
Universiteit Gent
Faculteit Economie en Bedrijfskunde

Vakgroep Beleidsinformatica en Operationeel Beheer

Multi-Mode Resource-Constrained Project
Scheduling Problem
Metaheuristic Solution Procedures and Extensions

Vincent Van Peteghem

Proefschrift tot het bekomen van de graad van
Doctor in de Toegepaste Economische Wetenschappen: Handelsingenieur

Academiejaar 2009-2010

Universiteit Gent
Faculteit Economie en Bedrijfskunde

Vakgroep Beleidsinformatica en Operationeel Beheer

Promotor
Prof. dr. Mario Vanhoucke

Doctoral jury
Prof. dr. Marc De Clercq - Dean
Prof. dr. Patrick Van Kenhove - Academic Secretary
Prof. dr. Erik Demeulemeester - Katholieke Universiteit Leuven
Prof. dr. Luc Chalmet - Universiteit Gent/Universiteit Antwerpen
Prof. dr. Rainer Kolisch - Technische Universität München - Germany
Prof. dr. Francisco Ballestin - Public University of Navarra - Spain

Universiteit Gent
Faculteit Economie en Bedrijfskunde

Vakgroep Beleidsinformatica en Operationeel Beheer
Tweekerkenstraat 2
B-9000 Gent, België

Tel.: +32-9-264.35.17
Fax.: +32-9-264.42.86

Proefschrift tot het bekomen van de graad van
Doctor in de Toegepaste Economische Wetenschappen: Handelsingenieur

Academiejaar 2009-2010

Dankwoord

Our greatest weakness lies in giving up. The most certain way to
succeed is always to try just one more time.

Thomas Alva Edison

Hier ligt het dan. Mijn doctoraat. Mijn dagen schrijven van papers. Mijn
weken zoeken naar dat halve procentje verbetering. Mijn maanden van ploeteren in
code. En toch, nu alles neergeschreven, gelezen en herlezen is en het geheel netjes
is ingebonden, blijven vooral tientallen herinneringen over die niets - of slechts van
veraf - met het onderwerp van mijn doctoraat te maken hebben. De Brug. MISTA.
Ierland. Mails. Personeelscompetitie. Vlerick. Verloffiche. 12urenloop. Schriftje.
Seminariewerk. Deadlines. Apple. Restaurant zoeken. Assistants4Life. Poitiers.
Lesgeven. Weer Poitiers. Tübingen. Nog ééntje. Fiona. Bowlingkampioenschap.
9 mei 2007. Stukje taart. In order to. Tours. En vooral: nooit opgeven.

Toch zou dit doctoraat - en alle bijhorende herinneringen - er nooit geweest zijn
zonder de hulp van velen. Met dit dankwoord hoop ik dan ook allen die betrokken
zijn geweest bij dit doctoraat te bedanken.

Vooreerst een heel bijzonder woord van dank aan mijn promotor, prof. dr.
Mario Vanhoucke. Mario, het was voor mij een ongelofelijke eer om de afgelopen
jaren samen te werken met jou. Je deur stond altijd open om iets te vragen en
vele uren hebben we samen gespendeerd aan je ronde tafel. Je nooit aflatende
enthousiasme voor onderzoek trok me telkens opnieuw mee in die - toch wel -
wondere wereld van project management. We hebben even moeten zoeken hoe we
mijn onderzoek moesten aanpakken, maar telkens hebben we een nieuwe poging
ondernomen en doorgezet. Het gesprek dat we in Tübingen hebben gehad heeft
er ongetwijfeld voor gezorgd dat dit document hier vandaag ligt. Mario, bedankt
voor je steun, je hulp en de kansen die ik kreeg.

Ook een woord van dank aan prof. dr. Luc Chalmet. Luc, de afgelopen jaren
hebben we intensief samengewerkt aan de cursus Productie- en Logistiek beleid.
We hebben dit steeds aangepakt in onderlinge samenspraak en steeds kreeg ik
hierbij van jou alle kansen. Het deed me dan ook enorm veel plezier toen je lid
wou worden van mijn doctoraatsjury. Luc, bedankt voor de vlotte en aangename
samenwerking de afgelopen jaren.

Ook een woord van dank aan de andere leden van mijn examenjury, prof. dr.
Erik Demeulemeester, prof. dr. Rainer Kolisch en prof. dr. Francisco Ballestin.
Erik, net zoals vele anderen hier op onze onderzoeksgroep heb ik de basisknepen

ii

van operationeel onderzoek meegekregen tijdens je lessen in Leuven. Ze hebben
mee de basis gelegd voor dit doctoraat. Bedankt voor alle opmerkingen, feedback
en ondersteuning. Rainer, you are one of the persons cited the most in my dis-
sertation, so it meant a lot to me that you became a member of my doctoral jury.
Moreover, your very detailed and elaborate list of feedback significantly improved
the quality of my work. My sincere thanks to you. Francisco, thank you for cri-
tically revising my dissertation and for your insightful comments and suggestions
to increase the quality of this work.

Ook nog een woord van dank aan prof. dr. Johan Christiaens voor de kans
die hij mij vele jaren geleden geboden heeft om als assistent te starten aan deze
faculteit. Ondanks de korte periode dat we samengewerkt hebben, hou ik vele
fijne herinneringen over aan onze samenwerking.

Een stimulerende onderzoeksomgeving begint natuurlijk bij een goede werk-
omgeving. En daarom vooreerst een woord van dank aan de Universiteit Gent.
Meer dan tien jaar na mijn eerste les ben ik nog steeds ongelofelijk trots om aan
deze instelling te mogen studeren en werken. Het is voor mij in ieder geval een
grote eer geweest om deel uit te maken van deze universiteitsgemeenschap en ik
ben blij dat ik met dit doctoraat een beperkte bijdrage heb kunnen leveren aan de
verdere uitbouw van onze universiteit.

Graag wil ik dan ook alle collega’s aan onze vakgroep en faculteit van harte
bedanken voor de vele fijne en ontspannende momenten. Een speciaal woord van
dank aan mijn bureaugenoten Christophe, Jeroen, Thomas en Veronique. Hoewel
we soms de ’stille bureau’ genoemd worden, zorgden onze korte gesprekken steeds
voor de nodige afleiding. Ook mijn oude bureaugenoten en collega’s bij de vak-
groep accountancy wil ik graag bedanken voor de leuke tijd. Een speciaal woord
van dank ook aan mijn (ex-)collega’s Peter, Arne, Dieter, Frederik en Broos. Als
ik het even niet meer zag zitten, eens goed wou klagen of gewoon zin had in een
gesprek of een grap, kon ik steeds bij jullie terecht. Bedankt. Ook een heel groot
woord van dank aan het ondersteunend personeel: de mensen van het secretariaat
(Martine en Ann), het decanaat en het onderhoudspersoneel.

Dit doctoraat zou er ook niet gekomen zijn door (af en toe) te ontspannen.
Eén van mijn meest dierbare ontspanningen is ongetwijfeld De Pinte Leeft! Peter,
Lieven, Matthijs, Guy, Dieter en Peter, samen hebben we de afgelopen jaren heel
wat uit de grond gestampt. Ik hoop dat we ook in de toekomst onze doelstelling
kunnen blijven waarmaken, maar met een Pintenaer in de hand zal dit ongetwijfeld
lukken. Ook mijn collega-volleyballers wil ik bedanken. Aangezien onderzoek
dikwijls eenzaam is, heb ik altijd enorm genoten van de sfeer in onze ploeg, van
de punten tijdens de wedstrijd en de pinten erna...

Daarnaast zijn er een aantal mensen die ik heel bijzonder wil bedanken voor
hun onvoorwaardelijke steun de afgelopen jaren. Als ik belde, hen tegenkwam of
bij hen langsging, kon ik steeds alles tegen hen kwijt. Dus daarom een hele grote
dank-je-wel aan Matthijs, Wim, Jeroen, Helen, Nele, Peter en Stefaan.

Ook een bijzonder woord van dank aan Philippe en Luce. Het was leuk om op
elk moment welkom te zijn. Steeds mocht ik mee aanschuiven aan tafel en leefden
jullie mee met de vorderingen van mijn doctoraat. Bedankt!

iii

Ook mijn familie wil ik danken voor de steun en in het bijzonder mijn grootou-
ders. Grootouders zijn met hun financiële beloningssysteem dikwijls de grootste
motivator voor goede studieprestaties, maar dat waren hun interesse en meele-
ven evenzeer. De strenge, maar goedkeurende blik van pepe, de korte bezoekjes
bij oma net voor ik naar een examen vertrok en de steeds terugkerende vragen
van Bobo, elk zorgden ze voor de nodige stimulans. Ook mijn allerliefste zusjes
mogen niet ontbreken in dit dankwoord. Julie en Elisa, hoewel ik mij het waar-
schijnlijk nog vaak zal beklagen, ik kan alleen maar zeggen dat ik mij geen betere
zussen kan indenken. Steeds stonden jullie klaar om mij te helpen, af en toe met
volle goesting, maar ongetwijfeld vaak tegen jullie zin. Toch kon ik steeds op jullie
rekenen. Bedankt Jules en Lizie, ook voor het nalezen van dit doctoraat.

Tot slot wil ik zeker mijn papa en mama bedanken. Ik was waarschijnlijk niet
altijd de gemakkelijkste. Ik vertelde nooit waar ik mee bezig was of gaf enkel mijn
standaardantwoord ’een beetje’ als jullie vroegen ’vlot het een beetje?’. Toch hoop
ik dat dit doctoraat ook voor jullie een bekroning is voor de manier waarop jullie
me al die jaren steunden en ondersteunden. Ik ben jullie in ieder geval ontzettend
dankbaar voor alles.

Save the best for last! Evelyn, wie had dit ooit gedacht toen we elkaar iets meer
dan drie jaar geleden voor de eerste keer kruisten. We hebben sindsdien samen al
heel wat beleefd, genoten en afgelachen. Je steun heeft me de afgelopen maanden
geholpen om te blijven doorgaan. Bedankt om er steeds te zijn voor mij. Laten we
elkaar nog lang gelukkig maken!

Gent, 28 mei 2010
Vincent Van Peteghem

Table of Contents

Dankwoord i

Nederlandse samenvatting xix

English summary xxiii

1 Introduction 1

I Metaheuristics for the MRCPSP 5

2 The Multi-mode Resource-constrained Project Scheduling Problem 7
2.1 Introduction . 7
2.2 Problem formulation . 8
2.3 Example . 10
2.4 Definitions . 10
2.5 Literature overview . 18

2.5.1 Exact solution procedures 18
2.5.2 Heuristic solution procedures 19
2.5.3 Metaheuristic solution procedures 19

2.5.3.1 Classification criteria 19
2.5.3.2 Metaheuristic solution procedures 20

2.6 Conclusions . 25

3 Metaheuristic Solution Procedures for the MRCPSP 27
3.1 Introduction . 27
3.2 Classification . 29

3.2.1 Classification criteria . 29
3.2.2 Classification of the proposed metaheuristics 31

3.3 Genetic algorithm . 33
3.3.1 Introduction . 33
3.3.2 Representation . 34
3.3.3 Extended generation scheme 35
3.3.4 Details of the genetic algorithm 37

3.3.4.1 Initial population 37
3.3.4.2 Evaluation . 38

vi

3.3.4.3 Parent selection 40
3.3.4.4 Crossover . 40
3.3.4.5 Mutation . 40
3.3.4.6 Update . 41

3.3.5 Computational results 41
3.3.6 Conclusions . 42

3.4 Artificial Immune System . 44
3.4.1 Introduction . 44
3.4.2 AIS algorithm for the MRCPSP 44

3.4.2.1 Initial population 45
3.4.2.2 Clonal selection process 47
3.4.2.3 Affinity maturation 48

3.4.3 Computational results 49
3.4.4 Conclusions . 50

3.5 Scatter Search . 50
3.5.1 Introduction . 50
3.5.2 Resource scarceness matrix 51
3.5.3 Scatter search . 53

3.5.3.1 The Diversification Generation Method 54
3.5.3.2 The Subset Generation Method 56
3.5.3.3 The Solution Combination Method 56
3.5.3.4 The Improvement Method 56
3.5.3.5 The Reference Set Update Method 58
3.5.3.6 Local searches 58

3.5.4 Computational results 60
3.5.4.1 Dataset generation 60
3.5.4.2 Impact of the algorithmic parameters 61
3.5.4.3 Influence of the improvement method 61
3.5.4.4 Introduction of local searches 64
3.5.4.5 An integrated solution procedure for the MRCPSP 64

3.5.5 Conclusions . 65
3.6 Conclusions . 65

4 New Dataset for the MRCPSP 67
4.1 Introduction . 67
4.2 Analysis of the current benchmark datasets 68
4.3 A New Dataset for the MRCPSP 70

4.3.1 Generation conditions 70
4.3.2 Dataset generation . 71
4.3.3 Dataset characteristics 71
4.3.4 Download . 72

4.4 Conclusions . 73

vii

5 Comparative Results for the MRCPSP 75
5.1 Introduction . 75
5.2 Methodology . 76
5.3 Computational comparison . 76

5.3.1 Test design . 76
5.3.2 Experimental results . 78

5.3.2.1 Results of the PSPLIB and Boctor dataset . . . 78
5.3.2.2 MMLIB* and MMLIB+ 79

5.4 Discussion and conclusions . 81

II Extensions to the MRCPSP 89

6 Preemption 91
6.1 Introduction . 91
6.2 Problem formulation . 92
6.3 Solution procedure . 93
6.4 Computational results . 94
6.5 Conclusions . 96

7 Introduction of Learning Effects 99
7.1 Introduction . 99

7.1.1 Literature overview . 100
7.1.2 Modeling . 102

7.2 DTRTP . 104
7.2.1 Problem formulation . 104
7.2.2 Learning effects in the DTRTP 106

7.3 Solution approach . 108
7.3.1 Solution procedure . 108
7.3.2 Results . 109

7.4 Experimental design . 110
7.4.1 Schedule generation . 110
7.4.2 Research design . 111
7.4.3 Dataset . 113

7.5 Computational results . 114
7.5.1 Impact of learning on the project baseline schedule 114
7.5.2 Margin of error during project progress 116
7.5.3 Benefits of early knowledge of learning effects 117

7.6 Conclusions . 119

8 Case Study: Audit Scheduling 121
8.1 Introduction . 121
8.2 Audit scheduling problem . 122

8.2.1 Description . 122
8.2.2 Example project . 125

viii

8.2.3 Mathematical formulation 128
8.3 Solution approach . 132

8.3.1 Representation . 132
8.3.2 Schedule generation scheme with dynamic priority rules . 133
8.3.3 Algorithmic details . 134

8.4 Computational results . 134
8.4.1 Audit firm . 135
8.4.2 Analysis . 135

8.4.2.1 Scenario 1 . 136
8.4.2.2 Scenario 2 . 136
8.4.2.3 Scenario 3 . 137

8.5 Conclusions . 138

9 Conclusions and Future Research 141
9.1 Introduction . 141
9.2 Metaheuristic procedures for the MRCPSP 142
9.3 Extensions for the MRCPSP . 144
9.4 General reflections . 146

List of Figures

2.1 Network of the example project 10
2.2 Schedules of the example project 14
2.3 Schedules of the example project 16

3.1 Procedure of the bi-population genetic algorithm 33
3.2 Schedule of the example project 34
3.3 Mode improvement of activity 4 37
3.4 Mode improvement of activity 7 37
3.5 Optimal solution . 38
3.6 Artificial Immune System: procedure 45
3.7 Relationship between makespan and value of the mode assignment

characteristic . 46
3.8 The resource scarceness matrix 53
3.9 A conceptual overview of the scatter search procedure 55
3.10 Solution improvement methods 59
3.11 Distribution of the most effective improvement methods over the

resource scarceness matrix . 62
3.12 Influence of the local searches on the resource scarceness matrix . 65

4.1 Frequency table for the project instance characteristics 70

5.1 Computational performance on MMLIB50 86
5.2 Computational performance on MMLIB100 87
5.3 Computational performance on MMLIB+ 88

6.1 Feasible schedule P-MRCPSP 93
6.2 Optimal solution for the example project for the P-MRCPSP . . . 94

7.1 Mathematical modeling of average and real efficiency curves and
the number of working days and man-days with and without learning105

7.2 Efficiency curve of example project 107
7.3 Different schedules for the example project 112
7.4 Mode and schedule information for the example project 112
7.5 Research design: 3 comparative schedules 113

8.1 Influence of the setup time on audit team switches 125

x

8.2 Audit scheduling example: a feasible solution 128
8.3 Multiple project scheduling problem 133
8.4 Influence of the setup time on audit team switches 137
8.5 Objective function values for different values of the setup time . . 138

List of Tables

2.1 Information of the example project 11
2.2 Activity list . 11
2.3 Random key . 12
2.4 Mode list . 12
2.5 Mode vector . 12
2.6 Crossover and mutation operator 15
2.7 Classification metaheuristics . 21

3.1 Classification of the metaheuristics 32
3.2 Pseudocode of the mode optimization procedure for activity i . . . 36
3.3 Results for the training set - configuration of the algorithm - aver-

age % deviation critical path length - 5,000 schedules 43
3.4 Average % deviation from minimal critical path 50
3.5 Parameter setting for the different datasets 61
3.6 Influence of initial mode generation and distance functions 61
3.7 Influence of the improvement methods and local searches 63

4.1 Overview of the characteristics of PSPLIB and Boctor 68
4.2 Overview of the characteristics of PSPLIB and Boctor 69

5.1 Results of all procedures in the literature (original results and our
coded results) . 77

5.2 Average deviation from optimum/critical path lower bound for PSPLIB
and Boctor instances after 5,000 schedules 80

5.3 Average deviation from minimal critical path based lower bound -
MMLIB50 . 83

5.4 Average deviation from minimal critical path based lower bound -
MMLIB100 . 84

5.5 Average deviation from minimal critical path based lower bound -
MMLIB+ . 85

6.1 Results for different datasets with and without preemption - 5,000
schedules . 95

6.2 Results for the MMLIB dataset with and without preemption -
5,000 schedules . 97

xii

7.1 Duration and total work content with and without learning 108
7.2 Comparative results for DTRTP without learning effects (1 sec) . . 110
7.3 Average relative deviation between CLmax and COmax 115
7.4 Frequency table for the relative deviation between CRmax and COmax 117
7.5 Rescheduling methods and decision moments - average improve-

ment (as % of maximum improvement) 118

8.1 Audit team: requirements and efficiency measures 126
8.2 Audit task durations . 126
8.3 Mode identity constraints . 126
8.4 Variables for the audit scheduling problem 129
8.5 Results after 5,000 schedules . 136

List of Acronyms

A

AIS Artificial Immune System
AL Activity list

B

BPGA Bi-Population Genetic Algorithm

C

CNC Coefficient of Network Complexity
CP Critical Path
CPIM Critical Path Improvement Method
CPU Computer Processing Unit
CSLB Critical Sequence Lower Bound

D

DTRTP Discrete Time/Resource Tradeoff Problem

E

ERR Excess of Resource Request

xiv

F

FIM Feasibility Improvement Method

G

GA Genetic Algorithm

L

LB Lower Bound
LFT Latest Finish Time
LST Latest Start Time

M

MAP Mode Assignment Problem
MASSP Medium-term Audit-staff Scheduling Problem
ML Mode List
MMLIB Multi-mode Library
MRCPSP Multi-mode Resource-constrained Project Scheduling

Problem
MRCPSP/R Multi-mode Resource-constrained Project Scheduling

Problem with Renewable resources
MV Mode Vector

N

NP Non-deterministic Polynomial-time

xv

O

OS Order Strength

P

PMBOK Project Management Body Of Knowledge
PS Particle Swarm
PSPLIB Project scheduling problem library
P-MRCPSP Preempted Multi-mode Resource-Constrained Project

Scheduling Problem

R

R Renewable resources
RC Resource constrainedness
RCPSP Resource-constrained Project Scheduling Problem
RF Resource Factor
RK Random key
RNR Renewable and Nonrenewable resources
RS Resource Strength
RWK Remaining Work Content

S

SA Simulated Annealing
SGS Schedule Generation Scheme
SLK Slack
SS Scatter search
SUM Sum of durations

T

TO Topological ordering

xvi

TS Tabu Search
TWC Total Work Content

W

WC Work Content
WCIM Work Content Improvement Method

Nederlandse samenvatting

Operations research (OR) heeft als doel processen binnen organisaties te verbete-
ren of te optimaliseren met behulp van hiervoor ontwikkelde technieken en mo-
dellen. De discipline kende zijn oorsprong tijdens WOII, toen aan de hand van
wiskundige modellen de logistieke bevoorrading van militair materiaal en goede-
ren werd gepland. In de jaren na de oorlog ontwikkelde OR zich ten volle en tot op
vandaag worden technieken en procedures ontwikkeld om complexe problemen in
de bedrijfswereld, de maatschappij en de industrie te analyseren en te optimalise-
ren.

Eén van de onderzoeksdomeinen waarbinnen OR actief is, is project mana-
gement. Project management kan omschreven worden als het geheel van kennis,
vaardigheden, tools en technieken om een project zo te plannen dat het aan alle
projecteisen voldoet. Een project kan gedefinieerd worden als een tijdelijke in-
spanning met als doel het creëren van een uniek product of een unieke service
(PMBOK). De bouw van piramides in Egypte, de ontwikkeling van een iPhone-
applicatie, het schrijven van een doctoraat, de organisatie van een verkiezingscam-
pagne of het bouwen van een huis zijn allemaal typische voorbeelden van projec-
ten.

De voorbije jaren is het belang van project management enorm toegenomen.
Tientallen boeken over project management zijn verschenen en project software
pakketten zijn ontwikkeld of uitgebreid met nieuwe planningsmogelijkheden. Bo-
vendien zijn verschillende planningsproblemen reeds uitvoerig bestudeerd in de
academische literatuur en zijn talloze exacte, heuristische of metaheuristische op-
lossingsmethodes voorgesteld.

Eén van die planningsproblemen is het zogenaamde ’multi-mode resource-
constrained project scheduling probleem’, waarbij getracht wordt een project in
een zo kort mogelijke duurtijd te plannen, rekening houdend met de volgordere-
laties tussen de verschillende activiteiten én met de beschikbare hernieuwbare en
niet-hernieuwbare middelen. Voor elk van de activiteiten zijn er bovendien meer-
dere uitvoeringsmogelijkheden.

Dit doctoraat is opgedeeld in twee delen. In een eerste deel worden drie meta-
heuristische oplossingsprocedures en een nieuwe dataset voorgesteld, terwijl in
het tweede deel verschillende meer praktische concepten worden geı̈ntroduceerd.
Dit werk wordt afgesloten met een algemene conclusie en enkele suggesties voor
verder onderzoek.

Deel I van dit doctoraat start met een introductie van het multi-mode resource-
constrained project scheduling probleem en een overzicht van de beschikbare li-

xx NEDERLANDSE SAMENVATTING

teratuur. Aan de hand van een voorbeeld worden enkele veelgebruikte termen in
de project planning literatuur voorgesteld. Vervolgens worden drie oplossingsme-
thodes ontwikkeld: een genetisch algoritme (GA), een artificieel immuun systeem
algoritme (AIS) en een scatter search algoritme (SS).

Het voorgestelde genetisch algoritme verschilt van andere genetische oplos-
singsmethodes aangezien het gebruik maakt van twee populaties, één met left-
justified schedules (waarbij alle activiteiten zo vroeg mogelijk gepland worden)
en één met right-justified schedules (waarbij alle activiteiten zo laat mogelijk ge-
pland worden). Het algoritme maakt ook gebruik van een generatieschema dat is
uitgebreid met een methode die de gekozen mode van een activiteit tracht te opti-
maliseren door te kiezen voor de mode die resulteert in de laagst mogelijke eindtijd
voor die activiteit.

De AIS procedure is gebaseerd op de principes van het menselijke immuun
systeem. Wanneer ziektekiemen het menselijke lichaam binnendringen zullen de
antigenen die in staat zijn om de ziektekiemen te bestrijden, zich vermenigvuldigen
om op die manier zo snel mogelijk de ziekte te doen verdwijnen. Ditzelfde principe
wordt toegepast in deze oplossingsmethode, die bovendien een procedure bevat om
op een gecontroleerde manier de initiële populatie te genereren. Deze procedure
is gebaseerd op experimentele resultaten die een link aantonen tussen bepaalde
eigenschappen van de gekozen modes en de uiteindelijke duurtijd van het project.

Een laatste algoritme is een scatter search algoritme. Deze procedure maakt ge-
bruik van verschillende verbeteringsmethodes die elk aangepast zijn aan de speci-
fieke eigenschappen van de verschillende hernieuwbare en niet-hernieuwbare mid-
delen. Aan de hand van parameters die de beperktheid van de middelen aangeeft,
wordt de procedure gestuurd in de richting van de meest efficiënte verbeterings-
methode en op die manier wordt een zo optimaal mogelijke oplossing gezocht.

Elk van de voorgestelde procedures behaalde uitstekende resultaten op de be-
staande benchmark datasets. Deze sets vertonen evenwel enkele beperkingen ge-
zien de huidige evolutie in de ontwikkeling van metaheuristische oplossingsme-
thodes. Om die reden werd een nieuwe, verbeterde dataset ontwikkeld, die on-
derzoekers in staat moet stellen om hun oplossingen te vergelijken met andere
procedures.

Om een vergelijking te kunnen maken tussen alle bestaande oplossingsmetho-
des hebben we elk algoritme dat beschikbaar is in de literatuur gecodeerd en getest
op de bestaande en nieuwe datasets. Door alle testen uit te voeren op eenzelfde
computer en met eenzelfde stopcriterium zijn we in staat geweest een duidelijke
en faire vergelijking te maken. Onze voorgestelde algoritmes presteren bovendien
uitstekend.

In het tweede deel van dit doctoraat worden een aantal uitbreidingen onder de
loep genomen. Zo wordt in het eerste hoofdstuk van dit tweede deel de invloed
nagegaan van het onderbreken van activiteiten: activiteiten kunnen dan op elke
tijdstip stopgezet worden om later, zonder bijkomende kost, herstart te worden. De
introductie van deze uitbreiding leidt tot een significante daling van de gemiddelde
duurtijd van een project vergeleken met de situatie waarin geen onderbrekingen
toegelaten worden.

SUMMARY IN DUTCH xxi

Een andere uitbreiding is de introductie van leereffecten in een projectomge-
ving. Hierbij wordt verondersteld dat een persoon efficiënter wordt naarmate hij
of zij langer aan een activiteit werkt. Dit leerconcept wordt vanuit drie verschil-
lende hoeken bekeken. Ten eerste wordt nagegaan wat de invloed is van de in-
troductie van het leerconcept op de totale duurtijd van een project en worden de
verschillende parameters die hierop een invloed hebben geanalyseerd. Ten tweede
bekijken we welke foutenmarge er moet aangenomen worden wanneer men geen
rekening houdt met het leerconcept en tot slot achterhalen we dat door het tijdig
incorporeren van de leereffecten significante verbeteringen kunnen gerealiseerd
worden.

In het laatste deel van dit doctoraat wordt het genetisch algoritme uit deel I
gebruikt om de planning van een audit kantoor te optimaliseren. In deze plan-
ning dienen audit teams toegewezen te worden aan verschillende audit taken. Er
kan duidelijk aangetoond worden dat met het gebruik van optimalisatietechnieken
significante verbeteringen kunnen gemaakt worden in de planning van de audit
teams.

De bijdrage van dit doctoraat is drievoudig. Ten eerste werden drie state-
of-the-art algoritmes gepresenteerd die in staat zijn om het multi-mode resource-
constrained project scheduling probleem op een heel efficiënte manier op te lossen.
Bovendien werd telkens specifieke project informatie gebruikt om de efficiëntie
van de procedure te verhogen. Ten tweede werden verschillende stappen onder-
nomen om dit probleem uit te breiden naar meer realistische planningsproblemen.
Het toelaten van het onderbreken van activiteiten en de introductie van leereffec-
ten leidden tot nieuwe inzichten in het onderzoek van project planning. Tot slot
worden met de ontwikkeling van een nieuwe dataset onderzoekers aangemoedigd
om hun resultaten te vergelijken met die van andere procedures. Met deze nieuwe
dataset is tevens de basis gelegd voor verder onderzoek van dit interessante plan-
ningsprobleem.

English summary

In the literature, a project is often described as a temporary endeavor undertaken
to create a unique product or service. The management of those projects is accom-
plished through the use of the process of initiating, planning, executing, control-
ling and closing (PMBOK). To guide projects to success, it is important to con-
struct feasible and cost-efficient schedules. Different research fields within project
scheduling have been explored during recent years and a large set of exact, heuris-
tic and metaheuristic solution procedures have been designed in order to tackle a
wide variety of project scheduling problems.

In this work, we study the multi-mode resource-constrained project scheduling
problem, which is a generalization of the resource-constrained project schedul-
ing problem. Each activity in the project can be performed in different sets of
modes, with specific activity durations and resource requirements. The objective
of the MRCPSP is to find a mode and a start time for each activity such that the
makespan is minimized and the schedule is feasible with respect to the precedence
and renewable and nonrenewable resource constraints.

The work consists of two main parts. In the first part, three metaheuristic
solution procedures are presented and a new benchmark dataset is proposed. In
the second part, several practical concepts are introduced in order to take steps
towards real-life scheduling problems. This work is concluded with an overall
conclusion and several suggestions for further research.

Part I starts with an introduction of the problem under study. An overview
of the available metaheuristic solution procedures is given and several concepts
and definitions used in this work are explained and illustrated with an example.
Furthermore, three new metaheuristic solution procedures are presented, i.e. a
genetic algorithm, an artificial immune system and a scatter search procedure.

The genetic algorithm makes use of two separate populations and extends the
serial schedule generation scheme by introducing a mode improvement procedure.
This procedure improves the mode selection by choosing the feasible mode of a
certain activity that minimizes the finish time of the activity. The artificial immune
system algorithm makes use of mechanisms inspired by the vertebrate immune
system, such as hypermutation and proliferation. A controlled mode assignment
procedure is set up in order to generate the initial population. This procedure is
based on experimental results which reveal a link between predefined mode list
characteristics and the project makespan. Finally, the scatter search is executed
with different improvement methods, each tailored to the specific characteristics
of different renewable and nonrenewable resource scarceness values. These re-

xxiv ENGLISH SUMMARY

source parameters have been introduced in project scheduling literature to measure
a project instance’s resource scarceness and are incorporated in the search process
of the scatter search procedure.

All procedures proved to be very successful on the currently available bench-
mark datasets, the PSPLIB dataset (Kolisch et al., 1995) and the dataset proposed
by Boctor (1993). However, these datasets show some shortcomings given the
recent evolution in the development of metaheuristic search procedures. We there-
fore propose a new benchmark dataset MMLIB to overcome the disadvantages
of the current datasets. This new dataset can be used by researchers to compare
the results of their solution procedures with other procedures. In order to make a
fair comparison between all metaheuristic solution procedures on the same com-
puter and for the same stop criteria, we also code each algorithm available in the
literature and test their performance on each of the three benchmark datasets.

In Part II of this work, we introduce several practical concepts in order to
take steps towards real-life scheduling procedures. One of these practical concepts
is preemption, in which is it possible to preempt an activity at any integer time
instance and restart it later on at no additional cost. In order to allow activity pre-
emption, the original activity network is converted into a new network, in which
each activity is split into subactivities with a unit duration of 1. The introduc-
tion of preemption leads to a significant decrease in the average project makespan
compared to the non-preempted case.

Another concept deals with the assumption that productivity and efficiency
changes can occur during project execution due to the effect of learning, the pro-
cess of acquiring experience while performing an activity. This concept of activity-
specific learning, in which the resources become more efficient the longer they stay
on the job, is examined from various angles. The concept is introduced in the dis-
crete time/resource trade-off problem, in which each activity contains a specific
work content in terms of working days, instead of a fixed duration and resource
requirement. For each activity, a set of execution modes can be specified by us-
ing different combinations of durations and resource requirements, as long as the
specified work content is met. Computational tests find a significant influence
of the introduction of learning effects in project scheduling and reveal the main
project drivers that affect the project makespan when learning effects are intro-
duced. Moreover, the margin of error made by ignoring learning during schedule
construction is measured. Finally, it is shown that timely incorporating learning
during the project progress leads to significant makespan improvements.

In the last chapter of this work, an attempt is made to use the genetic algorithm
designed for the MRCPSP to solve a real-life audit scheduling problem, which
consists of generating an appropriate audit team schedule for a small Belgian audit
firm. Although the algorithm is applied on a simplification of a practical planning
problem, the introduction of optimization techniques significantly improves the
efficiency of the audit team schedule.

The contribution of this dissertation is threefold. First, three state-of-the-arts
metaheuristics are presented to solve the MRCPSP. Our genetic algorithm, arti-
ficial immune system and scatter search procedure generated excellent results.

ENGLISH SUMMARY xxv

Moreover, the use of problem specific information in the local search process,
such as the use of resource scarceness parameters in the scatter search procedure,
increased the efficiency of the procedure significantly. Second, several efforts were
made to include practical concepts in order to take steps towards real-life schedul-
ing problems. The introduction of preemption and learning led to new interesting
insights in project scheduling research. Finally, the new dataset will facilitate and
motivate researchers to investigate and develop new ideas and techniques to solve
the MRCPSP. Researchers are encouraged to use this dataset to compare the re-
sults of their solution procedures with other procedures. The generation of this
new dataset makes room for further research on this interesting and challenging
research topic.

1
Introduction

As a formal discipline, Operations Research originated as the mathematical sched-
uling of a massive project logistically supplying Europe with military equipment
and goods during WWII (Józefowska and Weglarz, 2006). In the decades after the
war, the discipline expanded into a field widely used to solve, analyze and optimize
complex problems in business, society and industry. The developed techniques and
procedures were and are applied in industries ranging from petrochemistry to air-
lines, finance, logistics and government, and operations research has become an
area of active academic and industrial research (Hillier and Lieberman, 2005).

One of the research fields on which operational research techniques are ap-
plied is project management. Project management is the application of knowl-
edge, skills, tools, and techniques to project activities to meet project requirements.
Project management is accomplished through the use of the process of initiating,
planning, executing, controlling and closing (PMBOK, 2004). A project can be
defined as a set of activities with a defined start point and defined end state, which
pursues a defined goal and uses a defined set of resources (Slack et al., 2009).
The examples of projects are countless. The construction of the Burj Khalifa (the
tallest man-made structure ever built), the development of an iPhone application,
the building of the pyramids in Egypt, the construction of the wind park on the
Thorntonbank, the organization of an electoral campaign or the construction of a
house are all examples of projects.

During the past decades, the importance of project management continues to

2 INTRODUCTION

grow rapidly. Many books on project management have been published1, new
project management software is developed, software packages have been expanded
with new scheduling capabilities and new techniques for measuring project pro-
gress have been developed. The gap between the theory and practice is reduced
due to the popularization of project management research. In other words, project
management is booming.

Project scheduling has also been an attractive research topic during the past
decades. Project scheduling stems from machine scheduling, in which a group
of tasks should be assigned to a machine or resource. Different research fields
within project scheduling have been explored during recent years and a large set
of exact, heuristic and metaheuristic solution procedures have been designed in
order to tackle a wide variety of project scheduling problems.

In this work, we study the multi-mode resource-constrained project sched-
uling problem (MRCPSP), which is a generalization of the resource-constrained
project scheduling problem (RCPSP). Due to the resource constraints, this prob-
lem is known to be NP-hard (Blazewicz et al., 1983), meaning that optimal solu-
tion procedures can only be used for relatively simple problem instances, while
(meta)heuristic procedures will be needed for large-sized projects.

For the MRCPSP, many exact, heuristic and metaheuristic solution procedures
are proposed in recent years. Each of these procedures is tested on different sets
of instances for different stop criteria which makes it difficult to present a fair
comparison between the different procedures. The aim of this dissertation is to
construct new state-of-the-art metaheuristic solution procedures for the MRCPSP
and to make a fair comparison between the different metaheuristic solution proce-
dures available in the literature. Moreover, the current benchmark datasets, which
are used to test the efficiency and performance of the solution procedures, show
some shortcomings given the recent evolution in the development of metaheuristic
search procedures. We therefore propose a new dataset, which aims to overcome
the drawbacks of these datasets.

We also introduce several practical concepts in order to take steps towards
real-life scheduling procedures. One of these practical concepts is preemption, in
which it is possible to preempt an activity at any time and restart it later on at
no additional cost. Another concept deals with the assumption that productivity
and efficiency changes can occur during project execution due to the effect of
learning, which indicates the process of acquiring experience while performing an
activity. The introduction of these concepts leads to new interesting insights in
project scheduling research. In a case study, we apply one of our metaheuristic
approaches on a real-life audit scheduling problem, which consists of generating
an appropriate audit team schedule for a small Belgian audit firm.

The remainder of this work is structured as follows. Part I starts with the for-

1We refer the interested reader to Vanhoucke (2010), amongst many others.

INTRODUCTION 3

mulation of the MRCPSP (chapter 2). In chapter 3, three metaheuristic solution
procedures for the MRCPSP are proposed, while in chapter 4 a new dataset for
the MRCPSP is proposed. In chapter 5, a fair comparison of the different solu-
tion procedures is made which gives an indication of the performance of our own
procedures and classifies all procedures according to similar stop criteria.

In part II, two extensions on the MRCPSP are presented. In chapter 6, the
introduction of preemption is discussed, while in chapter 7, the influence of the
introduction of learning effects on the project makespan is investigated. In chapter
8, a model for an audit scheduling problem with sequence-dependent setup times
and different audit team efficiencies is proposed and the results for a real-life audit
office scheduling problem are presented. In the last chapter, overall conclusions
and suggestions for future research are presented.

Publications

Parts of this dissertation have already been presented at international conferences
or have been published in international journals.

Publications in international journals

• Van Peteghem, V. and Vanhoucke, M., 2009, ”An Artificial Immune System
for the Multi-mode Resource-Constrained Project Scheduling Problem”, Lec-
ture Notes in Computer Science, 5482, 85-96.

• Van Peteghem, V. and Vanhoucke, M., 2010, ”A Genetic Algorithm for the
Preemptive and Non-preemptive Multi-mode Resource-Constrained Project
Scheduling Problem”, European Journal of Operational Research, 201, 409-
418.

