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1. Conventional ecotoxicology versus evolutionary ecotoxicology 

The ultimate goal of environmental risk assessment is to prevent chemical substances 

causing irreversible damage to ecosystems (e.g. European Commission, 2006). In 

conventional ecotoxicology, tolerance to stress is tested under standardized laboratory 

conditions. However, natural field populations are exposed to a mixture of stressors and 

fluctuations of abiotic exposure conditions. There are several studies that indicate that for 

example temperature increase (Heugens et al., 2003), food quantity/quality (e.g. Heugens et 

al., 2006), dissolved oxygen (Ferreira et al., 2010) can have substantial effects on tolerance 

for toxicants.  

Unfortunately, conventional ecotoxicology is too often focused on the short-term 

effects of stressors (Morgan et al., 2007). By using, for example monoclonal D. magna 

populations or inbred populations, genetic variability is minimized, which increases the 

precision of the estimation of mean population responses and also decreases the variability 

among toxicity tests. This increases the repeatability, reproducibility and robustness of 

toxicity tests (Barata et al., 2000a). Although differences in mean population responses were 

observed in studies of Barata et al. (2002a,b,c); Lopes et al. (2004,2005,2006); Agra et al. 

(2010); Coors et al. (2009), the number of studies that have investigated the between-

population variability responses to stressors among populations originating from pristine 

environments are limited. Besides differences in mean population responses, there are 

numerous studies that have indicated genetic variability within a population in response to 

stressors. Baird et al. (1990), for example, found a genetic variability in acute Cd tolerance 

up to a factor 100 between clones. Barata et al. (2002b) observed a significant difference in 

EC50 of feeding rate for three D. magna clones ranging between 2.2 µg Cd/L and 15.4 µg 
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Cd/L. A study performed with 8 Daphnia magna clones indicated 48h-EC50’s between 26 µg 

Cd/L and >120 µg Cd/L (Ward and Robinson, 2005), whereas the 48h-EC50’s from seven 

Daphnia magna clones ranged between 250 µg Cd/L and 550 µg Cd/L in a study from Haap 

and Köhler (2009). Genetic variability has also been studied for other substances. A 10-fold 

difference in 48h-EC50’s between D. magna clones was observed for effluent samples (Picado 

et al., 2007). There were also differences in reproduction parameters noted for chronic 

azoxystrobine exposure between three D. magna clones (Warming et al., 2009). Genetic 

variation in sensitivity to Cd was also observed for Chironomus riparius (Nowak et al., 2008), 

where there was considerable variation in reproduction both in control and under Cd 

exposures. Jensen and Forbes (2001) found significant difference in LC50 values between tree 

clones of Potamopyrgus antipodarum. Crommentuijn et al. (1995) found differences 

between four clones of Folsomia candida for chlorpyrifos in a 35-day artificial soil test, but 

not for Cd and triphenyltin hydroxide. Another aspect that has received less attention from 

ecotoxicologists are the changes in this genetic variability and allele frequencies of 

populations that result from mutations, bottlenecks and selection. The study of such effects 

has been termed “evolutionary ecotoxicology” (Bickham et al., 2000; Bickham et al., 1994).  

Although the use of monoclonal populations guarantees low variability of test results, 

it is unreliable to predict long-term effects of chemical exposure in the field. Evolutionary 

changes in populations exposed to polluting events depend on how the toxicants disrupt the 

genetic pool of the exposed populations. There can be direct effects (see Medina et al., 2007 

for detail), which are related to the damage that toxic substances exert on the molecular 

structure of the genetic code (i.e. DNA) and indirect effects where pollution changes the 

genetic variability of the population. Examples of direct effects are: point mutation, 
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chromosomal re-arrangements, inversions, deletions, additions, DNA adducts, DNA strand 

breaks, excess of micronuclei and mitotic aberrations. If direct effects are exerted on 

somatic cells, this is not passed on the following generation. In addition, through natural 

selection, any effects on fitness resulting from such direct effects on somatic cells would be 

rapidly eliminated. However, when direct effects are exerted on gametes, significant effects 

on the following generation can occur (see Medina et al., 2007). Indirect effects are 

population-mediated processes where pollution changes the genetic variability of the 

population (Medina et al., 2007) and according to Van Straalen and Timmermans (2002), 

there are four different ways in which toxicants affect genetic variation: (1) by increasing 

mutation rates, (2) by directional selection on tolerant genotypes, (3) by causing bottleneck 

events and (4) by altering migration. Figure 1.1 (after Van Straalen and Timmermans, 2002) 

illustrates a conceptual framework for effects of toxicants on genetic variation in natural 

populations. A first step is to distinguish between neutral and selectable markers. Neutral 

markers are all traits that are indifferent to the selection of a specific environment. 

Selectable markers are traits that directly respond (fitness advantage or disadvantage) to the 

selection regime. Those types of markers can be linked due to genetic linkage. Several 

genetic mechanisms may be possible: epistasis (alleles of one locus depend on the presence 

of alleles at another locus), pleiotropy (one gene product affects more than one phenotypic 

character), co-adapted gene complexes (certain alleles are jointly beneficial) and trade-offs. 

The type of selection regime on neutral markers also determines a decreased or increased 

genetic variation. Decreased genetic variation may be possible through stabilizing selection 

(i.e. selection against both high and low extremes of a character), whereas increased genetic 

variation may be possible through disruptive selection (selection favoring both high and low 

extremes of a character). Mutation, migration (exchange of genotypes) and population size 
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may also influence the outcome of genetic variation in a population. Genetic variation in 

small populations is sensitive to the effects of genetic drift (i.e. random changes in allele 

frequencies due to chance effects from one generation to another). If toxicants cause long-

term reduction or fragmentation of populations, genetic variation may decrease without 

directly selecting the markers under consideration. Population bottleneck is a special case of 

drift, when population size is significantly reduced (by anthropogenic or natural stressors), 

leaving only a small population as a founder for recovery and expansion (see Van Straalen 

and Timmermans, 2002).  

Figure 1.1: A Conceptual framework for effects of toxicants on genetic variation in natural populations (After Van 
Straalen and Timmermans, 2002). + indicates an increase in genetic variation, - indicates a decrease in genetic variation. 
Factors related to population size (drift, bottleneck), mutation and immigration will affect neutral and selectable 
markers. Selection only works on selectable markers. Depending on type of selection, this may increase or decrease 
genetic variation. If  neutral markers are linked to selectable markers (linkage), they also may respond to selection (Van 
Straalen and Timmermans, 2002). 

Multi-generation exposure of a population to a toxicant may result in a directional 

selection favoring those genotypes that are more tolerant to the chemical, which may lead 

to genetic adaptation of the population. Such genetically-based increased tolerance has 

Genetic variation
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been demonstrated for several toxicants and populations. Lopes et al. (2006) indicated 

increased Cu tolerance for D. longispina populations, that are historically-stressed by acid 

mine drainage, in comparison with reference populations. Similar results were found by 

Lopes et al. (2004, 2005); Coors et al. (2009); Agra et al. (2010); Vidal and Horne (2003a,b) 

(see Chapman, 2008). The predictive assessment of adaptive abilities could be performed via 

multi-generation artificial selection experiments or through the concept of heritability, 

which can be measured through quantitative genetics (see further). Measures of this micro-

evolutionary potential are heritabilities and genetic coefficients of variation. Heritability 

embraces two components: (1) the amount of genetic variability and (2) the potential to 

transmit the differences in sustaining this variability. Although genetic variability towards 

toxicants is detected in numerous studies, the amount of genetic variability is not necessarily 

heritable due to the possibility of non-additive genetic interactions: dominance and 

combined epistatic effects (Falconer and Mackay, 1996). Only a few studies (Chaumot et al., 

2009; Klerks and Moreau, 2001) have studied the non-additive components and additive 

components under toxicant stress. Studying whether populations may adapt to 

contamination is critical for risk assessment (Chaumot et al., 2009), as numerous studies 

even indicate that adaptation appears to be infrequent (Klerks, 2002; Chaumot et al., 2009), 

because of the weakness of additive components.  

When micro-evolution due to pollution occurs, increased tolerance can be 

considered as a positive event. However, the acquisition of genetically inherited tolerance 

could have long-term ecological consequences. First, natural selection may result in a 

reduction of genetic diversity (Lynch and Walsh, 1998). This has been indicated in several 

studies (Van Straalen and Timmermans, 2002; Medina et al., 2007). This in turn may lead to 
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(1) a decreased tolerance to other stressors (Ward and Robinson, 2005), (2) a reduced 

adaptive potential towards future challenges imposed by  novel stressors (Van Straalen and 

Timmermans, 2002), or (3) a reduced fitness when the selective pressure is removed (e.g. 

after remediation of a polluted site), an observation which is commonly referred to as “cost 

of tolerance” (Medina et al., 2007). This latter phenomenon is caused by genetic between-

environment correlations or between-environment trade-offs (Medina et al., 2007) and has 

been shown in several studies (Shirley and Sibly, 1999; Postma et al., 1995a; Levinton et al., 

2003). Also, genetic correlations among fitness-related traits or trade-offs can constrain 

evolution (Reznick et al., 2000). This trade-off occurs when an increase in fitness due to a 

change in one fitness component is counter-acted by a decrease in fitness due to a 

concomitant change in another fitness component (Roff and Fairbairn, 2007). As such, 

analysis of genetic correlations does not only provide insight as to why evolution of fitness is 

constrained, but it can also indicate which of several individual fitness components may 

evolve along with fitness (due to natural selection) and in which direction.   

Daphnia magna populations are the ideal test-organisms for the study of micro-

evolutionary responses. They are widely used in risk assessment and they can reproduce 

asexually by ameiotic parthenogenesis. Thus the genetic and environmental components of 

variance can easily be separated in experimental design (Falconer and Mackay, 1996) (see 

2.2.). Also, natural populations of D. magna consist out of two components: a free-living 

population and a seed bank of dormant eggs (i.e. ephippia). Hence, sampling of those 

ephippia, which are produced by sexual reproduction, is a representation of the complete 

gene pool. Additionally Daphnia (i) are amongst the freshwater species which are most 

sensitive to chemicals (Wogram and Lies; 2001), including Cd (ECB, 2007; Von der Ohe and Lies 
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2004); (ii) have demonstrated to exhibit genetic variability of Cd tolerance within populations 

(Baird et al., 1990; Barata et al. 1998; Barata et al., 2000b; Barata et al., 2002a,b,c), (iii) have 

been demonstrated to rapidly adapt to stress (Cousyn et al., 2001; Ward and Robinson, 2005; 

Van Doorslaer et al., 2007; Brausch and Smith, 2009) and (iv) provide ideal model species to 

study both genetic variation and micro-evolutionary responses in populations (Colbourne et 

al. 2005; Van Doorslaer et al. 2007).  

2. Measurement of a micro-evolutionary potential 

2.1. Experimental micro-evolution 

There are three types of experimental evolutionary experiments (Bennett, 2003). The 

first is artificial truncation selection: only individuals that possess a desired trait are 

permitted to breed and found the next generation. This type of selection is well documented 

in animal and plant breeding studies. The second type is laboratory culling selection: where 

populations are exposed to a lethal environment in each generation and hence, only 

survivors can be found in the next generation. The third type of selection is laboratory 

natural selection. This type of selection, in contrast with laboratory culling selection, 

proceeds by soft selection rather than hard selection (see Bennett et al., 2003). Experimental 

micro-evolution has been applied on Daphnia magna populations exposed to parasites 

(Capaul and Ebert, 2003; Zbinden et al., 2008) and temperature stress (Van Doorslaer et al., 

2010, Van Doorslaer et al., 2007). Only a few studies have studied the effects of toxicants in 

an experimental micro-evolution set-up (Xie and Klerks, 2003; Jansen et al., 2010; Ward and 

Robinson, 2005).  
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Jansen et al. (2010) exposed in total 125 D. magna clones from each of in total 8 

populations to 3 pulses of 32 µg/L carbaryl during a period of 6 weeks. A replicate of each 

population was exposed to control conditions (in total 16 populations). In a following 

predation experiment, a total of Daphnids of five isolates (15 randomly selected individuals 

of each of the five clones from the respective population) per population were used.  Their 

results indicate no effect of carbaryl exposure during a selection experiment on vulnerability 

of Daphnia to fish predation. In the experiment of Xie and Klerks (2003) field collected least 

killifish (Heterandria Formosa) were exposed to 6 mg Cd/L. The survivors of this first 

generation were randomly distributed over three selection lines followed for several 

generations. Each selection line was paired with a control line (from unexposed fish from the 

base population). Copper resistance was investigated in the second, third and 6th generation. 

Heat resistance was quantified in the second, third and 5th generation. Response to selection 

for Cd resistance was found rapid in the least killifish. After two generations of selection, fish 

from all the selection lines had a longer survival time when exposed to Cd (compared to the 

control lines). Moreover the Cd resistance was accompanied by cross-resistance to Cu, but a 

decreased resistance to higher water temperature (38°C). Ward and Robinson (2005) 

exposed a population of 8 D. magna clones to 61 µg Cd/L. Survivors from each of the Cd 

exposed population were randomly selected and used in a following generation of Cd and 

control exposure. This procedure was repeated in the following generations. An increase in 

Cd resistance was found within a few generations. The Cd-adapted daphnids and the control 

daphnids were equally sensitive to Cu and malathion, but the Cd-adapted daphids were 

more sensitive to phenol than the control daphnids.  
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2.2. Quantitative genetics 

The goal of quantitative genetics is to understand how genes and environment 

combine to determine phenotypic variation in populations (Schwaegerle et al., 2000). 

Population genetics define genetic variation as “differences among individuals in a 

population that are due to differences in genotype” (Van straalen and Timmermans, 2002).  

The minimum requirements for an evolutionary change (e.g. ability to cope with 

anthropogenic and natural stressors) in populations are the occurrence of natural selection 

and the presence of heritable variation in the selected trait (Lynch and Walsch, 1998 in 

Hoffmann and Merilä, 1999). Quantitative genetic variation within populations often varies 

in different environments (Swindell and Bouzat, 2006). These changes in quantitative genetic 

variation are expected to influence the ability of populations to undergo adaptive 

evolutionary change (Swindell and Bouzat, 2006) and are therefore of great importance to 

the study of evolution. For example, if the environment strongly impacts the expression of 

quantitative genetic variation, environmental conditions may alter the rate at which 

populations respond to natural and artificial selection (Swindell and Bouzat, 2006) which 

could influence the ability of populations to avoid extinction.  

Measures of quantitative genetic variation 

The phenotype (Pi) of an individual consists out a genetic component (Gi) and an 

environmental component (Ei): 

 Pi=Gi+Ei (Eq. 1.1) 
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The genetic component consists out (1) an additive effect (= a component of the sum 

of individual effects of all alleles across all contributing loci), (2) a dominance effect (= a 

component due to non-additive effects of the two alleles at each locus, summed across all 

loci) and (3) an epistatic effect (= a summation consisting of effects due to specific 

combinations of alleles across loci that cannot be attributed to additive or dominance 

effects) (Eq. 1.2). The environmental component emerges due to random noise that each 

individual experiences to some degree.  

Gi=Ai + Di+ Epi (Eq. 1.2) 

where Gi= genetic component of individual i, Ai= additive component of individual i, 

Di= dominance component of individual i, Epi= epistatic component of individual i. 

At population level, the variance at the phenotypic level can be partitioned into 

components. The narrow sense heritability of a trait (h²), defined as the proportion of the 

phenotypic variance (VP) accounted for by additive genetic effects VA (i.e.VA/VP), is an 

indicator of the extent to which a trait can evolve. Heritability is one of the most 

fundamental concepts in quantitative genetics because it is directly related to the response 

to selection:  

R=h²*S (Eq. 1.3) 

Where R is the response to selection (the change in the mean value of the character 

after selection), h² is heritability and S is the selection differential (the difference between 

the mean of the selected group, compared to the mean of the original population). This 

equation indicates that the larger the heritability of a character, the quicker the population 

changes under selection (Van Straalen and Timmermans, 2002).  
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Fundamental theory of natural selection 

Quantitative genetic variability determines the potential for an adaptive evolutionary 

response and is therefore of great importance to the study of evolution. The fundamental 

theory of natural selection describes how natural selection operates upon the phenotype of 

fitness when fitness is heritable but genetically an unmeasured trait. Fitness is then defined 

as a measure of average reproductive success of a phenotypic class of individuals. The mean 

phenotype is then (Templeton, 2006):   

µ =  x x f(x) dx  (Eq. 1.4) 

where x = the phenotypic value of some trait for an individual in a population  

f(x) is the probability distribution that describes the frequencies of x in that population  

The mean or average fitness of the population is (Templeton, 2006):  

w   =  x ω (x) f(x) dx  (Eq.1.5) 

with ω (x) = the fitness value of those individuals sharing a common phenotypic value x 

Selection can alter the mean phenotype of the population of individuals. The 

frequency of selected individuals is proportional to ω (x) f(x). So the mean phenotype of the 

selected individuals is (Templeton, 2006) : 

µs =  x ω (x) f(x) dx  / w   (Eq.1.6) 

Fitness is a phenotype, so what happens with the phenotype of interest is fitness 

itself (Templeton, 2006): 

µs = ( ω  ω  ω  f(ω ) dω )  / w    = (σ² + w  ²) /w    (Eq.1.7) 
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The total phenotypic variance of a trait has a genetic (VG) and an environmental 

component (VE).  

The evolutionary potential of a phenotype can be determined by broad sense 

heritability (for asexual reproducing organisms). Broad sense heritability is defined as the 

genetic variance of a character, relative to the total variance. This heritability is directly 

related to the response to selection, and is expressed as:  

R= H² * S (Eq. 1.8.) 

where  R = the response to selection (= the change in the mean value of the character after 

selection)   

 R = µ0 - µ (Eq. 1.9) 

R can be rewritten as, where x=ω :  

R = VG / X  (Eq. 1.10) 

S = the selection differential (the difference between the mean of the selected group 

and the mean of the original population): 

S = µs - µ (Eq.1.11) 

S can be rewritten as: 

S = σ² / w  (Eq.1.12) 

∆ X =  σ²G/ X  (Eq.1.13) 



Chapter 1 

14 
 

Equation 1.13 is known as Fisher’s fundamental theorem of natural selection (Fisher, 

1930; Houle, 1992; Templeton, 2006), which states that the increase in fitness at any time is 

equal to the genetic variance of fitness at that time. Dividing both sides by mean phenotype 

yields an expression for the proportional change of a trait. This can be rewritten as: 

∆ X / X =  VG/ X ²  (Eq.1.14) 

Equation 1.14 is the relative evolvability of fitness and is related to the genetic 

coefficient of variation.  

VG/ X ² = (CVG/100) (Eq. 1.15) 

CVG = 100 *  VG/ X  (Eq. 1.16) 

Heritability (H² or h²) estimates may not be the most relevant predictor of selection 

response. A heritability estimate provides a prediction of the absolute response to selection 

via R²= h² * S (see above). However, it may also be important to know the relative change of 

a trait. The use of additive genetic coefficient of variation (CVA) or genetic coefficient of 

variation (CVG) would provide a prediction of the proportional response to selection (Houle, 

1992 and Klerks et al., 2011). Use of CVA has the added benefit that the variable itself is not 

affected by the environmental variance (Klerks et al., 2011). 
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3. Introduction to the model organism Daphnia magna (Flöβner,2000)  

3.1. Systematic classification and morphology 

Daphnia magna is divided into the order of the cladocerans (waterfleas), which is 

divided into 11 families, 80 genera and about 400 species. According to the World register of 

Marine species (WoRMS,2010) the current taxonomy is as follows:  

Kingdom Animalia 

Phylum Arthropoda 

Subphylum Crustacea 

Class  Branchiopoda 

Subclass Phyllopoda 

Order  Diplostraca 

Suborder Cladocera 

Infraorder Anomopoda 

Family  Daphniidae 

Genus  Daphnia O.F. Müller, 1785 

Species Daphnia magna Straus, 1820 

D. magna is one of the largest daphnids with adult females growing up to 6 mm. 

Males are smaller, with a flattened frontal portion of the head capsule, elongated first 

antennae and lacking the abdominal process which forms the boundary of the brood 

chamber in females (Olmstead and LeBlanc, 2000). In female daphnids, oviducts open in a 

dorsal brood pouch or brood chamber, which lies inside the carapax. Eggs develop to 

2nd antenna
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Figure 1.2: Anatomy of a female Daphnia magna, after 
Barnes (1980) 
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juveniles inside this brood chamber and juveniles can be released by a ventral flexion of the 

postabdomen. When the young leave the brood chamber, the skeleton is moulted and a 

new batch of eggs is released into the new brood chamber. D. magna are usually pale and 

transparent, facilitating microscopic observations (Goldmann et al., 1999). 

3.2. Ecotoxicological and physiological aspects 

Daphnia magna has a Holarctic distribution and lives in small to medium-sized 

shallow freshwater pools and ponds with moderate to low fish predation (De Gelas and De 

Meester, 2005). Daphnia magna tolerates brackish water up to 8% and pH values ranging 

from 5.6 to 10.7. The genus Daphnia, representing a large part of the freshwater 

zooplankton community, forms an indispensible element in the freshwater food web. It is 

one of the most important consumers of primary producers, while in turn it is an important 

food source for both invertebrate and vertebrate predators. Presence or absence of Daphnia 

can have considerable implications for the ecological quality of an aquatic system (Hebert, 

1978). 

Reproduction in D. magna occurs through cyclical parthenogenesis (Zaffagnini, 1987). 

Under favourable conditions females produce diploid parthenogenetic eggs in the ovary. 

Oogenesis is in this case not fully meiotic nor strictly mitotic. The eggs are deposited into the 

brood pouch, in which they develop to clones that are genetically identical to the adult. 

These juveniles are sexually mature after four to five molting stadia, which takes about 

seven days at a temperature of 20°C. Certain environmental triggers (e.g. food limitation, 

high population densities, a decreasing photoperiod, desiccation of the habitat) can induce a 

sexual reproduction phase. In that case, male organisms appear, which are also produced 

parthenogenetically and consequently are genetically identical to the females that produced 
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them. Subsequently, females deposit haploid eggs (two per brood), which need to be 

fertilized by the males to ensure further development to resting eggs. These resting eggs are 

encapsulated by multiple layers of membranes, formed by a transformation of the brood 

pouch. The result is a saddle-like structure called the ephippium, containing fertilized resting 

eggs. This ephippium protects the eggs against adverse environmental conditions. When the 

adverse environmental conditions are over, the ephippia develop to parthenogenetically 

reproducing females and a new parthenogenetic phase can begin. In the laboratory, 

favorable environmental conditions can be maintained continuously, allowing for an 

elimination of the sexual phase and the maintenance of genetically identical female clones. 

 

Figure 1.3: Reproduction system of Daphnia magna. 

The hatching of resting eggs is introduced by osmotic water uptake. Resting eggs 

develop into females. Juveniles of the Daphniidae undergo up to 7 moults. Daphnia magna 

moult every 2 to 3 days. The moult itself takes only a few minutes. Organisms are able to 

grow in between two moults when the newly synthesized carapax is not hardened yet. The 
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lifespan is dependent on temperature and food supply; the average lifespan at 8°C is 108 

days, while at 28 °C this is only 29 days. Males always have shorter lifespan than females.  

4. Scope of the research 

This PhD study was aimed at addressing potential micro-evolutionary effects of 

chemicals on natural Daphnia magna populations that have until now, insufficiently been 

addressed in conventional ecotoxicology and risk assessment. Cadmium was used 

throughout the research as a model chemical.  

In contrast with laboratory populations, field populations may be exposed to long-

term chemical stress and do exhibit genetic variation towards stress. The genetic variability 

within a population determines the micro-evolutionary potential of a population exposed to 

stress. Natural selection may act upon this genetic variability and this may result in an 

increase of the mean fitness of the population. Increased tolerance to pollution can be 

considered as an ecologically positive event. However, this may have adverse long-term 

ecological consequences: i.e. a reduction in genetic diversity (Lynch and Walsh, 1998), which 

may lead to (1) a decreased tolerance to other stressors (Ward and Robinson, 2005), (2) a 

reduced adaptive potential towards future challenges imposed by novel stressors (Van 

Straalen and Timmermans, 2002) or (3) a reduced fitness when the selective pressure is 

removed (e.g. after remediation of a polluted site) an observation which is commonly 

referred to as “cost of tolerance” (Medina et al., 2007). Irrespective of wheter micro-

evolutionary responses under chemical stress are considered “positive” (increased 

tolerance) or “negative” (cost of adaptation), it is of interest to know how the micro-

evolutionary potential is affected on a function of chemical concentration. In chapter 2, we 

investigated the micro-evolutionary potential (expressed as CVG and H²) of a natural Daphnia 
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magna population under increasing Cd stress (from 1-22 µg Cd/L) compared to the control. 

We also determined if there was a cost of tolerance under this Cd range.  

In conventional ecotoxicology, tests are usually conducted under standardized 

conditions. For instance, temperature is often controlled at 20°C in Daphnia magna test. 

However, it is well-known that an increased temperature (i.e. in context of global warming) 

often results in a higher toxicity of chemicals (Heugens et al., 2006). The effects of 

temperature on micro-evolutionary responses (micro-evolutionary potential, cost of 

adaptation) to chemical exposure have, however, not been studied. Besides cost of 

adaptation, evolution can also be constrained by genetic correlations among fitness-related 

traits (Reznick et al., 2000), also commonly referred to as trade-offs. Analysis of such genetic 

correlations does not only provide insight as to why evolution of fitness is constrained, but it 

can also indicate which of several individual fitness components may evolve along with 

fitness (due to natural selection) and in which direction. Therefore, in chapter 3, we tested a 

set of  hypotheses related to (i) the micro-evolutionary potential, constraints and possible 

consequences in a natural population of a Daphnia magna exposed to a single sublethal 

cadmium concentration (5 µg Cd/L compared to a control) and (ii) the influence of 

temperature thereupon.  

While in chapter 2 and 3, we studied the total amount of genetic variability, it is 

recognized that what is genetically determined is not necessarily heritable across sexual 

generations because of non-additive components of genetic variability. Previous studies 

indeed indicate that adaptation to chemicals in the field is generally infrequent (Klerks, 

2002; Chaumot et al., 2009), possibly because of a small additive genetic variance. Chaumot 

et al. (2009) stated (based on weakness of additive components for Cd tolerance) that 
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exceptional cases of adaptation of field populations would be permitted only by the fixation 

of rare alleles (Woods and Hoffmann, 2000). Therefore, we examined the additive and non-

additive components of a natural D. magna population under Cd stress at two temperatures 

(20°C and 24°C) in chapter 4. In total we crossed 20 parental clones.  

The previous chapters are focused on the micro-evolutionary potential and 

constraints (between-trait correlations and cost of tolerance) of one Daphnia magna 

population, although variability between populations is possible. In chapter 5, we therefore 

studied the effect of a sublethal Cd-concentration on 11 D. magna populations in terms of 

micro-evolutionary potential (i.e. within population variability). 

Besides, quantitative genetics (chapter 2 - chapter 5), the predictive assessment of 

micro-evolutionary responses could be performed via multi-generational artificial selection 

experiments. In chapter 6, we performed this type of experiment, with one Daphnia magna 

population exposed to a Cd concentration range between 0 and 22 µg Cd/L during a 203 day 

micro-evolution experiment under semi-field conditions. Afterwards, we determined if the 

long-term Cd exposed populations (range between 2.2 – 22 µg Cd/L) had a higher fitness 

(positive event) exposed to Cd compared to the long-term control exposed population and 

the start population (= population kept under laboratory circumstances) and if there was a 

cost of adaptation (negative event).    

Finally, we compared our results on effects of Cd on micro-evolutionary potential 

with the conventionally derived PNEC and EQS in risk assessment, but also with NOEC of D. 

magna clones used in EU Cd risk assessment (chapter 7). In addition, standardized 21-day 

tests were performed using 7 European monoclonal Daphnia magna populations to 
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determine effect concentrations (NOECs, 21d-EC10s and 21-day EC50s) tested under same lab 

conditions and at the same time.  
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Abstract- Conventional risk assessment does not account for potential micro-evolutionary 

responses of natural populations to chemical stress. In the present study, we determined the 

genetic coefficient of variation (CVG) and broad sense heritability (H²) as measures of genetic 

variability of total reproduction (R0) and population growth rate (rm) by means of 21-day life-

table experiments with 11 genetically distinct clones from a natural Daphnia magna 

population exposed to a control and Cd concentrations between 0.89 and 18.9 µg Cd/L. We 

also determined a cost of tolerance (i.e. negative genetic correlations between 

environments) within this Cd range. Based on significantly higher genetic variation of fitness 

in a Cd treatment vs. the control, a higher micro-evolutionary potential was observed at 1.9 

µg Cd/L (based only on CVG(rm)) and at 18.9 µg Cd/L (based on CVG(R0), CVG(rm), and H2(rm)). 

No negative correlations between control and Cd treatments were found, suggesting no cost 

of Cd tolerance in higher Cd environments.  
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1. Introduction 

Conventional risk assessment of chemicals is based on the analysis of the mean 

population response of selected life-history traits and does not take into account the genetic 

variability of that response (Forbes and Forbes, 1994; Barata et al., 2000b). Indeed, genetic 

variability is often minimized in ecotoxicology by using monoclonal laboratory test 

populations, such as in the case of Daphnia sp. toxicity tests (Baird and Barata, 1998). 

Although this approach facilitates standardization and guarantees low variability and high 

reproducibility of test results, it is unreliable to predict long-term (multi-generation) effects 

of chemical exposure on natural populations.  

Indeed, natural populations are generally characterized by genetic variability upon 

which natural selection may act. Thus, multi-generational exposure of a population to a 

chemical may result in a directional selection favoring those genotypes that are more 

tolerant to the chemical, which may lead to genetic adaption of the population. For instance, 

genetically-based increased tolerance to Cu has been demonstrated for D. longispina 

populations that are historically-stressed by acid mine drainage, in comparison with 

reference populations (Lopes et al., 2006). Similarly, Coors et al. (2009) reported local 

genetic adaptation, expressed as an increased tolerance to the insecticide carbaryl, in 

Daphnia magna populations from ponds that are impacted by increased agricultural land use 

intensity.  

The evolution of increased tolerance to pollution may be important for ecological risk 

assessment, because it may allow the persistence of populations in contaminated habitats. 

This could be considered as an ecologically positive event. On the other hand, increased 

tolerance of the population to a chemical stress due to directional selection of tolerant 
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genotypes may also have adverse long-term ecological consequences. Indeed, natural 

selection results by definition in a reduction of the genetic diversity (Lynch and Walsh, 1998). 

This in turn may lead to a decreased tolerance to other stressors (Ward and Robinson, 2005), 

a reduced adaptive potential towards future challenges imposed by novel stressors (Van 

Straalen and Timmermans, 2002) or a reduced fitness when the selective pressure is 

removed (e.g. after remediation of a polluted site) an observation which is commonly 

referred to as “cost of tolerance” (Medina et al., 2007). This phenomenon is caused by 

genetic between-environment correlations or between-environment trade-offs (Medina et 

al., 2007). For example, Shirley and Sibly (1999) observed that a Drosophila population 

cultured under high Cd stress during several generations exhibited lower reproduction when 

reared in clean media afterwards. Similarly Postma et al. (1995a) showed that Cd tolerant 

Chironomus riparius populations had lower fitness when reared in a clean environment. 

Levinton et al. (2003) indicated that after clean-up of a Cd polluted site, the loss of tolerance 

in L. Hoffmeisteri had a genetic basis. Irrespective of wheter micro-evolutionary responses 

under chemical stress are considered “positive” or “negative”, it is of interest to know how 

the micro-evolutionary potential is affected on a function of chemical concentration.  

Although knowledge of between environment trade-offs are considered a key 

element for incorporating micro-evolution in the environmental risk assessment paradigm 

(Medina et al., 2007), this type of limited information is only available for highly 

contaminated environments (see reviews in Medina et al., 2007 and Morgan et al., 2007). 

Knowledge of such trade-offs in contaminated systems with a range of Cd concentrations is 

completely lacking. 
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The aims of the present study were therefore to test a hypotheses related to the 

micro-evolutionary potential of a natural population of Daphnia magna exposed to a 

cadmium concentration range. The first hypothesis - as proposed by  Barata et al. (2000b) - is 

that a population exposed to cadmium will exhibit more genetic variation for life-history 

traits than a control population. As with increasing Cd concentrations, there will be a lower 

fitness, and following Hoffmann and Hercus (2000), this will in turn result in a higher genetic 

variability of life-history traits in a high cadmium environment (hypothesis 1). We 

hypothesize that there may be a cost of tolerance which will be reflected by a negative 

genetic correlation of fitness between control and Cd treatments (hypothesis 2).  

The micro-evolutionary potential of a population exposed to a chemical stress can be 

based on the measurement of genetic variability. This can be understood as follows. The 

minimum requirements for a micro-evolutionary change of any phenotypic trait in a 

population are (i) the presence of genetically heritable variation of that trait, (ii) the 

occurrence of natural selection and (iii) a genetic correlation of that trait with fitness (Lynch 

and Walsch, 1998; Templeton, 2006; Hoffmann and Hercus, 2000; Chaumot et al., 2009). For 

clonally reproducing organisms, like Daphnia magna, there are different ways to standardize 

the level of genetic variation of a (fitness) trait (e.g. total reproduction, R0 or intrinsic rate of 

increase, rm) for comparative purposes (Barata et al., 2002b). First, the total genetic variance 

(VG) can be presented as a proportion of the total phenotypic variance (VP), and this ratio is 

called the (broad sense) heritability (H2) (Lynch and Walsh, 1998): 

H2  =  VG / VP  (Eq. 2.1) 

 Second, Houle (1992) proposed the genetic coefficient of variation (CVG) to be a 

possibly better measure of the ability of fitness traits to evolve, compared to H2:  
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CVG (%) = 100 *  VG / X  (Eq. 2.2) 

With CVG = the genetic coefficient of variation, VG = the total genetic variance, and 

X = the population mean of the (fitness) trait. Since there is currently no consensus about 

which of these measures is the better measure of micro-evolutionary potential under stress, 

we decided to consider both in the present study.  

We performed a 21-day life table experiment with 11 genetically distinct clonal 

lineages established from ephippial eggs from a single natural D. magna population under a 

control treatment and under Cd treatments of 0.89 to 18.9 µg/L (measured dissolved 

concentrations). This allowed us to determine CVG and H² as the measurements of genetic 

variability of two fitness traits, i.e. R0 and rm. Those fitness traits are commonly used in 

ecotoxicology with Daphnia magna population. By measuring the various life-history traits of 

individuals of each genotype kept under different environmental conditions, estimates of 

quantitative genetic variation were obtained as measures of the micro-evolutionary 

potential of the population (Barata et al., 2002b; Lynch and Walsh, 1998).  

2. Materials and methods 

2.1. General culture and exposure conditions 

The maintenance and exposures of all clones of the natural and the laboratory 

populations were performed at 20°C and under a light:dark cycle of 16h:8h. Daphnids were 

fed daily with a 3:1 mixture (based on cell numbers) of the algae Pseudokirchneriella 

subcapitata and Chlamydomonas reinhardtii. Culture maintenance and exposures were 

performed in modified M4-medium. This medium is different from the original composition 
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of M4 medium (Elendt and Bias, 1990) as follows: Na2EDTA and FeSO4 were omitted and 

replaced with natural dissolved organic matter (DOM) at a concentration of 4 mg dissolved 

organic carbon (DOC)/L. The DOM was collected from a small creek (Ruisseau de St. Martin, 

Bihain, Belgium) using a portable reverse osmosis system (PROS/2) (Sun et al., 1995). This 

modified M4 medium has a hardness of 250 mg CaCO3/L and pH of 7.6. Exposure media 

were prepared and spiked with Cd 24h to 48h prior to use and subsequently stored at 20°C  

in 25 or 50 L polyethylene vessels until use.  

2.2. Establishment and maintenance of clonal lineages of the natural population cultures 

Sediment containing Daphnia ephippia was collected from the Kasteelvijver pond in 

the nature reserve Blankaart (Diksmuide, Belgium) using a Van Veen grab and a sediment 

corer in October 2007 (Figure 2.1). The samples were transferred to the laboratory and 

ephippia were isolated. Ephippia of D. magna were identified (Vandekerkhove et al., 2004) 

and subsequently hatched at 20°C under continuous light (4000 lux) in modified M4 medium 

(see 2.1.). Each ephippium was hatched individually in a 50 mL polyethylene vessel and a 

single hatchling from each ephippium was selected to establish a clonal lineage. Ephippial 

eggs of D. magna are produced by sexual reproduction (Ebert et al., 1993) so each clonal 

lineage can be considered genetically distinct (Barata et al., 2000b). Next, the juvenile 

hatchlings were assigned a clone name and were placed individually in a 50 mL polyethylene 

cup filled with modified M4 medium and kept at 20°C and under a light:dark cycle of 16h:8h. 

The organisms were fed daily with a 3:1 mixture (based on cell numbers) of the algae 

Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii equivalent to 250 µg dry 

wt/Daphnia, 500 µg dry wt/Daphnia and 750 µg dry wt/Daphnia in the first, second and 

third week of their life, respectively. Juvenile offspring of the third brood of the hatchlings 
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were transferred to 200 mL polyethylene vessels and the next generations of each clone 

were fed 1.7 mg dry wt of algae per day per 200 mL. The culture medium was refreshed 

once a week. With every medium renewal, the next generation of each clone was 

established by randomly picking 2 to 4 juveniles and 1 or 2 adult daphnids (daphnids carrying 

eggs in the brood pouch) of the previous generation. Thus, with every renewal, 3 to 6 

daphnids were placed in 200 mL polyethylene vessels. After more than two years of 

culturing following this procedure, a total of 11 randomly selected clonal lineages were used 

for the life-table experiments. 

 

Figure 2.1: Schematic overview of the experimental design that was followed for each clonal lineage originating from the 
field population. 

 

2.3. Test design of the exposures to control and Cd 

The test design is scheduled in Figure 2.1. In a first step, two adult individuals from 

each of the 11 field clones were transferred individually to separate 50 mL polyethylene 
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two adults were pooled together and 7 juveniles (<24h) were randomly picked out, to start 

the second generation (2nd generation, i.e. F1, in Figure 2.1). Each juvenile was transferred 

individually to a separate 50 mL polyethylene beaker. The individuals in this second 

generation (F1) then served as the mothers for producing the following generation. At the 

third brood, six juveniles (<24h) (F2) from six different mother organisms (F1) were selected 

and were placed individually in 50 mL polyethylene vessels with modified M4 medium and 

with a Cd range between 1 and 22 µg Cd/L (added as CdCl2•H2O) including a control (no 

added Cd). As such, maternal effects can be ruled out in the estimation of genetic variance, 

as for each clone in each Cd concentration, each of the six replicate individuals (juveniles) 

being exposed originated from a different mother organism. Thus, during statistical 

estimation of the two variance components (i.e. genetic and residual, see 2.5) maternal 

variance is 100% included in the residual variance (Lynch and Walsh, 1998). All Cd exposures 

with all field clones were simultaneously initiated, allowing a comparison that is not biased 

by temporal variability of the cultures. Medium renewal was three times a week and 

organisms were fed daily with 250 µg dry wt/individual, 500 µg dry wt/individual and 750 µg 

dry wt/individual in the first, second and third week of their life, respectively. Based on daily 

observations the following traits were determined: population growth rate (rm) survival and 

total reproduction at day 21 (R0) (=total reproduction). Population growth rate (rm) was 

calculated according to Euler-Lotka equation (Lotka, 1913):  

 1 = å
=

=

20

0

x

x

Ix mx e
-rmx  (Eq. 2.3) 

Where lx is the fraction of surviving females until age x, mx is the number of offspring 

produced by a surviving female between age x and x+1. The rm was calculated separately for 
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each individual. pH was measured at every renewal of the old medium per Cd concentration 

and in the beginning of the test of the new medium. Old medium is defined as the medium 

in test vessels just prior to the renewal of the medium, whereas new medium is the medium 

in the vessels, just after renewal and before addition of algae. 

2.4. Chemical analyses 

During the experiments samples for dissolved Cd analysis were taken once a week of 

the old and new medium. Every week, 10 mL samples of the old and new medium were 

filtered through a 0.45 µm filter (Acrodisc Filter, Supor Membrane, PALL, Newquay, 

Cornwall, U.K.), were collected in polypropylene tubes and were acidified with 0.14 mol/L 

HNO3 (Normaton Ultrapure 69% HNO3, Prolabo) prior to storage. Samples for Cd analysis 

were stored at 4°C in the dark until analysis. Cadmium concentrations were measured using 

ICP-MS (inductive coupled plasma mass spectrometry, Perkin-Elmer Elan DRC-e, Wellesley, 

MA,USA). Dissolved Organic Carbon (DOC) samples were taken at the beginning of the 

experiment of the new medium and at the end of the experiment (day 21) of the old 

medium. Samples for DOC analysis were filtered through a 0.45 µm filter (Acrodisc Filter, 

Supor Membrane, PALL, Newquay, Cornwall, U.K.) and DOC was measured with a TOC 

analyzer (TOC5000, Shimadzu, Duisburg, Germany) as non purgeable organic carbon (NPOC). 

This analysis involves the removal of inorganic carbon by acidification and subsequent 

purging of CO2 with N2 gas prior to analysis.  

2.5. Statistical analyses 

Genetic variation of total reproduction (R0) and population growth rate (rm) was 

compared among the different Cd treatments using the genotypic coefficient of variation 
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(CVG, Eq. 2.2) and broad sense heritability (H², Eq. 2.1) rather than the genetic variance (VG) 

itself. For each Cd treatment, VG and the environmental (or residual) variance (VE) were 

estimated using the method of the moments with appropriate accounting for unequal 

sample sizes among clones (Searle et al., 1992; Lynch and Walsch, 1998) (See supplementary 

Material S2.1).  

Construction of confidence intervals and hypothesis testing was performed using 

nonparametric random bootstrap resampling (5000 samples) with replacement of clones 

(Lynch and Walsh, 1998; Messiaen et al., 2010) (See Supplementary Material S2.1). If in a run 

the VG turned out to be negative, it was set to zero for further calculations (Lynch and Walsh, 

1998). The median values (50th percentile) and the 2.5th and 97.5th percentile of CVG, H² and 

X (population mean) are reported. If more than 95% of the calculations yielded CVG(Cd) > 

CVG(control) or H²(Cd) > H²(control), the CVG or H2 in the Cd treatment was considered 

significantly higher than in the control. The population mean in a Cd treatment was 

considered significantly lower than in the control if more than 95% of the calculations 

yielded X (control) > X (Cd) (i.e. equivalent to a one-sided test at the 0.05 significance 

level). All calculations were performed in MATLAB 7.5.0.342 (Mathworks Inc) software. 

Finally, genetic correlations among environments (Cd treatment vs. control 

treatment) were calculated for rm and R0 (to test for a fitness trade-off between the Cd-

contaminated and the non-exposed environment) (Lynch et al., 1998): 

ρG,control,Cd = cov(traitcontrol,traitCd) /  (VG trait,control * VG, trait, Cd) (Eq. 2.4)  
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Where the genetic variances of the traits are calculated as above and where the 

covariance across environments is estimated from the covariance of clone means (Via, 1984; 

Lynch et al., 1998).  

Confidence interval construction and hypothesis testing for genetic correlations were 

conducted as outlined above. If a bootstrap run resulted in either of the two variances being 

equal or below zero, the genetic correlation was set to zero. We considered a genetic 

correlation (between traits or between environments) significantly different from zero if ρG 

>0 in >95% of the calculations (positive correlation) or if ρG <0 in >95% of the calculations 

(negative correlation).  

3. Results  

3.1. Physico-chemistry of test media 

The physico-chemistry of the test media is presented as supportive information 

(Table S2.1). DOC ranged between 4.6 and 6.0 mg/L and pH between 7.6 and 7.8. The mean 

dissolved Cd concentrations (mean of old and new medium) differed at most 17% from the 

nominal Cd concentration. The Cd concentration in the old medium was on average 21% 

lower than in the new medium.  

3.2. Population means 

Values of total reproduction (R0) and population growth rate (rm) for all individuals, 

all clones and Cd treatments are given in Supplementary material (Table S2.2 – Table S2.13). 

Population means of all traits in the four treatments are reported in Table 2.1. The 

population mean of R0 and rm decreased monotonously with increasing Cd concentrations. 
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The D. magna population exposed to  1.92 µg Cd/L exhibited, compared to the control, a 

significantly lower mean reproduction during 21 days (R0), and a lower mean population 

growth rate (rm).  

Table 2.1: Median of simulated population means (=mean of clone means) of  total  reproduction (R0) and population 
growth rate (rm). Numbers between brackets represents the 95% confidence interval. The p-values represent the fraction 
of bootstrap calculations that yielded lower values in the Cd treatment than in the control treatment (see Materials and 
Methods for details). Significant differences (p<0.05)  are marked with an asterisk (*). Numbers between parentheses  
indicates the % difference between the Cd and the control treatment. 

Cd concentration 

(µg Cd/L) 

Population mean of total 

reproduction (R0) 

p-value 

(R0) 

Population mean of (rm) p-value 

(rm) 

<0.1  76.82 [65.33 - 88.94]  0.34 [0.32 – 0.36]  

0.89 68.35 [58.56 - 77.82]  

(-11%) 

0.08 0.33 [0.30-0.36] 

(-3%) 

0.14 

 

1.92 63.83* [51.83 - 75.04] 

(-17%) 

0.01 0.31* [0.27 – 0.35] 

(-9%) 

0.03 

3.96 57.79* [44.81 - 72.64] 

(-25%) 

<0.01 0.31*  [0.28 – 0.33] 

(-9%) 

0.01 

 

8.34 40.29* [28.99 - 54.12] 

(-48%) 

<0.01 0.29* [0.25- 0.32] 

(-15%) 

<0.01 

18.87 6.09* [3.52 - 9.08] 

(-92%) 

<0.01 0.13*  [0.08 – 0.19] 

(-62%) 

<0.01 

 

3.3. Genetic coefficients of variation and broad sense heritability (H²) 

Genetic coefficients of variation (CVG) and H² of the different traits are shown in 

Figure 2.2. For R0, the CVG and H² were significantly greater than 0 at control, at 0.9 µg Cd/L, 

at 4.0 µg Cd/L and at 18.9 µg Cd/L, indicating that there is significant genetic variation of this 

trait at those Cd concentrations. The CVG(R0) was 22.4% in the control and exhibited a 

monotonically increasing trend with increasing Cd concentrations, i.e. from 17.4% at 0.9 µg 

Cd/L to 70.7% at 18.9 µg/L. Only at 18.9 µg Cd/L the CVG(R0) was significantly higher 

compared to the control. H2(R0) was 0.37 in the control and varied between 0.19 and 0.43 
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among all Cd treatments (Figure 2.2), but no significant differences between any Cd 

treatment and with the control were detected. 

For rm, CVG and H² were greater than 0 at 4.0 µg Cd/L and at 18.9 µg Cd/L, indicating 

that only at those concentrations there is a significant genetic variation within this D. magna 

population (Figure 2.2). CVG(rm) was 6.5% in the control, and remained relatively low 

(between 5.3% and 16.9%) up to a concentration of 8.3 µg/L. However, at 1.9 µg Cd/L and at 

18.9 µg Cd/L, the CVG(rm) was significantly higher than in the control. A slightly different 

pattern was observed for H2(rm), with relatively low values between 0.03 and 0.23 for 

concentrations up to 8.3 µg Cd/L, none of which was significantly higher than in the control. 

At 18.9 µg Cd/L, the H2(rm) of 0.49 was significantly higher than in the control.   

