helix transcription factor UPBEAT1 (UPB1) is 

expressed at the root transition zone and controls the distribution of ROS by monitoring 

the expression level of peroxidase genes (Lim and Kaldis, 2013). Strikingly, the same 

study revealed the SIM promoter to be bound by the UPB1 protein, fitting with the 

observation that SIM expression is restricted to the root elongation zone, which is also 

the site of maximum H2O2 concentration (Dunand et al., 2007). Likewise, ROS 

signaling has been implicated in pathogen response, whereas the first rice SIM/SMR-like 

gene (EL2) was described originally as a gene being induced within minutes after 

addition of the elicitator N-acetylchitoheptaose or purified flagellin protein of the 

pathogen P. Avenae I (Minami et al., 1996; Che et al., 2000). Moreover, H2O2 has also 

been detected in root columella cells, root cap cells and vascular cells (Dunand et al., 

2007; Lim and Kaldis, 2013), to which specific SMR expression patterns can be linked. 

These data suggest that the transcriptional activation of SIM/SMR genes in response to 

ROS signals might be a general mechanism to link the oxidative status of a cell with its 

cell division activity.  

METHODS 

Plant Materials and Growth Conditions 

The smr5 (SALK_100918) and smr7 (SALK_128496) alleles were acquired from the 

Arabidopsis Biological Research Center. Homozygous insertion alleles were checked 
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by genotyping PCR using the primers listed in Supplemental Table 2. The atm-1, atr-2 

and sog1-1 mutants have been described previously (Garcia et al., 2003; Preuss and 

Britt, 2003; Culligan et al., 2004; Yoshiyama et al., 2009). Unless stated otherwise, 

plants of Arabidopsis thaliana (L.) Heyhn. (ecotype Columbia) were grown under long-

day conditions (16 h of light, 8 h of darkness) at 22°C on half-strength Murashige and 

Skoog (MS) germination medium (Lindahl et al., 1995). Arabidopsis plants were treated 

with HU as described by Cools et al. (2011). For bleomycin treatments, five-day-old 

seedlings were transferred into liquid MS medium supplemented with 0.3 µg/mL 

bleomycin. For γ-irradiation treatments, five-day-old in vitro-grown plantlets were 

irradiated with γ-rays at a dose of 20 Gy. For light treatments, one-week-old seedlings 

were transferred to continuous high-light conditions (growth rooms kept at 22°C with 

24-h day/0-h night cycles and a light intensity of 300-400 µmol m–2 s–1) for 4 days, and 

subsequently retransferred to low-light conditions (70-80 µmol m–2 s–1).  

DNA and RNA Manipulation 

Genomic DNA was extracted from Arabidopsis leaves with the DNeasy Plant Kit 

(Qiagen) and RNA was extracted from Arabidopsis tissues with the RNeasy Mini Kit 

(Qiagen). After DNase treatment with the RQ1 RNase-Free DNase (Promega), cDNA 

was synthesized with the iScript cDNA Synthesis Kit (Bio-Rad). A quantitative RT-

PCR was performed with the SYBR Green kit (ROCHE) with 100 nM primers and 

0.125 µL of RT reaction product in a total of 5 µL per reaction. Reactions were run and 

analyzed on the LightCycler 480 (Roche) according to the manufacturer's instructions 

with the use of the following reference genes for normalization: ACTIN2 (At3g46520), 

EMB2386 (At1g02780), PAC1 (At3g22110) and RPS26C (At3g56340). Primers used 

for the RT-PCR are given in Supplemental Table 4. Statistical analysis was executed 

with the Statistical Analysis Software (SAS Enterprise Guide 5.1; SAS Institute, Inc.) 

using the mixed model procedure and P-values were Bonferroni adjusted for multiple 

measurements. 

SIM/SMR promoter sequences were amplified from genomic DNA by PCR using the 

primers described in Supplemental Table 4. The product fragments were created with 

the Pfu DNA Polymerase Kit (Promega, Catalog #M7745), and were cloned into a 

pDONR P4-P1r entry vector by BP recombination cloning and subsequently transferred 

into the pMK7S*NFm14GW,0 destination vector by LR cloning, resulting in a 
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transcriptional fusion between the promoter of the SMR genes and the nlsGFP-GUS 

fusion gene (Asada, 2006). For the overexpression constructs, the SMR coding regions 

were amplified using primers described in Supplemental Table 4, and cloned into the 

pDONR221 vector by BP recombination cloning and subsequently transferred into the 

pK2GW7 destination vector (Karimi et al., 2002) by LR cloning. Based on the available 

annotation, the amplification of the SMR5 coding sequence yielded in a fragment of 

smaller size than expected, which suggested sequence mis-annotation. Further 

sequencing analysis confirmed the lack of the intronic region. The corrected coding 

sequencing of SMR5 is represented in Supplemental Figure S4. All constructs were 

transferred into the Agrobacterium tumefaciens C58C1RifR strain harboring the pMP90 

plasmid. The obtained Agrobacterium strains were used to generate stably transformed 

Arabidopsis lines with the floral dip transformation method (Yamamoto et al., 2002). 

Transgenic plants were selected on kanamycin-containing medium and later transferred 

to soil for optimal seed production. All cloning primers are listed in Supplemental Table 

4.  

GUS Assays 

Complete seedlings or tissue cuttings were stained in multiwell plates (Falcon 3043; 

Becton Dickinson). GUS assays were performed as described by Ruiz et al. (2010). 

Samples mounted in lactic acid were observed and photographed with a 

stereomicroscope (Olympus BX51 microscope) or with a differential interference 

contrast (DIC) microscope (Leica).  

Microscopy 

For leaf measurements, first leaves were harvested at 21 days after sowing on control 

medium or on medium supplemented with 1 mM HU. Leaves were cleared overnight in 

ethanol, stored in lactic acid for microscopy, and observed with a microscopy fitted with 

DIC optics (Leica). The total (blade) area was determined from images digitized 

directly with a digital camera (Olympus BX51 microscope) mounted on a binocular 

(Stemi SV11; Zeiss). From scanned drawing-tube images of the outlines of at least 30 

cells of the abaxial epidermis located between 25% to 75% of the distance between the 

tip and the base of the leaf, halfway between the midrib and the leaf margin, the 

following parameters were determined: total area of all cells in the drawing and total 
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numbers of pavement and guard cells, from which the average cell area was calculated. 

The total number of cells per leaf was estimated by dividing the leaf area by the average 

cell area (De Veylder et al., 2001). Leaf sizes and epidermal cell numbers in the 

different lines were analyzed and compared by performing a 2-way-ANOVA (P-value < 

0.05). Tukey’s test was used to correct for family-wise error-rate. For confocal 

microscopy, root meristems were analyzed 2 days after transfer using a Zeiss LSM 510 

Laser Scanning Microscope and the LSM Browser version 4.2 software (Zeiss). Plant 

material was incubated for 2 min in a 10 µM PI solution to stain the cell walls and was 

visualized with a HeNe laser through excitation at 543 nm. GFP fluorescence was 

detected with the 488-nm line of an Argon laser. GFP and PI were detected 

simultaneously by combining the settings indicated above in the sequential scanning 

facility of the microscope. Acquired images were quantitatively analyzed with the 

ImageJ v1.45s software (http://rsbweb.nih.gov/ij/) and Cell-o-Tape plug-ins (French et 

al., 2012). Chlorophyll a fluorescence parameters were measured using the IMAGING 

PAM M-Series Chlorofyll Fluorescence (Walz) and associated software.  

Flow Cytometry Analysis 

For flow cytometric analysis, root tip tissues were chopped with a razor blade in 300 µL 

of 45 mM MgCl2, 30 mM sodium citrate, 20 mM MOPS, pH 7 (Galbraith et al., 1991). 

One microliter of 4,6-diamidino-2-phenylindole (DAPI) from a stock of 1 mg/mL was 

added to the filtered supernatant. Leaf material was chopped in 200 µL of Cystain UV 

Precise P Nuclei extraction buffer (Partec), supplemented with 800 µL of staining 

buffer. The mix was filtered through a 50-µm green filter and read by the Cyflow MB 

flow cytometer (Partec). The nuclei were analyzed with the Cyflogic software.  

Catalase Assay 

Plants were germinated on either control medium, medium with 1 mM HU or 6 µM 3-

AT. Leaf tissue of 10 plants was ground in 200 µL extraction buffer (60 mM Tris (pH 

6.9), 1 mM phenylmethylsulfonylfluoride, 10 mM DTT) on ice. The homogenate was 

centrifuged at 13,000 g for 15 min at 4°C. A total of 45 µg protein extract was mixed 

with potassium phosphate buffer (50 mM, pH 7.0) (Galanis et al., 2009). After addition 

of 11.4 µL H2O2 (7.5%), the absorbance of the sample at 240 nm after 0 and 60 s was 
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measured to determine catalase activity by H2O2 breakdown (Nakayama and Nakayama, 

1998; Galanis et al., 2009).  

Chromatin Immunoprecipitation  

Chromatin immunoprecipitation (ChIP) experiments were carried out as described 

(Roldán-Arjona and Ariza, 2009) with minor modifications. Surface-sterile 

PSOG1:SOG1-Myc (Yoshiyama et al., 2013) seeds were germinated in 100 mL of 0.5X 

MS medium containing 1.5% sucrose (pH 5.7) and cultured under continuous light at 

23°C with gentle shaking (50 rpm). After a 14-d culture period, the seedlings were 

treated with 15 µM zeocin (Invitrogen) or water for 2 h. Wild-type (Col-0), no-

treatment seedlings were used as a negative control. Sonicated chromatin solution 

(corresponding to 0.3 g tissue) was used for immunoprecipitation with anti-Myc 

antibodies (clone 4A6, Millipore) and an antibody recognizing an invariant domain of 

histone H3 (AB1791, Abcam). The ChIP products were used for qPCR analysis with the 

primers listed in Supplemental Table 4. Quantitative PCR was performed with the 

LightCycler system (Roche) and Thunderbird SYBR qPCR Mix (Toyobo) according to 

the following reaction conditions: 95 °C for 1 min; 70 cycles at 95 °C for 10 s, at 60 °C 

for 10 s, and at 72 °C for 20 s. The signal obtained from ChIP with an anti-Myc 

antibody was normalized to that obtained from ChIP with an anti-Histone H3 antibody. 

Finally, each normalized ChIP value was divided by the normalized wild-type ChIP 

value to calculate the fold enrichment.  

Microarray Analysis  

Seeds were plated on sterilized membranes and grown under a 16-h/8-h light/dark 

regime at 21°C. After 2 days of germination and 5 days of growth, the membrane was 

transferred to MS medium containing 0.3 µg/mL bleomycin for 24 h. Triplicate batches 

of root meristem material were harvested for total RNA preparation using the RNeasy 

plant mini kit (Qiagen). Each of the different root tip RNA extracts were hybridized to 

12 Affymetrix® Arabidopsis Gene 1.0 ST Arrays according to the manufacturer’s 

instructions at the Nucleomics Core Facility (Leuven, Belgium; 

http://www.nucleomics.be). Raw data were processed with the RMA algorithm (Emerit 

et al., 2004) using the Affymetrix Power Tools and subsequently subjected to a 

Significance Analysis of Microarray (SAM) analysis with "MultiExperiment Viewer 4" 
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(MeV4) of The Institute for Genome Research (TIGR) (Tusher et al., 2001). The 

imputation engine was set as 10-nearest neighbor imputer and the number of 

permutations was 100. Expression values were obtained by log2-transforming the 

average value of the normalized signal intensities of the triplicate samples. Fold changes 

were obtained using the expression values of the treatment relative to the control 

samples. Genes with Q-values < 0.1 and fold change > 1.5 or < 0.666 were retained for 

further analysis.  

Microarray Meta-Analysis  

Transcripts induced by bleomycin (Q-value < 0.1 and fold change > 1.5) were compared 

with different published DNA stress-related data sets. For γ-irradiation, an intersect of 

the genes with a significant induction (P-value < 0.05, Q-value < 0.1, and fold change 

>1.5) in 5-day-old wild-type seedlings 1.5 h post-irradiation (100 Gy) was made of two 

independent experiments (Culligan et al., 2006; Yoshiyama et al., 2009). For replication 

stress, genes were selected that showed a significant induction (P-value (Time) < 0.05, 

Q-value (Time) < 0.1 and fold change >1.5) in 5-day-old wild-type root tips after 24 h 

of 2-mM hydroxyurea treatment (Cools et al., 2011). Meta-analysis of the SMR genes 

during various stress conditions and treatments were obtained using Genevestigator 

(Maxwell et al., 1999). Using the “Response Viewer” tool, the expression profiles of 

genes following different stimuli were analyzed. Only biotic and abiotic stress 

treatments with a more than 2-fold change in the transcription level (P-value < 0.01) for 

at least one of the SMR genes were taken into account. Fold-change values were 

hierarchically clustered for genes and experiments by average linkage in MeV from 

TIGR. 

SOG1 Phosphorylation Assay 

Plants harboring PSOG1:SOG1-Myc (Yoshiyama et al., 2013) were grown on MS 

media [1 x MS salts including vitamins, 2% (w/v) sucrose, 0.8% (w/v) gellangum (pH 

6.0)] under continuous light at 23°C. Five-day-old seedlings were transferred onto a 

new MS medium or a medium supplemented with 5 mM H2O2, and incubated for 24 h. 

Total protein was extracted from roots and immunoblotted with anti-Myc antibody 

(Santa Cruz) as described by Yoshiyama et al. (2013). To detect phosphorylated SOG1 

proteins, Phos-tag reagent (NARD Institute) was used for the phoshoprotein mobility 
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shift assay (Kinoshita et al., 2006). λ protein phosphatase (λPP) (New England Biolabs) 

was used to dephosphorylate the phosphorylated forms of SOG1.  

Accession Numbers 

Microarray results have been submitted to MiamExpress (www.ebi.ac.uk/miamexpress), 

with accession number E-MEXP-3977. Sequence data from this article can be found in 

the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following 

accession numbers: SMR4 (At5g02220); SMR5 (At1g07500); SMR7 (At3g27630); ATM 

(At3g48490); ATR (At5g40820); SOG1 (At1g25580). 
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Supplemental Data 

 

Supplemental Figure 1. SIM/SMR induction in response to bleomycin 

One-week-old transgenic Arabidopsis seedlings were transferred to control (-Bm) medium or 

medium supplemented with 0.3 µg/mL bleomycin (+Bm). GUS assays were performed 24 h 

after transfer.  
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Supplemental Figure 2. Transcriptional induction of SIM/SMR genes upon HU and 

bleomycin treatment.  

