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Introduction to secondary metabolites, saponins and 
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1.1. Plant secondary metabolites 

 

Plants produce an enormous variety of natural products with highly diverse chemical 

structures. The evolution of chemical defences in plants is likely linked to the emergence of 

secondary metabolites, organic compounds that are not directly involved in the normal 

growth, development or reproduction of organisms, and are often produced as by-products 

during the synthesis of primary metabolic products. Although secondary metabolites were 

formerly regarded as “waste products” without physiological function for the plant, it has 

since become evident that they can fulfil important functions in the interaction between plants 

and their biotic and abiotic environment, providing protection against attack by herbivores 

and microbes and serving as attractants for pollinators and seed-dispersing agents. In addition 

to their physiological function in plants, natural products also have a strong impact on human 

culture, as humans exploit them as sources of pharmaceuticals, flavouring agents, pigments, 

fragrances, condiments, and for a wide range of other applications (Osbourn & Lanzotti, 

2009). 

 

It has been known since the late 17th century that plants contain noxious chemicals that are 

avoided by insects. Man has used these chemicals as early insecticides; in 1690 nicotine was 

extracted from tobacco and used as a contact insecticide. In 1773, insect infested plants were 

treated with nicotine fumigation by heating tobacco and blowing the smoke over the plants 

(Ware & Whitacre, 2004). The formal study of plant resistance to herbivory was first covered 

extensively in 1951 by Reginald (R.H.) Painter, who is widely regarded as the founder of this 

area of research, in his book Insect Resistance in Crop Plants (Painter, 1951).  

 

In later years, the applications of plant resistance became an important area of research in 

agriculture and plant breeding, particularly because they can serve as a safe and low-cost 

alternative to the use of pesticides (Smith, 2005). The use of botanical pesticides is 

widespread and notable examples include azadirachtin from neem (Azadirachta indica), 

rotenone (Derris), and pyrethrum (Russ, 2007). 

 

Providing a full overview of the more than 200,000 structures of plant secondary metabolites 

known today is beyond the scope here, also because there is no rigid scheme for classifying 

natural products; their immense diversity in structure, function, and biosynthesis make it hard 

to fit them neatly into a few simple categories. In practice, however, they are often classified 



 - 3 - 

into six main classes of natural products, as listed below (Fig. 1.1). Since secondary 

metabolites are often created by modified primary metabolite synthases, these categories 

should not be interpreted as saying that all molecules in the category are secondary 

metabolites, but rather that there are secondary metabolites in these categories (Belitz et al., 

2004; Osbourn & Lanzotti, 2009). 

 

Most important for this study are the terpenes and terpenoids, including steroids. This group 

will be discussed at the end, after a short overview of the other classes. 

 

 

Alkaloids Phenols Glycosides 

   

Ex. nicotine Ex. phenol Ex. salicin 

 

 

Figure 1.1. Overview of the six main classes of secondary metabolites with representative examples. 

 

 
1.1.1. Alkaloids  

Alkaloids are a group of naturally occurring chemical compounds that mostly contain basic 

nitrogen atoms. The term “alkaloid” is derived from the Arabic word “al-qali” that refers to 

potassium carbonate-containing ashes from plant material. Traditionally, alkaloids are 

defined as heterocyclic nitrogen compounds biosynthesized from amino acids; however, 

many other substances that do not exactly match this rule are classified as alkaloids, either for 

Fatty acids Peptides Terpenes 

 
 

 

Ex. butyric acid Ex. glycylglycine Ex. isopreen 



 - 4 - 

historical reasons or due to their bioactivities. Besides carbon, hydrogen and nitrogen, 

molecules of alkaloids may contain sulphur and rarely chlorine, bromine or phosphorus 

(Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

With currently more than 12,000 known structures, alkaloids present one of the biggest 

groups of natural products. Famous examples include nicotine, caffeine, morphine, and 

strychnine (Fig. 1.1). Alkaloids have pharmacological effects on humans and other animals 

and can be used as medications, as recreational drugs, or in entheogenic rituals. Although 

alkaloids act on a diversity of metabolic systems in humans and other animals, they almost 

uniformly invoke an aversively bitter taste (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Alkaloids have a wide distribution in nature: they are generated by various living 

organisms, especially by higher plants, about 10 to 25% of which contain alkaloids. The 

alkaloid content in plants is usually within a few percent and is inhomogeneous over the plant 

tissues. Depending on the type of plants, the maximum concentration is observed in the leaves 

(black henbane), fruits or seeds (Strychnine tree), root (Rauwolfia serpentina) or bark 

(cinchona). Furthermore, different tissues of the same plant may contain different alkaloids 

(Osbourn & Lanzotti, 2009).  

 

Besides plants, they are found in certain types of fungi, such as psilocybin in the fungus of the 

genus Psilocybe, and in animals, such as bufotenin in the skin of some toads. Many marine 

organisms also contain alkaloids. Some amines, such as adrenaline and serotonin, which play 

an important role in higher animals, are similar to alkaloids in their structure and biosynthesis 

and are sometimes called alkaloids (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Ways of alkaloid biosynthesis are numerous and cannot be easily classified. However, there 

are a few typical reactions involved in the biosynthesis of various classes of alkaloids, 

including synthesis of Schiff bases and Mannich reaction. Biological precursors of most 

alkaloids are amino acids, such as ornithine, lysine, phenylalanine, tyrosine, tryptophan, 

histidine, aspartic acid, and anthranilic acid. Nicotinic acid can be synthesized from 

tryptophan or aspartic acid (Belitz et al., 2004; Osbourn & Lanzotti, 2009).  
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1.1.2. Phenols & polyphenols 

Phenols, sometimes called phenolics, are a class of chemical compounds consisting of a 

hydroxyl group (-OH) bound directly to an aromatic hydrocarbon group (6-carbon ring). The 

simplest example is phenol (C6H5OH) (Fig. 1.1). 

 

Polyphenols are characterized by the presence of large multiples of phenol structural units. 

They are described as generally moderate water-soluble compounds, with molecular weight of 

500–4000 Da, >12 phenolic hydroxyl groups, and 5–7 aromatic rings per 1000 Da, though the 

limits to these ranges are often somewhat flexible (Quideau et al., 2011). 

 

Although similar to alcohols, phenols have unique properties and are not classified as 

alcohols (since the hydroxyl group is not bonded to a saturated carbon atom). They have 

higher acidities due to the aromatic ring's tight coupling with the oxygen and a relatively 

loose bond between the oxygen and hydrogen. Phenols range from simple tannins to the more 

complex flavonoids that give plants much of their red, blue, yellow, and white pigments 

(Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Phenolic acids’ distribution in nature includes mushroom basidiomycetes species (Barros et 

al., 2009). Volatile phenolic compounds are also found in plant resin, where they may attract 

benefactors such as parasitoids or predators of the herbivores that attack the plant. The most 

abundant polyphenols are the condensed tannins, found in virtually all families of plants, and 

comprising up to 50% of the dry weight of leaves (Osbourn & Lanzotti, 2009). They are 

polymers composed of 2 to 50 (or more) flavonoid molecules, inhibit herbivore digestion by 

binding to consumed plant proteins and making them more difficult for animals to digest, and 

by interfering with protein absorption and digestive enzymes (Van Soest, 1982; Belitz et al., 

2004; Osbourn & Lanzotti, 2009).  

 

Other examples of phenols used for plant defence are lignin, silymarin and cannabinoids. 

Silica and lignins, which are completely indigestible to animals, grind down the mandibles of 

insects. Some phenols have antiseptic properties and are used in formulating disinfectants, 

while others possess estrogenic or endocrine disrupting activity (Osbourn & Lanzotti, 2009). 

Polyphenols can also be found in animals; in arthropods like insects and crustaceans, they play 

a role in epicuticle hardening (sclerotisation) (Dennell, 1947; Wigglesworth, 1988). 
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Notable sources for human consumption of natural phenols include berries, tea, beer, olive 

oil, chocolate or cocoa, coffee, pomegranates, popcorn, yerba maté, fruits and fruit based 

drinks (including cider and wine) and vegetables. Phenolic compounds in beverages have 

been shown to be helpful in the colour and sensory components, such as alleviating bitterness 

(Donovan et al., 1998). Herbs and spices, nuts (walnuts, peanuts) and algae are also 

potentially significant for supplying certain natural phenols. Such foods containing natural 

phenols are generally considered as health food. Plant polyphenols also have antioxidant 

action and may help to reduce tooth decay (Belitz et al., 2004; Osbourn & Lanzotti, 2009; 

Ferrazzano et al., 2011). 

 

In phenol biosynthesis, most of the natural phenols are derived from secondary plant 

metabolism of the shikimic acid pathway, the malic acid pathway or both. The aromatic 

amino acid phenylalanine, synthesized in the shikimic-acid pathway, is the common 

precursor of phenol containing amino acids and phenolic compounds. In plants, the phenolic 

units are esterified or methylated, and the polyphenols are submitted to conjugation. Many 

natural phenols are found in the glycoside form instead of the aglycone form; the 

glycosylated form increases the solubility (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

 
1.1.3. Glycosides & glucosinolates  

A glycoside is a molecule in which a sugar is bound to a non-carbohydrate moiety, usually a 

small organic molecule. The sugar group is then known as the glycone and the non-sugar 

group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar 

group (monosaccharide) or several sugar groups (oligosaccharide) (Fig. 1.1). 

 

Glycosides play important roles in living organisms: many plants store chemicals in the form 

of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar 

part to be broken off, making the chemical available for use. Many such plant glycosides are 

used as medicines. In animals and humans, poisons are often bound to sugar molecules as 

part of their elimination from the body (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

The glucosinolates are a class of organic compounds that contain sulphur and nitrogen and 

are derived from glucose and an amino acid. They are water-soluble anions and belong to the 

glucosides (glycosides derived from glucose). Every glucosinolate contains a central carbon 



 - 7 - 

atom, which is bound via a sulphur atom to the thioglucose group (making a sulphated 

ketoxime) and via a nitrogen atom to a sulphate group. In addition, the central carbon is bound 

to a side group; different glucosinolates have different side groups, and it is variation in the 

side groups that is responsible for the variation in the biological activities of these plant 

compounds (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

About 120 different glucosinolates are known to occur naturally in plants. They occur as 

secondary metabolites of almost all plants of the order Brassicales (including the families 

Brassicaceae, Capparidaceae and Caricaceae), but also in the genus Drypetes (family 

Euphorbiaceae) (Rodman et al., 1996; Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Because the use of glucosinolate-containing crops as primary food source for animals was 

shown to have negative effects, food crops that contain very low amounts of glucosinolates 

(e.g. canola) have been developed. The glucosinolate sinigrin, among others, was shown to be 

responsible for the bitterness of cooked cauliflower and Brussels sprouts (Van Doorn et al., 

1998; Schonhof et al., 2004). On the other hand, plants producing large amounts of 

glucosinolates also are of interest because they can serve as sources for natural pesticides. 

Some of these compounds are also under investigation for mitigating cancer, with 

sulphoraphane from broccoli being the best known example (Nestle, 1998; Osbourn & 

Lanzotti, 2009). 

 

 
1.1.4. Fatty acid synthase products  

A fatty acid is a carboxylic acid with a long unbranched aliphatic tail (chain), which is either 

saturated or unsaturated (Fig. 1.1). Fatty acids are usually derived from triglycerides or 

phospholipids. When they are not attached to other molecules, they are known as "free" fatty 

acids. Fatty acids are important sources of energy because, metabolized, they yield large 

quantities of ATP (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Fatty acids without double bonds are called saturated, while fatty acids that have double 

bonds are known as unsaturated. The two carbon atoms at either side of the double bond can 

occur in a cis or trans configuration. A cis configuration means that adjacent hydrogen atoms 

are on the same side of the double bond, while a trans configuration means that the next two 

hydrogen atoms are bound to opposite sides. The differences in geometry play an important 
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role in biological processes, and in the construction of biological structures such as cell 

membranes (Fig. 1.2). 

 

 

 

 

 
Figure 1.2. Comparison of the trans and the cis-isomer of oleic acid. 

 
 

Fatty acids that are required by the human body, but cannot be made in sufficient quantity 

from other substrates (and therefore must be obtained from food) are called essential fatty 

acids. Humans lack the ability to introduce double bonds in fatty acids beyond carbons 9 and 

10, as counted from the carboxylic acid side. Two essential fatty acids are linoleic acid (LA) 

and α-linolenic acid (ALA), which are widely distributed in plant oils (Belitz et al., 2004; 

Osbourn & Lanzotti, 2009). 

 

 
1.1.5. Nonribosomal peptides 

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually 

produced by microorganisms like bacteria and fungi. They are a very diverse family of natural 

products with an extremely broad range of biological activities and pharmacological 

properties. Examples of nonribosomal peptides are antibiotics like actinomycin, antibiotic 

precursors, cytostatics and immunosuppressants (several of which are in commercial use), 

siderophores, pigments like indigoidine and toxins like microcystins and cyanotoxins from 

cyanobacteria (Belitz et al., 2004; Osbourn & Lanzotti, 2009). 

 

Biosynthesis of nonribosomal peptides is done by specialized nonribosomal peptide-

synthetase (NRPS) enzymes, which – unlike the ribosomes – are independent of mRNA. Each 

nonribosomal peptide synthetase can synthesize only one type of peptide. The enzymes are 

organized in modules that are responsible for the introduction of one additional amino acid.  
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The biosynthesis of nonribosomal peptides shares characteristics with the polyketide and fatty 

acid biosynthesis. Due to these structural and mechanistic similarities, some nonribosomal 

peptide synthetases contain polyketide synthase modules for the insertion of acetate or 

propionate-derived subunits into the peptide chain (Belitz et al., 2004; Osbourn & Lanzotti, 

2009). 

 

Epothilones, a new class of cancer drugs that prevent cancer cells from dividing by inhibition 

of microtubule function, are hybrids of the above two classes (Rosenberg et al., 2005). 

 

 
1.1.6. Terpenes & terpenoids 

Terpenes and their derivated terpenoids (also known as isoprenoids) are a class of 

hydrocarbons, produced by a wide variety of plants, particularly conifers. With over 55,000 

entities being structurally identified, they represent the largest family of natural compounds. 

The name "terpene" is derived from the word "turpentine", since terpenes are the major 

components of resin and the turpentine produced from it (Belitz et al., 2004; Osbourn & 

Lanzotti, 2009). 

 

Terpenes and terpenoids are the primary constituents of the essential oils of many types of 

plants and flowers. They contribute to the scent of eucalyptus and lavender, the flavours of 

cinnamon, cloves, and ginger, and the aroma and flavour of hops in beers. Aside from 

extensive use for their aromatic qualities, they also play a role in traditional herbal remedies 

and are under investigation for antibacterial, antineoplastic, and other pharmaceutical 

functions. Well known examples include latex (natural rubber), menthol, vitamin A, 

cholesterol and the cannabinoids found in Cannabis
 (Belitz et al., 2004; Osbourn & Lanzotti, 

2009). 

 

In terpene biosynthesis, all terpenes are derived from units of isoprene, which has the 

molecular formula C5H8 (Fig. 1.1). Terpene biosynthesis is mediated by two biosynthetic 

pathways: in eukaryotes, the cytosolic mevalonate (MVA) pathway is responsible for 

biosynthesis of the universal C5 building blocks of all isoprenoids. In prokaryotes, terpenes 

are derived from the plastid-located methyl-erythritol (MEP) pathway (also called 

desoxyxylulose phosphate or DXP pathway) (Eisenreich et al., 1998). In plants, both 

pathways operate. Both biosynthetic routes eventually lead to formation of the activated 
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isoprene units dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), the 

precursor from which all other terpenes are formed via head-to-tail or tail-to-tail linkage and 

subsequently can undergo cyclization and other modifications, e.g. oxidations or 

rearrangements (Dubey et al., 2003). Although MVA and DXP pathway are located in 

different compartments, there is an exchange between the two biosynthetic routes, especially 

from the plastidial to the cytosolic pathway. This has become particularly evident in the case 

of several sesquiterpenes, which are synthesized from DMAPP and IPP units provided by the 

DXP pathway, but not from MVA (Hemmerlin et al., 2003). 

 
 

 

 

Figure 1.3. Flow diagram of the cytosolic mevalonate (MVA) pathway. The pathway is the same in 
plants and insects until formation of farnesyl diphosphate (FPP); from there on, the pathway leads to 
juvenile hormone synthesis in insects, and to steroid and triterpene synthesis in plants.  
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On the subject of plant defence against insects, it is interesting to note that the first part of the 

MVA pathway, until formation of farnesyl diphosphate (FPP), is exactly the same in insects 

and plants. However, in insects, FPP leads to formation of juvenile hormone, an insect 

hormone that plays a role in the regulation of moulting (and other functions) (Fig. 1.3). This 

branch of the terpene biosynthesis pathway is unique for insects (Belles et al., 2005). In 

plants, FPP leads to the formation of squalene, which is the common starting point for 

biosynthesis of triterpenes and steroids, e.g. cholesterol (Dubey et al., 2003). Insects lack this 

branch of the pathway, which means that they cannot produce endogenous cholesterol and 

have to extract the necessary precursors for cholesterol and other steroids from their food 

(Belles et al., 2005).  

 

As chains of isoprene units are built up, the resulting terpenes are classified sequentially by 

size as hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, 

and tetraterpenes.  

 

Steroids and sterols are also produced from terpenoid precursors, including cholesterol, 

vitamin D, and (steroidal) saponins. 

 

 
1.1.6.1. Steroids 

A steroid is a type of terpenoid compound that contains a specific arrangement of four rings 

that are joined to each other. Hundreds of distinct steroids are found in plants, animals, and 

fungi; examples include cholesterol, the sex hormones estradiol and testosterone, and the 

insect moulting hormone 20-hydroxyecdysone (Belitz et al., 2004; Osbourn & Lanzotti, 

2009). 

 
 

 
 

Figure 1.4. International Union of Pure and Applied Chemistry (IUPAC) recommended ring lettering 
(left) and atom numbering (right) of the steroid skeleton. The four rings (A-D) form a sterane core. 
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The sterane core of steroids is composed of seventeen carbon atoms bonded together to form 

four fused rings: three cyclohexane rings (designated as rings A, B, and C in the figure to the 

right) and one cyclopentane ring (the D ring). Steroids vary by the oxidation state of these 

rings, and by the number and nature of the functional groups attached to them (Fig. 1.4).  

 

Steroid biosynthesis is an anabolic metabolic pathway that produces steroids from simple 

precursors. Sterols are special forms of steroids, with a hydroxyl group at position-3 and a 

skeleton derived from cholestane. Steroids are derived either from the sterol lanosterol 

(animals and fungi) or from cycloartenol (plants), with both lanosterol and cycloartenol being 

derived from the cyclization of the triterpene squalene. In contrast to animals, where 

cholesterol is the major sterol, many plant sterols are methylated or ethylated at C-24 of the 

side chain, e.g., campesterol and stigmasterol. These phytosterols are constituents of 

biomembranes in plants and influence their permeability. Phytosterols inhibit the absorption 

of cholesterol in animals; since they are more lipophilic than cholesterol, they are more 

readily incorporated into the micelles involved in fat digestion. Esters of phytosterols are 

therefore used as cholesterol-lowering food additives (Dewick, 2002; Belitz et al., 2004; 

Osbourn & Lanzotti, 2009).  
 

In humans and other animals, the biosynthesis of steroids follows the mevalonate pathway 

that uses acetyl-CoA as building blocks to form dimethylallyl pyrophosphate (DMAPP) and 

isopentenyl pyrophosphate (IPP) (Grochowski et al., 2006). As mentioned before, insects 

however are unable to biosynthese steroids by themselves, making steroid precursors an 

essential part of their diet (Belles et al., 2005). 

 

1.1.6.1.1. Ecdysteroids and 20E 

Ecdysteroids are a family of polyhydroxylated steroid hormones, which basic structure 

consists of cholesterol and a side chain. They are derived from enzymatic modification of 

cholesterol by p450 enzymes by a mechanism similar to steroid synthesis in vertebrates. They 

were first identified as insect moulting hormones by Butenandt and Karlson in 1954, and were 

later also found in crustaceans and arachnids (Lafont, 2000a). Their discovery in lower 

invertebrates made them known as general invertebrate steroid hormones, but they are also 

present in 5-6% of plant species in the form of phytosteroids, often in higher concentrations 

than those typically found in arthropods (Dinan, 1995).  
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One of the most well-known examples is the moulting hormone 20-hydroxyecdysone (20E), 

the archetypical ecdysteroid in insects and arthropods, which is the most commonly occurring 

and the most abundant (Lafont, 2000a). It regulates larval moults, onset of pupa formation, 

and metamorphosis in insects and other arthropods (Fig. 1.5). 

 

 

Figure 1.5. Chemical structure of 20-hydroxyecdysone. 
 

 

Ecdysteroids fulfil diverse tasks as hormones, pheromones or insect deterrents (Nijhout, 

1994). Their most frequent and prominent role is their function as moulting hormones, 

thereby controlling not only insect and arthropod moulting, but also reproduction and other 

physiological processes such as embryonic development (Riddiford et al., 2000; Spindler et 

al., 2001; Truman & Riddiford, 2002). In plants, they are generally considered secondary 

metabolites that protect against phytophagous insects either by feeding deterrency or toxicity 

(Lafont, 1997; Dinan, 2001). Several reviews about the various aspects of ecdysteroids exist 

in the literature (Lafont, 1997, 2000a, b; Dinan & Lafont, 2006). 

 

The fact that the hormonal actions of ecdysteroids are specific to invertebrates, and that the 

ecdysteroids are chemically distinct from vertebrate steroid hormones, suggests that agents 

specifically disrupting ecdysteroid metabolism should not affect vertebrate steroid hormone 

systems. In this context, it has been suggested that phytoecdysteroids might be good 

candidates for development of new and safer strategies for crop protection against insects 

(Kubo et al., 1983; Soriano et al., 2004). However, they are less suitable as exogenous control 

agents (Dinan, 2001) due to their limited stability, high water solubility (washed away by the 

rain), limited activity by ingestion and high costs of production (compared to the synthetic 

compounds). Despite these limitations, ecdysteroids have high significance as model 



 - 14 - 

compounds for other interesting research areas such as medical gene switch applications or 

the characterisation of the ligand-binding site of ecdysteroid receptors (see 1.3.1.2) (Palli et 

al., 2005).  
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1.2. Saponins 

 

Saponins are a class of terpenoid secondary plant metabolites with divergent biological 

activities. They have anticarcinogenic, anti-inflammatory, antioxidant, hemolytic, 

immunostimulant and membrane-permeabilising properties, they affect food intake, growth 

and reproduction in animals, and they can be used as fungicides, molluscicides and 

pesticides, as well as against some bacteria and viruses (Francis et al., 2002; Sparg et al., 

2004; Avato et al., 2006; Tava & Avato, 2006). It is generally assumed that they play an 

important role in plant defence against insects and diseases. They also have several 

pharmaceutical and medical applications (to lower cholesterol concentrations, as adjuvants in 

vaccines, to enhance penetration of macromolecules through cell membranes) and are used in 

the cosmetic (soap, emulsions) and feeding industry (food supplements) (Sparg et al., 2004). 

 

1.2.1. Structural diversity and biosynthesis 

The molecular structure of saponins consists of a hydrophilic sugar moiety linked to a 

hydrophobic aglycone. The combination of a hydrophilic (polar) and a hydrophobic (apolar) 

element into one molecule gives them soap-like properties: in aqueous solutions, they form 

foam (after shaking), diminish the surface tension and can aggregate into micelles. Their 

name comes from the Latin word for soap, “sapo, -onis”. The aglycone of a saponin (without 

the sugars) is also called a “sapogenin” (Hostettmann & Marston, 1995).  

 

 

 
                     Triterpene                                           Steroid                                         Steroid alkaloid  

 

Figure 1.6. The basic structure of triterpene, steroid and steroid alkaloid saponins, after Hostettmann 
& Marston (1995). 
 

