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Samenvatting

Heterogene katalysatoren zijn alom tegenwoordig in de chemische indu-
strie. Zoals elke andere reactie is ook een heterogeen gekatalyseerde re-
actie het resultaat van een netwerk van elementaire stappen. De kennis
van het reactienetwerk, of kenmerken ervan, is erg belangrijk. Ten eer-
ste biedt ze een waardevol hulpmiddel in de steeds intensiever wordende
zoektocht naar actievere en selectievere katalysatoren. Ten tweede kan
ze gebruikt worden als basis bij het ontwerp en de optimalisatie van het
bedrijf van productie-eenheden. De meest waardevolle gegevens voor de
bepaling van reactienetwerken worden verschaft door niet-stationaire ex-
perimenten. Het doel van dit werk was de ontwikkeling van wiskundige
middelen om dergelijke gegevens met dat doel te verwerken.

Tijdens niet-stationaire experimenten worden reactiekinetische feno-
menen gemeten die het reactienetwerk weerspiegelen. De experimenten
worden vaak zo ontworpen, dat de elementaire stappen pseudomonomo-
leculair kunnen worden beschouwd. In dit werk werd pseudomonomole-
culaire kinetiek systeemtheoretisch benaderd als een lineair tijdsinvariant
toestandsmodel. Dit model werd beschreven middels kinetische transfer-
functies in het Laplace domein. Gewoonlijk gaat het over een comparti-
mentenmodel, en zo niet kan het er vaak in worden omgezet. Dit maakt
het mogelijk kinetische transferfuncties af te leiden uit een reactiegraaf,
een gerichte graaf die het reactienetwerk voorstelt. Grafentheoretische
regels werden hiertoe geformuleerd. Belangrijker is dat de symbolische
vorm van de transfer functies blijkt af te hangen van connectiviteitsken-
merken van de reactiegraaf: het aantal intermediairen en de lengte van
het kortste reactiepad tussen tweetallen componenten.

In dit werk lag de klemtoon op een niet-stationair experiment genaamd
temporal analysis of products (TAP). Dit experiment wordt uitgevoerd op
een vastbedreactor beladen met katalysator. Aan de inlaat van de reactor
worden pulsen van reagentia aangeleverd, terwijl aan de uitlaat doorlo-
pend een vacuüm wordt onderhouden. Reactieproducten en niet omge-
zette reagentia verlaten de reactor hier, terwijl hun moldebieten in de
vorm van tijdsreeksen worden geregistreerd door een massaspectrometer.
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De kinetiek van de reactie(s) is typisch pseudomonomoleculair vanwege
de kleine gepulste hoeveelheden (typisch 1 nmol), welke geen significan-
te verandering veroorzaken van het katalysatoroppervlak. Er werd een
reactiemodel gegeven en twee numerieke methoden werden voorgesteld
om dit model te integreren. Er werd een gedetailleerde studie uitgevoerd
naar de ruis aanwezig in de tijdreeksen verkregen door TAP, omdat de-
ze ruis de hoeveelheid informatie beperkt die eruit kan worden afgeleid.
Twee soorten ruis werden onderscheiden uit gegevens afkomstig van twee
verschillende experimentele opstellingen: gekleurde Gaussische ruis en
spectraal gelokaliseerde ruis. Terwijl de eerste soort verondersteld wordt
essentieel te zijn, is de tweede te wijten aan interferentie door het lichtnet.
Behalve de ruis is er een toevallige variabiliteit van de signaalsterkte te
wijten aan een zwak reproduceerbare pulsgrootte en/of een veranderlijke
gevoeligheid van de massaspectrometer.

De meest rigoureuze manier om niet-stationair kinetische gegevens
kwantitatief te verwerken is door kleinste-kwadratenregressie. Nochtans
veronderstelt dit strikt gesproken een ideale ruis, i.e., een Gaussische,
homoskedastische en witte ruis. Deze voorwaarde is niet altijd vervuld.
Voor TAP heeft voormelde analyse van de ruis bijvoorbeeld aan het licht
gebracht dat dit algemeen gesproken niet zo is. Er werd gevonden dat
een lineaire voorafgaande transformatie dit probleem verhelpt. De trans-
formatie is gebaseerd op tweede-orde statistische kenmerken van de ruis,
zoals geschat uit herhalingsexperimenten. De nieuwe regressiemethode
werd daarom second-order statistical regression (SOSR) genoemd. De
SOSR werd gëımplementeerd in een simulatie-regressieprogramma voor
TAP, genaamd TAPFIT. Toepassing van dit programma op synthetische
gegevens heeft aangetoond dat de SOSR resulteert in nauwkeurigere pa-
rameterschattingen en betrouwbaarheidsintervallen dan de onmiddellijke
kleinste-kwadratenregressie. Het programma werd ook toegepast op ex-
perimentele gegevens verzameld voor enerzijds de studie van de adsorptie
van zuurstof op een V2O5 katalysator en anderzijds de interactie van
propaan met een CuO–CeO2/γ–Al2O3 katalysator.

Zelfs als de kinetische gegevens geen ruis bevatten, kan het onmogelijk
blijken alle kinetische parameters te schatten door regressie. Dit gebeurt
vaak als alle gegevens verzameld werden bij dezelfde reactietemperatuur.
Het voornoemde grafentheoretische kader werd toegepast om een nodi-
ge voorwaarde tot identificeerbaarheid te formuleren in termen van de
connectiviteitskenmerken van de reactiegraaf. Het al dan niet vervuld
zijn van deze voorwaarde is nagegaan voor enkele voorbeelden, o.a. de
interactie van propaan met een CuO–CeO2/γ–Al2O3 katalysator, zoals
bestudeerd via TAP.

De klassieke methode om een reactienetwerk te bepalen behelst de
veronderstelling van een aantal mogelijke netwerken, de implementatie
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van elk ervan in een fysisch-chemisch reactiemodel en de regressie van
de gegevens met elk van deze modellen. Een of meerdere reactienetwer-
ken worden geselecteerd, overeenkomstig de modellen die de gegevens het
best beschrijven. De lijst van mogelijke reactienetwerken is nooit volledig.
Bovendien kunnen ze kinetische parameters bevatten die niet identificeer-
baar blijken. Er werd een alternatieve, modelvrije werkwijze onderzocht
die geen veronderstelling vereist van mogelijke reactienetwerken. Deze
werkwijze steunt op de berekening van kinetische transferfuncties in een
aantal frequenties. Een dergelijke berekening is mogelijk uitgaande van
gegevens van dunne-zone-TAP, na toepassing van de Y-procedure. Hier-
boven werd vermeld dat de kinetische transferfuncties de connectiviteits-
kenmerken van de reactiegraaf weerspiegelen. Als de berekende waarden
onder deze transferfuncties worden uitgezet in Bode diagrammen, kunnen
deze kenmerken worden afgelezen. Er werden numerieke experimenten
uitgevoerd om de uitvoerbaarheid van deze procedure te bevestigen.

Tenslotte werden een aantal richtlijnen gegeven om het hoofd te bie-
den aan de technische beperkingen van het TAP-apparaat: de zwakke
reproduceerbaarheid van de pulsgrootte, de aanwezigheid van ruis en de
onmogelijkheid voor één massaspectrometer om meer dan een massa op te
volgen. In verband met de spectrometer werd aangeraden de collectietijd
lang genoeg in te stellen, een bemonsteringsfrequentie van ongeveer 1 kHz
in acht te nemen en spectraal gelokaliseerde ruis indien mogelijk te vermij-
den. In verband met de instelling van de pulskleppen werden verscheidene
redenen gegeven om vele kleine pulsen te geven in plaats van één grote.
Traditioneel worden ter voorbereiding van kleinste-kwadratenregressie de
ruwe tijdsreeksen opgemeten in V getransformeerd tot tijdsreeksen die de
moldebieten voorstellen, in mol/s. Aan de hand van synthetische gege-
vens werd echter aangetoond dat de onmiddellijke regressie van de ruwe
tijdsreeksen meer accurate betrouwbaarheidsintervallen oplevert voor de
schattingen. De reden hiervoor is dat met de transformatie van tijds-
reeksen nadelige kruiscorrelaties worden gëıntroduceerd. Schatting van
logaritmen van kinetische parameters in plaats van die parameters zelf
werd voorgesteld als manier om de robuustheid van de regressie te be-
vorderen. Indien mogelijk moeten fysische parameters, zoals pulsgroottes
en diffusiecoëfficiënten, onafhankelijk geschat worden. Hierboven werd
reeds vermeld dat de traditionele manier om reactienetwerken te bepalen
erin bestaat gegevens te regresseren met verschillende mogelijke model-
len. Het Bayesiaans informatiecriterium (BIC), dat eenvoudige kinetische
modellen bevoordeelt, werd voorgesteld om de discriminatie door te voe-
ren. De richtlijnen werden toegepast op de experimentele bepaling van de
aard van de interactie van propaan en propeen op een V2O5 katalysator.
Een reactienetwerk werd geselecteerd waarin propaan ofwel onmiddellijk
ofwel via een oxidatieve dehydrogenering tot propeen wordt geoxideerd.





Summary

Heterogeneous catalysts are omnipresent in the chemical industry. Like
any other reaction, a heterogeneous catalytic reaction occurs as a result of
a network of elementary steps. Knowledge of the reaction network, or fea-
tures of it, is highly relevant. Firstly, it provides an important tool in the
ever-intensifying search for more active and selective catalysts. Secondly,
such information can be used as a basis for the design and operational op-
timization of production units. In order to determine reaction networks,
the most valuable data stem from transient experiments. The aim of the
present work was to develop mathematical tools to process such data with
that purpose.

During transient experiments, reaction-kinetic phenomena are mea-
sured, which reflect the reaction network. The experiments are often de-
signed so, that the elementary steps can be considered pseudomonomolec-
ular. In this work, pseudomonomolecular kinetics have been approached
system-theoretically as a linear time-invariant state-space model. This
model has been described in terms of kinetic transfer functions in the
Laplace domain. Usually, the state-space model is, or can be made into,
a compartmental one. This allows the determination of kinetic trans-
fer functions from the reaction graph, a directed graph representing the
reaction network. Graph-theoretical rules have been formulated. More
importantly, the symbolic form of the transfer functions has been shown
to depend only on connectivity features of the reaction graph: the number
of intermediates and the length of the shortest reaction pathway between
pairs of components.

In this work, the focus lay on a transient experiment referred to as
temporal analysis of products (TAP). This experiment is performed on a
fixed bed reactor loaded with catalyst. Pulses of reactants are admitted
at the inlet the reactor, while the outlet is continuously evacuated by
vacuum pumps. Reaction products and unconverted reactants leave the
reactor there, their molar flow rates being recorded in the form of time
series by a mass spectrometer. The kinetics of the reaction(s) are typically
pseudomonomolecular because of the small size of the pulses (typically
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1 nmol), which do not cause a significant change of the composition of
the catalyst surface. A reactor model has been given and two numerical
methods have been presented to integrate this model. A detailed study
was devoted to the noise present in the time series obtained from TAP,
as this noise limits the amount of information which can be extracted
from them. Two types of noise have been distinguished in data from
two different experimental setups: colored Gaussian noise and spectrally
localized noise. While the first one is believed to be essential, the second
one is due to mains frequency interference. Besides the noise, there is a
random variability of the signal strength caused by a poorly reproducible
pulse size and/or a variable mass spectrometer sensitivity.

The most rigorous way to process transient kinetic data quantitatively
is through least-squares regression. However, strictly speaking, this re-
quires the noise to be ideal, i.e., Gaussian, homoskedastic and white.
This condition is not always fulfilled. For TAP, for example, the noise
analysis revealed that it is generally not. A linear conditioning transform
was found to overcome this issue. The conditioning transform is based
on second-order statistical properties of the noise, as estimated from
replicate-experimental data. The novel regression approach has there-
fore been termed second-order statistical regression (SOSR). The SOSR
has been implemented in a simulation-regression program for TAP, called
TAPFIT. Application of this program to synthetic data has demonstrated
the SOSR to result in more accurate parameter estimates and confidence
intervals than direct least-squares regression. The program has also been
applied to experimental data concerning the adsorption of oxygen on a
V2O5 based catalyst and the interaction of propane with a CuO–CeO2/γ–
Al2O3 catalyst.

Even if the kinetic data are not contaminated with noise, it may be
impossible to estimate all of its kinetic parameters by regression. This
occurs often if all data have been collected at the same reaction tem-
perature. The graph-theoretical framework mentioned above has been
applied to formulate a necessary condition for identifiability in terms of
the connectivity features of the reaction graph. Whether this condition
is fulfilled has been verified for some examples, including the interaction
of propane with a CuO–CeO2/γ–Al2O3 catalyst, as studied by TAP.

The classical way to determine a reaction network is by postulating a
number of candidates, implementing each of them in a physico-chemical
reaction model and regressing the data with each of these models. One
or more reaction networks are selected, corresponding to the models pro-
viding the best description of the data. The list of candidate reaction
networks is never exhaustive. Moreover, some of the reaction networks
may have kinetic parameters which are unidentifiable. An alternative
approach was explored, which is model-free, i.e., it does not require the
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postulation of candidate reaction networks. The procedure relies on the
calculation of kinetic transfer functions for equally spaced frequencies.
Such a calculation is possible from thin-zone-TAP-data, after application
of the Y-procedure. It was mentioned above that the kinetic transfer func-
tions reflect the connectivity features of the reaction graph. Investigation
of Bode plots representing the calculated values of these transfer func-
tions allows the determination of these features. Numerical experiments
have been performed to confirm the feasibility of the procedure.

Finally, a set of guidelines was presented in order for the TAP-user
to deal with the technical limitations of the apparatus: the poor repro-
ducibility of the pulse size, the presence of noise and the impossibility of
one mass spectrometer to monitor more than one mass. Regarding the
spectrometer, the advice was given to set the collection time long enough,
to apply a sampling frequency of about 1 kHz and to prevent spectrally
localized noise at its root if possible. Regarding the settings of the pulse
valves, several reasons have been given for admitting many small pulses
instead of one large one. Traditionally, in preparation of least-squares
regression, the raw time series measured in V are transformed into time
series representing molar flow rates in mol/s. It has been demonstrated
by means of synthetic data that regressing the raw time series directly
yields more accurate confidence intervals of the estimates, because trans-
formation of the time series introduces cross-correlations. Estimating log-
arithms of kinetic parameters instead of the parameters themselves has
been proposed to increase the robustness of the regression. If possible,
physical parameters such as pulse sizes and diffusion coefficients should
be estimated independently. It was mentioned above that the traditional
approach to determine reaction networks is through regression with sev-
eral competing models. The Bayesian information criterion (BIC), fa-
voring parsimonious kinetic models, has been presented to carry out the
discrimination. The guidelines have been applied to the experimental de-
termination of the nature of the interaction of propane and propene with
a V2O5 catalyst. A reaction network has been selected, where propane is
oxidized either directly or via an oxidative dehydrogenation to propene.





List of Symbols

Roman symbols
A Arrhenius pre-exponential factor
Aj component j, vertex in a digraph
A(tj) amplitude of oscillating noise at time tj V
aj an arc in a directed graph
B set in which b takes its values
BICj score of model j according to the Bayesian in-

formation criterion (BIC)
–

b vector of values bj
bj possible value of the physico-chemical parame-

ter βj
CY (tj , tk) covariance of the samples at tj and tk of the

stochastic process Y
c vector of concentrations cj mol/kg
c(l) vector c valid in zone l of a TAP-reactor mol/kg
c̃(l) vector resulting from selecting one element of

c(l) corresponding to each gas phase component
mol/kg

c0 vector of initial concentrations cj,0 mol/kg
c(l)
g vector of gas concentrations in zone l of a TAP-

reactor
mol/m3

c(l)
g,j vector of gas concentrations in discretization

interval j in zone l of a TAP-reactor
mol/m3

cin vector of gas concentrations at the inlet of a
TAP-reactor

mol/m3

cout vector of gas concentrations at the outlet of a
TAP-reactor

mol/m3

c(l)
s vector of surface concentrations in zone l of a

TAP-reactor
mol/kg

c(l)
s,0 vector of the initial surface concentrations in

zone l if a TAP-reactor
mol/kg



xxii List of Symbols

c(l)
s,j vector of surface concentrations in discretiza-

tion interval j in zone l of a TAP-reactor
mol/kg

cj concentration of Aj
cj,0 initial concentration of Aj
DDD

(l)
e diagonal vector holding in its diagonal the ef-

fective Knudsen diffusion coefficients of all gas
components in zone l of a TAP-reactor

m2/s

D denominator polynomial of a kinetic transfer
function Hj,k

Dj determinant of a vertex Aj in a digraph
D

(l)
e effective Knudsen diffusion coefficient of a gas

component in zone l of a TAP-reactor
m2/s

De,ref reference effective Knudsen diffusion coefficient m2/s
Ee,v error matrix, the jth column of which contains

the estimated noise y(k)
e,v − ye,v in the y(k)

e,v

E′e,v transformed error matrix ÛT
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Chapter 1

Introduction

1.1 Reaction networks, kinetics and catalysis

Almost all of the industrially relevant reactions take place as the net
result of several, sometimes thousands of events at the molecular level.
These events are called elementary steps. Apart from the reactants and
products of the reaction, the elementary steps involve intermediates. A
set of elementary steps is called a reaction network . As an example,
consider a reaction network responsible for the conversion of ozone into
dioxygen, 2 O3 → 3 O2 (Boudart, 1968).

O3 → O2 + O (1.1a)
O + O3 → 2 O2. (1.1b)

In this case, there is one intermediate: atomic oxygen.
Consider a general elementary step

n∑
j=1

νr, jAj →
n∑
j=1

νp, jAj . (1.2)

It is necessary to point out that elementary steps cannot be very com-
plex. The number of reactant molecules,

∑n
j=1 νr, j , the so-called molecu-

larity of the step is usually one (monomolecular step) or two (bimolecular
step), sometimes three (trimolecular step). The same is true for the num-
ber of product molecules,

∑n
j=1 νp, j . An elementary step (1.2) is often

reversible, which means that it coexists with its reverse step.
Within sufficiently narrow ranges of pressure and composition, the
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rate of step (1.2) is given by the kinetic law of mass action1:

r = k

n∏
j=1

c
νr, j
j , (1.3)

where cj is a concentration of Aj and k, the rate coefficient , is indepen-
dent of pressure and composition. The rate coefficient does depend on
the absolute temperature T , as described by the approximate Arrhenius
equation:

k = A exp
(
− E

RT

)
, (1.4)

in which A is the pre-exponential factor , E the activation energy and R
the universal gas constant.

The intermediates of a reaction network do not appear in the overall
reaction. This does not necessarily mean that they are absent before
and after the reaction takes place. Sometimes the initial presence of an
intermediate is essential for the reaction to start. This is the case in
catalysis, where a catalyst enables a reaction without being consumed or
produced. If the catalyst and the reaction mixture have the same state of
aggregation, the term “homogeneous catalysis” applies. If not, the term
“heterogeneous catalysis” is used. This thesis focuses on heterogeneous
catalysis. For example, a reaction network responsible for the oxidation
of hydrogen on the Ni(110) plane is

O2 + 2 ∗ → 2 O∗ (1.5a)
H2 + 2 ∗� 2 H∗ (1.5b)
O∗ + H∗ → ∗OH + ∗ (1.5c)
∗OH + H∗ → 2 ∗+ H2O (1.5d)

(Yablonskii et al., 1991). ∗ represents a free active site on the catalyst
surface. O∗, H∗ and ∗OH represent atomic oxygen, atomic hydrogen and
a hydroxyl group bonded with the active site. The intermediates ∗, O∗,
H∗ and ∗OH are all present on the surface.

1.2 The relevance of knowing the reaction network

Most of the industrially relevant reactions are carried out with the aid
of a heterogeneous catalyst. The importance of the knowledge of the
reaction network almost goes without saying. It can indeed be argued

1For background information on the kinetic law of mass action, refer to (Pekař,
2005).



Section 1.3 3

that any chemical comprehension of the activity of a catalyst must have
its roots in notions about the reaction network. First of all, these notions
provide a valuable tool in the ever intensifying search for more active
and selective catalysts. The selectivity of a catalyst is the ratio of the
quantity of desired products to the total quantity of products, including
by-products. Secondly, knowledge about the reaction network is valuable
in the design and operational optimization of chemical reactors or indeed
whole production units. Indeed, elementary steps proceed at a rate given
by the well-known law of mass action (1.3). Chemical reaction kinetics,
knowledge of which is crucial for the design and operation of reactors,
therefore reflect the reaction network.

The aim of this work is the development of procedures for the deter-
mination of reaction networks responsible for heterogeneously catalyzed
reactions. The scope is limited to the field of transient kinetic experi-
ments.

1.3 Transient kinetic experiments

As Section 1.1 pointed out, the reaction network is almost directly man-
ifested in the reaction kinetics. Scientists therefore rely heavily on ki-
netic experiments to determine chemical reaction networks. In this re-
gard, it was shown by several authors that more information can be ex-
tracted from transient experiments than from stationary ones, both for
non-catalytic (Hulburt and Kim, 1966) and catalytic reaction systems
(Tamaru, 1964; Boudart, 1968; Biloen, 1983; Zamostny and Belohlav,
2002). In transient experiments, a certain physical variable, such as tem-
perature or a concentration, is changed in a controlled way, while the
evolution of other variables is monitored as a response. Furusawa et al.
(1976), Renken (1993), Mills and Lerou (1993), Efstathiou and Verykios
(1997), Bennett (2000) and, recently, Berger et al. (2008) have reviewed
the transient experimental techniques available.

The role of transient experiments becomes crucial if reactions are stud-
ied which take place in a transient regime in practice. The industrially
most relevant example is fluid catalytic cracking, where the catalyst de-
activates on a time scale comparable to that of the cracking itself. This
has prompted the design of riser reactors. Next to this category of non-
steady-state operation of catalysts, the existence of oscillations in the
feed composition is an obvious reason for transient regimes, an important
example being catalytic automotive emission converters, where exhaust
gases are oscillatorily fed from a combustion engine.

The experimentalist controls the conditions at which experiments are
performed. For kinetic experiments, these are typically the (inlet) temper-
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ature, the inlet concentrations of the reactants and, for reactions involving
gases, the (inlet) pressure. As a rule, during transient experiments, at
least one of these physical variables is forced to undergo a well-defined
variation in time. In steady-state isotopic transient kinetic analysis, for
example, an isotopic concentration switch of a reactant is applied to a lab-
oratory reactor, otherwise in stationary regime (Happel, 1978; Bennett,
1982; Biloen, 1983). In the temperature programmed desorption (TPD),
the desorption of products from a catalyst surface is recorded in response
to a reaction temperature ramp. Another transient technique is Tem-
poral Analysis of Products (Gleaves et al., 1988; Yablonsky et al., 2003;
Gleaves et al., 2010), where the inlet flow rate of the reactant into the
reactor is a controlled Dirac pulse. The present work focuses on TAP.
All experimental data used for illustration purposes are obtained from
TAP-experiments.

1.4 Outline of the thesis

The Chapters 2 and 3 will introduce additional notions on reaction net-
works and kinetics, which will be applied in the subsequent chapters.
Chapter 2 will present the analytical and graphical representations of
catalytic kinetics, as they follow from the reaction networks. The at-
tention will gradually be narrowed down to the important special case
of pseudomonomolecular reaction networks, the kinetics of which can be
described by a compartmental model. Chapter 3 will pursue the subject,
developing a Laplace-domain description of such compartmental kinetics.

Pseudomonomolecular reaction networks are encountered in many ex-
perimental cases. This is especially true for TAP, the experimental tech-
nique on which this work focuses. Chapter 4 will familiarize the reader
with the technique, focusing on the modeling aspects. Chapter 5, on the
other hand, will report on a study of the noise present in the experimen-
tal data. This noise limits the level of detail achievable in an attempt to
unravel reaction networks.

The traditional way to determine reaction network is through the
postulation of several candidate reaction networks. A physico-chemical
model is then derived for each of them. It is then attempted to dis-
criminate between the candidate networks by submitting the data to
least-squares regression with the different models. For each model, those
kinetic parameters are identified which provide the best description of
the experimental data. Discrimination between the candidate reaction
networks is performed by comparing the quality of this optimal descrip-
tion. Inspired by the findings in Chapter 4, Chapter 6 will present a
novel regression procedure for transient kinetic data. Its superiority to
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normal least-squares regression lies in the use of second-order statistical
information, extracted from replicate experiments. For isothermal data,
irrespective of the manner in which the regression is carried out, there
are essential limits to the identifiability of the kinetic parameters, i.c., the
rate coefficients. Chapter 7, relying on the results presented in Chapter 3,
presents a graph-theoretical test for revealing unidentifiability.

The traditional reaction network discrimination approach requires the
postulation of several candidate reaction networks. The list of postulated
networks is never exhaustive. Moreover, there may be unidentifiability
problems. Similarly, it may prove impossible to discriminate between
some candidate networks. Chapter 8 presents a novel procedure to re-
veal connectivity features of a pseudomonomolecular reaction network by
TAP, without the need to postulate candidate networks. Such a model-
free procedure is unique in chemical kinetics.

Chapter 9 will enumerate some concrete guidelines to the TAP-expe-
rimentalist. These guidelines will be based on the findings of this thesis
and on the literature.

Finally, Chapter 10 will present the general conclusions of this work.





Chapter 2

Catalytic kinetics: Analytical
and Graphical Representation

2.1 Introduction

Chapter 1 provided enough notions on chemical reaction networks and
their kinetics to be able to understand the aim and an outline of the
present work. With these notions in hand, this chapter will prepare the
reader for Chapter 3, where a Laplace-domain description will be intro-
duced for the important class of compartmental kinetics. The Sections 2.2
and 2.3 treat general kinetics, analytically and graphically. Section 2.4
introduces the special class of pseudomonomolecular reaction networks.
As it will be pointed out in Section 2.5, pseudomonomolecular reaction
networks have linear kinetics. In fact, most pseudomonomolecular reac-
tion networks can have their kinetics described by a compartmental, i.e.,
a special type of linear, model. This will be pointed out in Section 2.6.

2.2 General kinetics

Consider an open system of uniform temperature, pressure and phasewise
uniform composition, containing a heterogeneous catalyst. It is assumed
that the system can be described in intensive macroscopic terms, even if it
has an infinitesimal size. Consider a reaction network S = {sj | j ∈ J} of
elementary steps taking place in the system, each having at least one com-
ponent with non-quasiconstant concentration at the reactant side. Call
cj the concentration of the (gas or surface) component Aj : the quantity
of Aj divided by the mass of the catalyst. Say c = [c1, c2, . . . , cn]T is a
column vector grouping the non-quasiconstant concentrations cj involved
in the reaction network S. According to the partial mass balances, its
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time derivative has two contributions:

dc
dt

(t) = r(c(t)) + f(t), (2.1)

The first term to the right hand side, r(c), is due to the net production1

by elementary steps of S. r is a kinetic vector function, based on the
application of the law of mass action (1.3) applied to all elementary steps.
The second term, the source vector f = [f1, f2, . . . , fn]T , is due to

• the net inward flow rate2 of components at the system’s boundary,

• the production and consumption of Aj by elementary steps not
comprised in S, taking place inside the system.

Note that the concentrations cj and the net molar sources fj are expressed
relative to the same extensive variable proportional to the system size.
Such a variable can be the volume of the system or the mass of catalyst
present, for example.

2.3 Reaction graphs

The reaction network S can be represented by a directed graph or digraph,
for short (Feinberg, 1987). This digraph will be called the reaction graph.
Call the expressions appearing at the reactant or product side of the
elementary steps complexes. Each of the complexes is represented once
as a vertex in the reaction graph. The complex appears as a label of the
vertex. Each elementary step sj is then represented as an arc directed
from the vertex representing its reactant complex, its “tail”, to the vertex
representing its product complex, its “head”.3 Each arc is attributed a
weight: the rate coefficient kj of the corresponding elementary step sj .
Fig. 2.1 shows an example of a reaction graph.

Components which have a quasiconstant concentration can be omitted
from the reaction graph. This will be illustrated for the reaction graph
in Fig. 2.1, where A7 is supposed to have a quasiconstant concentration.

1. In the complexes containing both components with quasiconstant
and non-quasiconstant concentrations, the former are removed. If
the reactant complex of an elementary step is thus changed, the

1Consumption if negative
2Net outward flow rate if negative
3Possibly, there are different elementary steps having the same reactant and prod-

uct complex. Such steps would be represented by parallel arcs having the same tail
and head. Strictly speaking, graphs with such parallel arcs are called “directed pseu-
dographs” (Bang-Jensen and Gutin, 2008).
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Figure 2.1: A reaction graph representing a reaction network.

Figure 2.2: A simplified version of the reaction graph in Fig. 2.1, if A7 has a
quasiconstant concentration. A6 represents a virtual component.

weight of its arc is changed from a rate coefficient to an apparent
rate coefficient. Formerly different complexes can become identical,
in which case their vertices have to be contracted. Here, vertex
A1+A7 is relabeled A1 and contracted with the vertex which already
had this label. The rate coefficient k1 is replaced by the apparent
rate coefficient k′1 = k1c7.

2. It was assumed that all steps of S have at least one reactant with
non-quasiconstant concentration. However, it is possible that some
steps of S only have products with quasiconstant concentration. In
this case, the label of the corresponding vertex is replaced by the
name of a virtual component. Here the vertex A7 is relabeled A6,
representing a virtual component.

The result of this transformation is shown in Fig. 2.2. Appendix A intro-
duces some graph-theoretical notions which this thesis will rely on.

2.4 Pseudomonomolecular reaction networks

An elementary step (1.2) with molecularity greater than one is called
pseudomonomolecular in Aj if it has a stoichiometric coefficient νr, j = 1
for reactant Aj , while the other reactants have a quasiconstant concen-
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tration. Then the rate expression (1.3) becomes quasilinear

r =

k∏
k 6=j

c
νr, k
k


︸ ︷︷ ︸

k′

·cj , (2.2)

defining the apparent rate coefficient , k′, quasi-independent of pressure
and the concentration cj of Aj . Observe that pseudomonomolecularity is
a property of the reaction conditions rather than of the elementary step.
A set of pseudomonomolecular and monomolecular elementary steps can
be called a pseudomonomolecular reaction network.

In catalytic reaction networks, there is at least one multimolecular
step: the bonding of a reactant and a catalytic component, for example
step (1.5a). However, in many experimental cases, all these multimolec-
ular steps can be considered pseudomonomolecular. This is possible in
three cases:

1. For a stationary experiment, all concentrations are constant. The-
ory for linear reaction networks has been developed and applied
extensively to find the overall steady-state reaction rate as a func-
tion of the concentration of the overall reactants (King and Altman,
1956; Evstigneev and Yablonskii, 1979; Yablonskii et al., 1991).

2. The concentration of all species except those bonded with the cata-
lyst is quasiconstant. Goldstein (1983, 2009) developed a linear the-
ory for transient homogeneous-catalytic, enzymatic kinetics based
on this assumption.

3. The concentration of the free active site is quasiconstant. This is
possible if it is present in much larger quantities than the overall
reactants. This is typical for SSITKA and TAP, see Section 1.3.

2.5 Linear kinetics

If, in the reaction network represented by the reaction graph in Fig. 2.1,
A7 has a quasiconstant concentration, S = {s1, s+2, s−2, s3, s4, s5} rep-
resents a pseudomonomolecular reaction network. Pseudomonomolecular
reaction networks are common in many experimental situations, see Sec-
tion 2.4. Those reactants and products of the steps in S which have a
non-quasiconstant concentration, have this concentration described by a
linear model. Indeed, vector function r in Eq. (2.1) becomes linear:

r(c(t)) = K · c(t), (2.3)
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Figure 2.3: A simplified version of the reaction graph in Fig. 2.1, if A3 has a
quasiconstant concentration.

where K is a constant matrix. It follows directly from the simplified
reaction graph. Based on the graph in Fig. 2.2, Eq. (2.1) becomes

d
dt


c1
c2
c3
c4
c5
c6

 =


−k′1 − k+2 0 0 k−2 0 0

k′1 −k4 − k5 0 k3 0 0
k′1 0 0 0 0 0
k+2 0 0 −k3 − k−2 0 0
0 k5 0 0 0 0
0 k4 0 0 0 0




c1
c2
c3
c4
c5
c6

+


f1

f2

f3

f4

f5

f6


(2.4)

The linear expression (2.3) allows the application of powerful analyti-
cal tools based on integral transformations. Here, the Laplace transform
will be applied.

2.6 Compartmental kinetics

Suppose that in the reaction graph in Fig. 2.1, A3 has a quasiconstant
concentration. Then a simplified reaction graph is shown in Fig. 2.3 and
Eq. (2.1) becomes

d
dt


c1
c2
c4
c5
c6

 =


−k′1 − k+2 0 k−2 0 0

k′1 −k4 − k5 k3 0 0
k+2 0 −k−2 − k3 0 0
0 k5 0 0 0
0 k4 0 0 0



c1
c2
c4
c5
c6

+


f1

f2

f4

f5

f6


(2.5)

for the concentration of the selected components.
Generally, if all steps of S have exactly one product with non-quasicon-
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stant concentration, the matrix K is of the form

K =



−
∑
j 6=1

kj,1 k1,2 · · · k1,m

k2,1 −
∑
j 6=2

kj,2 · · · k2,m

...
...

. . .
...

km,1 km,2 · · · −
∑
j 6=m

kj,m


, (2.6)

where each kk,j is the sum of the apparent rate coefficients of all steps
from Aj to Ak, or zero if such steps do not exist. Observe that the matrix
K given by Eq. (2.6) is singular, as its rows add up to zero. The diagonal
elements are negative, while the off-diagonal elements are positive.

A system of differential equations

dc
dt

(t) = K · c(t) + f(t) (2.7)

with a matrix K of the form given in Eq. (2.6) is called an open compart-
mental model . It follows directly from the reaction graph. As before, the
compartmental model is represented graphically by the reaction digraph.

Consider a reaction network, the kinetics of which are described by
a compartmental model. Often all apparent rate coefficients have well
separated magnitudes. S is then called a multiscale reaction network .
Such a network can be transformed into a simpler, “dominant” pseu-
domonomolecular reaction network for all practical purposes. The kinet-
ics are still described by a compartmental model. Gorban et al. (2010)
gave a constructive proof. The apparent rate coefficients of the domi-
nant reaction network are positive monomials of the original apparent
rate coefficients. The approach works under the condition that there are
no dependences among the latter.

A compartmental model applies if all steps of S have exactly one
product having a non-quasiconstant concentration. But compartmental
models can be made to apply much more generally. In fact, only an
exotic class of pseudomonomolecular reaction networks cannot have its
concentrations represented by a compartmental model. The following
condition excludes this class.

Condition 2.1. If a step of S has a reactant Aj and multiple products Ak
having non-quasiconstant concentrations, none of the latter can convert
back into Aj through a sequence of steps in S.

A step A1 → A2 + A3, with A1, A2, A3 having non-quasiconstant con-
centrations, would be allowed, except if there is a reaction sequence from
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Figure 2.4: Reaction graph representing a compartmental model for the original
reaction graph in Fig. 2.2. A8 and A9 are virtual components.

A2 or A3 back to A1 involving only steps in S, for example a single step
A2 → A1 + A5. Compartmental models can be constructed graphically
by splitting vertices representing complexes

∑
j Aj into vertices for the

separate components Aj in the complex. Each of these vertices is then
embedded in a copied part of the original reaction graph. Appendix B
explains the procedure in detail. Concentrations cj appear in the column
vector c in Eq. (2.7) with the same multiplicity as the corresponding
components Aj in the digraph. Call nc the number of vertices in the
transformed reaction graph. Clearly,

c, f ∈ Rnc×1. (2.8)

Fig. 2.4 shows a reaction digraph obtained from transformation of the
reaction digraph in Fig. 2.2. A8 andA9 represent newly introduced virtual
components.

The theory of Gorban et al. (2010) about the asymptotology of mul-
tiscale reaction networks was constructed for reaction graphs such as the
one in Fig. 2.3, which has all arc weights mutually independent. Here,
generally, several arcs have the same weight. See Fig. 2.4 for example.
These weights are therefore not mutually independent. However, inspec-
tion of the proof of Gorban et al. (2010) reveals it to hold because there
are no directed paths containing equally weighted arcs.

2.7 Conclusions

A description of the kinetics of general reaction networks was provided
in the form of the system (2.1) of first-order differential equations. Espe-
cially, for the important class of pseudomonomolecular reaction networks,
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this system is linear. Kinetic systems, linear or nonlinear, can be repre-
sented graphically as reaction graphs. For most pseudomonomolecular
reaction networks, a reaction graph can be derived which corresponds
to a compartmental kinetic model. Such compartmental kinetics can be
described in the Laplace domain. This approach will be presented in the
Chapter 3.



Chapter 3

Pseudomonomolecular
Reaction Networks: Kinetic
Transfer Functions

3.1 Introduction

In Chapter 2, the reader was introduced to the important class of pseu-
domonomolecular reaction networks with compartmental kinetics. Such
kinetics are conveniently described in the Laplace domain, in the form
of kinetic transfer functions. The Sections 3.2 and 3.3 will give an an-
alytical treatment. In Section 3.4, it will be shown how these transfer
functions can be obtained graph-theoretically from the reaction graph.
Especially, the symbolic form of the transfer functions can be found from
visual inspection of the reaction graph, based on connectivity features of
the reaction networks. The latter will be explained in Section 3.5.

3.2 Linear kinetics from a system-theoretical point
of view

As in Chapter 2, consider a uniform and time-isothermal open system
in which a pseudomonomolecular reaction network S takes place. The
kinetics are described by a compartmental model, represented by a reac-
tion graph such as the one in Fig. 3.1. For this example, the analytical
expression of the compartmental model (2.7) is

d
dt

c1c2
c3

 =

−k+1 − k2 k−1 0
k+1 −k−1 k3

k2 0 −k3

 ·
c1c2
c3

+

f1

f2

f3

 . (3.1)
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Figure 3.1: A reaction graph representing compartmental kinetics.

Initially,
c(t = 0) = c0. (3.2)

Recall that one component can be represented by several vertices in the
digraph representation1. Correspondingly, c can contain identical ele-
ments, as well as f . Components Aj can also be virtual, in which case
the net source fj can be taken zero. In any case, if the net sources of the
real components are collected in a vector u, f follows immediately after
a linear transformation:

f(t) = F · u(t), (3.3)

where the elements of F are 0 or 1. Substitution into Eq. (2.7) yields

dc
dt

(t) = K · c(t) + F · u(t). (3.4)

Some concentrations are observed, albeit often indirectly. This can be
because of two reasons.

• The concentration of Aj is measured outside the system.

• A reaction product Ak of Aj has its concentration measured, either
inside or outside the system, where the reaction pathway towards
Ak involves steps outside S.

In any case, a column vector of (indirect) observations would be given by

y = Y · c, (3.5)

where the elements of Y are again 0 or 1.
Eqs. (3.2), (3.4) and (3.5) constitute the respective initial condition,

dynamical state equation and observation equation of a linear time-in-
variant state-space model with input u and output y.

1Nevertheless, for the sake of easy representation, each vertex will be given a
different label Aj here, without loss of generality.
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3.3 Analytical derivation of kinetic transfer
functions

The measurements are influenced by c only through y. Therefore, c must
be eliminated from Eqs. (3.4) and (3.5). Taking into account the initial
condition (3.2), the Laplace transform of dynamical state equation (3.4)
is

sL c− c0 = K ·L c + F ·L u, (3.6)

where s is the Laplace variable. This can be rewritten as

0nc = (K− sInc) ·L c + F ·L u + c0, (3.7)

where 0nc is the zero vector with nc elements and where Inc is the unit
matrix with dimensions nc×nc, in accordance with (2.8). It follows that

L c = H · (F ·L u + c0) , (3.8)

where H is defined as
H = (sInc −K)−1

. (3.9)

H will be called the kinetic transfer matrix and its elements kinetic trans-
fer functions of s. Due to the observation equation (3.5), it is found that

L y = Y ·H · (F ·L u + c0) , (3.10)

The input-output mapping M from u to y follows as

M : u 7→ L −1{Y ·H · (F ·L u + c0)}. (3.11)

3.4 Graph-theoretical derivation of kinetic transfer
functions

The Laplace graph

The input-output mappingM was found as Eq. (3.11), where the transfer
matrix H can be found analytically as in Eq. (3.9). The goal of this section
is to be able to find H graph-theoretically. This will provide insight into
the nature of the transfer functions.

Eq. (3.7) can be written out for the example. Assume there is no
source of A3, which would be typical if it was a surface species on a
heterogeneous catalyst. Additionally, assume A3 is initially absent.0

0
0

 =

−s− k+1 − k2 k−1 0
k+1 −s− k−1 k3

k2 0 −s− k3

 ·
L c1

L c2
L c3

+

L f1 + c1,0
L f2 + c2,0

0


(3.12)
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Eq. (3.12) can be made into an open compartmental model by the intro-
duction of a virtual component A0, with concentration c0.