One-week-old wild type Arabidopsis seedlings were transferred to control medium (blue), or 

medium supplemented with 1 mM HU (red) or 0.3 µg/mL bleomycin (green). Root tips were 

harvested after 24 h for RT-PCR analysis. Expression levels in control condition were arbitrary 

set to one. Data represent mean ± SE (n = 3). 
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Supplemental Figure 3. Transcriptional induction of SIM/SMR genes upon γ-

irradiation. 

 (A-F) PSMR4:GUS (A and D), PSMR5:GUS (B and E) and PSMR7:GUS (C and D) either 

control-treated (A-C) or irradiated with 20 Gy of γ-rays (D-F). GUS assays were performed 1.5 

h after irradiation. 
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Supplemental Figure 4. Graphical representation of the SMR5 and SMR7 T-DNA 

insertion lines.  

(A), Intron-exon organization of the Arabidopsis SMR5 and SMR7 genes. Black and white 

boxes represent coding and non-coding regions, respectively. The white triangles indicate the T-

DNA insertion sites. (B), qRT-PCR analysis on wild-type, SMR5KO, SMR7KO, and SMR5KO 

SMR7KO seedlings using primers specific to either SMR5 or SMR7. Expression levels in wild 

type were arbitrary set to one. Data represent mean ± SE (n = 3). 
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Supplemental Figure 5. SMR5 and SMR7 expression levels in response to high light 

treatment.  

One-week old wild type Col-0 plants were either control treated or exposed for 48 h to high 

light. Complete seedlings were harvested for RT-PCR analysis. Data represent mean ± SE (n = 

3). 

 

 

 

 

 

 

Supplemental Figure 6. Relative root growth of SMR5KO, SMR7KO, and SMR5KO 

SMR7KO plants upon HU treatment. 

Five-day-old seedlings were transferred to control medium or medium supplemented with 1 

mM HU. Data plot the root growth ratio on HU versus control plates over 4 days after transfer. 

HU-hypersensitive WEE1KO plants were included as positive control. Data represent mean ± SE 

(n > 15). 
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Supplemental Table 1. Meta-analysis of genes induced in multiple DNA damage 

experiments. 
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Supplemental Table 2. Annotated Arabidopsis SIM/SMR genes. 

AGI locus Annotation 
At5g04470 SIM 
At3g10525 SMR1 
At1g08180 SMR2 
At5g02420 SMR3 
At5g02220 SMR4 
At1g07500 SMR5 
At5g40460 SMR6 
At3g27630 SMR7 
At1g10690 SMR8 
At1g51355 SMR9 
At2g28870 SMR10 
At2g28330 SMR11 
At2g37610 SMR12 
At5g59360 SMR13 

 

 

 

Supplemental Table 3. DNA ploidy level distribution in transgenic plants 

overexpressing SMR4, SMR5, or SMR7. 

Ploidy (%) Col-0 SMR4 OE SMR5 OE SMR7 OE 

2C 19.6 ± 0.2 17.1 ± 0.1 23.6 ± 0.9 24.2 ± 1.3 
4C 26.3 ± 1.2 19.4 ± 0.5 21.3 ± 0.8 29.2 ± 0.7 
8C 49.2 ± 0.5 34.9 ± 3.4 34.8 ± 0.5 36.1 ± 0.2 
16C 4.6 ± 0.7 27.1 ± 3.1 19.6 ± 0.2 9.5 ± 0.9 

32C 0.2 ± 0 1.5 ± 0.6 0.7 ± 0.1 1.1 ± 0.1 
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Supplemental Table 4. List of primers used for cloning, genotyping and RT-PCR. 
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ABSTRACT 

As important cell cycle transcription factors, E2F proteins play a crucial function 

in DNA damage response in mammals. However, little is known about E2F 

features upon genotoxic stress in plants. In our work, mutants of E2Fa and E2Fb 

were found to be resistant to DNA damage caused by the radiomimetic drug 

bleomycin. We illustrate that this resistance is likely due to a constitutive weak 

activation of the DNA damage response (DDR) pathway triggered through the 

depletion of MCM proteins, without inhibiting growt h of plants in the absence of 

exogenous DNA damage inducing agents. In the e2fa-2/e2fb double mutant MCM 

expression falls to minimal levels, triggering a more severe DDR that results in 

shrinkage of the root meristem under control conditions. Our results suggest that 

E2F transcription factors counteract DNA damage, while E2F absence leads to an 

endogenous DNA damage response that at slightly increased levels allows for an 

adaptive response that makes the plant more tolerant to higher genotoxic levels. 

Adapted from manuscript: Dalong Yi, Sandy Vanderauwera, Barbara Berckmans,

Claire Lessa Alvim Kamei, Toon Cools, Hilde Van den Daele, Lorenzo Borghi, 

Wilhelm Gruissem, Lieven De Veylder. E2F depletion renders DNA stress resistance

(Manuscript in preparation) 
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INTRODUCTION 

E2F transcription factors are well-known transcription factors controlling cell division. 

They regulate the expression of many genes that are mostly involved in DNA 

replication (Pagano et al., 1992; Ramírez-Parra et al., 1999; Vandepoele et al., 2005). 

Dimerization partner (DP) proteins associate with E2Fs to form a heterodimeric 

complex that binds the promoters of genes containing a E2F cis-acting element (van den 

Heuvel and Dyson, 2008). Activity of E2F/DP complexes can be inhibited by the 

Retinoblastoma/Retinoblastoma related protein (RB/RBR) (Murphree and Benedict, 

1984; Weinberg, 1995). Over the last decades, the core functions of plant E2F/DP 

transcription factors have been partially characterized. They appear to be crucial for the 

regulation of DNA replication, endoreplication, and cell differentiation. Specifically, 

E2Fs play a crucial role in the regulation of G1-to-S-phase transition (Ren et al., 2002). 

Six members of E2F family transcription factor family (E2Fa, E2Fb, E2Fc, DEL1/E2Fe, 

DEL2/E2Fd, and DEL3/E2Ff) have been identified in Arabidopsis. E2Fa and E2Fb are 

two positive regulators that promote S-phase entry and progression. They are mostly 

expressed in proliferating tissues (De Veylder et al., 2002; Mariconti et al., 2002; 

Sozzani et al., 2006). 

In mammals, E2F/DP activity has a big impact on the DNA damage response (DDR) 

(Tsuge et al., 2005; DeGregori and Johnson, 2006; Hoglinger et al., 2007) by 

controlling transcription of a wide range of genes that are involved in cell-cycle 

progression and DNA synthesis, replication and repair. E2F1 protein accumulates to 

trigger DNA repair genes for DNA double-strand break and UV radiation–induced 

damage repair (Anup K. Biswas et al., 2012). E2F3 acts upstream of E2F1. E2F1 in turn 

acts upstream of E2F2. Upon DNA damage, E2F2 responds to the DNA damage 

through E2F3, initializing apoptosis, making E2F3 a key regulator of DNA damage-

induced apoptosis (Martinez et al., 2010). Meanwhile, E2F1 control E2F7 and E2F8 

(Christensen et al., 2005), and E2F7 and E2F8 can give a feedback E2F1 expression 

(Chen et al., 2012). Microarray analysis of E2F target gene expression upon DNA 

damage showed they are involved in DNA replication, DNA repair and mitosis. These 

results indicate that E2F-dependent gene activation contributes to the cellular response 
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to DNA damage both at S phase and during mitosis (Polager et al., 2002; Ren et al., 

2002). 

The minichromosome maintenance complex (MCM) is a helicase complex that plays a 

role in both the initiation and the elongation phases of DNA replication, specifically 

during the formation and elongation of the replication fork. It is a key component of the 

pre-replication complex to initialize DNA replication, and also a key component of 

replicative helicase (Tsuge et al., 2005; DeGregori and Johnson, 2006; Hoglinger et al., 

2007). The first identified MCM protein in Arabidopsis is PROLIFERA (PRL, MCM7) 

(Springer et al., 1995). PRL/MCM7 is expressed in dividing cells and plays a role during 

embryo development. Its gene product is localized in the nucleus during the G1 phase 

(Springer et al., 2000). MCM5 and MCM7 proteins were also reported to accumulate in 

G1, S and G2 phases (Shultz et al., 2009). There are reports showing that reduction of 

MCM levels lead to the defects in genome stability in yeast (Liang et al., 1999; Fitch et 

al., 2003). Analogously, depletion of the E2F TARGET GENE 1 (ETG1) protein that 

interacts with MCM proteins during DNA replication triggered a DDR response 

(Takahashi et al., 2008; 2010).  

The mechanisms by which most of the E2F family members respond to DNA damage 

are poorly understood in plants. Moreover, the role they play in the DNA damage 

response has not been extensively explored. Here, we demonstrate that the depletion of 

E2Fa or E2Fb confers resistance to DNA damage caused by the radiomimetic drug 

bleomycin (BM). We illustrate that this resistance is likely due to a drop in of MCM 

gene expression, triggering a DDR without compromising the cell cycle. Contrary, in 

the E2FaKO E2FbKO double mutant MCM expression fall to minimal levels, triggering a 

more severe DDR that results in shrinkage of the root meristem.  
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Figure 1. E2FKO primary root growth in response to bleomycin. 

 (A-B) Average primary root lengths of wild-type (Col-0), E2FaKO, E2FbKO and 

E2FaKO×E2FbKO and seedlings transferred at 5 DAG to mock (A) or 0.3 µg/mL BM-containing 

medium (B). (C-D) Cortex cell lengths in function of distance from the QC for wild-type (Col-

0), E2FaKO, E2FbKO and E2FaKO×E2FbKO seedlings transferred at 5 DAG for 24 hrs. to mock 

(C) or 0.3 µg/mL BM-containing medium (D). Error bars represent standard error of the mean 

(n > 15). (E) Representative examples of root meristems of wild-type (Col-0), E2FaKO, E2FbKO 

and E2FaKO×E2FbKO after transfer for 24 hrs. to mock (-BM) or 0.3 µg/mL BM-containing 

(+BM) medium. Arrows mark the size of the meristems. 
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RESULTS 

E2FKO plants show resistance towards bleomycin 

E2F transcription factors are important for cell cycle regulation and cell proliferation, 

and have been implicated in other organisms to be part of the DNA damage stress 

response (De Veylder et al., 2002; Mariconti et al., 2002). To analyse a putative role for 

the Arabidopsis E2Fa and E2Fb transcription factors in DDR, we measured root growth 

of plants being exposed to BM. Wild-type (Col-0) and E2Fa and E2Fb T-DNA 

insertion mutant lines (e2fa-2 and e2fb) (Berckmans et al., 2011) were germinated on 

vertical plates for 5 days and subsequently seedlings were transferred to control medium 

or medium supplemented 0.3 µg/mL BM. Using this concentrantion of BM, the root 

growth was inhibited rather than completely arrested. For 10 days root growth was 

measured. Root growth of the E2FKO mutant lines was identical to control plants in the 

absence of BM (Figure. 1A). In the presence of BM, growth of the control plants was 

inhibited. In contrast, both E2FKO lines appeared to be insensitive to BM treatment 

(Figure. 1B), resulting in an approximately 20% longer primary root length, compared 

to the control plants. A significant difference in root length between wild-type and the 

E2FKO lines appeared from day 6 onwards (Student’s t-test P-value < 0.05).  

Table 1. Length of cortex meristem 
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Figure 2. E2Fa stimulates expression of SMR4 and SMR7. 

(A) E2F cis-acting elements in promoters of SMR4 and SMR5. Triangles denote the position of 

the different elements. (B) Transcriptional activation of pSMRs:LUC constructs by E2Fa and 

DPa. Protoplasts were either controlled transformed with pSMRs:LUC only (control), or in 

combination with CaMV35:E2Fa (+E2Fa), CaMV35:DPa (+DPa), or CaMV35:E2Fa and 

CaMV35:DPa (+E2Fa+DPa). Data represent mean with SEM (n = 6). (C-E) Relative SMR4 (C), 

SMR5 (D), and SMR7 (E) expression level in wild-type (Col-0), E2FaKO, E2FbKO and 

E2FaKO×E2FbKO root tips, both in control treated plants (-BM) of plants treated for 24 hrs. with 

0.3 µg/mL BM (+BM). Data represent mean ± SE (n = 3).  
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To investigate the underlying reasons of the BM resistance phenotype, we plotted 

cortical cell length in function form distance from the stem cell niche. Five-day-old 

seedlings were transferred to 0.3 µg/mL BM-containing or mock medium for 24 h. In 

absence of BM no significant difference was observed between the different genotypes. 

Upon growth on BM, wild type cortical cells entered the cell expansion phase earlier, 

resulting into shrinkage of the root meristem (Figure 1E). This was not observed in both 

E2FKO lines, which maintained a meristem size being identical to that of the non-treated 

plants (Figure 1, Table 1). These data indicate the ability of the E2FKO lines to 

withstand the BM treatment, probably resulting from the inability to activate a cell cycle 

checkpoint. 

E2F transcriptional factors stimulate SMR gene expression. 

SIM/SMR proteins belong to a new family of CDK inhibitors (Yi et al., 2014), with 

SMR4, SMR5 and SMR7 activating a DNA stress induced cell cycle checkpoint. From 

promoter analysis we found E2F cis-acting binding site in the promoter regions of 

SMR4 and SMR7 (Figure 2A), suggesting that the impaired checkpoint activation in the 

E2FKO lines might be due the inability to activate SMR4 and SMR7 expression. Co-

expressing the E2Fa and DPa transcription factors resulted in a dramatic induction in 

expression of both SMR4 and SMR7 in Arabidopsis protoplasts, illustrating that 

E2Fa/DPa indeed has the potential to activate both genes. In contrast, SMR5 expression 

was not significantly induced, correlating with absence of an E2F cis-acting element in 

its promoter (Figure 2B). 

