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hebben tot de voltooiing van dit werk. 

Ik wil hierbij beginnen een welgemeend woord van dank te richten aan het adres van mijn 

promotor. Johan, the godfather van de LMI, six years ago, you made me an offer I couldn’t 

refuse. Nooit zal ik vergeten hoe je me toen als jonkie in de wetenschap perfect klaarstoomde 

voor mijn optreden in de IWT-arena. Maar ook tijdens mijn doctoraat heb je in de talloze 

vergaderingen en discussies mijn wetenschappelijke kennis continu bijgeschaafd. Ook het 

lezen en kritisch verbeteren van mijn manuscripten en mijn thesis wist ik ook altijd enorm te 
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 4 

1.1 Anatomy and histology of the human respiratory system 

 

The respiratory system is the anatomical system of an organism that introduces respiratory 

gases to the interior and performs gas exchange between the external environment and the 

organism’s circulatory system. In humans and mammals, the respiratory system consists of 

two major compartments; the upper and the lower respiratory tract. The upper respiratory tract 

refers to the part of the respiratory system lying outside of the thorax and consists of the oral 

and nasal cavity, the pharynx and the larynx. The components of the lower respiratory tract, 

all surrounded by the thorax, include the trachea, the primary bronchi and the lungs. The 

human lung is a multilobular organ, with the left lung being divided into two lobes and the 

right into three lobes. The lung connective tissue exhibits high levels of elastin in order to 

resume its shape after stretching or contracting during inhalation and exhalation respectively. 

The lungs in turn comprise the secondary and tertiary bronchi, the bronchioles, and the 

alveoli. The alveolar sacs form the termination point of the respiratory tract. In this alveolar 

region, molecules of oxygen and carbon dioxide are passively exchanged by diffusion 

between the external environment and the blood of the organism. A typical pair of human 

lungs contains 700 million alveoli, providing a total surface of about 100m2. The alveolar 

cavity is surrounded by an epithelial cell layer, embedded in an extracellular matrix and 

wrapped in a fine mesh of capillaries. The alveolar epithelial barrier consists of two major 

epithelial cell types. More than 95% of the alveolar surface area is covered by type I 

(squamous) alveolar epithelial cells (AECs). This cell population forms the structure of the 

alveolar cell wall and is responsible for the gas exchange function. Type II (cuboidal) AECs 

are typically found at the alveolar-septal junction and are responsible for the production and 

secretion of pulmonary surfactant. Pulmonary surfactant represents a mixture of proteins and 

phospholipids (mostly dipalmitoylphosphatidylcholine) that reduces the alveolar surface 

tension in order to increase compliance which allows the lung to inflate much more easily, 

thereby eliminating the work of breathing. The phospholipid components of the pulmonary 

surfactant are stored in lamellar bodies of the type II AECs and are released into the alveolar 

lumen from the infant’s first breath on. A schematic overview of the anatomy and histology of 

the human respiratory system is depicted in figure 1. 
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Figure 1: Schematic representation of the human respiratory system (adapted from www.bioedonline.org 
and 1). The human respiratory system consists of two major parts: the upper and the lower respiratory tract. 
Fresh oxygen-rich air enters the body through the oral and/or nasal cavity. Via pharynx, larynx, trachea, and 
primary bronchi, the inhaled air reaches the lungs. Inside the lungs, the bronchi are further branched into 
bronchioles. Finally, the bronchioles terminate in alveoli where oxygen from the inhaled air is exchanged for 
carbon dioxide from the surrounding blood capillaries. The alveolar wall consists of two major airway epithelial 
cell types. The type I (squamous) AECs, which cover more than 95% of the total alveolar surface, are 
responsible for the gas exchange. On the other hand, the type II (granular, cuboidal) AECs produce and secrete 
pulmonary surfactant. 
 

 

Structural differences between the human and mouse respiratory system 

Much of our current understanding of the normal functioning of the lung and mechanisms of 

lung disease comes from studies utilizing animals. Mice are now widely employed in lung 

research because of certain advantages this species is thought to provide. However, there are 

several anatomical differences between the human and mouse respiratory system to consider 

when using mice as a research platform to study human pathology. Besides the obvious 

difference in size (the lung capacity of the mouse is approximately 1 ml, which is around 

6000 times smaller than that of a human), the anatomy of mouse and human lungs differs 

profoundly in the number of lung lobes as well. Mice have four right but a single left lung 

lobe while humans have three on the right and two on the left side. Furthermore, mice have a 

very rapid but monopodial airway branching into alveolar ducts with relatively few airway 

generations (13 – 17). In contrast, the human respiratory system displays a dichotomous 

branching of the airways which extends up to 23 generations before ending in alveolar 

structures. Compared to the human case, mouse alveoli are relatively small and show a rather 

thin blood-gas barrier. Together, these differences result in an altered penetration range of 

inhaled particles, which can influence the outcome of the airway response because of the 

different cell types that encounter the particles. An important functional difference between 

http://www.bioedonline.org/
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mouse and human lungs is the paucity of submucosal glands and the high numbers of Clara 

cells. The significance of all the anatomical differences between mouse and human lungs are 

still unknown although it has been speculated that the mouse lung structure contributes to the 

high baseline airway resistance observed in these animals. This suggests that inflammatory 

processes that could compromise lung function in larger animals like humans, might have 

little effect in mice 2. 

 

 

1.2 Respiratory diseases: one name, many faces 

 

Respiratory diseases are a common and important cause of illness and death around the world. 

Common cold is probably the most widespread illness known, with each year more than 62 

million reported cases in the U.S.A. (http://www.niaid.nih.gov). Respiratory diseases can be 

classified in many different ways, such as by the organ or tissue involved, by the type and 

pattern of associated symptoms, or by the aetiology of the disease. According to the 

topological classification, respiratory diseases are divided into two major categories: upper 

and lower respiratory tract diseases. Upper respiratory tract diseases are usually of infectious 

or allergic nature and often induce rhinitis (inflammation of the nasal mucosa), sinusitis 

(inflammation of the nares and paranasal sinuses) and laryngitis (inflammation of the larynx). 

Lower respiratory tract diseases are generally considered as more serious than upper 

respiratory tract diseases and always affect the lungs. During the acute phase of the disease, 

pulmonary inflammation is often the main symptom. However, during the chronic phase of 

the pathology, pulmonary inflammation may be accompanied by lung tissue destruction or 

remodelling and airway hyperreactivity (AHR), both features leading to respiratory problems 

which can acquire life-threatening proportions. 

 

Pulmonary inflammatory responses: overview and classification 

The air is filled with a variety of (pathogenic) microorganisms, possible allergens, harmful 

gases and noxious particles. The lungs are exposed to this melting pot of potential danger 

signals each time we breathe and therefore require a robust and sophisticated immune defence 

system. A failure to tightly control immune responses to pathogens or foreign particles can 

result in chronic inflammation and tissue destruction due to an excessive and deleterious 

response. Depending on the type of inflammatory stimulus, pulmonary diseases and 

http://www.niaid.nih.gov/
http://en.wikipedia.org/wiki/Etiology
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inflammations are roughly divided into two categories: infectious and non-infectious 

inflammatory diseases. Pulmonary infectious inflammatory diseases are the leading cause of 

deaths among all infectious diseases and accounted in 2008 for 3.46 million deaths worldwide 

(6.1% of all deaths) (www.who.int). Pulmonary inflammatory conditions of infectious origin 

are generally referred to as pneumonia and depending on the nature of the infectious agents, 

bacterial, viral, fungal and parasitic pneumonia are distinguished. Bacterial pneumonia is the 

most common cause of community-acquired pneumonia with Streptococcus pneumoniae 

isolated in nearly 50% of the cases 3. Other bacterial pathogens, including Haemophilus 

influenza (20%), Chlamydophila pneumoniae (13%), and Mycoplasma pneumoniae (3%) are 

frequently isolated as well 4. Bacteria typically enter the lungs with inhalation. However, 

bacteria can also reach the lung through the bloodstream if other parts of the body are 

infected. Often, they live in parts of the upper respiratory tract and are continuously being 

inhaled into the alveoli. Once inside the alveoli, bacteria trigger an inflammatory immune 

response via the initial activation of local resident immune cells, including resident alveolar 

macrophages and AECs. In the acute, innate immune response, neutrophils and monocytes are 

recruited to the lungs in order to engulf and kill the offending bacterial organism. In the 

adaptive phase of the immune response, T-helper (Th)1- and Th17-cells are the major local 

effector T-cells. Especially in the case of intracellular bacterial infections like Mycobacterium 

tuberculosis, an additional supportive cytotoxic CD8+ T-cell response is present. Main 

cytokines associated with bacterial infections are interleukine (IL)-12 and interferon (IFN)-γ. 

Humoral B-cell responses lead to the production and systemic presence of immunoglobulin 

(Ig)G1 and IgG3 isotypes. 

In adults, viral pneumonia accounts for approximately one third of the pneumonia cases. 

Commonly implicated viral agents include rhinoviruses, coronaviruses 5, influenza virus, and 

respiratory syncytial virus (RSV) 6. Typically, viruses will reach the lungs by travelling in 

droplets through the mouth and nose during inhalation. In the alveolar lumen, the virus 

invades the cells lining the alveoli. This invasion often leads to cell death either through direct 

killing by the virus or by self-destruction through apoptosis. Pulmonary invasion of viruses 

leads to the rapid recruitment of natural killer (NK)-cells to the lungs. NK-cells recognize the 

virus-infected cells and induce apoptosis in these cells in order to eliminate the intracellular 

virus. A cytotoxic CD8+ T-cell response, often accompanied by a Th1-cell response, is 

elicited to establish further clearance of the virus from the lungs. The typical key regulator 

http://en.wikipedia.org/wiki/Infectious_disease#Mortality_from_infectious_diseases
http://www.who.int/
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cytokine found during pulmonary viral infections is IFN-γ. Again mainly IgG1 and IgG3 are 

found in the serum of patients suffering of viral pneumonia.  

Finally, fungal and parasitic pneumonia are two rare types of pneumonia and generally occur 

in immunecompromised patients like HIV-patients or patients receiving immunosuppressive 

drug therapy. Pulmonary infection with fungi elicits a monocytic and neutrophilic innate 

immune response in order to engulf and kill the pathogen. Fungal infections are associated 

with a predominant Th1- and Th17-cell response, accompanied by IFN-γ production and the 

systemic presence of IgG1 and IgG3 isotypes in the serum. Pulmonary parasitic infections 

induce a rapid recruitment of monocytes. Subsequently, a Th2-cell response is mounted which 

is typically accompanied by the recruitment of eosinophils and mast cells. Both cell 

populations release toxic molecules through degranulation of intracellular granules in order to 

kill the parasite. Th2-cell responses are associated with local IL-4 and IL-13 production and 

systemic IgG2 and IgE humoral B-cell responses. 

Pulmonary non-infectious inflammatory diseases arise from pulmonary exposure to 

environmental agents like chemical gases, ultrafine particulate matter or airborne allergens, 

and often require some levels of genetic predisposition. While the prevalence of pulmonary 

infectious diseases is still the highest in developing countries, pulmonary non-infectious 

diseases are most common in industrialized countries. This category of disease currently 

affects hundreds of millions of people worldwide and takes a serious bite out of the healthcare 

budget (www.who.int). The two worldwide leading pulmonary non-infectious inflammatory 

diseases are chronic obstructive pulmonary disease (COPD) and asthma. In these diseases, the 

inflammatory component generally fulfils a prominent role in the development of secondary 

symptoms. COPD is caused by noxious particles or gases, most commonly from tobacco 

smoke, which trigger inflammatory responses in the lung. The cellular composition of the 

COPD-associated inflammation consists of a mixture of monocytes, neutrophils, CD8+ T-cells 

and Th1- and Th17-cells. Hallmark cytokines found in the lungs of COPD patients are IFN-γ 

and IL-17. Also serum IgG is detected. Due to the persisting inflammatory condition, COPD 

patients eventually develop structural lung damage and remodelling which in turn result in 

chronic cough, wheezing and dyspnoea 7. 

Asthma actually represents a heterogeneous group of chronic pulmonary diseases with 

variable aetiologies, phenotypes and symptoms. In 80% of the cases, asthma is allergy-based 

and is characterized by the presence of a chronic pulmonary inflammation. Generally, two 

http://www.who.int/
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more or less opposite types of allergic pulmonary inflammation are observed. On the one 

hand, an eosinophilic Th2-cell response accompanied by the presence of the Th2-cell 

hallmark cytokines, IL-4 and IL-13 and the systemic presence of IgG2 and IgE isotypes. On 

the other hand, a neutrophilic Th1- and Th17-cell response can develop which is then 

accompanied by IFN-γ and IL-17 and the systemic titers of IgG1. In both cases, persistence of 

the pulmonary inflammation results in structural lung damage and remodelling, eventually 

leading to recurrent episodes of wheezing, dyspnoea and AHR 8. A more comprehensive and 

detailed discussion of the asthmatic pathology is described in chapter 3 of the thesis. A 

summary of the main features of the discussed respiratory inflammatory diseases is shown in 

table 1. 
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2.1 Origin and development 

 

Resident alveolar macrophages (rAM) are the most abundant cells in the alveolar spaces and 

conducting airways of healthy individuals and serve as important sentinels in the recognition 

of invading pathogens and apoptotic cells. Just like all other resident macrophage phenotypes 

throughout the body, rAM arise from blood circulating monocytes that populate tissues under 

steady-state conditions 1. The macrophage and dendritic cell precursor in the bone marrow 

gives rise to GR1lowCX3CR1highCCR2- and GR1highCX3CR1lowCCR2+ monocyte populations. 

The proposed model is that cells from the GR1lowCX3CR1highCCR2- monocyte subset are 

released from the bone marrow into the circulation. This monocyte phenotype responds to 

pro-inflammatory stimuli and migrates and differentiates into macrophages in the inflamed 

site. In the absence of inflammation, an unknown regulatory mechanism generates 

GR1lowCX3CR1highCCR2- monocytes that are postulated to enter the tissues and replenish the 

tissue-resident macrophage populations 2. The differentiation of GR1lowCX3CR1high CCR2- 

monocytes into rAM however, requires an obligate intermediate stage: the development of 

blood monocytes into parenchymal lung macrophages, which subsequently migrate to the 

alveolar space 3. This observation was supported by a comparative genetic profiling study 

which determined that rAM were phenotypically less related to the monocyte population in 

comparison to DCs or interstitial macrophages 4. By abolishing the dependency on the 

recruitment of blood precursors, the existence of local precursors as reservoir for rAM allows 

a tight control and prompt adjustment of their numbers. These differences also might correlate 

with the different functional patterns interstitial macrophages and rAM perform in the lung 

and reflect the specialization of individual macrophage populations within their 

microenvironment 5. Furthermore, Landsmann and Jung provided direct evidence for the 

ability of both interstitial macrophages and rAM to proliferate. Therefore self-renewal acts 

also as an important mechanism for replenishing the rAM pool 3. The primary cytokine 

governing the development and maturation of rAM during normal homeostasis is granulocyte 

macrophage-colony stimulating factor (GM-CSF). Although GM-CSF also promotes the 

monocytic and granulocytic progenitor cell growth, differentiation and activation 6, 7, GM-

CSF-/- and GM-CSF receptor-/- mice showed reduced rAM numbers and maturation and 

exhibited rAM dysfunction while the general hematopoiesis and myelopoiesis was not 

disturbed 8, 9. Thus, GM-CSF fulfils a nonredundant and critical role in the rAM development 

and pulmonary homeostasis.  
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In steady-state, replenishment of the rAM pool was found to be very slow with turnover rates 

of only up to 40% over a period of one year 10. However, upon the induction of a self-limiting 

lung inflammation in response to LPS or Streptococcus pneumoniae infection, rAM turnover 

was significantly accelerated with at least 50% of the rAM population being replaced by 

recruited macrophages one week post-challenge 10, 11. These findings suggest that exudate but 

not resident AM play an important role in re-establishing alveolar and lung homeostasis.  

 

 

2.2 Activation of (alveolar) macrophages 

 

Just like other resident macrophage phenotypes, rAM exhibit unique activation patterns upon 

exposure to cytokines and/or Toll-like receptor (TLR) agonists. At least 2 major functionally 

distinct activation statuses of macrophages have been extensively studied and these are the 

classical (M1) and alternatively (M2) activated macrophage activation status. M1 

macrophages are induced by pro-inflammatory molecules such as interferon-γ (IFN-γ) and 

lipopolysaccharide (LPS) and exhibit a crucial role in the elimination of various (intracellular) 

pathogens in both mice and humans. They possess antimicrobial, anti-proliferative and 

cytotoxic properties via the production of nitric oxide (NO) and the secretion of pro-

inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin (IL)-6 12. 

Prototypical T helper (Th)2-type mediators, such as IL-4 and IL-13, antagonize M1-

differentiation and are involved in the development of alternative activation of macrophages 
12. In M2-macrophages, inducible NO synthase (iNOS), catalyzing the production of NO and 

L-citrulline from L-arginine, is suppressed. Instead, M2-macrophages are characterized by an 

alternative metabolic pathway of arginine in which arginase converts L-arginine to L-

ornithine and urea 13. M2-macrophages were initially ascribed an anti-inflammatory function 

because of the secretion of anti-inflammatory cytokine such as transforming growth factor-β 

(TGF-β) and IL-10 12, and because of their contribution to wound healing 14 and angiogenesis 
15. At present however, M2-macrophages have also been identified as pro-inflammatory or 

malignant mediators in the development of a range of pathologies like parasitic infections, 

hypersensitivity, tumorigenesis and allergy, and their sequelae such as fibrosis 16. In addition 

to the classical M1- and M2-macrophage stimuli, also IL-10, TGF-β and immune-complexes 

are involved in skewing the macrophage activation program 17, 18, thus demonstrating the 

functional plasticity of these innate cells. rAM are considered alternatively activated, based 

upon their main biological attributes. These include high basal expression levels of alternative 
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markers like macrophage mannose receptors (MMR) 19, scavenger receptor A (SR-A) 20, 

macrophage-galactose type C-type lectins (MGLs)hhhh and the secretory lectin Ym 21 along 

with low basal phagocytic activity 22. 

 

 

2.3 The alveolar macrophage: The Good 

 

The function of the lung is to allow the uptake by the body of oxygen and the excretion of 

carbon dioxide. Gas exchange occurs in the lung alveoli, which are made up of a thin layer of 

type I alveolar epithelial cells (AECs) interlaced with more cuboidal type II AECs that 

produce surfactant and have self-renewal and differentiation potential. Lung capillaries are 

situated in close approximation to the type I cells, separated only by a 0.2 µm thick fused 

basement membrane, allowing the easy diffusion of gas. With its large surface area, the lung 

is highly exposed to environmental challenges and is a portal of entry for pathogens and 

particulate matter present in the air. Yet, the immune defence of this fragile barrier needs not 

only to be highly effective but also tightly controlled. Clearly, excessive inflammatory 

reactions damaging the alveolar-capillary wall entail the risk of compromising the gas 

exchange function of the lung and hence may endanger the survival of the individual. rAM 

are considered to be a key component in this fine-tuned balance between efficacy and 

inflammatory tissue damage. In this section, functional aspects of pathogen clearance and 

immune suppression by the rAM population, being the good cop for the host, are discussed. 

 

 

2.3.1 Eradication of respiratory bacterial infections 

Bacterial infections of the respiratory tract are one of the most common causes of human 

disease. As the resident phagocyte of the alveolar cavity, rAM are the first effectors of the 

innate response against bacteria that spread to the distal airways. Once in the alveolar lumen, 

microbes are readily engulfed by rAM. Being professional phagocytes rAM express a broad 

spectrum of receptors that participate in the bacterial recognition and internalization. 

However, since many common respiratory pathogenic bacteria are encapsulated by a 

polysaccharide layer, opsonisation of the bacteria by immunoglobulin (Ig), complement, and 

other pulmonary opsonins is important for efficient phagocytosis 23. Fcγ receptors (FcγRs) 

and FcαRs, which are abundantly expressed on the surface of AM, bind IgG- and IgA-
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opsonised bacteria via the Fc region of the IgG- and IgA-molecule respectively. Complement 

proteins can opsonise bacteria through antibody-dependent or antibody-independent 

mechanisms, and complement-opsonised bacteria are recognized and internalized via specific 

complement receptors (CR). Unlike other macrophages, rAM display CR3 as well as CR4. 

Both receptors recognize and bind complement protein iC3b. In addition, rAM have high 

basal expression of SR-A 20. This pattern recognition receptor (PRR) binds whole bacteria as 

well as the microbial cell wall components, lipoteichoic acid and LPS 24, 25. The expression of 

macrophage receptor with collagenous structure (MARCO), another member of the class A 

scavenger receptor family, is induced in rAM by exposure to bacterial components, such as 

LPS and binds to a variety of (non-opsonised) particles including Gram-positive and Gram-

negative bacteria 26.  

In addition to these generic opsonisation mechanisms, the alveolar cavity contains two 

compartment-specific opsonin systems; IgA and the pulmonary surfactant. The pulmonary 

surfactant consists of a complex of lipids and proteins lining the alveolar surface. Next to 

lowering the surface tension at the air-liquid interface in order to prevent alveolar collapse at 

the end of expiration, pulmonary surfactant proteins are an integral component of the lung’s 

innate immune system. Both in vitro and in vivo studies showed that SP-A and SP-D enhance 

the uptake of particles and bacterial pathogens by direct and indirect mechanisms. Previous 

research established the binding of SP-A to the lipid A moiety of LPS 27, to desaturated 

phosphatidyl glycerol 28, to the toxin MPN372 29, 30 on the surface of Mycoplasma 

pneumoniae and to the Apa and Eap adhesins on Mycobacterium tuberculosis 31 and 

Staphylococcus aureus 32. SP-D interacts with heptose in the inner core oligosaccharide and 

mannose in O-antigen carbohydrate chains of LPS 33, 34. Otherwise, SP-A and SP-D may 

indirectly enhance the phagocytosis of bacteria by upregulating the expression of cell-surface 

receptors that are involved in microbial recognition. For example, SP-A augments the uptake 

of Streptococcus pneumoniae 20 and S. aureus 32 by increasing the cell-surface expression of 

SR-A on rAM. Several receptors for the opsonising activities of SP-A and SP-D have been 

identified on the surface of rAM. These include the CD91 complex and the SP receptor 210. 

A host of studies in humans and animal models indicated that the interaction between SP and 

these SP receptors on the rAM is critical for the phagocytosis of respiratory bacterial 

pathogens like S. aureus 32, 35-37 and Mycobacterium sp. 38, 39.  
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IgA is the most abundantly produced immunoglobulin isotype in the body 40. The majority of 

IgA in the lung is secreted by plasma cells that are densely distributed at the mucosal 

subepithelium of the airway. These mucosal plasma cells originate mostly from homing IgA-

committed B-cells which undergo µ to α class switching at inductive sites of musosal 

immunity, like bronchoalveolar associated lymphoid tissue (BALT) 41. IgA-molecules 

neutralize inhaled bacteria by interfering with their motility or by inhibiting their adherence to 

the target cells 42. Subsequently, IgA-coated bacteria interact, through the Fc portion of IgA-

molecules, with IgA-specific Fc high affinity receptors, FcαR (CD89). FcαR is expressed on a 

variety of leukocyte populations, such as rAM, in association with the common FcR γ-chain 

homodimer 43. The FcR γ-chain is recognized as a signalling molecule which, upon cross-

linking of the FcαR, triggers several biological responses, including phagocytosis and killing 

of the IgA-opsonised bacterial pathogen 44. 

Bacterial internalization is accompanied by the induction of highly efficient antimicrobial 

mechanisms. As professional phagocytes, rAM produce NO and ROS, like superoxide ions 45. 

Oxygen radicals and NO are still considered as major players in the rAM’s microbial 

elimination process. In vivo models using mice lacking inducible NO synthase (iNOS), the 

main source of high-output NO generation in macrophages, demonstrated that rAM-derived 

NO delivers a crucial contribution to the anti-pneumococcal host defence 46. Also, in vivo 

treatment of mice with the NO inhibitor, L-NAME, impaired the host defence against 

Klebsiella pneumoniae 47. However, several studies also highlighted the existence of 

antimicrobial activity which is not dependent on NO and/or ROS generation. Thus, although 

NO has been shown to play an important role in the control of microbial proliferation such as 

in the case of M. tuberculosis, Scanga and co-workers found that NO production by itself is 

not sufficient to control this pathogen 48. Also in low-dose pneumococcal infection models, 

decreased expression of NO did not influence bacterial clearance. The same conclusions were 

true for mice with diminished ROS generation as a result of mutations in the NADPH oxidase 

complex 49. These observations indicate that rAM use overlapping antibacterial strategies. 

Indeed, in addition to these oxidative mechanisms of bactericidal activity, bacterial killing 

may also result from nutritive antibacterial mechanisms like tryptophan depletion or iron 

sequestration from the cellular compartment occupied by the bacteria 50. Recently, Houghton 

and co-workers provided the first evidence for a direct antimicrobial activity of the rAM-

derived matrix metalloproteinase (MMP)-12 in a mouse model of S. aureus. Intracellular 

stores of MMP-12 are mobilized to phagolysosomes after the ingestion of the bacterial 
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pathogens. Once inside the phagolysosomes, MMP-12 adheres to bacterial cell walls where it 

disrupts cellular membranes resulting in bacterial death 51. The presence of multiple 

redundant recognition and defence mechanisms renders the rAM highly effective in fighting 

bacterial pathogens simultaneously at different fronts, rendering the cell an important 

guardian of the lung’s immune integrity. 

As already mentioned, GM-CSF is a key cytokine in the development and functional 

maturation of the rAM. The critical role of pulmonary GM-CSF for the rAM’s antibacterial 

activity was extensively confirmed in several in vitro and in vivo studies. rAMs of GM-CSF-/- 

mice exhibit a decrease in uptake of both Gram-negative and Gram-positive bacteria due to a 

diminished capacity to exert complement- and antibody-mediated phagocytosis 52. 

Intracellular killing of both Gram-negative and Gram-positive bacteria was also reduced in 

rAMs of GM-CSF-/- mice. For example, GM-CSF-/- mice showed a significantly increased 

susceptibility to Streptococcal 53 and Pneumocystis carinii 54 induced pneumonia due to an 

impaired superoxide production by rAM. In addition, rAM from GM-CSF-/- mice showed a 

reduced expression of multiple PRRs, including TLR-4, TLR-2 and CD14, and consistent 

with that observation a failure to secrete TNF-α following exposure to LPS 52. These data 

demonstrate that pulmonary GM-CSF is crucial in establishing the antibacterial response of 

rAM directly by enhancing phagocytosis and intracellular killing but also indirectly by 

promoting the expression bacterial-associated PRRs. Overview of the main features of the 

early immune response of rAM to respiratory bacterial pathogens is depicted in figure 2.1. 

 

 

2.3.2 Eradication of respiratory viral infections 

Viral respiratory tract infections are considered as frequent infectious illnesses afflicting both 

adults and children. Viral respiratory tract infections result in a surprisingly diverse range of 

disease severity from the mild common cold to severe and life-threatening conditions. 

Evidence has emerged in recent years for rAM playing an important role in the first line of 

defence against respiratory viral pathogens. As is the case with bacterial pathogens, viruses 

contain conserved structural moieties which are essential for microbial survival and therefore 

ideal targets for opsonins and PRRs. Although most viral pathogens enter the cell through 

active, receptor mediated invasion mechanisms, opsonisation of virus particles for immediate 

uptake by phagocytes plays an important role in the innate immune defence against viruses. 

Mannose binding lectin (MBL) has been found to bind directly to virions from a number of 
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viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV). Binding of 

MBL to the virion blocks the cellular entry of the virus and functions as an opsonin promoting 

the viral uptake by rAM 55, 56. Just as in the case with respiratory bacterial pathogens, the 

pulmonary surfactant system is also able to opsonise virus particles. Both SP-A and SP-D 

show specific interactions with several viruses. The carbohydrate recognition domain of SP-D 

binds influenza virus through interactions with viral haemagglutinin (HA) protein and 

neuraminidase envelope glycoproteins whereas the interaction of SP-A with influenza virus 

proteins is mediated through a N-linked oligosaccharide on the carbohydrate recognition 

domain rather than carbohydrate-binding itself. Respiratory syncytial virus (RSV) is 

recognized by SP-D and SP-A by binding the G-protein and the F-fusion glycoprotein of RSV 

respectively 57. During the adaptive phase of the immune response, IgG- and IgA-mediated 

opsonisation and uptake by rAM constitutes an essential aspect of viral clearance in the 

airways. For example, binding of neutralizing IgG-molecules to HA-protein of Influenza A is 

followed by rAM-mediated uptake and delivers a crucial contribution to viral elimination 58. 

In addition, protection by the Influenza A virus vaccines based on the conserved ectodomain 

of matrix protein 2 (M2e) is mediated through an rAM and FcR dependent uptake of virally 

infected cells that have bound anti-M2e IgG to cell surface expressed M2e 59. Next to IgG, 

mucosal production of IgA is also crucial for the neutralization of respiratory viruses. Lung 

mucosal RSV specific IgA-molecules are found to be effective in the neutralization of RSV 

via the rAM-mediated uptake of IgA-coated viral particles 60. Furthermore, in a mouse model 

of influenza infection, pulmonary levels of neutralizing IgA antibodies were found to be 

correlated to reduced virus spread during influenza reinfection 61.  Also surface expressed 

PRRs, like TLR-4, have been shown to interact with different viral envelop glycoproteins, 

including the F-protein of RSV, while endosomal PRRs watch over the intracellular space by 

sensing for viral nucleic acids. Double-stranded (ds)RNA, contained in the genome of dsRNA 

viruses such as Influenza A, or present as a replicative intermediate, are recognized by TLR-3. 

Single-stranded (ss)RNA from ssRNA viruses like RSV, and DNA from DNA viruses such as 

human Bocavirus, are recognized by TLR-7 (in mouse) and TLR-8 (in humans), and TLR-9 

respectively. A second family of PRRs involved in the recognition of viral RNA by rAM is 

the RIG-I-like RNA helicase receptor (RLH) family. In contrast to the TLRs, RLH survey the 

cytoplasm of the cell for the presence of viral RNA 62. Once activated, these receptors trigger 

intracellular signalling cascades that culminate in the formation of highly effective antiviral 

defence mechanisms along with the induction of pulmonary inflammation. Throughout years 

it has become clear that pulmonary inflammation, in which rAM act as primary mediators, 
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fulfils a necessary role in the resolution of Influenza A 63 or RSV 64 infection. The initial 

inflammatory cytokine and chemokine production by rAM recruits different inflammatory 

leukocytes, including mononuclear phagocytes, to the site of viral infection. The recruited 

mononuclear phagocytes then contribute to the elimination of the virus through the induction 

of apoptosis of infected AECs via the release of TNF-related apoptosis-inducing ligand 

(TRAIL) 65. This initial antiviral reactivity of rAM is a major determinant for subsequent 

disease severity. Indeed, depletion of rAM in a mouse model for Influenza A viral infection 

resulted in increased TNF-α and IL-6 levels and increased inflammation in the lungs. The 

increased pulmonary inflammatory response was however accompanied by increased 

morbidity, mortality and uncontrolled viral growth in the lungs 66. Similar results were 

observed in mouse models for NDV 67 and RSV 68 infection in which depletion of rAM prior 

to viral exposure increased the pulmonary inflammation and virus yield. An elegant study 

performed by Tate and co-workers even provided evidence for rAM being the key modulator 

for disease severity during Influenza virus infection in mice. They showed that Influenza 

strain BJx109 (H3N2) infected rAM with high efficiency and was associated with mild 

disease following intranasal infection of mice. In contrast, Influenza strain PR8 (H1N1) was 

poor in its ability to infect rAM but was highly virulent for mice. In addition, depletion of 

rAM prior to infection lead to the development of severe viral pneumonia in BJx109 infected 

mice but did not modulate disease severity in PR8 infected mice 69. Thus, the ability or 

inability of a respiratory virus to infect rAM may be a critical factor contributing to its global 

virulence in mice. In contrast, Tumpey and co-workers reported decreased levels of 

inflammatory cytokines in Influenza A infected lungs after depletion of rAM. This decreased 

inflammatory response was correlated with an increased mortality and pulmonary viral load 
70. These opposing findings may be explained by the use of different virus strains, viral dose, 

and administration route. Further evidence that the inflammatory reactivity of rAM is strongly 

influenced by the viral species infecting the airways derives from observations in mouse 

models of RSV infection. In contrast to Influenza virus, RSV gives rise to alternatively 

activated rAM, resulting in limited inflammation and lung injury 71. Because of these 

conflicting data, the exact role of inflammation and more specifically, the role of rAM as 

initiators of pulmonary inflammation during respiratory viral infections remains an ongoing 

matter of debate. 

Type I IFNs are crucial mediators of the antiviral immune defence. The prototypic type I 

IFNs, IFN-α and IFN-β, are pleiotropic cytokines critical for antiviral responses by inducing 
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cellular resistance to viral infection, apoptosis of virus-infected cells and activation of natural 

killer (NK) cells and T-cells 72. In addition, these cytokines are potent activators of rAM’s 

innate antiviral immunity. Autocrine or paracrine IFN-α/β receptor (IFNAR)C engagement 

results in activation signal transducer and activator of transcription (STAT)-1 dependent 

production of antiviral proteins, such as 2’-5’ oligoadenylate synthetase (OAS)1 which is in 

charge of viral RNA degradation 73. Although various cells are reported to have the potential 

to produce type I IFNs when exposed to viruses in vitro, pulmonary production of type I IFNs 

was originally assigned to plasmacytoid (p)DCs, a rare subset of DCs 74. Yet, an important 

study using knock-in mice in which GFP was expressed under the control of the Ifna6 

promoter, demonstrated that during lung infection with Newcastle disease virus (NDV), rAM 

acted as the primary type I IFNs producers through an RLH-mediated mechanism 67. It is 

therefore suggested that type I IFNs produced by rAM activate surrounding cells in a 

paracrine manner to prepare for any viral encounter. In addition, several respiratory viruses, 

like RSV, inhibit type I IFN transcriptional activation in rAM by distinct mechanisms in order 

to impair the rAM-mediated antiviral response 75. This further highlights the importance of 

rAM-derived type I IFNs during the innate pulmonary antiviral response. Indeed, infection of 

rAM from calves with recombinant bovine RSV, lacking the non-structural (NS) proteins 

which counteract the antiviral effects of type I IFNs, strongly induced type I IFN production 

in rAM. This increase in type I IFN production by rAM was accompanied by a severely 

attenuated viral replication in these cells and in calves 76. 

Overview of the main features of the early immune response of rAM to respiratory bacterial 

pathogens is depicted in figure 2.1. 
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2.3.3 Regulation of immunological homeostasis in the lungs: rAM as the guardian angels 

of the lower respiratory tract.        

The lower respiratory tract is continuously invaded by pathogenic microorganisms and other 

airborne particulate matter. However, most of these particles are mutely sequestrated by rAM 

in order to shield the pulmonary environment from the development of exaggerated 

inflammatory responses. It has been estimated that the pool of rAM can handle up to 109 

intratracheally injected bacteria before there is ‘spillover’ of bacteria to DCs and before 

adaptive immunity is induced 77. In this context, Dockrell and colleagues demonstrated that 

depletion of rAM in a low-dose murine pneumococcal infection model shifted the outcome 

from resolution with complete bacterial clearance and absence of neutrophil recruitment, to 

one in which neutrophil recruitment is required for bacterial clearance 78. In contrast, in 

murine high-dose pneumococcal infection models rAM depletion had no impact on bacterial 

clearance, presumably because the ability of rAM to clear bacteria is overwhelmed 79.  

Several local and unique mechanisms have been identified that allow a specialized 

modulation of rAM function to meet the need of the tissue for a muted clearance of particulate 

matter. Under homeostatic conditions, rAM closely adhere to the AECs. This interaction 

promotes the expression of the TGF-β dependent αvβ6-integrin on the surface of AECs. The 

αvβ6-integrin has the potential to bind latent TGF-β and to activate the bound TGF-β in close 

proximity of the rAM by removing the latency associated peptide, a N-terminal inactivating 

fragment of TGF-β. Activated TGF-β binds to the TGF-β receptor on the surface of the rAM 

and induces the phosphorylation of Smad-2 and Smad-3. Smad-signalling eventually will lead 

to suppression of cytokine production by rAM 80. The importance of αvβ6-integrin for keeping 

the rAM quiescent under steady-state conditions is illustrated by the fact that αvβ6-integrin-/- 

mice have constitutively activated rAM which are responsible for spontaneously causing 

MMP-12 dependent emphysema 81. Besides TGF-β, also IL-10 produced by AECs induces 

anti-inflammatory signal transduction in the rAM 82. Yet, another novel homeostatic loop is 

mediated by the CD200 receptor (CD200R), which is almost exclusively expressed by 

myeloid cells, including macrophages and DCs 83, 84. Its ligand, CD200, on the contrary is 

expressed by a variety of cells including thymocytes, B cells, some peripheral T-cells, 

neurons in the central nervous systems and endothelium 85, 86. Binding of CD200 to CD200R 

imparts a unidirectional negative signal to CD200R bearing cells 83. The precise molecular 

mechanisms leading to CD200R mediated suppression is however still unknown. Unlike other 

tissue macrophages, rAM feature unusually high basal expression levels of CD200R. Under 
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steady-state conditions, respiratory CD200 ligand expression is limited to the luminal surfaces 

of the airway epithelium. In vitro studies showed that this interaction prevents the activation 

of rAM in the presence of inflammatory stimuli. Since low levels of CD200R on splenic 

macrophages have been shown to be increased by IL-10 and TGF-β, the pulmonary pool of 

these anti-inflammatory cytokines might contribute to the basal high expression of CD200R 

rAM 87. 

Yet, another immune attenuating characteristic of rAM is their markedly reduced IFN-β 

production in response to viral and bacterial PAMPs. Although rAM adequately produce the 

immediate/early gene products TNF-α, RANTES, MIP-1α and MIP-1β following TLR-3 or 

TLR-4 engagement to allow the initiation of inflammation, they fail to autonomously produce 

IFN-β. As a consequence, autocrine STAT-1 signalling is not induced, impairing the 

production of potential damaging effector molecules, like NO 88. Clearly, additional studies 

are needed to unravel the molecular mechanisms underlying this selective silencing of IFN-β 

production in rAM. 

Besides their role as bacterial opsonins, the surfactant proteins SP-A and SP-D fulfil 

important immunomodulatory functions in the lung as well. SP-A and SP-D suppress 

secretion of pro-inflammatory cytokines and reactive oxidant intermediates when rAM are 

challenged with pathogen-derived cell wall molecules or other immunostimulatory 

components. It was found that SP-A markedly diminished the pro-inflammatory TLR-2 and 

TLR-4 response in human rAM resulting in lower phosphorylation levels of Akt and 

downstream intermediates of the MAPK pathway and absence of nuclear factor (NF)-κB 

activation 89. This suppression may at least in part result from a direct binding of the 

surfactant proteins to the LPS receptor CD14, the TLR-4 adaptor MD-2 and TLR-2 90, 91. Also 

clathrin-dependent endocytosis of SP-A has been reported to block the ability of LPS to 

induce inflammation in rAM 92. Surfactant proteins also indirectly contribute to the overall 

anti-inflammatory environment of the bronchial lumen. SP-A promotes increased expression 

of the anti-inflammatory IL-10 by AECs and induces secretion of TGF-β 93. Thus, on the one 

hand surfactant proteins improve phagocytosis of airborne particulate matter by rAM and on 

the other hand alter the expression and function of PRRs and inflammatory mediators in order 

to dampen the rAM’s potential for rapid activation so that the antigenic threat is cleared 

‘silently’.  
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MUC1, a transmembrane mucin-like glycoprotein ubiquitously expressed on the apical 

surface of mucosal epithelial cells also contributes to the suppression of rAM inflammatory 

activity. Indeed, MUC1-/- mice exhibited increased inflammatory responses to Pseudomonas 

aeruginosa compared to their wild-type littermates due to an increased TLR-5 reactivity 

against the bacterial flagellin 94. Next to suppression of TLR-5, MUC1 was found to possess 

anti-inflammatory effects also on other TLR-signalling pathways, including TLR-2, 3, 4, 7 

and 9 95.  