 

 
Figure 2.2: Median genetic coefficients of variation (CVG,  %) and broad sense heritabilities (H²) for different fitness traits  
in a D. magna population. Error bars represent the 95% confidence intervals. An asterisk (*) indicates a significant 
difference between the Cd and the control treatment (p<0.05). x indicates significantly >0.  
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3.4. Genetic correlations between traits and between environments 

For total reproduction (R0), we found a significant positive correlation between 

control and 1.9 µg Cd/L, 4.0 µg Cd/L, 8.3 µg Cd/L. For rm, no significant correlations were 

found (Table 2.2).  

Table 2.2: Median genetic correlations between control and Cd concentration (ρControl, Cd) for total reproduction (R0) 
and population growth rate (rm). Numbers between brackets represent the 5th and 95th percentile genetic correlation 
coefficient between traits.  An asterisk (*) indicates a significant between-environment correlation (p<0.05).  

Cd concentration 

(µg Cd/L) 

ρR0 (Control, Cd) ρrm (Control, Cd) 

0.89 0.65 [0 - 1.35] 1.91 [0 - 4.84] 

1.92 0.96 [0.35 - 1.53]* 1.49 [0 - 3.40] 

3.96 0.98[0.78 - 1.66]* 1.44 [0 - 7.09] 

8.34 0.74 [0.40 - 1.24]* 1.58 [0  - 4.33] 

18.87 0.26 [-0.25 - 0.99] 0.08 [-0.07 – 2.20] 

 

4. Discussion 

This present study investigated the micro-evolutionary potential of a natural 

population of Daphnia magna exposed to a Cd concentration range between 0 and 18.9 µg 

Cd/L. Our results show that none of the two fitness traits considered here exhibited a 

significant genetic variation (CVG or H²) under every condition, which suggests that not under 

all conditions tested there is evolutionary potential of the population. It has to be noted that 

the CVG and H² determined in the present study represent total genetic variation based on 

interclonal variation (i.e. the sum of the additive, epistatis and dominance components of 

genetic variation) and that the additive genetic variation could be a more precise estimate of 
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evolutionary potential (with total genetic variation being an upper limit of the additive 

variation). 

The estimated values of CVG and H² can also be used to test the hypothesis if the 

populations exhibit more genetic variation for life-history traits under Cd exposure and 

under control exposure. The CVG(R0) was 22.4% in the control and exhibited a monotonically 

increasing trend with increasing Cd concentrations, i.e. from 17.4% at 0.89 µg Cd/L to 70.7% 

at 18.9 µg/L. Only at 18.9 µg Cd/L the CVG(R0) was significantly higher compared to the 

control. Thus, the hypothesis proposed by Hoffmann and Parsons (1991), i.e. that increased 

stress (in this case Cd stress) is expected to result in increased genetic variation, is supported 

by the results of the present study. Yet, there is still an on-going debate on the mechanistic 

explanation for such observation (Hoffman and Hercus, 2000). The increase of CVG may 

increase the micro-evolutionary potential under Cd stress compared to the control and may 

eventually lead to a stronger reduction of clonal diversity (compared to a control). H2(R0) 

was 0.37 in the control and varied between 0.19 and 0.43 among all Cd treatments (Figure 

2.2) but no significant differences with the control were detected. Thus, although both CVG 

and H2 are both standardized measures of genetic variation, their response to increasing Cd 

concentrations exhibits a different pattern. This leads to different conclusions regarding the 

micro-evolutionary potential of the natural D. magna population, i.e. a significant higher 

micro-evolutionary potential at 18.9 µg/L (compared to the control) with CVG, but no such 

response with H2. This finding is in line with Houle (1992), who reported, based on a meta-

analysis of quantitative genetics studies, that genetic coefficients of variation and 

heritabilities are not necessarily correlated. Hence, he pointed out that these two 

standardized measures of genetic variability may have a different ecological significance. 
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Thus, we suggest that these two measures, when applied to the fitness traits, may also have 

different capacities to predict micro-evolutionary potential in the context of responses to 

chemical stress.  

While for Daphnia sp., the total reproduction (R0) is the endpoint which is most 

frequently used in ecotoxicity studies and in risk assessment, population growth rate (rm) is 

generally considered to be a better measure of population-level responses to chemicals, 

because it is an integrative measure of fitness and more closely related to actual fitness in 

the field (Hooper et al., 2008; Forbes and Calow, 1999). The genetic variation of rm exhibited 

a slightly different pattern in response to Cd than R0. CVG(rm) was 6.5% in the control and 

remained relatively low (between 5.3% and 16.9%) up to a concentration of 8.3 µg/L. 

However, at 1.9 µg Cd/L the CVG(rm) of only 16.9% was significantly higher than in the 

control. At 18.9 µg/L, the CVG(rm) peaked to 64.3%, representing a 10-fold (significant) 

increase compared to the control. Thus, based on CVG(rm) a micro-evolutionary response is 

expected at 1.9 and 18.9 µg Cd/L, but not in-between or at the control. A slightly different 

pattern was observed for H2(rm), with relatively low values between 0.03 and 0.23 for 

concentrations up to 8.3 µg Cd/L, none of which was significantly higher than in the control. 

At 18.9 µg Cd/L the H2(rm) of 0.49 was significantly higher (6-fold) than in the control. Thus, 

based on H2(rm), an increased expression of genetic variability is seen at 18.9 µg Cd/L. This 

may increase the micro-evolutionary potential under Cd stress and may lead to stronger 

reduction of clonal diversity in periods of asexual reproduction.  

As in the present study only a single natural population was investigated, our findings 

should be interpreted with caution. Comparison with the study of Barata et al. (2000b) 

clearly illustrates this point. They observed that CVG of total offspring production (similar to 
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R0) of a D. magna population from a Spanish temporary freshwater pond at 0.5 µg Cd/L was 

significantly higher than CVG in the control.  This is 38 times lower than the concentration of 

18.9 µg Cd/L where we observed a significantly higher CVG(R0). Barata et al. (2000b) found a 

significant increase of the CVG from about 30% in the control to about 40% in a 0.5 µg Cd/L 

treatment. We found a significant increase from 22.4% in the control to about 71% in 18.9 

µg Cd/L. While we found a reduction of the population mean of total reproduction of 92% at 

18.9 µg Cd/L, Barata et al. (2000b) reported a reduction of about 30% at 0.5 µg Cd/L. Thus, 

the hypothesis proposed by Hoffmann et al. (1991), i.e. that increased stress (in this case Cd 

stress) is expected to result in increased genetic variation, is actually supported by the 

combined results of the present and the Barata et al. (2000b) study. The large difference in 

the populations’ Cd sensitivity among both studies is more difficult to explain but can at 

least be partially explained by differences in Cd bioavailability. Indeed, both DOC (4 mg C/L) 

and hardness (250 mg CaCO3/L) were higher in the present study than in the Barata et al. 

(2000b) study (no DOC added, 160 mg CaCO3/L). In addition, the US-EPA equation for 

hardness correction of Cd ecotoxicity data (US-EPA, 2001) suggests a 1.5-fold lower toxicity 

in the present study compared to Barata et al. (2000b). Thus, the comparison made with 

Barata et al. (2000b) suggests that a potential micro-evolutionary response to Cd exposure 

(based on CVG predictions) could be expected at very different concentrations in different 

populations. However, it is unlikely that bioavailability alone explains the 38-fold difference 

in increased micro-evolutionary potential. However, Barata et al. (2000b) did not account for 

maternal effects in the design of the study. Hence it is possible that their estimate of VG 

included some maternal variance. Other factors such as differences in testing conditions 

(e.g. food quantity and quality, Heugens et al., 2006) may also have played a role. It would 
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therefore be recommended to perform additional studies with a range of D. magna 

populations from different habitats. 

Additionally, differences in the evolutionary history of these two populations (prior to 

their collection in the field) may also have contributed to the sensitivity differences (in terms 

of population means). Indeed, different populations have different evolutionary histories 

and may develop different levels of stress sensitivity due to among-habitat differences of 

selective forces (Barata et al., 2002c). One such selective force may include the local Cd 

concentration, where it is expected that populations inhabiting higher Cd concentrations 

could have acquired increased tolerance (Ward and Robinson, 2005). Unfortunately, the 

history of the Cd concentrations in the two habitats considered in the Barata study (2000b) 

and our study, is unknown. Another important selective force impacting the genetic 

composition/structure of Daphnia magna populations is fish predation (De Meester et al., 

1995), which was present in the population used in the present study but absent in the 

population used in the Barata et al. (2000b) study. It is interesting to speculate that different 

evolutionary histories with regard to the presence of a natural stressor (e.g, fish predation) 

could lead to among-population differences in the sensitivity of D. magna to Cd.  

In summary, the use of measures of genetic variation of fitness under chemical 

stress, as determined in 21d-life table tests with D. magna, gives an indication at which 

concentrations a significant increase in the micro-evolutionary potential may take place 

(compared to the control) and hence, at which concentrations loss of clonal diversity may be 

enhanced. Research with more chemicals and more populations of D. magna and with other 

clonally propagating species is highly recommended. In addition, the micro-evolutionary 

potential under chemical stress (or of chemical tolerance) should also be determined to 
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species with other modes of reproduction. Chaumot et al. (2009), for instance, showed that 

the (narrow sense) heritability at an acutely toxic Cd concentration (20 µg Cd/L, resulting in 

median survival times of 12 hours to 7 days) in a natural population of the sexually 

reproducing Gammarus fossarum was not significantly different from zero, suggesting no 

potential for adaptation. Thus the micro-evolutionary potential to Cd stress (and chemical 

stress in general) is likely not only different within species (among populations) but also 

among species.   

Finally, in our hypothesis 2, we stated that Cd could induce a cost of tolerance and 

that this would be reflected as a negative between-environment correlation of fitness 

between the control and the Cd environment (Table 2.2). A between-environment 

correlation indicates the extent to which the trait value of a genotype is proportional or not 

in two environments (Lynch et al., 1998). If this correlation equals one, it indicates that the 

genotype response is completely proportional in the two environments (Byers, 2005). Here, 

we did not find any negative correlations but rather only a positive correlation between the 

control and the Cd environment at 1.9 µg Cd/L, 4.0 µg Cd/L, 8.3 µg Cd/L for total 

reproduction, indicating that genotypes with higher fitness in the control environment 

generally also have a higher fitness in the Cd environment. For rm, no significant correlations 

could be found. On the basis of these observations, hypothesis 2 was rejected: i.e. the 

existence of a cost of tolerance at (sub)lethal concentrations of Cd exposure for D. magna 

could not be demonstrated. This is in contrast with Agra et al. (2010), who indicated that in  

historically exposed D. longispina populations, acquired tolerance to Cu and Zn were 

inversely related with feeding rates in absence of the added metals. Also, Postma et al. 

(1995a) found a cost of tolerance in Cd-adapted Chironomus riparius populations when 
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reared in a clean environment. We suggest that the cost of tolerance that has been observed 

in more severely polluted environments for field populations (Medina et al., 2007; Postma et 

al., 1995; Agra et al., 2010) does not necessarily occur in mildly polluted environments, 

although based on results of this experiment, no cost of tolerance in a high Cd treatment 

(18.9 µg Cd/L) could be found.   

 5. Conclusion 

This study suggests that increased Cd stress in a natural D. magna population results 

in a significant increased micro-evolutionary potential at 1.9 µg Cd/L (based only on CVG(rm)) 

and at 18.9 µg Cd/L (based on CVG(R0), CVG(rm), and H2(rm)). At these concentrations a 

stonger shift in genotypic composition on reduction of clonal diversity may be expected 

compared to the control. No negative between-environment correlations for rm and total 

reproduction (R0) between the control and the Cd environments were observed. This 

suggests that there is not necessarily a cost of tolerance whereby a population that adapts 

to Cd exposure would exhibit a reduced fitness after clean-up.  
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Abstract-This study examines micro-evolutionary aspects of a natural Daphnia magna 

population exposed to Cd. To this end, a set of hypotheses related to micro-evolutionary 

responses and to how these are influenced by temperature and Cd stress, were tested. Life-

table experiments were conducted with 14 D. magna clones collected from an unpolluted 

lake following a 2×2 design with Cd concentration and temperature as the factors (control 

vs. 5 µg/L cadmium, 20°C vs. 24°C). Several fitness traits were monitored during 21 days.  

Our results demonstrate (1) that chemicals can have effects on key population genetic 

characteristics such as genetic variation and between-trait correlations and (2) that these 

effects may differ depending on temperature. These findings also suggests that further 

research is needed to understand the importance of combined chemical - global warming 

stress for micro-evolutionary responses of organisms. These aspects are currently not 

accounted for in any regulatory environmental risk assessment procedure.  
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1. Introduction 

Ecotoxicology is predominantly concerned with assessing relatively short-term effects 

of chemicals on organisms (Van Straalen, 2003), i.e. effects occurring in a period usually no 

longer than one generation. As such effects of chemicals on phenotypic traits, such as 

survival, growth and reproduction, reported in literature mostly reflect the recent history of 

the individual, i.e. its initial response. Additionally, most ecotoxicity experiments are 

conducted in the laboratory with test populations with limited or even no genetic variation 

(e.g. monoclonal populations of Daphnia sp.) because this reduces variation and thus 

increases reproducibility of test results. Field populations, however, may be exposed to long-

term chemical stress and do exhibit genetic variation. Both factors have mostly been ignored 

in routine ecotoxicology and environmental risk assessment. Field populations which 

experience an initially reduced fitness due to chemical exposure may exhibit phenotypic 

variation of fitness among individuals upon which natural selection may act. If this variation 

is also heritable - i.e. if it contains a significant genetic component - micro-evolutionary 

changes in the genetic make-up of the population may result in an increase of the mean 

fitness of the population. Thus, natural selection may result in genetic adaptation of a 

population to pollution (Medina et al., 2007; Lynch and Walsch, 1998).  

Several studies have demonstrated the occurrence of genetic adaptation of 

populations to chemicals (or at least the potential for such adaptation) by examining the 

genetic variation and/or heritability of fitness traits. Barata et al. (2002a), for example, found 

significant genetic variation for cadmium tolerance within natural populations, suggesting a 

potential to acquire resistance to cadmium stress. As indicated in the previous chapter and 

also by other studies, increasing environmental stress enhances evolutionary rates by 
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increasing the expression of genetic variability in life history traits (Hoffmann and Parsons, 

1991; Barata et al., 2000b). In general, knowledge of genetic adaptation to chemical stress is 

too limited to be accounted for in ecological risk assessment. In this chapter three aspects of 

micro-evolutionary responses to chemical exposure will be addressed. First, it has been 

shown that evolution can be constrained by genetic correlations among fitness-related traits 

(Reznick et al., 2000), also commonly referred to as trade-offs. A trade-off occurs when an 

increase in fitness due to a change in one fitness component is counter-acted by a decrease 

in fitness due to a concomitant change in another fitness component (Roff and Fairbairn, 

2007). As such, analysis of genetic correlations does not only provide insight as to why 

evolution of fitness is constrained, but it can also indicate which of several individual fitness 

components may evolve along with fitness (due to natural selection) and in which direction. 

Although some data suggest that genetic correlations are dependent on environmental 

factors such as temperature and resource availability (Sgrò and Hoffmann, 2004), it has 

never been investigated if chemical exposure affects between-trait genetic correlation in 

aquatic organisms.  

Second, it has been shown that populations adapted to contaminated environments  

may exhibit reduced fitness in unpolluted environments, an observation which is commonly 

referred to as “cost of tolerance” (Medina et al., 2007). This phenomenon is caused by 

genetic between-environment correlations or between-environment trade-offs (Medina et 

al., 2007). Shirley and Sibley (1999), for example, reported that a population of Drosophila 

melanogaster adapted to a high cadmium environment exhibited a lower fecundity in the 

absence of cadmium compared to a population adapted to a Cd-free environment. Although 

knowledge of between-environment trade-offs are considered a key element for 
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incorporating micro-evolution in the environmental risk assessment paradigm (Medina et al., 

2007), this type of limited information is only available for highly contaminated 

environments (see reviews in Medina et al., 2007 and Morgan et al., 2007). Knowledge of 

such trade-offs in contaminated systems with low level and environmentally realistic 

chemical concentrations is completely lacking.  

Third, although it has been shown that higher temperatures generally lead to 

increased toxicity of chemicals in conventional ecotoxicity experiments (e.g. Heugens et al., 

2006), it has not been investigated what the effect of temperature is on the potential micro-

evolutionary response of populations living under chemical stress. This type of information is 

relevant in the context of  global warming. 

The aims of the present study were to address these three aspects by testing a set of 

hypotheses related to (i) the micro-evolutionary potential, constraints and possible 

consequences for a natural population of Daphnia magna exposed to a sublethal cadmium 

concentration and (ii) the influence of temperature on these processes. The first hypothesis - 

as proposed by Barata et al. (2000b) - is that a population exposed to cadmium will exhibit 

more genetic variation for life-history traits than a control population (hypothesis 1). Second 

- following Heugens et al. (2003, 2006) - we hypothesize that an increased temperature in 

combination with cadmium exposure will lead to lower fitness (hypothesis 2). Following 

Hoffmann and Hercus (2000) this will in turn result in a higher genetic variability of life-

history traits in a high temperature and high cadmium environment (hypothesis 3). Since 

genetic correlations may vary between environments (Sgrò and Hoffmann, 2004), we predict 

that cadmium exposure may alter genetic correlation between traits (hypothesis 4). Finally 

we hypothesize that there may be a cost of tolerance which will be reflected by a negative 
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genetic correlation of fitness between control and cadmium treatment in the two 

temperature environments (hypothesis 5). 

To test these hypotheses, we conducted 21-day life-table experiments using a 2 × 2 

design with Cd and temperature as experimental factors (control vs. 5 µg Cd/L, 20°C vs. 

24°C). The Cd concentration of 5 µg/L was chosen because it was shown to lead to an 

inhibition of approximately 10% of reproductive output in three clones based on a 

preliminary experiment (see Supplementary material, Table S3.1). Since concentrations 

resulting in a 10% effect level (i.e. the EC10) are commonly used as a basis for risk assessment 

or derivation of water quality criteria (e.g., EU, 2003) our choice enhances the regulatory 

relevance of the present investigation. Additionally, 5 µg Cd/L is within the range of Cd 

concentrations commonly reported in polluted water bodies, i.e. up to 28 µg Cd/L (Bervoets 

and Blust, 2003, Lopes et al., 2006).  

All experiments were conducted with 14 different D. magna clones hatched from 

different ephippia, which had previously been collected from an unpolluted pond. Ephippial 

eggs are sexually-produced dormant eggs, that are representative of the genetic pool of a 

natural population and which can be used in the laboratory to study natural population 

responses (Barata et al., 2002a). Since D. magna also reproduce asexually by ameiotic 

parthenogenesis (Hebert, 1987), single genotypes can be tested in different environments, 

although it should be recognized that each genotype cultured and tested in the laboratory is 

a genotype that survived laboratory selection (Baird, 1992). By measuring different life-

history traits of individuals of each genotype kept under different environmental conditions, 

estimates of quantitative genetic variation and genetic correlation between traits and 
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between environments were obtained as measures of the micro-evolutionary potential of 

the population (Barata et al., 2002b; Lynch and Walsh, 1998).  

2. Materials and methods 

2.1. General culture and exposure conditions 

The maintenance of all clones of the natural population was performed as described 

in Chapter 2 (§2.1.).  

2.2. Establishment and maintenance of clonal lineages of the natural population culture 

Sediment containing Daphnia ephippia were collected from the Kasteelvijver pond in 

the nature reserve Blankaart (Diksmuide, Belgium) using a Van Veen grab and a sediment 

corer in October 2007. The samples were transferred to the laboratory and ephippia were 

isolated and hatched as described in Chapter 2 (§2.2.) A total of 14 randomly selected clonal 

lineages were used for all experiments.  

2.3. Test design 

2.3.1. Temperature acclimation  

Organisms hatched from the ephippia were first acclimated to 20°C for two 

generations. A new generation was started with third or fourth brood offspring. The 

juveniles (<24h old) from a single clone were pooled and ten juveniles were randomly 

chosen from this pool to start a new generation of this lineage. Hence, each clone was 

presented in each generation by ten individual replicates maintained in polyethylene cups 

containing 50 mL of modified M4 medium. The juveniles of the second generation 
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acclimated to 20°C were used to start a third generation at 20°C and a first generation at 

24°C. Each clone was acclimated for three additional generations to 24°C and to 20°C before 

starting the cadmium exposure experiment (see 2.3.2). The daphnids were fed daily with a 

3:1 mixture (based on cell numbers) of the algae Pseudokirchneriella subcapitata and 

Chlamydomonas reinhardtii equivalent to 250 µg dry wt/Daphnia, 500 µg dry wt/Daphnia 

and 750 µg dry wt/Daphnia in the first, second and third week of their life, respectively. The 

test medium was renewed three times a week.  

2.3.2. Cadmium exposure experiment 

Based on a preliminary exposure experiment with five of the clones, a Cd 

concentration of 5 µg/L was selected as the sub-lethal test concentration in all Cd 

treatments (Supplementary material, Table S3.1). Cd exposures of all clones were 

simultaneously initiated at 20°C and 24°C with juveniles (<24h old) from the third or fourth 

brood of the temperature-acclimated adults. Ten juveniles of each clone at 20°C and 24°C 

were placed individually in 50 mL polyethylene cups with modified M4 medium and 5 µg 

Cd/L (added as CdCl2•H2O) and were subsequently monitored for 21 days following OECD 

test guideline No. 211 (OECD, 1998). Control exposures (no Cd added) at 20°C and 24°C with 

all clones were run in parallel.  

Based on daily observations the following traits were determined: survival, time to 

first brood, length (of the parents) at first brood, reproduction (number of juveniles) at first 

brood, length (of the parents) at day 21 and total reproduction at day 21 (R0). Population 

growth rate (rm) was calculated as described in chapter 2 (§2.3, Eq.2.3). 
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The length of the parental organisms was defined as the linear distance between the 

top of the head and the base of the spine and was measured with the aid of a microscope 

(Kyowa, Tokio, Japan) equipped with a marked microscope slide (precision 0.1 mm) and 

using the Image Tool software (UTHSCSA, San Antonio, TX, USA).  

Medium renewal and animal feeding were identical to that used in the temperature 

acclimation described above. Samples for analysis of dissolved Cd analysis were taken every 

week. pH, dissolved oxygen and temperature were measured at least twice a week and 

dissolved organic carbon (DOC) samples were taken at the beginning and end of the 

experiment. 

2.4. Chemical analyses 

Chemical analyses were performed as described in chapter 2 (§2.4.) 

2.5. Statistical analyses 

Genetic variation of total reproduction (R0) and population growth rate (rm) was 

compared among the different Cd treatments using the genotypic coefficient of variation 

(CVG, Eq. 2.2) and broad sense heritability (H², Eq. 2.1), rather than the genetic variance (VG) 

itself. For each Cd treatment, VG, the environmental (or residual) variance (VE) and 

confidence intervals were estimated as described in Chapter 2 (§2.5).  

The median values (50th percentile) and the 2.5th and 97.5th percentile of CVG, H² and 

X are reported. If more than 95% of the calculations yielded CVG(Cd) > CVG(control) or 

H²(Cd) > H²(control), the CVG or H2 in the Cd treatment was considered significantly higher 

than in the control. The population mean in a Cd treatment was considered significantly 
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lower than in the control if more than 95% of the calculations yielded X (control) > X  (Cd) 

(i.e. equivalent to a one-sided test at the 0.05 significance level). All calculations were 

performed in MATLAB 7.5.0.342 (Mathworks Inc) software. 

Genetic correlations between environments were calculated as described in chapter 

2 (§2.5.). Genetic correlations between two traits, i.e. R0 and rm (within each environment) 

(ρG,trait1,trait2) were calculated as follows: 

( )1 2
, 1, 2

, 1 , 2

cov ,
G trait trait

G trait G trait

trait trait

V V
r =

×
 

(Eq. 3.1) 

Where the variances of the two individual traits (VG,trait1 and VG,trait2) are calculated as 

above, and where cov(trait1,trait2) is the covariance between traits 1 and 2 which is 

calculated with the method of the moments (cf. above), but now applied on cross-products 

of deviations (Lynch et al., 1998).  

We considered a genetic correlation (between traits or between environments) 

significantly different from zero if rG >0 in >95% of the calculations (positive correlation) or if 

rG <0 in >95% of the calculations (negative correlation). Finally we compared genetic 

correlations between traits (rG,trait1,trait2) obtained in the control vs. Cd environment. 

Correlations were considered significantly different if rG,trait1,trait2 in the Cd exposure was 

higher than that in the control in >97.5% of the calculations or if it was lower in >97.5% of 

the calculations (i.e. equivalent to a two-sided test at the 0.05 significance level). All 

calculations were performed in MATLAB 7.5.0.342 (Mathworks Inc) software. 
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3. Results 

3.1. Preliminary experiment 

To select the Cd concentration to be used in our experiments, a preliminary 14 day 

chronic ecotoxicity test was conducted following OECD guideline No 211 (OECD, 1998) in our 

modified M4 medium. Three of the 14 D. magna clones were exposed at 20°C to a control 

and five concentrations ranging from 5 to 56 µg Cd/L. Ten replicates were used for each test 

concentration and each clone. Total reproductive output (number of juveniles/female) after 

14 days was used as endpoint. The EC10 was calculated with the log-logistic model (Van Ewijk 

and Hoekstra, 1993) in Statistica 6 (Statsoft, Tulsa, OK). The EC10 values for the three clones 

ranged from 3.16 and 5.30 µg Cd/L. A nominal concentration of 5 µg Cd/L was selected for 

further testing because it was close to the EC10s obtained for the three clones. Because the 

EC10 is commonly used as a basis for risk assessment or derivation of water quality criteria 

(e.g. EU, 2003) this choice enhances the regulatory relevance of the present investigation. 

3.2. Chemical analyses 

The results of the chemical analyses during the exposures are summarized in the 

Supplementary material (Table S3.2). Briefly, the cadmium concentrations in the control 

treatments were always below the detection limit of 30 ng Cd/L. The mean cadmium 

concentration (after filtering) of the freshly prepared medium was the same in the 20°C+Cd 

and the 24°C + Cd treatment, i.e. 4.3 µg Cd/L, which is within 15% of the nominal 

concentration of 5 µg/L. DOC concentrations during the test ranged from 3.7 to 5.7 mg C/L 

and were similar in the four treatments. The pH ranged between 7.3 and 7.6 and was also 

similar in the four environments.  
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3.3. Population means 

Values of traits for all individuals, all clones and all environments are given in 

Supplementary material, Table S3.3 – Table S3.26. Population means of all traits in the four 

treatments are reported in Table 3.1. At 20°C, D. magna exposed to cadmium exhibited, 

compared to the control, a significantly lower number of offspring in the first brood (-11%), 

lower reproduction during 21 days (R0) (-12%) and lower length at day 21 (-4%). Time to first 

brood was significantly higher (+3%) in the cadmium treatment. Other traits were not 

significantly affected. Cd had a similar but greater effect at 24°C, i.e. reproduction at first 

brood (-20%), reproduction during 21 days (-20%) and length at day 21 (-5%). Length at first 

brood (-4%) and population growth rate (-7%) were also significantly affected.  
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Table 3.1: Median of simulated population means (=mean of clone means) of the fitness traits. Numbers between 
brackets represent the 95% confidence interval. An asterisk (*) indicates a significant (p<0.05) difference between the 
control group and the Cd treatment within one temperature treatment (20°C and 24°C). Numbers between parentheses  
indicate the % difference between the Cd and the control treatment.  

Fitness trait 20 °C (Control) 20°C and Cd 24°C (Control) 24°C and Cd 

rm 

 

0.41 

[0.40-041] 

0.40 

[0.39-0.41] 

(-3.0%) 

0.46 

[0.44-0.47] 

0.43 

[0.42-0.44]* 

(-7.0%) 

Reproduction at 

first brood 

 

13.91 

[13.16-14.70] 

12.35 

[11.54-13.16]* 

(-11%) 

11.80 

[11.02-12.57] 

9.45 

[8.84-10.02]* 

(-20%) 

Length at first 

brood (mm) 

3.10 

[3.06-3.14] 

3.06 

[3.01-3.10] 

(-2.0%) 

2.97 

[2.94-3.00] 

2.87 

[2.83-2.91]* 

(-4.0%) 

Time to first 

brood (days) 

7.46 

[7.30-7.63] 

7.66 

[7.46-7.88]* 

(+3%) 

6.38 

[6.23-6.53] 

6.31 

[6.19-6.45] 

(-1.0%) 

Total 

reproduction (R0) 

111.75 

[104.16-122.07] 

98.76 

[91.37-104.36]* 

(-12%) 

119.22 

[112.76-126.95] 

95.93 

[87.16-104.20]* 

(-20%) 

Length at day 21 

(mm) 

 

4.16 

[4.10-4.22] 

4.03 

[3.96-4.11]* 

(-4.0%) 

4.13 

[4.08-4.17] 

3.92 

[3.84-4.00]* 

(-5.0%) 

 

3.4. Genetic coefficients of variation and broad sense heritabilities 

Genetic coefficients of variation (CVG) of the different traits are shown in Figure 3.1. 

The CVG for all traits and all treatments were significantly greater than 0, indicating that 

there is significant genetic variation for all traits in all treatments. Overall, CVG was highest 

for total reproduction (i.e. from 13.1% to 19.4%) and reproduction at the first brood (i.e. 

from 11.4% to 13.6 %) followed by time to first brood (i.e. from 3.7% to 6.1%) and rm (i.e. 

from 4.2% to 5.9%). It was lowest for length at first brood (i.e. from 1.7% to 3.1%) and length 

at day 21 (1.6% to 4.5%). We also observed a significant increase in CVG (compared to 
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control) in the Cd treatment at 24°C for the following fitness traits: length at first brood, 

length at day 21 and total reproduction. At 20°C, the CVG of none of the traits was affected 

by the cadmium treatment.  

 

Figure 3.1: Median genetic coefficients of variation (CVG, %) for different fitness traits in a D. magna population. Error 
bars represent the 95% confidence intervals. An asterisk (*) indicates a significant difference between the Cd and the 
control treatment within a temperature treatment (p<0.05). 

 

Broad sense heritabilities (H²) of the different traits are shown in Figure 3.2. The H² 

for all traits and all treatments were significantly greater than 0, indicating that there is 

significant genetic variation for all traits in all treatments. H² was similar for total 

0

5

10

15

20

25

20°C 24°C

C
V

G
re

p
ro

d
uc

ti
on

 a
t 

fi
rs

t 
b

ro
o

d 
   

   
   

   
   

   

0

5

10

15

20

25

20°C 24°C

C
V

G
to

ta
l r

e
p

ro
d

u
ct

io
n

 (
R

0
)

0

2

4

6

8

10

20°C 24°C

C
V

G
p

o
p

u
la

ti
on

 g
ro

w
th

 r
at

e 
(r

m
)

0

2

4

6

8

10

20°C 24°C

C
V

G
ti

m
e

 t
o

 f
ir

st
 b

ro
o

d

0

2

4

6

8

20°C 24°C

C
V

G
le

n
g

th
 a

t 
fi

rs
t 

b
ro

o
d

0

2

4

6

8

20°C 24°C

C
V

G
le

n
gt

h
 a

t 
d

ay
 2

1

0 µg Cd/l

5 µg Cd/l

0 µg Cd/l

5 µg Cd/l

0 µg Cd/L

5 µg Cd/L

*

*

*



Micro-evolutionary potential under Cd and temperature stress 

59 
 

reproduction (i.e. from 0.39 to 0.58) and population growth rate (i.e. from 0.35 to 0.58), 

followed by length at day 21 (i.e. from 0.12 to 0.56). It was lowest for reproduction at first 

brood (i.e. from 0.26 to 0.37), time to first brood (i.e. from 0.13 to 0.49) and length at first 

brood (i.e. from 0.13 to 0.40). We observed a significant increase in H² (compared to control) 

in the Cd treatment at 20°C for length at first brood. At 24°C, the H² of length at first brood 

and lenght at day 21 were affected by the cadmium treatment.  

Figure 3.2: Median Broad sense heritability (H²) for different fitness traits in a D. magna population. Error bars represent 
the 95% confidence intervals. An asterisk (*) indicates a significant difference between the Cd and the control treatment 
within a temperature treatment (p<0.05). 
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3.5. Genetic correlations between traits 

A comprehensive overview of genetic correlations between all traits in the four 

environments is presented in Table 3.2 - 3.5. Correlations between rm and traits related to 

the first brood are also shown in Figure 3.3.  

At 20 °C, five significant between-trait correlations were found in the control and the 

Cd treatment. Three were observed in both treatments: (1) a negative correlation between 

rm and time to first brood, (2) a positive correlation between length at first brood and 

reproduction at first brood and (3) a positive correlation between length at first brood and 

length at day 21. Two significant correlations were observed only in the control at 20°C: (1) a 

positive correlation between rm and length at first brood, and (2) a negative correlation 

between length at first brood and time to first brood. Two significant correlations were 

observed only in the Cd treatment at 20°C: (1) a positive correlation between rm and length 

at day 21, and (2) a negative correlation between length at day 21 and time to first brood.  

Table 3.2: Median genetic correlations between fitness traits (ρtrait1,trati2)  at 20°C and no Cd added (Control). Numbers  
between brackets represent the 5th and 95th percentile genetic correlation coefficient between traits. An asterisk (*) 
indicates a significant between-trait correlation that is significant (p<0.05).  

 Reproduction at 

first brood 

Length at first 

brood 

Time to first 

brood 

R0 Length at day 

21 

rm 0.48 

[-0.35 , 0.89] 

0.79* 

[0.18 , 1.35] 

-0.73* 

[-0.90 , -0.21] 

0.25 

[-0.25 , 0.90] 

0.25 

[-0.16 , 0.70] 

Reproduction at 

first brood 

 1.06* 

[0.90 , 1.36] 

-0.26 

[-0.69 , 0.34] 

-0.03 

[-0.46 , 0.45] 

0.14 

[-0.44 , 0.69] 

Length at first 

brood 

  -0.50* 

[-1.07 , -0.04] 

0.13 

[-0.41 , 1.04] 

0.75* 

[0.30 , 1.26] 

Time to first 

brood 

   0.22 

[-0.57 , 0.79] 

-0.35 

[-0.81 , 0.14] 

R0     -0.05 

[-0.54 , 0.70] 
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Table 3.3: Median genetic correlations between fitness traits (ρtrait1,trati2) at 20°C and 5 µg Cd/L. Numbers between 
brackets represent the 5th and 95th percentile genetic correlation coefficient between traits.  An asterisk (*) indicates a 
significant between-trait correlation that is significant (p<0.05).  

 Reproduction at 
first brood 

Length at first 
brood 

Time to first 
brood 

R0 Length at day 
21 

rm 0.47 

[-0.15 , 0.84] 

0.32 

[-0.16 , 0.67] 

-0.88* 

[-0.99, -0.56] 

0.14 

[-0.41 , 1.07] 

0.61* 

[0.37 , 0.86] 

Reproduction at 
first brood 

 0.55* 
[0.12 , 0.93] 

-0.44 
[-0.85 , 0.23] 

-0.06 
[-0.62 , 0.92] 

0.43 
[-0.01 , 0.76] 

Length at First 
brood 

  -0.35 
[-0.70 , 0.10] 

-0.34 
[-0.86 , 0.85] 

0.71* 
[0.25 , 0.97] 

Time to first 
brood 

   -0.39 
[-1.33, 0.02] 

-0.53* 
[-0.96 , -0.10] 

R0     0.21 

[-0.14 , 0.94] 

 

At 24 °C, fewer significant correlations were found. In the control, a positive 

correlation was found between R and length at day 21. In the Cd treatment, three positive 

correlations were noted: (1) between rm and reproduction at first brood, (2) between length 

at first brood and reproduction at first brood and (3) between length at day 21 and length at 

first brood. 

Table 3.4: Median genetic correlations between fitness traits (ρtrait1,trait2) at 24°C and no Cd added (control). Numbers  
between brackets represent the 5th and 95th percentile genetic correlation coefficient between traits. An asterisk (*) 
indicates a significant between-trait correlation that is significant (p<0.05). The underlined value indicates that the 
correlation is significantly different between the control and the Cd treatment at 24°C (p< 0.05). 

 Reproduction at 

first brood 

Length at first 

brood 

Time to first 

brood 

R0 Length at day 

21 

rm 0.55 
[-0.01, 0.92] 

0.29 
[-0.34 , 0.95] 

-0.68 
[-0.90 , 0.00] 

0.12 
[-0.45 , 0.67] 

0.30 
[-0.37 , 0.85] 

Reproduction at 
first brood 

 0.00 
[-1.09 , 0.76] 

-0.01 
[-0.76 , 0.74] 

-0.45 
[-0.80 , 0.07] 

-0.65 
[-1.34 , 0.14] 

Length at first 
brood 

  -0.79 
[-1.71 , 0.09] 

-0.25 
[-0.82 , 0.38] 

0.74 
[-0.22 , 1.51] 

Time to first 

brood 

   0.23 

[-0.52 , 0.98] 

-0.63 

[-1.47 , 0.32] 

R0     0.67* 
[0.03, 1.22] 
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Table 3.5: Median genetic correlations between fitness traits (ρtrait1,trait2)  at 24°C and 5 µg Cd/L. Numbers between 
brackets represent the 5th and 95th percentile genetic correlation coefficient between traits. An asterisk (*) indicates a 
significant between-trait correlation that is significant (p<0.05). The underlined value indicates that the correlation is  
significantly different between the control and the Cd treatment at 24°C (p< 0.05). 

 Reproduction at 

first brood 

Length at first 

brood 

Time to first 

brood 

R0 Length at day 

21 

rm 0.60* 

[0.02 , 0.86] 

0.18 

[-0.73 , 0.77] 

-0.39 

[-0.88 , 0.19] 

-0.07 

[-0.71 , 0.51] 

-0.08 

[-0.70 , 0.83] 

Reproduction at 

first brood 

 0.89* 

[0.39 , 1.31] 

0.06 

[-0.43 , 0.44] 

-0.06 

[-0.68 , 0.63] 

0.31 

[-0.38 , 0.76] 

Length at first 

brood 

  0.21 

[-0.43, 0.78] 

0.17 

[-0.47 , 0.94] 

0.74* 

[0.38 , 0.95] 

Time to first 

brood 

   0.62 

[0.00 , 0.97] 

0.56 

[-0.08 , 1.18] 

R0     0.52 

[-0.00 , 0.81] 

 

Although these data suggest that different patterns of between-trait correlations  

exist between the control and Cd treatments, direct statistical comparison of between-trait 

correlations reveals that only the correlation between length at first brood and reproduction 

at first brood is statistically different between the control and the Cd treatment. 
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Figure 3.3: Genetic correlations between rm (population growth rate) and time to first brood (left), length at first brood 
(middle) and reproduction at first brood (right) in the four different treatments (top to bottom).  Each dot represents the 
mean trait value of a clone. The median genetic correlation is given at the top of each graph and can also be found in 
Tables 3.2-3.5. An asterisk (*) indicates that the correlation is significant (p<0.05). 
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3.6. Genetic correlation between environments 

We found a significant positive between-environment genetic correlation for rm  

between the 20°C control and the 20°C + Cd treatment (ρ = 0.77). At 24°C, this correlation 

was not significant (ρ = 0.32) (Figure 3.4). The 5th and 95th genetic correlation coefficient are 

given in Supplementary material, Table S27. 

 
Figure 3.4: Genetic correlations between the control and the cadmium environment for rm (population growth rate) at 
20°C (left) and at 24°C (right). Each dot represents  the mean rm for each clone. An asterisk (*) indicates that the 
correlation is significant (p<0.05). 
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response of fitness traits to natural selection (Houle, 1992) although in this study, also H² 

was determined. A higher CVG and/or H² thus suggests a higher evolutionary potential. Our 

results show that all traits exhibited a significant CVG and H² in both control and Cd 

environments which indicates that under all conditions tested there is evolutionary potential 

of the population for all of these traits. This is in contrast with the previous chapter, where 

only for R0, at control and at 4.0 µg Cd/L (similar to 4.3 µg Cd/L in this study) a significant CVG 

and H² was found. It also has to be noted as described in the previous chapter that the CVG 

and H² determined in the present study represent total genetic variation based on 

interclonal variation (i.e. the sum of the additive, epistatis and dominance components of 

genetic variation) and that the additive genetic variation and narrow sense heritability would 

probably be a more precise estimate of evolutionary potential (with total genetic variation 

being an upper limit of the additive variation). 

The CVG and H² can also be used to test the hypothesis whether the Cd exposed 

population exhibits more genetic variation for life-history traits than the control population 

(hypothesis 1). For H², at 20°C a significant effect was found for length at day 21, but this 

hypothesis was rejected for CVG as there was no significant effect of exposure to 4.3 µg Cd/L 

(actual Cd concentration) on the CVG for any of the traits. This appears to be in contrast with 

the findings of Barata et al. (2000b) who found a significant increase of the CVG from about 

30% in the control to about 40% in a 0.5 µg Cd/L treatment. Although the Cd concentration 

in Barata et al. (2000b) is nine times lower than that used in our study, the Cd-induced stress 

was clearly higher in the Barata et al. (2000b) study. Indeed, while we found a reduction of 

the population mean of the reproduction at first brood of only 11% at 4.3 µg Cd/L, Barata et 

al. (2000b) reported a reduction of about 30% at 0.5 µg Cd/L. Thus, the hypothesis proposed 
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by Hoffmann and Parsons (1991), i.e. that increased stress (in this case Cd stress) is expected 

to result in increased genetic variation, is actually supported by the combined results of the 

present and the Barata et al. (2000b) study. Bio-availability can partially explain the found 

discrepancies between the two studies. Indeed, both DOC (4 mg C/L) and hardness (250 mg 

CaCO3/L) were higher in the present study than in the Barata et al. (2000) study (no DOC 

added, 160 mg CaCO3/L). Speciation calculations using WHAMVI (Tipping, 1994) indicated 

that in our study 65% of the dissolved Cd was present as free ionic Cd2+, while 93% was Cd2+ 

in the Barata et al. (2000) study. Thus binding of Cd to DOC would explain part of the 

observed ‘sensitivity’ difference. In addition, the US-EPA equation for hardness correction of 

Cd ecotoxicity data (US-EPA, 2001) suggests a 1.5-fold lower toxicity in the present study 

compared to Barata et al. (2000). However, it is unlikely that bioavailability alone explains 

the nine-fold difference in toxicity. Additionally, as described in the previous chapter, 

differences in food regimes during tests and differences in the evolutionary history of these 

two populations (prior to their collection in the field) may also have contributed to the 

sensitivity differences.  

Compared to the 20°C treatment in our study, the adverse effects of Cd at 24°C on 

the D. magna population were more pronounced. Not only were more traits affected, they 

were also affected to a larger extent (see Table 3.1). This is in accordance with Heugens et al. 

(2003, 2006) and supports our second hypothesis. Increased toxicity at higher temperature is 

most often attributed to increased physical rates in ectotherms, including chemical uptake 

rates (Heugens et al., 2006). Although uptake rates of Cd were not measured here, the 

increased metabolic rate at 24°C is apparent from the faster maturation (time to first brood) 

at 24°C (Table 3.1). Comparison of the CVG values obtained in the controls to those in the Cd 
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treatment at 24°C reveals an increased CVG in the Cd treatment for length at first brood, 

length at day 21 and R0. For H², a significant increase was found for length at first brood and 

length at day 21. Higher temperature (24°C) thus lead to an increase in the Cd stress 

(compared to the Cd stress at 20°C) which in turn resulted in a significant increase in CVG 

and/or H² for some traits. This observation supports hypothesis 3. Indeed, our data shows 

that an increase in temperature does not only increase the magnitude of Cd stress, but also 

increases the expression of genetic variation of some traits. This in turn may increase the 

micro-evolutionary potential under Cd stress and may eventually lead to shifts in genotype 

frequencies within a population. If this pattern is confirmed for more substances, the 

combination of e.g. global warming with chemical exposure may increase selection intensity 

in natural populations and increase the likelihood of genetic erosion (Van Straalen and 

Timmermans, 2002). It must be kept in mind though that the three traits exhibiting higher 

CVG and/or H² in the 24°C + Cd treatment (length at first brood, length at day 21 and R0) are 

usually considered not to be those with the closest relation to actual fitness in the field.  

Both timing and clutch size of the first brood are more important in this regard (Barata et al., 

2002a) and it has been shown that these traits can be under selection in stressful 

environments (Lopes et al., 2004). In general, rm - which is largely determined by timing and 

clutch size of the first (few) broods - is generally considered an integrative measure of fitness 

with a predictive capacity of actual fitness in the field (Calow et al., 1997; Hooper et al., 

2008). However, no significant differences in CVG and H² between control and Cd treatments 

were observed for rm. The CVG and H² for rm is, however, significantly higher than zero in all 

treatments suggesting that natural selection may occur and traits associated with rm may 

also evolve.  
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The extent to which two traits are genetically associated can be determined by their 

genetic correlation. Genetic correlations between traits can arise due to pleiotropy or 

linkage, but no distinction between these two mechanisms can be made in the present 

study. Differences of between-trait correlation among environments suggest different 

micro-evolutionary paths across environments (Byers, 2005). Our results (Tables 3.2 - 3.5) 

show that significant correlation between traits do exist in D. magna and suggest that the 

patterns of between-trait correlation are different among the four environments 

investigated here. The rm in the 20°C control treatment was positively correlated with length 

at first brood and negatively correlated with time to first brood (Figure 3.3, Table 3.2). This 

result should be interpreted with caution as the latter trait is mathematically related to rm  

(i.e. shorter time to first brood results in higher calculated values of rm (Eq.2.1)). Thus natural 

selection is predicted to favour genotypes with faster maturation because these genotypes 

have the highest fitness (i.e. highest rm). On the other hand, selection is predicted to result in 

a population with increased mean length at first brood (as a consequence of the positive 

correlation with rm). In the 20°C plus Cd treatment, the genotypes with the largest rm were 

those with the shortest time to first brood and highest length at day 21, but no correlation 

between rm and length at first brood was observed. Under these conditions, natural 

selection - which naturally favours genotypes with highest rm - is predicted to favour 

genotypes with a larger size (at day 21) and faster maturation. This observation is similar to 

the results obtained with Drosophila melanogaster, for which selection for increased Cd 

tolerance resulted in increased fecundity and decreased developmental time (Shirley and 

Sibley, 1999). In the 24°C control treatment no significant correlations between rm and any 

other trait were noted. Organisms in the 24°C plus Cd treatment did exhibit a positive 

correlation between rm and reproduction at first brood. Here, natural selection under Cd 



Micro-evolutionary potential under Cd and temperature stress 

69 
 

stress is predicted to result in a population with a higher reproduction at first brood, which is 

a different micro-evolutionary path as predicted for organisms exposed to the 20°C plus Cd 

treatment (see above). Overall, the between-trait correlation data of both the 20°C and 24°C 

treatments suggest that different genetic correlations between traits are observed in the 

control vs. the Cd environment. This supports our fourth hypothesis: i.e. that Cd affects 

between-trait correlations. However, this latter conclusion should be treated with caution 

since a direct statistical comparison could not detect significant differences in between-trait 

correlation between the control and the Cd environment at 20°C. Also at 24°C only a single 

difference, i.e. for the correlation between length at first brood and reproduction at first 

brood (Tables 3.4 - 3.5), was noted. This lack of significance was unexpected since in some 

cases relatively large differences of the estimated median values of these correlations were 

observed (Tables 3.2 - 3.5). Closer examination of the bootstrap calculation output revealed 

that the between-trait correlations had relatively large confidence intervals. Hence future 

experiments would probably benefit from increasing the sample size (i.e. increasing number 

of clones). We conducted a power analysis and this showed that in order to detect absolute 

differences in ρtrait1,trait2 values (among environments) equal to 0.68 and 0.32 with a power of 

80%, sample sizes (number of clones) of 60 and 200 would be needed, respectively (see 

Supplementary material S3.28 for more details). This is considerably higher than the 14 

clones used in the present study. With 14 clones, the absolute difference in ρtrait1,trait2 values 

(among environments) would have to be as high as 1.2, which explains why we detected few 

differences as statistically significant in the present study. 