 

In general, they are divided into two main groups based on the structure of the aglycone: 

triterpene en steroidal saponins (Fig. 1.6). Triterpene aglycones consist of only 6-rings, with 



 - 16 - 

30 C-atoms in total. Steroidal aglycones contain also 5-rings and have only 27 C-atoms. 

Some authors recognize a third group, that of the steroidal amines of steroidal alkaloids; they 

have the same basic structure as the steroidal saponins, but possess an NH-groep instead of an 

O-atom (Fig. 1.6). 

 

Next to the aglycone, a saponin also contains one or more oligosaccharide chains (sugar 

moieties), which are glucosidally linked to the aglycone. ‘Monodesmosidic’ saponins only 

have one sugar group, usually at the C3-position; ‘bidesmosidic’ saponins have a second one 

on the C26- or C28-position (Fig. 1.7). Tridesmosidic saponins and monodesmosidic saponins 

with the sugar chain on the C26- or C28-position are rare (Hostettmann & Marston, 1995; 

Sparg et al., 2004). 

 

 

 
Figure 1.7. The basic structure of monodesmosidic and bidesmosidic saponins, after Hostettmann & 
Marston (1995). 
 

 

The great complexity of saponin structure arises from the variability of the aglycone 

structure, the nature of the side chains and the position of attachment of these moieties on the 

aglycone (Francis et al., 2002). Due to this complexity, saponins are difficult to classify. 

Because it is no longer customary to classify compounds based on their physicochemical or 

biological properties, a new classification based on the biosynthesis of the saponin carbon 

skeletons was proposed by Vincken et al. (2007). 

 

Triterpene and steroid saponins are produced via terpene biosynthesis, of which the first steps 

were described above (see 1.1.6.1). Both triterpenoid and steroidal saponins originate from 

the same precursor-molecule, squalene (consisting of 6 isoprene units). Squalene is oxidized 

to oxidosqualene, and this is converted to cyclic derivatives. Cyclization of oxidosqualene to 
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saponins can proceed in two ways, either via the ‘chair-chair-chair’ or via the ‘chair-boat-

chair’ conformation. An important difference between the two resulting skeletons lies in the 

stereochemistry. Triterpenes originate from the ‘chair-chair-chair’ conformation, while 

steroids arise from the ‘chair-boat-chair’ conformation. In the latter case, 3 C-atoms are split 

off in the MVA pathway (Vincken et al., 2007) (Fig. 1.3). 

 

1.2.2. Saponins in the plant kingdom 

Saponins occur in a great number of non-related plant species (mainly Angiosperms and a 

few Pteridophyts), both wild plants and cultivated crops. Triterpenoid saponins are mostly 

found in dicotyledonous species, while many of the major steroidal saponins are synthesized 

by monocots, such as members of the Liliaceae, Dioscoraceae and Agavaceae families 

(Hostettmann & Marston, 1995; Osbourn & Lanzotti, 2009; Vincken et al., 2007). Despite 

the sometimes negative biological actions of saponins on animals and humans, they do occur 

in a wide variety of crops and edible plants: triterpenoid saponins have been detected in many 

Leguminosae (legumes), such as soybeans, beans, peas and alfalfa (Medicago), in 

Chenopodiaceae like sugar beet, spinach and quinoa, and in Theaceae (tea), while steroidal 

saponins can be found in grasses like oats, in Solanaceae like Capsicum peppers, aubergine, 

tomato and potato, in Alliaceae (alliums) such as leek, onion and garlic and in Asparagaceae 

(asparagus) (Francis et al., 2002). One plant often contains several kinds of saponins, 

depending on age, place of growth or variety, and of the location inside the plant (roots, 

leaves, …). For a secondary plant metabolite, they occur in remarkably high concentrations: 

5-10% in the roots of Primula, 2-12% in glycyrrhizine, 10% in de bark of Quillaja and the 

seeds of Camellia, and up till 13% in the seeds of the horse chestnut (Hostettmann & 

Marston, 1995). There is no clear relationship between the plant origin and the type of 

saponin, nor is there evidence that specific saponins are associated with particular parts of 

plants (Vincken et al., 2007).  

 

Although the vast majority of sources are from plants, saponins have also been isolated from 

marine organisms (Riguera, 1997), especially in the Cuvierian tubules of sea cucumbers. It 

was suggested that they store them as a form of chemical defence (Van Dyck et al., 2010). 

 

Commercial formulations of plant-derived saponins – e.g., from the soapbark tree, Quillaja 

saponaria, and from other sources – are available via controlled manufacturing processes, 

which make them of use as chemical and biomedical reagents (Sigma-Aldrich, 2009). In the 
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Asian region (China), saponin powder and solutions from tea seeds are sold as natural 

insecticides; a good example is “Liquid Tea Saponin” from Hangzhou Choisun Tea Sci-Tech 

Co., Ltd. 

 

1.2.3. Insecticidal activity of saponins 

Although little is known about the exact functions of saponins, it is generally accepted that 

they play an important role in plant defence. They are said to have noticeable effects on 

vertebrate and invertebrate herbivores as well as on viral, bacterial or fungal infections (for a 

review, see Francis et al., 2002; Sparg et al., 2004; Tava & Avato, 2006). Apart from the 

abovementioned properties, saponins also possess clear insecticidal activities, exerting a 

strong and rapid-working action - different from neurotoxicity - against a broad range of pest 

insects (Table 1.1). The most observed effects are increased mortality, lowered food intake, 

weight reduction, retardation in development and decreased fecundity. As a consequence, 

these interesting plant components open new strategies to protect crops in modern agriculture 

and horticulture with Integrated Pest Management (IPM) programs against pest insects, either 

by spraying, or by selecting high-saponin varieties of commercial crops. 

 

1.2.4. Mechanisms underlying the insecticidal activity 

Saponins give rise to increased mortality levels, lowered food intake, weight reduction, 

retardation and/or disruptions in development and decreased reproduction in pest insects. The 

exact mechanism underlying these effects is still largely unknown, but it is likely that it is a 

combination of several activities. Potential modes of action found in literature include 

repellent or deterrent activity, reduced uptake of food through the gut, blocking sterol 

assimilation, antagonistic or competitive activity on the ecdysteroid reporter complex, 

membrane-permeabilising abilities and apoptosis-inducing activity.  

 

1.2.4.1. Repellent or deterrent activity 

Numerous of the above mentioned studies reported a lower food intake of insects fed on 

saponin-containing food (by measuring the area of leaves/amount of artificial diet consumed), 

although in nearly all cases the test insects made at least some attempts to feed on the 

plants/diets before rejecting them (Adel et al., 2000; Szczepanik et al., 2001; Shinoda et al., 

2002; Agerbirk et al., 2003; Agrell et al., 2003; Szczepanik et al., 2004; Taylor et al., 2004; 

Golawska et al., 2006). In all these cases, the reduction of food intake was dose-dependent; 

however, two exceptions were reported: Hussein et al. (2005) found that the rate of diet
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Table 1.1. Examples of studies supporting the insecticidal activity of various saponins against a broad range of insects. 
 

Source of saponin Insect order Target insect Reference 

Alfalfa (Medicago sativa) Coleoptera Red flour beetle (Tribolium castaneum) Shany et al. (1970) 
Alfalfa (M. sativa) Hemiptera Pea aphid (Acyrthosphon pisum) & potato leafhopper 

(Empoasca fabae) 
Horber et al. (1974) 

Alfalfa (M. sativa) Hemiptera Pea aphid (A. pisum) Pedersen et al. (1976) 
Leek (Allium porrum)  Lepidoptera Leek-moth (Acrolepiopsis assectella) Harmatha et al. (1987) 
aginosid from leek (A. porrum) Lepidoptera Variegated cutworm (Peridroma saucia) & bertha 

armyworm (Mamestra configurata) 
Nawrot et al. (1991) 

commercial saponins Hemiptera Migratory grasshopper (Melanoplus sanguinipes) Westcott et al. (1992)  
Alfalfa (M. sativa) Lepidoptera European corn borer (Ostrinia nubilalis) Nozzolillo et al. (1997) 
Fenugreek (Trigonella foenum-

graecum) 
Coleoptera Red Flour Beetle (Tribolium castaneum) & bean weevil 

(Acanthoscelides obtectus) 
Pemonge et al. (1997)  

Alfalfa (M. sativa) Lepidoptera Cotton leafworm (Spodoptera littoralis) Adel et al. (2000) 
luciamin from potato vine (Solanum 

laxum) 
Hemiptera Greenbug/wheat aphid (Schizaphis graminum) Soulé et al. (2000)  

Alfalfa (M. sativa) Coleoptera Colorado potato beetle (Leptinotarsa decemlineata) Szczepanik et al. (2001) 
Quillaja bark saponins from soapbark 
tree (Quillaja saponaria) 

Diptera Yellow fever mosquito (Aedes aegypti) &  northern house 
mosquito (Culex pipiens) 

Pelah et al. (2002)  

Yellow rocket (Barbarea vulgaris) Lepidoptera Diamondback moth (Plutella xylostella) Shinoda et al. (2002) 
Yellow rocket (B. vulgaris) Lepidoptera Diamondback moth (P. xylostella) Agerbirk et al. (2003) 
Medicago species  Coleoptera Colorado potato beetle (L. decemlineata) Szczepanik et al. (2004) 
Field pies (Pisum sativum) Coleoptera Rice weevil (Sitophilus oryzae) Taylor et al. (2004)  
Alfalfa roots (M. sativa) Coleoptera Hairy rose beetle (Tropinota squalida) Hussein et al. (2005) 
Alfalfa (M. sativa) Hemiptera Pea aphid (A. pisum) Golawska et al. (2006) 
Balanites aegyptiaca Diptera Yellow fever mosquito (A. aegypti) Wiesman & Chapagain (2006)  
Quillaja bark saponins from soapbark 
tree (Q. saponaria) 

Hemiptera Pea aphids (A. pisum) & cotton leafworm (S. littoralis) De Geyter et al. (2007a)  

Red buckeye (Aesculus pavia)  Lepidoptera Leafminer (Cameraria ohridella) Ferracini et al. (2010) 
various saponins Lepidoptera Corn earworm (Helicoverpa zea) & fall armyworn (S. 

frugiperda) 
Dowd et al. (2011) 
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consumption was not affected (in spite of high mortality rates), and Soulé et al. (2000) saw an 

equal decrease in survival for all concentrations of saponins tested. 

 

1.2.4.2. Slowing down the passage of food through the gut 

According to Ishaaya (1986) saponins slow down the passage of food through the insect gut. 

Perhaps they reduce the digestibility of the food by inhibiting the secretion of digestive 

enzymes (proteases) (Ishaaya & Birk, 1965; Golawska et al., 2006) or by formation of 

sparingly digestible saponin-protein complexes (Potter et al., 1993). An obstruction of 

alimentary contents in the gut would limit or inhibit food uptake. Starvation, as well as 

disturbance of the digestion and assimilation processes, could reduce the insect growth rate. 

Adel et al. (2000) supported this hypothesis because in their experiment the treated larvae lost 

more weight than the controls just before pupation (gut purge). 

 

1.2.4.3. Blocking sterol uptake 

Insects are not capable of synthesizing sterol structures by themselves (Belles et al., 2005), 

but they do need these as precursors for the synthesis of steroids like cholesterol and the insect 

moulting hormone 20-hydroxyecdysone (20E). That means they have to gain them from their 

food: cholesterol or phytosterols from plants act as precursors (Belles et al., 2005). Shany et 

al. (1970) suggested that saponins in the diet block sterol uptake. Saponins can form insoluble 

complexes with sterols, thereby preventing their absorption. If all cholesterol in the food is 

bound to saponins, the insects cannot utilise it. Moreover, if larvae feed on a saponin-rich 

food, the ingested saponins may complex even cholesterol in their body, and thus suspend the 

biosynthesis of ecdysteroids. This could cause a disturbance of ecdysis (moulting failures) 

(Harmatha et al., 1987; Harmatha, 2000). Harmatha et al. (1987) reported an increase in 

ecdysial failures of leek-moth larvae (Acrolepiopsis assectella) on diets containing steroidal 

saponins. It was also observed that the effects of the saponins could be countered by adding a 

surplus of cholesterol or plant sterols to the diet (Shany et al., 1970; Harmatha et al., 1987). 

 

1.2.4.4. Antagonistic or competitive activity on the ecdysteroid reporter complex 

Because (steroidal) saponins have a steroid structure and show structural similarity to 

ecdysteroids - like the insect moulting hormone 20E - it has been suggested that they might 

exert an agonistic or antagonistic/competitive activity on the ecdysteroid reporter complex 

(EcR), the binding site for 20E. Some other secondary plant compounds with a similar 

structure (and even without) have been reported to have such effects (Dinan et al., 2001). 
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Such activity could disrupt the timing of moulting and metamorphosis (pupating), which is 

crucial for normal insect development. Aside from the studies already mentioned above 

(Shany et al., 1970; Harmatha et al., 1987), there are few, if any, indications supporting this 

hypothesis. Digitonin and aginosid, two steroidal saponins, were tested for their direct effect 

on the ecdysone reporter in a Drosophila melanogaster B-II assay by Harmatha & Dinan 

(1997), together with two additional leek flower saponins and some aglycones; but none of 

the compounds showed significant agonistic or antagonistic effects on EcR. In another BII 

cell bioassay for ecdysteroid agonist and antagonist activities (Dinan et al., 2001) there were 

no saponins showing agonist activity but few showed principal antagonistic activity on the 

EcR complex. Similar results for triterpenoid saponins could not be found in literature; it is 

likely that they have not often been tested because their structure only remotely resembles that 

of steroids.  

 

1.2.4.5. Membrane-permeabilising ability 

Another hypothesis often referred to in literature is that saponins disrupt the stability of the 

cell membrane on the cellular level. Not only has such effect been proven for hematocytes and 

a number of other cell types (Francis et al., 2002; Sparg et al., 2004), but saponins are also 

used in the medical industry as permeabilising agents (Mick et al., 1988; Humbel et al., 1998; 

Baumann et al. 2000). The primary action of membranolytic saponins upon the cell is to cause 

a general increase in permeability of plasma membranes. They can interact with and 

permeabilise the small intestine mucosal cells of animals, leading to a marked reduction in 

their ability to transport nutrients (Francis et al., 2002). This is suspected to result from their 

bipolar structure. The lipophilic component of the saponin could be easily integrated into the 

lipid fraction of the plasma membrane. The hydrophilic glycosidic portion that follows the 

lipid fraction presumably irreversible disorders the plasma membrane and disrupts its 

integrity. It is of interest to mention that this membrane-permeabilising ability of saponins can 

also have beneficial effects on animals (and humans): small quantities of dietary saponins may 

assist in the absorption of nutrients, drugs and toxins by increasing the permeability of the 

small intestine mucosa (Chuke, 1976; Oakenfull et al., 1979). However, so far there are no 

indications for beneficial effects on insects, as tests on insect cells in general are scarce. 

 

1.4.2.6. Apoptosis-inducing activity 

Several saponins have been reported to induce apoptosis in human cancer cells, explaining 

their lethal activity (Haridas et al., 2001; Chwalek et al., 2006; Niu et al., 2008). No studies 
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on insect cells are known to us, but it is possible that the same effect is responsible for 

reducing cell viability in insect cell culture lines. A serious disturbance of the cell 

growth/apoptosis balance could cause health problems and even death also in living insects. 

 

Of course, one should always keep in mind that the situation under natural conditions might 

be a bit more complicated than in the laboratory. For example, an alternative hypothesis could 

be that saponins do not affect insects at all, but instead attack the microflora living in the 

insect gut. For most herbivore insects (invertebrates) the digestion of leaf material is mediated 

by symbiotic microorganisms that reside in the hindgut (Waterman, 1993), so any compound 

that kills off a critical amount of these supporting bacteria could seriously undermine the 

insect’s digestive capabilities.  
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1.3. Targets for plant secondary metabolites in insects 

 

1.3.1. EcR as target for insecticides 
 

1.3.1.1. Ecdysone receptor (EcR)  

The ecdysone receptor (EcR) is a nuclear receptor found in arthropods, where it controls 

development and contributes to other processes such as reproduction. It responds to pulses of 

20-hydroxyecdysone (see 1.1.6.1.1) that occur during insect development. Since ecdysteroid 

hormones are hydrophobic, they can traverse lipid membranes and diffuse into cells. The 

active ecdysteroid binds on the EcR, a ligand-activated transcription factor found in the nuclei 

of insect cells, which forms a heterodimer with the ultraspiracle protein (USP) (Riddiford et 

al., 2000) (Fig. 1.8). This in turn leads to the activation of a cascade of many other genes, 

ultimately causing physiological changes that result in ecdysis (moulting) (Henrich, 2005). 

 

 
 

     

 

 

Figure 1.8. Schematic representation of the activation of the ecdysone reporter complex (EcRE) by 
20E. 
 

 

The EcR-USP/RXR heterodimer complex is a non-covalent heterodimer of two proteins, the 

EcR protein and ultraspiracle protein (USP) (Yao et al., 1993) or retinoid X receptor (RXR) 

(Hayward et al., 2003). These nuclear hormone receptor proteins belong to a superfamily or 

nuclear receptors (NRs) which mediate transcriptional responses to steroids and other 

lipophilic molecules; they are the insect orthologs of the mammalian farnesoid X receptor 

(FXR) and retinoid X receptor (RXR) proteins, respectively. EcR was first identified in the 

fruit fly, Drosophila melanogaster (Koelle et al., 1991) (Fig. 1.9), and has since then been 

cloned from several insects (Henrich, 2005), crustaceans (e.g. Asazuma et al., 2007; Chung et 

al., 1998) and a few chelicerates (Guo et al., 1997; Nakagawa et al., 2007). The structure 

differs slightly between different phylogenetic groups; based on sequence homology 

considerations (Hayward et al., 1999), most researchers reserve the term USP for the EcR 

partner from lepidopteran and dipteran insects (Mecopterida), and use RXR in all other 

instances (Bonneton et al., 2003; 2006).  
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Figure 1.9. Crystallographic structure of the ligand binding domain of the ecdysone receptor from 
Drosophila melanogaster complexed with ponasterone A (space-filling model, carbon = white, oxygen 
= red). 
 

 

EcR and USP share the multi-domain architecture common to all nuclear hormone receptors, 

namely an N-terminal transcriptional activation domain (A/B domain), a DNA-binding 

domain (C domain, highly conserved between receptors), a linker region (D region), a ligand-

binding domain (E domain, moderately conserved), and in some cases a distinct C-terminal 

extension (F-domain) (Koelle et al., 1991). The DNA-binding domains of EcR and USP 

recognise specific short sequences in DNA, and mediate the binding of the heterodimer to 

these ecdysone response elements (EcREs) in the promoters of ecdysone-responsive genes. 

The ecdysteroid-binding pocket is located in the ligand binding domain of the EcR subunit, 

but EcR must be dimerised with USP (or with RXR) for high-affinity ligand binding to occur. 

In such circumstances, the binding of 20E (or an ecdysone agonist ligand) triggers a 

conformational change in the C-terminal part of the EcR ligand-binding domain that leads to 

transcriptional activation of genes under EcRE control (Bourguet et al., 2000). There is also a 

ligand-binding pocket in the corresponding domain of USP, but its natural ligand remains 

uncertain, and USPs appear to be locked permanently in an inactive conformation (Clayton et 

al., 2001). 
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1.3.1.2. Practical applications: insect cell screening systems & ecdysteroid-responsive 

cell lines  

In scientific research, ecdysone receptors have two main fields of application: 

• Insecticides: alternative methods of insect pest control aim for higher specificity, 

lower toxicity and increased potency. Ecdysteroid receptors are potential targets in the 

development of selective insect growth regulators because they work selectively 

against  insects, and sometimes even a particular order or stage. Most commercial 

interest goes to the development of ecdysteroid agonists, that may or may not be 

steroids themselves; typically, such ecdysteroid agonist compounds mimic the activity 

of the natural insect moulting hormone (20E), inducing a lethal premature moulting in 

susceptible insects, especially Lepidoptera. Insect ecdysone receptors are currently 

better characterized than those from other arthropods, and mimics of ecdysteroids (like 

dibenzoylhydrazine compounds) are being used commercially as caterpillar-selective 

larvicides (Dhadialla et al., 1998, 2005). 

• Gene-switch: 20E and other ecdysteroids are also used in biochemistry research as 

inducers in transgenic species. After putting a new gene into an animal/plant so that its 

expression is under the control of an introduced ecdysone receptor, adding or 

removing 20-hydroxyecdysone or ecdysone agonists from the nutient source gives a 

convenient way to turn the inserted gene on or off. As such it allows for controlled 

gene expression in scientific research, agriculture, and medicine, including potential 

use in gene therapy (Graham, 2002; Palli et al., 2005). 

 

In the first field, insect cell lines cultures are useful tools in the study of the effects and 

mode of action of a wide range of substances in a rapid and controlled way. Especially on the 

issue of hormone signalling and metabolic pathways, use of cell system bioassays has several 

advantages. Insect cell line cultures are easy to cultivate, so growing them is less work-

intensive, faster and less expensive than the rearing of living insects, especially in large 

quantities. Bioassays on cells are also less time consuming than those carried out with whole 

insects. Second, because they form an isolated system, there is less interference from other 

cells and tissues and no influence of endogenous hormones and/or other potential active 

substances, which allows for a more controlled environment and less unwanted variation in 

results. In addition, they tolerate high concentrations of metabolic by-products and high 

expression levels can be reached with relative ease. Also, cloning of cDNAs for various 

genes from a cell line is comparatively easier than using whole animals due to less 
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complexity of RNA (Palli et al., 1995; Smagghe, 2007). 

 

Presently, insect cell lines have been of great assistance to researchers working on many 

multidisciplinary fields of science such as physiology, morphogenesis, virology, pathology, 

biochemistry, genetics and other fields of biology and medicine. In the area of toxicology and 

insecticide research, they are good tools for screening purposes and identifying the mode of 

action of various test compounds, while providing the researchers a large amount of 

homogeneous material and a simpler model system (Smagghe, 2007). Additionally, the easy 

handling and the fast response of the cell culture systems facilitate their use as a fast 

predictive method in the field of the development of insecticide resistance, offering new 

opportunities to scientists. 

 

Aside from the normal insect cell culture lines, a large number of ecdysteroid-responsive cell 

lines are available. They are designed to contain markers to visualize the activity of the 

ecdysteroid receptor (EcR) and form irreplaceable assets to study the mode of action of 

compounds that mimic the action of ecdysteroids (Dinan et al., 2001; Smagghe, 2007). High-

throughput screening systems are very important in the search and identification of 

compounds that disrupt the insect endocrine system, because they allow scientists to test a 

large number of potentially active compounds in a very limited amount of time. A good 

example is the transformed silkmoth (Bombyx mori)-derived Bm5 cell line that responds to 

the addition of ecdysone-like substances through the expression of the green fluorescent 

protein (GFP) /luciferase reporter, which leads to the appearance of green fluorescence 

/luminescense (Fig. 1.10). Because the amount of green fluorescence can be easily quantified 

in individual wells of a 96 well plate by a fluorescence plate reader, the engineered cell lines 

can be used for the screening of compounds with ecdysteroid mimetic activity in high-

throughput format. 

 

 
 

 

 

 

Figure 1.10. Schematic representation of the gene sequence inserted in an ecdysteroid-responsive cell 
line, leading to the expression of the green fluorescent protein (GFP) gene /luciferase reporter gene 
and the appearance of green fluorescence /luminescense after activation by 20E. 
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While most of the current high-throughput screening system targets lepidopteran insects 

(moths and butterflies) (Dhadialla et al., 1998), future work should aim at the expansion of the 

technology to cell lines that originate from other insect orders, such as Diptera (flies and 

mosquitoes) and Coleoptera (beetles). The availability of such insect order-specific screening 

systems is predicted to assist significantly in the search of new compounds that target the 

insect endocrine system with increased specificity and potency.  