Also CD44, a transmembrane adhesion molecule and the major receptor for hyaluronan, 

limits the responsiveness of murine rAM via the intracellular negative regulators IRAK-M, 

Tollip and A20 96.  

This plethora of negative regulators maintains rAM in a quiescent state during homeostasis. 

Once the antigenic challenge exceeds the threshold of immunological homeostasis, 

inflammatory (TLR-)stimulation of rAM leads to a rapid loss of contact with AECs, which in 

turn induces a rapid disappearance of αvβ6-integrin expression on AECs. Under these 

conditions, pre-TGF-β is no longer converted to its active form 80 and the IL-10 receptor – IL-

10 signal transduction axis is interrupted 82. Furthermore, the epithelial expression of CD200 

is reduced during the onset of an inflammatory response, setting the rAM free from inhibition 

via CD200R 97. These processes are responsible for releasing the ‘immunological brakes’ on 

rAM. Once activated, rAM generally display a higher oxidative burst and are primed to 

secrete pro-inflammatory cytokines and chemokines 98. 

Strikingly, the switch from an anti- to a pro-inflammatory function of the rAM is not 

necessarily accompanied by the acquisition of an immunogenic antigen presentation (APC) 

function by the cell. Although constitutive migration and pathogen transport to lung draining 

lymphnodes (LDLN) was recently demonstrated 99, rAM are considered as weak APCs due to 

low expression levels of MHC class II and co-stimulatory molecules. rAM may even exert 

immunosuppressive functions as suggested by studies using clodronate-filled liposomes to 

deplete rAM in vivo. In these studies, rAM depletion rendered the lungs susceptible to T-cell 

mediated inflammatory responses to otherwise harmless inhaled antigens 100. The immune 

suppressive effects of rAM were initially attributed to a direct suppression of T-cells by NO 

and the production of anti-inflammatory mediators such as IL-10, TGF-β and prostaglandins. 

At present, the weak APC function of rAM are mainly ascribed to defective expression of co-

stimulatory molecules along with increased expression of co-inhibitory ligands such as 
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programmed death ligand (PD-L)1 and PD-L2 101. In addition to suppression of T-cell 

activation, rAM actively inhibit the APC function of interdigitating DCs in the airways. 

Indeed, after rAM depletion, lung DCs exhibited enhanced APC function 102. rAM depletion 

also resulted in increased numbers of DCs in the alveolar lumen and augmented uptake of 

particles by DCs, leading to increased migration of the cells to the LDLN 103. These studies 

point to a role for rAM in the steady-state regulation of DC differentiation and migration. An 

overview of the pulmonary mechanisms pushing and releasing the brakes on rAM-activation 

is depicted in figure 2.2.  

 

 

Figure 2.2: Overview of the pulmonary mechanisms pushing and releasing the brakes on rAM-activation. 
In steady-state conditions (left panel) rAM closely adhere to the AECs, thereby inducing the expression of the 
αvβ6-integrin on AECs. This integrin activates TGF-β by removing the latency associated peptide (LAP). 
Activated TGF-β binds to the TGF-β receptor on the surface of the rAM, leading to suppression of cytokine 
production. AECs further restrain pro-inflammatory signalling in rAM through the CD200 – CD200R axis and 
MUC1. Alveolar IL-10, which binds to rAM’s IL-10R, hyaluronan fragments, binding to CD44 at the surface of 
rAM and SP-A and SP-D all inhibit pro-inflammatory signalling in rAM as well. TLR-molecules are present and 
functional but are overridden by the suppressive mechanisms. Therefore, rAM display a regulatory phenotype in 
steady-state conditions, suppressing the induction of adaptive immune responses by the expression of inhibitory 
co-stimulatory molecules like PDL-1 and PDL-2, and inhibiting DC-maturation and trafficking to the LDLN. 
When inflammatory stimuli (right panel), like TLR-ligands, exceed alveolar threshold levels, αvβ6-integrin, 
CD200 and MUC1 expression on AECs is rapidly lost. As a result rAM detach from AECs and escape from 
TGF-β and CD200 inhibition. Alveolar IL-10 levels drop sharply and hyaluronan fragments are rapidly degraded 
by inflammatory proteases as well. As a result, rAM display an inflammatory phenotype, characterized by the 
secretion of pro-inflammatory cytokines and the expression of MHC II and the activator co-stimulatory 
molecules CD80 and CD86. Furthermore, airway DCs become activated and migrate to the LDLN to induce an 
adaptive immune response. 
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2.3.4 Alveolar macrophages in the resolution of inflammation: cleaning up the mess!  

Elimination of apoptotic cells is an important step in the resolution of the inflammatory 

response and represents an evolutionary conserved process from C. elegans to man. An 

inflammatory challenge in the lung, exceeding the local immunological threshold, results in 

the recruitment of inflammatory leukocytes, which migrate across the endothelial and 

epithelial barriers into the alveolar airspace 104. These newly recruited granulocytes have 

however a limited lifespan, after which apoptosis ensues. Phagocytic removal of apoptotic 

granulocytes and other inflammatory leukocytes is crucial for preventing the exposure of the 

surrounding tissue to potentially toxic, immunogenic or inflammatory cellular debris 105, and 

is mainly carried out by rAM. During apoptosis a series of events culminates in the 

rearrangement of plasmamembrane components, including phosphatidylserine (PS). The 

exposed PS is recognized by several rAM receptors, including the PS receptor (PSR), and 

leads to the uptake of the apoptotic cell 106. Accordingly, rAM exhibiting an impaired PSR 

activity are defective in the removal of apoptotic cells from the lung, a feature also observed 

in the sputum of cystic fibrosis patients 107. Although the PS – PSR interaction is considered 

as the main axis for recognition and uptake of apoptotic cells by macrophages, the process of 

removing dead cells involves multiple other receptors such as scavenger receptors, CD14, 

CD68, CD36 and vitronectin receptor (αvβ3 integrin) 108 which are all expressed on the surface 

of rAM. Recent studies demonstrated the binding of IgM to oxidized phospholipids, like 

lysophosphatidylcholine, on late apoptotic cells 109. Consequently, IgM was identified as a 

novel opsonin for late apoptotic cells, thereby enhancing their uptake by rAM. This function 

may be especially significant during pulmonary inflammation when airway levels of IgM 

increase, thus facilitating the removal of apoptotic inflammatory cells by rAM 110. Surfactant 

proteins also contribute to clearance of apoptotic cells. Both SP-A and SP-D enhanced the 

uptake of apoptotic cells by rAM in vitro 111, but only SP-D enhanced apoptotic cell clearance 

by rAM in vivo. Thus, Clark and co-workers reported that SP-D-/- mice have five- to tenfold 

higher levels of apoptotic rAM in the alveolar spaces. Treatment of these mice with an 

intratracheally administered 60-kDa fragment of human recombinant SP-D reverted the 

phenotype of KO mice 112. Since SP-D and SP-A effectively bind DNA, binding of these 

collectins to cell-surface DNA represents at least one mechanism by which the surfactant 

proteins may promote phagocytosis of apoptotic cells by rAM 113.  

A consequence of apoptotic body uptake by a phagocyte is the launch of an anti-inflammatory 

program by the phagocyte. rAM phagocytosis of apoptotic cells indeed results in the release 
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of anti-inflammatory mediators, such as TGF-β, IL-10 and PGE2 114, as demonstrated for 

apoptotic cells opsonised with surfactant proteins 115 and IgM-coated apoptotic cells 110. In 

addition to promoting anti-inflammatory functions, phagocytosis of apoptotic cells actively 

suppresses pro-inflammatory cytokine production in macrophages in a direct and indirect 

manner. Clearly, IL-10, TGF-β and PGE2 inhibit the production of pro-inflammatory 

cytokines such as TNF-α, GM-CSF, IL-1β, IL-12 and IL-18 114. However, ingestion of 

apoptotic cells also initiates direct inhibition of pro-inflammatory cytokine transcription and 

translation. Kim and co-workers reported the inhibition of il12p35 gene transcription by 

apoptotic cells via a mechanism involving the induction of a novel zinc finger-containing 

nuclear factor, named GC binding protein (GC-BP), by apoptotic cells in macrophages. Upon 

contact with apoptotic cells, GC-BP undergoes dephosphorylation and subsequently binds to 

the promoter region of the il12p35 gene, thereby actively blocking its transcription 116. An 

overview of the main molecular players in the rAM-mediated uptake of apoptotic leukocytes 

is presented in figure 2.3. 
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Figure 2.3: Phagocytic uptake of apoptotic leukocytes by rAM. 
Apoptotic leukocytes show rearrangements of their plasmamembrane lipid components, resulting in the exposure 
of PS and ox-LDL to the extracellular space. PS and ox-LDL are recognized and bound by the rAM-expressed 
PSR and SR-A respectively. In addition, other oxidized phospholipids exposed to the extracellular space by 
apoptotic leukocytes are bound by IgM. The Fc portion of this antibody isotype in turn binds to the FcμR at the 
surface of rAM. The pulmonary opsonins SP-A and SP-D (probably) bind to DNA-fragments present at the cell 
surface of apoptotic leukocytes and are recognized by SPR-210 and CD91/calreticulin of rAM. Finally, iC3b was 
found to opsonise apoptotic leukocytes and binds to αvβ3-integrin expressed by rAM. Stimulation of these 
receptors results in phagocytosis of the apoptotic leukocyte and the induction of an anti-inflammatory signalling 
cascade in the rAM. This anti-inflammatory program includes the secretion of anti-inflammatory mediators such 
as IL-10, TGF-β and PGE2, and the direct inhibition of transcription of pro-inflammatory genes through 
activation (by dephosphorylation) of the NF-κB transcriptional repressor GC-BP.      
 

 

2.4 The Alveolar Macrophage: The Bad and the Ugly 

   

2.4.1 The alveolar macrophage in non-infectious respiratory pathologies: pulmonary 

criminal at large! 

Non-infectious respiratory diseases, like chronic obstructive pulmonary disease (COPD) and 

asthma, affect millions of people worldwide and are one of the leading causes of death. 

Harmful environmental factors, including particulate pollutants, gases or allergens often lie at 

the basis of disease onset. Although fully equipped for the efficient but quiescent elimination 
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of invading bacterial and viral pathogens, AM display an aberrant pathogenic reactivity 

during non-infectious pulmonary immune responses.  

 

COPD 

A respiratory pathology which deserves special attention in this perspective is COPD, a 

heterogeneous syndrome associated with abnormal immune responses of the lung to noxious 

particles and gases leading to lung emphysema and airway obstruction. Cigarette smoke is a 

common cause of COPD and activates pulmonary phagocytes by triggering PRRs directly or 

indirectly via the release of damage associated molecular patterns (DAMPs) from stressed or 

dying cells. Activated DCs induce inappropriate adaptive immune responses encompassing 

Th1- and Th17-cells, CD8+ cytotoxic T cells and B-cells 117. Although such inappropriate 

adaptive immune responses fulfil a critical role in the pathogenesis of COPD with cytotoxic 

CD8+ T-cell responses in the forefront, different studies in immunodeficient SCID-mice 

demonstrated that the innate immune system is sufficient to develop cigarette smoke induced 

inflammation 118 and emphysema 119. rAM play herein a pivotal role, contributing to several 

of the clinical features observed in COPD patients. Cigarette smoke exposure leads to 

engagement of PRRs on the surface of rAM. Different components of cigarette smoke, 

including endotoxin (LPS), nicotine and free radicals are responsible for triggering rAM 

PRRs. TLR-4, but also transient receptor potential (TPR)A1 and NOD-like receptor (NLR)P3 

are major actors in the inflammatory activation of rAM. DAMPs released by injured airway 

epithelial cells constitute an important additional source of PRR ligands. High-mobility group 

box (HMGB)1 120, uric acid and extracellular ATP 121 are significantly increased in 

bronchoalveolar lavage fluid of COPD patients compared to smokers without COPD. 

Activation of PRRs leads to increased expression of pro-inflammatory mediators by rAM, 

hereby contributing to the inflammatory component of the COPD pathophysiology. The best 

studied chemokine in COPD patients is IL-8, the major human neutrophil chemoattractant 

which is found to be significantly more secreted at baseline and after stimulation with IL-1β 

and cigarette smoke by AM from COPD patients compared to AM from non-COPD smokers 

and non smokers 122. This also emphasizes the crucial contribution of IL-1β to the onset and 

propagation of the pulmonary inflammation associated with COPD. Indeed, IL-1 receptor-/- 

mice showed attenuated pulmonary inflammation after acute exposure to cigarette smoke and 

were significantly protected against lung emphysema after chronic cigarette smoke exposure 

regimens 123. In addition to their amplifying role in COPD associated pulmonary 

inflammation, rAM from COPD patients are unresponsive to the anti-inflammatory activity of 
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corticosteroids. This unresponsiveness is the basis of the poor response of COPD patients to 

treatment with corticosteroids 122.  

rAM also directly contribute to COPD associated lung destruction and lung tissue 

remodelling. Besides elicited neutrophils, rAM are an important source of oxygen radicals 

and proteolytic enzymes such as MMP-8, MMP-9, and MMP-12, known to induce lung 

damage 124. In addition to their ability to break down the extracellular matrix, MMPs also 

stimulate mucus production and goblet cell hyperplasia via the proteolytic activation of TGF-

α. rAM derived TGF-α further contributes to mucus hypersecretion 125. Excessive mucus 

production combined with an impaired mucociliary clearance in turn provoke airway 

obstruction in patients with COPD 126.  

One of the major side effects leading to hospitalization of COPD patients, are secondary 

respiratory viral and/or bacterial infections. These secondary infections actively contribute to 

the pathogenesis and course of COPD by causing acute exacerbation of COPD and by 

amplifying and perpetuating chronic inflammation in stable COPD 127. Importantly, an 

impaired phagocytosis of bacteria by rAM in COPD plays an important role in chronic 

bacterial colonization and acute infectious COPD exacerbation. Indeed, different studies 

showed that AM from COPD patients exhibited decreased phagocytosis of bacteria such as 

Haemophilus influenzae 128 and Streptococcus pneumoniae 129 compared to AM from non-

COPD smokers and non-smokers. 

 

Allergic asthma 

Allergic asthma is a chronic inflammatory disease characterized by recurrent episodes of 

airway obstruction and wheezing after exposure to inhaled allergens. In addition to mast cells, 

eosinophils and allergen specific Th2-cells, also rAM have emerged as important actors in 

asthma pathogenesis and disease progression. Thus, whereas rAM fulfil a regulatory role at 

the onset of the asthmatic pulmonary inflammation 100, 102, 130, excessive activation of rAM at 

later stages of the pulmonary inflammation has an important impact on the progression of the 

disease. Analysis of AM from asthmatic patients identified these cells as significant sources 

of IL-13, one of the major key cytokines in asthma 131. The rAM also showed reduced 

phagocytosis of apoptotic cells 132. Both features are predominant characteristics of M2-

skewed cells. Moreira and co-workers further showed that rAM from Aspergillus fumigatus-

induced asthmatic mice expressed high levels of the M2-marker FIZZ1 when compared to 
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rAM from naïve mice 133. FIZZ1 has been shown to contribute to asthma and airway 

remodelling 133, 134. Thus, even though M2 macrophages are indispensable for tissue repair 

and the restoration of lung homeostasis, their excessive activation in asthma contributes to 

increased cell recruitment, mucus hypersecretion and airway hyperresponsiveness. This is 

further supported by the observation that the lungs of allergen sensitized and challenged mice 

increased the pulmonary inflammatory response and collagen deposition, a marker for airway 

remodeling 133. The enhanced M2-skewing of rAM in allergic asthma intuitively makes sense 

given the Th2-driven lung environment. However, not all is black and white in the asthmatic 

lung. Thus, an involvement of endotoxin in the initiation of asthma has been extensively 

documented as well 135, 136 and both endotoxin and IFN-γ levels were found to be significantly 

increased in asthmatics with severe forms of the disease. Endotoxin and IFN-γ are prototypic 

triggers of the differentiation of macrophages into M1 137. Furthermore, it has been suggested 

that the Th2-associated cytokines IL-4 and IL-13 increase the production of the M1-related 

cytokines IL-6, TNF-α, and IL-12p70 by macrophages after co-stimulation with M1-skewing 

factors like LPS 22. Thus determining the precise role of the M1-M2 (im)balance in asthma 

might determine to what extent rAM exert a regulatory or a pathogenic role in asthma. 

 

Fibrosis 

Pulmonary fibrosis evolves from a variety of lung diseases, including COPD, asthma and 

silicosis, and is characterized by the uncontrolled deposition of collagen and other matrix 

proteins eventually leading to lung remodelling and irreversible loss of function. Local tissue 

fibroblasts were believed to be the primary producers of extracellular matrix components. 

However, the induction and maintenance of a M2-phenotype in rAM is a characteristic feature 

of pulmonary fibrosis and points towards a role of M2-polarized rAM in the pathogenesis of 

fibrotic disorders. As already mentioned, induction of the arginase-1 metabolism in M2-

skewed rAM by IL-4 and IL-13 promotes collagen deposition and degradation 138. Next to a 

disproportionate collagen deposition, IL-13 stimulated rAM also form an abundant source of 

TGF-β, an important inducer of fibrosis 139. In a mouse model of bleomycin-induced fibrosis, 

rAM were found to produce nearly all of the active TGF-β that promotes pulmonary fibrosis 
140. In addition, rAM themselves secrete significant amounts of IL-13, thereby establishing a 

profibrotic positive feedback loop in the lungs. Finally, rAM are believed to be one of the key 

sources of a variety of CC-chemokines such as CCL2 141 or CCL3 142 which act as crucial 

profibrotic mediators. Neutralization of these cytokines significantly reduced the development 

of pulmonary fibrosis. 
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Hypersensitivity pneumonitis (HP) 

HP is an immune complex and cell-mediated immunological disorder disease of the lungs that 

is caused by the inhalation of antigenic organic particles or fumes. The pulmonary 

inflammatory response is characterized by the presence of mainly neutrophils, Th1- and 

Th17-cells, and CD8+ T-cells 143. rAM display also a preponderant role in the 

pathophysiology of HP. Following exposure to causal agents, soluble antigens bind to IgG-

molecules, triggering the complement cascade. The formation of the C5 fraction activates 

rAM which in turn release multiple inflammatory cytokines and chemokines like IL-8, 

RANTES, monocyte chemoattractant protein (MCP)-1 and MIP-1α, thereby contributing to 

the recruitment of other cells, such as neutrophils, T-cells and monocytes. Furthermore, MIP-

1α also promotes the differentiation of Th0-cells to a Th1-cell phenotype 101, 144. rAM are 

normally poor APCs, but this function is greatly increased in HP. Israel-Assayag and co-

workers demonstrated that, following contact with the antigen, rAM incorporated antigenic 

particles and presented antigen-derived peptides to T-lymphocytes, resulting in their 

activation and proliferation. In addition, elevated levels of the intracellular adhesion molecule 

(ICAM)-1 and the CD80 and CD86 co-stimulatory molecules on the surface of rAM from HP 

patients and mouse models of HP supports the role of rAM in T-lymphocyte activation in the 

pathophysiology of HP 101, 145, 146. HP is also characterized by the formation of granulomas, a 

firm collection of immune cells which is formed in an attempt to shield off foreign substances 

when the immune system is unable to eliminate these antigenic threats. Together with 

recruited monocytes and immature macrophages, rAM can develop into multinucleated giant 

cells which are grouped to form granulomas 147. The details of the cell biology of the 

transformation of macrophages into typical multinucleated giant cells that make up 

granulomas remain undefined. Next to the pulmonary inflammatory response and granuloma 

formation, rAM are also inducers of lung injury and remodelling during HP via the secretion 

of tissue degrading (e.g. MMPs) 101 and remodelling factors (e.g. TGF-β) 148. 

 

 

2.4.2 Pulmonary innate imprinting: teaching a good child bad manners 

Inflammatory responses are characterized as highly dynamic processes. Once local innate 

immune cells are activated by the inflammatory insult, cytokine and chemokine secretion 

results in different waves of leukocyte recruitment to the site of inflammation. After the 

elimination of the antigenic threat, inflammation is cleared and the tissue eventually strives to 
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regain steady-state conditions. However, research through years has revealed that authentic or 

initial steady-state conditions are never completely achieved. Therefore, the tissue response to 

subsequent inflammatory or infectious insults is imprinted and biased by its preceding 

inflammatory or infectious history even in the absence of cross-reactive immunity. For 

instance, infection of the lung in the absence of prior infection or inflammation will have a 

different outcome to same pathogen infecting a lung with resolved infection or inflammation. 

This alteration is not restricted to latent or concurrent infections or inflammations but can also 

be influenced by acute inflammatory lung diseases. In addition, clinical and experimental data 

suggest that influences from prior even unrelated pulmonary inflammatory insults may be 

long lasting 
149, 150

. Although memory functions and long lasting immunological effects were 

originally ascribed to the adaptive compartment of the immune system, recent research 

revealed that innate cells, including rAM, are involved in tissue imprinting processes as well. 

The outcome of innate imprinting is mostly unfavorable for the host and may depend on the 

precise sequence of inflammation or infections. This is illustrated by the increased 

susceptibility to life-threatening bacterial pneumonia in patients infected with seasonal or 

pandemic influenza infection 
151, 152

. The underlying mechanisms responsible for this 

enhanced susceptibility to secondary bacterial pneumonia after influenza infection have been 

studied extensively and different independent studies pointed out an important role for the 

rAM. Didierlaurent and colleagues reported a sustained desensitization of rAM to TLR-

ligands including LPS, lipoteichoic acid and flagellin, which lasts for several months after 

resolution of influenza infection 
153

. Although such desensitization might be beneficial in 

alleviating overall immunopathology, the TLR-hyporesponsiveness of post-influenza rAM 

was correlated with higher and prolonged respiratory bacterial loads 
153

. The first wave of 

pulmonary inflammation, accompanying the influenza infection is though to increase the 

rAM’s threshold TLR-responsiveness, thereby decreasing its global bacterial recognition. 

Post-influenza rAM displayed a decreased expression of phagocytosis receptors SR-A and 

MARCO 
154

 which is consequently accompanied by an impaired ability to engulf and kill 

bacteria 
155

. In addition, rAM showed an increase in expression of the lung immune 

homeostasis regulator CD200R after resolution of influenza viral infection which in turn 

contributes to the observed susceptibility state of the post-infection lung as well 
97

. This rAM 

“paralysis” in the post-infection lung might represent a side-effect of the mechanisms 

developed in the lung in order to prevent excessive inflammatory responses and bystander 

tissue damage and alveolar barrier dysfunction. Negative intracellular or intercellular 
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feedback loops are a common and characteristic feature for dampening inflammatory 

reactions and are highly pronounced in the lungs. After clearance of influenza viral infection, 

for instance, excessive pulmonary levels of the anti-inflammatory IL-10 are measured 
156

. 

In contrast to long-lived desensitization of rAM’s (antibacterial) functions after influenza 

infection, the opposite effect of a lasting and persistent (hyper)activation of rAM functions 

has been demonstrated too. In a mouse model of Sendai virus infection, activated rAM 

produced high levels of IL-13 and overexpressed the IL-13 receptor. This combination of 

events established a persistent positive feedback loop, resulting in a chronic lung condition 

with pathological features resembling asthma and COPD, including chronic mucus cell 

metaplasia and airway hyperreactivity 
157

.  

It is clear from the described examples that the concept of innate imprinting of rAM has been 

widely documented in mouse models for infectious respiratory diseases. Recently, persistent 

activation of dendritic cells was found after the resolution of an allergic airway inflammation. 

Moreover, this persistent DC activation resulted in an abolished tolerance for new 

encountered allergens 
158

. The extent to which innate imprinting also occurs in rAM following 

an allergic bronchial inflammation and the nature of its functional outcome remains however 

unknown. 

      

 

2.5 Concluding remarks 

 

The air we breathe is filled with a variety of (pathogenic) microorganisms, allergens, harmful 

gases and noxious particles. AM are the first line of defence of the lungs against this diversity 

of airborne pathogens and harmful substances. Therefore, AM must be able to mount an 

appropriate immune response adapted to the specific nature of the antigenic threat. Hereto, 

AM display an array of sensors allowing the recognition of bacterial and viral 

microorganisms, and promoting the phagocytic clearance of the microbial threat. In exerting 

this sterilization function, the lung environment and rAM are finely tuned to avoid an 

excessive inflammatory response when exposed to minor levels of inhaled particles. This 

way, bacterial, viral and other particulate matter is eliminated without compromising the 

alveolar gas exchange function. If levels of inhaled microorganisms or noxious particles do 

exceed threshold levels, rAM will mount an inflammatory response, enabling the recruitment 
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of additional phagocytes and immune defences with however an increased risk for inflicting 

tissue damage. Following the clearance of the antigenic threat, rAM then contribute to the 

resolution of inflammation by phagocytosis of apoptotic leukocytes. Besides this broad range 

of functions beneficial for the host, rAM also have a dark side. When the homeostatic 

capacity of AM is disrupted, the rAM-population becomes hyperreactive, contributing to the 

pathogenesis of chronic respiratory inflammation associated with diseases like asthma or 

COPD. Finally, rAM can be the victim of their own phagocytic capacity rendering the host 

vulnerable to obligate intracellular bacteria like M. tuberculosis. 

The regulation of rAM-function is therefore of extreme importance for preserving the lung 

function in an environment highly exposed to microbial and environmental threats. 

Unravelling the complex cellular and molecular interactions at the basis of this regulatory 

process is therefore of utmost importance for a full comprehension of pulmonary immunology 

in health and disease.       
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3.1 The asthma syndrome 

 

The 2011 definition of asthma by the WHO stated: “Asthma is a disease characterized by 

recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from 

person to person. In an individual, they may occur from hour to hour and day to day. This 

condition is due to inflammation of the air passages in the lungs and affects the sensitivity of 

the nerve endings in the airways so they become easily irritated. In an attack, the lining of the 

passages swell causing the airways to narrow and reducing the flow of air in and out of the 

lungs.” This definition adequately illustrates that in the last decades the perception of asthma 

as an uniform disease gradually evolved to a contemporary view of a heterogeneous disease 

made up of overlapping, yet separate symptoms and clinical expressions with probably 

different, but yet ill-defined, causes and natural histories. This heterogeneity is influenced by 

multiple factors including age, sex, socioeconomic status, ethnicity, and gene by environment 

interactions 1. Today, different asthma phenotypes are generally classified according to the 

frequency of symptoms, forced expiratory volume in one second (FEV1), and peak expiratory 

flow (PEF) rate, representing a person's maximum speed of expiration. An additional 

classification of asthma phenotypes is based on whether symptoms are elicited by allergens 

(atopic) or not (non-atopic or ‘intrinsic’). Non-allergic ‘intrinsic’ asthma generally includes 

infection- and exercise-induced asthma and occupational asthma. 

Respiratory tract infections caused by viruses 2, 3 or Chlamydophila species 4 have been 

epidemiologically associated with asthma and have been implicated in asthma pathogenesis. 

During childhood, respiratory viruses like respiratory syncytial virus (RSV) and rhinoviruses, 

are thought to be responsible for the inception of the asthmatic symptoms in high-risk 

children 2. Viral and bacterial infection-associated pathology can induce irreversible airway 

obstruction and airway hyperreactivity (AHR) resulting in the development of asthma 

symptoms at later stages of childhood. Aberrations in the innate immune response and 

epithelial barrier function that both facilitate viral replication might be at the origin of 

inadequate responses to viral or bacterial infections in children predestined to develop asthma. 

However, because nearly every child has been infected at least once with a respiratory virus 

or bacteria by the age of two years, additional factors must contribute to the development of 

‘infection-induced’ asthma.  

Sustained increased ventilation as a result of frequent heavy-duty training and competition, 

together with environmental factors like cold air and chlorine in pool water can cause 
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bronchoalveolar inflammation and AHR and are the probable causes of exercise-induced 

asthma. Although the triggering events of this asthma phenotype are well delineated, the 

underlying pathogenesis is poorly understood. It has been suggested that cold air induces 

vasoconstriction of the bronchial circulation and triggers several airway receptors, together 

leading to pulmonary oedema and airway narrowing. In addition, high respiratory ventilation 

rates of cold air during exercise lead to considerable loss of water from the lower airways. 

The resulting changes in osmolarity of the periciliary fluid lining the respiratory mucosal 

surface is thought to promote bronchoalveolar inflammation 5. However, it is noteworthy to 

mention that cold air is not a prerequisite for exercise-induced asthma since breathing hot dry 

air can result in severe exercise-induced asthma as well 6. 

Occupational asthma is a type of asthma associated with a particular work environment and 

is the most reported occupational respiratory disease. Generally, two types of occupational 

asthma are distinguished. First, atopic occupational asthma appears after acquiring immune 

sensitization to the causing agent and is therefore allergy based. Second, non-atopic 

occupational asthma occurs after exposure to high concentrations of irritants and is 

characterized by the absence of a preceding sensitization phase 7. Pulmonary contact with 

elevated levels of chemicals elicits massive bronchoalveolar inflammation which in turn 

results in bronchoconstriction and other macroscopic asthma symptoms. Next to genetic 

predisposition, it is obvious that the working conditions and the company’s prevention policy 

are important factors in the employee’s risk for developing occupational asthma. 

Finally, allergic asthma represents the most common asthma phenotype and is experienced 

by approximately 80% of the asthmatics. In addition, this type of asthma is often associated 

with atopy, the predisposition to develop hyperreactivity reactions and produce IgE in 

response to allergen. Since it constitutes the main focus of this thesis, this asthma phenotype 

is discussed in more detail in the subsequent paragraphs. 

 

 

3.2 Allergic asthma: caught by a wolf in sheep’s clothing 

 

3.2.1 Incidence and economical impact of allergic asthma 

Allergic asthma is one of the most frequent chronic diseases worldwide. It is estimated that 

150 million people around the world suffer from allergic asthma. Mortality has reached over 



 52 

180,000 cases annually and in Western Europe the incidence of asthma has at least doubled 

during the last ten years. In the United States, there were an estimated 20.3 million asthmatics 

in 2001; the number of asthmatics has leapt by over 60% since the early 1980s and deaths 

have doubled to 5,000 a year. Allergic asthma is still the leading cause of hospitalization 

among young children. Worldwide, the economic costs associated with allergic asthma are 

estimated to exceed those of TB and HIV/AIDS combined. In the United States, annual 

allergic asthma care costs (direct and indirect) exceed 6 billion US dollars 

(www.worldallergy.org). 

 

 

3.2.2 Pathophysiological features of allergic asthma: the allergic cascade 

Because of the ever-increasing prevalence of allergic diseases and more specific of allergic 

asthma during the last decades, much effort has been put into elucidating the underlying 

pathophysiological mechanisms. Extensive clinical and experimental research has provided us 

with valuable knowledge into the allergic cascade and its four temporal phases: allergen 

sensitization, early-phase effector reactions, late-phase effector reactions, and the chronic 

persistent phase. 

 

Allergen sensitization 

The mucosal surfaces lining the respiratory tract are constantly exposed to a variety of 

airborne harmless antigens. Depending on the characteristics and concentration of the antigen 

and the host’s genotype, clinical history and environment, immunological sensitization may 

occur and the otherwise harmless antigen suddenly becomes an allergen 8. Immature antigen-

presenting cells (APC), mostly pulmonary dendritic cells (DCs), sample the allergen in the 

airway lumen and become activated. Alternatively, allergens can enter the tissue through a 

disrupted epithelial barrier or, in the case of allergens with protease activity, can gain access 

to submucosal DCs by cleaving epithelial tight junctions. Activated DCs mature and migrate 

to the draining mediastinal lymph nodes, or to local bronchoalveolar lymphoid tissue (BALT). 

Here, the mature DCs present allergen-derived peptides to naïve T-cells via a MHC II 

dependent mechanism. The presence of early IL-4 skews the differentiation of naïve CD4+ T-

cells towards a Th2-cell phenotype. The source of early IL-4 in local or regional lymphoid 

tissue during the allergic sensitization remained unclear for a long time. Only recently, it was 

found that IL-4 could be produced by the naïve T-cell itself, upon Notch triggering, as a 

http://www.worldallergy.org/
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consequence of the expression of the Jagged-1 ligand by DCs 9. Additionally, a variety of 

other leukocytes, including basophils, mast cells, eosinophils and natural killer (NK)T- cells 

have been identified as potential IL-4 producers. Th2-cells induce Ig class-switch 

recombination in B-cells via secretion of IL-4 and IL-13, and the ligation of suitable co-

stimulatory molecules. Activated B-cells secrete allergen-specific IgE which enters the blood 

stream to become distributed systemically. This condition is referred to as atopy. After 

gaining access to the interstitial fluid, IgE molecules engage the high-affinity IgE receptor 

(FcεRI) on tissue resident mast cells, thereby sensitizing these cells to respond after re-

exposure to the allergen (figure 3.1). 

 

 

Figure 3.1: Sensitization to allergens in the airways 10 
 

 

Early-phase effector reactions 

When sensitized individuals are re-exposed to the allergen, a misplaced allergic inflammatory 

cascade is elicited. Early-phase effector reactions occur within a few minutes after pulmonary 

allergen re-exposure and mainly involve mediator release by mast cells. As already 

mentioned, in sensitized individuals, mast cells have allergen-specific IgE molecules bound to 

their FcεRI. Cross-linking of adjacent FcεRI molecules by bivalent or multivalent allergens 

results in the rapid engagement of intracellular signalling pathways, eventually leading to the 

secretion of a variety of biological mediators 11. Preformed biogenic amines (such as 

histamine), serglycin proteoglycans (such as heparin), serine proteases (such as tryptases) 12, 
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and various cytokines (like TNF-α) and growth factors are released in the external 

environment by the mast cell via degranulation of cytoplasmatic granules. Activated mast 

cells secrete de novo synthesised lipid mediators as well, derived from the catabolism of 

membrane-associated arachidonic acid into prostaglandins (PG) (particularly PGD2), 

leukotriene (LT)B4, and cysteinyl 13-LT (especially LTC4) 14. Together, these rapidly secreted 

mediators contribute to the acute symptoms associated with the early-phase effector reactions 

including bronchoconstriction, vasodilation, increased vascular permeability and mucus 

hypersecretion 15. Additionally, cytokine and chemokine production (mainly TNF-α and 

monocyte chemoattractant protein (MCP)-1 (CCL-2)) by activated mast cells promote the 

transition to late-phase effector reactions by inducing the recruitment of inflammatory 

leukocytes to the lungs 10, 16 (figure 3.2). 

 

Late-phase effector reactions 

Late-phase effector reactions typically develop two to six hours after initial allergen exposure 

and involve innate and adaptive leukocytes that have been recruited from the circulation by 

mast-cell derived cytokines and chemokines 10, 16. Once activated, recruited immune cells, 

mainly Th2-cells, become the main producers of inflammatory mediators and hereby elicit a 

new wave of inflammatory leukocyte recruitment to the lungs 17. Moreover, macrophages 

release elastases and matrix metalloproteinases (MMP) which degrade pulmonary matrix 

proteins like type III collagen. Eosinophil basic protein (EBP), released by degranulation of 

eosinophils, causes further damage to the epithelial barrier. Th2-cells are central orchestrators 

in this allergic airway inflammation through the secretion of a variety of key regulatory 

mediators, including IL-4, IL-5, IL-9, IL-13 and granulocyte-macrophage colony stimulating 

factor (GM-CSF) and the chemokines thymus and activation regulated chemokine (TARC) 

(CCL17) 18, eotaxin (CCL-11) and regulated upon activation, normal T-cell expressed, and 

secreted (RANTES) (CCL-5) 19. IL-5 and GM-CSF activate eosinophils and prolong 

eosinophil survival while IL-4, IL-13 and IL-9 cooperate in the induction of mucus 

hypersecretion and goblet cell hyperplasia 20. Pulmonary release of TARC recruits Th2-cells 

to lungs 21 while eotaxin is responsible for the attraction of eosinophils 22. The secretion of 

RANTES leads to the recruitment of both Th2-cells and eosinophils to the lungs 10. The 

activated status of Th2-cells in the lungs is maintained by local antigen presentation by DCs 23 

(figure 3.2). 

  



 55 

 

 
Figure 3.2: Early (upper panel) and late (lower panel) effector phase reactions of allergen induced airway 
inflammation 10. 
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Chronic stage of allergic asthma 

When allergen exposure is continuous or repetitive, the bronchial inflammation persists and 

innate and adaptive immune cells are found permanently in the lungs. Complex interactions 

are initiated between recruited and tissue-resident innate and adaptive immune cells, AECs, 

structural cells (fibroblasts and airway smooth muscle cells), blood vessels, lymphatic vessels 

and nerves. This persisted inflammatory reaction is associated with irreversible changes in 

lung structure and function. Changes in the epithelial barrier, an increased number of mucus 

producing goblet cells, increased cytokine and chemokine secretion as well as areas of 

epithelial injury and repair are characteristically observed in patients with chronic allergic 

asthma. Furthermore, substantial inflammation of the submucosa is present which promotes 

an increased deposition of extracellular matrix (such as fibronectin and type I, III and V 

collagen) and a thickening of the airway smooth muscle cell layer 24, 25. These interactions 

between the epithelial barrier and the underlying mesenchymal cells are referred to as the 

‘epithelial-mesenchymal unit’ (EMT) and this unit is thought to be the actual regulator of 

tissue remodelling during the chronic phase of allergic asthma 26. A continuous mutual 

positive feedback between the EMT and the bronchial inflammation promotes persistence of 

the disease (figure 3.3). Airway wall thickening due to fibroblast and goblet cell hyperplasia 

and excessive extracellular matrix deposition eventually causes a significant reduction of the 

airway luminal diameter, ranging from 10% to 30% of normal 27. 

In individuals with severe narrowing of the airway lumen and persistent bronchial 

inflammation, AHR and airway obstruction may additionally develop, which in turn cause 

breathlessness and wheezing. AHR is defined as an increased bronchoconstrictor response to 

a nonspecific stimulus 28 and is sometimes referred to as ‘twitchy’ airways. In asthma patients 

who exhibit AHR, nonspecific stimuli like air pollutants, dust, or cold air produce a marked 

exacerbation of asthmatic symptoms. Infection with common respiratory viruses such as 

rhinoviruses, influenza viruses and RSV induce severe asthmatic exacerbations as well 29. The 

precise mechanism that controls AHR is poorly understood. However, changes in epithelial 

cell function 29 and mast cell hyperactivation are thought to be involved 30, 31. The magnitude 

of AHR correlates with the level of airway inflammation but other factors including reduced 

airway diameter, increase in smooth muscle contractility, degree of epithelial injury, 

dysfunctional neuronal regulation, increase in microvascular permeability, and various 

leukotriene inflammatory mediators have been associated with AHR as well 20. In the most 
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severe cases of airway narrowing by airway remodelling, AHR-induced bronchoconstriction 

can have a fatal ending. 