Unpublished working papers

• Van Peteghem, V. and Vanhoucke, M., 2009, ”Using Resource Scarceness
Characteristics to Solve the Multi-Mode Resource-Constrained Project Sche-
duling Problem”, Working paper 09/595

• Van Peteghem, V. and Vanhoucke, M., 2010, ”Introducing Learning Effects
in Resource-Constrained Project Scheduling”, Working paper 10/633

• Van Peteghem, V. and Vanhoucke, M., 2010, ”An Experimental Investi-
gation of Metaheuristics for the Multi-Mode Resource-Constrained Project
Scheduling on New Dataset Instances”, Working paper

4 INTRODUCTION

Presentations at conferences

• Van Peteghem, V. and Vanhoucke, M., 2007, ”A Genetic Algorithm for the
Multi-Mode Resource-constrained Project Scheduling Problem”, Paper pre-
sented at the 22nd European Conference on Operational Research – Prague
(Czech Republic)

• Van Peteghem, V. and Vanhoucke, M., 2008, ”A Comparison of Various
Population-based Meta-heuristics to Solve the MRCPSP”, Paper presentated
at the 11th International Workshop on Project Management and Scheduling
– Istanbul (Turkey)

• Van Peteghem, V. and Vanhoucke, M., 2009, ”An Artificial Immune System
for the Multi-mode Resource-Constrained Project Scheduling Problem”, Pa-
per presented at the 9th European Conference on Evolutionary Computation
in Combinatorial Optimization – Tübingen (Germany)

• Van Peteghem, V. and Vanhoucke, M., 2009, ”Introduction of Learning Ef-
fects in Resource-constrained Projects”, Paper presented at the 23th Euro-
pean Conference on Operational Research – Bonn (Germany)

• Van Peteghem, V. and Vanhoucke, M., 2010, ”Learning Effects under Dif-
ferent Project Settings”, Paper presented at the 12th International Workshop
on Project Management and Scheduling – Tours (France)

• Van Peteghem, V. and Vanhoucke, M., 2010, ”An Experimental Investi-
gation of Meta-heuristics for the Multi-mode Resource-constrained Project
Scheduling on new Dataset Instances”, Paper presented at the 24th European
Conference on Operational Research – Lisbon (Portugal)

• Van Peteghem, V. and Vanhoucke, M., 2010, ”Audit-staff Scheduling with
Alternative Audit Teams and Setup Times”, Paper presented at the 24th Eu-
ropean Conference on Operational Research – Lisbon (Portugal)

Part I

Metaheuristics for the
MRCPSP

2
The Multi-mode Resource-constrained

Project Scheduling Problem

2.1 Introduction

Resource-constrained project scheduling has been a research topic for many dec-
ades, resulting in a wide variety of optimization procedures. The main focus on
project lead time minimization has led to the development of various exact and
(meta)heuristic procedures for scheduling projects with tight resource constraints
under a wide variety of assumptions. The basic problem type in project schedul-
ing is the well-known resource-constrained project scheduling problem (RCPSP).
This problem type aims at minimizing the total duration or makespan of a project
subject to precedence relations between the activities and the limited renewable
resource availabilities, and is known to be NP-hard (Blazewicz et al., 1983).

The multi-mode RCPSP (MRCPSP) is a generalized version of the RCPSP,
where each activity can be performed in different sets of modes, with a specific ac-
tivity duration and resource requirements. Three different categories of resources
can be distinguished (Slowinski et al., 1994): renewable resources, which are lim-
ited per time-unit (e.g. manpower, machines), nonrenewable resources, which are
limited for the entire project (e.g. budget) and doubly constrained resources, which
are limited both per time-unit and for the total project duration (e.g. cash-flow per
time-unit). Since doubly constrained resources can be considered as a combination
of renewable and nonrenewable resources, we do not consider them explicitly. The
objective of the MRCPSP is to find a mode and a start time for each activity such

8 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

that the makespan is minimized and the schedule is feasible with respect to the
precedence and renewable and nonrenewable resource constraints. As this prob-
lem is a generalization of the RCPSP, the MRCPSP is also NP-hard. Moreover, if
there is more than one nonrenewable resource, the problem of finding a feasible
solution for the MRCPSP is NP-complete (Kolisch and Drexl, 1997). The prob-
lem is denoted as m, 1T |cpm, disc,mu|Cmax using the classification scheme of
Herroelen and De Reyck (1999) and is denoted as MPS|prec|Cmax by Brucker
et al. (1999).

In this chapter, an overview is given of the MRCPSP. In section 2.2, a general
formulation of the problem is described. In section 2.3, an example project is pre-
sented which is used to explain the concepts and terminology which are presented
in section 2.4. This chapter concludes with an extended overview of the current
literature on the MRCPSP.

2.2 Problem formulation

The MRCPSP can be stated as follows. The project is represented as an activity-
on-the-node network G(N,A), where N is the set of activities and A is the set
of pairs of activities between which a finish-start precedence relationship with a
minimal time lag of 0 exists. A set of activities, numbered from 1 to |N | with
a dummy start node 0 and a dummy end node |N | + 1, is to be scheduled on a
set Rρ of renewable and Rν of nonrenewable resource types. Each activity i ∈
N is performed in a mode mi, which is chosen out of a set of |Mi| different
execution modes Mi = {1, ..., |Mi|}. The duration of activity i, when executed
in mode mi, is dimi . Each mode mi requires rρimik renewable resource units
(k ∈ Rρ). For each renewable resource k ∈ Rρ, the availability aρk is constant
throughout the project horizon. Activity i, executed in mode mi, will also use
rνimil nonrenewable resource units (l ∈ Rν) of the total available nonrenewable
resource aνl . A schedule S is defined by a vector of activity start times si and a
vector denoting its corresponding execution modes mi. A schedule is said to be
feasible if all precedence and renewable and nonrenewable resource constraints
are satisfied. The objective of the MRCPSP is to minimize the makespan of the
project.

The MRCPSP can be conceptually formulated as follows:

Min. s|N |+1 (2.1)

CHAPTER 2 9

s.t.

si + dimi ≤ sj ∀(i, j) ∈ A (2.2)∑
i∈S(t)

rρimik ≤ a
ρ
k ∀k ∈ Rρ,∀mi ∈Mi (2.3)

|N |∑
i=1

rνimil ≤ a
ν
l ∀l ∈ Rν ,∀mi ∈Mi (2.4)

mi ∈Mi ∀i ∈ N (2.5)

s0 = 0 (2.6)

si ∈ int+ ∀i ∈ N (2.7)

where S(t) denotes the set of activities in progress in period [t − 1, t[, t ∈
{1, ..., s|N |+1}. The objective function 2.1 minimizes the total makespan of the
project. Constraint set 2.2 takes the finish-start precedence relations with a mini-
mal time lag of 0 into account. Constraints 2.3 and 2.4 take care of the renewable
and nonrenewable resource limitations, respectively. Each activity i has to be per-
formed in exactly one mode mi (constraint 2.5). Constraint 2.6 forces the project
to start at time instance 0 and constraint 2.7 ensures that the activity start times
assume nonnegative integer values. A schedule which fulfills all the constraints
2.1 to 2.7, is called optimal.

The MRCPSP can be divided into two subproblems: a first subproblem can
be referred to as the Mode Assignment Problem (MAP), whose aim is to find a
feasible mode assignment. A mode assignment which uses more nonrenewable
resources than available is called infeasible, otherwise the mode assignment is
called feasible.

The number of requested nonrenewable resource units that exceeds the capac-
ity aνl , l ∈ Rν , is defined as the excess of resource request ERR. The formula of
the ERR can be stated as follows:

ERR =

l∑
j=1

(max(0,

|N |∑
i=1

(rνimij)− a
ν
j)) l ∈ Rν (2.8)

An ERR=0 means that the solution is feasible. If ERR is larger than 0, the
solution is infeasible.

In a second subproblem, the order in which the activities need to be scheduled
must be determined. Given the duration and the resource consumptions of the
different activities, the aim of the scheduling problem is to minimize the makespan
of the project.

10 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

2.3 Example
In this section, an example project is presented which will be used throughout the
remainder of this chapter in order to explain the concepts and terminology which
will be presented in section 2.4. The example project has 8 non-dummy activities,
each with 2 modes. For each mode, 1 renewable resource and 1 nonrenewable
resource is indicated. The availability for the renewable (nonrenewable) resource
is 7 (23). The activity-on-the-node network is shown in figure 2.1. In table 2.1 the
duration dimi and resource requirements (rρimi and rνimi) for mode mi of activity
i are shown.

20

4

7

6

1

8

5

3

9

Figure 2.1: Network of the example project

2.4 Definitions
The research conducted in this dissertation builds further on extensive research in
project scheduling in the past decades. In order to give a brief introduction to the
project scheduling field, different concepts and terminologies which are commonly
used in this work are presented in this section. Most of them are explained using
the example presented above.

Schedule representation A solution procedure for the (M)RCPSP does not oper-
ate directly on a schedule, but on a representation of a schedule that is con-
venient and effective for the functioning of the algorithm. Kolisch (1999)
distinguished 5 different schedule representations in the RCPSP literature,
from which the activity list (AL) representation and the random key (RK)
representation are the most widespread.

Activity list In the AL representation, the position of an activity in the AL
determines the relative priority of that activity versus the other activ-

CHAPTER 2 11

act i mode mi dimi rρimi rνimi
0 1 0 0 0
1 1 4 3 3

2 5 2 4
2 1 1 3 4

2 2 2 3
3 1 1 2 3

2 2 1 1
4 1 2 5 4

2 3 4 3
5 1 2 4 6

2 5 3 2
6 1 1 1 4

2 3 1 3
7 1 1 3 3

2 3 2 2
8 1 2 3 4

2 2 3 3
9 1 0 0 0

Available 7 23

Table 2.1: Information of the example project

ities. In table 2.2, an example of an activity list is given. In order to
avoid infeasible solutions, the activity list is always precedence feasi-
ble, which means that the precedence relations between the different
activities are met.

Random Key In the RK representation, the sequence in which the activi-
ties are scheduled is based on the priority value attributed to each ac-
tivity. It is assumed in this work that a low RK value corresponds to a
high priority. In table 2.3, three random key representations are given,
which will all result in the same project schedule.

place 1 2 3 4 5 6 7 8
AL 1 2 3 4 6 7 5 8

Table 2.2: Activity list

Mode representation Next to the schedule representation, the mode representa-
tion determines the execution mode of each activity. Once a mode is as-
signed to an activity, the duration and the resource consumption of each

12 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

activity 1 2 3 4 5 6 7 8
RK1 12 16 19 25 21 18 12 28
RK2 1 2 3 5 4 6 7 8
RK3 0.21 0.25 0.98 1.15 1.02 2.21 0.24 0.25

Table 2.3: Random key

resource type can be determined. Two mode representations can be distin-
guished: the mode list and the mode vector.

Mode list In the mode list representation, the list represents the execution
modes of the activities in ascending order, i.e. the first number in the
list indicates the mode in which the first activity will be executed, the
second number the execution mode of the second activity, etc. In table
2.4, an example of a mode list is given. Activity 7, for example, is
executed in mode 1.

Mode vector In the mode vector representation, the mode indicated in the
ith position of the mode vector represents the execution mode of the
activity placed in the ith position of the activity list. A mode vector is
always represented in combination with an activity list. In table 2.5,
an example of a mode vector is given, together with the activity list as
represented in table 2.2. As can be seen, the same modes are chosen
for each activity as in the mode list example.

activity 1 2 3 4 5 6 7 8
mode list 2 1 2 1 2 1 1 2

Table 2.4: Mode list

place 1 2 3 4 5 6 7 8
AL 1 2 3 4 6 7 5 8
MV 2 1 2 1 1 1 2 2

Table 2.5: Mode vector

Mode reduction Before the mode lists are generated, the mode reduction proce-
dure of Sprecher et al. (1997) can be applied. This procedure excludes those
modes which are inefficient or non-executable and those resources which
are redundant.

CHAPTER 2 13

– A mode is called inefficient if there is another mode of the same activity
with the same or smaller duration and no more requirements for all
resources.

– A mode is called non-executable if its execution would violate the re-
newable or nonrenewable resource constraints in any schedule.

– A nonrenewable resource is called redundant if the sum of the maximal
requests for that nonrenewable resource does not exceed its availabi-
lity.

Excluding these modes or nonrenewable resources does not affect the set of
feasible or optimal schedules.

Consider the example project instance given in section 2.3. Mode 1 of ac-
tivity 8 can be called inefficient because both its duration and its resource
requirements are equal or larger than those of mode 2. Also mode 1 of ac-
tivity 5 can be excluded, because this mode is non-executable with respect
to the nonrenewable resource. If it were executed, the project would require
at least 24 nonrenewable resource units, while only 23 are available. The
mode can therefore be deleted.

Schedule generation scheme A schedule generation scheme (SGS) translates the
schedule representation into a schedule. Two different types of SGSs exist
in the literature: the serial SGS (Kelley Jr., 1963) and the parallel SGS (Bed-
worth and Bailey, 1982).

Serial SGS The serial scheduling scheme sequentially adds activities to
the schedule one-at-a-time. In each iteration, the next activity in the
priority list (activity list or random key) is chosen and that activity is
assigned to the schedule as soon as possible within the precedence and
resource constraints.

Parallel SGS In contrast to the serial SGS, the parallel scheduling scheme
iterates over the different schedule times ts in which activities can be
added to the schedule. These schedule times correspond to the com-
pletion times of already scheduled activities. At each time ts, the
unscheduled activities whose predecessors have been completed, are
considered in the order of the priority list and are scheduled on the
condition that no resource conflict originates at that time instant.

Figure 2.2(a) depicts a schedule which is based on the activity list as pro-
posed in table 2.2 and the mode list as proposed in table 2.4. The schedule has a
makespan of 9 days and is generated by using a serial schedule generation scheme.
In figure 2.2(b), the schedule based on the same activity and mode list is shown
using a parallel SGS. This schedule results in a makespan of 11 days. However,

14 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

both schedules are infeasible with respect to the nonrenewable resource since 25
nonrenewable resource units are used, while only 23 nonrenewable resources are
available (ERR = 2).

12

1

2

3

4

6

7 8

5

6 7 8 9 10 110 1 2 3 4 5

3

2

1

7

6

5

4

(a) Infeasible schedule (serial SGS)

7

4

6
3

5

5

2
4

3

7

8

2

11
6

0 1 2 3 4 5 126 7 8 9 10 11

(b) Infeasible schedule (parallel SGS)

Figure 2.2: Schedules of the example project

In the remainder of this example, we use the serial SGS to generate schedules.
Figure 2.3(a) shows a schedule with a makespan of 13 days. The schedule is based
on an activity list (1,2,3,5,4,6,7,8) and a mode list (2,2,2,2,2,2,1,2). This schedule
is feasible because the required nonrenewable resource units do not exceed the
availability (ERR = 0) and because all precedence relations are met.

Forward-backward scheduling technique This technique, proposed by Li and
Willis (1992), transforms left-justified schedules (where all activities are
scheduled as soon as possible) into right-justified schedules (where all activ-
ities are scheduled as late as possible) and vice versa. During the backward
(forward) scheduling stage, the makespan of the schedule is tried to be re-
duced by shifting the activities, in a sequence determined by the finish (start)
times, as much as possible to the right (left), without affecting the project
completion time. During the forward-backward procedure only improve-
ments can occur.

CHAPTER 2 15

On the schedule presented in figure 2.3(a), the backward scheduling technique
is applied. Activities 8 cannot be scheduled later, while activity 7 can be shifted (1
time unit) to start at time instant 12. Activities 6 and 4 cannot be scheduled later.
Activity 5 can be right-shifted to start at time 7. Since the right shift of activity
5 has made some additional resources available, activity 1 can be shifted 2 time
units to start at time instant 2. Activity 3 can also be shifted to its latest start time
11. In this way, we obtain the schedule of figure 2.3(b) with a makespan of 11
units. Further improvements of the schedule are possible by shifting activities as
much as possible to the left (forward scheduling). However, the total makespan of
the schedule remains 11, as can be seen in figure 2.3(c).

Crossover During a crossover operation, information of two solution vectors is
combined in order to generate a new solution vector. The one- and two-point
crossover are the most used crossovers.

One-point crossover In a one-point crossover, a single crossover point is
selected and all data beyond that point in either string are swapped
between the two parents.

Two-point crossover In a two-point crossover operation, two crossover
points are selected on the parent strings and everything between these
two crossover points is swapped.

Mutation The mutation operator is applied in order to introduce lost genetic ma-
terial into the population and creates variation in the different individuals.

In table 2.6, an example of a one-point crossover is presented. Two activity
lists (AL1 and AL2) are used to create a new activity list ALcross. The crossover
point is chosen randomly and is equal to 3, which means that the first 3 activities
are chosen out of activity listAL1 and the last 5 are selected from activity listAL2,
i.e. the activities which are not selected yet from AL1 are scheduled following the
sequence in AL2. The new activity list ALcross is presented below. On this new
activity list, a mutation operation is applied. The activities 3 and 5 from the activity
list ALcross are swapped. This results in the activity list ALmut.

place 1 2 3 4 5 6 7 8
AL1 1 2 4 5 6 3 7 8
AL2 2 1 3 4 6 5 8 7

ALcross 1 2 4 3 6 5 8 7
ALmut 1 2 4 5 6 3 8 7

Table 2.6: Crossover and mutation operator

16 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

3

7

6

5

1

5

4

5

4

3

2

1

2

7 8 9 10 110 1 2 3 4 12 136

6

7

8

(a) Feasible (left-justified) schedule MRCPSP

5

8

3

2

4

7
1

6

7

6

5

4

3

2

1

0 1 2 3 4 5 12 136 7 8 9 10 11

(b) Backward scheduling of schedule (a)

4 5 12 136 7 8 9 10 11

1

0 1 2 3

7

6

5

4

3

2
5

1
7

4

2

83

6

(c) Forward scheduling of schedule (b)

Figure 2.3: Schedules of the example project

Instance parameters Several parameters are defined in order to measure the
complexity of the project and the scarceness of the resources. Although
different parameters are proposed in recent years, we define the ones which
will be used in this work.

Order strength The network complexity is described by the order strength
(Mastor, 1970), which is defined as the number of precedence relations
(including the transitive ones but not including the arcs connecting the
dummy start or end activity) divided by the theoretical maximum num-

CHAPTER 2 17

ber of precedence relations (|N |(|N | − 1)/2). The resource strength
OS varies between 0 and 1. An OS close to 0 indicates a parallel
network, while an OS close to 1 implies a serial network. The order
strength of our example project is equal to 0.39.

Resource strength In the literature, two of the most used parameters to
calculate the scarceness of the resources for single-mode projects are
the Resource Strength (RS), introduced by Cooper (1976) and later
on redefined by Alvarez-Valdes and Tamarit (1989) and Kolisch et al.
(1995), and the Resource Constrainedness (RC), proposed by Patter-
son (1976). Since no formula is known for the resource constrained-
ness as a resource parameter for multi-mode resource-constrained pro-
jects, we will use in this work the resource strength as a parameter to
calculate the scarceness of the renewable and nonrenewable resources.
Kolisch et al. (1995) and Demeulemeester et al. (2003) defined the re-
source strength for multi-mode projects as follows:

RSk =
ak − rmink

rmaxk − rmink

(2.9)

where ak denotes the total availability of renewable resource type k,
rmink is formulated as maxi=1,...,|N |;mi=1,...,|Mi|r

ρ
ikmi

and rmaxk de-
notes the peak demand of renewable resource type k in the prece-
dence preserving the earliest start schedule, where each activity has
a duration which corresponds to a maximum allocation of resources
(Demeulemeester et al., 2003). The resource strength RS varies be-
tween 0 and 1. A RS close to 0 indicates that the scarceness of
the resource is high, while a RS close to 1 implies that the resource
is hardly restrictive. In the example project, the renewable resource
strength RSρ is equal to 0.29. Kolisch et al. (1995) defined rmink as
maxi=1,...,|N |

{
minmi=1,...,|Mi|r

ρ
ikmi

}
. However, for low values of

RSk, the use of this definition will lead to different non-executable
modes, which means that its execution would violate the renewable (or
nonrenewable) resource constraints in any schedule (Sprecher, 2000).

For the nonrenewable resources the minimum and maximum consump-
tion can be obtained by cumulating the consumptions obtained when
performing each activity in the mode having minimum and maximum
consumptions. In the example project, the value of the nonrenewable
resource strength RSν is equal to 0.25.

Resource factor The resource factor (RF) indicates the percentage of re-
sources that are required per activity. The renewable resource factor
RF ρ of resource k can be calculated as follows:

18 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

RF ρk =
1

|N |

|N |∑
i=1

1

|Mi|

|Mi|∑
mi=1

{
1 if rρimik > 0
0 otherwise

(2.10)

The nonrenewable resource factor RF ν can be calculated similarly. In
the example project, both the renewable and nonrenewable resource
factor is equal to 1.

In this section, different different concepts and terminologies which are com-
monly used in the project scheduling field are presented. In the following section,
an overview is given of the solutions procedures for the MRCPSP currently avail-
able in the literature.

2.5 Literature overview

Several exact and heuristic approaches to solve the MRCPSP have been proposed
in recent years. In section 2.5.1, an overview is given of the exact solution proce-
dures. In section 2.5.2, we discuss the heuristic solution procedures and in section
2.5.3, we describe the metaheuristic solution procedures. In this last section, each
solution procedure is also described in detail, since the computational results of
these algorithms will be compared with the metaheuristic solution procedures pro-
posed in this work.

Although the solution procedures that tackle the MRCPSP/max, in which min-
imal and maximal time lags are incorporated, show many similarities with the
procedures proposed for the MRCPSP, we refer in this section only to the solution
procedures for the classical MRCPSP. The interested reader is referred to the pa-
per of Barrios et al. (2009) for an overview of the available metaheuristics for the
MRCPSP/max.

2.5.1 Exact solution procedures

The first solution method for the multi-mode problem can be found in Slowinski
(1980), who presented a one-stage and two-stage linear programming approach.
Talbot (1982) and Patterson et al. (1989) presented an enumeration scheme-based
procedure. Speranza and Vercellis (1993) proposed a depth-first branch-and-bound
algorithm, but Hartmann and Sprecher (1996) have shown that this algorithm may
be unable to find the optimal solution for instances with two or more renewable re-
sources. More recently, Sprecher et al. (1997), Hartmann and Drexl (1998) and
Sprecher and Drexl (1998) presented branch-and-bound algorithms, while Zhu
et al. (2006) proposed a branch-and-cut algorithm. However, none of these proce-
dures can be used for solving large-sized realistic projects, since they are unable

CHAPTER 2 19

to find an optimal solution in a reasonable computation time. Therefore, different
single-pass heuristic and metaheuristic procedures are presented.

2.5.2 Heuristic solution procedures

Talbot (1982) and Sprecher and Drexl (1998) proposed to impose a time limit
on their exact branch-and-bound procedure. Boctor (1993) tested 21 heuristic
scheduling rules and suggested a combination of 5 heuristics which have a high
probability of giving the best solution. Drexl and Grünewald (1993) proposed a
biased random sampling approach, while Özdamar and Ulusoy (1994) proposed a
local constraint based analysis approach. Boctor (1996) presented a heuristic al-
gorithm based on the Critical Path Method computation, Kolisch and Drexl (1997)
suggested a local search method with a single neighborhood search, Knotts et al.
(2000) evaluated different agent-based algorithms and Lova et al. (2006) designed
several multi-pass heuristics based on priority rules for solving the MRCPSP.

2.5.3 Metaheuristic solution procedures

This section gives an overview of the current available metaheuristics from the
literature. In section 2.5.3.1 an overview of the different classification criteria, as
mentioned in Kolisch and Hartmann (1999), is given and the available algorithms
are classified according to these criteria. In section 2.5.3.2 an extensive and de-
tailed overview of all the metaheuristics is presented.

2.5.3.1 Classification criteria

In order to make a classification of the available metaheuristics, the procedures are
sorted based on three classification criteria as proposed by Kolisch and Hartmann
(1999): the metaheuristic strategy, the schedule representation, the mode repre-
sentation and the schedule generation scheme. In what follows we briefly examine
each of these criteria.

Metaheuristic strategy Several metaheuristic strategies to solve a scheduling
problem are available. For an overview of these metaheuristic strategies we
refer to Glover and Kochenberger (2003). For the MRCPSP the following
six strategies were used: genetic algorithm (GA), scatter search (SS), sim-
ulated annealing (SA), particle swarm (PS), tabu search (TS) and artificial
immune system (AIS).

Schedule representation Kolisch (1999) distinguished 5 different schedule rep-
resentations in the RCPSP literature, from which the activity list (AL) repre-
sentation and the random key (RK) representation are the most widespread.

20 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

Mode representation Two mode representations can be distinguished in the lit-
erature: the mode vector (MV) and the mode list (ML).

Schedule generation scheme A schedule generation scheme (SGS) translates the
schedule representation into a schedule. Two different types of SGSs exist
in the literature: the serial SGS (Kelley, 1963) and the parallel SGS (Bed-
worth and Bailey, 1982). Kolisch (1996b) has shown that it is sometimes
impossible to reach an optimal solution with the parallel SGS. Nevertheless,
both schemes are used in the solution procedures currently available in the
literature.

In table 2.7 an overview of the different metaheuristic algorithms is given. For
each solution procedure, the name of the author(s) and the abbreviation used in
this work to refer to the procedure is given. The indication R or RNR in the third
column indicates if the procedure is applicable on datasets with only renewable
resources (R) or with both renewable and nonrenewable (RNR) resources. The
information in the fourth, fifth, sixth and seventh column indicates the metaheuris-
tic strategy, the schedule representation, the mode representation and the schedule
generation scheme used to solve the problem instances, respectively.

2.5.3.2 Metaheuristic solution procedures

In this section, an overview is given of the different procedures available in the
literature according to their metaheuristic strategy: genetic algorithm, simulated
annealing, tabu search, scatter search and particle swarm.

Genetic algorithms Introduced by Holland (1975), genetic algorithms (GAs)
use techniques and procedures inspired by evolutionary biology to solve complex
optimization problems. Several selection mechanisms, such as natural selection,
crossover and mutation, are applied in order to recombine existing solutions so
that new ones are obtained and an optimal solution is found.

Mori and Tseng (1997) were the first to develop a genetic algorithm for the
MRCPSP/R. The algorithm is based on the priority list representation, where the
chromosome provides information about the scheduling order and the execution
mode for each activity. The scheduling order is the priority of the activity in the
schedule and lies between its forward and backward scheduling order (see Tavares,
1990). The crossover operator is a one-point crossover, which randomly chooses
an activity for which the start time is lower, and is applied on both the scheduling
order and mode list, while the mutation operator randomly adapts the mode list
of a randomly chosen schedule. The population of a new generation is generated
by duplicating the best offspring schedules, by producing new schedules using the
crossover and mutation operator and by generating new random schedules.

CHAPTER 2 21

Ta
bl

e
2.

7:
C

la
ss

ifi
ca

tio
n

m
et

ah
eu

ri
st

ic
s

A
ut

ho
r

A
bb

r
R

/R
N

R
St

ra
te

gy
Sc

he
du

le
re

pr
M

od
e

re
pr

SG
S

Sl
ow

in
sk

ie
ta

l.,
19

94
SL

O
W

R
N

R
SA

A
L

M
L

P
B

oc
to

r,
19

96
a

B
O

C
T

R
SA

A
L

M
L

S
M

or
ia

nd
T

se
ng

,1
99

7
M

O
R

I
R

G
A

R
K

M
L

S
Ö

zd
am

ar
,1

99
9

O
Z

D
A

R
N

R
G

A
R

K
M

L
P

N
on

ob
e

an
d

Ib
ar

ak
i,

20
01

N
O

N
O

R
N

R
T

S
A

L
M

L
P

Jo
ze

fo
w

sk
a

et
al

.,
20

01
JO

Z
E

R
N

R
SA

A
L

M
L

S
H

ar
tm

an
n,

20
01

H
A

R
T

R
N

R
G

A
A

L
M

V
S

B
ou

le
im

en
an

d
L

ec
oc

q,
20

03
B

O
U

L
R

N
R

SA
A

L
M

V
S

A
lc

ar
az

et
al

.,
20

03
A

L
C

A
R

N
R

G
A

A
L

M
V

S
Z

ha
ng

et
al

.,
20

06
Z

H
A

N
R

N
R

PS
R

K
M

L
S

Ja
rb

ou
ie

ta
l.,

20
08

JA
R

B
R

N
R

PS
R

K
M

L
S

R
an

jb
ar

et
al

.,
20

08
R

A
N

J
R

N
R

SS
A

L
M

V
S

L
ov

a
et

al
.,

20
09

L
O

VA
R

N
R

G
A

A
L

M
V

P/
S

T
se

ng
an

d
C

he
n,

20
09

T
SE

N
R

N
R

G
A

A
L

M
V

S

22 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

Özdamar (1999) presented a hybrid genetic algorithm which makes use of the
priority list representation and a parallel SGS that performs exactly two iterations,
one forward and one backward on each chromosome. A chromosome is repre-
sented by two lists: a mode assignment list and a priority assignment list, which
indicates the priority rule used to select the candidate activity in the nth position.
For each chromosome a crossover probability is calculated which is dependent
on both the chromosome’s makespan and the population’s makespan and which
determines the probability of the chromosome to be recombined in the next ge-
neration. A similar calculation is made to determine the probability to apply the
mutation operator. In order to generate the population of a new generation, each
chromosome is reproduced a number of times proportional to its objective function
value.

Hartmann (2001) developed a genetic algorithm based on the activity list rep-
resentation and a serial SGS, which only generates forward schedules. A two-point
crossover operator and a mutation operator are applied with a certain probability
in order to create new genes. The ranking method is used as selection operator.
The algorithm is extended with two local search procedures to improve the sched-
ules. The single-pass improvement procedure checks for every activity whether a
multi-mode left shift can be performed. A multi-mode left shift of an activity j is
an operation on a given schedule which reduces the finish time of activity j with-
out changing the modes or finish times of the other activities and without violating
the precedence and resource constraints. The multi-pass improvement procedure
repeats the single-pass procedure until no further improvements can be detected.
However, computational results have shown that the single-pass improvement pro-
cedure performs the best.

Alcaraz et al. (2003) developed a genetic algorithm based on the activity list
representation and the serial SGS. An additional gene decides whether a forward
or backward scheduling is employed when computing a schedule from an activity
and mode list. The two-point forward-backward crossover operator as designed by
Alcaraz and Maroto (2001) is extended to the multi-mode version. A two-phase
mutation operator is applied, which firstly modifies the activity list and secondly
alters the mode assignment.

Lova et al. (2009) proposed a hybrid genetic algorithm, with an activity list
representation and a serial and parallel SGS, which generates forward and back-
ward schedules. Two extra genes decide whether a forward or backward sched-
uling is employed and whether the serial or parallel SGS is executed. The two-
point crossover operator and mutation are applied and the two-tournament selec-
tion is applied to reproduce the new population. The authors also introduced a
multi-mode forward-backward improvement method, which is an extension of the
forward-backward improvement method described by Tormos and Lova (2001)
and which can change the execution mode if a better position for an activity can

CHAPTER 2 23

be found.
Tseng and Chen (2009) presented a two-phased genetic local search algorithm,

with an activity list representation and a serial SGS, which generates forward and
backward schedules. During the first phase, a set of elite solutions is searched
by the genetic algorithm, using a modified two-point crossover operator and a
mutation operator, based on the critical path activities in the schedule. This elite
set is utilized to construct the initial population of the second phase. A mutation
operator and a forward-backward local search is applied on this elite set, in order
to search more thoroughly in the promising areas of the solution space.

Simulated annealing The simulated annealing method is based on the physical
annealing process and has been introduced for the first time by Metropolis et al.
(1953). In this method, all improvements are accepted, while inferior solutions are
rejected or accepted with a certain probability, which decreases with the value of
the difference in costs of the current and neighbor solution. The method has been
used several times to solve the MRCPSP.

Boctor (1996) was the first to present a simulated annealing procedure and
presented a procedure with an activity list representation and a serial SGS for the
RCPSP and MRCPSP/R. The procedure started with an initial solution, gener-
ated by the minimum slack/shortest feasible mode heuristic as proposed in Boctor
(1993). To generate neighbor solutions, a random chosen activity is moved to an-
other position in the precedence feasible activity list. To determine the execution
mode, the mode resulting in the earliest finish time taking into account the prece-
dence and renewable resource constraints is chosen. Several heating, reheating
and cooling phases are proposed.

Slowinski et al. (1994) proposed a simulated annealing procedure with an ac-
tivity list representation and a parallel SGS. The initial starting solution is the best
solution among a set of parallel priority heuristics. A neighborhood solution is
accepted with a probability of exp(-ρ/T), where T is the control parameter, de-
termined by the acceptable deterioration rate, and ρ the actual deterioration of the
solution vector.

Bouleimen and Lecocq (2003) proposed a simulated annealing procedure with
an activity list representation and a serial SGS. The authors used two separate ex-
ploration techniques in a two-stage procedure. In the first stage only a mode neigh-
borhood exploration is performed, while in the second stage an activity neighbor-
hood exploration is performed in order to further improve the solution. However,
the second stage is only applied if a smaller makespan is found in the first stage.
The initial value of the procedure is generated randomly. In the first exploration
phase, no probabilistic acceptance criteria were used and only neighbors with a
smaller makespan were accepted. In the second phase, fixed control parameters
were used in order to fully explore the search space.

24 THE MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

Józefowska et al. (2001) proposed a simulated annealing procedure with an ac-
tivity list representation and a serial SGS, which makes use of the adaptive cooling
scheme of Aarts and Korst (1989). In this work, the value of the control parameter
is variable since the value depends on the search path. This involves the absence
of a reheating phase, as used in the papers of Boctor (1996) and Bouleimen and
Lecocq (2003). The initial solution can be obtained by setting all activities on the
activity list in an ascending order that follows from the ordering of nodes in the
precedence relation graph, and by executing all jobs in their first modes. The ge-
neration of a neighborhood is generated by using one of the following operators:
a neighborhood shift which operates only on the list of activities, a mode change
which operates only on the mode list or a combined move.

Tabu search Tabu Search (TS) is a local search method, designed to drive the
search away from local optima by accepting non-improving solutions. An intelli-
gent use of memory is employed to help in exploiting the characteristics of previ-
ous solution runs. The structure of the method is extremely malleable and hence it
is often used to guide other constructive heuristics in order to avoid being trapped
into a poor local optimum.

Nonobe and Ibaraki (2002) presented a tabu search procedure for the RCPSP
and the MRCPSP with an activity list representation and a parallel SGS. In the
initial part of the tabu search procedure, solutions are randomly generated in order
to find a feasible solution. Afterwards, this solution is repeatedly replaced by its
best non-tabu neighbor until the stop criterion is achieved. Three types of neigh-
borhood moves are proposed: a mode shift change mod(i,m′i), which changes
the mode of activity i to mode m′i; an activity shift shift aft(i, j), which shifts
activity i immediately after activity j and an activity shift shift bef(i, j), which
modifies the position of activity j to the position before i. The tabu list prohibits all
moves executed in the τ recent iterations, where τ is a program parameter called
tabu tenure.

Scatter search Scatter search is a population-based metaheuristic, proposed by
Glover et al. (2000), in which solutions are intelligently combined to yield bet-
ter solutions. The scatter search method makes use of deterministic procedures
that can include problem specific knowledge (Pinol and Beasley, 2006) and can
therefore be implemented in a variety of ways and degrees of sophistication. For
an overview of the basic and advanced features of the scatter-search, we refer to
Glover et al. (2000) and Marti et al. (2006).

Ranjbar et al. (2009) presented a scatter search algorithm with an activity list
representation and a serial SGS. In order to start with a diverse initial population
of solutions, the biased random sampling using frequency memory is employed.
The solutions are combined using the path relinking method (Glover et al., 2000).

CHAPTER 2 25

This approach generates new solutions by exploring trajectories connecting high-
quality solutions. Finally, a local search procedure, which changes with a certain
probability the mode mi of an activity i to mi − 1 and mi + 1 while the other
activities remained unchanged, is applied to each generated schedule.

Particle Swarm Particle Swarm optimization (PS) was introduced by Kennedy
and Eberhart (1995) and simulates the swarming behavior of animals to reach the
promising areas. Just like a population-based metaheuristic, PS conducts a search
using a population (called swarm) of individuals (called particles) that is updated
from iteration to iteration, using formulas for each particle’s position and velocity.
Two authors have used the principles of particle swarm to solve the MRCPSP.

The PS algorithm of Zhang et al. (2006) makes use of the priority list rep-
resentation and a serial SGS. The initial population and the initial velocities are
generated randomly. The formulas of Kennedy and Eberhart (1995) are used to
update the population. In order to adjust infeasible particle solutions, a solution
procedure is proposed to change the infeasibility of the current solution based on
the activity’s priority value. However, one can prove that endless loops can occur
due to the randomness of the mode selection part.

Jarboui et al. (2008) proposed a combinatorial PS algorithm with a priority list
representation and a serial SGS. The generation of the initial mode lists is gener-
ated according to a certain probability (per mode) which increases for decreasing
renewable resource consumption of that mode. Once a mode list is generated, a
local search optimization procedure is applied on the list to optimize the sequence
in which the activities should be scheduled. The activities are scheduled according
to a probability which is determined by its number of successors. Feasible swaps
are then performed in order to obtain improvements in the best solution.

2.6 Conclusions
In this chapter, an introduction is given to the MRCPSP. We described the gen-
eral formulation of the problem and presented an example project which is used to
explain the most important concepts and terminology used in project scheduling
literature. This chapter concluded with an overview of the available literature on
the MRCPSP and an introduction to each available metaheuristic solution proce-
dure.

3
Metaheuristic Solution Procedures for

the MRCPSP

3.1 Introduction

During the past decades, different metaheuristic solution procedures were used
to solve a wide set of combinatorial optimization problems. Each of these meta-
heuristics is composed of different techniques, which are not dedicated to the so-
lution of a particular problem, but are designed with the aim to be flexible enough
to handle a wide range of combinatorial problems. A metaheuristic can therefore
be considered as a conceptual framework which can be adapted with a few modi-
fications to fit a specific optimization problem. Metaheuristic strategies guide and
modify the operations of subordinate heuristics and explore the search space in
order to find (near-)optimal solutions (Osman and Laporte, 1996).

The advantage of metaheuristic algorithms is the interaction between local im-
provement procedures and higher level strategies to create a process capable of
escaping from local optima and performing a robust search of a solution space
(Glover and Kochenberger, 2003). Local improvement methods attempt to ex-
plore intensively the promising regions in the neighborhood of the current solution,
while the search strategies of the different metaheuristic philosophies are designed
to exploit the entire solution space. This balance between intensification and di-
versification is very important for finding the near-optimal solution efficiently. On
the one hand, the search process should quickly identify these regions in the search
space where high quality solutions can be found, while on the other hand, the al-

28 CHAPTER 3

gorithm should not waste too much time in regions that are either already explored
or do not provide high quality solutions (Blum and Roli, 2003). Since metaheuris-
tics are not problem-specific and are composed out of a set of basic concepts, it is
often necessary to include problem specific adaptions to these methods in order to
obtain an effective metaheuristic solution procedure.

There are different metaheuristic solution procedures available in the literature.
In the previous chapter, the genetic algorithm, the scatter search, the simulated an-
nealing, the particle swarm and tabu search procedures were already presented,
but many others are available (Glover and Kochenberger, 2003). According to
Blum and Roli (2003), metaheuristic philosophies can be classified and described
in different ways: nature-inspired versus non-nature inspired, one versus various
neighborhood structure, memory usage versus memory-less methods and single-
point versus population-based. This last classification is based on the characteris-
tic of the number of solutions used at the same time. Algorithms working on one
single solution are called trajectory methods and encompass metaheuristics like
tabu search, iterated local search and variable neighborhood search. Population-
based metaheuristics, on the contrary, perform search processes that describe the
evolution of a set of points in the search space.