 

1.3.1.3. Successes in pest control: synthesizing ecdysone agonists 

Pest management strategies have evolved over the years from broad-spectrum to target 

specific narrow spectrum pesticides. Neurotoxic insecticides such al DDT, organophosphates, 

and carbamates have been replaced with chemicals that are more insect specific. A 

serendipitous discovery at Rohm and Haas Company in Spring House, Pennsylvania, led to 

the development of differently substituted dibenzoylhydrazine (DBH) compounds as unique 

chemicals that act as ecdysone agonists with enormous potential for development as insect-

specific control agents with little or no effect on non-target species (reviewed in Dhadialla et 

al., 1998, 2005). Surprisingly, these compounds bear no structural resemblance to the steroid 

moulting hormone, 20E, but yet they act by binding on the EcR.  

 

Four DBH ecdysone agonists are currently available on the market as insecticides: 

tebufenozide (RH-5992), methoxyfenozide (RH-2485) and chromafenozide (ANS-118) are 

highly lepidopteran specific (Dhadialla et al., 1998, 2005; Yanagi et al., 2000). Halofenozide 

(RH-0345) is used to control coleopteran (scarabid larvae) and lepidopteran insects in turf and 

ornamentals (Dhadialla et al., 1998, 2005). Like 20E, they transactivate a succession of moult 

initiating transcription factors that, in turn, induce the expression of a group of moult-related 

genes. As a result of the expression of these up-regulated genes, the larva undergoes 

premature apolysis and head capsule slippage and takes on the appearance of the pharate 

larva. However, unlike 20E, which is cleared at this juncture, allowing the down-regulated 

genes to be expressed, these synthetic agonists are not cleared easily. Therefore, all the down-

regulated events that occur as the titre of 20E decreases are repressed by the presence of the 

ecdysone agonist. The result is that the insect remains trapped in the moulting process and 

dies slowly from starvation and desiccation (Dhadialla et al., 1998, 2005).  

 

The success of these compounds in insect control programs validates EcR as a valuable target 

for the development of environmentally friendly insecticides (Nakagawa, 2005). However, as 
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mentioned above, current available ecdysone agonists mainly target lepidopteran insects 

together with a limited number of coleopteran insects (Dhadialla et al., 1998). For the 

discovery of ecdysone agonists that target other insect groups, efficient screening systems 

based on activation of the EcR are needed.  
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1.3.2 The cell membrane as target for insecticides 
 

1.3.2.1 The (insect) cell membrane 

The cell membrane or plasma membrane is a biological membrane that surrounds the 

cytoplasm of a cell and, in animal cells, physically separates the intracellular components 

from the extracellular environment. It consists of the lipid bilayer of phospholipids with 

embedded proteins. Cell membranes maintain the cell potential and are involved in a variety 

of cellular processes such as cell adhesion, ion conductivity and cell signalling. They also play 

a role in anchoring the cytoskeleton to provide shape to the cell, and in attaching to the 

extracellular matrix and other cells to help group cells together to form tissues (Alberts et al., 

2002) (Fig. 1.11). 

 

The cell membrane is selectively permeable to ions and organic molecules and able to 

regulate what enters and exits the cell, thus facilitating the transport of materials needed for 

survival (fungi, bacteria and plants also have the cell wall which provides a mechanical 

support for the cell and precludes the passage of larger molecules). The cell membrane thus 

works as a selective filter that allows only certain things to come inside or go outside the cell, 

either actively (by transport proteins or endocytosis/exocytosis) or passively (by 

diffusion/osmosis). 

  

1.3.2.1.1. Structure and composition 

According to the fluid mosaic model of Singer and Nicolson (1972), biological membranes 

can be considered as a two-dimensional liquid in which all lipid and protein molecules diffuse 

more or less easily. Although the lipid bilayers that form the basis of the membranes do 

indeed form two-dimensional liquids by themselves, the plasma membrane also contains a 

large quantity of proteins, which provide more structural complexity. Examples of such 

structures are protein-protein complexes, pickets and fences formed by the actin-based 

cytoskeleton, and potentially lipid rafts. 

 

Lipid bilayers form through the process of self-assembly. The cell membrane consists 

primarily of a thin layer of amphipathic phospholipids which spontaneously arrange so that 

the hydrophobic ‘tail’ regions are isolated from the surrounding polar fluid, causing the more 

hydrophilic ‘head’ regions to associate with the intracellular (cytosolic) and extracellular faces 

of the resulting bilayer and forming a continuous, spherical lipid bilayer (Fig. 1.11C). Despite 



 30 

 

 
Figure 1.11. Illustration of a eukaryotic cell membrane. (A) General outline of the cell, (B) cell 
membrane with several kinds of proteins, (C) detail of the lipid bilayer, with the arrangement of the 
amphipathic lipid molecules and (D) molecular structure of a single phospholipid with its hydrophilic 
head and hydrophobic tail. 
 

 

its function as the barrier, the structure is quite fluid and not fixed rigidly in place, as the 

entire membrane is held together via non-covalent interaction of hydrophobic tails. However, 

the exchange of phospholipid molecules between intracellular and extracellular leaflets of the 

A

B

C D 
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bilayer is a very slow process. Lipid rafts and caveolae are examples of cholesterol-enriched 

microdomains in the cell membrane. 

 

Lipid bilayers are generally impermeable to ions and polar molecules. The arrangement of 

hydrophilic heads and hydrophobic tails of the lipid bilayer prevents polar solutes (e.g. amino 

acids, nucleic acids, carbohydrates, proteins, and ions) from diffusing across the membrane, 

but generally allows for the passive diffusion of hydrophobic molecules. This gives cells the 

ability to control the movement of these substances via transmembrane protein complexes 

such as pores, channels and gates. 

 

The cell membrane is composed out of three main elements: lipids, carbohydrates, and 

proteins (Alberts et al., 2002): 

• Lipids: The cell membrane consists of three classes of amphipathic lipids: 

phospholipids, glycolipids, and cholesterols. The amount of each depends upon the 

type of cell, but in the majority of cases phospholipids are the most abundant (Lodish 

et al., 2004). In red blood cell studies, 30% of the plasma membrane is lipid. In animal 

cells, cholesterol is normally found dispersed in varying degrees throughout cell 

membranes, in the irregular spaces between the hydrophobic tails of the membrane 

lipids, where it confers a stiffening and strengthening effect on the membrane (Alberts 

et al., 2002). 

• Carbohydrates: Plasma membranes also contain carbohydrates, predominantly 

glycoproteins, but with some glycolipids (cerebrosides and gangliosides). They are 

responsible for formation of the glycocalyx, an extracellular polymeric matrix external 

to the plasma membrane, consisting of the carbohydrate moieties of membrane 

glycolipids and glycoproteins. It is an important feature in all cells, especially epithelia 

with microvilli. Recent data suggest the glycocalyx participates in cell adhesion, 

lymphocyte homing, and many others. 

• Proteins: Proteins within the membrane are key to the functioning of the overall 

membrane. These proteins mainly transport chemicals and information across the 

membrane. Every membrane has a varying degree of protein content of different types 

(Table 1.2). The amount of protein differs between species and according to function, 

but the typical amount in a cell membrane is 50%. These proteins are undoubtedly 

important to a cell: approximately a third of the genes in yeast code specifically for 

them, and this number is even higher in multicellular organisms (Lodish et al., 2004). 
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Table 1.2. The different types of membrane proteins (Alberts et al., 2002). 
 

Type Description Examples 

Integral proteins 
or transmembrane 

proteins 

Span the membrane and have (1) a hydrophilic cytosolic 
domain, (2) a hydrophobic membrane-spanning domain 
that anchors it within the cell membrane and (3) a 
hydrophilic extracellular domain. They interact widely 
with hydrocarbon chains of membrane lipids and can be 
released by agents that compete for the same nonpolar 
interactions. 

Ion channels, proton 
pumps, G protein-
coupled receptor 

Lipid anchored 
proteins 

Covalently bound to single or multiple lipid molecules; 
they hydrophobically insert into the cell membrane and 
anchor the protein. The protein itself is not in contact  
with the membrane. 

G proteins 

Peripheral proteins 

Attached to integral membrane proteins or associated  
with the peripheral regions of the lipid bilayer by 
electrostatic interactions and hydrogen bonding with the 
hydrophilic phospholipid heads. These proteins tend to 
have only temporary interactions with biological 
membranes, and will easily dissociate to carry on their 
work in the cytoplasm. 

Some enzymes, some 
hormones 

 

 

The cell membrane, being exposed to the outside environment, is an important side of cell-cell 

communication. As such, a large variety of protein receptors and identification proteins, such 

as antigens, are present on the surface of the membrane. Functions of membrane proteins can 

also include cell-cell contact, surface recognition, cytoskeleton contact, signalling, enzymatic 

activity, or transporting substances across the membrane. 

 

1.3.2.1.2. Variation 

The cell membrane has different lipid and protein compositions in distinct types of cells. 

While human cells have been studied extensively, not so much is known about the 

specificities of insect cells, or the differences between species. In general, insect cell 

membranes seem to function largely the same as in mammalian cells; notable differences are 

that (1) insects were reported to have a unique enzyme secretion system that consists of 

splitting of membrane vesicles from the microvilli (Terra et al., 2006), and (2) the presence or 

absence of cholesterol can influence insect cell grow and susceptibility to certain viruses 

(Umashankar et al., 2008), as well as a number of other functions, since insect cell lines 

contain a rather low quantity of cholesterol in their plasma membrane (Opekarová & Tanner, 
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2003) and cannot produce cholesterol without precursors (Belles et al., 2005), which could 

potentially be a bottleneck for the overexpression of sterol-requiring membrane proteins 

(Opekarová & Tanner, 2003).  

 

1.3.2.2 Insect alimentary canal 

One of the ways insecticides can effect insect cell membranes is through ingestion, by effects 

on the insect alimentary canal. The gastrointestinal tract in insects consists of three parts, the 

fore-, mid- and hindgut (Fig. 1.12). In general, the foregut is involved in facilitating the 

uptake, storage, and physical processing of food. It is lined with a chitin-containing cuticle 

that is part of the insect exoskeleton. A valve separates the foregut and midgut. The midgut is 

the major site of food digestion and lacks a cuticle, but is lined with the peritrophic 

membrane, an anatomical structure that envelops the food bolus in the majority of insects 

(Lehane & Billingsley, 1996; Terra & Ferreira, 2005). Hemipterans are characterized by the 

absence of the peritrophic membrane; however, the microvillar membranes of many 

hemipteran midgut cells are not in direct contact with the food bolus due to the existence of 

the so-called perimicrovillar membrane, which covers the microvilli extending into the gut 

lumen (Silva et al., 2004). 

 

The peritrophic membrane is composed of chitin, mucopolysaccharides, and proteins and it 

separates ingested vegetation from the midgut epithelium. It is probably meant to protect the 

gut surface from damage caused by abrasive food material and to limits the access of 

microorganisms. It also allows the transfer of liquid and digested substances to the midgut 

epithelial cells, but prevents the passage of larger food particles. It is worn out by the passage 

of food, but constantly regenerates from the epithelial cells. The anterior region of A. pisum 

has cells with an apical complex network of lamellae (apical lamellae) instead of the usual 

regularly-arranged microvilli. These apical lamellae are linked to one another by trabulae. 

Modified perimicrovillar membranes are associated with the lamellae and project into the 

lumen, but they start to disappear towards the end of midgut (Cristofoletti et al., 2003). A 

valve separates the midgut and the hindgut, which is lined with a cuticle similar to the foregut 

and is also involved in uptake of digested material, although to a lesser extent. Undigested 

material is then excreted through the rectum and the anus. 
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Figure 1.12. Schematic representation of the insect gut compartment at the level of tissue, cell and 
molecules. The apical surfaces of epithelial cells are dense with actin-based finger-like projections 
known as microvilli, which increase cell surface area and thereby increase the absorption rate of 
nutrients (Terra & Ferreira, 2005). 
 

 

Digestion of food molecules, which are mostly polymers, happens in three steps: the first one 

reduces the big molecules to smaller oligomers, the second breaks them down even further to 

dimers, and the third turns them to monomers. Digestion usually occurs by the action of 

digestive enzymes from the midgut, with little or no participation of salivary enzymes. 

Frequently, initial digestion occurs inside the peritrophic membrane, intermediate digestion in 

the ectoperitrophic space, and final digestion at the surface of midgut cells by integral 

microvillar enzymes or by enzymes trapped into the glycocalyx. In addition, digestion may be 

facilitated by micro-organisms in the gut (Chapman, 1998).  
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The midgut is involved in enzyme secretion and absorption of digested food and has a 

gradient of pH values. The pH of the contents of the midgut is one of the most important 

internal environmental properties that affect digestive enzymes. It is usually in the 6-7.5 

range, the main exceptions being the very alkaline midgut contents of Lepidoptera (pH 9-12) 

(Dow et al., 1992) and the acid posterior region of the midgut of Hemiptera (Clark, 1999), 

which may be related to their lysosome-like digestive enzymes (cysteine and aspartic 

proteinase).  

 

1.3.2.3 Successes in pest control: Bacillus thuringiensis 

Bacillus thuringiensis Berliner (or Bt) is a Gram-positive, soil-dwelling bacterium, commonly 

used as a biological pesticide (Madigan & Martinko, 2005). During sporulation, many Bt 

strains produce crystal proteins (proteinaceous inclusions), called δ-endotoxins that have 

insecticidal activity (Fig. 1.13). This has led to their use as insecticides, and more recently to 

genetically modified crops using Bt genes (Bravo et al., 2011). 

 

 

 

 

Figure 1.13. Spores and bipyramidal crystals of Bacillus thuringiensis morrisoni strain T08025. 

 

 

B. thuringiensis was first discovered in 1901 by the Japanese biologist Shigetane Ishiwatari. 

In 1911, it was rediscovered in Germany by Ernst Berliner, who isolated it as the cause of a 

disease called Schlaffsucht in flour moth caterpillars. In 1976, Robert A. Zakharyan reported 

the presence of a plasmid in a strain of B. thuringiensis and suggested the plasmid's 

involvement in endospore and crystal formation (Zakharyan et. al., 1979; Cheng, 1984). Upon 

sporulation, B. thuringiensis forms crystals of proteinaceous insecticidal δ-endotoxins (called 

crystal proteins or Cry proteins), which are encoded by cry genes. In most strains of B. 
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thuringiensis, the cry genes are located on the plasmid (Stahly, 1984; Beegle & Yamamoto, 

1992; Xu et al., 2006).  

 

Spores and crystalline insecticidal proteins produced by B. thuringiensis have been used to 

control insect pests since the 1920s (Lemaux, 2008, Bravo et al., 2011). They are being used 

as specific insecticides under trade names such as Dipel and Thuricide. Because of their 

specificity, these pesticides are regarded as environmentally friendly, with little or no 

unwanted effects on humans, wildlife, pollinators, and most other beneficial insects.  

 

Cry toxins have specific activities against insect species of the orders Lepidoptera (moths and 

butterflies), Diptera (flies and mosquitoes), Coleoptera (beetles), Hymenoptera (wasps, bees, 

ants and sawflies) and nematodes. B. thuringiensis-based insecticides are often applied as 

liquid sprays on crop plants, where the insecticide must be ingested to be effective. The 

solubilized toxins are thought to form pores in the midgut epithelium of susceptible larvae. 

Thus, B. thuringiensis serves as an important reservoir of Cry toxins for production of 

biological insecticides and insect-resistant genetically modified crops. When insects ingest 

toxin crystals, the alkaline pH of their digestive tract activates the toxin. Cry toxin gets 

inserted into the insect gut cell membrane, forming a pore. The pore results in cell lysis and 

eventual death of the insect (Dean, 1984).  

 

1.3.2.3.1. Genetically engineered Bt crops  

The Belgian company Plant Genetic Systems was the first company (as a spin-off of Ghent 

University) to develop genetically engineered plants (tobacco) with insect tolerance by 

expressing cry genes from B. thuringiensis (Höfte et al., 1986; Vaeck et al., 1987). In 1995, 

potato plants producing Bt toxin were approved safe by the US Environmental Protection 

Agency (http://www.epa.gov), making it the first pesticide-producing crop to be approved in 

the USA, where it is currently grown on a large scale. Bt crops (mainly corn and cotton) were 

planted on 281,500 km² in 2006 (165,600 km² of Bt corn and 115,900 km² of Bt cotton). This 

was equivalent to 11.1% and 33.6%, respectively, of global plantings of corn and cotton in 

2006 (Brookes & Barfoot, 2006).  

 

Environmental impacts appear to be positive during the first ten years of Bt crop use (1996–

2005): one study concluded insecticide use on cotton and corn during this period fell by 35.6 

million kg of insecticide active ingredient, which is roughly equal to the amount of pesticide 
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applied to arable crops in the EU in one year. Using the environmental impact quotient (EIQ) 

measure of the impact of pesticide use on the environment, the adoption of Bt technology over 

this ten-year period resulted in a respective reduction of 24.3% and 4.6% in the environmental 

impact associated with insecticide use on the cotton and corn area using the technology 

(Tabashnik et al., 2003; Brookes & Barfoot, 2006). 

 

Bt toxins are a potential alternative to broad-spectrum neurotoxic insecticides. The toxicity of 

each Bt type is limited to one or two insect orders; it is nontoxic to vertebrates and many 

beneficial arthropods, because Bt insecticidal cytotoxins work by binding to the appropriate 

receptor on the surface of midgut epithelial cells. Any organism that lacks the appropriate 

receptors in its gut cannot be affected by Bt (Gill et al., 1992; Knowles, 1994). 

 

1.3.2.3.2. Limitations of Bt 

Constant exposure to a toxin creates evolutionary pressure for pests resistant to that toxin. In 

November 2009, the Monsanto Company (http://www.monsanto.com) found the pink 

bollworm had become resistant to (first generation) Bt cotton in parts of Gujarat, India. This 

was the first instance of Bt resistance confirmed by Monsanto scientists anywhere in the 

world. Nowadays, many more cases are known, as reviewed in Bravo et al. (2011). 

 

One method of reducing resistance is the creation of non-Bt crop refuges to allow some non-

resistant insects to survive and maintain a susceptible population. The aim is to encourage a 

large population of pests so any genes for resistance are greatly diluted. This technique is 

based on the assumption that resistance genes will be recessive. 

 

Another problem is the expansion of secondary pests to replace the controlled ones. Several 

studies have documented surges in ‘sucking pests’ (which are not affected by Bt toxins) 

within a few years of adoption of Bt cotton. In China, the main problem has been with mirids 

(Lu et al., 2010), which have in some cases “completely eroded all benefits from Bt cotton 

cultivation” (Wang et al, 2008). Similar problems have been reported in India, with both 

mealy bugs and aphids (Stone, 2010). 
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1.4. Insects of this study 

 

In agriculture and horticulture, insect pests are a very important factor of loss. As an average, 

they account for the destruction of almost 20% of the world’s annual crop production (Oerke 

& Dehne, 2004). Additionally, many insects are carriers of plant viruses and pathogens, which 

further increase damage. At present the control of insects requires the use of a wide range of 

systemic and contact insecticides, most of which are based on a neurotoxic mechanism. 

According to the international “Insecticide Resistance Action Committee” (IRAC), there are 

currently >550 species of pest insects, resistant against most current insecticide groups, 

implying a high demand for novel insecticide targets. For the development of novel tactics for 

pest control, most attention is currently going to Integrated Pest Management (IPM), which 

consists of a combination of chemical  (insecticides) and biological means (beneficial 

organisms) - this accordingly to the current European guidelines for agri- and horticulture.  

 

1.4.1. Aphids 

Aphids are among the world’s most important groups of pest insects. They are small (1-10 

mm), hemimetabolous insects which belong to the order of the Hemiptera. They are 

herbivores with a piercing-sucking feeding technique: with their proboscis they penetrate 

through the leaf tissue towards the phloem and feed on the plant sap. There are about 4000 

known species, each with their own specific host plants, at least 250 of which are a treat to 

crops and cultivated plants (Van Emden & Harrington, 2007).  

 

The life cycle of aphids is rather complicated and can vary between species. In general sexual 

reproduction takes place in autumn, with winged female laying eggs on the winter host plant 

(usually woody plants). In spring the first adults migrate to the summer host plant(s); during 

summer they multiply mostly by asexual reproduction (parthenogenesis) by unwinged females 

that are viviparous (Fig. 1.14). Some species do not change host plants. 

 

Aphids often cause serious damage to crops, sometimes with 30-50% loss, causing both direct 

damage to plants via feeding and indirect damage by transmitting viruses that can devastate 

agricultural crops (Alford, 2000). Many populations have already acquired resistance towards 

a number of traditional and modern insecticides, making a search for alternative strategies 

imperative (Elbert et al., 2008). In addition, aphids are not sensitive to the entomotoxins of Bt 

(Sharma et al., 2004). Together with increasing public concern and awareness about pesticide 
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safety and possible damage to the environment, this had spurred much attention for the search 

for new alternative aphicides (Edwards et al., 2008).  

 

 

 

 

Figure 1.14. Schematic overview of the reproductive cycle of aphids (Acyrthosiphon pisum) from 
Shingleton et al. (2003). 
 

 

Of particular significance is the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera, 

Aphidiae), a major pest which causes hundreds of millions of euros of crop damage every 

year (Van Emden & Harrington, 2007) (Fig. 1.15). 

 

The species feeds on a wide range of legume plants, including important forage and vegetable 

crops, like peas, beans and alfalfa. It is also an important vector of over 30 plant viruses 

(Alford, 2000; Blackman & Eastop, 2000). The species has been studied extensively as a 

model organism in scientific research, and the entire genome has recently been sequenced by 

the International Aphid Genomic Consortium, providing a resource for the discovery of new 

targets for control (http://www.aphidbase.com; Richards et al., 2010). Adding to that, its short 

life span and fast reproduction make it an excellent choice as a test organism in this study, 

being itself an important pest insect and as a model for the piercing-sucking insects. 
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Phylum: Arthropoda 

Subphylum: Uniramia 

Superclassis: Hexapoda 

Classis: Insecta 

Subclassis: Pterygota 

Ordo: Hemiptera 

Subordo: Homoptera  

Familia: Aphidina  

Genus: Acyrthosiphon 

Species: Acyrthosiphon pisum 

  

Figure 1.15. Taxonomic position and photo of the pea aphid. 
 

 

1.4.1.1. Life cycle and maintenance of the colony in the lab 

In nature, aphids follow a complicated life cycle with sexual and asexual stages (see above). 

In the laboratory, however, they are kept under constant summer conditions, which means 

only asexual reproduction takes place. Adult (wingless) females will produce offspring by 

viviparous parthenogenesis, at a rate of 4 to 12 nymphs a day, about a hundred in her lifetime. 

These nymphs are exact genetic replicates of their mother, and are all females. The adult life 

span is around 30 days. The nymphs will undergo four moults - taking about 7 to 10 days - 

before reaching sexual maturity, at which point they will immediately start producing 

offspring of their own. In the laboratory, colonies are kept on living Vicia faba (lab bean) 

plants, under standard conditions of 23 ± 5°C, humidity 65 ± 5% and a photoperiod of 16h 

light and 8h darkness. 

 

1.4.2. Lepidoptera 

Another very important group of pest insects is the Lepidoptera, one of the most diverse 

groups of leaf-chewing insects. The order has more than 180,000 species in 128 families and 

47 superfamilies (http://www.ucl.ac.uk/taxome/). Their life cycle has four stages: egg, larvae 

(caterpillar), pupa and adult (butterfly/moth). This is typical for holometabolous insects with a 

whole metamorphosis process. Many species are polyphagous and can do massive damage to 

a wide variety of crops, causing severe losses to the world’s food production.  
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For this project we have been working with the Egyptian cotton leafworm, Spodoptera 

littoralis (Fig. 1.16), because it is a very important pest species by itself and additionally 

serves as a model organism representative for insects with biting-chewing mouthparts. 

 

 

Phylum: Arthropoda 

Subphylum: Uniramia 

Superclassis: Hexapoda 

Classis: Insecta 

Ordo: Lepidoptera 

Subordo: Heteroneura (Frenatae) 

Sectio: Heteroceura 

Familia: Noctuidae 

Subfamilia: Amphipyrinae 

Genus: Spodoptera 

Species: Spodoptera littoralis 

 

  

 
Figure 1.16. Taxonomic position and photo of the cotton leafworm. 
 