 

 

Figure 3.3: Chronic stage of allergic asthma 10. 

 

 

3.2.3 New players in allergic asthma pathophysiology: asthma beyond Th2-cells 

The nomination of Th2-cells and eosinophils as main orchestrators of the pathophysiological 

features of allergic asthma constituted the central ‘allergic asthma dogma’ for years. 

However, asthma is a heterogeneous disease and the emphasis on a Th2-bias and eosinophilic 

bronchial inflammation fails to explain several clinical observations. During the last decade, a 

variety of new cell types and cytokines have been identified as critical contributors to the 

allergic asthma associated pathophysiology. Th1-cells have been observed in the respiratory 

tract of allergic asthmatics suffering from the ‘classical’ mild-to-moderate eosinophilic Th2-

mediated allergic asthma phenotype. However, mouse models revealed that Th1-cells alone 
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were not able to induce any of the characteristics of allergic asthma 32. On the contrary, a 

number of studies showed that IFN-γ producing Th1-cells inhibited the development of Th2-

induced eosinophilia, mucus production and AHR. Shifting the balance towards a Th1-

response therefore has long been considered as a potential therapeutic approach for allergic 

asthma treatment 33-35. Yet, other studies have shown that Th1-cells enhance pulmonary 

inflammatory responses and AHR 36, 37 through the recruitment and activation of Th2-cells in 

the absence of antigen. In addition, Th1-cells are involved in viral infection induced asthma 

exacerbation through the production of IFN-γ 38. These conflicting results may indicate that 

the timing of Th1-cell activation is crucial in determining the net outcome – attenuation 

versus exacerbation – of the asthmatic response in mild to moderate asthma.  

In severe asthma patients a neutrophilic Th1- and Th17-mediated bronchial inflammation is 

predominant. Although this phenotype of asthma is a less common clinical presentation of the 

disease, accounting for fewer than 10% of all asthma patients, it contributes to a 

disproportionate burden of healthcare and economical costs, morbidity and mortality 39. It has 

been suggested that as mild or moderate allergic asthma becomes more chronic and severe, 

the inflammatory phenotype changes from a Th2- towards a Th1- and Th17-type of 

inflammation 40. Yet, neutrophilic asthma is observed in a subset of patients with nonatopic, 

non-IgE dependent asthma as well 41, 42. In agreement with the Th1-biased neutrophilic nature 

of the inflammation, Th1-associated cytokines (IFN-γ, IL-12) and a variety of CXC-

chemokines are found in a mouse model of neutrophilic asthma 43. In recent years, Th17-cells 

have gained increasing attention as potential regulators of this neutrophilic inflammation in 

patients with severe and uncontrolled asthma. This CD4+ T-cell subset produces IL-17 which 

causes the release of neutrophil chemoattractant cytokines IL-8 and macrophage 

inflammatory protein (MIP)-2 from AECs 44. Increased expression of IL-17A and IL-17F 

subclasses was detected in the bronchial submucosa of patients with severe asthma 45, 46. 

Furthermore, it has been reported that increased AHR in response to methacholine positively 

correlates with IL-17A levels in the sputum of these patients 47 and that a polymorphism in 

IL-17F that results in a loss-of-function mutation is inversely related to asthma risk 48. 

Moreover, severe asthmatics, exhibiting a neutrophilic Th1- and Th17-mediated pulmonary 

inflammation, are characterized by unresponsiveness towards corticosteroid treatment. Th17-

cells are believed to be involved in the corticosteroid resistance of this subset of asthma 

patients through the secretion of IL-17 49.  
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Besides their potential role in severe neutrophilic asthma, Th17-cells may also play an 

important role in mild to moderate Th2-biased asthma. IL-17 promotes Th2-responses by 

synergizing with Th2-derived IL-4 and IL-13 50-52. In support of these findings, several 

studies suggest a pro-inflammatory role for the Th17-axis through the actions of IL-22 and 

IL-23. Besides IL-17, IL-22 is the other main cytokine produced by Th17-cells and performs 

similar functions as IL-17 53. Increased mRNA transcript and protein levels of IL-22 have 

been observed in a mouse model of eosinophilic asthma 54. IL-23, a member of the IL-12 

cytokine family, is produced by innate immune cells like DCs and macrophages, and is a 

potent inducer of Th17-differentiation. Transgenic mice that overexpressed IL-23 in the 

airways (CCSP-IL-23 mice) showed increased eosinophilia and Th2-cytokine levels whereas 

IL-23-/- mice showed reduced eosinophilia 55, 56.  

Recently, a novel subset of human memory CD4+ T-cells that produces both IL-17A and IL-4 

has been identified. This novel population of Th17/Th2-lymphocytes was more represented in 

the blood of patients with allergic asthma than in the blood of healthy donors 57. The existence 

of a subset of memory/effector CD4+ T-cells that co-expresses the main Th2- and Th17-

differentiation transcription factors, GATA-3 and RORγT, was recently reported in mice too. 

In particular, in a mouse model of allergic asthma, adoptive transfer of allergen-specific IL-

17-producing Th2-cells resulted in goblet cell hyperplasia, elevated mucin production and 

inflammatory leukocyte recruitment to the airways. In contrast, mice that received 

conventional Th2- or Th17-cells exhibited less airway infiltration of eosinophils or 

neutrophils respectively, and limited pathophysiological features 58. It is hypothesized that the 

Th17/Th2-lymphocyte subset originates from the activity of IL-4 on IL-4 receptor expressing 

Th17-cells and/or from the activity of IL-1β, IL-6 and IL-21 from innate and tissue cells on 

Th2-cells 57.  

Besides Th2-, Th17-, Th2/Th17- and Th1-cells, a fifth Th-subset, consisting of IL-9 

producing Th9-lymphocytes, has been identified as an additional participator in the allergic 

airway response. Studies in which IL-9 overexpressing transgenic mice 59 and IL-9-/- mice 60 

were used, already confirmed the involvement of this cytokine in the development of the 

allergic eosinophilic airway inflammation, airway remodelling and AHR. Initially, IL-9 

production during allergic airway eosinophilia was attributed to Th2-lymphocytes. 

Comparative analysis of different T-cell subsets for cytokine production identified however a 

novel Th-cell subset, distinct from the Th1-, Th2-, and Th17-subsets, as an important source 
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of IL-9 61, 62. Yet, the presence of this Th9-subset in the airways during allergic asthma 

remains to be demonstrated. Nevertheless, the existence of this novel Th-subset opens an 

exciting new area in the field of allergic asthma due to the important role of IL-9 in the 

development and maintenance of allergic airway inflammation and airway remodelling. 

The role of additional innate cytokines and cells in the generation of allergic pulmonary 

inflammation is summarized in textbox 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 61 

- IL-25, a member of the IL-17 cytokine family, is secreted by activated eosinophils, mast cells, 

basophils, and AECs in response to allergens such as ragweed 63. IL-25 may potentiate Th2-cell airway 

inflammation and can induce AHR in the absence of Th2-cytokines. Thus, IL-25 is produced during the 

acute phase of the allergic pulmonary inflammatory response and subsequent IL-25 dependent 

pathology is generally mediated through downstream Th2-cytokines such as IL-4 and IL-13 64. 

- IL-33 is a member of the IL-1 cytokine family and many cellular sources during both the innate and 

adaptive immune components of allergic inflammation are suggested to release IL-33. Murine in vitro 

and in vivo studies reviewed in 64 demonstrated that this cytokine acts in the effector phase of the 

allergic pulmonary eosinophilic inflammation to augment Th2-cytokine production and inflammation 

via direct effects on both Th2-cells and innate effectors. In addition, IL-33 can generate AHR and 

goblet cell metaplasia in the absence of adaptive immunity, using pathways that bypass the requirement 

of Th2-lymphocytes 64. 

- Thymic stromal lymphopoietin (TSLP) is an IL-7 like cytokine mainly produced by AECs in 

response to allergens during both the innate and adaptive setting of the immune response. TSLP is 

thought to activate DCs in order to prime naïve CD4+ T-cells to release Th2-cytokines such as IL-4, IL-

5, and IL-13 65. TSLP can also directly enhance the Th2-mediated cytokine secretion 66 and can drive 

the proliferation of activated CD4+ T-cells 67. Mice with transgenic overexpression of TSLP in AECs 

displayed a spontaneous pulmonary eosinophilic inflammation with goblet cell metaplasia, perivascular 

fibrosis, and AHR. Conversely, TSLP receptor-/- mice were protected from antigen-induced pulmonary 

inflammation 68. Both studies highlight the role of TSLP as key initiator of the allergic pulmonary Th2-

response. 

- Natural killer (NK)T-cells form a heterogeneous group of cells that share properties of both T-cells 

(such as the presence of TCR) and NK-cells (such as the expression of the NK1.1 marker). Murine 

studies have demonstrated that NKT-cells, and more specific the NKT-cell derived cytokines, are 

elementary for the development of AHR and structural airway changes in allergic asthma since NKT-

deficient mice exhibited diminished AHR 69. Thus, whereas NKT-cells have previously been viewed as 

cells amplifying established allergic airway inflammation, these innate cells are actually able to initiate 

pulmonary innate and adaptive host immune responses against allergens as well. 

- γδ T-cells represent a small subset of T-cells that possess a TCR composed of a γ- and δ-chain. 

Different studies in humans demonstrated the presence of Th2-type cytokine secreting γδ T-cells in the 

airways of asthma patients 70, 71. Also in mice, this T-cell subtype was found to contribute to allergic 

airway inflammation 72 and the development of AHR 73. More recently however, it was shown that 

different subsets of γδ T-cells can have a different influence on the development of airway 

inflammation, Th2-cytokine secretion and AHR. For instance, Vγ1+ γδ T-cells enhance AHR while 

Vγ4+ γδ T-cells suppress AHR 74, 75. Therefore, the overall role γδ T-cells in the development of asthma 

pathogenesis remains uncertain and needs to be further elucidated. 
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- Nuocytes or natural helper cells were recently identified as lineage (lymphocyte, macrophage, DC, 

basophil, eosinophil, mast cell and NK-cell) negative and ICOS positive innate lymphoid cells which 

express both the IL-25 receptor (IL-17RB) and the IL-33 receptor (T1/ST2) 76. It was recently 

demonstrated that, upon stimulation by IL-25 or IL-33, these cells represent the major innate source of 

pulmonary IL-13 during lung allergy in mice 77. Moreover, nuocyte-derived IL-13 plays a crucial role in 

the development of subsequent airway eosinophilia and AHR 77. Therefore, nuocytes are considered as 

important new players in the field of allergic asthma research. 

- Basophils are mature circulating granulocytes recruited to peripheral tissues in the setting of allergic 

inflammation and regained interest for their role in allergic eosinophilic asthma. Through recent 

research, it became clear that basophils are actually critical checkpoints in the development of Th2-

immunity. First, basophils deliver a crucial contribution of IL-4 and TSLP during the onset of the 

allergen-induced airway Th2-response 78. Second, basophils can also participate in the production of all 

subgroups of antigen-specific Ig-molecules 79. Therefore, the biology of this small granulocyte 

population forms a revisited field of interest for acquiring new insights in the eosinophilic allergic 

asthma pathology. 

Textbox 1: Novel innate cytokines and cells in the generation of allergic pulmonary inflammation. 

 

 

3.2.4 Endogenous induced tolerance and immune regulation in allergic asthma 

Non-asthmatic individuals develop tolerance to allergens that protects against allergic asthma, 

as manifested by a lack of clinical symptoms in these individuals. Initially, investigators 

attributed the lack of symptoms in non-allergic individuals to the absence of allergen-specific 

immune responses. However, this theory is outdated and the precise mechanisms of tolerance 

are still poorly understood although our understanding has evolved extensively over the past 

several years. 

 

Hygiene hypothesis and gene-environment interactions 

A wide variety of epidemiological observations regarding the effect of environmental factors 

on the development of allergic asthma have provided important insights into the protective 

immunity that occurs in non-asthmatic individuals. While the prevalence of allergic asthma 

dramatically increased over the past two decades, exposure to certain environmental 

infectious diseases decreased. This observation suggests that certain infections may lower the 

risk of developing allergic asthma, presumably by enhancing protective tolerogenic immunity 

against allergens. These observations form the basis for the ‘hygiene hypothesis’, which 

suggests that improved hygiene in western societies, together with improved public health 
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measures and the use of vaccines and antibiotics has reduced the incidence of infections that 

normally would stimulate the immune system 80. Additional data that support the hygiene 

hypothesis include observations that children from large families (having older siblings), 

children placed in day-care settings in the first year of life (with presumed exposure to 

infectious agents) or exposure to farm animals in early life all have a reduced risk in 

developing allergic asthma 81. Exposure to bacterial endotoxin in childhood may be critical 

for producing this protective effect. Bacterial and viral infections during childhood increase 

the ‘immunological threshold’ of an individual and may expand the Th1-lymphocyte arsenal, 

which in turn can counterbalance the induction of Th2-responses 82. More recently, it was 

demonstrated that early childhood exposure to antibiotics, which may alter the gastrointestinal 

flora, and exposure to intestinal endotoxin is associated with an increased incidence of 

allergic asthma 83. These data point out the crucial character of TLR-signalling by commensal 

bacteria under normal steady-state conditions in the maintenance of pulmonary epithelial cell 

homeostasis and the induction of immune tolerance. Moreover, these observations highlight 

the fundamental relationship between environmental immune stimulation and the 

development of allergic asthma.  

Next to the environment, the host’s genetic background delivers a significant contribution to 

the development of allergic asthma as well. Numerous studies have shown that allergic 

asthma has a familial nature. For instance, children of asthmatic patients are more likely to 

develop allergic asthma than those of parents without any history of atopy. Via association 

studies, positional cloning and genome-wide association experiments several genes or gene 

loci associated with allergic asthma have now been identified. Allergic asthma susceptibility 

genes are classified into four main groups 8.  

- The first group consists of innate immunity and immunoregulatory genes, such as 

genes encoding PRRs (CD14, NOD1/2, and TLR-2, -4, -6 and -10), regulatory 

cytokines, TGF-β and IL-10, and transcription factors like STAT-3.  

- Asthma susceptibility genes that belong to the second group are associated with Th2-

cell differentiation and effector functions. These include genes encoding for GATA-

3, T-bet, STAT-6, IL-4, and IL-13.  

- Genes implicated in mucosal immunity and AEC biology are categorized in the 

third group. Especially genes involved in the structural integrity of the airway 

epithelial barrier are of major importance, since loss-of-function mutations can lead to 

a diminished epithelial barrier function which increases the permeability and 

subsequent sensitization for all kinds of allergens.  
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- Finally, the fourth group of allergic asthma susceptibility genes consists of genes 

linked to lung function and airway remodelling and comprises genes encoding for 

metalloproteinases, collagen types, and cytokine receptors in AECs and airway 

smooth muscle cells.  

Environmental factors, like air pollutants, tobacco smoke, and diet, are interacting with these 

allergic asthma susceptibility genes and such gene-environment interactions influence the net 

outcome of allergen encounters. Thus, it is increasingly clear that the complex triptych 

interplay between an individual’s personal history of life circumstances, genetic background 

and environmental factors ‘decides’ whether a particular individual develops an allergic 

asthmatic response or not to airborne allergens (figure 3.4). 
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Figure 3.4: Hygiene hypothesis and gene-environment interactions in the development of allergic asthma. 
The tilting of the balance towards tolerance or allergy is largely influenced by a combination of environmental 
factors to which the individual is exposed during life and the individuals’ genetic background. Adapted from 
Wills-Karp et al 84. 
 
 

Cellular and molecular mechanisms of endogenous tolerance to allergens 

Immunological studies in non-allergic individuals have demonstrated the presence of 

allergen-specific serum antibodies of the IgG4-, but not IgE-isotype. These data indicate that 

non-allergic individuals actually do respond to environmental allergen exposure and are not 
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ignorant for allergens. Thus, both allergic and non-allergic individuals respond to allergens, 

but with different forms of immunity (immune deviation) such that non-allergic individuals 

remain asymptomatic. Allergen tolerance involves multiple mechanisms but a large amount of 

clinical and experimental research indicated that regulatory T(reg)-cells fulfil a profound role 

in preventing Th2-responses to allergens. Today, several subtypes of Treg-cells have been 

described, including central, thymus-generated natural Treg-cells (nTreg) and peripheral, 

exogenous antigen-specific inducible Treg-cells (iTreg).  

In general, Treg-activity is elicited by so-called regulatory DC-subsets, present in mucosal 

milieus, including the airway mucosa. When airborne antigen is inhaled in the absence of pro-

inflammatory signals, it can be phagocytosed by myeloid (m)DC without promoting DC-

maturation. Subsequently, antigen-harbouring immature (or partially mature) airway mDCs 

will migrate to the lung-draining lymph nodes (LDLN) and can elicit a Treg-response. In this 

case, antigen-specific Treg-cells develop due to the absence of immunogenic co-stimulators, 

such as CD80, CD86 and CD40, and the secretion of suppressive mediators like IL-10 85.  

A central role in inducing Treg-responses is reserved for airway plasmacytoid (p)DCs. 

Specific depletion of this regulatory DC-subset in the airways resulted in the loss of inhalation 

tolerance and the development of features of severe asthma, even in the absence of an 

adjuvant. Conversely, tolerance was induced after intratracheal injection of cultured pDCs 86, 

87. Therefore a novel concept has been proposed in which the balance between immunogenic 

mDC- and tolerogenic pDC-mediated antigen uptake plays a pivotal role in regulating the 

decision between immunity and tolerance against allergens. pDCs elicit central and peripheral 

Treg-responses through an inducible co-stimulator (ICOS)-ICOS ligand interaction during 

antigen-presentation 88. Also, human rAM have been shown to actively induce Treg-cells 89. 

These findings suggest that rAM, which express very low levels of co-stimulatory molecules, 

may induce a form of tolerogenic T-cell responses in the lung similar to that induced by 

immature mDCs. In addition, it was recently shown that Foxp3+ Treg-cells, expressing 

membrane-bound TGF-β coupled to latency-associated peptide (LAP), induced Foxp3-

expression in naïve CD4+ T-cells which in turn acquired a suppressive phenotype. This 

alternative process of Treg-induction is referred to as ‘infectious tolerance’ 90. Figure 3.5 

gives an overview of central and peripheral Treg-cell development. 
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Figure 3.5: Development of Treg-subpopulations in lymph nodes and lungs in allergic and non-allergic 
individuals. 
In non-allergic individuals, antigen-loaded airway pDCs migrate to the LDLN and induce Treg-development 
through secretion of IL-10 and ICOSL-ICOS co-inhibitory interactions during antigen-presentation. 
Subsequently, the pool of iTregs is increased via so-called ‘infectious tolerance’. In this process, LAP-associated 
mTGF-β on iTregs induces Hes1 expression in naïve CD4+ T-cells. In turn, Hes1 stabilizes Foxp3-expression in 
these cells. The iTregs, together with nTregs, efficiently suppress effector Th2-cell development. In allergic 
individuals, antigen-loaded airway mDCs migrate to the LDLN and induce Th2-development through secretion 
of Th2-cytokines, such as IL-4, and co-stimulatory interactions during antigen-presentation. Although iTreg-
development is suppressed, IL-4 still promotes nTreg proliferation. The Th2-cells and nTregs traffic to the tissue 
in recall response to inhaled allergen. If priming occurs at a distant site (skin, spleen), IL-10-secreting Foxp3- 
and Foxp3+ iTregs are also recruited to the lung in response to allergen challenge to suppress effector T-cell 
functions. 
 

 

Two molecules that currently receive the most attention with respect to Treg-mediated 

suppression of allergic airway inflammation are TGF-β and IL-10. Membrane-bound TGF-β 

expressed by iTreg-cells can activate Notch-signalling in naïve CD4+ T-cells 91. Notch-

engagement induces the expression of its downstream target gene Hes1 (hairy and enhancer 

of split 1), a potent repressor of pro-inflammatory gene expression 92. In addition, Notch-

signalling in Tregs stabilizes and promotes Foxp3-expression, the key transcription factor in 

Treg-differentiation 93. Although Notch-activation has also been linked with effector Th-cell 

differentiation, it is likely that the strength of Notch-ligation and the duration of expression of 
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its target genes, such as Hes1, differs when T-cells are activated or suppressed 94. Tr1-cells 

form a subpopulation of iTreg-cells and are an important source of the immunosuppressive 

IL-10 cytokine. IL-10 induces T-cell anergy, probably via the inhibition of co-stimulation of 

T-cells 95. This cytokine has also effects on Ig-isotype switching in B-cells by promoting the 

secretion of the tolerogenic IgG4 and inhibiting the production of IgE 96. Recently, research 

identified IL-35 as a novel inhibitory cytokine that may be specifically produced by nTreg-

cells. IL-35 is required for maximal suppressive activity and its inhibitory activity is promoted 

by IL-10 97.  

With regard to other mechanisms that occur in Treg-mediated suppression, it was shown that 

activated nTreg-cells from humans and mice contain increased levels of granzyme A 98 and 

granzyme B 99 respectively. Moreover, it was demonstrated that human and mouse Treg-cells 

possess cytolytic activity and are capable to elicit granzyme/perforin mediated apoptosis in 

effector T- and B-cells 98, 100. Furthermore, several intriguing suppressive mechanisms have 

been described that collectively mediate ‘metabolic disruption’ of the effector T-cell target. 

First, Treg-cells are thought to induce cytokine deprivation-mediated apoptosis 101. Because 

of the constitutive expression of CD25, IL-2 is thought to be the key T-cell survival cytokine 

that is deprived by Treg-cells. However, IL-2 depletion by Treg is not sufficient to suppress 

effector T-lymphocytes 102. Second, adenosine nucleoside generation and release via the 

ectoenzymes CD39 and CD73 by Treg-cells suppresses effector T-cells through the activation 

of adenosine receptor 2A (A2AR) 103. Interestingly, binding of adenosine to A2AR appears not 

only to inhibit effector T-cells, but also to enhance the generation of iTreg by inhibiting IL-6 

expression and promoting TGF-β secretion 104. Third, Treg-cells were also shown to suppress 

effector T-cell function directly by transferring the potent inhibitory secondary messenger 

cyclic AMP (cAMP) into effector T-cells through membrane gap junctions 105.  

In addition to the direct effect of Treg-cells on T-cell function, Treg-cells may also modulate 

the maturation and/or function of innate cells. A recent study showed that Treg-expressed 

OX40, via ligation of OX40L, inhibits mast cell degranulation 106. Furthermore, Treg-

expressed cytotoxic T-lymphocyte antigen (CTLA)-4 107 and lymphocyte activation gene 

(LAG-3) 108 was found to mediate immune suppression of lung DCs through negative 

signalling via co-stimulatory molecules, like CD80/CD86, and MHC class II molecules 

respectively.  

A schematic overview of Treg-cell mediated suppression is depicted in figure 3.6. 
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Figure 3.6: Basic mechanisms used by Treg-cells.   
a) Inhibitory cytokine (IL-10, IL-35 and TGF-β) mediated suppression. b) Treg-induced cytolysis includes 
granzyme-A (humans) and granzyme-B (mice) dependent and perforin dependent killing mechanisms. c) Treg-
mediated metabolic deprivation includes high-affinity CD25 (also known as IL-2 receptor )-dependent cytokine 
deprivation-mediated apoptosis, cAMP-mediated inhibition, and CD39- and/or CD73-generated, A2AR-mediated 
immunosuppression. d) Targeting DCs includes mechanisms that modulate DC-maturation and/or -function such 
as LAG3 (CD223) – MHCII-mediated suppression of DC-maturation, and CTLA-4 – CD80/CD86-mediated 
induction of IDO-secretion by DCs. 
 

 

3.2.5 Animal models of allergic asthma: opportunities and pitfalls 

Studies in animals have made crucial contributions to our current understanding of the 

pathophysiology of allergic asthma. Rodents (rats and mice) are the most commonly used 

species to model allergic asthma because they are relatively cost-effective and a wide range of 

tools are available to perform detailed mechanistic studies. The use of murine models has the 

additional advantage that transgenic technology can be employed, since the complete mouse 

genome sequence has been unravelled 109. Nevertheless, mice do not naturally develop 

allergic asthma and the outcome of inhaling inert allergens without prior adjuvant supported 

systemic sensitization results in immunological tolerance as is the case with non-atopic 

humans 110. To circumvent these endogenous tolerance mechanisms, the majority of the 

models rely on a biphasic protocol. First, mice are systemically sensitized for the allergen 
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(generally ovalbumin; OVA) via repeated intraperitoneal (ip) administration of the allergen 

together with a Th2-skewing adjuvant such as aluminium hydroxide (Al(OH)3; alum). 

Subsequently, the sensitized mice are exposed to allergen through multiple airway challenges 

for one to ten consecutive days in acute models and up to five weeks in ‘chronic’ models 111.  

Exposure of OVA/alum sensitized mice to nebulised OVA elicits bronchial inflammation 

characterized by the infiltration of numerous eosinophils and Th2-lymphocytes. The type of 

inflammatory response found in the airways of these mice together with the presence of 

antigen-specific serum IgE, resembles the inflammatory phenotype observed in the majority 

of mild to moderate asthmatic patients. In humans however, the eosinophilic inflammation is 

localized in the bronchial wall whereas in mice inflammation is peribronchial, perivascular 

and parenchymal. Another relevant problem that mouse models of allergic asthma encounter 

is the chronicity of the model. Most mouse models of allergic asthma concern relatively short-

term (up to 10 days) exposure to high concentrations of allergen. This is in strong contrast 

with the recurrent long-term exposure to low concentrations of allergen experienced by 

asthmatic humans. Prolonged exposure of sensitized mice to high concentrations of allergen 

eventually leads to downregulation of inflammation and establishment of long-lasting 

tolerance 112, 113. In addition to eosinophilic inflammation, airway remodelling and AHR are 

important chronic clinical features of allergic asthma patients. Therefore, the use of ‘standard’ 

short-term models for allergic asthma does not fulfil the demands for studying these chronic 

asthma symptoms. However, several research groups have developed improved models that 

better mimic chronic clinical symptoms. Fore instance, exposing sensitized BALB/c mice to 

prolonged, yet intermittent, exposure to carefully controlled low concentrations of allergen 

resulted in AHR and significant airway remodelling, whether or not in the presence of an 

accompanying eosinophilic inflammation. Furthermore, these chronic models of allergic 

asthma exhibit persistent accumulation of inflammatory leukocytes in the airway epithelial 

wall and lamina propria and minimize the generation of parenchymal and perivascular 

inflammation. Conversely, no significant AHR or airway lesions were observed when this 

protocol was applied to C57BL/6 mice, although this mice strain is often used in the regular 

short-term models for allergic asthma 114-117. Clearly, the genetic background of the mouse 

strain is a determining factor in the establishment of a chronic asthma model as well. 

The last decade, other allergens than OVA are employed in allergic asthma research, 

comprising pollen, house dust mite, ragweed, molds and cockroach proteins. These agents are 
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airway allergens encountered in real-life. Most of these substances, like house dust mite and 

cockroach proteins, are auto-sensitizing which means that sensitization can be achieved 

without the supportive action of an adjuvant. These allergens possess an intrinsic enzymatic 

activity and therefore often induce limited tissue destruction in the airways, accounting for the 

necessary (endogenous) danger signals 118. The use of these compounds allows us to gain 

more insight in the process of allergen sensitization via the respiratory route which occurs in 

most human cases of allergen sensitization. 

The current insight in the heterogeneous character of allergic asthma has lead to the emerging 

need for the development of novel animal models representative for the different asthma 

subtypes. A subtype that gained a great deal of interest in the last several years is severe 

refractory asthma, featuring a steroid-resistant, neutrophilic, Th1/Th17-driven bronchial 

inflammation. Recently, a model of this type of allergic bronchial inflammation was 

proposed, based on the use of the Th1-/Th17-skewing adjuvant Complete Freund’s Adjuvant 

(CFA) instead of the Th2-skewing alum adjuvant. Exposure of OVA/CFA immunized mice to 

nebulised OVA resulted in a steroid-resistant Th1-/Th17-mediated neutrophilic bronchial 

inflammation 43. Again, this model only covers the inflammatory features of the human 

disease and not its aetiology or more chronic features.   

 

 

3.2.6 Overview of current and future allergic asthma therapies 

Initial approaches to treat allergic asthma emphasised the relief of bronchoconstriction via the 

use of bronchodilators, particularly β2-adrenergic agonists. The discovery of airway 

inflammation as an important pathophysiological component of allergic asthma has lead to the 

widespread use of corticosteroids as the mainstay of asthma therapy 119. Today, these drugs 

are still the most effective anti-inflammatory treatment available for asthma. Treatment with 

inhaled corticosteroids reverses airflow obstruction and reduces exacerbations which in turn 

reduces hospitalization and asthma-related deaths and improves quality of life 120. Despite 

their efficiency in suppressing inflammation, long-term corticosteroid therapy can however 

have detrimental side-effects, including cataracts, osteoporosis in elderly patients, and 

stunting of growth in children 121. The effectiveness of inhaled corticosteroids, particularly at 

low to moderate doses, in controlling asthma and reducing exacerbations is improved by 

combination with long-acting β2-agonists. This combined treatment protocol has been shown 

to be more successful than the use of higher doses of inhaled corticosteroid alone 122. 
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Therefore, this approach is successfully applied in 90% of all asthmatic individuals 123. In 

addition, anti-histamines, CysLTR1-antagonists, and mast cell stabilisers can also aid in the 

treatment. However, all of these therapeutics do not modify the progression of allergic asthma 

and are not curative 124. New drugs that alter the course of the disease or that provide a cure 

with fewer side-effects are therefore urgently needed. Moreover, the presence of a significant 

population of individuals suffering from severe steroid-resistant asthma strengthens the need 

for better therapy.  

The drive to find new drug targets has lead to the introduction of new classes of anti-mediator 

agents that are currently in clinical practice. A first class of potential targets for asthma 

treatment includes inflammatory cytokines and chemokines, transcription factors, enzymes, 

and immune cell populations. Recruitment of inflammatory cells to the airways by 

chemokines is a crucial process in the development of asthma. Administration of antisense 

oligonucleotides that inhibit expression of CCR3 and IL-5, the major mediators of eosinophil 

recruitment and activation respectively, resulted in decreased sputum eosinophilia, but only a 

trend for a reduced late response was noted 125. Cytokines are major targets for asthma 

therapy because of their key role in (chronic) inflammation and airway remodelling 126. 

Throughout years, numerous inhibitory compounds - blocking antibodies, soluble receptors, 

and protein muteins - against key pro-inflammatory cytokines, including IL-4, IL-5 and IL-

13, have been developed and applied in the clinic with varying success. Since adhesion 

molecules play an important role in several facets of asthma such as leukocyte migration, 

exocytosis, and respiratory burst, much effort has been made to develop drugs that target 

these molecules 127. However, clinical trials of these agents have been disappointing and some 

of these drugs were placed on hold by the US Food and Drug Administration because of 

serious side-effects. 

Since asthma patients often are atopic, much effort has been directed at the development of a 

second class of new therapies in which endogenous immunomodulatory mechanisms are 

exploited. Humanised monoclonal antibodies that bind and thereby block IgE or the low-

affinity IgE-receptor (FcεRII or CD23) have been successfully introduced for the treatment of 

severe refractory asthma 128, 129. Modulation of DC-function represents a new approach to 

treat allergic asthma. By selectively antagonizing DC-activation receptors, such as the 

sphingosine-1 phosphate receptor 130, or agonizing DC-inhibitory receptors, such as the D 

prostanoid (DP)-1 receptor 131, suppression of DC-function may be achieved, which 
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eventually may result in decreased airway inflammation and AHR. Subcutaneous allergen-

specific immunotherapy increases for instance the production of anti-inflammatory IL-10 by 

Treg-cells 132, 133. In addition, oral administration of vitamin D3 restores the ability of Treg-

cells to release IL-10 in steroid-resistant asthma patients. This observation suggests that 

vitamin D3 could potentially increase the therapeutic response to corticosteroids in steroid-

resistant asthma patients 134. Thus, immunomodulatory therapies that reverse the aberrant 

immune reactivity observed in allergic asthma by for instance enhancing Treg-function or 

skewing T-cell class switching away from Th2-responses are very promising. The fact that 

combination therapies are more effective than monotherapy emphasizes the need to evaluate 

multidrug approaches that are tailored to the genotype and phenotype of the particular asthma 

patient. 
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4.1 Respiratory syncytial virus (RSV) 

 

4.1.1 RSV-epidemiology and clinical manifestations 

RSV-infection is one of the leading etiological agents responsible for lower respiratory tract 

infections. Over 70% of one year old children and 100% of children by the age of two have 

been infected at least once by the RSV-virus 1. Infection of the nose or eyes occurs by large 

particle aerosol or direct contact and results in viral replication in the nasopharynx, with an 

incubation period of four to five days. Eventually, the incubation period can be followed by 

spread to the lower respiratory tract 2. Although almost all young children have encountered a 

RSV viral infection, only a small proportion develops serious lower respiratory tract illness, 

such as bronchiolitis and pneumoniae, while the majority shows mild respiratory tract 

symptoms. Nevertheless, RSV-infection is the most frequent viral respiratory cause of 

hospitalization in infants and young children worldwide 1. The causal mechanisms are 

unclear. It is currently believed that environmental factors that affect lung function (e.g. in-

house tobacco use) or that increase exposure to infection (e.g. day care, multiple siblings,…) 

play an important role. In addition, genetic predisposition to severe RSV-infection is indicated 

by the association of susceptibility with a family history of severe infant lower respiratory 

tract disease as well as by differences in susceptibility between ethnic, racial and gender 

groups 3. More recently, studies have provided evidence that genetic polymorphisms in genes 

encoding different cytokines and chemokines, and differences in cytokine production at birth 

are associated with the diversity in the clinical presentation of RSV-disease 4. In adults, 

symptoms from RSV-infection usually manifest themselves as rhinitis. However, severe 

symptoms are commonly observed in the elderly and in immunosuppressed adult patients 5, 6. 

Clinical reports have also shown that RSV-infection may cause extra-pulmonary effects at the 

neurological, endocrine, cardiac and hepatic level 7. Although the causes leading to these 

extra-pulmonary symptoms remain elusive, it is possible that both direct organ infection by 

RSV and damaging inflammatory responses in the lung promoted by the virus contribute to 

the observed extra-pulmonary effects 8, 9. 

To date, only one antiviral drug – ribavirin - is commercially available for treating severe 

RSV-infection. However, the use of this drug is controversial due to its variable efficacy and 

questionable cost-effectiveness ratio. Therefore, new pharmacological alternatives for treating 

RSV are required in order to diminish the adverse inflammatory response elicited by the 

unbalanced immune response induced by the exposure to the virus. The identification of 
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different RSV-proteins, including the G- and F-glycoproteins, has allowed developing vaccine 

candidates. Unfortunately, to date the insufficient efficacy of these vaccines has precluded 

their introduction into the clinic.   

 

 

4.1.2. Pathophysiology of RSV-infection 

RSV-virion 

RSV are spherical or filamentous envelope viruses that belong to the Paramyxoviridae family 

and are characterized by a single stranded negative sense RNA genome (15.2 kb) encoding 

two non-structural proteins (NS1 and NS2) and nine structural proteins, including the 

attachment (G) and fusion (F) glycoproteins. The virion of the RSV is enveloped with a lipid 

bilayer, which is obtained via budding from the host’s plasma membrane. A symmetrical 

helix shaped nucleocapsid is embedded in this lipid bilayer. Five nucleocapsid proteins inside 

the virion, including the nucleocapsid (N)-protein, the phospho(P)-protein, the antitermination 

factors M2-1 and M2-2, and the large polymerase (L)-subunit carry out the replication and 

transcription of the RSV-genome 10. In addition, the lipid bilayer contains three surface 

glycoproteins, the G-, the F-, and the small hydrophobic (SH)-protein, which are all separated 

from each other and can be seen as “spikes” that protrude out of the virion. The F-protein 

forms trimers and its major function is to direct viral penetration by the fusion between the 

virion and the host plasma membrane. When expressed on the cell surface, the F-protein also 

mediates fusion with neighbouring cells, forming syncytia. The G-protein is a type II 

transmembrane glycoprotein and is a major RSV-attachment protein 11. It contains a single 

hydrophobic region which serves as a signal peptide and also as a membrane anchor. The 

small SH-protein is a short integral membrane protein whose function is unknown. However, 

it is suggested that the SH-protein enhances the function of the G-protein and/or F-protein. 

Another RSV-protein is the matrix (M) protein, located in the inner layer of the lipid bilayer. 

The M-protein is found to play a role in the assembly of virus particles inside the host cells 12. 

The remaining two RSV-proteins, NS1 and NS2, are small proteins that appear to be 

nonessential accessory proteins involved in modulating the host response to infection 13. 

 

RSV-replication cycle 

RSV predominantly infects airway epithelium and the first critical step in the infection 

process is the entry of the virus into the cell. The G-glycoprotein plays a major but not 
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exclusive role in viral attachment, since recombinant RSV in which the gene encoding for the 

G-glycoprotein is deleted, is still able to infect mouse and human airway cells, albeit with 

much lower efficiency 14, 15. The cellular receptor for the G-glycoprotein has not yet been 

identified although cell surface glycosaminoglycans, including heparan sulphate and 

chondroitin sulphate B have been shown to be involved in viral attachment 16. In contrast to 

the G-protein, RSV has an absolute requirement for the F-protein for orchestrating the viral 

penetration by membrane fusion and for mediating the fusion of infected cells with their 

neighbours through the formation of syncytia. Furthermore, membrane fusion between RSV 

particles and host epithelial cells via clathrin-mediated endocytosis is considered as a possible 

mechanism allowing the nucleocapsid to enter the cytoplasm 17. Viral gene expression and 

RNA replication occur in the cytoplasm. The nucleocapsid N-proteins tightly encapsulate the 

viral genomic RNA as well as its positive-sense replicate intermediate, which is referred to as 

the antigenome. This encapsulation is thought to shield off the viral RNA molecules from 

immune detection by the host’s intracellular TLRs and viral RNA recognition helicases 18. 

The large L-protein is the major polymerase subunit and contains the catalytic domains while 

the P-protein acts as an essential cofactor in viral RNA synthesis 19. The M2-1 and M2-2 

proteins are crucial factors involved in progressive transcription 20 and in regulating the 

balance between viral RNA transcription and replication 21 respectively. In the absence of 

M2-1, transcription terminates non-specifically within several hundred nucleotides and results 

in (reduced) expression of NS1 and NS2 alone 20. Finally, the M-protein mediates the 

assembly of the viral RNA-genome, the viral envelope proteins and the nucleocapsid proteins 

to new RSV viral particles. These eventually leave the cell either through budding to the 

extracellular space, fusion and syncytia formation with the adjacent cell or following cell 

rupture. 

 

Host response to RSV-infection 

The respiratory epithelium is the first site of encounter between the virus and the host. As a 

result of this interaction, an early innate immune response is initiated at the site of infection. 