Osman (1995) makes another division and classifies the family of metaheuris-
tics into three categories. The first is that of construction-based metaheuristics,
which include greedy random adaptive search methods, guided construction meth-
ods and ant colony systems. These metaheuristics tackle an optimization problem
by exploring the search space using a so-called search tree. Each path from the
root node of the search tree to one of the leaves corresponds to the process of con-
structing a candidate solution. The metaheuristics gradually build a solution by
sampling the search space in every iteration. The second category is that of local-
search-based metaheuristics, which include simulated annealing, noisy methods,
guided local search methods, iterated local search, neural networks, tabu search,
threshold accepting and variable neighborhood search. These methods include
intelligent extensions of local search algorithms in order to escape from local min-
ima to proceed with the exploration of the search space. The third category is that
of population-based metaheuristics, which include evolutionary methods (genetic
algorithms, memetic algorithms, artificial immune systems, ...), path-relinking and
scatter search. Since this type of metaheuristics deals with a population of solu-
tions, population-based algorithms provide an intrinsic way for the exploration of
the search space.

In this chapter, three different population-based metaheuristic solution proce-
dures for the MRCPSP are proposed, i.e. a genetic algorithm, an artificial immune
system and a scatter search. Before the metaheuristics are described in detail, each
of the solution procedures is classified based on different classification criteria in
section 3.2. Next, in section 3.3, a bi-population genetic algorithm is described,

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 29

which makes use of two separate populations and extends the serial schedule ge-
neration scheme by introducing a mode improvement procedure. In section 3.4,
an artificial immune system algorithm is presented. This algorithm makes use of
mechanisms which are inspired by the vertebrate immune system, such as hyper-
mutation and proliferation. The initial population set is generated with a controlled
mode assignment procedure, based on experimental results which reveal a link be-
tween predefined mode list characteristics and the project makespan. Finally, in
section 3.5, a scatter search algorithm is proposed, which is executed with different
improvement methods, each tailored to the specific characteristics of different re-
newable and nonrenewable resource scarceness values. These resource parameters
have been introduced in project scheduling literature to measure the scarceness of
resources of a project instance and are incorporated in the search process of the
scatter search procedure.

Each section describes the different metaheuristics in detail and provides some
computational results for the configuration of the solution procedure. In chapter
5, a comparison is made between the different metaheuristic solution procedures.
Computational tests are therefore performed on three datasets: the PSPLIB dataset
(proposed by Kolisch et al., 1995), the dataset set by Boctor (1993) (hereafter
called the Boctor dataset) and the MMLIB dataset, which is the new benchmark
dataset presented in chapter 4.

3.2 Classification
In order to give an extensive overview of the different components which will be
used in the three metaheuristics, each solution procedure is classified according
to nine metaheuristic classification criteria. Some of these criteria are inherent to
the metaheuristic solution procedure (e.g. the number of populations in a scat-
ter search procedure), some are straightforward (e.g. the metaheuristic strategy),
while the performance of some are tested during the computational experiments
(e.g. the penalty function). In section 3.2.1, an overview of the classification cri-
teria is given, while in section 3.2.2, the classification for the three metaheuristics
is made and discussed.

3.2.1 Classification criteria

The classification for each of the metaheuristic procedures is based on the follow-
ing nine criteria. For the first three classification criteria, we also refer to section
2.5.3.1.

Metaheuristic strategy Three metaheuristic procedures are proposed in this chap-
ter: a genetic algorithm, an artificial immune system procedure and a scatter
search procedure. A genetic algorithm uses several mechanisms, such as

30 CHAPTER 3

natural selection, crossover and mutation in order to recombine existing so-
lutions so that new ones are obtained. The scatter search algorithm contrasts
with the genetic algorithm by focusing not only on the quality of the solu-
tion, but also on the diversity of a solution. The use of diversification and
improvement methods leads to a more efficient exploration of the solution
space. The artificial immune system finally makes use of mechanisms, such
as the clonal selection process, hypermutation and receptor editing, which
are inspired by the vertebrate immune system.

Schedule representation Two schedule representations are used: the activity list
(AL) representation, where the position of an activity in the AL is deter-
mined by the relative priority of that activity versus the other activities, and
the random key (RK) representation, where the sequence in which the activ-
ities are scheduled is based on the priority value attributed to each activity.

Schedule generation scheme A schedule representation can be translated into a
schedule by a serial SGS or by a parallel SGS. Since Kolisch (1996b) has
shown that it is sometimes impossible to reach an optimal solution with the
parallel SGS, we use in our metaheuristic solution procedures only the serial
SGS.

Penalty function As infeasible solutions can be included in the population, in-
feasible schedules must be penalized. Therefore, several penalty functions
are available in the literature: the penalty function of Hartmann (2001), the
penalty function of Alcaraz et al. (2003), the penalty function of Jarboui
et al. (2008) and the penalty function of Lova et al. (2009).

Initial population Since the three proposed solution procedures are population-
based metaheuristics, the algorithm needs an initial population on which
the algorithmic techniques can be applied. This initial population can be
generated randomly or can be generated by the controlled mode assignment
procedure, which will be proposed in section 3.4.

Local improvement methods Local improvement methods attempt to intensi-
vely explore the promising regions in the neighborhood of the current solu-
tion. Józefowska et al. (2001), Bouleimen and Lecocq (2003), Kolisch and
Drexl (1997) and Hartmann (2001) already proposed several local search
procedures for the MRCPSP, which will be referred to as ’Local search lit-
erature’. In section 3.3, a mode improvement method will be described and
a combined local improvement method, which is composed out of three im-
provement methods, will be presented in section 3.5.

Number of populations Population-based algorithm traditionally use 1 popula-
tion on which different procedures are applied. However, in this work, we

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 31

will propose algorithms which make use of 2 populations.

Crossover Although different crossover operators are proposed in the literature,
tests revealed that the one-point and two-point crossover obtained the best
results in our algorithms.

Mutation In one procedure no mutation operator is applied. Two classification
items are therefore considered: mutation or no mutation.

3.2.2 Classification of the proposed metaheuristics

In table 3.1, an overview of the different classification criteria is given. For each
of the developed metaheuristic solution procedures, it is indicated if and how this
classification criterion is used in the proposed algorithm (’x’ means the component
is applied and/or tested in this solution procedure).

During the computational experiments of the genetic algorithm (section 3.3),
the performance of the different penalty functions, the number of populations and
the local improvement methods from the literature are tested. During the com-
putational experiments of the AIS (section 3.4), the initial population generation
methods (controlled versus random) are tested. The scatter search algorithm makes
use of a combination of the best performing local improvement methods from the
literature, the mode improvement method and the combined improvement method.
This is tested in section 3.5.

In the remainder of this chapter, a detailed description of each metaheuristic
solution procedure is given.

32 CHAPTER 3

GA AIS SS
Metaheuristic strategy

Genetic algorithm x - -
Artificial Immune System - x -

Scatter Search - - x
Schedule representation

Random Key x - x
Activity list - x -

Schedule generation scheme
Serial x x x

Parallel - - -
Penalty function

Hartmann (2001) x - -
Alcaraz et al. (2003) x x x
Jarboui et al. (2008) x - -

Lova et al. (2009) x - -
Initial population

Randomly x x -
Controlled mode assignment procedure - x x

Local improvement methods
Local search literature - - x

Mode improvement method x - x
Combined improvement method - - x

Number of populations
One population x x -

Two populations x - x
Crossover operator

One-point crossover x - -
Two-point crossover - - x

Mutation operator
Mutation x x -

No mutation - - x

Table 3.1: Classification of the metaheuristics

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 33

3.3 Genetic algorithm

3.3.1 Introduction

In contrast to a regular GA, the procedure in this section is based on the bi-
population approach, as proposed by Debels and Vanhoucke (2005) for the RCPSP.
This bi-population genetic algorithm (BPGA) makes use of two different popula-
tions: a population POPR that only contains right-justified schedules and a pop-
ulation POPL that only contains left-justified schedules. Both populations have
the same population size POP . The procedure starts with the generation of an
initial population of solution vectors. The forward-procedure is used to feed the
population POPL of left-justified schedules. This population is evaluated and the
crossover and mutation operators are applied on the solution vectors in this popula-
tion. The iterative forward-backward procedure of Li and Willis (1992) is applied:
the backward-procedure is used to feed the population of right-justified schedules
POPR with combinations of population elements of POPL that are scheduled
backwards with the serial SGS. The forward-procedure is applied on the popula-
tion elements of POPR for updating POPL. This process is repeated until the
stop criterion is met. A conceptual overview of this approach is given in figure
3.1.

Initial
population Evaluation

Crossover

MutationEvaluation

Crossover

Mutation

POPL

POPR

Forward SGS

Forward SGS

Backward SGS

Stopcrit? N

Y

STOP

Figure 3.1: Procedure of the bi-population genetic algorithm

In the remainder of this section, we first examine the representation of the
individuals, based on the random key representation with topological ordering no-
tation proposed by Valls et al. (1999) (section 3.3.2). In section 3.3.3 the sched-

34 CHAPTER 3

ule generation scheme is described, which is extended with a local improvement
search, adapted from Hartmann (2001). In section 3.3.4 the algorithmic details
of the BPGA are proposed, while in section 3.3.5 the computational results are
presented.

3.3.2 Representation

The representation of an individual is crucial for the performance of the genetic
algorithm. Kolisch and Hartmann (1999) distinguish five different schedule repre-
sentations in the RCPSP literature, from which the activity list (AL) representation
and the random key (RK) representation are the most widespread. Hartmann and
Kolisch (2000) conclude from experimental tests that procedures based on AL
representations outperform the other procedures. However, Debels et al. (2006)
illustrate that the unique RK representation also leads to promising results thanks
to the use of the topological ordering (TO) notation (Valls et al., 1999). A topo-
logical order of the activities is an order which is compatible with the precedence
relations of the project. It implies that for all activities i and j for which si < sj ,
activity i should have a higher priority than activity j.

As the multi-mode is an extension of the single-mode RCPSP, most authors,
such as Slowinski et al. (1994), Bouleimen and Lecocq (2003), Hartmann (2001),
Józefowska et al. (2001) and Alcaraz et al. (2003), have used an extension of the
standard AL representation. In this genetic algorithm procedure, however, we use
the RK representation. An individual is therefore represented by a solution vector,
which consists of a random key and a mode list.

Resume the example given in the previous chapter. Figure 3.2 shows a schedule
with a makespan of 12 days. The schedule is based on the random key (1,2,3,4,5,6,
7,8) and the mode list (1,1,2,1,2,1,2,2). The schedule is feasible since the required
nonrenewable resource units do not exceed the nonrenewable availability (ERR =

0).

4

5

6

82

7

3

126 7 8 9 10 110 1 2 3 4 5

2

1

1

7

6

5

4

3

Figure 3.2: Schedule of the example project

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 35

3.3.3 Extended generation scheme

A schedule generation scheme (SGS) translates the solution vector into a schedule
S. As already stated in section 3.2.1, we use in this work the serial SGS. However,
we have extended the serial SGS with the following two elements.

First, our procedure makes use of the forward/backward scheduling technique,
a well-known local search technique for RCPSP metaheuristics. The idea of sched-
uling activities in backward and forward direction has been introduced by Li and
Willis (1992) and then used as improving method by Tormos and Lova (2001).
Afterwards several authors, such as Alcaraz and Maroto (2001), Valls et al. (2005)
and Debels et al. (2006) amongst others, have used similar procedures. The for-
ward (backward) procedure is applied on the population POPR (POPL) of right-
justified (left-justified) schedules and is used to build the left-justified (right-justi-
fied) schedules which are stored in the population POPL (POPR). To embed
the TO condition in the random key representation, the start (finish) times of the
activities of the schedules in POPL (POPR) are used as the priority values of
the random key. The sequence of the activities is made by sorting the activities in
(reverse) chronological order of their start (finish) times (Debels and Vanhoucke,
2007).

Second, our serial generation scheme is extended with a procedure to improve
the mode selection. For every activity i ∈ {1, ..., |N |} that will be scheduled, both
in the forward and in the backward procedure, there is a probability of Pmodimp
that the mode improvement procedure will be executed. We use mi to refer to
the current mode of activity i. The mode improvement procedure evaluates for
each activity i whether a new mode selection m′i leads to an improvement in the
ERR′. Consequently, this procedure evaluates all possible mode assignments k =

1, ..., |Mi| of an activity i and calculates for each new mode list the corresponding
excess of resource request ERR′. If the ERR′ is equal or smaller than the current
ERR, the procedure checks if an improvement can be made in the finish time
of that activity. The mode m′i with the lowest finish time f ′i , which does not
increase the ERR, is chosen. If no improvement can be made, the mode selection
is retained.

The pseudocode for the mode improvement procedure for an activity i of a
project with an excess resource request of ERR is shown in table 3.2.

This mode improvement procedure is a combination of a mode selection rule of
Lova et al. (2006) on the one hand and the single-pass improvement local search of
Hartmann (2001) on the other hand. Lova et al. (2006) extend the serial generation
scheme using the ’Earliest Feasible Finish Time’ as a mode selection rule. During
the generation of the schedule, this rule selects for each activity the execution
mode so that it is scheduled with the smallest feasible finish time possible. The
local search of Hartmann (2001) is based on the multi-mode left shift of Sprecher
(1994). For each completely generated feasible schedule, the procedure checks for

36 CHAPTER 3

FOR k=1,...,|Mi|
{

Set new mode m′i = k and create a new mode vector
Compute ERR′

IF (ERR′)≤ ERR)
Compute f ′i
IF(f ′i < fi)

fi = f ′i
mi = m′i
ERR = ERR′

}

Table 3.2: Pseudocode of the mode optimization procedure for activity i

every activity whether a multi-mode left shift can be performed. A multi-mode
left shift of an activity j is an operation on a given schedule which reduces the
finish time of activity j without changing the modes or finish times of the other
activities and without violating the constraints. Unlike the procedure of Hartmann,
our procedure tries to improve the makespan during the generation of the schedule.

One could think that the mode improvement procedure will always chose the
mode with the lowest duration. However, a mode with a shorter duration often
requires more nonrenewable resource units and gives cause to an increase of the
ERR and the infeasibility of the schedule. In addition, a mode with a longer dura-
tion requires less resource units, both renewable and nonrenewable. The procedure
will therefore be able to schedule the activity more easily in parallel with other ac-
tivities, because - due to the lower resource requirements - less resource conflicts
will occur. Retake the schedule presented in figure 3.2. Suppose that activities 4
and 7 are subject to the mode improvement procedure. After scheduling activities
1, 2 and 3 (without applying the procedure), the mode improvement procedure is
used for activity 4. With the current mode for activity 4 (mode 1), the schedule
has an ERR of 0. The finish time of mode 1 is 6 (see Fig 3.3(a)). When changing
the mode of activity 4 to 2, the ERR remains equal, because the required nonre-
newable resource units (22) are smaller than the available ones (23). Although the
duration of mode 2 is larger than mode 1, the required renewable resource units
also decrease and the activity can be scheduled in parallel with activity 1. The fin-
ish time for mode 2 is now 5 (see Fig 3.3(b)). Because mode 2 has a lower finish
time and the ERR does not deteriorate, the mode list is adapted. After scheduling
activities 5 and 6, the mode improvement is applied on activity 7. For activity
7, mode 2 is currently selected and when inserting the activity in the current par-

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 37

tial schedule, this activity has a finish time of 9 (see Fig 3.4(b)). However, when
choosing mode 1, the finish time can be reduced to 7, because no renewable re-
source conflict occurs (see Fig 3.4(a)). The nonrenewable resource requirements
increase to 23 and hence, the ERR remains 0. As the finish time is smaller for
mode 1, the mode list for activity 7 is adapted to mode 1. After scheduling activity
8, the optimal solution for this specific problem is obtained, as shown in figure 3.5.

10 11

4.1

4 5 6 7 8 9

1

0 1 2 3

7

3
6

2

5

4

3

1

2

(a) Mode 1

6 7 8 9 10 110 1 2 3 4 5

5

4

3

1

2

1

7

3

4.2

6

2

(b) Mode 2

Figure 3.3: Mode improvement of activity 4

3

4

7.1

6

6 7 8 9 10 110 1 2 3 4 5

3

1

2

1

2

5

7

6

5

4

(a) Mode 1

6

5

7.2

3

2

4

6 7 8 9 10 110 1 2 3 4 5

7

6

5

4

3

1

2

1

(b) Mode 2

Figure 3.4: Mode improvement of activity 7

3.3.4 Details of the genetic algorithm
3.3.4.1 Initial population

The genetic algorithm is started by building an initial population POPL of left-
justified schedules. First, the random key is generated randomly. Second, for each
activity i, i ∈ {1, ..., |N |}, an execution mode mi is randomly selected. To min-
imize the number of infeasible solutions in the initial population, the local search
procedure of Hartmann (2001) is applied to transform infeasible solutions into
feasible ones. The procedure chooses an activity randomly and for that activity, a
different mode is chosen. If the ERR remains the same or decreases, the mode
for that activity is changed. This step is repeated until the mode assignment is
feasible (ERR=0) or until J consecutive unsuccessful trials to improve the mode

38 CHAPTER 3

7

10

7

3

4

6

2

5

8

5

4

6
3

1 5

2

1

6 7 8 9 110 1 2 3 4

Figure 3.5: Optimal solution

assignment have been made. In this procedure, J equals to 4 times the number of
activities in the project. Based on the random key and the mode list, a schedule is
constructed with the extended serial generation scheme.

3.3.4.2 Evaluation

Once the initial population has been generated, each of the schedules must be
evaluated. Therefore, a fitness value is calculated for each individual. In the single-
mode RCPSP, the fitness value normally equals the makespan of the project Cmax.
It is a good measure for sequencing the different individuals according to their
contribution to the objective of the problem. However, using the makespan as
fitness value for the multi-mode RCPSP is inappropriate. As infeasible schedules
(with an ERR > 0) can be included in the population, infeasible schedules must
be penalized, otherwise they will displace the feasible schedules in the population.
Józefowska et al. (2001) examine the differences between a fitness function with
penalty function and one without and revealed that the fitness function with penalty
function clearly performs better.

A good fitness function gives appropriate feedback to the genetic algorithm.
Hartmann (2001) defines the fitness function for an individual as follows:

fHART =

{
Cmax if feasible
T + ERR otherwise

If the schedule is feasible (ERR = 0), the fitness function is equal to the
makespan of the project Cmax. If the schedule is infeasible, the fitness function is
equal to the sum of the maximal durations of the activities (T) plus the ERR of
the mode list. The lower the fitness value of a certain schedule is, the better the
quality of the related schedule is. However, Alcaraz et al. (2003) point out that two

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 39

different individuals with the same excess of resource request but with a different
makespan have the same fitness value. They also mention that the upper bound
T is a poor bound and indicate that the probability of the infeasible solutions to
survive will be near 0. Therefore, they define a new fitness function that can be
presented as follows:

fALC =

{
Cmax if feasible
Cmax +max feas Cmax − CPmin + ERR otherwise

wheremax feas Cmax gives the maximal makespan of the feasible schedules
related to individuals of the current generation andCPmin is the critical path using
the minimal duration of each activity. According to Alcaraz et al. (2003), this
fitness computation reveals better results than the one of Hartmann (2001).

Lova et al. (2009) also state that the fitness function of Alcaraz et al. (2003)
is built by adding units of time from the makespan and units of resources from
the excess of nonrenewable resources and conclude that the magnitude of both
aspects of the solution can disturb the meaning of the fitness function. Therefore,
they propose a new fitness function where both aspects of the solution are jointly
considered but normalized in order to eliminate their magnitudes. This fitness
function can be presented as follows:

fLOV A =

 1− max feas Cmax−Cmax
max feas Cmax

if feasible

1 + Cmax−CPmin
Cmax

+
∑
l∈Rν max(0,

∑|N|
i=1 r

ν
imil
−aνl

aνl
) otherwise

The individual with the greatest feasible makespan will have a fitness value
equal to 1 while the individual with the best feasible makespan will have a fitness
value close to 0. The fitness function of a non-feasible individual is always greater
than 1, so feasible solutions will always have a smaller fitness value than infeasible
solutions. Moreover, the sum of the normalized deviation of the makespan from
the minimal critical path and the normalized excess of nonrenewable resources are
added. According to Lova et al. (2009), this fitness function solves the cited weak
points of the fitness computation of Alcaraz et al. (2003). In addition, computa-
tional tests in their paper reveal superior performance of this fitness function.

Finally, also Jarboui et al. (2008) propose a fitness function, which measures
the degree of infeasibility and transforms this into a penalty function which grows
in proportion to the infeasibility level, thus guiding the search toward the feasible
solution space. The fitness function is given as:

fJARB =

{
Cmax if feasible
Cmax +

∑|Rν |
l=1 δmax(0,

∑|N |
i=1(rνimil)− a

ν
l) otherwise

40 CHAPTER 3

with δ defined as a value greater than the maximal Cmax of all solutions in
order to inflate the value of the fitness, in case of infeasible solutions that induce
their elimination.

During the computational experiments in section 3.3.5, the four fitness func-
tions will be compared.

3.3.4.3 Parent selection

For each population element i of POPL (POPR) we create a set of 2 right-
justified (left-justified) children that are candidates to enter POPR (POPL). To
create a child out of i, another parent j from POPL (POPR) is selected by using
the 2-tournament selection procedure. In this selection procedure two population-
elements are chosen randomly and the element with the best fitness function value
is selected. Afterwards, we determine randomly whether i or j represents the fa-
ther. The other parent represents the mother.

3.3.4.4 Crossover

The crossover operation is applied on each pair of parents from POPL (POPR),
producing two children which inherit parts of their characteristics. When a cross-
over is used, both the random key and mode list are adapted. We have tested
different possible crossover operators. However, the so-called one-point crossover
revealed the best results. In the one-point crossover, an integer number r is ran-
domly selected. All data left from that point, both from the activity list and from
the mode list, is copied from the father’s chromosome. Beyond the point, the data
of the mother is copied. Other crossover operators, such as the two-point crossover
(Alcaraz et al., 2003), the uniform crossover (Özdamar, 1999) or the peak cross-
over (Valls et al., 2008; Debels et al., 2006), did not reveal better results than the
one-point crossover.

3.3.4.5 Mutation

Mutation is applied to reintroduce lost genetic material into the population and cre-
ates variation in the different individuals. It introduces partial activity sequences
and unselected mode choices into the population which could not have been pro-
duced by the crossover operator. In our genetic algorithm, two mutation operators
are executed. The first one has a probability of Pmut act and modifies the selected
random key by randomly assigning a value between 0 and the start time of the
dummy end activity. The mode assignment is not affected. The second mutation
operator modifies the mode list with a probability of Pmut mod. The mutation in
both the random key and mode list is done randomly. Computational tests have
revealed that the probabilities Pmut act and Pmut mod to obtain the best results are
equal to 4% and 2%, respectively.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 41

3.3.4.6 Update

In our algorithm, the parent population is replaced by the offspring population,
which means that the population size remains the same. For the replacement, we
follow the survival-of-the-fittest strategy. For every individual i out of the popula-
tion, a partner is chosen (see 3.3.4.3) and 2 children are generated. The child with
the lowest fitness value is selected and replaces individual i in the population, even
if there is a deterioration. However, to avoid loosening high-quality schedules, we
do not perform a replacement if the individual corresponds to a schedule with the
best makespan found so far.

3.3.5 Computational results

In this section, the parameters of our genetic algorithm are configured on a training
set with projects of 20 activities, each with three modes and 2 renewable and 2
nonrenewable resources. The order strength (OS) equals 0.25, 0.50 or 0.75. The
renewable and nonrenewable resource strength equals 0.25, 0.50 or 0.75 and the
resource factor equals 0.5 or 1. Using 5 instances for each problem class, we obtain
a problem set with 540 network instances. For the generation of the instances,
we have used the RanGen project scheduling instances generator developed by
Vanhoucke et al. (2008) and extended the projects to a multi-mode version. On
this dataset, we test the mode improvement procedure, the introduction of two
populations and the different fitness computations. In table 3.3 the percentage
deviation from the best found solution is shown. The following remarks can be
made:

Mode improvement procedure The probability of applying the mode improve-
ment procedure Pmodimp is varying between 0% and 100% in steps of 10%.
If we compare the results of the algorithm with and without the mode im-
provement procedure, the table shows that the introduction of the mode im-
provement procedure ameliorates the solution quality significantly.

Number of populations Although a bi-populational genetic algorithm is used,
we also check if the one-populational genetic algorithm reveals other re-
sults. As shown in table 3.3, the best solution of the bi-populational GA
clearly outperforms the best solution of the one-populational GA. In addi-
tion, statistical tests reveal a very significant (p < 0.001) contribution of the
introduction of two populations in the genetic algorithm.

Fitness computation The different fitness functions are also compared. As we
have mentioned in section 3.3.4.2, four fitness functions were proposed in
the literature, i.e. the fitness function of Hartmann (2001), Alcaraz et al.

42 CHAPTER 3

(2003), Lova et al. (2009) and Jarboui et al. (2008). Looking for the best re-
sults for both fitness computations, the fitness value of Alcaraz et al. (2003)
reveals better results than the other fitness functions.

We thus conclude that the best results are obtained by using two populations,
the fitness function according to Alcaraz et al. (2003) and setting the probability
of applying the mode improvement procedure, Pmodimp, equal to 30%.

When configuring the algorithm, we have noticed that the population size has
an influence on the performance of the algorithm. We examined that the population
size is negatively related to the number of activities. Similar results were found in
Debels and Vanhoucke (2005), Hartmann (2001) and Alcaraz and Maroto (2001),
amongst others. Tests were performed on different datasets with a different number
of activities. For each dataset, the optimal population size was determined. The
number of generated schedules was held constant at 5,000 schedules. A nonlinear
least squares regression based on the best population size values for the different
number of activities revealed a negative relationship between the population size
(POP) and the number of activities (|N |) which can be defined as follows:

POP = e3.551+
22.72
|N|

A large population size avoids homogeneity of the population and this becomes
more important for small problem instances. However, when the population size
becomes too large, only few generations can be computed within the time limit
and the advantages of the genetic algorithm cannot be fully exploited.

3.3.6 Conclusions

In this section, a genetic algorithm for the MRCPSP has been proposed. For this
algorithm we have used two populations, one with left-justified schedules and one
with right-justified schedules. Computational tests have shown that this method
performs better than the regular GA with one population. In addition, an extended
serial schedule generation scheme is introduced, which improves the mode selec-
tion by choosing the feasible mode of a certain activity that minimizes the finish
time of the activity. Finally, tests revealed that the fitness function of Alcaraz et al.
(2003) performed better than the other ones available in the literature. The perfor-
mance of this metaheuristic solution procedure on the current benchmark datasets
will be shown in chapter 5.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 43

Ta
bl

e
3.

3:
R

es
ul

ts
fo

r
th

e
tr

ai
ni

ng
se

t-
co

nfi
gu

ra
tio

n
of

th
e

al
go

ri
th

m
-a

ve
ra

ge
%

de
vi

at
io

n
cr

iti
ca

lp
at

h
le

ng
th

-5
,0

00
sc

he
du

le
s

P
m
o
d
i
m
p

#
po

pu
la

tio
ns

Fi
tn

es
s

co
m

p.
0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

1
po

pu
la

tio
n

H
ar

tm
an

n
8.

22
%

1.
83

%
1.

53
%

1.
49

%
1.

42
%

1.
50

%
1.

48
%

1.
56

%
1.

62
%

1.
59

%
2.

00
%

A
lc

ar
az

7.
93

%
1.

78
%

1.
51

%
1.

49
%

1.
42

%
1.

60
%

1.
43

%
1.

49
%

1.
50

%
1.

71
%

2.
04

%
L

ov
a

8.
19

%
1.

83
%

1.
53

%
1.

49
%

1.
42

%
1.

50
%

1.
48

%
1.

56
%

1.
62

%
1.

58
%

1.
98

%
Ja

rb
ou

i
7.

23
%

1.
91

%
1.

68
%

1.
46

%
1.

48
%

1.
57

%
1.

70
%

1.
85

%
1.

81
%

2.
06

%
2.

53
%

2
po

pu
la

tio
ns

H
ar

tm
an

n
1.

03
%

0.
13

%
0.

07
%

0.
09

%
0.

06
%

0.
03

%
0.

17
0.

09
%

0.
09

%
0.

04
0.

08
%

A
lc

ar
az

1.
06

%
0.

13
%

0.
02

%
0.

00
%

0.
11

%
0.

06
%

0.
03

%
0.

11
%

0.
06

%
0.

01
%

0.
15

%
L

ov
a

2.
07

%
0.

49
%

0.
41

%
0.

38
%

0.
27

%
0.

35
%

0.
16

%
0.

28
%

0.
17

%
0.

22
%

0.
26

%
Ja

rb
ou

i
5.

22
%

2.
03

%
1.

18
%

0.
94

%
0.

75
%

0.
51

%
0.

43
%

0.
40

%
0.

39
%

0.
35

%
0.

31
%

44 CHAPTER 3

3.4 Artificial Immune System

3.4.1 Introduction

An Artificial Immune System (AIS) is a computational algorithm proposed by
De Castro and Timmis (2002) and inspired by theories and components of the ver-
tebrate immune system. The vertebrate immune system is able to identify and kill
disease-causing elements, called antigens, by the use of immune cells, of which the
B-cells are the most common ones. These immune cells have receptor molecules
on their surfaces (also called antibodies), whose aim it is to recognize and bind to
pattern-specific antigens.

Since the antibodies on the B-cells are able to kill this specific type of antigens
(antibodies and antigens whose shapes are complementary will rivet together), the
B-cells will be stimulated to proliferate and to mature into non-dividing antibody
secreting cells (plasma cells), according to the principles of clonal selection. The
degree of proliferation is directly proportional to the recognizing degree of the anti-
gen and the proliferation is succeeded by cell divisions and results in a population
of clones which are copies from each other (De Castro and Timmis, 2002).

To better recognize the antigens, a whole mutation and selection process, which
is called the affinity maturation, is applied on the cloned cells. A first mechanism
is the hypermutation, a process in which random changes take place in the vari-
able region of the antibody molecules. The degree of hypermutation is inversely
proportional to the affinity of the antibody to the antigen: the higher the affinity,
the lower the mutation rate and vice versa. However, a large proportion of these
mutated antibodies will be of inferior quality and will be non-functional in the
immune system. Those cells are eliminated from the population and replaced by
newly developed receptors in a process called receptor editing.

The remainder of this section is organized as follows: the algorithmic details
of the AIS algorithm will be presented in section 3.4.2. In section 3.4.3 some
computational experiments will be executed, while in section 3.4.4 the conclusions
are presented.

3.4.2 AIS algorithm for the MRCPSP

The efficient mechanisms of an immune system make artificial immune systems
useful for scheduling problems. AIS is used for solving job-shop (Coello et al.,
2003; Hart et al., 1998), flow-shop (Engin and Döyen, 2004) and resource-con-
strained project scheduling problems (Agarwal et al., 2007). In this section, a
problem-solving technique for the MRCPSP based on the principles of the verte-
brate immune system is presented. The different generic steps in our AIS algorithm
are presented in figure 3.6 and will be discussed along the following subsections.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 45

POP POP

LOWLOW

HIGH

Clonal selectionInitial population

HIGH

RAND

POP

POP POP POP

E
V

A
L

U
A

T
IO

N

LOW

M
U

T
A

T
IO

N

till stop condition is met

selection Affinity Maturation

Hypermutation Receptor editing

E
V

A
L

U
A

T
IO

N

HIGH

M
U

T
A

T
IO

N

SEED

Figure 3.6: Artificial Immune System: procedure

3.4.2.1 Initial population

Several authors use random techniques to initiate the initial population. They argue
that random initial starting solutions are more diverse and use less computational
effort than heuristic procedures to produce initial solutions (Anderson and Ferris,
1994). However, in this work, we use a more controlled generation of the initial
population. In a first stage, the mode list is generated, while in a second stage, the
activity list is constructed based on this mode list.

Mode list generation A controlled mode assignment procedure is used to gen-
erate the mode lists of the initial population, and this approach will be compared
with a random initial mode list population in the computational results sections.
This procedure uses information obtained by a simple computational experiment
performed on 90 project instances, randomly chosen out of the dataset as pro-
posed in section 3.3.5. For each problem instance, 100 unique and feasible mode
lists were generated, leading to 9,000 different combinations. For each combina-
tion, the near-optimal project makespan was calculated based on the bi-population
genetic algorithm of Debels and Vanhoucke (2005).

The quality of all solutions was evaluated and compared with the character-
istics of the generated mode lists. More precisely, various measures have been
calculated to characterize the mode lists, such as the sum of all activity durations,
the sum of the total work content, the average work content per resource and many
more. In the remainder of this section, the focus is on the following two character-
istics:

46 CHAPTER 3

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,5 1 1,5 2 2,5 3

c

u

(a) Total work content

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,5 1 1,5 2 2,5 3

c

u

(b) Sum of durations

Figure 3.7: Relationship between makespan and value of the mode assignment
characteristic

• Total Work Content (TWC), defined as
∑n
i=1

∑|Rρ|
k=1 r

ρ
imik

dimi

• Sum of Durations (SUM), defined as
∑n
i=1 dimi

A statistical analysis investigated the relation between the mode lists charac-
teristics and the project makespans obtained during the experiment. In figure 3.7,
a graph is plotted with the results of these tests. To standardize the values on the
vertical and horizontal axis, the following calculations were made:

• On the vertical axis, χ is shown. For each problem instance and for each
generated mode list, χ is calculated as the ratio of the makespan resulting
from a particular mode assignment to the best found makespan. The larger
χ, the more the makespan deviates from the best found makespan of that
problem instance. The χ-value of the mode list which results in the best
makespan is 1 and obviously, the value of χ can never be lower than 1.

• On the horizontal axis, the value υ is shown. υ is calculated as the ratio of the
characteristic measure of the mode assignment to the characteristic measure
of the mode assignment which results in the schedule with the best found
makespan. υ can be lower than 1 since the value of the mode assignment
characteristic with a higher makespan can be lower than the value of the
mode assignment characteristic of the best makespan.

In both graphs a positive relationship between the makespan ratio and the ratio
of the characteristic measure can be observed. A Pearson correlation test revealed
that the correlations for the TWC and SUM are 0.61 and 0.74, respectively.

Since there is a significant and proportional relationship between the mode
assignment measure and the makespan, mode lists with low measure values are
preferred to mode lists with high measure values. This information was used dur-
ing the generation of the initial mode lists population, leading to the controlled
mode assignment procedure presented hereunder.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 47

A controlled mode assignment procedure can be formulated in the three fol-
lowing steps:

1. A start population of mode lists, called RANDPOP , is created, with a
large number of randomly generated feasible mode lists (|RANDPOP | is
equal to 4 times the number of populations elements POP).

2. Each mode list has a characteristic measure value, which is likely to lead to
smaller project makespans.

3. The POP mode lists with the lowest values are selected for entrance in the
initial population.

Once the mode lists are generated, a duration and resource consumption is
set to each activity for each population element. Based on this information, the
activity list can be generated.

Activity list generation In the second stage, the activity list is generated. Sev-
eral heuristics available in the literature make use of well-performing priority rules
to generate the sequence in which the activities should be scheduled. Some of the
best performing priority rules are the Latest Finish Time (LFT), the Latest Start
Time (LST), the Minimum Slack (SLK) and the Maximum Remaining Work (RWK).
More information about these priority rules can be found in Kolisch (1996a) and
Boctor (1993).

For each mode list, an activity list is generated using one of the proposed prior-
ity rules. Since different mode lists are generated, also a diverse set of activity lists
will be generated. If two or more equal mode lists occur in the initial population,
different priority rules are applied on the mode lists to avoid equal solution vectors
in the initial population.

After the generation of the activity list and the mode list, a schedule is built for
each of the POP population elements in the initial population.

3.4.2.2 Clonal selection process

A population of POP solution vectors is generated and for each solution vector the
makespan is determined. Only the best Pclonal% solution vectors will be available
for proliferation. For these solution vectors, the corresponding affinity value is
determined as follows:

Aff(V) =
1

makespan(V)− bestmakespan+ 1
(3.1)

where makespan(V) refers to the makespan of solution vector V and best-
makespan refers to the best makespan found so far. The number of clones of a

48 CHAPTER 3

solution vector V in the population is given by the affinity of the solution vector
V over the sum of affinities of all population solution vectors multiplied by the
number of population elements and can be formulated as follows:

#clones(V) =
Aff(V).POP∑POP
i=1 Aff(Vi)

(3.2)

Since the cloning of the antibodies is done directly proportional to their affinity
value, it can be noticed that solution vectors with higher makespans will appear
less frequently than solution vectors with low makespans. The size of the antibody
population is fixed and infeasible solution vectors cannot be proliferated.

3.4.2.3 Affinity maturation

After the proliferation, the affinity maturation is performed. This process is applied
in two phases: first, a hypermutation procedure is applied on each solution vector
of the population and afterwards the receptor editing mechanism is used.

Hypermutation Since a solution vector contains both an activity list and a mode
list, a mutation process is applied on both lists. However, the process for both lists
is different.

For the mutation on the activity list, a hypermutation rate η which defines the
degree of modification in the activity list is calculated. The hypermutation rate for
solution vector V can be formulated as follows:

η(V) = 100e−0.05∗(makespan(V)−bestmakespan) (3.3)

The number of mutations is calculated as:

NumbMut(V) = 1 +
(100− η(V))n

100
(3.4)

The lower the makespan, the lower the hypermutation rate of the activity list
will be and the lower the number of mutations. By applying this mutation process,
the algorithm can explore the neighborhood of the solution. That neighborhood
will expand when the hypermutation rate increases. A mutation is defined as fol-
lows: in the current activity list, an activity is chosen and is moved randomly to a
new position. In order to respect the precedence constraints, the new position of
the activity is lying between the position of its latest predecessor and the position
of its earliest successor (Hartmann, 2002).

The mutation process for the mode list is based on a frequency matrix of the
mode lists in the population. To assign a mode to an activity, a random population

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 49

element is chosen and the mode for that population element activity is assigned
to the cloned element activity. Modes that occur more in the population of good
solutions will therefore occur more. This procedure shows similarities with the
Harmony Search procedure (Geem et al., 2001). In case the mode list becomes
infeasible, a feasibility procedure is applied so that the mode list becomes feasible
by changing mode assignments and the modes with the lowest mode characteristics
(as defined in the previous section) are chosen first. After the mutation process,
every new feasible solution vector is evaluated.

Receptor Editing After the cloning and mutation process, a new population of
antibodies is generated. Only the best Pediting% antibodies are preserved in the
population. The other elements are eliminated and to preserve POP elements
in the population, the population is seeded with high quality mode lists from the
start population RANDPOP . In that way, schedules with a low makespan stay
incorporated in the antibody population and antibodies evolving to inferior search
regions are deleted. The newly generated population is the start population for a
new generation process. This process continues until the stop condition is met.

3.4.3 Computational results

In order to prove the efficiency of our algorithm, the AIS solution procedure is
tested on the test set as proposed in section 3.3.5. The impact of the different
algorithmic parameters, such as Pclonal, Pediting and the population size POP , is
tested and the efficiency of our initial population generation method is proven.

Extensive testing revealed that the optimal values for the different algorithmic
parameters are Pclonal = 25%, Pediting = 20% and POP = 450. Table 3.4 shows
the average deviation from the minimal critical path after the initial population
generation ofPOP population elements and after 5,000 schedules. The 2 different
mode characteristics (TWC and SUM) and the 4 different priority rules (LFT, LST,
SLK and RWK) are compared to the result of the solutions in which a random
generated initial population is used (i.e. random generation of the activity list and
random choice of the mode assignment).

