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met viezerik) op mijn verdediging. Alvast bedankt voor alles. Vanessa, wij kwamen als 

enigen van U7 heelhuids (en met een dikke beurs dukaten) terug na een hevige strijd in 

Brussel tegen Marc Pollet en zijn discipels. Je hebt bewezen dat je die beurs waardig bent. 

Hoe kan ik u ooit bedanken voor de vele carpoolsessies waarin je mij na een lange dag op het 

labo naar huis bracht. Tijdens die ritten hadden we vele toffe babbels waarbij we onze 
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wetenschappelijke (en andere) frustraties konden uiten. Een dikke merci en ik kijk al uit naar 
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Overview of the thesis 

 

 

This thesis contains the following parts: Introduction, Research aims, Results and Discussion, 

General Discussion and Perspectives, and Summary. 

 

The Introduction is composed of two chapters. Chapter 1 is a comprehensive literature 

overview on p120ctn and its many isoforms. Chapter 2 deals with mouse development and 

transcription factor networks, which are important in both preimplantation embryos and stem 

cells. The latter chapter was included because a substantial portion of the work presented in 

this dissertation deals with analysis of early mouse embryos and with methods to derive 

embryonic stem (ES) cells from them. 

 

Since our laboratory previously demonstrated the occurrence of different p120ctn isoforms, 

we were eager to find out more about their roles in vivo. Mice with forced expression of 

specific p120ctn isoforms were generated. This was the starting point of my research. More 

about the scope of my thesis is presented in Research Aims.   

 

The Results and Discussion part is composed of five chapters. First, isoform-C specific 

p120ctn knockout (KO) and knockin (KI) mice and their respective phenotypes are presented 

in Chapter 3. Because homozygous isoform-C specific p120ctn KO and KI embryos exhibit 

early lethal phenotypes, I optimized two techniques for analyzing these early developmental 

defects. In Chapter 4, I describe a method to monitor preimplantation development in vitro via 

time lapse recordings. The establishment of a modified protocol to derive ES cells from early 

mouse embryos is presented in Chapter 5. The last two chapters deal with transgenic 

strategies that circumvent the early lethality of  homozygous isoform-C specific p120ctn KO 

or KI embryos by crossing heterozygous isoform-C specific p120ctn KO or KI mice with, 

respectively, liver-specific total (all isoforms) p120ctn KO mice (Chapter 6) or with brain-

specific total p120ctn KO mice (Chapter 7). 

 

The thesis ends with a General Discussion and Perspectives, and a Summary. 
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RBD: RhoA-binding domain  

Roaz: Rat O/E-1-associated zinc finger  

ROCK: Rho-associated coiled kinase  

RTK: receptor tyrosine kinases  

RT-PCR: reverse transcriptase polymerase chain reaction 

SD: Sprague-Dawley 

SH2: Src homology 2 domain 

SHP-1: SH2 domain-containing protein tyrosine phosphatase 1  

SR: serum replacement 

STAT: signal transducer and activator of transcription. 

TCF: T-cell factor  

TE: trophectoderm  

TG: trophoblast giant  

TS: trophectoderm stem cells  

XEN: extraembryonic endoderm cells  

ZO: zonula occludens  
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1. ABSTRACT  
 

p120 catenin (p120ctn) belongs to the Armadillo family and is a component of the 
cadherin-catenin complex. It fulfils pleiotropic functions according to its subcellular localization: 
modulating the turnover rate of membrane-bound cadherins, regulating the activation of small 
RhoGTPases in the cytoplasm, and modulating nuclear transcription. Over the last two decades, 
knowledge of p120ctn obtained from in vitro experiments was confirmed and extended by 
different animal models. It became clear that, at least in frog and mammals, p120ctn is essential 
for normal development and homeostasis. p120ctn was originally identified as a Src substrate that 
can be phosphorylated at different tyrosine, serine and threonine residues, and can dock various 
kinases and phosphatases. Thereby, p120ctn regulates the phosphorylation status and the 
junctional stability of the cadherin-catenin complex. Multiple p120ctn isoforms have been 
identified. These isoforms result from alternative splicing, which allows the translation of 
p120ctn isoforms from four start codons and enables the inclusion of four alternatively used 
exons. In this review, we will discuss the effects of different p120ctn isoforms on cadherin 
turnover, RhoGTPase activity, Kaiso-binding, and phosphorylation. p120ctn is frequently 
downregulated and/or mislocalized in various human tumors, and the functional implications of 
p120ctn isoforms in various aspects of tumorigenesis will be reviewed. Finally, we will elaborate 
on the other members of the p120ctn subfamily, ARVCF, p0071 and delta-catenin, which are also 
affected by alternative splicing and are involved in the same processes as p120ctn.  
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2. INTRODUCTION: AN HISTORICAL OVERVIEW OF P120CTN RESEARCH 
 
 

In this introductory part we look back upon the history of p120ctn and highlight several 
landmarks, such as the identification of p120ctn, the cloning of mouse and human p120ctn genes, 
and the major breakthroughs in understanding the functions of p120ctn (Fig. 1).  
 
 

The founder of the p120ctn family was identified in 1989 as a most efficient substrate for 
the oncogenic Src tyrosine kinase A 120-kDa protein (hence the name p120ctn) was detected by 
phospho-tyrosine specific antibodies in cells expressing pp60527F, an oncogenic c-Src mutant, but 
it was not detected in cells expressing a non-membrane-associated pp602A/527F double mutant (1). 
That study elegantly shows that the phosphorylation status of p120ctn correlates well with 
transformation. Src-mediated tyrosine phosphorylation of p120ctn and other constituents of 
adherens junctions was found to modulate or to perturb cadherin-based adhesion (Section 8) (2). 
The mouse p120ctn cDNA was cloned in a labor-intensive manner in 1992 and the predicted 
protein was found to encode armadillo repeats like those of beta-catenin (3). And like in the case 
of beta-catenin, the armadillo domain of p120ctn was found to interact with E-cadherin, a 
component of the adherens junction (4). The encoding mouse gene Ctnnd1 was localized on 
chromosome 2, whereas the human gene CTNND1 was localized on chromosome 11q11 (259, 
260) More recently, the relationship between p120ctn and E-cadherin was further elucidated by 
generating p120ctn-uncoupled E-cadherin mutants, as well as by knockdown and knockout 
studies (Section 5). Using a very reliable pp120 monoclonal antibody, which recognizes an 
epitope in the C-terminal part of p120ctn, four main different protein isoforms could be 
distinguished, differing from each other by the extension of their N-termini (4). Detailed analysis 
of human p120ctn transcripts revealed that an even larger diversity (48 predictable isoforms) of 
the p120ctn protein occurred due to alternative splicing (Section 3) (5). Long isoforms have 
extended N-termini. Interestingly, these different p120ctn isoforms were expressed 
heterogeneously in normal cell lines and in tumor cell lines (6, 7). Further investigation on 
p120ctn isoforms showed that they are differentially expressed under several conditions pointing 
at specific roles in development and disease, in particular cancer (Section 10). Along with the 
identification of p120ctn isoforms came the identification of p120ctn family members, such 
ARVCF (Armadillo repeat gene deleted in Velo-Cardio-Facial syndrome), p0071 and delta-
catenin/NPRAP/neurojungin (neural plakophilin-related Armadillo protein), and the more 
distantly related plakophilins 1-3 (Section 4) (reviewed in 8, 9). 
 
 

Besides binding to membrane-bound cadherins, p120ctn can also perform functions in the 
cytoplasm and in the nucleus by interacting with RhoGTPases and Kaiso, respectively (Fig. 2). 
The first hint about the role of cytoplasmatic p120ctn came from overexpression studies. Strong 
overexpression of p120ctn saturated the cadherin-binding sites, and the excess p120ctn 
translocated to the cytoplasm, where it induced extensions that were neurite-like (10). Additional 
research revealed that p120ctn elicits a dendritic-like branching phenotype by modulating 
RhoGTPase activity (11-13), and this was confirmed by genetic and RNAi-mediated ablation of 
p120ctn (Section 6). Because p120ctn interacts physically with the transcription factor Kaiso 
(14), a nuclear function for p120ctn was envisioned. Indeed, p120ctn can tether away Kaiso from 
the nucleus, preventing its transcriptional repression (Section 7).  
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During the last decade, all those research leads were further pursued to gain some 
mechanistic insight into p120ctn biology. These investigations, which also included experiments 
on different animal models, overall showed that p120ctn is indispensable for normal vertebrate 
development (Section 9).  
 
 

During its short history, it became clear that p120ctn is not translated as a single protein 
and that multiple p120ctn protein isoforms exist. Although p120ctn isoforms were discovered 
early, their regulation and significance in p120ctn biology remains largely unresolved. In this 
article we will review current knowledge of p120ctn by focusing on p120ctn isoforms, how they 
are expressed, and how they influence the several functions of p120ctn. 
 
 
3. P120CTN ISOFORMS AND ALTERNATIVE SPLICING 
 

In 1998, the human p120ctn gene (CTNND1), situated on chromosome 11q11, was 
cloned, and inter- and intra-exonic splicing events generated multiple p120ctn mRNA variants 
encoding different isoforms (5). Forty-eight putative p120ctn isoforms were generated by 
employing four different translation initiation sites (M1-4) combined with four alternatively 
spliced exons (A to D; Fig. 3) (5, 15). p120ctn 1ABC is the longest isoform with 968 amino acid 
residues (AA), contains all the alternatively spliced internal exons, and is translated from the first 
start codon to produce a protein with the longest N-terminal domain (Fig. 3). p120ctn isoform 3 
has a shortened N-terminal domain as it lacks 100 AA containing a coiled-coil domain, whereas 
p120ctn isoform 4 lacks almost the entire N-terminal domain in front of the armadillo repeat 
domain, including the phosphorylation domain (PD) containing most phosphorylation sites of 
p120ctn. The central armadillo repeat domain has nine armadillo repeats (not ten as was 
previously proposed), with each repeat consisting of three helices (16, 17). This armadillo repeat 
domain is not much affected by alternative spicing. Only the six AA encoded by the alternatively 
spliced exon C are situated in the insert loop between armadillo repeat ARM5 and ARM6, but 
this will probably not cause conformational changes in the overall structure of the armadillo 
repeat domain (16, 17). In retrospect the four p120ctn isoforms identified by Reynolds et al. (4) 
were the long p120ctn isoforms 1N and 1A and short p120ctn isoforms 3N and 3A, with 
additional internal AA being encoded by the alternatively spliced exon A. 
 
 

p120ctn is ubiquitously expressed during development and in adult organisms, except for 
several non-adherent hematopoetic cell lines and loosly organized SW48 colon carcinoma cells, 
which exhibit very weak p120ctn expression (7, 18). p120ctn isoform 1 (120 kDa or long 
isoform) and p120ctn isoform 3 (100 kDa or short isoform) display tissue-specific and cell-
specific expression patterns (Table 1). Long p120ctn isoform 1 is predominantly expressed in 
highly motile cells, such as fibroblasts (e.g. NIH3T3 cells) and macrophages (4, 7, 19). In normal 
tissues, long p120ctn isoforms are predominantly expressed in the central and peripheral nervous 
systems, heart, spleen, testis, ovary and endothelial cells (15, 20, 21). In contrast, p120ctn 
isoform 3 is abundant in epithelial cell lines (4, 7, 19) and epithelial structures of the skin and the 
gastro-intestinal lining, which have a rapid turnover, as well as in kidney, liver, pancreas, 
mammary gland and prostate (5, 15, 20, 21). These cells and tissues show bias for expression of 
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certain p120ctn isoforms, but most cells and tissues express both long and short isoforms. Even 
different cell types within the same organ can express different p120ctn isoforms. For example, 
the skin is composed of keratinocytes and melanocytes. Primary keratinocytes express mainly 
short p120ctn isoforms in a honey-comb pattern, whereas melanocytes, which have a dendritic-
like morphology, express mainly long p120ctn isoforms (22). Since long p120ctn isoforms are 
expressed in endothelial cells, which are present in all organs to provide oxygen, tissue 
preparations from any organ might be contaminated with these isoforms. Interestingly, a switch 
from short to long p120ctn isoforms is seen during epithelial-to-mesenchymal transition (EMT), 
which is induced by expression of c-Fos (23), Snail (24), SIP1/ZEB2 (25, 26), E47 (26), Slug 
(26) or Twist (27) (see Section 10.2. for more details). 
 
 

 
 
Figure 2. p120ctn performs different functions in different subcellular locations. Adherens 
junctions consist of transmembrane cadherins, which can bind to beta-catenin and p120ctn via 
their cytoplasmic tails. Beta-catenin binds to alpha-catenin, which can link to the actin 
cytoskeleton via an adaptor (e.g. Eplin) or as an unbound dimeric complex. p120ctn binds to the 
juxtamembrane domain of cadherins and prevents their endocytosis. Internalized cadherin 
molecules can be recycled or targeted for degradation. Cytoplasmic p120ctn can regulate 
RhoGTPase activity, whereas nuclear p120ctn can inhibit Kaiso-mediated transcriptional 
repression. 
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Table 1. Expression of long and short p120ctn isoforms in cell lines, normal tissues and tumors. 

Cell or tissue Species  Cell type Cadherin 
type 

p120ctn isoform Detection 
method  Reference 

long short 

Normal tissues 
    M mammary gland   +  +++ a (5) 

    M small intestine   +  +++ a (5) 

    H brain   +  a (15) 

    H heart   +++  + a (15) 

    H kidney   +  +++ a (15) 

    H liver   +  ++ a (15) 

    H lung   +  +++ a (15) 

    H skelatal muscle     + a (15) 

    H spleen   +++  + a (15) 

    H thymus   +  ++ a (15) 

    H pancreas     +++ a (15) 

    H colon     +++ a (15) 

    H small intestine     +++ a (15) 

    H prostate     +++ a (15) 

    H testis   +++  + a (15) 

    H ovary   +++  + a (15) 

    H placenta   +  +++ a (15) 

    H leukocyte   +  a (15) 

    H keRinocyte     + a (15) 

    R isolated enterocytes   +  +++ b (20) 

    R tongue mucosa   ++  ++ b (20) 

    R pancreas   +  +++ b (20) 

    R kidney   ++  + b (20) 

    R seminiferous tubules of testis   +  b (20) 

    R liver   ++  ++ b (20) 

    R heart   ++  b (20) 

    R retina   +++  b (20) 

    R cerebellum   +++  b (20) 

    M eye   +++  ++ c (21) 

    M skin   +++  +++ c (21) 

    M calvaria   +++  c (21) 

    M fore stomach   ++  + c (21) 

    M back stomach   ++  + c (21) 

    M bladder   +++  + c (21) 

    M thymus   ++  ++ c (21) 

    M spleen   +++  + c (21) 

    M brain   +++  + c (21) 

    M skeletal muscle   +  c (21) 

    M heart   +++  + c (21) 

    M lung   +++  +++ c (21) 

    M kidney     ++ c (21) 

    M testis   +++  ++ c (21) 

               

Tumors 
  GI-112 H colon adenocarcinoma     ++ a (15) 

  CX-1 H colon adenocarcinoma     a (15) 

  GI-103 H pancreatic adenocarcinoma   ++  + a (15) 

  PC-3 H prostatic adenocarcinoma     +++ a (15) 

  GI-117 H lung carcinoma   ++  +++ a (15) 

  LX-1 H lung carcinoma     +++ a (15) 

  GI-101 H breast carcinoma     a (15) 

  GI-102 H ovarian carcinoma     + a (15) 
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Cell lines  
  NIH3T3 M fibroblast N  +++  + d (4) 

  Swiss3T3 M fibroblast N  +++  + d (7, 19) 

  C3H 10T1/2 M fibroblast N  +++  d (7) 

  WEG-1 M 
fibroblast-like cells derived from uterine 
epithelium (SV40 T-antigen, E-cadherin 
deficient) 

  +++  d (7) 

  Bac1.2F5 M macrophage cell line   +++  + d (7) 
  VA13 M SV40 virus transformed lung fibroblasts   +++  ++ a (5) 

  32 D M myeloid cells     d (7) 
  Ag 8 M B lymphocyte     d (7) 
  MDCK D epithelial cells derived from kidney E  +  +++ d (4, 19) 

  MDBK B epithelial cells derived from kidney   +++  +++ d (19) 

  EVC304 H 
endothelial cells derived from umbilical vein 
endethelial cells 

  ++  +++ d (19) 

  LLC-PK1 P epithelial cells derived from kidney   +++  +++ d (19) 

  RBE4 R immortalized brain endothelial cells   +++  + d (19) 

  brain EC B primary brain endothelial cells   +++  +++ d (19) 

  TM4 M epithelial sertoli cells derived from testis   ++  +++ d (7) 
  CommaD M epithelial mammary cell line   ++  +++ d (7) 
               

Tumor cell lines 
  caco-2 H epithelial cells derived from colonic tumor   +  +++ d (19) 

  HCT116 H epithelial cells derived from colon carcinoma P, E    +++ d (6, 7) 

  SW480 H epithelial cells derived from colon carcinoma P,  little E  +  +++ d, a (6, 7) (5) 

  DLD-1 H 
epithelial cells derived from colon 
adenocarcinoma 

E, P  +  +++ d (7) 
  SW620 H epithelial cells derived from colon carcinoma P,  little E  +  +++ d (7) 
  Lovo H epithelial cells derived from colon carcinoma P, E  ++  + d (7) 
  Colo 205 H 

epithelial cells derived from colon carcinoma 
(dispersed) 

E  ++  d (7) 

  Va-2 H 
epithelial cells derived from forskin fibroblast 
cells 

  +++  ++ d (7) 
  A-431 H epithelial cells derived from cervical carcinoma     +++ d (7) 
  Hela H epithelial cells derived from cervical carcinoma   +++  +++ d (7) 
  Hep G2 H epithelial cells derived from liver carcinoma   ++  +++ d (7) 

  PC3 H 
prostate cancer epithelial cells (α-catenin 
deficient) 

N, E, P    +++ d (6, 7) 

  Bewo H epithelial cells derived from choriocarcinoma     ++ d (7) 

  Capan 2 H 
epithelial cells derived from pancreatic 
adenocarcinoma 

  ++  +++ d (7) 
  ZR75B H epithelial cells derived from breast carcinoma E, P    +++ d (7) 
  MCF-7 H 

epithelial cells derived from breast ductal 
carcinoma 

E, P    ++ d (7) 
  SKB-3 H epithelial cells derived from breast carcinoma  E, P neg    +++ d (7) 
  MDA 231 H epithelial cells derived from breast carcinoma  E, P neg  +  +++ d (7) 
  MDA468 H epithelial cells derived from breast carcinoma P, E    +++ d (7) 
  BT 474 H epithelial cells derived from breast carcinoma E, P  +++  +++ d (7) 
  T470 H epithelial cells derived from breast carcinoma E, P  +++  +++ d (7) 
  Fekete H 

trophectodermal carcinoma cell line (weak 
adherence) 

    d (7) 
  Molt 4 H T-lymphocyte     d (7) 
  Raji H B-lymphocyte     d (7) 
  MKN45 H gastric carinoma     +++ a (5) 
  KATOIII H gastric carinoma     +++ a (5) 
  HT29 H colon adenocarcinoma     +++ a (5) 
  SK-LMS1 H leiomyosarcoma cells   ++  ++ a (5) 
  SK-ES1 H osteosarcoma cells   ++  ++ a (5) 
  GLC34 H small cell lung carcinomas   +++  +++ a (5) 
  GLC8 H small cell lung carcinomas   +++  a (5) 
  HCT8 H ileocecal adenocarcinoma     +++ a (5) 
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  PC AA/C1 H colon adenocarcinoma     +++ a (5) 
  LICR-HN2 H squamous carcinoma cells derived from larynx     +++ a (5) 
  LICR-HN6 H squamous carcinoma cells derived from larynx     ++ a (5) 
               

p120ctn isoform switch in EMT          

  IMEp-1 M mammary eptihelial cells E  +++  + b (23) 

  IMEp-1 M mammary eptihelial cells + c-Fos E neg    +++ b (23) 

  MDCK D epithelial cells derived from kidney E  +++  + b (24) 

  MDCK D epithelial cells derived from kidney + Snail E neg    +++ b (24) 

  MDCK D 
epithelial cells derived from kidney + Snail + E-
cadh 

    +++ b (24) 

  DLD1 H colon cancer cell line E    +++ b (25) 

  DLD1 H colon cancer cell line + SIP1 E neg  +++  ++ b (25) 

  MDCK D epithelial cells derived from kidney E  +++  c (26) 

  MDCK D epithelial cells derived from kidney + Snail E neg  +  ++ c (26) 

  MDCK D epithelial cells derived from kidney + E47 E neg  +  ++ c (26) 

  MDCK D epithelial cells derived from kidney + Slug E neg  +  +++ c (26) 

  HMLE H mammary epithelial cells     +++ a (27) 

  HMLE H mammary epithelial cells   ++  ++ a (27) 

  LIM1863 H colon carcinoma (highly differentiated) E  +++  +++ b (114) 

  LIM1863 H colon carcinoma + TGF-β- and TNF-α- E neg  +++  +++ b (114) 

  MDCK D epithelial cells derived from kidney   ++  +++ d (7) 
  MDCK D epithelial cells derived from kidney + Src   +++  + d (7) 
               
p120ctn isoform switch in cancer 
  

       

  LNCaP H epithelial prostate carcinoma cells E    +++ b (224) 

  DU145 H epithelial prostate carcinoma cells E  +  ++ b (224) 

  PC3N H mesenchymal prostate carcinoma cells N  ++  + b (224) 

  PC3 H mesenchymal prostate carcinoma cells N, litle E  ++  ++ b (224) 

  JCA1 H mesenchymal prostate carcinoma cells N  ++  + b (224) 

   - H prostate stromal fibroblasts N  +++  + b (224) 

   - H non-neoplastic thyrocytes E    +++ b (225) 

  HTh7 H anaplastic thryroid carcinoma cells N  ++  + b (225) 

  C643 H anaplastic thryroid carcinoma cells N  ++  b (225) 

  SW1736 H anaplastic thryroid carcinoma cells N  ++  + b (225) 

  HTh4 H anaplastic thryroid carcinoma cells N  +++  + b (225) 

  HaCat H benign immortilized keRinocytes     +++ a (216) 

  DJM-1 H malignant skin carcinoma cells     +++ a (216) 

  BSCC-93 H malignant skin carcinoma cells     +++ a (216) 

  HSC-1 H malignant skin carcinoma cells     +++ a (216) 

  HSC-5 H malignant skin carcinoma cells     +++ a (216) 

  A431 H malignant skin carcinoma cells     +++ a (216) 

  NHK H neonatal H keRinocytes   +  +++ c (22) 

  HaCat H immortalized aneuploid  keRinocyte cells   +++  + c (22) 

  A431 H squamous cell carcinoma   +++  c (22) 

  A253 H squamous cell carcinoma   +++  c (22) 

  FADU H squamous cell carcinoma   ++  c (22) 

  SCC12 H squamous cell carcinoma   ++  c (22) 

  DET562 H squamous cell carcinoma   ++  c (22) 

  
FM51 
6SV3/3 

H immortalized melanocytes   ++  + c (22) 

  WM793 H malignant melanoma cells   +++  + c (22) 

  1205-LU H malignant melanoma cells   +++  + c (22) 

  WM164 H malignant melanoma cells   ++  + c (22) 

  451-LU H malignant melanoma cells    +++  + c (22) 
a: RT-PCR, b: pp120 antibody, c: pp120 and 6H11 antibodies, d: pp120 and 2B12 antibodies; B: bovine, P: porcine, H: human, M: mouse, R: rat, 
D: dog. 
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Figure 3. p120ctn structure. p120ctn structural features include interaction domains, subcellular 
localization signals, phosphorylation sites and alternative splice forms. The p120ctn domains for 
binding different interaction partners are shown. p120ctn contains two conventional nuclear 
localization signals (NLS) and a nuclear export sequence (NES), but armadillo repeats (ARM) 3, 5 
and 8 have also been implicated in nuclear trafficking. As a result of alternative splicing, four 
translation start site (1 to 4) can be used. Alternatively spliced exons A, B and C, encoding 21, 29 
and 6 amino acid residues (AA), respectively, can be included, whereas exon D (encoding 24 AA) 
is rarely excluded. p120ctn isoform 1ABC is the longest isoform, employs the first start codon, and 
contains all alternatively spliced exons.  CC, coiled coil domain; CTR, carboxy-terminal (non-
armadillo) region; NTR, amino-terminal (non-armadillo) region; PD, phosphorylation domain, 
comprising many Ser, Thr and Tyr residues for which phosphorylation under particular conditions 
has been demonstrated; RBD, RhoA-binding domain. 

 
 

It is not clear how the splicing events generating these isoforms are regulated. However, 
two epithelial splicing regulatory proteins (ESRP1 and ESRP2) favoring the expression of 
epithelial isoforms of various proteins, including the short ‘epithelial’ p120ctn isoform, were 
recently identified (27). Reduction of ESRP1 and ESRP2 levels by RNAi-mediated knockdown 
or by Twist-induced EMT resulted in a switch from short to long p120ctn isoforms. Expression 
of ‘epithelial’ p120ctn in mesenchymal cells could be induced by introducing ESRP1, which 
causes a switch toward the epithelial splicing pathway (27). Identification of these epithelial 
splicing factors has been an important breakthrough in understanding the molecular regulation of 
different splice variants of p120ctn. However, many questions remain unanswered. Is the 
expression of epithelial splicing factors sufficient for expression of short ‘epithelial’ p120ctn 
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isoforms? Is there a default ‘mesenchymal’ splicing setting? Or are there also mesenchymal 
splicing factors, which somehow compete with the epithelial splice factors for generation of long 
and short p120ctn isoforms?  
 
 

The transcript diversity of p120ctn is increased by alternative splicing of internal exons. 
In man or mouse, exon A encodes a 21-AA sequence that is ubiquitously expressed in various 
cell lines and tissues (Fig. 3) (5). Exon B encodes a putative nuclear export signal (NES) with a 
characteristic leucine motif that counteracts the nuclear localization of p120ctn isoform 3A (28). 
Exon C encodes six AA that interrupt the second nuclear localization signal (NLS2) of p120ctn, 
which coincides with the second RhoA-binding domain (RBD2) (Fig. 3). Expression of exon C 
blocks at the same time nuclear localization and inhibits dendritic-like branching (Pieters et al., in 
preparation). Exon C is strongly expressed in brain (5) (Pieters et al., in preparation).  A rare 
deletion of a fourth alternatively spliced internal exon, exon D, was reported in fetal and adult 
brain tissue (15). In conclusion, alternative exon usage regulates the subcellular localization of 
p120ctn isoforms and therefore directs their functionality. 
 
 
4. P120CTN GENE FAMILY 
 
 

The family of armadillo catenins consists of three subfamilies: the p120ctn subfamily 
(p120ctn, ARVCF, p0071 and delta-catenin), the plakophilin subfamily (plakophilins 1 to 3) and 
the beta-catenin subfamily (beta-catenin and plakoglobin) (8, 29). The p120ctn subfamily 
members associate with cadherins to form proper adherens junctions, while members of the 
plakophilin subfamily support desmosomal adhesion. We will not discuss the beta-catenin and 
plakophilin subfamilies; they have been extensively reviewed elsewhere (30-32).  
 
 

Invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, have only a 
few catenin genes. Only one beta-catenin and one p120ctn ancestor have been identified in 
Drosophila, whereas C. elegans contains four highly divergent beta-catenins and only one 
p120ctn subfamily member (33-36). Interestingly, sequence analysis revealed that invertebrate 
p120ctn resembles most the vertebrate delta-catenin and not p120ctn (9). In vertebrates and in 
particular in mammals, the diversity of the p120ctn family has increased throughout evolution. 
This has led to the emergence of two evolutionarily conserved clusters, on the one hand the 
p120ctn and ARVCF branch, and on the other hand the p0071 and delta-catenin branch (9). 
 
 

All p120ctn family members have similar overall structures, with a central armadillo 
repeat domain containing nine armadillo repeats (Fig. 4) (16, 17). This central armadillo repeat 
domain enables all p120ctn subfamily members to bind the juxtamembrane domain (JMD) of 
classical cadherins (37-42). Upon overexpression ARVCF and delta-catenin can compete with 
p120ctn for JMD binding (38, 43) and they can restore cadherin-based junctions in p120ctn-
depleted cells (44). However, at endogenous levels apparently none of them can substitute for 
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p120ctn. Indeed, endogenous ARVCF and delta-catenin fail to stabilize classical cadherins in 
tissue-specific p120ctn knockout mice (45-47).  
 
 

 
 
 
Figure 4. Overview of isoforms of p120ctn subfamily members. Yellow triangles indicate 
sequences, encoded by alternatively spliced exons. In case of alternatively used start codons, the 
multiple translation start sites are also indicated. Armadillo repeats are represented by blue boxes. 
The protein sizes for the longest forms are indicated at the right. AA: amino acid residues. 
. 
 
ARVCF was identified as an armadillo repeat gene that is deleted in the velo-cardio-facial 
syndrome. It encodes 962 AA and is most closely related to p120ctn (39). Like p120ctn, ARVCF 
is ubiquitously expressed in different tissues, but ARVCF is much less abundant (38). Also like 
p120ctn, ARVCF localizes to the nucleus in some cell types (38). Multiple isoforms of Xenopus 
ARVCF have been reported (Fig. 4), including the use of two different translation initiation sites  
and three alternatively spliced inserts of 15, 18 and 117 bp (41). This 18-bp insert has also been 
found in human ARVCF (39) and corresponds to p120ctn exon C (5). Exon C of Xenopus 
ARVCF is expressed strongest in brain (41). Human ARVCF too is expressed as multiple 
isoforms, which points to extensive alternative splicing like that observed for p120ctn (38). 
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 The p0071 protein is officially known as plakophilin-4, encoded by the PKP4/Pkp4 gene, 
but this is actually a misnomer, as it shows higher homology with delta-catenin and p120ctn than 
with any of the genuine plakophilins (Pkp-1 to -3) The p0071/Pkp4 protein is ubiquitously 
expressed and localizes in adherens junctions by means of its central armadillo repeat domain, 
and in desmosomes by virtue of its N-terminus (37, 48). However, using novel antibodies, 
Hofmann et al. (49) localized p0071 in non-desmosomal adherens junctions but not in 
desmosomes of MCF-7 human breast carcinoma cells, human skeletal muscle and lung 
epithelium, and bovine pancreas, tongue, thymus and lymphatics. In addition, p0071 is targeted 
to the midbody by the kinesin-II family member, KIF3, but it is also located at the centrosomes 
and spindle bodies of mitotic cells, and at composite junctions (areae compositae) of the 
intercalated disks of cardiomyocytes (49-51). p0071 is larger than p120ctn (1211 AA versus 981 
AA) and has a more extended N-terminus and C-terminus (48). Splice variants of p0071 have 
been reported (Fig. 4), including a large variant, found in a brain cDNA library and a smaller 
variant, detected in A431 and HeLa cells (48). The long and short variant mRNAs encode, 
respectively, a long isoform (1212 AA) that lacks valine residue 488, and a shorter isoform that 
lacks a stretch of 43 AA (Fig. 4).  
 
 

Delta-catenin was discovered as a presenilin-1-binding protein (52). It is expressed almost 
exclusively in the nervous system (52-55). The human and mouse delta-catenins encompass 1225 
and 1247 AA, respectively, and the mouse delta-catenin has a 25-AA insert in armadillo repeat 7 
(new nomenclature based on (16, 17)) possibly due to alternative spicing (Fig. 4) (40, 56). The 
insert loop of delta-catenin contains a polylysine stretch similar to the NLS of p120ctn (Fig. 3, 
AA 622-628) (40). Four translation initiation sites have been identified in Xenopus delta-catenin 
in combination with three alternatively used sequence elements (A-C) (Fig. 4) (57). In vitro, 
several tyrosine residues in the N-terminal domain of delta-catenin can be phosphorylated by 
tyrosine kinase Abl (58) or by Src family members (59). In humans, loss of delta-catenin can 
result in the Cri du Chat syndrome, featured by severe mental retardation (60).  
 
 
5. P120CTN AND E-CADHERIN REGULATION  
 
 
5.1. p120ctn interacts with cadherins and modulates adherens junctions 
 

The role of p120ctn in regulating cadherin stability and turnover has been studied 
intensively (61-65). In vertebrates, the armadillo repeat domain of p120ctn interacts with the 
JMD of E-cadherin, and together with beta-catenin and alpha-E-catenin they make up the 
adherens junction complex (Fig. 2) (4, 42). Armadillo repeats 1 to 5 of p120ctn are essential for 
this interaction (17, 18), and the exact stoichiometry of the cadherin-catenin complex has been 
determined (6, 19, 66). Interestingly, both long and short p120ctn isoforms (isoforms 1 and 3, 
respectively) can bind E-cadherin but they cannot bind each other in a higher order molecular 
complex (19). Cadherin-binding is essential for the membrane localization of p120ctn: 
introducing exogenous E-cadherin in E-cadherin-negative cells relocalized p120ctn from the 
cytoplasm to the membrane (67). Minimal mutations in the JMD selectively uncoupled p120ctn 
from E-cadherin, disabled p120ctn phosphorylation, and interfered with cell-cell adhesion (67).  
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In contrast to this evidence for a supportive role for p120ctn in cadherin-mediated 
adhesion (see also Sections 5.2 and 5.3), some reports postulated p120ctn as a negative regulator 
of cadherin function (68, 69). Phosphorylation was proposed as a probable explanation for this 
discrepancy because E-cadherin-mediated cell aggregation could be induced by treatment with 
the kinase inhibitor stauroporine, and by expression of N-terminal p120ctn mutants lacking the 
phosphorylation domain. However, the negative regulation of cell-cell adhesion might not be 
p120ctn-specific, but may be the consequence of a shift in overall phosphorylation levels of 
cadherin-based junctions, which ultimately affects their adhesive strength (see also Section 8). 
Alternatively, differential expression of p120ctn isoforms might explain why p120ctn can act 
both as a positive and negative regulator. In both instances in which p120ctn acted as a negative 
regulator, the authors used a ‘mesenchymal’ p120ctn isoform 1 construct, which is predominantly 
expressed in non-epithelial cell types, in order to induce cell-cell adhesion. Colo-205 cells 
express only p120ctn isoform 1 (68). Expressing p120ctn isoform 1 in E-cadherin-deficient 
mouse fibroblastic L-cells probably stabilizes their mesencymal phenotype rather than 
transforming it to an adherent one. A better option could have been to co-transfect L-cells with E-
cadherin cDNA and a construct encoding and the ‘epithelial’ p120ctn isoform 3, which is 
expressed in junctions of epithelial tissues and cell lines.  
 
 
5.2. p120ctn regulates cadherin turnover: evidence from genetic and knockdown studies 
 

The positive regulatory effect of p120ctn on cadherin expression levels was further 
underscored in several studies that used RNAi-mediated or genetic depletion of p120ctn in, 
respectively, cells and laboratory animals. The first clue that p120ctn is critical for cadherin 
function emerged from analysis of SW48 colon carcinoma cells bearing mutations in the p120ctn 
gene (18). Due to p120ctn insufficiency, these poorly differentiated cells failed to form compact 
colonies and displayed less E-cadherin protein but not reduced E-cadherin mRNA (18). The 
epithelial morphology and the cadherin levels could be restored by expressing p120ctn isoform 1, 
3 or 4, or by using a RhoA-uncoupled variant of p120ctn isoform 1 (delta662-628), but not by 
using an E-cadherin-uncoupled p120ctn mutant. Pulse chase experiments revealed that p120ctn 
expression increased the E-cadherin half-life (18).  
 
 

Stable RNAi-mediated knockdown of p120ctn in mammalian cells resulted in a drastic 
and dose-dependent decrease of classical cadherins, such as E-, N-, P-, and VE-cadherin (44, 70, 
71), as well as mesenchymal cadherins (72). Furthermore, the absence of p120ctn also resulted in 
decreased expression of beta- and alpha-E-catenin due to decreased cadherin levels (44, 70). 
Human cells depleted of p120ctn became dispersed, but introduction of a murine p120ctn cDNA 
rescued both morphology and cadherin levels (44). Cadherin chimeras, comprising the 
extracellular domain of interleukin-2 receptor and the cytoplasmatic tail of VE-cadherin that still 
binds p120ctn, reduce endogenous VE-cadherin levels due to increased internalization of cell 
surface VE-cadherin, whereas p120ctn-uncoupled variants of such chimeras do not show such an 
effect (71). 
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In Drosophila melanogaster and Caenorhabditis elegans, p120ctn is dispensable for the 

formation of cadherin-based junctions and exerts merely a supportive role (34, 35, 73). In 
contrast, p120ctn has been shown to stabilize cadherin levels in vivo both in amphibians and in 
mammals. Knockdown of p120ctn (74, 75) or of its family members ARVCF (75) or delta-
catenin (57) in Xenopus embryos reduces the levels of classical cadherins. Moreover, gastrulation 
defects seen upon p120ctn or delta-catenin depletion in Xenopus could be rescued by ectopic 
expression of C-cadherin (57, 75). Tissue-specific p120ctn depletion in mice decreases levels of 
E-cadherin (45-47, 76), N-cadherin (76-78), P-cadherin (46) and VE-cadherin (78). In 
conclusion, p120ctn regulates cadherin turnover at the cell membrane both in vitro and in vivo. 
 
 
5.3. p120ctn and cadherin biogenesis, endocytosis and degradation 
 

How does p120ctn regulate cadherin trafficking? Cadherin-based junctions are highly 
dynamic, and cadherin complexes are constantly assembled and disassembled. The process of 
cadherin trafficking involves cadherin synthesis in the Golgi, transport to the cell surface, 
stabilization at the cell surface or internalization, followed by recycling or proteasomal or 
lysosomal degradation (Fig. 2) (79, 80). When newly synthesized E-cadherin is transported from 
the Golgi complex to the plasma membrane, its basolateral targeting depends on a membrane-
proximal dileucine motif in the cadherin tail and on its association with beta-catenin (81, 82). 
Unlike beta-catenin, p120ctn does not interact with E-cadherin during its biogenesis (83), and 
p120ctn-uncoupled E-cadherin is indeed properly targeted to the plasma membrane (67). In 
contrast, p120ctn has been reported to associate with N-cadherin early during its biogenesis (84), 
and both N-cadherin and p120ctn move along microtubule tracks towards cell-cell contacts (85, 
86). p120ctn isoform 1 colocalizes and interacts with microtubules and the motor protein kinesin, 
which transports cargos towards the plus ends of microtubules (towards the plasma membrane) 
(86-88). The N-terminus of p120ctn binds to the heavy chain of kinesin, whereas both an N-
terminal deletion mutant and native p120ctn isoform 4 do not bind kinesin (86, 87, 89). p120ctn 
isoform 1 containing the entire N-terminal domain binds to kinesin with a higher affinity than 
p120ctn isoform 3, which lacks 100 AA of the N-terminus (87). p120ctn might therefore play a 
role in delivering N-cadherins to the plasma membrane, and disassembly of the N-
cadherin/p120ctn/kinesin complex indeed delayed the delivery of N-cadherin to cell-cell contacts 
(86). In contrast, delivery of newly synthesized E-cadherin to the plasma membrane was not 
delayed by depletion of p120ctn (44). 
 
 

Cell surface cadherins can be internalized via different pathways, including clathrin-
dependent endocytosis (90-94), caveolae-mediated endocytosis (95, 96), lipid-raft-mediated 
endocytosis (97, 98) and micropinocytosis (99, 100). The decision to enter a certain endocytotic 
pathway is highly cell-specific and depends on the microenvironment. p120ctn blocks clathrin-
mediated endocytosis of VE-cadherin, and this inhibition depends on the binding of p120ctn to 
the JMD of VE-cadherin (92). On the other hand, increased E-cadherin endocytosis was observed 
in cells expressing a p120ctn-uncoupled E-cadherin mutant as well as in cells in which p120ctn 
was depleted by RNAi (101). It is not clear how p120ctn prevents endocytosis, but several 
possibilities have been proposed. First, a dileucine motif in the cytoplasmic tail of E-cadherin 
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(close to the JMD) is responsible for clathrin-mediated internalization of E-cadherin (101). If the 
dileucine motif is mutated or if the cadherin tail is completely deleted, E-cadherin fails to 
undergo endocytosis (101, 102). p120ctn might regulate E-cadherin endocytosis by masking the 
dileucine motif to prevent interaction with adaptor proteins, such as AP-2, which are required for 
clathrin-mediated endocytosis (103). Second, p120ctn competes with presenilin-1 and Hakai for 
binding to the JMD of classical cadherin. Presenilin-1 favors E-cadherin degradation by 
proteolytic cleavage of the cadherin cytoplasmic tail (104, 105). During synapse maturation, 
p120ctn dissociates from N-cadherin and is replaced by presenilin-1 (106). Hakai is an E3 
ubiquitin ligase and binds to the phosphorylated tyrosine motifs in the JMD of E-cadherin (but 
does not bind other classical cadherins). This leads to ubiquitination and endocytosis of E-
cadherin (Figs. 2 and 6D) (Section 8) (107, 108). To conclude, p120ctn seems to act as a cap that 
binds cadherin and prevents its endocytosis. In view of this, one may expect major pathological 
effects in case of p120ctn defects. 
 
 
6. P120CTN AND RHO GTPASES 
 
 
6.1 p120ctn and dendritic-like branching  
 

The early hints about the role of cytoplasmic p120ctn came from p120ctn overexpression 
studies. Expressing large amounts of exogenous p120ctn saturated cadherin-binding sites, and the 
excess of p120ctn translocated to the cytoplasm and caused a neuron-like cellular morphology 
similar to dendritic branching (10). This phenotype was due to p120ctn-mediated RhoA 
inhibition, as the phenotype could be mimicked by adding a RhoA inhibitor (C3 exotransferase) 
or by expressing p190RhoGAP (Table 2) (11, 109). On the other hand, the dendritic-like 
branching  could be blocked by coexpressing a constitutively active (CA) RhoA variant (11-13), 
or by mutating one of the RhoA-binding sites (11, 22). An N-terminal deletion including RBD1 
diminishes p120ctn-induced branching (22), but branching is completely blocked by deleting a 
second RhoA-binding domain (containing AA 622-628; Fig. 3) (11). Is this branching phenotype 
RhoA-specific? Or are there other RhoGTPases involved? Activation of Rac1 and Cdc42 also 
influences p120ctn-mediated branching because branching was blocked by dominant negative 
forms of Rac1 and Cdc42 in two studies (12, 13). However, this was not seen in another study 
(11). In addition, p120ctn binds to Vav2, a specific guanine nucleotide exchange factor for 
RhoGTPases, and overexpression of a dominant-negative Vav2 construct decreases p120ctn-
induced dendritic-like branching (13). It would be interesting to investigate whether expression of 
full-length or dominant active Vav2 alone could phenocopy the p120ctn-induced branched 
morphology. 
 
 

Do cadherins modulate p120ctn-mediated branching? dendritic-like branching could be 
blocked by sequestering p120ctn by co-transfection of E- or C-cadherin (11, 13). Blocking could 
occur by either the complete transmembrane domain of E- or C-cadherin or by its JMD only, but 
not by its beta-catenin binding domain CBD only (11, 13). On the other hand, E-cadherin binding 
is dispensable for this p120ctn-induced branching because E-cadherin-uncoupled p120ctn 
mutants lacking either Armadillo repeat 1 (ARM1) or Armadillo repeats 1-3 (ARM1-3) can still 
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elicit a branched morphology (10, 72). Like cadherins, microtubules can tether away p120ctn 
from cytoplasmic pools and thereby prevent p120ctn-induced dendritic-like branching. 
Coexpression of the kinesin heavy chain reduced the branching elicited by p120ctn isoform 1 but 
not this elicited by p120ctn isoform 3, which means that isoform 1 has a higher affinity for 
kinesin (87). 
 
 

In this paragraph we describe how p120ctn isoforms influence p120ctn-mediated 
dendritic-like branching and discuss the link between branching and nuclear localization of 
p120ctn. In an initial report of Reynolds et al. (4), p120ctn isoform 1A was shown to induce 
dendritic-like branching. A follow up study revealed that p120ctn isoform 2A and 3A, but not 
4A, also elicit dendritic-like branching. Remarkably, there seems to be a correlation between 
nuclear localization of p120ctn and the ability to elicit branching. p120ctn isoform 1 is localized 
in the nucleus and induces dendritic-like branching, while isoform 4, which lacks the N-terminal 
domain, did not induce branching and was not localized either in the nucleus (22). Because 
p120ctn isoform 4 lacks the phosphorylation domain (Fig. 3), there might also be a link between 
phosphorylation and dendritic-like branching. In addition, both p120ctn isoforms 1AB and 3AB 
have 29 additional AA that are encoded by the alternatively spliced exon B and contain a NES 
(Fig. 3). p120ctn isoforms 1AB and 3AB can both block branching morphogenesis and promote 
nuclear export (22, 28). Mutational analysis revealed a second NES in armadillo repeat 7 (new 
nomenclature based on (16, 17)) (88). Full-length p120ctn contains two conventional nuclear 
localization sequences, NLS1 and NLS2 (Fig. 3). Deleting NLS1 does not prevent branching 
(22). However, branching is abolished by mutation (110) or deletion (11) of NLS2. Interrupting 
NLS2 by expression of six AA encoded by the alternatively spliced exon C disrupts both 
dendritic-like branching and nuclear translocation (Pieters et al., in preparation). NLS2 comprises 
AA 622-628, which coincide with the second RhoA binding domain RBD2 (Fig. 3). Remarkably, 
nuclear import is not fully blocked by mutating the two conventional NLSs, and an additional 
role has been proposed for the armadillo domain in nucleocytoplasmic shuttling (88). Armadillo 
repeats 3 and 5 of p120ctn turned out to be essential for nuclear import (88), and deleting them 
both by removing either ARM3-5 or ARM3-9 blocks the neuron-like morphogenesis (10, 12). 
Interestingly, the p120ctndeltaARM3-5 construct retains both RhoA-binding domains but 
nevertheless fails to induce branching (10, 12). Is nuclear import of p120ctn per se enough to 
induce branching? No, because forced nuclear translocation of p120ctn (via Leptomycin B 
administration or via coupling of an SV40 NLS) does not trigger dendritic-like branching (110). 
To conclude, the different p120ctn isoforms vary in their ability to elicit a branched morphology 
and this is often correlated with their ability to translocate to the nucleus. 
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Table 2. p120ctn-mediated 'dendritic branching': effects of p120ctn isoforms, p120ctn mutants, cadherins and RhoGTPases 
constructs cell type(s) branching references 

p120ctn isoforms       

  isoform 1A 
NIH3T3, Swiss3T3, C3H10T1/2, COS, MDCK, Hela, 
LMTK, BHK,  SV-80, CHO, 1205-Lu, HaCaT Yes 

(10-13, 22, 258) 
(258) 

  isoform 1AB ( contains NES) 1205-Lu, HaCaT No (22) 

  isoform 1AC (interupts RBD2) NIH3T3, Hela No (258) 

  isoform 1A NIH3T3 (retroviral transduction) No (12) 

  isoform 2A 1205-Lu, HaCaT Yes (22) 

  isoform 3A 1205-Lu, HaCaT, MDCK, NIH3T3, Hela Yes (22, 28, 258) 

  isoform 3AB MDCK No (28) 

  isoform 3AC (interupts RBD2) NIH3T3, Hela No (258) 

  isoform 4A (lacks RBD1, NLS1 and PD) 1205-Lu, HaCaT No (22) 

          

p120ctn mutants       

  isoform 1A∆N-terminus (lacks  RBD1 and NLS1) SV-80 No (12) 

  isoform 1A∆1-158 (lacks FBD and partly RBD1) NIH3T3 Yes (10) 

  isoform 1A∆26-233 (lacks RBD1 partly PD) NIH3T3, SV-80 Yes (10, 12) 

  isoform 1A∆ARM (Ecadherin-uncoupled) NIH3T3 Yes (72) 

  isoform 1A∆ARM 1-3 (lacks NLS1 and parly PD) NIH3T3 Yes, less  (10) 

  isoform 1A∆ARM 3-5 NIH3T3, SV-80 No (10, 12) 

  isoform 1A∆ARM 3-11 (lacks RBD2) NIH3T3 No (10) 

  isoform 1A∆622-628 (lacks RBD2) NIH3T3, Hela No (11, 258) 

  isoform 1A∆C-terminus NIH3T3, SV-80 No (10, 12) 

  isoform 1A8F       

  isoform 2A∆NS (lacks RBD1) 1205-Lu Yes, less  (22) 

  isoform 2A∆NLS1 1205-Lu Yes (22) 

  isoform 3A∆NLS1 1205-Lu Yes (22) 

  isoform 3A∆AK (lacks PD and NLS1) 1205-Lu, HaCaT No (22) 

  isoform 3A∆622-628 (lacks RBD2) NIH3T3, Hela No (258) 

          

p120ctn and cadherins       

  isoform 1 + E-cadherin (cyto) NIH3T3 No (11) 

  isoform 1 + E-cadherin (JMD only) NIH3T3 No (11) 

  isoform 1 + E-cadherin (CBD only) NIH3T3 Yes (11) 

  isoform 1 + C-cadherin NIH3T3 No (13) 

  isoform 1 + C-cadherin∆cyto NIH3T3 Yes (13) 

  isoform 1 + C-cadherin∆CBD NIH3T3 No (13) 

  isoform 1 + C-cadherin∆JMD NIH3T3 Yes (13) 

          

p120ctn and RhoGTPases       

  isoform 1 + V14RhoA (CA) NIH3T3 No (11-13) 

  isoform 1 + N19RhoA (DN) NIH3T3 Yes (11) 

  isoform 1 + V12Rac1 (CA) NIH3T3 Yes (11) 

  isoform 1 + N17Rac1 (DN) NIH3T3 Yes (11) 

  isoform 1 + N17Rac1 (DN) NIH3T3 No (13) 

  isoform 1 + V12Cdc42 (CA) NIH3T3 Yes (11, 12) 

  isoform 1 + N17Cdc42 (DN) NIH3T3 Yes (11) 

  isoform 1 + N17Cdc42 (DN) NIH3T3 No (12, 13) 

  isoform 1 + C-terminus Vav2 (Rho family GEF) NIH3T3 No (13) 
 
p120ctn family members       

  ARVCF (Xenopus) NIH3T3 yes (75) 

  ARVCF (human) NIH3T3 no (38) 

  p0071   little (129) 

  δ-catenin MDCK, NIH3T3, PC12 yes (40, 59, 131) 

  DN-PKP1 (lacks N-terminus) Hacat, Hela, L6 yes (130) 
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6.2. p120ctn mediates RhoA inhibition and activation of both Rac1 and Cdc42 
 

There are several ways of showing that p120ctn modulates RhoA activity. p120ctn 
overexpression results in RhoA inhibition, whereas knockdown or genetic ablation of 
endogenous p120ctn in mice results in increased RhoA activity. First, expression of p120ctn 
isoform 1A inhibits RhoA activation in 293T and CHO cells (11, 13). However, RhoA activity 
was not found to be altered by stable expression of lower levels of p120ctn isoform 1A fused to 
GFP (details in Table 3) (12). Also, a mutant p120ctn isoform, 1Adelta622-628, lacking RBD2 
failed to inhibit RhoA activity and to induce dendritic-like branching (11). Based on this link 
between p120ctn-mediated branching and RhoA inhibition, one might expect that other AA 
encoded by the alternatively used exons B and C, which inhibit branching, might also interfere 
with RhoA activation. Due to the low activity of RhoA, cells transfected with p120ctn isoform 
1A did not form actin stress fibers (11-13). In a second approach, stable knockdown of 
endogenous p120ctn in different cell lines resulted in RhoA activation (70, 72, 112-114) and 
strongly enhanced formation of actin stress fibers (70, 112). These p120ctn-depleted cell lines are 
also suitable for testing the ability of various p120ctn isoforms (originating from another species 
and therefore unaffected by shRNA) to affect RhoA activity (Table 3). Re-expression of p120ctn 
isoform 1, but not p120ctn isoform 4, rescued p120-mediated RhoA inhibition (72, 113). Finally, 
modulation of RhoA activity by p120ctn is also observed in vivo, as genetic ablation of p120ctn 
in mouse skin and dorsal forebrain result in increased RhoA activation (46, 77). 
 
 
Table 3. Effect of p120ctn expression, knockdown and knockout on RhoGTPase activity 

experimental setup RhoGTPase activity Reference 

Overexpression         

cell type  transfection/ vector promoter p120ctn isoform RhoA Rac1 and Cdc42    

  transduction      (activator)  activity activity   

293T 
cytofectene 

(Biorad) pRcCMV CMV m1A  (LPA) decreased  (11) 

CHO Lipofectamine Plus  pEFGP-N1 CMV m1A - GFP fusion decreased increased (13) 

NIH3T3 
retroviral 

transduction pBABe-puro SV40 m1A - GFP fusion unalterd increased (12) 

    (pEGFP-C1)           

Knockdown (KD)   p120ctn isoform      

cell type Stable p120ctn KD vector (stable rescue) RhoA activity Rac1 activity   

NIH3T3 mouse p120ctn pRS mp120ctn siRNA   increased   (112) 

MDCK canine p120ctn pRS hp120ctn siRNA   increased  (70) 

MDA-231 human p120ctn pRS hp120ctn siRNA   increased decreased (72, 113, 115) 

MDA-231 human p120ctn pRS hp120ctn siRNA mp120ctn m1A decreased increased (72, 113, 115) 

MDA-231 human p120ctn pRS hp120ctn siRNA mp120ctn m4A increased increased (113, 115) 

MCF7 human p120ctn pRS hp120ctn siRNA    increased (115)  

MCF7 human p120ctn pRS hp120ctn siRNA mp120ctn m1A   decreased (115)  

Knockout         

cell type cells analyzed  floxed p120ctn allele 
Tissue-specific Cre 

recombinase expression RhoA activity Rac1  activity   

skin  epidermis  exon 3-8 floxed  K14-Cre (239) increased  (46) 
   (45)       

forebrain hippocampus exon 7 floxed Emx1-Cre (240) increased decreased (77) 
CHO: Chinese hamster ovary; CMV: cytomegaly virus; EGFP: enhanced green fluorescent protein; LPA:Lysophosphatidic acid; m: mouse; h: 
human 

 
 
 



p120ctn in normal development and tumorigenesis  
 

24 
 

 
 
p120ctn expression also results in increased Rac1 and Cdc42 activity (12, 13). In line with this, 
knockdown or knockout of p120ctn results in decreased activity of Rac1 (Table 3) (72, 77, 113). 
Re-expression of both p120ctn isoforms 1 and 4 in stable p120ctn-knockdown lines results in 
reactivation of Rac1 (113, 115). Remarkably, p120ctn isoform 4 can restore Rac1 activity but 
fails to inhibit RhoA activity, indicating that a single p120ctn isoform can differentially regulate 
the activity of different RhoGTPases. Overall, p120ctn regulates RhoGTPase activity by 
inhibiting RhoA and activating Rac1 and Cdc42, and this alters cytoskeletal dynamics and 
increases cell migration (13). 
 
 
6.3. Interaction between p120ctn and RhoA  
 

Does p120ctn bind to RhoA or is it involved in indirectly regulating its activity? In 
Drosophila, p120ctn binds directly to Rho1, the RhoA homolog (33). Remarkably, also alpha-
catenin binds to Rho1 in Drosophila, although alpha-catenin and p120ctn bind to distinct regions 
of the N-terminus of Rho1 (33). One RhoA binding domain (RBD1) was identified in the N-
terminus of mouse p120ctn (AA 102-234) (111). Binding of this p120ctn domain to RhoA is 
regulated by tyrosine phosphorylation of RBD1 by the action of Scr family members. Fyn-
mediated phosphorylation of Y112 or introduction of a phosphomimetic Y112E mutation inhibits 
the interaction of p120ctn with RhoA and prevents p120ctn-mediated dendritic-like branching 
and RhoA inhibition. On the other hand, Fer- or Src-mediated phosphorylation of Y217 and 
Y228 increases the affinity between p120ctn and RhoA, resulting in inhibition of RhoA activity 
(111). Alternatively, RhoA activity was also inhibited by expressing a Y112F mutant of p120ctn 
that can not be phosphoryated by Fyn (111). The RBD1 on its own does not have RhoGDI 
activity, indicating that additional sequences in p120ctn are required for RhoA stabilization and 
RhoGDI functionality (111). The second RhoA binding domain (RBD2, AA622-628) coincides 
with NLS2 of p120ctn, and the isoform 1delta622-628 mutation activates RhoA and does not 
elicit dendritic-like branching (11). Deleting either RBD1 or RBD2 does not prevent RhoA from 
binding to p120ctn isoform 4 or to p120ctn isoform 1delta622-628, respectively (113). However, 
deleting both RBDs of p120ctn, as in isoform 4delta622-628, completely abrogates its ability to 
bind RhoA (113). Thus, both p120ctn RBD1 and RBD2 need to be present for high affinity RhoA 
binding, which results in RhoA inhibition.  
 
 
 
6.4. Mechanism of p120ctn-mediated RhoA inhibition 
 

The mechanism by which p120ctn inhibits RhoA is still unclear, but several modes of 
action have been postulated. Either p120ctn can bind to RhoA (see above) and act as a Rho 
guanine nucleotide dissociation inhibitor (GDI), or it can activate Rac1 what leads to 
p190RhoGTPase activating protein (p190RhoGAP)-mediated RhoA inhibition (Fig. 5A). In the 
first proposed mechanism, p120ctn binds to RhoA and prevents its activation by Rho Guanine 
exchange factors (GEFs). p120ctn has been shown to specifically inhibit the intrinsic GDP/GTP 
exchange activity of RhoA, what resembles the mode of action of GDIs (11, 111). Also in vitro 
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translated and purified Drosophila p120ctn preferentially binds to GDP-bound Rho1 (33). In 
addition, p120ctn binds dominant-negative (DN) Rho1, but not constitutively active (CA) Rho1 
(33). The p120ctn-binding region of Rho1 adopts different conformations depending on which 
nucleotide is bound, and this might explain the binding preference of p120ctn for GDP-bound 
Rho1 (33). Although p120ctn has no sequence similarity to GDI, it interacts with the same face 
of RhoA protein (33, 116). The second proposed mechanism involves interplay between several 
RhoGTPases. Rac1 and Cdc42 can inhibit RhoA activity in NIH3T3 cells (117), and p120ctn can 
interact with Vav2, a RhoGEF, which might account for the p120ctn-mediated activation of Rac1 
and Cdc42 (13). Therefore, p120ctn-mediated Rac1 activation may indirectly inhibit RhoA 
through a pathway that involves low molecular weight (LMW) phosphatase and p190RhoGAP 
(Fig. 5A) (112, 118, 119). 
 

 
 
Figure 5. p120ctn family members regulate RhoGTPase activity. (A) RhoGTPases are molecular 
switches that alternate between an active (GTP-bound) and an inactive (GDP-bound) state. 
Guanine exchange factors (GEFs) promote RhoGTPase activation, whereas GTPase activating 
proteins (GAPs) and Rho guanine dissociation inhibitor (GDI) result in RhoGTPase inactivation. 
p120ctn inhibits RhoA activity and activates Rac1 (and Cdc42). p120ctn can inhibit RhoA either by 
its RhoGDI activity or by Rac1-mediated activation of the ‘Bar-Sagi’ pathway. p120ctn interacts 
with RhoGEF Vav2, which can activate Rac1, which in turn activates p190RhoGAP via the ‘Bar-Sagi’ 
pathway. (B) p0071 activates RhoA by binding to RhoGEF Ect2. (C) Delta-catenin inhibits RhoA 
activity by binding and sequestering p190RhoGEF away from RhoA. (D) Activated RhoA or Rac1 
results in LIMK1-mediated phosphorylation of cofilin at serine residue 3 (S3), which inactivates 
cofilin by preventing its binding to actin. Inactivation of cofilin promotes actin protrusive activity 
by reducing actin dynamics. (E) p120ctn recruits the cortactin/Arp2/3 complex to the protrusions, 
where the cortactin/Arp2/3 complex stimulates actin polymerization and this results in branch 
elongation. GTP: guanine triphosphate, GDP: guanine diphosphate, PDGFR: platelet-derived 
growth factor receptor. 
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6.5. RhoGTPases and cadherin-based junctions 
 

RhoGTPases and cadherin-based junctions have a common denominator: the actin 
cytoskeleton. RhoGTPases are key mediators of actin dynamics and can modulate formation of 
adherens junctions, and on the other hand, they can become activated upon the formation of 
adherens junctions (120, 121). Activated RhoGTPases can promote cell adhesion, and inhibition 
of RhoA by C3 exotransferase disrupts cell adhesion and removes E-cadherin from the contact 
sites (122-124). RhoA inhibition can also affect the composition of the cadherin complex (125). 
On the other hand, Rac1 activation disrupts cadherin-dependent cell–cell adhesion in human 
keratinocytes (96, 126). Furthermore, cadherin recycling is important both during the formation 
of new contacts and in the maintenance of stable junctions (64). RhoGTPases regulate many 
stages of vesicular trafficking, but they also have effects on cadherin-based junctions that vary 
with the cellular environment (64, 109, 127, 128). RhoGTPases have been shown to be important 
for cadherin-based adhesion in vivo. Rho1, the Drosophila RhoA homolog, colocalizes with DE-
cadherin in embryos, and DE-cadherin is mislocalized in Rho1 mutants (33). Also fibroblasts 
depleted of p190RhoGAP, which is normally recruited to adherens junctions by p120ctn, fail to 
form proper adherens junctions (112). In conclusion, an intricate relationship exists between 
RhoGTPases and the formation and maintenance of cadherin-based junctions. 
 
 
6.6. p120ctn subfamily members and RhoGTPases 
 

Dendritic-like branching and RhoA inhibition represent a general theme among p120ctn 
family members. Expression of Xenopus ARVCF, but not human ARVCF, induces dendritic-like 
branching (38, 75). Although human ARVCF is quite similar to p120ctn isoform 1A, it does not 
induce branching (38). In contrast, p0071 can also induce branching but to a lower extent 
compared to p120ctn-mediated branching (129). p0071 is involved in cytokinesis and cell 
division, and its knockdown results in multinucleated cells and multipolar cells (50). During 
cytokinesis p0071 is required for RhoA activation, and defects in p0071 knockdown cells can be 
reduced by expression of a constitutively active RhoA mutant (50). p0071 can bind directly to 
RhoA or to Ect2 (a RhoGEF), and expression of both p0071 and Ect2 result in RhoA activation 
(Fig. 5B) (50). Surprisingly, p120ctn and p0071 have opposite effects on RhoA activity. Finally, 
a dominant negative plakophilin 1 mutant, which lacks the N-terminal binding domain that 
interacts with desmosomal proteins, can also elicit dendritic-like branching (130).  
 
