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Introduction 

 

In light of the growing obesity pandemic, carbohydrates – also known as sugars – have 

obtained somewhat of a negative reputation. However, carbohydrates are much more than just a 

source of energy, and can also mediate a variety of recognition processes that are central to 

human health. As such, saccharides can be applied in the food and pharmaceutical industries to 

stimulate our immune system (e.g. prebiotics), to control diabetes (e.g. low-calorie sweeteners), 

or as building blocks for anti-cancer and anti-viral drugs (e.g. L-nucleosides) (see chapter II 

section 1 and Table II.1) [20]. It can thus be stated that the synthesis and availability of rare 

sugars holds high commercial value due to this wide range of applications. Unfortunately, only a 

small number of all possible monosaccharides is found in nature in sufficient amounts to allow 

their commercial exploitation. Consequently, so-called rare sugars have to be produced by 

(bio)chemical processes starting from cheap and widely available substrates.  

 

In the Izumoring [91], which is a schematic representation of the current biochemical 

production routes for rare sugars, only one epimerase is mentioned: the D-tagatose 3-epimerase 

(D-TE). However, an epimerization reaction can in theory take place at each of the different 

chiral centers of the sugars and this means C2-, C4- and C5-epimerases and, since D-TE is only 

active on ketoses, C3-epimerases active on aldoses could still extend the production tools 

(biocatalysts) for rare sugars. Recently, some more epimerases have been found to be able to 

convert free monosaccharides or to show potential as new biocatalysts (see chapter II section 1 

and Figure II.2) [20]. Nevertheless, the speed – or better the slowness (or almost inertia) – at 

which these enzymes can convert monosaccharides and the concentrations of substrate needed, 

make that these biocatalysts are not yet economically interesting [197].  

 

Due to the immense progress of  sciences like biochemistry, biotechnology, engineering and 

informatics, scientists nowadays have a variety of tools which they can use to change and modify 

naturally existing enzymes towards biocatalysts harboring the desired characteristics. Some 

examples of this biocatalyst optimization are improved stability of sucrose phosphorylase via 

enzyme engineering [44], enhanced or changed activity on natural and/or non-natural substrates 

[167, 197], but also to obtain new substrate specificities that are not found in natural enzymes 

[59]. 
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The combination of high economical value of rare sugars, the potential of epimerases in rare 

sugar synthesis and the availability of techniques for enzyme engineering triggered the idea to 

apply enzyme engineering of epimerase for rare sugar production. The rare sugar D-tagatose1 was 

taken as prime rare sugar target, and since its C4-epimer fructose is cheap and widely available 

due to efficient production routes starting from starch, it was chosen to develop a C4-epimerase 

that would be able to convert fructose into tagatose. Enzymes that naturally catalyze a C4-

epimerization, however on different but similar substrates, were taken as starting point (Figure 

I.1 and Figure I.2). The two available epimerases are L-ribulose-5-phosphate 4-epimerase and 

UDP-galactose 4-epimerase. The L-ribulose-5-phosphate 4-epimerase would require the 

adaptation of the substrate binding domain around the phosphate group of the substrate, to enable 

acceptance of a non-phosphorylated hexose rather than a phosphorylated pentose (Figure I.1). On 

the other hand, the UDP-hexose 4-epimerase requires an adaptation to accept much smaller 

substrates, namely free monosaccharides instead of nucleotide activate sugars (Figure I.2). Next 

to fructose/tagatose interconversion, C4-epimerization of glucose into galactose is a second 

target since glucose is cheap and abundant as well and this new source of galactose can be 

applied in tagatose production via current (bio)chemical production routes. 

 

 

L-Ru-5-P D-Xu-5-P
Tagatose

OH
OH

O

O

OH

P O
-

O
-

O
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OH

O

O
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P O
-

O
-

O OH

OH
OH
OH

O

OH

OH

OH
OH

OH

O

OH

Fructose

 

Figure I.1 Differences (in blue circle) and similarities (in red square) between the natural and desired substrates for 

the L-ribulose-5-phosphate 4-epimerase (AraD) 

                                                                 

1 Monosaccharides can occur in 2 different forms or enantiomers, namely the D- and L-form, 

which are each other’s mirror images. Since D-enantiomers are naturally the most occurring 

forms of monosaccharides, by convention the ‘D-’ prefix can be omitted, but for L-sugars the 

prefix cannot be deleted. Example: D-tagatose = tagatose ≠ L-tagatose 
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Figure I.2 The difference between the natural and desired substrates for the UDP-hexose 4-epimerase  is even bigger 

than that needed for the L-ribulose-5-phosphate 4-epimerase. Loss of the UDP-moiety (red) is needed for activity on 

glucose (green), for tagatose additional differences are present between the sugar group 

 

In summary, the goal of this thesis is to gain more knowledge in the determinants for 

substrate specificity of C4-epimerases and to use this information to create C4-epimerases that 

can be used for rare sugar production, with the focus on D-tagatose. At first, a thorough literature 

review on rare sugars, with a focus on the target tagatose, and their biochemical production 

routes as well as on epimerases and enzyme engineering is presented to provide the reader with 

sufficient background information (chapter II). Subsequently, the research results from this 

project are discussed, starting with the cloning and expression of the L-ribulose-5-phosphate 4-

epimerase (chapter III). Then, the development of a selection system to identify improved 

enzyme variants and its application on mutant libraries are described (chapter IV and chapter 

V, respectively). This is followed by the development of a screening assay for the detection of 

mutants harboring tagatose 4-epimerase activity and the use thereof (chapter VI). The next two 

chapters deal with the cloning and characterization of the UDP-hexose 4-epimerase (chapter 

VII) and the mutational analysis of this epimerase (chapter VIII). Finally, an overall discussion 

as well as future perspectives are provided (chapter IX). 
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1 Biocatalytic production routes for rare sugars 

1.1. Rare sugars and their applications 

The International Society of Rare Sugars (ISRS) has classified monosaccharides and 

derivatives according to their abundance in Nature [91]. Of all possible hexoses and pentoses, 

only seven (Glc, Gal, Man, Fru, Xyl, Rib and L-Ara) were considered to be present in significant 

amounts, whereas twenty hexoses and nine pentoses were described as rare sugars. Another large 

group of rare sugars consists of deoxygenated monosaccharides, which often play a crucial role 

as recognition elements in bioactive molecules [87, 160, 264]. Furthermore, secondary 

modifications like amination or methylation can also occur. Rare sugars cannot be extracted from 

natural sources and thus have to be produced by (bio)chemical reactions. Nevertheless, several of 

these are now commercially available as bulk products, such as D-tagatose and D-sorbose. Others, 

in contrast, are specialty compounds that are used in high-value applications, which is the case 

for most L-sugars. It can be expected that more efficient production routes will increase the 

availability of rare sugars for research purposes, resulting in the discovery of new applications 

and/or as yet unidentified characteristics [91]. 

 

Despite their low natural abundance, rare sugars hold enormous potential for practical 

applications (Table II.1). In the pharmaceutical industry, for example, L-ribose can be used as a 

building block for drugs against cancers and viral infections. Its most important application is in 

antiviral therapy, where it is incorporated in L-nucleosides analogues [94]. The advantages of the 

L-enantiomer are increased antiviral activity, better metabolic stability and more favorable 

toxicological profiles. Since the discovery of Lamivudine (2',3'-dideoxy-3'-thiacytidine, mostly 

referred to as 3TC), more and more L-nucleoside analogues are undergoing clinical trials and/or 

preclinical studies. Furthermore, several other L-sugars can be used to produce L-nucleosides, 

such as L-gulose, L-xylose and L-galactose [94, 168, 276]. L-sugars can also be used as active 

compounds on their own, for instance as glycosidase inhibitors [145] or as insecticides [2].  
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Table II.1 Overview of rare, unmodified monosaccharides and their (potential) applications (update from [2]) 

Sugar Application(s) Reference(s) 

D-allose Treatment of cancer, in particular chronic myeloid leukemia [10, 102, 175, 182, 280] 

 Suppression of thrombus formation and reperfusion injury [13, 103, 184] 

 Cryoprotectant for mammalian cells and organs [245] 

 Immunosuppressant [104] 

D-altrose Synthesis of cyclic carbamates of derived glycosylamines (polymer chemistry) [138, 143] 

D-arabinose Synthesis of antitumor compounds, such as dehydroamino acid derivatives [86, 178, 290] 

 Production of D-erythroascorbic acid and oxalic acid [163] 

D-gulose Drug-formulation agent and food additive [33] 

D-idose Synthesis of cyclic carbamates of derived glycosylamines (polymer chemistry) [138, 143] 

D-lyxose Synthesis of antitumor and immunostimulatory agents [180, 247] 

D-psicose Non-calorie sweetener, treatment of diabetes [16, 97] 

 Potential anthelmintic [229] 

 Precursor of xylosylpsicoses (used as prebiotics, cosmetics and therapeutics) [210] 

D-ribulose Starting material for branched pentoses  (useful in pharmaceutical chemistry) [105] 

D-sorbose Building block for industrial and bio-active products [107, 108] 

 Insect control agent [108] 

D-tagatose Low-calorie sweetener, treatment of diabetes [80, 154, 164, 191] 

 Improvement of human health (e.g. antiplaque, prebiotic) [154, 164, 191] 

 Additive in detergents, cosmetics, and pharmaceutical formulations [154, 191] 

D-talose Anti-tumor and anti-microbial activities, including. marker of O-antigens [190, 278] 

D-xylulose Starting material for branched pentoses (useful in pharmaceutical chemistry) [105] 

L-allose Therapeutic agent for diseases involving vasculogenesis [263] 

L-altrose Component of biologically important oligo- and polysaccharides [106] 

L-fructose Potential inhibitor of various glucosidases [145] 

 Mixture of L- and D-fructose kills ants and house flies [2] 

L-galactose Potential in synthesis of L-nucleoside-based antiviral medications [276] 

 Component of saponins, with applications in food, cosmetics and pharmaceuticals. [195, 276] 

L-glucose Starting material for glycoconjugate vaccines against diseases caused by Shigella sonnei [145] 

 Cytostatic and cytotoxic properties with regards to neoplastic cells (cancer therapy) [2] 
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Table II.1 Overview of rare, unmodified monosaccharides and their (potential) applications (update from [2]) (continuation) 

Sugar Application(s) Reference(s) 

L-gulose Building block of bleomycin A2, a glycopeptide antibiotic (potential anticancer agent) [76, 276] 

 Synthesis of nucleosides that exhibit very potent activity against HBV and HIV [76] 

 Starting material for the production of L-nucleoside-based antiviral medications [276] 

L-idose Derivatives are required in the synthesis of sensitive substrates for α-L-iduronidase [76] 

 Derivatives are used as glycosyl donors in the synthesis of heparin oligosaccharides [252] 

L-lyxose Component of the antibiotic avilamycin A [100] 

 Potential L-fucosidase inhibitor [51] 

L-mannose Component of steroid glycosides [106] 

L-psicose Starting material for the production of L-fructose [113] 

L-ribose Building block for antiviral and anticancer L-nucleosides [94, 171, 291] 

 Building block for glycoconjugates, oligonucleotides and L-aptamers [194] 

 Starting material for the production of L-allose and L-altrose [14] 

 Potential against HBV and Epstein-Barr virus [262] 

L-ribulose Starting material for L-ribose production [66, 68, 236] 

L-sorbose Starting material for the production of L-tagatose [113] 

 Precursor for the synthesis of the potent glycosidase inhibitor 1-deoxygalactonojirimycin [2] 

 Starting material for the production of L-ascorbic acid, also known as vitamin C [113] 

 Starting material for the synthesis of L-talitol [228] 

L-tagatose Potential as a functional sweetener [210] 

 Potential in chemotherapy [210] 

 Precursor of complex materials, such as 1,2,3,4-diisopropylidene tagatofuranose [210] 

 Starting materials for the synthesis of L-deoxygalactonojirimycin [108] 

L-talose Precursor of L-talose nucleosides, inhibitors of the in vitro growth of leukemia L1210 cells [151] 

L-xylose Starting  material for the synthesis of the nucleosides against HBV [168] 

 Synthesis of L-ribofuranose derivatives [47] 

L-xylulose Potential inhibitor of various glucosidases [145, 155] 

Synthesis of L-xylose and L-lyxose [90] 

Indicator of hepatitis or liver cirrhosis [248] 
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Other rare sugars, such as D-tagatose, can serve as low-calorie sweeteners, replacing 

classical table sugar in the food industry. A major advantage is that tagatose has a low glycemic 

index, making it suitable for diabetic patients [164]. In that respect, it is interesting to note that 

tagatose has entered phase III clinical trials to investigate whether it can be used as diabetic 

medication [80]. Similar effects have been attributed to D-psicose, which shows potential as non-

calorie sweetener as well as diabetic and obesity control agent [16]. In contrast, D-allose, an 

isomer of D-psicose, displays rather different properties. Besides its inhibitory effect on both 

carcinogenesis and cancer proliferation, it is also useful in surgery and transplantation as an anti-

inflammatory agent, immunosuppressant and cryoprotectant [159]. 

1.2. Enzymes for rare sugar production 

Basically, three different types of enzymes can be used for the interconversion of 

monosaccharides (Figure II.1). Two of these are classified within the class of isomerases, i.e. 

keto-aldol isomerases (EC 5.3.1) and carbohydrate epimerases (EC 5.1.3). The former (often 

referred to as aldose isomerases or simply as isomerases) catalyze an intramolecular redox 

reaction, exchanging the carbonyl functionality between the C1- and C2-positions [116]. The 

latter, in contrast, catalyze the re-orientation of a hydroxyl group, converting the substrate into 

one of its epimers [226]. The third group of enzymes consists of oxidoreductases (EC 1.1) that 

convert carbohydrates into their corresponding polyols, and vice versa [267]. Oxidoreductases 

acting on ketoses are typically designated as polyol dehydrogenases, whereas those that act on 

aldoses are known as aldose reductases [91]. 

 

All three of these enzyme classes have already been applied for the production of rare 

sugars (see overview in Figure II.2 and Figure II.3), but each have specific advantages and 

disadvantages (Table II.2). Isomerases, for example, are promiscuous biocatalysts that are active 

on a range of simple substrates, i.e. unsubstituted monosaccharides. However, promiscuity is not 

always an advantage because this can result in the formation of side products and complicate the 

downstream processing. This is nicely illustrated with the glucose-6-phosphate isomerase from 

Pyrococcus furiosus, which converts L-tagatose not only to L-talose but also to L-galactose 

(Figure II.4) [286]. Although both products are valuable, it would be more efficient to produce 

them separately with two different isomerases, each specific for one of the aldoses. 
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Figure II.1 The three different enzyme classes that can be used for rare sugar production. Oxidoreductases are 

exemplified by galactitol dehydrogenase (Gal DH), aldose isomerases by L-arabinose isomerase (L-AI) and epimerases 

by D-tagatose 3-epimerase (D-TE) 

 

 

Figure II.2 Overview of the enzymatic interconversions of unmodified monosaccharides that have been reported to 

date: pentoses. Update of the Izumoring process described in [91] 
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Figure II.3 Overview of the enzymatic interconversions of unmodified monosaccharides that have been reported to 

date: hexoses. Update of the Izumoring process described in [91] 
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Table II.2 Comparison of three enzyme classes in rare sugar production 

Enzyme Advantages Disadvantages 

Isomerase Substrates often unsubstituted  Product mixtures are sometimes formed 

 Broad substrate specificity  

Epimerase Shortcut in synthetic route  Substrates often substituted  

 Potential bridge between D- and L-sugars Substrate specificity is rather strict 

Oxidoreductase Bridge between D- and L-sugars Need for cofactor regeneration 

 Substrates often unsubstituted  

   

 

Epimerases are potentially the most useful biocatalysts for the production of rare sugars as 

they can give access to a wide range of structures, in contrast to the two other enzyme classes 

that are limited to modifications of the C1- and C2-positions. Unfortunately, most epimerases are 

only active on sugars that are substituted with a phosphate or nucleotide group, which drastically 

increases production costs. The recently discovered D-tagatose 3-epimerase is a noticeable 

exception that has allowed the production of D-psicose from the cheap substrate D-fructose [250].  

The identification of new epimerases can create interesting shortcuts in current synthetic routes. 

A 2-epimerase, for example, can replace the double keto-aldol isomerization previously required 

for the conversion of D-xylose into D-lyxose (Figure II.2). Furthermore, 5-epimerases could form 

a new bridge between D- and L-hexoses, and the same is true for 4-epimerases acting on pentoses 

(Figure II.5). For instance, glucose could then serve as cheap substrate for L-idose production in 

a single reaction instead of three steps, which is currently the shortest route (Figure II.3).  

 

 

Figure II.4 Isomerization of L-tagatose with glucose-6-phosphate (Glc-6-P) isomerase. Because of the enzyme’s low 

specificity, both L-talose and L-galactose are formed 
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Figure II.5 Interconversion of D- and L-sugars. D-Ribose can only be converted to L-ribose through ribitol as 

intermediate, using oxidoreductases as biocatalysts. However, a putative C4-epimerase would be able to convert D-

lyxose directly into L-ribose. DH Dehydrogenase 

 

For the moment, D-sugars can only be converted into their L-isomers using the 

corresponding polyols as intermediate products. To that end, oxidoreductases are applied in a 

two-step process, i.e. sugar reduction followed by polyol oxidation (Figure II.5). However, 

polyols like xylitol and sorbitol are also valuable compounds in their own right and are used as 

sweeteners with a cooling sensation [88]. Despite their industrial relevance, oxidoreductases 

exhibit one great disadvantage, namely the need for NAD(P)H as expensive cofactor. As a result, 

reactions with oxidoreductases are often performed inside microbial cells so that the cellular 

metabolism can provide the reductive power. Alternatively, specific cofactor regeneration 

systems can be employed when isolated enzymes are to be used (Figure II.6) [72, 108]. 

 

 

Figure II.6 The production of allitol from fructose. Allitol is produced from fructose by a coupling reaction using D-

tagatose 3-epimerase (D-TE) and ribitol dehydrogenase (RDH). Cofactor regeneration is achieved with the help of the 

irreversible formate dehydrogenase (FDH) reaction 
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1.2.1. Oxidoreductases 

Since the development of the chemical hydrogenation method, xylitol has been used on a 

large scale as alternative sweetener [88]. However, research has also been done in order to 

develop microbial production methods for xylitol. To that end, oxidoreductases are often 

employed in metabolically engineered organisms, such as Saccharomyces cerevisiae and 

Candida strains [88, 89]. The main challenge with S. cerevisiae is to increase the uptake of 

xylose as substrate, as well as the regeneration of NADPH through the pentose phosphate 

pathway. Although Candida yeasts are better at taking up xylose and maintaining the 

intracellular redox balance, their application in the food industry is hampered due to the 

opportunistic pathogenic nature of some species. In parallel, the use of xylitol 4-dehydrogenase 

(XDH) as isolated biocatalyst for the production of xylitol has also been optimized. The 

immobilization of the enzyme from Rhizobium etli, for example, has resulted in a 10-fold 

increased thermostability, a broader operational pH range, and excellent reusability [292]. In 

turn, xylitol can serve as substrate for the production of other rare sugars like L-xylulose and L-

xylose. In a recent study, the XDH from Bacillus pallidus has been overexpressed in Escherichia 

coli for L-xylulose production. Although the conversion rates were lower than when the B. 

pallidus strain was used, the advantage of E. coli is that the formation of side products is 

drastically reduced [205, 248]. At higher temperatures, however, L-xylose started to accumulate 

instead of L-xylulose, perhaps due to the activity of endogenous D-arabinose isomerase in E. coli. 

 

The combination of regio- and stereoselectivity for the C2 position allows the mannitol 1-

dehydrogenase (MDH) from Apium graveolens to catalyze several interesting reactions, 

including the conversion of ribitol to L-ribose, D-sorbitol to L-gulose, and galactitol to L-

galactose [243]. A recombinant E. coli harboring this MDH represents a significantly improved 

method for the large-scale production of L-ribose compared to previously used methods [277]. A 

threefold higher productivity was obtained compared to the double isomerization of L-arabinose 

with xylose isomerase [121], and a much higher conversion rate was obtained compared to the 

chemical process, while the environmental hazards could be avoided [124]. 

 

Another dehydrogenase that shows high potential as a biocatalyst in rare sugar production is 

the recently discovered D-arabitol 2-dehydrogenase (D-ADH) from Thermotoga maritime [125]. 

It is the first hyperthermophilic D-ribulose forming D-ADH and thus exhibits several industrial 

advantages. First of all, the enzyme can convert the inexpensive substrate D-arabitol with very 

high selectivity. In addition, the risk of contamination in food production is dramatically lower as 
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it can be used at increased temperatures. And finally, it can be efficiently purified from 

recombinant E. coli by heat precipitation, providing a reliable and cost-effective supply of 

biocatalyst. 

 

Oxidoreductases, and their producing strains, can also be used for the interconversion of 

deoxy-sugars. L-rhamnose is the only cheaply available deoxy-hexose but can be transformed 

into 1- and 6-deoxygenated D/L-psicose, D/L-fructose and L-tagatose by Enterobacter aerogenes 

IK7 [92, 93]. On the other hand, Enterobacter agglomerans 221e can be applied in the synthesis 

of 1- and 6-deoxy-D-tagatose from both enantiomers of fucose [288]. In these processes, the 

deoxy-sugar is first chemically hydrogenated towards the corresponding polyol, which then 

serves as substrate for the enzymatic oxidation. Furthermore, microbial oxidation can also be 

performed on methylated polyols, for instance for production of both enantiomers of 4-C-methyl-

ribulose by Gluconobacter thailandicus NBRC 3254 [122, 211]. 

1.2.2. Isomerases 

Due to the broad substrate specificity of isomerases, these enzymes can be applied in the 

synthesis of various aldoses and ketoses starting from their cheaper counterpart. A well known 

example to illustrate their promiscuity is the fact that xylose isomerase is better known as 

glucose isomerase because it is mainly used for the production of high fructose corn syrup 

(HFCS) rather than for its wild-type conversion (D-xylose to D-xylulose). The importance of 

substrate resemblance for side activities can be further illustrated with the following examples. 

The D-lyxose isomerase from Providencia stuartii was found to be active not only on D-lyxose/D-

xylulose but also on nine other ketose-aldose couples. The highest specific activity was measured 

on aldose substrates with the C2 and C3 hydroxyl groups in the left-hand configuration, just as in 

the wild-type substrate. In contrast, very little activity could be detected on the mirror image 

substrates L-lyxose, L-mannose [142]. Many more isomerases have been shown to be active on 

sugars similar to their wild-type substrates [3, 52, 146, 172, 199, 200, 206, 215, 282].  

 

The promiscuity of isomerases has not only been evaluated with resembling 

monosaccharides but also with respect to the presence of a phosphate group. Indeed, several 

isomerases that are naturally active on phosphorylated sugars have been shown to convert free 

carbohydrates as well. In particular, ribose-5-phosphate isomerase has been shown to be active 

on D/L-ribose, D/L-lyxose, D/L-talose, D/L-mannose, D/L-allose, L-lyxose and L-tagatose [199, 283, 
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285]. Similarly, mannose-6-phosphate isomerase and galactose-6-phosphate isomerase have been 

found to convert free monosaccharide, such as L-ribose [284] and D-allose [200], respectively. 

 

A second feature to take into account is whether the isomerase is specific towards one of the 

two aldoses. If the enzyme is not specific enough, mixtures will be obtained containing three 

sugars, namely the substrate, the desired product and an undesired side product (Figure II.4). 

Consequently, the choice of the proper enzyme will result in both higher yields and easier 

purification. The L-rhamnose isomerase from Bacillus pallidus has been shown to convert D-

psicose/D-allose, L-fructose/L-mannose, D-ribose/D-ribulose and L-talose/L-tagatose without the 

formation of by-products [206]. The opposite is true for the glucose-6-phosphate isomerase from 

Pyrococcus furiosus, which converts L-talose to both L-tagatose and L-galactose, and D-ribulose 

to both D-ribose and D-arabinose [286]. Xylose isomerase is another enzyme that has been shown 

to also catalyze C2-epimerization of different substrates in addition to the expected 

isomerization, leading to side product formation [201, 269]. 

 

To further outline the importance of isomerases in rare sugar synthesis, an overview is given 

from some isomerases that are currently in use or which show great potential in rare sugar 

conversion. 

1.2.2.1. L-arabinose isomerase for tagatose production 

L-arabinose isomerase (L-AI) has been thoroughly studied for the conversion of D-galactose 

into the low-calorie sweetener D-tagatose [49, 50, 55, 207, 215]. Tagatose is almost as sweet as 

sucrose but is metabolized in a different fashion, resulting in a caloric content that is about three 

times lower [80, 154]. Recently, the enzyme from Bacillus stearothermophilus was successfully 

mutated towards an improved industrial biocatalyst. Through rational design, three mutants were 

created based on previously reported data and sequence alignments. Acidotolerance and stability 

was improved by the mutation Q268K and a broader temperature range was achieved by the 

mutation N175H, with the combined double mutant displaying both characteristics [213]. In 

another study, ten positions identified through random mutagenesis of Geobacillus 

thermodenitrificans L-AI were examined in detail. Five of the corresponding variants were 

shown to display a two- to threefold increase in specific activity. Double mutants were then 

created, with C450S/N475K generating a 20% higher tagatose conversion and a fourfold increase 

in specific activity compared to the wild-type enzyme [193]. In addition, production processes 

have also been improved. The addition of boric acid was found to result in increased yields 
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[158], whereas immobilization of the L-AI was performed to obtain a stable and economic 

method for the industrial production of tagatose [192]. 

1.2.2.2. Isomerases for L-ribose production 

Several isomerases have been shown to display a minor side activity on L-ribose, which has 

been the focus of enzyme engineering efforts. The activity of the mannose-6-phosphate 

isomerase from Thermus thermophilus for L-ribose production has, for example, been improved 

by the mutation R142N, resulting in a 1.4- and 1.6-fold increase in specific activity and catalytic 

efficiency (kcat/KM), respectively. This mutant was found through alanine scanning of several 

active-site residues, followed by partial randomization of the most important position. The 

catalytic efficiency of the resulting R142N mutant was 3.8-fold higher than that of Geobacillus 

thermodenitrificans mannose-6-phosphate isomerase, which exhibited the highest catalytic 

efficiency reported to that date. The purified R142N mutant had a volumetric productivity of 107 

g liter-1 h-1 in a L-ribose production process [284]. However, a specific L-ribose isomerase (L-RI) 

has also been isolated from an Acinetobacter strain, with a KM of 44 mM for L-ribose and a 

specific activity of 24.2 µmol mg-1 min-1 for L-ribulose formation [236]. Strangely, the enzyme’s 

specific activity was about ten-fold higher when it was recombinantly expressed in E. coli [176]. 

The L-RI could be a promising biocatalyst for the production of L-ribose, but has not yet been 

evaluated in such a process. 

1.2.2.3. Isomerases for deoxygenated and other modified sugars 

Two isomerases that prefer deoxy-sugars as their substrates are L-fucose isomerase [82, 

123] and L-rhamnose isomerase [146, 147]. These enzymes also tolerate other modifications at 

centers higher than C3 and can use epimeric or functionalized sugars as substrates. Examples 

hereof are terminus-modified fuculose-analogues for L-fucose isomerase [82]. Other related 

enzymes, including xylose (glucose) isomerase, were also shown to accept deoxygenated and/or 

substituted sugars [81, 96, 209]. It can thus be expected that several isomerases will be applied 

for the production of modified sugars in the near future. 

1.2.3. Carbohydrate epimerases 

All biochemical reactions that can be used for the production of rare sugars and polyols 

from readily available raw materials like starch, wood and lactose have been summarized in the 

Izumoring [91]. At that time, only one epimerase was available for such conversions, namely the 

D-tagatose 3-epimerase. Since then, however, two other epimerases have been shown to be 

naturally active on unsubstituted sugars (i.e. cellobiose 2-epimerase and UDP-galactose 4-



21 

 

epimerase), whereas the L-ribulose-5-phosphate 4-epimerase has also been found to show 

promise for the production of rare sugars. 

1.2.3.1. Ketohexose 3-epimerase 

D-tagatose 3-epimerase (D-TE) was found to catalyze the epimerization of various ketoses at 

the C3 position, making it a very useful enzyme for rare sugar production. D-TE has already been 

used for the synthesis of various carbohydrates, both in single and multiple enzyme reactions. At 

the lab scale, this enzyme has even been used for the production of all possible ketohexoses [113, 

115]. Furthermore, D-TE is a highly promiscuous enzyme that can accept a large range of 

unnatural substrates, like C-4-methylated pentoses [211], C-5-methylated hexoses [122], 5-

deoxy-ketohexoses [209], as well as several 1- and 6-deoxy-ketohexoses [93]. On the other hand, 

immobilized D-TE has been applied in the mass production of D-psicose from D-fructose [250]. 

Addition of borate to the reaction mixture results in removal of the product as a psicose-borate 

complex and will thus result in improved yields [133]. Two examples of multiple enzyme 

reactions where D-TE is applied are allitol and D-arabinose production starting from fructose and 

xylose, respectively. To that end, the epimerase is combined with dehydrogenases or isomerases 

(Figure II.6) [246, 249]. 

 

A very similar enzyme has been described in Agrobacterium tumefaciens, namely D-psicose 

3-epimerase (D-PE). Unfortunately, due to its short half-life (63 min at 50 °C), it is inefficient for 

the industrial production of psicose. Therefore, enzyme variants were created by error-prone 

PCR and tested for improved thermostability [53]. Two single mutants (I33L and S213C) 

displayed an increased optimal temperature and kinetic stability. Combining both mutations in a 

single enzyme further improved these parameters, resulting in a 30-fold increase in half-life at 

50°C. In a continuous production process with the immobilized double mutant, no decrease in 

activity could be observed after 30 days. This suggests that the I33L/S213C variant may be 

useful as an industrial producer of D-psicose. 

1.2.3.2. UDP-Galactose 4-epimerase 

The second enzyme that shows epimerase activity on free monosaccharides is the E. coli 

UDP-galactose 4-epimerase, which normally uses nucleotide-activated galactose and glucose 

(UDP-Gal/UDP-Glc) as substrates. However, the purified enzyme was found to also catalyze the 

4-epimerization of free galactose, glucose, fructose, tagatose, psicose, and sorbose, albeit with 

very low specific activities (0.3-9.7 nmol mg-1 min-1). Three residues were submitted to site-
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saturation mutagenesis, resulting in the identification of a N179S mutant with a twofold 

improved activity on fructose and tagatose. The enzyme was also tested for 4-epimerization 

activity on allose, gulose, altrose, idose, mannose, and talose but no activity was found on these 

aldohexoses [130]. 

1.2.3.3. Cellobiose 2-epimerase 

A third enzyme that was found to catalyze (rare) carbohydrate epimerizations is the 

cellobiose 2-epimerase (CE) from Caldicellulosiruptor saccharolyticus. This thermophilic 

epimerase not only catalyzes the epimerization of cellobiose, but also shows low activity on 

aldoses harboring hydroxyl group oriented in the left-hand configuration at the C3 position. The 

enzyme exhibited the highest side activity for mannose (to glucose), although this was 20 times 

lower than the activity on cellobiose. Low activities were also detected on D-xylose, L-altrose, L-

idose, and L-arabinose [198]. Very recently, a new mannan catabolic pathway has been described 

in Bacteroides fragilis, including a CE that functions as mannobiose 2-epimerase (MBE) in vivo. 

These findings are supported by a lower Km and higher catalytic efficiency for mannobiose than 

for cellobiose [233]. Further proof of its physiological role can also be found in its preference for 

mannose over glucose as monosaccharide substrate, which was reported for the C. 

saccharolyticus CE [198]. Surprisingly, the latter enzyme also shows slight isomerase activity on 

various monosaccharides when long reaction times and high amounts of enzyme were used 

[198]. This isomerase side activity will lower epimerization yield and complicate the purification 

process. 

1.2.3.4. L-ribulose-5-phosphate 4-epimerase and related aldolases 

Another epimerase that is promising for rare sugar conversions is L-ribulose-5-phosphate 4-

epimerase. This enzyme is structurally and mechanistically related to the dihydroxyacetone 

phosphate dependent L-fuculose-1-phosphate aldolase and L-rhamnulose-1-phosphate aldolase 

[120, 166]. Despite the fact that the wild-type substrates of all these enzymes are phosphorylated 

(deoxy-) sugars, the epimerase shows potential for the production of rare sugars that lack a 

phosphate group. Indeed, by applying error-prone PCR to L-rhamnulose-1-phosphate aldolase, 

variants could be created that display activity towards unsubstituted L-rhamnulose [244]. Since 

the two enzymes are very similar, it is not unreasonable that the same or equivalent mutations 

would have an identical effect on the substrate specificity of the epimerase, thus making it active 

on free ketoses. Furthermore, aldolases can be used in the direct synthesis of rare sugars by aldol 

condensation of smaller carbohydrates. The previously mentioned L-fuculose-1-phosphate 
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aldolase has been used in the production of D-psicose, D-sorbose, L-tagatose, and L-fructose 

starting from DL-glycerol 3-phosphate and D- or L-glyceraldehyde [156]. 

1.3. Rare sugars: conclusions and outlook 

During the past decades, major progress has been made in research on rare carbohydrates. 

The discovery of new enzymes and the engineering of existing biocatalysts have generated new 

opportunities for their application in various industrial sectors. The discovery of a D-tagatose 3-

epimerase (D-TE), for example, has not only allowed the synthesis of all possible ketohexoses, 

but also of methylated and deoxygenated sugars. For other biocatalysts, mutagenesis efforts have 

resulted in improved activity and stability, as illustrated by the R142N variant of mannose-6-

phosphate isomerase and by the I33L/S213C variant of D-psicose 3-epimerase, respectively. 

 

Epimerases, in particular, are exciting biocatalysts as they can facilitate rare sugar 

production through the introduction of major shortcuts in the current production routes. One 

major challenge, however, is the need for epimerases that are active on free monosaccharides 

instead of nucleotide-activated or phosphorylated sugars. Obtaining such epimerases by 

redesigning the active site of known enzymes is not a trivial task. Indeed, the substituents are 

often essential for strong binding of the substrates and can even be crucial for the enzyme’s 

activity through an induced fit mechanism. Alternatively, suitable epimerases could be identified 

by further screening in natural environments, which still is a powerful approach and regularly 

redefines our knowledge of microbial physiology. 

 

A very important step in any enzyme engineering project is the choice of the most suitable 

template. Recently, L-arabinose isomerase (L-AI) and tagatose-6-phosphate isomerase (T6PI) 

have been compared as starting points for increased isomerization activity on galactose [131]. 

Although this would require the loss of a phosphate group in the case of T6PI, this enzyme was 

concluded to be the best template for directed evolution because mutations are less likely to 

diminish its activity. Indeed, L-AI makes use of metal cofactor whose binding can be easily 

disrupted by random mutations. Nevertheless, L-AI would probably be the right choice for 

rational design studies because its crystal structure is available. Future work will reveal which 

enzyme and which strategy will generate powerful new biocatalysts for the production of rare 

sugars. 
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2 The rare sugar target: D-tagatose 

2.1. Introduction 

Tagatose, a rare natural ketohexose, is an isomer of D-galactose and an epimer 

(stereoisomer) of D-fructose (Figure II.7). It is found in small quantities in various foods such as 

sterilized and powdered cow’s milk, a variety of cheeses, yoghurts, and other dairy products. In 

addition, tagatose also naturally occurs in the gum of the West-African tree Sterculia setigera 

[80, 191]. D-Tagatose has attracted a great deal of attention since it was first described as a sugar 

substitute [155]. Since then, several studies have been performed, investigating the different 

aspects of tagatose in food and pharmaceutical formulations, like stability in food and drinks [75, 

165], clinical trials for drug application [80] as well as consumer evaluation [9, 253]. 