 

The species is considered a major agricultural pest in many parts of the world (mainly Africa 

and Asia, but also Europe), with a host range of over 40 plant families including several major 

crops like cotton, corn, tobacco, beets and other vegetables (Alford, 2000). Due to excessive 

selection pressure by the intensive use of insecticides on these crops, many populations have 

developed high degrees of resistance against most groups of commercially available 

insecticides (Ishaaya et al., 1995; Smagghe & Degheele, 1997; Pluschkell et al., 1998) and 
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even Bt (Strizhov et al., 1996). Its broad range of host plants and easy rearing make it a good 

candidate for lab studies on efficacy tests of novel insecticide compounds.  

 

1.4.2.1. Life cycle and maintenance of the colony in the lab  

The life cycle of the cotton leafworm comprises 9 stages: egg, 6 larval stages, pupa and adult. 

Under laboratory conditions, the whole cycle takes approximately 40 days. The eggs take 

about 4 days to hatch; the resulting larvae are less than 1 mm thick and only 3-4 mm long. 

The different larval stages are distinguished by head capsule sizes. Each takes about 3 days, 

except for the 6th and last stage: in this one, the larvae will continue to feed during the first 3-

4 days, then enter a wandering phase in which they stop feeding, clean their gut, and prepare 

for transition to pupa. The pupal stage takes about 10 days, during which the pupae are 

disinfected by short exposure to 40% formaldehyde vapours to avoid the transfer of 

infections. The adult stage also takes about 10 days, during which females will produce 1500-

2000 eggs in 1-2 days. During all this time, the cultures are kept under standard conditions of 

23 ± 5°C, humidity 65 ± 5% and a photoperiod of 16h light and 8h darkness. Larvae are 

grown on a wheat-germ based artificial diet (modified from Poitout et al., 1972), while the 

adults are fed honey water (10%). 
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1.5. Goals and outlines 

 

The main aim of this work was to investigate the toxicity and mode of action of a number of 

steroidal and non-steroidal plant metabolites against two economically important pest insect 

groups, in regard to better understand the mechanism behind the insecticidal activity and to 

explore their potential as alternative natural insecticides. The project focused on 

phytoecdysteroids and saponins on the one hand, and on two major pest insect orders, aphids 

(Hemiptera) and caterpillars (Lepidoptera), on the other. In the different experiments, we used 

both in vivo tests with living insects and in vitro bioassays with insect cell cultures. In 

addition, a cell-based reporter screening system was established to investigate agonist and 

antagonist interactions with the receptor (EcR) of the steroidal insect moulting hormone, 20-

hydroxyecdysone (20E).  

 

Below, the different goals of this multidisciplinary project are listed in detail.  

• Testing of a cell-based reporter bioassay that allows for fast and easy screening of a large 

number of compounds for ecdysteroid agonistic and antagonistic effects on the EcR. Then, 

with this in vitro bioassay, a number of ecdysteroid agonists (e.g. dibenzoylhydrazines) 

and antagonists was tested in order to better understand their mode of action and efficacy 

against insects (chapter 2). 

• In-depth study of the effects and mode of action of two steroidal and two non-steroidal 

saponins on three insect cell lines from different orders and tissues, namely embryonic S2 

cells from Drosophila melanogaster (Diptera), ovarian Bm5 cells from Bombyx mori 

(Lepidoptera) and midgut CF-203 cells from Choristoneura fumiferana (Lepidoptera), by 

researching the following hypotheses (chapter 3): 

� screening for ecdysteroid agonistic and antagonistic effects by using the 20E 

response bioassay as described above. Here the sensibility of cells of different 

species and tissue origin was also investigated; 

� assessing the cell viability and membrane integrity of the cells after treatment with 

saponins by using MTT and trypan blue viability assays, respectively; 

� checking for induction of apoptosis in the cells by caspase-3 like activity and 

DNA-fragmentation assays; 

� studying the possibility that addition of cholesterol to the cell medium can counter 

the negative effects of saponins by testing a parallel series of 20E response and 



 44 

viability bioassays after adding cholesterol to the cell medium alongside with the 

saponin, and the interaction and role of cholesterol in abovementioned 

mechanisms. 

• Determining the insecticidal activity of Quillaja saponaria saponin in vivo in insects as 

Acyrthosiphon pisum pea aphids and Spodoptera littoralis cotton leafworm caterpillars fed 

on saponin-enriched diet and leaves (chapter 4). 

• Investigating potential repellent and deterrent activities of Q. saponaria saponin by 

observing insect behaviour on treated glassplates and quantifying the preference of insects 

for saponin-treated or untreated food in choice-experiments, respectively (chapter 4). 

• Examining the midgut-specific effects of Quillaja saponaria saponins with use of primary 

midgut cell cultures from S. littoralis and making microscopic slides of the A. pisum aphid 

gut (chapter 4). 

 

Finally, chapter 5 summarizes the main findings of this study and provides some future 

perspectives with a scientific research model associated with the development of a plant-based 

natural insecticide within the context and criteria used by the European and Mediterranean  

Plant Protection Organization (EPPO) describing how field trials should be conducted in order 

to test the efficacy of plant protection products that are candidate chemicals for being 

proposed for registration (http://www.eppo.org/). 
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Chapter 2 

A cell-based reporter assay for screening for EcR 

agonist/antagonist activity of natural ecdysteroids in 

Lepidoptera (Bm5) and Diptera (S2) cell cultures, 

followed by modelling of EcR interactions 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been redrafted from: 

 

 

De Geyter E, Swevers L, Rougé P, Coll J, Geelen D and Smagghe G. A cell-based reporter 
assay for screening for EcR agonist/antagonist activity of natural ecdysteroids in Lepidoptera 
(Bm5) and Diptera (S2) cell cultures, followed by modelling of EcR interactions. Insect 

Science, in preparation. 
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2.1. ABSTRACT 

 

Ecdysteroid signal transduction is a key process in insect development and hence an important 

target for insecticide development.  We employed an in vitro cell-based reporter bioassay for 

screening potential ecdysone receptor (EcR) agonistic and antagonistic activity. Natural 

ecdysteroids were assayed for their ability using ecdysteroid-responsive cell line cultures that 

were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran 

Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx 

mori insect cell lines as these represent robust cell systems for ecdysteroid-inducible 

luciferase reporter gene analysis.  

 

Measurements showed an EcR agonistic activity only for cyasterone, both in S2 (IC50 = 

3.3µM) and Bm5 cells (IC50 = 5.3µM). However, the activity was very low compared to that 

of the commercial insecticide tebufenozide. An antagonistic activity was found for 

castasterone in S2 cells, with an IC50 of 0.039µM; in Bm5 cells this effect only became visible 

at much higher concentrations (IC50 = 18µM) and might be due to general cell toxicity rather 

than true antagonistic activity. To gain more insight in the interaction with the EcR receptor, 

three-dimensional modelling of dipteran and lepidopteran EcR-LBD was performed. 

Modelling of the interaction of the ecdysteroids with the EcR receptor supported binding of 

cyasterone, but not of castasterone. 

 

In conclusion, we show that the cell-based reporter bioassay tested here is a useful and 

practical for screening candidate EcR agonists and antagonists, but it does not provide 

sufficient evidence for direct interaction with the receptor.  
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2.2. INTRODUCTION 

 

Ecdysteroids are a group of steroid hormones that control moulting and reproduction in 

arthropods. Whether they fulfil hormonal functions in other invertebrate groups is still a 

matter of debate (Trenin & Volodin, 1999). The most studied representatives are ecdysone 

and 20-hydroxyecdysone (20E), the insect moulting hormone. They have been detected in ca. 

6% of plant species analysed so far, and more than 300 different ecdysteroids have been 

isolated from animal and plant sources (Dinan et al., 2001). Starting from the 60’s, the 

possibility to extract similar molecules from plants (phytoecdysteroids) has made them easily 

available in large amounts, and this was the beginning of a new field of studies specifically 

targeting the ecdysone reporter (EcR), the receptor site for 20E. This is an interesting target 

for insect pest control, because compounds acting on this receptor will only affect insects and 

arthropods, which makes them interesting targets for the search for safer and more specific 

insecticides. This has led to the development of a number of successful EcR agonist 

insecticides, namely tebufenozide, methoxyfenozide, chromafenozide and halofenozide (see 

1.3.1.3). 

 

However, in order to successfully search for new compounds that disrupt the insect endocrine 

system, there is need for high-throughput screening systems. To address this need, we tested a 

method using transfected Drosophila-derived S2 and Bombyx mori-derived Bm5 cell lines 

that respond to the addition of ecdysone-like substances through the expression of the 

luciferase reporter and the appearance of luminescence. Because the amount of luminescence 

can be easily quantified in individual wells of a 96 well plate by a luminescence plate reader, 

the transfected cells can be used for the screening of compounds with ecdysteroid mimetic 

activity in high-throughput format.  

 

For this project, we tested three substances at various concentrations: cyasterone, inokosterone 

en castasterone (Fig. 2.1A). All three are relatively small molecules with a steroid core and a 

tail, which makes them structurally similar to 20E. This is very different from the 

abovementioned commercial EcR agonists like tebufenozide, which do not resemble steroids 

at all (Fig. 2.1B). 

 

We used two insect cell line cultures, Schneider S2 cells from Drosophila melanogaster 

(Diptera) and Bm5 cells from Bombyx mori (Lepidoptera). Both insect orders contain a 



 48 

number of very important pest species, against which many of the current insecticides are no 

longer effective. Since both groups have different classes of insecticides working against 

them, comparing the two could give us an indication about the specificity of the observed 

effects. We also did a three-dimensional modelling of dipteran and lepidopteran EcR-LBD to 

better understand the mechanism of action of the ecdysteroids. 

 

 

 

A 

 

    
          cyasterone                                               inokosterone                                                   castasterone 
 

 

 

B 

 

 
            20-hydroxyecdysone                                      ponasterone A                                     tebufenozide 
 

 

Figure 2.1A, B. Three natural ecdysteroids: cyasterone, inokosterone and castasterone (A) and three 
known EcR agonists: 20E and ponasterone A, natural ligands for the edysone receptor, and 
tebufenozide, a commercial insecticide (B). 
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2.3. MATERIALS AND METHODS 

 

2.3.1. Chemicals  

Cyasterone, inokosterone and castasterone (>97%, HPLC) were gifts from Prof. Dr. Josep 

Coll, Dept. of Biological Organic Chemistry, CID-CSIC, E-08034 Barcelona, Spain. All other 

products are analytical grade unless otherwise mentioned. 

 

2.3.2 Insect cell lines 

Cell line cultures were maintained in the Laboratory of Agrozoology (Ghent University, 

Belgium) at a temperature of 27°C. D. melanogaster Schneider S2 cell line cultures were 

maintained in HyQ SFX-Insect™ Medium (Perbio Science, Erembodegem, Belgium) 

(Mosallanejad & Smagghe, 2009). B. mori Bm5 cells were cultured in IPL-41 medium 

(Invitrogen, Merelbeke, Belgium) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) (Sigma-Aldrich, Bornem, Belgium) and additional minerals (Soin et al., 2008). Only 

during the intermediate stages of the transfection, serum free medium was used (Swevers et 

al., 2004).  

 

2.2.3. Transfection of insect cells  

The compounds were assayed for their ability to activate transcription of an ecdysteroid-

inducible luciferase reporter gene using ecdysteroid-responsive S2 or Bm5 cells. Prior to 

exposure, the cells were transiently transfected with the reporter plasmid by lipofection 

according to the manufacturer’s instructions (Invitrogen) as described in Soin et al. (2008). 

Briefly, the desired number of wells of a 6-well plate was filled with 3×106 S2 or 2×106 Bm5 

cells. The cells were given time to attach to the bottom and washed once or twice with serum 

free medium. Lipofectin was first pre-incubated alone for 45 min in culture medium and then 

15 min together with 1.5 µg of the reporter plasmid ERE-b.act.luc (Fig. 2.2) before adding to 

the cells. The ERE-b.act.luc reporter construct is composed of seven copies of the ecdysone 

response element (ERE) derived from the Drosophila hsp27 promoter (Riddihough & Pelham, 

1987), a B. mori-derived basal actin promoter (b.act), followed by the reporter gene for firefly 

luciferase (luc) and a termination signal. The cells were incubated at 27°C for 5 h, after which 

the transfection medium was removed and replaced by normal culture medium (with serum).  

 

2.2.4. Bioassays for EcR agonist and antagonist responsiveness 

For the bioassays, transfected cells were treated with ecdysteroids at final concentrations of 5-
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500 µM (prepared in DMSO). A cell solution with a density of 2x106 cells/ml was prepared 

for S2 cells, 2-3x105 cells/ml for the lepidopteran cells. Next, 1 µl of the compound was added  

at the bottom of the required wells of a white 96-well microtitre plate (Greiner labortechnik, 

Frickenhausen, Germany) with a micropipette, after which 100 µl of the cell solution was 

added into the wells.  

 

 

 

 
Figure 2.2. Plasmid with the ERE-b.act.luc reporter construct, composed of seven copies of the 
ecdysone response element (ERE) derived from the Drosophila hsp27 promoter, a Bombyx mori-
derived basal actin promoter (b.act), followed by the reporter gene for firefly luciferase (luc) and a 
termination signal.  
 

 

For testing EcR agonist activity, 1 µl of a 50 µM-solution of 20E (final concentration = 500 

nM) was added only to the positive control. The plates were sealed with parafilm and 

incubated at 27°C for 24 h before reading. For EcR antagonist activity, the plates (without 

20E) were first incubated at 27°C for 24 h, then 1 µl of a 50 µM solution of 20E was added to 

each well except for the negative control, and then the plates were incubated for another 24 h. 

For measuring the luciferase expression, the Steady-Glo luciferase assay system kit (Promega, 

Leiden, the Netherlands) was used: 100 µl luciferase substrate was added to each well and the 
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luminescence was measured with a Tecan M200 luminometer (Tecan, Mechelen, Belgium). 

For each concentration 3 replicates were done, and each experiment was repeated 2 or 3 times.  

 

Data were presented as a percent response compared to 500 nM of 20E (i.e. positive control). 

Respective EC50’s (median effective concentration values on reporter gene induction) and 

IC50’s (medium inhibitory concentration values) with corresponding 95% confidence limits 

were calculated with Prism v4 (GraphPad Software Inc., La Jolla, CA); the accuracy of data 

fitting to the sigmoid curve model was evaluated through examination of R2 values. 

 

2.2.5. Three-dimensional modelling of dipteran and lepidopteran EcR-LBD 

Homology modelling of the ligand-binding domain (LBD) of the EcR from Bombyx mori 

(BmEcR-LBD) and Drosophila melanogaster (DmEcR-LBD), was performed with the 

YASARA Structure program (Krieger et al., 2002) running on a 2.53 GHz Intel core duo 

Macintosh computer. Different models were built from the X-ray coordinates of the EcR of 

the Lepidoptera Heliothis virescens in complex with synthetic ligands (RCSB Protein Data 

Bank code 3IXP), the RXR-USP receptor of the Coleoptera Tribolium castaneum bound to 

ponasterone A (PonA) (PDB Code 2NXX) (Iwema et al., 2007), the EcR-LBD of the 

Hemiptera Bemisia tabaci complexed to PonA (PDB code 1Z5X) (Carmichael et al., 2005), 

the EcR-USP of Heliothis virescens in complex with 20E (PDB code 2R40) (Browning et al., 

2007) and the human KXR ligand binding domain (PDB code 4DK8) (Kopecky et al., 2012), 

used as templates, respectively. Finally, a hybrid model was built up from the four previous 

models.  PROCHECK (Laskowski et al., 1993) was used to assess the geometric quality of 

the three-dimensional model. In this respect, all of the residues of BmEcR-LBD and DmEcR-

LBD were correctly assigned on the allowed regions of the Ramachandran plot (result not 

shown). ANOLEA (Melo & Feytmans, 1998) was also used to evaluate the quality of the 

models. Molecular cartoons were drawn with YASARA and PyMol (W.L. DeLano, 

http://pymol.sourceforge.net). Docking of the steroids 20E, PonA, cyasterone and 

inokosterone, the antagonist castasterone and the non-steroidal agonist tebufenozide to both 

EcR-LBD was performed with the YASARA structure program. Clipping planes of BmEcR-

LBD and DmEcR-LBD complexed to 20E, PonA, cyasterone, inokosterone, castasterone, and 

tebufenozide were also rendered with PyMol. 
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2.3. RESULTS AND DISCUSSION 

 

2.3.1. EcR agonistic activity 

Luciferase reporter assays in S2 cells showed an EcR agonistic activity for cyasterone only 

(IC50 = 3.3µM) and for the reference EcR agonist tebufenozide (IC50 = 0.71 µM) (Table 2.1). 

Tebufenozide is a non-steroid EcR agonist insecticide with specific activity against 

Lepidoptera that has been on the market for over ten years (Dhadialla et al., 1998). The 

activity in cyasterone was about 5 times lower than for tebufenozide and 100 times lower than 

for 20E (Table 2.1). Considering that tebufenozide is reported to be largely inactive against 

Diptera, this efficiency is low compared to existing commercial products. 

 

In Bm5 cells, the activity of cyasterone was similar to that in S2 cells (IC50 = 5.3µM). 

However, the effect of the Lepidoptera-specific tebufenozide is 10000 times higher than 

cyasterone (Fig. 2.3). While such activity is interesting from a scientific point of view, it is 

clear that the necessary concentrations would be too high to make it commercially applicable, 

especially since the effect is probably non-specific as it works on both dipteran and 

lepidopteran cells alike. 

 

 

Table 2.1. EcR agonistic activity for three known EcR agonists and three newly tested ecdysteroid 
compounds for Drosophila melanogaster S2 and Bombyx mori Bm5 cells. 
 

 S2 Bm5 

 IC50 (95% CL; R
2
) (µM) IC50 (95% CL; R

2
) (µM) 

20E 0.040 (0.027-0.060; 0.91) 0.017 (0.0097-0.030; 0.84) 

ponasterone A 0.054* 0.011* 

tebufenozide 0.71 (0.35-1.41; 0.83) 0.00089 (0.00023-0.0035; 0.90) 

cyasterone 3.3 ( -- ; 0.92) 5.3 (2.1-13.5; 0.90) 

inokosterone inactive inactive 

castasterone inactive inactive 

 
*Data from Soin, 2009. 

Data are given as median response values together with the 95% confidence interval (both in µM) and 
the R2 as accuracy of data fitting to the sigmoid curve model after Prism v4.  
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Figure 2.3A, B. EcR agonistic activity of tebufenozide (A) and cyasterone (B) for lepidopteran  
Bombyx mori Bm5 cells. 
 

 

2.3.1. EcR antagonistic activity 

An antagonistic activity was found for castasterone in S2 cells, with an IC50 of 0.039µM 

(Table 2.2). In contrast, in Bm5 cells this effect only became visible at much higher 

concentrations (IC50 = 18µM) (Fig. 2.4). Given the sensitivity of Bm5 cells to a number of 

other steroid compounds (data not shown), it is possible that the lack of EcR activity at this 
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concentration was due to general cell toxicity rather than a direct antagonistic activity on the 

receptor. 

 

 

 

A 
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Figure 2.4A, B. EcR antagonistic activity of castasterone for (A) dipteran Drosophila melanogaster 
S2 and (B) lepidopteran Bombyx mori Bm5 cells. 
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Table 2.2. EcR antagonistic activity for 20E, tebufenozide and three newly tested ecdysteroid 
compounds for Drosophila melanogaster S2 and Bombyx mori Bm5 cells. 
 

 S2 Bm5 

 IC50 (95% CL; R
2
) (µM) IC50 (95% CL; R

2
) (µM) 

20E inactive inactive 

tebufenozide inactive inactive 

cyasterone inactive inactive 

inokosterone inactive inactive 

castasterone 0.039 (0.0000019-818; 0.97) 18 ( -- ; 0.97) 

 
Data are given as median response values together with the 95% confidence interval (both in µM) and 
the R2 as accuracy of data fitting to the sigmoid curve model after Prism v4.  
 

 

2.3.2. Three-dimensional modelling of dipteran and lepidopteran EcR-LBD 

2.3.2.1. Binding of PonA and 20E 

Ponasterone A and 20E are insect steroid hormones involved in regulating metamorphosis, 

and the natural ligands for inducing the ecdysone reporter system. The modelled BmEcR-

LBD and DmEcR-LBD both consist of the canonical three-dimensional structure of the 

ecdysteroid receptors, built up from 12 α-helices tightly packed around a ligand-binding 

pocket that specifically anchors PonA and other ecdysteroids (Fig. 2.5A, B). Upon binding of 

PonA to the receptors, the aliphatic chain of PonA becomes anchored to the large lobe located 

at the bottom of the pocket (Fig. 2.5C, D) via hydrophobic interactions involving residues 

Met120, Met214, Leu229 and Trp233 of BmEcR-LBD and Met118, Met212, Leu227 and 

Trp231 of DmEcR-LBD. A series of hydrogen bonds connects ponA with hydrophilic 

residues (Glu16, Thr50, Ala105 and Tyr115 of BmEcR-LBD, and Glu16, Thr48, Ala102 and 

Tyr113 of DmEcR-LBD). Together with stacking interactions with aromatic residues (Phe104 

and Tyr110 of BmEcR-LBD, Phe101 and Tyr 108 of DmEcR-LBD) the hydrogen bonds 

promote the binding of PonA (Fig. 2.5E, F). This binding scheme is similar in the different 

insect EcR’s resolved. 
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Figure 2.5A, B. Ribbon diagrams of the modelled BmEcR-LBD (A) and DmEcR-LBD (B). The 12 α-
helices building the three-dimensional fold of the receptors are differently coloured and numbered H1 
to H12; the two short strands of b-sheet are coloured purple and numbered β1 and β2. N and C 

correspond to the N- and C-terminus of the polypeptide chains respectively. Ponasterone A (PonA) 
complexed to the EcR-LBD is represented as blue stick. 
 
C, D. Clips showing the binding of PonA to the ligand-binding pocket of BmEcR-LBD (C) and 
DmEcR-LBD (D). The two lobes located at the bottom of the pocket of BmEcR-LBD are indicated by 
a star (�) and an asterisk (*). 
 
E, F. Residues of the ligand-binding pocket of BmEcR-LBD (E) and DmEcR-LBD (F) interacting 
with PonA (pink stick) by direct hydrogen bonds (coloured red) and stacking interactions (residues in 
orange sticks) are labelled.  
 
G, H. Clips showing the binding of 20E to the ligand-binding pocket of BmEcR-LBD (C) and 
DmEcR-LBD (D). The two lobes located at the bottom of the pocket are indicated by a star (�) and an 
asterisk (*). Hydrophobic residue interacting with the methyl groups at C26 and C27 of 20E are in 
yellow sticks. The Asn209 and Asn211 residues H-bound to the hydroxyl group at C25 of 20-
hydroxyecdysone (20E) are in blue sticks.  
 

 

Docking with 20E yielded an anchoring pattern similar to that of PonA.  However, in addition 

to the hydrophobic interactions occurring between methyl groups at C26 and C27 of 20E and 

hydrophobic residues of BmEcR-LBD (Met120, Met214, Leu229 and Trp233) and DmEcR-

LBD (Met118, Met212, Leu227 and Trp231), the hydroxyl group at C25 of 20E creates an 

additional hydrogen bond with residue Asn211 of BmEcR-LBD and Asn209 of DmEcR-LBD 

respectively (Fig. 2.5G, H). This additional H-bond strengthens the interaction of the 

ecdysone receptors with 20E. 
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2.3.2.1. Binding of tebufenozide and ecdysteroids 

In contrast to the natural ligands, tebufenozide binds to the ecdysone-binding pocket of 

BmEcR-LBD in a quite different orientation (Fig. 2.6A). The ethyl-phenyl ring of 

tebufenozide accommodates a second less extended lobe occurring at the bottom of the 

ecdysone-binding pocket of BmEcR-LBD at the opposite side of the lobe harbouring the 

aliphatic chain of PonA or 20E. This binding pattern essentially consists of hydrophobic 

interactions with hydrophobic residues (Ile, Leu, Met) and stacking interactions with aromatic 

residues (Phe, Tyr). In this respect, DmEcR-LBD, which lacks this second lobe at the bottom 

of the ecdysone-binding pocket, readily differs from BmEcR-LBD (Fig. 2.6A,B) and does not 

provide an anchor for the ethyl-phenyl ring of tebufenozide (Fig. 2.6B). Hence tebufenozide is 

not suitable for binding the ecdysone-binding pocket of DmEcRLBD. Since the presence of 

this second lobe is typical for Lepidoptera, this explains why the insecticide is highly specific 

against Lepidoptera, but much less so against Diptera and other insect orders. 