A paired-samples T-test revealed a very significant (p<0.001) influence on
the quality of the schedules when using a controlled initial population generation
method instead of a random generation method: the difference between the aver-
age deviation from the critical path for the random generated solutions (48.23%)
and the average deviation for the controlled generated elements (LST/SUM with
an average deviation of 37.17%) is 11.06%, which corresponds with an average
decrease of 2.2 working days on an average makespan of 28 days (information not
available in table 3.4).

Regardless of which priority rule is used, the combination in which SUM

50 CHAPTER 3

After initial generation After 5,000 schedules
Mode characteristic Mode characteristic

Priority rules Random TWC SUM Random TWC SUM
Random 48.23% 42.60% 42.43% 22.42% 20.81% 20.52%

LFT 43.24% 38.32% 37.85% 22.14% 20.86% 20.55%
LST 42.35% 37.62% 37.17% 22.44% 20.97% 20.74%
SLK 44.86% 39.56% 39.13% 22.29% 21.06% 20.73%

RWK 42.52% 37.95% 37.51% 22.22% 20.95% 20.50%

Table 3.4: Average % deviation from minimal critical path

is used as mode characteristic always outperforms the other mode characteristic
TWC. This result is in accordance to the results of Boctor (1993), who proposed
several priority rules for the mode assignment problem and who concluded that
choosing the shortest feasible execution-mode is the most appropriate rule to min-
imize project duration.

The best solution after 5,000 schedules is found for the combination RWK and
SUM (20.50%). There is a significant difference (p<0.01) with the solution in
which a random generated initial population is used. During the tests performed
in chapter 5, the Maximum Remaining Work (RWK) will be used as priority rule
and the Sum of Durations (SUM) will be used as mode characteristic in our AIS
algorithm.

3.4.4 Conclusions

In this section, an artificial immune system is presented. The vertebrate immune
system mechanisms, which inspire the AIS solution methodology, were used to
solve the MRCPSP. To generate a good and diverse initial population, a controlled
search procedure is designed, which is based on an observed link between prede-
fined mode list characteristic measures and the makespan of the mode assignment
and which leads the search process more quickly to more interesting search re-
gions. Moreover, it is remarkable that the AIS algorithm only makes use of a
(hyper)mutation operator. The performance of the proposed AIS algorithm on the
benchmark datasets will be tested in chapter 5.

3.5 Scatter Search

3.5.1 Introduction

Different research papers have provided valuable insights in the relation between
project characteristics and the performance of solution procedures for both the
single-mode and multi-mode RCPSP (see Herroelen and De Reyck, 1999; Kolisch

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 51

et al., 1995). To the best of our knowledge, for the multi-mode RCPSP only one
paper has used project characteristics to steer the algorithmic procedures towards
promising solution areas. Buddhakulsomsiri and Kim (2007) propose the moving
resource strength, which helps the priority rule-based heuristic for the MRCPSP
with activity splitting and resource vacation in order to identify in which project
situations activity splitting is likely to be beneficial during scheduling.

The main contribution of the solution procedure is threefold: first, a scatter
search procedure to solve the scheduling problem is proposed. While a scatter
search is proven to be successful in dealing with combinatorial problems, to the
best of our knowledge, it has not been used before to solve the MRCPSP. Sec-
ond, three different solution improvement methods are developed, each based on
the information obtained from the renewable and nonrenewable resource charac-
teristics. Third, the proposed algorithm provides state-of-the-art results for the
available benchmark datasets.

The outline of this section is as follows. In section 3.5.2, a resource scarce-
ness matrix is presented which gives insight into the influence of the scarceness of
the renewable and nonrenewable resources on the search focus of the algorithm.
Section 3.5.3 proposes a scatter search for the MRCPSP, for which different solu-
tion improvement methods tailored to the resource scarceness characteristics of a
project, are presented. In section 3.5.4, computational results for the configuration
of the scatter search are given and the influence of the resource scarceness on the
solution quality is tested. Finally, in the last section, overall conclusions of this
solution procedure are presented.

3.5.2 Resource scarceness matrix

Several resource parameters have been introduced in the past decades to measure
the scarceness of resources of a project instance. These parameters are determined
by the resource consumption and the resource availability. For a constant resource
availability, the scarceness will increase for an increasing resource consumption.
Moreover, the more restrictive a resource type becomes, the higher the makespan
of the project will be.

Since the resource scarceness can be applied on both the renewable and nonre-
newable resources, a brief description for both resource types is given.

– Renewable resources

When the scarceness of the renewable resources is low, the project is hardly
restricted by its resources. The makespan of the project will mainly be de-
termined by the precedence relations of the project and each activity will
be scheduled at or close to its critical path start time. When, however, the
scarceness of renewable resources is high, the influence of the resource con-
straints will overrule the precedence constraints. Due to the relatively low

52 CHAPTER 3

resource availability, most of the activities will be scheduled one after the
other. An increase from a low to a high resource scarceness also leads to an
increasing deviation of the project makespan above the minimal critical path
duration.

The renewable resource scarceness might influence the performance of a
solution procedure. Projects with a low scarceness might need a search pro-
cedure which focuses on the neighborhood of the minimal critical path mode
assignment (i.e. the critical path using the minimal duration of activities),
while a search procedure that will mainly focus on the limitations imposed
by the renewable resource availabilities might be more effective for projects
with a high scarceness of the renewable resources.

– Nonrenewable resources

The feasibility of a mode assignment is determined by the nonrenewable
resource consumption. A mode combination is feasible if the sum of the
requested nonrenewable resources is smaller than or equal to the nonrenew-
able resource availabilities (i.e. ifERR is equal to 0). In case the scarceness
of the nonrenewable resources is low, many mode assignment combinations
will be feasible. The more the scarceness of the nonrenewable resources in-
creases, the more mode combinations will become infeasible. Consequently,
the higher the scarceness of the nonrenewable resources, the more the search
procedure should focus on the search for feasible mode assignments.

Combining the information of the resource scarceness of both the renewable
and nonrenewable resources, a resource scarceness matrix can be presented, as
shown in figure 3.8. On the horizontal axis the scarceness of the renewable re-
sources, moving from low to high, is presented, while on the vertical axis the
scarceness of the nonrenewable resources is shown. The matrix can be divided into
four quadrants: in quadrant 1 and 2 the number of feasible modes (#feas.modes)
is high (indicated as ’>>’), while the amount of feasible modes is more limited
(’<<’) in quadrants 3 and 4, due to the high nonrenewable resource scarceness.
In quadrant 1 and 3 the makespan (Cmax) of the projects with a low renewable
resource scarceness will be close to the critical path duration (CP), while the
makespan of the projects with high resource scarceness values in quadrants 2 and
4 might deviate significantly from the minimal critical path duration.

In the next section, a scatter search heuristic and different improvement meth-
ods are presented. The improvement methods are based on the resource scarceness
characteristics of each quadrant to increase the effectiveness of the search proce-
dure in each of the quadrants.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 53� �� � �� �� � � �� �	 �
 ��
 � �
 �� �� �
��� ���� � � ��

� � � ��� �� �� ��� ! �"#$ � � �% & � ' ��((���)) �"#$ � � �% & � ' ��((
� ��� � * +� ��+� �,- ., ��� ! �"#$ � � �% & � ' ��/ / ���)) �"# $ � � �% & � ' ��/ /

Figure 3.8: The resource scarceness matrix

3.5.3 Scatter search

Scatter search is a population-based metaheuristic procedure, proposed by Glover
et al. (2000), in which solutions are intelligently combined to yield better solu-
tions. The scatter search method involves deterministic procedures that can in-
clude problem specific knowledge (Pinol and Beasley, 2006) and can therefore be
implemented in a variety of ways and degrees of sophistication. Scatter search
algorithms are often classified as so-called evolutionary methods. However, the
scatter search algorithm contrasts with other evolutionary procedures, such as ge-
netic algorithms, by providing unifying principles of joining solutions based on
generalized path constructions in Euclidian space and by utilizing strategic designs
where other approaches resort to randomization (Glover et al., 2000).

For an overview of the basic and advanced features of the scatter search, we
refer to Glover et al. (2000) and Marti et al. (2006). The scatter search we present
in this work has a generic procedure as outlined in the pseudocode below.

1. Diversification Generation Method
While Stop Criterion not met

2. Subset Generation Method
3. Solution Combination Method
4. Improvement Method
5. Reference Set Update Method

Endwhile

54 CHAPTER 3

In figure 3.9, a conceptual overview of the different steps in our scatter search
procedure is shown. In the remainder of this section, each of these different steps
is explained in detail.

3.5.3.1 The Diversification Generation Method

Initial population In this first step, a pool P of POP solution vectors is gener-
ated.

The controlled mode assignment procedure, as proposed in section 3.4.2.1, is
used to generate the mode lists. Once the mode lists are generated, a duration and
resource consumption can be assigned to each activity for each population element.
Since Kolisch and Drexl (1997) mention that finding a feasible solution for the
MRCPSP is a NP-complete problem if at least two nonrenewable resources are
given, infeasible solutions are accepted in the initial population, but are penalized
with the penalty function of Alcaraz et al. (2003). The activity lists are generated
randomly, assigning a priority value to each activity.

Reference sets After the generation of POP population elements and the eval-
uation of the solution vectors with the serial schedule generation scheme (SGS),
which translates the solution vector into a schedule, two diverse populations are
constructed from P : a set B1, with the b1 best solutions of the solution set P and
a set B2, with b2 diverse solutions. For the subset B1, a threshold t1 on the min-
imal distance between the elements is imposed in pursuit of diversity. The subset
B2 contains the b2 best solutions from P\B1 that are sufficiently distant from the
elements of B1. The diversity in B2 is achieved by a threshold t2 on the smallest
distance to any element in B1 with t2 > t1. The distance between two solutions is
a measure for diversity and is calculated according to the following two distance
functions. The first distance function, dsp1,p2 , calculates the distance as the sum of
the differences between the start times of the activities and can be formulated as
follows:

dsp1,p2 =

|N |∑
i=1

|sp2i − s
p1
i |

with p1 and p2 two population elements and sp1 and sp2 their according start
times. The second distance function, dmp1,p2 , calculates the distance based on the
difference in mode assignments and is formulated as follows:

dmp1,p2 =

|N |∑
i=1

{
0 if mp1

i = mp2
i

1 otherwise

In the computational results section both distance functions are compared and
the optimal values for the thresholds are determined.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 55

YY Y

Feasibility Work content Critical path

mode change

ERR > 0

ERR = 0
N

mode change

CSLB >
best

CSLB <
best

N

mode change

CSLB >
best

CP < best
N

Y

NN N

Improvement method

Y Y

Subset generation method

x
x

x

x

x
x

x

x
B1xB1 B1xB2

Solution combination method

x
x

Diversification generation method

RANDPOP

B1 B2

RefSet update

POP

POP

Evaluation + local search

Stopcrit?

Y

N

STOP

good diverse

Figure 3.9: A conceptual overview of the scatter search procedure

56 CHAPTER 3

If there are less solutions in B2 than the predefined number b2, the set B2 is
filled up with randomly generated schedules.

3.5.3.2 The Subset Generation Method

After the initialization phase, a new pool of solutions is created by combining
pairs of reference solutions in a controlled way. New solutions are created from
all two-element subsets. First, all pairs in B1 containing at least one new solution
compared to the previous generation are considered. From each such pair, two
children are produced. Second, from each combination of one element from B1

and one from B2 two offsprings are constructed. Choosing the two reference solu-
tions out of the same cluster stimulates intensification, while choosing them from
different clusters stimulates diversification.

3.5.3.3 The Solution Combination Method

In the solution combination phase, the two selected population elements produce a
new offspring which inherits parts of their parents’ characteristics. Several cross-
over operators were tested and tests revealed that the two-point crossover method
clearly outperforms other crossover operators. In the two-point crossover scheme,
two crossover points are randomly chosen and the characteristics between them
are exchanged. As the procedure works on both the activity list and the mode list,
the crossover considers start times and modes simultaneously (i.e. using the same
crossover points).

3.5.3.4 The Improvement Method

In this section, we propose different solution improvement methods, which are ap-
plied on the solution vectors that are generated in the solution combination method.
Every new solution vector consists of a new generated activity list and a new gen-
erated mode list. Since the mode list determines the duration and the renewable
and nonrenewable resource requirements for each activity, quick tests can be used
to indicate whether the solution vector has potential to improve the current best
solution found so far, without actually using the schedule generation scheme. The
two quick tests are:

Feasibility test This test is related to the nonrenewable resources and checks
whether the mode assignment is feasible or not. If the test reveals an in-
feasible solution vector (ERR > 0), the feasibility improvement method is
performed.

Lower bound This test is related to the renewable resources and checks whether
a new generated mode assignment (i.e. a duration and renewable resources)

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 57

can lead to an improvement in the total project makespan. If the critical
sequence lower bound (CSLB), proposed by Stinson et al. (1978), is larger
than the best makespan found so far, two specific improvement methods
are performed to improve the solution vector: the critical path improvement
method tries to minimize the critical path length of the solution vector, while
the work content improvement method tries to minimize the total work con-
tent of the proposed solution vector.

In case one of the these two tests is positive, one of the three improvement
methods discussed below will be called in order to obtain a modified solution vec-
tor which will likely result in a decrease of the project makespan compared to the
best known solution found so far. Consequently, each of the improvement meth-
ods will modify the mode list of the solution vector in such a way to maximize
the probability that these modifications lead to a better project makespan. There-
fore, a probability p(i,j) is calculated in order to determine which activity/mode
combinations will be subject to change. The activity/mode combinations with a
higher p(i,j) value will have a higher priority to be modified. The probability p(i,j)
is defined as follows:

p(i,j) =
∆i,j∑N

i=1

∑|Mi|
j=1 ∆i,j

(3.5)

with ∆i,j the improvement value for each activity i/mode j combination. Chan-
ges are made until a stop criterion defined by the improvement method is met.

Feasibility improvement method The purpose of this improvement method is
to decrease the value of ERR. The improvement value ∆i,j is formulated
as follows:

∆i,j = max{0, ERRold − ERRnew} (3.6)

with ERRnew equal to the ERR-value based on the activity i/mode j com-
bination, holding all other modes equal. Obviously, the value ofERRnew is
equal to the value of ERRold if the current mode mi of activity i is chosen.
Once the mode assignment becomes feasible or no further improvements
can be made, the feasibility improvement method is stopped.

Critical path improvement method The purpose of this improvement method
is to minimize the critical path length of the solution vector. The improve-
ment value ∆i,j for this improvement method is calculated as follows:

∆i,j = max{0, CPold − CPnew} (3.7)

58 CHAPTER 3

with CPnew the critical path based on the duration of the activity i/mode j
combination and holding all other modes equal. The improvement method
stops when CPnew is smaller than the best found makespan or when no
further improvements can be found.

Work content improvement method The purpose of this improvement method
is to minimize the total work content of the proposed solution vector. The
improvement value ∆i,j for this improvement method is calculated as fol-
lows:

∆i,j = max{0,WCold −WCnew} (3.8)

with WCnew the needed work content based on the duration and resource
demand of the selected mode, holding all other modes equal. The improve-
ment method stops when the critical sequence lower bound is smaller than
the best found makespan or when no further improvements can be found.

These improvement methods perfectly fit into the renewable and nonrenewable
resource scarceness matrix presented in figure 3.8. Since the feasibility improve-
ment method will try to solve nonrenewable resource infeasibilities expressed by
positive ERR values, it will lay its focus on the third and fourth quadrants of the
matrix. The focus of the critical path improvement method is to make changes
in the critical path length, and hence lays its focus on the left part of the resource
scarceness matrix. The work content improvement method puts a focus on the total
work content of the activity/mode combinations, and consequently, will be fully
exploited for project instances classified in the right part of the resource scarceness
matrix. Figure 3.10 shows by means of the dark shaded areas what the focus of
each improvement method is. The contribution of this approach on the solution
quality will be tested in the computational results section.

3.5.3.5 The Reference Set Update Method

The population evolves over time with the entrance of new solution vectors and
the removal of old solutions, searching to improve the quality of the best known
solution. A new solution is introduced as a member in the reference set either if the
solution vector has a better objective function value than the solution vector with
the worst objective function value in B1 or if the solution point is more diverse
with respect to B1 than the least diverse solution point in B2.

3.5.3.6 Local searches

In section 3.5.3.4, we have proposed different solution improvement methods.
These methods were applied on the infeasible solution vectors, before they were

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 59

ERR Lower bound

Feasibility impr. method Critical path impr. method Work content impr. method

Figure 3.10: Solution improvement methods

actually scheduled, using the serial schedule generation scheme. However, differ-
ent local searches applied on partially or fully scheduled projects were already pro-
posed in the literature. The local search of Józefowska et al. (2001) and Bouleimen
and Lecocq (2003) search in the neighborhood of a schedule by changing the activ-
ity list and mode list randomly. Kolisch and Drexl (1997) determine a probability
function based on an approximation of the change in the objective function to
determine which activity/mode pair will be changed. These local searches were
coded and tested but revealed inferior results in the scatter search procedure with
respect to the local search procedures of Hartmann (2001) and Van Peteghem and
Vanhoucke (2010) (see section 3.5.4). In what follows, we explain both local
search procedures briefly. Both local search procedures will be tested in section
3.5.4.

Hartmann (2001) The local search of Hartmann (2001) is based on the multi-
mode left shift of Sprecher (1994). A multi-mode left shift of an activity j
is an operation on a given schedule which reduces the finish time of activ-
ity j without changing the modes or finish times of the other activities and
without violating the precedence and resource constraints. For each feasible
schedule, the procedure checks for every activity whether a multi-mode left
shift can be performed. For each activity, the first feasible multi-mode left
shift is applied to the schedule. It is called a single-pass procedure, because
every activity is considered only once for a multi-mode left shift.

Van Peteghem and Vanhoucke (2010) The local search of Van Peteghem and
Vanhoucke (2010), as proposed in section 3.3.3, selects an activity with a
certain probability and evaluates during the generation of a schedule all fea-
sible mode assignments of the selected activity. For each new mode assign-

60 CHAPTER 3

ment the ERR is calculated. If the ERR is equal to or smaller than the
current one, the local search checks if an improvement can be made in the
finish time of that activity. The mode with the lowest finish time that does
not increase the ERR is chosen.

3.5.4 Computational results

In this section, we configure the algorithm and evaluate its performance. In section
3.5.4.1 we present two datasets which are generated for this research and which
will be used to test and configure the algorithmic parameter settings in section
3.5.4.2. The influence of the improvement methods on the different quadrants in
the resource scarceness matrix is tested in section 3.5.4.3. The analysis of the local
searches is presented in section 3.5.4.4, while the introduction of an integrated
solution procedure is presented in section 3.5.4.5.

3.5.4.1 Dataset generation

In this section, two datasets are proposed, each containing a large set of data in-
stances based on different complexity project parameters. A first dataset is used to
configure the proposed scatter search algorithm, the other dataset is used to analyze
the influence of the improvement methods and the local searches on the resource
scarceness matrix.

For the generation of the instances of both datasets, we have used the RanGen
project scheduling instances generator developed by Vanhoucke et al. (2008) and
extended the projects to a multi-mode version. Each instance contains 50 activi-
ties, with three modes, two renewable resources and two nonrenewable resources.
Dataset 1 is used in section 3.5.4.2 for the configuration of the algorithmic param-
eters, while dataset 2 is used in sections 3.5.4.3, 3.5.4.4 and 3.5.4.5 to analyze the
performance of the improvement methods and local searches.

The following network and resource parameters were used for the two datasets.
The values for each of these project characteristics are presented in table 3.5.

1. The network complexity is described by the order strength. In both datasets,
the value of the OS is set at 0.25, 0.50 or 0.75.

2. In dataset 1, the resource strength is set at 0.25, 0.50 or 0.75, while in the
other dataset, the parameter varies between 0 and 1 in steps of 0.10. The
same parameter values are used for the nonrenewable resource strength in
both datasets.

3. The resource factor (RF) indicates the percentage of resources required per
activity and is set at 0.50 or 1.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 61

4. For each problem class, 5 instances were generated. In the last row of table
3.5, the total number of instances generated is shown.

Dataset 1 Dataset 2
OS 0.25-0.50-0.75 OS 0.25-0.50-0.75
RSρ 0.25-0.50-0.75 RSρ 0 to 1 (0.10)
RSν 0.25-0.50-0.75 RSν 0 to 1 (0.10)
RF 0.50-1.00 RF 0.50-1.00

540 # 7,260

Table 3.5: Parameter setting for the different datasets

3.5.4.2 Impact of the algorithmic parameters

In this section, dataset 1 is used to test the impact of the different parameters on
the effectiveness of the procedure. The optimal size of the initial solution pool
is tested and set to |POP |=7b, with b=b1+b2 and b1=8 and b2=7. In table 3.6
the random mode assignment procedure is compared with the controlled mode
assignment procedure for each of the two distance functions dsp1,p2 and dmp1,p2 . For
each combination, the sum of the 540 projects makespans (shown in the column
’Sum’) and the average deviation from the best solution procedure (shown in the
column ’Dev.Best’) is presented. As can be seen, the controlled mode assignment
procedure combined with the distance function dsp1,p2 revealed the best results.
Tests also revealed that the optimal values for t1 and t2 were 0.5|N | and 1.5|N |,
respectively, with |N | the number of activities in the project.

3.5.4.3 Influence of the improvement method

In this section, the influence of the different improvement methods on the solution
quality in the different quadrants of the resource scarceness matrix is tested. The
results for the improvement methods applied on dataset 2 after 5,000 schedules and
after 1 second are mentioned in table 3.6. The sum of all the project makespans
is presented in the column ’Sum’, while the column ’Dev.CP’ (%) contains the

Distance function
dsp1,p2 dmp1,p2

Initial mode generation Sum Dev.Best Sum Dev.Best
Random 35,438 2.87% 35,593 3.74%

Controlled 34,436 0.00% 34,872 1.49%

Table 3.6: Influence of initial mode generation and distance functions

62 CHAPTER 3

average deviation from the minimal critical path length. The column ’Dev.Best’
contains the average deviation from the solutions of the best procedure, which will
be presented later. Since the CPU-time needed to execute each of the improvement
methods differs significantly (as can be seen in the column ’CPU-time’), compu-
tational tests were performed with a fixed time limit of 1 second in order to make
a fair comparison. However, similar conclusions can be drawn.

In this section, we will consider the first 5 results. The other results will be
discussed in the following sections.

Figure 3.11 shows the performance of each improvement method on all project
instances of dataset 2 and confirms that the focus on each improvement corre-
sponds with the resource scarceness characteristics as mentioned in section 3.5.3.4:

– The lower the renewable resource scarceness of a project instance is, the
more effective the critical path improvement method is.

– The higher the renewable resource scarceness of a project instance is, the
more effective the work content improvement method is.

– The higher the nonrenewable resource scarceness of a project instance is,
the more effective the feasibility improvement method is.

100 90 80 70 60 50 40 30 20 10 0

100

90

80

70

60

50

40

30

20

10

0

RS

low high

lo
w

hi
gh

no
nr

en
ew

ab
le

 re
so

ur
ce

sc

ar
ce

ne
ss

renewable resource
scarceness

FIM CPIM WCIM

1 2
43

Figure 3.11: Distribution of the most effective improvement methods over the resource
scarceness matrix

Based on these findings, a combined improvement method can be proposed.
For this combined improvement method, a probability is assigned to each of the

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 63

Ta
bl

e
3.

7:
In

flu
en

ce
of

th
e

im
pr

ov
em

en
tm

et
ho

ds
an

d
lo

ca
ls

ea
rc

he
s

R
es

ul
t

Im
pr

.m
et

ho
d

L
oc

al
Se

ar
ch

5,
00

0
sc

he
du

le
s

1
se

co
nd

Su
m

D
ev

.C
P

(%
)

D
ev

.B
es

t(
%

)
C

PU
-t

im
e

(s
)

Su
m

D
ev

.C
P

(%
)

D
ev

.B
es

t(
%

)
1

-
-

28
3,

30
7

48
.8

4%
4.

29
%

0.
30

28
2,

53
4

48
.3

7%
4.

37
%

2
FI

M
-

27
9,

69
7

46
.8

3%
2.

95
%

0.
33

27
8,

62
2

46
.2

1%
2.

90
%

3
W

C
IM

-
27

9,
87

2
46

.9
2%

2.
63

%
0.

67
27

9,
25

7
46

.5
5%

2.
77

%
4

C
PI

M
-

27
7,

22
6

45
.4

5%
1.

33
%

0.
50

27
6,

48
6

45
.0

0%
1.

41
%

5
C

O
M

B
-

27
4,

14
6

43
.7

0%
0.

42
%

0.
92

27
3,

41
7

43
.2

6%
0.

57
%

6
-

H
A

R
T

27
4,

49
4

43
.9

0%
0.

96
%

0.
25

27
2,

51
8

42
.6

9%
0.

60
%

7
-

V
PV

27
3,

86
9

43
.6

0%
0.

81
%

0.
29

27
2,

20
9

42
.5

8%
0.

56
%

8
-

C
O

M
B

27
3,

10
4

43
.2

1%
0.

43
%

0.
26

27
1,

87
6

42
.3

8%
0.

34
%

9
C

O
M

B
C

O
M

B
27

2,
54

7
42

.8
1%

0.
00

%
0.

72
27

1,
36

9
42

.0
9%

0.
00

%

64 CHAPTER 3

improvement methods, based on the value U which is assigned according to the
following formula:

UCPIM = RSρ

UFIM = 100−RSν

UWCIM = 100−RSρ

with RSρ the value of the renewable resource strength and RSν the value
of the nonrenewable resource strength. The probability P that an improvement
method q (q = CPIM , FIM or WCIM) is chosen is equal to:

Pq =
Uq

UCPIM + UFIM + UWCIM

If the improvement is selected and finds an improvement in the solution vector,
the value U is increased so that the probability of selection in a next iteration is
increased. In doing so, this probability selection method aims at selecting the
improvement methods that fit best with the project under study given the renewable
and nonrenewable resource characteristics as shown in the resource scarceness
matrix. Table 3.7 shows that this method results in the best performing results
found (result 5).

3.5.4.4 Introduction of local searches

Results 6 and 7 in table 3.7 show the impact on the solution quality for the two local
searches described in section 3.5.3.6, i.e. the local search of Hartmann (HART)
and the local search of Van Peteghem and Vanhoucke (V PV). The table shows that
the local of search of Van Peteghem and Vanhoucke outperforms on average the
solutions of Hartmann. However, looking to the specificRSν−RSρ-combinations
in the resource scarceness matrix, a distinction can be made: in (parts of) quadrants
2 and 3 the local search of Hartmann (HART) outperforms the local search of
Van Peteghem and Vanhoucke (V PV), while in the other two quadrants, the latter
seems more effective than the former (see fig. 3.12). Based on these findings,
a controlled local search procedure is proposed (result 8), where in the specific
regions of quadrant 2 and 3 the local search of Hartmann is used, while in the
other situations, the local search of Van Peteghem and Vanhoucke is performed.

3.5.4.5 An integrated solution procedure for the MRCPSP

An integrated procedure is developed by integrating the combined local search and
the combined improvement method in our scatter search algorithm. The results for
the overall procedure are mentioned in table 3.7 (result 9). In the following sec-
tion, tests will be performed on the PSPLIB dataset using this integrated solution
procedure.

METAHEURISTIC SOLUTION PROCEDURES FOR THE MRCPSP 65

100 90 80 70 60 50 40 30 20 10 0

100

90

80

70

60

50

40

30

20

10

0

RS

low high

lo
w

hi
gh

no
nr

en
ew

ab
le

 re
so

ur
ce

sc

ar
ce

ne
ss

renewable resource
scarceness

VPV HART EQUAL

1 2
43

Figure 3.12: Influence of the local searches on the resource scarceness matrix

3.5.5 Conclusions

In this section, we have designed a promising scatter search procedure for the
MRCPSP. The added value of this algorithm lies in the steering power of three
proposed improvement methods, each tailored to the specific characteristics of
different renewable and nonrenewable resource scarceness values. Computational
results confirm the influence of these improvement methods on projects situated in
one of the quadrants of our resource scarceness matrix. The combination of these
improvement methods and the introduction of two local searches into one overall
solution procedure leads to promising computational results.

3.6 Conclusions

In this chapter, we have presented three metaheuristic solution procedures for the
MRCPSP: a genetic algorithm, an artificial immune system and a scatter search
procedure.

The contribution of this chapter is threefold. First, three different population-
based metaheuristic strategies are followed. The genetic algorithm uses several
mechanisms such as natural selection, crossover and mutation in order to recom-
bine existing solutions so that new ones are obtained. The scatter search algorithm
contrasts with the genetic algorithm by focusing not only on the quality of the
solution, but also on the diversity of a solution. The use of diversification and

66 CHAPTER 3

improvement methods leads to a more efficient exploration of the solution space.
The artificial immune system finally makes use of mechanisms, such as the clonal
selection process, hypermutation and receptor editing, which are inspired by the
vertebrate immune system. The artificial immune system differs from the genetic
algorithm by the fact that new solutions are only generated by applying a (hy-
per)mutation operator. Second, problem-specific techniques and local searches
are added to each of the metaheuristic solution procedures in order to solve the
MRCPSP efficiently: the extended generation scheme with mode improvement
method in the genetic algorithm, the controlled mode assignment procedure to
generate a good and diverse initial population in the artificial immune system pro-
cedure and the three improvement methods, each tailored to the specific renewable
and nonrenewable scarceness characteristics in the scatter search procedure. The
introduction of these methods significantly increases the performance of the proce-
dures. Third, in the recent literature different penalty functions and local searches
were proposed. An overview of these penalty functions and local searches is given
and tested during computational experiments. The results give an indication of the
effectiveness of each of these procedures and functions and emphasize the need
for solution methods and procedures tailored to the specific characteristics of the
multi-mode scheduling problem.

In this chapter, an overview is given of the algorithmic features of the different
metaheuristic solution procedures. These procedures are tested on specific datasets
to optimize the different algorithmic parameters, however, no comparison is made
between the metaheuristics on a standard benchmark dataset. In order to make this
fair comparison between the three procedures and the other metaheuristics avail-
able in the literature, computational tests are performed on the benchmark datasets
PSPLIB and Boctor. The results of this comparison are presented in chapter 5.
Moreover, results are also provided for tests performed on the new benchmark
dataset MMLIB, which is presented in the next chapter.

4
New Dataset for the MRCPSP

4.1 Introduction

In order to make a fair comparison between different solution procedures for spe-
cific optimization problems, standard benchmark sets are available to test the ef-
ficiency and performance of the proposed algorithm. Examples are the PSPLIB
dataset for the RCPSP (Kolisch et al., 1995), the MPSPLIB for multi-project
scheduling problems (Homberger, 2007) and the dataset for the machine sched-
uling problem, proposed by Sels and Vanhoucke (2009).

For the MRCPSP, the PSPLIB dataset (Kolisch et al., 1995) and the Boctor
dataset (Boctor, 1993) are available. Most authors make use of these datasets to
test the performance of their procedures in order to compare them to other algo-
rithms available in the literature. However, the two datasets show some impor-
tant shortcomings given the recent evolution in the development of metaheuristic
search procedures. Therefore, we propose in this chapter a new benchmark dataset
which overcomes the disadvantages of the current datasets and which can be used
as a benchmark dataset for further research. In section 4.2, we make an analysis
of the current benchmark datasets and explain their shortcomings, while in section
4.3 we propose the indicators of the newly developed and generated benchmark
dataset.

68 CHAPTER 4

PSPLIB Boctor
Number of instances/dataset 640 120
Number of feasible instances/dataset 549 (avg.) 120
Number of activities 10, 12, 14, 16, 18, 20, 30 50, 100
Number of renewable resources 2 1, 2, 4
Number of nonrenewable resources 2 0
Number of modes 3 1,2,4

Table 4.1: Overview of the characteristics of PSPLIB and Boctor

4.2 Analysis of the current benchmark datasets
In this section, we make an analysis of the two current benchmark datasets, the
PSPLIB dataset and the Boctor dataset. In table 4.1, an overview of the input
parameters of both datasets is given.

PSPLIB The PSPLIB dataset is generated with the project generator ProGen
(Kolisch et al., 1995) and is available in the project scheduling problem
library PSPLIB from the ftp server of the Technische Universität München
(http://129.187.106.231/psplib/). The dataset contains 7 subsets: the datasets
J10, J12, J14, J16, J18, J20 and J30, containing project instances with 10, 12,
14, 16, 18, 20 and 30 activities, respectively. For each project, 2 renewable
and 2 nonrenewable resources are used.

Boctor This dataset, proposed by Boctor (1993), contains 240 instances. There
is one set composed of 120 instances of 50 activities (Boctor50) and one set
composed of 120 problems of 100 activities (Boctor100). For each project,
one, two or four renewable resource types are used.

Several project parameters have been introduced in the literature for describ-
ing the characteristics of a project network and the resource scarceness. The coeffi-
cient of network complexity (CNC, Pascoe, 1966), the order strength (OS, Mastor,
1970) and the I2 indicator (Vanhoucke et al., 2008) are examples of network topol-
ogy measures. The resource factor (RF, Pascoe, 1966) and resource strength (RS,
Cooper, 1976; Kolisch et al., 1995) are examples of resource scarceness measures.

An overview of the values of these instance characteristics for the J30 and Boc-
tor100 dataset is given in table 4.2. In this table, the average value, the minimum
value and the maximum value for the different project characteristics (OS, CNC
and I2) and the different resource characteristics (resource strength and resource
factor) are presented. In figure 4.1, a frequency graph is given for the values of
both the order strength and resource strength. As can be seen, the range for the
values of the order strength (for J30 and Boctor100) and the resource strength (for
Boctor100) is rather limited.

NEW DATASET FOR THE MRCPSP 69

J30 Boctor100
avg. min max avg. min max

Project characteristics
OS 0.46 0.34 0.61 0.87 0.79 0.93
CNC 1.81 1.81 1.81 1.59 1.44 1.92
I2 0.29 0.23 0.43 0.53 0.40 0.62

Resource characteristics
Resource strength (R) 0.62 0.25 1 0.15 0.06 0.25
Resource factor (R) 0.75 0.5 1 0.88 0.67 1
Resource strength (NR) 0.62 0.25 1 - - -
Resource factor (NR) 0.75 0.5 1 - - -

Table 4.2: Overview of the characteristics of PSPLIB and Boctor

Despite the diverse range of the resource parameters (the RS varies between
0.25 and 1) and the incorporation of both renewable and nonrenewable resources
in the J30 dataset, we believe that the instances have four major shortcomings to
stimulate further research for the MRCPSP. A first shortcoming lies in the inabil-
ity to report feasible solutions for all problem instances. As an example, only 552
instances from the 640 generated instances have a possible feasible solution. A
similar shortcoming holds for the J10 to J20 datasets (see Alcaraz et al., 2003;
Van Peteghem and Vanhoucke, 2010). A second drawback is the small range of
OS values (between 0.35 and 0.60) to guarantee a diverse set of project topology
networks. A third reason why the current J30 instances are no longer desirable for
further algorithmic development lies in the observation that most instances have
been solved to near optimality, which leaves little room to reach major improve-
ments with newly developed solution procedures. Future instances should contain
projects with more activities (> 30), more mode combinations per activity (> 3)
or more renewable or nonrenewable resources. Finally, the generation of activity
modes should be done differently, in order to guarantee that all modes are effi-
cient. In the J30 dataset, three modes have been generated per activity. However, a
number of these modes can be deleted by the preprocessing procedure of Sprecher
(2000), leading to only 2.88 modes per activity on average (see Van Peteghem and
Vanhoucke, 2010). Moreover, the deletion of inefficient modes leads to a change
of the resource parameters of the project instance, which could possibly lead to
biased results.

The main advantage of the Boctor100 dataset is the large number of activi-
ties per project instance. However, three major concerns about this dataset can be
specified. First, only renewable resources are taken into account and nonrenew-
able resources are neglected. Second, the average resource strength per project
is not larger than 0.25, which means that the renewable resources are almost not
restricted, and third, the order strength of the projects varies between 0.8 and 0.95,

70 CHAPTER 4

0%

10%

20%

30%

40%

50%

60%

0.
02

5

0.
07

5

0.
12

5

0.
17

5

0.
22

5

0.
27

5

0.
32

5

0.
37

5

0.
42

5

0.
47

5

0.
52

5

0.
57

5

0.
62

5

0.
67

5

0.
72

5

0.
77

5

0.
82

5

0.
87

5

0.
92

5

0.
97

5 1

PSPLIB-J30 Boctor-100

(a) Order strength

0%

10%

20%

30%

40%

50%

60%

0.
02

5

0.
07

5

0.
12

5

0.
17

5

0.
22

5

0.
27

5

0.
32

5

0.
37

5

0.
42

5

0.
47

5

0.
52

5

0.
57

5

0.
62

5

0.
67

5

0.
72

5

0.
77

5

0.
82

5

0.
87

5

0.
92

5

0.
97

5 1

PSPLIB-J30 Boctor-100

(b) Resource strength

Figure 4.1: Frequency table for the project instance characteristics

which means that the projects are mainly serial.
In the next section, we will present three new datasets, which will cover most

of the shortcomings mentioned in this section and are suggested to be used as a
new benchmark dataset for the MRCPSP.

4.3 A New Dataset for the MRCPSP

4.3.1 Generation conditions

In order to overcome the shortcomings of the PSPLIB and Boctor datasets, the
following conditions were taken into account while generating the dataset:

1. The generated project is diverse with respect to the project (OS) and resource
characteristics (RS and RF).

2. Every instance has at least 1 feasible solution.

3. No modes can be excluded.

4. Both renewable and nonrenewable resources are taken into account.

NEW DATASET FOR THE MRCPSP 71

4.3.2 Dataset generation

For the generation of the instances, we have used the RanGen project scheduling
instances generator developed by Vanhoucke et al. (2008) and extended to projects
with multiple modes. In order to meet the conditions mentioned in the previ-
ous section, two repair functions are used during the generation of the different
datasets.

1. For projects with low values of the nonrenewable resource strength (RSν =
0.25), many infeasible projects were generated. This problem was also cited
by Demeulemeester et al. (2003). If the resource strength of a nonrenew-
able resource is low, this results in a low value of the availability aν . Since
the generation of the projects occurs randomly, only in a limited number of
cases a feasible project is generated. Therefore, a repair function is used to
avoid this problem. A large set of small projects (10 activities) is generated
with a RSν = 0.25 and a RF ν = 0.50. All feasible projects are selected
from this large set. During the generation of the projects with a large num-
ber of activities (e.g. 50 or 100), a random combination is selected from the
generated small subset of feasible projects and the nonrenewable resource
information is randomly assigned to one of the new project’s activities. To
obtain the overall availability, the sum of all nonrenewable resource avail-
abilities of the chosen small projects is made. This process can be executed
since, based on the mathematical formulation of the nonrenewable resource
strength, the combination of two feasible projects always leads to a feasible
project.

