
Modellering en taakplanning van heterogene architecturen
met meerdere rekenkernen

Modeling and Scheduling Heterogeneous Multi-Core Architectures

Kenzo Van Craeynest

Promotor:

prof. dr. ir. Lieven Eeckhout

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: Prof. dr. ir. Jan Van Campenhout
Faculteit Ingenieurswetenschappen

Academiejaar 2012-2013

Examencommissie

Prof. Rik Van De Walle, voorzitter
Decaan, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. David Black-Schaffer
Uppsala University,
Sweden

Prof. Koen De Bosschere, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Jan Fostier
Vakgroep Informatietechnologie, Faculteit Ingenieurswetenschappen
Universiteit Gent

Dr. Jennifer B. Sartor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Aamer Jaleel
Intel, Hudson, MA
USA

Dr. Ibrahim Hur
Intel, Belgium

i

ii

Leescommissie

Prof. Jan Fostier
Vakgroep Informatietechnologie, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. David Black-Schaffer
Uppsala University,
Sweden

Dr. Jennifer B. Sartor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Aamer Jaleel
Intel, Hudson, MA
USA

Dr. Ibrahim Hur
Intel, Belgium

iii

iv

Samenvatting

In de laatste decennia zijn processors geëvolueerd van relatief eenvoudige
scalaire in-order processors tot meerkernige processors met meerdere su-
perscalaire out-of-order rekenkernen. Hierdoor stijgt de complexiteit van
de processors en de nood aan hulpmiddelen om te begrijpen waarom de
prestatie van een applicatie op een processor is wat ze is. Het beschikken
over adequate hulpmiddelen is cruciaal want meer inzicht in het gedrag
van de processor zal uiteindelijk leiden naar betere (snellere en/of energie-
efficiëntere) ontwerpen.

Simulatie van Meerkernige Processors

Een simulator is een dergelijk hulpmiddel: er wordt een model van een
processor in software geı̈mplementeerd. Zo kunnen ontwerpen geëvalu-
eerd worden alvorens ze effectief te bouwen en kan er meer inzicht ver-
kregen worden in de prestatie van de verschillende onderdelen van de te
ontwerpen processor. Het spreekt voor zich dat simulatoren nauwkeurig
het gedrag van de processor die ze modelleren moeten nabootsen, maar
het is minstens even belangrijk dat de evaluatie voldoende snel kan gebeu-
ren. Hoe sneller de simulatie verloopt, hoe meer parameters, configura-
ties, werklasten en ontwerpbeslissingen geëvalueerd kunnen worden. Dit
probleem wordt exponentieel groter wanneer we meerkernige processors
beschouwen: omdat een meerkernige processor meerdere applicaties tege-
lijk kan uitvoeren, vormt iedere combinatie van programma’s een nieuwe
potientiële werklast om te evalueren. Gezien simulatie relatief traag is
(vaak meerdere grootteordes trager dan de processors die ze modelleren)
is het dan ook volledig onhaalbaar om alle (of zelfs maar een fractie van
alle) werklasten te evalueren. Er is dus duidelijk nood aan een fundamen-
teel andere aanpak voor de prestatie-evaluatie en exploratie van de ont-
werpruimte van meerkernige processors.

Analytisch Modelleren van Meerkernige Processors

In dit proefschrift onderzoeken we het gebruik van analytische model-
len om de prestatie van meerkernige processors te evalueren. Eén van de

v

vi

grootste uitdagingen bij de prestatie-evaluatie van meerkernige processors
zijn de gedeelde systeembronnen — wij hebben ons voornamelijk gecon-
centreerd op de gedeelde caches. Er is een complexe terugkoppellus waar-
bij de prestatie van de individuele applicaties bepaald wordt door de ma-
nier waarop de gedeelde cacheruimte dynamisch toegewezen wordt aan
de verschillende applicaties die samen uitvoeren op de meerkernige pro-
cessor. Maar de verdeling van de cache beı̈nvloedt dan weer de prestatie
van de applicaties, waardoor de toegangspatronen naar de cache verande-
ren, wat op zijn beurt leidt tot een andere verdeling in de cache. Het is
duidelijk dat de prestatie van een meerkernige processor bepaald wordt
door de prestatie van de individuele rekenkernen én de manier waarop
gedeelde systeembronnen toegewezen worden aan de rekenkernen.

Wij stellen een methodologie, het Multi-Program Performance Model
(MPPM), voor waarbij we enkel (trage) gedetailleerde simulatie gebrui-
ken voor de prestatie-evaluatie van de rekenkernen en waarbij we gebruik
maken van een iteratief analytisch model om de impact van de gedeelde
caches te schatten. Omdat we per applicatie slechts één maal gedetail-
leerd moeten simuleren, is het MPPM-raamwerk lineair in tijdscomplexi-
teit m.b.t. het aantal te evalueren applicaties. De MPPM-methode voor de
prestatie-evaluatie van meerkernige processors is daardoor tot vijf groot-
teordes sneller dan gedetailleerde simulatie, terwijl de door MPPM ge-
schatte prestatie een fout vertoont van slechts 2.3% voor system throughput
(STP) en 2.9% voor average normalized turnaround time (ANTT) in vergelij-
king met gedetailleerde simulatie. Bovendien hebben we, gebruik makend
van het MPPM-raamwerk hebben we aangetoond dat de gangbare praktijk
om slechts een beperkt aantal combinaties van applicaties te evalueren kan
leiden tot foutieve ontwerpbeslissingen.

Exploratie van de Ontwerpruimte van Heterogene Meerkernige
Processors

Traditioneel bestaan meerkernige processors uit meerdere identieke kernen
(zogenaamde homogene meerkernige processors). Heterogene meerker-
nige processors bestaan uit verschillende types rekenkernen. Heterogene
meerkernige processors kunnen veel energie-efficiënter zijn dan homogene
meerkernige processors door taken op een type processorkern die best ge-
schikt is voor de gegeven taak (beste prestatie voor het minste vermogen-
verbruik) uit te voeren.

Het MPPM-raamwerk stelt ons in staat een uitgebreide exploratie te
doen van de heterogene ontwerpruimte van meerkernige processors, om
zo inzicht te verschaffen in heterogeen meerkernig ontwerp en een ant-
woord te geven op een aantal fundamentele ontwerpkeuze vragen. We
hebben alle mogelijke configuraties van vijf verschillende types processor-
kernen beschouwd, met verschillende cache configuraties, off-chip band-

vii

breedtelimieten en taakplanningsalgoritmes. De belangrijkste conclusies
uit deze studie luiden als volgt:

• We hebben aangetoond dat twee verschillende types processorkernen
voldoende zijn om het grootste deel van de energie-efficiëntie van
heterogeniteit te bereiken.

• Heterogeniteit houdt een fundamentele afweging in tussen de pres-
tatie van individuele applicaties en de prestatie van de volledige pro-
cessor.

• Een beperkt aantal combinaties van types processorkernen bestrijkt
het grootste deel van de ontwerpruimte.

• Een goede plaatsing van de applicaties op de types processorkernen
is cruciaal voor de efficiëntie van heterogene meerkernige processors.

• Beperken van off-chip bandbreedte heeft een grote impact op een
aantal fundamentele ontwerpkeuzes van heterogene meerkernige pro-
cessors.

Taakplanning voor Heterogene Meerkernige Processors

Eén van de belangrijkste aspecten van heterogene meerkernige processors
is de taakplanning: heterogeniteit kan enkel tot een betere energie-efficiëntie
leiden indien er een goede taakplanning is van de applicaties op de process-
orkernen. Bovendien vertonen programma’s vaak tijdsvariërend gedrag,
waardoor het cruciaal is dat taakplanningen dynamisch zijn: de optimale
planning verandert naarmate het uitvoeringspatronen van de applicaties
veranderen.

Wij stellen Performance Impact Estimation (PIE) voor, een methode waar-
bij de prestatie van een applicatie op andere types processorkernen geschat
wordt met behulp van een analytisch model. Omdat we de prestatie niet
hoeven te bemonsteren op alle types processorkernen bekomen we een
schaalbaar systeem, zowel in het aantal processorkernen als in het aantal
types processorkernen. Bovendien vereist PIE slechts zeer beperkte hard-
wareondersteuning nodig. We hebben PIE geëvalueerd voor verschillende
hardwareconfiguraties: voor een set van werklasten waarvoor taakplan-
ning zeer belangrijk is presteert PIE gemiddeld 5.5% beter dan de conven-
tionele technieken en 8.7% beter dan bemonstering-gebaseerde taakplan-
ning. Tevens hebben we aangetoond dat de logica van de conventionele
manier van taakplanning (geheugenintensieve taken worden prioritair op
de minder krachtige processorkernen geplaatst) ernstige gebreken vertoont
in situaties waarbij parallellisme niet behouden wordt op de minder krach-
tige types processorkernen.

viii

Fairness-gebaseerde Taakplanning

Bijna zonder uitzondering wordt er enkel rekening gehouden met through-
put (of totale prestatie van de processor) wanneer men de taakplanning
evalueert voor heterogene meerkernige processors, inclusief de net bespro-
ken PIE-techniek. Niettemin is het zeer belangrijk om naast throughput
ook fairness in rekening te brengen voor zowel werklasten bestaande uit
meerdere onafhankelijke programma’s als meerdradige werklasten. Een
hoge fairness betekent dat alle draden in het systeem proportioneel de-
zelfde vooruitgang maken ten opzichte van geı̈soleerde uitvoering. Voor
werklasten bestaande uit meerdere onafhankelijke programma’s is fairness
belangrijk als het gaat over eigenschappen zoals quality-of-service. Voor
meerdradige werklasten is fairness dan weer belangrijk vanwege de syn-
chronisatie tussen de draden.

Wij hebben twee manieren van fairness-gebaseerde taakplanning voor
heterogene meerkernige processors ontwikkeld en geëvalueerd:
equal-time taakplanning en equal-progress taakplanning. Equal-time taakplan-
ning tracht fairness te optimaliseren door alle draden evenveel uitvoerings-
tijd te geven op elke type processorkern. Wanneer echter de uitvoerings-
snelheid van de verschillende draden sterk verschillend is tijdens het uit-
voeren op de meest krachtige rekenkern, leidt dit niet noodzakelijkerwijze
tot meer fairness. Equal-progress taakplanning gebruikt de effectief gemaakte
vooruitgang om de taakplanning aan te sturen, waardoor ook in deze ge-
vallen een hoge fairness kan behaald worden.

Bovendien hebben we aangetoond dat door fairness te optimaliseren,
ook de prestatie verbeterd wordt voor meerdradige applicaties. Voor ho-
mogene meerdradige applicaties tonen onze resultaten aan dat de prestatie
gemiddeld toeneemt met 14% (tot maximaal 25%) ten opzichte van een sta-
tische werkverdeling. Voor heterogene meerdradige applicaties neemt de
prestatie gemiddeld zelfs toe met 32%.

Summary

Multi-Cores and Simulation

Over the past few decades, processors have evolved from relatively sim-
ple scalar in-order processors to complex multi-core processors with super-
scalar out-of-order cores. With increasing transistor counts and increasing
core count due to Moore’s Law, also comes an increase in complexity. As
this trend continues, there emerges a growing need for tools that help the
architect understand why a processor is performing the way it is and how
design decisions impact performance. A software simulator is a tool that
accurately predicts the behavior and performance of a processor: designs
can be evaluated using a software model of the hardware which models
the behavior and performance of all, or at least, the most important proces-
sor components. Obviously, a simulator needs to accurate, but the speed
at which an application’s performance can be evaluated (relative to native
execution speed) is equally important. If simulation is too slow, this might
be incompatible with tight time-to-market demands, forcing the architect
to evaluate fewer design options, potentially yielding a less-than-optimal
design.

This problem gets further compounded when considering representa-
tive multi-core workloads: a multi-core processor can execute multiple in-
dependent programs concurrently, therefore, any combination of bench-
marks forms a potential multi-program workload. We explore the use of
analytical modeling to increase multi-core simulation speed. Instead of us-
ing slow detailed simulation to evaluate performance for a large number of
multi-program workloads and multi-core designs, we propose a method-
ology (the Multi-Program Performance Model, MPPM) in which detailed
simulation is done for single-program workloads only. We then employ an
iterative analytical model to estimate the impact of the sharing effects in the
last-level caches when co-running programs on the multi-core processor.
MPPM is both fast and accurate: we achieve simulation speedups of up to
five orders of magnitude, and report an average performance prediction er-
ror of 2.3% and 2.9% for system throughput (STP) and average normalized
turnaround time (ANTT), respectively. Additionally, we demonstrate that
current practice of randomly picking a limited number of multi-program

ix

x

workloads, can lead to incorrect design decisions in practical design sce-
narios,, ultimately resulting in sub-optimal designs.

Heterogeneous Multi-Core Processors

Recently, heterogeneous multi-core architectures have been proposed: which
integrate multiple core types on a single chip. The idea is that applications
have different resource requirements during their execution and by match-
ing the application’s requirements to the core capabilities, a much higher
level of energy-efficiency may be achieved.

In this work, we aim at understanding how heterogeneity affects both
chip throughput and per-program performance; how heterogeneous archi-
tectures compare to homogeneous architectures under said performance
metrics; and how fundamental design choices, such as core type, cache size
and off-chip bandwidth, affect performance. We use the MPPM framework
to explore the large heterogeneous multi-core architecture design space.
Because MPPM has linear-time complexity in the number of core types and
programs of interest, it offers a unique opportunity for exploring the large
space of both homogeneous and heterogeneous multi-core processors in
limited time. We considered five different core types (ranging from a small
scalar in-order core to a large 4-wide out-of-order core). We considered
multiple last-level cache sizes and evaluated scenarios of varying off-chip
bandwidth limits. Our analysis provides several interesting insights:

• Two core types provide most of the benefits from heterogeneity.

• Heterogeneity fundamentally trades per-program performance for
chip throughput.

• Some homogeneous configurations are optimal for particular through-
put versus per-program performance trade-offs.

• Job-to-core mapping is both crucial and challenging for heterogeneous
multi-core processors to achieve optimum performance.

• Limited off-chip bandwidth alters some of the fundamental design
choices in heterogeneous multi-core architectures.

Scheduling Heterogeneous Multi-cores

There exists a fundamental challenge in the design space of heterogeneous
multi-core processors, which is how best to schedule workloads on the
most appropriate core type. Heterogeneous multi-cores can enable higher
performance and reduced energy consumption (within a given power bud-
get) if and only if workloads are executed on the most appropriate core

xi

type. Because a lot of workloads show time-varying behavior, a good sche-
duling policy needs to be dynamic. Additionally, because processor die
size continues to steadily increase, a scheduling policy needs to be scalable
with the number cores and the number of core types.

We propose Performance Impact Estimation (PIE), which collects basic
characteristics from the application on the core that it is running on, and
uses these as inputs to an analytical model to estimate performance of the
application on the other core types. PIE uses a dynamic scheduling ap-
proach and is a flexible and scalable solution because it scales easily with
the number of cores and core types. We evaluate PIE scheduling and report
improvements in system performance by 5.5% on average over memory-
dominance scheduling (conventional wisdom) and by 8.7% over sampling-
based scheduling for a set of scheduling-sensitive workload mixes. Addi-
tionally, using insights gained from analytical modeling, we have shown
that the state-of-the-art scheduling policy only works as expected when
considering core types that do not differ significantly in their capabilities
for exploiting parallelism.

Fairness-Aware Scheduling

Previously, we focused on optimizing system throughput with PIE schedul-
ing with little attention to fairness. Yet, guaranteeing that all threads make
equal progress on heterogeneous multi-cores is important for both multi-
threaded and multi-program workloads. Achieving high fairness means
that all threads in the system are making equal progress proportional to
isolated execution.

For multi-program workloads, fairness is important when it comes to
system-level priorities and quality-of-service (QoS) because a heterogeneous
system then behaves as a homogeneous one. For a multi-threaded work-
load, fairness is desirable because of thread synchronization: threads run-
ning on a powerful core will typically make faster progress than threads
running on a small, low-performance core. When there is need for syn-
chronization, the fast running threads will stall at the barrier until all other
threads have reached the barrier.

We propose two techniques to achieve fairness-aware scheduling for
heterogeneous multi-cores: equal-time scheduling strives at achieving high
fairness by running each thread on each core type for an equal fraction of
time. When the threads benefit differently from running on a big core how-
ever, equal-time scheduling will not necessarily yield high fairness. Alter-
natively, equal-progress scheduling can guarantee high fairness for these
bases as well: by continuously monitoring progress and by changing the
thread-to-core mapping to get equal amounts of work done (instead of time
spent) for each thread in the system.

Fairness-aware scheduling improves fairness over pinned scheduling

xii

as done by contemporary operating systems, and it also improves system
throughput by enabling threads to run on a big core type for some fraction
of time. For homogeneous multi-threaded workloads, we report an aver-
age 14% (and up to 25%) performance improvement over pinned schedul-
ing through fairness-aware scheduling. For heterogeneous multi-threaded
workloads; equal-progress scheduling improves performance by 32% on
average.

Contents

1 Introduction 1
1.1 Multi-Cores and Simulation 1
1.2 Multi-Core Analytical Modeling 3
1.3 Heterogeneous Multi-Core Processors 4
1.4 Fairness-Aware Scheduling 8
1.5 Overview . 9

2 MPPM 11
2.1 Introduction . 11
2.2 Multi-Program Performance Model 14

2.2.1 Single-core Simulation Profiling 16
2.2.2 MPPM . 17
2.2.3 Discussion . 20

2.3 Experimental Setup . 21
2.4 Model Evaluation . 22

2.4.1 Variability . 22
2.4.2 Accuracy . 25
2.4.3 Speed . 26

2.5 Debunking Current Practice 26
2.6 Identifying Stress Workloads 30
2.7 Related Work . 32
2.8 Summary . 35

3 Heterogeneous Multi-Core Design 37
3.1 Introduction . 37
3.2 Multi-core Performance Modeling 41
3.3 Design Space Exploration . 42

3.3.1 Heterogeneous multi-core design space 43
3.3.2 Multi-core performance 44

3.4 Experimental Setup . 46
3.5 Results . 47

3.5.1 Homogeneous multi-core processors 48
3.5.2 Pareto-optimal heterogeneous multi-cores 48

xiii

xiv CONTENTS

3.5.3 Limiting off-chip bandwidth 51
3.5.4 Impact of LLC size . 53
3.5.5 Which core types to employ in a heterogeneous design? 55
3.5.6 Job-to-core mapping 57
3.5.7 Workloads . 59

3.6 Related Work . 59
3.7 Summary . 61

4 Heterogeneous Multi-Core Scheduling 65
4.1 Introduction . 65
4.2 Motivation . 66
4.3 Performance Impact Estimation (PIE) 69

4.3.1 Predicting MLP . 72
4.3.2 Predicting ILP . 74
4.3.3 Evaluating the PIE Model 76

4.4 Dynamic Scheduling . 80
4.4.1 Quantifying migration overhead 80
4.4.2 Dynamic PIE Scheduling 82
4.4.3 Hardware support . 83

4.5 Experimental Setup . 84
4.6 Results and Analysis . 85

4.6.1 Private LLCs . 85
4.6.2 Shared LLC . 86
4.6.3 RRIP-managed shared LLC 87

4.7 Related Work . 88
4.8 Summary . 90

5 Fairness-Aware Scheduling 93
5.1 Introduction . 93
5.2 Motivation . 95

5.2.1 Fairness . 95
5.2.2 Multi-threaded workloads 96
5.2.3 Multi-program workloads 97

5.3 Fairness-Aware Scheduling 98
5.3.1 Equal-time scheduling 99
5.3.2 Equal-progress scheduling 100
5.3.3 Trading fairness for throughput 102
5.3.4 Rescheduling granularity 102
5.3.5 Hardware versus software scheduling 103

5.4 Experimental Setup . 104
5.4.1 Simulated architectures 104
5.4.2 Workloads . 104

5.5 Evaluation . 106
5.5.1 Multi-program workloads 106

CONTENTS xv

5.5.2 Multi-threaded workloads 113
5.6 Related Work . 116
5.7 Summary . 117

6 Future Work 119
6.1 Summary . 119
6.2 Future Work . 122

6.2.1 Modeling . 122
6.2.2 Scheduling . 124

xvi CONTENTS

List of Tables

2.1 Baseline processor configuration. 21
2.2 Last-level cache (LLC) configurations. 21

3.1 Chip area cost model. 44

5.1 Multi-threaded benchmarks used in this study. 105

xvii

xviii LIST OF TABLES

List of Figures

2.1 General overview of MPPM. 15
2.2 The Multi-Program Performance Model. 18
2.3 Variability in (a) STP and (b) ANTT as a function of the num-

ber of multi-program workload mixes. 23
2.4 Accuracy of MPPM for predicting (a) STP and (b) ANTT;

measured STP/ANTT on vertical axis versus predicted STP/ANTT
on the horizontal axis. 24

2.5 Measured versus predicted relative per-program slowdown
due to multi-core execution. 27

2.6 Tracking the performance of individual programs in a multi-
program workload consisting of two copies of gamess along
with hmmer and soplex: isolated execution CPI, measured
multi-core execution CPI (through simulation), and predicted
multi-core execution CPI (through MPPM). 27

2.7 Evaluating current practice of selecting random workload
mixes: Rank correlation coefficient for 20 sets of 12-program
workloads versus MPPM. (a) Random selection of programs;
and (b) Random selection of programs within program cate-
gories. 28

2.8 Fractions of when current practice agrees or disagrees with
MPPM, and when MPPM is correct and current practice is not. 31

2.9 Identifying 4-program workloads with the worst STP. 31

3.1 Using MPPM for exploring the heterogeneous multi-core de-
sign space. 42

3.2 Average normalized IPC for the five core configurations con-
sidered in this study as a function of the square root of the
area counted in BCEs. 46

3.3 Pareto-optimal homogeneous multi-core configurations as a
function of STP (vertical axis) and ANTT (horizontal axis). . 47

3.4 Pareto frontier of multi-core configurations, along with all
processor configurations explored including the homogeneous
design points. 49

xix

xx LIST OF FIGURES

3.5 Pareto frontier for heterogeneous multi-core architectures with
a varying number of core types. 51

3.6 Evaluating how off-chip bandwidth limitations affect het-
erogeneous multi-core performance. 52

3.7 Pareto frontier for heterogeneous and homogeneous multi-
core designs under 20 GB/s off-chip bandwidth constraints. 53

3.8 Evaluating how LLC size affects Pareto-optimal heteroge-
neous multi-core performance under different off-chip band-
width constraints. 54

3.9 Pareto frontiers for heterogeneous multi-cores with two core
types, assuming 30 GB/s off-chip bandwidth. 55

3.10 Evaluating how job-to-core mapping affects heterogeneous
multi-core performance. 58

4.1 Normalized big-core CPI stacks (right axis) and small-core
slowdown (left axis). Benchmarks are sorted by their small-
versus-big core slowdown. 68

4.2 Correlating small-core slowdown to the MLP ratio for memory-
intensive workloads (righthand side in the graph) and to
the ILP ratio for the compute-intensive workloads (lefthand
side in the graph). Workloads are sorted by their normalized
memory CPI component (bottom graph). 70

4.3 Illustration of the PIE model. 72
4.4 Evaluating the accuracy of the PIE model. 75
4.5 Comparing scheduling policies on a two-core heterogeneous

multi-core. 77
4.6 Comparing different scheduling algorithms for type-I and

type-III workload mixes assuming a static setup. 78
4.7 Evaluating PIE for heterogeneous multi-core with one big

and three small cores (top graph), and three big cores and
one small core (bottom graph). 79

4.8 Dynamic execution profile of libquantum. 80
4.9 Migration overhead for a shared LLC. 81
4.10 Migration overhead for private powered-off LLCs. 81
4.11 Migration overhead for private powered-on LLCs. 83
4.12 Relative performance (STP) delta over random scheduling

for sampling-based, memory-dominance and PIE schedul-
ing, assuming private LLCs. 86

4.13 Relative performance (STP) delta over random scheduling
for sampling-based, memory-dominance and PIE schedul-
ing, assuming an LRU-managed shared LLC. 87

4.14 Relative performance (STP) delta over random scheduling
for sampling-based, memory-dominance and PIE schedul-
ing, assuming an RRIP-managed shared LLC. 88

LIST OF FIGURES xxi

5.1 Normalized run-time on a homogeneous multi-core with 4
small cores (4S), 4 big cores (4B), and a heterogeneous multi-
core with one big and three small cores (1B3S) while keeping
threads pinned to cores. 97

5.2 Fairness for a 1B1S system for pinned versus throughput-
optimized scheduling using PIE for 500 randomly chosen
two-job mixes. 98

5.3 Equal-time scheduling on a 1B3S heterogeneous multi-core. 99
5.4 Equal-progress scheduling: sampling-based, history-based

and model-based. 101
5.5 Comparing scheduling algorithms relative to pinned schedul-

ing in terms of throughput (top graph) and fairness (bottom
graph) for a 1B1S heterogeneous multi-core with one big and
one small core. 107

5.6 Fairness-aware scheduling as a function of core count in terms
of throughput (top graph) and fairness (bottom graph). . . . 109

5.7 Evaluating different methods for estimating the big-to-small-
core scaling factor in equal-progress scheduling for a 1B7S
system. 110

5.8 The number of migrations across core types in a heteroge-
neous multi-core system under various scheduling policies. 111

5.9 Trade-off between fairness and throughput-optimized schedul-
ing for a 1B1S system. 112

5.10 System throughput and fairness for equal-time and equal-
progress (history-based) scheduling as a function of time slice
granularity. 113

5.11 Comparing scheduling algorithms relative to pinned schedul-
ing for a 1B3S system running homogeneous multi-threaded
applications. 114

5.12 Fairness-aware scheduling for different heterogenous multi-
core configurations for the homogeneous multi-threaded ap-
plications. 115

5.13 Comparing scheduling algorithms relative to pinned schedul-
ing for a 1B3S system running heterogeneous multi-threaded
applications. 116

xxii LIST OF FIGURES

List of Abbreviations

ANTT Average Normalized Turnaround Time
CMP Chip Multiprocessor
CPU Central Processing Unit
EPI Energy Per Instruction
FOA Frequency Of Access
ILP Instruction Level Parallelism
ISA Instruction Set Architecture
KIPS Kilo-Instructions Per Second
LLC Last-Level Cache
MIPS Million Instructions per Second
MLP Memory Level Parallelism
PIE Performance Impact Estimation
QoS Quality of service
RISC Reduced Instruction Set Computer
ROB Reorder Buffer
RRIP Re-reference Interval Prediction
STP System Throughput
SMT Simultaneous Multithreading
TLP Thread Level Parallelism

xxiii

xxiv CHAPTER 0. LIST OF ABBREVIATIONS

Chapter 1

Introduction

It never gets easier, you just go faster.
Greg Lemond

1.1 Multi-Cores and Simulation

Over the past few decades, processors have evolved from relatively simple
scalar in-order processors to multi-core processors with superscalar out-of-
order cores containing complex structures such as branch predictors, large
reorder buffers, a multitude of functional units, large instruction and data
caches, etc. Historically, the focus for increasing the processor performance
was on improving single-core performance. Single-core performance has
improved by exploiting more instruction-level parallelism (ILP) and by in-
creasing clock frequency. Due to Moore’s law [Moore 1965], which states
that the number of transistors that can be integrated on a single chip dou-
bles approximately every two years, this could be done by integrating more
and more components that aided in the exploitation of ILP. This trend came
to an end for three reasons.

Firstly, as single-core processors continued to increase in performance
and clock speed, processor power consumption and heat dissipation in-
creased as well, which in its turn, leads to higher costs for thermal pack-
aging, fans and ultimately, electricity. Up to a point where this becomes a
limiter of processor design (this is commonly known as the power wall).
Secondly, even though there is sufficient ILP available in the instruction
stream [Jouppi and Wall 1989], it becomes increasingly difficult to effi-
ciently extract ILP [Wall 1991]. Finally, main memory performance has been

1

2 CHAPTER 1. INTRODUCTION

growing at a much slower pace than the processors performance [Wulf and
McKee 1995]. As a result, memory has become increasingly slower com-
pared to the processor. Eventually, this also becomes a limiter for perfor-
mance and is known as the memory wall.

As the rate of clock speed improvements slowed, increased use of paral-
lel computing has been pursued to improve processor performance. Chip-
multiprocessors (CMP) or multi-cores offer an elegant solution to this prob-
lem. Advances in chip manufacturing (both transistor scaling and manu-
facturing processes) have significantly increased the number of transistors
on a single chip (as predicted by Moore’s law), allowing architects to inte-
grate multiple processor cores on a single die, effectively allowing for mak-
ing a trade-off between ILP and Thread-Level Parallelism (TLP) [Oluko-
tun et al. 1996]. Another advantage of a multi-core design is that existing
processor designs (in which considerable effort and money was invested to
create, evaluate and produce) can be used as a starting point by duplicating
them on a single processor die, making multi-core a logical step in proces-
sor design evolution. CMPs reduce the impact of both the power wall and
the memory wall by focusing on throughput instead of single-core perfor-
mance, allowing the cores to be less aggressive or to run at a lower clock
frequency.

With increased transistor densities and core counts also comes an in-
crease in complexity. As this trend continues, there emerges a growing
need for tools that help the architect understand why a processor is per-
forming the way it is and how design decisions impact performance (and
ultimately, guiding the creation of a new design that performs better than
the previous one). A software simulator is a tool that accurately predicts
the behavior of a processor and is arguably one of the most powerful tools
used by processor designers. Instead of having to physically build pro-
cessors, designs can be evaluated using a software model of the hardware
which models the behavior and performance of all, or at least the most im-
portant, processor components.

A simulator has two critical qualities: accuracy and speed. Obviously, a
simulator needs to accurately reflect the hardware it is configured to simu-
late. Simulation speed — the speed at which an application’s performance
can be evaluated (relative to native execution speed) is equally important:
the design process involves a very large number of simulations over a wide
range of benchmarks and design options in order to define the optimum de-
sign point. If simulation is too slow, this might be incompatible with tight
time-to-market demands, forcing the architect to evaluate fewer design op-

1.2. MULTI-CORE ANALYTICAL MODELING 3

tions, potentially yielding a less-than-optimal design.

This problem gets further compounded when considering representa-
tive multi-core workloads: a multi-core processor can execute multiple in-
dependent programs concurrently, therefore, any combination of programs
forms a potential multi-program workload. This results in an exponen-
tially growing workload space as the number of cores continues to increase.
Given the very large number of possible multi-program workloads and the
limited speed of current simulation methods, it is impossible to evaluate
all (or even a fraction of all) possible multi-program workloads. Consider
a small benchmark suite that contains only 20 benchmarks, the number
of two-program workloads is 210, the number of four-program workloads
quickly increases to 8,855 and there are more than 2 million possible eight-
program workloads to consider. There is a clear need for a fundamentally
different approach to explore multi-core designs that does not rely on de-
tailed on detailed simulation of multi-program workloads.