 

 

 
 

Figure 2.6A, B. Clips showing the binding of tebufenozide to the ligand-binding pocket of BmEcR-
LBD (A) and DmEcR-LBD (B). The two lobes located at the bottom of the pocket of BmEcR-LBD 
are indicated by a star (�) and an asterisk (*). The lack of the second lobe (asterisk, *) at the bottom 
of the ecdysone-binding pocket of DmEcR-LBD prevents the ethyl-phenyl ring of tebufenozide from 
being accommodated by the receptor. 
 

 

The ecdysteroids bind to the receptor in yet another way. Upon docking to the ligand-binding 

pocket of BmEcR-LBD (Fig. 2.7A) and DmEcR-LBD (Fig. 2.7B), cyasterone adopts a 

A B 
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position within the binding-pocket that is slightly different from that of 20E or PonA, due to 

its distinct, but similar conformation compared to both hormones. Although the position is not 

entirely the same, it is close enough to act as an EcR agonist, though with much lower activity 

than 20E and PonA. 

 

 
 
Figure 2.7A, B. Docking of cyasterone (CYA) (pink stick), inokosterone (INO) (blue stick) and 
castasterone (CAS) (green stick) to the ligand-binding pocket of BmEcR-LBD (A) and DmEcR-LBD 
(B). Note the inability of inokosterone and castasterone to correctly accommodate the ligand-binding 
pocket of both EcR-LBD.  
 
 

Inokosterone and castasterone, however, readily differ from cyasterone by a different 

orientation of the aliphatic chain linked to the D steroid ring. As a result, they are unable to 

properly accommodate the ligand-binding pockets in both EcR-LBD (Fig. 2.7A,B) in this 

model. The lobe of the BmEcR-LBD ligand-binding cavity that is opposite to the one 

harbouring the aliphatic chain linked to the D ring of cyasterone is not large enough for the 

differently oriented aliphatic chain linked to the D ring in inokosterone. As seen in Fig. 2.5B, 

the lack of a second lobe in the ligand-binding pocket of DmEcR-LBD also prevents the 

binding of inokosterone. Due to steric hindrance, inokosterone is thus unable to bind to the 

receptor and is agonistic nor antagonistic. 

 

The aliphatic chain linked to the D ring in the ecdysone antagonist castasterone is also 

oriented in such a way that no binding can occur to any of the lobes in both ligand-binding 

A  B 
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pockets. Based on this, we can expect that the antagonistic activity observed in the 

measurements is not immediately linked to interaction with the EcR receptor, but rather an 

indirect effect of other processes in the cell that could lead to a loss in EcR response, like 

lower metabolism or general cell toxicity. 

 

 

2.4. CONCLUSION 

 

Although we were able to confirm that the cell-based reporter bioassay tested here is useful 

for screening for EcR agonistic and antagonistic activities, the test compounds included in this 

study were not very promising for the development of new, specific insecticides. Cyasterone, 

the only compound with EcR agonistic activity, binds at concentrations 10000 times lower 

than the commercial insecticide tebufenozide in Bm5 cells. Castasterone showed an 

antagonistic activity in S2 cells, but modelling with the ecdysone receptor indicated that the 

effect is not due to a specific interaction on the level of the receptor. Therefore, rather than to 

pursue this line of work, we decided to look for alternatives in other groups of secondary plant 

metabolites. 
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Chapter 3 

Saponins do not affect the ecdysteroid receptor 

complex but cause membrane permeation in insect 

culture cell lines  

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been redrafted from: 

 

 

De Geyter E, Swevers L, Soin T, Geelen D and Smagghe G (2012). Saponins do not affect 
the ecdysteroid receptor complex but cause membrane permeation in insect culture cell lines. 
Journal of Insect Physiology 58,18-23. 
 

De Geyter E, Swevers L, Caccia S, Geelen D and Smagghe G (2012). Saponins show high 
entomotoxicity by cell membrane permeation in Lepidoptera. Pest Management Science, 
doi:10.1002/ps.3284. 
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3.1. ABSTRACT 

 

This project studied the effects of four saponins with a triterpenoid (Quillaja saponaria 

saponin and aescin) or steroid structure (digitonin and diosgenin, which is the deglycosylated 

form of dioscin) in one dipteran and two lepidopteran insect cell lines, namely Schneider S2 

cells of Drosophila melanogaster, ovarian Bm5 cells of Bombyx mori and midgut CF-203 

cells of Choristoneura fumiferana, respectively. A series of different experiments were 

performed to investigate potential mechanisms of action by saponins with regard to 

ecdysteroid receptor (EcR) responsiveness, cell viability, cell membrane permeation, and 

induction of apoptosis with DNA fragmentation and caspase-3 like activity.  

 

Major results were that (1) exposure of S2 or Bm5 cells containing an EcR-based reporter 

construct to a concentration series of saponin scored no EcR activation, while (2) a loss of 

ecdysteroid signalling was observed with median inhibitory concentrations (IC50’s) of 10-50 

µM for S2 and 3-10 µM for Bm5 cells. In parallel, (3) a concentration-dependent loss of cell 

numbers for S2 cells in MTT cell viability assays with median effective concentrations 

(EC50’s) of 50-700 µM was observed. Both lepidopteran cell lines also show a high sensitivity 

to all four saponins, with EC50’s of 7-200 µM. (4) A trypan blue assay with Q. saponaria 

saponin confirmed the cell membrane permeation effect leading to cell toxicity with a median 

lethal concentration (LC50) value of 44 µM for S2 cells, and interestingly this effect was very 

rapid. (5) Exposure to 20E at 500 nM as used in the EcR-based report assay induced caspase-

3 like activities which may help to explain the discrepancies between loss of EcR-

responsiveness and cell viability. (6) Low concentrations of saponins induced DNA 

fragmentation and caspase-3 like activities, confirming their potential to induce apoptosis, and 

(7) the saponin effects were counteracted by addition of cholesterol to the culture medium.  

 

In general the data obtained provide evidence that saponins exert a strong activity on both 

dipteran and lepidopteran cells; however, the anti-ecdysteroid action by saponins is not based 

on a true antagonistic interaction with EcR signalling, but can be explained by a cytotoxic 

action due to permeation of the insect cell membrane.  
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3.2. INTRODUCTION  

 

Saponins are a class of steroidal or triterpenoid secondary plant metabolites with diverse 

biological properties, such as hemolytic, anticarcinogenic, anti-inflammatory, molluscicidal 

and antifungal activities (Francis et al., 2002; Sparg et al., 2004). In insects, they also pose 

strong detrimental effects on survival, growth and reproduction of a broad range of pest 

insects (Ishaaya, 1986; De Geyter et al., 2007b), including Lepidoptera (Harmatha et al., 

1987; Adel et al., 2000), Hemiptera (Soulé et al., 2000; Golawska et al., 2006) and Coleoptera 

(Shany et al., 1970; Szczepanik et al., 2001). Although strong interesting potencies were 

reported, most studies did not investigate the mechanism(s) behind the insecticidal action.  

 

As steroidal saponins show structural similarities to the insect moulting hormone 20-

hydroxyecdysone (20E), it has been suggested that they could exert an agonistic or 

antagonistic/competitive activity on the ecdysteroid reporter complex (EcR) (Dinan et al., 

2001). Such activity would disrupt the timing of moulting and metamorphosis, which is vital 

for normal insect growth and development. In support of this hypothesis, Harmatha et al. 

(1987) reported ecdysial failures in leek-moth larvae (Acrolepiopsis assectella) fed on diet 

containing steroidal saponins.  

 

Another mode of action often found in literature is that saponins disrupt the stability of the 

cell membrane. Indeed, such effect has been demonstrated for hematocytes and a number of 

other cell types, including yeasts and bacteria (Francis et al., 2002; Sparg et al., 2004). Hence, 

saponins are used in the medical industry as permeabilising agents to facilitate uptake of other 

substances into the cell (Mick et al., 1988; Humbel et al., 1998; Baumann et al., 2000). 

Additionally, a number of triterpenoid saponins have also been associated with the induction 

of apoptosis in human cancer cells, which may explain the lethal activity (Haridas et al., 2001; 

Chwalek et al., 2006; Niu et al., 2008). However, to our knowledge, experiments on insect 

cells are scarce. 

 

Here we report on the effects of four saponins, two with a triterpenoid structure (Quillaja 

saponaria saponin and aescin) and two with a steroid structure (digitonin and diosgenin, 

which is the deglycosylated form of dioscin) (Fig. 3.1). We tested them on one dipteran and 

two lepidopteran cell lines of different tissue and origin: embryonic Schneider S2 cells of 

Drosophila melanogaster (Diptera), ovarian Bm5 cells of the silkworm Bombyx mori, and 
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midgut CF-203 cells of the spruce budworm Choristoneura fumiferana. To understand the 

saponin mechanisms of action, tests included an ecdysteroid receptor (EcR) assay, a MTT cell 

viability assay and a trypan blue cell permeation assay to distinguish between EcR activation 

and cytotoxicity effects for S2 and Bm5 cells. CF-203 cells were tested for cell viability and 

DNA fragmentation. We also investigated whether the four saponins can cause cell death via 

apoptosis in insect cells by performing caspase-3 like activity and DNA fragmentation assays. 

In addition, as it was reported that addition of cholesterol to the insect diet can counter the 

negative effects of saponins (Harmatha et al., 1987), we tried adding cholesterol to the cell 

medium alongside with the saponins and evaluated its effects on EcR-interaction, cell 

viability and membrane permeation.  

 

     

 

 

Fig. 3.1. Basic structure of Quillaja saponaria saponins (upper left), aescin (upper right), digitonin 
(lower left) and diosgenin (lower right). 
 

 

3.3. MATERIALS AND METHODS 

 

3.3.1. Chemicals  

Purified powder of Quillaja saponaria Molina bark saponins and aescin (both ≥95%), 

tetrazolium salt MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], trypan 

blue,  Actinomycin D and proteinase K were purchased from Sigma-Aldrich (Bornem, 

Belgium), digitonin and diosgenin (the deglycosylated form of dioscin) (≥99%) from 
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Chromadex Inc. (Irvine, CA), and cholesterol (>99%) from MP Biomedicals (Solon, OH). 

The commercial Q. saponaria bark saponin consists of a heterogeneous mixture of molecules 

varying both in their aglycone and sugar moieties, with the main aglycone (sapogenin) moiety 

being quillaic acid, a triterpene of predominantly 30-carbon atoms (hydrophobic) of the D12-

oleanane type. The aglycone is bound to various sugars (hydrophilic) including glucose, 

glucuronic acid, galactose, xylose, apiose, rhamnose, fucose and arabinose 

(http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/1/s4521p

is.Par.0001.File.tmp/s4521pis.pdf). We used an average molar mass of 1900 g/mol. All other 

products are analytical grade unless otherwise mentioned. 

 

3.3.2 Insect cell lines 

Cell line cultures were maintained in the Laboratory of Agrozoology (Ghent University, 

Belgium) at a temperature of 27°C. Drosophila melanogaster Schneider S2 cell line cultures 

were maintained in HyQ SFX-Insect™ Medium (Perbio Science, Erembodegem, Belgium) 

(Mosallanejad & Smagghe, 2009). Bombyx mori Bm5 cells were cultured in IPL-41 medium 

(Invitrogen, Merelbeke, Belgium) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) (Sigma-Aldrich, Bornem, Belgium) and additional minerals (Soin et al., 2008). Only 

during the intermediate stages of the transfection, serum free medium was used (Swevers et 

al., 2004). Choristoneura fumiferana CF-203 cells were cultured in Insect-Xpress medium 

(Bio-Whittaker-Cambrex Bioscience, Walkersville, MD) supplemented with 2.5% FBS 

(Sigma-Aldrich, Bornem, Belgium) (Vandenborre et al., 2008). 

 

3.3.3. Treatment of insect cells with saponins 

For determining the effects of saponins on S2, Bm5 and CF-203 cells, the cells were treated 

with saponins at final concentrations of 5-500 µM (prepared in 50% ethanol). A cell solution 

with a density of 2x106 cells/ml was prepared for S2 cells, 2-3x105 cells/ml for the 

lepidopteran cells. Next, 1 µl of the compound was added at the bottom of the required wells 

of a 96-well microtitre plate (Greiner labortechnik, Frickenhausen, Germany) with a 

micropipette and left to dry for a few minutes, after which 100 µl of the cell solution was 

added into the wells. The plates were sealed with parafilm and incubated for 1 or 2 days at 

27°C, and used for one of the following experiments. For each concentration 3 replicates were 

done, and each experiment was repeated 2 or 3 times.  
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3.3.4. Assay with transfected cells for EcR agonist and antagonist responsiveness 

The compounds were assayed for their ability to activate transcription of an ecdysteroid-

inducible luciferase reporter gene using ecdysteroid-responsive S2 or Bm5 cells. Prior to 

exposure, the cells were transiently transfected with the reporter plasmid by lipofection 

according to the manufacturer’s instructions (Invitrogen) as described in Soin et al. (2008). 

Briefly, the desired number of wells of a 6-well plate was filled with 3×106 S2 or 2×106 Bm5 

cells. The cells were given time to attach to the bottom and washed once or twice with serum 

free medium. Lipofectin was first pre-incubated alone for 45 min in culture medium and then 

15 min together with 1.5 µg of the reporter plasmid ERE-b.act.luc (Fig. 2.2) before adding to 

the cells. The ERE-b.act.luc reporter construct is composed of seven copies of the ecdysone 

response element (ERE) derived from the Drosophila hsp27 promoter (Riddihough & Pelham, 

1987), a B. mori-derived basal actin promoter (b.act), followed by the reporter gene for firefly 

luciferase (luc) and a termination signal. The cells were incubated at 27°C for 5 h, after which 

the transfection medium was removed and replaced by normal culture medium (with serum).  

 

For testing EcR agonist activity, transfected cells were plated as described in 2.3 in white 96-

well plates and 1 µl of a 50 µM-solution of 20E (final concentration = 500 nM) was added 

only to the positive control. The plates were incubated at 27°C for 24 h before reading. For 

EcR antagonist activity, the plates (without 20E) were first incubated at 27°C for 24 h, then 1 

µl of a 50 µM solution of 20E was added to each well except for the negative control, and 

then the plates were incubated for another 24 h. For measuring the luciferase expression, the 

Steady-Glo luciferase assay system kit (Promega, Leiden, the Netherlands) was used: 100 µl 

luciferase substrate was added to each well and the luminescence was measured with a Tecan 

M200 luminometer (Tecan, Mechelen, Belgium). Data were presented as a percent response 

compared to 500 nM of 20E (i.e. positive control). Respective EC50’s (median effective 

concentration values on reporter gene induction) and IC50’s (medium inhibitory concentration 

values) with corresponding 95% confidence limits were calculated with Prism v4 (GraphPad 

Software Inc., La Jolla, CA); the accuracy of data fitting to the sigmoid curve model was 

evaluated through examination of R2 values. 

 

3.3.5. Assay for cell viability with MTT 

The viability of the treated cells was determined in accord to Decombel et al. (2004). Briefly, 

after treatment and incubation as described in 3.3.3, 100 µl of cell solution was transferred to 

an Eppendorf microtube and 100 µl of a 1 mg/ml-MTT solution was added. After 3 h 
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incubation at 27°C, the formazan crystals were collected by centrifugation for 7 min at 20,000 

g at 4°C; then, the supernatant was removed and the formazan crystals were dissolved in 220 

µl isopropanol. For the next 30 min, the microtubes were rotated using a test tube rotator 

(Labinco, Breda, the Netherlands). After centrifugation of the resulting solution for 7 min at 

20,000 g, 200 µl supernatant out of each Eppendorf tube was transferred into a transparent 96-

well plate (one sample per well) and the absorbance was measured at 560 nm in a microtitre 

plate reader (PowerWare X340, Bio-Tek Instruments Inc., Winooski, VT). The results were 

presented as the percentage of active cells in comparison to the control batch and the 

percentage effect was calculated. EC50’s (median effective concentration values on cell 

proliferation) with corresponding 95% confidence limits and R2 values were calculated with 

Prism v4 as described above.  

 

3.3.6. Assay for cell membrane permeation with trypan blue 

The trypan blue method was performed according to Soin et al. (2008). Briefly, after 

treatment and 48h incubation as described in 2.3, 50 µl cell suspension of S2 or Bm5 cells 

was mixed with 50 µl trypan blue solution (0.4%) and incubated for 5 min. The numbers of 

blue dead (permeated) and white living (intact) cells were counted in a Bürker cell counter, 

and the percentage of permeated dead cells was calculated. LC50’s (median lethal 

concentration values on cell mortality) and corresponding 95% confidence limits and R2 

values were calculated with Prism v4 as described above.  

 

In addition, to investigate the rapidness of the cell toxicity effects, cells were incubated for 

short time intervals of 15 s to 3 h with various concentrations of Q. saponaria saponins. In 

parallel, to evaluate whether the cells were able to recover from the exposure to saponins, 

cells were treated with 500 µM Q. saponaria saponins for 15 s, and then the medium was 

removed and replaced by fresh untreated culture medium. Samples of cells of which the 

medium had not been replaced (incubated for the same amount of time) were counted 

simultaneously as a reference. In the two experiments, the numbers of dead and living cells 

were counted after different time intervals with use of trypan blue as above.  

 

3.3.7. Assay to measure induction of caspase-3 like activity 

Caspase-3 like enzyme activities, as a measure of cell death by apoptosis, were determined 

according to the protocol of Promega (http://www.promega.com.cn/techserv/tbs/TB241-

550/tb323.pdf). Briefly, S2 cells were treated with saponins as described in 2.3 (2 ml per 
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treatment). A concentration of 10 nM actinomycin D was used as a positive control; in the 

negative control cells were incubated in untreated culture medium. Per treatment, three 

replicates were performed. After 24 h, the cells were collected into Eppendorf tubes (one for 

each treatment). The tubes were centrifuged at 1,000 g for 10 min (3x) and washed with 

phosphate buffer saline (PBS) twice. Cells were redissolved in 60 µl lysis buffer (50mM 

HEPES, pH 7.4, 0.1mM EDTA, 0.1% CHAPS, 5mM DTT) and centrifuged for 10 min at 

10,000 g, after which the supernatant was collected. Total protein concentration was 

determined using the Bradford method, by pipetting 2.5 µl of the lysate and 7.5 µl lysis buffer 

into a 96-well plate (3 replicates per treatment) and adding 250 µl Coomassie blue to each 

well (becomes blue in reaction to protein). The absorbance was measured at 595 nm in a 

microtitre plate reader (PowerWare X340, Bio-Tek Instruments Inc.). From the results, the 

concentration of protein and the according volume of lysate needed for the caspase-3 activity 

reading were calculated and a black 96-well plate was filled with the appropriate volumes, 

diluted to 90 µl with assay buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 0.1% CHAPS, 10 

mM DTT, 1 mM EDTA, 10% glycerol). Just before reading, 10 µl of Ac-DEVD-AFC 

substrate (Ac-Asp-Glu-Val-Asp, labeled with 7-amino-4-trifluoromethyl coumarin) was 

added to each well and the intensity of fluorescence was measured at an excitation wavelength 

of 400 nm and an emission wavelength of 505 nm using a spectrofluorometer (TECAN, 

Infinite M200, Switzerland) for 60 min (one measurement a minute). In addition, we equally 

repeated the reading in the presence of 0.1 mM caspase-3 inhibitor, Ac-DEVD-CHO (Sigma-

Aldrich) to confirm caspase-3 specificity. 

 

3.3.8. Assay to assess DNA fragmentation 

As described above in 2.3, S2, Bm5 and CF-203 cells (2-3×105 cells/ml, 2 ml per treatment) 

were treated with saponins and collected and washed after 24 and 48 h. A concentration of 10 

nM actinomycin D was used as a positive control; in the negative control cells were incubated 

in untreated culture medium. DNA was extracted as described in Shahidi-Noghabi et al. 

(2010a): cells were homogenized and mixed in DNA extraction buffer (10 mM Tris-HCl, 150 

mM NaCl, 10 mM EDTA-NaOH, 0.1% SDS, pH 8.0) on ice. Homogenized cells were treated 

with 20 mg/ml RNase for 30 min at 37°C. Subsequently, 100 mg/ml of proteinase K was 

added and cells were incubated at 50°C for 60 min. DNA was extracted using a standard 

phenol-chloroform extraction method. DNA samples (5 µg) were run on a 1.5% agarose gel at 

100 V and visualized by staining with ethidium bromide. 
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3.3.9. Assay to assess counteraction of saponin effects by cholesterol in insect cells 

To determine if addition of cholesterol to the cell medium could influence the effects of 

saponins on insect cells, the ecdysteroid responsiveness (3.3.4), MTT (3.3.5) and trypan blue 

(3.3.6) bioassays were repeated with S2 and Bm5 cells in culture medium containing equal 

weight amounts of saponin and cholesterol. The experiments were performed and analyzed as 

described above.  

 

 

3.4. RESULTS 

 

3.4.1. Saponins pose no EcR agonistic activity but inhibit EcR responsiveness 

A series of experiments showed that none of the saponins showed any agonistic activity at the 

concentrations tested (data not shown). The 20E response of the treated cells was never 

significantly higher than that of the non-treated cells.  

 

The saponins did, however, exert a strong concentration-dependent EcR antagonist activity, 

with a total loss of response for all four saponins at concentrations of 100-200 µM for S2 and 

10-50 µM for Bm5 cells. Results showed a rapid decrease in EcR response with increasing 

saponin concentrations, with an IC50 of 17 µM for Q. saponaria saponins, 30 µM for aescin, 

49 µM for digitonin and 39 µM for diosgenin for S2 cells (Table 3.1; Fig. 3.2A). For Bm5 

cells, sigmoid curve fitting in Prism calculated an IC50 of 6.8 µM for Q. saponaria saponins, 

8.3 µM for aescin, 3.7 µM for digitonin and 7.2 µM for diosgenin (Table 3.1; Fig. 3.2B).  

 

 
Table 3.1. Biological activity of the four saponins (Quillaja saponaria, aescin, digitonin and 
diosgenin) in Drosophila melanogaster S2 and Bombyx mori Bm5 cells for EcR antagonism (IC50). 
 

 S2 Bm5 

Saponin IC50 (95% CL; R
2
) (µM) IC50 (95% CL; R

2
) (µM) 

Q. saponaria 17 (14-20; 0.92) 6.8 (6.1-7.7; 0.98) 

aescin 30 (23-40; 0.88) 8.3 (1.9-3.7; 0.80) 

digitonin 49 (40-61; 0.95) 3.7 (2.1-6.5; 0.93) 

diosgenin 39 (26-60; 0.80) 7.2 (1.1-46; 0.98) 

 
Data are given as median response values together with the 95% confidence interval (both in µM) and 
the R2 as accuracy of data fitting to the sigmoid curve model after Prism v4.  
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3.4.2 Saponins reduce cell viability in insect cells 

Incubation with any of the four tested saponins caused clear harmful concentration-dependent 

effects on S2 cells as well as in both lepidopteran cell lines. There was a decrease in viability 

with increasing saponin concentrations: for S2 cells, the dose-response curves resulted in an 

EC50 of 51 µM for Q. saponaria saponin, 350 µM for aescin, and 104 µM for digitonin (Table 

3.2; Fig. 3.2A). For diosgenin, a decrease of 24% was obtained with the highest concentration 

of 480 µM, and an LC50 of 699 µM (237-2067) was extrapolated. For Bm5 cells, the dose-

response curves resulted in an EC50 of 17 µM for Q. saponaria saponin, 34 µM for aescin, 7.5 

µM for digitonin, and 48 µM for diosgenin (Table 3.2; Fig. 3.2B). CF-203 cells followed a 

similar pattern with respective EC50 values of 13, 25, 15 and 202 µM for Q. saponaria, aescin, 

digitonin and diosgenin (Table 3.2). 