Finally, in our hypothesis 5, we stated that Cd could induce a cost of tolerance and 

that this would be reflected in a negative between-environment correlation of fitness 
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between the control and the Cd environment (Figure 3.3). Here, we did not find a negative 

correlation but rather a positive correlation between the control and the Cd environment 

(Figure 3.3) at 20°C, indicating that genotypes with higher fitness in the control environment 

generally also have a higher fitness in the Cd environment (positive correlations were also 

found in chapter 2 for total reproduction (R0)). At 24°C this genetic correlation was not 

significant. On the basis of these observations, hypothesis 5 was rejected: i.e. the existence 

of a cost of tolerance at sublethal concentrations of Cd exposure for D. magna could not be 

demonstrated. We suggest that the cost of tolerance that has been observed in more 

severely polluted environments (Medina et al., 2007; Postma et al., 1995; Agra et al., 2010) 

does not necessarily occur in mildly polluted environments, although based on results of the 

previous chapter, no cost of tolerance in a high Cd treatment could be found.   

5. Conclusion 

We have examined some aspects of micro-evolutionary potential following Cd 

exposure of D. magna that have not been previously studied and the following conclusions 

are proposed. First, temperature increase (e.g. possibly due to global warming) may impact 

the way Cd affects genetic variation. Second, sub-lethal Cd concentrations have the potential 

to modify the genetic correlations between traits and the direction in which exposed 

population’s traits may evolve. While this is a first indication that Cd exposure may affect 

micro-evolutionary paths of D. magna populations, stronger statistical evidence for this 

statement is needed because current sample sizes resulted in relatively large confidence 

intervals on estimates of between-trait correlations. Third, no negative between-

environment correlations for rm between the control and the Cd environment were 

observed. This suggests that there is not necessarily a cost of tolerance whereby a 
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population that adapts to sublethal Cd exposure would exhibit a reduced fitness if returned 

to a non Cd-polluted environment. Finally, our results suggest that chemicals can have 

effects on fundamental population genetic characteristics such as genetic variation and 

between-trait correlations and that these effects may differ depending on temperature. 

They also suggest that chemical exposure combined with global warming may result in 

micro-evolutionary responses of populations that are currently not accounted for in any 

environmental risk assessment procedure.  
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Abstract- The genetic variability within a population determines the micro-evolutionary 

potential of a population exposed to stress. As this genetic variability may also contain a 

non-additive genetic component, the total genetic variability could overestimate this 

potential for adaptation. In this study, we examined the additive and non-additive 

components of the genetic variability of fitness traits in a natural Daphnia magna population 

exposed to Cd and temperature stress. Life-table experiments were conducted with 20 

parent and 39 offspring clones following a 2×2 design with Cd concentration and 

temperature as the factors (control vs. 5 µg/L cadmium, 20°C vs. 24°C). Total reproduction 

(R0) and population growth rate (rm) were determined. Variance components were 

determined using an Animal Model. Narrow sense heritability (h²) and the additive genetic 

coefficient of variation (CVA) of total reproduction (R0) ranged between 0.03 and 0.22 and 

between 9% and 82% respectively. CVA and h² were significantly >0 in the 24°C + Cd 

treatment. A significant Cd effect on h² and CVA was observed at 24°C (compared to the 

control). For total reproduction a significantly >0 additive genetic variance was detected in 

24°C + Cd. The additive and dominance components of variation of population growth rate 

(rm) could not be estimated at 20°C, because of missing data and too low variation. At 24°C, 

no significant additive and dominance components were found in the control and Cd 

treatment for rm. h² ranged between 0.04 and 0.13, and CVA between 11.3% and 11.7% for 

population growth rate (rm). Our results indicate that temperature and Cd can have 

significant effects on additive and non-additive components of genetic variability of fitness 

traits in D. magna population. The finding of a significant additive genetic variance of fitness 

in the 24°C + Cd treatment indicates that genetically determined differences of fitness 

among clones under Cd stress may be heritable to the next generations.   
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1. Introduction 

Conventional risk assessment is usually based on short-term effects of chemicals on 

populations with limited genetic variation (i.e. effects occurring in a period no longer than 

one generation). However, natural populations usually consist of a large number of 

genetically different individuals, which may respond differently to stress. Long-term (i.e. 

multi-generational) exposure to contaminants can lead to micro-evolutionary changes in a 

population, which could lead to an increase of tolerance to the contaminant of interest (i.e. 

adaptation). These micro-evolutionary changes can be: (1) the disappearance of the 

sensitive individuals (genetic erosion) or (2) the appearance of new alleles conferring 

tolerance (through mutations) or (3) the appearance of a combination of genes underlying a 

new or more efficient tolerance mechanism followed by their increased frequency by natural 

selection (Lopes et al., 2006). Although some studies reported increased tolerance in aquatic 

populations following long-term exposure to chemicals (Xie et al., 2003; Ward and Robinson, 

2005), genetic adaptation appears to be infrequent according to other studies (Klerks, 2002; 

Chaumot et al., 2009).  

The micro-evolutionary potential for adaptation can be quantified by using multi-

generation artificial selection experiments or through identification of genetically 

determined differences in tolerance within a population (standing genetic variation). Several 

studies with Daphnia sp. clones have indicated the existence of such a significant genetic 

variation in tolerance within a population for metals (Baird et al., 1990; Barata et al. 1998; 

Barata et al. 2000; Barata et al. 2002a,b,c; Messiaen et al., 2010). Messiaen et al. (2010) 

indicated that an increase of temperature (24°C versus 20°C) led to an increased expression 

of the genetic variability of some fitness traits in a natural D. magna population under Cd 
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stress (compared to a control, unstressed situation). Under long-term, multi-generation 

exposure of this population, this may eventually lead to stronger shifts in genotype 

frequencies within a population (compared to a control, unstressed conditions). In all above-

cited studies, however, genetic variation has been assessed with a clonal approach. 

However, Daphnia sp. typically reproduce by cyclic parthenogenesis, which is an alteration 

between clonal reproduction under beneficial conditions and sexual reproduction when 

cued by the environment. Sexual reproduction results in the production of diapausing eggs 

that are encased in a desiccation-resistant ephippium. The above mentioned (clonal) 

estimations of total genetic variability (and also broad sense heritability and genetic 

coefficient of variation) also contain non-additive genetic interactions (Falconer and Mackay, 

1996), which are not heritable across sexual generations, only the additive component is 

heritable. For the commonly used Daphnia magna, two studies estimated the h² under food 

stress (Ebert et al., 1993) and phototactic behavior (De Meester et al., 1991). The 

heritabilities of clutch size and adulth length were much larger in high than in low food 

(Ebert et al., 1993). There was a significant contribution of the additive component to the 

total phenotypic variance found in the heritability of phototactic behavior (De Meester al., 

1991).  The estimation of the additive component of genetic variation in a ecotoxicological 

context has until now hardly been explored in aquatic ecotoxicology (Klerks and Moureau, 

2001; Chaumot et al., 2009). Very low h² (0-0.2) were found in the study of Klerks and 

Moureau (2001), who exposed adults and fry of sheephead minnow (Cyprinodon variegatus) 

to Zn, phenanthrene and mixtures of Zn, phenanthrene, Ni, Barium and three polycyclic 

aromatic hydrocarbons. Chaumot et al. (2009) found that the genetic differences in survival 

time in a Gammarus fossarum population exposed to lethal Cd stress (20 µg Cd/L) were 

explained by large non-additive variance components. As a consequence, the narrow sense 
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heritability was negligible. Chaumot et al. (2009) therefore postulated (based on weakness 

of additive components for Cd tolerance) that exceptional cases of adaptation of field 

populations would be permitted only by the fixation of rare alleles (Woods and Hoffmann, 

2000). Nonetheless, quantitative genetic studies can provide more insight to the issue of 

adaptation in risk assessment (Chaumot et al., 2009). 

The minimum requirements for the selection on a phenotypic trait in a population 

are (i) the presence of genetically heritable variation of that trait, (ii) the occurrence of 

natural selection and (iii) a genetic correlation of that trait with fitness (Lynch and Walsch, 

1998; Templeton, 2006; Hoffmann and Hercus, 2000; Chaumot et al., 2009). In this study, we 

will investigate one of these requirements, i.e. the presence of genetically heritable 

variation. More specifically, the aim of this study was to determine: (1) the additive genetic 

variance under Cd stress, which indicates a heritable variation to the next generation in a 

Daphnia magna population (compared to a control, unstressed condition) and (2) the 

influence of temperature on the additive and non-additive genetic variance, heritabilities 

and coefficients of variation under Cd stress (compared to a control). 

We performed a 21-day life table experiment with 20 genetically distinct clonal 

lineages established from ephippial eggs from a single natural Daphnia magna population 

and 39 sexual offspring clonal lineages under a control treatment (no Cd) and Cd treatment 

(5 µg Cd/L) at two temperatures (20°C versus 24°C). This allowed us to determine the 

additive and dominance components of genetic variance of two fitness traits, i.e. R0 and rm, 

under those treatments, as a proxy of the micro-evolutionary potential.  



Chapter 4 

78 
 

2. Material and Method 

2.1. General culture and exposure conditions 

The maintenance of all clones of the natural population was performed as described 

in Chapter 2 (§2.1.).  

2.2. Establishment and maintenance of clonal lineages of the natural population culture 

Sediment containing Daphnia ephippia were collected from the Kasteelvijver pond in 

the nature reserve Blankaart (Diksmuide, Belgium) using a Van Veen grab and a sediment 

corer in October 2007. The samples were transferred to the laboratory and ephippia were 

isolated and hatched as described in Chapter 2 (§2.2.) A total of 20 randomly selected clonal 

lineages were used as parental clones for all experiments (i.e. induction of males, crossing 

experiments and Cd exposure) (Figure 4.1A).  

2.3. Induction of male daphnids and crossing experiments 

In total 20 clonal lineages were used in this experiment. In a first generation for each 

clone, 5 juveniles (<24h) were put in 50 mL modified M4-medium (=P-generation= 1st 

generation figure 4.1A). These daphnids were feed daily at 2*105, 4*105 and 6*105 algae 

cells/ daphnid in their first, second and third week of their life respectively under a light:dark 

cycle of 8h:16h. The M4-medium of these organisms was renewed once a week. A second 

generation (=F1-generation) was established by using 5 juveniles (<24h) of the previous 

generation (<24h) from the third brood. Medium renewal, feeding and light: dark cycle was 

the same as the previous generation. If there were males in this second generation, they 
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were kept separately (= 3th generation figure 4.1.A.) to avoid intraclonal crossing. The 

induction of males lasted until all crossings were finished.  

 

Figure 4.1A: Schematic overview of the design for the induction of male Daphnids. The design was followed for each of  
the clonal lineages originating from the field population.   

Crossing was established by taking 5 females (= organisms who carried eggs) of one 

clone and put together with 5 males of another clone in 50 mL modified M4-medium (Figure 

4.1.B). So in total 10 organisms were placed in 50 mL modified M4 medium. The crossings 

were checked every two days and asexual offspring were removed manually. The ephippia 

produced in the first week were removed and only ephippia from the second and third week 

were kept at 4°C in the dark in carbon filtered water. After at least two months, ephippia 

were manually decapsulated and placed in 50 mL cups filled with aerated carbon filtered tap 

water. Each ephippia was kept separately and only one hatched juvenile (=offspring clone) 

was used for further experiments. These hatchlings were given a clone name.  
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Figure 4.1.B: Schematic overview of the design for crossing experiment. Male (> ) and female (+ ) daphnids  are different 
clones, so intraclonal crossing was excluded.  

 

2.4. Test design of Cd experiment 

The test design of the Cd experiment is presented in Figure 4.2. The juveniles (<24h 

old) from a single clone (as well for parental as for offspring clones) were pooled and 3 

juveniles were randomly chosen from this pool to start a new generation of this lineage. 

Hence, each clone was presented by 3 individual replicates maintained in polyethylene cups 

containing 50 mL of modified M4 medium. The juveniles of this generation were used to 

start a new generation at 20°C and a first generation at 24°C. For each clone, juveniles 

(<24h) produced by these three adults were pooled together and 8 juveniles (<24h) were 

randomly picked out to start the P-generation in each temperature (P-generation in Figure 

4.2), so 4 juveniles were transferred to 24°C and 4 juveniles were kept at 20°C. Each juvenile 

was transferred individually to a separate 50 mL polyethylene beaker. The individuals in this 

P-generation then served as the mothers for producing the following generation. At the third 

or fourth brood, one juvenile (<24h) (F1) from one mother organism (P) was selected and 

were placed individually in 50 mL polyethylene vessel to establish the following generation 
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(F1-generation). One juvenile (F2) from the third or fourth brood from one organism (F1) 

was used to start the following generation (F2). At the third brood of this generation (F2), 

two juveniles (<24h) (F3) from each mother organisms (F2) were selected and placed 

individually in 50 mL polyethylene vessels with modified M4 medium, in a control treatment 

(no added Cd) and a Cd treatment of 5 µg Cd/L (added as CdCl2•H2O) and were subsequently 

monitored for 21 days following OECD test guideline No. 211 (OECD, 1998). Control 

exposures (no Cd added) and Cd exposures at 20°C and 24°C with all clones (parental and 

offspring clones) were run in parallel. Maternal effects can be ruled out in the estimation of 

genetic variance, as for each clone in each Cd concentration, each of the three replicate 

individuals (juveniles) being exposed originated from a different mother organism. Based on 

daily observations the following traits were determined: total reproduction at day 21 (R0) 

and population growth rate (see Eq.2.3).  

Figure 4.2: Schematic overview of the experimental design that was followed for ech clonal lineage.  
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Samples for analysis of dissolved Cd analysis were taken every week. pH, dissolved 

oxygen and temperature were measured at least twice a week and dissolved organic carbon 

(DOC) samples were taken at the beginning and end of the experiment. 

2.5. Chemical analyses 

The chemical analyses during the Cd experiment are described in Chapter 2 (§2.4) 

2.6. Statistical analyses 

As described in previous chapters (chapters 2 and 3), there are different ways to 

standardize the level of genetic variation of a (fitness) trait. The additive genetic variance 

(VA) can be presented as a proportion of the total phenotypic variance (VP), and this ratio is 

called the (narrow sense) heritability (h2) (Lynch and Walsh, 1998): 

h2 = VA / VP    (Eq. 4.1) 

VP = VA + VD + VE    (Eq. 4.2) 

VG = VA + VD   (Eq. 4.3) 

H2 = VG / VP   (Eq. 4.4) 

CVG (%) = 100 *  VG / µ (Eq. 4.5) 

CVA (%) = 100 *  VA / µ (Eq. 4.6) 

Where VP = total phenotypic variance, VG = total genetic variance, H2 = broad-sense 

heritability, h2 = narrow-sense heritability, CVG = the (total) genetic coefficient of variation, 
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and CVA = the additive genetic coefficient of variation (Lynch and Walsh 1998; Klerks et al. 

2011; Falconer and Mackay 1996).  

 The Restricted maximum likelihood (REML) method was used to estimate the 

variance components of additive genetic effects (σ²A), dominance effects (σ²D) and residual 

effects (σ²E) and this was based on the Animal Model (see Supplementary Material S4.1 for 

detailed information). The covariance matrix was calculated using the Banded Toeplitz 

Method. Calculations were performed using SAS 9.2. (SAS Institute Inc, Cary, NC, USA). The 

model can be expressed in matrix form (linear mixed model): 

Y = Xb + Z1µ1 + Z2µ2 + e (Eq. 4.7) 

Where Y=vector of trait values of all tested individuals 

b=vector of fixed effect (population mean) 

µ1 = vector of additive genetic effects (random effect) 

µ2 = vector of dominance genetic effects (random effect) 

e= vector of residual effects (random effect) 

X = unit vector 

Z1 and Z2 = matrices of random effects (see annex for more details) 

 

Based on the estimated values of the three variance components and the variance-

covariance matrix of these estimates, the following parameters and their variance were 

calculated, based on Lynch and Walsch (1998): narrow sense heritability (h²), additive 

genetic coefficient of variation (CVA), broad sense heritability (H²), genetic coefficient of 

variation (CVG) (see Supplementary Material, S4.2. for detailed information). Significance of 

differences between estimates of the parameters in the control and the Cd treatment was 

assessed by calculating z scores: 
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z= (µCd - µControl) / (s²Cd + s²Control) (Eq.4.8) 

Where µ= estimates and s= standard errors. In the case of traits being tested against 

a value of zero, the formula is reduced to the ratio between the estimate and its standard 

error. The null-hypothesis states that the means of two treatments are equal. If IzI > 1.96, 

the means are considered significantly different, and the null-hypothesis is rejected (p<0.05). 

3. Results 

3.1. Chemical analyses 

The physico-chemistry of the test media is presented as supportive information 

(Table S4.1). DOC ranged between 4.6 and 5.6 mg/L and pH between 7.5 and 7.6. The mean 

dissolved Cd concentrations (mean of old and new medium) differed at most 27% from the 

nominal Cd concentration. The Cd concentration in the old medium was on average 36% 

lower than in the new medium.  

3.2. Population means 

Values of traits for all individuals, all clones and all environments are given in 

Supplementary material, Table S4.2 – Table S4.48. Population means of total reproduction 

(R0) and population growth rate (rm) are reported in Table 4.1. At 20°C, D. magna exposed to 

cadmium exhibited, compared to the control, a significantly lower reproduction during 21 

days (-23%) and significantly lower population growth rate (-9%). Cd had a more pronounced 

effect at 24°C on  total reproduction (-88%) and population growth rate (-60%).   
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Table 4.1: Estimated population means of the fitness traits ± standard error. An asterisk (*) indicates a significant 
(p<0.05) difference between control group and Cd treatment in one temperature treatment (20°C and 24°C). Numbers  
between parentheses indicates the % difference between the Cd and the control treatment.   

 20°C 20°C + Cd 24°C 24°C + Cd 

Total reproduction 

(R0) 

105.55 ± 4.70 81.23 ± 3.92* 

(-23%) 

98.13 ± 5.10 11.69 ± 2.83* 

(-88%) 

Population growth 

rate (rm) 

0.38 ± 0.01 0.35 ± 0.01* 

(- 9%) 

0.40 ± 0.02 

 

0.16 ± 0.02* 

(- 60%) 

 

3.3. Narrow sense heritability, additive genetic coefficient of variation (CVA), additive 

genetic variance and dominance genetic variance 

The estimates of the narrow sense heritability, additive genetic coefficient of 

variation of total reproduction (R0) and population growth rate (rm) are presented in Figure 

4.3. The estimates of additive and non-additive components of variance of total 

reproduction (R0) are presented in Table 4.2. The estimates of additive and dominance 

components of variation of population growth rate (rm) could not be estimated in 20°C 

because of lack of data and too low variation between traits. Variance components at 24°C 

are presented in Table 4.3. Additive and dominance variance was not significantly greater 

than 0 for rm at 24°C. Covariance estimates are presented in Supplementary Material (Table 

S4.49 – Table S4.54). 

 

 

 

 

 

 

 

 



Chapter 4 

86 
 

Table 4.2: Estimates of additive variance, dominance variance and error variance in natural Daphnia magna population 
for total reproduction (R0). Values represent estimates ± standard error. An asterisk indicates that the estimate is  
significantly > 0.  

 20°C 24°C 

Genetic components  0 µg Cd/L 5 µg Cd/L 0 µg Cd/L 5 µg Cd/L 

Additive variance 

(VA)  

91.33 ± 191.01 93.64 ± 169.99 127.97 ± 276.5 104.06 ± 50.89* 

Dominance variance 

(VD) 

1604.65 ± 572.85*  554.52 ±  408.6 1042.78 ± 594.72* 169.99 ± 108.27 

Genetic variance  

(VG) 

1696.0 ± 551.3* 648.2 ± 386.2* 1170.8 ±  612.8* 274.1 ±  96.8* 

Error variance 

(VE)  

920.71 ± 137.72* 884.1 ± 143.51* 1830.75 ± 263.36* 198.86 ± 30.14* 

Phenotypic variance 

(VP) 

2616.7± 524.9* 1532.2 ± 330.9* 3001.5 ± 548.3* 472.9 ± 86.4* 

 
Table 4.3: Estimates of additive variance, dominance variance and error variance in natural Daphnia magna population 
for population growth rate (rm). Values represent estimates ± standard error. An asterisk indicates that the estimate is 
significantly > 0.  

 24°C 

Genetic components  0 µg Cd/L 5 µg Cd/L 

Additive variance (VA)  0.003 ± 0.003  0.001 ± 0.002 

Dominance variance (VD) 0.007 ± 0.007 0.012 ± 0.006 

Genetic variance (VG) 0.01 ± 0.01  0.013 ± 0.01 

Error variance (VE) 0.012 ± 0.002* 0.013 ± 0.001* 

Phenotypic variance (VP) 0.022 ± 0.01* 0.026 ± 0.01* 

 

For total reproduction (R0) (Table 4.2), an additive genetic variance significantly >0 

was detected in 24°C + Cd but not in the other two treatments. A significant dominance 

variance  (> 0) was only found in the two control treatments but not in the Cd treatments. 

For R0, h² (Figure 4.3) ranged between 0.04 to 0.2, but was only at 24°C + Cd significantly 

greater than 0. A significant Cd effect on h² was found at 24°C (compared to the control). 

The additive coefficient of variation (CVA) ranged between 4.11% and 86.98%. CVA was 

significantly > 0 in 24°C + Cd. At 24°C there was a significant Cd effect.  
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For population growth rate (rm) (Table 4.3), no significant additive and dominance 

components were found in the control and Cd treatment. The h² ranged between 0.04 and 

0.13. No effect of Cd was found on h² at 24°C. Additive genetic coefficient of variation (CVA) 

was approximately the same in the two treatments (11.3% and 11.7%) and no Cd effect was 

found either (compared to the control) (Figure 4.3).  

 

Figure 4.3: Narrow sense heritability (h²) and additive genetic coefficient of variation (CVA) for different fitness traits in a 
D. magna population. Error bars represent the standard deviation. An asterisk (*) indicates a significant difference 
between the Cd and the control treatment within a temperature treatment (p<0.05). 

 

3.4. Broad sense heritability and genetic coefficient of variation (CVG). 

Broad sense heritability (H²) (Figure 4.4) ranged between 0.37 and 0.69 and was  

significantly > 0 in all treatments for total reproduction (R0). There was no Cd effect on H² in 
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either of the two temperature treatments. Genetic coefficient of variation (CVG) for total 

reproduction ranged between 30.02% and 146.91%, and there was a Cd effect at 24°C.  

Broad sense heritability (Figure 4.4) and genetic coefficient of variation could not be 

estimated in 20°C for population growth rate (rm). H² ranged between 0.41 and 0.49 and CVG 

between 24% and 73% for CVG at 24°C. There was no Cd effect on H². A significant Cd effect 

was found for CVG. 

 

Figure 4.4: Broad sense heritability (H²) and genetic coefficient of variation (CVG) for different fitness traits in a D. magna 
population. Error bars represent standard deviation. An asterisk (*) indicates a significant difference between the Cd and 
the control treatment within a temperature treatment (p<0.05). 

4. Discussion 

This study indicates the existence of genetically determined differences of fitness 

traits within a Daphnia magna population under temperature and Cd stress. In all 



Additive and non-additive components of genetic variation under Cd and temperature stress 

 

89 
 

treatments, a CVG and H² >0 was detected for both fitness traits. For total reproduction (R0) 

similar results were found as in Messiaen et al., 2010 (chapter 3): there was no Cd effect on 

H² at both temperatures and there was a significant Cd effect on CVG at 24°C (compared to a 

control). Similarly, at 24°C, an effect of Cd was found on the CVG of rm, but not on the H² of 

rm. All this indicates that with increased temperature, there may be an increased micro-

evolutionary potential under Cd stress. Under long-term multigenerational exposure this 

may lead to stronger shifts in genotype frequencies due to Cd at higher temperature. 

Compared to Messiaen et al. (2010) (chapter 3), the adverse effect of Cd at higher 

temperature was more pronounced. The Cd-induced stress at 24°C was clearly higher, both 

based on total reproduction (R0) (i.e. -92% in this chapter versus -20% in chapter 3) and on 

population growth rate (rm) (-60% in this chapter versus -7% in chapter 3). As the CVG is also 

partly determined by the population mean of the fitness trait, the difference in population 

mean explains the observed difference between both studies, as the genetic variance (VG) 

was only a factor 1.3 different between this chapter and chapter 3 at 24°C and Cd. In 

summary, based on the result of this study and the previous chapter, we can see that 

following a clonal approach, there is a micro-evolutionary potential (expressed as CVG) 

expected at higher temperature under sublethal Cd stress of (nominal) 5 µg Cd/L (compared 

to the control).  

However, the total genetic variability detected does not necessarily equate to 

inheritance. Additive genetic variance (i.e. significantly different from 0) was detected in the 

24°C + Cd treatment for total reproduction (R0), but not in other treatments. The observed 

total genetic variance in the three other treatments largely consists of large non-additive 

variance (i.e. dominance variance) (Table 4.2). A low (and not significant) narrow sense 
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heritability was also detected for those three treatments, and a significant h² (equal to 0.22) 

was only observed in the 24°C + Cd treatment. Several studies with Drosophila populations 

have reported an increase in heritable variation in response to stressed conditions 

(Hoffmann and Hercus, 2000). Klerks and Moreau (2001) found similar (non significant) 

values of h² (range between 0 and 0.2) in a sheephead minnow population (Cyprinodon 

variegatus) exposed to Zn, phenanthrene and mixtures of Zn, phenanthrene, Ni, Barium and 

three polycyclic aromatic hydrocarbons. The higher h² at 24°C + Cd can be explained by 

lower dominance and residual variances in comparison with the other treatments. The 

amount of additive variance was similar between all treatments. Sgrò and Hoffmann (1998) 

indicated an increased h² of fecundity in a Drosophila population under stress (combination 

of ethanol, cold shock and low nutrition), reflecting an increase in the additive genetic 

variance. They found no differences in residual variance across the treatments. The finding 

of a significant additive genetic variance of fitness at 24°C + Cd is in contrast with the results 

of Chaumot et al. (2009), who did not detect a significant additive genetic component of 

survival time in a Gammarus population under lethal Cd stress of 20 µg Cd/L. The latter 

finding made Chaumot et al. (2009) to postulate that observed exceptional cases of 

adaptation of field populations would be permitted only by fixation of rare alleles. Our study 

however indicates that adaptation to Cd stress in a D. magna population can occur through 

standing genetic variation.  

5. Conclusion 

The observed genetic variability in tolerance to contaminants in several Daphnia 

magna populations does not necessarily indicate an adaptive potential across sexual 

generations. Our results indicate that there is a significant additive genetic variance for total 
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reproduction in the 24°C + Cd treatment, which indicates that this higher fitness may be 

inherited by the following generations. It also suggests that the fitness under stressed 

conditions may increase over sexual generations due to natural selection. Yet, this result 

should be interpreted with caution as for population growth rate rm, usually considered a 

better prediction of fitness in the field, a significant additive genetic variance was not 

observed. Discrepancies between different studies and species indicate that more research 

is needed to determine the potential for adaptation to contaminants in natural populations.  

 



 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 

 

 

Chapter 5: Between and within population variability in 

Daphnia magna populations exposed to Cd stress.  
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Abstract- This study examines the variability of fitness traits between and within 11 natural 

Daphnia magna population exposed to Cd stress. To this end, a set of hypotheses related to 

micro-evolutionary responses were tested. Life-table experiments with a control and Cd 

treatment (5 µg Cd/L) were conducted with 12 D. magna clones originating from 11 Daphnia 

magna populations collected from 11 (Cd) unpolluted lakes. Several fitness traits were 

monitored during 21 days: total reproduction (R0), population growth rate (rm), reproduction 

at first brood and maturation rate. Our results indicate a 3-fold difference in Cd tolerance of 

total reproduction (R0) between the most sensitive and the most tolerant population. A 

significant population effect was found for Cd tolerance of population mean of total 

reproduction (R0), population growth rate (rm) and maturation rate. Not all populations 

exhibited a significant micro-evolutionary potential (expressed as CVG and H²) under control 

and Cd exposure. Under Cd stress, 45% and 27% of the populations had a significantly higher 

CVG or H², respectively, compared to the control for total reproduction (R0). This increase of 

CVG/H² may increase the micro-evolutionary potential under Cd stress (compared to the 

control) and may eventually lead to a stronger (but different between populations) 

reduction of clonal diversity (compared to the control) in a natural setting. Overall, our 

results suggest that there is within genetic variability in Daphnia magna populations, 

indicating that populations originating from other habitats may have a different micro-

evolutionary potential under Cd stress.  
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1. Introduction 

Natural populations can consist of a large number of genetically different individuals,  

upon which natural selection can act. Although the use of monoclonal laboratory 

populations may be useful for standardization of laboratory procedures (Baird, 1992), 

toxicity tests with these may be of little relevance for predicting the capability of natural 

populations to adapt to a changing environment (Forbes and Depledge, 1996). Furthermore, 

natural populations are exposed to various natural and anthropogenic stressors, and local 

adaptation leads to a higher average fitness of the resident population in the local habitat 

compared to genotypes from other habitats (Kawecki and Ebert, 2004). This local adaptation 

has been widely reported for Daphnid populations with regard to predation pressure 

(Cousyn et al., 2001, Boersma et al., 1999), land-use (Coors et al., 2009) and metal 

contamination (Morgan et al., 2007; Lopes et al., 2005; Lopes et al., 2006).  

The aim of the above-cited studies was mainly to compare the tolerance for certain 

stressors between populations originating from a stressed-environment (polluted) and 

populations originating from a non-stressed environment (non-polluted). Only a few studies 

have compared the effect of a pollutant among populations, living in habitats with no severe 

contamination with the pollutant of interest. Barata et al. (2002c) reported no difference in 

EC10 of Cd and EC10 and EC50 of λ-cyhalothrin among D. magna populations originating from 

three different pristine habitats. A study with four D. magna populations originating from 

four pristine habitats showed significant among-population differences of neonate longevity 

responses at 10 µg Cd/L but no effect on fitness (i.e. eclutchsize/time to first reproduction ) at sublethal 

Cd concentrations (0-2 µg Cd/L) (Barata et al., 2002b).  



Chapter 5 

96 
 

As indicated in the previous chapters, the potential of genetic adaptation of 

populations to chemicals (or at least the potential for such adaptation) can be determined 

by examining the genetic variation and/or heritability of fitness traits. Barata et al. (2002a) 

for example, found significant genetic variation for cadmium tolerance within natural 

populations, suggesting a potential to acquire resistance to Cd stress. Messiaen et al. (2010) 

found a significant genetic coefficient of variation in a D. magna population under 

temperature and Cd stress. Barata et al. (2000b) also found significant genetic variability for 

reproduction and time to first brood under Cd and ethylparathion exposure within a D. 

magna field population. Chaumot et al. (2009) demonstrated genetic variability in acute Cd 

sensitivity within a G. fossarum population although the additive genetic variability was 

negligible. To our knowledge, only a few studies have investigated the difference in micro-

evolutionary potential between multiple populations. Barata et al. (2002b) showed that (1) 

there was significant heritability (i.e. significant differences in lethal tolerance among clones) 

in two populations for longevity responses of neonates exposed to 10 µg Cd/L and (2) the 

heritability levels for this lethal tolerance was similar for those two populations. In a study of 

Agra et al. (2010), two D. longispina populations, one originating from a habitat impacted by 

acid mine drainage and one from an unimpacted habitat, had similar (high) levels of (broad 

sense) heritability in tolerance to Cu and Zn.  

The aim of the present study was to address some micro-evolutionary aspects by 

testing a set of hypotheses related to the micro-evolutionary potential of 11 natural 

populations of Daphnia magna exposed to a control and a sublethal cadmium concentration. 

The first hypothesis - as proposed by  Barata et al. (2000b) - is that a population exposed to 

cadmium will exhibit more genetic variation for life-history traits than the control 
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population. As with increasing Cd concentration, there will be a lower fitness, and following 

Hoffmann and Hercus (2000), this will in turn result in a higher genetic variability of life-

history traits in a high cadmium environment compared to the control (hypothesis 1). Also, 

we hypothesize that there will be a difference between population means (hypothesis 2) as 

well as a difference of the within-population genetic variability (expressed as H² or CVG) 

between those 11 populations (hypothesis 3) originating from different habitats with no 

severe Cd contamination. We searched for a broad range of ponds containing the keystone 

species Daphnia magna and differing in 3 important selection factors for cladoceran 

communities: (1) fish presence/ absence, (2) low/high parasite prevalence and (3) low/high 

intensity of agricultural land use (Rousseaux et al., in prep.). We conducted 21-day life-table 

experiments in a control (0 µg Cd/L) and 5 µg Cd/L. All experiments were conducted with 

eleven populations consisting of 12 different D. magna clones hatched from different 

ephippia, which had previously been collected from eleven unpolluted Cd ponds. By 

measuring different life-history traits of individuals of each genotype kept under two 

different environmental conditions (control and 5 µg Cd/L), estimates of Cd tolerance were 

obtained. So, fitness in two exposure (Control and Cd exposures) was assessed, as the 

response of fitness in a Cd treatment towards the control (Cd tolerance). The genetic 

coefficient of variation and broad sense heritability were determined as measures of the 

micro-evolutionary potential of the population (Barata et al., 2002b; Lynch and Walsch, 

1998). We also investigated which habitat characteristics may explain differences in 

population means and quantitative genetic variability among D. magna populations.  
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2. Material and methods 

2.1. Sampling of Daphnia magna populations 

Samples of the recent dormant egg bank of 11 ponds were sampled in January-March 

2007. In winter the resting stages of water fleas accumulate in the sediment and by sampling 

the upper 2 centimeters of sediment using a sediment corer, we ensured having the recent 

zooplankton community. Eight ponds were located in Flemish-Brabant (Leuven) and three 

ponds were located in Western Flanders (Knokke). We selected the ponds in cooperation 

with the laboratory of Aquatic Ecology and Evolutionary Biology (KULeuven) who obtained 

information on several Belgian aquatic systems through earlier studies: 126 farmland ponds 

(Declerck et al. 2006); 34 shallow lakes (Declerck et al. 2005); 32 shallow lakes in nature 

reserve ‘De Maten’ (Michels et al., 2001) and approximately 20 shallow lakes and ponds in 

the region of Leuven. We searched for a broad range of ponds containing the keystone 

species Daphnia magna and differing in 3 important selection factors for cladoceran 

communities:  (1) fish presence/ absence, (2) low/high parasite prevalence and (3) low/high 

intensity of agricultural land use (Rousseaux et al., in prep.). A overvieuw is presented in 

Table 5.1. 8 ponds are located in Flemish-Brabant (Belgium) with MO in Moorsel, which is a 

concrete storm water basin with occasional inflow of both agricultural field run-off and 

waste water overflow. Ponds TER1 and TER2 are located close to Neerijse (farm Tersaert) 

but are not inter-connected. Those three ponds are fish-less and have an impact of land-use. 

The fourth pond (LRV) is located in Langerode. OHZ and ZW4 are both located in Oud-

Heverlee, whereas pond OM2 and OM3 are in Heverlee (Oude Meren, Abdij van het Park). 

With exception of OM2 and OM3 the ponds are not interconnected. All of the ponds provide 

a permanent habitat for Daphnia magna. Ponds KNO15, KNO17 and KNO52 are located close 
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to Knokke. Detailed information on the habitatcharacteristics are presented in 

Supplementary Material Table S5.90 - Table S5.93. 

Table 5.1: Overview of the selection factors absent or present in the different ponds. The three selection factors are 
presented by + (presence) or – (absence). More detailed information on the ponds are given in Supplementary Material  
Table S 5.90- Table S5.93.  

Pond Location Selection factors 

Fish-presence Parasite-presence Land-use 
intensity 

KNO15 Knokke - + - 

KNO17 Knokke + + + 

KNO52 Knokke - - - 

LRV Langerode + - - 

MO Moortsel - + + 

OHZ Oud-Heverlee + + - 

OM2 Heverlee + + + 

OM3 Heverlee + - + 

TER1 Neerijse - - + 

TER2 Neerijse - - - 

ZW4 Heverlee + - - 

 

2.2. Maintenance and culturing of D. magna clones  

Sediment samples containing cladoceran resting egg banks were stored at 4°C until  

the start of incubation. Upon hatching, a single hatchling from each ephippium was selected 

to establish a clonal lineage (Ebert et al., 1993). Ephippial eggs of D. magna are produced by 

sexual reproduction, so each clonal lineage can be considered genetically distinct (Barata et 

al., 2000b). The dormant eggs were isolated by means of ‘sugar flotation method’ (Onbe, 

1978; Mareus, 1990), by transferring filtered sediment with oversaturated sugar solution 
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(1000 g sugar in 1000 mL distilled water) to Falcon tubes that were centrifugated and 

decanted for two cycli (3 minutes and 10 minutes at 3000 rpm). The remaining sediment was 

checked visually and any remaining dormant eggs were picked out manually. All isolated 

eggs put in ADaM medium (Aachener Daphnien Medium, Klüttgen et al., 1994) in a climate 

room at 20°C and in a 16:8 light: dark cycle photoregime. Medium was refreshed every 8 to 

9 days. Hatchlings were isolated daily. The hatchlings were further cultured as clonal 

lineages in 300 mL vessels with aged tap water and were fed two times a week with 100*106 

cells of Scenedesmus obliquus. At December 2008, 12 randomly selected clones from each 

population were transported to the lab of aquatic ecology and environmental toxicology 

(UGent). The maintenance of all the clones with field populations in this lab were performed 

under standardized laboratory conditions, i.e.: 20°C, a light:dark cycle of 16h:8h and in 

modified M4-medium (see chapter 2, §2.1). Each clone was kept in 50 mL polyethylene 

vessels. The culture medium was renewed once a week. With every medium renewal, the 

next generation of each clone was established by randomly picking 1 to 2 juveniles and/or 1 

or 2 adult daphnids (daphnids which carried eggs) of the previous generation. Thus, with 

every renewal, 1 to 4 daphnids were placed in 50 mL polyethylene vessels, and the next 

generations of each clone were fed approximately 0.5 mg dry wt per day per 50 mL.  

2.3. Test design 

Based on Messiaen et al. (2010) a 5 µg Cd/L was selected as the sub-lethal Cd 

concentration. In a first step, one juvenile (<24h) of the third of fourth brood of the previous 

generation of each clone of each population was put individually in a 50 mL vessel with 

modified M4 medium (=P-generation). To eliminate maternal effects in the test generation, 

a second generation (=F1-generation, Figure 5.1) of each clone was established. So, all the 
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juveniles (<24h) of the P-generation of each clone were pooled, and each juvenile of each 

clone was put individually in a 50 mL polyethylene vessel filled with modified M4-medium, 

so each clone consisted in total of four individually kept juveniles (=F1-generation). This 

generation was followed during 21 days (OECD, 1998). The organisms were fed daily with a 

3:1 mixture (based on cell numbers) of the algae Pseudokirchneriella subcapitata and 

Chlamydomonas reinhardtii equivalent to 250 µg dry wt/Daphnia, 500 µg dry wt/Daphnia 

and 750 µg dry wt/Daphnia in the first, second and third week of their life, respectively. The 

medium was renewed three times a week.  

Figure 5.1: Schematic overview of experiment design for one clone originating from one field population. The same 
design was followed for all clones.  

Cd exposures of all clones were simultaneously initiated with juveniles (<24h old) 

(=F2 generation) from the third or fourth brood of the previously generation (=F1 

generation). Three of the four Daphnids (=F2 generation) of each clone were randomly 

selected to start the new generation. One juvenile (<24h) of each Daphnia was placed 

individually in a 50 mL polyethylene vessel with modified M4 medium (control) and one 

juvenile (<24h) of each Daphnia in modified M4 medium with 5 µg Cd/L (added as CdCl2•H2O) 
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and they were subsequently monitored for 21 days following (OECD, 1998). As such, 

maternal effects can be ruled out in the estimation of genetic variance, as per Cd 

concentration, each clone consisted of 3 replicates originating from a different mother 

organism, thus maternal variance is 100% included in residual variance (Lynch and Walsh, 

1998). All Cd exposures with all clones were simultaneously initiated, resulting in a precise 

estimate of population responses. The organisms were fed daily as described above, and the 

test medium was renewed three times a week.  

Based on daily observations the following traits were determined: survival, 

maturation rate, reproduction (number of juveniles) at first brood and total reproduction at 

day 21 (R0). Population growth rate (rm) was calculated according to Euler-Lotka equation 

(Lotka, 1913) (see Eq 2.3, Chapter 2).  

As maternal effects were taken into account, Cd tolerance of each trait was 

determined as the ratio of the value of the fitness trait in the control and the value of the 

trait in the Cd exposure treatment.  

2.4. Sampling and determination of habitat characteristics of 11 ponds 

In April 2009 sediment and water samples were taken to determine metal 

concentrations. The upper layer (approximately 10 cm) of the sediment was taken to 

determine Ni, Cu, Pb, Zn and Cd. Sediment destruction for total metal content was done by 

acid microwave digestion. Ni, Cd, Cu, Zn and Pb were analyzed using flame AAS (Spectra AA 

100-Varian) and/or a graphite furnace AAS (Zeeman, Spectra AA300-Varian).  

To determine Cu, Ni, Pb, Cd, Na, Ca  and Mg concentrations in the water, AAS tubes 

and Falcon tubes were put >24h in advance before sampling in a 0.1%vv HNO3 bath. A day 
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before sampling, the tubes and filters were rinsed three times with 0.1% HNO3 and three 

times with Ultra-Pure Water (Chemlab, Zwevezele, Belgium). At the sampling place, the 

tubes were also rinsed three times with the respective lake water before sampling. At each 

location three times 50 mL samples were put in Falcon tubes. To determine the metal 

concentrations, the samples were centrifugated for 15 minutes at 2000 rpm in the lab 

(Centra 8, Thermolife Sciences, Belgolab). For each lake, three times 10 mL samples were 

non-filtered (for the measurement of total metal concentration). The concentrations of Cu, 

Ni, Pb, Cd, Ca and Mg were measured with ICP-MS (inductive coupled plasma mass 

spectrometry, Perkin-Elmer Elan DRC-e, Wellesley, MA, USA).  

Fish-abundance was scored and parasite prevalence (%) of Vorticella, Amoebidium, 

Binucleata and Pasteuria was also determined. Fish abundance was categorised into five 

categories. The categories were: 0 = fish absent; 1 = only threespine stickleback Gasterosteus 

aculeatus, with less than 100 individuals caught during 5 minutes electrofishing; 2 = only 

threespine stickleback, with >100 individuals caught during 5 minutes electrofishing; 3 = 

diverse fish community including planktivorous fish such as Rutilus rutilus, Gasterosteus 

aculeatus and Scardinius erythrophthalmus at moderate densities; 4 = diverse fish 

community with the same planktivorous fish species at high densities. Land use intensity, a 

regional variable, was assessed by quantifying land use in the direct neighborhood (zone < 

100 m) of the pond. In addition, the distance to the nearest crop field was also measured 

using satellite pictures (Google Earth; images dating from the spring after sampling). The 

percentage of arable land in a 200 m radius around each pond was quantified applying the 

GIS software package ArcView GIS 3.2a (ESRI, Inc.) to analyze topographical raster maps of 

the National Geographic Institute (1978–1993; scale: 1/10,000) and the land use coverage 
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database of Flanders (2001; resolution: 15 m). Those analyses were done by the laboratory 

of Aquatic Ecology and Evolutionary Biology (KULeuven).  

2.5. Data treatment and statistical analyses  

The existence of a population effect of different fitness traits in control, Cd treatment 

and for Cd tolerance (=ratio between fitness observed in Cd treatement and fitness observed 

in control treatment), was assessed with a Generalized Linear Model, with clone as a random 

factor nested in population as a fixed factor. The likelihood ratio Chi-square test was used to 

estimate the significance of population and clone(population) effects. In a first step fitness 

traits and values of Cd tolerance were log(x+1) transformed. Analyses were performed using 

SPSS (Statistics 17.0.1., IBM, NY). 

To determine population means, CVG, H², and their 95% confidence intervals, 

statistical analyses were performed as described in Chapter 2 (§2.4.). Post-hoc significant 

differences among populations for population mean, CVG and H² are determined where 

more than 95% of the calculations yielded CVG (population X) > CVG (population Y) or H² 

(population X) > H² (population Y), population mean (population X) > population mean 

(population Y) (i.e. equivalent to a one-sided test at the 0.05 significance level). All 

calculations were performed in MATLAB 7.5.0.342 (Mathworks Inc) software. 

Correlation between habitat characteristics and population parameters were 

performed using a nonparametric Spearman-rank correlation in Statistica 7.0 (Statsoft, Tulsa, 

OK) (p<0.05). To determine the metal ranking in sediment and water, in a first step for each 

of a metal concentration in the water/sediment, the populations were ranked. Afterwards, 

the ranking was summed for each of the populations, leading to a final ranking of metal 
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concentrations in the water and sediment. To determine correlations between metal ranking 

in water/sediment and the different fitness traits, each fitness trait was in a first step also 

ranked. 

3. Results 

3.1. Physico-chemical measurements during the test 

The results of the chemical analyses during the exposures are summarized in Table 

S5.1 (Supplementary Material). DOC concentrations during the test ranged from 4.0 to 7.6 

mg C/L. These concentrations were lower in the new medium than in the old. The pH ranged 

between 7.6 and 7.8. The mean Cd concentrations (mean of old and new medium) differ at 

most 13% from the nominal Cd concentration. The Cd concentration in the old medium was 

lower than in the new medium by average of 8%.  

3.2. Population means and clone means  

Values of all traits for all individuals, all clones and all populations are presented in 

Supplementary Material (Table S5.2 - S5.89). Population means for the different traits and 

populations are presented in Figure 5.2 – Figure 5.5.  

The population mean of total reproduction (R0) (Figure 5.2A) ranged between 37.4 

juveniles per organism and 115.3 juveniles per organism. A significant Cd effect was found, 

although not for all populations (Figure 5.3A) (post-hoc analysis by nonparametric bootstrap 

resampling). Generalized Linear Model analysis indicates a population effect in control and 

Cd treatment (Table S5.106 - Table S5.107).  
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The population mean of population growth rate (rm) (Figure 5.2B) ranged between 

0.18 and 0.39. There was no Cd effect found for LRV, TER1, MO and KNO52 but there was an 

effect in all other populations. A population effect was found in control and Cd treatment 

(Table 5.108 - Table 5.109).  

Figure 5.2: Median of population mean of total reproduction (R0) (A) and population growth rate (rm) (B) in the control (0 
µg Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that bear the same 
small letter are not significantly different from each other in the control treatment. Populations that bear the same 
capital letter are not significantly different from each other in the Cd treatment. An asterisk indicates a significant 
difference between control and Cd treatment per population.   

Reproduction at first brood ranged between 7.0 and 16.5 juveniles per organism 

(Figure 5.3A). A population effect was found in control and Cd treatment (Table S5.110 - 
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Table S5.111). Non-parametric bootstrap resampling analysis (post-hoc analysis) indicated 

differences in population means between some populations as well in control as in Cd 

exposure. There was also a significant Cd effect for all populations (Figure 5.3A). 

The population mean of maturation rate ranged between 0.10 (MO) and 0.13. There 

was a significant Cd effect for KNO52, OM2, OM3, ZW4 and LRV (Figure 5.3B). Despite a 

significant Cd effect on maturation rate for some populations, no significant population 

effects were found in control and Cd treatment (Table S5.112 and Table S5.113).  
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Figure 5.3: Median of population mean of reproduction at first brood (A) and maturation rate (B) in the control (0 µg 
Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that bear the same small 
letter are not significantly different from each other in the control treatment. Populations that bear the same capital  
letter are not significantly different from each other in the Cd treatment. An asterisk indicates a significant difference 
between control and Cd treatment per population.   