 

 

Figure II.7 Fisher projection of D-fructose, D-tagatose and D-galactose, including the (possible) link between the 

sugars. D-Fructose to D-tagatose conversion needs a C4-epimerization whereas D-galactose to D-tagatose conversion 

requires an isomerization 

2.2. Properties 

As all hexoses, the molecular formula of tagatose is C6H12O6 and it has a molecular weight 

of 180.16 g/mol. It is an optically active compound containing 3 chiral carbon atoms. As it is a 

reducing sugar, it is involved in browning during heat treatment. The melting temperature of 

tagatose is 134 °C, which is lower than that of sucrose, resulting in a more readily decomposition 

at higher temperatures. It is stable in a pH 2-7 range and has a high solubility in water, 58% 

(w/w) at 21 °C. Its physical form is a white anhydrous odorless crystalline solid. It is less 

hygroscopic than fructose and has similar humectants properties as sorbitol [154]. 

 

As tagatose is poorly absorbed in the small intestine and the majority of ingested tagatose 

(75 %) will reach the large intestine, it is called a malabsorbing sugar [191]. In the large 

intestine, it is fermented by the intestinal microflora and is converted into short chain fatty acids, 
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which are absorbed almost completely. Absorbance and metabolisation of these short chain fatty 

acids result in a low energy recovery. On the other hand, energy is lost due to increased biomass 

excretion of microflora [28]. Whereas reported caloric values range from -0.12 to 1.4 kcal/mol, 

the FDA approved caloric content  is 1.5 kcal/g. 

 

The taste of tagatose is very comparable to that of sucrose, with a sweetness of 92 % 

compared to sucrose at 10 % solutions. In contrast to polyols, no cooling effect is observed with 

tagatose, nor bitter or off-flavor aftertastes as found with artificial sweetener aspartame [183]. It 

is similar to polyols in having a low caloric value and is also tooth-friendly [191], yet without the 

laxative effect. The glycemic index of tagatose is very low [154], namely 2-3. An overview of 

the physical, chemical, and biological properties of tagatose is given in Table II.3. 

 

Table II.3 D-tagatose and its physical, chemical, and biological properties (Adapted from [80, 154, 191]) 

Property Value and/or comment 

Common name D-tagatose, Tagatose 

IUPAC name  (3S,4S,5R)-1,3,4,5,6-Pentahydroxy-hexan-2-one 

Chemical family Carbohydrate; monosaccharide; ketohexose 
Molecular formula C6H12O6 

Molecular weight 180.16 g/mol 

Structure 3 chiral carbons (C3, C4 & C5); C4-epimer of fructose; isomer of galactose 
Distribution of cyclic forms  α-D-tagato-2,6-pyranose (79%), β-D-tagato-2,6-pyranose (14%), α-D-tagato-

2,5-furanose (2%), and β-D-tagato-2,5-furanose (5%) 

Physical form White anhydrous crystalline solid 
Odor None 

Melting point 134 °C 

Decomposition temperature 120 °C 
Optical rotation αD

20 = -5° (c = 1 in water)   

Solubility in water High solubility: 58% wt/wt at 21°C 

pH stability range 2-7 
Relative sweetness 92% of sucrose (compared in 10% solutions) 

Sweetness profile Mimics sucrose, but with a faster onset than fructose 

Cooling effect None 
Caloric value 1.5 kcal/g approved (reported range: -0.12 – 1.4 kcal/g) 

Glycemic index Very low: 2-3 

Cariogenicity None 
Health promotion Low calorie, prebiotic, low glycemic, no elevation of blood glucose, 

suitable for diabetics, healthy foods, dietary supplements, beneficial drugs 

or drug adjuvants, antioxidant, cytoprotective  
Bulk Similar to sucrose 

Humectant/Hygroscopicity Similar to sorbitol / Less than fructose 

Metabolism Malabsorbing sugar: 25% absorbed, unabsorbed fraction (75%) is 

fermented by the intestinal microflora towards short chain fatty acids which 

results in a low energy recovery. Energy loss due to increased biomass 

excretion of microflora 
Maillard reaction Yes, browning like sucrose 

Applicable in  Chocolate candy, soft confectioneries, hard confectioneries, diet soft drinks, 

ready to eat cereals, frosting, ice cream, frozen yogurt, diet chewing gum 
Regulatory status GRAS status by the FAO/WHO since 2001 for food and beverages 
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2.3. Production methods 

In both the chemical and biochemical manufacturing process, tagatose is made by 

isomerization of galactose. This galactose is obtained by hydrolysis of lactose which is present in 

milk whey, a byproduct of the cheese industry. The released galactose and glucose in the 

hydrolysate are then separated by chromatography to yield pure galactose as substrate for the 

isomerization reaction (Figure II.8). 

 

Lactose

Hydrolysis

mixture of galactose and glucose

galactose

tagatose

glucoseChromatography

L-arabinose 
isomerasecalcium tagatate

Isomerisation 

with Ca(OH)2

Neutralisation

with CO2

 CHEMICAL                                BIOCHEMICAL

 

Figure II.8 Tagatose manufacturing starting from lactose. Left: chemical isomerization under alkaline conditions 

(Ca(OH)2)  and neutralization using CO2. Right: biochemical isomerization using L-arabinose isomerase 

 

2.3.1. Chemical 

The current production process is based on the chemical isomerization of galactose which 

was developed by Spherix Incorporated [19]. Chemical isomerization of galactose to tagatose is 

carried out under alkaline conditions using a hydroxide. Calcium hydroxide is the preferred 

hydroxide because this complexing agent will shift the isomerization equilibrium between 
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galactose and tagatose towards tagatose. This is a result of insoluble complex formation with 

tagatose at elevated pH. The calcium tagatate suspension is then treated with carbon dioxide, the 

preferred acid, to neutralize the mixture and hereby liberate tagatose as well as precipitate 

calcium as calcium carbonate (Figure II.8). Finally, tagatose is further purified, crystallized and 

dried [154, 164]. 

2.3.2. Biochemical 

Several biocatalysts have been studied for biological manufacturing of tagatose (Figure 

II.9). Conversion of galactitol into tagatose has been reported for Arthrobacter globiformis [117], 

Gluconobacter oxydans [170, 220], Mycobacterium smegmatis [118], Enterobacter 

agglomerans, and Klebsiella pneumoniae  [191]. In these micro-organisms, a sorbitol 

dehydrogenase is the responsible enzyme for the biotransformation [220]. A second biocatalytic 

route that has been proposed is the conversion of sorbose into tagatose with the help of D-psicose 

3-epimerase from Agrobacterium tumefaciens [129] or D-tagatose 3-epimerase from 

Pseudomonas cichorii [109, 114, 287]. However, both sorbose and galactitol are expensive 

substrates and thus have limited potential in the commercial production of tagatose. 

 

More economical production routes start from cheap substrates such as galactose or 

fructose. The current production route that starts from fructose is a two step method in which 

fructose is first converted to psicose which is then applied as substrate in the biotransformation 

towards tagatose with the help of Mucoraceae fungi. Various Mucoraceae strains have been 

reported to be able to carry out this reaction. Neither the availability nor the price of psicose are 

limiting factors here, as psicose mass production became industrially feasible after the discovery 

of ketohexose 3-epimerases [129, 250]. The two-step tagatose production from fructose over 

psicose is a good alternative method; however, it still requires further intensive investigation 

[191]. 
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Figure II.9 Different biological manufacturing routes for tagatose. C4? indicates possibilities for C4-epimerization 

reactions in manufacturing of tagatose 

 

A biocatalyst that is currently receiving much interest, and probably the most studied one 

for biochemical isomerization of galactose, is L-arabinose isomerase. The isomerization can be 

both achieved biocatalytically, with purified L-arabinose isomerase, or in a biotransformation 

setting in which the isomerase is still inside living/resting cells. As discussed earlier (see 1.2.2.1), 

site directed and site saturation as well as random mutagenesis were applied to improve L-

arabinose isomerase as an industrial biocatalyst. Characteristics that were improved are 

acidotolerance and stability [213], a broader temperature range [213], tagatose conversion and 
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specific activity [193]. On the other hand, tagatose can also be produced using L-arabinose 

isomerase inside living cells. The advantage of working inside cells is that an equilibrium shift is 

achieved towards tagatose. This is the result of the differential selectivity of the cell membrane, 

leading to higher uptake and lower release rates for galactose than for tagatose and vice versa 

[132]. Alginate immobilized Lactobacillus strains are an attractive substitute for recombinant 

Escherichia coli, as they are approved as GRAS (generally recognized as safe) organisms [279]. 

Another example of in vivo production is that of tagatose production in milk fermentation by 

Lactobacillus and Streptococcus harboring recombinant L-arabinose isomerase [214].  

2.4. Applications 

Tagatose has numerous health benefits, which form the basis of its applications in dietary 

food and beverages, as well as its drugs applications. The main health benefits are summarized 

here. Due to its low caloric content, its consumption results in promotion of weight loss at 

medically desirable rates [41, 154]. Consequently it can also be used for the treatment of obesity 

[41, 177]. As it has no glycemic effect, it is safe for diabetic patients [77], for whom it can also 

be used to reduce symptoms associated with diabetes type 2, as well as symptoms of 

hyperglycemia, anemia and hemophilia [153]. Thus, the low-caloric sweetener is mainly applied 

in dietary foods and beverages such as low-carbohydrate diets, cereals, yoghurt, milk-based 

drinks, soft drinks, health bars, candy, chocolate and other confectionery [191].  

 

Besides being of low-caloric value, tagatose has other benefits in health food products, like 

prebiotic properties, as well as anti-biofilm, anti-plaque, and non-cariogenic [29, 56]. These latter 

features make tagatose very useful in tooth paste and mouth wash. Furthermore, it can be used 

for improvement of pregnancy and fetal development [153], flavor enhancements [191] and for 

organ transplants where it acts as a powerful antioxidant and cytoprotective [202]. Other 

applications for tagatose are in the synthesis of other optically active compounds and as an 

additive in detergents, cosmetics, and pharmaceutical formulations [191]. 

 

More recently, preliminary studies in humans pointed out that tagatose has a low 

postprandial blood glucose and insulin response. Currently, tagatose is being studied in clinical 

phase III trials for use as medication for the treatment of diabetes type 2 as well as prediabetes 

and obesity [80]. Different mechanisms of action have been proposed and combinations of these 

effects are also possible. Tagatose might compete with or partially inhibit glucose transporters in 
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the small intestine leading to delayed absorption. However, this has not been demonstrated in 

animal models [237]. Another proposed mechanism is the inhibition of sucrase and maltase 

which would decrease the digestion of sucrose and starches in the small intestine, respectively. In 

vitro and animal studies support these mechanisms. Another putative mechanism states that 

tagatose may act through its liver metabolism. Tagatose-1-phosphate formation might induce 

glucokinase and inhibit glycogen phosphorylase, both resulting in increased glycogen 

accumulation and decrease of hepatic glucose output. In a phase II clinical trial study, a 1% 

decrease in glycated hemoglobin (HbA1c) was found in type 2 diabetic patients. This overall 

significant decrease in HbA1c indicates a highly improved blood sugar control by the body. 

Furthermore, HDL cholesterol had increased whereas no changes were observed in blood 

pressure, non-HDL cholesterol or other parameters. The ongoing clinical phase III trials will 

provide better insights in tagatose, its mechanism and potential in diabetes and obesity treatment 

[80]. 

 

As indicated for other rare sugars (see 1.1 and Table II.1), it can be stated that tagatose has 

plenty of applications, mainly as low-caloric sweetener in food and flavor industry. Furthermore, 

it still holds great potential in a variety of other industries, such as medication in diabetes type 2, 

prediabetes and obesity. As such, tagatose has a big economical value. 
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3 (Sugar) Epimerases 

3.1. General 

Carbohydrates and their derivatives are essential to different life forms, in which they 

exhibit a wide variety of functions. Among these vital tasks in biology are source of energy, 

structural elements, molecular recognition markers, and they are used as precursors for the 

biosynthesis of other building blocks/molecules such as aromatic amino acids. Furthermore, as 

already stated above in the section on rare sugar production, they have many applications in 

industrial processes (Table II.1). In nature, several kinds of enzymes are used in the metabolism 

and conversion of carbohydrates, such as dehydrogenation, oxidation, reduction, acetylation, 

isomerization, and epimerization.  

 

Epimerization is defined as the inversion of the configuration of asymmetrically substituted 

carbon in linear or cyclic molecules like carbohydrates. Oversimplified, it can be seen as the 

removal of a hydrogen atom on one face of the substrate followed by readdition of the hydrogen 

at the opposite site of that carbon atom (Figure II.10). However, despite the simplicity of 

representation of this reaction, the chemistry behind these transformations is much more 

complex; epimerization does not occur spontaneously as carbohydrates are extremely stable. On 

the other hand, sugar epimerases have been found in all branches of life and, in theory, they can 

change stereochemistry at all different stereocenters of sugars. Some enzymes even epimerize 

two centers simultaneously during turnover, like dTDP-6-deoxy-D-xylo-4-hexulose 3,5-

epimerase.  

 

O

H
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Figure II.10 Epimerization; inversion of chirality at a asymmetrically substituted carbon 

 

To date, over 20 types of sugar epimerases have been reported active on C1, C2, C3, C4, 

C5, and C6 centers of mono- and oligosaccharides, using several completely different reaction 

mechanisms to invert chirality. Among these epimerase mechanisms are mutarotation or ring 

opening (e.g. aldose 1-epimerase), proton abstraction/readdition (e.g. D-ribulose-5-phosphate 3-

epimerase), nucleotide elimination (e.g. UDP-N-acetylglucosamine 2-epimerase), carbon-carbon 
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bond cleavage (e.g. L-ribulose-5-phosphate 4-epimerase), and transient keto intermediate (e.g. 

UDP-galactose 4-epimerase) (Table II.4). These latter two mechanisms will be further outlined in 

the literature part on L-ribulose-5-phosphate 4-epimerase (see 3.2) and UDP-galactose 4-

epimerase (see 3.3), respectively. These two C4-epimerases will be discussed in further detail as 

they are applied in this research project. More details on the mechanisms for epimerization can 

be found in the following reviews [5, 112, 226, 251]. 

 

Table II.4 Mechanistic types of epimerization (adapted from [5]) 

Epimerization mechanism Example enzyme Epimerization site 

Mutarotation or ring opening aldose 1-epimerase C1 

Proton abstraction/readdition D-ribulose-5-phosphate 3-epimerase 

tagatose/psicose 3-epimerase 

GDP-4-keto-6-deoxy-D-mannose epimerase/reductase 

dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase 

C3 

C3 

C3, C5 

C3, C5 

Nucleotide elimination UDP-N-acetylglucosamine 2-epimerase 

N-acyl-D-glucosamine 2-epimerase 

C2 

C2 

Carbon-carbon bond cleavage L-ribulose-5-phosphate 4-epimerase C4 

Transient keto intermediate UDP-galactose 4-epimerase 

ADP-L-glycero-D-mannoheptose 6-epimerase 

CDP-tyvelose 2-epimerase 

C4 

C6 

C2 

 

As can be seen in Table II.4, two epimerases active on the C4-stereocenter have been found 

in nature until now. As a C4-epimerization is the desired reaction, these two enzymes will serve 

as a template for enzyme engineering. Therefore, both the L-ribulose-5-phosphate 4-epimerase 

(3.2) and UDP-galactose 4-epimerase (3.3) will be discussed in further detail now. 

3.2. L-ribulose-5-phosphate 4-epimerase 

3.2.1. General 

The bacterial L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4, AraD) is one of the enzymes 

that enables many bacteria to use L-arabinose as a source of energy by coupling the L-arabinose 

pathway to the pentose phosphate pathway [5]. The gene is located in the araBAD operon and, 

together with L-arabinose isomerase (AraA) and ribulokinase (AraB), it metabolizes L-arabinose 

into D-xylulose-5-phosphate which is subsequently taken up in the pentose phosphate cycle 

(Figure II.11). Other genes involved in this pathway are araC, araE and araFG which are 

necessary for gene regulation, low-affinity and high-affinity transport, respectively [157]. 
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Figure II.11 L-Arabinose pathway in E. coli 

 

In E. coli, two other homologous L-ribulose-5-phosphate 4-epimerases are expressed 

besides AraD, namely the gene products from sgbE and ulaF. These two enzymes also catalyze 

the same reaction but are differently induced, making them active in other pathways. Whereas 

the gene product for araD is expressed in L-arabinose catabolism, SgbE and UlaF are active in 

the degradation of L-lyxose and L-ascorbic acid, respectively. All three epimerases reversibly 

interconvert L-ribulose-5-phosphate and D-xylulose-5-phosphate by inverting the configuration 

of the hydroxyl group at the C4-stereocenter via the same mechanism with the use of a divalent 

metal ion (Figure II.12). 

3.2.2. Mechanism 

As the L-ribulose-5-phosphate 4-epimerase epimerizes a stereocenter that does not bear an 

acidic proton, it cannot apply a simple deprotonation/reprotonation mechanism. Furthermore, it 

was proven that no NAD+ cofactor is involved in the reaction and the oxidation/reduction 

mechanism is thereby excluded. Initially, two mechanisms were proposed for this enzyme, 

namely an aldolase/retroaldolase mechanism applying a carbon-carbon bond cleavage and re-

addition or a dehydratation/rehydratation mechanism in which an enone intermediate is formed 

[74]. Extensive research provided clear evidence for the retroaldolase/aldolase mechanism which 

is describe in more detail below. 

 

Despite the low sequence identity between L-ribulose-5-phosphate (L-Ru-5-P) 4-epimerase 

and L-fuculose-1-phosphate aldolase (FucA), the structural resemblance is striking. The L-

fuculose-1-phosphate (L-Fuc-1-P) aldolase is the best characterized example of the class II 

aldolases and catalyzes the condensation of L-lactaldehyde and dihydroxyaceton phosphate into 
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L-fuculose-1-phosphate or the reverse cleavage reaction [120]. For the aldolase, conserved 

residues include three histidines (His92, His94, and His155) and a glutamate (Glu73) which are 

necessary for binding zinc into the metallo-enzyme. These four residues are structured in more or 

less tetrahedral position around the metal ion. Upon binding of the substrate, the bond between 

the glutamate and zinc ion is broken and L-Fuc-1-P is positioned towards the zinc ion with its 

carbonyl function as well as the hydroxyl group at the C3-stereocenter. The now liberated acidic 

moiety of the glutamate residue, subsequently deprotonates the hydroxyl group at the C4-

stereocenter and hereby initiates the cleavage of the carbon-carbon bond between C3 and C4. In 

this manner, L-lactaldehyde and the metal bound enolate of dihydroxyaceton phosphate (DHAP) 

are formed. After cleavage, the acidic form of Glu73 will protonate the enolate intermediate in 

order to form dihydroxyaceton phosphate (Figure II.12a). 
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Figure II.12 Comparison between the mechanisms of (a) L-Fuc-1-P aldolase and (b) L-Ru-5-P 4-epimerase 
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The strong structural similarity suggested that L-Ru-5-P 4-epimerase and L-Fuc-1-P aldolase 

belong to the same superfamily or have evolved from a common ancestor [251]. Furthermore, it 

provided a first provisional evidence that the epimerase applies the retroaldolase/aldolase 

mechanism. Evidence that supports this relatedness was provided by mutagenesis of some of the 

conserved residues in L-Ru-5-P 4-epimerases, namely His95, His97 and Asp76. Residues were 

mutated towards asparagines and the resulting enzyme variants exhibited a reduced epimerase 

activities, in the range of 3-200-fold reduction. More importantly, enzyme variants also showed 

reduced affinity for divalent zinc ions, and thus require exogenous Zn2+ for full activity. This 

demonstrates their importance in catalysis, namely via their role in binding of the divalent metal 

ion. Further sequence alignments of the epimerase and aldolase suggests His171 to be the fourth 

zinc binding residue. However, this hypothesis remains to be tested by mutagenic studies [120].  

 

For the epimerase, the initial retroaldolase cleavage of the L-Ru-5-P results in the enolate of 

dihydroxyaceton (DHA) and glycolaldehyde phosphate (GAP) as enzyme bound intermediates. 

In the epimerase, the protonation of the enolate intermediate is not promoted by acid/base 

catalytic residues. In this case, the formed aldehyde turns around in the catalytic cleft facing its 

opposite side towards the enolate, which is then followed by the reverse reaction, namely the 

aldol condensation. As a result of the condensation at the other side of the aldehyde, D-xylulose-

5-phosphate is formed resulting in an overall epimerization at C4 (Figure II.12b). Acid/base 

catalysts responsible for this difference were found to be an aspartic acid (Asp120) and a tyrosine 

residue (Tyr229) rather than the Asp76 which corresponds to the Glu73 in the aldolase [148, 

225]. 

 

The overall structural similarity and common metal-binding motif are insufficient to prove 

that both enzymes use the same or a very similar reaction mechanism. This was evidenced by the 

fact that both the wild-type epimerase and its D76N variant catalyzed the aldol condensation of 

dihydroxyaceton and glycolaldehyde phosphate to form a mixture of both L-Ru-5-P and D-

xylulose-5-phosphate [120]. In addition, 13C and deuterium isotopic effect measurements both 

ruled out the dehydration mechanism and conformed epimerization via the retroaldolase/aldolase 

mechanism [149]. Finally, the solving of the epimerases structure by means of X-ray 

crystallography showed more resemblances between both enzymes and gave more insights in 

acid/base catalysts for the epimerase. Overall structural features and important residues and 

motifs, like metal binding motif, acid/base catalysts, phosphate binding site, are described in the 

next paragraphs. 
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3.2.3. Structure 

3.2.3.1. Tertiary and quaternary structure 

The crystal structure of the Escherichia coli L-ribulose-5-phosphate 4-epimerase was solved 

by X-ray crystallography (Figure II.13a). Like the L-fuculose-1-phosphate aldolase, this enzyme 

consist of four identical subunits and displays a C4 symmetry. Each subunit consists of 231 

amino acids resulting in a molecular weight of 25.5 kDa per subunit, and thus a total mass of 102 

kDa for the tetramer. Each subunit contains one single domain with a typical α/β fold. In this 

fold, a central β-sheet formed by nine β-strands is sandwiched by two layers of α-helices. The 

smaller layer consist of three helices (a2, a5 and a6), whereas the other five helices shape the 

larger layer (a1, a3, a4, a7 and a8). The β-sheet is predominantly antiparallel except between b7 

and b8. At all four subunit interfaces, a zinc ion is present which is necessary for catalytic 

activity. Residues from both adjacent subunits contribute to the active site clefts [166].  

 

(a) (b)  

Figure II.13 (a) Overall structure of the L-ribulose-5-phosphate 4-epimerase tetramer (Adapted from [166]) (b) 

Comparison of the monomer of the epimerase (left) and the L-fuculose-1-phosphate aldolase (Adopted from [251]) 

 

Even though the sequence identity between both enzymes is only 26 %, both enzymes 

display strikingly similar tertiary and quaternary structures. This is very clear when the enzymes 

subunit structures and tetrameric structures are superimposed (Figure II.13b). For subunits, 93 % 

of the α-carbon atoms overlap with standard deviation of only 1.5 Å, whereas the overlay of the 

tetrameric structures results in an α-carbon atoms overlap with 1.9 Å standard deviation. 
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Furthermore, all secondary structure elements from the smaller aldolase are returning in the 

larger epimerase. The main difference is an additional α-helix in the smaller α-helix layer of the 

epimerase. Smaller differences are a longer α-helix a6 and a 310-helix instead of the α-helix a4 in 

the epimerase. Despite the subtle difference between a 310-helix and an α-helix, this difference is 

likely to affect its contribution to catalysis as this helix participates in active site formation [166]. 

In the crystal structure, the first 223 residues of each subunit are ordered, whereas the latter eight 

residues (224-231) are undefined indicating a highly flexible loop. As postulated for the aldolase, 

the epimerases loop is most likely also able to close the active site [166]. The importance of this 

loop is supported by mutagenic studies of the Tyr229’ residue which is part of this loop. 

Mutagenesis of the tyrosine towards a phenylalanine resulted in a dramatically decreased 

activity, more specifically 1700-fold slower [148, 251]. 

3.2.3.2. Cation (zinc) binding site 

As was earlier stated, three conserved histidine residues (His95, His97 and His 171) are 

ligands for binding of the zinc ion. In the aldolase the Glu73 serves as fourth ligand, however in 

the epimerase this residue is replaced by a shorter but topological variant, namely Asp76. Due to 

the shorter side chain of the aspartate, the Asp76 cannot act as the fourth Zn2+ binding ligand. A 

water molecule positioned in front of the Asp76 will serve as the Zn2+ binding ligand (Figure 

II.14) [166]. However, the amount and exact positioning of water molecules remains unclear as 

three waters (octahedral: 3 times His, 3 times water) were observed in EPR spectrum of Mn2+ 

substituted epimerase [148]. On one hand, changing metal ion could influence ligand 

coordination and on the other hand both Zn2+ and Mn2+ are able to accommodate both 4 

(tetrahedral) and 6 (octahedral) ligands in their coordination sphere [166]. 
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Figure II.14 Electron density map of the cation binding site of L-Ru-5-P 4-epimerase shows that the three conserved 

histidines interact with the Zn2+, whereas a water molecule is needed to link the aspartate to the zinc ion (Adopted 

from [166]) 

 

3.2.3.3. Substrate binding site and potential catalytic acid/base residues 

As mentioned earlier, the L-Ru-5-P 4-epimerase and L-Fuc-1-P aldolase are evolutionary 

related and share some common features, such as structure, divalent cation as cofactor and are 

able to deprotonate a hydroxyl group of a phosphoketose at the C4 position. Despite these 

striking similarities, these enzymes catalyze different reactions and act on distinctly 

phosphorylated substrates, at C1 and C5 for the aldolase and epimerase, respectively. Therefore, 

significant differences between residues involved in substrate binding and/or activity are 

observed when comparing both enzymes [225]. Based on sequence alignments between both 

enzymes, residues were chosen that could play a possible role in substrate binding and/or might 

serve as catalytic acid/base residues [166]. Mutagenic studies were performed to determine the 

influence of amino acid substitutions on affinity and activity of the epimerase activity [225]. By 

these studies, the residues that play an important role in substrate binding and reaction 

mechanism (acid/base catalysts) could be indicated with high probability. 

Substrate/Phosphate binding site 

Among the conserved residues are some amino acids that are known to be of importance or 

show potential for phosphate binding, among which are Asn28, Ser44, Gly45, Ser 74 and Ser 75 

(Figure II.15) [166]. Besides these five residues that are conserved among both enzymes, a 
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conserved lysine is found among epimerases, namely Lys42. Site directed mutagenesis of Asn28 

and Lys42 revealed their importance in substrate binding, as the N28A and K42M mutations 

drastically reduced affinity of the epimerase for L-Ru-5-P. The asparagine is expected to form a 

hydrogen bond with the phosphate moiety as was observed for its topological variant in the 

aldolase. The lysine in its turn is located just below the substrates phosphate and impairment with 

the substrate is achieved through electrostatic attraction between the positively charged lysine 

and negatively charged phosphate moiety. Its loss thus resulted in a much higher KM value [225]. 

 

(a)  (b)  
Figure II.15 Substrate binding site of L-Ru-5-P 4-epimerase. The catalytic site is formed within the cleft between 2 

adjacent subunits (grey and purple, respectively). The bound substrates are (a) L-Ru-5-P and (b) D-Xu-5-P and the 

red dotted lines connect the C4 hydroxyl group with the assumed deprotonation residue (Adopted from [225]) 

 

As the substrates of both enzymes are differently phosphorylated (C5 for the epimerase vs. 

C1 for the aldolase), a common phosphate-binding pocket means that the substrates are bound in 

a reversed or ‘flipped’ orientation. This further implicates that acid/base catalytic residues of 

both enzymes are different.   

Catalytic acid/base residues 

Based on a structural search, four conserved residues were pointed out to be potential 

acid/base catalytic residues. These residues are Asp76 and Glu142 from the subunit containing 

the zinc cofactor and Asp120’ and His218’ from the adjacent subunit [166]. The Asp76 is most 

likely to affect epimerization by providing a good bonding with the metal cofactor, whereas loss 

of the carboxylic group of the Asp120 resulted in a 3000-fold decrease in kcat and is thus likely to 

serve as a acid/base residue in epimerization. On the other hand, mutagenesis of the other two 
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residues (E142Q and H218N) only reduced activity by 9- and 24-fold, respectively. This rules 

them out as catalytic residues, nevertheless, they are important for activity and stability. The 

histidine is expected to assist Asp120’ in catalysis and in addition stabilize the active site through 

hydrogen bonding with the conserved Tyr141. Similarly, the glutamate interacts with Arg221’ 

from the adjacent subunit via a salt bridge and is thus likely to stabilize the active site interface 

[225]. Mutagenesis of a tyrosine (Tyr229’) in the flexible C-terminal end of the epimerase 

resulted in a 1700-fold decreased kcat value  and was therefore pointed out as the second 

acid/base residue [148]. Docking of the substrates into the enzymes structure predicts that 

Tyr229’ is responsible for L-Ru-5-P deprotonation and Asp120’ for deprotonation of D-Xu-5-P 

[225]. It is important to notice that residues from both subunits are needed for epimerase activity, 

either for substrate or cofactor binding or for catalysis. 

3.3. UDP-Galactose 4-epimerase 

3.3.1. General 

Uridine diphosphate galactose 4-epimerase, or UDP-Gal 4-epimerase or shortly GalE (EC 

5.1.3.2), is one of the enzymes in the Leloir pathway. This pathway is responsible for the 

conversion of galactose into glucose-1-phosphate with the help of four enzymes. At first, 

galactose mutarotase converts β-galactose into its α-anomer. Next, this α-galactose is 

phosphorylated by a galactokinase to produce galactose-1-phosphate. In the third step, galactose-

1-phosphate uridylyltransferase exchanges the uridylylgroup of UDP-glucose (UDP-Glc) onto 

the galactose-1-phosphate, hereby forming UDP-galactose (UDP-Gal) and glucose-1-phosphate. 

Glucose-1-phosphate will be metabolized further in glycolysis. Finally, UDP-Gal will be 

epimerized by UDP-Gal 4-epimerase for regeneration of UDP-Glc, which can then be applied in 

new cycles with the transferase (Figure II.16) [223]. In case of detrimental mutations in one of 

these enzymes, carriers will suffer from a disease called galactosemia. Vomiting, jaundice, and 

lethargy are early symptoms of this rare but deadly disease. Delayed complications include 

mental retardation, liver cirrhosis, renal failure, and cataracts [101]. Nevertheless, the disease can 

be easily prevented or treated by a galactose and lactose free diet. 
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On the other hand, UDP-sugars are also important as precursors in lipopolysaccharides 

(LPS). LPS is involved in several aspects of cell-cell interactions, such as host-pathogen 

interactions [110] and biofilm formation [187]. Apart from non-modified sugars, also N-

acetylated and carboxylated sugars are found in LPS [32, 83]. Consequently, the corresponding 

UDP-sugars have to be made by the cells and GalE-like UDP-sugars 4-epimerases are used for 

this purpose. The UDP-sugars 4-epimerase family consists of epimerase active on UDP-

Glc/UDP-Gal, N-acetylated forms (UDP-GlcNAc/UDP-GalNAc) [32], uronic acid forms (UDP-

GlcUA/UDP-GalUA) [83] as well as UDP-pentoses (UDP-L-Ara/UDP-Xyl) [137] or on 

combinations thereof [71, 110, 187]. Attempts have been made to elucidate the determinants for 

substrate specificity of UDP-sugars 4-epimerases as this can render information to use these 

epimerases as targets for new antibiotics and drugs [58]. Substrate specificity will be further 

discussed in part 3.3.4. 

 

The UDP-Gal 4-epimerases (and the other GalE-like UDP-sugar 4-epimerases) belong to 

the short-chain dehydrogenase/reductase (SDR) superfamily of proteins. These enzymes show 

great functional diversity and despite their lower sequence identities (typically only 15-30%) 

specific sequence motifs are detectable, reflecting their common folding patterns. SDRs are 

widely spread in nature and involved in different physiological processes such as normal and 

metastatic growth, hypertension and fertility [101]. 

3.3.2. Structure 

UDP-Gal 4-epimerases are formed as homodimers, and the E. coli monomer, for example, 

contains 338 amino acids resulting in a molecular weight of 37.3 kDa [5]. The human epimerase 

is slightly longer (348 amino acids) and its dimer weighs 76.6 kDa (2 times 38.3 kDa). Given 
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that UDP-Gal 4-epimerase is part of the big SDR superfamily, it displays some typical 

characteristics of this superfamily. As such, the SxnYx3K motif as well as the GxxGxxG motif 

are two of the encountered signature sequences [95, 261]. The SxnYx3K contains three conserved 

residues which play a key role in catalysis. The repetitive glycine motif is located in the 

Rossmann fold, which is typical for nucleotide binding enzymes, and the first 2 glycines 

participate in NAD+ binding whereas the third glycine facilitates close packing of the helix to the 

beta-strand [152]. 

 

 

Figure II.17 Overall structure of the UDP-GalNac 4-epimerase from Pleisomonas shigelloides. The N-terminal 

domain is a modified Rossmann fold binding the cofactor NAD(H), whereas the C-terminal domain binds the 

substrate UDP-GlcNAc. Strand numbering from N- to C-terminus, dashed lines represent a non-modeled loop 

(Adopted from [32]) 

 

Crystal structures of UDP-Gal 4-epimerases (GalE) from several sources have been 

determined using X-ray crystallography (Figure II.17). The crystal structure from the E. coli 

enzyme is further explained here. Two different domains are distinguished, namely a N-terminal 

nucleotide binding domain and a smaller C-terminal domain which is responsible for the correct 

positioning of its substrate, a UDP-sugar. The N-terminal domain comprises seven stranded 

parallel β-sheet which are flanked on both sides by α-helices and shape the Rossmann fold [257, 

259]. Two paired Rossmann folds tightly bind one NAD+ cofactor per subunit. In E. coli GalE, 
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the NAD+ interacts more extensively with the protein than was observed with other SDR 

enzymes. A total of 35 protein-NAD+ contacts was observed with distances up to 3.2 Å, of which 

seven were contributed by ordered water molecules, while other SDR enzymes showed 22-27 

contacts. This results in irreversible denaturation of the enzyme after removal of the cofactor 

[254]. However, the NAD+ cofactor could be removed from human GalE without denaturation. 

Here, fewer protein-NAD+ contacts were observed in the crystal structure, which explains the 

reversible character of cofactor binding [260]. The C-terminal domain is built from five β-strands 

and four α-helices. As the domains are necessary for the binding of the cofactor and the 

substrate, respectively, the active site is located between these two domains [257, 259].  