1.2 Multi-Core Analytical Modeling

In this dissertation, we explore the use of analytical modeling to greatly de-
crease the time it takes to evaluate large numbers of multi-program work-
loads on multi-core architectures. One of the biggest challenges with multi-
core performance modeling are the shared resources (such as a shared last-
level cache). There is a complex feedback mechanism where the contention
for these resources changes how much progress the individual cores make.
This change causes a different interaction pattern in the shared resource,
i.e., it affects how the cores contend for shared resources. It is clear that
per-program performance in a multi-core processor is the result of both
the architecture and the entire workload. Instead of using slow detailed
simulation to evaluate performance for a large number of multi-program
workloads and multi-core designs, we propose a methodology in which
detailed simulation is done for single-program workloads only. We then
employ an iterative analytical model to estimate the impact of the shar-
ing effects in the last-level caches when co-running multiple programs in a
multi-program workload.

Contribution #1: The Multi-Program Performance Model

We present the Multi-Program Performance Model (MPPM), a method for
quickly estimating multi-program multi-core performance based on single-

4 CHAPTER 1. INTRODUCTION

core simulation runs. MPPM employs an iterative analytical method to
model the tight performance entanglement between co-executing pro-
grams on a multi-core processor with shared caches. Because MPPM
involves analytical modeling, it is very fast, and it estimates multi-core
performance for a very large number of multi-program workloads in a rea-
sonable amount of time with good accuracy (in addition, it provides confi-
dence bounds on its performance estimates). We report an average perfor-
mance prediction error of 2.3% and 2.9% for system throughput (STP) and
average normalized turnaround time (ANTT), respectively, while being up
to five orders of magnitude faster than detailed simulation. Subsequently,
we demonstrate that current practice of randomly picking a limited num-
ber of multi-program workloads (which is motivated by how slow detailed
simulation is), can lead to incorrect design decisions in practical design
and research studies. MPPM addresses this pitfall by quickly evaluating
all possible, or at least a very large number of, multi-program workloads
through analytical modeling. This work has been presented at the 2011
IEEE International Symposium on Workload Characterization (IISWC):

K. Van Craeynest and L. Eeckhout. The Multi-Program Perfor-
mance Model: Debunking Current Practice in Multi-Core Sim-
ulation. In Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), pages 26-37, Nov 2011.

1.3 Heterogeneous Multi-Core Processors

Whenever we discussed multi-core processors so far, there was an implicit
assumption that the cores are all identical, i.e., a so-called homogeneous
multi-core. Recently, non-uniform or heterogeneous multi-core architec-
tures have been proposed [Kumar et al. 2003; 2004, Becchi and Crowley
2008]. These are multi-cores containing multiple core types, where ev-
ery core type typically has different performance and power levels. For
the scope of this thesis, we will assume that all the core types implement
the same instruction-set architecture (ISA), i.e., single-ISA heterogeneous
multi-cores.

The idea behind heterogeneity is that different applications have dif-
ferent resource requirements. For example, some applications may be
compute-bound and benefit from a core that can issue many instructions
per cycle (i.e., a wide-issue superscalar core). The same core, however,
might be wasting power and energy while running an application that

1.3. HETEROGENEOUS MULTI-CORE PROCESSORS 5

does not benefit from these resources. By matching the application’s re-
quirements to a core’s capabilities, a much higher level of energy-efficiency
can be achieved through heterogeneity.

Prior work in heterogeneous architectures has mainly focused on how
heterogeneity can improve overall system throughput. To what extent
heterogeneity affects per-program performance has remained largely un-
answered. With this work, we aim at understanding how heterogeneity
affects both chip throughput and per-program performance; how hetero-
geneous architectures compare to homogeneous architectures under said
performance metrics; and how fundamental design choices, such as core
type, cache size and off-chip bandwidth, affect performance. The design
space for heterogeneous multi-cores is even larger than that of homoge-
neous multi-cores, as a single chip may contain any number of core types
and various instances of each of those core types. Hence a very fast mod-
eling methodology is required to gain insight into the design trade-offs.
We use the MPPM framework, as described in the previous section, to
explore the large heterogeneous multi-core architecture design space. The
analytical model has linear-time complexity in the number of core types
and programs of interest, and offers a unique opportunity for exploring the
large space of both homogeneous and heterogeneous multi-core processors
in limited time.

Contribution #2: Understanding Design Trade-offs in Heterogeneous
Multi-Cores

Using MPPM, we did an extensive single-ISA heterogeneous multi-core de-
sign space exploration. We considered five different core types (ranging
from a small scalar in-order core to a large 4-wide out-of-order core). We
considered multiple last-level cache sizes and evaluated scenarios of vary-
ing off-chip bandwidth limits. Our analysis provides several interesting
insights with respect to heterogeneous multi-cores:

• While many core types can be integrated for fine-grained program-
to-core mapping, we show that two core types provide most of the
benefits from heterogeneity. A larger number of core types does not
contribute much.

• Heterogeneity fundamentally trades per-program performance for
chip throughput.

• Some homogeneous configurations are optimal for particular through-

6 CHAPTER 1. INTRODUCTION

put versus per-program performance trade-offs.

• Job-to-core mapping is both crucial and challenging for heteroge-
neous multi-core processors to achieve optimum performance.

• Limited off-chip bandwidth alters some of the fundamental design
choices in heterogeneous multi-core architectures.

This work has been published in ACM Transactions on Architecture
and Code Optimization (TACO) and presented at the 2013 International
Conference on High-Performance and Embedded Architectures and Com-
pilers (HiPEAC):

K. Van Craeynest and L. Eeckhout. Understanding Fundamen-
tal Design Choices in Single-ISA Heterogeneous Multi-core Ar-
chitectures. ACM Transactions Architecture Code Optimiza-
tion, Vol. 9, Issue 4, Article 32, Jan 2013

Scheduling Heterogeneous Multi-core Processors

One of the key insights from exploring the heterogeneous architecture de-
sign space as just described is, that there exists a fundamental challenge
for heterogeneous multi-core processors regarding how to best schedule
workloads on the most appropriate core type. Heterogeneous multi-cores
can enable higher performance and reduced energy consumption (within
a given power budget) if and only if workloads are executed on the most
appropriate core type. Making wrong scheduling decisions can lead to sub-
optimal performance and excess energy/power consumption.

Finding an optimal (or even a good) schedule is non-trivial for a couple
reasons. For one, applications tend to behave differently across core types.
Certain application characteristics such as limited ILP might be limiters for
performance on one core type (in this case, in-order cores) while on other
core types (such as out-of-order cores) the impact is much less pronounced.
What makes scheduling such a challenging problem is that ultimately, sys-
tem performance is the result of a complex relationship between an appli-
cation’s characteristics and a core’s features. To our knowledge, no single
metric has been found that accurately describes this relationship.

In addition, a lot of workloads show time-varying behavior [Sherwood
and Calder 1999, Hamerly et al. 2004] (application characteristics, and
hence resource requirements, change over time). A good scheduling pol-
icy therefore needs to be dynamic: the application’s characteristics should

1.3. HETEROGENEOUS MULTI-CORE PROCESSORS 7

be continuously monitored and the thread-to-core mapping needs to be
changed accordingly. Yet another challenging aspect of scheduling is that
heterogeneous multi-cores may contain a wide range of core types and any
number of instances of those core types. This implies that scalability is a
very important property of any scheduling algorithm. This is compounded
by the fact that scheduling algorithms tend to work well for certain com-
binations of core types, but may yield suboptimal results for others. For
example, a commonly used scheduling policy is to schedule threads that
are memory-intensive on the smaller, less powerful core types because of
power-efficiency. However, this strategy only works as expected when
considering core types that do not differ significantly in their capabilities
for exploiting parallelism. If they do, the loss of parallelism may outweigh
power efficiency.

Contribution #3: Performance Impact Estimation Based Scheduling

We propose Performance Impact Estimation (PIE) scheduling which esti-
mates which core type is likely to achieve the best performance. PIE col-
lects basic performance characteristics from the application on the core that
it is running on, and uses these as inputs to the analytical model to esti-
mates performance if the application were to run on another core type. PIE
adjusts the scheduling during runtime and thereby exploits fine-grained
time-varying execution behavior. PIE provides a flexible and scalable so-
lution because it scales easily with the number of cores and core types.
Further, PIE incurs limited hardware support. We evaluate PIE schedul-
ing and report improvements in system performance by 5.5% on average
over memory-dominance scheduling (conventional wisdom) and by 8.7%
over sampling-based scheduling for a set of scheduling-sensitive workload
mixes.

This work has been published at the 2012 International Symposium on
Computer Architecture (ISCA):

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez and J. Emer.
Scheduling Heterogeneous Multi-Cores Through Performance
Impact Estimation (PIE). Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages
213-224, June 2012.

8 CHAPTER 1. INTRODUCTION

1.4 Fairness-Aware Scheduling

We primarily focused on optimizing system throughput while developing
and evaluating PIE scheduling and little, not to say no, attention was given
to fairness. Yet, guaranteeing that all threads make equal progress on het-
erogeneous multi-cores is of utmost importance for both multi-threaded
and multi-program workloads to improve performance and quality-of-
service. Furthermore, modern operating systems pin workloads to cores
(pinned scheduling) which dramatically affects fairness on heterogeneous
multi-cores.

Fairness is important for multi-program workloads when it comes to
system-level priorities and quality-of-service (QoS): achieving high fairness
means that all threads in the system are making equal progress propor-
tional to isolated execution. Because a heterogeneous system then behaves
as a homogeneous one, the same methods for achieving QoS in a homoge-
neous system can be utilized.

Fairness is also a desirable property for multi-threaded workloads be-
cause of thread synchronization. Threads running on a powerful core
will typically make faster progress than threads running on a small, low-
performance core. When there is need for synchronization (e.g. due to bar-
riers), the fast running threads will stall at the barrier until all other threads
running on the less powerful cores have reached the barrier — yielding no
performance benefit from heterogeneity. Guaranteeing fairness, or making
sure all threads make equal progress, will lead to all threads reaching the
barrier at nearly the same time as they would on a homogeneous multi-
core, thereby improving overall application performance.

Contribution #4: Fairness-aware Scheduling For Heterogeneous Multi-
core Architectures

We propose fairness-aware scheduling for single-ISA heterogeneous multi-
cores, and explore two flavors for doing so.

• Equal-time scheduling strives at achieving high fairness by running
each thread or workload on each core type for an equal fraction of
time. Equal-time scheduling leads to equal-progress scheduling in
case co-executing threads benefit equally from running on the big
core, because then, time equals work.

• When threads do not equally benefit from core heterogeneity (i.e.

1.5. OVERVIEW 9

some threads benefit more than others from running on a big core)
, there is no one-to-one mapping of time and progress for the entire
system. Therefore, equal-time scheduling will not necessarily yield
high fairness. By continuously monitoring progress and by (contin-
uously) changing the thread-to-core mapping to get equal progress
for each thread in the system, equal-progress scheduling guarantees
higher fairness compared to equal-time scheduling.

Fairness-aware scheduling not only improves fairness over pinned
scheduling (as done in current operating systems to improve locality in
multi-core processors), it also improves system throughput by enabling
threads to run on a big core for some fraction of time. Our experimental
results demonstrate an average 14% (and up to 25%) performance im-
provement over pinned scheduling through fairness-aware scheduling for
homogeneous multi-threaded workloads; equal-progress scheduling im-
proves performance by 32% on average for heterogeneous multi-threaded
workloads.

This work is submitted to the 2013 International Symposium on Com-
puter Architecture (ISCA):

K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel and L. Eeck-
hout. Fairness-Aware Scheduling on Single-ISA Heterogeneous
Multi-Cores. Submitted for the 39th Annual International Sym-
posium on Computer Architecture (ISCA), June 2013.

1.5 Overview

This dissertation is organized as follows. Each contribution has its own
dedicated chapter. In Chapter 2, we will explain in much detail the in-
ner workings of the MPPM framework. In Chapter 3, we will expand on
this and leverage the MPPM framework for exploring the heterogeneous
multi-core design space, providing key insights regarding fundamental de-
sign decisions. Chapter 4 focuses on the PIE model and uses it to create a
scheduling algorithm that optimizes system throughput. In Chapter 5 we
show the importance of fairness in heterogeneous multi-core systems and
propose and evaluate fairness-aware scheduling policies. Finally, we con-
clude and provide hints towards future work in Chapterr̃efchapter:fw.

10 CHAPTER 1. INTRODUCTION

Chapter 2

The Multi-Program
Performance Model

Don’t buy upgrades, ride up grades.
Eddy Merckx

In this chapter, we propose the Multi-Program Performance Model (MPPM), a
method for quickly estimating multi-program multi-core performance based on
single-core simulation runs. MPPM employs an iterative method to model the
tight performance entanglement between co-executing programs on a multi-core
processor with shared caches.

2.1 Introduction

Simulation and modeling are at the foundation of processor design and
computer architecture research, i.e., research and development is driven by
the careful evaluation of design alternatives in order to make correct de-
sign decisions. A key aspect of experimental evaluation is the workload
that serves as input to simulation and modeling. A workload that is un-
representative of a processor’s target workload may lead to a suboptimal
design, hence, it is absolutely crucial to have a representative workload.

Building a representative workload is very challenging, especially for
multi-core processors. A multi-core processor has multiple hardware
thread contexts, and each hardware thread context can execute a differ-
ent program. As a result, a multi-core processor workload may consist of
a mix of multiple independent programs. In fact, multi-program work-
loads are a very important and significant fraction of today’s workloads.

11

12 CHAPTER 2. MPPM

Given the limited amount of multi-threading in current desktop appli-
cations [Blake et al. 2010], multi-program workloads are predominant in
today’s computer systems, including mobile devices, laptops, desktops
and even servers.

Evaluating multi-program workloads is non-trivial though. For a given
number of programs, the number of multi-program workloads quickly ex-
plodes. For N programs and M hardware contexts, there are M com-
binations with repetition out of N programs, or

(
N+M−1

M

)
multi-program

workloads in total. This means there are 435 possible multi-program work-
load mixes for 29 SPEC CPU2006 benchmarks on a dual-core processor;
35,960 workload mixes for a quad-core processor; and more than 30.2 mil-
lion workload mixes for an eight-core processor. Assuming detailed cycle-
accurate processor simulation at a speed of 300 KIPS and assuming 1 B
instruction workloads — as in our setup — this would result in 54 days
for simulating all possible two-program workloads. For four- and eight-
program workloads, total simulation time would need to be counted in
years. Clearly, simulating all possible multi-program workloads using de-
tailed simulation is completely infeasible in practice.

Hence, current practice in computer architecture research and develop-
ment is to pick a limited number of multi-program workload mixes, typi-
cally a dozen or a couple tens that are randomly chosen. Often, architects
compose classes of multi-program workload mixes with each class rep-
resenting a particular set of multi-program workloads. For example, one
class may comprise combinations of memory-intensive programs, another
class may comprise mixes of compute-intensive and memory-intensive
programs, and yet another class may comprise a set of compute-intensive
workloads. Within each class, architects then select a number of random
multi-program workload mixes. It is unclear though whether a limited
number of randomly chosen multi-program workloads is representative
for the very large set of multi-program workloads.

In this chapter, we propose the Multi-Program Performance Model
(MPPM), a method for quickly estimating multi-program multi-core per-
formance from single-core simulation runs; this allows for quickly es-
timating multi-core performance for a large number of multi-program
workloads in a reasonable amount of time. We collect a profile during
single-core simulation that captures a program’s memory behavior as
well as its phase behavior; this is a one-time cost. We then employ an
iterative method that models the performance entanglement between the
co-executing programs on a multi-core processor with shared caches: the it-

2.1. INTRODUCTION 13

erative method captures how per-program performance affects the amount
of resource sharing, and, vice versa, how resource sharing in its turn af-
fects per-program performance. Since this iterative method involves an
analytical model, it is very fast, while being accurate. Using this powerful
technique, we demonstrate that current practice of simulating a limited
number of multi-program mixes may lead to incorrect design decisions.
Instead, we advocate MPPM which allows for evaluating performance for
a very large number of multi-program workload mixes in a reasonable
amount of time. The method can also be used to identify workload mixes
that stress multi-core performance due to excessive conflict behavior in
shared resources.

More specifically, we make the following contributions.

• We propose the Multi-Program Performance Model (MPPM) for es-
timating multi-core processor performance for multi-program work-
loads. MPPM uses single-core simulation profiles and estimates
multi-core processor performance while taking into account resource
sharing in shared caches when running multi-program workloads.
The performance entanglement between co-executing programs due
to resource sharing is solved through an iterative approach that es-
timates the amount of resource sharing and how it affects per-core
performance, and vice versa. We report an average performance pre-
diction error of 2.3% and 2.9% for system throughput (STP) and av-
erage normalized turnaround time (ANTT), respectively, compared
to detailed simulation across SPEC CPU2006 using the x86 CMP$im
simulator [Jaleel et al. 2008a] and up to 16 cores.

• We demonstrate that MPPM can quickly estimate multi-core proces-
sor performance from single-core simulation runs, which enables esti-
mating multi-core performance for a large number of multi-program
workload mixes in a reasonable amount of time. Indeed, the key fea-
ture of the proposed method is that it decouples per-core simulation
from multi-core simulation, yielding a multi-core processor simula-
tion and modeling approach for multi-program workloads with only
linear time complexity in the number of programs. Our method is
shown to be up to five orders of magnitude faster than detailed multi-
core processor simulation.

• We demonstrate that current practice of randomly choosing a lim-
ited number of multi-program workloads may lead to incorrect de-
sign decisions. Instead, a more accurate approach is to use MPPM

14 CHAPTER 2. MPPM

for evaluating all, or at least a very large number of, multi-program
workload mixes. In addition, MPPM provides confidence bounds on
its performance estimates.

• We demonstrate that MPPM can identify multi-program workloads
that yield very poor multi-core processor performance due to exces-
sive conflict behavior in shared resources. Architects can then focus
on these stress workloads and fine-tune the design to yield better per-
formance.

This chapter is organized as follows. Section 2.2 presents MPPM in
great detail, after which we present the experimental setup in Section 2.3.
We evaluate MPPM in Section 2.4, debunk current practice in Section 2.5,
and use MPPM for identifying multi-program stress workloads in Sec-
tion 2.6. Finally, we discuss related work and how MPPM differs from
prior work in this area in Section 2.7, and we conclude Section 2.8.

2.2 Multi-Program Performance Model

Figure 2.1 gives a general overview of the Multi-Program Performance
Model (MPPM). We first perform single-core simulation profiling runs
for all the benchmarks in the benchmark suite. This is a one-time cost.
Once these single-core profiles are collected, they serve as input to the
multi-program performance model. In other words, MPPM estimates
multi-program performance from single-core simulation profiling runs. Be-
cause the single-core simulation runs are a one-time cost only, and because
MPPM is an analytical approach, the proposed method is very effective at
estimating multi-program performance on multi-core processors. In fact,
estimating multi-program performance for an arbitrary set of benchmarks
is done very quickly — typically around a few hundred milliseconds per
multi-program workload — hence, MPPM enables predicting multi-core
performance for a large set of multi-program workloads in a reasonable
amount of time. As an example, MPPM estimates multi-core performance
for 5,000 four-program workloads in half an hour.

MPPM assumes a particular multi-core processor architecture of inter-
est for the single-core simulation runs. In other words, if one were to
predict performance for a multi-core processor with out-of-order proces-
sor cores and a cache hierarchy with three levels of cache, this same or
derived processor architecture needs to be considered during the single-
core simulations as well. This means that the single-core simulations need

2.2. MULTI-PROGRAM PERFORMANCE MODEL 15

bench
mark

...

profile

...

...

single-core
simulation

one-time cost

Multi-Program
Performance Model

estimated multi-program performance

Figure 2.1: General overview of MPPM.

16 CHAPTER 2. MPPM

to be performed with the same core architecture and the same or derived
cache hierarchy, however, the benchmark is run in isolation, i.e., there are
no co-executing programs. (In fact, in our setup, we can run single-core
simulations and derive performance models for cache hierarchies with re-
duced associativity at each level of the hierarchy. For example, we can run
single-core simulations and collect the single-core profiles for a 16-way set-
associative cache, and derive single-core simulation profiles for an 8-way
set-associative cache without having to run additional single-core simula-
tions.) Although this may seem like a limitation of MPPM — single-core
simulation runs need to be performed for different multi-core architectures
of interest — it is not a major limitation in practice: it requires single-
core simulation runs only. There are no time-consuming multi-core sim-
ulations required, and the MPPM model makes multi-core performance
predictions quickly for a large set of multi-program workloads. Further,
once the single-core simulation profiles are obtained, MPPM can estimate
performance for a varying number of cores, different cache associativities,
and different combinations of co-executing programs very quickly.

We now detail on the two major steps in MPPM: single-core simulation
profiling and the performance model itself.

2.2.1 Single-core Simulation Profiling

Single-core simulation profiling collects three characteristics:

• Single-core CPI is the number of Cycles Per Instruction (CPI) when
running the single-core workload in isolation, i.e., there are no co-
executing programs. CPI is easily obtained by dividing cycle count
with the number of dynamically executed instructions.

• Memory CPI is the fraction of the single-core CPI waiting for mem-
ory. There are two ways for computing the memory CPI. One way is
to employ the counter architecture proposed by Eyerman et al. [2006]
for computing CPI stacks on out-of-order processors; implement-
ing this counter architecture in the simulator enables computing the
memory CPI component from a single simulation run. Alternatively,
the memory CPI can be computed from two simulation runs: one run
with a perfect Last-Level Cache (LLC), i.e., all accesses to the LLC
are hits and there are no memory accesses, versus one run with an
imperfect LLC, i.e., LLC misses go off to memory. The CPI obtained
from the latter minus the CPI obtained from the former then is the
memory CPI.

2.2. MULTI-PROGRAM PERFORMANCE MODEL 17

• Stack Distance Counters (SDCs) capture a program’s temporal
memory access pattern in set-associative (or even fully associative)
caches [Mattson et al. 1970]. We collect SDCs for each program on the
LLC without cache sharing, i.e., by running the program in isolation.
An SDC for an A-way set-associative cache involves A + 1 counters,
C1, C2, . . . , CA, C>A, and is computed as follows. On each access, one
of the counters is incremented. If the access is to the ith position in
the LRU stack for that set, the ith counter Ci is incremented. If the
cache access involves a miss, then the C>A counter is incremented.

Each of these performance characteristics are measured on a per-
interval basis. The reason is to be able to model the impact of time-varying
phase behavior on resource contention in multi-core processors. In our
setup, we measure these characteristics for every interval of 20 million
(dynamically executed) instructions. For a 1 billion instruction trace, this
implies 50 intervals in total per benchmark with the above characteris-
tics measured for each interval. This is done for each benchmark in the
benchmark suite.

2.2.2 MPPM

The single-core performance characteristics as mentioned in the previ-
ous section then serve as input to the Multi-Program Performance Model
(MPPM). The concept of the MPPM is to initially start from the single-core
performance measurements and then iteratively converge on how resource
contention in shared resources affects per-core performance in a multi-core
processor. The reason for the iterative process is the tight performance
entanglement between per-core performance and resource contention, i.e.,
per-core performance affects the amount of resource contention, and vice
versa, resource contention affects per-core performance. In order to model
this tight performance entanglement, the model initially estimates the
amount of resource contention assuming each program makes progress as
per the single-core simulations; however, the amount of resource sharing
affects per-core progress, which in its turn affects resource sharing. Hence,
in the next iteration, per-core progress is adjusted to incorporate how re-
source contention affects per-core progress. This, in its turn, may again
affect the amount of resource contention seen, which leads to the second
iteration, etc. This iterative process continues until convergence.

Figure 2.2 gives a schematic overview of the MPPM model. We define
Rp as the slowdown for a program p in the multi-program workload mix

18 CHAPTER 2. MPPM

For all programs p:
 Rp = 1 // slowdown compared to single-core execution
 Ip = 0 // current position in execution trace

Determine the program p with the highest multi-core CPI over the course of the next interval
of L instructions, i.e., determine the program p with the highest Cp = CPISC,p x Rp x L.

Define C = maxp {Cp}.

Compute the instruction progress for all programs:
Np = C / (CPISC,p x Rp)

Compute the SDCs for all
programs for the

next Np instructions

cache contention
model

Compute the average latency per LLC miss for
each program:

LLC_miss_penaltyp = CPImem,p x Np /
#LLC cache misses over the next Np insns

Compute the number of lost cycles due to conflict misses in LLC for each program p:
miss_cyclesp = #conflict_missesp x LLC_miss_penaltyp

Re-compute the slowdown due to multi-core execution:
Rp = f x Rp + (1-f) x (1 + miss_cyclesp / C)

Ip = Ip + Np

stop criterion
is met?

report CPISC,p x Rp for each program

Figure 2.2: The Multi-Program Performance Model.

2.2. MULTI-PROGRAM PERFORMANCE MODEL 19

relative to isolated execution. We assume all programs experience the same
relative slowdown ofRp = 1 and execute at single-core speed initially. Fur-
ther, we assume that all programs start at the beginning of the execution
trace, i.e., the instruction pointer is set to zero: Ip = 0. Once these initial
conditions are set, the iterative process starts.

At each step in the iterative process, we first determine the slowest pro-
gram in the workload mix, or the program in the multi-program workload
mix with the highest multi-core CPI over the next L instructions. L is 200 M
instructions in our setup. A program’s multi-core CPI is computed as the
single-core CPI (CPISC,p) multiplied with its relative slowdown Rp. We
define C to be the number of cycles it takes for the slowest program to exe-
cute L instructions. We then determine how much progress each program
in the workload mix can make during the next C cycles. We define Np as
the number of instructions each program p can execute during the next C
cycles.

Once we know how many instructions each program will execute dur-
ing the next time interval of C cycles, we can compute the SDCs for each
of the programs over this time interval. This is done by adding the per-
interval SDCs. As mentioned in the previous section, the single-core per-
formance characteristics are measured on a per-interval basis of 20 M in-
structions. Computing the SDCs for the next time interval of C cycles is
done by simply adding the per-interval SDCs for the next Np instructions.
The SDCs serve two needs. First, it serves as input to a cache contention
model that estimates the additional number of conflict misses due to cache
sharing in the LLC. There exist several cache contention models [Chan-
dra et al. 2005, Eklöv et al. 2011, Lee et al. 2008]. We use the Frequency
of Access (FOA) model proposed by Chandra et al. [2005] because it is a
fairly simple model and we found it to be accurate enough for our needs.
Second, the SDCs allow for estimating the average penalty per LLC miss.
This is done by dividing the number of cycles lost due to memory accesses
with the number of LLC misses; we assume here that the average LLC miss
penalty is the same under multi-core execution versus single-core execu-
tion. The number of cycles waiting for memory is computed as the mem-
ory CPI component (CPImem,p) multiplied with the number of instructions
in the next time interval Np. The number of LLC misses is obtained from
the SDC’s C>A counter, as mentioned above. We estimate the number of
cycles lost due to conflict misses in the LLC by multiplying the number of
additional conflict misses due to cache sharing (obtained from the cache
contention model) and the average penalty per LLC miss (computed as de-

20 CHAPTER 2. MPPM

scribed above).

We can now estimate the (current) relative slowdown for each program
in the workload mix due to resource contention. This is done using an ex-
ponential moving average of the average slowdown observed so far and
the current slowdown according to the above model. The reason for tak-
ing an exponential moving average is to include a smoothing effect, which
we found to be important for achieving good accuracy, especially for pro-
grams with significant time-varying execution behavior. We also compute
the current position in the execution for each program. This is done by sim-
ply advancing the instruction pointer by Np instructions for each program.

This iterative process is repeated multiple times until a stop criterion
is met. Each iteration involves 200 M instructions for the slowest running
program, and the iterative process continues until the slowest running pro-
gram in the workload mix has executed 5 B instructions in total. Given that
our instruction traces are 1 B instructions in size, this means that the slow-
est program needs to iterate over its entire trace five times. Faster running
programs may iterate over their trace more than five times. We found that
the performance numbers converged given this stop criterion.

2.2.3 Discussion

We want to emphasize again that MPPM itself does not involve detailed
cycle-accurate multi-core simulation. The process as explained above only
involves ‘analytical’ simulation in which we employ analytical models for
estimating multi-core performance. This yields a very fast multi-core per-
formance estimation technique: MPPM makes a multi-core performance
estimate in less than one second, provided that the single-core simulation
runs were done beforehand.

It is also important to stress that MPPM is independent of the cache re-
placement and/or partitioning strategy employed in the shared cache. In
fact, the cache contention model is an integral part of the approach, and
if the cache contention model supports multiple cache replacement and/or
partitioning strategies, so does MPPM. The cache contention model used in
this chapter is the FOA model [Chandra et al. 2005], as mentioned before.
FOA assumes that the effective cache space for a program is proportional
to its access frequency. The intuition is that a program that has a high ac-
cess frequency tends to bring in more data into the cache, and hence it
effectively occupies a larger fraction of the caches. We found FOA to be
accurate enough for our purpose.

2.3. EXPERIMENTAL SETUP 21

ROB 128 entries
pipeline 8-stage, 4-wide
ld/st max of two loads & one store per cycle
L1 I-cache 32 KB, 4 WSA, LRU, 1 cycle
L1 D-cache 32 KB, 8 WSA, LRU, 1 cycle
L2 cache private, 256 KB, 8 WSA, 10 cycles
L3 cache shared, see Table 2.2
memory 200 cycles
branch prediction perfect

Table 2.1: Baseline processor configuration.

size assoc latency
config #1 512 KB 8 16
config #2 512 KB 16 20
config #3 1 MB 8 18
config #4 1 MB 16 22
config #5 2 MB 8 20
config #6 2 MB 16 24

Table 2.2: Last-level cache (LLC) configurations.

2.3 Experimental Setup

We use a multi-core processor simulator based on CMP$im [Jaleel et al.
2008a], which is an x86 simulator built on top of Pin [Luk et al. 2005].
CMP$im is a user-level simulator and allows for simulating multi-core pro-
cessor architectures. The version of the CMP$im simulator that we used
for the work done in this chapter is the one available from the Cache Re-
placement Championship1; CMP$sim is not publicly available in any other
form. The processor architecture that we simulate is detailed in Tables 2.1
and 2.2. We consider 4-wide out-of-order processor cores with private L1
instruction and data caches. Each core has a private L2 cache. The L3 cache
is shared among the cores and is the last-level cache (LLC) in our setup:
we apply our method to the L3 cache. All caches implement an LRU re-
placement policy. We consider different LLC configurations, as shown in
Table 2.2. If not explicitly mentioned, we report performance results for
configuration #1 which has the smallest LLC; this is to stress our model.
This does not limit the generality of the proposed method; our method can
be applied to any (shared) level in the cache hierarchy.