0
0
0
0

 =


0 s s s
0 −s− k+1 − k2 k−1 0
0 k+1 −s− k−1 k3

0 k2 0 −s− k3

 ·


L c0
L c1
L c2
L c3



+


L f0 + c0,0
L f1 + c1,0
L f2 + c2,0

0

 (3.13)

The concentration c0 and net source f0 of A0 can be chosen arbitrarily.
Particularly interesting choices are

L f0 = −(L f1 + c1,0)− (L f2 + c2,0) (3.14)

and
c0 = δ (t− 0+) (3.15)

so that
L c0 = 1 (3.16)

and c0,0 = 0. These choices allow the homogeneous reformulation of
Eq. (3.7), as a closed compartmental model . For the example, Eq. (3.12)
becomes

0
0
0
0

 =


−(L f1 + c1,0)
−(L f2 + c2,0) s s s

L f1 + c1,0 −s− k+1 − k2 k−1 0
L f2 + c2,0 k+1 −s− k−1 k3

0 k2 0 −s− k3

·


L c0
L c1
L c2
L c3

 .
(3.17)

Generally,
0ng+1 = K∗ ·L c∗, (3.18)

where 0ng+1 is the zero column vector with ng + 1 elements. Essential is
that the elements of each column of K∗ add up to zero. Eq. (3.18) can be
solved graph-theoretically as in King and Altman (1956); Yablonskii et
al. (1991); Petrov (1992). To this end, it has to be represented by means
of a digraph, which can be called the Laplace graph. It can be obtained
from the reaction graph by addition of
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Figure 3.2: A Laplace graph obtained by extension of the reaction graph in
Fig. 3.1. A0 is a virtual component, the concentration of which is defined by
Eq. (3.15). L fj is the Laplace transform of the net source of Aj , absent for
A3. cj,0 is the initial concentration of Aj , zero for A3.

a) a vertex representing the virtual component A0

b) an arc from each vertex Aj to A0 with weight s, which will be called
an s-arc,

c) if L uj + cj,0 6= 0, an arc from A0 to Aj with weight L uj + cj,0, which
will be called a source-arc.

Fig. 3.2 shows the Laplace graph obtained by extension of the reaction
graph in Fig. 3.1.

The relative values of the unknowns are given by

L cj
L ck

=
Dj

Dk
, (3.19)

where Dj and Dk are the determinants of the vertices Aj and Ak in the
Laplace graph, see Definition A.8 on p. 171. Especially,

L cj
L c0

=
Dj

D0
, (3.20)

which simplifies to

L cj =
Dj

D0
(3.21)

taking into account Eq. (3.16).

Back to the reaction graph

The denominator D0 in Eq. (3.21) is the sum of the weights of the span-
ning trees of the Laplace graph, rooted in A0. Such a spanning tree is
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(a) (b)

Figure 3.3: A spanning tree in the Laplace graph of Fig. 3.2, rooted in the
virtual component A0 (a). Removal of the s-arcs yields a spanning forest in
the reaction graph (b). It contains two trees, the number of s-arcs which have
been removed. One of the trees is trivial: A2.

shown in Fig. 3.3 (a). Clearly, D0 is a polynomial in s, the weights being
proportional to sq if the corresponding spanning tree contains q s-arcs.

a) Removal of these q s-arcs from such a tree yields a spanning forest of
the reaction graph, containing q trees. Fig. 3.3 (b) shows the span-
ning forest corresponding to the spanning tree in the Laplace graph
depicted in Fig. 3.3 (a).

b) Inversely, every spanning forest of the reaction graph containing q
trees, yields a spanning tree of the Laplace graph, rooted in A0, after
addition of q s-arcs from all roots to A0.

This shows how the coefficient of sq in D0 is equal to the sum of the
weights of the spanning forests containing q trees in the reaction graph.
Fig. 3.4 depicts all spanning forests of the reaction graph depicted in
Fig. 3.1.

Dj in the numerator in Eq. (3.21) is the sum of the weights of the
spanning trees in the Laplace graph, rooted in Aj . Again, this is a poly-
nomial in s, each weight contributing to the qth order term if the tree
contains q s-arcs. In order to contain the virtual component A0, the
spanning trees have to contain exactly one source-arc. If Dj is expanded
accordingly, the numerator in Eq. (3.21) becomes

Dj =
∑
k

Wj,k(L fk + ck,0). (3.22)
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(a)

(b)

(c)

Figure 3.4: Spanning forests of a reaction graph: forests containing one tree
(a), forests containing two trees (b), one of which trivial, forest containing three
trivial trees (c). The framed graphs contain a tree rooted in A2 and containing
A1.

Consider the spanning trees of the Laplace graph rooted in Aj and con-
taining the source-arc to Ak. An example is shown in Fig. 3.5 (a), for
j = 2 and k = 1.

a) Removal of the, say q, s-arcs and the source-arc yields a spanning forest
of the reaction graph, containing q + 1 trees. Especially, one tree is
rooted in Aj and contains Ak. This is illustrated by the transformation
of Fig. 3.5 (a) into Fig. 3.5 (b).

b) Inversely, any such forest can be transformed into a spanning tree of
the Laplace graph by addition of q s-arcs from each root except Aj to
A0 and the source-arc from there to Ak.

Clearly, the coefficient of sl in Wj,k is equal to the sum of the weights of
the spanning forests containing q + 1 trees in the reaction graph, one of
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(a) (b)

Figure 3.5: Spanning tree in a Laplace graph, rooted in A2 and containing A1

(a). Removal of the s- and source-arcs yields a spanning forest in the reaction
graph (b). It contains two trees, one more than the number of s-arcs which
have been removed. One tree is rooted in A2 and contains A1. The other tree
is trivial: A3.

which contains a path from Ak to Aj . In Fig. 3.4, the forests of which
the weight contributes to W2,1 are framed.

Kinetic transfer functions

The observed concentrations cj depend on the net sources fk and initial
concentrations ck,0 as

L cj(s) =
∑
k

Hj,k(s)(L fk(s) + ck,0) (3.23)

where Hj,k(s) is the (j, k) element of the transfer matrix H in Eq. (3.11).
Hj,k(s) can be found from the following theorem, which summarizes the
graph-theoretical results.

Theorem 3.1. A kinetic transfer function Hj,k is found as a polynomial
quotient

Hj,k(s) =
N(s)
D(s)

, (3.24)

of which the lth order coefficient

a) in the denominator D is the weight sum of the spanning forests con-
taining q trees in the reaction graph,

b) in the numerator N is the weight sum of the spanning forests contain-
ing q + 1 trees, one of which is rooted in Aj and contains Ak.
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Application of Theorem 3.1 to the example, see Fig. 3.4, yields

H2,1(s) =
[
k+1s+

(
k+1k3 + k2k3

)]/[
s3 +

(
k+1 + k−1 + k2 + k3

)
s2+(

k+1k3 + k2k3 + k−1k2 + k−1k3

)
s
]
. (3.25)

3.5 Symbolic form of kinetic transfer functions

In a reaction graph, consider two (not necessarily different) component
vertices Ak and Aj . It is possible to find the symbolic form of the transfer
function Hj,k from connectivity features of the reaction graph.

Theorem 3.2. a) A kinetic transfer function Hj,k can be written as a
polynomial quotient,

Hj,k(s) =
N(s)
D(s)

=

n−l−1∑
q=0

βqs
q

n∑
q=0

αqsq
, (3.26)

where n is the number of vertices which are situated on at least one
directed pathway from Ak to Aj, and l is the length of the shortest
pathway(s) from Ak to Aj.

b) All coefficients βq and αq>1 are strictly positive. α0 is zero if Aj is
in an ergodic strong linkage class and strictly positive otherwise. D is
monic: αn = 1. If j = k, Nj,k is also monic: βn−1 = 1.

c) For each q > 1, βq < αq+1. Moreover, if Aj is not in an ergodic strong
linkage class,

β0 < α1. (3.27)

Proof. Consider all walks (see Appendix A) from Ak to Aj in the reaction
graph. Fig. 3.6 (a) shows an example, with the arcs pertaining to these
walks highlighted. There are n vertices on the walks, representing Ak,
Aj and all intermediates. Reduce the reaction network to the elementary
steps represented by the arcs leaving from these vertices. They arrive
either in another of these n vertices or in a vertex from which there is
no walk to Aj . In the reduced reaction graphs, the latter vertices will
become sinks. Call m the number of these sinks. Fig. 3.6 (b) shows the
reaction graph resulting from the corresponding reduction of the graph
in Fig. 3.6 (a). For this example, n = 7 and m = 4. The reduction does



24 Chapter 3

(a)

(b)

Figure 3.6: A reaction graph showing the walks from Ak to Aj highlighted (a)
and a reduced version of this graph, withholding Ak and Aj , the intermediates,
and the arcs of which they are the tail (b).

not change the transfer function Hj,k. Application of Theorem 3.1 to the
reduced reaction graph yields

Hj,k(s) =
Ñ(s)
D̃(s)

=

∑
q
β̃qs

q∑
q
α̃qsq

. (3.28)

The nonnegativity of the coefficients α̃q and β̃q follows immediately from
Theorem 3.1. It also follows immediately that each denominator coeffi-
cient α̃q is not smaller than the numerator coefficient β̃q−1.

The qth order coefficient β̃q of Ñ is the weight sum of the spanning
forests containing q + 1 trees in the reduced reaction graph, with the
restriction that one of them is rooted in Aj and contains Ak. Due to the
specific nature of the reduction, it is possible to construct a tree rooted
in Aj , containing all vertices representing intermediates. Especially, this
tree can be made to contain a shortest directed path from Ak to Aj .
Together with m trivial trees for the other vertices, this tree constitutes a
spanning forest. The lowest order nonnegative coefficient is therefore β̃m.
Disconnecting one of the leaves other than Ak in the nontrivial tree in this
forest, yields a new spanning forest, the weight of which contributes to
β̃m+1, which is therefore also nonzero. This is possible until the nontrivial
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tree is reduced to the shortest path. The spanning forest then contains
(m+1)+n−(l+1) trees. The highest order nonzero coefficient is therefore
β̃m+n−l−1. Especially, if j = k, l = 0 and the “maximal” spanning forest
has all trees trivial. This forest is unique and has weight 1, so that
β̃m+n−1 = 1.

The qth order coefficient α̃q of D̃ is the weight sum of the spanning
forests containing q trees. A spanning forest can consist of no fewer trees
than the number of ergodic strong linkage classes. m trivial ergodic strong
linkage classes are due to vertices not on any walk from Ak to Aj . An
additional ergodic strong linkage class exist only if Aj is in one. The low-
est possible number of trees in a spanning forest is therefore m or m+ 1.
There is at least one such “minimal” spanning forest. The lowest order
nonzero coefficient is therefore α̃m or α̃m+1, depending on the case. In
any case, especially, there is a “minimal” spanning forest containing a di-
rected path from Ak to Aj . Disconnecting Ak as a leaf in a nontrivial tree
makes Ak an additional, trivial, tree in a new spanning forest. On the one
hand, this proves that the second lowest order coefficient α̃m+1 or α̃m+2

is nonzero. On the other hand, it proves that this coefficient is strictly
greater than the corresponding coefficient β̃m or β̃m+1. Indeed, according
to Theorem 3.1, the weight of the described spanning forest contributes
to a denominator coefficient, but not to a numerator coefficient. Discon-
necting any new leaf in a nontrivial tree again yields an additional, trivial
tree in a new spanning forest. The weight of this spanning forest con-
tributes to the third lowest order coefficient of the denominator, but not
to the corresponding coefficient of the numerator. The former is therefore
nonzero and strictly greater than the latter. The disconnection process
is possible until a spanning forest is obtained which contains n+m trees,
all trivial. This forest is clearly unique. The highest order coefficient of
D̃ is therefore α̃n+m and equal to its weight, 1.

As the coefficients α̃q and βq are zero for q < m, the quotient (3.28)
can be simplified as Eq. (3.26), where D(s) = s−mD̃(s) and N(s) =
s−mÑ(s). This proves part a of the theorem. Parts b and c follow as a
translation of the observations above.

Remark 3.1. If k 6= j, the vertices different from Aj and Ak, situated
on at least one directed pathway from Ak to Aj , represent the reaction
intermediates between Ak and Aj , see Section 1.1. The number n is
therefore equal to the number of intermediates plus two. Now consider
the case k = j. The vertices different from Aj , situated on at least one
directed pathway from Aj to itself, can be said to represent intermediates
between Aj and itself. In this case, n is the number of intermediates plus
one.
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Remark 3.2. The overall degree of Hj,k follows from Theorem 3.2, part a
as −l−1. This was to be expected. Indeed, each division by s corresponds
to an integration as does each transition from the rate of a reaction step
to the concentration of its product along a shortest path in the reaction
graph.

Remark 3.3. It is also possible to obtain part a of Theorem 3.2 in a
straightforward way from Mason’s rule in the signal-flow graph formalism
(Mason and Zimmermann, 1960), as was carried out by Happel et al.
(1986b). This formalism, however, is not suitable to prove the parts b or
c.

Theorem 3.3. If Ak and Ak′ are in the same strong linkage class of the
reaction graph, for any vertex Aj to which there are directed pathways
from Ak and Ak′ , the transfer functions Hj,k and Hj,k′ have the same
denominator D:

Hj,k(s) =
Nj,k(s)
D(s)

, Hj,k′(s) =
Nj,k′(s)
D(s)

. (3.29)

Proof. It is sufficient to observe that the reaction graph reduction intro-
duced in the proof of Theorem 3.2 yields the same result in both cases.

Theorem 3.4. Let I(k) represent the set of indices j for which there is
at least one directed pathway from Ak to Aj and for which Aj is situated
in an ergodic strong linkage class. Then∑

j∈I(k)

lim
s→0

sHj,k(s) = 1. (3.30)

Proof. Suppose all components are initially absent, and only Ak has a
net source fk. Then, due to the conservation of mass as reflected in the
stoichiometry, at all times t,∑

j∈I

dcj
dt

(t) = fk(t), (3.31)

where I represents the set of all vertex indices of the reaction graph.
Taking into account the initial absence of all components, Laplace trans-
formation of Eq. (3.31) yields∑

j∈I
sL cj(s) = L fk(s). (3.32)
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Substitution of Eq. (3.23) and taking limits for s→ 0 yields∑
j∈I

lim
s→0

sHj,k(s) = 1. (3.33)

Hj,k(s) is identically zero if there is no directed path from Ak to Aj . If
there is such a path, but Aj is not in an ergodic strong linkage class,
lims→0 sHj,k(s) = 0 due to Theorem 3.2, part b. The set I can therefore
be reduced to I(k), yielding Eq. (3.30).

Theorem 3.4 imposes an important constraint on the fractions β0/α1

in the transfer functions Hj,k. Especially, if I(k) is a singleton, β0 = α1.
This illustrates that Eq. (3.27) does not hold if Aj is in an ergodic strong
linkage class.

3.6 Conclusions

Compartmental kinetics for pseudomonomolecular reaction networks have
been described in the form of kinetic transfer functions. Theorems have
been proposed which allow the deduction of such transfer functions for
most types of pseudomonomolecular reaction networks in two ways: an-
alytically and graph-theoretically. Moreover, graph-theoretical theorems
have been formulated relating the symbolic form of the kinetic transfer
function to connectivity features of the reaction graph. This will provide
the basis of Chapter 7 on the identifiability of rate coefficients and Chap-
ter 8 on the model-free extraction of connectivity features of reaction
networks from TAP-data.

Compartmental kinetics are typical in TAP, the experimental tech-
nique on which the present work focuses. Chapter 4 will provide an
introduction to TAP, with a stress on its mathematical model. It will be
shown how kinetic transfer functions for compartmental kinetics can be
plugged in the physico-chemical model.





Chapter 4

Temporal Analysis of Products

4.1 Introduction

It was explained in Chapter 1 that transient kinetic experiments provide
a valuable tool in the determination of reaction networks. The present
work focuses on TAP. Section 4.2 will provide a minimum of experimental
background information on this technique. The thin-zone-TAP-reactor
(TZTR), a special configuration of the TAP reactor, will be introduced.
Section 4.3 will present a one-dimensional physico-chemical model for the
most common type of TAP-experiments. Finally, Section 4.4 will intro-
duce two ways in which the reactor model can be numerically integrated.
The first way starts with the discretization of the axial coordinate. The
second way, applying only to pseudomonomolecular reaction networks,
uses Fourier techniques. It relies on the kinetic transfer functions of
Chapter 3. The TZTR will be treated as a special case.

4.2 Experimental

The TAP-setup (Gleaves et al., 1988; Yablonsky et al., 2003) was designed
to assist catalyst development and characterization. Processing data from
the TAP-setup is not straightforward. The present work extends the
range of available techniques.

Principles

TAP-experiments are performed using a tubular reactor, closed at the in-
let and open at the outlet, loaded with a fixed catalyst bed. A schematic
representation is shown in Fig. 4.1. All laboratory reactors to study reac-
tion kinetics are designed such, that the physical part of their description
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fin

t≈ 100 µs

y1

y2
t

t≈ 1 s

Figure 4.1: A schematic representation of a TAP-experiment. fin (t) is the
molar flow rate of reactants admitted to the reactor by a pulse valve. yj (t)
are responses in V, measured by a mass spectrometer. A response is usually
proportional to the molar flow rate of a certain gaseous component out of the
reactor.

is simple but accurate. This renders the extraction of the chemical in-
formation from the experiment more easy and secure. Most importantly,
transport through the reactor is kept as simple as possible. With this
principle in mind, the diameter of the TAP-reactor was designed small
enough compared to its length, typically 5 mm vs. 3 cm, to ensure ra-
dial uniformity (Constales et al., 2001). More importantly, however, the
TAP-apparatus allows the pressure inside the reactor to be maintained
at a sufficiently low level to ensure all transport through the bed to oc-
cur by Knudsen diffusion. This means that for each gas phase molecule,
the probability of colliding with another gas phase molecule is negligible
compared to the probability of colliding with the surface of the reactor
bed particles. As a result, gas phase reactions are suppressed in the
TAP-reactor, allowing the unequivocal measurement of surface chemistry
(Rothaemel and Baerns, 1996). Another, even more important advantage
is that in the Knudsen regime, the diffusion coefficient of each component
is independent of the local composition of the gas mixture. Moreover,
given the bed, any Knudsen diffusion coefficient can be derived from a
known Knudsen diffusion coefficient of a reference gas component at a
reference temperature. Huizenga and Smith (1986) experimentally veri-
fied that the effective Knudsen diffusion coefficient , De,j , of a component
Aj through a bed of uniform spheres can be expressed as

De,j =
4rεb
3τ

√
2RT
πMj

, (4.1)
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where εb is the bed porosity, τ is the tortuosity factor, R is the universal
gas constant, T is the absolute temperature and Mj is the molecular mass
of Aj . r is the mean pore radius, given as

r =
2
3

εb
1− εb

rs, (4.2)

where rs is the radius of the spherical particles. A more general version of
Eq. (4.1), where the bed particles are not necessarily spherical or uniform,
is

De,j = De,ref

√
T

Tref

√
Mref

Mi
, (4.3)

which relates the effective diffusion coefficient De,j of Aj to the effective
diffusion coefficient De,ref of a reference gas component with molecular
mass Mref at a reference temperature Tref over the same bed.

When operated in low-pressure mode, the outlet of the TAP-reactor is
in contact with a vacuum reservoir. At the inlet, the reactor can be fed by
continuous or pulse valves. The latter allow reactants to be admitted in
sufficiently narrow pulses to ensure the pressure rise to be small enough for
the gas transport to remain in the Knudsen regime. As the reactor is open
only at the outlet, all gases eventually leave the reactor there. A portion
of the molecules is intercepted by a mass spectrometer, where they are
first ionized. The molecules are hereby often fragmented into smaller ions,
the fragmentation being component-specific. A quadrupole then acts as
an electromagnetic filter, allowing only the ions of a selected mass1 to
pass through to a collector electrode. After amplification by an electron
multiplier, the signal produced by the collector electrode is recorded as
a time series, see below, with up to submillisecond time resolution. The
experiment may be repeated several times, the quadrupole being tuned to
another mass everytime, yielding nv signals y1(t) y2(t), y3(t), . . . , ynv (t),
in V.

The reactor tube is heated to a desired temperature by a copper sleeve,
while viton o-rings sealing the inlet and outlet of the reactor are water-
cooled. Therefore, some temperature nonuniformity along the length of
the reactor usually cannot be avoided (Schuurman, 2008). As the reaction
kinetics are very temperature dependent, the catalyst temperature has to
be maintained uniform, which is ensured as follows. From inlet to outlet,
three zones are loaded in the reactor: an inert one (consisting typically of
quartz), a catalytic one and another inert one. This is depicted in Fig. 4.1.
A particularly popular three-zone configuration is the thin-zone-TAP-
reactor (TZTR) (Shekhtman, 1999), where the catalytic zone is much

1Actually, ions are selected by their mass-to-charge ratio, but this is equivalent,
because the charge is always the same.
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thinner than the inert ones, so that not only the temperature, but also
the composition of the gas phase and the catalyst surface can be assumed
uniform along the catalytic zone. This has the advantage that the gas
phase concentrations and the rates of production or consumption of the
different gas phase components can be calculated from the responses yj .
This is called the Y-procedure and is based on Fourier analysis (Yablonsky
et al., 2002, 2007).

Some history

The idea of the TAP-reactor was conceived by John T. Gleaves and his
team at Monsanto in 1978-1979. A TAP-apparatus has been operational
at the Laboratory for Chemical Technology (LCT) since 1989. It per-
tains to the first generation of TAP-setups, designated as TAP-1 . Low
pressure TAP-1 pulse response data often suffer from low signal-to-noise
ratios (SNRs). Furthermore, considerable fractions of molecules can be
delayed (backscattered) between the moment they leave the reactor and
the moment they are collected by the mass spectrometer (Gleaves et al.,
1988; Zou et al., 1994). This obviously distorts the data. As a solution
to these drawbacks, Gleaves et al. (1997) presented an improved version
of the apparatus, called TAP-2 , in which the mass spectrometer was
mounted physically closer to the reactor outlet. Recently, Gleaves et al.
(2010) presented the fully automated TAP-3 -setup, which allows remote
operation via the Internet. At the moment this work is being written,
such an apparatus is being assembled by order of the LCT.

Types of low-pressure pulse response experiments

The holistic philosophy which has characterized the design of the TAP-
apparatus since the early days, allows it to be used to perform many
types of kinetic experiments. However, its true innovation lies in the
low pressure pulsewise operation. There are two types of such TAP-
experiments.

1. During a state-defining experiment , the pulse size, i.e., the quantity
of reactant molecules is much smaller than the quantity of active
sites on the catalyst. As a result, one pulse does not significantly
perturb the state of the catalyst. As stated in Chapter 1, this
has the important advantage that reaction networks become pseu-
domonomolecular and Fourier analysis can be applied during mod-
eling. Another advantage is that time series collected as a response
to a sequence of, typically, some tens of pulses are known to corre-
spond to the same catalyst state. Especially, responses successively
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z0 = 0 z1 z2 z3 z

Figure 4.2: The key axial coordinates of a TAP-reactor with three-zone config-
uration.

collected at different masses can be treated as if they were measured
simultaneously as a response to a single pulse. Also, responses sub-
sequently collected at the same mass can be averaged to obtain a
single response with higher SNR (Gleaves et al., 1988). A particu-
lar type of state-defining experiments is the pump-probe experiment ,
where pulses of different reactants are alternated. By varying the
time delay between the pulses, information about the lifetime and
reactivity of the adsorbed species can be obtained.

2. As opposed to a state-defining experiment, during a state-altering
experiment , the quantity of reactant molecules cannot be neglected
with respect to the quantity of active sites. This is usually done
on purpose, to change the state of the catalyst in a predetermined
way. During state-altering experiments, transport through the re-
actor often occurs partly by molecular diffusion, i.e., outside the
Knudsen regime. Usually, a long sequence of pulses is admitted to
the reactor, the mass spectrometer being tuned to a mass charac-
teristic of the reactant. The uptake of that reactant throughout the
series of pulses can then be calculated.

State-defining and state-altering experiments are often alternated in so-
called interrogative cycles (Gleaves et al., 1997). In the present work, only
state-defining experiments in the Knudsen regime will be considered.

4.3 Reactor model

The TAP-reactor is modeled by a system of partial differential equations
with initial and boundary conditions. Very generally, consider a TAP-
reactor containing nz zones. Fig. 4.2 shows such a reactor for nz = 3. In
the lth zone, let c(l)

g be a column vector containing the concentration of
all, say ng, gas components, in mol/m3: c(l)

g ∈ Rng×1. Similarly, if l is a
catalytic zone, let c(l)

s be a column vector of the concentration of the, say
ns, surface components, expressed relative to the catalyst mass, i.e., in
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mol/kg: c(l)
s ∈ Rns×1. As mentioned in Section 4.2, the concentrations

are radially uniform. Because of symmetry, they are also tangentially
uniform. Therefore, c(l)

g and c(l)
s depend only on the axial coordinate,

say z, and the time t. Partial mass balances for each of the components
on an infinitesimal slice of the lth zone of the reactor yield the following
vectorial partial differential equations. For all z ∈ [zl−1, zl] and t > 0:

ε
(l)
b

∂c(l)
g

∂t
(z, t) = DDD (l)

e ·
∂2c(l)

g

∂z2
(z, t)+(

1− ε(l)b
)
ρ(l)m

(l)
f r(l)

g

(
c(l)
g (z, t), c(l)

s (z, t)
)

(4.4a)

∂c(l)
s

∂t
(z, t) = r(l)

s

(
c(l)
g (z, t), c(l)

s (z, t)
)
, (4.4b)

where r(l)
g and r(l)

s are column vectors of specific rates of production of
the gaseous and surface components in the lth zone, with unit mol/kg·s.
They reflect the reaction kinetics. Furthermore, ε(l)b is the bed porosity,
ρ(l) is the density of the material, in kg/m3 and mf is the catalytic mass
fraction of that material. DDD

(l)
e is a diagonal matrix holding the effective

Knudsen diffusion coefficients of the gaseous components through the lth
zone, in m2/s. Note that in an inert zone, the second term to the right
hand side of Eq. (4.4a) disappears. Eq. (4.4b) disappears as a whole.

The initial gas concentrations are zero, while the initial surface con-
centrations are assumed known. For all l ∈ {1, 2, . . . , n} and z ∈ [zl−1, zl]:

c(l)
g (z, 0) = 0 (4.5a)

c(l)
s (z, 0) = c(l)

s,0(z). (4.5b)

The boundary conditions are, for all t > 0,

−DDD (1)
e ·

∂c(1)
g

∂z
(0, t) = fin(t) (4.6a)

c(n)
g (zn, t) = 0. (4.6b)

Boundary condition (4.6a) expresses the inward molar flux to be known.
Ideally, the time dependence of this flux is as a Dirac pulse:

fin(t) =
δ(t− 0+)

φ
n, (4.7)

where φ is the cross-sectional surface area of the reactor and n is a column
vector holding the pulsed quantity of each gas component. Boundary
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condition (4.6b) expresses that all gas concentrations at the outlet of
the reactor are zero. This is because the outlet side of the reactor is in
contact with the vacuum reservoir. In the past, there has been a debate
about deviations from the ideal boundary conditions. Constales et al.
(2006) showed that such deviations usually do not have to be taken into
account. In addition to the initial and boundary conditions, there are
transmission conditions between the zones. For all l ∈ {1, 2, . . . , n − 1}
and for all t > 0:

c(l)
g (zl, t) = c(l+1)

g (zl, t) (4.8a)

−DDD (l)
e ·

∂c(l)
g

∂z
(zl, t) = −DDD (l+1)

e · ∂c(l+1)
g

∂z
(zl, t). (4.8b)

The vector of outlet fluxes is given by

fout(t) = −DDD (n)
e · ∂c(n)

g

∂z
(zn, t). (4.9)

The outlet fluxes are not directly measured. The actual responses are
the signals produced by the mass spectrometer. Fragmented in a char-
acteristic way at ionization, each component has a mass spectrum, i.e., a
discrete distribution of the masses of its fragments. The mass spectra of
different components generally overlap. Each signal yj(t) is therefore a
sum of contributions due to different components. Matricially:

y(t) = φS · fout(t), (4.10)

where y(t) ∈ Rnv×1 and S ∈ Rnv×ng . The number of responses, nv,
need not be equal to the number of gases, ng. The matrix S is called the
calibration matrix . Its elements are called calibration coefficients.

4.4 Numerical calculation of TAP-responses

The idea is to calculate the equivalent of experimental responses from
the reactor model described in Section 4.3. This means it is not required
to calculate the continuous responses y(t), but, rather, time series yj
consisting of nt samples with sampling period or sampling interval ∆t:

yj =
[
yj(t1) yj(t2) · · · yj(tnt)

]T (4.11)

where
tk = (k − 1)∆t (4.12)

for all k ∈ {1, 2, . . . , nt}. The inverse of the sampling interval ∆t is called
the sampling frequency .
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Figure 4.3: Discretization of the axial coordinate z of a three-zone-TAP-reactor.

Method of lines

According to the method of lines, the axial coordinate z is discretized
(Schiesser, 1991). A one-dimensional grid is applied to the reactor. This
is illustrated in Fig. 4.3 for a TAP-reactor with three-zone configuration.
In this figure, the reactor is divided into seven axial intervals: three for
the zones 1 and 3 and four for zone 2. In reality the number of intervals
would typically be on the order of a hundred. As illustrated in the figure,
the interval width need not be the same for te different zones. Generally,
call this width ∆zl for zone l. Clearly,

∆zl =
zl+1 − zl

nl
(4.13)

if nl is the number of intervals in zone l.
The intervals are assumed narrow enough to be able to assume the

corresponding reactor slices to have uniform concentrations. The gas and
surface concentration vectors in slice j of zone l are called c(l)

g,j and c(l)
s,j .

The initial and boundary value problem is converted into an initial value
problem. For slice 1 of zone 1, partial mass balances yield

ε
(1)
b

dc(1)
g,1

dt
(t) =

1
∆z1

fin(t) + DDD (1)
e ·

c(1)
g,2(t)− c(1)

g,1(t)

(∆z1)2 +(
1− ε(1)

b

)
ρ(1)m

(1)
f r(1)

g

(
c(1)
g,1(t), c(1)

s,1(t)
)

(4.14)

for all t > 0. Note that if zone l is inert, the third term to the right hand
side of Eq. (4.14) disappears. For any zone l and any slice j in that zone
which is not situated at its boundary, i.e., j ∈ {2, 3, . . . , nl − 1},

ε
(l)
b

dc(l)
g,j

dt
(t) = DDD (l)

e ·
c(l)
g,j+1(t)− 2 c(l)

g,j(t) + c(l)
g,j−1(t)

(∆zl)
2 +(

1− ε(l)b
)
ρ(l)m

(l)
f r(l)

g

(
c(l)
g,j(t), c

(l)
s,j(t)

)
. (4.15)



Section 4.4 37

For the last slice nl of any zone l except the last one,

ε
(l)
b

dc(l)
g,nl

dt
(t) = −DDD (l)

e ·
c(l)
g,nl(t)− c(l)

g,nl−1(t)

(∆zl)
2 +

2
∆zl

(
∆zl

(
DDD (l)
e

)−1

+ ∆zl+1

(
DDD (l+1)
e

)−1
)−1

·(
c(l+1)
g,1 (t)− c(l)

g,nl
(t)
)

+
(

1− ε(l)b
)
ρ(l)m

(l)
f r(l)

g

(
c(l)
g,nl

(t), c(l)
s,nl

(t)
)
. (4.16)

For the first slice of any zone l except the first one,

ε
(l)
b

dc(l)
g,1

dt
(t) = − 2

∆zl

(
∆zl−1

(
DDD (l−1)
e

)−1

+ ∆zl
(
DDD (l)
e

)−1
)−1

·

(
c(l)
g,1(t)− c(l−1)

g,nl−1
(t)
)

+ DDD (l)
e ·

c(l)
g,2(t)− c(l)

g,1(t)

(∆zl)
2 +

+
(

1− ε(l)b
)
ρ(l)m

(l)
f r(l)

g

(
c(l)
g,1(t), c(l)

s,1(t)
)
. (4.17)

For the last slice nnz of the last zone, because boundary condition (4.6b)
is valid for all t,

dc(n)
g,nnz

dt
(t) = 0. (4.18)

Finally, in those zones l which are catalytically active, for each slice j,

dc(l)
s,j

dt
(t) = r(l)

s

(
c(l)
g,j(t), c

(l)
s,j(t)

)
. (4.19)

The initial conditions are readily translated from Eqs. (4.5a) and (4.5b).

c(l)
g,j(0) = 0 (4.20a)

and, in the zones l which are catalytically active,

c(l)
s,j(0) = c(l)

s,0 (zl−1 + (j − 1)∆zl) . (4.20b)

Numerical integration of the initial value problem given by the vecto-
rial differential equations (4.14), (4.15), (4.16), (4.17), (4.18), (4.19) and
vectorial initial conditions (4.20a) and (4.20b) allows the calculation of
the vector of gas outlet fluxes:

fout(t) ≈ −DDD (n)
e ·

c(n)
g,nnz (t)− c(n)

g,nnz−1(t)

∆zn
=

1
∆zn

DDD (n)
e ·c

(n)
g,nnz−1(t) (4.21)
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Especially, this enables the numerical calculation at the measurement
times tk. The responses follow from Eq. (4.10). Note that numerical
integration of the initial value problem requires the Dirac pulse in the
expression (4.7) of the inlet flux vector fin to be approximated by a finite
function:

δ(t− 0+) ≈ t

τ2
exp

(
− t
τ

)
, (4.22)

where τ is a very short duration, for example τ = 50 µs.

Transfer matrix approach

The transfer matrix approach was developed by Constales et al. (2001,
2004). It is based on Fourier analysis and is limited to pseudomonomolec-
ular reaction kinetics and situations where the relevant surface compo-
nents are initially absent:

c(l)
s,0 = 0 (4.23)

in Eq. (4.5b). Say f (l)(z, t) is a vector holding the molar fluxes of all gas
components in the positive z direction at each axial position z in zone l
of the reactor. For all zones l and for all z ∈ [zl−1, zl] and t > 0:

f (l)(z, t) = −DDD (l)
e ·

∂c(l)
g

∂z
(z, t). (4.24)

Taking Laplace transforms yields

L f (l)(z, s) = −DDD (l)
e ·

∂L c(l)
g

∂z
(z, s). (4.25)

Now consider an infinitesimal slice of the reactor. The net molar flow rates
of gas components into this slice per unit mass of catalyst, in mol/kg·s,
is

ũ(l)(z, t) = − 1(
1− ε(l)b

)
ρ(l)m

(l)
f

∂f (l)(z, t)
∂z

. (4.26)

ũ(l)(z, t) is a part of the vector u in Eq. (3.8), which is valid because the
kinetics are assumed pseudomonomolecular. The other elements of u are
all zero, as they correspond to surface components. c0 in Eq. (3.8) is a
zero vector, as a consequence of Eq. (4.5a) and the assumption (4.23).
Eq. (3.8) may therefore be rewritten as

L c(l)(z, s) = H(l)(s) · F̃(l) ·L ũ(l)(z, s), (4.27)

where F̃(l) is the result of deleting those columns in F(l) which correspond
to the surface components. Now select the gas components in L c(l)(z, s)
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once2. Call L c̃(l)(z, s) and H̃(l)(s) the result of selecting the correspond-
ing rows in L c(l)(z, s) and H(l)(s). Then Eq. (4.27) becomes

L c̃(l)(z, s) = H̃(l)(s) · F̃(l) ·L ũ(l)(z, s). (4.28)

Finally, L c(l)
g is found from L c̃(l) by adapting the dimensions

L c(l)
g (z, s) =

1− ε(l)b
ε
(l)
b

ρ(l)m
(l)
f L c(l)(z, s) (4.29)

=
1− ε(l)b
ε
(l)
b

ρ(l)m
(l)
f H̃(l)(s) · F̃(l) ·L ũ(l)(z, s). (4.30)

Substitution of the Laplace transform of Eq. (4.26) yields

L c(l)
g (z, s) = − 1

ε
(l)
b

H̃(l)(s) · F̃(l) · ∂L f (l)(z, s)
∂z

. (4.31)

Eqs. (4.25) and (4.31) can be summarized as

∂

∂z

[
L c(l)

g

L f (l)

]
(z, s) = −

 0
(
DDD

(l)
e

)−1

ε
(l)
b

(
H̃(l)(s) · F̃(l)

)−1

0

·[L c(l)
g

L f (l)

]
(z, s)

(4.32)
Compare this equation with Eq. (17) in (Constales et al., 2004). Integra-
tion of Eq. (4.32) over the length ∆z(l) of a zone l yields[

L c(l)
g

L f (l)

]
(zl−1, s) = Ml(s) ·

[
L c(l)

g

L f (l)

]
(zl, s), (4.33)

where the matrix Ml(s) is defined as

Ml(s) = exp


 0

(
DDD

(l)
e

)−1

ε
(l)
b

(
H̃(l)(s) · F̃(l)

)−1

0

 ∆z(l)

 (4.34)

and ∆z(l) = zl− zl−1 is the zone width.3 The matrices Ml(s) can be cal-
culated numerically and sometimes analytically. Especially, an analytical

2Recall that one component may be represented multiple times in L c(l).
3The exponential function of a matrix A is defined as I+A+ 1

2!
A2+. . .+ 1

n!
An+. . .

If A is diagonalizable, i.e., A = P ·D ·P−1, exp A = P · exp D ·P−1. where

D =

26664
d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

37775 and exp D =

26664
exp d1 0 · · · 0

0 exp d2 · · · 0
...

...
. . .

...
0 0 · · · exp dn

37775 .
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expression is available if l is inert:

Ml(s) =
[

C(s) S1,2(s)
S2,1(s) C(s)

]
, (4.35)

where

C(s) =


cosh

√
sτ

(l)
1 0 · · · 0

0 cosh
√
sτ

(l)
2 · · · 0

...
...

. . .
...

0 0 · · · cosh
√
sτ

(l)
ng

 , (4.36)

S1,2(s) =



sinh

q
sτ

(l)
1

γ
(l)
1

q
sτ

(l)
1

0 · · · 0

0
sinh

q
sτ

(l)
2

γ
(l)
2

q
sτ

(l)
2

· · · 0

...
...

. . .
...

0 0 · · ·
sinh

q
sτ

(l)
ng

γ
(l)
ng

q
sτ

(l)
ng


(4.37)

and

S2,1(s) =
γ

(l)
1

q
sτ

(l)
1 sinh

q
sτ

(l)
1 0 · · · 0

0 γ
(l)
2

q
sτ

(l)
2 sinh

q
sτ

(l)
2 · · · 0

...
...

. . .
...

0 0 · · · γ(l)
ng

q
sτ

(l)
ng sinh

q
sτ

(l)
ng

 ,
(4.38)

in which
τ

(l)
j = ε

(l)
b (∆z(l))2/D

(l)
e,j (4.39)

and
γ

(l)
j = D

(l)
e,j/∆z

(l). (4.40)

An approximate analytical expression of Ml(s) is also possible if zone

l is thin. This is of course useful for a TZTR. In that case,
(
DDD

(l)
e

)−1

∆z(l)

is approximately zero and Eq. (4.34) becomes

Ml(s) =

[
I 0

ε
(l)
b ∆z(l)

(
H̃(l)(s) · F̃(l)

)−1

I

]
. (4.41)

Substitution of Eq. (4.41) into Eq. (4.33) yields
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1.
L c(l)

g (zl−1, s) = L c(l)
g (zl, s) (4.42)

or
c(l)
g (zl−1, t) = c(l)

g (zl, t) (4.43)

The concentrations to the left and to the right of the active zone
are equal, because this zone is thin. This important property of
the TZTR is exploited in the Y-procedure (Yablonsky et al., 2002,
2007), which allows a model-free determination of c(l)

g and the vector
r(l)
g of rates of consumption of the gas components, see below.

2.

L f (l)(zl−1, s) = ε
(l)
b ∆z(l)

(
H̃(l)(s) · F̃(l)

)−1

·L c(l)
g (zl, s)

+ L f (l)(zl, s). (4.44)

As ∆z(l) is thin, the mass storage capacity of the zone can be ne-
glected. The difference between the outward flux f (l)(zl, t) and the
inward flux, f (l)(zl−1, t) is then equal to the rate of production per
unit cross-sectional surface area, r(l)

g,φ:

r(l)
g,φ(t) = f (l)(zl, t)− f (l)(zl−1, t) (4.45)

Eq. (4.44) can therefore be rewritten as

L r(l)
g,φ(s) = −ε(l)b ∆z(l)

(
H̃(l)(s) · F̃(l)

)−1

·L c(l)
g (zl, s). (4.46)

where Eq. (4.42) was also taken into account.

Back to the general case, repeated application of Eq. (4.33), taking
into account the transmission conditions (4.8a) and (4.8b), the in- and
outlet concentrations and fluxes are found to be bound by[

L cin(s)
L fin(s)

]
= M1(s) ·M2(s) · . . . ·Mn(s) ·

[
L cout(s)
L fout(s)

]
. (4.47)

This expression already incorporates the boundary condition (4.6a). Fur-
thermore, because of boundary condition (4.6b), L cout(s) = 0 in Eq.
(4.47). Therefore, rewriting the transfer matrix as a block matrix

M1(s) ·M2(s) · . . . ·Mn(s) =
[
P1,1(s) P1,2(s)
P2,1(s) P2,2(s)

]
, (4.48)
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it follows from Eq. (4.47) that

L fin(s) = P2,2(s) ·L fout(s). (4.49)

Solving this for L fout(s) yields the main result of (Constales et al., 2004):

L fout(s) = P2,2(s)−1 ·L fin(s). (4.50)

The function fin can be formally extended with the negative real axis: for
all t < 0,

fin(t) = 0 (4.51)

Then the Fourier transform of fin follows from the Laplace transform:

F fin(ω) = L fin(iω). (4.52)

If the same is done for fout, Eq. (4.50) may be rewritten in terms of the
Fourier transform:

F fout(ω) = P2,2(iω)−1 ·F fin(ω). (4.53)

F fin follows from Eq. (4.7) as

F fin(ω) =
1
φ

n. (4.54)

Especially, Eq. (4.53) allows calculating F fout in the equally spaced pul-
sations

ωk =
2π(k − 1)
nt∆t

, (4.55)

which is enough to calculate the outward fluxes at the necessary discrete
times tj , see Eq. (4.12), using the inverse discrete Fourier transform. For
more information, see Appendix C.