2. Many inefficient modes were generated during the data generation process.
Modes are labelled as inefficient if there is another mode of the same ac-
tivity with the same or smaller duration and no more requirements for all
resources. Since all projects are generated randomly, it is straightforward
that inefficient modes are generated. Therefore, a repair function is used in
order to deal with the problem of inefficient modes. If an inefficient mode is
detected, the resource requirement of one of the nonrenewable resources is
set to a value lower than the original nonrenewable resource demand. This is
only possible if the resource demand is not 0 or if the nonrenewable resource
demand is not the minimal resource demand for that activity (otherwise the
nonrenewable resource strength will be affected). In the case no changes
can be performed, a new project is generated.

4.3.3 Dataset characteristics

The dataset generation resulted in the design of two datasets: the MMLIB* dataset,
which has project characteristics similar to the PSPLIB dataset and takes the short-

72 CHAPTER 4

comings mentioned in the previous section into account, and the MMLIB+ dataset,
which also takes more resources and more modes into account. The motivation
to generate both datasets comes from the idea that the complexity of the current
benchmark datasets should be increased. The MMLIB* is generated to increase the
complexity of the scheduling problem (i.e. more activities), the MMLIB+ dataset
is generated to increase the complexity of both the scheduling problem (i.e. more
activities) and the mode assignment problem (i.e. more possible nonrenewable
mode combinations).

MMLIB* The MMLIB* dataset is a dataset with two subsets: MMLIB50 and
MMLIB100 with 50 and 100 activities, respectively. Each project activity
has 2 renewable and 2 nonrenewable resources and for each activity, 3 modes
were defined. The order strength is set at 0.25, 0.50 or 0.75. The resource
strength of both the renewable and nonrenewable resource strength is set
at 0.25, 0.50 or 0.75 and the resource factor is set at 0.50 or 1 for both
renewable and nonrenewable resources. Using 5 instances for each problem
class, each MMLIB* dataset contains 540 instances. The MMLIB* datasets
can be considered as similar to the PSPLIB datasets, however, the order
strength is more diverse and projects with a resource strength equal to 1
have not been included in the set. Moreover, all the instances have a feasible
solution and no modes can be deleted during the preprocessing procedure.

MMLIB+ The MMLIB+ dataset contains projects with 50 and 100 activities.
Each project activity has 2 or 4 renewable and nonrenewable resources. For
each activity, 3, 6 or 9 modes are defined. The order strength is set at 0.25,
0.50 or 0.75. The resource strength of both the renewable and nonrenewable
resource strength is set at 0.25, 0.50 or 0.75. In order to keep the number
of instances to a reasonable level, the renewable and nonrenewable resource
factor is set at 1. Using 5 instances for each problem class, the MMLIB+
dataset contains 3,240 instances.

4.3.4 Download

The problem instances, as well as the solution files, can be downloaded from the
website http://www.projectmanagement.UGent.be/mrcpsp.htm, under the names
MMLIB50.zip, MMLIB100.zip and MMLIB+.zip.

The solution files contain the best individual solution of each problem instance
(without a given stop criterion). The website will be updated regularly, and we
call upon researchers to report the solutions of their procedures when this leads to
an improvement (with a stop criterion of 1,000, 5,000 and 50,000 schedules and
without any stop criterion).

NEW DATASET FOR THE MRCPSP 73

4.4 Conclusions
In this chapter, a new dataset for the MRCPSP is proposed which deals with the
major shortcomings of the existing benchmark datasets and which will contribute
to the search of new and better solutions in the future. In the next chapter, an
objective comparison of various metaheuristic procedures on this new dataset will
be presented.

5
Comparative Results for the MRCPSP

5.1 Introduction

The increasing interest in operations research for metaheuristics during the recent
years has resulted in the development of several metaheuristic solution procedures
for the MRCPSP. A wide variety of metaheuristic strategies, solution represen-
tations and schedule generation schemes were used to develop the most efficient
algorithm. Since the methods are tested on different benchmark datasets using dif-
ferent stop criteria, a fair comparison between each of these procedures is difficult.

In this chapter, we compare all metaheuristic solution procedures available in
the literature. We have coded all procedures as described in our literature overview
presented in section 2.5.3 and compared their performance with the performance
of our proposed solution procedures. This comparison gives an indication of the
performance of our own procedures and classifies all procedures according to sim-
ilar stop criteria. The tests are performed on the benchmark datasets PSPLIB and
Boctor, as well as on the newly developed dataset MMLIB.

The remainder of this chapter is organized as follows. In section 5.2, an
overview of the followed methodology to obtain the comparative results for the
different metaheuristics is described. In section 5.3, the computational compari-
son is given, with a description of the test design and the results for the PPLIP,
Boctor and MMLIB dataset. In the last section, overall conclusions and sugges-
tions for future research are presented.

76 CHAPTER 5

5.2 Methodology

In order to compare each of the procedures on the same computer and for the same
stop criteria, each algorithm presented in section 2.5.3 has been coded1. In this
section, we will explain the methodology that has been followed in order to obtain
a fair and realistic reproduction of the original codes.

Each paper is studied by two undergraduate students and one PhD student. For
each procedure three independently coded programs were available, each reviewed
by a PhD student, who reviewed the code to look if the structure corresponded to
the steps presented in the original paper. In case the content of the paper was
insufficient to interpret the algorithm, other papers and solution procedures of the
author were analyzed. The best program was selected and submitted to a second
control phase.

If necessary, the following two adaptations were made. First, since not all
algorithms included the preprocessing method of Sprecher et al. (1997), the pre-
processing procedure was added to each solution procedure in order to make a fair
comparison based on the same solution space. Second, procedures which are only
applicable on datasets with renewable resources (in casu BOCT and MORI),
are transferred to a version in which nonrenewable resources are incorporated. In
order to deal with possible infeasible solutions, the penalty function as introduced
by Alcaraz et al. (2003) is used in the code.

To emphasize the efficiency of all procedures, an overview of the different
solution procedures is given in table 5.1. For every procedure, the dataset and stop
criterion is mentioned. The results in the paper are also indicated, as well as the
results obtained by our own coded versions. As can be seen, all the procedures
obtain equivalent or slightly better results than the results shown in the original
papers. This can be due to randomness, the incorporation of the preprocessing
process or the competitive nature of the coding process. The different procedures
were tested on the available datasets as well as on the new dataset MMLIB.

5.3 Computational comparison

5.3.1 Test design

This section gives a comparison of all the metaheuristics presented in table 2.7
and the designed metaheuristic solution procedures proposed in chapter 3. Tests
are executed on two subsets: a first subset with the existing datasets PSPLIB and
Boctor (J10, J20, J30 and Boctor) and a second subset with the newly generated
datasets MMLIB* and MMLIB+.

1This overview contains all metaheuristic solution procedures published in international peer re-
viewed journals before August 1, 2009.

COMPARATIVE RESULTS FOR THE MRCPSP 77

Ta
bl

e
5.

1:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
in

th
e

lit
er

at
ur

e
(o

ri
gi

na
lr

es
ul

ts
an

d
ou

r
co

de
d

re
su

lts
)

A
ut

ho
r

Ye
ar

Pr
oc

ed
ur

e
D

at
as

et
St

op
cr

ite
ri

on
R

es
ul

tp
ap

er
R

es
ul

ta
na

ly
se

R
em

ar
ks

1
Sl

ow
in

sk
ie

ta
l.

19
94

SA
O

w
n

0.
5

se
c

0.
02

0.
02

2
B

oc
to

r
19

96
SA

B
oc

to
r5

0
0.

5
se

c
25

.7
0

25
.1

3
C

P
B

oc
to

r1
00

0.
5

se
c

27
.2

0
26

.8
2

C
P

3
M

or
ia

nd
T

se
ng

19
97

G
A

-
-

-
-

4
Ö

zd
am

ar
19

99
G

A
-

-
-

-
5

N
on

ob
e

an
d

Ib
ar

ak
i

20
01

T
S

-
-

-
-

6
Jo

ze
fo

w
sk

a
et

al
.

20
01

SA
J1

0
5,

00
0

sc
he

du
le

s
1.

16
0.

99
J2

0
5,

00
0

sc
he

du
le

s
6.

74
6.

65
7

H
ar

tm
an

n
20

01
G

A
J1

0
6,

00
0

sc
he

du
le

s
0.

10
0.

13
8

B
ou

le
im

en
an

d
L

ec
oc

q
20

03
SA

J1
0

50
se

c
0.

21
0.

18
J2

0
50

se
c

2.
10

2.
09

9
A

lc
ar

az
et

al
.

20
03

G
A

J1
0

5,
00

0
sc

he
du

le
s

0.
24

0.
24

J2
0

5,
00

0
sc

he
du

le
s

1.
91

1.
96

B
oc

to
r5

0
5,

00
0

sc
he

du
le

s
26

.5
2

26
.4

8
C

P
B

oc
to

r1
00

5,
00

0
sc

he
du

le
s

29
.1

6
29

.1
0

C
P

10
Z

ha
ng

et
al

.
20

06
PS

J1
0

un
kn

ow
n/

1
se

c
0.

11
0.

12
J2

0
un

kn
ow

n/
1

se
c

1.
79

2.
41

11
Ja

rb
ou

ie
ta

l.
20

08
PS

J1
0

15
0m

s
0.

03
0.

03
J2

0
15

0m
s

1.
10

1.
08

12
R

an
jb

ar
et

al
.

20
08

SS
J1

0
5,

00
0

sc
he

du
le

s
0.

18
0.

17
J2

0
5,

00
0

sc
he

du
le

s
1.

64
1.

31
13

L
ov

a
et

al
.

20
09

G
A

J1
0

5,
00

0
sc

he
du

le
s

0.
06

0.
04

J2
0

5,
00

0
sc

he
du

le
s

0.
87

0.
89

J3
0

5,
00

0
sc

he
du

le
s

14
.7

7
14

.5
8

C
P

B
oc

to
r5

0
5,

00
0

sc
he

du
le

s
23

.7
0

23
.6

5
C

P
B

oc
to

r1
00

5,
00

0
sc

he
du

le
s

24
.8

5
24

.6
3

C
P

14
T

se
ng

an
d

C
he

n
20

09
G

A
J1

0
5,

00
0

sc
he

du
le

s
0.

33
0.

32
J2

0
5,

00
0

sc
he

du
le

s
1.

71
1.

47
J3

0
5,

00
0

sc
he

du
le

s
18

.3
3

17
.0

6
C

P
15

V
an

Pe
te

gh
em

an
d

V
an

ho
uc

ke
20

09
G

A
J1

0
5,

00
0

sc
he

du
le

s
0.

01
0.

01
J2

0
5,

00
0

sc
he

du
le

s
0.

57
0.

57
J3

0
5,

00
0

sc
he

du
le

s
13

.7
5

13
.7

5
C

P
B

oc
to

r5
0

5,
00

0
sc

he
du

le
s

23
.4

1
23

.4
1

C
P

B
oc

to
r1

00
5,

00
0

sc
he

du
le

s
24

.6
7

24
.6

7
C

P
16

V
an

Pe
te

gh
em

an
d

V
an

ho
uc

ke
20

09
A

IS
J1

0
5,

00
0

sc
he

du
le

s
0.

02
0.

02
J2

0
5,

00
0

sc
he

du
le

s
0.

70
0.

70
17

V
an

Pe
te

gh
em

an
d

V
an

ho
uc

ke
20

09
SS

J1
0

5,
00

0
sc

he
du

le
s

0.
00

0.
00

J2
0

5,
00

0
sc

he
du

le
s

0.
32

0.
32

J3
0

5,
00

0
sc

he
du

le
s

13
.6

6
13

.6
6

C
P

C
P

=
de

vi
at

io
n

fr
om

cr
iti

ca
lp

at
h

78 CHAPTER 5

Since it is assumed that the computational effort for constructing one schedule
is similar in most heuristics and in order to make a fair comparison, the evaluation
is stopped after a predefined number of generated schedules. The evaluation of
the first subset is stopped after 5,000 schedules. For the second dataset, the stop
criterion is set at 1,000, 5,000 and 50,000 schedules.

According to Kolisch and Hartmann (2006) the advantage of the number of
schedules as stop criterion is twofold: first, it is platform independent and second,
future studies can easily make use of the benchmark results by applying the same
stop criterion. However, the stop criterion also has a few shortcomings: first, it
cannot be applied to all different heuristic strategies. Second, the required time to
compute one schedule might differ between metaheuristics. Nevertheless, Kolisch
and Hartmann (2006) conclude that limiting the number of schedules is the best
criterion available for a broad comparison, which motivated us to use this stop
criterion in all computational experiments.

To measure the number of schedules, the definition of one schedule should be
defined. In their RCPSP review paper, Kolisch and Hartmann (2006) state that
one schedule corresponds to (at most) one start time assignment per activity, as
done by a SGS. However, measuring the number of schedules according to this
rule means that for every mode change in a local search procedure a new schedule
should be counted. Therefore, Lova et al. (2009) define the number of generated
schedules as the sum of times each activity of the project has obtained a feasible
start time divided by the number of activities of the project. Assume a project
with eight activities, each with three modes. Suppose that the SGS generates a
schedule based on a activity and mode list (8 start times are assigned) and that a
local search procedure has also analyzed the two other (feasible) modes for three of
the activities. This means that the procedure has generated and analyzed (8+2x3)/8
= 1,75 schedules. In the remainder of this paper, the last definition is used to define
the number of schedules.

5.3.2 Experimental results

5.3.2.1 Results of the PSPLIB and Boctor dataset

The results for the first subset obtained after 5,000 schedules can be found in table
5.2. For the J10 and J20 set, the average deviation from the optimal solution is
given. For the J30 and Boctor dataset, the deviation from the minimal critical
path-based lower bound is reported. If a solution procedure was not able to obtain
a feasible solution for all project instances, the percentage of instances for which
a feasible solution was found is indicated between brackets. As can be seen in
the table, not all heuristics were able to obtain a feasible solution for all project
instances.

The metaheuristics are sorted with respect to decreasing average deviations for

COMPARATIVE RESULTS FOR THE MRCPSP 79

the Boctor100 dataset, except for schedules which were not able to obtain feasible
results for all datasets. The best results for a specific dataset are displayed in bold.
In order to determine the best heuristic, the concept of dominance as defined in
Kolisch and Hartmann (2006) is used: a heuristic a is dominated by a heuristic b if
a has for at least one instance set a higher deviation than bwithout having for any of
the other combinations a lower average deviation. Table 5.2 reveals that the scatter
search and genetic algorithm (as proposed in chapter 3) and the procedure of Lova
et al. (2009) are not dominated by other heuristics. For the PSPLIB dataset, our
scatter search procedure dominates all other metaheuristics.

As the most recent metaheuristics available in the literature obtain near-optimal
results for the PSPLIB dataset, the use of this dataset is not longer recommended
to evaluate the performance of new solution procedures. Therefore, the use of
the MMLIB50, MMLIB100 and MMLIB+ is encouraged to compare the results
of new solution procedures with the existing methods. The results of the existing
methods are presented in the next section.

5.3.2.2 MMLIB* and MMLIB+

The results of the computational tests on the MMLIB50, MMLIB100 and MM-
LIB* are given in the tables 5.3 to 5.5. In these tables, performance measures for
the three stop criteria (1,000, 5,000 and 50,000 schedules, respectively) are shown.
For every stop criterion, three measures are indicated. First, the percentage of in-
stances for which a feasible solution is found. Second, the average deviation from
the minimal critical path based lower bound is given and finally the maximum
deviation is shown. The metaheuristics are sorted with respect to the results for
50,000 schedules, except for schedules which were not able to obtain feasible re-
sults for all project instances.

Not all metaheuristic solution procedures succeed to obtain a feasible schedule
for all project instances. This is mainly due to the fact that these metaheuristics
have not included a search procedure to enhance the feasibility of an infeasible
solution vector. The procedure of Boctor (1996) and Mori and Tseng (1997) were
designed to solve the MRCPSP/R, while the procedures of Bouleimen and Lecocq
(2003) and Ranjbar et al. (2009) were also designed to solve other scheduling
problems, such as the RCPSP and the DTRTP.

In figures 5.1 to 5.3, a graphic representation is given of three performance
measures for the three datasets for each of the three stop criteria and for each
metaheuristic. The white part of each bar indicates the percentage of infeasible
solutions, while the black part of the bar indicates the percentage of best solutions
found. The grey part indicates the feasible solutions for which no best solution
could be found. The algorithms are sorted on their percentage of best results found
after 50,000 schedules for each of the three datasets.

Based on the obtained results, the following conclusions can be drawn. First,

80 CHAPTER 5

A
uthor

R
epr

SG
S

J10
J20

J30
B

octor50
B

octor100
Slow

inskietal.(SA
)

A
L

P
2.01

(44.96)
2.51

(50.18)
6.13

(48.55)
31.70

38.14
B

octor(SA
)

A
L

S
0.27

11.66
(99.10)

29.58
(93.66)

25.13
26.82

B
ouleim

en
&

L
ecocq

(SA
)

A
L

S
2.65

10.26
(99.64)

33.60
(99.64)

28.53
31.49

N
onobe

and
Ibaraki(T

S)
A

L
P

5.82
9.02

26.43
48.61

56.91
M

ori&
T

seng
(G

A
)

PL
S

2.68
13.55

24.99
41.28

53.81
Ö

zdam
ar(G

A
)

PL
P

0.70
6.05

27.38
37.81

47.21
Jarbouietal.(PS)

PL
S

0.22
2.44

18.14
30.31

37.82
Z

hang
etal.(PS)

PL
S

0.31
3.17

18.63
28.97

32.83
V

an
Peteghem

&
V

anhoucke
(A

IS)
A

L
S

0.02
0.70

14.18
25.83

30.12
A

lcaraz
etal.(G

A
)

A
L

S
0.24

1.96
21.83

26.48
29.10

T
seng

and
C

hen
(G

A
)

A
L

S
0.32

1.47
17.06

26.60
27.12

H
artm

ann
(G

A
)

A
L

S
0.20

1.61
15.96

24.73
26.47

R
anjbaretal.(SS)

A
L

S
0.17

1.31
16.21

24.10
25.84

Jozefow
ska

etal.(SA
)

A
L

S
0.99

6.65
18.64

24.44
25.70

V
an

Peteghem
&

V
anhoucke

(SS)
PL

S
0.00

0.32
13.66

23.79
25.11

V
an

Peteghem
&

V
anhoucke

(G
A

)
PL

S
0.01

0.57
13.75

23.41
24.67

L
ova

etal.(G
A

)
A

L
P/S

0.04
0.89

14.58
23.65

24.63

Table
5.2:

Average
deviation

from
optim

um
/criticalpath

low
er

bound
for

P
SP

LIB
and

B
octor

instances
after

5,000
schedules

COMPARATIVE RESULTS FOR THE MRCPSP 81

although several solution procedures (Alcaraz et al., 2003; Zhang et al., 2006;
Tseng and Chen, 2009) find feasible solutions for all project instances, they do not
find any (or a small part) of the best solutions. On the other hand, more than
one third of the solutions found by Slowinski et al. (1994) for the MMLIB50
and MMLIB100 dataset is also the best known solution. Second, the infeasibil-
ity rate of some procedures clearly decreases for an increasing number of sched-
ules evaluated (Bouleimen and Lecocq, 2003; Mori and Tseng, 1997), while other
metaheuristic solution procedures do not succeed to increase this rate significantly
(Slowinski et al., 1994; Boctor, 1996; Ranjbar et al., 2009). It is conjectured that
this is mainly due to the restricted feasibility improvement methods which are in-
corporated in the algorithms. Finally, based on these results, it can be stated that
our scatter search procedure dominates all other metaheuristics. This is mainly
due to the advanced improvement methods which are designed to search for the
best performing mode assignment in the search space and to the ’intelligent’ so-
lution combination method using resource scarceness characteristics to steer the
algorithm to the most promising solution regions. We believe that this objective
comparison of various metaheuristic procedures and the creation of new datasets
will contribute to the search of new and better solutions in the future.

5.4 Discussion and conclusions

This research has given an overview of the metaheuristic solution procedures avail-
able in the literature to solve the multi-mode resource-constrained project schedul-
ing problem and has made a fair comparison between these procedures. Moreover,
a new benchmark dataset is proposed. Researchers are encouraged to use this
dataset to compare the results of their solution procedures with other procedures.

Based on the results, the following conclusions can be made. First, the multi-
mode RCPSP can be divided into two subproblems: the mode assignment problem,
whose aim it is to generate a feasible mode assignment list, and a scheduling prob-
lem, whose aim it is to minimize the makespan of the problem. Some procedures
emphasized too much the scheduling problem, by which these procedures were not
able to generate feasible solutions for all project instances. Moreover, procedures
using a clever mode assignment procedure to generate the initial population, such
as the minimum normalized resources procedure of Lova et al. (2009) or the con-
trolled mode assignment procedure as presented in chapter 3, have an advantage
compared to other methods, especially when the number of generated schedules is
low. Future research will have to focus on this mode assignment problem, since
for an increasing number of activities and an increasing number of modes the com-
plexity of this problem also increases.

Second, the good performance of some solution procedures is mainly due to
the applied MRCPSP-specific local search procedures rather than to the followed

82 CHAPTER 5

metaheuristic search strategy. This conclusion is supported by computational tests
executed by several authors comparing the effectiveness of both their algorithm
and a similar solution procedure without the proposed local search method. Lova
et al. (2009) prove that their hybrid genetic algorithm with efficient improve-
ment method clearly outperforms a simple genetic algorithm. Similar results are
found by Hartmann (2001), who shows that the use of the single-pass improve-
ment method clearly improves the performance of the proposed genetic algorithm.
Moreover, the use of problem specific information in the local search process,
such as the use of resource scarceness parameters in the scatter search procedure,
increases the efficiency of the procedure significantly.

Finally, we hope to have contributed in making a fair comparison between the
different available datasets. We believe that the introduction of three new datasets
opens the possibility to compare new solution procedures with the currently avail-
able methods. Although the use of standard datasets often motivates researchers to
improve merely the benchmark results rather than to investigate in new promising
methodologies, we hope that the introduction of this new dataset will also stimu-
late the development of new ideas and techniques to tackle the MRCPSP.

COMPARATIVE RESULTS FOR THE MRCPSP 83

A
ut

ho
rs

1,
00

0
sc

he
du

le
s

5,
00

0
sc

he
du

le
s

50
,0

00
sc

he
du

le
s

Fe
as

ib
le

A
v.

D
ev

.
M

ax
.D

ev
.

Fe
as

ib
le

A
v.

D
ev

.
M

ax
.D

ev
.

Fe
as

ib
le

A
v.

D
ev

.
M

ax
.D

ev
.

Sl
ow

in
sk

ie
ta

l.
(S

A
)

21
.8

5
-

13
7.

50
23

.5
2

-
12

5.
00

25
.0

0
-

12
1.

43
B

oc
to

r(
SA

)
67

.5
9

-
17

1.
43

69
.6

3
-

17
1.

43
78

.5
2

-
21

3.
33

B
ou

le
im

en
&

L
ec

oc
q

(S
A

)
72

.9
6

-
23

4.
62

77
.7

8
-

28
0.

00
82

.7
8

-
25

3.
33

Ö
zd

am
ar

(G
A

)
83

.1
5

-
21

3.
33

83
.3

3
-

21
3.

33
83

.3
3

-
20

6.
67

R
an

jb
ar

et
al

.(
SS

)
85

.1
9

-
20

6.
90

87
.0

4
-

19
0.

00
89

.6
5

-
18

0.
73

M
or

i&
T

se
ng

(G
A

)
72

.2
2

-
23

0.
77

83
.5

2
-

24
0.

00
10

0.
00

46
.9

1
31

5.
38

A
lc

ar
az

et
al

.(
G

A
)

10
0.

00
56

.0
6

30
0.

00
10

0.
00

43
.0

5
31

5.
38

10
0.

00
40

.6
9

31
5.

38
N

on
ob

e
an

d
Ib

ar
ak

i(
T

S)
10

0.
00

43
.3

5
28

4.
62

10
0.

00
41

.1
0

27
6.

92
10

0.
00

38
.9

8
26

1.
54

Ja
rb

ou
ie

ta
l.

(P
S)

10
0.

00
49

.9
8

32
3.

08
10

0.
00

38
.8

6
28

4.
62

10
0.

00
32

.0
1

25
3.

85
Z

ha
ng

et
al

.(
PS

)
10

0.
00

49
.2

5
26

9.
23

10
0.

00
35

.9
4

25
3.

85
10

0.
00

30
.2

3
23

8.
46

T
se

ng
an

d
C

he
n

(G
A

)
10

0.
00

65
.1

7
30

7.
69

10
0.

00
40

.9
9

26
1.

54
10

0.
00

29
.4

4
24

6.
15

Jo
ze

fo
w

sk
a

et
al

.(
SA

)
10

0.
00

49
.0

6
27

6.
92

10
0.

00
33

.8
1

26
1.

54
10

0.
00

27
.8

1
24

6.
15

H
ar

tm
an

n
(G

A
)

10
0.

00
35

.4
0

25
3.

85
10

0.
00

30
.6

1
24

6.
15

10
0.

00
26

.8
1

23
0.

77
L

ov
a

et
al

.(
G

A
)

10
0.

00
34

.1
6

25
3.

85
10

0.
00

28
.5

9
23

3.
08

10
0.

00
26

.6
9

21
5.

38
V

an
Pe

te
gh

em
&

V
an

ho
uc

ke
(A

IS
)

10
0.

00
31

.5
2

22
3.

08
10

0.
00

27
.4

5
22

3.
08

10
0.

00
25

.2
6

22
3.

08
V

an
Pe

te
gh

em
&

V
an

ho
uc

ke
(G

A
)

10
0.

00
34

.0
7

24
6.

15
10

0.
00

27
.1

2
21

5.
38

10
0.

00
24

.9
3

21
5.

38
V

an
Pe

te
gh

em
&

V
an

ho
uc

ke
(S

S)
10

0.
00

28
.1

7
23

0.
77

10
0.

00
25

.4
5

22
3.

08
10

0.
00

23
.7

9
21

5.
38

Ta
bl

e
5.

3:
Av

er
ag

e
de

vi
at

io
n

fr
om

m
in

im
al

cr
iti

ca
lp

at
h

ba
se

d
lo

w
er

bo
un

d
-M

M
LI

B
50

84 CHAPTER 5

A
uthors

1,000
schedules

5,000
schedules

50,000
schedules

Feasible
A

v.D
ev.

M
ax.D

ev.
Feasible

A
v.D

ev.
M

ax.D
ev.

Feasible
A

v.D
ev.

M
ax.D

ev.
Slow

inskietal.(SA
)

18.89
-

168.18
19.81

-
141.94

21.48
-

140.91
B

octor(SA
)

66.67
-

203.57
66.67

-
156.25

66.67
-

150.00
B

ouleim
en

&
L

ecocq
(SA

)
66.67

-
200.00

67.04
-

203.57
67.41

-
192.86

Ö
zdam

ar(G
A

)
66.67

-
221.43

67.59
-

192.86
67.59

-
192.86

M
ori&

T
seng

(G
A

)
67.04

-
221.43

69.63
-

247.06
83.33

-
257.14

R
anjbaretal.(SS)

83.33
-

185.71
83.33

-
171.43

83.33
-

169.14
A

lcaraz
etal.(G

A
)

100.00
61.80

252.63
100.00

52.67
252.63

100.00
46.68

245.16
N

onobe
and

Ibaraki(T
S)

100.00
49.32

238.10
100.00

47.03
236.84

100.00
45.04

236.84
Jarbouietal.(PS)

91.85
-

300.00
100.00

49.41
247.62

100.00
40.23

231.58
T

seng
and

C
hen

(G
A

)
100.00

72.95
257.89

100.00
66.04

257.89
100.00

37.04
226.32

Z
hang

etal.(PS)
100.00

57.42
233.33

100.00
44.05

215.79
100.00

35.35
205.26

Jozefow
ska

etal.(SA
)

100.00
53.97

258.06
100.00

39.05
238.71

100.00
30.27

205.26
H

artm
ann

(G
A

)
100.00

39.96
221.05

100.00
33.98

200.00
100.00

29.04
194.74

V
an

Peteghem
&

V
anhoucke

(A
IS)

100.00
36.68

189.47
100.00

31.75
184.21

100.00
28.09

184.21
L

ova
etal.(G

A
)

100.00
36.29

216.13
100.00

31.01
200.00

100.00
27.89

194.74
V

an
Peteghem

&
V

anhoucke
(G

A
)

100.00
37.58

215.79
100.00

29.55
194.74

100.00
25.63

178.95
V

an
Peteghem

&
V

anhoucke
(SS)

100.00
29.77

194.74
100.00

26.51
184.21

100.00
24.02

178.95

Table
5.4:

Average
deviation

from
m

inim
alcriticalpath

based
low

er
bound

-M
M

LIB
100

COMPARATIVE RESULTS FOR THE MRCPSP 85

A
ut

ho
rs

5,
00

0
sc

he
du

le
s

50
,0

00
sc

he
du

le
s

Fe
as

ib
le

A
v.

D
ev

.
M

ax
.D

ev
.

Fe
as

ib
le

A
v.

D
ev

.
M

ax
.D

ev
.

Sl
ow

in
sk

ie
ta

l.
(S

A
)

4.
78

-
30

7.
32

4.
78

-
30

7.
32

B
oc

to
r(

SA
)

54
.4

8
-

42
7.

78
65

.7
7

-
49

0.
63

Ö
zd

am
ar

(G
A

)
68

.6
4

-
52

8.
13

68
.7

7
-

50
0.

00
B

ou
le

im
en

&
L

ec
oc

q
(S

A
)

67
.9

6
-

60
6.

25
70

.5
9

-
59

0.
63

R
an

jb
ar

et
al

.(
SS

)
70

.6
6

-
80

5.
05

73
.6

5
-

62
3.

15
Jo

ze
fo

w
sk

a
et

al
.(

SA
)

75
.0

0
-

81
0.

34
75

.0
0

-
72

1.
88

M
or

i&
T

se
ng

(G
A

)
72

.5
9

-
70

2.
70

97
.2

2
-

10
57

.6
9

V
an

Pe
te

gh
em

&
V

an
ho

uc
ke

(G
A

)
97

.5
9

-
79

3.
10

97
.5

9
-

77
5.

86
Z

ha
ng

et
al

.(
PS

)
99

.8
1

-
86

5.
52

99
.8

5
-

84
8.

28
A

lc
ar

az
et

al
.(

G
A

)
10

0.
00

17
7.

55
10

00
.0

0
10

0.
00

16
4.

87
99

6.
55

T
se

ng
an

d
C

he
n

(G
A

)
10

0.
00

18
3.

02
99

6.
55

10
0.

00
14

2.
14

91
7.

24
N

on
ob

e
an

d
Ib

ar
ak

i(
T

S)
10

0.
00

14
8.

02
92

0.
69

10
0.

00
14

3.
66

91
0.

34
Ja

rb
ou

ie
ta

l.
(P

S)
94

.2
9

-
99

3.
10

10
0.

00
13

7.
99

91
3.

79
H

ar
tm

an
n

(G
A

)
10

0.
00

13
2.

01
87

2.
41

10
0.

00
11

1.
45

79
3.

10
L

ov
a

et
al

.(
G

A
)

10
0.

00
11

4.
07

74
8.

28
10

0.
00

10
2.

73
70

0.
00

V
an

Pe
te

gh
em

&
V

an
ho

uc
ke

(A
IS

)
10

0.
00

11
2.

82
77

5.
17

10
0.

00
10

1.
95

70
0.

00
V

an
Pe

te
gh

em
&

V
an

ho
uc

ke
(S

S)
10

0.
00

10
1.

45
73

4.
48

10
0.

00
92

.7
6

67
9.

31

Ta
bl

e
5.

5:
Av

er
ag

e
de

vi
at

io
n

fr
om

m
in

im
al

cr
iti

ca
lp

at
h

ba
se

d
lo

w
er

bo
un

d
-M

M
LI

B
+

86 CHAPTER 5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

O
ZD

A

B
O
C
T

M
O
R
I

SL
O
W

N
O
N
O

JA
R
B

ZH
A
N

A
LC
A

TS
EN

R
A
N
J

H
A
R
T

JO
ZE

LO
V
A

V
P
V
A
IS

V
P
V
G
A

V
P
V
SS

(a) 1,000 schedules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

O
ZD

A

B
O
C
T

M
O
R
I

SL
O
W

N
O
N
O

JA
R
B

ZH
A
N

A
LC
A

TS
EN

R
A
N
J

H
A
R
T

JO
ZE

LO
V
A

V
P
V
A
IS

V
P
V
G
A

V
P
V
SS

(b) 5,000 schedules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

O
ZD

A

B
O
C
T

M
O
R
I

SL
O
W

N
O
N
O

JA
R
B

ZH
A
N

A
LC
A

TS
EN

R
A
N
J

H
A
R
T

JO
ZE

LO
V
A

V
P
V
A
IS

V
P
V
G
A

V
P
V
SS

(c) 50,000 schedules

Figure 5.1: Computational performance on MMLIB50

COMPARATIVE RESULTS FOR THE MRCPSP 87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

M
O
R
I

O
ZD

A

SL
O
W

B
O
C
T

ZH
A
N

JA
R
B

N
O
N
O

TS
EN

A
LC
A

R
A
N
J

JO
ZE

V
P
V
A
IS

H
A
R
T

LO
V
A

V
P
V
G
A

V
P
V
SS

(a) 1,000 schedules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

M
O
R
I

O
ZD

A

SL
O
W

B
O
C
T

ZH
A
N

JA
R
B

N
O
N
O

TS
EN

A
LC
A

R
A
N
J

JO
ZE

V
P
V
A
IS

H
A
R
T

LO
V
A

V
P
V
G
A

V
P
V
SS

(b) 5,000 schedules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
O
U
L

M
O
R
I

O
ZD

A

SL
O
W

B
O
C
T

ZH
A
N

JA
R
B

N
O
N
O

TS
EN

A
LC
A

R
A
N
J

JO
ZE

V
P
V
A
IS

H
A
R
T

LO
V
A

V
P
V
G
A

V
P
V
SS

(c) 50,000 schedules

Figure 5.2: Computational performance on MMLIB100

88 CHAPTER 5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SL
O
W

B
O
U
L

M
O
R
I

O
ZD

A

B
O
C
T

ZH
A
N

A
LC
A

TS
EN

N
O
N
O

JA
R
B

H
A
R
T

R
A
N
J

V
P
V
A
IS

LO
V
A

V
P
V
G
A

JO
ZE

V
P
V
SS

(a) 5,000 schedules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SL
O
W

B
O
U
L

M
O
R
I

O
ZD

A

B
O
C
T

ZH
A
N

A
LC
A

TS
EN

N
O
N
O

JA
R
B

H
A
R
T

R
A
N
J

V
P
V
A
IS

LO
V
A

V
P
V
G
A

JO
ZE

V
P
V
SS

(b) 50,000 schedules

Figure 5.3: Computational performance on MMLIB+

Part II

Extensions to the MRCPSP

6
Preemption

6.1 Introduction

The basic RCPSP and MRCPSP assume that each activity, once started, will be
executed until its completion. The extension to the preemptive multi-mode ver-
sion (P-MRCPSP) allows activities to be preempted at any integer time instance
and restarted later on at no additional cost. For the single-mode case, Kaplan
(1988), Demeulemeester and Herroelen (1996) and Vanhoucke and Debels (2008)
present exact algorithms, while Damay et al. (2007) propose a linear programming
based algorithm. Ballestin et al. (2008) reveal the benefits of allowing only 1 in-
terruption per activity and prove the effectiveness of justification in the presence
of preemption. Ballestin et al. (2009) investigate the effect of interruption on the
project makespan in more general cases and analyze the usefulness of preemp-
tion in the presence of due dates. For the multi-mode case, Buddhakulsomsiri and
Kim (2006) prove that preemption is very effective to improve the optimal project
makespan in the presence of resource vacations and temporary resource unavail-
ability and that the makespan improvement is dependent on the parameters that
impact resource utilization. To the best of our knowledge, no further research has
been performed on the P-MRCPSP.

In this chapter, a genetic algorithm approach for solving the P-MRCPSP is
introduced. In section 6.2 the problem formulation of the P-MRCPSP is presented,
while in section 6.3 the details of the solution procedure are described. In section
6.4, the computational results for the MRCPSP with activity preemption executed

92 CHAPTER 6

on the PSPLIB and Boctor dataset are presented. Finally, the conclusions of this
chapter are summarized in section 6.5.

6.2 Problem formulation
The P-MRCPSP can be stated as follows. The project is represented as an activity-
on-the-node network G(N,A), where N is the set of activities and A is the set
of pairs of activities between which a finish-start precedence relationship with a
minimal time lag of 0 exists. A set of activities, numbered from 1 to |N | with a
dummy start node 0 and a dummy end node |N | + 1, is to be scheduled on a set
Rρ of renewable and Rν of nonrenewable resource types. Each activity i ∈ N is
performed in a mode mi, which is chosen out of a set of |Mi| different execution
modes Mi = {1, ..., |Mi|}. The duration of activity i, when executed in mode
mi, is dimi . Moreover, since activities are allowed to be preempted at any integer
time and restarted later on at no additional cost, the model employs one-period
subactivities (see Kolisch et al., 1995). Therefore, each duration unit v of an ac-
tivity i scheduled in mode mi (with v ∈ {0, ..., dimi − 1}) is assigned a start time
siv . Each mode mi requires rρimik renewable resource units (k ∈ Rρ). For each
renewable resource k ∈ Rρ, the availability aρk is constant throughout the project
horizon. Activity i, executed in mode mi, will also use rνimil nonrenewable re-
source units (l ∈ Rν) of the total available nonrenewable resource aνl . A schedule
S is defined by a vector of activity start times siv and a vector denoting its corre-
sponding execution modes mi. A schedule is said to be feasible if all precedence
and renewable and nonrenewable resource constraints are satisfied. The objective
of the P-MRCPSP is to minimize the makespan of the project.

The preemptive problem can be formulated as follows:

Min. sn+1,0 (6.1)

s.t.

si,dimi−1 + 1 ≤ sj,0 ∀(i, j) ∈ A (6.2)

si,v−1 + 1 ≤ si,v ∀i ∈ N, ∀v ∈ {1, dimi − 1} (6.3)∑
i∈S(t)

rρimik ≤ a
ρ
k ∀k ∈ Rρ,∀mi ∈Mi (6.4)

|N |∑
i=1

rνimil ≤ a
ν
l ∀l ∈ Rν ,∀mi ∈Mi (6.5)

mi ∈Mi ∀i ∈ N (6.6)

s0,0 = 0 (6.7)

si,v ∈ int+ ∀i ∈ N, ∀v ∈ {0, dimi − 1} (6.8)

PREEMPTION 93

where S(t) denotes the set of activities in progress in period [t − 1, t[, t ∈
{1, ..., sn+1}. The objective function 6.1 minimizes the total makespan of the
project. In constraint set 6.2, the earliest start time of an activity j cannot be
smaller than the finish time for the last unit of duration of its predecessor i. Con-
straint set 6.3 guarantees that the start time for every time instance of an activity
has to be at least 1 time unit larger than the start time for the previous unit of dura-
tion. Constraints 6.4 and 6.5 take care of the renewable and nonrenewable resource
limitations, respectively. Each activity i has to be performed in exactly one mode
mi (constraint 6.6). Constraint 6.7 forces the project to start at time instance 0
and constraint 6.8 ensures that the activity start times assume nonnegative integer
values. A schedule which fulfills all the constraints 6.1 to 6.8, is called optimal.