Determination of the structure of human UDP-Gal 4-epimerase, revealed an active site which 

was 15 % larger than that of the E. coli enzyme. A possible explanation was found in the 

secondary role of the human enzyme, namely epimerization of UDP-N-acetylgalactosamine 

(UDP-GalNAc). Activity on the larger acetylated substrates would require a larger active site [5, 

261]. 

3.3.3. Mechanism 

The GalE mechanism was already studied and broadly outlined in the 1970s [272, 273]. The 

first step after substrate binding is the abstraction of the hydroxylic proton at C4 by an enzymatic 

base and the transfer of a hydride from the C4 position of the sugar to NAD+ to form NADH and 

a transient keto sugar. Three important residues are located in the conserved SxnYx3K motif. At 

first, the tyrosine was postulated to be the enzymatic base responsible for deprotonation, as 

occurs in its phenolic form. The nearby lysine residue has a stabilizing effect on this phenolic 

tyrosine [162]. However, except for human GalE, the distance between this tyrosine and the 

sugar moiety of the substrate is too large (4.3 Å) to directly abstract the proton [256]. To 

overcome this distance, a proton shuttle is needed. In GalE, it is provided by the conserved serine 

from the SxnYx3K motif [255]. The enzyme retains the transient keto sugar by anchoring of the 

substrate by its UDP-group. Finally, the reverse of the first step occurs, namely the transfer of the 

hydride back to the C4 of the sugar. This is now transferred on the opposite face, resulting in the 

inversion of the configuration at C4 of the sugar. The proton that was extracted by the serine-

tyrosine proton shuttle is also transferred back to the sugar. A schematic overview of the 

mechanism is given in Figure II.18. 
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Figure II.18 Mechanism of UDP-galactose 4-epimerase 

 

A first important feature is the capability of the enzyme to bind the substrates sugar moiety 

in different positions. The substrate is mainly retained by the enzyme by interactions with the 

UDP-group, whereas only weak binding with the sugar moiety is observed. This led to the 

proposition of a rotation around the bond connecting the glycosyl oxygen atom and the β-

phosphorus atom in the pyrophosphoryl linkage. X-ray crystallography of inactivated enzyme 

(S124A/Y229F) that was crystallized with each substrate separately gave evidence of the rotation 

of the sugar moiety. Significant changes were also observed in the two dihedral angles that 

define the substrate configuration; a 130° rotation was observed for the angle delineated by the 

α,β-bridging oxygen, the β-phosphorus, the glycosyl oxygen, and the hexose C-1, whereas that 

delineated by the β-phosphorus, the glycosyl oxygen and the hexose C1 and C2 differ 30°. This 

mechanism is called ‘revolving door mechanism’ and is unusual in biology [5, 259]. 

 

A second important feature is the fact that the enzyme undergoes a conformational change 

upon binding of the UDP-sugar, which is in fact a result of the binding of the UMP-moiety of the 

substrate. The presence of the UDP-group in the substrate is thus not only necessary to increase 

the affinity of the epimerase for the glucose/galactose, but it also increases the reactivity of the 

enzyme-bound NAD+ cofactor by inducing a different protein conformation [272, 275]. Several 
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studies support this proposal; the enzyme oxidizes free sugars in the presence of UMP or UDP 

and occasionally releases the ketose intermediate into solution, leaving behind an inactivated 

enzyme containing NADH (E·NADH) [30, 34], and enzyme can be chemically reduced by 

treating it with NaBH4, under anaerobic conditions [161]. However, the resulting E·NADH is 

rapidly auto-oxidized in the presence of oxygen which indicates the importance of the uridine 

nucleotide in stabilizing the reduced enzyme. In addition, it has been shown that UMP and UDP 

lower the activation energy by 5.7 and 4.1 kcal mol-1, respectively [62, 161]. NMR studies with 

uridine nucleotide-dependent perturbation of the 31P, 13C and 15N provide further evidence for the 

postulated protein conformational change [42, 135]. The conserved lysine from the SxnYx3K 

motif plays an important role in the activation of the cofactor, as due to the conformational 

change, the 6-ammonium group is hydrogen-bonded to both the 2’- and 3’-hydroxylgroups of the 

nicotinamide riboside of NAD+. This results in a charge displacement from nicotinamide-N1 to 

nicotinamide-C4 which activates the NAD+ to attract a  hydride (Figure II.19) [256]. 

 

 

Figure II.19 Schematic representation of the activation of the GalE·NAD+ complex due to the conformational change 

induced by binding of UDP (Adopted from [226]) 

 

3.3.4. Substrate promiscuity 

As mentioned before, a variety of UDP-sugars 4-epimerases have been found with different 

substrate specificities and promiscuities (see 3.3.1). Among these were epimerases active on 

UDP-Glc/UDP-Gal [261], UDP-GlcNAc/UDP-GalNAc [32], UDP-GlcUA/UDP-GalUA (uronic 

acid form) [83], UDP-L-Ara/UDP-Xyl (pentoses) [137], or multiple of these substrates [71, 110, 

187]. As they are involved in different pathways and functions, such as protein glycosylation and 

production and secretion of virulence factors, these enzymes are possible targets for new 
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therapeutics. Therefore, it is of great importance to understand the molecular basis of substrate 

promiscuity and/or selectivity [71]. 

3.3.4.1. UDP-Glc/UDP-Gal and/or UDP-GlcNAc/UDP-GalNAc (N-acetylation of UDP-

sugars) 

Research conducted to substrate promiscuity of UDP-sugars 4-epimerases has mainly 

focused on the determinants that make the epimerases discriminate between non-acetylated and 

N-acetylated UDP-Glc/UDP-Gal. The discovery of the genuine UDP-GlcNAc 4-epimerase 

(WbpP) from Pseudomonas aeruginosa has led to a classification of UDP-hexose 4-epimerases 

into three groups with distinct substrate promiscuity [58]. Group 1 contains the 4-epimerases that 

exhibit a strong preference for non-acetylated substrates, such as E. coli GalE (eGalE), group 2 

members can epimerize both non-acetylated and N-acetylated substrates equally well, such as the 

human epimerase (hGalE), and group 3 epimerases are strongly specific for N-acetylated 

substrates, like the WbpP from P. aeruginosa [110].  

 

With the structural characterization of WbpP in the presence of both substrates, structures 

from all distinct groups were available for research to understand the structural determinants for 

substrate specificity [110]. Interactions between the enzyme and the substrate in the binding 

pocket were scrutinized, which has led to a structural model showing that only a limited number 

of residues predominantly contribute to the molecular basis for substrate specificity. In this 

model, the substrate-binding pocket is represented as a hexagonal-shaped box (Figure II.20), 

with the bottom formed by the nicotinamide ring of the cofactor and an open top to accommodate 

the ring-flipping movement during catalysis. Three of the six walls of the hexagonal box are 

formed by highly conserved residues: Ser142, Tyr166 and Asn195 in WbpP (Figure II.20 - 

yellow, blue and orange walls, respectively). The serine and tyrosine are part of the SxnYx3K 

catalytic triad. The other three walls (Gly102, Ala209 and Ser306 for WbpP) have been proposed 

to be key determinants for substrate specificity.  

 

The green wall is occupied by a bulky residue Tyr299 in eGalE, which is unable to catalyse 

the epimerization of acetylated substrates, whereas enzymes with a smaller residue are able to 

convert acetylated substrates. A cysteine is found in hGalE [261] and Yersinia enterocolitica Gne 

(yGne) [26], leucine in Campylobacter jejuni Gne (cGne) [27] and Ser306 in WbpP [23] (Figure 

II.20, green wall). Therefore, it was suggested that a wider binding pocket would allow both 

substrates to enter for catalysis, whereas a narrow one would limit catalysis to non-acetylated 
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substrates only and that the enzymes substrate spectrum could be predicted based on the 

sequence only [110]. This theory is supported by mutagenic studies of hGalE and yGne, as 

narrowing binding pockets size, by a C307Y and a C297Y mutant, respectively, resulted in 

significant loss of activity on acetylated substrates without affecting conversion of non-

acetylated substrates [26, 232]. However, reverse mutations challenge this theory, a Y299C 

mutation in eGalE resulted in significant loss of catalysis of non-acetylated substrates [258] and a 

S306Y mutation of WbpP totally abolished the activity of the enzyme [110]. It was suggested 

that broadening the binding pocket, might result in unproductive conformations of the non-

acetylated sugar moiety or that the tyrosine might have a role in catalysis itself. As such, the 

serine residue (S306) in WbpP could achieve a tighter binding pocket packing due to hydrogen 

bond formation with active-site water molecules to other residues in the wall of the hexagonal 

box, such as S142 and N195 [71, 110].  

 

 

Figure II.20 (a) A hexagonal box model was suggested as a representation of substrate specificity of UDP-hexose 4-

epimerases (b) The corresponding residues found in other types of  UDP-hexose 4-epimerases are indicated, including 

neighboring residues (adopted from [71]) 

 

Of the other hexagon walls, experimental data are available dealing with the fifth purple 

wall, namely the A209 in WbpP whereas more bulkier residues like asparagine or histidine are 

found at the equivalent positions in the other epimerases. This will partially or totally close the 

hexagonal box and hereby limit the ability to accommodate acetylated substrates [71]. An 

A209H mutant was made to check the effect of a re-introducing of a bulkier residue on activity 

on acetylated substrates. The mutation resulted in limited ability to epimerize acetylated residues 

and thus partially validates the predictions on this residues function [110]. This position was also 

mutated towards an asparagine, resulting in the A209N mutant. It was expected to change 

specificity from group 3 (preference for acetylated substrates) to group 2 (accept both acetylated 
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and non-acetylated equally well); however, it was found to enhance specificity for acetylated 

substrates, and this was accompanied by a lower catalytic efficiency. The effect is most likely 

arising from a hydrogen bond between the introduced asparagine and Gln201, which retains the 

asparagine in the open conformation. In group 2 members, the asparagine is known to swing 

back and forth, depending on whether or not the substrate is acetylated [71].  

 

The effect of residues in the third non-conserved wall was checked by two single mutants, 

G102K and Q201E, as well as the combined double mutant, G102K/Q201E, in the genuine 

UDP-GlcNAc 4-epimerase WbpP. Both single mutants showed slightly reduced activity on 

acetylated substrates and (almost) abolished activity on non-acetylated substrates. As a result of 

the introduction of both mutations at the same time, a salt bridge could be formed which resulted 

in a rescue of the activity for acetylated substrates, probably due to restoration of the slight 

distortion that was observed in both single mutants. The side chains of these residues were found 

not to be directly involved in controlling access of large substrates to the binding site, but seemed 

to be involved in establishing other interactions that keep the binding pocket more or less 

flexible. Flexibility is needed here to allow a proper positioning of the substrates into the cavity, 

and in this way avoid unproductive configurations [71]. 

 

Other residues that were targeted by site directed mutagenesis were the two serine residues 

that are located next to the catalytic serine, namely S143 and S144. The S143A mutation 

abolished activity on non-acetylated substrates, probably due to loss of the hydrogen bonding, 

whereas the mutant remained active on UDP-GlcNAc/UDP-GalNAc, as additional stabilizing 

interactions with the N-acetyl moiety are present. The second serine was mutated towards a 

lysine and this mutant (S144K) showed no activity at all, nor was dehydratase activity observed. 

This serine thus seems essential for activity; however, the exact function is yet unknown [71]. 

 

The availability of a second group 3 epimerase, the WbgU from Pleisomonas shigelloides, 

and its structure provided more information on the substrate specificity of epimerases in this 

group [32]. Despite the relatively low sequence identity among all three groups, the similarity of 

the enzymes’ tertiary structures is striking with an overall r.m.s.d. of the multiple structure 

alignment being 1.08 Å and variation is most pronounced at the C-terminal end. The model of 

the ‘297-308 belt’ was proposed to determine substrate specificity in group 3 members. The belts 

conformation supports (i) the formation of a hydrophobic cluster which interact with the methyl 

group of the N-acetyl moiety, (ii) a correct positioning of the Asn195, and (iii) orients the 
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substrate so the GlcNAc moiety will form hydrogen bonds with Ser143 and Ser144. Due to this 

belt and the resulting hydrogen bond network, the group 3 members have a distinct conformation 

at this region whereas the conformation of group 1 and group 2 enzymes is very similar. As a 

result, the S306Y mutation, which allows a switch from group 2 to group 1, forms steric clashes 

between the group 3 epimerases and their substrates which results in the observed loss of activity 

[32]. The importance and flexibility of the hydrogen bond network was evidenced by multiple 

single mutants as well as their combined double, triple and quadruple mutants [31]. 

3.3.4.2. UDP-pentose and UDP-uronic acid 4-epimerases 

As not only glucose and galactose, acetylated or not, are found in cell wall polysaccharides, 

there are more UDP-sugars and likewise more specificities for UDP-sugar 4-epimerases. As 

such, epimerases harboring activity on UDP-xylose (UDP-Xyl) or UDP-galacturonic acid (UDP-

GalUA) have been found in plants and bacteria [83, 137]. One UDP-glucose 4-epimerase from 

Pisum sativum (PsGalE) and two from Arabidopsis thaliana (AtGalE) have been found to 

possess activity on both UDP-Glc/UDP-Gal as well as the corresponding UDP-pentoses, UDP-

Xyl and UDP-L-arabinose (UDP-L-Ara). Despite the significant similarities with human GalE, 

the PsGalE failed to act on N-acetylated UDP-sugars, most likely due to the presence of a large 

‘gatekeeper’ residue (Val309) (cfr. Tyr in group 1 vs. Ser in group 2). However, the same 

‘gatekeeper’ allows a very low UDP-GlcNAc 4-epimerase activity in barley GalE [137]. 

Similarly, the UDP-galacturonic acid 4-epimerase from Klebsiella pneumonia shows a broad in 

vitro substrate specificity. It is capable of interconverting UDP-Glc/UDP-Gal and the acetylated 

forms thereof, although with a much lower activity than was observed for its wild-type substrate, 

UDP-GlcUA/UDP-GalUA [83]. However, no intense research has been conducted on the 

determinants for specificity and promiscuity of the UDP-substrates. 

 

In summary, the first proposed model, that of the hexagonal box, provides a good 

representation for determinants and interchangeability of the substrate specificity of group 1 and 

group 2 epimerases. A bulky residue (Tyr) in the green wall most likely indicates activity only on 

non-acetylated substrates, whereas epimerases with a small residue (Ser, Cys) are likely to 

possess activity on acetylated substrates. However, as also group 3 members contain this smaller 

residue here, a biochemical analysis is still necessary for confirmation to which group the 

enzyme belongs. A reason for this is also that interchangeability between group 3 and the other 

two groups is much smaller due to the presence of the ‘297-308 belt’ and the importance of the 

hydrogen bond network that are of great importance for activity and substrate specificity. Further 
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experiments are still needed for a proper understanding of the residues that determine substrate 

specificity in order to validate and strengthen the current models, not only in specificity on 

substrate with or without N-acetylation, but also on UDP-pentoses and uronic acid forms of 

UDP-sugars. 
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4 Enzyme Engineering 

4.1. Introduction 

Micro-organisms and their enzymes have been applied throughout the ages. The oldest and 

best known examples are beer brewing and production of cheese and wine. As enzymes are able 

to catalyze all kinds of chemical reactions, they become more and more available for industrial 

and household applications [197]. Nowadays, enzymes are available in different industries such 

as agriculture, bioenergy, biopharma, food and beverages, household care and many others [188]. 

  

Enzymes apply the same basic principles as conventional chemical catalysts. However, due 

to their more intimate interaction with the substrate, they have an exquisite control of enantio- 

and regioselectivity as well as stereochemistry [59, 197]. Other advantages of the use of enzymes 

in chemistry are the high activity and specificity rates (up to 1017-fold accelerations) [59], the 

sustainability of biocatalysts [197] and they often require less energy and raw material 

consumption as well as generate less waste and toxic side-products [4]. Biocatalysis can thus be 

considered as a form of green chemistry [197]. However, not many enzymes meet the needs of 

industrial or academic chemists as they are more interested in converting unnatural substrates, 

and this in many cases under conditions that are not favored by the enzymes, like high 

temperatures and in the presence of solvents [38]. A good industrial biocatalyst should combine 

high activity and specificity with great enantioselectivity and, on top of that, should be able to 

deal with the harsh conditions of industrial processes [38]. The major drawbacks of many natural 

enzymes are narrow substrate specificity, small pH and temperature optima, and low pH and 

temperature stability [197]. Another problem can be that no enzyme is available in nature to 

catalyze the desired reaction. Here, enzyme engineering can be applied to overcome these issues. 

Furthermore, chemical modification of enzymes can also improve their stability, for example via 

immobilization and/or cross-linking [43, 45, 46, 69, 234, 235]. 

4.2. Enzyme engineering and its types 

Enzyme engineering is the technique of modifying an enzyme's structure, and thus its 

function and characteristics, and/or its catalytic activity towards natural and/or new substrates. 

Successful enzyme engineering will result in an improved biocatalyst harboring the desired 

characteristics. Several characteristics of the biocatalyst can be improved, such as catalytic 

efficiency (or reaction speed), reaction conditions (improved pH or temperature optimum and 
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stability), as well as the enzyme’s selectivity [39]. The latter can be subdivided in 

chemoselectivity, regioselectivity and enantioselectivity referring to substrate promiscuity and 

acceptance, and discrimination of stereoisomers which is of great importance in pharmaceuticals 

(cfr. softenon), respectively. 

 

 

Figure II.21 Comparison of rational protein design and directed evolution. In rational design, mutants are created 

based on available information, such as protein structure. Each variant is expressed, purified and analyzed for 

desired properties. On the other hand, mutagenesis in directed evolution is achieved at random. Protein libraries are 

then usually screened in microtiter plates using previously set selection parameters or in a selection system (not given 

in this figure). Newly gained information based on desired and negative mutants can be used in new round of 

mutagenesis and found mutants can be used as new templates for further improvements (Adopted from [40]) 



53 

 

All types of enzyme engineering follow the same pattern, namely a mutagenesis step 

followed by an identification step [39]. In the first step, changes are made at DNA-levels in order 

to generate genetic diversity. Secondly, the library is tested to identify whether improved variants 

were created. These two distinct steps are typically applied in an iterative fashion in order to 

fully optimize the biocatalyst to perform the desired function according to the specified criteria 

[12]. In many ways, the identification step is the most challenging, as without an efficient 

identification strategy, the ability to identify improved variants is fairly low.  

 

Several techniques have been developed to introduce mutations in the corresponding gene. 

In general, the type of enzyme engineering is determined by the type of mutagenesis. When 

mutations are made at random, the engineering is called Directed evolution, whereas Rational 

design deals with directed mutagenesis mainly based on structural and functional insights (Figure 

II.21). These different enzyme engineering techniques will be discussed here, including some 

possible mutagenesis techniques. Afterwards, the difference between selection and screening will 

be clarified. 

4.2.1. Rational design 

When rational design is applied, only specific mutations are made through site directed 

mutagenesis (SDM), or the replacement of one residue by another. It is mostly applied to identify 

important residues, for example for catalysis or specificity, or to conform a proposed hypothesis, 

like a proposed mechanism. In order to use rational design to improve a biocatalyst via enzyme 

engineering, a very good understanding of the enzyme is needed at different aspects, such as 

structure-function relationship of residues, preferably a 3D-structure, the reaction mechanism 

and/or determinants for substrate specificity.  

4.2.2. Directed evolution 

In contrast to rational design, directed evolution does not require any knowledge on 

mechanism or structure as mutations are incorporated at random. It can in fact be seen as a mimic 

of natural or Darwinian evolution in a lab scale timeframe [197]. Generation of mutant libraries 

can be achieved in two manners, namely asexual or sexual. In asexual evolution, mutagenesis is 

applied on preferentially one parental gene encoding the template protein. The most applied 

system is error-prone PCR (epPCR), which exploits the fact that DNA polymerases occasionally 

make errors during replication [208]. To increase error rate, unbalanced dNTP concentrations can 

be used or MnCl2 can be added to the PCR mixtures [39]. However, despite the ease of these 
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methods, they resulted in a mutational bias favoring replacements of As and Ts. Today, 

commercial kits are available containing a mix of two mutator polymerases in order to overcome 

the bias (e.g. GeneMorph II Random Mutagenesis Kits (Stratagene)). On the other hand, sexual 

evolution starts with a pool of homologue parental genes, which are then ‘shuffled’ to obtain 

chimers of two or more parent genes, which are then tested for improved variants [185, 241, 

242]. 

 

A major disadvantage of directed evolution is that very large libraries are created, which 

results in a lot of screening effort, and only shows a limited success rate. Therefore, nowadays 

researchers try to minimize mutant libraries on the one hand and try to increase the quality of 

libraries on the other hand [167]. It thus combines rational design and directed evolution and is 

called semi-rational design. 

4.2.3. Semi-rational design 

In semi-rational design, structural information is combined with random elements to achieve 

high quality libraries [167]. Residues that were selected based on structural insights or that were 

found by random approaches can be saturated by site saturation mutagenesis (SSM). In contrast 

to SDM, in SSM the targeted residue is replaced by all other possible residues using a 

degenerated primer. Saturations can be applied in an iterative fashion to accumulate beneficial 

effects of single mutants (iterative saturation mutagenesis, ISM) or multiple residues can be 

targeted simultaneously to obtain synergetic effects (CASTing, combinatorial active site 

saturation test) [38]. Other optimizations of mutant libraries are achieved by using different 

degenerates codons, like NDT (12 codons, 12 amino acids) instead of NNS or NNK (32 codons, 

20 amino acids) [212] and the use of computational approaches [11, 48, 127]. 

4.2.4. De novo protein design 

Besides the engineering of existing proteins, research is also performed to create totally 

novel proteins by de novo protein design. Here, biocatalysts are not engineered starting from a 

natural protein but are created with the aid of the computational protein design methodology. The 

RosettaMath algorithm was developed by David Baker’s group and is used to create idealized 

active sites, for the introduction of additional functional groups, and to search for appropriate 

protein backbones [216]. The algorithm has been applied in the creation of an enzyme catalyzing 

the Kemp elimination reaction, for which no natural enzyme exists, [221] and the de novo design 

of a retro-aldolase [119]. Despite the enormous value and potential of de novo design, the de 
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novo created enzymes are not ideal biocatalysts and further optimization is needed both for the 

created catalysts as for the computational method. Catalyst optimization is mainly done by 

general enzyme engineering techniques such as directed evolution and (semi-)rational design and 

analysis of these improved variants will generate additional knowledge to improve the design 

methodology [196]. 

4.2.5. Selection vs. Screening 

After the first step of creating mutant libraries, there is the need to identify improved 

enzyme variants, which can be achieved in two different ways. These methods should be specific 

and sensitive enough to identify positive mutants. The first method is called selection and applies 

the principle of Darwinian evolution or ‘survival of the fittest’ [196]. In case enzyme function 

can provide an advantage to the host, a library containing different variants of the enzyme is 

transformed into the selection host, which is then tested for growth on a minimal medium. If the 

mutant expresses an active enzyme variant, the strain will able to convert the provided carbon 

source into useful building blocks and energy to grow. As a result hereof, cells expressing good 

enzyme variants will overgrow the rest of the culture (inactive and slow mutants). Repetitive 

inoculation in fresh medium will further enrich the culture with the best mutant/variant which 

can then be isolated and tested for further confirmation. 

 

For the second method, called screening, each variant is tested individually for the desired 

reaction. Therefore, the library is transformed into an expression host and single colonies are 

transferred from solid medium to liquid medium. A major disadvantage of screening is that each 

mutant has to be tested separately, even those that are inactive, which is typically 50-80 % of a 

library [196]. A simple visual screening uses a colorimetric assay, via chemical or enzymatic 

reactions, to identify product formation. High throughput screening (HTS) refers to automated 

screening in miniaturized vessels in order to process large amounts of mutans [196]. 

 

4.3. Chemical modification of enzymes 

In addition to enzyme engineering, enzyme characteristics can also be modified by 

chemically modifications. As such, immobilization and/or cross-linking can enhance solvent and 

thermostability [45, 46], while imprinted cross-linked enzyme aggregates or iCLEAs have been 

shown to improve activity on natural and non-natural substrates [43, 69]. 
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5 Conclusion 

It is clear that the economical value of tagatose as well as other rare sugars is big. However, 

it still has a bigger potential when one compares the current tagatose market with its competitors. 

In 2006, about 4.6 and 11.9 million metric tons of refined sugars and corn-derived sweeteners 

were used in foods and beverages in the US market, whereas only 205,000 metric tons of other 

caloric sweeteners, like sugar alcohols, were used [17]. Still, global sales of non-sugar 

sweeteners in 2010 was worth $9.2 billion [18]. Nevertheless, seen the big difference between 

the current use of traditional and high caloric sweeteners and the low-caloric alternatives as well 

as the increasing number of obese and diabetic persons (163 and 16 million Americans in 2003, 

respectively [189]), the potential market and with it the economical value of low-caloric 

sweeteners (e.g.  tagatose) is huge. Despite this big potential, the current limiting factor to 

increase tagatose production worldwide is the lack of enough substrate (galactose) for the current 

production routes. A way to circumvent this problem is by tapping another substrate pool to 

make tagatose from cheap raw materials. Cheap and widely available alternatives would be 

fructose or glucose; however, no (bio)catalysts are available to directly convert these inexpensive 

and abundant sugars into tagatose. Multiple step approaches are available but due to the large 

number of steps, the overall conversion is low and several expensive purification steps are 

needed. Ideally, a C4-epimerase would be needed to convert fructose into tagatose or glucose 

into galactose, which can then be used as substrate in the current production routes. No such 

enzymes occur naturally, but enzymes that catalyze C4-epimerazations on similar substrates are 

available. These enzyme can be subjected to enzyme engineering in order to change their 

substrate specificity and make them active on fructose/tagatose or glucose/galactose. Here, the 

engineering of two C4-epimerases with respect to their potential in fructose to tagatose 

conversion will be described. These two enzymes are L-ribulose-5-phosphate 4-epimerase and 

UDP-hexose 4-epimerase and they will need adaptation to accept free monosaccharides instead 

of phosphorylated or nucleotide-activated sugars, respectively. This thesis comprises the cloning 

and expression of the L-ribulose-5-phosphate 4-epimerase (chapter III), the development of a 

selection system for tagatose 4-epimerase activity and the application thereof (chapter IV and 

chapter V, respectively) as well as the development and use of a screening assay for the same 

purpose (chapter VI). Finally, it deals with the cloning, expression and characterization of the 

UDP-hexose 4-epimerase (chapter VII) and its mutational analysis (chapter VIII).   
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1 Introduction 

To date, biochemical production routes are available to produce all simple rare sugars [20, 

91], nevertheless, a lot of these biochemical steps are not very efficient or they have to start from 

substrates that are either too expensive or too scarce or in the worst case both of the above. 

Therefore, it would be interesting to create new biocatalysts that are able to convert widely 

available and cheap substrates into rare, but valuable products. Within the area of sugars, only 

seven monosaccharides (Glc, Gal, Man, Fru, Xyl, Rib and L-Ara) were considered to be present 

in significant amounts, whereas the other twenty hexoses and nine pentoses were described as 

rare sugars. Despite the fact that many isomerases and oxidoreductases are available for rare 

sugar production, only one epimerase (ketohexose 3-epimerase) is available that can be used 

therefore with economical viability [91], whereas some other epimerases that were found more 

recently, show some potential in rare sugar synthesis  (see literature review: chapter II sections 

1.2.3 and 1.3) [20]. 

 

We chose to engineer an existing 4-epimerase towards a tagatose 4-epimerase, therefore, the 

gene of the template epimerase – our starting point, L-ribulose-5-phosphate 4-epimerase from 

Geobacillus thermodenitrificans – had to be cloned into an expression vector. In this chapter, an 

inducible expression vector was made that is fully complementary with the 4 constitutive 

expression vectors (pCXhPxx) available at the Laboratory for Industrial Biotechnology and 

Biocatalysis (InBio) at Ghent University [1]. Subsequently, the cloning of this L-ribulose-5-

phosphate 4-epimerase gene into these pIXPtrc and pCXhPxx expression vectors is described. 

Then, recombinant expression of the gene is compared between all 5 expression vectors in two E. 

coli strains, namely XL10 Gold and BL21 (DE3). 

 

Furthermore, the L-ribulokinase gene (AraB) from E. coli K-12 MG1655 was cloned in this 

pIXPtrc vector and heterologously expressed in E. coli BL21 (DE3) cells. Next, the recombinant 

L-ribulokinase was purified and used in the production of L-ribulose-5-phosphate. After 

purification, the L-ribulose-5-phosphate is then used in the wild-type activity test of the 

recombinant G. thermodenitrificans epimerase. 
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2 Material & Methods 

2.1. Bacterial strains, growth conditions, plasmids and chemicals 

Geobacillus thermodenitrificans LMG 17532T was obtained from the Belgian Co-ordinated 

Collections of Micro-organisms (BCCM) and was grown at 55 °C on Tryptone Soya medium 

containing 15 g/L pancreatic digest of casein, 5 g/L papaic digest of soybean meal, 5 g/L NaCl, 

pH 7.3 and supplemented with 15 g/L of agar for solid media. Escherichia coli K-12 MG1655 

and the other E. coli strains were cultured at 37 °C and 200 rpm in Luria broth (LB) containing 5 

g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl at pH 7.0 or LB agar plates (LB plus 10 g/L 

agar). For cultures of cells containing a plasmid, media was supplemented with 0.1 g/L 

ampicillin. 

 

E. coli XL10 Gold (Stratagene) and E. coli BL21 (DE3) (Stratagene) were used as a cloning 

strain and for recombinant expression, respectively, of both the L-ribulose-5-phosphate 4-

epimerase gene (araD) from G. thermodenitrificans and the L-ribulokinase (AraB) from E. coli 

K-12 MG1655. E. coli cells were made chemically competent using the Inoue method for heat 

shock transformation [224]. 

 

The pGEM-T vector system and pTrc99A expression vector were obtained from Promega 

and the Netherlands Culture Collection of Bacteria (NCCB), respectively, while the four 

pCXhPxx expression plasmids were developed earlier at the Laboratory for Industrial 

Biotechnology and Biocatalysis (InBio) at Ghent University [1, 65].  

 

Clone Manager Professional 8 (Sci Ed Software, USA) was used for designing primers and 

sequence alignments. Standard protocols were used for routine recombinant DNA methodology 

and nucleotide sequencing was performed by LGC Genomics (former Agowa Genomics, 

Germany). Primers were synthesized by Sigma, the High-Fidelity PCR Master mix used for gene 

amplification was obtained from Roche, while restriction enzymes and T4 DNA ligase were 

purchased from New England Biolabs. Kits for gel extractions, PCR purifications and plasmid 

isolation were obtained from Qiagen. All chemicals were obtained from Sigma Aldrich unless 

otherwise stated. 
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2.2. Construction of the expression vectors 

2.2.1. Construction of pIXPtrc 

The sequence encoding for the His-tag and linker in the pCXhP22 [1] was amplified by high 

fidelity PCR using a 50 µL PCR mixture containing 50 % (v/v) of High Fidelity PCR Master mix 

(Roche), 40 pmol of forward and reverse primer (Table III.1), 80 ng pCXhP22 as template and a 

standard PCR protocol as given in Table III.2. After amplification, the PCR fragment was treated 

with 10 U of NcoI and SacI each to prepare the fragment for cloning into a likewise treated 

empty pTrc99A vector (Pharmacia Biotech Inc.). DpnI (10 U) restriction enzyme was added to 

the restriction mixture as well in order to remove the PCR template. Ligation of the cut and 

purified fragments (QiaQuick PCR purification kit, Qiagen) was achieved by using a 3/1 

insert/vector ratio and 3 Weiss units of T4 DNA ligase at 22 °C for 1h. The ligation mixture was 

then transformed into E. coli XL10 Gold cells, the plasmid was purified and checked for 

correctness by sequencing. 

 

Table III.1 Primers for the amplification of the His-tag from pCXhP22, araD and araB from G. thermodenitrificans 

and E. coli K-12 MG1655, respectively. Restriction sites are underlined in the primer sequence 

Gene product Primer Sequence (5’→3’) Restriction site 

His-tag Fwd CCATGGGGGGTTCTCATCATCATC NcoI 

 Rev GAGCTCTCCCATATGGTCGAC SacI 

araD_Gt Fwd CTTAAGATGCTTGAGGAGCTGAAACGG AflII 

 Rev ACTAGTTTATTGTCCATAGTAAGCGTTTAC SpeI 

araB_Ec Fwd GGATCCCATGGCGATTGCAATTGGCCTC BamHI 

 Rev CTGCAGTTATAGAGTCGCAACGGCCTGG PstI 

 

2.2.2. Cloning the genes into pIXPtrc and pCXhPxx (Figure III.1) 

At first, genomic DNA (gDNA) was extracted from an overnight grown culture using the 

‘GenElute Bacterial Genomic DNA kit’ from Sigma. The protocol for Gram-positive bacteria 

was used for the gDNA from G. thermodenitrificans, while the Gram-negative protocol was 

applied to obtain the E. coli K-12 MG1655 gDNA. The araD and araB genes from G. 

thermodenitrificans and E. coli K-12 MG1655, respectively, were amplified from gDNA by high 

fidelity PCR using the primer pair listed in Table III.1. The PCR mixtures contained 25 µL of 

High Fidelity PCR Master mix (Roche), 40 pmol of forward and reverse primer and 8 % (v/v) 

DMSO in a total volume of  50 µl. The PCR cycling conditions are shown in Table III.2. 
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Table III.2 Standard PCR cycling conditions 

Cycles Time Temperature 

1 x 4 min 94 °C 

35 x 45 s 94 °C 

 45 s 55 °C 

 1 min/kb + 30 s 72 °C 

1 x 7 min 72 °C 

 

After amplification, the resulting fragment was purified and cloned into the pGEM-T vector 

according to supplier’s protocol. The ligation mixture was then transformed into competent E. 

coli XL10 Gold cells by a heat shock [224] and plated out on Luria Broth (LB) agar. Single 

colonies were then grown in liquid LB for plasmid extraction to both check the gene sequence 

and to propagate the gene fragments. Both pGEM-T plasmids were then cleaved using 10 U of 

the appropriate restriction enzymes (AflII/SpeI and BamHI/PstI for araD and araB, respectively) 

at 37 °C for 1 h. Subsequently, both genes were ligated in a similarly treated pIXhPtrc vector 

again using a 3/1 insert/vector ratio and 3 Weiss units of T4 DNA ligase at 22 °C for 1h. The 

resulting plasmids are called pIXhPtrc-araD and pIXhPtrc-araB, respectively, and were checked 

by sequencing. 