The population mean of Cd tolerance of total reproduction (R0) was lowest in KNO17 

(0.34), while in KNO52 the Cd tolerance of total reproduction (R0) was highest (1.03) (Figure 

5.4). The Cd tolerance of population growth rate ranged between 0.76 for KNO17 and 0.92 

for MO (Figure 5.4). The population mean of Cd tolerance of reproduction at first brood 

ranged between 0.65 in OHZ and 1.10 in KNO17 (Figure 5.5). Maturation rate of Cd tolerance 

was highest in KNO15 (1.00) and lowest in KNO52 (0.90) (Figure 5.4). Generalized Linear 
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models indicated a significant population effect for total reproduction (R0), population 

growth rate and maturation rate, but not for reproduction at first brood (Table S5.102 - 

Table S5.105). Non-parametric bootstrap-resampling indicated a between-population effect 

of Cd tolerance of the different fitness traits (Figure 5.4 - Figure 5.5).  

Figure 5.4: Median of population mean of Cd tolerance of total reproduction (R0) (A) and population growth rate (rm) (B). 
Error bars represent 95% confidence intervals. Populations that bear the same small letter are not significantly different 
from each other.  
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Figure 5.5: Median of population mean of Cd tolerance of reproduction at first brood (A) and maturation rate (B). Error 
bars represent 95% confidence intervals. Populations that bear the same small letter are not significantly different from 
each other. 

3.3. Genetic coefficient of variation (CVG) and broad sense heritability (H²) 

The genetic coefficient of variation of the different populations are summarized in 

Figure 5.6 - Figure 5.9. For total reproduction in the control treatment and Cd treatment 

(Figure 5.6), the genetic coefficient of variation (CVG) and H² was not greater than 0 for 36% 

of populations in the control treatment and 72% in the Cd treatment. The CVG ranged 

between 0 and 86.4%. The H² ranged between 0 and 0.79. There was a significant Cd effect 
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on H² in LRV, TER2, OHZ, OM3 and KNO17 (compared to the control). Post-hoc analysis by 

bootstrap resampling, indicated that not within all of the studied populations there was a 

substantial (p<0.05) genetic variability of total reproduction under Cd exposure (Figure 5.6 

and Figure S5.2).  

Figure 5.6: Median of genetic coefficient of variation (CVG) and broad sense heritability (H²) of total reproduction in the 
control (0 µg Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that bear 
the same small letter are not significantly different from each other in the control treatment. Populations that bear the 
same capital letter are not significantly different from each other in the Cd treatment. An asterisk indicates a significant 
difference between control and Cd treatment per population.   

 

The 5th percentile of CVG and H² of rm was not > 0 for 18% of the populations in the 

control treatment and for 55% in the Cd treatment. The median CVG ranged between 0% and 
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69.01% (Figure 5.7). The medium H² ranged 0 and 0.75. There was a significant Cd effect 

observed, but not for all populations (Figure 5.7 and Figure S5.3).  

Figure 5.7: Median of genetic coefficient of variation (CVG) and broad sense heritability (H²) of population growth rate in 
the control (0 µg Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that 
bear the same small letter are not significantly different from each other in the control treatment. Populations that bear 
the same capital letter are not significantly different from each other in the Cd treatment. An asterisk indicates a 
significant difference between control and Cd treatment per population.   

The genetic coefficient of variation (CVG) for reproduction at first brood ranged 

between 1.8% and 33.9% (Figure 5.8). There is only a significant difference between the two 

treatments for TER1. The median H² values for reproduction at first brood, ranged between 

0.00 and 0.56 (Figure 5.8). For H², there was no Cd effect found. 18% of the populations in 
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the control treatment and 36% of the populations in the Cd treatment had a significant H² 

and CVG. 

Figure 5.8: Median of genetic coefficient of variation (CVG) and broad sense heritability (H²) of reproduction at first brood 
in the control  (0 µg Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that 
bear the same small letter are not significantly different from each other in the control treatment. Populations that bear 
the same capital letter are not significantly different from each other in the Cd treatment. An asterisk indicates a 
significant difference between control and Cd treatment per population.   

 

In terms of maturation rate, CVG ranged between 0% and 11.99% (Figure 5.9). The 5th 

percentile was >0 for KNO52, OHZ, OM3, TER2. There was a significant difference between 

Cd and control treatment for LRV and OHZ. H² median values ranged between 0 and 0.66. 

Post-hoc analysis indicated no significant Cd effect for H². 63% of the populations in the Cd 

treatment had a significant CVG and H².  
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Figure 5.9: Median of genetic coefficient of variation (CVG) and broad sense heritability (H²) of maturation rate in the 
control (0 µg Cd/L) and Cd treatment (5 µg Cd/L). Error bars represent 95% confidence intervals. Populations that bear 
the same small letter are not significantly different from each other in the control treatment. Populations that bear the 
same capital letter are not significantly different from each other in the Cd treatment. An asterisk indicates a significant 
difference between control and Cd treatment per population.   

3.4. Relationships between population parameters and habitat characteristics of the lakes.  

Habitat characteristics are presented in Table S5.90-Table S5.93. The correlation 

coefficients are presented in Table S5.94 - Table S5.101. A summary can be found in Table 

5.2. In general, several significant correlations were found between population means and 

metal concentrations in water and sediment.   
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Table 5.2: Summary of significant correlations between population means of traits and habitat-characteristics. + 
indicates a positive correlation was found. – indicates a negative correlation was found.  

Trait Correlation 

R0 (Cd treatment) Cawater (-) 

rm (Cd tolerance) Pbwater (+) 

Cawater (-) 

Reproduction first brood (Cd tolerance) Pbsediment (+) 

Nisediment (+) 

Metal rankingsediment (+) 

Reproduction first brood (Cd treatment) Cdsediment (+) 

Maturation rate (Control treatment) Cdwater (+) 

Vorticella prevalence (-) 

Maturation rate (Cd tolerance) Parasite prevalence (+) 

Cdwater (+) 

Niwater (+) 

 

4. Discussion 

Studies with various species suggest that environmental stress may increase 

evolutionary rates by increasing the level of genetic variability in life-history traits (Hoffmann 

and Parsons, 1991; Barata et al., 2002 a,b). A higher CVG and/or H² thus suggests a higher 

micro-evolutionary potential. However, our results show that not all traits and not all 

populations exhibited a significant CVG and/or H² under Cd stress (5 µg Cd/L) which indicates 

that there is no significant evolutionary potential for populations for some of the fitness 

traits under Cd stress. For total reproduction (R0), 72% of the populations had a significant 

CVG and H² (Figure 5.6). In our first hypothesis, we stated that Cd exposed populations would 

exhibit more genetic variation for life-history traits than the control population (expressed as 

H² and/or CVG). For total reproduction (R0), a significant effect was found between control 

and Cd for 45% and 27% of the populations (see Figure 5.6), for CVG and H² respectively. For 

population growth rate, a significant effect was found for 27% and 45% of the populations 
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for CVG and H², respectively. The studied Blankaart population of the chapter 4 showed no  

significant effect of exposure to 4.3 µg Cd/L (actual Cd concentration) on the CVG for any of 

the traits (at 20°C).  

For total reproduction (R0), the largest Cd effect on population mean was found for 

the populations TER2 and KNO17 (-60% and -62% effect) (Figure 5.2). This was accompanied 

with a larger increase (factor 3 to 4) in CVG and H² under Cd stress compared to the control 

treatment (Figure 5.6). The smallest effect was found in the KNO52 population (-8%), 

accompanied with a CVG and H² which was not different in the Cd and control treatment. 

Similar results were found for population growth rate (rm) (Figure 5.7). Thus, the hypothesis 

proposed by Hoffmann and Parsons (1991), i.e. that increased stress (in this case Cd stress) is 

expected to result in increased genetic variation, is actually supported by the combined 

results of the present, the previous chapters (chapter 2 and 3) and the Barata et al. (2000b) 

study (see chapter 2 for in-depth discussion on the latter study). Nonparametric bootstrap 

analysis indicated that there are between-population differences of the population means of 

Cd tolerance, and of several fitness traits in the control and the Cd treatment (Figure 5.2 - 

Figure 5.5). Hence, our results indicate that there are differences between population 

responses to Cd stress (hypothesis 2). According to Hoffmann and Parsons (1991), the 

tolerance of populations to toxic stress is inversely related to selective pressures 

experienced in their local habitats leading to local adaptation. On the other hand, genetic 

variability in tolerance within populations is positively related with the level of stress. As the 

populations in this study originated from pristine habitats that are not impacted by Cd, the 

populations would be expected to show similar levels of tolerance to Cd. Yet, this was not 

observed (Figure 5.4 - 5.5). This is in contrast with Barata et al. (2002a), who did not find a 
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significant difference in EC10 of individual fitness (λ=e(clutch size/ time to first brood)) of Cd between 

three D. magna populations originating from pristine environments. Our results show that 

there is, although not for all populations, significantly higher (within population) genetic 

variability under Cd stress (compared to the control). There are differences between 

populations in terms of CVG and H² (hypothesis 3). This is in contrast with Agra et al. (2010), 

who observed similar levels of heritability (H²) levels in tolerance to Cu and Zn in a reference 

and impacted population, however only two populations were studied (in contrast with the 

11 populations studied in this chapter).   

As the populations in this study were all tested simultaneously under the same 

conditions, differences in bio-availability, food regimes, etc. during tests cannot explain the 

observed tolerance differences between the populations. Differences in genetic composition 

and the evolutionary history of these 11 populations (prior to their collection in the field) 

may, however, also have contributed to the sensitivity differences. In this context (Table 

S5.13 - Table S5.14 and Table S5.90 – Table S5.93), some positive and negative correlations 

of Cd tolerance with habitat characterstics were observed, although these correlations were 

rather weak. The tolerance of reproduction at first brood was positively correlated with the 

metal content ranking of the sediments. So it seems that the more tolerant populations for 

Cd were found in the lakes with the highest metal concentrations in the sediment although 

no severe metal contamination in any of the lakes was noted. Coors et al. (2009) found a 

correlation between land-use and carbaryl tolerance. The observed positive correlation 

between EC50 values for carbaryl and land use intensitiy suggested a local adaptation for 

tolerance to such pesticides. A correlation between land-use and potassium dichromate 

tolerance was not found, as this toxicant is not related to crop cultivation (Coors et al., 
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2009). This finding is in agreement with our observations (no consistent correlation with 

land-use either). Also Lopes et al. (2005) found similar resuls. The results indicated that 

individuals from impacted populations presented a higher tolerance (expressed as 

cumulative mortality) to very toxic and moderately toxic water (water originating from AMD 

impacted habitats) compared to reference populations. As indicated before, these studies 

compared reference populations and impacted populations. In contrast, our study focused 

only on populations originating from non Cd contaminated environments, although these 

populations were impacted with other stressors (land-use, fish abundance, parasite-

presence).  

In conventional risk assessment, monoclonal laboratory populations of Daphnia 

magna are commonly used to determine potential risks of toxicants. For Cd tolerance of 

total reproduction at 5 µg Cd/L a factor 3 difference between most sensitive and tolerant 

population was found. Based on clonal reproduction, Cd tolerance of total reproduction 

ranged between 0 and 2.15. Barata et al. (2000a) studied feeding responses of laboratory D. 

magna clones (to Cu, Cd and fluoranthene) and reported differences in EC10 and EC50 of 

about 4-fold difference. Also for other species, e.g. Potamopurgus antipodarum, a 3-fold 

difference between most sensitive and tolerant clone for acute Cd toxicity (LC50) was found 

(Jensen and Forbes, 2001). In the EU, when chronic NOECs for a chemical are available for 

three trophic levels (typically an alga, a fish and Daphnia sp.) the lowest NOEC (most 

sensitive species) is conventionally divided by an assessment factor of 10 to obtain the PNEC 

or EQS. These concentrations are considered to have ‘no effects’ on freshwater populations, 

communities and ecosystems. When a large number of tests are available, distribution based 

extrapolation models are used to estimate environmental risks. For many chemicals, D. 
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magna is the most sensitive species tested (Wogram and Lies 2001; Von der Ohe and Lies, 

2004) and for many chemicals a NOEC will only be available for a single D. magna clone. In 

the present study, we showed genetic variability among and within Daphnia magna 

populations. According to Forbes (1998) the range and distributions of tolerance in field 

populations should be used to quantify the extent to which genetic variability should be 

incorporated in risk assessment.  

5. Conclusion 

We have examined the variability between and within population responses of 11 

Daphnia magna populations exposed to Cd stress originating from pristine habitats (in terms 

of Cd contamination). We observed significant differences in Cd tolerance of different fitness 

traits between populations. Although not all populations exhibited a significant CVG and or 

H² (64% in control treatment and 28% in Cd treatment), for some populations there were 

differences in micro-evolutionary potential under Cd stress (compared to the control). For 

total reproduction (R0), 45% and 27% of the populations had a significantly higher CVG or H² 

respectively compared to the control. These observed differences in micro-evolutionary 

potential under Cd stress (increased CVG and/or H² compared to the control) may eventually 

lead to a different reduction of clonal diversity (compared to a control) in a natural setting. 

Our results suggest that genetic differences within and between populations in tolerance to 

toxicant exposure should be considered in the ecological risk assessment process of 

chemicals.       

 



 

 
 

 
 
 
 
 
 
 



 

 

 

 

 

Chapter 6: Micro-evolutionary response in a Daphnia magna 

population exposed to Cd stress under semi-field conditions 

 

 

 

 

 

 

 

 

 

 

 



Micro-evolutionary response under long-term Cd stress 

122 
 

Abstract- A 203 days during micro-evolutionary experiment was conducted to test the 

micro-evolutionary response in a Daphnia magna population exposed to a control and Cd 

range between 2.11 and 20.77 µg Cd/L under semi-field conditions. In a following life-table 

experiment, clones (or isolates) from the original population (= start population), the long-

term Cd exposed population and the long-term control exposed population were tested 

under a control and Cd concentration between 2.02 µg Cd/L and 17.83 µg Cd/L. Total 

reproduction (R0) and population growth rate (rm) were monitored during 21 days. Our 

results indicate that on population level, there was a higher fitness observed at 17.83 µg 

Cd/L in the long-term 20.77 µg Cd/L exposed population compared to the long-term control 

exposed population and the start population. However, general linear model analysis 

indicated a significant aquaria effect, so genetic drift could not be excluded in the analysis of 

our results.  
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1. Introduction 

Questioning whether populations adapt to contamination is critical for 

environmental risk assessment (Chaumot et al., 2009). If the potential for adaptation is not 

considered, then the long-term ecological risks may be overestimated (Millward and Klerks, 

2002) although a negative consequence of adaptation can be accompanied by fitness costs 

or decreased genetic variations (Ward and Robinson, 2005). Chemical contamination can 

alter genetic diversity through genetic bottleneck effects and/or contaminant-induced 

selection (Van Straalen and Timmermans, 2002). The ability of populations to survive in 

metal contaminated habitats has been widely reported, as shown in studies of Lopes et al. 

(2004, 2005); Agra et al. (2010); Klerks (2002). Those studies indicate that organisms that 

originated from a contaminated habitat had higher tolerance than those from 

uncontaminated site populations. The changes in gene frequencies in the populations can 

involve (1) the elimination of sensitive individuals, which would lead the population to 

genetic erosion, (2) the appearance of a new gene through mutations or (3) a new 

combination of genes (sexual reproduction) underlying a new or more efficient tolerance 

mechanism followed by their increased frequency by natural selection (Lopes et al., 2006). 

By comparing populations from polluted sites and reference sites, it is not possible to fully 

exclude that such sites differ in characteristics other than the pollutant of interest and hence 

casually relate the increased tolerance to the historic exposure to pollution (Xie and Klerks, 

2003). Experimental evolution is a powerful tool for evolutionary ecologists to study the 

genetic response of organisms to selection pressures and thus to investigate whether 

organisms are able to adapt to environmental change (Conner, 2003). In the present study 

we used this approach to investigate the presence of micro-evolutionary responses in a 
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Daphnia magna population exposed to a Cd concentration range between 0 and 22 µg Cd/L 

under semi-field conditions. The populations exposed to Cd were allowed to evolve 

‘naturally’ for 203 days, i.e. to undergo natural selection. Indeed those clones having the 

highest fitness under Cd stress would be expected to increase their frequency under such 

long-term Cd exposure, thus resulting in an increase of the mean fitness of the population in 

that aquarium with time (hypothesis 1). Thus we investigated if the long-term exposures to 

Cd (2.2-22 µgCd/L) had a higher fitness in the Cd treatment than in the long-term control 

exposures and start population. This type of experimental evolution studies is a commonly 

used tool in evolutionary ecology (Van Doorslaer et al., 2007; Van Doorslaer et al., 2010; 

Cousyn et al., 2001) but heavily underutilized in ecotoxicology, with few exceptions (e.g. 

Ward and Robinson, 2005; Jansen et al., 2010; Brausch and Smith, 2009; Xie and Klerks, 

2003; Lopes et al., 2009).  

Another factor influencing long-term consequences of evolution of increased fitness 

under Cd stress is the presence of a cost of tolerance. The evolution of increased tolerance 

to pollution may be important for ecological risk assessment because (1) it may allow the 

persistence of populations in contaminated habitats and (2) it may lead to a reduction in 

genetic diversity (Lynch and Walsh, 1998). This in turn may lead to a decreased tolerance to 

other stressors (Ward and Robinson, 2005), a reduced adaptive potential towards future 

challenges imposed by  novel stressors (Van Straalen and Timmermans, 2002) or a reduced 

fitness when the selective pressure is removed (e.g. after remediation of a polluted site), an 

observation which is commonly referred to as “cost of tolerance” (Medina et al., 2007). This 

phenomenon is caused by genetic between-environment correlations or between-

environment trade-offs (Medina et al., 2007). For example, Shirley and Sibly (1999) observed 
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that a Drosophila population cultured under high Cd stress during several generations 

exhibited lower reproduction when reared in clean media afterwards. Similarly Postma et al. 

(1995a) showed that Cd tolerant Chironomus riparius populations had lower fitness when 

reared in a clean environment. Levinton et al. (2003) indicated that after clean-up of a Cd 

polluted site, the loss of tolerance in L. Hoffmeisteri had a genetic basis. Although knowledge 

of between-environment trade-offs is considered a key element for incorporating micro-

evolution in the environmental risk assessment paradigm (Medina et al., 2007), this type of 

limited information is only available for highly contaminated environments (see reviews in 

Medina et al., 2007 and Morgan et al., 2007). Knowledge of such trade-offs in contaminated 

systems with a range of Cd concentrations is completely lacking. Irrespective of whether 

micro-evolutionary responses under chemical stress are considered “positive” or “negative”, 

it is of interest to know how the micro-evolutionary potential is affected as a function of 

chemical concentration (sublethal concentrations versus high concentrations).  

2. Material and Method 

2.1. Micro-evolutionary experiment 

In December 2009, a micro-evolution experiment was initiated involving a Daphnia 

magna population consisting out of 123 clones exposed to a Cd concentration range of 0-22 

µg Cd/L. Each Cd treatment was replicated three times, resulting in a total of 15 aquaria. The 

123 Daphnia magna clones originated from ephippia collected in November 2009 from the 

Kasteelvijver pond in the nature reserve Blankaart (Diksmuide, Belgium) using a Van Veen 

grab and a sediment corer. The ephippia were hatched as described in Chapter 2 (§2.1.) and 

a single hatchling was selected to establish a clonal lineage. The juvenile hatchlings were 

transferred to 50 mL polyethylene cups. The maintenance of this first generation (=P-
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generation Figure 6.1) was the same as described in Chapter 2. Four juveniles from the third 

brood of each clone of this P-generation were selected and put individually in 50 mL 

ethylene cups with modified M4 medium (= F1-generation, Figure 6.1). Fifteen juveniles 

(=F2-generation) from the third brood of one of the four Daphnids of the F1-generation were 

selected and put individually in 5L aquaria filled with 4L modified M4-medium and a Cd 

concentration (between 0 and 22 µg Cd/L). So each clone was present in each aquarium. In 

total 123 clones were put in each aquarium. The experiment lasted for 203 days. The aquaria 

were renewed every week, and with every renewal, a culling regime of 20% was conducted. 

This culling regime is based on experiments of Van Doorslaer et al. (2009). Organisms 

collected through this culling regime were counted, which gives an indication of population 

density of daphnids in the aquaria. Also, with every medium renewal, ephippia were counted 

and collected. Daphnids were fed daily with Pseudokirchneriella subcapitata and food 

density in the aquaria was daily adjusted according to a seasonal pattern. This seasonal 

pattern was based on the study of Muylaert et al. (2003), i.e. the average of the 

phytoplankton concentration in Lake Blankaart in 1998 and 1999. With every medium 

renewal, ephippia were collected and stored in dark at 4°C. The water temperature over the 

days of the experiment followed a sinusoidal pattern starting at 10°C, which is the water 

temperature in spring (Arbaciauskus and Lampert, 2003). The water temperature was 

regulated with a water cooler (TECO, Ravanna, Italy). During the micro-evolutionary 

experiment, DOC and Cd samples were taken on a weekly basis.  
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Figure 6.1: Schematic overview of  experimental design for one clone originating from field population. The same design 
was followed for all 123 clones.  

2.2. Life-table experiment 

The test design is scheduled in Figure 6.2A-B-C. In a first step, 5 random picked 

juveniles from each aquaria (i.e. 15 in total for each Cd concentration between 0 and 22 µg 

Cd/L) and one juvenile randomly chosen from 12 clones kept under laboratory population (= 

start population) were transferred to separate 50 mL polyethylene beakers (= P-generation 

in Figure 6.2.A-B-C) in modified M4 medium (see chapter 2,§2.1). For each isolate, one 

juvenile (<24h) from the third brood was randomly picked out, to start the second 

generation (2nd generation, i.e. F1, in Figure 6.2.A-B-C). Each juvenile was transferred 

individually to a separate 50 mL polyethylene beaker. The individuals in this second 

generation (F1) then served as the mothers for producing the following generation. For the 

start and long-term control exposed population, six juveniles (<24h) (F2) from each of the 

three mother organisms (F1) were selected and were placed individually in 50 mL 

polyethylene vessels with modified M4 medium and with a Cd range between 2.2 and 22 µg 
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Cd/L (added as CdCl2•H2O) including a control (no added Cd). For the long-term Cd exposed 

population, two juveniles (<24h) from each of the three mother organisms were selected 

and were placed individually in 50 mL polyethylene vessels with modified M4 medium and 

the Cd concentration exposed during the micro-evolution experiment and the control 

treatment. For example, from one mother organism, one juvenile from the long-term 2.2 

Cd/L exposed population was put in a control treatment and one juvenile was put in a 2.2 µg 

Cd/L. As such, maternal effects can be ruled out, as for each clone in each Cd concentration, 

each of the replicate individuals (juveniles) being exposed originated from a different 

mother organism. All Cd exposures with all clones were simultaneously initiated, allowing a 

comparison that is not biased by temporal variability of the cultures. Medium renewal was 

three times a week and organisms were fed daily with 250 µg dry wt/individual, 500 µg dry 

wt/individual and 750 µg dry wt/individual in the first, second and third week of their life, 

respectively. Based on daily observations the following traits were determined: population 

growth rate (rm), survival and total reproduction at day 21 (R0). pH was measured at every 

renewal of the old medium per Cd concentration and in the beginning of the test of the new 

medium.  
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Figure 6.2: Test design for long-term control exposed population (A), start population (B) and long-term Cd exposed 
populations (C).  
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2.3. Chemical analyses 

Chemical analyses were performed as described in chapter 2 (§2.4). 

2.4. Statistical analyses 

Calculation of population means is the same as described in chapter 2 (§2.5). The 

median values (50th percentile) and the 2.5th and 97.5th percentile of population means (  ??? 

are reported. The population mean in a treatment of the long-term Cd exposed population 

was considered significantly higher than the population mean in the same treatment of the 

long-term control exposed population and start population if more than 95% of the 

calculations yielded X  (long-term Cd exposed) > X  (long-term control exposed) and X

(start population) (i.e. equivalent to a one-sided test at the 0.05 significance level). All 

calculations were performed in MATLAB 7.5.0.342 (Mathworks Inc) software.  

To rule out an aquaria-effect (i.e. three replicates per long-term Cd exposed 

population) within the long-term exposed populations, among-aquaria variability in 

sensitivity to Cd stress was assessed from through a General Linear Model (see detailed 

information on GLM in Supplementary Material S6.1.) on the different fitness traits 

considering aquaria as fixed factor and clone nested in aquaria as random. To determine the 

long-term exposure effect on the long-term control and Cd exposed populations under 

tested Cd concentrations, General Linear Model analysis was performed on total 

reproduction and population growth rate with long-term exposure as fixed factor, aquaria 

(nested in long-term exposure) and clone (nested in aquaria) as random factors. Analyses 

were performed using Statistica 7.0 (Statsoft, Tulsa, OK).  
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Differences in ephippia production between the long-term Cd exposed populations (0 

- 22 µg Cd/L) were detected using one-way ANOVA and post-hoc Duncan test. Analyses were 

performed using Statistica 7.0 (Statsoft, Tulsa, OK). At every medium renewal (i.e. time-point 

in the micro-evolutionary experiment), the density of the several Daphnia magna 

populations in the different aquaria was also determined. At each time point, a Kruskall-

wallis test was performed to determine significant differences between the populations 

(p<0.05). These analyses were performed using Statistica 7.0 (Statsoft, Tulsa, OK).   

3. Results 

3.1. Physico-chemical measurements 

The physico-chemistry of the test media and in the aquaria is presented as supportive 

information (Table S6.1 - Table S6.2). DOC ranged between 4.1 and 5.9 mg/L in the Cd 

experiment and between 4.6 and 6.0 mg/L in the micro-evolution experiment. pH ranged 

between 7.6 and 7.9. The mean dissolved Cd concentrations (mean of old and new medium) 

differed at most 23% and 9% from the nominal Cd concentration in the Cd experiment and in 

the micro-evolutionary experiment respectively.  

3.2. Micro-evolutionary responses  

Values of individuals are presented in Supplementary Material (Table S6.3 –Table 

S6.39). Results of population means are presented in Figure 6.3 and Figure 6.4. The long-

term 20.77 µg Cd/L exposed population had a significant larger population growth rate (rm) 

and significant larger total reproduction (R0) compared to the start and the long-term control 

exposed population tested in 17.83 µg Cd/L. In the control treatment, the long-term 2.11 µg 

Cd/L exposed population had significantly higher reproduction (R0) in control treatment than 
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the start population and the long-term control exposed population. No costs for adaptation 

was found, as no significant lower fitness of the long-term Cd exposed populations in the 

control treatment was found compared to the long-term control exposed population and 

start population (Figure 6.3 and Figure 6.4).  

Figure 6.3: Results of the 203-day experimental evolution experiment, total reproduction (R0) in control treatment (A)  
and Cd treatments (B) are reported. Values presented in bars of long-term Cd exposed population represent measured 
Cd  concentrations to which the long-term Cd exposed populations have been exposed during the entire experimental 
evolution study. An asterisk indicates a significant difference between the long-term Cd exposed population and both 
the long-term control  exposed and start population. Error bars represent 95% confidence intervals. The measured Cd 
concentrations during the evolution experiment in the long-term control exposed population was <0.1 µg Cd/L. The 
measured Cd concentration of the start population during maintenance of the start population under laboratory  
conditions was <0.1 µg Cd/L. 

 
 Figure 6.4: Results of the 203-day experimental evolution experiment, population growth rate (rm) in control treatment 
(A) and Cd treatments (B) are reported. Values presented in bars of long-term Cd exposed population represent 
measured Cd  concentrations to which the long-term Cd exposed population have been exposed during the entire 
experimental evolution study. An asterisk indicates a significant difference between the long-term Cd exposed 
population and both the long-term control exposed and start population. Error bars represent 95% confidence intervals. 
The measured Cd concentrations during the evolution experiment in the long-term control exposed population was <0.1 
µg Cd/L. The measured Cd concentration of the start population during maintenance of the start population under 
laboratory conditions was <0.1 µg Cd/L. 

 

General Linear Model analysis indicated an aquaria effect in the long-term control 

exposed population exposed to 9.19 µg Cd/L for total reproduction (R0) (Table 6.1) and in the 
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long-term control exposed to 17.83 µg Cd/L for population growth rate (rm) (Table 6.2). In 

the long-term Cd exposed populations no aquaria effect was found. Clone effects were 

found in the long-term 20.77 µg Cd/L and 4.7 µg Cd/L exposed population for total 

reproduction (R0) and population growth rate (rm) (Table 6.1 and Table 6.2). Individual values 

were log(x+1) transformed. 
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Table 6.1: General Linear Model for effects in the long-term Cd exposed populations with aquaria (fixed factor) and clone 
effect nested in aquaria (random factor) on total reproduction (R0) tested under different Cd concentrations. An asterisk 
indicates a significant effect.  

Long-term 
exposure (µg Cd/L) 

Tested Cd 
Concentration (µg 

Cd/L) 

Factors Df F p-value 

0 0  Intercept 1 222.06 0.00* 

Aquaria 2 1.29 0.31 

Clone(aquaria) 12 1.41 0.22 
2.02 Intercept 1 1198.26 0.00* 

Aquaria 2 0.01 0.99 

Clone(aquaria) 12 1.12 0.39 

4.7 Intercept 1 344.60 0.00* 

Aquaria 2 1.48 0.26 

Clone(aquaria) 12 0.54 0.87 

9.19 Intercept 1 266.30 0.00* 

Aquaria 2 5.34 0.02* 

Clone(aquaria) 12 0.63 0.80 

17.89 Intercept 1 64.76 0.00* 

Aquaria 2 3.37 0.06 

Clone(aquaria) 12 1.29 0.28 

2.11 0  Intercept 1 301.73 0.00* 

Aquaria 2 0.059 0.94 

Clone(aquaria) 11 0.81 0.63 

2.02 Intercept 1 267.68 0.00* 

Aquaria 2 0.85 0.45 
Clone(aquaria) 11 2.09 0.06 

4.7 0 Intercept 1 95.32 0.00* 

Aquaria 2 1.51 0.26 

Clone(aquaria) 11 6.59 0.00* 

4.7 Intercept 1 35.07 0.00* 

Aquaria 2 0.45 0.64 

Clone(aquaria) 11 3.61 0.01* 

9.21 0 Intercept 1 1411.53 0.00* 

Aquaria 2 0.87 0.44 

Clone(aquaria) 11 0.77 0.66 

9.19 Intercept 1 108.14 0.00* 

Aquaria 2 0.41 0.67 

Clone(aquaria) 11 0.61 0.81 

20.77 0 Intercept 1 225.99 0.00* 

Aquaria 2 0.79 0.47 

Clone(aquaria) 11 39.30 0.00* 

17.9 Intercept 1 86.69 0.00* 

Aquaria 2 0.39 0.68 
Clone(aquaria) 11 2.33 0.03* 
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Table 6.2: General Linear Model for effects in the Cd-evolved population with aquria (fixed factor) and clone effect 
nested in aquaria (random factor) on population growth rate (rm) tested under different Cd concentrations. An asterisk 
indicates a significant effect.  

Long-term 
exposure (µg Cd/L) 

Tested Cd 
Concentration (µg 

Cd/L) 

Factors Df F p-value 

0 0  Intercept 1 199.71 0.00* 

Aquaria 2 1.10 0.36 

Clone(aquaria) 12 1.64 0.14 
2.02 Intercept 1 1114.11 0.00* 

Aquaria 2 0.34 0.71 

Clone(aquaria) 12 0.89 0.56 

4.7 Intercept 1 405.03 0.00* 

Aquaria 2 2.60 0.11 

Clone(aquaria) 12 0.46 0.92 

9.19 Intercept 1 17.47 0.00* 

Aquaria 2 3.09 0.06 

Clone(aquaria) 12 1.79 0.10 

17.89 Intercept 1 87.21 0.00* 

Aquaria 2 3.69 0.04* 

Clone(aquaria) 12 1.80 0.10 

2.11 0  Intercept 1 635.59 0.00* 

Aquaria 2 0.60 0.55 

Clone(aquaria) 11 1.19 0.34 

2.02 Intercept 1 258.94 0.00* 

Aquaria 2 0.077 0.92 
Clone(aquaria) 11 1.11 0.39 

4.7 0 Intercept 1 90.15 0.00* 

Aquaria 2 1.328 0.29 

Clone(aquaria) 11 6.41 0.00* 

4.7 Intercept 1 35.99 0.00* 

Aquaria 2 0.55 0.58 

Clone(aquaria) 11 3.52 0.00* 

9.21 0 Intercept 1 1140.64 0.00* 

Aquaria 2 0.41 0.67 

Clone(aquaria) 11 0.87 0.58 

9.19 Intercept 1 102.86 0.00* 

Aquaria 2 0.49 0.61 

Clone(aquaria) 11 0.64 0.78 

20.77 0 Intercept 1 249.71 0.00* 

Aquaria 2 1.46 0.26 

Clone(aquaria) 11 30.92 0.00* 

17.9 Intercept 1 63.13 0.00* 

Aquaria 2 0.49 0.61 
Clone(aquaria) 11 2.85 0.01* 

 

General Linear Model analysis indicate no long-term Cd exposure effect on total 

reproduction (R0) and population growth rate (rm) in comparison with long-term control 

exposed populations (Table 6.4 and Table 6.5). Individual values were log(x+1) transformed. 
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A post-hoc Duncan test indicated a significant difference in fitness between long-term 0 µg 

Cd/L exposed population and long-term 20.77 µg Cd/L exposed population (long-term 

exposure effect).  

Table 6.4: General Linear Model for effects of aquaria netsted in long-term exposure (random factor) for clone effect 
nested in aquaria (random factor) and for evolved population (fixed factor) on total reproduction (R0) tested under 
different Cd concentrations. Long-term exposures are the long-term Cd exposures and the long-term 0 µg Cd/L exposure. 
An asterisk (*) indicates a significant effect. ** indicates a post-hoc Duncan significant effect.  

Long-term 
exposure 

(µg Cd/L)  

Tested Cd 
Concentration  

(µg Cd/L) 

Factors Df F p-value 

0 and 2.11 2.02 Intercept 1 1527.69 0.00* 

Aquaria (long-term 

exposure) 

4 0.63 0.64 

Clone(aquaria(long-
term exposure)) 

24 1.69 0.05 

Long-term exposure 1 5.11 0.07 

0 and 4.7 4.7 Intercept 1 264.52 0.00* 

Aquaria (long-term 
exposure) 

4 0.61 0.65 

Clone(aquaria(long-
term exposure)) 

24 1.79 0.04* 

Long-term exposure 1 3.22 0.14 

0 and 9.21 9.19 Intercept 1 157.26 0.00* 

Aquaria (long-term 
exposure) 

4 1.88 0.14 

Clone(aquaria(long-

term exposure)) 

24 0.81 0.70 

Long-term exposure 1 0.11 0.75 
0 and 20.77 17.89 Intercept 1 91.70 0.00* 

Aquaria (long-term 

exposure) 

4 1.65 0.19 

Clone(aquaria(long-
term exposure)) 

24 1.74 0.04* 

Long-term exposure 1 2.28 0.20** 

 

 

 

 

 



Micro-evolutionary response under long-term Cd stress 

 

137 
 

Table 6.5: General Linear Model for effects of aquaria netsted in long-term exposure (random factor) for clone effect 
nested in aquaria (random factor) and for evolved population (fixed factor) on population growth rate (rm) tested under 
different Cd concentrations. Long-term exposures are the long-term Cd exposures and the long-term 0 µg Cd/L exposure. 
An asterisk (*) indicates a significant effect. ** indicates a post-hoc Duncan signfificant effect.  

Long-term 
exposure (µg 
Cd/L)  

Tested Cd 
Concentration (µg 
Cd/L) 

Factors Df F p-value 

0 and 2.11 2.02 Intercept 1 3207.33 0.00* 

Aquaria (long-term 

exposure) 

4 0.46 0.76 

Clone(aquaria(long-

term exposure)) 

24 1.05 0.42 

Long-term exposure 1 2.62 0.16 

0 and 4.7 4.7 Intercept 1 204.65 0.00* 

Aquaria (long-term 
exposure) 

4 0.88 0.48 

Clone(aquaria(long-
term exposure)) 

24 1.60 0.08 

Long-term exposure 1 4.17 0.10 

0 and 9.21 9.19 Intercept 1 13.30 0.02* 

Aquaria (long-term 
exposure) 

4 1.70 0.18 

Clone(aquaria(long-
term exposure)) 

24 1.78 0.03* 

Long-term exposure 1 1.26 0.32 

0 and 20.77 17.89 Intercept 1 112.60 0.00* 
Aquaria (long-term 
exposure) 

4 1.19 0.33 

Clone(aquaria(long-

term exposure)) 

24 1.99 0.02* 

Long-term exposure 1 2.07 0.22** 
 

3.3. Ephippia production 

Total ephippia production is presented in Figure 6.5. Results of ephippia production 

per aquarium is presented in Table S6.40. An one-way ANOVA indicated a marginally 

significant Cd effect (p=0.05) (Table 6.6). A post-hoc Duncan test (Table 6.6) indicated a 

significant difference between the long-term control exposures and exposures to 4.7 µg Cd/L 

and 9.21 µg Cd/L. 
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Figure 6.5: Total ephippia production during the 203-day micro-evolution experiment. Values present average ephippia 
production. Error bars present standard deviation.  

Table 6.6: Significant differences in total ephippia production between different long-term Cd exposed populations by  
post-hoc Duncan test. An asterisk indicates a significant effect between the long-term Cd exposed populations.  

Long-term Cd 

exposure 

2.11 4.7 9.21 20.77 

0 0.06 0.04* 0.00* 0.05 

2.11  0.83 0.22 0.98 

4.7   0.27 0.83 

9.21    0.22 

 

 

3.4. Density of the Daphnia magna populations during micro-evolutionary experiment 

Density of Daphnia magna population during the micro-evolutionary experiment is 

presented in Figure 6.6. Results of Kruskall-wallis test, indicated significant differences 

between evolving D. magna populations at several time-points (Table S.6.41 – Table S6.42).  



Micro-evolutionary response under long-term Cd stress 

 

139 
 

 

Figure 6.6: Mean density of the 5 Daphnia magna populations (individuals/L) during micro-evolutionary experiment. An 
asterisk indicates significant long-term Cd exposure effect effect.    

 

4. Discussion 

The first aim of this study was to compare fitness between the populations (all 

populations originated from the same Blankaart population) exposed to different long-term 

Cd concentrations (between 0 and 20.8 µg Cd/L) and the start population (= population kept 

under lab conditions). The higher fitness (total reproduction and population growth rate) 

(Figure 6.3 and Figure 6.4) under 17.83 µg Cd/L observed in the 20.8 µg Cd/L long-term 

exposed population compared to the start and the long-term control exposed population 

illustrates the occurrence of a change in the clonal lineages in this long-term Cd exposed 

population. However, a General Linear Model analysis indicates no long-term exposure 

effect on fitness (Table 6.5 and Table 6.6). A post-hoc Duncan test indicated that some 

aquaria in the long-term control exposed population had no significantly lower fitness 

(log(X+1) transformed) compared to the long-term 20.8 µg Cd/L exposed aquaria (Figure 6.7 

and Figure 6.8).  
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Figure 6.7: Total reproduction (log(x+1) transformed) of the different aquaria of the start population, long-term 0 µg Cd/L 
exposed population and long-term 20.77 µg Cd/L exposed population tested under 17.9 µg Cd/L. Aquaria that don’t bear 
the same letter are significantly different from each other. Error bars present standard deviation. 

Figure 6.8: Population growth rate (log(x+1) transformed) of the different aquaria of the start population, of the long-
term 0 µg Cd/L exposed population and of the long-term 20.77 µg Cd/L exposed population under 17.9 µg Cd/L. Aquaria 
that don’t bear the same letter are significantly different from each other. Error bars present standard deviation.  
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A possible explanation for the found differences within the long-term control 

exposed population could be genetic drift, as genetic variation tends to decrease over time 

due to natural selection and genetic drift (Vanoverbeke et al., 2010). Ward and Robinson 

(2005) also found genetic drift in the control population, as the EC50 over the eight 

generations fluctuated between 61 µg Cd/L and 180 µg Cd/L. However, results of AFLP 

analysis indicated that selection for Cd resistance resulted in a change in genetic architecture 

of the Cd adapted population that could not be explained by genetic drift as found in the 

control populations (Ward and Robinson, 2005). A comparison of neutral markers (Fst) and 

quantitative trait (Qst) of the two long-term Cd exposed populations (0 and 17.8 µg Cd/L) 

and between the aquaria could distinguish the drift and selection effect. If the quantitative 

trait is under selection, then population differentiation will be more pronounced than it is 

for the neutral marker. In absence of selection, Fst and Qst should be similar (Klerks et al., 

2011). 

Increased population fitness was reported in Lopes et al. (2005, 2004, 2006), where a 

higher tolerance was found for the populations originating from contaminated habitats in 

comparison with reference populations. Agra et al. (2010) also found a higher tolerance to 

Cu and Zn of the populations originated from the impacted site compared to the reference 

site. Yet, in the studies of Lopes et al. (2004, 2005, 2006) and Agra et al. (2010), it is not 

possible to fully exclude that other habitat characteristics, other than the toxicant, may have 

influenced the evolved tolerance. Similar results were found in Xie and Klerks (2003), where 

a rapid response to selection for Cd tolerance was observed in the least Killifish. Ward and 

Robinson (2005) also observed an increased tolerance for Cd in a D. magna population 

during a selection experiment. This latter experiment used an artificial population of only 8 
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clones, where acclimation effects could not be ruled out. Lopes et al. (2009) found that AMD 

(= acid mine drainage) led to a dramatic change in clone frequencies, where the most 

tolerant clone for AMD dominated the population (although only 5 clones were used in this 

microcosm experiment). It has to be noted that the results of this experiment; the 

experiment of Ward and Robinson (2005) and Lopes et al. (2009) are based on a clonal 

approach (ephippia were removed during this experiment). Competition among clones 

during asexual reproduction may erode clonal diversity, decreasing the number of clones in 

the population or altering the relative frequency of clonal lineages (Vanoverbeke et al., 

2007). For example, Ward and Robinson (2005) observed a loss of genetic variation in the 

(asexually) Cd-adapted population, i.e. an average 68% reduction in diversity after 8 

generations under Cd pressure (Cd concentration of 61 µg Cd/L). While asexual reproduction 

is supposed to assure the maintenance of a superior genotype in an environment, sexual 

reproduction is considered to provide the basis for rapid evolution (Doroszuk et al., 2006). 

Yet, several studies indicated that asexual organisms were able to respond rapidly to strong 

selection (Ward and Robinson, 2005; Brausch and Smith, 2009; Doroszuk et al., 2006). The 

study of Chaumot et al. (2009) suggested, because of the lack of additive genetic variance, 

that the apparent adaptation found in the study of Lopes et al. (2004, 2005) (i.e. increased 

tolerance in contaminated populations) would disappear at each sexual reproduction event. 

In contrast, as indicated in chapter 4, there is an indication of additive genetic variance in the 

same tested Blankaart D. magna population under Cd stress (3.6 µg Cd/L).  

There is also an indication that there was a response to selection or due to drift in the 

long-term control exposed population, as significant (by non parametric bootstrap 

resampling) higher fitness was noted in the 2.02, 4.7 and 17.83 µg Cd/L treatment in this 
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population compared to the start population (=original population). This indicates that 

temperature, food density, other non-measured parameters or a combination of these 

parameters may have a selection effect or drift may also have played a role (resulting in loss 

of clonal diversity). Ward and Robinson (2005) also observed a reduced genetic diversity (-

53%) in a control population over eight generations compared to the initial population in a 

selection experiment. Similar results were found with the control evolution treatment in the 

study of Lopes et al. (2009), where there was a significant reduction of diversity in control 

conditions (no disturbance) and a great reduction under strong AMD exposure.  

There was no significantly lower density during the micro-evolution experiment in 

the long-term 20.8 µg Cd/L exposed population and there was no significant difference in 

ephippia production (Table 6.6). Although long-term 4.7 µg Cd/L and 9.21 µg Cd/L exposed 

populations had a lower ephippia production compared to the long-term control exposed 

population. Shift in sex ratio has been found for several toxicants. Peterson et al. (2001) 

found more female broods in Daphnia pulex exposed to methoprene.  More male broods 

were produced when egg-bearing daphnids were exposed to 20-hydroxuecdysone (Peterson 

et al., 2001). Dong et al. (1999) found a shift in sex determination toward males when 

Daphnia pulicaria females were exposed to atrazine (see Rodriguez et al., 2007 for review). 

Deng et al. (2010) found a negative correlation between the presence of Microcystis 

aeruginosa in the diet of D. carinata and ephippia production. In contrast a positive 

correlation was found for D. pulex.  

The observed higher population fitness (although an aquaria effect was found) under 

17.9 µg Cd/L from the long-term 20.77 µg Cd/L exposure is believed to be advantageous for 

populations inhabiting contaminated ecosystems, however, costs are often associated (i.e. 
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cost of tolerance) (Brausch and Smith, 2009). In this study no such cost was observed (Figure 

6.3 and Figure 6.4). Results of chapter 2 and chapter 3 and other studies (Brausch and Smith, 

2009; Miyo et al., 2000) indicate no such cost, although some studies have demonstrated 

the opposite effect (Shirley and Sibly, 1999; Postma et al., 1995a; Levinton et al., 2003). 

Although, results of Ward and Robinson (2005) indicated no effect on fecundity, Cd-adapted 

daphnids were smaller and showed greater sensitivity to phenol, however not to lead. Lopes 

et al. (2009) also found that the tolerant clones for lethal levels of AMD were also Cu 

tolerant. However, the most AMD resistant clones were the most sensitive to Cd. 

Development of increased tolerance and its associated consequences (cost of tolerance) can 

have implication on ecological risk assessment (Klerks and Weis, 1987; Brausch and Smith, 

2009).  

5. Conclusion 

The long-term 20.8 µgCd/L exposure of a Daphnia magna population in a micro-

evolutionary experiment resulted in a population that had a higher fitness in 17.9 µg Cd/L 

compared to a long-term control exposed population and start population. However, genetic 

drift in the aquaria could not be excluded. It appears that this long-term Cd exposed 

population had no associated costs with this increased fitness, i.e. no cost of adaptation. 

Although change in fitness trade-offs and tolerance for second stressors were not 

monitored, which could influence the outcome of our study. As ephippia during this 

experiment were removed, this gives an indication of clonal selection, although subsequent 

experiments should determine the inheritance for Cd tolerance to the next generations.   
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Conventional risk assessment of chemicals is based on the mean population response 

of selected life-history traits to chemical exposure and does not take into account the 

genetic variability of that response (Forbes and Forbes 1994; Barata et al. 2000b). As a 

consequence, it does also not account for potential micro-evolutionary responses to 

chemical exposure such as directional selection in natural populations. Yet, while directional 

selection may lead to genetic adaptation and persistence of the population under the 

chemical exposure, it may also lead to a reduction of genetic diversity, with potentially 

adverse long-term outcomes (i.e. cost of adaptation, see also chapter 2 - chapter 3 - chapter 

6). Thus, until the relation between selection, potential for adaptation, reduction of genetic 

diversity and cost of adaptation is better understood, it may be of interest to environmental 

regulators to know if such responses are likely (or unlikely) to occur at concentrations that 

are considered ‘safe’ for the environment, according to the existing risk assessment 

procedures. This question is worked out in some more detail below. As there are 

considerable differences in the water hardness in the studies cited below, and as hardness is 

known to affect Cd toxicity, all Cd concentrations mentioned below have been corrected to a 

reference hardness of 50 mg CaCO3/L, by multiplying the Cd concentration with a factor of 

(50/hardness)0.7409 as in the Cd RAR and EQS documents (ECB 2007; EU 2008). This is the 

same correction as the one used by US-EPA (2001) for its chronic aquatic life criterion for Cd. 

