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Abstract

During the past fifteen years, the density matrix renormalization group (DMRG) has be-
come increasingly important for ab initio quantum chemistry. Its underlying wavefunction
ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configura-
tion interaction tensor. The virtual dimension of the MPS, the rank of the decomposition,
controls the size of the corner of the many-body Hilbert space that can be reached with
the ansatz. This parameter can be systematically increased until numerical convergence is
reached.

Chapter 2 of this Ph.D. thesis contains a literature study about DMRG for ab initio
quantum chemistry (QC-DMRG). The chapter starts by assessing DMRG and the MPS
ansatz from the viewpoint of quantum information theory. DMRG works well for non-
critical one-dimensional systems, as the MPS ansatz only captures exponentially decaying
correlation functions in the thermodynamic limit. The active orbital spaces studied in
quantum chemistry are often far from one-dimensional, and therefore relatively large vir-
tual dimensions are required. The QC-DMRG algorithm, its computational cost, and its
properties are discussed. Special attention is given to the orbital choice and ordering, as
they influence the convergence behaviour significantly.

The symmetry group of a Hamiltonian allows to make it block-diagonal. In chapter
3, an MPS wavefunction is constructed which is a symmetry eigenstate of this group.
The Wigner-Eckart theorem allows to factorize this MPS ansatz in Clebsch-Gordan coeffi-
cients and reduced tensors. This introduces block-sparsity in the ansatz. For non-abelian
groups, this encompasses information compression as well. Both lead to a decrease in
required memory and computational time. The QC-DMRG implementation of the au-
thor, CheMPS2, exploits SU(2) spin symmetry, U(1) particle-number symmetry, and the
abelian point groups P with real-valued character tables. The exploitation of non-abelian
spatial symmetries is also briefly touched upon.

Chapters 4 and 5 contain a review of two applications. The Coulomb interaction in
hydrogen chains is effectively local due to the mutual screening of electrons and nuclei. QC-
DMRG therefore only requires a small virtual dimension to reach numerical convergence,
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and accurate longitudinal response properties were obtained for this system. The ground
state of the carbon dimer has significant multireference character, and many crossings and
avoided crossings occur between its low-lying states. Due to the exploitation of symmetry
in CheMPS2, it was possible to accurately resolve the low-lying states per symmetry
sector.

DMRG and Hartree-Fock theory have an analogous structure. The former can be
interpreted as a self-consistent mean-field theory in the DMRG lattice sites, and the latter
in the particles. Chapters 6 and 7 build upon this analogy to introduce post-DMRG
methods. Based on an approximate MPS, these methods provide improved ansätze for the
ground state, as well as for excitations. Exponentiation of the single-particle excitations
for a Slater determinant leads to the Thouless theorem for Hartree-Fock theory, an explicit
nonredundant parameterization of the entire manifold of Slater determinants. For an MPS
with open boundary conditions, exponentiation of the single-site excitations leads to the
Thouless theorem for DMRG, an explicit nonredundant parameterization of the entire
manifold of MPS wavefunctions. This gives rise to the configuration interaction expansion
for DMRG. The Hubbard-Stratonovich transformation lies at the basis of auxiliary field
quantum Monte Carlo for Slater determinants. An analogous transformation for spin-
lattice Hamiltonians allows to formulate a promising variant for matrix product states.
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CHAPTER 1

Introduction

The general theory of quantum mechanics is now almost complete, the imperfec-
tions that still remain being in connection with the exact fitting in of the theory
with relativity ideas. These give rise to difficulties only when high-speed particles
are involved, and are therefore of no importance in the consideration of atomic
and molecular structure and ordinary chemical reactions, in which it is, indeed,
usually sufficiently accurate if one neglects relativity variation of mass with ve-
locity and assumes only Coulomb forces between the various electrons and atomic
nuclei. The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble. It therefore becomes desirable that approxi-
mate practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without
too much computation.

– Paul A. M. Dirac, 1929

The twentieth century was a thriving period for physics. The theories of special rela-
tivity and quantum mechanics were invented. They were unified in quantum field theory, a
framework to study particles and their electroweak and strong interactions. The invariance
principle of mechanics in special relativity was later extended to all physical laws in general
relativity, the framework for gravitation and acceleration.

This thesis deals with quantum chemistry, the nonrelativistic quantum mechanical de-
scription of electrostatically interacting particles, more specifically electrons and atomic
nuclei. Section 1.1 introduces quantum mechanics for identical fermions from a historical
perspective. Section 1.2 discusses quantum chemistry: its approximations, the terminology,
and how the density matrix renormalization group fits in.
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1.1 The quantum mechanics of identical fermions

Schrödinger was able to rederive Bohr’s semiclassical energy spectrum for hydrogenlike
atoms within the framework of quantum mechanics [1]. He obtained that each eigenstate
can be uniquely labeled by three quantum numbers. To explain the spectra of more
complicated atoms, Pauli introduced a yet unknown fourth degree of freedom, and stated
that two electrons can never have the same four quantum numbers [2]. This principle is
currently known as Pauli’s exclusion principle. Uhlenbeck and Goudsmit identified Pauli’s
fourth quantum number as the spin projection of the electron [3].

In order to explain the occurrence of para- and ortho-Helium, Heisenberg explored
many-body quantum mechanics [4]. For indistinguishable particles, the Hamiltonian is
invariant to particle interchange. Its eigenfunctions can hence be separated into corre-
sponding symmetry classes. Symmetric eigenfunctions with respect to particle interchange
are not connected to antisymmetric ones by the Hamiltonian. Moreover, only fully anti-
symmetric eigenfunctions comply with Pauli’s exclusion principle. This does not provide
a rigorous proof that for identical particles which obey Pauli’s exclusion principle, the
wavefunction has to be fully antisymmetric. Heisenberg could however explain the correc-
tion factor n! in Bose-Einstein statistics, which had to be introduced to make the entropy
extensive [5], with his wavefunction proposal for systems of identical particles [4]:

φ =
1√
n!

n!∑
k=1

(±1)δkφ1(mk
α)φ2(mk

β)...φn(mk
ν) (1.1)

where δk denotes the permutation order of the phase space variables m. A fully symmetric
wavefunction arises for (+1) and a fully antisymmetric one for (−1). All possible distribu-
tions of the phase space variables m over the single particle states φj contribute equally to
φ, with prefactors determined by the (anti)symmetry. According to Heisenberg, the phase
space size in Bose-Einstein statistics has to be reduced with a factor n! because a single
term in Eq. (1.1) provides by itself no physical wavefunction, only the total sum does. The
antisymmetric wavefunction of Eq. (1.1) will later be given the name Slater determinant
[6], the variational ansatz for Hartree-Fock (HF) theory [7–10].

Heisenberg’s feeling that identical particles which obey Pauli’s exclusion principle should
form antisymmetric wavefunctions, was confirmed with the advent of quantum field theory,
in the so-called spin-statistics theorem [11, 12]. Just like electrons have spin-1

2
, all particles

have spin, either integer or half-integer. The particles with integer spin are called bosons.
They obey Bose-Einstein statistics. The wavefunction for a system of identical bosons is
symmetric with respect to the interchange of any two particles. The particles with half-
integer spin are called fermions. They obey Fermi-Dirac statistics. The wavefunction for
a system of identical fermions is antisymmetric with respect to the interchange of any two
particles. Fermions therefore obey Pauli’s exclusion principle.

Any linear combination of Slater determinants is still an antisymmetric wavefunction,
and hence provides a better variational ansatz for fermions. This is the basis of the config-
uration interaction method [6]. In this method, one needs to keep track of the occupation
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of single particle states φj with certain fermions mδ and the corresponding phase prefac-
tors (−1)δk . Dirac and Fock established a nice bookkeeping device which has exactly this
functionality, called second quantization [13, 14]. In what follows, a short introduction of
second quantization for fermions is given.

Consider a set of orthonormal single particle states φj:∫
dm φ∗i (m)φj(m) = δij (1.2)

Creation â†k and annihilation âk operators are introduced, which obey anticommutation
relations: {

âl, â
†
k

}
= âlâ

†
k + â†kâl = δkl, (1.3){

â†l , â
†
k

}
= 0 & hermitian conjugate. (1.4)

When â†k acts on the vacuum |−〉, which contains no particles, the single particle state φk
is filled:

â†k |−〉 = |φk〉 . (1.5)

The annihilation operator âk destroys the vacuum:

âk |−〉 = 0. (1.6)

The anticommutation relation (1.4) ensures that a single particle state cannot be filled
with more than one fermion, in accordance with Pauli’s exclusion principle:

â†kâ
†
k |−〉 =

1

2

{
â†k, â

†
k

}
|−〉 = 0. (1.7)

The same anticommutation relation also ensures antisymmetry for multiple fermions:

â†kâ
†
l = −â†l â

†
k. (1.8)

The antisymmetric n-particle state of Eq. (1.1) is for example represented by

|φ〉 = â†1â
†
2...â

†
n |−〉 . (1.9)

In this thesis, the occupation number representation is often used. A fixed order is given
to the L single particle states under consideration: φ1;φ2;φ3; ...;φL. With the notation

|n1n2...nL〉 =
(
â†1

)n1
(
â†2

)n2

...
(
â†L

)nL
|−〉 (1.10)

the global sign of the wavefunction is well-defined. Due to Pauli’s exclusion principle nj
can be either 0 or 1, but not larger than one. Second quantization is useful, because it
allows to express both the Hilbert space basis vectors and the Hamiltonian in a convenient
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way. For pairwise and number-conserving interactions, the Hamiltonian can be expressed
as [14]:

Ĥ = E0 +
∑
ij

(i|T̂ |j)â†i âj +
1

2

∑
ijkl

(ij|V̂ |kl)â†i â
†
j âlâk. (1.11)

For N identical fermions: ∑
j

nj = N, (1.12)

there are
(
L
N

)
orthonormal states |n1n2...nL〉. The exact diagonalization of the Hamiltonian

(1.11) in the basis (1.10) is hence NP-complete (in the number of single particle states L).
Monte Carlo methods allow to efficiently sample large spaces, if a positive-semidefinite

probability distribution can be associated to it [15, 16]. This is the case for bosonic sys-
tems, for which the wavefunction is symmetric. For fermionic systems, the wavefunction is
antisymmetric, and except for a few marginal cases, one always ends up with indefinite dis-
tributions. Unfortunately, the latter cannot be interpreted as a probability. Workarounds
do exist for fermionic systems, but they suffer from the fermion sign problem, which is
NP-hard [17]. Chapter 7 deals with one particular flavour of quantum Monte Carlo, dif-
fusion Monte Carlo, which introduces a controllable systematic bias to deal with the sign
problem.

No exact solution methods are known which scale polynomially with L. We therefore
have to resort to approximate solution methods.

1.2 Ab initio quantum chemistry

In the first paragraph of “Quantum Mechanics of Many-Electron Systems”, the opening
quote of this chapter, Dirac gives his perspective on the status of the field [18]. His
comments are still valid. To study chemistry on a computer, several approximations need
to be made. Not all physical interactions and effects are required to provide an accurate
description of chemistry. The infite set of orthonormal single particle states which span
the whole of space needs to be reduced to a finite set. Approximate solution methods are
required.

1.2.1 The relevant physics

Currently, there is no single theory available to describe all observed phenomena in nature.
Quantum field theory and general relativity are two distinct theories, and much effort is
put into a possible unification. On the energy and distance scales relevant to chemistry, the
gravitational, weak, and strong interactions are negligible compared to electromagnetism.
We therefore have to resort to quantum electrodynamics [19–26] to study chemistry.

To obtain a workable theory, relativistic effects are initially neglected. Instead of a
field theory, where electrons can be created and annihilated, and where they interact
by exchanging photons, the particle number is fixed and all charged particles interact
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instantaneously. The mass of the particles is assumed to be velocity-independent. Spin-
orbit coupling and the Darwin term are neglected. The last three corrections can be
understood in terms of Dirac’s equation for hydrogenlike atoms [27]. Relativistic effects
become important in heavy atoms, where they can be treated in perturbation [28]. Direct
treatment is also possible, with four-component electronic structure theories [29, 30].

This leaves us with the nonrelativistic Hamiltonian:

Ĥ = −
∑
i

∇2
i

2
−
∑
α

∇2
α

2Mα

+
1

2

∑
α 6=β

ZαZβ

| ~Rα − ~Rβ |
−
∑
αi

Zα

| ~Rα − ~ri |
+

1

2

∑
i 6=j

1

| ~ri − ~rj |
. (1.13)

Zα, Mα and ~Rα refer respectively to the charge, mass, and position of atomic nucleus
α. ~ri refers to the position of electron i. Atomic units are used: mass, charge, action,
and dielectric constant are expressed as multiples of respectively the electron mass me, the
electron charge e, the reduced Planck constant ~, and 4πε0 with ε0 the electric permittivity
of free space. All other atomic units can be derived from these four, e.g. [31]

Bohr radius (length) a0 =
4πε0~2

mee2
= 5.2917721092(17)× 10−11m (1.14)

Hartree (energy) Eh =
mee

4

(4πε0~)2 = 4.35974434(19)× 10−18J. (1.15)

The Hamiltonian (1.13) can be rewritten as

Ĥ = Ĥe(~R)−
∑
α

∇2
α

2Mα

. (1.16)

Because the nuclei are much heavier than the electrons, the motion of the latter can be
regarded instantaneous. This is the basis of the Born-Oppenheimer approximation [32].
The electronic structure is solved for fixed nuclear positions:

Ĥe(~R)Φe

(
~r | ~R

)
= Ee(~R)Φe

(
~r | ~R

)
(1.17)

and the nuclear motion is subsequently treated in the potential energy surface (PES)

Ee(~R): (
−
∑
α

∇2
α

2Mα

+ Ee(~R)

)
Ξn

(
~R
)

= EtotalΞn

(
~R
)
. (1.18)

Equation (1.18) yields the vibrational, rotational, and translational motion of the nuclei.
The total wavefunction is hence factorized in the Born-Oppenheimer approximation:

Ψ
(
~r; ~R

)
= Φe

(
~r | ~R

)
Ξn

(
~R
)
. (1.19)

This is a good approximation if the electronic PESs are well separated:

∀~R : E0
e (
~R)� E1

e (
~R)� E2

e (
~R)� ... (1.20)
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1.2.2 A finite basis set

The Hamiltonian Ĥe(~R) leads to a partial differential equation (PDE) for Φe(~r | ~R). In
the HF method, when a Slater determinant ansatz is used, the Schrödinger equation can
be rewritten as a set of coupled PDEs for the HF single particle states [7–10]. Electrons
can have spin projection up (α, ↑) or down (β, ↓). It is therefore useful to introduce
spin-orbitals as the single particle states:

φj (~r;σ) = φσj (~r) |σ〉 (1.21)

with σ either up or down. Roothaan was the first one to point out that the set of HF
PDEs can be rewritten as an algebraic equation [33]:

FC = ESC (1.22)

by introducing a fixed and (for practical reasons) finite basis set {γκ (~r)} for the spin-
orbitals:

φj (~r;σ) =
∑
κ

Cσ
κjγκ (~r) |σ〉 . (1.23)

Boys noted that the required integrals (i|T̂ |j) and (ij|V̂ |kl) can be evaluated analytically
if gaussian basis functions are used [34]:

γκ (~r) = P (x, y, z)e−αr
2

(1.24)

with P (x, y, z) a polynomial in x, y, and z. This led to the advent of computational
quantum chemistry, with Pople’s Gaussian-70 program, and the development of a plethora
of gaussian basis sets [35, 36].

With spin-orbitals, Eq. (1.10) becomes

|n1↑n1↓n2↑...nL↑nL↓〉 =
(
â†1↑

)n1↑ (
â†1↓

)n1↓ (
â†2↑

)n2↑
...
(
â†L↑

)nL↑ (
â†L↓

)nL↓
|−〉 . (1.25)

The number of antisymmetric N -particle states scales as
(

2L
N

)
. For spin-independent spatial

orbitals φi(~r) = φ↑i (~r) = φ↓i (~r), Eq. (1.11) can be written as

Ĥe = E0 +
∑
ij

(i|T̂ |j)
∑
σ

â†iσâjσ +
1

2

∑
ijkl

(ij|V̂ |kl)
∑
στ

â†iσâ
†
jτ âlτ âkσ, (1.26)

because Ĥe(~R) is spin-independent. The Latin letters denote spatial orbitals and the Greek
letters electron spin projections. The possible orbital fillings are then |ni〉 = |−〉, |↑〉, |↓〉,
or |↑↓〉.
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The symmetry group of this Hamiltonian is SU(2)⊗ U(1)⊗ P, or total electronic spin,
particle number, and molecular point group symmetry. By defining the operators

Ŝ+ =
∑
i

â†i↑âi↓ (1.27)

Ŝ− =
(
Ŝ+
)†

=
∑
i

â†i↓âi↑ (1.28)

Ŝz =
1

2

∑
i

(
â†i↑âi↑ − â

†
i↓âi↓

)
(1.29)

N̂ =
∑
i

(
â†i↑âi↑ + â†i↓âi↓

)
(1.30)

Ŝ2 =
Ŝ+Ŝ− + Ŝ−Ŝ+

2
+ ŜzŜz, (1.31)

it can be easily checked that Ĥe, Ŝ
2, Ŝz, and N̂ form a set of commuting observables. This

constitutes the SU(2) total electronic spin and U(1) particle-number symmetries. For fixed
particle number N , Eq. (1.26) can also be written as

Ĥe = E0 +
1

2

∑
ijkl

hij;kl
∑
στ

â†iσâ
†
jτ âlτ âkσ (1.32)

hij;kl = (ij|V̂ |kl) +
1

N − 1

[
(i|T̂ |k)δj,l + (j|T̂ |l)δi,k

]
. (1.33)

The molecular point group symmetry P consists of the rotations, reflections, and in-
versions which leave the external potential due to the nuclei invariant. These symmetry
operations map nuclei with equal charges onto each other. The point group symmetry has
implications for the spatial orbitals. Linear combinations of the gaussian basis functions
γκ (~r) can be constructed which transform according to a particular row of a particular
irreducible representation (irrep) of P [37]. As the Hamiltonian transforms according to
the trivial irrep I0 of P, hij;kl can only be nonzero if the reductions of Ii ⊗ Ij and Ik ⊗ Il
have at least one irrep in common. Most molecular electronic structure programs make
use of the abelian point groups with real-valued character tables.

1.2.3 Approximate solution methods

Exact diagonalization of the quantum chemistry Hamiltonian (1.32) scales nonpolynomial
with the number of single particle states. Exact eigenstates can hence only be obtained
for small system sizes L. For larger system sizes, approximate solution methods need
to be used. There are many methods available, providing a delicate trade-off between
desired accuracy and available computational time. They can be divided into several
categories: classical vs. quantum mechanical, semi-empirical vs. ab initio, single reference
vs. multireference... This section attempts to provide a minimal overview.
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For small systems, highly accurate PESs Ee(~R) can be obtained. They can be used to
fit the parameters of so-called force fields [38–40]. Force fields provide a simplified classical

model of intra- and intermolecular interactions. They try to divide the entire PES Ee(~R)
into specific contributions such as bond stretching, bond rotations, electrostatic repulsion,
and van der Waals interaction, each with its own classical functional form. Obtaining
the optimal force-field parameters is a separate area of specialization, as it is nontrivial
to accurately mimic the surface Ee(~R) with a limited number of parameters over a wide

range of nuclear positions ~R. Once the force-field parameters are chosen, the model can be
used in molecular mechanics simulations to study the thermodynamics of large systems.

In semi-empirical methods, some parameters are fitted to experiments or more accurate
calculations, e.g. in force fields. In ab initio methods, one starts with the Hamiltonian
(1.32) and an approximate wavefunction ansatz, e.g. the Slater determinant. The orbitals
in the latter are optimized to yield the minimal energy. The exact ground state has
contributions from many orthogonal Slater determinants. The difference in energy between
the HF solution with a single Slater determinant reference and the exact (nonrelativistic)
ground state is the correlation energy [41]. This energy is often (ambiguously) divided into
two contributions: static (or nondynamic) correlation and dynamic correlation [42]. When
near-degeneracies between determinants occur, and more than one determinant is needed to
describe the qualitative behaviour of a molecule, it is said to have static correlation. This
type of correlation often arises in transition metal complexes or π-conjugated systems,
as well as for geometries far from equilibrium. It is typically resolved with only a few
determinants. The Coulomb repulsion results in a nonzero occupancy of virtual HF orbitals
in the true ground state. This effect is called dynamic correlation and constitutes the
remainder of the energy gap.

All static and dynamic correlation can in principle be retrieved at HF cost with density
functional theory (DFT). Hohenberg and Kohn have shown that the electron density pro-
vides sufficient information to determine all ground state properties, and that there exists
a unique universal functional of the electron density which can be used to obtain the exact
ground state density [43]. Kohn and Sham rewrote the universal functional as the sum of
the kinetic energy of a noninteracting system and an exchange-correlation functional [44].
This allows to represent the electron density as a Slater determinant, which immediately
ensures correct N-representability. Unfortunately, the universal functional is unknown.
Many approximate semi-empirical exchange-correlation functionals of various complexity
have been proposed. They each have their limited area of applicability, which renders
DFT a separate area of specialization. Because the exact exchange-correlation functional
is unknown, not all static and dynamic correlation is retrieved with current DFT methods.
It can even be stated that DFT is rather bad in capturing static correlation [45].

Dynamic correlation can also be captured with ab initio post-HF methods. These start
from the optimized HF orbitals and the corresponding Slater determinant |HF〉, and build
in dynamic correlation on top of the single determinant reference. Commonly known are
Møller-Plesset (Rayleigh-Schrödinger) perturbation theory [46], the configuration interac-
tion (CI) expansion [6, 47], and coupled cluster (CC) theory [48–50]. These methods are
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truncated in their perturbation or expansion order. For example, the CI and CC ansatzes
with single and double excitations (CISD and CCSD) for a spin singlet system can resp.
be written with second quantization as

|CISD〉 =

(
x+

∑
voσ

yvoâ†vσâoσ +
1

2

∑
vwopστ

zvw;opâ†vσâ
†
wτ âpτ âoσ

)
|HF〉 (1.34)

|CCSD〉 = exp

(∑
voσ

yvoâ†vσâoσ +
1

2

∑
vwopστ

zvw;opâ†vσâ
†
wτ âpτ âoσ

)
|HF〉 , (1.35)

where v, w denote virtual or empty HF orbitals and o, p denote occupied HF orbitals. An
important property of ansatz wave functions is their size consistency: the fact that for
two noninteracting subsystems, the compound wave function should be multiplicatively
separable and the total energy additively separable. CISD is not size consistent if there are
more than two electrons in the compound system, whereas CCSD is always size consistent
because of the exponential ansatz [42]. Because these post-HF methods start from a single
determinant reference, they have difficulty building in static correlation. Mostly, very large
expansion orders are required to retrieve static correlation.

It is therefore better to resort to multireference (MR) methods for systems with pro-
nounced static correlation. For such systems, the subset of important orbitals (the active
space), in which the occupation changes over the relevant determinants, is often rather
small. This allows for a particular MR solution method: the complete active space (CAS)
self-consistent field (SCF) method [51–53]. From the HF solution, a subset of occupied
and virtual orbitals is selected as active space. While the remaining occupied and virtual
orbitals are kept frozen at HF level, the electronic structure in the active space is solved
exactly (the CAS-part). Subsequently, the occupied, active, and virtual spaces are rotated
to further minimize the energy. This two-step cycle, which is sometimes implemented
together, is repeated until convergence is reached (the SCF-part). CASSCF resolves the
static correlation in the system. Dynamic correlation can be built in on top of the CASSCF
reference wavefunction by perturbation theory (CASPT2) [54, 55], a CI expansion (MRCI
or CASCI) [56–60], or CC theory (MRCC or CASCC) [61, 62]. For the latter, approximate
schemes such as canonical transformation (CT) theory [63] are often used.

1.2.4 The density matrix renormalization group

An eigenstate of the Hamiltonian (1.32) can be written as

|Ψ〉 =
∑
{nj}

Cn1n2...nL |n1n2...nL〉 , (1.36)

with |ni〉 = |ni↑ni↓〉. The full CI (FCI) tensor can be exactly decomposed into the following
contracted matrix product:

Cn1n2...nL =
∑
{αk}

A[1]n1
α1
A[2]n2

α1;α2
A[3]n3

α2;α3
...A[L− 1]nL−1

αL−2;αL−1
A[L]nLαL−1

, (1.37)



10 Chapter 1. Introduction

for example by successive singular value decompositions (SVD). Since no assumptions are
made about the FCI tensor, the dimension of the indices {αk} has to grow exponentially
towards the middle of this contracted product:

dim (αj) = min
(
4j, 4L−j

)
. (1.38)

This is solely due to the increasing matrix dimensions in the successive SVDs. Instead of
variationally optimizing over the FCI tensor, one may as well optimize over the tensors
of its decomposition (1.37). To make Eq. (1.37) of practical use, its dimensions can be
truncated:

dim (αj) = min
(
4j, 4L−j, D

)
. (1.39)

The corresponding ansatz is called a matrix product state (MPS) with open boundary
conditions and bond (or virtual) dimension D. It can be optimized by the density matrix
renormalization group (DMRG) algorithm [64–66], yielding a variational upper bound
for the ground state energy. Historically, DMRG was invented first, and its underlying
MPS ansatz was discovered only later [67, 68]. A thorough discussion of the DMRG
algorithm is given in chapter 2. Chapter 3 deals with the exploitation of the symmetry
group SU(2)⊗U(1)⊗P of the Hamiltonian (1.32) in the DMRG algorithm, and in particular
in CheMPS2 [69, 70], the implementation of the author.

In the large-D regime, the DMRG ground state energy and its corresponding MPS
become numerically exact. For most systems, this already happens for moderate values of
D, and DMRG is therefore an efficient route to exact diagonalization accuracy. In methods
which rely on a FCI solver, such as CASSCF and CASPT2 for example, the FCI solver
can be replaced with DMRG. Example calculations in the large-D regime are presented in
chapters 4 and 5.

Just like HF theory can be interpreted as a mean-field theory for particles, DMRG
can be interpreted as a mean-field theory for sites. In analogy to a Slater determinant in
HF, the MPS can then be treated as a zeroth order reference, on top of which excitations
and/or dynamic correlation can be built. This is the subject of chapters 6 and 7.



CHAPTER 2

DMRG for ab initio quantum chemistry

If one finds this prospect [RG results depend on the specific setup] discouraging,
one should remember that the successful tricks of one generation become the more
formal and more easily learned mathematical methods of the next generation.

– Kenneth G. Wilson, 1975

2.1 Introduction

The density matrix renormalization group (DMRG) was invented in 1992 by White in
the field of condensed matter theory [64]. Östlund and Rommer discovered in 1995 its
underlying variational ansatz, the matrix product state (MPS) [67]. The area law for
one-dimensional quantum systems was proven by Hastings in 2007 [71], and constituted a
hard proof that an MPS is very efficient in representing the ground state of gapped one-
dimensional quantum systems. The discovery of the MPS ansatz and the understanding
provided by quantum information theory induced the development of a plethora of new
variational renormalization group ansatzes in subsequent years.

MPSs were in fact discovered earlier, under various names. Nishino found that they were
used in statistical physics as a variational optimization technique [72]: in 1941 by Kramers
and Wannier [73] and in 1968 by Baxter [74]. Nightingale and Blöte recycled Baxter’s
ansatz in 1986 to approximate quantum eigenstates [75]. In 1987, Affleck, Kennedy, Lieb
and Tasaki constructed the exact valence-bond ground state of a particular next-nearest-
neighbour spin chain [76]. They obtained an MPS with bond dimension 2. In mathematics,
the translationally invariant valence-bond state is known as a finitely correlated state
[77, 78], and in the context of information compression, an MPS is known as a tensor train
[79, 80].

11
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The concept of a renormalization group was first used in quantum electrodynamics. The
coarse-grained view of a point-like electron breaks down at small distance scales (i.e. large
energy scales). The electron itself consists of electrons, positrons, and photons. The mass
and charge contributions from this fine structure lead to infinities. These were successfully
resolved by Tomonaga, Schwinger, and Feynman [19–24]. Later, Wilson used a numerical
renormalization group (NRG) to solve the long-standing Kondo problem [81]. He turned
the coupling of the impurity to the conduction band into a half-infinite lattice problem
by discretizing the conduction band in momentum space. For increasing lattice sizes,
only the lowest energy states are kept at each renormalization step. These are necessary
and (numerically) sufficient to study the low-temperature thermodynamics of the impurity
system. Although very successful for impurity systems, NRG fails for real-space lattice
systems such as the discretized particle-in-a-box, spin-lattice, and Hubbard models. For
these systems, the low energy states of a small subsystem are often irrelevant for the ground
state of the total system [82]. Consider for example the ground state of the particle-in-
a-box problem. By concatenating the solution of two smaller sized boxes, an unphysical
node is introduced in the approximation of the ground state of the larger problem. It was
White who pointed out this problem and resolved it with his DMRG method [64]. Instead
of selecting the degrees of freedom with lowest energy, the most relevant degrees of freedom
should be selected.

2.2 Entanglement and the von Neumann entropy

This section attempts to clarify the broader context of DMRG. A brief introduction to
quantum entanglement, the von Neumann entropy, and the so-called area laws is given.
More information on the first two subjects can be found in Nielsen and Chuang [83].

Figure 2.1: Bipartition of the L single-particle states.

Consider the bipartition of L orthonormal single-particle states in two subsystems A
and B in Fig. 2.1. Suppose {|Ai〉} and {|Bj〉} are the orthonormal basis states of the many-
body Hilbert spaces of resp. subsystem A and B. The Hilbert space of the composite system
is spanned by the product space {|Ai〉}⊗{|Bj〉}, and a general quantum many-body state
|Ψ〉 of the composite system can be written as

|Ψ〉 =
∑
ij

Cij |Ai〉 |Bj〉 . (2.1)

The Schmidt decomposition of |Ψ〉 is obtained by performing an SVD on Cij and by rotating
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the orthonormal bases {|Ai〉} and {|Bj〉} with the unitary matrices U and V :

|Ψ〉 =
∑
ij

Cij |Ai〉 |Bj〉 =
∑
ijk

UikσkV
†
kj |Ai〉 |Bj〉 =

∑
k

σk |Ãk〉 |B̃k〉 . (2.2)

For normalized |Ψ〉:
〈Ψ | Ψ〉 =

∑
k

σ2
k = 1. (2.3)

For the given bipartition, the optimal approximation |Ψ̃〉 of |Ψ〉 in least squares sense

‖ |Ψ̃〉 − |Ψ〉 ‖2, with a smaller number of terms in the summation (2.1), is obtained by
keeping the states with the largest Schmidt numbers σk in Eq. (2.2). This fact will be of
key importance for the DMRG algorithm (see section 2.3.3).

In classical theories, the sum over k can contain only one nonzero value σk. A mea-
surement in subsystem A then does not influence the outcome in subsystem B, and the
two subsystems are not entangled. In quantum theories, the sum over k can contain many
nonzero values σk. State |Ãk〉 in subsytem A occurs with probability σ2

k, as can be observed
from the reduced density matrix (RDM) of subsystem A:

ρ̂A = TrB |Ψ〉 〈Ψ| =
∑
j

〈Bj | Ψ〉 〈Ψ | Bj〉 =
∑
ijl

|Ai〉CijC†jl 〈Al| =
∑
k

|Ãk〉σ2
k 〈Ãk| . (2.4)

Analogously the RDM of subsystem B can be constructed:

ρ̂B =
∑
k

|B̃k〉σ2
k 〈B̃k| . (2.5)

From (2.2), it follows that the measurement of |Ãk〉 in subsystem A implies the mea-

surement of |B̃k〉 in subsystem B with probability 1. Measurements in A and B are hence
not independent, and the two subsystems are said to be entangled.

Consider for example two singly occupied orbitals A and B in the spin-0 singlet state:

|Ψ〉 =
|↑A↓B〉 − |↓A↑B〉√

2
. (2.6)

The measurements of the spin projections of the electrons are not independent. Each
possible spin projection of the electron in A can be measured with probability 1

2
, but the

simultaneous measurement of both spin projections will always yield

〈Ψ | ŜzAŜzB | Ψ〉 = −1

4
(2.7)

with probability 1. The two electron spins are maximally entangled.
The RDMs ρ̂A and ρ̂B allow to define the von Neumann entanglement entropy [84]:

SA|B = −TrA ρ̂
A ln ρ̂A = −TrB ρ̂B ln ρ̂B = −

∑
k

σ2
k lnσ2

k. (2.8)



14 Chapter 2. DMRG for ab initio quantum chemistry

This quantum analogue of the Shannon entropy is a measure of how entangled subsystems
A and B are. If they are not entangled, σ1 = 1 and ∀k ≥ 2 : σk = 0, which implies
SA|B = 0. If they are maximally entangled, ∀k, l : σk = σl, which implies SA|B = ln(Z),
with Z the minimum of the sizes of the many-body Hilbert spaces of A and B.

A K-dimensional quantum lattice system in the thermodynamic limit is called local if
there exists a distance cutoff beyond which the interaction terms decay at least exponen-
tially. Consider the ground state |Ψ0〉 of a gapped K-dimensional quantum system in the
thermodynamic limit, and select as subsystem a hypercube with side L and volume LK .
The von Neumann entropy is believed to obey an area law [85–87]:

Shypercube ∝ LK−1. (2.9)

This is the result of a finite correlation length, as only lattice sites in the immediate
vicinity of the hypercube’s boundary are then correlated with lattice sites on the other
side of the boundary. This is a theorem for one-dimensional systems [71] and a conjecture
in higher dimensions [86], supported by numerical examples and theoretical arguments
[87]. For critical quantum systems, with a closed excitation gap, there can be logarithmic
corrections to the area law [86, 88].

For gapped one-dimensional systems, consider as subsystem a line segment of length L.
Its boundary consists of two points. Due to the finite correlation length in the ground state,
the entanglement of the subsystem does not increase with L, if L is significantly larger than
the correlation length. The von Neumann entropy is then a constant independent of L, and
the ground state |Ψ0〉 can be well represented by retaining only a finite number of states
D in the Schmidt decomposition of any bipartition of the lattice in two semi-infinite line
segments. This is the reason why the MPS ansatz and the corresponding DMRG algorithm
work very well to study the ground states of gapped one-dimensional systems.

The MPS ansatz

|Ψ〉 =
∑

{nj}{αk}

A[1]n1
α1
A[2]n2

α1;α2
...A[L− 1]nL−1

αL−2;αL−1
A[L]nLαL−1

|n1n2...nL−1nL〉 , (2.10)

is shown pictorially in Fig. 2.2. Except for the first and last orbital (or site), the MPS
ansatz introduces a rank-3 tensor per site. One of its indices corresponds to the physical
index ni, the other two to the virtual indices αi−1 and αi. In Fig. 2.2, tensors are rep-
resented by circles, physical indices by open lines, and virtual indices by connected lines.
The graph hence represents how the ansatz decomposes the FCI tensor. The finite size
D of the virtual indices can capture finite-length correlations along the one-dimensional
chain. Stated more rigorously: for a system in the thermodynamic limit, all correlation
functions CMPS(∆x) measured in an MPS ansatz with finite D decay exponentially with
increasing site distance ∆x [78, 89]:

CMPS(∆x) ∝ e−α∆x. (2.11)

Unless the lattice size is reasonably small [90], an MPS is not efficient to represent the
ground state of higher dimensional or critical systems. Fortunately, efficient tensor network
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Figure 2.2: Several tensor network states. Tensors are represented by circles, physical indices
by open lines, and virtual indices by connected lines. The graph hence represents how the ansatz
decomposes the FCI tensor.

states (TNS) for higher dimensional and critical lattice systems, which do obey the correct
entanglement scaling laws, have been developed [89]. There even exists a continuous MPS
ansatz for quantum fields [91].

The ansatz for gapped two-dimensional systems is called the projected entangled pair
state (PEPS) [92], see Fig. 2.2. Instead of two virtual indices, each tensor now has
four virtual indices, which allows to arrange the sites in a square lattice. A finite virtual
dimension D still introduces a finite correlation length, but due to the topology of the
PEPS, this is sufficient for gapped two-dimensional systems, even in the thermodynamic
limit. Analogous extensions exist for other lattice topologies (other than the square lattice).

The ansatz for critical one-dimensional systems is called the multi-scale entanglement
renormalization ansatz (MERA) [93], see Fig. 2.2. This ansatz has two axes: x along the
physical one-dimensional lattice and z along the renormalization direction. Consider two
sites separated by ∆x along x. The number of virtual bonds between those sites is only
of order ∆z ∝ ln ∆x. With finite D, all correlation functions CMERA(∆x) measured in a
MERA decay exponentially with increasing renormalization distance ∆z:

CMERA(∆x) ∝ e−α∆z ∝ e−β ln ∆x = (∆x)−β, (2.12)

and therefore only polynomially with increasing lattice distance ∆x [89, 93].
An inconvenient property of the PEPS, MERA, and MPS with periodic boundary

conditions [94], is the introduction of loops in the network. This results in the inability
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to exploit the TNS gauge invariance to work with orthonormal renormalized environment
states, see sections 2.3.2 and 2.3.3. One particular network which avoids such loops, but
which is still able to capture polynomially decaying correlation functions is the tree TNS
(TTNS) [95, 96], see Fig. 2.2. From a central tensor with z virtual bonds, Y consecutive
onion-like layers are built of tensors with also z virtual bonds. The last layer consists of
tensors with only 1 virtual bond. An MPS is hence a TTNS with z = 2. For z ≥ 3, the
number of sites L increases as [97, 98]:

L = 1 + z

Y∑
k=1

(z − 1)k−1 =
z(z − 1)Y − 2

z − 2
(2.13)

and thus Y ∝ ln(L) for z ≥ 3. The maximum number of virtual bonds between any
two sites is 2Y . The correlation functions in a TTNS with finite D and z ≥ 3 decrease
exponentially with increasing separation Y :

CTTNS(L) ∝ e−αY ∝ e−β lnL = L−β. (2.14)

and therefore only polynomially with increasing number of sites L [95, 96].
For higher-dimensional or critical systems, DMRG can still be useful [90]. The virtual

dimension D then has to be increased to a rather large size to obtain numerical convergence.
In the case of multiple dimensions, the question arises if one should work in real or momen-
tum space, and how the corresponding single-particle degrees of freedom should be mapped
to the one-dimensional lattice [99]. Ab initio quantum chemistry can be considered as a
higher-dimensional system, due to the full-rank two-body interaction in the Hamiltonian
(1.32), and the often compact spatial extent of molecules. Nevertheless, DMRG turned out
to be very useful for ab initio quantum chemistry (QC-DMRG) [66, 70, 97, 98, 100–158].

An excellent description of QC-DMRG in terms of renormalization transformations
is given in Chan and Head-Gordon [102]. Section 2.3 contains a description in terms of
the underlying MPS ansatz, because this approach will be used in chapter 3 to introduce
SU(2) ⊗ U(1) ⊗ P symmetry (see section 1.2.2) in the DMRG algorithm. The properties
of the DMRG algorithm are discussed in section 2.4. Several convergence strategies are
listed in section 2.5. An overview of the strategies to choose and order orbitals is given
in section 2.6. As mentioned earlier, a converged DMRG calculation can be the starting
point of other methods. These methods are summarized in section 2.7. Section 2.8 gives
an overview of the currently existing QC-DMRG codes, and the systems which have been
studied with them. The reader can also find several QC-DMRG reviews in the literature
[159–165].

2.3 The DMRG algorithm

2.3.1 The MPS ansatz

DMRG can be formulated as the variational optimization of an MPS ansatz [67, 68]. The
MPS ansatz in Eq. (2.10) has open boundary conditions, because sites 1 and L only have
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one virtual index. To be of practical use, the virtual dimensions αj are truncated to D:
dim(αj) = min(4j, 4L−j, D). The sites are assumed to be orbitals, which have 4 possible
occupancies (see section 1.2.4). With increasing D, the MPS ansatz spans a larger region

of the full Hilbert space, but it is of course not useful to make D larger than 4b
L
2
c as the

MPS ansatz then spans the whole Hilbert space.
In a Slater determinant, there is gauge freedom: a rotation in the occupied orbital

space alone, or a rotation in the virtual orbital space alone, does not change the physical
wavefunction. Only occupied-virtual rotations change the wavefunction. In an MPS, there
is gauge freedom as well. If for two neighbouring sites i and i + 1, the left MPS tensors
are right-multiplied with the non-singular matrix G

Ã[i]niαi−1;αi
=
∑
βi

A[i]niαi−1;βi
Gβi;αi (2.15)

and the right MPS tensors are left-multiplied with the inverse of G

Ã[i+ 1]ni+1
αi;αi+1

=
∑
βi

G−1
αi;βi

A[i+ 1]
ni+1

βi;αi+1
(2.16)

the wavefunction does not change, i.e. ∀ni, ni+1, αi−1, αi+1:∑
αi

Ã[i]niαi−1;αi
Ã[i+ 1]ni+1

αi;αi+1
=
∑
αi

A[i]niαi−1;αi
A[i+ 1]ni+1

αi;αi+1
. (2.17)

2.3.2 Canonical forms

The two-site DMRG algorithm consists of consecutive sweeps or macro-iterations, where
at each sweep step the rank-3 MPS tensors of two neighbouring sites are optimized in the
micro-iteration. Suppose these sites are i and i+1. The gauge freedom of the MPS is used
to bring it in a particular canonical form. For all sites to the left of i, the MPS tensors are
left-normalized: ∑

αk−1,nk

(A[k]nk)†αk;αk−1
A[k]nkαk−1;βk

= δαk,βk (2.18)

and for all sites to the right of i+ 1, the MPS tensors are right-normalized:∑
αk,nk

A[k]nkαk−1;αk
(A[k]nk)†αk;βk−1

= δαk−1,βk−1
. (2.19)

Left-normalization can be performed with consecutive QR-decompositions:

A[k]nkαk−1;αk
= A[k](αk−1nk);αk =

∑
βk

Q[k](αk−1nk);βkRβk;αk =
∑
βk

Q[k]nkαk−1;βk
Rβk;αk . (2.20)

The MPS tensor Q[k] is now left-normalized. The R-matrix is multiplied into A[k + 1].
From site 1 to i − 1, the MPS tensors are left-normalized this way, without changing the
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wavefunction. Right-normalization occurs with LQ-decompositions. In section 2.3.4, it
will become clear that this normalization procedure only needs to occur at the start of the
DMRG algorithm.

At this point, it is instructive to make the analogy to the renormalization group for-
mulation of the DMRG algorithm. Define the following vectors:

|αLi−1〉 =
∑

{nj}{α1...αi−2}

A[1]n1
α1
A[2]n2

α1;α2
...A[i− 1]ni−1

αi−2;αi−1
|n1n2...ni−1〉 , (2.21)

|αRi+1〉 =
∑

{nj}{αi+2...αL−1}

A[i+ 2]ni+2
αi+1;αi+2

...A[L]nLαL−1
|ni+2...nL〉 . (2.22)

Due to the left- and right-normalization described above, these vectors are orthonormal:

〈αLi−1 | βLi−1〉 = δαi−1,βi−1
, (2.23)

〈αRi+1 | βRi+1〉 = δαi+1,βi+1
. (2.24)

{|αLi−1〉} and {|αRi+1〉} are renormalized bases of the many-body Hilbert spaces spanned by
resp. orbitals 1 to i− 1 and orbitals i+ 2 to L. Consider for example the left side. For site
k from 1 to i−2, the orbital basis is augmented by one orbital and subsequently truncated
again to at most D renormalized basis states:

{|αLk−1〉} ⊗ {|nk〉} → |αLk 〉 =
∑

αk−1,nk

A[k]nkαk−1;αk
|αLk−1〉 |nk〉 . (2.25)

DMRG is hence a renormalization group for increasing many-body Hilbert spaces. The
next section addresses how this renormalization transformation is chosen.

2.3.3 Micro-iterations

Combine the MPS tensors of the two sites under consideration into a single two-site tensor:∑
αi

A[i]niαi−1;αi
A[i+ 1]ni+1

αi;αi+1
= B[i]ni;ni+1

αi−1;αi+1
. (2.26)

At the current micro-iteration of the DMRG algorithm, B[i] (the flattened column form
of the tensor B[i]) is used as an initial guess for the effective Hamiltonian equation. This
equation is obtained by variation of the Lagrangian [125]

L = 〈Ψ(B[i]) | Ĥ | Ψ(B[i])〉 − Ei 〈Ψ(B[i]) | Ψ(B[i])〉 (2.27)

with respect to the complex conjugate of B[i]:

H[i]effB[i] = EiB[i]. (2.28)

The canonical form in Eqs. (2.18)-(2.19) ensured that no overlap matrix is present in this
effective Hamiltonian equation. In the DMRG language, this equation can be interpreted
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|αLi−1〉 |nini+1〉 |αRi+1〉

Figure 2.3: Optimization of the MPS tensors at sites i and i + 1 in the two-site DMRG
algorithm. The effective Hamiltonian equation (2.28) obtained by variation of the Lagrangian
(2.27) can be interpreted as the approximate diagonalization of the exact Hamiltonian Ĥ in the
orthonormal basis {|αLi−1〉} ⊗ {|ni〉} ⊗ {|ni+1〉} ⊗ {|αRi+1〉}.

as the approximate diagonalization of the exact Hamiltonian Ĥ in the orthonormal basis
{|αLi−1〉}⊗{|ni〉}⊗{|ni+1〉}⊗{|αRi+1〉}, see Fig. 2.3. Because of the underlying MPS ansatz,
DMRG is variational: Ei is always an upper bound to the energy of the true ground state.

The lowest eigenvalue and corresponding eigenvector of the effective Hamiltonian are
then searched with iterative sparse eigensolvers. Typical choices are the Lanczos or David-
son algorithms [166, 167]. Once B[i] is found, it is decomposed with an SVD:

B[i](αi−1ni);(ni+1αi+1) =
∑
βi

U [i](αi−1ni);βiκ[i]βiV [i]βi;(ni+1αi+1) (2.29)

Note that U [i] is hence left-normalized and V [i] right-normalized. The sum over βi is
truncated if there are more than D nonzero Schmidt values κ[i]βi , thereby keeping the D
largest ones. This is the optimal approximation for the bipartition of {|αLi−1〉} ⊗ {|ni〉} ⊗
{|ni+1〉} ⊗ {|αRi+1〉} into A = {|αLi−1〉} ⊗ {|ni〉} and B = {|ni+1〉} ⊗ |αRi+1〉}. In the original
DMRG algorithm, U [i] and V [i] were obtained as the eigenvectors of resp. ρ̂A and ρ̂B.

A discarded weight can be associated to the truncation of the sum over βi:

w[i]disc
D =

∑
βi>D

κ[i]2βi . (2.30)

This is the probability to measure one of the discarded states in the subsystems A or B.
The approximation introduced by the truncation becomes beter with increasingly small
discarded weight. Instead of working with a fixed D, one could also choose D dynamically
in order to keep w[i]disc

D below a preset threshold, as is done in Legeza’s dynamic block
state selection approach [103].

2.3.4 Macro-iterations

So far, we have looked at a micro-iteration of the DMRG algorithm. This micro-iteration
happens during left or right sweeps. During a left sweep, B[i] is constructed, the corre-
sponding effective Hamiltonian equation solved, the solution B[i] decomposed, the Schmidt
spectrum truncated, κ[i] is contracted into U [i], A[i] is set to this contraction U [i] × κ[i],
A[i + 1] is set to V [i], and i is decreased by 1. Note that A[i + 1] is right-normalized
for the next micro-iteration as required. This stepping to the left occurs until i = 1, and
then the sweep direction is reversed from left to right. Based on energy differences, or
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wavefunction overlaps, between consecutive sweeps, a convergence criterium is triggered,
and the sweeping stops.

DMRG can be regarded as a self-consistent field method: at convergence the neighbours
of an MPS tensor generate the field which yields the local solution, and this local solution
generates the field for its neighbours [102, 115, 125].

2.3.5 Renormalized operators and their complements

The effective Hamiltonian in Eq. (2.28) is too large to be fully constructed. Only its
action on a particular guess B[i] is available as a function. In order to construct H[i]effB[i]
efficiently for general quantum chemistry Hamiltonians, several tricks are used. Suppose
that a right sweep is performed and that the MPS tensors of sites i and i+ 1 are about to
be optimized.

Renormalized operators such as 〈αLi−1 | â
†
kσâlτ | βLi−1〉 with k, l ≤ i − 1 are constructed

and stored on disk [66, 102, 128]. The renormalized operators needed for the previous
micro-iteration can be recycled to this end. Suppose k, l ≤ i− 2:

〈αLi−1 | â
†
kσâlτ | β

L
i−1〉 =

∑
αi−2βi−2ni−1

(A[i− 1]ni−1)†αi−1;αi−2
〈αLi−2 | â

†
kσâlτ | β

L
i−2〉A[i−1]

ni−1

βi−2;βi−1
.

(2.31)
Note that no phases appear because an even number of second-quantized operators was
transformed. For an odd number, there should be an additional phase (−1)n(i−1)↑+n(i−1)↓ at
the right-hand side (RHS) due to the Jordan-Wigner transformation [168]. Renormalized
operators to the right of B[i] can be loaded from disk, as they have been saved during the
previous left sweep.