 

The araD gene was also cloned into the set of constitutive expression vectors that was 

created earlier at the Laboratory for Industrial Biotechnology and Biocatalysis (InBio) at Ghent 

University [1]. Therefore, the araD gene fragment was cleaved from the pIXhPtrc-araD vector 

using 10 U of both AflII and SpeI restriction enzymes, the 4 empty constitutive expression 

vectors were treated in the same way, and the fragments were connected using the same ligation 

condition as mentioned above. The constitutive expression vectors obtained after plasmid 

extraction were named pCXhPxx-araD. 
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Figure III.1: Cloning strategy for the construction of the inducible expression vector pIXhPtrc-araD 

 

2.3. (Optimization of) Recombinant enzyme expression 

The constructed expression plasmids were transformed into E. coli XL10 Gold and BL21 

(DE3) cells. A single colony was picked from each transformation and inoculated into 5 mL LB 

medium supplemented with ampicillin. After overnight growth, the culture was used as inoculum 

(2 % v/v) for an enzyme expression in 50 ml LB medium with ampicillin. The cultures were 

grown until the beginning of the exponential phase (OD600 ≈ 0.6) and subsequently 0.1 mM 

IPTG was added to the culture with the inducible expression plasmid to induce heterologous 

expression. Subsequently, all cultures were grown for another 6 h to express heterologous 

protein.  
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For the inducible expression system, the ideal amount of IPTG was checked by inducing 

recombinant protein with different amounts of IPTG. Fresh expression culture was grown until 

OD600 ≈ 0.6 and then 0.1 mM, 0.5 mM or 1 mM IPTG was added to the culture and growth was 

continued for another 6 h. Afterwards, 1 ml samples of the cultures were centrifuged for 5 min at 

14000 rpm and the obtained pellets were frozen at -20 °C.  

 

Crude enzyme extracts were obtained by chemo-enzymatic lysis of the frozen cell pellets 

containing the heterologously expressed enzyme. Therefore, frozen pellets were thawed on ice, 

dissolved in 200 µL of lysis solution (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 4 mM MgCl2, 50 

mM NaCl, 0.1 mM PMSF and 1 mg/ml lysozyme) and lysis was achieved by 5 min incubation at 

room temperature. Insoluble fraction and cell debris were pelleted by centrifugation in a table top 

centrifuge at full speed and supernatant was transferred to a new tube. Both soluble and insoluble 

fractions were checked on SDS-PAGE and Western blotting with anti-His6 antibodies. 

 

The expression of the L-Ru-5-P 4-epimerase (AraD) was optimized by comparing 

expression from the inducible and constitutive vectors. Furthermore, expression was analyzed in 

E. coli BL21 and XL10 Gold, and finally IPTG concentration for induced expression was 

sampled with 3 different IPTG concentrations, namely 0.1 – 0.5 – 1.0 mM IPTG. For L-

ribulokinase (AraB) only expression in BL21 on the inducible expression vector was checked 

with 3 different IPTG concentrations (0.1 – 0.5 – 1.0 mM IPTG). 

2.4. L-Ribulose-5-phosphate production and purification 

L-ribulose-5-phosphate (L-Ru-5-P) was needed for the wild-type activity tests of the L-

ribulose-5-phosphate epimerase, therefore, the gene coding for the ribulokinase from E. coli K-

12 MG1655 was cloned into the pIXhPtrc expression vector and brought to expression in E. coli 

BL21 (DE3) as described above. Due to the presence of an N-terminal His-tag, the ribulokinase 

could easily be purified from the obtained cell extract by Ni-NTA chromatography according to 

the supplier’s protocol (ThermoScientific), with wash and elution buffers containing 20 mM and 

500 mM imidazole, respectively. After elution, the buffer from the purified ribulokinase was 

exchanged to 50 mM glycyl glycine buffer (gly-gly) using a Centricon YM-30 (Millipore). The 

protein concentration of the ribulokinase mixture was analyzed with the Pierce® BCA Protein 

assay kit (ThermoScientific). 
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The purified ribulokinase was then applied in the phosphorylation reaction of L-ribulose, 

similarly to the production described earlier by Anderson [7]. The L-ribulose had been made 

earlier by dehydrogenation of ribitol by De Muynck [66] at the Laboratory for Industrial 

Biotechnology and Biocatalysis (InBio) at Ghent University. For this reaction, equimolar 

amounts of L-ribulose, MgCl2 and ATP (30 mM each) were dissolved together with 50 mM KF, 

5 mM reduced L-glutathion and 12.5 μM EDTA in 40 ml of 50 mM gly-gly buffer pH 7.5. The 

phosphorylation reaction was initiated by addition of large amounts His-tag purified ribulokinase 

and performed at room temperature. The pH of the reaction was followed and maintained at pH 

7.5 by titration of NaOH as the phosphorylation of L-ribulose results in the acidification of the 

solution. 

 

Purification of the produced L-Ru-5-P was accomplished as described earlier by Anderson 

[7] and the potassium salt was obtained after barium precipitation with K2SO4  [238]. 

Summarized, after the reaction had stopped, acetic acid is added to a final concentration of 0.2 

M. Subsequently, the precipitate is filtered and the pH of the supernatant solutions set to pH 6.7 

with NaOH. The L-Ru-5-P is purified and separated from the nucleotides by addition of barium 

acetate to a concentration of 0.1 M, after which the precipitate is filtered off. The supernatant is 

acidified to pH 2.0 with HCl, and absorbance is checked at OD260 nm. Contaminants were 

removed by repetitive treatment with activated charcoal until OD260 nm had reached a minimum. 

The activated charcoal was removed by filtration and in each round smaller amounts of activated 

charcoal were used. After absorbance had reached its minimum, the solution was adjusted to pH 

6.7 with NaOH and 4 volumes of ethanol were added. This 80 % (v/v) ethanol mixture was then 

chilled overnight in ice water to precipitate the L-Ru-5-P. The precipitate is collected by 

centrifugation and washed twice with fresh and chilled 80 % (v/v) ethanol. The solution was 

poured off and the precipitate dried using a vacuum to remove traces of water and ethanol 

(SpeedVac, Savant). The resulting barium salt of L-Ru-5-P is quickly washed with water twice, 

before addition of equimolar amounts of K2SO4 to re-dissolve the L-Ru-5-P as potassium salt and 

precipitate the barium as sulfate. The BaSO4 precipitate was removed by filtration and a powder 

of L-Ru-5-P potassium salt was obtained by vacuum drying using a SpeedVac. 

2.5. HPLC analysis of L-Ru-5-P 

Two High Performance Liquid Chromatography (HPLC) methods were used to analyze the 

purity of the produced L-Ru-5-P. The first method applies an isocratic flow of 5 mM H2S04 over 
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an Aminex HPX‐87H column (Bio-Rad Laboratories) at 30 °C at a flow rate of 0.6 ml/min. The 

HPLC system (Varian Prostar) was composed of a Varian Prostar 410 auto sampler, a Varian 

Prostar 230 pump, a Varian Prostar 320 UV/Vis detector and a Varian Prostar 350 RI differential 

refractive index. The second method uses a similar HPLC system attached to a ELSD 2000ES 

detector (Alltech). The Hypercarb column (Thermoscientific) was incubated at 30 °C and the 

gradient used is given in Table III.3. Solvents A, B and C are milliQ water, 100 % acetonitril and 

15 % formic acid in milliQ water, respectively. 

 

Table III.3 Elution gradient profile of the Hypercarb sugar method 

Time (min) A (%) B (%) C (%) 

0 96 4 0 

5 92 8 0 

7 75 25 0 

10 75 25 0 

20 0 25 75 

22 50 50 0 

27 50 50 0 

30 96 4 0 

50 96 4 0 

 

2.6. Enzyme activity assays: in vivo and in vitro 

Activity of the recombinant L-Ru-5-P 4-epimerase is checked both in vivo and in vitro. For 

in vivo activity, the selection strain SelTag2 or SelTag3 (see chapter IV) was transformed with 

the pIXhPtrc-araD plasmid and its growth in L-arabinose minimal medium (L-AMM) was 

compared with that of the selection strain without the expression plasmid in the same medium. 

More details about the composition of the minimal medium and growth conditions are found in 

the Material & Methods section of chapter IV. 

 

For in vitro activity assays, the epimerization reaction was tested from L-Ru-5-P towards D-

Xu-5-P as was earlier described [63, 225]. The reaction mixture contained 25 mM gly-gly buffer 

pH 7.6, 5 mM D-ribose-5-P, 0.1 mM thiamine pyrophosphate, 0.3 mM of MgCl2, 0.15 mM 

NADH, 0.25 U/ml transketolase, 50 U/ml triosephosphate isomerase, 5 U/ml α-glycerol 
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phosphate dehydrogenase, 0.25 mM L-Ru-5-P (potassium salt). The reaction mixture was 

incubated at 37 °C for 10 min to remove impurities in the L-Ru-5-P by reaction with the coupled 

enzymes. The reaction was started by addition of 2 µg of purified L-Ru-5-P 4-epimerase to the 

reaction mixture (finally 200 µl) and followed by measuring the drop in absorbance at 340 nm. 

 

Affinity for L-Ru-5-P (Km) was determined using 12 different L-Ru-5-P concentrations from 

0.078 mM to 10 mM and results were plotted in a Lineweaver-Burk linearization for calculation. 

Thermostability of the enzyme was determined by measuring the half-life (t50) at 37 °C. Effect of 

Zn2+, Co2+ and Mg2+ concentration were determined by addition of different concentrations of 

these metal ions (0-0.5 mM) to EDTA treated enzyme. EDTA treatment performed as described 

earlier [74] and afterwards EDTA was removed by a wash step with 25 mM gly-gly buffer pH 

7.6 over a Amicon® Ultra 30K Centricons (Millipore). 

 

3 Results and Discussion 

3.1. Construction of the expression vectors 

3.1.1. Preparation of the pIXhPtrc vector 

High fidelity amplification of the sequence containing the coding sequence (CDS) of the 

His-tag and the multiple closing site of the pCXhP22 plasmid was successful, resulting in the 

amplification of a 156 bp fragment, as expected. The PCR fragment was then cloned into the 

pTrc99A vector as described in the Material & Methods section and the pIXhPtrc was obtained 

by plasmid extraction. Plasmid sequencing revealed that the cloning was successful and that no 

errors were introduced. Thus, an inducible expression vector – pIXhPtrc – complementing the 4 

constitutive expression vectors available at the Laboratory for Industrial Biotechnology and 

Biocatalysis (InBio) at Ghent University [1] – pCXhPxx – has been created successfully. 

3.1.2. pIXPtrc-AraD and pCXhPxx-AraD 

The high fidelity PCRs on the genomic DNA of G. thermodenitrificans and E. coli K-12 

MG1655 resulted in fragments of the expected length, namely 699 bp for araD and 1714 bp 

araB. Both amplified fragments were successfully cloned in the pGEM-T vector for propagation 

of the gene fragment. After plasmid extraction, both the araD gene fragment and ribulokinase 

gene were cloned in the inducible pIXhPtrc expression vector. Plasmid sequencing revealed that 

the ribulokinase gene had been correctly inserted into the inducible expression vector; however, 
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the plasmid containing the L-Ru-5-P 4-epimerase gene (araD) was found to possess a 5 

nucleotide insert between the His-tag and the gene. As this ‘cttaa’ insert results in a frame shift in 

the gene, it had to be removed first to be able to express the L-Ru-5-P 4-epimerase correctly. 

 

For the deletion of the ‘cttaa’ insert in the pIXhPtrc-AraD plasmid, a high fidelity and whole 

plasmid PCR was performed using the QuickChange® XL Site-Directed Mutagenesis Kit 

(Stratagene) according to supplier’s protocol and the deletion primers and cycling conditions 

mentioned in Table III.4 and Table III.5, respectively. After DpnI treatment and transformation, 

extracted plasmid was sequenced and this revealed that the insert had been removed and thus 

now the pIXhPtrc-AraD is correct for further work. 

 

Table III.4 Primers for the deletion of the ‘cttaa’ insert in pIXhPtrc-AraD (* indicates the position of the deletion) 

Primer Sequence (5’→3’) 

Deletion_Fwd GACGATAAGGATCCAACC*CTTAAGATGCTTGAGGAG 

Deletion_Rev CTCCTCAAGCATCTTAAG*GGTTGGATCCTTATCGTC 

 

Table III.5 Whole plasmid PCR cycling conditions for deletion of the ‘cttaa’ insert 

 

 

Subsequently, the AraD gene fragment was cloned into the 4 constitutive pCXhPxx 

expression vectors as mentioned in the Material & Methods section above. All 4 constitutive 

expression vectors were found to contain no errors and thus cloning was successful. 

3.2. Recombinant L-ribulose-5-phosphate 4-epimerase expression 

For high-throughput screening purpose, L-Ru-5-P 4-epimerase expression was checked 

under different conditions in order to determine ideal conditions for high enzyme concentration 

and activity. Since no substrate (L-Ru-5-P) was yet available to test the epimerization reaction, it 

was chosen to compare enzyme expression on SDS-PAGE. Both inducible and constitutive 

Cycles Time Temperature 

1 x 1 min 95 °C 

18 x 50 s 95 °C 

 50 s 60 °C 

 1 min/kb + 30 s 68 °C 

1 x 7 min 68 °C 
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expression resulted in an L-Ru-5-P 4-epimerase containing a N-terminal His-tag and linker with 

an overall calculated molecular mass of 29.4 kDa/subunit. 

 

At first, expression in E. coli BL21 and XL10 Gold cells using the pIXhPtrc-AraD vector 

was compared. Under the same conditions, higher recombinant protein concentrations were 

observed when expressing the enzyme in E. coli BL21. This observation is expected since E. coli 

BL21 is lacking the protease genes lon and ompT, therefore resulting in higher protein 

concentrations.  

 

Secondly, expression using the inducible and the constitutive vectors was compared against 

each other. Two times of induction were tested for the inducible expression vector, namely 

induction at the beginning of the exponential phase (OD600 ≈ 0.6) and induction from the start on. 

SDS-PAGE analysis and Western blotting revealed that recombinant enzyme concentration was 

correlated with the promoter strength of the constitutive vector used. The lowest L-Ru-5-P 4-

epimerase concentration was observed with the promoter 78, intermediate concentrations were 

seen with both P34 and P22, while the use of promoter 14 yielded the highest enzyme 

concentrations for the constitutive expression vectors. When comparing the inducible Trc 

promoter with the 4 constitutive promoters, induced enzyme expression is at least as high for the 

highest constitutive expression (P14). Furthermore, no big difference is observed for the time of 

induction of the pIXhPtrc-AraD vector. IPTG can be added both at the start of growth as well as 

in the beginning of the exponential phase, these conditions will be used for screening and 

enzyme production, respectively. 

 

Finally, the concentration of IPTG to induce the LacIq – Trc operator and promoter system 

of pIXhPtrc-AraD was sampled. Therefore, the influence of low (0.1 mM), intermediate (0.5 

mM) and high (1.0 mM) IPTG concentrations were determined. Since no big improvements were 

observed using higher IPTG concentrations, low IPTG concentration (0.1 mM) will be used. 

Under all of the above conditions, the L-Ru-5-P 4-epimerase was present in the soluble enzyme 

fraction, which is also a good indication since increased portions in the insoluble fraction would 

have led to loss of active enzyme in the form of aggregates or inclusion bodies. 

 

To summarize, recombinant expression will be achieved in E. coli BL21 cells using the 

inducible pIXhPtrc-AraD vector and induction by addition of 0.1 mM IPTG. For larger enzyme 

productions, cells will first be grown to OD600 ≈ 0.6, before inducing them with IPTG, whereas 
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for (high throughput) screening, IPTG will be added from the start on to minimize pipetting steps 

and workload. 

3.3. Ribulokinase production, L-ribulose-5-phosphate production and 

purification 

To easily obtain pure recombinant ribulokinase, it was expressed containing an N-terminal 

His-tag, resulting in a ribulokinase with a calculated molecular mass of 64.7 kDa/subunit (Figure 

III.2). In order to obtain high levels of recombinant ribulokinase, the production thereof was 

optimized in E. coli BL21 cells using the pIXhPtrc-AraB vector. The cells were grown until 

exponential phase was reached and then induced with 3 different IPTG concentrations (0.1 mM, 

0.5 mM and 1.0 mM IPTG). Levels of recombinant protein production were analyzed on SDS-

PAGE. Comparison of soluble and insoluble fraction clearly indicate that the recombinant 

ribulokinase is only present in the soluble phase. Since no great increase in recombinant protein 

content was observed by increasing IPTG concentrations, a larger scale ribulokinase production 

was achieved using 0.1 mM IPTG.  

 

 

Figure III.2 SDS-PAGE of the recombinant expressed ribulokinase and its His-tag purification. CE, cell extract; FT, 

flow through; W1-W3, Wash fractions 1-3; E1-2, Eluent fractions 1-2; Ins., Insoluble; M, Marker. 

 

Ribulokinase activity was first checked by performing the reaction as mentioned in the 

Material & Methods section on a small scale (10 ml). Since pH of the reaction mixture after 

addition of the purified enzyme gradually decreased, it indicates that the purified ribulokinase is 

active and could be used in a large scale production of L-Ru-5-P.  
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Large scale production of L-Ru-5-P was then achieved according to the protocol described 

earlier. After the acidification of the solution had stopped, extra ribulokinase was added to the 

reaction mixture to ensure maximal conversion. No further acidification was observed, meaning 

that the enzyme had not lost its activity but that the reaction had completed. The produced L-Ru-

5-P was subsequently purified as described earlier. However, the barium salt of L-Ru-5-P is 

obtained by this purification and was found to contain remainders of L-ribulose by HPLC 

analysis. Since the barium salt of L-Ru-5-P has low solubility in water, the L-ribulose could easily 

be washed away with water. After 2 wash steps, the barium was removed from the L-Ru-5-P by 

barium precipitation with K2SO4, leaving behind the potassium salt of L-Ru-5-P in solution. 

Barium sulfate could easily be removed by filtration and the L-Ru-5-P was obtained from the 

filtrate by vacuum drying. HPLC analysis showed that the produced L-Ru-5-P was now pure 

(Figure III.3). After purification and vacuum drying around 238 mg of L-Ru-5-P was obtained, 

which means that an overall production and recovery of 54 % (238 mg/438 mg) was achieved. 

 

 

Figure III.3 HPLC analysis (Aminex) of L-Ru-5-P K-salt (blue) and L-ribulose (red) 

 

3.4. Enzyme activity assays: in vivo and in vitro 

In vivo activity test is described in the next chapter at section 3.3. In vitro activity assay 

determined that the His-tagged purified epimerase had a specific activity of 1 U/mg. With a 

Lineweaver-Burk linearization, it was calculated to have a Km of 1.4 mM for L-Ru-5-P (Figure 

III.4). This is almost three times as high as the Km of the E. coli L-Ru-5-P 4-epimerase under 

similar conditions (22°C, pH 7.5, activated by 0.1 mM MgCl2) [148]. 
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The enzyme was found to have a half-life of slightly more than 1 day (24,3 h) at 37 °C 

(Figure III.5). Effect of metal ions revealed that the highest activity was found with 0.3 mM of 

Mg2+, while equivalent amounts of Co2+ activated the enzyme almost equally. Effect of the 

desired cofactor, Zn2+, could not be determined since zinc has an inhibitory effect on the coupled 

enzyme assay. Nevertheless, it is likely to have a similar activating effect as was found for the 

Aerobacter epimerase [74]. 

 

Figure III.4 Lineweaver-Burk linearization for L-Ru-5-P 4-epimerase 

 

Figure III.5 Inactivation of the L-Ru-5-P 4-epimerase at 37 °C 

Lineweaver-Burk linearization for L-Ru-5-P 4-epimerase
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4 Conclusion 

The His-tag, linker and multiple cloning site of the pCXhP22 plasmid for constitutive 

expression [1] was cloned successfully into the pTrc99A vector, resulting in the inducible 

expression vector pIXhPtrc. This pIXhPtrc vector is now fully complementary with the 4 

constitutive expression vectors that were already available at the Laboratory for Industrial 

Biotechnology and Biocatalysis (InBio) at Ghent University. Now, a set of 5 plasmids is 

available in which cloning can be achieved using the same restriction enzymes. Depending on 

the restriction enzymes used, one can add a short His-tag (NheI) or a longer His-tag with linker 

and enterokinase cleavage site (AflII) to the recombinant protein or express it as native protein 

(NcoI). Both His-tags are N-terminal and facilitate purification of the expressed enzyme by 

means of Ni-NTA chromatography. 

 

The L-Ru-5-P 4-epimerase gene from G. thermodenitrificans was successfully cloned into 

all 5 expression vectors. Heterologous expression was found to give highest recombinant enzyme 

concentrations in E. coli BL21 cells. Since expression using the inducible pIXhPtrc-AraD 

resulted in the highest L-Ru-5-P 4-epimerase concentrations, this vector will be used from here 

on and induction will be achieved by addition of 0.1 mM IPTG. Since no big difference was 

found between immediate induction and induction at OD600 ≈ 0.6, induction time will depend on 

the type of experiment. In case of high throughput screening (chapter VI), IPTG will be added 

from the beginning to minimize pipetting steps and chance on contamination, while for larger 

recombinant enzyme production cells will first be grown to the start of the exponential phase 

before induction. 

 

The ribulokinase gene from E. coli K-12 MG1655 was also successfully cloned into the 

inducible expression vector, resulting in the pIXhPtrc-AraB plasmid. Subsequently, the plasmid 

was transformed into E. coli BL21 cells for recombinant expression, resulting in a 64.7 kDa His-

tagged ribulokinase. This was then purified and applied in the production of L-Ru-5-P, starting 

from L-ribulose and ATP. After purification, around 238 mg of L-Ru-5-P (as potassium salt) 

could be obtained with an overall production and recovery rate of 54 %. The produced L-Ru-5-P 

was then used for the characterization of the epimerase. The enzyme has a Km value of 1.4 mM, a 

half-life at 37 °C of slightly more than 1 day and, as expected, it can be activated by metal ions. 
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IV. DEVELOPMENT OF A 

SELECTION SYSTEM FOR TAGATOSE 

4-EPIMERASE ACTIVITY 
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1 Introduction 

After correctly cloning the araD gene into the expression vectors, the next hurdle could be 

taken, namely the development of a selection strain which can be used to look for improved 

variants after mutagenesis has been applied on the G. thermodenitrificans epimerase gene. In a 

selection system, Darwinian evolution is applied to identify the best variant in a mutant library. 

As such, if an active (or improved) enzyme is expressed in the selection strain, this mutant will 

be able to consume the given carbon source (better) and have an advantage over all other mutants 

in the selection culture. Through this advantage the fittest in the mixture will finally overgrow 

the others, a classic example of Darwin’s theory of ‘survival of the fittest’ [60, 150]. 

 

In order to obtain a selection strain suitable for Darwinian evolution experiments, an E. coli 

strain had to be able to grow on the product of the tagatose 4-epimerase reaction and unable to 

grow on the substrate, nevertheless, it should be able to absorb the substrate. Since E. coli strains 

are natural fructose consumers and unable to use tagatose as carbon source, it was chosen to 

select for the reverse reaction. Uptake of tagatose in E. coli K-12 MG1655 is primarily regulated 

via the methylgalactoside transport system, mglABC [132]. As such, tagatose will be given to the 

cells as a sole carbon source and if the mutated epimerase is able to convert it into fructose, the 

cell will be able to grow and enrich itself in the culture medium. By means of inoculating 

enriched cultures into fresh medium, the best mutant will finally overgrow all inactive and less 

active variants and the plasmid can be obtained to identify this mutation. 

 

To prevent potential loss of the G. thermodenitrificans L-Ru-5-P 4-epimerase gene by 

recombination with homologue genes present in the E. coli genome, these homologous genes 

were removed by the method of gene disruption [61]. Three homologous genes are present in the 

E. coli genome, namely araD, ulaF and sgbE, all encoding a L-Ru-5-P 4-epimerase in different 

pathways. AraD, ulaF and sgbE are located in the L-arabinose operon for L-arabinose 

degradation, ulaAp operon for anaerobic L-ascorbate utilization and yiaKp operon for metabolism 

of L-lyxose and L-xylulose, respectively [126, 128]. It was chosen to create the selection strains 

using different E. coli strains as starting points. E. coli CGSC#10993 was chosen as this strain 

already contains 2 of the 3 knock-outs (KO) needed, namely full KO of the araBAD operon, thus 

loss of the araD gene, and the replacement of the ulaF gene by the kanamycin resistance marker. 

Furthermore this strain contained a lacZ deletion, lacks the operon for rhamnose degradation and 
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some other characteristics [15]. On the other hand, E. coli K-12 MG1655, of which the full 

genome is known, is seen as a standard E. coli [36]. In the CGSC#10993, only the sgbE gene has 

to be removed, whereas all three L-Ru-5-P 4-epimerase genes (araD, ulaF and sgbE) have to be 

removed sequentially. Selection strains are named SelTag for Selection strain for Tagatose 4-

epimerase activity. 

 

2 Material & Methods 

2.1. Bacterial strains, plasmids, growth conditions and chemicals 

Two strains were used as starting point for the creation of a selection strain for detection of 

tagatose 4-epimerase activity, namely E. coli CGSC#10993, which was obtained from the Coli 

Genetic Stock Center (CGSC) of the Yale University (USA), and E. coli K-12 MG1655 [36]. 

They were routinely grown at 37 °C and 200 rpm on LB medium (5 g/L yeast extract, 10 g/L 

tryptone, 10 g/L NaCl, pH 7.0) or LB agar plates (LB plus 10 g/L agar), supplemented with 0.1 

g/L ampicillin or carbenicillin. The inducible pIXhPtrc-AraD and constitutive pCXhPxx-AraD 

expression plasmids encoding the L-Ru-5-P 4-epimerase from G. thermodenitrificans were 

created earlier (chapter III). 

 

L-Arabinose, ampicillin, carbenicillin, chloramphenicol and kanamycin were purchased 

from Sigma-Aldrich. Taq polymerase and restriction enzyme DpnI were purchased from New 

England Biolabs and High-Fidelity DNA polymerase was obtained from Roche Applied Science. 

PCR primers were designed with Clone Manager Professional8 (Sci Ed Software, USA) and 

synthesized by Sigma. The Clone Manager Professional 8 software was also used for sequence 

alignments. 

 

The plasmids used for the creation of the selection strain by knock-out strategy, pKD3, 

pKD4, pKD46 and pCP20, were a kind gift from prof. R. Cunin (Laboratory for Microbiology 

and Genetics, Free University of Brussels, Belgium). pKD3 (CmR) and pKD4 (KmR) contain an 

FRT-flanked antibiotic resistance gene for chloramphenicol [67] and kanamycin (kan) resistance, 

respectively. The two helper plasmids, pKD46 (AmpR) and pCP20 (AmpR), carry the genes for 

the λ Red recombinase and the FLP recombinase, respectively. Both plasmids are low copy 

number plasmids and are easily curable through their temperature sensitive replicons. Therefore, 
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strains containing the pKD46 or pCP20 helper plasmids were grown at 30 °C, unless the strains 

had to be cured from these plasmids, in which case they were grown at 42 °C. 

2.2. Construction of the SelTag-strains by gene disruption 

Creation of gene knock-outs is accomplished by the method of gene disruption described 

earlier by Datsenko & Wanner [61]. In summary, a first helper plasmid containing the λ Red 

recombinase (pKD46) is brought in the cells and the recombinase is induced by growth on L-

arabinose. Subsequently, an antibiotic resistance gene flanked by two FRT sites (flippase 

recognition target) and DNA fragments homologous to the flanking of the target gene is brought 

in the cells. The recombinase will exchange the gene with the antibiotic marker (2.2.1) and 

correct integration can be tested by a simple PCR (2.2.2). After correct integration has been 

achieved, antibiotic marker can be removed by the flippase brought to expression by the second 

helper plasmid (pCP20) (2.2.3). If more genes have to be knocked out, the protocol can be 

repeated from the start. 

 

 

Figure IV.1 Schematic overview of the gene disruption strategy. H1 and H2 refer to the homology extensions, P1 and 

P2 refer to priming sites. Taken from [61] 
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2.2.1. Gene disruption 

At first, pKD46 was transformed into both E. coli CGSC#10993 and E. coli K-12 MG1655. 

The pKD46 plasmid carries the L-arabinose induced araC-PBAD promoter as well as the λ Red 

recombinase genes: γ, β and exo, whose products are called Gam, Bet and Exo, respectively. 

Gam inhibits the host RecBCD exonuclease V, in order to allow Bet and Exo to access DNA 

ends to promote recombination with the genomic DNA (gDNA). Transformants were then grown 

in 5 mL LB cultures supplemented with 0.1 g/l carbenicillin and 1 mM L-arabinose at 30 °C until 

OD600 ≈ 0.6-1.0. Subsequently, these cells were harvested by centrifugation and made 

electrocompetent by washing them 3 times with ice-cold distilled water and finally concentrating 

them up to 200 times. 

 

Secondly, PCR products that had been created by amplifying pKD3 and pKD4 with 

appropriate primers for recombination (see Table IV.1) and the PCR mixture and cycling 

conditions mentioned in Table IV.2 and Table IV.3, were digested with DpnI, gel purified and 

finally transformed into the pKD46 containing cells. Electroporation was achieved by using a 

GenePulser II (Bio-Rad), 2 mm cuvettes (Eurogentec), 50 μl of freshly made electrocompetent 

cells and 3 μl of PCR product. After electroporation, 1 ml of LB medium was added to the cells 

and incubated for 1h at 37 °C, before spreading them on LB-agar containing the appropriate 

antibiotics. This was done to select for cells with built-in CmR or KmR resistance gene in their 

gDNA. The resulting transformants were then tested with colony-PCR to ensure that the 

resistance gene had been introduced at the correct position in the gDNA. Meanwhile, cells were 

plated on fresh LB-agar and grown at 42 °C to cure them from the pKD46 plasmid. 

2.2.2. Verification by colony PCR 

Verification whether the resistance gene had been introduced at the correct position was 

performed by inoculating a fresh colony into a PCR mix containing 2.5 nmol of each control 

primer (Table IV.1), 0.2 mM dNTP mix, appropriate buffer and 0.5 U of Taq polymerase, with 

milliQ water up to 25 μl. The PCR program consisted of the following cycles: initial denaturation 

at 95 ° C for 4 min, 30 cycles of 95 °C (30 s), 58 °C (30 s) and 72 °C (1 min/kb) for 

amplification and final elongation for 7 min at 72 °C. PCR products were verified by 

electrophoresis using 1 % agarose gels. 
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Table IV.1 Primers used for gene disruption and control thereof. Primer sequences in capital letters are homologous (H1 and H2) to the flanking regions of the target genes, to 

create a place for recombination. The sequences in small letters are the parts homologous to the pKD3 and pKD4 helper plasmids, P1 and P2. 

Primer Sequence (5’→3’) 

Fw-o-sgbE-P1 GGAGATTATTCAGGCGCGGCGTTGGATTGAAGCGCGTATGCAGGAGGCTGGATTTATgtgtaggctggagctgcttc 

Rv-o-sgbE-P2 GCAAGGAACATATCAATTCGTAGTGCCGGGGCGATGAAGCCCCGGCGTGAGGGAcatatgaatatcctccttag 

Fw-sgbE-out GCCGGTTCTTTCCTGATTGAGATG 

Rv-sgbE-out TGGAAGCGGCGTTACAG 

Fw-o-AraD-P1 GCTTGAGTATAGCCTGGTTTCGTTTGATTGGCTGTGGTTTTATACAGTCAgtgtaggctggagctgcttc 

Rv-o-AraD-P2 CGATTTTGTAGGCCGGATAAGCAAAGCGCATCCGGCACGAAGGAGTCAACcatatgaatatcctccttag 

Fw-AraD-out * GCCAGAAGGAGACTTCTGTCCCTTG 

Rv-AraD-out * AAAGCGCATCCGGCATTCAACGCCTG 

Fw-AraD-out2 TAACCTGCAACGGCCCGTTGTC 

Rv-AraD-out3 GTATTACGGGTTTCGTCGCTAAG 

Fw-o-UlaF-P1 ATTGGGTGAAAGCGCGCATGGCGAAAGCGGGCATGGTGGAGGCGGCATAAgtgtaggctggagctgcttc 

Rv-o-UlaF-P2 GGAATTAGACCAGTTATCTCCCGAGGAAGGAAATTTCCGCAGCGCGTGTTcatatgaatatcctccttag 

Fw-UlaF-out TTGAGATGTGGAGCGAAACG 

Rv-UlaF-out TCGCTAGCACCAGGTATAAC 

* Since these primers were found to bind on multiple sites, a new pair of control primers was used (Fw-AraD-out2 and Rv-AraD-out3) 
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Table IV.2 PCR mixture for the creation of linear DNA 

for gene disruption 

Component Amount 

Pfu Ultra DNA polymerase 2.5 U 

10x Pfu Ultra HF AD buffer 1 x 

dNTPs 0.2 mM 

Primers 0.4 µM each 

Template: pKD3 or pDK4 50-100 ng 

Total 50 µl 

Table IV.3 PCR cycling conditions for linear DNA 

creation for gene disruption 

Cycles Time Temperature 

1 x 1 min 95 °C 

30 x 30 s 95 °C 

 30 s 60 °C 

 1 min/kb + 30 s 72 °C 

1 x 7 min 72 °C 

 

2.2.3. Elimination of the antibiotic resistance gene 

The pCP20 plasmid shows a thermal induction of the FLP synthesis and therefore the 

created CmR and KmR mutants were made electrocompetent and transformed with pCP20, and 

plated at LB-agar with ampicillin and placed at 30 °C. After growth, transformants were tested 

for loss of the FRT-flanked resistance gene with colony PCR as mentioned above. Finally cells 

were cured from the helper plasmid pCP20 by growth at 42 °C and then tested again with colony 

PCR and for carbenicillin sensitivity to confirm loss of pCP20. At last, verification fragments 

were amplified using a high fidelity polymerase, purified and sequenced as to confirm that the 

correct gene had been disrupted. Sequencing was performed by VIB Genetic Service Facility 

(Belgium) or Agowa (Germany). After the cells are cured from the pCP20 plasmid, cells are 

made competent again and transformed with pKD46 to prepare the disruption of another gene. 

2.2.4. Speeding up the gene disruption protocol 

Since three genes had to be removed from the E. coli K-12 MG1655 strain, we tried to 

speed up the gene disruption protocol. Optimization of the protocol was achieved by eliminating 

some of the labor intensive and time consuming steps. Instead of curing the strain from the 

pKD46 plasmid (growth at 42 °C) after a first gene was replaced with one of the antibiotic 

markers, the cells were grown at 30 °C and made competent to transform with a second linear 

DNA made with the second antibiotic marker. After good disruption of the second gene, the cells 

were cured from pKD46 and transformed with pCP20 to simultaneously lose both antibiotic 

markers. As such, the work and time of two curing steps as well as two rounds of competent 

making and transformation could be saved. 
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2.3. Growth tests on different minimal media 

2.3.1. Medium composition 

The minimal medium (MM) used in the growth test of the selection strains is an M9 based 

medium. Apart from 1X M9 salts (6 g/l Na2HPO4, 3 g/l KHPO4, 1 g/l NH4Cl, 0.5 g/l NaCl), the 

medium contains 20 mg/l proline, 1 mM thiamine-HCl, 0.1 mM CaCl2, 1 mM MgS04, 18 µM 

FeCl2 and 6.7 µM ZnCl2. To this, different sugars were added as a sole carbon source at a 

concentration of 20 g/l. As such, the created selection strains (SelTagN°) were tested for growth 

on L-Arabinose MM (L-AMM), Fructose MM (FMM) and Tagatose MM (TMM). IPTG and the 

appropriate antibiotics were added at concentration mentioned earlier for induction and 

prevention of plasmid loss and contamination, respectively.  