The RETINOBLASTOMA RELATED 1 (RBR1) protein is a plant homolog of the 

tumor suppressor Retinoblastoma (pRb), which is a key regulator of the cell cycle 

though regulating activity of E2F/DP complex (Grafi et al., 1996; Ramírez-Parra et al., 

1999; Harbour and Dean, 2000). An inducible RBR1 RNA interference system has been 

developed to silence RBR1 activity in Arabidopsis (Grafi et al., 1996; Ramírez-Parra et 

al., 1999; Borghi et al., 2010; Gutzat et al., 2011). Three-day-old inducible RBR1 RNA 

seedlings that contained either the PSMR4:GUS or PSMR7:GUS reporter construct were 

germinated in the medium supplemented with β-estradiol. Both lines displayed a 

dramatic increase in GUS activity upon silencing of RBR1 (Figure S1). Again, the 

PSMR5:GUS reporter was not induced. These results corroborate the control of SMR4 and 

SMR7 transcription by E2F transcription factors. 
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Figure 3. Meta-analysis of E2Fa controlled DNA damage response genes. 

(A) Comparison of genes differentially expressed in response to E2Fa knockout (G), bleomycin 

treatment (T), or both (G×T). (B) Overlap between genes being down-regulated in E2FaKO, 

upregulated in E2Fa/DPaOE plants, and bound by E2F, as defined by Naouar et al. (2009). (C) 

Hierarchical cluster analysis of G+T and G×T genes. Green and red represent down- and up-

regulated gene expression, respectively. 
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To address whether the E2F transcription factors contribute to the DNA stress 

inducibility of the SMR4, SMR5, and SMR7 genes, we measured their expression levels 

by RT-PCR in E2FKO lines grown under control conditions, or in the presence of BM. 

Only the SMR4 gene displayed a significant (P<0.05 for comparison with WT) decrease 

in expression level in both knockout backgrounds (Figure 2C-E). Nevertheless, its 

expression was still induced upon BM treatment, like observed for SMR5 and SMR7. 

Thus, although SMR genes are under transcription control of E2F transcription factors, 

these transcription factors appear not to contribute to their DNA stress inducibility. 

Thus the BM resistance of the E2FKO lines is unlikely to be due to impaired SMR-

dependent checkpoint activation. 

E2FaKO is affected in expression of DDR and replication genes 

To uncover the mechanism by which the E2FKO lines confer BM resistance, we 

performed a microarray analysis comparing 5-day-old wild-type and E2FaKO root tips 

of plants control treated or grown for 24h on medium supplemented with 0.3 µg/mL 

BM. Statistical analysis identified 583 genes being differentially expressed (P < 0.001) 

(G sign) between both genotypes under control conditions, of which 206 and 377 being 

down-regulating and up-regulated, respectively (Table S1, Figure 3A). GO analysis of 

the 206 downregulated genes from the E2FaKO microarray suggests an involvement of 

these genes in stress response (Figure S3C) and cell cycle regulation (Figure S3D). We 

compared the E2FaKO significant down-regulated genes from our microarray datasets 

with the E2F target genes that have at least one putative E2F cis-acting element in their 

1-kb promoter and the significant upregulated genes in E2Fa/DPaOE co-expressing 

plants, as identified through microarray analysis (Naouar et al., 2009) (Figure 3B). 

Interestingly, 58 E2Fa target genes (Table S2) were downregulated in the E2FaKO line, 

and 10 of these E2F target genes were also significantly upregulated in the E2Fa/DPaOE 

(Table S2, Figure 3B). From the corresponding GO analysis it can be seen that they are 

mainly involved in DNA replication (Figure S3A).  
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Figure 4. MCM family genes are under the control of E2F transcription factors. 

(A) The expression level in wild-type (Col-0), E2FaKO (e2fa-2), E2FbKO (e2fb) ,and 

E2FaKO×E2FbKO (e2fa-2×e2fb) root tips of MCM genes being identified as differentially 

expressed in the microarray dataset. (B) Relative BRCA1 and PARP2 expression levels in wild-

type (Col-0), E2FaKO, E2FbKO and E2FaKO×E2FbKO seedlings. Expression levels in wild type 

were arbitrary set to one. Data represent mean ± SE (n = 3). 



CHAPTER 3 

 - 115 - 

Table 2. MCM expression in E2FaKO microarray 

 

 

Several MCM family members are present in the 10 overlapping E2F target genes that 

are down and upregulated in the E2FaKO and E2Fa/DPaOE lines respectively (Table 2). 

The minichromosome maintenance (MCM) complex is important for DNA replication 

as a heterohexamer complex composed of MCM2 to MCM7 proteins. The MCM 

complex is part of the helicase that unwinds DNA during replication (Tye and Sawyer, 

2000; Labib and Diffley, 2001; Forsburg, 2004). The Arabidopsis MCM genes can be 

divided into 2 groups. The promoters of the first group of genes which include MCM5, 

MCM3, MCM7 (PRL), MCM4, MCM6, MCM2, and MCM8 hold an E2F cis-acting 

element. All components of the MCM2-7 complex belong to this group. The remaining 

MCM genes (MCM9, MCM10, EMB1688 and AT1G67460) do not contain such binding 

site in their promoters (Naouar et al., 2009). Among those genes with an E2F cis-acting 

element, MCM3, MCM4, MCM5 and MCM7 were significantly down and upregulation 

in the E2FaKO and E2Fa/DPaOE lines, respectively. MCM2 and MCM6 showed a non-

significant reduction in expression level in E2FaKO microarray datasets. These results 

were confirmed by quantitative RT-PCR (Figure 4A). 

The BM treatment resulted into 1761 differentially genes (Table S1), among which 963 

genes were up-regulating and 798 genes were down-regulating. In total 209 genes 

showed a significant change both in genotype and treatment (G+T). These genes are 

thus induced by BM in an E2Fa independent manner. To investigate the interaction 

between the DDR and E2Fa regulating pathway, a two-way ANOVA analysis was 
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performed, identifying 193 genes for which expression is dependent both upon E2Fa 

and DDR (G×T). The expression of these genes upon DNA damage is affected by E2Fa. 

To investigate the genes that are both influenced by the E2Fa transcription factor and 

DNA damage response, we pooled G+T and G×T genes together for cluster analysis. 

Using TreeView (Page, 1996) (Figure 3C), we can divide these 387 genes to 4 clusters. 

Cluster 1 and Cluster 2 genes show dramatic induction upon BM treatment (Figure S4-

S5). The genes belonging to Cluster 1 show low expression level in the E2FaKO line 

under control conditions. GO categorization showed that they are involved in DNA-

dependent DNA replication initiation, DNA geometric change, DNA conformation 

change and protein folding. The genes of Cluster 2 show an elevated expression level in 

E2FaKO under both control and DNA stress conditions, and appear to be enriched for 

DNA and nucleic acid metabolic process, DNA replication, response to DNA damage 

and DNA repair. Cluster 3 and 4 hold genes that have a low expression level in the 

presence of BM, being enriched for genes involved iron transport (Figure S6).  

Knockout of both E2Fa and E2Fb triggers endogenous DNA damage 

response 

Next to the single E2FKO lines, we analyzed root growth of the double mutant. Similar 

to the single mutants, the E2FaKO×E2FbKO mutant showed under control conditions no 

clear growth phenotype. Surprisingly, in the presence of BM the double mutant grew 

worse than both single mutants, although still better than the control plants (Figure 1B). 

When measuring the cortical cell length, it appeared that under both control and BM 

conditions cells expanded prematurely (Figure 1C,D), resulting into a significant 

shrinkage of the root meristem (Figure 1E, Table 1).  

The decrease in meristem size indicated the activation of a cell cycle checkpoint in the 

E2FKO double mutant, already in the absence of DNA damage. To confirm this 

hypothesis we examined SMR4, SMR5 and SMR7 expression levels in the E2FaKO 

E2FbKO mutant. All were strongly induced in the double mutant both under control 

conditions and in the presence of BM, in comparison to the control line and single 

mutants (Figure 2C-E). Additionally, expression of the DDR BRCA1 and PARP2 genes 

was strongly activated (Figure 4B), indicating indeed that the co-depletion of E2Fa and 

E2Fb triggered endogenous DNA stress. When measuring MCM expression levels, it 
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appeared that the expression values those that were found to be downregulated in the 

E2FaKO were even lower in the double mutant (Figure 4A). 

DISCUSSION 

The role of E2F transcription factors in DNA damage response and cell 

proliferation 

To maintain genome integrity, DNA repair should be finished before the next cell 

division. When DNA damage occurs, the cell cycle will be arrested for the damage to be 

repaired. A cell cycle arrest is an important reaction of the DDR in multicellular 

organisms. In plants, the E2F transcription factors likely perform important functions 

during the DDR. E2Fa co-localizes with γH2AX upon genotoxic conditions, which 

recruitment depends on ATM (Lang et al., 2012). Ribonucleotide reductase (RNR) and 

RNR-like genes are under the control of E2Fa in response of DNA damage (Roa et al., 

2009). Under UV-B stress, E2Fe/DEL1 controls the expression of the photolyase 

photoreactivating enzyme type-II cyclobutane pyrimidine dimer-photolyase DNA repair 

gene (PHR1) (Radziejwoski et al., 2011). ANTI-SILENCING FUNCTION1 (ASF1) is 

a key histone H3/H4 chaperone that participates in DNA repair processes in post-UV 

response. ASF1A and ASF1B encoding ASF1 proteins are also under control of E2Fa 

during cell cycle progression in Arabidopsis (Lario et al., 2013). FASCIATA1 (FAS1) 

encodes the CAF-1 large subunit, is another target of E2F transcription factors, and 

depletion of FAS1 causes hypersensitivity to both DNA replication stress and DNA 

damage (Kirik et al., 2006; Ramirez-Parra and Gutierrez, 2007; Hisanaga et al., 2013). 

In our results, we can find some genes like RNR1 and FAS1 being significantly 

upregulated among the different genotypes under control condition. In contrast, ETG1 

expression is reduced in E2FaKO. PHR1 and ASF1 did not present differences in 

expression in the absence of E2FaKO, which might be due to redundancy of different 

members of E2F family. These data suggest that E2Fs operates upstream regulation in 

DNA damage response. 

Surprisingly, despite E2Fa’s role as a transcriptional activator to DNA response genes, 

we observed that E2FaKO mutants display resistance to DNA induced by BM compared 

to control plants. A similar DNA stress resistance phenotype was observed for E2FbKO 
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plants. A likely mechanism by which E2Fs might contribute to a cell cycle checkpoint 

might have been the transcriptional activation of SMR genes, shown recently to arrest 

the cell cycle in an ATM dependent manner (Yi et al., 2014). However, despite the 

observation that the SMR4 and SMR7 genes holds E2F cis-acting bindings sites in their 

promoter region, and despite their transcriptional activation by E2Fa-DPa, E2FKO plants 

still displayed a transcriptional activation of SMR4/SMR7 upon administration of BM. 

Thus, likely a transcription factor being different to E2Fs control SMR activation in 

response to DNA damage. A likely candidate is the SOG1 (Yi et al., 2014). Rather than 

playing an active role in response to DNA damage, E2F-dependent transcription of 

SMR4 and SMR7 might be linked to S-phase progression. Indeed, in a sog1-1 mutant 

background a patchy expression pattern of SMR5 and SMR7 can be observed (Figure 

S7), likely reflecting E2F-driven cell cycle phase dependent gene expression. The role 

of SMR expression during the S phase awaits further characterization.  

E2Fa and E2Fb have partial redundant functions but they are different. 

Microarray analysis of E2FaKO plants showed that many genes are significantly reduced 

in expression, even in the absence of BM. These genes are mainly involved in DNA 

replication (Figure S3D) and stress response (Figure S3C). In the comparison analysis 

with E2F target genes, we found not all the E2Fa target genes being down-regulated 

(Figure 3B). These data can be can explained functional redundancy between E2Fa and 

E2Fb. As we discussed before, E2Fa and E2Fb likely recognize the same cis-acting 

element (Naouar et al., 2009). Furthermore, E2Fa target genes like MCMs show a strong 

reduction in the E2Fa/E2Fb double knockout line in comparison with the reduction in 

the single knockout lines (Figure 4). On the other hand, the many genes that are 

differential expressed in the E2FaKO line indicates that E2Fa and E2Fb are not 

completely redundant. Similar conclusions can be made from previous reports, such as 

E2Fa and E2Fb present different function to auxin in cell suspension cultures (Magyar 

et al., 2005) and lateral root development (Sozzani et al., 2006; Berckmans et al., 2011). 

The double knockout line in our experiment is e2fa-2×e2fb. This line does not present 

any obvious growth defect but the other double knock line which contains another E2Fa 

knockout allele (e2fa-1) is infertial. Thus, we can suppose that the absence of phenotype 

difference between e2fa-2×e2fb and WT is due to the partial loss-of-function product of 

E2Fa. Interestingly, from these data we can conclude that the E2FaKO downregulated 
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genes can be divided in two bio-process sets The genes with reduced expression in 

E2FaKO and upregulated in E2Fa/DPaOE can mainly be categorized into DNA 

replication, the remaining genes appear to correspond to stress response related 

processes (Figure S3).  

Activation of the DNA damage response renders genotoxicity resistance  

The E2FaKO and E2FbKO mutants show longer roots than wild-type plants under 

genotoxic stress, likely attributed to the maintenance of their meristem length upon BM 

treatment, contrary to the control meristems that display a clear shrinkage. Contrasting, 

E2Fa×E2Fb double knockout plants display a reduced meristem size under both control 

and DNA stress conditions. We postulate that this reduction in meristem size reflects 

the activation of an endogenous DNA stress checkpoint, likely due to a depletion of 

essential DNA replication factors. Candidate replication factors accounting for the 

endogenous DNA damage are subunits of the MCM2-7 complex. In yeasts, low levels 

of MCM2-7 complex proteins lead to accumulating genome damage caused by the 

abnormal DNA replication process (Liang et al., 1999). Actually, from the GO analysis 

of genes induced in E2FaKO plants in the absence of exogenous applied DNA stress, we 

can enrichment for DNA repair. In contrast with the induced genes in the E2Fa/DPaOE 

line, these genes are activated by E2Fs depletion which caused DDR rather than 

transcrioptional regulators by E2F (Figure 5). We speculate that the DDR is already 

activated at marginal levels in the single E2FKO plants, resulting into a basal 

transcriptional activation of DNA repair genes and granting E2FKO plants the potential 

to deal with BM stress better than wild type plants do. Especially, in our experiments, 

DNA damage stress was given by low doses of BM which inhibited root growth rather 

than completely arrested. 