 

 
Table 3.2. Biological activity of the four saponins (Quillaja saponaria, aescin, digitonin and 
diosgenin) in one dipteran and two lepidopteran cell lines (embryonal Drosophila melanogaster S2, 
ovary Bombyx mori Bm5 and midgut Choristoneura fumiferana CF-203 cells) for cell viability in a 
MTT assay (EC50). 
 

 S2 Bm5 CF-203 

Saponin EC50 (95% CL; R
2
) 

(µM) 

EC50 (95% CL; R
2
) 

(µM) 

EC50 (95% CL; R
2
) 

(µM) 

Q. saponaria 51 (46-55; 0.89) 17 (14-20; 0.88) 13 (9.0-19; 0.83) 

aescin 350 (260-480; 0.64) 34 (25-46; 0.96) 25 (14-43; 0.68) 

digitonin 104 (89-120; 0.94) 7.5 (4.1-14; 0.92) 15 (9-22; 0.97) 

diosgenin 480 µM (24%)* 48 (32-73; 0.81) 202 (122-332; 0.71) 

 
* The highest concentration tested (480 µM) resulted in 24% loss of cell viability.  

Data are given as median response values together with the 95% confidence interval (both in µM) and 
the R2 as accuracy of data fitting to the sigmoid curve model after Prism v4.  
 

 

3.4.3 Saponins cause cell membrane permeation 

S2, Bm5 and CF-203 cells exposed during 48 h to Q. saponaria saponin showed clear signs of 

membrane permeation leading to cell death. The effect was dose-dependent with an LC50 of 

44 µM (95% CL: 36-53 µM; R2 = 0.88) for S2 cells (Fig. 3.2A), 11 µM (95% CL: 8.4-14 µM; 

R2=0.90) for Bm5 (Fig. 3.2B) and 8.6 µM (95% CL: 7.8-9.5 µM; R2=0.98) for CF-203 cells.  
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Figure 3.2A, B. Dose-response curves on the biological activities of Quillaja saponaria saponin in 
Drosophila melanogaster S2 (A) and Bombyx mori Bm5 cells (B) for EcR antagonism (IC50), cell 
viability in a MTT assay (EC50), and cell permeation in a trypan blue (TB) assay (LC50). Data are 
given as median response values together with the 95% confidence interval (both in µM) after sigmoid 
curve fitting in Prism v4. 
 

 

For experiments with shorter periods of time, exposure of S2 cells to Q. saponaria saponins at 

500 µM for 15 s already resulted in 62.2±6.5% cell toxicity compared to the untreated control 

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5
0

25

50

75

100

125
EcR antagonism

MTT

TB

Log conc (M)

%
 r

e
s
p

o
n

s
e

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5
0

25

50

75

100

125
EcR antagonism

MTT

TB

Log conc (M)

%
 r

e
s
p

o
n

s
e



 72 

cells. After 1 min this had further increased to 99.7±0.1%, confirming the cell permeation 

effect was very rapid. After 15 min, cell toxicity was complete (100±0.0%). Lepidopteran 

Bm5 and CF-203 cells were also incubated during short intervals of 1 min, and these 

experiments gave an immediate total mortality at 50 µM for both cell lines, confirming the 

rapid cell permeation effects of Q. saponaria saponins.  

 

When the medium containing 500 µM saponin was removed after 15 s and replaced with 

saponin-free medium, an S2 cell toxicity rate of 62.2±6.5% was recorded which did not 

significantly (p>0.05) change for at least 3 h after treatment. Even at 24 h after the medium 

change, the percentage of dead cells had not significantly changed (53.0±16.2%; p=0.6), 

indicating that the permeation effects by saponin were permanent and could not be reversed 

by removing the saponins from the medium.  

 

3.4.4. 20-Hydroxyecdysone at 500 nM and saponins at low concentrations induce 

caspase-3 like activities 

Incubation of S2 cells with 20E at 500 nM resulted in a significant increase of the caspase-3 

like enzyme activity to 456% of control cells (Table 3.3). In parallel, saponins at low 

concentrations of 10-20 µM caused a low but significant (p<0.05) increase in caspase-3 like 

activity: for Q. saponaria saponins (at 10 µM) the activity was 36% higher than in the 

untreated control cells, for aescin (18 µM) 85%, for digitonin (16 µM) 23% and finally for 

diosgenin (48 µM) 62% (Table 3.3). 

 

 
Table 3.3. Increase in caspase-3 like activities as percentage of the untreated control (=100%) upon 
exposure during 24 h of Drosophila melanogaster S2 cells to 20-hydroxyecdysone at 500 nM and the 
four saponins Quillaja saponaria (10 µM), aescin (18 µM), digitonin (16 µM) and diosgenin (48 µM). 
 

Treatment mean activity (%) st. dev. p-value 

20E 456 208 0.03 

Q. saponaria 136 8 0.002 

aescin 185 18 0.001 

digitonin 123 8 0.01 

diosgenin 162 16 0.003 

 
Data are expressed as mean ± SD based on three replicates together with the p-value after a Student’s 
t-test. 
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3.4.5. Saponins cause DNA fragmentation upon exposure at low concentrations  

As shown in Fig. 3.3, DNA isolation of S2 cells exposed to 20E (500 nM) and low 

concentrations of saponins, as described above for caspase-3 like activity induction, 

confirmed that these concentrations caused DNA fragmentation, leading to apoptosis. The 

effect was strongest for Q. saponaria saponins and aescin, but was observed for all four 

saponins.  

 

DNA isolation of Bm5 and CF-203 cells exposed to concentrations of saponins that induced 

low percentages of cytotoxicity in the MTT bioassays (Q. saponaria 10 µM, aescin 18 µM, 

digitonin 16 µM and diosgenin 48 µM) also confirmed that these concentrations caused DNA 

fragmentation, leading to apoptosis. Here, the effect was strongest for Q. saponaria saponin 

and digitonin (for both cell lines), but was observed for all four saponins (data not shown). 

 

 

     

 

 
Figure 3.3. Agarose gel electrophoresis pattern of Drosophila melanogaster S2 cells showing DNA 
fragmentation upon exposure for 24 h to the insect moulting hormone 20E at 500 nM and the four 
saponins Quillaja saponaria (10 µM), aescin (18 µM), digitonin (16 µM) and diosgenin (48 µM).  
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3.4.6. Addition of cholesterol counteracts the effects of saponins 

In both the EcR response and the MTT and trypan blue viability tests, addition of cholesterol 

in a 1:1 saponin:cholesterol ratio was seen to partially reduce the effects of saponins on S2 

and Bm5 cells (Table 3.4). Based on medium response values (IC50’s and EC50’s), in the 

presence of cholesterol the detrimental effects of saponins became visible at about 4 times 

higher concentrations than with saponins alone. Addition of cholesterol by itself had no effect. 

 

 

Table 3.4. Biological activity of the four saponins (Quillaja saponaria, aescin, digitonin and 
diosgenin) when combined at 1:1 with cholesterol in Drosophila melanogaster S2 and Bombyx mori 
Bm5 cells for EcR antagonism (IC50) and cell viability in an MTT assay (EC50).  
 

 S2 Bm5 

Saponin IC50 (95% CL; R
2
) (µM) IC50 (95% CL; R

2
) (µM) 

Q. saponaria 74 (41-136; 0.44) 15 (12-20; 0.93) 

aescin 113 (73-174600; 0.68)  

digitonin 160 µM (15%)*  

diosgenin 114 (68-190; 0.76)  

   

Saponin EC50 (95% CL; R
2
) (µM) EC50 (95% CL; R

2
) (µM) 

Q. saponaria 100 µM (44%)* 47 (24-96; 0.52) 

aescin --  

digitonin 959 (335-2745; 0.71)  

diosgenin 480 µM (12%)*  

 
* The highest concentration tested (in µM) resulted in % loss of cell viability as given between 
brackets.   
 

Data are given as median response values together with the 95% confidence interval (both in µM) and 
the R2 as accuracy of data fitting to the sigmoid curve model after Prism v4. 
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3.5. DISCUSSION 

 

Saponins are known to have a broad range of divergent biological activities. They have 

anticarcinogenic, anti-inflammatory, antioxidant, hemolytic, immunostimulant and 

membrane-permeabilising properties, can affect feed intake, growth and reproduction in 

animals, and are used as fungicides and molluscicides, as well as against some bacteria and 

viruses (Francis et al., 2002; Sparg et al., 2004). More importantly to this study, they have 

strong detrimental effects on insects, causing mortality, growth retardation and decreased 

fecundity (De Geyter et al., 2007b). It is generally expected that they play an important role in 

plant defence against predators and diseases. However, the exact mechanisms behind this 

insecticidal action are not yet completely elucidated.  

 

Steroidal saponins show structural similarities to the ecdysteroid insect moulting hormone 

20E. As various other plant derived secondary compounds have been shown to display 

agonistic, or antagonistic/competitive activity on the EcR receptor site for 20E, it has been 

proposed that saponins might trigger or inhibit EcR signalling and thereby interfere with 

insect ecdysis (Harmatha et al., 1987; Dinan et al., 2001). So far there is little proof 

supporting this hypothesis: two steroidal saponins, digitonin and aginosid, together with two 

additional leek flower saponins and some aglycones were tested for their direct effect on the 

EcR in a D. melanogaster BII assay by Harmatha & Dinan (1997), but none of the compounds 

showed significant agonistic or antagonistic activity. In another BII cell bioassay for 

ecdysteroid agonist and antagonist activities (Dinan et al., 2001), there were no saponins 

showing agonist activity, but few showed principal antagonistic activity. For both BII 

bioassays, it should be remarked that cell viability was scored as a measure of effect. In 

accordance to the latter data, our current experiments using ERE-dependent reporter 

constructs in transfected S2 and Bm5 cells clearly demonstrated that neither the two 

triterpenoid saponins (Q. saponaria saponin and aescin) nor the two steroidal saponins 

(digitonin and diosgenin) have any agonistic activity on the EcR complex. By contrast, the 

four saponins did show a strong antagonistic activity, significantly lowering the EcR response 

starting from concentrations of about 5-10 µM onwards; however, the experiment did not 

allow to conclude whether this is due to a true antagonistic activity on the receptor (EcR), or 

to other effects like loss of cell viability. In a similar case, data reported by Soin et al. (2008) 

did not support JH analogs (JHAs) acting through a direct modulation of the activity of the 

EcR transcription complex, because the ‘antagonism’ of EcR activity by JHAs correlated with 



 76 

cytotoxicity.  

 

In order to confirm whether the antagonistic activities observed with the four saponins could 

be the result of a more general cytotoxicity effect, cell viability assays were conducted using 

MTT as a substrate (Decombel et al., 2004). The MTT method is a colourimetric method that 

measures the reduction of a tetrazolium component (MTT) into a formazan product by viable 

cells. Metabolism in viable cells produces ‘reducing equivalents’ like NADH and NADPH. At 

death, cells rapidly lose the ability to reduce tetrazolium products; the production of the 

coloured formazan product is therefore proportional to the number of cells in culture (unless 

metabolic processes in the cells have changed). In our observations, the decreases in EcR 

response and in cell viability with increasing saponin concentrations were very similar for 

both S2 and Bm5 cells (Fig. 3.2), which led to the conclusion that the lowered EcR response 

in the insect cells is due to general cell toxicity rather than to a true antagonistic activity. As a 

consequence, we propose that older reports on EcR-antagonism by diverse saponins should be 

reinvestigated taking into account cytotoxicity effects.  

 

To explain more in detail the mechanism of loss of cell viability by saponins, we tested the 

effects of Q. saponaria saponins in a trypan blue permeability assay. Trypan blue dye can 

enter cells only through damaged plasma membranes, staining the entire cell blue. Many 

saponins have been shown to permeabilise the plasma membrane in yeast, bacterial and 

mammal cells by interacting with membrane sterols (Polacheck et al., 1991; Leung et al., 

1997; Armah et al., 1999; Levavi-Sivan et al., 2005). Digitonin and its analogs were shown to 

be able to cause membrane damage by binding to the cholesterol in liposomes (Nishikawa et 

al., 1984). But although saponins are broadly used as permeabilizing agents in the medical 

sector (Mick et al., 1988; Humbel et al., 1998; Baumann et al., 2000), the exact mechanism 

by which they allow the entrance of molecules into the cell and the extent of reversibility of 

this process are still being discussed (Melzig et al., 2001; Levavi-Sivan et al., 2005). The 

formation of non-specific ‘pores’ seems to be the most generally recognized mode of action 

(Armah et al., 1999), but Levavi-Sivan et al. (2005) suggested rearrangement of membranes 

rather than pore formation as the mechanism of action of Q. saponaria saponins. Also, in 

many cases, different saponins show different or specific effects (Sung et al., 1995; Leung et 

al., 1997; Menzies et al. 1999; Levavi-Sivan et al., 2005). In our results, the MTT viability 

tests clearly indicated that both steroidal and triterpenoid saponins have strong cytotoxic 

effects on the embryonic S2 cells at concentrations of 50-500 µM. Lepidopteran cell lines 
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show an even higher sensitivity to all four saponins under examination, with a concentration-

dependent loss of cell viability with EC50 values of 7-200 µM for both Bm5 and CF-203 cells. 

In accordance with these observations, the trypan blue experiments confirmed that the 

saponins cause a permeabilisation of the cell membrane because the dye could enter the cells. 

These effects work very fast and can be perceived in S2 cells after less than 15 seconds. Here, 

it was also of interest that replacement of the Q. saponaria saponin-treated medium with fresh 

untreated medium after 15 s of incubation did not allow the insect cells to recover, suggesting 

a pore formation rather than a rearrangement of the cell membrane by the saponin treatment. 

In conclusion, the current data are strong indicatives that permeabilisation is the primary 

cause of the cytotoxicity -- or a direct result of it -- as the numbers of perforated cells in the 

trypan blue assay correspond closely with the loss of metabolic activity in the MTT assays 

(Fig. 3.2). 

 

A second interesting observation associated with the current experiments was that there was a 

small discrepancy between the dose-response curves for EcR responsiveness and the cell 

viability assays. According to the apoptosis experiments (see below), this can be explained by 

the caspase-3 like activity caused by 20E. Indeed at 500 nM, which is the concentration used 

for activating the ecdysteroid response in the EcR-antagonist bioassay, 20E caused an increase 

of caspace-3 like activity to 456% of untreated control cells. Thus, because of the induction of 

caspase-3 like activity, 20E could ‘sensitize’ the cells to the effects of the saponins. 

 

To test the ability of saponins for inducing caspase-3-dependent apoptosis, as reported before 

in mammalian cells (Haridas et al., 2001; Chwalek et al., 2006; Niu et al., 2008), we exposed 

the cells to concentrations of saponins that induced low percentages of cytotoxicity in the 

MTT bioassays and tested for caspase-3 like activities as well as for induction of DNA 

fragmentation. We found increased caspase-3 like activity for all four saponins in S2 cells, 

indicating an additional apoptosis-inducing effect of saponins. This is backed up by the results 

of the DNA fragmentation assay, where all saponins show signs of fragmentation in all three 

cell lines (Fig. 3.2). 

 

Apart from the two abovementioned, several other potential modes of action to explain the 

insecticidal activity of saponins have been brought forward in literature. One of them is that 

saponins can bind (phyto)sterols in the food, thus hindering the uptake of necessary sterol 

precursors by the insect (Shany et al., 1970) and interrupting the biosynthesis of ecdysteroids 
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(Harmatha, 2000). According to Harmatha et al. (1987), adding extra cholesterol (or other 

sterols) to the food can counter the effects of saponins. In our experiments, addition of 

cholesterol in a 1:1 saponin:cholesterol ratio was proven to successfully counteract the effects 

of saponins on the cell cultures, but only within a limited range: if the concentration of 

saponins and cholesterol was increased by four times or more, the protective effect of the 

cholesterol was lost and we saw a dose-dependent decrease in cell viability like before. Once 

again, the mode of action for this ‘postponing’ effect is unclear. Since saponins are known to 

form insoluble complexes with cholesterol in water (Mitra & Dungan, 2000), we presume that 

the additional cholesterol in the medium will bind with the saponins and thus prevent them 

from affecting the cells. But since the ratio saponin:cholesterol stayed the same in all 

treatments, this does not explain why the effect was lost at higher concentrations. Another 

hypothesis is that the availability of cholesterol in the medium helps to maintain the integrity 

of the cell membranes: since cholesterol is an essential part of the membrane, perhaps early 

damage caused by binding of saponins can be restored more easily in the presence of high 

cholesterol levels. This is in agreement with the observation that the mechanism of action of 

certain saponins on fungi has been found to be due to the detergent function via interaction 

with sterols in the cell membrane (Armah et al., 1999), and that fungi without sterols in the 

membrane are highly resistant to saponins (Arneson & Durbin, 1967). It would explain the 

limited range in which cholesterol works, since there is a limit to the cells’ recuperation 

capacities; however, to successfully determine the exact nature of the interactions between 

saponins and cholesterol, further research will be needed.  

 

The concurrence between the results on Drosophila S2 cells and on lepidopteran Bm5 and 

CF-203 cells supports the hypothesis that the basic mechanism of action of saponins on insect 

cells is universal and does not depend on insect order or tissue origin of the cells, although the 

sensitivity of the cells to the saponins differs significantly, with both lepidopteran cell lines 

being about 2-4 times more sensitive than the dipteran S2 cells. It is possible that this is due to 

larger cells having a larger membrane surface and thus being more susceptible to the 

permeating effects of saponins; both Bm5 and CF-203 cells are relatively large with a 

diameter of 20-25 µm, whereas the smaller S2 cells measure only 5 µm. Another possibility is 

that the cell lines differ in membrane composition, for example a higher concentration of 

membrane sterols; but unfortunately, we do not possess the chemical data for an in-depth 

analysis. 
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As a general conclusion, our results do not support a role for steroidal and triterpenoid 

saponins acting directly as agonists, nor as true antagonists on the EcR complex. Instead, our 

data confirmed that these saponins cause cytotoxicity by a rapid and stringent permeation of 

the insect cell membrane. The discrepancy between the dose-response curves for EcR 

antagonism and cell viability can be due to the induction of caspase-3 like activity, leading to 

cell death, by the 500 nM of 20E used in the EcR responsiveness assays. We also found that 

low concentrations of saponins can induce caspase-3 like activity and DNA fragmentation (to 

be shown) in exposed insect cells, and finally, addition of cholesterol to the cell medium can 

counteract the effects by saponins. 

 



 80 

 

 

 

 

Chapter 4 

Triterpene saponins of Quillaja saponaria show 

strong aphicidal and deterrent activity against the 

pea aphid, Acyrthosiphon pisum, and the cotton 

leafworm, Spodoptera littoralis 
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4.1. ABSTRACT 

 

Saponins are a class of secondary plant metabolites consisting of a sugar moiety 

glycosidically linked to a hydrophobic aglycone (sapogenin) that often possess insecticidal 

activities. Four saponins were selected: two triterpene saponins, Quillaja saponaria saponin 

and aescin, and two steroidal saponins, digitonin and diosgenin (the deglycosylated form of 

dioscin). The triterpene Q. saponaria bark saponin received special attention because of its 

high activity and availability. Their effects were investigated on two important pest species: a 

model piercing-sucking insect, the pea aphid Acyrthosiphon pisum, and a biting-chewing 

insect, the cotton leafworm Spodoptera littoralis. Aphids were challenged by oral and contact 

exposure to demonstrate aphicidal activities, and in choice experiments to support use as a 

natural deterrent. In addition, we tested the entomotoxic action of Q. saponaria saponin with 

primary midgut cell cultures and larval stages of S. littoralis.  

 

When aphids were exposed to supplemented artificial diet for 3 days, a strong aphicidal 

activity was recorded for three of the four saponins, with an LC50 of 0.55 mg/ml for Q. 

saponaria saponin, 0.62 mg/ml for aescin and 0.45 mg/ml for digitonin. The LT50 values 

ranged between 1 and 4 days, depending on the dose. For diosgenin, only low toxicity (14%) 

was scored for concentrations up to 5 mg/ml. In choice experiments with treated diet, a 

deterrence index of 0.97 was scored for Q. saponaria saponin at 1mg/ml. In contrast, direct 

contact showed no repellent effect. Spraying of Vicia faba bean plants with Q. saponaria 

saponin resulted in an LC50 of 8.2 mg/ml. Finally, histological analysis in aphids fed with Q. 

saponaria saponin demonstrated strong aberrations of the aphid gut epithelium. In S. 

littoralis, Q. saponaria saponin caused cytotoxicity in primary midgut cell cultures of S. 

littoralis (EC50 4.7 µM or 0.009 mg/ml) and killed 70-84% of larvae at pupation at a dose of 

30-70 mg/g, while lower concentrations retarded larval weight gain and development. 

 

The present insect experiments provide strong evidence that saponins, as tested here with 

triterpene Q. saponaria saponin, can be useful as natural insecticides and deterrents. 

Furthermore, primary midgut cell cultures of S. littoralis and histological analysis of the aphid 

midgut suggested the insect midgut epithelium to be a primary target of saponin activity. 
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4.2. INTRODUCTION 

 

The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae) is an important 

cosmopolitan pest that feeds on a wide range of legume plants, including many agricultural 

crops in large parts of the world. In addition, it can act as a vector for more than 30 plant virus 

diseases (Blackman & Eastop, 2000). The species is frequently used as a model organism and 

representative for the aphids, and recently its entire genome sequence has been published (The 

International Aphid Genomics Consortium, 2010). Pest control of A. pisum is challenging 

because the long-term use of synthetic broad-spectrum insecticides has led to the widespread 

development of resistance; in addition, aphids are considered to be insensitive to treatments 

with the insecticidal toxins of Bacillus thuringiensis Berliner (Sharma et al., 2004). Therefore, 

together with an increasing public awareness and concerns regarding pesticide safety and 

possible damage to the environment, scientists and companies are on a constant search for 

new, natural insecticides (Edwards et al., 2008).  

 

The insect order of the Lepidoptera also contains many very important pest species, against 

which the current insecticides are poorly effective due to development of high levels of 

resistance; therefore, demands for new insecticides are high. Here in this project, S. littoralis 

was used as representative of the Lepidoptera as a major group of pest insects in agriculture, 

but by itself it is also an important cosmopolitan pest, causing high losses in agriculture due to 

its high polyphagous character with >40 host plants and the fact that many populations show 

high levels of resistance to nearly all insecticide groups (Alford, 2000). 

 

A potentially interesting class of natural molecules consists of the saponins, a group of 

secondary plant metabolites comprising a sugar moiety glycosidically linked to a hydrophobic 

aglycone (sapogenin), which may be triterpene or steroidal. They occur in a great number of 

plant species (mainly angiosperms), both wild plants and cultivated crops, and possess 

divergent biological activities, including a clear non-neurotoxic insecticidal activity against a 

broad range of pest insects (Sparg et al., 2004; De Geyter et al., 2007b; Vincken et al., 2007). 

The most commonly observed effects on insects are increased mortality, lowered food intake, 

weight reduction, retardation in development and decreased fecundity. Although the exact 

mode of action is not known, it is likely that they work through a combination of several 

activities. 
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In order to study the effects of saponins on the pea aphid, two triterpene saponins, Quillaja 

saponaria saponins and aescin, and two steroidal saponins, digitonin and diosgenin (the 

deglycosylated form of dioscin), were selected for this project (Fig. 3.1). After a first 

screening for toxicity, additional toxicity tests and choice bioassays were performed with the 

triterpene Q. saponaria saponins, which originate from the bark of the soapbark tree Q. 

saponaria, to examine in more detail the potential against aphids. The effects on the insect 

midgut in vivo were also evaluated by making microtome slides of intoxicated aphid guts. 