 

Overexpression of delta-catenin also induces neuron-like morphological alterations (40, 
59, 131, 132). Neuronal morphogenesis can be divided into formation of new processes 
(branching) and elongation of existing branches (Figs. 5D, E). Branching is enhanced by RhoA 
inhibition in the presence of delta-catenin, and can be blocked by expression of constitutively 
active RhoA mutant (59), as well as by presenilin-1 or E-cadherin (133, 134). On the other hand, 
branch elongation depends on the interaction between delta-catenin and cortactin, which is 
regulated by tyrosine phosphorylation (Fig. 5E) (59). Interestingly, growth factor-induced Rac1 
activation increases transport of cortactin towards the cell surface (135), where cortactin can 
interact with the Arp2/3 complex and initiate actin nucleation (136). So, both initiation and 
elongation of branches are regulated directly or indirectly by RhoGTPases, which in turn are 
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regulated by p120ctn family members. Interestingly, also p120ctn binds to cortactin, and 
knockdown of p120ctn decreases the presence of cortactin and Arp3 at leading edges and 
diminishes lamellipodial dynamics (137). Like E-cadherin binding, cortactin binding might be a 
general feature of p120ctn family members, and the neuron-like phenotypes, induced by 
overexpression of p120ctn family members, might be explained by cytoskeletal rearrangements 
mediated by cortactin and Arp2/3.  
 
 

Like p120ctn, delta-catenin can inhibit RhoA activity, and it does so by interacting with 
p190RhoAGEF and sequestering this GEF away from RhoA (Fig. 5C) (138). The interaction 
between delta-catenin and p190RhoAGEF depends on Akt1-mediated phosphorylation of the 
residue T454 of delta-catenin. Indeed, a T454A mutant of delta-catenin fails to induce dendritic-
like branching and RhoA inhibition (138). Like p120ctn, E-cadherin can sequester cytoplasmic 
delta-catenin and thereby prevent delta-catenin-mediated branching and RhoA inhibition (134). 
E-cadherin competes with p190RhoAGEF for binding to delta-catenin, and in confluent cell 
layers E-cadherin binds the majority of available delta-catenin protein. This binding results in 
increased levels of unbound p190RhoAGEF, which can activate RhoA (134). However, in 
contrast to these findings in delta-catenin overexpression studies, the activities RhoA or Rac1 are 
not altered in delta-catenin-deficient hippocampal neurons (139). In one study, delta-catenin 
expression also increased Rac1 and Cdc42 activity, and coexpression of delta-catenin with 
dominant negative Rac1 or Cdc42 prevented its protrusive activity in hippocampal neurons (132). 
In another study, however, delta-catenin expression did not affect Rac1 or Cdc42 activity (138). 
Rac1 and RhoA activation results in phosphorylation and activation of LIMK1, which in turn 
phosphorylates cofilin. Phosphorylated cofilin cannot bind actin but promotes its protrusive 
activity by reducing actin dynamics (Fig. 5D). Interestingly, activated LIMK1 and cofilin 
phenocopy the increased protrusive activity, whereas a LIMK1 kinase-dead mutant or a 
constitutively active cofilin S3A mutant (which cannot be phosphorylated) failed to elicit 
branching (132). Delta-catenin also regulates RhoGTPase activity in vivo, as knockdown of delta-
catenin in Xenopus results in RhoA activation and Rac1 inhibition (57). In addition, both DN 
RhoA and CA Rac1 were able to rescue the developmental defect in Xenopus embryos depleted 
of delta-catenin (57). In mice, genetic or RNAi-mediated delta-catenin depletion in hippocampal 
neurons results in reduced dendritic complexity (132, 139). Knockdown of delta-catenin in 
hippocampal cultures results in loss of N-cadherin and alphaN-catenin (132). So, though all 
members of the p120ctn gene family can regulate RhoA, their modes of action differ. 
 
 
7. P120CTN INTERACTS WITH TRANSCRIPTION FACTORS IN THE NUCLEUS 
 
 
Like beta-catenin, p120ctn acts both as a component of adherens junctions and as a 
transcriptional regulator in the nucleus. p120ctn is localized in the nucleus (22, 28, 88, 110, 140) 
and interacts with transcription factors Kaiso (14) and Glis2 (141). Interestingly, Kaiso 
coprecipitates efficiently with  p120ctn isoform 3 in epithelial lines, but not with p120ctn isoform 
1 in fibroblasts (14). Nuclear trafficking of p120ctn depends on conventional NLS and NES 
signals (Fig. 2) (22, 28, 110), as well as on its armadillo repeat domain (88) and on the 
microenvironment (142). Kaiso also contains a functional NLS for its nuclear import (143).  
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p120ctn and its relation to transcription factor Kaiso have been studied extensively (144-
146). The armadillo domain of p120ctn binds to the C-terminal zinc finger domain of Kaiso and 
thereby inhibits the interaction between the zinc finger domain of Kaiso and DNA (14). Kaiso 
has a dual specificity for DNA: it can bind to sequence-specific Kaiso binding sites (KBS) and to 
methylated CpG-dinucleotides (147, 148). Remarkably, the function of Kaiso that involves 
binding to sequence-specific KBSs is dispensable in vivo (149). The binding of Kaiso to 
methylated DNA is evolutionarily conserved (149) and allows histone-deacetylase-dependent 
transcriptional repression. This involves the recruitment of chromatin co-repressor components, 
such as nuclear co-repressor 1 (NCOR) (150), to the N-terminal poxvirus and zinc finger (POZ) 
domain of Kaiso. The POZ domain also enables Kaiso to homodimerize (14, 151). Kaiso acts as a 
transcriptional repressor and p120ctn  can bind to Kaiso and block its repressor activity, resulting 
in activation of the target genes of Kaiso, such as Siamois, c-Fos, Myc, Ccnd1 (encodes Cyclin 
D1) (152), xWnt11 (153), and Mmp7 (encodes Matrilysin) (154). There is significant overlap 
between the target genes of p120ctn/Kaiso and the beta-catenin/TCF signaling pathways. The 
synergism between these pathways was observed both in cell lines (154) and in Xenopus embryos 
(152). The promoter of the matrilysin gene contains two KBSs, and Kaiso can repress beta-
catenin-induced activation of the Mmp7 gene, but this Kaiso-mediated transcriptional repression 
of Mmp7 can be reversed by p120ctn expression (154). Several other beta-catenin target genes 
contain KBSs, and in Xenopus embryos they can be either repressed by Kaiso or activated by 
either beta-catenin activity or Kaiso depletion (152). The highest transcriptional activation of 
Siamois was obtained by beta-catenin expression in Kaiso-depleted Xenopus embryos (152). 
p120ctn relieves the Kaiso-mediated repression of beta-catenin target genes, and its ablation in 
Xenopus embryos increases the repression of these genes (152). Frodo physically links the 
p120ctn/Kaiso and beta-catenin/TCF pathways by binding to both p120ctn and Dishevelled 
(155). Frodo acts upstream of both signaling pathways and stabilizes p120ctn, which relieves 
Kaiso-mediated transcriptional repression of beta-catenin target genes (155). An additional link 
between p120ctn/Kaiso and the beta-catenin/TCF pathways is provided by the interaction 
between Kaiso and TCF3 in Xenopus (156). Although Kaiso acts as a genome wide 
transcriptional repressor in Xenopus embryos (157), no increased gene expression was observed 
in Kaiso-deficient mice (158). Morpholino-mediated depletion of Kaiso in Xenopus embryos 
results in severe defects in gastrulation and in convergent extension, and these phenotypes can be 
rescued by re-expression of Kaiso (152, 153). In contrast, Kaiso-deficient mice are viable (158). 
The discrepancy between the findings in mice and in Xenopus concerning the developmental 
requirement of Kaiso and its gene regulatory activity might be explained by functional 
redundancy of Kaiso-like family members (144). Indeed, Kaiso is part of a small protein family 
that contains two other Kaiso-like proteins, namely ZBTB4 (Kaiso-like 1) and ZBTB38 
(ZENON). Like Kaiso, these proteins bind methylated DNA and act as transcriptional repressors 
(159). Like Kaiso, ZBTB4 exerts bimodal DNA binding, whereas ZBTB38 binds only 
methylated DNA (159). ZBTB4 has been implicated in p53 activation (160). Interestingly, no 
ZBTB4 homolog could be indentified in Xenopus, which indicates that ZBTP4 might substitute 
for Kaiso in mouse but not in frog. 
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In addition, recent reports point at interesting interactions between the Wnt signaling 
pathway and p120ctn in the cell junctions or the cytoplasm (155, 261, 262). A recent report of the 
McCrea group showed that p120ctn is targeted for proteasomal degradation via the same pathway 
as beta-catenin (262). This degration involves a series of steps including its association with axin 
and APC proteins, its phosphorylation by kinases of the CK1 family and by GSK3beta, 
eventually followed by its ubiquitination and proteasomal degradation. The long isoform-1 of 
p120ctn can associate with CK1alpha and GSK3beta, and that it is prone to phosphorylation by 
these kinases, as well as to axin binding, ubiquitination and proteasomal degradation (262). 
Moreover, the related armadillo subfamily members ARVCF and delta-catenin of Xenopus bind 
likewise to axin and are responsive to the axin-containing destruction complex (262), in line with 
a previous report on vulnerability of human delta-catenin to GSK3beta-triggered degradation 
(263). In another recent report, p120ctn was shown to bind to CK1epsilon via an amino-terminal 
domain (Fig. 3) (261). In this model, p120ctn functions as an essential but subtle regulator of Wnt 
signaling by recruiting CK1epsilon to the E-cadherin/LRP/Fz receptor complex, and by 
counteracting this phenomenon upon Wnt-induced activation of CK1epsilon.  
 
 
8. P120CTN AND PHOSPORYLATION  
 
 

In this section we address two main questions. First, how does tyrosine phosphorylation 
affect cadherin-based adhesion in general? We give an overview of the kinases and phosphatases 
that are involved, and either physically interact or phosphorylate and dephosphorylate members 
of the cadherin-catenin complex. Furthermore, we try to give mechanistic insight by pinpointing 
key residues to be phosphorylated upon cadherin-based junctional disassembly. Second, how is 
p120ctn phosphorylated and how does this affect the adhesive properties of the cadherin catenin 
complex?  We discuss the p120ctn phosphorylation sites, the difference between tyrosine and 
serine/threonine phosphorylation, the regulatory role of phosphatases and the effect of different 
p120ctn isoforms on the phosphorylation status and junctional stability. 
 
 
8.1. Phosphorylation of the cadherin-catenin complex 
 

Several lines of evidence suggest that cadherin-based junctions, like integrin-mediated 
adhesion plaques, are regulated by phosphorylation. In fact, all members of the cadherin catenin 
complex, except alpha-catenin, are prone to phosphorylation on tyrosine, serine or threonine 
residues (Table 4). Tyrosine phosphorylation of cadherins and catenins has been studied 
extensively. This phosphorylation is executed by receptor tyrosine kinases (RTKs) and non-
receptor tyrosine kinases (nRTK). On the other hand, protein tyrosine phosphatases (PTPs) 
reverse this phosphorylation and allow dynamic protein modification in response to internal and 
external cues (reviewed in 161). The presence of multiple phosphorylation sites in cadherins and 
catenins and the multitude of different kinases and phosphatases located at the membrane reveal 
the complexity of protein phosphorylation and its effects on adhesion. Several tools, such as Src 
transformation, phosphotyrosine-specific antibodies, specific kinase or phosphatase inhibitors 
and a few mouse knockout models have been generated to investigate tyrosine phosphorylation. 
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These tools allow only general interpretation of tyrosine phosphorylation events, whereas 
individual tyrosine mutations provide a rather narrow view.  
 
 
Table 4. Overview of kinases and phosphatases binding and/or modifying the phosphorylation status of cadherins and catenins 

   kinases phosphatases 

  non Receptor kinase Receptor-associated kinase non Receptor phosphatase 
Receptor-associated 

phosphatase 

cadherins         

E-cadherin v-Src (164) EGFR (241) 
PTP1B (242), PP2A 

(S/T)(243) PTPµ (244) 

N-cadherin v-Src (165) FGFR-4 (245) PTP1B (246) PTPµ (244) 

VE-cadherin c-Src (247) VEGFR-2 (197, 247, 248) PTP1B (249) VE-PTP (171) 

R-cadherin       PTPµ (244) 

          

catenins         

α-catenin         

β-catenin 

Fer (179), Fyn (179), Yes 
(179), c-Src (179),v-Src (4, 

164, 203) 
EGFR (241), TrkA (173), 

VEGFR-2 (197), c-Met (190) 
PTP1B (242, 246), SHP2 
(250), PP2A (S/T)(243) 

DEP1 (200, 201), PTPκ (251), 
PTP-LAR (252, 253), PTPλ 
(254), PCP-2 (255), PTPβ/ζ 

(256),   

γ-catenin v-Src (4) 
EGFR (241), VEGFR-2 (197), 

c-Met (66) 
SHP2 (250), PP2A 

(S/T)(243) 
DEP1 (200, 201), PTPκ 
(251), PTP-LAR (252) 

p120ctn 

v-Src (4, 181), Fer (167, 
179, 195), Fyn (179), Yes 
(179), GSK3β (S/T)(185) 

TrkA (173), c-Met (66, 173), 
EGFR (196), PDGFR (196), 
CSFR (196), VEGFR-2 (197) 

SHP2 (250), PKC* 
(S/T)(191) 

DEP1 (200, 201), VEFGR-2* 
(S/T)(190), PTPµ (202) 

 
 

How does phosphorylation affect cadherin-based adhesion? Tyrosine phosphorylation of 
cadherins and catenins has been studied extensively and is thought to modulate adhesive strength 
(Fig 6A). The underlying mechanism is not clear and there is evidence for both a positive role 
and a negative role for tyrosine phosphorylation. One way to investigate the phosphorylation of 
cadherin-catenin structures is by using Src-mediated cellular transformation, which leads to 
constitutive phosphorylation on tyrosines of all membrane-bound Src-substrates, including 
cadherins and catenins. When cells are transformed with Src or Ras, they become loosely 
attached and fibroblast-like (70, 162-166). So, forced tyrosine phosphorylation of mature 
confluent cell layers causes cell dispersal. The reverse is also true, because in human endothelial 
cells, p120 is transiently tyrosine-phosphorylated in nascent cell-cell contacts, but this 
phosphorylation is lost in stable confluent layers (168). Loose cells might be more accessible for 
growth factors and therefore show an increased phosphotyrosine status.  

 
 
Another way to investigate phosphorylation is by using specific inhibitors of phosphatases 

and kinases to keep proteins phosphorylated or unphosphorylated, respectively. Treatment with 
an inhibitor specific for phosphotyrosine phosphatases (pervanadate) keeps cadherins and 
catenins (except alpha-catenin) phosphorylated and results in the dissociation of alpha-catenin 
from the cadherin-catenin complex (169).  In contrast to these findings, knockout of Fyn or a 
double knockout of Fyn and Src  in mouse revealed that phosphorylation has a positive role on 
adhesion. Fyn-deficient keratinocytes lack tyrosine-phosphorylation of catenins, and this causes a 
defect in cell adhesion. The same was observed in the skin of mice deficient in both Fyn and Src 
(172).  
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normal writing denotes (de)phosphorylation only; underlined text denotes both binding and 
(de)phosphorylation; italics denotes binding only; S/T denotes (de)phosphorylation on serine or 
threonine residues. TrkA = receptor for nerve growth factor (NGF); c-Met = receptor for 
Hepatocyte growth factor (HGF) 
 
 

How does phosphorylation affect the affinity between members of the cadherin–catenin 
complex? A Src tyrosine phosphorylation residue was identified in beta-catenin (Y654) that is 
important for binding to E-cadherin. Src-induced phosphorylation of Y654 or introduction of a 
phosphomimetic mutation (Y654E) decreased the affinity between beta-catenin and E-cadherin 
and disrupted the cadherin-based junctions (Figs. 6C, D) (174). Like E-cadherin, N-cadherin does 
not bind tyrosine-phosphorylated beta-catenin (175). The presence of p120ctn does not influence 
the binding of phosphorylated or unphosphorylated beta-catenin to E-cadherin (174). Beta-
catenin binds the acidic E-cadherin sequence via a long, positively charged groove and adding a 
negative charge in this groove by phosphorylation might disrupt intermolecular binding (177).  
 
 

Binding of beta-catenin to alpha-catenin involves 29 AA, only one of which is a tyrosine, 
Y142 (178). Phosphorylation of this Tyr residue in beta-catenin by the non-receptor tyrosine 
kinases Fer or Fyn (but not Src and or Yes) or by applying a tyrosine phosphatase inhibitor 
(pervanadate) uncoupled alpha-catenin from beta-catenin (Figs. 6B, C) (179-181). Keeping 
tyrosine residues Y142 and Y654 of beta-catenin unphosphorylated is critical for the integrity of 
cadherin-based adhesion. PTP1B, a non-receptor tyrosine phosphatase, associates with N-
cadherin and can dephosphorylate beta-catenin and thereby stabilize cadherin-mediated adhesion 
(reviewed in 182). The binding of PTP1B to cadherin requires phosphorylation of PTP1B on 
tyrosine residue Y152 by Fer, which in turn is recruited to the cadherin–catenin complex by 
binding to p120ctn (Fig. 6B) (183). Cell-permeable peptides that disrupt the Fer–p120ctn 
interaction cause Fer to dissociate from N-cadherin complexes, after which PTP1B, beta-catenin 
and eventually p120ctn are lost (183). 
 
 

Tyrosine phosphorylation not only affects the binding efficacy of catenins, but also 
determines the amount of membrane-localized E-cadherin. Src-mediated disruption of cell-cell 
contacts is accompanied by increased ubiquitination of E-cadherin, which causes its endocytosis 
(107). Src- or HGF-mediated tyrosine phosphorylation of E-cadherin on Tyrosine residues 755 
and 756 (which are situated in the JMD) is a prerequisite for the binding of Hakai, an E3 
ubiquitin-ligase. p120ctn binds to phosphorylated and unphosphorylated E-cadherin equally, but 
it has to compete with Hakai for binding of tyrosine phosphorylated E-cadherin (Fig. 6D) (107).  
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Figure 6. Constitutive tyrosine phosphorylation of the cadherin–catenin complex results in 
disassembly of junctions. (A) Src transformation, growth factor receptor signaling and 
phosphatase inhibition cause tyrosine phosphorylation of cadherins and catenins, which leads to 
dissociation of adherent cell layers (left, blowup in B) into non-adherent spindle-shaped cells 
(right, blowup in C, D). Tyrosine phosphorylation in cadherin-based structures is lost by kinase 
inhibition and upon junctional maturation and formation of confluent layers. (B) In adherent 
cells, p120ctn recruits Fer to the cadherin-catenin complex, which activates the protein tyrosine 
phosphatase PTP1B. Dephosphorylation of key tyrosine residues (Y142 and Y654) in beta-catenin 
by PTP1B promotes junctional integrity. (C) The phosphorylation status of Y142 and Y654 in beta-
catenin can be shifted by growth factor signaling and by Src family members, which can be 
recruited by p120ctn. Phosphorylation of Y142 and Y654 results in disassembly of the beta-
catenin/alpha-catenin and cadherin/beta-catenin complexes, respectively. (D) Dissociation of 
p120ctn from the cadherin tail results in removal of PTP1B, which causes dissociation of cadherin-
based junctions. Hakai can bind to phosphorylated tyrosine residues Y755 and Y756 in the tail of 
E-cadherin, which results in its ubiquitilation and internalization. EGFR: epidermal growth factor 
receptor. 
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8.2. Phosphorylation of p120ctn  
 

What are the phosphorylation sites of p120ctn? Over the previous decade, the laboratory 
of Reynolds has been trying to decipher how phosphorylation affects the diverse functions of 
p120ctn by using two approaches. First, two-dimensional tryptic mapping allowed the 
identification of eight tyrosine and eight serine/threonine phosphorylation sites in p120ctn (Fig. 
3) (184, 185). A ninth tyrosine phosphorylation site was identified by mutational analysis. In 
comparison with v-Src transformed L-cells expressing WT p120ctn and exogenous E-cadherin, 
the Y217F mutation of p120ctn increased cell aggregation of such cells (181). All tyrosine sites 
and most of the serine and threonine sites are located in the N-terminal domain. The two 
remaining phosphorylation sites, S879 and T916, flank the sequence encoded by the alternatively 
spliced exon A nearby the C-terminus. S879 and T916 correspond to the previously reported 
S873 and T910, respectively: the new numbering is due to the inclusion of the six amino acids 
encoded by the alternatively used exon C. Remarkably, no phosphorylation sites are present in 
the Armadillo repeat domain. Second, panels of p120ctn phospho-specific monoclonal antibodies 
were generated against specific tyrosine, serine and threonine residues: Y228 (186), S879 (187) , 
S268, S288, T310, and T916 (188). These antibodies have been helpful in identifying the 
residues in p120ctn that are phosphorylated in response to EGF (186) or PDGF (189), namely 
Y228 and S879, respectively (Table 5). 
 
 

Table 5. Phosphorylation and dephosphorylation of Y/S/T residues of p120ctn 

residue action 
phospho-specific 
antibody 

Y228 phosphorylated in response to EGF yes 

Y296 efficiently dephosphorylated by SHP-1 no 

S268 dephosphorylated by PKC stimulation and CA RhoA yes 

S288 dephosphorylated by CA RhoA and DA Galpha12 yes 

S879 phosphorylated in response to PDGF and PKC activation yes 

T310 dephosphorylated by CA RhoA and DA Galpha12 yes 

T916  -  yes 

 
 

Cells that were not transformed by Src are mainly phosphorylated on serine, with a 
relatively small amount of phosphorylation on threonine and tyrosine (68, 69, 184). Src-
transformed cells have higher phosphotyrosine contentwhile mutating all eight Src-
phosphorylation sites to Phe (p120ctn-8F) prevents phosphorylation of p120ctn and its binding to 
SHP-1 (184). Physiological tyrosine phosphorylation of p120 occurs transiently in response to 
growth factor signaling and is rapidly terminated (186). In contrast, all serine or threonine (S/T) 
phosphorylation appears to be constitutive, with the exception of S873, which is phosphorylated 
by phorbol ester-activated PKC (185) or PDGF (189). Basal S/T phosphorylation is transiently 
down-regulated in response to several cellular stimuli, such as VEGF (190) and PKC (191), and 
the inflammatory stimuli histamine (H1), thrombin and lysophosphatidic acid (LPA) (192). This 
is thought to modulate a variety of cadherin-associated activities, such as vascular permeability 
and leukocyte transcytosis. 
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Which kinases phoshorylate p120ctn? This armadillo protein, which was initially 

identified as a substrate for the non-receptor tyrosine kinase Src (1), is also phosphorylated by 
Src-family members Fyn and Yes. Fyn interacts with tyrosine-phosphorylated and -
unphosphorylated p120ctn protein equally (179). p120ctn is also a good substrate for the tyrosine 
kinase Yes, which interacts with p120ctn in an activation-dependent manner and subsequently 
activates Fer and Fyn (179). Tyrosine kinase Fer is constitutively associated with p120ctn (167, 
195). The N-terminus of p120ctn serves as a docking protein facilitating interaction of Fer (and 
Fyn) with the cadherin-catenin complex (Fig. 3). p120ctn-bound Fer can phosphorylate PTP1B 
on tyrosine 152, and this phosphorylation event is essential for the binding of PTP1B to of 
cadherin (183).. In addition, p120ctn is phosphorylated in response to PDGF, CSF-1, EGF, NGF, 
HGF and VEGF (Table 4) (66, 173, 196, 197).  
 
 

Which phosphatases dephosphorylate p120ctn? Since tyrosine phosphorylation of 
p120ctn is transient, a feedback mechanism must exist for reversing this phosphorylation. Indeed, 
several phosphatases have been reported to bind and to dephosphorylate p120ctn (Table 4). Src 
homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1) binds to p120ctn 
following EGFR activation (198). SHP-1 is activated by Src-mediated phosphorylation at the C-
terminus and is very effective in dephosphorylating Src substrates, including p120ctn Y296 
(199). Using substrate trapping mutants of receptor protein tyrosine phosphatase DEP1 revealed 
that DEP1 interacts with p120ctn, as well as with beta-catenin and plakoglobin (200, 201). 
p120ctn might interact with DEP1 in a phosphorylation-dependent manner, whereas beta-catenin 
and plakoglobin might interact with DEP1 constitutively (201). The receptor-like protein tyrosine 
phosphatase RPTPmu specifically binds and dephosphorylates p120ctn (but not beta-catenin) 
independently of cadherins and of the phosphorylation status of p120ctn (202). The RPTPmu 
binding site in p120ctn is in the N-terminal domain, and deletion of AA 28-233 of p120ctn 
abrogates its interaction with RPTPmu (202). In conclusion, the N-terminus of p120ctn acts as a 
scaffold for a multitude of kinases and phosphatases that can interact with cadherin-bound 
p120ctn. In that way, p120ctn enables the modulation of the cadherin-catenin complex by 
phosphorylation. 
 
 

How does phosphorylation of p120ctn affect cadherin-based adhesion? In Src-
transformed MDCK and L-cells, constitutive tyrosine phosphorylation of p120ctn and beta-
catenin weakens cadherin-based junctions (181, 203). Phosphorylation of p120ctn is dependent 
on its association with E-cadherin, as L-cells expressing an E-cadherin mutant lacking the 
cytoplasmic domain failed to phosphorylate p120ctn. However, membrane localization of 
p120ctn, but not via E-cadherin ligation per se, is essential for its ability to become 
phosphorylated on Ser or Thr residues. Both a chimeric cadherin-containing extracellular part of 
the IL-2R fused to the cytoplasmic cadherin part and CAAX-anchored p120ctn localize p120ctn 
to the membrane and allow its phosphorylation in the absence of E-cadherin (207). 
Serine/threonine (S/T) phosphorylation of p120ctn does not affect the p120ctn–cadherin binding 
affinity and stability of the cadherin complex, because mutating either individual S/T 
phosphorylation sites to alanine or mutating six major S/T sites together to alanine does not 
interfere with the capacity of mutated p120ctn to rescue the phenotypes of p120ctn-deficient cells 
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(207). In contrast, the presence of cadherin-bound beta-catenin is not essential for p120ctn 
phosphorylation, as an E-cadherin–alpha-catenin fusion is equally potent in phosphorylating 
p120ctn junctions (181, 203). In conclusion, increased Tyr phosphorylation of p120ctn is leading 
to disruption of junctions, while constitutive Ser/Thr phosphorylation of p120ctn does not affect 
the integrity of adherens junctions. 
 
 

It is not clear how phosphorylation of p120ctn affects its binding to E-cadherin. Several 
groups reported that tyrosine phosphorylation of p120ctn increases binding affinity for E-
cadherin (162, 163, 167, 172, 174), while others found no change in binding affinity between E-
cadherin and p120ctn upon Src-mediated phosphorylation (4, 181). Increased binding of 
phosphorylated p120ctn to E-cadherin during junctional dissasemby in Src-transformed cells 
implies that p120ctn blocks the key residues for Hakai-binding (Y755 and Y756) (Fig. 6C) and 
that E-cadherin internalization is not mediated by ubiquitination. In contrast, phosphorylated 
p120ctn has also been reported to dissociate from E-cadherin, allowing in this way the Hakai-
mediated ubiquitination and endocytosis of E-cadherin (Fig. 6D) (205). A recent report shows 
that CK1epsilon can be recruited to the cadherin-catenin complex, resulting in the dissociation of 
p120ctn and beta-catenin from membrane-localized cadherins (261). 
 
 
 
 
8.3. p120ctn isoforms and phosphorylation 
 

Alternative splicing determines the extent of phosphorylation of different p120ctn 
isoforms by restricting the number of available phosphorylation sites or by the isoform-specific 
binding of kinases and phosphatases. The N-terminal domain is essential for the phosphorylation 
of p120ctn, and different p120ctn isoforms that can be generated from the four translation 
initiation sites exhibit variable truncations of this N-terminal domain (Fig. 3). p120ctn isoform 1 
has the longest N-terminal domain and contains all the tyrosine, serine and threonine sites that 
may be phosphorylated. p120ctn isoform 3 lacks the first tyrosine residue (S96), which is indeed 
present only in the long isoforms. p120ctn isoform 4 is translated from the fourth translation 
initiation site and lacks almost the entire N-terminal domain, including all nine tyrosine sites and 
six serine and threonine sites. Hence, p120ctn isoform 4 is not regulated by phosphorylation and 
can be viewed as a dominant-negative p120ctn variant in this context.  
 
 

Besides the role of isoforms in determining the potential phosphorylation sites, some 
kinases and phosphatases preferentially bind to certain p120ctn isoforms. p120ctn interacts with 
tyrosine kinase Fer in Rat-2 embryonic fibroblasts and in epithelial A431 cells. Although both 
cell types express long and short isoforms, Fer predominantly binds and phosphorylates long 
isoforms (167, 195). The Fer binding domain in p120ctn is confined to a 26-AA region (131 to 
156) present in both long and short isoforms (183). This is odd, because only long p120ctn 
isoforms seem to bind to Fer (195). Different isoforms of p120ctn interact to different extents 
with the tyrosine phosphatase SHP-1, and this seems to be partly related to their susceptibility to 
EGF-dependent phosphorylation (198). p120ctn isoform 3A was very efficiently phosphorylated 
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on tyrosine in response to EGF stimulation and bound SHP-1 strongly. Although p120ctn isoform 
1A contains all tyrosine phosphorylation sites, it was less efficiently phosphorylated after EGF 
stimulation. This resulted in a weaker interaction with SHP-1. Strangely, both p120ctn isoform 
1A and 3A contain the EGF-specific phosphorylation site Y228, but they show different degrees 
of phosphorylation. p120ctn isoform 1A can probably dock an additional phosphatase via its 
exclusive Y96 site, which would diminish overall tyrosine phosphorylation. p120ctn isoform 4A 
has no tyrosine phosphorylation sites and interacts with SHP-1 very weakly. Remarkably, the 
presence of six AA encoded by the alternatively spliced exon C led to a strong reduction in both 
tyrosine phosphorylation and SHP-1 binding (198). RPTPmu interacts with p120ctn isoform 1A 
but fails to bind to a mutant lacking much of the N-terminus (202). However, the different 
binding capacities of the long and short p120ctn isoforms have not been tested. In summary, the 
length of the N-terminal domain differs amongst p120ctn isoforms and determines the number of 
phosphorylation sites and the spectra of kinases and phoshatases that can be bound. p120ctn 
isoforms might promote divergent overall phosphorylation states, which might ultimately result 
in differential junctional strength.  
 
 
9. THE P120CTN FAMILY IN ANIMAL MODELS 
 
 
9.1. Animal models for p120ctn 
 

The knockout and depletion of p120ctn in invertebrates (C. elegans and Drosophila), 
amphibians (Xenopus) and mouse was recently reviewed (9). Although C. elegans and 
Drosophila have only one p120ctn subfamily member (JAC-1 and Drosphila p120ctn, 
respectively), genetic or RNAi-mediated reduction of p120ctn levels in C. elegans and 
Drosophila  did not affect normal development (Table 6) (34, 35, 208). In contrast, RNAi 
depletion of both zygotic and maternal p120ctn in Drosophila embryos resulted in severe 
morphogenetic defects, particularly in head involution (33). Although Drosophila p120ctn 
interacts with Rho1 (the Drosophila RhoA homolog) (33), Rho1 maintains proper localization of 
DE-cadherin and catenins independently of p120ctn (208). In addition, mutants of Drosophila 
DE-cadherin could be rescued by p120ctn-uncoupled but not by beta-catenin-uncoupled DE-
cadherin mutants, indicating that p120ctn in invertabrates is not a core component of adherens 
junctions and only has a supportive role (34, 73). 
 
 

In contrast, morpholino-mediated p120ctn knockdown in Xenopus resulted in severe 
developmental defects; the nature of the defects depended on which cells of early cleavage 
embryos were injected with morpholinos (Table 6) (74, 75). On the other hand, induced 
expression of murine p120ctn isoform 1A or 1N during amphibian development leads to 
gastrulation defects and head malformation, respectively, in contrast to the secondary body axis 
abnormality caused by overexpression of beta-catenin (209, 210). So, in Xenopus, normal 
development is contingent on maintenance of p120ctn expression levels within a physiological 
range. Also in mice proper p120ctn levels are a prerequisite for normal development and embryos 
with total knockout of p120ctn results in early embryonic lethality (mentioned in refs. 45, 77). 
According to a personal communication by Walter Birchmeier (Berlin), embryonic death is seen 
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at E10. Despite seemingly normal mesoderm formation, embryos do not turn at E8.5 to 9.0. The 
notochord is interrupted, and cell adhesion in the notochord and to the endoderm is weakened. 
Embryos stop growing at the 10-somite stage while closure of the neural tube is not completed. 
Several tissue-specific p120ctn knockouts have been reported by using the Cre/LoxP system. 
Two types of floxed p120ctn alleles were generated. In one of them, p120ctn exons 3 to 8, 
encoding all four possible start condons (M1-4), were flanked by LoxP sites to prevent any 
natural initiation of translation after Cre-mediated recombination (45). In the other approach, 
exon 7 of p120ctn was floxed, and Cre-mediated recombination resulted in a frameshift leading 
to degradation of mRNA by non-sense mediated decay (77).  

 
 

Table 6. Kockout and knockdown of p120ctn family members in different species 

Catenin Organism Tissue/cell type 

Knockout (KO) 
or  knockdown 
(KD) Phenotype References 

JAC-1 C. elegans whole animal KD (RNAi) No obvious developmental defects (35) 

p120ctn Drosophila whole animal 
zygotic and 
maternal KO No obvious developmental defects; except delayed dorsal closure (34) 

    whole animal KD (RNAi) No obvious developmental defects (208) 

    whole animal 
KO (includes 
several genes) Severe dorsal open phenotype (33) 

    whole animal KD (RNAi) Severe morphogenic effect including head involution (33) 

    whole animal 
KO and KD 
(RNAi) Reduced numbers and density of spine-like neuronal potrusions (257) 

p120ctn Xenopus whole animal 
KD 
(Morpholino) 

Disrupted gastrulation and axial elongation; reduced C-cadherin 
levels (75) 

    
Anterior neural 
ectoderm 

KD 
(Morpholino) 

Impaired evagination of optic vesicles and defective eye formation; 
perturbed cranial neural crest cell; migration and malformations in 
craniofacial cartilage (74) 

p120ctn mouse whole animal 

KO 
 
KO  

Embryonic lethality around gastrulation 
Die at 10,5 dpc; defects in notochord formation, weakened cell 
adhesion between notochord and embryonic endoderm  

(45, 77) 
 
W.B. 

    Salivary gland 
KO (MMTV-
Cre) 

Die shortly after parturition; blocked acinar differentiation; reduced 
E-cadherin levels; formation of neoplasias; abnormal epithelial 
polarity and morphology  (45) 

    Skin KO (K14-Cre) 

Viable; reduced adherens junction components; increased RhoA 
activity; epidermal hyperplasia and chronic inflammation in aged 
mice; NFκB activation; skin neoplasias; mitotic defects (46, 220) 

    Teeth KO (K14-Cre) 
Viable; reduced E- and N-cadherin; dysplastic hypo-mineralized 
enamel; disrupted ameloblast polarity and morphology (76) 

    
Vascular 
endothelium KO (Tie2-Cre) 

Die at 11,5 dpc; disorganized embryonic and extraembryonic 
vasculature; decreased microvascular density and hemorrhages; 
proliferation defect; reduced VE- and N-cadherin (78) 

    
Dorsal 
forebrain KO (Emx1-Cre) 

Viable; reduced spine and synapse densities; decreased N-cadherin 
levels; increased RhoA activitiy (77) 

    
Small intestine; 
colon KO (Villin-Cre) 

Die within 3 weeks; disruption of epithelial barrier; mucosal 
erosion; reduced adherens jucntion components; inreased 
inflammation and neurophil binding (47) 

    liver 
KO (Albumin-
Cre) 

Viable; severely impaired intrahepatic bile duct development; 
normal hepatocyte differentiation; unaltered cell-cell adhesion; 
accelerated initiation of hepatocarcinogenesis by diethylnitrosamine  

van Hengel 
et al., 
unpublished 

ARVCF Xenopus Whole animal 
KD 
(Morpholino) 

Disrupted gastrulation and axial elongation; reduced C-cadherin 
levels (75) 

    
Anterior neural 
ectoderm 

KD 
(Morpholino) 

Perturbed cranial neural crest cell migration and malformations in 
craniofacial cartilage 

K.V. &  
M.D. 

  mouse whole animal   Viable; no obvious phenotype R.K.  

δ-
catenin Xenopus 

Whole animal; 
anterior neural 
ectoderm 

KD 
(Morpholino) 

Defects in gastrulation and axial elongation; reduced cadherin 
levels;  RhoA activation; malformations in eye and craniofacial 
skeleton (57) 

  mouse Whole animal KO 
Impaired cognitive functions; abnormal synaptic plasticity; reduced 
N-cadherin and PSD-95 levels (211) 

W.B.: Walter Birchmeier, personal communication; K.V. & M.D.: Kris Vleminckx and Mieke Delvaeye, personal communication; R.K.: Raju 
Kucherlapati, personal communication.  
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The importance of p120ctn during development is further demonstrated by Cre-mediated 

ablation of p120ctn in endothelial tissues at 7.5 dpc, causing death at 11.5 dpc (78). In other 
studies, developmental defects in tissue-specific p120ctn knockouts are mostly avoided by 
employing Cre-lines that are expressed near the end of embryonic development. Nevertheless, 
ablating p120ctn after midgestation in salivary gland and intestine can still result in perinatal 
death (45, 47), whereas its ablation in the skin, teeth or dorsal forebrain does not affect viability 
(46, 76, 77). Though these conditional p120ctn knockout mice show a wide range of tissue-
specific phenotypes (listed in Table 6) (9), reduction of cadherin levels seems to be a common 
underlying mechanism (Section 5.2).  
 
 
9.2. Animal models for p120ctn family members 
 

Like p120ctn, ARVCF and delta-catenin are essential during Xenopus development. For 
instance, gastrulation defects are caused by generalized or localized knockdown of delta-catenin 
(Table 6) (57, 75). However, ARVCF and delta-catenin seem to be dispensable in mice, because 
both ARVCF and delta-catenin knockout mice are viable (R. Kucherlapati, personal 
communication) (211). Delta-catenin-deficient mice display congnitive dysfunctions, including 
severe learning defects and abnormal synaptic plasticity (211). p120ctn can probably substitute 
for ARVCF and delta-catenin in knockout mice, whereas p120ctn family members ARVCF, 
p0071 and delta-catenin cannot rescue the lethal phenotypes in p120ctn knockout mice. This 
further illustrates that p120ctn family members ARVCF, p0071 and delta-catenin are not 
functionally redundant. Alternatively, ARVCF, p0071 and delta-catenin might be intrinsically 
redundant, although they have spacial and temporal restricted expression patterns.  
10. P120CTN AND CANCER 
 
 
 10.1. Altered expression of p120ctn in tumors 
 

The role of p120ctn in tumors has been reviewed (212, 213). In general, p120ctn is either 
absent or altered in most human tumors, and its derangement is often correlated with poor 
prognosis. Alterations in p120ctn expression include decreased levels, translocation to the 
cytoplasm, and occasionally to the nucleus. These alterations remove p120ctn from the cell 
membrane and disable p120ctn-mediated stabilization of E-cadherin. p120ctn can act as a proto-
oncogene or as an invasion-suppressor, depending on the order in which p120ctn and E-cadherin 
are down-regulated. Loss of p120ctn results in decreased E-cadherin levels, and E-cadherin is 
indeed frequently down-regulated in epithelial cancers where it acts as a tumor-suppressor (214, 
215). On the other hand, E-cadherin loss results in translocation of p120ctn to the cytoplasm, 
where p120ctn modulates RhoGTPases in a way that favors cell motility. Like overexpression of 
dominant active Rac1, p120ctn-mediated Rac1 activation might promote cellular transformation. 
p120ctn also acts as a proto-oncogene by relieving the Kaiso-mediated repression of beta-catenin 
target genes, such as c-Fos, Myc, Ccnd1 (encodes Cyclin D1) and Mmp7 (encodes Matrylisin) 
(152, 154), and this favors tumor formation and invasion. In addition, Kaiso-deficient mice are 
more resistant to intestinal tumorigenesis when bred into an APCMin/+ genetic background (158). 
Heterozygous APCMin mice are used as a model for human familial adenomatous polyposis 
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caused by a mutation of the Apc (adenomatous polyposis coli) gene that leads to nuclear 
localization of beta-catenin and activation of the canonical Wnt pathway. In contrast to tumor-
associated nuclear beta-catenin, nuclear localization of p120ctn is observed only rarely in human 
tumors (140, 216). 
 
 

Only a few mutations in the CTNND1 gene have been reported, in breast cancer (217) and 
in SW48 colon carcinomacells (18). It is noteworthy that p120ctn expression might be 
compromised by mutating a single p120ctn allele. Indeed, expression of p120ctn can be 
monoallelic in some cell types (218). Perhaps other mechanisms are involved in p120ctn 
downregulation in tumors, such as transcriptional downregulation, epigenetic modifications or 
microRNA-mediated silencing, but this is poorly documented. p120ctn is transcriptionally 
downregulated by FOXC2 in non–small cell lung cancer cells (NSCLC) (219). FOXC2 binds to 
the p120ctn promoter and reduces its activity. On the other hand, RNAi-mediated silencing of 
FOXC2 increases p120ctn promoter activity as well as p120ctn mRNA and protein levels. 
p120ctn stabilizes cadherins at the cell membrane and RNAi-mediated depletion of its 
transcriptional repressor, FoxC2, enhances E-cadherin levels in NSCLC cells (219). The role of 
p120ctn in cancer was further investigated in animal models. Ablation of p120ctn in salivary 
gland resulted in morphological abnormalities, which closely resemble high-grade intraepithelial 
neoplasia, a precancerous condition in humans that typically progresses to invasive cancer (45). 
Ablation of p120ctn in skin caused hyperproliferation (46) and p120ctn-deficient skin grafts 
displayed signs of epidermal hyperkeratosis and dysplastic keratinocytes (220). In addition, 
p120ctn regulates several processes involved in tumorigenesis, such as RhoGTPase activity, cell 
proliferation, motility, invasion, anchorage-independent growth (AIG), and inflammatory 
conditions (see below).  
 
 
10.2. p120ctn isoforms in EMT and cancer 
 

Epithelial-to-mesenchymal transition (EMT) is an orchestrated series of events that allows 
epithelial sheets to dissociate, lose cell-cell interactions and cell-extracellular matrix interactions, 
and reorganize the cytoskeleton and transcriptional program in order to induce a mesenchymal 
phenotype (221). During EMT, E-cadherin downregulation in epithelial cells is accompanied by 
upregulation of mesenchymal cadherins (e.g. N-cadherin), a phenomenon called cadherin 
switching (222). Cadherin switching has been observed during normal development, such as 
primitive streak formation and neural crest delamination, and also during tumorigenesis (222, 
223). Interestingly, a switch from short to long p120ctn isoforms has been observed during the 
EMT process, induced by expression of c-Fos (23), Snail (24), SIP1/ZEB2 (25, 26), E47 (26), 
Slug (26) or Twist (27) (Table 1). The downregulation of short ‘epithelial’ p120ctn isoforms 
during EMT is due to decreased expression of epithelial splicing regulatory proteins 1 and 2 
(ESRP1 and ESRP2), what favors skipping of exon 3 (encoding the first two translation initiation 
sites) and translation initiation from the third start codon (encoded by exon 5) (27). Also Src 
transformation of MDCK cells induces an EMT-like process (164) associated with a switch from 
short to long p120ctn isoforms (7). This switch during EMT is consistent with the expression 
pattern of long and short p120ctn isoforms in fibroblasts and epithelial cell types, respectively 
(Table 1) (Section 3). Re-expression of E-cadherin in Snail-induced mesenchymal cells failed to 
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restore the epithelial morphology and expression of ‘epithelial’ short p120ctn isoforms (24). This 
confirms that the abundance of the different p120ctn isoforms is regulated by cell type-specific 
splice factors and not necessarily by the expression of certain cadherin types (27). In contrast, the 
p120ctn isoform switch was not observed during EMT induced in highly differentiated colon 
cancer cells by TGF-beta and TNF-alpha (114). This discrepancy might be explained by the high 
expression levels of long p120ctn isoforms in non-induced cells, which can not be augmented 
even further during EMT. Increased RhoA inhibition is observed during EMT induced by TGF-
beta and TNF-alpha, which coincides with increased binding of p120ctn to RhoA (114). 
 
 

Similar EMT-like processes have been observed during tumor progression in prostate 
carcinoma cells and in anaplastic thyroid carcinomas, and these changes coincide with a switch 
from short to long p120ctn isoforms and from E- to N-cadherin (Table 1) (224, 225). Forced 
expression of E-cadherin in the pancreatic carcinoma cell line MIA PaCa-2 restored the epithelial 
phenotype and suppressed cell migration and invasion, but this did not occur upon N-cadherin 
expression (226). Interestingly, tyrosine-phosphorylated p120ctn isoform 1 interacted exclusively 
with N-cadherin, whereas E-cadherin predominantly bound to unphosphorylated p120ctn isoform 
3 (226). There exists a controversy concerning p120ctn isoform switching in skin cancer (Table 
1). One RT-PCR study reported the predominant expression of short p120ctn isoforms both in 
normal skin tissue and in benign and malignant skin cancer cells (216). In squamous cell 
carcinomas (SCCs), the p120ctn levels were consistently reduced while this was not the case for 
E-cadherin. Any remaining p120ctn was detected in the cytoplasm or sometimes the nuclei 
instead of the cell-cell boundaries (216). Another study (22) used antibodies with different 
p120ctn isoform specificity and this revealed the expression of p120ctn isoform 2, 3 and 4 in 
neonatal human keratinocytes and in HaCaT cells (immortalized but non-tumorigenic 
keratinocytes), whereas SCCs expressed predominantly p120ctn isoform 2 but not isoform 3 or 4. 
Both studies indicated that there is no striking difference in expression of p120ctn isoforms 
between benign (immortalized human keratinocytes) and malignant epithelial skin tumors 
(SCCs).  In addition, no p120ctn isoform switch is observed in melanomas compared to normal 
melanocytes, although both express primarily p120ctn isoform 1 in contrast to the epithelial cell 
types (22). E-cadherin is expressed by both keratinocytes and melanocytes, allowing their mutual 
heterotypic and homophilic interaction. However, melanomas switch to N-cadherin during 
tumorigenesis and this facilitates dissociation from the keratinocyte layers and heterotypic 
interactions with stromal cells including fibroblasts and endothelial cells (227). In melanomas, 
p120ctn can compete with RhoA for binding to p190RhoGAP, which leads to RhoA activation. 
Reintroducing E-cadherin in melanomas blocked chemokine-induced invasion and sequestered 
p120ctn away from p190RhoGAP, leading to increased p190RhoGAP association with RhoA 
what results in RhoA inactivation (228). Melanocytes are quite interesting because they express 
the mesenchyme-associated long p120ctn isoforms in combination with E-cadherin. This shows 
that specific p120ctn isoforms are not invariably restricted to a certain cadherin type.  
 
 

In lung SCC and adenocarcinomas, abnormal expression of p120ctn, including 
downregulation of both long and short isoforms, is associated with tumor progression and poor 
prognosis (230). Abnormal p120ctn expression, including complete loss, downregulation or 
mislocalization of p120ctn, correlated with abnormal E-cadherin expression (including reduced 
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or absent membrane expression of E-cadherin besides increased cytoplasmic expression of E-
cadherin) and overexpression of RhoGTPases. Abnormal expression of p120ctn, E-cadherin and 
overexpression of RhoGTPases were associated with malignant human lung cancer in vitro and in 
vivo (231). E-cadherin and p120ctn isoform 3 are expressed in normal bronchial epithelium, but 
p120ctn isoform 1 is upregulated and localized in the cytoplasm of squamous cell lung cancers 
and lung adenocarcinomas (232). Further analysis revealed that overexpression of p120ctn 
isoform 1 mRNA correlated significantly with abnormal E-cadherin expression, with lymph node 
metastasis and poor differentiation (232). Another study confirmed a significant reduction of both 
long and short p120ctn isoforms in lung carcinomas compared to normal lung tissues (233). More 
recently these investigators reported that  expression of p120ctn isoform 3 in lung cancer cells 
inhibited in vivo tumor growth in nude mice but failed to block invasion (234). On the other hand, 
p120ctn isoform 1 effectively blocked invasion but not tumor growth (234). All together, p120ctn 
isoforms 1 and 3 appear to have opposing effects on invasion and proliferation in lung cancer 
cells due to differential regulation of RhoGTPase activity (see also Section 10.3.) and differential 
stabilization of cadherin-based junctions (234, 235). 
 
 

Little is known about the effects of the alternatively spliced internal exons of p120ctn on 
tumorigenesis. Exon B encodes a NES and is expressed in some human tissues, such as kidney, 
pancreas, colon, small intestine and prostate. Interestingly, expression of exon B is lost in the 
corresponding tumorigenic tissues (22), suggesting that during tumor progression p120ctn is 
shifted towards the nucleus, which relieves the repression of oncogenic target genes of Kaiso. 
 
 
10.3. Differential regulation of RhoGTPases by p120ctn in cancer  
 

In contrast to the dogma stating that p120ctn isoform 1 inhibits RhoA activity and 
activates Rac1 and Cdc42 (see Section 6.2.), in lung cancer cells p120ctn isoform 1 has been 
found to block Rac1 activity and p120ctn isoform 3 to activate RhoA and inhibit Cdc42 activity 
(234). Knockdown of p120ctn in lung cancer cell lines results in inhibition of RhoA and 
activation of Rac1 and Cdc42 (235). Activated RhoA has also been observed in a mouse model 
for invasive lobular carcinoma (Patrick Derksen, Utrecht, personal communication). Treatment of 
these mice with the clinically approved Rock inhibitor Fasudil inhibited tumor growth in vivo (P. 
Derksen, personal communication). Activation of the RhoA/Rock pathway in cells derived from 
primay mouse invasive lobular carcinomas results in phosphorylation of cofilin. Phosphorylated 
cofilin was also found in human invasive lobular carcinoma samples (P. Derksen, personal 
communication). A possible explanation for the discrepancy between the dogma and RhoGTPase 
regulation in lung and breast cancer might be the persistence or not of E-cadherin. Indeed, the 
effect of p120ctn on Rac1 activity depends on E-cadherin expression: knockdown of p120ctn 
results in Rac1 inhibition in E-cadherin-negative cells, but in Rac1 activation in E-cadherin 
positive cells (115). The lung cancer cells used in the study of Liu et al. (2009a) were still 
expressing E-cadherin, and this might explain the inhibition of Rac1 induced by p120ctn isoform 
1. However, since the mouse model for invasive lobular carcinoma involves genetic inactivation 
of E-cadherin, the deviant RhoA activity in these tumors can not be explained by E-cadherin 
expression but must be caused by an unidentified mechanism. 
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10.4. p120ctn isoforms: effects on proliferation and tumor growth 
 

p120ctn can regulate cell proliferation in different ways. Several lines of evidence show 
that (high levels of) p120ctn promote cell proliferation and tumor growth. This promotes 
transformed growth of both E-cadherin negative and positive cells, and knockdown of p120ctn 
reduces the growth rate, as evidenced by a reduction in the proportion of cells in the S-phase (70, 
115). Ras/MAPK signaling is important for the p120ctn-mediated growth effect, because RNAi-
mediated depletion of p120ctn inactivates MAPK signaling in E-cadherin-negative cells (115). 
Both p120ctn isoforms 1 and 4 as well as constitutively active Rac1 can reactivate MAPK 
signaling (115). On the other hand, AIG mediated by p120ctn isoform 1 could be blocked by a 
MEK inhibitor (115). In addition, primary keratinocytes deficient in p120ctn grow more slowly 
than their wild-type counterparts due to defects in mitosis and cytokinesis, including the 
generation of binucleate cells (220). A similar phenotype was observed upon knockdown of 
p0071, another p120ctn family member (50). The defects seen in cells devoid of either p0071 or 
p120ctn could be rescued by constitutively active RhoA and dominant negative RhoA, 
respectively (50, 220). This discrepancy depends on the different abilities of p0071 and p120ctn 
to regulate RhoA activity (Fig. 5) (Section 6). 
 
 

On the other hand, p120ctn can also block proliferation. p120 knockdown in NIH3T3 
cells promotes serum-free cell proliferation and partial cell transformation (112). In E-cadherin-
positive breast cancer cells, p120ctn depletion results in increased proliferation and activation of 
Ras-MAPK signaling (115). Expression of p120ctn isoform 3 in E-cadherin-positive cells blocks 
cell proliferation, DNA synthesis and in vivo tumor growth (234, 236). Cells expressing p120ctn 
isoform 3 are arrested in the G1-S phase and this transition from G1 to S phase depends on the 
cyclin-dependent kinase 2/CyclinE complex. p120ctn isoform 3 associates with this complex and 
prevents its proteasomal degradation. This leads to S-phase lengthening, centrosome 
overduplication, and genomic instability (236). In contrast to p120ctn deficient keratinocytes in 
culture (see above), genetic ablation of p120ctn in skin results in hyperproliferation and increased 
MAPK signaling (46). Cell proliferation is also increased in p120ctn-deficient colon and small 
intestine (47). These observations indicate that p120ctn might have different effects on cell 
growth in vitro and in vivo, and that the effects also depend on the cell type and the 
microenvironment. 
 
 
10.5. p120ctn isoforms: effects on motility and invasion  
 

p120ctn overexpression can activate Rac1 and Cdc42 and enhance migration (12, 13). 
Cells devoid of p120ctn fail to repopulate the wounded area in a scratch assay (112). On the other 
hand, a stable knockdown of p120ctn in E-cadherin-deficient cells resulted in decreased 
migration and invasiveness. These deficiencies could be rescued by reexpression of p120ctn 
isoform 1, but not by reexpression of cadherin-uncoupled p120ctn isoform 1 (72). Moreover, 
p120ctn induces invasiveness by its association with mesenchymal cadherins, such as N-cadherin 
or cadherin 11, whereas knockdown of these mesenchymal cadherins and the use of p120ctn-
uncoupled mutants blocks invasiveness (72). Invasiveness can also be blocked by constitutively 
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active RhoA, dominant negative Rac1 and E-cadherin expression, but it is enhancd by inhibition 
of ROCK, a downstream effector of RhoA (72). The p120ctn-depleted cells have been employed 
for testing the potential of different p120ctn isoforms to induce invasion. Invasiveness is 
strongest upon expression of p120ctn isoform 1A, it is unaffected by p120ctn isoform 3A, and is 
blocked by p120ctn isoform 4 (113). In clear renal cell carcinomas, E-cadherin is downregulated 
and p120ctn is translocated to the cytoplasm. Furthermore, p120ctn undergoes an isoform switch 
from predominantly short to long p120ctn isoforms. This switch is correlated with 
micrometastatis, which indicates that, at least for this cancer type, p120ctn isoform 1 simulates 
invasiveness in vivo (113). p120ctn can also block invasion because p120ctn depletion in lung 
cancer cell lines enhances invasion and metastasis due to differential regulation of RhoGTPase 
activity (see Section 10.3) (235). To conclude, p120ctn isoforms affect migration and invasion in 
different ways by inducing RhoGTPase-mediated rearrangements of the actin cytoskeleton. 
 
 
10.6. p120ctn and anchorage-independent growth (AIG) 
 

AIG is a hallmark of tumor formation and is dependent on endogenous p120ctn. Stable 
knockdown of p120ctn in E-cadherin negative MDA-MB-231cells abolished their ability to grow 
anchorage-independently in vitro (colony formation in soft agar) and in vivo (xenografts), but this 
effect could be rescued by re-expression of p120ctn isoform 1 (115). Similarly, knockdown of 
p120ctn in E-cadherin-negative mouse breast cancer cell lines blocked anoikis-resistance (P. 
Derksen, personal communication). p120ctn promotes tumor growth via Rac1 activation, and 
expression of a constitutively active Rac1 mutant reverses the cell cycle defect and can rescue 
AIG in vitro and xenograft growth in vivo (115). E-cadherin, but not p120ctn-uncoupled 
cadherin, can block both AIG and Rac1 and Ras activation in the presence of p120ctn (115). 
Stable knockdown of p120ctn in E-cadherin positive MCF7 cells results in reciprocal effects on 
AIG, Rac1 activity and MAPK signaling (115). However, it is not clear what the real molecular 
mechanism is, because p120ctn knockdown also affects the E-cadherin expression levels. 
Depletion of endogenous E-cadherin in MCF7 cells phenocopies the effect of p120ctn 
knockdown, indicating that under normal conditions E-cadherin blocks AIG by inhibiting both 
Rac and Ras-mediated signaling (115). 
 
 

p120ctn ablation blocked AIG in cells transformed with Rac1 or Src, but not in cells 
transformed with H-Ras (70). AIG in cells transformed with Rac1 or Src is dependent on 
p120ctn-mediated RhoA inhibition because ablation of p120ctn in these transformed cells is 
rescued by inhibition of ROCK, a downstream RhoA effector (70). Activating the RhoA pathway 
by adding LIMK1, which is downstream of ROCK, also blocks AIG in transformed cells (70). 
RhoA activation results in phosphorylation and inactivation of cofilin at serine residue 3 (S3), 
whereas p120ctn-mediated RhoA inhibition results in cofilin activation (Fig. 5). Strangely, in 
contrast to ROCK inhibition, AIG is not rescued by a dominant active S3A cofilin mutant, which 
can no longer be phosphorylated. So, other RhoA effectors might be involved in the regulation of 
AIG (70).  
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The finding in the abovementioned studies in which AIG depends on either Rac1 
activation or RhoA inhibition, may be explained by the ‘Bar-Sagi’ pathway, in which Rac1 
activation results in RhoA inhibition (Section 6, Fig. 4) (112).  
 
 
10.7. p120ctn in inflammation and cancer  
 

A strong connection exists between inflammation and tumor progression (237). p120ctn 
depletion in mouse skin caused hyperproliferation and chronic inflammation due to increased 
NF-κB activation (46). Both general immunosuppresive drugs (Dexamethasone) and a NF-κB 
inhibitior (IKK2 inhibitor) reduced the hyperproliferation in p120ctn-deficient skin grafts (46, 
220). The NF-κB activation in p120ctn-depleted keratinocytes is dependent on RhoA activity. 
Constitutively active RhoA and ROCK mutants result in nuclear translocation of NF-κB in wild-
type keratinocytes, whereas nuclear NF-κB expression can be reverted in p120ctn-deficient 
keratinocytes by expression of dominant-negative RhoA or by treatment with ROCK inhibitor 
(46). Moreover, nuclear NF-κB can also be reverted by introducing a cadherin-uncoupled 
p120ctn mutant, but not by a RhoA-uncoupled (delta622-628) mutant (46). So, NF-κB activation 
depends on RhoA activity, which in turn might be influenced by expression of the alternatively 
spliced exon C (see Section 3). Poorly differentiated human squamous cell carcinomas also 
showed nuclear NF-κB and perturbed expression and/or localization of p120ctn (220). Finally, 
genetic ablation of intestinal p120ctn also results in increased infiltration of COX-2-positive 
neutrophils, which is commonly seen in inflammatory bowel disease (47). This disease 
predisposes intestinal tissue to cancer (238).  
 
 
11. ACKNOWLEDGEMENTS 
 
 

This work was supported by grants from the Queen Elisabeth Medical Foundation 
(G.S.K.E.), Belgium, and from the Geconcerteerde Onderzoeksacties of Ghent University. Tim 
Pieters has been supported by the Instituut voor de Aanmoediging van Innovatie door 
Wetenschap en Technologie in Vlaanderen (IWT). We acknowledge Dr. Amin Bredan for critical 
reading of the manuscript, , and the members of our research group for valuable discussions. 
 