In the E2Fa×E2Fb double mutant, MCM levels are reduced even more, probably to a 

level that causes more severe DNA damage, and thus already affecting plant growth in 

the absence of external applied DNA stress. This hypothesis is supported by the strong 

transcriptional activation of the SMR4, SMR5, SMR7 and the DDR makers BRCA1 and 

PARP2. A trade-off between a constitutive active DDR conferring resistance towards 

DNA damage inducing agents, and an already decreased cell division rate before BM 

treatment because of checkpoint activation, might explain why the double mutant 
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displays a slightly worse resistance towards DNA damage compared to the single E2F 

mutants. 

 

Figure 5. Model for E2Fs occurrences in DNA damage response.  

The resistance for DNA damage that is given by the absence of E2Fs is likely due to a 

constitutive weak activation of the DNA damage response (DDR) pathway triggered through 

the depletion of MCM proteins, without inhibiting growth of plants in the absence of exogenous 

DNA damage inducing agents. 
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Bleomycin effects metal-related DDR genes. 

In our research, BM was used as a DNA damaging agent. BM causes DNA DSBs 

(Favaudon, 1982) and inhibits the growth of both animal and plant cells by the 

accumulation of unrepaired DSBs. DNA cleavage by BM depends on oxygen and metal 

ions. The exact mechanism of DNA strand scission is unresolved, but it has been 

suggested that BM chelates metal ions (primarily iron), producing ROS that cleaves 

DNA (Burger et al., 1981; Favaudon, 1982). However more research is needed to 

describe the bio-processes of the BM-induced growth phenotype in plants. In our work, 

we showed that of the > 1700 differentially expressed genes upon treatment with BM, 

many genes being important for DNA repair, abiotic stress and cell cycle regulation. 

Interestingly, GO analysis showed there is a group of genes involved in iron transport 

(Fig). This can be explained by the function of BM (see before). Meanwhile, metal 

elements like iron (Fe), copper (Cu), chromium (Cr) and cobalt (Co) are toxic to DNA 

due to the production of superoxide radicals and hydroxyl radicals (Jomova and Valko, 

2011). Accumulation of these ions will repress DNA damage repair and influence cell 

cycle process (Hartwig et al., 2002) . From this part, we can find a new direction to 

discover the DNA damage response. 

METHODS 

Plant Materials and Growth Conditions 

The E2FaKO lines GABI_348E09 (e2fa-2) and MPIZ-244 (e2fa-1) alleles were acquired 

from the Max-Planck-Institut für Züchtungsforschung of Cologne (Rios et al., 2002) 

and E2FbKO line SALK_103138 (e2fb). Homozygous insertion alleles genotype them by 

metheod from (Berckmans et al., 2011). Primer sequences used for genotyping are 

given in Supplemental Table 4. Unless stated otherwise, plants of Arabidopsis thaliana 

(L.) Heyhn. (ecotype Columbia) were grown under long-day conditions (16 h of light, 8 

h of darkness) at 22°C on half-strength Murashige and Skoog (MS) germination 

medium (Lindahl et al., 1995). For bleomycin treatments, five-day-old seedlings were 

transferred into MS medium supplemented with 0.3 µg/mL bleomycin. 
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DNA and RNA Manipulation 

Genomic DNA was extracted from Arabidopsis leaves with the DNeasy Plant Kit 

(Qiagen) and RNA was extracted from Arabidopsis tissues with the RNeasy Mini Kit 

(Qiagen). After DNase treatment with the RQ1 RNase-Free DNase (Promega), cDNA 

was synthesized with the iScript cDNA Synthesis Kit (Bio-Rad). A quantitative RT-

PCR was performed with the SYBR Green kit (ROCHE) with 100 nM primers and 

0.125 µL of RT reaction product in a total of 5 µL per reaction. Reactions were run and 

analyzed on the LightCycler 480 (Roche) according to the manufacturer's instructions 

with the use of the following reference genes for normalization: ACTIN2 (At3g46520), 

EMB2386 (At1g02780). Statistical analysis was executed with the Statistical Analysis 

Software (SAS Enterprise Guide 5.1; SAS Institute, Inc.) using the mixed model 

procedure and P-values were Bonferroni adjusted for multiple measurements. Primers 

used for the RT-PCR are given in Supplemental Table 3. 

Transient reporter assay in Arabidopsis protoplasts 

The 500- and 1500-bp promoter sequences upstream of the translational start of SMRs, 

respectively, were amplified from genomic DNA using specific primers, cloned in the 

pDONRTM P4-P1R vector (Invitrogen) (Chapter 2) and subsequently cloned 

simultaneously with the fLUC sequence in the pm42GW7,3. These sequences were 

cloned in the pDONRTM P4-P1R vector and subsequently cloned simultaneously with the 

pENTR-min35S(-46)promoter containing a minimal Caulifower Mosaic virus (CaMV) 

35S promoter, and the firefly Luciferase (fLUC) sequence of the pEN-R1-L+-L2 vector in 

the pm42GW7 vector (Karimi et al., 2007) by multisite gateway cloning (Invitrogen). 

E2Fa and DPa sequences were amplified from genomic DNA by PCR using the 

primers described in Supplemental Table 4. The product fragments were created with 

the Pfu DNA Polymerase Kit (Promega, Catalog #M7745), and were cloned into a 

pDONR221 entry vector by BP recombination cloning. For generating the effector 

constructs, the full-length open reading frames of the A. thaliana E2F and DP genes were 

recombined in the p2GW7 vector by gateway cloning, containing the CaMV 35S 

promoter(Asada, 2006). Both reporter and effector plasmids were used to transfect 

protoplasts using the polyethylene glycol (PEG)/Ca2+ method, as described by De Sutter 

et al., 2005. Luciferase measurements were performed using the Dual-luciferase Reporter 
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1000 Assay System (Promega), according to the manufacturer’s instructions and as 

described before (De Sutter et al., 2005). Primers used are given in Supplemental Table 3 

Microscopy 

For confocal microscopy, root meristems were analyzed 2 days after transfer using a 

Zeiss LSM 510 Laser Scanning Microscope and the LSM Browser version 4.2 software 

(Zeiss). Plant material was incubated for 2 min in a 10µm PI solution to stain the cell 

walls and was visualized with a HeNe laser through excitation at 543nm. GFP 

fluorescence was detected with the 488-nm line of an Argon laser. GFP and PI were 

detected simultaneously by combining the settings indicated above in the sequential 

scanning facility of the microscope. Acquired images were quantitatively analyzed with 

the ImageJ v1.45s software (http://rsbweb.nih.gov/ij/) and Cell-o-Tape plug-ins (French 

et al., 2012).  

Microarray Analysis  

Seeds were plated on sterilized membranes and grown under a 16-h/8-h light/dark 

regime at 21°C. After 2 days of germination and 5 days of growth, the membrane was 

transferred to MS medium containing 0.3 µg/mL bleomycin for 24 h. Triplicate batches 

of root meristem material were harvested for total RNA preparation using the RNeasy 

plant mini kit (Qiagen). Each of the different root tip RNA extracts were hybridized to 

12 Affymetrix® Arabidopsis Gene 1.0 ST Arrays according to the manufacturer’s 

instructions at the Nucleomics Core Facility (Leuven, Belgium; 

http://www.nucleomics.be). Raw data were processed with the RMA algorithm (Emerit 

et al., 2004) using the Affymetrix Power Tools and subsequently subjected to a 

Significance Analysis of Microarray (SAM) analysis with "MultiExperiment Viewer 4" 

(MeV4) of The Institute for Genome Research (TIGR) (Tusher et al., 2001). The 

imputation engine was set as 10-nearest neighbor imputer and the number of 

permutations was 100. Expression values were obtained by log2-transforming the 

average value of the normalized signal intensities of the triplicate samples. Fold changes 

were obtained using the expression values of the treatment relative to the control 

samples. Expression profiles of genes following different experiment setting were 

analyzed by Two-way ANOVA,. Only significant change in the transcription level (P-

value < 0.001) genes were taken for next analysis. Fold-change values were 
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hierarchically clustered for genes and experiments by average linkage in MeV from 

TIGR. To determine significantly (P-value < 0.001) overrepresented GO categories 

among up- and down-regulated genes, we used the BiNGO plugin for Cytoscape 

(http://www.psb.ugent.be/cbd/papers/BiNGO/) (Maere et al., 2005).  

Accession Numbers 

Microarray results have been submitted to MiamExpress (www.ebi.ac.uk/miamexpress), 

with accession number E-MEXP-3977. Sequence data from this article can be found in 

the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following 

accession numbers: SMR4 (At5g02220); SMR5 (At1g07500); SMR7 (At3g27630); 

AT1G67460; MCM2 (AT1G44900); MCM3 (AT5G46280); MCM4 (AT2G16440) 

MCM5 (AT2G07690); MCM6 (AT5G44635); PRL (AT4G02060); MCM8 

(AT3G09660); MCM9 (AT2G14050); MCM10 (AT2G20980); EMB1688 

(AT1G67440); E2Fa (AT2G36010); E2Fb (AT5G22220). 
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Supplemental Data 

Supplemental Figure 1. SMR5 and SMR7 expression is RB -dependent 

 PSMR4:GUS (A,D), PSMR5:GUS (B,E), and PSMR7:GUS (C,F) reporter constructs introgressed into 

inducible RBR1 RNA interference backgrounds germinated on control medium (A, B, C) or 

medium supplemented with without 5 µM β-estradiol (D, E, F). 
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Supplemental Figure 2. GO analysis of G sign genes.  
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Supplemental Figure 3. GO analysis of reduced G sign genes.  

(A) GO analysis of overlapping E2F target genes that are down and upregulated in the E2FaKO 

and E2Fa/DPaOE. (B) GO analysis of genes only reduced in E2FaKO line but not induced in 

E2Fa/DPaOE . (C-D) GO analysis of E2Fa all reduced G sign genes. 

  



E2F depletion renders DNA stress resistance 

 - 128 - 

Supplemental Figure 4. GO analysis of Cluster 1 from G+T&G×T genes. 
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Supplemental Figure 5. GO analysis of Cluster 2 from G+T&G×T genes. 
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Supplemental Figure 6. GO analysis of Cluster 3+4 from G+T&G×T genes. 
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Supplemental Figure 7. SMR5 and SMR7 expressed in sog1-1 mutant background 
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Supplemental Table 1. List of significant differentially expressed genes in 

Microarray (P < 0.001) 