The original Cd concentrations, hardness levels and corrected Cd concentrations for each of 

these studies are presented in Table 7.1. To discriminate with non-corrected Cd 

concentrations, we refer to the hardness-corrected Cd concentrations in the text below with 

an asterisk (*), i.e. µg Cd*/L.  
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Table 7.1: Summary of different studies that deal with micro-evolutionary responses to Cd in freshwater. The original Cd concentrations (NOEC values or Cd concentration at which an 
increased micro-evolutionary potential was observed), hardness levels and corrected Cd* concentrations (to a hardness of 50 mg CaCO3/L) for each of these studies are presented.  

Experiment Hardness 
mgCaCO3/L 

NOEC 
(µg Cd/L) 

Hardness 
Corrected NOEC 
(µg Cd*/L) 

Cd concentration 
(µg Cd/L) 

Hardness corrected Cd 
concentration  
(µg Cd*/L) 

Reference 

NOEC 
NOEC of 10 D. magna clones  used in the EU Cd risk 
assessment 

11-300 0.16-3.2 0.07-1.84   ECB (2007) 

NOEC of natural Daphnia magna population exposed to Cd 
s tress as described in chapter 2 

250 0.89 0.27   Chapter 2 

Micro-evolutionary potential 
Increased micro-evolutionary potential of a  natural  D. 
magna field population  

160   0.5  0.21  Barata  et al . (2000b) 

Increased micro-evolutionary potential of a  natural  D. 
magna population exposed to Cd stress as  described in 
chapter 2 

250   1.9 
18.9 

0.57 
5.73 

Chapter 2 

Increased micro-evolutionary potential  of natural  Daphnia 
magna population to Cd s tress  and increased temperature 
as described in chapter 3 

250   4.3 1.3 Chapter 3 

Increased micro-evolutionary potential (CVGR0) in 45% of 
the tested Daphnia magna populations  exposed to Cd s tress 
as described in chapter 5 

250   4.4 1.3 Chapter 5 

Adaptive potential 
Absence of adaptive potential (no signi ficant heri tabili ty) of 
lethal Cd tolerance of Gammarus fossarum  

110   20  
(absence of 
heri tabili ty) 

6.07 
(absence of 
heri tabili ty) 

Chaumot et al . (2009) 

Adaptive potential  (significant heritabili ty) of Cd on Daphnia 
magna population as described in chapter 4 

250   3.8 1.15 Chapter 4 

Selection response 
Selection response leading to increased fi tness of the 
population in a selection experiment  

250   20.77 6.83 Chapter 6 

Increase in Cd resistance observed in an artifi cial population 
of 8 D. magna clones  

170   61 24.6 Ward and Robinson 
(2005) 

Observation of adaptive response of natural Chironomus 
riparius population to Cd in the field  
 

128   13-54.4 6.57-27.11 Postma et al . (1995b) 
Postma et al . (1996) 
Groenendi jk et al . 
(1999a,b) 
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In the EU risk assessment arena, the no observed effect concentration (NOEC) and 

the 10% effective concentration (EC10) are most commonly used as inputs to the derivation 

of predicted no effect concentrations (PNEC) in chemicals risk assessment (ECHA 2008) or 

environmental quality standards (EQS; EU 2008; EU 2005). For chemicals for which chronic 

NOECs are available for multiple species, including Cd, the PNEC and EQS can be derived 

with the statistical extrapolation technique. In the EU, both the PNEC of Cd, derived in the 

Cd Risk Assessment Report (Cd-RAR; see ECB, 2007), and the EQS for Cd, derived in the 

context of the water framework directive (EU, 2005) are 0.09 µg Cd*/L. A species sensitivity 

distribution was fitted to hardness-corrected NOEC data for 28 freshwater species. Among 

those species, D. magna was among the most sensitive ones (with a geometric mean 

hardness-corrected NOEC of 0.51 µg Cd*/L). Next, the hazardous concentration for 5% of the 

species (HC5) was estimated at 0.18 µg Cd*/L and an assessment factor of 2 (to cover 

‘residual uncertainty’) was applied to that value to derive a PNEC = EQS = 0.09* µg Cd/L. This 

PNEC is below the result of the micro-evolution experiment (chapter 6), where there was an 

increased fitness observed at 6.30 µg Cd*/L (compared to the long-term control exposed 

population) exposed to 5.43 µg Cd*/L. Studies with D. magna populations suggest an 

increased micro-evolutionary potential at 0.21 µg Cd*/L (Barata et al. 2000b), 5.73 µg Cd*/L 

(chapter 2), 1.3 µg Cd*/L (chapter 5) or 24.6 µg Cd*/L (Ward and Robinson, 2005). The latter 

is based on a micro-evolution experiment with an artificially constructed population 

consisting of 8 D. magna clones. A combination with temperature increase (20°C to 24°C) 

suggested an increased potential for directional selection at 1.3 µg Cd*/L (chapter 3). 

Although for the Blankaart population (chapter 3) no significant increased micro-

evolutionary potential was noted at 20°C, 45% of the tested Daphnia magna populations in 

chapter 5 had a significant increased micro-evolutionary potential (expressed as CVG, in 
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terms of total reproduction) at 1.3 µg Cd*/L. The found differences among populations for 

the quantitative trait may have a genetic basis or is due to random genetic drift rather than 

selection, although in this study no differentiation between natural selection or genetic drift 

between populations could be distinguished. Comparsion of Qst and Fst values could give 

more indication and insight between natural selection and genetic drift. The logic behind is 

that Qst is a measurement for a quantitative trait, while Fst is a measure for a neutral 

genetic marker. If Qst is under selection, the differentiation between populations for that 

trait will be more pronounced than it is for a neutral marker. If natural selection is absent, 

Fst and Qst will be similar (Klerks et al., 2011). The use of neutral markers can be a powerful 

tool to investigate the effects of contaminants (or stressors in general) on genetic diversity. 

The backside is that a lot of data are required. Carvajal-Rodriquez et al. (2005) found that 10-

20 neutral genetic markers are needed to provide the same information as a single 

quantitative genetic trait. The use of these neutral genetic markers is been proven in a study 

of Coors et al. (2009). In this study all individuals from 10 D. magna populations were 

genotyped at four polymorphic allozyme loci. The authors could find a relationship between 

genetic diversity and land-use intensity which suggests genetic erosion correlated with 

anthropogenetic pollution. However, population toxicant susceptibility was not correlated 

with population genetic diversity, which indicates that genetic diversity measured by neutral 

markers does not itself promote tolerance to toxicants (Coors et al., 2009). Lind and Grahn 

(2011) investigated the genetic difference between populations of G. aculeatus from 

reference and paper-mill contaminated sites. Genetic variability was determined by 

Amplified Fragment Length Polymorphism (AFLP). The genetic composition of these multiple 

populations have responded to the directional selection pressure from the effluents of paper 

pulp mills in the Baltic Sea.  
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The H² (chapter 2 - chapter 3 - chapter 4 - chapter 5), also called “the degree of 

genetic determination” (Klerks et al., 2011) might be useful as a predictor of adaptive 

potential for asexual reproducing organisms like Daphnia magna. The narrow sense 

heritability (h²) is often considered as the best predictor of a population’s potential to 

respond to selection (Klerks et al., 2011) during sexual events. The narrow sense heritability 

(h²), i.e. the ratio of the additive genetic variance divided by the total phenotypic variance 

(Falconer and Mackay, 1998), of tolerance traits is considered a prerequisite for a 

population’s ability to evolve increased tolerance by natural selection. The magnitude of h² 

may give a good idea about the possible rate of adaptation (Klerks et al., 2011). It should be 

noted that H² and h² provide predictions of the absolute change of a trait following 

selections, while the total genetic coefficient of variation (CVG) and the additive coefficient 

of variation (CVA) would provide a better prediction of the relative change (Klerks et al., 

2011; Houle, 1992). As we had no specific a priori interest in either absolute or relative trait 

changes, we have considered both heritabilities and genetic coefficients of variation. 

Heritability estimates (H²) may not be the most relevant predictor of selection response for 

sexually reproducing organisms. Only additive genetic effects are inherited by the next 

generation in case of sexual reproduction (Lynch and Walsch, 1998). Therefore, if no additive 

genetic variation of chemical tolerance existed, only a “transitory state of adaptation” could 

be reached by means of clonal selection during the period of asexual reproduction in 

Daphnia populations (Chaumot et al., 2009) which could “disappear” again with every sexual 

reproduction event. The existence of significant additive genetic variation (i.e. significant h²) 

of fitness is necessary for the persistence of any fitness increase in the population that may 

have built up through natural selection of fitter clones during the preceding of asexual 

reproduction. In chapter 4, we found significant h² and CVA under increased temperature 
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stress (24°C versus 20°C) and 5 µg Cd/L. The genetically determined ability to maintain 

higher fitness under Cd stress is partially heritabile to sexually produced offspring, but only 

at 24°C and not at 20°C. This finding indicates that the adaptive potential of a natural D. 

magna population to chemical stress may be dependent not only on the presence of the 

chemical stress, but on other environmental variables as well (e.g. temperature). This was in 

contrast with Chaumot et al. (2009) who indicated that there was no potential for directional 

selection in a natural Gammarus fossarum population at 11.2 µg Cd*/L, due to the absence 

of heritable genetic variation of Cd tolerance. Chaumot et al. (2009) hypothesized that “a 

wide-spread weakness of standing additive genetic variation of chemical tolerance in natural 

populations”. This means that genetic adaptation to contaminant exposure would be more 

likely to take place through fixation of rare (beneficial) alleles rather than through natural 

selection acting on standing variation. Our findings suggests that at least D. magna 

populations would be able to acquire and maintain increased resistance to Cd through 

natural selection acting on standing genetic variation without the need of beneficial 

mutation followed by their fixations. However, heritability estimates may have limited 

applicability (Klerks et al., 2011) as this estimate is only valid for the trait, species and 

population for which heritability is determined. Estimations depend also on environmental 

conditions, which determine the environmental variance (as part of the total phenotypic 

variance). So stressful environments influence the heritability estimate (Bubliy and 

Loeschche, 2002). The heritability of a single trait may not provide sufficient information to 

predict the trait’s responses to selection and does not provide insight into other traits that 

might change simultaneously (Klerks et al., 2011). It has been shown that evolution can be 

constrained by genetic correlations among fitness-related traits (Reznick et al., 2000), also 

commonly referred to as trade-offs. If the presence, for example, of a toxicant result in a 
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selection pressure for increased resistance to that contaminant and this trait has negative 

genetic correlation tied to fitness, then the response to selection will be slowed down by 

that negative genetic correlation. As described in chapter 2, chapter 3 and chapter 6, no cost 

of tolerance was observed under Cd stress (Cd range between 0 - 6.83 µg Cd*/L).  As 

described in chapter 3, temperature increase (20°C vs 24°C) and Cd (1.3 µg Cd*/L) may affect 

the between-trait correlations in a D. magna populations although more statistical evidence 

was needed. A meta-analysis study of Agrawal and Stinchcombe (2009) found no strong 

evidence for such constraints. Besides genetic correlations between traits, a contaminant 

may effect a selective pressure on multiple traits and these traits are likely fully 

independent. A multivariate approach in which the equivalence to the additive genetic index 

becomes the additive genetic variance-covariance matrix, or G-matrix. This approach could 

be useful for addressing micro-evolutionary changes related to environmental 

contamination (Klerks et al., 2011).  

In addition to the comparison of PNEC and EQS with concentrations at which 

quantitative genetics studies (i.e. determining genetic variation and heritability of fitness) 

and micro-evolution experiments have been conducted, it is also instructive to perform a 

comparison of PNEC and EQS with concentrations at which micro-evolutionary, adaptive 

responses have been observed in the field. Adaptation for a C. riparius population from a 

historically metal-contaminated stream, as evidenced by increased tolerance to Cd, was 

observed in a concentration range of 6.47 to 27.11 µg Cd*/L, which is also considerably 

higher (72 to 301-fold) than the PNEC and EQS of 0.09 µg Cd*/L. This increase could be 

considered as an ecologically positive event. On the other hand, increased tolerance of the 

population to a chemical stress due to directional selection of tolerant genotypes may also 
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have adverse long-term ecological consequences. Indeed, natural selection results by 

definition in a reduction of the genetic diversity (Lynch and Walsh, 1998). This in turn may 

lead to a decreased tolerance to other stressors (Ward and Robinson, 2005), a reduced 

adaptive potential towards future challenges imposed by novel stressors (Van Straalen and 

Timmermans, 2002) or a reduced fitness when the selective pressure is removed (e.g., after 

remediation of a polluted site) an observation which is commonly referred to as “cost of 

tolerance” (Medina et al., 2007). This phenomenon is caused by genetic between-

environment correlations or between-environment trade-offs (Medina et al., 2007). As 

indicated in chapter 2, chapter 3 and chapter 6 those cost of tolerance could not be found. 

This was general found in other studies with aquatic invertebrates (Agra et al., 2010). A 

study of Salice et al. (2010) indicate that parasite-resistant and susceptible strains of a 

freshwater snail exposed to Cd had a decreased tolerance to temperature stress. This is in 

discrepancy with the results of chapter 2 – chapter 3 and chapter 6. Fisker et al. (2011) 

found that D. octaedra living in soils with higher copper concentrations do not carry any 

apparent costs of adaptation. Other studies indicate such costs. Thereby the investigated 

Daphnia magna population used in chapter 2 - chapter 3 and chapter 6 could be fraught 

with costs that have not been revealed in these studies. However as not dealt in chapter 2 - 

chapter 3 - chapter 5 - chapter 6 the underlying mechanism for the associated costs would 

provide insight.   

In conventional ecotoxicology, monoclonal laboratory D. magna populations are 

widely used. Additionally, we determined effect concentrations (i.e. 21d-NOEC, EC10 and EC50 

based on the R0 endpoint) for 7 monoclonal populations of D. magna obtained from 7 

different European ecotoxicology laboratories (Table S7.2 for more detailed information). 
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For D. magna the standard and therefore most commonly used endpoint is R0, as 

determined in 21-day life-table tests according to OECD test guideline No. 211 (OECD 1998). 

Next to the NOEC and the 21d-EC50 (median effective concentration) is also reported here, 

because it can usually be estimated with more precision that the EC10. The test design was 

the same as described in chapter 2 (see detailed information in Supplementary Material 

S7.1). As shown in Table 7.2, we observe a considerable inter-clonal variation of Cd toxicity 

(5-fold for 21-day EC50). This inter-clonal variation of Cd toxicity corroborates with many 

other ecotoxicity studies with different D. magna clones and Cd. For instance, Baird et al. 

(1990) reported an up to 100-fold variation of acute Cd tolerance and Barata et al. (2002b) 

reported a 7-fold variation of the EC50 of Cd for feeding rate. Barata et al. (2002a) argued 

that every isolated population of D. magna may evolve different stress tolerances (including 

Cd tolerance) due to among-habitat differences of selective forces (not necessarily related to 

the stress one investigates, in this case Cd). In addition, there is also considerable inter-

clonal variation of Cd tolerance within populations as shown here and elsewhere (chapter 5; 

Barata et al., 2000; Messiaen et al., 2010). Hence, it is not surprising that D. magna clones 

collected from different ecotoxicology laboratories from across Europe exhibit a wide range 

of Cd sensitivities, considering that all these clones have once been isolated from potentially 

very different regions and habitats. The genetic variation of chemical tolerance among 

clones of the same species is not unique to Cd and Daphnia. Other examples include the 

genetic variation of chronic azoxystrobine tolerance in D. magna (Warming et al., 2009), 

acute LC50s of Cd among three clones of Potamopyrgus antipodarum (Jensen and Forbes, 

2001), and 35-day toxicity of chlorpyrifos to Folsomia candida (Crommentuijn et al., 1995). 

This suggests that the findings in the present study may have implications that go beyond 

just D. magna and Cd.  
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Table 7.2: Chronic toxicity data for 21-day net reproductive rate (R0) for monoclonal D. magna populations from 7 different European Laboratoria.  * indicates hardness corrected 

Clone ID CZ K6 SE DK F A IRCHA type 5  

21d-NOEC  

(µg Cd/L) 

21d-NOEC 

(µg Cd*/L) 

(>18.9) 

 

(>5.73) 

1.92 

 

0.58 

(>18.9) 

 

(>5.73) 

8.34 

 

2.53 

 

(3.96) 

 

(1.20) 

0.89 

 

0.27 

8.34 

 

2.53 

 

% effect at NOEC (56%) 16% (33%) 1% (54%) 12% 12% 

21d-EC10 

 (µg Cd/L) 

21d-EC10 

(µg Cd*/L) 

- 

 

- 

1.75 

(0.81-4.41) 

0.53 

(0.24-1.33) 

10.4 

(3.0-35.3) 

3.16 

(0.9-10.71) 

- 1.49 

(0.68-3.28) 

0.45 

(0.21-0.99) 

0.31 

(0.07-1.27) 

0.09 

(0.02-0.39) 

11.8 

(2.3-60.8) 

3.58 

(0.70-18.45) 

21d-EC50 

 (µg Cd/L) 

21d-EC50 

 (µg Cd*/L) 

>8.39 

 

>5.73 

5.63 

(4.06-7.80) 

1.70 

(1.23-2.37) 

20.1 

(14.5-27.7) 

6.09 

(4.4-8.4) 

- 

(8.34-18.9) 

- 

(2.53-5.74) 

4.66 

(3.33-6.52) 

1.45 

(1.01-1.98) 

3.80 

(2.17-6.67) 

1.15 

(0.66-2.02) 

17.7 

(13.3-23.6) 

5.73 

(2.03-7.16) 

% effect  

at 18.9 µg/L (5.73 µg Cd*/L) 

56% 92% 33% 87% 91% 75% 62% 

a NOEC = no observed effect concentration, EC10 and EC50 are 10% and 50% effective concentrations; NOECs were only considered reliable if a less than 20% effect was observed. The % 
effect was calculated by { R0(control)-R0(Cd) } / R0(control) and represents the % reduction of the mean R0 at a Cd treatment compared to the control treatment. Unreliable NOECs are 
reported between parentheses and are not considered in the discussion.  
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While we have so far focused on the genetic variation of the response of the natural 

population’s fitness to Cd, risk assessment is so far still exclusively using the mean 

population response of selected life-history traits  (Forbes and Depledge 1996; Barata et al. 

2000a). Table 7.1 reports the population’s mean responses for total reproduction and 

population growth rate (i.e. the mean of the different clone’s responses) to increasing Cd 

concentrations from the study in chapter 2. The population mean of total reproduction (R0)  

at 1.9 µg Cd/L was significantly (p<0.05) lower than in the control. Hence, the 21d-NOEC for 

total reproduction for the natural population was 0.89 µg Cd/L (i.e. the no observed effect 

concentration for a single-generation exposure). The NOEC for population growth rate (rm)  

for the natural population was also 0.89 µg Cd/L. Two considerations are of interest. First, 

this natural population’s NOECs are at the lower range of the NOECs for the same endpoint 

observed with the laboratory clones. This indicates that using a single NOEC of a randomly 

selected laboratory clone of D. magna for risk assessment may not be protective for a 

randomly selected natural population. This is one of the many uncertainties associated with 

lab-to-field extrapolation which is currently supposed to be covered by the current (largely 

arbitrary) assessment factors applied in conventional risk assessment (Forbes and Calow, 

1999). A second observation of interest relates to the toxicity test results of two of the 

laboratory clones. Clone A, currently held in a Portuguese laboratory (see Table S7.2) and 

frequently used in other papers and studies (Barata et al., 2002), was originally established 

from individuals of the monoclonal population IRCHA type 5, currently held in a French 

laboratory. Thus, one would expect similar sensitivities to Cd. However, in contrast, amongst 

all laboratory clones investigated in the present study, clone A and clone IRCHA type 5 were 

the clones with the highest and lowest sensitivity to Cd, respectively. The 21-d NOECs were 

0.89 and 8.34 µg Cd/L (A and IRCHA type 5, respectively), the 21d-EC10 were 0.31 and 11.8 µg 
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Cd/L, and the 21d-EC50 were 3.8 and 17.7 µg Cd/L. Since both clones were cultured for 

several generations under identical conditions in our laboratory prior to testing, it is likely 

that over the course of several years genetic differentiation between the two ‘monoclonal’ 

laboratory cultures, which once represented ‘the same clone’, may have played a role. Baird 

(1992) hypothesized that mutations in a monoclonal D. magna population could lead to an 

altered genetic constitution of that population. As such, genetic differentiation between two 

monoclonal cultures established from the same clone may arise. When these mutations 

occur at genes that are involved in chemical tolerance this may randomly lead to a 

differentiation of chemical tolerance between the two populations. Another possible 

explanation is epigenetic inheritance. Vandegehuchte et al. (2009) recently indicated that 

environmentally-induced epigenetic effects (i.e. changes in DNA methylation) can occur in a 

monoclonal D. magna culture and that these effects can be inherited, i.e. maternally 

transferred (Vandegehuchte et al., 2010). Therefore, if culture conditions of the same clone 

among two laboratories are different, epigenetic processes could theoretically also lead to a 

differentiation of the epigenome among the two cultures, with potential implications for 

chemical tolerance.  

Returning to our main research question, we compared the conventional effect 

concentrations reported above (Table 7.2) with the concentration of Cd where we have seen 

an increased potential for a micro-evolutionary response. In chapter 2 we found a higher 

micro-evolutionary potential at 0.57 µg Cd*/L (based only on CVG(rm)) and at 5.73 µg Cd*/L 

(based on CVG(R0) and H2(rm)). All 21d-NOEC and 21d-EC10 values of the laboratory clones are 

lower (between 1.6 and 61 fold) than 5.73 µg Cd*/L (chapter 2). The range of 21d-EC50s 

encompasses 5.73 µg Cd*/L, suggesting that an increased micro-evolutionary potential in a 
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natural population may be close to 50% reproductive inhibition (or higher) in standard tests 

with laboratory clones. This finding is supported by the range of reproductive inhibitory 

effects in the same laboratory clones at 5.73 µg Cd*/L, which was between 33% and 92% 

(Table 7.2). Incorporating the results of chapter 3, chapter 4 and chapter 5, we indicated that 

there was a significantly increased micro-evolutionary potential at 1.3 µg Cd*/L (at 24°C for 

the Blankaart population (chapter 3 and chapter 4) and 45% of the tested populations at 

20°C in chapter 5), which suggests that for some populations an increased micro-

evolutionary potential may occur in the range of conventional NOEC or EC10 values. This 

increased micro-evolutionary potential may lead to shifts in genotype frequencies (Van 

Sraalen and Timmermans, 2002). Based on the results of a semi-natural micro-evolution 

experiment (chapter 6), we have only found evidence of a micro-evolutionary response of 

the D. magna population from the Kasteelvijver pond at 5.73 µg Cd*/L (hardness corrected). 

As mentioned above, this is higher than all conventional 21d-NOECs and 21d-EC10s (0.09 – 

5.73 µg Cd*/L) for the laboratory D. magna clones in the present study, and also higher than 

all chronic NOECs that were accepted in the Cd RAR and EQS document, i.e. 0.07 - 1.84 µg 

Cd*/L. Thus, based on evidence of the micro-evolutionary experiment for the Kasteelvijver 

pond D. magna population, no increased micro-evolutionary potential is expected at 

conventionally derived NOECs.  

In the EU, when chronic NOECs for a chemical are available for three trophic levels 

(typically an alga, a fish and Daphnia sp.), the lowest NOEC (most sensitive species) is 

conventionally divided by an assessment factor of 10 to obtain the PNEC or EQS. These 

concentrations are considered to have ‘no effects’ on freshwater populations, communities 

and ecosystems. For many chemicals, D. magna is the most sensitive species tested 
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(Wogram and Lies 2001; Von der Ohe and Lies, 2004) and for many chemicals a NOEC will 

only be available for a single D. magna clone. The data with Cd cited above show that a 

single NOEC from a randomly selected D. magna clone can be more than 10-fold higher than 

the concentration at which an increased micro-evolutionary potential is observed (i.e. 0.21 

µg Cd*/L) (Barata et al., 2002b). In such a case, a micro-evolutionary response may 

theoretically be possible, at a conventionally derived PNEC or EQS value. When considering 

all laboratory clone NOECs cited above (or EC10s if reliable NOECs were not available) (both 

present study and Cd RAR), 3 out of 17 (i.e. 18%) were more than 10-fold higher than 0.21 µg 

Cd*/L. However, none of the labo NOECs is 10-fold higher than the concentrations with true 

micro-evolutionary responses (Table 7.1 and Table 7.2) (except for the population of Barata 

et al., 2000b). Nonetheless, the previous thought exercise calls for additional research that 

compares (ranges of) conventional D. magna NOECs with concentrations of chemicals that 

invoke increased micro-evolutionary potential and responses in natural D. magna 

populations (compared to control conditions).    

In conclusion, Daphnia magna has been a model organism in a broad range of 

studies: ecotoxicology, ecology, evolutionary biology. The interplay between these kinds of 

research would broaden the knowledge of the underlying mechanisms of the potential for 

adaptation to stressors. Therefore, it would be recommended for further studies to use 

genome scan analysis to identify genome regions that are under selection. If genes, 

identified through genome scan, are genes of large effect, these genes can be used as a 

proxy for traits. This would reduce the time effort of quantifying genetic variability for 

ecologically relevant traits. Additionally, this genome wide analysis involving a large number 
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of markers allows a more detailed analysis of genetic structure of the population(s), 

differentiating between neutral markers and markers under selection.  

All the evidence so far indicates that an increased micro-evolutionary response to Cd 

exposure, which may lead to shifts in genotype frequencies, may only occur above the 

conventionally derived PNEC and HC5 of Cd. However, given the large differences between 

populations of the same species (i.e. the Kasteelvijver pond population, the populations 

tested chapter 5 and the Spanish D. magna population of Barata et al. (2002b)) and between 

different species (i.e. D. magna vs. G. fossarum vs. C. riparius), it is recommended to 

broaden the knowledge to more D. magna populations and to additional species as well. As 

field populations are influenced by a broad range of stressors and our results indicate that 

temperature increase affects the outcome of our studies, it would be recommended to 

assess the impacts of multiple stressors and/or impacts of global change. As there were 

comparable results found in chapter 6 and chapter 2, micro-evolutionary potential derived 

from short term tests (i.e. one generation) could be used instead of long-term studies (cfr. 

chapter 6). So it would be interesting to determine the micro-evolutionary potential of 

different populations at derived PNEC and/or EQS of other chemical substances. In addition, 

the fact that it is theoretically possible that PNEC and EQS derived from a single D. magna 

NOEC may be higher than the concentration at which micro-evolutionary effects may be 

possible, calls to extend this kind of research to multiple chemicals/stressors.  
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The ultimate goal of environmental risk assessment is to prevent chemical substances 

causing irreversible damages to ecosystems. However, in conventional ecotoxicology, 

tolerance to stress is tested under standardized laboratory conditions and is also concerned 

with the short-term effects of stressors. By using, for example monoclonal D. magna 

populations or inbred populations, genetic variability is minimized, which increases the 

precision of the estimation of mean population responses and also decreases the variability 

among toxicity tests. Field populations, however, may be exposed to long-term chemical 

stress and do exhibit genetic variation. Both factors have mostly been ignored in routine 

ecotoxicology and environmental risk assessment. Field populations which experience an 

initially reduced fitness due to chemical exposure may exhibit phenotypic variation of fitness 

among individuals upon which natural selection may act. If this variation is also heritable - 

i.e. if it contains a significant genetic component - micro-evolutionary changes in the genetic 

make-up of the population may result in an increase of the mean fitness of the population. 

Thus, natural selection may result in genetic adaptation of a population to pollution. This 

genetic adaptation can be seen as an positive event. However, other micro-evolutionary 

aspects should also be taken into consideration, i.e cost of tolerance and fitness trade-offs. 

The effect of Cd on these micro-evolutionary aspects, i.e.(1) micro-evolutionary potential, (2) 

cost of tolerance and (3) fitness trade-offs can be revealed by using quantitative genetic 

studies and micro-evolutionary experiments.  

Daphnia magna populations are the ideal test-organisms for those study types of 

micro-evolutionary responses. They are widely used in risk assessment and they can produce 

asexually by ameiotic parthenogenesis, thus the genetic and environmental components of 

variance can be separated in experimental design. Additionally Daphnia (i) are amongst the 
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freshwater species which are most sensitive to chemicals, (ii) have demonstrated to exhibit 

genetic variability of Cd tolerance within populations, (iii) have been demonstrated to rapidly 

adapt to stress, and (iv) provide ideal model species to study both genetic variation and 

micro-evolutionary responses in populations. 

In chapter 2, we determined the genetic coefficient of variation (CVG) and broad sense 

heritability (H²) as measures of micro-evolutionary potential of total reproduction (R0) and 

population growth rate (rm) by means of 21-day life-table experiments with 11 genetically 

distinct clones from natural Daphnia magna population exposed to a control and Cd 

concentrations between 0.89 and 18.9 µg Cd/L. We also determined a cost of tolerance (i.e. 

negative genetic correlations between environments) within this Cd range. Based on 

significantly higher genetic variation of fitness in a Cd treatment vs. the control, a higher 

micro-evolutionary potential was observed at at 18.9 µg Cd/L (based on CVG(R0), CVG(rm), 

and H2(rm)). No cost of Cd tolerance in higher Cd environments was found.  

After detecting an increased micro-evolutionary response under Cd stress, we 

examined micro-evolutionary aspects of a natural Daphnia magna population exposed to Cd 

and to how these are influenced by temperature. In chapter 3, life-table experiments were 

conducted with 14 D. magna clones collected from an unpolluted lake following a 2×2 design 

with Cd concentration and temperature as the factors (control vs. 5 µg/L cadmium, 20°C vs. 

24°C). Our results demonstrate (1) that chemicals can have effects on key population genetic 

characteristics such as genetic variation and between-trait correlations and (2) that these 

effects may differ depending on temperature. They findings also suggests that further 

research is needed to understand the importance of combined chemical - global warming 

stress for micro-evolutionary responses of organisms.  
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The above studies determined the micro-evolutionary potential of a population 

towards stress. As this genetic variability embraces also non-additive genetic components, 

this genetic variability could overestimate this potential for adaptation. In chapter 4, we 

examined the additive and non-additive components of a natural Daphnia magna population 

exposed to Cd stress and how these are influenced by temperature. Life-table experiments 

were conducted with 20 parent and 39 offspring clones following a 2×2 design with Cd 

concentration and temperature as the factors (control vs. 5 µg/L cadmium, 20°C vs. 24°C). 

Total reproduction and population growth rate were monitored during 21 days.  Variance 

components were determined using an Animal Model. Our results indicate that temperature 

and Cd can have significant effects on additive and non-additive components of a Daphnia 

magna population. The finding of a significant additive genetic variance in the 24°C + Cd 

treatment, indicates that genetically determined differences for Cd stress in combination 

with temperature may be heritable to the next generations.  

In the above three chapters, we focused mainly on one Daphnia magna population, 

although variability among Daphnia magna populations could influence the outcome of our 

results. In chapter 5, we examined the between and within genetic variability of 11 natural 

Daphnia magna population exposed to a sublethal Cd stress. Life-table experiments with a 

control and Cd treatment (5 µg Cd/L) were conducted with 12 D. magna clones originating 

from 11 Daphnia magna populations collected from 11 (Cd) unpolluted lakes. Several fitness 

traits were monitored during 21 days. Our results indicate that there is between and within 

genetic variability in Daphnia magna populations, indicating that populations originating 

from other habitats may have a different micro-evolutionary potential under Cd stress.  
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In the previous chapter, we estimated micro-evolutionary potential and micro-

evolutionary constrains by using quantitative genetics. In chapter 6, a 203-day during micro-

evolutionary experiment was conducted to test the micro-evolutionary response in a 

Daphnia magna population exposed to a Cd range between 0 and 20.77 µg Cd/L under semi-

field conditions. There was a response observed at 17.83 µg Cd/L, as the long-term 20.77 µg 

Cd/L exposed population had a higher fitness under Cd stress than (1) the population 

exposed under control conditions (0 µg Cd/L) and (2) the start population (population kept 

under laboratory conditions). However, genetic drift could not be excluded. Besides an 

increased tolerance, no associated costs were observed.  

In chapter 7, we compared our found results with the conventionally derived PNEC 

and EQS for Cd. Additionally, we determined conventially derived NOECs from 7 European 

monoclonal Daphnia magna populations.  In conclusion, all the evidence so far indicates that 

an increased micro-evolutionary response to Cd exposure only occur above the 

conventionally derived PNEC and HC5 of Cd. However, given the large differences between 

populations of the same species and between different species, it is recommended to 

broaden the knowledge to more D. magna populations and to additional species as well. In 

addition, the fact that it is theoretically possible that PNEC and EQS derived from a single D. 

magna NOEC may be higher than the concentration at which micro-evolutionary effects may 

be possible, calls to extend this kind of research to multiple chemicals.  
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Measure of micro-
evolutionary change 

Test organism Chapter Stressor Research-questions Result 

 
 
 
 
 
 
 
 
 
 
Quanti tative genetics 

 
 
 
 
 
 
 
1 Daphnia magna  
population 

2 Cd concentration range: 
0-18.9 µg Cd/L 

Cd effect on population mean? 
Cd effect on micro-evolutionary potential? 
 
 
 
 
Is there a cost of tolerance? 

NOEC of 0.9 µg Cd/L 
Increased micro-evolutionary potential 
at increasing Cd s tress. Signi ficant 
increased CVG(R0) at 18.9 µg 
Cd/Lcompared to the control 
No cost of tolerance 

3 Control and 4.1 µg Cd/L 
under two temperature 
treatments (20°C and 
24°C) 

Is there a  temperature effect on micro-
evolutionary aspects? 
- Increased temperature result in a  larger Cd 

effect?  
 

- Increased s tress  resul ts  in an increased 
micro-evolutionary potential under Cd 
s tress? 
 

- Is there a cost of tolerance? 
 
- Among fi tness-trai ts genetic correlations? 

 
 
- Temperature results  in a  larger 

Cd effect compared to the 
control 

- Temperature resul ts  in an 
increased micro-evolutionary 
potential  at  4.1 µg Cd/L 
compared to the control 

- No cost of tolerance 
 
- Cd effect on trade-offs 

4 Control and 3.8 µg Cd/L 
under two temperature 
treatments 

Is there a temperature and Cd effect on: 
- Additive components   
- Dominance components 
- h² 

 
Signi ficant additive genetic variance 
and h² found at 24°C + Cd 

11 Daphnia magna  
populations 

5 Control and 4.3 µg Cd/L Cd effect on micro-evolutionary potential  of 11 
Daphnia magna populations? 

45% of the populations  had a 
signi ficant increased micro-
evolutionary potential at 4.3 µg Cd/L 

Micro-evolutionary 
experiment 

1 Daphnia magna  
population 

6 Long-term Cd exposure 
between 0-20.77 µg Cd/L 

At which Cd concentration is there a rapd micro-
evolutionary response? 
 
Is there a cost of tolerance? 

Increased population fi tness under 
17.3 µg Cd/L found in long-term 20.77 
µg Cd/L exposed population  
No cost of tolerance 

 

Chapter 7 
1. Are there micro-evolutionary effects at conventionally derived PNEC and EQS? NO 

2. Are there micro-evolutionary effects at conventionally derived NOEC’s (use of monoclonal laboratory 
Daphnia magna populations)? This may be possible 
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Het doel van omgeving risk assessment is het voorkomen van een onomkeerbare 

schade toegebracht aan het milieu door chemische stoffen. In routinematige ecotoxicologie 

wordt tolerantie aan stress getest onder gestandardizeerde labo-omstandigheden. Dit wordt 

uitgevoerd door o.a. gebruik te maken van monoklonale Daphnia magna populaties, 

waardoor genetische variabiliteit wordt geminimalizeerd. Daardoor wordt een betere en 

preciezere schatting van de gemiddelde populatie responsen bekomen en wordt de 

variabiliteit tussen test resultaten verminderd. Veldpopulaties hebben daarentegen 

genetische variabiliteit en kunnen ook blootgesteld worden gedurende lange tijd aan 

chemische stress. Veldpopulaties die een gereduceerde fitness hebben door chemische 

blootstelling kunnen een phenotypische variatie hebben tussen individuen waarop selectie 

kan inwerken. Indien deze variatie overerfbaar is, kunnen micro-evolutionaire veranderingen 

in de genetische opmaak van de populatie leiden tot een stijging van de fitness van die 

populatie. Dus, natuurlijke selectie leidt tot genetische adaptatie van een populatie 

blootgesteld aan een chemische stof. Deze adaptatie kan gezien worden als een “positief” 

effect. Maar andere micro-evolutionaire aspecten zoals kost aan adaptatie an fitness trade-

offs moeten ook in rekening gebracht worden. Het effect van Cd op deze micro-

evolutionaire aspecten: (1) potentiaal voor micro-evolutie, (2) kost aan adaptatie en (3) 

fitness trade-offs kan onderzocht worden aan de hand van kwantitatieve genetica en micro-

evolutionaire experimenten.  

Daphnia magna populaties zijn de ideale test organismen voor deze studies van 

micro-evolutionaire responsen. Deze watervlo wordt gebruikt in risk assessment en door 

hun asexuele voortplanting kunnen de genetische en omgevings componenten van variatie 

onderscheiden worden. Daarenboven zijn Daphnia’s (1) gevoelig voor chemische stressoren, 
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(2) hebben ze genetische variabiliteit voor Cd tolerantie in populaties, (3) kunnen ze vlug 

adapteren aan stress en (4) zijn deze het ideale test organisme om genetische variatie en 

micro-evolutionaire responsen te onderzoeken in populaties.  

In hoofdstuk 2 bepaalden we de genetische coefficient van variatie (CVG) en 

overerfbaarheid s.l. (H²) als parameters voor micro-evolutionair potentiaal van totale 

reproductie en populatie groeisnelheid. Daarbij werden 21 dagen experimenten uitgevoerd 

met 11 genetisch verschillende klonen van een natuurlijke Daphnia magna populatie 

blootgesteld aan een controle en een Cd concentratie range tussen 0.9 en 18.9 µg Cd/L. Er 

werd ook een kost aan adaptatie bepaald. Gebaseerd op de hogere genetische variatie in 

fitness in een Cd behandeling vergeleken met de controle, werd een hoger potentiaal voor 

micro-evolutie gevonden bij 18.9 µg Cd/L (gebaseerd op CVG(R0), CVG(rm) en H²(rm)). Geen 

kost aan adaptatie werd teruggevonden. 

In een volgend hoofdstuk werden de verschillende micro-evolutionaire aspecten van 

deze D. magna populatie nagegaan, blootgesteld aan Cd en onder invloed van 

temperatuursverhoging. In hoofdstuk 3, werden experimenten uitgevoerd met 14 D. magna 

klonen volgens een 2x2 design met Cd concentratie en temperatuur als factoren (controle vs 

5 µg Cd/L; 20°C vs 24°C). Onze resultaten toonden aan dat (1) chemische stoffen effecten 

hebben op genetische populatie kenmerken zoals genetische variatie en tussen-trait 

correlaties en (2) deze effecten afhankelijk zijn van temperatuur. Deze bevindingen 

suggereren dat verder onderzoek noodzakelijk is om het effect van de combinatie ‘toxicant-

klimaatsverandering’  op micro-evolutionaire responsen bij populaties na te gaan.  

De voorafgaande studies bepaalden de micro-evolutionaire potentiaal van een 

populatie. Deze genetische variabiliteit heeft echter ook niet-additieve componenten, 



Samenvatting 

190 
 

waardoor deze genetische variabiliteit een overschatting kan zijn van de potentiaal tot 

adaptatie. In hoofdstuk 4 onderzochten we de additieve en niet-additieve componenten van 

een natuurlijke D. magna populatie blootgesteld aan Cd stress en hoe deze beïnvloed 

werden door temperatuur. Experimenten werden uitgevoerd met 20 ouder klonen en 39 

klonen van nakomelingen volgens een 2x2 design met Cd en temperatuur als factoren. 

Totale reproductie en populatie groeisnelheid werden opgevolgd gedurende 21 dagen. 

Variantie componenten werden bepaald door gebruik te maken van het ‘Animal Model’. 

Onze resultaten toonden aan dat temperatuur en Cd significante effecten hebben op de 

additieve en niet-additieve componenten van een D. magna populatie. Het vinden van een 

significante additieve genetische variatie in de 24°C + Cd behandeling duidde aan dat 

genetisch gedetermineerde verschillen voor Cd stress in combinatie met temperatuur 

overerfbaar kunnen zijn naar de volgende generaties. 

Hoofdstukken 2 tot en met 4 maakten gebruik van één Daphnia magna populatie, 

alhoewel genetische variabiliteit tussen populaties een invloed kan hebben op de 

interpretatie van onze resultaten. In hoofdstuk 5 werd de genetische variabiliteit tussen en 

in 11 populaties nagegaan. Experimenten werden uitgevoerd met een controle en Cd 

behandeling (5 µg Cd/L) met 11 populaties elk bestaande uit 12 klonen. Verschillende fitness 

kenmerken werden opgevolgd gedurende 21 dagen. Onze resultaten toonden aan dat er 

genetische variabiliteit is tussen populaties maar ook binnenin de populaties. Dit geeft aan 

dat populaties afkomstig van verschillende habitats een ander micro-evolutionair potentiaal 

onder Cd stress kunnen hebben. 

De voorafgaande hoofdstukken maakten gebruik van kwantitatieve genetica. In 

hoofdstuk 6, werd een 203 dagen durend micro-evolutionair experiment uitgevoerd. Daarbij 
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werd de micro-evolutionaire respons nagegaan van een D. magna populatie blootgesteld 

aan een Cd concentratie range tussen 0 en 20.8 µg Cd/L. Nadien werd een respons 

teruggevonden bij 17.8 µg Cd/L, waarbij de populatie blootgesteld gedurende lange tijd aan 

de 20.8 µg Cd/L een hogere fitness had onder Cd stress dan de (1) start populatie en (2) de 

populatie blootgesteld onder controle omstandigheden. Alhoewel genetische drift niet 

volledig kon worden uitgesloten. Naast een verhoogde tolerantie werd geen kost aan 

adaptatie teruggevonden.  

In het laatste hoofdstuk, hoofdstuk 7, vergeleken we onze resultaten met de 

conventioneel bepaalde PNEC en EQS voor Cd. Bijkomend werden de NOEC’s van 7 Europese 

monoklonale D. magna populaties bepaald. Samengevat blijkt dat een verhoogde micro-

evolutionaire respons teruggevonden werd boven de PNEC en HC5 van Cd. Maar, door de 

grote verschillen tussen populaties maar ook tussen verschillende soorten, wordt het 

aanbevolen om de kennis uit te breiden naar meerdere soorten en populaties. Daarenboven, 

door het feit dat het theoretisch mogelijk is dat een PNEC en EQS bekomen door één D. 

magna NOEC hoger is dan de concentratie waarbij micro-evolutionaire effecten kunnen 

plaatsvinden is dit soort onderzoek bij andere chemische stoffen noodzakelijk.  
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Table S2.1: Physico-chemical characteristics of test media during the Cd exposure experiment. Values  represent mean ± 
standard deviation. NM is new medium. OM is old medium.  

Nominal Cd 

concentration 
(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 

(µg Cd/L) 

Mean Cd 

concentration 
(µg Cd/L) 

0 NM 4.62 7.67 <0.1  <0.1  

OM 5.45 ± 0.64 7.58 ± 0.22 <0.1  

1 NM 4.69 7.63 1.06 ± 0.05 0.89 ± 0.22 

OM 5.74 ± 0.34 7.60 ± 0.24 0.73 ± 0.25 

2.2 NM 4.84 7.65 1.96 ± 0.18 1.92 ± 0.06 

OM 5.83 ± 0.52 7.70 ± 0.31 1.88 ± 0.38 

4.6 NM 4.86 7.62 4.56 ± 0.16 3.96 ± 0.88 

OM 5.99 ±0.30 7.73 ± 0.25 3.34 ± 1.37 

10 NM 4.69 7.65 9.79 ± 0.01 8.34 ± 1.99 

OM 5.97 ± 0.67 7.76 ± 0.27 6.94 ± 2.38 

22 NM 4.76 7.66 20.60 ± 0.42 18.87 ± 2.45 

OM 5.89 ± 1.32 7.86 ± 0.27 17.13 ± 1.92 

 
Table S2.2: Values of total reproduction (R0) at control (0 µg Cd/L). 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 61 98 72 56 76 31 105 89 127 75 43 

2 124 86 73 120 0 43 106 94 109 66 0 

3 100 94 71 29 59 29 73 97 107 59 86 

4 92 100 71 0 65 38 53 98 116 76 75 

5 105 89 75  69 74 120 85 117 85 59 

6 120  83  79  21 89 88 96 51 
 

Table S2.3: Values of total reproduction (R0) at 1 µg Cd/L.  

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 47 95 59 65 77 75 81 48 133 123 54 

2 86 88 78 0 45 66 37 61 55 61 58 

3 98 83 71 98 48 76 82 61 48 63 65 

4 89 92 77 0 83 75 75 65 59 31 57 

5 109 97 83  63 89 108 61 61 0 42 

6 124 95 84  65  113 60 58 59 0 
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Table S2.4: Values of total reproduction (R0) at 2.2 µg Cd/L.  

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 51 0 70 52 85 60 63 94 113 66 61 

2 78 87 81 0 81 66 91 102 108 0 0 

3 108 10 56 54 67 60 87 88 93 56 18 

4 49 108 74 0 91 36 84 104 60 99 84 

5 76 65 67  57 67 71 60 71 0 74 

6 87 98 17  49  78 98 94 76 0 
 

Table S2.5: Values of total reproduction (R0) at 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 96 0 62 74 23 53 14 104 75 13 56 

2 47 91 28 24 0 13 67 102 81 81 60 

3 26 93 34 78 45 54 0 110 70 80 53 

4 90 70 16 0 14 17 50 128 95 77 65 

5 80 76 93  60 55 33 115 53 94 0 

6 109 89 60  24  61 106 86 87 0 
 

Table S2.6: Values of total reproduction (R0) at 10 µg Cd/L.  

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 69 82 15 72 26 19 54 92 59 81 47 

2 57 82 17 53 0 40 34 111 59 59 0 

3 42 56 21 13 19 20 32 108 15 74 47 

4 24 81 20 0 1 14 26 0 63 0 44 

5 14 81 29  0 34 16 113 45 43 34 
6 18 88 51  9  19 80 21 41 14 
 

Table S2.7: Values of total reproduction (R0) at 22 µg Cd/L.  

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0 9 8 0 0 3 8 0 8 9 

2 0 9 8 2 0 2 0 13 0 13 0 
3 0 22 2 0 4 6 0 22 7 7 11 

4 0 14 9 0 0 8 1 19 13 15 0 

5 10 19 4  2 11 0 19 0 17 0 

6 5 10 22  5  0 10 0 11 0 
 

 
 
 
 
 
 



Supplementary Material  

200 
 

Table S2.8: Values of population growth rate (rm) at control (0 µg Cd/L).  