Resume the example project given in chapter 2. If we relax this example
project to the P-MRCPSP, a schedule as shown in figure 6.1 can be generated.
This schedule is based on the mode list (1,1,2,1,2,1,2,2) and is scheduled accord-
ing to the same RK as schedule 2.2(b). The activities 1 and 5 are preempted once
(the different parts are indicated as 11&12 and 51&52, respectively), as can be seen
in the figure. In the next section, the optimal solution for this problem is shown.

6

7

8

4

7

6

3

5

4

3

2

1

1

2 5

110 1 2 3 4 5

1

5

6 7 8 9 10

1

1

2

2

Figure 6.1: Feasible schedule P-MRCPSP

6.3 Solution procedure

The bi-population genetic algorithm, as proposed in section 3.3 of chapter 3, is
used as the framework for the solution procedure for the P-MRCPSP. In order to
allow activity preemption, the original activity network is converted to a new net-
work. From the moment a mode mi is assigned to an activity i using the mode
list µ, its duration dimi is known. Afterwards, each activity is split into di sub-
activities with a unit duration of 1, resulting in the new constructed network (see

94 CHAPTER 6

Demeulemeester and Herroelen, 1996; Vanhoucke and Maenhout, 2009). The vec-
tor λ, which now determines a schedule sequence for all subactivities of the new
project network, determines the subactivity start times and hence the algorithm
can now be used with no further changes. The mode improvement procedure is
only applied to activities that have been scheduled completely (i.e. for which all
subactivities are scheduled).

The optimal solution for the preempted problem is shown in figure 6.2.

2

3

10

7

6

2

5

4

3

9

1

0 1 2 3

7

4 5 6 7 8

5

8

11

1

3

5

4

1

5

6
1 2

1 1 2

2

3

(a) P-MRCPSP

Figure 6.2: Optimal solution for the example project for the P-MRCPSP

6.4 Computational results

This section presents computational results for the MRCPSP with activity pre-
emption. Table 6.1 summarizes the results obtained from tests on the PSPLIB data
instances J10, J20 and J30 with and without the presence of the nonrenewable re-
sources. Results are also shown for the Boctor50 and Boctor100 data instances
(Boctor, 1993), which contain projects without nonrenewable resources. The sec-
ond and third columns display the average deviation from the critical path based
lower bound for the MRCPSP and P-MRCPSP, respectively. The column with la-
bel ’Av.Impr.’ displays the average makespan improvement for the P-MRCPSP rel-
ative to the MRCPSP. The columns with labels ’Better’, ’Equal’ and ’Worse’ show
the number of preemptive solutions with a lower, equal or higher project makespan
than the solutions found for the MRCPSP. The results in table 6.1 can be used for
comparison purposes for future research in this area. The computational results for
the different datasets can be downloaded from www.projectmanagement.ugent.be.

Table 6.1 shows that activity preemption obviously leads to an overall aver-
age makespan improvement. However, the PSPLIB instances show that a frac-

PREEMPTION 95

Ta
bl

e
6.

1:
R

es
ul

ts
fo

r
di

ffe
re

nt
da

ta
se

ts
w

ith
an

d
w

ith
ou

tp
re

em
pt

io
n

-5
,0

00
sc

he
du

le
s

M
R

C
PS

P
P-

M
R

C
PS

P
A

v.
Im

pr
.

B
et

te
r

E
qu

al
W

or
se

N
R

J1
0

32
.2

7%
31

.5
4%

0.
49

%
47

48
8

1
J2

0
17

.7
6%

17
.0

3%
0.

55
%

99
43

2
23

J3
0

13
.7

5%
13

.2
3%

0.
41

%
10

8
40

4
40

N
o

N
R

B
oc

to
r5

0
23

.4
1%

21
.5

2%
1.

55
%

11
1

9
0

B
oc

to
r1

00
24

.6
7%

21
.9

1%
2.

22
%

12
0

0
0

J1
0*

15
.4

9%
14

.9
4%

0.
42

%
36

50
0

0
J2

0*
8.

27
.%

7.
61

%
0.

53
%

68
48

6
0

J3
0*

5.
60

%
5.

06
%

0.
44

%
74

47
8

0
*

=
ig

no
ri

ng
th

e
no

nr
en

ew
ab

le
re

so
ur

ce
s

(N
R

)

96 CHAPTER 6

tion of the projects shows a higher makespan with preemption compared to the
best found MRCPSP solution. Indeed, introducing activity preemption results in a
larger project network, since each non-preempted activity needs to be splitted into
subactivities, leading to an increase of the random key size. This larger RK search
space is responsible for the fraction of solutions displayed in the ’Worse’ column.

The table also shows that activity preemption always leads to better solutions
(the column ’Worse’ is equal to 0) when no nonrenewable resources are taken into
account. In that case, infeasible mode assignments will never occur, leaving more
room to the algorithm to select low duration modes. Obviously, when nonrenew-
able resources are taken into account, the low durations correspond to relatively
high nonrenewable resource demand, leading to infeasible mode assignments. We
indeed observe that the best found solutions without nonrenewable resources con-
tain many mode assignments with low activity durations, which is in line with the
study of Boctor (1993) who has shown that the ’shortest feasible mode’ selection
rule performs best.

The results of the introduction of preemption on the new datasets MMLIB50
and MMLIB100 are presented in table 6.2. The results are in line with the results
obtained for the PSPLIB and Boctor dataset: in case nonrenewable resources are
taken into account, the procedure is not always able to find similar or better results
than in the non-preempted case. In case no nonrenewable resources are considered,
no inferior results are obtained.

6.5 Conclusions
In this chapter, we have designed an adapted version of the genetic algorithm for
the preemptive multi-mode resource-constrained project scheduling problem. The
results of the computational tests performed on the PSPLIB dataset revealed that
the introduction of preemption does significantly help in decreasing the average
project makespan compared to the non-preempted case. If no nonrenewable re-
sources are taken into account, the introduction of preemption always leads to
better solutions.

PREEMPTION 97

Ta
bl

e
6.

2:
R

es
ul

ts
fo

r
th

e
M

M
LI

B
da

ta
se

tw
ith

an
d

w
ith

ou
tp

re
em

pt
io

n
-5

,0
00

sc
he

du
le

s

M
R

C
PS

P
P-

M
R

C
PS

P
A

v.
Im

pr
.

B
et

te
r

E
qu

al
W

or
se

N
R

M
M

L
IB

50
20

,1
64

20
,0

92
0.

30
%

15
4

29
9

87
M

M
L

IB
10

0
25

,6
23

25
,5

57
0.

16
%

16
9

24
9

12
2

N
o

N
R

M
M

L
IB

50
*

17
,1

49
17

,0
32

0.
62

%
94

44
6

0
M

M
L

IB
10

0*
21

,8
39

21
,5

83
0.

98
%

13
3

40
7

0
*

=
ig

no
ri

ng
th

e
no

nr
en

ew
ab

le
re

so
ur

ce
s

(N
R

)

7
Introduction of Learning Effects

7.1 Introduction

Project scheduling has been a research topic for many decades, resulting in a wide
variety of optimization procedures. The main focus on the project lead time min-
imization has led to the development of various exact and (meta)heuristic pro-
cedures for scheduling projects with tight resource constraints under a wide va-
riety of assumptions. The basic problem type in project scheduling is the well-
known resource-constrained project scheduling problem (RCPSP). This problem
type aims at minimizing the total duration or makespan of a project subject to
precedence relations between the activities and the limited renewable resource
availabilities, and is known to be NP-hard (Blazewicz et al., 1983).

In most projects, human resources are a critical factor in the scheduling pro-
cess. Not only their availability, but also their productivity will influence the
project duration. One of the reasons why the productivity of a human resource
varies over time is the effect of learning (Wright, 1936), which indicates the pro-
cess of acquiring experience while performing similar activities leading to an im-
provement of the worker’s skill. As a measurable result of learning, the time re-
quired to perform the next jobs decreases (Janiak and Rudek, 2007).

However, in the project scheduling literature, most models assume static and
often homogeneous efficiencies of resources (Heimerl and Kolisch, 2009). In this
chapter, the effect of learning on the efficiency of human resources is studied for
the well-known discrete time/resource trade-off problem (DTRTP). In this sched-

100 CHAPTER 7

uling problem, each activity contains a specific work content in terms of working
days, instead of a fixed duration and resource requirement. For each activity, a set
of execution modes can be specified using different combinations of durations and
resource requirements, as long as the specified work content is met. The objective
of this problem type is to minimize the total duration or makespan of the project.

In this chapter, we analyze the influence of the introduction of learning ef-
fects in project scheduling and determine the driving variables which can explain
the difference between a schedule with and without learning effects. Moreover,
the influence of learning effects on the accuracy of resource-constrained project
schedules is investigated, in order to provide insights in the scheduling process
with learning effects and to supply managerial understandings to optimize the de-
cision process. The relevance and contribution of this research study is given by
Bochenski (1993) who states that project managers can obtain a competitive ad-
vantage by incorporating learning effects in order to obtain better deadlines and to
use the available resources more efficiently.

The remainder of this chapter is organized as follows. In the remainder of
this section, a literature overview and the modeling aspects of learning effects
applied to scheduling problems is given. In section 7.2, the discrete time/resource
trade-off problem is presented and the mathematical modeling of learning effects
in this scheduling problem is given. Section 7.3 discusses the solution approach
while section 7.4 gives an overview of the purpose and design of the computational
experiment. The results for the computational experiments are shown in section
7.5, while in section 7.6, the conclusions of this research are formulated.

7.1.1 Literature overview

Wright (1936) was the first to describe the link between working costs per unit and
the production output in the aircraft industry. He discovered that for every redou-
bling of the output, the unit processing time of an aircraft decreases by 20%. This
empirical phenomenon, where the cumulative average worker hours will decline
by a certain percentage of the previous cumulative average rate when the produc-
tion quantity of a product doubles, was observed in various scientific areas since
then. For an overview of the available learning models the reader is referred to
Nembhard and Uzumeri (2000).

For decades, researchers were convinced that learning effects were the result
of the repetitive execution of activities or tasks. However, more recent literature
distinguishes two different groups of learning:

• Autonomous learning results from repeating similar operations, leading to
a higher familiarization and routine (Biskup, 2008). The productivity of
the workforce increases due to experience (earlier performance, mistakes,
...) and these experiences grow by repeatedly executing specific activities or

INTRODUCTION OF LEARNING EFFECTS 101

tasks. This type of learning is also referred to as learning-by-doing or the
Horndal-effect.

• Induced learning is the result of management investing in the know-how
and the productivity of the human resources (Adler and Clark, 1991; Upton
and Kim, 1998). Additional training, changes in the remuneration system
and production environment, innovative education or incentive schemes are
examples of management decisions that can influence the learning rate of
the human resources. Important in this case is the determination of the opti-
mal learning rate, since a reduction of the learning rate is usually related to
higher costs.

Learning effects have been discussed in the scheduling literature from various
angles.

In a review paper on the different learning models proposed in the machine
scheduling literature, Biskup (2008) makes a distinction between position-based
learning, where the learning is only affected by the number of tasks being pro-
cessed, and the sum-of-processing-time learning, that takes into account the pro-
cessing time of all jobs processed so far.

In the staff scheduling literature, several authors already modeled efficiency to
cope with the effects of learning. Wu and Sun (2006) denote that the efficiency
of staff will improve by doing more. They develop a genetic algorithm to mini-
mize the total outsourcing costs for a project with a fixed time horizon. Heimerl
and Kolisch (2009) present an optimization model to address the problem of as-
signing project work to multi-skilled internal and external human resources while
considering learning, depreciation of knowledge and company skill level targets.

In multi-project scheduling, Shtub et al. (1996) and Amor and Teplitz (1998)
develop heuristic and metaheuristic procedures for scheduling projects with a repet-
itive nature under learning effects. Ash and Smith-Daniels (1999) present a heuris-
tic for a multi-project scheduling problem where project preemption is allowed and
learning, forgetting and relearning effects are introduced. They state that, during
the execution of an activity in development projects, people continuously learn and
become more activity-efficient. They define learning as the increased productivity
during the course of each project activity (activity-specific learning).

The empirical evidence that learning takes place over time can be found in
Brazel (1972) and Sahal (1979), who show that the same power function learn-
ing model as the repetition-based learning model noted by Wright (1936) can be
used. Hanakawa et al. (1998) reveal that learning effects exist in project settings
in general and software development settings in particular. They show that the
productivity of a developer will increase if he/she stays on the task longer. The
variations of the productivity depend on the developer’s knowledge, experience
and learning curves. Another behavioral study of Hendriks et al. (1999) reveals

102 CHAPTER 7

that two factors can affect the staff allocation: the project scatter, which indicates
that the team efficiency will increase if the number of team staff is larger than
needed, and the resource dedication, which denotes that the dedication of a staff
member to a particular job can increase efficiency.

The focus of this work is on the introduction of autonomous and activity-
specific learning curves in a multi-mode project scheduling environment.

7.1.2 Modeling

The introduction of the learning concepts in scheduling environments requires a
mathematical formulation. The following assumptions and definitions are formu-
lated:

• The efficiency of a human resource is defined as the portion of work per-
formed in one time unit by a human resource, assuming that the entire task
takes one time unit for an employee working at a normal level (i.e. efficiency
= 100%) (Gutjahr et al., 2008).

• A person working at a uniform efficiency level of 100% during one day, is
performing one working day.

• A man-day is defined as the period of time needed to execute the work per-
formed on one working day by one person, taking into account its average
efficiency level.

• The work content of a specific activity is expressed in working days. In
project scheduling environments without learning effects, the number of
working days to execute an activity is equal to the number of man-days.
When learning effects are considered, the number of man-days to execute
the work content of an activity depends on the activity duration and the val-
ues of the learning variables (i.e. efficiency).

• Throughout this chapter, it is assumed that every resource performing ac-
tivity i has the same initial average efficiency level Ei1 and learning rate
Li (denoted by E1 and L). This is in contrast with other authors (see e.g.
Gutjahr et al., 2008) who assume that every employee possesses different
knowledge, education, skills, abilities, etc. in different fields.

The traditional learning curve is a downward sloping power function that rep-
resents the amount of time spent to complete the next iteration of a single task and
is frequently formalized by using the following formula:

Tn = T1n
−b (7.1)

INTRODUCTION OF LEARNING EFFECTS 103

where Tn is the average processing time of the n-th unit of the cumulative
production quantity n, T1 the production time of the first unit and b = −log2L
the learning index depending on the learning rate L, which indicates the learning
achieved. Thus, the lower the learning rate L, the higher the effects from learning
will be.

Average efficiency Based on this traditional learning curve, Wu and Sun (2006)
defined the average efficiency curve, representing the activity-specific knowledge
of a resource after a time period t for a specific activity i, as follows:

Eit = Ei1t
bi (7.2)

where Ei1 indicates the initial efficiency curve of activity i and bi is the learn-
ing index of activity i depending on the activity-specific learning rate Li. This
formula indicates that when a human resource works longer on an activity, his
or her average activity-specific efficiency level and competency increases. In
figure 7.1(a), the average efficiency curve is shown for a human resource with
an initial average efficiency E1 of 0.7 and a learning rate L of 0.85. Based
on the formulation, one can calculate that the average efficiency at time 10 is
0.7 ∗ 10−log20.85 = 1.201.

Real efficiency The average efficiency curve only indicates the average of the
(actual) efficiency values over the time period [0,t]. As shown, the average ef-
ficiency at time 10 in the example is 1.201 and indicates the average of all the
efficiencies over the period [0,10]. This leads to a total of 12.01 working days
executed during the first 10 days (1.201 * 1 day) (see also figure 7.1(a)). The same
result is obtained by calculating the surface under the real efficiency curve, which
indicates the efficiency Eit of a resource i on a specific time instant t. The real
efficiency Eit can be formulated as follows:

Eit = Ei1(1 + bi)t
bi (7.3)

The efficiency curve is shown in figure 7.1(b). The efficiency at time 10 is
1.483, which is obviously higher than the average efficiency at that time instant.
The surface under the efficiency curve for the period [0,10] is 12.01 which is ob-
viously equal to the surface of the rectangle in figure 7.1(a).

Number of man-days The formula of the efficiency curve will be used to calcu-
late the number of man-days needed to execute a specific work content. Therefore,
the number of working days performed by one human resource during T man-days
(Dw

T) is first calculated. Since the assumption is made that the work content is ex-
pressed in working days, Dw

T can be calculated as:

104 CHAPTER 7

Dw
T =

∫ T

t=0

Ei1(1 + bi)t
bi =

Ei1(1 + bi)

(1 + bi)
T 1+bi = Ei1T

1+bi (7.4)

In figure 7.1(c) the Dw
T -curve is shown which indicates the number of working

days executed during tman-days. As can be seen, 12.01 working days are executed
after 10 man-days. The curve x = y bisects the area and reveals that after 4.6 man-
days the number of working days executed is larger than the number of man-days
and this is due to the increasing efficiency level of the human resource.

To calculate the number of man-days needed to execute T working days (Dm
T),

the formula of Dw
T is reversed, which gives the following formula:

Dm
T = 1+bi

√
T

Ei1
(7.5)

In figure 7.1(d) the Dm
T -curve is shown which indicates the number of man-

days needed to execute t working days. For example, to execute 10 working days
8.62 man-days are needed.

7.2 DTRTP
Based on the definitions of Dm

T and Dw
T , the concept of learning can now be intro-

duced in the discrete time/resource trade-off problem (DTRTP). In section 7.2.1,
the mathematical formulation of the DTRTP is explained and a literature overview
is presented. In section 7.2.2, the learning concept is introduced in the DTRTP and
an example is given.

7.2.1 Problem formulation

The discrete time/resource trade-off problem (DTRTP) is a subproblem of the
multi-mode resource-constrained project scheduling problem (MRCPSP) and can
be formulated as follows. An activity-on-the-node network G(N,A) is presented,
consisting of a set of nodesN and a set of activitiesA, representing the precedence
relations, between which a finish-start precedence relationship with a minimal time
lag of 0 exists. A single renewable resource with constant availability a is available
throughout the project horizon. The set N contains a set of |N | activities, num-
bered from 1 to |N | with a dummy start node 0 and a dummy end node |N | + 1,
representing the start and completion of the project, respectively. Each activity
i ∈ N contains a specific work content wi, e.g. expressed in working days. For
each activity, a set of allowable execution modes |Mi| could be specified. The
activity i, when executed in an efficient mode mi, has a duration of dimi and a
resource demand of rimi renewable resource units, such that dimirimi is at least

INTRODUCTION OF LEARNING EFFECTS 105

(a) Average efficiency curve

(b) Efficiency curve

(c) DwT -curve (d) DmT -curve

Figure 7.1: Mathematical modeling of average and real efficiency curves and the number
of working days and man-days with and without learning

106 CHAPTER 7

equal to and as close as possible to wi. A mode is called efficient if every other
mode has either a strictly higher duration or a strictly higher resource demand.
The objective is to schedule each activity in one of its execution modes, subject to
both the precedence and resource constraint, under the objective to minimize the
project makespan. The problem can be formulated as follows:

minimize fn (7.6)

subject to fi + djmj ≤ fj ∀(i, j) ∈ A (7.7)∑
i∈S(t)

rimi ≤ a ∀mi ∈Mi,∀t (7.8)

mi ∈Mi ∀i ∈ N (7.9)

f0 = 0 (7.10)

fi ∈ int+ ∀i ∈ N (7.11)

where S(t) denotes the set of activities in progress in period]t − 1, t] and fi
the finish time of the ith activity.

Demeulemeester et al. (2000) present an efficient branch-and-bound approach
to solve the DTRTP, while De Reyck et al. (1998) present several heuristic proce-
dures, based on local search procedures and Tabu Search (TS). Recently, Ranjbar
and Kianfar (2007) have developed a genetic algorithm and Ranjbar et al. (2009)
presented a scatter search procedure. In this work, we will use an adapted version
of the bi-genetic algorithm of Van Peteghem and Vanhoucke (2010), who present
state-of-the-art results for the multi-mode resource-constrained project scheduling
problem. The adaptions will be discussed in detail in section 7.3.1.

To incorporate the learning concept into this model, equation 7.11 should be
removed and equation 7.7 should be defined as

fi + 1+bj

√
djmj

Ej1
≤ fj ∀(i, j) ∈ A (7.12)

with bj the learning rate and Ej1 the initial efficiency. In case no learning

effects occur (i.e. Lj=100% and Ej1=100%), the value 1+bj

√
djmj
Ej1

is equal to

djmj .

7.2.2 Learning effects in the DTRTP

For every activity in the DTRTP, the work content, expressed in working days, is
known in advance and based on this work content, several execution modes can
be determined. Consider an activity i with a work content of 12 working days.

INTRODUCTION OF LEARNING EFFECTS 107

Ten human resources are available and the following five modes (dimi , rimi) are
determined: (2,6), (3,4), (4,3), (6,2) and (12,1).

Consider mode 2, which needs 4 resources, each performing 3 working days.
In case homogeneous efficiencies are assumed, the learning variables L andE1 are
equal to 100%, which means that the efficiency curve remains fixed at an efficiency
level of 100% (curve EH in figure 7.2). Obviously, in this case the number of
working days equals the number of man-days.

Figure 7.2: Efficiency curve of example project

However, in the presence of learning effects, the efficiency curve will be influ-
enced by the learning variables L and E1. Suppose a learning rate of L = 0.90

(b = 0.152). To obtain a number of working days which is equal to the number of
man-days in mode 2, the initial efficiency should be equal to 0.846 (3/31.152 - see
equation 7.3). This results in an efficiency curve EL for which the surface under
the curve is equal to the surface under the homogeneous efficiency curve EH . In
other words, the areas a and b in figure 7.2 are equal.

Due to the learning effects, the efficiency curve is not longer homogeneous.
From time unit 0 to 1.16, the resources have an efficiency which is lower than
100%, however, after time unit 1.16 the efficiency exceeds the 100%. After 3
man-days, a total of 3 working days is performed by each resource, which results
in a total work content (for the 4 resources) of 12 working days.

However, when another mode will be selected and the same learning variables
are used, the introduction of learning can lead to positive or negative effects on
the total activity duration. Assume the same learning variables for mode 1, in
which 6 resources have to perform 2 working days. After two man-days these
resources have only executed 6 x 1.88 working days (surface under the efficiency
curve from 0 to 2 = Dw

2 = 0.846 x 21.152) = 11.28 working days. However, to
execute in total 12 working days, these 6 resources each have to perform Dm

2 =
1.152

√
2

0.846 = 2.11 man-days, which is 0.11 days longer than in the homogeneous
case. Consequently, learning has a negative effect when mode 2 will be chosen.
If under the same conditions mode 3 is chosen, these 3 resources only have to
execute 3.85 man-days to execute 12 working days since efficiency improvements
are obtained for a longer period. In this case, introducing learning had a positive

108 CHAPTER 7

effect on the duration of mode 3. An overview of the other execution modes can
be found in table 7.1.

mode dim rim wi
homogeneous learning homogeneous learning

1 2 2.11 6 12 12.66
2 3 3 4 12 12
3 4 3.85 3 12 11.55
4 6 5.48 2 12 10.96
5 12 9.99 1 12 9.99

Table 7.1: Duration and total work content with and without learning

As can be seen in the table, the introduction of learning effects introduces a new
trade-off between the activity duration and the total work content. Since working
longer on an activity will decrease the total work content expressed in man-days, it
becomes more interesting to execute the activity in a mode with a smaller resource
demand since these resources will become more efficient when they work longer
on the activity. However, shorter execution modes are in favor of the objective to
minimize the total makespan of the project, although their total work content will
be larger.

7.3 Solution approach
This section briefly discusses the adaptations made on an existing solution proce-
dure in order to take the learning effects into account, and shows that this proce-
dure can compete with current state-of-the-art solution procedures for the DTRTP
without learning effects.

7.3.1 Solution procedure

In order to test the impact of activity learning on the total project duration, an
adapted version of the bi-population based genetic algorithm of Van Peteghem and
Vanhoucke (2010) has been used. This procedure has been originally developed
to solve multi-mode resource-constrained project scheduling problems within the
presence of renewable and nonrenewable resource constraints. In order to incorpo-
rate learning curves during the construction of a baseline schedule, the following
adaptions have been made:

• Since the introduction of the learning effect creates non-integer durations
for each of the different modes, the schedule generation scheme has been
adapted to deal with these fractional durations.

INTRODUCTION OF LEARNING EFFECTS 109

• In order to keep the populations diverse, each new population element that
is not diverse in terms of mode assignment and sequence of the activities,
is changed randomly until the element is diverse enough with respect to the
other elements in the population.

• The 10% population elements with the highest project makespan are re-
placed with new randomly generated population elements. To determine
the mode list of the new population elements, an inverse frequency function
is used to stimulate the use of infrequently used execution modes.

The computational experiment of the next section is set up to show that our
solution procedure can compete with state-of-the-art solution procedures to solve
the DTRTP without activity learning available in the literature. In section 7.4, our
solution procedure is then used to analyze the effect of learning on the quality of
the project schedule through a detailed computational experiment.

7.3.2 Results

In order to compare our algorithm with state-of-the-art DTRTP algorithm without
learning from the literature, we rely on the dataset proposed by De Reyck et al.
(1998) and used in several papers. The set contains project instances with 10, 15,
20, 25 or 30 activities and an order strength (Mastor, 1970) equal to 0.25, 0.50
or 0.75. The work content of every activity lies between 10 and 100. For every
combination 10 projects have been generated, leading to a total of 5 x 3 x 10 =
150 different project instances. These problem instances were tested for several
resource availabilities (from 10 to 50 in steps of 10) and for several numbers of
modes (from 1 to 6, and a version with an unlimited number of modes). In total
150 x 5 x 7 = 5,250 problem instances were tested.

The modes are generated in line with the procedure of De Reyck et al. (1998)
as follows: The procedure generates the first mode (mi = 1) for activity i with
duration di1 and resource requirement ri1 = dwi/di1e with di1 = dwi/ae when
the number of modes is restricted and di1 = max(

⌊√
wi
⌋
, dwi/ae) when it is

unrestricted. Then the procedure generates the second mode with duration di1 +

1 and corresponding resource requirements. This new mode is accepted as the
second mode if at least one of the resource requirements is different. This mode
generation process continues until the desired number of modes is reached or no
more modes are left.

Although the focus of this work is on the effects of the introduction of learning
effects in project scheduling and not on the development of a new state-of-the-art
procedure to solve the DTRTP, promising results are obtained compared to the best
results available in the literature, as can be seen in table 7.2. The average deviation
from the lower bound (Av. Dev. LB) and the maximum deviation from the lower

110 CHAPTER 7

bound (Max. Dev. LB) are shown after 1 second. The lower bound is calculated as
the maximum of the critical path-based lower bound and the resource-based lower
bound. The tests were performed on a PC Pentium IV, 3GHz processor with 1GB
internal memory, which is comparable to the one used by Ranjbar et al. (2009).

Av. Dev. LB Max. Dev. LB
De Reyck et al. (B&B) 2.73 43.75
Ranjbar et al. (SS) 2.77 42.86
This work (GA) 2.88 42.86
Ranjbar and Kianfar (GA) 3.06 42.86
De Reyck et al. (TS) 3.26 91.67

Table 7.2: Comparative results for DTRTP without learning effects (1 sec)

7.4 Experimental design
In this section, the settings of a computational experiment that compare and vali-
date the impact of learning on the project schedule are described. To that purpose,
three different project schedules are defined in order to make three different com-
parisons. The definition of the schedules and their link with the research design are
discussed in sections 7.4.1 and 7.4.2, respectively. Section 7.4.3 gives an overview
of the data used throughout the experiment. In section 7.5, the results of these
experiments are discussed in detail.

7.4.1 Schedule generation

This section presents three different project schedules that will be used through-
out the remainder of the computational experiment. Each schedule has a specific
purpose and is constructed under different assumptions. The construction and in-
terpretation of the three schedules will be explained here by the use of a fictitious
example project, and their use will be explained in section 7.4.2. The example
project contains 8 non-dummy activities, with each activity i having a work con-
tent wi above each node of the activity-on-the-node network of figure 7.3(a). The
availability of the single renewable resource is equal to 10. The value of L is set
at 0.90 and E1 is equal to 0.7. Table 7.4 gives for each activity an overview of the
possible execution modes (restricted to maximum 6 modes per activity), the best
mode for each of the three schedules SO, SL and SR and the activity start time
of the activity. The three project schedules can be described along the following
lines.

• SO: The schedule considering no learning effect. Figure 7.3(b) shows
the so-called original schedule which is the solution found by solving the

INTRODUCTION OF LEARNING EFFECTS 111

DTRTP without activity learning effects (eqs. 7.6 to 7.11), resulting in a
project makespan of COmax = 48 time units.

• SL: The schedule considering learning effect. Figure 7.3(c) shows the so-
called learning schedule which is the schedule solved by the DTRTP where
each activity was subject to activity learning (eqs. 7.6, 7.8-7.10, 7.12), lead-
ing to a total project makespan ofCLmax = 49.26 time units (the introduction
of learning effects has led to a makespan increase of more than 2%).

• SR: The schedule without learning effect using activity duration with learn-
ing. Figure 7.3(d) displays the so-called realistic schedule where the activity
sequence in the schedule has been found by solving the DTRTP without ac-
tivity learning (eqs. 7.6 to 7.11), but where the activity duration has been
replaced afterwards by its learning duration (equation 7.12). The underlying
assumption made is that the project manager is not aware of the existence of
learning effects during the construction of a baseline schedule and therefore
starts executing the project as shown in SO. However, activities will take
more or less time than originally planned due to the existence of learning
effects. Therefore, SR is the schedule where the sequence of the activities is
defined by the start times of the different activities in the original schedule
SO, but where the activity durations are changed to the durations where a
learning effect is considered. In the example, this results in a project sched-
ule with a makespan of CRmax = 50.30 time units. Obviously, this makespan
should always be equal to or larger than the CLmax, since in the latter the
learning effects have been incorporated in advance.

7.4.2 Research design

Minimizing the project duration (makespan) during project scheduling is an impor-
tant goal in today’s competitive industrial environment. In project management,
the project baseline schedule is used as a benchmark and point-of-reference during
the project’s progress. Activity start and finish times are often seen as milestones
and are used to follow up the progress of the project. However, the presence of
learning effects can dramatically change the project baseline schedule, leading to
changes in the activity durations, their start and finish times and consequently the
total project makespan.

In this section, the impact of learning effects on the project baseline sched-
ule is investigated from three different angles. First, the influence of learning ef-
fects on the project makespan is measured to test the relevance and importance
of predicting these effects in advance. Second, the influence of learning during
project progress is tested to measure the change in the total project makespan when
learning effects are ignored during the baseline scheduling phase. Finally, project

112 CHAPTER 7

54

6527

45

22

86

57

91

00

(a) Project network

(b) Schedule SO

 (c) Shedule SL

(d) Schedule SR

Act Possible modes Chosen mode (dimi ,rimi) Start time
SO SL SR SO SL SR

0 (0,0) (0,0) (0,0) (0,0) 0 0 0
1 (3,9), (4,7), (5,6), (6,5), (7,4), (9,3) (3,9) (3.54,9) (3.54,9) 0 0 0
2 (7,10), (8,9), (9,8), (10,7), (11,6), (13,5) (7,10) (7.38,10) (7.38,10) 3 3.54 3.54
3 (6,9), (7,8), (8,7), (9,6), (11,5), (14,4) (6,9) (10.93,5) (6.46,9) 10 10.92 10.92
4 (5,9), (6,8), (7,7), (8,6), (9,5), (12,4) (5,9) (9.18,5) (5.51,9) 16 10.92 17.37
5 (3,8), (4,6), (5,5), (6,4), (8,3), (11,2) (11,2) (10.93,2) (10.93,2) 21 20.10 22.88
6 (10,10), (11,9), (12,8), (13,7), (16,6), (19,5) (12,8) (11.78,8) (11.78,8) 21 21.84 22.88
7 (9,10), (10,9), (11,8), (13,7), (15,6), (18,5) (9,10) (9.19,10) (9.19,10) 33 33.63 34.67
8 (6,10), (7,9), (8,8), (9,7), (10,6), (12,5) (6,10) (6.46,10) (6.46,10) 42 42.81 43.85
9 (0,0) (0,0) (0,0) (0,0) 48 49.26 50.30

Figure 7.4: Mode and schedule information for the example project

INTRODUCTION OF LEARNING EFFECTS 113

progress with and without learning effects is compared to reveal the beneficial
effect of incorporating learning effects during the early project stages.

In order to analyze these three research questions, the schedules presented in
section 7.4.1 are compared to each other. Figure 7.5 graphically displays these
research questions, which can be summarized along the following lines.

SO SL

SR

Impact

Error Benefit

� -
�
�
�
�
�
���
�

�
�
�
�	 @

@
@

@
@
@I@
@
@
@
@
@R

Figure 7.5: Research design: 3 comparative schedules

1. Impact of learning: The project schedule without learning effects SO and the
schedule with learning effects SL are compared in order to investigate the
impact of the introduction of learning effects during the project scheduling
phase and to determine the driving variables of the differences between the
makespans of both schedules.

2. Margin of error: The proposed schedule SO is compared to the realistic
schedule SR in order to discover the potential margin of error made during
project progress (SR) when the learning effects have been ignored during
the project scheduling phase (SO) but observed afterwards during project
progress. The smaller the deviations between both solutions are, the less
important it is to spend time and effort to predict the learning effects in ad-
vance in order to incorporate them in the project scheduling during baseline
schedule construction.

3. Benefits of early knowledge of learning effects: The realistic schedule SR is
compared to the learning schedule SL in order to measure the benefits that
can possibly be made when learning effects are detected in early stages of
the project progress.

In section 7.5, tests are performed in order to formulate an answer to each of
these research topics.

7.4.3 Dataset

In order to test the three research questions of the previous section, a newly created
dataset is proposed, containing projects of 15, 20, 25 and 30 activities, each with

114 CHAPTER 7

a work content between 10 and 100. The order strength of the activities varies
between 0.10 and 0.90, in steps of 0.10. For every combination 10 projects were
generated. In total 4 x 9 x 10 = 360 different project instances were generated.

For the generation of the instances, we have used the RanGen project schedul-
ing instances generator developed by Demeulemeester et al. (2003) and Vanhoucke
et al. (2008) and extended the projects to a discrete time/resource trade-off version.
The tests are performed with a limited number of modes (2, 3, 4, 5, 6, 7, 8, 9 and
10) and an unlimited number of modes and are generated according to the mode
generation rules mentioned above. The resource availability for every renewable
resource varies from 10 to 50 in steps of 10. In total, 360 x 10 x 5 = 18,000
different projects were tested and evaluated.

7.5 Computational results

7.5.1 Impact of learning on the project baseline schedule

By making a comparison between the two schedules SO and SL, the impact of
learning effects on the project makespan can be analyzed and the driving variables
can be determined. In order to analyze the influence of the learning rate and the ini-
tial efficiency independently, a computational analysis is made for different values
of L and E1. Both the learning rate L and initial efficiency rate E1 varies between
0.7 and 1 in steps of 0.1. For every combination, the CLmax is compared to COmax.
Without loss of generality, it is still assumed that all the resources have the same
learning and efficiency values for all the different activities. In total, 18,000 x 4 x
4 = 288,000 projects were analyzed.

Table 7.3 shows the relative deviations between the two schedules which have
been measured as follows:

dev =
CLmax − COmax

COmax
. (7.13)

Next to the influence of the learning rate and the initial efficiency parameters,
the influence of other project parameters have also been taken into account but
not reported in the table. The results of the tests can be summarized along the
following lines.

• Initial efficiency: The initial efficiency has an influence on the project make-
span. The higher the initial efficiency, the smaller the makespan. The table
shows that for increasing initial efficiency values the average relative de-
viation decreases from -1.65% to -27.58%, indicating that CLmax becomes
smaller and smaller compared to the COmax and illustrating the beneficial
effect of high initial resource efficiencies on the project makespan.

INTRODUCTION OF LEARNING EFFECTS 115

L = 70% L = 80% L = 90% L = 100% Average
E1 = 70% -36.39% -19.66% 5.47% 43.98% -1.65%
E1 = 80% -41.77% -27.39% -6.07% 25.94% -12.32%
E1 = 90% -46.13% -33.58% -15.22% 11.95% -20.75%
E1 = 100% -49.76% -38.67% -22.62% 0% -27.58%

Average -43.51% -29.82% -9.61% 20.65% -15.57%

Table 7.3: Average relative deviation between CLmax and COmax

• Learning rate: The learning rate has a similar significant influence on the
project makespan. The lower the learning rate value is (i.e. the faster the
resources learn), the smaller the makespan with learning CLmax relative to
COmax. Note that the table also shows that a low initial efficiency (E1 =

70%) and no learning (L = 100%) leads to projects with a much higher
makespan than the COmax (where E1 = L = 100%). Obviously, in this
case, the low initial efficiency is never improved (no learning) which leads
to much higher activity duration. The table also shows that, when learning
increases (lower learning values), the low efficiencies can be quickly recu-
perated by these learning effects, leading to improvements up to -36.39%.

• Order strength: Results have shown that the lower the order strength is, the
larger the average difference between COmax and CLmax is. Obviously, in a
parallel network (low OS), the SO will include execution modes with on
average longer activity durations than in the serial case, since the activities
in the former case can be scheduled in parallel. The fact that the resources
become more efficient if they work longer on an activity results in smaller
activity durations and thus in a smaller makespan. The inverse is true for
serial networks (high OS values) where mainly the modes with short dura-
tions are selected which results in an increase of the project duration when
learning effects are introduced.

• Resource availability: The resource availability is expressed in an absolute
number varying from 10 to 50 in steps of 10. Computational tests have
revealed that the average difference between COmax and CLmax decreases for
an increasing resource availability. Obviously, in project settings with a
high resource availability level, enough resources are available to execute
modes with low durations and hence, the beneficial effects of learning are
seldom exploited. The lower the resource availability level becomes, the
more modes with on average longer activity durations are chosen, which
implies that the efficiency improvements in those cases increase.

• Number of modes: When more mode possibilities can be chosen for each

116 CHAPTER 7

activity, there is more flexibility and room for makespan improvement when
learning effects are incorporated. Consequently, the higher the number of
modes and activities, the larger the differences between COmax and CLmax
are.

• Average duration: The average duration gives an insight in the average
length of an activity. It is calculated for the different mode durations when

no learning effects are assumed and can be formulated as
∑N
i=1

∑Mi
j=1

dij

Mi

N .
Similar to the number of modes, an increase in the average activity duration
increases the average difference between the two project schedules.

Statistical analysis indicates a strong significant influence (p<0.001) of the
parameters L and E1 on the difference between COmax and CLmax. The other driv-
ing variables have a smaller but still significant influence on the direction and the
magnitude of the difference.

7.5.2 Margin of error during project progress

In this section, the accuracy of the project schedule SR is compared to the schedule
considering no learning effects (SO). This research will give insights in the margin
of error which is made using the original schedule SO where learning effects are
assumed to be unknown in advance. This project schedule is the baseline schedule
proposed to the client and/or is used to set milestones without being aware that the
learning effect will occur during project execution. However, efficiency improve-
ments or deficiencies might occur during project progress which affect the activity
durations and the total project makespan.