RSV-attachment to epithelial cells leads to the detection of viral components by several 

pattern recognition receptors (PRR), like TLR and retinoic acid-inducible gene I-like receptor 

(RIG-I). TLR-3, expressed by epithelial cells and resident alveolar macrophages (rAM), 

contributes to the recognition of RSV by binding to viral RNA 18. The F-protein has been 

identified as a TLR-4 and CD14 ligand on human monocytes 22. Furthermore, respiratory 
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epithelial cells also express TLR-2 and TLR-6 which have been shown to be involved in the 

control of viral replication 23. Although TLR-7 expression is upregulated on lung epithelial 

cells as early as 1h after RSV-infection, the involvement of this receptor in cytokine secretion 

and modulation of RSV-pathology is only poorly evaluated. It was not until recently that RSV 

and measles virus were described as the first viruses capable of blocking type I interferon 

(IFN)-secretion through TLR-7 and TLR-9 24. In agreement with this observation, deletion of 

TLR-7 was found to worsen the RSV-induced pathology 25. In addition, substantial changes in 

TLR-expression can be observed which are likely to play an important role in the clinical 

outcome of the infected individual 26. For instance, it has been described that expression of 

TLR-4 is significantly increased in epithelial cells after RSV-challenge and during the 

inflammatory response induced by the virus 27. Early RSV-detection by rAM plays an 

important role in the initial clearance of the virus since rAM-depletion prior to infection 

results in increased pulmonary virus titers 28.  

Activation of PRRs at airway epithelial cells (AECs) or rAM induces widespread changes in 

the cellular expression of genes encoding for a variety of factors, including surfactants, 

cytokines, chemokines, and cell surface molecules. Some of these factors exert direct antiviral 

properties while others stimulate the influx and activation of inflammatory leukocytes. 

Engagement of TLRs and RIG-I stimulates the NF-κB pathway leading to the production of 

TNF-α, IL-6, CCL2, RANTES and IL-8. These chemokines and cytokines promote the 

recruitment and activation of especially neutrophils, natural killer (NK)-cells and monocytes 
29. NK-cells are important effector cells in viral clearance by orchestrating cytotoxic lysis of 

infected airway cells. Another major function of activated NK-cells is the production of early 

IFN-γ which primes the subsequent antiviral adaptive Th1-cell and cytotoxic T-lymphocyte 

(CTL) immune response 30. Another set of important molecules that are secreted by immune 

and non-immune cells, mainly plasmacytoid (p)DCs, rAM, and AECs upon RSV-infection, 

are IFN-α and IFN-β. Expression of type I IFNs is induced by the IFN-regulatory factors 

(IRF) transcription factors after TLR-ligation. Once secreted, type I IFNs bind in an autocrine 

or paracrine way to surface receptors belonging to the type I IFNAR-complex, which in turn 

activate intracellular signalling pathways that promote the activation of antiviral responses 31, 

32. This type I IFN-induced cellular antiviral response is characterized by the expression of 

IFN-stimulated genes (ISGs) that trigger antiviral effectors, such as Mx GTPase, RNA-

dependent protein kinase (PKR), ribonuclease L (RNase L), oligo-adenylate synthetase 

(OAS). Mx GTPase captures viral nucleocapsid proteins in the cytoplasm and blocks their 
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movement into the nucleus. Active PKR phosphorylates eukaryotic initiation factor 2α (eIFα) 

which leads to the inhibition of viral transcript translation, thereby blocking viral protein 

synthesis. Viral RNA-induced activation of OAS results in the conversion of ATP into 2’,5’-

linked oligomers of adenosine (2-5A), which binds to RNase L. The binding of 2-5A to 

RNase L enables the latter to cleave viral RNA. On the other hand, RNase L cleaves some 

self mRNAs in order to produce small RNA fragments which again act as ligands for RIG-I. 

These events further amplify the type I IFN production and the overall innate antiviral host 

response 33. In addition to type I IFNs, surfactant protein (SP-)A and D also appear to play a 

role in the antiviral defence by binding to the viral surface glycoproteins F and G 34. Once 

bound, SP-A and SP-D have been reported to neutralize the virus and to increase viral uptake 

by rAM and neutrophils. Recent studies linking surfactant gene polymorphisms to RSV-

susceptibility in children further emphasize the importance of this innate defence mechanism 
35, 36. 

CTLs deliver a major contribution to the clearance of the RSV primary infection, and there is 

a robust expansion of RSV-specific CD8+ T-cells in the lung. Human CTLs, recognizing the 

N-, SH-, F-, M-, M2- and NS2-proteins are already identified 37. Upon activation, CTLs carry 

out cytolysis of RSV-infected host cells through the release of perforin and granzyme. 

However, perforin and granzyme-mediated killing of infected target cells is not compulsory 

for the clearance of the virus. Alternative killing mechanisms, such as FasL-mediated 

induction of target cell apoptosis, have been found to be involved in the clearance of the virus 
38. By being a significant source of IFN-γ, Th1-cells contribute to the activation of CTLs and 

NK-cells, and to the amplification of the host’s protective adaptive immune response. The 

importance of the cellular adaptive immune response against RSV has been demonstrated by 

adoptive transfer of sensitized CD4+ or CD8+ T-lymphocytes in RSV-infected mice. Both cell 

types reduced shedding of the virus in the lungs 39. The protective role of cellular adaptive 

immunity during RSV-infection is however still a matter of debate due to its potential 

association with pulmonary tissue damage. For instance, in mice lacking both CD4+ and CD8+ 

T-lymphocyte subsets, RSV was cleared very slowly but did not induce any significant 

disease 40. Furthermore, adoptive transfer of sensitized CD4+ or CD8+ T-lymphocytes to 

RSV-infected mice induced increased pulmonary tissue damage 39. Thus, next to their role in 

RSV-immunoprotection, both CD4+ T-cells and CTLs are also potent inducers of RSV-

associated immunopathology. 
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Although the humoral immune response is not likely to influence the course of the primary 

RSV-infection, there is good evidence that protection against subsequent RSV-infections is 

mediated through neutralizing antibodies. Serum antibody titers increase following RSV-

reinfection, and there is a gradual acquisition of protective antibodies in the serum 41, 42. 

Patients of any age with low titers of serum neutralizing antibodies are at greater risk for 

developing severe, lower respiratory tract RSV-disease than those with high antibody titers 43. 

Additionally, breast fed infants with high titers of transplacentally acquired antibodies are less 

likely to succumb to severe RSV-induced bronchiolitis 44 and passive immunization with 

RSV-specific IgG has been shown to be effective in protecting against hospital admission 45. 

Neutralizing antibodies include secretory IgA and serum-derived IgG. Secretory IgA is 

particularly important in protecting the upper respiratory tract, which is accessed only very 

inefficiently by serum IgG 46. The IgA-response is short-lived following primary infection but 

can increase in duration following reinfection. Serum IgG-antibodies are more efficient in 

accessing lower respiratory tract and can provide substantial protection in that compartment. 

Upon RSV-reinfection, IgA- and IgG-molecules neutralize the invading particles by 

opsonising them for subsequent rAM-mediated phagocytosis 10. Because neutralizing serum 

antibodies provide substantial protection, eliciting a strong and potent humoral response is a 

promising and intensively investigated vaccination strategy. 

 

 

4.1.3 RSV-infection and asthma: the chicken or the egg? 

Wheezing illnesses, such as allergic asthma, have been associated with viral respiratory 

infections since many years. The relation between respiratory viral infections and the 

development of asthma has been best characterized for respiratory infections due to RSV. 

Clinical studies highlighted the fact that hospitalization due to RSV-infection in early 

childhood promotes the development of asthma during later life 47-50. This possible causative 

correlation was also suggested in an elegant epidemiological study in which it was shown that 

timing of birth in relationship to the annual winter RSV-peak predicts an infant’s likelihood of 

developing childhood asthma. Infant birth approximately four months before the seasonal 

RSV winter peak resulted in a 29% increase in odds of developing asthma in later life 

compared to birth 12 months before the peak 51. Furthermore, it was shown that ameliorating 

or preventing RSV lower respiratory tract infections during infancy was associated with a 

decrease in recurrent wheezing at later age. For instance, prophylactic use of palivizumab 
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(Synagis), a humanized monoclonal antibody against the RSV F-protein, substantially 

reduced hospitalization for severe RSV-infections in infants 52. The prevention of 

hospitalization for severe RSV-infections in palivizumab-treated children was associated with 

a decrease in the development of wheezing at later age 53. However, palivizumab prophylaxis 

only decreased later recurrent wheezing in nonatopic children whereas infants with an atopic 

family history were not ‘protected’ 54. These results highlight the crucial role of the 

individual’s genetic background in the delicate interplay between early RSV-infections and 

the development of recurrent wheezing or asthma at later age. Indeed, by comparing the 

correlation between severe RSV-infections during infancy and the development of asthma 

during later life in monozygotic and dizygotic twins Thomsen and co-workers identified a 

common genetic source for both disorders. Moreover, they stated that severe RSV-infections 

during infancy are not a direct cause of asthma but rather an indicator for the underlying 

genetic predisposition to asthma 55. A variety of experimental data obtained from animal 

models supported this premise. For instance, guinea pigs infected with RSV and then exposed 

to aerosolized allergen developed higher titers of allergen specific IgG1 compared to non-

infected allergen challenged animals 56. Furthermore, prior RSV-infection of BALB/c mice 

resulted in increases in AHR after subsequent pulmonary exposure to nebulised allergen 57. 

Different properties and characteristics of the RSV-infection cycle and pathology can 

contribute to these observations. The first contact of RSV with the host’s target AECs may 

already act as a potential instigator of allergic asthma by promoting allergen sensitization. 

Initial interactions between RSV-particles and the airway epithelium through TLR-4 increase 

the expression of this PRR on AECs. RSV-induced TLR-4 expression may then 

hypersensitize AECs to LPS, augmenting their ability to initiate inflammatory responses to 

low amounts of LPS in allergen particles 27. Additionally, during the propagation of the RSV-

infection, viral induced damage to the pulmonary epithelial barrier provides endogenous 

danger signals which can function as adjuvant during host sensitization for allergens. In order 

to avoid the antiviral effects of CTL- and Th1-responses, RSV features a number of properties 

that skew the host’s immune response from a protective CTL-/Th1-response to non-protective 

Th2-immunity. After the initiation of RSV-infection, the typical Th2-cytokines IL-4, IL-5, IL-

10 and IL-13 are produced in the lungs by different hematopoietic and non-hematopoietic 

cells 58. These cytokines have been associated with delayed viral clearance and are important 

in promoting AHR 59 and inducing B-cell proliferation and IgE production 60. In addition, 

these cytokines upregulate the expression of MHC II molecules on the surface of 

macrophages which in turn increases the APC-activity of these cells during pulmonary 
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allergen encounter 61. Persistence of these inflammatory Th2-cytokines together with other 

RSV-induced pro-inflammatory cytokines, including IL-6, IL-1Rα, IL-1β, and GCF, in fully 

recovered patients with RSV can provide a substratum for the development of subsequent 

asthma 62. Indeed, blocking IL-13 during primary RSV-infection in mice that were 

subsequently sensitized and challenged with allergen reduced the levels of AHR 63. 

Furthermore, T-cells from children hospitalized for RSV in their infancy secreted more IL-4 

in response to aeroallergens than control subjects 64. Chemokines produced during RSV viral 

infection may contribute to the enhanced development of consequent allergic asthma as well. 

For instance, RSV-infection induces the secretion of eotaxin (CCL11) which is responsible 

for the chemoattraction and activation of eosinophils 65. Studies in which mice were infected 

with RSV virus and then sensitized to allergen suggest that RANTES (CCL5) might fulfil an 

important role in the predisposition of virally infected mice to allergic asthma too 66. 

Moreover, RSV-infection of conventional myeloid DCs significantly decreased the ability of 

this leukocyte population to induce Th1-responses while the expression of IL-10 was 

increased 67-69. Thus, in an ongoing RSV-infection, allergens might induce a skewed Th2-

response due to the alteration of DC-subset activation.  Finally, RSV-pathology can provoke 

structural lung remodelling, including smooth muscle cell hypertrophy and mucus 

hypersecretion, resulting in airway luminal narrowing which in turn may increase AHR 

during subsequent allergen exposure. 

Several epidemiological studies have implicated a number of respiratory viruses in the 

induction of asthma exacerbations, including infection with rhinoviruses, influenza, 

parainfluenza, and adenovirus. However, more recent research demonstrated that severe 

asthmatic exacerbations in children 70 and adults 71 were often associated with RSV-infection 

(27% and 37% respectively). Infection of AECs with RSV induces the secretion of a wide 

range of cytokines and chemokines which are able to initiate a pulmonary inflammatory 

response 29. Leukocyte populations, including neutrophils, eosinophils and CD8+ T-

lymphocytes accumulate in the lungs during RSV-infection. The combination and interplay of 

inflammatory mediators released by these different leukocytes can increase AHR and airway 

remodelling, eventually leading to the exacerbation of asthmatic reactions. For instance, 

elastase released through neutrophil degranulation may cause airway obstruction by 

promoting goblet cell mucus secretion 72. Eosinophil granule-derived proteins have also been 

retrieved from nasal secretions of asthmatic children with wheezing illness caused by RSV 73. 

In these children, significant increases in the level of CCL5 were detected as well 74. In line 
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with this observation, different studies suggest a critical participation of CCR1, the main 

CCL3/CCL5 receptor expressed on both Th1- and Th2-lymphocytes, in RSV-associated 

allergic asthma exacerbations. In allergic CCR1-/- mice, subsequent RSV-infection resulted in 

a reduction in AHR and mucus production, accompanied by a reduced amount of IL-13 in the 

lungs as well as reduced numbers of T-lymphocytes and eosinophils as compared to wild-type 

mice 75. CCR1-expression on T-cells during acute RSV-infection is therefore thought to 

exacerbate allergic airway disease through increased recruitment of both allergen specific and 

virus specific T-lymphocytes, possibly sharing a similar chemokine receptor profile, to the 

lung and lymph nodes 76.  

Also exaggerated mucus production is a hallmark of asthma exacerbation and significantly 

contributes to morbidity and mortality in asthma 77. The mucus that occludes the airways 

during an asthma exacerbation is quite a complex biological material, comprising a mixture of 

mucin proteins, plasma proteins, and products of dead cells 78. In asthmatic subjects, the 

major mucin components of airway mucus secretions are MUC5AC and MUC5B, both 

contributing to the viscoelastic properties of the mucus 79. Lukacs and colleagues have shown 

that RSV-infection induces secretion of MUC5AC and GOB5 by AECs in an IL-17 

dependent manner 25. Therefore, by acting as an additional inducer of pulmonary MUC5AC 

production, RSV can increase total mucin protein levels in the lungs of asthmatic individuals, 

thereby increasing the risk to develop asthma exacerbation. Interestingly, in animal models, 

CD8+ T-lymphocytes are involved in the response to both allergens and viruses 80. Thus, the 

role of CD8+ T-lymphocytes for virus-induced asthma exacerbation has become an area of 

great interest due to the realization that these cells might influence Th2-type cytokines during 

the response of asthmatic individuals to viral infection. 

Research through the past years has highlighted the fact that individuals suffering from 

allergic asthma are likely to be more prone to developing secondary respiratory viral 

infections, such as RSV. Corne and co-workers demonstrated the occurrence of more severe 

and prolonged virus-induced symptoms in asthmatic patients compared to non-asthmatic 

control subjects, suggesting for the first time that there might be inherent differences in the 

way asthmatics respond to respiratory tract viral infections 81. Wark and co-workers 

subsequently provided mechanistic insight into this clinical observation. Compared to AECs 

from non-asthmatic subjects, rhinoviral infection of AECs from asthmatic subjects showed a 

diminished secretion of IFN-β accompanied by higher levels of viral replication 82. As IFN-β 
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plays a pivotal role in the innate antiviral defence against RSV as well, impaired airway 

epithelial IFN-β responses might underlie the enhanced susceptibility of asthmatic individuals 

for RSV viral infections. At present, the precise mechanism of deficient IFN-β production in 

asthmatics remains unknown. Genetic polymorphisms in genes encoding transcription factors 

or signalling molecules required for the expression of type I IFNs is one plausible explanation 
83. Interestingly, recent experimental work highlighted the possibility that excess TGF-β, 

present in the lungs of asthmatic patients, can be responsible for the observed enhanced viral 

replication through its suppressive actions on IRF-3 which is responsible for ifn-β gene 

transcription 84. As already mentioned, the balance between Th1- and Th2-cell cytokine 

production is crucial to viral clearance. There are data supporting the notion that within a pre-

existing type II cytokine asthmatic microenvironment, the normally effective type I antiviral 

immune response might be inhibited because of the presence of Th2-cytokines. Children 

suffering from asthma and exhibiting an increased Th2-cytokine profile during RSV-induced 

bronchiolitis, were at greater risk of developing wheezing during follow-up compared to non-

asthmatic control children 85. Recently, it was also demonstrated that TLR-7 function is 

impaired in blood mononuclear cells from adolescents with mild-to-moderate asthma 86. 

Together with the observation that the pulmonary response to RSV-infection was more 

pathogenic in TLR-7-/- mice, as assessed by significant increases in inflammation and mucus 

production 25, impairment of TLR-7 function in asthmatics may increase the susceptibility to 

RSV-infection. In recent years, a large number of genetic polymorphisms relevant for both 

viral infection and asthma have been identified too. Polymorphisms in the gene encoding for 

IRF-1, a pivotal regulator of IFN-γ production, have been associated with the development of 

allergic disease or atopy 87. In addition, a significant association between genetic 

polymorphisms in the promoter region of the gene encoding for suppressor of cytokine 

signalling (SOCS)1 and adult asthma has been observed. This polymorphism resulted in the 

increased production of SOCS1 protein, which in turn inhibited phosphorylation of STAT-1 

in response to IFN-β stimulation 88. It is likely that as technology continues to improve, future 

studies will reveal other polymorphisms playing a key role in the immune response of 

asthmatic individuals to (RSV) viral infection. 

Understanding the mechanisms provoking RSV-induced exacerbations in asthmatic subjects 

may offer significant opportunities for improved disease management. Prevention of infection 

through the use of vaccines or monoclonal antibodies would be by far the most effective 

therapeutic approach. In addition, the use of antiviral agents, such as viral attachment 
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inhibitors or viral protease inhibitors should be considered when treating hospitalized subjects 

suffering from severe asthmatic exacerbations. Furthermore, as allergic asthmatic individuals 

are likely to exhibit deficient antiviral IFN-β responses, exogenous IFN-β supplementation 

would boost the host’s antiviral reactivity. Nevertheless, real therapeutic success has been 

hampered because of problems of virus specificity, side effects, delivery problems, and the 

need for early administration after diagnosis of infection. Therefore, in-depth studies of the 

molecular pathways underlying virus-induced inflammation and pathology are still required to 

identify new targets for controlling virus induced asthma exacerbations. 

A schematic overview of the correlation between RSV-infections and allergic asthma is 

depicted in figure 1.    

 

          

4.2 Chlamydophila pneumoniae (C. pneumoniae) 

 

4.2.1 C. pneumoniae epidemiology and clinical manifestations 

C. pneumoniae is a common cause of acute respiratory infection, including community-

acquired pneumonia (CAP) 69, pharyngitis, bronchitis, sinusitis, and exacerbations of chronic 

bronchitis 89. The ubiquity of C. pneumoniae infection is evidenced by an antibody prevalence 

of 50% in individuals by the age of 20 years and of 80% at the age of 60 years. Primary 

infection occurs mainly in school-aged children, while reinfection is observed in adults. In 

addition, this bacterial pathogen is reported to account for a relatively large number of cases 

(6 – 20%) of CAP, which means about 1000 cases per 100,000 U.S. inhabitants 90. The exact 

mode of transmission is unknown but spread via droplets has been proposed. Most patients 

with C. pneumoniae infection are asymptomatic but the course of respiratory illness can vary 

widely from mild to severe disease. Upper respiratory tract symptoms, such as rhinitis, sore 

throat, or hoarseness, may be reported initially, followed by fever, myalgia and chills 91. After 

gradual onset, symptoms may continue over extended periods, with persistence of cough and 

malaise for several weeks or months despite appropriate antibiotic therapy. Especially 

individuals with severely compromised respiratory function suffer from severe C. 

pneumoniae induced CAP 92. CAP has also been associated with severe acute respiratory 

exacerbations in patients with cystic fibrosis and C. pneumoniae infection can even become 

life-threatening in patients with acute leukemia and treatment-induced neutropenia 93, 94. C. 

pneumoniae is also found to be involved in the development of extra-pulmonary pathologies 
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such as atherosclerosis, multiple sclerosis and Alzheimer disease 90. Next to the host’s 

immunological status, environmental factors such as poor hygienic conditions and smoking 

can increase the susceptibility for developing C. pneumoniae infection. Finally, as is the case 

with many infectious diseases, an individual’s genetic background is a major factor 

contributing to C. pneumoniae infection susceptibility. 

So far, tetracyclines, erythromycin, and doxycycline are the most commonly employed 

antibiotic drugs in the first-line treatment of acute C. pneumoniae infections. Although they 

are very effective against C. pneumoniae viability, antibiotic drugs cause some adverse 

(gastrointestinal) side-effects and the use of it should be preferably avoided. Therefore, 

ongoing research should provide more insight in C. pneumoniae microbiology and 

pathophysiology to develop more customized therapies or prophylactic vaccination with 

minimal side-effects. 

 

 

4.2.2 Pathophysiology of C. pneumoniae bacterial infection 

C. pneumoniae microbiology and replication cycle 

C. pneumoniae are Gram-negative aerobic bacteria with an obligate intracellular replication 

cycle. This bacterial species lacks the machinery for providing its own ATP supply and is 

therefore fully dependent on the host’s intracellular ATP stock for survival and reproduction. 

They are typically coccoid or rod-shaped bacteria surrounded by a cell wall with inner and 

outer membranes. The cell wall contains an outer LPS-membrane but lacks peptidoglycan. It 

instead contains cysteine-rich proteins that are likely the functional equivalent of 

peptidoglycan. Furthermore, typical surface-associated chlamydial macromolecules, including 

major outer membrane protein (MOMP) and OmcB (OMP2) are contained within the cell 

wall. This unique cell wall structure allows for intracellular division and extracellular 

survival. The bacterial nucleoid contains circular DNA and plasmid DNA. Ribosomes for 

protein synthesis are scattered around in the bacterial cytoplasm. 

Chlamydophila has a very unique biphasic life-cycle in which it alternates between a non-

replicating, infectious elementary body (EB) and a replicating, non-infectious reticulate body 

(RB). The EBs are pear-shaped structures containing a periplasmic space and a loose outer 

membrane 95 and have closely associated periplasmic minibodies whose functional 

significance is unknown 96. The EB is the metabolic inert and dispersal form of the pathogen 
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and is analogous to spore structures. Therefore, C. pneumoniae is perfectly capable of 

extracellular survival. Furthermore, the EB is devoid of peptidoglycan and maintains 

structural integrity via a network of disulfide cross linkages involving MOMP. In the form of 

an EB, the bacterium induces its own endocytosis upon contact with host cells. The OmcB-

protein, present at the EB-surface, binds heparin and this may be related to mammalian host 

cell adhesion and entry 97. Once inside the cell, C. pneumoniae blocks the host cell response, 

including phagolysosomal fusion, which could be detrimental to survival. Within the 

phagosome, EBs germinate through the interaction with glycogen and transform into the 

replicative, non-infectious RBs, which are capable of DNA, RNA and protein synthesis, and 

starts to divide by binary fission. RB multiplication results in the formation of an intracellular 

microcolony of Chlamydophila bacteria that is referred to as the inclusion. Subsequent 

interactions with the individual host cell lead to either a productive or a non-productive 

infection. In productive infections, RB multiplication slows down and eventually leads to a 

second round of differentiation where RB reverts to EB. EBs are then again released into the 

extracellular space in order to produce another round of host cell invasion and RB replication. 

In non-productive infections, specific stimuli derived from the host’s immune response 

initiate persistent C. pneumoniae development. This persistent form of the bacteria is 

characterized by an aberrant morphology, absence of capability to induce infection 98, 99, 

decreased surface antigen expression 100 and increased synthesis of proteins, such as 

chlamydial heat shock protein (Hsp)60, which may contribute to disease pathogenesis 101. 

Since persistent C. pneumoniae are metabolically less active than rapidly dividing typical 

RBs, this persistent form may not be susceptible to antimicrobial killing and exhibits 

antibiotic resistance. 

 

Host response to C. pneumoniae infection 

Invading C. pneumoniae bacteria are initially encountered by the airway epithelium and rAM. 

As already mentioned, C. pneumoniae are Gram-negative bacteria and contain LPS in their 

cell wall which induces signalling through both TLR-2 and TLR-4 102. However, since 

chlamydial LPS contains nonhexaacyl lipid A structures (instead of the conventional hexaacyl 

lipid A structures), the host defence response is not effectively activated via TLR-4, which 

may allow bacterial growth and even promote persistence 103. In addition, chlamydial Hsp60, 

which functions as a cytoplasmatic chaperone molecule, has been suggested to act as a ligand 

for both TLR-2 and TLR-4 104 but only signalling through TLR-4 is demonstrated 105. TLR-2 
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and TLR-4 engagement both result in the activation and nuclear translocation of NF-κB 

through the MyD88-dependent signalling pathway. The importance of the acute pro-

inflammatory host response is illustrated by the fact that MyD88-deficient mice develop 

severe inflammation and lung injury due to the defective initial clearance of the bacteria 106. 

The NF-κB dependent expression of TNF-α, IL-6, CCL2, RANTES and IL-8  promotes the 

recruitment and activation of especially neutrophils and monocytes to the infected lung where 

these cells contribute to the clearance of the pathogen by ingesting and killing the bacteria 107. 

However, monocytes and neutrophils are found to augment the bacterial replication as well. 

Recruited macrophages and monocytes can act as fresh reservoirs for newly generated 

infectious EBs 108. Depletion of Gr1+-positive polymorphonuclear neutrophils resulted in a 

decreased chlamydial burden in the lungs of infected mice, thus illustrating their function as a 

bacterial reservoir 109. Additionally, it was found that C. pneumoniae can even hide inside 

apoptotic neutrophils to silently infect and propagate within macrophages 110. TIR-domain 

containing adaptor-inducing IFN-β (TRIF), an adaptor recruited as a consequence of TLR-3 

activation, was suggested to be responsible for IFN-β production during C. pneumoniae 

infection 111. However, as dsRNA is absent in Chlamydophila spp., TRIF-signalling is likely 

to occur through another TLR-molecule. Although C. pneumoniae infection promptly and 

strongly induces secretion of type I IFN, its function during infection appears to be complex. 

While in vitro studies showed that type I IFNs inhibit chlamydial growth in bone marrow 

derived macrophages 112, in vivo studies using IFNAR-deficient mice demonstrated that type I 

IFNs enhanced susceptibility for chlamydial infection by inducing local rAM apoptosis 113. 

Recently, another chlamydial lipopeptide, referred to as the macrophage infectivity 

potentiator, exposed on the surface of EBs was demonstrated to induce TLR-2, TLR-1/TLR-6 

mediated signalling in human macrophages 114, suggesting that besides LPS and Hsp60, other 

chlamydial components can act as ligands for TLRs. Also Nod-like receptors (NLRs), such as 

NOD1 and NOD2 are thought to be involved in the intracellular recognition of C. 

pneumoniae 115. Recent research revealed that also NLRP3-dependent IL-1β secretion was 

critical for bacterial clearance and host survival 116. 

Besides innate cells, also T-lymphocytes are essential in the immune defence against C. 

pneumoniae. In particular, CD8+ T-cells play a predominant role in C. pneumoniae protective 

immune responses, mainly through the secretion of IFN-γ. The central role of IFN-γ in the 

resistance to C. pneumoniae was already highlighted by the fact that IFN-γ-/- mice were 

completely unprotected against infection 117. Protective mechanisms mediated by IFN-γ 
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involve stimulatory effects on the expression and activity of inducible nitric oxide synthase 

(iNOS), secretion of cytokines and chemokines by leukocytes and tissue resident cells, and 

regulation of T-cell activity 118. However, in this context, it is noteworthy to emphasize the 

more adverse effect of IFN-γ. It is namely demonstrated that IFN-γ induces the conversion of 

chlamydial RBs towards the persistent form of the pathogen. Via the stimulation of 

indolamine 2,3-dioxygenase (IDO), the presence of IFN-γ results in the depletion of the 

tryptophan pool, an essential amino acid which is indispensable for intracellular chlamydial 

growth 107. Thus, IFN-γ can contribute to the establishment of the chronic persistent form of 

the disease. Next to their role as cellular IFN-γ source, CTLs exhibit antichlamydial growth 

activity by performing potent cytotoxic activity upon MHC I restricted recognition of infected 

cells 119. CTL-responses are executed largely independent of Th1-cells. However, Th1-cells 

deliver a substantial contribution to host protection against C. pneumoniae infection through 

the secretion of IFN-γ 117. Th17-lymphocytes contribute to the host defence against C. 

pneumoniae infection as well. Indeed, IL-17 deficient mice showed significantly delayed 

clearance of bacteria and more severe disease. Neutralization of IL-17 led to decreased DC-

activation which in turn resulted in a diminished induction of antibacterial type I immune 

responses 120. Activated NKT-cells were found to increase CD40 expression and IL-12 

production by DCs as well. Therefore, NKT-cells are crucial for enhancing type I immunity 

during C. pneumoniae infection as well 121. Several studies evidenced that C. pneumoniae can 

modulate the cellular immune response for its own benefit. The chlamydial MOMP, for 

instance, has been found to promote Th2- rather than Th1-responses by stimulating IL-10 

production by APCs 122. In addition, this chlamydial antigen skews the humoral immune 

responses in mice from a Th1-associated IgG2 antibody response towards a Th2-associated 

IgG1 antibody response 123. Although substantial secretion of C. pneumoniae specific lung 

IgA and serum IgG2 is found in infected individuals, different studies demonstrated no major 

role of antibodies in the control of C. pneumoniae in vivo 102, 124, 125. 

 

 

4.2.3 Asthma and C. pneumoniae infection: the chicken or the egg? part II 

An association between asthma and C. pneumoniae infection was first put forward by Hahn 

and co-workers in the early 1990s. From 19 wheezing adult asthmatic patients, nine had 

serologic evidence of current or recent infection with the pathogen 126. This observation was 

followed by many other cases in which C. pneumoniae specific IgA- and IgG-molecules were 
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found in the serum of asthmatic patients. These findings are reviewed in 127. As is the case 

with respiratory viral pathogens, it is now believed that respiratory bacterial pathogens, 

including C. pneumoniae, play an important role in the aetiology of asthma. For instance, 

pulmonary infection of neonatal mice with C. muridarum, the natural mouse strain which is 

frequently used to model the human case of chlamydial infection, resulted in a more severe 

asthma phenotype later on in life. Notably, this early-life infection increases mucus-secreting 

cell numbers, IL-13 expression, and AHR 128. There are different plausible mechanisms by 

which C. pneumoniae infection could contribute to the induction of asthma. Respiratory 

chlamydial infection causes airway epithelial damage which in turn provides endogenous 

danger signals for subsequent allergen sensitization. In order to circumvent the anti-bacterial 

effects of a Th1-mediated immune response, C. pneumoniae has evolved strategies to skew 

the host’s response towards a Th2-reaction which is beneficial for the pathogen’s viability and 

propagation. In support of this concept, mouse studies showed that pulmonary infection with 

C. muridarum leads to the enhanced production of the Th2-cytokine, IL-13, by a variety of 

cell types 129. Moreover, Kaiko and co-workers demonstrated that antigen-pulsed C. 

muridarum infected bone-marrow derived DCs induced a significant bias of naïve CD4+ T-

cells towards a Th2-phenotype while IFN-γ secretion was inhibited 130. In addition, early-life 

infection may impair lung function and may cause irreversible damage to pulmonary structure 

because the lungs, unlike most other organs, continue to mature during the first two years of 

life. Combined, these observations suggest that chlamydial infection of the lungs of healthy 

individuals creates a structural and immunological niche which is more prone for developing 

eosinophilic, Th2-mediated allergic airway disease.  

Evidence for an association between C. pneumoniae infection and asthma does not 

necessarily indicate a causative role for the bacterial infection. It could rather indicate an 

increased susceptibility of asthmatic individuals to develop chlamydial infection, although 

few data are currently available to support this hypothesis. However, studies with the mouse 

variant C. muridarum evidenced that IL-13, a major Th2-cytokine which is abundantly 

secreted during asthma pathogenesis, enhances the susceptibility of the respiratory tract to 

chlamydial infection by reducing bacterial clearance 129. Other research has shown that overt 

production of another Th2-cytokine, IL-10, can lead to enhanced bacterial dissemination and 

disease sequelae 131. Interestingly, BALB/c mice, which are biased towards Th2-mediated 

responses, are markedly more susceptible to chlamydial lung infection compared to the Th1-

predisposed C57BL/6 strain 132. Furthermore, in vitro studies demonstrated that expression of 
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the alternative macrophage activation marker, mannose receptor (CD206), plays a pivotal role 

in determining susceptibility to C. pneumoniae infection 133. Thus, it is clear that a 

pronounced pulmonary Th2-environment can create a niche in which the viability and 

propagation of C. pneumoniae bacteria are promoted. The presence of Th2-dominant 

conditions, including increased levels of IL-13 and IL-10, and of alternatively activated 

macrophages in the lungs of asthmatic individuals may therefore promote susceptibility and 

may contribute to the prevalence of chlamydial infection in these patient populations. 

Regardless of the fact whether asthmatic patients are more susceptible for developing 

chlamydial infection or not, C. pneumoniae is at least a significant cause of acute asthmatic 

exacerbations and a considerable determinant of disease severity. Indeed, a high proportion of 

clinical studies have reported the presence of an acute C. pneumoniae infection in human 

subjects hospitalized for acute exacerbation of bronchial asthma 134-139. Based on a variety of 

in vitro and in vivo studies, several mechanisms responsible for C. pneumoniae-induced 

asthma exacerbations are proposed. First, chlamydial infection of airway cells induces a 

cascade of cytokine production, including TNF-α and IL-8, and ROS-production through 

TLR-stimulation and through certain C. pneumoniae specific stress-response proteins, like 

Hsp60 and Hsp10. Secretion of these inflammatory mediators leads to the subsequent 

recruitment and activation of several immune cells. Bacterial induced pulmonary 

accumulation of recruited leukocytes eventually results in inflammation and tissue damage 

which in turn can provoke an acute asthma exacerbation 127. In agreement herewith, Huittinen 

and co-workers further confirmed the association of C. pneumoniae derived Hsp60 with 

asthma pathogenesis by illustrating the presence of Hsp60 specific IgA antibodies in a 

significant portion of asthma patients 140. C. pneumoniae infection also induces the production 

of IL-6, IFN-β, and basic fibroblast growth factor (bFGF) in human bronchial smooth muscle 

cells in vitro 141, 142. Because IFN-β and bFGF mediate smooth muscle cell proliferation, these 

data provide a mechanism by which C. pneumoniae infection might contribute to airway 

remodelling in patients with asthma. In addition, C. pneumoniae infection increases the 

secretion of matrix metalloproteinases (MMPs) by different hematopoetic and non-

hematopoetic cells 143, which actively contribute to tissue remodelling and eventually to 

exacerbations in asthmatic individuals 144. Thus, although there are relatively few data 

available, the body of evidence is sufficient to make the biologically plausible assumption that 

pulmonary infection with C. pneumoniae is likely to be associated with increased airway 

inflammation, thereby inducing asthmatic exacerbations and augmenting asthma severity. 



 101 

Collectively, clinical and experimental studies investigating the association between asthma 

and C. pneumoniae pathogens have provided biological evidence that could account for this 

association but also provided conflicting data. Studies on the potential association between C. 

pneumoniae and asthma are greatly hampered by the lack of standardized, sensitive and 

specific methods for the detection of atypical respiratory pathogens in patients 145. In addition, 

the difficulty (both in practical and ethical terms) in sampling the lower respiratory tract in 

representative populations of patients with asthma and control subjects constitutes a second 

major barrier. 

A schematic overview of the correlation between C. pneumoniae infections and allergic 

asthma is depicted in figure 1. 

 

 

 
 
Figure 1: Overview of the correlation between (acute) respiratory infections and the development and/or 
progress of allergic asthma. 
In addition to environmental and genetic factors, respiratory infections in early life can significantly contribute to 
the development of intermittent or persistent mild to moderate allergic asthma at later age. During this stage of 
the disease, acute respiratory infections can provoke exacerbation reactions by inducing pulmonary inflammation 
and mucus secretion. The succession of exacerbation reactions can eventually result in disease progression 
towards a severe allergic asthma phenotype.   
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Resident alveolar macrophages (rAM) exist in an environment high in antigenic material of 

which the majority must be ignored except when the antigen represents an infectious threat. 

When the activation threshold of rAM is exceeded, the development of a pulmonary 

inflammation is inevitable. During the course of a pulmonary inflammation, macrophage 

responses display a dynamic character. As a result of the rapid secretion of chemokines and 

cytokines by different activated resident pulmonary cells like rAM, monocytes are recruited 

to lung. In contrast to the rAM-population, the local inflammatory cytokine environment is 

the major determinant of the maturation of recruited alveolar monocytes/macrophages which 

might imply that the latter contribute to the inflammatory response in a different way than 

rAM. So it is clear that both the interplay between rAM and recruited alveolar macrophages 

and the fate of either population during the inflammation can influence the propagation and 

resolution of immune respiratory responses. In this context, it was already found that rAM are 

rapidly replaced by recruited macrophages during the course of a pulmonary inflammation 

induced by LPS and Streptococcus pneumoniae.   

rAM and recruited monocytes/macrophages significantly contribute to the onset, propagation 

and resolution of pulmonary inflammatory responses during allergic asthma. However, the 

dynamics of both macrophage populations during these different stages of the allergic 

bronchial inflammation are still poorly characterized. Therefore, we initially analyzed the 

dynamics of rAM during the course of an allergic bronchial inflammation. By using an 

OVA/alum-based mouse model of asthma, featuring a Th2-biased sensitization and an 

eosinophilic airway inflammation reminiscent of the immunopathology of mild to moderate 

asthma, we found that the rAM-subset disappeared from the alveoli during the acute stages of 

the eosinophilic inflammation. These results imply that a new post-inflammation rAM resided 

in the airways after the clearance of the allergic bronchial inflammation. Compared to naïve 

rAM, post-inflammation rAM are possibly derived from a different monocyte-subset. In 

addition, it is not unlikely that the differentiation of these recruited monocytes to mature post-

inflammation rAM is largely biased by the altered local microenvironment. In line with this 

premise, recent research already provided evidence that the functional status of post-influenza 

rAM are imprinted by the preceding inflammatory reaction. We therefore performed a 

phenotypical and functional comparison between naïve rAM and post-inflammation rAM to 

determine to what extent post-inflammation rAM were subjected to innate imprinting by the 

preceding allergic bronchial inflammation. 
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As rAM fulfill a pivotal role in the host’s defence against invading respiratory viral and 

bacterial pathogens, observed alterations in the post-inflammation rAM functional status may 

have detrimental effects on the lung tissue integrity during subsequent respiratory syncytial 

virus (RSV) and Chlamydophila (C.) pneumoniae infection. Today, these respiratory 

pathogenic microorganisms are considered as the principal cause of the most severe 

exacerbations in asthmatic individuals. Thus, as a final aim of the thesis, we determined the 

antiviral and antibacterial immune responses of post-inflammation rAM during subsequent 

RSV- and C. muridarum (the mouse biovar of C. trachomatis) infection respectively, and 

addressed their potential contribution to the immunopathology of these respiratory pathogens 

in the post-inflammation lung. 
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INTRODUCTION 

  

The mucosal surfaces of the respiratory tract are continuously exposed to environmental 

antigens and must therefore restrain excessive inflammatory responses to fulfil their role of 

gaseous exchange and to prevent bystander tissue damage. Powerful mechanical and 

immunosuppressive mechanisms protect the lung against the development of inappropriate 

immune reactivity and inflammation. When these defence mechanisms fail, chronic airway 

inflammatory diseases like allergic asthma may develop 
1
. In allergic asthma, the infiltration 

of the bronchial mucosa by leukocytes, mainly eosinophils, along with subepithelial fibrosis, 

globlet cell hyperplasia and airway hyperresponsiveness leads to reversible loss of lung 

function and in the long term to irreversible tissue remodelling 
2
.  