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.35 0.41 0.32 0.35 0.40 0.32 0.40 0.35 0.36 0.38 0.33 

2 0.38 0.37 0.34 0.36 0.00 0.34 0.40 0.35 0.39 0.36 0.00 

3 0.40 0.39 0.33 0.34 0.34 0.30 0.40 0.39 0.36 0.34 0.38 

4 0.41 0.38 0.35 0.00 0.35 0.32 0.34 0.36 0.36 0.38 0.37 

5 0.40 0.38 0.35  0.35 0.32 0.37 0.38 0.38 0.37 0.28 

6 0.39  0.35  0.40  0.32 0.35 0.34 0.42 0.31 
 

Table S2.9: Values of population growth rate (rm) at 1 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.29 0.42 0.33 0.37 0.37 0.32 0.40 0.32 0.36 0.38 0.36 

2 0.35 0.41 0.36 0.00 0.34 0.35 0.37 0.34 0.36 0.35 0.38 

3 0.34 0.36 0.32 0.35 0.34 0.35 0.40 0.35 0.34 0.34 0.37 

4 0.38 0.40 0.36 0.00 0.37 0.32 0.41 0.39 0.32 0.37 0.36 

5 0.38 0.40 0.37  0.34 0.34 0.35 0.38 0.31 0.00 0.30 

6 0.37 0.40 0.36  0.31  0.35 0.34 0.35 0.37 0.00 
 

Table S2.10: Values of population growth rate (rm) at 2.2 µg Cd/L.  

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.35 0.00 0.34 0.31 0.40 0.33 0.36 0.33 0.35 0.35 0.36 

2 0.32 0.39 0.36 0.00 0.36 0.35 0.39 0.34 0.38 0.00 0.00 

3 0.39 0.29 0.32 0.28 0.34 0.35 0.40 0.37 0.38 0.28 0.32 

4 0.33 0.39 0.36 0.00 0.35 0.29 0.42 0.40 0.31 0.36 0.36 

5 0.39 0.37 0.35  0.36 0.30 0.35 0.39 0.32 0.00 0.41 
6 0.36 0.36 0.32  0.33  0.37 0.34 0.38 0.37 0.00 
 

Table S2.11: Values of population growth rate (rm) at 4.6 µg Cd/L. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.39 0.00 0.37 0.36 0.33 0.34 0.34 0.39 0.30 0.28 0.30 

2 0.32 0.40 0.37 0.31 0.00 0.26 0.34 0.38 0.34 0.35 0.35 
3 0.34 0.38 0.32 0.36 0.35 0.35 0.00 0.37 0.32 0.33 0.32 

4 0.38 0.35 0.31 0.00 0.32 0.32 0.32 0.39 0.34 0.37 0.35 

5 0.38 0.36 0.33  0.35 0.29 0.32 0.38 0.31 0.36 0.00 

6 0.35 0.39 0.34  0.31  0.29 0.38 0.33 0.37 0.00 
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Table S2.12: Values of population growth rate (rm) at 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.36 0.39 0.29 0.34 0.30 0.31 0.40 0.39 0.27 0.32 0.29 

2 0.36 0.38 0.31 0.35 0.00 0.32 0.32 0.39 0.30 0.34 0.00 

3 0.32 0.35 0.31 0.28 0.29 0.33 0.36 0.37 0.29 0.33 0.31 

4 0.32 0.37 0.32 0.00 0.00 0.30 0.36 0.00 0.28 0.00 0.33 

5 0.29 0.36 0.26  0.00 0.26 0.28 0.35 0.31 0.33 0.27 

6 0.24 0.37 0.32  0.22  0.30 0.36 0.34 0.35 0.26 
 

Table S2.13: Values of population growth rate (rm) at 22 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.00 0.00 0.24 0.21 0.00 0.00 0.11 0.30 0.00 0.23 0.20 

2 0.00 0.27 0.23 0.06 0.00 0.06 0.00 0.23 0.00 0.24 0.00 

3 0.00 0.34 0.08 0.00 0.14 0.20 0.00 0.30 0.17 0.19 0.22 

4 0.00 0.29 0.24 0.00 0.00 0.17 0.00 0.30 0.25 0.28 0.00 

5 0.23 0.39 0.14  0.08 0.22 0.00 0.32 0.00 0.28 0.00 

6 0.15 0.29 0.24  0.16  0.00 0.26 0.00 0.27 0.00 

 

Table S2.14: Median genetic variance (VG), environmental variance (VE) and phenotypic variance (VP) for total  
reproduction (R0). Numbers between brackets represents the 90% confidence interval.  

Cd concentration 
(µg Cd/L) 

VE VG VP 

0 523.03 [ 241.35 – 866.85 ] 300.51 [41.19 – 602.08 ] 840.25 [486.57 – 1162.26] 

1 621.38 [ 297.48 – 1052.08] 143.01 [1.17 – 306.34 ] 772.01 [425.63 – 1179.33 ] 

2.2 759.07 [ 410.42 – 1211.98 ] 204.04 [ 0 – 461.57 ] 987.53 [569.70 -1371.85 ] 

4.6 732.90 [504.98 – 953.94 ] 441.93 [ 48.45 – 954.45 ] 1173.55 [836.95 – 1560.24 ] 

10 510.48 [259.33 – 864.83 ] 382.43 [ 0 – 757.92 ] 893.11 [398.16 – 1469.08 ] 

22 25.03 [15.13 – 36.56 ] 18.95 [ 4.11 – 33.72 ] 45.15 [24.71 – 58.89 ] 
 

Table S2.15: Median genetic variance (VG), environmental variance (VE) and phenotypic variance (VP) for population 
growth rate (rm). Numbers between brackets represents the 90% confidence interval.  

Cd concentration  
(µg Cd/L) 

VE VG VP 

0 6.36E-03  
[5.78E-04 - 1.28E-02] 

5.07E-04  
[0 - 1.18E-04] 

6.95E-03  
[9.83E-04 - 1.26E-02] 

1 7.11E-03  
[6.63E-04 - 1.46E-02] 

1.16E-03  
[0 - 3.89E-04] 

8.30E-03  
[9.86E-04 -  1.69E-02] 

2.2 8.80E-03  
[9.20E-04 - 1.82E-02] 

2.80E-03  
[1.42E-04 - 6.45E-04] 

1.20E-02 
 [1.02E-03 - 2.11E-02] 

4.6 1.07E-02 

[4.09E-03 - 1.7E-02] 

2.70E-04  

[0 - 1.92E-03] 

1.11E-02  

[4.62E-03 - 1.72E-02] 

10 9.68E-03 
[4.16E-03 - 1.59E-02] 

1.85E-03  
[0 - 5.85E-03] 

1.15E-02  
[4.67 E-03 - 1.89 E-02] 

22 7.68E-03 
[4.65E-03 - 1.11E-02] 

7.42E-03  
[2.25E-03 - 1.64E-03] 

1.51E-02  
[9.94E-03 - 1.95E-02] 
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Supplementary Material S2.1 
 

Bootstrap resampling.  
 

The bootstrap procedure repeatedly draws random samples from the origingal data set with 
replacement. The number of ways the data set can be sampled is infinite, usually a thousand 

or more analyses are performed to arrive at stable average values for the parameter 
estimates and their standard errors. As our interest is in the among-clones variance, 
bootstrapping would be done over clones (Lynch et al., 1998; pp 570). Suppose the original 
dataset consists of n individuals. A bootstrap resample is generated drawning n values, with 

replacement from the original dataset. Such a sample will have some of the original values 
present multiple times and others not present at all. A series of N such samples are 
generated and an estimate is computed for each, generating a distribution of estimates.  
 

Example: In chapter 2, a total of 11 clones was used (with 10 replicates) and 5000 bootstrap 
resamples were used (see Table S2.16). At each bootstrap, the variance between (VG) and 
within (VE) clones was determined.  
 
Table S2.16: Example of first three bootstraps used in Chapter 2. At each bootstrap VG and VE are determined.  

 Bootstrap 
number 

Clone number 

Bootstrap 1 11 9 5 9 10 4 6 10 8 4 11 
Boostrap 2 4 6 1 5 5 4 3 8 7 9 1 

Bootstrap 3 1 2 11 9 11 3 4 1 10 3 8 

 
 
Method of moments 
 

Method of moments is a general procedure of estimating variance components from 
observed mean squares. Table S2.17. Presents the observed mean squares for unequal 

clones sizes.    
 
Table S1.17: Summary of one-way ANOVA involving N independent clones, the ith wich contains ni replicates.df is  
degrees of freedom, SS is sums of squares and E(MS) is expected mean squares.  

Factor df SS MS E(MS) 

Among clones N-1 
? ? ?  

    

Within-clones T-N 
? ? ?  

  

Total  T-1 
? ? ?  
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Table S3.1: Results of the preliminary 14-day chronic ecotoxicity test with Cd. Values represent chronic EC50  and EC10  
values (µg Cd/L) for the 3 D. magna clones tested. Numbers between brackets represents the 95 % confidence interval.  

Clone EC50 [95% C.I.] EC10 [95% C.I.] 

1 15.33 [10.76-21.84] 4.81 [2.36-9.85] 

2 12.55 [7.59-20.76] 3.16 [1.10-9.00] 

3 7.03 [5.8-8.52] 5.30 [4.48-6.37] 

 
Table S3.2: Physico-chemical characteristics of test media during the Cd exposure experiment. Values  represent mean ± 
standard deviation. 

 20 °C (Control) 20°C and Cd 24°C (Control) 24°C and Cd 

 New 

medium 

Old 

medium 

New 

medium 

Old 

medium 

New 

medium 

Old 

medium 

New 

medium 

Old 

medium 

Cd 
(µg Cd/L) 

<0.1  
 

<0.1  4.3 ± 0.2 2.9 ± 0.5 <0.1  <0.1  4.3 ± 0.2 2.9 ± 0.7 

DOC 
(mg C/l) 

3.7 ± 0.2 
 

5.4 ± 0.4 4.1 ± 0.1 5.0 ± 0.4 3.9 ± 0.2 5.7 ± 0.3 4.1 ± 0.4 5.1 ± 0.3 

pH 7.3 ± 0.4 
 

7.6 ± 0.5 7.5 ± 0.3 7.7 ± 0.4 7.5 ± 0.3 7.5 ± 0.4 7.4 ± 0.2 7.7 ± 0.3 

Dissolved 
oxygen  

(mg O2/l) 

8.9 
 

8.7 ± 0.3 8.7 9.0 ± 0.4 8.5 7.6 ± 0.3 8.6 8.1 ± 0.4 

 

Table S3.3: Values of reproduction during 21 days at 20°C. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 92 117 99 88 106 134 86 100 139 148 104 102 112 79 
2 91 97 98 128 114 150 98 76 131 152 92 86 86 90 

3 94 99 85 112 103 135 102 102 124 204 117 168 92 103 

4 99 112 109 110 117 133 129 103 115 186 138 124 119 95 

5 72 104 98 98 102 138 131 104 119 194 127 136 113 85 

6 85 101 98 128 110 150 101 102 122 180 139 133 117 100 

7  95 103 129 124 136 104 78 141 178 68 80 90 91 

8  88 105  133 98 102 119 125 162 82  107 97 

9  109 93  106  94 77  125 136  83  

10  109   93  88   123 118    
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Table S3.4: Values of rm at 20°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.38 0.37 0.43 0.40 0.40 0.44 0.37 0.37 0.44 0.38 0.38 0.40 0.42 0.35 

2 0.41 0.35 0.41 0.39 0.37 0.45 0.39 0.37 0.44 0.39 0.39 0.37 0.40 0.39 

3 0.42 0.36 0.42 0.42 0.40 0.45 0.40 0.41 0.41 0.41 0.42 0.42 0.43 0.38 

4 0.42 0.37 0.41 0.38 0.42 0.43 0.40 0.42 0.44 0.40 0.42 0.44 0.43 0.41 

5 0.38 0.35 0.39 0.41 0.39 0.44 0.41 0.41 0.42 0.41 0.42 0.43 0.43 0.36 

6 0.39 0.37 0.42 0.42 0.43 0.46 0.40 0.42 0.43 0.38 0.44 0.44 0.43 0.41 

7  0.37 0.42 0.43 0.45 0.41 0.41 0.38 0.43 0.39 0.41 0.42 0.44 0.38 

8  0.37 0.40  0.45 0.39 0.41 0.41 0.45 0.39 0.38  0.40 0.36 

9  0.38 0.38  0.37  0.37 0.43  0.39 0.43  0.44  

10  0.35   0.39  0.37   0.40 0.43    
 
Table S3.5: Values of reproduction at first brood at 20°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 14 13 15 10 16 16 13 12 14 14 12 16 18 16 

2 13 8 14 11 12 18 14 13 16 15 16 12 16 15 

3 14 9 13 13 10 19 15 12 11 15 12 23 15 21 

4 13 11 13 8 11 15 13 14 14 13 11 16 15 21 

5 16 10 12 11 11 16 16 11 13 15 14 16 16 12 

6 16 11 14 13 10 20 15 14 14 10 15 17 16 20 

7  12 13 14 14 13 17 16 14 12 13 14 15 14 

8  12 14  14 15 15 12 19 11 13  16 15 

9  11 13  8  11 16  14 12  17  

10  12   16  12   14 15    

 
Table S3.6: Values of size at day 21 at 20°C. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 4 4.34 4.11 4.35 3.96 4.17 4.07 4.18 4.36 3.97 4.39 4.56 4.19 3.87 
2 4.14 4.35 3.92 4.32 3.93 4.62 4.06 4.25 4.32 3.84 4.13 4.63 4.2 4.21 

3 3.87 4.16 4.35 4.41 4.05 4.19 4.13 4.38 4.18 4.21 4.28 4.45 4.28 4.23 

4 4.11 4.06 3.88 4.18 4.02 4.23 3.93 4.26 4.36 3.92 4.14 4.75 4.05 4.2 

5 3.74 4.15 3.83 4.51 4.08 4.03 3.98 4.11 4.27 3.91 4.33 4.41 4.21 4.08 

6 3.71 4.25 3.78 4.54 3.84 4.03 4.06 4.24 4.15 4.07 4.23 4.56 4.36 4.22 

7  4.18 4.18 4.15 3.9 4.06 4.15 4.26 4.15 4.08 3.77 4.3 4.18 4.07 

8  4.34 4.31  4.07 4.04 3.87 4.33 4.24 4.04 4.07  4.22 4.19 

9  4.2 3.85  4.22  4.33 4.21  3.81 4.3  4.25  

10  4.43   4.13  3.88   4.1 3.97    
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Table S3.7: Values of length at first brood at 20°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.35 3.07 2.89 3.00 3.14 3.30 3.23 3.22 3.17 3.25 3.22 3.25 3.14 3.38 

2 2.70 2.91 3.01 3.08 3.06 2.98 2.98 3.12 3.03 2.96 3.38 3.36 3.18 2.86 

3 2.94 3.06 3.20 3.33 2.78 3.28 3.13 3.02 3.22 3.08 3.06 3.44 3.33 3.47 

4 2.80 2.91 3.00 3.10 2.95 3.28 2.98 3.25 3.16 3.12 3.09 3.06 3.04 3.12 

5 3.26 2.84 2.99 3.17 2.85 3.19 3.11 2.89 3.04 2.88 3.04 3.26 3.26 3.24 

6 3.12 3.13 3.01 2.94 2.94 3.19 2.98 2.92 3.03 3.04 3.01 3.04 3.40 3.00 

7  3.14 2.79 2.99 3.09 3.30 3.10 3.03 3.20 2.93 2.85 3.02 3.15 3.24 

8  3.10 3.06  3.17 3.47 2.97 3.09 3.15 3.00 3.32  3.25 3.08 

9  3.17 3.23  2.79  3.15 3.08  2.97 3.20  3.32  

10  3.08   2.98  3.08   3.17 2.98    
 
Table S3.8: Values of time to first brood at 20°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8 8 7 7 8 7 8 8 7 8 8 8 8 8 

2 7 8 7 7 8 7 8 8 7 8 8 8 8 7 

3 7 8 7 7 7 7 8 7 7 8 7 8 7 8 

4 7 8 7 7 7 7 8 7 7 8 7 7 7 7 

5 8 8 7 7 7 7 8 7 7 8 7 7 7 7 

6 8 8 7 7 7 7 8 7 7 8 7 7 7 7 

7  8 7 7 7 8 8 7 7 8 7 7 8 7 

8  8 8  7 8 8 7 7 8 8  7 8 

9  8 8  7  8 7  8 7  8  

10  9   8  8   8 7    

 
Table S3.9: Values of reproduction during 21 days at 20°C and Cd. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 96 116 88 85 124 67 96 91 87 89 101 133 92 109 
2 117 91 112 106 132 66 99 95 152 76 107 101 109 95 

3 112 85 106 117 117 59 85 99 141 74 126 88 111 80 

4 97 137 134 92 117 51 113 111 125 87 132 121 111 83 

5 113 87 110 101 105 51 86 96 91 77 70 135 106 98 

6 109 81 115 104 98 61 120 102 120 76 77 87 84 92 

7 81 67 126 105 113 57 130 106 77 66 111 96 112 88 

8 90  96 108 104 47 92 92 83  136 99  92 

9   124  104 80 96 69 71  139 99  82 

10      62 93  114      
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Table S3.10: Values of rm at 20°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.42 0.40 0.40 0.42 0.41 0.42 0.37 0.41 0.42 0.35 0.39 0.37 0.37 0.40 

2 0.43 0.37 0.44 0.35 0.38 0.42 0.37 0.43 0.45 0.35 0.41 0.43 0.38 0.39 

3 0.42 0.36 0.41 0.40 0.41 0.45 0.36 0.43 0.42 0.35 0.42 0.41 0.41 0.34 

4 0.39 0.40 0.44 0.44 0.43 0.43 0.38 0.40 0.41 0.34 0.44 0.43 0.39 0.38 

5 0.43 0.39 0.42 0.42 0.36 0.42 0.36 0.43 0.44 0.33 0.37 0.44 0.36 0.40 

6 0.42 0.37 0.45 0.42 0.37 0.45 0.37 0.42 0.42 0.34 0.38 0.41 0.37 0.39 

7 0.39 0.38 0.41 0.42 0.40 0.39 0.39 0.43 0.43 0.34 0.41 0.40 0.40 0.39 

8 0.37  0.42 0.41 0.42 0.42 0.37 0.43 0.44  0.44 0.40  0.35 

9   0.44  0.39 0.44 0.37 0.38 0.44  0.44 0.38  0.35 

10      0.41 0.37  0.45      
 
Table S3.11: Values of reproduction at first brood at 20°C and Cd 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 14 16 16 12 10 18 12 7 11 12 14 15 9 17 

2 14 12 17 10 11 14 11 13 15 11 14 14 8 15 

3 13 9 12 11 10 17 11 13 11 11 13 17 11 12 

4 9 13 16 15 10 14 12 6 9 9 15 13 9 14 

5 14 10 14 14 9 12 11 10 13 7 12 15 8 19 

6 12 10 16 12 16 17 9 10 11 9 12 15 10 16 

7 13 11 14 12 5 10 14 12 12 8 15 12 13 16 

8 6  15 10 10 13 10 14 14  16 17  13 

9   16  15 14 11 7 13  15 9  12 

10      13 11  15      

 
Table S3.12: Values of size at day 21 at 20°C and Cd. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.69 4.05 4.13 3.95 3.95 4.03 4.11 3.7 3.79 3.94 4.27 4.4 4.11 3.88 
2 3.91 4.06 4.08 4.25 3.98 4.01 3.89 3.59 4.29 3.89 3.94 4.35 3.57 4.03 

3 4.07 3.73 4.03 4.04 4.09 4.19 3.83 4.14 4.3 4.01 4.18 4.45 3.97 3.97 

4 3.85 3.75 4.28 4.35 3.96 4.04 3.83 4 4.13 3.95 3.97 4.32 3.94 3.84 

5 3.97 3.39 4.13 4.3 4.2 4.25 3.88 4.03 4.2 3.85 4.06 4.63 4.03 4.02 

6 3.58 3.62 4.16 4.47 4.23 4.41 4.1 4.28 4.12 3.66 4.02 4.38 4 4.11 

7 3.75 3.77 4 4.64 4.09 4.01 4.14 4.11 3.92 3.81 3.96 4.54 3.93 3.61 

8 3.76  4.06 4.04 4 4.05 4.01 3.99 3.95  4.24 4.15  3.78 

9   3.95  4.11 4.02 3.98 3.95 4.18  4.08 4.31  3.78 

10      4.12 4.1  4.57      
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Table S3.13: Values of length at first brood at 20°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2.89 3.29 3.03 3.04 3.01 3.43 3.15 3.04 3 2.98 2.99 3.21 3.17 3.15 

2 2.76 3.06 3.02 3.1 3.13 3.35 3.2 3.02 3.09 2.95 3.13 3.22 3.12 3.04 

3 2.96 3.07 3.01 3.13 3.17 3.03 3.02 3.05 2.99 3.05 2.99 3.3 3.1 2.91 

4 3.17 3.21 3.1 3.17 2.94 3.39 3.02 2.82 2.84 3.01 3.09 3.24 3.09 3.04 

5 2.86 3.07 2.96 2.92 2.84 3.33 2.83 2.74 3.06 2.9 3.13 3.1 3.1 3.1 

6 2.89 2.82 3.13 2.99 3.14 3.41 3.04 2.76 3.12 2.89 2.98 3.33 3.07 3.13 

7 3 3.07 2.96 2.98 2.88 3.2 3.06 3.01 3.14 2.88 3.22 3.31 2.95 2.95 

8 2.92  2.96 3.15 2.92 3.17 2.9 3.01 3.11  3.28 3.51  2.75 

9   2.96  3.06 2.95 2.97 2.75 3.1  3.09 3.13  3.07 

10      3.41 2.96  3.15      
 
Table S3.14: Values of time to first brood at 20°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7 8 8 7 7 8 8 8 7 9 8 8 8 8 

2 7 8 7 10 8 8 8 8 7 9 8 7 7 8 

3 7 8 7 7 7 7 8 8 7 9 7 8 7 9 

4 7 8 7 7 7 7 8 8 7 9 7 7 7 8 

5 7 8 7 7 8 7 8 8 7 9 8 7 8 8 

6 7 8 7 7 9 7 8 8 7 9 7 8 8 8 

7 8 8 8 7 7 8 8 8 7 9 7 8 8 8 

8 7  7 7 7 7 8 8 7  7 8  9 

9   7  8 7 8 8 7  7 8  9 

10      8 8  7      

 
 
Table S3.15: Values of Reproduction during 21 days at 24°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 105 130 118 124 136 119 128 123 114 118 101 138 134 88 

2 110 156 116 125 158 126 119 115 103 96 127 131 126 99 

3 112 126 107 126 177 104 140 114 122 144 105 123 131 99 

4 91 142 113 107 162 107 112 109 121 120 186 118 138 91 

5 109 170 123 112 160 151 119 105 105 94 158 70 137 94 

6 87 149 101 97  75 118 120 107 116 151 107 140 89 
7 103 136 109 90  106 112 110 86 127 177 110 123 110 

8 88 169 105   106 119 118 107 100 149 112   

9  125 105     117 121 100 151 100   

10  155      115 112   107   
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Table S3.16: Values of rm at 24°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.39 0.43 0.48 0.46 0.48 0.47 0.42 0.45 0.47 0.52 0.47 0.48 0.44 0.44 

2 0.44 0.44 0.42 0.49 0.42 0.48 0.40 0.45 0.47 0.49 0.45 0.48 0.43 0.45 

3 0.45 0.41 0.48 0.48 0.49 0.44 0.45 0.52 0.49 0.45 0.47 0.46 0.42 0.45 

4 0.46 0.44 0.42 0.49 0.54 0.45 0.47 0.46 0.49 0.52 0.50 0.46 0.41 0.44 

5 0.41 0.42 0.43 0.50 0.47 0.47 0.45 0.51 0.51 0.49 0.56 0.47 0.40 0.44 

6 0.41 0.43 0.46 0.31  0.47 0.43 0.49 0.51 0.47 0.48 0.46 0.44 0.41 

7 0.46 0.47 0.42 0.45  0.43 0.47 0.47 0.51 0.51 0.49 0.45 0.42 0.40 

8 0.41 0.47 0.42   0.45 0.43 0.44 0.52 0.51 0.51 0.47   

9  0.43 0.43     0.51 0.50 0.46 0.48 0.46   

10  0.42      0.50 0.49   0.45   
 
Table S3.17: Values of reproduction at first brood at 24°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 10 11 14 9 9 21 13 18 10 16 13 13 8 10 

2 9 10 12 13 14 12 13 18 11 11 17 8 7 11 

3 12 8 14 11 9 10 15 14 14 16 12 11 6 11 

4 12 13 12 12 9 19 10 10 13 14 11 10 7 10 

5 7 8 14 13 20 19 16 13 14 10 12 11 7 10 

6 11 8 12 8  10 14 11 12 11 8 11 7 7 

7 12 10 11 19  16 13 11 14 14 9 9 10 17 

8 15 10 12   12 14 16 15 13 7 11   

9  10 14     13 10 10 9 10   

10  9      12 14   10   

 
Table S3.18: Values of size at day 21 at 24°C. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.93 4.31 4.17 4.14 4.28 4.23 4.14 4.28 4.25 4.04 4.09 4.34 3.99 3.86 
2 4.04 426 3.99 3.94 4.06 3.89 3.95 4.08 4.16 4.2 4.15 3.93 4.37 3.89 

3 4.08 4.56 4.03 4.12 4.1 4.3 4.02 4 3.85 4.17 4.15 4.25 4.43 4.29 

4 3.73 4.32 4.39 4.27 4.07 4.17 4.06 4.06 4.09 4.24 4.45 4.73 4.38 3.96 

5 4.33 3.97 4.19 3.98 3.96 3.97 3.89 4.04 4.14 3.96 4.13 4.18 4.31 4.07 

6 3.98 3.97 4.14 3.99  4.18 4.19 4.34 4.16 4 4.06 4.27 3.88 3.82 

7 4.22 4.18 4.28 3.91  4.22 3.71 4.15 4.25 4.29 4.1 4.57 4.28 3.75 

8 3.96 3.91 4.07   4.29 3.8 4.17 4.37 3.98 4.39 4.54   

9  4.19 4.09     4.17 4 3.9 4.41 4.52   

10  4.36      3.94 3.94   3.5   
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Table S3.19: Values of length at first brood at 24°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2.98 2.85 3.29 2.96 2.86 3.44 2.97 3.11 3.05 3.03 2.88 3.19 3.16 2.93 

2 3.15 3.03 2.91 2.88 3 2.96 2.73 3.03 2.98 2.9 2.99 2.92 3 2.84 

3 3.05 2.91 3.01 2.97 2.91 2.96 2.94 2.9 2.94 2.87 3.21 2.88 2.79 3.09 

4 3.2 2.97 3.02 3.02 2.9 3.1 2.53 2.87 3.03 3.07 2.74 2.9 3 2.79 

5 2.92 2.87 2.65 2.96 3.18 3.32 2.8 2.9 3.04 3.02 3.06 3.02 2.87 2.85 

6 3.11 2.98 3.1 3.28  3.15 3.14 3 2.98 3.12 3.14 3.21 3.1 2.89 

7 3.05 2.87 2.75 3.12  3.17 2.64 2.91 2.76 2.89 3 3.11 2.88 2.84 

8 2.96 2.85 2.91   2.81 2.88 2.95 2.95 3.06 2.94 3.07   

9  2.83 2.97     2.91 2.92 2.84 3.08 3.04   

10  2.88      2.92 2.85   2.91   
 
Table S3.20: Values of time to first brood at 24°C. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7 7 6 6 6 7 7 7 6 6 6 6 6 6 

2 6 7 7 6 8 6 8 7 6 6 7 6 6 6 

3 6 7 6 6 6 6 7 6 6 7 6 6 6 6 

4 6 7 7 6 6 7 6 6 6 6 6 6 7 6 

5 6 7 7 6 7 7 7 6 6 6 5 6 7 6 

6 7 7 6 10  6 7 6 6 6 6 6 6 6 

7 6 6 7 7  7 6 6 6 6 6 6 7 8 

8 7 6 7   6 7 7 6 6 5 6   

9  7 7     6 6 6 6 6   

10  7      6 6   6   

 
Table S3.21: Values of Reproduction during 21 days at 24°C and Cd. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 73 119 97 106 106 67 111 103 109 113 29 138 91 76 
2 86 122 104 118 106 99 101 77 100 102 70 133 115 70 

3 97 95 110 108 133 27 106 93 107 107 110 157 83 88 

4 70 124 94 112 114 58 108 77 108 106 46 141 95 73 

5 81 100 101 111 104 87 96 97 101 110 79 119 122 78 

6 90 75 132 109  44 107 83 99 69 11 125 123 51 

7 84 120 95 108  31 102 99 78 104 90 125 103 77 

8 79 102 105 125  81 112 46 97 73 59 137 106  

9 83   138  82 100 88 106 109   111  

10      54 90 89 107 104     
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Table S3.22: Values of rm at 24°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.42 0.44 0..45 0.47 0.43 0.48 0.43 0.48 0.43 0.44 0.42 0.41 0.39 0.41 

2 0.45 0.42 0.46 0.47 0.42 0.45 0.40 0.46 0.46 0.46 0.43 0.41 0.38 0.35 

3 0.48 0.45 0.47 0.45 0.45 0.42 0.43 0.50 0.46 0.39 0.45 0.44 0.41 0.40 

4 0.45 0.42 0.42 0.48 0.43 0.46 0.42 0.47 0.46 0.43 0.43 0.42 0.40 0.39 

5 0.43 0.44 0.43 0.49 0.43 0.47 0.40 0.48 0.44 0.46 0.41 0.39 0.45 0.41 

6 0.43 0.42 0.43 0.48  0.43 0.40 0.47 0.45 0.43 0.37 0.39 0.46 0.37 

7 0.42 0.48 0.41 0.43  0.39 0.43 0.40 0.45 0.39 0.39 0.39 0.42 0.42 

8 0.43 0.45 0.46 0.47  0.44 0.43 0.50 0.45 0.41 0.48 0.41 0.42  

9 0.42   0.49  0.46 0.43 0.39 0.47 0.40   0.38  

10      0.47 0.41 0.46 0.41 0.43     
 
Table S3.23: Values of reproduction at first brood at 24°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7 8 11 10 8 13 12 9 11 8 11 10 8 7 

2 9 9 12 9 7 10 8 7 9 9 11 9 9 4 

3 10 8 12 9 16 14 12 8 10 10 9 10 7 6 

4 8 9 12 11 8 9 11 9 10 9 11 11 8 5 

5 7 8 8 12 7 11 7 10 7 11 9 9 9 6 

6 10 7 15 12  16 6 9 9 9 9 10 10 5 

7 12 8 9 9  12 12 10 9 10 9 9 7 8 

8 9 5 12 10  9 7 12 11 9 11 10 8  

9 6   11  12 13 11 11 11   9  

10      13 9 8 9 9     

 
Table S3.24: Values of size at day 21 at 24°C and Cd. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.54 4.14 4.04 3.9 3.69 4.4 3.53 4.02 4.13 4.06 3.67 4.35 4.03 3.63 
2 3.8 3.77 3.94 3.85 3.79 3.84 3.73 4.06 4.03 3.57 3.97 4.33 4.59 3.56 

3 3.72 3.99 3.66 3.8 4.04 4.12 3.73 3.94 4.12 3.95 4.04 4.54 4.42 3.72 

4 3.51 3.96 3.72 3.77 3.84 3.74 3.8 3.85 3.85 3.91 4.08 4.21 4.23 3.55 

5 3.67 3.63 3.85 4.03 3.63 4.03 4 4.03 4 3.85 3.8 4.14 4.21 3.71 

6 3.64 3.92 4.08 4.11  3.62 3.94 3.96 4.16 3.73 3.49 4.38 4.32 3.46 

7 3.4 4.03 3.91 3.88  3.96 3.87 3.91 3.81 4.03 3.64 4.47 4.1 3.67 

8 3.78 3.75 3.79 4.03  4.02 3.83 3.94 4.18 3.92 3.92 4.28 4.19  

9 3.75   3.85  4 3.93 3.93 4.19 3.99   4.01  

10      4.21 3.57 3.85 3.89 3.99     
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Table S3.25: Values of length at first brood at 24°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2.88 2.76 2.91 2.87 2.64 2.81 2.76 2.75 2.87 2.73 2.91 3 2.86 2.74 

2 2.7 2.66 2.95 3.07 2.95 2.89 2.8 2.8 2.88 2.92 2.96 3.07 3.04 2.84 

3 2.81 2.79 3 3.08 2.61 3.07 2.89 2.73 2.85 3.02 2.97 3.03 2.93 2.64 

4 2.91 2.96 2.8 3.1 3.38 3 2.94 2.8 2.91 2.68 2.88 2.98 2.97 2.68 

5 2.8 2.81 2.99 2.91 2.68 2.79 2.8 3.05 2.82 2.99 2.89 2.97 2.92 2.69 

6 2.77 2.8 3.02 2.91  3.28 2.92 2.96 3 2.82 3.19 3.05 3.07 2.51 

7 2.82 2.65 2.82 2.98  3.13 2.88 2.68 2.98 2.78 2.74 2.9 2.99 2.68 

8 2.89 2.74 2.93 2.85  3 2.88 2.82 2.57 2.68 3.15 2.84 2.91  

9 2.74   3.01  2.95 2.83 2.7 2.5 2.76   3.11  

10      3 2.68 2.6 2.93 2.64     
 
Table S3.26: Values of time to first brood at 24°C and Cd. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6 6 6 6 6 6 7 6 7 6 6 7 7 6 

2 6 7 6 6 6 6 7 6 6 6 6 7 7 6 

3 6 6 6 6 7 7 7 6 6 7 6 7 7 6 

4 6 7 6 6 6 6 7 6 6 6 6 7 6 6 

5 6 6 6 6 6 6 7 6 6 6 6 7 6 6 

6 6 6 7 6  7 7 6 6 6 6 7 6 6 

7 7 6 7 6  7 7 7 6 7 6 7 6 6 

8 6 6 6 6  6 6 6 6 7 6 7 6  

9 6   6  6 7 7 6 7   7  

10      6 7 6 7 6     

 
 
Table S3.27: 5th and 95th genetic correlation coefficient between environments of rm The ρ-values of 95 pt and 5 pt are 
given left and right of the diagonal, respectively.  

  Genetic correlation coefficient – 5pt 

  T20 T20Cd T24 T24Cd 

G
e

n
e

ti
c 

co
rr

e
la

ti
o

n
 

co
e

ff
ic

ie
n

t 
–

 9
5

p
t 

T20  0.41 -0.15 -0.30 

T20Cd 0.98  -0.42 0.37 

T24 0.81 0.85  -0.18 

T24Cd 0.74 0.89 0.69  
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Supplementary material S3.28 
 

Power analysis for comparing between-trait genetic correlations among environments 
 

We calculated the statistical power for detecting a significant difference of a between-trait 
genetic correlation (ρtrait1,trait2) among two environments as follows. All calculations and 

calculations described below were programmed in MATLAB.  
 
We randomly sampled N clone means for traits 1 and 2 in both environments from a 
multivariate normal distribution using the observed population means of both traits in both 

environments (see Table 1 of main text), the observed genetic variances of both traits in 
both environments (see Figure 1 of main text), and the observed 4x4 matrix of Pearson 
product-moment correlations between clone means (among both traits and both 
environments, data not shown) as the parameters. The correlated sampling was performed 

using the Gaussian copula function (Nelsen RB, 1999, An introduction to copulas. Springer, 
New York, 216p.) in MATLAB (copularnd).  
 
In the next step, 10 random samples, representing the individual daphnids of a given clone, 
were drawn from a normal distribution with the simulated clone mean (obtained in the 

previous step) and the observed residual variance (data not shown) as the parameters. This 
step was performed for all N clones, for both traits and for both environments. As such a 
randomly sampled dataset of trait values was obtained with dimensions 2 (traits) x 2 
(environments) x N (clones) x 10 (individuals). This simulated dataset was the input to the 
same bootstrapping procedure for calculating ρtrait1,trait2 for the two environments and the 
same statistical analysis for comparing these among those environments (see 2.4 in main 

text). The outcome of this analysis (statistically different or not) was stored and the whole 
procedure was repeated 100 times. The number of calculations in which a statistically 
significant difference (p=0.05) was observed was divided by 100 to yield the power. 
 

This entire procedure was performed for all possible between-trait correlations (with 6 
traits, this gives 15 correlations in total) and comparisons of ρtrait1,trait2 were made between 

the control and Cd treatment. This was performed for both 20°C and 24°C. Calculations were 
done for N= 14, 30, 45, 60, 75, 90, 120, 150, and 200. Thus, we obtained a total of 30 power-
curves (ρ vs. N) that are representative for the 6 traits investigated in our study (Figure S3.1). 

S.  
 

At N=14, which was the number of clones used in our present study, the highest power 
observed was as low as 0.27 (Figure S1). The commonly used design target of a power of 
b=0.8 is only reached for N = 60 or higher. Obviously, the exact sample size required to reach 
b=0.8 is also dependent on the absolute difference in ρtrait1,trait2 values between the two 

environments, i.e. abs(ρtrait1,trait2,control - ρtrait1,trait2,Cd). Indeed for any given N, ρ increases with 
increasing absolute difference in ρtrait1,trait2: the power to detect a statistically significant 

difference increases with increasing difference in ρtrait1,trait2 values. Figure S2, based on the 
same simulated data as presented in Figure S1,  illustrates this for N=14, N=45 and N=200 
(plots for other N not shown).  
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Performing breakpoint linear regression (Figure S2) on these plots made for all N yields the 
absolute difference in ρtrait1,trait2 values between the two environments that can be detected 

with a typical target power of ρ = 0.8 as a function of N (Figure S3). This Figure indicates for 
example that with a sample size of N= 60 clones, one has a probability of 80% (b=0.8) to 

detect an absolute difference in ρtrait1,trait2 values of 0.68 as a statistically significant 
difference. At a sample size of N=200 clones absolute differences in ρtrait1,trait2 values down to 

0.32 can be detected.     
 
 

 
Figure S3.1: Statistical power to detect significant differences of between-trait correlation among two environments as a 
function of N. Different curves represent calculations for the 30 between-trait correlations investigated in our study.  

 
 

 
Figure S3.2: Statistical power to detect significant differences as a function of the absolute difference of the between-
trait correlation among the two environments. Black empty squares are fitted breakpoint linear regressions. 
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Figure S3.3: The absolute difference of between-trait correlation among two environments that can be detected as  
significant with a power = 0.8. Empty diamonds are for all N for which none of the 30 calculations yielded a power 
b equal to or higher than 0.8.   
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Table S4.1: Physico-chemical characteristics of test media during the Cd exposure experiment. Values  represent mean ± 
standard deviation. NM is new medium. OM is old medium.  

Nominal Cd 

concentration 
(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 

(µg Cd/L) 

Mean Cd 

concentration 
(µg Cd/L) 

0 NM 4.68  < D.L. 0.00 

OM 5.33 ± 0.42 7.47 ± 0.13 < D.L. 

5 NM 4.7  4.52 ± 0.07 3.64 

OM 5.62 ± 0.41 7.53 ± 0.17 2.76 ± 0.03 

0 NM 4.62  < D.L. 0.00 

OM 5.41 ± 0.51 7.46 ± 0.17 < D.L. 

5 NM 4.58  4.56 ± 0.08 3.81 

OM 5.41 ± 0.38 7.61 ± 0.15 3.05 ± 0.08 
 

Table S4.2: Values of total reproduction at 20°C. 

Clone 

Replicate 

A B C D F G H J K N 

1 93 117 61 116 113 137 68 126 72 92 

2  127 33 132 115 105 96 120 104 78 

3 92 111 161 24 105 108 67 110 152 78 

 

Table S4.3: Values of total reproduction at 20°C. 

Clone 
Replicate 

O P R S U V W Y E I 

1 136 88 135 141 149 48 211 124 125  

2 27 37  122 179 97 182 142 136  

3  58  75  58  121 143  

 

Table S4.4: Values of total reproduction at 20°C. 

Clone 

Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 109 71 46 110  108 116  140 126 

2 111 78  0 140 127 109  168 114 

3 119 60  79  131 117 109 114 113 

 

Table S4.5: Values of total reproduction at 20°C. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 139 84 134 117 25 114  158 168 151 

2 0  111 135 113 0 114 151 128 137 

3 96 80 112 99 98 95  151 148 118 
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Table S4.6: Values of total reproduction at 20°C. 

Clone 
Replicate 

BA OA GW KE PV JH JY EN VF CE 

1  84 66 135 60 116  29 125 166 

2  61 135 104 52 87 145 14 104 113 

3  34 0 127 67 101 118 2 112 92 

 

Table S4.7: Values of total reproduction at 20°C. 

Clone 
Replicate 

FY FD SP HR SD NA RN DA NU 

1 121 134 119 146 132 96 129 117 127 

2   124 152 133  118 115 145 

3  102 118 43 131 97 189 121  

 

Table S4.8: Values of total reproduction at 20°C +Cd. 

Clone 
Replicate 

A B C D F G H J K N 

1 84 90 83 123 111 120 93 98 61 102 

2  87 82 89 107 89 94 103 95 84 

3 84 70 44 103 78 99 103 110 89 113 

 

Table S4.9: Values of total reproduction at 20°C +Cd. 

Clone 
Replicate 

O P R S U V W Y E I 

1 103 72 48 97 123 88 121 108 60  

2 124 72  107 155 82 146 128 46  

3  33  117  81 21 126 57  

 

Table S4.10: Values of total reproduction at 20°C +Cd. 

Clone 

Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 100 87 0   93 89  0 61 

2 74 98  42 16 67 72  0 0 

3 105 85  49  95 54 83 126 66 
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Table S4.11: Values of total reproduction at 20°C +Cd. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 125 81 100 0 116 77  90 120 88 

2 0  116 102 123 68  93 111 87 

3 115  91 87 94 4  106 92 85 

 

Table S4.12: Values of total reproduction at 20°C +Cd. 

Clone 

Replicate 

BA OA GW KE PV JH JY EN VF CE 

1  52 97 68 90 113  28 61 117 

2  55 92 103 82 83 83 27 78 101 

3  61 0 103 64 80 81 6 90 0 

 

Table S4.13: Values of total reproduction at 20°C +Cd. 

Clone 
Replicate 

FY FD SP HR SD NA RN DA NU 

1 107 92 90 101 140 82 72 48 142 

2   91 107 129 95 111 31 96 

3  29 137 123 119 85 114 31  

 

Table S4.14: Values of total reproduction at 24°C. 

Clone 
Replicate 

A B C D F G H J K N 

1 144 109 76 144 136 110 156 120 148 159 

2 140 103 91 171 24 111 135 109 138 161 

3 16  152 179 114 101 154 114 161 151 

 

Table S4.15: Values of total reproduction at 24°C. 

Clone 

Replicate 

O P R S U V W Y E I 

1 183 109 30 129 105 112 148 136 120  

2 175 98 86 131 90 92 115 169 138  

3 84 95 43 124 156 80  164 125  
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Table S4.16: Values of total reproduction at 24°C. 

Clone 
Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 86 94  72 165 99 89 206 0 67 

2 133 76  98 161 100 117 0 75 76 

3 162 77  76 0 67 102 116 0  

 

Table S4.17: Values of total reproduction at 24°C. 

Clone 

Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 126 70 99 73 119 0 137 155 120 148 

2 0 106 147 91 49  141 0 119 152 

3 132 80 177 164 121  97 142 122 0 

 

Table S4.18: Values of total reproduction at 24°C. 

Clone 
Replicate 

BA OA GW KE PV JH JY EN VF CE 

1 23 6 154 141 72 0 93 0 98 21 

2 63 0 91 75 106 137 162 5 97 81 

3  42  75 51 103 115  33 66 

 

Table S4.19: Values of total reproduction at 24°C. 

Clone 
Replicate 

FY FD SP HR SD NA RN DA NU 

1 144 98 135 213 147 35 47 126 72 

2 125 102 93 93 127 36 102 142 86 

3 135 110  148 107 102 148 148 22 

 

Table S4.20: Values of total reproduction at 24°C and Cd. 

Clone 

Replicate 

A B C D F G H J K N 

1 7 1 0 18 7 0 13 102 8 9 

2 5 16 0 12 10 0 22 39 0 4 

3 28  89 0 10 0 10 33 0 0 
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Table S4.21: Values of total reproduction at 24°C and Cd. 

Clone 
Replicate 

O P R S U V W Y E I 

1 0 4 0 4 7 0 3 12 3  

2 0 4 0 6 8 6 0 0 6  

3 0 3 0 0 8 0  12 4  

 

Table S4.22: Values of total reproduction at 24°C and Cd. 

Clone 

Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 0 0  0 0 6 7 8 0 28 

2 2 5  5 0 0 6 38 43 19 

3 0 0  14 0 14 1 3 0  

 

Table S4.23: Values of total reproduction at 24°C and Cd. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 0 0 7 0 10 0 8 13 35 7 

2 0 48 14 0 0  6 10 31 45 

3 2 78 29 5 0  4 4 5 55 

 

Table S4.24: Values of total reproduction at 24°C and Cd. 

Clone 
Replicate 

BA OA GW KE PV JH JY EN VF CE 

1 32 21 3 6 14 74 0 0 15 18 

2 12 68 0 7 3 71 3 0 28 20 

3  0  8 62 58 1  6 0 

 

Table S4.25: Values of total reproduction at 24°C and Cd. 

Clone 

Replicate 

FY FD SP HR SD NA RN DA NU 

1 10 26 2 7 65 0 8 0 5 

2 0 15 0 10 36 6 0 0 13 

3 0 0  6 0 4 0 0 3 

 

 

 

 



Supplementary Material  

220 
 

Table S4.26: Values of population growth rate at 20°C. 

Clone 
Replicate 

A B C D F G H J K N 

1 0.36 0.34 0.34 0.38 0.35 0.35 0.33 0.38 0.36 0.39 

2  0.31 0.31 0.39 0.34 0.37 0.35 0.35 0.43 0.35 

3 0.36 0.29 0.42 0.33 0.35 0.36 0.34 0.35 0.43 0.36 

 

Table S4.27: Values of population growth rate at 20°C. 

Clone 
Replicate 

O P R S U V W Y E I 

1 0.46 0.40 0.44 0.53 0.47 0.41 0.48 0.43 0.46  

2 0.40 0.35  0.50 0.45 0.36 0.45 0.40 0.46  

3  0.39  0.39  0.43  0.41 0.45  

 

Table S4.28: Values of population growth rate at 20°C. 

Clone 
Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 0.46 0.41 0.35 0.45  0.37 0.40  0.44 0.49 

2 0.43 0.41  0.00 0.40 0.39 0.34  0.39 0.34 

3 0.45 0.39  0.42  0.39 0.42 0.43 0.44 0.41 

 

Table S4.29: Values of population growth rate at 20°C. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 0.38 0.36 0.42 0.41 0.39 0.34  0.42 0.44 0.41 

2 0.00  0.40 0.36 0.42 0.00 0.43 0.37 0.40 0.41 

3 0.42 0.36 0.39 0.33 0.41 0.31  0.48 0.40 0.44 

 

Table S4.30: Values of population growth rate at 20°C. 

Clone 
Replicate 

BA OA GW KE PV JH JY EN VF CE 

1  0.40 0.44 0.43 0.40 0.41  0.32 0.46 0.38 

2  0.36 0.42 0.40 0.53 0.38 0.41 0.22 0.45 0.35 

3  0.35 0.00 0.43 0.33 0.40 0.43 0.08 0.50 0.37 
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Table S4.31: Values of population growth rate at 20°C and Cd. 

Clone 
Replicate 

A B C D F G H J K N 

1 0.33 0.33 0.33 0.37 0.36 0.34 0.33 0.37 0.33 0.37 

2  0.34 0.34 0.36 0.34 0.34 0.34 0.35 0.38 0.35 

3 0.38 0.32 0.29 0.35 0.36 0.34 0.35 0.35 0.37 0.37 

 

Table S4.32: Values of population growth rate at 20°C and Cd. 

Clone 
Replicate 

O P R S U V W Y E I 

1 0.37 0.37 0.38 0.42 0.40 0.42 0.31 0.42 0.43  

2 0.43 0.37  0.41 0.43 0.41 0.41 0.42 0.40  

3  0.35  0.40  0.43 0.29 0.40 0.43  

 

Table S4.33: Values of population growth rate at 20°C and Cd. 