2.3.2. Wash and growth conditions 

For the growth tests of the SelTag strains, the strains with or without pIXhPtrc-AraD, were 

first grown in LB medium at 37 °C and 200 rpm. Cells were then harvested by centrifugation and 

washed twice with phosphate buffered saline (PBS; 8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na2HPO4, 

0.27 g/l KH2PO4, pH 7.4) and then inoculated (2 % inoculum) into 3 ml of fresh minimal 

medium supplemented with IPTG and the necessary antibiotics. Cells were grown in a 24-

deepwell plate at 37 °C and 220 rpm. Cell growth was followed by measuring cell density (OD600 

nm).  

 

3 Results and Discussion 

3.1. Construction of the SelTag-strains by gene disruption 

Starting from 2 different E. coli strains, 3 selection strains were created that can be used for 

the selection of mutants bearing tagatose 4-epimerase activity. Starting from E. coli 

CGSC#10993, the SelTag1 strain was created by knocking out the sgbE gene and removal of the 

kanamycin resistance marker that was inserted at the position of the ulaF gene. Initially, this had 

happened by accident, but it triggered the idea of a possible speeding up of the gene disruption of 

the selection strain based on E. coli K-12 MG1655 (see paragraph 2.2.4 and 3.2). Using the same 

method of gene disruption, all three genes encoding an L-Ru-5-P 4-epimerase in E. coli K-12 

MG1655 (araD, ulaF and sgbE) had successfully been knocked-out (Figure IV.2). This mutant 

was named SelTag2. Due to the presence of repetitive parts in between the araA and araD genes 

in the E. coli K-12 MG1655 genome, a slightly bigger part of DNA (153 bp) had been knocked-



84 

 

out. Nonetheless, the removal of this extra DNA part should not be a problem for the selection 

strain as the removed part does not code for a gene and also the flanking araA gene stays intact. 

 

 

Figure IV.2 DNA fragments obtained after colony PCR on SelTag2 confirm successful gene disruption. Fragments 

obtained are around 264 bp, 414 bp and 326 bp, corresponding to the theoretical lenght of successful gene knock-outs. 

 

Due to problems of contamination in the selection cultures (see chapter V), it was later 

chosen to use the last ‘intermediate step’ of the creation of the SelTag2 strain as this strain still 

contained the kanamycin resistance gene at the position of the ulaF gene (ulaF::kan in SelTag3 

instead of ΔulaF in SelTag2). Due to the presence of an additional antibiotic, chances of 

contamination will decrease. By analogy with the 2 other strains, this one was called SelTag3. 

3.2. Speeding up the gene disruption protocol 

Since, both antibiotic resistance genes were deleted by the flippase at the same time, the 

optimizing of the gene disruption protocol was successful. In this manner, the work load and 

time of two curing steps (first pKD46, then pCP20) as well as two rounds of competent making 

and transformation (first pCP20, then pKD46) could be saved. This had resulted in speeding up 

the protocol for 2 gene disruptions by 2-3 days. Since this simultaneous removal of both 

antibiotic markers was successful, it would not be unlikely that more than 2 antibiotic markers 

could be removed at the same time as well. However, it would be best to have extra antibiotic 

markers to be able to select for disruption of a third, fourth, … gene, for instance a gentamycin 

resistance gene. With 3 antibiotic resistance genes, disruption of 3 genes following this 

optimized protocol would save twice the 2-3 days of work, or a full week. Since there is a small 

risk that an earlier introduced marker is replaced by a new one, it is important to plate the cells 

on medium containing all antibiotics. On the other hand, disruption of the correct gene is 

checked by colony PCR using gene specific primers as well, nevertheless, it can be good to 

check previous genes by colony PCR too. 
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3.3. Growth tests on different minimal media 

3.3.1. SelTag1 = E. coli CGSC#10993 ΔsgbE ΔulaF 

As expected, the SelTag1 strain was found to be unable to grow on tagatose (TMM) and on 

L-arabinose (L-AMM) since E. coli are naturally no tagatose consumers and, on the other hand, 

the full araBAD operon for L-arabinose degradation has been deleted, respectively. Surprisingly, 

the SelTag1 strain was also found to be unable to grow on fructose (FMM). The mother strain of 

this SelTag1, namely E. coli CGSC#10993, was also found to be unable to grow on fructose, 

which explains why the SelTag1 does not grow on fructose (Table IV.4). However, considering 

the mutations mentioned on the CGSC website for this strain, it would be expected that the E. 

coli CGSC#10993 strain would be able to grow on fructose. Nonetheless, the strain is most likely 

to harbor extra mutations than only those mentioned on the website, and seen the inability to 

grow on fructose, these mutations are likely to be found in fructose degradation pathways. Since 

SelTag1 is unable to grow on fructose, it cannot be used as a selection strain for the detection of 

tagatose 4-epimerase activity. Therefore, the creation of a new selection strain was started from 

the standard E. coli K-12 MG1655, which is known to grow on fructose. 

 

Table IV.4 Growth of the different strains on Fructose minimal medium (MM), Tagatose MM and L-Arabinose MM. 

Ability and inability to grow are indicated with + and – , respectively. The expectation of growth is given between 

brackets 

Strain L-AMM FMM TMM 

E. coli CGSC#10993 –  (–) –  (+) –  (–) 

SelTag1 –  (–) –  (+) –  (–) 

E. coli K-12 MG1655 +  (+) +  (+) –  (–) 

SelTag2 –  (–) +  (+) –  (–) 

SelTag2+pIXhPtrc-AraD +  (+) +  (+) –  (–) 

SelTag2+pCXPhxx-AraD +  (+) +  (+) –  (–) 

SelTag3 –  (–) +  (+) –  (–) 

SelTag3+pIXhPtrc-AraD +  (+) +  (+) –  (–) 

SelTag3+pCXPhxx-AraD +  (+) +  (+) –  (–) 
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3.3.2. SelTag2 (3) = E. coli K-12 MG1655 ΔaraD ΔsgbE Δula (ulaF::kan) 

The growth tests of the SelTag2 strain revealed that growth on L-arabinose had been made 

impossible, which is normal since one of the genes in the L-arabinose degradation pathway has 

been knocked out (Table IV.4). On the other hand, supplementation of this L-Ru-5-P 4-epimerase 

through the recombinant expression of the G. thermodenitrificans L-Ru-5-P 4-epimerase of the 

inducible or constitutive expression plasmids could undo the loss of the native L-Ru-5-P 4-

epimerase. On one hand, this confirms that the removal of the extra 153 bp DNA part is not 

deleterious for the nearby L-arabinose isomerase (araA) gene (cfr. 3.1). More importantly, this 

also confirms that the G. thermodenitrificans L-Ru-5-P 4-epimerase is expressed in an active 

form, which is a prime requirement for enzyme engineering. Furthermore, SelTag2 was able to 

grow on fructose and unable to grow on tagatose, making it useful as selection strain for the 

detection of enzymes harboring tagatose 4-epimerase activity. 

 

The same results concerning growth are expected for the SelTag3 strain, since it only differs 

from the SelTag2 strain at the position of the ulaF gene. It still contains the kanamycin marker 

here, instead of the deletion of this gene (ulaF::kan instead of ΔulaF). As such, the same growth 

curves were observed for the SelTag3 strain (E. coli K-12 MG1655 ΔaraD ΔsgbE ulaF::kan) 

compared to SelTag2 (E. coli K-12 MG1655 ΔaraD ΔsgbE ΔulaF). Like SelTag2, this SelTag3 

strain can thus also be used for selection towards a tagatose 4-epimerase. The advantage of 

SelTag3 over SelTag2 lies in the presence of a kanamycin resistance marker which can reduce 

the risk of contamination due to the presence of extra antibiotic in the medium. 
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4 Conclusion 

In this chapter, 3 strains have been created starting from the E. coli CGSC#10993 or from 

the standard E. coli K-12 MG1655 by knocking out all genes encoding homologues L-Ru-5-P 4-

epimerases. Removal of these genes will reduce the risk of loss of the G. thermodenitrificans L-

Ru-5-P 4-epimerase gene present on the pIXhPtrc-AraD plasmid  as a result of recombination. 

The first selection strain, SelTag1, was based on E. coli CGSC#10993 and is not useful since it is 

unable to grow on fructose as a sole carbon source.  

 

Nevertheless, the selection strains based on the E. coli K-12 MG1655, namely SelTag2 and 

SelTag3, are found to be useful in a selection system towards a tagatose 4-epimerase. since they 

are able to grow on fructose, unable to do so on tagatose and express the G. thermodenitrificans 

L-Ru-5-P 4-epimerase in an active form. SelTag3 has the advantage of harboring an extra 

antibiotic resistance marker which reduces the chance of contamination in the case of slow 

growth of the selection strain. 

 

While making these different selection strains, the protocol of gene disruption was 

optimized speaking of time frame and workload. By simultaneous removal of 2 antibiotic 

resistance markers, 2 to 3 days of work could be spared, hereby speeding up the protocol. This 

also opens the door for further speeding up the protocol for simultaneous removal of more than 2 

genes. However, it is necessary to use new resistance markers to be able to select for gene 

disruption, a possible new resistance marker can be that for gentamicin. 
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V. MUTAGENESIS OF L-RU-5-P 4-

EPIMERASE AND SELECTION 

TOWARDS IMPROVED MUTANTS 
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1 Introduction 

After the development of two useful selection strains for tagatose to fructose conversion, the 

focus was shifted towards the enzyme, namely an L-Ru-5-P 4-epimerase. Amongst the different 

strategies available for enzyme engineering are random and (semi-)rational mutagenesis. 

Random mutagenesis can always be applied since no or little information about the target 

enzyme is needed [40]. Mutations are made at random via different strategies, such as error 

prone PCR and shuffling [208, 241]. In the research project, random mutagenesis was achieved 

by applying error-prone PCR on the full gene as well as parts of the gene. 

 

In recent decades, the field of informatics and mathematics has become an important field in 

biochemical or biotechnological sciences, since several mathematical models have been 

translated in useful bio-informatica tools. Among these programs are visualizing programs such 

as the PyMOL Molecular Graphics System [70] but also molecular modeling programs like 

YASARA [139]. With the use of this latter program, a homology model can be made for new 

enzymes based on available crystal structures of homologous enzymes. Since multiple structures 

of other L-Ru-5-P 4-epimerases and related homologous enzymes are available [78, 140, 141, 

166], a homology model for the G. thermodenitrificans L-Ru-5-P 4-epimerase can be made using 

the molecular modeling program YASARA [139] and the mentioned crystal structures. The 

creation of this homology model allows us to have a look at the enzyme’s active site, including 

the residues important for substrate binding. Furthermore, previous (engineering) studies of other 

L-Ru-5-P 4-epimerases and the homologous aldolases provide us with a lot of information as 

well. This information will be used together with the created homology model to more rationally 

identify residues that might be of importance to change the substrate specificity of the epimerase 

from phosphorylated pentoses (L-Ru-5-P/D-Xu-5-P) towards free hexoses (tagatose/fructose) 

(Figure I.1). Target residues will then be mutated towards all possible amino acids. This 

approach is called semi-rational as residues are chosen based on rational information but 

mutagenesis is not fully rational since saturation is applied.  

 

In this chapter, the creation of a homology model for the G. thermodenitrificans L-Ru-5-P 4-

epimerase is described, along with the random and site saturation mutagenesis of the enzyme. 

After mutagenesis, mutant libraries were transformed into the previously created selection 
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strains, SelTag2 or SelTag3 (chapter IV), and grown in tagatose minimal medium in order to 

identify improved enzyme variants. 

 

2 Material & Methods 

2.1. Bacterial strains, plasmids, growth conditions and chemicals 

Both the inducible expression plasmid pIXhPtrc-AraD containing the G. 

thermodenitrificans L-Ru-5-P 4-epimerase gene and the selection strains SelTag2 and SelTag3 

have been created earlier (chapter III and chapter IV, respectively). Standard growth conditions 

and media were used as mentioned in the previous chapters. Primers were ordered at Sigma-

Aldrich, the same counts for chemical unless otherwise stated. Aligments of the L-Ru-5-P 4-

epimerase with other enzymes and sequence analysis of this 4-epimerase were performed using 

the online available ClustalW2 alignement program [144] as well as the NCBI BLAST tool [6]. 

 

Minimal medium (TMM) composition was used as described in chapter IV section 2.3.1, 

however, with 250 mM or 500 mM of tagatose. Experiments were also performed in tagatose 

synthetic medium (TSM). This synthetic medium contained 2 g/l NH4Cl, 5 g/l (NH4)2SO4, 2.993 

g/l KH2PO4, 7.315 g/l K2HPO4, 8.372 g/l MOPS, 0.5 g/l NaCl, 0.5 g/l MgSO4.7H2O, 250 mM or 

500 mM of tagatose (Nutrilab), 1 ml/l vitamin solution, 100 µl/l molybdate solution, and 1 ml/l 

selenium solution. The medium was set to a pH of 7 with 1 M KOH. Vitamin solution consisted 

of 3.6 g/l FeCl2.4H2O, 5 g/l CaCl2.2H2O, 1.3 g/l MnCl2.2H2O, 0.38 g/l CuCl2.2H2O, 0.5 g/l 

CoCl2.6H2O, 0.94 g/l ZnCl2, 0.0311 g/l H3BO4, 0.4 g/l Na2EDTA.2H2O and 1.01 g/l thiamine-

HCl. The molybdate solution contained 0.967 g/l Na2MoO4.2H2O. The selenium solution 

contained 42 g/l SeO2. 

2.2. Homology model of the L-Ru-5-P 4-epimerase 

To determine the residues and/or regions of the 4-epimerase that might be important to 

change the substrate specificity of the epimerase, alignment studies with other members of the 

araD-like aldolase/epimerase family were performed, important residues were identified in 

previously published literature, and finally important residues were chosen by looking at the 

substrate binding domain of the G. thermodenitrificans L-Ru-5-P 4-epimerase. Therefore, a 

homology model of the G. thermodenitrificans L-Ru-5-P 4-epimerase was made using the 

molecular modeling program YASARA [139] based on the crystal structures of L-Ru-5-P 4-
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epimerase (PDB: 1JDI), L-rhamnulose-1-phosphate aldolase (PDB: 1GT7) and L-fuculose-1-

phosphate aldolase (PDB: 1DZU), all from E. coli, and with default settings. The resulting 

homology model was saved as a pbd-file, which was then used to look at the substrate binding 

domain, and more specifically the phosphate binding site, using the YASARA program [139] 

and the PyMOL Molecular Graphics System [70].  

 

The substrates L-Ru-5-P and D-Xu-5-P were docked into the created homology model using 

the docking tool of the molecular modeling program YASARA [139]. Furthermore, the substrate 

analogue phosphoglycolohydroxamic acid (PGH) that was found in the crystal structure of E. 

coli L-fuculose-1-phosphate aldolase (PDB: 4FUA) was brought in the homology model by 

superposition of both structures with the help of the MUSTANG alignment tool [134] in 

YASARA [139] 

2.3. Random mutagenesis: error prone PCR 

For random mutagenesis, the GeneMorph II EZClone Domain Mutagenesis kit (Stratagene) 

and primers mentioned in Table V.1 were used, applying a mutation frequency of 0-10 

mutations/kb, which would result in 0-7 mutations on the araD gene.  

 

Table V.1 Primers used for random mutagenesis of the araD_Gt gene 

Primer Sequence (5’→3’) 

EP_AraD_Fwd GGATCCAACCCTTAAGATG 

EP_AraD_Fwd_internal GACTTGGGCGACTGTTTGG 

EP_AraD_Rev_internal AACAACGGCATTGTGGACTG 

EP_AraD_Rev GAGCTCTCCCATATGGTCGAC 

 

2.4. (Semi-)Rational mutagenesis: Site saturation mutagenesis 

For site saturation mutagenesis (SSM), the Sanchis protocol was used [227]. Briefly summarized, 

reaction mixtures contained 50–100 ng of wild-type plasmid as template, 5 pmol of mutagenic 

primer and a non-mutagenic reverse primer or two mutagenic primers (primer sequence see 

Table V.2), 0.2 mM dNTP mix, 2.5 U of PfuUltraTM High-Fidelity DNA polymerase and the 

supplied buffer (Stratagene) in a final volume of 50 μL. The PCR program consists of the 

following steps: initial denaturation 3 min at 95 °C, followed by 5 cycles of 30 s denaturation at 
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95 °C, annealing 45 s at 53 °C, extension 1 min/kb according to the megaprimer size at 72 °C. 

Second stage contained the whole plasmid amplification starting from the created megaprimer by 

20-25 cycles of 30 s at 95 °C and extension at 2 min/kb of template at 68 °C, and program was 

ended by a final extension of 2 min/kb of template at 68 °C. PCR mixtures where then digested 

with DpnI to remove template DNA, purified using the QIAquick PCR purifcation kit (Qiagen) 

and transformed into electrocompetent BL21 cells as described above. Plasmids were then 

extracted and mutagenesis was checked by sequencing. 

 

Table V.2 Mutagenic primers used for site saturation mutagenesis of the araD_Gt gene; target codon are underlined 

Primer Sequence (5’→3’) 

N28X_Fw TGTGACATTTACATGGGGANNSGTGAGCGGGATTGACCGGG 

W26X-G27X-N28X_Fw AGCTCCCACAATACCGCCTTGTGACATTTACANNKNNKNNKGT

GAGCGGGATTGACCGGGAGCGCG 

K42X_Fw GGGAGCGCGGGTTGGTTGTCATTNNSCCAAGTGGGTTGG 

K42X-P43X-S44X_Fw GATTGACCGGGAGCGCGGGTTGGTTGTCATTNNKNNKNNKGG

GTTGGCGTATGACAGACT 

S73X_Rv ATGGGTCGGAGTGTCCGAWNNCGGTTTCCACTCTCCTTC 

S74X_Rv GAGATGGGTCGGAGTGTCWNNTGACGGTTTCCACTCTCC 

D75X_Rv CCAGAGATGGGTCGGAGTWNNCGATGACGGTTTCCACTC 

S73X-S74X _Rv GCCAGAGATGGGTCGGAGTGTCMNNMNNCGGTTTCCACTCTC

CTTCC 

S73X-S74X-D75X_Rv GTTTATACAGCCAGAGATGGGTCGGAGTWNNWNNWNNCGGT

TTCCACTCTCCTTCCACCACC 

T95X_Rv AACAGTCGCCCAAGTCGAATGMNNATGCACAATTCCTCCGAT

TCC 
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2.5. Selection of mutant libraries 

2.5.1. Liquid minimal medium 

Mutant libraries are transformed into the selection strain by electroporation and a small 

portion (10%) of the transformation mix is plated on LB-agar to calculate the amount of colony 

forming units (CFU) in the selection culture. A second part (10-25 %) was grown overnight in 

liquid Luria broth to check the libraries’ quality by sequencing. The rest of the library was grown 

in liquid Luria broth to start the selection pre-culture. This selection pre-culture was first grown 

for 2-6 h and then tagatose was added for overnight growth. After overnight growth, a portion of 

the cells was harvested by centrifugation, washed twice with phosphate buffered saline (PBS; 8 

g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na2HPO4, 0.27 g/l KH2PO4, pH 7.4) and subsequently inoculated 

(2 % inoculum) in fresh TMM (chapter IV 2.3.1) or TSM (2.1) supplemented with the 

appropriate antibiotics and IPTG. Cells were grown at 37 °C, 200 rpm and growth was followed 

by measuring cell density at OD600 nm. 

2.5.2. Solid minimal medium 

Growth tests were also performed using solid minimal medium containing tagatose. General 

composition of the TMM-agar medium was the same as described above, supplemented with 15 

g/l agar (Difco). Here, carbenicillin was added to allow longer incubation periods since it is 

found to be more stable in culture media. Triphenyl tetrazolium chloride (BD Difco™ TTC 

Solution) was added to a concentration of 0.1 g/l after the medium was autoclaved in order to 

obtain a red color in the colonies that are able to grow on the provided tagatose. The red color is 

obtained by reduction of the TTC when cells are able to grow on tagatose and hereby create 

reductive power [37]. 

 

3 Results and Discussion 

3.1. Sequence analysis and homology model 

A sequence alignment (Figure V.1) of the Geobacillus L-Ru-5-P 4-epimerase with the 

related aldolases reveals low amino acids identity with the L-rhamnulose-1-P aldolase and L-

fuculose-1-P aldolase, and around 65 % identity with the E. coli epimerase. The conserved 

residues from the AraD-like aldolase/epimerase family are found in the Geobacillus epimerase as 

well. 
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Figure V.1 Sequence alignment of L-Ru-5-P 4-epimerase from Geobacillus (AraD_Gt) and E. coli (AraD_Eco) with L-

rhamnulose-1-P aldolase and L-fuculose-1-P aldolase (FucA_Eco and RhaD_Eco, respectively) . Conserved residue 

are marked in bold and randomized residues are highlighted in green 

 

The homology model of the Geobacillus L-Ru-5-P 4-epimerase was created based on 

structures of the AraD-like aldolase/epimerase family members. It seems to be of good quality 

since it aligns very well with the E. coli epimerase, with a rmsd of only 0.5 Å over the 217 

aligned residues. Substrate analogue phosphoglycolohydroxamic acid (PGH) was introduced by 

superposition with the L-fuculose-1-P aldolase the crystal structure. This was possible since these 

enzymes’ overall structure and conserved residues align very well. 

 

A look at the residues close to the phosphate group of the phosphoglycolohydroxamic acid 

(PGH) reveals that most of the residues mentioned in the next paragraph (3.2) are indeed in close 

contact with the phosphate of the substrate analogue, making them good candidates for SSM in 

order to obtain a binding region for the hydroxylic groups of ketohexoses. 
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Figure V.2 Homology model of the Geobacillus L-Ru-5-P 4-epimerase with the substrate analogue 

phosphoglycolohydroxamic acid (PGH). The residues targeted with SSM and histidines for Zn2+ binding are 

highlighted 

 

3.2. Determining residues for SSM (Figure V.2) 

The residues targeted by SSM were chosen based on previous engineering results on L-Ru-

5-P 4-epimerase [166] as well as the related L-rhamnulose-1-phosphate aldolase [141] and L-

fuculose-1-phosphate aldolase [78]. Furthermore, the created homology model of the epimerase 

and available crystal structures from the above mentioned enzymes were used to have a look in 

the active site, and more specifically at the substrate and phosphate binding site, of the 

epimerase. With these tools, 5 residues were identified as important for SSM (N28, K42, S73, 

S74 and T95) and 5 neighboring residues were taken along with them (W26, G27, P43, S44 and 

D75). The following paragraphs will further explain why these particular residues were chosen. 
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Four residues have been proposed to form the phosphate binding pocket in E. coli L-Ru-5-P 

4-epimerase based on alignment with the 2 related aldolases, namely S44, G45, S74, S75. These 

residues constitute the phosphate binding pocket in the L-fuculose-1-P aldolase and its 

corresponding residues in the Geobacillus epimerase are S44, G45, S73, S74 [149].  Later on, a 

conserved asparagine (N28) and lysine (K42) in the active site were added to this list [166]. Most 

of these conserved residues are suspected to form hydrogen bonds with the phosphate moiety via 

their β-hydroxyl groups (S), α- or γ-amide groups (G/N). On the other hand, the lysine was found 

to be positioned at the bottom of the putative phosphate binding pocket, where it is likely to form 

a salt bridge with the phosphate group [166]. These latter two residues had been subject of 

mutagenesis for removal of their specific side groups (N28A and K42M). Due to these 

mutations, affinity of the epimerase for L-Ru-5-P had drastically dropped. An increase in Km 

from 0.047 mM to 1.2 mM and > 2 mM was observed, respectively, confirming their role in 

substrate binding [225]. The corresponding residues of the mentioned amino acids (N28, K42, 

S73, S74, S44) were targeted by SSM to introduce variety in the phosphate binding region and in 

this way engineer this pocket towards a pocket that will retain a poly-hydroxyl moiety instead. 

Extra interaction could be formed with the hydroxyl group at C5 and C6 as well with the carbon 

atoms themselves.  

 

Since most of the residues are likely to be able to interact with C5, C6 and their hydroxyl 

groups, and an altered positioning of these residues might also improve binding of the non-

phosphorylated ketohexose, some neighboring residues were targeted by SSM as well: W26, 

G27, P43 and D75. The 10th residue that was subjected to SSM is the threonine (T95) found 

between two of the histidines (H94, H96) that are known to bind the metal ion. In a similar 

engineering project, a double mutation was found to convert the L-rhamnulose-1-P aldolase from 

E. coli into an L-rhamnulose aldolase [244]. This double mutant contained the following two 

mutations: C142Y and T158S. The first (C142) corresponds with the T95 in the Geobacillus 

epimerase, while the T158 is located in a helix which is absent in the epimerase. With the help of 

the primer listed in Table V.2, several single to quadruple SSM libraries were created combining 

mutagenesis of the above mentioned residues (Table V.3). 

3.3. Random mutagenesis: library quality and selection 

It was chosen to work with different levels of mutation frequency to obtain divergent 

libraries. A low mutation frequency might not introduce enough mutations, whereas the chance 
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of detrimental mutations is bigger with a high mutation frequency. Sequencing of 3 times 3 

single colonies grown on LB medium showed that random mutagenesis was successful. They 

were found to have 0-7 nucleotide changes which resulted in 0-3 amino acid substitutions. The 

observed mutation frequency matched with the theoretical mutation frequency. More variation 

was introduced in the libraries by applying random mutagenesis on the entire gene (full enzyme) 

or only parts of the gene (N-terminal or C-terminal part of the enzyme). 

 

The mutant libraries showed very slow growth and in many cases cultures only reached 

OD600 nm ≈ 0.4 after around 10 days. Due to this slow growth, some of the selection cultures of 

the SelTag2 selection strain became contaminated. Therefore, it was chosen to work with an 

intermediate strain from the making of SelTag2. This intermediate strain still contains the 

kanamycin marker at the position of the ulaF gene (ulaF::kan) and so kanamycin can be added to 

the medium to reduce the chance of contamination (see also chapter IV 0). 

 

Over 40 different random mutagenesis libraries, with distinct mutation frequencies, were 

created and transformed in the SelTag2 or SelTag3 selection strain. Around 3 million CFU were 

inoculated in TMM or TSM, which resulted in the finding of a potential hit, containing 2 

mutations A8V-T23A and a silent one (T115T). Based on their position in the structure, near the 

enzyme’s surface, and the small difference between the original and new residue, it is unlikely 

that this mutant is a true hit. Nonetheless, the T23A mutation could have an effect on the 

alignment of the residues a bit more C-terminal, more specifically those around N28. 

3.4. Site saturation mutagenesis: library quality and selection 

A total a 10 different residues was subjected to site saturation mutagenesis using 10 

different primers containing NNS or NNK degenerated codons. As such, the residue could be 

switched to all 20 amino acids using 32 codons (Appendix III). Of the 10 primers, 6 contained a 

single degenerated codon, one a two degenerated codons and the other three could result in triple 

SSM mutants. Some primers were used separately (with non-mutagenic primers), while different 

combinations of 2 mutagenic primers were made as well, resulting in SSM of 1-4 positions.  

 

The library part plated out on solid media was used to determine the size of each mutant 

library (see below and Table V.3). Sequencing results confirm that SSM gave libraries of good to 

very good quality (Figure V.3), approximating the ideal distribution. An ideal library would 
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consist of percentage A/C/G/T-distributions of 25/25/25/25 for ‘N’ and 0/50/50/0 for ‘S’. 

Nevertheless, in many cases the natural nucleotide (or codon) is in many cases overrepresented. 

This is logical since degenerated codons with less difference to the natural codon experience less 

repulsion during primer annealing. Nonetheless, due to oversampling by using bigger libraries, 

the chance of starting with a full library (all possible codons) is increased. For a single SSM 

library with NNS or NNK degenerated codon, the library should contain around 100 CFU to 

have 95 % coverage (Appendix III) [212]. 

 

 

Position 

in codon 

   

Position 

in codon 

 
Res. 1 2 3 nucl. 

 

Res. 1 2 3 nucl. 

N28 

49 44 0 A 

 
N28 

64 59 0 A 

11 10 31 C 

 

7 8 21 C 

20 26 47 G 

 

14 18 37 G 

20 20 22 T 

 

15 15 42 T 

K42 

30 35 0 A 

 
K42 

51 51 2 A 

14 20 48 C 

 

12 15 34 C 

28 18 52 G 

 

20 16 63 G 

28 27 0 T 

 

17 18 1 T 

S73 

31 22 12 A 

 
S73 

27 18 25 A 

24 19 63 C 

 

20 50 47 C 

20 39 25 G 

 

16 13 23 G 

25 20 0 T 

 

37 19 5 T 

S74 

26 26 4 A 

 
S74 

18 15 0 A 

25 36 46 C 

 

19 61 39 C 

17 20 50 G 

 

13 13 61 G 

32 18 0 T 

 

50 11 0 T 

D75 

30 43 4 A 

 
D75 

20 72 7 A 

23 20 57 C 

 

16 12 74 C 

31 20 37 G 

 

55 9 19 G 

16 17 2 T 

 

9 7 0 T 

Figure V.3 Example of the quality of a SSM library (NNS) at different positions. Percentage of each nucleotide at the 

different positions is given, original nucleotide is underlined. Ideal library would have a N: 25/25/25/25 and S: 

0/50/50/0 A/C/G/T-distribution 
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An overview of the number of CFU that was transformed in the selection strains and 

selected for growth, and thus epimerase activity, in tagatose minimal medium (TMM) or tagatose 

synthetic medium (TSM) is given in Table V.3. For most of the libraries, the number of CFU 

needed to reach the screening effort for at least 95 % coverage [212] was reached by single 

libraries or combining different transformations in the same library or when multiple smaller 

libraries were combined. 

 

Table V.3 Overview of the created libraries, their size, screening effort and coverage 

Residue(s) targeted # NNS Screening effort 

needed (CFU) 

Library size 

(CFU) 

Coverage 

(%) 

N28X 1 94 > 10000 100 % 

K42X 1 94 > 10000 100 % 

S73X 1 94 ± 1100 100 % 

S74X 1 94 ± 1700 100 % 

D75X 1 94  ± 900 100 % 

T95X 1 94 > 1500 100 % 

N28X, S73X 2 3066  ± 4400 100 % 

N28X, S74X 2 3066  ± 3800 100 % 

N28X, D75X 2 3066  ± 4400 100 % 

N28X, T95X 2 3066  > 5000  100 % 

K42X, S73X 2 3066  ± 550 18 % 

K42X, S74X 2 3066  ± 2800 90 % 

K42X, D75X 2 3066  ± 2200 72 % 

K42X, T95X 2 3066  ± 4400 100 % 

S73X-S74X 2 3066  ± 20000 100 % 

N28X, S73X-S74X 3 98163 ± 10000 ± 10 % 

K42X, S73X-S74X 3 98163 ± 10000 ± 10 % 

W26X-G27X-N28X 3 98163 ± 5000 ± 5 % 

K42X-P43X-S44X 3 98163 ± 2500 ± 2.5 % 

S73X-S74X-D75X 3 98163 > 130000 100 % 

N28X, S73X-S74X-D75X 4 3141251 > 20000 ± 1 % 

K42X, S73X-S74X-D75X 4 3141251 > 25000 ± 1 % 
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As was observed for the selection cultures of random mutagenesis, the SSM libraries also 

showed very slow growth to OD600 nm ≈ 0.4 (again in ± 10 days). Nevertheless, some of the 

libraries were found to be fully enriched towards one mutant after several inoculations in fresh 

TMM. Among these mutations were K42S, K42A, K42V, N28R and S73R. Three smaller 

residues were found in libraries at which K42 was randomized: more specifically serine, alanine 

and valine. As the distance between the hydroxyl group of serine and the introduced 

hydroxymethyl group is over 5 Å, it is too far away for H-bond formation. Due to the three 

smaller residues, the active site might have been slightly prolonged. The introduction of bulkier 

and charged groups (N28R, S73R) in the phosphate binding region would have the opposite 

effect and reduce the size of the active site as well as occupy the space that is needed for the 

extra hydroxymethyl of the hexoses. Surprisingly, one of the libraries had fully enriched to a stop 

codon mutant, resulting in a truncated epimerase unlikely to be active. Perhaps this minimal 

growth observed is due to traces of Luria broth from the inoculums, nevertheless, it is still 

strange that this would lead to the enrichment of a single mutant. Inoculated libraries had been 

checked by sequencing of the inoculums (examples are given in Figure V.3), while five single 

colonies had been sequenced after plating out the selection culture, clearly pointing out towards 

enrichment. 

3.5. Solid minimal medium 

Due to very slow growth at the solid tagatose minimal medium, only very tiny colonies 

were observed after several days of incubation at 37 °C. Slight red coloring was observed on the 

colonies. However, as a result of the very slow growth, the plates and colonies had dried out 

before the colonies could be inoculated on fresh medium. This could mean either two things, at 

first, the selection on solid medium works but the initial activity in the strains is to low to achieve 

growth before the plates and colonies or dried out. On the other hand, this minimal growth could 

also be a result of growth on traces of Luria broth from the inoculum. This could have been 

checked by inoculation of the selection strain not expressing the epimerase. 

3.6. Fructokinase problem 

Due to the (extreme) slow growth of the libraries, the selection system was scrutinized in 

order to double check the strain and the assumptions that were made to use it as a selection 

strain. Problems that could occur are the lack of tagatose transport systems, too low 

concentration of  tagatose in the cells and problems downstream of the epimerization reaction. 
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Uptake of tagatose should not be the problem, since E. coli K-12 MG1655 is able to absorb 

tagatose via the methylgalactoside transport system, mglABC [132]. Even though it has a higher 

flux transporting tagatose out than in, due to high concentration of tagatose in the medium, the 

mlgABC transport system should be able to transport it inside the cells [132]. Nonetheless, 

intracellular levels of tagatose might not reach high levels.  

 

According to the growth tests that were performed, E. coli K-12 MG1655 and the selection 

strains based on it were able to grow well on fructose. However, there is a difference in fructose 

consumption between the growth test and in the selection strain, that was overlooked. In E. coli, 

three routes of fructose utilization are present, of which one is predominant [136]. Here, fructose 

is transported in the cell via the phosphotransferase system or PTS and is simultaneously 

phosphorylated to fructose-1-P, to which then a second phosphate group is coupled (Fru-1,6-bis-

P) and broken down to yield energy and building blocks. The second route is similar but yields 

fructose-6-P, which is then converted to Fru-1,6-bis-P. In the third route, fructose diffuses into 

the cell via an isoform of the major glucose permease of the PTS (no PTS involved). It enters the 

cell as fructose and has to be phosphorylated by ATP and a manno(fructo)kinase (Mak+). 

However, it was found that the manno(fructo)kinase from E. coli K-12 MG1655 works very 

slow, partially due to lower expression as a result of a rare start codon (personal communication 

Joeri Beauprez) [174, 240]. 

 

In our selection system, tagatose is absorbed and epimerization would result in non-

phosphorylated fructose in the cell. As a result, two consecutive bottlenecks are present, namely 

the epimerase and the manno(fructo)kinase. This second bottleneck hampers the utilization of 

formed fructose. In a perfect selection strain, only one bottleneck should be present and that is 

the target enzyme, in this case the epimerase. The fructokinase problem could be solved by 

constitutive overexpression of a fructokinase on a plasmid or via introduction in the genome 

(personal communication Joeri Beauprez). 
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4 Conclusion 

In this chapter, two types of mutagenesis are applied on the L-Ru-5-P 4-epimerase: random 

mutagenesis via error prone PCR and a semi-rational approach through site saturation 

mutagenesis of carefully selected residues. Both types of libraries are then transformed into the 

earlier developed selection strains SelTag2 and SelTag3, followed by inoculation in minimal 

medium with tagatose as a sole carbon source (TMM) for selection of improved variants. 