 
 



Chapter 1  

45 
 

12. REFERENCES 
 
 
1.    A. B. Reynolds, D. J. Roesel, S. B. Kanner and J. T. Parsons: Transformation-specific 
tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic 
variants of the avian cellular src gene. Mol Cell Biol 9, 629-638 (1989) 
 
2.    J. M. Daniel and A. B. Reynolds: Tyrosine phosphorylation and cadherin/catenin function. 
Bioessays 19, 883-891 (1997) 
 
3.    A. B. Reynolds, L. Herbert, J. L. Cleveland, S. T. Berg and J. R. Gaut: p120, a novel 
substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding 
factors beta-catenin, plakoglobin and armadillo. Oncogene 7, 2439-2445 (1992) 
 
4.    A. B. Reynolds, J. Daniel, P. D. McCrea, M. J. Wheelock, J. Wu and Z. Zhang: Identification 
of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. 
Mol Cell Biol 14, 8333-8342 (1994) 
 
5.    A. Keirsebilck, S. Bonne, K. Staes, J. van Hengel, F. Nollet, A. Reynolds and F. van Roy: 
Molecular cloning of the human p120ctn catenin gene (CTNND1): expression of multiple 
alternatively spliced isoforms. Genomics 50, 129-146 (1998) 
 
6.    J. M. Daniel and A. B. Reynolds: The tyrosine kinase substrate p120cas binds directly to E-
cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol Cell Biol 15, 
4819-4824 (1995) 
 
7.    Y. Y. Mo and A. B. Reynolds: Identification of murine p120 isoforms and heterogeneous 
expression of p120cas isoforms in human tumor cell lines. Cancer Res 56, 2633-2640 (1996) 
 
8.    P. Z. Anastasiadis and A. B. Reynolds: The p120 catenin family: complex roles in adhesion, 
signaling and cancer. J Cell Sci 113 ( Pt 8), 1319-1334 (2000) 
 
9.    P. D. McCrea and J. I. Park: Developmental functions of the P120-catenin sub-family. 
Biochim Biophys Acta 1773, 17-33 (2007) 
 
10.    A. B. Reynolds, J. M. Daniel, Y. Y. Mo, J. Wu and Z. Zhang: The novel catenin p120cas 
binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 
fibroblasts. Exp Cell Res 225, 328-337 (1996) 
 
11.    P. Z. Anastasiadis, S. Y. Moon, M. A. Thoreson, D. J. Mariner, H. C. Crawford, Y. Zheng 
and A. B. Reynolds: Inhibition of RhoA by p120 catenin. Nat Cell Biol 2, 637-644 (2000) 
 
12.    I. Grosheva, M. Shtutman, M. Elbaum and A. D. Bershadsky: p120 catenin affects cell 
motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact 
formation and regulation of cell locomotion. J Cell Sci 114, 695-707 (2001) 
 



p120ctn in normal development and tumorigenesis  
 

46 
 

13.    N. K. Noren, B. P. Liu, K. Burridge and B. Kreft: p120 catenin regulates the actin 
cytoskeleton via Rho family GTPases. J Cell Biol 150, 567-580 (2000) 
 
14.    J. M. Daniel and A. B. Reynolds: The catenin p120(ctn) interacts with Kaiso, a novel 
BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19, 3614-3623 (1999) 
 
15.    S. Aho, K. Rothenberger and J. Uitto: Human p120ctn catenin: tissue-specific expression of 
isoforms and molecular interactions with BP180/type XVII collagen. J Cell Biochem 73, 390-399 
(1999) 
 
16.    H. J. Choi and W. I. Weis: Structure of the armadillo repeat domain of plakophilin 1. J Mol 
Biol 346, 367-376 (2005) 
 
17.    N. Ishiyama, S. H. Lee, S. Liu, G. Y. Li, M. J. Smith, L. F. Reichardt and M. Ikura: 
Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of 
cell-cell adhesion. Cell 141, 117-128 (2010) 
 
18.    R. C. Ireton, M. A. Davis, J. van Hengel, D. J. Mariner, K. Barnes, M. A. Thoreson, P. Z. 
Anastasiadis, L. Matrisian, L. M. Bundy, L. Sealy, B. Gilbert, F. van Roy and A. B. Reynolds: A 
novel role for p120 catenin in E-cadherin function. J Cell Biol 159, 465-476 (2002) 
 
19.    J. M. Staddon, C. Smales, C. Schulze, F. S. Esch and L. L. Rubin: p120, a p120-related 
protein (p100), and the cadherin/catenin complex. J Cell Biol 130, 369-381 (1995) 
 
20.    N. Golenhofen and D. Drenckhahn: The catenin, p120ctn, is a common membrane-
associated protein in various epithelial and non-epithelial cells and tissues. Histochem Cell Biol 
114, 147-155 (2000) 
 
21.    O. Montonen, M. Aho, J. Uitto and S. Aho: Tissue distribution and cell type-specific 
expression of p120ctn isoforms. J Histochem Cytochem 49, 1487-1496 (2001) 
 
22.    S. Aho, L. Levansuo, O. Montonen, C. Kari, U. Rodeck and J. Uitto: Specific sequences in 
p120ctn determine subcellular distribution of its multiple isoforms involved in cellular adhesion 
of normal and malignant epithelial cells. J Cell Sci 115, 1391-1402 (2002) 
 
23.    A. Eger, A. Stockinger, B. Schaffhauser, H. Beug and R. Foisner: Epithelial mesenchymal 
transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and 
upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell 
Biol 148, 173-188 (2000) 
 
24.    T. Ohkubo and M. Ozawa: The transcription factor Snail downregulates the tight junction 
components independently of E-cadherin downregulation. J Cell Sci 117, 1675-1685 (2004) 
 
25.    C. Vandewalle, J. Comijn, B. De Craene, P. Vermassen, E. Bruyneel, H. Andersen, E. 
Tulchinsky, F. Van Roy and G. Berx: SIP1/ZEB2 induces EMT by repressing genes of different 
epithelial cell-cell junctions. Nucleic Acids Res 33, 6566-6578 (2005) 



Chapter 1  

47 
 

 
26.    D. Sarrio, B. Perez-Mies, D. Hardisson, G. Moreno-Bueno, A. Suarez, A. Cano, J. Martin-
Perez, C. Gamallo and J. Palacios: Cytoplasmic localization of p120ctn and E-cadherin loss 
characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 23, 3272-
3283 (2004) 
 
27.    C. C. Warzecha, T. K. Sato, B. Nabet, J. B. Hogenesch and R. P. Carstens: ESRP1 and 
ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33, 591-601 
(2009) 
 
28.    J. van Hengel, P. Vanhoenacker, K. Staes and F. van Roy: Nuclear localization of the 
p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin 
expression. Proc Natl Acad Sci U S A 96, 7980-7985 (1999) 
 
29.    P. D. McCrea and D. Gu: The catenin family at a glance. J Cell Sci 123, 637-642 (2010) 
 
30.    W. J. Nelson and R. Nusse: Convergence of Wnt, beta-catenin, and cadherin pathways. 
Science 303, 1483-1487 (2004) 
 
31.    J. Heuberger and W. Birchmeier: Interplay of cadherin-mediated cell adhesion and 
canonical Wnt signaling. Cold Spring Harb Perspect Biol 2, a002915 (2010) 
 
32.    M. Hatzfeld: Plakophilins: Multifunctional proteins or just regulators of desmosomal 
adhesion? Biochim Biophys Acta (2007) 
 
33.    C. R. Magie, D. Pinto-Santini and S. M. Parkhurst: Rho1 interacts with p120ctn and alpha-
catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 
129, 3771-3782 (2002) 
 
34.    S. H. Myster, R. Cavallo, C. T. Anderson, D. T. Fox and M. Peifer: Drosophila p120catenin 
plays a supporting role in cell adhesion but is not an essential adherens junction component. J 
Cell Biol 160, 433-449 (2003) 
 
35.    J. Pettitt, E. A. Cox, I. D. Broadbent, A. Flett and J. Hardin: The Caenorhabditis elegans 
p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal 
morphogenesis. J Cell Biol 162, 15-22 (2003) 
 
36.    R. Tewari, E. Bailes, K. A. Bunting and J. C. Coates: Armadillo-repeat protein functions: 
questions for little creatures. Trends Cell Biol 20, 470-481 (2010) 
 
37.    M. Hatzfeld, K. J. Green and H. Sauter: Targeting of p0071 to desmosomes and adherens 
junctions is mediated by different protein domains. J Cell Sci 116, 1219-1233 (2003) 
 
38.    D. J. Mariner, J. Wang and A. B. Reynolds: ARVCF localizes to the nucleus and adherens 
junction and is mutually exclusive with p120(ctn) in E-cadherin complexes. J Cell Sci 113 ( Pt 8), 
1481-1490 (2000) 



p120ctn in normal development and tumorigenesis  
 

48 
 

 
39.    H. Sirotkin, H. O'Donnell, R. DasGupta, S. Halford, B. St Jore, A. Puech, S. Parimoo, B. 
Morrow, A. Skoultchi, S. M. Weissman, P. Scambler and R. Kucherlapati: Identification of a new 
human catenin gene family member (ARVCF) from the region deleted in velo-cardio-facial 
syndrome. Genomics 41, 75-83 (1997) 
 
40.    Q. Lu, M. Paredes, M. Medina, J. Zhou, R. Cavallo, M. Peifer, L. Orecchio and K. S. 
Kosik: delta-catenin, an adhesive junction-associated protein which promotes cell scattering. J 
Cell Biol 144, 519-532 (1999) 
 
41.    A. F. Paulson, E. Mooney, X. Fang, H. Ji and P. D. McCrea: Xarvcf, Xenopus member of 
the p120 catenin subfamily associating with cadherin juxtamembrane region. J Biol Chem 275, 
30124-30131 (2000) 
 
42.    A. S. Yap, C. M. Niessen and B. M. Gumbiner: The juxtamembrane region of the cadherin 
cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. 
J Cell Biol 141, 779-789 (1998) 
 
43.    I. Yang, O. Chang, Q. Lu and K. Kim: Delta-catenin affects the localization and stability of 
p120-catenin by competitively interacting with E-cadherin. Mol Cells 29, 233-237 (2010) 
 
44.    M. A. Davis, R. C. Ireton and A. B. Reynolds: A core function for p120-catenin in cadherin 
turnover. J Cell Biol 163, 525-534 (2003) 
 
45.    M. A. Davis and A. B. Reynolds: Blocked acinar development, E-cadherin reduction, and 
intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev Cell 10, 
21-31 (2006) 
 
46.    M. Perez-Moreno, M. A. Davis, E. Wong, H. A. Pasolli, A. B. Reynolds and E. Fuchs: 
p120-catenin mediates inflammatory responses in the skin. Cell 124, 631-644 (2006) 
 
47.    W. G. Smalley-Freed, A. Efimov, P. E. Burnett, S. P. Short, M. A. Davis, D. L. Gumucio, 
M. K. Washington, R. J. Coffey and A. B. Reynolds: p120-catenin is essential for maintenance of 
barrier function and intestinal homeostasis in mice. J Clin Invest 120, 1824-1835 (2010) 
 
48.    M. Hatzfeld and C. Nachtsheim: Cloning and characterization of a new armadillo family 
member, p0071, associated with the junctional plaque: evidence for a subfamily of closely related 
proteins. J Cell Sci 109 ( Pt 11), 2767-2778 (1996) 
 
49.    I. Hofmann, C. Kuhn and W. W. Franke: Protein p0071, a major plaque protein of non-
desmosomal adhering junctions, is a selective cell-type marker. Cell Tissue Res 334, 381-399 
(2008) 
 
50.    A. Wolf, R. Keil, O. Gotzl, A. Mun, K. Schwarze, M. Lederer, S. Huttelmaier and M. 
Hatzfeld: The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat Cell Biol 
(2006) 



Chapter 1  

49 
 

 
51.    R. Keil, C. Kiessling and M. Hatzfeld: Targeting of p0071 to the midbody depends on 
KIF3. J Cell Sci 122, 1174-1183 (2009) 
 
52.    J. Zhou, U. Liyanage, M. Medina, C. Ho, A. D. Simmons, M. Lovett and K. S. Kosik: 
Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport 8, 
2085-2090 (1997) 
 
53.    R. Paffenholz and W. W. Franke: Identification and localization of a neurally expressed 
member of the plakoglobin/armadillo multigene family. Differentiation 61, 293-304 (1997) 
 
54.    C. Ho, J. Zhou, M. Medina, T. Goto, M. Jacobson, P. G. Bhide and K. S. Kosik: delta-
catenin is a nervous system-specific adherens junction protein which undergoes dynamic 
relocalization during development. J Comp Neurol 420, 261-276 (2000) 
 
55.    K. S. Kosik, C. P. Donahue, I. Israely, X. Liu and T. Ochiishi: Delta-catenin at the synaptic-
adherens junction. Trends Cell Biol 15, 172-178 (2005) 
 
56.    Y. Kawamura, Q. W. Fan, H. Hayashi, M. Michikawa, K. Yanagisawa and H. Komano: 
Expression of the mRNA for two isoforms of neural plakophilin-related arm-repeat protein/delta-
catenin in rodent neurons and glial cells. Neurosci Lett 277, 185-188 (1999) 
 
57.    D. Gu, A. K. Sater, H. Ji, K. Cho, M. Clark, S. A. Stratton, M. C. Barton, Q. Lu and P. D. 
McCrea: Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to 
cadherins and small GTPases. J Cell Sci 122, 4049-4061 (2009) 
 
58.    Q. Lu, N. K. Mukhopadhyay, J. D. Griffin, M. Paredes, M. Medina and K. S. Kosik: Brain 
armadillo protein delta-catenin interacts with Abl tyrosine kinase and modulates cellular 
morphogenesis in response to growth factors. J Neurosci Res 67, 618-624 (2002) 
 
59.    M. C. Martinez, T. Ochiishi, M. Majewski and K. S. Kosik: Dual regulation of neuronal 
morphogenesis by a delta-catenin-cortactin complex and Rho. J Cell Biol 162, 99-111 (2003) 
 
60.    M. Medina, R. C. Marinescu, J. Overhauser and K. S. Kosik: Hemizygosity of delta-catenin 
(CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics 63, 
157-164 (2000) 
 
61.    M. Peifer and A. S. Yap: Traffic control: p120-catenin acts as a gatekeeper to control the 
fate of classical cadherins in mammalian cells. J Cell Biol 163, 437-440 (2003) 
 
62.    A. B. Reynolds and R. H. Carnahan: Regulation of cadherin stability and turnover by 
p120ctn: implications in disease and cancer. Semin Cell Dev Biol 15, 657-663 (2004) 
 
63.    A. B. Reynolds and A. Roczniak-Ferguson: Emerging roles for p120-catenin in cell 
adhesion and cancer. Oncogene 23, 7947-7956 (2004) 
 



p120ctn in normal development and tumorigenesis  
 

50 
 

64.    K. Xiao, R. G. Oas, C. M. Chiasson and A. P. Kowalczyk: Role of p120-catenin in cadherin 
trafficking. Biochim Biophys Acta 1773, 8-16 (2007) 
 
65.    A. P. Kowalczyk and A. B. Reynolds: Protecting your tail: regulation of cadherin 
degradation by p120-catenin. Curr Opin Cell Biol 16, 522-527 (2004) 
 
66.    S. Shibamoto, M. Hayakawa, K. Takeuchi, T. Hori, K. Miyazawa, N. Kitamura, K. R. 
Johnson, M. J. Wheelock, N. Matsuyoshi, M. Takeichi and et al.: Association of p120, a tyrosine 
kinase substrate, with E-cadherin/catenin complexes. J Cell Biol 128, 949-957 (1995) 
 
67.    M. A. Thoreson, P. Z. Anastasiadis, J. M. Daniel, R. C. Ireton, M. J. Wheelock, K. R. 
Johnson, D. K. Hummingbird and A. B. Reynolds: Selective uncoupling of p120(ctn) from E-
cadherin disrupts strong adhesion. J Cell Biol 148, 189-202 (2000) 
 
68.    S. Aono, S. Nakagawa, A. B. Reynolds and M. Takeichi: p120(ctn) acts as an inhibitory 
regulator of cadherin function in colon carcinoma cells. J Cell Biol 145, 551-562 (1999) 
 
69.    T. Ohkubo and M. Ozawa: p120(ctn) binds to the membrane-proximal region of the E-
cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J Biol Chem 
274, 21409-21415 (1999) 
 
70.    M. R. Dohn, M. V. Brown and A. B. Reynolds: An essential role for p120-catenin in Src- 
and Rac1-mediated anchorage-independent cell growth. J Cell Biol 184, 437-450 (2009) 
 
71.    K. Xiao, D. F. Allison, K. M. Buckley, M. D. Kottke, P. A. Vincent, V. Faundez and A. P. 
Kowalczyk: Cellular levels of p120 catenin function as a set point for cadherin expression levels 
in microvascular endothelial cells. J Cell Biol 163, 535-545 (2003) 
 
72.    M. Yanagisawa and P. Z. Anastasiadis: p120 catenin is essential for mesenchymal cadherin-
mediated regulation of cell motility and invasiveness. J Cell Biol 174, 1087-1096 (2006) 
 
73.    A. Pacquelet, L. Lin and P. Rorth: Binding site for p120/delta-catenin is not required for 
Drosophila E-cadherin function in vivo. J Cell Biol 160, 313-319 (2003) 
 
74.    M. Ciesiolka, M. Delvaeye, G. Van Imschoot, V. Verschuere, P. McCrea, F. van Roy and 
K. Vleminckx: p120 catenin is required for morphogenetic movements involved in the formation 
of the eyes and the craniofacial skeleton in Xenopus. J Cell Sci 117, 4325-4339 (2004) 
 
75.    X. Fang, H. Ji, S. W. Kim, J. I. Park, T. G. Vaught, P. Z. Anastasiadis, M. Ciesiolka and P. 
D. McCrea: Vertebrate development requires ARVCF and p120 catenins and their interplay with 
RhoA and Rac. J Cell Biol 165, 87-98 (2004) 
 
76.    J. D. Bartlett, J. M. Dobeck, C. E. Tye, M. Perez-Moreno, N. Stokes, A. B. Reynolds, E. 
Fuchs and Z. Skobe: Targeted p120-catenin ablation disrupts dental enamel development. PLoS 
One 5 (2010) 
 



Chapter 1  

51 
 

77.    L. P. Elia, M. Yamamoto, K. Zang and L. F. Reichardt: p120 catenin regulates dendritic 
spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43-56 
(2006) 
 
78.    R. G. Oas, K. Xiao, S. Summers, K. B. Wittich, C. M. Chiasson, W. D. Martin, H. E. 
Grossniklaus, P. A. Vincent, A. B. Reynolds and A. P. Kowalczyk: p120-Catenin is required for 
mouse vascular development. Circ Res 106, 941-951 (2010) 
 
79.    D. M. Bryant and J. L. Stow: The ins and outs of E-cadherin trafficking. Trends Cell Biol 
14, 427-434 (2004) 
 
80.    E. Delva and A. P. Kowalczyk: Regulation of cadherin trafficking. Traffic 10, 259-267 
(2009) 
 
81.    K. C. Miranda, T. Khromykh, P. Christy, T. L. Le, C. J. Gottardi, A. S. Yap, J. L. Stow and 
R. D. Teasdale: A dileucine motif targets E-cadherin to the basolateral cell surface in Madin-
Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 276, 22565-22572 (2001) 
 
82.    Y. T. Chen, D. B. Stewart and W. J. Nelson: Coupling assembly of the E-cadherin/beta-
catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of 
E-cadherin in polarized MDCK cells. J Cell Biol 144, 687-699 (1999) 
 
83.    K. C. Miranda, S. R. Joseph, A. S. Yap, R. D. Teasdale and J. L. Stow: Contextual binding 
of p120ctn to E-cadherin at the basolateral plasma membrane in polarized epithelia. J Biol Chem 
278, 43480-43488 (2003) 
 
84.    J. K. Wahl, 3rd, Y. J. Kim, J. M. Cullen, K. R. Johnson and M. J. Wheelock: N-cadherin-
catenin complexes form prior to cleavage of the proregion and transport to the plasma membrane. 
J Biol Chem 278, 17269-17276 (2003) 
 
85.    S. Mary, S. Charrasse, M. Meriane, F. Comunale, P. Travo, A. Blangy and C. Gauthier-
Rouviere: Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a 
microtubule-dependent kinesin-driven mechanism. Mol Biol Cell 13, 285-301 (2002) 
 
86.    X. Chen, S. Kojima, G. G. Borisy and K. J. Green: p120 catenin associates with kinesin and 
facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol 163, 
547-557 (2003) 
 
87.    M. Yanagisawa, I. N. Kaverina, A. Wang, Y. Fujita, A. B. Reynolds and P. Z. Anastasiadis: 
A novel interaction between kinesin and p120 modulates p120 localization and function. J Biol 
Chem 279, 9512-9521 (2004) 
 
88.    A. Roczniak-Ferguson and A. B. Reynolds: Regulation of p120-catenin nucleocytoplasmic 
shuttling activity. J Cell Sci 116, 4201-4212 (2003) 
 



p120ctn in normal development and tumorigenesis  
 

52 
 

89.    T. Ichii and M. Takeichi: p120-catenin regulates microtubule dynamics and cell migration 
in a cadherin-independent manner. Genes Cells 12, 827-839 (2007) 
 
90.    T. L. Le, A. S. Yap and J. L. Stow: Recycling of E-cadherin: A potential mechanism for 
regulating cadherin dynamics. Journal of Cell Biology 146, 219-232 (1999) 
 
91.    A. I. Ivanov, A. Nusrat and C. A. Parkos: Endocytosis of epithelial apical junctional 
proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 15, 
176-188 (2004) 
 
92.    K. Xiao, J. Garner, K. M. Buckley, P. A. Vincent, C. M. Chiasson, E. Dejana, V. Faundez 
and A. P. Kowalczyk: p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. 
Mol Biol Cell 16, 5141-5151 (2005) 
 
93.    F. Palacios, L. Price, J. Schweitzer, J. G. Collard and C. D'Souza-Schorey: An essential role 
for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. 
Embo J 20, 4973-4986 (2001) 
 
94.    G. Izumi, T. Sakisaka, T. Baba, S. Tanaka, K. Morimoto and Y. Takai: Endocytosis of E-
cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J 
Cell Biol 166, 237-248 (2004) 
 
95.    Z. Lu, S. Ghosh, Z. Wang and T. Hunter: Downregulation of caveolin-1 function by EGF 
leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced 
tumor cell invasion. Cancer Cell 4, 499-515 (2003) 
 
96.    N. Akhtar and N. A. Hotchin: RAC1 regulates adherens junctions through endocytosis of E-
cadherin. Mol Biol Cell 12, 847-862 (2001) 
 
97.    F. Palacios, J. S. Tushir, Y. Fujita and C. D'Souza-Schorey: Lysosomal targeting of E-
cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to 
mesenchymal transitions. Mol Cell Biol 25, 389-402 (2005) 
 
98.    A. D. Paterson, R. G. Parton, C. Ferguson, J. L. Stow and A. S. Yap: Characterization of E-
cadherin endocytosis in isolated MCF-7 and chinese hamster ovary cells: the initial fate of 
unbound E-cadherin. J Biol Chem 278, 21050-21057 (2003) 
 
99.    D. M. Bryant, M. C. Kerr, L. A. Hammond, S. R. Joseph, K. E. Mostov, R. D. Teasdale and 
J. L. Stow: EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J Cell 
Sci 120, 1818-1828 (2007) 
 
100.    M. Sharma and B. R. Henderson: IQ-domain GTPase-activating protein 1 regulates beta-
catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous 
polyposis coli. J Biol Chem 282, 8545-8556 (2007) 
 



Chapter 1  

53 
 

101.    Y. Miyashita and M. Ozawa: Increased internalization of p120-uncoupled E-cadherin and 
a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J 
Biol Chem 282, 11540-11548 (2007) 
 
102.    Y. Miyashita and M. Ozawa: A dileucine motif in its cytoplasmic domain directs beta-
catenin-uncoupled E-cadherin to the lysosome. J Cell Sci 120, 4395-4406 (2007) 
 
103.    C. M. Chiasson, K. B. Wittich, P. A. Vincent, V. Faundez and A. P. Kowalczyk: p120-
catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol 
Cell 20, 1970-1980 (2009) 
 
104.    L. Baki, P. Marambaud, S. Efthimiopoulos, A. Georgakopoulos, P. Wen, W. Cui, J. Shioi, 
E. Koo, M. Ozawa, V. L. Friedrich, Jr. and N. K. Robakis: Presenilin-1 binds cytoplasmic 
epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the 
cadherin/catenin adhesion complex. Proc Natl Acad Sci U S A 98, 2381-2386 (2001) 
 
105.    P. Marambaud, J. Shioi, G. Serban, A. Georgakopoulos, S. Sarner, V. Nagy, L. Baki, P. 
Wen, S. Efthimiopoulos, Z. Shao, T. Wisniewski and N. K. Robakis: A presenilin-1/gamma-
secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of 
adherens junctions. Embo J 21, 1948-1956 (2002) 
 
106.    M. E. Rubio, C. Curcio, N. Chauvet and J. L. Bruses: Assembly of the N-cadherin 
complex during synapse formation involves uncoupling of p120-catenin and association with 
presenilin 1. Mol Cell Neurosci 30, 118-130 (2005) 
 
107.    Y. Fujita, G. Krause, M. Scheffner, D. Zechner, H. E. Leddy, J. Behrens, T. Sommer and 
W. Birchmeier: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-
cadherin complex. Nat Cell Biol 4, 222-231 (2002) 
 
108.    S. Pece and J. S. Gutkind: E-cadherin and Hakai: signalling, remodeling or destruction? 
Nat Cell Biol 4, E72-74 (2002) 
 
109.    P. Z. Anastasiadis: p120-ctn: A nexus for contextual signaling via Rho GTPases. Biochim 
Biophys Acta 1773, 34-46 (2007) 
 
110.    K. F. Kelly, C. M. Spring, A. A. Otchere and J. M. Daniel: NLS-dependent nuclear 
localization of p120ctn is necessary to relieve Kaiso-mediated transcriptional repression. J Cell 
Sci 117, 2675-2686 (2004) 
 
111.    J. Castano, G. Solanas, D. Casagolda, I. Raurell, P. Villagrasa, X. R. Bustelo, A. Garcia de 
Herreros and M. Dunach: Specific phosphorylation of p120-catenin regulatory domain differently 
modulates its binding to RhoA. Mol Cell Biol 27, 1745-1757 (2007) 
 
112.    G. A. Wildenberg, M. R. Dohn, R. H. Carnahan, M. A. Davis, N. A. Lobdell, J. Settleman 
and A. B. Reynolds: p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating 
antagonism between Rac and Rho. Cell 127, 1027-1039 (2006) 



p120ctn in normal development and tumorigenesis  
 

54 
 

 
113.    M. Yanagisawa, D. Huveldt, P. Kreinest, C. M. Lohse, J. C. Cheville, A. S. Parker, J. A. 
Copland and P. Z. Anastasiadis: A p120 catenin isoform switch affects Rho activity, induces 
tumor cell invasion, and predicts metastatic disease. J Biol Chem 283, 18344-18354 (2008) 
 
114.    D. I. Bellovin, R. C. Bates, A. Muzikansky, D. L. Rimm and A. M. Mercurio: Altered 
localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is 
prognostic for aggressive disease. Cancer Res 65, 10938-10945 (2005) 
 
115.    E. Soto, M. Yanagisawa, L. A. Marlow, J. A. Copland, E. A. Perez and P. Z. Anastasiadis: 
p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression. 
J Cell Biol 183, 737-749 (2008) 
 
116.    G. R. Hoffman, N. Nassar and R. A. Cerione: Structure of the Rho family GTP-binding 
protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345-356 (2000) 
 
117.    E. E. Sander, J. P. ten Klooster, S. van Delft, R. A. van der Kammen and J. G. Collard: 
Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular 
morphology and migratory behavior. J Cell Biol 147, 1009-1022 (1999) 
 
118.    A. S. Nimnual, L. J. Taylor and D. Bar-Sagi: Redox-dependent downregulation of Rho by 
Rac. Nat Cell Biol 5, 236-241 (2003) 
 
119.    C. M. Niessen and A. S. Yap: Another job for the talented p120-catenin. Cell 127, 875-
877 (2006) 
 
120.    V. M. Braga and A. S. Yap: The challenges of abundance: epithelial junctions and small 
GTPase signalling. Curr Opin Cell Biol 17, 466-474 (2005) 
 
121.    V. M. Braga: Cell-cell adhesion and signalling. Curr Opin Cell Biol 14, 546-556 (2002) 
 
122.    V. M. Braga, L. M. Machesky, A. Hall and N. A. Hotchin: The small GTPases Rho and 
Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137, 
1421-1431 (1997) 
 
123.    K. Takaishi, T. Sasaki, H. Kotani, H. Nishioka and Y. Takai: Regulation of cell-cell 
adhesion by rac and rho small G proteins in MDCK cells. J Cell Biol 139, 1047-1059 (1997) 
 
124.    E. Calautti, M. Grossi, C. Mammucari, Y. Aoyama, M. Pirro, Y. Ono, J. Li and G. P. 
Dotto: Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell-
cell adhesion. J Cell Biol 156, 137-148 (2002) 
 
125.    E. Sahai and C. J. Marshall: ROCK and Dia have opposing effects on adherens junctions 
downstream of Rho. Nat Cell Biol 4, 408-415 (2002) 
 



Chapter 1  

55 
 

126.    V. M. Braga, M. Betson, X. Li and N. Lamarche-Vane: Activation of the small GTPase 
Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. 
Mol Biol Cell 11, 3703-3721 (2000) 
 
127.    S. Ellis and H. Mellor: Regulation of endocytic traffic by rho family GTPases. Trends Cell 
Biol 10, 85-88 (2000) 
 
128.    M. Symons and N. Rusk: Control of vesicular trafficking by Rho GTPases. Curr Biol 13, 
R409-418 (2003) 
 
129.    M. Hatzfeld: The p120 family of cell adhesion molecules. Eur J Cell Biol 84, 205-214 
(2005) 
 
130.    M. Hatzfeld, C. Haffner, K. Schulze and U. Vinzens: The function of plakophilin 1 in 
desmosome assembly and actin filament organization. J Cell Biol 149, 209-222 (2000) 
 
131.    K. Kim, A. Sirota, Y. H. Chen Yh, S. B. Jones, R. Dudek, G. W. Lanford, C. Thakore and 
Q. Lu: Dendrite-like process formation and cytoskeletal remodeling regulated by delta-catenin 
expression. Exp Cell Res 275, 171-184 (2002) 
 
132.    K. Abu-Elneel, T. Ochiishi, M. Medina, M. Remedi, L. Gastaldi, A. Caceres and K. S. 
Kosik: A delta-catenin signaling pathway leading to dendritic protrusions. J Biol Chem 283, 
32781-32791 (2008) 
 
133.    J. S. Kim, S. Bareiss, K. K. Kim, R. Tatum, J. R. Han, Y. H. Jin, H. Kim, Q. Lu and K. 
Kim: Presenilin-1 inhibits delta-catenin-induced cellular branching and promotes delta-catenin 
processing and turnover. Biochem Biophys Res Commun 351, 903-908 (2006) 
 
134.    H. Kim, M. Oh, Q. Lu and K. Kim: E-Cadherin negatively modulates delta-catenin-
induced morphological changes and RhoA activity reduction by competing with p190RhoGEF 
for delta-catenin. Biochem Biophys Res Commun 377, 636-641 (2008) 
 
135.    S. A. Weed, Y. Du and J. T. Parsons: Translocation of cortactin to the cell periphery is 
mediated by the small GTPase Rac1. J Cell Sci 111 ( Pt 16), 2433-2443 (1998) 
 
136.    S. A. Weed, A. V. Karginov, D. A. Schafer, A. M. Weaver, A. W. Kinley, J. A. Cooper 
and J. T. Parsons: Cortactin localization to sites of actin assembly in lamellipodia requires 
interactions with F-actin and the Arp2/3 complex. J Cell Biol 151, 29-40 (2000) 
 
137.    S. Boguslavsky, I. Grosheva, E. Landau, M. Shtutman, M. Cohen, K. Arnold, E. Feinstein, 
B. Geiger and A. Bershadsky: p120 catenin regulates lamellipodial dynamics and cell adhesion in 
cooperation with cortactin. Proc Natl Acad Sci U S A 104, 10882-10887 (2007) 
 
138.    H. Kim, J. R. Han, J. Park, M. Oh, S. E. James, S. Chang, Q. Lu, K. Y. Lee, H. Ki, W. J. 
Song and K. Kim: Delta-catenin-induced dendritic morphogenesis. An essential role of 



p120ctn in normal development and tumorigenesis  
 

56 
 

p190RhoGEF interaction through Akt1-mediated phosphorylation. J Biol Chem 283, 977-987 
(2008) 
 
139.    J. Arikkath, I. Israely, Y. Tao, L. Mei, X. Liu and L. F. Reichardt: Erbin controls dendritic 
morphogenesis by regulating localization of delta-catenin. J Neurosci 28, 7047-7056 (2008) 
 
140.    J. Mayerle, H. Friess, M. W. Buchler, J. Schnekenburger, F. U. Weiss, K. P. Zimmer, W. 
Domschke and M. M. Lerch: Up-regulation, nuclear import, and tumor growth stimulation of the 
adhesion protein p120 in pancreatic cancer. Gastroenterology 124, 949-960 (2003) 
 
141.    C. R. Hosking, F. Ulloa, C. Hogan, E. C. Ferber, A. Figueroa, K. Gevaert, W. Birchmeier, 
J. Briscoe and Y. Fujita: The transcriptional repressor Glis2 is a novel binding partner for p120 
catenin. Mol Biol Cell 18, 1918-1927 (2007) 
 
142.    A. Soubry, J. van Hengel, E. Parthoens, C. Colpaert, E. Van Marck, D. Waltregny, A. B. 
Reynolds and F. van Roy: Expression and nuclear location of the transcriptional repressor Kaiso 
is regulated by the tumor microenvironment. Cancer Res 65, 2224-2233 (2005) 
 
143.    K. F. Kelly, A. A. Otchere, M. Graham and J. M. Daniel: Nuclear import of the BTB/POZ 
transcriptional regulator Kaiso. J Cell Sci 117, 6143-6152 (2004) 
 
144.    F. M. van Roy and P. D. McCrea: A role for Kaiso-p120ctn complexes in cancer? Nat Rev 
Cancer 5, 956-964 (2005) 
 
145.    K. F. Kelly and J. M. Daniel: POZ for effect - POZ-ZF transcription factors in cancer and 
development. Trends Cell Biol (2006) 
 
146.    J. M. Daniel: Dancing in and out of the nucleus: p120(ctn) and the transcription factor 
Kaiso. Biochim Biophys Acta 1773, 59-68 (2007) 
 
147.    J. M. Daniel, C. M. Spring, H. C. Crawford, A. B. Reynolds and A. Baig: The p120(ctn)-
binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-
specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 30, 2911-2919 (2002) 
 
148.    A. Prokhortchouk, B. Hendrich, H. Jorgensen, A. Ruzov, M. Wilm, G. Georgiev, A. Bird 
and E. Prokhortchouk: The p120 catenin partner Kaiso is a DNA methylation-dependent 
transcriptional repressor. Genes Dev 15, 1613-1618 (2001) 
 
149.    A. Ruzov, E. Savitskaya, J. A. Hackett, J. P. Reddington, A. Prokhortchouk, M. J. Madej, 
N. Chekanov, M. Li, D. S. Dunican, E. Prokhortchouk, S. Pennings and R. R. Meehan: The non-
methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. 
Development 136, 729-738 (2009) 
 
150.    H. G. Yoon, D. W. Chan, A. B. Reynolds, J. Qin and J. Wong: N-CoR mediates DNA 
methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12, 
723-734 (2003) 



Chapter 1  

57 
 

 
151.    S. W. Kim, X. Fang, H. Ji, A. F. Paulson, J. M. Daniel, M. Ciesiolka, F. van Roy and P. D. 
McCrea: Isolation and characterization of XKaiso, a transcriptional repressor that associates with 
the catenin Xp120(ctn) in Xenopus laevis. J Biol Chem 277, 8202-8208 (2002) 
 
152.    J. I. Park, S. W. Kim, J. P. Lyons, H. Ji, T. T. Nguyen, K. Cho, M. C. Barton, T. Deroo, K. 
Vleminckx, R. T. Moon and P. D. McCrea: Kaiso/p120-catenin and TCF/beta-catenin complexes 
coordinately regulate canonical Wnt gene targets. Dev Cell 8, 843-854 (2005) 
 
153.    S. W. Kim, J. I. Park, C. M. Spring, A. K. Sater, H. Ji, A. A. Otchere, J. M. Daniel and P. 
D. McCrea: Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and 
p120-catenin. Nat Cell Biol 6, 1212-1220 (2004) 
 
154.    C. M. Spring, K. F. Kelly, I. O'Kelly, M. Graham, H. C. Crawford and J. M. Daniel: The 
catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target 
gene matrilysin. Exp Cell Res 305, 253-265 (2005) 
 
155.    J. I. Park, H. Ji, S. Jun, D. Gu, H. Hikasa, L. Li, S. Y. Sokol, P. D. McCrea, M. Perez-
Moreno and E. Fuchs: Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct 
Catenin Subfamilies Promote Wnt Signals 
Catenins: keeping cells from getting their signals crossed. Dev Cell 11, 683-695 (2006) 
 
156.    A. Ruzov, J. A. Hackett, A. Prokhortchouk, J. P. Reddington, M. J. Madej, D. S. Dunican, 
E. Prokhortchouk, S. Pennings and R. R. Meehan: The interaction of xKaiso with xTcf3: a 
revised model for integration of epigenetic and Wnt signalling pathways. Development 136, 723-
727 (2009) 
 
157.    A. Ruzov, D. S. Dunican, A. Prokhortchouk, S. Pennings, I. Stancheva, E. Prokhortchouk 
and R. R. Meehan: Kaiso is a genome-wide repressor of transcription that is essential for 
amphibian development. Development 131, 6185-6194 (2004) 
 
158.    A. Prokhortchouk, O. Sansom, J. Selfridge, I. M. Caballero, S. Salozhin, D. Aithozhina, L. 
Cerchietti, F. G. Meng, L. H. Augenlicht, J. M. Mariadason, B. Hendrich, A. Melnick, E. 
Prokhortchouk, A. Clarke and A. Bird: Kaiso-deficient mice show resistance to intestinal cancer. 
Mol Cell Biol 26, 199-208 (2006) 
 
159.    G. J. Filion, S. Zhenilo, S. Salozhin, D. Yamada, E. Prokhortchouk and P. A. Defossez: A 
family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol 
Cell Biol 26, 169-181 (2006) 
 
160.    A. Weber, J. Marquardt, D. Elzi, N. Forster, S. Starke, A. Glaum, D. Yamada, P. A. 
Defossez, J. Delrow, R. N. Eisenman, H. Christiansen and M. Eilers: Zbtb4 represses 
transcription of P21CIP1 and controls the cellular response to p53 activation. Embo J 27, 1563-
1574 (2008) 
 



p120ctn in normal development and tumorigenesis  
 

58 
 

161.    S. Alema and A. M. Salvatore: p120 catenin and phosphorylation: Mechanisms and traits 
of an unresolved issue. Biochim Biophys Acta 1773, 47-58 (2007) 
 
162.    A. Skoudy, M. D. Llosas and A. Garcia de Herreros: Intestinal HT-29 cells with 
dysfunction of E-cadherin show increased pp60src activity and tyrosine phosphorylation of p120-
catenin. Biochem J 317 ( Pt 1), 279-284 (1996) 
 
163.    M. S. Kinch, G. J. Clark, C. J. Der and K. Burridge: Tyrosine phosphorylation regulates 
the adhesions of ras-transformed breast epithelia. J Cell Biol 130, 461-471 (1995) 
 
164.    J. Behrens, L. Vakaet, R. Friis, E. Winterhager, F. Van Roy, M. M. Mareel and W. 
Birchmeier: Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine 
phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-
sensitive v-SRC gene. J Cell Biol 120, 757-766 (1993) 
 
165.    M. Hamaguchi, N. Matsuyoshi, Y. Ohnishi, B. Gotoh, M. Takeichi and Y. Nagai: p60v-src 
causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. 
Embo J 12, 307-314 (1993) 
 
166.    N. Matsuyoshi, M. Hamaguchi, S. Taniguchi, A. Nagafuchi, S. Tsukita and M. Takeichi: 
Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic 
fibroblasts. J Cell Biol 118, 703-714 (1992) 
 
167.    R. Rosato, J. M. Veltmaat, J. Groffen and N. Heisterkamp: Involvement of the tyrosine 
kinase fer in cell adhesion. Mol Cell Biol 18, 5762-5770 (1998) 
 
168.    M. G. Lampugnani, M. Corada, P. Andriopoulou, S. Esser, W. Risau and E. Dejana: Cell 
confluence regulates tyrosine phosphorylation of adherens junction components in endothelial 
cells. J Cell Sci 110 ( Pt 17), 2065-2077 (1997) 
 
169.    M. Ozawa and R. Kemler: Altered cell adhesion activity by pervanadate due to the 
dissociation of alpha-catenin from the E-cadherin.catenin complex. J Biol Chem 273, 6166-6170 
(1998) 
 
170.    D. W. Owens, G. W. McLean, A. W. Wyke, C. Paraskeva, E. K. Parkinson, M. C. Frame 
and V. G. Brunton: The catalytic activity of the Src family kinases is required to disrupt cadherin-
dependent cell-cell contacts. Mol Biol Cell 11, 51-64 (2000) 
 
171.    R. Nawroth, G. Poell, A. Ranft, S. Kloep, U. Samulowitz, G. Fachinger, M. Golding, D. T. 
Shima, U. Deutsch and D. Vestweber: VE-PTP and VE-cadherin ectodomains interact to 
facilitate regulation of phosphorylation and cell contacts. Embo J 21, 4885-4895 (2002) 
 
172.    E. Calautti, S. Cabodi, P. L. Stein, M. Hatzfeld, N. Kedersha and G. Paolo Dotto: Tyrosine 
phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141, 
1449-1465 (1998) 
 



Chapter 1  

59 
 

173.    M. Cozzolino, B. Giovannone, A. Serafino, K. Knudsen, A. Levi, S. Alema and A. 
Salvatore: Activation of TrkA tyrosine kinase in embryonal carcinoma cells promotes cell 
compaction, independently of tyrosine phosphorylation of catenins. J Cell Sci 113 ( Pt 9), 1601-
1610 (2000) 
 
174.    S. Roura, S. Miravet, J. Piedra, A. Garcia de Herreros and M. Dunach: Regulation of E-
cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274, 36734-36740 (1999) 
 
175.    J. Balsamo, T. Leung, H. Ernst, M. K. Zanin, S. Hoffman and J. Lilien: Regulated binding 
of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by 
dephosphorylation of beta-catenin. J Cell Biol 134, 801-813 (1996) 
 
176.    T. Shibata, A. Ochiai, Y. Kanai, S. Akimoto, M. Gotoh, N. Yasui, R. Machinami and S. 
Hirohashi: Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by 
N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. 
Oncogene 13, 883-889 (1996) 
 
177.    A. H. Huber, W. J. Nelson and W. I. Weis: Three-dimensional structure of the Armadillo 
repeat region of beta-catenin. Cell 90, 871-882 (1997) 
 
178.    H. Aberle, H. Schwartz, H. Hoschuetzky and R. Kemler: Single amino acid substitutions 
in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 271, 
1520-1526 (1996) 
 
179.    J. Piedra, S. Miravet, J. Castano, H. G. Palmer, N. Heisterkamp, A. Garcia de Herreros and 
M. Dunach: p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 
phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 23, 2287-2297 (2003) 
 
180.    P. Hu, E. J. O'Keefe and D. S. Rubenstein: Tyrosine phosphorylation of human 
keratinocyte beta-catenin and plakoglobin reversibly regulates their binding to E-cadherin and 
alpha-catenin. J Invest Dermatol 117, 1059-1067 (2001) 
 
181.    M. Ozawa and T. Ohkubo: Tyrosine phosphorylation of p120(ctn) in v-Src transfected L 
cells depends on its association with E-cadherin and reduces adhesion activity. J Cell Sci 114, 
503-512 (2001) 
 
182.    J. Lilien, J. Balsamo, C. Arregui and G. Xu: Turn-off, drop-out: functional state switching 
of cadherins. Dev Dyn 224, 18-29 (2002) 
 
183.    G. Xu, A. W. Craig, P. Greer, M. Miller, P. Z. Anastasiadis, J. Lilien and J. Balsamo: 
Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase 
Fer. J Cell Sci 117, 3207-3219 (2004) 
 
184.    D. J. Mariner, P. Anastasiadis, H. Keilhack, F. D. Bohmer, J. Wang and A. B. Reynolds: 
Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem 276, 28006-28013 
(2001) 



p120ctn in normal development and tumorigenesis  
 

60 
 

 
185.    X. Xia, D. J. Mariner and A. B. Reynolds: Adhesion-associated and PKC-modulated 
changes in serine/threonine phosphorylation of p120-catenin. Biochemistry 42, 9195-9204 (2003) 
 
186.    D. J. Mariner, M. A. Davis and A. B. Reynolds: EGFR signaling to p120-catenin through 
phosphorylation at Y228. J Cell Sci 117, 1339-1350 (2004) 
 
187.    M. H. Vaughan, X. Xia, X. Wang, E. Chronopoulou, G. J. Gao, R. Campos-Gonzalez and 
A. B. Reynolds: Generation and characterization of a novel phospho-specific monoclonal 
antibody to p120-catenin serine 879. Hybridoma (Larchmt) 26, 407-415 (2007) 
 
188.    X. Xia, J. Brooks, R. Campos-Gonzalez and A. B. Reynolds: Serine and threonine 
phospho-specific antibodies to p120-catenin. Hybrid Hybridomics 23, 343-351 (2004) 
 
189.    M. V. Brown, P. E. Burnett, M. F. Denning and A. B. Reynolds: PDGF receptor activation 
induces p120-catenin phosphorylation at serine 879 via a PKCalpha-dependent pathway. Exp 
Cell Res 315, 39-49 (2009) 
 
190.    E. Y. Wong, L. Morgan, C. Smales, P. Lang, S. E. Gubby and J. M. Staddon: Vascular 
endothelial growth factor stimulates dephosphorylation of the catenins p120 and p100 in 
endothelial cells. Biochem J 346 Pt 1, 209-216 (2000) 
 
191.    M. J. Ratcliffe, L. L. Rubin and J. M. Staddon: Dephosphorylation of the cadherin-
associated p100/p120 proteins in response to activation of protein kinase C in epithelial cells. J 
Biol Chem 272, 31894-31901 (1997) 
 
192.    M. J. Ratcliffe, C. Smales and J. M. Staddon: Dephosphorylation of the catenins p120 and 
p100 in endothelial cells in response to inflammatory stimuli. Biochem J 338 ( Pt 2), 471-478 
(1999) 
 
193.    A. W. Craig, R. Zirngibl, K. Williams, L. A. Cole and P. A. Greer: Mice devoid of fer 
protein-tyrosine kinase activity are viable and fertile but display reduced cortactin 
phosphorylation. Mol Cell Biol 21, 603-613 (2001) 
 
194.    P. L. Stein, H. M. Lee, S. Rich and P. Soriano: pp59fyn mutant mice display differential 
signaling in thymocytes and peripheral T cells. Cell 70, 741-750 (1992) 
 
195.    L. Kim and T. W. Wong: The cytoplasmic tyrosine kinase FER is associated with the 
catenin-like substrate pp120 and is activated by growth factors. Molecular and Cellular Biology 
15, 4553-4561 (1995) 
 
196.    J. R. Downing and A. B. Reynolds: PDGF, CSF-1, and EGF induce tyrosine 
phosphorylation of p120, a pp60src transformation-associated substrate. Oncogene 6, 607-613 
(1991) 
 



Chapter 1  

61 
 

197.    S. Esser, M. G. Lampugnani, M. Corada, E. Dejana and W. Risau: Vascular endothelial 
growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111 ( 
Pt 13), 1853-1865 (1998) 
 
198.    H. Keilhack, U. Hellman, J. van Hengel, F. van Roy, J. Godovac-Zimmermann and F. D. 
Bohmer: The protein-tyrosine phosphatase SHP-1 binds to and dephosphorylates p120 catenin. J 
Biol Chem 275, 26376-26384 (2000) 
 
199.    C. Frank, C. Burkhardt, D. Imhof, J. Ringel, O. Zschornig, K. Wieligmann, M. Zacharias 
and F. D. Bohmer: Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem 279, 
11375-11383 (2004) 
 
200.    L. J. Holsinger, K. Ward, B. Duffield, J. Zachwieja and B. Jallal: The transmembrane 
receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene 21, 7067-7076 
(2002) 
 
201.    H. L. Palka, M. Park and N. K. Tonks: Hepatocyte growth factor receptor tyrosine kinase 
met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem 278, 5728-
5735 (2003) 
 
202.    G. C. Zondag, A. B. Reynolds and W. H. Moolenaar: Receptor protein-tyrosine 
phosphatase RPTPmu binds to and dephosphorylates the catenin p120(ctn). J Biol Chem 275, 
11264-11269 (2000) 
 
203.    H. Takeda, A. Nagafuchi, S. Yonemura, S. Tsukita, J. Behrens and W. Birchmeier: V-src 
kinase shifts the cadherin-based cell adhesion from the strong to the weak state and beta catenin 
is not required for the shift. J Cell Biol 131, 1839-1847 (1995) 
 
204.    R. Y. Huang, S. M. Wang, C. Y. Hsieh and J. C. Wu: Lysophosphatidic acid induces 
ovarian cancer cell dispersal by activating Fyn kinase associated with p120-catenin. Int J Cancer 
123, 801-809 (2008) 
 
205.    Y. Chen, C. H. Chen, P. Y. Tung, S. H. Huang and S. M. Wang: An acidic extracellular 
pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-
cadherin. J Cell Biochem 108, 851-859 (2009) 
 
206.    K. H. Chen, P. Y. Tung, J. C. Wu, Y. Chen, P. C. Chen, S. H. Huang and S. M. Wang: An 
acidic extracellular pH induces Src kinase-dependent loss of beta-catenin from the adherens 
junction. Cancer Lett 267, 37-48 (2008) 
 
207.    X. Xia, R. H. Carnahan, M. H. Vaughan, G. A. Wildenberg and A. B. Reynolds: p120 
serine and threonine phosphorylation is controlled by multiple ligand-receptor pathways but not 
cadherin ligation. Exp Cell Res 312, 3336-3348 (2006) 
 
208.    D. T. Fox, C. C. Homem, S. H. Myster, F. Wang, E. E. Bain and M. Peifer: Rho1 regulates 
Drosophila adherens junctions independently of p120ctn. Development 132, 4819-4831 (2005) 



p120ctn in normal development and tumorigenesis  
 

62 
 

 
209.    A. F. Paulson, X. Fang, H. Ji, A. B. Reynolds and P. D. McCrea: Misexpression of the 
catenin p120(ctn)1A perturbs Xenopus gastrulation but does not elicit Wnt-directed axis 
specification. Dev Biol 207, 350-363 (1999) 
 
210.    K. Geis, H. Aberle, M. Kuhl, R. Kemler and D. Wedlich: Expression of the Armadillo 
family member p120cas1B in Xenopus embryos affects head differentiation but not axis 
formation. Dev Genes Evol 207, 471-481 (1998) 
 
211.    I. Israely, R. M. Costa, C. W. Xie, A. J. Silva, K. S. Kosik and X. Liu: Deletion of the 
neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Curr 
Biol 14, 1657-1663 (2004) 
 
212.    J. van Hengel and F. van Roy: Diverse functions of p120ctn in tumors. Biochim Biophys 
Acta (2006) 
 
213.    M. A. Thoreson and A. B. Reynolds: Altered expression of the catenin p120 in human 
cancer: implications for tumor progression. Differentiation 70, 583-589 (2002) 
 
214.    A. Bonnomet, M. Polette, K. Strumane, C. Gilles, V. Dalstein, C. Kileztky, G. Berx, F. 
van Roy, P. Birembaut and B. Nawrocki-Raby: The E-cadherin-repressed hNanos1 gene induces 
tumor cell invasion by upregulating MT1-MMP expression. Oncogene 27, 3692-3699 (2008) 
 
215.    G. Berx and F. van Roy: Involvement of members of the cadherin superfamily in cancer. 
Cold Spring Harb Perspect Biol 1, a003129 (2009) 
 
216.    Y. Ishizaki, Y. Omori, M. Momiyama, Y. Nishikawa, T. Tokairin, M. Manabe and K. 
Enomoto: Reduced expression and aberrant localization of p120catenin in human squamous cell 
carcinoma of the skin. J Dermatol Sci 34, 99-108 (2004) 
 
217.    L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjoblom, R. J. Leary, D. Shen, S. M. 
Boca, T. Barber, J. Ptak, N. Silliman, S. Szabo, Z. Dezso, V. Ustyanksky, T. Nikolskaya, Y. 
Nikolsky, R. Karchin, P. A. Wilson, J. S. Kaminker, Z. Zhang, R. Croshaw, J. Willis, D. Dawson, 
M. Shipitsin, J. K. Willson, S. Sukumar, K. Polyak, B. H. Park, C. L. Pethiyagoda, P. V. Pant, D. 
G. Ballinger, A. B. Sparks, J. Hartigan, D. R. Smith, E. Suh, N. Papadopoulos, P. Buckhaults, S. 
D. Markowitz, G. Parmigiani, K. W. Kinzler, V. E. Velculescu and B. Vogelstein: The genomic 
landscapes of human breast and colorectal cancers. Science 318, 1108-1113 (2007) 
 
218.    A. A. Gimelbrant, A. W. Ensminger, P. Qi, J. Zucker and A. Chess: Monoallelic 
expression and asynchronous replication of p120 catenin in mouse and human cells. J Biol Chem 
280, 1354-1359 (2005) 
 
219.    F. Mortazavi, J. An, S. Dubinett and M. Rettig: p120-catenin is transcriptionally 
downregulated by FOXC2 in non-small cell lung cancer cells. Mol Cancer Res 8, 762-774 (2010) 
 



Chapter 1  

63 
 

220.    M. Perez-Moreno, W. Song, H. A. Pasolli, S. E. Williams and E. Fuchs: Loss of p120 
catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci U S A 
105, 15399-15404 (2008) 
 
221.    D. C. Radisky: Epithelial-mesenchymal transition. J Cell Sci 118, 4325-4326 (2005) 
 
222.    M. J. Wheelock, Y. Shintani, M. Maeda, Y. Fukumoto and K. R. Johnson: Cadherin 
switching. J Cell Sci 121, 727-735 (2008) 
 
223.    S. Nakagawa and M. Takeichi: Neural crest cell-cell adhesion controlled by sequential and 
subpopulation-specific expression of novel cadherins. Development 121, 1321-1332 (1995) 
 
224.    N. L. Tran, R. B. Nagle, A. E. Cress and R. L. Heimark: N-Cadherin expression in human 
prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion 
withStromal cells. Am J Pathol 155, 787-798 (1999) 
 
225.    J. Husmark, N. E. Heldin and M. Nilsson: N-cadherin-mediated adhesion and aberrant 
catenin expression in anaplastic thyroid-carcinoma cell lines. Int J Cancer 83, 692-699 (1999) 
 
226.    B. Seidel, S. Braeg, G. Adler, D. Wedlich and A. Menke: E- and N-cadherin differ with 
respect to their associated p120ctn isoforms and their ability to suppress invasive growth in 
pancreatic cancer cells. Oncogene 23, 5532-5542 (2004) 
 
227.    M. Herlyn, C. Berking, G. Li and K. Satyamoorthy: Lessons from melanocyte 
development for understanding the biological events in naevus and melanoma formation. 
Melanoma Res 10, 303-312 (2000) 
 
228.    I. Molina-Ortiz, R. A. Bartolome, P. Hernandez-Varas, G. P. Colo and J. Teixido: 
Overexpression of E-cadherin on melanoma cells inhibits chemokine-promoted invasion 
involving p190RhoGAP/p120ctn-dependent inactivation of RhoA. J Biol Chem 284, 15147-
15157 (2009) 
 
229.    M. Maeda, E. Johnson, S. H. Mandal, K. R. Lawson, S. A. Keim, R. A. Svoboda, S. 
Caplan, J. K. Wahl, 3rd, M. J. Wheelock and K. R. Johnson: Expression of inappropriate 
cadherins by epithelial tumor cells promotes endocytosis and degradation of E-cadherin via 
competition for p120(ctn). Oncogene 25, 4595-4604 (2006) 
 
230.    E. H. Wang, Y. Liu, H. T. Xu, S. D. Dai, N. Liu, C. Y. Xie and X. M. Yuan: Abnormal 
expression and clinicopathologic significance of p120-catenin in lung cancer. Histol Histopathol 
21, 841-847 (2006) 
 
231.    Y. Liu, Y. Wang, Y. Zhang, Y. Miao, Y. Zhao, P. X. Zhang, G. Y. Jiang, J. Y. Zhang, Y. 
Han, X. Y. Lin, L. H. Yang, Q. C. Li, C. Zhao and E. H. Wang: Abnormal expression of p120-
catenin, E-cadherin, and small GTPases is significantly associated with malignant phenotype of 
human lung cancer. Lung Cancer 63, 375-382 (2009) 
 



p120ctn in normal development and tumorigenesis  
 

64 
 

232.    Y. Miao, N. Liu, Y. Zhang, Y. Liu, J. H. Yu, S. D. Dai, H. T. Xu and E. H. Wang: p120ctn 
isoform 1 expression significantly correlates with abnormal expression of E-cadherin and poor 
survival of lung cancer patients. Med Oncol 27, 880-886  
 
233.    Y. Liu, H. T. Xu, S. D. Dai, Q. Wei, X. M. Yuan and E. H. Wang: Reduction of p120(ctn) 
isoforms 1 and 3 is significantly associated with metastatic progression of human lung cancer. 
APMIS 115, 848-856 (2007) 
 
234.    Y. Liu, Q. Z. Dong, Y. Zhao, X. J. Dong, Y. Miao, S. D. Dai, Z. Q. Yang, D. Zhang, Y. 
Wang, Q. C. Li, C. Zhao and E. H. Wang: P120-catenin isoforms 1A and 3A differently affect 
invasion and proliferation of lung cancer cells. Exp Cell Res 315, 890-898 (2009) 
 
235.    Y. Liu, Q. C. Li, Y. Miao, H. T. Xu, S. D. Dai, Q. Wei, Q. Z. Dong, X. J. Dong, Y. Zhao, 
C. Zhao and E. H. Wang: Ablation of p120-catenin enhances invasion and metastasis of human 
lung cancer cells. Cancer Sci 100, 441-448 (2009) 
 
236.    N. T. Chartier, C. I. Oddou, M. G. Laine, B. Ducarouge, C. A. Marie, M. R. Block and M. 
R. Jacquier-Sarlin: Cyclin-dependent kinase 2/cyclin E complex is involved in p120 catenin 
(p120ctn)-dependent cell growth control: a new role for p120ctn in cancer. Cancer Res 67, 9781-
9790 (2007) 
 
237.    W. E. Naugler and M. Karin: The wolf in sheep's clothing: the role of interleukin-6 in 
immunity, inflammation and cancer. Trends Mol Med 14, 109-119 (2008) 
 
238.    M. L. Hermiston and J. I. Gordon: Inflammatory bowel disease and adenomas in mice 
expressing a dominant negative N-cadherin. Science 270, 1203-1207 (1995) 
 
239.    V. Vasioukhin, L. Degenstein, B. Wise and E. Fuchs: The magical touch: Genome 
targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proceedings of 
the National Academy of Sciences of the United States of America 96, 8551-8556 (1999) 
 
240.    J. A. Gorski, T. Talley, M. Qiu, L. Puelles, J. L. Rubenstein and K. R. Jones: Cortical 
excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing 
lineage. J Neurosci 22, 6309-6314 (2002) 
 
241.    H. Hoschuetzky, H. Aberle and R. Kemler: Beta-catenin mediates the interaction of the 
cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127, 1375-1380 
(1994) 
 
242.    P. Sheth, A. Seth, K. J. Atkinson, T. Gheyi, G. Kale, F. Giorgianni, D. M. Desiderio, C. 
Li, A. Naren and R. Rao: Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex 
in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 402, 291-300 
(2007) 
 
243.    B. T. Jamal, M. Nita-Lazar, Z. Gao, B. Amin, J. Walker and M. A. Kukuruzinska: N-
glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of 



Chapter 1  

65 
 

distinct beta-catenin- and gamma-catenin-containing AJs. Cell Health Cytoskelet 2009, 67-80 
(2009) 
 
244.    S. M. Brady-Kalnay, T. Mourton, J. P. Nixon, G. E. Pietz, M. Kinch, H. Chen, R. 
Brackenbury, D. L. Rimm, R. L. Del Vecchio and N. K. Tonks: Dynamic interaction of PTPmu 
with multiple cadherins in vivo. J Cell Biol 141, 287-296 (1998) 
 
245.    U. Cavallaro, J. Niedermeyer, M. Fuxa and G. Christofori: N-CAM modulates tumour-cell 
adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3, 650-657 (2001) 
 
246.    J. Balsamo, C. Arregui, T. Leung and J. Lilien: The nonreceptor protein tyrosine 
phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-
actin linkage. J Cell Biol 143, 523-532 (1998) 
 
247.    N. Lambeng, Y. Wallez, C. Rampon, F. Cand, G. Christe, D. Gulino-Debrac, I. Vilgrain 
and P. Huber: Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and 
quiescent adult tissues. Circ Res 96, 384-391 (2005) 
 
248.    M. G. Lampugnani, A. Zanetti, F. Breviario, G. Balconi, F. Orsenigo, M. Corada, R. 
Spagnuolo, M. Betson, V. Braga and E. Dejana: VE-cadherin regulates endothelial actin 
activating Rac and increasing membrane association of Tiam. Mol Biol Cell 13, 1175-1189 
(2002) 
 
249.    Y. Nakamura, N. Patrushev, H. Inomata, D. Mehta, N. Urao, H. W. Kim, M. Razvi, V. 
Kini, K. Mahadev, B. J. Goldstein, R. McKinney, T. Fukai and M. Ushio-Fukai: Role of protein 
tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in 
endothelial cells. Circ Res 102, 1182-1191 (2008) 
 
250.    J. A. Ukropec, M. K. Hollinger, S. M. Salva and M. J. Woolkalis: SHP2 association with 
VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 275, 
5983-5986 (2000) 
 
251.    M. Fuchs, T. Muller, M. M. Lerch and A. Ullrich: Association of human protein-tyrosine 
phosphatase kappa with members of the armadillo family. J Biol Chem 271, 16712-16719 (1996) 
 
252.    B. Aicher, M. M. Lerch, T. Muller, J. Schilling and A. Ullrich: Cellular redistribution of 
protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. J Cell 
Biol 138, 681-696 (1997) 
 
253.    R. M. Kypta, H. Su and L. F. Reichardt: Association between a transmembrane protein 
tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 134, 1519-1529 (1996) 
 
254.    J. Cheng, K. Wu, M. Armanini, N. O'Rourke, D. Dowbenko and L. A. Lasky: A novel 
protein-tyrosine phosphatase related to the homotypically adhering kappa and mu receptors. J 
Biol Chem 272, 7264-7277 (1997) 
 



p120ctn in normal development and tumorigenesis  
 

66 
 

255.    H. X. Yan, Y. Q. He, H. Dong, P. Zhang, J. Z. Zeng, H. F. Cao, M. C. Wu and H. Y. 
Wang: Physical and functional interaction between receptor-like protein tyrosine phosphatase 
PCP-2 and beta-catenin. Biochemistry 41, 15854-15860 (2002) 
 
256.    K. Meng, A. Rodriguez-Pena, T. Dimitrov, W. Chen, M. Yamin, M. Noda and T. F. 
Deuel: Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through 
inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase 
beta/zeta. Proc Natl Acad Sci U S A 97, 2603-2608 (2000) 
 
257.    W. Li, Y. Li and F. B. Gao: Abelson, enabled, and p120 catenin exert distinct effects on 
dendritic morphogenesis in Drosophila. Dev Dyn 234, 512-522 (2005) 
 
258.    T. Pieters, P. D'Hooge, P. Hulpiau, M. P. Stemmler, F. Van Roy and J. Van Hengel: 
p120ctn isoform C knockout and knock-in mice rescue E-cadherin loss and embryonic lethality in 
p120ctn-deficient embryos. Manuscript in preperation 
 
259. A. B. Reynolds, N. A. Jenkins, D. J. Gilbert, N. G. Copeland, D. N. Shapiro, J. Wu and J. 
M. Daniel: The gene encoding p120cas, a novel catenin, localizes on human chromosome 11q11 
(CTNND) and mouse chromosome 2 (Catns). Genomics, 31(1), 127-9 (1996)  
 
260. S. Bonne, J. van Hengel and F. van Roy: Chromosomal mapping of human armadillo 
genes belonging to the p120(ctn)/plakophilin subfamily. Genomics, 51(3), 452-4 (1998)  
 
 
261.    D. Casagolda, B. Del Valle-Perez, G. Valls, E. Lugilde, M. Vinyoles, J. Casado-Vela, G. 
Solanas, E. Batlle, A. B. Reynolds, J. I. Casal, A. G. de Herreros and M. Dunach: A p120-
catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 123, 2621-2631 (2010) 
 
262.    J. Y. Hong, J. I. Park, K. Cho, D. Gu, H. Ji, S. E. Artandi and P. D. McCrea: Shared 
molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components 
modulate p120-catenin isoform-1 and additional p120 subfamily members. J Cell Sci 123, 4351-
4365 (2010) 
 
263.    M. Oh, H. Kim, I. Yang, J. H. Park, W. T. Cong, M. C. Baek, S. Bareiss, H. Ki, Q. Lu, J. 
No, I. Kwon, J. K. Choi and K. Kim: GSK-3 phosphorylates delta-catenin and negatively 
regulates its stability via ubiquitination/proteosome-mediated proteolysis. J Biol Chem 284, 
28579-28589 (2009) 
 
 
 
 
 
 
 
 
 



Chapter 2 
 

 69

 
 
 
 
 
 
 
 
 
 

Chapter 2 
 

MOUSE DEVELOPMENT  

 

 
 
 
 
 



Mouse Development 

70 
 

 

TABLE OF CONTENTS 
 
 

INTRODUCTION ................................................................................................................ 71 

Mice as animal model system ........................................................................................... 71 

Overview of mouse development ..................................................................................... 72 

PREIMPLANTION DEVELOPMENT IN MOUSE ........................................................... 72 

Fertilization and early cleavage cycles ............................................................................. 72 

Morula compaction and polarization ................................................................................ 73 

Blastocyst formation and the first cell type diversification: TE and ICM ........................ 76 

Late blastocyst stage and establishment of epiblast and primitive endoderm lineages .... 77 

TRANSCRIPTION FACTORS GOVERNING BLASTOCYST LINEAGE ALLOCATION ... 79 

ICM-specific transcription factors .................................................................................... 79 

TE-specific transcription factors ....................................................................................... 84 

PE-specific transcription factors ....................................................................................... 86 

IMPLANTATION AND GASTRULATION ...................................................................... 86 

REFERENCES ..................................................................................................................... 91 

 
 

 



Chapter 2 
 

 71

INTRODUCTION 

 
Mice as animal model system 

 

Mice have become the preferred mammalian research model for several reasons. First, 

they are small, robust, fecund and cheap to maintain. They thrive and breed under a wide 

range of environmental conditions (including laboratory conditions), have a short gestation, 

produce large litters, and develop rapidly. In addition, most laboratory mice are quite tame 

and easy to handle. Second, mice are very interesting from a genetic perspective. They are 

evolutionarily close to humans (only primates are closer), with whom they share 95% of 

coding sequences, and display considerable synteny. Mice share many physiological and 

anatomical features with humans, and they have many syndromes that resemble human 

inherited diseases. In addition, some mice lineages survive inbreeding depression, which 

makes it possible to generate inbred strains to obtain genetic standardization (Corrigan et al., 

2009). Third, pluripotent mouse embryonic stem (ES) cell lines can be established (Evans and 

Kaufman, 1981; Martin, 1981), which contribute to the germ line after injection in host 

blastocysts (Bradley et al., 1984). Homologous recombination in these ES cells enables the 

generation of mice with genetically modified alleles (Thomas and Capecchi, 1987) displaying 

Medelian inheritance (Chénot, 1902). This technique has revolutionized biomedical research 

and permits to assay the functionality of individual genes. Over the last decades, thousands of 

transgenic mouse strains, including knock-out mice, have been generated by different 

laboratories and by international consortia (The international Mouse Knockout Consortium, 

2007). In the end, functional information obtained in mice could be extrapolated to humans to 

provide insight into human disease and to enable knowledge-based drug discovery. 
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Overview of mouse development 

 

The short gestation of mice (19 days) makes them suitable for studying mammalian 

embryonic development. Mouse development can be subdivided into four major periods: 

preimplantation (0-4.5 dpc), implantation, gastrulation and turning (5-8.5 dpc), organogenesis 

(9-13.5 dpc) and fetal growth (14-19 dpc) (Fig.1A). In brief, oocyte fertilization is followed 

by successive cleavages to generate totipotent blastomeres. Increased blastomere adhesion 

transforms the loosely attached blastomeres into a compacted morula (2.5 dpc) that develops 

into a blastocyst (3.5 dpc) (Fig.1B). Blastocysts hatch from their zona pellucida and attach to 

the uterine wall, after which they implant. Gastrulation (6-7.5 dpc) sets the stage for the 

establishment of the primary germ layers, namely endoderm, mesoderm and ectoderm. After 

gastrulation, the mouse embryo initiates somitogenesis and undergoes a complex movement, 

called turning. This process inverts the germ layers and repositions the endoderm, which was 

exposed to the outside, towards the inside. These basic layers are the groundwork for 

generating various tissues during organogenesis. The ectoderm develops into epidermis and 

neurons, which are critical for protection from and sensing of the environment. The endoderm 

is the precursor of the gastrointestinal tract. The mesoderm gives rise to muscle and blood 

cells. During organogenesis, several organ primordia arise, including limbs, olfactory pit, lens 

vesicle, gonads, heart, lung buds, and thymus. After establishment of the body plan, the fetal 

organs grow and develop further until parturition on day 19 (Hogan et al., 1994; Kaufman, 

1992). 