Through the past decades, immunosuppressive mechanisms that inhibit or limit the 

development of maladaptive pulmonary inflammatory responses have been identified. 

Allergen uptake and presentation by pulmonary plasmacytoid DCs provide intrinsic 

protection against inflammatory responses to harmless antigen by skewing T-cell 

differentiation towards the tolerogenic CD4
+
 CD25

+
 regulatory T-cell phenotype 

3
. 

Immunomodulatory cytokines such as IL-10 and TGF-β are known to possess anti-

inflammatory activities in the development of allergic asthma. Next to their inhibitory effect 

on pro-inflammatory cytokine secretion and leukocyte maturation, IL-10 and TGF-β are 

commonly implicated in the generation of the inducible regulatory T-cell subsets Tr1 and Th3 

respectively 
4
. Being important sources of pulmonary IL-10 and TGF-β 

5
, resident alveolar 

macrophages (rAM) have been shown to exert immunosuppressive activities on T-

lymphocytes and DCs 
6
. Several studies demonstrated a significant increase in allergic 

inflammation and T-cell reactivity in antigen challenged lungs after depletion of rAM 
7, 8

. The 

increased sensitivity of rAM-depleted lungs to antigen exposure observed in these studies was 

attributed to the loss of rAM-mediated suppression of DC-maturation, -function and -

trafficking to mediastinal LNs 
9, 10

. 

Following resolution of inflammation, the increased numbers and altered differentiation of 

long-lived antigen-reactive lymphocytes, a hallmark of the adaptive immune branch, stands in 

strong contrast to the back to basal cell numbers and differentiation commonly reported for 

innate immune cells such as tissue macrophages. Recent reports however, increasingly 

challenge the paradigm of innate cells retaining no memory of prior inflammatory insults 
11

. 
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Murine rAM have been reported to display a sustained desensitization to bacterial Toll-like 

receptor (TLR)-ligands after the resolution of respiratory influenza infection 
12

. In a mouse 

model of Sendai virus infection, a lasting effect on rAM was observed that persisted after the 

clearance of the virus. In this model for RSV-induced pathology, rAM-activation persisted, 

resulting in a chronic lung condition with pathological features resembling asthma and 

chronic obstructive pulmonary disease 
13

. These observations indicate that infection may 

educate also innate immune cells altering the way they respond to a subsequent inflammatory 

insult. This concept of innate imprinting has been documented in several mouse models of 

infection 
11

. However, the extent to which innate imprinting also occurs following non-

infectious, allergic inflammation and the nature of its functional outcome remain largely 

unknown. 

We now provide evidence for a pronounced innate imprinting of rAM as a consequence of 

allergic bronchial inflammation in mouse models of eosinophilic, Th2-biased mild to 

moderate asthma and of neutrophilic, Th1- and Th17-biased severe refractory asthma. The 

altered functional maturation of post-inflammation rAM was evidenced by an enhanced 

responsiveness of the cells to TLR-ligands and a newly acquired capacity to produce the type-

I IFN, IFN-β. Mechanistically, we provide evidence that the switch from a restrained to an 

unrestrained rAM inflammatory response is the consequence of allergic inflammation-

induced rAM-turnover accompanied by the appearance after the resolution of inflammation of 

a new population of secondary rAM with increased reactivity to inflammatory insults. 
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MATERIALS AND METHODS 

 

Mice 

6- to 8-week old female C57BL/6 mice were purchased from Janvier (Le Genest St.Isle, 

France). This wt strain expresses the CD45.2 alloantigen and also served as recipient for the 

generation of CD45-chimeric mice. 12-week old female B6.SJL-Ptprca Pep3b/BoyJ mice, 

expressing the CD45.1 alloantigen were obtained from Charles River (Brussel, Belgium) and 

served as bone marrow donor for the generation of CD45-chimeric mice. Both mice strains 

were kept under specific pathogen free conditions. All experiments performed in this study 

were approved by the local ethical committee. 

 

Mouse models of allergic airway inflammation 

For the allergic asthma model, C57BL/6 mice were immunized intraperitoneally with 20µg of 

grade V chicken egg OVA (Sigma-Aldrich, St.Louis, MO, USA), adsorbed on 1mg AlOH3 

(alum; Sigma-Aldrich) in endotoxin-free PBS (Lonza, Walkersville, MD, USA). To generate 

a model for a non-eosinophilic severe refractory Th1-/Th17-mediated allergic bronchial 

inflammation, C57BL/6 mice were immunized subcutaneously with 20µg of OVA in PBS 

emulsified in 75µl CFA (Sigma-Aldrich). In both mouse models, OVA-sensitized mice were 

exposed to OVA-aerosols, consisting of either 1% (allergic asthma model) or 0,1% 

(neutrophilic Th1-/Th17-mediated allergic inflammation model) of grade III OVA (Sigma-

Aldrich) in PBS. 

 

Generation of chimeric CD45.2 alloantigen-expressing recipient mice 

Bone marrow cells were isolated under sterile conditions from the tibias and femurs of sex-

matched CD45.1 donor mice. Briefly, tibias and femurs were flushed with sterile PBS and the 

cell suspension was filtered through 70µm nylon meshes (BD Biosciences, San Diego, CA, 

USA) to remove cell aggregates. RBC lysis was performed before transplantation by 

incubation of the single cell suspension in ACK Lysing Buffer (Lonza) for 3 min at room 

temperature. Recipient CD45.2 alloantigen-expressing C57BL/6 mice received 8 Gy of total 

body irradiation using 5 MV photons of a linear accelerator (SL-75, Elekta, Crawley, UK). 

This radiation dose depleted nearly completely the bone marrow but did not induce depletion 

of rAM and memory T-cells in previously OVA-alum sensitized mice. A total of 8x10
6
 

CD45.1 donor bone marrow cells suspended in 250µl sterile PBS were transplanted via lateral 
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tail vein injections into CD45.2 recipient mice. The drinking-water of the CD45.2 recipient 

mice was supplemented with 0.2% neomycin trisulfate antibiotics (Sigma-Aldrich) 5 days 

before until 14 days after the irradiation. 

 

Alveolar cell isolation and culture 

Mice were anesthetized with avertin (2,2,2-tribromethanol; 2,5% in PBS; Sigma-Aldrich). 

BAL was performed by making a small incision in the trachea, to allow passage of a lavage 

canulae. Lungs are flushed 4 times with 1ml Ca
2+

- and Mg
2+

-free Hank’s Balanced Salt 

Solution (HBSS; Invitrogen, Carlsbad, CA, USA), supplemented with 0.05mM EDTA 

(ethylenediaminetetraacetic acid). Optionally, a prior lavage with 0,5ml HBSS-EDTA was 

performed and BAL fluid was isolated by centrifugation and collection of the supernatant. 

BAL cells were washed and resuspended in PBS for further use. Naïve and post-inflammation 

rAM isolated via BAL were cultured in complete culture medium (RPMI 1640 containing 1% 

heat-inactivated FCS, 25mM HEPES (N-2-hydroxyethylpiperazine-N’-ethanesulfonic acid), 

2mM L-glutamine, 1mM pyruvate, 100U/ml penicilline/streptomycin (Invitrogen), and 55µM 

2-ME (Sigma-Aldrich). All cultures were enriched for macrophages by plastic adhesion for 

1h at 37°C. Naïve and post-inflammation rAM were then stimulated for the indicated times 

with LPS (Escherichia coli 0111:B4; Sigma-Aldrich), polyriboinosinic:polyribocytidylic acid 

(poly(I:C); Invivogen, San Diego, CA, USA) or imiquimod (Invivogen) at 37°C.  

 

Flow cytometry 

The expression of alveolar macrophage maturation markers was assessed on naïve and post-

inflammation rAM by flow cytometry. Briefly, BAL cells were counted and suspended at a 

concentration of 10
6 

cells/ml. High affinity FcγRs were blocked by incubation with purified 

anti-mouse CD16/CD32 (Fc-Block) for 15 min at 4°C and stained with CD11c-

allophycocyanin (APC), DEC-205-PE, F4/80-biotin, CD11b-PE, CD115-PE, CD16/CD32-PE 

and CD36-PerCP for 1h at 4°C. Biotinylated F4/80 Ab was detected by an additional 

incubation step with streptavidin-PE for 20 min at 4°C. All antibodies and the streptavidin-PE 

were purchased from BD Biosciences. Autofluorescence was detected in the FL-1 channel.  

Turnover of the naïve rAM during the course of the bronchial inflammation elicited in both 

models was determined using CD45-chimeric mice. Naïve rAM were identified by recipient 

specific CD45.2 expression and by uptake of latex Fluoresbrite plain Yellow-Green 
14

 1 
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micron microspheres (Polysciences, Warrington, PA, USA), administered by i.t. route 48 h 

before the first OVA-aerosol exposure. Elicited cells were identified as microsphere
-
 cells 

expressing donor CD45.1. Anti-mouse CD45.1-PE and CD45.2-PerCP-Cy5.5 antibodies (BD 

Biosciences) were used according the manufacturer’s instructions. Pre-incubation of the cells 

with Fc-Block was used to prevent unwanted binding to FcRs.  

All samples were measured on a FACSCalibur flow cytometer (BD Biosciences) and 

analyzed using CellQuest software. 

 

BAL total and differential cell counts 

BAL cell counts and cell type composition was analyzed by flow cytometry. Cells, pre-

incubated with Fc-Block were classified as monocytes (alveolar macrophages, elicited 

monocytes and DCs), neutrophils, eosinophils or lymphocytes based on forward and side 

scatter gating and fluorescence intensities for anti-mouse CD3ε-Alexa488, B220-FITC, 

CCR3-PE, CD11c-APC and I-A
b
-biotin which was recognized by streptavidin-PerCP. All 

antibodies and streptavidin-PerCP were purchased from BD Biosciences, except CCR3-PE 

(R&D Systems, Abingdon, UK). Additionally, the total number of BAL cells was calculated 

from the measured total cell count relative to the number of Flow-Count beads (Beckman 

Coulter, Brea, CA, USA) of which a constant amount of was added to the sample. Total 

numbers of BAL cells were counted by use of a Bürker-chamber (Marienfeld, Lauda-

Königshofen, Germany). Trypane blue was added to exclude dead cells. Differential cell 

counts obtained by flow cytometry were confirmed by morphological examination of cytospin 

preparations using a Shandon cytocentrifuge (Techgen, Zellik, Belgium) and stained with 

May-Grünwald-Giemsa (Sigma-Aldrich). The percentage of monocytes/macrophages, 

neutrophils, and eosinophils was determined by counting at least 400 cells. Both analyses 

were performed on an Olympus BX51 microscope, equipped with X4, X10, X20, X40 and 

X100 lenses. 

 

Total RNA preparation and real-time quantitative PCR 

RNA isolation was performed using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) 

according to manufacturer’s protocol. cDNA was synthesized using a Superscript II Reverse 

Transcription Reagent Kit (Invitrogen). Real-time quantitative PCR (qPCR) was performed 

on a Lightcycler 480 (Roche Molecular Systems) using a qPCR kit for SYBR Green I (Roche 
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Molecular Systems). Real-time qPCR amplification was performed in triplicate reactions 

under the following conditions: a preincubation step at 95°C for 5min, followed by 50 cycles 

at 95°C for 10s and at 60°C for 30s. The following forward and reverse primers were used: 

5’-TGAACACGG CAGTGGCTTTA-3’ and 5’-GCATTCACAGTCACT TAGGTGGTTTA-

3’ (murine arg-1); 5’-CAGCTGGGCTGTACAAACCTT-3’ and 5’-CATTGGAAGTGAAGC 

GTTTCG-3’ (murine inos) 5’-AGCCCTCATGGTCTGGTTGGTT-3’ and 5’-GCACTCCGA 

GGCACTGTTATCC-3’ (murine usp18); 5’-ATCTCTCCCTACTC TGCCCTCCTA-3’ and 

5’-GCGTATAAATCAGCAATCCCTTCA-3’ (murine ifit2); 5’-CCC TGGGCCCTTCCTGT-

3’ and 5’-CCCGGGGGCACTTGTCT-3’ (murine oas1); 5’-GGATA GAAGTTGTGGGGAG 

TGGC-3’ and 5’-CAGCCTTGGTGACCTTGACGA-3’ (murine ifi205) 5’-TAGTCCTTCCT 

ACCCCATTTCC-3’ and 5’-TTGGTCCTTAGCCACTCCTTC-3’ (murine il6); 5’-AACCAG 

GGCCTTCTTTAG-3’ and 5’-GATCTGCCTGCCTTGGTCT-3’ (murine il12p40); 5’-CCTG 

CTGCTCTCAAGGTTGTT-3’ and 5’-TGGCTGTCACTGCC TGGTACTT-3’ (murine 

rpl13a). mRPL13a mRNA was used as reference housekeeping gene for normalization. All 

primers were purchased from Invitrogen. 

 

In vitro phagocytosis assay 

Uptake of YG
+
 microspheres by naïve and post-inflammation rAM was imaged with a Leica 

TCS SP5 AOBS confocal microscope (Leica, Wetzlar, Germany) using 488-nm Multi Argon 

laser line. Cytoplasm was stained with CellTracker Orange (Invitrogen) and excited with 543-

nm HeNe laser. Nuclei were stained with 500nM DAPI (4,6 diamidino-2-phenylindole) 

(Invitrogen) and excited with the 405-nm line of an UV diode laser. Stained cells were 

mounted in 1% N-propylgallate in glycerol before image acquisition. Images were acquired 

with LAS AF software (Leica) and subsequently analyzed with Volocity software (Perkin-

Elmer, Coventry, UK).  

 

Cytokine/chemokine measurement 

Protein levels of mouse TNF-α, IL-6, IL-12p70, CXCL1 and CXCL2 in culture supernatant or 

BAL fluid were quantified with the Bioplex suspension array system (Biorad, Hercules, CA) 

for simultaneous detection of cytokines, according to the manufacturer’s protocol. The 

analytes were measured with the Bioplex protein array reader and the Bioplex manager 

software, using recombinant cytokine standards (all from Biorad). 
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Culture supernatant levels of IFN-β were determined via the VeriKine Mouse IFN Beta 

ELISA Kit (PBL interferon source, Piscataway, NJ, USA) according to the manufacturer’s 

protocol.   

 

Statistics 

Statistics were performed using GraphPad Prism 5 software (GraphPad Software, La Jolla, 

CA, USA). Following outlier statistics in order to choose between performing a one-way 

ANOVA or Kruskal-Wallis nonparametric test, Gaussian distribution of parameters was 

checked using a Kolmogorov-Smirnov test. Differences in mean between each two 

independent experimental groups were analyzed using an unpaired t-test or the 

nonparametrical Mann-Whitney U test at 95% confidence interval. No statistic analysis was 

done for gene expression data, as this concerned data of pooled samples. 
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RESULTS 

 

Surface marker profile and basal differentiation of naïve and post-inflammation rAM 

In this study we used a mouse model of allergic asthma in which a Th2-biased sensitization of 

C57BL/6 mice against the model allergen OVA is elicited by repeated intraperitoneal 

immunization using aluminiumhydroxide (alum) as adjuvant. Exposure of the sensitized mice 

to nebulized OVA then generated an eosinophilic airway inflammation reminiscent of the 

immunopathology of mild to moderate asthma (figure 1A, right panel). The clearance of the 

allergic pulmonary inflammation was verified by harvesting BAL samples at different time 

points after the last of seven OVA-challenges. This showed that the alveoli regained a new 

steady-state condition within 12 days. At this time point, absolute cell numbers returned to 

basal levels (figure 1A, left panel) and cytospin analysis showed that the cellular composition 

of the alveoli again consisted for 90% of macrophages (figure 1A, right panel). These 

macrophages form the new rAM-population of the post-inflammation lungs and can therefore 

be considered as post-inflammation rAM. In addition, at this time point Th2-associated 

inflammatory cytokines were no longer detectable in the BAL fluid (data not shown).  

In order to determine to what extent the post-inflammation rAM-population exhibited a 

characteristic alveolar macrophage phenotype, we analyzed the expression levels of alveolar 

macrophage markers by flow cytometry. Naïve and post-inflammation rAM-populations were 

isolated via BAL from naïve and OVA-challenged mice 15 days after the last OVA-exposure. 

CD11c and DEC-205, hallmark surface markers of rAM 
15-20

, were equally and uniformly 

expressed on both rAM-populations (figure 1B). High intrinsic fluorescence intensity, which 

constitutes as a general phenotypic characteristic of rAM 
21

, was present in both rAM-

populations. Also F4/80, a broad macrophage marker 
22

, was nearly equally and uniformly 

expressed on both cell populations. In contrast, naïve rAM were uniformly negative for the 

expression of CD11b, whereas post-inflammation rAM expressed medium to high levels of 

CD11b. Also the monocyte marker CD115 (M-CSFR) and phagocytosis receptors FcγRIII/II 

(CD16/CD32) and SR-A (CD36) showed uniformly elevated expression levels at rAM from 

post-inflammation mice (figure 1B). Thus, although post-inflammation rAM exhibit a 

characteristic alveolar macrophage marker profile – autofluo
high 

CD11c
+ 

DEC205
+ 

F4/80
+
 – 

they differ from naïve rAM in the expression levels of macrophage/monocyte maturation and 

phagocytosis markers. 
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Alveolar macrophages typically exhibit high phagocytic activity 
23

. To verify to what extent 

post-inflammation rAM had retained this functional trait, naïve and post-inflammation rAM 

were incubated ex vivo with fluorescent latex microspheres for up to 6h. Phagocytosis of the 

latex microspheres was assessed by confocal microscopy. Fluorescent microspheres were 

readily engulfed by naïve rAM, whereas microsphere uptake was strongly reduced in post-

inflammation rAM at all time points (figure 1C). After 6h of incubation, nearly 85% of naïve 

rAM were positive for uptake of fluorescent microspheres. In contrast, only 10% of the post-

inflammation rAM exhibited microsphere uptake. In addition, microsphere
+
 naïve rAM 

consistently featured higher numbers of microspheres per cell compared to microsphere
+
 post-

inflammation rAM (figure 1D). 

A reduced phagocytic activity is often observed in macrophages that have been alternatively 

differentiated 
24

. These so-called M2-macrophages feature in addition to a low phagocytic 

capacity an arginine metabolism differing from M1- or classical differentiated macrophages 

by an increased arginase/iNOS expression ratio 
25

. Analysis of arg-1 and inos mRNA levels 

indeed confirmed this shift towards a M2-characteristic arginine metabolism. The expression 

of arg-1, the prototypic M2-marker, was up to 50-fold higher in post-inflammation rAM 

compared to naïve rAM while the expression of the M1-marker, inos, was hardly different 

between both macrophage populations (figure 1E). 

 

 

 

 

 

 

 

 

Figure 1. Marker profile and basal differentiation of post-inflammation rAM. 

(A) OVA/alum sensitized C57BL/6 mice were exposed to 7 OVA-aerosols or left untreated as naïve controls. 

Average total (left panel) and differential (right panel; white bars: macrophages; black bars: eosinophils; grey 

bars: neutrophils) BAL cell counts were determined via flow cytometry and Giemsa and May-Grünwald-stained 

cytospin analyses respectively at the indicated time points after the last OVA-exposure (n=5) (nc = naïve 

control). Error bars represent SEM. (B) Flow cytometry analysis of the expression pattern of alveolar 

macrophage maturation markers. OVA/alum sensitized C57BL/6 mice were exposed to 7 OVA-aerosols (n=7) or 
left untreated (n=7). BAL samples were taken at d15 after the last OVA-exposure and naïve (grey line) and post-

inflammation (black line) rAM were analyzed for intrinsic fluorescence intensity and for expression of CD11c, 

DEC-205, F4/80, CD11b, CD115, CD16/CD32 and CD36. Dotted line: unstained control. (C) Naïve and post-

inflammation rAM isolated from C57BL/6 mice (n=5) were incubated for the indicated time with YG+ 

microspheres (10 microspheres/cell). Microsphere uptake was determined by confocal analysis of (C) the 

percentage of microsphere+ cells and (D) the number of microspheres per cell. The percentage of microsphere+ 

rAM represents the average of 10 randomly selected microscopic fields from triplicate cultures. Error bars 

represent SEM. Confocal pictures in D are an overlay of green (YG+ microsphere), red (CellTracker Orange) and 

blue (DAPI nuclear staining). Bars: 20µm (E) Naïve (white bars) and post-inflammation (grey bars) rAM were 

isolated (n=7) and the basal levels of arg-1 and inos mRNA transcripts were assessed by RT-qPCR. Results are 

expressed as the mean n-fold induction in mRNA expression compared to naïve rAM ± SD of triplicate PCR 

reactions. All data presented in this figure are representative for two independent experiments. 
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Differential inflammatory cytokine and IFN-β response after TLR-stimulation 

We next investigated to what extent TLR-signalling in post-inflammation rAM is affected. 

We therefore compared the response of naïve and post-inflammation rAM to ligation of the 

anti-bacterial TLR, TLR-4, and the anti-viral TLRs, TLR-3 and TLR-7. rAM were isolated 

from naïve and post-inflammation lungs and cultured ex vivo for 6h in the presence of E. coli 

LPS (0,1µg/ml), poly I:C (10µg/ml) or imiquimod (10µg/ml) respectively. Levels of 

inflammatory cytokines and chemokines were subsequently analyzed via the Bioplex 

suspension array system. As shown in figure 2, compared to naïve rAM, post-inflammation 

rAM secreted markedly increased protein levels of TNF-α, IL-6, IL-12(p70), CXCL1 (KC) 

and CXCL2 (MIP-2) after stimulation with LPS and imiquimod. Upon poly I:C stimulation 

however, these cytokines and chemokines remained undetectable or near basal levels 

(CXCL2) in the supernatant of both rAM cell cultures (figure 2).  

rAM differ from other tissue macrophages in their failure to autonomously produce IFN-β in 

response to TLR-3 and TLR-4 triggering 
26

. Strikingly, post-inflammation rAM showed a 

switch from an IFN-β production defective to an IFN-β production competent phenotype after 

LPS and poly I:C stimulation but failed to do so in response to imiquimod (figure 3). This 

discrepancy was also confirmed at the level of autocrine IFN-β bioactivity as apparent from 

the strongly increased transcript levels of usp18, ifit2, oas1 and ifi205 in LPS- and poly I:C-

treated post-inflammation rAM (figure 3). The IFN-β biomarker function of these genes was 

confirmed by performing a similar analysis on the post-inflammation rAM from ifn-β KO 

mice 
27

, which developed a normal Th2-mediated eosinophilic inflammation (data not 

shown). Post-inflammation rAM of these KO-mice no longer displayed the strong induction 

of usp18, ifit2, oas1 and ifi205 in response to LPS (data not shown), thus confirming the 

dependence of these genes on the expression of IFN-β.  
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Figure 2. Inflammatory cytokine and chemokine response of naïve and post-inflammation rAM to TLR-3, 

TLR-4 and TLR-7 engagement. 
Naïve and post-inflammation rAM isolated from C57BL/6 mice (n=8) were ex vivo stimulated with 0.1µg/ml E. 

coli LPS, 10µg/ml poly I:C (P I:C) or 10µg/ml imiquimod (Imi) for 6h or left untreated as control. Protein levels 

of TNF-α, IL-6, IL-12(p70), CXCL-1 and CXCL-2in the culture supernatant were measured using the Bioplex 

suspension array system. Data represent the average protein concentration ± SD of triplicate culture conditions. 

Data are representative for three experimental repeats. 
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Figure 3. IFN-β response of naïve and post-inflammation rAM to TLR-3, TLR-4 and TLR-7 engagement. 
Naïve and post-inflammation rAM were isolated from C57BL/6 mice (n=8) and stimulated ex vivo with 

0,1µg/ml E. coli LPS, 10µg/ml poly I:C (P I:C) or 10µg/ml imiquimod (Imi) for 6h or left untreated as control. 

(A) IFN-β protein levels in the culture supernatant were determined by ELISA. Results represent the average 

IFN-β levels ± SD of triplicate culture conditions. (B) RT-qPCR was used to analyze mRNA expression levels of 

usp18, ifit2, oas1 and ifi205. Results represent the mean n-fold induction compared to unstimulated naïve rAM ± 

SD of triplicate PCR reactions. Data presented are representative for three independent experiments. 

 

 

Increased in vivo inflammatory TLR- reactivity of post-inflammation lungs   

The functional outcome of the differential TLR-reactivity observed between both rAM-

populations was further verified by analysis of the inflammatory BAL infiltrate 16h after 

instillation of LPS (10ng), poly I:C (800ng) or imiquimod (800ng). In contrast to the 
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relatively weak response observed in naïve lungs, inflammation-experienced lungs showed a 

more pronounced alveolar infiltration of inflammatory leukocytes after challenge with LPS, 

poly I:C or imiquimod (figure 4A). Although macrophages/monocytes and neutrophils 

constituted the main components of the inflammatory infiltrate in both groups, higher cell 

numbers of both leukocyte populations were found in the BAL isolated from LPS-challenged 

post-inflammation lungs compared to naïve lungs (figure 4B). Furthermore, in naïve lungs the 

instillation of poly I:C or imiquimod resulted in an alveolar infiltration of mainly 

monocytes/macrophages. In contrast, in post-inflammation lungs poly I:C or imiquimod 

challenge caused in addition a significant recruitment of neutrophils as well as eosinophils to 

the  bronchoalveolar lumen (figure 4B). 

 

 

Figure 4. In vivo LPS, poly I:C and imiquimod challenge of post-inflammation lungs.  

(A) Post-inflammation (d15 after the last OVA-challenge) and naïve C57BL/6 mice (n=7) were challenged i.t. 

with 10ng E. coli LPS, 800ng poly I:C, 800ng imiquimod or PBS as a control and BAL was collected 16h later. 

Average BAL cell counts ± SEM (A) and average BAL cellular composition ± SEM (B) were determined by 

flow cytometry and Giemsa and May-Grünwald-stained cytospin analyses. White bars: macrophages, black bars: 

neutrophils and grey bars: eosinophils. (A): * p<0.05 and *** p<0.0001. (B): ** p<0.01 and ***p<0.001 

compared to the corresponding macrophage numbers in LPS, poly I:C and imiquimod stimulated naïve lungs; 
£££p<0.001 compared to the corresponding neutrophil numbers in LPS, poly I:C and imiquimod stimulated naïve 

lungs; $$p<0.01 and $$$p<0.001 compared to the corresponding eosinophil numbers in LPS, poly I:C and 

imiquimod stimulated naïve lungs.  
 

 

Inflammation-induced rAM-turnover is crucial for the development of the post-

inflammation rAM-phenotype 

We next addressed the question to what extent the observed post-inflammation rAM-

phenotype arose either from naïve rAM that underwent an education process during  

pulmonary inflammation or from monocytes that were freshly recruited during or after 
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bronchial inflammation and whose differentiation was subsequently influenced by the 

prevailing lung environment. We therefore followed the fate of the naïve rAM-population in 

the course of the allergic bronchial inflammation. To facilitate the discrimination between 

rAM and newly recruited macrophages/monocytes, OVA/alum sensitized C57BL/6 mice, 

which express the CD45.2 leukocyte alloantigen, were first irradiated and transplanted with 

CD45.1 alloantigen-expressing bone marrow cells (figure 5A). In combination with 

intratracheal delivery of fluorescent (YG
+
) latex microspheres (1µm), flow cytometry analysis 

allowed to identify rAM as microsphere
+
 CD45.2

+
 cells and recruited 

macrophages/monocytes as microsphere
-
 CD45.1

+
 cells (figure 5B). At the moment of 

intratracheal delivery of YG
+
-microspheres, a small fraction of newly recruited macrophages 

from the donor type were present and had taken up the instilled microspheres. This cell 

fraction accounted only for 2% in the naïve condition (figure 5B, upper right panel, green 

gate). The pulmonary response to nebulised OVA was not influenced by the preceding 

irradiation process (supplemental figure S1). Furthermore, intratracheal administration of 

microspheres did not elicit inflammatory cell recruitment as such and did not alter the 

expression of typical alveolar macrophage markers (CD11c, DEC-205 and F4/80) (data not 

shown).  

As illustrated in figure 5B, exposure to OVA-aerosol provoked pronounced inflammatory cell 

recruitment to the bronchoalveolar lumen. As a consequence, the relative number of the 

microsphere
+
 CD45.2

+
 rAM decreased with increasing numbers of OVA-challenges. To 

determine the inflammation-induced rAM-turnover, we therefore calculated the absolute 

numbers of microsphere
+
 CD45.2

+
 cells present in the BAL from the percentage of the cell 

population and the total alveolar cell infiltrate. This analysis revealed that absolute rAM-

numbers remained constant after 2 OVA-challenges (figure 5C). However, microsphere
+
 

CD45.2
+
 numbers sharply dropped after 4 OVA-exposures and nearly completely disappeared 

after 7 OVA-exposures (figure 5C). In order to find out whether also fewer OVA-exposures 

would lead to rAM-disappearance from the alveoli, OVA/alum sensitized CD45-chimeric 

mice were exposed to only 2 OVA-aerosols. As expected, absolute rAM-numbers remained 

constant for the first two days of treatment but then decreased dramatically from day 3 after 

the last (2
nd

) OVA-challenge (figure 5D). 

We next verified to what extent the phenotype of the post-inflammation rAM was a 

consequence of the preceding allergic inflammation per se or just of the accompanying rAM-
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turnover. We therefore mimicked the enhanced rAM-turnover and their replacement by newly 

recruited macrophages/monocytes by a sterile, non-inflammatory depletion of naïve rAM via 

i.t. administered clodronate liposomes 
28

. This depletion was followed by a spontaneous 

gradual reconstitution of the rAM-population, reaching its initial number at day 14 (data not 

shown). Strikingly, this depletion-induced secondary rAM-population showed, when 

stimulated ex vivo, a LPS-hyporesponsive phenotype highly similar to the hyporesponsiveness 

of naïve rAM. As illustrated in figure 6A, no differences in mRNA expression levels of the 

inflammatory cytokines il6 and il12p40 were found between LPS-stimulated naïve and 

depletion-induced secondary rAM. Also the expression of the IFN-β responsive genes, usp18 

and ifit2, did not differ between both rAM-populations (figure 6A).  

The dependence of the altered post-inflammation rAM-reactivity on inflammation-induced 

rAM-turnover rather than on rAM-turnover per se, raised the issue to what extent the nature 

of the bronchial allergic inflammation may affect this phenomenon of innate imprinting. We 

therefore applied the same experimental set-up but now in a mouse model of non-eosinophilic 

severe refractory asthma. In this model, systemic sensitization against OVA in the presence of 

CFA leads to a Th1- and Th17-biased neutrophilic bronchial inflammation after exposure to 

nebulised OVA 
29

. Also in this model, bronchial inflammation resulted in a drastic decrease in 

absolute microsphere
+ 

CD45.2
+
 rAM-numbers from 4 OVA-challenges on (figure 6B) which 

was similar to the rAM-turnover observed in the course of a Th2-biased eosinophilic 

bronchial inflammation. When assayed for reactivity to LPS-stimulation, these post-

inflammation rAM showed the enhanced inflammatory reactivity characteristic for post-

inflammation rAM from the eosinophilic asthma model, namely increased expression levels 

of NF-κB and IFN-β responsive genes after ex vivo stimulation with LPS (figure 6A). 
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Figure 5. Naïve rAM-turnover in response to allergen exposure. 
(A) OVA/alum sensitized wt C57BL/6 mice (CD45.2) (n=7) were irradiated and reconstituted intravenously with 

CD45.1-expressing donor bone marrow cells at d-10 and d-9 respectively. YG+-microspheres were administered 
i.t. at d-5 followed at d0 by exposure of the mice to OVA-aerosol, or left unchallenged as control. (B) Naïve 

rAM from unchallenged CD45-chimeric mice were identified by flow cytometry as CD45.2+ microsphere+ cells 

(red gate) within the macrophage/granulocyte gate. Elicited AM were identified as CD45.1+ microsphere- cells. 

(C) The presence of naïve rAM (microsphere+ CD45.2+ cells) in BAL samples collected after two, four and 

seven OVA-exposures on d3, d5 and d8 respectively, were determined by flow cytometry as in B. Average 

absolute naïve rAM-numbers were calculated from the percentages of microsphere
+
 CD45.2

+
 cells and absolute 

alveolar cell numbers as determined by flow cytometry, and compared to the unchallenged control group (broken 

line) (D) In a second set-up, OVA/alum sensitized CD45-chimeric mice (n=7) were exposed to two OVA-

aerosols. BAL was taken one, three and six days after the second OVA-exposure. Average absolute naïve rAM-

numbers were obtained as in C and compared to that of unchallenged control mice (broken line). Bars in C and D 

represent SEM. ** p<0.01; *** p<0.0001. Data presented are representative for two independent experiments. 
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Figure 6. Inflammation-induced rAM-turnover is crucial for the development of the post-inflammation 

rAM-phenotype. 
(A) Naïve rAM from C57BL/6 mice were depleted by i.t. instillation of 30% clodronate liposomes (CL) at d0. 

OVA/CFA sensitized C57BL/6 mice were exposed to 7 OVA-aerosols 29. BAL was performed at d15 after 

clodronate treatment or instillation of mock liposomes or at d15 after the last (7th) OVA-challenge respectively 

(n=7). Mock-treated naïve rAM, CL depletion-induced secondary rAM and post-inflammation rAM from the 

non-eosinophilic severe refractory asthma model were isolated and stimulated ex vivo with 0,1µg/ml LPS for 6h. 

RT-qPCR analysis was used to determine the mRNA transcript levels of il6, il12p40, usp18 and ifit2. Results 

represent mean n-fold induction levels compared to unstimulated rAM from mock treated mice ± SD from 

triplicate PCR reactions. (B) OVA/CFA sensitized wt C57BL/6 mice (CD45.2) (n=7) were irradiated and 

reconstituted intravenously with CD45.1-expressing donor bone marrow cells at d-10 and d-9 respectively. YG+ 

microspheres were administered i.t. at d-5 followed at d0 by exposure of the mice to OVA-aerosol, or left 

unchallenged as control. BAL samples were collected after two, four and seven OVA-exposures. The presence 
of naïve rAM (microsphere+ CD45.2+) in the BAL was determined as in figure 5B and C. Error bars represent 

SEM. Dotted line represents the naïve control. *** p<0.0001. All data presented are representative for two 

independent experiments. 
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DISCUSSION 

 

Inflammatory responses are characterized as highly dynamic processes. Once local innate 

immune cells are activated by the inflammatory insult, cytokine and chemokine secretion 

results in different waves of leukocyte recruitment to the site of inflammation. After the 

elimination of the antigenic threat, inflammation is cleared and the tissue eventually strives to 

regain steady-state conditions. In the present study, we used a mouse model of eosinophilic 

asthma in which OVA/alum sensitized mice are exposed to nebulised OVA, resulting in the 

infiltration of the bronchoalveolar lumen with eosinophils, CD4
+
 T-lymphocytes, 

predominantly Th2-cells, and monocytes. Once allergen exposure was arrested, the bronchial 

inflammation dampened and cleared eventually. Absolute cell numbers returned to basal 

levels and the cellular composition of the alveoli again consisted nearly exclusively of rAM. 

Phenotypic analysis of this post-inflammation rAM-population showed few differences 

between naïve and inflammation-experienced rAM. CD11c and DEC-205, rAM surface 

markers not found on other macrophage populations and expressed mainly by DCs and DC-

subpopulations 
15-20

, were equally expressed on both naïve and post-inflammation rAM. High 

intrinsic fluorescence intensities were also found on both rAM-populations. Yet, post-

inflammation rAM exhibited higher levels of CD11b, another member of the integrin family 

which is historically considered as the canonical macrophage marker 
22

, and of CD115, the 

receptor for the monocyte/macrophage growth factor M-CSF 
30

. 

In spite of post-inflammation rAM being phenotypically nearly indistinguishable from naïve 

rAM, both populations differed dramatically in innate functionality. rAM readily engulf 

opsonised and non-opsonised particulate matter 
23

. This high phagocytic capacity is also 

illustrated by the high uptake of latex microspheres that we observed in cultures of naïve 

rAM. However, post-inflammation rAM appear to have lost this phagocytic capacity, showing 

a near 10-fold decrease in latex beads engulfed per cell after 6h and a similar decrease in the 

number of cells having engulfed latex beads. Contrary to this reduced phagocytic capacity, ex 

vivo TLR-stimulation of post-inflammation rAM showed a strongly enhanced inflammatory 

cytokine and chemokine response. Secreted levels of inflammatory mediators like TNF-α, IL-

6, IL-12p70, CXCL1 and CXCL2 were increased after LPS and imiquimod stimulation 

compared to naïve rAM. These data indicate a shift from a naïve rAM-phenotype exerting 

phagocytic clearance of inhaled microparticles with a minimal inflammatory reactivity to a 

post-inflammation rAM-phenotype possibly responding to a microbial insult by secreting a 
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full range of inflammatory mediators. Further evidence for a shift towards a less tightly 

controlled inflammatory phenotype derives from the strikingly different regulation of IFN-β 

expression observed in post-inflammation rAM. Although naïve rAM possess functional 

IFNAR-signalling which renders them fully responsive to exogenous type I IFN, these cells 

characteristically fail to autonomously secrete IFN-β after engagement of TLR-3 or TLR-4 
26

. 

However, when assayed for this trait, post-inflammation rAM produced significant levels of 

bioactive IFN-β following TLR-4 and TLR-3 stimulation by LPS and poly I:C respectively. 

TLR-4 is the only TLR family member that uses all four known downstream adaptor 

molecules (TIRAP, MyD88, TRIF and TRAM) 
31

. Engagement of TLR-4 induces the 

expression of NF-κB target genes via the MyD88-dependent pathway while the type I IFN 

response (via IRF-3) is induced mainly via the TRIF-dependent pathway. Triggering of TLR-

3 however, engages predominantly TRIF-dependent signalling and expression of type I IFNs 

31
. In agreement herewith, TLR-3 triggering by poly I:C selectively induced a potent IFN-β 

response in post-inflammation rAM whereas naïve rAM failed to do so. Finally, triggering 

exclusively the complementary MyD88-signalling pathway by using the TLR-7 ligand 

imiquimod, further confirmed the strongly increased inflammatory reactivity of post-

inflammation rAM as opposed to the hypoinflammatory reactivity of naïve rAM. Thus, innate 

imprinting of rAM by allergic bronchial inflammation causes a switch from a highly 

phagocytic, hypoinflammatory to a low phagocytic, hyperinflammatory phenotype which can 

contribute to the increased total pulmonary response to microbial and viral infectious agents. 

A shift in the GM-CSF/M-CSF balance may be at the origin of the differential type I IFN 

responsiveness of post-inflammation rAM. It has been shown before that priming of bone 

marrow derived macrophages (BMDM) with M-CSF or GM-CSF affects the cytokine 

repertoire produced after LPS-stimulation. GM-CSF-priming of BMDM enhanced the 

expression of genes induced by the MyD88-dependent pathway like tnf-α, il-12p40 and il-

23p19, while M-CSF-primed BMDM expressed increased levels of IRF-3 and IFN-β-induced 

genes like ifn-β and ccl5 
32

. The healthy lung constitutes a GM-CSF rich environment 
33

. 