We consider all the SPEC CPU2006 benchmarks with their reference in-
puts. All the benchmarks were compiled with the GNU C compiler version

1http://www.jilp.org/jwac-1/

22 CHAPTER 2. MPPM

4.3.4 and optimization level -O2. We use SimPoint [Sherwood et al. 2002]
to pick representative simulation points of one billion instructions each.

When quantifying multi-core processor performance we consider two
performance metrics, namely system throughput (STP) and average nor-
malized turnaround time (ANTT) [Eyerman and Eeckhout 2008]. STP mea-
sures multi-core performance from a system perspective and quantifies the
accumulated progress by all the programs in the multi-program workload
mix. STP equals weighted speedup by Snavely and Tullsen [2000], and is a
higher-is-better metric:

STP =

n∑
p=1

CPISC,p

CPIMC,p
.

ANTT focuses on user-perceived performance and quantifies the average
slowdown during multi-core execution relative to single-core, isolated ex-
ecution. ANTT is the reciprocal of the hmean metric proposed by Luo
et al. [2001]:

ANTT =
1

n

∑
p

CPIMC,p

CPISC,p
.

2.4 Model Evaluation

We evaluate MPPM along two criteria: accuracy and speed. However, be-
fore doing so, we first quantify performance variability across random sets
of multi-program workloads — this will demonstrate that obtaining tight
confidence bounds requires a sufficiently large number of workload mixes.

2.4.1 Variability

Figure 2.3 shows the variability in STP and ANTT as a function of the num-
ber of random sets of multi-program workloads on a four-core processor.
These graphs clearly illustrate that selecting a limited number of random
multi-program workloads yields limited confidence in the overall perfor-
mance measurements. For example, selecting 10 workload mixes yields
a 10% and 18% confidence interval for STP and ANTT, respectively. Dou-
bling the number of workload mixes to 20 does not increase confidence dra-
matically: the confidence intervals are still around 7% and 13% for STP and
ANTT, respectively. Such confidence intervals may be too large for many
practical research and design studies. Comparing design alternatives that

2.4. MODEL EVALUATION 23

(a) STP

3.0

3.2

3.4

3.6

3.8

4.0

4.2

0 30 60 90 120 150

ST
P

Number of workload mixes

95% confidence interval

average

(b) ANTT

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 30 60 90 120 150

A
N

TT

Number of workload mixes

95% confidence interval

average

Figure 2.3: Variability in (a) STP and (b) ANTT as a function of the number
of multi-program workload mixes.

24 CHAPTER 2. MPPM

(a) STP

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

m
e

as
u

re
d

 S
TP

predicted STP

2 cores

4 cores

8 cores

(b) ANTT

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

m
e

as
u

re
d

 A
N

TT

predicted ANTT

2 cores

4 cores

8 cores

Figure 2.4: Accuracy of MPPM for predicting (a) STP and (b) ANTT; mea-
sured STP/ANTT on vertical axis versus predicted STP/ANTT on the hor-
izontal axis.

2.4. MODEL EVALUATION 25

differ in the percent range with a performance evaluation method with this
large confidence intervals may be problematic. At 150 workload mixes, the
confidence bounds are down to 2.6% and 4.5% for STP and ANTT, respec-
tively; hence, we report performance numbers for 150 workload mixes in
the remainder of the chapter.

2.4.2 Accuracy

Figure 2.4 shows scatter plots for STP and ANTT. These graphs assume
the baseline processor configuration with 2, 4 and 8 cores, and 150 multi-
program workload mixes. We simulate these workload mixes through
detailed simulation using CMP$im; this yields the ‘measured’ STP and
ANTT metrics. We also estimate multi-core performance using MPPM
which yields the ‘predicted’ metrics. The scatter plots show the predicted
metrics versus the measured metrics. Each dot represents one of the work-
load mixes. Perfect prediction would imply all dots to lie on the bisector.
We observe a strong correlation between the measured and predicted per-
formance metrics, i.e., all the dots lie around and are close to the bisector.
The average error across these workload mixes equals 1.4%, 1.6% and 1.7%
for STP and 2, 4 and 8 cores, respectively; and 1.5%, 1.9% and 2.1% for
ANTT and 2, 4 and 8 cores, respectively.

We also ran a number of experiments for 16 cores using 25 16-program
workload mixes; here, we consider a larger 1 MB LLC (configuration #4).
We were unable to run more than 25 16-program workload mixes because
of time constraints — the simulations took extremely long, which is exactly
the problem we are addressing with MPPM. The average error equals 2.3%
and 2.9% for STP and ANTT, respectively.

The fact that MPPM is accurate for predicting STP and ANTT suggests
that it is also effective for predicting the relative per-program slowdown,
or by how much a program gets slowed down due to multi-program exe-
cution on a multi-core processor. Figure 2.5 reports both the measured and
the predicted relative slowdown for each program. Correlation is good and
the average error equals 7% across the 150 workloads for 2, 4 and 8 cores;
for the 25 multi-program workloads on the 16-core processor (not shown in
Figure 2.5), we obtain an average error of 4.5%. Figure 2.6 makes this more
concrete and shows an example for the 4-program workload with the worst
STP; this workload consists of two copies of gamess along with hmmer and
soplex. The gamess copies are slowed down substantially through multi-
core execution (more than 2×), whereas soplex is slowed down somewhat

26 CHAPTER 2. MPPM

only, and hmmer is barely affected by multi-core execution. MPPM predicts
these slowdowns accurately.

It is worth noting that the error for predicting per-program perfor-
mance, although low, is larger than the error for predicting STP and ANTT.
The reason is that STP and ANTT measure total system performance and
average per-program performance, respectively, and given how STP and
ANTT are computed, see Section 2.3, positive and negative errors in pre-
dicting per-program performance get smoothed, which leads to more ac-
curate overall STP/ANTT predictions.

2.4.3 Speed

MPPM is substantially faster than detailed simulation. As mentioned be-
fore, MPPM requires single-core simulations, but this is a one-time cost
only. In our setup with 1 B instruction simulation points this takes around
1 hour of simulation time per benchmark on CMP$im, or slightly more
than an entire day for the entire SPEC CPU2006 benchmark suite on a sin-
gle machine. The MPPM model itself is very fast because it does not in-
volve detailed simulation. Instead, it uses analytical modeling for estimat-
ing multi-core performance. MPPM takes less than one second per multi-
program workload; typically, a couple tenths of seconds. In contrast, sim-
ulating a multi-program workload on a detailed cycle-accurate simulator
is extremely time-consuming. For example, simulating one multi-program
workload for an eight-core processor takes around 12 hours in our setup. In
summary, depending on the scenario, MPPM is up to 5 orders of magnitude
faster than detailed simulation. Considering 150 multi-program workloads
on an 8-core processor, MPPM (including the cost of single-core simula-
tions) is 62× faster than detailed simulation. Assuming that the single-core
simulations were done beforehand, MPPM is more than 53,000× faster.

2.5 Debunking Current Practice

Now that we have demonstrated that MPPM is both accurate and fast
for estimating multi-program workload performance on multi-core pro-
cessors, we leverage MPPM to evaluate (and debunk) current practice in
simulating multi-program workloads. One of the critical concerns when
simulating multi-program workloads is which workloads to pick out of
the very large set of possible multi-program workloads. Current practice
is to pick a limited number of multi-program workloads. The reason for

2.5. DEBUNKING CURRENT PRACTICE 27

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m
e

as
u

re
d

 s
lo

w
d

o
w

n

predicted slowdown

2 cores

4 cores

8 cores

Figure 2.5: Measured versus predicted relative per-program slowdown due
to multi-core execution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hmmer gamess soplex gamess

C
P
I isolated CPI

measured multi-core CPI

predicted multi-core CPI

Figure 2.6: Tracking the performance of individual programs in a multi-
program workload consisting of two copies of gamess along with hm-
mer and soplex: isolated execution CPI, measured multi-core execution
CPI (through simulation), and predicted multi-core execution CPI (through
MPPM).

28 CHAPTER 2. MPPM

(a) Random

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

av
g

M
P
P
M

Sp
e

ar
m

an
 r

an
k

co
e

ff
ic

ie
n

t

random sets of 12 workload mixes per set

STP ANTT

(b) Random per category

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

av
g

M
P
P
M

Sp
e

ar
m

an
 r

an
k

co
e

ff
ic

ie
n

t

random sets of 4 MEM / 4 COMP / 4 MIX workload mixes per set

STP ANTT

Figure 2.7: Evaluating current practice of selecting random workload
mixes: Rank correlation coefficient for 20 sets of 12-program workloads
versus MPPM. (a) Random selection of programs; and (b) Random selec-
tion of programs within program categories.

2.5. DEBUNKING CURRENT PRACTICE 29

limiting the number of workloads is that simulation is extremely time-
consuming. Hence, researchers pick a limited number of workloads at ran-
dom out of the very large set of possible multi-program workloads. Alter-
natively, researchers often classify their benchmark programs in a number
of classes, e.g., compute-intensive versus memory-intensive programs, and
then randomly pick multi-program workloads from these classes to form
multi-program workload categories. For example, one category may be
workload mixes consisting of compute-intensive programs only; another
category may be workload mixes with memory-intensive programs only;
a third category may contain mixed compute- and memory-intensive pro-
grams.

To evaluate whether current practice is adequate, we consider the fol-
lowing setup. We compare six multi-core configurations that differ in their
LLC configuration in terms of size, associativity and access time, see Ta-
ble 2.2. Without detailed experimental evaluation, it is unclear which con-
figuration yields the best overall performance. For example, configuration
#2 has a higher associativity than configuration #1, and thus a lower miss
rate, but its access latency is also higher. Similar trade-offs are possible
between all pairs of configurations. So, it is unclear which configuration
yields the best overall performance without detailed analysis. We now
evaluate how well current practice and MPPM can rank these six config-
urations. The results are shown in Figure 2.7. These graphs show the rank
correlation coefficients for current practice assuming 12 randomly selected
multi-program workloads on a quad-core processor. This experiment is re-
peated 20 times, hence the 20 bars on the top graph of the two graphs in
Figure 2.7. The second but last bars on the bottom graph, labeled ‘avg’ re-
ports the average correlation coefficient for current practice. We then com-
pare against MPPM while considering 5,000 multi-program workloads, see
the right-most bars in Figure 2.7. The Spearman rank correlation coeffi-
cient quantifies how well two rankings compare to each other, or more for-
mally, how well the relationship between two rankings can be described
using a monotonic function; a Spearman rank correlation coefficient of one
means a perfect match in the rankings. Our point of reference is the rank-
ing obtained from detailed simulation with 150 multi-program workloads.
MPPM is clearly more accurate than current practice. For some of the ran-
domly picked workload mixes, the rank correlation coefficient is as low as
0.5 and below, see for example mixes 7 and 8 in Figure 2.7(a) and mixes 2,
9 and 15 in Figure 2.7(b). MPPM on the other hand achieves a rank corre-
lation coefficient of 1 and 0.93 for STP and ANTT, respectively.

30 CHAPTER 2. MPPM

In order to make it more concrete we now pairwise compare design
points, namely configuration #1 versus all the other configurations #2
through #6. Figure 2.8 quantifies how often current practice (assuming
multi-program categories) disagrees with MPPM, and, when they dis-
agree, how often MPPM is correct compared to the reference of detailed
cycle-accurate simulation of 150 multi-program workloads, and thus by
consequence, how often current practice leads to incorrect conclusions. In
the most extreme comparison between configuration #1 and #6 we observe
that in approximately 40% of the cases current practice disagrees with
MPPM, and current practice leads to an incorrect conclusion with respect
to which configuration yields the best performance.

These experiments collectively illustrate that current practice of select-
ing a limited number of multi-program mixes may lead to misleading and
incorrect conclusions in practical research and design studies. MPPM on
the other hand leads to correct conclusions because it considers a very large
number of multi-program mixes. In addition, MPPM does so in only a
small fraction of the time needed through current practice.

2.6 Identifying Stress Workloads

As mentioned before, MPPM’s unique ability is to quickly estimate multi-
program performance on multi-core processors. One important application
of the MPPM framework is to identify workload mixes that stress the multi-
core processor in the sense that performance is substantially lower for these
workloads compared to the other workloads. Once these stress workloads
are identified, they can be analyzed in more detail in order to understand
why the multi-core processor fails to deliver good performance for these
workloads, which may ultimately lead to an improved design. We find
MPPM to be accurate in ranking the multi-program workloads with respect
to how severe these workloads stress the processor architecture. Figure 2.9
shows sorted STP values obtained through detailed simulation and MPPM;
more precisely, the workloads on the horizontal axis are sorted by increas-
ing value of the STP values obtained through detailed simulation. This
graph once again illustrates that MPPM is accurate compared to simula-
tion, and in addition, it illustrates that MPPM can identify the worst-case
workloads. MPPM is able to identify the top-23 worst-case workloads out
of the 25 worst-case workloads obtained through detailed simulation. Fur-
ther analysis showed that one particular benchmark, namely gamess, is
very sensitive to multi-core execution: we found that gamess gets a slow-

2.6. IDENTIFYING STRESS WORKLOADS 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

conf2 conf3 conf4 conf5 conf6

fr
ac
ti
o
n

disagree; MPPM right disagree; detailed right

agree; both right agree; both wrong

Figure 2.8: Fractions of when current practice agrees or disagrees with
MPPM, and when MPPM is correct and current practice is not.

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0 30 60 90 120 150

ST
P

workloads sorted by increasing STP

MPPM detailed simulation

Figure 2.9: Identifying 4-program workloads with the worst STP.

32 CHAPTER 2. MPPM

down by a factor 2.2×, whereas the other benchmarks experience a slow-
down of at most 1.3× (gokmk) and 1.2× (soplex, omnetpp, h264 and xalan);
the remaining benchmarks are less sensitive to cache sharing.

2.7 Related Work

There exists some work in simulating and modeling multi-program work-
loads on multicore processors. These techniques differ from MPPM in sev-
eral ways, as decribed below.

The work most similar to ours is the work by Eklöv et al. [2011]. They
present StatCC which is a cache contention model that, given the relative
CPIs of the co-scheduled programs and their individual reuse distance dis-
tributions, estimates the reuse distance distribution of the interleaved ac-
cess stream to the shared cache. The reuse distance is defined as the number
of memory references between two consecutive accesses to the same cache
line. Once they have the reuse distance distribution of the interleaved ac-
cess stream, they leverage their prior StatCache [Berg and Hagersten 2005]
and StatStack [Eklöv and Hagersten 2010] work to estimate the cache miss
rates for the co-scheduled programs. They use an equation solver to solve
the interdependence between the programs’ CPIs and cache miss rates.
There are a number of key differences between Eklöv et al.’s approach and
this work. We use an iterative method for solving the CPI versus cache miss
rates interdependence while taking into account time-varying workload
behavior, instead of the general-purpose equation solver by Eklöv et al.
In addition, we use a stack distance counter distribution instead of a reuse
distance distribution. Finally, we evaluate our approach for up to 16 cores;
Eklöv et al. limited their evaluation to two cores only. Additional work has
been published since the original publication of the MPPM model in IISWC
2011. Most recently, Sandberg et al. [2013] have proposed a methodology
where they also used an iterative analytical model to predict the impact on
multi-core performance due to cache sharing. Their approach differs from
ours in that they collect profile information (input for the analytical model)
using actual hardware. Also, they employ their model to quickly evaluate
multi-core performance variation due to small differences in thread inter-
leaving.

Lee et al. [2008] use (spline-based) regression modeling to build multi-
core processor performance models. They build three regression models:
a core model, a contention model for the shared resources (i.e., the shared
memory hierarchy), and a model that combines the core and contention

2.7. RELATED WORK 33

models to form an overall multi-core processor performance model. This
approach does not address the challenge of having to deal with the explo-
sion in the number of multi-program workload mixes, because the con-
tention model needs to be trained for each workload mix. Although the
contention model can be trained through cache simulation, which is much
faster than multi-core simulation, it is fundamentally limited by the explo-
sion in the number of multi-program workload mixes. Our method on the
other hand, addresses this fundamental challenge through analytical mod-
eling. Further, our method takes into account time-varying execution be-
havior for determining the amount of contention through shared resources
and its impact on performance.

Chandra et al. [2005] propose three cache contention models. The input
to the models is the shared cache stack distance distribution or a circular
sequence profile for each program. The output is the number of additional
cache misses due to cache sharing for each of the threads. The three models
proposed by Chandra et al. include the Frequency of Access (FOA) model,
the Stack Distance Competition (SDC) model and the Inductive Probabil-
ity (Prob) model. The key difference between our work and Chandra et
al.’s work is that we predict overall multi-core processor performance, in
contrast to Chandra et al.’s method which estimates cache miss rates only.
Further, they do not take into account time-varying phase behavior, and
their evaluation is limited to two-program workload mixes only.

Van Biesbrouck et al. [2004] propose the co-phase matrix as a method
to quickly simulate multi-program workloads on multi-threaded architec-
tures. The co-phase matrix takes into account a program’s time-varying
execution behavior and basically keeps track of the performance for all
the co-phases in a two-program workload mix. The key idea here is that
each co-phase needs to be simulated only once, its performance is stored
in the co-phase matrix, and whenever the same co-phase is encountered
again, the relative progress for each of the co-executing programs is simply
picked from the co-phase matrix, and does not to be simulated again. This
greatly reduces overall simulation time. In follow-on work, Van Biesbrouck
et al. [2006] consider multiple starting points for each of the programs in
the multi-program workload mix. The co-phase matrix does not address
the challenge of having to deal with an explosion in the number of multi-
program workloads, i.e., the co-phase matrix needs to computed for each
multi-program workload mix of interest.

Van Biesbrouck et al. [2007] propose a method for picking a represen-
tative set of multi-program workloads. They profile each program using a

34 CHAPTER 2. MPPM

set of micro-architecture independent characteristics, and they then apply
statistical analysis techniques such as Principal Component Analysis and
Cluster Analysis to pick a limited but representative set of multi-program
workload mixes. Similar to our work, they aim at addressing the explo-
sion in the number of multi-program workload mixes, however, their so-
lution differs from ours in a fundamental way. Their approach comes up
with a limited set of multi-program workload mixes that need to be simu-
lated in detail, whereas our approach estimates the performance of a multi-
program workload mix through analytical modeling. This implies that we
can estimate performance for a large number of multi-program workload
mixes much more quickly, and in addition, in contrast to Van Biesbrouck et
al., we compute confidence bounds on performance by considering a very
large number of workload mixes.

Tuck and Tullsen [2003] propose a methodology for quantifying perfor-
mance on multi-threaded architectures, which is also applicable to multi-
core processors. A challenging problem when evaluating multi-threaded
processor performance is that the relative progress of independent co-
executing programs may differ across processor architectures, and hence,
the effective multi-program workload may be different across architec-
tures, leading to biased and incorrect design decisions. Tuck and Tullsen
propose to re-iterate the execution of a program in a multi-program work-
load execution as soon as it reaches the end of its execution. This process
is re-iterated until convergence. Whereas Tuck ad Tullsen apply this ap-
proach on real hardware experiments, Vera et al. [2007] propose a similar
approach for simulation purposes. Both approaches run either real hard-
ware or simulation experiments to evaluate multi-program performance;
instead, MPPM employs an analytical model which allows for evaluating
a large number of multi-program workload mixes in limited time.

Alameldeen and Wood [2003] study non-determinism when eval-
uating multi-threaded programs on multi-processor processors. Non-
determinism refers to the fact that small timing variations can cause ex-
ecutions that start from the same initial state to follow different execution
paths. They propose adding non-determinism in deterministic simulators
to model this effect, and they report confidence bounds when simulat-
ing multi-threaded programs. Our work is orthogonal and targets multi-
program workloads. MPPM quantifies how variability in multi-program
workload mixes affects performance; this is done by computing confidence
bounds.

2.8. SUMMARY 35

2.8 Summary

Current practice in multi-core simulation is to consider a limited number
of multi-program workloads. We have shown that tens of multi-program
workloads are not representative, and may lead to incorrect decisions in
practical design and research questions. Instead, we advocated and pro-
posed the Multi-Program Performance Model (MPPM), which is an analyt-
ical approach for estimating multi-program multi-core performance from
single-core simulation runs. MPPM incorporates a program’s time-varying
execution behavior, and accurately estimates the tight performance entan-
glement between co-executing programs because of resource contention in
shared caches. MPPM was shown to be accurate within 2.3% and 2.9% on
average for STP and ANTT, respectively, for SPEC CPU2006 and up to 16
cores, while being up to five orders of magnitude faster than detailed sim-
ulation. Hence, MPPM estimates multi-program performance for a very
large number of multi-program workloads in a reasonable amount of time,
while providing confidence bounds on its performance estimates. An ap-
pealing use for MPPM is to identify multi-program workloads that yield
poor performance due to excessive conflict behavior in shared resources.

36 CHAPTER 2. MPPM

Chapter 3

Understanding Fundamental
Design Choices in Single-ISA
Heterogeneous Multi-Core
Architectures

Life is like riding a bicycle. To keep your balance you must keep moving.
Albert Einstein

In this chapter, we aim at understanding how heterogeneity affects both chip
throughput and per-program performance; how heterogeneous architectures com-
pare to homogeneous architectures under said performance metrics; and how
fundamental design choices, such as core type, cache size and off-chip bandwidth,
affect performance. This is done using the MPPM model to quickly explore the
large architecture and workload design space.

3.1 Introduction

Heterogeneous multi-core processor architectures have received substan-
tial interest in both academia and industry over the past years. One of
the primary drivers for heterogeneous architectures is higher performance
for a given power budget, or higher power-efficiency for a given perfor-
mance target, by dynamically scheduling jobs on the highest performance
or most power-efficient core on the chip. By doing so, total chip throughput
is maximized while not exceeding the total power budget, or vice versa,
power and energy consumption is reduced while maintaining specific per-

37

38 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

formance targets. Prior work has reported substantial power and energy
savings through heterogeneity [Kumar et al. 2004]. Industry is actively
pursuing the road of heterogeneity: example heterogeneous architectures
are the IBM Cell processor with its 8 special-purpose engines and one
general-purpose RISC core [Kahle et al. 2005a], as well as recently intro-
duced CPU chips with an integrated GPU such as Intel’s Sandy Bridge [In-
tel 2008], AMD’s Fusion [AMD 2008], and NVidia’s Tegra [NVidia 2010].
Other commercial offerings integrate different general-purpose CPU core
types, see for example NVidia’s Kal-El [NVidia 2011] which integrates four
performance-tuned cores along with one energy-tuned core, and ARM’s
big.LITTLE chip [Greenhalgh 2011], which integrates a high-performance
big core with a low-energy small core on a single chip. The latter two exam-
ples are so-called single-ISA heterogeneous multi-cores, which means that
the different core types implement the same instruction-set architecture
(ISA).

We aim at exploring the heterogeneous single-ISA multi-core archi-
tecture design space, and address some of the fundamental questions re-
lated to heterogeneity, such as: What are the performance benefits from
heterogeneity over homogeneous architectures, i.e., how does heterogene-
ity affect chip throughput versus job turnaround time? If heterogeneity
yields any performance benefits, what level of heterogeneity should be
supported, i.e., how many different core types should be integrated? Do
two different core types provide most of the benefit or do we need more
core types? And what should these core types look like? Should we go for
extreme core types, i.e., aggressive 4-wide out-of-order cores versus scalar
in-order processor cores? Or should we deploy middle-of-the road cores
along with extreme core types? How does heterogeneity affect off-chip
bandwidth requirements? Or, vice versa, how do bandwidth limitations
affect some of the fundamental trade-offs in heterogeneous architectures?
In spite of the substantial amount of prior work done in this area, a com-
prehensive study exploring these heterogeneous processor trade-offs and
design choices has not been published before, to the best of our knowledge.

We use the MPPM model for exploring the heterogeneous multi-core
design space. MPPM enables exploring the heterogeneous multi-core de-
sign space from single-core runs (see Chapter 2), i.e., the model has linear-
time complexity in the number of core types while enabling performance
predictions for arbitrary compositions of heterogeneous architectures and
workloads. Moreover, it allows for quantifying heterogeneous architec-
ture performance for a large number (hundreds) of possible job mixes in

3.1. INTRODUCTION 39

a reasonable amount of time. Performing the same study using architec-
tural simulation would have been completely infeasible because of its time
complexity: simulating and exploring a large heterogeneous architecture
design space for a very large number of job mixes is impossible in a reason-
able amount of time.

Our methodology uses analytical modeling to estimate performance
for an arbitrary heterogeneous processor architecture and arbitrary job
mixes. In contrast to prior work which focused on total chip throughput
(also called weighted speedup), we quantify performance along two di-
mensions: we measure both overall system throughput and per-program
performance (average job turnaround time). Although throughput and
per-program performance are not independent, we find it very insight-
ful to analyze multicore processor in terms of these performance axes. In
particular, we determine the frontier of Pareto-optimal processor archi-
tectures that provide the optimum trade-off between system throughput
versus average job turnaround time. Pareto-optimality implies that there
exist no design points that outperform the Pareto-optimal frontier on all
objectives (both system throughput and job turnaround time) at the same
time. In other words, one cannot say whether one Pareto-optimal con-
figuration outperforms another Pareto-optimal configuration — instead,
Pareto-optimal configurations represent different trade-offs. We apply our
methodology to SPEC CPU2006 workload mixes and we consider hetero-
geneous multi-core processor configurations with up to five core types
ranging from simple single-issue in-order cores to aggressive four-wide
out-of-order cores.

This analysis leads to several interesting and insightful observations.

• While it is true that, as reported by prior work, replacing an aggres-
sive out-of-order core in a homogeneous architecture with several
simple in-order cores improves system throughput (while assuming a
fixed chip area), it also decreases average per-program performance.
Conversely, trading a number of simple in-order cores for an aggres-
sive out-of-order core improves per-program performance, but it also
decreases total system throughput. So, fundamentally, heterogeneity
trades job turnaround time for total system throughput.

• Homogeneous architectures cover a broad range of the performance
spectrum in terms of throughput versus job turnaround time. For a
fixed chip area budget, a limited number of aggressive out-of-order
cores yield short job turnaround time with limited system through-

40 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

put; a large number of simple in-order cores on the other hand yield
high system throughput at the cost of longer job turnaround times.
Mediocre cores yield intermediate design trade-offs. Heterogene-
ity on the other hand allows for designing multi-core processors
with more fine-grained trade-offs in system throughput versus job
turnaround time. Interestingly though, although there exist hetero-
geneous design points that outperform homogeneous designs both in
terms of throughput and per-program performance, some homoge-
neous design points appear on the heterogeneous architecture Pareto
frontier. In other words, some homogeneous configurations are opti-
mal for particular throughput versus job turnaround time trade-offs.

• We find that two core types offer most of the performance benefits
from heterogeneity, i.e., going to a larger number of core types does
not contribute much. However, performance is greatly affected by
which core types are chosen and different compositions lead to dif-
ferent performance trade-offs. Further, some compositions of core
types do not yield Pareto-optimal configurations. For other composi-
tions, the number of cores of each core type determines whether the
heterogeneous multi-core processor is globally optimal.

• Limited off-chip bandwidth has a significant impact on the funda-
mental design choices in heterogeneous architectures. When limiting
off-chip bandwidth, increasing system throughput comes at the cost
of a proportionally larger degradation in per-program performance.
Further, although a homogeneous design with many small cores
yields the highest throughput assuming infinite bandwidth, only
heterogeneous designs can achieve the highest throughput under
limited off-chip bandwidth. Finally, architectures designed for high-
throughput should employ large LLCs in order to reduce off-chip
bandwidth pressure.

• We also find that the effectiveness of heterogeneous architectures
heavily depends on how jobs are mapped on the different core types.
Simple heuristics based on CPI or miss rates to discern compute-
versus memory-intensive jobs do not achieve optimum performance.
Instead, more accurate estimates that compare relative performance
across core types are needed for effective job-to-core mapping.

The key contributions are to comprehensively explore the heteroge-
neous multi-core design space and provide insight in some of the fun-
damental trade-offs and design choices. We use analytical modeling to

3.2. MULTI-CORE PERFORMANCE MODELING 41

do so which enables exploring many more machine configurations and
workloads than what is possible to consider with cycle-accurate simulation.
Further, one of the key trade-offs that we study relates to chip through-
put versus per-program performance. Prior work on the other hand fo-
cused on throughput only, for the most part; and prior work that did con-
sider both chip throughput and per-program performance assumed differ-
ent workload conditions. Kahle et al. [2005b] and Annavaram et al. [2005]
considered multi-threaded workloads and advocated spending more en-
ergy per instruction during serial phases (e.g., run serial phases on big
cores or at higher frequency/voltage in a heterogeneous multi-core); Ku-
mar et al. [2004] focus on throughput when assuming a fixed number of
independent programs in a multi-program workload, and focus on per-
program performance when considering variable active thread counts in
multi-program workloads. In this work, we consider abundant numbers of
active thread counts, i.e., at least as many independent programs as there
are cores, and we find that heterogeneous multicores provide a trade-off
between chip throughput and per-program performance, even under such
workload conditions.

The remainder of this chapter is organized as follows. We first describe
the analytical model that we use in our exploration (Section 3.2). Sub-
sequently, we present our methodology for exploring the heterogeneous
processor architecture design space (Section 3.3). After detailing our ex-
perimental setup (Section 3.4), we then present our results and findings
(Section 3.5). Finally, we describe related work (Section 3.6) and conclude
(Section 3.7).

3.2 Multi-core Performance Modeling

The analytical model used in this chapter is called the Multi-Program Per-
formance Model (MPPM) which we discussed in great detail in the previ-
ous chapter. Recall that MPPM collects a profile during single-core sim-
ulation that captures a program’s memory behavior as well as its phase
behavior, and then employs an iterative method to model the performance
entanglement between co-executing programs on a multi-core processor
with shared caches: the iterative method captures how per-program per-
formance affects the amount of resource sharing, and, vice versa, how re-
source sharing in its turn affects per-program performance. We refer to
Chapter 2 for a detailed description and evaluation of MPPM.

42 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

co
re

 ty
pe

s

benchmarks

Randomly pick N benchmarks

Assign benchmarks to cores

Consider N-core heterogeneous multi-core processor,
with each core one of the core types

Run MPPM to predict heterogeneous multi-core performance

1

2

3

4

repeat for a large number
of random selections of benchmarks

Figure 3.1: Using MPPM for exploring the heterogeneous multi-core design
space.

3.3 Exploring the Heterogeneous Multi-core Design
Space

Because MPPM provides us with a way for estimating multi-core perfor-
mance based on single-core simulation results, it is very fast and therefore
the ideal tool to explore the very large multi-core design space. Heteroge-
neous multi-cores are gaining a lot of momentum in the computer architec-
ture community in the last few years because of their potential energy ef-
ficiency. However, the design space for heterogeneous multi-cores is huge.
In fact, it is so large that without tools like the MPPM framework, it is im-
possible to do enough experiments to have meaningful data. The problem
is even more acute than for homogeneous multi-cores (Chapter 2) because
every core can theoretically be individually tuned (there are many more
parameters than can be changed). We leverage the MPPM framework to
efficiently explore the heterogeneous multi-core design space. This is done
as follows, see also Figure 3.1.