Comparison

Two approximations are applied in the method of lines. The first one
is the discretization of the axial coordinate. The second one is the nu-
merical solution of the resulting system of ordinary differential equations.
The sole approximation applied in the transfer matrix approach is the
replacement of the continuous Fourier transform by the discrete Fourier
transform. The transfer matrix approach yields more accurate model-
calculations than the method of lines. It is also computationally less
expensive. The method of lines, on the other hand, is more versatile,
being able to simulation experiments with nonlinear kinetics.
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Implementation

A simulation and regression program for TAP, TAPFIT, was developed
as a part of this work, see Appendix D. The numerical integration of
the model equations is implemented in the simulation module of this
program. Both numerical methods, the method of lines and the transfer
matrix approach, can be applied.

4.5 Conclusions

The reader was introduced to the TAP-technique, including the TZTR.
The TAP-reactor was modeled as a one-dimensional initial and boundary
value problem. Two strategies have been proposed to solve this problem
numerically. The first strategy, the method of lines, consists of converting
the initial and boundary value problem into an initial value problem by
the discretizing of the axial coordinate. The initial value problem can
then be solved using an appropriate numerical routine. The second strat-
egy, the transfer matrix approach, uses Fourier techniques. Especially,
this approach allows an elegant calculation of the TZTR. This will be
applied in Chapter 8 on the model-free experimental determination of
connectivity features of reaction networks. The transfer matrix approach
is computationally less expensive and more accurate than the method of
lines. However, the former is limited to linear kinetics, while the latter is
not. Both approaches have been implemented in the program TAPFIT,
developed as a part of this work.

Chapter 5 will focus on a specific aspect of TAP: the noise in the
experimental data.





Chapter 5

Noise in TAP Pulse Responses

5.1 Introduction

As a transient kinetic technique, TAP is a suitable technique to determine
heterogeneous-catalytic reaction networks, see Chapter 1. The level of
detail is limited by the noise in the experimental data. It is therefore
important to know the properties of this noise. The investigation of this
noise is the subject of this chapter, which is based on (Roelant et al.,
2007).

As the TAP-setup provides large amounts of data in a short amount
of time, it is possible to perform a thorough analysis of this noise. In
fact, such an opportunity is unique in chemical kinetics. Multi-pulse
experiments are performed using anywhere from 1 to 30 000 pulses, each
pulse being separated by 1 to 30 seconds. The signal recorded by the
mass-spectrometer may be looked upon as a superposition of the ‘pure’
pulse response related to the studied processes and noise. The noise may
be a superposition of multiple noise types.

Section 5.2 will provide a stochastic framework for this investigations.
The Sections 5.3 and 5.4 will present the experimental data used for
this investigation and a correction applied to them. The Sections 5.5,
5.6 and 5.7 will each present one kind of noise present in TAP-data.
After a supplementary remark, presented in Section 5.8, a noise analysis
procedure will be presented in Section 5.5, which can be applied to any
TAP-data. This will be illustrated by some useful examples. In the future,
this theoretical framework could be a part of the systematic analysis for
distinguishing noises caused by different physical and physico-chemical
reasons, particularly for distinguishing process noises and noises of the
measuring device. Also based on the results of this noise analysis, the
concrete noises related to different subsystems of the device (valve, mass-
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spectrometer etc.) have to be identified.
Experimental data obtained on the TAP-1-setup of the LCT and a

TAP-2-setup at Washington University Saint Louis are the object of the
present study.

5.2 Stochastic processes

Statistical background

Noise is a stochastic process: a stochastic variable Y which is a function
of a real variable t. Consider a column vector of chronological samples of
Y :

y =
[
Y (t1) Y (t2) · · · Y (tnt)

]T
, (5.1)

where t1 < t2 < . . . < tnt . y is called a random sequence (Peebles, 1987;
Therrien, 1992) or a discrete-parameter stochastic process (Seinfeld and
Lapidus, 1974; Papoulis, 1991). Consider the most general case where
the random variables are complex.

Each mean µY (tj) is the expected value of the sample at t = tj :

µY (tj) = E [Y (tj)] . (5.2)

The vector
µµµY =

[
µY (t1) µY (t2) · · · µY (tnt)

]T (5.3)

may be called the mean sequence. The autocovariance CY (tj , tk) is the
covariance of the corresponding samples Y (tj) and Y (tk):

CY (tj , tk) = cov [Y (tj), Y (tk)] (5.4)

= E
[(
Y (tj)− µY (tj)

)
·
(
Y (tk)− µY (tk)

)]
(5.5)

= E
[
Y (tj) · Y (tk)

]
− µY (tj) · µY (tk). (5.6)

Note that CY (tj , tk) and CY (tk, tj) form a pair of complex conjugates.
A random sequence is called white noise if different random variables

in the sequence are uncorrelated:

j 6= k ⇒ CY (tj , tk) = 0. (5.7)

Random sequences which are not white noise are called colored noise.
The standard deviation σY (tj) of sample j is given by

σY (tj) =
√
CY (tj , tj). (5.8)
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If the standard deviation of all its elements is the same, the random
sequence is called homoskedastic. If not, it is called heteroskedastic.

Finally, the dimensionless autocorrelation ρY (tj , tk) of the jth and
pth sample, is obtained as

ρY (tj , tk) =
CY (tj , tk)
σY (tj)σY (tk)

. (5.9)

Estimation of the statistics

As it is liable to stochastic noise, a time series which is measured as
a response to a pulse in a TAP-reactor may be modeled as a random
sequence y, see (5.1), where tj is given by Eq. (4.12). The mean or
expected pulse response is obtained by estimating

µY (tj) =
1
nr

nr∑
k=1

y(k)(tj), (5.10)

where y(k)(tj) is the sample taken at time tj in a kth replicate experiment.
nr is the number of such replicate experiments. The autocovariance is
estimated by

CY (tj , tk) =
1

nr − 1

nr∑
k=1

(
y(k)(tj)− µY (tj)

)
·
(
y(k)(tk)− µY (tk)

)
(5.11)

This estimation is also used for the standard deviation σY (tj), using
Eq. (5.8).

The Fourier transform

The Fourier transform of random sequence y can be subjected to the
discrete Fourier transform F , such that the kth element of Fy is

(Fy)k = Fy(ωk) =
1
√
nt

nt∑
j=1

Y (tj) exp
(
−2πi

(k − 1)(j − 1)
nt

)
, (5.12)

where the pulsations ωj are given by Eq. (4.55) and correspond to fre-
quencies νj :

νj =
ωj
2π

=
j − 1
nt∆t

. (5.13)

Clearly, the transformed random sequence is a random sequence itself.
Estimations similar to (5.10) and (5.11) can be performed for µFY (ωj),
CFY (ωj , ωk) and σFY (ωj) in the frequency domain.
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As all Y (tj) are real stochastic variables, definition (5.12) implies that

FY ωnt−j = FY ωj . (5.14)

For this reason, beyond the so called Nyquist pulsation,

ωN =
π

∆t
, (5.15)

corresponding to the Nyquist frequency ,

νN =
1

2∆t
, (5.16)

no extra information can be extracted from the discrete Fourier trans-
form. The Nyquist pulsation is the highest pulsation at which the discrete
Fourier transform has physical meaning.

5.3 Experimental

An evident basis for the current statistical study is a dataset resulting
from a large number of state-defining experiments, see Section 4.2. The
easiest way to achieve this is by feeding an inert gas and/or by loading
the TAP-reactor with an inert bed. Another option is to load the TAP-
reactor with a catalyst and saturate it with a reactant. Additional pulses
of that reactant then no longer adsorb on the catalyst, which makes it
possible to collect a large number of state-defining experiments.

A set of data which have been collected at the TAP-1-setup of the LCT
contains 600 pulse responses. An estimated average number of 1.2 · 1015

oxygen molecules was pulsed over a three-zone-TAP-reactor at 773 K.
In central position was a bed of TiHV5H catalyst (Sack et al., 2006),
V2O5 based and obtained by DC magnetron sputtering on a ZrO2–SiO2

support. This zone was 21.78 mm long and sandwiched between two beds
of quartz beads, the first one of which 1.34 mm long and the second one
5.3 mm long. Both the quartz beads and the catalyst support particles
had diameters of 250 to 425 µm. The catalyst was not further oxidized
by the oxygen pulses. Therefore, the oxygen responses are uniform and
fit for the statistical analysis. Each pulse response is stored as a sequence
of 1000 samples taken every 0.4 ms. The collection time per pulse thus
adds up to 0.4 s. An extra time gap of 0.5 s was left between the end of
the collection of each pulse response and the next pulse.

5.4 Baseline-correction

Fig. 5.1 (a) shows the average non-baseline-corrected oxygen pulse re-
sponse. Figure (b) is a magnification of the second half of this response,
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Figure 5.1: (a) Average of non-baseline-corrected oxygen pulse responses ob-
tained at UGent. These were obtained on a TAP-1-system loaded with a V2O5

catalyst (Sack et al., 2006) sandwiched between two zones packed with quartz
beads of the same diameter as the catalyst particles. The bed was at 773 K.
The catalyst is not further oxidized by the pulses. (b) The grey curve represents
the second half of (a). Clearly, the signal is not yet completely extinct at the
end of the pulse recording. For this reason, the position of the baseline cannot,
as is customary, be estimated as the average of the last couple of hundreds of
samples. Rather, the grey curve is nonlinearly regressed with an exponential
curve y = a exp (−bt) + c. The result is shown as the black full line. The black
dashed line represents its horizontal asymptote y = c, which is a reliable esti-
mate for the baseline. (c) The last 500 samples of an example pulse response
in grey. The full black line represents the fitted exponential curve for this par-
ticular pulse response. The black dashed line shows the estimated position of
the baseline.
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close to extinction. It is apparent that the signal is not yet completely ex-
tinct by the time the response is stopped being recorded. Therefore, the
position of the baseline cannot, as is customary, be estimated as the av-
erage of the last couple of hundreds of samples. A more refined approach
consists of regressing the second half of the average pulse response with
an exponential curve y = a exp (−bt) + c. The baseline is then estimated
as the horizontal asymptote y = c of this curve. All pulse responses are
separately baseline-corrected this way. As an extra time gap of 0.5 s was
left between any two successive pulses, it can be assumed that the former
response is extinct by the time the recording of the latter is started.

A second data set from a TAP-2-setup operational at Washington
University Saint Louis contains 1000 pulse responses. Here, an estimated
number of 2.8 · 1014 krypton atoms was pulsed over a 31.8 mm long bed
of quartz particles with a diameter of 210 to 250 µm. The temperature
of the bed was 50 oC. The collection time was 4 s and 1000 samples are
taken per pulse response, making the sampling interval 4 ms. An extra
time gap of about 0.1 s was applied between the collection of successive
pulses.

To perform the baseline-correction of all pulse responses, the method
used for the data from the LCT was also applied here. As before, the
last 500 samples out of 1000 were used for the estimation of the baseline
position. This time only an extra 0.1 s is left between the end of a pulse
recording and the next pulse. Therefore, some krypton atoms of the
former pulse can be expected still to be present in the bed when the
latter is given. However, their number can be assumed to have a negligible
effect. In the remainder of the chapter, the data sets from the LCT and
Washington University Saint Louis will be referred to as the UGent set
and the WUStL set, respectively. They contain the baseline-corrected
pulse responses.

Fig. 5.2 depicts semilogarithmic graphs of the average baseline-correct-
ed pulse responses of the UGent and WUStL sets. Figure (b) for the
WUStL set clearly shows how the tail of the pulse response is the super-
position of two logarithmic decays. The first tail is due to the diffusive
release of krypton atoms. The second tail is probably due to the detection
of krypton atoms that were scattered after they left the reactor. The cor-
responding exponential decay a exp (−bt) is the one found in preparation
for the baseline-correction. It is represented by the grey line. Figure (a)
also shows some convexity of the tail for the UGent set. This is probably
due to a reversible interaction of oxygen with the catalyst.
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Figure 5.2: (a) Semilogarithmic graph (in black) of the average of 600 baseline-
corrected oxygen pulse responses obtained at UGent, over a three-zone-TAP-
reactor with central V2O5 catalytic zone. (b) Semilogarithmic graph (in black)
of the average of 1000 baseline-corrected krypton pulse responses obtained at
WUStL, over a single quartz zone. The grey lines in (a) and (b) represent the
final exponential decay.

5.5 Gaussian noise

Normal distribution and standard deviation

Fig. 5.3 depicts the mean pulse response µµµY , estimated from all pulse
responses of the UGent set as in Eq. (5.10). It also shows an example of
a pulse response and its deviation from the mean.

Traditionally, the deviations from the mean would be assumed nor-
mally distributed around zero. For the UGent data set, this assumption
is verified in Fig. 5.4. It shows histograms of the deviations from the
average of samples taken before, near and after the peak of the pulse re-
sponse, believed to be representative for the whole pulse response. These
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Figure 5.3: (a) An oxygen pulse response (in grey) and the average of 600 such
pulses from the UGent data set (in black). (b) The deviation of this response
from the average response.
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Figure 5.4: Histograms of the deviation from average of samples in the pulse
responses from the UGent data set. (a) An early sample taken at 0.4 ms after
the pulse. (b) A sample taken at 26 ms, about the peak of the pulse response.
(c) A late sample taken at 384 ms. Comparison to normal probability density
functions (black lines) around 0 mV and with standard deviations estimated
from the data shows that all deviations from average can be considered normally
distributed in good approximation.

are compared to normal (Gaussian) probability density curves with mean
zero and standard deviation estimated from the experimental data. Be-
cause of the apparent resemblance of the histograms and the Gaussian
curves, all samples Y (tj) along the pulse response are considered normally
distributed around the mean µY (tj). The Gaussian deviation from this
mean is symbolized as Φ(tj).

The estimated standard deviation profile σσσY is shown in Fig. 5.5.
The pulse response is heteroskedastic: a part of the standard deviation is
proportional to the strength of the signal, while another part is constant.
This becomes clearer if the standard deviation σY is plotted versus the
mean µY , eliminating time. The result is shown in Fig. 5.6. Clearly, an
appropriate interpolation allows to predict the standard deviation from
the strength of the signal.
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Figure 5.5: Standard deviation of all samples in a pulse response from the
UGent set versus their sample time.
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Figure 5.6: Standard deviation of the samples as a function of their mean for
the UGent set, resulting from elimination of the sample times. The graph shows
that the standard deviation is an increasing function of the signal strength. An
analytic form of this function could be derived from appropriate interpolation.
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Figure 5.7: Correlation coefficient between the sample taken at 100 ms after
the pulse and all samples from the UGent set. The graph shows a steep peak
with height 1 around 100 ms. The rest of the profile is noisy with average 0.

Colored noise: the Ornstein-Uhlenbeck model

Fig. 5.7 shows the profile of the correlation coefficient between a base
sample taken at 100 ms, in the tail of the curve, and all samples. This
figure shows a single steep peak at 100 ms amid noise about the zero
of correlation. It is trivial that the correlation coefficient between the
sample taken at 100 ms and itself is 1. However, zooming in on the peak
shows a correlation peak, see Fig. 5.8. This reveals that the noise is
colored, i.e., the correlation coefficient does not drop to zero immediately
around the base sample. Specifically, these graphs, showing correlation
profiles with base samples chosen at the beginning, the peak and the
end of the peak response, suggest an exponential correlation relaxation
towards past and future. This, as well as the normality, is a typical feature
of an Ornstein-Uhlenbeck stochastic process (also called a Gauss-Markov
stochastic process):

ρΦ(tj , tk) = exp
(
−|tk − tj |

θ

)
, (5.17)

where θ is the correlation time, see Doob’s theorem (Doob, 1942). The
Ornstein-Uhlenbeck process was originally presented as a model for the
velocity of a particle in Brownian motion (Uhlenbeck and Ornstein, 1930;
Wang and Uhlenbeck, 1945). Here, it is a suitable model for the noise
divided by its standard deviation: Φ(tj)/σΦ(tj).

Even though the TAP-reactor operates under high vacuum, enough
molecules are collected by the mass spectrometer to consider the non-
sampled electronic signal a continuous one. Hence, to ensure this conti-
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Figure 5.8: Fragments of correlation profiles derived for the UGent data set.
(a) Coefficient of correlation between the first sample (taken as the pulse was
admitted) and neighboring samples (black dots). (b) Correlation coefficient be-
tween the sample taken at 26 ms after the pulse admission time and neighbor-
ing samples. (black dots). (c) Correlation coefficient between the sample taken
at 384 ms after pulse admission and neighboring samples (black dots). These
graphs suggest an exponential decrease of the correlation coefficient towards
past and future. The grey lines in (a), (b) and (c) represent such an exponen-
tial relation with correlation time θ estimated from regression of the standard
deviation profile in the frequency domain, see Fig. 5.10, with Eq. (5.22). The
correspondence is satisfactory.
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nuity, correlation between very rapidly succeeding samples must approach
1 as the sampling interval goes to zero. Therefore, there must always ex-
ist a certain correlation time θ, that can only be neglected if ∆t has been
chosen well over θ, in which case a white noise Gaussian model is satis-
factory. In the other case however, as will be clear from the following, a
colored noise model, and more precisely an Ornstein-Uhlenbeck model is
in order.

The effect of autocorrelation in the spectrum

Call
(
σ2
)
M

the time average variance of the pulse response. Then

nt
(
σ2
)
M

=
nt∑
j=1

σ2
Y (tj) =

nt∑
k=1

σ2
FY (ωk), (5.18)

where the second equality is a consequence of Parseval’s theorem. In
words, the variance in the time domain is redistributed in the frequency
domain. As a consequence,

(
σ2
)
M

is the frequency average as well as the
time average variance.

It is proven in Appendix E that the autocovariance of the discrete
Fourier transform of the Gaussian noise is approximated very well by

CFΦ(ωp, ωq) =
1
√
nt

(1− ρ2)Fσ2 (ωp − ωq)
1− 2ρ cos (ωp+ωq

2 ∆t) + ρ2
, (5.19)

where it is assumed that ωp > ωq
1. ρ is the coefficient of correlation

of two consecutive samples. ∆t is the sampling interval. The expression
involves the discrete Fourier transform

(
Fσ2 (ωj)

)
of the variance profile

in the time domain. Respecting Eq. (5.17), ρ is related to θ as

ρ = exp
(
−∆t
θ

)
. (5.20)

A special case of Eq. (5.19) is given by

σ2
FΦ(ωp) =

(1− ρ2)
(
σ2
)
M

1− 2ρ cos (ωp∆t) + ρ2
. (5.21)

It can be proven that Eq. (5.21) obeys Eq. (5.18) following from Parseval’s
theorem.

1In the opposite case ωp < ωq , CFΦ(ωp, ωq) is found with Fσ2 (ωp − ωq) replaced

by Fσ2 (ωq − ωp) in Eq. (5.19).
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Following directly from Eq. (5.21),

σFΦ(ωp) =

√
1− ρ2

1− 2ρ cos (ωp∆t) + ρ2

(
σ2
)1/2
M

. (5.22)

Observe that Eq. (5.22) implies that the heteroskedasticity of the pulse
response, as apparent in Fig. 5.5, is not reflected in the standard deviation
pattern in the frequency domain, but only in the covariance pattern via
Fσ2 in Eq. (5.19).

Limit values of (5.21) are given by

σ2
FΦ(0 Hz) =

1 + ρ

1− ρ
(
σ2
)
M

= coth
(

∆t
2θ

)(
σ2
)
M

(5.23)

σ2
FΦ(ωN ) =

1− ρ
1 + ρ

(
σ2
)
M

= tanh
(

∆t
2θ

)(
σ2
)
M
, (5.24)

where ωN is the Nyquist pulsation, given by Eq. (5.15). The second
equalities in Eqs. (5.23) and (5.24) are achieved by substituting Eq. (5.20).

Correlation ρ between successive samples taken by the mass spectrom-
eter causes an increase of the variance of the discrete Fourier transform
at low frequencies and a decrease at high frequencies. This contrast be-
comes more pronounced if ρ increases. For example, as it may be derived
from Eq. (5.23), in case the sampling interval ∆t is half the correlation
time θ, the standard deviation is doubled by the correlation effect. This
effect can become very important when sampling at high frequencies is
required by, e.g., fast diffusion of the pulse through the reactor bed.

Consider the profile of the modulus of the average signal in the fre-
quency domain, as depicted in Fig. 5.9. Clearly, the relevant information
contained in the discrete Fourier transform is concentrated in the fre-
quency domain from 0 Hz to 150 Hz, while the Nyquist frequency, given
by Eq. (5.16), is 1250 Hz. Generally spoken, at reasonably low sampling
intervals ∆t, the information contained in the spectrum of a recorded
TAP-signal is restricted to the low frequency region. This is precisely the
region where autocorrelation causes an increase of the standard deviation.
It is concluded that this autocorrelation causes an unfavorable increase
of the level of uncertainty. As was already stated, this effect becomes
important when sampling is carried out at high frequencies.

It can be derived from Eq. (5.23) that if the sampling interval is higher
than 2.5 times the correlation time θ, the low frequency standard devi-
ation stays within 10 % of

(
σ2
)1/2
M

. In this case, the unfavorable time
autocorrelation effect can be neglected. Increasing the number of sam-
ples nt by increasing the sampling frequency 1/∆t while keeping the total
collection time tc = nt∆t constant essentially does not change the mean
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Figure 5.9: Semilogarithmic graph of the modulus of the average pulse re-
sponse’s discrete Fourier transform, for the UGent set. This graph shows that
no meaningful information can be extracted from the spectrum beyond 150 Hz,
where noise becomes dominant.

variance
(
σ2
)
M

in the time domain. As a consequence of Parseval’s the-
orem (see Eq. (5.18)),

(
σ2
)
M

is also equal to the mean variance in the
frequency domain and also, as there is assumed not to be a time autocor-
relation effect, the mean variance at 0 Hz:

σ2
FΦ(0 Hz) ≈

(
σ2
)
M
. (5.25)

On the other hand, consider the limit case in which the sampling
interval is much smaller than the correlation time. In that case, Eq. (5.23)
can be approximated by

σ2
FΦ(0 Hz) ≈ 2θ

∆t
(
σ2
)
M

= nt ·
2θ
tc

(
σ2
)
M
. (5.26)

As the interesting frequency region is around 0 Hz, the relative er-
ror of FY (0 Hz) gives a good idea of the quality of the estimation of
any physico-chemical parameters carried out by regression of the mean
pulse response with suitable expressions. Firstly, it follows from definition
(5.12) that

µFY (0 Hz) =
1
√
nt

nt∑
k=1

µY (tk) (5.27)

≈ M0√
nt∆t

=
√
nt ·

M0

tc
, (5.28)

where M0 is the zeroth moment : the surface area under the ideal con-
tinuous pulse response. In the low sampling frequency limit, the relative
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error of FY (0 Hz) is found from Eqs. (5.25) and (5.28):

σFΦ(0 Hz)
µFY (0 Hz)

≈ 1
√
nt
· tc
M0

√
(σ2)M . (5.29)

The relative error is inversely proportional to the square root of the num-
ber nt of samples. This shows that as long as the sampling interval ∆t
is kept well above the correlation time θ, increasing the sampling fre-
quency while keeping the total collection time tc constant will improve
the precision of parameter estimations by regression. In the high sampling
frequency limit however, combination of Eqs. (5.26) and (5.28) yields

σFΦ(0 Hz)
µFY (0 Hz)

≈
√

2 tcθ
M0

√
(σ2)M . (5.30)

The relative error is no longer dependent on the number nt of samples.
This means that the precision of parameter estimations by regression will
hardly improve by increasing the sampling frequency even further. In
summary, increasing the sampling frequency will improve the precision of
parameter estimations by regression. However, once the sampling interval
∆t has been made smaller than the correlation time θ, this quality will
approach its upper limit.

The memory required to store the pulse responses is proportional to
the sampling frequency. Assume that the sampling frequency is already
high enough for the spectrum to cover even the fastest of the observable
physico-chemical phenomena. Then increasing the number of recorded
pulse responses rather than the number of samples per pulse (keeping tc
constant) is a better strategy to improve parameter estimations. Indeed,
this improvement will be at least as high as if the extra memory needed to
do so was used to increase the sampling frequency. Of course, the number
of recorded pulse responses is still limited to the point where the change
of the catalyst state can no longer be considered insignificant (see Section
4.2). Suppose an experimentalist plans to record a series of TAP pulse
responses and attaches great importance to the precision of the resulting
average pulse response. In this case, he should collect a considerable
number of responses taking care, however, to avoid a significant change
of the catalyst state. Secondly, he should establish a sampling interval
∆t about the correlation time θ or less. There is little point to applying
even higher sampling frequencies.

Noise characterization

The parameters
(
σ2
)1/2
M

and ρ can be estimated from regressing the ob-
served standard deviation pattern in the frequency domain,

(
σFY (ωj)

)
,
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Figure 5.10: Estimated standard deviation versus frequency of the discrete spec-
trum of the pulse responses from the UGent set (grey curve). Steep peaks about
0 Hz, 50 Hz, 150 Hz and 250 Hz are marked by a small black circle. Abstracting
these peaks, regression with Eq. (5.22) gives a reasonably good correspondence
to the experimental profile. The curve resulting from the regression is shown
in black.

with the right hand side of Eq. (5.22). Fig. 5.10 shows this profile. Steep
peaks about 0 Hz, 50 Hz, 150 Hz and 250 Hz attract attention. These are
due to other random phenomena which will be discussed in the subse-
quent sections. For now, it suffices to note that these effects can easily
be abstracted by deleting the narrow peaks from the profile. Such an
abstraction is impossible in the time domain, which is why it would be
imprecise to estimate

(
σ2
)
M

directly as the average of CY (tj , tj) using
Eq. (5.11) for all j from 0 to nt − 1. For the same reason, it would not
be advisable to estimate ρ directly from correlation graphs such as these
in Fig. 5.8.

Nonlinear regression of the experimental sequence
(
σFY (ωj)

)
with

Eq. (5.22) is carried out. The resulting curve is shown in Fig. 5.10 and the
corresponding parameter estimations are ρ = 0.603±0.006 and

(
σ2
)1/2
M

=
0.531± 0.003 mV (95% confidence intervals).

The correlation time θ can be derived from ρ using Eq. (5.20). This
yields θ = 1.97 ·∆t (= 0.789 ms). This value can be verified by plotting
the theoretical prediction (5.17) of the correlation profile

(
ρY (tj)

)
to-

gether with its experimental estimation, which has been done in Fig. 5.8.
As is clear from the foregoing, the deviations are largely due to the pres-
ence of the non-Gaussian random processes that will be discussed in the
subsequent sections.
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Figure 5.11: Estimated standard deviation versus frequency of the discrete
spectrum of the pulse responses from the WUStL set (grey curve). Small black
circles mark steep peaks at 50, 70, 110 and 120 Hz. The black curve shows
the result of regression with Eq. (5.51), after abstraction of the marked peaks.
The result is satisfactory, although the regression of the peak about 60 Hz is
not perfect. This suggests that a simple proportional relation is not the perfect
model for the interdependence of the amplitude of the 60 Hz noise and the signal
strength.

5.6 Spectrally localized noise: mains frequency
interference

Consider the estimated standard deviation profile in the frequency domain
of the WUStL set, shown in Fig. 5.11. A large peak at 60 Hz and a smaller
one at 120 Hz attract the attention. Similar peaks, at 50 Hz, 150 Hz and
250 Hz, were present in the standard deviation profile of the UGent set
(see Fig. 5.10). The mains frequency in America, where the WUStL data
set was collected, is 60 Hz. The mains frequency in Europe, where the
UGent data set was collected, is 50 Hz. Apparently, some noise present
is spectrally localized about the harmonics of the frequency of the electric
energy transmission2. This must be due to an interfering effect exerted
by electric devices near the mass spectrometer, or an undesired direct
influence of the mass spectrometer’s AC power supply. Small peaks about
50 Hz, 70 Hz and 110 Hz are also present in the standard deviation profile
of the WUStL set in the frequency domain. This shows that noise can

2It is notable for the UGent set that only the odd harmonics are present. The
cause of the absence of the even multiples is unknown. However, even multiples were
observed beside the odd multiples in other pulse response sets collected at UGent.



Section 5.6 63

also be spectrally localized at frequencies that are no harmonics of the
mains frequency. However, interfering effects exerted by electric devices
present near the mass spectrometer can still be believed to underlie this
noise. These devices may be part of the TAP-apparatus itself.

As a model for the transient process, consider that a pulse response
Y (tj) is the superposition of the ideal pulse response µY (tj) and a stochas-
tic process Γ(tj) representing an oscillatory noise with fixed pulsation
ωp = 2πp/nt∆t ∈ ]0, π/∆t[ but amplitude A(tj) variable along the pulse
response, as σΦ(tj) was variable in the Gaussian noise.

Γ(tj) = A(tj) cos (ωptj + Θm), (5.31)

where Θm is a random variable representing the random initial phase of
the oscillation.

Autocorrelation in the time domain is readily found to be

CΓ(tj , tk) =
A(tj)A(tk)

2
cos
(
ωp(tj − tk)

)
. (5.32)

Clearly, the TAP-noise is colored. The variance profiles in the time and
frequency domain are given by

σ2
Γ(tj) =

A(tj)2

2
(5.33)

σ2
FΓ(ωj) =

1
4

(∣∣FA (ω|p−j|)∣∣2 +
∣∣FA (ωf(p+j)

)∣∣2), (5.34)

respectively, where

f(k) =

{
k when k < nt

k − nt when k > nt
. (5.35)

In a first approximation, it is useful to assume that the amplitude is
linearly related to the signal strength:

A(tj) = αµY (tj) + β (5.36)

so that

FA (ωj) = αFµX (ωj) + β
√
nt δj0, (5.37)

where α and β are positive. The Kronecker delta symbol, δjk, equals 1 if
j is equal to k but 0 else.
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Substitution of Eq. (5.37) into Eq. (5.34) yields after some manipula-
tions

σ2
FΓ(ωj) =

1
4

[
α2
(∣∣FµX (ω|p−j|)∣∣2︸ ︷︷ ︸

a

+
∣∣FµX (ωf(p+j)

)∣∣2︸ ︷︷ ︸
b

)

+ ntδpj

(
β2 + 2αβµY,M

)]
, (5.38)

where µY,M is the time average mean signal strength. If the amplitude
A(tj) is constant, α = 0, there is a discrete standard deviation peak at
the pulsation ωp of the oscillation. If A(tj) is purely proportional to the
signal strength, β = 0, there is a continuous peak about ωp. In other
words, variability of the amplitude causes broadening of the standard
deviation peak in the frequency domain. Mostly, term b in Eq. (5.38) can
be neglected with respect to term a. Therefore, the flanks of the peak
have the shape of the modulus profile in the frequency domain. If both α
and β in Eq. (5.36) differ from zero, the standard deviation peak consists
of a discrete peak at ωp superposed on a continuous peak around ωp. The
model presented will be validated in Section 5.10.

If possible, spectrally localized noise should be reduced by preventing
the electrical interference at its root. However, its complete elimination
might prove unattainable. The presence of spectrally localized noise re-
duces the quality of parameter estimations carried out by regression if
it overlaps spectrally with the ideal signal. Specifically, noises localized
around low frequencies are most disadvantageous.

5.7 Pulse size and mass spectrometer sensitivity

In many cases, the size of the TAP reactant pulses is poorly reproducible.
In reality, different trends may be observed and overlapped:

1. The drop in pulse size over a long pulse series could be due to a
decrease in pressure in the blend tank due to depletion, even though
the number of molecules per pulse is small (1013 - 1015 molecules).

2. The temperature of the pulse valve tends to increase with use so
the resistance in the wire coils increases, causing a slight decrease
in the pulse size.

3. The pulse size drifts if the manifold temperature changes signifi-
cantly (Gleaves et al., 1988).

Fig. 5.12 gives an impression of the variability of the pulse size for the
WUStL data set. Each point corresponds to the surface area under the
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Figure 5.12: Surface area under the pulse response curve vs. the number of the
pulse for the WUStL data set. As the area is proportional to the size of the
pulse, this gives an impression of the variability of this size. The graph shows
short term random behavior and slow trends.

curve of a pulse response. The graph shows short term random behavior
superposed on slower fluctuations. No periodic phenomena have been
revealed by taking the discrete Fourier transform.

In the case where no reactions or only pseudomonomolecular reactions
take place in the reactor, the shape of the pulse response is not affected
by the size of the pulse. Therefore, the influence of the variability of the
pulse size can be modeled by thinking the mean pulse response µY (tj) is
multiplied by a random factor 1 + ζΛ, so that the pulse response Y (tj)
becomes the superposition of µY (tj) and the stochastic process Ψ(tj):

Ψ(tj) = ζΛµY (tj), (5.39)

ζ is a dimensionless constant smaller than 1 and Λ is a stochastic variable
with mean 0 and standard deviation 1 but unknown distribution. Obvi-
ously, ζ must be expected different for each pulse valve. In fact, as the
pulse size is amenable to trends, ζ must be expected different for each
experimental series.

Although the uncertain contribution Ψ(tj) mostly has to do with an
imperfect pulse gas delivery, as reflected in the enumeration 1 to 3 above,
it can also be rooted in slow fluctuations of the mass spectrometer’s sen-
sitivity. In either case it would not be appropriate to denote Ψ(tj) as
noise as it is no time-varying stochastic phenomenon but a phenomenon
varying from pulse to pulse.
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It is easily verified that the autocovariances in the time and the fre-
quency domain are given by

CΨ(tj , tk) = ζ2 µY (tj) . µY (tk) (5.40)

and

CFΨ(ωp, ωq) = ζ2 FµX (ωp) .FµX (ωq), (5.41)

respectively. Especially, the variance profiles
(
σ2

Ψ(tj)
)

and
(
σ2
FΨ(ωj)

)
are

defined by

σ2
Ψ(tj) = ζ2 µY (tj)2 (5.42)

and

σ2
FΨ(ωj) = ζ2 |FµX (ωj)|2 . (5.43)

Variability of the pulse size is reflected in a standard deviation peak about
0 Hz. Fig. 5.11 indeed shows such a peak. As is clear from Eq. (5.43), its
flank has the shape of the modulus profile in the frequency domain.

In practice, area-normalization after baseline-correction rules out the
uncertainty caused by the variability of the pulse size or mass spectrome-
ter sensitivity. Area-normalization amounts to dividing a pulse responses
by its zeroth moment. However, as to some extent it would deform
the noise present, area-normalization was not applied to the data sets
presently used with the purpose to characterize the noise.

5.8 Absence of cross-effects

Consider the natural case where multiple noise types are present in the
pulse responses. In the most general case, a pulse response must be
considered a superposition of the ideal pulse response and stochastic pro-
cesses due to the uncertainty concerning the size of the pulses (type Ψ,
Section 5.7), an Ornstein-Uhlenbeck noise (type Φ, Section 5.5) and mul-
tiple spectrally localized noises (type Γ, Section 5.6) with different pulsa-
tions ωp.

Having different origins, stochastic processes of type Ψ, Φ and Γ can
be considered stochastically independent. Cross-correlations are therefore
absent, and the autocovariances can simply be added up. In the time
domain:

CY (tj , tk) = CΨ(tj , tk) + CΦ(tj , tk) + CΓ(tj , tk) (5.44)

σ2
Y (tj) = σ2

Ψ(tj) + σ2
Φ(tj) + σ2

Γ(tj), (5.45)
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and in the frequency domain:

CFY (ωj , ωk) = CFΨ(ωj , ωk) + CFΦ(ωj , ωk) + CFΓ(ωj , ωk) (5.46)

σ2
FY (ωj) = σ2

FΨ(ωj) + σ2
FΦ(ωj) + σ2

FΓ(ωj). (5.47)

Multiple spectrally localized noises (type Γ) with different pulsations
ωp have a common origin: the electric energy transmission. Therefore, it
is not a priori ensured that they are stochastically independent. However,
if their mutual phase differences at the start of each new pulse response
recording is completely random, i.e., has no expected value, they are un-
correlated. This is a fair assumption, even if there is a constant phase
difference between the oscillations in the global time frame3. The mutual
phase differences between spectrally localized noises with equal pulsa-
tion can be expected to be constant. Therefore, cross-effects cannot be
excluded in this case.

It can be concluded that the autocovariances of all stochastic processes
can simply be added to give the autocovariance of the pulse response, both
in the time and the frequency domain, as long as there are no multiple
spectrally localized noises with equal pulsation.

5.9 Deviation from normality

Of the three forms of uncertainty discussed, only the first is Gaussian.
The distribution of the samples of a spectrally localized noise

(
Γ(tj)

)
defined by Eq. (5.31) is known, but non-Gaussian, U-shaped:

P [y < Γ(tj) < y + dy] =
dy

π
√
A(tj)2 − y2

, for all −A(tj) < y < A(tj).

(5.48)
The distribution of the samples of a stochastic process Ψ(tj) defined

by Eq. (5.39), due to uncertain pulse size or mass spectrometer sensitivity,
is unknown. Only the standard deviation profile σ2

Ψ(tj) can be estimated
and the mean is known to be zero everywhere, by definition. As this
form of uncertainty is liable to drifts, the stochastic process Ψ(tj) can be
expected to differ from experimental series to experimental series and to
be non-Gaussian.

3As an example, consider as noise an oscillation with frequency 60 Hz, the Amer-
ican mains frequency. Say a pulse is given every 5 s. This is exactly 300 times the
period of the oscillation. Therefore, the phase of the oscillation is expected to be the
same at the moment each pulse recording is started. However, the mains frequency
is not 100 % constant and 100 % precision is neither attained by the pulse timer. For
these reasons, the initial phase of the oscillation can be considered random. To gain
absolute certainty about this, a small random time interval could be left between the
end of each pulse recording and the next one.
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As a consequence, the distribution of the deviation from the mean

Y (tj)− µY (tj) = Φ(tj) +
S∑
k=1

Γk(tj) + Ψ(tj) (5.49)

is generally not normal. As known, the traditional mean-square regres-
sion method for determining model parameters is based on the assump-
tion of normal distribution, see, e.g., (Mateu, 1997). Therefore, its di-
rect application to TAP data analysis is generally not valid. Thus, in
principle, the deviations from average have to be transformed to become
normally distributed prior to the regression. During the regression, the
heteroskedasticity of the pulse response must be taken into account.

5.10 Full noise analysis

It was justified in Section 5.8 that the variance profiles due to the differ-
ent uncertainty effects can simply be added to obtain the total variance
profile. In the most general case where there is Gaussian noise, an un-
certain pulse size and S spectrally localized noises, an expression derived
from Eqs. (5.21), (5.43) and (5.38) applies:

σ2
FY (ωj) =

(1− ρ2)
(
σ2
)
M

1− 2ρ cos (ωp∆t) + ρ2
+ ζ2 |FµY (ωj)|2

+
1
4

S∑
k=1

[
α2
k

(∣∣FµY (ω|pk−j|)∣∣2 +
∣∣FµY (ωf(pk+j)

)∣∣2)
+ ntδpkj

(
β2
k + 2αkβkµY,M

)]
. (5.50)

As an example, the noise present in the WUStL data set has been an-
alyzed. Here, the sampling interval is 4 ms. If it is assumed that the
correlation time θ is about the same as the one found for the UGent set:
θ ≈ 0.789 ms, the ratio ∆t/θ is about 5. As this value is higher than
2.5, the unfavorable autocorrelation effect on the variance profile in the
frequency domain can be neglected (see Section 5.5). This amounts to
putting ρ = 0 in Eq. (5.50).

Fig. 5.11 shows five spectrally localized noises: at 50 Hz, 60 Hz, 70 Hz,
110 Hz and at 120 Hz4. The noises with frequencies of 50 Hz and 110 Hz
are neglected. Therefore, in Eq. (5.50), S = 3 and, from Eq. (5.13),
p1 = nt∆t . 60 Hz, p2 = nt∆t . 70 Hz and p3 = nt∆t . 120 Hz.

4The peak about 0 Hz is due to a variable pulse size.
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Table 5.1: Parameter estimates with their 95 % confidence intervals obtained by
nonlinear regression of the observed standard deviation profile in the frequency
domain with Eq. (5.51). The regression is shown in Fig. 5.11.

parameter value unit(
σ2
)1/2
M

0.0050± 0.0003 V
ζ 0.0434± 0.0002 –
α1 0.0281± 0.0003 –
α3 0.0027± 0.0004 –

Eight parameters remain unknown:
(
σ2
)
M

, ζ, α1, β1, α2, β2, α3 and
β3. Multiple regression attempts have shown that the most meaningful
correspondence between the observed and theoretical standard deviation
profile is obtained assuming that the amplitude of the oscillation of 60 Hz
is perfectly proportional to the signal strength, β1 = 0, and that the
amplitude of the noise about 70 Hz is constant, α2 = 0.