The research described in this doctoral dissertation involves analysis of mouse 

embryos during preimplantation and gastrulation. Therefore, these two topics are explained 

below in detail. 

 

PREIMPLANTION DEVELOPMENT IN MOUSE 

 

Fertilization and early cleavage cycles 

 

The unfertilized mouse egg is arrested at metaphase II of meiosis and is much smaller 

compared to eggs of chick or frog. Therefore, it lacks the massive maternal contribution of 

freely developing eggs and, like other mammalian eggs, mouse oocytes need to develop a 

machinery to exploit their nutritive environment. So, in contrast to other animals, in which the 

first step of cell type diversification is the creation of the primary germ layers, mammals 
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produce extraembryonic structures first. The first cell differentiation event in mammalian 

development is not the formation of the three germ layers but the establishment of two distinct 

cell lineages: the trophectoderm (TE) and the inner cell mass (ICM). The TE is important for 

embryo attachment to and implantation in the uterus, and is a key contributor to the placenta. 

Only when this supportive frame is set up do the three germ layers, which ultimately generate 

all the tissues in the embryonic and adult body, arise from the ICM (Hogan et al., 1994; 

Marikawa and Alarcon, 2009; O'Farrell et al., 2004). 

Mouse embryonic development starts with fertilization of the egg in the oviduct. 

Thereafter, the egg resumes and completes meiosis with the emission of the second polar 

body (Hogan et al., 1994). This second polar body often remains attached to the egg and 

serves as a landmark of the animal pole during later development (Fig.1C) (Gardner, 1997). 

Sperm binds to the glycoprotein ZP3, present in the zona surrounding the oocyte, and triggers 

the acrosomal reaction, which enables the sperm head to fuse with the egg membrane. 

Nuclear membranes form around the maternal and paternal chromosomes, forming separate 

haploid male and female pronuclei, which migrate to the centre of the egg and undergo DNA 

replication. After breakdown of the pronuclear membranes, both sets of chromosomes 

assemble on the spindle and the first cleavage occurs (Hogan et al., 1994). Successive 

cleavages generate totipotent blastomeres. However, in contrast to free developing eggs, these 

cleavage divisions are rather slow, as the first cleavage occurs 16 to 20 hours after 

fertilization and the following cleavages take place at intervals of about 12 hours (Marikawa 

and Alarcon, 2009). Cell cycle length varies among embryos and even among blastomeres in 

the same embryo. This asynchronous cell division has been shown by time-lapse recording 

and labeling of developing embryos in vitro (Bischoff et al., 2008; Fujimori et al., 2009; 

Kurotaki et al., 2007). Due to asynchronous cell division in blastomeres, the total blastomere 

number of an embryo at a given time point is sometimes other than 2n. For example, after four 

rounds of cleavage (24) the total blastomere number is not always 16. Three rounds of 

cleavage result in eight blastomeres that are morphologically similar to each other and retain 

the ability to form all cell lineages (Gardner, 1998; Johnson and McConnell, 2004)(Fig. 1Bb).  

 

Morula compaction and polarization 

 

The eight clearly demarcated blastomeres undergo compaction into a sphere in which 

individual blastomeres are no longer visible (Fig. 1Bc). During morula compaction, 

blastomeres flatten, increase their cell contacts and establish apical-basal polarity.  
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Figure 1. Overview of preimplantation development. (A) A general overview of 
mouse development and its different stages. The stages of preimplantation are marked 
by a red box. Diagrams of Theiler stage embryos were adapted from the Edinburgh 
Mouse Atlas (http://genex.hgu.mrc.ac.uk/Atlas). (B) Overview of preimplantation 
development. In vitro preimplantation development monitored by time lapse 
recording reveals progression of a four-cell embryo (a) into an uncompacted morula 
(b), a compacted morula (c) and finally into a blastocyst (e). Time is indicated at the 
bottom of each recording. (C) Diagram of the cleavage model, which postulates that 
the first cleavage plane corresponds with the boundaries of embryonic and 
abembryonic regions. (D) Diagram of symmetric and asymmetric cleavages generating 
two external blastomeres or one external and one internal blastomere, respectively. (E) 
Diagram of a late blastocyst consisting of trophectoderm, primitive endoderm and 
inner cell mass (ICM). Ab: abembryonic pole, Em: embryonic pole. Diagrams in C and 
D were taken from Marikawa et al. (2009). The diagram in E was taken from Lu et al. 
(2001).  
 
 
Compaction depends on the cell-cell adhesion molecule E-cadherin (also called uvomorulin), 

which switches from a homogeneous to a basolateral distribution during compaction. 

Compaction is completely inhibited by antibodies against E-cadherin or by calcium depletion 

(Hyafil et al., 1981; Hyafil et al., 1980; Johnson et al., 1986; Peyrieras et al., 1983; Reeve and 
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Ziomek, 1981; Vestweber and Kemler, 1985). E-cadherin mutants lacking both maternal and 

zygotic E-cadherin also fail to compact (Stephenson et al., 2010). Polarization of eight-cell 

morulas was evident when they were decompacted under low Ca2+ conditions. Decompacted 

blastomeres showed numerous microvilli on their apical surfaces, but the inner surfaces 

remained smooth (Reeve and Ziomek, 1981). 

The partition-defective (PAR)-atypical protein kinase C (aPKC) system is responsible 

for the establishment of cell polarity in most epithelial tissues. The PAR-aPKC system might 

also contribute to polarity in the TE, since many of its components become localized 

asymmetrically along the apical-basal axis of cells after compaction (Vinot et al., 2005; 

Yamanaka et al., 2006). Moreover, knockdown of PAR3 or expression of a dominant negative 

aPKC leads to increased ICM formation and diminished number of TE cells (Plusa et al., 

2005). RhoGTPases are also important for polarization, because overexpression of a 

constitutive active RhoA mutant in four-cell embryos results in loss of apical polar microvilli 

and reduced blastomere adhesion. Inhibition of RhoA mediated by C3-transferase results in 

decompaction (Clayton et al., 1999). In addition to cadherin-based adherens junctions, also 

tight junctions and gap junctions emerge, allowing the creation of an impermeable outer 

epithelial layer and enabling ionic coupling between blastomeres, respectively. E-cadherin 

null embryos fail to form trophectoderm epithelium (Larue et al., 1994) and displace apical 

polarity and tight junction marker ZO-1 (Ohsugi et al., 1997). In contrast, the expression 

pattern of Connexin43, which is a constituent of gap junctions, was not altered E-cadherin 

null embryos.  Mouse embryos lacking both maternal and zygotic E-cadherin exhibit a 

disorganized epithelial polarity lacking demarcated apical and basolateral domains, but are 

still capable of producing normal trophectoderm (TE) and inner cell mass allocation (ICM) 

(Stephenson et al., 2010). The trophectoderm is the first differentiated cell type and resembles 

epithelium, with polarized cell adhesion systems. The compacted morula can also decompact 

transiently during the fourth cleavage, which increases the number of cells to 16. The fourth 

cleavage generates two types of blastomeres, those positioned on the surface of the embryo 

(n=10) and those entirely surrounded by neighboring blastomeres (n=6) (Fig.1D). The outer 

blastomeres retain apical-basal polarity and eventually give rise to the TE lineage, whereas 

the inner blastomeres do not exhibit polarity and later form the ICM (Marikawa and Alarcon, 

2009; Yamanaka et al., 2006).  
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Blastocyst formation and the first cell type diversification: TE and ICM 

 

The fifth cleavage yields 32 cells and increases both the number of external (n=20) 

and internal cells (n=12). From this point on, small cavities start to form in between 

blastomeres that continuously expand and fuse with each other to form a single large cavity, 

called the blastocoel (Fig. 1Bd,e). The blastocoel provides a space for the mesoderm and the 

endoderm to move into during the morphogenesis of gastrulation. When the blastocoel 

appears, the embryo is referred to as a blastocyst, which is characterized by cell type 

diversification into TE and ICM. The ICM is a pluripotent non-polarized compact cell layer 

that gives rise to all the embryonic lineages and can be used to derive mouse embryonic stem 

(mES) cell lines. The TE is an epithelial monolayer surrounding both the blastocoel and the 

ICM. The ICM marks the embryonic pole, which delineates the embryonic–abembryonic 

(Em–Ab) axis, which persists throughout further development, including gastrulation. The TE 

overlaying the ICM is called the polar TE, whereas TE overlaying the blastocoel is called 

mural TE (Fig. 1Be). At the time of implantation, the mural TE cells differentiate into primary 

trophoblast giant cells that undergo endoreplication and initiate endometrium invasion 

(Dickson, 1963; Kirby et al., 1967). The polar TE remains diploid due to signals from the 

adjacent ICM, such as fibroblast growth factor (FGF) 4 (Chai et al., 1998; Tanaka et al., 

1998). After implantation, polar TE contributes to the extraembryonic ectoderm and the 

ectoplacental cone, which give rise to the chorion and the placenta, respectively (Gardner et 

al., 1973).  

For proper blastocyst and blastocoels formation, the TE needs to acquire two features: 

establishment of mature tight junctions to seal the blastocoel cavity and polarized expression 

of ion channels to pump fluid into the cavity. Tight junctions are composed of transmembrane 

proteins, such as claudins and occludins, and zonula occludens (ZO) proteins, such as ZO-1, -

2 and -3, which provide linkage to the actin cytoskeleton (Matter and Balda, 2003). Mature 

tight junctions are present in the TE of blastocysts sealing the blastocoel and creating a barrier 

that is almost impermeable to fluid (Eckert and Fleming, 2008; Johnson and McConnell, 

2004). Inhibition of claudin 4 and 6 (Moriwaki et al., 2007) and knockdown of ZO-1 or ZO-2 

(Sheth et al., 2008; Wang et al., 2008) in blastomeres results in defective or delayed 

blastocoel formation. Osmotic pressure is the major force driving water influx from the apical 

side to the basal side of TE and is generated by an increased concentration of sodium ions on 

the basal side of the epithelium. At the apical membrane, Na+/H+ exchangers transport sodium 

ions into TE cells, while sodium efflux is mediated by Na+/K+-ATPases at the basal 
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membrane (Barcroft et al., 2004; Kawagishi et al., 2004). In addition, aquaporins contribute to 

water movements across the TE, which leads to expansion of the blastocoel (Barcroft et al., 

2003). Knockdown of the β1 subunit of Na+/K+-ATPase not only prevents blastocoels 

formation, but also displaces tight junction components ZO-1 and occluding (Madan et al., 

2007). This last finding reveals a putative link between pumping of fluid and providing an 

impermeable seal by tight junctions. 

What causes this first differentiation event in the blastocyst? One hypothesis states that 

differentiation might arise as the result of cellular polarization about the time of compaction. 

The fourth cleavage generates external and internal cells having different compositions of 

membrane and cytosolic factors, which leads to different cell fates (Johnson and Ziomek, 

1981). A second hypothesis states that different microenvironments of inside and outside 

blastomeres drive the differentiation into TE and ICM lineages (Tarkowski and Wroblewska, 

1967). A last cleavage-driven hypothesis proposes that blastocyst polarity can be traced back 

to asymmetries generated during the early cleavage of the embryo (Zernicka-Goetz, 2002). 

This model is based on findings that the first cleavage separates the fertilized eggs in two 

blastomeres that follow different destinies (Deb et al., 2006; Gardner, 2001; Piotrowska et al., 

2001)(Fig. 1C). In this model, the first dividing (leading) blastomere at the two cell stage is 

thought to make up the ICM, while the lagging blastomere will form the TE. However, this 

model is contested by several studies (Alarcon and Marikawa, 2003; Alarcon and Marikawa, 

2005; Hiiragi and Solter, 2004; Motosugi et al., 2006). In particular, when two-cell embryos 

are dual labeled and transferred back into oviducts of female mice to allow in vivo 

development to the blastocyst stage, the two initial blastomeres give rise to both embryonic 

and abembryonic regions (Kurotaki et al., 2007). 

 

Late blastocyst stage and establishment of epiblast and primitive endoderm lineages 

 

Twenty-four hours after blastocyst formation, a second cell type diversification occurs. 

In this process, the ICM gives rise to two morphologically distinct populations, namely the 

epiblast (primitive ectoderm) and hypoblast (primitive endoderm, PE) lineages. The epiblast 

represents the embryonic lineage, while the primitive endoderm will give rise to 

extraembryonic tissues, namely the parietal and visceral endoderm, which will form the yolk 

sac. The primitive endoderm forms as a monolayer on the surface of the ICM directly facing 

the blastocoel, while the epiblast is encapsulated by primitive endoderm and polar 

trophectoderm (Fig. 1E). The primitive endoderm plays important roles not only in supporting 
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fetal development but also in patterning and in the establishment of the anterior/posterior 

(A/P) axis of the embryo (Beddington and Robertson, 1999; Lu et al., 2001; Rossant and Tam, 

2009). Cells from late blastocysts originating either from the epiblast or primitive endoderm 

seem to be lineage-restricted, because they contribute only to their respective lineages in 

chimeric embryos (Gardner, 1982; Gardner and Rossant, 1979).  

There are two models to explain the cell type allocation between epiblast and primitive 

endoderm (Yamanaka et al., 2006). One model proposes that ICM cells of the early blastocyst 

are a homogeneous population of bipotential cells, each with the ability to become either 

epiblast or primitive endoderm, and the fate of the cells within the ICM is determined by their 

position in the ICM. The surface cells facing the blastocoel cavity differentiate into primitive 

endoderm, while the cells enclosed inside become the epiblast. Evidence for this model was 

provided by the presence of a single layer of primitive endoderm on the surface of embryoid 

bodies from embryonal carcinoma cells (Becker et al., 1992; Martin and Evans, 1975) and 

embryonic stem cells (Murray and Edgar, 2001). A second model proposes that ICM cells are 

a heterogeneous mixture of both primitive endoderm and epiblast cells, and that the primitive 

endoderm cells are sorted out to form a monolayer separating the epiblast from the blastocoel 

cavity. This model is consistent with the non-overlapping expression pattern of epiblast and 

primitive endoderm markers (nanog and Gata6, respectively) in 3.5-dpc blastocysts (Chazaud 

et al., 2006). Single ICM cells exhibit distinct epiblast-like or primitive endoderm-like 

expression profiles (Kurimoto et al., 2006) and contribute to either the epiblast or the 

primitive endoderm lineage, but rarely to both (Chazaud et al., 2006). So, the ICM of the late 

blastocyst consists of a mixed population of cells with different fates (epiblast or primitive 

ectoderm).  

But what drives this cell lineage diversification? Live cell lineage tracing starting at 

the eight-cell stage revealed that there is no clear linkage between developmental history of 

individual ICM cells and later cell fate (Yamanaka et al., 2010). Instead, FGF signaling might 

be involved in cell fate determination of ICM, because blocking the receptor/MAP kinase 

pathway steers towards the epiblast fate, whereas adding exogenous FGF steers towards the 

primitive endoderm fate (Yamanaka et al., 2010). The late blastocyst contains three lineages, 

namely trophoblast, hypoblast, and epiblast, and from each lineage progenitor cells can be 

isolated and propagated to give rise to three types of cells: trophectoderm stem cells (TS) 

(Tanaka et al., 1998), extraembryonic endoderm cells (XEN) (Kunath et al., 2005), and ES 

cells (Evans and Kaufman, 1981; Martin, 1981), respectively. These observations emphasize 

the stem cell character of these late blastocyst progenitor cells (Rossant, 2008). 
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TRANSCRIPTION FACTORS GOVERNING BLASTOCYST LINEAGE 

ALLOCATION  

 

Cell fate determination in early and late blastocysts is mostly accompanied by lineage-

specific transcription factor repertoires. A number of transcription factors have been identified 

as essential for the establishment of the ICM (such as Oct4, nanog and sox2), TE (such as 

Cdx2 and Tead4), and primitive endoderm lineage (such as Gata 6) (Table 1, Fig. 2) (Niwa, 

2007).  

 

ICM-specific transcription factors 

 

A first set of transcription factors is expressed in ICM cells (after segregation of the 

TE and ICM lineages) and/or cells of the epiblast (after differentiation of ICM cells into 

epiblast and primitive endoderm). Oct4 (also known as Pou5f1 and Oct3) is a POU-domain 

transcription factor expressed in blastomeres, pluripotent early embryo cells, germ cells, ES 

cells, embryonal carcinoma (EC) cells and embryonic germ (EG) cells (Okamoto et al., 1990; 

Rosner et al., 1990; Scholer et al., 1990). During blastocyst formation, Oct4 becomes 

gradually restricted to the ICM (Palmieri et al., 1994). In late blastocysts, Oct4 is expressed in 

the epiblast (primitive ectoderm) and is transiently upregulated in the hypoblast (primitive 

endoderm), but after implantation all extraembryonic cells are devoid of Oct4 (Palmieri et al., 

1994). After birth, Oct4 is absent in most adult tissues and is confined to pluripotent 

compartments, such as the germ cells (Rosner et al., 1990). Oct4-depleted embryos can form 

normal cavitated blastocysts having both TE and ICM like cell populations, which indicates 

that the initial generation of the ICM does not depend on Oct4 (Nichols et al., 1998). 

However, the ICM cells of Oct4-null blastocysts express TE-specific intermediate filaments 

(Nichols et al., 1998). Oct4-null blastocysts can implant, which indicates that the TE is 

functional, but they die because they fail to form ICM derivatives, such as epiblast and yolk 

sac (Nichols et al., 1998) (Table 1). In addition, no ES cell lines could be derived from Oct4 

null blastocysts, which only formed trophoblast giant cells (Nichols et al., 1998). Similar to 

Oct4 null blastocysts, Oct4 repression in ES cell lines induces differentiation towards the TE 

lineages, whereas Oct4 overexpression induces differentiation mainly into extraembryonic 

endoderm (Niwa et al., 2000). 
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Figure 2. Transcription factors govern lineage allocation in late blastocysts. 
Diagram of a late blastocyst consisting of three cell lineages: ICM/epiblast, 
trophectoderm and primitive endoderm. The cell fate of these three cell types is 
determined by distinct sets of transcription factors. In epiblast cells, Oct4, Sox2 and 
Nanog induce expression of genes (including themselves) involved in self-renewal and 
repress genes that favor differentiation into trophectoderm (Cdx2) and primitive 
endoderm (Gata6). Tead4-induced Cdx2 expression enables differentiation into 
trophectoderm while blocking commitment to the ICM lineage by inhibiting Oct4 
expression. ICM cells that express Gata6 become primitive endoderm due to inhibition 
of stemness genes Oct4 and Nanog by Gata6 and its target genes. Green arrows 
indicate gene activation, red lines indicate gene inhibition. (Inset) Oct4 is expressed in 
both ICM derivatives and is downregulated in the trophectoderm. A reciprocal 
expression pattern is seen for Cdx2, which becomes restricted to trophectoderm cells. 
Nanog is an epiblast-specific transcription factor that blocks commitment to the 
primitive endoderm lineage. The result of gene targeting of these transcription factors 
is in line with their expression pattern: trophectoderm cells be isolated from Oct4-/- 
blastocysts but ES cells cannot, Cdx2-/- embryos can establish ES cells but TS cells 
cannot, and only endoderm cells can be isolated from Nanog-/- embryos.  
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Therefore, Oct4 expression is essential for steering cell fate towards epiblast and primitive 

endoderm lineages, while preventing commitment to the TE lineage. One well studied 

transcriptional target of Oct4 is the Fgf4 gene, which induces differentiation of ES cells by 

activating the RAS-MAPK pathway and in this way provides a negative feedback loop for 

self-renewal. On the other hand, Fgf4 can be secreted from the ICM and induces proliferation 

in the adjacent polar TE (Tanaka et al., 1998). 

Sox2 is a member of the Sox (SRY-related HMG box) gene family that encodes 

transcription factors with a single HMG DNA-binding domain. Sox2 is expressed in morulas, 

ICM of blastocysts and epiblasts. During gastrulation, Sox2 becomes restricted to the 

neuroectoderm and ectoplacental cone, and in adults it is present in both male and female 

germ cells (Avilion et al., 2003). Sox2 is known to co-operate with Oct4 in activating Oct4 

target genes, such as FGF4 (Yuan et al., 1995). Both Oct4 and Sox2 expression can be 

regulated by binding of the Oct4-Sox2 complex to an enhancer in their corresponding 

promoters (Okumura-Nakanishi et al., 2005). This provides a positive feedback loop for 

expression of these stem cell markers in the ICM or epiblast cells (Fig. 2). But also other 

transcription factors can bind to the promoters of Oct4 and Sox2 and regulate their expression 

(Niwa, 2007). Foxd3 (a member of the forkhead family of transcriptional regulators) and 

Sox2 are essential for the establishment of ICM derivatives and for maintaining pluripotency 

in mouse embryos (Avilion et al., 2003; Hanna et al., 2002) (Table 1). 

Nanog, a homeodomain transcription factor, is also essential for maintenance of 

pluripotency in ICM and ES cells, but unlike Oct4, it prevents ICM cells from giving rise to 

the primitive endoderm lineage (Chambers et al., 2003; Mitsui et al., 2003). Nanog mRNA 

and protein are first expressed in compacted morulas, are confined to the ICM in blastocysts 

and demarcate the epiblast in late blastocysts and in blastocysts in diapause (Chambers et al., 

2003; Mitsui et al., 2003; Silva et al., 2009). After implantation of the blastocyst, Nanog is 

downregulated and becomes restricted to the genital ridges, and it is completely absent in 

adult tissues (Chambers et al., 2003; Mitsui et al., 2003). Ectopic expression of Nanog 

allowed growth of LIF-independent mouse ES cells (Chambers et al., 2003; Mitsui et al., 

2003). Using a floxed Nanog transgenic mouse, LIF independence could be reversed after 

Cre-mediated recombination (Chambers et al., 2003). Nanog-deficient embryos form normal 

blastocysts but die shortly after implantation (Mitsui et al., 2003)(Table 1). Nanog-deficient 

late blastocysts have fewer ICM cells and decreased Oct4 levels, and they fail elicit epiblast-

specific reactivation of silenced female X chromosomes (Silva et al., 2009). After 

immunosurgery, which selectively destroys trophectoderm cells via complement-dependent 
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antibody cytotoxicity (Solter and Knowles, 1975), isolated Nanog-deficient ICM failed to 

give rise to ES cells but differentiated into parietal endoderm (Mitsui et al., 2003), but not into 

cells of the trophectoderm lineage, as is seen in Oct4-deficient ICM cultures (Nichols et al., 

1998). Stem cell markers, such as Oct4 and Rex1, are downregulated in Nanog-deficient cells 

but expression of Gata6, a marker for visceral endoderm, is induced, which is consistent with 

the endoderm-like morphology (Mitsui et al., 2003). Recent studies concerning the role for 

Nanog in lineage commitment yielded controversial results. Silva and colleagues (2009) 

showed that Nanog-deficient ICM cells are capable only of TE differentiation or, otherwise, 

apoptosis (Silva et al., 2009). On the other hand, Messerschmidt and colleagues (2010) 

showed that Nanog-ablated embryos retain the capacity to form primitive endoderm in vivo 

(Messerschmidt and Kemler, 2010). In addition, Nanog can directly repress Gata6 expression 

through its binding to the proximal promoter region of the Gata6 gene (Mitsui et al., 2003; 

Singh et al., 2007). Nanog expression fluctuates in wild type ES cell cultures, and a transient 

and inducible downregulation of Nanog in ES cells predisposes them to differentiation but 

does not mark commitment (Chambers et al., 2007). These Nanog-deficient cells contribute in 

chimeras (obtained by injecting Nanog-deficient cells in wild-type blastocysts) to somatic 

tissues, but not to the germ line (Chambers et al., 2007).   

In retrospect, neither Oct4 nor Nanog can be considered a master regulator of stemness 

and pluripotency. Oct4 fails to sustain self-renewal of ES cells upon LIF withdrawal, whereas 

Nanog is not sufficient to sustain pluripotency in Oct4-depleted embryos and ES cell cultures 

(Boiani and Scholer, 2005). Instead, Oct4, Sox2 and Nanog work together as a core 

transcriptional circuitry by co-occupying a substantial portion of their target genes in human 

ES cells and by forming a regulatory circuitry consisting of autoregulatory and feedforward 

loops (Boyer et al., 2005). Oct4 and Sox2 have been shown to bind to elements in the 

promoter of Nanog to induce its expression (Kuroda et al., 2005; Rodda et al., 2005). The core 

transcription factors, Oct4, Sox2 and Nanog, constitute a positive feedback loop to maintain 

their expression and to promote continuous ES cell self-renewal (Fig.2)(Niwa, 2007). 
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Sox2 and Oct4, but not Nanog, are essential for reprogramming somatic cells into 

mouse and human induced pluripotent stem (iPS) cells (Takahashi et al., 2007; Takahashi and 

Yamanaka, 2006). Klf4, another factor involved in reprogramming somatic cells, bridges 

LIF/STAT3 signaling with the core transcriptional regulators (Niwa et al., 2009). Both Klf4 

and Nanog can revert epistem cells (epiSC, derived from postimplantation epiblast) to a 

ground state pluripotency (Guo et al., 2009; Silva et al., 2009). Another way of 

reprogramming somatic cells is to fuse them with ES, whereby somatic cells erase the 

epigenetic signatures and reset to a ground state pluripotency. This type of somatic 

reprogramming is enhanced by expression of Nanog (Silva et al., 2006). In conclusion, Nanog 

expression is essential for reprogramming somatic-ES cell fusions, epiSCs and ICM cells 

towards a ground state pluripotency and contributes to a coherent gene regulatory network 

(Silva et al., 2009). 

 
TE-specific transcription factors 

 
Cdx2 is a caudal-type homeodomain transcription factor expressed specifically in the 

TE of blastocysts and in extra-embryonic tissues, such as the placenta (Beck et al., 1995). 

Cdx2 protein is first seen in all the nuclei of eight-cell stage morulas (Niwa et al., 2005), but it 

becomes restricted to outside cells of the late morulas and blastocysts (Niwa et al., 2005; 

Strumpf et al., 2005). Blastocysts of Cdx2 mutant embryos appear normal, but they fail to 

maintain the blastocoels cavity due to loss of epithelial integrity, as evidenced by disturbed 

adherens and tight junctions (Strumpf et al., 2005).  Cdx2 mutant blastocysts were unable to 

repress ICM markers, such as Oct4 and Nanog, in the TE, which points to a defect in 

restriction of the ICM/TE lineage (Strumpf et al., 2005). Cdx2 mutant TE eventually collapses 

and undergoes apoptosis at the peri-implantation stage (between 3.5 and 5.5 dpc) (Table 1) 

(Chawengsaksophak et al., 1997; Strumpf et al., 2005). Overexpression of Cdx2 in ES cells 

induces TE differentiation (Niwa et al., 2005), whereas Cdx2-deficient blastocysts could give 

rise to ES cell lines but not to trophoblast giant cells or trophectoderm stem (TS) cell lines 

(Strumpf et al., 2005). The Cdx2 mutant phenotype resembles the Oct4 mutant phenotype: 

both mutants form morphologically normal blastocysts but exhibit defects in segregation of 

the ICM and TE lineages. Depletion of both zygotic and maternal Cdx2 results in a more 

drastic phenotype. The abnormalities include defects in polarization and compaction of 

morulas, and failure to establish a functional trophectoderm lineage (Jedrusik et al., 2010). 
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Cdx2 and Oct4 can form a repressor complex that allows inhibition of the expression of both 

Oct4 and Cdx2, and this repressor complex provides a negative feedback loop and prevents 

cell commitment (Niwa et al., 2005)(Fig. 2). The smallest change in expression levels of Oct4 

or Cdx2 can thus shift the balance and determine allocation of cell fate to either TE of ICM 

(Niwa, 2007). 

Tead4 is a transcription factor containing a TEA domain (TEAD). This factor is 

expressed in two-cell embryos, morulas and blastocysts (Yagi et al., 2007). Tead4 is 

expressed in the nuclei of both TE and ICM cells in blastocysts (Nishioka et al., 2008), but its 

levels are higher in cultured TS and trophoblast giant (TG) cells than in ES cells or embryoid 

bodies (Yagi et al., 2007). After embryo implantation, Tead4 is preliminary expressed in 

trophectoderm-derived cell lineages (Yagi et al., 2007). Tead4-deficient embryos can undergo 

compaction and have intact adherens junctions, but they can not establish a functional 

trophectoderm and consequently fail to form a blastocoel and die before implantation 

(Nishioka et al., 2008; Yagi et al., 2007). The phenotypic abnormality of Tead4-deficient 

embryos is more severe than that of Cdx2-deficient embryos. This means that Tead4 target 

genes other than Cdx2 might be essential in epithelialization and cavity formation. Like 

Cdx2-deficient embryos, ES cells, but not TS cells, can be derived from Tead4-deficient 

embryos, indicating that Tead4 is essential for TE but dispensable for ICM (Table 

1)(Nishioka et al., 2008; Yagi et al., 2007). Remarkably, the expression of TE markers, such 

as Cdx2 and Eomesodermin, is virtually absent in Tead4-deficient embryos, whereas ICM-

markers, such as Oct4 and Nanog, are ectopically expressed in external cells at the late 

blastocyst stage (Nishioka et al., 2008; Yagi et al., 2007). Like Cdx2, Tead4 expression in ES 

cells promotes trophoblast differentiation, but Cdx2 expression in Tead4-deficient ES cell 

lines was not sufficient to maintain TS cell lines, indicating that Cdx2 cannot fully substitute 

for Tead4 in the TE lineage (Nishioka et al., 2009). On the other hand, Tead4 expression in 

Cdx2-deficient ES cells induces trophoblast differentiation but does not allow the 

establishment of TS lines (Nishioka et al., 2009). Yap, a Tead co-activator, is also expressed 

during preimplantation, and its nuclear expression becomes restricted in the outside cells of 

blastocysts (Nishioka et al., 2009). Hippo signaling suppresses nuclear accumulation of Yap 

in inside cells. Both cell-cell contact and Lats-mediated phosphorylation of Yap causes its 

translocation to the cytoplasm, separating Tead4 from its co-activator and causing a drop in 

Cdx2 expression in inside cells (Nishioka et al., 2009).  

Eomesodermin (Eomes), a T-box TF, is also expressed specifically in the TE at the 

blastocyst stage, and, like Cdx2, it is expressed at later stages in the ExE (Ciruna and Rossant, 
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1999; Hancock et al., 1999; Russ et al., 2000). Eomes mutants have also been reported to 

show early defects in trophoblast proliferation (Table 1)(Russ et al., 2000). Overexpression of 

Eomes, like Cdx2 overexpression, also induces TE differentiation (Niwa et al., 2005). Unlike 

Cdx2-null embryos, Eomes-null embryos form morphologically normal blastocysts with an 

expanded cavity and the proper lineage-specific expression patterns for Oct4 and Cdx2 

(Strumpf et al., 2005). Like Cdx2-null embryos, Eomes-null embryos are unable to generate 

trophoblast giant cells and TS cell lines (Russ et al., 2000; Strumpf et al., 2005). 

Overexpression of Eomes in ES cells also induces TE differentiation (Strumpf et al., 2005) 

even in the absence of Cdx2 (Niwa et al., 2005). However, Cdx2 is required for normal 

expression of Eomes in the trophectoderm of blastocysts (Ralston and Rossant, 2008). 

 
PE-specific transcription factors 

 
Expression of Gata4 or Gata6 in ES cells induces differentiation into parietal 

endoderm, and this coincides with upregulation of chicken ovalbumin upstream promoter-

transcription factors (Coup-tf) and downregulation of Oct4 (Fujikura et al., 2002). Expression 

of coup-tf in ES cells is sufficient to inhibit stem cell markers, such as Oct4 (Fig.2)(Fujikura 

et al., 2002). Gata6-knockout embryos fail to form visceral endoderm in vivo and in vitro, 

show a decrease in Gata4 expression levels, and die during the onset of gastrulation (Table 

1)(Morrisey et al., 1998). Gata4-deficient embryos die during midgestation due to abnormal 

ventral morphogenesis and heart tube formation (Kuo et al., 1997; Molkentin et al., 1997). 

Gata4-knockout ES cells are unable to differentiate in culture into visceral endoderm, 

suggesting that Gata4 is necessary for the differentiation of this cell lineage (Soudais et al., 

1995). Gata factors and Nanog show a mutual exclusive localization pattern in late blastocysts 

and are confined to primitive endoderm and epiblast, respectively. Based on a computational 

model, reprogramming from an endoderm state into a stem cell state is best achieved by over-

expressing Nanog rather than by suppressing differentiation genes such as Gata-6 

(Chickarmane and Peterson, 2008). 

 
IMPLANTATION AND GASTRULATION 

 
On the fifth day of mouse development, the blastocyst hatches from its zona pellucida. 

Trypsin-like enzyme produced by mural TE digests the glycoprotein matrix of the zona 

pellucida and the blastocyst escapes by rhythmic expansion and contraction. During onset of 

implantation, the walls of the uterus become tightly apposed and get ready for attachment of 
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blastocysts by their mural TE. Blastocyst adhesion is dependent on estrogen (absence induces 

diapause) and induces the formation of a uterine crypt and decidual tissue (deciduum) 

consisting of a spongy mass of decidual cells surrounding a single embryo. The decidual 

reaction causes a rapid increase in permeability, which causes the uterine stroma to become 

swollen and edematous. Throphoblast giant cells invade the stroma by passing through the 

eroded epithelium that was separating the uterine stroma from the blastocyst. TE cells that are 

not near the ICM become polyploid giant cells, which can invade but not proliferate, which 

prevents them from attaining features of metastatic cancer cells (Hogan et al., 1994).  

Late blastocysts contain three lineages, of which the epiblast is the smallest 

population, consisting of only 20–25 cells enclosed between the polar TE and PE. After 

implantation, these apolar epiblast cells become polarized and organize into a simple 

epithelium surrounding a small central cavity, called the proamniotic cavity (Fig. 3Ba, pre-

streak). During gastrulation (5.5 – 7.5 dpc) the primitive ectoderm divides extremely rapidly. 

This proliferation is accompanied by rapid morphological changes ultimately leading to the 

transformation of a bilaminar egg cylinder into a multilayered, three-chambered conceptus 

(Fig. 3). The time window during which gastrulation occurs differs among strains and even 

between littermates. Therefore, gastrulating embryos are classified according to a staging 

system based on morphological landmarks rather than according to time (Fig. 3B)(Downs and 

Davies, 1993). Mesoderm cells are derived from the epiblast following ingression through the 

primitive streak, which marks the posterior side of the embryo (Fig. 3C). Epithelial continuity 

is lost near the primitive streak as cells from the epiblast undergo an epithelial to 

mesenchymal transition and emerge as a new intermediate mesoderm layer between the 

epiblast and the visceral endoderm (Fig. 3Bb,c; insets). Depending on the proportion of 

mesoderm on the posterior side of the gastrula, embryos are scored as early streak (Fig. 3Bb) 

or as mid-streak (Fig. 3Bc). Nascent mesoderm moves in two directions. Mesoderm cells 

move anteriorward and can intercalate with visceral endoderm cells to make up the first 

cohort of definitive endoderm. Posterior mesoderm pushes and displaces extraembryonic 

ectoderm towards the ectoplacental cone. Mesoderm in the posterior (and to a lesser extent in 

the anterior) extraembryonic region accumulates due to the acquisition of intercellular 

openings, and fusion of this extraembryonic mesoderm results in a mesoderm-lined 

exocoelom. The expanding extraembryonic mesoderm pushes the extraembryonic ectoderm 

towards the centre of the proamniotic cavity, forming distinct bulges called amniotic folds. 

These amniotic folds fuse and form a new chamber separated from the embryonic region by 

amnion and from the ectoplacental cone by chorion (Fig. 3C). The mesodermal and visceral  
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Figure 3. Overview of gastrulation. (A) A general overview of mouse development 
and its different stages. The stages of gastrulation are marked by a green box. Diagrams 
of Theiler stage embryos were adapted from the Edinburgh Mouse Atlas 
(http://genex.hgu.mrc.ac.uk/Atlas). (B) Overview of gastrulation. Hematoxylin and 
eosin (H&E)-stained sagittal paraffin sections of the different stages of gastrulation 
according to the staging system of Downs and Davies (1993), including pre-streak (a), 
early streak (b), mid streak (c), late streak (d), no bud (e), early bud (f), late bud (g), 
early headfold (h) and late headfold (i) stages. Scale bar: 200 µm.  



Chapter 2 
 

 89

 

 
 
 

Figure 3 (continued). Middle and bottom panels contain magnifications from the top 
panel. (C) Diagram of pre-streak, early streak and late streak stage embryos, are taken 
from Lu et al. (2001). ac: amniotic cavity, ae: amniotic ectoderm, al: allantois, am: 
amniotic mesoderm, AVE: anterior visceral endoderm, clf: cranial limiting furrow, ec: 
ectoplacental cone, ecc: ectoplacental cavity, Ec: ectoderm, En: endoderm, Epi: 
epiblast, ex: exocoelom, ExE: extraembryonic ectoderm, ge: gut endoderm, hm: head 
mesenchyme, Me: mesoderm, n: node, ne: neural ectoderm, paf: posterior amniontic 
fold, ph: primitive heart tube, ps: primitive streak, VE: visceral endoderm. 
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endoderm walls of this chamber will form the visceral yolk sac. Late streak gastrulas are 

identified by the presence of a posterior amniotic fold, an indentation at the cranial limiting 

furrow and the node on the distal tip (Fig. 3Bd). In no bud stage embryos, the amniotic folds 

have fused to generate three cavities, namely the amniotic cavity, the exocoelom and the 

ectoplacental cavity (Fig. 3Be,f). Extraembryonic mesoderm keeps emerging from the 

posterior streak and bulges into the exocoelom to form a discrete structure, the allantois. The 

allantois eventually fuses with the chorion and will be detrimental for nutrient and waste 

exchange between the embryo and the placenta. Early and late stage embryos can be 

distinguished by the amount of allantois formed (Fig. 3Bf,g). The most anterior aspect of the 

streak is the node, a specialized structure of about 20 cells that is equivalent to Hensen’s node 

in chick and is important for organizing and patterning the midline axis of the embryo. The 

node region is recognized by a slight indentation of the tip of the egg cylinder (Fig. 3Bi) and 

lacks visceral endoderm. The layers of this bilaminar structure are intimately associated, in 

contrast to the trilaminar layers in the embryonic region, which are separated from each other 

by basal lamina. Late headfold gastrula can be distinguished from early headfold embryos by 

the presence of well-defined headfolds and foregut invagination (Fig. 3Bh,i). Late headfold 

embryos contain primordia of forebrain, gut and heart and therefore demarcate the onset of 

organogenesis (Hogan et al., 1994; Downs and Davies, 1993). 
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  The human p120ctn gene (CTNND1) was cloned in our laboratory more than a decade 

ago, and revealed that multiple humans p120ctn isoforms could be generated as a result of 

alternative splicing. Forty-eight putative p120ctn isoforms can be generated by employing 

four different translation initiation sites (M1-4) combined with four alternatively spliced 

exons (A to D). Different p120ctn isoforms exert tissue-specific and cell-specific expression 

patterns and p120ctn isoforms can have opposing effects on tumor growth, RhoGTPase 

activity and invasiveness in vitro. However, the significance of all these p120ctn isoforms in 

vivo remains unknown. Several tissue-specific p120ctn knockout mice have been reported, but 

in these studies all p120ctn isoforms are removed. To gain functional data on p120ctn 

isoforms in vivo, a panel of p120ctn isoform-specific knock-out and knock-in mice were 

generated in our laboratory.  

 

The aim of this project was to generate and analyze mice harboring a constitutive 

knockout allele or a constitutive knockin allele of the alternatively spliced exon C of p120ctn. 

These mice are referred to as p120ctn knockout of exon C (p120ctn KOC) or p120ctn knockin 

of exon C (p120ctn KIC) mice. The alternatively spliced exon C of p120ctn encodes only six 

amino acid residues, which interrupt an nuclear localization signal and a RhoA binding 

domain. Because of its interesting location, expression of exon C-encoded amino acids might 

have functional consequences, making the evolutionarily conserved exon C of p120ctn an 

interesting research target. The inclusion of exon C-encoded amino acids interferes with 

nuclear translocation and ‘dendritic branching’ in vitro. Three lines of research were pursued 

to analyze these p120ctn KOC and KIC mice. 

 

First, I wanted to determine the phenotype of p120ctn KOC and KIC mice. 

Surprisingly, homozygous p120ctn KOC and homozygous KIC embryos died during 

preimplantation, while completely p120ctn-deficient (p120ctn-/-) embryos formed normal 

blastocysts. To further elaborate on this discrepancy I generated p120ctnKOC/- and p120ctnKIC/- 

mice. In addition, I also aimed at analyzing in vitro preimplantation development of these 

embryos via time lapse monitoring. 

 

Second, I intended to derive embryonic stem (ES) cell from homozygous p120ctn 

KOC and homozygous p120ctn KIC embryos. To do so, I generated a highly efficient 

pluripotin-based ES cell derivation protocol. 
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Third, I wanted to obtain functional information of p120ctn KOC and KIC mice 

beyond the developmental stage. This was achieved by combining the p120ctn KOC or KIC 

allele with a liver- or brain-specific p120ctn null allele, resulting in mice with liver or brains 

that express only p120ctn transcripts with (KIC) or without (KOC) exon C. I aimed at 

analyzing these transgenic brains in detail via histological and MRI analysis, and to study 

neuronal morphogenesis in hippocampal cultures that were derived from these brains. 
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ABSTRACT  

 

p120 catenin (p120ctn) is a versatile member of the armadillo family, and has different 

functions in different subcellular compartments. Cytoplasmatic p120ctn regulates the activity 

of RhoGPTases, nuclear p120ctn inhibits Kaiso-mediated transcriptional repression, while 

membrane-localized p120ctn binds and stabilizes E-cadherin on the cell surface and supports 

cadherin-mediated adhesion. In addition, the cadherin-catenin complex consists of β-catenin, 

which binds to a second domain in the cytoplasmic tail of E-cadherin, and αE-catenin, which 

can interact with both β-catenin and the actin cytoskeleton. Genetic depletion studies have 

shown that E-cadherin and αE-catenin are essential for proper preimplantation development 

and stem cell formation. We analysed the expression of p120ctn during preimplantation 

development and gastrulation via RT-PCR, immunoblotting and immunostainings. p120ctn 

was ubiquitously expressed throughout the first half of mouse development and colocalized 

with other members of the cadherin-catenin complex. Although cadherin expression becomes 

restricted to specific germ layers (e.g. E- to N-cadherin switching in mesoderm), the 

expression pattern of p120ctn remains ubiquitous in all germ layers. Multiple p120ctn 

isoforms are generated as a result of alternative splicing, but gastrulas mainly expressed 

p120ctn isoform 3, which is abundant in epithelial tissues and cell lines. 
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INTRODUCTION  

 

p120ctn is a versatile Armadillo protein and is a part of adherens junctions. Adherens 

junctions consist of cadherin-catenin complexes in which single-span transmembrane 

cadherin molecules mediate calcium-dependent homophilic interactions via their extracellular 

domains. Mammalian genomes contain over 100 genes belonging to the cadherin superfamily 

(Hulpiau and van Roy, 2009). E-cadherin is the prototypic member of the classic cadherin 

family. This family is characterized by the presence of five tandem extracellular cadherin 

repeats (EC1-5) which allow calcium-dependent homophilic adhesion (van Roy and Berx, 

2008). The cytoplasmic domain of E-cadherin serves as a scaffold for catenins that link 

cadherin-mediated cell adhesion to the actin cytoskeleton, either directly or indirectly (Meng 

and Takeichi, 2009). Two conserved catenin-binding domains are present, a membrane 

proximal domain or juxtamembrane domain (JMD) for binding p120catenin (p120ctn) and a 

β-catenin binding domain (CBD). Beta-catenin binds to alpha-catenin, which can link to the 

actin cytoskeleton via an adaptor (e.g. Eplin)  (Abe and Takeichi, 2008) or as an unbound 

dimeric complex (Drees et al., 2005; Yamada et al., 2005). p120ctn binds to cadherins and 

regulates their turnover (Reynolds and Roczniak-Ferguson, 2004; Xiao et al., 2007). In 

addition, p120ctn modulates RhoGTPase activity (Anastasiadis, 2007) and regulates gene 

transcription by binding to Kaiso, and preventing its transcriptional repression (Daniel, 2007; 

van Roy and McCrea, 2005). 

E-cadherin, β-catenin and αE-catenin are expressed during mouse embryonic 

development (Haegel et al., 1995; Larue et al., 1994; Torres et al., 1997). E-cadherin (also 

called uvomorulin) on the cell surface of loosely attached blastomeres is involved in their 

transformation into a compacted morula (Hyafil et al., 1981; Johnson et al., 1986; Vestweber 

and Kemler, 1985). The cadherin-catenin complex is important during early mouse 

development because embryos with ablated E-cadherin or αE-catenin do not form proper 

blastocysts and fail to form trophectoderm (Larue et al., 1994; Torres et al., 1997). However, 

β-catenin does not seem to be essential for preimplantation development, probably due to 

compensation by plakoglobin (Haegel et al., 1995). In addition, cadherins and catenins are 

indispensible for the formation of normal ES cell colonies, as depleting E-cadherin, αE-

catenin or β-catenin results in dispersed ES cell colonies with loosely adherent cells (Haegel 

et al., 1995; Larue et al., 1996; Larue et al., 1994; Torres et al., 1997). The role of p120ctn in 

ES cell derivation and preimplantation development has not yet to been investigated.  
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We examined the expression of p120ctn during preimplantation development and 

gastrulation. 

 

 

MATERIAL AND METHODS  

 

Immunofluorescence 

The staining procedure for preimplantation embryos is carried out in 24-well plates at 

room temperature according to a published procedure (Kan et al., 2007). In brief, embryos 

were washed twice in phosphate buffered saline (PBS) containing 0.05% Tween 20 (PBT) 

and fixed for 10 min in 2% paraformaldehyde (PFA). After permeabilization for 10 min with 

0.25% Triton X-100 in PBS and two washes in PBT, embryos were blocked for 30 min with 

1% goat serum in PBT (GS-PBT) and then incubated for 1 h with primary antibodies. After 

three washes with GS-PBT, embryos were incubated for 30 min with secondary antibodies, 

washed. One-microliter drops of PBS, each containing an embryo, were placed on a glass-

bottom dish (WillCo Wells) and covered with mineral oil before examination by confocal 

microscopy (see below). The following antibodies were used: mouse monoclonal anti-p120ctn 

(pp120, 1/500, BD Transduction Laboratories), polyclonal rabbit anti-p120ctn isoform C 

(pAbexC, 1/50, see below), polyclonal rabbit anti-β-catenin (1/2000, Sigma), polyclonal 

rabbit anti-α-catenin (1/1000, Sigma), mouse monoclonal anti-E-cadherin (1/300, BD 

Transduction Laboratories), rat monoclonal anti-E-cadherin (DECMA-1, 1/100, Sigma), 

mouse monoclonal anti-Oct-4 (1/100, Santa Cruz Biotechnology), mouse monoclonal anti-

Cdx2 (1/100, Biogenex). Secondary species-specific Alexa-fluorochrome-conjugated 

antibodies were used at a dilution of 1/500 (Molecular Probes).   

 

Confocal microscopy  

Confocal microscopy was performed using a Leica TCS SP5 confocal scan head 

attached to a Leica DM IRE2 inverted microscope and a PC running Leica AF software 

version 2.5. Optical sections were taken every 2 µm. Three-dimensional reconstructions of Z-

stacks were made using Volocity software (Perkin Elmer).  

 

Histology and immunohistochemistry 

Decidua containing gastrulating embryos were fixed overnight in 4% 

paraformaldehyde in phosphate-buffered saline (PBS), embedded in paraffin wax, and 
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sectioned at 6 to 8 µm. Sections were deparaffinated using HistoclearII (National 

Diagnostics). For histology, tissue sections were rehydrated and stained with hematoxylin and 

eosin. For immunohistochemistry, tissue sections were rehydrated and pretreated with 0.3% 

H2O2 in methanol for 45 min. The sections were then transferred to 10 mM citrate buffer (pH 

6.0) and the antigen was exposed in a Retriever (PickCell Laboratories, Amsterdam, The 

Netherlands). The sections were covered with blocking buffer (10% goat serum, 1% BSA in 

PBS) for 20 min and then incubated with appropriate antibodies (diluted in 1% BSA in PBS) 

overnight at 4°C. Staining was completed with a biotinylated secondary antibody (Dako, 

Glostrup, Denmark), avidin-peroxidase (Dako) and 3,3’-diamino-benzidine (Biogenex, San 

Roman, CA). The following antibodies were used: mouse monoclonal anti-p120ctn (pp120, 

1/500, BD Transduction Laboratories), mouse monoclonal anti-E-cadherin (1/500, BD 

Transduction Laboratories), mouse monoclonal anti-N-cadherin (1/600, Zymed, San 

Fransisco, CA), rat monoclonal anti-Ki67 (1/30, Dako). 

 

RT-PCR 

RNA was isolated from individual or pooled embryos using the PicoPure RNA 

Isolation Kit (Arcturus, cat no. KIT0204). cDNA was produced with Superscript III reverse 

transcriptase according to the manufacturer’s instructions (Invitrogen). Specific transcripts 

were detected with primers for p120ctn, p120ctn exon C, Oct-4 or mGAPDH (Table 1). 

 

Table 1. Primers for RT-PCR 

allele primers for RT-PCR 
size 
(bp) 

p120ctn forward 5'-CCACAGGCAGAGCGTTACCAG-3', reverse 5'-AGCAGGACTAGTTCTTTTAG-3 177 

Oct-4 forward 5'-GTTGGAGAAGGTGGAACCAA-3', reverse 5'-CTCCTTCTGCAGGGCTTTC-3 350 

GAPDH forward 5'-ACCACAGTCCATGCCATCAC -3', reverse 5'-TCCACCACCCTGTTGCTGTA-3 470 

 

 

Western blot analysis 

Individual embryos were washed in PBS, frozen in a minimal amount of PBS, thawed, 

supplemented with 10 µl Laemmli buffer (Laemmli, 1970), mixed by pipetting, and boiled for 

5 min. Proteins were separated by SDS-PAGE on a 8% polyacrylamide gel, electroblotted 

onto polyvinylidene fluoride (PVDF) membranes (Millipore), and incubated with antibodies. 

NBT/BCIP was used for detection (Zymed Laboratories). 
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RESULTS  

 

p120ctn expression in wild-type preimplantation embryos 

 

Weak expression of p120ctn transcripts has been reported in mouse preimplantation 

embryos (Na et al., 2006), but no data exist on the p120ctn protein level. We also performed 

reverse transcriptase polymerase chain reaction (RT-PCR) analysis on single and pooled 

morulas and blastocyst. In agreement with previously published data, only faint p120ctn 

expression was observed in single preimplantation embryos (Fig. 1) (Na et al., 2006). 

However, expression of p120ctn transcripts could be readily detected in pooled morulas and 

in pooled blastocyst.  

 

    

 

Figure 1. Expression of p120ctn transcripts in wild-type preimplantation embryos. RT-
PCR to detect all p120ctn transcripts and Oct-4-specific transcripts present in single and 
pooled wild-type mouse morulas and blastocysts. GAPDH was used as a loading control. RNA 
was treated with DNase I or not. 

 

To investigate the expression of p120ctn protein in mouse preimplantation embryos, 

we performed double immunolabeling for p120ctn and other members of the cadherin-catenin 

complex on wild-type mouse embryos ranging from the two-cell stage to blastocysts (Fig. 2). 

Several members of the cadherin-catenin complex, such as E-cadherin and αE-catenin, are 

indispensible during blastocyst formation and the establishment of the trophectoderm lineage 

(Larue et al., 1994; Torres et al., 1997). p120ctn is localized at the cell surface of blastomeres 

of two- to eight-cell embryos, where it co-localizes with β-catenin, especially at cell-cell 

contacts (Fig. 2A). In compacted morulas and blastocysts, p120ctn is seen at the cell-cell 

contacts together with β-catenin (Fig. 2A).  
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Figure 2. Expression of p120ctn and β-catenin in wild-type preimplantation embryos. 
Transmitted light micrographs, either differential interference contrast (DIC) or bright field 
(BF), and immunofluorescence of wild-type embryos from two-cell stage to blastocysts.  
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Figure 2 (continued). (A) Double immunofluorescence for p120ctn and β-catenin. p120ctn co-
localizes with β-catenin at the cell surface of blastomeres (two- to eight-cell stage), morulas 
and blastocysts. Non-specific staining was observed in the zona pellucida. In blastocysts 
p120ctn protein is expressed exclusively at the plasma membrane, whereas β-catenin also 
shows nuclear staining, predominantly in the trophectoderm. (B,C) Marker analysis reveals 
that nuclear β-catenin is predominantly expressed in the trophectoderm of wild-type 
blastocysts. (B) A trophectoderm-specific marker (Cdx2) colocalizes with strong nuclear β-
catenin staining in the trophectoderm. (C) An inner cell mass (ICM)-specific marker (Oct-4) 
shows only little colocalization with the weak nuclear β-catenin staining in the ICM. (D)  
Double immunofluorescence for p120ctn and αE-catenin. p120ctn co-localizes with αE-catenin 
at the cell surface of uncompacted and compacted morulas and blastocysts. (E) Double 
immunofluorescence for p120ctn and E-cadherin (DECMA-1 antibody). p120ctn co-localizes 
with E-cadherin at the cell surface of uncompacted and compacted morulas and blastocysts. 
Single confocal sections (2D) and three-dimensional (3D) reconstructions of wild-type 
blastocysts are shown. Scale bar: 25 µm.  

 

 

However, in blastocysts, β-catenin is expressed not only at the cell surface but also in 

the nucleus (Fig. 2A, blastocyst), which is indicative of active Wnt signaling. By using 

lineage-specific markers, we showed that β-catenin is expressed predominantly in the nuclei 

of trophectodermal cells (Figs. 2B,C). These data indicate that β-catenin mediated Wnt 

signaling is inactive until the blastocyst stage, which is in line with previously published 

results (Na et al., 2006). p120ctn also co-localizes with αE-catenin (Figs. 2D) and E-cadherin 
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(Fig. 2E) at the cell-cell junctions in uncompacted and compacted morulas and blastocysts. In 

conclusion, p120ctn is expressed throughout preimplantation development and is enriched at 

cell-cell contacts, where it co-localizes with other members of the cadherin-catenin complex. 

 p120ctn binds to the transcription factor Kaiso and is able to block it transcriptional 

repression (Daniel and Reynolds, 1999; Spring et al., 2005). There exists considerable 

interplay between the p120ctn/Kaiso pathway and the β-catenin/TCF pathway (Park et al., 

2005; Spring et al., 2005). We wanted to know whether the p120ctn/Kaiso pathway is 

functional in mouse preimplantation embryos, like it is the case in Xenopus embryos (Kim et 

al., 2004; Park et al., 2005). In blastocysts, Kaiso was only expressed in a limited number of 

cells and no Kaiso expression was observed in ES cells (data not shown). 

In addition, p120ctn also binds to RhoA (Magie et al., 2002; Yanagisawa et al., 2008), 

and inhibits its activity (Anastasiadis et al., 2000; Noren et al., 2000). p120ctn colocalized 

with RhoA both in preimplantation embryos and in ES cells (data not shown). 

 

p120ctn expression in gastrulating embryos 

 

To evaluate the expression of p120ctn during gastrulation, sagittal paraffin sections of 

embryos were selected at the beginning (Fig. 3A), the middle (Fig. 3B) and near the end (Fig. 

3C) of gastrulation. In pre-streak stage embryos, p120ctn is expressed at cell-cell contacts of 

both embryonic tissue (epiblast) and extraembryonic tissues, such as the extraembryonic 

ectoderm, the ectoplacental cone and the visceral endoderm (Fig. 3A).  

In late streak embryos, p120ctn is ubiquitously expressed at the cell membrane of the 

three germ layers, namely embryonic ectoderm, endoderm and mesoderm (Fig. 3B). p120ctn 

is also expressed in the primitive streak region, where cells disseminate from the ectoderm 

layer and make up mesoderm and endoderm layers. In addition, membrane staining for 

p120ctn is evident in the visceral endoderm, the ectoplacental cone and the posterior amniotic 

fold (Fig. 3B). 