> G sign reducted genes  

AT3G30720 AT4G04223 AT3G01345 AT5G38005 AT2G24850 AT5G13220 AT2G20520 AT5G24110 AT2G36010 AT5G64510 

AT1G15040 AT1G80840 AT5G20230 AT3G27940 AT3G26570 AT1G17420 AT4G34410 AT1G70700 AT1G28480 AT1G76640 

AT1G72520 AT4G14548 AT1G54870 AT5G62210 AT4G25220 AT2G44840 AT2G34600 AT1G76650 AT5G18670 AT1G74930 

AT5G51190 AT5G13370 AT1G74950 AT2G26530 AT1G20340 AT5G07190 AT1G15010 AT4G10340 AT4G36040 AT5G39580 

AT4G24230 AT3G32030 AT3G48540 AT1G76470 AT1G10300 AT5G36925 AT2G22860 AT5G22410 AT1G44030 AT2G32150 

AT4G29780 AT3G51860 AT5G45110 AT5G47110 AT1G31800 AT1G09932 AT4G25050 AT1G06680 AT4G23180 AT1G22980 

AT4G22080 AT3G63540 AT1G74470 AT3G47650 AT5G40460 AT1G03600 AT3G51450 AT2G06520 AT2G34930 AT1G23710 

AT4G17490 AT3G01830 AT1G68590 AT1G18382 AT3G47470 AT5G11070 AT1G61340 AT2G32270 AT4G11280 AT3G56010 

AT2G07690 AT4G02530 AT3G21670 AT1G01770 AT1G73500 AT5G44490 AT1G18460 AT5G16120 AT3G23700 AT1G20510 

AT5G58650 AT4G40090 AT1G01140 AT2G38470 AT2G33460 AT1G71500 AT2G35260 AT5G57180 AT3G59080 AT3G13724 

AT2G18710 AT4G18020 AT1G02074 AT4G14860 AT5G64630 AT2G23320 AT3G01480 AT1G16130 AT5G19220 AT3G12930 

AT2G43330 AT2G06050 AT5G57625 AT1G05560 AT4G02330 AT4G38390 AT5G18840 AT5G46280 AT3G51870 AT3G62010 

AT4G01050 AT5G18748 AT2G31070 AT3G20670 AT3G01410 AT3G02790 AT1G33700 AT2G18800 AT5G41610 AT4G20325 

AT3G47490 AT3G27580 AT5G01100 AT2G36990 AT5G47910 AT4G12720 AT5G04140 AT1G69050 AT4G02060 AT5G67400 

AT5G58680 AT1G78915 AT5G26740 AT1G44350 AT2G33860 AT1G30950 AT1G72680 AT5G07440 AT4G36030 AT1G06760 

AT1G01720 AT3G12540 AT5G03160 AT4G28300 AT3G15518 AT1G11050 AT3G62420 AT2G16440 AT5G30510 AT5G13190 

AT2G35490 AT1G32990 AT2G47540 AT4G14210 AT1G67320 AT1G02850 AT3G11340 AT4G27020 AT4G02070 AT2G39670 

AT3G11420 AT5G63790 AT5G61670 AT1G65040 AT1G66760 AT3G12480 AT3G56510 AT1G13910 AT1G64280 AT4G20360 

AT1G54100 AT3G55610 AT1G59910 AT4G36050 AT2G26800 AT2G28190 AT1G24267 AT1G49480 AT2G47250 AT5G13750 

AT3G20560 ATMG00610 ATCG00540 AT1G31970 AT1G28250 AT3G52230 AT3G16480 ATCG00860 ATCG01280 

AT3G23990 AT3G04600 AT3G50910 ATMG01220 AT4G26900 AT4G37910 ATCG00500  

> G sign inducted genes 

AT5G02500 AT5G13710 AT5G35180 AT1G29050 AT5G10170 AT1G25145 AT5G14550 AT2G21790 AT4G36945 AT5G15230 

AT1G66270 AT5G47820 AT3G56480 AT2G13820 AT1G24793 AT2G43610 AT2G01190 AT5G12250 AT3G56370 AT1G73340 

AT2G42070 AT1G20100 AT5G46740 AT3G22850 AT3G01820 AT5G47540 AT1G14210 AT1G22530 AT4G35560 AT1G25210 

AT3G03380 AT2G34020 AT4G28410 AT4G28650 AT5G45510 AT2G40840 AT1G74660 AT4G39400 AT3G05990 AT2G28790 

AT4G35890 AT3G09540 AT5G02190 AT5G63760 AT1G64440 AT1G72050 AT4G26670 AT1G27210 AT4G35380 AT5G35670 

AT1G79060 AT2G32590 AT5G11000 AT1G06470 AT5G20960 AT1G18910 AT5G27100 AT1G33750 AT1G21880 AT5G01881 

AT3G47680 AT2G39040 AT2G01420 AT2G20750 AT2G25640 AT4G22910 AT3G20150 AT2G02680 AT5G18550 AT3G59830 

AT4G16970 AT5G62410 AT1G79450 AT2G39530 AT3G63430 AT1G52050 AT1G77320 AT2G31900 AT1G65470 AT5G46600 

AT3G48340 AT2G24490 AT3G23510 AT1G79580 AT1G75620 AT3G16440 AT4G18300 AT2G21610 AT4G34260 AT4G13990 

AT3G54750 AT2G13540 AT2G12646 AT1G79460 AT1G49030 AT2G31130 AT2G28960 AT1G09910 AT4G10640 AT2G13550 

AT1G50060 AT5G40820 AT2G23410 AT1G10760 AT2G35020 AT1G71110 AT1G03840 AT5G45050 AT2G45870 AT5G38280 

ATCG00590 AT1G09450 AT5G08260 AT5G38140 AT3G59320 AT1G60390 AT3G10410 AT5G60630 AT1G69526 AT5G54020 

AT4G03820 AT5G20830 AT1G29630 AT4G23400 AT4G37160 AT3G62110 AT1G78520 AT5G09960 AT2G28870 AT5G44510 

AT1G76730 AT3G61760 AT1G27110 AT3G49190 AT4G31920 AT3G01516 AT1G10520 AT1G57790 AT1G66730 AT5G23220 

AT3G19430 AT1G05835 AT5G11540 AT1G05650 AT5G63960 AT4G20350 AT3G14890 AT5G62720 AT2G17080 AT2G17230 

AT2G14095 AT3G50340 AT3G51330 AT3G24495 AT2G16230 AT2G03090 AT2G21050 AT4G18550 AT4G08770 AT4G39740 

AT4G19130 AT1G69770 AT5G10280 AT5G23420 AT5G10278 AT5G04200 AT3G20490 AT1G57820 AT3G01840 AT3G04980 

AT3G05480 AT3G19210 AT3G23730 AT5G38690 AT2G46570 AT4G39380 AT1G10530 AT5G65450 AT2G37700 AT5G44130 

AT5G27000 AT1G79110 AT5G10390 AT1G34340 AT5G25754 AT5G62960 AT4G22214 AT4G39230 AT4G01533 AT1G06080 

AT2G03420 AT4G15890 AT1G55265 AT3G29810 AT4G22212 AT3G48260 AT5G56320 AT5G61000 AT4G35520 AT1G08730 

AT1G79760 AT2G32940 AT3G49380 AT4G39630 AT4G14770 AT2G21540 AT5G01370 AT3G52115 AT3G59210 AT5G61455 

AT1G02740 AT2G28100 AT5G62550 AT3G01850 AT5G63920 AT1G05530 AT3G07980 AT1G53543 AT3G03500 AT5G48600 
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AT3G10470 AT3G19230 AT3G17998 AT2G31902 AT5G59660 AT1G03502 AT1G23160 AT1G03070 AT2G35850 AT1G27140 

AT4G16770 AT5G14920 AT1G73620 AT5G02790 AT1G12420 AT1G78940 AT5G49110 AT4G25540 AT3G16300 AT3G20840 

AT2G37290 AT1G05780 AT2G31920 AT1G49160 AT5G60520 AT1G66040 AT2G41190 AT5G49290 AT3G55040 AT4G39000 

AT5G35740 AT3G09660 AT4G03270 AT3G63375 AT4G37950 AT1G08260 AT3G50870 AT3G55734 AT3G05740 AT3G12220 

AT3G54710 AT4G21902 AT5G37800 AT3G07580 AT5G16850 AT1G32860 AT2G27970 AT5G20045 AT3G29300 AT5G51470 

AT5G27610 AT3G59100 AT2G47230 AT3G29780 AT1G73780 AT5G25380 AT4G36880 AT5G43500 AT4G21070 AT5G54960 

AT3G23360 AT4G16745 AT3G53680 AT5G49160 AT3G24320 AT2G16850 AT1G64910 AT5G07400 AT1G17460 AT3G18500 

AT5G06590 AT3G48346 AT3G26380 AT3G21420 AT5G13060 AT5G25580 AT5G24205 AT3G46616 AT1G49952 AT1G11735 

AT4G09250 AT4G21590 AT5G53380 AT3G14740 AT1G57770 AT2G43890 AT4G09200 AT4G09310 AT5G44010 AT5G10440 

AT3G61810 AT2G47610 AT2G47590 AT3G18730 AT2G26910 AT4G14970 AT3G10420 AT5G26270 AT1G10810 AT2G23910 

AT5G60250 AT5G48390 AT1G19940 AT4G37235 AT1G71750 AT4G35200 AT2G14050 AT4G17380 AT1G04650 AT5G01630 

AT4G17760 AT2G01905 AT1G02670 AT3G05625 AT1G15550 AT1G50970 AT4G16807 AT1G67180 AT1G06460 AT2G26560 

AT2G41810 AT2G47650 AT1G67370 AT3G47460 AT3G28880 AT3G44765 AT2G47580 AT1G79890 AT2G47630 AT4G22217 

AT4G30650 AT2G47600 AT2G28560 AT4G15393 AT5G07660 AT4G20210 AT1G04600 AT2G46980 AT1G56500 AT2G46980 

AT2G47640 AT1G79640 AT3G20475 AT5G35870 AT5G25640 AT3G47040 AT2G47620 AT3G60660 AT1G26540 AT4G09300 

AT5G24206 AT1G15310 AT2G24970 AT2G20250 AT4G33870 AT1G77860 AT4G13555 
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>G×T 

AT3G30720 AT4G04223 AT3G01345 AT5G38005 AT2G24850 AT5G13220 AT2G20520 AT5G24110 AT2G36010 AT5G64510 

AT1G15040 AT1G80840 AT5G20230 AT3G27940 AT3G26570 AT1G17420 AT4G34410 AT1G70700 AT1G28480 AT1G76640 

AT1G72520 AT4G14548 AT1G54870 AT5G62210 AT4G25220 AT2G44840 AT2G34600 AT1G76650 AT5G18670 AT1G74930 

AT5G51190 AT5G13370 AT1G74950 AT2G26530 AT1G20340 AT5G07190 AT1G15010 AT4G10340 AT4G36040 AT5G39580 

AT4G24230 AT3G32030 AT3G48540 AT1G76470 AT1G10300 AT5G36925 AT2G22860 AT5G22410 AT1G44030 AT2G32150 

AT4G29780 AT3G51860 AT5G45110 AT5G47110 AT1G31800 AT1G09932 AT4G25050 AT1G06680 AT4G23180 AT1G22980 

AT4G22080 AT3G63540 AT1G74470 AT3G47650 AT5G40460 AT1G03600 AT3G51450 AT2G06520 AT2G34930 AT1G23710 

AT4G17490 AT3G01830 AT1G68590 AT1G18382 AT3G47470 AT5G11070 AT1G61340 AT2G32270 AT4G11280 AT3G56010 

AT2G07690 AT4G02530 AT3G21670 AT1G01770 AT1G73500 AT5G44490 AT1G18460 AT5G16120 AT3G23700 AT1G20510 

AT5G58650 AT4G40090 AT1G01140 AT2G38470 AT2G33460 AT1G71500 AT2G35260 AT5G57180 AT3G59080 AT3G13724 

AT2G18710 AT4G18020 AT1G02074 AT4G14860 AT5G64630 AT2G23320 AT3G01480 AT1G16130 AT5G19220 AT3G12930 

AT2G43330 AT2G06050 AT5G57625 AT1G05560 AT4G02330 AT4G38390 AT5G18840 AT5G46280 AT3G51870 AT3G62010 

AT4G01050 AT5G18748 AT2G31070 AT3G20670 AT3G01410 AT3G02790 AT1G33700 AT2G18800 AT5G41610 AT4G20325 

AT3G47490 AT3G27580 AT5G01100 AT2G36990 AT5G47910 AT4G12720 AT5G04140 AT1G69050 AT4G02060 AT5G67400 

AT5G58680 AT1G78915 AT5G26740 AT1G44350 AT2G33860 AT1G30950 AT1G72680 AT5G07440 AT4G36030 AT1G06760 

AT1G01720 AT3G12540 AT5G03160 AT4G28300 AT3G15518 AT1G11050 AT3G62420 AT2G16440 AT5G30510 AT5G13190 

AT2G35490 AT1G32990 AT2G47540 AT4G14210 AT1G67320 AT1G02850 AT3G11340 AT4G27020 AT4G02070 AT2G39670 

AT3G11420 AT5G63790 AT5G61670 AT1G65040 AT1G66760 AT3G12480 AT3G56510 AT1G13910 AT1G64280 AT4G20360 

AT1G54100 AT3G55610 AT1G59910 AT4G36050 AT2G26800 AT2G28190 AT1G24267 AT1G49480 AT2G47250 AT5G13750 

AT3G20560 ATMG00610 ATCG00540 AT1G31970 AT1G28250 AT3G52230 AT3G16480 ATCG00860 ATCG01280 

AT3G23990 AT3G04600 AT3G50910 ATMG01220 AT4G26900 AT4G37910 ATCG00500 AT5G02500 AT5G13710 

AT5G35180 AT1G29050 AT5G10170 AT1G25145 AT5G14550 AT2G21790 AT4G36945 AT5G15230 AT1G66270 AT5G47820 

AT3G56480 AT2G13820 AT1G24793 AT2G43610 AT2G01190 AT5G12250 AT3G56370 AT1G73340 AT2G42070 AT1G20100 

AT5G46740 AT3G22850 AT3G01820 AT5G47540 AT1G14210 AT1G22530 AT4G35560 AT1G25210 AT3G03380 AT2G34020 

AT4G28410 AT4G28650 AT5G45510 AT2G40840 AT1G74660 AT4G39400 AT3G05990 AT2G28790 AT4G35890 AT3G09540 

AT5G02190 AT5G63760 AT1G64440 AT1G72050 AT4G26670 AT1G27210 AT4G35380 AT5G35670 AT1G79060 AT2G32590 

AT5G11000 AT1G06470 AT5G20960 AT1G18910 AT5G27100 AT1G33750 AT1G21880 AT5G01881 AT3G47680 AT2G39040 

AT2G01420 AT2G20750 AT2G25640 AT4G22910 AT3G20150 AT2G02680 AT5G18550 AT3G59830 AT4G16970 AT5G62410 

AT1G79450 AT2G39530 AT3G63430 AT1G52050 AT1G77320 AT2G31900 AT1G65470 AT5G46600 AT3G48340 AT2G24490 

AT3G23510 AT1G79580 AT1G75620 AT3G16440 AT4G18300 AT2G21610 AT4G34260 AT4G13990 AT3G54750 AT2G13540 

AT2G12646 AT1G79460 AT1G49030 AT2G31130 AT2G28960 AT1G09910 AT4G10640 AT2G13550 AT1G50060 AT5G40820 

AT2G23410 AT1G10760 AT2G35020 AT1G71110 AT1G03840 AT5G45050 AT2G45870 AT5G38280 ATCG00590 AT1G09450 

AT5G08260 AT5G38140 AT3G59320 AT1G60390 AT3G10410 AT5G60630 AT1G69526 AT5G54020 AT4G03820 AT5G20830 

AT1G29630 AT4G23400 AT4G37160 AT3G62110 AT1G78520 AT5G09960 AT2G28870 AT5G44510 AT1G76730 AT3G61760 

AT1G27110 AT3G49190 AT4G31920 AT3G01516 AT1G10520 AT1G57790 AT1G66730 AT5G23220 AT3G19430 AT1G05835 

AT5G11540 AT1G05650 AT5G63960 AT4G20350 AT3G14890 AT5G62720 AT2G17080 AT2G17230 AT2G14095 AT3G50340 

AT3G51330 AT3G24495 AT2G16230 AT2G03090 AT2G21050 AT4G18550 AT4G08770 AT4G39740 AT4G19130 AT1G69770 

AT5G10280 AT5G23420 AT5G10278 AT5G04200 AT3G20490 AT1G57820 AT3G01840 AT3G04980 AT3G05480 AT3G19210 

AT3G23730 AT5G38690 AT2G46570 AT4G39380 AT1G10530 AT5G65450 AT2G37700 AT5G44130 AT5G27000 AT1G79110 

AT5G10390 AT1G34340 AT5G25754 AT5G62960 AT4G22214 AT4G39230 AT4G01533 AT1G06080 AT2G03420 AT4G15890 

AT1G55265 AT3G29810 AT4G22212 AT3G48260 AT5G56320 AT5G61000 AT4G35520 AT1G08730 AT1G79760 AT2G32940 

AT3G49380 AT4G39630 AT4G14770 AT2G21540 AT5G01370 AT3G52115 AT3G59210 AT5G61455 AT1G02740 AT2G28100 

AT5G62550 AT3G01850 AT5G63920 AT1G05530 AT3G07980 AT1G53543 AT3G03500 AT5G48600 AT3G10470 AT3G19230 

AT3G17998 AT2G31902 AT5G59660 AT1G03502 AT1G23160 AT1G03070 AT2G35850 AT1G27140 AT4G16770 AT5G14920 

AT1G73620 AT5G02790 AT1G12420 AT1G78940 AT5G49110 AT4G25540 AT3G16300 AT3G20840 AT2G37290 AT1G05780 

AT2G31920 AT1G49160 AT5G60520 AT1G66040 AT2G41190 AT5G49290 AT3G55040 AT4G39000 AT5G35740 AT3G09660 

AT4G03270 AT3G63375 AT4G37950 AT1G08260 AT3G50870 AT3G55734 AT3G05740 AT3G12220 AT3G54710 AT4G21902 

AT5G37800 AT3G07580 AT5G16850 AT1G32860 AT2G27970 AT5G20045 AT3G29300 AT5G51470 AT5G27610 AT3G59100 

AT2G47230 AT3G29780 AT1G73780 AT5G25380 AT4G36880 AT5G43500 AT4G21070 AT5G54960 AT3G23360 AT4G16745 
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AT3G53680 AT5G49160 AT3G24320 AT2G16850 AT1G64910 AT5G07400 AT1G17460 AT3G18500 AT5G06590 AT3G48346 