We first perform single-core simulation runs for all of the benchmarks

3.3. DESIGN SPACE EXPLORATION 43

and all of the core types of interest. In this chapter, we consider five core
types, and the SPEC CPU2006 benchmarks as our workloads. These single-
core simulations need to be done only once, and enable us to explore the
heterogeneous design space for arbitrary combinations of number of cores
and core types, and for arbitrary job mixes. This matrix of single-core sim-
ulation results serves as input for our design space exploration.

For estimating multi-core performance, we consider the single-core
simulation results for the core types of interest; the core types could be
diverse in case of a heterogeneous design or the same in case of a homo-
geneous design (step #1 in Figure 3.1). We then randomly pick N bench-
marks, with N the number of cores (step #2), and we assign benchmarks
to cores (step #3). As we will observe later in the chapter, benchmark-to-
core mapping has an important impact on overall performance. In this
chapter, unless mentioned otherwise, we map the job that benefits the
most to the most aggressive core, and so forth until all jobs are mapped
to cores. (We provide more details on the job-to-core mapping approach
later in the chapter, and we find this heuristic to be close to optimal, see
Section 3.5.6). We then use MPPM to estimate multi-core performance (step
#4). This whole process (steps #2 through #4) is iterated for a large number
of randomly chosen benchmark mixes (500 in total per experiment). The
key feature of MPPM is that it is based on an analytical model that can be
evaluated very quickly. One experiment takes approximately one day to
complete using MPPM; this includes the one-time cost of single-core simu-
lations for all workloads and core types, as well as computing the MPPM
model. The traditional methodology using detailed architectural simula-
tion would take more than 80 days for performing the same experiment.
Put differently, MPPM enables considering a large set of job mixes in lim-
ited time, which increases confidence in the results compared to detailed
simulation, which would limit the number of possible job mixes to just a
few examples because of simulation time constraints.

3.3.1 Heterogeneous multi-core design space

We consider five core types in our design space exploration: 4-wide and 2-
wide out-of-order cores, and 4-wide, 2-wide and scalar in-order cores. For
the out-of-order cores, we assume a 128-entry and 32-entry reorder buffer
for the 4-wide and 2-wide core, respectively. We assume a core to have
private L1 instruction and data caches, as well as a private L2 cache. The
L1 caches are 32 KB in size; the L2 caches are 256 KB in size and are 8-

44 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

#BCEs
scalar in-order core 1
2-wide in-order core 2
4-wide in-order core 3
2-wide out-of-order core 4
4-wide out-of-order core 8
512 KB LLC slice 1

Table 3.1: Chip area cost model.

way set-associative. The L3 cache is shared among the cores and is the
last-level cache (LLC) in our setup; we vary the LLC size between 1 MB,
2 MB and 4 MB in our experiments, and we assume the LLC to be 16-way
set-associative. All caches implement an LRU replacement policy.

The area cost models for each core type are derived from chip die pho-
tos from Intel Quad-Core Nehalem and Intel Atom processors, see also
Table 3.1. Nehalem implements 4-wide out-of-order cores, whereas In-
tel Atom implements 2-wide in-order cores. We empirically observed a
1 to 4 ratio in chip area between these core architectures (in the same chip
technology). We also observed that one slice of 512 KB LLC corresponds
roughly to half an Intel Atom core or one eighth of an Intel Nehalem core.
Hence, we assign one Base Core Equivalent (BCE) [Hill and Marty 2008] to
a 512 KB LLC slice; 2 BCEs to a 2-wide in-order core (alike Intel Atom) and
8 BCEs to a 4-wide out-of-order core (alike Intel Nehalem). We extrapolated
towards scalar in-order, 4-wide in-order and 2-wide out-of-order cores as
shown in Table 3.1.

We consider 40 BCEs in total in our experiments. This corresponds to
the chip area of the Intel Quad-Core Nehalem processor, which includes
four 4-wide out-of-order cores along with a 4 MB LLC. In the experiments
to follow we vary the configuration of the multi-core processor architec-
ture and we consider both homogeneous and heterogeneous designs, while
bounding total chip area to 40 BCEs.

Unless mentioned otherwise, we assume unlimited off-chip bandwidth;
however, in the results section, we do study how limited off-chip band-
width affects heterogeneous multi-core performance.

3.3.2 Multi-core performance

An important distinction between this work and prior work in heteroge-
neous multi-core architectures is that we focus on two metrics for quan-

3.3. DESIGN SPACE EXPLORATION 45

tifying multi-core performance from two complementary perspectives;
prior work primarily focused on a single metric namely weighted speedup
which quantifies performance from a system perspective only and does
not take into account per-program performance. By using two metrics
we quantify multi-core performance when running multi-program work-
loads from both a system’s and a user’s perspective. We consider system
throughput (STP) as a metric to quantify system performance, along with
average normalized turnaround time (ANTT) to quantify user-perceived
per-program performance. The original definition by Eyerman and Eeck-
hout [2008] introduced STP and ANTT assuming homogeneous multi-core
architectures. However, these definitions are inappropriate for heteroge-
neous designs. The next paragraph describes the original definitions of STP
and ANTT, followed by a discussion on how we extended these metrics for
heterogeneous designs.

STP and ANTT for homogeneous multi-cores

STP measures multi-core performance from a system’s perspective and
quantifies the accumulated progress by all the programs in the multi-
program workload mix. ANTT focuses on user-perceived performance
and quantifies the average slowdown during multi-core execution relative
to single-core, isolated execution. ANTT is the reciprocal of the hmean
metric proposed by Luo et al. [2001] For more details on how STP and
ANTT are calculated, we refer to Chapter 2, Section 2.3.

STP and ANTT for heterogeneous multi-cores

STP and ANTT as defined above for homogeneous multi-cores have no
meaning when used for heterogeneous multi-cores. The reason is that
single-core CPI (CPISC,p) is not well defined in a heterogeneous multi-
core because there are different core types, and hence, the question is
which one to measure single-core CPI for. Picking different core types to
measure single-core CPI for the different jobs would preclude comparing
heterogeneous designs against each other. Hence, we need to agree on a
single core type on which to measure single-core CPI (CPISC,p). In this
work we arbitrarily consider the 4-wide out-of-order core as our baseline
core to measure CPISC,p; the baseline core is assumed to have the entire
cache hierarchy (including the shared LLC) to its disposal. Both STP and
ANTT are then computed relative to the single-core CPI on this baseline
core. In other words, STP now quantifies system throughput achieved

46 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

R² = 0.9249

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

n
o

rm
al

iz
e

d
 IP

C

sqrt(area)

IO1

IO2 IO4

OOO2

OOO4

Figure 3.2: Average normalized IPC for the five core configurations consid-
ered in this study as a function of the square root of the area counted in
BCEs.

over a single 4-wide out-of-order core, e.g., an STP of 8 means that this de-
sign achieves an 8× higher total system throughput compared to a single
baseline 4-wide out-of-order core. Likewise, ANTT quantifies the average
normalized turnaround time relative to a single 4-wide out-of-order core,
e.g., an ANTT of 4 means that this design yields an average per-program
slowdown of a factor 4× relative to a single 4-wide out-of-order core.

3.4 Experimental Setup

For obtaining the single-core simulation results that serve as input to the
performance model, we use a multi-core processor simulator based on
CMP$im [Jaleel et al. 2008a], which is an x86 simulator built on top of
Pin [Luk et al. 2005]. CMP$im is a user-level simulator and allows for
simulating both single-core and multi-core processor architectures. This is
the same setup that we described in more detail in Chapter 2

We consider all the SPEC CPU2006 benchmarks with their reference in-
puts. All the benchmarks were compiled with the GNU C compiler version
4.3.4 and optimization level -O2. We use SimPoint [Sherwood et al. 2002]
to pick representative simulation points of one billion instructions each.

3.5. RESULTS 47

3

4

5

6

7

8

9

10

11

12

13

1 1.5 2 2.5 3 3.5

ST
P

ANTT

4 OOO4 cores & 4MB LLC

19 IO2 cores & 1MB LLC

38 IO1 cores & 1MB LLC

Figure 3.3: Pareto-optimal homogeneous multi-core configurations as a
function of STP (vertical axis) and ANTT (horizontal axis).

Figure 3.2 shows performance in terms of average normalized IPC
across all benchmarks for the five core types considered in this study as a
function of the square root of the area (counted in the number of BCEs, see
also Table 3.1). This data complies with Pollack’s Law [Borkar 2007] which
states that core performance is proportional to the square root of the chip
area.

3.5 Results

We now explore the heterogeneous multi-core design space using the
methodology just described. This is done in a number of steps. We start
by exploring the homogeneous versus heterogeneous multi-core design
spaces, and we explore how the number of core types affects heteroge-
neous multi-core performance. Subsequently, we study the importance of
job-to-core mapping, and how heterogeneous multi-core performance is
affected by off-chip bandwidth. Finally, we evaluate how sensitive hetero-
geneous multi-core performance is with respect to LLC size, and which
core types should be employed in a heterogeneous design.

48 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

3.5.1 Homogeneous multi-core processors

Before exploring the heterogeneous multi-core processor design space, we
start with exploring the homogeneous multi-core design space. For this ex-
periment, we consider all possible homogeneous multi-core design points
with all possible LLC cache sizes that fit in 40 BCEs; further, we assume
unlimited off-chip bandwidth for now. Out of this set of possible homoge-
neous multi-core designs, we determine the Pareto-optimal ones in terms of
system throughput versus average job turnaround time. Figure 3.3 shows
the Pareto-optimal homogeneous multi-core design points as a function of
STP (vertical axis) and ANTT (horizontal axis). The design points vary
from a multi-core design with four 4-wide out-of-order cores and a 4 MB
LLC — alike Intel Quad-Core Nehalem — with an STP of 3.92 and an ANTT
of 1.02, to 38 scalar in-order cores and a 1MB LLC which achieves an STP of
12.17 and an ANTT of 3.29. In other words, the aggressive out-of-order core
design yields excellent per-program performance, yet, total chip through-
put is limited. Conversely, the simple in-order core design yields more than
3× higher system throughput, yet, per-program performance is also more
than 3× lower.

Finding #0: Changing core types in a homogeneous multi-core architecture
yields different trade-offs in system throughput and per-program performance. In
essence, simple in-order cores trade per-program performance for through-
put, and conversely, aggressive out-of-order cores trade throughput for
per-program performance. Mediocre cores lead to multi-core design points
in the spectrum between aggressive out-of-order cores and simple in-order
cores. These trade-offs are well known, but it is important to restate them
here in light of the exploration for heterogeneous architectures.

3.5.2 Pareto-optimal heterogeneous multi-cores

Now that we have a good understanding of the homogeneous multi-core
design space, we move to heterogeneous architectures. We consider all
possible heterogeneous multi-core configurations with at most two differ-
ent core types. Again, we assume all possible LLC cache sizes, a total chip
area of 40 BCEs, and off-chip bandwidth being unlimited. (We consider the
impact of limited off-chip bandwidth on heterogeneous multicore design
considerations in the next section; the reason for considering unlimited off-
chip bandwidth here is to solely focus on the impact of core types initially
and study the fundamental impact of core types on heterogeneous multi-
core performance.) We determine the Pareto frontier as a function of STP

3.5. RESULTS 49

3

4

5

6

7

8

9

10

11

12

13

1 1.5 2 2.5 3 3.5

S
T
P

ANTT

all datapoints global Pareto frontier homogeneous multi-cores

37% reduction in ANTT

32% improvement in STP

Figure 3.4: Pareto frontier of multi-core configurations, along with all pro-
cessor configurations explored including the homogeneous design points.

and ANTT out of this set of heterogeneous multi-core configurations. Fig-
ure 3.4 shows all the design points, along with the Pareto frontier and the
homogeneous multi-core designs (as points of reference).

Finding #1: Heterogeneity poses a trade-off between system throughput and
per-program performance. Prior work motivated heterogeneity as a way for
increasing system throughput within a given power budget [Kumar et al.
2004]. While our results confirm this finding, Figure 3.4 shows that het-
erogeneity also increases average job turnaround time, or in other words,
average per-program performance degrades — compare the heterogeneous
multi-core configurations on the Pareto frontier against the homogeneous
design point at the bottom left on the Pareto frontier (consisting of 4 4-
wide out-of-order cores). Similarly, heterogeneity improves per-program
performance compared to a homogeneous design that achieves the high-
est throughput at the top right on the Pareto frontier (consisting of 38
single-issue in-order cores). Hence, fundamentally, heterogeneity trades
per-program performance for system throughput, and vice versa.

Finding #2: Heterogeneity enables making more fine-grained performance
trade-offs. Although changing the core types in a homogeneous multi-core
design enables trading off system throughput against per-program perfor-
mance, as discussed in the previous section, heterogeneity enables more
fine-grained performance trade-offs to be made. Some trade-off points in
system throughput versus per-program performance can only be achieved

50 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

through heterogeneity.

Finding #3: Some heterogeneous multi-core configurations outperform spe-
cific homogeneous architectures in both system throughput and per-program per-
formance. Heterogeneity yields a number of configurations with signifi-
cantly better performance compared to homogeneous designs. For exam-
ple, see also Figure 3.4, through heterogeneity, one can achieve a 37% reduc-
tion in ANTT while achieving similar STP, or conversely, one can achieve
a 32% STP increase at the same ANTT. The reason is that heterogeneity
allows for mapping jobs to cores that are most appropriate for the job at
hand.

Finding #4: Some homogeneous design points yield optimal performance
trade-offs. Another interesting observation is that some homogeneous de-
signs also appear on the Pareto frontier for the heterogeneous designs:
the three homogeneous configurations labeled in Figure 3.3 with scalar in-
order cores, dual-issue in-order cores and aggressive 4-wide out-of-order
cores, respectively, also appear on the Pareto frontier in Figure 3.4. In other
words, heterogeneity does not provide a range of architectures that outper-
form homogeneous architectures over the entire STP vs. ANTT range. In-
stead, heterogeneity provides a broader range of STP vs. ANTT trade-offs,
and there are many more design points on the Pareto frontier that can be
obtained through heterogeneity than what can be achieved through homo-
geneous designs. However, particular trade-offs are best achieved through
a homogeneous design. This, we believe, is an interesting and novel in-
sight: heterogeneity, fundamentally, trades per-program performance for
system throughput, and while it is true that heterogeneous architectures
can outperform homogeneous architectures for some throughput versus
per-program trade-off points, heterogeneous designs do not always out-
perform homogeneous designs, and some throughput versus per-program
performance trade-offs are best achieved through homogeneous designs.

Finding #5: Two core types provide most of the benefits from heterogeneity.
In the previous experiment, we considered at most two core types. An
interesting question is whether adding additional core types improves het-
erogeneous multi-core architecture performance above two core types. Fig-
ure 3.5 shows the Pareto frontier for at most two, three, four and five core
types. Interestingly, adding more than two core types does not improve
performance much. The highest improvement observed in throughput and
turnaround time is no larger than 6.6% and 7.9%, respectively, going from
two to three core types; beyond three core types, the improvement is less
than 0.3%. Hence, we conclude that two core types provide most of the

3.5. RESULTS 51

3
4
5
6
7
8
9

10
11
12
13

1 1.5 2 2.5 3 3.5

ST
P

ANTT

5 core types 4 core types 3 core types 2 core types homogeneous multi-core

Figure 3.5: Pareto frontier for heterogeneous multi-core architectures with
a varying number of core types.

benefits through heterogeneity, and three or more core types does not con-
tribute much.

3.5.3 Limiting off-chip bandwidth

So far, we assumed that off-chip bandwidth is unlimited. We now study
the impact of limited off-chip bandwidth on heterogeneous multi-core pro-
cessor design. We consider a simple bandwidth model to this end. We
compute the average off-chip bandwidth requirements for each program
in the job mix by multiplying the number of LLC misses per instruction
with the achieved per-program IPC, clock frequency, and the machine’s
LLC cache line size (64 bytes). The sum of the per-program off-chip band-
width requirements then yields the total off-chip bandwidth requirements.
If the aggregate off-chip bandwidth demands exceed the maximum off-
chip bandwidth, we discard the design point and we consider it to be in-
valid.

Figure 3.6 shows the Pareto frontier for unlimited off-chip bandwidth
as well as for limited bandwidth at 30 GB/s, 20 GB/s and 15 GB/s. As
expected, limited off-chip bandwidth puts a limit on the maximum achiev-
able system throughput, e.g., compare the unlimited bandwidth curve ver-
sus the 30 GB/s curve: the maximum achievable STP goes down from
12.17 to 10.03; ANTT varies across a similar range. When limiting off-chip
bandwidth even further to 20 GB/s and 15 GB/s, we observe a decrease
in achievable STP and ANTT. Further, limiting off-chip bandwidth puts a

52 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

!"#"$%&'(")"*%++"

!"#"*%$,(")"$%-&"

!"#".%,/(")"/%//"

&"

+"

0"

,"

'"

-"

*."

**"

*$"

*/"

*" *%+" $" $%+" /" /%+"

!
"
#
$

%&""$

123454678"9:28;486<"

/."=>?@"

$."=>?@"

*+"=>?@"

Figure 3.6: Evaluating how off-chip bandwidth limitations affect heteroge-
neous multi-core performance.

limit on how per-program performance can be traded for throughput, i.e.,
the range of possible design points is reduced.

Finding #6: When limiting off-chip bandwidth, increasing system through-
put comes at the cost of a proportionally larger degradation in per-program perfor-
mance. Interestingly, we observe an almost linear relationship between STP
and ANTT for the heterogeneous design points on the Pareto frontier un-
der limited bandwidth constraints; the linear fits are shown in Figure 3.6.
Note that the slope decreases with decreasing off-chip bandwidth. This
implies that if a processor designer aims at increasing system throughput,
limitations in off-chip bandwidth will force the designer to tolerate increas-
ingly larger job turnaround times. In other words, if the goal is to improve
system throughput by a given percentage, per-program performance will
degrade by an increasingly larger percentage at lower off-chip bandwidths.

Finding #7: Highest throughput can only be achieved through heterogene-
ity under off-chip bandwidth constraints. It is interesting to study how ho-
mogeneous multi-cores fare under limited off-chip bandwidth constraints.
Figure 3.7 shows the Pareto frontier for heterogeneous and homogeneous
designs at 20 GB/s of off-chip bandwidth. The key observation here is
that the highest throughput cannot be achieved through homogeneity un-
der this particular off-chip bandwidth constraint; only heterogeneity can

3.5. RESULTS 53

3.5

4

4.5

5

5.5

6

6.5

7

1 1.5 2 2.5 3

ST
P

ANTT

heterogeneous homogeneous

Figure 3.7: Pareto frontier for heterogeneous and homogeneous multi-core
designs under 20 GB/s off-chip bandwidth constraints.

achieve these high levels of throughput. The reason is that a large number
of small cores imposes large LLC to satisfy bandwidth constraints, which
leads to suboptimal performance compared to a heterogeneous design with
a few slightly more aggressive cores and a smaller LLC.

3.5.4 Impact of LLC size

As observed in the previous section, off-chip bandwidth has significant im-
pact on (heterogeneous) multi-core performance. Caches are effective at
reducing off-chip bandwidth pressure: cache hits do not need to go off
chip, thereby saving off-chip traffic. Figure 3.8(a) shows the heterogeneous
multi-core Pareto frontier for different cache sizes while assuming infinite
off-chip bandwidth. Unsurprisingly perhaps, the smallest LLC (1 MB) con-
figuration yields the highest throughput. In other words, unlimited off-
chip bandwidth leads to integrating more cores and not larger caches for
optimum performance.

Finding #8: Large LLCs yield highest throughput under off-chip bandwidth
constraints. Figure 3.8(b) shows the heterogeneous multi-core Pareto fron-
tier with off-chip bandwidth limited to 20 GB/s. We observe a very dif-
ferent result under limited off-chip bandwidth. Counter-intuitively and
surprisingly, the highest system throughput is achieved for the largest LLC
(see righthand side in Figure 3.8(b)). The reason is that a large LLC re-
duces the off-chip bandwidth pressure imposed by employing many small

54 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

(a) unlimited off-chip bandwidth

3.5

4

4.5

5

5.5

6

6.5

7

1 1.5 2 2.5 3

ST
P

ANTT

1MB 2MB 4MB

3.5

5.5

7.5

9.5

11.5

13.5

1 1.5 2 2.5 3 3.5

ST
P

ANTT

1MB 2MB 4MB

(a) unlimited bandwidth (b) 20 GB/s bandwidth (b) 20 Gb/s off-chip bandwidth

3.5

4

4.5

5

5.5

6

6.5

7

1 1.5 2 2.5 3

ST
P

ANTT

1MB 2MB 4MB

3.5

5.5

7.5

9.5

11.5

13.5

1 1.5 2 2.5 3 3.5

ST
P

ANTT

1MB 2MB 4MB

(a) unlimited bandwidth (b) 20 GB/s bandwidth
Figure 3.8: Evaluating how LLC size affects Pareto-optimal heterogeneous
multi-core performance under different off-chip bandwidth constraints.

3.5. RESULTS 55

3

4

5

6

7

8

9

10

11

1 1.5 2 2.5 3 3.5

ST
P

ANTT

Pareto-optimal IO1 + OOO4 IO2 + OOO4 IO4 + OOO4

OOO2 + OOO4 IO1 + OOO2 IO2 + OOO2 IO4 + OOO2

IO1 + IO4 IO2 + IO4 IO1 + IO2 homogeneous

Figure 3.9: Pareto frontiers for heterogeneous multi-cores with two core
types, assuming 30 GB/s off-chip bandwidth.

cores to achieve high throughput. In other words, the high-throughput
designs on the righthand side of Figure 3.8(b) are bandwidth-constrained,
hence, they benefit from a larger LLC to reduce bandwidth pressure. Bal-
anced system throughput and per-program performance (middle part in
Figure 3.8(b)) is achieved by employing more (or at least a couple) aggres-
sive big cores which impose less off-chip bandwidth traffic, and hence, a
smaller LLC is optimal. However, for the designs on the lefthand side of
Figure 3.8(a) and (b) which are optimized for per-program performance, a
large LLC is optimal again. The reason is that a large LLC (along with ag-
gressive out-of-order cores) yields the highest per-program performance.
In other words, these designs are not bandwidth-constrained but opti-
mized for per-program performance, and hence also benefit from a large
LLC.

3.5.5 Which core types to employ in a heterogeneous design?

As mentioned throughout this chapter, there is a clear performance bene-
fit to be achieved from heterogeneity for particular performance trade-offs.
An open question though is what the core types should be for optimum
performance. Figure 3.9 shows the Pareto frontier for all possible com-
binations of two core types; we assume off-chip bandwidth is limited to

56 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

30 GB/s. The Pareto-optimal points across all Pareto frontiers per two core
types obviously corresponds to the global Pareto frontier shown in Fig-
ure 3.6.

Finding #9: Particular compositions for heterogeneity yield particular per-
formance trade-offs, and some compositions do not yield Pareto-optimal perfor-
mance. The interesting observation from Figure 3.9 is that the composition
of a Pareto-optimal heterogeneous multi-core varies along the Pareto fron-
tier. At high throughput, a Pareto-optimal heterogeneous multi-core is to
be composed of single-issue and dual-issue in-order cores. This is in line
with prior work which advocated simple cores for server-type throughput
applications in the datacenter [Kongetira et al. 2005, Kgil et al. 2006, Lim
et al. 2008, Reddi et al. 2010, Mudge and Hölzle 2010]: highest throughput
is achieved using many small cores. For high per-program performance,
Pareto-optimal heterogeneous multi-cores should employ at least one out-
of-order core type. Interestingly, a heterogeneous multi-core composition
with two particular core types that is Pareto-optimal locally is not neces-
sarily Pareto-optimal globally, i.e., the exact number of cores of a given
type is important and determines whether the heterogeneous multi-core is
globally optimal. If not, there exist compositions with other core types that
yield better throughput and per-program performance.

Note also that some heterogeneous multi-core compositions do not
yield Pareto-optimal performance, see for example heterogeneous designs
with four-issue in-order and two-issue out-of-order cores, as well as het-
erogeneous designs with two-issue and four-issue in-order cores. This can
be understood intuitively given the relatively small performance and chip
area differences between these core types, see also Section 3.4. However,
heterogeneous architectures with single-issue in-order and four-issue out-
of-order cores also fall in this category. This is a surprising result because
these two core types are the most extreme core types in the mix. The reason
is that single-issue in-order cores call for a larger LLC to meet the off-
chip bandwhich constraints. Two-issue in-order cores on the other hand
put less aggregate pressure on off-chip bandwidth (because one two-issue
core generates less off-chip traffic than two single-issue cores for the same
chip area). As a result, single-issue in-order cores demand for a larger
LLC which is suboptimal compared to having fewer mediocre (dual-issue
in-order) cores and a slightly smaller LLC.

3.5. RESULTS 57

3.5.6 Job-to-core mapping

An important challenge with heterogeneous multi-core architectures is
how to schedule or map the jobs across the different core types in order to
maximize performance. We consider four job-to-core mapping strategies.

• Optimal mapping maps jobs to cores so that overall performance
are optimized. One could either optimize throughput or optimize
turnaround time; here we maximize throughput (STP). The optimal
mapping is obtained by exhaustively trying out all possible job-to-
core mapping and picking the best one. This is an oracle and cannot
be achieved in practice.

• Cache miss rate based mapping maps the job with the highest LLC
miss rate to the lowest-end core, the job with the second highest LLC
miss rate to the second lowest-end core, etc. In other words, we
map compute-intensive jobs to the high-end cores and the memory-
intensive jobs to the low-end cores. The intuition is to map jobs to
the core type where they would presumably benefit the most. Sev-
eral previously proposed scheduling algorithms for heterogeneous
architectures are based on this heuristic, see for example [Kumar et al.
2004, Koufaty et al. 2010]. We explored IPC-based mapping strategies
as well, following several other prior proposals [Becchi and Crowley
2008], but obtained similar results as for cache miss rate based map-
ping, hence, the IPC-based mapping results are omitted.

• A relative slowdown mapping assumes that it knows the relative per-
formance for each job on each of the core types. This mapper itera-
tively picks the job in the job mix that would experience the largest
relative slowdown from not being scheduled on the highest-end core,
and maps that job to the highest-end core; the job is removed from the
job mix and the core is no longer schedulable, after which the mapper
picks the next job.

• Random mapping, as it says, performs a random mapping of jobs to
cores.

Figure 3.10 compares these job-to-core mapping strategies for six het-
erogeneous multi-core processors with two core types, namely 4-wide out-
of-order and 2-wide in-order cores. Again, we consider 500 randomly cho-
sen multi-program workload mixes.

58 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

!"#$

!"%$

%"#$

%"%$

&"#$

&"%$

'"#$

'"%$

("#$

)"#$)"*$)"!$)"&$)"($ *"#$ *"*$ *"!$

!
"
#
$

%&""$

+,-./0$

1/123$.455$6/73$8/539$

630/-:3$50+;9+;<$8/539$

6/<9+.$

Figure 3.10: Evaluating how job-to-core mapping affects heterogeneous
multi-core performance.

Finding #10: Job-to-core mapping is both important and challenging for
achieving optimum performance on heterogeneous multi-core architectures. Clearly,
random mapping as well as a simple heuristic such as cache miss rate based
mapping are far from optimal. Random mapping is oblivious to the fact
that the underlying hardware is heterogeneous and, as a result, it is not sur-
prising that random mapping does not yield optimum performance. The
cache miss rate based mapping strategy apparently does not have enough
information about how to optimally map jobs to cores. The reason is that
cache miss rate based mapping in unaware of memory-level parallelism
and how misses translate into overall performance. Relative slowdown
based mapping holds enough information for making a (close to) optimal
mapping. Note though that the information needed by relative slowdown
mapping is substantial as it requires the knowledge of how well jobs per-
form on the different core types; this may require extensive profiling which
may be not be achievable in practice. Hence, we can consider this approach
as an idealized mapping approach. (Note we used the relative slowdown
mapping) We conclude from this experiment that job-to-core mapping on
heterogeneous multi-core systems is a non-trivial problem, that simple
heuristics as presented in the literature are suboptimal, and that solving
the mapping problem can yield substantial performance benefits.

3.6. RELATED WORK 59

3.5.7 Workloads

Any experimental study is bound to the workloads used in the study. In
other words, some of the conclusions may be somewhat biased by the set of
workloads considered. However, we expect the more general conclusions
to still hold true for other types of workloads.

Finding #11: Although the SPEC CPU benchmark suite comprises a fairly
broad set of workloads, as for any experimental study, some of the conclusions
reached may be bound by the set of chosen workloads, however, we expect the over-
all insights to hold true across workload domains. In particular, we identified
specific heterogeneous multicore configurations to be optimal. We expect
this to be workload dependent, i.e., another set of workloads is likely to
yield a different set of Pareto-optimal architecture configurations. Never-
theless, the more general findings, we believe, are likely to hold true for
other workloads as well.

3.6 Related Work

The design space of heterogeneous multi-core architectures is huge. The
weakest form of heterogeneity involves different cores only varying in
clock frequency (microarchitecture and ISA is the same across the cores);
this form of heterogeneity may stem from process variation which may
cause cores on the same chip differing substantially in the amount of
power that they consume and in the maximum frequency that they can
support [Teodorescu and Torrellas 2008]. Per-core DVFS is employed in
the AMD Opteron Quad-Core processor [Dorsey et al. 2007] and the In-
tel Montecito [McGowen et al. 2006] and enables heterogeneity by vary-
ing clock frequency per core. A stronger form of heterogeneity are the
so-called single-ISA heterogeneous multi-cores: all the cores implement
the same ISA but differ in their microarchitecture [Kumar et al. 2003].
Commercial examples are the NVidia Kal-El [NVidia 2011] and the ARM
big.LITTLE chip [Greenhalgh 2011], as mentioned in the introduction.
Overlapping-ISA heterogeneous multi-cores feature different cores with
overlapping ISAs, i.e., all cores implement the same ISA except for a small
set of instructions that is unique to each core type [Li et al. 2010a]. The
strongest form of heterogeneity involves different cores with different ISAs
and microarchitectures. Examples are CPU/GPU integration, such as In-
tel’s Sandy Bridge [Intel 2008], AMD’s Fusion [AMD 2008], and NVidia’s
Tegra [NVidia 2010], or accelerator-based architectures such as the IBM

60 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

Cell [Kahle et al. 2005a]. The remainder of this related work section focuses
on single-ISA heterogeneous architectures.