Once three second-quantized operators are on one side of B[i], they are multiplied with
the matrix elements hkl;mn, and a summation is performed over the common indices to
construct complementary renormalized operators [66, 99, 102, 128]:

〈αLi−1 | Q̂nτ | βLi−1〉 =
∑
σ

∑
k,l,m<i

hkl;mn 〈αLi−1 | â
†
kσâ
†
lτ âmσ | β

L
i−1〉 . (2.32)

For two, three, and four second-quantized operators on one side of B[i], these comple-
mentary renormalized operators are constructed. A bare renormalized operator (without
matrix elements) is only constructed for one or two second-quantized operators.

Hermitian conjugation and commutation relations, i.e.

〈αLi−1 | â
†
kσâ
†
lτ | β

L
i−1〉 = 〈βLi−1 | âlτ âkσ | αLi−1〉

†
= −〈αLi−1 | â

†
lτ â
†
kσ | β

L
i−1〉 , (2.33)

are also used to further limit the storage requirements for the (complementary) renormal-
ized operators. A few examples of renormalized operators and the fermion sign handling
will be given in section 3.3.5 in conjunction with symmetry handling.
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2.3.6 Computational cost

This section describes the cost of the DMRG algorithm per sweep in terms of memory,
disk, and computational time [66, 102, 128]. To analyze this cost, let us first look at the
cost per micro-iteration. A micro-iteration consists of three steps: solving the effective
Hamiltonian equation (2.28), performing an SVD of the solution (2.29), and constructing
the (complementary) renormalized operators for the next micro-iteration.

To solve the effective Hamiltonian equation with Davidson’s algorithm, a set of Nvec

trial vectors {B[i]} are kept in memory, as well as H[i]eff{B[i]}. To construct H[i]eff{B[i]},
(complementary) renormalized operators should also be stored in memory. The latter have
at most two site indices. The total memory cost is hence O((Nvec + L2)D2).

The action of H[i]eff on B[i] is divided into several contributions. Each contribution
consists of the joint action of a renormalized operator and the corresponding complemen-
tary renormalized operator. For each contribution, two matrix-matrix multiplications need
to be performed, of computational cost O(D3). In total there are O(L2) contributions, be-
cause complementary renormalized operators have at most two site indices. The total
computational cost is hence O(NvecL

2D3) for the multiplications, and O(NvecL
2D2) for

the summation of the different contributions.
The SVD of the solution B[i] and its subsequent truncation take O(D3) computational

time and O(D2) memory.
The construction of one particular renormalized operator takes O(D3) computational

time and O(D2) memory, and there are O(L2) such operators. The most tedious part to
analyze is the construction of the two-site complementary renormalized operators:

〈αLi−1 | F̂mσ;nτ | βLi−1〉 =
∑
k,l<i

hkl;mn 〈αLi−1 | â
†
kσâ
†
lτ | β

L
i−1〉 , (2.34)

which takes at first sight O(L2D2) computational time and O(D2) memory per operator.
There are O(L2) such operators, and a naive implementation would hence result in a
computational cost of O(L4D2) per micro-iteration. However, this summation needs to be
performed only once for each operator, at the moment when the second second-quantized
operator is added:

〈αLi−1 | F̂mσ;nτ | βLi−1〉 =
∑
k<i

hk(i−1);mn 〈αLi−1 | â
†
kσâ
†
(i−1)τ | β

L
i−1〉 . (2.35)

From then on, this operator can be transformed as in Eq. (2.31). The total computational
cost per micro-iteration is hence reduced to O(L3D2) for the summation (there are three
variable site indices in Eq. (2.35)), and O(L2D3) for the transformation (there are O(L2)
operators to be transformed). The one-site complementary renormalized operator (the
complement of three second-quantized operators) can be constructed from the two-site
complementary renormalized operators at the moment when the third second-quantized
operator is added. From then on, this operator can also be transformed as in Eq. (2.31).

As mentioned earlier, the (complementary) renormalized operators are stored to disk,
as well as the MPS site tensors, in order to be recycled when the sweep direction is reversed.
An overview of the resulting total cost per macro-iteration is given in Tab. 2.1.
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Table 2.1: Computational requirements per macro-iteration for the DMRG algorithm.

O(task) time memory disk

H[i]eff{B[i]} NvecL
3D3 NvecD

2 (a) -
SVD and basis truncation LD3 D2

 L sites−−−→


LD2

Renormalized operators L3D3 L2D2 L3D2

Complementary renorm. op. L4D2 + L3D3 L2D2 L3D2

Total L4D2 +NvecL
3D3 (Nvec + L2)D2 L3D2

(a) The (complementary) renormalized operators are mentioned separately.

As long as the required D to yield numerical convergence is not exponentially large, the
DMRG algorithm is of polynomial cost in L. The computational requirements in Tab. 2.1
are upper bounds if the symmetry group of the Hamiltonian is exploited. Then the MPS
tensors and corresponding (complementary) renormalized operators become block-sparse,
and hkl;mn is not full rank. This will be discussed in chapter 3.

2.4 Properties

2.4.1 DMRG is variational

The DMRG algorithm is variational, because it can be formulated as the optimization of an
MPS ansatz. All energies obtained during all micro-iterations are therefore upper bounds
to the true ground state energy. These energies do not go down monotonically however,
because the basis {|αLi−1〉}⊗{|ni〉}⊗{|ni+1〉}⊗{|αRi+1〉} in which Ĥ is diagonalized changes
between different micro-iterations due to the truncation of the Schmidt spectrum [102].

2.4.2 Energy extrapolation

With increasing virtual dimension D, the MPS ansatz spans an increasing part of the many-
body Hilbert space. Call ED the minimum energy encountered in Eq. (2.28) during the
micro-iterations for a given virtual dimension D. Several calculations with increasing D can
be performed, in order to assess the convergence. This even allows to make an extrapolation
of the energy to the FCI limit. Several extrapolation schemes have been suggested. Note
that EFCI and {Ci, pj, qk} below are parameters to be fitted. The maximum discarded
weight encountered during the last sweep before convergence is abbreviated as:

wdisc
D = max

i

{
w[i]disc

D

}
. (2.36)

The initial assumption of exponential convergence [66]

ln (ED − EFCI) ∝ C1 + C2D (2.37)

was rapidly abandoned for the relation [102, 103, 169]

ED − EFCI = C3w
disc
D , (2.38)
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because the energy is a linear function of the RDM [102]. The tail of the distribution of
RDM eigenvalues scales as [102, 170]

κ[i]2βi ∝ exp
{
−C4 (ln βi)

2} . (2.39)

Substituting this relation in Eq. (2.38) yields an improved version of Eq. (2.37) [102]:

ln (ED − EFCI) ∝ C5 − C4 (lnD)2 . (2.40)

Eqs. (2.38) and (2.40) are still the most widely used extrapolation schemes in QC-DMRG.
Three other relations have been proposed, but they have not been used except in their
introduction papers. A relation for incremental energies ∆ED1 = ED1 − ED0 has been
suggested [106]:

∆ED =
C6 + C7ED√
L3D2 + 2L2D3

, (2.41)

but the extrapolated EFCI often violates the variational principle. An alternative relation
based on the discarded weight has also been proposed [106]:

ln (ED − EFCI) = C8 − C9

(
wdisc
D

)− 1
2 , (2.42)

as well as a Richardson-type extrapolation scheme, based on the assumption that the
energy is an analytic function of wdisc

D [131]:

E(µν)(wdisc
D ) =

p0 + p1w
disc
D + ...+ pµ

(
wdisc
D

)µ
q0 + q1wdisc

D + ...+ qν
(
wdisc
D

)ν . (2.43)

2.4.3 The CI content of the wavefunction

To analyze the MPS wavefunction (2.10), suppose that the L orthonormal orbitals are the
HF single-particle states. An important difference with traditional post-HF methods such
as CI expansions, is that no FCI coefficients are a priori zero. An MPS hence captures
CI coefficients of any particle-excitation rank relative to HF [109, 115]. A small virtual
dimension implies little information content in the FCI coefficient tensor, or equivalently
that the many nonzero FCI coefficients are in fact highly correlated. This has to be
contrasted with CI expansions, which are truncated in their particle-excitation rank and
therefore set many FCI coefficients a priori to zero. The nonzero FCI coefficients are
however not a priori correlated in a CI expansion: they are entirely free to be variationally
optimized.

2.4.4 Size-consistency

Is DMRG size-consistent? For noninteracting subsystems A and B, the compound wave-
function should be multiplicatively separable |Ψ〉 = |A〉 |B〉 and the energy additively
separable E = EA + EB. From the discussion of the Schmidt decomposition above, it
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follows immediately that an MPS is size-consistent if the orbitals of subsystems A and B
do not overlap, and if they are separated into two groups on the one-dimensional DMRG
lattice [102, 162]. The latter is for example realized if orbitals 1 to k correspond to subsys-
tem A and orbitals k+ 1 to L correspond to subsystem B. DMRG will then automatically
generate the solution with virtual dimension 1 on the A-B boundary: dim(αk) = 1.

2.4.5 DMRG is not FCI

An accurate variational energy does not necessarily imply that the wavefunction is good.
Suppose we have an orthonormal MPS |ΨMPS〉 with virtual dimension D which has been
variationally optimized to approximate the true ground state |Ψtrue〉. Suppose that

|ΨMPS〉 =
√

1− ε2 |Ψtrue〉+ ε |Ψerror〉 (2.44)

with 〈Ψtrue | Ψerror〉 = 0. Then

‖ |ΨMPS〉 − |Ψtrue〉 ‖2 =

√(√
1− ε2 − 1

)2

+ ε2 = ε+O(ε3) (2.45)

and
〈ΨMPS | Ĥ | ΨMPS〉 − Etrue = ε2

(
〈Ψerror | Ĥ | Ψerror〉 − Etrue

)
. (2.46)

The energy converges quadratically in the wavefunction error! Most DMRG convergence
criteria rely on energy convergence (ε2 ≈ 0). An important implication is that, except
for tremendously large virtual dimensions D where ε ≈ 0, the MPS wavefunction is not
invariant to orbital rotations. The orbital choice and their ordering on a one-dimensional
lattice also influence the convergence rate with D. Strategies to choose and order orbitals
are discussed in section 2.6. Sparse iterative FCI eigensolvers converge the FCI tensor to
a predefined threshold instead of the energy. A FCI solution can therefore be considered
invariant to orbital rotations.

2.5 Convergence strategies

The DMRG algorithm can get stuck in a local minimum or a limit cycle, if D is insuffi-
ciently large [102]. The chance of occurrence is larger for inconvenient orbital choices and
orderings. Because the virtual dimension D cannot be increased indefinitely in practice, it
is important to choose the set of orbitals and their ordering well, see section 2.6. Additional
considerations to enhance convergence are described here.

2.5.1 The number of sites to be optimized in a micro-iteration

It is better to use the two-site DMRG algorithm than the one-site version [171]. In the
one-site version, the Hamiltonian Ĥ is diagonalized during the micro-iterations in the basis
{|αLi−1〉} ⊗ {|ni〉} ⊗ {|αRi 〉} instead of {|αLi−1〉} ⊗ {|ni〉} ⊗ {|ni+1〉} ⊗ {|αRi+1〉}. Because of
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the larger variational freedom in the two-site DMRG algorithm, lower energy solutions
are obtained, and the algorithm is less likely to get stuck [122]. It might therefore be
worthwhile to optimize three or more MPS tensors simultaneously in a micro-iteration, or
to group several orbitals into a single DMRG lattice site [66].

The two-site algorithm has another important advantage, when the symmetry group
of the Hamiltonian is exploited. The virtual dimension D is then distributed over several
symmetry sectors, see chapter 3. In the one-site algorithm, the virtual dimension of a
symmetry sector has to be changed “manually” during the sweeps [122], while the SVD
(2.29) in the two-site algorithm automatically picks the best distribution.

2.5.2 Perturbative corrections and noise

White suggested to add perturbative corrections to the RDM in order to enhance con-
vergence [171]. Instead of using perturbative corrections, one can also add noise to the
RDM prior to diagonalization or to B[i] prior to SVD [102]. The corrections or noise help
to reintroduce lost symmetry sectors (lost quantum numbers) in the renormalized basis,
which are important for the true ground state. Instead of adding noise or perturbative cor-
rections, one can also reserve a certain percentage of the virtual dimension D to distribute
equally over all symmetry sectors [108].

2.5.3 Getting started

The wavefunction from which QC-DMRG starts has influence on the converged energy
(getting stuck in a local minimum) and on the rate of convergence [103, 107, 114]. The
effect of the starting guess is estimated to be an order of magnitude smaller than the effect
of the choice and ordering of the orbitals [114]. Nevertheless, it deserves attention.

One possibility is to choose a small active space to start from, and subsequently augment
this active space stepwise with previously frozen orbitals [101], in analogy to the infinite-
system DMRG algorithm [64]. Natural orbitals from a small CASSCF calculation or HF
orbitals can be used to this end [114]. An alternative is to make an a priori guess of how
correlated the orbitals are. This can be done with a DMRG calculation with small virtual
dimension D, from which the approximate single-orbital entropies can be obtained, see
section 2.6.3. The subsystem A is then chosen to be a single orbital in Eq. (2.8). The
larger the single-orbital entropy, the more it is correlated. The active space can then be
chosen and dynamically extended based on the single-orbital entropies [136].

One can also decompose a cheap CISD calculation into an MPS to start from [102, 114].
The author has found that distributing D equally over the symmetry sectors, and filling
the so-obtained MPS with noise, retrieves energies below the HF energy well within the
first macro-iteration [70].

To achieve a very accurate MPS quickly, it is also best to start from calculations with
relatively small virtual dimension D, and to enlarge it stepwise [102, 114, 172].
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2.6 Orbital choice and ordering

The opening quote of this chapter refers to section 2.5 and this section. There are plenty of
ways to set up an RG flow, and the specific setup influences the outcome. One consideration
of key importance in QC-DMRG is the choice and ordering of orbitals. Most molecules or
active spaces are far from one-dimensional. By placing the orbitals on a one-dimensional
lattice, and by assuming an MPS ansatz with modest D, an artifical correlation length is
introduced in the system, which can be a bad approximation. Over time, several rules of
thumb have been established to choose and order the orbitals.

2.6.1 Elongated molecules

Quantum information theory learns that locality is an important concept (see section
2.2). The Coulomb interaction, however, is long-ranged. On the other hand, the mutual
screening of electrons and nuclei can result in an effectively local interaction. For elongated
molecules such as hydrogen chains [102, 115, 139, 141, 146, 149], polyenes [102, 112, 115,
124, 129], or acenes [118, 119, 145], which are more or less one-dimensional, choosing a
spatially local basis has turned out to be very beneficial. There are roughly three ways to
choose a local basis: symmetric orthogonalization as it lies closest to the original gaussian
basis functions [118, 119, 139, 141, 149, 173], explicit localization procedures such as Pipek-
Mezey or Edmiston-Ruedenberg [124, 145, 174, 175], and working in a biorthogonal basis
[112, 139]. For the latter, the effective Hamiltonian is not hermitian anymore. The DMRG
algorithm should then be correspondingly adapted [112, 139, 176]. The adapted algorithm
is slower and prone to convergence issues, and it is therefore better to use one of the other
two localized bases [112, 139].

2.6.2 Hamiltonian measures

If the topology of the molecule does not provide hints for choosing and ordering orbitals, it
was investigated whether the Hamiltonian (1.26) can be of use. Several integral measures
have been proposed, for which a minimal bandwidth is believed to yield a good orbital
order. Chan and Head-Gordon proposed to minimize the bandwidth of the one-electron
integral matrix (i|T̂ |j) of the HF orbitals [102]. In quantum chemistry, it is often stated
that the one-electron integrals are an order of magnitude larger than the two-electron
integrals, and that quantum chemistry therefore corresponds to the small-U limit of the
Hubbard model [103, 136, 177]. On the other hand, there are many two-electron integrals,
and they may become important due to their number. When other orbitals than the HF
orbitals are used, it may therefore be interesting to minimize the bandwidth of the Fock
matrix [105]:

Fij = (i|T̂ |j) +
∑
k∈occ

(
4(ik|V̂ |jk)− 2(ik|V̂ |kj)

)
. (2.47)
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Other proposed integral measures are the MP2-inspired matrix [106]:

Gij =
(ii|V̂ |jj)2

|εi − εj|
(2.48)

where {εi} are the HF single-particle energies, as well as several measures in Ref. [111].
These are the Coulomb matrix Jij = (ij|V̂ |ij), the exchange matrix Kij = (ij|V̂ |ji), the
mean-field matrix Mij = (2Jij −Kij), and two derived quantities:

J
′

ij = e−Jij (2.49)

M
′

ij = e−Mij . (2.50)

While the one-electron integrals (i|T̂ |j) vanish when orbitals i and j belong to different
molecular point group irreps, Jij and Kij do not. Ref. [111] used a genetic algorithm to
find the optimal HF orbital ordering, in order to assess the proposed integral measures.
This genetic algorithm was expensive, which limited its usage to small test systems. It
favoured Kij bandwidth minimization, although no definite conclusions were drawn [111].
The exchange matrix Kij was recently used in two DMRG studies [145, 146] in conjunction
with localized orbitals, because it then directly reflects their overlaps and distances.

2.6.3 Entanglement measures

DMRG can be analyzed by means of the underlying MPS ansatz and quantum information
theory. Can the latter tell us something more than locality? Legeza and Sólyom proposed
to use the single-orbital entropies to find an optimal ordering [107]. Subsystem A is then
chosen to be a single orbital k in Eq. (2.8), and its entropy is denoted by S1(k). It can be
efficiently calculated in the DMRG algorithm, because the corresponding RDM ρ̂k can be
built from the following expectation values [116]:

ρ̂k =


〈(1− n̂k↑)(1− n̂k↓)〉 0 0 0

0 〈n̂k↑(1− n̂k↓)〉 0 0
0 0 〈(1− n̂k↑)n̂k↓〉 0
0 0 0 〈n̂k↑n̂k↓〉

 (2.51)

with n̂kσ = â†kσâkσ, hence without reordering any orbitals. The larger the single-orbital
entropy S1(k), the more orbital k is correlated. Legeza and Sólyom proposed to perform a
small-D DMRG calculation to estimate S1(k), and to place the orbitals with large S1(k) in
the center of the chain, and the ones with small S1(k) near the edges. They reasoned that
orbitals close to the Fermi surface are more entangled and therefore have a larger single-
orbital entropy. Because DMRG only captures local correlations, these orbitals should lie
close to each other.

Rissler, Noack and White proposed to use the two-orbital mutual information Ik,l to
order the orbitals [116]. In addition to the single-orbital entropies S1(k) and S1(l), the
two-orbital entropy S2(k, l) is also needed to calculate Ik,l. It can be obtained by choosing
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for subsystem A the two orbitals k and l. S2(k, l) can again be efficiently calculated in the
DMRG algorithm, as its RDM can be built from expectation values of operators acting
on at most two sites [116]. Although a 16 × 16 RDM needs to be constructed, many of
its entries are zero due to symmetry considerations, as was the case in Eq. (2.51). The
so-called subadditivity property of the entanglement entropy dictates that:

S2(k, l) ≤ S1(k) + S1(l). (2.52)

Any entanglement between orbitals k and l reduces S2(k, l) with respect to S1(k) + S1(l).
The two-orbital mutual information is defined by:

Ik,l =
1

2
(S1(k) + S1(l)− S2(k, l)) (1− δk,l) ≥ 0, (2.53)

and is thus a symmetric measure of the correlation between orbitals k and l. Its bandwidth
can be minimized, for example based on cost functions such as

I =
∑
k,l

Ik,l|k − l|η. (2.54)

Rissler, Noack and White found no clear correspondence between Ik,l and the integral
measures of section 2.6.2. They observed that Ik,l is large between orbitals which belong
to the same molecular point group irrep, as well as between corresponding bonding and
anti-bonding orbitals with large partial occupations (far from empty or doubly occupied)
[116]. Later studies of various groups supported this finding and corresponding ordering
[70, 128, 129, 136, 144, 149]. For small molecules such as dimers, it is best to group orbitals
of the same molecular point group irrep into blocks, and place irrep blocks of bonding and
anti-bonding type next to each other. If in addition natural orbitals (NO) are used, the
orbitals within an irrep block should be reordered so that the ones with NO occupation
number (NOON) closest to one, are nearest to the block of their bonding or anti-bonding
colleagues [149].

The gradient and Hessian of Ik,l with respect to orbital rotations can be calculated by
resp. three- and four-point correlation functions on the one-dimensional DMRG lattice
[70]. These can still be obtained efficiently [122]. With a corresponding Newton-Raphson
algorithm, Ik,l might not only yield the optimal ordering of a given set of orbitals, but also
the optimal choice of orbitals.

2.7 Variations on QC-DMRG

2.7.1 Quadratic scaling DMRG

For elongated molecules, when the active space is studied in a localized basis,

(ij|V̂ |kl) =

∫
d~r1d~r2

φ∗i (~r1)φk(~r1)φ∗j(~r2)φl(~r2)

|~r1 − ~r2|
(2.55)
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vanishes exponentially with the separation of orbitals i and k, and the separation of orbitals
j and l. By defining a threshold, below which these two-body matrix elements can be
neglected, one can reduce the cost of the DMRG algorithm in Tab. 2.1 to O(L2D3)
computational time, O(LD2) memory, and O(L2D2) disk [66, 115, 118]. Quadratic scaling
DMRG (QS-DMRG) is not variational anymore because the Hamiltonian is altered, but
the error can be controlled with the threshold. At present, QC-DMRG can achieve FCI
energy accuracy for about 40 electrons in 40 orbitals [70, 140]. With QS-DMRG, one can
achieve FCI energy accuracy for 100 electrons in 100 orbitals [115], and maybe more. It
should however be repeated, that this method relies on the topology of the molecule, and
exploits the fact that DMRG works very well for one-dimensional systems.

2.7.2 Building-in dynamic correlation

QC-DMRG can at present achieve FCI energy accuracy for about 40 electrons in 40 orbitals.
The static correlation in active spaces up to this size can hence be resolved, while dynamic
correlation has to be treated a posteriori. Luckily, QC-DMRG allows for an efficient
extraction of the two-body RDM (2-RDM) [122, 124]. The 2-RDM is not only required
to calculate analytic nuclear gradients [102, 151], but also to compute the gradient and
the Hessian in CASSCF [53]. It is therefore natural to introduce a CASSCF variant with
DMRG as active space solver, DMRG-CASSCF or DMRG-SCF [123, 124, 126]. Static
correlation can be treated with DMRG-SCF. To add dynamic correlation as well, three
methods have been introduced.

With a little more effort, the 3-RDM and some specific contracted 4-RDMs can be
extracted from DMRG as well. These are required to apply second-order perturbation
theory to a CASSCF wavefunction, called CASPT2, in internally contracted form. The
DMRG variant is called DMRG-CASPT2 [138, 149, 151].

Based on a CASSCF wavefunction, a configuration interaction expansion can be in-
troduced, called MRCI. Recently, an internally contracted MRCI variant was proposed,
which only requires the 4-RDM [150]. By approximating the 4-RDM with a cumulant
reconstruction from lower-rank RDMs, DMRG-MRCI was made possible [150].

Yet another way is to perform a canonical transformation (CT) on top of an MR
wavefunction, in internally contracted form. When an MPS is used as MR wavefunction,
the method is called DMRG-CT [129, 130, 143].

2.7.3 Excited states

In addition to ground states, DMRG can also find excited states. By projecting out lower-
lying eigenstates [70], or by targeting a specific energy with the harmonic Davidson algo-
rithm [118], DMRG solves for a particular excited state. In these state-specific algorithms,
the whole renormalized basis is used to represent one single eigenstate. In state-averaged
DMRG, several eigenstates are targeted at once to prevent root-flipping. Their RDMs are
weighted and summed to perform the DMRG renormalization step [178]. The renormalized
basis then represents several eigenstates simultaneously.
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DMRG linear response theory (DMRG-LRT) [127] allows to calculate response prop-
erties, as well as excited states. Once the ground state has been found, the MPS tangent
vectors to this optimized point can be used as an (incomplete) variational basis to ap-
proximate excited states [127, 153, 179–182], see chapter 6. As the tangent vectors to an
optimized Slater determinant yield the configuration interaction with singles (CIS), also
called the Tamm-Dancoff approximation (TDA), for HF theory [42], the same names are
used for DMRG: DMRG-CIS or DMRG-TDA. The variational optimization in an (incom-
plete) basis of MPS tangent vectors can be extended to higher-order tangent spaces as
well. DMRG-CISD, or DMRG configuration interaction with singles and doubles, is a
variational approximation to target both ground and excited states in the space spanned
by the MPS reference and its single and double tangent spaces [181].

By linearizing the time-dependent variational principle for matrix product states [183],
the DMRG random phase approximation (DMRG-RPA) is found [153, 181, 182, 184], again
in complete analogy with RPA for HF theory.

2.7.4 Other ansatzes

Two other related ansatzes have been employed in quantum chemistry: the TTNS [97, 98,
146] and the complete-graph TNS (CGTNS) [134, 135]:

|Ψ〉 =
∑
{nk}

(∏
i<j

C[i, j]ninj

)
|n1...nL〉 . (2.56)

The latter is an example of a correlator product state (CPS) [185], in which multiple
tensors can have the same physical index. The TTNS requires a smaller virtual dimension
than DMRG to achieve the same accuracy. The accuracy of the CGTNS is limited by
the number of correlated orbitals in each cluster (two in Eq. (2.56)). The optimization
algorithms for TTNSs and CGTNSs are less efficient than QC-DMRG for an MPS, and as
a result an MPS is currently still the preferred choice for ab initio quantum chemistry.

There is also a QC-DMRG algorithm for the relativistic many-body four-component
Dirac equation [154].

2.8 QC-DMRG codes and studied systems

Tab. 2.2 gives an overview of the currently existing QC-DMRG codes. Two of them are
freely available, Block and CheMPS2. Four codes have SU(2) spin symmetry: Zgid’s
code, Rego, Block, and CheMPS2. The former two explicitly retain entire multiplets
at each virtual bond, while the latter two exploit the Wigner-Eckart theorem to work with
a reduced renormalized basis and reduced renormalized operators, see chapter 3.

Two message-passing interface (MPI) strategies are currently used: processes can be-
come responsible of certain site indices of the (complementary) renormalized operators
[108], or of certain symmetry blocks in the virtual bonds [128].
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Table 2.2: Overview of QC-DMRG codes. This list may be incomplete. All codes known to
the author are listed.

Name Authors Selected papers
White [66, 116]
Mitrushenkov [101, 139]

Block(a) Chan & Sharma [102, 140]
Qc-Dmrg-Budapest Legeza [103, 147]
Qc-Dmrg-Eth Reiher [131, 142]

Zgid [121, 123]
Xiang [132]

Rego Kurashige & Yanai [128, 148]
CheMPS2(b) Wouters [70, 141]

(a)Freely available from [186].
(b)Freely available from [69] or [70].

Many properties of many systems have been studied. QC-DMRG is of course able to
calculate the ground state energy, but also excited state energies [70, 103, 105, 113, 118, 124,
151, 153, 158], avoided crossings [70, 98, 105, 113], spin splittings [70, 119–121, 130, 133,
134, 140, 141, 152, 155], polyradical character by means of the NOON spectrum [119, 126,
145], static and dynamic polarizabilities [127, 141], static second hyperpolarizabilities [141],
particle-particle, spin-spin, and singlet diradical correlation functions [119, 140, 145, 150],
as well as expectation values based on the 1- or 2-RDM such as spin densities [142, 157]
and dipole moments [105].

The systems which have been studied range from atoms and first-row dimers to large
transition metal clusters and π-conjugated hydrocarbons. Several of them have repeatedly
received attention in the QC-DMRG community:

• H2O [66, 102–104, 107, 108, 110, 131, 132, 143, 146, 153] was already the subject of
several FCI studies, due to its natural abundance and small number of electrons.

• Hydrogen chains [102, 115, 122, 123, 139, 141, 146, 149]: these one-dimensional
systems exhibit large static correlation at stretched geometries. They are optimal
testcases for QC-DMRG.

• All-trans polyenes [102, 112, 115, 124, 129, 150, 153]: they are also one-dimensional,
with a large MR character.

• N2 [101, 102, 106, 107, 109, 116, 117, 143, 146, 147, 149, 150] was already the subject
of several FCI studies, due to its MR character at stretched bond lengths and its
small number of electrons.

• Cr2 [101, 111, 114, 128, 138, 140, 146, 149] is only found to be bonding at the CASPT2
level. A complete basis set extrapolation of DMRG-CASPT2 calculations in the cc-
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pwCV(T,Q,5)Z basis, correlating 12 electrons in 28 orbitals, was needed to retrieve
an acceptable dissociation energy [138].

• [Cu2O2]2+ [120, 128, 129, 136] requires accurate descriptions of both static and dy-
namic correlation along its isomerization coordinate. DMRG-CT, correlating 28
electrons in 32 orbitals, showed that the bis(µ-oxo) isomer is more stable than the
µ− η2 : η2 peroxo isomer [129].

Other QC-DMRG studies treat

• the avoided crossings in LiF [98, 105], CsH [113, 147], and C2 [70]

• the static correlation due to π-conjugation in acenes [118, 119, 145], poly(phenyl)
carbenes [126, 133], perylene [143], graphene nanoribbons [145], free base porphyrin
[130, 150], and spiropyran [151]

• transition metal clusters such as [Fe2S2(SCH3)4]2− [140, 153], [Fe(NO)]2+ [142, 144],
Mn4CaO5 in photosystem II [148], and the two dinuclear oxo-bridged complexes
[Fe2OCl6]2− and [Cr2O(NH3)10]4+ [155]

• molecules with heavy elements, for which relativistic effects become important, such
as CsH [113, 147], the complexation of CUO with four Ne or Ar atoms [152], and the
binding energy of TlH [154]

Many more molecules were, are, and will be studied, which renders this list incomplete.



CHAPTER 3

Symmetry-adapted DMRG and CheMPS2

Die Gruppenpest!
– Wolfgang E. Pauli

3.1 Introduction

The symmetry group of a Hamiltonian can be used to reduce the dimensionality of the
exact diagonalization problem [187, 188]. The Hamiltonian does not connect states which
belong to different irreps or to different rows of the same irrep. By choosing a basis of
symmetry eigenvectors, the Hamiltonian becomes block diagonal, and each block can be
diagonalized separately. The blocks which belong to different rows of the same irrep are
closely related, and yield the same energies. In chapter 2, it was discussed how locality
leads to low-entanglement wavefunctions. These allow to reduce the dimensionality of
the exact diagonalization problem as well, at least for ground and low-lying eigenstates.
Symmetry and locality can be combined, which is shown in this chapter for DMRG.

From the very beginning, the abelian particle-number and spin-projection symmetries
were incorporated in QC-DMRG [66, 101, 102]. Abelian point group symmetry followed
quickly [107, 109]. These symmetries are easy to implement, because they commute with
the DMRG RDM. For SU(2) spin symmetry this is not the case, which is why its imple-
mentation took longer.

Sierra and Nishino first introduced exact SU(2) spin symmetry into DMRG with the
interaction-round-a-face DMRG method [189]. McCulloch and Gulácsi later found an eas-
ier way, based on a quasi-RDM [190–192], see section 3.2. For the underlying MPS, this
boils down to assuming that the rank-three MPS tensors are irreducible tensor opera-
tors of the symmetry group [193]. This opened the path to implement multiplicity-free

33
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non-Abelian symmetries also in TNSs [194–196]. The spin-adapted DMRG method of
McCulloch and Gulácsi was later introduced in nuclear structure calculations [197–199],
where it is known as angular momentum DMRG or JDMRG, as well as in QC-DMRG
[70, 121, 140, 141]. Non-multiplicity-free symmetries can also be exploited in DMRG, but
require special considerations [200].

Before the introduction of exact SU(2) symmetry in QC-DMRG, several tricks were
employed. Legeza used a spin-reflection operator to distinguish even- and odd-spin states
based on their spin parity [103, 105, 201]. A level shift operator [113, 120, 124, 134]

Ĥ = Ĥ0 + αŜ−Ŝ+ (3.1)

Ĥ = Ĥ0 + αŜ2 (3.2)

can also be used to raise higher spin states in energy. Zgid and Nooijen [121] used the
quasi-RDM to impose exact SU(2) spin symmetry in QC-DMRG, but they retained all
states of a multiplet explicitly in the renormalized basis. In the works of Sharma and
Chan [140] and the author [70, 141], the Wigner-Eckart theorem was exploited to work
with reduced renormalized basis states instead of entire multiplets.

3.2 Spin-adapted DMRG

McCulloch’s quasi-RDM method [190–193] is reviewed in this section.

3.2.1 The quasi-RDM

Consider the bases {|jAjzAαA〉} and {|jBjzBαB〉} for subsystems A and B respectively, which
have good spin j and spin projection jz quantum numbers. α keeps track of the number of
basis states with symmetry (j, jz). The wavefunction for the compound system with spin
S and spin projection Sz can be written as

|Ψ〉 =
∑

jAj
z
AαAjBj

z
BαB

ΨSSz

(jAj
z
AαA);(jBj

z
BαB) |jAjzAαA〉 |jBjzBαB〉 . (3.3)

The coefficients ΨSSz

(jAj
z
AαA);(jBj

z
BαB) are not completely independent, but are related to each

other by Clebsch-Gordan coefficients. The triangle condition for angular momentum and
the sum rule for spin projections have to be fulfilled for example:

|jA − jB| ≤ S ≤ jA + jB, (3.4)

jzA + jzB = Sz. (3.5)

Only if the compound wavefunction is a spin singlet, jA and jB are constrained to be
equal in the summation. This implies that the RDM ρ̂A for subsystem A is in general not
block-diagonal with respect to jA, except if |Ψ〉 is a singlet:

ρ̂A =
∑

jAj
z
AαAj̃Aα̃A

|jAjzAαA〉

 ∑
jBj

z
BαB

ΨSSz

(jAj
z
AαA);(jBj

z
BαB)Ψ

SSz∗
(j̃Aj

z
Aα̃A);(jBj

z
BαB)

 〈j̃AjzAα̃A| . (3.6)
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The eigenvectors of ρ̂A will then not be spin eigenvectors, i.e. of Ŝ2. One way to obtain
a renormalized basis of spin eigenvectors, is by using the quasi-RDM. It can be obtained
from ρ̂A by setting the off-diagonal blocks, which connect different spin symmetry sectors,
to zero:

ρ̂Aquasi =
∑

jAj
z
AαAα̃A

|jAjzAαA〉

 ∑
jBj

z
BαB

ΨSSz

(jAj
z
AαA);(jBj

z
BαB)Ψ

SSz∗
(jAj

z
Aα̃A);(jBj

z
BαB)

 〈jAjzAα̃A| . (3.7)

The eigenvectors of ρ̂Aquasi are spin eigenvectors, and their probability of occurrence in
subsystem A is given by the corresponding eigenvalues of ρ̂Aquasi. Quasi-RDMs can be
constructed analogously for other non-Abelian symmetries.

3.2.2 Reduced basis states

A performance gain in memory and computer time can be obtained by working with
reduced basis states. If for all multiplets (j, α), all spin projections jz are present, a
Clebsch-Gordan coefficient can be factorized from the coefficient tensor in Eq. (3.3) due
to the Wigner-Eckart theorem:

|Ψ〉 =
∑

jAj
z
AαAjBj

z
BαB

〈jAjzAjBjzB | SSz〉ΨS
(jAαA);(jBαB) |jAjzAαA〉 |jBjzBαB〉 , (3.8)

or in reduced form:

||Ψ〉 =
∑

jAαAjBαB

ΨS
(jAαA);(jBαB) ||jAαA〉 ||jBαB〉 . (3.9)

The DMRG renormalization tranformation to augment the left renormalized basis with
one site (containing one spin) can analogously be written as

|jijzi αi〉 =
∑

ji−1jzi−1αi−1siszi

A[i]
(sis

z
i )

(ji−1jzi−1αi−1);(jijzi αi)
|ji−1j

z
i−1αi−1〉 |siszi 〉 , (3.10)

or in reduced form as

||jiαi〉 =
∑

ji−1αi−1si

T [i]
(si)
(ji−1αi−1);(jiαi)

||ji−1αi−1〉 ||si〉 , (3.11)

with

A[i]
(sis

z
i )

(ji−1jzi−1αi−1);(jijzi αi)
= 〈ji−1j

z
i−1sis

z
i | jijzi 〉T [i]

(si)
(ji−1αi−1);(jiαi)

. (3.12)

A[i](si) can therefore be regarded as an irreducible tensor operator with spin si.
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3.2.3 Irreducible tensor operators

An extra performance gain can be achieved if the operators in the Hamiltonian are irre-
ducible tensor operators of the imposed symmetry group. For spin systems, the following
operators are an example:(

Ŝ1
−1, Ŝ

1
0 , Ŝ

1
1

)
=

(
Ŝx − iŜy√

2
, Ŝz,−

Ŝx + iŜy√
2

)
. (3.13)

Due to the Wigner-Eckart theorem

〈s1s
z
1 | Ŝ1

m | s2s
z
2〉 = 〈s1 || Ŝ1 || s2〉 〈s2s

z
21m | s1s

z
1〉 , (3.14)

renormalized operators can be obtained in reduced form by recoupling the irreducible
tensor operators and the reduced renormalized basis states. Formally this boils down to
contracting the common multiplets of the Clebsch-Gordan coefficients in Eqs. (3.12) and
(3.14). The tensor product of irreducible tensor operators can also be obtained by working
solely with reduced quantities [193], see section 3.3.5.

3.2.4 Singlet-embedding

For the coupling to spin S in Eq. (3.9), all spin symmetry sectors jA and jB which comply
with Eq. (3.4) have to be taken into account. This strategy to form a spin-S wavefunction
is hence less efficient for larger values of S. One way to circumvent the large summation,
is by adding a noninteracting site at the right end of the one-dimensional lattice, with
spin S [192]. At the position of the current micro-iteration, one can then simply recouple
to a singlet state. Sharma and Chan called this the singlet-embedding strategy [140]. In
CheMPS2, the singlet-embedding will arise naturally, see section 3.3.2.

3.2.5 Advantages

Eq. (3.8) allows to explicitly target a specific symmetry sector of the Hamiltonian. The
wavefunction is then always an exact eigenstate of Ŝ2, irrespective of the virtual dimension
D. A singlet-triplet gap can then for example be obtained by two ground state calcula-
tions, instead of several excited state calculations. For the latter, spin mixing can occur,
because working in the Sz = 0 symmetry sector does not imply anything about S. Explicit
measurement of Ŝ2, and its evolution with D, should then be used to discern the spin S.

Another advantage is the memory reduction. A[i] contains (2si + 1)D2 variables. Due
to the Clebsch-Gordan coefficients in Eq. (3.12), it becomes block-sparse. Whenever a
Clebsch-Gordan coefficient is zero, the corresponding MPS tensor block does not need to
be allocated. In addition, the symmetry block (ji−1, ji) in A[i] is represented in reduced
form in T [i]. D(ji) reduced renormalized basis states correspond in fact to (2ji + 1)D(ji)
individual renormalized basis states. Next to block-sparsity, Eq. (3.12) hence also encom-
passes information compression. The block-sparsity and the compression result in faster
contractions over common indices. Next to a memory advantage, there is hence also an
advantage in computational time.
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3.3 Tensors in CheMPS2

3.3.1 Introduction

CheMPS2 exploits SU(2) spin symmetry, U(1) particle-number symmetry, and the abelian
point group symmetries P with real-valued character tables:

P ∈ {C1, Ci, C2, Cs, D2, C2v, C2h, D2h}. (3.15)

C1 is the trivial point group which contains only the identity operation. Because these
abelian groups P all have real-valued character tables, the direct product of any irrep Ij
with itself gives the trivial irrep I0:

∀Ij : Ij ⊗ Ij = I0. (3.16)

The physical basis states of orbital k correspond to the following symmetry eigenstates:

|−〉 → |s = 0; sz = 0;N = 0; I = I0〉 (3.17)

|↑〉 → |s =
1

2
; sz =

1

2
;N = 1; I = Ik〉 (3.18)

|↓〉 → |s =
1

2
; sz = −1

2
;N = 1; I = Ik〉 (3.19)

|↑↓〉 → |s = 0; sz = 0;N = 2; I = I0〉 . (3.20)

The virtual basis states are also labeled by the quantum numbers of SU(2)⊗ U(1)⊗ P:

|α〉 → |jjzNIα〉 . (3.21)

The equivalent of Eq. (3.12) is then

A[i]
(sszNI)
(jLj

z
LNLILαL);(jRj

z
RNRIRαR) = 〈jLjzLssz | jRjzR〉 δNL+N,NRδIL⊗I,IRT [i]

(sNI)
(jLNLILαL);(jRNRIRαR).

(3.22)
The SU(2), U(1), and P symmetries are locally imposed by their Clebsch-Gordan coeffi-
cients. These express nothing else than resp. local allowed spin recoupling, local particle
number conservation, and local point group symmetry conservation. The index α keeps
track of the number of reduced renormalized basis states with symmetry (j,N, I). This
equation again encompasses block-sparsity and information compression.

3.3.2 Imposing symmetry

Figure 3.1: Imposing SU(2), U(1), and P symmetry.
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The desired global symmetry (SG, NG, IG) can be imposed with the singlet-embedding
strategy, see Fig. 3.1. Assume that the MPS is part of a larger DMRG chain, to which it is
connected on its left and right ends. On the left end, there is only one irrep (jL, NL, IL) =
(0, 0, I0) in the virtual bond, which has virtual dimension 1. On the right end, there is
also only one irrep (jR, NR, IR) = (SG, NG, IG) in the virtual bond, which also has reduced
virtual dimension 1. Eq. (3.22) and Fig. 3.1 imply that the addition of an extra orbital
to the left renormalized basis is repeated from symmetry sector (0, 0, I0) at boundary 0 to
symmetry sector (SG, NG, IG) at boundary L.

Towards the middle of this embedded MPS chain, the reduced virtual dimension has
to grow exponentially for the MPS to represent a general FCI state. This growth can be
calculated recursively from the left as

DL(i, j, N, I) = DL(i− 1, j, N, I) +DL(i− 1, j − 1

2
, N − 1, I ⊗ Ii)

+ DL(i− 1, j +
1

2
, N − 1, I ⊗ Ii) +DL(i− 1, j, N − 2, I). (3.23)

Indices i− 1 and i denote the virtual bond. The constraint above can then be formulated
as DL(i = 0, j, N, I) = δ(j,N,I),(0,0,I0). The interpretation of this growth equation is quite
straightforward. States of symmetry (j,N, I) at boundary i are constructed as certain
products of renormalized basis states at boundary i− 1 and physical basis states at site i:

||jNI〉 ⊗ ||00I0〉 → ||jNI〉 , (3.24)

||(j − 1

2
)(N − 1)(I ⊗ Ii)〉⊗ ||

1

2
1Ii〉 → ||jNI〉 ⊕ ||(j − 1)NI〉 , (3.25)

||(j +
1

2
)(N − 1)(I ⊗ Ii)〉⊗ ||

1

2
1Ii〉 → ||jNI〉 ⊕ ||(j + 1)NI〉 , (3.26)

||j(N − 2)I〉 ⊗ ||02I0〉 → ||jNI〉 . (3.27)

Common sense is assumed, i.e. j ≥ 0 etc. Alternatively, the growth can be calculated
recursively from the right as

DR(i, j, N, I) = DR(i+ 1, j, N, I) +DR(i+ 1, j − 1

2
, N + 1, I ⊗ Ii+1)

+ DR(i+ 1, j +
1

2
, N + 1, I ⊗ Ii+1) +DR(i+ 1, j, N + 2, I), (3.28)

with DR(i = L, j,N, I) = δ(j,N,I),(SG,NG,IG). The FCI reduced virtual dimensions are then

DFCI(i, j, N, I) = min (DL(i, j, N, I), DR(i, j, N, I)) . (3.29)

To make the MPS ansatz in Eq. (3.22) of practical use, either the total reduced virtual
dimension per bond, or the reduced virtual dimension per symmetry sector, has to be
truncated. The former strategy is used in CheMPS2 [70], and the latter in its one-site
DMRG predecessor CheMPS [141].
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Figure 3.2: Convergence of the one-dimensional Hubbard model with open boundary conditions,
L = 36 sites, N = 22 electrons, U = 6, in the S = 0 spin singlet state. The convergence scheme
(2.40) is tested for a DMRG code without any imposed symmetries, for a DMRG code with
imposed particle number, and for CheMPS. κ is the parameter C4 of Eq. (2.40), and Dblock

denotes the number of renormalized basis states per symmetry sector. For CheMPS, these are
the reduced ones.

The extrapolation scheme (2.40) is shown for the one-dimensional Hubbard model [177]
with open boundary conditions

Ĥ = −
L−1∑
i=1

∑
σ

(
â†iσâi+1σ + â†i+1σâiσ

)
+ U

L∑
i=1

â†i↑âi↑â
†
i↓âi↓ (3.30)

in Figs. 3.2 and 3.3. In the former, D denotes the number of reduced renormalized
basis states per symmetry block. In the latter, D denotes the total number of reduced
renormalized basis states at each bond. The extrapolation scheme seems to hold for the
different symmetry constraints and the two truncation strategies. The comparison in Fig.
3.2 is of course dubious, as the number of symmetry sectors in the middle of the MPS
chain is O(L) for U(1) symmetry and O(L2) for SU(2)⊗ U(1) symmetry.

In Fig. 3.3, when the total number of reduced renormalized basis states at a virtual
bond is used, the curves for the calculations without symmetry and the calculations with
U(1) symmetry will be (more or less) on top of each other. The abelian U(1) symmetry
only results in block-sparsity, not in information compression. On the other hand, the
calculation with SU(2) ⊗ U(1) symmetry will converge faster with D due to the Wigner-
Eckart theorem and the corresponding information compression, as can be observed from
Fig. 3.3.
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Figure 3.3: Convergence of the one-dimensional Hubbard model with open boundary conditions,
L = 36 sites, N = 22 electrons, U = 6, in the S = 0 spin singlet state. The convergence scheme
(2.40) is tested for a DMRG code without any imposed symmetries and for CheMPS2. κ is the
parameter C4 of Eq. (2.40), and Dglobal denotes the total number of renormalized basis states at
each virtual bond. For CheMPS2, these are the reduced ones.
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3.3.3 Canonical forms

In the remainder of this text, the following abbreviations will often be used:

�L →(jLj
z
LNLIL) , �R →(jRj

z
RNRIR) , (3.31)

�phys → (sszNI) , �n
phys → (sns

z
nNnIn) , (3.32)

5L → (jLNLIL) , 5R → (jRNRIR) , (3.33)

5phys → (sNI) , 5n
phys → (snNnIn) . (3.34)

Squares (�) hence denote an SU(2)⊗U(1)⊗P symmetry sector with spin projection, while
triangles (5) denote a reduced symmetry sector. A[i] is left-normalized if∑

�phys�LαL

(
A[i]�phys

)†
(�RαR);(�LαL)

A[i]
�phys

(�LαL);(�̃Rα̃R)

= δ�R,�̃R
∑

5phys5LαL

(
T [i]5phys

)†
(5RαR);(5LαL)

T [i]
5phys

(5LαL);(5Rα̃R) = δ�R,�̃RδαR,α̃R . (3.35)

The δ�R,�̃R is only due to the Clebsch-Gordan coefficients of the SU(2)⊗U(1)⊗P symmetry.
Left-normalization can therefore be performed with a QR-decomposition on T [i] per right
symmetry sector. A[i] is right-normalized if∑

�phys�RαR

A[i]
�phys

(�̃Lα̃L);(�RαR)

(
A[i]�phys

)†
(�RαR);(�LαL)

= δ�L,�̃L
∑

5phys5RαR

2jR+1
2jL+1

T [i]
5phys

(5Lα̃L);(5RαR)

(
T [i]5phys

)†
(5RαR);(5LαL)

= δ�L,�̃LδαL,α̃L .(3.36)

The δ�L,�̃L is again only due to the Clebsch-Gordan coefficients. Right-normalization can
be obtained by performing the LQ-decomposition√

2jR + 1

2jL + 1
T [i]

5phys

(5LαL);(5RαR) =
∑
α̃L

L(5LαL);(5Lα̃L)Q[i]
5phys

(5Lα̃L);(5RαR) (3.37)

per left symmetry sector. The quantity√
2jL + 1

2jR + 1
Q[i]

5phys

(5LαL);(5RαR) (3.38)

is then the reduced part of the right-normalized MPS tensor A[i].