Clone 
Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 0.45 0.39 0.00   0.33 0.34  0.00 0.35 

2 0.41 0.38  0.33 0.33 0.36 0.38  0.00 0.00 

3 0.42 0.38  0.38  0.36 0.35 0.41 0.46 0.40 

 

Table S4.34: Values of population growth rate at 20°C and Cd. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 0.36 0.34 0.39 0.00 0.43 0.36  0.37 0.42 0.34 

2 0.00  0.45 0.35 0.42 0.33  0.37 0.38 0.38 

3 0.39  0.40 0.33 0.37 0.12  0.41 0.41 0.36 

 

Table S4.35: Values of population growth rate at 20°C and Cd. 

Clone 

Replicate 

RJ BA OA GW KE PV JH JY EN VF CE 

1 0.34  0.33 0.42 0.45 0.41 0.39  0.25 0.47 0.37 

2 0.38  0.34 0.39 0.39 0.52 0.33 0.42 0.25 0.45 0.36 

3 0.36  0.36 0.00 0.41 0.32 0.34 0.41 0.15 0.41 0.00 
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Table S4.36: Values of population growth rate at 20°C and Cd. 

Clone 
Replicate 

FY FD SP HR SD NA RN DA NU 

1 0.39 0.39 0.40 0.42 0.42 0.30 0.39 0.35 0.42 

2   0.50 0.43 0.42 0.34 0.41 0.36 0.43 

3  0.26 0.40 0.44 0.44 0.34 0.41 0.33  

 

Table S4.37: Values of population growth rate at 24°C. 

Clone 
Replicate 

A B C D F G H J K N 

1 0.41 0.49 0.49 0.51 0.43 0.44 0.49 0.45 0.49 0.44 

2 0.43 0.48 0.48 0.44 0.41 0.49 0.46 0.46 0.41 0.44 

3 0.25  0.00 0.44 0.44 0.53 0.49 0.45 0.42 0.44 

  

Table S4.38: Values of population growth rate at 24°C. 

Clone 
Replicate 

O P R S U V W Y E I 

1 0.45 0.44 0.40 0.50 0.47 0.43 0.42 0.51 0.42  

2 0.47 0.47 0.38 0.44 0.46 0.42 0.46 0.54 0.42  

3 0.41 0.45 0.41 0.45 0.51 0.44  0.49 0.42  

 

Table S4.39: Values of population growth rate at 24°C. 

Clone 
Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 0.42 0.45  0.31 0.42 0.34 0.39 0.45 0.00 0.44 

2 0.41 0.47  0.45 0.41 0.38 0.45 0.00 0.42 0.42 

3 0.45 0.38  0.36 0.00 0.28 0.44 0.40 0.00  

 

Table S4.40: Values of population growth rate at 24°C. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 0.43 0.42 0.45 0.44 0.40 0.00 0.48 0.45 0.45 0.42 

2 0.00 0.36 0.43 0.39 0.55  0.50 0.00 0.46 0.44 

3 0.48 0.43 0.44 0.43 0.47  0.44 0.43 0.48 0.00 
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Table S4.41: Values of population growth rate at 24°C. 

Clone 
Replicate 

BA OA GW KE PV JH JY EN VF CE 

1 0.36 0.14 0.43 0.46 0.42 0.00 0.46 0.00 0.44 0.30 

2 0.46 0.00 0.51 0.43 0.47 0.45 0.42 0.09 0.44 0.38 

3  0.24  0.45 0.42 0.48 0.52  0.43 0.37 

 

Table S4.42: Values of population growth rate at 24°C. 

Clone 

Replicate 

FY FD SP HR SD NA RN DA NU 

1 0.52 0.42 0.45 0.51 0.57 0.29 0.48 0.48 0.38 

2 0.48 0.45 0.43 0.49 0.54 0.47 0.46 0.49 0.48 

3 0.46 0.47  0.48 0.49 0.43 0.50 0.46 0.40 

 

Table S4.43: Values of population growth rate at 24°C and Cd. 

Clone 
Replicate 

A B C D F G H J K N 

1 0.19 0.00 0.00 0.40 0.28 0.00 0.17 0.32 0.30 0.31 

2 0.13 0.00 0.00 0.34 0.33 0.00 0.18 0.26 0.00 0.20 

3 0.21  0.37 0.00 0.33 0.00 0.15 0.25 0.00 0.00 

 

Table S4.44.: Values of population growth rate at 24°C and Cd. 

Clone 
Replicate 

O P R S U V W Y E I 

1 0.00 0.20 0.00 0.17 0.28 0.00 0.09 0.35 0.16  

2 0.00 0.20 0.00 0.26 0.26 0.18 0.00 0.00 0.22  

3 0.00 0.16 0.00 0.00 0.23 0.00  0.41 0.20  

 

Table S4.45.: Values of population growth rate at 24°C and Cd. 

Clone 
Replicate 

CW EF EY RK IH NK GV RD ID FN 

1 0.00 0.00  0.00 0.00 0.20 0.19 0.30 0.00 0.39 

2 0.10 0.23  0.23 0.00 0.00 0.22 0.31 0.25 0.38 

3 0.00 0.00  0.16 0.00 0.16 0.00 0.16 0.00  
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Table S4.46: Values of population growth rate at 24°C and Cd. 

Clone 
Replicate 

SY AW DU HU YW IS EW CR RU RJ 

1 0.00 0.00 0.28 0.00 0.33 0.00 0.30 0.27 0.32 0.12 

2 0.00 0.27 0.32 0.00 0.00  0.24 0.28 0.29 0.24 

3 0.10 0.33 0.39 0.18 0.00  0.20 0.17 0.20 0.27 

 

Table S4.47: Values of population growth rate at 24°C and Cd. 

Clone 

Replicate 

BA OA GW KE PV JH JY EN VF CE 

1 0.23 0.18 0.06 0.30 0.22 0.38 0.00 0.00 0.25 0.25 

2 0.32 0.36 0.00 0.28 0.14 0.28 0.08 0.00 0.32 0.17 

3  0.00  0.14 0.29 0.30 0.00  0.26 0.00 

 

Table S4.48: Values of population growth rate at 24°C and Cd. 

Clone 
Replicate 

FY FD SP HR SD NA RN DA NU 

1 0.30 0.42 0.10 0.32 0.34 0.00 0.35 0.00 0.23 

2 0.00 0.32 0.00 0.38 0.27 0.30 0.00 0.00 0.37 

3 0.00 0.00  0.26 0.00 0.15 0.00 0.00 0.18 

 

Table S4.49: Asymptotic covariance matrix of estimates of total reproduction at 20°C.  

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 36486 -30338 -1210.01 

dominance genetic 

variance 

 328158 -22477 

residual genetic variance   18966 
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Table S4.50: Asymptotic covariance matrix of estimates of total reproduction at 20°C and Cd.  

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 28896 -23348 -1091.66 

dominance genetic 

variance 

 166955 -29044 

residual genetic variance   20595 

 

Table S4.51: Asymptotic covariance matrix of estimates of total reproduction at 24°C. 

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 79451 -27317 -13522 

dominance genetic 

variance 

 353691 -58597 

residual genetic variance   69360 

 

Table S4.52: Asymptotic covariance matrix of estimates of total reproduction at 24°C and Cd. 

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 2589.7921 

 

-2471.69 80.5209 

dominance genetic 

variance 

 11722 -1485.30 

residual genetic variance   908.21 
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Table S4.53: Asymptotic covariance matrix of estimates of population growth rate at 24°C. 

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 1.4E-05 -2.84E-06 -1.86E-06 

dominance genetic 

variance 

 4.8E-05 -9.77E-06 

residual genetic variance   5.00E-06 

 

Table S4.54: Asymptotic covariance matrix of estimates of population growth rate at 24°C and Cd. 

Covariance parameters additive genetic 

variance 

dominance genetic 

variance 

residual genetic 

variance 

additive genetic variance 5.51E-06 -4.53E-06 -2.18E-07 

dominance genetic 

variance 

 3.70E-05 -4.41E-06 

residual genetic variance   3.65E-06 

 

S4.1.: The Animal model 

 

Theory  

 

Assuming a single fixed factor (the population mean µ), and assuming a single observation for each 

individual i of a total of k individuals, the observation yi for individual i is expressed as: 

 

i i i iy a d em= + + +    (S4.1) 

 

Where yi is the observed trait value for individual i 

 ai is the additive genetic value of individual i (random effect) (breeding value) 

di is the dominance genetic value of individual i (random effect) 

ei is a residual deviation 
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The model can be expressed in matrix form (linear mixed model): 

 

1 1 2 2Y X Z u Z u eb= + + +  (S4.2) 

 

Where 

 

  

1 1 1 1

2 2 2 2

1 2 1 2

1 1 0 ... 0

1 0 1 ... 0
, , , , , ,

... ... ... ...... ... ... ... ...

1 0 0 ... 1k k k k

y a d e

y a d e
Y X µ Z Z u u e

y a d e

b

æ ö æ ö æ ö æ öæ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷= = = = = = = = =
ç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷

è ø è øè ø è ø è ø è ø

 (S4.3) 

 

Assume that u1, u2, and e are uncorrelated and their distributions have means equal to 0. Further, 

denote the (k x k) covariance matrix for the vector e of residual errors by R and the (k x k) covariance 

matrix for the vectors u1 (random additive genetic effects) and u2 (random dominance genetic 

effects) by G1 and G2, respectively: 

 

u1 ~ (0,G1), u2 ~(0,G2), e ~ (0,R)  (S4.4)  

 

Substituting (S4.3) in (S4.2), we get: 

 

( )~ ,Y Xµ V      (S4.5) 

 

With the covariance matrix for the vector of observations Y equal to  

 

1 1 1 2 2 2
T TV Z G Z Z G Z R= + +    (S4.6) 

 

Given the single observation per individual and thus the structure of the Z matrixes (ones on the 

diagonal, zeroes off-diagonal), this simplifies to: 

 

1 2V G G R= + +    (S4.7) 

 

We will usually assume that residual errors have constant variance and are uncorrelated, so that R is 

a diagonal matrix, with: 
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2
eR Is=     (S4.8) 

 

The matrix G1 describes the covariances among the random additive genetic effects and follows from 

standard results for the covariances between relatives. The additive genetic covariance between two 

relatives i and j is given by 
22 ij asQ , i.e. by twice the coefficient of coancestry times the additive 

genetic variance in the population. Hence,  

 

2
1 aG As=     (S4.9) 

 

Where the additive genetic relationship matrix A has elements 

 

2ij ijA = Q     (S4.10) 

 

Coefficients of coancestry for different relationships are given in Table S4.55. 

 

Similarly, the matrix G2 describes the covariances among the random dominance genetic effects and 

also follows from standard results for the covariances between relatives. The dominance genetic 

covariance between two relatives i and j is given by 
2

ij dsD , i.e. by the coefficient of fraternity times 

the dominance genetic variance in the population. Hence,  

 

2
2 dG Ds=     (S4.11) 

 

Where the dominance genetic relationship matrix D has elements 

 

ij ijD = D     (S4.12) 

 

Substituting (8), (10) and (12) in (5), we get: 

 

( )2 2 2~ , a d eY Xµ A D Is s s+ +   (S4.13) 
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The parameters 
2 2 2, , ,a d eµ s s s  of this linear model (and their 95% confidence limits) can be fitted to 

the data with restricted maximum likelihood estimation (REML). From these estimates we can 

further calculate heritability (the sum in the denominator is the total phenotypic variance): 

 

broad-sense heritability: 
2 2

2

2 2 2
a d

a d e

H
s s

s s s

+
=

+ +
 

 

 

narrow-sense heritability: 
2

2

2 2 2
a

a d e

H
s

s s s
=

+ +
 

 

Based on these calculations, we can determine if a trait is genetically heritable or not. 

 

Table S4.55: Coeficients of coancestry (θij) and coefficients of fraternity (θij)  

Relationship θij θij 

Clone-mates (e.g. monozygotic twins) 1/2 1 

Parent-offspring 1/4 0 

Full-Sib 1/4 1/4 

Half-Sib 1/8 0 

 

S4.2:Estimation of the different parameters (h², H², CVA, CVG,) and their variances  

These are based on Lynch and Walsch (1998).  

Based Lynch and Walsch (1998) equation A1.4.b pp 809 and equation A1.7c pp 811:  

 

 

 

where x= additive genetic variance 

           y= dominance genetic variance 
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           z= environmental genetic variance 

S4.2.1.Estimation of Broad sense heritability (H²) and it’s variance of a trait 

 

 

 

 

 

 

 

S4.2.2.Estimation of narrow sense heritability (h²) and it’s variance of a trait 

=  

? ?
 

? ?

? ?
 

? ?
 

 

 

 

S4.2.3:Estimation of genetic coefficient of variation (CVG)  

CVG = 100 * f 
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µ= population mean  

?
 

E(f) =  

 

S4.2.4.:Estimation of coefficient of additive genetic variation of a trait (CVA) 

CVG = 100 * f 

f =  x / µ 

Based on Lynch and Walsch (1998): 

? ?  
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Table S5.1: Physico-chemical measurements during tests. Values represent mean values ± standard deviation. 

Nominal Cd 
concentration 
(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 
(µg Cd/L) 

Mean Cd 
concentration 
(µg Cd/L) 

0 NM 3.98 ± 0.13 7.62  0.21 ± 0.12 0.19 ± 0.09 

OM 7.17 ± 0.81 7.65 ± 0.32 0.16 ± 0.08 

5 NM 4.05 ± 0.23 7.63  4.57 ± 0.27 4.37 ± 0.37 

OM 7.60 ± 0.68 7.82 ± 0.35 4.16 ± 0.37 

 

Table S5.2: Values of total reproduction of KNO52 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 18 0 76 11 0 102 44 70 122 131 144 

2 34 41 66 120 13 118 29 63 106 120 136 
3  49 114  57 46 51 74 115 126 44 

 

Table S5.3: Values of total reproduction of KNO52 population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1  74 91  28 79 58 63 28 21 27 
2 93 75 74 87 25 70 41 62 32 104 117 

3  20 97  2 58 34 36 73 84 110 

 

Table S5.4: Values of population growth rate of KNO52 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.29 0.00 0.33 0.24 0.00 0.40 0.37 0.36 0.36 0.45 0.40 

2 0.31 0.35 0.35 0.43 0.27 0.36 0.36 0.38 0.36 0.39 0.40 

3  0.42 0.44  0.29 0.38 0.40 0.40 0.35 0.40 0.40 

 

Table S5.5: Values of population growth rate of KNO52 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1  0.37 0.39  0.19 0.32 0.31 0.34 0.21 0.30 0.20 

2 0.36 0.39 0.38 0.40 0.22 0.29 0.31 0.28 0.24 0.37 0.37 

3  0.28 0.43  0.06 0.32 0.32 0.35 0.34 0.36 0.36 

 

Table S5.6: Values of reproduction at first brood of KNO52 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 5  14 11  14 10 11 11 16 14 

2 20 17 9 28 5 11 11 14 15 13 13 

3  10 14  7 12 9 11 11 15 17 
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Table S5.7: Values of reproduction at first brood of KNO52 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1  10 13  6 8 4 9 8 9 7 

2 10 10 12 8 6 3 6 8 5 17 9 

3  11 13  2 6 4 8 12 7 8 

 

Table S5.8: Values of maturation rate of KNO52 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.13  0.10 0.10  0.13 0.13 0.13 0.11 0.14 0.13 

2 0.09 0.11 0.13 0.14 0.13 0.11 0.13 0.13 0.11 0.13 0.13 

3  0.14 0.14  0.10 0.13 0.14 0.14 0.11 0.13 0.13 

 

Table S5.9: Values of maturation rate of KNO52 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1  0.11 0.13  0.07 0.11 0.10 0.10 0.08 0.09 0.07 

2 0.13 0.13 0.13 0.13 0.09 0.11 0.10 0.09 0.09 0.09 0.11 

3  0.10 0.13  0.09 0.13 0.10 0.13 0.11 0.11 0.11 

 

Table S5.10: Values of total reproduction of ZW4 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 114 103 99 130 80 83 94 0 42 38 70 

2 83 110 82 113 0 78 85 126 71 0 78 

3 109 75 106 123 0 80 85 108 0 45 87 

 

Table S5.11: Values of total reproduction during 21 days of ZW4 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 63 82 73 88 74 0 0 92 60 67 82 

2 58 70 71 71 100 0 0 75 87 0 68 

3 77 59 93 100 0 0 7 76  31 68 

 

Table S5.12: Values of population growth rate of ZW4 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.39 0.37 0.37 0.43 0.43 0.36 0.38 0.00 0.41 0.31 0.36 

2 0.39 0.33 0.40 0.36 0.00 0.41 0.36 0.39 0.39 0.00 0.37 

3 0.41 0.35 0.39 0.44 0.00 0.43 0.37 0.39 0.00 0.35 0.38 
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Table S5.13: Values of population growth rate of ZW4 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.30 0.33 0.35 0.36 0.36 0.00 0.00 0.32 0.34 0.30 0.35 

2 0.32 0.31 0.32 0.38 0.36 0.00 0.00 0.33 0.31 0.00 0.31 

3 0.34 0.31 0.36 0.39 0.00 0.00 0.22 0.33  0.23 0.30 

 

Table S5.14: Values of reproduction at first brood of ZW4 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 25 15 9 17 15 2 11  14 6 7 

2 15 12 11 25  9 7 10 11  9 

3 14 18 14 20  14 8 12  10 12 

 

Table S5.15: Values of reproduction at first brood of ZW4 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 8 14 10 11 8   6 6 16 5 

2 15 8 8 12 16   7 11  6 

3 12 10 12 14   5 8  1  

 

Table S5.16: Values of maturation rate of ZW4 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.11 0.11 0.13 0.13 0.14 0.13 0.13  0.13 0.13 0.13 

2 0.13 0.10 0.14 0.10  0.14 0.13 0.13 0.13  0.13 

3 0.13 0.10 0.13 0.13  0.14 0.13 0.13  0.13 0.13 

 

Table S5.17: Values of maturation rate of ZW4 population in Cd treatment. 

Clone 
Replicate 1 2 3 4 5 6 7 8 9 10 11 

1 0.10 0.10 0.13 0.13 0.13   0.11 0.13 0.09 0.13 

2 0.10 0.10 0.11 0.13 0.11   0.11 0.10  0.13 

3 0.11 0.10 0.11 0.13   0.13 0.11  0.09 0.11 

 

Table S5.18: Values of total reproduction of TER2 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 

1 0 153 114 83 118 98 121 138 116 0 

2 0 39 108 80 107 97 26 108 105 0 

3 91 168 0 85 97 89 116 0 107 68 
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Table S5.19: Values of total reproduction of TER2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 

1 39 16 0 0 3 74 65 115 70 0 

2 3 23 0 0 0 41 4 91 104 0 

3 12 21 0 0 0 60 17 68 65 85 

 

Table S5.20: Values of population growth rate of TER2 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 

1 0.00 0.39 0.37 0.34 0.36 0.35 0.39 0.39 0.34 0.00 

2 0.00 0.39 0.33 0.33 0.36 0.34 0.36 0.35 0.38 0.00 

3 0.44 0.41 0.00 0.35 0.33 0.38 0.39 0.00 0.44 0.35 

 

Table S5.21: Values of population growth rate of TER2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 

1 0.30 0.27 0.00 0.00 0.11 0.36 0.27 0.37 0.30 0.00 

2 0.14 0.28 0.00 0.00 0.00 0.35 0.17 0.36 0.37 0.00 

3 0.28 0.29 0.00 0.00 0.00 0.35 0.00 0.28 0.30 0.36 
 

Table S5.22: Values of reproduction at first brood of TER2 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 

1  14 11 8 13 7 15 19 22  
2  18 3 8 14 8 14 2 18  

3 14 16  9 15 13 15  14 10 

 

Table S5.23: Values of reproduction at first brood of TER2 population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 

1 14 8   3 7 5 14 13  

2 3 5    6 4 13 11  

3 7 8    8  12 7 14 

 

Table S5.24: Values of maturation rate of TER2 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 

1  0.13 0.13 0.11 0.11 0.13 0.13 0.11 0.09  

2  0.13 0.13 0.11 0.11 0.13 0.13 0.11 0.11  

3 0.14 0.13  0.13 0.09 0.13 0.13  0.14 0.11 
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Table S5.25: Values of maturation rate of TER2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 

1 0.11 0.11   0.10 0.14 0.11 0.11 0.09  

2 0.13 0.11    0.13 0.13 0.11 0.13  

3 0.13 0.11    0.13  0.09 0.11 0.11 

 

Table S5.26: Values of total reproduction of TER1 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 14 80 0 148 56 94 122 107 133 166 117 119 

2 30 72 0 137 77 75 104 102 126 159 31 103 

3 106 29 0 114 73 0 14 99 119 121 44 114 

 

Table S5.27: Values of total reproduction of TER1 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 11 97 120 2 48 32 94 88 87 117 94 88 

2 0 102 5 100 32 40 80 90 75 113 104 98 

3 5 27  94 63 0 91 89 81 141 116 107 

 

Table S5.28: Values of population growth rate of TER1 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.17 0.39 0.00 0.40 0.31 0.40 0.39 0.37 0.38 0.35 0.38 0.42 

2 0.30 0.38 0.00 0.40 0.32 0.33 0.39 0.36 0.38 0.37 0.38 0.39 

3 0.36 0.35 0.00 0.38 0.33 0.00 0.33 0.38 0.41 0.36 0.39 0.40 

 

Table S5.29: Values of population growth rate of TER1 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.17 0.39 0.38 0.08 0.28 0.30 0.36 0.36 0.42 0.35 0.36 0.40 

2 0.00 0.37 0.20 0.36 0.29 0.23 0.37 0.35 0.41 0.36 0.37 0.35 

3 0.10 0.33  0.36 0.31 0.00 0.38 0.35 0.42 0.34 0.38 0.41 

 

Table S5.30: Values of reproduction at first brood of TER1 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 11  18 11 14 23 16 18 18 17 17 

2 12 10  25 5 17 13 14 9 12 11 11 

3 13 10  11 11  14 20 8 15 17 12 
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Table S5.31: Values of reproduction at first brood of TER1 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 3 10 17 2 6 10 15 16 27 10 9 13 

2  9 5 8 4 1 9 12 25 14 9 15 

3 5 12  7 8  12 15 9 16 13 15 

 

Table S5.32: Values of maturation rate of TER1 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.08 0.13  0.11 0.10 0.13 0.11 0.11 0.11 0.10 0.11 0.13 

2 0.10 0.13  0.11 0.11 0.10 0.13 0.11 0.13 0.11 0.13 0.13 

3 0.11 0.13  0.13 0.11  0.13 0.11 0.14 0.11 0.13 0.13 
 

Table S5.33: Values of maturation rate of TER1 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11  
12 

1 0.11 0.13 0.11 0.11 0.10 0.13 0.11 0.11 0.13 0.11 0.13 0.13 

2  0.13 0.13 0.13 0.11 0.08 0.13 0.11 0.13 0.11 0.13 0.11 

3 0.06 0.11  0.13 0.11  0.13 0.11 0.14 0.10 0.13 0.13 

 

Table S5.34: Values of total reproduction of MO population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 114 107 82 87  100 93 116 0 62 78  

2 109 107 110 87  119 107 132 112 69 97 116 

3 109 104 84 83  101 138 105 122 67 87  

 

Table S5.35: Values of total reproduction of MO population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 84 65 28  61 112 96 77  65 80  

2 83  52 60  52 78 82 105  78  

3 75 82 72 31  95 93 78 98 54 69  

 

Table S5.36: Values of population growth rate of MO population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.30 0.38 0.31 0.36  0.34 0.35 0.38 0.00 0.29 0.31  

2 0.35 0.34 0.38 0.35  0.37 0.36 0.37 0.37 0.30 0.31 0.35 

3 0.38 0.36 0.35 0.34  0.37 0.38 0.33 0.38 0.33 0.31  
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Table S5.37: Values of population growth rate of MO population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.31 0.29 0.30  0.33 0.34 0.36 0.30  0.28 0.32  

2 0.30  0.27 0.36  0.31 0.32 0.34 0.33  0.29  

3 0.34 0.30 0.30 0.27  0.37 0.37 0.35 0.37 0.32 0.28  

 

Table S5.38: Values of reproduction at first brood of MO population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 14 19 8 18  16 9 13  7 7  

2 17 17 12 12  14 9 17 12 7 6 19 

3 18 17 13 10  16 18 17 11 11 8  

 

Table S5.39: Values of reproduction at first brood of MO population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 11 9 9  17 7 8 2  8 8  

2 9  13 14  11 7 7 8  5  

3 13 10 12 7  16 10 8 11 10 6  
 

Table S5.40: Values of maturation rate of MO population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.09 0.11 0.10 0.11  0.10 0.11 0.13  0.11 0.10  

2 0.10 0.10 0.13 0.11  0.11 0.13 0.11 0.13 0.10 0.10 0.11 

3 0.11 0.11 0.11 0.11  0.11 0.11 0.10 0.13 0.11 0.10  
 

Table S5.41: Values of maturation rate of MO population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.10 0.10 0.10  0.10 0.11 0.13 0.11  0.09 0.11  

2 0.10  0.09 0.11  0.10 0.11 0.13 0.11  0.10  
3 0.11 0.10 0.09 0.10  0.11 0.13 0.13 0.13 0.11 0.10  
 

Table S5.42: Values of total reproduction of OM3 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 73 75 90 98 111 30 89 168 11 121 45 

2 85 32 78 0 130 116 133 134 87 104 51 
3 80 65 121 111  99 140 130 129 108 63 
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Table S5.43: Values of total reproduction of OM3 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 72 0 59 67 93 70 64 22 41 119 1 

2 71 72 70 61 88 84 94 7 7 123 0 

3 66 81 95 67  99 70 13 5 128 0 

 

Table S5.44: Values of population growth rate of OM3 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.33 0.33 0.38 0.39 0.36 0.32 0.33 0.47 0.30 0.41 0.38 

2 0.33 0.34 0.34 0.00 0.40 0.40 0.35 0.43 0.37 0.40 0.40 

3 0.34 0.39 0.37 0.40  0.39 0.33 0.40 0.40 0.41 0.41 

 

Table S5.45: Values of population growth rate of OM3 population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.32 0.00 0.26 0.34 0.32 0.33 0.29 0.17 0.33 0.41 0.00 

2 0.33 0.34 0.32 0.32 0.32 0.36 0.28 0.24 0.24 0.36 0.00 

3 0.33 0.34 0.31 0.31  0.38 0.27 0.31 0.20 0.37 0.00 
 

Table S5.46: Values of reproduction at first brood of OM3 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 5 13 9 14 14 15 6 26 11 17 14 
2 3 9 20  13 14 5 12 9 16 10 

3 6 15 3 17  15 10 14 13 15 10 

 

Table S5.47: Values of reproduction at first brood of OM3 population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 6  2 9 7 12 2 22 9 13 1 

2 4 9 6 5 8 10 6 7 7 10  

3 4 2 7 7  11 6 8 5 11  

 

Table S5.48: Values of maturation rate of OM3 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.13 0.11 0.13 0.13 0.11 0.11 0.11 0.11 0.13 0.13 0.13 

2 0.11 0.11 0.10  0.13 0.13 0.11 0.14 0.13 0.13 0.14 

3 0.13 0.13 0.13 0.13  0.13 0.10 0.13 0.13 0.13 0.14 
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Table S5.49: Values of maturation rate of OM3 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.11  0.13 0.13 0.11 0.11 0.11 0.06 0.13 0.13 0.08 

2 0.13 0.11 0.13 0.13 0.11 0.13 0.09 0.13 0.13 0.11  

3 0.13 0.13 0.09 0.11  0.13 0.09 0.14 0.13 0.11  

 

Table S5.50: Values of total reproduction of OHZ population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 129 135 0 125 0 123 83 122 125 101 129 135 

2 0 115 100 0 150 84  100 128 103 0 115 

3 143 107 0 132 89 122  133 131 92 143 107 

 

Table S5.51: Values of total reproduction of OHZ population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 67 8 0  28 39 82 92 93 0 67 8 

2 59 9 78 0 16 54  82 110 43 59 9 

3 96 6 0  19 48  137 76 0 96 6 

 

Table S5.52: Values of population growth rate of OHZ population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.37 0.35 0.00 0.40 0.00 0.38 0.38 0.40 0.38 0.39 0.37 0.35 

2 0.00 0.37 0.36 0.00 0.39 0.33  0.34 0.36 0.37 0.00 0.37 

3 0.42 0.37 0.00 0.39 0.36 0.40  0.41 0.39 0.37 0.42 0.37 

 

Table S5.53: Values of population growth rate of OHZ population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.31 0.12 0.00  0.33 0.32 0.31 0.36 0.34 0.00 0.31 0.12 

2 0.29 0.24 0.33 0.00 0.33 0.34  0.33 0.35 0.29 0.29 0.24 

3 0.31 0.20 0.00  0.25 0.31  0.36 0.32 0.00 0.31 0.20 

 

Table S5.54: Values of reproduction at first brood of OHZ population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 16 20  16  11 21 11 12 13 16 20 

2  27 13  17 13  17 8 11  27 

3 16 25  12 23 21  16 20 18 16 25 
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Table S5.55: Values of reproduction at first brood of OHZ population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 8 8   9 6 14 11 8  8 8 

2 5 9 10  6 13  6 12 7 5 9 

3 16 6   2 15  12 17  16 6 

 

Table S5.56: Values of maturation rate of OHZ population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.10  0.13  0.13 0.11 0.13 0.11 0.13 0.11 0.10 

2  0.10 0.11  0.11 0.10  0.10 0.11 0.13  0.10 

3 0.13 0.10  0.13 0.10 0.11  0.13 0.11 0.11 0.13 0.10 

 

Table S5.57: Values of maturation rate of OHZ population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.06   0.13 0.13 0.10 0.13 0.13  0.11 0.06 

2 0.11 0.11 0.11  0.06 0.11  0.13 0.11 0.11 0.11 0.11 

3 0.09 0.11   0.13 0.11  0.11 0.10  0.09 0.11 

 

Table S5.58: Values of total reproduction during 21 days of KNO17 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 85 120 105 105 109 48 74 124 89 70 161 

2 95 143 91 91 120 109 118 133 0 78 139 

3 0 109 109 109 97 82 104 135 111 101 130 

 

Table S5.59: Values of total reproduction of KNO17 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 47 44 33 19 0 8 94 96 10 0 139 

2 26 64 0 11 0 9 87 12 0 7 106 

3 25 71 38 37 3 11 34 103 6 6 105 

 

Table S5.60: Values of population growth rate of KNO17 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.29 0.37 0.39 0.43 0.43 0.39 0.40 0.41 0.34 0.34 0.42 

2 0.29 0.40 0.37 0.42 0.40 0.39 0.40 0.40 0.00 0.36 0.41 

3 0.00 0.32 0.40 0.41 0.32 0.36 0.38 0.41 0.40 0.39 0.40 
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Table S5.61: Values of population growth rate of KNO17 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.32 0.33 0.33 0.29 0.00 0.26 0.36 0.40 0.26 0.00 0.39 

2 0.24 0.37 0.00 0.30 0.00 0.24 0.35 0.31 0.00 0.19 0.38 

3 0.28 0.35 0.35 0.39 0.11 0.26 0.33 0.38 0.20 0.16 0.37 

 

Table S5.62: Values of reproduction at first brood of KNO17 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 12 14 15 18 11 14 15 18 1 10 18 

2 11 15 13 12 13 20 16 15  19 16 

3  17 17 17 22 19 10 9 13 20 12 

 

Table S5.63: Values of reproduction at first brood of KNO17 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 13 6 10 19  8 9 15 10  11 

2 12 11  11  9 12 12  7 14 

3 12 15 12 15 3 9 13 12 6 6 11 

 

Table S5.64: Values of maturation rate of KNO17 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.08 0.11 0.13 0.13 0.14 0.13 0.13 0.13 0.13 0.11 0.13 

2 0.09 0.13 0.13 0.13 0.13 0.11 0.13 0.13  0.11 0.13 

3  0.09 0.13 0.13 0.09 0.11 0.13 0.13 0.13 0.11 0.13 

 

Table S5.65: Values of maturation rate of KNO17 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 

1 0.11 0.13 0.13 0.10  0.13 0.13 0.13 0.11  0.13 

2 0.08 0.13  0.13  0.11 0.11 0.13  0.10 0.13 

3 0.10 0.11 0.13 0.13 0.10 0.11 0.11 0.13 0.11 0.09 0.13 

 

Table S5.66: Values of total reproduction of OM2 population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 114 0 119 146 111 129 145 149 54 132 125 146 

2 76 0 123 113 134 13 79 155 57 77 111 108 

3 105 66 0 147 121 106 175 117 68 80 111 142 
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Table S5.67: Values of total reproduction of OM2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 95 0 22 0 122 14 116 80 10 39 120 13 

2 93 0 50 165 22 13 17 89 16 9 117 41 

3 90 52  98 117 32 31 39 17 83 67 65 

 

Table S5.68: Values of population growth rate of OM2 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.38 0.00 0.39 0.42 0.40 0.38 0.43 0.42 0.33 0.37 0.50 0.38 

2 0.35 0.00 0.38 0.45 0.39 0.28 0.38 0.44 0.39 0.40 0.49 0.38 

3 0.40 0.26 0.00 0.45 0.40 0.38 0.45 0.39 0.36 0.40 0.34 0.40 

 

Table S5.69: Values of population growth rate of OM2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.35 0.00 0.30 0.00 0.36 0.23 0.41 0.42 0.26 0.26 0.46 0.28 

2 0.37 0.00 0.34 0.42 0.34 0.28 0.23 0.42 0.31 0.22 0.48 0.32 

3 0.35 0.23  0.30 0.40 0.28 0.39 0.31 0.31 0.32 0.34 0.32 
 

Table S5.70: Values of reproduction at first brood of OM2 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 19  14 19 13 13 16 15 18 19 12 19 

2 21  20 15 4 13 11 18 22 25 13 18 

3 16 9  15 14 14 17 22 1 26 18 13 

 

Table S5.71: Values of reproduction of first brood of OM2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 10  6  13 12 16 16 10 9 10 13 

2 15  13 17 7 13 6 15 16 9 12 16 

3 10 4  11 15 12 15 16 14 11 8 10 

 

Table S5.72: Values of maturation rate of OM2 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11  0.11 0.13 0.13 0.11 0.13 0.13 0.10 0.11 0.17 0.11 

2 0.10  0.11 0.14 0.14 0.11 0.13 0.13 0.11 0.11 0.17 0.11 

3 0.13 0.09  0.14 0.13 0.13 0.13 0.11 0.13 0.11 0.10 0.13 
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Table S5.73: Values of maturation rate of OM2 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11  0.11  0.11 0.09 0.13 0.13 0.11 0.11 0.17 0.11 

2 0.11  0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.10 0.17 0.11 

3 0.11 0.07  0.09 0.13 0.11 0.13 0.11 0.11 0.11 0.13 0.13 

 

Table S5.74: Values of total reproduction of LRV population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 95 77 130 156 123 162 130 66 105 148 157 169 

2 110 43 120 128 0 112 126 144 114 142 0 175 

3 104 102 113 127 0 141 105  118 111 140 144 

 

Table S5.75: Values of total reproduction of LRV population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 93 57 111 16 92 118 32 0 121 107 88 128 

2 91 63 151 97 0 135 8 3 124 55 59 168 

3 0 21 47 79 0 99 52  109 120 0 140 

 

Table S5.76: Values of population growth rate in LRV population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.35 0.38 0.39 0.42 0.42 0.40 0.38 0.41 0.39 0.44 0.43 0.44 

2 0.36 0.33 0.40 0.43 0.00 0.38 0.39 0.42 0.41 0.46 0.00 0.46 

3 0.40 0.40 0.39 0.40 0.00 0.40 0.39  0.42 0.43 0.44 0.44 

 

Table S5.77: Values of population growth rate in LRV population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.34 0.31 0.38 0.31 0.38 0.39 0.35 0.00 0.43 0.39 0.34 0.39 

2 0.33 0.30 0.38 0.36 0.00 0.38 0.22 0.07 0.39 0.42 0.24 0.45 

3 0.00 0.35 0.40 0.36 0.00 0.36 0.33  0.39 0.40 0.00 0.41 

 

Table S5.78: Values of reproduction at first brood of LRV population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 11 11 8 17 18 16 20 15 13 17 19 13 

2 13 1 14 20  18 10 14 10 16  16 

3 15 13 26 22  13 8  12 19 17 19 
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Table S5.79: Values of reproduction at first brood of LRV population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 11 10 10 16 13 12 11  10 10 14 14 

2 8 7 9 12  19 5 3 18 12 28 15 

3  13 22 15  11 16  16 11  15 

 

Table S5.80: Values of maturation rate of LRV population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.13 0.13 0.13 0.13 0.11 0.11 0.13 0.13 0.13 0.13 0.14 

2 0.11 0.13 0.13 0.13  0.11 0.13 0.13 0.14 0.14  0.14 

3 0.13 0.13 0.11 0.11  0.13 0.13  0.14 0.13 0.13 0.13 

 

Table S5.81: Values of maturation rate of LRV population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.10 0.13 0.11 0.13 0.13 0.13  0.14 0.13 0.11 0.11 

2 0.11 0.10 0.13 0.11  0.11 0.11 0.07 0.13 0.14 0.06 0.14 

3  0.13 0.13 0.11  0.11 0.11  0.13 0.13  0.13 

 

Table S5.82: Values of total reproduction during 21 days of KNO15 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 119 114 142 175 173 157 100 111 81 90 87 27 

2 167 72 149 177 162 145 57   136 106 145 

3  126 97 64 165 46 109    88 131 

 

Table S5.83: Values of total reproduction during 21 days of KNO15 population in Cd treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 78 10 87 92 98 40 90 140 61 60 65 23 

2 106 7 22 111 81 52 73   13 71 72 

3  24 41 29 42 30     65 95 

 

Table S5.84: Values of population growth rate of KNO15 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.40 0.38 0.43 0.40 0.41 0.42 0.38 0.37 0.32 0.37 0.35 0.35 

2 0.41 0.39 0.43 0.41 0.40 0.39 0.43   0.40 0.39 0.40 

3  0.45 0.40 0.40 0.41 0.38 0.40    0.38 0.40 
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Table S5.85: Values of population growth rate of KNO15 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.32 0.29 0.35 0.35 0.36 0.31 0.39 0.39 0.27 0.31 0.33 0.33 

2 0.36 0.24 0.26 0.35 0.37 0.31 0.41   0.29 0.34 0.37 

3  0.37 0.28 0.32 0.28 0.34 0.00    0.30 0.34 

 

Table S5.86: Values of reproduction at first brood of KNO15 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 13 8 11 14 16 29 11 22 25 16 16 10 

2 21 9 14 15 12 13 12   14 21 13 

3  12 11 16 23 18 14    11 15 
 

Table S5.87: Values of reproduction at first brood of KNO15 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 12 10 7 10 9 11 14 9 10 12 12 8 

2 8 7 10 9 9 5 12   13 13 12 

3  8 10 12 11 12     6 10 

 

Table S5.88: Values of maturation rate of KNO15 population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.13 0.14 0.11 0.11 0.11 0.13 0.10 0.09 0.11 0.11 0.13 

2 0.11 0.13 0.13 0.11 0.11 0.11 0.14   0.13 0.11 0.13 

3  0.14 0.13 0.11 0.11 0.11 0.13    0.13 0.13 

 

Table S5.89: Values of maturation rate of KNO15 population in Cd treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.11 0.13 0.13 0.11 0.11 0.11 0.13 0.13 0.09 0.11 0.11 0.13 

2 0.11 0.13 0.11 0.11 0.11 0.11 0.14   0.11 0.11 0.13 

3  0.14 0.11 0.11 0.11 0.11     0.11 0.11 
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Table S5.90: Physico-chemical measurements in the water samples of the different ponds.  Values represent mean values  
± standard deviation. 

Pond Ni (µg/L) Cu (µg/L) Cd (µg/L) Pb (µg/L) Ca (mg/L) Mg (mg/L) 

MO 2.77 ± 0.19 2.11 ± 0.17 0.09 ± 0.01 3.98 ±1.45 34.11 ± 0.81 0.00 ± 0.00 

TER1 5.69 ± 0.28 3.19 ± 0.26 0.10 ± 0.01 4.71 ± 0.41 27.59 ± 0.35 1.19 ± 0.09 

TER2 4.96 ± 0.16 1.81 ± 0.18 0.09 ± 0.01 1.83 ± 0.34 81.70 ± 1.43 9.39 ± 0.20 

LRV 0.90 ± 0.05 0.61 ± 0.10 0.02 ± 0.00 0.16 ± 0.06 52.74 ± 1.76 12.88 ± 0.11 

OHZ 0.96 ± 0.09 0.46 ± 0.13 0.04 ± 0.00 0.22 ± 0.01 53.72 ± 0.31 2.01 ± 0.06 

ZW4 0.87 ± 0.09 0.71 ± 0.08 0.01 ± 0.00 0.05 ± 0.00 89.36 ± 0.31 2.87 ± 0.26 

OM3 1.98 ± 0.05 0.54 ± 0.03 0.02 ± 0.00 0.65 ± 0.23 68.63 ± 0.11 2.98 ± 0.03 

OM2 1.61 ± 0.07 0.78 ± 0.03 0.06 ± 0.00 0.49 ± 0.09 50.26 ± 0.34 1.72 ± 0.02 

KNO 15 2.04 ± 0.10 1.60 ± 0.29 0.06 ± 0.01 1.63 ± 0.45 55.44 ± 0.47 4.80 ± 0.03 

KNO 17 5.28 ± 0.00 1.31 ±  0.21 0.06 ± 0.00 0.59 ± 0.20 95.03 ± 0.21 11.99 ± 0.17 

KNO 52 2.29 ± 0.14 2.56 ± 2.49 0.06 ± 0.00 1.54 ± 0.17 74.24 ± 4.21 3.86 ± 0.22 

 

Table S5.91: Metal and organic carbon concentration in the sediment of different lakes. Samples were taken in April  
2009.  Values represent mean values ± standard deviation. 

 Cd 
(mg Cd/kg) 

Ni 
(mg Ni/kg) 

Cu 
(mg Cu/kg) 

Zn 
(mg Zn/kg) 

Pb 
(mg Pb/kg) 

Organic Carbon  

MO 1.70 ± 0.11 12.98 ± 0.10 39.59 ± 8.20 203.38 ± 17.88 53.54 ± 3.31 0.95 ± 0.00 

TER1 1.49 ± 0.04 12.64 ± 0.47 11.26 ± 0.41 42.45 ± 0.56 31.35 ± 1.57 0.96 ± 0.00 

TER2 1.61 ± 0.03 16.99 ± 0.86 13.60 ± 0.16 52.23 ± 1.82 39.05 ± 0.92 0.95 ± 0.00 

LRV 3.25 ± 0.20 16.87 ± 0.57 14.12 ± 0.37 57.46 ± 1.25 60.69 ± 3.28 0.88 ± 0.00 

OHZ 1.23 ± 0.37 9.05 ± 1.21 12.16 ± 0.98 36.09 ± 2.88 40.14 ± 4.48 0.80 ± 0.00 

ZW4 2.52 ± 0.14 13.41 ± 1.46 19.90 ± 2.55 94.15 ± 8.72 51.81 ± 2.83 0.92 ± 0.00 

OM3 1.14 ± 0.25 3.62 ± 0.29 5.11 ± 0.50 38.45 ± 1.08 42.84 ± 18.22 0.98 ± 0.00 

OM2 2.31 ± 0.41 12.79 ± 0.89 23.39 ± 2.11 143.42 ± 15.66 74.82 ± 7.12 0.91 ± 0.00 

KNO15 1.21 ± 0.03 0.61 ± 0.29 0.99 ± 0.12 6.99 ± 0.78 15.99 ± 0.60 0.99 ± 0.00 

KNO17 1.85 ± 1.85 3.57 ± 0.32 4.89 ± 4.89 24.52 ± 24.52 29.05 ± 29.05 0.96 ± 0.01 

KNO52 1.44 ± 1.44 2.35 ± 0.50 1.93 ± 1.93 9.99 ± 9.99 19.53 ± 19.53 0.98 ± 0.00 

 

Table S5.92: Biotic parameters in the different lakes. Fish abundance (scored in categories between 0 and 4, see Material  
and Method chapter 5) and prevalence of parasites (%) in the different lakes.  

Pond Fish Parasites (prevalence %) 

Abundance Amoebidium Binucleata Pasteuria  Vorticella 

KNO15 0.00 0.00 27.58 57.44 50.60 

KNO17 1.00 1.25 59.17 63.46 17.74 

KNO52 0.00 0.17 0.17 0.03 0.00 

LRV 3.00 0.00 0.03 0.06 0.26 

MO 0.00 0.00 25.00 6.58 67.50 

OHZ 4.00 0.00 5.13 0.16 1.56 
OM2 3.00 0.00 0.00 4.06 3.75 

OM3 3.00 0.05 0.00 0.00 0.00 

TER1 0.00 0.00 0.00 0.83 9.38 

TER2 0.00 0.13 0.00 0.00 0.00 

ZW4 4.00 0.00 0.00 0.04 0.00 
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Table S5.93: Land use characteristics of the different lakes, i.e. shortest distance to nearest crop field, percentage arable 
land, pastures and heterogeneous agricultural activities in a 200m radius. 

Pond Distance to 

cropfield (m) 

Arable land (%) Pastures (%) Heterogeneous 

agricultural 
activities (%) 

KNO15 611.12 0.00 84.25 0.00 

KNO17 78.78 27.04 0.00 72.96 

KNO52 947.97 0.00 70.08 0.00 

LRV 278.42 0.00 24.11 17.29 

MO 7.54 97.74 0.00 0.00 

OHZ 488.55 0.00 27.17 30.75 

OM2 34.38 29.78 0.00 0.00 

OM3 49.41 17.16 0.00 0.00 

TER1 52.22 7.40 0.00 92.60 
TER2 121.96 31.42 0.00 68.58 

ZW4 399.38 0.00 0.00 0.00 
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Table S5.94: Non parametric Spearman rank correlation coefficients between total reproduction in control treatment, Cd 
treatment, Cd tolerance and habitat characteristics. An asterisk indicates a significant correlation. Fish abundance 
(scored in categories between 0 and 4, see Material and Method chapter 5) and prevalence of parasites (%) were 
determined in the different lakes. Land use is determined by shortest distance to nearest crop field, and percentage 
arable land, pastures and heterogeneous agricultural activities in a 200m radius. Ranking of metals were determined by  
the summation of the ranks of each metal per population.  

 Habitat characteristics Total 
reproduction 

 (0 µg Cd/L) 

Total 
reproduction 

 (5 µg Cd/L) 

Total 
reproduction 

 (Tolerance) 

Fish 
abundance 

Fish abundance 0.09 -0.10 -0.19 

Parasite 
prevalence (%) 

Amoebidium prevalence (%) 0.05 -0.53 -0.53 

Binucleata prevalence (%) 0.41 -0.25 -0.57 

Pasteuria prevalence (%) 0.50 -0.21 -0.54 

Vorticella prevalence (%) 0.45 0.37 -0.10 

Land use Distance to crop field (m) -0.23 0.14 0.27 

Arable land (%) 0.11 0.05 -0.14 

Pastures (%) 0.17 0.29 0.18 

Heterogeneous agriculture 

(%) 

-0.16 -0.43 -0.18 

Metal 
concentration
s in sediment 

Cd (mg/kg) 0.22 0.15 -0.17 

Ni (mg/kg) -0.07 -0.03 -0.06 

Cu (mg/kg) 0.05 0.21 -0.04 

Zn (mg/kg) 0.09 0.24 -0.03 

Pb (mg/kg) 0.21 0.08 -0.16 

Metal 
concentration

s in water 

Ni (µg/L) -0.22 -0.33 -0.06 

Cu (µg/L) -0.38 0.27 0.52 

Cd (µg/L) -0.11 -0.06 0.06 

Pb (µg/L) -0.16 0.40 0.48 

Ca (mg/L) -0.33 -0.67* -0.42 

Mg (mg/L) 0.29 -0.40 -0.52 

Ranking of 
metals 

Metal ranking water -0.18 0.16 0.19 

Metal ranking sediment -0.02 0.06 -0.08 
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Table S5.95: Non parametric Spearman rank correlation coefficients between population growth rate in control  
treatment, Cd treatment, Cd tolerance and habitat characteristics. An asterisk indicates a significant correlation. Fish 
abundance (scored in categories between 0 and 4, see Material and Method chapter 5) and prevalence of parasites (%) 
were determined in the different lakes. Land use is determined by shortest distance to nearest crop field, and percentage 
arable land, pastures and heterogeneous agricultural activities in a 200m radius. Ranking of metals were determined by  
the summation of the ranks of each metal per population. 