Kumar et al. [2008] were the first to propose single-ISA heterogeneous
multi-cores. They propose thread migration during run time and powering
down unused cores to exploit the time-varying behavior of applications to
maximize performance and power-efficiency. In their follow-on work, Ku-
mar et al. [2004] proposed scheduling different programs to different core
types in single-ISA heterogeneous multi-core architectures. They showed
that scheduling programs to the most power-efficient core in a heteroge-
neous multi-core processor can lead to substantial improvements in system
throughput (weighted speedup) for static workloads and substantial re-
ductions in job response times for dynamic workloads in which jobs come
and go as they complete. In contrast to our work, Kumar et al. did not make
the observation that heterogeneous architectures fundamentally trade per-
program performance for throughput. Kumar et al. [2006] explore princi-
ples for designing single-ISA heterogeneous multi-core architectures. They
consider in-order as well as out-of-order cores, and they vary core config-
urations (pipeline width, number of functional units, number of rename
registers, reorder buffer size, etc.) as well as cache size and associativity,
while considering both area and power cost. In contrast to our work, they
limit the design space to four cores only and assume no interactions among
cores (no shared LLC). Further, they focus on system throughput only, and
do not consider per-program performance.

Kahle et al. [2005b] study the trade-off in per-program performance ver-
sus chip throughput in a power-constrained environment. They make the
fundamental observation that in order to achieve both high per-program
performance and high throughput, a processor needs the ability to dy-
namically vary the amount of energy expended per instruction according
to the amount of parallelism available in software — a technique called
Energy Per Instruction (EPI) throttling. They survey four architectural
techniques to do so, voltage/frequency scaling, heterogeneity, variable-
size cores and speculation control, and conclude that heterogeneous multi-
cores along with voltage/frequency scaling are most promising to dy-
namically achieve high per-program performance when few threads are
active and high throughput when many threads are active. Annavaram
et al. [2005] experimentally evaluate the idea of EPI throttling using pro-
totype hardware by applying clock throttling to cores in a homogeneous
shared-memory processor, effectively creating a heterogeneous multi-core
system. They report substantial performance improvements compared to

3.7. SUMMARY 61

a homogeneous multi-core within a given power budget while running
multi-threaded applications. These papers did not evaluate design trade-
offs in a heterogeneous multi-core processor and how these trade-offs affect
per-program performance versus throughput. Furthermore, these papers
argue workload phases with limited thread-level parallelism should be
sped up by consuming more energy per instruction, thereby achieving
high per-program performance; in this work, we find that, even under
abundant numbers of independent programs and threads, heterogeneous
multi-cores provide a trade-off between per-thread performance and chip
throughput.

A substantial body of work has been done on scheduling for hetero-
geneous multi-core processors. Several proposals propose static or offline
scheduling based on program characteristics [Chen and John 2009, Shele-
pov et al. 2009]. An obvious limitation is that static or offline schedul-
ing does not allow for taking advantage of time-varying workload execu-
tion behavior. Other proposals employ sampling-based scheduling [Kumar
et al. 2004, Becchi and Crowley 2008], i.e., a program is executed on differ-
ent core types for a short amount of time and the system then dynamically
maps the program on the most performance/power-efficient core dynami-
cally. Yet other proposals use heuristics such as schedule memory-intensive
programs on small cores and compute-intensive programs on more aggres-
sive cores, see for example [Ghiasi et al. 2005, Shelepov et al. 2009, Koufaty
et al. 2010, Li et al. 2010a]. Patsilaras et al. [2010, 2012] study how to best in-
tegrate an MLP technique (such as runahead execution [Mutlu et al. 2003])
into a heterogeneous multi-core processor. We refer to the next chapter for
more in-depth analysis on scheduling for single-ISA heterogeneous multi-
core processors and the proposal of IE scheduling, an accurate and scalable
scheduling paradigm which outperforms the state-of-the-art in scheduling
by a significant margin.

3.7 Summary

The single-ISA heterogeneous multi-core design space is huge and there
are many fundamental design choices to be made. Hence, getting insight
in the design space is far from trivial. The core types may vary from sim-
ple in-order to complex out-of-order cores, and there are many possible
compositions of core types and number of cores. In addition, the design is
constrained by chip area limitations as well as limits in off-chip bandwidth,
which leads to interesting design trade-offs while considering core types,

62 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

number of cores and LLC size. Understanding these design trade-offs is
further complicated by the methodology — which is likely the reason why
no such a study has not been published before, to the best of our knowl-
edge: heterogeneous multi-core design exploration is complicated by the
huge design space, complex interactions through shared resources such as
the LLC, the very large number of possible workload mixes, and the sen-
sitivity of the exploration to job-to-core mapping. Clearly, detailed simula-
tion is too slow to be a useful tool for such exploratory analyses.

We used analytical modeling to explore the heterogeneous design
space: analytical modeling is fast and allows for exploring many design
trade-offs in limited time. The input to the analytical model is obtained
in linear time in the number of core types and workloads of interest; all
possible combinations of number of cores, core types and workload mixes
can be quickly evaluated from this initial profile while taking into account
interactions in the shared LLC. Further, analytical modeling facilitates fo-
cusing on the major performance trends and insights. In contrast to prior
work, we also focus on both system throughput and per-program perfor-
mance — prior work work focused on system throughput only — and we
explore Pareto-optimal configurations.

This analysis provides a number of interesting insights. (1) While it is
true that heterogeneity can improve system throughput, it fundamentally
trades per-program performance for chip throughput. (2) Some homo-
geneous multi-core configurations yield optimal performance trade-offs,
however, heterogeneity enables making more fine-grained design choices,
and yields better throughput and per-program performance than homoge-
neous designs for particular performance targets. (3) Two core types pro-
vide most of the benefits from heterogeneity and a larger number of core
types does not contribute much, however, the choice of core types is crit-
ical for optimum performance and for achieving particular performance
targets. (4) Limited off-chip bandwidth changes some of the fundamental
design choices in heterogeneous architectures, such as the need for large
on-chip caches for achieving high throughput, and per-program perfor-
mance degrading more relative to throughput under constrained off-chip
bandwidth. Further, while a homogeneous design with many small cores
achieves highest throughput assuming infinite bandwidth, only heteroge-
neous designs can achieve the highest possible throughput under band-
width constraints. We have shown that job-to-core mapping is both impor-
tant and challenging for heterogeneous multi-core processors to achieve
optimum performance. In the remainder of this dissertation, we will fur-

3.7. SUMMARY 63

ther explore the difficulties of scheduling for heterogeneous multi-core pro-
cessors.

64 CHAPTER 3. HETEROGENEOUS MULTI-CORE DESIGN

Chapter 4

Scheduling Heterogeneous
Multi-Cores through
Performance Impact Estimation
(PIE)

Nothing compares to the simple pleasure of a bike ride.
John F. Kennedy

In this chapter, we propose Performance Impact Estimation (PIE) as a mechanism
to schedule workloads on a single-ISA heterogeneous multi-cores. PIE collects CPI
stack, MLP and ILP profile information at runtime, and estimates the performance
impact if the workload were to run on a different core type.

4.1 Introduction

A fundamental problem in the design space of single-ISA heterogeneous
multi-core processors is how to best schedule workloads on the most ap-
propriate core type, as clearly shown in the previous chapter. Making
wrong scheduling decisions can lead to suboptimal performance and ex-
cess energy/power consumption. To address this scheduling problem, re-
cent proposals use workload memory intensity as an indicator to guide ap-
plication scheduling [Becchi and Crowley 2008, Chen and John 2009, Ghiasi
et al. 2005, Koufaty et al. 2010, Li et al. 2010b, Shelepov et al. 2009]. Such
proposals tend to schedule memory-intensive workloads on a small core
and compute-intensive workloads on a big core. We show that such an ap-

65

66 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

proach causes suboptimal scheduling when memory intensity alone is not
a good indicator for workload-to-core mapping.

In general, small (e.g., in-order) cores provide good performance for
compute-intensive workloads whose subsequent instructions in the dy-
namic instruction stream are mostly independent (i.e., high levels of in-
herent ILP). On the other hand, big (e.g., out-of-order) cores provide good
performance for workloads where the ILP must be extracted dynamically
or the workload exhibits a large amount of MLP. Therefore, scheduling de-
cisions on heterogeneous multi-cores can be significantly improved by tak-
ing into account how well a small or big core can exploit the ILP and MLP
characteristics of a workload.

We propose Performance Impact Estimation (PIE) as a mechanism to se-
lect the appropriate workload-to-core mapping in a heterogeneous multi-
core processor. The key idea of PIE is to estimate the expected performance
for each core type for a given workload. In particular, PIE collects CPI stack,
MLP and ILP profile information during runtime on any one core type,
and estimates performance if the workload were to run on another core
type. In essence, PIE estimates how a core type affects exploitable MLP and
ILP, and uses the CPI stacks to estimate the impact on overall performance.
Dynamic PIE scheduling collects profile information on a per-interval ba-
sis (e.g., 2.5 ms) and dynamically adjusts the workload-to-core mapping,
thereby exploiting time-varying execution behavior. We show that dynam-
ically collecting profile information requires minimal hardware support:
five 10-bit counters and 64 bits of storage.

We evaluate PIE scheduling using a large number of multi-programmed
SPEC CPU2006 workload mixes. For a set of scheduling-sensitive work-
load mixes on a heterogeneous multi-core consisting of one big (out-of-
order) and one small (in-order) core, we report an average performance
improvement of 5.5% over recent state-of-the-art scheduling proposals.
We also evaluate PIE scheduling and demonstrate its scalability across a
range of heterogeneous multi-core configurations, including private and
shared last-level caches (LLCs). Finally, we show that PIE outperforms a
sampling-based scheduling by an average of 8.7%.

4.2 Motivation

Efficient use of single-ISA heterogeneous multi-cores is dependent on the
underlying workload scheduling policy. A number of recent proposals use

4.2. MOTIVATION 67

memory intensity as an indicator to guide workload scheduling [Becchi
and Crowley 2008, Chen and John 2009, Ghiasi et al. 2005, Koufaty et al.
2010, Li et al. 2010b, Shelepov et al. 2009]. This policy is based on the in-
tuition that compute-intensive workloads benefit more from the high com-
putational capabilities of a big core while memory-intensive workloads ex-
ecute more energy-efficiently on a small core while waiting for memory.

To correlate whether memory intensity is a good indicator to guide
workload scheduling, Figure 4.1 compares the slowdown for SPEC CPU2006
workloads on a small core relative to a big core (left y-axis), to the normal-
ized CPI stack [Emma 1997] on a big core (right y-axis). The normalized
CPI stack indicates whether a workload is memory-intensive or compute-
intensive. If the normalized CPI stack is memory dominant, then the
workload is memory-intensive (e.g., mcf), else the workload is compute-
intensive (e.g., tonto).

The figure illustrates workloads grouped into three categories on the x-
axis: workloads that have reasonable slowdown (<1.75×) on the small core
(type-I workloads), workloads that have significant slowdown (>2.25×) on
the small core (type-III), and the remaining workloads are labeled as type-
II. Making correct scheduling decisions in the presence of type-I and III
workloads is most critical: making an incorrect scheduling decision, i.e.,
executing a type-III workload on a small core instead of a type-I work-
load, leads to poor overall performance, hence we label type-I and III as
scheduling-sensitive workloads.

The figure shows that while memory intensity alone can provide a
good indicator for scheduling some memory-intensive workloads (e.g.,
mcf) onto a small core, such practice can significantly slowdown other
memory-intensive workloads (e.g., soplex). Similarly, some compute-
intensive workloads (e.g., astar.r) observe a significant slowdown on a
small core while other compute-intensive workloads (e.g., calculix) have
reasonable slowdown when executing on a small core. This behavior il-
lustrates that memory intensity (or compute intensity) alone is not a good
indicator to guide application scheduling on heterogeneous multi-cores.

The performance behavior of workloads on small and big cores (Fig-
ure 4.1) can be explained by the design characteristics of each core. Big
cores are particularly suitable for workloads that require ILP to be extracted
dynamically or have a large amount of MLP. On the other hand, small cores
are suitable for workloads that have a large amount of inherent ILP. This
implies that performance on different core types can be directly correlated
to the amount of MLP and ILP prevalent in the workload. For example,

68 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

libquantum
gcc.expr2

gcc.166
gcc.c

gcc.g23
gcc.200
mcf.ref

perl.c
gcc.s

calculix
perl.split
gobmk.t

gcc.cp-decl
perl.diff

tonto
gromacs
gobmk.n
gobmk.s

dealII
gobmk.t

omnetpp
povray

sjeng
bzip2.c

xalancbmk
gamess.c

bzip2.p
sphinx3.an4

lbm
gcc.s04

h264.f_ref
gamess.t
gamess.h

h264.f_base
hmmer.r

wrf.r
hmmer.n

h264ref.sss
bzip2.c
leslie3d
bwaves

namd
bzip2.l

gcc.expr
bzip2.t

zeusmp
milc.su3

cactusADM
bzip2.s
soplex

GemsFDTD
soplex.pds

astar.B
astar.r

ty
p
e
 I

ty
p

e
 II

ty
p

e
 III

C
P
Ib

a
se

C
P
IL2

C
P
IL3

C
P
Im

e
m

sm
a
ll-co

re
 slo

w
d
o
w

n
small-core slowdown

normalized CPI

Figure
4.1:N

orm
alized

big-core
C

PIstacks
(rightaxis)and

sm
all-core

slow
dow

n
(leftaxis).

Benchm
arks

are
sorted

by
their

sm
all-versus-big

core
slow

dow
n.

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 69

consider a memory-intensive workload that has a large amount of MLP.
Executing such a memory-intensive workload on a small core can result
in significant slowdown if the small core does not expose the MLP. On the
other hand, a compute-intensive workload with large amounts of ILP may
have a reasonable slowdown on a small core and need not require the big
core.

To quantify this, Figure 4.2 illustrates slowdown and the loss in MLP
(or ILP) when scheduling a workload on a small core instead of a big core.
The workloads are sorted left-to-right based on memory intensity (inferred
from the normalized CPI stack). We use MLP ratio to quantify MLP loss and
ILP ratio to quantify ILP loss. MLP and ILP ratios are defined as follows:

MLPratio =MLPbig/MLPsmall (4.1)

ILPratio = CPIbase big/CPIbase small (4.2)

with MLP defined as the average number of outstanding memory re-
quests if at least one is outstanding [Chou et al. 2004], and CPIbase as the
base (non-miss) component of the CPI stack. The key observation from Fig-
ure 4.2 is that MLP ratio correlates with slowdown for memory-intensive
applications (righthand side of the graph). Similarly, ILP ratio correlates
with slowdown for compute-intensive workloads (lefthand side of the
graph).

In summary, Figures 4.1 and 4.2 indicate that memory intensity alone is
not a good indicator for scheduling workloads on a heterogeneous multi-
core. Instead, scheduling policies on heterogeneous multi-cores must take
into account the amount of MLP and ILP that can be exploited by the differ-
ent core types. Furthermore, the slowdowns (or speedups) when moving
between different core types can directly be correlated to the amount of
MLP and ILP realized on a target core. This suggests that the performance
on a target core type can be estimated by predicting the MLP and ILP on
that core.

4.3 Performance Impact Estimation (PIE)

A direct approach to determine the best scheduling policy on a heteroge-
neous multi-core is to apply sampling-based scheduling [Becchi and Crow-
ley 2008, Kumar et al. 2003; 2004]. Sampling-based scheduling dynamically

70 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

0
.0

1
.0

2
.0

3
.0

4
.0

slo
w

d
o

w
n

ILP
 ratio

M
LP

 ratio

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hmmer.r

bzip2.l

astar.r

gamess.c

gamess.h

povray

bzip2.p

bzip2.c

bzip2.t

h264.f_ref

perl.diff

gamess.t

tonto

namd

h264ref.sss

dealII

bzip2.s

h264.f_base

hmmer.n

gobmk.t

gcc.s04

gcc.expr

gromacs

calculix

gobmk.n

gcc.s

gobmk.t

gcc.cp-decl

sjeng

bzip2.c

perl.split

gobmk.s

zeusmp

perl.c

xalancbmk

wrf.r

sphinx3.an4

gcc.expr2

lbm

astar.B

gcc.g23

cactusADM

gcc.c

bwaves

GemsFDTD

gcc.200

leslie3d

gcc.166

soplex

soplex.pds

omnetpp

mcf.ref

milc.su3

libquantum

cycles-per-instruction

b
ase

L2
L3

m
em

Figure
4.2:

C
orrelating

sm
all-core

slow
dow

n
to

the
M

LP
ratio

for
m

em
ory-intensive

w
orkloads

(right-
hand

side
in

the
graph)

and
to

the
ILP

ratio
for

the
com

pute-intensive
w

orkloads
(lefthand

side
in

the
graph).W

orkloads
are

sorted
by

their
norm

alized
m

em
ory

C
PIcom

ponent(bottom
graph).

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 71

samples different workload-to-core mappings at runtime and then selects
the best performing mapping. While such an approach can perform well,
it introduces performance overhead due to periodically migrating work-
loads between different core types. Furthermore, these overheads increase
with the number of cores (and core types). To address these drawbacks, we
propose Performance Impact Estimation (PIE).

The key idea behind PIE is to estimate (not sample) workload perfor-
mance on a different core type. PIE accomplishes this by using CPI stacks.
We concentrate on two major components in the CPI stack: the base com-
ponent and the memory component; the former lumps together all non-
memory related components:

CPI = CPIbase + CPImem. (4.3)

Figure 4.2 illustrated that MLP and ILP ratios provide good indicators on
the performance difference between big and small cores. Therefore, we
use MLP, ILP, and CPI stack information to develop our PIE model (see
Figure 4.3). Specifically, we estimate the performance on a small core while
executing on a big core in the following manner:

CPIsmall = C̃PIbase small + C̃PImem small

= C̃PIbase small + CPImem big ×MLPratio.
(4.4)

Similarly, we estimate the performance on a big core while executing on a
small core as follows:

CPIbig = C̃PIbase big + C̃PImem big

= C̃PIbase big + CPImem small/MLPratio.
(4.5)

In the above formulas, C̃PIbase big refers to the base CPI component on
the big core estimated from the execution on the small core; C̃PIbase small

is defined similarly. The memory CPI component on the big (small) core
is computed by dividing (multiplying) the memory CPI component mea-
sured on the small (big) core with the MLP ratio. The remainder of this
section details on how we predict the base CPI components as well as the
MLP ratio, followed by an evaluation of the PIE model. Section 4.4 then
presents dynamic PIE scheduling, including how we collect the inputs to

72 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

0

2

4

6

8

10

12

14

big predicted small

memory component

base component

predicted small
running on small

C
P

I

running on big
predicted big

Figure 4.3: Illustration of the PIE model.

the PIE model during runtime by introducing performance counters.

4.3.1 Predicting MLP

The memory CPI component essentially consists of three contributors: the
number of misses, the latency per (isolated) miss, and the number of si-
multaneously outstanding misses (MLP). We assume that the big and small
cores have the same cache hierarchy, i.e., the same number of cache levels
and the same cache sizes at each level. In other words, we assume that the
number of misses and the latency per miss is constant across core types1.
However, MLP varies across core types as big cores and small cores vary
in the amount of MLP that they can exploit. We now describe how we esti-
mate MLP on the big core while running on the small core; and vice versa,
we estimate MLP on the small core while running on the big core. Combin-
ing these MLP estimates with measured MLP numbers on the current core
type enables predicting the MLP ratio using Formula 4.1, which in its turn
enables estimating the memory CPI components on the other core type,
using Formulas 4.4 and 4.5.

1If the cache hierarchy is different, then techniques described in [Jaleel et al. 2012] can be
used to estimate misses for a different cache size.

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 73

Predicting big-core MLP on small core

Big out-of-order cores implement a reorder buffer, non-blocking caches,
MSHRs, etc., which enables issuing independent memory accesses in paral-
lel. The maximum MLP that a big core can exploit is bound by the reorder
buffer size, i.e., a necessary condition for independent long-latency load
misses to be issued to memory simultaneously is that they reside in the
reorder buffer at the same time. We therefore estimate the big-core MLP
as the average number of memory accesses in the big-core reorder buffer.
Quantitatively, we do so by calculating the average number of LLC misses
per instruction observed on the small core (MPIsmall) multiplied by the
big-core reorder buffer size:

MLPbig =MPIsmall ×ROB size. (4.6)

Note that the above estimate does not make a distinction between inde-
pendent versus dependent LLC misses; we count all LLC misses. A more
accurate estimate would be to count independent LLC misses only, how-
ever, in order to simplify the design, we simply count all LLC misses.

Predicting small-core MLP on big core

Small in-order cores exploit less MLP than big cores. A stall-on-miss core
stalls on a cache miss, and hence, it does not exploit MLP at all — MLP
equals one. A stall-on-use core can exploit some level of MLP: indepen-
dent loads between a long-latency load and its first consumer can be is-
sued to memory simultaneously. MLP for a stall-on-use core thus equals
the average number of memory accesses between a long-latency load and
its consumer. Hence, we estimate the MLP of a stall-on-use core as the aver-
age number of LLC misses per instruction on the big core multiplied by the
average dependency distance D between an LLC miss and its consumer.
(Dependency distance is defined as the number of dynamically executed
instructions between a producer and its consumer.)

MLPsmall =MPIbig ×D. (4.7)

Again, in order to simplify the design, we approximate D as the depen-
dency distance between any producer (not just an LLC miss) and its con-
sumer. We describe how we measure the dependency distance D in Sec-
tion 4.4.3.

74 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

4.3.2 Predicting ILP

The second CPI component predicted by the PIE model is the base CPI
component.

Predicting big-core ILP on small core

We estimate the base CPI component for the big core as one over the issue
width Wbig of the big core:

C̃PIbase big = 1/Wbig. (4.8)

A balanced big (out-of-order) core should be able to dispatch approxi-
mately Wbig instructions per cycle in the absence of miss events. A bal-
anced core design can be achieved by making the reorder buffer and re-
lated structures such as issue queues, rename register file, etc., sufficiently
large to enable the core to issue instructions at a rate near the designed
width [Eyerman et al. 2009].

Predicting small-core ILP on big core

Estimating the base CPI component for a small (in-order) core while run-
ning on a big core is more complicated. For ease of reasoning, we estimate
the average IPC and take the reciprocal of the estimated IPC to yield the
estimated CPI. We estimate the average base IPC on the small core with
width Wsmall as follows:

ĨPCbase small =

Wsmall∑
i=1

i× P [IPC = i]. (4.9)

We use simple probability theory to estimate the probability of executing i
instructions in a given cycle. The probability of executing only one instruc-
tion in a given cycle equals the probability that an instruction produces a
value that is consumed by the next instruction in the dynamic instruction
stream (dependency distance of one):

P [IPC = 1] = P [D = 1]. (4.10)

Likewise, the probability of executing two instructions in a a given cycle
equals the probability that the second instruction does not depend on the

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 75

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

GemsFDTD

astar.B

astar.r

bwaves

bzip2.c

bzip2.c

bzip2.l

bzip2.p

bzip2.s

bzip2.t

cactusADM

calculix

dealII

gamess.c

gamess.h

gamess.t

gcc.166

gcc.200

gcc.c

gcc.cp-decl

gcc.expr

gcc.expr2

gcc.g23

gcc.s04

gcc.s

gobmk.t

gobmk.n

gobmk.s

gobmk.t

gromacs

h264.f_ref

h264.f_base

h264ref.sss

hmmer.n

hmmer.r

lbm

leslie3d

libquantum

mcf.ref

milc.su3

namd

omnetpp

perl.c

perl.diff

perl.split

povray

sjeng

soplex.pds

soplex

sphinx3.an4

tonto

wrf.r

xalancbmk

zeusmp

small-core slowdown

ac
tu

al
p

re
d

ic
te

d
 b

ig
->

sm
al

l
p

re
d

ic
te

d
 s

m
al

l-
>

b
ig

Fi
gu

re
4.

4:
Ev

al
ua

ti
ng

th
e

ac
cu

ra
cy

of
th

e
PI

E
m

od
el

.

76 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

first, and the third depends on either the first or the second:

P [IPC = 2] = (1− P [D = 1])×
(P [D = 1] + P [D = 2]) .

(4.11)

This generalizes to three instructions per cycle as well:

P [IPC = 3] = (1− P [D = 1])×
(1− P [D = 1]− P [D = 2])×
(P [D = 1] + P [D = 2] + P [D = 3]) .

(4.12)

Finally, assuming a 4-wide in-order core, the probability of executing four
instructions per cycle equals the probability that none of the instructions
depend on a previous instruction in a group of four instructions:

P [IPC = 4] = (1− P [D = 1])×
(1− P [D = 1]− P [D = 2])×
(1− P [D = 1]− P [D = 2]− P [D = 3]) .

(4.13)

Note that the above formulas do not take non-unit instruction execution
latencies into account. Again, we used this approximation to simplify the
design, and we found this approximation to be accurate enough for our
purpose.

4.3.3 Evaluating the PIE Model

Figure 4.4 evaluates the accuracy of our PIE model. This is done in two
ways: we estimate big-core performance while executing the workload on
a small core, and vice versa, we estimate small-core performance while ex-
ecuting the workload on a big core. We compare both of these to the actual
slowdown. (We will describe the experimental setup in Section 4.5.) The
figure shows that we achieve an average absolute prediction error of 9%
and a maximum error of 35% when predicting speedup (predicting big-core
performance on the small core). The average absolute prediction error for
the slowdown (predicting small-core performance on the big core) equals
13% with a maximum error of 47%. More importantly, PIE accurately pre-
dicts the relative performance differences between the big and small cores.

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 77

100%

105%

110%

115%

120%

125%

130%

135%

140%

optimal

PIE

MLP-ratio

memdom

random

sorted two-program workloads

n
o
rm

a
li
z
e
d
S
T
P
(t
o
w
o
rs
t-
c
a
s
e
)

Figure 4.5: Comparing scheduling policies on a two-core heterogeneous
multi-core.

This is in line with our goal of using PIE for driving runtime scheduling
decisions.

As a second step in evaluating our PIE model, we consider a heteroge-
neous multi-core and use PIE to determine the workload-to-core mapping.
We consider all possible two-core multi-programmed workload mixes of
SPEC CPU2006 applications and a two-core system with one big core and
one small core and private LLCs. Further, benchmarks are scheduled on a
given core and stay there for the remainder of the execution (static schedul-
ing).

Figure 4.5 reports performance (system throughput or weighted speedup)
relative to worst-case scheduling for all workload mixes; we compare PIE
scheduling against random and memory-dominance (memdom) schedul-
ing. Memory-dominance scheduling refers to the conventional practice of
always scheduling memory-intensive workloads on the small core.

PIE scheduling chooses the workload-to-core mapping by selecting the
schedule that yields the highest (estimated) system throughput across both
cores. PIE scheduling outperforms both random and memory-dominance
scheduling over the entire range of workload mixes. Figure 4.6 provides
more detailed results for workload mixes with type-I and type-III work-
loads. PIE outperforms worst-case scheduling by 14.2%, compared to ran-
dom (8.5%) and memory-dominance scheduling (9.2%). Put differently,

78 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

re
la

ti
ve

 S
TP

 o
ve

r
w

o
rs

t-
ca

se

Figure 4.6: Comparing different scheduling algorithms for type-I and type-
III workload mixes assuming a static setup.

PIE scheduling achieves 84% of optimal scheduling, compared to 54% for
memory-dominance and 50% for random scheduling.

The PIE model takes into account both ILP and MLP. We also evaluated
a version of PIE that only takes MLP into account, i.e., ILP is not accounted
for and is assumed to be the same on the big and small cores. We refer to
this as MLP-ratio scheduling. Figures 4.5 and 4.6 illustrate the importance
of taking both MLP and ILP into account. MLP-ratio scheduling improves
worst-case scheduling by 12.7% for type-I and III workloads, compared to
14.2% for PIE. This illustrates that accounting for MLP is more important
than ILP in PIE.

So far, we evaluated PIE for a heterogeneous multi-core with one big
and one small core (e.g., ARM’s big.LITTLE design [Greenhalgh 2011]). We
now evaluate PIE scheduling for heterogeneous multi-cores with one big
core and multiple small cores, as well as several big cores and one small
core (e.g., NVidia’s Kal-El [NVidia 2011]); we assume all cores are active
all the time. Figure 4.7 shows that PIE outperforms memory-dominance
scheduling by a bigger margin even for these heterogeneous multi-core de-
sign points than for the one-big, one-small multi-core system.

4.3. PERFORMANCE IMPACT ESTIMATION (PIE) 79

(a) One big core and three small cores

100%

105%

110%

115%

120%

125%

sorted four-program workloads

optimal

PIE

memdom

random

n
o
rm

a
li
z
e
d

 S
T
P

 (
to

 w
o
rs

t-
c
a
s
e
)

(b) Three big cores and one small core

100%

105%

110%

115%

120%

125%

n
o
rm

a
li
z
e
d

 S
T
P

 (
to

 w
o
rs

t-
c
a
s
e
)

optimal

PIE

memdom

random

sorted four-program workloads

Figure 4.7: Evaluating PIE for heterogeneous multi-core with one big and
three small cores (top graph), and three big cores and one small core (bot-
tom graph).

80 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

2
5

5
0

7
5

1
0

0
1

2
5

1
5

0
1

7
5

2
0

0
2

2
5

2
5

0
2

7
5

3
0

0
3

2
5

3
5

0
3

7
5

4
0

0
4

2
5

4
5

0
4

7
5

5
0

0
5

2
5

5
5

0
5

7
5

6
0

0
6

2
5

6
5

0
6

7
5

7
0

0
7

2
5sm

al
l-

co
re

 s
lo

w
d

o
w

n
/

M
LP

-r
at

io

dynamic instruction count (x100 million)

small-core slowdown MLP-ratio

Figure 4.8: Dynamic execution profile of libquantum.

4.4 Dynamic Scheduling

So far, PIE scheduling was evaluated in a static setting, i.e., a workload is
scheduled on a given core for its entire execution. There is opportunity
to further improve PIE scheduling by dynamically adapting to workload
phase behavior. To illustrate this, Figure 4.8 shows big-core and small-core
CPI and MLP as a function of time for libquantum from SPEC CPU2006. The
key observation here is that, although the average slowdown is high for the
small core compared to the big core, the small core achieves comparable
performance to the big core for some execution phases. For libquantum, ap-
proximately 10% of the instructions can be executed on the small core with-
out significantly affecting overall performance. However, the time-scale
granularity is relatively fine-grained (few milliseconds) and much smaller
than a typical OS time slice (e.g., 10 ms). This suggests that dynamic hard-
ware scheduling might be beneficial provided that rescheduling (i.e., mi-
gration) overhead is low.

4.4.1 Quantifying migration overhead

Dynamic scheduling incurs overhead for migrating workloads between
different cores. Not only does migration incur a context switch, it also in-
curs overhead for warming hardware state, especially the cache hierarchy.
A context switch incurs a fixed cost for restoring architecture state. To bet-
ter understand the overhead due to cache warming, we consider a number
of scenarios to gain insight on cache hierarchy designs for low migration
overheads at fine-grained dynamic scheduling.