3.3.4 The reduced two-site object

Section 2.3.3 can be reformulated with the reduced MPS tensors T [i] from Eq. (3.22) and
a reduced two-site object S[i]:

S[i]
j(s1s2)N1N2I1I2
5LαL;5RαR = δNL+N1+N2,NRδIL⊗I1⊗I2,IR

√
2j + 1(−1)jL+jR+s1+s2

∑
jMαM

√
2jM + 1{

jL jR j
s2 s1 jM

}
T [i]

51
phys

5LαL;jM (NL+N1)(IL⊗I1)αM
T [i+ 1]

52
phys

jM (NL+N1)(IL⊗I1)αM ;5RαR . (3.39)
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Eq. (3.39) is the analogue of Eq. (2.26). The Lagrangian can be written in terms of S[i],
the effective Hamiltonian equation can be solved, and after convergence, Eq. (3.39) can be
backtransformed:

(TT )[i]
51

phys;5
2
phys;jM

5LαL;5RαR = δNL+N1+N2,NRδIL⊗I1⊗I2,IR
√

2jM + 1(−1)jL+jR+s1+s2∑
j

√
2j + 1

{
jL jR j
s2 s1 jM

}
S[i]

j(s1s2)N1N2I1I2
5LαL;5RαR . (3.40)

(TT )[i] can be decomposed per middle symmetry sector 5M = (jM , NL +N1, IL ⊗ I1):√
2jM+1
2jR+1

(√
2jR+1
2jM+1

(TT )[i]
51

phys;5
2
phys;jM

5LαL;5RαR

)
=
√

2jM+1
2jR+1

(∑
αM

U [i]5M
(5LαL51

phys);αM
λ[i]5MαM V [i]5M

αM ;(5RαR52
phys)

)
=
∑
αM

U [i]
51

phys

(5LαL);(5MαM )λ[i]5MαM

(√
2jM+1
2jR+1

V [i]
52

phys

(5MαM );(5RαR)

)
. (3.41)

U [i] is the reduced part of a left-normalized MPS site tensor, and the bracketed term is
the reduced part of a right-normalized MPS site tensor. The reduced Schmidt numbers
λ[i] are related to the individual Schmidt numbers κ[i] of Eq. (2.29) by

κ[i]�MαM =
λ[i]5MαM√ ∑

5QαQ
(2jQ + 1)λ[i]25QαQ

. (3.42)

In the spin-adapted DMRG algorithm, the D largest reduced Schmidt numbers λ[i] are
kept in the truncation step.

3.3.5 (Complementary) reduced renormalized operators

Due to the abelian point group symmetry P, the matrix elements hij;kl of the Hamiltonian
(1.32) are only nonzero if Ii⊗ Ij = Ik ⊗ Il. If P is nontrivial, this considerably reduces the
number of terms in the construction of the complementary renormalized operators, and in
the multiplication of the effective Hamiltonian with a trial vector.

To calculate (complementary) renormalized operators, a specific ordering of the second-
quantized operators â†aαâ

†
bβâdδâcγ is initially assumed, a ≤ b and c ≤ d, to keep track of the

fermion signs due to the anticommutation relations. If a = b or c = d, α = −β = −δ = γ
is assumed in addition. If another ordering is needed, it can be easily deduced.

Suppose the renormalized operator âcγ is needed for the current micro-iteration at sites
(i, i + 1) with c < i. All MPS site tensors to the left of site i are left-normalized. To
calculate the desired renormalized operator, it is hence sufficient to start at site c:

〈�RαR | âcγ | �̃Rα̃R〉c =
∑

�LαL�phys�̃phys

(
A[c]�phys

)†
(�RαR);(�LαL)

〈�phys | âcγ | �̃phys〉A[c]
�̃phys

(�LαL);(�̃Rα̃R)
(−1)δÑ,2δγ,↑ , (3.43)
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and renormalize this operator stepwise up to virtual boundary i− 1:

〈�RαR | âcγ | �̃Rα̃R〉l+1 =
∑

�LαL�̃Lα̃L�phys

(
A[l + 1]�phys

)†
(�RαR);(�LαL)

〈�LαL | âcγ | �̃Lα̃L〉lA[l + 1]
�phys

(�̃Lα̃L);(�̃Rα̃R)
(−1)δN,1 . (3.44)

In Eqs. (3.43) and (3.44) the minus signs of the Jordan-Wigner transformation [168] are
written explicitly. They have their origin in the chosen orbital ordering in the occupation
number representation in Eq. (1.25). If γ =↑ and orbital c is doubly occupied, three
second-quantized operators still have to anticommute with â†c↓. They anticommute in

addition with all â†lτ , with min(a, b, d) > l > c and τ ∈ {↑, ↓}, to propagate to their
position in the ket |n1...nL〉.

With the reduced MPS ansatz in Eq. (3.22), this renormalized operator becomes:

〈�RαR | âcγ | �̃Rα̃R〉l = δNR+1,ÑR
δIR⊗Ic,ĨR 〈jRj

z
R

1

2
γ | j̃Rj̃zR〉 〈5RαR || L̂

1
2
c || 5̃Rα̃R〉l (3.45)

with

〈5RαR || L̂
1
2
c || 5̃Rα̃R〉c = δNR+1,ÑR

δIR⊗Ic,ĨRδ|jR−j̃R|, 12(∑
αL

(
T [c](00I0)

)†
(5RαR);(5RαL)

T [c]
( 1
2

1Ic)

(5RαL);(5̃Rα̃R)
+ (−1)j̃R−jR+ 1

2

√
2jR+1

2j̃R+1
×

∑
αL

(
T [c](

1
2

1Ic)
)†

(5RαR);(j̃R(NR−1)ĨRαL)
T [c]

(02I0)

(j̃R(NR−1)ĨRαL);(5̃Rα̃R)

)
(3.46)

and for l > c:

〈5RαR || L̂
1
2
c || 5̃Rα̃R〉l = δNR+1,ÑR

δIR⊗Ic,ĨRδ|jR−j̃R|, 12

∑
5physjLj̃LαLα̃L

(−1)j̃L+jR+ 1
2
−s

√
(2j̃L + 1)(2jR + 1)

(
T [l]5phys

)†
(5RαR);(jL(NR−N)(IR⊗I)αL)

T [l]
5phys

(j̃L(ÑR−N)(ĨR⊗I)α̃L);(5̃Rα̃R){
jR j̃R

1
2

j̃L jL s

}
〈jL(NR −N)(IR ⊗ I)αL || L̂

1
2
c || j̃L(ÑR −N)(ĨR ⊗ I)α̃L〉l−1 . (3.47)

Note that the Jordan-Wigner transformation is incorporated in these equations. The renor-
malized operator â†cγ can be obtained by hermitian conjugation:

〈�RαR | â†cγ | �̃Rα̃R〉l = δNR−1,ÑR
δIR,ĨR⊗Ik 〈j̃Rj̃

z
R

1

2
γ | jRjzR〉 〈5̃Rα̃R || L̂

1
2
c || 5RαR〉

†

l .

(3.48)
The reduced L-tensor in Eqs. (3.45) and (3.48) is a spin-1

2
object, because the operators

b̂†cγ = â†cγ (3.49)

b̂cγ = (−1)
1
2
−γ âc−γ (3.50)
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for orbital c correspond to resp. the (s = 1
2
, sz = γ,N = 1, Ic) row of irrep (s = 1

2
, N = 1, Ic)

and the (s = 1
2
, sz = γ,N = −1, Ic) row of irrep (s = 1

2
, N = −1, Ic) [202]. b̂† and b̂ are

hence both doublet irreducible tensor operators. As described in section 3.2.3, this fact
permits exploitation of the Wigner-Eckart theorem for operators and (complementary)
renormalized operators. Contracting terms of the type (3.22) and (3.49)-(3.50) can be
done by implicitly summing over the common multiplets and recoupling the local, virtual
and operator spins. As is shown by Eqs. (3.45) and (3.48), (complementary) renormal-
ized operators then formally consist of terms containing Clebsch-Gordan coefficients and
reduced tensors. In the actual implementation of CheMPS2, only the reduced tensors
need to be calculated, and Wigner 3-j symbols or Clebsch-Gordan coefficients are never
used. CheMPS2 uses the GNU Scientific Library to extract Wigner 6-j and 9-j symbols
for the recoupling.

To give an example of a tensor product of irreducible tensor operators, consider the
renormalized operator â†aαâcγ with c < a < i. When â†aα acts on site a, an extra minus sign
should be included due to the Jordan-Wigner transformation if α =↓ and if the site already
contains an electron with spin projection ↑, because the remaining three second-quantized
operators â†a↓â

†
bβâdδ then still have to anticommute with â†a↑:

〈�RαR | â†aαâcγ | �̃Rα̃R〉a =
∑

�LαL�̃Lα̃L�phys�̃phys

(
A[a]�phys

)†
(�RαR);(�LαL)

〈�LαL | âcγ | �̃Lα̃L〉a−1 〈�phys | â†aα | �̃phys〉A[a]
�̃phys

(�̃Lα̃L);(�̃Rα̃R)
(−1)δÑ,1δα,↓ . (3.51)

This operator can then be renormalized stepwise up to virtual boundary i− 1:

〈�RαR | â†aαâcγ | �̃Rα̃R〉l+1 =
∑

�LαL�̃Lα̃L�phys

(
A[l + 1]�phys

)†
(�RαR);(�LαL)

〈�LαL | â†aαâcγ | �̃Lα̃L〉lA[l + 1]
�phys

(�̃Lα̃L);(�̃Rα̃R)
. (3.52)

No fermion signs arise in Eq. (3.52) due to the Jordan-Wigner transformation, because
â†bβâdδ has to be anticommuted, which contains an even number of second-quantized oper-
ators. With Eqs. (3.22) and (3.45), this renormalized operator becomes

〈�RαR | â†aαâcγ | �̃Rα̃R〉l = δNR,ÑRδIR⊗Ia⊗Ic,ĨR(−1)
1
2
−α(

〈1
2
γ 1

2
− α | 00〉 δjR ,̃jRδjzR ,̃jzR 〈5RαR | F̂ 0

c,a | 5̃Rα̃R〉l

+ 〈1
2
γ 1

2
− α | 1(γ − α)〉 〈jRjzR1(γ − α) | j̃Rj̃zR〉 〈5RαR | F̂ 1

c,a | 5̃Rα̃R〉l
)

(3.53)
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with

〈5RαR || F̂ x
c,a || 5̃Rα̃R〉a = δNR,ÑRδIR⊗Ia⊗Ic,ĨR

( ∑
jLαLα̃L

√
(2x+ 1)(2jR + 1)×

(−1)jL+j̃R+ 1
2

+x

{
1
2

1
2

x

jR j̃R jL

}(
T [a](

1
2

1Ia)
)†

(5RαR);(jL(NR−1)(IR⊗Ia)αL)
×

〈jL(NR − 1)(IR ⊗ Ia)αL || L̂
1
2
c || 5̃Rα̃L〉a−1 T [a]00I0

(5̃Rα̃L);(5̃Rα̃R)

+
∑

j̃LαLα̃L

√
(2x+ 1)(2j̃L + 1)(−1)jR+j̃R+1

{
1
2

1
2

x

jR j̃R j̃L

}
×

(
T [a](02I0)

)†
(5RαR);(jR(NR−2)IRαL)

〈jR(NR − 2)IRαL || L̂
1
2
c || j̃L(NR − 1)(IR ⊗ Ic)α̃L〉a−1 ×

T [a]
1
2

1Ia

(j̃L(NR−1)(IR⊗Ic)α̃L);(5̃Rα̃R)

)
(3.54)

and for l > a:

〈5RαR || F̂ x
c,a || 5̃Rα̃R〉l = δNR,ÑRδIR⊗Ia⊗Ic,ĨR

∑
5physjLj̃LαLα̃L

√
(2j̃L + 1)(2jR + 1)

(−1)jR+j̃L+s+x

{
jL j̃L x

j̃R jR s

}(
T [l]5phys

)†
(5RαR);(jL(NR−N)(IR⊗I)αL)

〈jL(NR −N)(IR ⊗ I)αL || F̂ x
c,a || j̃L(NR −N)(ĨR ⊗ I)α̃L〉l−1

T [l]
5phys

(j̃L(NR−N)(ĨR⊗I)α̃L);(5̃Rα̃R)
. (3.55)

In these equations, x can be 0 or 1. The tensor product of two spin-1
2

irreducible tensor
operators hence decomposes into the sum of a spin-0 irreducible tensor operator and a
spin-1 irreducible tensor operator, in accordance with SU(2) representation theory: 1

2
⊗ 1

2
≈

0 ⊕ 1. The renormalized operator â†cγ âaα (with c < a < i) can be obtained by hermitian
conjugation:

〈�RαR | â†cγ âaα | �̃Rα̃R〉l = δNR,ÑRδIR⊗Ia⊗Ic,ĨR(−1)
1
2
−α(

〈1
2
γ 1

2
− α | 00〉 δjR ,̃jRδjzR ,̃jzR 〈5̃Rα̃R | F̂ 0

c,a | 5RαR〉
†

l

+ 〈1
2
γ 1

2
− α | 1(γ − α)〉 〈j̃Rj̃zR1(γ − α) | jRjzR〉 〈5̃Rα̃R | F̂ 1

c,a | 5RαR〉
†

l

)
. (3.56)

It is hence sufficient to restrict the calculation of the F̂ x
c,a-tensors to c ≤ a.

The main concepts to calculate renormalized operators were addressed in this section.
These can be used to generate all the required (complementary) renormalized operators.
For the complementary renormalized operator of three second-quantized operators, one
can sum over one spin projection as either α = γ and β = δ, or α = δ and β = γ, which
results in a spin-1

2
irreducible tensor operator.
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3.4 Program structure of CheMPS2

CheMPS2 can be obtained from its public git repository [69]. The file README.md contains
information about the installation, the included tests, and the extraction of the comments
in Doxygen format. In this section, a short introduction to the program structure is given.
The focus lies on the topics relevant to users. The file CheMPS2/include/Options.h

contains the user-specifiable options.

3.4.1 The Hamiltonian

CheMPS2 requires an orthonormal single-particle basis, and two-body matrix elements
with eightfold permutation symmetry which do not break SU(2) total electronic spin. There
are two ways to create and fill a Hamiltonian object in CheMPS2.

It can be created by specifying the number of orbitals L in the DMRG active space, the
abelian point group P of the molecule at hand, and an array containing the point group
irreps Ii for each orbital. The class Irreps contains the symmetry labeling conventions:
integers are used to label the point groups P and their irreps Ii. Users can generate
matrix elements with their preferred molecular electronic structure program. The functions
setEconst, setTmat, and setVmat then allow to fill the Hamiltonian elementwise. Note
that for (ij|V̂ |kl) = Vijkl the physics notation is assumed, see Eq. (2.55).

Psi4 [203] can be used as well to generate molecular orbital matrix elements. Two plug-
ins can be found in the folder mointegrals, with corresponding instructions in README.md.
One plugin allows to print matrix elements as text during a Psi4 calculation, in a format
which the Hamiltonian object is able to read at creation. The other plugin creates a
Hamiltonian object during a Psi4 calculation, fills it with the molecular orbital matrix
elements, and stores it to disk in binary format. The latter option requires linking of the
CheMPS2 library to the Psi4 plugin, but allows for reduced storage requirements.

3.4.2 The desired corner of the Hilbert space

The Problem object contains the Hamiltonian and the SU(2)⊗U(1)⊗P symmetry sector
to which the calculations are restricted. All SU(2) spin symmetry sectors S are denoted
in CheMPS2 by their integer counterparts 2S. The Hamiltonian and the symmetry
sector completely determine a FCI calculation. In order to do DMRG instead of FCI, a
convergence scheme for the subsequent sweeps should be set up.

3.4.3 The convergence scheme

The ConvergenceScheme object is divided into a number of consecutive instructions. Each
instruction contains four parameters: the number of reduced renormalized basis states D
which should be kept, an energy threshold Econv for convergence, the maximum number of
sweeps Nmax, and the noise prefactor γnoise.
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The parameters γnoise and D are relevant for the micro-iterations. Just before the
decomposition of the reduced two-site object S[i], noise is added to it. This noise is
bounded in magnitude by 0.5γnoisew

disc
D , where wdisc

D is the maximum discarded weight
obtained during the previous left or right sweep. After decomposition of the reduced two-
site object S[i], its reduced Schmidt spectrum λ[i] is truncated to the largest D numbers.

The parameters Econv and Nmax are relevant for the macro-iterations. If after one
macro-iteration (left plus right sweep), the energy difference is smaller than Econv, the
sweeping stops and the next instruction is performed. If energy convergence is not reached
after Nmax macro-iterations, the current instruction ends as well.

3.4.4 DMRG

Creation of a DMRG object requires a Hamiltonian, a Problem, and a ConvergenceScheme.
The DMRG object creates, in turn, a SyBookkeeper. Based on Eqs. (3.23), (3.28), and
(3.29), the SyBookkeeper calculates the FCI reduced virtual dimensions of each symmetry
sector at each virtual bond. The same object keeps track of the MPS reduced virtual
dimensions during the DMRG sweeps. To start, the reduced virtual dimension Dtrunc of
the first instruction of the ConvergenceScheme is distributed over the symmetry sectors
as follows:

Dini
MPS(i, j, N, I) = min

dDFCI(i, j, N, I)Dtrunc∑
jNI

DFCI(i, j, N, I)
e, DFCI(i, j, N, I)

 . (3.57)

This implies that if DFCI(i, j, N, I) 6= 0, Dini
MPS(i, j, N, I) will be nonzero as well. The DMRG

object then creates an MPS with virtual dimensions Dini
MPS(i, j, N, I), and fills it with noise.

The DMRG object is also responsible for creating, storing and loading the (complementary)
reduced renormalized operators. The function Solve performs the instructions of the
ConvergenceScheme.

Solve relies heavily on two classes: Sobject and Heff. The former is responsible for
constructing and decomposing the reduced two-site object S[i]. The latter performs the
reduced effective Hamiltonian multiplication H[i]eff

redS[i], based on the (complementary) re-
duced renormalized operators. Heff contains our own implementation of the Davidson
algorithm [167] to obtain the ground state of H[i]eff

red. After Solve has performed all the
instructions of the ConvergenceScheme, it returns the minimal variational energy encoun-
tered during all the performed micro-iterations.

With the function calc2DM, the reduced 2-RDMs ΓA and ΓB are calculated:

Γ(iσ)(jτ);(kσ)(lτ) = 〈â†iσâ
†
jτ âlτ âkσ〉 , (3.58)

ΓAij;kl =
∑
στ

Γ(iσ)(jτ);(kσ)(lτ), (3.59)

ΓBij;kl =
∑
στ

(−1)σ−τΓ(iσ)(jτ);(kσ)(lτ). (3.60)
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ΓA can be used to calculate the energy, the particle number N , and the reduced 1-RDM:

E = E0 +
1

2

∑
ijkl

hij;klΓ
A
ij;kl, (3.61)

N(N − 1) =
∑
ij

ΓAij;ij, (3.62)

∑
σ

〈â†iσâkσ〉 =
1

N − 1

∑
j

ΓAij;kj. (3.63)

ΓA is also needed to calculate analytic nuclear gradients, as well as the gradient and
the Hessian for DMRG-SCF. ΓB is important for certain types of spin-spin correlation
functions. The strategy of Zgid and Nooijen [122] is used to obtain the reduced 2-RDMs
ΓA and ΓB efficiently.

A sweep is performed, in which only the canonical form of the MPS is varied, but not
the wavefunction represented by it. At each sweep step, one site i is considered. All sites
to the left of i are left-normalized, and all sites to the right of i are right-normalized. At
each sweep step, only certain subsets (x, y, z) of elements of ΓA,B are calculated, meaning
x orbital indices are smaller than i, y indices are equal to i, and z indices are larger than i.
The following subsets are considered: (1,1,2), (1,2,1), (1,3,0), (0,2,2), (0,3,1), and (0,4,0).
Note that these are all variations of (1,1,2), in which the index to the left of i, and the
indices to the right of i, are also allowed to become equal to i. With this strategy, all
elements of ΓA,B can be calculated with the reduced renormalized operators needed to
perform the reduced effective Hamiltonian multiplication.

OpenMP parallelization is used in the DMRG object to speed up contractions involving
tensors with a sparse block structure, for example the action of the reduced effective Hamil-
tonian on a particular guess, and the construction of the (often similar) (complementary)
reduced renormalized operators in between two micro-iterations.

3.4.5 State-specific excited states

The DMRG object also contains a state-specific excited-state algorithm. After the ground
state |Ψ0〉 has been determined, the desired number of excited states can be set once with
the function activateExcitations. Before Solve is called to find the next new excitation
|Ψm〉, the function newExcitation should be called with the parameter ηm. This pushes
back the current MPS which represents |Ψm−1〉, and sets the Hamiltonian to

Ĥm = Ĥ0 +
m−1∑
k=0

ηk+1 |Ψk〉 〈Ψk| . (3.64)

The state-specific excited-state DMRG algorithm hence projects out all lower-lying states
in the given SU(2)⊗ U(1)⊗ P symmetry sector.
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3.4.6 DMRG-SCF

A state-specific DMRG-SCF algorithm is implemented in the class CASSCF. Its creation
requires a Hamiltonian object. The number of occupied, active, and virtual orbitals per
point group irrep should be given with the function setupStart before calling the SCF
routine.

The CASSCF routine which is implemented is the augmented Hessian [204, 205] Newton-
Raphson method from Ref. [53], with exact Hessian. It can be called with the function
doCASSCFnewtonraphson, which requires a ConvergenceScheme, the targeted symmetry
sector, and the targeted root for the state-specific algorithm. When the gradient for orbital
rotations reaches a predefined threshold, the routine returns the converged DMRG-SCF
energy.

3.5 Non-abelian spatial symmetries

3.5.1 Point groups

CheMPS2 can only deal with the abelian point groups (3.15) thus far. Sharma and Chan
have recently augmented Block to deal with non-abelian point group symmetry as well
[158].

The orbitals which form a complete basis for one of the point group irreps should then
be combined to one DMRG lattice site. Consider for example D∞h, the molecular point
group of centrosymmetric linear molecules, which includes the homonuclear dimers. The
irreps of this point group are characterized by three quantum numbers: the (magnitude of
the) angular momentum projection along the internuclear axis lz = 〈L̂z〉, the parity under
spatial inversion u/g, and for lz = 0, the parity under σv reflection. The character table is
shown in Tab. 3.1.

Table 3.1: The character table of D∞h [37].

D∞h E 2C∞ ∞σv i 2S∞ ∞C ′2 linear quadratic
Σ+
g 1 1 1 1 1 1 x2 + y2, z2

Σ−g 1 1 -1 1 1 -1
Πg 2 2 cos(φ) 0 2 −2 cos(φ) 0 (x± iy)z
∆g 2 2 cos(2φ) 0 2 2 cos(2φ) 0 (x± iy)2

Φg 2 2 cos(3φ) 0 2 −2 cos(3φ) 0
... ... ... ... ... ... ...
Σ+
u 1 1 1 -1 -1 -1 z

Σ−u 1 1 -1 -1 -1 1
Πu 2 2 cos(φ) 0 -2 2 cos(φ) 0 x± iy
∆u 2 2 cos(2φ) 0 -2 −2 cos(2φ) 0
Φu 2 2 cos(3φ) 0 -2 2 cos(3φ) 0
... ... ... ... ... ... ...
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Consider for example a corresponding pair of bonding π-orbitals of a homonuclear
dimer: (πx, πy) . A rotation over π

2
, with the internuclear axis as rotation axis, then

transforms these orbitals into each other. The linear combinations

π−1 = πx − iπy (3.65)

π1 = −πx − iπy (3.66)

have angular momentum projection −1 and 1, respectively. They form a basis for the
two-dimensional irrep Πu. The local Hilbert space of the corresponding DMRG lattice site
consists of 16 states and can be made symmetry-adapted as follows:

|−〉 → |s = 0; sz = 0; N = 0; I = Σ+
g ; lz = 0〉 (3.67)

|π↑1〉 → |s =
1

2
; sz =

1

2
; N = 1; I = Πu; lz = 1〉 (3.68)

|π↑−1〉 → |s =
1

2
; sz =

1

2
; N = 1; I = Πu; lz = −1〉 (3.69)

|π↓1〉 → |s =
1

2
; sz = −1

2
; N = 1; I = Πu; lz = 1〉 (3.70)

|π↓−1〉 → |s =
1

2
; sz = −1

2
; N = 1; I = Πu; lz = −1〉 (3.71)

|π↑1π
↓
1〉 → |s = 0; sz = 0; N = 2; I = ∆g; lz = 2〉 (3.72)

|π↑−1π
↓
−1〉 → |s = 0; sz = 0; N = 2; I = ∆g; lz = −2〉 (3.73)

|π↑−1π
↑
1〉 → |s = 1; sz = 1; N = 2; I = Σ−g ; lz = 0〉 (3.74)

|π↓−1π
↓
1〉 → |s = 1; sz = −1; N = 2; I = Σ−g ; lz = 0〉 (3.75)(

|π↑−1π
↓
1〉 , |π

↓
−1π

↑
1〉
)

→ |s = 1; sz = 0; N = 2; I = Σ−g ; lz = 0〉 (3.76)(
|π↑−1π

↓
1〉 , |π

↓
−1π

↑
1〉
)

→ |s = 0; sz = 0; N = 2; I = Σ+
g ; lz = 0〉 (3.77)

|π↑−1π
↓
−1π

↑
1〉 → |s =

1

2
; sz =

1

2
; N = 3; I = Πu; lz = −1〉 (3.78)

|π↑−1π
↓
−1π

↓
1〉 → |s =

1

2
; sz = −1

2
; N = 3; I = Πu; lz = −1〉 (3.79)

|π↑−1π
↑
1π
↓
1〉 → |s =

1

2
; sz =

1

2
; N = 3; I = Πu; lz = 1〉 (3.80)

|π↓−1π
↑
1π
↓
1〉 → |s =

1

2
; sz = −1

2
; N = 3; I = Πu; lz = 1〉 (3.81)

|π↑−1π
↓
−1π

↑
1π
↓
1〉 → |s = 0; sz = 0; N = 4; I = Σ+

g ; lz = 0〉. (3.82)

Because π±1 are basisfunctions of Πu, the states with even particle number are gerade and
the ones with odd particle number ungerade. The angular momentum projection lz is an
additive quantum number, and can be obtained from the π±1 orbital fillings. The parity

under σv reflection of ‖s = 0/1;N = 2; Σ
+/−
g 〉 can be obtained by considering the spatial

and spin part of the two-electron wavefunctions. The spin part of a singlet (triplet) state is
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antisymmetric (symmetric) with respect to particle interchange, and the spatial part hence
has to be symmetric (antisymmetric):

π1(~rA)π−1(~rB) + π1(~rB)π−1(~rA) ∝ πx(~rA)πx(~rB) + πy(~rA)πy(~rB)→ Σ+
g (3.83)

π1(~rA)π−1(~rB)− π1(~rB)π−1(~rA) ∝ πx(~rA)πy(~rB)− πy(~rA)πx(~rB)→ Σ−g . (3.84)

The reduced local basis hence consists of 7 multiplets ‖s;N ; I〉: ‖0; 0; Σ+
g 〉, ‖1

2
; 1; Πu〉,

‖0; 2; ∆g〉, ‖1; 2; Σ−g 〉, ‖0; 2; Σ+
g 〉, ‖1

2
; 3; Πu〉, ‖0; 4; Σ+

g 〉. This example can be extended to all
irreps of all molecular point groups. The equivalent of Eq. (3.12) then becomes:

A[i]
(sszNIIq)

(jLj
z
LNLILI

q
LαL);(jRj

z
RNRIRI

q
RαR)

= 〈jLjzLssz | jRjzR〉 δNL+N,NR 〈ILI
q
LII

q | IRIqR〉T [i]
(sNI)
(jLNLILαL);(jRNRIRαR). (3.85)

3.5.2 Space groups

Two-dimensional lattice systems are also often studied with DMRG [90]. Typically, the
lattice is considered to have periodic boundary conditions in one or two of the spatial
directions, as one is actually interested in the thermodynamic limit. The studied lattices
are then resp. the cylinder or the torus. Extrapolations of properties measured in systems
with increasing size are then used to gain insight in the thermodynamic limit [206]. Because
DMRG only works well for one-dimensional systems, rather large virtual dimensions are
needed to obtain accurate numerical results.

One way to reduce the virtual dimension requirement is to exploit the non-Abelian
symmetries of the Hamiltonian. Consider for example the two-dimensional Hubbard model
on a L × L torus, with L even. For half-filling, instead of using the SU(2) ⊗ U(1) spin
and particle-number symmetries, one can instead exploit the SO(4) ≈ SU(2) ⊗ SU(2)/Z2

spin and particle-hole symmetry [192, 207]. In addition, one can augment the abelian
translational symmetry with C4v to the full p4mm space group of the lattice. This group
consists of all possible combinations of the symmetry elements {C4, σh, Tx}: the rotation
over π

2
, the reflection with the x-axis as mirror, and the translation over one lattice constant

in the x-direction.
Consider the lattice momentum vectors ~k~p = 2π

L
(px, py) in Fig. 3.4. The basis functions

of the irrep to which ~k~p belongs, can be found by constructing its star [37]. This star is

obtained by acting with the elements of the C4v subgroup of p4mm on ~k~p in momentum
space, and by projecting the result back into the first Brillouin zone. From the grey
momentum vectors in Fig. 3.4, all momentum vectors can be obtained by constructing
the corresponding stars. These momentum vectors can hence be used to label all irreps.
Tab. 3.2 gives an overview of the resulting irreps, their number, and their dimensions. The
number of required lattice sites is hence reduced by a factor 8 in the leading order. This of
course requires to group the eight single-particle basis functions of the bulk irreps to one
DMRG lattice site. The instructions in, for example, chapter 9 of Cornwell [37] allow to
construct the Wigner nj symbols of the space groups.
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Figure 3.4: p4mm space group symmetry of the L× L torus.

Table 3.2: Overview of the p4mm irreps.

name # irreps irrep dimension # k-vectors
Γ 1 1 1
∆ L−2

2
4 2L− 4

X 1 2 2
Y L−2

2
4 2L− 4

M 1 1 1
Σ L−2

2
4 2L− 4

Bulk (L−2)(L−4)
8

8 L2 − 6L+ 8

Total (L+2)(L+4)
8

- L2



CHAPTER 4

Longitudinal static response properties of hydrogen chains

Apart from hydrogen, the most common thing in the universe is stupidity.
– Harlan J. Ellison, 1985

4.1 Introduction

DMRG works extremely well for noncritical one-dimensional systems. The underlying
MPS ansatz then complies with the area law for the entanglement entropy (see section
2.2). Hydrogen chains have been studied extensively with QC-DMRG [102, 115, 122, 123,
139, 141, 146, 149]. Although the Coulomb interaction is nonlocal, the virtual dimension
does not have to grow with chain length to maintain a constant accuracy in the insulating
regime [115].

As the nuclear separation grows, the system exhibits a large amount of static correlation.
The atoms can then be considered independent, and all possible spin states are degenerate.
Hydrogen chains and lattices are therefore often used as benchmark systems to assess new
MR methods in quantum chemistry [102, 208–218].

When the bond length in an equidistant hydrogen chain decreases, the system goes
through a metal-insulator transition (MIT) [213, 219]. The initially local electrons become
delocalized, and at the transition point the electrons are highly correlated. Response
properties, such as the static longitudinal dipole (hyper)polarizability, which are extensive
quantities in the insulator regime, diverge in the metallic regime.

The equidistant hydrogen chain cannot exist due to the Peierls instability [220]: it is
unstable with respect to dimerization. The equidistant and dimerized hydrogen chains are
toy models to mimic the effect of bond length and bond length alternation on the electron
delocalization, electron correlation, and electronic response properties. A realization of

53
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a delocalized one-dimensional system with bond length alternation is the conjugated π-
system of all-trans polyenes, another system which has been extensively studied with QC-
DMRG [102, 112, 115, 124, 129, 150, 153].

4.2 Longitudinal static response properties

Consider an external static electric field ~F , changing the electronic Hamiltonian Ĥ0 to

Ĥ = Ĥ0 + ~F · ~̂r. (4.1)

For variational wavefunctions, such as the MPS in DMRG, the electronic dipole moment
can be calculated as

~µ = −〈Ψ0 | ~̂r | Ψ0〉 = −∇~F 〈Ψ0 | Ĥ0 + ~F · ~̂r | Ψ0〉
= − lim

~F→~0
∇~F 〈Ψ(~F ) | Ĥ0 + ~F · ~̂r | Ψ(~F )〉 = − lim

~F→~0
∇~FE(~F ), (4.2)

due to the Hellmann-Feynman theorem [221]. The dipole (hyper)polarizability is the
(higher order) response of the dipole moment to a change in the electric field. The static
polarizability tensor is for example:

αuv = lim
~F→~0

∂µu
∂Fv

= − lim
~F→~0

∂2E(~F )

∂Fu∂Fv
. (4.3)

In Ref. [141], we have studied linear centrosymmetric chains with D∞h symmetry. For
convenience, the z-axis is chosen along the chain, and the center of mass coincides with
the origin. The quantities of interest are the longitudinal dipole (hyper)polarizabilities, i.e.
along the z-axis. The external static electric field is then

~F = F~1z. (4.4)

For centrosymmetric systems, all odd derivatives of the energy E(F ) with respect to F
vanish at F = 0 due to the inversion symmetry: E(F ) = E(−F ). The longitudinal static
polarizability and second hyperpolarizability are

αzz = − lim
F→0

∂2E(F )

∂F 2
, (4.5)

γzzzz = − lim
F→0

∂4E(F )

∂F 4
. (4.6)

Both quantities are studied for chains of increasing length L. A small electric field δF can
cause an elementary excitation in the chain. If these excitations are localized, i.e. have a
finite size, the response properties (4.5) and (4.6) eventually have to saturate, i.e. become
extensive quantities in the system size L:

lim
L→∞

αzz(L)

L
= constant, (4.7)

lim
L→∞

γzzzz(L)

L
= another constant. (4.8)
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In the insulating regime, this is the case. In the metallic regime, the response properties
grow faster than linear, because the elementary excitations due to a small electric field δF
do not have a finite size. The metallic regime and the MIT will be discussed in greater
detail in section 4.3. In Ref. [141], we have mainly focussed on the insulating regime, and
especially on obtaining numerical results for the limits in Eqs. (4.7) and (4.8).

The (hyper)polarizabilities can be obtained in several ways. An analytic response
theory can be set up, which considers the Rayleigh-Schrödinger perturbation expansion for
the electric field F in the manifold of the ansatz wavefunction |Ψ(A(F ))〉:(

Ĥ0 + Fz
)

(|Ψ0〉+ F |Ψ1〉+ ...) = (E0 + FE1 + ...) (|Ψ0〉+ F |Ψ1〉+ ...) , (4.9)(
Ĥ0 − E0

)
|Ψ1〉 = (E1 − z) |Ψ0〉 with 〈Ψ1 | Ψ0〉 = 0, (4.10)

αzz = −2< 〈Ψ1 | z | Ψ0〉 . (4.11)

For HF theory this yields the coupled-perturbed HF equations [222–224]. For DMRG
the linear response theory has been derived as well [127]. For the latter, convergence
problems were perceived for the polarizability calculations, and we have therefore opted to
use another method.

A second method is the sum-over-states (SOS) expression [46]. Instead of solving |Ψ1〉
in the tangent space of |Ψ0〉, the former can be written as a linear combination over many
excited states:

αzz = 2
∑
k 6=0

〈Ψ0 | z | Ψk〉 〈Ψk | z | Ψ0〉
Ek − E0

. (4.12)

For certain ground states |Ψ0〉 an operator Ô can be constructed so that [225][
Ĥ, Ô

]
|Ψ0〉 = z |Ψ0〉 . (4.13)

This allows to remove the denominator in Eq. (4.12):

αzz = 2
(
〈Ψ0 | zÔ | Ψ0〉 − 〈Ψ0 | z | Ψ0〉 〈Ψ0 | Ô | Ψ0〉

)
. (4.14)

The operator relation [
Ĥ, Ô

]
= z (4.15)

has no general solution if Ĥ is not a one-body operator. For a k-body operator Ĥ and
an n-body operator Ô, their commutator is a (k + n − 1)-body operator. For M orbitals
Eq. (4.15) yields M2(k+n−1) equations for the M2n parameters in Ô, which implies that
a solution is only guaranteed for one-body Hamiltonians. For general ground states |Ψ0〉,
the SOS expression (4.12) hence requires to calculate all excited states. It is therefore also
not preferred in conjunction with DMRG.

A third method is to calculate Eqs. (4.5) and (4.6) by using a set of small finite fields,
the finite-field method [226]. This method requires to calculate the ground states of a few
Hamiltonians differing only in the one-body matrix elements, and was the method adopted
in our study [Ref. [141]]:
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We have implemented the sweep algorithm for the variational optimization of
SU(2) ⊗ U(1) (spin and particle number) invariant matrix product states (MPS)
for general spin and particle number invariant fermionic Hamiltonians. This class
includes non-relativistic quantum chemical systems within the Born-Oppenheimer
approximation. High-accuracy ab initio finite field results of the longitudinal
static polarizabilities and second hyperpolarizabilities of one-dimensional hydro-
gen chains are presented. This allows to assess the performance of other quantum
chemical methods. For small basis sets, MPS calculations in the saturation regime
of the optical response properties can be performed. These results are extrapo-
lated to the thermodynamic limit.

I. INTRODUCTION

Non-linear optical (NLO) properties of materials are of interest to experiment, theory,
and industry. They account for a wide variety of phenomena such as frequency doubling,
optical control of the refractive index, and phase conjugation [227]. Especially the NLO
properties of linearly conjugated organic polymer chains have moved to the center of at-
tention and many theoretical studies have been published about the interplay of molecular
structure, electron delocalization, and NLO properties [228–236]. An important question
in many of these studies is the suitability and accuracy of different quantum chemical (QC)
methods [237, 238], henceforth called levels of theory (LOT). Conventional density func-
tional theory was found to dramatically overestimate NLO properties of long molecular
chains [239, 240]. Newly developed approaches were presented to mitigate but not fully
resolve the problem [241, 242]. In the meantime also certain irregularities between Hartree-
Fock (HF) and post-HF methods were noticed, calling into question the importance and
the influence of electron correlation on NLO properties [243–245]. It is therefore desirable
to obtain the NLO properties of the fully correlated problem, i.e., at exact diagonalization
(ED) accuracy. Linear chains of hydrogen are ideal test systems for assessing the quality
of different LOTs [246–249].

A recently developed class of variational ansatzes, the tensor network states (TNS),
yield compact and accurate approximations of low-lying eigenstates based on the topologi-
cal properties of the Hamiltonian. The matrix product state (MPS) is the natural TNS for
one-dimensional holographic geometries [89]. Conversely, it can be shown that every quan-
tum many-body state can be rewritten as an MPS [250]. This allows the MPS to be used
as a variational ansatz for any quantum system. The optimal MPS can be found implicitly
by means of the density matrix renormalization group (DMRG) or explicitly by variation-
ally optimizing the MPS [68, 250]. Several groups have implemented the DMRG algorithm
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for ab initio QC calculations [66, 100–103, 107, 110, 111, 116, 117, 121, 128, 132]. For
quasi-one-dimensional chemical systems such as hydrogen chains [115], the MPS gives an
efficient description. The mutual screening of electrons and nuclei results in an effectively
local electromagnetic interaction, which explains why DMRG works well for these systems
[100, 128]. For systems that do not have a one-dimensional holographic geometry, the MPS
is not always efficient, as can be seen by the virtual dimensions required to obtain near-ED
accuracy [66, 128]. A better choice and ordering of the single particle basis can resolve
the problem partly [66, 97, 102, 107, 110, 114, 117, 136]. Other TNSs such as the tree
TNS (Refs. [97] and [136]) or different ansatzes such as correlator product states [185, 251]
(e.g., the complete graph TNS (Ref. [134])) can further improve the descriptions of such
systems. It has even been suggested to use correlator product states with auxiliary indices
[251]. This leads us back to White’s original proposal [66] to combine several orbitals into
a single local degree of freedom in QC DMRG.

Together with an efficient TNS, the use of symmetry can make the description of
eigenstates even more compact. Structuring the virtual bonds according to the irreducible
representations of the applied symmetry groups introduces a sparse block structure in the
tensors. For non-Abelian symmetry groups, the Wigner-Eckart theorem permits working
with reduced tensors [192–195].

In this paper, we use the SU(2)⊗ U(1) invariant MPS to study the longitudinal static
dipole polarizability and second hyperpolarizability of one-dimensional hydrogen chains by
means of finite field extrapolations. The MPS algorithm enables us to study longer chains
than with ED but not at the expense of decreasing accuracy. For small basis sets, this
allows us to obtain high-accuracy data in the saturation regime of the optical response
properties. The results obtained with our MPS algorithm let us assess the performance
of standard QC methods. When possible, these results are extrapolated to infinite chain
length to obtain quantitative results in the thermodynamic (TD) limit. Different basis sets
are compared.

Related work, studying both the static and dynamic polarizabilities and second hyper-
polarizabilities of conjugated π-systems, includes the analytic response theory for ab initio
QC DMRG (Ref. [127]) and the correction vector DMRG algorithm for Pariser-Parr-Pople
Hamiltonians [252, 253]. Accurate TD limit data of the static optical response properties
of hydrogen chains can also be obtained with diffusion Monte Carlo, using the modern
theory of polarization [254, 255].

The MPS ansatz is briefly addressed in Sec. II, where the variational optimization of
the MPS for ab initio QC Hamiltonians, imposing SU(2)⊗ U(1) spin and particle number
symmetry, and our implementation are also discussed. The finite field method is outlined
in Sec. III. Section IV deals with the optical properties of several spin states of an equally
spaced hydrogen chain, where the spacing controls the amount of static correlation. A
chain of H2 constituents is studied in Sec. V: the influence of intermolecular distance (and
hence the amount of electron delocalization), LOT, and basis set on the optical properties
are determined. When possible, the MPS results are extrapolated to the TD limit. Section
VI contains the conclusions.
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II. THE MPS ALGORITHM

As there are already excellent works on the variational optimization of an MPS [250],
on the implementation of DMRG for ab initio QC calculations [66, 100–103, 107, 108, 110,
111, 116, 117, 121, 128, 132], and on the use of non-Abelian symmetries in TNSs [192–195],
we choose to focus only on how these principal concepts contribute to our algorithm.

A. DMRG and MPS

In non-relativistic ab initio QC, the positions of the nuclei are fixed in the Born-
Oppenheimer approximation and a basis set is chosen as the orbital degrees of freedom.
Because we study one-dimensional systems in this work, Löwdin transformed Gaussian ba-
sis sets are used as they preserve locality well [115, 173]. Consider a state with L orbitals
and 4 possible occupations i per orbital

|Ψ〉 =
∑
{i1...iL}

ci1...iL |i1...iL〉 . (4.16)

This state can always be rewritten as an MPS [250],

|Ψ〉 =
∑
{i1...iL}

∑
{k1...kL−1}

M i1
k1
M i2

k1k2
...M iL

kL−1
|i1...iL〉 , (4.17)

which associates to every orbital 4 matrices M i
kLkR

or a single three-index tensor. The index
i is called the local index and represents the occupation. The indices kL and kR are called
virtual indices. The dimension D of the virtual indices needs to increase exponentially
towards the middle of the MPS chain for Eq. (4.17) to represent the full Hilbert space. In
calculations, the virtual dimensionD is truncated and the MPS represents only a part of the
full Hilbert space. The tensors in the MPS chain are iteratively optimized, one at a time, in
the sweep algorithm [250]. This method is strictly variational. For arbitrarily large systems
with a one-dimensional holographic geometry, the ED solution can be approximated to
any desired accuracy by an MPS with a finite D [89]. Note that Eq. (4.17) represents a
multideterminantal wavefunction and is hence able to capture static correlation [115].

There are two versions of the DMRG algorithm: single-site and two-site DMRG. Their
names refer to the number of neighbouring orbitals that are free at a local optimization
step. The variational optimization of an MPS corresponds to (but is not equal to) single-
site DMRG. In the MPS algorithm, the renormalization transformations and subsequent
decimations of the DMRG algorithm are incorporated in the MPS ansatz itself. Fixed
points of both DMRG algorithms can be written as MPSs [68]. Single-site DMRG is also
strictly variational, while two-site DMRG is not [102, 122].

In certain cases, the two-site DMRG algorithm and the variational optimization of
the corresponding MPS both lead to the same result. This is often the case for systems
that have one-dimensional holographic geometries and for which the MPS is the natural
TNS, while for other systems the two-site DMRG algorithm can outperform the single-site
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Figure 4.1: The ground state of a hydrogen chain of 36 atoms, with an alternate atom spacing
of 2/3 a.u. (see Sec. V A), in the Löwdin transformed STO-6G basis, is approximated by several
MPSs with increasing virtual dimension. The scaling of the ground state energy with D, the
virtual dimension per symmetry sector (see Sec. II D), follows Eq. (4.18). The rightmost data
point corresponds to D = 20 and ED=32 is used as an approximation to the exact result.

variational optimization of an MPS as it provides more degrees of freedom for each local
diagonalization step [103, 250]. In both DMRG algorithms, adding perturbative corrections
or noise to the reduced density matrix helps to reach the true ground state within the
subspace of the full Hilbert space spanned by the MPS, as they help to reintroduce lost
quantum numbers in the reduced basis [66, 102, 122, 128, 171, 250]. Another way to achieve
this, is to explicitly keep states with a certain symmetry in the reduced basis [108].

For the systems in our study, the holographic geometry is one-dimensional and hence
the MPS ansatz is a good choice. This is confirmed by the rapid convergence of the
ground state energy obtained with an MPS with increasing virtual dimension. Chan et al.
[102, 170] have proposed a relation for this convergence,

ln(ED − Eexact) = a− κ(ln(D))2. (4.18)

Here, a and κ are fitting parameters, Eexact is the ED result, and ED the energy when an
MPS with virtual dimension D is used. Equation (4.18) is illustrated in Fig. 4.1.
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B. General two-body Hamiltonians

In second quantization, the Hamiltonian can be written as [202]

Ĥ0 =
∑
i,j,σ

(i|T̂ |j)â†iσâjσ +
1

2

∑
i,j,k,l,σ,τ

(ij|V̂ |kl)â†iσâ
†
jτ âlτ âkσ, (4.19)

where the Latin letters denote orbitals and the Greek letters spin projections. Global spin
and global particle number are conserved by this Hamiltonian. The matrix elements are
calculated based on the work of Obara and Saika [256].

For the local optimization procedure, partial Hamiltonian terms such as a†i∈leftσa
†
j∈leftτ

need to be stored in memory. We have taken all previous considerations in the literature
into account to store as few of them as possible [102, 108, 128]. These include multiplying
creators/annihilators with two-body matrix elements and contracting common indices to
form complementary operators, exploiting the Hermitian symmetry of matrix elements as
well as exploiting the creator/annihilator swap symmetry due to the fermion anticommu-
tation relations. Further storage reduction is possible by exploiting global symmetry.

C. Global symmetries

Using the global symmetries of the Hamiltonian has many advantages, including the
ability to explicitly scan only the desired symmetry sector of the total Hilbert space, and an
improvement of computational performance. This improvement consists of a reduction in
both central processing unit (CPU) time (by reducing the number of sweeps) and memory
usage (the tensors adopt a sparse block structure and the required virtual dimensions
are smaller; this further decreases the CPU time) [192]. The main disadvantage is the
increasing complexity of the algorithm: i.e., analytic work done beforehand and overhead
in the resulting program. However, this needs to be done only once, and in many cases it
does not outweigh the benefits.

We have implemented global spin and particle number symmetry. The U(1) particle
number symmetry is an Abelian symmetry and is therefore represented by an additive
quantum number [193]. Its implementation in ab initio QC DMRG calculations is well
known [107, 128]. The SU(2) spin symmetry is a non-Abelian symmetry and requires
recoupling [193].

Global symmetry can be imposed by requiring that the three-index tensors M i
kLkR

in
the MPS chain are irreducible tensor operators of the imposed symmetry group [192–195].
The local and virtual bases are represented in states with the correct symmetry, i.e., spin s
or j, spin projection sz or jz, and particle number N . The local states i = |−〉, |↑〉, |↓〉 or
|↑↓〉 then correspond to resp. i = |s = 0; sz = 0;N = 0〉, |1

2
1
2
1〉, |1

2
− 1

2
1〉 and |002〉. Due to

the Wigner-Eckart theorem, each irreducible tensor operator decomposes into a structural
part and a degeneracy part T ,

M i
kLkR

= M
(sszN)
(jLj

z
LNLαL)(jRj

z
RNRαR) = 〈jLjzLssz|jRjzR〉 δNL+N,NRT

(sN)
(jLNLαL)(jRNRαR). (4.20)
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The SU(2) symmetry is imposed by the Clebsch-Gordan coefficient and the U(1) symmetry
by the particle conserving Kronecker delta. The indices αL and αR are used to keep track
of the number of times an irreducible representation occurs at a virtual bond. If the
virtual dimension of a symmetry sector is D(jLNL) = size(αL), this would correspond to a
dimension of (2jL + 1)D(jLNL) in a non-symmetry adapted MPS [192]. Global symmetry
can be imposed by requiring that the left virtual index of the leftmost tensor in the MPS
chain consists of one irreducible representation corresponding to (jL, NL) = (0, 0), while
the right virtual index of the rightmost tensor consists of one irreducible representation
corresponding to (jRNR) = (SN), the desired global spin, and particle number.

The operators

b̂†m = â†m, (4.21)

b̂m = (−1)
1
2
−mâ−m, (4.22)

transform as irreducible tensor operators with spin 1
2

under SU(2), with m the spin pro-
jection [202]. Because these operators are part of a doublet, it is possible to exploit the
Wigner-Eckart theorem also for operators and complementary operators, and to develop
a code without any spin projections or Clebsch-Gordan coefficients. Contracting terms
of the types of Eqs. (4.20)-(4.22) can be done by implicitly summing over the common
multiplets and recoupling the local, virtual, and operator spins. Examples are given in
the Appendix. Operators and complementary operators then formally consist of terms
containing Clebsch-Gordan coefficients, particle conserving Kronecker deltas, and reduced
tensors. In our code, however, only the reduced tensors need to be calculated and stored.
To the best of our knowledge, the global SU(2) symmetry has been implemented only once
in ab initio QC DMRG calculations [121]. In this algorithm [121], no use is made of the
Wigner-Eckart theorem to work with reduced tensors, as is often proposed [192–195].