Table 7.4 classifies the set of projects into different deviation classes where the
relative deviations are measured as follows:

dev =
CRmax − COmax

COmax
. (7.14)

Consequently, the higher the deviations, the higher the margin of error is made
by ignoring the learning effects during schedule construction. The table shows that
only 7.53% of the projects have an absolute deviation smaller than 1%. Most pro-
jects (approximately 78%) have a deviation of more than 10%. These tests clearly
show that the original baseline schedule SO is often not an accurate prediction of
the real project progress since learning effects will often lead to high deviations
between the proposed makespan COmax and the observed makespan CRmax. Conse-
quently, prior information about the learning effects during the scheduling phase
will often generate a competitive advantage in terms of the accuracy of the project
schedule and the project makespan promised to the client.

INTRODUCTION OF LEARNING EFFECTS 117

frequency (%) cum. frequency (%)
0 ≤ |dev| ≤ 0.01 7.53% 7.53%

0.01 < |dev| ≤ 0.05 5.71% 13.24%
0.05 < |dev| ≤ 0.10 8.80% 22.04%
0.10 < |dev| ≤ 0.15 15.31% 37.35%
0.15 < |dev| ≤ 0.20 9.68% 47.03%
0.20 < |dev| ≤ 0.25 9.43% 56.46%
0.25 < |dev| ≤ 0.50 43.19% 99.65%
|dev| > 0.50 0.35% 100.00%

Table 7.4: Frequency table for the relative deviation between CRmax and COmax

7.5.3 Benefits of early knowledge of learning effects

While the SR schedule ignores learning effects during the scheduling phase, and
observes these effects afterwards during project progress, which leads to changes
in the project makespan, the SL schedule assumes that these learning effects are
known from the start and are incorporated during the scheduling phase. However,
this section assumes that learning effects can be predicted after some portion of
the work is done, and hence, can only be incorporated in the project schedule
during project progress by rescheduling the remaining portion of work with the
learning information available. Consequently, the realistic schedule SR can be
adapted (i.e. rebaselined) by rescheduling the remaining portion of work with
new information obtained during project progress. Therefore, in this section, the
rescheduled SR will be compared with the learning schedule SL to give insight
in the improvements and benefits that can be made when timely incorporating
learning effects into the schedule.

In this computational experiment, three rescheduling moments and four re-
scheduling methods are used. The three rescheduling moments reflect the stages
in the project progress where the learning effects are taken into account, and are
set to 25%, 50% and 75%. The rescheduling moments assume that learning vari-
ables are only known after some time, and eventually lead to a reschedule of the
remaining portion of the project schedule SR while taking the learning effects into
account.

Since changes in activity duration/resource modes are not always allowed in
the middle of the project due to fixed resource teams, the duration/resource modes
of each activity can be modified or can be kept fixed during rescheduling. More-
over, the remaining portion of work can be rescheduled with or without knowledge
of learning effects. In doing so, four rescheduling policies are investigated, as sum-
marized along the following lines.

118 CHAPTER 7

1. Mode change allowed, no learning effect incorporated

2. No mode change allowed, no learning effect incorporated

3. Mode change allowed, learning effect incorporated

4. No mode change allowed, learning effect incorporated

In table 7.5, the average improvement in the project makespan by rescheduling
the remaining portion of work is measured as a percentage of the maximum im-
provement that can be made along the various rescheduling methods and decision
moments, as follows: ∑

(CLmax − CRmax)∑
(Cnewmax − CRmax)

(7.15)

with Cnewmax the makespan obtained by rescheduling the remaining portion of
work of the project including the learning effects. The numerator shows the sum of
the absolute makespan deviation of the SR schedule by rescheduling the remaining
portion of work, while the denominator shows the sum of the absolute makespan
decrease that can be made by incorporating the learning effects at decision moment
0%. Obviously, Cnewmax is equal to CLmax when the rescheduling moment is set to
0% and the rescheduling method is set to method 3.

The table shows that the rescheduling methods 1 and 2 have a very low or
negative impact on the project makespan, as given by the small changes in the ”no
learning effect” row. The third and fourth rescheduling methods, however, which
reschedule the remaining portion of work with learning effects incorporated, show
significant improvements.

The table clearly illustrates that in these cases, a timely incorporation of learn-
ing effects leads to bigger improvement. Moreover, the improvements after re-
scheduling are larger when mode changes are allowed, illustrating that changes in
the team member assignments largely affect the efficiency gain which can be ob-
tained. As an example, incorporating learning effects after a quarter of the project
progress can lead to 55.80% of the maximum improvement when original team
member assignments are allowed to be modified.

No mode change allowed Mode change allowed
25% 50% 75% 25% 50% 75%

No learning effect -2.57 -1.67 -1.10 -1.35 2.01 0.83
Learning effect 13.14 8.60 1.96 55.80 37.38 13.38

Table 7.5: Rescheduling methods and decision moments - average improvement (as % of
maximum improvement)

INTRODUCTION OF LEARNING EFFECTS 119

7.6 Conclusions
Although empirical evidence is given that learning effects exist in project sched-
uling environments, the concept is not yet widely applied in the current project
scheduling literature. In this chapter, the introduction of learning effects into the
discrete time/resource trade-off problem is investigated from various angles. Com-
putational tests found a significant influence of the introduction of learning effects
in project scheduling and a practical impact of the concept on management de-
cisions. Computational experiments have been set up to reveal the main project
drivers that affect the project makespan when introducing learning effects, to mea-
sure the margin of error made by ignoring learning during schedule construction
and to show that timely incorporation of learning effects when the project is in
progress can lead to significant makespan improvements.

Several future research directions can be suggested. In addition to learning,
also forgetting is a natural phenomenon that occurs when a resource stops work-
ing on a specific activity. The interruption of the activity obviously leads to the
termination of the activity-specific learning process and is extremely significant
when activity splitting is allowed. Empirical research has also shown that working
with insufficient or too many resources can result in an efficiency decrease due to
an increasing loss of motivation and dedication. The introduction of team work
where the efficiency of a single resource can influence the team efficiency and the
determination of the optimal number of team members and its influence on the
project duration is also a topic for further research. Finally, in this research we
have focused on the autonomous learning concept. However, the acquired insights
in project scheduling with learning effects can be used to discuss and investigate
the induced learning concept, where learning is the result of management invest-
ments in training and innovative technologies. The determination of the optimal
learning rate per activity will be one of the key questions the learning effect re-
search can introduce into the project management practice.

8
Case Study: Audit Scheduling

8.1 Introduction

In this work, several metaheuristic solution procedures for the multi-mode resource-
constrained project scheduling problem were proposed. These approaches were
applied on theoretical project instances in order to optimize the efficiency of the
procedures and to compare the results with other metaheuristics available in the
literature. Although our procedures obtained state-of-the-art results on the bench-
mark datasets, the ultimate goal of our research is to optimize real-life schedules,
such that efficiency improvements, cost reductions or profit increases can be real-
ized. In this chapter, we therefore apply one of our metaheuristic approaches on
a real-life audit scheduling problem, which consists of generating an appropriate
schedule for a small Belgian audit firm.

In audit scheduling, the assignment of a set of auditors to a set of audit tasks,
with a predefined arrival time and due date, is optimized. The schedule should
specify the audit assignment start and finish time and indicate which auditor will
process the task. Several authors have already discussed audit scheduling under
different constraints. Chan and Dodin (1986) present a decision support system for
audit-staff scheduling. They expand the loading model of Balachandran and Zolt-
ners (1981) in order to deal with precedence constraints among audit tasks, due
dates, arrival times, penalty costs for missing audit due dates and the constraint
that an auditor cannot process more than one audit task at a time. Furthermore,
Dodin and Chan (1991) examine the impact of different objective functions for the

122 CHAPTER 8

audit scheduling problem, while Drexl (1991) presents a hybrid branch and bound-
/dynamic programming algorithm to solve an audit scheduling problem in order to
minimize the overall costs. Dodin and Elimam (1997) present a procedure for
audit scheduling with overlapping activities and sequence-dependent setup costs,
such as travel time and cost, while Dodin et al. (1998) tackle this problem with a
tabu search procedure. Brucker and Schumacher (1999) also present a tabu search
procedure for an audit scheduling problem with the following characteristics: each
auditor is only available during disjoint time periods and has a minimal and maxi-
mal working time. Moreover, the task of an auditor can be preempted under certain
circumstances.

Salewski et al. (1997) state that the above solution procedures are single level
models which try to construct a direct assignment of auditors to tasks and periods.
Based on a survey among the 200 biggest public accountant firms in Germany, they
formulate three levels within audit scheduling: the medium-term planning, which
assigns teams of auditors to the audit tasks and constructs a schedule by determin-
ing the workload per auditor and per week over a planning horizon between three
and twelve months; the medium-to-short-term planning, which produces a sched-
ule for each auditor that covers all engagements in which he/she is involved in the
considered week on the basis of periods of four hours and the short-term planning,
which assigns the auditors to an audit task in periods of one hour. Salewski et al.
(1997) state that the medium-term audit-staff scheduling problem (MASSP) can
be formulated as a mode-identity resource-constrained project scheduling prob-
lem and determine some priority rules to solve the MASSP. Drexl et al. (2006)
propose a column generation method for this problem.

In the remainder of this chapter, an algorithm is presented for the medium-term
audit-staff scheduling problem, with sequence-dependent set-up times, varying au-
ditors availability, alternative audit teams and variable audit team efficiencies. This
algorithm is applied on real-life data from a small Belgium audit firm, with 15 au-
ditors and almost 250 audit tasks.

This chapter is organized as follows: in section 8.2 the problem formulation is
defined, while in section 8.3, a solution approach for this problem will be formu-
lated. The results of a computational study will be discussed in section 8.4, while
the conclusions of this chapter are drawn in section 8.5.

8.2 Audit scheduling problem

8.2.1 Description

An audit firm employs a number N of auditors, which have to execute a set E
of engagements within a given planning horizon. An engagement includes the
execution of a set of audit tasks A. Each audit task of an audit engagement can

CASE STUDY: AUDIT SCHEDULING 123

be performed by different audit teams (modes). The processing time dijmi for
each task j of engagement i will be different for each audit team mi and will be
influenced by the qualification, industry experience and familiarity with the client’s
business of each audit team. The number of execution modes for each task within
the same engagement is the same.

There may exist a precedence relationship between two audit tasks, which
means that the second audit task may not be processed before the first task of the
engagement is carried out. Each audit engagement has a time window in which it
should be performed: each engagement has a release time, which is the contractual
date or any time thereafter when the engagement becomes ready for processing and
a due date, which is the time when the audit engagement should be completed. In
most cases this due date is strict, since the due date is a legal restriction of the
duration of the audit engagement.

Several audit resource types are available (e.g. senior auditor, assistant au-
ditor or junior auditor) and for each resource type several auditors are available.
The availability of some auditors may be restricted in certain periods, e.g. due to
holidays, vacations or training. Note that not all audit tasks within the same en-
gagement should be executed by the same audit team. However, some of the tasks
should be processed by the same team, due to e.g. legal requirements, while others
can be executed by other audit teams. This problem notation refers to the mode
identity constraints of Salewski et al. (1997).

We assume that the auditor teams work at a homogeneous efficiency level of
100%. However, every new audit engagement is characterized by an introduction
period, in which the audit team learns to know the company, finds out how the com-
pany works, etc. This setup time is added to the total duration of the audit task. The
idea of setup time incorporation in scheduling is not new and is already studied in
the resource-constrained project scheduling (Kaplan, 1991; Kolisch, 1995; Debels
and Vanhoucke, 2006; Krüger and Scholl, 2009, 2010) and machine scheduling
(Potts and Kovalyov, 2000; Allahverdi et al., 2008). In our problem statement, we
assume an audit task-dependent setup time that needs to be added to the audit task
at the initial start of the audit engagement as well as for each time a new audit task
is performed by another audit team. The setup time can be seen as the loss of time
due to the audit team inefficiency at the beginning of a new audit task.

In order to calculate the setup time, we assume that during the introduction
period, the auditor teams follow a learning curve, determined by the audit team’s
initial efficiencyE1 and learning rateL, until the 100% efficiency level is obtained.
The learning variables L and E1 give an indication of the audit team’s skills: more
skilled audit teams have better learning variables (higher initial efficiency E1 and
lower learning rate L) than less experienced audit teams.

124 CHAPTER 8

Based on equation 7.3, the time needed to obtain the 100% efficiency level
(expressed in man-days) is equal to

ts = b

√
100%

(1 + b)E1

with b = −log2L the learning index depending on the learning rate L. It
is assumed that each audit team has a specific learning rate and a specific initial
efficiency, which depends on their mixture and level of skills.

The number of working days performed during the time period [0,ts] can be
calculated based on equation 7.4 and is equal to

Dw
ts = Ei1t

1+b
s

Dw
ts = Ei1(b

√
100%

(1 + b)E1

)1+b

Consequently, due to the initial setup period where resources need to reach
their 100% efficiency level, ts man-days will be necessary to performDw

ts working
days (ts ≥ Dw

ts). Hence, the total number of working days performed after dijmi
man-days can be calculated as the sum of the following two values:

1. Dw
ts , which is the number of working days performed during the period

[0,ts] following the efficiency curve determined by the learning variables
L and E1.

2. dijmi−ts, which is the number of working days performed during the period
]ts,dijmi], since a homogeneous efficiency (L = E1 = 100%) is assumed
during this period. In this period, the number of working days is equal to the
number of man-days.

The setup time s is defined as the additional time above the predefined dijmi
man-days (where homogeneous efficiencies are assumed) due to the initial intro-
duction period (in which no homogeneous efficiencies are considered). Hence, the
total time is dijmi + s man-days. The setup time can be calculated as:

s = dijmi − [(dijmi − ts) +Dw
ts]

s = ts −Dw
ts

Consider the example of an audit team with an initial efficiency E1 of 0.7 and
a learning rate L of 0.85 (b = 0.234) executing an activity with a duration dijmi
of 3 working days. Without setup time, the activity is executed in 3 man-days
(due to the homogeneous efficiency), however, when setup times are considered,

CASE STUDY: AUDIT SCHEDULING 125

an introduction period is assumed in which the audit team follows the efficiency
curve, determined by the learning variables. It can be calculated that this introduc-
tion period takes ts = 1.86 man-days during which Dw

ts = 1.51 working days are
performed (see figure 8.1). The additional duration due to the initial introduction
period can be executed in ts − Dw

ts = 1.86 - 1.51 = 0.35 man-days. This is indi-
cated by the grey area and is equal to the black area, which indicates the loss of
efficiency due to learning.

E

1 2 3 T

100%

E

1 2 3
1.86 3.31 T

100%

ts

Dts
w d -ijmi ts

d ijmi

1.86

=

Figure 8.1: Influence of the setup time on audit team switches

With respect to studies published earlier in this research field, some specific
elements are not included in the audit scheduling model. First, the minimum and
maximum time lags between audit tasks are not taken into account. Second, no
preference values are assigned, which means that each execution mode has the
same chance to be chosen. Third, no travel times are considered, since we assume
that all audits took place at the same place.

8.2.2 Example project

In this section, we present an example for the audit scheduling problem. An
overview of the different variables which are used in the remainder of this section
is given in table 8.4. The values for the different variables used in this example
project are also mentioned in the column ’Example’.

Consider an example project with three audit engagements. Audit engagement
1 and 3 contain 3 audit tasks, audit engagement 2 contains only 2 audit tasks. Each
audit engagement has a release date (λ1 = 0, λ2 = 5, λ3 = 10) and a due date
(δ1 = 10, δ2 = δ3 = 20). The planning horizon of the three audit engagements is
20.

Each audit task can be executed in two modes. Each mode represents an auditor
team, composed out of one or more auditors. The audit office has in total 5 auditors
available, divided into two audit types (C = 2): 2 senior auditors and 3 junior

126 CHAPTER 8

i mi r1imi r2imi Limi E1imi Simi
1 1 1 2 0.75 0.85 0.19

2 1 3 0.86 0.73 0.31
2 1 2 3 0.80 0.81 0.20

2 1 1 0.75 0.90 0.16
3 0 2 0.77 0.87 0.17

3 1 1 1 0.79 0.84 0.18
2 0 3 0.84 0.71 0.32

Table 8.1: Audit team: requirements and efficiency measures

i j dij1 dij2 dij3 EFij LFij
1 1 2 4 - 2 7

2 2 3 - 3 8
3 2 3 - 5 10

2 1 2 4 6 8 13
2 3 5 7 15 20

3 1 2 3 - 12 16
2 3 4 - 15 19
3 1 2 - 16 20

Table 8.2: Audit task durations

i ui Hiui hiui
1 1 {1,2} 1

2 {3} 3
2 1 {1} 1

2 {2} 2
3 1 {1} 1

2 {2,3} 2

Table 8.3: Mode identity constraints

CASE STUDY: AUDIT SCHEDULING 127

auditors. The cost of the former is 175 per day, while the cost for the latter is 100
per day. The different audit team combinations are given in table 8.1, including
the audit team learning variables L and E1. All auditors are available during the
complete planning horizon. The duration of the different audit tasks executed by
the different audit teams is given in table 8.2. For example, the duration d122 of
task 2 of engagement 1 executed in mode 2 is 3. This task is executed by an audit
team which consists of 1 senior and 3 junior auditors (see mode 2 of engagement
1 in table 8.1). We can also calculate the earliest finish time (EF) and latest finish
time (LF) for each audit task, based on the shortest duration for each audit task
(without taking the setup time into account).

A mode identity constraint is set to audit engagement 1 and 3. Audit task 1
and 2 of engagement 1 should be executed by the same audit team (i.e. the same
mode). This means that if mode 1 is chosen for audit task 1 of engagement 1,
also mode 1 has to be chosen for audit task 2 of the same engagement. The same
is true for the audit tasks 2 and 3 of engagement 3. In table 8.3, an overview of
the different mode identity constraints for the example project is given. The set of
audit tasks of each engagement is divided into ui different subsets and each subset
Hiui contains one or more audit tasks which must be executed by the same audit
team. Each audit task is part of exactly one subset (

∑Ui
ui=1 |Hiui | = Ai,∀i).

The setup time of the different audit tasks is defined by the efficiency parame-
ters of the audit team. An overview of the setup times Simi for the different modes
is given in table 8.1. The setup time is applied if the previous audit task is not
executed by the same audit team or if the audit task is the first task of the audit
engagement. In these cases, the setup time sijmi of a specific audit task j of en-
gagement i executed in modemi is equal to Simi . In all other cases, the setup time
sijmi is equal to 0. For example, the setup time s111 = S11 = 0.19 if the task is
executed by mode team 1, while the setup time s121 of audit task 2 of engagement
1 is equal to 0 since the task should be executed in the same mode as audit task 1
(see table 8.3).

A precedence relation is set between the different tasks of an audit engage-
ment. The set of predecessors of audit task j of audit engagement i is given by the
variable Vij , which consists of elements (o, p), representing an audit task p of an
audit engagement o. For example, the element (3,1) is a predecessor of audit task
2 of engagement 3. There is also a precedence relation between audit task 3 of
engagement 1 and audit task 1 of engagement 3, since the release time of engage-
ment 3 is equal to the due date of engagement 1 (see also section 8.3.1). So, the
element (1, 3) ∈ V31.

In figure 8.2, a feasible solution for the problem is given, taking into account
the mode identity constraints, the setup times and the due date restrictions. The
chosen audit teams are: team 1 for all tasks in engagement 1, team 1 for audit task
1 and team 2 for audit task 2 of engagement 2 and team 1 for audit task 1 and team

128 CHAPTER 8

2 for audit task 2 and 3 of engagement 3. The setup times are indicated in grey.
The finish time of engagement 1 is 9.20, the finish time of engagement 2 is 12.36
and the finish time of engagement 3 is 18.68.

5 10 15 T20

5 10 15 T20

11 12

13
21

22

11 12

31

13
3121

22

32 33

r1

r2
team 1 team 1

team 1

team 1

team 2

team 1

team 1 team 1

team 1

team 1

team 1

team 2

team 2 team 2

Figure 8.2: Audit scheduling example: a feasible solution

8.2.3 Mathematical formulation

In this section, a mathematical formulation is defined for the audit scheduling prob-
lem as defined in the previous section.

The following decision variable is defined:

xijmit =

{
1 if team mi completes task j of engagement i at the time t
0 otherwise

The model is given by the following equations:

optimize ψ (8.1)

Mi∑
mi=1

LFihiui∑
t=EFihiui

xifiuimit = 1 1 ≤ i ≤ E, 1 ≤ ui ≤ Ui (8.2)

LFihiui∑
t=EFihiui

xihiuimit =

LFij∑
t=EFij

xijmit

1 ≤ i ≤ E,∀j ∈ Hiui\{hiui}, 1 ≤ ui ≤ Ui, 1 ≤ mi ≤Mi (8.3)

CASE STUDY: AUDIT SCHEDULING 129

G
en

er
al

va
ri

ab
le

s
E

xa
m

pl
e

va
ri

ab
le

s
T

T
he

pl
an

ni
ng

ho
ri

zo
n

(i
nd

ex
t

=
1,

...
,T

)
20

A
ud

it
te

am
va

ri
ab

le
s

E
xa

m
pl

e
va

ri
ab

le
s

N
T

he
to

ta
ln

um
be

ro
fa

ud
ito

rs
5

C
T

he
to

ta
ln

um
be

ro
fa

ud
ito

rt
yp

es
(i

nd
ex
c

=
1,

...
,C

)
2

M
i

T
he

nu
m

be
ro

fa
ud

it
te

am
s

w
hi

ch
ca

n
ex

ec
ut

e
en

ga
ge

m
en

ti
(i

nd
ex
m
i

=
1,

...
,M

i
)

M
1
=
M

3
=

2
,M

2
=

3
a
c
t

T
he

nu
m

be
ro

fa
ud

ito
rs

of
ty

pe
c

w
hi

ch
ar

e
av

ai
la

bl
e

at
tim

e
t

a
1
t
=

2
,a

2
t
=

3
,∀
t
=

1
,.
..
,T

L
ij
m
i

T
he

le
ar

ni
ng

ra
te

fo
re

ac
h

au
di

tt
ea

m
m
i

fo
ra

ud
it

ta
sk
j

of
en

ga
ge

m
en

ti
se

e
ta

bl
e

8.
1

E
1
ij
m
i

T
he

in
iti

al
ef

fic
ie

nc
y

ra
te

fo
re

ac
h

au
di

tt
ea

m
m
i

fo
ra

ud
it

ta
sk
j

of
en

ga
ge

m
en

ti
se

e
ta

bl
e

8.
1

K
c

T
he

co
st

fo
ro

ne
da

y
of

au
di

tt
yp

e
c

K
1
=

1
7
5
,K

2
=

1
0
0

A
ud

it
en

ga
ge

m
en

tv
ar

ia
bl

es
E

xa
m

pl
e

va
ri

ab
le

s
E

T
he

to
ta

ln
um

be
ro

fa
ud

it
en

ga
ge

m
en

ts
(i

nd
ex
i

=
1,

...
,E

)
3

A
i

T
he

to
ta

ln
um

be
ro

fa
ud

it
ta

sk
s

fo
ra

ud
it

en
ga

ge
m

en
ti

(i
nd

ex
j

=
1,

...
,A
i
)

A
1

=
A

3
=

3,
A

2
=

2
d
ij
m
i

T
he

du
ra

tio
n

of
au

di
tt

as
k
j

of
en

ga
ge

m
en

ti
ex

ec
ut

ed
by

au
di

tt
ea

m
m
i

se
e

ta
bl

e
8.

2
r c
im
i

T
he

re
so

ur
ce

de
m

an
d

of
au

di
to

rt
yp

e
c

of
en

ga
ge

m
en

ti
ex

ec
ut

ed
by

au
di

tt
ea

m
m
i

se
e

ta
bl

e
8.

1
S
im
i

T
he

se
tu

p
tim

e
fo

rt
he

di
ff

er
en

tt
as

ks
of

au
di

te
ng

ag
em

en
ti

if
ex

ec
ut

ed
in

m
od

e
m
i

se
e

ta
bl

e
8.

1
s i
j
m
i

T
he

se
tu

p
tim

e
of

a
sp

ec
ifi

c
au

di
tt

as
k
j

of
au

di
te

ng
ag

em
en

ti
if

ex
ec

ut
ed

in
m

od
e
m
i

se
e

eq
ua

tio
n

8.
9

δ i
T

he
du

e
da

te
of

au
di

te
ng

ag
em

en
ti

δ 1
=

1
0
,δ

2
=
δ 3

=
2
0

λ
i

T
he

re
le

as
e

tim
e

of
au

di
te

ng
ag

em
en

ti
λ
1
=

0
,λ

2
=

5
,λ

3
=

1
0

U
i

T
he

nu
m

be
ro

fs
ub

se
ts

fo
re

ng
ag

em
en

ti
(i

nd
ex
u
i
)

U
1
=

2
,U

2
=

2
,U

3
=

2
H
iu
i

T
he

su
bs

et
of

au
di

tt
as

ks
fo

re
ng

ag
em

en
ti

w
hi

ch
m

us
tb

e
pe

rf
or

m
ed

by
th

e
sa

m
e

au
di

tt
ea

m
se

e
ta

bl
e

8.
3

h
iu
i

T
he

au
di

tt
as

k
w

ith
th

e
sm

al
le

st
au

di
tt

as
k

in
de

x
j

of
th

e
su

bs
et
H
iu
i

se
e

ta
bl

e
8.

3
E
F
ij

T
he

ea
rl

ie
st

fin
is

h
tim

e
of

au
di

tt
as

k
j

of
en

ga
ge

m
en

ti
se

e
ta

bl
e

8.
2

L
F
ij

T
he

la
te

st
fin

is
h

tim
e

of
au

di
tt

as
k
j

of
en

ga
ge

m
en

ti
se

e
ta

bl
e

8.
2

F
ij

T
he

fin
is

h
tim

e
of

au
di

tt
as

k
j

of
en

ga
ge

m
en

ti
e.

g.
F
1
3
=

9
.2
0

V
ij

T
he

se
to

fp
re

de
ce

ss
or

s
of

au
di

tt
as

k
j

of
au

di
te

ng
ag

em
en

ti
e.

g.
V
1
2
=

{(
1
,1

)}
(o
,p

)
A

n
el

em
en

to
ft

he
se

tV
ij

re
pr

es
en

tin
g

an
au

di
tt

as
k
p

of
an

au
di

te
ng

ag
em

en
to

e.
g.

(3
,1

)
∈
V
3
2

Ta
bl

e
8.

4:
Va

ri
ab

le
s

fo
r

th
e

au
di

ts
ch

ed
ul

in
g

pr
ob

le
m

130 CHAPTER 8

E∑
i=1

Mi∑
mi=1

rcimi

Ai∑
j=1

t+dijmi+sijmi−1∑
q = t

q ∈ {EFij , ..., LFij}

xijmiq ≤ act 1 ≤ c ≤ C, 1 ≤ t ≤ T

(8.4)

LFop∑
t=EFop

txopmot ≤
LFij∑
t=EFij

(t− dijmi − sijmi)xijmit

1 ≤ i ≤ E, 1 ≤ j ≤ Ai,∀(o, p) ∈ Vij , 1 ≤ mo ≤Mo, 1 ≤ mi ≤Mi (8.5)

Mi∑
mi=1

LFij∑
t=EFij

(t− dijmi − sijmi)xi1mit ≥ λi 1 ≤ i ≤ E, 1 ≤ j ≤ Ai (8.6)

Mi∑
mi=1

LFij∑
t=EFij

txiAimit ≤ δi 1 ≤ i ≤ E, 1 ≤ j ≤ Ai (8.7)

xijmit ∈ {0, 1} 1 ≤ i ≤ E, 1 ≤ j ≤ Ai, 1 ≤ mi ≤Mi, EFij ≤ t ≤ LFij
(8.8)

Equation 8.2 represents that the audit task with the lowest index (audit task hiui) of
each subsetHiui is completed exactly once in one of its modes. Equation 8.3 states
that each other audit task of the subset should be executed in the same mode as the
audit task with the smallest index. In equation 8.4, the resource constraints are set,
while in equation 8.5, the precedence relations are defined. Equation 8.6 states
that each audit engagement must start on or after its release date λ and equation
8.7 defines that the engagement must finish not later than the due date δ. Finally,
equation 8.8 defines the range of decision variables.

In order to incorporate the conditional setup times into the mathematical for-
mulation, the temporary variables SLKU

ijmi
and SLKL

ijmi
are introduced, which

represent slack variables and are equal to 0 or 1. The variable wijmi represents
a boolean variable denoting whether a setup time Simi should be added to the
duration dijmi of audit task j of engagement i if executed in mode mi.

The following equations are added to the mathematical formulation in order to
incorporate the conditional setup times:

CASE STUDY: AUDIT SCHEDULING 131

sijmi = wijmiSimi 1 ≤ i ≤ E, 1 ≤ j ≤ 1, 1 ≤ mi ≤Mi (8.9)

wi1mi = 1 1 ≤ i ≤ E, 1 ≤ mi ≤Mi (8.10)

LFij∑
t=EFij

xijmit −
LFij∑
t=EFij

xij−1mit ≤ SLKU
ijmi 1 ≤ i ≤ E,∀j > 1, 1 ≤ mi ≤Mi

(8.11)

LFij∑
t=EFij

xijmit −
LFij∑
t=EFij

xij−1mit ≤ SLKL
ijmi 1 ≤ i ≤ E,∀j > 1, 1 ≤ mi ≤Mi

(8.12)

wijmi = SLKL
ijmi + SLKU

ijmi 1 ≤ i ≤ E,∀j > 1, 1 ≤ mi ≤Mi (8.13)

Equation 8.9 defines the value of the setup time of audit task j of engagement
i. The value of sijmi is equal to 0 or to Simi and depends on the value of wijmi .
For the first task of all engagements the value of wijmi is equal to 1 (equation
8.10). For all other audit tasks, the value of wijmi is equal to 0 if the previous task
is executed in the same mode as the current audit task and otherwise equal to 1
(equations 8.11, 8.12 and 8.13).

Different objective functions can be defined. A first objective function mini-
mizes the number of audit engagements finishing after the due date δ.

ψ1 = min

E∑
i=1

{
1 FiAi > δi
0 otherwise

A second objective function assigns a penalty cost P to each day an audit
engagement is finished after the proposed due date δ. If the previous objective
function is 0, the result of this objective function will obviously be 0. In this work,
the penalty P is, without loss of generality, set at 1 per day.

ψ2 = min

E∑
i=1

{
P (FiAi − δi) FiAi > δi
0 otherwise

Finally, a third objective function maximizes the value of the remaining re-
source capacity. The function gives an indication of the resources which are avail-
able for other audit engagements and is inspired by the audit office’s desire to
obtain efficient audit team assignments. The function is calculated as follows:

132 CHAPTER 8

ψ3 = max

T∑
t=0

C∑
c=1

(act − âct)Kc

with âct equal to the number of resources of resource type c used at time t, as
defined in the left hand side of equation 8.4.

8.3 Solution approach

In this section, the solution approach for this audit scheduling problem will be
presented. Salewski et al. (1997) proved that the MASSP is a special case of
the mode identity resource-constrained project scheduling problem (MIRCPSP).
Several adaptations are presented such that the problem can be solved using the
genetic algorithm, as proposed in chapter 3. In section 8.3.1, the schedule and
solution representation are presented, while in section 8.3.2, a schedule generation
scheme with dynamic priority rules is presented in which the mode improvement
method is incorporated. Finally, in section 8.3.3, the algorithmic details of the
genetic solution procedure are presented.

8.3.1 Representation

Since the audit scheduling problem consists of a set of audit engagements, which
are divided in a set of audit tasks between which a precedence relation exists, the
problem can be seen as a multiple project scheduling problem, in which a set of
single-projects (the audit engagements) should be scheduled sharing the same set
of available resource. This can be represented as the different projects shown in
figure 8.3(a). However, projects can be bound together artificially into a single
project by the addition of two dummy activities representing the start and end of
the single aggregate project (Hans et al., 2007), as shown in figure 8.3(b).

Since each audit engagement i has a release date λi, before which the en-
gagement cannot start, and a due date δi, before which the engagement should be
finished due to legal restrictions, extra precedence constraints can be added to the
project, without violating the project characteristics. For each pair of engagements
(i, j), for which δi ≤ λj is true, a precedence constraint is set between engage-
ments i and j. This results in a project as shown in figure 8.3(c).

Using this representation, the genetic algorithm as proposed in chapter 3 can
be used to solve this problem. However, some adaptations are made in order to
deal with the specific characteristics of the audit scheduling problem. In the next
section, a schedule generation scheme with dynamic priority rules is presented.

CASE STUDY: AUDIT SCHEDULING 133

s1 f1

s2 f2

s3 f3

s4 f4

(a) Multi-project approach

s f

(b) Single-project approach

s f

(c) Single-project approach with extra precedence constraints

Figure 8.3: Multiple project scheduling problem

8.3.2 Schedule generation scheme with dynamic priority rules

The genetic algorithm makes use of the extended schedule generation scheme with
the mode improvement method as presented in chapter 3.3. However, two mod-
ifications have been made in order to deal with the specific characteristics of the
audit scheduling problem.

1. The mode improvement method which selects an activity with a certain prob-
ability and evaluates during the generation of the schedule all feasible mode
assignments of the selected activity, is used. Due to the mode identity con-
straints, the improvement method is only applied on the first audit task j of
a subset Hiui . If another mode is chosen for task j, the other audit tasks in
set Hiui also obtain the chosen alternative mode.

2. The sequence in which the activities are scheduled is dynamically updated
during the generation of the schedule. To determine this sequence, a priority
φij is assigned to each audit task j of engagement i according to the proxim-
ity of the earliest possible start time of the audit task to the engagement due
date δi. The priority for all eligible audit tasks varies during the generation
of the schedule and is calculated as follows:

φij =

{
δi − λi − dijmi if j = 1
δi − Fij−1 − dijmi otherwise

134 CHAPTER 8

Audit tasks which approach their due dates have a higher chance to be sched-
uled with respect to the other eligible activities. Moreover, audit tasks with a
larger task duration are also preferred over audit tasks with shorter durations.

The incorporation of this scheduling generation scheme with dynamic priority
rules implies that the sequence in which the audit tasks are scheduled is updated
dynamically during the generation of the schedule. This implies that the random
key, as used in the genetic algorithm proposed in chapter 3 cannot be used. More-
over, tests were also performed using the random key, however, this generation
scheme revealed inferior results with respect to the proposed schedule generation
scheme with dynamic priority rules.

8.3.3 Algorithmic details

In this section, some specific algorithmic details of the genetic algorithm are pre-
sented.

Mode identity Due to the introduction of the mode identity constraint, the cross-
over and mutation operators are adapted such that a change in mode also
leads to the adaption of the mode of the other activities in the set Hiui .

Crossover As in the genetic algorithm presented in chapter 3, the best results are
obtained by using a one-point crossover, which is applied on the mode lists
of the population.

Mutation A mutation operator is applied to each mode list. The mutation ran-
domly changes the mode of a randomly selected activity. The probability of
an activity to be mutated is equal to 5%.

In the following section, this genetic algorithm is applied on real-life data from
a small Belgium audit firm, with 15 auditors and more than 250 audit engagements
per year.

8.4 Computational results

In this section, computational tests are performed to test the efficiency of our ge-
netic algorithm, to analyze the influence of the setup costs, mode identity con-
straints and objective functions and to compare our schedule with the original
schedule obtained from the audit firm. In section 8.4.1, the audit firm is presented
in detail, while in section 8.4.2, an analysis of three different scenarios is given.

CASE STUDY: AUDIT SCHEDULING 135

8.4.1 Audit firm

The data used is received from a local Belgian audit firm, which is part of an inter-
national network of more than 600 independent offices, present in more than 100
countries. Eight offices are located in Belgium. Each office works independently,
but the offices support each other to resolve personnel shortage.

The office, from which the audit scheduling data of the year 2008 is obtained,
has an audit department with 15 auditors, divided over 4 audit types: 3 partners,
4 managers, 3 seniors and 5 junior assistants. It is assumed that all auditors of
the same type are mutually interchangeable. For the year 2008, the audit firm has
obtained 237 audit engagements, each with a duration, a release and a due date.
The average engagement duration is 2 weeks, with a minimum of 0.5 day and
a maximum of 16 weeks. For each audit engagement, several execution modes
are defined, which represent audit teams (composed of one or more auditors) and
determine the duration, resource requirements and the audit team efficiency. For
each audit engagement, a list of audit tasks which must be executed by the same
audit team is available. Since the real cost for the different audit types may not be
given, a relative weight is assigned to each audit type. These weights are based
on the monetary costs of the different types of auditors. We rescaled the cost of
the junior auditor to 100 and compared the cost of any other resource type with
this cost. The weight of the junior auditor is therefore set at 100, the weight of the
senior assistant is set at 127, the weight of a manager is set at 173 and the weight
of a partner is set at 267. The information about the resource availability (holidays,
training, ...) is given.

Currently, the audit department makes use of Microsoft Office Excel to man-
ually schedule the audit engagements and tasks. In the remainder of this chapter,
we refer to the original schedule as the one designed by the audit firm. However,
compared to the real-life situation, the following assumptions are made. First,
each auditor performs a forty-hour week. This assumption, however, will lead to
activities exceeding the engagement due date, although this is not in accordance
to the real-life situation in which overtime is used to solve these resource capacity
problems. Second, resource inavailability for short periods (e.g. one-day training)
is not taken into account since the preemption of activities is not allowed by the
algorithm. Obviously, longer periods of unavailability are taken into account.

8.4.2 Analysis

In this section, an evaluation is made for three different scenarios. A first sce-
nario assumes a situation without setup costs and mode identity constraints and
is presented in section 8.4.2.1. A second scenario introduces the mode identity
constraint and is presented in section 8.4.2.2. Finally, in the third scenario, which
is presented in section 8.4.2.3, the setup costs are added to the problem.

136 CHAPTER 8

T ψ1 ψ2 ψ3 switch
Scenario 1 Obj1 51.13 0 0 265,538 272

Obj2 51.13 0 0 267,850 272
Obj3 51.13 1 4 270,883 271

Scenario 2 Original 51.15 1 4 248,104 150
Obj1 51.08 0 0 264,807 144
Obj2 51.08 0 0 264,807 144
Obj3 51.15 1 31 268,302 128

Scenario 3 Original 51.25 2 275 174,395 150
Obj1 51.75 2 49 178,964 125
Obj2 51.75 2 49 178,964 125
Obj3 51.87 7 552 191,848 109

Table 8.5: Results after 5,000 schedules

8.4.2.1 Scenario 1

In this first scenario, the audit scheduling problem is analyzed without taking the
mode identity constraint and setup costs into account. The results of this scenario
are shown in table 8.5. The problem is optimized according to the three optimiza-
tion functions (obj1, obj2 and obj3) and is compared to the original schedule. The
results for the original schedule under the scenario 1 assumptions is not available,
due to the imposed legal restrictions. In the different columns, the objective val-
ues (ψ1 to ψ3) are mentioned as well as the latest finish time of all activities (T)
and the total number of team switches during the execution of the engagements.
Schedules for objective functions 1 and 2 obtain feasible schedules, without en-
gagements exceeding the due dates. The schedule obtained for objective function
3 exceeds the due date for 1 engagement for a total of 4 days. The value of the
remaining resource capacity is maximized to a total of 270,883.