4.4. DYNAMIC SCHEDULING 81

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

re
la

ti
ve

 p
e

rf
o

rm
an

ce

sorted workloads

1ms 2.5ms 5ms 25ms 50ms

Figure 4.9: Migration overhead for a shared LLC.

Shared LLC. Figure 4.9 quantifies the performance overhead of migrating
a workload every x milliseconds, with x varying from 1 ms to 50 ms. Mi-
gration overhead is measured by configuring two identical cores to share a
4MB LLC. Workloads are rescheduled to a different core every x ms. Inter-
estingly, for a 2.5 ms migration frequency, the performance overhead due
to migration is small, less than 0.6% for all benchmarks. The (small) perfor-
mance overhead are due to (private) L1 and L2 cache warmup effects.

-200%

-150%

-100%

-50%

0%

re
la

ti
ve

 p
e

rf
o

rm
an

ce

sorted workloads

1ms 2.5ms 5ms 25ms 50ms

Figure 4.10: Migration overhead for private powered-off LLCs.

Private powered-off LLCs. The situation is very different in case of a pri-
vate LLC that is powered off when migrating a workload. Powering off a
private LLC makes sense in case one wants to power down an entire core
and its private cache hierarchy in order to conserve power. If the migra-
tion frequency is high (e.g., 2.5 ms), Figure 4.10 reports severe performance
overhead for some workloads when the private cache hierarchy is pow-
ered off upon migration. The huge performance overheads are because the
cache looses its data when powered off, and hence the new core must re-
fetch the data from main memory.

82 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

Private powered-on LLCs. Instead of turning off private LLCs, an alter-
native is to keep the private LLCs powered on and retain the data in the
cache. In doing so, Figure 4.11 shows that performance overhead from
frequent migrations is much smaller and in fact even leads to substantial
performance benefits for a significant fraction of the benchmarks. The per-
formance benefit comes from having a larger effective LLC: upon a miss in
the new core’s private LLC, the data is likely to be found in the old core’s
private LLC, and hence the data can be obtained more quickly from the old
core’s LLC through cache coherency than by fetching the data from main
memory.

4.4.2 Dynamic PIE Scheduling

Having described the PIE model, we now describe Dynamic PIE schedul-
ing. PIE scheduling is applicable to any number of cores of any core type.
However, to simplify the discussion, we assume one core of each type. We
assume as many workloads as there are cores, and that workloads are ini-
tially randomly scheduled onto each core. Furthermore, we assume that
workload scheduling decisions can be made every x milliseconds.

To strive towards an optimal schedule, PIE scheduling requires hard-
ware support for collecting CPI stacks on each core, the number of misses,
the number of dynamically executed instructions, and finally the inter-
instruction dependency distance distribution on the big core. We discuss
the necessary hardware support in the next section.

During every time interval of x milliseconds, for each workload in the
system, PIE uses the hardware support to compute CPI stacks, MLP and
ILP on the current core type, and also predicts the MLP and ILP for the
same workload on the other core type. These predictions are then fed into
the PIE model to estimate the performance of each workload on the other
core type. For a given performance metric, PIE scheduling uses these esti-
mates to determine whether another scheduling decision would potentially
improve overall system performance as compared to the current sched-
ule. If so, workloads are rescheduled to the predicted core type. If not,
the workload schedule remains intact and the process is repeated the next
time interval.

Note that PIE scheduling can be done both in hardware and software.
If the time interval of scheduling workloads to cores coincides with a time
slice, then PIE scheduling can be applied in software, i.e., the hardware
would collect the event counts and the software (e.g., OS or hypervisor)

4.4. DYNAMIC SCHEDULING 83

-10%

0%

10%

20%

30%

40%

re
la

ti
ve

 p
e

rf
o

rm
an

ce

sorted workloads

1ms 2.5ms 5ms 25ms 50ms

Figure 4.11: Migration overhead for private powered-on LLCs.

would make scheduling decisions. If scheduling decisions would need to
be made at smaller time scale granularities, hardware can also make the
scheduling decisions, transparent to the software [Greenhalgh 2011].

4.4.3 Hardware support

PIE scheduling requires hardware support for collecting CPI stacks. Col-
lecting CPI stacks on in-order cores is fairly straightforward and is im-
plemented in commercial systems, see for example Intel Atom [Halfhill
2008]. Collecting CPI stacks on out-of-order cores is more complicated be-
cause of various overlap effects between miss events, e.g., a long-latency
load may hide the latency of another independent long-latency load miss
or mispredicted branch, etc. Recent commercial processors such as IBM
Power5 [Mericas 2006] and Intel Sandy Bridge [Intel 2008] however provide
support for computing memory stall components. PIE scheduling also re-
quires the number of LLC misses and the number of dynamically executed
instructions, which can be measured using existing hardware performance
counters. In other words, most of the profile information needed by PIE
can be readily measured on existing hardware.

PIE scheduling requires some profile information that cannot be col-
lected on existing hardware. For example, while running on a big core,
PIE requires the ability to measure the inter-instruction dependency dis-
tance distribution for estimating small-core MLP and ILP. The PIE model
requires the dependency distance distribution for a maximum dependency
distance of Wsmall only (where Wsmall is the width of the small core). For
a 4-wide core, this involves four plus one counters: four counters for com-
puting the dependency distance distribution up to four instructions, and
one counter for computing the average distance.

84 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

The PIE model requires that the average dependency distance D be
computed over the dynamic instruction stream. This can be done by re-
quiring a table with as many rows as there are architectural registers. The
table keeps track of which instruction last wrote to an architectural regis-
ter. The delta in dynamic instruction count between a register write and
subsequent read then is the dependency distance. Note that the table coun-
ters do not need to be wide, because the dependency distance tends to be
short [Franklin and Sohi 1992]; e.g., four bits per counter can capture 90% of
the distances correctly. In summary, the total hardware cost to track the de-
pendency distance distribution is roughly 15 bytes of storage: 4 bits times
the number of architectural registers (64 bits for x86-64), plus five 10-bit
counters.

4.5 Experimental Setup

We use CMP$im [Jaleel et al. 2008a] to conduct the simulation experiments
in this chapter2. We configure our simulator to model heterogeneous multi-
core processors with big and small cores. The big core is a 4-wide out-of-
order processor core; the small core is a 4-wide (stall-on-use) in-order pro-
cessor core. We also ran experiments with a 2-wide in-order processor and
found the performance for the 2-wide in-order processor to be within 10%
of the 4-wide in-order processor, which is a very small compared to the
200%+ performance difference between in-order versus out-of-order pro-
cessor performance. Hence, we believe that our conclusions hold true irre-
spective of the width of the in-order processor. We assume both cores run at
a 2 GHz clock frequency. Further, we assume a cache hierarchy consisting
of three levels of cache, separate 32 KB L1 instruction and data caches, a 256
KB L2 cache and a 4 MB last-level L3 cache (LLC). We assume the L1 and
L2 caches to be private per core for all the configurations evaluated in this
chapter. We evaluate both shared and private LLC configurations. We con-
sider the LRU replacement policy in all of the caches unless mentioned oth-
erwise; we also consider a state-of-the-art RRIP shared cache replacement
policy [Jaleel et al. 2010]. Finally, we assume an aggressive stream-based
hardware prefetcher; we experimentally evaluated that hardware prefetch-
ing improves performance by 47% and 25% on average for the small and
big cores, respectively.

2The version we use during this chapter is different from the one used in the previous
chapters. This work was done during an internship at Intel, Hudson. While at Intel, we
had access to the internal version of CMP$im.

4.6. RESULTS AND ANALYSIS 85

We further assume that the time interval for dynamic scheduling is
2.5 ms; this is small enough to benefit from fine-grained exploitation of
time-varying execution behavior while keeping migration overhead small.
The overhead for migrating a workload from one core to another (storing
and restoring the architecture state) is set to 300 cycles; in addition, we do
account for the migration overhead due to cache effects.

We consider all 26 SPEC CPU2006 programs and all of their reference in-
puts, leading to 54 benchmarks in total. We select representative simulation
points of 500 million instructions each using PinPoints [Patil et al. 2004].
When simulating a multi-program workload we stop the simulation when
the slowest workload has executed 500 million instructions. Faster run-
ning workloads are reiterated from the beginning of the simulation point
when they reach the end. We report system throughput (STP) [Eyerman
and Eeckhout 2008] (also called weighted speedup [Snavely and Tullsen
2000]) which quantifies system-level performance or aggregate throughput
achieved by the system.

4.6 Results and Analysis

We evaluate dynamic PIE scheduling on private and shared LLCs with
LRU, and a shared LLC with RRIP replacement. We compare PIE schedul-
ing to a sampling-based strategy [Becchi and Crowley 2008, Kumar et al.
2003; 2004] that assumes running a workload for one time interval on one
core and for the next time interval on the other core. The workload-core
schedule that yields the highest performance is then maintained for the
next 10 time intervals, after which the sampling phase is reinitiated.

4.6.1 Private LLCs

We first assume that each core has its private LLC. Figure 4.12 quanti-
fies the relative performance over random scheduling for sampling-based,
memory-dominance and PIE scheduling. PIE scheduling clearly outper-
forms the other scheduling strategies by a significant margin. Across the
type-I and III workload mixes, we report an average 5.5% and 8.7% im-
provement in performance over memory-dominance and sampling-based
scheduling, respectively. The improvement over memory-dominance
scheduling comes from two sources: PIE is able to more accurately de-
termine the better workload-to-core mapping, and in addition, PIE can
exploit fine-grain phase behavior, unlike memory-dominance scheduling.

86 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

-10%

-5%

0%

5%

10%

15%

20%

ST
P

 d
e

lt
a

 w
it

h
 r

an
d

o
m

 s
ch

e
d

u
lin

g

sorted two-program workloads

memdom sampling PIE

Figure 4.12: Relative performance (STP) delta over random scheduling for
sampling-based, memory-dominance and PIE scheduling, assuming pri-
vate LLCs.

PIE also improves upon sampling-based scheduling, because PIE does not
incur any overhead from sampling because it (accurately) estimates the
performance impact of a workload reschedule, and hence, it can more
quickly and better adapt to fine-grain phase behavior.

4.6.2 Shared LLC

With shared LLCs, Figure 4.13 shows similar conclusions to private LLCs:
PIE outperforms random, sampling-based and memory-dominance schedul-
ing. For the type-I and III workload mixes, we obtain an average 3.7%
and 6.4% improvement in performance over memory-dominance and
sampling-based scheduling, respectively. The performance improvement
is slightly lower for private LLCs though. The reason is that none of the
scheduling strategies anticipate conflict behavior in the shared LLC, and, as
a result, some of the scheduling decisions may be partly offset by negative
conflict behavior in the shared LLC. Further, in the case of sampling-based
scheduling, LLC performance changes when switching between core types
(as a result of sampling) because the access patterns change, which in
turn changes overall performance; in other words, sampling is particularly
ineffective in case of a shared LLC.

4.6. RESULTS AND ANALYSIS 87

-10%

-5%

0%

5%

10%

15%

20%
ST

P
 d

e
lt

a
w

it
h

 r
an

d
o

m
 s

ch
e

d
u

lin
g

sorted two-program workloads

memdom sampling PIE

Figure 4.13: Relative performance (STP) delta over random scheduling
for sampling-based, memory-dominance and PIE scheduling, assuming an
LRU-managed shared LLC.

4.6.3 RRIP-managed shared LLC

So far, we assumed an LRU cache replacement policy. However, it has been
shown that LRU is not the most effective shared cache management pol-
icy; a state-of-the-art shared cache replacement policy is RRIP [Jaleel et al.
2010] which significantly improves LLC performance by predicting the re-
reference behavior of cache blocks. The results for PIE scheduling applied
to an RRIP-managed LLC are shown in Figure 4.14. For the type-I and III
workload mixes, PIE scheduling improves performance by 2.4% and 7.8%
over memory-dominance and sampling-based scheduling, respectively.

An interesting observation to make from Figure 4.14 is that an intelli-
gent shared cache management policy such as RRIP is able to reduce the
performance hit observed for some of the workloads due to scheduling. A
large fraction of the workloads observe a significant performance hit un-
der sampling-based scheduling (and a handful workloads under memory-
dominance scheduling) for an LRU-managed shared LLC, see bottom left
in Figure 4.13; these performance hits are removed through RRIP, see Fig-
ure 4.14. In other words, a scheduling policy can benefit from an intelligent
cache replacement policy: incorrect decisions by the scheduling policy can
be alleviated (to some extent) by the cache management policy.

88 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

-10%

-5%

0%

5%

10%

15%

20%

ST
P

 d
e

lt
a

 w
it

h
 r

an
d

o
m

 s
ch

e
d

u
lin

g

sorted two-program workloads

memdom sampling PIE

Figure 4.14: Relative performance (STP) delta over random scheduling
for sampling-based, memory-dominance and PIE scheduling, assuming an
RRIP-managed shared LLC.

4.7 Related Work

Heterogeneous multi-cores desings vary from single-ISA cores only vary-
ing in clock frequency, to single-ISA cores differing in microarchitecture, to
cores with non-identical ISAs. Since we focus on single-ISA heterogeneous
multi-cores, we only discuss this class of heterogeneity.

Kumar et al. [2003] made the case for heterogeneous single-ISA multi-
core processors when running a single application: they demonstrate that
scheduling an application across core types based on its time-varying exe-
cution behavior can yield substantial energy savings. They evaluate both
static and dynamic scheduling policies. In their follow-on work, Kumar
et al. [2004] study scheduling on heterogeneous multi-cores while running
multi-program workloads. The dynamic scheduling policies explored in
these studies use sampling to gauge the most energy-efficient core. Becchi
and Crowley [2008] also explore sample-based scheduling. Unfortunately,
sample-based scheduling, in contrast to PIE, does not scale well with in-
creasing core count: an infrequent core type (e.g., a big core in a one-big,
multiple-small core configuration) quickly becomes a bottleneck.

Bias scheduling [Koufaty et al. 2010] is very similar to memory-dominance
scheduling. It schedules programs that exhibit frequent memory and other
resource stalls on the small core, and programs that are dominated by exe-
cution cycles (and hence low fraction of stalls) on the big core. Thresholds
are used to determine a program’s bias towards a big versus small core

4.7. RELATED WORK 89

based on these stall counts.

HASS [Shelepov et al. 2009] is a static scheduling policy, the key mo-
tivation being scalability. Chen and John [2009] leverage offline program
profiling. An obvious limitation of static/offline scheduling is that it does
not enable exploiting time-varying execution behavior. PIE on the other
hand is a dynamic scheduling algorithm that, in addition, is scalable.

Several studies [Ghiasi et al. 2005, Shelepov et al. 2009] explore schedul-
ing in heterogeneous systems by changing clock frequency across cores; the
core microarchitecture does not change though. Such studies do not face
the difficulty of having to deal with differences in MLP and ILP across core
types. Hence, memory-dominance based scheduling is likely to work well
for such architectures.

Age-based scheduling [Lakshminarayana et al. 2009] predicts the re-
maining execution time of a thread in a multi-threaded program and sched-
ules the oldest thread on the big core. Li et al. [2007] evaluate the idea of
scheduling programs on the big core first, before scheduling programs on
the small cores, in order to make sure the big power-hungry core is fully
utilized.

Chou et al. [2004] explored how microarchitecture techniques affect
MLP. They found that out-of-order processors can better exploit MLP com-
pared to in-order processors. We show that MLP and ILP are important cri-
teria to take into account when scheduling on heterogeneous multi-cores,
and we propose the PIE method for doing so.

Patsilaras et al. [2010, 2012] study how to best integrate an MLP tech-
nique (such as runahead execution [Mutlu et al. 2003]) into an asymmetric
multi-core processor, i.e., should one integrate the MLP technique into the
small or big core, or both? They found that if the small core runs at a higher
frequency and implements an MLP technique, the small core might become
more beneficial for exploiting MLP-intensive workloads. Further, they pro-
pose a hardware mechanism to dynamically schedule threads to core types
based on the amount of MLP in the dynamic instruction stream, which they
estimate by counting the number of LLC misses in the last 10 K instructions
interval. No currently shipping commercial processor employs runahead
execution; also, running the small core at a high frequency might not be
possible given current power concerns. We therefore take a different ap-
proach: we consider a heterogeneous multi-core system as a given — we
do not propose changing the architecture nor the frequency of either core
type — and we schedule tasks onto the most appropriate core type to im-
prove overall performance while taking both MLP and ILP into account as

90 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

a criterion for scheduling. After our publication, additional work has been
published by Lukefahr et al. [2012] who propose composite cores: a het-
erogeneous multi-core architecture that consists of tightly coupled big and
little cores. This allows for even lower overhead context switching, thus
for more fine-grained power and performance trade-offs. Much like our
PIE scheduler, Lukefahr et al. advocate the use of a model-based schedul-
ing algorithm to enable scalability.

4.8 Summary

Single-ISA heterogeneous multi-cores are typically composed of small (e.g.,
in-order) cores and big (e.g., out-of-order) cores. Using different core types
on a single die has the potential to improve energy-effiency without sac-
rificing significant performance. However, the success of heterogeneous
multi-cores is directly dependent on how well a scheduling policy maps
workloads to the best core type (big or small). Incorrect scheduling deci-
sions can unnecessarily degrade performance and waste energy/power. In
this chapter we make the following contributions:

• We show that using memory intensity alone as an indictator to guide
workload scheduling decisions can lead to suboptimal performance.
Instead, scheduling policies must take into account how a core type
can exploit the ILP and MLP characteristics of a workload.

• We propose the Performance Impact Estimation (PIE) model to guide
workload scheduling. The PIE model uses CPI stack, ILP and MLP
information of a workload on a given core type to estimate the per-
formance on a different core type. We propose PIE models for both
small (in-order) and big (out-of-order) cores.

• Using the PIE model, we propose dynamic PIE scheduling. Dynamic
PIE collects CPI stack, ILP and MLP information at run time to guide
workload scheduling decisions.

• We show that the use of shared LLCs can enable high frequency, low-
overhead, fine-grained scheduling to exploit time-varying execution
behavior. We also show that the use of private LLCs can provide simi-
lar capability as long as the caches are not flushed on core migrations.

We evaluate PIE for a variety of systems with varying core counts and
cache configurations. Across a large number of scheduling-sensitive work-

4.8. SUMMARY 91

loads, we show that PIE scheduling is scalable to any core count and out-
performs prior work by a significant margin.

In this chapter, we focused on using PIE scheduling to improve the
weighted speedup metric for a heterogeneous multi-core systems and the
evaluations were primarily done for multi-programmed workload mixes.
In the next chapter, we will explore scheduling for heterogeneous multi-
cores even further. We will show that PIE can be applied to multi-threaded
applications as well and that scheduling can be done for other (system)
metrics than weighted speedup and still provide good throughput.

92 CHAPTER 4. HETEROGENEOUS MULTI-CORE SCHEDULING

Chapter 5

Fairness-Aware Scheduling on
Single-ISA Heterogeneous
Multi-Cores

Training is realizing that pain is temporary and that quiting is forever.
Lance Armstrong

In this chapter, we propose fairness-aware scheduling for single-ISA heterogeneous
multi-cores, and explore two flavors for doing so. Equal-time scheduling runs each
thread on each core type for an equal fraction of the time, whereas equal-progress
scheduling strives at getting equal amounts of work done on each core type. Our
experimental results demonstrate an average 14% (and up to 25%) performance
improvement over pinned scheduling through fairness-aware scheduling for ho-
mogeneous multi-threaded workloads; equal-progress scheduling improves perfor-
mance by 32% on average for heterogeneous multi-threaded workloads. Further,
we report dramatic improvements in fairness over prior scheduling proposals for
multi-program workloads, while achieving comparable levels of system throughput
compared to throughput-optimized scheduling, and an average 21% improvement
in throughput over pinned scheduling.

5.1 Introduction

The previous chapter focused on optimizing total system throughput and,
to the best of our knowledge, none of the prior work considered fairness
as an optimization target. Yet, fairness, or guaranteeing that all threads
and/or programs make equal progress, is of great importance. In a multi-

93

94 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

threaded workload, a thread that gets to run on a big core will just wait
stalling on a barrier until all other threads running on the small cores have
reached the barrier — yielding no performance benefit from heterogeneity.
Guaranteeing fairness, or making sure all threads make equal progress, will
lead to all threads reaching the barrier at nearly the same time, thereby im-
proving overall application performance. For multi-program workloads,
fairness is of utmost importance when it comes to system-level priori-
ties and quality-of-service (QoS). In particular, system software (e.g., the
operating system or the virtual machine monitor) essentially assumes all
threads (or programs) make equal progress when run on the hardware.
Yet, a thread/program that runs on a big core gets more work done than
when run on a small core.

Leveraging existing multi-core schedulers on heterogeneous multi-
cores does not provide fairness either. Schedulers in modern operating
systems affinitize or pin threads or jobs to cores in order to minimize over-
head of context switching and increase data locality [Jones 2006]. As a
result, a thread or a job that ends up being pinned to a big core will make
faster progress compared to threads or jobs that are pinned to small cores,
leading to poor fairness. We will refer to this scheduling policy as pinned
scheduling throughout the chapter.

In this chapter, we propose fairness-aware scheduling for single-ISA
heterogeneous multi-cores. We consider a number of mechanisms for
achieving fairness. Equal-time scheduling strives at scheduling all threads
onto a big core for an equal amount of time. Because equal time does
not necessarily lead to equal progress, especially for heterogeneous work-
loads in which threads exhibit different execution behavior, we also pro-
pose equal-progress scheduling which strives at getting all threads to make
equal progress. We consider three different ways for estimating progress:
sampling, history and model-based estimations. Finally, we also explore
tunable scheduling policies that trade off system throughput versus fair-
ness. All of these scheduling strategies monitor a thread’s progress or
time during run-time, and dynamically reschedule threads to improve fair-
ness. Fairness-aware scheduling not only improves fairness over pinned
scheduling, it also improves system throughput by enabling threads to run
on a big core type for some fraction of time. Further, it achieves a level of
system throughput that is comparable to throughput-optimized schedul-
ing as proposed in prior work, while dramatically improving fairness.

Our experimental evaluation includes both multi-threaded and multi-
program workloads across a range of heterogeneous multi-core architec-

5.2. MOTIVATION 95

tures. We report average performance improvements of 14% (and up to
25%) for the multi-threaded workloads through fairness-aware scheduling.
Equal-progress scheduling improves performance by 32% on average for
heterogeneous multi-threaded workloads; equal-time and equal-progress
scheduling perform equally well on homogeneous multi-threaded work-
loads in which all threads run the same code. For multi-program work-
loads on a heterogeneous multi-core with one big and three small cores,
fairness-aware scheduling achieves an average fairness level of 86%, a sig-
nificant improvement over pinned and throughput-optimized scheduling
with fairness levels of 56% and 64%, respectively. Moreover, fairness-aware
scheduling improves system throughput by 21% on average over pinned
scheduling, while being within 3.6% on average compared to throughput-
optimized scheduling. Scheduling that trades off fairness for through-
put enables reducing the maximum throughput reduction compared to
throughput-optimized scheduling while achieving similar levels of fairness
compared to fairness-aware scheduling. Overall, these results demonstrate
that fairness-aware scheduling is key to optimizing performance on single-
ISA heterogeneous multi-cores for both multi-threaded and multi-program
workloads.

5.2 Motivation

Before elaborating on fairness-aware scheduling, we now motivate the
need for fairness for both multi-threaded and multi-program workloads
on heterogeneous multi-cores.

5.2.1 Fairness

We first define fairness for heterogeneous multi-cores, along the lines of
prior definitions of fairness in multi-threaded and multi-core systems [Ey-
erman and Eeckhout 2008, Gabor et al. 2007]. We denote Thet as the number
of cycles to execute a thread on the heterogeneous multi-core when run si-
multaneously with other threads or applications; Tbig is defined as the time
it takes to execute on the big core (of the same heterogeneous multi-core)
when run in isolation. The slowdown of thread i on the heterogeneous
multi-core is then defined as the slowdown when running on the heteroge-
neous multi-core compared to running on the big core is isolation:

Si =
Thet,i
Tbig,i

. (5.1)

96 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

We define a schedule to be fair if the slowdowns of all (equal-priority)
threads running simultaneously on the heterogeneous multi-core are the
same, similarly to prior work on fairness [Eyerman and Eeckhout 2008, Ga-
bor et al. 2007]. A frequently used metric for fairness is to compute the ratio
of the minimum versus maximum slowdowns among all simultaneously
running threads. One problem with this metric is that it only considers the
outlier threads, and does not take into account the ‘average’ thread. We
therefore propose and use a different metric in our work, which is based on
the statistically well-founded coefficient of variation:

fairness = 1− σS
µS
. (5.2)

µS is the average slowdown across all threads, and σS is the standard de-
viation across all slowdowns of all threads. The fraction σS/µS is the so-
called coefficient of variation and measures the variability in slowdown in
relation to the mean slowdown — hence, it is a measure for the unfairness,
i.e., the larger the variability in slowdown, the more unfair the execution is.
One minus the coefficient of variation then is a measure for fairness. Fair-
ness is a higher-is-better metric, and a fairness of one means that all threads
make equal progress, relative to running on the big core in isolation.

5.2.2 Multi-threaded workloads

In order to illustrate the importance of achieving fairness, we first consider
a number of multi-threaded workloads from the Phoenix [Ranger et al.
2007] and PARSEC [Bienia et al. 2008] benchmark suites, and run these
workloads on a heterogeneous multi-core with one big and three small
cores (1B3S); the last-level cache is shared among all four cores. (We re-
fer to later for a detailed description of the experimental setup.) We pin
each thread to a core, and compare heterogeneous multi-core performance
against homogeneous multi-cores with four big (4B) versus four small cores
(4S), see Figure 5.1. A homogeneous multi-core with big cores achieves
a speedup ranging between 1.25× to 2.5× (run-time reduction by 20% to
60%) compared to a homogeneous multi-core with small cores. This is to
be expected given the relative performance difference between big versus
small cores.

The more interesting result is that a heterogeneous multi-core achieves
no speedup over a homogeneous multi-core with all small cores for most
of the benchmarks. The reason is that a thread that is pinned onto a small

5.2. MOTIVATION 97
n

o
rm

a
li
z
e
d

 r
u

n
-t

im
e

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

h
is

t

w
c lr

p
ca km sm

b
la

ck
sh

o
le

s

ca
n
n
e
a
l

sw
a
p
ti

o
n
s

st
re

a
m

cl
u
st

fl
u
id

a
n
im

a
te

d
e
d
u
p

fe
rr

e
t

4S 4B 1B3S

Figure 5.1: Normalized run-time on a homogeneous multi-core with 4
small cores (4S), 4 big cores (4B), and a heterogeneous multi-core with one
big and three small cores (1B3S) while keeping threads pinned to cores.

core determines overall application performance, i.e., all threads have to
wait for the threads running on the small cores because of synchronization
(i.e., barriers). Or, in other words, the thread that runs on the big core makes
faster progress compared to the threads running on the small cores, yet it
does not contribute to performance. As we will later see in this chapter, by
guaranteeing fairness, or making sure all threads get an equal amount of
work done or time spent on the big core, all threads will reach the barriers
at the same time, improving overall performance.

5.2.3 Multi-program workloads

Figure 5.2 quantifies fairness for a heterogeneous multi-core with one big
and one small core (1B1S) for both pinned scheduling and throughput-
optimized scheduling while running multi-program workloads composed
of random mixes of SPEC CPU2006 benchmarks. Pinned scheduling leads
to some programs to make poor progress, i.e., the program that runs on
the small core makes less progress than the program that runs on the big

98 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

20%

30%

40%

50%

60%

70%

80%

90%

100%

fa
ir

n
e

ss

sorted two-program workloads

pinned

throughput-optimized

Figure 5.2: Fairness for a 1B1S system for pinned versus throughput-
optimized scheduling using PIE for 500 randomly chosen two-job mixes.

core. Overall fairness through pinned scheduling equals 55% on average
and is as low as 24% for some workload mixes (see bottom left of the
curve in Figure 5.2). State-of-the-art throughput-optimized scheduling us-
ing PIE [Van Craeynest et al. 2012], see also previous chapter, not only im-
proves system throughput by 26.6% on average, it also improves fairness
by a significant margin from 55% to 72% on average. The reason is that
throughput-optimized scheduling reschedules programs during run-time
in order to improve throughput, and by dynamically migrating programs
between big and small cores in response to time-varying execution behav-
ior, it also improves fairness. Yet, fairness is fairly low (72% on average),
and some workload mixes experience significant levels of fairness equal to
27% (see bottom left in Figure 5.2). In other words, both pinned scheduling
and throughput-optimized scheduling are largely unfair which may com-
promise quality-of-service.

5.3 Fairness-Aware Scheduling

Having motivated the importance of fairness as an optimization criterion
on single-ISA heterogeneous multi-cores, we now propose fairness-aware
scheduling. The key idea of fairness-aware scheduling is to make sure all
threads get to run on both the big and small cores for an equal share. We
consider two different ways for guaranteeing equal shares, which we de-
scribe next.

5.3. FAIRNESS-AWARE SCHEDULING 99

small

small

small

t1 t0 t0 t0

t2 t2 t1 t1

t3 t3 t3 t2

time

t0 t1 t2 t3 big

t3 t3 t3 t2

t1 t0 t0 t0

t2 t2 t1 t1

t0 t1 t2 t3

t2 t2 t1 t1

t3 t3 t3 t2

t1 t0 t0 t0

t0 t1 t2 t3

Figure 5.3: Equal-time scheduling on a 1B3S heterogeneous multi-core.

5.3.1 Equal-time scheduling

Equal-time scheduling strives at achieving fairness by running each thread
on each core type for an equal amount of time. This is done by keeping
track of how often (for how many time slices) a thread has run on all core
types, and reschedule if necessary to make sure all threads have run on
either core type for an equal number of time slices. Figure 5.3 illustrates this
for a heterogeneous multi-core with one big and three small cores (1B3S):
each thread gets to run on the big core for one-fourth of the time. Round-
robin or random selection of a thread that runs on a small core to next run
on the big core is an implementation of equal-time scheduling. Note we do
not migrate threads among cores of the same type in order to preserve data
locality.

A pitfall with equal-time scheduling is that spending equal time on ei-
ther core type does not necessarily imply fairness. Some threads experi-
ence a larger slowdown from running on a small core than others — these
threads get proportionally less work done when scheduled on a small core.
Hence, although all threads spend equal time on either core type, threads
that experience higher slowdowns on the small cores, will make propor-
tionally less progress. This leads to an unfair system. We therefore propose
equal-progress scheduling in the next section which strives at getting equal
work done on either core type, and by consequence achieve equal progress.