D. Implementation

We have implemented the sweep algorithm [250] to variationally optimize an SU(2) ⊗
U(1) invariant MPS in C++. Matrix operations are handled by LAPACK and BLAS. Wigner
6-j symbols are calculated by the GNU scientific library. For the local optimization of the
degeneracy part of an MPS tensor, we have chosen the Lanczos method, implemented in
ARPACK. Where possible, the code is parallellized on a single node with OpenMP. No
multinode parallellization was needed for the results in this paper.

The virtual dimension is truncated per symmetry sector: if the virtual dimension
D(jLNL) of a symmetry sector (jLNL) required to represent the full Hilbert space ex-
ceeds a predefined threshold D, it is set to D. For the results presented in this paper, D
is chosen large enough so that no relative energy error is larger than 10−11,

ED − Eexact

Eexact

< 10−11. (4.23)

Specific choices for D are mentioned when the applications are introduced. All tensors are
stored in the minimum amount of memory required. Convergence is reached when both
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the energy and the wavefunction meet the following criteria:

| En − En−1 | < ε1, (4.24)

1− | 〈MPSn | MPSn−1〉 | < ε2, (4.25)

where n is the sweep number and ε1 = ε2 = 10−13 for the calculations presented in this
paper. At the start of the algorithm, the MPS is filled with noise, but during the sweeps
no noise or perturbative corrections were added. For more complex chemical systems, the
orbital choice, the orbital ordering, and the initial guess play an important role for the
convergence and even for the qualitative properties of the solution [66, 97, 102, 107, 114,
117, 136]. The holographic geometry of such systems is often far from one-dimensional. In
DMRG calculations, basis states with a certain symmetry are sometimes explicitly kept in
the reduced basis to avoid losing quantum numbers [108]. Note that the division of the
virtual bonds in symmetry sectors (jLNL) boils down to the same thing.

If there are N electrons in the system, with N ≤ L, the number of SU(2) ⊗ U(1)
symmetry sectors in the middle of the chain is O(N2). In that case, we obtain for our
algorithm a scaling per sweep of O(D3L3N2+D2L4N2) in time and O(D2L2N2) in memory
[102]. For N ≥ L, N should be replaced by (2L − N). Note that both the number
of sweeps to reach convergence and the virtual dimension D to reach a certain accuracy
are smaller when global symmetry is imposed [192]. Hachmann et al. [115] present a
method that makes use of the numerical negligibility of certain two-body matrix elements
to obtain an algorithm that scales per sweep as O(D3L2) in time and O(D2L) in memory.
When applying global SU(2)⊗U(1) symmetry, these order estimates have to be multiplied
with O(N2) when N ≤ L or O((2L − N)2) when N ≥ L. The efficiency gain when
neglecting these matrix elements comes with the cost of losing the variational character of
the algorithm, because the Hamiltonian is altered. However, the error is under control. In
the current version of our program, this quadratically scaling algorithm is not yet used,
but we plan to implement it in the future.

III. THE FINITE FIELD METHOD

When a homogeneous electric field ~F is applied, the electrons acquire a potential energy
that depends on their position [226]. The total Hamiltonian of the system becomes (atomic
units)

Ĥ = Ĥ0 + ~F .~r. (4.26)

This total Hamiltonian still conserves global spin and global particle number.

The static polarizability αij and second hyperpolarizability γijkl tensors are resp. the
first and third order derivatives of the electric dipole moment ~µ with respect to the applied
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field ~F , in the limit of an infinitesimal field

αij =

(
∂µi(~F )

∂Fj

)
~F→~0

, (4.27)

γijkl =

(
∂3µi(~F )

∂Fj∂Fk∂Fl

)
~F→~0

. (4.28)

All subscripts denote Cartesian components. Because the electric dipole moment ~µ is
minus the derivative of the total energy E with respect to an applied electric field F , αij
and γijkl can also be obtained from

αij = −

(
∂2E(~F )

∂Fi∂Fj

)
~F→~0

, (4.29)

γijkl = −

(
∂4E(~F )

∂Fi∂Fj∂Fk∂Fl

)
~F→~0

. (4.30)

The energy E(~F ) has to be evaluated with a wavefunction optimized for Eq. (4.26). For
molecules extending mainly in one spatial dimension (assume this to be the z-direction),
the main contribution to these tensors comes from the longitudinal components αzz and
γzzzz . The hydrogen chains under study are in addition centrosymmetric. When the origin
of the Cartesian coordinate system is chosen in the center of the chain, E(~F ) = E(−~F ) and
the static longitudinal components of both quantities can be obtained with the following
minimal finite difference formulae, where ~F = F ẑ:

αzz(F ) =

(
2E(0)− 2E(F )

F 2

)
F→0

, (4.31)

γzzzz(F ) =

(
−6E(0) + 8E(F )− 2E(2F )

F 4

)
F→0

. (4.32)

The use of a finite field is explicitly incorporated in the notation: αzz(F ) and γzzzz(F ).
We calculate both quantities for different values of F and make a least-squares extrapola-
tion to F = 0 according to

q(F ) = q(0) + cF 2, (4.33)

where q can be αzz or γzzzz. Values of q(0) and c are obtained by the fit. The procedure
is illustrated in Fig. 4.2.

The values of F are chosen with care. If they are too large, higher order effects come
into play and higher order terms have to be added to Eq. (4.33). In that case, more
calculations are required as more points q(F ) are needed to fit all parameters. Because the
eigenstate energies Eexact are approximated with MPS energies ED up to a certain accuracy,
the energy differences in the numerators of Eqs. (4.31) and (4.32) have a constant error. If
the field values become smaller, this absolute error for the energy differences is multiplied
by increasing values of F−2 or F−4 and the absolute error of αzz(F ) and γzzzz(F ) becomes
larger. The rms deviation of the quantities from the fit (as in Fig. 4.2) will then be larger.
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Figure 4.2: Finite field extrapolations of the static longitudinal polarizability (a) and second
hyperpolarizability (b) for MPS calculations of a hydrogen chain of 36 atoms, with an alter-
nate atom spacing of 2/3 a.u. (see Sec. V A), in the Löwdin transformed STO-6G basis. The
extrapolations are done with a least-squares fit to Eq. (4.33).
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Figure 4.3: The ground state energy per atom for an equally spaced hydrogen chain of 20
atoms is shown for 6 different spin states.

IV. EQUALLY SPACED HYDROGEN CHAIN

Our MPS program was tested for many small systems and the results were compared
with ED, confirming the correctness of our implementation. Both for this application and
the next one, all presented MPS data are converged according to Eq. (4.23).

A. Introduction

As a benchmark calculation, illustrating the possibilities of the program, the energy,
as well as the static longitudinal polarizability and second hyperpolarizability of a hydro-
gen chain with 20 atoms are studied for different interatomic distances. The interatomic
distance R is defined by

H H H H H H H H
R R R R R R R . (4.34)

The study is performed for the ground states in 6 different spin symmetry sectors
S = 0, 1, ..., 5. The virtual dimension per symmetry sector was truncated to D = 64 for all
the results in this section. The energies were determined for 6 field values F = 0, 0.0008,
0.0012, 0.0016, 0.0024, and 0.0032 a.u., yielding 5 points for the αzz extrapolation and 3
points for the γzzzz extrapolation. The minimal basis set STO-6G (Ref. [35]) was used as
single-particle degrees of freedom.
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B. Results and discussion

As is already well known, the MPS ansatz is able to capture static correlation and hence
gives correct potential energy surfaces (PES) whereas HF based methods break down for
large interatomic distances [115]. The energy per atom as a function of interatomic distance
is shown for the 6 spin states in Fig. 4.3. The energy rises with increasing spin. In the
limit of large R, all PESs converge in accordance with the noninteracting atom picture.

In the range of R values shown, the equally spaced hydrogen chain is known to make a
metal-insulator transition. The transition point is marked by diverging response properties
in the TD limit. An earlier ED study has shown that αzzN

−2 in function of interatomic
distance R, with N the number of atoms, converges to a limiting curve in the TD limit
[219].

The spin dependence of the optical response properties is shown in Fig. 4.4. For
increasing spin, both the polarizability and second hyperpolarizability peaks decrease and
shift towards smaller values of R. The peaks of the polarizability also occur at slightly
smaller values of R than the corresponding peaks of the second hyperpolarizability. Both
responses vanish in the limit of large R as a minimal basis set is used [219].

An alternative method to determine the polarizability and second hyperpolarizability
is the sum over states (SOS) perturbation expansion [230]. Note that the dipole moment
in the SOS expression commutes with spin operators. Different spin states can hence be
treated separately. Two counteracting effects occur in this expression. The number of
terms in the summation rapidly decreases with increasing spin because fewer high-spin
configurations can be built with N electrons in L orbitals. The magnitude of the terms
is expected to be larger for higher spin states due to the smaller energy differences in the
denominator. Both effects combined result in properties of the same order of magnitude for
the different spin states treated in this paper. The diminishing peak can then be attributed
to the smaller number of possible spin configurations. Note that this is only a heuristic
argument, as we have not performed any calculations related to the SOS expression.

V. A CHAIN OF H2 MOLECULES

In Sec. IV, we have studied a system with changing static correlation. Here, we look
at a system where the static correlation remains roughly the same but where the electron
delocalization changes.

A. Introduction

In this section, the optical properties of hydrogen chains with different intra- and in-
termolecular distances are studied

H H......H H......H H......H H
Rf R Rf R Rf R Rf . (4.35)

The intramolecular distance is kept fixed at Rf = 2 a.u., whereas the intermolecular
distance R can be 2.5, 3 or 4 a.u., in analogy with previous studies [246, 247, 249]. In
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Figure 4.4: The polarizabilities (a) and second hyperpolarizabilities (b) per atom for an equally
spaced hydrogen chain of 20 atoms are shown for 6 different spin ground states.
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Table 4.1: Values of F per intermolecular distance R.

R (a.u.) F (10−3 a.u.)
2.5 0.0 0.8 1.2 1.6 2.4 3.2
3.0 0.0 1.6 2.4 3.2 4.8 6.4
4.0 0.0 1.6 1.8 2.0 3.2 3.6 4.0

the following, an H2 constituent will be called a molecule even if Rf is far from the H2

equilibrium distance. With decreasing R, the system changes from a collection of sepa-
rated H2 molecules to a chain where the electrons are delocalized [255], whereas the static
correlation remains similar due to the constant bond length Rf of the H2 molecule.

Only the absolute ground state (S = 0) was targeted, but for different chain lengths,
LOT, and basis sets. All calculations for the basis sets STO-6G, 6-31G [257], and 6-
31G(d,p) (Ref. [258]) were performed with a virtual dimension per symmetry sector D of
resp. 32, 64, and 120, independent of chain length and R. The fields for which ground state
calculations were performed are shown in Table 4.1. They depend on the intermolecular
distance R, but are independent of chain length, basis set, and LOT. The LOTs that were
studied are MPS, HF, second order Møller-Plesset perturbation theory (MP2), coupled
cluster with singles and doubles (CCSD) and coupled cluster with singles and doubles and
perturbative triples (CCSD(T)). The HF, MP2, CCSD, and CCSD(T) calculations were
performed with the molecular electronic structure program DALTON [259].

B. Results and discussion

For the basis sets STO-6G and 6-31G, αzz and γzzzz were calculated for an increasing
number of H2 units M . The values per molecule, αzzM

−1 and γzzzzM
−1, are presented for

STO-6G in Figs. 4.5, 4.6 and 4.7 and for 6-31G in Figs. 4.8, 4.9 and 4.10 for the different
intermolecular distances and LOTs. For the 6-31G(d,p) basis set, the largest chain was
H8. All H8 data are shown in Table 4.2.

From Table 4.2, it can be observed that for corresponding intermolecular distances and
LOTs, the STO-6G polarizability and second hyperpolarizability values are significantly
lower than the values obtained with the 6-31G and 6-31G(d,p) basis sets. The possible
movement of electrons in a minimal basis set is of course restricted. The 6-31G and 6-
31G(d,p) results are also much closer to each other than to the minimal basis set results,
in agreement with Champagne et al. [246, 247].

For the polarizability of long chains, a clear order exists for the LOTs, which is the
same for the three intermolecular distances and the STO-6G and 6-31G basis sets,

αHF
zz > αMP2

zz > αMPS
zz > αCCSD(T)

zz > αCCSD
zz . (4.36)

This order is in agreement with previous work [247], which looks at small basis sets. For
larger basis sets, it was found that the HF polarizability tends to drop below the MP2 values
for decreasing values of the intermolecular distance R (increasing electron delocalization)
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Figure 4.5: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 2.5 a.u., calculated with several LOTs
in the Löwdin transformed STO-6G basis.
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Figure 4.6: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 3.0 a.u., calculated with several LOTs
in the Löwdin transformed STO-6G basis.
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Figure 4.7: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 4.0 a.u., calculated with several LOTs
in the Löwdin transformed STO-6G basis.
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Figure 4.8: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 2.5 a.u., calculated with several LOTs
in the Löwdin transformed 6-31G basis.
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Figure 4.9: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 3.0 a.u., calculated with several LOTs
in the Löwdin transformed 6-31G basis.



74 Chapter 4. Longitudinal static response properties of hydrogen chains

0.00 0.05 0.10 0.15 0.20
M−1

12

13

14

15

16

17
α
zz
M
−

1
 [a

.u
.]

(a)
6-31G : 2/4 a.u.

0.00 0.05 0.10 0.15 0.20
M−1

5.0

5.5

6.0

6.5

7.0

7.5

8.0

γ
zz
zz
M
−

1
 [1

03
 a

.u
.]

(b)
6-31G : 2/4 a.u.

HF
MP2
CCSD
MPS
CCSD(T)

Figure 4.10: Polarizabilities (a) and second hyperpolarizabilities (b) of hydrogen chains with
intramolecular distance 2 a.u. and intermolecular distance 4.0 a.u., calculated with several LOTs
in the Löwdin transformed 6-31G basis.
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Table 4.2: All polarizability and second hyperpolarizability data for H8.

Quantity R (a.u.) Basis set HF MP2 CCSD CCSD(T) MPS
αzz (a.u.) 2.5 STO-6G 63.93 53.77 41.61 42.26 42.47

2.5 6-31G 105.38 96.68 80.20 81.34 81.78
2.5 6-31G(d,p) 106.03 102.48 91.61 92.75 93.12
3.0 STO-6G 43.63 36.67 29.73 30.00 30.10
3.0 6-31G 80.75 73.16 61.80 62.40 62.66
3.0 6-31G(d,p) 80.44 76.20 68.73 69.31 69.50
4.0 STO-6G 29.26 25.21 21.20 21.27 21.31
4.0 6-31G 61.77 55.46 47.62 47.84 47.97
4.0 6-31G(d,p) 60.90 56.49 51.52 51.70 51.77

γzzzz (103 a.u.) 2.5 STO-6G 33.00 36.96 24.36 24.78 25.30
2.5 6-31G 79.02 104.36 89.03 90.56 91.72
2.5 6-31G(d,p) 74.40 97.37 90.28 93.57 94.87
3.0 STO-6G 15.50 14.33 9.90 10.20 10.30
3.0 6-31G 48.98 58.89 47.53 48.80 49.34
3.0 6-31G(d,p) 47.25 58.10 49.78 51.98 52.62
4.0 STO-6G 3.17 2.66 2.41 2.44 2.44
4.0 6-31G 17.63 19.75 17.60 17.85 17.92
4.0 6-31G(d,p) 17.38 19.53 17.42 17.88 18.00

[249]. There is also a clear order in the deviation between the polarizability obtained with
a certain LOT and the MPS result

∆αHF
zz > ∆αMP2

zz > ∆αCCSD
zz > ∆αCCSD(T)

zz . (4.37)

For the second hyperpolarizability of long chains, a clear order exists for all LOTs
except HF. Again this order is the same for the three intermolecular distances and the
STO-6G and 6-31G basis sets, and equals the one in Eq. (4.36) when αHF

zz is excluded. The
HF second hyperpolarizability tends to drop below the MP2 values for decreasing values of
the intermolecular distance R (increasing electron delocalization) and for increasing basis
sets. For even larger basis sets, the HF values drop below the CCSD values, but the order
of the other methods is also left unchanged [249]. It is intriguing that for the second
hyperpolarizability, the mean-field (HF) results have no fixed position relative to the other
correlated methods. This shows that the approximate treatment of electron correlation by
MP2 or CCSD and CCSD(T) does not lead to a smooth transition from mean-field theory
towards ED. Instead, the final value of γzzzz is the result of a delicate balance of positive
and negative contributions from the various excited determinants that are summed up with
different weights. This fluctuating nature of electron correlation on NLO properties was
also observed in linearly π conjugated chains [245]. For the deviations, the same order as
in Eq. (4.37) is found, when ∆αHF

zz is excluded.
CCSD(T) is often used as the benchmark method to test the performance of LOTs
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for linear and non-linear optical properties [249]. Of the four HF based LOTs we have
tested, CCSD(T) indeed consistently gives the best results. To check the performance of
CCSD(T) for the data in Figs. 4.5 to 4.10, the relative deviation

δq(M) =
qMPS(M)− qCCSD(T)(M)

qMPS(M)
(4.38)

is defined. q can again be αzz or γzzzz. This relative deviation is shown in Fig. 4.11.
The deviation is larger for the second hyperpolarizability than for the polarizability. For
both parameters, the deviation increases with decreasing intermolecular distance (increas-
ing electron delocalization). For chains with small intermolecular distance (delocalized
electrons), the deviation also rapidly increases with the number of molecules. Note that

the γ
CCSD(T)
zzzz (M = 20) result for the intermolecular distance R = 2.5 a.u. and the STO-

6G basis set already deviates by 12% from the exact result and a simple extrapolation
to the TD limit shows that this deviation can become as large as 15%. The breakdown
of the CCSD(T) method can be understood by the following heuristic argument in terms
of elementary optical excitations. For large intermolecular distances, the electrons are lo-
calized in H2 molecules and the maximum number of electrons involved in an elementary
excitation is 2. These effects can be captured by the CCSD(T) method. For small inter-
molecular distances, the electrons are delocalized over the chain and a larger number of
electrons are involved in elementary excitations. This number also increases with chain
length. CCSD(T) cannot adequately capture this effect and the CCSD(T) results start to
deviate from the exact ones.

For the second hyperpolarizability, the scaling

γ(M) ∝Ma(M) (4.39)

is often proposed [230]. The power a(M) depends weakly on the number of molecules M .
Its initially constant value drops eventually towards one in the TD limit. This can be
explained in terms of a delocalized optical excitation, with a typical length scale. With
increasing lengths, the possibility for such excitations opens up. When the chain can
contain the delocalized excitations completely, the power tends to 1 and it is said that
the system is in the saturation regime [230]. As can be seen in Figs. 4.5 to 4.10, the
saturation regime indeed sets in later when the intermolecular distance is smaller (electron
delocalization larger). This can be confirmed by the following approximation to a(M):

aγ(M) =
ln (γzzzz(M))− ln (γzzzz(M − 1))

ln (M)− ln (M − 1)
, (4.40)

which is shown in Fig. 4.12 for the MPS calculations. From this figure, two extra conclu-
sions can be made. The power for R = 2.5 a.u. and the 6-31G basis set is still above 2 for
the chain lengths studied. Accurate extrapolations of the second hyperpolarizability to the
TD limit are therefore not possible for this data set. The estimated powers are larger for
the 6-31G basis than for the STO-6G basis, a result of the increased number of possibilities
for optical excitations in 6-31G, but the effect of electron delocalization predominates.
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second hyperpolarizability (b) to the MPS values for the data in Figs. 4.5 to 4.10.
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STO-6G and 6-31G basis sets.

From the data in Figs. 4.5 to 4.10, values for αMPS
zz M−1 and γMPS

zzzzM
−1 in the TD limit

can be extrapolated. A scaling relation of the form

q(M)

M
= a0 +

a1

M
+

a2

M2
+

a3

M3
(4.41)

is assumed, where q can again be αzz or γzzzz and the an are obtained from a least-squares
fit. The parameter a0 then corresponds to the desired TD limit value. From Eq. (4.41),
the following equation can be derived:

∆q(M) = q(M)− q(M − 1) = a0 +
b2

M2
+

b3

M3
+O(M−4). (4.42)

To check the extrapolations, a least-squares fit of Eq. (4.42) to ∆q(M) is performed too.
In both extrapolation schemes, the cut-off value for M was 5 for the polarizability and 7
for the second hyperpolarizability. An example is shown in Fig. 4.13. All obtained data
are presented in Table 4.3. Except for the second hyperpolarizability for R = 2.5 a.u. and
the 6-31G basis, the results of both extrapolation schemes are within 1% relative deviation.

VI. CONCLUSIONS

There is a lot of interest in the optical properties of chemical systems extended in
one spatial dimension. The MPS ansatz works well for quasi-one-dimensional non-critical
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Figure 4.13: Extrapolation of the second hyperpolarizability per H2 unit for the configuration
with R = 3.0 a.u. in the STO-6G basis. The extrapolation schemes in Eqs. (4.41) and (4.42)
were used to obtain resp. Fits 1 and 2.

Table 4.3: Extrapolated values for the polarizability and second hyperpolarizability per H2

unit in the TD limit.

Quantity Basis set R (a.u.) Eq. (4.41) Eq. (4.42)
αzz (a.u.) STO-6G 2.5 17.41 17.41

STO-6G 3.0 9.464 9.462
STO-6G 4.0 5.733 5.733
6-31G 2.5 39.00 39.20
6-31G 3.0 21.27 21.27
6-31G 4.0 13.55 13.55

γzzzz (103 a.u.) STO-6G 2.5 52.64 52.74
STO-6G 3.0 6.953 6.945
STO-6G 4.0 0.9303 0.9301
6-31G 2.5 410.8(a) 424.0(a)

6-31G 3.0 48.52 48.45
6-31G 4.0 8.275 8.269

(a) These extrapolated values lie far apart and have to be treated with care as the powers

aγ(M) for the largest chain lengths studied are still rather large.
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systems and yields highly accurate results. It can hence be used to study the optical
properties of one-dimensional systems. We have implemented the sweep algorithm for the
variational optimization of SU(2) ⊗ U(1) invariant MPSs to study the static longitudinal
polarizability and second hyperpolarizability of hydrogen chains by means of finite field
extrapolations.

As a first application, the optical response properties of an equally spaced hydrogen
chain were studied for the ground states in different spin symmetry sectors. It is well known
that HF based methods break down in the limit of large interatomic distances, whereas an
MPS can capture the relevant static correlation needed to obtain accurate energy results.
It was shown that accurate optical response properties can also be obtained with the
MPS ansatz. The peaks of the polarizability and second hyperpolarizability decrease with
increasing spin and shift towards smaller interatomic distances. Arguments based on an
SOS expansion can be invoked to explain which terms contribute to these optical response
properties.

CCSD(T) is often used as a reference method for the calculation of optical response
properties. For roughly constant static correlation, avoiding the expected breakdown of HF
based methods, the deviation of the optical properties calculated with CCSD(T) and the
quasi-exact MPS method was studied. For increasing electron delocalization, the deviation
becomes larger. For a large electron delocalization, the deviation rapidly increases with
increasing chain length. The increasing deviation was explained in terms of delocalized
optical excitations, which CCSD(T) cannot accurately capture. For small basis sets, the
MPS algorithm gives accurate optical response properties in the saturation regime. These
results were extrapolated to the TD limit.

In the future, we aim to implement the quadratically scaling algorithm of Hachmann et
al. [115] and try to find a better choice of virtual dimension truncation to extend the range
of our algorithm. We also aim to extend our algorithm to find excited states, allowing a
study of the dominant terms in the SOS expression.

The MPS algorithm is hence a promising method to assess the performance of other QC
methods for quasi-one-dimensional chemical systems. It allows to maintain ED accuracy
for larger system sizes, e.g., to obtain accurate results of optical response properties in the
saturation regime.
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APPENDIX: REDUCED TENSORS

Note that during a sweep, we work with left normalized tensors in the left part and
right normalized tensors in the right part. Consider the following partial contraction in
the graphical notation [250]: j jRj

z
RNRαRM

amjM j̃R j̃
z
RÑRα̃R

�
� . (4.43)

With Eq. (4.20), it is easy to show that Eq. (4.43) can be written as

δÑR,NR+1 〈jRj
z
R

1

2
m | j̃Rj̃zR〉 Λ

jRNRαR

j̃R(NR + 1)α̃R

(4.44)

with

Λ
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=
∑
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∑
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�
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j̃ R
(N

R
−

1
)α
L

. (4.45)

Equation (4.43) can hence be decomposed into a structural part (Clebsch-Gordan coef-
ficient and particle conserving Kronecker delta) and a degeneracy part (the reduced Λ
tensor with spin 1

2
), as is shown in Eq. (4.44). As a second example, consider the partial

contraction

j jRj
z
RNRαRM

am1j
j
ja
†
m2

M

MM j̃R j̃
z
RÑRα̃R

�
� = δNR,ÑR(−1)

1
2
−m2

〈12m1
1

2
−m2 | 00〉 〈jRjzR00 | j̃Rj̃zR〉 F 0

jRNRαR

jRNRα̃R

+ 〈1
2
m1

1

2
−m2 | 1(m1 −m2)〉 〈jRjzR1(m1 −m2) | j̃Rj̃zR〉 F 1

jRNRαR

j̃RNRα̃R

 (4.46)
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with

F 0
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and
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where the curly brackets denote Wigner 6-j symbols. The second example can hence also
be decomposed in terms containing a structural part and a degeneracy part. The reduced
tensors corresponding to the direct product of two spin 1

2
operators are a spin 0 tensor (F 0

in the example) and a spin 1 tensor (F 1 in the example).
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4.3 The metal-insulator transition

The equally spaced hydrogen chain (4.34) is studied in this section, using the minimal
basis set STO-6G. This model has one half-filled conduction band, which suggests that the
chain is conducting for all interatomic distances R. However, at large interatomic distance,
the hydrogen chain consists of isolated atoms and is therefore an insulator. Because the
insulating behaviour cannot be explained by band theory (a single-particle theory), the
hydrogen chain is a Mott insulator [213, 260]. For decreasing interatomic distance R, the
equally spaced hydrogen chain goes through an MIT [213, 219]. Three properties then
simultaneously change [261–263]:

1. The static dipole polarizability per electron

lim
L→∞

αzz(L)

L
(4.49)

is infinite in a conductor (metal) and finite in an insulator.

2. The excitation gap

∆E = lim
L→∞

(E1(L)− E0(L)) (4.50)

is closed (zero) in a conductor and open (nonzero) in an insulator.

3. The fluctuation of the dipole moment per electron

λzz = lim
L→∞

1

L
(〈Ψ0 | zz | Ψ0〉 − 〈Ψ0 | z | Ψ0〉 〈Ψ0 | z | Ψ0〉) , (4.51)

is infinite in a conductor and finite in an insulator.

A static electric field induces a current in a conductor (infinite electron displacement),
while the electrons in an insulator are only displaced over a finite distance, which explains
the behaviour of the static polarizability. An infinite response (displacement) can only
occur if the corresponding energy cost is zero, i.e. when the excitation gap is closed. The
behaviour of the dipole moment fluctuation is less intuitive. The following relation can be
proven [262]:

λzz ∝
∞∫

0

dω

ω
<σ(ω), (4.52)

where σ(ω) is the conductivity at frequency ω. Because the real part of the static con-
ductivity is nonzero for conductors and zero for insulators, the dipole moment fluctation
is infinite for conductors and finite for insulators.

DMRG works well for gapped one-dimensional systems. The excitation gap of metal-
lic hydrogen chains only closes in the TD limit. For finite-size systems, a larger virtual
dimension is required as the system becomes more metallic. This is illustrated in Fig. 4.14.
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Figure 4.14: Ground-state calculations for equally spaced hydrogen chains with 36 atoms were
performed, for three interatomic distances R. The Löwdin transformed STO-6G basis was used
as single-particle degrees of freedom. The reduced Schmidt spectra at the central MPS bond are
shown. The index i counts the ordered reduced Schmidt numbers. They decay according to Eq.
(2.39). As the system becomes more metallic, a larger virtual dimension is required.
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Suppose the dipole polarizability and fluctuation per electron scale as:

αzz(L)

L
= aαL

bα + ... (4.53)

λzz(L) = aλL
bλ + ... (4.54)

then their increments for the entire hydrogen chain will be

∆αzz(L) =
αzz(L)− αzz(L− 4)

4
= aα(bα + 1)Lbα + ... (4.55)

∆(Lλzz(L)) =
Lλzz(L)− (L− 4)λzz(L− 4)

4
= aλ(bλ + 1)Lbλ + ... (4.56)

This allows to estimate bα and bλ as

bα(L) + 1 =
L∆(αzz(L))

αzz(L)
, (4.57)

bλ(L) + 1 =
∆(Lλzz(L))

λzz(L)
. (4.58)

Extrapolation to infinite chain length then yields the desired exponents. This is illustrated
in Fig. 4.15. For R = 3 a.u. the exponents bα,λ immediately tend to zero. For this
interatomic distance, the hydrogen chain consists of separated atoms. For R = 1.6 and 2
a.u. the possibility for elementary excitations (with a finite length scale) first opens up,
and when the chain is sufficiently long, the saturation regime sets in: bα,λ(L) → 0. For
R = 1 a.u. the system appears to be a metal, and a least-squares fit yields bα ≈ 1.60 and
bλ ≈ 0.79.
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Figure 4.15: Extrapolation of bα,λ(L) to infinite chain length ( 1
L → 0). The Löwdin transformed

STO-6G basis was used as single-particle degrees of freedom. The chosen values of L are multiples
of 4. The reduced virtual dimension per SU(2)⊗U(1) symmetry sector was truncated to 96. The
finite fields F = 0.0000, 0.0008, 0.0012, and 0.0016 a.u. were used to extrapolate αzz(L,F ) to
zero field. The matrix elements required to calculate Lλzz(L) are discussed in Ref. [219].



CHAPTER 5

Low-lying bond dissociation curves of the carbon dimer

What emerges from all of these high level studies is the extreme difficulty in cal-
culating the ground state and the low-lying excited states of C2 in a meaningful
way, owing to the multireference character of the wave functions and the near
degeneracies which change very rapidly as a function of the C-C distance.

– Peifeng Su, 2010

5.1 Introduction

The carbon dimer is a challenging system for molecular electronic structure methods.
The ground state has significant MR character [264]. The low-lying states are quasi-
degenerate, and many crossings and avoided crossings occur between the low-lying states
of this homonuclear dimer [265–268]. The core correlation and core-valence correlation are
also important [268–271].

Traditionally, bonding is interpreted in terms of localized electrons. A covalent bond
between two atoms is formed by a shared singlet pair of electrons. An ionic bond arises due
to the electrostatic stabilization between two oppositely charged species. In π-conjugated
systems such as benzene, the energy stabilization can only be explained by a delocalized
electron picture: the resonance between Kekulé structures lowers the energy. In one-
dimensional π-conjugated polyenes, this resonance induces ionic contributions, in which the
ends of the polyene are oppositely charged. This charge-shift bonding is also of importance
in homonuclear diatomics such as F2, C2, Cl2, and Br2 [264, 272]. The FCI solution then
contains both covalent and charge-shift (ionic) Slater determinants with significant weights:

|FCI(F2)〉 ≈ C0 |F− F〉+ C1 |F− F+〉+ C2 |F+ F−〉 . (5.1)

87
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Figure 5.1: Molecular orbital diagram for the carbon dimer at R = 2.4 a.u. The molecular
orbitals were obtained with Psi4 at the RHF/cc-pVDZ level of theory.

In the last four years, the bond order of the carbon dimer has come under debate
[264, 273, 274]. In organic chemistry, two carbon atoms can have a single (H3C−CH3,
ethane, [σ]), a double (H2C=CH2, ethylene, [σ + π]), or a triple (HC≡CH, acetylene,
[σ + 2π]) bond. With increasing bond order, the bond length decreases. The bond length
of the carbon dimer is in between the corresponding bond lengths of ethylene and acetylene.
A valence bond study [264] has shown that the ground state of C2 indeed has important
contributions of double [σ + π] and triple [σ + 2π] bonded Slater determinants, while the
double [2π] bonded contributions are small. The molecular orbital diagram in Fig. 5.1
predicts that the Slater determinant with largest weight is

|(core)2σ2
g2σ

2
u1π

4
u〉 . (5.2)

This determinant represents a double [2π] bond. Based on the shapes of the NOs, it can
be argued that Eq. (5.2) effectively represents a triple [σ + 2π] bond: the NO 2σu is only
weakly antibonding, while the NO 2σg is strongly bonding [264]. The determinant

|(core)2σ2
g1π

4
u3σ

2
g〉 (5.3)

also contributes significantly to the triple [σ + 2π] bond. In the double [σ + π] and triple
[σ + 2π] bonds, the π-bond is of the charge-shift type, while the σ-bond is covalent [264].

From the NO occupation number (NOON) spectrum in Fig. 5.2 it can be observed that,
while the MR character is significant, the carbon dimer is not a real diradical. Remember
that the carbon dimer has important contributions of both double [σ+π] and triple [σ+2π]
bonded Slater determinants. In the former, the valence electrons are all paired (:C=C:),
but contributions of this type only carry 20-25% of the total weight [264].

The authors of Ref. [273] suggested that the carbon dimer has a fourth bond, which
suppresses the diradical character further. Six of the eight valence electrons then partici-
pate in the triple [σ+2π] bond (·C ≡ C·). The fourth bond is formed by the singlet pairing
of the two remaining valence electrons, which reside in the outward pointing orbitals. The
breaking of this singlet pair corresponds to the transition X1Σ+

g → c3Σ+
u , which allows to
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Figure 5.2: NOON spectrum for the X1Σ+
g state of the carbon dimer at R = 2.4 a.u. The

calculations were performed with CheMPS2 at the DMRG(28o,12e,DSU(2) = 2500)/cc-pVDZ
level of theory.

estimate the strength of the suggested fourth bond: 14 kcal mol−1 [273]. As this bond is
stronger than a hydrogen bond (about 1 to 7 kcal mol−1), the authors nominate it as the
fourth bond in the carbon dimer.

A recent valence bond study [274] has shown that the interpretation of the fourth bond
as the singlet pairing of the two remaining valence electrons in the triple [σ + 2π] bonded
configuration is wrong. They have found that a more accurate description of the dimer
is obtained by an antiferromagnetic coupling of the electrons. Two valence electrons are
coupled to a singlet in the σ-bond. The remaining three valence electrons of each carbon
atom first couple locally (per carbon atom) to a spin quartet. The two local spin quartets
then couple to a global spin singlet (X1Σ+

g ).

5.2 Low-lying bond dissociation curves

The debate on the bond order of the carbon dimer is still not settled. The only thing
which has generally been agreed upon is that only MR methods provide a meaningful way
to calculate the bond dissociation curves of the low-lying states of this dimer. We have
used C2 as a benchmark test for CheMPS2 [Ref. [70]]:
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CheMPS2: A free open-source spin-adapted implementation of
the density matrix renormalization group for ab initio quantum
chemistry [181]

Sebastian Wouters,a Ward Poelmans,a Paul W. Ayers,b and Dimitri Van Necka

aCenter for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
bDepartment of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada

The density matrix renormalization group (DMRG) has become an indispens-
able numerical tool to find exact eigenstates of finite-size quantum systems with
strong correlation. In the fields of condensed matter, nuclear structure and molec-
ular electronic structure, it has significantly extended the system sizes that can be
handled compared to full configuration interaction, without losing numerical accu-
racy. For quantum chemistry (QC), the most efficient implementations of DMRG
require the incorporation of particle number, spin and point group symmetries in
the underlying matrix product state (MPS) ansatz, as well as the use of so-called
complementary operators. The symmetries introduce a sparse block structure in
the MPS ansatz and in the intermediary contracted tensors. If a symmetry is non-
abelian, the Wigner-Eckart theorem allows to factorize a tensor into a Clebsch-
Gordan coefficient and a reduced tensor. In addition, the fermion signs have to
be carefully tracked. Because of these challenges, implementing DMRG efficiently
for QC is not straightforward. Efficient and freely available implementations are
therefore highly desired. In this work we present CheMPS2, our free open-source
spin-adapted implementation of DMRG for ab initio QC. Around CheMPS2, we
have implemented the augmented Hessian Newton-Raphson complete active space
self-consistent field method, with exact Hessian. The bond dissociation curves of
the 12 lowest states of the carbon dimer were obtained at the DMRG(28 orbitals,
12 electrons, DSU(2)=2500)/cc-pVDZ level of theory. The contribution of 1s core
correlation to the X1Σ+

g bond dissociation curve of the carbon dimer was esti-
mated by comparing energies at the DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ
and DMRG-SCF(34o, 8e, DSU(2)=2500)/cc-pCVDZ levels of theory.

Program Summary

Program title: CheMPS2

Catalogue identifier: AESE v1 0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESE_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License, version 2

No. of lines in distributed program, including test data, etc.: 131472

No. of bytes in distributed program, including test data, etc.: 1645700

http://cpc.cs.qub.ac.uk/summaries/AESE_v1_0.html
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Distribution format: tar.gz

Programming language: C++.

Computer: x86-64.

Operating system: Scientific Linux 6.0.

RAM: 10 MB - 64 GB

Classification: 16.1.

External routines: Basic Linear Algebra Subprograms (BLAS), Linear Algebra Pack-
age (LAPACK), GNU Scientific Library (GSL), and Hierarchical Data Format Release
5 (HDF5)

Nature of problem:
The many-body Hilbert space grows exponentially with the number of single-particle states.
Exact diagonalization solvers can therefore only handle small systems, of up to 18 electrons
in 18 orbitals. Interesting active spaces are often significantly larger.

Solution method:
The density matrix renormalization group allows the extension of the size of active spaces,
for which numerically exact solutions can be found, to about 40 electrons in 40 orbitals. In
addition, it provides a rigorous variational upper bound to energies, as it has an underlying
wavefunction ansatz, the matrix product state.

Restrictions:
Our implementation of the density matrix renormalization group is spin-adapted. This
means that targeted eigenstates in the active space are exact eigenstates of the total elec-
tronic spin operator. Hamiltonians which break this symmetry (a magnetic field term for
example) cannot be handled by our code. As electron repulsion integrals in Gaussian basis
sets have eightfold permutation symmetry, we have used this property in our code.

Unusual features:
The nature of the matrix product state ansatz allows for exact spin coupling. In CheMPS2,
the total electronic spin is imposed (not just the spin projection), in addition to the particle-
number and abelian point-group symmetries.

Running time:
The running time depends on the size of the targeted active space, the number of desired
eigenstates, their symmetry, the density of states, the individual orbital symmetries, the
orbital ordering, the desired level of convergence, and the chosen convergence scheme. To
converge a single point of one of the dissociation curves of the carbon dimer (D∞h → D2h

symmetry) in the cc-pVDZ basis (28 orbitals; their ordering is described in Section 5.3)
with 2500 reduced renormalized basis states (see the convergence scheme in Section 5.4;
the variational energy then lies 0.1 mEh above the fully converged result) takes about 8 h
on a single node with a dual-socket octa-core Intel Xeon Sandy Bridge (E5-2670) (16 cores
at 2.6 GHz), and requires 6 GB of RAM.
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1. Introduction

Conventional molecular electronic structure methods such as density functional theory,
Hartree-Fock theory, and coupled cluster theory start with the assumption that a single
Slater determinant (SD) provides a qualitatively good description of the molecule at hand
[42]. While this assumption is valid for some molecules near equilibrium geometry, the
static correlation which arises in other molecules, as well as for geometries far from equi-
librium, requires the use of multireference (MR) methods. These provide a qualitative
description which is equivalent to multiple SDs, thereby resolving the static correlation.
One of these MR methods is the exact diagonalization of the many-body Hamiltonian in
the full Hilbert space, also known as full configuration interaction (FCI) in quantum chem-
istry (QC). Because the many-body Hilbert space grows exponentially with the number of
single-particle states, only small systems, of up to 18 electrons in 18 orbitals, can be treated
by FCI. In 1999, the density matrix renormalization group (DMRG) was introduced in QC
[66]. This MR method allows to extend the system sizes for which numerically exact so-
lutions can be found to about 40 electrons in 40 orbitals, depending on the nature of the
system.

DMRG originated in 1992 in the field of condensed matter [64, 65]. Although it was
originally introduced as a renormalization group flow for increasing many-body Hilbert
spaces, in 1995 it was realized that DMRG can be reformulated as the variational opti-
mization of a particular wavefunction ansatz, the matrix product state (MPS) [67, 68].
This not only provided the theoretical validation that an energy obtained with DMRG
is always an upper bound to the exact eigenvalue, but also shed light on DMRG from
a quantum information perspective. Non-critical quantum mechanical ground states are
believed to obey the so-called area law for the entanglement entropy [71]. This implies
that quantum correlation is local in such a ground state. For one-dimensional systems,
the boundary of a line segment consists of two points, and the entanglement entropy is a
constant, independent of system length. This is the reason why DMRG works extremely
well for one-dimensional non-critical systems. Quantum information theory also induced
the development of other so-called tensor network states (TNS), which capture the entan-
glement entropy well in higher dimensional and/or critical systems [92, 93]. There even
exists a continuous MPS ansatz for quantum fields [91].

Although the active orbital space of most molecular systems is far from one-dimensional,
DMRG has been very useful for ab initio QC [66, 100–133, 136–145, 147–152, 154]. The
variational upper bound to the true eigenvalue, obtained with DMRG, can be systemati-
cally improved by increasing the so-called bond or virtual dimension of the MPS ansatz.
This provides a way to check the convergence of DMRG calculations.

In ab initio QC methods which use FCI, the FCI solver can be replaced by DMRG.
Ab initio DMRG allows for an efficient extraction of the reduced two-body density matrix
(2-RDM) [122]. The 2-RDM of the active space is required in the complete active space
self-consistent field (CASSCF) method to compute the gradient and the Hessian. It is
therefore natural to introduce a CASSCF variant with DMRG as active space solver,
DMRG-SCF [123]. This allows one to describe static correlation in large active spaces.



5.2. Low-lying bond dissociation curves 93

To add dynamic correlation as well, three DMRG-based methods have been introduced.
(a) With a little more effort, the 3-RDM and contracted 4-RDMs can be extracted from
DMRG as well. These are required to apply second order perturbation theory to a CASSCF
wavefunction, called CASPT2. The DMRG variant is DMRG-CASPT2 [138]. (b) Based
on a CASSCF wavefunction, a configuration interaction expansion can be introduced,
called MRCI. Recently, an approximate DMRG-MRCI variant was proposed [150]. (c) Yet
another way is to perform a canonical transformation (CT) on top of an MR wavefunction.
When an MPS is used as MR wavefunction, the method is called DMRG-CT [129].

In addition to ground states, DMRG can also find excited states. By projecting out
lower lying eigenstates, or by targeting a specific energy [118], the DMRG algorithm solves
for a particular excited state. In these state-specific algorithms, the whole renormalized
basis is used to represent one single eigenstate. In state-averaged DMRG, several eigen-
states are targeted at once. Their RDMs are weighted and summed to perform the DMRG
renormalization step [178]. The renormalized basis then represents several eigenstates at
once.

DMRG linear response theory (DMRG-LRT) can be used as well to find excited states.
Once the ground state has been found, the MPS tangent vectors to this optimized point can
be used as an (incomplete) variational basis to approximate excited states [127, 153, 179–
182]. As the tangent vectors to an optimized SD yield the configuration interaction with
singles (CIS), also called the Tamm-Dancoff approximation (TDA), for Hartree-Fock theory
[42], the same names are used for DMRG: DMRG-CIS or DMRG-TDA. By linearizing the
time-dependent variational principle for matrix product states [183], the DMRG random
phase approximation (DMRG-RPA) is found [153, 181, 182], again in complete analogy
with RPA for Hartree-Fock theory. The variational optimization in an (incomplete) basis of
MPS tangent vectors can be extended to higher-order tangent spaces as well. DMRG-CISD,
or DMRG configuration interaction with singles and doubles, is a variational approximation
to target both ground and excited states in the space spanned by the MPS reference and
its single and double tangent spaces [181].

In ab initio QC, two other TNSs have been employed as well: the tree TNS [97, 146]
and the complete-graph TNS [134]. While they require a smaller virtual dimension to
achieve the same accuracy, their optimization algorithms are less efficient, and as a result
an MPS is currently still the preferred choice for ab initio QC.

In Section 2, the DMRG algorithm is briefly introduced, and remarks specific to ab
initio QC are discussed. In Section 3, the implementation of particle number, spin, and
abelian point group symmetries is presented. An overview of the structure of CheMPS2
is given in Section 4. Results on the low-lying states of the carbon dimer are presented
in Section 5. A summary is given in Section 6. Atomic units are used in this work:
Eh = 4.35974434(19)× 10−18 J and a0 = 5.2917721092(17)× 10−11 m [31].
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2. DMRG for ab initio quantum chemistry

2.1 The MPS ansatz

DMRG can be formulated as the variational optimization of an MPS. The MPS ansatz
with open boundary conditions is given by

|Ψ〉 =
∑

{nk},{αj}

A[1]n1
α1
A[2]n2

α1;α2
...A[L− 1]nL−1

αL−2;αL−1
A[L]nLαL−1

|n1n2...nL〉 (5.4)

where nk denotes the occupancy of orbital k (|−〉, |↑〉, |↓〉, or |↑↓〉) and the {αj} are the
so-called bond or virtual indices. With increasing dimension D of these virtual indices, a
larger part of the Hilbert space can be reached. Note that it is of no use to make virtual
dimension Dj larger than min(4j, 4L−j), the minimum of the sizes of the partial Hilbert
spaces spanned by resp. the first j and the last L− j orbitals.

2.2 Canonical forms

The wavefunction |Ψ〉 does not uniquely define the ansatz, in analogy with a Slater
determinant. For the latter, a rotation in the occupied orbital space alone, or a rotation in
the virtual orbital space alone, does not change the physical wavefunction. Only occupied-
virtual rotations change the wavefunction. In an MPS, there is gauge freedom as well. If
for two neighbouring sites i and i + 1, the left MPS tensors are right-multiplied with the
non-singular matrix G

Ã[i]niαi−1;αi
=
∑
αj

A[i]niαi−1;αj
Gαj ;αi (5.5)

and the right MPS tensors are left-multiplied with the inverse of G

Ã[i+ 1]ni+1
αi;αi+1

=
∑
αj

G−1
αi;αj

A[i+ 1]ni+1
αj ;αi+1

(5.6)

the wavefunction does not change, i.e. ∀ni, ni+1, αi−1, αi+1:∑
αi

Ã[i]niαi−1;αi
Ã[i+ 1]ni+1

αi;αi+1
=
∑
αi

A[i]niαi−1;αi
A[i+ 1]ni+1

αi;αi+1
. (5.7)

CheMPS2 is a two-site DMRG algorithm, were at each so-called micro-iteration two
neighbouring sites are simultaneously optimized. Suppose these sites are i and i+ 1. The
gauge freedom of the MPS is used to bring it in a particular canonical form. For all sites
to the left of i, the MPS tensors are left-normalized:∑

αk−1,nk

(A[k]nk)†αk;αk−1
A[k]nkαk−1;βk

= δαk,βk (5.8)

and for all sites to the right of i+ 1, the MPS tensors are right-normalized:∑
αk,nk

A[k]nkαk−1;αk
(A[k]nk)†αk;βk−1

= δαk−1,βk−1
. (5.9)
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2.3 The effective Hamiltonian equation

Combine the MPS tensors of the two sites under consideration into a single two-site
tensor: ∑

αi

A[i]niαi−1;αi
A[i+ 1]ni+1

αi;αi+1
= B[i]ni;ni+1

αi−1;αi+1
. (5.10)

At the current micro-iteration of the DMRG algorithm, B[i] (the flattened form of the
tensor B[i]) is used as an initial guess for the effective Hamiltonian equation. This equation
is obtained by variation of the Lagrangian [125]

L = 〈Ψ(B[i]) | Ĥ | Ψ(B[i])〉 − λ 〈Ψ(B[i]) | Ψ(B[i])〉 (5.11)

to the complex conjugate of B[i]:

HeffB[i] = λB[i]. (5.12)

The specific canonical choice of Eqs. (5.8)-(5.9) ensured that no overlap matrix is present
in this effective Hamiltonian equation. The lowest eigenvalue and corresponding eigenvec-
tor of this equation are searched. In CheMPS2, this is done with our implementation of
Davidson’s algorithm [167]. Once found, it is decomposed with a singular value decompo-
sition:

B[i](αi−1ni);(ni+1αi+1) =
∑
β

U [i](αi−1ni);βκ[i]βV [i]β;(ni+1αi+1). (5.13)

Note that U [i] is hence left-normalized and V [i] right-normalized. In the DMRG algorithm,
the original sum over β of dimension min(4Di−1, 4Di+1) is truncated to Di, thereby keeping
the Di largest κ[i]β.

2.4 Sweeping

So far, we have looked at a micro-iteration of the DMRG algorithm. This micro-
iteration happens during left or right sweeps. During a left sweep, B[i] is constructed, the
corresponding effective Hamiltonian equation solved, the solution B[i] decomposed, the
singular value spectrum truncated, A[i] is set to U [i] × κ[i], A[i + 1] is set to V [i], and i
is decreased by 1. Note that A[i + 1] is right-normalized for the next micro-iteration as
required. This stepping to the left occurs until i = 0, and then the sweep direction is
reversed from left to right. Based on energy differences, or wavefunction overlaps, between
consecutive sweeps, a convergence criterion is triggered, and the sweeping stops. One sweep
is called a macro-iteration in DMRG.