Imprinting by GM-CSF of naïve rAM could therefore be at the basis of the defective IFN-β 

production observed in this rAM-population. A shift towards M-CSF as a result of the 

preceding allergic bronchial inflammation could then contribute to the enhanced TRIF-

dependent TLR-signalling seen in post-inflammation rAM. This proposition is further 

supported by the observed dependence of the post-inflammation rAM-phenotype on a 

preceding allergic bronchial inflammation, rather than on the recruitment of monocytes per se. 
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Thus, sterile depletion of naïve rAM by clodronate liposomes followed by a spontaneous 

repopulation of the lung with a new population of secondary rAM did not result in the 

characteristic inflammatory and IFN-β positive phenotype as represented by post-

inflammation rAM. Yet, also an accelerated rAM-turnover and replacement by newly elicited 

mononuclear phagocytes may be part of the mechanism underlying this phenomenon of innate 

imprinting. Applying the genetically stable and activation-independent CD45.1 and CD45.2 

alloantigen expression system to generate chimeric mice expressing the CD45.1 alloantigen 

on peripheral blood leukocytes and the CD45.2 alloantigen on rAM, we observed a rapid 

clearance of naïve rAM from the bronchoalveolar lumen starting after four OVA-aerosol 

challenges and their replacement by newly recruited monocytes/macrophages. Similar 

findings have been reported using a mouse model for acute respiratory distress syndrome in 

which a rapid rAM-turnover is induced by a single bolus instillation of E. coli LPS 
34

. A study 

of the rAM-turnover kinetics in mice infected with Streptococcus pneumoniae also revealed a 

brisk replacement of rAM by elicited macrophages during the innate phase of the infection 
35

. 

Thus, an inflammation-driven clearance of rAM may facilitate their replacement by a novel 

population of rAM that have acquired an altered innate response profile as a result of an 

altered inflammatory cytokine profile in the local microenvironment. The generic nature of 

this mechanism of innate imprinting is further illustrated by the similar rAM-clearance 

kinetics and the similar post-inflammation rAM functional phenotype observed in a recently 

established mouse model of Th1- and Th17-biased non-eosinophilic severe refractory asthma 

29
. Nevertheless, the nature of the inflammatory response may exert some fine-tuning of the 

basal differentiation of the post-inflammation rAM. Thus, in the eosinophilic asthma model, 

Th2-associated cytokines like IL-4 may promote the M2-differentiation state of post-

inflammation rAM, as suggested by the increased arg-1 to inos ratio we observed in this 

model. 

In conclusion, alveolar macrophages exist in an environment high in antigenic material of 

which the majority must be ignored except when the antigen represents an infectious threat 
36, 

37
. This rAM-phenotype provides a basal level of restraint that can be elegantly overridden in 

the presence of infection. We demonstrate that this tightly controlled cell population rapidly 

disappears from the alveoli following a brief exposure to allergen and is subsequently 

replaced by a new post-inflammation rAM-population which exhibits altered innate 

characteristics. Besides a reduced phagocytic clearance of (inhaled) microparticles and an 

increased inflammatory TLR-signalling, the acquisition of an autonomous IFN-β secretion 
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capacity is among the most striking features of this case of innate imprinting. Until now, most 

reports on innate imprinting reported TLR-desensitization and/or a more restrained 

inflammatory phenotype as main features of the imprinted macrophages 
11, 12

. Here we 

demonstrate an opposite outcome, namely an ‘immunologically released’ rAM-phenotype, 

possibly contributing to the increased sensitivity of the allergic lung towards bacterial and 

viral infections and renewed exposure to allergen. 
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SUPPLEMENTAL FIGURES 

 

 

 

Supplemental figure S1. The pulmonary response of irradiated recipient mice to nebulised OVA. 

Sensitized C57BL/6 mice (n=5) were exposed to a total body irradiation dose of 8 Gray or left untreated at d0 
and reconstituted by intravenous injection of bone marrow cells or PBS respectively at d1. Subsequently, mice 

were exposed to 2 OVA-aerosols or left unchallenged as control at d10 and d11. BAL was performed at d12 and 

Average BAL cell counts +/- SEM (left panel) and average BAL cellular composition +/- SEM (right panel) 

were determined by flow cytometry and Giemsa and May-Grünwald-stained cytospin analyses. 
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ADDITIONAL DATA 

 

Inflammation-induced rAM-turnover is ATP-dependent 

In order to investigate which mechanism is involved in the observed allergic inflammation-

induced naïve rAM-turnover, a chimeric mouse model, as described in figure 5 of the 

manuscript body, was applied in hCD39-transgenic mice. In these mice, the human cd39 

transgene is controlled by the Clara Cell (CC)-promoter which results in the constitutive 

overexpression of human CD39 by lung epithelial cells. CD39 is a surface-located ectopyrase 

responsible for the conversion of ATP/ADP to AMP. Its constitutive overexpression in the 

lungs of mice leads to the immediate depletion of local pulmonary produced ATP/ADP 

(Théâtre et al, accepted for publication in The Journal of Immunology).  

In contrast to naïve rAM-numbers of wt mice, naïve rAM-numbers in hCD39-mice remained 

constant during the total course of seven OVA-exposures (additional figure A1). 

 

 

 
Additional figure A1. Naïve rAM-turnover after allergen exposure of hCD39-transgenic mice. 
OVA/alum sensitized hCD39 mice (CD45.2) (n=7) were irradiated and reconstituted intravenously with CD45.1-

expressing donor bone marrow cells at d-10 and d-9 respectively. YG+ microspheres were administered i.t. at d-5 
followed at d0 by exposure of the mice to OVA-aerosol, or left unchallenged as control. BAL samples were 

collected after two, four and seven OVA-exposures. The presence of naïve rAM (microsphere+ CD45.2+) in the 

BAL was determined as in figure 5B and C of the manuscript body. Error bars represent SEM. Dotted line 

represents the naïve control. 
 

 

These data imply that the inflammation-induced naïve rAM-turnover observed in wt mice is 

an ATP-dependent process. As ATP is a potent co-stimulator of inflammasome/caspase-1 
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mediated apoptosis, referred to as pyroptosis 
38

, this pathway of cell death constitutes a 

plausible mechanism for the allergic inflammation-induced naïve rAM-turnover. However, 

further research, such as the assessment of caspase-1 activity and cell death markers in naïve 

rAM after two or three OVA-exposures, is needed to confirm these findings. 

 

Inflammation-induced rAM-turnover is not influenced by the underlying bone-marrow 

chimeric approach 

It is known that total body irradiation can accelerate constitutive rAM-turnover 
39, 40

. 

Therefore, the use of a bone-marrow chimeric approach to study the allergic inflammation-

induced rAM-turnover can bias the basic findings described earlier in the manuscript. To 

exclude any possible side-effect of the prior irradiation on naïve rAM-turnover, we applied an 

alternative approach to positively identify naïve rAM. We intratracheally administered the 

fluorescent phagocytic cell label, PKH26. This fluorescent label has been shown before to 

specifically label rAM after intratracheal or intranasal administration 
41

. In combination with 

intratracheal delivery of fluorescent latex microspheres, flow cytometry analysis allowed to 

identify naïve rAM as microsphere
+ 

PKH26
+
 cells. In this way, up to 80% of the total naïve 

rAM-population (CD11c
+
CD11b

-
MHCII

low
 cells) was labelled (additional figure A2A). In 

addition, this dual in situ labelling of naïve rAM with fluorescent latex microspheres and the 

fluorescent PKH26 dye remained stable over a time period of seven days both at the level of 

fluorescence intensity and the number of labelled cells (additional figure A2A). Finally, this 

dual intratracheal administration of fluorescent latex microspheres and the fluorescent PKH26 

dye did not elicit inflammation (additional figure A2B).    

As illustrated in additional figure A3, absolute numbers of naïve rAM, identified as CD11c
+
 

microsphere
+ 

PKH26
+
 cells, dropped sharply after 4 exposures to nebulised OVA (additional 

figure A3). This result is in line with data obtained from the bone marrow chimeric 

experiment depicted in figure 5 of the manuscript body. Thus, the observed allergic 

inflammation-induced naïve rAM-turnover is not due to an accelerated reconstitution of 

pulmonary macrophages after total body irradiation and bone marrow transfer but represents a 

feature intrinsic of allergic pulmonary inflammation per se. 
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Additional figure A2. Labelling of naïve rAM with the fluorescent PKH-26 dye and fluorescent latex 

microspheres. 

C57BL/6 mice were intratracheally instilled with PKH-26 (10µM) and fluorescent microspheres (5x107) at d-5 

and d-2 respectively. (A) BAL was performed at d0 and d7 and naïve rAM were identified by flow cytometry as 

CD11c+CD11b-MHCIIlow cells within the cell gate. Finally, the portion of PKH26+microsphere+ naïve rAM was 

determined (red gate). (B) Average BAL cell counts +/- SEM (left panel) and average BAL cellular composition 

+/- SEM (right panel) from PBS-instilled and PKH26/microsphere-instilled mice were determined by flow 

cytometry and Giemsa and May-Grünwald-stained cytospin analyses. White bars: Macrophages, grey bars: 

neutrophils and black bars: eosinophils. 
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Additional figure A3. Turnover of naïve rAM, labelled as PKH26
+
microsphere

+
 cells, in response to 

allergen exposure.  

C57BL/6 mice were immunized with OVA/alum at d-14 and d-7. Subsequently, the PKH26 dye (10µM) and 

fluorescent microspheres (5x107) were intratracheally administered at d-5 and d-2 respectively. At d0 till d3 

mice were exposed to 1% OVA-aerosol (n=7) or left untreated (n=7) and BAL was performed at d4. The 

presence of naïve rAM (PKH26+ microsphere+ cells) in BAL samples was determined by flow cytometry as in 

additional figure A2. Average absolute naïve rAM-numbers were calculated from the percentages of PKH26+  

microsphere+ cells by flow cytometry and the total BAL cell count. Bars represent SEM. *** p<0, 0001. 

 

 

Differential inflammatory cytokine and IFN-β response of post-inflammation rAM after 

TLR-stimulation in BALB/c mice 

We next investigated to what extent the increased TLR-signalling in post-inflammation rAM 

is affected by the genetic background of the mouse strain. We therefore compared the in vitro 

response of naïve and post-inflammation rAM from BALB/c mice to LPS. rAM were isolated 

from naïve and post-inflammation lungs of BALB/c mice and cultured ex vivo for 6h in the 

presence of E. coli LPS (0,1µg/ml). Expression of genes encoding the pro-inflammatory 

cytokines and chemokines TNF-α, IL-6, IL-12, CXCL1 and CXCL2, was subsequently 

assessed by RT-qPCR. As shown in additional figure A4, post-inflammation rAM showed 

increased expression of these pro-inflammatory genes after LPS-stimulation compared to 

naïve rAM (additional figure A4). In addition, autocrine and paracrine IFN-β activity was 

measured by determining the transcript levels of the IFN-β responsive genes, usp18, ifit2, 

oas1 and ifi205. Compared to naïve rAM, post-inflammation rAM expressed largely 

increased levels of usp18, ifit2, oas1 and ifi205 after LPS-stimulation (additional figure A5). 

Differences in gene expression levels between both LPS-stimulated rAM-populations of 

BALB/c mice were of the same magnitude as those observed in C57BL/6 mice. Therefore, we 

suggest that innate imprinting of rAM by a preceding allergic bronchial inflammation is 

independent of the strain genetic background. 
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Additional figure A4. Inflammatory cytokine and chemokine response of naïve and post-inflammation 

rAM of BALB/c mice to TLR-4 engagement. 
Naïve and post-inflammation rAM isolated from BALB/c mice (n=8) were ex vivo stimulated with 0.1µg/ml E. 

coli LPS for 6h or left untreated as control. Gene expression levels of tnf-α, il6, il12p40, cxcl1 and cxcl2 were 

measured using RT-qPCR. Results represent mean n-fold induction levels compared to unstimulated rAM from 

mock treated mice ± SD from triplicate PCR reactions. 
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Additional figure A5. IFN-β response of naïve and post-inflammation rAM from BALB/c mice to TLR-4 

engagement. 
Naïve and post-inflammation rAM were isolated from BALB/c mice (n=8) and stimulated ex vivo with 0,1µg/ml 
E. coli LPS for 6h or left untreated as control. RT-qPCR was used to analyze mRNA expression levels of usp18, 

ifit2, oas1 and ifi205. Results represent the mean n-fold induction compared to unstimulated naïve rAM ± SD of 

triplicate PCR reactions. 
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of a Subsequent RSV Lung Infection 
 



 161 

Thomas Naessens1, Bert Schepens1,2, Charlotte Pollard1, Pieter Bogaert1,2, Stefaan De 

Koker1, Nico Van Rooijen3, Xavier Saelens1,2 and Johan Grooten1 

 
1Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium 
2Department of Molecular Biomedical Research, VIB, 9052 Ghent, Belgium 
3Department of Molecular Cell Biology, University Amsterdam Medical Centre, 1081      

Amsterdam, The Netherlands 

 

Manuscript in preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 162 

INTRODUCTION 

 

Resident alveolar macrophages (rAM) are the predominant cell population in the alveolar 

spaces of healthy individuals and serve as important sentinels in the recognition of invading 

pathogens and other airborne particles. In combination with their key innate effector function, 

rAM are thought to have an immunosuppressive effect in the lung as well, limiting excessive 

inflammation in order to prevent disturbance of the pulmonary gas exchange function 1. rAM 

have been shown to exert immunosuppressive activities on T-lymphocytes and dendritic cells 

(DCs) in different pathologies, including allergic asthma. Allergic asthma is a chronic 

inflammatory disease of the airways associated with a predominant Th2-response to inhaled 

allergens and results in the airway infiltration of eosinophils and mast cells, goblet cell 

hyperplasia, and airway hyperreactivity (AHR) 2. By acting as significant pulmonary sources 

of the immunosuppressive cytokines, IL-10 and TGF-β, rAM are able to inhibit pro-

inflammatory cytokine secretion and leukocyte maturation during allergic bronchial 

inflammation. In addition, these two cytokines are commonly implicated in the generation of 

the inducible regulatory T-cell subsets Tr1 and Th3 
3. Several studies demonstrated a 

significant increase in allergic inflammation and T-cell reactivity in antigen challenged lungs 

after depletion of rAM 
4-6

. Increased sensitivity of rAM-depleted lungs to antigen exposure 

observed in these studies was attributed to the loss of rAM-mediated suppression of DC-

maturation, function and trafficking to mediastinal LNs 
7, 8

.  

In asthmatics, pulmonary accumulation of inflammatory leukocytes and cytokines together 

with lung structural remodelling and AHR eventually lead to recurrent episodes of airway 

obstruction, wheezing and shortness of breath. These macroscopic observable symptoms are 

referred to as asthmatic exacerbations. Acute exacerbations are the major cause of morbidity, 

mortality and healthcare costs for individuals with asthma while current preventive and 

therapeutic options are limited. Today, mechanisms of asthmatic exacerbations are still poorly 

understood. Yet, it is increasingly clear that the causative agent of these exacerbations has 

very diverse origins. However, the majority of asthmatic exacerbations are associated with 

respiratory viral infections, including rhinoviruses, influenza, parainfluenza, and 

adenoviruses. The most severe asthmatic exacerbations in children 9 and adults 10 are often 

induced by respiratory syncytial virus (RSV) infections. 
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RSV is a non-segmented, negative strand RNA virus of the Paramyxoviridae family. RSV is 

the leading cause of infant hospital admission and causes 70% of the bronchiolitis 

hospitalizations in the developed world 11. Infection of airway epithelial cells (AECs) by RSV 

induces an antiviral immune cascade in which different cellular and protein components are 

found to be crucially involved in clearance of the virus. Cytotoxic CD8+ T-lymphocytes 

(CTLs) 12, 13 and neutralizing immunoglobulin (Ig)-molecules 13-15 are pivotal in the clearance 

of (recurrent) RSV-infections. However, a variety of studies emphasized the importance of 

rAM as key players in the early immune responses to RSV-infection 16. It is even suggested 

that rAM, rather than adaptive immune cells, are critical determinants of the severity of RSV-

induced bronchiolitis 17. As professional phagocytes, rAM are able to efficiently engulf and 

eliminate high doses of invading viral particles 17. In addition, rAM are the primary type I IFN 

producers during RNA-virus pulmonary infection 18. 

In a mouse model of allergic bronchial inflammation, we recently demonstrated that, after the 

clearance of the eosinophilic inflammation, a new secondary rAM-population resides in the 

airways. Strikingly, this post-asthma rAM-phenotype displayed increased pro-inflammatory 

reactivity in response to in vitro TLR-4, TLR-3 and TLR-7 stimulation. Additionally, the 

increased pro-inflammatory in vitro TLR-reactivity of these post-asthma rAM was combined 

with a decreased phagocytic activity (Naessens et al. accepted for publication in AJP, 2012) 

Therefore, alteration of the rAM’s functional phenotype due to a preceding allergic bronchial 

inflammation may affect the pathophysiological outcome of subsequent respiratory (RSV) 

viral infections. We now provide evidence that the RSV antiviral immune response of post-

asthma rAM, present in the alveolar lumen after the resolution of the allergic bronchial 

inflammation, is largely modified. Specifically, we show that in contrast to rAM from naïve 

mice, post-asthma rAM exhibit strong pro-inflammatory reactivity during RSV-infection. 

Furthermore, compared to naïve rAM, post-asthma rAM showed a reduced contribution to 

viral clearance. Our observations reveal that post-asthma rAM may be implicated in the 

increased susceptibility of asthma patients to secondary RSV-infections and contribute to the 

onset of exacerbate reactions associated with asthmatic individuals. 
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MATERIALS AND METHODS 

 

Mouse model 

6- to 8-week old female BALB/c mice, purchased from Janvier (Le Genest St.Isle, France) 

and kept under specified pathogen free conditions were immunized intraperitoneally with 

20µg of grade V chicken egg OVA (Sigma-Aldrich, St.Louis, MO, USA), adsorbed on 1mg 

AlOH3 (alum; Sigma-Aldrich) in endotoxin-free PBS (Lonza, Walkersville, MD, USA). 

OVA-sensitized mice were then exposed to OVA-aerosols, consisting of 1% of grade III 

OVA (Sigma-Aldrich) in PBS. To establish a subsequent RSV lung infection, 1.10
7
 PFU of 

mouse-adapted RSV A2 (propagated on Hep-2 cells) was administered intranasally to mice 

that were slightly anesthetized by isoflurane. For the depletion of rAM, 100 µl of a 30% 

clodronate (dichloromethylene-diphosphonate) liposome solution (in PBS) was administered 

intratracheally 3 days prior mock- or RSV-infection to mice that were fully anesthetized by a 

ketamine/xylazine mixture. All experiments performed in this study were approved by the 

local ethical committee.   

 

Virus and viral plaque assay  

RSV A2 was propagated on Hep-2 or Vero cells which were grown in DMEM medium 

supplemented with 10% heat-inactivated fetal calf serum (FCS), 100U/ml 

penicilline/streptomycin (PS; Invitrogen) and 2mM L-glutamine at 37°C in the presence of 

5% CO2. Subsequently, RSV A2 was stored in Ca
2+

- and Mg
2+

-free Hank’s balanced salt 

solution (HBSS; Invitrogen, Carlsbad, CA, USA) supplemented with 20% sucrose. RSV titers 

in stock solutions and BAL fluid were determined by plaque assay on Vero cells. RSV 

plaques were stained with anti-RSV goat serum (AB1128, Chemicon International, Billerica, 

MA, USA). For the BAL fluids in which no virus could be detected, the viral titer was set as 

the detection limit of the used assay as indicated. Inactivation of RSV was performed by heat 

inactivation (30 min. at 56°C). 

 

Alveolar cell isolation and culture 

Mice were anesthetized with avertin (2,2,2-tribromethanol; 2,5% in PBS; Sigma-Aldrich). 

BAL was performed by making a small incision in the trachea, to allow passage of a lavage 

canulae. Lungs are flushed 4 times with 1ml Ca
2+

- and Mg
2+

-free HBSS, supplemented with 

0.05mM EDTA (ethylenediaminetetraacetic acid). Optionally, a prior lavage with 0,5ml 
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HBSS-EDTA was performed and BAL fluid was isolated by centrifugation and collection of 

the supernatant. BAL cells were washed and resuspended in PBS for further use. Naïve and 

post-asthma rAM isolated via BAL were cultured in complete culture medium (RPMI 1640 

(Invitrogen) containing 1% heat-inactivated FCS, 25mM HEPES (N-2-

hydroxyethylpiperazine-N’-ethanesulfonic acid), 2mM L-glutamine, 1mM pyruvate, 100U/ml 

PS, and 55µM 2-ME (Sigma-Aldrich)). All cultures were enriched for macrophages by plastic 

adhesion for 1h at 37°C. Naïve and post-asthma rAM were then stimulated for the indicated 

time with RSV A2 at 37°C in the presence of 5% CO2. 

 

Lung isolation and homogenization 

Mice were anesthetized with avertin and the lungs were removed from the thorax. Lung tissue 

was first minced and incubated for 30 min at 37°C in RPMI 1640 medium containing 150 

U/ml collagenase II (Sigma-Aldrich) and 0.02 mg/ml DNase I (Roche Diagnostics, Vilvoorde, 

Belgium). Minced lungs were then passed through 70 μm nylon meshes (BD Biosciences, San 

Jose, CA, USA) to obtain single cell suspensions. Red blood cells were lysed using ACK red 

blood cell lysis buffer (Lonza). 

 

Total and differential cell counts 

Total numbers of BAL and lungs cells were counted by use of a Bürker-chamber (Marienfeld, 

Lauda-Königshofen, Germany). Trypane blue was added to exclude dead cells. BAL cell type 

composition and pulmonary NK-cell levels were analyzed by flow cytometry. Briefly, BAL 

cells, pre-incubated with Fc-Block were classified as monocytes (alveolar macrophages, 

elicited monocytes and DCs), neutrophils, eosinophils or T-lymphocytes based on forward 

and side scatter gating and fluorescence intensities for anti-mouse MHC II-eFluor450, CD3ε-

Alexa488, CCR3-PE, CD4-PerCP, CD8-PE-Cy7, CD11c-APC and CD11b-APC-Cy7. Lung 

NK-cells were identified based on forward and side scatter gating and fluorescence intensities 

for anti-mouse CD3ε-Alexa488, CD11b-APC-Cy7 and CD49b-V450. Pre-incubation of the 

lung cells with Fc-Block was used to prevent unwanted binding to FcRs. All antibodies were 

purchased from BD Biosciences, except CCR3-PE (R&D Systems, Abingdon, UK). All 

samples were measured on a FACS LSRII flow cytometer and analyzed using FACS Diva 

software (both from BD Biosciences).  
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Cytokine/chemokine measurement 

Protein levels of mouse TNF-α, IL-6, MCP-1 and IL-10 in culture supernatant were quantified 

with the Bioplex suspension array system (Biorad, Hercules, CA, USA) for simultaneous 

detection of cytokines, according to the manufacturer’s protocol. The analytes were measured 

with the Bioplex protein array reader and the Bioplex manager software, using recombinant 

cytokine standards (all from Biorad). 

Serum IL-6 bioactivity was assessed through an in-house developed 7TD1 bio-assay 

according to 
19

. 

 

IFN-γ enzyme-linked immunospot (ELISPOT) assay 

IFN-γ producing lung draining lymph node (LDLN) CD8
+
 T-cells were quantified by IFN-γ 

ELISPOT assay kit (Diaclone, Besançon, France), according to the manufacturer’s 

instructions. Briefly, LDLN of mice were passed through 70 μm nylon meshes to obtain 

single cell suspensions. Red blood cells were lysed using ACK red blood cell lysis buffer. 

LDLN cells were subsequently cultured in complete culture medium (RPMI 1640 containing 

10% heat-inactivated FCS) on anti-IFN-γ antibodie (Diaclone) pre-coated 96-well ELISPOT 

plates (U-Cytech Biosciencs, Utrecht, The Netherlands) in the presence of RSV-derived MHC 

I binding F-peptide (KYKNAVTEL) (provided by Prof. Dr. K. Gevaert, Ghent University, 

Ghent, Belgium). ELISPOT plates were analyzed using an automated ELISPOT plate reader 

(AID, Strassberg, Germany)  

 

Intracellular cytokine staining (ICS) 

IFN-γ, IL-5 and IL-17 producing LDLN CD4
+
 T-cells were quantified by ICS and flow 

cytometry. Briefly, LDLN of mice were passed through 70 μm nylon meshes to obtain single 

cell suspensions. Red blood cells were lysed using ACK red blood cell lysis buffer. LDLN 

cells were subsequently cultured in complete culture medium (RPMI 1640 containing 10% 

heat-inactivated FCS) in the presence of heat-inactivated RSV (MOI 0.5). After 20h of 

restimulation, Golgiplug (BD Biosciences) was added to the cultures for 6h. Subsequently, 

cultured LDLN cells, pre-incubated with Fc-Block, were stained with CD3ε-PacificBlue and 

CD4-PerCP (all from BD Biosciences). After fixation with 2% paraformaldehyde and 

permeabilization with saponine (Cytofix/Cytoperm kit, BD Bioscience), LDLN were finally 
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stained with IFN-γ-APC, IL-5-PE or IL-17-APC (all from BD Biosciences). All samples were 

measured on a FACS LSRII flow cytometer and analyzed using FACS Diva software. 

 

RSV-based enzyme-linked immunosorbent assay (ELISA) 

The presence of RSV specific antibodies in sera was detected by ELISA using RSV virions. 

96-well MaxiSorp immunoplates (Nunc, Roskilde, Denmark) were coated with 55 000 PFU 

of RSV (propagated on Vero cells) per well in PBS. After RSV-coating, the wells were 

washed 3 times with PBS and blocked with 4% skimmed milk in PBS buffer. All subsequent 

steps were performed in a volume of 100 μl per well, and the wells were washed three times 

between incubation steps with PBS + 0.05% Tween 20. The presence of RSV-specific IgG, 

IgG1 and IgG2a in the samples was determined by incubating 1/3 serial dilutions of serum 

samples in the RSV-coated wells, starting with a 1/100 dilution, for 1 h. After washing, RSV-

specific total IgG, IgG1 and IgG2a were respectively detected with horseradish peroxidase-

conjugated anti-mouse total IgG (Amersham Biosciences, Buckinghamshire, UK), IgG1 or 

IgG2a serum (Southernbiotech, Birmingham, Alabama, US). After washing, plates were 

incubated for 5 min with tetramethylbenzidine substrate (Sigma–Aldrich). The peroxidase 

reaction was stopped by adding an equal volume of 1 M H3PO4. Antibody titers are defined as 

the reciprocal of the highest dilution with an OD450 that is at least three times the value 

obtained with pre-immune serum. 

 

In vitro neutralization assay 

Different dilutions of sera were incubated with RSV in serum free medium for 30 minutes at 

37°C. Subsequently these mixtures were used to infect, Vero cells grown in a 96-well plate. 

Three hours later the cells were washed 3 times with growth medium containing 2% FCS. 

Thereafter the cells were incubated for 3 days in growth medium containing 2% FCS and 

0.6% avicel RC-851 (FMCbiopolymers, Philadelphia, PE, USA). Viral infection was tested 

by immunostaining of the viral plaques with anti RSV goat serum. 

 

Statistics 

Statistics were performed using GraphPad Prism 5 software (GraphPad Software, La Jolla, 

CA, USA). Following outlier statistics in order to choose between performing a one-way 

ANOVA or Kruskal-Wallis nonparametric test, Gaussian distribution of parameters was 

checked using a Kolmogorov-Smirnov test. Differences in mean between each two 
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independent experimental groups were analyzed using an unpaired t-test or the 

nonparametrical Mann-Whitney U test at 95% confidence interval. No statistic analysis was 

done for data of pooled samples. 
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RESULTS 

 

Post-asthma rAM exhibit altered antiviral immunity during RSV-infection  

To examine the influence of a preceding allergic bronchial inflammation on the antiviral 

immune response of post-asthma rAM, a mouse model of allergic bronchial inflammation was 

set up. First, a Th2-biased sensitization of BALB/c mice against the model allergen OVA was 

elicited by repeated intraperitoneal immunization using aluminiumhydroxide (alum) as 

adjuvant. Subsequent exposure of sensitized mice to nebulized OVA generated an 

eosinophilic airway inflammation reminiscent of the immunopathology of mild to moderate 

asthma (figure 1A). Within 12 days after the last of seven OVA-exposures, the allergic 

eosinophilic bronchial inflammation was cleared. Absolute cell numbers returned to basal 

levels (figure 1B, left panel) and the alveoli again consisted for 90% of macrophages (figure 

1B, right panel). In addition, at this time point Th2-associated inflammatory cytokines were 

no longer detectable in the BAL fluid (data not shown).  

 

 

Figure 1. Exposure of OVA/alum sensitized BALB/c mice to nebulized OVA elicits a pulmonary 

eosinophilic inflammation reminiscent of the immunopathology of mild to moderate asthma. 
OVA/alum sensitized BALB/c mice were exposed to 7 OVA-aerosols or left untreated as naïve controls (n=5). 

(A) Average absolute differential BAL cell counts determined 24h after the indicated number of OVA-

exposures. (B) Average total (left panel) and relative differential (right panel) BAL cell counts determined at the 

indicated time points after the last OVA-exposure. Total and differential BAL cell numbers were determined via 

flow cytometry. White bars: macrophages; black bars: eosinophils; grey bars: neutrophils. nc = naïve control. 

Error bars represent SEM. 
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Subsequent RSV-infection was achieved by intranasal (i.n.) administration of the mouse-

adapted RSV-strain A2 at d15 after the last OVA-exposure. In order to determine the in vivo 

role of post-asthma rAM during the subsequent RSV-infection, this rAM-population was 

depleted prior to infection through the intratracheal (i.t.) delivery of clodronate liposomes 

(CL) three days before the viral challenge. BAL was performed three days post-infection and 

alveolar inflammation was assessed via flow cytometry.  

RSV-infection of naïve rAM
+
 mice resulted in a relatively weak pulmonary inflammatory 

response. This inflammatory response was largely increased in the case of prior naïve rAM-

depletion (figure 2A). In contrast, post-asthma rAM
+
 lungs mounted a more severe 

inflammatory response against RSV which decreased when post-asthma rAM were depleted 

prior to infection (figure 2A). As shown in figure 2B, differences in total BAL cell numbers 

between the different mouse groups were mainly due to differences in macrophage/monocyte, 

neutrophil and CD4
+
 T-cell numbers. Increased inflammatory responses of the post-asthma 

lungs and the pronounced pro-inflammatory reactivity of post-asthma rAM were however not 

correlated with increased viral clearance. Naïve and post-asthma rAM
+
 lungs showed no 

difference in RSV-titers at d3 post-infection (figure 3A). Furthermore, depletion of naïve 

rAM prior to infection resulted in increased RSV-titers in the alveolar lumen (figure 3A). In 

contrast, depletion of post-asthma rAM prior to infection had no effect on the alveolar RSV-

titers (figure 3A). In addition, it is worth mentioning that increased viral titers observed in 

RSV-infected rAM
-
 lungs could not be attributed to impaired natural killer (NK-)cell 

recruitment to the lungs. On the contrary, most NK-cell numbers were seen in RSV-infected, 

rAM
-
 lungs (figure 3B). 
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Figure 2. Alveolar inflammatory response to RSV-infection in naïve and post-asthma rAM
+
 and rAM

-
 

mice at d3 post-infection. 
Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL i.t. three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. BAL was collected at d3 post-infection. (A) Average BAL cell counts ± SEM and (B) average BAL 
cellular composition ± SEM were determined by flow cytometry. * p<0.05; ** p<0.01 and *** p<0.0001. 



 172 

 

Figure 3. Alveolar RSV-titers in naïve and post-asthma rAM
+
 and rAM

-
 mice at d3 post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.10
7
 PFU RSV to deplete post-asthma and naïve rAM respectively or PBS as a control. (A) On 

d3 post-infection, BAL fluid was collected and virus recovery was assessed by plaque assay. (B) Average NK-

cell numbers ± SEM in whole-lung tissue specimens were determined as CD3ε-CD49b+CD11b+ cells within the 

lymphocyte FSC-SSC gate by flow cytometry. ** p<0.01 and *** p<0.0001. 

 

 

Post-asthma rAM exhibit increased cytokine and chemokine production after in vitro RSV-

infection 

We next investigated whether the observed differences in in vivo antiviral immune responses 

between naïve and post-asthma rAM were due to intrinsic differences between both rAM-

populations or rather reflected secondary effects elicited by other cell types in the lung. To 

address this issue, naïve and post-asthma rAM were isolated and cultured in vitro for 24h and 

48h in the presence or absence of RSV. RSV failed to induce a productive infection in both 

rAM-populations. Non-productive RSV-infections of isolated rAM have also been reported 

by others 20. This was probably due to the deficient capacity of the experimental RSV-strain 

to infect rAM in vitro rather than to inhibition of viral replication performed by the rAM. 

However, compared to naïve rAM, post-asthma rAM showed markedly increased secretion of 

the pro-inflammatory cytokines IL-6 and TNF-α, the chemokine MCP-1 and, to a lesser 

extent of the anti-inflammatory cytokine IL-10 (figure 4). 
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Figure 4. Inflammatory cytokine and chemokine response of naïve and post-asthma rAM to in vitro RSV-

infection. 
Naïve and post-asthma rAM were isolated from BALB/c mice (n=8) and infected ex vivo with RSV (MOI 25) 

for 24h or 48h or were mock-infected as a control. IL-6, TNF-α, MCP-1 and IL-10 protein levels in the culture 

supernatant were determined by the Bioplex suspension array system. Results represent the average cytokine 

levels ± SD of triplicate culture conditions. 

 

 

Post-asthma rAM determine the late-phase pulmonary immune responses to RSV-infection 

It is suggested that the initial encounter between pulmonary innate immune cells, like rAM, 

and respiratory viruses are critical for determining the pathophysiological outcome of the 

infectious disease at later stages 17. Therefore, we analyzed the effect of the post-asthma 

rAM’s initial antiviral immune response on the subsequent global late-phase antiviral immune 

responses to RSV-infection. Naïve and post-asthma lungs were i.n. infected with RSV, with 

or without prior CL-induced rAM-depletion. BAL samples were collected at d6 post-infection 

and alveolar inflammation was assessed via flow cytometry. Compared to d3, RSV-infection 

of naïve rAM
+
 mice resulted in an augmented pulmonary inflammatory response at d6, which 

showed even further increases when naïve rAM were initially depleted (figure 5A). Compared 

to naïve rAM
+
 lungs,  post-asthma rAM

+
 lungs showed a more severe inflammatory response 

against RSV-infection which again showed a significant decrease when the post-asthma rAM-

population was first depleted (figure 5A). At this time point however, observed differences in 

total BAL cell numbers between the different mouse groups were mainly due to differences in 
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macrophage/monocyte and CD8
+
 T-cell numbers (figure 5B), instead of neutrophil numbers 

as seen on d3 (figure 2B). Similar to d3, naïve and post-asthma rAM
+
 lungs showed no 

difference in alveolar RSV-titers at d6 post-infection (figure 6). However, as opposed to d3, 

depletion of naïve rAM no longer affected the alveolar viral load (figure 6). In contrast, 

depletion of post-asthma rAM slightly accelerated viral clearance from the post-asthma lung 

as in the vast majority of this mouse group the presence of RSV-virus was no longer 

detectable (figure 6). 
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Figure 5. Alveolar inflammatory response to RSV-infection in naïve and post-asthma rAM
+
 and rAM

-
 

mice at d6 post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL i.t. three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. BAL was collected at d6 post-infection. (A) Average BAL cell counts ± SEM and (B) average BAL 

cellular composition ± SEM  were determined by flow cytometry. * p<0.05; ** p<0.01 and *** p<0.0001. 
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Figure 6. Alveolar RSV-titers in naïve and post-asthma rAM
+
 and rAM

-
 mice at d6 post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or PBS as a control. On d6 

post-infection, BAL fluid was collected and virus recovery was assessed by plaque assay. * p<0.05 

 

 

Effect of post-asthma rAM on systemic disease parameters during later stages of RSV-

infection  

Next to alveolar inflammation and viral titers, we also analyzed systemic infection 

parameters, including morbidity and CD8
+
 T-cell responses in the lung draining lymph nodes 

(LDLN). Naïve and post-asthma lungs were i.n. infected with RSV, with or without prior CL-

induced rAM-depletion and body weight loss was determined at d5 and d6 post-infection. 

Compared to mock-infected control groups, all RSV-infected groups exhibited significant 

weight loss at d6 post-infection but no differences were observed between RSV-infected 

‘naïve’ and ‘post-asthma’ rAM+ mice at this time point (figure 7A). Yet, naïve rAM-depletion 

prior to infection resulted in extra loss of body weight at d6 post-infection as compared to 

RSV-infected naïve rAM+ lungs (figure 7A). On the other hand, depletion of post-asthma 

rAM prior to infection did not affect the body weight of the mice (figure 7A). Elevated levels 

of serum IL-6 are considered as an additional read-out parameter for morbidity. Serum 

concentrations of this pro-inflammatory cytokine behaved in accordance with the observed 

differences in body weight loss between the different RSV-infected mice groups at d6 post-

infection (figure 7B). 
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Figure 7. Development of systemic parameters of infection in naïve and post-asthma rAM
+
 and rAM

-
 mice 

at d6 post-infection. 
Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. (A) Weight loss ± SEM was registered at d5 and d6 post-infection. Green: mock-infected naïve rAM+ 

mice; red: mock-infected naïve rAM- mice; yellow: RSV-infected naïve rAM+ mice; blue: RSV-infected naïve 

rAM- mice; black: mock-infected post-asthma rAM+ mice; grey: mock-infected post-asthma rAM- mice; purple: 

RSV-infected post-asthma rAM+ mice and brown: RSV-infected post-asthma rAM- mice. (B) Blood serum was 

collected at d6 post-infection and serum IL-6 protein levels ± SEM were determined via an in-house developed 

bio-assay 19. (C) LDLN were isolated at d6 post-infection and 1.105 LDLN-cells were restimulated for 24h with 

5µg/ml of a MHC-I epitope of the RSV F-protein. The number of IFN-γ secreting CD8+ T-cells was 

subsequently quantified by ELISPOT. Data in (C) represent averages of triplicate reactions originated from 

pooled samples.    