Note that when all threads exhibit the same (or similar) execution be-
havior — a so-called homogeneous workload — equal-progress scheduling
is in fact identical to equal-time scheduling. Because of the one-to-one rela-

100 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

tionship between time and work done, i.e., equal time leads to equal work,
scheduling all threads on either core type for equal amounts of time leads
to equal amounts of work done on either core type. This is not the case for
heterogeneous workloads in which threads execute different codes (and
are therefore heterogeneous by design), as we will demonstrate later in this
chapter. Similarly, homogeneous-by-design workloads for which different
threads end up processing different parts of the input data may exhibit
heterogeneous behavior, and may therefore benefit from equal-progress
scheduling over equal-time scheduling.

5.3.2 Equal-progress scheduling

Equal-progress scheduling strives at getting all threads to make equal
progress. Or, in other words, it strives at making sure all threads ex-
perience equal slowdown, per the definition of fairness (Equation 5.2).
Equal-progress scheduling continuously monitors fairness and dynami-
cally adjusts the scheduling to achieve fairness. This involves computing
the slowdowns for all threads and scheduling the thread with the currently
highest slowdown on the big core. (If there are multiple big cores in the
system, the threads with the top-n highest slowdowns are scheduled on a
big core.) Scheduling the thread with the currently highest slowdown on
a big core will reduce its slowdown compared to the other threads (which
are scheduled on a small core). As a result, the threads’ slowdowns will
converge and fairness is achieved.

Computing slowdowns for all threads is where the key challenge lies
for equal-progress scheduling. In order to compute a thread’s slowdown,
we need to know the total execution time on the heterogeneous multi-core
as well as the total execution time if we were to execute the thread on a big
core in isolation, see Equation 5.1. The former, total execution time on the
heterogeneous multi-core, is readily available by counting the number of
time slices TSi the thread has been running so far (on both core types). The
latter, total execution time on the big core in isolation, is not readily avail-
able and needs to be estimated during run-time. We estimate the isolated,
big core execution time by counting the number of time slices the thread
was run on the big versus small cores, and by rescaling the time run on
the small cores with an estimated big-versus-small-core scaling factor R. A
thread’s slowdown is then computed as follows:

Si =
Thet,i
Tbig,i

=
TSbig,i + TSsmall,i

TSbig,i + TSsmall,i/Ri
. (5.3)

5.3. FAIRNESS-AWARE SCHEDULING 101

sampling symbiosis sampling symbiosis

Ri

Ri

Ri …

…

Ri

…

CPIsmall,i, CPIbig,i

(a) sampling-based

(b) history-based

(c) model-based

PIE Ri
PIE

sampling

…

Ri

Ri

Figure 5.4: Equal-progress scheduling: sampling-based, history-based and
model-based.

This formula can be trivially extended to heterogeneous multi-cores with
more than two core types.

We explore three methods for estimating the big-versus-small-core scal-
ing factor R, see also Figure 5.4.

• Sampling-based scheduling considers a sampling and symbiosis phase.
During the sampling phase, the scheduler maps each thread at least
once on each core type, and computes the scaling factor R as the ratio
between the CPI on the small versus big core:

R = CPIsmall/CPIbig.

The scheduler then uses the computed R factor during the symbiosis
phase. We assume the symbiosis phase is ten times longer than the
sampling phase in our setup.

• History-based scheduling computes the CPI seen on both small and big
cores and uses the ratio for estimating slowdown. The benefit over
sampling-based scheduling is that history-based scheduling continu-
ously adjusts the computed big-to-small ratio based on the most re-
cent CPI values. In order for history-based scheduling to work in
practice, it needs a bootstrap phase in which all threads get to run on
all core types at least once.

102 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

• Model-based scheduling continuously monitors CPI on either core
type and estimates the big-to-small-core ratio using an analytical
model. The key benefit is that model-based scheduling continuously
updates the big-to-small-core ratio based on the most recent time
slice. Sampling- and history-based scheduling on the other hand use
stale CPI values to compute the ratio. We use the PIE model [Van
Craeynest et al. 2012] for estimating the big-to-small-core ratio. The
effectiveness of the model-based approach depends on the accuracy
of the model, and may require hardware support for computing the
inputs for the model (as is required for PIE). The sampling-based and
history-based methods on the other hand do not require hardware
support, and they use real performance measurements, which may
be more accurate than model estimates, albeit being stale.

5.3.3 Trading fairness for throughput

So far, we considered fairness as the only optimization criterion, i.e., the
proposed fairness-aware scheduling mechanisms strive at achieving fair-
ness and is oblivious to system throughput. However, in some practical use
cases, fairness is not the only optimization criterion, and system through-
put is at least equally important. For example, in a batch-style, throughput-
oriented system, maximizing system throughput might be of primary im-
portance, and fairness among users or jobs might be a secondary concern.
Hence, it might make sense to provide a flexible scheduling algorithm that
enables trading off fairness for throughput, and vice versa.

We therefore propose a scheduling approach that trades off fairness
and system throughput: Guaranteed-fairness scheduling optimizes for sys-
tem throughput, yet when fairness drops below a given threshold θfairness,
scheduling defers to optimizing fairness until fairness reaches at least the
threshold, after which it defers again to throughput-optimized scheduling.
Guaranteed-fairness scheduling thus needs to continuously monitor slow-
downs and estimate fairness, as done for fairness-aware scheduling. We
consider different fairness thresholds for guaranteed-fairness scheduling
in the evaluation section.

5.3.4 Rescheduling granularity

The fairness-aware scheduling algorithms proposed dynamically resched-
ules threads across core types during run-time. This is done at the gran-

5.3. FAIRNESS-AWARE SCHEDULING 103

ularity of a time slice. There are a number of factors that affect a good
choice of time slice granularity. A small time slice potentially makes the
system more reactive, i.e., the scheduling algorithm can guarantee fairness
at smaller time scales and more quickly react to time-varying execution be-
havior. On the other hand, a small time slice also incurs more migration
overhead when threads are more frequently rescheduled. The migration
overhead not only includes overhead due to a context switch, it also incurs
overhead for warming hardware state, especially in the memory hierarchy.
Whereas context switch overhead incurs a fixed cost for restoring architec-
ture state, the overhead for warming hardware state depends on the work-
load and its working set size, as well as the memory hierarchy.

In the previous chapter, we did an extensive evaluation to quantify mi-
gration overhead for both shared and private last-level caches (LLCs) as a
function of time slice granularity. We found the migration overhead to be
less than 1.5% across all workloads for a 4 MB shared LLC for a 1 ms time
slice, and less than 0.6% for a 2.5 ms time slice. They also explored migra-
tion overhead for private LLCs and found the overhead to be small as well
(although slightly higher compared to shared caches) because the cache co-
herency protocol can get the data from another core’s private LLC instead
of memory. Our own experimental evaluation confirms these findings, and
we consider a 1 ms time slice unless mentioned otherwise.

5.3.5 Hardware versus software scheduling

Implementing fairness-aware scheduling can be done both in hardware
and in software. When implemented in hardware, the fairness-aware
scheduling would need a small timeslice, e.g., 1 ms, while system software
(the OS or VMM) uses a larger timeslice, e.g., 4+ ms. By doing so, the hard-
ware would be able to provide the abstraction to software of homogeneous
hardware, while dynamically rescheduling threads among the cores in a
heterogeneous multi-core within an OS time slice. For example, a heteroge-
neous multi-core with one big and three small cores, may then be exposed
to software as a homogeneous multi-core with four cores and a 4 ms time
slice; the hardware however, would then dynamically reschedule threads
among the cores at a 1 ms time slice. By scheduling for fairness, hardware
would expose itself as a homogeneous multi-core in which all threads
make equal progress. System software does not need to be changed and is
oblivious to hardware heterogeneity. In contrast, implementing fairness-
aware scheduling in software requires modifications to the OS or VMM

104 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

to keep track of each thread’s progress, and enables guaranteeing fairness
at a larger time scale. Fairness-aware scheduling can be implemented in
both software and hardware, and works at different time scales, as we will
demonstrate later.

5.4 Experimental Setup

Before describing and analyzing results, we first describe our experimental
setup.

5.4.1 Simulated architectures

We use Sniper [Carlson et al. 2011] for conducting the simulation exper-
iments in this chapter. Sniper is a parallel, hardware-validated, x86-64
multi-core simulator capable of running both multi-program and multi-
threaded applications. We configure Sniper to model heterogeneous multi-
core processors with big and small cores. The big core is a 4-wide out-
of-order processor core; the small core is a 4-wide (stall-on-use) in-order
processor core. We assume both cores run at a 2.6 GHz clock frequency.
Further, we assume a cache hierarchy with separate 32 KB L1 instruction
and data caches, and a 256 KB L2 cache; we assume the L1 and L2 caches to
be private per core. The L3 last-level cache (LLC) is shared among all cores,
for a total size of 16 MB. We consider the LRU replacement policy in all of
the caches.

As mentioned before, the time slice granularity is set to be 1 ms, in
order to be able to exploit time-varying workload execution behavior while
keeping migration overhead small. The overhead for migrating a workload
from one core to another (storing and restoring the architecture state) is
set to 1,000 cycles, plus the time it takes to drain a core’s pipeline prior to
migration. Finally, we do account for the migration overhead due to cache
effects.

5.4.2 Workloads

We consider both multi-program and multi-threaded workloads in our
experiments. The multi-program workloads are composed out of SPEC
CPU2006 benchmarks; there are 26 benchmarks in total, which along with
all of their reference inputs leads to 55 benchmarks in total. We select
representative simulation points of 750 million instructions each; these

5.4. EXPERIMENTAL SETUP 105

Suite Benchmark Input
PARSEC blackscholes simmedium

canneal simmedium
swaptions simmedium
streamcluster simmedium
fluidanimate simmedium
dedup simmedium
ferret simmedium

MapReduce histogram 1.5 GB image
word count 100 MB file
linear regression 100 MB file
PCA 1024 x 1024 matrix
K-means 64 clusters, 65536 points

256-dimension vectors
string match 100 MB file

Table 5.1: Multi-threaded benchmarks used in this study.

simulation points were selected using PinPoints [Patil et al. 2004]. When
running multi-program workloads, we stop the simulation as soon as
the first benchmark in the workload mix reaches the end of its simula-
tion point; this corresponds to hundreds of time slices. We quantify system
throughput using the STP metric [Eyerman and Eeckhout 2008] (also called
weighted speedup [Snavely and Tullsen 2000]) which quantifies the aggre-
gate throughput achieved by all cores in the system. We use Equation 5.2
when reporting fairness. We consider 500 randomly chosen two-job work-
load mixes, and 200 randomly chosen four-job and eight-job mixes.

The multi-threaded benchmarks that we use in this study are selected
from Phoenix [Ranger et al. 2007] and PARSEC [Bienia et al. 2008], see
Table 5.1. The Phoenix benchmarks are MapReduce workloads with Map,
Reduce and Merge phases, using the Metis [Mao et al. 2010] library for
shared-memory multi-core processors. These workloads are homogeneous
(i.e., all threads run the same code) and barrier-synchronized between
parallel phases. Most of the PARSEC benchmarks are homogeneous and
barrier-synchronized as well, expect for dedup and ferret which are
pipelined programs. The latter two benchmarks are therefore heteroge-
neous, i.e., different threads execute different codes and communicate
through a producer-consumer relationship. We use the simmedium inputs
for PARSEC. The run-times for the multi-threaded benchmarks are such
that we simulate several hundreds upto a couple thousands of time slices.
We run the benchmarks to completion and measure total run-times.

106 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

5.5 Evaluation

We now evaluate fairness-aware scheduling and compare against two al-
ternative scheduling policies, namely throughput-optimized and pinned
scheduling. Throughput-optimized scheduling is state-of-art dynamic
PIE scheduling [Van Craeynest et al. 2012] which uses a simple analytical
model to predict on which core type to map which program or thread
in order to optimize system throughput. PIE dynamically reschedules
threads to exploit time-varying execution behavior, see also the previous
chapter. Pinned scheduling is our baseline, and reflects current practice
in contemporary operating system schedulers, as done in the Linux 2.6
kernel [Jones 2006]. Pinned scheduling maps threads to cores and keeps
threads pinned to cores in order to improve data locality and affinity. When
reporting performance numbers for pinned scheduling, we consider multi-
ple random mappings of threads to cores and report average performance
across those random mappings. We believe pinned scheduling is a reason-
able baseline to compare against. In case fairness-aware scheduling were
implemented in hardware, pinned scheduling reflects system software
(randomly) mapping and pinning threads to virtual cores, while hard-
ware scheduling reschedules threads to physical cores to optimize fairness.
In case fairness-aware scheduling were implemented in software, pinned
scheduling reflects optimizing for data locality.

5.5.1 Multi-program workloads

We first evaluate fairness-aware scheduling in the context of multi-program
workloads.

Equal-time versus equal-progress Scheduling

Figure 5.5 reports throughput and fairness for both equal-time and equal-
progress fairness-aware scheduling, compared to pinned scheduling and
throughput-optimized scheduling, for a 1B1S heterogeneous multi-core
with one big and one small core. We consider history-based equal-progress
scheduling here, and evaluate other equal-progress policies later. The
workloads on the horizontal axis are sorted. Pinned scheduling per-
forms the worst in terms of fairness, with an average fairness of 55%.
Throughput-optimized scheduling improves fairness somewhat to 72% on
average. By dynamically rescheduling threads among cores, throughput-
optimized scheduling not only improves throughput, but also improves

5.5. EVALUATION 107

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

n
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

sorted two-program workloads

throughput-optimized
equal-progress
equal-time
pinned

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fa
ir

n
e

ss

sorted two-program workloads

equal-time
equal-progress
throughput-optimized
pinned

Figure 5.5: Comparing scheduling algorithms relative to pinned schedul-
ing in terms of throughput (top graph) and fairness (bottom graph) for a
1B1S heterogeneous multi-core with one big and one small core.

108 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

fairness; a thread may get to run on either core type for at some fraction
of time. Fairness-aware scheduling achieves the highest fairness (92%
on average), and equal-progress scheduling slightly outperforms equal-
time scheduling. The highest unfairness observed across all the 500 job
mixes is no higher than 38%, which is a substantial improvement over
both pinned and throughput-optimized scheduling with unfairness num-
bers up to 73%. Fairness-aware scheduling results in a slightly lower
system throughput compared to throughput-optimized scheduling: 22.0%
and 21.9% for equal-progress and equal-time scheduling versus 26.6%
for throughput-optimized scheduling. The reason why equal-progress
scheduling outperforms equal-time scheduling in terms of throughput is
that it takes into account the amount of work done on either core type, and
not just time.

Scalability

We now evaluate fairness-aware scheduling as a function of the number
of cores and different ratios of big to small cores. Figure 5.6 shows aver-
age fairness as well as throughput values for 1B1S, 1B3S, 3B1S, 1B7S and
7B1S systems. The overall conclusion is that fairness-aware scheduling
achieves the highest fairness across the board, with average fairness val-
ues ranging between 79% and 92%, which is significantly higher compared
to pinned and throughput-optimized scheduling with average fairness val-
ues around 50 and 70%, respectively. Equal-progress scheduling achieves
higher fairness compared to equal-time scheduling for the 1B3S and 1B7S
systems, but achieves similar average levels of fairness for the other sys-
tems. The reason is that equal-progress scheduling computes slowdowns
based on actual progress — not time — which is more accurate and turns
out to be more critical when the number of big cores is small compared
to the number of small cores. In other words, as the relative number of
big cores decreases, the big core becomes a bottleneck and making accurate
slowdown predictions becomes more critical towards optimizing fairness.

Note also that fairness degrades with decreasing relative fractions of big
cores, even under fairness-aware scheduling. Fairness degrades from 92%
for a 1B1S system (1/2 the cores are big cores), to 79% for a 1B7S system
(1/8th the cores are big cores). This can be understood intuitively because
the big core is increasingly becoming a bottleneck as the relative number
of big cores decreases in the system. In other words, fairness is easier to be
achieved when the number of big versus small cores is more balanced.

5.5. EVALUATION 109

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

1B1S 1B3S 3B1S 1B7S 7B1S

n
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

pinned throughput-optimized equal-time equal-progress

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1B1S 1B3S 3B1S 1B7S 7B1S

fa
ir

n
e

ss

pinned throughput-optimized equal-time equal-progress

Figure 5.6: Fairness-aware scheduling as a function of core count in terms
of throughput (top graph) and fairness (bottom graph).

Finally, note that equal-progress scheduling systematically outperforms
equal-time scheduling in terms of throughput, albeit by a small fraction of
around 2%. The reason again is that equal-progress scheduling takes into
account actual work done on each core type as opposed to assuming time
corresponds to work as done by equal-time scheduling. It is interesting to
note though that fairness-aware scheduling improves system throughput
over pinned scheduling by a significant margin across the board, ranging
from 23.7% for a 1B1S system to 14.8% for a 7B1S system. In other words,
system throughput also improves while optimizing for fairness. The reason
is that optimizing for fairness involves that all threads get to run on the big
core(s) for some fraction of the time, and by doing so, overall system perfor-
mance gets improved. Fairness-aware scheduling in fact, is quite effective

110 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

1B7S
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1B7S

n
o
rm

a
li
z
e
d

 t
h

ro
u

g
h

p
u

t

fa
ir

n
e
s
s

pinned
model-based

throughput-optimized
history-based

equal-time
sampling-based

Figure 5.7: Evaluating different methods for estimating the big-to-small-
core scaling factor in equal-progress scheduling for a 1B7S system.

at achieving high system throughput. Compared to throughput-optimized
scheduling using PIE (current state-of-the-art), fairness-aware scheduling
incurs a small average degradation in system throughput ranging between
4.5% (for 1B1S), 3.6% (for 1B3S) and 7.0% (for 7B1S).

Equal-progress scheduling

As mentioned earlier, there are a number of ways for estimating the big-to-
small-core scaling ratio in equal-progress scheduling. We considered the
history-based method so far; we now evaluate the other two, sampling- and
model-based, methods. Figure 5.7 compares these three methods in terms
of throughput and fairness for a 1B7S system. Sampling-based scheduling
performs worst (both in terms of fairness and throughput) because it peri-
odically estimates the big-to-small-core scaling ratio, after which the scal-
ing ratio is used during the symbiosis phase. Sampling incurs overhead
and is unable to quickly adapt to time-varying workload behavior. Note
sampling-based scheduling performs even worse compared to equal-time
scheduling. The history-based and model-based methods perform much
better, and both outperform sampling-based scheduling and equal-time
scheduling, as they continuously update the big-to-small-core scaling ra-
tio.

We find history-based scheduling to typically outperform model-based
scheduling, albeit by a small margin. As mentioned before, model-based

5.5. EVALUATION 111

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

throughput
optimized

equal-time history-based

N
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

Figure 5.8: The number of migrations across core types in a heterogeneous
multi-core system under various scheduling policies.

scheduling does not rely on stale data to compute the big-to-small-core ra-
tio but is limited by the accuracy of the underlying model; history-based
scheduling on the other hand computes the big-to-small ratio based on real
hardware measurements instead of a model, which might provide more ac-
curate big-to-small-core scaling ratios in case the hardware measurements
are fairly recent. Now, the reason why history-based scheduling outper-
forms the model-based approach is that optimizing for fairness enforces
threads to migrate across core types, which enables the history-based ap-
proach to continuously update the big-to-small-core ratio using fairly re-
cent performance numbers on both the small and big cores. This is further
supported by the data presented in Figure 5.8 which shows the normalized
number of migrations across core types. Pinned scheduling, by definition,
does not incur any migrations, whereas equal-time scheduling incurs the
largest number of migrations. Equal-progress scheduling incurs slightly
fewer migrations; history-based scheduling is thus able to continuously up-
date the big-to-small-core ratio which is more accurate that the predicted
ratio using the model in model-based scheduling.

Trading fairness versus throughput

As mentioned earlier, optimizing system performance is often a complex
trade-off in terms of system throughput (i.e., getting as much jobs done per
unit of time) versus user-level experience (i.e., all users should be treated

112 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

0%

20%

40%

60%

80%

100%

fa
ir

n
es

s

1.00
1.05
1.10
1.15
1.20
1.25
1.30

n
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

Figure 5.9: Trade-off between fairness and throughput-optimized schedul-
ing for a 1B1S system.

in a fair way). The throughput-optimized and fairness-aware schedul-
ing policies optimize system throughput and fairness, respectively, and
completely oblivious to the other optimization criterion. We now evaluate
guaranteed-fairness scheduling which optimizes system throughput unless
fairness drops below a given threshold, after which it defers to fairness-
aware scheduling; once fairness is above the threshold, it optimizes system
throughput again. Figure 5.9 evaluates guaranteed-fairness scheduling in
terms of system throughput and fairness. This graph illustrates that turn-
ing the threshold ‘knob’ enables trading off fairness for throughput and
vice versa. Setting the threshold to a higher value leads to high fairness,
alike fairness-aware scheduling. Setting the threshold to a lower value
leads to high levels of system throughput, alike throughput-optimized
scheduling.

Time slice granularity

So far, we assumed a 1 ms time slice. Figure 5.10 evaluates fairness-aware
scheduling across different time slices, including 1, 5 and 10 ms, for a

5.5. EVALUATION 113

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

equal-time history-based

n
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

equal-time history-based

fa
ir

n
es

s

1ms 5ms 10ms

Figure 5.10: System throughput and fairness for equal-time and equal-
progress (history-based) scheduling as a function of time slice granularity.

1B3S system. The motivation for exploring larger time slices is to evalu-
ate fairness-aware scheduling in system software; smaller time slices cor-
respond to implementing fairness-aware scheduling in hardware so that
system software is oblivious to hardware heterogeneity, as previously dis-
cussed. We conclude from Figure 5.10 that both equal-time and equal-
progress scheduling are (largely) insensitive to time slice granularity, i.e.,
similarly high levels of system throughput and fairness are achieved across
different time slices. Fairness only slightly decreases with increasing time
slices, the reason being that fairness converges slower with larger time
slices; given the fixed workload (and run-time) this leads to slightly lower
fairness values.

5.5.2 Multi-threaded workloads

We now evaluate fairness-aware scheduling for multi-threaded applica-
tions. We first consider homogeneous workloads in which all threads exe-
cute the same code, followed by heterogeneous workloads; these types of
workloads lead to different execution behavior and results.

Homogeneous workloads

We first consider all the MapReduce workloads as well as the homoge-
neous workloads from the PARSEC benchmark suite. Figure 5.11 compares

114 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pinned throughput-optimized equal-time equal-progress

h
is

t

w
c lr

p
ca km sm

b
la

ck
sc

h
o
le

s

ca
n
n
e
a
l

sw
a
p
ti

o
n
s

st
re

a
m

cl
u
st

e
r

fl
u
id

a
n
im

a
te

n
o
rm

a
li
z
e
d

 r
u

n
-t

im
e

Figure 5.11: Comparing scheduling algorithms relative to pinned schedul-
ing for a 1B3S system running homogeneous multi-threaded applications.

the various scheduling policies for a 1B3S heterogeneous multi-core system
in terms of execution time normalized to pinned scheduling. The key re-
sult from this graph is that fairness-aware scheduling improves execution
time by 14% on average and up to 25% over pinned scheduling. Inter-
estingly, equal-time and equal-progress scheduling perform equally well.
The intuitive understanding is that these workloads are homogeneous (all
threads execute the same code and exhibit the same execution behavior),
and enforcing equal time therefore leads to enforcing equal progress as
well. Fairness-aware scheduling forces all threads to make equal progress
by running on the big core for an equal share. This eventually leads to
all threads reaching the barriers at roughly the same time. Under pinned
scheduling on the other hand, the one thread that gets scheduled onto the
big core reaches the barrier before the other threads; because this thread
has to wait for the other threads on the small cores to reach the barrier,
scheduling one of the thread on the big core does not contribute to over-
all performance, yielding no benefit from heterogeneity. By making sure
all threads benefit from the big core, fairness-aware scheduling forces all
threads to make equal progress, thereby reaching the barrier at the same
time and improving overall performance.

Throughput-optimized scheduling improves performance for most
benchmarks but not all, leading to an average improvement of 10% on
average. The reason is that throughput-optimized scheduling improves
fairness, as we have seen for the multi-program workloads, by migrating

5.5. EVALUATION 115

pinned throughput-optimized equal-time equal-progress

n
o
rm

a
li
z
e
d

 r
u

n
-t

im
e

1.0

0.8

0.6

0.4

0.2

0.0

1
B

1
S

1
B

3
S

3
B

1
S

1
B

7
S

7
B

1
S

Figure 5.12: Fairness-aware scheduling for different heterogenous multi-
core configurations for the homogeneous multi-threaded applications.

threads across core types while optimizing system throughput. How-
ever, the fact that fairness improves is a side-effect from optimizing for
throughput; fairness-aware scheduling which specifically optimizes fair-
ness achieves higher levels of fairness, which eventually leads to signifi-
cantly better performance for multi-threaded workloads.

Figure 5.12 reports average results across different heterogeneous
multi-core configurations for the homogeneous multi-threaded workloads.
The conclusion is essentially the same as what we reported earlier for
the individual benchmarks. Fairness-aware scheduling improves perfor-
mance substantially over pinned scheduling: we report average perfor-
mance improvements ranging between 7.5% (for 1B7S) and 35% (for 7B1S).
Further, equal-time and equal-progress scheduling perform equally well
(the benefit from equal-progress scheduling over equal-time scheduling
is marginal). Interestingly, performance improves with larger fractions
of big cores in the system (compare 3B1S versus 1B3S, and 7B1S versus
1B7S) under fairness-aware scheduling. (In contrast, performance does not
improve under pinned scheduling because the application has to wait for
the slowest thread running on a small core anyways.) The reason is that
fairness-aware scheduling gets to distribute and map threads across small
and big cores, and when there are more big cores in the system, the average
performance seen by all threads will be higher with more big cores in the
system, leading to better overall performance.

116 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pinned throughput-optimized equal-time equal-progress

n
o
rm

a
li
z
e
d

 r
u

n
-t

im
e

dedup ferret

Figure 5.13: Comparing scheduling algorithms relative to pinned schedul-
ing for a 1B3S system running heterogeneous multi-threaded applications.

Heterogeneous workloads

Figure 5.13 reports normalized execution time for the various schedul-
ing policies for the two heterogeneous PARSEC benchmarks, dedup and
ferret. The key conclusion from this graph is that although equal-time
scheduling improves performance somewhat over pinned scheduling (8%
for dedup and 6% for ferret), equal-progress scheduling improves per-
formance by as much as 29% for dedup and 36% for ferret. The reason
is that these workloads are heterogeneous, and, as a result, equal time
does not necessarily correspond to equal progress. As the different threads
execute different code and exhibit different execution behavior, they expe-
rience different big-to-small-core performance ratios and hence accounting
for the different ratios is important for achieving fairness. Equal-progress
scheduling does account for the fact that different threads make differ-
ent progress and schedules threads such as to improve fairness, which
ultimately leads to better overall performance.

5.6 Related Work

Rangan et al. [2011] explore throughput-optimizing and fairness-aware
scheduling algorithms for homogeneous multi-cores for which each core
runs at a different clock frequency due to within-die process variations.
The proposed scheduling algorithms do not readily apply to hetergeneous

5.7. SUMMARY 117

multi-cores with core microarchitecture diversity; in addition, they con-
sider multi-program workloads only. Michaud et al. [2007] propose a
scheduling algorithm for temperature-constrained multi-cores in which
threads migrate between hot and cold cores in order to avoid hotspots
while achieving fairness among threads. Fedorova et al. [2007] propose a
scheduling approach for multi-cores (with different cores running at dif-
ferent clock frequencies) that ensures that each thread’s execution time is
balanced across all cores; the key difference with the equal-time scheduling
approach proposed in this paper is that we balance time across core types
(not cores), and by doing so we avoid unnecessary migrating among cores
of the same type.

A large body of recent work has looked into multi-core and multi-
threading fairness issues. Most of this prior work focused on fairness issues
in shared caches [Iyer 2004, Jaleel et al. 2008b, Kim et al. 2004, Nesbit et al.
2007, Qureshi and Patt 2006, Luque et al. 2009, Guo et al. 2007, Zhou et al.
2009], main memory [Mutlu and Moscibroda 2007], or both shared cache
and main memory [Iyer et al. 2007, Ebrahimi et al. 2010; 2011]. Several
studies looked into fairness issues in simultaneous multithreading (SMT)
processors [Cazorla et al. 2004, Eyerman and Eeckhout 2009, Snavely et al.
2002] and coarse-grained multi-threading processors [Gabor et al. 2007].
None of this prior work looked into fairness issues that arise from core
heterogeneity.

5.7 Summary

Current multi-core schedulers in modern operating systems affinitize or
pin threads to cores, which leads to unfair performance on heterogeneous
multi-cores. For multi-threaded workloads, unfair performance leads to
thread(s) running on a big core to wait at barriers for the other threads
running on the small cores, yielding no performance benefit from hetero-
geneity. For multi-program workloads, unfair performance may compro-
mise quality-of-service because of large variability in performance across
simultaneously running programs. Optimizing for system throughput, as
proposed in a significant body of recent work, improves fairness somewhat
by dynamically scheduling threads across core types during run-time while
optimizing for throughput in response to time-varying workload behavior,
yet, fairness is still poor.

We have proposed fairness-aware scheduling which optimizes for fair-
ness as its primary optimization objective. We described two techniques

118 CHAPTER 5. FAIRNESS-AWARE SCHEDULING

for making sure all threads get to run on either core types for equal shares.
Equal-time scheduling schedules threads such that they all spend equal
amounts of time on either core type. Equal-progress scheduling strives at
getting all threads to make equal progress, and we described three meth-
ods for dynamically estimating a thread’s progress. We further explored
a scheduling mechanism that trades off fairness for throughput, and de-
scribed ways for implementing fairness-aware scheduling at different time
scales and both in software and hardware.

Our experimental results demonstrate the significance of fairness-
aware scheduling for heterogeneous multi-cores. We report substantial im-
provements in fairness over pinned scheduling (current multi-core sched-
ulers) and throughput-optimized scheduling (current state-of-the-art in
heterogeneous multi-core scheduling for system throughput), achieving
average fairness levels of 86% for a 1B3S system running multi-program
workloads. Fairness-aware scheduling also improves system through-
put by 21.2% over pinned scheduling, while being within 3.6% compared
to throughput-optimized scheduling. For homogeneous multi-threaded
workloads, fairness-aware scheduling improves performance by 14% on
average and up to 25%, and equal-progress and equal-time scheduling per-
form equally well. For heterogeneous multi-threaded workloads, equal-
progress scheduling significantly outperforms equal-time scheduling, lead-
ing to an overall performance improvement of 32% on average over pinned
scheduling.

The overall conclusion is that fairness-aware scheduling is key to op-
timizing performance on single-ISA heterogeneous multi-cores for both
multi-threaded and multi-program workloads.

Chapter 6

Future Work

Veni, vidi, bici.