2.5 Complementary operators

The effective Hamiltonian in Eq. (5.12) is too large to be fully constructed. Only
its action on a particular guess B[i] is available as a function. In order to construct
HeffB[i] efficiently for general quantum chemistry Hamiltonians, several tricks are used. (a)
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The one-body matrix elements (i|T |k) are incorporated in the two-body matrix elements
(ij|V |kl):

(ij|h|kl) = (ij|V |kl) +
1

N − 1
[(i|T |k)δj,l + (j|T |l)δi,k] (5.14)

where N is the targeted particle number. (b) Suppose we want to optimize sites i and i+1,
and that |αi−1〉 are the corresponding Di−1 left renormalized basis states. Renormalized
operators such as 〈αi−1 | â†kσâlτ | βi−1〉 with k and l both smaller than i are constructed
and stored on disk [102]. For the second quantized operators â† and â, the Latin indices
denote orbitals and the Greek indices spin projections. (c) Once three second quantized
operators are on one side of B[i], they are multiplied with the matrix elements (ij|h|kl), and
a summation is performed over the common indices to construct complementary operators
[99]: ∑

σ

∑
k,l,m<i

〈αi−1 | â†kσâ
†
lτ âmσ | βi−1〉 × (kl|h|mn)→ 〈αi−1 | Ônτ | βi−1〉 . (5.15)

For two, three, and four second quantized operators on one side of B[i], these complemen-
tary operators are constructed. A bare (without matrix elements) renormalized operator
is only constructed for one or two second quantized operators on one side of B[i]. (d)
Hermitian conjugation

〈αi−1 | â†kσâ
†
lτ | βi−1〉 = 〈βi−1 | âlτ âkσ | αi−1〉† (5.16)

and commutation relations between the second quantized operators are also used to further
limit the storage requirement for the renormalized partial Hamiltonian terms.

2.6 Convergence

There is also a one-site DMRG algorithm, in which only one MPS site tensor is op-
timized at each micro-iteration, but this algorithm is more likely to get stuck in a local
minimum. To help prevent the two-site DMRG algorithm from getting stuck in a local
minimum, a small amount of noise can be added to the solution B[i], just before it is
decomposed. This way, renormalized basis states corresponding to lost symmetries (which
should be there, but are not) can be reintroduced [102].

The choice of orbitals and their ordering on the one-dimensional DMRG lattice have
a significant influence both on getting stuck in local minima, as well as on how fast the
variational energy ED converges with increasing D [66]. The optimal choice and ordering
are still under debate, although two rules of thumb are widely used. Active space orbitals
in elongated molecular systems (think about polyenes for example) should be localized as
much as possible to respect the area law for the entanglement entropy [139]. For small
molecules with a high point group symmetry, it is beneficial to put bonding and anti-
bonding orbitals close to each other on the one-dimensional DMRG lattice, as they are
most strongly correlated [149].
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One possibility to settle this ongoing debate might be to look at the so-called two-orbital
mutual information Ip,q in the future [116]. This is a measure from quantum information
theory for the amount of correlation between two orbitals, and is a two-point correlation
function on the one-dimensional DMRG lattice. A cost function can be associated with this
measure, e.g. F =

∑
p,q Ip,q(p − q)z, which requires highly correlated orbitals to be close.

Its gradient and Hessian with respect to orbital rotations can be calculated by resp. three-
and four-point correlation functions on the one-dimensional DMRG lattice. These can be
obtained efficiently [122]. If local minima can be avoided, this yields a set of minimally
entangled orbitals and their optimal ordering, from which extra rules of thumb can be
drawn.

Two extrapolation schemes exist to assess the convergence of the variational energy ED
with increasing number of renormalized basis states D. The first is the scaling relation

ln(ED − Eexact) = C1 − C2(ln(D))2 (5.17)

proposed by Chan [102, 141, 170] which is nowadays not often used. The Ci are constants
which are determined by the fit. The second and most widely used extrapolation scheme
is based on the so-called maximal discarded weight wdisc(D) during the last DMRG sweep
for a certain value of D:

wdisc(D) = max
i

{
4D∑

β=D+1

κ[i]2β

}
. (5.18)

It proposes a linear relation between the variational energy ED and the discarded weight
wdisc(D) [102, 169, 275]:

E(D) = Eexact + C1 w
disc(D). (5.19)

By increasing D stepwise, Eexact can be extrapolated.

3. Symmetry-adapted DMRG

3.1 Introduction

The symmetry group of the Hamiltonian can be used to label eigenstates by symmetry.
To find an eigenstate with a particular symmetry, it is sufficient to restrict an optimization
to the corresponding corner of the many-body Hilbert space. For DMRG, it is well under-
stood how both abelian and non-abelian symmetries can be imposed [192–195]. Each MPS
tensor and intermediary contracted tensor decompose into a Clebsch-Gordan coefficient
and a reduced tensor. The Clebsch-Gordan coefficient introduces a sparse block structure
in the reduced tensor. If the symmetry group of the Hamiltonian is non-abelian, some
irreducible representations (irrep) have a dimension larger than one, and then this factor-
ization also presents an information compression, as the size of the full tensor is larger
than the size of the reduced tensor. In addition to the possibility of restricting an opti-
mization to a particular symmetry corner of the many-body Hilbert space, this sparsity
and compression result in smaller requirements in disk, memory and computer time.
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In CheMPS2, we have implemented three global symmetries for the MPS wave-
function: SU(2) total electronic spin, U(1) particle number, and abelian point group
symmetry P. As we work real-valued in CheMPS2, the latter are restricted to P ∈
{C1, Ci, C2, Cs, D2, C2v, C2h, D2h} [37].

3.2 Reduced MPS tensors

These global symmetries are imposed by requiring that the MPS site tensors A[i]niαi−1;αi

are irreducible tensor operators of the total symmetry group [192–195]. The local and
virtual basis states (|nk〉 and |αj〉) then have to transform according to the rows of the
irreps of this symmetry group. This is realized by rotating the basis states so that they
can be represented by good spin (s and j), spin projection (sz and jz), particle number
(N), and point group irrep (I) quantum numbers.

The local basis states of orbital k are labelled as

|−〉 → |s = 0; sz = 0, N = 0; I = I0〉 (5.20)

|↑〉 → |s =
1

2
; sz =

1

2
, N = 1; I = Ik〉 (5.21)

|↓〉 → |s =
1

2
; sz = −1

2
, N = 1; I = Ik〉 (5.22)

|↑↓〉 → |s = 0; sz = 0, N = 2; I = I0〉 (5.23)

where I0 and Ik are resp. the trivial and orbital k point group irreps. |↑↓〉 corresponds to
I0 because for the abelian point groups with real-valued character tables, ∀Ik : Ik⊗Ik = I0.
In the same way, the virtual basis states are labelled as

|α〉 → |jjzNIα〉 (5.24)

where the α on the right-hand side allows to distinguish between separate virtual basis
states which belong to the same symmetry.

Due to the Wigner-Eckart theorem, each irreducible tensor operator A[i] factorizes into
Clebsch-Gordan coefficients and a reduced tensor T [i]:

A[i]niαi−1;αi
= A[i]ss

zNI
jLj

z
LNLILαi−1;jRj

z
RNRIRαi

= 〈jLjzLssz|jRjzR〉 δNL+N,NRδIL⊗I,IRT [i]
(sNI)
(jLNLILαL)(jRNRIRαR). (5.25)

The SU(2), U(1), and P symmetries are imposed by their corresponding Clebsch-Gordan
coefficients, and express nothing else than resp. local allowed spin recoupling, local particle
conservation, and local point group symmetry conservation. The indices αL and αR keep
track of the number of times an irrep occurs at a virtual bond. If the virtual dimension of a
symmetry sector isD(jLNLIL), this would correspond to a dimension of (2jL+1)D(jLNLIL)
in an MPS which is not symmetry-adapted [192]. If a Clebsch-Gordan coefficient is zero
by symmetry, the corresponding blocks in T [i] do not need to be allocated, resulting in
sparse block structure. If j or s are not spin-0, there is in addition data compression.
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The desired global symmetry can be imposed on the MPS by requiring that the left
virtual index of the leftmost tensor in the MPS chain consists of one irrep corresponding
to (jL, NL, IL) = (0, 0, I0), while the right virtual index of the rightmost tensor consists
of one irrep corresponding to (jR, NR, IR) = (SG, NG, IG), the desired global spin, particle
number, and point group symmetry. This corresponds to the singlet-embedding strategy
of Sharma and Chan [140].

The operators

b̂†kσ = â†kσ (5.26)

b̂kσ = (−1)
1
2
−σâk−σ (5.27)

for orbital k correspond to resp. the (s = 1
2
, sz = σ,N = 1, Ik) row of irrep (s = 1

2
, N =

1, Ik) and the (s = 1
2
, sz = σ,N = −1, Ik) row of irrep (s = 1

2
, N = −1, Ik) [202]. b̂† and

b̂ are hence both doublet irreducible tensor operators. This fact permits exploitation of
the Wigner-Eckart theorem also for renormalized operators and complementary operators,
and to develop a code without any spin projections or SU(2) Clebsch-Gordan coefficients.
Contracting terms of the type (5.25) and (5.26)-(5.27) can be done by implicitly summing
over the common multiplets and recoupling the local, virtual and operator spins. An
example is given in the Appendix. Operators and complementary operators then formally
consist of terms containing Clebsch-Gordan coefficients and reduced tensors. In our code,
however, only the reduced tensors need to be calculated and stored. CheMPS2 uses the
GNU Scientific Library [276] to extract Wigner 6-j and 9-j symbols for the recoupling. No
Wigner 3-j symbols or Clebsch-Gordan coefficients are used in the program.

3.3 The reduced two-site object

Section 2.3 can be reformulated with the reduced T -tensors from Eq. (5.25) and a
reduced two-site object S[i]:

S[i]
j(s1s2)N1N2I1I2
jLNLILαL;jRNRIRαR

= δNL+N1+N2,NRδIL⊗I1⊗I2,IR
√

2j + 1(−1)jL+jR+s1+s2
∑

jMαM

√
2jM + 1

×
{
jL jR j
s2 s1 jM

}
T [i]s1N1I1

jLNLILαL;jM (NL+N1)(IL⊗I1)αM
T [i+ 1]s2N2I2

jM (NL+N1)(IL⊗I1)αM ;jRNRIRαR
.(5.28)

Eq. (5.28) is the analogue of Eq. (5.10). The Lagrangian can be written in terms of S[i],
the effective Hamiltonian equation can be solved, and after convergence, Eq. (5.28) can be
backtransformed:

(TT )[i]s1N1I1;s2N2I2;jM
jLNLILαL;jRNRIRαR

= δNL+N1+N2,NRδIL⊗I1⊗I2,IR
√

2jM + 1(−1)jL+jR+s1+s2

×
∑
j

{
jL jR j
s2 s1 jM

}√
2j + 1S[i]

j(s1s2)N1N2I1I2
jLNLILαL;jRNRIRαR

. (5.29)

Per group of {jM , NM = NL +N1, IM = IL ⊗ I1}, we can perform a singular value decom-
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position:

(TT )[i]s1N1I1;s2N2I2;jM
jLNLILαL;jRNRIRαR

=
∑
αM

U [i]jMNM IM(jLNLILαLs1N1I1);αM

×λ[i]jMNM IMαM

(√
2jM+1
2jR+1

V [i]jMNM IMαM ;(jRNRIRαRs2N2I2)

)
. (5.30)

After reshaping the indices to the normal form, it can be checked that U [i] is the reduced
part of a left-normalized MPS site tensor and that the term between brackets is the reduced
part of a right-normalized MPS site tensor. The relation between λ[i] and κ[i] is given by

κ[i]jMNM IMαM =
λ[i]jMNM IMαM√ ∑

jQNQIQαQ

(2jQ + 1)λ[i]2jQNQIQαQ

. (5.31)

The Di largest values of λ[i] are kept.

4. CheMPS2 library

CheMPS2 can be obtained from the CPC Program Library, and from its public git
repository [69]. The source code contains comments in Doxygen format. A complete
reference manual can be generated from these comments. See README on how to install
the library and on how to generate the manual. In this section, we give an overview of the
basic structure of CheMPS2 so that new users can easily understand and alter the test
runs to their own needs.

4.1 The Hamiltonian

Most molecular electronic structure programs have the ability to print matrix ele-
ments or to save them in binary format. CheMPS2 requires two-body matrix elements
with eightfold permutation symmetry, which do not break SU(2) total electronic spin. A
CheMPS2::Hamiltonian object should be created at the beginning of a calculation, and
filled with the matrix elements of the problem at hand.

Users can utilize their preferred molecular electronic structure program to generate
the matrix elements. The functions setEconst, setTmat, and setVmat then fill the
CheMPS2::Hamiltonian object elementwise. Note that for (ij|V |kl) = Vijkl we have as-
sumed the physics notation. This means that orbital k at position r1 (denoted by k(r1))
scatters from orbital l(r2) into orbitals i(r1) and j(r2).

We have used Psi4 [203] to generate molecular orbital matrix elements. Two plugins
can be found in the folder mointegrals, with corresponding instructions in README. One
plugin allows to print matrix elements as text during a Psi4 calculation, in a format which
CheMPS2 is able to read. The other plugin creates a CheMPS2::Hamiltonian object
during a Psi4 calculation, fills it with the molecular orbital matrix elements, and stores it
to disk in binary format. The latter option requires linking of the CheMPS2 library to
the Psi4 plugin, but allows for reduced storage requirements.
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In the CheMPS2::Problem object, users can specify the symmetry sector to which the
calculations are restricted. The CheMPS2::Hamiltonian and the desired total electronic
spin, particle number, and point group symmetry then completely determine a FCI calcula-
tion. In order to do DMRG or DMRG-SCF instead of resp. FCI or CASSCF, a convergence
scheme for the subsequent sweeps should be set up.

4.2 Convergence scheme

The CheMPS2::ConvergenceScheme object controls the DMRG sweeps. It is divided
into a number of consecutive instructions. Each instruction contains four parameters: the
number of reduced renormalized basis states D which should be kept, an energy threshold
Econv for convergence, the maximum number of sweeps Nmax, and the noise prefactor γnoise.

The parameters γnoise and D are relevant for the micro-iterations. Just before the de-
composition of the reduced S[i]-tensor, random noise is added to it. This random noise
is bounded in magnitude by 0.5γnoisew

disc(D), where wdisc(D) is the maximum discarded
weight obtained during the previous left- or right-sweep. After decomposition of the re-
duced S[i]-tensor, its reduced Schmidt spectrum λ[i] is truncated to D.

The parameters Econv and Nmax are relevant for the macro-iterations. If after one
macro-iteration (left- plus right-sweep), the energy difference is smaller than Econv, the
sweeping stops and the next instruction is performed. If energy convergence is not reached
after Nmax macro-iterations, the current instruction ends as well.

4.3 DMRG

Creation of a CheMPS2::DMRG object requires a CheMPS2::Hamiltonian, a CheMPS2::

Problem, and a CheMPS2::ConvergenceScheme. Each DMRG calculation starts by cre-
ating a new MPS. Its virtual dimension D is obtained from the first instruction of the
CheMPS2::ConvergenceScheme object. At each MPS bond, this virtual dimension D is
distributed over all possible symmetry sectors, ensuring that the dimension of a certain
symmetry sector does not exceed the corresponding FCI dimension. The so-created MPS
is filled with random noise.

The function Solve performs the instructions of the convergence scheme. Afterwards,
it returns the minimal variational energy encountered during all the performed micro-
iterations.

With the function calc2DM, the reduced 2-RDMs ΓA and ΓB are calculated:

Γ(iσ)(jτ);(kσ)(lτ) = 〈â†iσâ
†
jτ âlτ âkσ〉 (5.32)

ΓAij;kl =
∑
στ

Γ(iσ)(jτ);(kσ)(lτ) (5.33)

ΓBij;kl =
∑
στ

(−1)σ−τΓ(iσ)(jτ);(kσ)(lτ) (5.34)
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ΓA can be used to calculate the energy, the particle number N , and the 1-RDM:

E = Econst +
1

2

∑
ijkl

ΓAij;kl(ij|h|kl) (5.35)

N(N − 1) =
∑
ij

ΓAij;ij (5.36)

∑
σ

〈â†iσâkσ〉 =
1

N − 1

∑
j

ΓAij;kj (5.37)

and is needed for the DMRG-SCF algorithm, while ΓB is important for spin-spin correlation
functions.

The CheMPS2::DMRG object can also calculate excited states. After the ground state
|Ψ0〉 has been determined, the desired number of excited states can be set once with the
function activateExcitations. Before Solve is called to find the next new excitation
|Ψm〉, the function newExcitation should be called with the parameter ηm. This pushes
back the current MPS which represents |Ψm−1〉, and sets the Hamiltonian to

Ĥm = Ĥ0 +
m−1∑
k=0

ηk+1 |Ψk〉 〈Ψk| . (5.38)

Our excited state DMRG algorithm is hence a state-specific algorithm, which projects out
lower-lying states in the given SU(2) ⊗ U(1) ⊗ P symmetry sector. An example can be
found in tests/test5.cpp.

OpenMP parallelization is used in the CheMPS2::DMRG object to speed up (a) con-
tractions involving tensors with a sparse block structure, for example the action of the
effective Hamiltonian on a particular guess, and (b) the construction of the (often similar)
renormalized operators in between two micro-iterations.

4.4 DMRG-SCF

A state-specific DMRG-SCF algorithm is implemented in CheMPS2::CASSCF. Its cre-
ation requires a CheMPS2::Hamiltonian object. The number of occupied, active, and
virtual orbitals per point group irrep should be given with the function setupStart before
calling the SCF routine.

The CASSCF routine which is implemented is the augmented Hessian [204] Newton-
Raphson method from Ref. [53], with exact Hessian. It can be called with the function
doCASSCFnewtonraphson, which requires the targeted symmetry sector, the convergence
scheme, and the targeted root for the state-specific algorithm. When the gradient for
orbital rotations reaches a predefined threshold, the routine returns the converged DMRG-
SCF energy. An example can be found in tests/test6.cpp.
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5. Carbon dimer

5.1 Introduction

Despite its simplicity at first sight, the carbon dimer provides a rich source of interesting
physics. The bond between the two carbon atoms is of the charge-shift type [264, 272].
Its strength tempts chemists to classify it as a quadruple bond [273, 277–281], and recent
research indicates how this fourth bond can be interpreted [274]. The 1s core correlation
is significant [269, 270]. The low-lying bond dissociation curves are quasi-degenerate, and
avoided crossings occur between states with the same spin and D∞h point group symmetry
[265–267]. This happens for example between the X1Σ+

g and B′1Σ+
g states, and between

the c3Σ+
u and 23Σ+

u states. Fortunately, relativistic effects are small [271, 282].
Accurate data for the low-lying states, preferably at the FCI level of theory for a given

basis set, are useful to assess the accuracy of approximate molecular electronic structure
methods. The X1Σ+

g , B1∆g, and B′1Σ+
g bond dissociation curves of Ref. [266] at the frozen

core FCI/6-31G* level of theory are utilized to this end in several works [283–286].
The 12 lowest states of the carbon dimer are X1Σ+

g , a3Πu, b
3Σ−g , A1Πu, c

3Σ+
u , B1∆g,

B′1Σ+
g , d3Πg, C

1Πg, 11Σ−u , 13∆u, and 23Σ+
u [265]. In Section 5.5, we present the bond

dissociation curves of these states at the DMRG(28o, 12e, DSU(2)=2500)/cc-pVDZ level of
theory.

To estimate the contribution of 1s core correlation to the X1Σ+
g bond dissociation curve,

we compare energies at the DMRG(28o, 12e, DSU(2)=2500)/cc-pVDZ, DMRG-SCF(26o, 8e,
DSU(2)=2500)/cc-pVDZ, DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ, and DMRG-SCF(34o,
8e, DSU(2)=2500)/cc-pCVDZ levels of theory in Section 5.6. The cc-pCVDZ basis augments
the cc-pVDZ basis with extra 1s and 1p functions to treat core and core-valence correlation
[287].

For all calculations, the variational energies are converged to 0.1mEh from the extrap-
olated value. This implies that, for all practical purposes, we present data at the FCI/cc-
pVDZ, CASSCF(26o, 8e)/cc-pVDZ, FCI/cc-pCVDZ, and CASSCF(34o, 8e)/cc-pCVDZ
levels of theory.

5.2 Symmetry labelling

Since CheMPS2 can only handle abelian point groups, we use D2h point group sym-
metry to obtain these 12 states:

X1Σ+
g ;B1∆g;B

′1Σ+
g → 1Ag (5.39)

c3Σ+
u ; 13∆u; 23Σ+

u → 3B1u (5.40)

C1Πg → 1B2g (5.41)

A1Πu → 1B2u (5.42)

11Σ−u → 1Au (5.43)

b3Σ−g → 3B1g (5.44)

d3Πg → 3B2g (5.45)
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a3Πu → 3B2u. (5.46)

For the states (5.41)-(5.46), we have calculated one extra state to check that no unexpected
curve crossings occur. To discern the lowest three 1Ag states, we have extracted the
following FCI coefficients from the DMRG object [266]:

|1π2
x〉 = |1σ2

g1σ
2
u2σ

2
g2σ

2
u1π

2
x3σ2

g〉 (5.47)

= |1A2
g1B

2
1u2A

2
g2B

2
1u1B2

3u3A2
g〉 (5.48)

|1π2
y〉 = |1σ2

g1σ
2
u2σ

2
g2σ

2
u1π

2
y3σ2

g〉 (5.49)

= |1A2
g1B

2
1u2A

2
g2B

2
1u1B2

2u3A2
g〉 . (5.50)

When the FCI coefficients are equal, the state has 1Σ+
g symmetry, and when the FCI

coefficients are each other’s additive inverse, the state has 1∆g symmetry. To discern the
lowest three 3B1u states, we have extracted the following FCI coefficients from the DMRG
object:

|1π1
x1π

∗1
x 〉 = |1σ2

g1σ
2
u2σ

2
g2σ

2
u1π

1
x3σ2

g1π
∗1
x 〉 (5.51)

= |1A2
g1B

2
1u2A

2
g2B

2
1u1B1

3u3A2
g1B1

2g〉 (5.52)

|1π1
y1π

∗1
y 〉 = |1σ2

g1σ
2
u2σ

2
g2σ

2
u1π

1
y3σ2

g1π
∗1
y 〉 (5.53)

= |1A2
g1B

2
1u2A

2
g2B

2
1u1B1

2u3A2
g1B1

3g〉 . (5.54)

When the FCI coefficients are equal, the state has 3Σ+
u symmetry, and when the FCI

coefficients are each other’s additive inverse, the state has 3∆u symmetry. An example is
shown in Fig. 5.3.

5.3 Irrep ordering

The standard D2h irrep order is not optimal to study the carbon dimer with DMRG.
As stated in Section 2.6, it is best to group bonding and anti-bonding orbitals together
on the DMRG lattice. The convergence behaviour of these two irrep orderings is shown in
Fig. 5.4. We have used the latter ordering for our calculations.

5.4 Extrapolation

We have used the convergence scheme in Table 5.1 for all the calculations of the carbon
dimer. The extrapolation scheme of Eq. (5.19) is used to obtain energies which are correct
up to 0.01 mEh. An example of such an extrapolation is shown in Fig. 5.5. The energies
shown in Sections 5.5 and 5.6 are the extrapolated values.
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Figure 5.3: For the cc-pVDZ basis, the 13∆u state drops below the c3Σ+
u state at an interatomic

distance between 3.6 and 3.8 a0. The |1π1
x1π∗1x 〉 and |1π1

y1π
∗1
y 〉 FCI coefficients allow to correctly

label the 3B1u ground state (state 0) and the first excited state (state 1).

5.5 Bond dissociation curves

The extrapolated energies at the DMRG(28o, 12e, DSU(2)=2500)/cc-pVDZ level of the-
ory are summarized in Table 5.2 and are shown per targeted symmetry sector in Figs.
5.6-5.13. For the 1Ag symmetry, the B1∆g state drops below the B′1Σ+

g state at an inter-
atomic distance between 2a0 and 2.1a0, and it drops below theX1Σ+

g state at an interatomic
distance between 3a0 and 3.2a0. The X1Σ+

g and B′1Σ+
g states have an avoided crossing.

For the 3B1u symmetry, the 13∆u state drops below the 23Σ+
u state at an interatomic

distance between 2.9a0 and 3.0a0, and it drops below the c3Σ+
u state at an interatomic

distance between 3.6a0 and 3.8a0. The c3Σ+
u and 23Σ+

u states have an avoided crossing.
The intermediary peak of the 23Σ+

u state near 2.9a0 was also observed in Ref. [265], and
is due to an avoided crossing with the 33Σ+

u state. The C1Πg and d3Πg states also clearly
show an avoided crossing with the next corresponding excited state.

5.6 Core correlation

The extrapolated energies at the DMRG-SCF(26o, 8e, DSU(2)=2500)/cc-pVDZ, DMRG
(28o, 12e, DSU(2)=2500)/cc-pVDZ, DMRG-SCF(34o, 8e, DSU(2)=2500)/cc-pCVDZ, and
DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ levels of theory are given in Table 5.3 and
are shown in Fig. 5.14. The relative energies with respect to the DMRG(36o, 12e,
DSU(2)=2500)/cc-pCVDZ calculations are shown in Fig. 5.15.
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Figure 5.4: The orbital choice and ordering influence the convergence behaviour of DMRG.
The convergence behaviour of two irrep orderings is shown for the carbon dimer with interatomic
distance 2.4 a0 in the cc-pVDZ basis. The extrapolated energy was obtained from the ordering
where bonding and anti-bonding orbitals are grouped, with the method described in Section 5.4.

Table 5.1: Convergence scheme for the carbon dimer calculations. The symbols are explained
in Section 4.2.

DSU(2) γnoise Econv/Eh Nmax

200 0.03 10−8 2
200 0.00 10−8 3
500 0.03 10−8 2
500 0.00 10−8 5
1000 0.03 10−8 2
1000 0.00 10−8 5
1500 0.03 10−8 2
1500 0.00 10−8 5
2000 0.03 10−8 2
2000 0.00 10−8 5
2500 0.03 10−8 2
2500 0.00 10−8 12



5.2. Low-lying bond dissociation curves 107
T
a
b
le

5
.2
:

E
x
tr

ap
ol

at
ed

en
er

g
ie

s
fo

r
th

e
12

lo
w

es
t

st
at

es
of

th
e

ca
rb

on
d

im
er

at
th

e
D

M
R

G
(2

8o
,

12
e,

D
S
U

(2
)=

25
00

)/
cc

-p
V

D
Z

le
ve

l
of

th
eo

ry
.

T
h

e
en

er
g
ie

s
a
re

sh
if

te
d

7
5
E
h

u
p
w

ar
d

s,
an

d
ar

e
ex

p
re

ss
ed

in
m
E
h
.

R
/
a

0
(E

n
er

gy
+

7
5
E
h
)

/
m
E
h

X
1
Σ

+ g
a

3
Π
u

b3
Σ
− g

A
1
Π
u

c3
Σ

+ u
B

1
∆
g

B
′1

Σ
+ g

d
3
Π
g

C
1
Π
g

1
1
Σ
− u

1
3
∆
u

2
3
Σ

+ u

1.
8

-4
5
4.

96
-3

57
.8

8
-2

5
3.

42
-3

14
.7

2
-4

39
.0

1
-2

07
.8

5
-2

63
.4

2
-3

11
.4

7
-2

50
.3

5
-4

.5
1

-3
5.

05
-7

0.
74

1.
9

-5
6
2.

08
-4

85
.4

2
-3

9
6.

48
-4

42
.6

9
-5

41
.1

4
-3

53
.5

3
-3

81
.9

9
-4

30
.9

6
-3

68
.1

8
-1

45
.9

1
-1

77
.6

1
-2

12
.6

7
2.

0
-6

3
5.

85
-5

76
.9

8
-5

0
1.

10
-5

34
.7

6
-6

09
.6

6
-4

60
.6

0
-4

71
.7

7
-5

14
.5

3
-4

49
.9

8
-2

51
.3

9
-2

84
.1

0
-3

18
.5

8
2.

1
-6

8
4.

30
-6

40
.9

4
-5

7
6.

18
-5

99
.3

0
-6

52
.7

0
-5

37
.9

6
-5

38
.9

7
-5

70
.8

0
-5

04
.4

1
-3

29
.1

7
-3

62
.6

9
-3

96
.5

2
2.

2
-7

1
3.

63
-6

83
.8

0
-6

2
8.

60
-6

42
.8

1
-6

76
.6

0
-5

92
.5

2
-5

87
.6

7
-6

06
.4

6
-5

38
.2

0
-3

85
.6

5
-4

19
.7

8
-4

52
.7

5
2.

3
-7

2
8.

68
-7

10
.6

4
-6

6
3.

75
-6

70
.3

4
-6

86
.3

1
-6

29
.6

5
-6

21
.4

0
-6

26
.7

0
-5

56
.6

1
-4

25
.9

2
-4

60
.3

3
-4

92
.1

7
2.

35
-7

32
.0

5
-7

1
9.

33
-6

76
.1

9
-6

7
9.

39
-6

87
.1

0
-6

43
.0

4
-6

33
.6

5
-6

32
.3

6
-5

61
.4

0
-4

41
.3

6
-4

75
.6

6
-5

06
.8

0
2.

4
-7

3
3.

18
-7

25
.4

2
-6

8
5.

81
-6

85
.8

6
-6

85
.7

3
-6

53
.5

7
-6

43
.3

0
-6

35
.6

2
-5

63
.8

5
-4

54
.4

5
-4

88
.2

5
-5

18
.5

8
2.

5
-7

3
0.

05
-7

31
.2

2
-6

9
8.

04
-6

92
.4

2
-6

77
.9

3
-6

67
.5

5
-6

56
.0

8
-6

36
.4

3
-5

63
.3

6
-4

77
.1

3
-5

06
.6

8
-5

34
.9

3
2.

6
-7

2
1.

58
-7

30
.4

3
-7

0
2.

98
-6

92
.4

3
-6

65
.3

9
-6

74
.1

5
-6

61
.9

4
-6

31
.7

2
-5

58
.2

0
-4

99
.9

4
-5

18
.2

1
-5

43
.5

1
2.

7
-7

0
9.

54
-7

24
.9

1
-7

0
2.

58
-6

87
.7

2
-6

50
.0

9
-6

75
.3

2
-6

62
.6

3
-6

23
.6

2
-5

51
.3

7
-5

19
.3

2
-5

25
.4

7
-5

46
.1

0
2.

8
-6

9
5.

37
-7

16
.1

0
-6

9
8.

35
-6

79
.7

4
-6

33
.7

0
-6

72
.6

0
-6

59
.4

8
-6

13
.8

9
-5

45
.6

9
-5

33
.8

6
-5

32
.1

5
-5

44
.3

1
2.

9
-6

8
0.

23
-7

05
.0

8
-6

9
1.

43
-6

69
.5

8
-6

17
.5

6
-6

67
.1

3
-6

53
.4

4
-6

03
.9

9
-5

42
.3

6
-5

44
.2

7
-5

39
.8

4
-5

41
.1

6
3.

0
-6

6
5.

20
-6

92
.6

9
-6

8
2.

70
-6

58
.0

8
-6

02
.6

5
-6

59
.8

0
-6

45
.0

8
-5

94
.9

0
-5

40
.4

8
-5

51
.3

9
-5

46
.2

1
-5

43
.1

1
3.

2
-6

3
8.

95
-6

66
.1

7
-6

6
2.

28
-6

33
.4

6
-5

78
.2

9
-6

42
.0

9
-6

22
.5

9
-5

79
.9

0
-5

37
.0

9
-5

58
.5

9
-5

53
.1

3
-5

49
.2

2
3.

4
-6

1
7.

95
-6

39
.8

7
-6

4
0.

64
-6

09
.3

5
-5

61
.3

7
-6

23
.0

7
-5

97
.2

9
-5

67
.3

8
-5

32
.8

0
-5

59
.7

9
-5

54
.3

1
-5

49
.6

9
3.

6
-5

9
9.

65
-6

15
.5

5
-6

1
9.

67
-5

87
.6

8
-5

52
.4

3
-6

04
.7

2
-5

75
.1

5
-5

56
.0

1
-5

28
.4

7
-5

57
.6

9
-5

52
.1

7
-5

44
.0

5
3.

8
-5

8
3.

60
-5

94
.0

3
-6

0
0.

33
-5

69
.4

5
-5

47
.5

6
-5

88
.0

6
-5

57
.9

8
-5

46
.1

0
-5

25
.0

9
-5

53
.9

5
-5

48
.3

0
-5

36
.6

0
4.

0
-5

6
9.

91
-5

75
.6

8
-5

8
3.

08
-5

55
.0

6
-5

42
.9

7
-5

73
.5

7
-5

45
.7

0
-5

38
.2

7
-5

23
.0

5
-5

49
.5

7
-5

43
.7

6
-5

31
.2

1
4.

2
-5

5
8.

63
-5

60
.6

6
-5

6
8.

16
-5

44
.4

4
-5

38
.5

9
-5

61
.4

6
-5

37
.4

7
-5

32
.7

5
-5

22
.2

2
-5

45
.1

7
-5

39
.2

3
-5

27
.7

6
4.

4
-5

4
9.

67
-5

48
.9

9
-5

5
5.

69
-5

37
.1

2
-5

34
.7

1
-5

51
.7

5
-5

32
.2

0
-5

29
.2

2
-5

22
.2

4
-5

41
.1

3
-5

35
.1

6
-5

25
.6

7
4.

6
-5

4
2.

81
-5

40
.5

4
-5

4
5.

74
-5

32
.3

6
-5

31
.5

8
-5

44
.2

7
-5

28
.9

1
-5

27
.1

3
-5

22
.6

9
-5

37
.6

3
-5

31
.8

1
-5

24
.4

3
4.

8
-5

3
7.

73
-5

34
.9

0
-5

3
8.

26
-5

29
.3

9
-5

29
.2

4
-5

38
.7

0
-5

26
.8

7
-5

25
.9

6
-5

23
.3

0
-5

34
.7

4
-5

29
.2

6
-5

23
.7

0
5.

0
-5

3
4.

05
-5

31
.4

0
-5

3
3.

02
-5

27
.5

9
-5

27
.6

4
-5

34
.6

6
-5

25
.6

0
-5

25
.3

4
-5

23
.8

9
-5

32
.4

1
-5

27
.4

6
-5

23
.2

7
5.

2
-5

3
1.

41
-5

29
.2

9
-5

2
9.

61
-5

26
.5

0
-5

26
.5

6
-5

31
.7

8
-5

24
.8

0
-5

25
.0

1
-5

24
.3

8
-5

30
.5

7
-5

26
.2

5
-5

23
.0

3
5.

4
-5

2
9.

51
-5

28
.0

1
-5

2
7.

51
-5

25
.8

2
-5

25
.8

7
-5

29
.7

2
-5

24
.2

9
-5

24
.8

4
-5

24
.7

3
-5

29
.1

3
-5

25
.4

8
-5

22
.9

3
5.

6
-5

2
8.

14
-5

27
.1

9
-5

2
6.

27
-5

25
.3

8
-5

25
.4

2
-5

28
.2

3
-5

23
.9

6
-5

24
.7

3
-5

24
.9

6
-5

28
.0

0
-5

24
.9

9
-5

22
.9

0
5.

8
-5

2
7.

13
-5

26
.6

2
-5

2
5.

53
-5

25
.0

8
-5

25
.1

0
-5

27
.1

5
-5

23
.7

5
-5

24
.6

5
-5

25
.0

8
-5

27
.1

2
-5

24
.6

8
-5

22
.9

3
6.

0
-5

2
6.

36
-5

26
.2

0
-5

2
5.

08
-5

24
.8

7
-5

24
.8

7
-5

26
.3

8
-5

23
.6

1
-5

24
.5

8
-5

25
.1

2
-5

26
.4

3
-5

24
.4

9
-5

22
.9

9



108 Chapter 5. Low-lying bond dissociation curves of the carbon dimer

Table 5.3: Extrapolated energies for the X1Σ+
g state of the carbon dimer. (26o, 8e), (28o, 12e),

(34o, 8e), and (36o, 12e) are shorthands for resp. DMRG-SCF(26o, 8e, DSU(2)=2500)/cc-pVDZ,
DMRG(28o, 12e, DSU(2)=2500)/cc-pVDZ, DMRG-SCF(34o, 8e, DSU(2)=2500)/cc-pCVDZ, and
DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ. The energies are shifted 75 Eh upwards, and are
expressed in mEh.

R / a0 (Energy + 75 Eh) / mEh
(26o, 8e) (28o, 12e) (34o, 8e) (36o, 12e)

1.8 -450.44 -454.96 -459.72 -534.24
1.9 -557.90 -562.08 -564.84 -639.06
2.0 -631.96 -635.85 -637.31 -711.29
2.1 -680.64 -684.30 -684.95 -758.71
2.2 -710.17 -713.63 -713.80 -787.37
2.3 -725.38 -728.68 -728.57 -801.98
2.35 -728.82 -732.05 -731.86 -805.19
2.4 -730.02 -733.18 -732.93 -806.19
2.5 -727.02 -730.05 -729.75 -802.89
2.6 -718.65 -721.58 -721.28 -794.31
2.7 -706.72 -709.54 -709.29 -782.22
2.8 -692.64 -695.37 -695.19 -768.03
2.9 -677.59 -680.23 -680.15 -752.93
3.0 -662.64 -665.20 -665.25 -737.98
3.2 -636.59 -638.95 -639.33 -711.89
3.4 -615.74 -617.95 -618.53 -690.94
3.6 -597.53 -599.65 -600.32 -672.66
3.8 -581.54 -583.60 -584.32 -656.62
4.0 -567.88 -569.91 -570.65 -642.92
4.2 -556.62 -558.63 -559.38 -631.62
4.4 -547.67 -549.67 -550.41 -622.64
4.6 -540.83 -542.81 -543.54 -615.76
4.8 -535.75 -537.73 -538.44 -610.67
5.0 -532.08 -534.05 -534.75 -606.96
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Figure 5.5: The extrapolation scheme of Eq. (5.19) is used to obtain energies which are correct
up to 0.01 mEh. The example shown here is for the X1Σ+

g state of the carbon dimer at an
interatomic distance of 2.35 a0 in the cc-pVDZ basis.
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Figure 5.6: Bond dissociation curves for the low-lying 1Ag states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.7: Bond dissociation curves for the low-lying 1Au states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.8: Bond dissociation curves for the low-lying 1B2g states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.9: Bond dissociation curves for the low-lying 1B2u states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.10: Bond dissociation curves for the low-lying 3B1u states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.11: Bond dissociation curves for the low-lying 3B1g states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.12: Bond dissociation curves for the low-lying 3B2g states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.13: Bond dissociation curves for the low-lying 3B2u states of the carbon dimer in the
cc-pVDZ basis.
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Figure 5.14: Assessment of the importance of 1s core correlation. This effect is captured at
the DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ level of theory.
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Figure 5.15: Assessment of the importance of 1s core correlation. The relative energies with
respect to the DMRG(36o, 12e, DSU(2)=2500)/cc-pCVDZ calculations are shown.

The 1s core correlation is only captured at the DMRG(36o, 12e, DSU(2)=2500)/cc-
pCVDZ level of theory. Without the necessary orbital freedom, the 1s core correlation
cannot be captured. The non-parallelity of the DMRG-SCF(34o, 8e, DSU(2)=2500)/cc-
pCVDZ curve in Fig. 5.15 is of the order of 2 mEh, far below the error due to basis set
incompleteness.

For small interatomic distances, the cc-pCVDZ curves show a different behaviour than
the cc-pVDZ curves, as can be seen in Fig. 5.15. Extra basis set freedom is required
to capture the more complicated core dynamics in the united atom limit. This can be
understood as the transition from two light atoms, each with a doubly filled 1s orbital, to
one single heavy atom, with several orbitals tightly packed around the nucleus.

6. Summary

In Section 1, we discussed how DMRG can be useful for ab initio quantum chemistry,
and we gave an overview of DMRG-related methods. These methods can be divided into
two categories: DMRG can play the role of a large active space FCI solver, or it can provide
an approximate MPS wavefunction, on which excitations can be built.

The DMRG algorithm was introduced in Section 2, where we discussed the use of
complementary operators and how to overcome convergence difficulties. Both issues have
to be addressed for DMRG to be an efficient and reliable approach for ab initio quantum
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chemistry.
With symmetry-adapted DMRG, a huge performance gain can be obtained both in

computation time and memory. Section 3 introduced an MPS ansatz which is an exact
eigenstate of the symmetry group of the Hamiltonian. The Wigner-Eckart theorem allows
the introduction of a sparse block structure in this ansatz. For non-abelian groups, the
Wigner-Eckart theorem also allows for data compression.

An overview of the high-level structure of CheMPS2 is given in Section 4. The required
input for the CheMPS2::DMRG class and its output are discussed. A DMRG-SCF algorithm
was implemented in CheMPS2::CASSCF. Section 4 should help new users to understand the
provided tests, and to alter them to their own needs.

As an application, we have calculated the 12 lowest bond dissociation curves of the
carbon dimer at the DMRG(28o, 12e, DSU(2)=2500)/cc-pVDZ level of theory. In addition,
we assessed the contribution of 1s core correlation to the X1Σ+

g bond dissociation curve
of the carbon dimer by comparing calculations at the DMRG(36o, 12e, DSU(2)=2500)/cc-
pCVDZ and DMRG-SCF(34o, 8e, DSU(2)=2500)/cc-pCVDZ levels of theory. These results
were presented in Section 5. The low-lying bond dissociation curves of the carbon dimer
were resolved with CheMPS2 to sub-mEh accuracy. The non-parallelity due to 1s core
correlation is of the order of 2 mEh in the cc-pCVDZ basis.

In the future, we would like to incorporate the two-orbital mutual information Ip,q [116]
in CheMPS2, as well as its gradient and hessian, to retrieve optimal orbitals and their
corresponding ordering, as discussed in Section 2.6.

We are also working on an MPI implementation of CheMPS2, in which the product
HeffB[i] is distributed over several processors. Each processor is then responsible for certain
renormalized operators [108]. Updated versions of CheMPS2 will be provided at its public
git repository [69].

The oxo-Mn(salen) complex [288, 289] is a great challenge for molecular electronic
structure methods. We are currently performing large active space DMRG-SCF calcula-
tions with CheMPS2 to provide new insights in the relative order of the lowest singlet,
triplet, and quintet states. Understanding the active space structure of this complex and
several of its transition states will be of benefit for the experimentalists in our group [290].
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Appendix. Reduced tensors

Note that during a sweep, we work with left-normalized tensors to the left and right-
normalized tensors to the right of the current position. Consider the following renormalized
partial Hamiltonian term in the graphical notation [250]:

����jRj
z
RNRIRαRA[k]

âkσ

����A[k] j̃R j̃
z
RÑRĨRα̃R

�
� (5.55)

With (5.25), it is easy to show that (5.55) can be written as

δNR+1,ÑR
δIR⊗Ik,ĨR 〈jRj

z
R

1

2
σ | j̃Rj̃zR〉 L[k]

jRNRIRαR

j̃R(NR + 1)
(IR ⊗ Ik)α̃R

(5.56)

with

L[k]

jRNRIRαR

j̃R(NR + 1)
(IR ⊗ Ik)α̃R

=
∑
αL

����jRNRIRαRT[k]

00I0

1
2

1Ik

����T[k] j̃R(NR + 1)
(IR ⊗ Ik)α̃R

�
�j RN R

I R
α
L

+(−1)j̃R−jR+ 1
2

√
2jR+1

2j̃R+1

∑
αL

����jRNRIRαRT[k]
1
2

1Ik

02I0����T[k] j̃R(NR + 1)
(IR ⊗ Ik)α̃R

�
�j̃ R(N

R
−

1
)

(I
R
⊗
I k

)α
L

(5.57)

Eq. (5.55) can hence be factorized into Clebsch-Gordan coefficients and a reduced spin-1
2

L-tensor. The L-tensor has spin-1
2

because âkσ is a spin-1
2

operator.
It is shown in Ref. [141], that for two second quantized operators acting on different

sites, the renormalized operator can be decomposed into two terms: one with a spin-0 re-
duced tensor and one with a spin-1 reduced tensor. This follows from SU(2) representation
theory: 1

2
⊗ 1

2
≈ 0⊕ 1.
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CHAPTER 6

Thouless theorem for MPS and post-DMRG methods

Whoever wishes to acquire a deep acquaintance with nature must observe that
there are analogies which connect whole branches of science in a parallel manner,
and enable us to infer of one class of phenomena what we know of another. It has
thus happened on several occasions that the discovery of an unsuspected analogy
between two branches of knowledge has been the starting point for a rapid course
of discovery.

– William S. Jevons, 1874

6.1 Post-DMRG as the analogon of post-HF

DMRG is considered to be a self-consistent mean-field theory in the lattice sites (see section
2.3.4 or Ref. [125]), just like HF forms a self-consistent mean-field theory for particles.
On top of the optimized MPS, the zeroth order reference wavefunction, excitations and
correlations can be built with post-DMRG methods. Inspiration for these post-DMRG
methods has been found in their post-HF counterparts (see section 2.7.3).

The MPS geometry [183, 291] played a crucial role in the development of the post-
DMRG hierarchy. DMRG-LRT works in the MPS tangent space [127]. The variational
optimization in this tangent space is called DMRG-CIS or DMRG-TDA [153, 179–182].
Linearization of the time-dependent variational principle for MPSs [183] yields DMRG-
RPA [153, 181, 182, 184]. The nonredundant parameterization of the entire MPS manifold
is called the Thouless theorem for MPS, and it generates the DMRG CI expansion [181]:
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Thouless theorem for matrix product states and subsequent post
density matrix renormalization group methods [181]

Sebastian Wouters,1 Naoki Nakatani,2 Dimitri Van Neck,1 and Garnet Kin-Lic Chan2

1Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
2Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, New Jersey

08544, USA

The similarities between Hartree-Fock (HF) theory and the density matrix renor-
malization group (DMRG) are explored. Both methods can be formulated as the
variational optimization of a wave-function Ansatz. Linearization of the time-
dependent variational principle near a variational minimum allows to derive the
random phase approximation (RPA). We show that the nonredundant parame-
terization of the matrix product state (MPS) tangent space [J. Haegeman, J. I.
Cirac, T. J. Osborne, I. Piz̆orn, H. Verschelde, and F. Verstraete, Phys. Rev.
Lett. 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an ex-
plicit nonredundant parameterization of the entire MPS manifold, starting from
a specific MPS reference. Excitation operators are identified, which extends the
analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA),
the configuration interaction (CI) expansion, and coupled cluster theory. For a
small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and
double excitations to improve on the ground state and to calculate low-lying ex-
citation energies. For a symmetry-broken ground state of this model, we show
that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calcula-
tions of the RPA-MPS correlation energy. With the long-range quantum chemical
Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation
energies for polyenes are obtained.

I. INTRODUCTION

The standard classification of quantum ground states dates back to Landau [292, 293].
Mean-field theory is used to describe a state, and a phase transition is marked by the
breaking of a symmetry. The particle-conserving mean-field theory for fermions is Hartree-
Fock (HF) theory [7–10]. In HF theory, the exact ground state is approximated by a Slater
determinant (SD) [6], and the energy of a Hamiltonian is minimized within this variational
Ansatz space. To obtain excited states or a more accurate description of the ground state,
post-HF (post mean-field) methods [42] can be carried out such as the Tamm-Dancoff
approximation (TDA) [294, 295], the random-phase approximation (RPA) [296], Møller-
Plesset perturbation theory [46], the configuration interaction (CI) expansion [6, 47], and
coupled cluster (CC) theory [48–50].

Within the framework of second quantization [13, 14, 202], the reference SD obtains a
simple product form when the canonical HF orbitals are used to construct the Fock space.
Occupied-virtual (OV) excitation operators allow to connect the reference SD to post-HF
wave-function Ansätze. The Thouless theorem gives a nonredundant parameterization to
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generate all possible SDs from any given SD reference, by means of its OV excitation
operators [297–300].

Recently, a new way to understand the qualitative structure of quantum many-body
states has appeared, whereby the state is approximated by a tensor network, i.e., a con-
tracted product of tensors where each tensor represents a local degree of freedom. These
Ansätze are efficient representations of low-energy states because they capture the bound-
ary law for the entanglement entropy. In one dimension, the tensor network is known as a
matrix product state (MPS). The MPS is the wave-function Ansatz for the density matrix
renormalization group (DMRG) algorithm [64, 65, 67, 68, 71, 301].

DMRG can capture states beyond the realm of Landau (or mean-field) theory, i.e., states
with topological order [302–307]. DMRG has also been shown to be a powerful method to
treat the static correlation problem in electronic structure theory [66, 102, 140, 141, 162].
Static correlation arises when a state consists of several significant SD contributions, which
HF theory is of course unable to deal with, because a single SD does not describe the
qualitative structure of the targeted state. Post-HF methods, which start from a single SD
reference, have difficulty building in large static correlation a posteriori. In these situations,
DMRG has provided a new ability to access the electronic structure. The analog of static
correlation for DMRG is a quantum critical system, which introduces corrections to the
entanglement boundary law, which cannot be captured by DMRG.