Near the end of gastrulation, in late headfold stage embryos, p120ctn is expressed in 

all embryonic tissues, including newly emerging neurectoderm, head mesenchyme, gut 

endoderm and the primitive heart tube (Fig. 3C). p120ctn is predominantly localized at the 

cell surface in most embryonic tissues, except for the head mesenchyme, which shows 

cytoplasmic p120ctn localization, and its intensity varies substantially among different head 

mesenchyme cells. p120ctn is also ubiquitously expressed in extraembryonic tissues, such as 

allantoic, amniotic and chorionic mesoderm, the amniotic ectoderm, and the ectoplacental 
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Figure 3. p120ctn expression in gastrulating embryos. Immunohistochemical analysis of 
120ctn in sagittal paraffin sections of embryos at the stages of pre-streak (A), late streak (B) 
and late headfold (C). p120ctn is ubiquitously expressed in both embryonic and 
extraembryonic tissue. (D) Western blot analysis of two wild-type gastrulating embryos (7.5 
dpc) in which all p120ctn isoforms were detected with pp120-antibody and p120ctn isoform C 
was detected with pAbexC. Mouse brain was taken as a positive control because it rich in 
isoform C of p120ctn. ae: amniotic ectoderm, al: allantois, am: amniotic mesoderm, ec: 
ectoplacental cone, Ec: ectoderm, En: endoderm, Epi: epiblast, ExE: extraembryonic ectoderm, 
ge: gut endoderm, hm: head mesenchyme, Me: mesoderm, ne: neural ectoderm, paf: posterior 
amniontic fold, ph: primitive heart tube, ps: primitive streak, VE: visceral endoderm. Black 
scale bar: 200 µm, purple scale bar: 50 µm. 
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 cone (Fig. 3C). To conclude, p120ctn is expressed throughout gastrulation in both embryonic 

and extraembryonic tissues. 

Multiple p120ctn isoforms have been identified. These isoforms result from alternative 

splicing, which allows the translation of p120ctn isoforms from four start codons and enables 

the inclusion of four alternatively used exons (Keirsebilck et al., 1998). Alternative start 

condons usage allows the generation of p120ctn isoforms, differing from each other by the 

extension of their N-termini. Long p120ctn isoforms (p120ctn isoform 1, 120 kDa) contain 

the full-length N-terminus, whereas short p120ctn isoforms (p120ctn isoform 3, 100 kDa) 

have a truncated N-terminus and lack 100 AA. We wanted to determine which p120ctn 

isoforms are expressed during gastrulation. To do so, protein lysates from 7,5 dpc embryos 

were immunoblotted with pp120, an monoclonal antibody that detects all p120ctn isoforms. 

In contrast to mouse brain, which mainly expressed p120ctn isoform 1, gastrulas expressed 

predominantly p120ctn isoform 3 (Fig. 3D). 

 

Cadherin expression in gastrulating embryos 

 

p120ctn binds and stabilize cadherins both in vitro and in vivo (Reynolds and 

Carnahan, 2004; Xiao et al., 2007). Therefore, we were interested in the localization of E- and 

N-cadherin in gastrulating embryos. In late streak embryos, E-cadherin is expressed at the cell 

surface of embryonic ectoderm and endoderm, but it is downregulated in embryonic 

mesoderm and amniotic mesoderm (Fig. 4A). These data are consistent with previously 

published results (Shibata et al., 2004). Shibata and colleagues (2004) found that next to E-

cadherin, also β-catenin is decreased in mesoderm. Remarkably, ingressing mesoderm cells 

with reduced E-cadherin and β-catenin levels displayed occasionally cytoplasmic staining for 

p120ctn (Shibata et al., 2004). In the late headfold gastrula, E-cadherin is expressed in the 

neural ectoderm and primitive gut epithelium but is absent in the primitive heart, head 

mesenchyme and allantoic mesoderm (Fig. 4B). E-cadherin and N-cadherin displayed a 

reciprocal expression pattern in late headfold embryos. N-cadherin is absent in neural 

ectoderm and primitive gut endoderm but showed a discrete membrane localization in head 

mesenchyme and allantoic mesoderm, and the primitive heart shows strong cell surface 

staining (Fig. 4C). This is in line with reports on persistence of N-cadherin expression in 

precardiac (splanchnic) mesoderm during early heart development and its downregulation in 

somatic mesoderm (Linask, 1992).  
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Figure 4. Cadherin expression in gastrulating embryos. Immunohistochemical analysis of 
E-cadherin in sagittal paraffin sections of late bud (A) and late headfold (B) embryos. E-
cadherin is expressed in embryonic ectoderm and endoderm layers, neural ectoderm and gut 
epithelium. However, E-cadherin is downregulated in embryonic mesoderm, head 
mesenchyme, primitive heart and mesoderm from amnion and allantois. 
Immunohistochemical examination of N-cadherin in sagittal paraffin sections of late headfold 
stage embryos (C). N-cadherin is absent in gut endoderm and is expressed at low levels in 
embryonic ectoderm and mesoderm and in neural ectoderm. N-cadherin is expressed 
moderately in allantoic mesoderm and head mesenchyme and is strongly expressed in 
embryonic endoderm and in the primitive heart. ae: amniotic ectoderm, al: allantois, am: 
amniotic mesoderm, ec: ectoplacental cone, ecc, ectoplacental cavity, Ec: ectoderm, En: 
endoderm, ge: gut endoderm, hm: head mesenchyme, Me: mesoderm, ne: neural ectoderm, ph: 
primitive heart tube, ps: primitive streak. 
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Supplementary Figure 1. Mouse embryos exhibit rapid cell proliferation during 
gastrulation. Pre-streak stage (A), late bud stage (B) and late headfold stage (C) embryos 
containing a large proportion of dividing cells in both embryonic and extraembryonic regions, 
as evidenced by Ki67 immunohistochemistry. ae: amniotic ectoderm, al: allantois, am: 
amniotic mesoderm, ec: ectoplacental cone, Ec: ectoderm, En: endoderm, Epi: epiblast, ExE: 
extraembryonic ectoderm, ge: gut endoderm, H&E: hematoxylin and eosin, hm: head 
mesenchyme, Me: mesoderm, ne: neural ectoderm,  ph: primitive heart tube, VE: visceral 
endoderm. Black scale bar: 200 µm, purple scale bar: 50 µm. 
 
 

N-cadherin expression is also found in mouse precardiac mesoderm, and N-cadherin-deficient 

embryos exhibit aberrant heart morphogenesis (Radice et al., 1997). During gastrulation all 

three germ layers, but particularly the primitive ectoderm divide extremely fast (Hogan et al., 

1994). This was evident when sections of gastrulating embryos were stained with a marker for 

proliferation, Ki67 (Fig. S1). 



Chapter 3 

121 
 

 

DISCUSSION 

 

The cadherin-catenin complex plays an important role in development by maintaining 

tissue integrity via adhesion and by conveying proper signals to various developmental 

pathways (Lien et al., 2006). All members of the classic cadherin-catenin complex have been 

found at the membrane of oocytes and early preimplantation embryos (Haegel et al., 1995; 

Larue et al., 1994; Torres et al., 1997). We report on the presence of p120ctn on the 

membrane of embryos from the two-cell stage until the blastocyst stage. p120ctn was 

localized at the free edges of uncompacted blastomeres and p120ctn was progressively 

enriched at cell-cell borders from morula on, and especially in compacted morulas. 

Furthermore, in each of these early embryonic stages p120ctn colocalizes with E-cadherin and 

α- and β-catenin. This implies that fully functional cadherin-based cell-cell junctions can be 

made during preimplantation development. In these early developmental stages, p120ctn 

seems to be expressed predominantly at the membrane, which supports the notion that 

p120ctn in the cadherin-catenin complex participates in adhesion. Other p120ctn functions, 

such as regulation of the activity of RhoGTPases in the cytoplasm or inhibition of Kaiso-

mediated transcriptional repression in the nuclei, are less likely.  

The presence of RhoGTPases and their correct spatiotemporal activation is essential in 

preimplantation development (Heasman and Ridley, 2008; Wang and Zheng, 2007). 

Conventional gene targeting of the classic RhoGTPase family members RhoA, Rac1 and 

Cdc42 causes early death in mouse embryos (Chen et al., 2000; Sugihara et al., 1998), 

whereas knockout mice for other RhoGTPase family members do not show major 

developmental abnormalities (Wang and Zheng, 2007). Also, injection of a siRNA against 

Cdc42 in mouse oocytes, did not affect the cleavage stage development, but decreased the 

formation of blastocysts (Cui et al., 2007). Overexpression of a constitutive active RhoA 

mutant in four-cell embryos results in reduced blastomere adhesion, whereas inhibition of 

RhoA mediated by C3-transferase results in decompaction (Clayton et al., 1999). In addition, 

culturing cleavage-stage embryos while inhibiting ROCK, a downstream effector of RhoA, 

affected the cavity formation in blastocysts. Expression of p120ctn inhibits RhoA expression 

and Rac1 activation (Anastasiadis and Reynolds, 2001), whereas genetic or RNAi-mediated 

depletion of p120ctn results in increased RhoA activity and decreased Rac1 activity (Elia et 

al., 2006; Perez-Moreno et al., 2006; Wildenberg et al., 2006; Yanagisawa and Anastasiadis, 

2006). It has been shown that ectopic expression of classical cadherins prevents p120ctn-
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mediated dendritic-like branching, RhoA inhibition, and Rac1 activation (Anastasiadis et al., 

2000; Noren et al., 2000; Soto et al., 2008). This indicates that cadherins can sequester the 

available p120ctn to cadherin-based junctions and this prevents the modulation of RhoGTPase 

activity by p120ctn. In addition, E-cadherin depletion in MCF7 cells releases p120ctn from 

the membrane and this results in increased Rac1 activity (Soto et al., 2008). Strangely, 

p120ctn knockdown also results in Rac1 activation (Soto et al., 2008). p120ctn depletion also 

affects E-cadherin levels, but Rac1 activation must occur then via a p120ctn-independent 

pathway. So, although p120ctn can influence RhoGTPases in early development, this will 

probably not occur because p120ctn is sequestered to the membrane by E-cadherin. 

In contrast to p120ctn, β-catenin is not expressed exclusively at the cell membrane but 

also in the nuclei of blastocysts, which indicates active Wnt signaling. Secreted Wnt ligands 

bind to Frizzled and LPR receptors and prevent phosphorylation, ubiquitination and 

degradation of cytoplasmic β-catenin, which translocates to the nucleus and transactivates 

Wnt target genes (MacDonald et al., 2009). Wnt signaling is essential in multiple 

developmental processes, and its derailment has been associated with many diseases, 

including cancer (Logan and Nusse, 2004; Reya and Clevers, 2005). Active β-catenin can be 

detected by using antibodies specific for unphosphorylated β-catenin or antibodies that detect 

nuclear β-catenin. Several studies investigated Wnt activity in mouse preimplantation 

embryos. Several studies showed Wnt activation only in the late morula and blastocyst stages 

(Li et al., 2005; Na et al., 2006). Our findings are in line with these observation, as we 

detected nuclear β-catenin only in blastocysts (Fig. 2). Since Wnt is only activated in late 

blastocyst, the presence of nuclear β-catenin might depend on the time that blastocysts are 

collected. Similar to the findings of Xie and collegues, active β-catenin is mainly located in 

nuclei of the trophectoderm lineage (Xie et al., 2008).  

The p120ctn/Kaiso and the β-catenin/TCF pathways are physically connected via 

Frodo (Park et al., 2006) and there is significant overlap between the target genes of these 

pathways (Kim et al., 2004; Park et al., 2005; Spring et al., 2005). Cytoplasmic p120ctn 

relieves the Kaiso-mediated transcriptional repression of these mutual target genes, and thus 

results in their activation. But, if cadherins are able to sequester p120ctn away from 

cytoplasmic or nuclear pools, this would prevent p120ctn to inhibit the transcriptional 

repression of Kaiso in preimplantation embryos. Currently, it has not been tested whether 

expression of cadherins could block the ability of p120ctn to relieve the Kaiso-mediated 

transcriptional repression. Based on current knowledge, expression cadherins would result in 

repression of β-catenin target genes. This hypothesis requires a functional p120ctn/Kaiso 
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complex to be present in preimplantation development. We showed that both p120ctn and E-

cadherin are present during preimplantation development. Kaiso is expressed in oocytes 

(Soubry et al., 2005) and Kaiso transcripts have been found in cleavage stage embryos and in 

blastocysts but are downregulated in expanded blastocysts (Na et al., 2007). Downregulation 

of Kaiso, a repressor of β-catenin target genes, in expanded blastocysts is accompanied with 

increased expression of Dishevelled, which is important for activation of Wnt signaling (Na et 

al., 2007). The expression pattern of Kaiso is in line with our observation that β-catenin 

becomes only activated in late blastocysts.  

However, several lines of evidence state that β-catenin and Wnt signalling is not 

essential in preimplantation development. Both β-catenin null mice and mice expressing a 

stabilized form of β-catenin (deletion of exon 3; removes serine/threonine residues that are 

phosphorylated by GSK3β) exhibit a normal preimplantation development (Haegel et al., 

1995; Kemler et al., 2004). In addition, no evidence was found of functional Wnt activity in 

cleavage-stage embryos using a Wnt-reporter line (Kemler et al., 2004). On the other hand, 

the presence of nuclear β-catenin might also be dependent on the mouse strain. Clear nuclear 

β-catenin could be observed reproducibly in blastocysts from wild-type and transgenic mouse 

strains on the C57BL/6 background, but this was not seen in blastocyst on a mixed 

background (data not shown). The preimplantation embryos with genetic ablation or 

activation of β-catenin were on a mixed background, and this might explain why active β-

catenin was not seen in these systems. Nevertheless, the fact that nuclear β-catenin is strain-

specific, hints that Wnt signalling might not be an essential feature of preimplantation 

biology. Analysis of blastocysts with genetic ablation or activation of β-catenin, but on the 

C57BL/6 background may provide clarity in this matter. To conclude, we report the 

simultaneous detection of both membrane-bound and nuclear pools of β-catenin in blastocysts 

on the C57BL/6 background. 
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ABSTRACT  

 

p120 catenin (p120ctn) is a versatile member of the armadillo family, and has different 

functions in different subcellular compartments. Cytoplasmatic p120ctn regulates the activity 

of RhoA GPTases, nuclear p120ctn inhibits Kaiso-mediated transcriptional repression, while 

membrane-localized p120ctn stabilizes E-cadherin on the cell surface and supports cadherin-

mediated adhesion. Multiple human p120ctn isoforms are generated as a result of alternative 

splicing, however, the significance of all these p120ctn isoforms in vivo remains unknown. 

Several tissue-specific p120ctn knockout mice have been reported, but in these studies all 

p120ctn isoforms are removed. We report for the first time on the generation of p120ctn 

isoform-specific knockout and knockin mice to analyze the in vivo function of alternatively 

spliced exon C of p120ctn. This resulted in mice in which exon C of p120ctn is either 

constitutively ablated (p120ctnKOC) or constitutively expressed (p120ctnKIC). Surprisingly, 

homozygous p120ctn KOC and homozygous KIC embryos died during preimplantation, 

while completely p120ctn-deficient (p120ctn-/-) embryos formed normal blastocysts. The 

absence of p120ctn in blastocysts resulted in a drastic drop of membrane-localized E-

cadherin. This confirms that p120ctn is the rate limiting factor for stabilizing cell surface E-

cadherin in vivo. Both isoform C-deficient and isoform-C containing p120ctn variants could 

rescue the E-cadherin levels in blastocysts and could overcome the embryonic lethality in 

p120ctn-deficient mice. In addition, both p120ctn isoforms with or without the exon C-

encoded amino acids can rescue the phenotypes that were seen in a liver-specific total 

p120ctn knockout. Expression of p120ctn isoform C inhibited nuclear translocation and the 

typical dendritic-like branching in vitro. Both isoform C-deficient and isoform C-expressing 

ES cell lines form proper cadherin catenin complexes, and RhoA activity wasn’t affected. 

Thus both p120ctn KOC and p120ctn KIC mice were equally potent in rescuing the 

phenotypes seen in p120ctn-deficient (p120ctn-/-) mice. 
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INTRODUCTION  

 

p120ctn is a versatile Armadillo protein and has different functions in distinct 

subcellular compartments. The p120ctn protein consists of a central Armadillo repeat domain 

flanked by a short carboxy-terminal domain and an amino-terminus containing a coiled-coil 

domain and a phosphorylation domain (Reynolds and Roczniak-Ferguson, 2004). The central 

Armadillo repeat domain of p120ctn and that of its subfamily member plakophilin 1 consists 

of nine 42 amino-acid Armadillo-repeats (Choi and Weis, 2005; Ishiyama et al.). Structural 

and mutational analysis revealed that the first five Armadillo-repeats are essential for binding 

to the JMD of classic cadherins (Ireton et al., 2002; Ishiyama et al.). A core function of 

p120ctn is to stabilize cadherins at the plasma membrane by modulating cadherin trafficking 

and degradation (Reynolds and Carnahan, 2004; Xiao et al., 2007). In addition, p120ctn 

regulates RhoGTPase activity in the cytoplasm (Anastasiadis, 2007) and modulates gene 

expression by interacting with various transcriptions factors in the nucleus (Daniel and 

Reynolds, 1999; Hosking et al., 2007). In addition, p120ctn is also the prototypic member of 

the p120ctn subfamily, which consists of four members: p120ctn (CTNND1), armadillo 

repeat gene deleted in velocardiofacial syndrome (ARVCF), δ-catenin (CTNND2) and p0071 

(PKP4)(McCrea and Park, 2007).   

Besides the existence of multiple p120ctn family members, the complexity is further 

increased by the presence by different p120ctn isoforms. Due to extensive splicing up to 48 

possible human p120ctn isoforms can be generated: in that way up to four different start 

codons (M1-M4) can be used as well as four alternatively used internal exons (A-D) 

(Keirsebilck et al., 1998). A p120ctn isoform of approximately 120 kDa uses the first 

startcodon, M1 (p120ctn isoform 1) and has a longer amino-terminal region compared to the 

shorter 100-kDa p120ctn isoform that uses the third startcodon, M3 (p120ctn isoform 3). 

Short p120ctn isoforms are expressed mainly in epithelia (Keirsebilck et al., 1998; Montonen 

et al., 2001), whereas long p120ctn isoforms are expressed in motile mesenchymal cell types 

(Aho et al., 2002; Aho et al., 1999; Golenhofen and Drenckhahn, 2000; Mo and Reynolds, 

1996). During epithelial-to-mesenchymal transition (EMT), a switch from short to long 

p120ctn isoforms occurs (Husmark et al., 1999; Vandewalle et al., 2005). In addition, 

different p120ctn isoforms exert tissue-specific and cell-specific expression patterns and 

p120ctn isoforms can have opposing effects on tumor growth, RhoGTPase activity and 

invasiveness in vitro (Yanagisawa et al., 2008). However, the significance of all these p120ctn 

isoforms in vivo remains unknown.  
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The subcellular localization of p120ctn can also be affected by its isoform expression 

pattern. The alternatively used exon B codes for p120ctn isoform B, which contains a nuclear 

export signal (NES) (van Hengel et al., 1999). p120ctn also contains two nuclear localization 

sequence (NLS) signals, one in the N-terminal phosphorylation domain and a second in the 

central armadillo repeat domain (Aho et al., 2002; Roczniak-Ferguson and Reynolds, 2003). 

The first NLS is absent in p120ctn isoform 4. The second NLS is situated in the large insert 

loop between arm repeats 5 and 6 of the central armadillo repeat domain (Choi and Weis, 

2005; Ishiyama et al., 2010). This second NLS can be interrupted and inactivated by six 

amino acids, encoded by the alternatively used exon C. The insert loop itself is not essential 

for binding to classical cadherins (Ireton et al., 2002; Ishiyama et al., 2010).  

Furthermore, p120ctn isoforms have different effects on RhoGTPase activity and cell 

invasion (Yanagisawa et al., 2008). p120ctn has two RhoA-binding domains, one in the N-

terminal domain (amino acids 102 to 234) and a second, coinciding with the sequence of the 

second NLS (amino acids 622  to 628) in the insert loop of the armadillo repeat domain 

(Castano et al., 2007; Yanagisawa et al., 2008). In analogy to the NLS signals, the first RhoA-

binding domain is absent in p120ctn isoform 4 and the second RhoA-binding domain can be 

interrupted by six amino acids, encoded by the alternatively used exon C. However, this 

second RhoA-binding domain is also essential for RhoGTPase activity because deleting this 

sequence (p120ctn ∆622-628) leads to loss of the ability to inhibit RhoA activity 

(Anastasiadis et al., 2000). By interrupting the sequence, important for both nuclear import 

and RhoA inhibition, expression of exon C- encoded amino acids may regulate p120ctn 

localization and function. But the function of the alternative spliced exon C has not been 

investigated in vitro, nor in vivo.  

Two strategies have been used for tissue-specific removal p120ctn in mice, but both 

strategies ablate all p120ctn isoforms and no isoform-specific information can be deduced 

from them. In the first strategy, exons 3 to 8 (containing all four start codons) were floxed 

(Davis and Reynolds, 2006). Cre-mediated recombination was then used to selectively 

remove p120ctn from salivary gland, skin and gastrointestinal tract (Davis and Reynolds, 

2006; Perez-Moreno et al., 2006; Smalley-Freed et al., 2010). The second strategy uses 

nonsense-mediated decay to remove truncated p120ctn transcripts after Cre-mediated removal 

of exon 7, which is flanked by LoxP sites. In this way, p120ctn could be ablated from the 

forebrain (Elia et al., 2006). 

So far, no in vivo tools for investigating the function of different p120ctn isoforms 

have been reported. We report on the generation of p120ctn exon C-specific knock-out 
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(p120ctn KOC) and knock-in (p120ctn KIC) mice. Homozygous p120ctn KOC and p120ctn 

KIC mice both die very early in development, probably due to a deletion of highly conserved 

sequence present in the intronic regions flanking exon C. We also generated total p120ctn 

knock-out mice (p120ctn-/-), by crossing floxed p120ctn mice (Davis and Reynolds, 2006) 

with mice expressing the Cre-recombinase in a tissue-wide manner (Betz et al., 1996). By 

crossing p120ctn KOC or p120ctn KIC mice with the p120ctn null mice we could obtain 

blastocysts and ES cells expressing either always p120ctn isoform C or not, and could show 

that both isoforms can stabilize cadherins in vivo.  
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MATERIAL AND METHODS  

 

Immunofluorescence 

The staining procedure for preimplantation embryos is carried out in 24-well plates at 

room temperature according to a published procedure (Kan et al., 2007). In brief, embryos 

were washed twice in phosphate buffered saline (PBS) containing 0.05% Tween 20 (PBT) 

and fixed for 10 min in 2% paraformaldehyde (PFA). After permeabilization for 10 min with 

0.25% Triton X-100 in PBS and two washes in PBT, embryos were blocked for 30 min with 

1% goat serum in PBT (GS-PBT) and then incubated for 1 h with primary antibodies. After 

three washes with GS-PBT, embryos were incubated for 30 min with secondary antibodies, 

washed. One-microliter drops of PBS, each containing an embryo, were placed on a glass-

bottom dish (WillCo Wells) and covered with mineral oil before examination by confocal 

microscopy (see below). Staining cultured cells involved methanol-fixation, incubation for 2 h 

with primary antibody and 1 h with the secondary antibody, each dissolved in 1:4 mixture of 

2% gelatin and PBS. The following antibodies were used: mouse monoclonal anti-p120ctn 

(pp120, 1/500, BD Transduction Laboratories), polyclonal rabbit anti-p120ctn isoform C 

(pAbexC, 1/50, see below), polyclonal rabbit anti-β-catenin (1/2000, Sigma), polyclonal 

rabbit anti-α-catenin (1/1000, Sigma), mouse monoclonal anti-E-cadherin (1/300, BD 

Transduction Laboratories), rat monoclonal anti-E-cadherin (DECMA-1, 1/100, Sigma), 

mouse monoclonal anti-Oct-4 (1/100, Santa Cruz Biotechnology), mouse monoclonal anti-

Cdx2 (1/100, Biogenex). Secondary species-specific Alexa-fluorochrome-conjugated 

antibodies were used at a dilution of 1/500 (Molecular Probes).   

 

Confocal microscopy  

Confocal microscopy was performed using a Leica TCS SP5 confocal scan head 

attached to a Leica DM IRE2 inverted microscope and a PC running Leica AF software 

version 2.5. Optical sections were taken every 2 µm. Three-dimensional reconstructions of Z-

stacks were made using Volocity software (Perkin Elmer).  

 

Histology and immunohistochemistry 

Decidua containing gastrulating embryos were dissected from the uterus. Livers were 

dissected from five week old mice. Tissues were washed several times in phosphate-buffered 

saline (PBS) fixed overnight in 4% paraformaldehyde in PBS, embedded in paraffin wax, and 
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sectioned at 6 to 8 µm. Sections were deparaffinated using HistoclearII (National 

Diagnostics). For histology, tissue sections were rehydrated and stained with hematoxylin and 

eosin. For immunohistochemistry, tissue sections were rehydrated and pretreated with 0.3% 

H2O2 in methanol for 45 min. The sections were then transferred to 10 mM citrate buffer (pH 

6.0) and the antigen was exposed in a Retriever (PickCell Laboratories, Amsterdam, The 

Netherlands). The sections were covered with blocking buffer (10% goat serum, 1% BSA in 

PBS) for 20 min and then incubated with appropriate antibodies (diluted in 1% BSA in PBS) 

overnight at 4°C. Staining was completed with a biotinylated secondary antibody (Dako, 

Glostrup, Denmark), avidin-peroxidase (Dako) and 3,3’-diamino-benzidine (Biogenex, San 

Roman, CA). The following antibodies were used: mouse monoclonal anti-p120ctn (pp120, 

1/500, BD Transduction Laboratories), mouse monoclonal anti-E-cadherin (1/500, BD 

Transduction Laboratories), mouse monoclonal anti-N-cadherin (1/600, Zymed, San 

Fransisco, CA), rat monoclonal anti-Ki67 (1/30, Dako). 

 

Bioinformatic analyses 

Genomic details of p120ctn and ARVCF and the multiple sequence alignments were 

retrieved from the UCSC Genome Browser (Miller et al., 2007). The alignments were shaded 

using BoxShade (http://www.ch.embnet.org/software/BOX_form.html) and Neighbor-Joining 

trees were constructed using ClustalX2 (Larkin et al., 2007). The conserved Roaz binding 

sites were identified using the ConTra tool (Hooghe et al., 2008). A BLASTn search at the 

miRBase website (Griffiths-Jones et al., 2008) of the conserved block containing p120ctn 

exon C and flanking intron sequence, both human (chr2:84452570-84452790) and mouse 

(chr11:57330338-57330652), retrieved mmu-miR-141* as top scoring match. The 

MicroCosm resource (formerly miRBase Targets) listed several olfactory receptor transcripts 

as putative targets of mouse miR-141 (mmu-miR-141*). 

 

RT-PCR 

RNA was isolated from individual or pooled embryos using the PicoPure RNA 

Isolation Kit (Arcturus, cat no. KIT0204). cDNA was produced with Superscript III reverse 

transcriptase according to the manufacturer’s instructions (Invitrogen). Specific transcripts 

were detected with primers for p120ctn, p120ctn exon C, Oct-4 or mGAPDH (Table 1). 
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Production and purification of a polyclonal antibody against p120ctn isoform C  

An antibody specific for p120ctn isoform C (pAbexC) was generated by injecting 

rabbits with a peptide containing the six amino acids, encoded by alternative exon C 

(GKDEWFSRGKGAC), fused to keyhole limpet hemocyanin (KLH, Sigma), together with 

Titermax gold adjuvant (Sigma). Two bleedings from three rabbits were characterized by 

western blotting and immunofluorescence in cells, that were transiently transfected with either 

pEFBOS hp120ctn 3A or 3AC (data not shown). The most promising serum was peptide-

purified on affinity columns, using the SulfoLink kit (Pierce Biotechnology) according to the 

manufacturer’s instructions. After Elisa, the antibody-containing fractions were pooled, 

supplemented with glycerol, aliquoted and frozen at -70°C. 

 

Plasmid construction and cell culture  

The mammalian expression vector pHM829 was designed for expression of the 

protein of interest fused to β-galactosidase (β-gal) at its N-terminus and to green fluorescent 

protein (GFP) at its C-terminus (Sorg and Stamminger, 1999). pHM829 vectors containing 

either the second NLS of  p120ctn (NLS) or a mutated NLS (NLSmut) were described 

previously (Kelly et al., 2004). To create a pHM829 construct containing the second p120ctn 

NLS interrupted by exon C-encoded amino acids, two complimentary oligonucleotides were 

designed to incorporate a 5′ SacII site and a 3′ XbaI site (underlined) flanking the NLS 

sequence, which is interrupted by p120ctn exon C (italics): 5’-

CCGCGGAAGAAGGGCAAAGATGAGTGGTTCTCCAGAGGGAAAAAGCCTTCTAGA-3’  

3’-GGCGCCCGCCGCCCGTTTCTACTCACCAAGAGGTCTCCCTTTTTCGGAAGATCT -5’. The 

oligonucleotides were annealed, digested with SacII and XbaI, and ligated in pHM829 pre-

digested with the same enzymes. cDNA coding for different human p120ctn isoforms (1A, 
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3A, 3AC, 4A, 4AC)  were cloned in a eukaryotic expression vector (pEFBOS). This has been  

described partly (van Hengel et al., 1999). pEFBOS hp120ctn 1A∆622-628 was generated 

using a QuikChange® II Site-Directed Mutagenesis Kit (Stratagene).  

HeLa (human cervical carcinoma), MCF7/AZ (human breast adenomacarcinoma), Cos1 

(SV40 immortalized simian kidney cells), HEK293T (human embryonic kidney), and mouse 

fibroblast NIH3T3 cells were grown at 37°C, 5% CO2 in Dulbecco’s minimal essential 

medium (DMEM) supplemented with 10% fetal bovine serum, 4 mM L-glutamine, penicillin 

(100 U/ml) and streptomycin (100 mg/ml). Cells were transfected either by the calcium 

phosphate precipitation method (293T) or by using Fugene reagent (Roche Applied Science) 

according to the manufacturer’s instructions. For the branching assay, at least 100 transiently 

transfected Hela or NIH3T3 cells were and scored for each construct for normal or branched 

cellular phenotype. The percentage of branched versus normal phenotype was plotted 

graphically. 

 

Western blot analysis 

Individual embryos were washed in PBS, frozen in a minimal amount of PBS, thawed, 

supplemented with 10 µl Laemmli buffer (Laemmli, 1970), mixed by pipetting, and boiled for 

5 min. Proteins were separated by SDS-PAGE on a 8% polyacrylamide gel, electroblotted 

onto polyvinylidene fluoride (PVDF) membranes (Millipore), and incubated with antibodies. 

NBT/BCIP was used for detection (Zymed Laboratories). 

 

Generating p120ctnKOC/+ and p120ctnKIC/+ mice  

The mouse p120ctn gene Ctnnd1 was cloned from a genomic DNA cosmid library 

from the 129/Ola strain. Two cosmids, comprising exons 1 to 17 and exons 13 to 21 

respectively, contain the full genomic DNA sequence of the p120ctn gene. All targeting 

vector were generated by standard cloning techniques. A genomic fragment (NheI-EagI) 

containing exon 7 to 13 was cloned in the pBlue vector. For the p120ctnKOC targeting vector, a 

fragment of exon C and flanking sequences was replaced by a floxed selection cassette 

containing a neomycin resistance gene and a thymidine kinase gene from herpes simplex virus 

(Neor-TK, Fig. 3A). To do that, a NotI site (161bp downstream of exon 11) and a ClaI site 

(197bp upstream of exon 11) were generated by Stratagene kit 2 primers. The floxed Neor-TK 

cassette was cloned in the pBlue vector by digesting the pBSloxPneotkloxP vector with NotI 

and ClaI and ligating it into the pBlue mp120ex3-7 vector pre-digested with the same 

enzymes. For the p120ctnKIC targeting vector, the genomic sequence of exons 10 to 12 was 
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replaced by its corresponding cDNA sequence (Fig. 3B), by using a BspEI site (present in 

exon10) and a XhoI site (present in exon12). A mouse p120ctn cDNA fragment was digested 

with BspEI and XhoI and ligated in the pBlue mp120ctnex3-7 vector pre-digested with the 

same enzymes. In addition, a floxed neomycin resistance gene from the pGK-loxP vector 

(Genebridges) was inserted in intron 9 via Red/ET recombination. Homologous 

recombination at the p120ctn locus was achieved by electroporation of PvuI-linearized 

p120ctnKOC targeting vector or ApaI-linearized p120ctnKIC targeting vector into E14 ES cells. 

Electroporated cells were subjected to positive selection using G418. Positive clones were 

screened by Southern blot analysis for correct and unique homologous recombination events 

using internal and external 5’ and 3’ probes (Figs. 3C,D). Correctly targeted p120ctnKOC 

NeoFL/+ ES cells were electroporated with a Cre-recombinase expression plasmid, selected with 

Gancyclovir and screened by Southern blotting.  Correct ES cell clones of each construct were 

used for injection into host C57BL/6 blastocysts. Chimeric males, identified by their coat 

color, were mated to C57BL/6 females to generate p120ctnKOC/+ and KIC NeoFL/+ mouse lines. 

The neomycin resistance cassette in p120ctn KIC NeoFl/+ mice was removed by mating with 

deleterCre mice (Betz et al., 1996), resulting in p120ctnKIC/+ mice. p120ctnKOC/+ and 

p120ctnKIC/+ mice were backcrossed on C57BL/6 nine and eigth times, respectively. p120ctn 

KOC and KIC alleles could be discriminated from the wild-type allele by performing PCR on 

tail genomic DNA (Figs. 3E,F). Mice were housed in individually ventilated cages either in 

specific pathogen-free or in conventional animal facilities. All experiments on mice were 

conducted according to institutional, national, and European animal regulations. Animal 

protocols were approved by the ethics committee of Ghent University. 

 

Southern blot analysis  

For ES cell selection, genomic DNA was digested for KOC with BglII to differentiate 

between the 19 kb and 12 kb fragments of the WT and  KOC-modified alleles, respectively. 

DNA from positive clones was further checked by BamHI digest to differentiate between 

either 5.1 kb or 4.5 kb fragments for the WT and KOC-modified alleles. For KIC ES cell 

selection we used BglII or EcoRV, which generate bands of 19 kb and 13 kb for the WT and  

KIC-modified alleles, respectively. DNA was separated on agarose gels and transferred to 

Hybond-N+ membranes (Amersham), which were hybridized with 32P-labeled probes. 
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Generating p120ctn+/-, p120ctnKOC/- and p120ctnKIC/- mice  

Mice harboring a floxed region in the p120ctn gene (containing exon 3 till 8 ,including 

all four start codons) have been discribed (Davis and Reynolds, 2006). Crossing these mice 

with deleterCre mice (Betz et al., 1996) resulted in p120ctn+/- mice which were backcrossed to 

C57BL/6 to remove the Cre-recombinase from the genome.  

 

 

Generating p120ctnfl/fl; Alb-Cre, p120ctnKOC/fl; Alb-Cre and p120ctnKIC/fl; Alb-Cre mice  

Mice harboring a floxed region in the p120ctn gene (containing exon 3 till 8, including 

all four start codons) have been described (Davis and Reynolds, 2006). Crossing p120ctnfl/fl  

mice with mice expressing the Cre recombinase under control of a rat albumin promoter 

(Postic and Magnuson, 2000) resulted in p120ctnfl/+; Alb-Cre mice. These mice were crossed 

again with p120ctnfl/fl  mice to obtain p120ctnfl/fl ; Alb-Cre mice, which lack p120ctn 

specifically in the liver. In addition, p120ctnfl/fl ; Alb-Cre mice can be crossed with 

p120ctnKOC/+ and p120ctnKIC/+ mice, giving rise to p120ctnKOC/fl; Alb-Cre and p120ctnKIC/fl ; 

Alb-Cre mice, respectively (Table 2).  

 

Table 2. Crossing p120ctn KOC or KIC mice with liver specific p120ctn knock-out mice 

Genotyping offspring from p120ctnKOC/wt x p120ctnfl/fl ; Alb-Cre mating 

KOC/fl; Alb-Cre (25%) KOC/fl (25%) fl/wt; Alb-Cre (25%) fl/wt (25%) total recombination 

4 (44,4%) 1 (11,1%) 3 (33,3%) 1 (11,1%) 9 

  0/2   0/1   0/1   0/4 tail gDNA 

  2/2   0/1   1/1   3/4 liver gDNA 

            

Genotyping offspring from p120ctnKIC/wt x p120ctnfl/fl ; Alb-Cre mating 

KIC/fl; Alb-Cre (25%) KIC/fl (25%) fl/wt; Alb-Cre (25%) fl/wt (25%) total recombination 

3 (25,0%) 3 (25,0%) 4 (33,3%) 2 (16,7%) 12 

  0/2   0/1   0/1   0/4 tail gDNA 

  2/2   0/1   1/1   3/4 liver gDNA 

 

 

Mouse breeding, embryo isolation and genotyping  

Female mice at the age of 6-8 weeks were put together with male studs and copulation 

plugs were checked the following morning. Preimplantation embryos were obtained by 

crossing or intercrossing heterozygous p120ctn+/-, p120ctnKOC/+ and p120ctnKIC/+ mice. 

Embryos were flushed with M2 medium (Sigma) from oviducts at E1.5 and E2.5 using a 32G 

needle (Popper & Sons Inc., Cat. No. 7400) and 5 ml Luer-Lok syringe (B&D). For flushing 
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from the uterus at E3.5, a G23 needle and a 1 ml syringe were used. Genotyping was 

performed by PCR on genomic DNA isolated from mouse tail snips and ES cells (Laird et al., 

1991). Genomic DNA from individual embryos was isolated by boiling for 5 min in 5 µl of 50 

mM KOH, followed by neutralization with 5 µl of 50 mM Tris HCl pH 8. PCR primers are 

depicted in table 1. 

 

ES cell isolation and culture  

The ES cell isolation procedure has been described before (Pieters et al., in 

preparation). ES cells were grown on MEFs in SR-ES cell medium, composed of DMEM 

(Gibco) and F12 (Gibco) mixed in a 1:1 ratio and supplemented with 15% knock-out serum 

replacement (SR, Gibco), L-glutamine (2 mM, Gibco), penicillin (100 U/ml, Gibco), 

streptomycin (100 mg/ml, Gibco), β-mercaptoethanol (0.1 mM, Gibco), and 2000 U/ml 

recombinant mouse LIF (DMBR/VIB Protein Service facility, www.dmbr.ugent.be).  

 

RhoA Activity assay 

ES cells were treated for 3 min with 4 µM lysophosphatidic acid (LPA, Sigma) or 

were stimulated for 48 h with 10 µM ROCK inhibitor Y-27632 (CalBiochem). RhoA activity 

was determined by a G-LISA kit (Cytoskeleton) according to the manufacturer’s instructions. 

In brief, individual lysates are snap-frozen, and collectively thawed, and equal amounts of 

protein lysates in incubated on an ELISA plate, coated with RhoA-GTP-binding protein. After 

several washes, bound active RhoA is detected with a RhoA-specific antibody, following 

colorimetric analysis. 
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RESULTS  

 

p120ctn is composed of a central armadillo repeat domain consisting of nine armadillo 

repeats, and with each repeat consisting of three helices (H1,H2, and H3) (Fig. 1A) (Ishiyama 

et al., 2010). The alternatively spliced exon C encodes six amino acids which are situated in 

the insert loop within the armadillo repeat domain of p120ctn (Fig. 1A).  

 

 

 
Figure 1. Expression of  evolutionarily conserved p120ctn exon C in wild-type  
preimplantation and gastrulating embryos. (A) Crystal structure of the p120ctn isoform 
4/JMDcore complex. p120ctn contains nine ARM repeats (R1–9) with each repeat consisting of 
three helices (H1,H2, and H3). The JMDcore is shown in magenta. Between p120ctn ARM 
repeat 5 and 6 lies an unstructured insert loop, which contains a nuclear localization signal 
(NLS, coincides with a RhoA binding domain). The NLS is interrupted upon expression of the 
exon C-encoded amino acids and this NLS is deleted in the p120ctn Δ622-628 mutant. (B) RT-
PCR to detect all p120ctn transcripts (p120ctn ), p120ctn transcripts containing exon C (p120ctn 
exon C), and Oct-4-specific transcripts present in single and pooled wild-type mouse morulas 
and blastocysts. RNA was treated with DNase I or not. (C) Immunostaining to characterize an 
antibody specific for isoform C of p120ctn (pAbexC). This antibody recognizes transiently 
transfected p120ctn isoform 3AC, but not 3A in MCF7/AZ cells. (D) Western blot analysis of 
two wild-type gastrulating embryos (7.5 dpc) in which all p120ctn isoforms were detected with 
pp120-antibody and p120ctn isoform C was detected with pAbexC. Mouse brain was taken as a 
positive control because it rich in isoform C of p120ctn. Scale bar: 25 µm. 
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To examine whether p120ctn exon C is expressed in preimplantation development, we 

performed reverse transcriptase polymerase chain reaction (RT-PCR) analysis on single and 

pooled morulas and blastocyst. Weak expression of p120ctn exon C-containing transcripts 

was observed in both morulas and blastocysts (Fig. 1B). To investigate p120ctn isoform C 

expression in more detail, we generated a polyclonal antibody specific for p120ctn isoform C 

(pAbexC). This antibody can detect exogenous p120ctn isoform C in western blots (data not 

shown) and by immunofluorescence (Fig. 1C). pAbexC is specific for detecting p120ctn 

isoform C, as exogenous expression of p120ctn isoform 3AC is readily detected (Fig. 1C, 

top), but no signal is observed for p120ctn isoform 3A, lacking exon C-encoded amino acids 

(Fig. 1C, bottom). As human fetal brain was previously described to be rich of p120ctn exon 

C-containing transcripts (Keirsebilck et al., 1998), we checked whether pAbexC could also 

detect endogenous p120ctn isoform C in mouse brain. Indeed, also endogenous p120ctn 

isoform 1AC could be detected in mouse brain lysates (Fig. 1D). pAbexC detects both human 

and mouse p120ctn isoform C (Figs. 1C, D), as expected from the fully conserved exon C 

sequences (Fig. 9). Using our pAbexC antibody we also found expression of p120ctn isoform 

3 and isoform C in gastrulating embryos (7.5 dpc) (Fig. 1D). Unfortunately, the pAbexC 

antibody could not be used for immunohistochemistry on tissue sections. To conclude, 

p120ctn exon C is expressed during both preimplantation development and gastrulation.  

 

p120ctn exon C encoded amino acids inhibit nuclear translocation and dendritic-like 

branching in vitro 

 

The exon C-encoded amino acids interrupt an nuclear localization signal and a RhoA-

binding domain, but its functional implications are currently unknown. All p120ctn isoforms, 

except for p120ctn isoform 4, contain 2 NLS signals, one in the N-terminal phosphorylation 

domain and a second in the insert loop between arm repeats 5 and 6 of the central armadillo 

repeat domain (Aho et al., 2002; Choi and Weis, 2005; Ishiyama et al., 2010; Roczniak-

Ferguson and Reynolds, 2003). p120ctn exon C encodes six amino acids (DEWFSR) that 

interrupt the basic motif (KKGKGKK) from the second NLS (Fig. 1A). To elucidate the 

functional relevance of p120ctn isoform C, we performed several in vitro studies, such as 

nuclear localization and dendritic-like branching assay. We reproduced a reported strategy 

(Kelly et al., 2004), showing that this second NLS, if isolated and fused to a N-terminal β-

galactosidase (β-gal) and a C-terminal green fluorescent protein (GFP), allows nuclear 

translocation, whereas a mutant NLS does not (Fig. 2A). 
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Figure 2. p120ctn exon C-encoded amino acids inhibit nuclear translocation and 
dendritic-like branching. (A) Nuclear translocation assay using constructs containing an N-
terminal β-galactosidase (β-gal) and a C-terminal GFP. Between the β-gal and the GFP we 
cloned the second NLS of p120ctn (NLS), or a mutated version of this NLS (NLSmut), or the 
NLS interrupted by exon C-encoded amino acids (NLSexon C). These constructs were 
expressed in Hela cells. Confocal analysis showed that both NLSmut and NLSexon C could 
prevent the nuclear GFP expression seen with the NLS construct. The exon C-encoded amino 
acids, expressed by the NLSexon C construct were detected by pAbexC (bottom panel). (B-D) 
Branching assay in Hela cells transiently transfected with p120ctn isoform 1A (B), 3A (C), or 4A 
(D), or with p120ctn isoform C variants (p120ctn isoform 1AC, 3AC and 4AC), or with the 
corresponding mutants lacking amino acids 622-628 (p120ctn isoform 1AΔ, 3A Δ and 4A Δ). 
Following double immunostaining for all p120ctn isoforms (pp120) and p120ctn isoform C 
(pAbexC), single confocal sections were made. (E) Diagram showing the percentage of 
branched versus normal cellular phenotypes for the different p120ctn isoforms in figure B,C 
and D.  
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 We next investigated if exon C-encoded amino acids, as a result of alternative splicing, can 

regulate nuclear import. To address this, we made a construct in which the basic NLS is 

interrupted by exon C-encoded amino acids. Upon expression of this construct in Hela cells, 

only cytoplasmatic GFP staining was observed, showing that exon C-encoded amino acids 

can block nuclear import (Fig. 2A). Our pAbexC antibody nicely recognized the exon C-

encoded amino acids upon expression of the NLSexon C construct (Fig. 2A, bottom). Similar 

results were obtained in NIH3T3 cells (data not shown). Next, we wanted to see if p120ctn 

isoform C expression can affect the nuclear localization of full length p120ctn isoforms, 

however, confocal analysis revealed that neither of these isoforms localized in the nucleus 

(Fig. 2B-D). So, although expression of the six amino acids encoded by exon C inhibits 

nuclear import of an isolated NLS, its effect on the subcellular localization of full-length 

p120ctn isoforms remains unclear. 

Expression of p120ctn isoform 1A, 2A or 3A resulted in a marked branched phenotype 

in different cell lines (Aho et al., 2002; Reynolds et al., 1996). Overexpression of p120ctn 

isoform 1A saturates the p120ctn-binding sites on cadherins, causing the excess of p120ctn 

isoform 1A to inhibit RhoA activity in the cytoplasm (Anastasiadis et al., 2000). Deletion of 

second RhoA-binding domain (∆622-628) in the armadillo repeat domain, inhibits both 

cellular branching and RhoA activation (Anastasiadis et al., 2000). Therefore, we wanted to 

investigate the effect of p120ctn isoform C on cellular branching. Transient transfection of  

p120ctn isoform 1A in Hela cells resulted in extensive cellular branching, which was absent 

upon expression of p120ctn 1A∆622-628 (p120ctn 1A∆, Figs. 2B,E).  Expression of p120ctn 

isoform p120ctn 1AC was equally potent in the inhibition of this cellular branching compared 

to the p120ctn 1A∆ deletion construct (Figs. 2B,E). Also p120ctn isoform 3A induces the 

branching phenotype, but to a lesser extent than p120ctn isoform 1A (Figs. 2C,E). This result 

agrees with previously reported results (Aho et al., 2002). Either deleting the second 

NLS/RhoA-binding domain in p120ctn isoform 3 (p120ctn 3A∆) or interrupting it by exon C-

encoded amino acids (p120ctn 3AC) resulted in a drastic reduction of branched cells (Figs. 

2C,E). However, p120ctn isoform 3AC is less potent in inhibiting branching compared to 

p120ctn 3A∆ (Fig. 2E). In line with previous reports, p120ctn isoform 4A, which lacks the 

first NLS and the first RhoA-binding domain in the N-terminus, does not induce branching 

(Aho et al., 2002), and deleting the second NLS/RhoA-binding domain or interrupting it by 

exon C-encoded amino acids does not have any effect (Figs. 2D,E). To conclude, expression 

of p120ctn isoform C can block the typical cellular branching caused by overexpression of 

p120ctn isoforms 1A or 3A.  
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Figure 3. Generation of mice with a knock-out (p120ctnKOC) or knock-in (p120ctnKIC) of 
the alternatively spliced exon C of p120ctn. Schematic representation of the targeting 
strategy for the generation of p120ctnKOC/+ (A) and p120ctnKIC/+ ES cells (B). The diagram shows 
p120ctn KOC and KIC alleles with a loxP flanked neomycin resistance (NeoR) gene. Restriction 
enzyme sites and the location of the probe used for Southern blot analysis are depicted. (C) 
Southern blot analysis from wt (+/+) and homologous recombinant p120ctnKOC NeoFL/+ ES cells. 
(D) Southern blot analysis from wt (+/+) and homologous recombinant p120ctnKIC NeoFL/+ ES 
cells. (E) PCR primers P1 and P2 were used for genotyping offspring derived from p120ctnKOC/+ 
intercrosses. (F) PCR primers P3 and P4 were used for genotyping offspring derived from 
p120ctnKIC/+ intercrosses. 
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Homozygous p120ctn KOC and KIC embryos die very early in development 

 

To analyze the in vivo function of p120ctn isoform C, we generated p120ctnKOC/+ and 

p120ctnKIC/+ mice with constitutive ablation or expression of p120ctn isoform C, respectively. 

In the p120ctn KOC targeting vector, a fragment of exon C and flanking sequences was 

replaced by a floxed selection cassette (Fig. 3A, 4A). Heterozygous p120ctn KOC 

(p120ctnKOC/+) mice, which are phenotypically normal, were intercrossed to obtain 

homozygous p120ctn KOC (p120ctnKOC/KOC) mice. However, no such p120ctnKOC/KOC 

offspring were found (Table 3). Time matings were set up to identify the developmental stage 

at which p120ctnKOC/KOC embryos die. Homozygous p120ctn KOC embryos were identified 

by genotyping (Fig. 4B) and could only be found at the preimplantation stages, but never in 

the normal Mendelian ratio (Table 3). Most p120ctnKOC/KOC embryos were not 

morphologically normal but were fragmented, condensed or degraded (data not shown). 

However, in some rare occasions normal p120ctnKOC/KOC embryos were recovered between 

the two-cell (n=2, Fig. 4C) and the blastocyst stage (n=4, Figs. 4D,E). Double 

immunolabeling for p120ctn with β-catenin or Oct-4 revealed a similar expression pattern for 

both proteins in p120ctn isoform-C-deficient and littermate controls (Figs. 4C-E). These 

limited data on normal appearing p120ctnKOC/KOC embryos shows that p120ctn isoform C has 

not necessarily an effect on Wnt activity in the trophectoderm or on stemness in the ICM of 

blastocysts. Unfortunately, we failed to gain further insight in the abnormal phenotypes of 

p120ctnKOC/KOC embryos by performing time lapse monitoring experiments with these 

embryos (see Chapter 5). 

In the p120ctn KIC targeting vector, the genomic sequence of exons 10 to 12 was 

replaced by its corresponding cDNA sequence (Fig. 3B, 5A). Heterozygous p120ctn KIC 

(p120ctnKIC/+) mice are, like p120ctnKOC/+ mice, similar to wild-type littermate controls and 

the phenotype of p120ctnKIC/KIC mice strongly resembles that of p120ctnKOC/KOC mice. No 

p120ctnKIC/KIC offspring were born, and p120ctnKIC/KIC embryos, identified by genotyping 

(Fig. 5B), were also found only at preimplantation stages but not in the expected Mendelian 

ratio (Table 3). Also, most of the p120ctnKIC/KIC embryos were phenotypically abnormal (Fig. 

5C), and only very few p120ctnKIC/KIC morulas (n=1, Fig. 5D) and blastocysts were found 

(n=1, Fig. 5D).  



Mice harboring a knockout or knockin of exon C of p120ctn 
 

150 
 

 
 

Table 3. Offspring and embryos from intercrosses and backcrosses 
Offspring and embryos from p120ctnKOC/+ intercrosses 

stage   +/+ (25%) KOC/+ (50%) KOC/KOC (25%) total 

offspring Ledeganck 80 (31%) 176 (69%) 0 (0%) 256 

offspring FVMS 119 (27%) 327 (73%) 0 (0%) 446 

organogenesis (9,5 - 18,5 dpc) 20 (23%) 66 (77%) 0 (0%) 86 
gastrulation (6,5 - 8,5 dpc) 8 (7%) 102 (93%) 0 (0%) 110 

blastocyst (3,5 dpc) 26 (19%) 100 (72%) 13 (9%) 139 

morula (2,5 dpc) 17 (18%) 59 (63%) 17 (18%) 93 

2cell - 16cell (0,5-1,5 dpc) 19 (19%) 70 (71%) 9 (9%) 98 
junk   25 (27%) 42 (45%) 27 (29%) 94 

Offspring from p120ctnKOC/+  backcrosses (n=9) to c57Bl6 
    +/+ (50%) KOC/+ (50%) total 

    56 (47%) 63 (53%) 119 

Offspring and embryos from p120ctnKIC/+ intercrosses 
stage   +/+ (25%) KIC/+ (50%) KIC/KIC (25%) total 

offspring Ledeganck 9 (13,4%) 58 (87%) 0 (0%) 67 

offspring FVMS 79 (17,1%) 384 (83%) 0 (0%) 463 

organogenesis (9,5 - 18,5 dpc) 11 (25,0%) 33 (75%) 0 (0%) 44 

gastrulation (6,5 - 8,5 dpc) 2 (7%) 27 (93%) 0 (0%) 29 
blastocyst (3,5 dpc) 14 (12%) 95 (84%) 4 (4 %) 113 

morula (2,5 dpc) 6 (19%) 23 (74%) 2 (6%) 31 

2cell - 16cell (1,5 dpc) 16 (32%) 31 (62%) 3 (6%) 50 

junk 23 (33%) 34 (51%) 12 (17%) 69 

            

Offspring from p120ctnKIC/+  backcrosses (n=8) to c57Bl6 
    +/+ (50%) KIC/+ (50%) total 

    94 (51%) 92 (50%) 186 

Offspring and embryos from p120ctn+/- intercrosses 

stage   +/+ (25%)  +/- (50%)  -/- (25%) total 

offspring 27 (36%) 48 (63%) 0 (0%) 75 

organogenesis (9,5 - 18,5 dpc) 3 (42,9%) 4 (57%) 0* (0%) 7 

gastrulation (6,5 - 8,5 dpc) 
blastocyst (3,5 dpc) 4 (29%) 7 (50%) 3 (21%) 14 

* 2 out of 5 resorbed embryos were genotyped as p120 -/- 

Offspring and embryos from p120ctnKOC/+ X p120ctn+/- crosses 
stage  KOC/- (25%)  KOC/+ (25%)  +/- (25%)  +/+ (25%) total 

offspring 3 (38%) 0 (0%) 3 (38%) 2 (25%) 8 
blastocyst (3,5 dpc) 5 (26%) 4 (21%) 4 (21%) 6 (32%) 12 

Offspring and embryos from p120ctnKIC/+ X p120ctn+/- crosses 
stage  KIC/- (25%)  KIC/+ (25%)  +/- (25%)  +/+ (25%) total 

offspring 6 (21%) 6 (21%) 7 (25%) 9 (32%) 28 

blastocyst (3,5 dpc) 7 (41%) 8 (47%) 0 (0%) 2 (12%) 17 
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Figure 4. p120ctnKOC/KOC embryos die during preimplantion. (A) Schematic representation 
of the targeting strategy for the generation of p120ctnKOC/+ ES cells. Exon 11 is the alternatively 
spliced exon C. (B)  Genotyping of wild-type (+/+), heterozygous (KOC/+) and homozygous 
(KOC/KOC) p120ctn KOC blastocysts by nested PCR using primers P1 and P2’ (Fig. 3A). (C-E)  
Transmitted light micrographs, with either differential interference contrast (DIC) or bright 
field (BF), and immunofluorescence of p120ctnKOC/KOC and control embryos at the two-cell 
stage (C) and blastocyst stage (D-E). Double immunofluorescence for p120ctn and β-catenin 
was performed at the two-cell stage (C) and blastocyst stage (D).  p120ctn co-localizes with β-
catenin at the cell surface of two-cell stage blastomeres and blastocysts. Double 
immunofluorescence for Oct-4 and β-catenin (E). Similar expression is seen in p120ctnKOC/KOC 
and littermate control embryos. Non-specific staining was observed in the zona pellucida (D-E, 
p120ctn). In blastocysts p120ctn protein is expressed exclusively at the plasma membrane, β-
catenin also shows nuclear staining, predominantly in the trophectoderm (D,E). Scale bar: 25 
µm.  
 

 

An optimized protocol to be reported elsewhere allowed ES cell lines to be derived 

with success rates of up to 100% (Pieters et al., in preparation). Using this protocol, we tried 

to generate homozygous p120ctn KOC and KIC ES cell lines. Blastocysts from p120ctnKOC/+ 

and p120ctnKIC/+ intercrosses gave rise to several ES cell lines (9 and 35, respectively) but no 

homozygous p120ctnKOC/KOC or p120ctnKIC/KIC ES cell lines could be obtained (Pieters et al., 
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in preparation). To increase the chance of retrieving living homozygous p120ctn KOC or KIC 

embryos, we tried starting the ES cell isolation from morulas instead of blastocysts. 

Unfortunately, ES cell isolation from morulas turned out to be much less efficient and only 

four ES lines could be isolated from 28 morulas. Although morulas derived from p120ctnKOC/+ 

and p120ctnKIC/+ intercrosses gave rise to ES cell lines (three and one, respectively), no 

homozygous p120ctnKOC/KOC or p120ctnKIC/KIC ES cell lines were obtained (Pieters et al., in 

preparation). Together these data indicate that homozygous p120ctn KOC and KIC embryos 

show early phenotypic abnormalities and appear in a non-Mendelian ratio. 

 

 

 

 

Figure 5. p120ctnKIC/KIC embryos die during preimplantion. (A) Schematic representation 
of the targeting strategy for the generation of p120ctnKIC/+ ES cells. Exon 11 is the alternatively 
spliced exon C. (B) Genotyping of wild-type (+/+), heterozygous (KIC/+) and homozygous 
(KIC/KIC) p120ctn KIC blastocysts by nested PCR using primers P1 and P2’ (Fig. 3B). (C,D) 
Transmitted light micrographs of p120ctnKIC/KIC and control embryos. Most p120ctnKIC/KIC 
embryos were morphologically scored as condensed , fragmented or degenerated (C). Only one 
phenotypically normal p120ctnKIC/KIC morula and one blastocyst were recovered (D). Scale bar: 
25 µm.  
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Homozygous p120ctn KOC and KIC embryos fail to implant 

 

Six pregnant females from p120ctnKOC/+ intercrosses were sacrificed at various time 

points during gastrulation. All decidua obtained from each female were fixed, sectioned and 

examined histologically (Fig. 6). Embryos from each litter were staged according to the 

criteria proposed by Downs and Davies (1993). There was wide variation, as up to five 

different stages could be identified within a single litter (Figs. 6A,G). This is in line with 

previously published work (Downs and Davies, 1993). Of the 58 implantation sites that were 

examined, only one shows signs of embryo resorbtion (Figs. 6C,G). This corresponds to a 

normal frequency of naturally occurring resorption, and a similar ratio (1/52) was reported in 

control matings (Nichols et al., 1998). Therefore, no increase in implantation defects were 

observed in litters from p120ctnKOC/+ intercrosses. This could indicate two things: either 

homozygous p120ctnKOC/KOC embryos implant normally, or they do not implant at all due to 

preimplantation mortality. The latter possibility is more likely because we could not identify 

any homozygous p120ctnKOC/KOC embryos during gastrulation by genotyping (n = 110, Table 

3). We also performed histological analysis on implanting embryos (5.5 dpc) derived from 

p120ctnKOC/+ intercrosses. From one litter, five embryos were identified, including an 

implanting blastocyst (Figs. 7A,B), three epiblast stage embryos (Figs. 7C-D), and a resorbed 

embryo (Fig. 7F). Our data are too preliminary to determine whether this resorbtion was 

caused by the genetic manipulation (homozygous p120ctn KOC embryos) or by natural 

decay.  However, since there is no increase in the number of empty decidua during 

gastrulation (see above), the resorbed embryo is most likely a natural miscarriage.  
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Figure 6. Histological analysis of gastrulating embryos derived from p120ctnKOC/+ 
intercrosses. Pregnant females were scarified at 8.75 dpc (A), 7.5 dpc (B-D), 7.0 dpc (E) and 
6.5 dpc (F). All decidua from each offspring were sliced and stained with hematoxylin and 
eosin and a representative sagittal section is shown for each embryo. Non-sagittal section 
planes are indicated between brackets.  
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Figure 6 (continued). All gastrulating embryos were staged according the  system of Downs 
and Davies (1993), including pre-streak (PS), early streak (ES), mid streak (MS), late streak 
(LS), no bud (OB), early bud (EB), late bud (LB), early headfold (EHF) and late headfold (LHF) 
stages. (G) Overview of the distribution of embryos according to their gastrulation stage in 
offspring that was sacrificed at different time points. res: resorbed. White scale bar: 200 µm, 
black scale bar: 50 µm. 