If the values j ∈ {p2, p3} are excluded from the domain of interest, it
is derived from Eq. (5.50) that

σFY (ωj) =

[(
σ2
)
M

+ ζ2 |FµY (ωj)|2

+
1
4

∑
k∈{1, 3}

α2
k

(∣∣FµY (ω|pk−j|)∣∣2 +
∣∣FµY (ωf(pk+j)

)∣∣2)] 1
2

. (5.51)

Eq. (5.14) stated that the elements of the discrete Fourier transform
beyond the Nyquist pulsation can be derived from those before. For that
matter

σ2
FµY (ωj) = σ2

FµY (ωnt−j). (5.52)

Therefore, the domain of interest is further reduced to the first half of
the discrete Fourier transform.

Eq. (5.51) has four unknown parameters:
(
σ2
)1/2
M

, ζ, α1 and α3. These
are estimated by nonlinear regression of the observed standard deviation
profile with Eq. (5.51), abstracting the singular points at 50 Hz, 70 Hz,
110 Hz and at 120 Hz to improve the regression. The result is shown in
Fig. 5.11 and yields the results listed in Table 5.1.

The standard deviation profile resulting from this regression may be
symbolized as σFY,fit(ωj). From comparison of Eqs. (5.50) and (5.51), it
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is clear that there is still a deficit at the frequencies 70 Hz and 120 Hz:

σFY (ωp2)2 − σFY,fit(ωp2)2 =
nt
4
β2

2 (5.53)

σFY (ωp3)2 − σFY,fit(ωp3)2 =
nt
4
(
β2

3 + 2α3β3µY,M
)
. (5.54)

Estimations of β2 and β3 can be obtained simply by solving the
Eqs. (5.53) and (5.54). This yields estimates

β2 = 0.00166 V (5.55)

and

β3 = 0.00270 V. (5.56)

In conclusion, the uncertainty the pulse responses from the WUStL
set are subjected to, can be modeled as the stochastic process

(
Y (tj) −

µY (tj)
)
:

Y (tj)−µY (tj) =
(
σ2
)1/2
M

G(tj) + ζΛµY (tj) +α1µY (tj) cos (ωp1tj + Θ1)

+ β2 cos (ωp2tj + Θ2) +
(
α3µY (tj) + β3

)
cos (ωp3tj + Θ3) (5.57)

where

•
(
G(tj)

)
is white Gaussian noise with mean 0 and time average stan-

dard deviation 1,

• Λ is a stochastic variable with mean 0 and standard deviation 1,

• ωp1 = 2π · 60 Hz, ωp2 = 2π · 70 Hz and ωp3 = 2π · 120 Hz,

• Θ1, Θ2 and Θ3 are stochastic variables with uniform distribution
over [0, 2π],

• the parameters
(
σ2
)1/2
M

, ζ, α1 and α3 are listed in Table 5.1,

• the parameters β2 and β3 are given by Eqs. (5.55) and (5.56), re-
spectively.

Consider the experimental interdependence of the standard deviation
and the mean, shown in Fig. 5.13. In good approximation, the standard
deviation is proportional to the signal strength, although it differs slightly
from zero at zero signal strength. This corresponds to the result of the
noise analysis. Indeed, the most important uncertainty effects, about
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Figure 5.13: Logarithmic graph of the standard deviation of the samples as
a function of their mean for the WUStL set, resulting from elimination of
the sample times. The graph shows that the standard deviation is more or
less proportional to the signal strength, although the standard deviation axis
intercept differs from zero. This means that some noise remains present once
the pulse response is near extinction.

0 Hz and 60 Hz, are found to be more or less proportional to the signal
strength, while less important ones depend less on this signal strength.

The Ornstein Uhlenbeck noise is not believed to be due to avoidable
interference. Therefore, it may be called “essential”. This analysis shows
the standard deviation of the essential noise in the WUStL case to amount
to about 0.1 % of the peak response. In the case of the UGent set, this
was about 4 % (see Section 5.5). This difference is not surprising, as the
UGent data set was collected on a TAP-1-setup, while the WUStL set was
collected on a TAP-2-setup. Compared to the TAP-1-system, the TAP-2
has the advantage that the mass spectrometer collects a higher fraction
of the molecules leaving the reactor. Therefore, the signal is stronger and
less sensitive to essential noise. In the case of the presently analyzed noise
(WUStL data set), the Gaussian noise is clearly negligible with respect
to the spectrally localized noise and the uncertainty caused by a variable
pulse size. From the parameter estimates listed in Table 5.1, or even the
mere observation of Fig. 5.11, it is clear that the spectrally localized noise
is rather important. For example, the amplitude of the 60 Hz oscillation
is about 3 % of the signal strength. Clearly it would be interesting to
examine if the interference causing the spectrally localized noise could be
reduced in a physical manner. The present noise analysis, applied to data
collected at WUStL, revealed a pulse size variability of about 4 %. This
is a typical number (Gleaves et al., 1997) and similar variabilities have
been derived from data collected at UGent.
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5.11 Conclusions

Noise limits the amount of information which can be extracted from ex-
perimental data on reaction networks. TAP pulse responses have been
found to be liable to two types of noise. The first is Gaussian with stan-
dard deviation increasing as a function of the signal strength. When this
type of noise is dominant, which is likely in pulse responses recorded on
TAP-1-setups, its colored character puts a limit to the improvement of
the precision of the parameter estimations achievable by increasing the
sampling frequency of the signal. The second type of noise is spectrally
localized, mostly around harmonics of the mains frequency. This noise
is caused by interference by electric devices near the mass spectrome-
ter, possibly part of the TAP-apparatus itself, or directly by the mass
spectrometer’s AC power supply.

Analytical expressions have been presented for the autocovariance of
the pulse response, both in the time and the frequency domain. Specif-
ically, regression of the observed standard deviation profile in the fre-
quency domain with the analytical expression, allowed to derive quanti-
tative information about the fine structure of the noise. The presently
developed error analysis can be applied to single-pulse TAP-data resulting
from diffusion/reaction phenomena.

The noise characteristics found served as a source of inspiration for
the development of a novel regression strategy, which will be presented
in Chapter 6. This strategy will improve the precision of the estimates
of kinetic parameters and provide accurate quantitative information on
this precision. Knowledge of the characteristics of the noise, more partic-
ularly in the frequency domain, will also show useful in Chapter 8, where
a model-free procedure will be presented for determining connectivity
features of reaction networks from TZTR-data.
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Second-order Statistical
Regression

6.1 Introduction

The interpretation of data obtained from transient kinetic experiments
usually involves tests of physico-chemical models against the experimental
data, adjusting the kinetic parameters appearing in the former. The
kinetic parameters are rate coefficients in case of isothermal data, i.e., if
all data have been collected at the same temperature. If the data are
nonisothermal , the kinetic parameters are pre-exponential factors and
activation energies.

Regression is a statistical tool in the hands of the empiricist to investi-
gate the causal relation between certain well-known independent variables,
often controlled by the empiricist, on the one hand, and some observed
dependent variables on the other. Regression analysis is useful in those
cases where a causal model is known (or assumed valid) except for some
parameters occurring in it, such as pre-exponential factors and activation
energies in kinetic models. By regression, these parameters are estimated
as those that make the model-calculated dependent variables coincide as
near as possible with the empirical ones.

By far, the most widely applied regression technique is least-squares
regression. Some recent text books on the matter are (Seber and Lee,
2003; Seber and Wild, 2003) (mathematical) and (Graybill and Iyer, 1994;
Draper and Smith, 1998) (applied). If the model-calculated dependent
variables are linear functions of the unknown parameters, their estimates
can be found in a direct linear-algebraic way. If not, they are to be found
iteratively, starting from some initial estimates, which is computationally
more expensive. The Levenberg-Marquardt iterative method is commonly
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used (Levenberg, 1944; Marquardt, 1963).
Hougen and Watson (1947) introduced the least-squares regression

approach as a means to estimate kinetic parameters from stationary ki-
netic experiments. They rearranged the concentration and rate variables
in Langmuir-Hinshelwood-Hougen-Watson type rate equations to render
them linear in the parameters to be estimated. This allowed them to ap-
ply the computationally inexpensive linear least-squares regression theory.
With the advent of the digital computer, direct nonlinear regression of
the reaction rates was preferred over this method (Kittrell et al., 1965).
Cutlip et al. (1972) first applied nonlinear least-squares regression (NLSQ
regression) to transient kinetic data.

It was discussed in Section 1.3 that data from transient kinetic exper-
iments are typically used to determine reaction networks. NLSQ regres-
sion of kinetic data is the key to the statistically sound discrimination
between rival kinetic models and, hence, between the corresponding re-
action mechanisms (Froment and Hosten, 1981). NLSQ regression with
a certain physico-chemical reaction model yields estimates of the param-
eters occurring in this model and valuable statistical judgments about
their significance in the form of confidence intervals. However, the un-
biasedness of the estimates, the validity of the confidence intervals and
that of the model discrimination algorithms depend on whether the ex-
perimental data obey certain statistical prerequisites which are discussed
in Section 6.2 of this chapter.

All too frequently, these conditions are tacitly assumed fulfilled. How-
ever, the assumption that the experimental errors are homoskedastic and
uncorrelated are not always valid. The autocorrelation of experimental er-
rors when recording time series is well-known and is referred to as ‘colored
noise’. The necessary conditions unverified, there is a real danger that
experimentalists draw unfounded conclusions. They may, for example,
conclude that there is significant experimental support for certain mech-
anistic details of a reaction while in there is not. This chapter presents
a second-order statistical regression as a way to prevent such mistakes if
replicate-experimental data are available (Roelant et al., 2008).

A theoretical background will be provided in Section 6.2. Section 6.3
provides a linear conditioning transform which can be used to precondi-
tion the data for least-squares regression if the variance pattern of the
noise is known. As the latter is usually not true, Section 6.4 presents an
adaptation where the variance pattern is to be estimated from replicate-
experimental data. In Section 6.5, the novel approach will be validated
using synthetic and two sets of experimental data. The first set stems
from a TAP-experiment of the adsorption of oxygen on a V2O5 based cat-
alyst. The second set consists of TAP-data on the interaction of propane
with a CuO–CeO2 catalyst.
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6.2 Theoretical background

Experimental time series

Transient kinetic experiments yield data in the form of time series. Ex-
amples of transient kinetic experiments are SSITKA, TPD and TAP, see
Section 1.3. This chapter applies to all kinds of kinetic time series, but
TAP-data will be used for illustration in this chapter. They all have been
collected at the TAP-1-setup operational at the Laboratory for Chemical
Technology.

During transient experiments, the experimentalist controls the exper-
imental conditions and forces a well-defined variation of at least one of
them in time. The experimental conditions and those parameters char-
acterizing their change will be referred to as the experimental conditions
in a broad sense. Let them be collected in a column vector ξξξ. In a way
dependent on ξξξ, nv physical variables, η1, η2, . . . , ηnv , evolve as the
experiment progresses. They are recorded by measuring devices, result-
ing in time series of values measured at equally spaced time points tj :
tj+1 − tj = ∆t, for all j ∈ {1, 2, . . . , nt}. ∆t is the sampling interval.
Assume ne multiresponse experiments are carried out at conditions ξξξ1,
ξξξ2, . . . and ξξξne . At each condition ξξξe, e ∈ {1, 2, . . . , ne}, this results in
one time series for each physical variable ηv, v ∈ {1, 2, . . . , nv}:

ye,v =


ye,v(t1)
ye,v(t2)

...
ye,v(tnt)

 ∈ Rnt×1, (6.1)

represented here as a column vector. Think of these time series as being
stacked in a single composite column vector y ∈ Rn×1, with

n = ne nv nt. (6.2)

The mass spectrometer of the TAP-setup records a fixed mass of the
spectrum so that unless use is made of a multitrack system (Nijhuis et
al., 1997), to observe multiple components, the experiment has to be
repeated as least as many times as there are components to be monitored.
For TAP, the variables η1, η2, . . . , ηnv are thus the mass spectrometer
measurements, in V, at the selected spectrum masses. The pressure varies
in time and space in a way fully determined by the reactant pulse size.
Hence, unless it is unknown, the latter is an experimental condition but
the former is not. The reaction temperature is another experimental
condition. As an example, Fig. 6.1 shows a typical experimental TAP
pulse response.
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Figure 6.1: A typical TAP pulse response, consisting of a thousand samples:
j ∈ {1, 2, . . . , 1000}. For this response, argon was pulsed over quartz.

Model-calculated time series

The TAP-reactor is modeled by a system of partial differential equations
with initial and boundary conditions, see Section 4.3. Usually, numerical
techniques are applied to integrate the model equations, see Section 4.4,
although an analytical integration is possible in some cases. In general,
time series equivalent to those experimentally recorded can be calculated
from reactor simulations. As a rule, use has to be made of calibration data
of the measurement equipment in a final stage. For TAP for example, the
calibration matrix has to be known to be able to convert the product flow
rate pulse responses in mol/s, calculated from the reactor model, to the
mass spectrometer signals measured in V.

The time series calculated from the model depend on some physico-
chemical parameters b1, b2, . . . , bp (mostly kinetic and transport param-
eters) appearing in the reactor model. These are collected in a vector
b ∈ Rp×1. The model-calculated time series can therefore be represented
as

fv(ξξξe,b) =


fv(t1, ξξξe,b)
fv(t2, ξξξe,b)

...
fv(tnt , ξξξe,b)

 , (6.3)

with e ∈ {1, 2, . . . , ne} and v ∈ {1, 2, . . . , nv}. Furthermore, let f(b) ∈
Rn×1 be the model-calculated analogue of y: a composite of all vectors
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Figure 6.2: Overall scheme of the direct regression approach as a means to
estimate physico-chemical parameters from transient kinetic data.

fv(ξξξe,b). f is then the model function (Graybill and Iyer, 1994).

Least-squares regression of time series

In transient kinetic experiments, the independent variables are the ex-
perimental conditions ξξξe,v and the time t. The dependent variables are
the experimental recordings ye,v. The physico-chemical parameters b are
to be estimated by nonlinear least-squares regression. Fig. 6.2 gives a
schematic overview. The number of parameters that can be estimated is
limited to the dimension of the data set y:

p 6 n. (6.4)

Strictly speaking, least-squares regression should only be applied un-
der the following six conditions.

Condition 6.1. The independent variables contain no experimental er-
rors.
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Condition 6.2. The model is adequate.

Condition 6.3. The mean experimental error is zero.

Condition 6.4. All errors are normally distributed.

Condition 6.5. The errors are homoskedastic.

Condition 6.6. The errors are uncorrelated.

Condition 6.1 requires the vectors ξξξe and t to be known without (sig-
nificant) error. In kinetic studies, the experimental conditions are usually
temperature and pressure. These are typically known with very good ac-
curacy and precision. The same is true for the time t. The adequacy of
the model referred to in Condition 6.2 means that it applies with some
real, unknown parameters βββ, aside from additive random experimental
errors εεε (Draper and Smith, 1998):

y = f (βββ) + εεε. (6.5)

In fulfillment of the other conditions, εεε has to be a random error vec-
tor with multidimensional normal distribution with mean zero (0n) and
variance matrix In σ2:

εεε ∼ N
(
0n, In σ2

)
. (6.6)

If Conditions 6.1 to 6.6 are fulfilled, the parameters β̂ββ minimizing of
the residual sum of squares S(b) are the maximum-likelihood estimates
of the real parameters βββ. (Joint) confidence regions of the parameter
estimates β̂ββ can be estimated, which allow the experimentalist to judge the
significance of the regression and of the individual parameter estimates.
Appendix F gives a concise overview of the theory.

Generally, at best a simplifying model can be conceived of the exper-
imental system, failing to grasp all its subtleties. Condition 6.2 is then
fulfilled at most in approximation, and practically translates to the re-
quirement that the bias between experimental and model-calculated time
series, so-called lack of fit (Graybill and Iyer, 1994; Draper and Smith,
1998), is small compared with the experimental error. In the context
of time series the latter consists of noise: similarly to y and f(b), εεε in
Eq. (6.5) is a composite vector containing the noise εεεe,v in all time se-
ries ye,v. As is always the case in regression analysis, Condition 6.2 is
assumed valid. Condition 6.3 expresses a basic experimental requirement
and is also assumed fulfilled here on that account.

Assumption 6.1. The Conditions 6.1, 6.2 and 6.3 are fulfilled.
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The fulfillment of the Conditions 6.4, 6.5 and 6.6 should not be taken
for granted. For TAP pulse responses, at least, they are generally not
met, see Chapter 5 and (Schuurman, 2007). Condition 6.5 requires the
level of noise to be constant in time, its variance σ2 unvarying. Moreover,
in absolute terms, the noise must be equally important in all experimental
time series, σ2 being independent of the experimental conditions ξξξe and
the variable ηv monitored. Fulfillment of Condition 6.6 implies different
noise time series to have no cross-correlation. In this paper, the latter is
assumed to be valid as a relaxed form of Condition 6.6.

Assumption 6.2. Different experimental time series have no cross-cor-
relation.

In particular, Assumption 6.2 involves the nv time series measured
during each experiment to have no cross-correlation. This is the case
for most TAP-systems, where a single ‘experiment’ requires a series of nv
independently repeated experiments at the same experimental conditions,
see Section 6.2. Additionally to Assumption 6.2, Condition 6.6 requires
all noise to be white, i.e., free of time autocorrelation. This is not assumed
to be the case in this paper: the population variance matrix

V(εεεe,v) = E
[
εεεe,vεεε

T
e,v

]
(6.7)

need not be diagonal.
This paper will show how the Conditions 6.4, 6.5 and 6.6 can be ful-

filled. Section 6.3 attends to the case where V(εεεe,v) is known, a situation
rarely met in practice. By contrast, in Section 6.4, V(εεεe,v) is not assumed
known.

6.3 Population principal component analysis of
known noise and rescaling

By its nature, the population variance matrix V(εεεe,v) of the noise εεεe,v in
an experimental time series ye,v is a symmetric, positive definite matrix.
Thus, there exists an eigendecomposition

V(εεεe,v) = Ue,v ·ΛΛΛe,v ·UT
e,v, (6.8)

where ΛΛΛe,v ∈ Rnt×nt is a diagonal matrix holding the positive eigenvalues
of V(εεεe,v) in its diagonal, ranked from high to low:

ΛΛΛe,v =


σ2
e,v,1 0 · · · 0
0 σ2

e,v,2 · · · 0
...

...
. . .

...
0 0 · · · σ2

e,v,nt

 , (6.9)
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with
σe,v,1 > σe,v,2 > . . . > σe,v,nt > 0 (6.10)

and Ue,v is a nt × nt matrix having the associated, orthonormal eigen-
vectors as columns:

Ue,v =

ue,v,1 ue,v,2 · · · ue,v,nt

 , (6.11)

with

uTe,v,k · ue,v,l =

{
1 if k = l

0 else.
(6.12)

In matrix form, the orthonormality (6.12) of the eigenvectors translates
to

UT
e,v ·Ue,v = Int . (6.13)

Consider the linear transformation of time series ye,v by UT
e,v:

y′e,v = UT
e,v · ye,v. (6.14)

The random part εεεe,v of ye,v is hereby transformed to the random part
εεε′e,v of y′e,v:

εεε′e,v = UT
e,v · εεεe,v. (6.15)

The variance matrix of εεε′e,v is found as

V(εεε′e,v) = E
[
εεε′e,v · εεε′e,v

T
]

(6.16)

(6.15)
= E

[
UT
e,v · εεεe,v · εεεTe,v ·Ue,v

]
(6.7)
= UT

e,v ·V(εεεe,v) ·Ue,v

(6.8)
= UT

e,v ·Ue,v ·ΛΛΛe,v ·UT
e,v ·Ue,v

(6.13)
= ΛΛΛe,v. (6.17)

εεε′e,v is the result of expressing εεεe,v in a coordinate system constituted by
the orthonormal eigenvectors of V(εεε′e,v). In other words, for each k, the
kth component of εεε′e,v is the Euclidean length of the orthogonal projection
of the random noise vector εεεe,v on ue,v,k. According to Eqs. (6.17), (6.9)
and (6.10), these components are mutually uncorrelated and have vari-
ances decreasing as a function of k. Apparently, the largest variability of
the noise is parallel to the first eigenvector ue,v,1, the second largest vari-
ability parallel to the second eigenvector ue,v,2, etc. For this reason, the
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eigenvectors, and particularly the first few of them, are called the popula-
tion principal components (pPCs) of the noise. The linear transformation
(6.15) is called the population principal component analysis (pPCA) or
the discrete Karhunen-Loève transformation of the noise (Therrien, 1992;
Massart et al., 1997; Vandeginste et al., 1998; Jolliffe, 2004). In fulfill-
ment of Condition 6.6 for least-squares regression, transformation (6.14)
projects the time series on the pPCs of their noise. Simple rescaling of the
components of the resulting vector y′e,v by the reciprocal of their standard
deviation suffices to also render their errors homoskedastic, in fulfillment
of Condition 6.5. Define

y′′e,v = ΛΛΛ−1/2
e,v · y′e,v

= ΛΛΛ−1/2
e,v ·UT

e,v · ye,v (6.18)

with

ΛΛΛ−1/2
e,v =


1/σe,v,1 0 · · · 0

0 1/σe,v,2 · · · 0
...

...
. . .

...
0 0 · · · 1/σe,v,nt

 . (6.19)

Then, taking into account that ΛΛΛ−1/2
e,v is symmetric, the variance matrix

of the random part
εεε′′e,v = ΛΛΛ−1/2

e,v · εεε′e,v (6.20)

of y′′e,v becomes

V(εεε′′e,v) = E
[
εεε′′e,v · εεε′′e,v

T
]

(6.20)
= E

[
ΛΛΛ−1/2
e,v · εεε′e,v · εεε′e,v

T ·ΛΛΛ−1/2
e,v

]
(6.16)

= ΛΛΛ−1/2
e,v ·V(εεε′e,v) ·ΛΛΛ−1/2

e,v

(6.17)
= ΛΛΛ−1/2

e,v ·ΛΛΛe,v ·ΛΛΛ−1/2
e,v

= Int . (6.21)

Assumption 6.2 implies that there is no cross-correlation between the
different transformed noise vectors εεε′′e,v. Hence, it follows from Eq. (6.21)
that the variance matrix of their composite vector εεε′′ is

V(εεε′′) = In. (6.22)

This fulfills Conditions 6.5 and 6.6 for regression of y′′ with f ′′(b), the
composite vectors of y′′e,v and

f ′′v (ξξξe,b) = ΛΛΛ−1/2
e,v ·UT

e,v · fv(ξξξe,b), (6.23)
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respectively. The fulfillment of the Conditions 6.1, 6.2 and 6.3, see As-
sumption 6.1, holds. However, Condition 6.4 generally remains unful-
filled. Moreover, observe that the matrices ΛΛΛe,v and Ue,v were calculated
from the noise’s population variance matrix V(εεεe,v), while this matrix is
usually not known. These problems can be solved making use of replicate
experiments, as will be explained in the Sections 6.4 and 6.4.

6.4 Second-order statistical regression of
replicate-experimental data

Sample principal component analysis and rescaling

It is often possible to replicate transient experiments at low additional
cost. The replicate time series recorded must be stochastically homoge-
neous and mutually independent. Therefore, for catalytic experiments,
the experimentalist has to make sure that any changes in the catalyst’s
surface between the replicate experiments remain negligible. The avail-
ability of replicate experiments offers three advantages.

1. Replicate time series can be averaged to obtain time series with
an increased SNR. Regression of such averages thus yields more
significant information.

2. The noise of the average of, say, minimum ten time series can be
considered normally distributed in good approximation, whatever
the distribution of the original noise, because of the central limit
theorem. This fulfills Condition 6.4 for least-squares regression of
the average time series.

3. From replicates, second-order statistical information (the variance
matrix) can be derived about the noise. This information can be
used to transform linearly the time series to fulfill the Conditions 6.5
and 6.6. An approach similar to the one presented in Section 6.3
can be followed.

Advantage 2 involves an assumption.

Assumption 6.3. A sufficient amount of replicate time series is avail-
able to consider the noise of the average time series normally distributed
in good approximation.

Assume there are nr,e > 2 replicates of each experimental time series
ye,v: y(1)

e,v, y(2)
e,v, . . . , y(nr,e)

e,v . Not all experiments have to be replicated
an equal amount of times, which is why a subscript e is provided in nr,e.
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Define ye,v as the average time series and the error matrix Ee,v ∈ Rnt×nr,e
as the block matrix

Ee,v =

y(1)
e,v − ye,v y(2)

e,v − ye,v · · · y(nr,e)
e,v − ye,v

 (6.24)

Then the population variance matrix V(εεεe,v) of the noise εεεe,v in the time
series ye,v can be estimated from the replicates as the sample variance
matrix

V̂(εεεe,v) =
1

nr,e − 1
Ee,v ·ET

e,v. (6.25)

Normally, the following assumption applies.

Assumption 6.4. The number of replicate experiments does not exceed
the number of samples in one time series:

nr,e 6 nt. (6.26)

In the case of TAP for example, nr,e would typically be 20 while nt
would be 1000.

By construction and Assumption 6.4, V̂(εεεe,v) ∈ Rnt×nt is a symmet-
ric, positive-semidefinite matrix of rank nr,e − 1. Thus, there exists an
eigendecomposition

V̂(εεεe,v) = Ûe, v · Λ̂ΛΛe, v · ÛT
e, v, (6.27)

where Λ̂ΛΛe, v ∈ R(nr,e−1)×(nr,e−1) is a diagonal matrix with the nr,e − 1
nonzero eigenvalues of V̂(εεεe,v) as diagonal elements, ranked from high to
low, i.e.,

Λ̂ΛΛe, v =


s2
e,v,1 0 · · · 0
0 s2

e,v,2 · · · 0
...

...
. . .

...
0 0 · · · s2

e,v,nr,e−1

 , (6.28)

with
se,v,1 > se,v,2 > . . . > se,v,nr,e−1 > 0 (6.29)

and Ûe, v is a nt × (nr,e − 1) matrix with the associated eigenvectors as
columns:

Ûe, v =

ûe,v,1 ûe,v,2 · · · ûe,v,nr,e−1

 . (6.30)
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The eigenvectors are orthonormal:

ûTe,v,k · ûe,v,l =

{
1 if k = l

0 else.
(6.31)

In matrix form:
ÛT
e, v · Ûe, v = Inr,e−1. (6.32)

Analogously to Eq. (6.14), say

y′e,v = ÛT
e, v · ye,v. (6.33)

y′e,v is ye,v orthogonally projected on the space spanned by the eigenvec-
tors of V̂(εεεe,v) corresponding to nonzero eigenvectors, expressed in the
orthonormal coordinate system they constitute. Observe that the trans-
formed replicates of ye,v can be considered replicates themselves of y′e,v.
For each k ∈ {1, 2, . . . , nr,e}, define

y′(k)
e,v = ÛT

e, v · y(k)
e,v . (6.34)

Moreover the average of the transforms is equal to the transformed aver-
age, y′e,v. Corresponding to Eq. (6.24), define the error matrix

E′e,v =

y′(1)
e,v − y′e,v y′(2)

e,v − y′e,v · · · y′(nr,e)e,v − y′e,v

 (6.35)

= ÛT
e, v ·Ee,v. (6.36)

The variance matrix V(εεε′e,v) is estimated as

V̂(εεε′e,v) =
1

nr,e − 1
E′e,v ·E′e,v

T

(6.36)
=

1
nr,e − 1

ÛT
e, v ·Ee,v ·ET

e,v · Ûe, v

(6.25)
= ÛT

e, v · V̂(εεεe,v) · Ûe, v

(6.27)
= ÛT

e, v · Ûe, v · Λ̂ΛΛe, v · ÛT
e, v · Ûe, v

(6.32)
= Λ̂ΛΛe, v. (6.37)

As this matrix is diagonal, the transformation is expected to fulfill Condi-
tion 6.6 for least-squares regression. The eigenvectors ûe,v,1, ûe,v,2, . . . ,
ûe,v,nr,e−1 are called sample principal components (sPCs) of the noise.
Transformation (6.36) is analogous to the pPCA (6.15) and is referred
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to as sample principal component analysis (sPCA). As before, rescaling
enables to meet Condition 6.5. Define

y′′e,v = Λ̂ΛΛ
−1/2

e, v · y′e,v

= Λ̂ΛΛ
−1/2

e, v · ÛT
e, v · ye,v, (6.38)

where Λ̂ΛΛ
−1/2

e, v is defined analogously to ΛΛΛ−1/2
e,v in (6.19). Then the sample

variance matrix of the error εεε′′e,v of y′′e,v is the unit matrix:

V̂
(
εεε′′e,v
)

= Inr,e−1. (6.39)

The sample variance matrix V̂(εεε′′e,v) is an estimate of the unknown pop-
ulation variance matrix V(εεε′′e,v) based on the replicate data available.
While transformation (6.38) was constructed to equate the first with the
unit matrix Inr,e−1, the latter is close but probably not equal to Inr,e−1:

V(εεε′′e,v) ≈ Inr,e−1. (6.40)

Correspondingly, the components of εεε′′e,v are neither fully uncorrelated nor
perfectly homoskedastic. However, the approximate validity of Eq. (6.40)
improves as more replicates become available.

As a consequence of Eq. (6.39), the sample variance matrix of the error

vector εεε′′e,v of the transformed average time series, y′′e,v = Λ̂ΛΛ
−1/2

e, v ·ÛT
e, v ·ye,v,

is calculated as
V̂
(
εεε′′e,v
)

=
1

nr,e − 1
Inr,e−1. (6.41)

A subsequent rescaling

y′′′e,v =
√
nr,e − 1 y′′e,v

=
√
nr,e − 1Λ̂ΛΛ

−1/2

e, v · ÛT
e, v · ye,v (6.42)

enables to obtain
V̂
(
εεε′′′e,v
)

= Inr,e−1, (6.43)

where εεε′′′e,v is the random part of y′′′e,v. All transformed average time series
y′′′e,v ∈ R(nr,e−1)×1 can then be stacked in a single vector y′′′ ∈ Rn′′′×1,
with n′′′ the total number of replicate-experimental times series,

n′′′ = nv

ne∑
e=1

(nr,e − 1). (6.44)

It follows from Assumption 6.2 and Eq. (6.43) that the sample variance
matrix of the random part εεε′′′ of y′′′ is calculated as

V̂(εεε′′′) = In′′′ . (6.45)
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y′′′ can now be regressed with its model-calculated analogue f ′′′(b), a
composite vector of transformed model-calculated time series f ′′′v (ξξξe,b):

f ′′′v (ξξξe,b) =
√
nr,e − 1Λ̂ΛΛ

−1/2

e, v · ÛT
e, v · fv(ξξξe,b). (6.46)

Conditions 6.5 and 6.6 are expected to be fulfilled by Eq. (6.45). More-
over, as the transformation presented is linear, the fulfillment of the Con-
ditions 6.2, 6.3 and 6.4, assured by the Assumptions 6.1 and 6.3, holds.
In summary, y′′′ is provisionally found suited for regression with f ′′′(b).
Obviously, this regression is only possible if the number of parameters is
not larger than the dimensionality of these vectors. This is assumed in
this paper.

Assumption 6.5. The number of parameters does not exceed the total
number of replicate-experimental time series:

p 6 n′′′. (6.47)

Taking into account Eqs. (6.2), (6.44) and (6.26), comparison of Eq.
(6.47) with Eq. (6.4) teaches that by application of the sPCA (6.33), the
number of parameters that can be estimated was reduced. In reality,
rarely more than, say, ten parameters have to be estimated. Keeping in
mind Assumption 6.3, the limitation is unlikely to raise problems in prac-
tice. The dimensionality reduction would decrease the computational load
of the regression, were it not that the most time-consuming part is the
evaluation of the model function f , which generally requires the numerical
integration of one or more systems of partial differential equations. On
the other hand, because y′′′ and f ′′′(b) have less components than their
originals, the transformation is noninvertible. Hence, a part of the infor-
mation is lost for regression. This can lead to an unnecessary increase
of the width of the parameter confidence intervals. Preferably, y is well
aligned with the vector space S spanned by all sPCs. In that case, the
orthonormal coordinate system they constitute is able to describe y well,
y’s orthogonal projection on S not differing so much from its original.
The angle ψ between y and the space S can be calculated from

cosψ =
‖y′‖
‖y‖

, (6.48)

where y′ is the composite of all vectors y′e,v. ψ is a measure for the
distortion of the experimental set by switching to a smaller coordinate
system at sPCA. In other words, ψ is a rough measure of the fraction of
information lost. In the most favorable case, evidently, ψ ≈ 0◦.

Fig. 6.3 visualizes the first four sPCs calculated from a set of eight hun-
dred replicate TAP pulse responses, one of which was shown in Fig. 6.1.
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Figure 6.3: The first (a), second (b), third (c) and fourth (d) sample principal
noise component calculated from a set of replicate-experimental TAP pulse re-
sponses. (ûk)j refers to the jth element of the kth sample principal component
ûk. The lower graphs show the sample principal components calculated from
eight hundred replicates. The upper graphs show those calculated from twenty
replicates.
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Figure 6.4: The noise’s sample standard deviations sk along the first few of its
sample principal components, calculated from a set of replicate-experimental
TAP pulse responses and rendered dimensionless by dividing by the peak (y)max

of the average pulse response y. The full line connects the first thirty sample
standard deviations calculated from a set of eight hundred replicates. The
circles represent the nineteen sample standard deviations calculated from a
reduced set of twenty replicates.

Fig. 6.4 shows the sample standard deviations along the first few sPCs.
The data used stem from argon pulsed over quartz at room temperature.
Hence, the experiment was non-reactive, so that the reactor bed was not
affected by the gas pulses. This made it possible to collect a number of
replicates as large as eight hundred, see the remark on catalytic experi-
ments at the beginning of this section. Figs. 6.3 and 6.4 also show sPCs
and sample standard deviations calculated from a reduced set of twenty
replicates, a realistic number. The angle ψ calculated for the full set of
800 replicates was found to be 1.3◦. This would perhaps be acceptable,
but for the reduced set of twenty replicates, ψ = 53◦. This is by all means
unacceptable. Section 6.4 will show how preconditioning the data enables
reduction of the information loss.

Data preconditioning

On the basis of replicates, Section 6.4 presented the sPCA as a way
to decorrelate the experimental data. This was at the expense of a di-
mensionality reduction. The coordinate system constituted by the sPCs
ûe,v,1, ûe,v,2, . . . , ûe,v,nr,e−1 was found unable to describe the time se-
ries well, resulting in a serious loss of experimental information at sPCA.
Compare the sPCs calculated for a set of replicate TAP pulse responses,
shown in Fig. 6.3, with one of these responses depicted in Fig. 6.1. While
the pulse response shows a relatively slow variation, the sPCs show very
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fast random fluctuations. This is probably a general feature. It is no
surprise that the coordinate system constituted by the sPCs is unable to
give a good representation of the (average) pulse response. A better re-
sult would be obtained if the sPCs were smoother. This can be achieved
by transforming the original time series so that their noise, although still
random, becomes smoother. To this end, the experimental time series will
be submitted to an extra conditioning transformation before least-squares
regression.

Observe that any linear transformation preserves the fulfillment of
the Conditions 6.2, 6.3 and 6.4 (Assumptions 6.1 and 6.3). It is therefore
allowed to transform linearly the time series, before performing a sPCA
and rescaling in fulfillment of Conditions 6.5 and 6.6. Indeed, say T is a
nonsingular nt × nt matrix. Then Tye,v contains all the information of
ye,v. Instead of regressing the y′′′e,v, defined by Eq. (6.42), with f ′′′v (ξξξe,b)
from Eq. (6.46), vectors

y′′′e,v,T =
√
nr,e − 1Λ̂ΛΛ

−1/2

e,v,T · ÛT
e,v,T ·T · ye,v (6.49)

can just as well be regressed with

f ′′′v,T(ξξξe,b) =
√
nr,e − 1Λ̂ΛΛ

−1/2

e,v,T · ÛT
e,v,T ·T · fv(ξξξe,b). (6.50)

In the latter two expressions, a subscript T has been added to the matrices
Ûe, v and Λ̂ΛΛe, v to indicate that an eigendecomposition is performed of
V̂(Tεεεe,v) instead of V̂(εεεe,v), so that Ûe,v,T and Λ̂ΛΛe,v,T indeed depend on
T. Many matrices T have the desired smoothing effect on the noise. As
an example, the lower triangular matrix,

T =


1 0 · · · 0
1 1 · · · 0
...

...
...

1 1 · · · 1

 ∆t, (6.51)

involves the replacement of each sample y(tj) in the time series by the
Riemann sum

∑j
k=1 y(tk)∆t of the preceding samples and itself.

Fig. 6.5 shows the average y of the eight hundred Ar pulse responses
used in Section 6.4, and its Riemann cumulative T · y. Still for the same
set of experimental data, Fig. 6.6, analogous to Fig. 6.3, visualizes the
first four sPCs of the transformed pulse responses. Fig. 6.7, analogous to
Fig. 6.4, shows the sample standard deviations along the first few sPCs.
As desired, the sPCs are smoother. This was explained intuitively at the
beginning of this section, but there is also a mathematical explanation.
The linear transformation T renders the unknown population variance
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Figure 6.5: Average pulse response y of a set of eight hundred replicated pulse
responses and its Riemann cumulative T·y. The subscript j in (y)j and (T · y)j

refers to the jth element of both vectors.

matrix near-singular in such a way that the population standard devia-
tions along the latter nt−(nr,e−1) pPCs, σnr,e , σnr,e+1, . . . , σnt , become
negligible. As a consequence, the sPCs and the corresponding standard
deviations can be considered nearly unbiased estimates of the pPCs and
the corresponding standard deviations. The pPCs are generally smooth
and hence so are their estimates, the sPCs, apart from their random part.
That the sPCs and the corresponding standard deviations indeed evolve
to the smooth pPCs and the corresponding standard deviations is ap-
parent in Fig. 6.6 and Fig. 6.7. As intended, the relative smoothness of
the sPCs causes a better alignment of the space S they span and the
experimental data y. This is illustrated by the angle ψ which is 0.0022◦

for the complete data set of eight hundred replicates and still 0.47◦ for
the reduced set of twenty replicates.

The regression of y′′′T , composite vector of the y′′′e,v,T with f ′′′T (b), com-
posite of the f ′′′v,T(ξξξe,b) with a suitable T will be called second-order
statistical regression (SOSR). Fig. 6.8 gives a summarizing overview.

Fig. 6.7 illustrates that the sample standard deviation along the suc-
cessive sPCs drops to zero very quickly. This means that the first few of
them already account for most of the variability of the noise. In some
cases, a physical meaning can be attributed to one or more of the principal
components. For example, comparison of Fig. 6.6 (a) with Fig. 6.5 shows
that the first sPC, in particular, assumes the shape of the Riemann-
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Figure 6.6: The first (a), second (b), third (c) and fourth (d) sample principal
noise component of the Riemann cumulative of an experimental TAP pulse re-
sponse. (ûT,k)j refers to the jth element of the kth sample principal component
ûT,k. The lower graphs show the sample principal components estimated from
eight hundred replicates. The upper graphs show those estimated from twenty
replicates.
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Figure 6.7: The sample standard deviations sT,k along the first few sample
principal components of the noise in the Riemann cumulative T ·y of an exper-
imental argon TAP pulse response. They were estimated from a set of replicates
and rendered dimensionless by dividing by M0 = (T · y)nt

= ∆t ·
Pnt

j=1(y)j ,
the zeroth moment of the average. In both the linear and the semilogarithmic
plot, the full line connects the first thirty standard deviations calculated from
a set of eight hundred replicate-experimental pulse responses. The circles rep-
resent the nineteen standard deviations calculated from a reduced set of twenty
replicates.

cumulated pulse response itself. Accordingly, the first sPC shown in
Fig. 6.3 (a), assumes the shape of the pulse response itself. These observa-
tions show that the most important variability in the pulse responses is in
their size and not so much in their shape. This is rooted in the experimen-
tal hardware, the size of the TAP inlet pulse being poorly reproducible.
The pulse size is proportional to the zeroth moment the average pulse
response, which is

M0 = ∆t ·
nt∑
j=1

(y)j = (T · y)nt , (6.52)

where (T · y)nt is the ntth component of vector T · y with T chosen as
in Eq. (6.51). M0’s standard deviation relates to the standard deviation
sT,1 corresponding to the first sPC as

sM0 = sT,1(ûT,1)nt . (6.53)
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Figure 6.8: Overall scheme of the second-order statistical regression (SOSR)
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kinetic data. SOSR performs a nonlinear least-squares (NLSQ) regression of
linearly transformed data. The idea of the three-part transformation is to fulfill
certain conditions for NLSQ regression as best as possible. It is inferred from
replicate-experimental time series.
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The relative error of M0 and therefore also of the pulse size is quantified
here as

sM0

M0
≈ 1.13 % (6.54)

using Eqs. (6.52) and (6.53) for the full set of eight hundred replicates.
This is a typical number, see Chapter 5 and (Gleaves et al., 1997).

The ordinary NLSQ regression as well as the SOSR were implemented
in the program TAPFIT, see Appendix D.