DMRG can be interpreted as a mean-field theory in the sites, which is analogous to HF,
which is a mean-field theory in the particles [125, 184]. Therefore it is natural to search
for extensions to DMRG that are analogous to post-HF methods: post-DMRG methods.
One example is linear response theory. Time-dependent HF theory is obtained by using
an SD Ansatz in the time-dependent variational principle (TDVP) [297, 298, 308–311].
Time-dependent DMRG (which stays within the MPS Ansatz space) is similarly obtained
by using an MPS Ansatz in the TDVP [183, 184, 312, 313]. RPA, or linear response theory
for HF, is obtained by linearizing the time-dependent HF equations in the vicinity of a
variational mimimum [314–316]. Equivalently, the RPA equations can be derived from an
equation of motion (EOM) approach with excitation operators [317–321]. RPA yields a
mean-field description of quasi-particle excitations. The linear response theory for DMRG
was first derived by Dorando et al. [127] and was later recast as RPA for MPS [184, 313].

In this work, we construct a more complete analog of the mean-field framework, which
allows us to define a full set of post-DMRG methods. We give a nonredundant param-
eterization of the entire MPS manifold, starting from a specific MPS reference. This is
the analog of the Thouless theorem for HF. We identify the excitation operators of the
Thouless theorem. These excitation operators allow for a complete rederivation of RPA
for MPS by means of the EOM, in complete analogy with HF. All other results, such as
an improvement of the ground-state theory by the fluctuation-dissipation theorem, follow.
With these excitation operators, we can define the analogs of other post-HF methods for
MPS, such as CC and CI.

For a small one-dimensional Hubbard chain, we use a numerical CI-MPS Ansatz with
single and double excitations to improve on the ground state and to calculate low-lying
excitation energies. For a symmetry-broken ground state of this model, we show that
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RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the
RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople
(PPP) Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes
are also obtained.

II. HF MEAN-FIELD THEORY

This section provides a brief introduction to the variational principles, HF mean-field
theory, the Thouless theorem, and post-HF methods. It focusses on the topics for which a
DMRG analog will be constructed in this paper. For readers familiar with HF, this section
can be a good guideline to understand our post-DMRG discussion.

A. Variational principles

Because the Hilbert space increases exponentially with system size, a variational wave-
function Ansatz |Φ(z)〉 with parameterization z is often used to make calculations feasible.
In order to minimize the energy functional

E(z, z) =
〈Φ | Ĥ | Φ〉
〈Φ | Φ〉

(6.1)

to approximate ground states, the time-independent variational principle (TIVP) δL
δz

= 0
can be employed, where the Lagrangian is [125]

L = 〈Φ | Ĥ | Φ〉 − λ
(
〈Φ | Φ〉 − 1

)
. (6.2)

The overline denotes complex conjugation. This yields the time-independent self-consistent
field (SCF) equations. To approximate time evolution, the time-dependent variational
principle (TDVP) δS

δz
= 0 can be employed, where the action is [297, 298, 308–312]

S =

t2∫
t1

dt

(
i~
2
〈Φ | Φ̇〉 − i~

2
〈Φ̇ | Φ〉 − 〈Φ | Ĥ | Φ〉

)
. (6.3)

The dot denotes time derivation. This yields the time-dependent SCF equations.

B. The Slater determinant

From a given single-particle basis, any other single-particle basis can be constructed by
a unitary transformation: â†j = b̂†kU

k
j. Second quantization is used to denote the single-

particle states [13, 14, 202], and the summation convention is used for double indices. An
N -particle SD is an antisymmetrized product of N single-particle states (called occupied
orbitals) [6]:

|Ψ〉 = â†1â
†
2...â

†
N |−〉 . (6.4)
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The variational freedom is a unitary transformation from the given single-particle basis
of L orbitals to another basis where the first N orbitals are used to construct the SD.
There is gauge freedom in the Ansatz, as any unitary transformation that does not mix the
N occupied orbitals with the L − N virtual orbitals, does not change the wave function
(except for a global phase). An SD is therefore described by the Grassmann manifold
UL/(UN ×UL−N), with Uk the unitary group of k× k unitary matrices. This manifold has
dimension 2N(L−N), and can be parameterized by N(L−N) complex numbers [297, 298].
This will henceforth be called a complex dimension N(L−N).

C. The Fock equations

If the particles of a system interact pairwise, the Hamiltonian can always be written in
second quantization as

Ĥ = b̂†iT
i
j b̂
j +

1

2
b̂†i b̂
†
jV

ij
klb̂

lb̂k. (6.5)

The TIVP can be expressed in terms of the unitary transformation generating the occupied
orbitals:

L = U †α iT
i
jU

j
α +

1

2
U †α iU

†β
jV

ij
klU

l
βU

k
α−

1

2
U †α iU

†β
jV

ij
klU

l
αU

k
β − λβα

(
U †αkU

k
β − δαβ

)
.

(6.6)
The Greek indices denote occupied orbitals, while the Latin indices denote all single-particle
basis states. Varying with respect to U †mi leads to the Fock equations [7–10]:

FikU
k
p =

(
Tik + U †β jV

ij
klU

l
β − U

†β
jV

ij
lkU

l
β

)
Uk

p = U i
qλ

q
p. (6.7)

The gauge can be partially fixed by requiring that the Lagrangian multiplier matrix λ to
enforce orthonormal orbitals becomes diagonal, and that the diagonal elements are sorted
in ascending order. These diagonal elements are then interpreted as the single-particle
energy levels [42, 297, 298]. The remaining gauge freedom is then U ⊗L1 , i.e., the phase of
each HF orbital. The lowest N single-particle states are used to construct the SD.

The Fock equations are orbital-based mean-field equations. There is self-consistency
because the Fock operator in Eq. (6.7) which determines the orbitals, also depends on the
orbitals.

D. The Thouless theorem

The Thouless theorem for HF [299, 300] and its unitary counterpart [297, 298] state
that any N -electron SD can be globally parameterized, respectively, as

|Ψ〉 ∝ exp
(
XvoB̂†vo

)
|Ψ0〉 , (6.8)

|Ψ〉 = exp
(
XvoB̂†vo −XvoB̂

vo
)
|Ψ0〉 (6.9)
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with |Ψ0〉 a random SD, with N occupied (o) and L − N virtual (v) orbitals. B̂†vo is a
shorthand for â†vâ

o. Note that the summation convention was used. The equality in Eq.
(6.9) holds because the exponential of an anti-Hermitian operator is unitary and hence
does not change the norm.

This parameterization is of complex dimension N(L − N) and is thus nonredundant.
All parameters X are needed to parameterize the neighbourhood of |Ψ0〉. For all possible
combinations |Ψ0〉 and |Ψ〉, a solution X can always be found. The theorem does not
state that this X is unique. In fact, X is not unique, see, e.g., the discussion in the
appendix of Rowe et al. [297]. The reader can think about the Lie group O(3), where
several combinations of successive rotations along different axes can generate the same
global rotation. Instead of working with the redundant parameters U , we can equivalently
work with the nonredundant parameters X.

The nth-order variation of a wave function defines its nth-order tangent space. The
(first-order) tangent space of this nonredundant parameterization consists of the single OV
excitations B̂†vo |Ψ0〉.

E. Time evolution

The TDVP leads to the time-dependent SCF equations [297, 298, 308–311, 322]:

i~U̇(t)ip = F (t)ikU(t)kp. (6.10)

The Fock operator dictates how orbitals are rotated into each other over time. Rotations
within the space of occupied orbitals or within the space of virtual orbitals do not change
the SD wave function as it represents a Grassmann manifold. Only the rotation of occupied
and virtual orbitals into each other has physical meaning.

To obtain the rate of OV rotation determined by Eq. (6.10) in the point |Ψ0〉, the
Thouless parameterization of a general SD can be used in the TDVP:

i~Ẋvo( X = 0 ) = 〈Ψ0 | B̂voĤ | Ψ0〉 . (6.11)

The parameters Xvo are flattened to a column X. The same equation is obtained by insert-
ing Eq. (6.9) in the time-dependent Schrödinger equation and by projecting this equation
onto B̂†vo |Ψ〉 = B̂†vo |Ψ(X,X)〉. The time evolution and its projection are respectively given
by

i~
(
Ẋwp ∂

∂Xwp + Ẋwp
∂

∂Xwp

)
|Ψ〉 =

(
Ĥ − EHF

)
|Ψ〉 , (6.12)

i~ 〈Ψ| B̂vo
(
Ẋwp ∂

∂Xwp + Ẋwp
∂

∂Xwp

)
|Ψ〉 = 〈Ψ| B̂vo

(
Ĥ − EHF

)
|Ψ〉 , (6.13)

where w denotes virtual orbitals and p occupied orbitals. Evaluation for X = 0 yields Eq.
(6.11).
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F. RPA

Linearization of the TDVP near a variational minimum leads to RPA [297, 298, 314–
316, 322]. Take the variational minimum as the reference |Ψ0〉. Expand Eq. (6.13) up
to first-order around X = 0. The zeroth order terms vanish because the expansion point
is a variational minimum: 〈Ψ0 | B̂voĤ | Ψ0〉 = 0. This is Brillouin’s theorem [323]. The
linearized equations are

i~Ẋvo = 〈Ψ0 | B̂wpB̂vo
(
Ĥ − EHF

)
| Ψ0〉Xwp + 〈Ψ0 | B̂vo

(
Ĥ − EHF

)
B̂†wp | Ψ0〉Xwp (6.14)

= −〈Ψ0 |
[
B̂vo,

[
Ĥ, B̂wp

]]
| Ψ0〉Xwp + 〈Ψ0 |

[
B̂vo,

[
Ĥ, B̂†wp

]]
| Ψ0〉Xwp. (6.15)

Assume a harmonic motion of the form X = Ye−iωt + Zeiωt. This leads to the RPA
equations:

~ω
[
I 0
0 −I

](
Y
Z

)
=

[
A B
B A

](
Y
Z

)
(6.16)

with Avo;wp = 〈Ψ0 |
[
B̂vo,

[
Ĥ, B̂†wp

]]
| Ψ0〉 and Bvo;wp = −〈Ψ0 |

[
B̂vo,

[
Ĥ, B̂wp

]]
| Ψ0〉.

Note that if (ω,Y,Z) is a solution, (−ω,Z,Y) is a solution too.
Consider the energy functional

E(X,X) = 〈Ψ(X,X) | Ĥ | Ψ(X,X)〉 (6.17)

and its expansion up to second order in X:

E(2)(X,X)− EHF =
1

2

(
X
X

)† [
A B
B A

](
X
X

)
. (6.18)

The RPA method searches for the harmonic modes of this potential near its minimum,
akin to normal mode analysis in analytical mechanics.

In linear response theory, the RPA frequencies occur as poles in the response function.
Because the exact response function for the exact ground state has the excitation energies
of the Hamiltonian as poles, the RPA frequencies are interpreted as approximate excitation
energies [322]. A second argument to interpret the RPA frequencies as excitation energies
is given by the alternative derivation of RPA by means of the EOM [317–319, 322]. Assume
we know the exact ground state |0〉 and the exact excitation operators, which connect the
ground state to the excited states Q̂†n = |n〉 〈0|. The operator Q̂n then destroys the ground
state. With ~ωn = En − E0, the excitation energy of the excited state |n〉, it is easy to
derive the EOM:

〈0 |
[
δQ̂,

[
Ĥ, Q̂†n

]]
| 0〉 = ~ωn 〈0 |

[
δQ̂, Q̂†n

]
| 0〉 . (6.19)

For RPA, two assumptions are made: the excitation operators are approximated by Q̂†n =
Y vo
n B̂†vo−Zvo

n B̂
vo and the expectation values of the commutators are calculated with the HF

reference wave function. The latter approximation is called the quasiboson approximation.
Equation (6.16) is then retrieved.
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As an alternative, an exact bosonic algebra can be set up:[
B̂vo, B̂†wp

]
= δvwδ

o
p, (6.20)[

B̂vo, B̂wp
]

= 0 (6.21)

by adding higher order terms to B̂†vo = â†vâ
o+O(â4). The Hamiltonian can then be written

in terms of these new operators:

ĤB = EHF −
trA

2
+

1

2

(
B̂†B̂

)[ A B
B A

](
B̂

B̂†

)
+O(B̂3). (6.22)

RPA coincides with neglecting all terms of O(B̂3) in the bosonic expansion. This leads to
the RPA correlation energy and wave function [299, 300, 322]:

EcRPA = −trA

2
+
∑
ωn>0

~ωn
2

= −
∑
n

~ωn
∑
vo

| Zvo
n |2, (6.23)

|RPA〉 ∝ e
1
2(ZY −1)

vo;wp
B̂†voB̂

†
wp |Φ0〉 . (6.24)

The RPA correlation energy has contributions from the zero point energy of the harmonic
oscillators with frequency ωn. The RPA wave function vanishes by the action of deexcita-
tion operators: Q̂n |RPA〉 = 0.

If the Hamiltonian has a continuous symmetry, and the exact ground state is degenerate
due to this symmetry, a ground-state calculation typically breaks this symmetry. Think for
example about a spin-1

2
ground state. A calculation will lead to one possibility: α |sz = 1

2
〉+

β |sz = −1
2
〉. A gapless bosonic degree of freedom remains, which corresponds to rotating

within the spin-1
2

multiplet, called a Goldstone boson [324, 325]. An interesting feature of
RPA is its ability to retrieve Goldstone modes. The excitation energy of a Goldstone mode
is of course zero, and the mode is its own dual solution (ω = 0,Y,Z) = (ω = 0,Z,Y)
[202, 299, 300]. This implies that∑

vo

(
Y voY

vo − ZvoZ
vo
)

= 0. (6.25)

G. Post-HF methods

With the excitation operators B̂†vo = â†vâ
o, a set of orthonormal vectors can be gen-

erated: |HF〉, B̂†vo |HF〉, B̂†voB̂†wp |HF〉.... They correspond to the zeroth, first and second
order tangent space of the Thouless parameterization of a general SD. With the CI method,
eigenstates of the Hamiltonian are approximated by working in an incomplete basis of such
vectors [6, 47]. Consider, for example, the second-order expansion CISD, or CI with single
and double excitations:

|CISD〉 ∝
(
x+ yvoB̂†vo +

1

2
zvo;wpB̂†voB̂

†
wp

)
|HF〉 . (6.26)
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With CIS, or CI with only single excitations, the lowest energy state is again |HF〉 due to
Brillouin’s theorem, and the eigenstates approximated in the basis B̂†vo |HF〉 are therefore
excited states. Note that this corresponds to diagonalizing the A matrix of RPA in Eq.
(6.16). Historically, this method is known as TDA [294, 295].

The RPA wave function in Eq. (6.24) suggests a CC Ansatz [48–50]. Consider, for
example, CCSD or CC with single and double excitations:

|CCSD〉 ∝ e(y
voB̂†vo+

1
2
zvo;wpB̂†voB̂

†
wp) |HF〉 . (6.27)

An important property of Ansatz wave functions is their size consistency, i.e., the property
that for two noninteracting subsystems, the compound wave function is multiplicatively
separable and the total energy additively separable. CISD is not size consistent if there are
more than two electrons in the compound system, whereas CCSD is always size consistent
because of the exponential Ansatz [42].

III. THE MATRIX PRODUCT STATE

A. The Ansatz

Consider the many-body Hilbert space |n1n2...nL〉, formed by taking the direct product
of L local Hilbert spaces |ni〉. The local degrees of freedom can be, e.g., the spin projections
of spins on a lattice, or the occupancies of orbitals. In the latter case, the states |n1n2...nL〉
form the Fock space [14]. An MPS can be seen as a linear combination of these vectors,
where the coefficient of each vector is a product of matrices:

|Φ〉 =
∑
{ni}

A[1]n1A[2]n2 ...A[L]nL |n1n2...nL〉 . (6.28)

We assume an MPS with open boundary conditions, i.e., the first matrix has row dimension
1 and the last matrix has column dimension 1. The bond dimension (virtual dimension)
Di of an MPS at boundary i is the column dimension of the matrices at site i and the
row dimension of the matrices at site i + 1. With our assumption, D0 = DL = 1. The
total number of complex parameters in this Ansatz is dimA =

∑L
i=1Di−1dDi, with d the

size of the local Hilbert space |ni〉. Just as in the SD, there is gauge freedom in the
Ansatz. Right multiplying the d site matrices on site i with the nonsingular matrix G
(Ã[i]ni = A[i]niG), and simultaneously left multiplying the d site matrices on site i + 1
with its inverse G−1 (Ã[i + 1]ni+1 = G−1A[i + 1]ni+1), does not change the wave function
(Ã[i]niÃ[i+ 1]ni+1 = A[i]niA[i+ 1]ni+1). A global scalar multiplication does not change the
wave function either. The MPS manifold, i.e., the quotient space of the general parameter-
ization (complex dimension dimA) and all gauge freedom (complex dimension

∑L
i=1D

2
i ),

has complex dimension dimT =
∑L

i=1 (dDi−1 −Di)Di [183, 291, 326, 327].
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B. The SD as low bond dimension limit

An interesting connection to HF can be made by considering an MPS where the L
orbitals are the HF orbitals. As each orbital occupation number is definite in an SD,
an MPS with bond dimension 1 suffices to represent it. Conversely, if an MPS has bond
dimension 1 and represents a state with definite particle number, each orbital has a definite
occupation number. If this is not the case, two or more orbitals must be entangled (there
is static correlation between them), and the bond dimension has to be larger than 1 to
represent this. An MPS with bond dimension 1 and definite particle number can hence
always be represented by an SD. An SD is the low bond dimension limit of an MPS,
while a general full CI (FCI) solution requires an exponentially large bond dimension to
be represented by an MPS [250].

The SD Ansatz provides a single variational approximation to the ground state, which
unfortunately fails to represent static correlation. On the contrary, the MPS Ansatz allows
to systematically improve the approximation to the ground state by increasing the bond
dimension, up to the point where all static correlation is resolved [66, 102, 140, 141, 162].

IV. THE DMRG EQUATIONS

The TIVP leads to the DMRG equations [125]. The canonical DMRG equations for
site i are retrieved when additional constraints are added to the Lagrangian to enforce that
the site matrices to the left of site i are left-normalized:

∀j < i :
∑
nj

(Anj [j])†Anj [j] = IDj , (6.29)

and that the site matrices to the right of site i are right-normalized:

∀j > i :
∑
nj

Anj [j](Anj [j])† = IDj−1
. (6.30)

With (Anj [j])αβ = A[j]njαβ, the Lagrangian becomes

L = 〈Φ | Ĥ | Φ〉 − λ
(
A[i]niαβA[i]niαβ − 1

)
−
∑
j<i

λ[j] βγ

(
A[j]njαβA[j]njαγ − δ γ

β

)
−
∑
j>i

λ[j] αγ

(
A[j]njαβA[j]njγβ − δ γ

α

)
. (6.31)

Varying with respect to A[i]niαβ gives the canonical one-site DMRG equations:

Heff[i]niαβ
ñiα̃β̃

A[i]ñiα̃β̃ = λA[i]niαβ (6.32)

in terms of the effective Hamiltonian [125]. By bringing the MPS into canonical forms of
which the left- and right-normalization conditions above are examples, the gauge freedom
can be (partially) removed. For the left- and right-normalization conditions, the remaining
gauge freedom is a unitary rotation (G unitary). All gauge freedom can be removed by
bringing the MPS into Vidal’s canonical form [328].
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The DMRG equations are site-based mean-field equations. There is self-consistency
because the effective Hamiltonian in Eq. (6.32), which determines the site matrices of a
particular site, depends on the site matrices of the other sites [125, 184, 250]. In DMRG,
the effective Hamiltonian hence plays the role of Fock operator [125]. Since both of them
act locally (respectively, on one site and one orbital), it might be worthwhile to explore
Rayleigh-Schrödinger perturbation theory analogs for DMRG in the future, such as Møller-
Plesset perturbation theory [42, 46, 125].

Note that in practice the two-site DMRG algorithm is used to optimize an MPS. The
two-site algorithm is more robust against local minima, and when symmetry is imposed
it provides a natural way to distribute the bond dimension D over the symmetry sectors.
After the two-site algorithm has converged, a few one-site DMRG sweeps allow to make
the MPS fully self-consistent. This can be compared to HF, where the optimal SD is
found by gradient methods [322] or by direct inversion of iterative subspaces [329] for
stability reasons. The DMRG and HF solutions satisfy respectively Eqs. (6.32) and (6.7),
irrespective of the optimization scheme.

V. THE MPS TANGENT SPACE

A. A redundant parameterization

Flatten the site matrices A[i]ni to a column A with entries (A[i]ni)α,β = Ainiαβ = Aµ,
and consider a small variation Aµ = Aµ0 +Bµ. The wave function can then be expanded as

|Φ〉 = |Φ0〉+Bµ |Φ0
µ〉+

1

2
BµBν |Φ0

µν〉+ ... (6.33)

with first-order tangent space |Φ0
µ〉 = ∂µ |Φ0〉 = ∂|Φ0〉

∂Aµ
and second-order tangent space

|Φ0
µν〉 = ∂µ∂ν |Φ0〉. Note that the summation convention was used. Each order of MPS

tangent space contains all lower orders, e.g., Aµ0 |Φ0
µ〉 = L |Φ0〉 and Aµ0B

ν |Φ0
µν〉 = (L −

1)Bµ |Φ0
µ〉 [183, 184, 291].

The tangent vectors |Φ0
µ〉 are redundant, as the MPS manifold has dimension dimT, and

there are dimA such vectors. The metric, or overlap matrix Sµν = 〈Φ0
µ | Φ0

ν〉, is therefore
not invertible. In Sec. V C, dimT explicit linear combinations of the vectors |Φ0

µ〉 are given,
so that the overlap in this new basis is the unit matrix, and |Φ0〉 is orthogonal to this new
basis. Remember that variations in the direction of |Φ0〉 only cause norm or phase changes
of the Ansatz, but do not change the physical state. This new basis is then a nonredundant
parameterization of the MPS tangent space.

B. Hamiltonian sparsity

The Hamiltonian (6.5) is sparse, as it consists of a sum of one- and two-particle inter-
actions. When it acts on a certain SD, the result lies in the space spanned by the given
SD and its single and double OV excitations. This is immediataly clear by changing the
single particle basis in Eq. (6.5) from b̂†k to the SD orbitals â†j.
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A typical lattice Hamiltonian can be considered sparse too, as it consists of a sum of
one- and two-site operators. It is sparse in site space instead of particle space. Let us focus
on the one-dimensional Hubbard model [177]:

Ĥ = −
L−1∑
σ,i=1

(
â†iσâi+1σ + â†i+1σâiσ

)
+ U

L∑
i=1

n̂i↑n̂i↓. (6.34)

Consider its action on an MPS. Let µi be a shorthand for (ni, α, β), or µ restricted to site
i. The Hamiltonian connects the MPS to a part of its double tangent space:

Ĥ |Φ0〉 ∝ Cµiνi+1 |Φ0
µiνi+1

〉 . (6.35)

It might hence be worthwhile to construct the site-space analog of the particle Fock space
[13, 14]. A new second quantization should be constructed, based on the MPS reference
instead of the HF orbitals.

C. A nonredundant parameterization

A nonredundant parameterization of the MPS tangent space was first presented by
Dorando et al. [127] in DMRG projector terminology. Haegeman et al. [183] provided a
construction in the language of the MPS wave function and the corresponding manifold. To
present the relationship between the two, here we describe the tangent space construction
in projector terms, but by using the explicit MPS representation of the projectors.

Consider an MPS where all left-renormalized basis states at boundary i− 1,

|Li−1
α 〉 =

∑
{nj :j<i}

[An1 [1]...Ani−1 [i− 1]]α |n1...ni−1〉 , (6.36)

are orthonormal and all right-renormalized basis states at boundary i,

|Ri
β〉 =

∑
{nj :j>i}

[Ani+1 [i+ 1]...AnL [L]]β |ni+1...nL〉 , (6.37)

are orthonormal. In the DMRG algorithm, a renormalization transformation is constructed
to reduce the direct product of |Li−1

α 〉 (size Di−1) and |ni〉 (size d) to a new left-renormalized
basis at boundary i (size Di ≤ dDi−1). This renormalization transformation is a projection,
represented by the site matrices of site i:∑

αni

(A[i]ni)α,β |L
i−1
α 〉 |ni〉 . (6.38)

The projection onto the dDi−1−Di discarded states from the direct product space, defines
the nonredundant tangent space. We now explain the explicit construction of the nonre-
dundant tangent space as provided by Dorando et al. [127] in MPS terminology. Consider
the QR-decomposition of the projector:

(A[i]ni)α,β = A[i](αni),β =
∑
γ

Q[i](αni),γRγ,β. (6.39)
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Q[i] contains Di orthonormal columns of size dDi−1. Its left null space is spanned by
dDi−1−Di vectors. This allows to construct the dDi−1× (dDi−1−Di) matrix Q̃[i], so that[
Q[i]Q̃[i]

]
is unitary. A part of the nonredundant tangent space can then be parameterized

by the matrix x[i] with dimensions (dDi−1 −Di)×Di:∑
αβni

(
Q̃[i]nix[i]

)
α,β
|Li−1

α 〉 |ni〉 |Ri
β〉 . (6.40)

If the renormalized basis states |Li−1
α 〉, |Ri

β〉 are not orthonormal, their overlap has to be
taken into account. It was Haegeman et al. [183] who first presented the parameterization
in that case: ∑

αβni

(
l[i− 1]−

1
2 Q̃[i]nix[i]r[i]−

1
2

)
α,β
|Li−1

α 〉 |ni〉 |Ri
β〉 (6.41)

with l[i − 1] the density matrix of the left renormalized states |Li−1
α 〉 and r[i] the density

matrix of the right renormalized states |Ri
β〉. The QR-decomposition of Eq. (6.39) is now

performed on l[i−1]
1
2A[i]ni instead of on A[i]ni . The complete nonredundant tangent space

is formed by doing this construction for the projector on each site. Combine all matrices
x[i] to a column x of length dimT. By writing the construction in Eq. (6.41) as Bµ(x) |Φ0

µ〉,
with

Bni(x)[i] = l[i− 1]−
1
2 Q̃ni [i]x[i]r[i]−

1
2 , (6.42)

one possibility for a nonredundant tangent space basis of dimension dimT is immediately
obtained:

|ΦT
k 〉 =

∂

∂xk
Bµ(x) |Φ0

µ〉 . (6.43)

Note that this provides a construction of |ΦT
k 〉 as a linear combination of |Φ0

µ〉. Any tangent
vector can be constructed by taking a complex linear combination of these dimT vectors:
xk |ΦT

k 〉 = Bµ(x) |Φ0
µ〉. Because of the construction of Q̃ni [i], these vectors are orthogonal

to |Φ0〉: 〈Φ0 | Φ0
µ〉Bµ(x) = 0. The metric of the parameterization in Eq. (6.42) is the

unit matrix: Bµ(x)SµνB
ν(y) = x†y [183, 291]. Analogous results have been obtained in a

different context [326, 327].
For an SD written as an MPS (D = 1 and d = 2), the nonredundant tangent space

vectors correspond to the addition (removal) of an electron to (from) the system.

VI. THE THOULESS THEOREM FOR MPS

The operators B̂†vo link an SD |Ψ0〉 to its nonredundant tangent space B̂†vo |Ψ0〉. Ex-
ponentiation of these operators led to the Thouless theorem. Here, we present the MPS
counterpart.
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A. Proposal

For the sake of simplicity, we use a part of the gauge freedom to work with a left-
canonical MPS. The left-normalization condition in Eq. (6.29) then holds for all sites.
This implies ∀i : l[i] = IDi . Consider the following matrix notation for site matrices: C[i]
has entries (C[i])(αni),β, i.e., the row-index of the matrices C[i] contains the physical index
ni. The left-normalization condition then becomes

A[i]†A[i] = IDi . (6.44)

Because of the construction of Q̃[i], the site matrices B(x)[i] are left-orthogonal to the site
matrices A[i]:

B(x)[i]†A[i] = 0. (6.45)

This allows to propose the MPS counterpart of the Thouless theorem:

A(x,x)[i] = exp
(
B(x)[i]A0[i]† − A0[i]B(x)[i]†

)
A0[i], (6.46)

where now A0[i] is used for A[i] to clearly mark the difference with A(x,x)[i]. The matrix
in the exponential is anti-Hermitian, and the transformation in Eq. (6.46) is therefore
unitary. As the A0[i] site matrices were left-normalized, the A(x,x)[i] site matrices are
also left-normalized. An MPS built with the A(x,x)[i] site matrices,

|Φ(x,x)〉 =
∑
{ni}

A(x,x)[1]n1 ...A(x,x)[L]nL |n1n2...nL〉 , (6.47)

is hence still left-canonical and therefore normalized. For x = 0, |Φ(x,x)〉 = |Φ0〉. The
tangent space of this MPS parameterization is familiar too:

∂

∂xk
|Φ(x,x)〉

∣∣∣∣
x=0

= |ΦT
k 〉 , (6.48)

which can be easily checked by using Eqs. (6.44) and (6.45). |Φ(x,x)〉 is therefore an
explicit nonredundant parameterization of the MPS manifold in the neighbourhood of
|Φ0〉.

B. Global validity

Here we show that Eq. (6.47) is a global parameterization of the MPS manifold, or that
any MPS with bond dimensions Di can be generated from |Φ0〉 (which has the same bond
dimensions). This implies that we can optimize over the parameters x instead of over A
to find an energy minimum.

For a specific site index i, the parameterization A(x,x)[i] of Eq. (6.46) is a Grassmann

manifold with matrix dimensions dDi−1 ×Di. Define y by x[i] = y[i]r[i]
1
2 to obtain

Ã(y,y) = A(x,x)[i] = exp
(
Q̃[i]yQ[i]† −Q[i]y†Q̃[i]†

)
Q[i]. (6.49)
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Note the close analogy to Eq. (6.9). We show in Appendix that Eq. (6.49) represents a
Grassmann manifold. Note that we assume that the density matrix r[i] is nonsingular (i.e.,

r[i]−
1
2 exists) for the construction of the nonredundant tangent space in Eq. (6.42). For

a left-canonical MPS, the Schmidt values are the positive square roots of the eigenvalues
of r[i]. The condition of nonsingular density matrices r[i] is therefore equal to having all
Schmidt values of |Φ0〉 nonzero. This is a condition for the global validity of Thouless’s
theorem for MPS.

Now give a normalized MPS |Φ1〉, with the only restriction that it has the same bond
dimensions as |Φ0〉. We will prove by construction that

∃x :
∣∣∣〈Φ1 | Φ(x,x)〉

∣∣∣ = 1. (6.50)

(1) Set i = 1. (2) Use a part of the gauge freedom at boundary i to bring the site
matrices A1[i] of |Φ1〉 in left-normalized form: AL1 [i]. (3) Find x1[i] so that the columns of
A(x1,x1)[i] and the columns of AL1 [i] span the same space, which is always possible because
A(x,x)[i] is a Grassmann manifold. (4) Use the remaining gauge freedom at boundary i,
i.e., a unitary transformation UDi , to enforce A(x1,x1)[i] = Aexact

1 [i] = AL1 [i]UDi . (5) If
i < L, set i = i+ 1 and go to 2.

When the construction is finished, all parameters of x1 are assigned, and the gauge free-
dom in |Φ1〉 was used to write |Φ1〉 exactly as |Φ(x1,x1)〉, i.e., ∀i : Aexact

1 [i] = A(x1,x1)[i].
See Refs. [326] and [327] on the diffeomorphism between a finite chain MPS manifold and
a product manifold of Grassmann manifolds. This concludes the proof that Eq. (6.47)
can represent any MPS with the same bond dimensions, as long as |Φ0〉 does not have any
vanishing Schmidt values. Note that the theorem guarantees a solution x1, but does not
guarantee that this solution is unique, in analogy with the discussion in Sec. II D.

C. The double tangent space

To get a better understanding of the MPS double tangent space, consider the second
order term of A(x,x)[i]:

A(x,x)[i]− A0[i]−B(x)[i]

= −1

2
A0[i]B(x)[i]†B(x)[i] +O(x3)

= −1

2
A0[i]r[i]−

1
2x[i]†x[i]r[i]−

1
2 +O(x3). (6.51)

The expansion of |Φ(x,x)〉 up to second order then consists of the following. (1) The MPS
reference |Φ(0,0)〉 = |Φ0〉. (2) The tangent space ∂

∂xk
|Φ(x,x)〉

∣∣
x=0

= ∂
∂xk
|Φ(0,0)〉 = |ΦT

k 〉.
Note that ∂

∂xk
|Φ(0,0)〉 = 0. The tangent space consists of all possible connections between

the unused basis states from |Li−1
α 〉 ⊗ |ni〉 and |Ri

β〉. (3) The nonlocal part of the double

tangent space ∂2

∂xk∂xl
|Φ(0,0)〉 = |ΦT2

kl 〉. Note that this term is only nonzero if xk and
xl correspond to different sites of the MPS chain. This part corresponds to two single
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excitations on different sites. Also note that ∂2

∂xk∂xl
|Φ(0,0)〉 = 0. (4) The local part of

the double tangent space ∂2

∂xk∂xl
|Φ(0,0)〉 = |ΦT2

kl
〉. Note that this term is only nonzero if

xk and xl belong to the same site, and correspond to the same row index in the matrix
notation x[i]. This part consists of all possible connections between the renormalized basis
states |Liα〉 (from |Li−1

α 〉 ⊗ |ni〉) and |Ri
β〉.

These states are not all mutually orthogonal. Note that the local part of the double
tangent space arises because we have considered a unitary variant of the Thouless theorem
for MPS. The original (nonunitary) Thouless parameterization for HF depends only on the
complex parameters, and not on their complex conjugates.

If two excitation operators in HF try to annihilate an occupied single particle twice, the
state is destroyed. The space of double OV excitations therefore consists of the replacement
of two different occupied single particles by two different virtual single particles.

The local part of the double tangent space of an MPS can be written as Bµ |Φ0
µ〉,

which lies entirely in the space spanned by the MPS reference |Φ0〉 and the nonredundant
tangent space vectors |ΦT

k 〉. Together with the other two arguments above, this provides a
justification to discard this part of the double tangent space without any loss in variational
freedom, and to consider only two single excitations acting on different sites, for the double
tangent space.

D. Excitation operators

The excitation operators for an MPS can be read from the Thouless theorem:

|ΦT
k 〉 = B̂†k |Φ

0〉 =
∂

∂xk
|Φ(x,x)〉

∣∣∣∣
x=0

. (6.52)

See, e.g., Sec. IV in Rowe et al. [297] for a discussion on the relationship between the
linearized time-dependent variational principle on a general manifold, and the EOM ap-
proach to the RPA equations. The operators B̂†k are obtained by going from the manifold
representation based on the virtual space in Eq. (6.46), to a representation based on the

physical Hilbert space |Φ(x,x)〉 = exp
(
xkB̂†k − xkB̂k

)
|Φ0〉. When only the first-order

tangent space needs to match, B̂†k = |ΦT
k 〉 〈Φ0| can be used. It will be a challenge to find

the B̂†k’s to match the higher order tangent spaces too. Finding an answer to this prob-
lem, is closely related to finding a site-space analog of the particle Fock space, based on
the MPS reference. From Eq. (6.46), it can be understood that this excitation operator
projects out the site matrices A0[i(k)] and replaces them with the tangent space site matri-
ces ∂xkB(x)[i(k)]|x=0. It adds a single excitation to the vacuum |Φ0〉. In the chosen gauge,
a single MPS excitation is localized to one site, just like a single OV excitation of an SD
is localized to one orbital. From Eq. (6.46), it can also be understood that a deexcitation
operator projects out the tangent space site matrices ∂xkB(x)[i(k)]|x=0 and replaces them
with the site matrices A0[i(k)]. Remember that the tangent space metric is the unit matrix
for the chosen parameterization, and that the deexcitation projections are hence not only
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orthogonal to the MPS reference (they destroy the vacuum |Φ0〉) but also orthogonal to
other tangent space site matrices:

B̂l |Φ0〉 = 0, (6.53)

B̂l |ΦT
k 〉 = δl,k |Φ0〉 . (6.54)

The deexcitation operators of the ket vectors are the excitation operators of the bra vectors:

〈Φ0| B̂l = 〈ΦT
l | . (6.55)

Consider the commutators
[
B̂†l , B̂

†
k

]
and

[
B̂l, B̂

†
k

]
. Their general expressions are far from

trivial, only their expectation value with respect to the vacuum |Φ0〉 is clear:

〈Φ0 |
[
B̂†l , B̂

†
k

]
| Φ0〉 = 0, (6.56)

〈Φ0 |
[
B̂l, B̂

†
k

]
| Φ0〉 = δk,l. (6.57)

A bosonic algebra for the excitation operators is hence only retrieved when expectation
values with respect to the vacuum are taken. The operators B̂†k are called quasiboson
operators.

VII. OPTIMAL TIME EVOLUTION FOR MPS

The optimal time evolution of an MPS, which stays within the MPS Ansatz space, was
derived by means of the TDVP in Refs. [183] and [184]. Now that we have established the
Thouless theorem for MPS, we can rephrase the result as

i~ẋk(x = 0) = 〈Φ0 | B̂kĤ | Φ0〉 . (6.58)

Also in this case, Eq. (6.58) can be obtained by inserting |Φ(x,x)〉 in the time-dependent
Schrödinger equation, and by projecting the time-dependent equation onto B̂†k |Φ(x,x)〉:

i~ 〈Φ| B̂k

(
ẋl

∂

∂xl
+ ẋl

∂

∂xl

)
|Φ〉 = 〈Φ| B̂k

(
Ĥ − EMPS

)
|Φ〉 . (6.59)

Evaluation for x = 0 yields Eq. (6.58). This form of time propagation automatically
stays within the MPS Ansatz space. No Hamiltonian decompositions or bond dimension
truncations are necessary [183, 184].

VIII. RPA FOR MPS

A. In a redundant parameterization

One way to obtain the RPA equations for MPS, is to consider the linearized time-
dependent equations in the vicinity of a variational minimum, and to project them onto
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the tangent space of the manifold [184, 313]. Consider a small time-dependent step around
the minimum Aµ(t) = Aµ0 + Bµ(t). The time-dependent equation, its projection onto the
tangent space, and its first-order terms become

i~ |Φν(A)〉 Ȧν =
(
Ĥ − EMPS

)
|Φ(A)〉 , (6.60)

i~ 〈Φµ(A) | Φν(A)〉 Ȧν = 〈Φµ(A) | Ĥ − EMPS | Φ(A)〉 , (6.61)

i~ 〈Φµ(A0) | Φν(A0)〉 Ḃν = 〈Φµ(A0) | Ĥ − EMPS | Φν(A0)〉Bν

+ 〈Φµν(A0) | Ĥ − EMPS | Φ(A0)〉Bν
, (6.62)

with EMPS = 〈Φ0 | Ĥ | Φ0〉. By taking a harmonic Ansatz for the perturbation B =
Ye−iωt + Zeiωt, the RPA equations are found:

~ω
[
S 0
0 −S

](
Y
Z

)
=

[
H W
W H

](
Y
Z

)
(6.63)

with Sµν = 〈Φ0
µ | Φ0

ν〉, Hµν = 〈Φ0
µ | Ĥ − EMPS | Φ0

ν〉, and Wµν = 〈Φ0
µν | Ĥ − EMPS | Φ0〉.

Note that ‖
(
Ĥ − EMPS

)
|Φ0〉 ‖2 becomes smaller when |Φ0〉 becomes a better approxima-

tion for the exact ground state. ‖W‖2 is hence a measure for the accuracy of the MPS
approximation to the exact ground state [313]. A specific eigenvector of Eq. (6.63) can be
obtained in O(LD3) complexity [127, 184].

B. In a nonredundant parameterization

By changing the basis from |Φ0
µ〉 to |ΦT

k 〉 = Zµ
k |Φ0

µ〉, with ∂
∂xk

Bµ(x) = Zµ
k , the overlap

matrix S becomes the unit matrix I: Z
µ

kSµνZ
ν
l = δkl. Analogously, the Hermitian matrix

A and the complex symmetric matrix B, both of dimension dimT× dimT, can be defined
as resp. Akl = Z

µ

kHµνZ
ν
l and Bkl = Z

µ

kWµνZ
ν
l . The RPA equations become

~ω
[
I 0
0 −I

](
y
z

)
=

[
A B
B A

](
y
z

)
, (6.64)

where y and z are now coefficients with respect to |ΦT
k 〉. The same result can be obtained

by linearizing Eq. (6.59), just as for HF.
The A and B matrices can be constructed explicitly. If only a few excitation energies

are desired, it is better to resort to a sweep algorithm, which can be implemented in
an existing DMRG code [127]. Implementation details of this sweep algorithm will be
presented elsewhere [153].

C. EOM derivation

The excitation operators discussed in Sec. VI D allow for a rederivation of the RPA
equations for MPS by means of the EOM. An exact bosonic algebra can be set up by
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adding correction terms to operators defined in Sec. VI D, so that
[
B̂†l , B̂

†
k

]
= 0 and[

B̂l, B̂†k

]
= δl,k. A justification is given by Eqs. (6.56) and (6.57). The Hamiltonian can

be expanded in these bosonic operators, and RPA coincides with truncating the expansion
after second order. Expressions for the RPA correlation energy and wave function follow,
just as for HF:

EcRPA = −trA

2
+
∑
ωn>0

~ωn
2

= −
∑
n

~ωn
∑
k

| zkn |2, (6.65)

|RPA〉 ∝ e
1
2(zy−1)

k;l
B̂†kB̂

†
l |Φ0〉 . (6.66)

IX. POST-DMRG METHODS

A. TDA and Brillouin’s theorem

A preferred tangent basis can be found by searching the eigenstates of the Hamiltonian
in the basis |ΦT

k 〉. This corresponds to diagonalizing theAmatrix of the RPA Eq. (6.64). As
|Φ0〉 = 1

L
Aµ0 |Φ0

µ〉 gave the lowest energy solution for the Ansatz Bµ |Φ0
µ〉 and |ΦT

k 〉 ⊥ |Φ0〉,
approximations for excited states are found this way. This is the MPS analog of TDA
[42, 294, 295, 322]. For a variational minimum,

0 =
∂E

∂Aµ0
=
〈Φ0

µ | Ĥ | Φ0〉
〈Φ0 | Φ0〉

− 〈Φ
0 | Ĥ | Φ0〉
〈Φ0 | Φ0〉2

〈Φ0
µ | Φ0〉 . (6.67)

If the wave function |Φ0〉 is normalized and only norm- and phase-conserving changes
B̂†k |Φ0〉 ⊥ |Φ0〉 are considered [127, 183],

〈ΦT
k | Ĥ | Φ

0〉 = 〈Φ0 | B̂kĤ | Φ0〉 = 0. (6.68)

This is the MPS analog of Brillouin’s theorem [42, 323]. For MPS, excited momentum
eigenstates of translationally invariant systems have previously been approximated in the
nonredundant tangent space basis [179, 180].

B. CC and CI

The Thouless theorem for MPS and Eq. (6.66) suggest CC and CI Ansätze on top of
an MPS reference. Consider, for example, the single and double excitations:

|CCSD〉 ∝ ey
kB̂†k+ 1

2
zklB̂†kB̂

†
l |Φ0〉 , (6.69)

|CISD〉 ∝
(
x+ ykB̂†k +

1

2
zklB̂†kB̂

†
l

)
|Φ0〉 . (6.70)
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With the exposition in Secs. V, VI C, and VI D, we can also propose the following CCSD
and CISD Ansätze:

|CCSD〉 ∝ eC
µν∂µ∂ν |Φ0〉 , (6.71)

|CISD〉 ∝ Cµν |Φ0
µν〉 (6.72)

with O
[

1
2
(LdD2)2

]
parameters in the symmetric C tensor. Note that working in the Lth

order tangent space corresponds to the FCI Ansatz. For DMRG (HF), the CCSD and
CISD Ansätze can be considered as a way to improve the correlation between two sites
(electrons) embedded in an approximate environment given by the zeroth-order MPS (SD).
Since the double tangent space can connect sites that are far apart, this enables the CCSD
and CISD expressions to directly build in long-range entanglement. If the zeroth-order
description fails (static correlation for HF, critical system for DMRG), these Ansätze will
fail too. Also for MPS, CISD is not size-consistent if there are more than two sites in
the compound system, whereas CCSD is always size-consistent because of the exponential
Ansatz.

X. SYMMETRY-ADAPTED CALCULATIONS

For large calculations, symmetry-adapted MPS Ansätze are often used. They allow to
search for eigenstates within a specific symmetry sector of the total Hilbert space, and lead
to computational advantages in memory and time. An MPS Ansatz without symmetry
adaptation can yield an approximate eigenstate that breaks the symmetry. Its tangent
space then also contains symmetry-broken vectors. RPA-MPS breaks down if a symmetry
multiplet of a non-Abelian group is incomplete at a certain MPS boundary. Therefore we
use symmetry-adapted MPS Ansätze for the applications.

A. Tangent space without symmetry adaptation

First consider an MPS Ansatz without symmetry adaptation. A basis for its nonredun-
dant tangent space, which is at the same time a basis of symmetry eigenvectors, can only
be constructed when the MPS reference is an eigenvector of those symmetries. If the MPS
reference is a symmetry eigenvector, its tangent space (in general) also contains symmetry
eigenvectors that belong to a different irreducible representation (irrep). We provide a
simple counting argument.

Consider an MPS with length L even, then the center virtual dimension has to be d
L
2

to represent a general FCI state [250]. The number of states in its nonredundant tangent
space is then

dimT =

L
2∑

k=1

(
ddk − dk−1

)
dk−1 = dL − 1, (6.73)

i.e., the rest of the Hilbert space. Note that these dL−1 nonredundant tangent space vectors
can only be constructed if all Schmidt values are greater than zero [183, 291]. Suppose that
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this is the case. The MPS reference and its nonredundant tangent space then span the
entire Hilbert space. If the MPS reference transforms according to a particular irrep of the
symmetry group of the Hamiltonian, a basis of symmetry eigenvectors can be constructed
for its nonredundant tangent space. If the Hilbert space is spanned by symmetry vectors
belonging to at least two different irreps, the nonredundant tangent basis then contains
symmetry eigenvectors belonging to a different irrep than the MPS reference.

B. Implications for RPA

If an MPS Ansatz without symmetry adaptation is variationally optimized, it can occur
that due to the choice of virtual dimensions a symmetry multiplet of a non-Abelian group
[e.g., SU(2)] is incomplete at a certain boundary. From the projector interpretation of the
nonredundant tangent space, it can be understood that this may lead to spurious zero
energy RPA excitations: replacing an occuring renormalized basis state of the multiplet
by one that is not in the renormalized basis, can lead to a state with the same energy
and hence a spurious zero energy RPA excitation. For this reason, we have opted to use
symmetry-adapted MPS references in this work.

C. Tangent space of a symmetry-adapted Ansatz

We now discuss the construction of the tangent space of an SU(2) ⊗ U(1) adapted
MPS Ansatz. A spin- and particle number-adapted MPS decomposes into Clebsch-Gordan
coefficients of the imposed symmetry groups and reduced tensors, due to the Wigner-Eckart
theorem [140, 141, 192–195]:

Ass
zN

jLj
z
LNLαL;jRj

z
RNRαR

= 〈jLjzLssz | jRjzR〉 δNL+N,NRT
sN
jLNLαL;jRNRαR

. (6.74)

The derivative operator ∂
∂Aµ

in Eq. (6.33) is then replaced by ∂
∂Tκ

. All symmetry imposing
Clebsch-Gordan coefficients are still in place, and the tangent space vectors hence have the
same symmetry as the MPS reference. The nonredundant tangent space can be constructed
in an analogous way as for the case without symmetry adaptation. The entire symmetry
sector of the Hilbert space (minus the MPS reference) is retrieved in the nonredundant
tangent space, if the virtual dimensions are taken as large as possible. The difference
between the tangent spaces with and without symmetry adaptation can be compared
to the restricted and unrestricted HF manifolds [297, 298]. For the former only singlet
excitations are possible, while for the latter triplet excitations are allowed too, even if the
ground state is a singlet.

Note that if a symmetry-adapted MPS is optimized by the imaginary time evolution of
Sec. VII, the distribution of the bond dimensions over the symmetry sectors is fixed. As
such an optimization does not lead to an optimal distribution of the bond dimensions, we
have used the two-site DMRG algorithm to optimize all the MPS reference wave functions
in this work. Henceforth symmetry-adapted will be used as a shorthand for spin- and
particle number-adapted.
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Table 6.1: CISD-MPS improvement on the ground state and low-lying excitation energies for
the one-dimensional Hubbard chain with length L = 8 and OBC. D is the number of SU(2)
multiplets retained at each boundary in the symmetry-adapted MPS reference calculation. The
state for which the absolute energy is shown, was chosen as MPS reference.