 

 

Similar results were obtained for homozygous p120ctnKIC/KIC mice. Two pregnant 

females from p120ctnKIC/+ intercrosses were sacrificed at 7.5 and 6.5 dpc, respectively. All 

embryos examined histologically and staged (Fig. 8). Thirteen implantation sites were 

examined and no resorbed embryos were found. Also, no homozygous p120ctnKIC/KIC  

gastrulating embryos were identified by genotyping (n = 29, Table 3), indicating that 

homozygous p120ctnKIC/KIC  embryos, like homozygous p120ctnKOC/KOC embryos, fail to 

implant and die before implantation. 
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Figure 7. Histological analysis of implantation stage embryos derived from p120ctnKOC/+ 
intercrosses. Pregnant females were scarified at 5.5 dpc and decidua-containing uteri were 
fixed, sectioned, stained with hematoxylin and eosin and histologically analyzed. A 
representative section is shown for each embryo. This litter contained an implanting blastocyst 
(A, enlarged in B), several epiblast stage embryos (C-E) and one resorbed embryo (F). Black 
scale bar: 200 µm, white scale bar: 50 µm. 
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Figure 8. Histological analysis of embryos derived of p120ctnKIC/+ intercrosses during 
gastrulation. Hematoxylin and eosin-stained sagittal paraffin sections of gastrulating embryos 
obtained from p120ctnKIC/+ intercrosses. Pregnant females were scarified at 7.5 dpc (A) and 6.5 
dpc (B). All decidua from each offspring were sectioned and a representative sagittal section is 
shown for each embryo. All gastrulating embryos were staged according the staging system of 
Downs and Davies (1993), including pre-streak (PS), early streak (ES), mid streak (MS) and late 
streak (LS). Epi: Epiblast stage. (C) Overview of the distribution of embryos according to their 
gastrulation stage in offspring that was sacrificed at different time points. White scale bar: 200 
µm, black scale bar: 50 µm. 
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Evolutionarily conserved p120ctn exon C is expressed during early development 

 

What causes homozygous p120ctn KOC and KIC embryos to appear in a non-

Mendelian ratio and how can their phenotypic abnormalities be explained? To address these 

matters, the p120ctn gene and its surrounding genomic region was analyzed in various 

species. p120ctn exon C (= exon 11) is one of the four alternatively used internal exons in the 

open reading frame of the human p120ctn gene (CTNND1) (Keirsebilck et al., 1998). Multiple 

sequence alignment of p120ctn orthologs ranging from humans to puffer fish revealed that 

p120ctn exon C is highly conserved amongst vertebrates (Fig. 9), which might indicate the 

putative functional importance of this alternatively used exon. Not only exon C is conserved 

but also the intronic flanking regions upstream (intron 10) and downstream (intron 11) of 

exon C have remained conserved during evolution, especially in mammals (Fig. 9,10). This 

conservation is not seen in the intronic sequences flanking the other p120cn exons. The 

intronic sequence flanking exon C is conserved for p120ctn, but to a lesser extent in its closest 

subfamily member, ARVCF (Fig. 11). The other two subfamily members CTNND2 and 

PKP4 do not have the exon C.  

What is the function of this conserved intronic sequence flanking exon C? The highly 

conserved region could have a crucial functional or regulatory role that is affected in 

homozygous KOC and KIC embryos, as both p120ctn KOC and KIC alleles disrupt most of 

the conserved sequence (Fig. 10). Bioinformatic analysis revealed the presence of several 

features within this conserved block: two Rat O/E-1-associated zinc finger (Roaz) 

transcription factor binding sites, a lamin binding site and a miRNA-141 binding site (miR-

141*) (Fig. 10E). All these features are completely or partially compromised in both p120ctn 

KOC and KIC alleles (Fig. 10E). Interestingly, the abovementioned features are all involved 

in regulating gene expression, and altered gene expression might be causal for the early death 

in homozygous KOC and KIC embryos, which also appear in a non-Mendelian ratio. 

However, the underlying mechanism for these phenomena is still unknown.  
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Figure 9. p120ctn exon C and its surrounding intronic regions are highly conserved. 
Multiple sequence alignment of p120ctn orthologs in vertebrates ranging from humans to 
puffer fish reveals that a 200 bp block, containing p120ctn exon C and its flanking intronic 
sequences, are highly conserved amongst mammals. 
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Figure 10. The conserved intronic region flanking p120ctn exon C is compromised in 
both p120ctn KOC and KIC alleles.  UCSC diagrams. (A)  A large cluster of olfactory receptor 
genes is situated upstream of the mouse Ctnnd1 gene. (B) Ideogram of mouse chromosome 2, 
containing the Ctnnd1 gene. (C) Full view of  the Ctnnd1 gene  comprising 21 exons. (D) View of 
exons 10 to 14 of the Ctnnd1 gene with 28 species alignment. The intronic sequences flanking 
exon C (= exon 11)  are conserved, while the intronic sequences flanking of other exons are not 
conserved. p120ctn KOC and KIC alleles both compromise the conserved sequence flanking 
exon C. (E) Detail of exon C and its flanking intronic sequence, showing the two Rat O/E-1-
associated zinc finger (Roaz) transcription factor binding sites, a lamin-binding site and a 
miRNA-141 binding site (miR-141*). 
 

 

 

Figure 11. ARVCF exon C is also highly conserved but conservation of its surrounding 
intronic sequence is less prominent. (A) Multiple sequence alignment of ARVCF orthologs 
in vertebrates ranging from humans to puffer fish reveals that ARVCF exon C is also highly 
conserved in mammals, but its flanking intronic sequence is conserved to a lesser extent. (B) 
UCSC diagram showing a 28 species alignment for p120ctn (top) and ARVCF (bottom) 
confirming that both p120ctn exon C and are highly conserved, but the intronic sequence 
flanking ARVCF exon C is conserved to a lesser extent. 
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Blastocysts from homozygous p120ctn knockout mice fail to stabilize E-cadherin at the 

cell membrane 

 

Strangely, the phenotypes of homozygous p120ctn KOC and KIC embryos (die before 

implantation, 3.5 dpc) are more severe than the phenotype of p120ctn null embryos, which die 

during gastrulation (7.5 dpc) (Davis and Reynolds, 2006; Elia et al., 2006). To bypass the 

early lethal phenotypes of homozygous p120ctn KOC and KIC embryos and their non-

Mendelian inheritance, we wanted to combine the p120ctn null allele with the p120ctn KOC 

or KIC allele. First, we generated mice with heterozygous total p120ctn knock-out (p120ctn+/-

) by removing floxed exons 3 to 8 (containing all four natural in-frame ATGs) by Cre-

mediated recombination (Fig. 12B) (Betz et al., 1996; Davis and Reynolds, 2006). p120ctn+/- 

mice appeared indistinguishable from wild-type counterparts. However, no homozygous 

p120ctn knock-outs were found back in offspring of p120ctn+/- intercrosses (Table 3). This 

indicates that p120ctn-/- mice die during embryonic development, which corresponds to 

previously reported data (Davis and Reynolds, 2006; Elia et al., 2006). No p120ctn-/- embryos 

were found at 16.5 dpc (Table 3, Fig. 12A), but normal p120ctn-/-blastocysts could be 

recovered efficiently (Fig. 12C). p120ctn-deficient blastocysts were also E-cadherin negative 

(Fig. 12C, E-cadherin) compared to littermate control embryos, in which p120ctn and E-

cadherin co-localized (Figs. 12C, merge). Only a small amount of membrane-localized E-

cadherin is required for morula compaction in vivo, as maternal E-cadherin allows compaction 

in E-cadherin-deficient embryos (Larue et al., 1994) and de novo synthesized paternal E-

cadherin allows compaction even in the absence of maternal E-cadherin (De Vries et al., 

2004). So, we assumed that a limited amount of maternal p120ctn protein would also be 

present in p120ctn-/- embryos to allow stabilization of sufficient E-cadherin molecules at the 

cell membrane. Indeed, three-dimensional reconstruction of confocal images of p120ctn-/- 

blastocysts revealed a small amount of p120ctn staining above the background level, 

indicative of maternal p120ctn protein (Fig. 12D). This maternal p120ctn probably allows 

sufficient membrane expression of E-cadherin in p120ctn-/- embryos (Fig. 12D, arrowheads) 

to mediate morula compaction. This implies that p120ctn expression is the rate limiting factor 

for E-cadherin expression in young embryos. Together, these data confirm that p120ctn plays 

an important role by stabilizing E-cadherin levels at the cell membrane in vivo during 

embryonic development.  
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Figure 12. A homozygous total p120ctn knock-out (p120ctn-/-) affects the E-cadherin 
levels in blastocyst. (A) No normal p120ctn-/- embryos were found at 16.5 dpc in offspring 
derived from p120ctn+/- intercrosses. Two out of five resorbed embryos were genotyped as 
p120ctn-/-. (B) Diagram of wild-type, p120ctn floxed and p120ctn null alleles. Floxed p120ctn 
mice have loxP sites flanking a genomic region containing exons 3 to 8 (encoding for all 4 
translation initiation sites).  
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Figure 12 (continued). (C)Transmitted light micrographs and immunostainings of wild-type 
(p120ctn+/+), heterozygous (p120ctn+/-) and homozygous (p120ctn-/-) p120ctn knock-out 
blastocysts. p120ctn-deficient embryos form normal blastocysts. Double immunofluorescence 
for p120ctn and E-cadherin (DECMA-1). Wild-type and heterozygous p120ctn knock-out 
blastocysts show membrane staining for p120ctn both in the trophectoderm and in the inner 
cell mass. Only a very faint cell surface signal for p120ctn was seen in homozygous p120ctn 
knock-out blastocysts. Almost no E-cadherin staining could be observed in p120ctn-/- 
blastocysts compared to wild-type and heterozygous p120ctn mutant littermate controls. 
p120ctn co-localizes with E-cadherin at the membrane of wild-type and p120ctn+/- blastocysts. 
(D) Maternal p120ctn allows basal E-cadherin stabilization on the membrane of p120ctn-
deficient blastocysts. Three-dimensional (3D) reconstruction using consecutive confocal 
sections of the blastocysts shown in C. The limited amount of maternal p120ctn in p120ctn-
deficient embryos (p120ctn-/-, arrowheads) allows the stabilization of basal E-cadherin levels 
(arrowheads) on the membrane of blastocysts. This is sufficient for normal compaction and 
blastocyst formation. Scale bar: 25 µm. 

 

p120ctnKOC/- and p120ctnKIC/- mice are viable and can stabilize E-cadherin at the cell 

membrane of blastocysts 

 

To circumvent the biallelic removal of the conserved intronic sequence around exon 

11 in homozygous p120ctn KOC and KIC mice, we crossed p120ctnKOC/+ and p120ctnKIC/+ 

mice with p120ctn+/- mice to produce p120ctnKOC/- and p120ctnKIC/- mice, respectively. In this 

way, an isoform-specific p120ctn KOC or KIC allele is combined with a p120ctn knock-out 

allele in which exons 3 to 8 are ablated but that still contains an unmodified version of the 

conserved intronic sequence flanking p120ctn exon C (= exon 11). Remarkably, both the 

p120ctn KOC and KIC alleles could rescue the lethal p120ctn-/- phenotype, as both 

p120ctnKOC/- and p120ctnKIC/- were viable (Table 3). Viable p120ctnKOC/- and p120ctnKIC/- 

embryos were also found at the level of blastocysts, and largely according to the Mendelian 

ratio (Table 3). In these blastocysts, p120ctn localized at cell-cell contacts (but not at the free 

membranes) together with other members of the cadherin-catenin complex, which was also 

seen in littermate controls (Figs. 13B,C and Figs. 14A,C,D). p120ctn isoforms, whether 

expressed as isoform C or not, could stabilize E-cadherin levels at the plasma membrane of 

blastocysts (Figs. 13B,C; E-cadherin) compared to  p120ctn-/- blastocysts (Fig. 13A). Similar 

to findings with rare p120ctnKOC/KOC blastocysts (Fig. 5E), the number of pluripotent ICM 

cells in p120ctnKOC/- blastocysts (Fig. 14B) was similar to that in controls. In conclusion, in 

p120ctnKOC/- and p120ctnKIC/- mice the lethal phenotype of p120ctn is rescued as well as the 

failure to stabilize E-cadherin levels in vivo. 
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Figure 13. p120ctn KOC or KIC alleles restored E-cadherin levels, which were affected in 
homozygous total p120ctn knock-out (p120ct-/-) blastocyts. Transmitted light micrographs 
and immunostainings homozygous (p120ctn-/-) p120ctn knock-out blastocysts and blastocysts 
containing one p120ctn knock-out  allele, combined with either an p120ctn KOC allele 
(p120ctnKOC/-) or an p120ctn KIC allele (p120ctnKIC/-). (A) E-cadherin is reduced in p120ctn null 
blastocysts. (B) Isoform C-depleted p120ctn (p120ctnKOC/-) restores E-cadherin levels in 
blastocysts. Control and p120ctnKOC/- blastocysts show membrane staining of p120ctn protein in 
both the trophectoderm and the inner cell mass. Immunostaining for E-cadherin (BD 
antibody) shows that p120ctn depleted of isoform C (p120ctnKOC/-) stabilizes E-cadherin at the 
cell surface of blastocysts to a level similar to that in littermate controls. Also similar levels of 
αE-catenin and β -catenin  were found in p120ctnKOC/- and control embryos. (C) Isoform C-
containing p120ctn (p120ctnKIC/-) also restores E-cadherin levels in blastocysts, and the 
expression of catenins in p120ctnKIC/- mouse embryos is similar to that in controls. Scale bar: 25 
µm.  
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Figure 18. Double immunostainings on p120ctnKOC/- (A,B), p120ctnKIC/- (C,D) and control 
blastocysts. (A) Double immunofluorescence for E-cadherin (BD antibody) and αE-catenin. E-
cadherin co-localizes with αE-catenin at the cell surface of control and p120ctnKOC/- blastocysts. 
(B) Double immunofluorescence for β –catenin and  Oct-4. Similar cell surface expression 
pattern for β-catenin was found in both control and p120ctnKOC/- blastocysts. Nuclear Oct-4 
staining was observed in the ICM and to a smaller extent in trophectoderm in both control and 
p120ctnKOC/- blastocysts. (C) Double immunofluorescence for p120ctn and β -catenin. p120ctn 
protein co-localizes with β-catenin at the membrane in control and p120ctnKIC/- blastocysts, 
both in ICM and trophectoderm. (D) Double immunofluorescence for E-cadherin (BD 
antibody) and αE-catenin. E-cadherin co-localizes with αE-catenin at the plasmamembrane of 
control and p120ctnKIC/- blastocysts. DIC: differential interference contrast, BF: bright field. 
Scale bar: 25 µm.  

 

 

Generation and characterization of p120ctnKOC/- and p120ctnKIC/- ES cell lines  

 

We generated ES cell lines from blastocysts derived from mating p120ctnKOC/+ and 

p120ctnKIC/+ mice with p120ctn+/- mice. For both matings, efficiency of ES cell derivation was 

100% and the genotypes of the ES cells isolated followed a Mendelian distribution (Pieters et 

al., in preparation). This resulted in two p120ctnKOC/-, three p120ctnKIC/- and  several littermate 

control ES cell lines. p120ctnKOC/-, p120ctnKIC/- and control ES cell lines were all positive for 

the stem cell marker Oct-4 (Fig. 15) and they showed staining for all members of the classic 

cadherin-catenin complex at the plasma membrane of ES cell colonies (Fig. 15). Since the six 

amino acids, encoded by exon C of p120ctn, interrupted internal sequence that is important 

for RhoA inhibition, we were interested in the active RhoA levels in p120ctnKOC/- and 

p120ctnKIC/- ES cell lines compared to control lines. Our hypotheses, based on literature and 

in vitro experiments, is that p120ctnKIC/- ES cell lines would have increased RhoA activity, as 

a result of blocking RhoA inhibition by interrupting the second RhoA-binding domain of 

p120ctn. p120ctnKOC/- and control ES cell lines would exhibit similar RhoA levels, since their 

second RhoA-binding domain is left untouched.  However, no difference in basal or LPA-

induced RhoA activity could be observed between p120ctnKOC/- , p120ctnKIC/- and control ES 

cell lines (Fig. 16). Inhibition of the downstream RhoA effector ROCK (Y-27632) in 

p120ctnKOC/- , p120ctnKIC/-  and control ES cell lines did not affect the RhoA activity (Fig. 16) 

but showed a general and robust cell growth promoting effect. This proliferation effect caused 

by Y-27632-treatment is supported by increased protein content in Y-27632-treated ES cells 

(90.18 +/- 0.69), compared to untreated (80,92 +/- 0.72) or LPA-treated (80.30 +/- 0.97) ES 

cells (an equal amount of ES cells were seeded for each condition).  
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Figure 15. Characterization of p120ctnKOC/- and p120ctn KIC/- ES cell lines. Confocal sections 
of immunostainings for stem cell marker Oct-4 and for members of the cadherin-catenin 
complex in  p120ctnKOC/- (A), p120ctnKIC/- (B) and control ES cell lines. A magnification and a 
complete view (inset) of single ES cell colonies are shown. p120ctnKOC/- ES (A), p120ctnKIC/- ES 
(B) and control cell lines show nuclear Oct-4 staining in all the cells. A similar honeycomb 
pattern was observed for p120ctn, E-cadherin, αE- and β-catenin at the membrane of 
p120ctnKOC/- ES (A), p120ctnKIC/- ES (B) and control cell lines . Scale bar: 25 µm.  
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Figure 16. p120ctn isoform C has no effect on RhoA activity in ES cells. G-LISA based 
RhoA activity assays were performed on p120ctnKOC/- (A), p120ctnKIC/- (B,C) and littermate 
control ES cell lines. ES cells were either left untreated or treated with 4 µM lysophosphatidic 
acid (LPA) or 10 µM ROCK inhibitor Y-27632. No difference was observed in basal or LPA-
induced RhoA activity between p120ctnKOC/- (A) and p120ctnKIC/- ES cell lines (B) compared to 
control ES cell lines. Similar results were obtained for p120ctnKIC/- ES cell lines cultured in the 
absence of MEFs (C).  
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A similar Y-27632-mediated increase in proliferation was reported for the passaging of 

human ES cells (Gauthaman et al., 2010)  We conclude that both isoform C-depleted 

(p120ctnKOC/-) and isoform C-deficient (p120ctnKIC/-) p120ctn proteins allow the assembly of 

normal cadherin-catenin complexes but do not have any influence on RhoA activity in ES 

cells. 

 

Both the p120ctn KOC and KIC allele can rescue defects seen in p120ctn-deficient 

livers. 

 

To bypass the early death that was observed in homozygous p120ctnKOC/KOC and 

p120ctnKIC/KIC embryos, we used an additional strategy that involved a liver-specific ablation 

of p120ctn. By using the Cre-LoxP system we could obtain liver-specific p120ctn knock-out 

mice (p120ctnfl/fl ; Alb-Cre)(Fig. 17A), which are viable and fertile but showed several 

macroscopic and microscopic phenotypes, including jaundice (Figs. 17D, E), hepatomegaly 

(Fig. 17F), and ductular reactions in the portal region (Fig. 17G). The liver weight to body 

weight ratio of p120ctnfl/fl ; Alb-Cre mice was about 2-fold higher than that of control 

littermates (Fig. 17F). Histological analysis revealed that bile duct cells, which are single 

layered and positive for p120ctn staining in control mice (Fig. 17G, inset) are dysplastic and 

multilayered in p120ctn-deficient livers (Fig. 17G, left from dotted line). p120ctn is 

ubiquitously expressed in all cell types of wild-type livers, whereas hepatocytes and bile duct 

cells do not show staining for p120ctn in p120ctnfl/fl ; Alb-Cre mice (Fig. 17G). Ductular 

reactions are seen in a variety of liver diseases and refer to an increased number of ductules, 

which are accompanied by immune cells (polymorphonuclear leukocytes) and matrix, leading 

to periportal fibrosis and eventually biliary cirrhosis (Roskams and Desmet, 1998). Ductular 

reactions thus are composed of a heterogenous mixture of different cell types, some of which 

still express p120ctn. These p120ctn-positive cells might be liver precursor cells, which have 

not undergone Cre-mediated recombination, or infiltrating immune cells. 

By crossing p120ctnfl/fl ; Alb-Cre mice with p120ctnKOC/+ or p120ctnKIC/+ mice we can 

obtain mice with livers in which every transcript excludes (p120ctnKOC/fl; Alb-Cre) or includes 

(p120ctnKIC/fl ; Alb-Cre) the alternatively spliced exon C (Fig. 17B,C). p120ctn isoforms 

lacking or expressing the exon C-encoded amino acids are expressed from the p120ctn KOC 

and p120ctn KIC allele, respectively (Fig. 17G). Both p120ctn isoforms are capable of 

rescuing the phenotypes seen in p120ctnfl/fl ; Alb-Cre mice, including the jaundice, the 

hepatomegaly (Fig. 17F) and the ductular reactions (Fig. 17G).  
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Figure 17. p120ctn ablation in mouse lives causes jaundice, hepatomegaly and ductular 
reactions. (A) diagram of a liver-specific Cre-mediated excision of exons 3 to 8 of p120ctn 
containing all 4 start codons. (B) Jaundice in paws and ears (arrow) of p120ctnfl/fl; Alb-Cre 
mice. (C) Hepatomegaly and jaundice are apparent in p120ctn deficient livers. (D) graphic 
showing the liver weight/body weight ratio of control and p120ctnfl/fl; Alb-Cre mice and their 
corresponding dissected livers (inset). (E) Histology and p120ctn immunohistochemistry for 
control and p120ctnfl/fl; Alb-Cre liver sections. Scale bar: 200 µm. 

 

Additional littermate controls and their corresponding genotypes for liver-specific 

p120ctn KOC (p120ctnKOC/+ x p120ctnfl/fl ; Alb-Cre) and p120ctn KIC (p120ctnKIC/+ x 

p120ctnfl/fl ; Alb-Cre) matings, respectively, are shown in Figure 18. Livers that constitutively 

express or lack the exon C-encoded amino acids provide a good model for testing our 

polyclonal antibody pAbexC that specifically recognizes p120ctn isoform C. However, we did 

not see an increased detection of p120ctn isoforms containing the exon C-encoded amino 

acids in p120ctnKIC/fl ; Alb-Cre livers via western blotting or via immunohistochemistry (data 

not shown). In conclusion, both p120ctn KOC and KIC alleles can functionally rescue the 

genetic p120ctn inactivation in liver. 
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Figure 18. Genotype (A, C), histology and p120ctn immunohistochemistry (B, D) from 
offspring from crossing either p120ctnKOC/+ mice (A, B) or p120ctnKIC/+ mice (C, D) with 
p120ctnfl/fl; Alb-Cre mice. Liver-specific p120ctn knock-out mice (p120ctnfl/fl; Alb-Cre) mice 
were used as control. Five-week-old mice were analyzed. Scale bar: 200 µm. 

 

 

DISCUSSION 

 

Interplay between p120ctn and E-cadherin in vivo  

 

Several in vitro studies have revealed a role for p120ctn in the stabilization and 

turnover of classical cadherins, such as E-, VE- and N-cadherin on the cell membrane of 

epithelial (Davis et al., 2003), endothelial  (Xiao et al., 2003) and fibroblast (Chen et al., 

2003) cells, respectively. By tissue-specific ablation of p120ctn in salivary gland, skin, 

gastrointestinal tract and forebrain, the role of p120ctn in stabilizing cadherins could be 

reproduced in vivo in adult tissue (Davis and Reynolds, 2006; Elia et al., 2006; Perez-Moreno 

et al., 2006; Smalley-Freed et al., 2010). We show that p120ctn is important for proper levels 

of E-cadherin at the cell surface during early development because mice with a full knockout 
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of p120ctn (p120ctn-/-) fail to stabilize E-cadherin in blastocysts (Fig. 13A). We could rescue 

cell surface E-cadherin in vivo by crossing in p120ctn alleles that either constitutively deplete 

or constitutively express p120ctn isoform C (Figs. 13B,C). Because both p120ctn variants 

(with or without the six amino acids encoded by exon C) are equally competent in rescuing, 

expression or omission of p120ctn isoform C is not essential for cadherin stabilization. 

Considering this important early role of p120ctn, it would be interesting to investigate 

whether the embryonic mortality of p120ctn-/- mice is caused by E-cadherin displacement and 

destabilization, or via other pathways involving p120ctn, such as RhoGTPases, Src or 

Kaiso/Wnt signaling. For instance, a NLS and RhoA-binding domain are affected in 

p120ctnKIC/KIC  mice, which may lead to activation of target genes of Kaiso or RhoA 

hyperactivation respectively. However, altered RhoA- and Kaiso-mediated signalling can not 

explain the early phenotypes in p120ctnKOC/KOC mice, that are similar to the abnormalities 

seen in p120ctnKIC/KIC mice.  

In mouse liver, p120ctn is ubiquitously expressed, whereas E-cadherin and N-cadherin 

show a heterogeneous distribution in mouse livers (van Hengel et al., unpublished data). E-

cadherin is expressed in bile ducts cells and in hepatocytes in the portal region but is absent in 

hepatocytes in the pericentral region. N-cadherin is present in all hepatocytes but is not 

expressed in bile duct cells. p120ctn ablation in mouse livers abrogates the regional E-

cadherin expression in hepatocytes and confers to a weak homozyogous expression pattern. 

N-cadherin levels are slightly diminished but its expression pattern is not altered (van Hengel 

et al., unpublished data). Remarkably, the regional E-cadherin expression was restored in both 

p120ctnKOC/fl; Alb-Cre and p120ctnKIC/fl ; Alb-Cre mice (data not shown). This indicates that 

both p120ctn isoforms with or without the exon C-encoded amino acids are capable for 

maintaining the normal spatiotemporal expression of E-cadherin in mouse liver. 

The first stages of preimplantation development are characterized by a period of 

transcriptional silence during which oocyte and embryo depend on stored maternal RNAs and 

proteins for successful completion of the first stages of embryonic development (Li et al., 

2010). Knock-out studies have revealed that maternal protein of members of the cadherin-

catenin complex, namely E-cadherin, β-catenin and α-catenin, can persist until the blastocyst 

stage (Haegel et al., 1995; Larue et al., 1994; Torres et al., 1997). Maternal E-cadherin is 

responsible for compaction in homozygous E-cadherin knock-out morulas (Larue et al., 

1994), and upon genetic ablation of maternal E-cadherin, blastomeres indeed fail to adhere to 

each other until the morula stage, when new E-cadherin is synthesized from the paternal allele 

(De Vries et al., 2004). We also found some p120ctn staining above the background level in 
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p120ctn-/- blastocysts, indicative of maternal p120ctn protein (Fig. 12). This maternal p120ctn 

probably allows sufficient membrane expression of E-cadherin for morula compaction. 

 

p120ctn isoform C: essential for life, conserved in evolution 

 

The alternatively used exon C encodes six amino acids that are expressed in fetal brain 

(Keirsebilck et al., 1998). We show that transcripts of p120ctn containing exon-C encoded 

nucleotides can be detected in single morulas and blastocysts. The expression exon C-encoded 

amino acids is limited in time and space, and so it might have specialized functions. 

Surprisingly, homozygous constitutive knockout and knockin mice for p120ctn isoform C die 

very early during preimplantation. Mutant preimplantation embryos were not recovered in the 

Mendelian ratio, they were mostly in a bad state, and only a few of them were seemingly 

normal (Table 3). 

  Why are homozygous p120ctn KOC and KIC embryos not distributed according to the 

Mendelian ratio? To gain some genetic insight, we performed detailed bioinformatic analysis 

and found a highly conserved block of about 200 bp, consisting of exon C and its surrounding 

intronic sequence. The highly conserved region could  have a crucial functional or regulatory 

role that is affected in homozygous KOC and KIC embryos, as both p120ctn KOC and KIC 

alleles disrupt most of the conserved sequence (Fig. 10). In contrast, p120ctnKOC/- and 

p120ctnKIC/- mice contain a p120ctn null allele that contains the normal conserved intronic 

sequence flanking exon C, and these mice are viable. To date, we do not know the exact 

function of this conserved sequence block in the middle of the Ctnnd1 gene, but we 

considered several possible explanations. First, two Rat O/E-1-associated zinc finger (Roaz) 

transcription factor binding sites are present in the conserved intronic region and are 

compromised in both p120ctn KOC and KIC alleles (Fig. 10E). Roaz regulates olfactory 

neuronal-specific gene expression during development (Tsai and Reed, 1997) and a huge 

cluster of more than 200 olfactory receptor (OR) genes is indeed situated upstream of the 

Ctnnd1 gene on mouse chromosome 2 (Fig. 10). Roaz-mediated regulation of OR genes and 

perhaps other genes might be altered in homozygous p120ctn KOC and KIC embryos, 

resulting in early mortality. Remarkably, also a small cluster of OR genes is situated 

downstream of the mouse ARVCF. Conservation of the intronic region flanking exon C 

seems to coincide with the proximity of OR genes because chicken, frog and zebrafish contain 

exon C but lack both conserved intronic sequences flanking exon C and proximal OR genes. 

A second explanation could be that a lamin binding site is spanning exon C, which is then lost 
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in p120ctn KOC and KIC alleles (Fig. 10E). This might influence the chromosomal 

positioning to the nuclear envelope and may affect global transcription levels, resulting in 

early lethal phenotypes. A last possibility is the interruption of a miRNA-141 binding site 

(miR-141*), located between the two Roaz binding sites and partly present in exon C (Fig. 

10E). This could be consistent with the first hypothesis as miR-141 is a member of the 

miRNA-200 family for which a regulatory role in olfactory neurogenesis has been reported 

(Choi et al., 2008). Although typically the seed strand of the RNA duplex is thought to be the 

biologically active one (mature miRNA) while the passenger or miRNA* (“star”) strand is 

considered inactive and generally degraded, recent analysis also indicates a potential 

functional role for miRNA* (Guo and Lu; Okamura et al., 2008).  

Our conserved 200bp block, consisting of exon C and its flanking intronic sequence 

resembles ultraconserved region (UCRs). UCRs are a class of non-coding sequences (200-779 

bp in length) that are absolutely conserved (100% identity) between orthologous regions of 

the human, rat, and mouse genomes. 481 UCRs were discovered in the human genome 

(Bejerano et al., 2004). These UCRs of the human genome are located either overlapping 

exons in genes involved in RNA processing or in introns, or nearby genes that are involved in 

the regulation of transcription or development. Therefore UCRs could serve as distal 

enhancers of these early developmental genes (Nobrega et al., 2003; Plaza et al., 1995). 

Interestingly, these elements are frequently found in genes post-transcriptionally regulated by 

alternative splicing events of exons with premature stop codons (Ni et al., 2007). The 

conserved ‘block’ of intronic sequence surrounding the alternatively spliced exon C of 

p120ctn has many characteristics of these UCRs, including its length and high conservation 

amongst orthologs. In addition, this ‘block’ might regulate expression of a huge cluster of 

olfactory receptor (OR) genes that are situated in the proximity of the Ctnnd1 and CTNND1 

genes. Nevertheless, the conserved ‘block’ that we identified is not one of 481 UCRs. And 

even when our ‘block’ would be considered as UCR, this would not fully account for the early 

phenotype in our homozygous KOC and KIC embryos. Recently, four non-coding UCRs, 

located near genes that are important for normal development, were removed from the mouse 

genome. Remarkably, all four resulting lines of mice lacking these ultraconserved elements 

were viable, fertile and did not show obvious abnormalities (Ahituv et al., 2007). So, although 

the UCRs are have been evolutionarily conserved for 300 million years, at least some of them, 

are not essential for normal development and homeostatis. These findings indicate that 

extreme sequence conservation is not necessarily indicative of an indispensable functional 

nature. The function of many UCRs remains elusive and might differ amongst UCRs. Because 
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Ahituv and collegues (2007) selected four UCRs with a clear enhancer function, they might 

have targeted a specific ‘non-essential’ class of UCRs. Our conserved (UCR-like) ‘block’ 

may be a member of another class of conserved elements, which is essential for life. 

Loss of non-coding RNA species might explain the phenotypes in p120ctnKOC/KOC and 

p120ctnKIC/KIC embryos. Traditionally, a gene is defined as a small genomic region encoding 

mRNAs that are translated into protein. However only 2% the mammalian genome encodes 

mRNAs, the vast majority is transcribed, largely as long and short non-protein-coding RNAs 

(ncRNAs) (Taft et al., 2010). These ncRNAs might form an additional layer of regulation in 

more complex organisms, such as mammals, which have roughly the same number of protein-

coding genes as simple life form, such as the roundworm Caenorhabditis elegans. Plants and 

animals produce a dazzling array of small regulatory RNAs: endogenous small interfering 

RNAs (siRNAs), microRNAs (miRNAs) and PIWI interacting RNAs (piRNAs) (Taft et al., 

2010). miRNAs are imperfect RNA hairpins encoded in long primary transcripts or short 

introns and dicer-mediated cleavage results in small RNAs of  approximately 22 nt. miRNAs 

are primarily involved in post-transcriptional gene regulation. Interestingly, a miRNA-141 

binding site (miR-141*) is present and might be compromised in both p120ctn KOC and KIC 

alleles. Failure of miR-141 to bind to this site might induce global changes in gene 

transcription, which ultimately will cause early death in p120ctnKOC/KOC and p120ctnKIC/KIC 

embryos. Altered gene transcription would also occur if  the conserved ‘block’ flanking exon 

C of p120ctn would encode promoter-associated RNAs (PASRs) and transcription initiation 

RNAs (tiRNAs) that overlap promoters and TSSs. Another possibility is that the conserved 

‘block’ encodes piRNAs which are lost in p120ctnKOC/KOC and p120ctnKIC/KIC embryos. 

piRNAs, which are 25 to 30 nt in length, are involved in, transposon defense. piRNAs are 

largely restricted to the germline, where active transposons could severely disrupt 

embryogenesis. Increased transposon activity in p120ctnKOC/KOC and p120ctnKIC/KIC germ cells 

(as a consequence of piRNA loss) may hamper early development. Long non-coding RNAs 

resemble protein-coding genes because they are generally long (between two and 100 kb), are 

bound by transcription factors and are epigenetically marked (Taft et al., 2010). Interestingly, 

long ncRNAs frequently associate with chromatin-modifying complexes. Aberrant expression 

of both short and long ncRNAs have been implicated in various types of diseases, including 

cancer and cardiovascular disease (Taft et al., 2010). On the other hand, complete loss of 

Dicer disrupts Dicer-dependent ncRNA biogenesis and results in early embryonic lethality 

(Bernstein et al., 2003). Non-coding RNA species are important for normal development and 

removal of any ncRNAs, which may be encoded by the conserved intronic sequence flanking 
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exon C of p120ctn, may explain the early lethal defects seen in p120ctnKOC/KOC and 

p120ctnKIC/KIC embryos. 

Presently we lack the proper transgenic tools to analyze the function of this conserved 

‘block’, as all available modified alleles for this conserved sequence are incompatible with 

life. On the other hand, all viable in vivo rescues realized in our studies so far have at least one 

intact p120ctn allele with an intact conserved sequence block. A powerful tool would be the 

generation of mice with loxP sites flanking the conserved sequence (including exon C), which 

would allow its temporal and conditional removal. But it will remain a daunting task to 

discriminate between p120ctn isoform C-specific functions and the presumptive regulatory 

potential of the conserved sequence block. 

p120ctn isoforms, with or without the exon C-encoded amino acids, act similarly in 

respect to the early mortality in homozygous embryos, the rescue of the cell surface E-

cadherin levels and the mortality in p120ctn-deficient embryos, and possibly the RhoA 

activity in ES cells. These data could indicate that the coding sequence of exon C by itself has 

no function in early development, while in combination with its flanking intronic sequences it 

is extremely important for embryo survival. 
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MATERIAL AND METHODS 

 

Mouse breeding 

The generation of p120ctnKOC/+ and p120ctnKIC/+ mice, all backcrossed on the 

C57BL/6 background, will be reported elsewhere (Pieters et al., in preperation). p120ctnKOC/+ 

and p120ctnKIC/+ mice were intercrossed to obtain homozygous p120ctn KOC and KIC 

embryos. Female wild-type C57BL/6 mice at the age of 3–8 weeks were superovulated by 

intraperitoneal injection of 5 IU of pregnant mare serum gonadotropin (PMS), and 48 h later 

they were injected with 5 IU human chorionic gonadotropin (hCG). After the hCG injection, 

they were housed with male studs and copulation plugs were checked the following morning.  

Embryos were flushed with M2 medium (Sigma-Aldrich Inc., St. Louis, MO) from 

oviducts at E1.5 and E2.5 by using a 32G needle (Popper & Sons Inc., New York, Cat. No. 

7400) and a 5-ml Luer-Lok syringe. To flush blastocysts from the uterus at E3.5, a 23G 

needle and a 1-ml syringe were used. Mice were housed in individually ventilated cages in a 

specific pathogen-free animal facility. All experiments on mice were conducted according to 

institutional, national, and European animal regulations. Animal protocols were approved by 

the ethics committee of Ghent University. 

 

Time lapse microscopy 

Embryos were washed three times in M2 medium (Sigma) followed by three washes 

in the appropriate media used for time lapse recordings. Embryos were morphologically 

scored and only normal looking embryos were selected for time lapse recording. Embryos 

with an aberrant morphology were genotyped according to Pieters et al. (in preparation). 

Three types of media were used: KSOM (Sigma), GM 501 AIR (Gynemed, Lensahn, 

Germany) and FHM Embryomax (Chemicon, Billerica, MA). Embryos were cultured in 

eight-well chambered coverglass (Lab-Tek, Nunc, Roskilde, Denmark) or in 3-cm dishes 

containing microdrops (10 µl) of the appropriate buffer covered with mineral oil (Sigma). 

Incubation was in 5% CO2 at 37°C. Experiments were conducted either in Freiburg (Max-

Planck Institute of Immunobiology) or in Ghent (DMBR, Ghent University and VIB). 

Experiments in Freiburg were conducted as previously described (Hiiragi and Solter, 2004). 

In brief, temperature was maintained by Tempcontrol 37-2 digital (Carl Zeiss, Oberkochen, 

Germany), a heating stage (E100 with ecoline RE106, LAUDA) and a plastic chamber 

Incubator XL (Zeiss, Jena, Germany), attached to Axiovert 200M (Zeiss) with Narishige 
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micromanipulators (London). Zeiss AxioVision Ver. 4.6 software was used to acquire and 

analyze the time-lapse images. The voltage of the halogen lamp was set below 2.6 V to 

minimize the embryo’s exposure to the light. Images were recorded every 15 min for 24 or 48 

h. Experiments in Ghent were conducted either in a Leica AS MDW live cell imaging system 

or in a system with only temperature control but with micromanipulators to align the embryos. 

The Leica AS MDW live cell imaging system (Leica Microsystems, Mannheim, Germany) 

includes a DM IRE2 inverted microscope, a 12-bit Coolsnap HQ camera and an incubation 

chamber, which keeps the cells at 37°C in a 5% CO2 environment. Differential interference 

images were taken with a CPLAN 10x/0.22 objective every 30 min for 48 h. The DM IRE2 is 

equipped with an automated table enabling the monitoring of multiple positions. We 

monitored up to eight positions simultaneously using eight-well chambered coverglass slides 

(Lab-Tek, Nunc). The second system consists of a Nikon Eclipse TE200 microscope (Nikon, 

Amstelveen, The Netherlands) connected to a 1.3-megapixel CMOS Firewire camera (Bfi 

Optilas, Amsterdam, The Netherlands) with a thermo plate (Tokai Hit, Shizuoka, Japan) and 

Transferman NK micromanipulators (Eppendorf, Hamburg, Germany). Images were recorded 

every 15 min for 48 h using pixellink software (Bfi Optilas). This second system lacks CO2 

control and an automated shutter.  

 

RESULTS AND DISCUSSION 

 

Time lapse monitoring of in vitro preimplantation development 

 

Preimplantation development takes place within the oviduct, but it can also be 

recapitulated in vitro in a chemically defined culture medium without adversely affecting the 

developmental potential of embryos (Summers and Biggers, 2003). Homozygous p120ctn 

KOC and KIC embryos die before implantation (Pieters et al., in preperation), and so we 

wanted to look for early defects in embryogenesis by monitoring preimplantation 

development in vitro. In the first experiment (KOC 1) 49 two-cell stage embryos (flushed at 

1.5 dpc) derived from p120ctnKOC/+ intercrosses were cultured in KSOM medium for up to 48 

h and their developmental progress was scored. Some embryos developed into blastocysts 

(Chapter 2, Fig. 1B) but most embryos were morphologically abnormal (Fig. 1A). A similar 

experiment (KOC 2) starting from 34 two-cell stage embryos derived from p120ctnKOC/+  



Time lapse monitoring of in vitro preimplantation development 

 

190 

 

 
 

Figure 1. Time lapse monitoring of in vitro preimplantation development in KSOM 
medium. Diagram summarizing the developmental progress for time lapse experiments 
started either from two-cell (2C) embryos (A), or from compacted morulas (CM) or 
uncompacted morulas (UM) (B). After 48 h of culture blastocysts (Bl) and CM were formed. 
Experiments were performed on embryos derived either from p120ctnKOC/+ intercrosses (KOC) 
or p120ctnKIC/+ intercrosses (KIC). (C) The in vitro development of morula-stage embryos 
derived from p120ctnKOC/+ intercrosses and cultured in KSOM medium was monitored for 48 h. 
Eight positions corresponding to the wells of an eight-well chambered coverglass slide 
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Figure 1 (continued).  were monitored simultaneously. The first (0 h) and last (48 h) pictures 
from each time lapse movie are shown. White arrows point to p120ctnKOC/KOC embryos. Scale 
bar: 100 µm. (D) Two-cell embryos (a) were cultured in eight-well chambered coverglass filled 
with KSOM medium and developed into four-cell stage (b) to eight-cell stage (c) embryos after 
24 h and into blastocysts (d) after 72 h. Scale bar: 25 µm. (E) Diagram showing the ratio 
between the number of embryos developing normally compared to the total number of 
embryos for several experiments starting from two-cell embryos (2C) or morulas (M). (F) Same 
as in (C), but with morulas derived from p120ctnKIC/+ intercrosses. Scale bar: 100 µm.  

 

intercrosses yielded only three blastocysts and two morula stage embryos, but most of the 

embryos failed to develop (Fig. 1A).  In a third experiment (KOC 3), compacted and 

uncompacted morulas (flushed at 2.5 dpc) derived from p120ctnKOC/+ intercrosses were 

monitored by time lapse imaging. After 48 h of incubation in KSOM, almost 90% of the 

embryos developed into expanded blastocysts (Figs. 1B, C), and most blastocysts were 

hatching or did already hatch. Genotypic analysis of the 111 embryos that were analyzed by 

time lapse monitoring showed that only two embryos were homozygous KOC (Fig. 1C, white 

arrows). These mutants were morphologically indistinguishable from wild-type and 

heterozygous embryos.  

Similar time lapse experiments were conducted with embryos derived from 

p120ctnKIC/+ intercrosses. These embryos too could be cultured in KSOM from two cell-stage 

to expanded blastocysts (Fig. 1D), but the percentage of embryos that developed normally in 

this experiment (KIC 1) was significantly higher compared to experiments performed with 

embryos from p120ctnKOC/+ intercrosses (Figs. 1A, E; compare KIC 1 with KOC 1 and 2). 

A time lapse monitoring experiment (KIC 3) starting from morulas resulted in efficient 

formation of blastocysts in vitro (Figs. 1B, F). However, no homozygous p120ctn KIC 

embryos were identified by genotyping among the 82 embryos that were analyzed by time 

lapse analysis. 

In summary, we monitored in vitro development starting from either two cell stage 

embryos or from morulas. However, the percentage of normal development varied 

substantially amongst experiments if the monitoring was performed using two cell stage 

embryos and did not exceed 89% in experiments that monitored development starting from 

the morula stage (Fig. 1E). That means that more than 10% of the embryos developed 

abnormally in vitro. Because the incidence of homozygous p120ctn KOC and KIC embryos is 

lower than the expected Mendelian ratio, we need an in vitro development method with an 

efficiency of about 95% to be able to discriminate genotype-based developmental defects 

from technique-based developmental abnormalities. 
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Figure 2. Optimizing time lapse monitoring of in vitro preimplantation development 
(performed in Freiburg). (A) Wild-type embryos were cultured in vitro in either FHM 
embryomax (A) or GM 501 AIR (B). Development was quantified and is depicted in a diagram 
(C). Most of the compacted morulas (CM) developed into blastocysts (Bl). Abnormal embryos 
were morphologically abnormal or did not progress beyond their initial developmental stage. 
(D) Diagram showing the ratio between the number of normal developing embryos and the 
total number of embryos. 
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Another technical issue is the movement of the developing embryos during time lapse 

monitoring. By using eight-well chambered coverglass slides on a Leica AS MDW live cell 

imaging system, we were able to monitor up to eight positions simultaneously. However, the 

embryos could move around during the recordings and sometimes they moved out of focus 

(examples in Figs. 1C,F) causing developmental information to be lost. In conclusion, we 

need to increase the success rate of normal in vitro development and a way to group and fix 

embryos during the recordings. 

 

Optimizing time lapse monitoring of in vitro preimplantation development 

 

Time lapse monitoring of in vitro preimplantation development has been used in the 

laboratories of Prof. Dr. Solter and Prof. Dr. Kemler in Freiburg, where they used it to 

investigate basic developmental biology (Hiiragi and Solter, 2004) and for morphological 

analysis of genetically engineered embryos (Kan et al., 2007). When I went to the Max-

Planck Institute of Immunobiology in Freiburg to optimize our time lapse technique, I found 

that their time lapse analysis differed from ours in many ways. First, they used ordinary 3-cm 

Petri dishes rather than eight-well chambered coverglass slides like we do. The plastic surface 

of the Petri dishes reduces the movement of embryos in the dish. Second, embryos could be 

aligned and grouped by using micromanipulators, which makes it possible to monitor clusters 

of embryos that do not move. Third, they used Hepes-buffered media and thereby omitted the 

need for CO2. Fourth, they did not have an automated table, so that only one position could be 

monitored. Fifth, only 24-h time lapse experiments were performed, and so they monitored 

the development of either two-cell embryos (flushed at 1.5 dpc) into morulas, or uncompacted 

morulas (flushed at 2,5 dpc) into blastocysts. 

The developmental potential of 93 and 78 wild-type C57BL/6 embryos was assayed in 

FHM embryomax and in GM 501 AIR, respectively (Figs. 2A,B). Developmental progress 

after 24h was scored and is summarized in Fig. 2C. Embryos cultured in FHM showed a 

higher percentage of abnormalities compared to GM 501 AIR medium (Fig. 2C), which 

enabled almost 90% of the embryos to develop normally (Fig. 2D). However, due to the large 

scale of this experiment the maximal developmental efficiency may not be reached because of 

long time periods out of the incubator and possible damaging of embryos by 

micromanipulation. For this experiment approximately 250 embryos were flushed from 10 

superovulated C57BL/6 mice. 171 (from 211) healthy looking embryos were selected  
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Figure 3. Optimizing time lapse monitoring of in vitro preimplantation development 
(performed in Ghent). (A) Development was scored following 24 h of time lapse monitoring 
of embryos derived from either p120ctnKOC/+ intercrosses (KOC) or p120ctnKIC/+ intercrosses 
(KIC) in GM 501 AIR. Embryos at the one-cell stage (1C) developed into two-cell embryos (2C). 
Uncompacted morulas (UM) could develop into compacted morulas (CM) or into blastocysts 
(Bl). Abnormal embryos were morphologically aberrant or did not progress beyond their initial 
developmental stage.  Embryos with aberrant morphology at the start of time-lapse monitoring 
are indicated with asterisks and are omitted from the analysis. (B) Diagram showing the 
development of embryos used in the experiments in A. (C) Diagram showing the ratio between 
the number of normal developing embryos and the total number of embryos. 

 

 

and divided into two groups of 93 and 78 embryos. These groups were split again into four 

subgroups, each subgroup was transferred to a single well and all embryos were aligned and 

grouped using a micromanipulator (Fig. 2A). In addition, embryos derived from 

superovulated females tend to be less robust than embryos from natural matings. The maximal 

efficiency of in vitro development is probably close to 95%. A typical example of in vitro 

development of clustered embryos in GM 501 AIR is seen in Fig. 2E.  
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The next challenge was transferring this expertise to our laboratory in Ghent. This 

proved to be difficult, because it was nearly impossible to install micromanipulators on the 

Leica AS MDW live cell imaging system. So we used a Nikon Eclipse TE200 microscope 

connected to the Transferman NK micromanipulators that were used for blastocyst injection. 

However, this system has several drawbacks. First, we lacked an automated shutter, and so 

the light was always on, which might be harmful for the embryos. Second, this system lacked 

an incubation chamber, and so we could not provide CO2 and the temperature was regulated 

by a thermo plate. Nevertheless, in vitro development could be monitored successfully by 

time lapse recordings (Figs. 3A,B). Although these experiments showed that development 

was quite normal (Fig. 3C), no homozygous p120ctn KOC or KIC embryos could be 

identified by genotyping. 

 

Rock inhibition delays blastocyst formation 

 

Y-27632, a selective inhibitor of the Rho-associated coiled kinase (ROCK), enhances 

the survival of dissociated human ES cells (Watanabe et al., 2007) and improves the recovery 

from cryopreservation (Claassen et al., 2009; Li et al., 2009). In addition, Y27632-treatment 

results in increased proliferation and enables the expansion of undifferentiated human ES 

cells (Gauthaman et al., 2010). We wanted to test if the promoting growth and survival by 

inhibiting ROCK enhances the occurrence of homozygous p120ctn KOC and KIC embryos. 

So we monitored in vitro development of embryos derived from p120ctnKOC/+ or p120ctnKIC/+ 

intercrosses in either untreated medium (control) or in medium supplemented with 10 µM 

Y27632. In the first experiment (KOC 1), blastocyst formation was assayed starting from two-

cell embryos, derived from p120ctnKOC/+ intercrosses (Fig. 4A). After 24 h, both control and 

Y27632-treated embryos formed four- or eight-cell stage embryos, but after 48 h all control 

formed blastocysts but none of the Y27632-treated embryos did so. ROCK inhibition does not 

affect the developmental potential of cultured embryos because they develop into expanded 

blastocysts (Fig. 4A), but the blastocyst formation is delayed. This was confirmed in a second 

experiment (KOC 2, Fig. 4B) using embryos from p120ctnKOC/+ intercrosses and in another 

experiment on embryos from p120ctnKIC/+ intercrosses (KIC 1) (Fig. 4C). However, no 

homozygous p120ctn KOC or KIC embryos could be identified by genotyping.  
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Figure 4. ROCK inhibition delays blastocyst formation in vitro. (A-B) Embryos derived 
from p120ctnKOC/+ or p120ctnKIC/+ intercrosses were cultured in vitro in normal medium 
(control) or in medium supplemented with the ROCK inhibitor Y27632. (C) Development was 
scored and is summarized in diagrams for control (left) and Y27632-treated embryos (right). 
Two-cell stage embryos (2C) and uncompacted morulas (UM) could develop into compacted 
morulas (CM) or into blastocysts (Bl). Abnormal embryos had an aberrant morphology or did 
not progress beyond their initial developmental stage.  
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ABSTRACT  

 

Classic derivation of mouse embryonic stem (ES) cells from blastocysts is inefficient, 

depends on the strain, and requires expert skills. Over recent years, several major 

improvements have greatly increased the success rate for deriving mouse ES cell lines. A first 

improvement was the establishment of a new, user-friendly and reproducible medium 

alternating  protocol, allowing ES cell isolation of C57BL/6 transgenic mice with efficiencies 

of up to 75%. A recent report describes the use of this medium alternating protocol in 

combination with leukemia inhibitory factor and pluripotin treatment and made it possible to 

obtain embryonic stem cells from F1 strains (C57BL/6 transgenics X CD1) with high 

efficiency.  Here we report modifications of these protocols which allowed user-friendly and 

reproducible derivation of mouse ES cells with efficiencies up to 100%. Our protocol 

describes a long initial incubation of primary outgrowths with pluripotin which resulted in big 

spherical outgrowth, that differ from classical inner cell mass (ICM) outgrowths, and can 

easily be picked and trypsinized. Pluripotin was omitted after the first trypsinization because 

pluripotin seems to block attachment of ES cells to the feeder layer and has to be removed to 

facilitate formation of ES cell colonies. We used our modified protocol to isolate 56 ES cell 

lines for C57BL/6 and five transgenic mouse strains (on C57BL/6 background) with an 

efficiency of up to 100%.  
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INTRODUCTION  

 

Embryonic stem (ES) cells are capable of self renewal and differentiation into all types 

of embryonic and adult cells, including the germ-cell lineage. Therefore, ES cells are a 

powerful tool in both regenerative medicine and biomedical research. Generation of 

genetically modified mice has been made possible by homologous recombination in mouse 

ES cells. The inventors of this ground-breaking technique were awarded the Nobel Prize in 

physiology or medicine in 2007 (Capecchi, 2008; Evans, 2008; Smithies, 2008). In addition, 

ES cells are instrumental in the analysis of transgenic mice if homozygous embryos die early 

during embryonic development.  

Though leukemia inhibitory factor (LIF) was originally identified by its ability to 

induce differentiation of M1 leukemia cells (Gearing et al., 1987; Tomida et al., 1984), it 

prevents differentiation of mouse ES cells (Smith et al., 1988; Williams et al., 1988). Self-

renewal of ES cells also depends on a second signal, which is produced by mouse embryonic 

fibroblasts (MEFs) or is a constituent of fetal bovine serum (FBS); this signal has been 

identified as BMP4 (Ying et al., 2003). On the other hand, ES cells can be propagated without 

differentiation in the absence of these external cues by inhibiting certain pathways that are 

important for self-renewal of ES cells (Ying et al., 2008). 

Mouse ES cells are usually isolated from blastocysts. Blastocyst formation coincides 

with the first cell lineage specification in mouse embryogenesis, namely the formation of 

trophectoderm (TE) and inner cell mass (ICM) (Marikawa and Alarcon, 2009). The ICM is a 

pluripotent compact cell layer that gives rise to all the embryonic lineages and can be used to 

derive mouse ES cell lines. The first mouse ES cell lines were derived almost 30 years ago 

(Evans and Kaufman, 1981; Martin, 1981), but the classical way for isolating mouse ES cells 

is very inefficient, it is highly dependent on the strain, and it requires expert skills (Bryja et 

al., 2006b). The success rate for ES cell isolation is the highest (~30%) in favorable 129 

strains, but it drops below 10% for C57BL/6 strains (Brook and Gardner, 1997; McWhir et 

al., 1996). There are many 129 substrains and their genetic variability is substantial. Although 

historically gene targeting has been performed mainly in ES cells from the 129 mouse strains, 

these strains are poor breeders and their anatomy and behavior are atypical (Nagy and 

Vintersten, 2006). Therefore, after gene targeting in 129 ES cells, the chimeric transgenic 

progeny is routinely backcrossed into the C57BL/6 background. C57BL/6 is considered the 

gold standard among reference strains (Rivera and Tessarollo, 2008). The C57BL/6 mouse is 
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long-lived, breeds well, and its genome has been fully sequenced (Mouse Genome 

Sequencing Consortium, 2002). Moreover, the phenotypes of many mouse mutants have been 

studied in the C57BL/6J strain. However, classic ES cell isolation protocols are not efficient 

in this strain.  

Several major improvements have greatly increased the success rate for deriving 

mouse ES cell lines. First, a defined serum-free medium (knockout serum replacement, SR) 

improved the generation of C57BL/6J embryonic stem cells (Cheng et al., 2004) and thereby 

increased the success rate to approximately 20%. Second, alternating between SR-containing 

medium and ES cell medium containing FBS allowed isolation of ES cells from C57BL/6 

transgenic strains in an easy and reproducible manner and with efficiencies of up to 75% 

(Bryja et al., 2006b). Third, the use of pharmacological compounds in combination with LIF 

and MEFs has increased the efficiency of ES cell isolation. These compounds include 

PD98059 and U0126, which are inhibitors of mitogen-activated protein kinase 

(MAPK)/extracellular signal-related kinase (ERK) kinase (MEK) (Buehr and Smith, 2003; 

Lodge et al., 2005), the p38 inhibitor SB203580 (Qi et al., 2004), and BIO, an inhibitor of 

glycogen synthase kinase-3 (GSK-3) (Umehara et al., 2007). In addition, mouse ES cells 

could be isolated from 129 strains and the non-permissive CBA strain without the need for 

extrinsic stimuli, such as serum factors, MEFs, LIF or BMP4, but the efficiency of this 

method was not reported (Ying et al., 2008). The latter ES cell lines were obtained and 

maintained  in a chemically defined medium containing three small-molecule inhibitors (3i) 

of, respectively, MEK 1/2 (PD98059), GSK-3 (CHIR99021) and fibroblast growth factor 

receptor (FGFR; SU5402) (Ying et al., 2008). The 3i method was also used to derive and 

propagate rat ES cells with success rates of 34% (Li et al., 2008) and 12% (Buehr et al., 

2008). Using a system with two inhibitors (2i), PD0325901 for MEK and CHIR99021 for 

GSK-3, also allowed derivation of rat ES cells with an efficiency of 61%  (Buehr et al., 2008). 

The 2i system, when supplemented with LIF, enabled derivation and propagation of mouse 

ES cells from the recalcitrant non-obese diabetic (NOD) strain with an efficiency of 53% 

(Nichols et al., 2009). Furthermore, adding only pluripotin, a small synthetic molecule, to the 

culture medium also allows the propagation of mouse ES cells in an undifferentiated state in 

the absence of LIF and MEFs (Chen et al., 2006). Finally, combining a reliable medium 

alternating protocol that switches between SR-containing and FBS-containing ES cell 

medium supplemented with MEFs, LIF and pluripotin eventually made it possible to derive 
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mouse ES cells from refractory strains with a success rate of up to 80% (57% for NOD-SCID) 

and from F1 strains (C57BL/6 transgenic x CD1) with 100% efficiency (Yang et al., 2009).  

Here, we report the modifications of previously reported protocols (Bryja et al., 

2006b; Yang et al., 2009) and the isolation of 69 ES cell lines from five transgenic strains on 

the C57Bl/6 background with an efficiency of up to 100%. 
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MATERIAL AND METHODS  

 

Mouse strains, breeding and genotyping  

The generation of p120ctnKOC/+, p120ctnKIC/+ and p120ctn+/- mice, all backcrossed on 

the C57BL/6 background, will be reported elsewhere (Pieters et al., in preperation). In brief, 

the p120ctn KOC allele lacks the alternatively spliced exon C (exon 11)(Keirsebilck et al., 

1998) of the p120ctn gene (Ctnnd1), while the p120ctn KIC allele constitutively incorporates 

exon C in all its transcripts. The p120ctn null allele was generated by Cre-mediated removal 

of a floxed region in the p120ctn gene (containing exons 3 to 8 and including all four possible 

start codons) (Betz et al., 1996; Davis and Reynolds, 2006). Preimplantation embryos were 

obtained by crossing or intercrossing heterozygous p120ctn+/–, p120ctnKOC/+ and p120ctnKIC/+ 

mice. Embryos were flushed with M2 medium (Sigma-Aldrich Inc., St. Louis, MO) from 

oviducts at E1.5 and E2.5 by using a 32G needle (Popper & Sons Inc., New York, Cat. No. 

7400) and a 5-ml Luer-Lok syringe. For flushing from the uterus at E3.5, a 23G needle and a 

1-ml syringe were used. Female mice at the age of 6–8 weeks were housed with male studs 

and copulation plugs were checked the following morning. Genotyping was performed by 

PCR on genomic DNA isolated from mouse tail snips or from ES cells, as described 

elsewhere (Pieters et al., in preperation). Mice were housed in individually ventilated cages in 

a specific pathogen-free animal facility. All experiments on mice were conducted according to 

institutional, national, and European animal regulations. Animal protocols were approved by 

the ethics committee of Ghent University. 

 

Classical ES cell derivation 

ES cells were isolated and cultured on feeder cells in either RESGRO medium 

(Chemicon) supplemented with  L-glutamine (2 mM, Gibco) or in normal ES cell medium, 

consisting of DMEM (Gibco) with 15% FCS (PAN biotech, Aidenbach, Germany),  

supplemented with L-glutamine (2 mM, Gibco), sodium pyruvate (1 mM, Gibco), non-

essential amino acids (Gibco), penicillin (100 U/ml, Gibco), streptomycin (100 mg/ml, 

Gibco), β-mercaptoethanol (0.1 mM, Gibco),  500 U/ml LIF (Chemicon). Embryos were 

seeded individually in separate wells of 96-well plates with inactivated MEFs and are cultured 

in 5% CO2 at 37°C. On the fourth day, primary outgrowths were washed with PBS and were 

passaged in batch using a multichannel pipette with 50µl trypsin (Gibco) followed by an 

incubation for 5 min in 5% CO2 at 37°C. Primary outgrowths were dissociated into small cell 
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clumbs by pipetting up and down (ten times) and were transferred in (3 times 100 µl) ES cell 

medium  to new MEF-containing 96-well plates. After four days of culture, the ES cell like 

colonies were passaged again to new MEF-containing 96-well plates. After four days of 

culture, the ES cell-like colonies were passaged to 0,1% gelatin-coated 96-well plates. Newly 

established ES cell lines were passaged to MEF-containing 24-well and subsequently to 6-

well plates. 

 

Pluripotin-based ES cell isolation, ES cell culture, and embryoid body formation  

Basic ES cell medium consisted of Dulbecco’s modified Eagle’s medium (DMEM, 

Gibco, Grand Island, NY) and F12 (Gibco) mixed in a 1:1 ratio and supplemented with 15% 

knock-out serum replacement (SR, Gibco, Cat. No. 10828-028, for SR-ES cell medium) or 

15% FBS (Hyclone, Logan, UT, Cat. No. SH30070.03E, for FBS-ES cell medium), L-

glutamine (2 mM, Gibco), penicillin (100 U/ml, Gibco), streptomycin (100 mg/ml, Gibco), β-

mercaptoethanol (0.1 mM, Gibco), and 2000 U/ml recombinant mouse LIF (DMBR/VIB 

Protein Service facility, www.dmbr.ugent.be). Pluripotin (4 µM, Cayman Chemical, Ann 

Arbor, MI, ) was added just before use. The procedure for ES cell isolation, schematized in 

figure 1, is a modified version of previously published protocols (Bryja et al., 2006a; Bryja et 

al., 2006b; Yang et al., 2009). In brief, blastocysts and morulas were collected and plated 

individually on 12-well mitomycin-C treated mouse embryonic feeder plates (MEF, TgN 

(DR4)1 Jae strain) with pluripotin-containing SR-ES cell medium (day 1). On days 6, 8 and 

10, the pluripotin-containing SR-ES cell medium was refreshed, using a mouth pipette to 

prevent loosing unattached or loosely attached outgrowths. Between days 12 and 16, big 

loosely attached spherical outgrowths from mouse embryos were picked, transferred to curved 

96-well plates containing 30 µl PBS (Gibco), and dissociated by incubation in 50 µl of 0.25% 

trypsin (Gibco) for 3 min in 5% CO2 at 37°C. Outgrowths were transferred in 100 µl FBS-ES 

cell medium (preincubated for 1 h in 5% CO2 at 37°C) to 96-well mitomycin C-treated MEF 

plates (containing 100 µl preincubated FBS-ES cell medium) and dissociated into single cells 

and small-cell clumps by pipetting 10–15 times. Next day, the medium was changed to SR-ES 

cell medium. Newly established ES cell colonies were passaged two more times with a 

change of medium, scaling up from 96-well to 24-well and then 6-well plates using 30, 200 

and 800 µl of 0.25% trypsin, respectively. Dissociated cells were plated in FBS-ES medium, 

which was replaced next day by SR-ES medium. Established ES cell lines were propagated 



Efficient pluripotin-based derivation of Mouse ES cells 

 

210 

 

further using SR-ES medium and then frozen in 10% DMSO and 90% FCS in freeze 

containers (Nalgene, Rochester, NY) . 