6.5 Validation of the second-order statistical
regression

Numerical experiment

The theory presented above was tested with a numerical experiment. A
realistic TAP-experiment was simulated using TAPFIT. Numerical inte-
gration occurred by the transfer matrix approach, see Section 4.4. The
simulation was performed assuming an inert species A was pulsed in a
3 cm long TAP-reactor filled with an inert packing at a constant, un-
specified temperature, ne = 1. As only species A is to be monitored:
nv = 1. The only model parameter is the effective Knudsen diffusivity
De of A through the reactor tube. A simulation was carried out with a
realistic value of 2 ·10−3 m2/s for De. The pulse response calculated from
this simulation, was hereupon subjected four hundred times to artificial
TAP-noise with some typical characteristics, see Chapter 5:

1. A normally distributed variability of the zeroth moment with rela-
tive standard deviation of 5 %.

2. Oscillatory noise with a frequency of 50 Hz and a time-varying am-
plitude of 2 % of the calculated response signal strength. For each
pulse response, the initial phase was chosen between 0 and 2π in a
uniformly random way.

3. Ornstein-Uhlenbeck noise, also called Gauss-Markov noise, with a
correlation time of 0.789 ms. The standard deviation was taken
partly constant (0.5 % of the response maximum), and partly pro-
portional (5 %) to the signal strength.

The set of four hundred pulse responses was divided in twenty groups
of twenty. Each of these were used to estimate De by regression. This
was done twice each time: once by NLSQ regression of the average pulse
response and once by SOSR. Conditions 6.1, 6.2 and 6.3 presented in
Section 6.2 are fulfilled by construction. Hence, the artificial TAP pulse
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Figure 6.9: 95 % confidence intervals for the Knudsen diffusivity De estimated
by NLSQ regression and SOSR, ranked from low to high. The data used were
groups of twenty artificial TAP pulse responses, calculated from a model with
De = 2 · 10−3 m2/s, with typical noise superposed.

responses are consistent with Assumption 6.1. The responses were also
constructed to be consistent with Assumption 6.2.

Fig. 6.9 shows the 95 % confidence intervals obtained for De. In the
case of the NLSQ regression, the true value lies within the confidence
interval only once. In the case of the new regression, this number in-
creases to fifteen. With a confidence limit of 95 %, the true value would
be expected to lie in the confidence interval in nineteen out of twenty
cases. That a similar number is not attained even with the new regres-
sion approach, can be understood because a number of replicates as small
as twenty gives rise to imperfect second-order statistical estimates. The
sPCs inherit to a certain extent the randomness of the data set and are
thus not able to fulfill Conditions 6.5 and 6.6 perfectly, see Sections 6.4
and 6.4. Note that the confidence intervals aside, the parameter estimates
themselves are more accurate with the new regression approach than with
the classical NLSQ regression.

Fig. 6.10 shows the ranked parameter estimates in a normal probabil-
ity graph. The fraction of estimates that fall below values indicated on
the x-axis are presented on the y-axis. The y-axis has a normal proba-
bility scaling. If the estimates are normally distributed around the true
value, a straight line through the point (2 · 10−3 m2/s, 50 %) is expected.
This is more or less the case for both regression approaches, which is in
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Figure 6.10: Normal probability graph of estimates of the Knudsen diffusivity
De, obtained by regression of different statistically homogeneous artificial TAP
data sets. The fraction of estimates that fall below values indicated on the x-
axis are presented on the y-axis, which has a normal probability scaling. If the
estimates are normally distributed around the true value, straight lines through
the point (2 · 10−3 m2/s, 50 %) are expected.

conformity with Property F.1, see p. 189.

Regression of experimental TAP-data

Irreversible adsorption of oxygen on a V2O5 based catalyst

A TAP-experiment was performed to study the model V150 catalyst
(Poelman et al., 2007): V2O5|SiO2–ZrO2. Oxygen was pulsed over a
three-zone-TAP-reactor at 773 K. The diameter of the reactor tube was
5 mm. A 4.0 mm long catalytic bed was sandwiched between two inert
zones filled with quartz beads. The one at the inlet was 4.4 mm long,
the one at the outlet 20.0 mm. The interparticle porosity was assumed
equal in all zones, because the inert and catalyst particles had the same
size (diameters of 250 to 425 µm). It was estimated at 0.53. The to-
tal catalyst mass was 189 mg. Twenty replicate oxygen pulse responses
were collected after reduction of the catalyst surface. The responses were
baseline-corrected. The position of the baseline was estimated as the
horizontal asymptote of a descending exponential fitted through the last
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Figure 6.11: The average of twenty replicate-experimental oxygen pulse re-
sponses over a three-zone-TAP-reactor with central V2O5/SiO2 catalytic zone
and the model-calculated analogue resulting from SOSR. Only one tenth of the
experimental points were shown for the sake of clarity. The TAP reactor model
used assumes irreversible adsorption of oxygen on the catalyst.

400 samples, see Section 5.4. The calibration coefficient was estimated at
9.9 · 105 V·s/mol.

The interaction between oxygen and the catalyst was modeled as
simple irreversible adsorption. The kinetics of this adsorption are pseu-
domonomolecular in oxygen, with a specific adsorption rate r in mol/kg·s,
expressed as

r = kcO2 , (6.55)

where k is the specific adsorption rate coefficient in m3/kg·s and cO2 the
concentration of oxygen in the interparticle pores, in mol/m3.

Using the program TAPFIT, the oxygen pulse responses were re-
gressed with responses calculated using the transfer matrix approach,
once by NLSQ regression of the average pulse response and once by SOSR.
Aside from the kinetic parameter k, two physical parameters were esti-
mated: the average oxygen pulse size nO2 and the Knudsen diffusion
coefficient De,O2 through the reactor bed. Knudsen diffusion is indeed
expected to proceed at an equal speed in all three zones as both the
catalytic and inert particles were nonporous and had the same size.

Differences between the pulse responses calculated from direct NLSQ
regression and SOSR are hardly observable. Therefore, only the latter is
shown in Fig. 6.11. However, there is quite some difference in the corre-
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Table 6.1: Parameter estimates and approximate individual 95% probability
level confidence limits by regression of a set of twenty replicate-experimental
oxygen TAP pulse responses. The regression was carried out by NLSQ regres-
sion, and by SOSR.

NLSQ SOSR
k (10−3 m3/kg·s) 4.724± 0.212 5.676± 0.602

De,O2 (10−3 m2/s) 2.586± 0.019 2.502± 0.059
nO2 (nmol) 0.851± 0.011 0.903± 0.045

sponding parameter estimates, which are displayed in Table 6.1. SOSR
applies a transformation to fulfill the conditions for the subsequent NLSQ
regression. Therefore, the parameter estimates from SOSR are more reli-
able than those obtained from direct NLSQ regression. The same is true
a fortiori for the statistics accompanying the parameter estimates: the
width of the parameter confidence intervals. Indeed, no meaning should
be attached to these statistics if they are supplied by the direct NLSQ
regression. In the latter case, the confidence intervals are narrower, which
is misleading.

For the sake of completeness, Table 6.2 displays the estimates of the
binary correlation coefficients ρ

(
β̂j , β̂k

)
between the parameter estimates

resulting from SOSR:

ρ
(
β̂j , β̂k

)
= cov

(
β̂j , β̂k

)/√
var
(
β̂j
)
· var

(
β̂k
)
. (6.56)

They follow directly from the estimated variance matrix V̂
(
β̂ββ
)
, see Eq.

(F.9) in Appendix F. The estimated binary correlation coefficients all are
between -0.9 and 0.9. Such mild correlations would certainly be unattain-
able from stationary experiments. k is actually the only parameter of in-
terest. Its estimate is most correlated with the Knudsen diffusivity De,O2 ,
which indicates that if the latter would be known in advance, a narrower
confidence interval would be obtained for k. At the same time however,
it is clear that the value assumed for De,O2 should be accurate, since it
strongly affects the estimate for k. In general, an accurate independent
determination of the physical parameters De,O2 and nO2 is advisable.

Interaction of propane with a CuO–CeO2 catalyst

CuO–CeO2/γ−Al2O3 was studied as a total oxidation catalyst for volatile
organic compounds (VOCs). Propane, chosen as model VOC, was pulsed
over a three-zone-TAP-reactor at 773 K. Part of the propane reacts with



Section 6.5 99

Table 6.2: Estimates of the binary correlation coefficients ρ between the pa-
rameter estimates obtained by SOSR of twenty replicate-experimental oxygen
TAP pulse responses.

k De,O2 nO2

k 1 −0.86 0.80
De,O2 1 −0.85
nO2 1

the catalyst surface oxygen to form carbon dioxide and water. The first
and third zones contained quartz beads and had a length of 2.5 mm and
25.0 mm. The central zone contained 48.6 mg of catalyst and was 3.6 mm
long. The interparticle porosity of all zones was 0.53. Ten replicate
propane pulse responses were collected after oxidation of the catalyst
surface. One thousand samples were collected for each, applying a sam-
pling interval of 1 ms. The propane pulse responses were submitted to
baseline-correction before regression. The position of the baseline was
estimated as the average of the last 500 samples, which were collected
after extinction of the response. The calibration coefficient for propane
was 4.6 · 105 V·s/mol.

The interaction between propane and the catalyst was found to be
modeled well by reversible adsorption followed by an irreversible surface
reaction. Schematically:

C3H8 + ∗
1

� C3H∗8 (6.57a)

C3H∗8
2→ . . . , (6.57b)

The oxidation steps following the latter do not affect the propane re-
sponse. Adsorption (6.57a) is pseudomonomolecular in propane, because
the pulsed quantity of propane is assumed negligible with respect to the
number of active sites ∗. The specific rates r+1 and r−1 of propane adsorp-
tion and desorption (6.57a), and r2 of reaction (6.57b), all in mol/kg·s,
are expressed as

r+1 = k+1 cC3H8 , (6.58a)
r−1 = k−1 cC3H∗8

, (6.58b)

r2 = k2 cC3H∗8
, (6.58c)

where cC3H8 is the concentration of propane, in mol/m3, and cC3H∗8
the

quantity of propane reversibly adsorbed per unit mass of catalyst, in
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Figure 6.12: The average of ten replicate-experimental propane pulse responses
over a three-zone-TAP-reactor with central CuO–CeO2 catalytic zone and
model-calculated analogue resulting from SOSR. For the sake of clarity, only
one fifth of the experimental points are shown. The interaction of propane
with the catalyst is modeled as reversible adsorption followed by an irreversible
surface reaction.

mol/kg. The adsorption rate coefficient k+1 is in m3/kg·s. The rate co-
efficients k−1 and k2 are in Hz. All three rate coefficients were estimated
by regression. The former example revealed that the simultaneous esti-
mation of unknown physical variables has a negative effect on the width
of the confidence intervals of the chemical parameters. Therefore, the
(average) quantity of propane pulsed and the effective Knudsen diffusion
coefficient were determined independently, by pulsing propane diluted
with inert (90 mol% propane, 10 mol% krypton) instead of pure propane.
The responses to propane were collected in alternation with responses to
krypton. The zeroth moment of the average krypton response, together
with the known composition of the feed mixture, allowed to determine
the total quantity of propane pulsed as 8.40 nmol. The effective diffusiv-
ity of krypton was estimated at 2.33·10−3 m2/s. After a correction for
the difference in molecular mass, see Eq. (4.3), the effective diffusivity of
propane was obtained as 3.21·10−3 m2/s.

Fig. 6.12 shows the average of the ten propane pulse responses and
the corresponding SOSR-fitted model-calculated response. The NLSQ-
fitted pulse response is not depicted as it is again hardly distinguishable
from the SOSR-fitted response. The parameter estimates resulting from
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Table 6.3: Parameter estimates and approximate individual 95% probabil-
ity level confidence limits by regression of a set of ten replicate-experimental
propane TAP pulse responses. The regression was carried out by NLSQ regres-
sion, and by SOSR.

NLSQ SOSR
k+1 (10−3 m3/kg·s) 354± 2 356± 126

k−1 (Hz) 17.8± 0.3 15.5± 2.2
k2 (Hz) 11.0± 0.2 9.99± 0.52

Table 6.4: Estimates of the binary correlation coefficients ρ between the param-
eter estimates obtained by SOSR of ten replicate-experimental propane TAP
pulse responses.

k+1 k−1 k2

k+1 1 0.81 0.46
k−1 1 0.76
k2 1

both regressions are shown in Table 6.3. Again, the confidence inter-
vals obtained from SOSR are wider than those from NLSQ regression.
This shows again that the confidence intervals from NLSQ regression can
mislead the experimentalist if the Conditions 6.1 to 6.6 are not fulfilled.

Finally, Table 6.4 displays the binary correlation coefficients of the
parameters estimated by SOSR. The correlations are again rather mild.
As was already pointed out in the former example, this is due to the
transient nature of the experiment.

6.6 Conclusions

A sample principal component analysis (sPCA) of replicate data has lead
to a maximum-likelihood parameter regression technique with higher ac-
curacy for both the estimates and the corresponding statistics. The SOSR
technique allows to relax several of the assumptions that underlie the clas-
sic regression techniques, in particular the assumptions of whiteness and
homoskedasticity.

The proposed technique can be applied in a straightforward way to
time series related to chemical reaction kinetics or other physico-chemical
phenomena. Although based on second-order statistics, i.e., covariances,
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the procedure does not require the explicit calculation of the latter and
is not computationally demanding.

Even in the ideal case where noise is absent, regression does not always
allow the estimation of kinetic parameters. This will be explained in
Chapter 7.



Chapter 7

Identifiability of Rate
Coefficients from Isothermal
Transient Linear Kinetics

7.1 Introduction

Suppose a series of isothermal transient experiments is carried out to
study a reaction with known reaction network. Based on the experi-
mental results, it is not always possible to identify all rate coefficients
uniquely. Typically, reaction intermediates are unobserved, especially
surface species in heterogeneous catalysis. The risk of unidentifiability
then becomes important, although it exists even if all component concen-
trations are measured and recorded (Craciun and Pantea, 2008). Further-
more, the risk of unidentifiability is typical for reaction networks consist-
ing only of pseudomonomolecular elementary steps. As an illustration,
while there are plenty of reasonable and simple examples of unidentifiabil-
ity for pseudomonomolecular reaction networks, Vajda and Rabitz (1994)
found none for networks with essential multimolecular steps. This chap-
ter is devoted to pseudomonomolecular reaction networks. It contains the
main results of Roelant et al. (2010).

Section 7.2 will introduce the necessary terminology. Section 7.3 will
present a necessary condition for identifiability of the apparent rate co-
efficients. This amounts to a test, which can be readily carried out after
visual inspection of the reaction network. The theoretical background of
this test is supplied by the generic results of Chapter 3. The test will
be applied to an experimental case: the interaction of propane with a
CuO–CeO2 catalyst.
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7.2 Definitions

Consider an experimental reactor under transient operation. Suppose cer-
tain pseudomonomolecular elementary steps proceed, the apparent rate
coefficients of which are to be investigated for identifiability. The set S
of these steps is a pseudomonomolecular reaction network. Recall from
Chapter 2 that the kinetics of such a reaction network can usually be
described by a compartmental model (2.7), where the matrix K is of the
form (2.6). Such a model is represented by a reaction graph in which
each vertex represents a component. Some vertices represent an input as
there is a net source of the component they represent. Some vertices rep-
resent an output as the concentration of their component is (indirectly)
measured. Let the values of the selected rate coefficients be collected in
a vector b. Then the complete influence of b on the measurement is con-
centrated in the input-output mapping M (b), defined by Eq. (3.11) for
a uniform and time-isothermal open system. If b is replaced by another
vector b∗, so that M (b∗) = M (b), then the measurements will not be
affected. Hence b and b∗ will be indistinguishable. Let B be the set
in which b takes its values and let Sb be the set of parameter vectors
indistinguishable from b:

Sb = {b∗ ∈ B |M (b∗) =M (b)}. (7.1)

Definition 7.1 (structural identifiability). If, for almost any value of
b ∈ B, Sb reduces to the singleton {b}, the set K of apparent rate coef-
ficients is structurally globally identifiable. If Sb is denumerable (usually
finite), K is structurally locally identifiable. If Sb is not denumerable, K
is unidentifiable.

In heterogeneous catalysis, the surface intermediates are typically un-
observed, so that there are few observed concentrations cj (outputs).
There are also few components for which there is a net source uk (in-
puts). Indeed, net mass transfer of surface components, possible only by
surface diffusion across the boundary of the system, is typically negligi-
ble. This does not mean that surface diffusion as such is negligible. In
fact, net diffusion can also be negligible if its time scale is small enough
compared to the time scale of reaction for the surface concentrations to
become uniform. This makes heterogeneous catalytic reaction networks
especially vulnerable to structural unidentifiability.

The assessment of structural identifiability of a (generally nonlinear)
model is very closely related to the assessment of distinguishability of dif-
ferent models. Tests for both properties have been proposed over the last
decades by authors active in multiple pure and applied scientific domains
(Walter and Pronzato, 1996). Which of the different approaches is more
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efficient depends on the nature of the problem. Some experience helps to
make an appropriate choice. The mathematical manipulations often get
intricate, and success is not guaranteed, even for linear models. These
problems restrain most experimentalists from carrying out an a priori, i.e.,
before processing any experimental data, identifiability assessment of as-
sumed reaction networks. This involves the risk that incorrect estimates
of rate coefficients, obtained by least-squares regression of experimental
data, for example, are taken for granted. As was already mentioned, this
risk is higher for pseudomonomolecular reaction networks. However, it
will be shown that for this class of networks, many conclusions regarding
at least structural local identifiability can be drawn from visual inspec-
tion. If a reaction network is structurally locally identifiable, it is possible
in principle to estimate all rate coefficients as long as the initial estimates
are close enough to their real unknown values. Compared to the already
existing tests, some unidentifiability detection power is given up in return
for a more straightforward application. The framework is deterministic,
which means that the structural identifiability is studied under the as-
sumption of ideal experimental conditions, in absence of experimental
errors.

Common approaches to assess the structural identifiability of a lin-
ear reaction network are the similarity transformation and the Laplace
transform approaches (Vajda and Rabitz, 1988; Walter et al., 1989). The
differential algebra approach applied by Asadullin et al. (1996) differs only
formally from the Laplace transform approach. The Laplace transform
approach is especially suited for catalytic reaction networks, where there
are few inputs and outputs and many nonexistent reactions between the
components (Happel et al., 1986a).

7.3 Structural local identifiability of reaction
networks

General

Consider a pseudomonomolecular reaction network S. Suppose the struc-
tural local identifiability of its set K of apparent rate coefficients is to be
investigated. Whether or not this is the case depends on the input-output
mapping M, see Section 3.3. Inspection of Eq. (3.11) reveals that M is
influenced by the vector b of rate coefficients only through the transfer
matrix H. The influence is exerted more specifically through the co-
efficients αk and βk appearing in its elements, see Eq. (3.26). In this
section, a necessary condition will be formulated for the structural lo-
cal identifiability of K. αk and βk depend on b in a way which can be
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found analytically, by application of Eq. (3.9), or graph-theoretically, by
application of Theorem 3.1, see p. 22. However, to evaluate the neces-
sary condition for local identifiability, it will suffice to know their number
and some readily derived dependences existing among them. Proceed as
follows:

1. Apply Theorem 3.2, see p. 23, to find the symbolic form of all kinetic
transfer functions, elements of the kinetic transfer matrix H.

2. Taking into account Theorem 3.3 on p. 26, list all different coeffi-
cients αk and βk which are not identical to 0 or 1.

3. Whenever there is a linear dependence among certain coefficients,
as revealed by Theorem 3.4 on p. 26, remove one of them. The re-
maining coefficients will be referred to as the (moment) invariants,
and can be stacked in a vector Φ (b) (Berman and Schoenfeld, 1956;
Vajda and Rabitz, 1988).

As the measurements are not affected in any other way than through Φ,
it is possible to state a more operational version of Eq. (7.1):

Sb = {b∗ ∈ B |Φ (b∗) = Φ (b)}. (7.2)

Whenever Φ (b) contains fewer elements than b does, the number of
elements of Sb will be non-denumerable (Gorskii and Spivak, 1989). The
set K of apparent rate coefficients is then structurally unidentifiable. This
does not exclude that some, though not all the elements of b∗ in Sb still
have a denumerable number of allowed values.

Theorem 7.1. In order for a the set K of apparent rate coefficients
to be structurally locally identifiable, there have to be at least as many
invariants as rate coefficients.

This provides a necessary condition for structural local identifiability.

Remark 7.1. As a special case, assume that in a reaction network S,
there are a single input, a net source uk of Ak, and a single output,
a concentration cj of Aj . In that case, the kinetic transfer matrix H
reduces to a kinetic transfer function Hj,k. It can then be derived from
the Theorems 3.2 and 3.4 that the number of invariants is equal to 2n− l,
2n− l− 1 or 2n− l− 2, where l is the length of a shortest path from Ak
to Aj . The role of l is counterintuitive: if the shortest paths traverses
a smaller portion of the reaction network, the chance increases that the
reaction network is structurally locally identifiable.
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(a) (b)

Figure 7.1: A reaction network S = {s1, s2, s+3, s−3, s4} (a) and the reduced
network S′ = {s+3, s−3, s4} (b). In the latter, A5 is virtual.

In order to be certain that K is structurally locally identifiable, it
should be verified nonetheless that the rank of the Jacobian

J =
∂Φ
∂b

(7.3)

is in all except a denumerable number of vectors b of B equal to the
number of rate coefficients. In order to establish whether a reaction
network is structurally globally identifiable, the set of polynomial equa-
tions in Eq. (7.2) has to be solved by elimination theory, see Walter and
Lecourtier (1982); Raksanyi et al. (1985); Asadullin et al. (1996). This
is often marked by difficulties. Most importantly, it is difficult to reach
a conclusion as the number of solutions often depends on the value of b.
Recently, Walter et al. (2004) and Lagrange et al. (2008) applied interval
analysis (Jaulin et al., 2001) as numerical alternatives. However, these
methods are limited to bounded sets B. Even if the reaction network can
be proven to be structurally globally identifiable, there is still a risk that
some rate coefficients are practically unidentifiable, due to experimental
errors, however small they may be. Practical unidentifiability cannot be
revealed a priori and may even remain hidden after parameter estimation.

Example

Consider the reaction network S = {s1, s2, s+3, s−3, s4} depicted in
Fig. 7.1 (a). Assume there is a source only of A1 and the concentra-
tion c4 of A4 is the only (indirect) observation. Then the kinetic transfer
matrix H reduces to the transfer function H4,1. From Theorem 3.2, it is
found that the symbolic form of this transfer function is given by

H4,1 (s) =
β2s

2 + β1s+ β0

s4 + α3s3 + α2s2 + α1s
. (7.4)
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Moreover, application of Theorem 3.4 yields

lim
s→0

sH4,1 (s) =
β0

α1
= 1 (7.5)

so that β0 = α1. The vector of invariants is therefore

Φ =
[
α1 α2 α3 β1 β2

]T
. (7.6)

In this case, there as many rate coefficients as invariants. There is there-
fore no reason to assume that K = {k1, k2, k+3, k−3, k4} is structurally
locally unidentifiable.

However, consider the reduced reaction network S′ = {s+3, s−3, s4},
for which the reaction graph is shown in Fig. 7.1 (b). The virtual compo-
nent A5 is ‘observed’1. There is a source u2 of A2, as a result of conversion
of A1 through step s1. Again, the transfer matrix reduces to a transfer
function, H5,2. According to Theorem 3.2, its symbolic form is given by

H5,2 (s) =
β0

s3 + α2s2 + α1s
, (7.7)

where again, as a consequence of Theorem 3.4, β0 = α1. This time,
there are two invariants, α1 and α2, while there are three unknown rate
coefficients, k+3, k−3 and k4. It can therefore be concluded that the rate
coefficients of S′ are structurally locally unidentifiable. Of course this
also means that the rate coefficients of S are also unidentifiable, although
this was not revealed by the first identifiability test.

General guideline

Suppose a reaction network S (a set of elementary steps) is to be inves-
tigated for structural local identifiability of its apparent rate coefficients.
As the previous example illustrates, to obtain the maximum unidentifia-
bility detection power out of Theorem 3.2, it should be applied to each
subnetwork (subset of elementary steps). Suppose that such a subnet-
work consists of a number of linkage classes. Then it is clear that these
linkage classes can be separately subjected to Theorem 3.2. This theo-
rem therefore only has to be applied to linked subnetworks. For a larger
reaction network, this can be a tedious task. Some experience helps to
reduce the load, but, more importantly, the tests can be limited those
subnetworks of which the rate coefficients are most likely to be unidenti-
fiable. These typically have a single input and a single output, so that the

1The rate of step s4 is observed indirectly as it leads to A4 in the greater reaction
network. The concentration c5 of the virtual component A5 reflects this rate and is
therefore observed indirectly.



Section 7.3 109

Figure 7.2: A reaction graph.

kinetic transfer matrix reduces to a scalar, and a relatively large amount
of steps. Reaction network S′ in Fig. 7.1 (b) is an example.

Limitations of the approach

As it was mentioned in Section 7.2, the approach presented here, as op-
posed to others, can be applied upon simple visual inspection. It does not
however have the same unidentifiability detection power. This can be il-
lustrated by means of an example, where the approach presented here fails
to reveal structural local unidentifiability, while investigation of the Jaco-
bian (7.3) does. Consider the reaction network S = {s1, s2, s3, . . . , s9}
of which the reaction graph is shown in Fig. 7.2. Suppose there is a source
only of A1, and observations (direct or indirect) of the concentration of
A5 and A6. The kinetic transfer matrix for S is then given by

H (s) =
[
H5,1 (s)
H6,1 (s)

]
. (7.8)

Application of Theorem 3.2, yields

H5,1 (s) =
β1s+ β0

s4 + α3s3 + α2s2 + α1s
(7.9)

H6,1 (s) =
β′2s

2 + β′1s+ β′0
s5 + α′4s

4 + α′3s
3 + α′2s

2 + α′1s
. (7.10)

As a consequence of Theorem 3.4,

β0

α1
+
β′0
α′1

= 1. (7.11)
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Taking into account Eqs. (7.9), (7.10) and (7.11), the vector of invariants
can be chosen2 as

Φ = [α1 α2 α3 α
′
1 α
′
2 α
′
3 α
′
4 β0 β1 β

′
1 β
′
2]T (7.12)

the number of invariants is eleven, greater than the number of rate co-
efficients (nine). The test does therefore not reveal unidentifiability. It
is neither possible to find a subnetwork for which the test does. How-
ever, the rank of the Jacobian (7.3) turns out to be eight3, one lower
than the number of rate coefficients. S is therefore structurally locally
unidentifiable.

7.4 Real-life example: TAP-study of the interaction
of propane with a CuO–CeO2 catalyst

Consider again the set of TAP-responses collected to study the interaction
of propane with CuO–CeO2/γ−Al2O3, the second example of Section 6.5.
Extend the reaction network (6.57) with one elementary step representing
the irreversible adsorption of propane on an active site ?, different from
∗:

C3H8 + ?
3→ C3H?

8 (7.13)

The adsorption step (7.13) is assumed pseudomonomolecular, like adsorp-
tion (6.57a). The reaction graph corresponding to this reaction network
is depicted in Fig. 7.3 (a), where A1 = C3H8 and A2 = C3H∗8 and where
A3 is a virtual component representing C3H?

8 and the unknown product
of surface reaction (6.57b). An attempt was made to estimate the rate
coefficients k+1, k−1, k2 and k3 using TAPFIT. As before, the simulation
was performed using the transfer matrix approach, see Section 4.4. The
regression occurred by SOSR. The estimates are given in Table 7.1, in line
(a). As the regression algorithm did not attain a Gauss-Newton stage, no
valid confidence limits were obtained. This indicates that the estimates
are unsound.

It is worthwhile to carry out an assessment of the structural local iden-
tifiability. There is a net source only of the gaseous component propane.
Moreover, the only observed variable is the concentration of propane.
The kinetic transfer matrix H reduces to the scalar H1,1. It follows from
Theorem 3.2 that its symbolic form is

H1,1 (s) =
s+ β0

s2 + α1s+ α0
. (7.14)

2β0 could be replaced by β′0, for example.
3The rank of the symbolic matrix was calculated using Maple 11. The calculation

took approximately 400 s on an Intel Pentium 4 3 GHz processor.
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(a) (b) (c)

Figure 7.3: Reaction graph (a) representing the interaction of propane with
a CuO–CeO2/γ−Al2O3-catalyst, as described by the elementary steps (7.13)–
(6.57b). A1 = C3H8, A2 = C3H∗8 and A3 represents both C3H?

8 and the un-
known product of surface reaction (6.57b). The reduced reaction graphs (b)
and (c) correspond to k3 = 0 and k2 = 0, respectively.

Table 7.1: Estimated rate coefficients, resulting from three regressions of the
same experimental data. At regression (a), no Gauss-Newton stage is attained.
Confidence limits are therefore not available. During regressions (b) and (c),
k3 and k2 are fixed at zero, respectively. The parameter estimates are shown
with their 95% probability level confidence limits.

k+1 (10−3 m3/kg·s) k−1 (Hz) k2 (Hz) k3 (10−3 m3/kg·s)
(a) 240 23.05 2.47 117
(b) 356± 126 15.5± 2.2 9.99± 0.52 –
(c) 216± 87 25.5± 2.4 – 140± 39

There are three invariants, but four rate coefficients. The latter are there-
fore structurally locally unidentifiable. There is an infinite number of
alternatives for the vector of parameter estimates resulting from regres-
sion (a), given in Table 7.1. Which one is found depends on the initial
estimates. Figs. 7.3 (b) and (c) show simplified reaction networks. Net-
work (b) corresponds to the reaction network (6.57) considered before
in Section 6.5. In network (c) the reversibly adsorbed propane does not
undergo the irreversible surface step (7.13). The transfer functions H1,1

for networks (b) and (c) have the same symbolic form (7.14) as for the
greater reaction network. There are still three invariants, but now there
are just three unknown rate coefficients. The test does therefore not
reveal structural local unidentifiability for the reduced reaction networks.

A SOSR with network (b) was already carried out in Section 6.5.
A SOSR was also carried out with network (c). In both cases, the
Levenberg-Marquardt algorithm attained a Gauss-Newton stage. The pa-
rameter estimates and their 95 % probability confidence limits are shown
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in Table 7.1. The model-calculated propane responses resulting from all
three regressions collide exactly and are thus all represented by the line
in Fig. 6.12. It can be verified that the different columns of parameter
estimates in Table 7.1 indeed give rise to the same transfer function H1,1.
The reaction networks (b) and (c) are indistinguishable in this case. This
example illustrates how identifiability and distinguishability of reaction
networks are related subjects, as was already mentioned in Section 3.3.

7.5 Conclusions

Unidentifiability of rate coefficients from transient experimental data is a
typical issue for linear reaction networks. This is especially so in hetero-
geneous catalysis, where the surface intermediates typically

1. have a concentration which is not amenable to measurement,

2. have a negligible net mass transfer by surface diffusion.

Structural local unidentifiability of a reaction network most often leads
to incorrect estimates for the rate coefficients. A necessary condition for
structural local identifiability was formulated, which can be verified by
visual inspection. If the rate coefficients are structurally locally identi-
fiable, it is possible in principle to estimate them, as long as the initial
estimates are chosen close enough to their real unknown values.

Chapter 8 will present a unique way of extracting connectivity features
of reaction networks from isothermal TZTR-data without the need to
postulate candidate networks. Possible unidentifiability issues are thereby
avoided.



Chapter 8

Model-free Deduction of
Connectivity Features of
Reaction Networks from
Thin-Zone TAP-data

8.1 Introduction

The classical strategy to determine catalytic reaction networks from ki-
netic data is by

1. postulating a list of candidates networks,

2. deriving corresponding physico-chemical models of the experiment,

3. submitting the data to regression with each of these models,

4. selecting the reaction networks which provide the best fit.

Unfortunately, this strategy is not optimal. Firstly, the list of candidate
reaction networks is never exhaustive. If the actual reaction network is
not among the postulated ones, it will never be selected. Secondly, param-
eter unidentifiability issues may arise for isothermal data, see Chapter 7,
as well as the indistinguishability between several of the candidates. If
not deterministic, parameter unidentifiability or network indistinguisha-
bility can still be practical, i.e., due to the level of noise. An alternative
route, avoiding these problems, will be explored in this chapter. Con-
nectivity features of reaction networks, rather than the reaction networks
themselves, will be determined.
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It was proven in Chapter 3, see Theorem 3.2a on p. 23, that kinetic
transfer functions Hj,k(s) reflect connectivity features of the reaction net-
work:

1. the number of intermediates from Ak to Aj ,

2. the length of the shortest reaction pathway from Ak to Aj .

It will be shown in Section 8.2 how in many cases, the kinetic transfer
functions Hj,k can be calculated in discrete points of the frequency do-
main on a model-free basis. State-defining TZTR experiments, involving
gas phase components Aj and Ak, serve as a basis of this calculation.
It can be hoped that the reaction network connectivity features can be
observed in a model-free manner. Section 8.3 proposes a strategy, which
will be examined for feasibility on the basis of a case-study, presented
in Section 8.4. Synthetic TZTR data have been used to verify the fea-
sibility of this strategy. They consist of model-calculated data produced
by the program TAPFIT. Artificial noise, typical of a TAP-1-setup, see
Chapter 5, has been added.

8.2 Model-free calculation of values of the kinetic
transfer functions

Suppose A1 and A2 are gas phase components. In order for values of the
kinetic transfer function H2,1 to be computable, three assumptions have
to be made.

Assumption 8.1. A1 reacts irreversibly to A2:

A1 → ν2A2, (8.1)

where ν2 is a stoichiometric coefficient.

Assumption 8.2. If gas components other than A1 or A2 are present in
the reactor, none of them can convert into A1 or A2.

Assumption 8.3. The reaction network responsible for reaction (8.1) is
pseudomonomolecular.

Assumption 8.1 is usually fulfilled for the fast reactions typically stud-
ied in the TAP-reactor, such as oxidation reactions. Assumption 8.2 re-
quires all intermediates to be catalyst surface components. Assumption
8.3 is normally fulfilled for state-defining TAP-experiments.

Because of Assumption 8.2, the concentrations of A1 and A2 in the
TZTR can be modeled separately. On account of Assumption 8.3, the
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transfer matrix approach can be used to model the reactor, see Section 4.4.
The transfer matrix for the thin reactive zone was approximately given by
Eq. (4.41). Because of Assumption 8.1, the matrix H̃(l)(s)·F̃(l) appearing
there is given here by1

H̃(2)(s) · F̃(2) =
[
H1,1(s) 0
ν2H2,1(s) H2,2(s)

]
. (8.2)

Eq. (4.46) therefore becomes[
L r

(2)
g,φ,1

L r
(2)
g,φ,2

]
(s) = −ε(2)

b ∆z(2)

[
1

H1,1(s) 0

− ν2H2,1(s)
H1,1(s)H2,2(s)

1
H2,2(s)

]
·

[
L c

(2)
g,1

L c
(2)
g,2

]
(s)

(8.3)
or

L r
(2)
g,φ,1(s) = −

ε
(2)
b ∆z(2)

H1,1(s)
L c

(2)
g,1(s) (8.4)

L r
(2)
g,φ,2(s) = −

ε
(2)
b ∆z(2)

H2,2(s)
L c

(2)
g,2(s) + ν2

H2,1(s)
H2,2(s)

ε
(2)
b ∆z(2)

H1,1(s)
L c

(2)
g,1(s).

(8.5)
Solving Eq. (8.4) for H1,1(s) yields

H1,1(s) = −ε(2)
b ∆z(2)

L c
(2)
g,1(s)

L r
(2)
g,φ,1(s)

. (8.6)

Recognizing the right hand side of Eq. (8.4) in Eq. (8.5), allows rewriting
the latter as

L r
(2)
g,φ,2(s) = −

ε
(2)
b ∆z(2)

H2,2(s)
L c

(2)
g,2(s)− ν2

H2,1(s)
H2,2(s)

L r
(2)
g,φ,1(s). (8.7)

Solving for H2,1(s) gives

H2,1(s) = −
H2,2(s)L r

(2)
g,φ,2(s) + ε

(2)
b ∆z(2)L c

(2)
g,2(s)

ν2L r
(2)
g,φ,1(s)

. (8.8)

Eqs. (8.6) and (8.8) can be rewritten in terms of the Fourier transform:

H1,1(iω) = −ε(2)
b ∆z(2)

F c
(2)
g,1(ω)

F r
(2)
g,φ,1(ω)

(8.9)

1The zone number l = 2 for the active zone in a TZTR.
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H2,1(iω) = −
H2,2(iω)F r

(2)
g,φ,2(ω) + ε

(2)
b ∆z(2)F c

(2)
g,2(ω)

ν2F r
(2)
g,φ,1(ω)

. (8.10)

Values of the Fourier transforms F c
(2)
g,1, F c

(2)
g,2, F r

(2)
g,φ,1 and F r

(2)
g,φ,2 to

the right hand side can be calculated in a model-free way from a state-
defining experiment where A1 is pulsed. The calculation is performed
by applying a set of equations which lie at the basis of the Y-procedure
(Yablonsky et al., 2002, 2007):

F c
(2)
g,j(ω) =

sinh
√
iωτ

(3)
j

γ
(3)
j

√
iωτ

(3)
j

Ffout,j(ω) (8.11a)

F r
(2)
g,φ,j(ω) = − 1

cosh
√
iωτ

(1)
j

Ffin,j(ω)

+

cosh
√
iωτ

(1)
j +

γ
(1)
j

γ
(3)
j

√√√√τ
(1)
j

τ
(3)
j

sinh
√
iωτ

(1)
j sinh

√
iωτ

(3)
j

cosh
√
iωτ

(1)
j

Ffout,j(ω).

(8.11b)

fin,j and fout,j are the in- and outlet fluxes of Aj , in mol/m2 s. The
inlet flux fin,1 of A1 is usually modeled as a Dirac pulse, see Eq. (4.7).
Analogously to Eq. (4.54), it may therefore be written that

Ffin,1 =
n1

φ
, (8.12)

where n1 is the pulsed quantity, in mol, of A1. As no A2 is pulsed,
Ffin,2 = 0. The outlet fluxes fout,1 and fout,2, in mol/m2 s, can be calcu-
lated from two experimental pulse responses y1 and y2, in V, recorded by
the mass spectrometer at characteristic masses. If follows from Eq. (4.10)
that [

fout,1

fout,2

]
(t) =

1
φ

S−1 ·
[
y1

y2

]
(t), (8.13)

where S is the calibration matrix, in Vs/mol. The responses yj are given
in the form of time series: they are known in discrete time points tk,
given by Eq. (4.12). Correspondingly, the Fourier transforms Ffout,j ,
are known in discrete pulsations ωk, given by Eq. (4.55). The calcula-
tion of the Fourier transforms is described in Appendix C. The variables
τ

(l)
j and γ

(l)
j , in s and m/s, are given by Eqs. (4.39) and (4.40) and de-

scribe diffusional transport of Aj through zone l. For a symmetric TZTR,
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Eq. (8.11b) reduces to

F r
(2)
g,φ,j(ω)
φ

=
−Ffin,j(ω) + cosh

(
2
√
iωτ

(3)
j

)
Ffout,j(ω)

cosh
√
iωτ

(3)
j

. (8.14)

The only remaining unknown to the right hand side of Eqs. (8.9) and
(8.10) is H2,2(iωj). This H2,2(iωj) can be calculated from a separate
experiment where A2 is being pulsed instead of A1, using an equation
analogous to Eq. (8.9):

H2,2(iω) = −ε(2)
b ∆z(2)

F c
(2)
g,2(ω)

F r
(2)
g,φ,2(ω)

. (8.15)

Especially, if A2 is known to desorb irreversibly, in Eq. (8.10):

H2,2(iω) =
1
iω
. (8.16)

This yields

H2,1(iω) = −
ε
(2)
b ∆z(2)iωF c

(2)
g,2(ω) + F r

(2)
g,φ,2(ω)

ν2iωF r
(2)
g,φ,1(ω)

. (8.17)

In this case it is not necessary to determine H2,2 experimentally.

8.3 Interpretation: connectivity of the reaction
network

Graph-theoretically inspired expressions for the kinetic transfer functions
can be obtained from Theorem 3.2:

Hj,k(s) =

nj,k−lj,k−1∏
q=1

(
s− z(q)

j,k

)
nj,k∏
q=1

(
s− p(q)

j,k

) . (8.18)

nj,k is the number of intermediates between Ak to Aj plus two if k 6= j
or plus one if k = j. lj,k is the length of the shortest pathway from Ak

to Aj , see Remark 3.1 on p. 25. l1,1 and l2,2 are zero. z(q)
j,k is the qth zero

of Hj,k(s) while p(q)
j,k is the qth pole of Hj,k(s). It follows from part b of

Theorem 3.2 that the zeroes and poles have a strictly negative real part,
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possibly with the exception of one pole which is zero if and only if A2 is
in an ergodic strong linkage class, see Theorem 3.2b. Pairs of complex
conjugate zeroes or poles would occur only in rare reaction networks con-
taining pseudomonomolecular reaction cycles. In the present work, the
zeroes z(q)

j,k and poles p(q)
j,k are assumed real. The transfer functions are

calculated in s = iωk, where the pulsations ωk are given by Eq. (4.55)
and correspond to frequencies νk:

νk =
k

nt∆t
. (8.19)

The transfer functionsHj,k are most clearly represented by Bode plots.
The Bode magnitude plot shows the modulus, |Hj,k|, as a function of the
frequency ν, while the Bode phase plot shows the argument, arg (Hj,k),
as a function of ν. The magnitude plot has a double logarithmic scaling.
The phase plot has a logarithmically scaled ν axis and a linearly scaled
phase axis. If the corner frequencies are defined as

z̃
(q)
j,k = −

z
(q)
j,k

2π
(8.20a)

and

p̃
(q)
j,k = −

p
(q)
j,k

2π
, (8.20b)

the logarithm of the modulus of the transfer function is given by

log |Hj,k(2πiν)| =
nj,k−lj,k−1∑

q=1

log
√
z̃

(q) 2
j,k + ν2 −

nj,k∑
q=1

log
√
p̃

(q) 2
j,k + ν2

− (lj,k + 1) log (2π) (8.21a)

and the argument is given by

arg (Hj,k(2πiν)) =
nj,k−lj,k−1∑

q=1

arctan

(
ν

z̃
(q)
j,k

)
−
nj,k∑
q=1

arctan

(
ν

p̃
(q)
j,k

)
.