 

 

Finally, CD8+ T-cell responses in LDLN were quantified at d6 post-infection by ELISPOT 

assay upon restimulation with a MHC I restricted peptide epitope derived from the RSV F-

protein. The ELISPOT results shown in figure 7C demonstrate that RSV-infection of post-

asthma rAM+ mice resulted in higher F-specific CD8+ T-cell responses compared to naïve 

rAM+ mice which were infected with RSV. Depletion of naïve rAM prior to RSV-infection 

increased LDLN CD8+ T-cell immunity (figure 7C). In contrast, depletion of post-asthma 

rAM decreased the number of IFN-γ secreting LDLN CD8+ T-cells (figure 7C). 
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Influence on immune memory responses 

We next analyzed RSV-specific cellular and humoral immune memory responses in the 

different RSV-infected mouse groups. Naïve rAM+ and rAM- mice and post-asthma rAM+ 

and rAM- mice were i.n. infected with RSV. LDLN were sampled three weeks post-infection 

and CD8+ T-cell responses were quantified by ELISPOT assay upon restimulation with a 

MHC I restricted peptide epitope from the RSV F-protein. LDLN CD4+ T-cell responses were 

determined via intracellular cytokine staining (ICS) and flow cytometry upon restimulation of 

LDLN-cells with heat-inactivated RSV-virus. LDLN RSV-specific CD8+ T-cell responses 

were similar in both naïve rAM+ and post-asthma rAM+ mice (figure 8A). Depletion of naïve 

rAM prior to RSV-infection did not alter the subsequent CD8+ T-cell memory response as 

compared to naïve rAM+ RSV-infected mice (figure 8A). However, compared to RSV-

infected post-asthma rAM+ mice, depletion of post-asthma rAM prior to RSV-infection 

augmented the number of IFN-γ secreting CD8+ T-cells as shown by the ELISPOT results in 

figure 8A. Furthermore, although ICS and flow cytometry analysis revealed that a RSV-

specific memory Th1-response was significantly elicited in all RSV-infected mouse groups, 

no actual differences were observed in the percentage of IFN-γ+ CD4+ T-cells between all 

four groups (figure 8B). In addition, no memory Th2-responses (figure 8C) and Th17-

responses (figure 8D) were detected in the LDLN of all RSV-infected mouse groups. 
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Figure 8.  Development of RSV-specific LDLN memory responses in naïve and post-asthma rAM
+
 and 

rAM
-
 mice at 3wks post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. (A) LDLN were isolated 3wks post-infection and 1.105 LDLN-cells were restimulated for 24h with an 

MHC-I epitope of the RSV F-protein. The number of IFN-γ secreting CD8+ T-cells was subsequently quantified 

by ELISPOT. In addition, 1.106 LDLN-cells were restimulated for 24h with heat-inactivated RSV (MOI 0.5). 
The percentage of IFN-γ+ CD4+ T-cells (B), IL-5+ CD4+ T-cells (C) and IL-17+ CD4+ T-cells (D) were quantified 

within the population of the living CD3ε+ lymphocytic cells by ICS and flow cytometry. All data represent 

averages of triplicate reactions originated from pooled samples. 
 

 

The production of virus-neutralizing antibodies has been found to be crucial in the host’s 

protective immunity against RSV-reinfection 21. Therefore, we characterized the B-cell 

memory response by measuring serum levels of RSV-specific IgG1- and IgG2a-molecules 

and their capacity to neutralize the RSV-virus. Naïve rAM+ and rAM- mice and post-asthma 

rAM+ and rAM- mice were i.n. infected with RSV and blood serum samples were collected 3 

weeks post-infection. As determined by RSV-based ELISA, infection of naïve rAM+ mice 

resulted in higher serum levels of both IgG1 (figure 9A; left panel) and IgG2a (figure 9A; 

right panel) compared to infection of post-asthma rAM+ mice. Furthermore, a reduction in the 

systemic levels of RSV-specific IgG1 was observed only after depletion of naïve rAM, and 

not after depletion of post-asthma rAM (figure 9A, left panel). IgG2a serum levels were not 
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affected by naïve or post-asthma rAM-depletion (figure 9A, right panel). The IgG1/IgG2a 

ratio, indicative for the Th2/Th1 balance, was practically equal in all four infected mouse 

groups (figure 9B). Finally, the RSV-neutralization assay revealed that the actual levels of 

RSV-neutralizing serum antibodies did not differ between all four RSV-infected mouse 

groups (figure 10). 

 

 

Figure 9. Development of RSV-specific humoral memory responses in naïve and post-asthma rAM
+
 and 

rAM
-
 mice at 3wks post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. Blood serum was collected 3 wks post-infection. (A) Serum levels of RSV-specific IgG1 (left) and 

IgG2a (right) were determined via RSV-based ELISA. (B) Ratio between serum levels of RSV-specific IgG1 

and IgG2a. * p<0.05; ** p<0.01 
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Figure 10. Determination of total RSV-neutralizing serum antibodies in naïve and post-asthma rAM
+
 and 

rAM
-
 mice at 3wks post-infection. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. Blood serum was collected 3 wks post-infection. Serum levels of RSV-specific neutralizing antibodies 

were determined via an in vitro neutralization assay on pooled sera. 
 

 

Influence on immune memory responses during RSV-reinfection 

We finally investigated the physiological relevance of the observed differences in RSV-

specific immunological memory by exposing the different RSV-infected mouse groups to a 

secondary RSV-infection 3 weeks after the primary viral challenge. As shown in figure 11A, 

i.n. reinfection with RSV elicited a mild inflammatory response in the lungs of all mouse 

groups at d3 post-reinfection. However, no to minor (as in the case of RSV-reinfected naïve 

rAM- mice compared to RSV-reinfected naïve rAM+ mice) differences in total BAL cell 

counts were detected between the different RSV-reinfected mouse groups (figure 11A). The 

minor increase in total BAL cell counts observed in RSV-reinfected naïve rAM- mice was 

mainly due to slight changes in the recruitment of CD4+ and CD8+ T-cells to the alveoli 

(figure 11B). 

LDLN CD8+ and CD4+ T-cell responses were also assessed at d3 post-reinfection via 

ELISPOT assay and ICS respectively. The ELISPOT data show that restimulation with F-

peptide of LDLN-cells from RSV-reinfected post-asthma rAM+ mice resulted in higher 

numbers of IFN-γ secreting CD8+ T-cells compared to RSV-reinfected naïve rAM+ mice 

(figure 12A). Furthermore, CD8+ T-cell responses were increased in RSV-reinfected naïve 

rAM- mice while CD8+ T-cell responses of RSV-reinfected post-asthma rAM- decreased 
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(figure 12A). In line with these findings, Th1-responses were found to behave similar to CD8+ 

T-cell responses (figure 12B). In contrast to the strongly pronounced CD8+ and Th1-responses 

during RSV-reinfection, only mild Th2-responses (figure 12C) and Th17-responses (figure 

12D) were noticed, which did not differ between all RSV-reinfected mouse groups. 
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Figure 11. Alveolar inflammation caused by RSV-reinfection of naïve and post-asthma rAM

+
 and rAM

-
 

mice. 
Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL i.t. three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. Subsequently, mice exposed to primary infection, referred to as RSV(1), were reinfected with 1.107 PFU 

RSV, referred to as RSV(2), 3 weeks after the primary RSV-challenge. BAL was collected at d3 post-

reinfection. (A) Average BAL cell counts ± SEM (B) and average BAL cellular composition ± SEM were 

determined by flow cytometry. * p<0.05 and *** p<0.0001. 
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Figure 12. Development of RSV-specific LDLN responses during RSV-reinfection of naïve and post-

asthma rAM
+
 and rAM

-
 mice. 

Post-asthma (d15 after the last OVA-challenge) and naïve BALB/c mice (n=7) received CL three days before 

inoculation with 1.107 PFU RSV to deplete post-asthma and naïve rAM respectively or received PBS as a 

control. Subsequently, mice exposed to primary infection, referred to as RSV(1), were reinfected with 1.107 PFU 

RSV, referred to as RSV(2), 3 weeks after the primary RSV-challenge. (A) LDLN were isolated at d3 post-

reinfection and 1.105 LDLN-cells were restimulated for 24h with 5 µg/ml of a MHC-I epitope peptide of the 
RSV F-protein. The number of IFN-γ secreting CD8+ T-cells was subsequently quantified by ELISPOT. In 

addition, 1.106 LDLN-cells were restimulated for 24h with heat-inactivated RSV (MOI 0.5). The percentage of 

IFN-γ+ CD4+ T-cells (B), IL-5+ CD4+ T-cells (C) and IL-17+ CD4+ T-cells (D) were quantified within the 

population of the living CD3ε+ lymphocytic cells by ICS and flow cytometry. All data represent averages of 

triplicate reactions originated from pooled samples. 
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DISCUSSION 

 

The pulmonary response to respiratory infections must proceed in a programmed manner in 

order to clear the pathogen without compromising pulmonary function. This is particularly 

important in individuals with underlying disease, such as asthma. Several types of viruses, 

such as rhinoviruses, influenza and RSV, have been detected in respiratory tract secretions 

from patients with asthma exacerbations. While RSV-infections do not result in dramatic 

clinical outcomes in a normal adult, it is the instigator of the most severe exacerbation 

reactions in patients suffering from asthma 10.  

In a mouse model of allergic bronchial inflammation, we recently demonstrated that after the 

clearance of the eosinophilic inflammation, a new secondary rAM population resides in the 

airways. In our present study we analyzed in which way the presence of this post-asthma 

rAM-population affects the pathophysiological outcome of a subsequent RSV-infection. Mice 

that suffered from a prior allergic inflammation developed higher pulmonary innate and 

adaptive inflammatory responses to subsequent RSV-infection compared to mice in which no 

prior allergic bronchial inflammation occurred. This increase was largely due to the pro-

inflammatory character of post-asthma rAM. Depletion of post-asthma rAM reduced 

pulmonary inflammation to a level comparable to naïve mice. The pro-inflammatory nature of 

post-asthma rAM stands in strong contrast with the anti-inflammatory capacities of naïve 

rAM. Thus, depletion of naïve rAM prior to RSV-infection resulted in an increased 

pulmonary inflammation. Differences in pulmonary inflammatory responses were possibly 

due to differences in the recruitment of inflammatory leukocytes to the lungs.  This implicates 

that resident leukocytes, like rAM, and tissue cells, like AECs, would secrete higher levels of 

pro-inflammatory cytokines and chemokines upon the initial encounter with RSV. In 

agreement herewith, we now showed that, compared to naïve rAM, post-asthma rAM secreted 

largely increased levels of NF-κB-inducible inflammatory cytokines in response to in vitro 

RSV-infection. In addition, we previously demonstrated that post-asthma rAM exhibited 

hyperinflammatory TLR-3, TLR-4 and TLR-7 reactivity in vitro. RSV contains several 

ligands for a variety of PRRs on innate immune cells. TLR-3, expressed by AECs and rAM, 

contributes to the recognition of RSV by binding to viral RNA 22 while the RSV F-protein has 

been identified as a TLR-4 and CD14 ligand on human monocytes 23. Furthermore, TLR-7 

was recently acknowledged as another member of the TLR-family involved in the recognition 

of RSV 24, 25. In accordance with these data, increased inflammatory TLR-reactivity exhibited 
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by post-asthma rAM is a reasonable explanation for the way in which post-asthma rAM 

contributed to the generally increased RSV-induced pulmonary inflammation in post-asthma 

mice.  

Inflammation is considered as a powerful tool of the host to clear pathogens. One would 

therefore expect diminished alveolar RSV-titers in post-asthma lungs exhibiting an increased 

inflammatory response. However, RSV-infection of naïve and post-asthma lungs resulted in 

equal alveolar RSV-titers. Strikingly, depletion of post-asthma rAM prior to RSV-infection 

had no effect on alveolar viral titers whereas depletion of naïve rAM resulted in a strong 

increase. In contrast to naïve rAM, which are known for their distinguished capacity to clear 

respiratory viruses rapidly 17, 18, 26, post-asthma rAM clearly lost their capacity to fulfil early 

clearance of the virus. In line with these findings, we previously documented a decrease in 

basal phagocytic activity of post-asthma rAM compared to naïve rAM. The comparable RSV 

titers observed in post-asthma and naïve lungs at the early stage of infection stresses the fact 

that the increased pulmonary inflammation observed in post-asthma mice is not simply due to 

differences in viral titers. Higher levels of secreted TNF-α, MCP-1 and IL-6 detected after in 

vitro RSV-infection of post-asthma rAM confirms an increased inflammatory reactivity of 

post-asthma rAM. These differences in anti- versus proinflammatory reactivity between naïve 

and post-asthma rAM were also apparent at later stages of infection through the increase in 

body weight loss and serum levels of the pro-inflammatory IL-6. Strikingly, post-asthma rAM 

did not seem to influence these morbidity parameters. Taken together, these results indicate a 

shift from a naïve rAM-phenotype exerting phagocytic clearance of invading respiratory 

viruses, such as RSV, with a minimal inflammatory reactivity to a post-asthma rAM-

phenotype which responds to a viral insult by secreting a full range of inflammatory 

mediators without displaying any direct viral clearance. These findings can explain the 

presence of the severe pulmonary inflammation in RSV-infected post-asthma mice as a 

necessary evil to take over the post-asthma rAM’s job and eventually clear the virus. This 

hypothesis is in line with the study of Reed and colleagues in which the inherent functional 

impairment of rAM in New Zealand black mice resulted in greatly enhanced RSV disease 

compared to BALB/c mice which exhibit normal rAM-function 
17

. In addition, the perception 

of rAM as the silent assassins of the lungs was also confirmed in a study performed by 

Dockrell and colleagues. In their research they demonstrated that depletion of rAM in a low-

dose murine pneumococcal infection model shifted the outcome from complete bacterial 
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clearance without neutrophil recruitment, to one in which neutrophil recruitment is required 

for bacterial clearance 27. 

However, it is important to consider that the outcome of the interplay between an allergic 

bronchial inflammation and RSV-infection is largely affected by the timing of RSV-exposure. 

For instance, Graham and co-workers found that RSV-infection before the allergic 

inflammation decreased subsequent allergen-induced AHR. In contrast, AHR was increased 

when the allergic inflammation occurred before the RSV-infection 28. The importance of the 

timing of RSV-infection in relation to the allergic inflammation was also illustrated by our 

additional data showing that RSV-infection during an ongoing allergic bronchial 

inflammation lead to increased alveolar virus titers. This was in strong contrast with the 

observation that alveolar RSV-titers were not altered when mice were infected after the 

clearance of the allergic bronchial inflammation. So it is clear that the actual presence or 

absence of an ongoing Th2-response, probably through the secretion of Th2-cytokines like 

IL-13 29, 30, is a major determinant for virus survival and/or replication.   

Post-asthma mice also exhibited altered RSV-specific immune memory responses. At the 

level of humoral memory responses, lower levels of RSV-specific IgG1- and IgG2a-

antibodies were observed in post-asthma mice. IgG-molecules are known to be important for 

the neutralization of RSV in order to inhibit viral attachment to target cells 21. However, sera 

from post-asthma mice did not show impaired in vitro neutralization of RSV. In addition, 

RSV-rechallenge of post-asthma mice did not yield any productive infection which is possibly 

due to the immediate antibody-mediated neutralization of incoming RSV-particles. In this 

context however, the presence of lung mucosal IgA is also an important parameter to take into 

account. Thus, the actual physiological relevance of the observed differences in RSV-specific 

IgG1- and IgG2a-levels is not defined yet. One possibility is that lower IgG1- and IgG2a-

levels in RSV-infected post-asthma mice is reflected in lower amounts of opsonizing IgG1- 

and IgG2a-molecules in these mice. Impaired opsonization of incoming RSV-particles would 

eventually result in decreased rAM-mediated uptake and killing of the virus. Reinfection of 

post-asthma mice with RSV resulted in increased LDLN CTL and Th1-cell responses as well. 

Both CTL and Th1-responses decreased when post-asthma rAM were initially depleted. In 

contrast, initial depletion naïve rAM slightly increased RSV-specific CTL-responses and 

largely increased Th1-memory responses during RSV-reinfection. So it is clear that the initial 

encounter between both rAM-populations and RSV had a differential influence on the 
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subsequent development of LDLN cellular memory responses during RSV-reinfection. These 

data can reflect alterations in the interaction between post-asthma rAM and airway DCs. It is 

known that naïve rAM suppress airway DC maturation, function and trafficking to 

mediastinal LNs 
7, 8

. Thus, depletion of naïve rAM prior to RSV-infection could increase the 

presentation of RSV-derived antigens in the LDLN by airway DCs, explaining the increased 

CTL- and Th1-responses during RSV-reinfection. In contrast, by exhibiting a more pro-

inflammatory character, post-asthma rAM probably exerted immune stimulatory rather than 

immunosuppressive effects on airway DC maturation, function and trafficking during the 

initial encounter with RSV. This in turn could explain the increased CTL- and Th1-responses 

in post-asthma rAM
+
 mice during RSV-reinfection which were decreased when post-asthma 

rAM were initially depleted. However, one should take into account that these data may be 

influenced by alterations in composition of the resident airway DC-population due to the 

preceding allergic bronchial inflammation. For instance, a change in the ratio between 

immunosuppressive pDCs and immunogenic mDCs in the airways can significantly affect the 

outcome of subsequent LDLN T-cell responses. Despite the differences in LDLN memory 

responses, no differences were found at the level of local alveolar inflammation during RSV-

reinfection between all RSV-reinfected mouse groups. Additionally, no virus was detected in 

the alveoli of these mice as well. Thus, it remains unclear what the actual 

(patho)physiological significance is of these observed differences in memory T-cell 

responses. One possibility is that increased memory CTL- and Th1-responses lead to 

increased levels of pulmonary IFN-γ which in turn can augment general lung tissue pathology 

and AHR and can induce acute exacerbation reactions 31.  

Overall, it is clear that a preceding allergic bronchial inflammation alters different aspects of 

the immune response to a subsequent acute RSV lung infection. Our observations especially 

point out a pronounced proinflammatory role for post-asthma rAM during a subsequent acute 

RSV-infection. In combination with the absence of any direct antiviral activity, this rAM-

population can deliver an important contribution to RSV-induced asthma exacerbations, the 

most severe type of asthmatic exacerbation observed in children 9 and adults 10. Therefore, 

post-asthma rAM constitute an interesting target for preventing or treating RSV or, more 

general, respiratory viral induced asthma exacerbations.  
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ADDITIONAL DATA 

 

Co-delivery of OVA and RSV in sensitized mice increases alveolar neutrophil numbers and 

viral titers 

Several studies highlighted the fact that the outcome of the interplay between an allergic 

inflammation and RSV-infection is largely influenced by the timing of infection 32. To 

illustrate the importance of the timing of RSV-infection in relation to the allergic 

inflammation, we now analyzed the outcome of an RSV-infection during an ongoing allergic 

bronchial inflammation. OVA/alum sensitized mice were i.n. infected with RSV alone or in 

the presence of OVA. BAL was sampled at d3 post-infection. As shown in additional figure 

A1A, RSV co-infection did not significantly increase alveolar inflammation when compared 

to mice that were only challenged with OVA. However, analysis of the cellular composition 

of the alveolar infiltrate of RSV/OVA co-challenged mice revealed a substantial 

establishment of a neutrophilic component caused by the virus (additional figure A1B). The 

most striking observation was however that RSV/OVA co-challenge of mice resulted in 

increased alveolar RSV-titers compared to mice infected with RSV in the absence of OVA 

(additional figure A1C). This was in strong contrast with the observation that alveolar RSV-

titers were not altered when mice were infected after the clearance of the allergic bronchial 

inflammation (figure 3 and figure 6 of the manuscript body text).  

These data verify previous reports showing that an ongoing pulmonary Th2-response favours 

RSV viral replication in the lungs. In addition, these results confirm that the timing of RSV-

infection in relation to the allergic bronchial inflammation is crucial in determining the 

antiviral pulmonary immune responses.  
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Additional figure A1. Effect of the co-delivery of RSV together with OVA on the pulmonary inflammatory 
response and the alveolar RSV-viral loads. 
OVA/alum sensitized BALB/c mice (n=5) were co-challenged with RSV and OVA, challenged with either RSV 
or OVA alone or left untreated as a control. BAL was performed at d3 post-challenge. (A) Average BAL cell 

counts ± SEM and (B) average BAL cellular composition ± SEM were determined by flow cytometry. White 

bars: macrophages; black bars: eosinophils; dark grey bars: neutrophils; striped bars: CD4+ T-cells and light grey 

bars: CD8+ T-cells. (C) In addition, BAL fluid was collected and virus recovery was assessed by plaque assay. 

*** p<0.0001.    
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Chapter 3 

 
Innate Imprinting of Resident Alveolar Macrophages by 

an Allergic Bronchial Inflammation Affects the Outcome 

of a Subsequent Chlamydia muridarum Lung Infection 
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INTRODUCTION 

 

Acute exacerbations, defined as episodes of rapidly progressive increases in shortness of 

breath, cough, wheezing, or chest tightness, in asthmatic individuals represent an important 

healthcare problem and accounts for a high rate of morbidity and mortality. Many studies 

have reported a link between Chlamydophila (C.) pneumoniae infection and acute asthma 

exacerbations (reviewed in 1). Therefore, it has been suggested that this pathogen may play a 

significant role in such exacerbations. 

C. pneumoniae are Gram-negative obligate intracellular bacteria which infect and survive in 

resting resident alveolar macrophages (rAM) 2. By being the bacteria’s main target of 

infection and the host’s first line of defence against airborne pathogens, rAM fulfil a pivotal 

role in the host’s protective immunity against C. pneumoniae. Upon recognition of the 

bacterium by PRRs, rAM initiate a gene program that involves the expression and secretion of 

pro-inflammatory cytokines and chemokines 3. The propagation of these antibacterial 

pulmonary inflammatory responses and the possible subsequent lung tissue damage may 

eventually result in acute exacerbation reactions when infection occurs in asthmatic 

individuals 2. 

In a mouse model of allergic bronchial inflammation, we recently demonstrated that, after the 

clearance of the allergic inflammation, a new secondary rAM population resides in the 

airways. Strikingly, these post-asthma rAM displayed several important functional alterations, 

including increased TLR-reactivity and a decreased basal phagocytic capacity. Therefore, 

alteration of the rAM-functional phenotype due to a preceding allergic bronchial 

inflammation can affect the pathophysiological outcome of a subsequent C. pneumoniae 

infection. 

We now provide evidence that acute C. muridarum (the mouse biovar of C. trachomatis) 

infection of mice that suffered from a preceding allergic bronchial inflammation, exhibited 

increased pulmonary inflammatory responses along with an increase in alveolar bacterial 

burden. Furthermore, we show that pronounced pro-inflammatory features of post-asthma 

rAM, largely contributed to the increased inflammatory reaction in the infected lungs. These 

observations demonstrate that post-asthma rAM may contribute to the increased susceptibility 

to secondary C. pneumoniae infections and/or the onset of exacerbation reactions associated 

with asthmatic individuals. 
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MATERIALS AND METHODS 

 

Mouse model 

6- to 8-week old female C57BL/6 mice, purchased from Janvier (Le Genest St.Isle, France) 

and kept under specified pathogen free conditions were immunized intraperitoneally with 

20µg of grade V chicken egg OVA (Sigma-Aldrich, St.Louis, MO, USA), adsorbed on 1mg 

AlOH3 (alum; Sigma-Aldrich) in endotoxin-free PBS (Lonza, Walkersville, MD, USA). 

OVA-sensitized mice were then exposed to OVA-aerosols, consisting of 1% of grade III 

OVA (Sigma-Aldrich) in PBS. To establish a subsequent C. muridarum lung infection, 1.10
3
 

IFU of C. muridarum EB’s (propagated on HeLa-cells) was administered intratracheally to 

mice that were anesthetized by a ketamine/xylazine mixture. PBS was instilled as a control. 

For the depletion of rAM, 100 µl of a 30% clodronate (dichloromethylene-diphosphonate) 

liposome solution (in PBS) was administered intratracheally 3 days prior mock- or RSV-

infection to mice that were fully anesthetized by a ketamine/xylazine mixture. All 

experiments performed in this study were approved by the local ethical committee. 

 

Bacteria and determination of bacterial titers  

C. muridarum (Nigg strain) was propagated on HeLa-cells in MEM-medium (Invitrogen, 

Ghent, Belgium) supplemented with 10% heat-inactivated FCS (Sigma-Aldrich), 1% L-

Glutamine (Invitrogen), 1% vitamin-solution (Invitrogen), 1% streptomycine-sulphate 

(Invitrogen), 2% vancomycin (Nerum NV, Heusden-Zolder, Belgium), 0,22% cyclohexamide 

(Sigma-Aldrich) and 5,5 mg/ml D-glucose (Invitrogen) and incubated at 37°C and in 5% CO2.  

For the determination of C. muridarum EBs in the BALF, samples were first 

ultracentrifugated (50.000 g for 60 min). The pellet of bacteria was subsequently resuspended 

in a sucrose-phosphate-glutamine solution (Sigma-Aldrich), supplemented with 1% 

streptomycin-sulphate and 2% vancomycin, and inoculated on HeLa-cells. After six days of 

incubation at 37°C and in 5% CO2, EB-titers were determined via direct immunofluorescence 

staining of the bacteria using the IMAGEN Chlamydia Kit (Oxoid Ltd., Hampshire, UK) 

according to manufacturer’s protocol. 
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Alveolar cell isolation 

Mice were anesthetized with avertin (2,2,2-tribromethanol; 2,5% in PBS; Sigma-Aldrich). 

BAL was performed by making a small incision in the trachea, to allow passage of a lavage 

canulae. Lungs are flushed 4 times with 1ml Ca
2+

- and Mg
2+

-free HBSS, supplemented with 

0.05mM EDTA (ethylenediaminetetraacetic acid). Optionally, a prior lavage with 0,5ml 

HBSS-EDTA was performed and BAL fluid was isolated by centrifugation and collection of 

the supernatant. BAL cells were washed and resuspended in PBS for further use. 

 

Total and differential cell counts 

Total numbers of BAL and lungs cells were counted by use of a Bürker-chamber (Marienfeld, 

Lauda-Königshofen, Germany). Trypane blue was added to exclude dead cells. BAL cell type 

composition and pulmonary NK-cell levels were analyzed by flow cytometry. Briefly, BAL 

cells, pre-incubated with Fc-Block were classified as monocytes (alveolar macrophages, 

elicited monocytes and DCs), neutrophils, eosinophils or T-lymphocytes based on forward 

and side scatter gating and fluorescence intensities for anti-mouse MHC II-eFluor450, CD3ε-

Alexa488, CCR3-PE, CD4-PerCP, CD8-PE-Cy7, CD11c-APC and CD11b-APC-Cy7. All 

antibodies were purchased from BD Biosciences, except CCR3-PE (R&D Systems, 

Abingdon, UK). All samples were measured on a FACS LSRII flow cytometer and analyzed 

using FACS Diva software (both from BD Biosciences). 

 

Statistics 

Statistics were performed using GraphPad Prism 5 software (GraphPad Software, La Jolla, 

CA, USA). Following outlier statistics in order to choose between performing a one-way 

ANOVA or Kruskal-Wallis nonparametric test, Gaussian distribution of parameters was 

checked using a Kolmogorov-Smirnov test. Differences in mean between each two 

independent experimental groups were analyzed using an unpaired t-test or the 

nonparametrical Mann-Whitney U test at 95% confidence interval. No statistic analysis was 

done for data of pooled samples. 
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RESULTS AND DISCUSSION 

 

To examine the influence of the preceding allergic bronchial inflammation on the antibacterial 

immune responses of post-asthma rAM during subsequent C. muridarum infection, a mouse 

model of allergic bronchial inflammation was set up. Subsequent C. muridarum infection was 

achieved by i.t. administration of C. muridarum elementary bodies (EB) at d15 after the last 

OVA-exposure. As already described in the first chapter of the results section, at this time 

point, absolute cell numbers returned to basal levels and the alveoli again consisted for 90% 

of macrophages. C. muridarum is known as the mouse biovar of C. trachomatis and is 

extensively used to study C. pneumoniae pathology and immunology 4-8. To verify the role of 

post-asthma rAM during the early innate immune responses of post-asthma lungs to a 

subsequent C. muridarum infection, naïve and post-asthma lungs were i.t. infected with C. 

muridarum with or without prior depletion of the respective rAM-population. At d3 post-

infection, BAL was performed and alveolar inflammation was assessed by flow cytometry. As 

shown in figure 1A, the C. muridarum infection dose used in this study did not elicit 

inflammation in the lungs of naïve rAM+ and rAM- mice (figure 1A). In contrast, the same 

infection dose already induced a mild inflammatory response in the lungs of post-asthma 

rAM+ mice (figure 1A). Depletion of post-asthma rAM prior to C. muridarum infection 

reduced the total numbers of BAL cells (figure 1A).  

The elevated levels of total BAL cells in C. muridarum infected post-asthma rAM+ mice were 

especially due to an increased recruitment of macrophages/monocytes (figure 1B). It is known 

that C. muridarum stimulates different TLRs at rAM 2. Since we previously showed an 

increased in vitro TLR-reactivity of post-asthma rAM, hyperinflammatory TLR-signalling 

exhibited by this rAM-population may underlie the observed increase in innate C. muridarum 

induced pulmonary inflammation. On the other hand, C. muridarum has been found to induce 

apoptosis of rAM in order to spread the infection 8. This implicates that alveolar BAL cell 

numbers measured at d3 post-infection is possibly not just due to recruitment of leukocytes 

but represent a reflection of the recruitment of leukocytes combined with the concurrent 

apoptosis of macrophages and/or monocytes in the alveoli. 

Determination of alveolar bacterial titers at d3 post-infection revealed up to five times higher 

bacterial loads in the alveoli of post-asthma rAM+ mice compared to naïve rAM+ mice (figure 

1C). Thus, the preceding allergic bronchial inflammation altered the lung’s antibacterial 
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defence against subsequent C. muridarum infection. Possibly the persistence of a Th2-bias 

rendered the post-asthma lungs more susceptible to subsequent C. muridarum infection. 

Indeed, it is known that BALB/c mice, which are biased towards Th2-mediated responses, are 

markedly more susceptible to chlamydial lung infection compared to the Th1-predisposed 

C57BL/6 strain 6. Alternatively, since rAM are the target cells for C. muridarum infection, 

increased alveolar C. muridarum titers in post-asthma rAM+ mice may be due to altered 

functionalities of post-asthma rAM. Our earlier research demonstrated that the activation 

phenotype of post-asthma rAM is biased towards the alternatively activated M2-

differentiation status. In contrast to classically activated M1-macrophages, M2-macrophages 

display impaired bactericidal activities 9. Moreover, in vitro studies have already 

demonstrated that the expression of alternative macrophage activation markers plays a pivotal 

role in determining susceptibility to C. pneumoniae infection 10. Furthermore, production of 

type I IFNs enhances susceptibility to C. muridarum lung infection by promoting bacterial 

dissemination through enhanced apoptosis of local macrophages 8. As post-asthma rAM 

displayed altered regulation of IFN-β production, this may contribute to the increased 

susceptibility of post-asthma mice to a subsequent C. muridarum lung infection. As shown in 

figure 1C, depletion of both naïve and post-asthma rAM prior to C. muridarum infection 

resulted in a five-fold increase in alveolar bacterial burden (figure 1C). This result indicates 

that post-asthma rAM still exhibited significant protective antibacterial immunity. Yet, the 

increased bacterial loads in rAM- mouse groups could also be attributed to a lack of target 

cells for infection. Strikingly, post-inflammation rAM
-
 mice still exhibited elevated bacterial 

loads as compared to infected naïve rAM
-
 mice. These results clearly indicate that additional 

alterations in post-inflammation lung cells, like AECs, were beneficial for C. muridarum 

survival and/or replication. 

In conclusion, we document a prominent pro-inflammatory role of post-asthma rAM 

contributing to the increased pulmonary inflammatory reactivity of post-asthma lungs to C. 

muridarum infection. Together with the observation that post-asthma lungs showed higher 

loads of alveolar C. muridarum, these data indicate and support a role of post-asthma rAM in 

the onset of C. pneumoniae induced asthmatic exacerbation. Moreover, increased pulmonary 

inflammatory responses provoked by the inadequate antibacterial immune function of this 

rAM-population may compromise the pulmonary gas exchange function and the integrity of 

the mucosal epithelial barrier, hereby facilitating bacterial dissemination to other body 

compartments. 
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Figure 1. Alveolar inflammatory responses and bacterial titers after C. muridarum infection of naïve and 

post-asthma rAM
+
 and rAM

-
 mice at d3 post-infection.  

Post-asthma (d15 after the last OVA-challenge) and naïve C57BL/6 mice (n=7) received CL i.t. three days 

before inoculation with 103 IFU C. muridarum to deplete post-asthma and naïve rAM respectively or received 

PBS as a control. BAL was collected at d3 post-infection. (A) Average BAL cell counts ± SEM (B) and average 

BAL cellular composition ± SEM were determined by flow cytometry. (C) BAL fluid was collected and 

bacterial recovery was assessed by direct immunofluorescence staining of the bacteria. *** p<0.0001 
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Introduction 

Patients with allergic asthma suffer from recurrent episodes of airway obstruction, wheezing, 

chest tightness, and shortness of breath. These macroscopic symptoms are collectively 

referred to as asthma exacerbations. From the list of microscopic symptoms, airway 

inflammation is considered as an important pathophysiological component of allergic asthma. 

Prolonged allergen exposure elicits Th2-mediated eosinophilic or Th1/Th17-mediated 

neutrophilic bronchial inflammation in mild to moderate or severe allergic asthma patients 

respectively 1. Interactions between inflammatory leukocytes and resident tissue cells of the 

respiratory tract cause subsequent tissue remodelling. The continuous positive feedback 

between these elements can eventually result in the development of an asthma exacerbation 2. 

The induction of these cascade reactions was initially ascribed to excessive and persistent 

allergen encounter. However, acute respiratory viral or bacterial infections are now very often 

detected in hospitalized individuals suffering from an asthma exacerbation. Therefore, acute 

respiratory viral or bacterial infections are strongly suggested to be the main instigators of 

asthma exacerbations 3.  

Nonetheless, the question which cells and/or molecules that orchestrate acute respiratory viral 

or bacterial infection induced asthma exacerbation is still not satisfyingly answered. 

Resident alveolar macrophages (rAM) are known as the primary immune sentinels of the lung 

and are major determinants of pulmonary immune responses to viral 4-9 and bacterial 10-13 

infections. In order to maintain a sterile non-inflamed microenvironment, this phagocyte 

population excels in combining efficient removal of respiratory pathogens with suppression of 

the development of subsequent pulmonary inflammatory responses. However, research of the 

last decade highlighted the fact that innate imprinting by a preceding pulmonary inflammation 

can have detrimental effects on the rAM’s functional status during subsequent responses of 

the lung to other, often unrelated, inflammatory stimuli 14-16. The goal of this study was to 

investigate to which extent innate imprinting of rAM was induced by a preceding allergic 

bronchial inflammation. Moreover, the pathophysiological relevance of possible allergic 

inflammation-induced innate imprinting of rAM during subsequent acute respiratory viral or 

bacterial lung infections was evaluated. 
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General overview and interpretation of the experimental observations 

As general basic research platform, an established mouse model of allergic asthma was 

applied. Systemic sensitization against ovalbumin (OVA) in the presence of the Th2-skewing 

adjuvant aluminiumhydroxide (alum), followed by pulmonary exposure to aerosolized OVA, 

is a widely established protocol to induce a mild to moderate allergic asthma-like airway 

inflammatory response in mice 17, 18. When allergen exposure was arrested, the eosinophilic 

allergic bronchial inflammation was cleared and steady-state conditions were achieved within 

a time-frame of 12 days. At this time-point, absolute cell numbers returned to basal levels and 

the cellular composition of the alveoli again consisted nearly exclusively of rAM.  

We initially characterized the phenotype of this post-inflammation rAM-population by 

assessing the expression of a number of typical alveolar macrophage markers. Among all the 

macrophage subtypes in the body, naïve rAM exhibit a unique phenotypic marker profile. For 

instance, naïve rAM express high levels of CD11c and DEC-205, surface markers not found 

on other macrophage populations and expressed mainly by DCs and DC-subpopulations 
19, 20

. 

In contrast, expression of F4/80 and CD11b, which are historically considered as the 

canonical macrophage markers, are very low to absent respectively 
21

. CD11c and DEC-205 

were found to be equally expressed on naïve and post-inflammation rAM. Furthermore, high 

intrinsic fluorescence intensity, another hallmark of naïve rAM, was also found in post-

inflammation rAM. Yet, post-inflammation rAM exhibited higher levels of CD11b and 

CD115, the receptor for macrophage colony stimulating factor (M-CSF) 
22

. In addition, post-

inflammation rAM expressed higher levels of FcγRIII (C16/CD32) and equal levels of the 

scavenger receptor (SR)-A (CD36), which are both receptors involved in phagocytosis 
23

.  

Post-inflammation rAM exhibited only a poor basal in vitro phagocytic capacity which is very 

inconsistent with the conventional reputation of naïve rAM and other macrophage phenotypes 

of the body which generally excel in phagocytosis of particulate matter 
24

. As opposed to their 

decreased basal in vitro phagocytic capacity, post-inflammation rAM showed increased in 

vitro TLR-3, TLR-4 and TLR-7 reactivity. Secreted levels of inflammatory cytokines like 

TNF-α, IL-6, IL-12p70, CXCL1 and CXCL2 were increased after LPS and imiquimod 

stimulation compared to naïve rAM. Another striking difference in innate pro-inflammatory 

signalling between post-inflammation rAM and naïve rAM was found at the level of TLR-

induced type I IFN secretion. Post-inflammation rAM produced significant levels of bioactive 

IFN-β following in vitro TLR-4 and TLR-3 stimulation by LPS and poly I:C respectively. 
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These data stand in strong contrast to our experimental experience and the literature in which 

it has been demonstrated that naïve rAM characteristically fail to autonomously secrete IFN-β 

after engagement of TLR-3 and TLR-4 
25

. Naïve rAM possess however functional IFNAR-

signalling which renders them fully responsive to exogenous type I IFN and they do 

upregulate ifn-β mRNA transcript levels after in vitro TLR-3 and TLR-4 stimulation as well 

25
. Therefore, TLR-3 and TLR-4 induced production of IFN-β must be regulated at the 

posttranscriptional level in naïve rAM. This posttranscriptional regulatory checkpoint is 

clearly absent in post-inflammation rAM. Together, these data indicate that innate imprinting 

of rAM by a preceding allergic bronchial inflammation includes a shift from an 

immunological restrained macrophage phenotype, represented by naïve rAM, towards a less 

tightly controlled and immunological released phenotype, embodied by post-inflammation 

rAM. 

We next investigated the in vivo pathophysiological relevance of the altered innate 

functionality of post-inflammation rAM by exposing mice, which suffered from a preceding 

allergic bronchial inflammation, to a subsequent respiratory syncytial virus (RSV) and 

Chlamydia (C.) muridarum lung infection. These two respiratory pathogens are often 

appointed as the instigators of asthma exacerbations 
3
. Infection of post-inflammation lungs 

with RSV resulted in increased pulmonary innate and adaptive inflammatory responses 

compared to RSV-infection of naïve lungs. In contrast, alveolar RSV-titers did not differ 

between both mouse groups. Prior depletion of both rAM-populations emphasized the strong 

contrast between the intrinsic pro-inflammatory character of post-inflammation rAM and the 

anti-inflammatory capacities exhibited by naïve rAM during subsequent RSV-infection. The 

increased inflammatory TLR-reactivity exhibited by post-inflammation rAM is a reasonable 

explanation for the way in which these cells contributed to the generally increased RSV-

induced pulmonary inflammation in post-inflammation mice. RSV contains several ligands 

for a variety of PRRs on innate immune cells. The RSV genomic RNA is recognized by TLR-

3, expressed by AECs and rAM 26, while the RSV F-protein has been identified as a TLR-4 

ligand 27. Furthermore, TLR-7 was recently acknowledged as another member of the TLR-

family involved in the recognition of RSV 28, 29. The lack of any direct antiviral activity of 

post-inflammation rAM was also very opposing to the efficient antiviral activity of naïve 

rAM. Given their regained capacity to autonomously produce IFN-β, one would expect 

however that post-inflammation rAM would exhibit improved antiviral capacities. It is likely 

that an impaired IFN-β response of the post-inflammation AECs 
30

, the main target cells for 
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RSV-infection, or active inhibition of the post-inflammation rAM’s IFN-β production by the 

virus 
31, 32

 are predominant. Furthermore, spore concentrations of TGF-β, which is abundantly 

secreted during an allergic bronchial inflammation 
33, 34

, can exert suppressive actions on the 

post-inflammation rAM’s type I IFN responses 
35

. Another possibility is that upon RSV-

infection, post-inflammation rAM exhibit deficient production of IL-15, a downstream target 

of type I IFNs 36 which is implicated in innate and acquired antiviral immunity 
37, 38

. BAL 

macrophages of asthma patients already showed an impaired IL-15 response to rhinovirus 

infection which was inversely related to AHR and virus load 39. Therefore, and because of the 

downstream position to IFN-β, a deficient IL-15 production could represent a dominant bottle 

neck responsible for the poor antiviral activity of post-inflammation rAM. Additionally, as 

poor IFN-λ induction in AECs and rAM from asthmatics was correlated with the severity of 

virus-induced asthma exacerbations 
40

, deficient production of this type III IFN by post-

inflammation rAM could also dominantly contribute to the inadequate antiviral activity of this 

rAM-subset.  