AT3G26380 AT3G21420 AT5G13060 AT5G25580 AT5G24205 AT3G46616 AT1G49952 AT1G11735 AT4G09250 AT4G21590 

AT5G53380 AT3G14740 AT1G57770 AT2G43890 AT4G09200 AT4G09310 AT5G44010 AT5G10440 AT3G61810 AT2G47610 

AT2G47590 AT3G18730 AT2G26910 AT4G14970 AT3G10420 AT5G26270 AT1G10810 AT2G23910 AT5G60250 AT5G48390 

AT1G19940 AT4G37235 AT1G71750 AT4G35200 AT2G14050 AT4G17380 AT1G04650 AT5G01630 AT4G17760 AT2G01905 

AT1G02670 AT3G05625 AT1G15550 AT1G50970 AT4G16807 AT1G67180 AT1G06460 AT2G26560 AT2G41810 AT2G47650 

AT1G67370 AT3G47460 AT3G28880 AT3G44765 AT2G47580 AT1G79890 AT2G47630 AT4G22217 AT4G30650 AT2G47600 

AT2G28560 AT4G15393 AT5G07660 AT4G20210 AT1G04600 AT2G46980 AT1G56500 AT2G46980 AT2G47640 AT1G79640 

AT3G20475 AT5G35870 AT5G25640 AT3G47040 AT2G47620 AT3G60660 AT1G26540 AT4G09300 AT5G24206 AT1G15310 

AT2G24970 AT2G20250 AT4G33870 AT1G77860 AT4G13555 
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Supplemental Table 2. E2FaKO down regulated genes & E2Fa/DPa OE up 

regulated genes & E2F target genes 

 

  

AGI code Gene Description
Up regulated in 

E2Fa/DPa 
OE E2Fmotifs

AT1G01140.1  CBL-interacting protein kinase 9   CIPK9 ATACGCGC -59 +

AT1G03600.1  photosystem II family protein    GTTCCCGC -531 +

AT1G11050.1  Protein kinase superfamily protein    TTTGGCGG -85 -

AT1G15010.1      TTTAGCGC -82 - ATTCGCGG -762 +

AT1G20340.1  Cupredoxin superfamily protein   DRT112 TCTCCCGG -503 - TTAGGCGC -704 -

AT1G31800.1 
 cytochrome P450, family 97, subfamily A, 
polypeptide 3   CYP97A3 

TTTCGCGC -239 +

AT1G32990.1  plastid ribosomal protein l11   PRPL11 TCTCCCGC -639 -

AT1G67320.2  DNA primase, large subunit family    Yes ATTCCCGC -97 + TTTCCCGC -74 +

AT1G71500.1  Rieske (2Fe-2S) domain-containing protein    ATGCGCGC -267 + TTTCGCGC -263 - TCGCGCGC -265 -

AT1G74930.1 
 Integrase-type DNA-binding superfamily 
protein    

ACTGGCGC -83 - ATTCCCGC -132 +

AT1G74950.1  TIFY domain   TTTCCCCC -461 + TTACGCGG -746 -

AT2G06520.1  photosystem II subunit X   PSBX TTTGCCCC -991 -

AT2G07690.1 
 Minichromosome maintenance (MCM2  
MCM5 

Yes GTTCCCGC -58 + TTTGGCGG -54 - TTTCCCGC -72 +

AT2G16440.1 
 Minichromosome maintenance (MCM2  
MCM4 

Yes TTTGGCGC -78 -

AT2G22860.1  phytosulfokine 2 precursor   PSK2 TTTCCCCC -689 +

AT2G24850.1  tyrosine aminotransferase 3   TAT3 ATACGCGC -624 +

AT2G26530.1  Protein of unknown function (DUF1645)    TTGGCCGC -486 -

AT2G28190.1  copper  CSD2 GTTGCCGC -724 +

AT2G33460.1 
 ROP-interactive CRIB motif-containing 
protein 1   RIC1 

TTTGCCGG -725 +

AT2G35260.1      ATTGGCGG -170 -

AT2G36990.1  RNApolymerase sigma-subunit F   SIGF ATTGCCGC -539 -

AT2G43330.1  inositol transporter 1   INT1 ACTCCCGC -141 -

AT3G01345.1  Expressed protein    TTGGGCGC -869 -

AT3G01410.1 
 Polynucleotidyl transferase, ribonuclease H-
like superfamily protein    

ATGCCCGC -971 -

AT3G01830.1  Calcium-binding EF-hand family protein    GTTCCCGC -154 - TTAGCCGC -713 -

AT3G12540.1  Protein of unknown function, DUF547    TTTCCCGC -809 -

AT3G23700.1  Nucleic acid-binding proteins superfamily    ATTGGCGG -632 - ACTCCCGC -636 + ATTCGCGG -585 - TTTCCCGC -595 +

AT3G48540.1  Cytidine   Yes TTTCCCGC -80 +

AT3G51450.1 
 Calcium-dependent phosphotriesterase 
superfamily protein    

TTAGCCGC -648 -

AT3G52230.1      GTTCGCGG -263 -

AT3G59080.1  Eukaryotic aspartyl protease family protein    TTTGGCGC -547 - TTTGGCGG -853 +

AT3G62420.1  basic region  BZIP53 TTTCCCCC -683 +

AT4G01050.1  thylakoid rhodanese-like   TROL TTCGCCGC -529 -

AT4G02060.1  Minichromosome maintenance (MCM2  PRL Yes TTTCCCGC -21 +

AT4G02070.2  MUTS homolog 6   MSH6 Yes ATTGGCGG -157 - TTTCCCGG -128 + TTGCGCGG -110 - ATTCCCGC -114 + TTTCCCGC -161 +

AT4G04223.1  other RNA    TTTCCCGG -225 -

AT4G12720.4  MutT   TATCCCGC -884 -

AT4G20325.1      Yes ATGCGCGC -72 + ATTGGCGC -49 -

AT4G28300.1 
 Protein of unknown function (DUF1421)   
DUF1421 

TTTCCCCC -236 +

AT4G40090.1  arabinogalactan protein 3   AGP3 TATGGCGC -519 +

AT5G07190.2  seed gene 3   ATS3 ATACCCGC -534 -

AT5G19220.1 
 ADP glucose pyrophosphorylase large 
subunit 1   APL1 

TTTCCCCG -482 -

AT5G20230.1  blue-copper-binding protein   BCB TTTAGCGC -185 - TTACGCGC -189 +

AT5G22410.1  root hair specific 18   RHS18 TTTCCCCC -521 -

AT5G24110.1  WRKY DNA-binding protein 30   WRKY30 TTTGCCCC -856 +

AT5G30510.1  ribosomal protein S1   RPS1 TTTCGCGC -144 +

AT5G40460.1      Yes ATTGGCGG -942 - TTTGGCGC -176 - TTTCCCGC -269 - TATGGCGC -180 +

AT5G44490.1 
 FBD, F-box, Skp2-like and Leucine Rich 
Repeat domains containing protein    

TCTCCCGG -537 -

AT5G46280.1 
 Minichromosome maintenance (MCM2  
MCM3 

Yes TTTGGCGC -217 - TTTGGCGG -106 -

AT5G47110.1  Chlorophyll A-B binding family protein    TTTGCCGC -513 +

AT5G51190.1 
 Integrase-type DNA-binding superfamily 
protein    

TTACCCGG -905 +

AT5G58650.1 
 plant peptide containing sulfated tyrosine 1   
PSY1 

ACTCCCGC -191 +

AT5G64510.1      TCTCGCGC -112 + TTTCCCGG -694 -

AT5G64630.1  Transducin  FAS2 Yes TTTGCCGG -880 + TTTCCCCC -544 - TTTCGCGC -18 +

ATCG00860.1  Chloroplast Ycf2;ATPase, AAA type, core    TTGGGCGC -118 +

ATCG01280.1  Chloroplast Ycf2;ATPase, AAA type, core    TTGGGCGC -118 +

ATMG00610.1  Putative membrane lipoprotein    TTTCGCCC -235 + GTTGGCGC -779 +

ATMG01220.1      TTTCGCCC -370 -
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Supplemental Table 3. List of primers used for cloning, genotyping, and RT-PCR 
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ABSTRACT 

D-amino acid oxidase 1 (dao1) gene of the yeast Rhodotorular gracilis . Its protein 

product catalyzes the conversion of the D-amino acids to its corresponding imino 

acid. Some of the D-amino (e.g. D-Ala and D-Ser) acids are toxic to plants unless 

converted and other D-amino acids are non-toxic (e.g. D-Ile and D-Val) until 

converted. By putting the dao1 gene under control of the DNA damage inducible 

SMR7 promoter, we are able to detect mutants in the DNA damage response. 

SMR7 has a clear transcriptional induction during DNA-stress and upon treatment 

with D-Val together with BM, plants holding the SMR7:Dao1 gene need to have an 

impaired checkpoint to prevent the conversion of D-Val to its toxic imino acid. The 

use of BM and HU as the trigger to induce SMR7 allows us to detect specific 

elements that react to the stress in two separate pathways. The screening system is 

designed for the discovery of transcriptional mutants, but in contrast to the use of 

any other reporter gene, requires little or no researcher effort besides sowing the 

plants.  
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INTRODUCTION 

The DNA damage pathway is a conserved and essential molecular mechanism that 

safeguards proper propagation of genomic content during cell division and to 

subsequent generations (Cools and De Veylder, 2009). It involves a complex interaction 

network that senses DNA stress and integrates developmental signals and 

environmental cues to ultimately invoke the most favorable response for the cell and 

organism. Among eukaryotes, three major responses to DNA damage are recognizable. 

First of all, the activation and transcriptional induction of DNA repair proteins that are 

set for a swift restoration of the damaged nucleic acids (Bartek and Lukas, 2001; Harper 

and Elledge, 2007). This branch of the DNA damage pathway works in concert with the 

cell cycle checkpoints whose action will result in a cell cycle arrest or retardation. The 

interplay between both should allow the cell sufficient time for repair before 

progressing into the next cell cycle phase. To prevent that the DNA damage puts the 

organism in jeopardy, a third branch will induce programmed cell death 

(PCD)(Furukawa et al., 2010) whenever the damage is too excessive and the risk for 

mutations that are detrimental for the organism is simply too high. Although many 

elements of the pathway are conserved amongst eukaryotes, each of them is in need of 

distinct elements that translate and adapt the response for the unique development of the 

organism.  



CHAPTER 4 

 - 147 - 

 

Figure 1. The potential DAO1 –based Either/or selection markers selection system  

(A) Growth of nontransgenic wild-type plants lacking DAO activity is inhibited by D-amino 

acids such as D-alanine (D-Ala) but is not affected by D-valine (D-Val). In contrast, plants 

expressing the transgenic DAO1 gene detoxify D-Ala and survive, whereas they metabolize D-

Ile to toxic compounds that kill the plants. (B) Hypothetical application: plants that have 

integrated a gene of interest together with the DAO1 marker are first detected by positive 

selection. Subsequent negative selection identifies plants from which the no-longer-desirable 

selection marker has been removed, leaving the gene of interest as the only transgenic sequence 

in place (Scheid, 2004). 

  



New screening system for transcriptional regulators working upstream of SMR7 

 - 148 - 

In plants, the search for members of the DNA damage pathway was initially mainly 

based on the search for mammalian/yeast orthologues. As such, the core kinases Ataxia 

telangiectasia mutated (ATM) (Garcia et al., 2000; Garcia et al., 2003) and ATM and 

Rad3-related (ATR) protein kinases(Culligan et al., 2004) and many of the sensing and 

signaling proteins could be found. On the other hand, for Checkpoint kinase 1 and 2 

(CHK1 and CHK2) (Walworth et al., 1993; Murakami and Okayama, 1995) and Polo-

like kinase (PLK) (Casaluce et al., 2013), three essential kinases in the DNA damage 

pathway in mammalians, no functional or sequence ortholog was found to date in 

plants. Similarly, Cell Division Cycle 25 (CDC25) has a sequence ortholog, but all 

evidence suggests that its function has shifted to other physiological processes. It is only 

recently that plant-specific components were discovered. The existence of Suppressor 

Of Gamma Response 1 (SOG1) was already shown in 2003 (Preuss and Britt, 2003), 

but it was only six years later that the mutation was mapped to a NAC transcription 

factor gene. SOG1 has a functional resemblance to the mammalian p53 oncogene, as it 

is a core transcription factor of the DNA damage response and SOG1KO plants are less 

prone to PCD upon DNA stress(Preuss and Britt, 2003; Yoshiyama et al., 2009; Adachi 

et al., 2011; Yoshiyama et al., 2013). Besides its downstream targets, namely the 

SIAMESE-RELATED 5 and 7 (SMR5 and SMR7) genes that inhibit CDK activity and 

hence the cell cycle upon DNA damage and oxidative stress (Yi et al., 2014) (Chapter 

2), there is no report of any critical plant specific components in the DNA damage 

response (DDR). Moreover, the list of core DNA damage genes (Chapter 3) hints to the 

existence of many potential new members that are transcriptionally regulated upon 

DNA-stress that have no clear mammalian or yeast ortholog. Moreover, no inactivators 

of the DNA damage pathway are known to date. These data suggest that there is still 

uncovered ground waiting to be found.  