(8.21b)
Travelling on the frequency axis in the positive direction, passing a corner
frequency z̃(q)

j,k results in an increase of the slope of the magnitude curve by
one and a shift of the phase curve by π/2. Analogously, passing a corner
frequency p̃

(q)
j,k on the frequency axis results in a slope decrease by one

and a phase shift by −π/2. If there is a zero pole, the initial slope of the
magnitude curve is minus one and the initial phase is −π/2. Otherwise,
the initial slope of the magnitude curve and the initial phase are zero.
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The latter occurs if and only if Aj is in an ergodic strong linkage class.
The limit slope for high frequencies of the magnitude curve is equal to the
overall degree of the transfer function: −lj,k − 1. Correspondingly, the
high-frequency limit phase for high frequencies is equal to −(lj,k+1)π/2.
Especially, for a transfer function Hj,j , the final slope of the magnitude
curve is minus one and the final phase is −π/2.

The values of the kinetic transfer functions Hj,k found from Eqs. (8.9),
(8.10) and (8.15) can be represented in Bode plots. In the ideal case, by
identifying all shifts in the slope of the magnitude curve and the phase
curve, the number of zeroes and poles can be determined. The length
lj,k of the shortest reaction pathway from Ak to Aj is derived from the
limit phase. nj,k is the number of intermediates between Ak and Aj
plus two if k 6= j or plus one if k = j. According to Theorem 3.2a,
nj,k is equal to the number of poles. Of course it is often difficult to
identify all shifts in the Bode plots. Firstly, these shifts may be outside
the window of observable frequencies. Secondly, corner frequencies z̃(q)

j,k

and p̃
(q)
j,k can be situated close to each other on the frequency axis, in

which case they practically cancel each other out. Indeed, the shifts in
the slope of the magnitude curve and the phase curve are gradual. Phase
shifts, for example, start about 1 decade before the corner frequency and
finish about 1 decade after. The limitations may cause errors in estimated
numbers of intermediates or an estimated shortest reaction path length.
However, as it will be illustrated in Section 8.4, such errors often have
a physical background. For example, an elementary step may turn out
to be unobservable because it proceeds too fast. For this reason, an
estimated number of intermediates will be termed the observable number
of intermediates. Similarly, an estimated shortest reaction path length
will be termed the observable shortest reaction path length.

8.4 Synthetic data based feasibility study

Three experimental cases have been simulated, where a reaction (8.1)
took place in a symmetric TZTR reactor, a different reaction network
being assumed responsible each time. In each case, the outlet flux time
series fout,1 of A1 and fout,2 of A2 were model-calculated as responses
to pulses of first A2 and then A1. The pulsed quantities were taken
as n1 = n2 = 2 · 10−9 mol. Each time, two masses were monitored by
the imaginary mass spectrometer, resulting in responses y1 and y2. The
calibration matrix S in Eq. (8.13) was taken diagonal:

S =
[
106 V s

mol 0
0 106 V s

mol

]
. (8.22)
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The proportionality factors, the diagonal elements of S, have a typical
magnitude for a TAP-1-apparatus.

The reactor configuration was taken equal in all cases. The central,
active zone was given a width of ∆z(2) = 1 mm. Both inert zones were
given a width of ∆z(1) = ∆z(3) = 14.5 mm. This is a realistic TZTR
configuration. The porosity was taken equal in all zones: ε(1)

b = ε
(2)
b =

ε
(3)
b = 0.5. Similarly, the effective Knudsen diffusion coefficient was taken

equal in all zones and for both gas components A1 and A2: D
(1)
e,1 = D

(2)
e,1 =

D
(3)
e,1 = D

(1)
e,2 = D

(2)
e,2 = D

(3)
e,2 = 2 · 10−3 m2/s. The cross-sectional surface

area was 1.86 · 10−5 m2.
The pulse responses were calculated using the transfer matrix ap-

proach, see Section 4.4. The initial and boundary conditions were the
ideal ones described in Section 4.3. The relevant surface components were
assumed initially absent in the active zone: c(2)

s,0(z) = 0. Eqs. (8.11a),
(8.11b) and (8.14) have been derived for a TZTR with infinitely thin ac-
tive zone. For the model-calculation of the pulse responses, the active
zone was not modeled as infinitely thin, but as having its actual realistic
width ∆z(2) = 1 mm, see above. Should there be any errors caused by
applying Eqs. (8.11a), (8.11b) and (8.14) to a realistic TZTR, they will
therefore be revealed by the case studies to follow. In order to avoid
inaccurate model-calculations due to too low a Nyquist frequency νN ,
see Appendix C, three interjacent samples were calculated between each
pair of actual samples. Similarly, to ensure completely extinct pulse re-
sponses, they were calculated with double collection times. The extra
samples were immediately discarded.

Pulse response y1 and y2 were calculated using TAPFIT, see Ap-
pendix D. Twenty replicates were synthesized, artificial noise being su-
perposed on each of them. The noise had characteristics typical for a
TAP-1-setup.

1. A 2 % standard deviation of the zeroth moment, due to a variable
pulse size and/or a variability of the mass spectrometer sensitivity.

2. Ornstein-Uhlenbeck noise with a correlation time of θ = 0.789 ms.
This noise was set to contain a constant contribution of 0.3 mV and
a relative contribution of 4 % of the signal strength.

3. Noise spectrally localized about the European mains frequency,
50 Hz, to mimic electromagnetic interference. The noise was made
to consist of an oscillation with an amplitude containing a constant
contribution of 1 mV and a relative contribution of 3 % of the signal
strength.
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A1 A3 A4 A2k1
k−2

k+2

k−3

k+3

Figure 8.1: A reaction graph for Case 1, responsible for the irreversible reaction
of the gas component A1 into the gas component A2. A3 and A4 represent
surface components.

This is a worst case scenario. The level of noise would be smaller on
the newer TAP-2- or TAP-3-setups. All twenty replicates of each pulse
response were averaged before they were processed.

The synthetic pulse responses were processed as if they had been ob-
tained experimentally. It is assumed that the experimentalist has accu-
rate estimates of all relevant physical parameters (D (l)

e,j , ε
(l)
b , nj , S, . . . )

at his disposal. Needless to state that this would require a considerable
experimental effort.

As a first step in the processing of the synthetic data, using Eq. (8.13),
the average responses were converted into the outlet flux time series fout,1

and fout,2. The latter were then subjected to the discrete approximation
Fd of the continuous Fourier transform, see Appendix C. Subsequently,
the base equations (8.11a) and (8.14) of the Y-procedure were applied to
find the concentrations c(2)

g,j and consumption rates r(2)
g,j in the active zone,

in the frequency domain. Slightly corrected widths ∆′z(1) = ∆′z(3) were
applied in Eqs. (8.11a) and (8.14) for the calculation of the transport
parameters τ (1)

j = τ
(3)
j and γ

(1)
j = γ

(3)
j :

∆′z(1) = ∆z(1) +
∆z(2)

4
= ∆′z(3) = ∆z(3) +

∆z(2)

4
. (8.23)

This was found to give the best results. Finally, the transfer functions
H2,2 (if necessary), H1,1 and H2,1 were calculated using Eqs. (8.15), (8.9)
and (8.10) or (8.17).

Case 1

The reaction graph depicted in Fig. 8.1 was taken to describe the ac-
tivity of the catalyst in the active zone. A3 and A4 represent surface
components. The rate coefficients were taken as

k1 = 800 Hz, k+2 = 10 Hz, k−2 = 40 Hz, k+3 = 500 Hz, k−3 = 1000 Hz.
(8.24)

The rate coefficients k1 and k−3 are taken high to ensure significant ad-
sorptions despite the small width of the active zone. The desorption rate
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Figure 8.2: The synthetic outlet flux time series fout,1 of A1 and fout,2 of A2

as a response to pulses of A2 (a) and A1 (b) for Case 1. The dashed line in
Fig. (a) represents the purely diffusional response which would be expected if
A2 did not interact with the catalyst.

coefficient k+3 had to be taken comparably high to ensure a significant
desorption.

Fig. 8.2 (a) represents the synthetic outlet flux time series fout,1 of A1

and fout,2 of A2 as a response to a pulse of A2. Fig. 8.2 (b) represents
the same time series as a response to a pulse of A1. In both cases, the
number of samples was a thousand and the collection time was 1 s. For
the sake of clarity, only the first 0.6 s are shown in Fig. 8.2 (a).

If the responses of Fig. 8.2 were to be obtained experimentally, the
first observation would be that no A1 leaves the reactor as a response to
a pulse of A2. Assumption 8.1 is therefore known to be fulfilled. If, as
a response to the pulse of A1, gas components other than A2 would be
observed, in fulfillment of Assumption 8.2, none should convert into A1

or A2. This can be verified by pulsing them over the reactor. The next
question would be whether A2 desorbs reversibly or irreversibly. In the
first case, to calculate H2,1, Eq. (8.10) has to be applied, and H2,2 has to
be calculated beforehand. In the second case, Eq. (8.17) can be applied,
without the need to calculate H2,2. The dashed line in Fig. 8.2 (a) shows
the model-calculated purely diffusional response which would be expected
if A2 did not interact with the catalyst. The difference with the synthetic
responses y2 proves an interaction of A2 with the catalyst. However, as
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Figure 8.3: Bode magnitude (top) and phase plot (bottom) of the kinetic trans-
fer function H2,2 for Case 1. The dots are calculated from the synthetic data.
The lines are obtained from the known analytical expression. The arrows mark
the position of corner frequencies, calculated analytically. The upward arrows
correspond to zeroes, while the downward arrows correspond to poles.

no net conversion of A2 is observed, A2 must be in an ergodic strong
linkage class of the reaction graph.

Fig. 8.3 shows the Bode plots of the kinetic transfer function H2,2.
The dots were calculated using Eq. (8.15). They are available until the
Nyquist frequency νN , see Eq. (5.16), which is in this case 500 Hz. The
full lines represent the real continuous transfer function, H2,2, calculated
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analytically:

H2,2(s) =

s2 + (k+2 + k−2 + k+3)s+ k+2k+3

s3 + (k+2 + k−2 + k+3 + k−3)s2 + (k+2k−3 + k−2k−3 + k+2k+3)s
(8.25)

The dots do not coincide perfectly with the lines. The small deviations
at frequencies smaller than 10 Hz are systematic and due to the appli-
cation of the Y-procedure base equations to data from a TZTR with
finite width of the active zone. These small deviations exist also at the
higher frequencies, but there they are obscured by important other devi-
ations. The random deviations at frequencies between 10 Hz and 100 Hz
are due to the noise in the synthetic pulse responses. These random de-
viations increase as a function of the frequency ν. This is because the
base equations (8.11a), (8.11b) and (8.14) of the Y-procedure amplify
high frequency noise. Especially, the important noise contribution spec-
trally localized about 50 Hz is considerably amplified. As an essential
part of the Y-procedure, the higher frequencies are dampened. Here, no
such dampening is necessary. The user should just discard the higher
frequencies where noise gets the upper hand of F c

(2)
g,j and F r

(2)
g,j . Here,

this would be the frequencies beyond about 30 Hz. Recall that the data
were synthesized with noise typical for a TAP-1-apparatus. Due to a
lower level of noise, the observable frequency window would be wider for
the newer TAP-2- and TAP-3-setups. Beyond 100 Hz, the level of ran-
dom noise decreases, but instead important systematic deviations can be
observed between the dots and the lines. These deviations, though sys-
tematic, are due to the random noise in the synthetic data. Indeed, in
Eq. (8.14), due to the presence of noise in Ffout,j(ω), the second term in
the numerator of the fraction to the right hand side becomes dominant
for high frequencies. It can be readily verified that substitution of the
resulting limit equation and Eq. (8.11a) in Eq. (8.15) yields

H1,1(2πiν) ≈
ε
(2)
b ∆z(2)

γ
(3)
2 φ

√
8πντ (3)

2

exp
(
i

3
4
π

)
. (8.26)

Observe that for the transfer function H2,2, values of which were ob-
tained from Eq. (8.15), the final slope in the magnitude plot and the final
argument in the phase plot are indeed −1/2 and 3π/4.

The upward arrows mark the position of the corner frequencies z̃(1)
2,2

and z̃
(2)
2,2, calculated analytically. The arrows are directed upward, be-

cause these frequencies, as they correspond to zeroes, involve an increase
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of the slope of the magnitude curve as well as an increase of the phase
curve. Similarly, the downward arrows mark corner frequencies p̃(2)

2,2 and

p̃
(3)
2,2, corresponding to the nonzero poles which involve a decrease of the

magnitude curve slope and the phase. As A2 is known to be in an ergodic
strong linkage class, one pole is situated at the zero frequency. The cor-
responding corner frequency p̃(1)

2,2 = 0 is of course not represented on the
Bode plots.

As there is a pole at the zero frequency, the initial slope of the mag-
nitude curve is known to be minus one. For the same reason, it is known
that the initial phase is −π/2. The overall degree of the transfer function
H2,2 is a priori known to be minus one. The final slope of the magnitude
is therefore minus one, and the final phase is −π/2. Assume the full line
is not known, which would be the case in an experimental situation. The
information on the initial and final slopes and phases, together with the
trends in the dots in the Bode plots, allows the perception of the corner
frequencies z̃(1)

2,2 and p̃(2)
2,2, and their approximate location on the frequency

axis. Knowledge of the two poles corresponding to the frequencies p̃(1)
2,2

and p̃(2)
2,2, where the former is zero, and the zero corresponding to z̃(1)

2,2 is in
correspondence with the known behavior at the low and high frequency
ends. There is therefore no reason to assume that poles or zeroes lie in
the invisible high-frequency end of the spectrum. It would be concluded
that the observable number of intermediates from A2 to itself is one.

Because the corner frequencies z̃(2)
2,2 and p̃

(3)
2,2 are not perceived, one

intermediate is not observed. Indeed, the actual number of intermediates
is two: A3 and A4, see Fig. 8.1. Consider the analytical expression (8.25)
of H2,2. The rate coefficients k+3 and k−3 are much larger than the
coefficients k+2 and k−2. Moreover, for the low frequency end of the
spectrum, k+3 and k−3 are also much larger than |s|. Eq. (8.25) can
therefore be simplified as

H2,2(s) ≈ k+3s+ k+2k+3

(k+3 + k−3)s2 + (k+2k−3 + k−2k−3 + k+2k+3)s
(8.27)

This expression shows one zero and two poles, including the zero fre-
quency. This is in correspondence with what was observed from the Bode
plots. It can be concluded that the intermediate A4 is not observed be-
cause the adsorption and desorption of A2 are too fast to observe, in other
words because A2 is in quasi-equilibrium with its adsorbate A4.

Fig. 8.4 shows the Bode plots for the kinetic transfer function H1,1.
The analytical expression of the transfer function is given by

H1,1(s) =
1

s+ k1
. (8.28)
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Figure 8.4: Bode magnitude (top) and phase plot (bottom) of the kinetic trans-
fer function H1,1 for Case 1. The dots are calculated from the synthetic data.
The lines are obtained from the known analytical expression. The downward
arrows mark the position of a corner frequency corresponding to a pole.

There is one corner frequency p̃(1)
1,1, corresponding to the pole p(1)

1,1 = −k1.

The corner frequency p̃
(1)
1,1 can be perceived from the values of the

transfer function calculated using Eq. (8.9), more specifically from the
downward trend of the dots in the phase plot about 10 Hz. A1 is obviously
not in an ergodic strong linkage class of the reaction diagram. Otherwise
there would not be any conversion. There is therefore no zero frequency
pole, so that the initial slope of the magnitude plot and the initial phase
are zero. The overall degree is known to be minus one, so that the final
slope of the magnitude plot is minus one, and the final phase is −π/2.
The perception of one corner frequency p̃(1)

1,1 is in correspondence with this
limit behavior. There is therefore no reason to assume the existence of
other corner frequencies in the invisible high frequency end of the Bode
plots. The observable number of intermediates is therefore zero. In this
case, this is equal to the actual number of intermediates. If the corner
frequency was more to the high frequency end of the spectrum, the final
downward trend of the phase plot would perhaps not be visible. In that
case, however, its presence could still be inferred from the final phase,
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which is a priori known to be −π/2.
Fig. 8.5 represents the Bode plots of the transfer function H2,1. The

analytical expression of the transfer function is given by

H2,1(s) =
k1

s+ k1
·

k+2k+3

s3 + (k+2 + k−2 + k+3 + k−3)s2 + (k+2k−3 + k−2k−3 + k+2k+3)s
.

(8.29)

There are no corner frequencies corresponding to zeroes. One pole is
present at the zero frequency. There are three corner frequencies, p̃(2)

1,1,

p̃
(3)
1,1 and p̃

(4)
1,1, corresponding to the other poles.

The dots in Fig. 8.5 were calculated using Eq. (8.10), where the trans-
fer function H2,2 calculated before from Eq. (8.10) was substituted. The
spectrum is obscured beyond 30 Hz. Observe the peak in the magnitude
plot at about 50 Hz, due to the spectrally localized noise in the synthetic
data. The pole at the zero frequency is a priori known, because A2 is
known to be in an ergodic strong linkage class of the reaction graph. The
low frequency limit of the slope of the magnitude plot is therefore known
to be minus one, while the low frequency limit of the phase is −π/2. The
high frequency limits are not a priori known, because they depend on the
length of the shortest reaction pathway from A1 to A2. The transfer func-
tion calculated using Eq. (8.10) allows only the perception of the corner
frequency p̃

(2)
1,1. There is no reason to assume other corner frequencies,

because the high frequency limit behavior is not known. The observable
number of intermediates from A1 to A2 is therefore zero. The observable
shortest reaction path length is one. The observations correspond to a
simplified version of Eq. (8.29) for k1, k+3, k−3 ≫ |s| , k+2, k−2:

H2,1(s) =
k+2k+3

(k+3 + k−3)s2 + (k+2k−3 + k−2k−3 + k+2k+3)s
. (8.30)

The intermediates A3 and A4 are not observed, because the former is
formed almost instantly from A1 and the latter is in quasi-equilibrium
with A2.

Case 2

The reaction graph shown in Fig. 8.6 and the following corresponding
rate coefficients were assumed:

k1 = 550 Hz, k2 = 5 Hz, k3 = 50 Hz, k4 = 1.5 Hz, k5 = 1 Hz. (8.31)
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Figure 8.5: Bode magnitude (top) and phase plot (bottom) of the kinetic trans-
fer function H2,1 for Case 1. The dots are calculated from the synthetic data.
The lines are obtained from the known analytical expression. The downward
arrows mark the position of corner frequencies corresponding to poles. These
positions were calculated analytically.
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A1 A3 2A2

A4

A5

k1 k2

k3 k5

k4

Figure 8.6: A reaction graph for Case 2, responsible for the irreversible reaction
of the gas component A1 into two molecules of the gas component A2. A3 and
A4 represent surface components. A5 represents another surface component or
an unobserved gas phase component.

Observe that one molecule of A1 converts into two molecules of A2. The
stoichiometric coefficient ν2 in (8.1) is therefore equal to two. The adsorp-
tion rate coefficient is again large compared to the other rate coefficients
to ensure a significant conversion of A1.

Fig. 8.7 (a) represents the synthetic outlet flux time series fout,1 of A1

and fout,2 of A2 as a response to a pulse of A2. Fig. 8.7 (b) represents
the same time series as a response to a pulse of A1. The synthetic time
series consisted a thousand samples. The collection time was taken as 2 s
in both cases, although only the first 0.6 s are shown in Fig. 8.7 (a) for the
sake of clarity. The collection time was taken larger than in Case 1, but
the number of samples was maintained at one thousand. The sampling
interval was therefore larger than in Case 1: ∆t = 2 ms. As a result, the
Nyquist frequency is smaller: νN = 250 Hz.

The first observation is again that Assumption 8.1 is fulfilled, as no
A1 leaves the reactor as a response to a pulse of A2. The dashed line in
Fig. 8.7 (a) represents the outlet flux of A2 which would be expected if
A2 did not interact with the catalyst. As it coincides with the synthetic
response, it is concluded that the desorption of A2 is indeed irreversible.
There is therefore no need to calculate the transfer function H2,2 and the
transfer function H2,1 can be calculated from Eq. (8.17). Furthermore,
A2 is known to constitute a trivial ergodic strong linkage class of its own.

Fig. 8.8 shows the Bode plots for the kinetic transfer function H1,1.
The analytical expression of the transfer function is again given by Eq.
(8.28). A single corner frequency p̃

(1)
1,1, corresponding to the pole p(1)

1,1 =
−k1.
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Figure 8.7: The synthetic outlet flux time series fout,1 of A1 and fout,2 of A2

as a response to pulses of A2 (a) and A1 (b) for Case 2. The dashed line in
Fig. (a) represents the purely diffusional response which would be expected if
A2 did not interact with the catalyst.

As before, the presence of p̃(1)
1,1 is apparent from the values of the

transfer function calculated using Eq. (8.9), more specifically from the
final downward trend of the dots in the phase plot. Even if the final
downward trend of the phase plot would not be visible, the presence of
p̃

(1)
1,1 could be inferred from the final phase, which is a priori known to be
−π/2.

Fig. 8.9 represents the Bode plots of the transfer function H2,1. There
are one zero z

(1)
2,1 and four poles p(1)

2,1, p(2)
2,1, p(3)

2,1 and p
(4)
2,1. The first pole

p
(1)
2,1 is zero.

The dots in Fig. 8.9 were calculated using Eq. (8.17). The pole p(1)
2,1 =

0 is a priori known, because A2 is known to be in an ergodic strong
linkage class of the reaction graph. The low frequency limit of the slope
of the magnitude plot is therefore known to be minus one, while the
low frequency limit of the phase is −π/2. The dots in Fig. 8.9 allow
the perception of the corner frequencies p̃(2)

1,1, z̃(1)
1,1 and, with some effort,

p̃
(3)
2,1. p̃

(4)
2,1 remains hidden. One observed zero and three observed poles

correspond to an observable number of intermediates equal to one and
an observable length of the shortest reaction pathway equal to one. The
intermediate A3 is not observed, because it is formed almost instantly
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Figure 8.8: Bode magnitude (top) and phase plot (bottom) of the kinetic trans-
fer function H1,1 for Case 2. The dots are calculated from the synthetic data.
The lines are obtained from the known analytical expression. The downward
arrows mark the position of a corner frequency corresponding to a pole.

out of A1. The intermediate A4 is observed, and known not to be on the
shortest reaction pathway from A1 to A2.

Case 3

Again, the reaction graph depicted in Fig. 8.6 was assumed responsible for
the activity of the catalyst. This time, the rate coefficients were assumed
to be

k1 = 550 Hz, k2 = 20 Hz, k3 = 30 Hz, k4 = 22 Hz, k5 = 10 Hz (8.32)

Fig. 8.10 (a) represents the synthetic outlet flux time series fout,1 of
A1 and fout,2 of A2 as a response to a pulse of A2. Fig. 8.10 (b) represents
the time series as a response to a pulse of A1. The synthetic time series
consisted a thousand samples. The collection time was taken as 1 s in
both cases, although only the first 0.6 s are shown in Fig. 8.7 (a).

Assumption 8.1 is obviously fulfilled because no A1 is formed in re-
sponse to a pulse of A2. A2 does not interact with the catalyst, which
shows from comparison of the synthetic outlet flux fout,2 of A2 with the
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Figure 8.9: Bode magnitude (top) and phase plot (bottom) of the kinetic trans-
fer function H2,1 for Case 2. The dots are calculated from the synthetic data.
The lines are obtained from the known analytical expression. The arrows mark
the position of corner frequencies, calculated analytically. The upward arrows
correspond to zeroes, while the downward arrows correspond to poles.
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Figure 8.10: The synthetic outlet flux time series fout,1 of A1 and fout,2 of A2

as a response to pulses of A2 (a) and A1 (b) for Case 3. The dashed line in
Fig. (a) represents the purely diffusional response which would be expected if
A2 did not interact with the catalyst.

model-calculated purely diffusional flux represented by the dashed line in
Fig. 8.10 (a). There is again no need to calculate the transfer function
H2,2 and the transfer function H2,1 can be calculated from Eq. (8.17). As
before, A2 is known to constitute a trivial ergodic strong linkage class.

The Bode plots for the kinetic transfer function H1,1 are not shown,
because they are very similar to the ones previously shown in Fig. 8.8. For
that matter, the treatment is completely analogous. Moving on immedi-
ately to the transfer function H2,1, consider Fig. 8.11. It is immediately
clear that the particular rate coefficients (8.32) cause the corner frequen-
cies z̃(1)

2,1 and p̃(3)
2,1 to be situated very close to each other on the frequency

axis. This prevents them from being apparent from the values of the
transfer function H2,1 calculated from Eq. (8.17), even though they are
within the observable frequency window. In analytical terms, the factors
s − z(1)

2,1 in the numerator and s − p(3)
2,1 in the denominator of H2,1(s) in

Eq. (8.18) practically cancel each other out. Besides the a priori known
pole p(1)

2,1 = 0, the only perceivable pole is p(2)
2,1. The observable number of

intermediates is therefore zero, and the observable shortest reaction path
length from A1 to A2 is one. As before, the intermediate A3 is unob-
servable, because it is formed almost instantly out of A1. This time, the
intermediate A4 is also unobservable, because of the particular value of
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Figure 8.11: Bode magnitude (top) and phase plot (bottom) of the kinetic
transfer function H2,1 for Case 3. The dots are calculated from the synthetic
data. The lines are obtained from the known analytical expression. The arrows
mark the position of corner frequencies, calculated analytically. The upward
arrows correspond to zeroes, while the downward arrows correspond to poles.
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the parameters. It can be verified readily from an analytical derivation
that this situation is due to

k2 + k3 ≈ k4

(
1 +

k3

k2

)
, (8.33)

see (8.32).

8.5 Conclusions

If the Assumptions 8.1, 8.2 and 8.3 are fulfilled, responses of the gas
phase components A1 and A2 to pulses of A1 and A2 over TZTRs allow
the extraction of connectivity features of the reaction network. Such
information is obtained through a novel procedure which proceeds in a
model-free manner, i.e., without the need to postulate candidate reaction
networks. To this end, values of the kinetic transfer functions H2,1, H1,1

and H2,2 are calculated in equally-spaced points of the frequency domain,
relying on the base equations of the Y-procedure. After representation
of these transfer functions in Bode plots, the observable shortest reaction
path length from A1 to A2 is determined from the high-frequency limit
of the argument of H2,1. Observable numbers of intermediates follow
from observed trends in the Bode plots. Numerical experiments have
confirmed the feasibility of this procedure. In the Bode plots, the window
of observable frequencies is only limited by spectrally localized noise, due
to electromagnetic interference of the mass spectrometer, and irreducible
high-frequency noise.





Chapter 9

Regression of TAP-Data: Best
Practices

9.1 Introduction

The TAP-reactor itself is relatively simple, see Section 4.3. But this
reactor is just a small part of a complex apparatus. This complexity
ensues from three ambitiously imposed qualities:

1. the possibility of operating at pressures low enough (peak local pres-
sures below about 10−1 Pa) to ensure Knudsen diffusion, see Sec-
tion 4.2,

2. the admission of very small quantities (on the order of 10−9 mol or
lower) of gas in a time span allowing them to be approximated by
Dirac pulses,

3. the accurate measurement of the outlet fluxes with up to submil-
lisecond time resolution.

Despite continuous technical improvements (Gleaves et al., 1988, 1997,
2010), the user has to prepare and perform the experiments meticulously,
taking into account certain technical limitations:

1. a rather poor reproducibility of the pulse size and fluctuations of
the mass spectrometer sensitivity, see Section 5.7,

2. the presence of noise, in particular noise spectrally localized about
the mains frequency and its harmonics, due to electromagnetic in-
terference, see Section 5.6,

3. the impossibility of one mass spectrometer to monitor more than
one mass.
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Guidelines regarding the operation of the TAP-reactor with the purpose
of extracting quantitative information, will be given in Section 9.3. The
statistically most rigorous method to process experimental TAP-data is
to subject them to least-squares regression with model-calculated data.
This should also occur with the greatest care. Section 9.4 will present
good practices. The purpose of this work was to propose procedures
to determine catalytic reaction networks. Section 9.5 will present the
Bayesian information criterion as a way to select a reaction network from
a set of postulated candidates, after repeated regression of TAP-data.
Finally, a fully elaborated example will be treated in Section 9.6. The
data used for this example will already be used as illustrative material
in the Sections 9.3 and 9.4. Therefore, the experimental background of
these experiments will be given first, in Section 9.2.

9.2 Experimental data

The data which will be processed as an illustration were collected to
study the EL10V1 catalyst, which consists of vanadia (V2O5) supported
by titania (TiO2) (Sack, 2006; Balcaen et al., 2009). This catalyst is
used to perform the oxidative dehydrogenation of short chain alkanes to
alkenes. Propane responses were collected over a three-zone TAP-reactor
at six temperatures: 698 K, 723 K, 748 K, 773 K, 798 K and 823 K. The
inert zone at the reactor inlet was 3.31 mm long. The inert zone at the
reactor outlet was 15.27 mm long. Both beds consisted of quartz beads
with diameters between 250 and 425 µm. The middle zone was 9.41 mm
long and consisted of 99.8 mg of catalyst particles diluted with 99.7 mg of
the same quartz beads as were used for the inert zone. At another time,
propene response experiments were performed at 723 K over a similar
three-zone reactor. This time, the inlet and outlet inert zones measured
3.6 mm and 14.7 mm, while the middle zone had a width of 9.86 mm. The
latter contained 100 mg of catalyst diluted with 102 mg of quartz. In
all cases, the interparticle porosity was assumed equal in all zones and
estimated at 0.53.

All experimental time series consisted of one thousand samples,

nt = 1000, (9.1)

collected with a sampling interval of

∆t = 4 ms. (9.2)

The collection time was therefore 4 s. The time spacing between the
pulses was 6 s. During the propane pulse experiments, the mass spec-
trometer alternately collected time series at 29 amu (due to propane) and
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41 amu (due to propene and propane). This sequence of experiments was
repeated twenty times. During the propene pulse experiments, the mass
spectrometer collected fifteen replicate time series at 41 amu (propene).
All time series were baseline-corrected, where the position of the baseline
was estimated as the average of the last 500 samples of each time series.
This was possible because these samples were collected after the responses
were extinct, see Section 9.3.

The responses depend on the outlet fluxes as in Eq. (4.10):

[
y29 amu

y41 amu

]
(t) =

[
17.66 0
3.003 13.46

]
105 Vs

mol︸ ︷︷ ︸
S

·φ
[
fC3H8

fC3H6

]
(t), (9.3)

where the elements of S, the calibration coefficients, have been estimated
separately from large sequences of propane and propene pulse responses
over an inert bed. The total quantity of molecules pulsed was then cal-
culated from the pressure drop in the closed feed line, using the ideal gas
law.

9.3 Experimental guidelines

Knudsen diffusion

As a distinct feature of TAP, the pressure inside the reactor can be kept
at all times low enough to ensure mass transfer by Knudsen diffusion only.
This offers an important advantage at modeling, see Chapter 4. Eq. (4.3)
is particularly useful, as it allows the derivation of the Knudsen diffu-
sion coefficient of reactive components from the one of inert components.
Another advantage of working in the Knudsen domain is the suppression
of gas-phase reactions (Rothaemel and Baerns, 1996), which allows the
unequivocal measurement of catalytic reaction kinetics.

Pulses of inert gases can be admitted to catalytic reactors to verify
whether, given the pulse size, the diffusion is of the Knudsen type. This
can be achieved by subjecting the resulting responses to regression with
a Knudsen model. If this model provides an accurate description of those
responses, the diffusion is of the Knudsen type. Alternatively, a simple
test can be applied (Gleaves et al., 1997; Yablonsky et al., 2003). To that
end, a response to an inert pulse is first area-normalized. If, subsequently,
the product of the response maximum and the time at which this max-
imum is reached is approximately 0.31, the diffusion is derived to be of
the Knudsen type.
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Figure 9.1: Normal (a) and semilogarithmic (b) representation of the first 250
samples of the time series collected as a response to pulses of C3H8 at 773 K.

Collection time and baseline-correction

The collection time of the responses should be chosen long enough, at
least for state-defining experiments. If a pulse is admitted at a time
when the initial state of the reactor is not yet restored after the previous
one, the shape of its response will be distorted. If enough samples are
collected beyond the time of extinction of the response, these samples can
be averaged to yield an accurate estimate of the position of the baseline.
Section 5.4 demonstrated a way of applying a baseline-correction if the
responses are not extinct at the end of the collection time, but this ap-
proach only works if the response ends in a clearly defined exponential
decay.

Whether the collection time was taken long enough and whether the
baseline-correction was successful, can be most readily judged from a
semilogarithmic representation of the responses. Fig. 9.1 (a) shows the
two responses to C3H8 for the reactor temperature 773 K, after baseline-
correction. Fig. 9.1 (b) shows the same responses with logarithmic scal-
ing of the response axis. The image is what is expected after a successful
baseline-correction. Each tail shows up as a linear decrease, until this
decrease is completely obscured by noise. That happens at the time of
extinction, here at about 0.6 s. Note that from there, half of the points
correspond to a negative voltage and are hence not shown on the semilog-
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arithmic graph.

Spectrally localized noise

Spectrally localized noise is a frequently recurring issue in TAP pulse re-
sponses. This noise is especially disadvantageous if its spectrum overlaps
with the region of interest to the kineticist, see Chapter 8. Spectrally
localized noise is either due to electromagnetic interference by electric
devices present near the setup or direct interference through the power
supply of the mass spectrometer. It should be avoided if possible.

Choice of the sampling interval

The TAP-technique is known for its submillisecond time resolution. This
means that the mass spectrometer can sample with time intervals smaller
than 1 ms. However, it was argued in Section 5.5 that there is little point
in applying sampling intervals smaller than the correlation time θ of the
Gaussian noise. θ was estimated at 0.789 ms for data collected on the
TAP-setup of the LCT. A sampling frequency of 1 kHz should therefore
suffice as a guideline. It would be better, if possible, to collect a higher
number of replicates than to apply a higher sampling frequency.

Replicate experiments

Replicate state-defining experiments have been traditionally performed
in the TAP-community. This is done to increase the SNR by averaging
the replicate times series (Gleaves et al., 1988). Additionally, the SOSR
presented in Chapter 6 extracts second-order statistical information from
the replicates in order to condition the average for NLSQ regression.

To investigate whether the responses of a series of pulses can be con-
sidered replicates, it has to be verified whether there is any systematic
variation between them. If the variation is purely random, the responses
are replicates. As an extra, this indicates the experiment to be state-
defining. Usually, it suffices to plot the variation of the zeroth moment
M0, i.e., the surface area under the response curves. Indeed, if this shows
no systematic trends, the responses can normally be considered repli-
cates. Fig. 9.2 shows such graphs for the twenty successively collected
pulse responses at 29 amu to propane for the reactor temperatures 698 K
(a), 723 K (b), 748 K (c), 773 K (d), 798 K (e) and 823 K (f). Fig. 9.2 (g)
represents the M0 for the fifteen replicate responses at 41 amu to propene
at 723 K. In each graph, a straight line M0 = aj + b was fitted through
the points. The estimates of a and b and their 95 % confidence limits are
given in Table 9.1. None of the estimates of a are significantly different
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Figure 9.2: Variation of the zeroth moment M0 of twenty responses measured at
29 amu to propane at 698 K (a), 723 K (b), 748 K (c), 773 K (d), 798 K (e), 823 K
(f) and fifteen replicate responses measured at 41 amu to pulses of propene at
723 K (g) over the EL10V1 catalyst. j represents the response number. Each
graph shows a fitted line M0 = aj + b. The estimates a and b and their 95 %
confidence intervals are shown in Table 9.1.



Section 9.3 143

Table 9.1: Relative error σ/µ of the zeroth moment M0 of responses to pulses
of propane and propene at different reactor temperatures T . a and b are the
coefficients appearing in a linear relation M0 = aj+b with which the data were
regressed. The table shows the estimates with their 95 % confidence limits.

T σ/µ (%) a (10−7 Vs) b (10−5 Vs)
propane 698 K 0.9 7.4± 20.4 272.0± 2.3

723 K 1.5 0.3± 33.0 262.1± 3.7
748 K 1.4 −20.8± 29.4 270.7± 3.3
773 K 1.8 8.9± 36.1 236.6± 4.0
798 K 1.7 4.6± 30.9 219.1± 3.4
823 K 2.0 4.9± 23.1 137.9± 2.6

propene 723 K 3.0 1.6± 12.3 30.9± 1.0

from zero, leading to the conclusion that there are no trends in the values
of M0. The successively collected responses can therefore be considered
replicates. This is also enough to conclude on the state-defining character
of the experiments.

Suppose the experimentalist wishes to perform a state-defining exper-
iment feeding a component A. Suppose nA is the maximum pulse size
to ensure the change of the catalyst state to remain insignificant. It is
possible to pulse the whole quantity in once, or to divide it into, say nr,
pulses with size nA/nr. The latter would yield nr replicates. This may
seem less appealing to the experimentalist as the separate replicate re-
sponses would show up on the monitor screen with a factor

√
nr lower

SNR. However, the average of those replicates has the same SNR as the
response to the big pulse of size nA. Feeding a large quantity in one or in
several pulses therefore seems equivalent. However, the latter has several
advantages over the former:

1. The average of the replicates can be subjected to SOSR, while the
response to the big pulse cannot. This allows to obtain more accu-
rate estimates and corresponding statistical information.

2. With smaller pulses, there is a smaller risk of leaving the Knudsen
domain for diffusion. Larger pulse sizes may cause local and tem-
porary viscous flow, which is not typically accounted for in TAP-
models.

3. Smaller pulsed quantities are more likely to cause pseudomonomolec-
ular kinetics. This is favorable, as it significantly narrows down the
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number of candidate kinetic models which could explain the obser-
vations, see Section 9.4.

4. Smaller pulse sizes are less likely to cause nonisothermicity of the
reactor in case of highly exothermal reactions (Schuurman, 2007).

5. Diluting the small pulses of the reactant A1 with a known quantity
of an inert gas A2 and alternately monitoring A1, its products and
A2 allows an accurate determination of the average pulsed quantity
nA/nr, see below.

Taking into account a poorly reproducible pulse size

In view of the small duration (typically 100 µs) of the pulses, the high-
speed pulse valves are probably technically the most advanced part of
the TAP-setup. A short-term random variation on the order of 5 % of
the pulse size, see Section 5.10, is probably unavoidable. As an illustra-
tion, the relative standard deviation of the random variation of the M0’s
represented in Fig. 9.2 is given in Table 9.1.

Knowledge of the pulse size is generally an important advantage dur-
ing the estimation of kinetic coefficients, but determining it is not an easy
task. A well-known technique consists of mixing known quantities of a
reactant A1 and an inert gas A2. The mixture with known composition is
then fed pulsewise to the reactor in order to collect a series of replicates of
a state-defining experiment. The mass spectrometer alternately records
time series at masses due to A1 and its products, and the inert A2. As
far as the latter is concerned, the mass spectrometer should monitor a
mass uniquely due to A2, i.e., without contributions of A1 or one of its
reaction products. With known calibration coefficient and assuming a
stable sensitivity of the mass spectrometer, calculation of the M0 of the
corresponding time series allows to determine the average quantity of A2

pulsed. As the composition of the feed mixture is known, the average
quantity of A1 pulsed can be readily derived. Even though the masses
due to A1, its products and A2 are monitored as a response to different
pulses with random size, it can be assumed that averaging attenuates
the random differences sufficiently. The quality of this approximation
obviously improves if more replicates are collected.

If the aforementioned technique cannot be applied, it may be necessary
to treat them as unknown parameters during regression. The drawback
is that this will broaden the confidence intervals of the relevant kinetic
parameters to an extent depending mainly on the binary correlation co-
efficients between the latter and the unknown pulse sizes. Of course it
has to be verified whether the estimated pulse sizes are within the range
of credibility. For the collection of data presented in Section 9.2, pure
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propane and propene were pulsed. It was therefore not possible to obtain
a precise estimate of the average pulse size. The pulse sizes have therefore
been treated as unknown parameters during regression, see Section 9.6.