6.1 Summary

We presented the Multi-Program Performance Model (MPPM), a method
for quickly estimating multi-program multi-core performance based on
single-core simulation runs. Because MPPM involves analytical modeling,
it is very fast, and it estimates multi-core performance for a very large num-
ber of multi-program workloads in a reasonable amount of time with good
accuracy (in addition, it provides confidence bounds on its performance
estimates). We report an average performance prediction error of 2.3% and
2.9% for system throughput (STP) and average normalized turnaround
time (ANTT), respectively, while being up to five orders of magnitude
faster than detailed simulation. Subsequently, we demonstrate that ran-
domly picking a limited number of multi-program workloads, as done in
current practice, can lead to incorrect design decisions in practical design
and research studies, which is alleviated using MPPM. In addition, MPPM
can be used to quickly identify multi-program workloads that stress multi-
core performance through excessive conflict behavior in shared caches;
these stress workloads can then be used for driving the design process
further.

We then used the MPPM model for exploring the heterogeneous multi-
core design space. MPPM allows us to do performance predictions for ar-
bitrary compositions of heterogeneous architectures and workloads. More-
over, it allows for quantifying heterogeneous architecture performance for

119

120 CHAPTER 6. FUTURE WORK

a large number (hundreds) of possible job mixes in a reasonable amount of
time. Using architectural simulation, simulating and exploring a large het-
erogeneous architecture design space for a very large number of job mixes
is impossible in a reasonable amount of time. This analysis leads to several
interesting and insightful observations in some of the fundamental trade-
offs and design choices.

• Improving system throughput (while assuming a fixed chip area),
decreases average per-program performance. Conversely, trading a
number of simple in-order cores for an aggressive out-of-order core
improves per-program performance, but it also decreases total sys-
tem throughput.

• Homogeneous architectures cover a broad range of the performance
spectrum in terms of throughput versus job turnaround time. Hetero-
geneity on the other hand allows for designing multi-core processors
with more fine-grained trade-offs in system throughput versus job
turnaround time.

• Interestingly though, some homogeneous configurations are optimal
for particular throughput versus job turnaround time trade-offs.

• We find that two core types offer most of the performance benefits
from heterogeneity, i.e., going to a larger number of core types does
not contribute much.

• We found that some compositions of core types do not yield Pareto-
optimal configurations.

• Limited off-chip bandwidth has a significant impact on the funda-
mental design choices in heterogeneous architectures. When limiting
off-chip bandwidth, increasing system throughput comes at the cost
of a proportionally larger degradation in per-program performance.

• We also find that the effectiveness of heterogeneous architectures
heavily depends on how jobs are mapped on the different core types
i.e., the effectiveness of the scheduler.

In Chapter 4, we have proposed Performance Impact Estimation (PIE)
as a mechanism to schedule workloads on a single-ISA heterogeneous
multi-cores. PIE collects CPI stack, MLP and ILP profile information
at runtime, and estimates the performance impact if the workload were

6.1. SUMMARY 121

to run on a different core type. Dynamic PIE scheduling exploits time-
varying execution behavior by adjusting the scheduling on a per-interval
basis; hardware support for PIE scheduling is limited. We show that PIE
scheduling makes accurate scheduling decisions and outperforms state-
of-the-art application schedulers for heterogeneous multi-cores. PIE also
outperforms sampling-based scheduling because it does not incur sam-
pling overhead as it predicts (rather than samples) the performance impact
of a scheduling decision. A key advantage of PIE scheduling is that it is
scalability: sampling-based scheduling does not scale with an increasing
number of small cores, in contrast to PIE scheduling because the latter es-
timates (and does not sample) performance. In addition, we demonstrate
that high-frequency workload migration can be done with low overhead
for both private and shared LLCs, which enables fine-grained schedul-
ing. Finally, we provide the insight that scheduling policies benefit from
intelligent shared LLC management.

We evaluate PIE scheduling using a large number of multi-programmed
SPEC CPU2006 workload mixes. We considered a set of scheduling-
sensitive workload mixes on a heterogeneous multi-core designs consisting
of out-of-order and in-order cores. We report an average performance im-
provement of 5.5% over recent state-of-the-art scheduling proposals. We
also evaluate PIE scheduling and demonstrate its scalability across a range
of heterogeneous multi-core configurations, including private and shared
last-level caches and different cache replacement policies. Finally, we show
that PIE outperforms a sampling-based scheduling by an average of 8.7%.

In Chapter 5, we made a case for fairness-optimizing scheduling. A fair
heterogeneous system has many desirable properties. For one, it provides
to opportunity to hide the heterogeneity from the operating system (or
more generally, software). Current software assumes that all threads make
equal progress, by guaranteeing this property through fairness-optimizing
scheduling, we allow for an easier transition to heterogeneous multi-core
processors. Also, for multi-program workloads, fairness is very importance
when it comes to system-level priorities and quality-of-service. We de-
scribed two techniques for making sure all threads get to run on either core
types for equal shares. Equal-time scheduling schedules threads such that
they all spend equal amounts of time on either core type. Equal-progress
scheduling strives at getting all threads to make equal progress, and we
described three methods for dynamically estimating a thread’s progress.
We further explored a scheduling mechanism that trades off fairness for
throughput, and described ways for implementing fairness-aware schedul-

122 CHAPTER 6. FUTURE WORK

ing at different time scales and both in software and hardware. Addition-
ally, we showed that by providing a fair schedule, throughput can be im-
proved as well.

We show substantial improvements in fairness over a pinned schedul-
ing and state-of-the-art throughput-optimized scheduling, achieving aver-
age fairness levels of 86% for a 1B3S system running multi-program work-
loads while improving system throughput by 21.2% over pinned schedul-
ing. For homogeneous multi-threaded workloads, fairness-aware schedul-
ing improves performance by 14% on average and up to 25%, and equal-
progress and equal-time scheduling perform equally well. For heteroge-
neous multi-threaded workloads, equal-progress scheduling significantly
outperforms equal-time scheduling, leading to an overall performance im-
provement of 32% on average over pinned scheduling.

6.2 Future Work

6.2.1 Modeling

There is ample room for further evaluation, improvements and extensions
to MPPM. As it is, MPPM uses the frequency of access contention model
for shared caches with a least-recently used replacement policy. This is a
fairly simple model that partitions the cache proportional to the relative
access intensity for all co-running threads. Although we have shown that
this model is accurate enough for the studies we have done with MPPM, it
can be improved, further increasing the accuracy of the MPPM framework.
One way of doing so could be to use the cache access patterns themselves
(instead of access intensity) to more accurately assign cache ways to the
threads sharing the cache. This can be done by normalizing the stack dis-
tance counters and using them as a distribution. Using basic probabilistic
theory, we could then estimate the probability that a certain way will be
used by a certain thread. The resulting partitioning (and estimated con-
tention for resources) could then be used in the same way as we used the
FOA model.

As on-chip caches continue to increase in size, their properties change.
One such example is non-uniform cache access (NUCA) caches: the (typ-
ically last-level) cache is divided into different cache banks, where the ac-
cess time to nearby banks is lower than the access time to far away banks.
The cache block placement can be static or dynamic [Kim et al. 2002, Jae-
hyuk Huh et al. 2007, Dybdahl and Stenstrom 2007]. The simplest policy of

6.2. FUTURE WORK 123

uniformly distributing memory addresses across cache banks could be eas-
ily integrated into MPPM by incurring different miss penalties for different
cache banks. The dynamic schemes cannot be readily integrated, however,
additional profiling of bank access patterns could be collected during the
profiling step and used to assign miss penalties in MPPM.

Currently, MPPM only supports LRU-managed caches, recent research
Jaleel et al. has shown that the commonly used LRU replacement pol-
icy is outperformed by contention-aware replacement policies such as
RRIP[Jaleel et al. 2010]. Therefore, it is important to extend the MPPM
framework could be extended to support replacement policies other than
LRU. For this, a performance model of the replacement policy is needed
and to our knowledge, there exists no analytical models to accurately esti-
mate the cache performance of these novel replacement policies. We believe
that creating a model of contention-aware policies could be more straight-
forward than for traditional contention-agnostic. The reason is twofold:
firstly, there is less contention and hence accurate modeling is much less
critical than for LRU-managed caches. Secondly, contention-aware policies
are designed specifically to minimize cache contention and as a result, the
contention occurs in an engineered, well-defined and understood manner.
Once such a model is available, it could be easily integrated into the MPPM
framework.

As it is, MPPM does not support multi-threaded applications. Multi-
threaded workloads not only incur negative interference among co-executing
threads but also positive interference, i.e., one thread fetching data that is
later accessed by other threads. Furthermore, the thread interaction goes
beyond cache sharing alone because of locking, barriers, synchronization,
etc. We believe that MPPM can be extended to accurately model the im-
pact of positive interference on overall performance. One way for doing so
could be to capture the amount of inter-thread data sharing in the isolated
profiling step and incorporate this information into the contention model.
Instead of dividing all the ways in the cache according to the access inten-
sity, we would only consider the fraction of the cache that does not contain
shared data. Obviously, this will only work if all threads exhibit the same
behavior (in the case of a homogeneous multi-threaded application). If not,
for instance when a single thread is pulling in all the data for the other
threads to use, the per-thread slowdown might not be accurately estimated
(per-program performance however could still be estimated accurately).

We have used MPPM for modeling heterogeneous multi-core perfor-
mance and exploring the heterogeneous multi-core design space. A frame-

124 CHAPTER 6. FUTURE WORK

work like MPPM could be created to model resource sharing in simultane-
ous multi-threading (SMT) cores. Yet other avenues for future work are to
improve the modeling of sources of contention other than last-level cache
sharing, such as bandwidth sharing, TLB sharing, contention in main mem-
ory and the impact of prefetching.

6.2.2 Scheduling

The majority of the work we have done on scheduling, has focused on
scheduling multi-program workloads. Although we have shown in Chap-
ter 5 that our scheduling algorithms work for multi-threaded applications
as well, there are many opportunities left. Multi-threaded applications
have different properties compared to multi-program workloads because
multiple threads cooperate to get a single task done. This often results in
data-sharing and (frequent) thread synchronization. Because the perfor-
mance of all the application’s threads are linked, composing good thread-
to-core mappings is a lot harder. Assigning valuable resources (for exam-
ple, a big core) to a specific thread might not yield better performance for
that thread if its performance depends on other threads that are assigned
fewer resources. Generally, the performance of a set of tightly coupled
threads will be determined by the rate of progress of the thread that has the
least resources assigned to it. Obviously, this could lead to suboptimal re-
source management (scheduling). This observation provides us with many
interesting opportunities for future research on scheduling multi-threaded
applications on single-ISA heterogeneous multi-core architectures. A first
step would be to dynamically identify clusters of threads whose perfor-
mance are coupled (for instance by quantifying data-sharing by observ-
ing coherency traffic). Once these clusters are identified, they can then be
scheduled as a single entity on a group of cores (of the same type).

As the number of cores on a single chip continues to increase, the way
they are interconnected will start to matter a lot more. Our research has
shown that migrating a thread to a different core can be done at low cost.
At the very least, this cost will become non-uniform in the future: migrat-
ing a thread to a far-away core over a (possibly) complex interconnection
network will be more costly than migrating to a nearby core. This effect
would need to be taken into account when considering possible thread-to-
core mappings. Also, as the number of cores on a chip increases, the num-
ber of thread migrations to achieve an optimal schedule increases as well.
Additional research is needed to determine if and when the on-chip inter-

6.2. FUTURE WORK 125

connect bandwidth and latency will become restrictive to achieve optimal
job-to-core mappings.

Yet another important case to consider are Java workloads (or more
generally, any workload written in a managed language). When using
managed languages, the application threads are not the only threads in
the system. Other co-running threads include garbage collection, compila-
tion and other helper threads. It remains an open question on how to dy-
namically schedule all these threads to improve overall application perfor-
mance. Scheduling algorithms need to treat application threads separately
from the runtime service threads, and how assigning different resources to
different types of threads impact performance.

Multi-threaded applications may also do their own internal thread
management and scheduling. A simple example of such behavior is work
stealing, where tasks (work) is dispatched to worker threads by a central
managing thread. It is unclear how and if dynamic scheduling (either at the
OS or hardware level) would interfere with the application-level schedul-
ing. Obviously, the answer to these questions will heavily depend on the
particular flavor of internal scheduling, making it a very challenging and
interesting topic to consider.

126 CHAPTER 6. FUTURE WORK

Bibliography

A. Alameldeen and D. Wood. Variability in Architectural Simulations of
Multi-threaded Workloads. In Proceedings of the Ninth International Sym-
posium on High-Performance Computer Architecture (HPCA), pages 7–18,
2003.

AMD. The Future is Fusion: The Industry-
changing Impact of Accelerated Computing.
http://sites.amd.com/us/Documents/AMD fusion Whitepaper.pdf,
2008.

M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s Law
Through EPI Throttling. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 298–309, 2005.

M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous
Multiprocessor architectures. Journal of Instruction-Level Parallelism (JILP),
10:1–26, 2008.

E. Berg and E. Hagersten. Fast Data-locality Profiling of Native Execution.
In Proceedings of the International Conference on Measurements and Modeling
of Computer Systems (SIGMETRICS), pages 169–180, 2005.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and Architectural Implications. In Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 72–81, 2008.

G. Blake, R. G. Dreslinski, T. N. Mudge, and K. Flautner. Evolution of
Thread-level Parallelism in Desktop Applications. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 302–313,
2010.

S. Borkar. Thousand core chips — a technology perspective. In Proceedings
of the Design Automation Conference (DAC), pages 746–749, 2007.

127

128 BIBLIOGRAPHY

T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the Level
of Abstraction for Scalable and Accurate Parallel Multi-core Simulation.
In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC), 2011.

F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynamically Con-
trolled Resource Allocation in SMT Processors. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 171–182, 2004.

D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-thread Cache
Contention on a Chip-multiprocessor architecture. In Proceedings of the
Eleventh International Symposium on High Performance Computer Architec-
ture (HPCA), pages 340–351, 2005.

J. Chen and L. K. John. Efficient Program Scheduling for Heterogeneous
Multi-core Processors. In Proceedings of the 46th Design Automation Con-
ference (DAC), pages 927–930, 2009.

Y. Chou, B. Fahs, and S. Abraham. Microarchitecture Optimizations for
Exploiting Memory-level Parallelism. In Proceedings of the 31st Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 76–87, 2004.

J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Bra-
ganza, S. Meyers, E. Fang, and R. Kumar. An integrated Quad-core
Opteron Processor. In Proceedings of the International Solid State Circuits
Conference (ISSCC), pages 102–103, 2007.

H. Dybdahl and P. Stenstrom. An adaptive Shared/Private NUCA Cache
Partitioning Scheme for Chip Multiprocessors. In High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pages 2–12. IEEE, 2007.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Prefetch-aware Shared-
resource Management for Multi-core Systems. In Proceedings of the In-
ternational Symposium on Computer Architecture (ISCA), 2011.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source
Throttling: A Configurable and High-performance Fairness Substrate for
Multi-core Memory Systems. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 335–346, 2010.

D. Eklöv, D. Black-Schaffer, and E. Hagersten. Fast Modeling of Cache
Contention in Multicore Systems. In Proceedings of the Sixth International
Conference on High Performance and Embedded Architecture and Compilation
(HiPEAC), pages 147–158, 2011.

BIBLIOGRAPHY 129

D. Eklöv and E. Hagersten. StatStack: Efficient Modeling of LRU Caches. In
Proceedings of the International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 55–65, 2010.

P. G. Emma. Understanding Some Simple Processor-performance Limits.
IBM Journal of Research and Development, 41(3):215–232, 1997.

S. Eyerman and L. Eeckhout. System-level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

S. Eyerman and L. Eeckhout. Per-thread Cycle Accounting in SMT Proces-
sors. In The International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 133–144, 2009.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Performance
Counter Architecture for Computing Accurate CPI components. In Pro-
ceedings of The Twelfth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 175–184,
2006.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Mechanistic Per-
formance Model for Superscalar Out-of-Order Processors. ACM Transac-
tions on Computer Systems (TOCS), 27(2), 2009.

A. Fedorova, D. Vengerov, and D. Doucette. Operating System Schedul-
ing on Heterogeneous Core Systems. In Proc. of OSHMA workshop, 16th
PACT, 2007.

M. Franklin and G. S. Sohi. Register Traffic Analysis for Streamlining Inter-
operation Communication in Fine-grain Parallel Processors. In Proceed-
ings of the 22nd Annual International Symposium on Microarchitecture (MI-
CRO), pages 236–245, 1992.

R. Gabor, S. Weiss, and A. Mendelson. Fairness Enforcement in Switch on
Event Multithreading. ACM Transactions on Architecture and Code Opti-
mization (TACO), 4(3):34, 2007.

S. Ghiasi, T. Keller, and F. Rawson. Scheduling for Heterogeneous Proces-
sors in Server Systems. In Proceedings of the Second Conference on Comput-
ing Frontiers (CF), pages 199–210, 2005.

P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7: Improving energy efficiency in high-performance mobile platforms.
http://www.arm.com/files/downloads/big LITTLE Final Final.pdf,
2011.

F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for Providing Quality
of Service in Chip Multi-processors. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 343–355, 2007.

130 BIBLIOGRAPHY

T. R. Halfhill. Intel’s tiny Atom. Microprocessor Report, 22:1–13, 2008.

G. Hamerly, E. Perelman, and B. Calder. How to use SimPoint to Pick
Simulation Points. ACM SIGMETRICS Performance Evaluation Review,
31(4):25–30, 2004.

M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE
Computer, 41(7):33–38, 2008.

Intel. 2nd generation Intel Core vPro Processor Family.
http://www.intel.com/content/dam/doc/white-paper/core-vpro-
2nd-generation-core-vpro-processor-family-paper.pdf, 2008.

R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP
Platforms. In Proceedings of the International Conference on Supercomputing
(ICS), pages 257–266, 2004.

R. Iyer, L. Zhao, F. G. amd R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L.
Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pages 25–36,
2007.

J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang, D. Burger, and
S. W. Keckler. A NUCA Substrate for Flexible CMP Cache Sharing. Par-
allel and Distributed Systems, IEEE Transactions on, 18(8):1028–1040, 2007.

A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A Pin-based On-
the-fly Multi-core Cache Simulator. In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), held in con-
junction with the International Symposium on Computer Architecture (ISCA),
2008.

A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. S. Emer.
Adaptive Insertion Policies for Managing Shared Caches. In Proceedings
of the International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 208–219, 2008.

A. Jaleel, H. Najaf-Abadi, S. Subramaniam, S. Steely, and J. Emer. Cruise:
Cache Replacement and Utility-aware Scheduling. In ACM SIGARCH
Computer Architecture News, volume 40, pages 249–260. ACM, 2012.

A. Jaleel, K. Theobald, J. S. S. Steely, and J. Emer. High Performance Cache
Replacement Using Re-reference Interval prediction (rrip). In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 60–
71, 2010.

BIBLIOGRAPHY 131

M. T. Jones. Inside the Linux Scheduler: The Latest Version
of this All-important Kernel Component Improves Scalability.
http://www.ibm.com/developerworks/linux/library/
lscheduler/index.html, 2006, [Online; last accessed 10-February-
2013].

N. Jouppi and D. Wall. Available Instruction-Level Parallelism for Superscalar
and Superpipelined Machines, volume 17. ACM, 1989.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D.
Shippy. Introduction to the Cell Multiprocessor. IBM Journal of Research
and Development, 49:589–604, 2005.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D.
Shippy. Introduction to the Cell multiprocessor. IBM Journal of Research
and Development, 49:589–604, 2005.

T. Kgil, S. D’Souza, A. Saidi, B. N, R. Dreslinski, S. Reinhardt, K. Flaut-
ner, and T. Mudge. PicoServer: Using 3D Stacking Technology to Enable
a Compact Energy Efficient Chip Multiprocessor. In Proceedings of the
Twelfth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 117–128, 2006.

C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache
Structure for Wire-delay Dominated On-chip Caches. In Acm Sigplan No-
tices, volume 37, pages 211–222. ACM, 2002.

S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT)), pages
111–122, 2004.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way Multi-
threaded SPARC Processor. IEEE Micro, 25(2):21–29, 2005.

D. Koufaty, D. Reddy, and S. Hahn. Bias Scheduling in Heterogeneous
Multi-core Architectures. In Proceedings of the European Conference on Com-
puter Systems (EuroSys), pages 125–138, 2010.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-core Architectures: The Potential for
Processor Power Reduction. In Proceedings of the ACM/IEEE Annual In-
ternational Symposium on Microarchitecture (MICRO), pages 81–92, 2003.

R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core Architecture Optimiza-
tion for Heterogeneous Chip Multiprocessors. In Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 23–32, 2006.

http://www.ibm.com/developerworks/linux/library/lscheduler/index.html
http://www.ibm.com/developerworks/linux/library/lscheduler/index.html

132 BIBLIOGRAPHY

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-ISA Heterogeneous Multi-core Architectures for Multithreaded
Workload Performance. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 64–75, 2004.

N. B. Lakshminarayana, J. Lee, and H. Kim. Age Based Scheduling for
Asymmetric Multiprocessors. In Proceedings of Supercomputing: the Con-
ference on High Performance Computing Networking, Storage and Analysis
(SC), 2009.

B. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Composable Performance
Regression for Scalable Multiprocessor Models. In Proceedings of the 41st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 270–281, 2008.

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating Sys-
tem Scheduling for Performance-asymmetric Multi-core Architectures.
In Proceedings of Supercomputing: the Conference on High Performance Com-
puting Networking, Storage and Analysis (SC), 2007.

T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Operating
System Support for Overlapping-ISA Heterogeneous Multi-core Archi-
tectures. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), pages 1–12, 2010.

T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Operating
System Support for Overlapping-ISA Heterogeneous Multi-core Archi-
tectures. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), pages 1–12, 2010.

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt.
Understanding and Designing new Server Architectures for Emerging
Warehouse-computing Environments. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 315–326, 2008.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program Anal-
ysis Tools with Dynamic Instrumentation. In Proceedings of the ACM
SIGPLAN Conference on Programming Languages Design and Implementa-
tion (PLDI), pages 190–200, 2005.

A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. Dreslinski, T. Wenisch,
and S. Mahlke. Composite Cores: Pushing Heterogeneity into a Core. In
45th Annual International Symposium on Microarchitecture (ISCA), 2012.

K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fair-
ness in SMT processors. In Proceedings of the IEEE International Symposium

BIBLIOGRAPHY 133

on Performance Analysis of Systems and Software (ISPASS), pages 164–171,
2001.

C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and
M. Valero. ITCA: Inter-task Conflict-aware CPU Accounting for CMPs.
In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 203–213, 2009.

Y. Mao, R. Morris, and F. Kaashoek. Optimizing MapReduce for Multicore
Architectures. Technical Report MIT-CSAIL-TR-2010-020, MIT, 2010.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques
for Storage Hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks,
and S. Naffziger. Power and Temperature Control on a 90-nm Itanium
Family Processor. IEEE Journal of Solid-State Circuits, 41(1):229–237, 2006.

A. Mericas, 2006. Performance Monitoring on the POWER5 Microproces-
sor. In L. K. John and L. Eeckhout, editors, Performance Evaluation and
Benchmarking, pages 247–266. CRC Press.

P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Constantinou. A Study
of Thread Migration in Temperature-constrained Multicores. ACM Trans-
actions of Architecture and Code Optimization (TACO), 4(9), 2007.

G. E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8), 1965.

T. Mudge and U. Hölzle. Challenges and Opportunities for Extremely
Energy-efficient Processors. IEEE Micro, 30(4):20–24, 2010.

O. Mutlu and T. Moscibroda. Stall-time Fair Memory Access Scheduling
for Chip Multiprocessors. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 146–160, 2007.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An
Alternative to Very Large Instruction Windows for Out-of-Order Proces-
sors. In Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129–140, 2003.

K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual Private Caches. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA), pages
57–68, 2007.

NVidia. The Benefits of Multiple CPU Cores in Mobile Devices.
http://www.nvidia.com/content/PDF/tegra white papers/Benefits-
of-Multi-core-CPUs-in-Mobile-Devices Ver1.2.pdf, 2010.

134 BIBLIOGRAPHY

NVidia. Variable SMP – a Multi-core CPU Ar-
chitecture for Low Power and High Performance.
http://www.nvidia.com/content/PDF/tegra white papers/Variable-
SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-
Performance-v1.1.pdf, 2011.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case
for a Single-chip Multiprocessor. In ACM Sigplan Notices, volume 31,
pages 2–11. ACM, 1996.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pin-
pointing Representative Portions of Large Intel Itanium Programs with
Dynamic Instrumentation. In Proceedings of the 37th Annual International
Symposium on Microarchitecture (MICRO), pages 81–93, 2004.

G. Patsilaras, N. K. Choudhary, and J. Tuck. Design Trade-offs for Memory-
level Parallelism on a Asymmetric Multicore System. In Proceedings of the
Third Workshop on Parallel Execution of Sequential Programs on Multi-core
Architectures (PESPMA), held in conjunction with ISCA, 2010.

G. Patsilaras, N. K. Choudhary, and J. Tuck. Efficiently Exploiting Memory-
Level Parallelism on Asymmetric Coupled Cores in the Dark Silicon Era.
ACM Transactions on Architecture and Code Optimization (TACO), 8, 2012.

M. K. Qureshi and Y. N. Patt. Utility-based Cache Partitioning: A Low-
overhead, High-performance, Runtime Mechanism to Partition Shared
Caches. In Proceedings of the 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 423–432, 2006.

K. K. Rangan, M. D. Powell, G.-Y. Wei, and D. Brooks. Achieving Uniform
Performance and Maximizing Throughput in the Presence of Hetero-
geneity. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), pages 3–14, 2011.

C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C. Kozyrakis.
Evaluating MapReduce for Multi-core and Multiprocessor Systems. In
Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pages 13–24, 2007.

V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web Search using Mobile
Cores: Quantifying and Mitigating the Price of Efficiency. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 26–
36, 2010.

A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Modeling
Performance Variation Due to Cache sharing. In Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture (HPCA),
2013.

BIBLIOGRAPHY 135

D. Shelepov, J. C. S. Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,
S. Blagodurov, and V. Kumar. HASS: A Scheduler for Heterogeneous
Multicore Systems. Operating Systems Review, 43:66–75, 2009.

T. Sherwood and B. Calder. Time Varying Behavior of Programs. Technical
report, Citeseer, 1999.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Char-
acterizing Large Scale Program Behavior. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 45–57, 2002.

A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for Simultaneous
Multithreading Processor. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 234–244, 2000.

A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobscheduling with
Priorities for a Simultaneous Multithreading Processor. In Proceedings of
the ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, pages 66–76, 2002.

R. Teodorescu and J. Torrellas. Variation-aware Application Scheduling and
Power Management for Chip Multiprocessors. In Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA), pages 363–374, 2008.

N. Tuck and D. M. Tullsen. Initial Observations of the Simultaneous Mul-
tithreading Pentium 4 Processor. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), pages
26–34, 2003.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Considering all Starting
Points for Simultaneous Multithreading Simulation. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 143–153, 2006.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Representative Multipro-
gram Workloads for Multithreaded Processor Simulation. In Proceedings
of the IEEE International Symposium on Workload Characterization (IISWC),
pages 193–203, 2007.

M. Van Biesbrouck, T. Sherwood, and B. Calder. A Co-phase Matrix to
Guide Simultaneous Multithreading Simulation. In Proceedings of the In-
ternational Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 45–56, 2004.

136 BIBLIOGRAPHY

K. Van Craeynest and L. Eeckhout. The Multi-Program Performance
Model: Debunking Current Practice in Multi-core Simulation. In Work-
load Characterization (IISWC), 2011 IEEE International Symposium on, pages
26–37. IEEE, 2011.

K. Van Craeynest and L. Eeckhout. Understanding Fundamental Design
Choices in Single-ISA Heterogeneous Multi-core Architectures. ACM
Transactions on Architecture and Code Optimization (TACO), 9(4):32, 2013.

K. Van Craeynest, S. Eyerman, and L. Eeckhout. MLP-Aware Runahead
Threads in a Simultaneous Multithreading Processor. High Performance
Embedded Architectures and Compilers, pages 110–124, 2009.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. Schedul-
ing Heterogeneous Multi-cores Through Performance Impact Estimation
(PIE). In Proceedings of the International Symposium on Computer Architec-
ture (ISCA), pages 213–224, 2012.

J. Vera, F. J. Cazorla, A. Pajuelo, L. J. Santana, E. Fernández, and M. Valero.
FAME: Fairly Measuring Multithreaded Architectures. In Proceedings of
the International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 305–316, 2007.

D. Wall. Limits of Instruction-Level Parallelism, volume 19. ACM, 1991.

W. Wulf and S. McKee. Hitting the Memory Wall: Implications of the Ob-
vious. ACM SIGARCH Computer Architecture News, 23:20–24, 1995.

X. Zhou, W. Chen, and W. Zheng. Cache Sharing Management for Per-
formance Fairness in Chip Multiprocessors. In Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 384–393, 2009.

	Introduction
	Multi-Cores and Simulation
	Multi-Core Analytical Modeling
	Heterogeneous Multi-Core Processors
	Fairness-Aware Scheduling
	Overview

	MPPM
	Introduction
	Multi-Program Performance Model
	Single-core Simulation Profiling
	MPPM
	Discussion

	Experimental Setup
	Model Evaluation
	Variability
	Accuracy
	Speed

	Debunking Current Practice
	Identifying Stress Workloads
	Related Work
	Summary

	Heterogeneous Multi-Core Design
	Introduction
	Multi-core Performance Modeling
	Design Space Exploration
	Heterogeneous multi-core design space
	Multi-core performance

	Experimental Setup
	Results
	Homogeneous multi-core processors
	Pareto-optimal heterogeneous multi-cores
	Limiting off-chip bandwidth
	Impact of LLC size
	Which core types to employ in a heterogeneous design?
	Job-to-core mapping
	Workloads

	Related Work
	Summary

	Heterogeneous Multi-Core Scheduling
	Introduction
	Motivation
	Performance Impact Estimation (PIE)
	Predicting MLP
	Predicting ILP
	Evaluating the PIE Model

	Dynamic Scheduling
	Quantifying migration overhead
	Dynamic PIE Scheduling
	Hardware support

	Experimental Setup
	Results and Analysis
	Private LLCs
	Shared LLC
	RRIP-managed shared LLC

	Related Work
	Summary

	Fairness-Aware Scheduling
	Introduction
	Motivation
	Fairness
	Multi-threaded workloads
	Multi-program workloads

	Fairness-Aware Scheduling
	Equal-time scheduling
	Equal-progress scheduling
	Trading fairness for throughput
	Rescheduling granularity
	Hardware versus software scheduling

	Experimental Setup
	Simulated architectures
	Workloads

	Evaluation
	Multi-program workloads
	Multi-threaded workloads

	Related Work
	Summary

	Future Work
	Summary
	Future Work
	Modeling
	Scheduling