The embryoid body formation procedure was similar to that described before (Bibel et 

al., 2007; Bibel et al., 2004). In brief, highly proliferative ES cells were passaged at least 

twice in SR-ES cell medium on 0.1% gelatin-coated plates to get rid of the MEF cells and 

allow the ES cells to grow as flat monolayers. After trypsinization, 4 x 106 cells were plated in 

non-adherent 10-cm bacterial grade Petri dishes containing cell aggregation (CA) medium 

composed of DMEM supplemented with 10% FCS, 2 mM L-glutamine, non-essential amino 

acids (Gibco) and 0.1 mM β-mercaptoethanol. Cell aggregates grow in suspension and are 

refreshed every other day after letting them settle spontaneously on the bottom of a 50-ml 

tube. After eight days, big embryoid bodies are readily visible. 

 

Immunofluorescence 

The staining procedure for ES cells involved methanol fixation and incubation for 2 h 

with primary antibody and 1 h with secondary antibody, each of which was dissolved in a 1:4 

mixture of 2% gelatin and PBS. The following antibodies were used: mouse monoclonal anti-

p120ctn (pp120, 1/500, BD Transduction Laboratories, San Jose, CA), anti-Oct-4 (1/100, 

Santa Cruz Biotechnology, Santa Cruz, CA), Secondary species-specific Alexa-fluorochrome-

conjugated antibodies (Molecular Probes, Eugene, OR) were used at a dilution of 1/500. 

Pictures were taken with an Olympus microscope or with a confocal microscope. Confocal 

microscopy was performed using a Leica TCS SP5 confocal scan head attached to a Leica 

DM IRE2 inverted microscope and a PC running Leica AF software version 2.5. Optical 

sections were taken every 2 µm. Image analysis was performed using Volocity software 

(Perkin Elmer). 
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RESULTS  

 

Classical derivation of ES cells for transgenic embryos in not efficient 

 

By using a classical isolation procedure for ES cells with either normal or conditioned 

ES cell medium we failed to isolate ES cells in an efficient way (Table 1).  We were able to 

establish ES cell lines for wild-type and transgenic C57BL/6 strains with an efficiency of only 

4%. However, no ES cell lines were derived if we performed the classical ES cell isolation 

procedure on embryos obtained from p120ctnKOC/+ or p120ctnKIC/+ intercrosses  (Table 1).  

   

Table 1. Classical and RESGRO-mediated derivation of ES cells 

Mating Method Embryonic stage No. of embryos Primary outgrowth Lines derived 

        (passage 0) (>passage 5) 

C57BL/7 classical morula 24 1 (4%) 

intercross (Freiburg)         

            

NcadhKI classical morula 74 3 (4%) 3? (4%) 

intercross (Freiburg)         

            

p120ctnKOC/+ Classical (Ghent) morula 20 0 (0%) 

intercross RESGRO* blastocyst 89 1 (1%) 

RESGRO morula 93 0 (0%) 

RESGRO blastocyst 35 24 (69%) 0 (0%) 

RESGRO morula 13 0 (0%) 0 (0%) 

  pluripotin morula 14 5 (36%) 0 (0%) 

            

p120ctnKIC/+ Classical (Ghent) blastocyst 9 0 (0%) 

intercross Classical (Ghent) morula 14 0 (0%) 

RESGRO blastocyst 88 1 (1%) 

RESGRO morula 36 0 (0%) 

RESGRO blastocyst 17 4 (24%) 0 (0%) 

RESGRO morula 55 14 (25%) 0 (0%) 

  pluripotin morula 33 7 (21%) 0 (0%) 

* Formerly TX-WES 

Experiments were either performed in the Max-Planck institute for immunobiology in Freiburg or in Ghent (DMBR-UGent-VIB) 

 

It has been reported that RESGRO ES cell medium, conditioned by a rabbit fibroblast 

cell line transduced with genomic rabbit leukemia inhibitory factor, allows efficient derivation 

and propagation of  ES cell lines (Schoonjans et al., 2003). Using a classical ES cell 

procedure with RESGRO ES cell medium resulted only in one p120ctnKOC/+ ES cell line and 
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one p120ctnKIC/+ ES cell line. The overall success rate of ES cell isolation in conditioned 

medium was still lower than 1% and in most cases no ES cell lines could be isolated at all 

(Table 1). In addition, we were also unable to derive ES cell lines from morulas, obtained 

from p120ctnKOC/+ or p120ctnKIC/+ intercrosses, when following a pluripotin-based protocol 

(Table 1)(Yang et al., 2009). 

 

Efficient pluripotin-based derivation of mouse ES cells 

 

To increase the efficiency of mouse ES cell isolation from transgenic mice on a 

C57BL/6 background, we established an optimized pluripotin-based method based on the 

protocols of Bryja et al. (2006b) and Yang et al. (2009). By our modified procedure we 

isolated 56 mouse ES cell lines for C57BL/6 and five transgenic mouse strains (all on the 

C57BL/6 background) with an efficiency of 100% for C57BL/6, 67% for p120ctnKOC/+ 

intercrosses, 90% for p120ctnKIC/+ intercrosses, 100% for p120ctn+/– intercrosses, and 100% 

for both p120ctnKOC/– and p120ctnKIC/– strains (Table 2). The protocol was modified by 

culturing primary outgrowths for 12 days  in pluripotin-containing SR-ES cell medium and by 

omitting pluripotin after the first trypsinization (Fig. 1). 

 

Table 2. The derivation efficiency of ES cells from blastocysts 

Strain/mating No. of blastocysts Primary outgrowth Lines derived 

    (passage 0) (>passage 5) 

C57BL/6 6 6 (100%) 6 (100%) 

p120ctnKOC/+ intercross 9 7 (78%) 6 (67%) 

p120ctnKIC/+ intercross 20 18 (90%) 18 (90%) 

p120ctn+/- intercross 5 5 (100%) 5 (100%) 

p120ctnKOC/+ x p120ctn+/- 13 13 (100%) 13 (100%) 

p120ctnKIC/+ x p120ctn+/- 8 8 (100%) 8 (100%) 

total 61 57 (93%) 56 (91%) 
 

The prolonged cultivation of primary outgrowths in the presence of pluripotin allowed 

the formation of big spheres composed of pluripotent cells that do not much resemble the 

classical ICM outgrowths (Fig. 2, compare panel A to B or C). These spheres were mostly 

loosely attached to the underlying MEF layer but sometimes appeared in suspension; in both 

cases mouse ES cell lines could be readily isolated from them. In our hands the efficiency of 

initial mouse ES cell isolations (using our protocol) was not maximal due to the loss of non-

attached spheres while changing medium, rather than to intrinsic failure of primary 
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outgrowths to form mouse ES cell lines. Omitting pluripotin during the first two days of 

initial culture allowed blastocysts to attach to the MEFs and form classical ICM outgrowths 

(Fig. 2B), which gave rise to ES cell lines with a lower efficiency (33%) (Table 3). 

 

  
 

Figure 1. Scheme of ES cell derivation with LIF and pluripotin. Blastocysts are flushed on 
day 1 and seeded in 12-well plates coated with MEFs and with pluripotin-containing SR-ES cell 
medium (15% SR). Small spherical colonies, observed on day 6, grow rapidly to form big 
spherical cell aggregates that are loosely attached to the feeder layer on day 12. Big pluripotent 
cell aggregates are trypsinized with 0.25% trypsin and seeded in 96-well plates containing 
MEFs and FBS-ES cell medium (15% FBS) but no pluripotin. The next day, FBS-ES cell medium 
is replaced with SR-ES cell medium. After further incubation, ES cells appear. Newly 
established ES cell colonies are passaged two more times, changing the medium from FBS to 
SR-ES and scaling up from 96-well to 24-well and then 6-well plates.  On about day 21, a 
confluent 6-well plate of newly established mouse ES cell line can be frozen. Adapted and 
modified after (Bryja et al., 2006b).  
 

Table 3. The derivation efficiency of ES cells from morulas  

and from blastocysts with pluripotin-treatment on day 3 

Strain/mating No. of morulas Primary outgrowth Lines derived 

    (passage 0) (>passage 5) 

p120ctnKOC/+ intercross 19 6 (32%) 3 (16%) 

p120ctnKIC/+ intercross 9 3 (33%) 1 (11%) 

28 9 (32%) 4 (14%) 

Strain No. of blastocysts Primary outgrowth Lines derived 

  (passage 0) (>passage 5) 

C57BL/6  9# 5 (55%) 0 (0%) 

C57BL/6 7* 6 (85%) 0 (0%) 

p120ctn+/- intercross 9* 4 (44%) 3 (33%) 

# ES cell derivation according to Yang et al., (2009), * pluripotin addition from day 3 
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Figure 2. Formation of non-classical spherical ICM outgrowths in SR medium 
supplemented with pluripotin and LIF. Formation of ICM outgrowths from wild-type 
C57BL/6 blastocysts under different experimental conditions. (A) Two examples of non-
classical, loosely attached, spherical ICM outgrowths formed after incubation in SR-ES 
medium supplemented with pluripotin and LIF. (B) Omitting pluripotin from the SR medium 
in the first two days allows attachment of blastocysts and formation of flat ICM outgrowths, 
which persist after pluripotin administration. Two examples are shown. (C) Two examples of 
ICM outgrowths formed according to Yang et al. (2009). Blastocysts were incubated for two 
days (2d) in FBS-ES medium supplemented with pluripotin and LIF, followed by incubation in 
SR-ES medium supplemented with pluripotin and LIF. DIV: days in vitro. Scale bar: 500 µm. 
 

After culturing the cells for 12 days with LIF and pluripotin, spherical colonies were 

readily visible by naked eye (Fig 2A, DIV10). The blastocyst outgrowths could be cultured up 

to 18 days without losing their ability to form ES cell lines. The big advantage of long initial 

culture in pluripotin-containing SR-ES cell medium is starting with a large amount of 

undifferentiated cells before the first trypsinization, which allows the establishment of ES cell 

lines with great confidence once large pluripotent spheres are obtained: 57 initial outgrowths 

gave rise to 56 ES cell lines (98%). The big spherical outgrowths were easy to pick and after 

trypsinization, cells were readily dissociated into single cells and plated on MEFs. When 

pluripotin was present in the FBS-containing ES cell medium, most of the cells failed to 

attach to the MEF layer and were lost upon changing the medium to SR-containing ES cell 

medium. By excluding pluripotin after the first trypsinization, dissociated cells became 

attached to the MEFs and formed primary ES cell colonies within days. These primary ES cell 

colonies were propagated in 96-well plates, then in 24-well plates and finally in six-well 

plates, after which they were frozen (Fig. 1).  

Next, we compared the performance of our modified mouse ES cell derivation 

protocol with that of the protocol of Yang and colleagues (2009). Differences between these 

ES cell derivation protocols are listed in Table 4. Formation of ICM outgrowths and ES cell 

isolation from wild-type C57BL/6 blastocysts were performed according to our modified 

protocol or according to Yang and colleagues (2009). From the nine blastocysts that were 

processed with the latter protocol, only five formed small ICM outgrowths (Figs. 2C, 3A). 

Most outgrowths were dissociated after ten days of culture (Fig. 3A; DIV 10) and no ES cell 

lines could be derived from them (Table 3). In contrast, all six blastocysts, which were 

processed according to our modified protocol, formed big spherical ICM outgrowths after 10 

days of culture (Figs. 2A, 3B; DIV 10). ES cell lines were established for all six outgrowths 

(Table 2). To conclude, our modified protocol allowed big spherical ICM outgrowths to be 

formed in a robust and reliable manner. 
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Figure 3. Comparison between ES cell derivation protocols. Formation of ICM outgrowths 
from wild-type C57BL/6 blastocysts under different experimental conditions. (A) Nine 
blastocyst were cultured according to Yang et al. (2009). Four blastocysts did not hatch from 
their zona pellucid. Only two ICM outgrowths were maintained after ten days of culture (top). 
(B) Six blastocysts were incubated in SR medium supplemented with pluripotin and LIF and all 
six blastocysts formed loosely attached, spherical ICM outgrowths after ten days of culture. 
Two outgrowths detached from the feeders and grew in suspension (top). DIV: days in vitro.  
 

A 

B 
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Table 4. Comparison of different ES cell derivation protocols 

ES cell derivation protocol 

  classical Byrja et al. (2006b) Yang et al. (2009) Pieters et al. 

Blastocysts seeded in FBS-medium SR-medium FBS-medium SR-medium 

Incubation time of primairy outgrowths 4-5 days 6 days 3-14 days 12-18 days 

Medium alternating no yes yes yes 

Pluripotin treatment no no constant till first trypsinization 

Morphology of the outgrowth ICM-like colony ICM-like colony ICM-like colony big spheres 

Attachment of outgrowths to feeders strong strong strong weak 

Size outgrowths 500 µm 900 µm 

Outgrowth dissociation  trypsin trypsin collagenase IV, trypsin trypsin 

User-friendly no yes no yes 

Succes rate (Strain) 30% (129) 50-75% (C57BL/6  100% (F1: C57BL/6  100% (C57BL/6  

 10%  (C57BL/6) transgenics) transgenics X CD1)  transgenics) 

 

Characterization of newly established mouse ES cell lines 

 

Newly established ES cell lines could be maintained in a morphologically 

undifferentiated state for over 10 passages (Fig. 4A), and all ES cell colonies examined 

expressed the transcription factor Oct-4 (Fig. 4B), but not the trophectoderm-specific 

transcription factor Cdx2 (data not shown). The newly established ES cell lines proliferated 

rapidly and embryoid bodies could be readily formed (Fig. 4C). Those embryoid bodies could 

be differentiated into various cell types, including beating cardiomyocytes.  

 

Attempt to generate homozygous p120ctn KOC, p120ctn KIC and p120ctn null ES cell 

lines  

 

Next, we tried to use the optimized protocol to generate homozygous ES lines for 

p120ctn KOC and KIC mice, both on the C57BL/6 background. This proved to be difficult 

since both homozygous p120ctn KOC and KIC embryos died before implantation (Pieters et 

al., in preperation). Blastocysts from p120ctnKOC/+ and p120ctnKIC/+ intercrosses gave rise to 

several ES cell lines (6 and 35, respectively), but no homozygous p120ctnKOC/KOC or 

p120ctnKIC/KIC ES cell lines could be obtained (Table 5). To increase the chance of retrieving 

viable homozygous p120ctn KOC or KIC embryos, we tried starting ES cell isolation from 

morulas instead of blastocysts. Unfortunately, ES cell isolation from morulas turned out to be 

much less efficient (14% compared to 91% for blastocysts) (Tables 2, 3) and only four ES 

lines could be isolated from 28 morulas (Table 5). 
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Figure 4. Properties of ES cell lines derived from pluripotin-treated primary 
outgrowths. (A) Morphology of newly established mouse ES cell lines, which are positive for  
stem cell marker Oct-4 (B) and form embryoid bodies after eight days of culture in suspension 
(C). p120ctn immunostainings of p120ctn+/- ES cell lines (D). Scale bar: 25 µm. 
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The lowered efficiency was due to decreased formation of primary outgrowths (32% 

compared to 93%) (Tables 2, 3). Although morulas derived from p120ctnKOC/+ and 

p120ctnKIC/+ intercrosses gave rise to ES cell lines (three and one, respectively), no 

homozygous p120ctnKOC/KOC or p120ctnKIC/KIC ES cell lines were obtained (Table 5). In 

conclusion, by using blastocysts from p120ctnKOC/+ and p120ctnKIC/+ intercrosses we 

established 41 new ES cell lines with efficiencies of 40 to 90%. However, no homozygous 

p120ctn KOC or KIC ES cell lines could be isolated due to the low frequency of homozygous 

p120ctn KOC and KIC embryos, which show abnormalities during preimplantation. 

 

Table 5. The derivation efficiency and genotype of ES cells  

Mating Embryonic  No. of  Primary outgrowth Lines derived genotype   

  stage embryos (passage 0) (>passage 5) +/+ (25%) KOC/+ (50%) KOC/KOC (25%) 

p120ctnKOC/+ blastocyst 9 7 (78%) 6 (67%) 2 (33,3%) 4 (66,7%) 0 (0%) 

intercross morula 19 6 (32%) 3 (16%) 0 (0%) 3 (100%) 0 (0%)   

  

genotype   

          +/+ (25%) KIC/+ (50%) KIC/KIC (25%) 

p120ctnKIC/+ blastocyst 24 17 (71%) 13 (54%) 2 (15%) 11 (85%) 0 (0%) 

intercross blastocyst 10 4 (40%) 4 (40%) 0 (0%) 4 (100%) 0 (0%) 

blastocyst 20 18 (90%) 18 (90%) 0 (0%) 18 (100%) 0 (0%) 

  morula 9 3 (33%) 1 (11%) 0 (0%) 1 (100%) 0 (0%)   

genotype p120ctn  

           +/+ (25%)  +/- (50%)  -/- (25%) staining 

p120ctn+/- blastocyst 5 3 (60%) 1 (20%) 1 (100%) 0 (0%) 0 (0%) nd 

intercross blastocyst 5 2 (20%) 1 (20%) 0 (0%) 1 (100%) 0 (0%)  1/1 

blastocyst 5 5 (100%) 5 (100%) 2 (40%) 3 (60%) 0 (0%)  3/3 

  blastocyst* 9 4 (44%) 3 (33%) 1 (33%) 2 (66%) 0 (0%)  2/2 

genotype 

           KOC/- (25%)  KOC/+ (25%)  +/- (25%)  +/+ (25%) 

p120ctnKOC/+ blastocyst 9 9 (100%) 9 (100%) 2 (22%) 1 (11%) 4 (44%) 2 (22%) 

X p120ctn+/- blastocyst 4 4 (100%) 4 (100%) 0 (0%) 1 (25%) 2 (50%) 1 (25%) 

genotype 

           KIC/- (25%)  KIC/+ (25%)  +/- (25%)  +/+ (25%) 

p120ctnKIC/+ blastocyst 8 8 (100%) 8 (100%) 3 (38%) 5 (63%) 0 (0%) 0 (0%) 

X p120ctn+/-                 

C57BL/6 blastocyst 6 6 (100%) 6 (100%)         

* pluripotin addition from day 3; nd, not done 
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We also tried to obtain p120ctn null (p120ctn-/-) ES cell lines. However, homozygous 

p120ctn null (p120ctn-/-) embryos die during early embryonic development (Davis and 

Reynolds, 2006; Elia et al., 2006). Since p120ctn-/- blastocysts appear morphologically normal 

(Pieters et al., in preperation), isolating ES cell lines with p120ctn-/- genotype should be 

feasible. p120ctn+/- intercrosses resulted in small numbers of embryos, but ES cells could still 

be derived with an efficiency of up to 100% (Table 5). From the embryos of p120ctn+/- 

intercrosses we isolated 10 ES cell lines, but no p120ctn-/- ES cell lines were identified by 

genotyping (Table 5). To exclude genotyping artefacts due to contamination by genomic 

DNA of wild-type MEFs, we performed immunostaining for p120ctn on all p120ctn+/- ES cell 

lines. All p120ctn+/- ES cells still expressed p120ctn (Fig. 4D; Table 5), which confirms that 

their genotypes were assigned correctly. This implies that p120ctn might be required for 

derivation and maintenance of ES cells, although more experiments may be performed in 

order to conclude this formally. All together, our modified pluripotin-based protocol enabled 

us to isolate more than 50 ES cell lines with an efficiency of up to 100%, but no homozygous 

p120ctn null ES cell lines were obtained. 

 

Generation and characterization of p120ctnKOC/- and p120ctnKIC/- ES cell lines  

 

Next, we generated mouse ES cell lines from blastocysts derived from the mating of 

p120ctnKOC/+ or p120ctnKIC/+ mice with p120ctn+/- mice. For both matings, the efficiency of 

mouse ES cell derivation was 100% and the genotypes of the isolated ES cells followed a 

Mendelian distribution (Table 5). This resulted in two p120ctnKOC/-, three p120ctnKIC/-, and the 

same numbers of littermate control ES cell lines (Table 1). Together, these data show that our 

optimized pluripotin-based protocol is very efficient (with success rates of up to 100%) and 

generates both transgenic and littermate control ES cell lines. Thus, our protocol makes it 

possible to set up experiments with minimal genetic variation. 
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DISCUSSION 

 

We describe a modified version of the protocols of Bryja et al. (2006b) and Yang et al. 

(2009). Our modified protocol enables easy and reproducible isolation of mouse ES cells from 

transgenic mice on a C57BL/6 background with an efficiency of up to 100%. With this 

protocol it should be possible, in theory, to isolate homozygous ES cell lines and littermate 

control ES lines from a single derivation. We combined the advantages of the two reported 

protocols: the ease, simplicity and reproducibility of the SR/FBS alteration protocol (Bryja et 

al., 2006b), and the protracted blastocyst outgrowth and the use of pluripotin in combination 

with LIF from the protocol of Yang et al. (2009). Our modified protocol yielded big, loosely 

attached, spherical outgrowths, which are easy to pick from a 12-well plate and can be readily 

dispersed in a single trypsinization step. Therefore, a sequential digestion procedure, as 

suggested by Yang et al. (2009) is not required. In addition, ES colonies could be established 

by us from both single cells and cell clumps which reduces the importance of the 

trypsinization step. The spherical outgrowths, which were formed with our protocol, were 

significantly bigger than outgrowths that were formed according to Yang et al. (2009). This 

resulted in a higher overall success rate of deriving mouse ES cell lines once the primary 

outgrowths were obtained compared to that of Yang et al. (2009) (98% and 85%, 

respectively). Once mouse ES cell lines are isolated, it is critical to keep them in an 

undifferentiated state. It can be argued that prolonged initial cultivation affects stemness. 

However, in our experience incubation of primary outgrowths with pluripotin for up to three 

weeks did not affect the ES cell derivation potential or ES cell characteristics such as 

morphology and Oct-4 positivity. In addition, using a transgenic Oct4-EGFP line (EGFP 

driven by the Oct4-promoter), Yang and colleagues (2009) showed EGFP expression for up to 

14 days in outgrowths from Oct4-EGFP blastocysts. The ICM outgrowths, which are formed 

via our modified protocol are morphologically distinct from classical ICM outgrowths, do not 

adhere well to the feeder layer, and can sustain growth in suspension (Fig. 3A). Culturing 

blastocysts the first two days without pluripotin enabled formation of classical ICM 

outgrowths, which stay firmly attached to the underlying feeder and trophectoderm layer after 

pluripotin administration (Fig. 3B). However, these classical ICM outgrowths are smaller (on 

day 12), harder to pick and trypsinize, and less efficient (33%) in establishing ES cell lines. 

Remarkably, pluripotin was present in the ES medium during the entire isolation procedure of 

Yang and colleagues (2009) but still resulted in classic ICM outgrowths. This discrepancy 



Efficient pluripotin-based derivation of Mouse ES cells 

 

222 

 

between our results and those of Yang and colleagues (2009) might be explained by the use of 

different ES cell media in which blastocysts are seeded. On the first two days, Yang and 

colleagues (2009) used FBS-ES cell medium (Table 4), which might contain factors that 

stimulate substrate attachment of blastocyst outgrowths in the presence of pluripotin. These 

factors are probably not present in the chemically defined SR-ES cell medium that we used. It 

has been reported that MEFs, unlike ES cells, fail to adhere to gelatin-coated dishes in the 

presence of SR-ES cell medium (Gibco, data sheet Cat. No. 10828). Together, these data 

suggest that pluripotin blocks substrate attachment. Such a block might have a growth 

promoting effect and result in the formation of bigger but loosely attached outgrowths. To 

conclude, we believe that pluripotin acts as a strong brake that together with LIF prevents 

differentiation in primary outgrowths for up to three weeks. This brake has to be released (by 

omitting pluripotin) for proper substrate attachment and mouse ES cell line isolation and 

propagation in LIF-containing ES cell medium.   

 

 

 

 

 

Figure 5. Pluripotin modulates stemness pathways and allows efficient ES cell 
isolation, possibly using only a limited amount of defined factors. (A) Different 
pathways are involved in maintaining self-renewal and differentiation during ES cell derivation 
and propagation. The leukemia inhibitory factor (LIF) activates STAT3, which can signal to the 
core transcription factor circuitry (including Oct-4, nanog and Sox2) via Klf4. Tbx3 can also 
activate the core transcription factors through the phosphatidylinositol 3 kinase (PI3K)–AKT 
pathway. Bone morphogenetic proteins (BMPs) induce expression of inhibitor of 
differentiation (Id) genes via SMADs and block mitogen-activated protein kinase (MAPK)-
mediated signaling. Fibroblast growth factor (FGF) signaling activates Ras and MAPK 
signaling, resulting in ES cell commitment and differentiation. Although inhibiting glycogen 
synthase kinase 3 (GSK3) leads to activation of the Wnt/β-catenin (βctn) pathway and 
increases ES cell derivation efficiency, its mode of action remains unclear. (B) Derivation of ES 
cells with an increasing number of defined medium constituents. (C) Derivation of ES cells 
with increasing efficiency. Alternation protocols switch between medium containing fetal 
bovine serum (FBS) (white) and medium containing serum replacement (SR) (pink). 2i: two 
small-molecule inhibitors; 3i: three inhibitors; CK1α: casein kinase 1α; DA: Dark Agouti; DSH: 
dishevelled; ERK: extracellular signal-related kinase; FGFR; F: Fischer 344; FGF receptor; GAP: 
GTPase-activating protein; GAP1: Ras GTPase-Activating Protein; GEF: guanine exchange 
factor; Grb2: growth factor receptor-bound protein 2; JAK: Janus kinase; Klf4: kruppel-like 
factor 4; LEF/TCF: T-cell factor/lymphoid enhancer factor; LIFR: LIF receptor; MEK: 
MAPK/ERK kinase; SD: Sprague-Dawley; SHP2: Src homology 2 domain-containing protein-
tyrosine phosphatase; STAT: signal transducer and activator of transcription. 
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How does pluripotin keep ICM outgrowths pluripotent while allowing long-lasting 

self-renewal? To gain mechanistic insight into how pluripotin works, we must identify the key 

signaling pathways involved in preserving stemness (Fig. 5A). Self-renewal of mouse cells 

largely depends on two key signaling molecules: LIF and bone morphogenic protein (BMP) 4. 

LIF, a cytokine belonging to the interleukin 6 family, blocks ES cell differentiation (Smith et 

al., 1988; Williams et al., 1988) and allows mouse ES cell isolation in the absence of MEFs, 

but it requires other serum factors (Nichols et al., 1990). LIF  binds to a membrane-bound 

gp130-LIF receptor complex consisting of a general signal transducer and a LIF-specific 

receptor, and it activates STAT3 signaling (Niwa et al., 1998). It is not clear how LIF signals 

to the core circuitry of  transcriptional regulators that govern pluripotency in ES cells, such as 

Oct-4 (Nichols et al., 1998), Nanog (Chambers et al., 2003; Mitsui et al., 2003) and Sox2 

(Avilion et al., 2003). But recent data show that LIF signals to the core transcriptional 

circuitry via Krüppel-like factor 4 (Klf4) and Tbx3. Both factors, however, are not directly 

associated with the maintenance of pluripotency (Niwa et al., 2009). LIF-mediated Jak/Stat3 

signaling induces Klf4 expression, while Oct4 induces Klf2 expression (Hall et al., 2009). 

Remarkably, Klf4 is also one of the four key factors that can convert a somatic differentiated 

cell into induced pluripotent stem cells (IPs) (Takahashi and Yamanaka, 2006). BMP4, on the 

other hand, induces expression of inhibitor of differentiation (Id) genes (Ying et al., 2003) and 

inhibits MAPK signaling (Qi et al., 2004). BMP4 and LIF are sufficient for maintaining self-

renewal of mouse ES cells in the absence of both feeder cells and serum (Ying et al., 2003).  

Additionally, the phosphatidylinositol 3-kinase (PI3K)–AKT signaling pathway and the 

Wnt/β-catenin pathway are also involved in ES cell self-renewal (Paling et al., 2004; Sato et 

al., 2004; Watanabe et al., 2006). Pluripotin, a small synthetic compound, also enables the 

propagation of undifferentiated mouse ES cells in the absence of LIF and MEFs and works by 

dual inhibition of RasGAP and ERK1 signaling (Fig. 4A) (Chen et al., 2006). RasGAP 

inhibition keeps Ras in its active GTP-bound form and probably stimulates PI3K-mediated 

self-renewal while blocking MEK-mediated differentiation (Chen et al., 2006). ERK-

mediated signaling is required for the development of trophoblast cells and primitive 

endoderm (Binetruy et al., 2007; Yang et al., 2006). Like MEK inhibition, pluripotin-

mediated ERK1 inhibition causes a proliferation defect in trophectoderm cells (Fig. 2B). In 

conclusion, pluripotin preserves stemness by activating the core transcription factor circuitry 

via Ras/PI3K signaling and blocks MEK-mediated differentiation.  
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One could divide ES cell derivation research in two categories, the Yin(g) and the 

Yang, in analogy to the Chinese symbol and with reference to the authors who contributed to 

each category. The Yin(g) stands for attempting to isolate genuine ES cell lines using the 

smallest possible panel of chemically defined medium components regardless of the 

derivation efficiency. Using this approach, ES cells were derived in the absence of MEFs 

(Nichols et al., 1990), serum (Ying et al., 2003) or external stimuli (Ying et al., 2008) (Fig. 

4B). This approach contributed to the unraveling of several stemness pathways. On the other 

hand, the Yang stands for isolating ES cell lines from different strains (including refractory 

strains) with the highest possible efficiency without paying attention to the medium 

constitution or underlying mechanism. Using this approach, the ES cell derivation efficiency 

for pure and transgenic C57BL/6 strains increased from less than 10% to about 20% (Cheng 

et al., 2004), to 50-75% (Bryja et al., 2006b), and to 100% for F1 strains (C57BL/6 transgenic 

x CD1) (Yang et al., 2009) (Fig. 4C). Here, we report the derivation of ES cells from 

C57BL/6 transgenics with a success rate of 100%. In addition, ES cell lines could be 

efficiently derived from refractory strains, such as NOD (Nichols et al., 2009) and NOD-scid 

(Yang et al., 2009), with an efficiency of 53% and 57%, respectively (Fig. 4C). This line of 

research provides user-friendly and highly efficient ES cell derivation protocols to the 

scientific community, enabling molecular analysis in recalcitrant strains and C57BL/6 

transgenics with embryonically lethal phenotypes. The Yin(g) and the Yang research branches 

can merge, as knowledge of stemness pathways can also result in efficient ES cell derivation 

from, for example, the use of LIF + 2i (Nichols et al., 2009). While our pluripotin-based ES 

cell derivation protocol initially focused on efficiency, it would be interesting to test 

pluripotin in a MEF- and serum-free environment. ES cells can be propagated under these 

conditions (Chen et al., 2006), but ES cell derivation was not tested. In summary, we describe 

an alternative, simplified, pluripotin-based protocol that allows derivation of ES cells from 

C57BL/6 transgenics with an efficiency of up to 100%. 
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ABSTRACT  

 

p120 catenin (p120ctn) is a versatile member of the armadillo family, and has different 

functions in different subcellular compartments. It stabilizes cadherins at the cell membrane, 

modulates RhoGTPase activity in the cytoplasm, and  regulates nuclear transcription. p120ctn 

is a part of the cadherin catenin complex, and its components localize to synapses and are 

involved in both pre- and post-synaptic development. Genetic ablation of p120ctn in the 

dorsal forebrain resulted in reduced spine and synapse densities along dendrites, decreased N-

cadherin levels and increased RhoA activity. Different p120ctn isoforms can be generated via 

alternative splicing, allowing translation initiation from four different start codons and 

incorporation of up to four alternatively spiced exons. The alternatively spliced exon C of 

p120ctn is highly expressed in brain, but homozygous p120ctn KOC or KIC embryos exhibit 

early lethal phenotypes. We combined a brain-specific p120ctn knockout allele with either a 

p120ctn KOC or KIC allele to generate mice with brains that exclusively express p120ctn 

transcripts without (p120ctnKOC/fl; Nes-Cre) or with (p120ctnKOC/fl; Nes-Cre) exon C. These 

mice showed discrete but different phenotypes. p120ctnKOC/fl; Nes-Cre mice exhibited 

aberrant morphology of the medial side of hippocampi and had a small reduction in total 

hippocampal volume. On the other hand, p120ctnKOC/fl; Nes-Cre mice displayed microcephaly 

and hippocampal cultures that were derived from them showed signs of fasciculation.  
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INTRODUCTION 

 

The formation of functional neuronal networks with synaptic contacts is established by 

sequential cellular events, such as the protrusion of filopodia from dendrites, contact between 

filopodia and axons, and maturation of filopodia into dendritic spines (Cohen-Cory, 2002).  

Dendritic spines are actin-rich protrusions that form the major postsynaptic sites of excitatory 

synaptic input. RhoGTPases regulate actin dynamics and allow spines to be highly motile 

structures. Aberrant spine distribution and morphology have been observed in many 

neurological disorders (Govek et al., 2005; Newey et al., 2005). 

p120ctn is a versatile armadillo protein and regulates cadherin turnover (Kowalczyk 

and Reynolds, 2004; Xiao et al., 2007), RhoGTPase activity (Anastasiadis, 2007) and 

transcriptional regulation (Daniel, 2007). p120ctn is a component of the adherens junctions, 

which are composed of classical cadherins, such as N-cadherin, and catenins, including α- 

catenin, β-catenin and p120ctn. Cadherins and catenins localize to synapses (Elste and 

Benson, 2006; Fannon and Colman, 1996; Uchida et al., 1996) and are important regulators of 

spine and synapse number and morphology (Abe et al., 2004; Bozdagi et al., 2004; Togashi et 

al., 2002). Neuronal systems with perturbed cadherins (Inoue and Sanes, 1997; Iwai et al., 

2002) or genetic deletion of catenins (Abe et al., 2004; Bamji et al., 2003) have all defects in 

either spine or synapse formation. p120ctn is expressed in rat brain (Chauvet et al., 2003) and 

in chick ciliary neurons (Rubio et al., 2005). During synapse maturation in chick ciliary 

neurons, p120ctn and β-catenin are removed from N-cadherin complexes and are replaced by 

presenilin 1 and plakoglobin (Rubio et al., 2005). Genetic inactivation of p120ctn in the dorsal 

forebrain resulted in reduced spine and synapse densities along dendrites, decreased N-

cadherin levels and increased RhoA activity (Elia et al., 2006). Interestingly, spine head width 

was dependent on its interaction with cadherins, whereas spine density was regulated by 

RhoA, independently of cadherin binding. 

p120ctn is part of a small subfamily containing besides itself also ARVCF, p0071 and 

δ-catenin (McCrea and Park, 2007).  δ-catenin is exclusively expressed in the nervous system 

(Kosik et al., 2005) and p120ctn and δ-catenin share similar features. Expression of p120ctn 

or δ-catenin both elicits dendritic-like branching (Abu-Elneel et al., 2008; Kim et al., 2002; 

Lu et al., 1999; Martinez et al., 2003; Reynolds et al., 1996) and both proteins are able to 

modulate RhoGTPase activity (Anastasiadis et al., 2000; Grosheva et al., 2001; Kim et al., 

2008a; Kim et al., 2008b; Noren et al., 2000). Genetic ablation of δ-catenin in mice results in 
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a mild cognitive phenotype (Israely et al., 2004) and in a reduced dendritic complexity in 

cultured hippocampal neurons (Arikkath et al., 2008).  

Different p120ctn isoforms can be generated via alternative splicing, allowing 

translation initiation from four different start codons and incorporation of up to four 

alternatively spiced exons  (Keirsebilck et al., 1998). So far, the relevance of these p120ctn 

isoforms in vivo is unknown. We generated mice harboring a knockout or a knockin of the 

alternatively spliced exon C of p120ctn, but homozygous p120ctnKOC/KOC of p120ctnKIC/KIC  

embryos die early during development (Pieters et al., in preperation). We found that the 

alternatively spiced exon C is highly expressed in brain and we devised a strategy allowing 

the analysis a knockout or a knockin of the alternatively used exon C of p120ctn in mouse 

brain. 
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MATERIAL AND METHODS  

 

Generating p120ctnfl/fl; Nes-Cre, p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; Nes-Cre mice  

Mice harboring a floxed region in the p120ctn gene (containing exon 3 till 8, including 

all four start codons) have been described (Davis and Reynolds, 2006). Crossing p120ctnfl/fl  

mice with mice expressing the Cre recombinase under control of the rat nestin (Nes-Cre) 

promoter (Tronche et al., 1999) resulted in p120ctnfl/+; Nes-Cre mice. These mice were 

crossed again with p120ctnfl/fl  mice to obtain p120ctnfl/fl ; Nes-Cre mice, which lack p120ctn 

specifically in the brain. In addition, p120ctnfl/fl ; Nes-Cre mice can be crossed with 

p120ctnKOC/+ and p120ctnKIC/+ mice (Pieters et al., in preperation) giving rise to p120ctnKOC/fl; 

Nes-Cre and p120ctnKIC/fl ; Nes-Cre mice, respectively (Table 2). Genotyping was performed 

according to (Pieters et al., in preperation). Mice were housed in individually ventilated cages 

either in an specific pathogen-free animal facility. All experiments on mice were conducted 

according to institutional, national, and European animal regulations. Animal protocols were 

approved by the ethics committee of Ghent University.  

 

Nissl staining, immunostaining and immunohistochemistry 

Brains were dissected from their skull and were washed several times in phosphate-

buffered saline (PBS), fixed overnight in 4% paraformaldehyde in PBS, embedded in paraffin 

wax and sectioned at 6 to 8 µm. Sections were deparaffinated using Histoclear II (two times 3 

min, National Diagnostics). A Nissl body is a large granular body (rough endoplasmatic 

rericulum) found in neurons. Nissl bodies can be visualized via a cresyl violet staining (Nissl 

staining), which labels extra-nuclear RNA present in the soma and dendrites of neurons. For 

histology, tissues sections were rehydrated and stained 30 min cresyl violet solution, 

consisting of 0,1% cresyl violet acetate (Sigma-Aldrich), 5,5% glacial acetic acid and 166 

mM Natrium acetate. For immunohistochemistry, tissue sections were rehydrated and 

pretreated with 0.3% H2O2 in methanol for 45 minutes. The sections were then transferred to 

10mM citrate buffer (pH 6.0) and the antigen was exposed in a Retriever (PickCell 

Laboratories, Amsterdam, The Netherlands). The sections were covered with blocking buffer 

(10% goat serum, 1% BSA in PBS) for 20 min and then incubated with appropriate antibodies 

(diluted in 1% BSA in PBS) overnight at 4°C. Staining was completed with a biotinylated 

secondary antibody (Dako, Glostrup,Denmark), avidin-peroxidase (Dako) and 3,3’-diamino-

benzidine (Biogenex, San Roman, CA). Coverslips with hippocampal cultures were fixed for 
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20 min in 4% paraformaldehyde in PHEM, composed of 120 mM PIPES (pH 7), 50 mM K-

HEPES (pH 7), 20 mM EGTA, 4 mM MgCl2 and 240 mM sucrose. The coverslips were 

washed 5 min in PBS, blocked 30 min with 3% BSA in PBS, permeabilized for 2 min with 

0.2% Triton-X100 in PBS, washed 5 min in PBS, incubated 2 h with primary antibody in 1% 

BSA in PBS, washed 5 min in PBS, incubated 1 h with secondary antibody, washed and 

mounted. The following antibodies were used. Mouse monoclonal anti-p120ctn (pp120, 

1/500, BD Transduction Laboratories), polyclonal rabbit anti-α-catenin (1/1000, Sigma), 

polyclonal rabbit anti-β-catenin (1/2000, Sigma), mouse monoclonal anti-βIII tubulin (1/3000, 

Promega), mouse monoclonal anti-Tau-1 (1/200, Chemicon-Millipore), rabbit polyclonal anti-

N-cadherin (1/500, Zymed), rabbit polyclonal pAbexC (1/20), rabbit polyclonal anti-Map2 

(1/200, Covance, New Jersey), phalloidin-Alexa488 (Molecular Probes). Secondary species-

specific Alexa-fluorochrome-conjugated antibodies were used at a dilution of 1/500 

(Molecular Probes).   

 

Hippocampal cultures 

Pregnant females were scarified and 16,5 dpc embryos were dissected and washed in 

sterile calcium- and magnesium-free Hanks' balanced salt solution (CMF-HBSS). Due to the 

heterogenic genotypes of the offspring, hippocampi from each embryo were dissected and 

processed separately. Hippocampi were transferred to 15 ml tubes containing 0.9 ml CMF-

HBSS and were incubated with 0.1 ml 2.5% trypsin (10x) for 15 min at 37°C. After three 

washes with 1 ml CMF-HBSS, the hippocampi were triturated with a fire polished Pasteur 

pipette in the presence of 1 ml plating medium, composed of MEM with Earle’s salts (Gibco), 

10% fetal bovine serum, 10 mM sodium pyruvate (Gibco), 0.6% glucose, HEPES 

(Invitrogen), 0.5 mM Glutamine (Invitrogen) and 12.5 µM glutamate (Sigma-Aldrich). 

Defined numbers (1 x 105) of cells were seeded in plating medium in 3.5 cm dishes containing 

poly-D-lysine (PDL) and laminin-coated coverslips. After 3 h of incubation at 37°C in 5% 

CO2, the plating medium is replaced by glia-conditioned growth medium, composed of 

Neurobasal (Gibco), B27 (Gibco), 0.5 mM Glutamine (Invitrogen) and 12.5 µM glutamate 

(Sigma-Aldrich). At day 4, 7, 14 and 21 half of the medium is replaced by fresh glia-

conditioned growth media without glutamate. 
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RT-PCR and Q-PCR 

For RT-PCR analysis of mouse tissues, RNA was prepared from different tissues via 

the RNAeasy (Qiagen) method. One microgram of total RNA was treated with the RQ1 

RNase-free DNase according to the manufacturer's instructions (Promega), and treated RNA 

samples were desalted on Microcon-100 spin columns (Milipore, Bedford, USA). cDNA was 

prepared with Superscript II reverse transcriptase according to the manufacturer's instructions 

(Invitrogen). Q- PCR mixes contained 20 ng template cDNA, LightCycler 480 SYBR Green I 

Mastermix (Roche Diagnostics GmbH, Mannheim, Germany) and 300 nM forward and 

reverse primers. Reactions were performed on a LightCycler 480 (Roche Diagnostics) using 

the following protocol: incubation at 95°C for 5 min, then 50 cycles at 95°C for 10 sec, 60°C 

for 30 sec, and 72°C for 1 sec. Primers for RT-PCR and Q-PCR are listed in Table 1. Primer 

sequences for the reference genes are deposited in RTPrimerDB, a public database for real-

time PCR primers (http://medgen.ugent.be/rtprimerdb/).  

 
Table 1. Primers for RT-PCR and Q-PCR 

allele primers for RT-PCR size (bp) 

p120ctn transcripts with  forward 5'-TTTGCCTCCTCCGGAACTTATCA-3' (primer in exon 10) 208 (with exon C) 

or without exon C reverse 5'-CTTTTAGGGAAATCCACTGTATCA-3 (primer in exon 12) 190 (no exon C) 

GAPDH forward 5'-ACCACAGTCCATGCCATCAC -3' 470 

  reverse 5'-TCCACCACCCTGTTGCTGTA-3   

allele primers for Q-PCR size (bp) 

p120ctn exon 10-12 boundry forward 5'-ATCCCACAGGCAGAGCGTTA-3' 106 

 

reverse 5'-GCTTTTTCCCTTTGCCCTTCT-3 

 p120ctn exon 11-12 boundry forward 5'-AGGGCAAAGATGAGTGGTTCTC-3',  81 

 

reverse 5'-TTCTTTTAGGGAAATCCACTGTATCA-3 

 p120ctn exon 9-10 boundry forward 5'-AGACAGTAAGCTTGTGGAGAATTGTG-3',  101 

  reverse 5'-GAAGGGCCTCCTGGTAACG-3   

 
 
Transfection of hippocampal cultures 

Hippocampal cultures in 3.5 cm dishes were transfected on day in vitro (DIV) 8 or 11 

with the Effectene transfection kit (Qiagen). We used transfection conditions optimized for rat 

hippocampal neurons. In brief, a DNA mix, consisting of 0.5 µg pmaxEGFP (Amaxa), 1.6 µl 

enhancer (Qiagen) and 100 µl EC buffer (Qiagen) was briefly mixed (vortex 1 sec) and 

incubated for 5 min at room temperature. The DNA mix was supplemented with 2 µ Effectene 

(Qiagen), mixed briefly (vortex 10 sec) and incubated for 10 min at room temperature. The 

transfection mixture was transferred in 0.6 ml growth medium to the 3.5 cm dishes containing 

1.6 ml glia conditioned growth medium. 
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Western blot analysis 

Lysates from PBS-perfused brains were made with Laemmli buffer (Laemmli, 1970), 

mixed, and boiled for 5 min. Proteins were separated by SDS-PAGE on a 8% or 12% 

polyacrylamide gel, electroblotted onto polyvinylidene fluoride (PVDF) membranes 

(Millipore), and incubated with antibodies. Detection was performed by NBT/BCIP (Zymed 

Laboratories) or by an Odyssey infrared imaging system.  

 

RhoGTPase Activity assay 

RhoA activity was determined by a G-LISA kit (Cytoskeleton) according to the 

manufacturer’s instructions. Alternatively, RhoA and Rac1 activity were determined by 

affinity precipitations (Ren et al., 1999). GTP-bound RhoA and GTP-bound Rac1 were 

affinity purified from brain or hippocampal lysates using glutathione beads coated with GST 

fusions of the RhoA binding domain of Rhotekin and the Rac1 binding domain of PAK, 

respectively. Bound proteins were resolved on 12% SDS-PAGE, after which rabbit polyclonal 

anti-RhoA (1/200, Santa Cruz) and mouse monoclonal anti-Rac1 (1/1000; upstate) antibodies 

were used to quantify active protein quantities. Whole brain or hippocampal lysates were 

fractionated by SDS-PAGE and blotted with the same antibodies to determine total amount of 

RhoA and Rac1. Detection was performed by an Odyssey infrared imaging system 
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RESULTS AND DISCUSSION 

 

p120ctn exon C is highly expressed in mouse brain 

 

The alternatively spliced exon C was first identified in human p120ctn transcripts and 

is highly expressed in human fetal brain, but is only a minor fraction of the mRNA pool in 

other tissues and cell lines (Keirsebilck et al., 1998). The sequence of human and murine 

p120ctn exon C is identical but no expression data exist for murine exon C. Therefore we 

analyzed the expression of p120ctn transcripts with or without exon C in a panel of wild-type 

CD1 mouse organs by RT-PCR (Fig. 1A) or by Q-PCR (Figs. 1C-D). Similar to the human 

situation, exon C was highly expressed in mouse brain (Figs. 1A,B). In addition, exon C-

containing p120ctn transcripts were found in heart, muscle and testis, which exhibit a high 

degree of exon C inclusion in their p120ctn transcripts (Fig. 1D). All tissues with a high 

expression of exon C, except for muscle, showed also expression of exon C-encoded amino 

acids on the protein level (Fig. 1E, bottom). The pp120 antibody has a C-terminal epitope and 

recognizes all p120ctn isoforms. Brain, heart and testis expressed predominantly p120ctn 

isoform 1, liver expressed predominantly p120ctn isoform 3 and in lung both long and short 

p120ctn isoforms are equally expressed (Fig. 1E, top). The pAbexC antibody was generated 

against a peptide containing the exon C-encoded amino acids and specifically recognizes 

p120ctn isoform C (Pieters et al., in preperation). The exon C-encoded amino acids were 

detected in long p120ctn isoforms from brain, heart, lung and testis (Fig. 1E, bottom) and to a 

much lesser extent in short p120ctn isoforms form liver, lung and testis. To conclude, exon C 

of p120ctn and its corresponding amino acids are highly abundant in mouse brain. 

  

Brain-specific p120ctn knockout mice are viable 

 

Because exon C of p120ctn is highly expressed in brain, we wanted to investigate the 

effect of a knockout or knockin of exon C in brain. However the constitutive knockout of 

exon C (p120ctn KOC) and knockin of exon C (p120ctn KIC) in mice, shows an early 

developmental defect before brain formation (Pieters et al., in preperation). Therefore, we 

created a strategy to combine an constitutive p120ctn KOC or KIC allele with a brain-specific 

p120ctn ablation (Figs. 9A and 14A). To generate a brain-specific p120ctn knockout 

(p120ctnfl/fl ; Nes-Cre) mice, floxed p120ctn mice were crossed with mice expressing the Cre-
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recombinase under the control of the rat nestin promoter (Davis and Reynolds, 2006; Tronche 

et al., 1999) (Fig. 2A).  

 

 

 

 

Figure 1. p120ctn exon C is highly expressed in brain. (A) RT-PCR for p120ctn transcripts 
with and without exon C in wild-type mouse tissues. GAPDH acts as a loading control. Q-RT-
PCR for p120ctn transcripts with (B) or without exon C (C) or for all p120ctn transcripts (the 
proportion of exon C inclusion and exclusion is indicated) (D) in wild-type mouse tissues.  Q-
RT-PCR results were normalized with the expression of two reference genes TBP and B2M. (E) 
Immunoblot of lysates of wild-type mouse tissues detected with antibodies against all p120ctn 
isoforms (pp120), p120ctn isoform C (pAbexC) or actin (loading control). p120ctn 1: p120ctn 
isoform 1, p120ctn 3: p120ctn isoform 3. The asterisk indicates an aspecific band. 
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Figure 2. p120ctn-deficient brains are normal. (A) Diagram of brain-specific p120ctn knock 
out (p120ctnfl/fl; Nes-Cre) mice. Floxed p120ctn mice have loxP sites flanking a genomic region 
containing exons 3 to 8 (encoding for all 4 translation initiation sites). Cre is expressed  under 
the control of the Nestin promoter, allowing recombination specifically in the brain. (B) 
Graphic depicting the brain to body ratio of control and p120ctnfl/fl; Nes-Cre mice. (C) Brains of 
control and p120ctnfl/fl; Nes-Cre mice. (D) Nissl-stained paraffin sections of control and 
p120ctnfl/fl; Nes-Cre brains. Black and white scale bar: 400 µm, purple scale bar: 50 µm.  

 

In p120ctnfl/fl ; Nes-Cre mice, the Cre-recombinase is expressed in both neuronal and 

glial precursors resulting in a p120ctn knockout in almost the entire brain, whereas the emx-1 

Cre only ablates p120ctn in the dorsal forebrain (Elia et al., 2006; Gorski et al., 2002).  

Brain-specific p120ctn knockout mice are viable and fertile and exhibit a normal brain to 

body ratio (Fig. 2B). The p120ctn-deficient brains are macroscopically (Fig. 2C) and 

microscopically (Fig. 2D) indistinguishable from littermate controls. Immunohistochemical 

analysis reveals that p120ctn is depleted from the cerebellum, the hippocampus and the 

cortex, but p120ctn expression persists in glomerular layer of the olfactory bulb (Fig. 3A,B). 

In contrast, rat adult olfactory bulbs do not show strong staining for p120ctn in the glomerular 

layer (Chauvet et al., 2003). 
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Figure 3. p120ctn immunohistochemistry on sagittal sections of p120ctnfl/fl; Nes-Cre and 
contol brains at low (A) and high magnification (B). Inset: negative control, treated only with 
secondary antibody. Black and white scale bar: 400 µm, purple scale bar: 50 µm. 
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Sustained N-cadherin levels in p120ctn-deficient brains  

 

Brain lysates from p120ctnfl/fl ; Nes-Cre and control mice were analyzed by 

immunoblotting and confirmed the loss of p120ctn protein in knockout brains (Fig. 4A). 

p120ctn has been shown to stabilize membrane-localized classical cadherins in vitro (Davis et 

al., 2003; Xiao et al., 2003) and in vivo (Davis and Reynolds, 2006; Perez-Moreno et al., 

2006; Smalley-Freed et al., 2010). To determine if absence of p120ctn also reduced cadherin 

levels in the brain, we examined expression levels of N-cadherin in total brain lysates of 

control and p120ctnfl/fl ; Nes-Cre mice.  

 
 

Figure 4. Sustained N-cadherin levels in p120ctnfl/fl; Nes-Cre brains. (A) Immunobotting 
of lysates from control and p120ctnfl/fl; Nes-Cre brains with antibodies against p120ctn, β-
catenin, N-cadherin and α-catenin. Actin acts as a loading control. Quantifications for p120ctn 
and N-cadherin are depicted on the right. (B) N-cadherin immunohistochemistry on sagittal 
sections of p120ctnfl/fl; Nes-Cre and contol brains. Inset: negative control, treated only with 
secondary antibody. Black scale bar: 400 µm, purple scale bar: 50 µm. 

 



p120ctn KOC and KIC in the brain  
 

246 
 

 

However, p120ctn knockout brains show only a 10% to 35% reduction in N-cadherin 

expression levels (Figs. 4A and 12), which is comparable to the 32% reduction of N-cadherin 

that is seen in hippocampal lysates from dorsal forebrain-specific p120ctn knockout mice 

(Elia et al., 2006). Furthermore, immunohistochemical analysis shows a similar expression 

pattern for N-cadherin in brain sections of control and p120ctnfl/fl ; Nes-Cre mice (Fig. 4B). 

The sustained N-cadherin expression in brain might be due to functional redundancy of δ-

catenin, a neuronal-specific p120ctn family member which is also implicated in stabilization 

of N-cadherin on the cell surface (Israely et al., 2004). Consistent with Elia et al. (2006), no 

significant difference in expression of α- and β-catenin was observed in control and p120ctn 

knockout brains (Fig. 4A).  

 

 

Increased RhoA activity in p120ctn-deficient brains  

 

RhoGTPases are biochemical switches that alternate between an active (GTP-bound) 

state and an inactive (GDP-bound) state. p120ctn has been shown to alter RhoGTPase 

activity. Overexpression of p120ctn isoform 1, which is predominantly expressed in brain, 

results in inhibition of RhoA activity and activates Rac1 and Cdc42 (Anastasiadis et al., 2000; 

Grosheva et al., 2001; Noren et al., 2000). Genetic of RNAi-mediated depletion of p120ctn 

causes increased RhoA activation and inhibits Rac1 activity (Elia et al., 2006; Perez-Moreno 

et al., 2006; Yanagisawa and Anastasiadis, 2006). To determine whether the absence of 

p120ctn affects the RhoAGTPase activity in brain, we performed affinity precipitations to 

measure RhoA and Rac1 activity (Ren et al., 1999). GST-fusion proteins containing the RhoA 

binding domain of rhotekin (GST-RBD) or the Rac1 binding domain of PAK (GST-PBD) 

were used to isolate active RhoA and Rac1, respectively. The active RhoGTPase fraction was 

then normalized to the total level of each protein. In agreement with previously published 

work, increased RhoA activity was observed in total brain lysates of p120ctnfl/fl ; Nes-Cre 

mice (Figs. 5A, B) (Elia et al., 2006), however this increase in RhoA activity was not 

observed in all experiments (Fig. 13E). Decreased Rac1 activity was also observed in 

hippocampal lysates from dorsal forebrain-specific p120ctn knockout mice (Elia et al., 2006). 

In contrast, no difference in Rac1 activity was observed in lysates from p120ctn-deficient and 

control brains (Figs. 5C, D and 13C, D).  
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Figure 5. Increased RhoA activity in p120ctnfl/fl; Nes-Cre brains. (A) Active and total RhoA 
levels in control and in p120ctnfl/fl; Nes-Cre brains. (B) Active RhoA levels were normalized 
against total amounts of RhoA. (C) Active and total Rac1 levels in control and in p120ctnfl/fl; 
Nes-Cre brains. (D) Active Rac1 levels were normalized against total amounts of Rac1.  

 

 

NestinCre transgenic females and males show premature recombination  

 

Routine genotyping of litters derived from matings with second generation p120ctnfl/+; 

Nes-Cre females revealed recombination events in tail genomic DNA (Table 2). Two different 

sets of primers are able to detect the floxed p120ctn allele (Fig. 6A, blue and red primer sets) 

and one set of primers can identify Cre-mediated excision of the floxed DNA fragment (Fig. 

6A, blue forward primer and red reverse primer).  PCR is very sensitive and it can detect a 

single recombination event in a single cell. On the other hand, if recombination occurred in all 

cells of a tissue than we can no longer detect the floxed p120ctn allele via PCR (Fig. 6A, blue 

primers).  
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Table 2. Premature recombination in offspring derived from matings with female p120ctn floxed Nes-
Cre mice 

Genotyping offspring from  ♀ p120ctnfl/+; Nes-Cre x ♂ p120ctnfl/fl mating 
fl/fl; Nes-Cre (25%) fl/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

22 (19,1%) 29 (25,2%) 35 (30,4%) 29 (25,2%) 115 
  3/4   3/9   6/6   0/10   6/16  tail 

            

Genotyping offspring from ♀ p120ctnfl/fl; Nes-Cre x ♂ p120ctnfl/fl mating 
fl/fl; Nes-Cre (50%) fl/fl (50%) total recombination     

15 (44,1%) 19 (55,9%) 34 
  16/16   4/8   20/24  tail 

  1/1   1/1   2/2  tail(skin) 

  1/1   1/1   2/2  tail(spine) 

  1/1   1/1   2/2  ear 
  1/1   1/1   2/2  toe 

  3/3   3/3   6/6  brain (Ectoderm) 

  3/3   3/3   6/6  liver (Endoderm) 

  1/1   1/1   2/2  kidney (Mesoderm) 
  1/1   1/1   2/2  lung (Endoderm) 

            

Genotyping offspring from ♀ p120ctnfl/+; Nes-Cre x ♂ p120ctnKOC/+ mating 
KOC/fl; Nes-Cre (12,5%) KOC/fl (12,5%) KOC/+; Nes-Cre (12,5%) KOC/+ (12,5%) total recombination 

0 (0,0%) 2 (3,2%) 15 (24,2%) 22 (35,5%) 
    1/1   1/2   1/3    tail 

fl/+; Nes-Cre (12,5%) fl/+ (12,5%) +/+; Nes-Cre (12,5%) +/+ (12,5%)   recombination 

1 (1,6%) 0 (0,0%) 9 (14,5%) 10 (21,0%) 62 

  0/1   1/2   4/9  tail 

            

Genotyping offspring from ♀ p120ctnfl/fl; Nes-Cre x ♂ p120ctnKOC/+ mating 
KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

6 (20,7%) 11 (37,9%) 6 (20,7%) 6 (20,7%) 29 

  6/6   11/11   6/6   4/6   27/29  tail 

            

Genotyping offspring from ♀ p120ctnfl/+; Nes-Cre x ♂ p120ctnKIC/+ mating 
KIC/fl; Nes-Cre (12,5%) KIC/fl (12,5%) KIC/+; Nes-Cre (12,5%) KIC/+ (12,5%) total recombination 

1 (2,9%) 2 (5,7%) 12 (34,5%) 22 (35,5%) 

  1/1   0/1        tail 

fl/+; Nes-Cre (12,5%) fl/+ (12,5%) +/+; Nes-Cre (12,5%) +/+ (12,5%)   recombination 

1 (2,9%) 2 (5,7%) 8 (22,9%) 6 (17,1%) 35 

  1/1   1/2   3/5  tail 
            

Genotyping offspring from ♀ p120ctnfl/fl; Nes-Cre x ♂ p120ctnKIC/+ mating 
KIC/fl; Nes-Cre (25%) KIC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

1 (8,3%) 4 (33,3%) 1 (8,3%) 6 (50,0%) 12 

  1/1   3/3   1/1   5/5   10/10  tail(skin) 

  1/1   1/1   1/1   3/3  tail(spine) 
  1/1   1/1   1/1   3/3  ear 

  1/1   1/1   1/1   3/3  toe 

  1/1   1/1   1/1   3/3  brain 

  1/1   1/1   1/1   3/3  liver 

 

So, via PCR we can detect single or complete recombination events, however, via PCR we 

can not determine the degree of recombination and the corresponding loss of p120ctn protein. 

Normally we expect only recombination in brain cells, and not in tail cells, from p120ctnfl/fl ; 

Nes-Cre mice, which express the Cre-recombinase from the Nestin promoter. 
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Figure 6. Premature recombination in p120ctn floxed Nes-Cre female and males. (A) 
PCR strategy to detect the floxed p120ctn allele (blue and red primer sets) and the recombined 
p120ctn allele (blue forward primer and red reverse primer). (B) Diagram depicting premature 
recombination when using Nes-Cre females. Diploid oocytes contain Cre-protein in their 
cytoplasm, resulting in premature recombination after fertilization with sperm that contains 
the floxed p120ctn allele. (C) Diagram depicting premature recombination of the floxed 
p120ctn allele during gametogenesis in Nes-Cre males.  
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However, recombination occurred in tail DNA from offspring, descending from a 

second generation Nes-Cre female, and recombination was even observed in tail DNA of 

progeny that did not have the Nes-Cre allele (Table 2). Recombination was also observed in 

genomic DNA from organs originating from all three germ layers (Table 2). This strange 

phenomenon has been described for another Cre-line (Lallemand et al., 1998) and can be 

explained by the presence of Cre-protein in diploid oocytes (Fig. 6B). During meiosis the 

second polar body is emitted from the haploid oocyte which contains Cre-protein in its 

cytoplasm. The female pronucleus  can contain either a wild-type or a floxed p120ctn allele 

and possibly the Cre-transgene. After fertilization, the male and female pronuclei undergo 

DNA duplication and their nuclear membranes break down. From one-cell stage embryos on, 

premature recombination events can occur even though the embryo does not contain the Cre-

transgene (Fig. 6B). In the first generation offspring the premature recombination will be 

mosaic and the degree of mosaisicm depends on the embryonic stage in which premature 

recombination occurs. In the second generation offspring the recombined allele can be 

transmitted resulting in mice with a uniform tissue-wide recombination. Using floxed p120ctn 

Nes-Cre males is not a good alternative, since these mice express the Cre-recombinase during 

gametogenesis causing premature excision of floxed DNA fragments (Fig. 6C) (Table 3) 

(Haigh et al., 2003).  