Pseudomonomolecular kinetics

The smaller the size of the pulse, the more likely the kinetics degenerate
to pseudomonomolecular. This is favorable:

1. Information about a reaction network is often extracted by identify-
ing the kinetic model. The space of candidate linear kinetic models
is considerably smaller than the space of candidate general kinetic
models. This renders the identification of the model less arduous.

2. Initial surface concentrations and the total concentrations of ac-
tive sites need not be known at regression, although estimated
apparent rate coefficients or pre-exponential factors do generally
depend on them. Knowledge of the type of adsorption (Lang-
muir/Temkin/Freundlich) is not needed either, at least not in the
isothermal case.

3. Pulse responses can be model-calculated using the transfer matrix
approach, see Section 4.4. This occurs faster and more accurately
than the alternative, the method of lines.

4. If a TZTR is used, certain connectivity features of the reaction
network can be determined in a model-free manner after applying
the Y-procedure, see Chapter 8.

9.4 Regression of data from state-defining
experiments

Parsimonious kinetic models

The TAP-reactor, like any laboratory reactor to study reaction kinetics,
was designed to keep the transport mechanism mathematically as simple
and experimentally as well-defined as possible, see Section 4.2. If possible,
simplicity should also be pursued in the kinetic model, albeit for a differ-
ent reason. Complexity of the model can be expressed as its dimension:
its number of unknown parameters. Regression with high-dimensional
kinetic models involves certain risks:

1. With many parameters, there is a high chance that after some it-
erative adjustments of their values, small individual variations of
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some of these parameters no longer significantly affect the model-
calculations. Another possibility is that certain parameters show
a high level of correlation. This means that variations of any of
them are near-perfectly compensated for by variations of any of the
others. In the best case, both phenomena cause intolerably wide
confidence intervals of certain parameters. In a worse case, param-
eters are ‘dropped’ by the iterative regression procedure, because
the model-calculations are completely insensitive to them, taking
into account the numerical round-off errors. In the worst case, the
iterative estimation algorithm overadjusts the value of certain pa-
rameters. These parameters then take on unrealistic values which
cause the model-calculation routine and therefore the whole regres-
sion attempt to fail. Advanced regression routines allow setting
boundaries of acceptability for each parameter, which prevents this
issue.

2. High-dimensional models show a larger chance of multiple local min-
ima for the sum of square residuals. If the initial estimates are
not chosen appropriately, the iteration will lead to nonoptimal es-
timates.

3. A regression with many parameters is more likely to yield a bet-
ter degree of correspondence between the experimental and model-
calculated responses, because there are more degrees of freedom for
the model to adjust to the data. The more complex the model,
however, the higher the chance that certain subtleties of the obser-
vations are artificially accounted for, i.e., without the kinetic model
being physically representative. Indeed, other but equally complex
kinetic models would probably provide a similar quality of corre-
spondence. The subtleties of the observations can actually be due
to inaccuracies of the physical instead of the kinetic model, for ex-
ample.

Whether one of the problems mentioned under 1 has occurred, is immedi-
ately apparent from the results of the regression. This will be illustrated
by the example in Section 9.6. It is more difficult to recognize problem 2.
Schuurman (2007) advised the experimentalist to try several sets of initial
values. Finally, it is essentially impossible to identify problem 3. Indeed,
there is unfortunately no way to assess whether or not certain subtleties
of a complex kinetic model are representative for the reality or not. This
is the most important reason to avoid high-dimensional models, although
this is a relative concept. Data sets rich in information certainly justify
higher-dimensional models.
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The construction of candidate reaction networks should not be driven
by an urge for chemical completeness. Indeed, it is highly unlikely that
all actually occurring elementary steps are manifested in the experimen-
tal data. It is far more realistic to believe that the rate coefficients have
well-separated magnitudes, leading to asymptotic kinetics which can be
described by simplified reaction networks, see Section 2.6. The exper-
imentalist should therefore first try parsimonious kinetic models to de-
scribe the data. If those do not provide a good correspondence between
model and experiment, he should gradually increase the level of complex-
ity.

Regression of raw experimental data

Consider a set of raw experimental pulse responses yv, v ∈ {1, 2, . . . , nv},

yv =


yv(t1)
yv(t2)

...
yv(tnt)

 , (9.4)

where the times tk are given by Eq. (4.12). The raw time series yv in V are
usually transformed into molar flow rate time series ỹg in mol/s, where
g represents one of the ng gas component present: g ∈ {1, 2, . . . , ng}.
This, however, is not always possible. Each element of the raw time series
generally depends on all molar flow rates:

y1(tk)
y2(tk)

...
ynv (tk)

 = S ·


ỹ1(tk)
ỹ2(tk)

...
ỹng (tk)

 , (9.5)

where k ∈ {1, 2, . . . , nt}. If the number nv of masses monitored by the
mass spectrometer is equal to the number of gases ng, S is a square matrix
and the vector of molar flow rates can be readily estimated as

ỹ1(tk)
ỹ2(tk)

...
ỹng (tk)

 = S−1 ·


y1(tk)
y2(tk)

...
ynv (tk)

 . (9.6)

If nv is larger than ng, the inverse S−1 in Eq. (9.6) can be replaced by
the more general Moore-Penrose inverse or pseudoinverse S†,

S† = (ST · S)−1 · ST . (9.7)
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This amounts to calculating a least-squares estimate of the molar flow
rates from redundant spectrometric data. If fewer masses are monitored
by the mass spectrometer than the number of gases, nv < ng, it is es-
sentially impossible to derive the molar flow rates from the spectrometric
data in a model-free manner. This, however, does not mean that such
data are not eligible for regression.

Even if nv > ng, it may be impossible to transform the raw time series
into molar flow rate time series. Recall that each raw time series is the
result of a different pulse experiment, since the different masses of the
spectrum cannot be monitored simultaneously by the mass spectrometer.
It is therefore possible that each time series is recorded with a different
collection time and/or sampling interval. In this case an inversion like
Eq. (9.6) is generally not possible, because a full vector of measurements
corresponding to the same time is needed to the right hand side. An
inversion such as Eq. (9.6) is also not possible if the different raw time
series have been collected as a response to pulses of different sizes.

Suppose it ı́s possible to calculate molar flow rate time series ỹg. Then
usually, a vector b of unknown parameters would be estimated by subject-
ing these time series ỹg to NLSQ regression with their model calculated
analogues. However, it was demonstrated in Chapter 6 that if replicate-
experimental data are available, it is better to apply the SOSR. Compared
to direct NLSQ regression, SOSR yields a more accurate estimate of b
and more accurate statistics about this estimate. Observe, however, that
Assumption 6.2 on p. 79 is generally fulfilled for the raw time series yv,
because each is obtained independently, but not for the molar flow rate
time series ỹg. Indeed, the elements in the vector to the right hand side
of Eq. (9.6) are statistically independent, but those of the vector to the
left hand side are generally not. Indeed, cross-correlations generally exist
between the time series ỹg. The error in ye,1(tk), for example, generally
has an influence on all of the elements ỹe,g(tk), g ∈ {1, 2, . . . , ng}. The
latter are therefore generally statistically dependent and correlated. It is
therefore better practice to regress the raw data yv than the processed
data ỹg. Model-calculated analogues of yv(tk) are obtained by applying
Eq. (9.5) with a vector of model-calculated molar flow rates to the right
hand side.

In order to illustrate that SOSR of the raw data is to the best practice,
consider a numerical experiment. A three-zone TAP reactor was assumed,
in which each zone had the same width: ∆z(1) = ∆z(2) = ∆z(3) =
1 cm. The cross-sectional surface area was φ = 1.86 · 10−5 m2, which
corresponds to an inner reactor diameter of about 5 mm. Each zone
was assumed to have the same bed porosity: ε

(1)
b = ε

(2)
b = ε

(3)
b = 0.5.

An experiment was simulated where a quantity n1 = 2 · 10−9 mol of a
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component A1 was pulsed. A1 converted into another component A2 in
the central zone, in a single apparent elementary step with rate coefficient
k = 40 Hz. A1 and A2 were given an equal Knudsen diffusion coefficient
of in all three zones: D

(1)
e,1 = D

(2)
e,1 = D

(3)
e,1 = D

(1)
e,2 = D

(2)
e,2 = D

(3)
e,2 =

2 · 10−3 m2/s. Two responses y1 and y2 were model-calculated using
TAPFIT, see Appendix D. The reactor model was integrated using the
transfer matrix approach, see Section 4.4. Each consisted of nt = 1000
samples. The sampling interval was ∆t = 1 ms. The Nyquist frequency,
see Appendix C, was increased by calculating three interjacent samples
between each pair of actual samples. Similarly, to ensure completely
extinct pulse responses, they were calculated with double collection times.
The extra samples were discarded. The calibration matrix was taken as

S =
[

106 5 · 105

5 · 105 106

]
V s
mol

(9.8)

Artificial noise was superposed on the model-calculated responses to pro-
duce one hundred sets of each nr = 20 synthetic replicates. The noise
had characteristics typical for a TAP-1-setup. These characteristics are
the same as the ones applied in Section 8.4.

Again using TAPFIT, each of the hundred sets of synthetic data were
subjected to regression to estimate the rate coefficient k as if it was un-
known. First, the traditional approach was applied. The raw time series
y1 and y2 in V were converted into time series ỹ1 and ỹ2 representing
the molar flow rate of A1 and A2 in mol/s. For each of the synthetic
data sets, the average of twenty replicates ỹ1 and ỹ2 were subjected to
NLSQ regression. The dots in Fig. 9.3 (a) represent the synthetic data,
while the line represents the model-calculated time series resulting from
NLSQ regression. Fig. 9.4 shows the estimated values of k for each of the
hundred data sets. The estimates are shown ranked from low to high,
with their 95 % confidence intervals. It would be theoretically expected
that ninety five of the hundred confidence intervals contain the real value
40 Hz. However, because the statistical requirements for NLSQ regression
are not fulfilled, see Chapter 6, the success rate is much lower, only thirty
intervals containing the real value. A better approach consists of apply-
ing the SOSR to ỹ1 and ỹ2. The visual output is not shown, because
it is almost indistinguishable from Fig. 9.3 (a). The confidence intervals
of k, however, are quite different from the previous approach. They are
shown in Fig. 9.5. Fifty nine of the hundred confidence intervals contain
the real value. This is already a better result than the previous one. As
mentioned above, an even better practice is the SOSR of raw time series
y1 and y2. The latter are represented by the dots in Fig. 9.3 (b). The
line represents the model-calculated time series resulting from SOSR. The
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Figure 9.3: Regression of two synthetic TAP time series y1 and y2 according to
two different approaches. In the first, classical, approach, the raw time series
y1 and y2, in V, were transformed into two time series ỹ1 and ỹ2 representing
the molar flow rates of the gas components A1 and A2. The latter were then
subjected to NLSQ regression. The dots in graph (a) represent ỹ1 and ỹ2. The
line represents the fitted molar flow rates. In the second approach, the raw
time series y1 and y2 were directly regressed by SOSR. This is represented in
graph (b). In both graphs, only one fifth of data points is shown for the sake
of clarity.

estimates of k and their confidence intervals are shown in Fig. 9.6. The
real value k = 40 Hz is contained in the interval in seventy nine out of a
hundred cases. That this result is better than the previous ones illustrates
that the best practice for estimating kinetic parameters is the SOSR of
raw TAP-data. For that matter, as it was explained above, the regres-
sion of preprocessed TAP-data is not always possible as the molar flow
rates cannot always be recovered from the raw data. That the success
rate is still considerably lower than the theoretically expected one, can
be understood because the estimation of second-order statistics, inherent
to the SOSR, lacks precision since it is based on just twenty replicates.

The discussion above was limited to the regression of raw time series
or molar flow rate time series. An alternative approach is the regres-
sion of area-normalized raw pulse responses, in Hz (Weerts et al., 1996;
Phanawadee, 1997; Tantake et al., 2007). This is often done if only one
mass has been monitored by the mass spectrometer, so that the cali-



Section 9.4 151

37

38

39

40

41

42

43

k
(H

z)

Figure 9.4: Ranked parameter estimates of a rate coefficient k resulting from
regression of one hundred sets of each twenty replicate synthetic data. The
estimates are shown with their 95 % confidence intervals. In order to obtain
the estimates and their confidence intervals, the raw time series in V were first
transformed into molar flow rate time series in mol/s, which were then subjected
to NLSQ regression.
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Figure 9.5: Ranked parameter estimates of a rate coefficient k resulting from
regression of one hundred sets of each twenty replicate synthetic data. The
estimates are shown with their 95 % confidence intervals. In order to obtain
the estimates and their confidence intervals, the raw time series in V were first
transformed into molar flow rate time series in mol/s, which were then subjected
to SOSR.
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Figure 9.6: Ranked parameter estimates of a rate coefficient k resulting from
regression of one hundred sets of each twenty replicate synthetic data. The
estimates are shown with their 95 % confidence intervals. In order to obtain
the estimates and their confidence intervals, the raw time series in V were
directly subjected to SOSR.

bration matrix S reduces to a scalar. In the case of linear kinetics, the
area-normalized raw pulse responses can be regressed with equally area-
normalized model-calculated responses. Thus, only the shape of the pulse
responses is being used to extract information. This has the advantage
that the calibration coefficient need not be known. The regression of area-
normalized raw pulse responses is actually equivalent to the regression of
the raw pulse responses, estimating the pulse size as an extra parameter.
In this case, a value for the calibration factor does need to be provided
by the user. However, possible errors in this calibration factor affect only
the estimate of the pulse size, not the estimate of the other parameters.
On the other hand, the estimated pulse size should be realistic if the cal-
ibration factor is roughly correct. This offers a way to verify whether the
result of the regression is realistic. This verification cannot be carried out
from regression of area-normalized responses.

Estimation of logarithms of kinetic parameters

It was mentioned in Section 9.3 that iterative least-squares regression
routines such as the Levenberg-Marquardt routine sometimes adjust pa-
rameters so, that they take on unrealistic values. This can occur if the
regression routine does not allow the user to set limits of acceptability
for the parameter values, or if the user has neglected to provide them.
Specifically, kinetic parameters, such as rate coefficients, pre-exponential
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factors and activation energies may become negative, which can cause the
model-calculation routine to fail. This can be avoided in a simple way, by
estimating logarithms of the kinetic parameters instead of the parameters
themselves. Should the optimal value of a kinetic parameter be zero or,
unrealistically, negative, its logarithm will be dropped at a very negative
value.

Separate estimation of physical variables

The parameters in the physico-chemical model of TAP-experiments, are
either physical (pulse sizes, diffusion coefficients, . . . ) or kinetic (rate
coefficients, pre-exponential factors or activation energies) in nature. Of
course the kineticist is most interested in the kinetic parameters. Gen-
erally, estimating the physical parameters along with the kinetic ones,
causes the confidence intervals of the latter to widen. This is especially
true for kinetic parameters the estimates of which show a high correla-
tion with the estimate of at least one physical parameter. As an example,
consider the adsorption coefficient ka of oxygen on the V150 catalyst, es-
timated from a TAP-experiment, together with the effective Knudsen
diffusion coefficient De,O2 of oxygen, the pulse size nO2 and baseline posi-
tion u0 in Section 6.5. The estimate of ka was shown to be rather highly
correlated with the estimates of De,O2 and nO2 . If possible, physical pa-
rameters such as De,O2 and nO2 should be independently estimated from
separate, non-reactive experiments. At the same time, it should be clear
that their estimation has to be accurate. Indeed, significant errors in
these values of the physical variables will cause equally significant errors
in the values of the kinetic parameters.

9.5 Reaction network selection

Nonlinear least-squares regression of kinetic data is the key to the statis-
tically sound discrimination between rival kinetic models, and hence be-
tween the corresponding reaction networks (Froment and Hosten, 1981).
Many statistical criteria are available allowing a selection between models
after least-squares regression. Here, the Bayesian information criterion
(BIC), introduced by Schwarz (1978), will be presented.

The BIC attributes a score with the same name, BIC, to each of the
models. The model with the lowest BIC-value is selected. This value is
defined for a model j as

BICj = −2 lnLj + pj lnn, (9.9)

where pj is the dimension of model j, i.e., its number of parameters, and
n is the number of dependent variables. Lj is the likelihood of the model,
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after maximization by least-squares estimation of its parameters. Suppose
y is the vector of dependent variables and fj(β̂ββj) is its analogue calculated
using model j, where β̂ββj represents the vector of corresponding parameter
estimates. Assume the Conditions 6.4, 6.5 and 6.6 on p. 78 are fulfilled:
all dependent variables, the elements of y, are independently normally
distributed and their variance σ2 is constant. Then the likelihood L of
model j is given as

Lj =
1

(2πσ2)n/2
exp

−1
2

∥∥∥y − fj(β̂ββj)
∥∥∥2

σ2

, (9.10)

The variance σ2 is estimated based on model j as the residual mean
square,

σ2 ≈ s2
j =

∥∥∥y − fj(β̂ββj)
∥∥∥2

n− pj
, (9.11)

Substituting Eq. (9.11) in Eq. (9.10) yields

Lj =
exp

(
−n−pj2

)
(2πs2

j )n/2
. (9.12)

After some manipulations, substitution of Eq. (9.12) in the definition
(9.9) gives

BICj = n
[
1 + ln

(
2πs2

j

)]
+ pj (lnn− 1) , (9.13)

The better the description of the data, the lower sj and the higher the
probability that the model will be selected. The second term in Eq. (9.13)
attributes a penalty to each model, depending on its dimension pj . The
more parameters a model needs to describe the data, the lower the prob-
ability that it will be selected. This why the BIC is often applied in areas
where a low dimension of the models is critical.

Observe that through s2
j , the BIC-value depends additively on the

unit of the dependent variable. But this does not pose a problem, because
only the differences between the BIC-values of the candidate models is
relevant. If a reference model is chosen, the value

∆jBIC = BICj −BICref (9.14)

does no longer depend on the unit of the dependent variable and can be
used for selection.
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9.6 Example

Consider again the state-defining TAP-data obtained on the EL10V1 cat-
alyst, see Section 9.2. Using TAPFIT, these data will now be subjected to
SOSR with three physico-chemical models, identical apart from the reac-
tion network assumed. For its regression part, TAPFIT relies completely
on ODRPACK (Boggs et al., 1987). One of the candidate networks will be
selected using the BIC. Each of the candidate reaction networks is pseu-
domonomolecular. The integration of the TAP reactor models therefore
has been carried out using the transfer matrix approach. The initial and
boundary conditions were the ideal ones described in Section 4.3. Two
interjacent samples were calculated between each pair of actual samples
to make sure the Nyquist frequency was high enough for an accurate
simulation. The extra samples were immediately discarded. Using the
known calibration matrix S in Eq. (9.3), the model-calculated molar flow
rate time series were transformed into analogues of the raw experimental
time series.

As it was mentioned in Section 9.3, an accurate estimate of the pulse
sizes is not available. The pulse sizes of propane at the six different reactor
temperatures, nC3H8(698 K), nC3H8(723 K), nC3H8(748 K), nC3H8(773 K),
nC3H8(798 K) and nC3H8(823 K), and the pulse size of propene at 723 K,
nC3H6(723 K), therefore have to be estimated along with the kinetic pa-
rameters. For each component, the Knudsen diffusion coefficient was
assumed equal in all zones. Argon was pulsed over the reactor in a sepa-
rate experiment at 672 K. Regression of the resulting time series yielded
a Knudsen diffusion coefficient of

De,ref = 1.866 · 10−3 m2/s (9.15)

All diffusion coefficients were derived from this reference diffusion coeffi-
cient using Eq. (4.3).

Reaction network 1

A parsimonious reaction network was postulated to represent the inter-
action of propane and propene with the catalyst. This reaction network
is represented by the reaction graph in Fig. 9.7. The oxidative dehy-
drogenation of propane to propene apparently occurs in one elementary
step, while both propane and propene undergo an irreversible apparent
elementary step leading to a surface precursor of carbon monoxide or
carbon dioxide in a way which is not further specified. The Arrhenius
relation (1.4) has been reparametrized in order to avoid important corre-
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C3H8 k1 C3H6

k2 k3

Figure 9.7: A reaction graph representing the interaction of propane and
propene with the catalyst according to reaction network 1.

lations between the pre-exponential factors and the activation energies:

k1 = k1,ref exp
(
−E1

R

(
1
T
− 1
Tref

))
, (9.16)

and analogous for k2 and k3. k1,ref represents the rate coefficient k1 at
the reference temperature Tref , which was chosen here as the geometric
mean of the extreme temperatures:

Tref = 758 K ≈
√

698 K · 823 K. (9.17)

The natural logarithms

k′1,ref = ln
(
k1,ref

1 Hz

)
, E′1 = ln

(
E1

1 J/mol

)
(9.18a)

k′2,ref = ln
(
k2,ref

1 Hz

)
, E′2 = ln

(
E2

1 J/mol

)
(9.18b)

k′3,ref = ln
(
k3,ref

1 Hz

)
, E′3 = ln

(
E3

1 J/mol

)
(9.18c)

were estimated along with the pulse sizes, by subjecting the raw data to
SOSR. The regression was repeated with different sets of initial values.
It was found to give the same result in all cases. Fig. 9.8 shows the first
0.6 s of the experimental time series and their model-calculated analogues
resulting from SOSR. Fig. 9.8 (a) represents the responses to propane.
Only the extreme temperatures 698 K and 823 K are represented for the
sake of clarity. Fig. 9.8 (b) represents the responses to propene. The
regression has a visibly good quality. The multiple correlation coefficient
is 0.998. The parameter estimates and their 95% confidence intervals
are given in Table 9.2. Since the logarithms of the kinetic parameters
were estimated, their confidence intervals are not symmetric around the
estimate. The pulsed quantities of propane are all estimated at realistic
values of about 2 nmol. The confidence intervals prove the small variations
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Figure 9.8: Average of twenty replicate-experimental time series measured at
29 amu (propane) and 41 amu (propene, propane) obtained on a three-zone TAP
reactor with central zone loaded with EL10V1 catalyst. The time series have
been obtained as responses to pulses of propane at reactor temperatures ranging
from 698 K to 823 K (a) and propene at 723 K (b). The lines represent the
model-calculated time series resulting from SOSR assuming reaction network
1, represented by the reaction graph in Fig. 9.7.

of the estimates significant. This variation could not have been predicted.
The pulsed quantity of propene is estimated significantly lower than the
pulsed quantities of propane. But this was expected because the pulse
valve opening time was set lower than for the propane pulses. Luckily, the
confidence intervals of the kinetic parameters are not widened too much
by estimating them together with the pulse sizes. Indeed, the estimates of
the pulse sizes are rather weakly correlated with the kinetic parameters.
Of all binary correlation coefficients, the one having the largest magnitude
is

ρ
(
nC3H6(723 K), k′3,ref

)
= 0.64. (9.19)

The correlation coefficients between the kinetic estimates are shown in Ta-
ble 9.3. They are all moderate. Thanks to the reparametrization (9.16),
the correlation coefficients between the logarithm of the reference rate
coefficients, k′j,ref , and the logarithm of the corresponding activation en-
ergies, E′j , is rather weak. The most important correlation is a negative
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Table 9.2: Parameter estimates obtained from SOSR of three-zone-TAP-data
with the reaction network 1, represented by the reaction graph in Fig. 9.7.

estimate 95% confidence interval
nC3H8(698 K) (nmol) 2.000

[
1.952, 2.047

]
nC3H8(723 K) (nmol) 2.042

[
1.988, 2.095

]
nC3H8(748 K) (nmol) 2.199

[
2.146, 2.253

]
nC3H8(773 K) (nmol) 2.098

[
2.037, 2.160

]
nC3H8(798 K) (nmol) 2.114

[
2.057, 2.170

]
nC3H8(823 K) (nmol) 1.969

[
1.915, 2.024

]
nC3H6(723 K) (nmol) 0.654

[
0.590, 0.719

]
k1,ref (Hz) 5.031

[
4.499, 5.626

]
E1 (kJ/mol) 66.30

[
57.89, 75.92

]
k2,ref (Hz) 4.554

[
3.941, 5.263

]
E2 (kJ/mol) 19.80

[
9.581, 40.91

]
k3,ref (Hz) 43.75

[
39.37, 48.62

]
E3 (kJ/mol) 44.83

[
35.35, 56.87

]

one between k′1,ref and k′2,ref :

ρ
(
k′1,ref , k

′
2,ref

)
= −0.91. (9.20)

This can be understood because they have exactly the same effect on
the conversion of propane. The most precise kinetic estimates are the
ones of k1,ref and E1. The estimates of k2,ref , E2, k3,ref and E4 have
wider confidence intervals, but are all still significant. Propene and the
oxygenated products carbon monoxide and carbon dioxide are formed
parallel-consecutively, in correspondence with the results of Sack et al.
(Sack, 2006; Balcaen et al., 2009). The oxidative dehydrogenation of
propane to propene requires the highest activation: E1 = 66.30 kJ/mol,
while step 3 probably requires more activation than step 2. Even though
reaction network 1 already provides a satisfactory description of the data,
two slightly more complex reaction networks were tested, each having one
more apparent elementary step.

Reaction network 2

Reaction network 2 is represented by the reaction graph depicted in
Fig. 9.9. Compared to reaction network 1, it contains an extra reaction
step between propane and the other components, possibly representing
the adsorption of propane. The visual result of the regression will not be
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Table 9.3: Binary correlation coefficients between the kinetic parameter esti-
mates obtained from SOSR of three-zone-TAP-data with the reaction network
1, represented by the reaction graph in Fig. 9.7.

k′1,ref E′1 k′2,ref E′2 k′3,ref E′3
k′1,ref 1 −0.10 −0.91 −0.41 0.78 0.11
E′1 1 −0.14 −0.75 −0.03 0.62
k′2,ref 1 0.55 −0.80 −0.24
E′2 1 −0.34 −0.70
k′3,ref 1 0.06
E′3 1

C3H8 k1 C3H6k4

k2 k3

Figure 9.9: A reaction graph representing the interaction of propane and
propene with the catalyst according to reaction network 2.

shown, because it is very similar to the one represented in Fig. 9.8. The
multiple correlation coefficient is still 0.998. The parameter estimates
are given in Table 9.4, while the binary correlation coefficients are shown
in Table 9.5. The correlations between the pulse sizes and the kinetic
parameters have not been shown. As before, they are rather weak. To
mention just the most important one:

ρ (nC3H8(698 K), E′4) = −0.59. (9.21)

Clearly, the estimates pertaining to the steps 1 and 2 are problematic. A
quick verification shows that the regression routine has made these steps
much faster than the other steps, at all temperatures. The final estimates
of k′1,ref , E

′
1, k′2,ref and E′2 are so high, that each pair of them shows a near-

perfect correlation, see Table 9.5. As a result, the confidence intervals are
infinitely wide. For that matter, when the regression was repeated several
times with different sets of initial estimates, different estimates of k′1,ref ,
E′1, k′2,ref and E′2 were obtained, while the estimates of the other kinetic
parameters and the residual sum of squares remained the same. In any
case, the estimates were always so, that the rate coefficients k1 and k2
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Table 9.4: Parameter estimates obtained from SOSR of three-zone-TAP-data
with the reaction network 2, represented by the reaction graph in Fig. 9.9.

estimate 95% confidence interval
nC3H8(698 K) (nmol) 1.990

[
1.947, 2.034

]
nC3H8(723 K) (nmol) 2.047

[
1.991, 2.102

]
nC3H8(748 K) (nmol) 2.208

[
2.153, 2.263

]
nC3H8(773 K) (nmol) 2.099

[
2.036, 2.163

]
nC3H8(798 K) (nmol) 2.110

[
2.052, 2.169

]
nC3H8(823 K) (nmol) 1.958

[
1.902, 2.014

]
nC3H6(723 K) (nmol) 0.666

[
0.598, 0.734

]
k1,ref (Hz) 2.228 · 1013

[
0, +∞

]
E1 (kJ/mol) 1969

[
0, +∞

]
k2,ref (Hz) 1.953 · 1013

[
0, +∞

]
E2 (kJ/mol) 1914

[
0, +∞

]
k3,ref (Hz) 3.808

[
3.693, 3.922

]
E3 (kJ/mol) 44.81

[
33.68, 59.62

]
k4,ref (Hz) 9.760

[
9.519, 10.01

]
E4 (kJ/mol) 44.16

[
41.04, 47.51

]

Table 9.5: Binary correlation coefficients between the kinetic parameter esti-
mates obtained from SOSR of three-zone-TAP-data with the reaction network
2, represented by the reaction graph in Fig. 9.9.

k′1,ref E′1 k′2,ref E′2 k′3,ref E′3 k′4,ref E′4
k′1,ref 1 1.00 1.00 1.00 −0.03 0.05 −0.07 0.07
E′1 1 1.00 1.00 −0.03 0.05 −0.07 0.07
k′2,ref 1 1.00 −0.03 0.05 −0.07 0.07
E′2 1 −0.03 0.05 −0.07 0.07
k′3,ref 1 0.22 −0.19 −0.16
E′3 1 −0.05 −0.30
k′4,ref 1 −0.43
E′4 1
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Table 9.6: Parameter estimates obtained from SOSR of three-zone-TAP-data
with the reaction network 3, represented by the reaction graph in Fig. 9.10.

estimate 95% confidence interval
nC3H8(698 K) (nmol) 2.020

[
1.965, 2.075

]
nC3H8(723 K) (nmol) 2.055

[
1.999, 2.111

]
nC3H8(748 K) (nmol) 2.206

[
2.152, 2.260

]
nC3H8(773 K) (nmol) 2.098

[
2.036, 2.159

]
nC3H8(798 K) (nmol) 2.107

[
2.050, 2.163

]
nC3H8(823 K) (nmol) 1.966

[
1.911, 2.020

]
nC3H6(723 K) (nmol) 0.666

[
0.596, 0.733

]
k1,ref (Hz) 5.015

[
4.482, 5.611]

E1 (kJ/mol) 69.15
[
60.73, 78.74]

k2,ref (Hz) 4.566
[
3.953, 5.273]

E2 (kJ/mol) 14.28
[
4.962, 41.11]

k3,ref (Hz) 44.59
[
40.11, 49.56]

E3 (kJ/mol) 43.63
[
34.60, 55.02]

k4,ref (Hz) 4.850 · 108
[
0, +∞]

E4 (kJ/mol) 1133
[
0, +∞]

could be considered infinitely large, although their ratio remained the
same. All this indicates that there is apparently just one elementary
step between propane and propene. Except the near-perfect correlations
mentioned above, the binary correlations between the kinetic coefficients
is weak.

Taking reaction network 1 as a reference, the BIC-score for reaction
network 2 is

∆2BIC = −1.97 + 8.98 = 7.01, (9.22)

where the first term is due to the improved description of the data and
the second term represents the penalty due to the dimension of the model.
The second term prevails, which confirms the supposition that reaction
network 2 is not a valuable extension of reaction network 1.

Reaction network 3

Reaction network 3, represented by the reaction graph depicted in Fig.
9.10, is an alternative extension of reaction network 1. It includes an extra
step in the oxidative hydrogenation. The visual result of the regression
will not be shown, because it is again very similar to the one represented
in Fig. 9.8. For that matter, the multiple correlation coefficient remains
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Table 9.7: Binary correlation coefficients between the kinetic parameter esti-
mates obtained from SOSR of three-zone-TAP-data with the reaction network
3, represented by the reaction graph in Fig. 9.10.

E′1 k′2,ref E′2 k′3,ref E′3 k′4,ref E′4
k′1,ref −0.21 −0.91 −0.37 0.74 0.09 0.16 0.16
E′1 1 −0.03 −0.72 −0.02 0.45 −0.18 −0.18
k′2,ref 1 0.51 −0.76 −0.21 −0.14 −0.14
E′2 1 −0.41 −0.51 0.10 0.10
k′3,ref 1 −0.02 −0.03 −0.03
E′3 1 0.11 0.11
k′4,ref 1 1.00
E′4 1

C3H8 k1 C3H6k4

k2 k3

Figure 9.10: A reaction graph representing the interaction of propane and
propene with the catalyst according to reaction network 3.

0.998. The parameter estimates are given in Table 9.6, while the binary
correlation coefficients for the kinetic parameters are shown in Table 9.7.
The correlations between the pulse sizes and the kinetic parameters, not
represented in Table 9.7, are again rather weak, the most important cor-
relation being

ρ
(
nC3H6(723 K), k′3,ref

)
= 0.68. (9.23)

This time, the parameters k′4,ref and E′4 pertaining to the step 4 are es-
timated very high. k4,ref is estimated at 4.850 · 108 Hz, see Table 9.6,
which corresponds to k′4,ref being estimated at 20. This value was pro-
vided as an upper limit of acceptability. Without this upper limit, the
parameter is given even higher values, which eventually cause the model-
calculation routine to fail. This happens more specifically because the
matrix H̃(l)(s) · F̃(l) in Eq. (4.34) becomes quasisingular. In any case,
k′4,ref and E′4 are estimated so high that they show a near-perfect mutual
binary correlation and infinitely wide confidence intervals. It can be read-
ily verified that the regression routine has made step 4 much faster than
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the other steps, at all temperatures. Comparison of Table 9.6 with Ta-
ble 9.2 and of Table 9.7 with Table 9.3 shows that the estimates for k′1,ref ,
E′1, k′2,ref , E

′
2, k′3,ref and E′3 and their mutual binary correlation coeffi-

cients are close to their counterparts for reaction network 1. In summary,
the regression routine practically reduces reaction network 3 to network
1. This indicates again that there is apparently just one elementary step
between propane and propene.

The BIC-score for reaction network 3 is

∆3BIC = −5.50 + 8.98 = 3.48, (9.24)

where the first term is due to the improved description of the data and
the second term represents the penalty due to the dimension of the model.
Albeit less convincingly, the second term prevails. The reaction network
selection is therefore concluded in favor of network 1.

9.7 Conclusions

In view of the complexity of the TAP-apparatus, its user has to take into
account certain technical limitations. As a result, in order to be able to
extract quantitative information, he should observe a set of guidelines.
First of all, small pulses should be applied, allowing

1. operation in the Knudsen diffusion regime, ensuring easy modeling
and excluding gas-phase reactions;

2. pseudomonomolecular kinetics, reducing the space of candidate re-
action networks;

3. the collection of replicate state-defining data, enabling the extrac-
tion of second-order statistical information;

4. an isothermal catalytic zone, even if the reaction is highly exother-
mal;

5. accurate estimation of the pulse size, by alternating pulses of reac-
tant and inert.

Regarding the mass spectrometer, the collection time should be taken long
enough to ensure a complete extinction of the pulse response. Spectrally
localized noise should be avoided if possible. The sampling interval should
not be taken too small. 1 ms suffices as a guideline.

The statistically most rigorous way to extract quantitative data is
by least-squares regression. Preconditioning transforms before regression
should be limited to baseline-correction. Indeed, transformation of the
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raw time series into time series representing molar flow rates introduces
cross-correlations between the latter. This has a disadvantageous effect
on the accuracy of the parameter estimates and their confidence intervals.
In order to avoid widening of these confidence intervals, as far as possi-
ble, physical variables such as pulse sizes and diffusion coefficients should
be determined independently. Parsimonious kinetic models, representing
simple reaction networks, should be given preference in attempts to de-
scribe the experimental data. In order to avoid the regression routine to
evolve to negative estimates for kinetic parameters, i.e., rate coefficients,
pre-exponential factors and activation energies, logarithms of these pa-
rameters can be estimated.

The BIC was presented as a criterion to select a reaction network
from a set of candidates, after repeated regression of the data. This
criterion is particularly suitable since it favors simple reaction networks,
represented by parsimonious kinetic models. The criterion was applied
to study the nature of the interaction of propane and propene with the
EL10V1 catalyst from experimental TAP-data. The results support the
idea that propane can be oxidized directly or via propene.
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General Conclusions

In order to study reaction networks, the most valuable data stem from
transient experiments. Pseudomonomolecular kinetics can usually be de-
scribed by a compartmental model. Compartmental kinetics can be repre-
sented either analytically or graphically, by a reaction graph. The vertices
in this reaction graphs represent components, while arcs connecting them
represent elementary steps. The link between the analytical and graphical
representations of compartmental kinetics proves especially close in the
Laplace-domain, where kinetic transfer functions can be found graph-
theoretically from the reaction graph. Kinetic transfer functions Hi,j

represent the effect of a source of a component Aj on the evolution of
the concentration of a component Ai. Especially, the symbolic form of
the kinetic transfer functions can be derived from visual inspection of the
reaction graph, depending on the number of reaction intermediates be-
tween Aj on Ai and the length of the shortest reaction pathway from Aj
and Ai. This allowed the formulation of necessary conditions for struc-
tural local idenfifiability of the apparent rate coefficients from transient
isothermal data in terms of these connectivity features of the reaction net-
work. These conditions were applied to investigate the identifiability of
rate coefficients describing the interaction of propane with a CuO–CeO2

catalyst, based on TAP-data. Kinetic transfer functions can be directly
implemented in a Laplace-domain expression of the TAP reactor model,
allowing the simulation of experiments and the calculation of pulse re-
sponses. This method is referred to as the “transfer matrix approach”.
Albeit somewhat less accurately and with a higher computational cost,
simulation is also possible in the wider domain of general kinetics, using
the method of lines.

Transient kinetic data can be interpreted in two ways. Either a re-
action network is tested or selected, or, if this reaction network is al-
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ready assumed known, its kinetic parameters are identified. In both
cases, the statistically most rigorous way to proceed is through least-
squares regression. Because the reactant pulses in TAP are so small,
the mass spectrometer signals are intrinsically weak and therefore sensi-
tive to noise. This noise limits the amount of information which can be
extracted by regression. Moreover, TAP-noise was found to have non-
ideal properties: non-Gaussian, heteroskedastic and colored. An ideal
character of the noise, however, is tacitly assumed when the data are
directly subjected to least-squares regression. The matter was resolved
by the introduction of the SOSR. The SOSR uses replicate-experimental
data to estimate the second-order statistical properties of the noise, rely-
ing mainly on PCA. Based on the estimated second-order statistics, the
SOSR applies a linear conditioning transform to the data, before subject-
ing them to least-squares regression. The SOSR results in more accurate
parameter estimates and more realistic confidence intervals then direct
least-squares regression. This was shown by means of synthetic TAP-
experiments. The SOSR was also applied to two experimental examples:
the irreversible adsorption of oxygen on the V2O5 based V150 catalyst
and the interaction of propane with a CuO–CeO2 catalyst, where the
latter was also investigated for identifiability, see above. All this was per-
formed using TAPFIT, a specially developed simulation and regression
program. It was shown that the only recommended transform of raw
experimental TAP-data before their regression, except for the SOSR con-
ditioning transform, is baseline-correction. Indeed, transformation of the
raw time series in V to time series representing molar flow rates in mol/s
introduces cross-correlations, which cause inaccurate confidence intervals.
This was shown by means of synthetic TAP-data. In any case, due to the
technical limitations of the TAP-apparatus, experimentalists should ob-
serve certain guidelines. First of all, small pulse sizes have to be applied,
not only to ensure Knudsen diffusion and pseudomonomolecular kinetics,
see above, but also to be able to collect (more) replicates in view of the
SOSR, an isothermal catalytic reactor zone and an accurate estimation
of the average pulse size. The pulse spacing and the mass spectrometer
collection time have to be taken long enough to ensure a complete ex-
tinction of the pulse responses and an accurate baseline-correction. As
a rule, the sampling interval need not be chosen smaller than 1 ms. Fi-
nally, spectrally localized noise, due to electromagnetic interference, has
to be avoided if possible. In preparation of the regression of TAP-data,
the physical parameters should be independently identified, if possible.
Repeated regression with models assuming different reaction networks,
allows the selection of one of them. To this end, the BIC is a particularly
attractive criterion, as it favors simple models in the selection. This cri-
terion has been applied to the interaction of propane and propene with
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the V2O5 based EL10V1 catalyst, as studied by TAP. A simple parallel-
consecutive reaction network has been selected, in which propane oxidizes
either directly or via the oxidative dehydrogenation to propene.

The selection of a kinetic model among a list of postulated candidates
represents the traditional approach of reaction network determination.
In this work, a novel approach was explored, allowing the determination
of connectivity features of the reaction network in a model-free manner,
i.e., without the need to postulate candidate networks. The approach
relies on the Y-procedure, as applied to TZTR-data. If certain rather
mild conditions are fulfilled, values of the kinetic transfer function can
be calculated for equally spaced frequencies. As mentioned above, the
symbolic form of the transfer functions reflects connectivity features of
the reaction network. Visual inspection of the Bode plots of these func-
tions, allows the determination of these features. The observable shortest
reaction path length is determined from the high-frequency limit of the
argument. Trends in the Bode plots allow the determination of the ob-
servable number of intermediates. Numerical experiments have confirmed
the feasibility of this procedure. In the Bode plots, the window of ob-
servable frequencies is only limited by spectrally localized and irreducible
high-frequency noise.





Appendix A

Graph-Theoretical Notions

Most of the definitions are inspired by (Bang-Jensen and Gutin, 2008).

Definition A.1 (walk). A walk of length l is an alternating sequence
x1a1x2a2x3 . . . xlalxl+1 of vertices xj and arcs aj such that for each j,
the tail and head of aj are xj and xj+1, respectively.

In the digraph shown in Fig. A.1 (a), x7a9x8a10x9a11x8 is a walk.

Definition A.2 (directed path). A directed path of length l is a walk of
length l in which all vertices are distinct.