 

Finally, we determined the entomotoxic action of Q. saponaria saponins with primary midgut 

cell cultures and larval stages of the cotton leafworm Spodoptera littoralis, to confirm the 

insect midgut as a primary target tissue for entomotoxicity by saponins and the potential use 

of saponins as natural insecticides in the control of pest Lepidoptera.  

 

 

4.3. MATERIALS AND METHODS 

 

4.3.1. Chemicals 

Commercially available powder of Quillaja saponaria Molina bark saponins (see 3.3.1) and 

aescin (≥95%) were purchased from Sigma-Aldrich (Bornem, Belgium), and digitonin and 

diosgenin (the deglycosylated form of dioscin) (≥99%) from Chromadex Inc. (Irvine, CA). 

Other chemicals were of analytical grade unless otherwise mentioned.  

 

4.3.2. Insects 

Continuous colonies of Acyrthosiphon pisum and Spodotera littoralis are maintained under 

standardized conditions (23 ± 5°C, 65 ± 5% relative humidity, 16 h photoperiod) in the 

Laboratory of Agrozoology, Ghent University, Belgium. The aphids are reared on Vicia faba 

(L.) bean plants, and all bioassays were carried out using newborn nymphs of 0–12 h age 

(Christiaens et al., 2010). S. littoralis is kept on an agar-based artificial diet as described 

before (Iga & Smagghe, 2011); for experiments, newly moulted third instar catterpillars were 

used. 

 

4.3.3. Insect bioassays 

4.3.3.1. Aphid bioassays with oral exposure via artificial diet without and with choice 

For the no-choice aphid survival assays, artificial diet test cages were prepared as described 
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before (Sadeghi et al., 2007) by stretching a layer of parafilm over a hollow Plexiglas tube 

(diameter = 3 cm; height = 3 cm). On this first layer of parafilm, 100 µl of artificial diet was 

placed, and then a second layer of parafilm was stretched over the first to keep it sealed. The 

saponins were tested at different concentrations in the artificial diet, ranging between 0.01 and 

70 mg/ml for Q. saponaria saponins, 0.01 and 10 mg/ml for aescin, 0.1–10 mg/ml for 

digitonin and 0.1 and 5 mg/ml for diosgenin. Ten neonate (<12 h old) aphids were placed on 

this sachet, and a hollow plastic ring with a ventilation lid was placed on top of the tube to 

prevent insect escape (Fig. 4.1). The tubes were placed upside down in a six-well plate. For 

each treatment, three replicates were performed. Survival (expressed as the percentage of 

living aphids out of the total number of aphids treated) was scored at 24 h intervals for 3 days. 

The medium lethal concentrations (LC50) and medium lethal times (LT50) and the 

corresponding 95% confidence intervals (95% CI) were calculated in GraphPad Prism v.4 

(GraphPad Software, La Jolla, CA), as described previously (Smagghe et al., 2010); the 

accuracy of data fitting to the curve model was evaluated through examination of R2 values. 

 

 

 

 
Figure 4.1. No-choice toxicity bioassay test cages for Acyrthosiphon pisum. Aphids are placed inside 
the blue ring, between the double parafilm containing artificial diet and the lid. The cages are placed 
upside down in the incubator. 
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In addition to the above-mentioned no-choice assays, artificial diet test cages were prepared 

for the choice experiments as described above, except that two cages were connected to each 

other: one cage contained normal untreated artificial diet and the other contained artificial diet 

containing 0.1, 1 and 10 mg/ml of saponins. The two cages were placed with the openings 

opposite to each other, forming a 6 cm long tube with the sachet of artificial diet on both 

sides. Ten neonate (<12 h old) aphids were placed inside each tube, and the tubes were placed 

into the incubator in a horizontal position so that the aphids could easily walk from one side to 

the other. For each concentration, three replicates of ten aphids starting on the diet with 

saponin and three replicates of ten aphids starting on the control diet were performed. After 24 

h, the number of living aphids and the number of aphids on each sachet (saponin-containing 

versus control diet) were counted. A deterrence index 

DI = (C − T) / (C + T)  

where C is the number of aphids on the control diet and T is the number of aphids on 

the saponin-containing diet, was calculated as described previously (Zapata et al., 2010). 

 

4.3.3.2. Aphid bioassays for repellent/deterrent activity on contact exposure 

To investigate the repellent/deterrent activity of Q. saponaria saponins via contact, neonate 

(<12 h old) aphids were exposed to the saponin by direct contact on inert material. Glass 

plates (10 × 10 cm) were painted with a paintbrush on half their surface with an aqueous 10 or 

100 mg/ml saponin solution, and on the other half with water, and then left to dry at room 

temperature in a fume hood. Subsequently, ten neonate aphids were placed in the arena, and a 

petri dish (diameter = 9 cm) was placed upside down on the glass plate to prevent insect 

escape. For each concentration, three replicates of ten aphids were performed with insects put 

on the saponin-treated surface, and a further three replicates of ten aphids with insects put on 

the water-treated control surface. The numbers of aphids on the saponin-treated and water-

treated control sides were counted every 15 min in the first hour, and then at 60 min intervals 

up to 7 h. The DI was then calculated as described above in Section 2.4.1. 

 

4.3.3.3. Aphid bioassays with exposure after spraying of bean plants without and with 

choice 

To evaluate the use of Q. saponaria saponins when applied to living plant material, freshly 

cut V. faba bean leaves were sprayed by hand with an aqueous saponin solution (1, 10 and 

100 mg/ml) and then left to dry in a fume hood at room temperature. Subsequently, the leaves 

were placed individually in a petri dish (diameter = 9 cm) with wet cotton wool, as described 
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before (Shahidi-Noghabi et al., 2008). Ten neonate (<12 h old) aphids were placed on each 

leaf, and three replicates were undertaken for each concentration in this no-choice experiment. 

 

In parallel, a choice experiment was set up with two freshly cut V. faba bean leaves, where 

one was sprayed with Q. saponaria saponin solution and the other with water. The leaves 

were placed as above in a petri dish (diameter = 9 cm) with wet cotton and with a 2 cm 

distance between each other. Ten neonate (<12 h old) aphids were placed on each leaf. For 

each concentration, three replicates (n = 10 aphids) starting on saponin-sprayed leaves and a 

further three replicates of ten aphids starting on water-sprayed leaves were performed. After 

24 h, the number of living aphids and the number of aphids on each leaf were counted, and the 

DI was calculated as above. 

 

4.3.3.4. Caterpillar bioassays with oral exposure via artificial diet without choice 

Newly moulted (0-6 h) third instars of S. littoralis were fed on Stonefly Heliothis artificial 

diet containing different concentrations of Q. saponaria saponin (at 10, 20, 30, 50 and 70 

mg/g) until pupation; control series were fed with untreated diet (Iga & Smagghe, 2011). At 

the start of the experiment, the mean fresh weight of the third instars over the different series 

was 2.5±0.5 mg (P>0.05). Insects were followed until pupation and adult formation, and data 

were analysed as before with a Student’s t-test (Smagghe & Degheele, 1994). Per 

concentration of saponin, three replicates of 10 larvae were scored. In addition, the median 

toxicity concentration (LC50), which is the concentration needed to kill 50% of the insects 

treated, with corresponding 95% CL and R2 values were calculated with Prism v4 as 

described above. 

 

4.3.4. Histological analysis of midgut aberrations in intoxicated aphids 

Neonate aphids were fed on artificial diet containing 10, 1 or 0.1 mg/ml of Q. saponaria 

saponins for 24 h. Subsequently, the insects were fixed in 4% formaldehyde solution for 48 h, 

dehydrated in an ethanol series (70, 95, 99 and 100%) and butanol and finally embedded in 

paraffin. Serial sections of 10 µm thickness were cut using a microtome (Jung AG, 

Heidelberg, Germany), essentially as described before (Smagghe & Degheele, 1994). After 

dewaxing and mounting, slides were analysed under an Olympus BX51 fluorescence 

microscope (Olympus, Aartselaar, Belgium). Digital images were acquired using an Olympus 

Color View II camera (Olympus, Belgium) and further processed with Olympus analySIS 

cell-F software (Olympus Soft Imaging Solutions, Münster, Germany). 
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4.3.5. Primary culture of midgut cells of S. littoralis 

Primary midgut cell cultures were prepared from actively feeding fourth instars of S. littoralis. 

Briefly, dissected midguts were obtained as described in Hakim et al. (2009) and cells 

dissociated for 1.5 h with 2 mg/ml of collagenase (Type I-AS, Sigma) in insect physiological 

solution (Cermenati et al., 2007). Cells were recovered and resuspended in unsupplemented 

Grace’s insect cell culture medium (Gibco) and incubated for 15 h at 23°C with different 

concentrations of Q. saponaria saponins; control cells were incubated with equal amounts of 

PBS. After incubation, two aliquots of each sample were tested for viability with PrestoBlue 

Cell Viability Reagent (Invitrogen) according to manufacturer’s instructions (Invitrogen). 

LC50’s (median lethal concentration values on cell viability) and corresponding 95% CL and 

R2 values were calculated with Prism v4 as described above. 

 

For confocal analysis, intoxicated and control cells, after 5 h of incubation, were rinsed in 

PBS, fixed 15 min with 4% para-formaldehyde in PBS, rinsed 3 times with PBS, 

permeabilised 5 min with 0.1% (v/v) Triton X-100 and rinsed again 3 times with PBS. Actin 

filaments were labelled by incubating cells 30 min with 4 µg/ml TRITC-phalloidin (Sigma). 

After 3 rinses with PBS, samples were mounted in Vectashield Mounting Medium (Vector 

Laboratories) and examined under a confocal laser scanning microscope (Nikon A1r; Nikon 

Instruments Inc., Paris, France) as described before (Staljanssens et al., 2011). 

 

 

4.4. RESULTS 

 

4.4.1. Insect bioassays 

4.4.1.1. Aphid bioassays with oral exposure via artificial diet without and with choice 

Exposure of A. pisum to saponins incorporated into artificial diet without choice affected 

aphid survival in a concentration-dependent manner. After 3 days, 46 and 100% mortality 

were scored with Q. saponaria saponins at 1 and 3 mg/ml respectively; sigmoid curve fitting 

estimated an LC50 of 0.55 mg/ml (Table 4.1; Fig. 4.2). Concentrations of 1 mg/ml also caused 

sublethal effects, with the remaining aphids being smaller (ca 50%) than the controls. For 

aescin and digitonin, the respective LC50 values were 0.62 and 0.45 mg/ml after feeding for 3 

days on artificial diet (Table 4.1). With aescin, concentrations of 1 and 10 mg/ml caused 78 

and 100% mortality, whereas 76 and 100% mortality were realised with digitonin at 1 and 5 

mg/ml respectively. In contrast, only 14% mortality was scored for the highest concentration  
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Figure 4.2. Induction of aphid mortality by Quillaja saponaria saponins in the pea aphid 
Acyrthosiphon pisum. Concentration-response curve after three days of feeding on treated artificial 
diet. Mortality percentages are based on 2-3 repeated experiments, each consisting of three groups of 
10 neonates each; a total of 60-90 aphids was tested per concentration. Data are corrected for mortality 
in the controls (0-20%) using Abbott’s formula. Statistical analysis and graph were generated with the 
GraphPad Prism 4.0 software. 
 

 

Table 4.1. Aphid mortality against the pea aphid Acyrthosiphon pisum for two triterpene saponins 
(Quillaja saponaria saponins and aescin) and two steroidal saponins (digitonin and diosgenin).  
 

Saponin LC50 (mg/ml) 95% CI (mg/ml) R
2
 

Q. saponaria 0.55 0.32 - 0.96 0.94 

aescin 0.62 0.43 - 0.91 0.91 

digitonin 0.45 0.18 - 1.12 0.84 

diosgenin (18% with 5 mg/ml) * - - 

 
* % toxicity with highest concentration tested (given between brackets). 

Data are expressed as as median response (LC50) values (as mg/ml in the artificial diet) together with 
the corresponding 95% confidence interval and the R2 as accuracy of data fitting with Prism4. 
 

 

of diosgenin tested (5 mg/ml). Under these no-choice conditions in treated artificial diet, the 

Q. saponaria saponins also proved to work rapidly, with an LT50 of 1.3 days calculated for 3 

mg/ml (0.9–1.7; R2 = 0.93). For lower concentrations, 50% mortality of exposed aphids was 

reached after 1.8 days (1.4–2.3; R2 = 0.89) with 2 mg/ml and after 3.7 days (3.9–4.3; R2 = 
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0.77) with 1 mg/ml. 

 

In the choice experiments with treated and control artificial diet, a high DI value of 0.96–0.97 

was measured after 24 h for Q. saponaria saponins at 1 and 10 mg/ml. No or very few aphid 

neonates (0–1 aphids) were present on the diet containing saponins. Interestingly, the DI 

effects were equal when aphids were placed on the saponin-containing diet or on the water-

treated control diet at the start of the assay. Lower concentrations of 0.1 mg/ml of Q. 

saponaria saponins induced a lower, but still significant, deterrent activity of 62% (DI = 

0.62), while control experiments showed a balanced distribution (DI = 0.10 ± 0.09). 

 

4.4.1.2. Aphid bioassays for repellent/deterrent activity on contact exposure 

In the experiments where glass plates were painted with Q. saponaria saponins on one side 

and water on the other side, the aphid neonates showed no signs of repellent/deterrent activity 

in any of the cases (DI= −0.1) (data not shown). 

 

4.4.1.3. Aphid bioassays with exposure after spraying of bean plants without and with 

choice 

When fresh V. faba bean leaves were sprayed with an aqueous solution of 100 mg/ml of Q. 

saponaria saponins in a no-choice set-up, 78% aphid mortality was already achieved within 

the first day, and 100% after 2 days. After 72 h, lower concentrations of 3 and 10 mg/ml 

caused 37 and 51% mortality, respectively. An LC50 of 8.2 mg/ml (3.8–17.8; R2 = 0.84) was 

calculated for the exposure of aphids to V. faba bean leaves sprayed with Q. saponaria 

saponins after 3 days. 

 

In the choice experiments, none of the leaves sprayed with 100 mg/ml gave any aphid 

neonate, and this effect was visible immediately from the first day up to the end of the 

experiment after 3 days. For 10 mg/ml of saponin, the DI after 24 h was 0.53, whereas for 

concentrations of 3 mg/ml, or lower, no significant deterrent activity was observed (DI = 

0.09) (data not shown). As above, in the choice experiments with treated artificial diet, the DI 

effects were equal when aphids were placed on the saponin-sprayed leaf and when they were 

placed on the water-sprayed control leaf at the start. 
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4.4.1.4. Caterpillar bioassays with oral exposure via artificial diet without choice 

When third instars of S. littoralis were fed with Q. saponaria saponins at a dose of 30-70 

mg/g in the diet, there was a significant reduction (P<0.0001) of about 45-58% of the larval 

weight gain already after 1 day of treatment, and this negative effect continued during 

subsequent feeding. For instance, after 5 days the individual fresh weight of larvae treated 

with 30-70 mg/g saponin yielded only 36±4 mg (representing a significant average reduction 

in weight gain of 50%; P<0.0001) as compared to 69±7 mg in the controls. It was striking that 

there was also a slight reduction in weight gain (18-20%; P<0.01) after 5 days of feeding on 

diet supplemented with 10-20 mg/g saponin, even though those concentrations caused less 

than 10% mortality. The effect was most pronounced after 10-11 days, just before the control 

larvae started losing weight (Fig. 4.3 and 4.4). 
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Figure 4.3. Effect of different concentrations of Quillaja saponaria saponins on Spodoptera littoralis 
larvae after 10 days. Data are given as mean + SD for one experiment with three replicates. 
 

 

Together with a reduction in growth, the development of the larvae was also delayed. In the 

control series, all larvae had moulted into the fifth instar at day 6, and this was also the case in 

treatments with 10-20 mg/g saponin (92-100%), while conspicuously lower percentages of 

<30% of larvae treated with 30-70 mg/g saponin had moulted into the fifth instar. Two days 

later, at day 8, all larvae in the control had moulted in the last sixth instar, while this was the 

case with none exposed to a dose of 30-70 mg/g saponin. Later, at the moment of successful 



 91 

pupation in the controls, i.e. after 2 weeks, there was 70-84% mortality at pupation for 

concentrations of 30-70 mg/g saponin. With the lower concentrations of 10-20 mg/g, there 

was no loss of survival at pupation above the control; however, we observed a retardation in 

development in these larvae as it took 4-5 days longer from the third instar to the pupal stage. 

Sigmoid curve fitting using the percentages of loss of survival at pupation estimated an LC50 

of 44 mg/g (95% CL: 26-75 mg/g; R2=0.91) for Q. saponaria saponins in the diet. 

 

Later, after 1 month, the pupae developed into adults with successful hatching percentages of 

75-88% for the pupae of the control series and those fed with 10-20 mg/g saponin. In contrast, 

the pupae from the treatments with 30-70 mg/g were clearly affected as only 27-45% of these 

developed into the adult stage.  

 

 

 

 

Figure 4.4. Feeding of Quillaja saponaria saponins at 30 mg/g in the diet caused a strong inhibition of 
larval growth in Spodoptera littoralis (B) compared to controls (A). The photos were taken at 11 days 
of treatment. 
 

 

4.4.2. Histological analysis of midgut aberrations in intoxicated aphids 

As shown in Fig. 2, the integrity of the insect midgut epithelium of aphids fed on 10 mg/ml of 

Q. saponaria saponins was lost. The epithelium cell had collapsed and did not show defined 

cellular structures such as the nucleus or a plasma membrane. In contrast, the epithelium of 

the control sample was intact (Fig. 4.5). In aphids fed on the lowest saponin concentration of 
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0.1 mg/ml, the epithelium did not show any damage and was similar to that of the control 

aphids. 

 

 

 

 

Figure 4.5. Cross section through the thorax of first instars of the pea aphid (Acyrthosiphon pisum) 
after feeding for 24 h on artificial diet containing 10 mg/ml Quillaja saponaria saponins (A) as 
compared to untreated control diet (B). The arrows indicate that the midgut epithelium (Ep) was 
seriously damaged in the intoxicated aphids as the cell membranes were broken and the cell content 
spilled into the gut lumen (Lum), while the midgut epithelium in the control samples was intact. 
BL=basal lamina; bar = 60 µm.  
 

 

4.4.3. Q. saponaria saponin caused cytotoxicity in primary midgut cell cultures from S. 

littoralis larvae 

With primary midgut cell cultures of S. littoralis, Q. saponaria saponins caused clear 

symptoms of cytotoxicity. The effect was concentration-dependent, and sigmoid curve fitting 

allowed to calculate an EC50 of 4.7 µM (95% CL: 3.1-7.1 µM; R2=0.93) or 0.009 mg/ml.  

 

Under the confocal fluorescence microscope, the cells exposed to 100 µM (0.2 mg/ml) of Q. 

saponaria saponins for 5 h showed a strong blebbing and damaged basolateral membrane, as 

shown by the absence of an intact actin network next to the basolateral cell edge. In contrast 

the control cells showed a large nucleus in the cell centre and intact membrane all around the 
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cell as confirmed by the actin staining. The intoxicated cells were not swollen and the actin 

staining confirmed the presence of the microvilli, as was observed in the controls (Fig. 4.6). 

 

 

 

 

Figure 4.6. Primary midgut cell cultures of last instars of Spodoptera littoralis under the confocal 
fluorescence microscope, after exposure with 100 µM (0.2 mg/ml) of Quillaja saponaria saponins. 
Treated cells show clear symptoms of cytotoxicity, most notably a distorted membrane, blebbing and 
apoptotic bodies. In contrast the control cells showed a large nucleus in the cell centre and intact cell 
membrane. The intoxicated cells were not swollen and the actin staining confirmed the presence of the 
microvilli, as was observed in the controls.  
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4.5. DISCUSSION 

 

In the light of the ever-growing problem of insect resistance against the most commonly used 

groups of insecticides, there is much interest in the development of new pesticides to slow 

down the trend towards resistance build-up. Botanical insecticides are often seen as good 

alternatives for synthetic chemical products because they often have lower mammalian 

toxicity and environmental persistence, and therefore pose fewer risks to non-target organisms 

and human health (Isman, 2006). 

 

Saponins cause a rapid and significant decline in aphid survival, with LC50 values ranging 

between 0.45 and 0.65 mg/ml for three of the four saponins tested. In comparison, the two 

most notable selective aphicides on the market today are pymetrozine and flonicamid (applied 

as the formulated products Chess and Teppeki); both compounds act specifically against 

aphids as feeding inhibitors and have respective LC50 values of 0.24 and 0.01 µg/ml in 

artificial diet (Sadeghi et al., 2009b). Imidacloprid (LC50 = 0.03 µg/ml), a broad-spectrum and 

strongly systemic neonicotinoid insecticide targeting the nicotinic acetylcholine receptor 

(nAChR), is also often used against a large variety of pest insects, including sucking pest 

insects such as aphids and whiteflies; however, its intensive use has been leading to high 

levels of resistance in many cases (Elbert et al., 2008). In addition, all these commercial 

aphicides have strong systemic properties which can lead to detrimental side effects towards 

beneficial insects and pollinating insects (Tomlin, 2003; Mommaerts et al., 2010). In recent 

studies, Sadeghi et al. (2009a) reported, in similar assays, an LC50 of 0.35 and 0.70 mg/ml for 

two insecticidal mannose-binding lectins (GNA from snowdrop Galantus nivalis L. and ASA 

from Allium sativum L.) after feeding for 3 days on treated diet. Similarly, Shahidi-Noghabi et 

al. (2010) recorded an LC50 of 0.37 mg/ml for the entomotoxic type-2 ribosome-inactivating 

protein Sambucus nigra L. lectin SNA-I after 3 days.  

 

Similarly, saponins also cause high and rapid in vivo entomotoxic effects on larvae of S. 

littoralis (with 70-84% mortality at pupation for concentrations of 30-70 mg/g saponin), and 

in concentrations comparable to those which can be found in nature. In edible crops, saponins 

were reported in concentrations as high as 100 mg/g dry weight in tea seeds, 56 mg/g in chick 

peas, 40-60 mg/g in soybeans, 47 mg/g in spinach and 20-35 mg/g in pigeon peas (De Geyter 

et al., 2007b; Belitz et al., 2004; Kohata et al., 2004). In sublethal concentrations, they caused 

reduced weight gain and retardation of development. 
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These findings underlines the first objective of the present study, namely to confirm the 

intrinsic insecticidal activity of saponins, and are in accordance with many other studies on a 

large number of insect species that date back to the 1970s (for a review, see De Geyter et al. 

2007b). Although the required concentrations of saponins are higher than those of the above-

mentioned synthetic products, the fact that the saponins show rapid and high activities against 

A. pisum aphids and larvae of S. littoralis in the same order of magnitude as some 

entomotoxic proteins such as lectins under comparable conditions in the laboratory suggests 

that they represent potentially valuable leads for alternative agents in the control of aphids and 

other pest insects. Additionally, it can be expected that there are no or reduced risks for side 

effects in pollinating insects such as bees and bumblebees, as the non-systemic characteristics 

of saponins will prevent them from accumulating in the pollen and nectar in the way that 

compounds such as imidacloprid accumulate; however, such risk assessments still need to be 

completed. Thirdly, saponins have a mode of action that is different from all other insecticide 

groups, which is important if cross-resistance development is to be avoided in the struggle 

against insecticide resistance, of particular importance in aphids. Combined with their low 

mammalian toxicity, this makes them promising as potential natural alternatives for 

exploitation in pest control.  

 

In addition to insect toxicity, a strong deterrent activity from Q. saponaria saponins was also 

noticed. Deterrents (or antifeedants) are popular in the search for ecologically friendly 

insecticide alternatives, as they work by changing the behaviour of the insect pest and pose no 

threat to beneficial insects or natural enemies.  Such behaviour-changing insecticides have 

been receiving more attention in recent years (Isman, 2006; Cook et al., 2007; Koul, 2008; 

Nerio et al., 2010). Products that combine a deterrent activity with toxicity effects are even 

more interesting, because they can both prevent new insects from settling and reduce 

populations that were already on the plant. When faced with a choice between artificial diet 

with or without harmful amounts of Q. saponaria saponins, A. pisum showed an immediate 

and very pronounced preference for diet without saponins, as demonstrated in the choice 

experiments. The effect is even visible (although less pronounced) at concentrations that have 

no known effects on survival or development, suggesting that the aphids are more sensitive to 

the taste effect of the saponins than to their toxicity. Nawrot et al. (1991) had already reported 

strong deterrent effects of aginosid, a steroidal saponin, against two species of caterpillars. 