 

Of over 40 different random mutagenesis libraries created with different levels of mutation 

frequency, a total of around 3 million CFU were transformed in the selection strains. Up to 

300,000 mutants were created in 22 different saturation libraries, in which 1 to 4 codons were 

simultaneously degenerated using NNS or NNK codons. For smaller libraries (SSM of 1-2 

residues), the amount of mutants/CFU for at least 95 % coverage was reached, whereas for 

bigger libraries (3-4 residues), these numbers were not achieved. Nonetheless, still several 

thousands of CFU were inoculated in selection cultures, covering 1-10 % of the CFU needed for 

95 % coverage. 

 

The majority of the targeted residues is located in the phosphate binding pocket of the 

epimerase, since the desired substrates are hexoses instead of phosphorylated pentoses. A 

disadvantage with the targeted or phosphate binding residues is that they are (semi-)conserved 

residues, which could also mean that they might be of importance for other enzyme features as 

well, such as folding or stability. On the other hand, since all AraD-like aldolase/epimerase 

family members are active on phosphorylated carbohydrates and the substrate specificity of the 

epimerase is desired to be extended or changed to non-phosphorylated sugars in this project, it is 

not unlikely that (semi-)conserved residues have to be targeted.  

 

Via this selection approach, the following mutants had enriched after several rounds of 

selection in TMM: K42S, K42A, K42V, N28R and S73R in site saturation libraries and the 

double mutation A8V-T23A(-T115T) after random mutagenesis. Since one of the libraries had 

fully enriched to a mutant containing a stop codon, it is not unlikely that there are more false 

positives among the other mentioned hits. This stop codon would make that only a truncated, 

very likely inactive enzyme is expressed. Whether they are true hits rather than false positives 
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will be examined later on using the screening assay for detection of tagatose 4-epimerase that 

was developed (see chapter VI).  

 

Due to the very slow growth of the libraries in the SelTag strains (OD600 nm ≈ 0.4 only 

reached in approximately 10 days), the selection system was scrutinized. This inspection 

revealed that there is likely to be a second bottleneck, namely the first step in the utilization of 

fructose. In the growth tests, fructose was imported as fructose-1-P that is easily further broken 

down, resulting in proper growth. In the selection system, on the other hand, fructose has to be 

phosphorylated first and the fructokinase, in the strain used, is not sufficient. Due to this second 

bottleneck, the growth and consequently also the selection is hampered. A perfect selection strain 

would only have one bottleneck and that is the target enzyme. Constitutive overexpression of an 

active fructokinase could overcome this second bottleneck and improve the selection strain. 

More information and possibilities on how to improve the selection strain are discussed in the 

General discussion & Future Perspectives (Chapter IX). 

 

Nevertheless, engineering of the L-Ru-5-P 4-epimerase towards a 4-epimerase active on 

non-phosphorylated sugars still seems feasible since similar results were encountered through 

this approach on the related L-rhamnulose-1-phosphate aldolase [244]. In the next chapter, the 

development of a screening assay for detection of tagatose 4-epimerase is described. It will also 

be applied on several libraries as well as to confirm whether the found mutants are true positive 

hits. 
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VI. DEVELOPMENT AND 

APPLICATION OF A SCREENING 

ASSAY 
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1 Introduction 

In chapter IV and chapter V the development and application of a selection system are 

described, respectively. However, next to the use of selection as a way to detect improved 

enzyme variants in a mutant library, one can also perform screening to do this. In a screening 

assay, each mutant will be tested separately for the desired function or characteristic. 

Nevertheless, one must have a preferably easy, yet robust and accurate reaction to test the created 

mutant libraries. In this chapter, the development of a screening assay for the detection of 

tagatose 4-epimerase activity is described. 

 

Shortly summarized, the screening assay goes as follows (Figure VI.2). If an enzyme variant 

is able to convert tagatose, its C4-epimer fructose will be formed (epimerization step). In the first 

step of the screening assay, this formed fructose will be converted to glucose with the help of 

soluble glucose (xylose) isomerase (SGI). In the second step, the formed glucose will react with 

two coupling enzymes, namely glucose oxidase (GOD) and peroxidase (POD), and a 

chromogenic agent (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) or ABTS) towards a 

green color [274]. This screening protocol is called the SGI-GOD-POD method according to the 

3 enzymes that are applied in a coupled fashion. 

 

2 Material & Methods 

2.1. Bacterial strains, plasmids, growth conditions 

E. coli BL21 (DE3) cells will be used for the expression of the recombinant L-Ru-5-P 4-

epimerase. The epimerase will be expressed from the inducible pIXhPtrc-AraD expression vector 

created earlier (chapter III). Growth will be achieved on solid and in liquid LB medium supplied 

with ampicillin to select for the plasmid and IPTG for induction as described above. Mutagenesis 

was performed as described in chapter V. 

2.2. Chemicals and enzymes 

Soluble glucose isomerase (Gensweet SGI) was kindly provided by Genencor Belgium. 

This glucose isomerase is in fact a xylose isomerase from Streptomyces rubiginosus and has a 

molecular weight of 160 kDa. Since this SGI solution contains not only the isomerase but also 
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many stabilizers, both PD-10 desalting columns (GE Healthcare) and Amicon® Ultra 30K 

Centricons (Millipore) were applied to clean up the enzyme solution. Chemicals were purchased 

from Sigma-Aldrich unless otherwise stated. 

2.3. Development of the screening assay for tagatose 4-epimerase activity 

2.3.1. Soluble glucose isomerase 

Isomerization of fructose to glucose by the SGI solution was performed similar to the 

reaction described by Tukel and Alagoz [266]. The final SGI reaction mixture contained 20 mM 

MgSO4, 1 mM COCl2 in 250 mM Tris-HCl buffer pH 7.5. The mixture was incubated during 20 

min at 60 °C and inactivated by a 10 min heat treatment at 100 °C. 

2.3.2. Glucose oxidase – Peroxidase (GOD–POD) 

In the next step, the glucose concentration was measured, using the coupled enzyme assay 

of glucose oxidase and peroxidase [274]. In the GOD-POD method, the present glucose will 

serve as substrate for the coupled enzymes and finally oxidase a chromogenic substrate, in this 

case 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) or shortly ABTS. The GOD-POD 

mixture contains 45,2594 mg GOD, 173 µL POD stock solution (40 mg/mL) and 50 mg ABTS 

in 100 mL 0.2 M acetate buffer pH 4.5. The GOD-POD method has successfully been 

implemented earlier in enzyme engineering screening assays [64]. 

2.3.3. Coupling SGI and GOD-POD 

In order to remove any GOD-POD disturbing effects of chemicals (like stabilizers) present 

in the SGI solution, purification was accomplished by PD-10 desalting columns (GE Healthcare) 

as well as by buffer exchange using Amicon® Ultra 30K Centricons (Millipore). To identify ideal 

enzyme concentrations, the SGI solution has been tested undiluted and 10 to 1000 times diluted 

in SGI buffer (20 mM MgSO4, 1 mM COCl2 as cofactors in Tris-HCl buffer at different buffer 

strengths and pH).  

 

Buffer strengths and pH of the different buffers were also checked to fully optimize the 

consecutive steps of the screening protocol and provide each step its ideal pH value. First, 125 

mM to 1M of Tris-HCl buffer pH 8.5 was tested for its effect on the pH of both the SGI step and 

the GOD-POD step. Secondly, the ideal pH of the SGI buffer was tested at 250 mM Tris-HCl 

buffer in a range of pH 8.5 to pH 9.5. 
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Subsequently, the full SGI-GOD-POD reaction was tested for different fructose 

concentrations and high tagatose concentrations. Finally, a standard curve of fructose (0–2 mM) 

in the presence of excess of tagatose (0.5 M) was tested to determine the minimal detectable 

concentration. 

2.4. Screening the libraries 

Mutant libraries were picked for solid LB media by using the QPix2 colony picker 

(Genetix) and transferred to microtiter plates (MTP, Nunc) containing 175 µL of liquid LB in 

each well and grown overnight at 37 °C and vigorous shaking (220-250 rpm). This first plate is 

called master plate and after overnight growth a copy was made by inoculation of the grown 

cultures into fresh LB with 0.1 mM IPTG to trigger induction of heterologous expression 

(production plate) and grown again overnight for epimerase production. Then, cells were 

harvested by centrifugation of the production plates during 10 min at 3500 rpm (Rotixa 50 RS 

Hettich zentrifugen) and medium is discarded. The plates containing the cell pellets were frozen 

at -20 °C for at least 2 h. Subsequently, pellets are defrosted (30 min at 37 °C) and lysed by 

adding 100 µl of TrueLyse (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 4 mM MgCl2, 50 mM NaCl, 

1 mg/ml lysozyme, 0.1 mM PMSF), lysis is then achieved by 30 min incubation at 37 °C. Cell 

debris was removed by centrifugation of the production plates during 10 min at 3500 rpm and 50 

µl of cell extract was transferred to a new plate to which the tagatose solution was added to start 

the epimerization reaction at 37 °C for 1 h. 

 

3 Results and Discussion 

3.1. Development of the screening assay for tagatose 4-epimerase activity 

It was found that undiluted SGI solution gave rise to color formation equal to that of around 

350 µM of glucose when coupling the SGI step and the GOD-POD method (Figure VI.1). Since 

this is around the upper limit of linear detection by the GOD-POD, this disturbing effect had to 

be solved. Two different routes were used to overcome this issue. Removal of disturbing 

compounds was achieved by buffer exchange using PD-10 desalting columns or Amicon® Ultra 

30K Centricons. Since the SGI solution is a highly concentrated enzyme solution, this 

purification did not proceed as smoothly as desired. On the other hand, the SGI solution is highly 

concentrated and thus dilution of hereof might solve this problem to a large extent as well. 
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Figure VI.1 Interference of the SGI solution on the GOD-POD measurement 

 

Indeed, it was found that a 10 times dilution of the SGI solution reduced the ‘contaminating 

factor’ of SGI towards a level around 50 µM glucose. The 100 and 1000 times diluted samples 

further reduced the ‘contaminating factor’ to levels of around 10 µM of glucose, rendering these 

dilutions very useful for further screening assay development (Figure VI.1). Besides a nice base-

line or zero-point, the mixture should contain enough enzyme to convert the present fructose 

relatively fast into glucose in order to obtain an easy, fast and robust screening assay. In other 

words, do the 100x and 1000x dilution still contain sufficient catalytic power to convert the 

fructose in a desirable time frame or have they become too diluted? 

 

Our results suggest that the 100x dilution still has enough enzyme units present to convert 

most of the fructose (1 mM) present in 20 min, whereas further dilution (1000x) reduces the 

activity too much. This suggests that a 100 times diluted SGI solution still contains both enough 

catalytic potential and reduces the GOD-POD coloring in the absence of glucose as a result of 

contaminants in the SGI solution. On the other hand, the 1000x dilutions reduced this latter 

coloring. However, it was too diluted concerning enzyme units. Another way to purify the 

glucose (xylose) isomerase (GI/XI) would be a cooling crystallization process, starting with the 

GI/XI in a 0.17 M MgSO4 solution [270]. 
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At last, the buffer strength and the pH of the SGI buffer was optimized so that all enzymes 

in each step could react at optimal conditions. An SGI buffer containing 250 mM of Tris-HCl 

was found to be strong enough to increase pH after the epimerization step to an optimal range for 

the SGI and this without affecting the pH of the GOD-POD step too hard. Under these 

conditions, an SGI buffer set at pH 9.5 gave more optimal conditions than at lower pH values. 

3.2. Overview of the  screening assay (Figure VI.2) 

Step 1: Epimerization 

The screening assay will thus consist of a first epimerization step, in which hopefully a 

mutant will convert tagatose into fructose. In the epimerization reaction, 50 µl of crude cell 

extract (50 mM Tris-HCl pH 7.5) will be added to 150 µl of 0.5 M tagatose in 33 mM 

glycylglycine buffer pH 7.6 containing 0.4 mM of MgCl2 as cofactor. This reaction will then 

proceed during 1 h at 37 °C or 60 °C. 

 

Step 2: SGI 

Then, 40 µl of SGI solution (0.25 M Tris-HCl, 100 mM MgSO4, 5mM CoCl2, pH 9.5) will 

be added to 160 µl of the epimerization reaction mix from step 1. The resulting mix will then be 

incubated at 60 °C during 1.5 h to ensure that equilibrium between fructose and glucose will be 

reached. 

 

Step 3: GOD-POD 

After cooling the SGI mix, 50 µl of this solution will be mixed with 200 µl of GOD-POD 

solution  (composition see above) and incubated at 37 °C during 30 min to allow color 

development. Afterwards, the absorbance at 405 nm is checked to look for increased 

fructose/glucose concentrations. 
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Figure VI.2 Overview of the screening protocol 
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3.3. Standard curve and CV 

When applying this 3 step protocol on a standard curve containing 0 to 2 mM of fructose in 

an excess of 500 mM tagatose, a clear linear curve is obtained up to 800 µM of fructose, while 

the detection limit of this protocol lies around 50-100 μM of fructose even in the presence of 

excess amounts of tagatose (500 mM) (Figure VI.3). Repetition of the protocol for the standard 

curve was found to be high and thus an easy and robust screening protocol has been developed 

that can be used in the detection of tagatose 4-epimerase activity. Variation on two plates 

containing all wild-type epimerases showed that the assay had little variation, namely a 

coefficient of variation (CV) of around 10 % (Figure VI.4). 

 

 

Figure VI.3 Standard curve of the screening protocol 
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Figure VI.4 Screening of two plates containing the wild-type epimerase shows little variation for the developed 

screening assay, CV of 7.4 % (blue) and 11.3 % (red) 

 

3.4. Screening for tagatose 4-epimerase activity 

Several of the different libraries mentioned in chapter V section 3.4, were subjected to 

screening. From all 6 single SSM libraries, at least 2 MTPs (192 CFU) had been screened, 

covering the 94 CF needed for full coverage of the library (Appendix III) [212]. In none of these 

libraries, hits could be found that clearly and unambiguously showed (improved) tagatose 4-

epimerase activity. This contradicts the results from selection in which enrichment towards one 

single variant was found, suggesting the hits from selection might not possess any tagatose 4-

epimerase activity at all. 

 

From both the triple mutant library (S73X-S74X-D75X) and quadruple mutant library 

(N28X combined with S73X-S74X-D75X), 8 MTPs had been screened, covering smaller 

portions of the libraries. From the other libraries mentioned in chapter V section 3.4, the colonies 

formed on LB-agar after plating out a part of the library to count the amount of CFU in the 

selection libraries (see chapter V) were picked and transferred to liquid media for growth and 

subsequent screening. As such, another 20 MTP or almost 2000 CFU had been grown and tested 

with the screening assay. The colonies that were found to potentially hold tagatose 4-epimerase 
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activity (green color formation) were sequenced and tested in multiples, together with the 

potential hits that were found via selection.  

 

In order to check whether the potential hits found via the selection strains or screening assay 

were true hits, all these mutants had been grown in eight-fold together with the wild-type and a 

negative control (no epimerase), both in eight-fold as well. For none of these variants, higher 

levels of fructose could be detected than observed for the wild-type or the negative control. Even 

with the use of longer incubation times for the epimerization step (up to 24 h) and/or 

epimerization at higher temperature (60 °C),  no tagatose 4-epimerase activity could be detected 

for the potential hits. As a result hereof, these potential hits were classified as false positives. 

 

The wild-type epimerase, the K42S and the N28R mutants had been tested by using high 

amounts of purified epimerase as well, but for none of these fructose formation could be proven 

by either HPLC analysis (Hypercarb sugar method in chapter III section 2.5) or by the coupled 

screening assay described in this chapter.  
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4 Conclusion 

In this chapter, a coupled enzyme assay is described that can be applied in the search for 

C4-epimerase activity on tagatose. The assay is easy, accurate and has the big advantage of being 

able to detect as little as 50-100 µM of fructose in the presence of excess amount of tagatose 

(500 mM). This means that high substrate concentrations can be used, which is necessary since it 

is expected that the epimerase will only have (very) low affinity for the non-natural substrates 

(free monosaccharide). On the other hand, the low detection limit – even in excess amounts of 

tagatose – has the advantage that samples do not have to be diluted as the substrate does not 

interfere with the assay and, as such, even very low activity should be detectable. 

 

Furthermore, a test with a full plate of wild-type epimerase revealed that the epimerase has 

no or only extremely low activity on tagatose and only low variation is found on this plate. This 

together with the developed screening assay, would mean that an improved variant would 

immediately pop out of the plate since it would be the only one with green color formation. 

Subsequently, the developed screening assay was applied on single SSM libraries of the targeted 

residues as well as on combinations of these residues. In total, over 8000 CFU had been tested 

for tagatose 4-epimerase activity, but despite the ability of the screening assay to detect low 

amounts of fructose in excess amounts of tagatose, none of the created mutants showed to 

possess proper amounts of tagatose 4-epimerase activity. Even using high concentrations of 

purified epimerase and longer incubation times, no tagatose to fructose conversion could be 

detected for the wild-type epimerase and two mutants (K42S, N28R) with HPLC analysis or the 

developed screening assay. 
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VII. CHARACTERIZATION OF  

UDP-HEXOSE 4-EPIMERASE 

 

 

 

 

 

 

A part of this chapter has been published as:  

Beerens, K., Desmet, T., Soetaert, W. (Epub ahaed of print, 2012). Characterization and 

mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. 

Applied Microbiology and Biotechnology, DOI: 10.1007/s00253-012-4635-6 
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1 Introduction 

As mentioned in the general introduction (chapter I), two naturally occurring enzymes are 

able to epimerize (modified) carbohydrates at the C4-OH position, namely L-Ru-5-P 4-

epimerases and UDP-hexose 4-epimerases. In the previous 4 chapters (chapter III-VI), the 

different steps in the enzyme engineering of the G. thermodenitrificans L-Ru-5-P 4-epimerase are 

described. In the following 2 chapters (chapters VII-VIII), the other type of 4-epimerase is 

utilized as a template for enzyme engineering, that is a UDP-hexose 4-epimerase. 

 

The putative UDP-hexose 4-epimerase (GalE) from the thermophilic bacterium 

Marinithermus hydrothermalis will be used as template. This enzyme was chosen since it had not 

been characterized previously and is expected to be more thermostable than the E. coli GalE, an 

enzyme that has been reported to show very slight epimerase activity on free monosaccharides 

[130]. 

 

Despite the similar reaction of both enzymes (both C4-epimerizations), there is a big 

difference between the chemistry of both enzymes. Whereas the L-Ru-5-P 4-epimerase is active 

on a phosphorylated pentose and applies an aldolase/retroaldolase mechanism (C-C bond 

cleavage), the UDP-hexose 4-epimerase uses nucleotide activated sugars as substrates and acts 

via a transient keto intermediate with NAD+ as cofactor (more info see chapter II 3 (Sugar) 

Epimerases). To make the GalE epimerase active on free monosaccharides, a bigger adaptation 

of the substrate binding site is needed compared to the adaptation needed for the L-Ru-5-P 4-

epimerase, namely the loss of the UDP-group (the biggest part of the substrate) (Figure I.2). 

 

In this chapter, the cloning, expression and characterization of the putative UDP-hexose 4-

epimerase from M. hydrothermalis (mGalE) is described. This characterization is focused on 

optimal reaction conditions (pH and temperature), its substrate specificity (non-acetylated vs. N-

acetylated UDP-sugars and kinetics) as well as its thermostability. 
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2 Material & Methods 

2.1. Bacterial strains and growth conditions, plasmids and chemicals 

The codon optimized sequence encoding mGalE (NCBI YP_004368664.1) with a His6-tag 

attached to its N-termimus (Figure VII.1) was ordered from GenScript (USA). The empty 

pIXhPtrc plasmid was created earlier (see chapter III 2.2.1). Restriction enzymes and T4 DNA 

ligase were purchased from New England Biolabs. Kits for gel extractions, PCR purifications 

and plasmid isolation were obtained from Qiagen. UDP-sugars were obtained from Carbosynth, 

while all other chemicals were obtained from Sigma Aldrich, unless otherwise stated. 

 

E. coli BL21 (DE3) was used both for cloning the galE gene corresponding to the 

Marinithermus hydrothermalis UDP-glucose/N-acetyl-glucosamine 4-epimerase and for the 

recombinant expression of the epimerase. E. coli cells were cultured at 37 °C in Luria broth (LB: 

5 g/L yeast extract, 10 g/L bactotrypton, 10 g/L NaCl, pH 7.0) or LB agar plates (LB plus 10 g/L 

agar) containing 100 µg/ml ampicillin. For recombinant expression, cells were grown until 

OD600nm reached 0.6, before induction with 150 µM of IPTG and subsequently grown for another 

6h before being harvested by centrifugation. 

2.2. Sequence analysis and homology models 

Determination of the conserved residues and/or regions of the UDP-hexose 4-epimerases, 

and to a larger extent the short-chain dehydrogenases/reductases (SDR), was performed by 

alignment studies. Alignments with other GalEs and sequence analysis of the mGalE enzyme 

were performed using the online available ClustalW2 alignment program [144], as well as the 

NCBI BLAST tool [6]. Homology models from both the wild-type enzyme as well as the 

different mutants were made using the molecular modeling program YASARA [139] based on 5 

crystal structures from E. coli GalE each containing a different substrates or substrate analogues 

(eGalE, pdb-codes: 1LRJ, 1UDA, 1UDB, 1UDC and 1XEL) and with default settings. 

Homology models were also created based on the available crystal structures from the other 

types of UDP-hexoses 4-epimerases, namely human GalE (hGalE, PDB entries 1EK5 and 1EK6) 

and WbpP (PDB entries 1SB8 and 1SB9) representing group 2 and group 3. Resulting homology 

models were saved as pbd-files and compared to each other as well as with other available crystal 

structures with the YASARA program [139], the YASARA/WHATIF twinset [268] and the 

PyMOL Molecular Graphics System [70]. 
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Figure VII.1 Codon optimized gene and protein sequence of mGalE, including a His-tag with linker and enterokinase 

cleavage site. The start codon of the His-tagged mGalE and native mGalE are given in the blue boxes, the His-tag is 

underlined and the NcoI and SpeI restriction sites are marked on the gene sequence 
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2.3. Construction of the expression vector (pIXhPtrc-mGalE) 

A codon optimized sequence encoding the mGalE epimerase, including an N-terminal His-

tag was ordered at GenScript (USA). The gene was cut from the supplied plasmid using 10 U of 

both NcoI and SpeI restriction enzymes (NEB) and subsequently cloned into a likewise treated 

empty pIXhPtrc plasmid using a 3/1 insert/vector ratio and 3 Weiss units of T4 DNA ligase 

(NEB) at 22 °C for 1h. After transformation in E. coli BL21 cells, plasmid was extracted using 

the QIAprep spin miniprep kit (Qiagen) after which correct insertion was checked by sequencing 

(Agowa, Germany). Transformation was performed using 1-2 µL of DNA, 40 µL of electro 

competent BL21 cells, and a Bio-Rad Gene Pulser (2.5 kV, 25 µF, 200 Ω) in an 0.2 cm 

electroporation cuvette. 

2.4. Recombinant enzyme expression and His-tag purification 

For recombinant enzyme production, 10 mL of an overnight culture grown on LB medium 

was incubated in 500 mL of LB medium containing 100 µg/mL ampicillin in a 2 L shake flask 

which was then incubated at 37 °C and at 200 rpm shaking speed. Cells were grown until the 

beginning of the exponential phase (OD600nm ≈ 0.6) had been reached, after which induction was 

achieved by addition of IPTG to a final concentration of 150 µM. Cells were kept at 37 °C, 200 

rpm for another 6 h for expression and then biomass was harvested by centrifugation for 20 min 

at 5000 g at 4 °C. Finally, the cell pellets were stored at -20 °C. 

 

For the purification of the expressed epimerase, frozen pellets were thawed on ice for 15 

min and consequently dissolved in lysis buffer containing 300 mM NaCl, 50 mM NaH2PO4, 10 

mM imidazole, 0.1 mM PMSF, 1 mg/mL lysozyme and 6 U/L Benzonase® nuclease (Merck). 

Lysis was achieved during a 30 min incubation on ice followed by sonication with a Branson 

sonifier 250 (3 times 2.5 min at level 3 and 50 % duty cycle). Cell debris was pelleted by 

centrifugation (30 min, 13000 g, 4 °C) and the His-tagged protein was purified from the lysate by 

Ni-NTA chromatography according to the suppliers protocol (ThermoScientific), wash and 

elution buffer contained 35 mM and 250 mM imidazole, respectively. After elution, a buffer 

exchange was achieved using Centricon YM-30 (Millipore) and 10 mM Tris-HCl buffer, pH 7.5 

to remove imidazole. The protein concentration of the samples were analyzed with the Pierce® 

BCA Protein assay kit (ThermoScientific). 
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2.5. Enzyme activity assays 

2.5.1. Activity on UDP-Gal 

The activity (as initial velocity) of mGalE on UDP-Gal was spectrophotometerically 

determined using a colorimetric assay described earlier [179]. This assay determines the amount 

of glucose which is released after acid hydrolysis of the formed UDP-glucose. In general, 

epimerase reaction mixtures consisted of 5 mM Tris-HCl buffer pH 8.6 (for temperature studies) 

or pH 7.5 (for kinetic experiments) and 2 mM of UDP-galactose at 45 °C. Both substrate and 

enzyme (50 µg/mL final concentration) were separately preheated for 15 min at 45°C, after 

which the reaction was initiated by merging both fractions. Samples (25 µL) were taken at 

different time points (each 15-30 s for 90-180 s) and set to pH 2.0 to by addition of 5 µL of 0.1 N 

HCl for inhibition. After boiling samples for 6 min in a 110 °C dry bath, neutralization was 

achieved with equimolar amounts of 0.1 N NaOH. Then, released glucose was measured by 

addition of 200 µl of GOD-POD solution (composition see chapter VI 2.3.2) to 25 µL of 

quenched and neutralized sample. This final reaction was incubated for 30 min at 37 °C before 

measuring OD405nm. The standard series, containing 0.05-1.00 mM of UDP-Glc in 5 mM Tris-

HCl buffer pH 7.5 and UDP-Gal to a final concentration of 2 mM of UDP-sugar, was treated the 

same way. 

 

Optimal temperature was determined in 5 mM Tris-HCl pH 8.6 with varying temperatures 

covering a 45-100 °C range. Thermostability studies were performed in the same way, except 

that the purified enzyme solution was incubated at 45 °C or 60 °C for different time periods 

before initiating the reaction to measure initial reaction rate. 

For the determination of the pH optimum, activity assays were performed at 45°C in 5 mM 

of the following buffers: Tris-HCl + 0.1 N HCl pH 2, acetate pH 4.0 and 5.0, citrate pH 6, 

GlyGly pH 7.6, Tris-HCl pH 7.0, 7.5, 8.0, 8.6, 9.0, glycine pH 8.6, 9.6, 10.6, hereby covering a 

range of pH 2 to pH 10.6.  

 

Kinetic studies were performed in 5 mM Tris-HCl pH 7.5 at 45 °C, with 8 different 

substrate concentrations varying from 300 µM to 3 mM. Each time, a series of different ratios of 

UDP-Glc and UDP-Gal, with a total concentration of 2 mM UDP-sugar, was equally treated to 

serve a standard. For kinetic studies 2 standard series were used, one containing a total of 2 mM 

UDP-sugar for higher concentrations and one with 0.5 mM UDP-sugar for the lower range. 
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2.5.2. Activity on UDP-Glc 

The formation of UDP-Gal from UDP-Glc was measured in a similar fashion. First, acid 

hydrolysis was achieved like described above, namely by addition of 5 µL of 0.1 N HCl to 25 µL 

of sample followed by boiling the samples during 6 min. Secondly, after neutralization of the 

sample, released galactose content in the mixture was measured using the commercially available 

Lactose/D-Galactose Assay Kit (Megazyme). The suppliers instructions were followed; however, 

the used volumes were ten times lower to ensure processing in micro titer plates. As such, 252 

µL of assay solution was added to 20 µL of quenched and neutralized samples. The standard 

containing 0.05-1.00 mM of UDP-Gal in 5 mM Tris-HCl buffer pH 7.5 , plus UDP-Glc to a final 

concentration of 2 mM of UDP-sugar, was treated the same way. 

2.5.3. Conversion of N-acetylated UDP-sugars 

Conversion of the N-acetylated UDP-sugars, UDP-GalNAc and UDP-GlcNAc, was 

performed under the same conditions as used for non-acetylated UDP-sugars, namely in 5 mM 

Tris-HCl buffer pH 7.5, at 45 °C and with 50 µg/mL purified protein. Initial activity tests were 

performed using 2 mM of UDP-GlcNAc and the same 8 substrate concentrations as for UDP-Gal 

were used in the kinetic experiment (300 µM – 3 mM). Samples were taken for 2.5 min with 30 s 

intervals and immediately inactivated by placing them in an 110 °C dry bath (FB15103, Fisher 

Scientific). After inactivation, samples were cooled down on ice and diluted (6-30x) to a total 

concentration of 50-100 µM of N-acetylated UDP-sugars. Samples (10 µL) were then analyzed 

using a HPAEC-PAD system (ICS-3000 system, Dionex) with a CarboPac PA20 column 

(Dionex) at 30°C. Therefore, a sodium acetate (NaOAc) gradient from 0.50 M to 0.68 M was 

applied over a time span of 12 min. Afterwards NaOAc concentration was brought back to 0.50 

M in 1 min and the column was re-equilibrated during 1 min. Flow rate and NaOH concentration 

were kept constant during analysis and re-equilibration at 0.5 mL/min and 100 mM, respectively. 

For both N-acetylated UDP-sugars a standard series was run between a concentration of 1 µM 

and 100 µM. 
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3 Results and Discussion 

3.1. Sequence analysis and homology models 

A multiple alignment (Figure VII.2) of UDP-hexose 4-epimerases revealed that the UDP-

hexose 4-epimerase from Marinithermus hydrothermalis shares 30 % amino acid identity with 

the E. coli GalE, 27 % with the human GalE, and 30 % with the WbpP enzyme from 

Pseudomonas aeruginosa, which are typical representatives of the three different types of 

substrate specificities [71, 110]. A higher identity of 66 % was found with the UDP-hexose 4-

epimerases from Thermus thermophilis and T. aquaticus (tGalE), which are active on UDP-

GalNAc as well as on UDP-Gal [187]. 

 

Furthermore, both important conserved regions are present in this enzyme, namely the 

GxxGxxG motif in the N-terminal domain which is likely to be involved in the binding of β-

NAD+ and the catalytic triade SxnYx3K. Based upon sequence alignments, S116 was postulated 

to serve as catalytic amino acid in the Thermus thermophilis and T. aquaticus [187]. However, 

based upon our  alignments, both S116 and T117 could be the catalytic amino acid, whereas the 

positioning of both residues in the homology model has revealed that T117 is positioned close to 

the substrate’s C4-OH, whereas S116 is pointing away from the active site (Figure VII.3). It is 

known that in some cases a threonine can replace a serine in a catalytic function, as has been 

proven for some SDR family members [35, 85, 181]; however, to our knowledge it would be the 

first GalE bearing a TxnYx3K triad. The activity test of the following two enzyme variants will 

provide final proof: S116A and T117A (see chapter VIII). 

 

Another reason for this uncertainty is the presence of two consecutive glycine residues 

(G118-G119) close to the catalytic triad. This unique feature is a notable difference between 

GalE from Thermus species and other UDP-hexose 4-epimerases, in which a single alanine or 

serine is found at that position. Furthermore, the effect of this double glycine feature will also be 

examined by mutating them towards a single alanine or serine, as found in other GalE enzymes. 

(see chapter VIII). 

 

More importantly, a serine residue (S279) is observed at the gatekeeper position in both 

mGalE and tGalE, pointing towards a similar substrate preference. This suggests that mGalE is 

likely to be active on UDP-GalNAc in addition to UDP-Gal, as was also found to be the case for 
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the highly similar T. thermophilis and T. aquaticus GalEs [187]. Activity on non-acetylated and 

acetylated substrates was investigated (see 3.4). 

 

 

Figure VII.2 Multiple alignment of UDP-hexose 4-epimerases. mGalE, UDP-Glc(NAc) 4-epimerase from 

Marinithermus hydrothermalis; eGalE, UDP-Glc 4-epimerase from E. coli, hGalE, human UDP-Glc(NAc) 4-

epimerase; WbpP, UDP-GlcNAc 4-epimerase from Pseudomonas aeruginosa. Different walls of the hexagonal box 

model are enlightened in the colors in accordance with the figure in [71] and Figure VII.3. Yellow, blue and orange 

correspond to the three conserved walls, green indicates the wall containing the gatekeeper, red and purple the other 

variable walls. In grey the GxxGxxG motif involved in β-NAD+ binding 
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Figure VII.3 Homology model of mGalE. The position of S116 and T117 indicates that the latter is most likely the 

catalytic residue. The NAD+ forms the bottom of the ‘hexagonal box’, whereas T117 (yellow), Y143 (blue) and N172 

(orange) are the three conserved walls. The gatekeeper S279 (green) and its tyrosine mutant are both shown to 

emphasize their impact on the size of the active site. Of the two other variable walls, only A77 (red) is shown, since 

Q178-V186 (purple in Figure VII.2) would be blocking the view 

 

Homology models had been created for the wild-type mGalE as well as for the six different 

mutants (see chapter VIII). Superimposing the created homology models with the structures 

available from the different types of UDP-hexose 4-epimerases revealed no major differences in 

global structure, except for a greater variation in the positioning of the G118-P139 loop or coil in 

the wild-type and a 310-helix being formed in the two double glycine mutants (GG→A, GG→S) 

at A/S118-Y121. The created homology models will be used to interpret the activity 

measurements and kinetic determinations. 

3.2. Construction of the expression vectors 

The pIXhPtrc-mGalE vector was successfully created by ligation of the codon optimized 

mGalE gene that was cut from the by GenScript supplied vector into the pIXhPtrc expression 

vector, as described above. Sequencing of the plasmid confirmed correct insertion in the plasmid 
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and the plasmid could serve as a template for mutagenesis. Furthermore, recombinant expression 

of the enzyme was successfully achieved in BL21 cells, and His-tag purification gave rather 

pure, active and highly concentrated epimerase useful for the activity assays. 

3.3. Determination of optimal conditions 

3.3.1. Temperature optimum and range 

Optimal conditions for the Marinithermus epimerase were determined using UDP-Gal as 

substrate. As expected for an enzyme from a thermophilic organism, the optimal reaction 

temperature is rather high, at about 70 °C (Figure VII.4). This corresponds to the optimal growth 

temperature of M. hydrothermalis [222]. At 60 °C, around 55% of activity is found compared 

with activity at 71°C whereas 25 % of activity  is retained at 45 °C. At 100 °C, no epimerase 

activity is observed most likely due to fast heat inactivation of the enzyme, rendering heat 

inactivation possible when taking samples. The optimal temperature is higher than that of its 

homologues from Thermus species [187] but 10 °C lower than that of the GalE from the 

hyperthermophilic archaeon Pyrobaculum calidifontis [223].  