 

Table 3. Premature recombination in offspring derived from matings with male p120ctn floxed Nes-
Cre mice 

Genotyping offspring from ♀ p120ctnfl/fl x ♂ p120ctnfl/+; Nes-Cre mating 
fl/fl; Nes-Cre (25%) fl/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

43 (24,7%) 47 (27,0%) 45 (25,8%) 39 (22,4%) 174 

  16/16   4/6   5/5   1/3   26/30  tail 

  2/2   0/2   1/1   0/1   3/6  brain 

  1/1   0/2   0/1   1/4  liver 

  1/1   0/2   0/1   1/4  kidney 

            

Genotyping offspring from ♀ p120ctnfl/fl x ♂ p120ctnfl/fl; Nes-Cre mating 
fl/fl; Nes-Cre (50%) fl/fl (50%) total recombination     

32 (56,1%) 25 (43,9%) 57 
  4/4   2/5   6/9  tail 

  2/2   1/1   3/3  brain 

            

Genotyping offspring from ♀ p120ctnKOC/+  x ♂ p120ctnfl/fl; Nes-Cre mating 
KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

24 (20,7%) 22 (23,7%) 16 (17,2%) 31 (33,3%) 93 

  7/8   4/5   4/4   3/4   18/21  tail 

  2/2   0/1   1/1   1/2   4/6  brain 

Genotyping offspring from ♀ p120ctnKIC/+ x ♂ p120ctnfl/fl; Nes-Cre mating 
KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

15 (27,8%) 9 (16,7%) 17 (31,5%) 13 (24,1%) 54 

  2/4   2/4   3/3   3/3   10/14  tail 

  4/4   4/4   1/1   1/1   10/10  brain 
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To address what the consequences are of these premature recombination events in 

tissues different from brain, protein lysates and tissue sections were made from organs from 

either p120ctnfl/fl ; Nes-Cre and control mice. Crossing a p120ctnfl/fl ; Nes-Cre female with a 

p120ctnfl/fl ; male gave rise to offspring that had undergone premature recombination that 

could be detected on genomic level in various tissues. Western blotting revealed that p120ctn 

expression was lost in brain and kidney from p120ctnfl/fl ; Nes-Cre mice (Fig. 7A). However 

these mice expressed similar levels of p120ctn in liver compared to control mice (Fig. 7B). 

Although recombination events were detected in genomic DNA from brain, kidney and liver 

of control mice (p120ctnfl/fl ;), they still express fairly normal p120ctn protein in these tissues 

(Figs. 7A,B). However in these experiments we lack a proper wild-type control, indicative for 

normal p120ctn expression. Matings with a p120ctnfl/+; Nes-Cre males gave rise to a 

p120ctnfl/fl ; Nes-Cre offspring, which lost p120ctn expression in brain, but exhibited also 

diminished p120ctn protein in kidney and liver compared to control mice (Fig. 7C). However, 

no decrease in p120ctn expression was observed for these mice via immunohistochemistry 

(Fig. 7D). p120ctn protein was also diminished in kidney, but not in brain, from control mice 

that did not contain the Cre-transgene (Fig. 7E). To conclude, recombination events detected 

by PCR do not seem to have a large impact on protein level of p120ctn in control mice, 

however, p120ctn is often downregulated in organs different from brain in p120ctnfl/fl ; mice. 
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Figure 7. Effect of premature recombination on p120ctn protein level. (A,B) p120ctn 
expression in different organs of control and p120ctnfl/fl; Nes-Cre mice, descending from a 
mating between a p120ctnfl/fl; Nes-Cre female with a p120ctnfl/fl; male. (C-E) p120ctn expression 
in different organs of control and p120ctnfl/fl; Nes-Cre mice, descending from a mating between 
a p120ctnfl/+; Nes-Cre male with a p120ctnfl/fl; female.  Immunoblotting (A-C, E) and 
immunohistochemistry (D) using an antibody that recognizes all p120ctn isoforms (pp120). 
Actin acts as a loading control.  It is mentioned if recombination (Rec) was detected on 
genomic DNA by PCR. Scale bar: 50 µm. 
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Revised mating strategy to obtain p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; Nes-Cre 

mice  

 

To generate mice that never incorporate exon C in their p120ctn transcripts, brain-

specific p120ctn knockout (p120ctnfl/fl ; Nes-Cre) were mated with p120ctnKOC/+ mice. 

However, as mentioned above, premature recombination was observed in matings with 

p120ctnfl/fl ; Nes-Cre mice, resulting in a mozaic instead of a brain specific p120ctn deletion 

(Tables 2, 3). To avoid this, a new strategy was designed to prevent this premature 

recombination. In this strategy the Cre-transgene was combined with the p120ctn KOC allele, 

which has only one loxP site (the floxed selection cassette has already been removed) and 

therefore is not prone to premature recombination in gametes (Fig. 8). p120ctnKOC/+ Nes-Cre 

males produce sperm, which can only carry very few Cre-proteins in their small cytoplasmatic 

compartment. Therefore there is only a low probability of premature recombination after 

fertilization of oocytes containing a floxed p120ctn allele with sperm that contains both 

p120ctn KOC allele and the Cre-transgene (Fig. 8B). On the other hand, oocytes for 

p120ctnKOC/+ Nes-Cre females can still accumulate a lot of Cre-protein in their cytoplasm, 

which can cause premature recombination events after fertilization  with a sperm cell that 

contains a floxed p120ctn allele (Fig. 8A). Indeed, recombination events can be observed in 

genomic tail DNA of offspring bearing the Cre-transgene, if the p120ctn KOC Nes-Cre allele 

was transferred by the mother (Table 4). No recombination events were observed in genomic 

tail DNA of offspring descending from a p120ctnKOC/fl; male (Table 4). 

 

Table 4. Strategy to prevent premature recombination in p120ctnKOC/fl; Nes-Cre mice 
Genotyping offspring from ♀ Nes-Cre x ♂ p120ctnKOC/+ mating 

KOC/+; Nes-Cre (25%) KOC/+ (25%) +/+; Nes-Cre (25%) +/+ (25%) total recombination 

23 (23,7%) 19 (19,6%) 24 (24,7%) 31 (32,0%) 97 

  0/2   0/2   0/5   0/9  tail 

            

Genotyping offspring from ♀ p120ctnKOC/+; Nes-Cre x ♂ p120ctnfl/fl mating 
KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

9 (4,9%) 81 (40,0%) 67 (36,4%) 27 (14,7%) 184 

  3/3   0/5   9/9   0/4  12/21  tail 
  2/2   2/2   4/4  brain 

            

Genotyping offspring from ♀ p120ctnfl/fl x ♂ p120ctnKOC/+; Nes-Cre mating 
KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

4 (4,8%) 40 (48,2%) 37 (44,6%) 2 (2,4%) 83 

  0/3   0/3   0/3   0/2   0/11  tail 

 

 



p120ctn KOC and KIC in the brain  
 

254 
 

 

 

Figure 8. Strategy to prevent premature recombination in p120ctnKOC/fl; Nes-Cre and 
p120ctnKIC/fl; mice. Combining the p120ctn KOC allele (has only one loxP site) with the Cre-
transgene prevents premature during gametogenesis. (A) p120ctnKOC/+; Nes-Cre females have a 
high probability for premature recombination in their offspring because the huge storage 
capacity for Cre-protein in the cytoplasm of their oocytes. (B) p120ctnKOC/+; Nes-Cre males have 
a low probability for premature recombination in their offspring because sperm has only a 
small cytoplasmic compartment and a very limited storage capacity for Cre-protein.  

 

 

Premature recombination was also observed in offspring from matings between 

p120ctnfl/fl ; Nes-Cre mice and p120ctnKIC/+ mice (Tables 2, 3). A similar strategy was 

employed to avoid premature recombination. The Cre-transgene was transferred along with 

the p120ctn KIC allele, which also has only one loxP site (the floxed selection cassette has 

already been removed). When p120ctnKIC/+ Nes-Cre females were crossed to p120ctnfl/fl ; 
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males, recombination events could still be detected in genomic DNA from tail from offspring 

containing the Cre-recombinase (Table 5). However, control mice did not have any 

recombination in genomic DNA from tail and brain, indicating that these controls are 

‘genetically clean’.  

 

Table 5. Strategy to prevent premature recombination in p120ctnKIC/fl; Nes-Cre mice 

Genotyping offspring from ♀ p120ctnKIC/+ x ♂ Nes-Cre mating 
KIC/+; Nes-Cre (25%) KIC/+ (25%) +/+; Nes-Cre (25%) +/+ (25%) total recombination 

21 (42,2%) 21 (42,2%) 6 (11,8%) 3 (5,9%) 51 

  0/5   0/3   0/3   0/3   0/14  tail 
            

Genotyping offspring from ♀ p120ctnKIC/+; Nes-Cre x ♂ p120ctnfl/fl mating 
KIC/fl; Nes-Cre (25%) KIC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

24 (25,3,6%) 21 (22,1%) 20 (21,1%) 30 (31,6,5%) 95 
  4/4   0/5   4/4   0/5   8/18  tail 

  3/3   0/3   3/6 brain 

 

 

To conclude, premature recombination is prevented during gametogenesis by 

combining the p120ctn KOC or p120ctn KIC allele (contain only one loxP site each) with the 

Cre-transgene. Furthermore, p120ctnKOC/+ Nes-Cre or p120ctnKIC/+ Nes-Cre males have to be 

crossed with p120ctnfl/fl ; females to obtain offspring with a brain-specific p120ctn knockout in 

one allele and exclusive expression of  p120ctn transcripts without (KOC) or with exon C 

(KIC), respectively, from the other allele. 

 

p120ctnKOC/fl; Nes-Cre hippocampi display discrete medial abnormalities 

 

p120ctnKOC/fl; Nes-Cre mice combine a constitutive knockout of exon C of p120ctn 

with a brain-specific knockout of all p120ctn isoforms (Fig. 9A). These mice were viable and 

had normal brains, which were macroscopically indistinguishable from control brains (Figs. 

10B,C). Detailed histological analysis revealed mild abnormalities in the medial side of both 

hippocampi of p120ctnKOC/fl; Nes-Cre mice (n=4) (Fig. 10A). This phenotype was also 

obvious in four-week-old mice. For an accurate comparison between control and 

p120ctnKOC/fl; Nes-Cre sections, similar sagittal planes were selected using a reference atlas 

(Allan brain atlas, http://mouse.brain-map.org/atlas/ARA/Sagittal/browser.html), and 

confirmed that the hippocampal abnormalities were restricted to the medial side (Fig. 11A,B). 

To get a global view on this medial defect in hippocampi, MRI analysis was performed on 

one p120ctnKOC/fl; Nes-Cre and one control mouse.  
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Figure 9. p120ctnKOC/fl; Nes-Cre mice have normal brain. (A) Diagram of p120ctnKOC/fl; Nes-
Cre mice, containing a constitutive knockout of exon C of p120ctn and a brain-specific p120ctn 
knockout allele. (B) Graphic depicting the brain to body ratio of control and p120ctnKOC/fl; Nes-
Cre mice. (C) Brains of control and p120ctnKOC/fl; Nes-Cre mice. 

 

 

 

Figure 10. Histology and p120ctn immunohistochemistry for p120ctnKOC/fl; Nes-Cre and 
p120ctnKIC/fl; Nes-Cre brains. Nissl staining (A) and p120ctn immunohistochemistry (B) of 
sagittal brain sections of control, p120ctnfl/fl; Nes-Cre, p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; 
Nes-Cre mice. Scale bar: 400 µm.  
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Figure 11. Aberrant morphology in p120ctnKOC/fl; Nes-Cre hippocampi. (A, B) Nissl 
staining of brain sections from control and  p120ctnKOC/fl; Nes-Cre mice. Medial (A) and more 
lateral (B) sagittal sections were analyzed. Similar sagittal planes were selected based on a 
reference atlas (Allan brain atlas, http://mouse.brain-map.org/atlas/ARA/Sagittal/browser.html). (C-
D) MRI-analysis of brains and hippocampi  from control (D) and  p120ctnKOC/fl; Nes-Cre mice 
(C,E). Top view of brain and hippocampi of a p120ctnKOC/fl; Nes-Cre mouse and a front view of 
hippocampi alone (inset). Side view from the brains and hippocampi of p120ctnKOC/fl; Nes-Cre 
mice. 
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Although the overall morphology of p120ctnKOC/fl; Nes-Cre and control hippocampi was 

similar, a 16% decrease in hippocampal volume was observed in p120ctnKOC/fl; Nes-Cre mice 

compared to a littermate control. However, more mice need to be analyzed via MRI to 

confirm this preliminary finding. To ascertain that p120ctn protein is expressed from the 

p120ctn KOC allele, sagittal brain sections and brain lysates from p120ctnKOC/fl; Nes-Cre 

mice were stained or immunoblotted with an antibody that recognizes all p120ctn isoforms. 

Sections of p120ctnKOC/fl; Nes-Cre brains expressed comparable amounts of p120ctn protein 

compared to control brains (Fig. 10B), and this was confirmed by immunoblotting on whole 

brain lysates and hippocampal lysates from control and p120ctnKOC/fl; Nes-Cre mice (Figs. 

12A, B, D). In addition, brain and hippocampal lysates from p120ctnKOC/fl; Nes-Cre mice 

expressed similar amounts of N-cadherin, α-catenin and β-catenin (Fig. 12). Next we 

wondered if the absence of exon C in all p120ctn transcripts would affect the activity of 

RhoGTPases. p120ctnKOC/fl; Nes-Cre mice contain a pristine RhoA binding site, which is not 

interrupted by exon C-encoded amino acids, and does not interfere with RhoGTPase 

signaling. As expected, the RhoA and Rac1 activities in p120ctnKOC/fl; Nes-Cre brains are 

comparable to those of control brains (Fig 13). 
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Figure 12. Cadherin and catenins in p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; Nes-Cre 
brains. Immunoblotting with antibodies against cadherins and catentin on lysates of brains 
(A) and hippocampi (D), which are derived from control (letter C), p120ctnfl/fl; Nes-Cre (fl/fl), 
p120ctnKOC/fl; Nes-Cre (KOC/fl) and p120ctnKIC/fl; Nes-Cre (KIC/fl) mice. Graphics displaying 
normalized p120ctn (B) and N-cadherin (C) levels in brain or normalized N-cadherin levels in 
hippocampi (E).  



p120ctn KOC and KIC in the brain  
 

260 
 

 

 

 

Figure 13. RhoGTPase activity in p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; Nes-Cre brains . 
Affinity purification were performed to capture active RhoA (A) and active Rac1 (C) levels in 
brain lysates from control (letter C), p120ctnfl/fl; Nes-Cre (fl/fl), p120ctnKOC/fl; Nes-Cre (KOC/fl) 
and p120ctnKIC/fl; Nes-Cre (KIC/fl) mice. Graphics displaying normalized RhoA (B) and Rac1 (C) 
activity. RhoA activity in brain lysates was also assayed via GLISA (E).  
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Microcephaly in p120ctnKIC/fl; Nes-Cre mice 

 

Mice which only express exon C-containing p120ctn transcripts in their brain were 

generated by combining a brain-specific knockout of all p120ctn isoforms with a constitutive 

p120ctn KIC allele (Fig. 14A). p120ctnKIC/fl ; Nes-Cre mice were viable and exhibited 

microcephaly (Figs. 14B ,C), with up to 35% reduction in brain weight. But this phenotype 

was not fully penetrant and was observed only in 6 out of 11 p120ctnKIC/fl ; Nes-Cre mice. 

Histological analysis revealed that the brains of exon C knockin mice were proportionally 

smaller than littermate controls, as evidenced by a smaller hippocampus and cerebellum (Fig. 

10A). Immunohistochemisty with an p120ctn antibody on sagittal sections form p120ctnKIC/fl ; 

Nes-Cre and control brains revealed that normal levels of p120ctn were expressed from the 

p120ctn KIC allele (Fig. 10B). However, a 30% decrease in p120ctn expression was observed 

in brain lysates of p120ctnKIC/fl ; Nes-Cre mice along with a 15% reduction in N-cadherin 

levels (Figs. 12A-C). Expression of p120ctn was also seen in hippocampal lysates from 

p120ctnKIC/fl ; Nes-Cre mice (Figs. 12 D, E). p120ctn isoform 1A, which is predominantly 

expressed in brain, has been shown to inhibit RhoA activity and to activate Rac1 and Cdc42 

(Anastasiadis et al., 2000; Grosheva et al., 2001; Noren et al., 2000). Like p120ctn-deficient 

brains, brains from p120ctnKIC/fl ; Nes-Cre should also have elevated RhoA levels and reduced 

Rac1 activity because the exon C-encoded amino acids interrupt a RhoA binding domain of 

p120ctn and might interfere with its GDI activity. However, no reproducible increase in RhoA 

activity was observed in p120ctnKIC/fl ; Nes-Cre mice compared to controls (Fig. 13). To 

conclude, p120ctnKIC/fl ; Nes-Cre brains are smaller and express less p120ctn protein. 

 

 

Figure 14. p120ctnKIC/fl; Nes-Cre mice display microcephaly. (A) Diagram of p120ctnKIC/fl; 
Nes-Cre mice, containing a constitutive knockin of exon C of p120ctn and a brain-specific 
p120ctn knock out allele. (B) Graphic depicting the brain to body ratio of control and 
p120ctnKIC/fl; Nes-Cre mice. (C) Brains of control and p120ctnKIC/fl; Nes-Cre mice.  
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p120ctn expression in hippocampal neurons 

 

Next we wanted to determine the morphology of neurons, that were derived from 

different transgenic mice. Hippocampal neurons, isolated from embryonic rats or mice, have 

been widely used for a number of reasons (Kaech and Banker, 2006). First, hippocampal 

neurons can be cultured at low density, allowing the manipulation and visualization of 

individual neurons. Morphological analysis of neurons with neural tissue is difficult, since the 

brain is composed of an intricate network of entangled neurons, which can only be visualized 

by Golgi staining or via complex transgenics. The Golgi silver stain was developed by the 

Spanish neuroscientist and Nobel laureate Ramón Cajal and stains only limited amount of 

neurons in their entirety. Complete neuronal circuits can be visualized in Brainbow transgenic 

mice by Cre/LoxP-based mosaic expression of fluorescent proteins (Livet et al., 2007). 

However, both approaches do not allow further fluorescence-based marker analysis of 

individual neurons. Second, the nerve cell population in the hippocampus is relatively simple 

and consists of mainly pyramidal neurons and a variety of interneurons. Pyramidal neurons 

develop extensive axonal and dendritic arbors, and form numerous functional synaptic 

connections in vitro. Third, hippocampal cultures are investigated extensively, and the stages 

of hippocampal development are well-characterized. Fourth, live cultures can be derived from 

transgenic animals. Expression of cadherins and catenins has been studied in hippocampal 

neurons (Abe et al., 2004; Benson and Tanaka, 1998).  

The expression of p120ctn was analyzed in low-density mouse hippocampal cultures. 

In rat hippocampal cultures, p120ctn showed a redistribution over time from a global (DIV 2) 

to a punctuate expression pattern (DIV 7-12), and p120ctn colocalizes partially with N-

cadherin and β-catenin (Chauvet et al., 2003). To obtain hippocampal neurons, hippocampi 

from 16.5 dpc embryos were dissected and cultured in glia conditioned medium. Two-week 

old cultures developed extensive dendritic and axonal arbors, as evidenced by the expression 

of markers for axons (Tau1) and dendrites (MAP2) (Fig. 15A). In contrast to rat hippocampal 

neurons, p120ctn showed a homogeneous expression pattern in mouse hippocampal neurons 

and colocalized with MAP2 (Fig. 15B). p120ctn also colocalized with α-catenin in 

hippocampal neurons, but no punctuate staining for N-cadherin and β-catenin could be 

observed in dendritic spines as has been reported by Benson et al. (1998) (data not shown). 

The dendrites of our hippocampal cultures were not extensively decorated with actin-rich 

spines (Fig. 15C) and this may be due to our technical approach. We used glia-conditioned 

medium instead of a co-culture with astroglia. The latter has the advantage that supportive 
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factors are continuously produced in situ. These neuronal-specific factors may get exhausted 

in our glia-conditioned medium and this may hamper dendritic spine development. Therefore 

we were not able to quantify the number of spines and to analyze spine morphology in detail. 

 

 

 

Figure 15. p120ctn immunostaining of wild-type mouse hippocampal neurons. Two-
week-old hippocampal neurons were stained with either an axon-specific marker (Tau1), a 
dendrite-specific marker (MAP2), an antibody recognizing all p120ctn isoforms (pp120) and 
phalloidin-Alexa 594, which recognizes actin-rich spines (white arrowheads). Enlargements of 
individual spine are depicted (C, right). White scale bar: 25 µm, red scale bar: 5 µm. 
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Fasciculation in p120ctnKIC/fl; Nes-Cre hippocampal neurons 

 

We wanted to isolate and culture primary hippocampal neurons from p120ctnKOC/fl; 

Nes-Cre and p120ctnKIC/fl ; Nes-Cre brains to gain insight in their morphology. We failed to 

generate hippocampal cultures from p120ctnKOC/fl; Nes-Cre hippocampi and this might be 

because only 5% of the offspring were identified as p120ctnKOC/fl; Nes-Cre mice instead of the 

25% which is expected theoretically (Tables 4, 6). To rule out that p120ctnKOC/fl; Nes-Cre 

embryos die during development, time matings were performed (Table 6). The Nestin-Cre 

transgene is activated early in development and Cre-expression has been reported from 9.5 

dpc on (Haigh et al., 2003). No p120ctnKOC/fl; Nes-Cre embryos were identified at 12.5 and 

9.5 dpc (Table 6), but no signs of resorbtion were found in five litters with an average of 10 

embryos per litter. In addition, p120ctn KOC/- mice (bearing a constitutive knockout of all 

p120ctn isoforms combined with a constitutive knockout of exon C of p120ctn) are viable 

(see chapter 3), indicating that p120ctnKOC/fl; Nes-Cre mice should be viable as well. 

Currently we do not know what causes the non-Mendelian birth rate of p120ctnKOC/fl; Nes-Cre 

mice. One possibility is a Cre-mediated translocation between the p120ctn KOC allele and the 

floxed p120ctn allele, which both contain at least one loxP site.  

 

Table 6. genotyping hippocampal neurons en embryos 
Genotyping offspring from ♀ p120ctnKOC/+; Nes-Cre x ♂ p120ctnfl/fl mating   

stage KOC/fl; Nes-Cre (25%) KOC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 
hippocampal culture 

(n=3) 1 (3,3%) 12 (40 %) 10 (33,3%) 7 (23,3%) 31 

16,5dpc   0/8   0/9   0/2   0/19 tail 

  0/8   9/9   9/19 brain 

13,5 dpc 0 (0,0%) 5 (50,0%) 4 (40,0%) 1 (10,0%) 10 
  0/5   0/4   0/1   0/10 yolk sac 

9,5 dpc 0 (0,0%) 2 (28,5%) 3 (43,9%) 2 (28,5%) 7 

  0/2   0/3   0/2   0/7 yolk sac 

                

Genotyping offspring from ♀ p120ctnKIC/+ Nes-Cre x ♂ p120ctnfl/fl mating 
stage KIC/fl; Nes-Cre (25%) KIC/fl (25%) fl/+; Nes-Cre (25%) fl/+ (25%) total recombination 

hippocampal culture 
(n=4) 11 (26,2%) 10 (23,8%) 9 (21,4%) 12 (28,6%) 21 

16,5dpc   0/5   0/4   0/6   0/7   0/9 tail 
  5/5   0/4   6/6   7/7   6/9 brain 
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p120ctnKIC/fl ; Nes-Cre mice are born according to the rules of Mendelian inheritance 

(Tables 5, 6). Neuronal cultures from p120ctnKIC/fl ; Nes-Cre hippocampi showed signs of 

fasciculation after seven days of culture and this persisted till the third week of culture (Fig. 

16). Fasciculation is a process in which ‘pioneering’ neurons extend their axons and axons 

from later differentiating ‘follower’ neurons migrate along the first axon, forming big mature 

axon bundles. Staining these cultures with a βIII-tubulin marker, which detects both axons 

and dendrites, displayed thick bundles of neuronal protrusions and a less elaborate neuronal 

network in p120ctnKIC/fl ; Nes-Cre cultures (Fig. 16). The fasciculation was apparent 

throughout the entire culture of p120ctnKIC/fl ; Nes-Cre neurons but could also be detected 

sporadically in control cultures (data not shown). In a follow up experiment the fasciculation 

could be confirmed in p120ctnKIC/fl ; Nes-Cre cultures, however, the fasciculation was less 

homogenous than in the first experiment and signs of fasciculation were also evident in small 

areas of control neuronal cultures (Fig. 17). 

What causes fasciculation in p120ctnKIC/fl ; Nes-Cre hippocampal cultures? Expression 

of amino acids encoded by the alternatively spliced exon C of p120ctn abrogates dendritic 

branching in vitro (Pieters et al., in preperation). Likewise, the exon C-encoded amino acids 

in p120ctnKIC/fl ; Nes-Cre hippocampal neurons could reduce neuronal branches and might 

explain the reduced complexity of neuronal networks, which might stimulate fasciculation. 

Neuronal cell adhesion molecule (NCAM) is essential for fasciculation and pathfinding of 

axons of hippocampal neurons (Cremer et al., 1997) and might be upregulated in 

p120ctnKIC/fl ; cultures. Fasciculation was also observed in hippocampal cultures upon Rac1 

activation (Leemhuis et al., 2004). Interestingly, inhibition of  ROCK, a downstream effector 

of RhoA also induces Rac1 activation and neurite clustering (Leemhuis et al., 2004). Rac1 

activation leads to RhoA inhibition via the ‘Bar-Sagi’ pathway, (Nimnual et al., 2003; Sander 

et al., 1999), but in hippocampal neurons inhibition of a downstream RhoA effector seems to 

cause Rac1 activation via an unknown pathway. To analyze whether the fasciculation in 

p120ctnKIC/fl ; Nes-Cre is the result of increased Rac1 activity, we performed affinity 

precipitations to measure Rac1 activity in brain lysates from control and p120ctnKIC/fl ; Nes-

Cre mice. But only a small (1.3 fold) increase in Rac1 activity was observed in p120ctnKIC/fl ; 

Nes-Cre mice compared to controls (Figs. 13C, D). 
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Figure 16. Fasciculation in p120ctnKIC/fl; Nes-Cre hippocampal cultures. Morphology of 
control and p120ctnKIC/fl; Nes-Cre hippocampal neurons at day in vitro (DIV) 1, 7 and 14. Three-
week old hippocampal cultures were stained with a neuron marker, βIII tubulin. Black scale 
bar: 50 µm, white scale bar: 25 µm. 
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Figure 17. Fasciculation in p120ctnKIC/fl; Nes-Cre hippocampal cultures. Immunostaining 
of contol and p120ctnKIC/fl; Nes-Cre hippocampal neurons at day in vitro (DIV) 5 and 14 with a 
neuron marker, βIII tubulin. Arrows point to neurite bundles. Scale bar: 50 µm.  

 

Transfection of transgenic hippocampal cultures 

 

To visualize the morphology of neurons from p120ctnKIC/fl ; Nes-Cre mice, 

hippocampal cultures were transfected with an EGFP plasmid. Transfection of hippocampal 

cultures is very inefficient (less than 1%) because neurons do no longer divide. In addition, 

hippocampal cultures are very sensitive and their viability may be affected by several 

manipulations. In a first step we tried to optimize the transfection procedure for hippocampal 

cultures. We tried using different transfection agents, such as Lipofectamine 2000, which did 

not affect their viability but only resulted in very few GFP-positive glial cells, but never in 

branched GFP-positive neurons (data not shown). An Effectene transfection protocol adapted 

with neuronal-specific conditions resulted in few GFP-positive neurons with elaborate 

neuronal protrusions (Fig. 18A). To optimize the time point of transfection, wild-type 
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neuronal cultures were transfected after two, four or eleven days in vitro (DIV). Transfections 

at early time points (DIV 2 or 4) resulted in an high initial transfection efficiency, but after 

two to three weeks of culture only small GFP-positive arbors were identified along with very 

weak GFP-positive neurons and remnants of dead neurons (Fig.18B). Transfection of older 

(DIV 11) hippocampal cultures is less efficient, however, GFP-positive neurons with 

extensive arbors could still be identified (Fig. 18B). So although the transfection efficiency 

drops in older cultures, transfection at later time points remains the best option to visualize the 

morphology of cultured hippocampal neurons. 

 

     
 

Figure 18. Transfection procedure for hippocampal neurons. (A) Primary hippocampal 
neurons were transfected with 0,5 or 1 µg vector at day in vitro (DIV) 15 and pictures were 
taken at DIV16. Scale bar: 25 µm (B) Hippocampal neurons were transfected at day in vitro 
(DIV) 2, 4 and 11 and pictures were taken at DIV 14 and 21. White scale bar: 100 µm, green scale 
bar: 25 µm. (C) Morphology of p120ctnKIC/fl; Nes-Cre cultures. Primary hippocampal neurons 
from control and p120ctnKIC/fl; were transfected at day in vitro (DIV) 15 and pictures  from GFP-
positive neurons were taken at DIV 21. Hippocampal cultures were stained with a neuronal 
marker, βIII tubulin. Scale bar: 100 µm.  
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In a next step we tried to compare the morphology of hippocampal neurons from 

control and p120ctnKIC/fl ; Nes-Cre mice. Only few GFP-positive arbors could be identified for 

each setup and no obvious differences were seen in GFP-positive neurons from control and 

p120ctnKIC/fl ; Nes-Cre mice (Fig. 18C). Staining of p120ctnKIC/fl ; Nes-Cre cultures with a 

neuronal marker (βIII tubulin) revealed that only one GFP-positive neuron was located in a 

region with a high degree of fasciculation. This neuron did not contain elaborate neuronal 

protrusions and its axon fasciculated along a cluster of axons (Fig. 18C). However, we need 

more GFP-positive neurons, which can be analyzed via automated tracing software (Meijering 

et al., 2004; Popko et al., 2009) in order to get more objective data on the number and length 

of primary, secondary and tertiary neurites. 

As an alternative strategy we wanted to analyze the morphology of wild-type 

hippocampal cultures that have been transfected with different p120ctn isoforms. p120ctn 

isoform 3AC, expressing of the exon C-encoded amino acids, blocks cellular branching in 

several cell lines (Pieters et al., in preperation) and we wanted to investigate whether a 

p120ctn 3AC-GFP fusion would also inhibit neuronal complexity in hippocampal cultures. 

However after transfection of hippocampal cultures with constructs expressing either p120ctn 

3A-GFP or p120ctn 3AC-GFP we could detect only GFP-positive remnants of dead neurons, 

indicating that p120ctn overexpression causes cytotoxicity in hippocampal neurons. 

 

Immunohistochemistry with pAbexC on brain sections 

 

p120ctn-deficient brain provide a good tool to characterize our p120ctn isoform C-

specific antibody (pAbexC). To analyze if this antibody can detect endogenous p120ctn 

isoforms containing the exon C-encoded amino acids, we performed immunohistochemistry 

on brain sections of control and p120ctnfl/fl ; Nes-Cre mice (Fig. 19A). Staining control brain 

with pAbexC reveals that p120ctn isoform C is expressed in the cortex and in all layers of the 

cerebellum. However, in p120ctn-deficient brain sections some aspecific staining remains in 

the cortex, and in the granular layer and in purkinje cells from the cerebellum. Similar 

amounts of aspecific staining were also observed in brain sections from p120ctnKOC/fl; Nes-

Cre and p120ctnKIC/fl ; Nes-Cre mice, for one would expect pAbexC staining to be negative 

and highly positive, respectively (Fig. 19B). Probably our polyclonal pAbexC antibody 

recognizes other proteins, making the antibody unsuitable for detecting endogenous p120ctn 

isoforms containing the exon C-encoded amino acids via immunohistochemistry.  
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Figure 19. Characterizing the pAbexC antibody in of p120ctnfl/fl; Nes-Cre cultures. (A) 
Immunohistochemistry with the pAbexC antibody on sagittal brain sections form control and 
p120ctnfl/fl; Nes-Cre mice. Tissue section were counterstained with hematoxylin and eosin. The 
exon C-encoded amino acids are expressed in the molecular layer (m), granular layer (g) and 
purkinje cells (p) from control brain. (B) Immunohistochemistry with the pAbexC antibody on 
sagittal brain sections form control, p120ctnfl/fl; Nes-Cre, p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl; 
Nes-Cre mice. Black and white scale bar: 400 µm, purple scale bar: 50 µm. 
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CONCLUSION 

 

 We showed that the alternatively spliced exon C of p120ctn is highly expressed in 

mouse brain. We also showed that mice with p120ctn-deficient brains (p120ctn fl/fl; Nes-Cre) 

are viable and have phenotypes similar to those of dorsal-forebrain specific p120ctn knockout 

(p120ctn fl/fl; Emx1-Cre) mice, including a small decrease in N-cadherin levels and increased 

RhoA activity (Elia et al., 2006). But no Rac1 activation could be observed in brains from our 

p120ctn fl/fl; Nes-Cre mice. Measuring RhoGTPase activity in mouse tissues is not straight 

forward, due to fast hydrolysis of GTP-bound RhoGTPase and contamination of blood and 

non-recombined cell types. In addition, premature recombination in mice expressing the Nes-

Cre transgene and one or two floxed p120ctn alleles, can cause variable loss of p120ctn in 

these mice. This implicates that control mice are not really genetically ‘clean’. The 

abovementioned reason might explain why no reproducible changes in RhoGTPase activity 

could be detected in p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl ; Nes-Cre. Perhaps p120ctnKOC/- 

and p120ctnKIC/- might be a better alternative to study the affect of the p120ctn KOC and KIC 

alleles in vivo. Nevertheless, mice with exclusive expression of p120ctn transcripts without 

the alternatively spliced exon C in the brain, exhibited discrete abnormalities in their 

hippocampi. On the other hand, forced expression of exon C in the brain resulted in 

microcephaly and in fasciculation. 
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INTRODUCTION 

 

In my PhD research I analyzed the function of the alternatively spliced exon C of 

p120ctn in vitro and in vivo. Due to extensive splicing, up to 48 possible human p120ctn 

isoforms can be generated: in that way up to four different start codons (M1-M4) can be used 

as well as four alternatively used internal exons (A-D) (Keirsebilck et al., 1998). Alternatively 

used exon C of p120ctn encodes 6 AA situated in the large insert loop between repeats ARM5 

and ARM6 of the central armadillo repeat domain (Choi and Weis, 2005; Ishiyama et al., 

2010). The AA sequence encoded by exon-C interrupts a nuclear localization signal (NLS), 

which coincides with a RhoA-binding domain.  

 

 

IN VITRO ANALYSIS 

 

Effects on nuclear translocation 

 

First, I will discuss the analysis of p120ctn isoform C in vitro. Expression of plasmids 

encoding exon-C blocked nuclear translocation and ‘dendritic branching’ in vitro. The 

interruption of this NLS by the AA sequence encoded by exon-C could either block this NLS 

or create a bi-partite NLS. I tested the functionality of the isolated NLS with or without the  

interspersed AA encoded by exon-C and found that inclusion of these 6 AA blocked its 

nuclear localization. It is less clear how the interruption of this NLS by those AAs affects the 

full-length p120ctn. I did not observe any nuclear localization when a panel of p120ctn 
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isoforms, including p120ctn isoform C variants, was transfected. It has been shown that 

mutating both conventional NLSs in p120ctn has little effect on its nuclear localization (Kelly 

et al., 2004; Roczniak-Ferguson and Reynolds, 2003). Interestingly, like p120ctn, the nuclear 

import receptor, α-importin, is a member of the armadillo family and is almost entirely 

composed of armadillo repeats (Conti et al., 1998; Gorlich, 1998). The armadillo repeat 

domain of p120ctn has also been implicated in nuclear transport (Roczniak-Ferguson and 

Reynolds, 2003). Although different signals for nuclear transport have been identified, 

determining the contribution of each signal present in full-length p120ctn isoforms is a 

daunting task. The absence of detectable p120ctn in the nucleus is somewhat problematic. 

Forced nuclear expression might be achieved by treating the cells with Leptomycin B to block 

nuclear export. In addition, membrane-localized classical cadherins sequester the available 

p120ctn protein. Therefore, it might be helpful to perform nuclear translocation experiment in 

cells deficient in classical cadherins. However, one may wonder whether strong or persistent 

nuclear expression of p120ctn ever occurs under physiological conditions. 

 

Effects on RhoGTPase activity 

 

A correlation between nuclear localization of p120ctn isoforms and their ability to 

elicit ‘dendritic branching’ was reported (Aho et al., 2002). These neuron-like processes are 

the result of altered RhoGTPase activity and changes in actin dynamics in cells expressing 

p120ctn (Anastasiadis et al., 2000; Grosheva et al., 2001; Noren et al., 2000). p120ctn isoform 

1, but not a RhoA-uncoupled mutant (∆622-628), inhibits RhoA activity and induces neuron-

like arbors (Anastasiadis et al., 2000). p120ctn isoform 1AC, and to a lesser extent isoform 

3AC, can block ‘dendritic branching’. As the AAs encoded by exon-C interrupt a RhoA-

binding domain (RBD), I speculated that p120ctn isoform 1AC could prevent ‘dendritic 

branching’ by interfering with the ability of p120ctn to inhibit RhoA. However, there was no 

reproducible increase in RhoA activity in cells that express p120ctn isoform 1AC. On the 

other hand, an increase in RhoA was evident in cells expressing a RhoA-uncoupled p120ctn 

mutant. Apparently, Rac1 activity was also unaltered in cells expressing p120ctn isoform 

1AC. Maybe this isoform modulates RhoGTPases other than the prototypic family members 

RhoA, Rac1 and Cdc42. Over 20 mammalian Rho members have been identified and most of 

them are poorly studied (Boureux et al., 2007).  
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IN VIVO ANALYSIS 

 

p120ctn KOC and KIC mice: ‘C’ stands for conserved intronic sequence 

 

To analyze the function of p120ctn isoform C in vivo, we generated mice harboring a 

knockout (KOC) or knockin (KIC) of the alternatively used exon C of p120ctn, by 

introducing small genomic changes around exon C. Surprisingly, homozygous p120ctn KOC 

and homozygous KIC embryos died before implantation. Although I optimized techniques to 

analyze preimplantation embryos in detail, such as time lapse monitoring and ES cell 

derivation, I could not unravel the phenotypes of p120ctnKOC/KOC and p120ctnKIC/KIC  embryos 

in detail. This implies that both p120ctn KOC and p120ctn KIC alleles are detrimental for the 

viability of the embryo. In contrast, the p120ctn KOC and p120ctn KIC alleles could rescue 

p120ctn-null embryos from the lethality. To investigate this discrepancy, We used 

bioinformatic analysis, which revealed the presence of a highly conserved 200-bp block 

consisting of exon C and its surrounding intronic sequence. Generally, only exons, but not 

intronic sequences, have been strongly conserved during evolution. It is recommended (and 

may turn out to be worthwhile) to perform detailed analysis of the genomic sequence that is to 

be modified to prevent the deletion of conserved regulatory sequences in the targeting 

construct. The conserved intronic sequences flanking exon C are partly removed in the 

p120ctn KOC allele and completely removed in the KIC allele. Consequently, the biallelic 

deletion of that conserved intronic sequence, and not the deletion of p120ctn exon C per se, 

might be responsible for the early mortality and the non-Mendelian inheritance of 

homozygous p120ctnKOC/KOC and p120ctnKIC/KIC embryos. This would also explain why 

p120ctnKOC/- and p120ctnKIC/- mice are viable. Indeed, these mice contain a p120ctn-null allele 

featured by ablation of exons 3 to 8, but with retention of the conserved intronic sequence 

flanking exon C! These data imply that our p120ctn KOC and p120ctn KIC alleles can be 

considered as mutants of the highly conserved 200-bp block, and that the phenotypes of 

p120ctnKOC/KOC and p120ctnKIC/KIC mice can not be solely attributed to the presence or 

absence of the AAs encoded by exon-C.  

Is it possible to generate ‘specific’ p120ctn KOC and p120ctn KIC alleles? As an 

alternative to generating mice lacking exon C, we could mutate key nucleotides in the splice 

acceptor site of exon C, which would result in the exclusion of exon C from all p120ctn 

transcripts. This exon-C skipping strategy could be achieved with minimal mutations and 
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would preserve most of the intronic sequence. It is far more difficult to create KIC mice 

without interfering with the conserved intronic sequence. Although inclusion of exon C could 

be enhanced by modifying splicing enhancers, presently it is impossible to generate KIC 

alleles without removing these sequences. So, though we should have performed a detailed 

analysis of the genomic region around exon C before constructing our targeting vector, there 

is no straightforward alternative way for generating p120ctn KOC alleles, and for KIC alleles 

there is little if any alternative to the strategy we followed. Assuming that expression of our 

current p120ctn KOC and KIC alleles caused developmental effects due to loss of intronic 

sequences, these alleles can still be useful in combination with p120ctn-null alleles 

(p120ctnKOC/- and p120ctnKIC/-) for studying late embryogenesis and postnatal development. 

For instance, it would be interesting to see if the phenotypes of p120ctnKOC/fl; Nes-Cre and 

p120ctnKIC/fl ; Nes-Cre mice are reproduced also in p120ctnKOC/- and p120ctnKIC/- mice, 

respectively. So, we speculate that the early lethal phenotypes were not caused by the KO and 

KI of the alternatively spliced exon C as such, but by the removal of its flanking conserved 

intronic sequence.   

Both the p120ctn KOC and KIC allele are incompatible with life when they were 

crossed to homozygosity. Maybe we can learn something from a mouse model that combines 

the p120ctn KOC and KIC allele. Are these p120ctnKOC/KIC mice viable? Two hypothesis with 

a different outcome can be envisioned: a ‘dosage-effect’ theory and a ‘conserved intronic 

sequence’ theory. First, one could argue that a proper ratio of p120ctn transcripts with or 

without exon C is required to allow normal development and p120ctn-mediated signalling. 

This fragile balance would then be perturbed upon forced ablation and expression of exon C 

in p120ctnKOC/KOC and p120ctnKIC/KIC  embryos, respectively. In compound p120ctnKOC/KIC 

mice, the ratio between p120ctn transcripts with or without exon C could be normalized, 

which would predispose these mice to be viable. A second theory involves the evolutionarily 

conserved 200bp ‘block’, consisting of exon C and its flanking intronic sequence. This 

conserved ‘block’ is deleted in both the p120ctn KOC and KIC allele, and could explain the 

early death of  p120ctnKOC/KOC and p120ctnKIC/KIC embryos.  This conserved ‘block’ would 

also be completely absent in compound p120ctnKOC/KIC embryos, and we would expect that 

these embryos to die very early as well. We performed the actual experiment and after 

crossing p120ctnKOC/+ and p120ctnKIC/+ mice, we obtained viable p120ctnKOC/KIC mice in 

which the intronic sequence is compromised in both alleles. These findings support our 

‘dossage-effect’ theory. However, in several follow-up studies we could not validate these 
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p120ctnKOC/KIC mice. First, alleles did not segregate according to Mendelian inheritance when 

p120ctnKOC/KIC mice were intercrossed or crossed with C57BL/6 mice (Table 1). Second, a 

PCR screening of the genomic region of the Ctnnd1 gene (exon 7 till exon 12) in 

p120ctnKOC/KIC mice did not yield the expected banding patterns. 

 

Table1. p120ctnKOC/KIC  mice 

Genotyping offspring from p120ctnKOC/+ X p120ctnKIC/+  (n=5) 

+/+ (25%) KOC/+ (25%) KIC/+ (25%) KOC/KIC (25%) total 

5 (10%) 3 (6%) 11 (22%) 31 (62%) 50 

          

Genotyping offspring from p120ctnKIC/KOC  X C57Bl6 (n=2) 

+/+ (0%) KOC/+ (50%) KIC/+ (50%) KOC/KIC (0%) total 

5 (27,7%) 5 (27,7%) 2 (11,1%) 6 (33,3%) 18 

          

Genotyping offspring from p120ctnKIC/KOC  X p120ctnKIC/KOC  (n=3) 

+/+ (0%) KOC/+ (0%) KIC/+ (0%) KOC/KIC (100%*) total 

0 (0%) 6 (18,8%) 7 (21,9%) 19 (59,4%) 32 

* as KOC/KOC and KIC/KIC genotypes are lethal 

 

At this moment, we can only speculate about the function of this conserved 200-bp 

block. This block might contain regulatory sequences that are indispensable during mouse 

development. In silico analysis (in collaboration with P. Hulpiau) identified two Rat O/E-1-

associated zinc finger (Roaz) transcription factor binding sites in this conserved intronic 

region, and these sites are compromised in both p120ctn KOC and KIC alleles. The C2H2 

zinc finger protein Roaz plays a role in the regulation of olfactory neuronal differentiation 

(Tsai and Reed, 1997), and a huge cluster of more than 200 olfactory receptor (OR) genes is 

indeed situated upstream of the Ctnnd1 gene on mouse chromosome 2. Roaz-mediated 

regulation of OR genes and perhaps of other genes as well might be altered in homozygous 

p120ctn KOC and KIC embryos, resulting in early mortality. This would imply that during 

early development, OR genes are also involved in processes other than olfaction, for instance 

in transcription regulation. A second explanation could be that a lamin binding site spans exon 

C, which means that it is not present in p120ctn KOC and KIC alleles. The position of a 

chromosome within the nucleus is crucial for its gene expression, which is altered by 

chromosomal translocation (Harewood et al., 2010). Therefore, removal of the lamin binding 

site that spans exon C may influence the chromosomal positioning at the nuclear envelope and 

may affect global transcription levels, resulting in early lethal phenotypes.  
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How can we study the role of this conserved intronic sequence? Currently we can not 

easily deduce functional information from this conserved 200-bp block because all the mice in 

which the intronic sequence is affected in both alleles die early in development, whereas all 

mice with at least one allele with the unmodified conserved sequence are viable. To study the 

function of this conserved block, we can flox the conserved intronic sequence. In this way, we 

would be able to attain functional data after spatial and temporal removal of this 200-bp block 

in ES cells or in gene manipulated mice. However, it would still be daunting to discriminate 

the effects caused by deletion of exon C from the effects caused by deletion of its flanking 

intronic sequence. To this end, we have to make knockin ES cells or mice, aiming at site-

specific deletion of the splice acceptor site of exon C or at inactivating the NLS and/or RBD 

encoded by exon C.  

 

 

Effects on RhoGTPase activity 

 

Since all in vitro studies describe changes in RhoGTPase activity as a consequence of 

p120ctn overexpression in cell lines, I wondered if RhoGTPase signaling is also regulated by 

p120ctn in vivo. Reported analyses of tissue-specific p120ctn KO mice have confirmed that 

p120ctn regulates RhoA activity in vivo, because increased RhoA activity was observed in 

skin and dorsal forebrain when p120ctn was ablated in these tissues (Elia et al., 2006; Perez-

Moreno et al., 2006). To check whether p120ctn isoform C can modulate RhoGTPase activity 

in vivo, I used two approaches that involved the p120ctn KOC or p120ctn KIC allele. The 

p120ctn KOC allele still encodes two undisturbed RBDs and is able to regulate RhoGTPase 

activity. In contrast, the p120ctn KIC allele encodes six additional AAs that interrupt the 

second RBD of p120ctn. As both RBDs of p120ctn are required for its high-affinity binding 

to GDP-bound RhoA (Yanagisawa et al., 2008), the exon-C encoded AAs might abolish the 

GDI activity of p120ctn (Fig. 1). Therefore, I speculated that p120ctn isoform C might be 

unable to inhibit RhoA activity in vivo. The expression of the p120ctn KIC allele may activate 

RhoA, like a constitutively active RhoA mutant, but without the need for mutating RhoA. To 

conclude, I postulated that p120ctn KIC mice could be considered an activator of endogenous 

RhoA in vivo. Whether p120ctn isoform C can also regulate the activity of other Rho family 

members remains to be tested.  
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Figure 1. Model for p120ctn isoform C-mediated RhoA activation in vivo  

 

 

In a first approach, I isolated p120ctnKOC/- and p120ctnKIC/- ES cells and assayed the 

RhoA activity under basal and LPA induced conditions. Unfortunately, I could not observe 

increased RhoA activity in p120ctnKIC/- ES cells under these conditions. In addition, I only 

observed a small but reproducible increase in RhoA activity after LPA treatment of these ES 

cell cultures. The increase in RhoA activity might not have been optimal because the ES cells 

were grown in serum-replacement medium, which might contain factors that influence RhoA 

activity. This could result in a high basal RhoA activity that can not be elevated further. 

Perhaps serum starvation of ES cells would have resulted in lower basal RhoA activity, and 

would have allowed an increase in RhoA activity after LPA treatment or in p120ctnKIC/- ES 

cells. On the other hand, serum starved ES cells might start to differentiate and the observed 

RhoA activities might be determined more by the degree of differentiation than by the 

p120ctn isoform expression profile.  

In a second approach we investigated the effect of p120ctn isoform C on RhoGTPase 

activity in brain. p120ctn isoform 1A is strongly expressed in brain and has been shown to 

inhibit RhoA activity in vitro (Anastasiadis et al., 2000). The fraction of GTP-bound RhoA 

was determined in lysates from p120ctnfl/fl ; Nes-Cre, p120ctnKOC/fl; Nes-Cre and p120ctnKIC/fl ; 

Nes-Cre mice. In line with previous work (Elia et al., 2006), we found increased active RhoA 

levels in fully p120ctn-deficient brains. However, we did not observe a reproducible increase 
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in RhoA activity in p120ctnKIC/fl ; Nes-Cre brain lysates. However, RhoGTPase measurements 

in vivo turned out to be tricky for a number of reasons. First, the brain is composed of various 

cell types, and some cell types, for example endothelial cells, do not express nestin and will 

therefore not undergo Nes-Cre-mediated p120ctn ablation. Whole brain lysates are thus a 

mixture of targeted p120ctn-null brain cells and non-targeted p120ctn-expressing cells. The 

latter cell types will influence and dampen the overall effect of p120ctn ablation on 

RhoGTPase activity. To eliminate blood cells, which would also interfere with RhoGTPase 

measurements, we perfused the mice with PBS just before lysates were made from their 

brains. However, RhoGTPase measurements of perfused p120ctnfl/fl ; Nes-Cre, p120ctnKOC/fl; 

Nes-Cre and p120ctnKIC/fl ; Nes-Cre brains were quite variable as well. A second major 

concern is the occurrence of premature recombination events in our brain-specific mouse 

model. These recombinations were detected on the genomic level and caused variable 

expression of p120ctn protein in different organs of both control and p120ctnfl/fl ; Nes-Cre 

mice. All control mice, even those that do not contain the Nes-Cre transgene, are prone to 

premature recombinations. As a consequence, p120ctn levels in control mice might be 

reduced, which will also have an impact on the RhoGTPase levels measured. To avoid these 

problems, we might performed RhoGTPase measurements in brains from more suitable 

mouse models, such as p120ctnKOC/- and p120ctnKIC/- mice. These mice are viable and express 

exclusively p120ctn isoforms without (KOC) or with (KIC) the exon C-encoded AA in the 

entire mouse. In this context, mice expressing the p120ctn KIC allele could be a valuable tool 

for activating RhoA in vivo. Future experiments may reveal the validity of this model. 
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Het p120 catenine (p120ctn) behoort tot de familie van Armadillo-eiwitten en maakt 

deel uit van het cadherine-catenine complex. Het p120ctn vervult verscheidene functies 

naargelang zijn subcellulaire lokalisatie: het moduleert de expressie van klassieke cadherines 

aan het celmembraan, het reguleert de activiteit van RhoGTPasen in het cytoplasma, en het 

bepaalt de activiteit van transcriptiefactoren in de kern. Het p120ctn is onontbeerlijk voor een 

normale ontwikkeling en homeostase. In een deelaspect van mijn doctoraatsonderzoek heb ik 

aangetoond dat p120ctn alomtegenwoordig is in verschillende stadia van de normale 

ontwikkeling van de muis. 

Er komen verschillende p120ctn-isovormen voor, die ontstaan als gevolg van 

alternative splicing. Hierbij kunnen p120ctn-isovormen vertaald worden van vier 

verschillende start-codons en kunnen er tot vier interne exonen al dan niet geïncorporeerd 

worden. Het alternatief gebruikte exon C codeert voor slechts voor zes aminozuurresten, die 

een nucleair lokalisatiesignaal (NLS) en een RhoA-bindingsdomein (RBD) onderbreken. De 

expressie van deze zes additionele aminozuurresten blokkeerde inderdaad zowel de nucleaire 

translocatie van p120ctn als de in vitro inductie in cellen van neuronachtige uitlopers. Tot op 

heden is het functioneel belang van al dan niet expressie in vivo van deze talrijke p120ctn-

isovormen niet gekend. Enkele weelfselspecifieke p120ctn-knockout (KO) muizen werden 

gegenereerd, maar in deze muizen werden telkenmale alle p120ctn isovormen tegelijk 

verwijderd. Ik rapporteer hier voor de eerste maal over isovorm-specifieke KO en knockin 

(KI) muizen. Inderdaad hebben wij muizen gemaakt met een KO of een KI van het alternatief 

gebruikte exon C van p120ctn, respectievelijk KOC en KIC muizen genoemd. Hiervoor 

hebben we kleine aanpassingen gemaakt in het genoom ter hoogte van exon C van het 

p120ctn-gen. Tot onze grote verbazing stierven zowel homozygote p120ctn-KOC als 

homozygote p120ctn-KIC embryo’s nog voor hun inplanting en gebeurde de overerving van 

de p120ctn-KOC en p120ctn KIC-allelen niet volgens de regels van de Mendeliaanse 

erfelijkheid. 

Om de vastgestelde vroege sterfte in embryo’s te omzeilen maakten we vervolgens 

gebruik van een strategie waarbij een allel van een totale p120ctn-KO gecombineerd werd 

met een p120ctn-KOC of een p120ctn-KIC allel. Daartoe kruisten we gefloxeerde p120ctn 

muizen (p120ctnfl/fl ) met Deleter-Cre, Albumin-Cre (Alb-Cre) of Nestin-Cre (Nes-Cre) 

muizen om, respectievelijk, constitutieve (p120ctn-/-), leverspecifieke (p120ctnfl/fl ; Alb-Cre) 

en hersenspecifieke (p120ctnfl/fl ; Nes-Cre) p120ctn KO muizen te bekomen (Tabel 1).  
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Homozygote, totale p120ctn-KO embryo’s sterven vroeg tijdens de ontwikkeling en 

p120ctn-deficiënte blastocysten brengen minder E-cadherine tot expressie ter hoogte van het 

celmembraan. Evenwel, in de door mij gegenereerde p120ctnKOC/- en p120ctnKIC/- embryo’s, 

werd de de embryonale sterfte verhinderd door de expressie van ofwel het p120ctn-KOC 

ofwel het p120ctn-KIC allel. De in vivo E-cadherine-expressieniveaus werden hierbij hersteld 

(Tabel 1). Leverspecifieke p120ctn-KO (p120ctnfl/fl ; Alb-Cre) muizen vertoonden geelzucht, 

hepatomegalie en ductulaire reacties, en ook al deze defecten konden hersteld worden door de 

expressie van een p120ctn-KOC of p120ctn-KIC allel (Tabel 1). Hersenspecifieke p120ctn-

KO muizen (p120ctnfl/fl ; Nes-Cre) hadden geen opvallende macroscopische defecten. 

p120ctnKOC/fl; Nes-Cre en p120ctnKIC/fl ; Nes-Cre muizen daarentegen vertoonden lichte maar 

onderling verschillende fenotypes (Tabel 1). p120ctnKOC/fl; Nes-Cre muizen hadden namelijk 

kleine morfologische defecten in de hippocampus. Anderzijds hadden KIC/fl ; Nes-Cre muizen 

kleinere hersenen en vertoonden neuronculturen, die van deze hersenen afgeleid waren, 

tekenen van fasciculatie.  
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Deze observaties confronteren ons met een merkwaardige contradictie. Enerzijds zijn 

de p120ctn-KOC en -KIC allelen verantwoordelijk voor de vroege sterfte van homozygote 

p120ctnKOC/KOC en p120ctnKIC/KIC embryo’s. Anderzijds kunnen de p120ctn-KOC en p120ctn-

KIC allelen de vroege embryonale sterfte van totale p120ctn-KO embryo’s verhinderen. 

(Tabel 1). Om deze ambiguïteit te ontrafelen hebben we met behulp van bioïnformatica de 

genomische regio rond exon C van het p120ctn-gen geanalyseerd. We ontdekten een 

geconserveerd blok van 200 bp, dat exon C omvat alsook de flankerende intronsequenties. 

Deze laatste worden deels of volledig verwijderd in, respectievelijk, p120ctn-KOC of 

p120ctn-KIC allelen. Misschien is het verwijderen van deze geconserveerde intronsequenties, 

en niet zozeer het verlies van exon C op zich, verantwoordelijk voor de vroege sterfte van 

p120ctnKOC/KOC en p120ctnKIC/KIC  embryo’s. Dit zou tevens kunnen verklaren waarom 

p120ctnKOC/- en p120ctnKIC/- muizen wel levensvatbaar zijn. Deze muizen bevatten namelijk 

een p120ctn-KO allel waarin weliswaar exon 3 tot 8 gedeleteed zijn, maar waarin de 

geconserveerde intronsequentie rond exon C van p120ctn onaangetast is. Tot op heden 

kunnen we enkel gissen naar de functie van dit geconserveerde blok van 200 bp, maar wij 

speculeren dat het regulatorische sequenties bevat die essentieel zijn voor het leven.  
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p120 catenin (p120ctn) belongs to the Armadillo family and is a component of the 

cadherin-catenin complex. It fulfils pleiotropic functions according to its subcellular 

localization: modulating the turnover rate of membrane-bound cadherins, regulating the 

activation of small RhoGTPases in the cytoplasm, and changing nuclear activity of 

transcription factors. p120ctn is essential for normal development and homeostasis in 

vertebrates such as mouse and Xenopus. I demonstrated that p120ctn is ubiquitously 

expressed in early preimplantation mouse embryos and in gastrula-stage embryos. 

Multiple p120ctn isoforms have been identified. These isoforms result from alternative 

splicing, which allows the translation of p120ctn isoforms from four start codons and enables 

the inclusion of four alternatively used exons. The alternatively used exon C encodes only six 

amino acid residues (AA), which interrupt a nuclear localization signal and a RhoA binding 

domain. Consequently, inclusion of the AAs encoded by exon C interferes with nuclear 

translocation and ‘dendritic branching’ in vitro. The significance of these many p120ctn 

isoforms in vivo remains largely unknown. Several tissue-specific p120ctn knockout mice 

have been reported, but in these studies all p120ctn isoforms were removed. We report for the 

first time on p120ctn-isoform specific knockout and knockin mice. We generated mice 

harboring a knockout (KOC) or knockin (KIC) of the alternatively used exon C of p120ctn, 

by introducing small genomic changes around exon C. Surprisingly, homozygous p120ctn 

KOC and homozygous KIC embryos died before implantation and displayed a non-Mendelian 

inheritance (Table 1). 

To bypass the early lethal phenotypes in homozygous p120ctn KOC and homozygous 

KIC embryos, we employed several strategies that combined a full p120ctn KO allele with 

either a p120ctn KOC or KIC allele. We crossed floxed p120ctn mice (p120ctnfl/fl ) with 

Deleter-Cre, Albumin-Cre (Alb-Cre) and Nestin-Cre (Nes-Cre) mice to obtain constitutive 

(p120ctn-/-), liver-specific (p120ctnfl/fl ; Alb-Cre) and brain-specific (p120ctnfl/fl ; Nes-Cre) 

p120ctn KO mice, respectively (Table 1). p120ctn null embryos died around midgestation and 

p120ctn-deficient blastocysts failed to sustain proper levels of membrane-localized E-

cadherin. We generated p120ctnKOC/- and p120ctnKIC/- mice, which rescue from the lethal 

phenotype of p120ctn null mice and their failure to stabilize E-cadherin levels in vivo (Table). 

Genetic ablation of p120ctn in the liver (p120ctnfl/fl ; Alb-Cre) resulted in jaundice, 

hepatomegaly, and ductular reactions, and these defects could be rescued by introducing 

either the p120ctn KOC or KIC allele (Table 1). Brain-specific p120ctn knockout mice 

(p120ctnfl/fl ; Nes-Cre) showed no obvious abnormality. In contrast, p120ctnKOC/fl; Nes-Cre 
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and p120ctnKIC/fl ; Nes-Cre mice showed discrete but different phenotypes (Table 1). 

p120ctnKOC/fl; Nes-Cre mice exhibited aberrant morphology of the medial side of the 

hippocampus and had a small reduction in total hippocampal volume. On the other hand, 

p120ctnKIC/fl ; Nes-Cre mice displayed microcephaly, and hippocampal cultures that were 

derived from them showed signs of fasciculation.  

 

 

 

The presence of p120ctn KOC and KIC alleles seems to be detrimental for the 

viability of homozygous p120ctnKOC/KOC and p120ctnKIC/KIC embryos, whereas the same 

alleles could rescue from the lethality in p120ctn null embryos (Table 1). To investigate this 

discrepancy, bioinformatic analysis was performed. This analysis revealed the presence of a 

highly conserved 200-bp block consisting of exon C and its surrounding intronic sequence. 

These sequences are partly or completely removed in, respectively, the p120ctn KOC and 

KIC alleles. Therefore, the biallelic deletion of that conserved intronic sequence, and not the 

deletion of p120ctn exon C per se, might be responsible for the early lethal phenotypes and 

the non-Mendelian inheritance of homozygous p120ctnKOC/KOC and p120ctnKIC/KIC embryos. 
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This also explains why p120ctnKOC/- and p120ctnKIC/- mice are viable. Indeed, they contain a 

p120ctn null allele featured by ablation of exons 3 to 8, but with retention of the conserved 

intronic sequence flanking exon C. At this moment, we can only speculate about the function 

of this 200-bp block, but we hypothesize that it contains regulatory features that are essential 

for early life. 
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"Our real teacher, has been and still is the embryo-who is, 

incidentally, the only teacher who is always right” 

 

Viktor Hamburger   

  