 Habitat 
characteristics 

Population growth rate 
 (0 µg Cd/L) 

Population growth rate 
 (5 µg Cd/L) 

Population growth rate 
 (Tolerance) 

Fish presence Fish abundance 0.02 -0.16 -0.49 

Parasite 
prevalence (%) 

Amoebidium 
prevalence (%) 

0.14 -0.22 -0.35 

Binucleata 
prevalence (%) 

0.34 0.03 -0.05 

Pasteuria 

prevalence (%) 

0.54 0.11 -0.11 

Vorticella 
prevalence (%) 

0.29 0.39 0.52 

Land use Distance to 
crop field (m) 

0.09 0.20 -0.01 

Arable land (%) -0.14 0.01 0.36 

Pastures (%) 0.41 0.43 0.25 

Heterogeneous 

agriculture (%) 

-0.43 -0.45 -0.05 

Metal 
concentrations 
in sediment 

Cd (mg/kg) 0.18 0.23 -0.13 

Ni (mg/kg) -0.49 -0.23 0.04 

Cu (mg/kg) -0.28 0.05 0.30 

Zn (mg/kg) -0.13 0.15 0.31 

Pb (mg/kg) -0.02 0.04 0.00 

Metal 
concentrations 

in water 

Ni (µg/L) -0.30 -0.30 0.09 

Cu (µg/L) -0.23 0.21 0.57 

Cd (µg/L) -0.33 -0.05 0.56 

Pb (µg/L) -0.24 0.22 0.70* 

Ca (mg/L) -0.09 -0.53 -0.88* 

Mg (mg/L) 0.22 -0.17 -0.38 

Ranking of 
metals 

Metal ranking 
water  

-0.23 0.01 0.58 

Metal ranking 
sediment 

-0.12 -0.07 0.03 
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Table S5.96: Non parameteric Spearman rank correlation coefficients between reproduction at first brood in control  
treatment, Cd treatment, Cd tolerance and habitat characteristics. An asterisk indicates a significant correlation. Fish 
abundance (scored in categories between 0 and 4, see Material and Method chapter 5) and prevalence of parasites (%) 
were determined in the different lakes. Land use is determined by shortest distance to nearest crop field, and percentage 
arable land, pastures and heterogeneous agricultural activities in a 200m radius. Ranking of metals were determined by  
the summation of the ranks of each metal per population. 

Habitat characteristics Reproduction  
at first brood 

 (0 µg Cd/L) 

Reproduction 
 at first brood 

 (5 µg Cd/L) 

Reproduction  
at first brood 

 (Tolerance) 

Fish presence Fish abundance 0.23 0.11 0.00 

Parasite prevalence (%) Amoebidium prevalence (%) -0.03 -0.01 -0.23 

Binucleata prevalence (%) 0.24 0.13 -0.36 

Pasteuria prevalence (%) 0.37 0.15 -0.32 

Vorticella prevalence (%) 0.21 0.15 -0.21 

Land use Distance to crop field (m) 0.14 -0.18 -0.48 

Arable land (%) -0.21 -0.01 0.18 

Pastures (%) 0.37 -0.01 -0.41 

Heterogeneous agriculture 
(%) 

-0.07 0.11 0.21 

Metal concentrations in 
sediment 

Cd (mg/kg) 0.07 0.65* 0.54 

Ni (mg/kg) -0.12 0.40 0.78* 

Cu (mg/kg) -0.07 0.28 0.40 

Zn (mg/kg) -0.08 0.25 0.40 

Pb (mg/kg) 0.07 0.42 0.63* 

Metal concentrations in water Ni (µg/L) -0.31 -0.10 0.14 

Cu (µg/L) -0.30 -0.06 -0.02 

Cd (µg/L) -0.05 0.05 0.21 

Pb (µg/L) -0.22 0.01 0.05 

Ca (mg/L) -0.38 -0.45 -0.18 

Mg (mg/L) 0.04 0.25 0.23 

Ranking of metals Metal ranking water -0.23 -0.04 0.15 

Metal ranking sediment -0.09 0.33 0.76* 
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Table S5.97: Non parametric Spearman rank correlation coefficients between maturation rate in control treatment, Cd 
treatment, Cd tolerance and habitat characteristics. An asterisk indicates a significant correlation. Fish abundance 
(scored in categories between 0 and 4, see Material and Method chapter 5) and prevalence of parasites (%) were 
determined in the different lakes. Land use is determined by shortest distance to nearest crop field, and percentage 
arable land, pastures and heterogeneous agricultural activities in a 200m radius. Ranking of metals were determined by  
the summation of the ranks of each metal per population. 

Habitat characteristics  Maturation rate 
 (0 µg Cd/L) 

Maturation rate 
 (5 µg Cd/L) 

Maturation rate 
 (Tolerance) 

Fish presence Fish abundance 0.39 -0.02 -0.52 

Parasite prevalence (%) Amoebidium prevalence 
(%) 

0.00 0.16 0.27 

 Binucleata prevalence 
(%) 

-0.40 0.10 0.61* 

 Pasteuria prevalence (%) -0.24 0.41 0.63* 

 Vorticella prevalence (%) -0.70* -0.15 0.62* 

Land use Distance to crop field (m) 0.22 -0.32 -0.44 

 Arable land (%) -0.56 -0.38 0.34 

 Pastures (%) -0.01 -0.10 -0.07 

 Heterogeneous 
agriculture (%) 

-0.18 0.35 0.51 

Metal concentrations in 
sediment 

Cd (mg/kg) 0.55 0.19 -0.33 

 Ni (mg/kg) 0.12 0.02 -0.08 

 Cu (mg/kg) -0.34 -0.38 0.05 

 Zn (mg/kg) -0.30 -0.33 0.03 

 Pb (mg/kg) 0.17 -0.04 -0.27 

Metal concentrations in 
water  

Ni (µg/L) -0.29 0.30 0.61* 

 Cu (µg/L) -0.34 -0.08 0.35 

 Cd (µg/L) -0.68* -0.06 0.66* 

 Pb (µg/L) -0.60 -0.10 0.53 

 Ca (mg/L) 0.58 0.12 -0.33 

 Mg (mg/L) 0.45 0.39 0.03 

Ranking of metals Metal ranking water -0.55 -0.14 0.57 

 Metal ranking sediment 0.09 -0.05 -0.19 
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Table S5.98: Non parametric Spearman rank correlation coefficients between genetic coefficient of variation and broad 
sense heritability (H²) in control, cd treatment and Cd tolerance of total  reproduction and habitat characteristics. An 
asterisk indicates a significant correlation (p<0.05). Fish abundance (scored in categories between 0 and 4, see Material  
and Method chapter 5) and prevalence of parasites (%) were determined in the different lakes. Land use is determined 
by shortest distance to nearest crop field, and percentage arable land, pastures and heterogeneous agricultural activities 
in a 200m radius. Ranking of metals were determined by the summation of the ranks of each metal per population. 

Habitat characteristics CVG total reproduction H² total reproduction 

 0 µg 
Cd/L 

 5 µg 
Cd/L 

Cd 
tolerance 

 0 µg 
Cd/L 

5 µg 
Cd/L 

Cd 
tolerance 

Fish presence Fish 
abundance 

-0.10 0.23 -0.01 0.00 0.37 0.24 

Parasite 
prevalence 

(%) 

Amoebidium 
prevalence (%) 

0.01 0.53 0.49 0.15 0.30 0.04 

Binucleata 

prevalence (%) 

-0.39 0.21 0.42 -0.22 0.14 0.16 

Pasteuria 
prevalence (%) 

-0.39 0.17 0.47 -0.23 0.02 0.29 

Vorticella 
prevalence (%) 

-0.51 -0.46 -0.12 -0.43 -0.27 -0.03 

Land use Distance to 
crop field (m) 

0.06 -0.31 -0.08 -0.02 -0.38 0.13 

Arable land 

(%) 

-0.25 -0.18 -0.18 -0.23 -0.07 -0.51 

Pastures (%) -0.19 -0.43 -0.08 -0.24 -0.52 0.15 

Heterogeneou
s agriculture 

(%) 

0.19 0.61* 0.59 0.18 0.37 0.38 

Metal 
concentration
s in sediment 

Cd (mg/kg) 0.21 -0.02 -0.05 0.28 -0.13 0.03 

Ni (mg/kg) 0.12 0.14 0.07 0.05 0.05 -0.01 

Cu (mg/kg) -0.12 -0.28 -0.24 -0.08 -0.14 -0.24 

Zn (mg/kg) -0.08 -0.36 -0.33 -0.03 -0.23 -0.36 

Pb (mg/kg) 0.00 -0.05 -0.20 0.06 -0.04 -0.21 

Metal 
concentration

s in water 

Ni (µg/L) 0.26 0.36 0.37 0.23 0.17 -0.01 

Cu (µg/L) 0.44 -0.36 -0.15 0.35 -0.41 -0.08 

Cd (µg/L) 0.04 -0.11 0.19 -0.02 -0.31 -0.06 

Pb (µg/L) 0.19 -0.39 -0.24 0.14 -0.25 -0.05 

Ca (mg/L) 0.11 0.57 0.39 0.08 0.40 -0.20 

Mg (mg/L) -0.10 0.57 0.47 -0.10 0.24 0.05 

Ranking of 
metals 

Metal ranking 
water  

0.15 -0.27 -0.04 0.17 -0.29 -0.12 

Metal ranking 
sediment 

0.20 -0.05 -0.08 0.17 -0.10 -0.12 
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Table S5.99: Non parametric Spearman rank correlation coefficients between genetic coefficient of variation, broad 
sense heritability (H²) in control, cd treatment and Cd tolerance of population growth rate and habitat characteristics. An 
asterisk indicates a significant correlation (p<0.05). Fish abundance (scored in categories between 0 and 4, see Material  
and Method chapter 5) and prevalence of parasites (%) were determined in the different lakes. Land use is determined 
by shortest distance to nearest crop field, and percentage arable land, pastures and heterogeneous agricultural activities 
in a 200m radius. Ranking of metals were determined by the summation of the ranks of each metal per population. 

Habitat characteristics CVG population growth rate  H² population growth rate 

 0 µg 
Cd/L 

 5 µg 
Cd/L 

Cd 
tolerance 

 0 µg 
Cd/L 

5 µg 
Cd/L 

Cd 
tolerance 

Fish presence Fish 
abundance 

-0.20 0.21 0.09 -0.13 0.44 -0.01 

Parasite 
prevalence 

(%) 

Amoebidium 
prevalence (%) 

0.07 0.19 0.43 0.03 0.19 0.54 

Binucleata 

prevalence (%) 

-0.24 -0.21 0.10 -0.19 -0.34 0.38 

Pasteuria 
prevalence (%) 

-0.15 -0.22 0.13 -0.14 -0.44 0.44 

Vorticella 
prevalence (%) 

-0.40 -0.63* -0.47 -0.29 -0.83 -0.20 

Land use Distance to 
crop field (m) 

-0.35 -0.22 -0.17 -0.39 -0.18 -0.13 

Arable land 

(%) 

-0.17 -0.19 -0.28 -0.12 -0.30 -0.18 

Pastures (%) -0.34 -0.48 -0.16 -0.33 -0.48 -0.08 

Heterogeneou
s agriculture 

(%) 

0.61* 0.51 0.45 0.54 0.31 0.43 

Metal 
concentration
s in sediment 

Cd (mg/kg) 0.29 -0.03 -0.12 0.23 0.43 -0.46 

Ni (mg/kg) 0.41 0.34 -0.10 0.32 0.41 -0.37 

Cu (mg/kg) -0.05 -0.16 -0.56 0.02 -0.15 -0.58 

Zn (mg/kg) -0.05 -0.24 -0.60 0.04 -0.22 -0.59 

Pb (mg/kg) 0.16 0.04 -0.22 0.21 0.29 -0.44 

Metal 
concentration

s in water 

Ni (µg/L) 0.54 0.31 0.30 0.47 0.04 0.38 

Cu (µg/L) 0.40 -0.21 -0.28 0.39 -0.33 -0.24 

Cd (µg/L) 0.36 -0.06 -0.22 0.37 -0.44 -0.05 

Pb (µg/L) 0.29 -0.29 -0.36 0.36 -0.44 -0.29 

Ca (mg/L) -0.16 0.57 0.47 -0.39 0.45 0.54 

Mg (mg/L) 0.15 0.31 0.68* -0.03 0.52 0.43 

Ranking of 
metals 

Metal ranking 
water  

0.14 -0.28 -0.04 0.15 -0.44 -0.02 

Metal ranking 
sediment 

0.27 0.12 -0.37 0.31 0.12 -0.56 
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Table S5.100: Non parametric Spearman rank correlation coefficients between genetic coefficient of variation, broad 
sense heritability (H²) in control, cd treatment and Cd tolerance of reproduction at first brood rate and habitat 
characteristics. An asterisk indicates a significant correlation (p<0.05). Fish abundance (scored in categories between 0 
and 4, see Material and Method chapter 5) and prevalence of parasites (%) were determined in the different lakes. Land 
use is determined by shortest distance to nearest crop field, and percentage arable land, pastures and heterogeneous 
agricultural activities in a 200m radius. Ranking of metals were determined by the summation of the ranks of each metal 
per population. 

Habitat characteristics CVG reproduction at first brood   H² reproduction at first brood 

 0 µg 

Cd/L 

 5 µg 

Cd/L 

Cd 

tolerance 

 0 µg 

Cd/L 

5 µg 

Cd/L 

Cd 

tolerance 

Fish presence Fish 
abundance 

0.25 -0.50 -0.58 0.14 -0.65 -0.54 

Parasite 
prevalence 
(%) 

Amoebidium 
prevalence (%) 

-0.62* 0.22 0.36 -0.51 0.48 0.57 

Binucleata 
prevalence (%) 

-0.42 -0.08 0.44 -0.15 0.20 0.81* 

Pasteuria 

prevalence (%) 

-0.44 -0.20 0.34 -0.27 0.02 0.67* 

Vorticella 

prevalence (%) 

0.15 -0.19 0.30 0.46 -0.07 0.63* 

Land use Distance to 
crop field (m) 

-0.21 -0.36 -0.25 -0.24 -0.25 -0.24 

Arable land 
(%) 

0.26 0.22 0.27 0.52 0.31 0.51 

Pastures (%) -0.30 -0.33 -0.13 -0.26 -0.26 -0.04 

Heterogeneou
s agriculture 
(%) 

-0.37 0.51 0.79* -0.43 0.58 0.43 

Metal 

concentration
s in sediment 

Cd (mg/kg) -0.08 -0.25 -0.45 -0.10 -0.25 -0.34 

Ni (mg/kg) 0.32 0.03 0.06 0.25 -0.05 -0.16 

Cu (mg/kg) 0.48 -0.16 -0.03 0.65* -0.14 0.08 

Zn (mg/kg) 0.45 -0.14 -0.15 0.63* -0.14 0.04 

Pb (mg/kg) 0.31 -0.20 -0.45 0.30 -0.33 -0.38 

Metal 
concentration
s in water 

Ni (µg/L) -0.32 0.71* 0.79* -0.31 0.82* 0.57 

Cu (µg/L) -0.21 0.55 0.50 -0.16 0.64* 0.25 

Cd (µg/L) -0.17 0.42 0.76* -0.04 0.56 0.58 

Pb (µg/L) 0.09 0.50 0.54 0.20 0.48 0.32 

Ca (mg/L) -0.09 -0.04 -0.08 -0.20 0.14 0.10 

Mg (mg/L) -0.50 0.12 0.13 -0.53 0.23 0.24 

Ranking of 
metals 

Metal ranking 
water  

-0.17 0.63* 0.73* -0.12 0.66* 0.66* 

Metal ranking 
sediment 

0.36 -0.11 -0.32 0.30 -0.16 -0.38 
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Table S5.101: Non parametric Spearman rank correlation coefficients between genetic coefficient of variation, broad 
sense heritability (H²) in control, cd treatment and Cd tolerance of maturation rate and habitat characteristics. An 
asterisk indicates a significant correlation (p<0.05). Fish abundance (scored in categories between 0 and 4, see Material  
and Method chapter 5) and prevalence of parasites (%) were determined in the different lakes. Land use is determined 
by shortest distance to nearest crop field, and percentage arable land, pastures and heterogeneous agricultural activities 
in a 200m radius. Ranking of metals were determined by the summation of the ranks of each metal per population. 

Habitat characteristics CVG maturation rate  H² maturation rate 

 0 µg 
Cd/L 

 5 µg 
Cd/L 

Cd 
tolerance 

 0 µg 
Cd/L 

5 µg 
Cd/L 

Cd 
tolerance 

Fish presence Fish 
abundance 0.06 -0.17 0.01 0.02 -0.15 -0.03 

Parasite 
prevalence 

(%) 

Amoebidium 
prevalence (%) 0.19 0.07 0.14 0.09 0.11 0.05 

Binucleata 

prevalence (%) 0.38 0.05 0.08 0.38 0.34 0.26 

Pasteuria 
prevalence (%) 0.57 0.12 0.16 0.62 0.44 0.55 

Vorticella 
prevalence (%) 0.23 0.07 -0.04 0.33 0.41 0.25 

Land use Distance to 
crop field (m) -0.41 0.05 0.57* -0.07 0.04 0.49 

Arable land 

(%) -0.06 0.03 -0.22 -0.23 0.11 -0.32 

Pastures (%) -0.17 0.10 0.47 0.13 0.16 0.62 

Heterogeneou
s agriculture 

(%) 0.22 -0.13 -0.48 0.04 -0.24 -0.46 

Metal 
concentration
s in sediment 

Cd (mg/kg) 0.15 0.69 0.49 0.14 0.53 0.26 

Ni (mg/kg) 0.03 0.27 -0.20 -0.12 0.08 -0.37 

Cu (mg/kg) 0.00 0.22 -0.10 -0.14 0.24 -0.25 

Zn (mg/kg) 0.04 0.28 -0.02 -0.13 0.31 -0.15 

Pb (mg/kg) 0.10 0.31 0.01 -0.14 0.17 -0.15 

Metal 
concentration

s in water 

Ni (µg/L) 0.19 -0.03 -0.38 0.01 -0.09 -0.36 

Cu (µg/L) -0.17 0.17 -0.01 -0.13 0.06 -0.12 

Cd (µg/L) 0.07 0.08 -0.31 -0.10 0.04 -0.25 

Pb (µg/L) -0.04 0.00 -0.34 -0.06 -0.02 -0.33 

Ca (mg/L) -0.01 -0.04 0.30 0.06 0.05 0.20 

Mg (mg/L) 0.10 0.25 0.21 0.14 0.14 0.16 

Ranking of 
metals 

Metal ranking 
water  -0.14 0.19 -0.32 -0.18 -0.18 -0.31 

Metal ranking 
sediment 0.15 0.30 -0.07 -0.02 0.13 -0.22 

 

Table 5.102 General Linear Model for population and clone effect for Cd tolerance of total reproduction (R0). An asterisk 
indicates a significant effect.  

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 369.61 1 <0.01* 

Clone(Population) 186.53 109 <0.01* 

Population 68.16 10 <0.01* 
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Table 5.103: General Linear Model for population and clone effect for Cd tolerance of population growth rate (rm). An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 1088.44 1 <0.01* 

Clone(Population) 410.75 109 <0.01* 

Population 125.72 10 <0.01* 

 

Table 5.104: General Linear Model for population and clone effect for Cd tolerance of reproduction at first brood. An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 156.26 1 <0.01 

Clone(Population) 130.32 105 0.05* 

Population 9.45 10 0.49 

 
 
Table 5.105: General Linear Model for population and clone effect for Cd tolerance of maturation rate. An asterisk 
indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 1240.48 1 <0.01* 

Clone(Population) 152.63 105 <0.01* 

Population 27.10 10 <0.01* 

 

Table 5.106: General Linear Model for population and clone effect of total reproduction (R0) in control treatment. An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 1002.59 1 <0.01* 

Clone(Population) 230.57 114 0.01* 

Population 30.94 10 <0.01* 

 

Table 5.107: General Linear Model for population and clone effect of total reproduction (R0) in Cd treatment. An asterisk 
indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect df p-value 

Intercept 981.45 1 <0.01* 

Clone(Population) 395.73 114 <0.01* 

Population 100.06 10 <0.01* 
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Table 5.108: General Linear Model for population and clone effect of population growth rate (rm) in control treatment. 
An asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 1037.77 1 <0.01* 

Clone(Population) 218.57 113 <0.01* 

Population 44.09 10 <0.01* 

 
Table 5.109: General Linear Model for population and clone effect of population growth rate (rm) in Cd treatment. An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 995.63 1 <0.01* 

Clone(Population) 379.35 114 <0.01* 

Population 111.19 10 <0.01* 

 
Table 5.110: General Linear Model for population and clone effect of reproduction at first brood in control treatment. An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 1410.36 1 <0.01* 

Clone(Population) 218.86 112 <0.01* 

Population 39.70 10 <0.01* 

 
Table 5.111: General Linear Model for population and clone effect of reproduction at first brood in Cd treatment. An 
asterisk indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 1277.98 1 <0.01* 

Clone(Population) 284.65 109 <0.01* 

Population 92.19 10 <0.01* 

 
Table 5.112: General Linear Model for population and clone effect of maturation rate in control treatment. An asterisk 
indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 282.16 1 <0.01* 

Clone(Population) 119.74 112 0.59 

Population 8.41 10 0.29 
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Table 5.113: General Linear Model for population and clone effect of maturation rate in Cd treatment. An asterisk 
indicates a significant effect. 

Fitness traits Likihood ratio Chi-square effect Df p-value 

Intercept 208.59 1 <0.01* 

Clone(Population) 112.73 109 0.38 

Population 8.98 10 0.53 

 
 

 

Figure S5.1: Clone means of total reproduction (R0) for different populations in control and Cd treatment.  

 

 

Figure S5.2: Clone means of population growth rate for different populations in control and Cd treatment.  
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Figure S5.3: Clone means of reproduction at first brood for different populations in control and Cd treatment.  

 
 

 

Figure S5.4: Clone means of maturation rate for different populations in control and Cd treatment.  
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Table S6.1: Physico-chemical characteristics of test media during Cd experiment. Values represent mean ± standard 
deviation. NM is new medium. OM is old medium.  

Nominal Cd 

concentration 
(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 

(µg Cd/L) 

Mean Cd 

concentration 
(µg Cd/L) 

0 NM 4.1 7.69 <0.1  <0.1  

OM 5.21 ±0.71 7.53 ± 0.12 <0.1  

2.2 NM 4.89 7.69 2.05 ± 0.08 2.02 ± 0.04 

OM 5.93 ± 0.63 7.72 ± 0.21 1.99 ± 0.06 

4.6 NM 4.73 7.62 5.12 ± 0.15 4.70 ± 0.60 

OM 5.72 ±0.33 7.70 ± 0.31 4.28 ± 0.60 

10 NM 4.83 7.61 9.32 ± 0.89 9.13 ± 0.89 

OM 5.89 ± 0.71 7.68 ± 0.17 8.93 ± 1.21 

22 NM 4.52 7.52 20.04 ± 0.54 17.83 ± 3.13 

OM 5.12 ± 1.512 7.83 ± 0.31 15.61 ± 1.07 

 
Table S6.2: Physico-chemical characteristics of test media during micro-evolutionary experiment. Values represent mean 
± standard deviation. NM is new medium. OM is old medium.  

Nominal Cd 
concentration 

(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 
(µg Cd/L) 

Mean Cd 
concentration 

(µg Cd/L) 

0 NM 4.62 7.67 <0.1  <0.1  

OM 5.45 ±0.64 7.58 ± 0.22 <0.1  

2.2 NM 4.84 7.65 2.61 ± 0.35 2.11 ± 0.71 

OM 5.83 ± 0.52 7.70 ± 0.31 1.61 ± 0.15 

4.6 NM 4.86 7.62 5.10 ± 0.14 4.70 ± 0.56 

OM 5.99 ±0.30 7.73 ± 0.25 4.31 ± 0.18 

10 NM 4.69 7.65 10.05 ± 0.18 9.21 ± 1.20 

OM 5.97 ± 0.67 7.76 ± 0.27 8.36 ± 0.26 

22 NM 4.76 7.66 23.19 ± 1.24 20.77 ± 3.41 

OM 5.89 ± 1.32 7.86 ± 0.27 18.37 ± 1.51 

 
Table S6.3: Values of total reproduction of start population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 76  150 93 0 49 101 90 123 119 82 76 
2 118 126 144 33 153 17  95 128  115 118 

3 87  138 132  140 27 85  119 102 87 
 

Table S6.4: Values of population growth rate of start population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.33  0.47 0.32 0.00 0.36 0.41 0.38 0.39 0.45 0.41 0.33 
2 0.39 0.39 0.43 0.42 0.42 0.31  0.39 0.40  0.42 0.39 

3 0.38  0.41 0.37  0.53 0.36 0.33  0.39 0.41 0.38 
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Table S6.5: Values of total reproduction of start population in 2.2 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 90  104 89 41 93 92 82 96 26 0 90 
2 89 48 109 0 114 68  72 116  11 89 
3 26  3 105  135 79 76  84 0 26 

 

Table S6.6: Values of population growth rate of start population in 2.2 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.35  0.47 0.35 0.36 0.32 0.38 0.35 0.36 0.31 0.00 0.35 
2 0.36 0.33 0.37 0.00 0.40 0.33  0.33 0.34  0.30 0.36 

3 0.34  0.14 0.35  0.48 0.36 0.33  0.36 0.00 0.34 
 

Table S6.7: Values of total reproduction of start population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 78  0 52 137 4 112 116 0 6 2 78 
2 68 0 0 0 126 0  89 0  11 68 

3 26  10 0  15 23 84  33 0 26 
 

Table S6.8: Values of population growth rate of start population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.34  0.00 0.31 0.37 0.11 0.39 0.33 0.00 0.26 0.06 0.34 
2 0.38 0.00 0.00 0.00 0.39 0.00  0.37 0.00  0.30 0.38 
3 0.34  0.15 0.00  0.34 0.35 0.33  0.33 0.00 0.34 
 

Table S6.9: Values of total reproduction of start population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 10  19 69 38 0 69 91 0 0 0 10 
2 0 43 0 0 91 0  98 80  0 0 
3 4  9 52  17 0 82  0 0 4 
 

Table S6.10: Values of population growth rate of start population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.26  0.30 0.32 0.31 0.00 0.35 0.32 0.00 0.00 0.00 0.26 

2 0.00 0.29 0.00 0.00 0.37 0.00  0.33 0.29  0.00 0.00 
3 0.17  0.27 0.30  0.31 0.00 0.32  0.00 0.00 0.17 
 

Table S6.11: Values of total reproduction of start population in 22 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 61  4 0 0 0 0 5 0 0 0 61 

2 0 0 6 0 0 0  12 0  0 0 
3 0  6 0  0 25 11  0 0 0 
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Table S6.12: Values of population growth rate of start population in 22 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.33  0.15 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.33 
2 0.00 0.00 0.22 0.00 0.00 0.00  0.26 0.00  0.00 0.00 
3 0.00  0.22 0.00  0.00 0.38 0.21  0.00 0.00 0.00 
 

Table S6.13: Values of total reproduction of Control-evolved population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 80 132 174 117 100 72  77 94 109 93 121 69 86  
2 128 96 84 124 53 91 0 97 0 87 61  92 100 69 
3 142 142 0 117 95 69 86 73 0 78 0 84 0 111 74 
 

Table S6.14: Values of population growth rate of Control-evolved population in control treatment. 

Clone 
Replicat 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.36 0.46 0.46 0.36 0.38 0.37  0.37 0.41 0.37 0.36 0.46 0.39 0.40  

2 0.38 0.41 0.35 0.44 0.34 0.38 0.00 0.41 0.00 0.39 0.35  0.39 0.43 0.39 
3 0.38 0.44 0.00 0.39 0.38 0.40 0.35 0.34 0.00 0.42 0.00 0.40 0.00 0.38 0.42 
 

Table S6.15: Values of total reproduction of Control-evolved population in 2.2 µg Cd/L. 

Clone 
Replicat 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 79 131 168 0 94 85  89 89 78 76 53 87 110  

2 110 116 106 90 73 60 62 92 76 104 57  59 109 79 
3 109 120 91 88 94 65 88 136 48 70 76 86  95 75 
 

Table S6.16: Values of population growth rate of Control-evolved population in 2.2 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.36 0.37 0.45 0.00 0.37 0.33  0.37 0.38 0.36 0.35 0.39 0.41 0.40  
2 0.39 0.42 0.39 0.41 0.31 0.32 0.35 0.33 0.31 0.38 0.35  0.30 0.40 0.38 

3 0.39 0.41 0.38 0.35 0.33 0.37 0.32 0.40 0.30 0.31 0.40 0.34  0.34 0.40 
 

Table S6.17: Values of total reproduction of Control-evolved population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 126 0 0 109 0 85  121 82 89 0 121 93 116  
2 120 109 115 0 87 0 85 28 57 92 64  87 64 96 

3 116 118 72 120 60 34 87 87 44 83 98 106  107 87 
 

Table S6.18: Values of population growth rate of Control-evolved population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.35 0.00 0.00 0.35 0.00 0.34  0.38 0.35 0.34 0.00 0.41 0.39 0.38  
2 0.36 0.37 0.39 0.00 0.33 0.00 0.34 0.33 0.32 0.38 0.34  0.38 0.32 0.41 
3 0.36 0.38 0.39 0.35 0.35 0.33 0.33 0.33 0.31 0.33 0.38 0.33  0.37 0.41 
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Table S6.19: Values of total reproduction of Control-evolved population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 9 16 0  81 62 38 31 146 76 34  
2 119 85 30 0 22 37 0 57 4 71 42  93 29 76 
3 7 96 31 16 23 35 70 34 11 65 60 92  5 73 
 

Table S6.20: Values of population growth rate of Control-evolved population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.00 0.00 0.00 0.24 0.30 0.00  0.36 0.33 0.31 0.36 0.44 0.39 0.31  
2 0.37 0.38 0.27 0.00 0.29 0.33 0.00 0.25 0.14 0.34 0.31  0.40 0.27 0.37 
3 0.24 0.39 0.38 0.29 0.31 0.34 0.33 0.33 0.24 0.37 0.33 0.38  0.20 0.40 
 

Table S6.21: Values of total reproduction of Control-evolved population in 22 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 13 10 0 0 0 0 0 29 28 7 27 70 5  

2 0 0 3 0 0 2 23 13 5 30 0  78 0 86 
3 89 19 26 29 5 5 12 0 0 46 42 30  29 81 
 

Table S6.23: Values of population growth rate of Control-evolved population in 22 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.00 0.27 0.29 0.00 0.00 0.00 0.00 0.00 0.26 0.30 0.28 0.36 0.37 0.19  

2 0.00 0.00 0.10 0.00 0.00 0.08 0.30 0.20 0.16 0.32 0.00  0.35 0.00 0.41 
3 0.32 0.33 0.36 0.31 0.18 0.18 0.21 0.00 0.00 0.30 0.32 0.37  0.00 0.42 
 

Table S6.24: Values of total reproduction of 2.2 µg Cd/L -evolved population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 143   124 136 109 135 127 124 132 97 92 143 114 124 
2  127  147  91 161 145 124 115 66 74 117 0 124 

3    158 0 132 0 144 119  122  117 163 160 
 

Table S6.25: Values of population growth rate of 2.2 µg Cd/L -evolved population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.47   0.44 0.41 0.38 0.35 0.37 0.43 0.43 0.39 0.37 0.36 0.39 0.41 
2  0.46  0.42  0.37 0.39 0.46 0.39 0.40 0.36 0.35 0.38 0.00 0.43 

3    0.40 0.00 0.38 0.00 0.41 0.43  0.40  0.37 0.40 0.41 
 

Table S6.26: Values of total reproduction of 2.2 µg Cd/L -evolved population in 2.2 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 136   18 112 57 6 11 104 9 78 73 101 106 62 
2  99  15 129 97 11 58 124 18 89 95 73 111 15 
3    32 0 81 9 23 92 63 77 33 124 91 8 
 



Supplementary Material  

265 
 

Table S6.27: Values of population growth rate of 2.2 µg Cd/L -evolved population in 2.2 µg Cd/L 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.45   0.36 0.36 0.35 0.22 0.28 0.38 0.16 0.28 0.33 0.33 0.38 0.29 
2  0.41  0.30 0.39 0.37 0.30 0.38 0.39 0.31 0.35 0.37 0.37 0.38 0.33 
3    0.31 0.00 0.30 0.23 0.31 0.36 0.34 0.34 0.28 0.38 0.36 0.26 
 

Table S6.28: Values of total reproduction of 4.6 µg Cd/L -evolved population in control treatment 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 128  98 97 0 0 36 86  128 94  89 121 135 
2 146  91  0  103  97 95 93  89 119  
3 136 0 134 132  105 96  90 103 111 84 33 24 106 
 

Table S6.29: Values of population growth rate of 4.6 µg Cd/L -evolved population in control treatment 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.37  0.39 0.34 0.00 0.00 0.29 0.34  0.38 0.40  0.34 0.36 0.41 

2 0.39  0.36  0.00  0.33  0.34 0.37 0.32  0.35 0.38  
3 0.38 0.00 0.40 0.41  0.34 0.33  0.36 0.39 0.38 0.32 0.36 0.16 0.36 
 

Table S6.30: Values of total reproduction of 4.6 µg Cd/L -evolved population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  0 56 118 128 90 21 98  0 0  62 0  

2  0 44  108  0  109 0 0  77 0  
3 51 34 139 139  98 0  0 113 0 76 87 0 120 
 

Table S6.31: Values of population growth rate of 4.6 µg Cd/L -evolved population in 4.6 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  0.00 0.30 0.34 0.35 0.31 0.23 0.35  0.00 0.00  0.33 0.00  
2  0.00 0.27  0.35  0.00  0.31 0.00 0.00  0.33 0.00  

3 0.32 0.30 0.37 0.36  0.31 0.00  0.00 0.33 0.00 0.32 0.35 0.00 0.36 
 

Table S6.32: Values of total reproduction of 10 µg Cd/L -evolved population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 92 92 91 84 89 84 79 108 97 95 86 93 115 131 0 
2 84 127 139 118 0 97 87 78 117 97 106 89 58 116 94 

3  128 35 102 148 98 95 113 121 89 77 67 107 62 88 
 

Table S6.33: Values of population growth rate of 10 µg Cd/L -evolved population in control treatment. 

Clone 
Replicat 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.35 0.32 0.34 0.36 0.36 0.34 0.39 0.34 0.35 0.39 0.34 0.37 0.39 0.39 0.00 
2 0.31 0.39 0.41 0.36 0.00 0.36 0.34 0.33 0.35 0.37 0.38 0.35 0.27 0.38 0.35 
3  0.34 0.36 0.37 0.40 0.36 0.28 0.34 0.35 0.37 0.31 0.36 0.37 0.29 0.34 
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Table S6.34: Values of total reproduction of 10 µg Cd/L -evolved population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 95 33 4 0 80 79 89 56 69 122 70 0 2 88 28 
2 106 93 1 0  75 0 67 86 0 65 84 71 102 38 
3  0 0 107 81 0 17 0 85 0 0 67 80  62 
 

Table S6.35: Values of population growth rate of 10 µg Cd/L -evolved population in 10 µg Cd/L. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.35 0.34 0.07 0.00 0.31 0.30 0.38 0.29 0.33 0.35 0.31 0.00 0.09 0.35 0.26 
2 0.32 0.31 0.00 0.00  0.31 0.00 0.31 0.33 0.00 0.33 0.33 0.36 0.35 0.28 
3  0.00 0.00 0.35 0.37 0.00 0.31 0.00 0.33 0.00 0.00 0.29 0.35  0.31 
 

Table S6.36: Values of total reproduction of 22 µg Cd/L -evolved population in control treatment. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 78 90 82 119 41 89 93 80 69 96 83 88 101 70 

2 0 69  130 0 73 71 87 93 107 112 102 26 96 90 

3 0 122  72 121 87 97 106 81 124 82 115 56  94 
 

Table S6.37: Values of population growth rate of 22 µg Cd/L -evolved population in control treatment. 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.00 0.34 0.36 0.35 0.39 0.33 0.34 0.35 0.38 0.36 0.40 0.37 0.39 0.36 0.30 

2 0.00 0.29  0.36 0.00 0.39 0.38 0.37 0.38 0.40 0.38 0.35 0.30 0.36 0.37 
3 0.00 0.37  0.35 0.37 0.38 0.37 0.42 0.35 0.40 0.40 0.37 0.36  0.35 
 

Table S6.38: Values of total reproduction of 22 µg Cd/L -evolved population in 22 µg Cd/L. 

Clone 

Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 81 74 30 35 46 48 0 15 52 62 58 43 29 0 2 

2 89 0  21 33 73 9 0 43 39 45 27 4  36 

3 91 65  0 57 40 0 0 45 35 15 64 2 90 31 
 

Table S6.39: Values of population growth rate 22 µg Cd/L -evolved population in 22 µg Cd/L 

Clone 
Replicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.35 0.31 0.33 0.29 0.33 0.37 0.00 0.30 0.35 0.36 0.28 0.36 0.27 0.00 0.08 

2 0.33 0.00  0.31 0.33 0.35 0.24 0.00 0.33 0.34 0.33 0.29 0.09  0.29 
3 0.35 0.30  0.00 0.30 0.35 0.00 0.00 0.35 0.32 0.29 0.37 0.09 0.36 0.27 
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Table S6.40: Total ephippia production during micro-evolution experiment per aquaria per Cd-evolved population.  

Cd-evolved population 
Aquaria 

0 2.2 4.6 10 22 

1 509 289 271 223 267 

2 313 386 301 298 332 

3 590 304 366 191 383 

 

Table S6.41: Results of Kruskall- Wallis test. P-values indicate significance p-level for differences between Cd-evolved 
populations per day of experiment 

day of experiment 1 24 34 43 50 58 65 72 79 86 93 100 105 

Kruskall-wallis p-value 1 1 0.53 0.5 0.41 0.66 0.07 0.13 0.74 0.13 0.22 0.04 0.03 

 

Table S6.42: Results of Kruskall- Wallis test. P-values indicate significance p-level for differences between Cd-evolved 
populations per day of experiment 

day of 
experiment 112 120 127 133 140 147 155 160 170 177 184 

Kruskall-
wallis p-value 0.38 0.03 0.07 0.59 0.16 0.1 0.07 0.04 0.31 0.73 0.12 

 

S6.1. General Linear Models 

A general Linear model can be seen as an extension of linair multiple regressions for a single 

dependent variable (response variable): 

                          (Eq. S6.1) 

Where y is the response variable and the zi are the predictor (or explanatory) variables to 

predict the value of the response variable. The response variable (y) is now in function of n 

variables. The variables y and z represent observed variables, whereas α and β are constants 

to be estimated. In nested designs, the omitted effects are low-order effects. Nested effects 

are effects in which the nested variables never appear as main effects (variables).   
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S7.1. Materials and methods of 21-day life table experiment with monoclonal Daphnia 

magna laboratory populations 

S7.1.1. General culture and exposure conditions  

The maintenance and exposures of all clones of laboratory populations were 

performed at 20°C and under a light:dark cycle of 16h:8h. Daphnids were fed daily with a 3:1 

mixture (based on cell numbers) of the algae Pseudokirchneriella subcapitata and 

Chlamydomonas reinhardtii. Culture maintenance, medium renewal and exposures were 

performed in modified M4-medium, as described in Chapter 2 (§2.1).  

S7.1.2. European laboratory clones 

Seven D. magna clones from 7 different European laboratories were investigated. 

Table S7.1 (Supplementary Material, Table S1) gives a summary of the origin of the different 

clones used in the present study. Following arrival of subsamples of the monoclonal cultures, 

they were given a clone ID. Next, an individual of each clone was picked out to established a 

clonal lineage (Figure S7.1). The maintenance of the laboratory clones was the same as 

described in chapter 2 (§2.2).  
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Figure S7.1: Test-design for life-table experiment by European monoclonal Daphnia magna populations. This is presented 
for one clone. Same design was followed for other clone.  

 

S7.1.3. Test design of the exposures to control and Cd 

The test design is scheduled in Figure S7.1. In a first step, two adult individuals from 

each of the 7 laboratory clones were transferred individually to separate 50 mL polyethylene 

beaker (= P-generation in Figure 7.1). For each clone, juveniles (<24h) produced by these two 

adults were pooled together and 7 juveniles (<24h) were randomly picked out, to start the 

second generation (2nd generation, i.e. F1, in Figure 7.1). Each juvenile was transferred 

individually to a separate 50 mL polyethylene beaker. The individuals in this second 

generation (F1) then served as the mothers for producing the following generation. At the 

third brood, six juveniles (<24h) (F2) from six different mother organisms (F1) were selected 

and were placed individually in 50 mL polyethylene vessels with modified M4 medium and 

with a Cd range between 1 and 22 µg Cd/L (added as CdCl2•H2O) including a control (no 

added Cd). As such, maternal effects can be ruled out in the estimation of genetic variance, 

as for each clone in each Cd concentration, each of the six replicate individuals (juveniles) 
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being exposed  originated from a different mother organism. All Cd exposures with all clones 

were simultaneously initiated, allowing a comparison that is not biased by temporal 

variability of the cultures. Medium renewal was three times a week and organisms were fed 

daily with 250 µg dry wt/individual, 500 µg dry wt/individual and 750 µg dry wt/individual in 

the first, second and third week of their life, respectively. Based on daily observations the 

following traits were determined: population growth rate (rm) survival and total 

reproduction at day 21 (R0). 

S7.1.4. Chemical analyses 

Chemical analyses were the same as described in Chapter 2 (§2.4)  

S7.1.5. Statistical analyses 

Statistical analyses with the laboratory clones were performed with Statistica 6 

(Statsoft, Tulsa, OK). The No Observed Effect Concentration (NOEC) values based on net 

reproductive rate (R0) were determined with the Mann Whitney U test at the p<0.05 

significance level. A Bonferroni-Holm correction of p-values was applied following the OECD 

guideline on the statistical analysis of ecotoxicity data (OECD 2006). In order to estimate the 

21d-EC10 and 21d-EC50, the following log-logistic models (Eq. S7.1 and Eq. S7.2) were fitted to 

the concentration-response data, i.e. R0 as a function of measured dissolved Cd: 
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   (Eq. S7.1) 



Supplementary Material  

271 
 

10

50

1
ln

9

ln

50

1
x

x

k
y

x

x

æ ö
ç ÷
è ø

æ ö
ç ÷
è ø

=

æ ö
+ ç ÷

è ø

  (Eq. S7.2) 

Where y represents the predicted response (R0), x is the measured concentration (µg 

Cd/L), k = the fitted response in the control treatment, i.e. at x = 0 µg Cd/L, s = the slope 

parameter, x50 = the EC50 (µg Cd/L), and x10 = the EC10 (µg Cd/L).   

S7.2. Results of 21-day life table experiment with monoclonal Daphnia magna laboratory 

populations 

S7.2.1. Physico-chemistry of test media 

The physico-chemistry of the test media is presented as supportive information 

(Table S7.2). DOC ranged between 4.6 and 6.0 mg/L and pH between 7.6 and 7.9. The mean 

dissolved Cd concentrations (mean of old and new medium) differed at most 17% from the 

nominal Cd concentration. The Cd concentration in the old medium was on average 21% 

lower than in the new medium.  

S7.2.2. Effect concentration of monoclonal Daphnia magna laboratory populations 

Considerable variability of reproductive Cd toxicity was observed among the 7 

laboratory clones (Table 7.1). The 21d-NOECs of the laboratory clones varied between 0.89 

and 8.34 µg Cd/L (9-fold difference, n=4), the 21d-EC10s between 0.31 and 11.4 µg Cd/L (33-

fold difference, n=5), and the 21d-EC50s between 3.8 and 20.1 µg Cd/L (5-fold difference, 

n=6).  
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Table S7.1: Summarize of the nine different laboratory clones used in this experiment.  

Clone ID 

used in 

this 

paper 

Origin Used in 

following 

papers  

Supplier  

(Holding in continuous culture) 

Clone CZ Collected from a freshwater 

reservoir in Brno, Czech Republic 

Haeba et al. 

(2008) 

Research Centre for Environmental 

Chemistry and Ecotoxicology, Masaryk 

University, Brno, Czech Republic. 

Clone K6 Collected from a pond in Kiel, 

Antwerp, Belgium 

Cultivated in Ghent University 

since 1976? 

Muyssen et al. 

(2005) 

Laboratory of environmental toxicology, 

University Gent, Belgium 

Clone SE Collected in a small lake in 

Bohuslän, cultivated since 1974 in 

Goteborg University 

 Department Applied Environmental 

Sciences, Goteborg University, Sweden 

Clone DK Langedam, Zealand Denmark Perlt et al. 

(2009) 

 

Freshwater Biological Laboratory, 

University of Copenhagen, Denmark 

Clone F North America Testing laboratory Stuhlbacher et 

al. (1992) 

Barata et al. 

(1998) 

IIAB CSIC  

Environmental Chemistry Department, 

Barcelona, Spain 

Clone A IRCHA, France 

Originally from The Water 

Research Centre, Medmenham 

UK 

Barata et al. 

(1998) 

Barata et al. 

(2000b) 

Baird et al. 

(1991). 

OECD (1997) 

Laboratory of Ecotoxicology,  

CBAS & CIIMAR, University of  

Porto, Portugal 

Clone 

IRCHA 

type 5  

IRCHA France 

Originally from The water 

research Centre, Medmenham UK 

Garric et al. 

(2007) 

Cemagref 

Laboratory of ecotoxicology, Lyon, France  

 

 

 

 



Supplementary Material  

273 
 

Table S7.2: Physico-chemical characteristics of test media during the Cd exposure experiment. Values  represent mean ± 
standard deviation. NM is new medium. OM is old medium.  

Nominal Cd 

concentration 
(µg Cd/L) 

 DOC (mg C/L) pH Cd concentration 

(µg Cd/L) 

Mean Cd 

concentration 
(µg Cd/L) 

0 NM 4.62 7.67 <0.1  <0.1  

OM 5.45 ±0.64 7.58 ± 0.22 <0.1  

1 NM 4.69 7.63 1.06 ± 0.05 0.89 ± 0.22 

OM 5.74 ± 0.34 7.60 ± 0.24 0.73 ± 0.25 

2.2 NM 4.84 7.65 1.96 ± 0.18 1.92 ± 0.06 

OM 5.83 ± 0.52 7.70 ± 0.31 1.88 ± 0.38 

4.6 NM 4.86 7.62 4.56 ± 0.16 3.96 ± 0.88 

OM 5.99 ±0.30 7.73 ± 0.25 3.34 ± 1.37 

10 NM 4.69 7.65 9.79 ± 0.01 8.34 ± 1.99 

OM 5.97 ± 0.67 7.76 ± 0.27 6.94 ± 2.38 

22 NM 4.76 7.66 20.60 ± 0.42 18.87 ± 2.45 

OM 5.89 ± 1.32 7.86 ± 0.27 17.13 ± 1.92 
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