 

 

Figure VII.4 Temperature profile of mGalE activity 
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3.3.2. pH optimum and range 

The mGalE was found to be active in a broad pH range (pH 6-9), which is rather typical for 

this enzyme class (Figure VII.5). However, the highest activity was measured at pH 7-7.5, 

whereas the optimum for the related GalE enzymes from T. thermophilus and T. aquaticus was 

reported to be pH 8.6 [187]. Less than 10% activity is found at pH value ≤5 or ≥10.6 and no 

activity is found at pH 2. This latter result, allows us to easily stop the reaction by addition of 

acid, which is also a necessary step for acid hydrolysis of the formed UDP-Glc/UDP-Gal for 

further analysis. 

 

 

Figure VII.5 pH profile of mGalE activity, including Gaussian curve fit (3 parameters) 

 

3.3.3. Thermostability at 45 °C and 60 °C: half-life (t50)  

As previously mentioned, fast heat inactivation was observed at higher temperatures. As the 
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determined. Residual activity was plotted against pretreatment time and with Sigma Plot the t50 

value was determined (Figure VII.6). The half-life of mGalE at 60 °C and 45 °C is 23 min and 

13.5 h, respectively, and almost no activity was lost after 3h incubation at 45 °C. Therefore, it 

was chosen to perform the reactions at 45 °C, especially for the reactions on free and 

phosphorylated monosaccharides. The Marinithermus enzyme, however, does not display the 

pH profile of mGalE

pH 

0 2 4 6 8 10 12

A
c
ti
v
it
y 

(%
)

0

20

40

60

80

100

120

140



132 

 

same thermostability as these counterparts, since it is quickly inactivated at temperatures above 

75°C. In contrast, the Thermus epimerases retain most of their activity after 10 min incubation at 

80 °C [187], whereas the P. calidifontis epimerase remains fully active even after 10 min at 90 

°C [223]. 

 
 

 
Figure VII.6 Inactivation of mGalE at 60 °C (top) and 45 °C (bottom) 
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3.4. Substrate preference and kinetic parameters 

The mGalE was found to display activity on acetylated as well as non-acetylated UDP-

hexoses and can thus be classified as type 2 epimerase. However, a small preference for the latter 

substrates could be detected, with a specific activity on UDP-Gal and UDP-Glc of 3.0 and 6.7 

U/mg, respectively, compared to 1.2 and 0.3 U/mg on their respective acetylated counterparts. 

The determination of kinetic parameters (Hanes-Woolf linearization) confirmed this observed 

difference in activity (kcat), whereas the enzyme’s affinity (Km) is much less affected by the 

presence of an N-acetyl group. The obtained kinetic values (Km, kcat and kcat/Km) are given in 

Table VII.1. 

 

Table VII.1 Kinetic parameters from mGalE wild-type 

 kcat (s
-1) Km (µM) kcat/Km (s-1mM-1) 

UDP-Gal 2.62 ± 0.49 362 ± 38 6.61 ± 2.39 

UDP-GlcNAc 0.58 ± 0.09 519 ± 35 1.11 ± 0.17 
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4 Conclusion 

A novel UDP-Glc(NAc) 4-epimerase from the thermophilic bacterium Marinithermus 

hydrothermalis is described in this chapter. The enzyme was recombinantly expressed in E. coli 

and thoroughly characterized with respect to its substrate specificity and thermal behavior.  

 

Since it is active on both non-acetylated and acetylated UDP-sugars, it belongs to the type 2 

GalE epimerases. Nonetheless, it has been found to have a slight preference for non-acetylated 

UDP-hexoses. This can be seen both in its specific activity and the kinetic parameters. The 

specific activity on UDP-Gal and UDP-Glc (3.0 and 6.7 U/mg, respectively) was found to be 

higher than those for their respective acetylated counterparts (1.2 and 0.3 U/mg, respectively). 

On the other hand, the determined kinetic parameters validate this observation as higher activity 

(kcat) is detected and higher affinity (lower Km) in the absence of an N-acetyl group. 

 

The optimal conditions for the Marinithermus epimerase were pH 7-7.5 and temperature of 

around 71 °C. Like for other GalE enzymes, the mGalE was also active in a broad pH range (pH 

6-9). At temperatures above 75 °C, fast inactivation was observed, whereas at 60 °C and 45 °C 

around 55 % and 25 % of activity is retained, respectively. At these temperatures, the epimerase 

shows prolonged stability, namely half-life values (t50) at 60 °C and 45 °C were 23 min and 13.5 

h, respectively. Since long incubation times might be necessary for measurements with 

alternative substrates and/or mutant enzymes, it was decided to perform all other activity tests at 

45 °C, to avoid the risk of protein denaturation during enzyme assays. 

 

Furthermore, analysis of its sequence and structure generated new insights in the 

mechanism of GalE enzymes. These new insights are examined by site-directed mutagenesis, 

which is discussed in the next chapter. 
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VIII. MUTATIONAL ANALYSIS OF 

UDP-HEXOSE 4-EPIMERASE 

 

 

 

 

 

 

 

A part of this chapter has been published as:  

Beerens, K., Desmet, T., Soetaert, W. (Epub ahaed of print, 2012). Characterization and 

mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. 

Applied Microbiology and Biotechnology, DOI: 10.1007/s00253-012-4635-6 
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1 Introduction 

After the successful cloning and expression of the Marinithermus UDP-Glc(NAc) 4-

epimerase, it was thoroughly characterized concerning optimal conditions, substrate specificity 

and thermal stability. Now, mutational analysis can be applied to further examine the 

Marinithermus epimerase and some of its features.  

 

In this chapter, the determinants of its specificity are analyzed by means of sequence 

alignments, homology modeling and site-directed mutagenesis. Mutational analysis is focused on 

4 different parts of the epimerase, namely the catalytic triad (S116A, T117A, T117S), the unique 

double glycine motif found in Thermus GalE (GG→A, GG→S), the gatekeeper residue for 

(S279Y) and the 77-82 loop (Loop1_HRDD, Loop2_ARDD). Furthermore, the effects of these 

mutations on activity and affinity will be examined and explained with the help of homology 

models for each of the different mutants. 

 

Finally, the activity of mGalE (as well as E. coli GalE) on the free monosaccharides Glc/Gal 

and Fru/Tag as well as the phosphorylated α-Glc-1-P will be tested. Monosaccharide 

epimerization will be tested with and without addition of UDP(-like) components as so-called 

‘cofactors’, in order to test whether the activating effect of the UDP-group (see chapter II 3.3.3) 

can improve the epimerization reaction on monosaccharides. 

 

2 Material & Methods 

2.1. Bacterial strains, plasmids, growth conditions and chemicals 

The pIXhPtrc-mGalE expression plasmid containing the E. coli codon optimized gene for 

mGalE with an N-terminal His-tag was created earlier (see chapter III). Kits for gel extractions, 

PCR purifications and plasmid isolation were obtained from Qiagen. PfuUltraTM High-Fidelity 

DNA polymerase was purchased from Stratagene, restriction enzyme was obtained from New 

England Biolabs. UDP-sugars, UDP, UMP and uridine were obtained from Carbosynth. Tagatose 

was a kind gift from Nitrilab. All other chemicals were obtained from Sigma Aldrich unless 

otherwise stated. 
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E. coli BL21 (DE3) was used for expression of the GalE variants as described in chapter 

VII. On the other hand, large protein expression experiments were performed in a Biostat-B5L 

fermentor (B. Braun) in double LB, supplemented with 20 g/l glucose. Cells were grown until 

OD600nm reached 0.6, then IPTG was added to a final concentration of 150 µM to induce 

recombinant protein expression and growth was continued until maximal growth had been 

reached. 

 

For the cloning of the E. coli GalE (eGalE), the gene was amplified from E. coli K-12 

MG1655 gDNA with a high fidelity PCR and the following primers (Fw: 5’- CTTAAGATGAG-

AGTTCTGGTTACCGGT-‘3, Rv: 5’- ACTAGTCATGGTCGTTCCTTAATCG-‘3, AflII and 

SpeI restriction sites are underlined, respectively). Like before, cloning in the pIXhPtrc vector 

was achieved with AflII and SpeI restriction enzyme and T4 DNA ligase (see chapter III 2.2.2). 

2.2. Rational mutagenesis: Site directed mutagenesis (SDM) 

For single side directed amino acid mutation, the Sanchis protocol was used [227]. Briefly 

summarized, reaction mixtures contained 50–100 ng of wild-type plasmid as template, 5 pmol of 

mutagenic primer and a non-mutagenic reverse primer (for primer sequence see Table VIII.1), 

0.2 mM dNTP mix, 2.5 U of PfuUltraTM High-Fidelity DNA polymerase and the supplied buffer 

(Stratagene) in a final volume of 50 μl. The PCR program consists of the following steps: initial 

denaturation during 3 min at 95 °C, followed by 5 cycles of 30 s denaturation at 95 °C, annealing 

45 s at 53 °C, extension 1 min/kb according to the megaprimer size at 72 °C. The second stage 

contained the whole plasmid amplification starting from the created megaprimer by 20-25 cycles 

of 30 s at 95 °C and extension at 2 min/kb of template at 68 °C The program was ended by a 

final extension of 2 min/kb of template at 68 °C. PCR mixtures where then digested with DpnI to 

remove template DNA, purified using the QIAquick PCR purifcation kit (Qiagen) and 

transformed into electrocompetent BL21 cells as described above. Plasmids were then extracted 

and mutagenesis was checked by sequencing. 

 

Reactions for the loop exchange mutant (Loop1_HRDD) had the same composition, except 

that both a forward and reverse mutagenic primer were added (Table VIII.1). This PCR program 

consists of an initial denaturation for 3 min at 95 °C, followed by 30 cycles of 30 s denaturation 

at 95 °C, annealing for 45 s at 53 °C and an extension of 2 min/kb at 68 °C, and ended with a 

final extension of 7 min at 68 °C. The second loop mutant  (Loop2_ARDD) was created using 
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the Sanchis protocol and the Loop_HRDD plasmid as template. Again, the PCR mixtures were 

DpnI digested, purified and transformed into electrocompetent BL21 cells as described earlier. 

Mutagenesis was checked by sequencing after plasmid extraction. 

 

Table VIII.1 Primers used for site directed mutagenesis and loop exchange of the mGalE gene. Target codon are 

underlined, codon deletions are marked with a * per deleted codon 

Primer Sequence (5’→3’) 

Reverse primer GAGCTCTCCCATATGGTCGAC 

S116A_Fw CAGAAAATTGTTTTTGCAGCCACCGGTGGCGCAATTTATGGT

GAAGTTC 

T117A_Fw GTTTTTGCAAGCGCCGGTGGCGCAATTTATG 

T117S_Fw GTTTTTGCAAGCAGCGGTGGCGCAATTTATG 

S279Y_Fw GTGATGGTGACCTGGAAGTTTATGTTCTGGATCCGACACAGC 

GG118/119A_Fw GAAAATTGTTTTTGCAAGCACC*GCTGCAATTTATGGTGAAGT 

GG118/119S_Fw GAAAATTGTTTTTGCAAGCACC*AGTGCAATTTATGGTGAAGT 

Loop_HRDD_Fw CCCATGTTGCACATCAGGCAGCACAGCAT**AGGGATGATGT

TCAGAATCCGTGTAAAGATGCCGA 

Loop_HRDD_Rv TCGGCATCTTTACACGGATTCTGAACATCATCCCT**ATGCTG

TGCCTGCCTGATGTGCAACATGGG 

Loop2_ARDD_Fw GCACATCAGGCAGCACAGGCTAGGGATGATGTTCAGAATCCG 

 

2.3. Expression, purification and activity assays 

Expression and purification of the created mutants, and the wild-type as reference, was 

achieved as described in chapter VII. The same counts for activity assays of these mutants on 

UDP-Gal and UDP-GlcNAc, whereas activity on free monosaccharides and α-Glc-1-P is 

described in the next paragraph. 

2.4. mGalE activity on free monosaccharides and α-Glc-1-P 

To check whether the epimerase was able to interconvert the free monosaccharides 

glucose/galactose (Glc/Gal) or fructose/tagatose (Fru/Tag) as well as convert α-Glc-1-P into α-

Gal-1-P, coupled enzyme assays were checked for their appliance. Glucose detection in the 

presence of excess of galactose was checked using the GOD-POD method described above (see 
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chapter VI 2.3.2). The other way around, Gal in excess of Glc, was checked using the Lactose/D-

Galactose Assay Kit (Megazyme) according to the suppliers instructions. α-Gal-1-P in the 

presence of α-Glc-1-P was checked with this commercial kit as well; however, the phosphate 

moiety was first removed by a treatment with alkaline phosphatase (AP). Therefore, 15 µl of AP 

solution (50 U/ml AP, 1 mg/ml MgCl2, 1 mg/ml BSA in 250 mM Tris-HCl pH 7.5) was added to 

15 µl of sample and incubated at 37 °C for 1 h.  

 

Fructose formation from tagatose was checked using the GOD-POD method which was 

preceded this time by an isomerization step using soluble glucose isomerase (SGI, Genencor). In 

the first step of the SGI-GOD-POD method, 10 µL of SGI-solution (30 U/ml SGI, 100 mM 

MgSO4, 5 mM CoCl2 in 250 mM Tris pH 9.5) are added to 40 µl of sample and then incubated 

for 1.5 h at 60 °C, afterwards 50 µl of the isomerized sample is checked with 200 µl of GOD-

POD solution. 

 

Next to these coupled enzyme assays, the samples were also diluted to a maximum of 5 mM 

substrate concentration and then analysed using the previously mentioned HPAEC-PAD system. 

Free monosaccharides (Fru, Tag, Glc, Gal) were separated using an isocratic flow of 10 mM 

NaOH during 25 min on a PA20 column at 30°C (0.5 ml/min). A gradient was applied for the 

separation of the phosphorylated sugars, α-Gal-1-P and α-Glc-1-P. While NaOH concentration 

was kept constant at 100 mM, the NaOAc concentration was gradually increased from 100 mM 

to 175 mM in 7.5 min at a 0.5 ml/min flow rate. 

 

The wild-type mGalE and the S279Y mutant were tested on their ability to epimerize free 

monosaccharides and α-Glc-1-P. The reaction was performed in 5 mM Tris pH 7.5 and at 45°C 

to ensure prolonged incubation times. High enzyme concentrations (finally 1 mg/ml) were 

achieved by concentration of the purified enzyme solutions with the Centricon YM-30 

(Millipore) before adding them to the substrate (500 mM). Uridine, UMP and UDP (12.5 mM) 

was added to the mixtures as a so-called ‘cofactor’ to check their activating effect on the 

epimerase, whereas double distilled water was added as a negative control. Samples were taken 

after 0 h, 2 h, 4 h, 6 h and 21 h. 
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3 Results and Discussion 

3.1. Site directed mutagenesis (SDM) 

All previously mentioned mutants were successfully created, as was confirmed by 

sequencing. Afterwards all 6 mutants and the wild-type enzyme were expressed in BL21 cells, 

subsequently His-tag purified and the buffer was changed to 5 mM Tris-HCl pH 7.5 as described 

before. The purified mutants were then tested for activity on both non-acetylated and acetylated 

UDP-sugars and kinetic experiments were performed on all active variants (results are given in 

the next paragraphs). 

3.2. Mutational analysis of mGalE 

3.2.1. Catalytic triad TxnYx3K (S116A, T117A and T117S) 

As was previously mentioned (see chapter VII 3.1), sequence alignment of the mGalE with 

other GalE members is insufficient to designate the S116 or T117 as part of the catalytic triad. 

This is particularly due to the presence of 2 consecutive glycine residues (G118-G119) directly 

next to these candidates, impeding the alignment. Small errors in the alignment could lead to the 

hasty and incorrect conclusion of appointing the serine as catalytic residue. According to the 

homology model we created based on multiple GalE crystal structures, the hydroxyl group from 

the serine is positioned away from the active site and that of the threonine is pointing towards the 

4’-hydroxyl group of the substrate (Figure VII.3), suggesting the threonine to possess the 

catalytic function. Since both S116 and T117 carry a hydroxyl group that could be part of the 

catalytic triad, both residues were mutated to alanine. Variant S116A was found to possess 

activity in the same range as the wild-type enzyme on UDP-Gal, whereas no activity could be 

detected with variant T117A (Figure VIII.1). Activity could not be restored by increasing 

enzyme concentration to 0.5 mg/ml and using much longer incubation times. Interestingly, the 

activity of the latter could be restored by a substitution with serine (T117S) (Figure VIII.1), 

confirming that both types of residues can function as catalytic amino acid in GalE enzymes. 

Both S116A and T117S were also tested on UDP-GlcNAc and found to be more or less equally 

active as the wild-type enzyme (Figure VIII.1). Interestingly, the determination of kinetic 

parameters has revealed that the catalytic threonine’s methyl group is involved in a specific 

interaction with the substrate’s N-acetyl group (Table VIII.2). Indeed, the affinity of T117S for 

UDP-GlcNAc decreased significantly but that is much less the case for UDG-Gal.  
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Figure VIII.1 Specific activity of different mGalE variants. The activity is reported relative to the wild-type enzyme, 

and was measured on UDP-Gal (brown) as well as UDP-GlcNAc (orange). Standard deviation = 1σ (P = 68 %) 

 

3.2.2. Two consecutive glycine residues (G118-G119) 

As previously mentioned, the mGalE and the other GalE enzymes from Thermus species 

[187] exhibit the unique feature of having two consecutive glycine residues directly next to the 

threonine from the catalytic triad, whereas the others possess a single alanine or single serine. 

Introducing the corresponding mutations in mGalE reduces the specific activity on UDP-Gal to 

approximately 10-30% of that of the wild-type enzyme (Figure VIII.1). The activity of both 

mutants on UDP-GlcNAc was reduced even more, to about 3-7% of the wild-type activity. Thus, 

exchanging this double glycine motif by a single alanine or serine influences the activity on 

acetylated UDP-hexoses more than on the non-acetylated counterparts, thus pointing to a role in 

determining substrate specificity. These effects were found to involve changes in kcat as well as 

in Km (Table VIII.2). Indeed, the affinity of both mutants for UDP-Gal has clearly increased, 

whereas the turnover number has significantly decreased. A possible explanation might be found 

in the homology models of these variants, which suggest the formation of a 310-helix between 

residues 118 and 121 instead of the coil or loop in the wild-type enzyme (Figure VIII.2). As a 

consequence, A120 is pushed into the active site, thereby decreasing the cavity size and limiting 

the rotational freedom of acetylated substrates. On the other hand, a smaller cavity could improve 

the interactions with non-acetylated substrates, which is observed in the form of an increased 

affinity. In turn, the 310-helix could explain the variants’ decreased turnover number as this more 

stable structure would limit the flexibility of the catalytic threonine residue.  
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Figure VIII.2 Close-up view of residues 118-121 in mGalE (blue) and its GG→S variant (green). The homology 

models suggest that a 310-helix is formed in the variant, which pushes A120 towards the substrate, hereby creating a 

more narrow active site cleft 

 

3.2.3. The gatekeeper residue (S279Y) 

The mGalE can be classified as a type 2 UDP-hexose 4-epimerases since it displays activity 

on both non-acetylated and acetylated UDP-hexoses, albeit with a slight preference for the 

former. The serine at position 279 constitutes the so-called gatekeeper residue in the hexagonal 

box model [110] (Figure II.20). Depending on the type of residue found here, the epimerase does 

or does not have activity on N-acetylated UDP-sugars. In agreement with the proposed model, 

variant S279Y (Figure VII.3) was found to lose nearly all activity on UDP-GlcNAc whereas 

nearly 40 % of its activity on UDP-Gal is retained (Figure VIII.1). More specifically, only a 

small decrease in Km value for the latter substrate can be observed, whereas the kcat shows a 

much larger decrease (Table VIII.2). Thus, mutating its so-called gatekeeper residue S279 to a 

larger tyrosine made the enzyme specific for non-acetylated substrates. Similar observations 

were reported for the C307Y and C297Y variants of human GalE [101] and Yersinia 

enterocolitica Gne [26], respectively. Similarly, the reverse mutation in the E. coli enzyme 

(Y299C) lowered the activity on UDP-Gal almost 5-fold, while the activity on UDP-GalNAc 

increased more than 230-fold [95]. As such, it can be stated that the gatekeeper is indeed a prime 

determinant for substrate specificity in UDP-hexose 4-epimerases, especially in type 1 and type 2 

enzymes. However, their possible conversion into type 3 epimerases is complicated by the need 
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for a hydrophobic ‘297-308 belt’ in the latter enzymes [32]. Furthermore, introducing a mutation 

in the active site can also affect other parameters of the protein. For example, the substitution of 

serine by tyrosine in mGalE resulted in complete inactivation after overnight storage at 4 °C, 

whereas the wild-type retained most of it activity under those conditions. 

 

Table VIII.2 Kinetic parameters from mGalE variants on UDP-Gal and UDP-GlcNAc.  

Standard deviation = 1σ (P = 68 %) (n.d. = not determined) 

 UDP-Gal UDP-GlcNAc 

 kcat 

(s-1) 

Km 

(µM) 

kcat/Km 

(s-1mM-1) 

kcat 

(s-1) 

Km 

(µM) 

kcat/Km 

(s-1mM-1) 

WT 2.62 ± 0.49 362 ± 38 6.61 ± 2.39 0.58 ± 0.09 519 ± 35 1.11 ± 0.17 

S116A 2.32 ± 0.07 437 ± 75 5.39 ± 0.77 1.00 ± 0.07 578 ± 17 1.73 ± 0.07 

T117S 2.50 ± 0.16 426 ± 65 5.92 ± 0.54 0.83 ± 0.08 887 ± 35 0.93 ± 0.16 

S279Y 0.99 ± 0.02 316 ± 9 3.13 ± 0.07 n.d. n.d. n.d. 

GG→A 0.37 ± 0.02 243 ± 42 1.55 ± 0.21 n.d. n.d. n.d. 

GG→S 0.78 ± 0.04 146 ± 25 5.43 ± 0.90 n.d. n.d. n.d. 

 

3.2.4. Loop exchange mutants 

For the first loop mutant, loop77-82 (ASVKHS) was exchanged by the loop that is 

encountered in genuine UDP-GlcNAc 4-epimerases, namely a HRDD loop. This mutant was 

made to check whether the epimerase could be made more specific towards N-acetylated UDP-

sugars. However, no activity could be detected for the loop mutant, not even with higher enzyme 

concentrations and prolonged incubation times. According to the homology model that was made 

for this loop exchange mutant, the Gln76 present at the beginning of the loop was positioned into 

the active site, pushing away the catalytic tyrosine (Tyr143) and hereby disrupting the 

mechanism (Figure VIII.3). Therefore, a second loop mutant (ARDD) was created in which this 

histidine was replaced by an alanine residue hoping that this smaller residue’s side chain would 

allow a better positioning of Gln76 and hereby not disrupt the delicate chemistry of the 

mechanism. However, no activity could be found for this loop mutant either. The homology 

model of this mutant reveals that the positioning of the catalytic tyrosine is better but still not 

ideal (Figure VIII.3). According to the homology models, the tyrosine’s hydroxylic group had 

dislocated by 5.5 Å in the first loop mutant, while for the second loop mutant the dislocation was 

only 1.8 Å but it also pushed the catalytic threonine away from the substrate (Figure VIII.3). 
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Figure VIII.3 Overlapping homology models of the loop exchange mutants and wild-type. The catalytic tyrosine 

(Tyr143) is pushed away by both loop exchanges, hereby disrupting the delicate chemistry of the mechanism. Left: 

positioning of Tyr143 and Thr117 near the substrate. Right: Positioning of Gln76 has a big effect on the dislocation of 

Tyr143. Wild-type, Loop1_HRDD and Loop2_ARDD are given in blue, green and purple, respectively 

 

3.3. Free monosaccharides detection assays 

From the previously mentioned enzyme assays for free monosaccharides (and α-Glc-1-P) 

detection, the assays for detection of galactose in excess of glucose (Lactose/D-Galactose Assay 

Kit, Megazyme) and the previously developed detection of fructose in access of tagatose (see 

chapter VI) are useful as a nice standard curve could be obtained without big interference of 

excess amounts of the substrate. The GOD-POD method as such was insufficient to detect 

glucose in the presence of high concentration of galactose. Nevertheless, for each of the desired 

reactions, one of the screening directions was available: Fru in Tag, Gal in Glc, α-Gal-1-P in α-

Glc-1-P. 

 

Furthermore, chromatographic separation (HPAEC-PAD) of the four monosaccharides and 

2 phosphorylated sugars was achieved. However, due to high substrate concentration, samples 

had to be diluted much, which impedes the detection since product peaks are diluted equally. On 

the other hand, high concentrations may lead to peak broadening and overlapping of the product 

peak. 
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3.4. GalE activity on free monosaccharides and α-Glc-1-P 

Although very low activity on free monosaccharides has been reported for the E. coli 

epimerase [130], a similar observation could not be made with mGalE even when high enzyme 

concentrations and long incubation times were used. In order to trigger the activating effect of 

the nucleotide group [226], either uridine, UMP or UDP was added to the reaction but activity 

could still not be detected. Since eGalE is a type 1 epimerase that harbors a small active site and 

large gatekeeper, the S279Y mutant of mGalE was also checked for activity on free 

monosaccharides but no such activity could be detected for the mutant. Finally, α-glucose 1-

phosphate was tried as substrate, since this compound resembles UDP-Glc more closely than a 

free monosaccharide. However, activity could again not be detected, neither with wild-type 

mGalE, nor with its S279Y variant. 

 

In contrast to previous observations with the GalE from E. coli [130], no activity on free 

monosaccharides could be detected with the E. coli K-12 MG1655 GalE we had cloned. 

Furthermore, it is well known that the presence of the UDP-group is required for tight binding of 

the substrate as well as to increase the reactivity of the enzyme-bound NAD+ cofactor [272, 275]. 

As such, GalE would only be able to oxidize free sugars to the C4-ketose intermediate, leaving 

behind an inactivated enzyme in its NADH-bound form [30, 34].  
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4 Conclusion 

In this chapter, the mutational analysis of the Marinithermus UDP-hexose 4-epimerase is 

described. Via site directed mutagenesis, 8 mutants were created and tested for their activity on 

both non-acetylated and acetylated UDP-sugars. 

 

At first, Thr117 is identified as part of the catalytic triad instead of Ser 116 as was 

previously postulated [187], confirming the correct positioning of both residues in the homology 

model. However, not only a threonine can act as part of the catalytic triad as also the T117S 

mutant shows a similarly active epimerase, clearly indicating this residue as crucial for activity. 

Secondly, the consecutive glycine residues next to the catalytic threonine (G118-G119) have 

been shown to be of importance for activity and affinity, with a bigger effect on activity. 

Furthermore, they seem to be more important for the enzyme’s activity on N-acetylated 

substrates since loss of the double glycine motif lowered the specific activity more drastically. 

 

Furthermore, mutating the gatekeeper towards a bigger residue like found in type 1 

epimerases, clearly converted the mGalE from a type 2 towards a type 1 epimerase. This 

confirms the hexagonal box model [110] that states that type 1 and type 2 epimerases are easily 

switched into one another by mutating a single residue, namely this gatekeeper residue [232]. 

However, the connection with type 3 epimerases is likely to be less simple as was also 

demonstrated by the importance of extra interactions like the hydrophobic ‘297-308 belt’ [32]. 

The loop exchange mutants that were created to make the mGalE more active on and/or specific 

for N-acetylated UDP-sugars were inactive. This in accordance with the created homology 

models that suggest a dispositioning of the catalytic triad’s tyrosine (Tyr143).  

 

At last, the enzyme’s epimerization capacity on glucose/galactose, fructose/tagatose and α-

Glc-1-P/α-Gal-1-P was examined. However, no such activity could be detected under any of the 

conditions tested. No free monosaccharide 4-epimerization was observed when using the GalE 

from E. coli either, contrary to what was previously reported [130]. However, free 

monosaccharides epimerization is not obvious since after the (slow) oxidation step, the enzyme is 

most likely incapable of holding the C4-ketose intermediate long enough to reduce it again, 

leaving behind a NADH-bound and inactivated enzyme [30, 34]. 
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IX. GENERAL DISCUSSION & 

FUTURE PERSPECTIVES 

  



150 

 

  



151 

 

1 Introduction 

Rare Sugars are defined as monosaccharides and their derivatives that are scarce in nature 

[91]. Only a small set of monosaccharides is considered to be naturally present in significant 

amounts (Glc, Gal, Man, Fru, Xyl, Rib and L-Ara), whereas twenty hexoses and nine pentoses 

were described as rare sugars. Furthermore, deoxygenated, aminated or methylated 

monosaccharides form another group of rare sugars, which often play a crucial role as 

recognition elements in bioactive molecules [87, 160, 264]. Notwithstanding their low natural 

abundance, rare sugars are (potentially) useful in a wide range of applications, as can be seen in 

Table II.1.  

 

Since rare sugars are scarce in nature, they cannot be extracted from natural resources and 

thus have to be produced by (bio)chemical reactions. The challenge lies in the optimization and 

expansion of these production routes in order to synthesize rare sugars with higher yields and at 

lower costs. More efficient production routes will increase their availability for research 

purposes, resulting in the discovery of new applications and/or yet unidentified characteristics 

[91]. Furthermore, increased production efficiency will reduce their cost and increase their use. 

 

The current biochemical production routes have been summarized in the Izumoring [91]. 

Nevertheless, a large set of potential biocatalysts is missing in this schematic representation, 

namely the epimerases. Only one type of epimerization is mentioned in the Izumoring, that are 

ketose 3-epimerizations. More recently, some other epimerases have been found to possess 

activity on free monosaccharides or hold this potential, see chapter II section 1 (Biocatalytic 

production routes for rare sugars) [20]. In this work, two different C4-epimerases were 

investigated for their potential as rare sugar producing biocatalysts, namely a L-ribulose-5-

phosphate 4-epimerase and a UDP-hexose 4-epimerase. 

 

In summary, the major achievements of this PhD thesis are  
 

1) The construction of the inducible expression vector pIXhPtrc, which is fully 

complementary with the 4 constitutive expression vectors (pCXhPxx) that were earlier 

created at InBio.be [1] (Chapter III). 
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2) The construction of an inducible and constitutive expression system for L-ribulose-5-

phosphate 4-epimerase from G. thermodenitrificans, from which the inducible expression 

system gave higher expression levels (Chapter III). 
 

3) The construction of an inducible expression system for L-ribulokinase from E. coli, 

which was then heterologously expressed and His-tag purified for the production of L-

ribulose-5-phosphate starting from L-ribulose and ATP (Chapter III). 
 

4) Characterization of the G. thermodenitrificans L-ribulose-5-phosphate 4-epimerase with 

respect to affinity for L-Ru5-P, metal ion activation and stability at 37 °C (Chapter III). 
 

5) The development of 2 selection strains (SelTag2 and SelTag3) for the detection of 

tagatose 4-epimerase activity (Chapter IV), which were then transformed with mutant 

libraries created by both random and site saturation mutagenesis for selection towards 

improved variants (Chapter V). 

 

6) The development of a screening assay that can be applied in search for tagatose 4-

epimerase activity that was afterwards applied on libraries of random and site saturation 

mutagenesis; however, no improved variants have been detected (Chapter VI). 

 

7) The construction of an inducible expression system for the UDP-hexose 4-epimerases 

from Marinithermus hydrothermalis (Chapter VII) and E. coli (Chapter VIII), which have 

successfully been overexpressed in E. coli. 
 

8) The thorough characterization of the Marinithermus UDP-hexose 4-epimerase with 

respect to its substrate specificity and thermal behavior (Chapter VII).  

 

9) New insights were found for the mechanistical aspects of the Marinithermus UDP-

hexose 4-epimerase, as such it was found to be the first UDP-hexose 4-epimerase for which 

a TxnYx3K catalytic triad instead of the usual SxnYx3K is evidenced (Chapter VIII). 
 

10) Mutational analysis also demonstrates a new substrate determinant for UDP-GlcNAc 4-

epimerase activity, namely the double glycine motif found in Thermus GalEs that seems to 

be of bigger importance for activity on N-acetylated substrates and confirmed the 

interconversion of type 1 and type 2 epimerases by simply mutating a single residue, 

namely the gatekeeper (Chapter VIII). 
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2 General Discussion & Future perspectives 

2.1. Rare sugars and potential of epimerases: ‘Epimering’ 

As can be deduced from Table II.1, rare sugars have a wide range of applications and thus 

hold tremendous economical value. Nonetheless, due to their low natural abundance they have to 

be produced from more abundant substrates. To date, the biochemical production of all rare, 

unmodified monosaccharides is summarized in the Izumoring [91]. Nevertheless, this schematic 

overview only contains one type of epimerases, i.e. the ketose 3-epimerases like D-tagatose 3-

epimerase (D-TE). Since other epimerases can create shortcuts in the current production routes, 

the discovery or creation of such enzymes is both scientifically and economically interesting. 

Scientifically because the discovery of new enzymes will give new insights in natural processes 

and pathways, while redesign of existing epimerases will provide more knowledge on structure-

function relationships and enzyme-substrate interactions.  

 

On the other hand, new and/or more efficient production routes will increase the availability 

of rare sugars for both research purposes and industrial applications. For the application of rare 

sugars, both the price and availability can be an obstacle. For example, for food applications, the 

price needs to be as low as possible and availability should be high (cfr. bulk) in order to 

compete with refined sugars and corn-derived sweeteners. On the other hand, when rare sugars 

are applied in ‘high-value’ products like pharmaceuticals, a higher price is less of a bottleneck 

but availability should still be high enough (cfr. specialty chemicals). New research will result in 

the discovery of new applications and/or yet unidentified characteristics of rare sugars, as was 

also stated by Granström et al. [91]. The rare sugar psicose is a clear example that production is 

the key for application. Only since the discovery of D-tagatose 3-epimerase, it can easily be made 

from the widely available fructose and since then several applications have been reported (Table 

II.1 and references herein) and still research is performed in order to further investigate this 

sugar. As such, one of the four sessions of the latest Rare Sugar Congress (2011 in Kagawa, 

Japan) was fully dedicated to psicose [111]. In total, over 10 oral presentations were given and 

over 10 posters presented research on psicose. 
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 Figure IX.1 Overview of the theoretical C2-, C3-, C4- and C5-epimerase that can use  glucose as substrate for the 

synthesis of mannose, allose, galactose and L-idose, respectively 

 

To point out the potential of other new epimerases for rare sugar production, I have made an 

‘Epimering’ (Figure IX.2 and Figure IX.3). These ring-like schemes that are similar to the 

Izumoring [91] demonstrate what different epimerases can mean for rare sugar synthesis. In 

Figure IX.1, the theoretical options are given for the different epimerization reactions starting 

from glucose, the most abundant sugar. Glucose could be used to produce mannose, allose, 

galactose and L-idose if a C2-, C3-, C4- and C5-epimerase would be available, respectively. All 

theoretical epimerizations for ketohexoses and aldohexoses are given in the Epimerings in Figure 

IX.2 and Figure IX.3, respectively. 
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Figure IX.2 The ‘Epimering’ emphasizes the potential of epimerases for rare sugar synthesis: ketohexoses 
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Figure IX.3 The ‘Epimering’ emphasizes the potential of epimerases for rare sugar synthesis: aldohexoses 

 

2.2. Evaluation of the present project and used epimerases 

In this project two epimerases have been subjected to enzyme engineering in order to 

redesign them to rare sugar producing biocatalysts. Despite the fact that the engineering of these 

two epimerases did not result in an enzyme harboring tagatose 4-epimerase activity, the choice to 

start with these enzymes was not a thoughtless idea. For both epimerases there were reasons to 

believe that the engineering thereof could lead to the desired activity. An evaluation of both 

enzymes as starting point for the creation of a tagatose 4-epimerase is given.  