U Quantity S N Exact TDA-MPS TDA-MPS CISD-MPS
(FCI) (D=3) (D=9) (D=3)

0.1 E0 0 8 -9.319312 -9.067465 -9.301264 -9.315185
E1-E0

1
2

7 0.297631 0.222150 0.285466 0.311181
E2-E0

1
2

9 0.397631 0.322150 0.385466 0.411181
E3-E0 0 6 0.611620 0.873285 0.619417 0.629720

1 E0-E1
1
2

7 -0.022354 -0.082237 -0.029340 0.011799
E1 0 6 -7.790647 -7.532068 -7.780764 -7.785715

E2-E1 0 8 0.095814 0.543100a 0.105942 0.135785
E3-E1 1 6 0.517393 0.572255a 0.530944 0.542513

10 E0 0 4 -5.187427 -5.083270 -5.186955 -5.187090
E1-E0

1
2

5 0.008950 -0.010314 0.009270 0.010988
E2-E0 1 4 0.113988 0.127636 0.114721 0.114984
E3-E0

1
2

5 0.189005 0.205577a 0.196828 0.192880
100 E0 0 4 -4.805753 -4.736845 -4.805615 -4.805360

E1-E0 1 4 0.013020 0.013672 0.013016 0.013783
E2-E0 1 4 0.027045 0.022700 0.027013 0.028034
E3-E0 0 4 0.034327 0.316707a 0.034327 0.035940

a Excitation with different multiplicity. The required FCI excitation is not in the TDA-MPS

spectrum.

XI. THE 1D HUBBARD CHAIN

In this section, we approximate low-lying eigenstates of the one-dimensional Hubbard
chain with open boundary conditions (OBC) [see Eq. (6.34)]. The CISD-MPS Ansatz of
Eq. (6.72), which contains all excitations to the double tangent space, is used to improve
on the ground state and to find low-lying excitations. The results are compared with
TDA-MPS, which contains all excitations to the single tangent space. With RPA-MPS,
we search for the Goldstone mode of a symmetry-broken ground state. In addition, we
discuss RPA-MPS correlation energy calculations.

A. CISD-MPS

The TDA and CISD calculations were done by optimizing a symmetry-adapted MPS
reference, with D retained multiplets at each boundary. This reference was then used in
TDA and CISD calculations without symmetry constraints. As the symmetry-adapted
reference is not necessarily a variational minimum for an MPS Ansatz without symmetry
constraints, negative excitation energies can occur.
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The CISD Ansatz in Eq. (6.72) leads to a generalized eigenvalue problem,

〈Φ0
κλ | Ĥ | Φ

0
µν〉Cµν = E 〈Φ0

κλ | Φ
0
µν〉Cµν , (6.75)

which was solved by multitargeting the lowest states with the Davidson algorithm [167].
By decomposing the C tensor, the CISD Ansatz can be written as a sum over MPS wave
functions:

|CISD〉 =
∑
i<j

Cµiνj |Φ0
µiνj
〉 =

∑
i<j

∑
p(i,j)

Cµi
L,pC

νj
R,p |Φ

0
µiνj
〉 . (6.76)

This allows to use standard MPS machinery [250] in the matrix-vector multiplication. Be-
cause the sum of several MPS wave functions yields an MPS with a larger bond dimension
[250], this immediately leads to the understanding that the CISD Ansatz can introduce
extra entanglement.

We chose L = 8 and four U values: 0.1, 1, 10 and 100. With increasing U , the ground
state changes from a collection of quasi-free particles to a highly correlated state. For the
latter, HF gives a qualitatively wrong description. For U = 1, the ground state contains 7
particles and has spin 1

2
. If a symmetry-broken reference is chosen, the multiplet degeneracy

of the excitations is lost. Therefore, we opted for the first singlet state as MPS reference
for U = 1. Although the TDA and CISD calculations were not symmetry-adapted, the
multiplet degeneracy was exactly retrieved because we started from a symmetry-adapted
MPS reference. The first four multiplets for each U value are shown in Table 6.1.

The TDA-MPS (D = 9) energies and the CISD-MPS (D = 3) energies are of roughly the
same quality, and improve on the TDA-MPS (D = 3) energies significantly. The CISD-
MPS Ansatz contains O

[
1
2
(LdD2)2

]
variational parameters to include extra correlation

between all pairs of sites on top of the MPS reference, and can be used both to improve
on the ground state and to approximate excited states. The TDA-MPS Ansatz contains
O(LdD2) variational parameters, and due to the MPS analog of Brillouin’s theorem, it can
only be used to approximate excited states. The relative accuracy of the CISD-MPS (D=3)
and MPS (D=9) reference state energies changes with U . With increasing single-particle
nature, the CISD-MPS Ansatz performs better for the targeted reference.

For small D, not all excited states are retrieved with TDA-MPS. An example is the
third excited state for D = 3 and U = 100. The targeted state consists of two singlet-
triplet excitations, which interact to form a bound singlet state. This is well captured by
CISD-MPS (D = 3) and TDA-MPS (D = 9), while E3 for TDA-MPS (D = 3) in Table
6.1 corresponds in fact to a doublet. The MPS (D = 9) reference has a large enough bond
dimension to capture the two excitations in its single tangent space, while the CISD-MPS
(D = 3) Ansatz captures the double excitation in the MPS’s double tangent space.

B. RPA-MPS and Goldstone modes

The L = 8 and U = 1 case is an ideal candidate to retrieve a Goldstone mode, because
a specific spin-1

2
ground-state vector is necessarily a symmetry-broken state. With an MPS

reference optimized without any symmetry constraints and D = 16 (now exceptionally the
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Figure 6.1: The RPA-MPS correlation energy for the Hubbard chain with OBC, length L = 6,
filled with N = 4 electrons, in the singlet state, and U = 1. A symmetry-adapted Ansatz was
used, with D retained multiplets at each boundary.

number of states instead of the number of multiplets), we find one zero-energy solution to
the RPA equations, and this solution also satisfies Eq. (6.25). This is the Goldstone mode
from the symmetry-broken spin-1

2
ground state. Zero-energy solutions can also arise for

singlet ground states, if the MPS accidently breaks non-Abelian symmetries, as discussed
in Sec. X. This can be avoided by retaining complete multiplets at each boundary, whereas
the RPA Goldstone mode for a symmetry-broken ground state will always occur, even for
bond dimensions that reproduce the full Hilbert space.

C. The RPA-MPS correlation energy

We calculated RPA-MPS correlation energies for symmetry-adapted Ansätze. Remem-
ber that only excitations with the same symmetry as the MPS reference are then retrieved.
For the Hubbard chain with OBC and length L = 6, filled with N = 4 electrons, in the
singlet state, and U = 1, EcRPA is shown in Fig. 6.1. From Eq. (6.65), 2EcRPA can be
interpreted as the mean difference between RPA and TDA excitation energies, multiplied
by the number of excitations (dimT). With increasing D, |EcRPA| first increases because
the number of excitations increases. For even larger D, the mean difference between the
RPA and TDA energies vanishes faster than the number of excitations increases. When
the FCI virtual dimensions are reached, the RPA and TDA excitation energies are equal,
as the B-matrix vanishes, and EcRPA is exactly zero.

When calculating EcRPA, care has to be taken that the MPS reference is the variational
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minimum and that no symmetries are broken, such as the multiplet structure at a boundary
or, e.g., the SO(4) symmetry when considering a half-filled Hubbard chain [207]. If these
conditions are not fulfilled, the RPA-MPS correlation energy breaks down (|EcRPA| �
|EMPS|).

XII. POLYENES

Polyenes are linear conjugated chains of hydrocarbons:

CH2 = CH− CH = CH− CH = CH2. (6.77)

Excitations in the π system lie in the visible region of the spectrum, and polyenes are
therefore important building blocks for light absorption and dyes. They have a long history
of use as benchmark systems to test new quantum chemistry excited state methods. The
π system can be approximated by the long-range Pariser-Parr-Pople (PPP) Hamiltonian,
where the two-body terms of the Hamiltonian (6.5) are approximated by a local Coulomb
repulsion:

V̂ =
1

2

∑
klστ

Rkln̂kσn̂lτ . (6.78)

The Latin letters denote orbitals and the Greek letters spin projections. For our calcula-
tions, we used the Ohno parameterization for the electron-electron repulsion Rkl [330]. All
Hamiltonian parameters, except Rsingle

double
= 1.40 ± 0.05Å, are identical to the ones in Ref.

[331].
Many DMRG calculations studying the excited states and response properties of conju-
gated molecules have been performed, using a parameterized Hamiltonian [252, 332–336].
At the ab initio level, high-lying excited states have been targeted with the harmonic
Davidson adaptation of the DMRG method [118]. Frequency-dependent dipole polariz-
abilities were computed at the ab initio level by Dorando et al. [127] using the TDA-MPS
approximation.
Using the PPP Hamiltonian, we approximated the first three particle-conserving singlet ex-
citations with the symmetry-adapted RPA-MPS and TDA-MPS methods. We kept D = 20
retained multiplets at each boundary. The TDA-MPS excitation energies are shown in Fig.
6.2 as a function of the number of carbon atoms N in the polyene. The symmetry labeling
was based on Fig. 10 in Ref. [337]. The difference between the RPA-MPS and TDA-MPS
energies is shown in Fig. 6.3, indicating that the ground state MPS reference is already
quite accurate for D = 20, as the B-matrix contributions are small. The RPA-MPS and
TDA-MPS excitation energies match better for the higher excitations of Fig. 6.2.

XIII. SUMMARY

In this work, we attempted to set up a post-DMRG framework by finding the excitation
structure of the MPS reference. As a guide, we carefully followed the structure of HF theory
and the subsequent post-HF methods, exploiting the fact that both HF and DMRG can
be seen as productlike wave functions [125].



144 Chapter 6. Thouless theorem for MPS and post-DMRG methods

0.04 0.06 0.08 0.10 0.12 0.14 0.16
1/(N+1)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

ω
T
D
A
 [e

V]
11 B +

u

11 B−
u

21 A−
g

Figure 6.2: The first three TDA-MPS excitation energies for a polyene chain with N carbon
atoms for which the π system was approximated by the long-range PPP Hamiltonian.
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Figure 6.3: The difference between the RPA-MPS and TDA-MPS energies for the first three
excitations of a polyene chain with N carbon atoms for which the π system was approximated
by the long-range PPP Hamiltonian.
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A variational wave-function Ansatz can be used in the TIVP to yield self-consistent
equations. With the TDVP, optimal time-evolution is found which stays within the Ansatz
manifold. Linearization of the TDVP around a variational minimum gives the RPA
equations. The optimal time-evolution requires a nonredundant parameterization of the
Ansatz ’s tangent space to exclude meaningless variations of the wave function. Occupied-
occupied variations in HF theory, as well as variations in the direction of the renormalized
DMRG basis states, only lead to norm or phase changes. They do not change the physical
state represented by the Ansatz.

Exponentiation of the norm- and phase-conserving variations in HF theory, led to the
Thouless theorem: a nonredundant parameterization of the entire HF (Grassmann) mani-
fold, generated by the OV excitations of any particular SD. In this work, we have proposed
the DMRG counterpart: a nonredundant parameterization of the entire MPS manifold,
generated by the norm- and phase-conserving changes of any particular MPS wave func-
tion. Just like the norm- and phase-conserving changes of HF theory are generated by
replacing an occupied orbital by a virtual orbital, the norm- and phase-conserving changes
of an MPS wave function are generated by replacing the occuring renormalized basis states
by discarded renormalized basis states. We have proven the MPS counterpart of Thouless’s
theorem for a general MPS with OBC, for which no Schmidt values vanish.

By identifying the excitation structure of the SD/MPS Ansatz by means of the Thouless
theorem, the RPA equations can be rederived be means of the EOM. This allows for a
bosonic expansion of the Hamiltonian, and the definition of the RPA correlation energy
and wave function.

The different orders of tangent space of the Thouless parameterization generate the CI
basis. Eigenstates of the Hamiltonian can be approximated in this basis. CIS, or CI with
only single excitations, yields again the SD/MPS reference due to Brillouin’s theorem,
as well as a set of excited states. These excited states are found by diagonalizing the
Hamiltonian in the nonredundant tangent basis, or the A matrix of RPA. This method is
known as TDA.

When the MPS reference is a good approximation of the true ground state,
‖(Ĥ −EMPS) |Φ0〉 ‖2 becomes small, and the B-matrix contributions of RPA vanish. TDA
and RPA then lead to the same excitation energies. The RPA wave function suggests a
size-consistent CC Ansatz on top of the reference wave function.

The ideas presented in this paper are illustrated with proof-of-principle calculations
of CISD-MPS improvements on the ground state, TDA-MPS, RPA-MPS and CISD-MPS
excitation energies, an RPA-MPS Goldstone mode, and the RPA-MPS correlation energy.
In contrast to HF, the MPS reference gives also in the highly correlated regime of the
Hubbard model a qualitatively good description, and variational post-DMRG methods
such as TDA-MPS and CISD-MPS give numerically relevant results. For an MPS with
small bond dimensions, two correlated single excitations are not always retrieved in the
tangent space, and the CISD-MPS Ansatz is a better choice then.

Recently, we learned about Ref. [182], which presents RPA-MPS calculations and new
multisite excitation Ansätze for uniform MPS.
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APPENDIX: EXPLICIT GRASSMANN MANIFOLD PARAMETERIZATION

The proof given here is inspired by the proof for the unitary counterpart of Thouless’s
theorem for HF, given in Rowe et al. [297]. Give a unitary m× n matrix Q with m > n,
i.e., Q†Q = In, and a second unitary matrix U , of the same form as Q. Form a unitary
m× (m− n) matrix Q̃ so that [QQ̃][QQ̃]† = I = [QQ̃]†[QQ̃]. For the parameterization

Ã(y,y) = exp
(
Q̃yQ† −Qy†Q̃†

)
Q (6.79)

with y an (m − n) × n matrix containing the complex variables and y the corresponding
flattened column, there exists at least one yu so that the columns of Ã(yu,yu) and the
columns of U (denoted by uk) span the same space. We will provide a proof by construction.

(1) The matrix M = U †QQ†U is a hermitian positive semidefinite matrix. There exists
a unitary transformation to rotate the basis ui to vi, so that vk

†QQ†vj = δkjn
2
k.

(2) Write vi in terms of qk and q̃k, the columns of Q and Q̃: vi =
∑

k αikqk +
∑

l βilq̃l.
From the previous step we know that δij = vi

†vj = n2
i δij +

∑
l βilβjl.

(3) If ni 6= 0, define ri by niri =
∑

k αikqk. If ni 6= 1, define r̃i by (1−n2
i )

1
2 r̃i =

∑
l βilq̃l.

Note that if, e.g., 2n > m, a number of ni will certainly be 1, and the corresponding vectors
r̃i cannot be constructed.

(4) From the previous steps, it follows that the vectors {ri, r̃i} are orthonormal. Com-
plete both sets with additional vectors, so that they span the same space as the columns
of, respectively, Q and Q̃. If the matrix R contains ri in its columns and R̃ contains r̃i
in its columns, a unitary transformation P links R and Q by R = QP and a unitary
transformation P̃ links R̃ and Q̃ by R̃ = Q̃P̃ .

(5) If ni 6= 1, consider wi = exp
(
γi(r̃iri

† − rir̃
†
i )
)
ri = cos (γi)ri + sin (γi)r̃i. Assign

0 ≤ γi ≤ π
2

so that cos (γi) = ni. It then follows that wi = vi. Note that if ni = 1, γi
would have been 0, and that the exponential in front of ri then becomes the identity. So
it poses no problem that the corresponding vectors r̃i cannot be constructed.

(6) If γ is regarded as a diagonal matrix containing the γi values, the singular value de-
composition of yu is given by yu = P̃ γP †. This can be confirmed by writing the exponential
expression for wi in terms of Q and Q̃.

This concludes the construction of the complex (m − n) × n matrix yu. Eq. (6.79)
hence represents a Grassmann manifold.
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6.2 Remarks

It is proposed in Ref. [181] to construct the site-space analog of the particle Fock space.
Operators such as the effective Hamiltonian Heff[i] and the excitation operator B̂†k =
∂
∂xk

Bµ(x) ∂
∂Aµ

(which act on virtual indices) should then be written in terms of Fock space
operators (which act solely on physical indices).

Several theorems treat the existence and the support of these Fock space operators for
uniform MPSs [182, 338, 339]. Uniform MPSs represent translationally invariant states in
the TD limit. The support of a Fock space operator is the number of neighbouring physical
indices on which it acts. For finite lattices such operators can also be constructed, but for
virtual dimension D they act on O(D4) physical indices [338]. For most practical purposes,
this is the whole Hilbert space.

The excitation ansatz ∑
k

xkB̂†k |Φ
0〉 (6.80)

in terms of (general) Fock space operators B̂†k is known historically as the Feynman-Bijl
ansatz [340, 341] or the single-mode approximation [342, 343].

The single-site excitation ansatz
Bµ |Φ0

µ〉 (6.81)

of DMRG-TDA is local in the sense that is only able to capture particle excitations

â†jσâiσ |Φ0〉 (6.82)

for which i and j lie sufficiently close, |i− j| ≤ O(ln(D)) [153]. However, for such i and j,
it captures particle excitations of higher rank as well:

â†j↑â
†
j↓âi↓âi↑ |Φ

0〉 . (6.83)

The DMRG-CISD ansatz has also been used to determine the phase shift of scattering
momentum eigenfunctions in one-dimensional spin chains [344].





CHAPTER 7

Projector Monte Carlo with matrix product states

Creativity is the ability to introduce order into the randomness of nature.

– Eric Hoffer

7.1 Introduction

The two most prevalent types of quantum Monte Carlo (MC) are variational MC [345]
and projector or diffusion MC [346, 347]. In this chapter projector MC is introduced for
matrix product states, in complete analogy with constrained path quantum MC and its
phase-free extension for Slater determinants [348–350]. This method can hence be seen as
a new rung on the post-DMRG ladder.

Projector MC is introduced in section 7.2. The sign problem in fermionic systems can
be removed with the constrained path method, which is discussed in section 7.3. In sections
7.2 and 7.3, no specification of the wavefunction ansatz is made. Three specific flavours of
projector MC for MPS wavefunctions are proposed in section 7.4. For the auxiliary field
variant, the projector decomposition is complex-valued and the sign problem becomes a
phase problem. A strategy to eliminate the phase problem is given in section 7.5. Some
(preliminary) results for the three flavours are discussed in section 7.6.

7.2 Projector Monte Carlo

Consider a hermitian operator K̂. Its dominant eigenstate |Ψ∗〉 with largest eigenvalue in
magnitude λ can be obtained by repeated application of K̂ on a state |Ψ(0)〉, if this state

149
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has nonzero overlap with |Ψ∗〉:

lim
n→∞

(K̂)n |Ψ(0)〉 = lim
n→∞

|Ψ∗〉λn 〈Ψ∗ | Ψ(0)〉 . (7.1)

To find the ground state of a Hamiltonian Ĥ, possible choices for K̂ are e−δτĤ or (1−δτĤ).
For the latter, the positive time step δτ is bounded by

|1− δτE0| > |1− δτEmax|, (7.2)

with E0 and Emax respectively the minimum and maximum algebraic eigenvalues of Ĥ.
At each MC time step n, the wavefunction is represented by an ensemble of walkers:

|Ψ(n)〉 = (K̂)n |Ψ(0)〉 ≈
∑
φ

|φ〉 . (7.3)

These walkers can be, for example, real-space coordinates [346], SDs [348–350], or MPSs.
The operator K̂ is decomposed into a probability distribution function (PDF) P (x)

and the operators B̂(x) [346, 348]:

K̂ =
∑
x

P (x)B̂(x). (7.4)

For the method to be successful, the action of B̂(x) on a walker should not increase its
complexity. Real-space coordinates should just change positions. SDs should rotate into
SDs. The virtual dimension of MPS walkers should not grow.

At each MC time step n, for each walker |φ〉, an x is sampled with probability P (x),
and the walker is accordingly updated:

|φ′〉 = B̂(x) |φ〉 . (7.5)

After a sufficient amount of MC time steps, the ensemble stochastically represents |Ψ∗〉.

7.3 The sign problem

If everything is real-valued, there is sign symmetry in the sense that ± |Ψ∗〉 are equivalent
solutions. The two ensembles of walkers

±

(∑
φ

|φ〉

)
(7.6)

then represent the targeted state equally well. In projector MC, the walkers are propagated
independently, which is the source of the sign problem. Define the nodal planeN∗ [348, 349]:

|φ〉 ∈ N∗ ⇐⇒ 〈Ψ∗ | φ〉 = 0. (7.7)
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If |φ〉 can cross N∗ to reach − |φ〉 by successive application of some operators B̂(x), then
± |φ〉 will occur with equal probability after infinite MC time. Estimators, such as the
projected energy

E
(n)
P =

∑
φ 〈ΨP | Ĥ | φ〉∑
φ 〈ΨP | φ〉

, (7.8)

then suffer from a decaying signal-to-noise ratio because both the numerator and the
denominator vanish. For fermionic systems, this generally cannot be avoided. An exception
is the half-filled Hubbard model, for which a special decomposition (7.4) can be constructed
which avoids the sign problem [348, 349].

The signal can be recovered by constraining the paths of the walkers with a trial wave-
function |ΨT 〉 [348, 349]. The projector for walker |φ〉 is then changed to

K̂φ =
∑
x

P (x)
min

{
0, 〈ΨT | B̂(x) | φ〉

}
〈ΨT | φ〉

B̂(x) = Nφ

∑
x

P̃φ(x)B̂(x), (7.9)

where Nφ is a constant so that P̃φ(x) is a normalized PDF. There is now importance
sampling with respect to the overlap 〈ΨT | φ〉, and the paths of the walkers are constrained
to one side of the trial nodal plane NT .

With the constrained path projector (7.9), the walkers become weighted:∑
φ

wφ |φ〉 . (7.10)

The walkers |φ〉 are updated according to Eq. (7.5), with x drawn from P̃φ(x). The
nonnegative weigths wφ absorb the PDF normalization constant Nφ:

wφ′ = Nφwφ. (7.11)

Due to the importance sampling, a weighted walker wφ |φ〉 now contains the factor 〈ΨT | φ〉,
which is not present if the original projector (7.4) is used. To relate the ensemble of
weighted walkers to the state |Ψ(n)〉, this factor has to be removed. The state |Ψ(n)〉 and

the projected energy E
(n)
T are then:

|Ψ(n)〉 ∝
∑
φ

wφ |φ〉
〈ΨT | φ〉

, (7.12)

E
(n)
T =

∑
φwφ

〈ΨT |Ĥ|φ〉
〈ΨT |φ〉∑

φwφ
. (7.13)

The norm of |φ〉 cancels in Eqs. (7.12) and (7.13). Normalization of |φ〉 hence does not

change |Ψ(n)〉 or E
(n)
T . Care has to be taken that the overlap remains positive: 〈ΨT | φ〉 > 0.

The constrained path method eliminates the sign problem, but it introduces a system-
atic bias. The magnitude of the systematic bias depends on how good the trial wavefunction
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|ΨT 〉 represents |Ψ∗〉. Once a walker hits the nodal plane N∗, it will never contribute to
statistics anymore [348, 349]:

〈Ψ∗ | φ〉 = 0⇒ ∀n : 〈Ψ∗ | (K̂)n | φ〉 = 0. (7.14)

For exact |ΨT 〉, the systematic bias therefore vanishes. With real-space coordinates as
walker wavefunctions, the constrained path method is known as the fixed-node approxi-
mation.

Population control is used to duplicate walkers with large weights and to eliminate
walkers with small weights. bwφ + uc copies are made of walker |φ〉, with u drawn from
the uniform PDF on [0, 1[. The weights of the copies are set to 1. Stochastically, this
population control does not change the wavefunction |Ψ(n)〉.

7.4 Projector MC with matrix product states

The walkers |φ〉 and the trial wavefunction |ΨT 〉 are typically of the same ansatz type,
because the overlap 〈ΨT | φ〉 and the expectation value 〈ΨT | Ĥ | φ〉 can then be evaluated
cheaply. This is also the case for MPS wavefunctions.

Whereas an SD trial wavefunction provides a single variational approximation to the
ground state, an MPS allows to systematically improve the approximation to the ground
state by increasing the virtual dimension. This allows to assess the systematic bias due to
the constrained path method.

In this chapter, spin lattice Hamiltonians will be studied:

Ĥ =
1

2

∑
i,j

Jij ~̂Si · ~̂Sj + h
∑
i

Ŝzi . (7.15)

From a chemical Hamiltonian, a spin-1
2

lattice can be obtained by considering a half-filled
system (N = L) and by taking the limit of large local repulsion [351]. Each orbital is then
singly occupied. The only local degrees of freedom |ni〉 which remain are |↑〉 and |↓〉.

7.4.1 Sampling the matrix product operator

In complete analogy to the MPS construction in section 1.2.4, the Hamiltonian can be
decomposed into a matrix product operator (MPO):

〈n1n2...nL | Ĥ | ñ1ñ2...ñL〉 = Hn1n2...nL
ñ1ñ2...ñL

(7.16)

=
∑
{βk}

(
M [1]n1

ñ1

)
β1

(
M [2]n2

ñ2

)
β1;β2

(
M [3]n3

ñ3

)
β2;β3

...
(
M [L]nLñL

)
βL−1

. (7.17)

Except for sites 1 and L, the MPO tensors have rank 4. The pictorial representation of
an MPS was already introduced in Fig. 2.2. For an MPO, the pictorial representation
is shown in Fig. 7.1. The MPO tensors are represented by squares, physical indices by
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Figure 7.1: Matrix product operators. Tensors are represented by circles or squares, physical
indices by open lines, and virtual indices by connected lines. The graphs hence represent how the
FCI tensor is decomposed into an MPS and how the Hamiltonian is decomposed into an MPO.
The application of a Hamiltonian on a state yields another state. An MPS decomposition of the
latter can be easily obtained from the MPO and MPS decompositions of resp. the Hamiltonian
and the initial state.

open lines, and virtual indices by connected lines. The application of a Hamiltonian on
a state yields another state. An MPS decomposition of the latter can be easily obtained
from the MPO and MPS decompositions of respectively the Hamiltonian and the initial
state, as illustrated in Fig. 7.1. The virtual dimension of the result is the product of the
initial MPS and MPO virtual dimensions. The MPO of the Hamiltonian (7.15) can be
constructed analytically [250].

The set of operators B̂(x) should not increase the complexity of the MPS walkers, i.e.
their virtual dimension should not increase. One way to obtain such operators B̂(x) is by
constructing the MPO of the projector K̂ and by sampling the virtual dimension at each
virtual bond. Analogously to the gauge invariance of an MPS (see section 2.3.1), the MPO
has gauge invariance as well. Which gauge should be chosen, or should the gauge itself be
sampled?

We will consider the MPO of K̂ = (1− δτĤ) here. For certain gauge choices, there are
only a polynomial amount of nonzero terms which can be obtained by sampling its virtual
bonds. For example:

Î1Î2Î3Î4Î5Î6Î7Î8, (7.18)

−δτ J24

2
Î1Ŝ

+
2 Î3Ŝ

−
4 Î5Î6Î7Î8, (7.19)

−δτ J24

2
Î1Ŝ

−
2 Î3Ŝ

+
4 Î5Î6Î7Î8, (7.20)

−δτJ24 Î1Ŝ
z
2 Î3Ŝ

z
4 Î5Î6Î7Î8, ... (7.21)

In this example there are at most 1 + 3L(L−1)
2

nonzero operator strings. If certain elements
Jij vanish, there will be even less nonzero terms. Instead of working with the local operators
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(Ŝ+, Ŝ−, Ŝz), any unitary rotation among them can be used as well. With ~̂S = (Ŝx, Ŝy, Ŝz):

~̂Si · ~̂Sj =
(
~̂SiU

)
·
(
U† ~̂Sj

)
. (7.22)

The choice (Ŝ+, Ŝ−, Ŝz) might be unfortunate because the operators Ŝ+ and Ŝ− are always
singular, while the operators (Ŝx, Ŝy, Ŝz) are nonsingular for half-odd-integer spin. For the
spin-1

2
lattice studied in section 7.6, we even have

ŜxŜx = ŜyŜy = ŜzŜz =
1

4
Î . (7.23)

The individual walker paths are then always reversible. In section 7.6, MPO S+S− and MPO

SxSx will denote the special gauge choices of K̂ = (1− δτĤ) with resp. the local operators
(Ŝ+, Ŝ−, Ŝz) and (Ŝx, Ŝy, Ŝz). One should remember that for both choices, there are at

most 1 + 3L(L−1)
2

nonzero operator strings. Also note that while Ŝy is complex-valued, the

product Ŝyi Ŝ
y
j is always real-valued. The constrained path method can hence be employed.

7.4.2 Trotter decomposition

In this subsection, we study the projector K̂ = e−δτĤ . Consider its Trotter-Suzuki decom-
position [352, 353]:

e−δτĤ =
(
e−

hδτ
2

∑
i Ŝ

z
i

)(∏
i<j

e−δτJij
~̂Si· ~̂Sj

)(
e−

hδτ
2

∑
i Ŝ

z
i

)
+O(δτ 2). (7.24)

The first and last factors on the right-hand side (RHS) can be written as a single string of
local operators with the Baker-Campbell-Hausdorff formula [354, 355] because spin oper-
ators acting on different sites commute:

e−
hδτ
2

∑
i Ŝ

z
i ≡

∏
i

(
e−

hδτ
2
Ŝzi

)
. (7.25)

The other factors on the RHS act on a local Hilbert space of size (2S + 1)2, i.e. two sites
in the lattice. They can be considered two-site projectors, and can be decomposed into an
MPO as well:

〈ninj | e−δτJij
~̂Si· ~̂Sj | ñiñj〉 = K

ninj
ñiñj

=
∑
β

(
M [i]niñi

)
β

(
M [j]

nj
ñj

)
β
. (7.26)

The virtual dimension of such an MPO is (2S + 1)2. For each factor in Eq. (7.24), the
(single) virtual bond β can sampled. We have considered two sampling schemes. In the
first, an SVD is performed on K

ninj
ñiñj

, which defines the MPO decomposition as:

K
ninj
ñiñj

= K(niñi);(nj ñj) =
∑
β

U(niñi);βλβVβ;(nj ñj)

=
∑
β

(
U(niñi);β

√
λβ

)(√
λβVβ;(nj ñj)

)
=
∑
β

(
M [i]niñi

)
β

(
M [j]

nj
ñj

)
β
. (7.27)



7.4. Projector MC with matrix product states 155

For the spin-1
2

lattice studied in section 7.6, (2S + 1)2 = 4 and an SVD yields the MPO

e−δτJ
~̂Si· ~̂Sj =

(
3e−Jδτ/4 + e3Jδτ/4

4

)
ÎiÎj +

(
e−Jδτ/4 − e3Jδτ/4

)( Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

2
+ Ŝzi Ŝ

z
j

)
.

(7.28)
This sampling scheme is called Trotter Simple in section 7.6. Other gauges for the two-
site MPO decomposition can be chosen as well, and the gauge can even be sampled by
introducing additional stochastic variables:

K
ninj
ñiñj

=
d∑

β=1

(
M [i]niñi

)
β

(
M [j]

nj
ñj

)
β

=
d∑

β=1

M̂β
i M̂

β
j = ~̂Mi · ~̂Mj

= d

∫
d~nP (~n)

(
~Mi · ~n

)(
~n · ~Mj

)
(7.29)

where P (~n) is the uniform PDF on the (d− 1)-sphere with unit radius. A discrete grid of
points can also be set up. Suppose that with ~n = (n1, n2, ..., nd):

∀β, ni : P (n1, n2, ..., nβ, ..., nd) = P (n1, n2, ...,−nβ, ..., nd), (7.30)

∀i, j, nk : P (n1, ..., ni, ..., nj, ..., nd) = P (n1, ..., nj, ..., ni, ..., nd). (7.31)

Then ∫
dn1...dni−1dni+1...dndP (n1, ..., nd) = Pi(ni) = P1(ni). (7.32)

Pi(n) is hence independent of the index i. With N−1 =
∫
dnP1(n)n2:

~̂Mi · ~̂Mj = N
∫
dnP1(n)n2

∑
β M̂

β
i M̂

β
j = N

∫
d~nP (~n)

∑
β n

2
βM̂

β
i M̂

β
j

= N
∫
d~nP (~n)

∑
βγ

(
nβM̂

β
i

)(
nγM̂

γ
j

)
= N

∫
d~nP (~n)

(
~̂Mi · ~n

)(
~n · ~̂Mj

)
, (7.33)

where Eq. (7.30) was used to go from the first to the second line.
Now consider the points

xi = erf−1

(
2i+ 1

Npoints

− 1

)
i = 0, 1, ..., Npoints − 1. (7.34)

from which a discrete set of points on the (d− 1)-sphere with unit radius can be built:

~nij...l =
(xi, xj, ..., xl)√
x2
i + x2

j + ...+ x2
l

. (7.35)

If the PDF is only nonzero at these points, and uniform in these points, Eqs. (7.30)
and (7.31) are valid. This choice of discrete points on the unit sphere was inspired by
Marsaglia’s sphere picking algorithm [356] and will be called Trotter Sphere(Npoints) in
section 7.6.
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Table 7.1: Action of the operators (Î , Ŝx, Ŝy, Ŝz) on an MPS tensor of a spin-1
2 lattice. The

two MPS site-matrices
(
M↑,M↓

)
= (A,B) can be swapped and a relative minus sign can be

introduced.

Ô Action of Ô on
(
M↑,M↓) = (A,B)

Î (A,B)

Ŝx 1
2

(B,A)

Ŝy i
2

(−B,A)

Ŝz 1
2

(A,−B)

Without sampling the MPO gauge, it can occur that only discrete points in the walker
ansatz space can be reached. For the spin-1

2
lattice studied in section 7.6, this is the case

when the local operators (Î , Ŝx, Ŝy, Ŝz) are used. Action of these operators on an MPS
tensor yield the results in Table 7.1. The two MPS site-matrices can be swapped and a
relative minus sign can be introduced. For the entire lifetime of this walker, each MPS
tensor can only reach four possible states (up to a global factor).

7.4.3 Auxiliary fields

Auxiliary field quantum MC [348–350] also provides a way to decompose K̂ = e−δτĤ into
operators B̂(x) which do not increase the virtual dimension of the MPS walkers. Consider
the spectral decomposition of the symmetric matrix Jij in the Hamiltonian (7.15):

Jij =
∑
k

Vikγk(V
T )kj. (7.36)

With the operators

v̂xk =
∑
i

Ŝxi Vik
√
−γk, (7.37)

v̂yk =
∑
i

Ŝyi Vik
√
−γk, (7.38)

v̂zk =
∑
i

Ŝzi Vik
√
−γk, (7.39)

the Hamiltonian (7.15) can be rewritten as:

Ĥ = h
∑
i

Ŝzi −
∑
w,k

(v̂wk )2

2
= h

∑
i

Ŝzi −
~̂v2

2
, (7.40)
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with ~̂v = (vx1 , v
y
1 , v

z
1, v

x
2 , ...). With this quadratic form for the two-site interaction, a

Hubbard-Stratonovich transformation [357, 358] yields:

P (~x) =
e−~x

2/2

(2π)3L/2
, (7.41)

B̂(~x) = exp

(
−hδτ

2

∑
i

Ŝzi

)
exp

(√
δτ~x · ~̂v

)
exp

(
−hδτ

2

∑
i

Ŝzi

)
, (7.42)

e−δτĤ =

∫
d~xP (~x)B̂(~x) +O(δτ 2). (7.43)

The first and last factors on the RHS of Eq. (7.42) yield a single string of local operators
(see Eq. (7.25)). The middle factor can be decomposed as:

exp
(√

δτ~x · ~̂v
)
≡
∏
i

exp

(∑
w

Ŝwi
∑
k

Vikx
w
k

√
−γkδτ

)
. (7.44)

Note that Eq. (7.44) also corresponds to a single string of local operators, for the same
reasons as in Eq. (7.25). For each MPS walker, the auxiliary field ~x is sampled from P (~x)
and the walker is propagated with B̂(~x). This does not increase the virtual dimension of the
MPS walker. Because the projector decomposition in Eqs. (7.41)-(7.43) is complex-valued,
the fermion sign problem is now a phase problem.

7.5 The phase problem

For complex-valued parameterizations, there is phase symmetry in the sense that eiθ |Ψ∗〉
(with θ ∈ [0, 2π[) are equivalent solutions. The ensembles of walkers

eiθ

(∑
φ

|φ〉

)
, θ ∈ [0, 2π[ (7.45)

then represent the targeted state equally well. In projector MC, the walkers are propagated
independently, which is the source of the phase problem. The constrained path method
(see section 7.3) does not resolve the phase problem, and a different strategy is needed.
In this section, Zhang’s proposal for auxiliary field quantum MC is reviewed [350]. The
notation is again independent of the specific walker ansatz type, and relies only on the
Hubbard-Stratonovich transformation.

The projector in Eq. (7.43) does not change with the following translation:

K̂ =

∫
d~xP (~x− ~y)B̂(~x− ~y). (7.46)
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Importance sampling with respect to the overlap 〈ΨT | φ〉 with a trial wavefunction |ΨT 〉
is again introduced:

K̂φ =

∫
d~xP (~x− ~y)B̂(~x− ~y)

〈ΨT | B̂(~x− ~y) | φ〉
〈ΨT | φ〉

=

∫
d~xP (~x)B̂(~x− ~y)Wφ(~x, ~y), (7.47)

Wφ(~x, ~y) =
〈ΨT | B̂(~x− ~y) | φ〉

〈ΨT | φ〉
e~x·~y−~y·~y/2. (7.48)

The wavefunction is then again represented by Eq. (7.12). The vector ~y is chosen in order
to minimize the average fluctuations of lnWφ(~x, ~y) for variations in ~x [350]:

~y0
φ = −

√
δτ
〈ΨT | ~̂v | φ〉
〈ΨT | φ〉

+O(δτ). (7.49)

Wφ(~x, ~y0
φ) then becomes (approximately) independent of ~x:

Wφ(~x, ~y0
φ) ≈ W 0

φ = exp

[
−δτ 〈ΨT | Ĥ | φ〉

〈ΨT | φ〉

]
. (7.50)

The walkers are again weighted (see Eq. (7.10)). The weights absorb the ~x-independent
prefactor W 0

φ of the projector (7.47):

wφ′ = W 0
φwφ. (7.51)

The auxiliary field ~x is sampled from P (~x), and the walker is updated accordingly:

|φ′〉 = B̂(~x− ~y0
φ) |φ〉 . (7.52)

For an exact |ΨT 〉, the walker energy in Eq. (7.50) is real-valued. To adjust for
approximate |ΨT 〉, the walker energy is replaced by its real part in Eqs. (7.13) and (7.50):

W 0
φ = exp

[
−δτ<〈ΨT | Ĥ | φ〉

〈ΨT | φ〉

]
, (7.53)

E
(n)
T =

∑
φwφ<

〈ΨT |Ĥ|φ〉
〈ΨT |φ〉∑

φwφ
. (7.54)

Thus far only importance sampling was introduced. The phase problem can be elimi-
nated by changing W 0

φ to [350, 359]:

W̃ 0
φ = W 0

φ max(0, cos(∆θ)) ∆θ = = ln
〈ΨT | B̂(~x− ~y0

φ) | φ〉
〈ΨT | φ〉

. (7.55)

This introduces a systematic bias for approximate |ΨT 〉. The bias vanishes when |ΨT 〉
becomes exact. For real-valued parametrizations, this phase-free approach reduces to the
constrained path method of section 7.3.
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Figure 7.2: MC time evolution of the projected energy. An ensemble of NW = 1000 walkers
was propagated with the Trotter Simple projector with δτ = 0.01, for the spin-1

2 Heisenberg
model on the 4 × 4 torus. The virtual dimension of the trial and walker wavefunctions was
DT = DW = 4.

7.6 Results and discussion

In this section, some (preliminary) results are presented for the abovementioned methods:
MPO SxSx, MPO S+S−, Trotter Simple, Trotter Sphere(Npoints), and AFQMC.

7.6.1 The studied system

The spin-1
2

Heisenberg model [351] was studied on a 4×4 torus (square lattice with periodic
boundary conditions). Only the nearest-neighbour coupling J = 1 is then nonzero. No
magnetic field is present: h = 0.

The results were obtained with DT = DW , i.e. equal trial (DT ) and walker (DW ) virtual
dimensions. However, it should be mentioned that for 2 ≤ DW ≤ DT , the results are not
noticably influenced by the specific choice of DW . The number of walkers was taken to be
NW = 1000. This number does not influence the outcome, only the statistical fluctations
on the outcome. The time step was taken to be δτ = 0.01. This time step influences the
error of expansions such as Eq. (7.24). It should also be chosen small enough so that Eq.
(7.2) remains valid.
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Figure 7.3: Autocorrelation function of the projected energies in Fig. 7.2.

7.6.2 Statistical error

An example of the MC time evolution of the projected energy is shown in Fig. 7.2. The
projected energy is not variational. After an initial transition period, E

(n)
T fluctuates around

a mean value. This initial transition period is removed for what follows. The samples in
an MC time series {E1E2...En} can be correlated [360]. Consider their mean:

m =
1

n

n∑
k=1

En. (7.56)

The autocorrelation function

cEE(t) =
1

n− t

n−t∑
k=1

(Ek −m)(Ek+t −m) ∝ exp

(
− t

τcorr

)
(7.57)

allows to estimate the correlation time τcorr (measured in number of MC steps), see Figs.
7.3 and 7.4. Two samples can only be considered independent if they are separated by
several correlation times τcorr in MC time. The statistical error on Eq. (7.56) can be
estimated as [360]

σstat(m) =

√
2τcorrcEE(0)

n− 1
≈
√

2× 28× 4.2 10−3

4.1 105
= 2.4 10−3. (7.58)

Another way to estimate the statistical error on Eq. (7.56) is the blocking method [361].
Start with blocking step k = 0. The variance of the (possibly correlated) samples is

σ2
estim[k] =

c0

n− 1
. (7.59)
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Figure 7.4: Estimation of τcorr from the autocorrelation function in Fig. 7.3.

With the blocking transformation:

n ← n

2
, (7.60)

Ei ←
E2i + E2i+1

2
, (7.61)

m ← m, (7.62)

k ← k + 1, (7.63)

the sample size is halved. After sufficient blocking steps the samples become independent,
and σ2

estim[k] becomes flat with respect to additional blocking steps k. For even more
blocking steps, the sample population becomes too small, and σ2

estim[k] becomes noisy.
When σ2

estim[k] becomes flat with k, the samples Ei are independent gaussian variables
(due to the central limit theorem). An error estimate can hence be made of the statistical
error [361]:

σstat(m) ≈
√
σ2

estim[k]

(
1± 1√

2(n− 1)

)
. (7.64)

The blocking method is illustrated in Fig. 7.5 for the projected energies in Fig. 7.2. It
yields σstat(m) ≈ 2.5 10−3, which complies well with Eq. (7.58).
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Figure 7.5: Illustration of the blocking method for the projected energies in Fig. 7.2.

7.6.3 Systematic error

The systematic error cannot be estimated by using a single trial wavefunction |ΨT 〉. With
increasing DT , the optimized trial wavefunction |ΨT 〉 becomes a better approximation of
the true ground state |Ψ∗〉, which allows to estimate and/or remove the systematic bias.
This is illustrated in Fig. 7.6.

For the methods MPO SxSx, Trotter Sphere(4), and AFQMC, in which the sampled
local operators are nonsingular, the systematic bias becomes systematically smaller with
increasing DT . Of these three methods, AFQMC performs significantly better. For the
methods MPO S+S− and Trotter Simple, in which the sampled local operators Ŝ+ and
Ŝ− are singular, the systematic error shows no clear behaviour with increasing DT . The

mean projected energies E
(n)
T are however slightly better than those obtained with AFQMC

for larger DT . The systematic error can only be removed if its behaviour as a function of
DT can be predicted. The statistical errors are also the smallest for AFQMC. Based on our
exploratory calculations, AFQMC therefore seems the most promising method.

For AFQMC and Trotter, there is also a systematic error due to the finite time step
δτ . This systematic error can again be estimated and/or removed by considering a few
different time steps.

7.6.4 Outlook

We have used AFQMC with MPS walkers to study the J1-J2 model [362] on larger lattices,
in order to investigate the true potential of the method (see Ref. [363]). We have observed
that the walker virtual dimension can be kept constant at DW = 2, without loss of accuracy.



7.6. Results and discussion 163

2 4 6 8 10
DT

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

E
(n

)
T

FCI
DMRG
MPO S+ S−
MPO Sx Sx

Trotter Simple
Trotter Sphere(4)
AFQMC

Figure 7.6: In the contrained path and phase-free methods, the systematic error due to the
trial wavefunction |ΨT 〉 can be estimated and/or removed by increasing its virtual dimension DT .

Projector MC therefore scales as O(D2
T ) (at least after the O(D3

T ) DMRG ground state
calculation has been performed). As can be observed from Fig. 7.6, the AFQMC energies
are significantly better than the DMRG energies, and the DMRG algorithm would require
significantly larger virtual dimensions to yield results of the same accuracy. At the same
time, the use of an MPS trial wavefunction allows for a systematic improvement of the
nodal plane (fixed-node approximation) by increasing its virtual dimension DT , which
allows to estimate and remove the corresponding systematic bias.

DMRG is a very efficient ground state algorithm for the MPS ansatz. For other TNSs,
the ground state optimization algorithms are currently less efficient, and it is likely that
projector MC can also yield a performance gain for these ansatzes.





CHAPTER 8

Summary, conclusions and outlook

Happy is the person who knows what to remember of the past, what to enjoy in
the present, and what to plan for in the future.

– Arnold H. Glasow

8.1 Summary and conclusions

Quantum chemistry tries to predict molecular structure and corresponding energy differ-
ences at experimental accuracy. Not all physical effects are relevant for this prediction.
The nonrelativistic quantum mechanical description of electrostatically interacting elec-
trons and nuclei is usually sufficient. The electronic motion decouples from the nuclear
motion due to the different mass scales of both. Molecular structure prediction therefore
boils down to molecular electronic structure calculations. To make calculations feasible,
a finite single-particle basis set is introduced, which transforms the Schrödinger equation
into an algebraic eigenvalue equation.

With L spin-independent spatial orbitals and second quantization, this algebraic equa-
tion can be formulated as the diagonalization of the Hamiltonian

Ĥe = E0 +
∑
ij

(i|T̂ |j)
∑
σ

â†iσâjσ +
1

2

∑
ijkl

(ij|V̂ |kl)
∑
στ

â†iσâ
†
jτ âlτ âkσ (1.26)

in the occupation number basis

|n1↑n1↓n2↑...nL↑nL↓〉 =
(
â†1↑

)n1↑
(
â†1↓

)n1↓
(
â†2↑

)n2↑
...
(
â†L↑

)nL↑ (
â†L↓

)nL↓
|−〉 . (1.25)
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Greek letters denote electron spin projections and Latin letters spin-independent spatial
orbitals. With |ni〉 = |ni↑ni↓〉, the exact solution can be written as

|Ψ〉 =
∑
{nj}

Cn1n2...nL |n1n2...nL〉 . (1.36)

For N electrons in L orbitals, the number of variables in this solution grows as
(

2L
N

)
,

i.e. faster than polynomially in L. Approximate solution methods are required. The
density matrix renormalization group (DMRG) uses a matrix product state (MPS) ansatz
to approximate the C-tensor in Eq. (1.36) as a contracted product of matrices

Cn1n2...nL =
∑
{αk}

A[1]n1
α1
A[2]n2

α1;α2
A[3]n3

α2;α3
...A[L− 1]nL−1

αL−2;αL−1
A[L]nLαL−1

, (1.37)

with
dim (αj) = min

(
4j, 4L−j, D

)
. (1.39)

D is called the virtual dimension of the MPS (with open boundary conditions) and controls
the size of the corner of the Hilbert space which can approximated by Eq. (1.37).

In chapter 2, the DMRG algorithm for quantum chemistry is discussed. DMRG is a
renormalization group flow for increasing many-body Hilbert spaces. It can also be formu-
lated as the variational optimization of an MPS. In the thermodynamic limit, the virtual
dimension truncation of an MPS results in exponentially decaying correlation functions:

CMPS(∆x) ∝ e−α∆x, (2.11)

for two sites which are separated by a distance ∆x on the one-dimensional DMRG lattice.
This type of correlation function is typical for ground states of noncritical (gapped) one-
dimensional Hamiltonians. For such systems, DMRG works extremely well. The Schmidt
decomposition

|Ψ〉 =
∑
ij

Cij |Ai〉 |Bj〉 =
∑
ijk

UikσkV
†
kj |Ai〉 |Bj〉 =

∑
k

σk |Ãk〉 |B̃k〉 (2.2)

for the bipartition of the one-dimensional lattice in two semi-infinite halves then has a
fast-decaying Schmidt spectrum σk, and its truncation is then a good approximation. In
quantum chemistry, the active orbital spaces of interest are often far from one-dimensional.
DMRG can still be of use, but larger virtual dimensions D are then required.

The gauge freedom of an MPS allows to formulate the simultaneous variational opti-
mization of two neighbouring MPS tensors in Eq. (1.37), the so-called micro-iteration, as
a numerically stable standard Hermitian eigenvalue problem:

H[i]effB[i] = EiB[i]. (2.28)

Once the lowest energy state of this eigenvalue equation is found, it is decomposed with a
singular value decomposition. This decomposition can be related to the Schmidt decom-
position of the orbital space. The optimal approximation is obtained by keeping the D
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largest Schmidt values. This micro-iteration is performed repeatedly at stepwise changing
positions in the one-dimensional DMRG lattice, during the so-called sweeps or macro-
iterations. DMRG can hence be regarded as a self-consistent mean-field theory in the
lattice sites. H[i]eff is too large to be fully constructed and only its action on a particular
guess B[i] is available as a function. In order to perform this multiplication efficiently,
renormalized operators as well as complementary renormalized operators are constructed.
This limits the total cost per macro-iteration to O(L4D2 + L3D3) in computational time,
O(L2D2) in memory, and O(L3D2) in disk. If certain two-body matrix elements (ij|V̂ |kl)
can be numerically neglected, for example in one-dimensional systems, this cost can be
reduced. The use of symmetry reduces this cost as well.