8.4.2.2 Scenario 2

In the second scenario, the mode identity constraint is introduced. The introduction
of this mode identity constraint can be seen as a legal restriction to the change in
audit teams during an audit engagement. As can be seen in table 8.5, the number of
audit team switches significantly decreases with on average 51% (average switch
decrease of obj1, obj2 and obj3). This extra restriction also results in an increase of
objective function 1 and 2 and a decrease in objective function 3. The introduction
of this legal restriction results in an important efficiency decrease, which results in
the decrease of value of the remaining resource capacity.

Compared to the original schedule, the optimization of the mode team assign-
ment, however, leads to an improvement of 8.14% of the value of the remaining

CASE STUDY: AUDIT SCHEDULING 137

work content (268,302 versus 248,104). The introduction of optimization tech-
niques significantly improves the efficiency of the work schedule in terms of audi-
tor assignment.

8.4.2.3 Scenario 3

The same conclusions can be made for the third scenario, in which the setup time
is introduced. This setup time can be seen as a switch cost and will affect both the
number of audit team switches as well as the number of engagements exceeding
the due date, due to the extra time needed to execute an audit task. The setup time
is applied every time an audit team switch is applied. In figure 8.4, an example
is given of an audit engagement of three audit tasks. Audit team 1, indicated as
m1, executes the first audit task and is faced with an introduction period in which
the learning curve is followed. This results in an extra setup time, as explained
in section 8.2. This extra time needed to execute audit task 1 is indicated in gray.
Since task 2 is also executed by audit team 1, the setup time of this task is equal to
0. The last audit task is performed by audit team 2, which also results in a setup
time. Due to the differences in audit team skills, the setup time of audit team 1 is
smaller than the setup time of audit team 2. Audit teams with more experienced
auditors have better learning variables than teams composed of junior auditors,
which results in shorter setup times.

As can be seen in table 8.5, the number of audit team switches decreases
significantly under these new settings. Moreover, the number of engagements ex-
ceeding the due date and the total number of days exceeding the due date increases
significantly.

m1

m2

E

T

1 2 3

100%

100%

Figure 8.4: Influence of the setup time on audit team switches

138 CHAPTER 8

In figure 8.5 however, an overview is given for different fixed setup times,
varying from 0 to 1 day (in steps of 0.25 days). As can be seen, the values for
the objective function ψ1 and ψ2 increase for increasing setup times. Moreover,
the values for the objective function ψ2 even increase exponentially. The values
for objective function ψ3 decrease, which is obvious, since increasing setup times
leads to the extra use of resource capacity. Finally, the higher the setup time to
switch from one audit team to another is, the less audit team switches are made.

0

0.5

1

1.5

2

2.5

0 0.25 0.50 0.75 1

(a) Objective function ψ1

0

10

20

30

40

50

60

70

80

90

100

0 0.25 0.50 0.75 1

(b) Objective function ψ2

300000

250000

200000

150000

100000

 50000

 0
0 0.25 0.50 0.75 1

(c) Objective function ψ3

0

20

40

60

80

100

120

140

160

0 0.25 0.50 0.75 1

(d) Average number of switches

Figure 8.5: Objective function values for different values of the setup time

8.5 Conclusions

In this chapter, a solution is found for a medium-term audit-staff scheduling prob-
lem in which the teams of auditors are assigned to a set of audit engagements.
Audit team switches are allowed during the execution of an audit engagement,
however, mode identity constraints are imposed to some audit tasks, which means
that no team switches can be executed due to e.g. legal restrictions. Since an au-
dit team switch also results in an introduction period, in which the audit learns to
know the company, an extra setup time is added if an audit team switch is applied.

The introduction of the mode identity constraint has a significant impact on
the three objective functions. The efficiency in terms of number of engagements
exceeding the due date, the total number of days exceeding the due date and the

CASE STUDY: AUDIT SCHEDULING 139

total value of the remaining resource capacity decrease significantly. The introduc-
tion of a setup time further decreases the efficiency, which results in a significant
decrease in the number of audit team switches. The same results are obtained for
an increasing fixed setup time. The larger the setup time is, the less interesting it
is to switch audit teams during audit engagement execution.

The algorithm is applied on real-life data from a small Belgium audit firm,
with 15 auditors and almost 250 audit tasks per year. Compared with the optimal
schedule obtained in the computational section (result scenario 2 - objective func-
tion ψ3), an efficiency improvement is realized in the audit team assignment of
8.14% in the value of the unassigned resource capacity (from 248,104 to 268,302),
which corresponds with almost 200 working days of a junior assistant.

Although the algorithm is applied on a simplification of a practical planning
situation, the introduction of optimization techniques significantly improves the
efficiency of the work schedule in terms of auditor assignment. As many audit
offices still use relatively simple programs to schedule their auditor teams, the use
of advanced scheduling algorithms and techniques aims to generate high quality
schedules. Future research is needed to develop methods which can incorporate
overtime and other real-life extensions and which can convert the obtained audit
team schedule into single auditor schedules efficiently.

9
Conclusions and Future Research

In this chapter, an overview of the different research topics of this work is given,
the main contribution of each algorithm is analyzed and different directions for
future research are defined. Moreover, general reflections are expressed with re-
spect to future research in project scheduling in general and multi-mode resource-
constrained project scheduling in particular.

9.1 Introduction

In this work, we investigated the multi-mode resource-constrained project schedul-
ing problem (MRCPSP), where each activity can be performed in different sets of
modes, with a specific activity duration and resource requirements. The activities
have to be scheduled within precedence constraints and (renewable and nonrenew-
able) resource constraints, in order to minimize the makespan of the project.

The MRCPSP can be divided into two subproblems: a first subproblem is re-
ferred to as the Mode Assignment Problem (MAP), whose aim it is to find a feasible
mode assignment. A mode assignment is called feasible if the nonrenewable re-
source demand does not exceed the nonrenewable resource availability. If there is
more than one nonrenewable resource, the problem of finding a feasible solution
is NP-complete (Kolisch and Drexl, 1997). In a second subproblem, a start time
should be assigned to each activity. Given the duration and the resource consump-
tions of the different activities, the aim of this scheduling problem is to minimize
the makespan of the project.

142 CONCLUSIONS AND FUTURE RESEARCH

The resource-constrained project scheduling problem in general and its multi-
mode extension in particular have been research topics for many decades, resulting
in a wide variety of solution procedures. Different search strategies have been used
in order to solve the MRCPSP. An overview of the exact, heuristic and metaheuris-
tic algorithms has been presented in chapter 2.

In Part I of this work, we proposed different population-based metaheuristics.
Each of the search strategies has been tailored to the problem under study. The
solution procedures have been tested on the PSPLIB dataset (Kolisch et al., 1995)
and the dataset of Boctor (1993) and have been compared to other solution proce-
dures available in the literature. Moreover, a new dataset MMLIB was generated
in order to deal with the major shortcomings of the current benchmark datasets,
given the recent evolution in the development of metaheuristic search procedures.
In Part II, we focused on some extensions of the MRCPSP. First, the MRCPSP was
extended to the preemptive multi-mode version in order to investigate the influence
of preemption on the project duration. Second, the concept of learning was incor-
porated in the discrete time/resource trade-off problem in order to investigate the
influence of the introduction of learning effects on the project makespan. Finally,
an audit scheduling problem with sequence-dependent setup times and different
audit team efficiencies is modeled as an MRCPSP and the results for a real-life
audit team scheduling problem were presented.

The remainder of this chapter is organized as follows. Section 9.2 briefly re-
views part I in which three metaheuristic solution procedures for the MRCPSP are
introduced. In section 9.3, an overview is given of the two extensions and the case
study which are discussed in Part II. Finally, some general reflections are presented
in section 9.4.

9.2 Metaheuristic procedures for the MRCPSP

Part I of this work investigated the potential of three different population-based
metaheuristic solution procedures to solve the MRCPSP. In section 3.3, a bi-
populational genetic algorithm was proposed, which makes use of two popula-
tions, one with left-justified schedules and one with right-justified schedules. Also
an extended serial schedule generation scheme was proposed, which improves the
mode selection by choosing the feasible mode of a certain activity that minimizes
the finish time of the activity. In section 3.4, we successfully explored the artifi-
cial immune system solution methodology to tackle the MRCPSP. The algorithm
makes use of a controlled search procedure, which selects out of a large set of mode
lists those lists that have a larger probability to obtain better solutions. This proce-
dure leads the search process more quickly to the more interesting search regions.
Finally, the scatter search procedure was proposed in section 3.5. Unlike the other
two metaheuristic procedures, the scatter search procedure uses strategic designs

CONCLUSIONS AND FUTURE RESEARCH 143

to artificially introduce diversity during the search process. The main contribu-
tion of this procedure is the steering power of the three proposed improvement
methods, each tailored to the specific characteristics of different renewable and
nonrenewable resource scarceness values. Moreover, by combining the different
improvement methods and two local searches, an efficient combined solution pro-
cedure could be designed, which leads to promising computational results. When
comparing the performance of the different procedures (cf. chapter 5), we can
conclude that the scatter search procedure outperforms the other procedures.

Concerning the design of metaheuristic procedures, we consider the focus on
the mode assignment problem and the use of problem specific information in the
search process as important directions for future research. The new dataset which
has been proposed in chapter 4 can facilitate and motivate researchers to investigate
and develop new ideas and techniques to tackle the MRCPSP.

Focus on the mode assignment problem Algorithms using a clever mode as-
signment procedure to generate the initial population have an advantage compared
to other methods. Their performance is better, especially when the number of gen-
erated schedules is low. By focusing on the mode assignment problem, i.e. search-
ing for a feasible mode combination, the procedure should be able to reduce the
search space, not only in order to exclude infeasible mode assignments, but also
to determine those mode combinations with the largest probability of obtaining
the optimal solution. Although the use of mode characteristics has already been
studied in section 3.4, future research should focus on finding mode parameters or
characteristics which influence the makespan of the project.

Use of problem specific information Regardless of the used search strategy, the
performance of a metaheuristic is mainly determined by local search procedures
used in the algorithm. Procedures which are best tailored to the project settings
outperform other procedures. The use of problem specific information in these
local search procedures significantly increases the efficiency of the procedure. To
that purpose, the design of new local search procedures should be encouraged.

Even though the currently proposed procedures perform very well on the cre-
ated instances of the benchmark datasets PSPLIB, Boctor and MMLIB, they will
probably perform less well on real project instances. Real-life problems will not fit
in a specific group of project parameters. In order to provide project managers an
efficient schedule, future research should focus on the influence and use of other
indicators, not only project specific parameters, but also environmental informa-
tion and project progress information. A decision support system could provide a
link between software packages and the real-life projects and would clearly reduce
the gap between academic research and practice.

144 CONCLUSIONS AND FUTURE RESEARCH

New dataset for the MRCPSP Based on the disadvantages of the current bench-
mark datasets PSPLIB and Boctor, we have developed a new dataset MMLIB that
has been used to test and validate the proposed metaheuristic solution procedures
and to compare the performance of the three algorithms with the metaheuristic so-
lution procedures available in the literature. The introduction of this new dataset
opens the possibility to compare new solution procedures with the currently avail-
able methods. Researchers are encouraged to use this dataset to compare the re-
sults of their solution procedures with other procedures.

9.3 Extensions for the MRCPSP

In part II of this work, we explored two extensions of the MRCPSP, namely the
introduction of preemption and the introduction of learning in the MRCPSP. In
chapter 6, the influence of preemption on the project duration was investigated.
The extension to the preemptive multi-mode version allows activities to be pre-
empted at any integer time instance and restarted later on at no additional cost.
This is in contrast with the basic MRCPSP, in which it is assumed that each activ-
ity, once started, will be executed until its completion. In order to allow activity
preemption, the original activity network is converted into a new network, in which
each activity is split into subactivities with a unit duration of 1. The introduction
of preemption leads to a significant decrease in the average project makespan com-
pared to the non-preempted case. Nevertheless, it should be stated that it is more
difficult to find improvements if nonrenewable resources are taken into account.

In chapter 7, the influence of the introduction of learning effects was investi-
gated. The concept of activity-specific learning, in which the resources became
more efficient the longer they stay on the job, was examined from various an-
gles. The concept was introduced in the discrete time/resource trade-off problem,
in which each activity contains a specific work content in terms of working days,
instead of a fixed duration and resource requirement. For each activity, a set of
execution modes can be specified using different combinations of durations and
resource requirements, as long as the specified work content is met. Computa-
tional tests revealed a significant influence of the introduction of learning effects
in project scheduling. The main project drivers that affect the project makespan
when introducing learning effects have been analyzed, the margin of error made
by ignoring learning during schedule construction has been measured and the im-
portance of incorporating the learning effects timely (i.e. when the project is in
progress) has been proven, since this leads to significant makespan improvements.

Nevertheless, with respect to these two extensions, several future research di-
rections can be suggested, as mentioned in the following paragraphs.

CONCLUSIONS AND FUTURE RESEARCH 145

Preemption If nonrenewable resources are taken into account, the proposed
algorithm was not always able to obtain better solutions compared to the non-
preemptive case. This is mainly due to the larger project network, which is gener-
ated by splitting the activities into subactivities with a unit duration of 1. New so-
lution procedures must be able to decrease the number of inferior solutions. Future
research should therefore focus on an improved mode selection procedure, search-
ing feasible mode assignments more quickly. Another possibility is to limit the
number of interruptions allowed during project execution. This probably would
have an influence on the results since the search space (here determined as the
number of (sub)activities) clearly decreases due to the restricted number of inter-
ruptions. Moreover, this restriction proved to be successful in the procedure of
Ballestin et al. (2008) for the preempted version of the RCPSP.

In most cases, it is assumed that activities can be preempted without any addi-
tional cost. However, this assumption is difficult to maintain in real-life situations.
Two types of penalization can be proposed and could be introduced in future re-
search on this topic:

• Fixed setup time Every time a preempted activity is restarted, a fixed setup
time can be added to the duration of the activity. This penalization is already
introduced in the paper of Vanhoucke (2008).

• Variable setup time Ash and Smith-Daniels (1999) have determined the
impact of learning, forgetting and relearning on the project completion time
when preemption is allowed. When an activity is preempted, the efficiency
level is interrupted and a period of forgetting is initialized. The variable
setup time is determined as the time needed to relearn and obtain the original
efficiency level. A similar approach to calculate the setup time is used in
chapter 8.

Stochastic durations In chapter 7, the influence of the introduction of learning
effects is studied. The influence of learning on the activity durations is measured
deterministically. However, a more realistic view could be obtained by considering
the learning effect in a stochastic way. The durations should therefore follow a
probabilistic distribution, using the formulas given in chapter 7 as the average of
the durations. Future research should focus on this point.

In addition to learning, forgetting is also a natural phenomenon that occurs
when a resource stops working on a specific activity. The interruption of the activ-
ity obviously leads to the termination of the activity-specific learning process and
is beneficial when activity splitting is allowed. Empirical research has also shown
that working with insufficient or too many resources can result in an efficiency
decrease due to an increasing loss of motivation and dedication. The introduc-
tion of team work where the efficiency of a single resource can influence the team

146 CONCLUSIONS AND FUTURE RESEARCH

efficiency and the determination of the optimal number of team members and its
influence on the project duration are also topics for further research. Finally, in
this research we have focused on the autonomous learning concept. However, the
acquired insights in project scheduling with learning effects can be used to dis-
cuss and investigate the induced learning concept, where learning is the result of
management investments in training and innovative technologies. The determina-
tion of the optimal learning rate per activity will be one of the key questions the
learning effect research can propose to the project management practice.

Other extensions The general MRCPSP imposes strict assumptions on the ac-
tivities, which often might be violated in practice. The introduction of preemption
and the introduction of the learning concept were two extensions on the general
MRCPSP to relax these assumptions. However, other extensions still have to be
studied. We refer, amongst others, to the scheduling problem with discounted cash
flows or the multi-mode resource availability cost problem. Moreover, also the
option to allow within-activity fast tracking should be considered, since this ex-
tension proves to be successful in reducing the makespan of schedule (Vanhoucke
and Debels, 2008).

Real-life situations In the last chapter of this work, the algorithms designed
for the MRCPSP are used to solve real-life scheduling problems, such as the au-
dit team scheduling problem. Although the algorithm is applied on a simplifica-
tion of a practical planning problem, the introduction of optimization techniques
significantly improves the efficiency of the audit team schedule, as can be seen
in the computational analysis. Future research, however, is needed to develop
methods to incorporate overtime and other real-life extensions. Moreover, other
planning problems could also be converted to the MRCPSP and could be solved
using the available solution procedures. This will reduce the gap between aca-
demic research and practice.

9.4 General reflections

In general, many project scheduling problems are still unexplored. In this work,
we have covered the MRCPSP and some of its extensions. To conclude this work,
we briefly overview the main contributions of this work.

Three state-of-the-art algorithms In the first part of this work, we have pre-
sented three metaheuristic solution procedures. These procedures obtain
state-of-the-art results compared to the results of the algorithms available in
the literature. Moreover, the use of search strategies that have never been
used before to tackle the MRCPSP, such as the scatter search procedure and

CONCLUSIONS AND FUTURE RESEARCH 147

the artificial immune system method, have proven to be successful in finding
high quality solutions.

Use of problem specific information The use of problem specific information in
the local search process, such as the use of resource scarceness parameters
in the scatter search procedure, increased the efficiency of the procedure
significantly.

New dataset The new dataset can facilitate and motivate researchers to inves-
tigate and develop new ideas and techniques to tackle the MRCPSP. Re-
searchers are encouraged to use this dataset to compare the results of their
solution procedures with other procedures.

Introduction of learning With the introduction of the learning effect in a multi-
mode project environment, a new trade-off is set between the duration of an
activity and the efficiency of a human resource. We have also learned that
the efficiency of human resources influences the project duration. Moreover,
the earlier the learning effect is taken into account, the larger the benefit with
respect to the original baseline schedule is.

Use for real-life problems The applicability and importance of the multi-mode
resource-constrained project scheduling problem are illustrated by means of
a real-life audit team scheduling problem bridging the gap between sched-
uling theory and practice.

References

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Computing.
Wiley, Chichester.

Adler, P. S. and Clark, K. B. (1991). Behind the learning curve: A sketch of the
learning process. Management Science, 37(3):267–281.

Agarwal, R., Tiwari, M., and Mukherjee, S. (2007). Artificial immune system
based approach for solving resource constraint project scheduling problem. In-
ternational Journal of Advanced Manufacturing Technology, 34:584–593.

Alcaraz, J. and Maroto, C. (2001). A robust genetic algorithm for resource alloca-
tion in project scheduling. Annals of Operations Research, 102:83–109.

Alcaraz, J., Maroto, C., and Ruiz, R. (2003). Solving the multi-mode resource-
constrained project scheduling problem with genetic algorithms. Journal of the
Operational Research Society, 54:614–626.

Allahverdi, A., Ng, C., Cheng, T., and Kovalyov, M. (2008). A survey of sched-
uling problems with setup times or costs. European Journal of Operational
Research, 187:985–1032.

Alvarez-Valdes, R. and Tamarit, J. (1989). Heuristic algorithms for resource-
constrained project scheduling: A review and emperical analysis. In Slowinski,
R. and Weglarz, J., editors, Advances in Project Scheduling. Elsevier, Amster-
dam.

Amor, J. and Teplitz, C. (1998). An efficient approximation procedure for project
composite learning curves. Project Management Journal, 29:28–42.

Anderson, E. and Ferris, M. (1994). Genetic algorithm for combinatorial optimi-
sation: The assembly line balancing problem. ORSA Journal on Computing,
6:161–173.

Ash, R. and Smith-Daniels, D. E. (1999). The effects of learning, forgetting, and
relearning on decision rule performance in multiproject scheduling. Decision
Sciences, 30:47–82.

150 REFERENCES

Balachandran, B. and Zoltners, A. (1981). An interactive audit-staff scheduling
decision support system. The Accounting Review, 56:801–812.

Ballestin, F., Valls, V., and Quintanilla, S. (2008). Pre-emption in resource-
constrained project scheduling. European Journal of Operational Research,
189:1136–1152.

Ballestin, F., Valls, V., and Quintanilla, S. (2009). Scheduling projectswith limited
number of preemptions. Computers and Operations Research, 36:2913–2925.

Barrios, A., Ballestin, F., and Valls, V. (2009). A double genetic algorithm for the
mrcpsp/max. doi:10.1016/j.cor.2009.09.019.

Bedworth, D. and Bailey, J. (1982). Integrated Production Control Systems - Man-
agement, Analysis, Design. Wiley, New York.

Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects.
European Journal of Operational Research, 188:315–329.

Blazewicz, J., Lenstra, J., and Rinnooy Kan, A. (1983). Scheduling subject to
resource constraints: Classification and complexity. Discrete Applied Mathe-
matics, 5:11–24.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–
308.

Bochenski, B. (1993). Implementing Production-Quality Client/server Systems.
John Wiley & Sons, Inc.

Boctor, F. (1993). Heuristics for scheduling projects with resource restrictions and
several resource-duration modes. International Journal of Production Research,
31:2547–2558.

Boctor, F. (1996). A new and efficient heuristic for scheduling projects with re-
source restrictions and multiple execution modes. European Journal of Opera-
tional Research, 90:349–361.

Bouleimen, K. and Lecocq, H. (2003). A new efficient simulated annealing algo-
rithm for the resource-constrained project scheduling problem and its multiple
mode version. European Journal of Operational Research, 149:268–281.

Brazel, Y. (1972). The rate of technical progress: The indianapolis 500. Journal
of Economic Theory, 4:72–81.

REFERENCES 151

Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E. (1999). Resource-
constrained project scheduling: notation, classification, models, and methods.
European Journal of Operational Research, 112:3–41.

Brucker, P. and Schumacher, D. (1999). A new tabu search procedure for an audit-
scheduling problem. Journal of Scheduling, 2(4):157–173.

Buddhakulsomsiri, J. and Kim, D. (2006). Properties of multi-mode resource-
constrained project scheduling problems with resource vacations and activity
splitting. European Journal of Operational Research, 175:279–295.

Buddhakulsomsiri, J. and Kim, D. (2007). Priority rule-based heuristic for multi-
mode resource-constrained project scheduling problems with resource vacations
and activity splitting. European Journal of Operational Research, 178:374–390.

Chan, K. and Dodin, B. (1986). A decision support system for audit-staff schedul-
ing with precedence constraints and due dates. The Accounting Review, 61:726–
734.

Coello, C. C., Rivera, D., and Cortes, N. (2003). Use of an artificial immune
system for job shop scheduling. Lecture Notes in Computer Science, 2787:1–
10.

Cooper, D. (1976). Heuristics for Scheduling Resource-constrained Projects: An
Experimental Investigation. Management Science, 22:1186–1194.

Damay, J., Quilliot, A., and Sanlaville, E. (2007). Linear programming based
algorithms for preemptive and non-preemptive rcpsp. European Journal of Op-
erational Research, 182:1012–1022.

De Castro, L. and Timmis, J. (2002). Artificial immune systems: a novel paradigm
for pattern recognition. In Alonso, L., Corchado, J., and Fyfe, C., editors, Arti-
ficial Neural Networks in Pattern Recognition. University of Paisley.

De Reyck, B., Demeulemeester, E., and Herroelen, W. (1998). Local search meth-
ods for the discrete time/resource trade-off problem in project networks. Naval
Research Logistics, 45:553–578.

Debels, D., De Reyck, B., Leus, R., and Vanhoucke, M. (2006). A hybrid scat-
ter search/electromagnetism meta-heuristic for project scheduling. European
Journal of Operational Research, 169:638–653.

Debels, D. and Vanhoucke, M. (2005). A bi-population based genetic algorithm
for the RCPSP. Lecture Notes in Computer Science, 3483:378–387.

Debels, D. and Vanhoucke, M. (2006). Pre-emptive resource-constrained project
scheduling with setup times. Technical report, Ghent University.

152 REFERENCES

Debels, D. and Vanhoucke, M. (2007). A decomposition-based genetic algorithm
for the resource-constrained project scheduling problem. Operations Research,
55:457–469.

Demeulemeester, E., De Reyck, B., and Herroelen, W. (2000). Discrete time/re-
source trade-off problem in project networks: A branch-and-bounded approach.
IIE Transactions, 32:1059–1069.

Demeulemeester, E. and Herroelen, W. (1996). An efficient optimal solution
for the preemptive resource-constrained project scheduling problem. European
Journal of Operational Research, 90:334–348.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). A random net-
work generator for activity-on-the-node networks. Journal of Scheduling, 6:13–
34.

Dodin, B. and Chan, H. (1991). Application of production scheduling methods
to external and internal audit scheduling. European Journal of Operational
Research, 52:267–279.

Dodin, B. and Elimam, A. (1997). Audit scheduling with overlapping activities
and sequence-dependent setup costs. European Journal of Operational Re-
search, 97:22–33.

Dodin, B., Elimam, A., and Rolland, E. (1998). Tabu search in audit scheduling.
European Journal of Operational Research, 106:373–392.

Drexl, A. (1991). Scheduling of project networks by job assignment. Management
Science, 37(12):1590–1602.

Drexl, A., Frahm, J., and Salewski, F. (2006). Audit-staff scheduling by column
generation. In Morlock, M., Schwindt, C., Trautmann, N., and Zimmermann,
J., editors, Perspectives on Operations Research. Gabler Edition Wissenschaft.

Drexl, A. and Grünewald, J. (1993). Nonpreemptive multi-mode resource-
constrained project scheduling. IIE Transactions, 25:74–81.

Engin, O. and Döyen, A. (2004). A new approach to solve hybrid flow shop
scheduling problems by artificial immune system. Future Generation Computer
Systems, 20:1083–1095.

Geem, Z., Kim, J., and Loganathan, G. (2001). A new heuristic optimization
algorithm: Harmony search. Simulation, 76:60–68.

Glover, F. and Kochenberger, G. A. (2003). Handbook of Metaheuristics. Kluwer
Academic Publishers.

REFERENCES 153

Glover, F., Laguna, M., and Marti, R. (2000). Fundamentals of scatter search and
path relinking. Control and Cybernetics, 29:653–684.

Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., and Denk, M. (2008).
Competence-driven project portfolio selection, scheduling and staff assignment.
Central European Journal of Operations Research, 16(3):281–306.

Hanakawa, N., Morisaki, S., and Matsumoto, K.-I. (1998). A learning curve based
simulation model for software development. In 20th International Conference
on Software Engineering (ICSE’98).

Hans, E., Herroelen, W., Leus, R., and Wullink, G. (2007). A hierarchical approach
to multi-project planning under uncertainty. Omega The International Journal
of Management Science, 35:563–577.

Hart, E., Ross, P., and Nelson, J. (1998). Producing robust schedules via an artifi-
cial immune system. In Proceedings of the ICEC ’98.

Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algo-
rithm. Annals of Operations Research, 102:111–135.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling
under resource constraints. Naval Research Logistics, 49:433–448.

Hartmann, S. and Drexl, A. (1998). Project scheduling with multiple modes: A
comparison of exact algorithms. Networks, 32:283–297.

Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem. European
Journal of Operational Research, 127:394–407.

Hartmann, S. and Sprecher, A. (1996). A note on ”hierarchical models for multi-
project planning and scheduling”. European Journal of Operational Research,
94:377–383.

Heimerl, C. and Kolisch, R. (2009). Scheduling and staffing multiple projects with
a multi-skilled workforce. Accepted for publication in OR Spectrum.

Hendriks, M., Voeten, B., and Kroep, L. (1999). Human resource allocation in a
multi-project research and development environment. International Journal of
Project Management, 17:181–188.

Herroelen, W. and De Reyck, B. (1999). Phase transitions in project scheduling.
Journal of the Operational Research Society, 50:148–156.

Hillier, F. S. and Lieberman, G. J. (2005). Introduction to Operations Research.
McGraw-Hill: Boston (MA).

154 REFERENCES

Holland, J. (1975). Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor.

Homberger, J. (2007). A multi-agent system for the decentralized resource-
constrained multi-project scheduling problem. International Transactions in
Operational Research, 14(6):565–589.

Janiak, A. and Rudek, R. (2007). The learning effect: Getting to the core of the
problem. Information Processing Letters, 103:183–187.

Jarboui, B., Damak, N., Siarry, P., and Rebai, A. (2008). A combinatorial par-
ticle swarm optimization for solving multi-mode resource-constrained project
scheduling problems. Applied Mathematics and Computation, 195:299–308.

Józefowska, J., Mika, M., Rózycki, R., Waligóra, G., and Weglarz, J. (2001). Sim-
ulated annealing for multi-mode resource-constrained project scheduling. An-
nals of Operations Research, 102:137–155.

Józefowska, J. and Weglarz, J. (2006). Perspectives in Modern Project Scheduling.
Springer.

Kaplan, L. (1988). Resource-constrained project scheduling with preemption of
jobs. PhD thesis, University of Michigan.

Kaplan, L. (1991). Resource-constrained project scheduling with setup
times. Technical report, Department of Management, University of Tenessee,
Knoxville.

Kelley, J. (1963). The critical-path method: Resources planning and scheduling.
Prentice-Hall, New Jersey.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings
of the IEEE Conference on Neural Networks.

Knotts, G., Dror, M., and Hartman, B. (2000). Agent-Based Project Scheduling.
IIE Transactions, 32(5):387–401.

Kolisch, R. (1995). Project scheduling under resource constraints – Efficient
heuristics for several problem classes. PhD thesis, Physica, Heidelberg.

Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project
scheduling problem. Journal of Operations Management, 14:179–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation. European Journal of Operational
Research, 90:320–333.

REFERENCES 155

Kolisch, R. (1999). Resource allocation capabilities of commercial project man-
agement software packages. Interfaces, 29:19–31.

Kolisch, R. and Drexl, A. (1997). Local search for nonpreemptive multi-mode
resource-constrained project scheduling. IIE Transactions, 29:987–999.

Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms for solving the
resource-constrained project scheduling problem: Classification and compu-
tational analysis. In Weglarz, J., editor, Project scheduling: Recent models,
algorithms and applications. Kluwer Academic Publishers.

Kolisch, R. and Hartmann, S. (2006). Experimental investigation of heuristics
for resource-constrained project scheduling: An update. European Journal of
Operational Research, 174:23–37.

Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation
of a general class of resource-constrained project scheduling problems. Man-
agement Science, 41:1693–1703.

Krüger, D. and Scholl, A. (2009). A heuristic solution framework for the resource
constrained (multi-)project scheduling problem with sequence-dependent trans-
fer times. European Journal of Operational Research, 197(2):492–508.

Krüger, D. and Scholl, A. (2010). Managing and modelling general resource trans-
fers in (multi-)project scheduling. OR Spectrum, 32(2):369–394.

Li, K. and Willis, R. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research,
56:370–379.

Lova, A., Tormos, P., and Barber, F. (2006). Multi-Mode Resource Constrained
Project Scheduling: Scheduling Schemes, Priority Rules and Mode Selection
Rules. Inteligencia Artificial, 30:69–86.

Lova, A., Tormos, P., Cervantes, M., and Barber, F. (2009). An efficient hybrid
genetic algorithm for scheduling projects with resource constraints and multiple
execution modes. International Journal of Production Economics, 117:302–
316.

Marti, R., Laguna, M., and Glover, F. (2006). Principles of Scatter Search. Euro-
pean Journal of Operational Research, 169:359–372.

Mastor, A. (1970). An experimental and comparative evaluation of production line
balancing techniques. Management Science, 16:728–746.

156 REFERENCES

Metropolis, N., Rosembluth, A., Rosenbluth, M., and Teller, A. (1953). Equation
of state calculations by fast computing machines. Journal of Chemical Physics,
21:1087–1092.

Mori, M. and Tseng, C. (1997). A genetic algorithm for the multi-mode resource
constrained project scheduling problem. European Journal of Operational Re-
search, 100:134–141.

Nembhard, D. and Uzumeri, M. (2000). An individual-based description of learn-
ing within an organization. IEEE Transactions on Engineering Management,
47(3):370 – 378.

Nonobe, K. and Ibaraki, T. (2002). Formulation and tabu search algorithm for the
resource constrained project scheduling problem. In Ribeiro, C. and Hansen, P.,
editors, Essays and Surveys in Metaheuristics. Kluwer Academic Publishers.

Osman, I. (1995). An introduction to meta-heuristics. In Lawrence, M. and Wils-
don, C., editors, Operational Research Tutorial Papers. Operational Research
Society Press.

Osman, I. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of
Operations Research, 63:513–623.

Özdamar, L. (1999). A genetic algorithm approach to a general category project
scheduling problem. IEEE Transactions on Systems, Management and Cyber-
netics, 29:44–59.

Özdamar, L. and Ulusoy, G. (1994). A local constraint based analysis approach
to project scheduling under general resource constraints. European Journal of
Operational Research, 79:287–298.

Pascoe, T. (1966). Allocation of resources - CPM. Revue Française de Recherche
Opérationnelle, 38:31–38.

Patterson, J. (1976). Project scheduling: The effects of problem structure on
heuristic scheduling. Naval Research Logistics, 23:95–123.

Patterson, J., Slowinski, R., Talbot, F., and Weglarz, J. (1989). An algorithm for
a general class of precedence and resource constrained scheduling problem. In
Slowinsky, R. and Weglarz, J., editors, Advances in Project Scheduling. Else-
vier, Amsterdam.

Pinol, H. and Beasley, J. (2006). Scatter Search and Bionomic Algorithms for
the Aircraft Landing Problem. European Journal of Operational Research,
171:439–462.

REFERENCES 157

PMBOK (2004). A Guide to the Project Management Body of Knowledge, Third
Edition. Newtown Square, Pa.: Project Management Institute, Inc.

Potts, C. and Kovalyov, M. (2000). Scheduling with batching: A review. European
Journal of Operational Research, 120:228–249.

Ranjbar, M., De Reyck, B., and Kianfar, F. (2009). A hybrid scatter-search for
the discrete time/resource trade-off problem in project scheduling. European
Journal of Operational Research, 193:35–48.

Ranjbar, M. and Kianfar, F. (2007). Solving the discrete time/resource trade-
off problem with genetic algorithms. Applied Mathematics and Computation,
191:451–456.

Sahal, D. (1979). A theory of progress functions. AIIE Transactions, 11(1):23–29.

Salewski, F., Schirmer, A., and Drexl, A. (1997). Project scheduling under re-
source and mode identity constraints: Model, complexity, methods and applica-
tions. European Journal of Operational research, 102:88–110.

Sels, V. and Vanhoucke, M. (2009). A genetic algorithm for the single machine
maximum lateness problem. Technical report, Faculty of Economics and Busi-
ness Administration, Ghent University.

Shtub, A., LeBlanc, L., and Cai, Z. (1996). Scheduling programs with repetitive
projects: A comparison of a simulated annealing, a genetic and a pair-wise swap
algorithm. European Journal of Operational Research, 88:124–138.

Slack, N., Chambers, S., Johnston, R., and Betts, A. (2009). Operations and
process management. Prentice-Hall, Inc: NJ.

Slowinski, R. (1980). Two approaches to problems of resource allocation among
project activities - a comparative study. Journal of Operational Research Soci-
ety, 8:711–723.

Slowinski, R., Soniewicki, B., and Weglarz, J. (1994). DSS for multi-objective
project scheduling subject to multiple-category resource constraints. European
Journal of Operational Research, 79:220–229.

Speranza, M. and Vercellis, C. (1993). Hierarchical models for multi-project plan-
ning and scheduling. European Journal of Operational Research, 64:312–325.

Sprecher, A. (1994). Resource-constrained project scheduling: Exact methods for
the multi-mode case. Lecture Notes in Economics and Mathematical Systems,
Springer, Berlin.

158 REFERENCES

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at
modest memory requirements. Management Science, 46:710–723.

Sprecher, A. and Drexl, A. (1998). Multi-mode resource-constrained project
scheduling with a simple, general and powerful sequencing algorithm. Euro-
pean Journal of Operational Research, 107:431–450.

Sprecher, A., Hartmann, S., and Drexl, A. (1997). An exact algorithm for project
scheduling with multiple modes. OR Sprektrum, 19:195–203.

Stinson, J., Davis, E., and Khumawala, B. (1978). Multiple Resource-Constrained
Scheduling Using Branch-and-Bound. IIE Transactions, 10:252–259.

Talbot, F. (1982). Resource-constrained project scheduling problem with time-
resource trade-offs: The nonpreemptive case. Management Science, 28:1197–
1210.

Tavares (1990). A multi-stage non-deterministic model for project scheduling un-
der resource constraints. European Journal of Operational Research, 49:92–
101.

Tormos, P. and Lova, A. (2001). A competitive heuristic solution technique
for resource-constrained project scheduling. Annals of Operations Research,
102:65–81.

Tseng, L.-Y. and Chen, S.-C. (2009). Two-phase genetic local search algorithm for
the multimode resource-constrained project scheduling problem. IEEE Trans-
actions on Evolutionary Computation, 13:848–857.

Upton, D. M. and Kim, B. (1998). Alternative methods of learning and process
improvement in manufacturing. Journal of Operations Management, 16:1–20.

Valls, V., Ballestin, F., and Quintanilla, S. (2005). Justification and RCPSP: A
technique that pays. European Journal of Operational Research, 165 (2):375–
386.

Valls, V., Ballestin, F., and Quintanilla, S. (2008). A hybrid genetic algorithm
for the resource constrained project scheduling problem. European Journal of
Operational Research, 185(2):495–508.

Valls, V., Laguna, M., Lino, P., Prez, A., and Quintanilla, S. (1999). Project
scheduling with stochastic activity interruptions. In Weglarz, J., editor, Project
Scheduling: Recent Models, Algorithms and Applications. Kluwer Academic
Publisher.

REFERENCES 159

Van Peteghem, V. and Vanhoucke, M. (2010). A genetic algorithm for the pre-
emptive and non-preemptive multi-mode resource-constrained project schedul-
ing problems. European Journal of Operational Research, 201:409–418.

Vanhoucke, M. (2008). Setup times and fast tracking in resource-constrained
project scheduling. Computers and Industrial Engineering, 54:1062–1070.

Vanhoucke, M. (2010). Measuring Time - Improving Project Performance using
Earned Value Management. International Series in Operations Research and
Management Science. Springer.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. (2008). An
evaluation of the adequacy of project network generators with systematically
sampled networks. European Journal of Operational Research, 187:511–524.

Vanhoucke, M. and Debels, D. (2008). The impact of various activity assump-
tions on the lead-time and resource utilization of resource-constrained projects.
Computers and Industrial Engineering, 54:140–154.

Vanhoucke, M. and Maenhout, B. (2009). On the characterization and genera-
tion of nurse scheduling problem instances. European Journal of Operational
Research, 196:457–467.

Wright, T. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical
Science, 3:122–128.

Wu, M. and Sun, S. (2006). A project scheduling and staff assignment model
considering learning effect. International Journal of Advanced Manufacturing
and Technology, 28:1190–1195.

Zhang, H., Tam, C., and Li. (2006). Multi-mode project scheduling based on parti-
cle swarm optimization. Computer-Aided Civil and Infrastructure Engineering,
21:93–103.

Zhu, G., Bard, J., and Tu, G. (2006). A Branch-and-Cut Procedure for the Multi-
mode Resource-Constrained Project-Scheduling Problem. Journal on Comput-
ing, 18(3):377–390.