Mind that the aj represent arcs and not weights. Different arcs aj and
ak can have the same weight, so arc weights generally cannot be used to
identify the arc. x1a3x4a6x5a7x6 is a directed path in Fig. A.1 (a). The
walk x7a9x8a10x9a11x8 is not a directed path, as vertex x8 is visited more
than once.

Definition A.3 (cycle). A cycle of length l is a walk with the same
begin- and endvertex, but with all other vertices distinct.

In Fig. A.1 (a), the walk x2a4x5a7x6a8x3a5x2 is a cycle.

Definition A.4 (undirected path). An undirected path of length l is an
alternating sequence x1a1x2a2x3 . . . xlalxl+1 of distinct vertices xj and
arcs aj such that for each j, the tail and head of aj are xj and xj+1,
irrespective of their order.

Each directed path is also an undirected path. x1a1x2a5x3 is an undi-
rected path, but not a directed path.

Definition A.5 (linkage, linkage class). If V is the set of vertices of a
digraph, a subset is called linked if there is at least one undirected path
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(a) (b)

Figure A.1: A digraph partitioned into two linkage classes, delimited by a full
line, and five strong linkage classes, delimited by a dashed line.

linking each pair of different vertices contained in V . A vertex singleton
is also considered linked. A linkage class of a digraph is a maximal linked
vertex subset of V .1 A trivial linkage class contains a single vertex.

Definition A.6 (strong linkage, strong linkage class). If V is the set
of vertices of a digraph, a subset is called strongly linked if there is at
least one directed path linking each pair different vertices of V . A vertex
singleton is also considered strongly linked. A strong linkage class of a
digraph is a maximal strongly linked vertex subset of V .2 A trivial strong
linkage class contains a single vertex. An ergodic3 strong linkage class is
a linkage class which has no outgoing arcs.

Each strong linkage class is a subset of a linkage class. The linkage classes
in Fig. A.1 (a) have been delimited by a full line. The strong linkage
classes have been delimited by a dashed line.

Definition A.7 (source, sink). Call a source (sink) a vertex which is the
head (tail) of no arc.

The sources in the digraph shown in Fig. A.1 (a) are x1 and x7. There
are no sinks.

1The usual term in graph theory is “connected component”. However, to avoid
confusion with a chemical component represented by a vertex, the term “linkage class”,
used by Feinberg (1987), is given preference here.

2The usual term in graph theory is “strongly connected component”. Here, the
term “strong linkage class” is used, as in Feinberg (1987).

3The term “ergodic” was taken from (Gorban et al., 2010).
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Figure A.2: A rooted tree.

Definition A.8 (rooted tree, leaf, spanning rooted tree, determinant).
A rooted tree is defined as a digraph in which exactly one arc leaves from
all except one vertex, the root , from which no arcs leave. Moreover, there
is a directed path to the root from each other vertex. A vertex is a trivial
tree rooted in itself. A leaf of a rooted tree is a source of that tree. A
spanning rooted tree of a weighted digraph is a subgraph which is a rooted
tree containing all vertices of the supergraph. In a weighted digraph, the
weight of a rooted tree is the product of the weights of its arcs. The
weight of a trivial rooted tree is 1, by definition. The determinant of a
vertex x in a graph is defined as the sum of the weights of all spanning
trees rooted in x. If there are no such spanning trees, the determinant is
zero.

Fig. A.2 shows a tree rooted in vertex x7. x1, x2 and x5 are this tree’s
leaves. The weight of the rooted tree would be k1k2k3k4k5k6 if kj is the
weight of arc aj . In the text, the term “rooted tree” will be shortened to
“tree”.

Definition A.9 (forest, spanning forest). A forest is a disjoint union of
trees. Its weight is equal to the product of the weights of the trees. A
spanning forest of a digraph is a subgraph which is a forest containing all
vertices of the supergraph.

Fig. A.1 (b) highlights a spanning forest of the digraph of Fig. A.1 (a).





Appendix B

Graphical Construction of
Compartmental Models for
Pseudomonomolecular
Reaction Networks

This appendix demonstrates how a compartmental model can be con-
structed graphically for a pseudomonomolecular reaction network if Con-
dition 2.1 on p. 12 is fulfilled. This occurs by transformation of the
reaction digraph. This will be illustrated for the pseudomonomolecular
reaction network represented by the reaction digraph in Fig. 2.2.

1. Consider a vertex x representing a complex
∑
j Aj of multiple,

not necessarily mutually different, components Aj having a non-
quasiconstant concentration. x has to be a sink because all steps are
assumed pseudomonomolecular. An example is A2 +A3 in Fig. 2.2.
Introduce a virtual component and let its name replace the label of
x. Let the complex

∑
j Aj be represented instead by a vertex in a

new linkage class. This linkage class contains a copy of all walks to
x. Some vertices on such a walk would be the tail of an arc leading
away from x: to a vertex from which there is no walk to x. Such
arcs are also copied, but directed to a vertex representing a virtual
component. The digraph of Fig. 2.2 is transformed into the digraph
shown in Fig. B.1. A8 and A9 are virtual components.

2. The new linkage class is now multiplied. One copy is provided for
each of the components Aj represented in the complex. Each time,
the label

∑
j Aj is replaced by a different component Aj of the com-

plex. Condition 2.1 on p. 12 ensures that Aj is not yet represented
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Figure B.1: An intermediate stage in the transformation of the digraph in
Fig. 2.2 to the digraph in Fig. 2.4. A8 and A9 are virtual components.

by another vertex in the same linkage class. It may however be al-
ready represented elsewhere. If this is the case, the vertices have to
be contracted. The digraph in Fig. B.1 is transformed into Fig. 2.4.
Observe that A2 is the result of the contraction of two vertices.
If there are remaining vertices representing a complex of multiple
components, repeat the procedure from step 1. This is not the case
for the example.



Appendix C

The Continuous and Discrete
Fourier Transforms

Suppose f is a continuous function of the time, t. Its Fourier transform
Ff is defined by:

(Ff)(ω) = f(ω) =

∞∫
−∞

f(t) exp (−iωt)dt. (C.1)

g is a complex function of a real variable ω, called the “pulsation”. To
recover the original f from g, the inverse Fourier transform is to be ap-
plied:

(F−1g)(t) = f(t) =
1

2π

∞∫
−∞

g(ω) exp (iωt)dω. (C.2)

Usually, the continuous function f is not known. Instead, a time series
would be available consisting of nt measurements:

y =
[
y(t1), y(t2), · · · , y(tnt)

]T
, (C.3)

where

tj = (j − 1)∆t. (C.4)

Assume y(t) is approximately zero before the time t1 of the first sample
and after the time tnt of the last sample:

y(t) ≈ 0 for t < t1 and t > tnt . (C.5)
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Because of this, the continuous Fourier transform can be approximated
by

(Fy)(ω) ≈

tnt∫
t=t1

y(t) exp (−iωt)dt. (C.6)

For ω not greater than the Nyquist pulsation, ωN , see Eq. (5.15), the
integral can be approximated by a Riemann sum:

(Fy)(ω) ≈
nt∑
j=1

y(tj) exp (−iωtj)∆t. (C.7)

Especially, Eq. (C.7) holds for the equidistant pulsations

ωk =
2π(k − 1)
nt∆t

, (C.8)

where k ∈ {1, 2, . . . , nt}:

(Fy)(ωk) ≈
nt∑
j=1

y(tj) exp
(
−i2πk − 1

nt

tj
∆t

)
∆t (C.9)

(C.4)
=

nt∑
j=1

y(tj) exp
(
−i2π (k − 1)(j − 1)

nt

)
∆t. (C.10)

Comparing this expression with the definition of the discrete Fourier
transform,

(Fy)k =
1
√
nt

nt∑
j=1

y(tj) exp
(
−i2π (k − 1)(j − 1)

nt

)
, (C.11)

it is found that
(Fy)(ωk) ≈

√
nt∆t (Fy)k. (C.12)

Define the discrete approximation Fd of the continuous Fourier transform
as the vector transformation from y to

Fdy =
√
nt∆tFy. (C.13)

In Eq. (C.12), the pulsation ωk varies between zero and the Nyquist
pulsation ωN , see Eq. (5.15). This means that k varies from 1 to nt+1

2 if
nt is odd and from 1 to nt

2 + 1 if n is even. However, the discrete Fourier
transform Fy to the right hand side of Eq. (C.12) actually contains nt
elements. It can be readily proven that conjugate symmetry exists around
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the Nyquist pulsation ωN in Fy because y is real. Indeed, any element
(Fy)k+1 from the latter half can be derived from the first knowing that

(Fy)nt−k = (Fy)k+1. (C.14)

This is a useful property to find an inverse of Fd.
If nt is even:

F−1
d : C

nt
2 ×R→ R

n (C.15)

z 7→ 1
√
nt∆t

F−1z∗, (C.16)

where z∗ is the conjugate symmetric extension of z. Note that the last
element of z has to be real for a conjugate symmetric extension z∗ to
exist. F−1 is the inverse discrete Fourier transform.

If nt is odd:

F−1
d : C

n+1
2 → R

n (C.17)

z 7→ 1
√
nt∆t

F−1z∗. (C.18)

F−1
d is a discrete approximation of the inverse Fourier transform. The

discrete Fourier transform and its inverse are calculated using the Fast
Fourier Transform (FFT) algorithm, with an execution time proportional
to nt log nt.

Suppose a continuous function f of the time is available. Then appli-
cation of the vector transformation Fd after sampling of f at the discrete
time points tj offers an approximation for the continuous Fourier trans-
form in the pulsations ωk. Similarly, applying F−1

d after sampling of a
frequency domain function g in the pulsations ωk gives an approxima-
tion for the continuous inverse Fourier transform of g at the discrete time
points tj . If nt is even, before being able to apply F−1

d , g(ωN ) should be
made real by removing its imaginary part.





Appendix D

TAPFIT: a Simulation and
Regression program for TAP

The program TAPFIT was developed with two purposes:

1. to calculate TAP pulse responses from the reactor model described
in Section 4.3,

2. to estimate physico-chemical, especially kinetic, parameters by re-
gression of experimental TAP pulse responses with this model.

TAPFIT was programmed in Fortran 95. During its development, an
equilibrium was pursued between versatility, user friendliness and ease of
development. Input parameters are passed on to the program in Fortran
namelists.

D.1 Model-calculation of TAP pulse responses

The model-calculation of TAP pulse responses can be performed using the
two numerical methods presented in Section 4.4. If desired, kinetic rate
equations can be automatically generated from a user supplied reaction
network. The transfer matrix approach is limited to pseudomonomolecu-
lar reaction networks, see Section 4.4. The method of lines can also take
user-supplied rate equations.

If the simulation takes place using the method of lines, the program
aims at a homogeneous discretization of the axial reactor axis. The user
supplies a number of axial intervals per unit length. The program then
calculates which number of intervals meets this number best for each
zone. The interval lengths ∆z(l) are therefore different but almost equal
for all zones l. The initial value problem given by the vectorial differential
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equations (4.14), (4.15), (4.16), (4.17), (4.18), (4.19) and vectorial initial
conditions (4.20a) and (4.20b) is solved using the Livermore solver for
ordinary differential equations (LSODE) from ODEPACK (Hindmarsh,
1983). The higher the number of intervals per unit length, the more
precise the calculated responses, but the more time is needed to perform
the required integration. Simulation using the method of lines can be
applied to state-defining and state-altering experiments.

Simulation using the transfer matrix approach is limited to state-
defining experiment with pseudomonomolecular kinetics. The number of
discrete pulsations ωk at which the outlet fluxes are calculated in the
frequency domain can be specified by the user. The complex matrix ma-
nipulations are performed using various routines from the Linear Algebra
PACKage (LAPACK). The inverse discrete Fourier transform F−1, see
Appendix C, is performed using DFFTPACK.

The simulation module of TAPFIT allows the addition of artificial
noise of all kinds discussed in Chapter 5. This module relies on the
random number generating module RANDOM. ODEPACK, LAPACK,
DFFTPACK and RANDOM were taken from the Netlib1.

D.2 Regression of experimental TAP pulse
responses

TAPFIT reads in the experimental data directly from the rough datafiles.
The user can choose to perform the regression by ordinary NLSQ regres-
sion or SOSR, see Chapter 6. In both cases, the regression is performed
using the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) as implemented in the Orthogonal Distance Regression PACKage
(ODRPACK) (Boggs et al., 1987). ODRPACK was used in its ordinary
least-squares mode.

Comparison of the Figs. 6.8 and 6.2 shows that the difference between
SOSR and NLSQ regression is the application of a three-part condition-
ing transformation before the regression stage: preconditioning, sample
principal component analysis (sPCA) and rescaling. In Chapter 6, the
preconditioning transformation used was Riemann cumulation. However,
other smoothing operations can also be applied in TAPFIT. The sub-
sequent sPCA and rescaling are based on a calculation of the nonzero
eigenvalues and corresponding -vectors of the sample variance matrices
V̂(εεεe,v), calculated from replicate data as in Eq. (6.25). Explicit calcu-
lation of V̂(εεεe,v) is not necessary, as the eigenvalues and -vectors can be
found directly from the computationally efficient singular value decompo-
sition of the error matrices Ee,v. The reader is referred to Appendix G

1URL: www.netlib.org, consulted on July 15, 2010.
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and (Therrien, 1992), (Vandeginste et al., 1998) or (Jolliffe, 2004) for
details. Here, the DGESVD routine from LAPACK was used.





Appendix E

Spectrum of Ornstein
Uhlenbeck Noise

Because the average of the noise is zero and because the discrete Fourier
transform is linear:

µFΦ(ωj) = 0, (E.1)

for all j ∈ {1, 2, . . . , }.
An simple approximate analytical expression can be found for the

autocovariance in the frequency domain. By definition

CFΦ(ωj , ωk) = E
[(
FΦ (ωj)− µFΦ(ωj)

)(
FΦ (ωk)− µFΦ(ωk)

)]
(E.2a)

= E
[
FΦ (ωj)FΦ (ωk)

]
. (E.2b)

Application of definition (5.12) yields

CFΦ(ωj , ωk) = E

[
1
nt

(
nt∑
l=1

Φ(tl)e−iωjtl
)(

nt∑
m=1

Φ(tm)eiωktm
)]

(E.3a)

=
1
nt

nt∑
l=1

nt∑
m=1

E [Φ(tl)Φ(tm)] e−i(ωjtl−ωktm). (E.3b)

Because
(
Φ(tj)

)
is a real time series with average zero,

E [Φ(tl)Φ(tm)] = CΦ(tl, tm) (E.4a)

= e−
|tm−tl|

θ σΦ(tl)σΦ(tm), (E.4b)
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where correlation coefficient (5.17) was introduced in the latter step. Sub-
stitution of Eq. (E.4b) into (E.3b) gives

CFΦ(ωj , ωk) =
1
nt

nt∑
l=1

nt∑
m=1

(
σΦ(tl)σΦ(tm)e−

|tm−tl|
θ e−i(ωjtl−ωktm)

)
.

(E.5)
It can be assumed that the correlation time is much smaller than the

total recording time:
θ≪ nt∆t. (E.6)

For this reason, exp (− |tm − tl| /θ) will only differ significantly from 0
where

|tm − tl|≪ nt∆t. (E.7)

It is assumed that this relatively small time difference ensures that

σΦ(tl)σΦ(tm) ≈ σ2
Φ

(
tl + tm

2

)
, (E.8)

where exp (− |tm − tl| /θ) differs significantly from 0. Observe also that

ωjtl − ωktm =
ωj + ωk

2
(tl − tm) + (ωj − ωk)

tl + tm
2

. (E.9)

In Eq. (E.5), formally consider σΦ : R→ R+ the continuous-time exten-
sion of the time series

(
σΦ(tj)

)
, mapping all values outside [t1, tnt ] to 0.

Substitution of Eqs. (4.12), (E.8) and (E.9) into (E.5) then gives:

CFΦ(ωj , ωk) ≈ 1
nt

+∞∑
l=−∞

+∞∑
m=−∞

( p(l−m)︷ ︸︸ ︷
e−

∆t|l−m|
θ −i

ωj+ωk
2 ∆t(l−m) .

σ2
Φ

(
∆t .

l +m

2

)
. e−i(ωj−ωk)∆t l+m2︸ ︷︷ ︸

q(l+m)

)
. (E.10)

Replace the dummy variable m by d = l −m.

CFΦ(ωj , ωk) ≈ 1
nt

+∞∑
l=−∞

+∞∑
d=−∞

p(d)q(2l − d) (E.11a)

=
1
nt

+∞∑
d=−∞

p(d)
+∞∑
l=−∞

q(2l − d). (E.11b)
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If d ∈ Z is even, the second sum adds up the images under q of all
even integers. If d is odd, the second sum adds up the images of all odd
integers. (E.11b) can therefore be rewritten as

CFΦ(ωj , ωk) ≈ 1
nt

(
+∞∑
d=−∞

p(2d) ·

Se︷ ︸︸ ︷
+∞∑
l=−∞

q(2l) +

+∞∑
d=−∞

p(2d+ 1) ·
+∞∑
l=−∞

q(2l + 1)︸ ︷︷ ︸
So

)
. (E.12)

2∆tSe and 2∆tSo are both Riemann sums of the same function q from
−∞ to +∞. They are both very good approximations of

∞∫
−∞

q(l) dl. (E.13)

Replacing So by Se in Eq. (E.12) gives

CFΦ(ωj , ωk) ≈ 1
nt

+∞∑
l=−∞

q(2l)

( ∞∑
d=−∞

p(2d) +
∞∑

d=−∞

p(2d+ 1)

)
(E.14a)

=
1
nt

(
+∞∑
l=−∞

q(2l)

)
︸ ︷︷ ︸

Sq

·

(
+∞∑
d=−∞

p(d)

)
︸ ︷︷ ︸

Sp

. (E.14b)

The factors Sq and Sp can now be studied separately.
From Eq. (4.12) and the definition of q in (E.10):

Sq =
+∞∑
l=−∞

σ2
Φ(tl).e−i(ωk−ωj)tl (E.15)

or, because σΦ(t) disappears for t outside [t1, tnt ],

Sq =
nt∑
l=1

σ2
Φ(tl).e−i(ωk−ωj)tl . (E.16)

Finally, taking into account Eq. (5.12) defining the discrete Fourier trans-
form,

Sq =


√
nt F(σ2

Φ)(ωk−j) if k > j

√
nt F(σ2

Φ)(ωj−k) if k < j

. (E.17)



186 Appendix E

Sp can be written as

Sp =
0∑

d=−∞

p(d) +
+∞∑
d=0

p(d)− p(0). (E.18)

From the definition of p in (E.10) it is clear that p(0) = 1 and that
p(−d) = p(d), ∀d ∈ Z. Therefore

Sp = 2<

(
+∞∑
d=0

p(d)

)
− 1 (E.19a)

= 2<

(
+∞∑
d=0

e−∆t
“

1
θ+i

ωj+ωk
2

”
d

)
− 1 (E.19b)

= 2<

(
1

1− e−∆t
“

1
θ+i

ωj+ωk
2

”
)
− 1 (E.19c)

= 2<
(

1
E

)
− 1 (E.19d)

where

E = 1− e−∆t
“

1
θ+i

ωj+ωk
2

”
. (E.20)

Observe that

<
(

1
E

)
=
<E
E E

(E.21)

where

<E = 1− e−
∆t
θ cos

(
ωj + ωk

2
∆t
)

(E.22)

and

EE =
(

1− e−∆t
“

1
θ−i

ωj+ωk
2

”)(
1− e−∆t

“
1
θ+i

ωj+ωk
2

”)
(E.23a)

= 1− e−
∆t
θ

(
ei
ωj+ωk

2 ∆t + e−i
ωj+ωk

2 ∆t
)

+ e−2 ∆t
θ (E.23b)

= 1− 2 e−
∆t
θ cos

(
ωj + ωk

2
∆t
)

+ e−2 ∆t
θ . (E.23c)
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Substituting Eqs. (E.22) and (E.23c) in Eq. (E.21) and the resulting ex-
pression in Eq. (E.19d) yields

Sp = 2
1− e−

∆t
θ cos

(
ωj+ωk

2 ∆t
)

1− 2 exp
(
−∆t

θ

)
cos
(
ωj+ωk

2 ∆t
)

+ e−2 ∆t
θ

− 1 (E.24a)

=
1− e−2 ∆t

θ

1− 2 exp
(
−∆t

θ

)
cos
(
ωj+ωk

2 ∆t
)

+ e−2 ∆t
θ

. (E.24b)

Observe that e−
∆t
θ is the coefficient of correlation between any two

successive samples of
(
Φ(tj)

)
. If the traditional notation ρ is adopted,

substitution of Eqs. (E.17) and (E.24b) into Eq. (E.14b) gives

CFΦ(ωj , ωk) ≈


1√
nt

(
1−ρ2

)
.F(σ2)(ωk−j)

1−2ρ cos
“
ωj+ωk

2 ∆t
”

+ρ2
if k > j

1√
nt

(
1−ρ2

)
.Fσ2(ωj−k)

1−2ρ cos
“
ωj+ωk

2 ∆t
”

+ρ2
if k < j.

(E.25)

Note that despite their being approximate, the expressions for CFΦ(ωj , ωk)
and CFΦ(ωk, ωj) are complex conjugates, as is theoretically required, see
Section 5.2.

The variance of FΦ (ωj) is found as a special case:

CFΦ(ωj) ≈
1
√
nt

(
1− ρ2

)
.Fσ2 (0)

1− 2ρ cos (ωj∆t) + ρ2
. (E.26)

Definition (5.12) shows that

Fσ2 (0) =
1
√
nt

nt∑
k=1

σ2(tk) (E.27a)

=
√
nt (σ2)m (E.27b)

where (σ2)m is the time-averaged variance of the signal. Substitution into
(E.26) gives

CFΦ(ωj) ≈
(
1− ρ2

)
(σ2)m

1− 2ρ cos (ωj∆t) + ρ2
. (E.28)

Observe that variability of the variance in time does not affect the variance
profile of the spectrum, only the time average does.
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Least-Squares Regression

Very generally, say y ∈ Rn×1 is a vector of empirical values and f(b) its
analogue calculated from a model with parameters collected in a vector
b ∈ Rp×1. Assume that the model applies with some real, unknown
parameters βββ:

y = f(βββ) + εεε (F.1)

where εεε is a random error vector with multidimensional normal distribu-
tion with average zero (0n) and variance matrix In σ2:

εεε ∼ N
(
0n, In σ2

)
. (F.2)

βββ is estimated as β̂ββ, minimizing the residual sum of squares

S(b) = ‖y − f(b)‖2 . (F.3)

The following important properties apply in good approximation if
a first order Taylor expansion of f is valid in good approximation in a
sufficiently large domain about βββ:

f(βββ + ∆b) ≈ f(βββ) + J ·∆b, (F.4)

with J the Jacobian matrix

J =
∂f
∂b

(βββ) ∈ Rn×p. (F.5)

Property F.1. β̂ββ is multidimensional normally distributed with mean βββ
and variance matrix

V(β̂ββ) =
(
JT · J

)−1
σ2. (F.6)
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It follows that β̂ββ is an unbiased and maximum-likelihood estimator of βββ.
The Jacobian J is calculated from

J ≈ ∂f
∂b

(β̂ββ) (F.7)

and the error variance σ2 is estimated as the mean square residual:

s2 =

(
y − f(β̂ββ)

)T
·
(
y − f(β̂ββ)

)
n− p

. (F.8)

The variance matrix V(β̂ββ) is estimated as

V̂(β̂ββ) = (JT · J)−1 s2. (F.9)

Property F.2. The variable

tj =
β̂j − βj√
V̂jj(β̂ββ)

, (F.10)

where V̂jj(β̂ββ) is the jth diagonal element of V̂(β̂ββ), is distributed as Stu-
dent’s t distribution with n− p degrees of freedom.

This allows to test whether the real, unknown parameter βj differs
significantly from a certain value β∗j . It is concluded with likelihood 1−α
that it does not if ∣∣∣∣∣∣ β̂j − β

∗
j√

V̂jj(β̂ββ)

∣∣∣∣∣∣ < t1−α/2 :n−p, (F.11)

where the t1−α/2 :n−p quantile can be calculated with a suitable statistical
package. If βj = β∗j , there is a probability 1 − α that inequality (F.11)
leads to the correct conclusion, namely that βj does not differ significantly
from β∗j . Typically, α is taken to be 0.05. This test can be used to verify
whether a parameter differs significantly from a neutral (trivial) value
(usually 0), or, shortly, whether the parameter estimate is significant.
Eq. (F.11) is readily transformed into

β̂j −
∆βj

2
< β∗j < β̂j +

∆βj
2
, (F.12)

representing the 1− α confidence interval for parameter β∗j , with

∆βj = 2 t1−α/2 :n−p

√
V̂jj(β̂ββ). (F.13)
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In the frequently occurring case that

n− p≫ 1, (F.14)

tj in Eq. (F.10) can be considered unit normally distributed. Conse-
quently, the approximation

t1−α/2 :n−p ≈ z1−α/2 (F.15)

can then be applied in Eqs. (F.11) and (F.13).

Property F.3. The variable

F =
(β̂ββ − βββ)T · JT · J · (β̂ββ − βββ)

p s2
(F.16)

is distributed as Snedecor’s F distribution with p and n − p degrees of
freedom.

This allows to test whether βββ differs significantly from a certain vector of
parameter values βββ∗. It is concluded with likelihood 1 − α that it does
not if

(β̂ββ − βββ∗)T · JT · J · (β̂ββ − βββ∗)
p s2

< F1−α : p,n−p. (F.17)

Mostly βββ∗ is taken to be a vector of neutral parameters (mostly the null
vector). Eq. (F.17) then means that the regression is globally insignifi-
cant. Inequality (F.17) implicitly defines the joint confidence region of all
parameters, delimited by a hyperellipsoid. pF with F given by Eq. (F.16)
can be considered χ2 distributed with p degrees of freedom if (F.14) is
valid. The approximation

F1−α : p,n−p ≈
1
p
χ2

1−α : p (F.18)

can then be applied in (F.17).





Appendix G

Singular Value Decomposition:
Practical

Efficient numerical methods are available to perform the singular value
decomposition (SVD) of Ee,v ∈ Rnt×re,v with rank re,v − 1:

Ee,v = L ·Σ ·RT (G.1)

with Σ ∈ R(re,v−1)×(re,v−1) diagonal, holding the singular values,

Σ =


s′1 0 · · · 0
0 s′2 · · · 0
...

...
. . .

...
0 0 · · · s′re,v−1

 , (G.2)

positive and ranked from high to low (s′1 > s′2 > . . . > s′re,v−1 > 0),
L ∈ Rnt×(re,v−1) having the orthonormal so-called left-singular vectors
and R ∈ Rnt×(re,v−1) having the orthonormal right-singular vectors as
columns:

LT · L = I and RT ·R = I. (G.3)

Now observe that

V̂(εεεe,v) =
1

re,v − 1
Ee,v ·ET

e,v (G.4)

=
1

re,v − 1
L ·Σ ·RT ·R ·Σ · LT (G.5)

=
1

re,v − 1
L ·Σ2 · LT . (G.6)
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Comparison with Eq. (6.8) teaches that the eigenvectors of V̂(εεεe,v) are
the left singular values of Ee,v and that its eigenvalues are

s2
j =

s′j
2

re,v − 1
(G.7)

for all j ∈ {1, 2, . . . , re,v − 1}.



Glossary

Bode plots The Bode magnitude plot is a logarithmic plot rep-
resenting the modulus of a transfer function as a
function of the frequency. The Bode phase plot
is a semilogarithmic plot representing the phase of
a transfer function as a function of the frequency,
where the latter is represented on a logarithmically
scaled axis.

Colored noise Noise modeled as a random sequence, any two dif-
ferent elements of which are generally correlated.

Compartmental
kinetics

Kinetics described by a compartmental model, rep-
resented by a reaction graph.

Directed graph,
digraph

A collection of vertices (nodes) and arcs (arrows)
going from one vertex to another.

Elementary step A reaction representing an irreducible event at the
molecular level.

Global
identifiability

A set of parameters is globally identifiable if al-
most each combination of values of these parame-
ters can be uniquely identified from experimental
data without experimental error.

Homoskedastic
random sequence

A random sequence, any two elements of which
have the same variance.

Intermediate A component represented in a reaction network,
but not in the net reaction.
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Isothermal data A set of data stemming from kinetic experiments
with equal reaction temperature.

Kinetic transfer
function

In the Laplace domain, a function of the Laplace
variable, which, upon multiplication with the net
source of a component, yields the concentration
of another, not necessarily different, component.
Kinetic transfer functions can be found graph-
theoretically for pseudomonomolecular reaction
networks.

Knudsen diffusion Low pressure diffusion through a porous bed, char-
acterized by a diffusion coefficient independent of
composition and pressure.

Local identifiability A set of parameters is locally identifiable if almost
each combination of values of these parameters can
be deduced to pertain to a denumerable set of can-
didates, from experimental data without experi-
mental error.

Moment invariant The observable kinetic behavior of a pseu-
domonomolecular reaction network is described by
kinetic transfer functions. The invariants are para-
metric functions of the apparent rate coefficients,
appearing in these transfer functions.

Ornstein Uhlenbeck
noise

Noise modeled as a Gaussian stochastic process Y
depending on a real value t, any two samples Y (ti)
and Y (tj) of which have a correlation which de-
pends on the absolute time difference |tj − ti| as a
descending exponential.

Pseudomonomol-
ecular reaction
network

A reaction network consisting of monomolecu-
lar and pseudomonomolecular elementary steps.
A monomolecular elementary step has a single
molecule as reactant. A pseudomonomolecular el-
ementary step has multiple reactant molecules, all
but one of which are present in a quasiconstant
concentration.
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Random sequence A stochastic vector containing chronological values
of a stochastic process.

Reaction graph A digraph representing a pseudomonomolecular re-
action network governed by compartmental kinet-
ics. Each vertex in a reaction graph represents a
component (or rather, its concentration) and each
arc represents an elementary step.

Reaction network A set of elementary steps.

Second-order sta-
tistical regression
(SOSR)

An extension of nonlinear ordinary least-squares
regression for time series, where this regression is
precluded by a series of conditioning transforms of
experimental and model-calculated time series.

Shortest reaction
pathway

In a pseudomonomolecular reaction network, the
shortest reaction pathway from Ak to Aj is the
set of elementary steps represented by the shortest
pathway from Ak to Aj in the kinetic graph.

Spectrally localized
noise

Noise modeled as a stochastic process, the Fourier
transform of which has a standard deviation peak
about a certain frequency.

State-altering
TAP-experiment

A series of TAP pulse response experiments in
which the reactant pulses cause a significant
change of the catalyst.

State-defining
TAP-experiment

A series of TAP pulse response experiments in
which the size of the reactant pulses is low enough
to assume them to cause no significant change of
the catalyst.

Stochastic process A stochastic variable which is a function of a real
variable, usually time.

TAPFIT A simulation and regression program for temporal
analysis of products.
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Temporal analysis
of products (TAP)

A transient kinetic experimental technique per-
formed on a continuously evacuated microreactor
loaded with a fixed catalyst bed, in which the re-
sponse to a pulse of reactants is recorded by means
of mass spectrometry.

Thin-zone-TAP-
reactor

A TAP-reactor packed with three zones, the middle
one of which is much thinner than the outer ones.
The middle zone is reactive (catalytic) while the
outer zones are inert.

Time series A vector of which the ith element is a value f(ti),
where f is a function of time and ti = (i − 1) ∆t.
∆t is the positive sampling interval.

Unidentifiability A set of parameters is unidentifiable if it is not
locally identifiable.

White noise Noise modeled as a random sequence, any two dif-
ferent elements of which are uncorrelated.

Y-procedure A procedure developed to calculate gas concen-
trations and gas production (or consumption) in
the reactive zone of a thin-zone-TAP-reactor, as a
function of time. This procedure does not rely on
any a priori assumptions about the reaction kinet-
ics.
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activation energy, 2, 153
active site, 2
adequacy, 78
apparent rate coefficient, 10, 12
arc, 8
area-normalization, 66, 139, 150
Arrhenius equation, 2
asymptotology, 13
autocorrelation, 47, 58, 79
autocovariance, 46

baseline-correction, 50, 140, 166
Bayesian information criterion, see

BIC
BIC, 153, 166
bimolecular step, 1
Bode plots, 118, 167

calibration coefficient, 35, 144, 152
calibration matrix, 35, 76, 116,

152
catalysis, 2

heterogeneous –, 2
homogeneous –, 2

central limit theorem, 82
collection time, 48, 58, 60, 140,

166
colored noise, 46
compartmental kinetics, 12, 15,

165
compartmental model

closed –, 18

graphical construction of a
–, 173

open –, 12, 18
complex, 8
confidence interval, 146, 166, 190
confidence region, 191
connected component, see link-

age class
strongly –, see strong link-

age class
connectivity features, 23, 114, 145
copper oxide–ceria catalyst, 98,

110, 165
corner frequency, 118
correlation time, 55, 120, 141
cross-correlation, 66, 79, 81, 148
cycle, 169

length of a –, 169

data preconditioning, 88
determinant, 19, 171
DFFTPACK, 180
differential algebra approach (iden-

tifiability), 105
diffusion

Knudsen –, 30
molecular –, 33

diffusion coefficient, see effective
Knudsen diffusion coef-
ficient

digraph, 8
dimension of a model, 145, 153
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Dirac pulse, 34, 38, 116, 137
directed graph, 8
directed path, 169

length of a –, 169
discrete Fourier transform, 176

inverse –, 177
discrete Karhunen-Loève trans-

formation, see pPCA
distinguishability

of models, 104, 112
of parameters, 104

dominant reaction network, 12
Doob’s theorem, 55

effective Knudsen diffusion coef-
ficient, 30

EL10V1 catalyst, 138, 155, 167
elementary step, 1

bimolecular –, 1
molecularity of an –, 1
monomolecular –, 1
pseudomonomolecular –, 9
trimolecular –, 1

elimination theory, 107
essential noise, see Ornstein Uh-

lenbeck noise

F distribution, see Snedecor’s F
distribution

fast Fourier transform, see FFT
FFT, 177
forest, 171

spanning –, 171
Fourier transform, 175

discrete –, 176
discrete approximation of the

–, 176
discrete approximation of the

inverse –, 177
fast –, see FFT
inverse –, 175
inverse discrete –, 177

Gauss-Markov stochastic process,
see Ornstein Uhlenbeck
noise

Gauss-Newton stage, 110
Gaussian noise, see Ornstein Uh-

lenbeck noise
global identifiability, see struc-

tural global identifiabil-
ity

head, 8
heterogeneous catalysis, 2
heteroskedasticity, 47, 53, 58
homogeneous catalysis, 2
homoskedasticity, 47, 78

identifiability
practical –, 107
structural global –, 104
structural local –, 104

input-output mapping, 17, 104
intermediate, 1, 25, 165

observable number of –s, 119,
167

interrogative cycle, 33
interval analysis, 107
invariant, 106
inverse discrete Fourier transform,

177
inverse Fourier transform, 175

discrete approximation of the
–, 177

isothermal data, 73
isothermicity (TAP), 31, 144

kinetic transfer function, 17, 22,
106, 114, 117, 165

pole of a –, 117
symbolic form of a –, 23, 165
zero of a –, 117

kinetic transfer matrix, 17, 22,
106

kinetics
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compartmental, 12, 15
general, 7
linear, 10

Knudsen diffusion, 30, 137, 139

label (of a vertex), 8
lack of fit, 78
LAPACK, 180
Laplace graph, 18
Laplace transform approach (iden-

tifiability), 105
law of mass action, 2
leaf, 171
least-squares regression, 74, 77,

148, 153, 166, 180, 189
left-singular vector, 193
Levenberg-Marquardt algorithm,

73, 152, 180
linear kinetics, 10
linear time-invariant state-space

model, 16
linkage, 169

strong –, 170
linkage class, 170

strong –, 170
trivial –, 170

local identifiability, see structural
local identifiability

LSODE, 180

Mason’s rule, 26
mass action

law of –, 2
mass spectrometer, 31, 137

variability of the – sensitiv-
ity, 65, 67, 120, 137

mass spectrum, 35
method of lines, 36, 42, 165
molecular diffusion, 33
molecularity, 1
moment invariant, see invariant
monomolecular step, 1
Moore-Penrose inverse, 147

multiscale reaction network, 12

NLSQ regression, see least-squares
regression

noise, 46, 78
colored –, 46
essential –, see Ornstein Uh-

lenbeck noise
Gaussian –, see Ornstein Uh-

lenbeck noise
non-Gaussian –, 67
Ornstein Uhlenbeck –, 55, 71,

94, 120
spectrally localized –, 62, 67,

94, 120, 137, 141, 166
white –, 46, 79

non-Gaussian noise, 67
nonisothermal data, 73
nonlinear least-squares regression,

see least-squares regres-
sion

Nyquist frequency, 48, 58, 120,
123, 149

Nyquist pulsation, 48, 58, 69, 176

observable number of intermedi-
ates, 119, 167

observable shortest reaction path
length, 119, 167

observation, 16
ODEPACK, 180
ODRPACK, 155, 180
Ornstein Uhlenbeck noise, 55, 71,

94, 120
spectrum of –, 183

Ornstein Uhlenbeck stochastic pro-
cess, see Ornstein Uh-
lenbeck noise

oscillatory noise, see spectrally
localized noise

oxidative dehydrogenation, 138,
167

Parseval’s theorem, 57, 59
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path
directed –, 169
undirected –, 169

pole (of a kinetic transfer func-
tion), 117

population principal component,
see pPC

population principal component
analysis, see pPCA

pPC, 81
pPCA, 81
practical identifiability, 107
pre-exponential factor, 2, 153
principal component

population –, see pPC
sample –, see sPC

principal component analysis
population –, see pPCA
sample –, see sPCA

pseudoinverse, see Moore-Penrose
inverse

pseudomonomolecular reaction net-
work, 10, 15, 105, 114,
143, 145

pseudomonomolecular step, 9
pulse size, 32, 145, 166

poor reproducibility of the
–, 64, 67, 120, 137, 144

pulse valve, 144
pump-probe experiment, 33

quasi-equilibrium, 125

RANDOM, 180
random sequence, 46
rate coefficient, 2, 152

apparent –, 10, 12
reaction graph, 8, 20, 165
reaction network, 1

dominant, 12
multiscale, 12
pseudomonomolecular –, 10,

15, 105

regression
least-squares –, 74, 77, 148,

153, 166, 180, 189
second-order statistical –, see

SOSR
reparametrization, 155, 157
replicate experiment, 47, 82, 86,

141, 166
Riemann sum, 89, 176, 185
right-singular vector, 193
root, 171
rooted tree, 171

spanning –, 171
trivial –, 171

sample principal component, see
sPC

sample principal component anal-
ysis, see sPCA

sampling frequency, 35
sampling interval, 35, 141
sampling period, see sampling in-

terval
second-order statistical regression,

see SOSR
selectivity, 3
shortest reaction pathway

length of –, 23, 165
observable length of –, 119,

167
signal-flow graph formalism, 26
signal-to-noise ratio, see SNR
similarity transformation approach

(identifiability), 105
singular value decomposition, see

SVD
sink (graph theory), 170
Snedecor’s F distribution, 191
SNR, 32, 141
SOSR, 90, 141, 148, 166, 180
source (graph theory), 170
spanning forest, 171
spanning rooted tree, 171
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sPC, 84, 89
sPCA, 85, 89, 180
spectrally localized noise, 62, 67,

94, 120, 137, 141, 166
SSITKA, 4, 10
state space model, 16
state-altering experiment, 33, 180
state-defining experiment, 32, 141,

180
stationary experiment, 3, 10, 98
steady-state isotopic transient ki-

netic analysis, see SSITKA
stochastic process, 46

discrete parameter –, see ran-
dom sequence

strong linkage, 170
strong linkage class, 170

ergodic –, 170
trivial –, 170

strongly connected component, see
strong linkage class

structural global identifiability, 104,
107

structural local identifiability, 104,
106, 108, 165

Student’s t distribution, 190
SVD, 180, 193
symmetric TZTR, 116

t distribution, see Student’s t dis-
tribution

tail, 8
TAP, 4, 10, 29, 75, 76

thin-zone- –, see TZTR
TAP-1, 32, 48, 71, 114, 120, 149
TAP-2, 32, 50, 71, 121
TAP-3, 32, 121
TAPFIT, 43, 94, 120, 149, 155,

166, 179
temperature programmed desorp-

tion, see TPD
temporal analysis of products, see

TAP

thin-zone-TAP-reactor, see TZTR
symmetric –, see symmetric

TZTR
time series, 35
TPD, 4
transfer function, see kinetic trans-

fer function
transfer matrix approach, 38, 42,

115, 120, 149, 165, 180
transient experiment, 3, 75, 165
tree, see rooted tree
trimolecular step, 1
TZTR, 31, 40, 114, 145, 167

symmetric –, 116

undirected path, 169
length of an –, 169

unidentifiability, 104

V150 catalyst, 96, 153, 166
vertex, 8
virtual component, 18, 173
volatile organic compounds, 98

walk, 169
length of a –, 169

weight
of a rooted tree, 171
of an arc, 8

white noise, 46, 79

Y-procedure, 32, 116, 167

zero (of a kinetic transfer func-
tion), 117

zeroth moment, 59, 66, 92, 141
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