Prior depletion of naïve rAM had also negative effects on morbidity parameters, including 

body weight and serum levels of IL-6, while these parameters were not affected by prior 

depletion of post-inflammation rAM. However, one should take into account that the increase 

in morbidity and pulmonary inflammation observed after RSV-infection of naïve rAM-

depleted lungs could be the result of the increased alveolar viral load during the early (d3) 

pulmonary innate responses in these mice. In this case, increases in pulmonary inflammation 

and morbidity are secondary effects elicited by the deficient initial clearance of the virus due 

to the absence of naïve rAM rather than the direct result of the lack of anti-inflammatory 

signals otherwise provided by naïve rAM. This scenario also stands in strong contrast with the 

events that are taking place in post-inflammation mice. As prior depletion of post-

inflammation rAM resulted in decreased pulmonary inflammation without any concurrent 

changes in alveolar RSV viral load and morbidity, this decrease in pulmonary inflammation is 

ascribed to diminished pro-inflammatory signals in the lungs otherwise provided by post-

inflammation rAM. Thus, it is clear that the preceding allergic inflammation induced a shift in 

the functionality of rAM during a subsequent RSV-infection. This shift included the transition 

from a direct and efficient antiviral function of naïve rAM to a purely pro-inflammatory 

function of post-inflammation rAM. 
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The initial encounter between post-inflammation rAM and RSV also had a differential 

outcome on the development of subsequent RSV-specific immune memory responses. 

Reinfection of post-inflammation mice with RSV resulted in increased LDLN CTL and Th1-

cell responses which both decreased when post-inflammation rAM were initially depleted. In 

contrast, prior depletion of naïve rAM slightly increased RSV-specific CTL-responses and 

largely increased Th1-memory responses during RSV-reinfection. These data can reflect 

differences in the interaction between post-inflammation rAM and airway DCs. Although 

lung interstitial macrophages are now appointed as the eminent pulmonary suppressors of 

DC-function during diseases, like allergic asthma 41, previous research reported that naïve 

rAM also suppress airway DC-maturation, -function and -trafficking to mediastinal LNs 
42, 43

. 

Thus, depletion of naïve rAM prior to primary RSV-infection could increase the APC-

function of airway DCs, explaining the increased CTL- and Th1-responses during RSV-

reinfection. In contrast, by exhibiting a more pro-inflammatory character, post-inflammation 

rAM probably exerted immune stimulatory rather than immunosuppressive effects on airway 

DC-maturation, -function and -trafficking during the initial encounter with RSV. This could 

explain why CTL- and Th1-responses in post-inflammation rAM
+
 mice increased during 

RSV-reinfection and decreased when post-inflammation rAM were initially depleted. 

However, these data may be biased by alterations in composition of the resident airway DC-

population. The preceding allergic bronchial inflammation can alter the ratio between 

immunosuppressive pDCs and immunogenic mDCs in the airways which can largely 

influence the outcome of subsequent LDLN T-cell responses. Despite the differences in 

LDLN memory responses, no differences were found at the level of local alveolar 

inflammation during RSV-reinfection between all RSV-reinfected mouse groups. 

Additionally, no virus was detected in the alveoli of these mice as well. Thus, it remains 

unclear what the actual (patho)physiological significance is of these observed differences in 

memory T-cell responses. One possibility is that increased memory CTL- and Th1-responses 

lead to increased levels of pulmonary IFN-γ which in turn can augment general lung tissue 

pathology and AHR and can induce acute exacerbation reactions 44. At the level of humoral 

memory responses, lower levels of RSV-specific IgG1- and IgG2a-antibodies were observed 

in post-inflammation mice. However, only depletion of naïve rAM resulted in slightly 

decreased IgG1 levels. IgG-molecules are pivotal in the neutralization of RSV, inhibiting viral 

attachment to target cells 45. However, sera from post-inflammation mice did not show 

impaired in vitro neutralization of RSV. In addition, RSV-rechallenge of post-asthma mice 

did not yield any productive infection which is possibly due to the immediate antibody-
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mediated neutralization of incoming RSV-particles. In this context however, the presence of 

lung mucosal IgA is also an important parameter. Thus, the actual physiological relevance of 

the observed differences in RSV-specific IgG1- and IgG2a-levels is not defined yet. One 

possibility is that lower IgG1- and IgG2a-levels in RSV-infected post-inflammation mice is 

reflected in lower amounts of opsonising IgG1- and IgG2a-molecules in these mice. Impaired 

opsonisation of incoming RSV-particles would eventually result in decreased rAM-mediated 

uptake and killing of the virus.  

Investigation of the role of post-inflammation rAM during a subsequent acute C. muridarum 

lung infection showed similar results. The C. muridarum infection dose used in this study did 

not elicit any pulmonary inflammation in naïve mice while a mild inflammation was observed 

in the lungs of post-inflammation mice. The induction of this mild pulmonary inflammatory 

response was mainly due to the presence of post-inflammation rAM as prior depletion of this 

rAM-population resulted in only a minor recruitment of inflammatory leukocytes to the 

alveoli. As C. muridarum contains a number of TLR-ligands, including LPS 
46

, the TLR-

hyperreactivity of post-inflammation rAM can partially underlie the increased inflammatory 

responses seen in infected post-inflammation lungs. In addition to the increased pulmonary 

inflammatory response, post-inflammation mice showed also an increased alveolar bacterial 

burden. Since rAM are the target cells for C. muridarum infection 46, increased alveolar C. 

muridarum titers in post-inflammation mice might be mainly due to increased susceptibility 

of post-inflammation rAM for infection. An important argument that supports this hypothesis 

is that post-inflammation rAM displayed critical alterations in their regulation of IFN-β 

production. This type I IFN enhances susceptibility to C. muridarum lung infection by 

promoting bacterial dissemination through enhanced apoptosis of local macrophages 47. Prior 

depletion of naïve and post-inflammation rAM both resulted in elevated alveolar C. 

muridarum titers. However, this result may be biased by the fact that the target cells of the 

bacteria were depleted before the infection. Nevertheless, in both naïve and post-inflammation 

rAM
-
 mouse groups, C. muridarum lung infection lead to the recruitment of monocytes to 

alveoli. These monocytes, most likely recruited shortly after the C. muridarum challenge, can 

serve as the new host cells for the bacteria. Strikingly, post-inflammation rAM
-
 mice 

exhibited elevated bacterial loads as compared to infected naïve rAM
-
 mice. These results 

clearly indicate that additional alterations in post-inflammation lung cells, like AECs, were 

beneficial for C. muridarum survival and/or replication. Another important consideration is 

the fact that during its life cycle, C. muridarum alternates between a non-replicating, 
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infectious elementary body (EB), and a replicating, non-infectious reticulate body (RB) 48. As 

the bacterial titer detection method used in this study was only a read-out for free alveolar 

EBs of C. muridarum, intracellular loads of C. muridarum RBs are not known. This is 

important because the presence of this intracellular chlamydial life-form can influence the 

actual total amount of bacteria in the lungs. Furthermore, differences in the amount of 

intracellular RBs can have a differential outcome on the induction of subsequent dormant 

latent infections 
48

. Together, these results highlight the increased susceptibility of post-

inflammation mice to subsequent C. muridarum lung infection in which a pronounced pro-

inflammatory role is played by post-inflammation rAM. 

An overview of the most important experimental observations is depicted in figure 1. 

 

 

Mechanisms underlying allergic inflammation-induced innate imprinting of rAM  

The functionality exhibited by cells is often a reflection of the local microenvironment in 

which they reside. Interactions with soluble proteins and/or other cellular components of the 

tissue determine the reactivity of these cells in response to pathogens or other foreign 

substances. In initial mechanistic experiments, we observed a rapid clearance of naïve rAM 

from the bronchoalveolar lumen during the course of the allergic bronchial inflammation. 

Thus, post-inflammation rAM originated from monocytes that were freshly recruited during 

or after the bronchial inflammation. The subsequent differentiation of these recruited 

monocytes to post-inflammation rAM was then largely orchestrated by the prevailing 

conditions of the lung environment. 

In the case of naïve rAM, it was found that the unusual microenvironment of the alveoli 

provides this macrophage population with a unique phenotype. For example, rAM are 

exposed to high oxygen tension and are also bathed in high concentrations of granulocyt-

macrophage colony stimulating factor (GM-CSF) 49 and surfactant proteins (SP), like SP-A 

and SP-D 50. Especially the pulmonary pool of GM-CSF has been shown to be the most 

critical factor in the induction of the rAM-phenotype. For instance, rAM from GM-CSF
-/-

 

mice showed decreased phagocytosis of latex beads, Gram-negative and Gram-positive 

bacteria 
51

, and adenoviral particles 
52

. Independent of the phagocytic abnormality, 

intracellular killing of both Gram-positive and Gram-negative bacteria was also reduced in the 

rAM of these mice 
51

. Thus, insufficient levels of pulmonary and/or alveolar GM-CSF in post-
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inflammation lungs may lead to the inadequate innate functional design of post-inflammation 

rAM, as reflected by their poor basal in vitro phagocytic activity and their deficient 

participation to in vivo RSV-clearance. Furthermore, insufficient alveolar GM-CSF may 

impair the bactericidal activity of post-inflammation rAM, leading to increased C. muridarum 

levels in the alveoli of post-inflammation lungs. Furthermore, exaggerated inflammatory 

responses to bacterial 
53

 or viral 
52

 lung infection were observed in GM-CSF
-/-

 mice while 

transgenic pulmonary expression of this growth factor in these mice rescued deficient 

pathogen clearance and inhibited exuberant pulmonary inflammatory responses in both 

disease models 
53

. These findings are in line with our results that demonstrate increased 

pulmonary inflammatory responses in post-inflammation lungs after RSV- and C. muridarum 

infection. However, there are also discrepancies between the phenotype of GM-CSF
-/-

 rAM 

and post-inflammation rAM. Despite overt pro-inflammatory cytokine production following 

microbial infection of the lungs, rAM from GM-CSF
-/-

 mice failed to release TNF-α upon 

LPS-stimulation 
51

. Consistent with that observation, reduced expression of multiple 

components of the TLR-signalling pathway, including TLR-4, TLR-2 and CD14, was 

observed in rAM from GM-CSF
-/-

 mice 
51

. These data are inconsistent with our finding that 

post-inflammation rAM displayed hyperinflammatory reactivity to in vitro TLR-engagement 

and exhibited no changes in TLR-expression. In addition, GM-CSF is supposed to be the 

main inducer of CD11c-expression by recruited rAM precursor cells 21. Post-inflammation 

rAM expressed CD11c levels comparable to those of naïve rAM, suggesting ‘normal’ GM-

CSF activity in the alveoli of post-inflammation lungs.  

Therefore, it is likely that other factors contribute to the increased pro-inflammatory TLR-

reactivity of post-inflammation rAM. For instance, the collectins, SP-A and SP-D are known 

for their immunomodulatory properties on pulmonary immune responses in order to protect 

the host from overzealous inflammation that could potentially damage the lung and impair gas 

exchange 
54

. Moreover, SP-A is known to dampen TLR-2 and TLR-4 signalling in human 

monocyte-derived macrophages 
55

 while SP-D was found to inhibit CD14/TLR-4 signalling in 

murine rAM 
56

. As post-inflammation rAM exhibited hyperinflammatory responsiveness to in 

vitro engagement of TLR-3, TLR-4 and TLR-7, these results can be indicative for low 

concentrations of SP-A and/or SP-D in the alveoli of post-inflammation lungs. Furthermore, 

SP-A and SP-D are important pulmonary pattern recognition molecules which opsonise 

respiratory pathogens for uptake by pulmonary phagocytes, like rAM. Therefore, insufficient 

alveolar SP-A and/or SP-D can contribute to the inappropriate antiviral and antibacterial 
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immune responses of the post-inflammation lungs by decreasing viral and bacterial uptake 

and killing by post-inflammation rAM and increasing overall pulmonary inflammation.  

Next to the presence of immunosuppressive soluble factors in the alveoli of naïve lungs, 

immunomodulatory interactions between rAM and AECs are also vital to allow the 

specialized modulation of the rAM-function. For instance, naïve rAM closely adhere to the 

AECs and this interaction induces the expression of αvβ6-integrin on the surface of AECs. 

The importance of αvβ6-integrin for keeping the rAM in a quiescent state under steady-state 

conditions was shown by the fact that αvβ6-integrin-/- mice have constitutively activated rAM 
57. Furthermore, recent research identified other novel homeostatic loops which are 

maintained by the close interaction between rAM and AECs. These loops require the naïve 

rAM-AEC CD200R-CD200 axis 58 and MUC1 expression on AECs 59, 60. In the assumption 

that a preceding allergic bronchial inflammation induces critical alterations in the AEC-

phenotype, it is likely that these regulatory circuits are abolished in post-inflammation lungs, 

thereby abrogating the immunosuppressive activities on post-inflammation rAM. Thus, 

investigation of the interplay between post-inflammation rAM and post-inflammation AECs 

could provide further insight into the functional development of post-inflammation rAM. 

In this study, we evidenced that the preceding allergic bronchial inflammation is necessary to 

give rise to the phenotype of post-inflammation rAM.  In addition, we showed that the type of 

preceding bronchial inflammation has a pivotal impact on the way in which post-

inflammation rAM are imprinted. For instance, the sustained TLR-desensitization of rAM 

residing in the alveolar cavity after resolution of respiratory influenza infection 14 stands in 

strong contrast to the persistent TLR-hyperreactivity observed in post-inflammation rAM 

from our study. Therefore, the establishment of the post-inflammation rAM’s functional 

phenotype is probably largely influenced by a prolonged exposure to factors associated with 

the preceding allergic bronchial inflammation. One of the hallmark cytokines secreted during 

a Th2-mediated eosinophilic allergic bronchial inflammation is IL-4 61. This cytokine skews 

macrophages towards an alternatively activated differentiation status 49. It has been found that 

IL-4 mediated alternative activation of macrophages impairs phagocytosis but potentiates 

microbial-induced signalling and cytokine secretion 62. The antimicrobial features of these IL-

4 induced M2-macrophages show striking similarities with the decreased basal in vitro 

phagocytic activity and increased in vitro TLR-reactivity exhibited by post-inflammation 

rAM. Moreover, we demonstrated that post-inflammation rAM displayed a basal M2-
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differentiation status as evidenced by the increased arg-1 to inos ratio 
49

 we observed in these 

cells. Nevertheless, a similar post-inflammation rAM-functional phenotype was observed in a 

recently established mouse model of Th1- and Th17-biased non-eosinophilic severe refractory 

asthma. In this model, IFN-γ and IL-17 rather than IL-4 are the dominant hallmark cytokines 

secreted in the lungs 
18

. Therefore, the nature of the inflammatory trigger is probably playing 

a more dominant role in the outcome of the innate imprinting of rAM.     

Another molecule that is elevated in patients suffering from asthma 
63

 and affects TLR-

signalling in macrophages is macrophage-colony stimulating factor (M-CSF). Although their 

names suggest many shared functional characteristics, GM-CSF and M-CSF exert very 

different influences on the functional development of innate leukocytes. For instance, the 

balance between GM-CSF and M-CSF can have a decisive role in the regulation of TLR-

signalling in macrophages. While in vitro  LPS-stimulation of GM-CSF primed bone-marrow 

derived macrophages (BMDM) enhances the expression of genes induced by the MyD88-

dependent NF-κB pathway like tnf-α, il-12p40 and il-23p19, M-CSF-primed BMDM express 

increased levels of especially MyD88-independent IRF-3 induced genes like ifn-β and ccl5 
64

. 

Overt M-CSF production during allergic bronchial inflammation could therefore contribute to 

the enhanced MyD88-independent TLR- and IFN-β-signalling seen in post-inflammation 

rAM. In addition, the presence of significant levels of the M-CSF receptor, CD115, at the 

surface of post-inflammation rAM would render these cells more susceptible to the actions of 

this growth factor. 

By depleting the local pool of pulmonary ATP, we were able to prevent the inflammation-

induced naïve rAM-turnover. ATP is abundantly produced during the course of an allergic 

bronchial inflammation and serves as a co-factor for the induction of several signalling 

cascades in different cell types 65. One signalling pathway that can be of interest for our 

observations is the ATP-dependent induction of inflammasome/caspase-1 mediated apoptosis, 

referred to as pyroptosis 
66

. This atypical pathway of apoptosis is found to be a common 

process during inflammation 
67

 and represents a plausible mechanism underlying the 

accelerated allergic inflammation induced rAM-turnover. Importantly, as inhibition of the 

naïve rAM-turnover during the course of the allergic inflammation results in the persistence 

of this rAM-population after the resolution of the inflammation, this might affect the outcome 

of the innate imprinting. In addition, it might provide more insight into the interplay between 
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the local microenvironment and the intrinsic characteristics of post-inflammation rAM in 

establishing the phenotype of innate imprinting. 

A schematic overview of the possible mechanisms responsible for the naïve rAM-turnover 

and determining the functional phenotype of post-inflammation rAM is depicted in figure 1. 
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Figure 1: rAM are the predominant cell type in the alveoli of naïve mice. Their functional phenotype is shaped 

by the presence of local alveolar mediators, like TGF-β, SP-A/D and GM-CSF, and interactions with 

neighbouring AECs via for instance the CD200R-CD200 axis. The functional characteristics of naïve rAM 
include a relatively high basal in vitro phagocytic activity together with an in vitro TLR-hyporesponsiveness. 

Furthermore, these cells efficiently clear antimicrobial pathogens from the alveoli without inducing overt 

subsequent inflammatory responses. During the course of an allergic eosinophilic inflammation, this naïve rAM-

population disappears from the alveoli by a mechanism driven by ATP. After the resolution of the allergic 

inflammation, a new post-inflammation rAM-population resides in the alveoli. In contrast to naïve rAM, post-

inflammation rAM exhibit very low basal in vitro phagocytic activity. This was however combined with a strong 

increase in in vitro TLR-reactivity. Importantly, this rAM-population also exhibit increased proinflammatory 

reactivity during an acute RSV and C. muridarum infection. In the case of RSV, this increased proinflammatory 

reactivity was not accompanied by any direct antiviral reactivity. The altered innate functionality of post-

inflammation rAM can be induced by the absence or the insufficient levels of immune regulatory factors in the 

alveoli and/or altered interactions with AECs, both the result of the preceding allergic bronchial inflammation. 
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General conclusions, clinical implications and perspectives for future research         

During the last decade, imprinting of resident innate leukocyte populations by inflammation 

or infection has caught the attention of an increasing number of researchers. The discovery of 

this immunological phenomenon revealed new insights into the field of heterologous 

immunity during multiple, often unrelated, inflammatory events. For instance, innate 

imprinting of rAM by a preceding influenza infection is thought to deliver a significant 

contribution to the enhanced susceptibility of influenza patients to secondary bacterial 

pneumonia 14, 15. Our study provides evidence that rAM are imprinted by a preceding allergic 

bronchial inflammation. This type of innate imprinting is characterized by the increased pro-

inflammatory reactivity of post-inflammation rAM to TLR-engagement and, more 

importantly, also to subsequent RSV and C. muridarum infection. In addition, post-

inflammation rAM exhibited decreased basal in vitro phagocytic activity and displayed no 

direct antiviral activity. Impaired antimicrobial innate functionality of post-inflammation rAM 

affected also later stages of the viral lung infection and the immune memory responses. These 

data strongly suggest that innate imprinting of rAM by a preceding allergic bronchial 

inflammation contributes to the onset of respiratory pathogen induced asthma exacerbations 

of which asthma patients often suffer. Overt inflammatory pulmonary responses, partially 

induced by post-inflammation rAM, to subsequent RSV or C. muridarum lung infections 

combined with the already present airway structural changes and AHR in these subjects, can 

eventually result in the collapse of the airways. Therefore, the function of post-inflammation 

rAM during RSV- and C. muridarum infections needs to be further elucidated. As type I IFNs 

are important mediators in both infectious diseases, the significance of the altered IFN-β 

responses exhibited by post-inflammation rAM should be evaluated during RSV- and C. 

muridarum infections. In addition, the importance of both the alterations in TLR-reactivity 

and phagocytic activity displayed by post-inflammation rAM should be determined in RSV- 

and C. muridarum infections as well. Furthermore, an inadequate innate immune reactivity of 

post-inflammation rAM in mild asthmatics may contribute to the transition towards a more 

severe asthmatic disease status. We all become infected with respiratory pathogens, which 

normally induce only in the most severe cases airway remodelling and AHR in non-asthmatic 

individuals. However, in allergic asthmatics, respiratory viral or bacterial infections can 

induce more pronounced increases in airway remodelling and AHR compared to non-

asthmatic subjects. Therefore, the role of post-inflammation rAM in the development of 

airway structural changes and AHR after subsequent RSV and C. muridarum lung infection is 
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an important topic for future investigation. In addition, further mechanistic insights in the 

origin and development of rAM innate imprinting by a preceding allergic bronchial 

inflammation can deliver crucial information for managing secondary acute respiratory viral 

and bacterial infections in asthmatic patients. By specifically restraining the pro-inflammatory 

reactivity and/or enhancing direct antimicrobial activities of post-inflammation rAM in 

asthmatic patients, respiratory viral and bacterial induced exacerbations could be prevented or 

treated more efficiently. 

The more pronounced pro-inflammatory TLR-responsiveness of post-inflammation rAM also 

highlights the fact that these cells could also be involved in the sensitization of allergic 

asthmatics to new allergens. Several airborne allergens are often contaminated with spore 

concentrations of LPS, exhibit structural homology with TLR-4 ligands or contain proteolytic 

activity 68. Compared to rAM from naïve individuals, the encounter between these allergens 

and post-inflammation rAM may elicit a more pronounced pulmonary inflammation. This 

pulmonary inflammation may in turn provide the necessary danger signals for promoting DC-

maturation and -migration to the lymph nodes after allergen uptake. 

However, there are some important issues that make it rather hard to translate the obtained 

results from this study to the human case of allergic asthma. Firstly, it is vital to consider the 

limited translational value of the OVA/alum and OVA/CFA based mouse models of allergic 

asthma used in this study. Allergic asthma has a very complex aetiology and intertwining 

genetic and environmental aspects significantly contribute to the heterogeneous phenotype of 

the disease at later age. Clearly, the models of allergic asthma used in this thesis fail to 

recapitulate all the aspects and features of human allergic asthma but only replicate the Th2-

mediated eosinophilia or the Th1- and Th17- mediated neutrophilia observed in the airways of 

mild or severe asthma patients respectively. The way in which genetic and environmental 

factors affect the functional status of post-inflammation rAM remains unknown. In addition, 

the surrounding lung microenvironment can show footprints of many other infectious and 

non-infectious inflammatory insults which can in turn all affect the functionality of the 

existing rAM-population. These concerns may challenge the clear-cut phenotype of post-

inflammation rAM observed in this study. 

Secondly, the proposed model of innate imprinting of post-inflammation rAM might not be 

applicable to patients suffering from severe non-eosinophilic allergic asthma. Although we 

found that the representation of the post-inflammation rAM phenotype was generally 
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independent of the type of allergic inflammation, humans suffering from severe allergic 

asthma are unlikely to achieve the post-inflammation lung status as pulmonary inflammation 

is persistently present. In mild asthmatic individuals however, disruption of allergen exposure 

leads to the resolution of the pulmonary allergic inflammation, a feature which was also 

mimicked in our OVA/alum based mouse model. Thus, our findings that a preceding Th2-

mediated eosinophilic inflammation can affect the rAM’s functional phenotype can be of 

interest for especially this subpopulation of asthma patients. 

Collectively, it is clear that the concept of innate imprinting, including its origin and its 

immunological consequences, is an important piece of the puzzle in the search for the Holy 

Grail to find proper therapeutic approaches for treating the many pathological facets of 

allergic asthma.      
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SUMMARY 

 

Resident alveolar macrophages (rAM) exist in an environment high in antigenic material of 

which the majority must be ignored except when the antigen represents an infectious threat. 

When the activation threshold of rAM is exceeded, the development of a pulmonary 

inflammation is inevitable. In the case of allergic asthma, pro-inflammatory activation of rAM 

is induced upon abundant exposure to airborne allergen. Subsequent cytokine and chemokine 

secretion by activated rAM contributes to monocyte recruitment to the lungs and these cells 

are in turn involved in the further propagation of the allergic inflammation. Thus, both rAM 

and recruited monocytes/macrophages contribute to different stages of an allergic bronchial 

inflammation. However, the dynamics of both macrophage populations during the different 

stages of the allergic inflammation are still poorly characterized. Therefore, the initial goal of 

this thesis was to analyze the dynamics of rAM during the course of an allergic bronchial 

inflammation. By using an OVA/alum-based mouse model of asthma, featuring a Th2-biased 

sensitization and an eosinophilic airway inflammation reminiscent of the immunopathology of 

mild to moderate asthma, we found that during the acute stages of the inflammation, the rAM-

subset disappeared from the alveoli through an ATP-dependent mechanism. These results 

implied that a new post-inflammation rAM resided in the airways after the clearance of the 

allergic bronchial inflammation.  

Research through the last decade demonstrated that the rAM-functionality can be influenced 

or imprinted by a preceding bronchial inflammation. We therefore performed a phenotypical 

and functional comparison between naïve and post-inflammation rAM to determine to what 

extent post-inflammation rAM were subjected to innate imprinting by the preceding allergic 

bronchial inflammation. Although they showed a surface marker profile similar to that of 

naïve rAM, post-inflammation rAM exhibited a strongly reduced basal phagocytic capacity 

accompanied by a markedly increased inflammatory reactivity to TLR-3 (poly I:C), TLR-4 

(LPS) and TLR-7 (imiquimod) stimulation. Importantly, post-inflammation rAM also 

exhibited a switch from an IFN-β defective to an IFN-β competent phenotype, thus indicating 

the occurrence of a new, ‘inflammatory-released’ rAM-population in the post-allergic lung. 

Furthermore, the inflammation-induced rAM-turnover was critical for the development of the 

post-inflammation rAM-phenotype. In contrast, the main characteristics of the post-

inflammation rAM-phenotype were not affected by the type of preceding allergic 

inflammation. 
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As rAM fulfill a pivotal role in the host’s defence against invading respiratory viral 

pathogens, observed alterations in the post-inflammation rAM’s functional status may have 

detrimental effects on the lung tissue integrity during subsequent respiratory syncytial virus 

(RSV) infections. Today, this respiratory pathogenic microorganism is considered as the 

principal cause of the most severe exacerbations in asthmatic individuals. Thus, as a final aim 

of the thesis, we determined the antiviral immune responses of post-inflammation rAM during 

subsequent RSV-infection, and addressed their potential contribution to the immunopathology 

exhibited by the post-inflammation lung during the infection. In contrast to naïve rAM, post-

inflammation rAM exhibited strong pro-inflammatory reactivity during RSV-infection. 

Moreover, while naïve rAM showed a significant contribution to the clearance of the RSV-

virus from the lung, post-inflammation rAM clearly displayed no direct antiviral activity and 

did not contribute to the clearance of the virus. Furthermore, in contrast to naïve rAM which 

were found to suppress morbidity during later stages of the RSV-infection, post-inflammation 

rAM did not affect this systemic immunopathology parameter. Finally, the initial encounter 

between post-inflammation rAM and RSV also had a differential outcome on the 

development of subsequent RSV-specific immune memory responses. The presence of post-

inflammation rAM during primary RSV-encounter resulted in increased lung draining lymph 

node CD8+ and CD4+ memory T-cell responses during a secondary RSV-challenge. Thus, it is 

clear that the preceding allergic inflammation induced a shift in the functionality of rAM 

during a subsequent RSV-infection. This shift included the transition from an efficient 

antiviral and anti-inflammatory function of naïve rAM to a purely pro-inflammatory function 

of post-inflammation rAM. 

Collectively, the functionality of rAM is imprinted by a preceding allergic bronchial 

inflammation and these alterations in (innate) rAM-functions can contribute to the onset of 

respiratory pathogen induced exacerbation reactions in allergic asthma patients.    
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SAMENVATTING 

 

Residente alveolaire macrofagen (rAM) worden permanent blootgesteld aan een breed 

spectrum van ingeademde antigenen. Intrinsieke eigenschappen van deze celpopulatie zorgt 

ervoor dat de meerderheid van deze antigenen geklaard wordt zonder inductie van een 

pulmonair inflammatoir antwoord. Wanneer de activeringsdrempel van rAM overschreden 

wordt, is de inductie van een inflammatoire reactie in de longen onvermijdbaar. Overvloedige 

blootstelling aan ingeademd allergeen leidt in het geval van allergische astma tot de pro-

inflammatoire activering van rAM. Verschillende cytokines en chemokines, gesecreteerd door 

geactiveerde rAM, geven vervolgens aanleiding tot de rekrutering van bloedmonocyten naar 

de longen. Deze gerekruteerde monocyt/macrofaagpopulaties zijn op hun beurt betrokken bij 

de verdere propagatie van de allergische inflammatie. Dus zowel rAM als gerekruteerde 

monocyten/macrofagen dragen bij tot verschillende stadia van een allergische bronchiale 

inflammatie. De dynamiek die beide macrofaagpopulaties vertonen gedurende de 

verschillende fasen van een allergische bronchiale inflammatie is echter nog steeds 

onvoldoende gekarakteriseerd. Het in kaart brengen van de rAM-dynamiek gedurende het 

verloop van een allergische bronchiale inflammatie was dan ook het initiële doel van deze 

thesis. Gebruik makend van een muismodel voor eosinofiele allergische astma, werd 

aangetoond dat deze rAM-populatie verdween uit de alveoli gedurende de acute fase van de 

allergische inflammatie. Bovendien bleek de geobserveerde verdwijning van deze cellen een 

ATP-afhankelijk proces te zijn. Deze resultaten leidden tot de conclusie dat, na de klaring van 

de allergische bronchiale inflammatie, een nieuwe populatie van post-inflammatie rAM zich 

in de alveoli bevonden.  

Recent onderzoek toonde aan dat de functionaliteit van rAM kan beïnvloed worden door een 

voorafgaande bronchiale inflammatie. Daarom werden vervolgens de fenotypische en 

functionele  karakteristieken van post-inflammatie rAM geanalyseerd en vergeleken met 

naïeve rAM. Ondanks het feit dat post-inflammatie en naïeve rAM een gelijkaardig 

oppervlaktemerker profiel deelden, vertoonden post-inflammatie rAM een sterk afwijkende 

innate functionaliteit. Enerzijds was de basale fagocytose capaciteit sterk gereduceerd in post-

inflammatie rAM. Anderzijds vertoonde deze rAM-populatie een sterk toegenomen 

inflammatoire reactiviteit na TLR-3 (poly I:C), TLR-4 (LPS) en TLR-7 (imiquimod) 

stimulatie. Bovendien vertoonden post-inflammatie rAM een omschakeling van een IFN-β 

defectief naar een IFN-β competent fenotype. Verder bleek de inflammatie-geïnduceerde 
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verdwijning van rAM noodzakelijk te zijn voor de ontwikkeling van het post-inflammatie 

rAM fenotype. Het type allergische inflammatie had echter geen invloed op de 

karakteristieken van post-inflammatie rAM. 

rAM vervullen een belangrijke functie in de afweer van de gastheer tegen binnendringende 

respiratoire virale pathogenen. Wijzigingen in de functionele status van post-inflammatie 

rAM zouden bijgevolg schadelijke gevolgen kunnen hebben voor de integriteit van het 

longweefsel wanneer er een longinfectie met het respiratory syncytial virus (RSV) optreedt. 

Daarom werden tenslotte de inflammatoire en antivirale eigenschappen van post-inflammatie 

rAM gedurende een RSV-infectie onderzocht. In tegenstelling tot naïeve rAM vertoonden 

post-inflammatie rAM tijdens de infectie een sterk pro-inflammatoir karakter. De efficiënte 

antivirale eigenschappen van naïeve rAM, die een significante bijdrage leverden tot de klaring 

van het virus, stonden eveneens in schril contrast met de afwezigheid van enige rechtstreekse 

antivirale activiteit in post-inflammatie rAM. Deze rAM-populatie droeg bijgevolg niet bij tot 

klaring van het virus uit longen. De suppressieve werking van naïeve rAM op de morbiditeit 

gedurende de latere fasen van de infectie was eveneens niet terug te vinden in post-

inflammatie rAM. Tot slot leidde de initiële blootstelling van post-inflammatie rAM aan RSV 

tot de ontwikkeling van een gewijzigd RSV-specifiek immuun geheugenantwoord. De  

aanwezigheid van post-inflammatie rAM tijdens de primaire RSV-infectie resulteerde in een 

stijging in CD8+ and CD4+ geheugen T-celantwoorden tijdens een secundaire RSV-infectie. 

Het is dus duidelijk dat de voorafgaande allergische bronchiale inflammatie aanleiding gaf tot 

een wijziging in de antivirale eigenschappen van de aanwezige rAM-populatie. Deze 

wijziging omvatte de overgang van een naïef rAM-fenotype, gekenmerkt door efficiënte 

antivirale en anti-inflammatoire eigenschappen, naar een post-inflammatie rAM-fenotype, 

gekenmerkt door een puur pro-inflammatoire rol tijdens RSV-infecties. 

Samenvattend kan dus gesteld worden dat de functionaliteit van rAM in sterke mate 

beïnvloed wordt door een voorafgaande allergische bronchiale inflammatie. Deze wijziging in 

(innate) rAM-functie kan bijgevolg bijdragen tot de opwekking van pathogeen-geïnduceerde 

exacerbatiereacties in astma patiënten. 
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Abstract 

Asthma is a type-I allergic airway disease characterized by Th(2) cells and IgE. Episodes of 
bronchial inflammation, eosinophilic in nature and promoting bronchoconstriction, may 
become chronic and lead to persistent respiratory symptoms and irreversible structural airway 
changes. Representative mostly of mild to moderate asthma, this clinical definition fails to 
account for the atypical and often more severe phenotype found in a considerable proportion 
of asthmatics who have increased neutrophil cell counts in the airways as a distinguishing 
trait. Neutrophilic inflammation is a hallmark of another type of allergic airway pathology, 
hypersensitivity pneumonitis. Considered as an immune counterpart of asthma, 
hypersensitivity pneumonitis is a prototypical type-III allergic inflammatory reaction 
involving the alveoli and lung interstitium, steered by Th(1) cells and IgG and, in its chronic 
form, accompanied by fibrosis. Although pathologically very different and commonly 
approached as separate disorders, as discussed in this review, clinical studies as well as data 
from animal models reveal undeniable parallels between both airway diseases. Danger 
signaling elicited by the allergenic agent or by accompanying microbial patterns emerges as 
critical in enabling immune sensitization and in determining the type of sensitization and 
ensuing allergic disease. On this basis, we propose that asthma allergens cause severe 
noneosinophilic asthma because of sensitization in the presence of hypersensitivity 
pneumonitis-promoting danger signaling. 
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Abstract 

 

Because of their large surface area, the lungs appear an attractive route for noninvasive 
vaccine delivery, harboring the potential to induce local mucosal immune responses in 
addition to systemic immunity. To evoke adaptive immunity, Ags require the addition of 
adjuvants that not only enhance the strength of the immune response but also determine the 
type of response elicited. In this study, we evaluate the adjuvant characteristics of 
polyelectrolyte microcapsules (PEMs) consisting of the biopolymers dextran-sulfate and poly-
L-arginine. PEMs form an entirely new class of microcapsules that are generated by the 
sequential adsorption of oppositely charged polymers (polyelectrolytes) onto a sacrificial 
colloidal template, which is subsequently dissolved leaving a hollow microcapsule 
surrounded by a thin shell. Following intratracheal instillation, PEMs were not only 
efficiently taken up by APCs but also enhanced their activation status. Pulmonary adaptive 
immune responses were characterized by the induction of a strongly Th17-polarized response. 
When compared with a mixture of soluble Ag with empty microcapsules, Ag encapsulation 
significantly enhanced the strength of this local mucosal response. Given their unique 
property to selectively generate Th17-polarized immune responses, PEMs may become of 
significant interest in the development of effective vaccines against fungal and bacterial 
species. 
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Abstract 

 

Mycolic acids (MAs) occur in the cell wall of Mycobacterium tuberculosis as variable 
mixtures of different classes and chain lengths. Here, we address the relationship between the 
structure and its inflammatory function of this virulence factor using single synthetic MA 
isomers, differing in oxygenation class and cis- versus α-methyl-trans proximal cyclopropane 
orientation. Analysis of bronchoalveolar inflammation, lung histopathology and alveolar 
macrophage transcription revealed a strong dependence on these meromycolic chemistries of 
mouse pulmonary inflammation in response to intratracheal treatments with MAs. Whereas α-
MA was inert, oxygenated methoxy- and keto-MA with cis-cyclopropane stereochemistry 
elicited solid to mild inflammatory responses respectively. In trans-cyclopropane orientation, 
methoxy-MA partially lost its inflammatory activity and keto-MA exerted anti-inflammatory 
alternative activation of alveolar macrophages and counteracted cis-methoxy-MA induced 
airway inflammation. The differential innate immune activities of MAs demonstrated here, 
dependent on oxygenation class and cis versus α-methyl-trans cyclopropane chemistry, 
identify a novel means for M. tuberculosis to steer host immune responses during infection. 
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Abstract 

 

Resident alveolar macrophages (rAMs) residing in the bronchoalveolar lumen of the airways 
play an important role in limiting excessive inflammatory responses in the respiratory tract. 
High phagocytic activity along with hyporesponsiveness to inflammatory insults and lack of 
autonomous IFN-β production are crucial assets in this regulatory function. Using a mouse 
model of asthma, we analyzed the fate of rAMs both during and after allergic bronchial 
inflammation. Although nearly indistinguishable phenotypically from naïve rAMs, 
postinflammation rAMs exhibited a strongly reduced basal phagocytic capacity, accompanied 
by a markedly increased inflammatory reactivity to Toll-like receptors TLR-3 (poly I:C), 
TLR-4 [lipopolysaccharide (LPS)], and TLR-7 (imiquimod). Importantly, after inflammation, 
rAMs exhibited a switch from an IFN-β-defective to an IFN-β-competent phenotype, thus 
indicating the occurrence of a new, inflammatory-released rAM population in the postallergic 
lung. Analysis of rAM turnover revealed a rapid disappearance of naïve rAMs after the onset 
of inflammation. This inflammation-induced rAM turnover is critical for the development of 
the hyperinflammatory rAM phenotype observed after clearance of bronchial inflammation. 
These data document a novel mechanism of innate imprinting in which noninfectious 
bronchial inflammation causes alveolar macrophages to acquire a highly modified innate 
reactivity. The resulting increase in secretion of inflammatory mediators on TLR stimulation 
implies a role for this phenomenon of innate imprinting in the increased sensitivity of 
postallergic lungs to inflammatory insults. 
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