Due to the underlying MPS ansatz, the energies obtained with Eq. (2.28) are upper
bounds to the exact ground state energy. With increasing virtual dimension D, lower
energies are obtained, and several successful extrapolation schemes have been proposed.
The fundamental difference of the MPS ansatz with a configuration interaction expansion is
revealed by taking the Hartree-Fock single-particle states as the orthonormal basis for Eq.
(1.25). An MPS does not restrict the rank of possible particle excitations relative to the
Hartree-Fock reference, but correlates them instead. A configuration interaction expansion
restricts the particle-excitation rank, but leaves the allowed excitations uncorrelated. The
MPS ansatz is size-consistent for proper orbital orderings.

A renormalization group flow such as DMRG depends on the specific setup. The two-
site algorithm is less lickely to get stuck in local minima than its one-site counterpart.
Adding noise or perturbative corrections during the initial sweeps helps to reintroduce lost
quantum numbers. A good starting guess is also important, as well as the orbital choice
and ordering. Thus far, several rules of thumb have been established regarding the latter.
For elongated molecules such as polyenes, it is best to use an orthonormal basis of localized
orbitals, and to place them according to the molecular topology on the one-dimensional
DMRG lattice. The exchange matrix Kij = (ij|V̂ |ji) directly reflects the overlap and the
distance between localized orbitals, and can be used to order them. Based on the two-
orbital mutual information, it was observed that for compact molecules the orbitals are
best grouped per irreducible representation (irrep) of the molecular point group, and that
bonding and anti-bonding irreps should be placed adjacent. The question regarding the
orbital choice and ordering is currently only partially answered, and the author believes
that further research in this direction can improve the DMRG algorithm significantly.

DMRG can currently handle active spaces up to 40 electrons in 40 orbitals. It is there-
fore ideal to replace the full configuration interaction solver in the complete active space
self-consistent field method (DMRG-SCF). This allows to capture static correlation in
the active space. Dynamic correlation can be added subsequently by perturbation theory
(DMRG-CASPT2), a multireference configuration interaction expansion (DMRG-MRCI),
or an exponential ansatz (inspired by coupled-cluster theory) such as canonical transfor-
mation theory (DMRG-CT). Due to its ability to handle rather large active spaces, DMRG
is ideal to tackle large π-conjugated systems as well as transition metal clusters. Many
properties have been studied in a wide variety of systems, and DMRG is a continuously
growing field within quantum chemistry.
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The symmetry group of the Hamiltonian (1.26) contains SU(2) spin symmetry, U(1)
particle-number symmetry, and the molecular point-group symmetry P. This symmetry
group can be used to reduce the dimensionality of the exact diagonalization problem. The
Hamiltonian does not connect states which belong to different irreps, or to different rows
of the same irrep. By choosing a basis of symmetry eigenvectors, the Hamiltonian becomes
block diagonal, and each block can be diagonalized separately.

In chapter 3, we discuss how to construct MPS wavefunctions which are symmetry
eigenstates. In our code, we only use the abelian point groups with real-valued character
tables:

P ∈ {C1, Ci, C2, Cs, D2, C2v, C2h, D2h}. (3.15)

The spatial orbitals are then constructed so that they transform according to a particular
irrep I of P. To ensure that an MPS is a symmetry eigenstate, the MPS tensors should be
irreducible tensor operators of the symmetry group. When the local and virtual basis states
are labelled according to the symmetry, it follows from the Wigner-Eckart theorem that
each MPS tensor then factorizes into Clebsch-Gordan coefficients and a reduced tensor:

A[i]
(sszNI)
(jLj

z
LNLILαL);(jRj

z
RNRIRαR) = 〈jLjzLssz | jRjzR〉 δNL+N,NRδIL⊗I,IRT [i]

(sNI)
(jLNLILαL);(jRNRIRαR).

(3.22)
In this equation, s and j denote the total spin, sz and jz the spin projection, N the
particle number, and I the point group irrep. Eq. (3.22) results in block-sparsity and
information compression. If a Clebsch-Gordan coefficient is zero, the corresponding block
in the T [i]-tensor does not have to be allocated. For the symmetry sector (jLNLIL), there
are D(jLNLIL) = size(αL) reduced virtual basis states in the T [i]-tensor, which effectively
represent (2jL + 1)D(jLNLIL) virtual basis states in the A[i]-tensor. This block-sparsity
and compression lead to reductions in memory and computational time.

The desired global symmetry (SG, NG, IG) can be imposed with the singlet-embedding
strategy. The leftmost MPS tensor in the chain then only has the trivial symmetry sector
in its left virtual boundary, with reduced virtual dimension 1. The rightmost MPS tensor
then only has the symmetry sector (SG, NG, IG) in its right virtual boundary, with reduced
virtual dimension 1.

The operators
b̂†cγ = â†cγ (3.49)

b̂cγ = (−1)
1
2
−γ âc−γ (3.50)

for orbital c correspond to resp. the (s = 1
2
, sz = γ,N = 1, Ic) row of irrep (s = 1

2
, N = 1, Ic)

and the (s = 1
2
, sz = γ,N = −1, Ic) row of irrep (s = 1

2
, N = −1, Ic). b̂

† and b̂ are hence
both doublet irreducible tensor operators. This fact permits exploitation of the Wigner-
Eckart theorem also for operators and (complementary) renormalized operators. Contract-
ing terms of the type (3.22) and (3.49)-(3.50) can be done by implicitly summing over the
common multiplets and recoupling the local, virtual and operator spins. (Complementary)
renormalized operators then formally consist of terms containing Clebsch-Gordan coeffi-
cients and reduced tensors. In our code, only the reduced tensors need to be calculated,
and Wigner 3-j symbols or Clebsch-Gordan coefficients are never used.
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Due to the abelian point group symmetry P, the two-body matrix elements (ij|V̂ |kl)
of the Hamiltonian (1.26) are only nonzero if Ii ⊗ Ij = Ik ⊗ Il. If P is nontrivial, this con-
siderably reduces the number of terms in the construction of complementary renormalized
operators, and in the multiplication in Eq. (2.28). The exploitation of non-abelian spatial
symmetries is also discussed in chapter 3.

In chapter 4, one-dimensional hydrogen chains were studied. Although the Coulomb
interaction is nonlocal, these chains require only a small virtual dimension. Due to the mu-
tual screening of nuclei and electrons, the Coulomb interaction can be considered effectively
local in this system, which renders it an ideal test case for DMRG.

Equidistant hydrogen chains,

H H H H H H H H
R R R R R R R , (4.34)

exhibit a large amount of static correlation for large internuclear distances R. Band theory
predicts that this system is a conductor, while for large internuclear distances the electrons
are localized on the nuclei. The system is therefore a Mott insulator. When the internuclear
distance decreases, the system goes trough a metal-insulator transition. The electrons
become more delocalized, and as the phase transition is approached (from the insulator
region), the reduced Schmidt spectrum starts to decay more slowly. This can be explained
by the excitation gap, which closes in the metallic regime. In this regime, two other
quantities simultaneously diverge: the static dipole polarizability per electron and the
fluctuation of the dipole moment per electron. The rate of divergence with increasing
system size was obtained for both quantities at several internuclear distances. Both metallic
and insulating regions were observed.

The equidistant hydrogen chain cannot exist due to the Peierls instability, and it dimer-
izes into H2 molecules. Consider the one-dimensional dimerized hydrogen chain,

H H......H H......H H......H H
Rf R Rf R Rf R Rf , (4.35)

with intramolecular distance Rf and intermolecular distance R. For fixed intramolecular
distance (with Rf < R) the static correlation remains roughly the same, and only the
electron delocalization changes with R. We have studied the response of this system to
an external electric field by means of the longitudinal static dipole polarizability αzz and
second hyperpolarizability γzzzz, obtained with the finite-field method. In the insulating
regime, both quantities eventually grow linearly with chain length, and the values per
molecule can be extrapolated to the thermodynamic limit. We have observed that the
minimal basis set STO-6G does not suffice. Inclusion of an extra s-orbital per atom (6-31G
basis) improved the results significantly. The additional inclusion of three extra p-orbitals
(6-31G(d,p) basis) had only a minor effect. Coupled cluster theory with single and double
excitations, and with triple excitations in perturbation (CCSD(T)), is at present the golden
standard of quantum chemistry. To study the performance of other approximative methods,
CCSD(T) is often used as reference. In our study, the DMRG results are indistinguishable
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from exact diagonalization, and they were used to assess the performance of CCSD(T)
to calculate the static dipole second hyperpolarizability. As the electrons become more
delocalized, i.e. with decreasing intermolecular distance, the performance of CCSD(T)
decays. With increasing electron delocalization, an increasing amount of electrons are
involved in the response to an electric field, and CCSD(T) can only correlate a limited
amount of electrons. The power law

γ(M) ∝Ma(M) (4.39)

is often proposed for the increase of γzzzz with the number of molecules M in the chain.
The parameter a(M) varies only slowly with M . For the systems and basis sets for which
a(M) was nearly equal to one for the largest chains under consideration, we were able to
accurately extrapolate the longitudinal static second hyperpolarizability to the thermody-
namic limit. The polarizability could be accurately extrapolated to the thermodynamic
limit for all the systems and basis sets we have studied.

In chapter 5, we studied the carbon dimer. Its π-bonds are of the charge-shift type, and
it has recently been debated whether the carbon dimer has a quadruple bond. The ground
state has significant multireference character, and many crossings and avoided crossings
occur between its low-lying states. The carbon dimer is therefore a good system to test
the capabilities of our DMRG code. We have obtained the twelve lowest bond dissociation
curves to 0.01 mEh accuracy in the cc-pVDZ basis. Due to the SU(2), U(1), and abelian P
symmetries in our code, these states were mainly resolved by targeting different symmetry
sectors of the many-body Hilbert space. The particle number was always N = 12, and
SD2h symmetry (right) was used to target the original SD∞h symmetry (left):

X1Σ+
g ;B1∆g;B

′1Σ+
g → 1Ag (5.39)

c3Σ+
u ; 13∆u; 23Σ+

u → 3B1u (5.40)

C1Πg → 1B2g (5.41)

A1Πu → 1B2u (5.42)

11Σ−u → 1Au (5.43)

b3Σ−g → 3B1g (5.44)

d3Πg → 3B2g (5.45)

a3Πu → 3B2u. (5.46)

Within the 1Ag and 3B1u sectors, two excited states were calculated by projecting out
lower-lying eigenstates. Their D∞h symmetries were distinguished by looking at the rel-
ative phases of the coefficients of two Slater determinants. We have also estimated the
importance of core and core-valence correlation by comparing DMRG(36o,12e) and DMRG-
SCF(34o,8e) calculations in the cc-pCVDZ basis. In the DMRG-SCF calculations, the two
1s orbitals of the carbon atoms were kept doubly occupied. The non-parallellity error was
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of the order of 2 mEh, while the energy difference between both curves was about 75 mEh.
To capture the core and core-valence correlation, as well as the correct core dynamics in
the united atom limit (small internuclear distance), the basis set should be augmented with
extra orbitals for the closed shells.

DMRG can resolve excited states by projecting out lower-lying eigenstates or by tar-
geting a specific energy. These are state-specific DMRG algorithms, because the whole
virtual basis is used to represent one single eigenstate. In state-averaged DMRG, the vir-
tual basis is constructed to target several eigenstates at once. Linear response theory for
DMRG (DMRG-LRT) can be used as well to find excited states. DMRG-LRT is discussed
in chapter 6.

In that chapter, we explore the analogy between Hartree-Fock theory and DMRG.
Both methods can be formulated as the variational optimization of a wavefunction ansatz, a
Slater determinant for Hartree-Fock theory and an MPS for DMRG. The time-independent
variational principle yields self-consistent mean-field equations for the particles in Hartree-
Fock theory, and for the lattice sites in DMRG. The gauge invariance of the wavefunction
can be used to simplify the self-consistent mean-field equations to standard eigenvalue prob-
lems. In Hartree-Fock theory, the gauge freedom can be used to construct single-particle
states which are eigenvectors of the Fock operator. In DMRG, the gauge freedom can be
used to construct MPS site tensors which are eigenvectors of the effective Hamiltonian.

The time-dependent variational principle generates time-evolution equations for the
wavefunction, which stay within the ansatz space. Linearization of these equations near a
variational minimum leads to the random-phase approximation (RPA). A small time step
connects a wavefunction with its first order tangent space. For Hartree-Fock theory, this
space is spanned by the single-particle excitations, which correspond to the replacement
of occupied orbitals with virtual orbitals. For DMRG, this space is spanned by the single-
site excitations, which correspond to the replacement of retained virtual basis states with
discarded ones. Exponentiation of the single-particle excitations leads to the Thouless
theorem for Hartree-Fock theory, an explicit nonredundant parameterization for the entire
manifold of Slater determinants. We have proven the DMRG counterpart in chapter 6.
Expansion of the Thouless theorem leads to the configuration interaction expansion. For
Hartree-Fock theory, the first-order terms yield the configuration interaction with singles
(CIS), also called the Tamm-Dancoff approximation (TDA). The same names are used
for DMRG: DMRG-CIS or DMRG-TDA. A variational optimization in this tangent space
yields approximate excited states. For Hartree-Fock theory, the second-order terms yield
the configuration interaction with singles and doubles (CISD). The same name is used for
DMRG: DMRG-CISD. A variational optimization in this space yields both an improved
description of the ground state, as well as approximate excited states.

We have performed DMRG-CISD calculations for the one-dimensional Hubbard chain.
For small virtual dimensions, the variational DMRG-CISD ground state energy is sig-
nificantly lower than the DMRG result, and the DMRG-CISD excitation energies are also
better than the DMRG-TDA energies. Delocalized two-site excitations are not captured by
DMRG-TDA, but these can be retrieved by DMRG-CISD. This has to be compared with
Hartree-Fock theory, where TDA does not capture two-particle excitations, while CISD
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does. We have also successfully calculated low-lying singlet excited states of polyenes with
both DMRG-TDA and DMRG-RPA. The π-system of these molecules was parameterized
with the Pariser-Parr-Pople Hamiltonian.

DMRG-RPA is able to retrieve the Goldstone boson for a ground state which breaks
a continuous symmetry. We have performed a proof-of-principle calculation for a spin
doublet ground state of the one-dimensional Hubbard model.

In chapter 7, projector Monte Carlo for MPS wavefunctions is discussed. The eigenvec-
tor |Ψ∗〉 with largest eigenvalue in magnitude of a Hermitian operator K̂ can be retrieved
by repeated application of K̂ on an initial wavefunction |Ψ(0)〉. At each Monte Carlo time
step n, the wavefunction is approximated by an ensemble of walkers:

|Ψ(n)〉 = (K̂)n |Ψ(0)〉 ≈
∑
φ

|φ〉 . (7.3)

The operator K̂ is decomposed into a probability distribution function P (x) and a set of
operators B̂(x):

K̂ =
∑
x

P (x)B̂(x). (7.4)

For the method to be successful, the operators B̂(x) are chosen so that they do not increase
the complexity of the walkers. At each Monte Carlo time step n, for each walker |φ〉, an x is
drawn from P (x), and the walker is updated with B̂(x). With this stochastic propagation
of the ensemble, an approximation for |Ψ∗〉 is obtained. When the walkers are Slater

determinants, a possible (and often used) decomposition for K̂ = e−δτĤ can obtained with
the Hubbard-Stratonovich transformation.

For real-valued (complex-valued) parameterizations, the fermion sign (phase) problem
can be removed by constraining the walker paths with a trial wavefunction |ΨT 〉. This
introduces a systematic bias into the Monte Carlo propagation, which has an effect on
estimators such as, for example, the projected energy. The magnitude of this systematic
bias depends on how good |ΨT 〉 represents |Ψ∗〉. For an exact trial wavefunction, the
systematic bias vanishes.

The walkers and the trial wavefunction are typically of the same ansatz type, as this
allows to calculate overlaps and expectation values cheaply. The advantage of MPS trial
wavefunctions over Slater determinants is that they can be systematically improved by
increasing their virtual dimension. When the corresponding systematic bias shows a clear
decreasing trend with increasing virtual dimension, it might be possible to estimate and
remove this bias.

In chapter 7, we have studied the spin-1
2

Heisenberg model on a 4 × 4 torus. Three
decompositions (7.4) were tested: (1) sampling the virtual bonds of the matrix product

operator for K̂; (2) performing a Trotter decomposition of K̂ = e−δτĤ , and sampling the
virtual bonds of the corresponding two-site matrix product operators; and (3) performing
a Hubbard-Stratonovich transformation (for spin systems), which yields a set of auxiliary
fields to sample. We have observed that for fixed gauge choices of the matrix product
operator, it is best to avoid singular local operators such as Ŝ+, as then no clear behaviour
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of the systematic bias was obtained with increasing virtual dimension. Of the three tested
methods, the auxiliary-field quantum Monte Carlo variant seems the most promising.

8.2 Outlook

The DMRG algorithm is well understood by means of the underlying MPS wavefunction.
This allows to assess DMRG with concepts from quantum information theory. The large-D
regime of DMRG, when the solution becomes quasi-exact, has been explored extensively.
Accurate extrapolation schemes are known for the evolution of the variational energy with
increasing virtual dimension D, or with decreasing discarded weight. The use of symmetry
to reduce the computational cost is also well understood. Most progress in the large-D
regime can still be made in the orbital choice and ordering.

The question regarding the optimal orbital choice and ordering can be addressed with
the two-orbital mutual information. As its gradient and Hessian with respect to orbital
rotations can be evaluated efficiently, it might be worthwhile to test whether a Newton-
Raphson optimization of this information measure can yield extra rules of thumb.

Planned future improvements of our DMRG code include the optimization of the
DMRG-SCF loop around the DMRG algorithm, an MPI implementation of the DMRG
algorithm, and the inclusion of dynamic correlation on top of the DMRG-SCF loop.

We are currently performing DMRG-SCF calculations on the oxo-Mn(salen) complex.
A large active space (≥ 40 orbitals) was selected around the Fermi level, and a subse-
quent intermediate-D DMRG calculation was used to find approximate natural orbitals
and corresponding occupation numbers. Based on this initial calculation, a smaller active
space was selected and optimized with DMRG-SCF. The active space of 17 orbitals from
Gagliardi et al. [364] was thereby augmented with two extra π-orbitals in the π-conjugated
backbone. A total of ten π-orbitals is then explicitly correlated for this backbone consisting
of ten atoms (six carbon, two nitrogen, and two oxygen atoms). We also found that the
3dx2−y2 orbital of manganese interacts with the in-plane π-orbitals of the oxygen and nitro-
gen atoms of this backbone, which required the inclusion of three additional orbitals in the
active space. By adding dynamic correlation (and relativistic effects), DMRG should then
be able to settle the discussion on the relative energies of the singlet, triplet and quintet
states of this complex.

Planned applications for the future include a more thorough study of the metal-insulator
transition in equidistant hydrogen chains, an assessment of the correlation between the
transition metal atoms and the π-conjugated backbone in metal-organic frameworks (and
its implications for DFT studies), and tackling the active space of the bucky ball (60
electrons in 60 π-orbitals) with the MPI implementation of our DMRG code.

The exploration of post-DMRG methods has only started recently, and there is much
room for improvement. We have performed promising auxiliary-field quantum Monte Carlo
calculations with MPS walkers. The extension to other tensor network states still has to
be explored. The calculation of low-lying excitations with DMRG-TDA fails if such an
excitation involves two orbitals which lie far apart on the one-dimensional DMRG lattice.
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Low-rank decompositions of the DMRG-CISD ansatz should allow to resolve this problem.
For one-dimensional chemical systems such as all-trans polyenes, a uniform MPS ansatz

can be proposed directly in the thermodynamic limit. Because an MPS only captures expo-
nentially decaying correlation functions (see Eq. (2.11)), there is a cutoff distance beyond
which the required density correlations 〈n̂in̂i+k〉 for the Coulomb interaction numerically
factorize to 〈n̂i〉 〈n̂i+k〉. In conjunction with the ideas introduced in section 2.7.1, this
might render the uniform MPS a workable ansatz for ab initio quantum chemistry.



Bibliography

[1] E. Schrödinger. Quantisierung als Eigenwertproblem (Erste Mitteilung). Annalen
der Physik, 79(4):361–376, 1926. doi: 10.1002/andp.19263840404.
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Nederlandstalige samenvatting

Een boek: het stoffelijk overschot van een idee.
– Eric van der Steen

Kwantumchemie probeert moleculaire structuur en de corresponderende energiever-
schillen te voorspellen tot op experimentele nauwkeurigheid. Niet alle fysische effecten
zijn daarvoor van belang. De niet-relativistische kwantummechanische beschrijving van
elektrostatisch interagerende elektronen en kernen is doorgaans voldoende. De elektroni-
sche beweging ontkoppelt van de kernbeweging door hun sterk verschillende massas. De
voorspelling van moleculaire structuur komt daarom neer op de berekening van elektro-
nische structuur. Om berekeningen mogelijk te maken wordt een eindige ééndeeltjesbasis
gëıntroduceerd die de Schrödingervergelijking transformeert in een algebräısche eigenwaar-
devergelijking.

Met L spinonafhankelijke ruimtelijke orbitalen en tweede kwantisatie kan deze alge-
bräısche vergelijking geformuleerd worden als de diagonalisatie van de Hamiltoniaan

Ĥe = E0 +
∑
ij

(i|T̂ |j)
∑
σ

â†iσâjσ +
1

2

∑
ijkl

(ij|V̂ |kl)
∑
στ

â†iσâ
†
jτ âlτ âkσ (1.26)

in de bezettingsgetalbasis

|n1↑n1↓n2↑...nL↑nL↓〉 =
(
â†1↑

)n1↑
(
â†1↓

)n1↓
(
â†2↑

)n2↑
...
(
â†L↑

)nL↑ (
â†L↓

)nL↓
|−〉 . (1.25)

Griekse letters duiden de spinprojecties van de elektronen aan en Latijnse letters de spinon-
afhankelijke ruimtelijke orbitalen. Met |ni〉 = |ni↑ni↓〉 kan de exacte oplossing geschreven
worden als

|Ψ〉 =
∑
{nj}

Cn1n2...nL |n1n2...nL〉 . (1.36)

Voor N elektronen in L orbitalen groeit het aantal variabelen in deze oplossing als
(

2L
N

)
,

dus sneller dan polynomiaal in L. Benaderende oplossingsmethoden zijn derhalve nodig.
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De dichtheidsmatrixrenormalisatiegroep (DMRG) gebruikt als aanzet een matrixproduct-
toestand (MPS) om de C-tensor in vgl. (1.36) te benaderen als een gecontraheerd product
van matrices

Cn1n2...nL =
∑
{αk}

A[1]n1
α1
A[2]n2

α1;α2
A[3]n3

α2;α3
...A[L− 1]nL−1

αL−2;αL−1
A[L]nLαL−1

, (1.37)

met
dim (αj) = min

(
4j, 4L−j, D

)
. (1.39)

De variabele D wordt de virtuele dimensie van de MPS (met open grenscondities) genoemd
en controleert de grootte van de “hoek” van de Hilbertruimte die kan benaderd worden
door vgl. (1.37).

In hoofdstuk 2 wordt het DMRG-algoritme besproken. DMRG is een renormalisatie-
groep voor groeiende veeldeeltjes-Hilbertruimten. Het kan ook geformuleerd worden als de
variationele optimalisatie van een MPS. In de thermodynamische limiet zorgt de truncatie
van de virtuele dimensie van een MPS voor exponentieel afnemende correlatiefuncties:

CMPS(∆x) ∝ e−α∆x, (2.11)

voor twee roosterplaatsen die zich op een afstand ∆x op het ééndimensionaal DMRG-
rooster van elkaar bevinden. Dit type van correlatiefunctie is typisch voor grondtoestanden
van niet-kritische ééndimensionale Hamiltonianen. Voor zulke systemen werkt DMRG zeer
goed. De Schmidt-decompositie

|Ψ〉 =
∑
ij

Cij |Ai〉 |Bj〉 =
∑
ijk

UikσkV
†
kj |Ai〉 |Bj〉 =

∑
k

σk |Ãk〉 |B̃k〉 (2.2)

voor de bipartitie van het ééndimensionaal rooster in twee halfoneindige delen heeft dan
een snel afnemend Schmidt-spectrum σk. De truncatie ervan is bijgevolg een goede be-
nadering. In kwantumchemie zijn de actieve orbitaalruimtes waarin men gëınteresseerd is
vaak allesbehalve ééndimensionaal. DMRG kan in dat geval nog steeds nuttig zijn, maar
grotere virtuele dimensies D zijn dan nodig.

De golffunctievrijheid van een MPS laat toe om de simultane variationele optimali-
satie van twee naburige MPS-tensoren in vgl. (1.37), de zogenaamde micro-iteratie, te
formuleren als een numeriek stabiel standaard Hermitisch eigenwaardeprobleem:

H[i]effB[i] = EiB[i]. (2.28)

Eens de laagste energietoestand van dit eigenwaardeprobleem gevonden is, wordt het ont-
leed met een singuliere-waardendecompositie. Deze decompositie kan gerelateerd wor-
den aan de Schmidt-decompositie van de orbitaalruimte. De optimale benadering wordt
bekomen door de D grootste Schmidt-waarden te behouden. Deze micro-iteratie wordt her-
haaldelijk uitgevoerd op stapsgewijs veranderende lokaties in het ééndimensionaal DMRG-
rooster, tijdens de zogenaamde macro-iteraties. DMRG kan dus gezien worden als een
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zelfconsistente gemiddeld-veldtheorie in de roosterplaatsen. H[i]eff is te groot om volledig
te construeren, en enkel het matrix-vectorproduct met een gegeven vector B[i] is beschik-
baar als een functie. Om dit product efficiënt uit te voeren, worden gerenormaliseerde
operatoren, alsook hun complement, geconstrueerd. Dit limiteert de totale kost per macro-
iteratie tot O(L4D2 + L3D3) in rekentijd, O(L2D2) in werkgeheugen, en O(L3D2) in
harde-schijfgeheugen. Als bepaalde tweedeeltjesmatrixelementen (ij|V̂ |kl) numeriek ver-
waarloosd kunnen worden, bvb. in ééndimensionale systemen, kan deze kost gereduceerd
worden. Het gebruik van symmetrie reduceert deze kost ook.

Door de onderliggende MPS-aanzet zijn de energieën die bekomen worden met vgl.
(2.28) bovengrenzen voor de exacte grondtoestandsenergie. Met toenemende virtuele di-
mensie D worden lagere energieën bekomen, en verschillende succesvolle extrapolatiesche-
mas zijn gekend. Het fundamenteel verschil tussen een MPS-aanzet en een configuratie-
interactie-expansie kan men begrijpen door Hartree-Fock-ééndeeltjestoestanden als de or-
thonormale basis voor vgl. (1.25) te nemen. Een MPS beperkt de deeltjesexcitatiegraad
t.o.v. de Hartree-Fock-referentie (HF-referentie) niet, maar in de plaats daarvan wor-
den de excitaties gecorreleerd. Een configuratie-interactie-expansie beperkt de deeltjesex-
citatiegraad, maar correleert de toegelaten excitaties niet. De MPS-aanzet is grootte-
consistent, bij een goede orbitaalvolgorde.

Het resultaat van een renormalisatiegroep zoals DMRG hangt af van de details. Het
algoritme met twee roosterplaatsen raakt minder snel vast in lokale minima dan zijn tegen-
hanger met één roosterplaats. Door ruis of perturbatieve correcties toe te voegen gedurende
de initiële macro-iteraties kunnen verdwenen kwantumgetallen opnieuw gëıntroduceerd
worden. Een goed startpunt is ook belangrijk, alsook de orbitaalkeuze en -ordening.
Er zijn verschillende vuistregels in omloop. Voor uitgerekte molecules zoals polyenen is
het best om gelokaliseerde orthonormale orbitalen te gebruiken, en ze te plaatsen op het
ééndimensionaal DMRG-rooster volgens de moleculaire topologie. De uitwisselingsmatrix
Kij = (ij|V̂ |ji) weerspiegelt de overlapping en de afstand tussen gelokaliseerde orbitalen op
een directe manier, en kan gebruikt worden om ze te ordenen. Op basis van de wederzijdse
informatie tussen twee orbitalen werd er waargenomen dat voor compacte moleculen de or-
bitalen best gegroepeerd worden per irreducibele representatie (irrep) van de moleculaire
puntgroep, en dat bindende en antibindende irreps best naast elkaar geplaatst worden.
Het probleem van de orbitaalkeuze en -ordening is op dit moment slechts deels opgelost,
en verder onderzoek in deze richting kan het DMRG-algoritme significant verbeteren.

Op dit moment kan DMRG actieve ruimtes van 40 elektronen in 40 orbitalen behan-
delen. Het is daarom uitermate geschikt om de exacte oplossingsmethode te vervangen
in de zelfconsistente veldmethode voor de volledige actieve ruimte (DMRG-SCF). Dit laat
toe om statische correlatie in de actieve ruimte te vatten. Dynamische correlatie kan
achteraf toegevoegd worden door perturbatietheorie (DMRG-CASPT2), een configuratie-
interactie-expansie voor multireferentietoestanden (DMRG-MRCI), of een exponentiële
aanzet (gëınspireerd door de theorie van gekoppelde clusters) zoals canonische transfor-
matietheorie (DMRG-CT). Door de mogelijkheid om grote actieve ruimtes te behandelen is
DMRG ideaal om systemen met een groot geconjugeerd π-systeem of met transitiemetalen
te bestuderen. Een grote variëteit aan eigenschappen en systemen werd reeds bestudeerd
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met DMRG, en het is een sterk groeiend onderzoeksdomein binnen de kwantumchemie.
De symmetriegroep van de Hamiltoniaan (1.26) bestaat uit SU(2) spinsymmetrie, U(1)

deeltjesaantalsymmetrie, en de moleculaire puntgroepsymmetrie P. Deze symmetriegroep
kan gebruikt worden om het exacte diagonalisatieprobleem te vereenvoudigen. De Hamil-
toniaan verbindt geen toestanden die tot verschillende irreps of tot verschillende rijen van
éénzelfde irrep behoren. Door een basis van symmetrievectoren te kiezen wordt de Hamil-
toniaan blokdiagonaal. Elk blok kan dan apart gediagonaliseerd worden.

In hoofdstuk 3 wordt uitgelegd hoe een MPS geconstrueerd kan worden die tevens een
eigenvector is van de symmetrie. In onze code worden enkel de abelse puntgroepen met
reëelwaardige karaktertabellen gebruikt:

P ∈ {C1, Ci, C2, Cs, D2, C2v, C2h, D2h}. (3.15)

De ruimtelijke orbitalen worden geconstrueerd zodat ze transformeren volgens een bepaalde
irrep I van P. Om te verzekeren dat een MPS een eigenvector is van de symmetrie, moeten
de MPS-tensoren irreducibele tensoroperatoren zijn. Als de lokale en virtuele basistoestan-
den eigentoestanden zijn van de symmetrie, volgt uit het Wigner-Eckart theorema dat elke
MPS-tensor factoriseert in Clebsch-Gordan-coëfficiënten en een gereduceerde tensor:

A[i]
(sszNI)
(jLj

z
LNLILαL);(jRj

z
RNRIRαR) = 〈jLjzLssz | jRjzR〉 δNL+N,NRδIL⊗I,IRT [i]

(sNI)
(jLNLILαL);(jRNRIRαR).

(3.22)
In deze vgl. stellen s en j de totale spin voor, sz en jz de spinprojectie, N het deeltjes-
aantal, en I de irrep van de puntgroep. De Clebsch-Gordan-coëfficiënten in vgl. (3.22)
zorgen ervoor dat slechts enkele blokken in de A[i]-tensor verschillend van nul zijn. Als een
Clebsch-Gordan-coëfficiënt nul is, moet de corresponderende blok in de T [i]-tensor niet
gealloceerd worden. Vgl. (3.22) zorgt ook voor informatiecompressie. Voor de symme-
triesector (jLNLIL) zijn er D(jLNLIL) = grootte(αL) gereduceerde virtuele basistoestan-
den in de T [i]-tensor. Deze stellen (2jL + 1)D(jLNLIL) virtuele basistoestanden voor in de
A[i]-tensor. De aanwezigheid van nulblokken en de informatiecompressie zorgen voor een
reductie in het nodige werkgeheugen en de rekentijd.

De globale symmetrie (SG, NG, IG) kan opgelegd worden met de spin-0 inbeddingstrate-
gie. De meest linkse MPS-tensor heeft dan enkel de triviale symmetriesector in zijn linker
virtuele binding, met gereduceerde virtuele dimensie 1. De meest rechtse MPS-tensor
heeft dan enkel de symmetriesector (SG, NG, IG) in zijn rechter virtuele binding, met gere-
duceerde virtuele dimensie 1.

De operatoren
b̂†cγ = â†cγ (3.49)

b̂cγ = (−1)
1
2
−γ âc−γ (3.50)

voor orbitaal c corresponderen respectievelijk met de rij (s = 1
2
, sz = γ,N = 1, Ic) van

de irrep (s = 1
2
, N = 1, Ic) en de rij (s = 1

2
, sz = γ,N = −1, Ic) van de irrep (s =

1
2
, N = −1, Ic). b̂

† en b̂ zijn daarom beiden irreducibele tensoroperatoren met spin 1
2
. Dit

laat toe om het Wigner-Eckart theorema ook voor operatoren en (het complement van)
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gerenormaliseerde operatoren te gebruiken. Termen van het type (3.22) en (3.49)-(3.50)
kunnen gecontraheerd worden door impliciet over de gemeenschappelijke multipletten te
sommeren en door de lokale, virtuele en operatorspins te herkoppelen. (Het complement
van) gerenormaliseerde operatoren bestaat dan formeel uit termen die het product zijn
van Clebsch-Gordan-coëfficiënten en gereduceerde tensoren. In onze code worden enkel
de gereduceerde tensoren berekend, en worden Wigner 3-j of Clebsch-Gordan-coëfficiënten
nooit gebruikt.

Door de abelse puntgroepsymmetrie P zijn de tweedeeltjesmatrixelementen (ij|V̂ |kl)
van de Hamiltoniaan (1.26) enkel verschillend van nul als Ii ⊗ Ij = Ik ⊗ Il. Voor niet-
triviale groepen P reduceert dit het aantal termen in de constructie van het complement
van gerenormaliseerde operatoren en in de vermenigvuldiging in vgl. (2.28) aanzienlijk.
Het gebruik van niet-abelse ruimtelijke symmetrie wordt ook besproken in hoofdstuk 3.

In hoofdstuk 4 worden ééndimensionale waterstofketens bestudeerd. Ondanks het feit
dat de Coulombinteractie niet lokaal is, hebben deze ketens enkel een kleine virtuele di-
mensie nodig. Door de wederzijdse elektrostatische afscherming van de elektronen en de
kernen krijgt de Coulombinteractie een effectieve korte dracht, wat deze ketens tot een
ideaal testgeval voor DMRG maakt.

Equidistante waterstofketens,

H H H H H H H H
R R R R R R R , (4.34)

vertonen veel statische correlatie voor grote internucleaire afstanden R. Bandentheorie
voorspelt dat dit systeem een geleider is, terwijl voor grote internucleaire afstanden de
elektronen gelokaliseerd zijn op de kernen. Het systeem is daarom een Mott-isolator. Als
de internucleaire afstand afneemt, ondergaat het systeem een metaal-isolatortransitie. De
elektronen worden geleidelijk aan gedelokaliseerd, en naar mate de fasetransitie benaderd
wordt (vanuit het isolatorgebied) begint het Schmidt-spectrum trager te vervallen. Dit
kan verklaard worden door de excitatieënergie die nul wordt in het metaalgebied. In dit
gebied divergeren ook twee andere grootheden simultaan: de statische dipoolpolariseer-
baarheid per elektron en de fluctuatie van het dipoolmoment per elektron. De machten
waarmee deze grootheden divergeren met toenemende ketenlengte werden voor verschil-
lende internucleaire afstanden berekenend. Zowel metaalgebieden als isolatorgebieden wer-
den waargenomen.

Equidistante waterstofketens kunnen niet bestaan door de onstabiliteit van Peierls. De
keten dimeriseert in H2-moleculen. Beschouw de ééndimensionale gedimeriseerde water-
stofketen,

H H......H H......H H......H H
Rf R Rf R Rf R Rf , (4.35)

met intramoleculaire afstand Rf en intermoleculaire afstand R. Voor vaste intramoleculaire
afstand (met Rf < R) blijft de statische correlatie ruwweg hetzelfde, en enkel de elektron-
delokalisatie verandert met R. De respons van dit systeem op een statisch elektrisch veld
werd bestudeerd door middel van de longitudinale statische dipoolpolariseerbaarheid αzz
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en de tweede orde dipoolhyperpolariseerbaarheid γzzzz. Beide grootheden werden berekend
met de eindige-veldmethode. In het isolatorgebied groeien beide grootheden uiteindelijk
lineair met ketenlengte, en de waarden per molecule kunnen geëxtrapoleerd worden tot de
thermodynamische limiet. De minimale basis STO-6G is niet voldoende. Door toevoe-
ging van een extra s-orbitaal per atoom (6-31G basis) werden significant betere resultaten
bekomen. De bijkomende toevoeging van drie extra p-orbitalen (6-31G(d,p) basis) had
slechts een kleine invloed. De theorie van gekoppelde clusters met enkele en dubbele exci-
taties, en met driedubbele excitaties in perturbatie (CCSD(T)), is momenteel de gouden
standaard van de kwantumchemie. Om de nauwkeurigheid van benaderende methoden te
besturen wordt CCSD(T) vaak als referentie gebruikt. Onze DMRG-resultaten zijn niet te
onderscheiden van de exacte, en ze werden gebruikt om de nauwkeurigheid van CCSD(T)
af te schatten in de berekening van γzzzz. Naar mate de elektronen meer gedelokaliseerd
zijn (met dalende R) neemt de nauwkeurigheid van CCSD(T) af. Met toenemende elek-
trondelokalisatie is een steeds groter aantal elektronen gecorreleerd, terwijl CCSD(T) enkel
een beperkt aantal elektronen kan correleren. De machtwet

γ(M) ∝Ma(M) (4.39)

wordt vaak vooropgesteld om de toename van γzzzz met het aantal moleculen M te beschrij-
ven. De parameter a(M) varieert traag met M . Voor de systemen en basissen waarvoor
a(M) al ongeveer één was voor de grootste ketens die werden berekend, kon γzzzz/M ac-
curaat geëxtrapoleerd worden naar de thermodynamische limiet. De grootheid αzz/M kon
altijd accuraat geëxtrapoleerd worden naar de thermodynamische limiet.

In hoofdstuk 5 werd het koolstofdimeer bestudeerd. De π-bindingen van dit dimeer zijn
van het ladingsverschuivingstype, en er werd recent gedebatteerd of dit dimeer een vier-
dubbele binding heeft. De grondtoestand heeft een uitgesproken multireferentiekarakter,
en veel kruisingen en vermeden kruisingen geschieden tussen de laaggelegen toestanden.
Het koolstofdimeer is bijgevolg een goed systeem om de mogelijkheden van onze code te
testen. We hebben de twaalf laagst gelegen bindingsdissociatiecurven tot op 0.01 mEh
nauwkeurigheid berekend in de cc-pVDZ basis. Door de SU(2), U(1), en abelse P sym-
metrieën in onze code konden deze toestanden in grote mate ontward worden door in
verschillende symmetriesectoren te zoeken. Het deeltjesaantal was steeds N = 12, en
SD2h-symmetrie (rechts) werd gebruikt om de originele SD∞h-symmetriesectoren (links) te
doorzoeken:

X1Σ+
g ;B1∆g;B

′1Σ+
g → 1Ag (5.39)

c3Σ+
u ; 13∆u; 23Σ+

u → 3B1u (5.40)

C1Πg → 1B2g (5.41)

A1Πu → 1B2u (5.42)

11Σ−u → 1Au (5.43)

b3Σ−g → 3B1g (5.44)

d3Πg → 3B2g (5.45)
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a3Πu → 3B2u. (5.46)

Binnen de 1Ag- en 3B1u-sectoren werden twee geëxciteerde toestanden berekend door lager
gelegen toestanden uit te projecteren. Hun D∞h-symmetrie werd bepaald door het re-
latieve faseverschil van de coëfficiënten van twee Slaterdeterminanten. We hebben ook
het belang van kern- en kern-valentiecorrelatie afgeschat door DMRG(36o,12e) en DMRG-
SCF(34o,8e) berekeningen in de cc-pCVDZ basis met elkaar te vergelijken. In de DMRG-
SCF berekeningen werden de 1s orbitalen van de koolstofatomen dubbel bezet gehouden.
De niet-evenwijdigheidsfout was van de orde 2 mEh, terwijl het energieverschil tussen
beide curven ongeveer 75 mEh bedraagt. Om de kern- en kern-valentiecorrelatie, alsook
de correcte kerndynamica voor kleine internucleaire afstanden correct te beschrijven, moet
de basis voldoende bewegingsvrijheid toelaten voor de elektronen in de volledig gevulde
schillen.

DMRG kan geëxciteerde toestanden vinden door lager gelegen toestanden uit te pro-
jecteren of door de dichtstbijgelegen toestand bij een vooropgestelde energie te zoeken. Dit
zijn toestandspecifieke DMRG-algoritmes omdat de volledige virtuele basis gebruikt wordt
om één enkele eigentoestand te benaderen. In het toestandsgemiddelde DMRG-algoritme
wordt de virtuele basis gebruikt om verschillende eigentoestanden tegelijk te beschrijven.
Lineaire responstheorie voor DMRG (DMRG-LRT) kan ook gebruikt worden om geëxci-
teerde toestanden te vinden. DMRG-LRT wordt beschreven in hoofdstuk 6.

In dat hoofdstuk wordt de analogie tussen HF-theorie en DMRG onderzocht. Beide
methoden kunnen geformuleerd worden als de variationele optimalisatie van een golffunctie-
aanzet, een Slater-determinant voor HF-theorie en een MPS voor DMRG. Het tijdson-
afhankelijk variationeel principe levert zelfconsistente gemiddeld-veldvergelijkingen op voor
de deeltjes in HF-theorie en voor de roosterplaatsen in DMRG. De golffunctievrijheid
kan benut worden om de zelfconsistente gemiddeld-veldvergelijkingen te vereenvoudigen
tot standaard eigenwaardevergelijkingen. In HF-theorie kan de golffunctievrijheid ge-
bruikt worden om ééndeeltjestoestanden te construeren die eigenvectoren zijn van de Fock-
operator. In DMRG kan de golffunctievrijheid gebruikt worden om MPS-tensoren te con-
strueren die eigenvectoren zijn van de effectieve Hamiltoniaan.

Het tijdsafhankelijk variationeel principe genereert vergelijkingen voor de tijdsevolutie
van een golffunctie, die binnen de ruimte van de golffunctie-aanzet blijft. Linearisatie van
deze vergelijkingen in de buurt van een variationeel minimum leidt tot de willekeurige-
fasebenadering (RPA). Een kleine tijdstap verbindt een golffunctie met zijn eerste-orde
raakruimte. Voor HF-theorie wordt deze ruimte opgespannen door de ééndeeltjesexcitaties.
Deze corresponderen met het vervangen van bezette ééndeeltjestoestanden met onbezette.
Voor DMRG wordt deze ruimte opgespannen door de éénroosterplaatsexcitaties. Deze
corresponderen met het vervangen van behouden virtuele basistoestanden met wegge-
gooide. Exponentiëring van de ééndeeltjesexcitaties leidt tot het Thouless-theorema voor
HF-theorie, een expliciete minimale parametrisatie van de totale golffunctieruimte van
Slater-determinanten. In hoofdstuk 6 wordt de tegenhanger voor DMRG bewezen. De
expansie van het Thouless-theorema leidt tot de configuratie-interactie-expansie. Voor
HF-theorie leveren de eerste-ordetermen de configuratie-interactie met enkele excitaties
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(CIS) op, ook wel de Tamm-Dancoff-benadering (TDA) genoemd. Dezelfde namen worden
gebruikt voor DMRG: DMRG-CIS of DMRG-TDA. Een variationele optimalisatie in deze
raakruimte levert een benadering voor excitaties op. Voor HF-theorie leiden de tweede-
ordetermen tot de configuratie-interactie met enkele en dubbele excitaties (CISD). Dezelfde
naam wordt gebruikt voor DMRG: DMRG-CISD. Een variationele optimalisatie in deze
ruimte levert zowel een betere beschrijving van de grondtoestand op, alsook een benadering
voor excitaties.

Er werden DMRG-CISD-berekeningen uitgevoerd voor het ééndimensionaal Hubbard-
model. Voor kleine virtuele dimensies is de variationele DMRG-CISD-grondtoestandsener-
gie significant lager dan het DMRG-resultaat, en de DMRG-CISD-excitatieënergieën zijn
ook beter dan de DMRG-TDA-energieën. Gedelokaliseerde excitaties op twee roosterplaat-
sen worden niet gevat met DMRG-TDA, maar deze kunnen wel teruggevonden worden met
DMRG-CISD. Dit moet vergeleken worden met HF-theorie, waar TDA geen tweedeeltjes-
excitaties kan beschrijven, maar CISD wel. De laaggelegen spin-0 excitaties van polyenen
werden berekend met DMRG-TDA en DMRG-RPA. Het π-systeem van deze moleculen
werd geparametriseerd met de Pariser-Parr-Pople-Hamiltoniaan.

DMRG-RPA kan ook het Goldstone-boson terugvinden voor een grondtoestand die een
continue symmetrie breekt. We hebben dit aangetoond voor een grondtoestand van het
ééndimensionaal Hubbard-model met spin 1

2
.

In hoofdstuk 7 wordt projector-Monte Carlo voor MPS-golffuncties besproken. De
eigenvector |Ψ∗〉 van een Hermitische operator K̂ met de grootste absolute eigenwaarde kan
teruggevonden worden door herhaaldelijk met K̂ in te werken op een initiële golffunctie
|Ψ(0)〉. Op elk Monte Carlo-tijdsstip n wordt de golffunctie benaderd door een groep
“wandelaars”:

|Ψ(n)〉 = (K̂)n |Ψ(0)〉 ≈
∑
φ

|φ〉 . (7.3)

De operator K̂ wordt ontbonden in een waarschijnlijkheidsdichtheid P (x) en een verza-
meling operatoren B̂(x):

K̂ =
∑
x

P (x)B̂(x). (7.4)

Opdat de methode succesvol zou zijn, moeten de operatoren B̂(x) zo gekozen worden dat
de complexiteit van de wandelaars niet vergroot. Op elk Monte Carlo-tijdsstip n wordt er
voor elke wandelaar |φ〉 een x getrokken uit P (x) en wordt die wandelaar gepropageerd met
B̂(x). Met deze stochastische propagatie van de groep wandelaars wordt een benadering
voor |Ψ∗〉 bekomen. Als de wandelaars Slater-determinanten zijn, kan een mogelijke (en

vaak gebruikte) ontleding van K̂ = e−δτĤ bekomen worden met de Hubbard-Stratonovich-
transformatie.

Voor reëelwaardige (complexwaardige) parametrisaties kan het fermiontekenprobleem
(fermionfaseprobleem) opgelost worden door de paden van de wandelaars te beperken met
een padbeperkingsgolffunctie |ΨT 〉. Dit introduceert een systematische afwijking in de
Monte Carlo-propagatie, hetgeen een invloed heeft op geschatte grootheden zoals de ge-
projecteerde energie. De grootte van deze systematische afwijking hangt af van hoe goed
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|Ψ∗〉 benaderd wordt door |ΨT 〉. Als deze laatste exact is, verdwijnt de systematische
afwijking.

De wandelaars en de padbeperkingsgolffunctie zijn over het algemeen van hetzelfde
golffunctie-aanzettype omdat dit toelaat om overlapping en verwachtingswaarden goedkoop
te berekenen. Het voordeel van MPS-padbeperkingsgolffuncties over Slater-determinanten
is dat ze systematisch verbeterd kunnen worden door hun virtuele dimensie te vergroten.
Als de corresponderende systematische afwijking een duidelijke afnemende trend vertoont
met groeiende virtuele dimensie, is het mogelijk om de systematische afwijking af te schat-
ten en te verwijderen.

In hoofstuk 7 wordt het Heisenberg-model met spin 1
2

bestudeerd op een 4×4 torus. Drie
decomposities (7.4) werden getest: (1) monsters trekken uit de virtuele bindingen van een

matrixproductoperator voor K̂; (2) een Trotter-decompositie voor K̂ = e−δτĤ opstellen, en
monsters trekken uit de virtuele bindingen van de corresponderende tweeroosterplaatsma-
trixproductoperatoren; en (3) een Hubbard-Stratonovich-transformatie voor spinsystemen
uitvoeren, hetgeen een verzameling hulpvelden oplevert om te bemonsteren. We hebben
waargenomen dat voor een vaste keuze van de matrixproductoperatorvrijheid het beter is
om singuliere lokale operatoren zoals Ŝ+ te vermijden, omdat de systematische afwijking
dan geen duidelijke trend vertoond met toenemende virtuele dimensie. Van de drie geteste
methoden lijkt de variant met hulpvelden (3) het best te werken.
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