The DDR can be experimentally activated by treatment with several drugs. Two 

extensively used and documented agents that are capable to do this are hydroxyurea 

(HU) and bleomycin (BM). The method action of BM is still under debate, but it is clear 

that it results in the formation of double strand breaks (DSBs) that can be sensed and 

transduced by ATM. In plants, treatment with BM will result in stem cell death with 

concomitant growth reduction of the root. On a molecular level, it will induce SMR5 

and SMR7 via SOG1. HU will act on 2 separate fronts: at the one hand it will inhibit the 

small subunit (R2) of ribonucleotide reductase (RNR) causing reduced dNTP-levels and 
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replication stress(Roa et al., 2009). The resulting stalled replication forks are sensed by 

ATR. At the other hand, HU causes oxidative stress, likely through displacement of Fe3+ 

from the active site of RNR with the formation of an aminocarbonylaminooxyl radical 

(Chapter 2), in combination with potential inhibition of catalase activity (Chapter 2). 

The induction of SMR5/7 upon HU treatment is completely dependent on the ATM-

SOG1 pathway suggesting that this upregulation is solely the result of oxidative stress. 

As a result of the low number of signaling elements discovered to date, new screening 

methods are necessary that go beyond traditional suppressor screens. Classical 

screening methods in plants are typically based on easy to detect phenotypes that allow 

high-throughput, such as screening for dwarf growth, agravitropism, reduced root 

growth, revertants and many others. To specifically test transcriptional induction, the 

discovery of reporter genes, such as those encoding for Green Fluorescent Protein 

(GFP) and its derivatives or firefly luciferase, allowed to screen for the molecular 

control without the necessity for an obvious visual phenotype. Despite their high 

sensitivity, staining based on the activity of beta-glucuronidase (GUS) is less suitable 

since it requires destruction of plant material for detection. Still, experimental 

procedures are needed to determine transcriptional upregulation or downregulation in 

the generated mutants.  

We present a new screening method for the identification of novel DDR regulators 

based on the use of the D-amino acid oxidase 1 (dao1) gene of the yeast Rhodotorular 

gracilis (Pilone, 2000; Erikson et al., 2004). The dao1 gene is normally not present in 

plants. Its protein product catalyzes the conversion of the D-amino acids to its 

corresponding imino acid. Since some of the D-amino (e.g. D-Ala and D-Ser) acids are 

toxic to plants unless converted and other D-amino acids are non-toxic (e.g. D-Ile and 

D-Val) until converted, the construct can be used for either positive or negative 

selection (Erikson et al., 2004) when introgressed under control of a strong promoter 

(Figure 1). However until now, the DAAO approach has only been used as a selection 

marker. 

By putting the dao1 gene under control of the SMR7 promoter, we are able to detect 

mutants in the DDR. SMR7 has a clear transcriptional induction during DNA-stress and 

upon treatment with D-Val together with BM, plants holding the SMR7:Dao1 gene need 

to have an impaired checkpoint to prevent the conversion of D-Val to its toxic imino 
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acid. This concept was proven by crossing the SMR7:Dao1 line in an atm1 background, 

hereby impairing the DDR signaling. The use of HU and BM as the trigger to induce 

SMR7 allows us to detect specific elements that react to the stress in two separate 

pathways. The screening system is designed for the discovery of transcriptional 

mutants, but in contrast to the use of any other reporter gene, requires little or no 

researcher effort besides sowing the plants.  
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Figure 2. Optimization of D-Val Concentration 

PSMR7:DAO1 transgenic plants were sowed on 10 mM or 30mM D-Val containing medium in the 

presence or absence of 0.3 µg/ml bleomycin. The scale bar is 1cm 
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RESULTS 

Because the dao1 gene is protected by a patent, the use of the material for research 

purposes was granted by the BASF Plant Science Company. Under this license 

agreement the vector VC-RLM208-1 and sequence was delivered to us, which allowed 

us to clone dao1 gene in a pDONR221 entry vector. The full promoter sequence of 

SMR7 (888bp until the next gene) was similarly cloned in a pDONR-P4P1R entry 

vector. By means of a multisite gateway experiment with a pK7m24GW;3 destination 

vector, the dao1 was put under control of the promoter of SMR7 and transformed in 

Arabidopsis thaliana ecotype Col-0. SMR7 is a gene that is transcriptionally induced 

upon DNA damage and will consequently induce the dao1 gene in this setting. The 

addition of D-Val or D-Ala will respectively kill or rescue the plant upon conversion to 

the corresponding imino acid. 

In a prescreening experiment, growth conditions were established via a T3 generation of 

transformants with the construct. Based on the results shown by Erikson and 

colleagues(2004), two D-Val concentrations were tested in the presence or absence of 

0.3 µg/ml bleomycin (Figure 2). Col-0 plants grown under the same conditions mimic 

plants that are unable to induce the DAO1 gene upon DNA-stress conditions and that 

consequentially are potential positive screening targets. Since the growth without BM 

but in the presence of 30 mM D-Val gave good growth in control plants and was able to 

kill lines expressing DAO1 upon BM treatment, this concentration was used as a 

starting point. At this moment, the best responding line was selected to use in 

subsequent screening experiments and for EMS mutagenesis. Hereafter, we lowered the 

BM concentration that could deliver a uniform response among plants, but that was able 

to stress them to a minimum. Ultimately, the screening conditions were selected to 

germinate plants on 30 mM D-Val in addition to 0.15 µg/mL BM, when screening for 

plants that lack the induction of SMR7 during DNA-stress (Figure 3A). In addition, the 

use of HU also allows for a similar screen but one that reacts to replication stress. The 

ideal screening conditions were determined in an analogous manner and were set at 30 

mM D-Val in the presence of 0.5 mM HU (Figure 3B). In both cases, the screening was 

highly dependent on the light regime, as better screening results in terms of survival and 

health were achieved under low light conditions. The use of HU and BM allows 
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discriminating whether the mutation is located in a shared part of the DNA damage 

pathway that reacts to both types of stress. In this way, we can catalog the different 

mutants and determine which lines will be further used for mapping, dependent on our 

interests. 

 

Figure 3. Optimization of BM Concentration 

PSMR7:DAO1 transgenic plants were sowed on 30mM D-Val medium in the presence of different 

concentrations of bleomycin (A) or HU (B). The scale bar is 1cm 
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Figure 4. Transgenic line survive in D-Ala 

WT plants as well as plants bearing the DAO1 gene under control of the SMR7 promoter died 

when grown on medium supplemented with 1mM D-Ala, In contrast, when the medium was 

also supplemented with 0.3µg/mL BM the transgenic plants survived since the DAO1 gene was 

induced by the SMR7 promoter. The scale bar is 1cm. 
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Besides screening for the lack of transcriptional induction, the use of an either/or system 

also allows to do the reverse and design screening conditions that will result in the 

detection of mutants that constitutively induce the gene of interest. Instead of using D-

Val, a toxic D-type amino acid, D-Ala, was used to do the screening. Both 0.5mM and 

1mM D-Ala were used to see which of them didn’t gave rise to any survivors and 

consequently minimized the chance to pick up any false positives. Next, as 1mM D-Ala 

gave rise to a uniform death response of both WT plants and plants bearing the DAO1 

gene under control of the SMR7 promoter, we used this concentration in combination 

with 0.3µg/mL BM (Figure 4). As expected, plants that contained the DAO1 gene were 

able to induce the gene through the SMR7 promoter and consequently could convert D-

Ala to its non-toxic imino acid, while all WT plants died. Although the response was 

not uniform, it shows that plants that are able to generate sufficient DAO1 transcript for 

whatever reason can cope with the stress brought from the toxic D-Ala. In addition, it 

also shows that despite continuous SMR7 induction with concomitant cell cycle 

inhibition, these mutant plants would still be able to grow at a reasonable pace and 

deliver offspring that can be used for mapping. 



New screening system for transcriptional regulators working upstream of SMR7 

 - 156 - 

DISCUSSION AND PRINCIPLES 

In this chapter, we presented the development of a new screening concept for 

transcriptional regulators of the SMR7 gene based on the use of negative selection. 

Aside from a phenotypical screen, we managed to base plant survival of our 

mutagenized plant population on the lack or presence of transcriptional induction of the 

gene of interest. This appears to be a major advantage of using the dao1 gene for 

screening purposes: time consumption for the researcher is drastically reduced except 

for selecting survivors for upscale. The use of the SMR7 promoter shows that the 

method is sensitive enough to discriminate for weakly expressed genes. For stronger 

promoters, lower concentrations of D-Val could even be possible, since plants bearing 

the dao1-gene under control of the CaMV 35S promoter displayed a very clear 

phenotypic difference on 15mM D-Val (Erikson et al. 2004). Moreover, with the use of 

D-Ala we showed that a second screen is possible on the same seed stock, hereby 

doubling the discovery potential of the mutagenized seeds. In addition, it is likely that 

the two screens will target two distinct groups of the same pathway, since they will 

respectively look for the lack of and increased induction. This drastically reduces the 

overlap and consequently, finding the same elements in both screens. 

When performing the dao1-screen, there are certain precautions that need to be taken 

into account. When performing a loss-of-induction screen with D-Val, contamination of 

the seed stock with seeds that do not bear the dao1 gene will lead to false positives as 

they will not convert D-Val to its toxic imine. Therefore it is essential to confirm the 

transcriptional reduction of the endogenous gene by for instance RT-PCR or the 

presence of the construct in the subsequent generation. The latter can be done by 

growing the seeds on the appropriate selection marker or by PCR. Additionally, EMS 

mutagenesis or any other random mutagenesis method can result in the disruption of the 

dao1 gene or controlling promoter. In this case, controlling by RT-PCR whether the 

endogenous gene is also affected by the mutation or sequencing the dao1 gene should 

allow to discriminate between a true and a false positive. A gain-of-induction screen 

with D-Ser/D-Ala does not suffer from these drawbacks since a functional dao1 is the 

prerequisite for a successful screen. Still, growth on D-Ser/D-Ala cannot be used to 
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confirm the loss-of-induction screen in the next generation, since true positives are also 

unable to properly induce the gene.  

We showed that the external application of certain types of drugs in concert with D-type 

amino acids is possible. However, take into account that established working 

concentrations are likely to be reduced, due to the toxicity of the D-type amino acids or 

converted forms. This is especially true when using agents that are detrimental for the 

organism. 

In our screen based on the transcriptional control of SMR7, we expect to find several 

elements of the DNA damage pathway. Among these, new mutant alleles of SOG1 and 

ATM are expected that might help to uncover essential residues for activity. In addition, 

members of the Mre11-Rad50-Nbs1 (MRN) complex that senses DSBs could be 

retrieved in our screen(Bakkenist and Kastan, 2003; Carson et al., 2003; Lee and Paull, 

2004). However, it is likely that new elements might pop up as the large number of 

unknowns in DNA damage microarrays, like SMR5 and SMR7 until recently, hints at a 

more complex control of the checkpoint that is influenced by plant-specific elements. 

In conclusion, we presented here a new screening method based on the use of the dao1 

gene. Since both positive and negative screens are possible with the use of the same 

line, we were able to drastically increase efficiency of an EMS mutagenesis screen. The 

coupling of a transcriptional response to the plant’s fate provides a very easy-to-screen 

method with far exceeding possibilities. 
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MATERIALS AND METHODS 

Plant Materials and Growth Conditions 

Arabidopsis thaliana (L.) Heyhn. (ecotype Columbia) were grown under long-day 

conditions (16 h of light, 8 h of darkness) at 22°C on half-strength Murashige and 

Skoog (MS) germination medium(Murashige and Skoog, 1962). For bleomycin 

treatments, five-day-old seedlings were transferred into liquid MS medium 

supplemented with 0.3 µg/mL bleomycin. 

Vector construction and plant transformation 

SMR7 promoter sequence was amplified from genomic DNA by PCR. The product 

fragments were created with the Pfu DNA Polymerase Kit (Promega, Catalog #M7745), 

and were cloned into a pDONR P4-P1r (Chapter 2) (Karimi et al., 2002). Dao1 gene 

sequence cloned from VC-RLM208-1 into pDONR221 vector by BP recombination 

cloning and subsequently transferred into the destination vector pm42GW7,3 by LR 

recombination cloning. All constructs were transferred into the Agrobacterium 

tumefaciens C58C1RifR strain harboring the pMP90 plasmid. The obtained 

Agrobacterium strains were used to generate stably transformed Arabidopsis lines with 

the floral dip transformation method (Yamamoto et al., 2002).  

Selection analysis. 

Transgenic T1 plants were selected on medium containing kanamycin (25 ug/ml). Lines 

containing a single T-DNA insertion locus were selected by statistical analysis of T-

DNA segregation in the T2 population that germinated on kanamycin-containing 

medium. Plants with a single locus of inserted T-DNA were grown and self-fertilized. 

Homozygous T3 seed stocks were then identified by analyzing T-DNA segregation in 

T3 progenies. T1 seeds were surface-sterilized and sown in Petri plates that were sealed 

with gas-permeable tape. The growth medium was half strength Murashige and Skoog 

medium19 with 1% (wt/vol) sucrose and 0.8% (wt/vol) agar, plus 0.3 µg/mL BM 

combined with D-Alanine, or D-Val as the selective agent. Plants were grown for 14 d 

after germination with a 16 hrs photoperiod at 21 °C. 
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EMS mutagenesis 

Root growth revertants were screened from an M2 population homozygous 

PSMR7:DAO1 transgenic line, mutagenized by ethyl metanesulfonate (EMS). For this, 

PSMR7:DAO1 transgenic seeds were added to 5 ml water and mutagenized by adding 50 

µl EMS. Incubation in the EMS containing solution was performed for 12 hours on a 

rotating wheel. Seeds were washed in sodiumthiosulfate, dried and sown in 56 pools of 

each 250 seeds. M2 seeds were harvested from each pool and screened for restoration of 

root growth on vertical plates. 
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DNA Damage response in plants 

The DNA damage response (DDR) is of utmost importance to maintain genome 

integrity. ATM and ATR are two crucial components in the DNA damage response 

pathway. ATM and ATR respond to double strand and single strand DNA damage, 

respectively. In animals, these pathways have been described extensively. A crucial step 

in the response to DNA damage is the blocking of the cell cycle making time for the 

reparation of the DNA since proper DNA replication is needed to ensure the cellular 

functionality. However, in plants, the mechanisms that arrest the cell cycle upon 

genotoxic stress are still not completely understood. Up to now, only WEE1 has been 

well characterized as a cell cycle regulator, responding to single strand DNA breaks and 

replication stress (Cools and De Veylder, 2009; Cools et al., 2011). The WEE1 gene is 

transcriptionally induced during the S-phase upon DNA stress. Thus the WEE1 protein 

specifically accumulates in S-phase cells encountering DNA-stress. This regulation is 

under control of both ATR and ATM (De Schutter et al., 2007). it has been seen that 

WEE1 also accumulates upon treatment with the double strand damage inducing agent 

bleomycin, but WEE1KO does not show sensitivity towards the DSB agent bleomycin 

(Cools et al., 2011). These data suggests that there must be other pathways regulating 

cell cycle in response to DNA damage. The SOG1 protein is encoded by SOG1 

(suppressor of gamma response) gene, which only exists in plants and is an important 

regulator in the DNA damage response. Up to now, SOG1 has been found to be under 

the control of ATM on both the transcriptional and post-transcriptional level (Ricaud et 

al., 2007; Yoshiyama et al., 2013). Being a transcription factor, SOG1 activates the 

expression of a large number of genes in response to DNA damage.  