2.2.1. L-Ru-5-P 4-epimerase: a bad choice as starting point or not? 

The attempt to convert a L-Ru-5-P 4-epimerase into a tagatose 4-epimerase was not an 

unrealistic idea since a mutant of the related L-rhamnulose-1-phosphate aldolase was found to 

show L-rhamnulose aldolase activity [244], in other words, it had become active on the non-

phosphorylated form of the substrate. Also other enzymes have been found active on substrates 

lacking a phosphate group, as such the fructose-1,6-bisphosphate aldolase is used for the 

condensation of dihydroxyacetone phosphate onto non-phosphorylated aldehydes, instead of on 

the natural substrate glyceraldehyde-3-phosphate [8]. Furthermore, a transaldolase could be 
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mutated towards a fructose aldolase, or accept non-phosphorylated glyceraldehyde as substrate 

rather than glyceraldehyde-3-phosphate [230, 231]. On the other hand, very recently Thermotoga 

maritime was found to possess a tagaturonate 4-epimerase [217]. This enzyme is predicted to be 

a distant homologue of class II aldolases, utilizing a divalent metal ion for catalysis. Thus, 

resemblance with the L-Ru-5-P 4-epimerase is striking, showing that such an aldolase-type 

epimerase can be active on a hexose-like substrate. However, both L-Ru-5-P 4-epimerase and the 

tagaturonate 4-epimerase are active on substrates with a negatively charged group, whereas in 

our attempt the substrate would be uncharged (Figure IX.4). This negatively charged group (the 

phosphate moiety or the carboxylic group, respectively) could be important to hold the 

intermediate bound in the active site, while the second intermediate is also retained via 

interactions between its negative charge and the positive charge from the metal cation. Loss of 

the first interaction might lead to loss of the intermediate, hereby precluding the second step 

needed for epimerization. The importance of the phosphate group for epimerase activity is also 

evidenced by mutagenesis studies that have been performed on the E. coli epimerase. The loss of 

the lysine in the phosphate binding pocket resulted in a much lower affinity, the Km-value of the 

K42M mutant had drastically increased up to more than 2 mM, while that of the wild-type was 

only 0.047 mM. On the other hand, the related L-fuculose-1-phosphate aldolase has a Km-value 

of 2.2 mM for the wild-type [225]. This could also indicate that the salt bridge between the K42 

and the phosphate moiety is necessary to retain the intermediate in order to complete the 

epimerization reaction, while for the aldolase retention of the intermediate is not needed and 

therefore no salt bridge is needed/present. Furthermore, the loss of a stronger salt bridge (12.5-17 

kJ/mol, and up to 30 kJ/mol) [204] between new substrate (tagatose/fructose) and the binding 

pocket, as a result of the lack of a charged (phosphate) group, is bigger than the new hydrogen 

bond (2-6 kJ/mol) [204] that can be formed between the extra hydroxymethyl group and the 

binding pocket (wild-type or mutant). 
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Figure IX.4 Comparison of the L-Ru-5-P 4-epimerase and tagaturonate 4-epimerase with the desired reaction 

(tagatose 4-epimerase). Substrate and product are given in black-green and black-red 

 

Secondly, the L-Ru-5-P 4-epimerase has only a few related enzymes (the 6-deoxysugar-1-

phosphate aldolases) and thus little natural variation is known among this enzyme family. Since 

the desired substrates are hexoses instead of phosphorylated pentoses, the majority of the 

targeted residues is located in the phosphate binding pocket of the epimerase. Since all AraD-like 

aldolase/epimerase family members are active on phosphorylated carbohydrates, it is not unlikely 

that (semi-)conserved residues were targeted. Due to their (semi-)conservation, these residues 

might not only be of importance for interactions with the phosphate, but also for other enzyme 

features, like folding or stability. If so, mutation of such residues are likely to be detrimental for 

the enzyme, lowering chances that mutants are still active ánd will be active on non-

phosphorylated sugars.  

 

Due to problems with the selection strains, it is likely that the mutants found via selection 

are not real hits. Indeed, none of the potential hits were confirmed to possess tagatose 4-

epimerase activity by activity measurements using the developed screening assay and HPLC 

analysis. A possible explanation why these specific mutants were found enriched in the selection 

cultures could be that they have fewer negative effects on growth, while the minimal growth 

observed was not a result of little activity but of growth on Luria broth remainders. These traces 

had been inoculated with the library and thus provide nutrients. For example, the mutant bearing 

the stop codon will result in a truncated form of the enzyme, producing less useless protein and 

thus leaving more building blocks and energy for other proteins or functions. Loss of the 

conserved lysine (K42S/A) or the introduction of positively charged residues (N28R and S73R) 

might destabilize the recombinant protein, which might then be degraded and recycled faster, 

returning energy and building blocks for growth. Destabilizing effects can result from the loss of 
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interactions with the hydrophobic part (-(CH2)4-) of the lysine’s side chain and its charged head 

(-NH3
+) or from repulsion between the lysine and the introduced arginines (Figure IX.5). 
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 Figure IX.5 The conserved lysine can interact with multiple neighboring residues and these interactions might have a 

stabilizing effect on the enzyme, loss of these interactions (K42S/A) might lead to an instable variant. Introduction of 

a second charged residue (N28R and S73R) might destabilize the enzyme due to repulsion between the two charges 

 

Since only a limited number of residues was targeted, the right residue(s) or changes needed 

for activity on tagatose might not have been targeted. Therefore, more mutagenesis and screening 

would therefore be advisable. Furthermore, the L-Ru-5-P epimerase might need substantial 

changes to be converted into a tagatose 4-epimerase. Perhaps multiple residues should be 

mutated at the same time or insertions and deletions might be needed. Multiple residues have 

been targeted simultaneously but due to the ‘numbers problem’ in enzyme engineering [212], 

these libraries of  simultaneous saturating or Combinatorial Active-site Saturation Test 

(CASTing) become very large quickly, making it very labor-intensive to do all the screening via 

the developed screening assay. Saturating two residues at the same time requires the screening of 

around 3000 mutants to have a 95 % chance of full library coverage [212]. For triple and 

quadruple saturation the amount of mutants increases to almost 100000 and over a million, 

respectively. Using a NDT codon could decrease library size and still cover most of the amino 

acids’ functionalities, but eight amino acids will not be tested [212]. Library size for single, 

double, triple and quadruple saturation using NNS or NDT, respectively, is given in Table IX.1. 

The introduction of insertions and/or deletions is much more complicated since the amount of 

residues inserted or deleted can be different and in this case a very thorough computational 

analysis is needed to maximize the chance of success. In fact, in this case de novo enzyme design 

might be a better option (see also below). Furthermore, the detection of desired mutants should 
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also be optimized by improvements in the selection and screening system, which is discussed 

below as well.  

 

Table IX.1 Screening effort of CASTing libraries using NNS and NDT codons 

SSM NNS NDT 

# positions # codons # CFU # MTPs # codons # CFU # MTPs 

1 32 94 1 12 34 0.4 

2 1024 3066 32 144 430 4.5 

3 32768 98163 1023 1728 5175 54 

4 1048576 3141251 32721 20736 62118 647 

 

2.2.2. UDP-hexose 4-epimerase: epimerase for free monosaccharides? 

According to our activity measurements on glucose/galactose, fructose/tagatose and α-Glc-

1-P/α-Gal-1-P, C4-epimerase activity could not be observed for the Marinithermus enzyme or its 

S279Y mutant. No C4-epimerization of free (or phosphorylated) monosaccharides was observed 

when using the GalE from E. coli either, unlike what was previously reported [130]. Indeed, 

epimerization of free monosaccharides is not evident, since the enzyme is most likely incapable 

of holding the C4-ketose intermediate long enough to reduce it again, leaving behind a NADH-

bound and inactivated enzyme [30, 34]. The UDP-hexose 4-epimerases need to undergo rather 

substantial changes in order to become active on free monosaccharides because the nucleotide 

group of the substrate is of importance for both substrate binding and activation of the enzyme by 

promotion of the conformational shift [272, 275]. Mutations would be needed to induce this 

conformational shift without the UDP-moiety or permanently activate the enzyme as well as to 

increase affinity for the free monosaccharides in order to bind them and hold the intermediate 

properly in the active site. The E. coli epimerase was previously tested using a fructose 

dehydrogenase assay and HPLC analysis after derivatization [130], whereas we used our 

developed screening assay (chapter VI). Nonetheless, according to the specific activity  reported, 

similar amounts of activity should be able to be detected by this screening assay. However, even 

with longer incubation times, increased enzyme and substrate concentrations, no epimerase 

activity was observed, nor could the addition of UDP, UMP or uridine as cofactor trigger 

epimerase activity. 
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2.3. Where to find or how to create new epimerases? 

As was discussed above, the chance of obtaining a tagatose 4-epimerase by directed 

evolution of a L-Ru-5-P 4-epimerase or a UDP-hexose 4-epimerase seems rather small. In order 

to obtain such an enzyme, different aspects could (or should) be changed. Among these aspects 

are starting from another enzyme (fold), a rational approach using de novo design, and 

optimization of the selection and screening strategies. 

 

Thus, how to create or where to find this new biocatalyst (or for the production of other rare 

sugars) remains an important question to be answered. Nature might hide some of these 

biocatalysts in the genetic code of one of the millions of creatures inhabiting earth. Genome 

sequencing has provided scientists with massive amounts of yet uncoded DNA, perhaps 

somewhere hiding a new epimerase active on free monosaccharides, like the ketose 3-epimerases 

(e.g. D-tagatose 3-epimerase) [114] or the recently discovered tagaturonate 4-epimerase [217]. 

Many genes can be given a ‘putative’ function based on homology with known/existing enzymes 

but for totally new enzymes and/or enzyme folds this cannot be done. On the other hand, 

galactose 4-epimerization has been reported in cell extract from Kluyveromyces species induced 

with xylose [73]. Nevertheless, the responsible enzyme has not been identified, nor is it known 

whether one or more enzymes are responsible for this reaction. Identification of this (these) 

enzyme(s) can be achieved by separation of different enzyme fractions of the Kluyveromyces cell 

extract by for example ammonium sulfate or solvent precipitation or separation based on protein 

size. The enzymes in the fraction containing the activity can further be separated and analyzed. 

Finally, protein sequencing can be applied to determine the primary structure of the responsible 

enzyme. However, when multiple enzymes are involved, these different biocatalysts must always 

be found in the same fraction. Another option to identify the responsible enzyme(s) is by 

comparing cell extract of xylose-induced Kluyveromyces with that of normally grown 

Kluyveromyces on a 2D-PAGE to look for differently expressed proteins. Spots that are only 

observed in the xylose-induced cell extract can then be tested for activity and/or identified by 

protein sequencing. 

 

However, repetitions of the described experiments on a Kluyveromyces marxianus strain 

(MUCL 30062) failed to confirm this galactose 4-epimerization activity (data not given). The K. 

marxianus strain that we have used might be different from the one that was found to have 

galactose 4-epimerase activity, explaining why experiments could not be repeated. Nevertheless, 
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there were no new papers published dealing with this very interesting topic, although it was 

stated in the article (in 1996) that ‘it is the beginning of a series of investigations on the 

mentioned enzyme’. This might also mean that the ‘weak epimerase activity’ found in the 

‘preliminary assays’ had been a hasty conclusion or that they were unable to repeat and/or isolate 

the enzyme responsible for the galactose 4-epimerization. On the other hand, xylose can induce 

the UDP-hexose 4-epimerase in the yeast Pachysolen tannophilus [239], so it might have done 

the same in the Kluyveromyces strain. However, it would be unlikely that the UDP-hexose 4-

epimerase from Kluyveromyces is active on only 1 g/l (5.55 mM) of galactose. 

 

Another option to look for tagatose converting enzymes are Mucoraceae fungi. They can be 

applied in a two step production route towards tagatose starting from fructose, in combination 

with tagatose 3-epimerase [114]. At first, the fructose is converted to psicose, which can then be 

converted to tagatose via biotransformation with the help of Mucoraceae fungi (Figure IX.5). 

Various Mucoraceae strains have been reported to be able to carry out this reaction [289]. 

Neither the availability, nor the price of psicose are limiting factors here, as psicose mass 

production has become industrially feasible since the discovery of ketohexose 3-epimerases [129, 

250]. The two-step tagatose production from fructose over psicose is a good alternative method; 

however, it still requires further intensive investigation [191]. Similar experiments as described 

for the galactose 4-epimerase identification in the Kluyveromyces strain could be applied for the 

identification of the responsible enzymes for psicose to tagatose conversion in Mucoraceae 

fungi. Most likely, one or two oxidoreductases are involved and conversion proceeds over D-

talitol. 
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 Figure IX.6 Conversion of fructose into tagatose using D-tagatose 3-epimerase (D-TE) and Mucoraceae fungi 
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Another place to look for new epimerases active on rare sugars are niches in which they are 

found. For example, since tagatose is found in the gum of Sterculia setigera [80, 191], this tree 

needs to have a pathway to produce tagatose. Nonetheless, synthesis could also proceed using 

aldolases or an isomerase instead of an epimerase. 

 

In order to overcome this issue of screening in nature, enzyme engineering remains an 

interesting and promising field. By mutagenesis of an existing biocatalyst, new biocatalysts 

might be created. More recently, also de novo enzyme design has become an option. As the name 

suggests, de novo enzyme design is making an enzyme from scratch, using computational tools 

and complicated algorithms [119, 216, 218, 219, 221]. An example hereof is the computational 

design of enzymes to catalyze the Kemp elimination, a reaction not found in nature, that was 

made by the research group of David Baker [221]. The Kemp elimination enzyme that was 

created is far from optimal but it can be further improved by enzyme engineering, like via 

random or site saturation mutagenesis.  

 

An important starting point is the choice of enzyme (fold) to use as template for rational 

design. It can be based on binding of the substrate or product instead of the performed reaction. 

Several enzymes would then be eligible, like the tagatose 3-epimerase [114] but also L-arabinose 

isomerase, tagatose-6-phosphate isomerase, and other monosaccharide isomerases, since these 

enzymes are known to bind free monosaccharides. Starting from these enzymes has the 

advantage that the enzyme is already able to bind the substrate but its catalytic machinery should 

be repositioned or changed. Their natural reaction could easily be inactivated by mutation of the 

catalytic residues, while their ability to bind the monosaccharides is (most likely) maintained. 

The big challenge is then to introduce new catalytic residues that catalyze a different reaction. 

For the tagatose 3-epimerase, it might also be worth looking for a way to move the catalytic 

machinery to the next hydroxyl group or to make the enzyme bind the substrate in a slightly 

rotated position. Since the catalytic residues need to be positioned correctly in order to make the 

enzyme active, this should be thoroughly analyzed by using computational models. It is 

necessary to have as much information as possible on how the current fold binds the substrate 

and what other interactions are present within the enzyme fold itself since mutations can disrupt 

this fine equilibrium. However, these interactions can also be monitored using bioinformatics and 

visualization programs like the YASARA program [139] or the YASARA/WHATIF twinset 

[268]. 
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The easiest ways for the inactivated enzymes to become active again by directed evolution 

is by reintroduction of its original catalytic residues. Since this is of course not the purpose, it 

would be advisable to engineer the enzyme folds via a rational approach. This rational approach 

would also overcome the disadvantages of directed evolution, for example the insufficiency 

when multiple mutations are needed [22], narrow range [21], limits in introducing new function 

[84]. In order to minimize lab work, but maximize the chance of finding a positive mutant, the 

technique of de novo design is recommend. Using computer tools like the Rossetta algorithms 

[216, 219, 221] a small set of potential enzymes could be designed. These computer algorithms 

are based on all ‘restrictions and rules’ that have been found to occur in natural protein folding 

and catalysis. This would also decrease the mutagenesis and screening work in the ‘wet lab’. As 

mentioned above, the more information that is available, the more accurate the algorithms can 

predict correct folds. Computer scientists need to have information on how nature and its 

building blocks work in order to translate it to algorithms and programs that can be used to create 

and analyze computational models.  

 

Not only computational tools are needed but also easy and efficient screening assays to test 

these theoretical catalysts in a ‘wet lab’. The methods to check whether these theoretical 

enzymes are truly active enzymes harboring the desired activity need to be – preferably – simple 

and easy. These techniques should also be applicable in random or site saturation mutagenesis 

experiments as the in silico designed enzymes will need further optimization. In this way new 

information can also be gained and later be translated into new or better algorithms to improve 

the current bioinformatics tools. The screening assay that was developed during this doctoral 

research could be used to test a set of theoretical biocatalysts. A set of 96 proteins could be tested 

in a single microtiter plate. However, the bigger the in silico library, the more work that has to be 

done on the bench and the higher the costs. It would for instance demand the chemical synthesis 

of all these genes, which becomes expensive, and transformation into an expression system, 

while expression of each of these enzymes should be optimized.  

 

Despite having developed an easy and accurate screening assay, further optimization can be 

achieved for screening in order to increase the chance of success. Furthermore, the selection 

system can also be improved since the one developed in this project was not perfect. For the 

selection strain, potential problems that could occur are the lack of tagatose transport systems, 

too low concentration of  tagatose in the cells and problems downstream of the epimerization 

reaction. Since E. coli K-12 MG1655 is able to absorb tagatose via the methylgalactoside 
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transport system, mglABC [132], uptake of tagatose should not be the problem. Even though it 

has a higher flux transporting tagatose out than in, due to high concentration of tagatose in the 

medium, the mlgABC transport system should be able to transport it inside the cells [132]. 

Nonetheless, intracellular levels of tagatose might not reach high levels which could be a 

problem. This potential problem could also be solved by overexpression of the methylgalactoside 

transporter mglB. Similarly, the overexpression of the galP transporter could restore growth on 

glucose in strains lacking the PTS system [98].  

 

Furthermore, it can be assumed that a second bottleneck, downstream of the epimerization 

reaction, was present in the selection strains, that is the first step in fructose utilization (Figure 

IX.7). Due to this second bottleneck, the growth and consequently the selection is hampered. In 

the growth tests, fructose was imported as fructose-1-phosphate that is easily further broken 

down, resulting in proper growth, whereas in the selection system, fructose would be present 

inside the cells instead of fructose-1-P. A consequence hereof is that the fructose has to be 

phosphorylated first in order to further metabolize it [136]. The responsible enzyme, a 

manno(fructo)kinase (MAK) is only slightly active in E. coli K-12 MG1655 and thus the 

phosphorylation of fructose is a problem in the selection strains based on E. coli K-12 MG1655. 

A perfect selection strain would only have one bottleneck and that is the target enzyme. The 

constitutive overexpression of an active fructokinase could overcome this second bottleneck and 

improve the selection strain. Nonetheless, the choice of the right fructokinase and promoter is not 

an easy task and would be very time-consuming (personal communication Joeri Beauprez). Since 

also a screening assay was developed to detect tagatose 4-epimerase activity, this optimization of 

the selection strain was omitted. 
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Figure IX.7 Normal fructose utilization goes via the PTS system, immediately phosphorylating it. However, in the 

selection strains fructose would be formed inside the cell, needing prior phosphorylating to fructose-6-phosphate by 

manno(fructo)kinase. Since only low fructokinase activity is found in E. coli, growth and selection are hampered 
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Another option to overcome the fructose phosphorylation problem as well as the possibly 

low substrate levels is by expressing the epimerase in the periplasm. Tagatose concentration in 

the periplasm will be higher than that measured in the cytoplasm since the inner membrane is 

much more disciminating than the outer membrane [169]. Periplasmatic expression can be 

achieved by expressing the target enzyme with a N-terminal signal peptide in order to transport 

the (pro)enzyme from the cytoplasm to the periplasm. Two systems are available in E. coli 

namely the secretion pathway (Sec) and the twin-arginine translocation system (Tat) [173, 265, 

271]. Nevertheless, selection of the optimal signal peptide is crucial and is mostly performed 

by trial-and-error [54]. Furthermore, informatics tools are available to help with the selection 

of the appropriate signal peptide, for example SignalP [24, 25, 79, 186, 203]. Periplasmatic 

expression would also facilitate further uptake of the formed fructose since the fructose present 

in the periplasm will easily be taken up by the cell via its PTS system and in this way avoid the 

need of cytosolic MAK activity.   

 

On the other hand, the screening assay should be able to screen as much mutants as 

possible in a minimum of time. In the setup of the presented research (search for a tagatose 4-

epimerase), the application of Fluorescence-Activated Cell Sorting (FACS) could be an option 

[99]. Using FACS, 108 mutants can be tested per day [281]. Nevertheless, as the technique 

FACS needs fluorescence to be able to detect and separate cells, the desired activity should be 

directly coupled to a fluorescent outcome. If the product of the reaction can be used to induce 

protein expression, it can be used to induce for instance green fluorescent protein (GFP) [57]. 

Fluorescence can then be used to sort cells via FACS. Despite the fact that this idea is written 

down in one sentence, it is not that simple. At first, one must have a protein expression system 

that is only triggered when the target enzyme is active and thus the product is formed. For a 

tagatose 4-epimerase, this would mean that the formed fructose may not be consumed but must 

trigger expression. As such, there is the need for a fructose induced promoter, a fructose 

sensitive repressor or another fructose sensitive biomarker. When no fructose is present, 

expression is not induced or repressed by binding of the repressor, meaning that no GFP 

(fluorescence) is present in the cells. If active epimerase would be expressed, fructose would be 

formed that can in turn induce GFP expression or bind to the fructose sensitive repressor 

enabling GFP expression. Again, the question is where or how to find such a ‘fructose sensitive 

promoter/repressor system’. Also here, protein engineering and bio-informatics can be used as 

tools to redesign existing promoter/repressor systems. Starting points could be the lac repressor 

system or the L-arabinose-inducible araBAD promoter (PBAD) that induce protein expression in 



166 

 

the presence of lactose (and IPTG) or L-arabinose, respectively. Nevertheless, it will take a lot 

of work and time to convert such a system into a desired and useful system.  
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Summary 

 

Tagatose is a rare sugar that can be applied for multiple reasons in different industries, for 

instance as a low-caloric sweetener in dietary food, as well as additive in detergents, cosmetics, 

and pharmaceutical formulations, but also as drug molecule itself in diabetes treatment. As for 

other rare sugars, tagatose is not abundantly present in nature and therefore it has to be made 

from more available sugars in order to use it. It is currently being produced starting from 

galactose. However, to be able to compete with the current predominant sweeteners (like sucrose 

and high fructose corn syrup), it should be produced in much higher quantities than is possible 

when starting from galactose. In order to overcome this issue, tagatose production should start 

from a more widely available (and cheaper) substrate. Fructose and glucose are two such very 

abundant substrates; however, no (bio)catalysts are available to convert fructose or glucose into 

tagatose. Nevertheless, some enzymes were found to perform similar reactions and therefore are 

promising to one day become biocatalysts for tagatose production. 

 

In this work, the cloning and analysis of two totally different C4-epimerases is described in 

respect to their capability of tagatose production. The first enzyme is L-ribulose-5-phosphate 4-

epimerase from Geobacillus thermodenitrificans, an aldolase-related epimerase that would 

require an adaptation of the substrate binding site around the phosphate moiety of the substrate. 

The second C4-epimerase is naturally active on nucleotide activated sugars, namely the UDP-

Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. The major challenge in the 

engineering of this UDP-hexose 4-epimerase is trying to get rid of the necessity of the UDP-

group of the substrate and making it active on free monosaccharides. 

 

At first, the Geobacillus L-ribulose-5-phosphate 4-epimerase gene was cloned in an 

appropriate expression vector and expressed in E. coli. The recombinant enzyme was first 

characterized with respect to affinity for L-ribulose-5-phosphate, metal ion activation and 

stability at 37 °C. To that end, its natural substrate had to be produced first, which was 

accomplished by phosphorylation of L-ribulose using ATP as phosphate donor and 

recombinantly expressed L-ribulokinase as biocatalyst. 
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After characterization, mutagenesis was achieved both randomly and semi-rationally by 

error-prone PCR and site saturation mutagenesis, respectively. To be able to detect enzyme 

variants harboring (improved) tagatose 4-epimerase activity among the thousands mutant 

enzymes, two ‘identification’ systems were developed. Two selection strains were developed that 

can be used for the Darwinian selection of improved enzyme variants, while also a colorimetric 

screening assay has been created. Although several millions and thousands of mutants were 

analyzed using the selection strains and screening assay, respectively, no variants were 

confirmed to possess (improved) tagatose 4-epimerase activity. 

 

Secondly, the UDP-hexose 4-epimerase from Marinithermus hydrothermalis was also 

cloned and heterologously expressed in E. coli. A thorough characterization of this second 

epimerase was performed, revealing that it belongs to the type 2 UDP-hexose 4-epimerases. As 

expected for a type 2 epimerase, its substrate specificity could easily be altered by mutagenesis 

of a single residue, namely the so-called gatekeeper. This also confirms the previously reported 

hypothesis about substrate specificity in type 1 and type 2 epimerases.  

 

Mutational analysis of the UDP-hexose 4-epimerase uncovered two new features that can be 

found in these epimerases. The Marinithermus enzyme was found to possess a TxnYx3K catalytic 

triad, rather than the usual serine containing triad (SxnYx3K). The presence of the threonine’s 

methyl function was found to be of more importance for the enzyme’s affinity for N-acetylated 

UDP-sugars than for non-acetylated substrates. As such, the TxnYx3K triad might be a new 

substrate specificity determinant for type 2 UDP-hexose 4-epimerases. The second new feature 

was the presence of two consecutive glycine residues next to the catalytic threonine, which were 

found to be important for activity of the enzyme with non-acetylated and even bigger importance 

for activity on N-acetylated substrates. In an attempt to identify new determinants for specificity 

towards UDP-GlcNAc, two loop mutants were created but they were found to be inactive, most 

likely due to dispositioning of the catalytic tyrosine, which results in the disruption of the subtle 

catalytic chemistry.  

 

In addition, the Marinithermus UDP-hexose 4-epimerase was also tested for its ability to 

convert the free monosaccharides fructose/tagatose, glucose/galactose and the phosphorylated α-

Glc-1-P. Furthermore, also the E. coli UDP-hexose 4-epimerase was cloned and also here no 

epimerase activity could be detected on free monosaccharides, in contrast to what has previously 

been reported.  
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Samenvatting  

 

Tagatose is een zeldzame suiker die om meerdere redenen kan worden toegepast in 

verschillende industrietakken, bv. als lage-energie suiker in dieetvoeding, maar ook als additief 

in detergent, cosmetica en farmaceutische formuleringen, en zelfs als medicatie op zichzelf in de 

behandeling van diabetes. Net als de andere zeldzame suikers is tagatose niet overvloedig 

aanwezig in de natuur en daarom moet het (bio)chemisch worden aangemaakt startende van meer 

abundante suikers vooraleer het gebruikt kan worden voor een van zijn toepassingen. Momenteel 

wordt het gemaakt uit galactose, maar om de competitie met de huidige zoetstoffen (zoals 

sucrose en high fructose corn syrup) aan te gaan, zou het in grotere hoeveelheden moeten kunnen 

worden aangemaakt dan mogelijk is uit galactose. Om dit euvel te overwinnen, zou tagatose 

productie moeten starten van meer abundante suikers, zoals fructose and glucose. Er zijn echter 

geen (bio)katalysatoren beschikbaar die deze suikers kunnen omzetten in tagatose. 

Desalniettemin zijn er enzymen die gelijkaardige reacties katalyseren en die mogelijks 

interessant zijn voor de synthese van tagatose. 

 

In dit proefschrift wordt de klonering en analyse van twee totaal verschillende C4-

epimerasen besproken in relatie tot hun mogelijkheid of potentieel voor tagatose productie. Het 

eerste enzym is het L-ribulose-5-fosfaat 4-epimerase van Geobacillus thermodenitrificans en dit 

aan aldolasen verwante enzym vereist een aanpassing ter hoogte van de fosfaatbindende regio. 

Het tweede C4-epimerase is van nature actief op nucleotide geactiveerde suikers, namelijk het 

UDP-Glc(NAc) 4-epimerase van Marinithermus hydrothermalis. De grote uitdaging voor dit 

epimerase is om komaf te maken met de nood aan de UDP-groep voor activiteit en het actief te 

krijgen op niet-gemodificeerde suikers. 

 

Ten eerste werd het L-ribulose-5-fosfaat 4-epimerase gen van Geobacillus gekloneerd in een 

geschikt expressieplasmide en vervolgens tot expressie gebracht in E. coli. Het recombinant 

enzym werd gekarakteriseerd met zijn natuurlijk substraat, L-ribulose-5-fosfaat, om meer te 

weten te komen over de affiniteit hiervoor, activatie door metaalionen alsook thermostabiliteit. 

Hiervoor werd eerst L-Ru-5-P aangemaakt startende van L-ribulose en ATP en gebruikmakend 

van L-ribulokinase als biokatalysator. 
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Na karakterisatie, werden twee verschillende mutagenesetechnieken toegepast, namelijk 

random mutagenese via error-prone PCR en een semi-rationele aanpak door site saturation 

mutagenesis. Om enzymvarianten te identificeren die (verbeterde) tagatose 4-epimerase activiteit 

bezitten, werd enerzijds een selectiestam en anderzijds een screeningsmethode ontwikkeld. De 

selectiestam maakt gebruik van Darwins ‘survival of the fittest’ theorie, terwijl met de screening 

alle mutanten afzonderlijk worden geanalyseerd. Ondanks de miljoenen en duizenden mutanten 

die via respectievelijk selectie en screening werden geanalyseerd, werden geen (verbeterde) 

tagatose 4-epimerase varianten gevonden. 

 

Ten tweede werd ook het UDP-hexose 4-epimerase van Marinithermus hydrothermalis 

gekloneerd en tot overexpressie gebracht in E. coli. Een grondige karakterisatie van dit 

epimerase toonde aan dat het behoort tot de type 2 UDP-hexose 4-epimerasen. Zoals verwacht 

voor dit type epimerasen kon de substraatspecificiteit simpelweg worden aangepast naar een type 

1 door middel van mutatie van één enkel residue, de gatekeeper. Dit bevestigt eveneens oudere 

hypothesen rond de substraatspecificiteitsdeterminanten van de type 1 en type 2 epimerasen. 

 

Mutationele analyses van het UDP-hexose 4-epimerase brachten ook twee nieuwe  

kenmerken aan het licht. Het enzyme blijkt een TxnYx3K katalytische triade te bezitten in plaats 

van de gewoonlijke SxnYx3K. De extra methylgroep van de threonine is belangrijker voor de 

activiteit op N-geacetyleerde UDP-suikers dan voor niet-geacetyleerde substraten. Alsdusdanig 

zou een TxnYx3K katalytische triade een nieuwe determinant kunnen zijn voor 

substraatspecificiteit van type 2 UDP-hexose 4-epimerasen. Daarnaast werden ook twee 

opeenvolgende glycines gevonden vlak naast de katalytische threonine, dewelke belangrijk 

blijken te zijn voor de activiteit van het enzym, met een grotere invloed voor de geacetyleerde 

substraten. In een poging om meer te weten te komen over de 

substraatspecificiteitsdeterminanten voor UDP-GlcNAc werden twee loopmutanten gemaakt, 

maar deze bleken inactief. Volgens de homologiemodellen wordt door deze mutaties de delicate 

chemie van het katalytisch centrum verstoord door  verplaatsing van de katalytische tyrosine.  

 

Bovendien werd het Marinithermus UDP-hexose 4-epimerase ook getest op zijn vermogen 

voor het omzetten van de vrije monosachariden fructose/tagatose, glucose/galactose en het 

gefosforyleerde α-Glc-1-P. Daarnaast werd ook het E. coli UDP-hexose 4-epimerase gekloneerd, 

maar voor beide enzymen kon geen C4-epimerase activiteit op vrije monosachariden worden 

waargenomen, in tegenstelling tot wat eerder gemeld was voor het E. coli epimerase. 
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Appendix I: Nucleotides (IUPAC-IUB code) 

 

Nucleotide Name Complement 

A Adenine T 

C Cytosine G 

G Guanine C 

T Thymine A 

U Uracyl (RNA) A 

R Purine (A or G) Y 

Y Pyrimidine (C or T) R 

W Weak (A or T) S 

S Strong (C or G) W 

M Amino (A or C) K 

K Keto (G or T) M 

V A, C or G B 

B C, G or T V 

H A, C or T D 

D A, G or T H 

N A, C, G or T N 
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Appendix II: The standard genetic code 

 

  Second position   

  U C A G   

F
ir

st
 p

o
si

ti
o

n
 

U 

UUU 
Phe 

UCU 

Ser 

UAU 
Tyr 

UGU 
Cys 

U 

T
h

ir
d

 p
o

sitio
n

 

UUC UCC UAC UGC C 

UUA 
Leu 

UCA UAA 
Stop 

UGA Stop A 

UUG UCG UAG UGG Trp G 

C 

CUU 

Leu 

CCU 

Pro 

CAU 
His 

CGU 

Arg 

U 

CUC CCC CAC CGC C 

CUA CCA CAA 
Gln 

CGA A 

CUG CCG CAG CGG G 

A 

AUU 

Ile 

ACU 

Thr 

AAU 
Asn 

CGU 
Ser 

U 

AUC ACC AAC CGC C 

AUA ACA AAA 
Lys 

CGA 
Arg 

A 

AUG Met ACG AAG CGG G 

G 

GUU 

Val 

GCU 

Ala 

GAU 
Asp 

GGU 

Gly 

U 

GUC GCC GAC GGC C 

GUA GCA GAA 
Glu 

GGA A 

GUG GCG GAG GGG G 
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Appendix III: SSM – Library size (top) and screening effort (bottom) 

 

Amino acid NNN NNK/NNS NDT 

Ala 4 2 0 

Arg 6 3 1 

Asp 2 1 1 

Asn 2 1 1 

Cys 2 1 1 

Glu 2 1 0 

Gln 2 1 0 

Gly 4 2 1 

His 2 1 1 

Ile 3 1 1 

Leu 6 3 1 

Lys 2 1 0 

Met 1 1 0 

Phe 2 1 1 

Pro 4 2 0 

Ser 6 3 1 

Thr 4 2 0 

Trp 1 1 0 

Tyr 2 1 1 

Val 4 2 1 

STOP 3 1 0 

Total codons 64 32 12 

Total amino acids 20 20 12 

Screening effort 190 CFU 94 CFU 34 CFU 

 

# NNS # codons # CFU # MTPs 

1 32 94 1 

2 1024 3066 32 

3 32768 98163 1023 

4 1048576 3141251 32721 
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Appendix IV: Amino acid terminology 

 

Amino acid 3-letter code 1-letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asp N 

Aspartic acid Asn D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 
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Every story has an end.  

But in life, every ending is just a new beginning. 
- Ray, Uptown girls (2003) 

 