Since transcriptional regulation is an important part of DDR, the identification of other 

transcriptional regulators of DDR is an interesting question for future studies. We 

focused on the E2F transcription factors which are involved in the cell cycle regulation 

and synthesis of DNA in eukaryotes (Chapter 3). Subsequent studies revealed that 

E2FKO line presents tolerance to DNA damage indicating that E2Fs have a role in the 

regulation of cellular response to DNA damage. But both E2F and SOG1 appear to be 

upstream regulators of DDR rather than a cell cycle regulator. It is supposed that one or 

several cell cycle regulators influence cell cycle process by directly interacting on 
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CDK/Cyclin complex under DNA damage stress. Based on this hypothesis, we tried to 

discover new elements and mechanisms involved in the plant DNA damage response. In 

our research, we chose a novel CKI family proteins SIM/SMRs as candidates of cell 

cycle checkpoints (Chapter 2). In the end, we clearly saw that SMR proteins were 

inhibiting cell division upon DNA damage agent HU and ROS conditions via strongly 

and rapidly transcriptional induction. And this regulation depends on the ATM-SOG1 

pathway.  

DNA damage and CKIs 

Based on their evolutionary origin, structure and functional specificities, there are two 

groups of CKI in animals, namely INK4 and Cip/Kip and three groups of CKIs exist in 

plants, namely KRP, SIM/SMR and TIC (Chapter 1 and 2). As important components 

of the cell cycle checkpoints, CKI act on cell cycle onset to elicit a cell cycle arrest as 

part of the DDR in animals (Lim and Kaldis., 2013). Compared to CKIs in animals, 

little is known about their function in plants. Preceding our research, there was no report 

describing the mechanism of plant’s CKIs in the DNA damage response pathway. 

ICK/KRP proteins are the first CKIs described in plants, but no obvious link between 

KRPs and DNA stress has been reported up to now (Cools and De Veylder, 2009). In 

chapter 2, we discussed SIM/SMRs functions in DNA damage response.  

In our research, three SIM/SMR proteins (SMR5, SMR7 and SMR7) had been 

demonstrated to strongly respond to DNA damage at the transcriptional level (Chapter 

2). Indeed, SMR5 participates in the control of cell division in leaf development upon 

DNA stress. This process is under the control of ATM-SOG1 pathway. More 

interestingly, SMR5 and SMR7 also respond to ROS induced DNA damage depending 

on SOG1. Thus, we can conclude that the transcriptional response of SIM/SMR genes 

link the oxidative stress with cell division activity upon DNA damage. From previous 

research, we know that SMR4, SMR5 and SMR7, only co-purified with A-type CDK 

and D-type cyclin, and the CYCD/CDKA;1 complex is responsible for the control of 

cell cycle onset in response to intrinsic and extrinsic signals (Lukaszewski and Blevins, 

1996; Riou-Khamlichi et al., 2000). Which implied the mechanism of how they take 

part in the cell cycle regulation of DNA damage response. Thus, SIM/SMR proteins 

appear to be plant specific and are the first CKIs described in plant to control DDR.  
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To understand more about DNA damage response, we need to try to discover new 

components and mechanisms in the DNA damage response pathway. Ongoing 

mutagenesis screens could uncover these components. We constructed pSMR7:DAO1 

transgenic plants to screen the upstream regulators of SMRs. Currently, an EMS-based 

mutagenesis screen using these plants is in progress. The mutated genes will be 

identified through map-based cloning. Once a mutation is mapped, the nature of the 

gene cloned will help to define the pathways that control SMR abundance under 

genotoxic stress. 

Another important aspect is to understand how SMRs proteins influences cell cycle 

upon DNA damage stress at the biochemical level. It is already know that SMR4, 

SMR5 and SMR7 interact with CDKA/CYCD complexes, but we still need additional 

information about the structure of SMR proteins. Identification of the interaction 

partners of these CDKs can reveal the mechanism on how cell cycle arrest adapted to 

the conditions of DNA damage stress.  

DNA damage and E2Fs 

The members E2F transcription factor family can be divided into typical and atypical 

subgroups based on sequence analysis, or classified as transcriptional activator and 

repressor based on their function in transcription regulation (Chapter 1). The different 

E2F family members exhibit redundancy but diverge in function in the cell cycle 

regulation (Magyar et al., 2005; Sozzani et al., 2006; Berckmans et al., 2011). 

Meanwhile, activity of E2Fs is under control of CDKA/CYCD complex via 

phosphorylation of the retinoblastoma-related (RBR) protein (de Jager et al., 2009). 

Whereas CDKA/CYCD complex is responsible for the control of cell cycle onset in 

response to stress signals. These components texture a complex regulating network 

(Chapter 1 and Chapter 3) that modulates cell cycle progression in plant growth or 

respond to changing environments. 

Previous reports presented E2F3, which is the homologue of E2Fa, as a regulator of cell 

proliferation, cell cycle arrest and apoptosis through transcriptional control of a number 

of genes including other E2F family members like E2F1 in animal cells (Chen et al., 

2012). Similarly, in Arabidopsis, E2Fs are controlling the expression of several target 
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genes involved in the DNA damage response (Christensen et al., 2005; Martinez et al., 

2010),  

In our results, we found that plants containing a non-functional E2Fa allele showed 

increased resistance to bleomycin (Chapter 3). This resistance was mainly observed in 

primary root length and cell proliferation in the root meristem. Furthermore, through 

transcriptome profiling experiments, we can see that E2Fa influences gene expression in 

response to DNA damage. These genes can be divided into two main groups: cell cycle 

related genes and DNA damage response genes (Chapter 3). Interestingly, from the 

transcirptome analysis of genes in E2FaKO plants, in absence of exogenously applied 

DNA stress, a number of DNA repair genes had an enhanced expression (Chapter 3). 

We supposed that the DDR is already activated at marginal levels in the E2FaKO plants. 

Subsequently, basal transcriptional activation of DNA repair genes granted these plants 

the potential to deal with genotoxic stress induced by BM better than wild type plants 

do. Moreover, the E2Fa/E2Fb double knockout mutants display a root meristem 

proliferation arrest. In the double KO mutant, expression of the genes that are under 

transcriptional control of E2Fs (e.g. the MCM family) is strongly reduced compared to 

the E2FaKO, which causes more spontaneous genotoxic and DDR, already affecting 

plant growth in the absence of external applied DNA stress (Chapter 2). 

By combining these results, we can see how E2Fa takes part in the meristem cell 

proliferation regulation in different ways. On one hand, E2F transcription factors are 

suggested to regulate DNA damage pathway by affecting modulating the transcription 

of genes involved cell cycle regulation. On the other hand, changes in the expression of 

the cell cycle and the DNA replication genes in the plants absence of E2Fs resulted in 

spontaneous stimulation of checkpoint activation, which can enhance the tolerance of 

DNA damage and also can affect plant growth in overreaction. 

Up to now, based on the conclusions we got, the main goals in the future should be to 

determine the E2F transcription factors influencing DNA damage response components 

in detail. Since E2Fs are important regulators of the cell cycle, we should focus on the 

cell cycle and DNA replication genes which are under control of E2F transcription 

factors. On the meanwhile, we already know that endogenous DNA damage response is 

triggered on E2F depleted plants to block the cell cycle onset. What mechanism induces 

this compensation will be an interesting question for future studies.  
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In plants, except E2Fs family, there are several important families of transcription 

factors involved in cell cycle regulation, such as MYB and WRKY. Interestingly, an 

increase in the levels of transcripts of MYB and WRKY transcription factors was also 

detected upon bleomycin plus mitomycin C treatment (Chen et al., 2003). For instance, 

the PARP1 promoter region presents two MYB binding motif sequences (AACGG). 

Moreover, in Arabidopsis CycB1;1 expression is also under control of the binding of 

MYB protein to the cis-acting element of its promoter (Planchais et al., 2002). Also the 

Rad51 promoter is containing W-box (TTGACc/t) of WRKY. The presence of MYB or 

WRKY binding motifs in the DNA damage response genes and the cell cycle regulation 

genes promoter regions suggests these transcription factors might have an important 

function in the DNA damage response. 

ROS and DNA damage response 

However, during organism growth and development the genome is continuously 

exposed to DNA damaging agents. These agents originate from the environment or 

biological processes. ROS is an important DNA damage agent, which can cause 

different kinds of DNA damage including SSB and DSB (Dizdaroglu et al., 2002; 

Roldán-Arjona and Ariza, 2009). Plants need to absorb nutrients from soil directly, 

which means they are easily stressed by heavy metal ions which are broadly existing on 

earth (Jomova and Valko, 2011; Rymen and Sugimoto, 2012). The metal ions including 

iron, copper, cobalt and aluminum induce DNA damage via the activity of ROS 

(Chapter 1). And as we know, antineoplastic chemical Hydroxyurea (HU) is a 

ribonucleotide reductase inhibitor which can block the cell cycle (Lopes et al., 2001, 

Sogo et al., 2002 and Timson, 1975). Besides this known function, HU can reduce 

catalase activity to trigger oxidative stress (Chapter 2). Bleomycin acts by induction of 

DNA breaks depending on oxygen and metal ions (primarily iron) (Burger et al., 1981; 

Favaudon, 1982). From Chapter 3, we can see the iron transport genes participating in 

the DDR induced by the bleomycin, and this process is regulated by E2F transcription 

factors. In plants, ROS are also generated by photosynthesis and aerobic respiration 

(Asada, 2006). From these results, we can suppose ROS is a crucial agent for DNA 

damage generated from different kinds of stresses.  
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Oxidative stress is a widespread stress in plants. ROS is already known to cause a cell 

cycle arrest by the ATM-SOG1 DNA damage response pathway (Chapter 2). It would 

be very interesting to obtain more details about the interaction between the DNA 

damage response and ROS signaling. and how they link to cell cycle regulation, DNA 

repair stimulation and programmed cell death. From our research, we suppose that 

SMR5 is the molecular switch of cell division under ROS induced genotoxicity 

(Chapter 2). However, it would be interesting to see whether cell division blockage is 

directly triggered by oxidative stress or if the DNA damage induced by ROS in leaf 

cells pushes them out of the cell cycle and consequently reduces cell proliferation.  
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Figure 1. Current model of cell cycle regulation in DNA damage response.  

CDK inhibitor protein SMR5 and SMR7 were inhibiting cell division upon DNA damage agent 

HU and ROS conditions via strongly and rapidly transcriptional induction. And this regulation 

depends on the ATM-SOG1 pathway. Meanwhile, E2F transcription factors are involved in the 

cell cycle regulation and synthesis of DNA in eukaryotes and E2FKO line presents tolerance to 

DNA damage due to DDR is already activated at marginal levels in the E2FaKO plants via 

reduction of E2F target genes proteins suck as MCMs. 
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Summary 

Genetic damage can be catastrophic when cells progress to the next cell cycle phase before 

the previous phase is properly completed. To minimize the occurrence of such mistakes 

during cell cycle events, the cell cycle progression is monitored at several checkpoints. 

Control mechanisms operating at these checkpoints ensure the intactness of chromosomal 

DNA and the completion of each cell cycle stage before the following stage is initiated. For 

instance, the DNA damage checkpoint blocks progression through the cell cycle until the 

damage is repaired. The existence of cell cycle checkpoints isn’t apparent in normal 

unperturbed cell cycle (Chapter 1). 

Recently, a new group of genes, nominated as SIAMESE/SIAMESE-RELATED (SIM/SMR), 

have been identified. These genes encode small proteins that inhibit the cell cycle through 

their direct interaction with cyclin-dependent kinases (CDK). In addition, they are strongly 

and rapidly transcriptionally induced by different stress conditions. In Chapter 2, we can see 

three SIM/SMR family members (SMR4, SMR5, and SMR7) respond specifically towards 

genotoxic stress, suggesting that they control the cell cycle checkpoint upon the occurrence of 

DNA stress. SMR5 and SMR7 control cell division in response to ROS-induced DNA 

damage. Their expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) 

and SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), rather than on the anticipated 

replication stress-activated ATM AND RAD3-RELATED (ATR) kinase. We conclude that 

the identified SMR genes are part of a signaling cascade inducing a cell cycle checkpoint in 

response to ROS-induced DNA damage. 

In Chapter 3, we focus on the E2F transcription factors, which are important elements to 

control the cell cycle. We have shown that E2F transcription factors are required for the cell 

proliferation arrest upon DNA damage. Under genotoxic stress, E2Fa affected expression of a 

number of DDR genes which are mostly involved in cell cycle regulation and stress response. 

We already know E2Fa and E2Fb are homologous, and they present partial 

overlapping/redundant functions (Chapter 1 and 3). However, we detected that E2Faoccurs 

specific roles in the DNA damage induced cell cycle regulation. We detected that DDR genes 

were up regulated in E2FKO lines. Such kind basal transcriptional activation of DNA repair 

genes endue E2FaKO plants the potential to tolerant BM stress rather than wild type plants do. 
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In Chapter 4, we develop a protocol to search for the transcriptional level regulators of the 

SMR7 promoter causing inducible D-amino acid oxidase 1 (Dao1) gene, which was 

discovered from yeast . Expressing the Dao1 in the presence of D-amino (e.g. D-Ala and D-

Ser) acids is toxic to plants, but save plants from the other D-amino acids (e.g. D-Ile and D-

Val). We construct PSMR7:DAO1 transgenic lines. Using DNA damage agents like BM and 

HU to stimulate expression of Dao1 under control of SMR7 promoter can be used as a 

screening system to discover transcriptional mutants in DNA damage response. This system 

can also be used to characterize other target genes or pathways. 
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