The present results confirm that the effect is also apparent for triterpene saponins, even at 

sublethal concentrations. Correspondingly, Ferracini et al. (2010) recently proposed that 
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extracts containing saponin from the leaves of Aesculuspavia L. can prevent the infestation of 

Aesculus hippocastanum L. trees by leafminers (Cameraria ohridella Deschka & Dimic). 

 

Spraying Q. saponaria saponins of V. faba bean leaves confirmed the present results, 

demonstrating both a toxic and a deterrent action of Q. saponaria saponins against aphids. 

Szczepanik et al. (2001) reported earlier that dipping potato leaves for 5 s in aqueous 

solutions at various concentrations of extracted alfalfa saponins caused reduced food intake, 

growth rate and survival in larvae of the Colorado potato beetle (Leptinotarsa decemlineata 

Say). Similarly, Pemonge et al. (1997) could reduce destruction of stored products by two 

important Coleopteran pest species (Tribolium castaneum Herbst and Acanthoscelides 

obtectus Say) with the use of extracts from Trigonella foenum-graecum L., and found that the 

same effects could be achieved by topical application or addition to the diet of powdered 

leaves/seeds. These data prove that practical application of saponins is possible in the control 

of different pest insects; however, more experiments with different crops, products and 

methods of application and under practical conditions are needed before making firm claims. 

 

In spite of a long history and numerous studies on the subject, the exact mode of action of 

saponins has not been exactly determined, but it is likely that they work on more than one 

level. The present work pointed to the insect midgut as the primary target for saponin toxicity: 

the cells of the midgut epithelium were damaged or completely destroyed in aphids fed on Q. 

saponaria saponin (Fig. 4.5), and primary midgut cell cultures from S. littoralis larvae also 

showed high sensivity towards this saponin (Fig. 4.6). The insect midgut is an interesting 

target tissue because any detrimental effect on the midgut epithelium will lead to starvation, 

implying lower insect damage, and finally death of the intoxicated insect (Hakim et al., 2010). 

As saponins have been reported to cause lysis of erythrocytes and bacteria cells (Sparg et al., 

2004), and the present authors’ own experiments confirmed negative effects of Q. saponaria 

saponins on aphid midguts and primary midgut cell cultures from S. littoralis larvae, it is 

postulated that this midgut epithelium damage is due to destruction of the cell membranes, 

and that the subsequent insect mortality is the result of gut failure and starvation. Since this 

mechanism is different from the mode of action of Bacillus thuringiensis (Bt) in midgut cells, 

it can also be of help in the management of resistance against Bt (Tabashnik, 2008). In 

addition, because aphids are not sensitive to the toxins of Bt (Sharma et al., 2004), the current 

data suggest that saponins can represent important leads in the development of new alternate, 

environmentally friendly aphid control agents. 
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In conclusion, Q. saponaria saponins have a strong and fast-acting effect on the pea aphid A. 

pisum and the cotton leafworm S. littoralis, which is most probably due to a deterrent activity 

and the destruction of the cells of the insect midgut epithelium, causing the insect to starve 

and finally die. The results presented here provide further support for saponins playing a role 

in plant resistance to insect pest species and having potential as new, natural insecticides. 

However, substantial field testing will be required to verify the applicability of saponins in the 

control of pest insects, as well as an evaluation of the possible risks to beneficials and natural 

enemies within IPM. 
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The main aim of this work was to investigate the toxicity and mode of action behind the 

insecticidal activity of a number of steroidal and non-steroidal plant metabolites, and to 

explore their potential as alternative natural insecticides against two economically important 

pest insect orders: aphids (Hemiptera) and caterpillars (Lepidoptera). A number of 

ecdysteroids were screened using an in vitro cell-based reporter system to search for active 

compounds that showed agonist and antagonist interactions with the ecdysteroid receptor 

(EcR, the receptor of the steroidal insect moulting hormone 20E), followed by an in-depth 

study of the effects and mode of action of two steroidal and two non-steroidal saponins on 

three insect cell lines, and in vivo tests on living insects.  

 

5.1. Cell-based reporter bioassay for screening EcR activity 

In chapter 2, we employed an in vitro cell-based reporter bioassay for screening potential EcR 

agonistic and antagonistic compounds. We used insect cell lines of Schneider S2 cells of 

Drosophila melanogaster (Diptera) and Bm5 cells of Bombyx mori (Lepidoptera) that were 

transiently transfected with the reporter plasmid ERE-b.act.luc. We were able to confirm the 

validity of the bioassay by identifying one EcR agonistic (cyasterone) and one antagonistic 

compound (castasterone), and modelling their interaction with the ecdysone receptor 

confirmed these findings. However, the EcR activity of before mentioned compounds was low 

compared to commercial insecticides. 

 

5.2. Effects of saponins on insect cell cultures 

In chapter 3, we tried to identify the mode(s) of action of saponins on insect (cell)s, and to 

assess their potential as alternative insecticides. We investigated the effects of four 

commercially available saponins on one dipteran and two lepidopteran insect cell lines of 

different tissue origin, namely embryonic Schneider S2 cells of Drosophila melanogaster, 

ovarian Bm5 cells of Bombyx mori and midgut CF-203 cells of Choristoneura fumiferana, 

respectively.  

  

5.2.1 Saponins have no direct effect on the EcR receptor, but cause cell toxicity through cell 

membrare permeation 

Screening the saponins for ecdysteroid agonistic and antagonistic effects by using the cell-

based EcR reporter bioassay mentioned above showed that they have no agonistic activity. In 

contrast, all four saponins did cause a strong concentration-dependent loss of EcR response, 

starting from concentrations of about 5-10 µM onwards and leading to a total loss of activity 
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at concentrations of 100-200 µM for S2 and 10-50 µM for Bm5 cell lines, with median 

inhibitory concentrations (IC50’s) of 10-50 µM (S2) and 3-10 µM (Bm5).  

 

However, after comparing with an MTT cell viability assay (Decombel et al., 2004), we found 

that all four saponins also caused concentration-dependent cytotoxicity in all three cell lines. 

For the dipteran S2 cells, a strong cytotoxic effect was observed with EC50 values of 50-700 

µM; the two lepidopteran cell lines showed an even higher sensitivity to the saponins, with 

50% loss of cell viability at 7-200 µM. Since with increasing saponin concentrations, 

decreases in EcR response and in cell viability were similar for both S2 and Bm5 cells, we 

concluded that the lowered EcR response in insect cells is probably due to general cell toxicity 

rather than a direct antagonistic effect on the receptor.  

 

In addition, trypan blue bioassays revealed that incubating S2, Bm5 and CF-203 cells with Q. 

saponaria saponin for 48 h caused membrane permeation leading to cell death, and the effect 

was dose-dependent with an LC50 of 44 µM for S2 cells, 11 µM for Bm5 and 8.6 µM for CF-

203 cells. Furthermore, S2 cells subjected to 500 µM Q. saponaria saponin for shorter periods 

of time suffered 62.2±6.5% cell toxicity after exposure of 15 s; after 1 min this had further 

increased to 99.7±0.1%. For the lepidopteran cell lines, total mortality was achieved after 1 

min at 50 µM for both cell lines. These results confirm a strong and rapid cytotoxic effect due 

to permeation of the cell membrane.  

 

5.2.2 Saponins can cause caspase-3 like activity and DNA fragmentation at lower 

concentrations 

To identify additional causes of cytotoxicity, we exposed the cells to low concentrations of 

saponins and tested for induction of apoptosis by caspase-3 like activity and DNA-

fragmentation. We found a low but significant (p<0.05) increase in caspase-3 like activity in 

S2 cells for all four saponins at concentrations of 10-20 µM, as well as for 20E at 500 nM.  

 

In parallel, cells collected for DNA extraction confirmed that low concentrations of saponin 

cause DNA fragmentation leading to apoptosis. The effect was observed for all four saponins 

in all three cell lines, but it was strongest for Q. saponaria saponins and aescin in S2 cells and 

for Q. saponaria saponin and digitonin in Bm5 and CF-203 cells.  
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5.2.3 Addition of cholesterol can counteract the effects of saponins on insect cells  

To determine if the presence of cholesterol can influence the effects of saponins on insect 

cells, the EcR responsiveness, MTT and trypan blue bioassays were repeated with S2 and 

Bm5 cells in culture medium containing equal weight amounts of saponin and cholesterol. We 

found that addition of cholesterol in a 1:1 saponin:cholesterol ratio could successfully 

counteract the effects of saponins in all three tests, but only within a limited range: if the 

concentration of saponins and cholesterol was increased by four times or more, the protective 

effect of the cholesterol was lost and we saw a dose-dependent decrease in cell viability like 

before.  

 

5.2.4 Conclusions on cell cultures 

As a general conclusion on insect cell lines, our results do not support a role for steroidal and 

triterpenoid saponins as agonists, nor as direct antagonists acting on the EcR receptor. Instead, 

our data confirmed that these saponins cause cytotoxicity by a rapid and stringent permeation 

of the insect cell membrane. The small discrepancy between the dose-response curves for EcR 

antagonism and cell viability could be explained by induction of caspase-3 like activity by the 

500 nM of 20E used in the EcR responsiveness assays. We also found that low concentrations 

of saponins can induce caspase-3 like activity and DNA fragmentation in exposed insect cells. 

Finally, addition of cholesterol to the cell medium can partially counteract the effects of the 

saponins. 

 

The concurrence between the results on Drosophila S2 and lepidopteran Bm5 and CF-203 cell 

lines supports the hypothesis that the basic mechanism of action of saponins on insect cells is 

universal and does not depend on insect order or tissue origin of the cells, although the 

sensitivity of the cells to the saponins differs significantly, with both lepidopteran cell lines 

being about 2-4 times more sensitive than the dipteran S2 cells. It is possible that this is due to 

both Bm5 and CF-203 cells being 4-5 times larger in diameter than the S2 cells, since having 

a larger membrane surface could make cells more susceptible to the permeating effects of 

saponins.  

 

5.3. Effects of saponins on living insects 

In chapter 4, we studied the effect of saponins in vivo in two important pest insects, the pea 

aphid Acyrthosiphon pisum and the cotton leafworm Spodoptera littoralis. We used the same 

four saponins as before, with a focus on Q. saponaria bark saponin for its high activity and 
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availability. Aphids and larval stages of S. littoralis were challenged by oral and contact 

exposure with artificial food and sprayed plant leaves to determine the insecticidal activity.  

 

5.3.1 Saponins cause high mortality in A. pisum aphids and S. littoralis caterpillars 

Survival bioassays with artificial diet showed that saponins cause a rapid and significant 

concentration-dependent decline in aphid survival, with LC50 values ranging between 0.45 and 

0.65 mg/ml for three of the four saponins tested. For caterpillars, third instars of S. littoralis 

fed with Q. saponaria saponins at a dose of 30-70 mg/g in the diet showed a significant 

reduction in larval weight gain already after 1 day of treatment, and this negative effect 

continued during subsequent feeding. This eventually resulted in 70-84% mortality at 

pupation (sigmoid curve fitting estimated an LC50 of 44 mg/g). With lower concentrations of 

10-20 mg/g, there was no loss of survival at pupation above the control; however, we did 

observe a retardation in development in these larvae, as it took 4-5 days longer to go from the 

third instar to the pupal stage.  

 

These findings confirm the intrinsic insecticidal activity of saponins, and are in accordance 

with many other studies on a large number of insect species that date back to the 1970s (see 

Table 1.1, De Geyter et al., 2007b). Although the required concentrations of saponins are 

higher than for many synthetic products, the fact that saponins show rapid and high activities 

against A. pisum aphids and larvae of S. littoralis makes them potentially valuable leads for 

alternative agents in the control of aphids and other pest insects.  

 

5.3.2 Q. saponaria saponins have a deterrent effect on A. pisum aphids in choice-experiments 

using artificial diet, but no repellent activity by contact 

To investigate the potential repellent and deterrent activities of Q. saponaria saponins, we 

performed a number of choice experiments, observing insect behaviour on treated glass plates 

and their preference for saponin-treated vs untreated food. Results clearly showed that, when 

faced with a choice between artificial diet with or without harmful amounts of Q. saponaria 

saponins, A. pisum showed an immediate and very pronounced preference for diet without 

saponins for Q. saponaria at 1 and 10 mg/ml after 24 h. Further testing showed that lower 

concentrations of 0.1 mg/ml Q. saponaria saponins induced a lower, but still significant, 

deterrent activity of 62% (DI = 0.62). The fact that the effect is still visible at concentrations 

that have no known effects on survival or development suggests that the aphids are more 

sensitive to the taste than to the toxicity of the saponins, which might make them even more 
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promising candidates for crop protection.  

 

Next to testing deterrent activity through food, we also tried testing repellent activity on 

contact by exposing aphids to glass plates that were painted half with an aqueous Q. 

saponaria saponin solution, half with water. In contrast to the previous setup, we found that 

the test aphids in this case showed no preference for either side (DI= −0.1), not even at the 

highest concentration of 100 mg/ml saponin.  

 

5.3.3 Q. saponaria saponins also cause aphid mortality and deterrent activity when sprayed 

on bean plants leaves 

To evaluate the effects of Q. saponaria saponins when applied to living plant material, freshly 

cut Vicia faba bean leaves were sprayed with aqueous saponin solution. We found a very high 

activity for concentrations of 100 mg/ml saponin, where 78% aphid mortality was achieved 

within the first day and 100% on the second. Lower concentrations caused less pronounced 

effects; an LC50 of 8.2 mg/ml was calculated for exposure to V. faba bean leaves sprayed with 

Q. saponaria saponins after 3 days. This is higher than for artificial food, but the effect is still 

significant. 

 

In parallel, a choice experiment was set up with two freshly cut V. faba bean leaves, one 

sprayed with Q. saponaria saponin solution and the other with water. We found no aphid 

neonates on leaves sprayed with 100 mg/ml, and this effect was visible immediately from the 

first day up to the end of the experiment after 3 days. For 10 mg/ml saponin, we found a DI of 

0.53 after 24 h, which is again lower than for artificial food, but still proves that saponins are 

effective when sprayed on leaves.  

 

5.4. Histological analysis of midgut aberrations in intoxicated A. pisum and primary 

midgut cell cultures of S. littoralis confirms the midgut as a primary target for saponin 

activity 

We examined the midgut-specific effects of Q. saponaria saponins using primary midgut cell 

cultures from S. littoralis and microscopic slides of the A. pisum aphid gut. Results showed 

that Q. saponaria saponin caused clear symptoms of cytotoxicity in primary midgut cell 

cultures of S. littoralis, and this effect was concentration-dependent with an EC50 of 4.7 µM 

(0.009 mg/ml). Under the confocal fluorescence microscope, cells exposed to 100 µM (0.2 

mg/ml) of Q. saponaria saponin for 5 h showed strong blebbing and damaged basolateral 
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membranes, as shown by the absence of an intact actin network next to the basolateral cell 

edge. In contrast, the control cells showed a large nucleus in the cell centre and intact 

membrane all around the cell as confirmed by the actin staining.  

 

In order to observe the effect of saponins on the midgut of A. pisum treated with Q. saponaria 

saponin, aphids were fed on artificial diet containing saponins for 24 h. Microscopic 

observation of the microtome slides of aphids fed on 10 mg/ml of Q. saponaria saponin 

showed that the integrity of the insect midgut epithelium had been disrupted: the epithelium 

cells had collapsed and did not show defined cellular structures such as the nucleus or plasma 

membrane. In contrast, the epithelium of the control sample was intact. In aphids fed on low 

saponin concentrations of 0.1 mg/ml, the epithelium did not show any damage and was 

similar to that of the control aphids. 

 

These results clearly point to the insect midgut as the primary target for saponin toxicity: the 

cells of the midgut epithelium were damaged or destroyed in aphids fed on Q. saponaria 

saponin. The insect midgut is an interesting target tissue because detrimental effects on the 

midgut epithelium will lead to starvation, implying lower insect damage, and finally death of 

the intoxicated insect (Hakim et al., 2010).  

 

5.5. Future perspectives 

In this study, it has been shown that the tested saponins have detrimental effects on at least 

two different species and orders of insects. Many more examples with various insects and 

saponins have been reported in literature (for a review, see Table 1.1; De Geyter et al., 

2007b). However, the vast majority of these studies were done in the lab; field tests are rare, 

and tests that include spraying even rarer (although suggestions for practical applications have 

been made, like in Ferracini et al., 2010).  

 

In order to really establish the potential of saponins as new botanical insecticides, not only do 

the most promising compounds need to be identified (as it is worth remembering that not all 

saponins share the same efficiency, or even the same mode of action (Levavi-Sivan et al., 

2005)), but there is also need for additional tests with more different types of insects 

(including beneficials) and plants under natural conditions. In order to determine the 

usefulness of saponins in the light of Integrated Pest Management (IPM), one needs to know 

their effect on natural enemies like predators, parasites and parasitoids; not only the direct 
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impact of spraying is important, but also the effects that may occur futher down the food 

chain.   

 

 

 

 
Figure 5.1. Schematic representation of the possible roles of plant insecticidal toxins in ecological 
networks. Positive and negative effects of plant toxins on higher tropic levels are indicated by + or – 
signs. 
 

 

As illustrated in Fig. 5.1, the ecology of ecosystems is not limited to plant-insect interactions. 

The total effect of insecticidal compounds (both natural defences and insecticides) on plants 

and insects depends on their community-level consequences. Insecticides can have a negative 

impact on parasite/parasitoid/entomopathogen fitness; these effects may occur directly, when 

they affect either the adults in the field or the eggs/developing larva or viral/bacterial 

multiplication on or inside the herbivore body, or indirectly, when the parasitoid/pathogen 

suffers from low host size or quality, or from enhanced insect immunity (Ojala et al., 2005).  

Predators can also be affected by accumulation of toxins present in their prey. 
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A good example of such effects can be seen in the generalist pollinator Bombus impatiens, 

which feeds on a large range of nectariferous plants, including some plants producing toxic 

nectar. It was shown that nectar containing a high concentration of the alkaloid gelsemine 

could affect bumble bee fecundity (Manson & Thomson, 2009). The negative impact of 

lingering toxins was even observed in a four-trophic-level interaction involving plants–

herbivores–parasitoids and hyperparasitoids: the hyperparasitoid Lysibia nana parasitising the 

endoparasitoid Cotesia glomerata, which itself infects the caterpillar Pieris brassicae, was 

found to be negatively affected by high concentrations of glucosinolates in the diet of P. 

brassicae (Harvey et al., 2003). With this in mind, a key challenge is to integrate the different 

ecological consequences of insecticide application on plants and in strategies for dealing with 

the effects on all the trophic levels. Optimal IPM strategies should take into account not only 

the target insect pest throughout its development, but also the whole ecological context, 

including the insect’s competitors, predators/parasitoids, pathogens and symbionts. 

 

Next to the actions on insects, plants and the ecological network, the effects of saponins on 

the broader environment will need to be addressed. Regulations of the European Council 

(Regulation No 1107/2009 79/117/EEG and 91/414/EEG of 21 October 2009, among others) 

dictate that – for commercial insecticides – “upon application, the compound or its residues 

should have no harmful effects on the health of humans or animals, nor on the groundwater or 

the environment.” Tests should account for: 

- possible leftover residues in human or animal food; 

- the effects on non-target species, both on their survival and behaviour; 

- possible effects on (diversity of) the ecosystem; 

- the behaviour and dissipation of the compound in the environment, with special attention for 

the contamination of water (including estuarine and groundwater), air and soil. These effects 

should be studied over large distances to account for potential spreading patterns;  

- known cumulative/synergist effects. 

- In addition, specific safety instruction should be developed as to not impede the safety or 

health of the users. 

 

Saponins are usually considered a low-hazard substance to humans (Oakenfull, 1981), so the 

chances of them forming a direct risk to the population are slim. However, they are known to 

be potentially harmful to fish (Sparg et al., 2004), so accumulation in rivers could be a risk. 

Saponins are generally biodegradable, but cases of mass fish mortality as a result of saponin 
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pollution have occurred (Grib et al., 2006). Furthermore, given their use as adjuvants in 

medicine (Sparg et al., 2004), is it highly possible that they will interact with other 

insecticides. This might open new possibilities, as a synergetic effects could facilitate the 

uptake of insecticidal compounds. 

 

In short, further studies on saponins should focus on tests under field conditions, with special 

attention to the effects on natural enemies/beneficials and the ecosystem. The idea of testing 

different saponins and/or combinations with other inseciticides might also be worth exploring. 

 

5.6. Final conclusions  

We confirmed that the in vitro cell-based reporter bioassay using ecdysteroid-responsive S2 or 

Bm5 cells that were transiently transfected with the ERE-b.act.luc reporter plasmid (Soin et 

al., 2008) is useful for screening potential EcR agonistic and antagonistic compounds. 

However, the compounds we tested were not optimal for development into new insecticides. 

 

In our investigation of saponins, we concluded that they (especially Q. saponaria saponins) 

have a strong and fast-acting effect on the pea aphid A. pisum and the cotton leafworm S. 

littoralis, most likely due to a combination of deterrent activity and cell membrane permeation 

leading to destruction of the cells of the insect midgut epithelium, causing the insect to starve 

and die. Additionally, an apoptosis-inducing activity of the saponins could be identified, 

though the effect was rather minor in comparison. A similar deterrence and mortality effect 

could be observed when saponins were sprayed on plant leaves, but at higher concentrations. 

We believe that these data provides further support for saponins playing a role in plant 

resistance to insect pest species and having potential as new, natural insecticides. However, to 

verify the applicability of saponins in the control of pest insects within IPM, trials under field-

related conditions are needed as well as an evaluation of the possible risks to natural enemies 

and beneficials, the environment and the human health. 
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SUMMARY 

 

In the light of the ever-growing problem of insect resistance against the most commonly used 

groups of insecticides, there is much interest in the development of new alternatives to slow 

down the trend towards resistance build-up. In order to search for new insect-specific 

pesticides, we employed an in vitro cell-based reporter bioassay for screening potential EcR 

agonistic and antagonistic activity in natural ecdysteroids. Test compounds were assayed for 

their ability to activate transcription of an ecdysteroid-inducible luciferase reporter gene using 

ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter 

plasmid ERE-b.act.luc. We used one dipteran and one lepidopteran insect cell line, Schneider 

S2 cells of Drosophila melanogaster and Bm5 cells of Bombyx mori, respectively.  

 

Measurements showed an EcR agonistic activity only for cyasterone, both in S2 (IC50 = 

3.3µM) and Bm5 cells (IC50 = 5.3µM). However, the activity was very low compared to that 

of commercial insecticides. An antagonistic activity was found for castasterone in S2 cells, 

with an IC50 of 0.039µM; in Bm5 cells this effect only became visible at much higher 

concentrations (IC50 = 18µM) and might be due to general cell toxicity rather than a direct 

antagonistic activity on the receptor. Three-dimensional modelling of the interaction with the 

EcR receptor also indicates that there is no direct binding with the receptor. 

 

Although the test compounds included in this study were not very promising for the 

developing into new, specific insecticides, we were able to confirm that the cell-based reporter 

bioassay tested here is useful for screening for EcR agonists and antagonists. With this 

method, it is possible to screen large numbers of potentially active ecdysteroids and other 

compounds in a short amount of time.  

 

Another potentially interesting class of natural molecules are the saponins, a group of 

secondary plant metabolites consisting of a sugar moiety glycosidically linked to a 

hydrophobic aglycone (sapogenin) that often possess insecticidal activities. Four saponins 

were selected: two triterpene saponins, Quillaja saponaria saponin and aescin, and two 

steroidal saponins, digitonin and diosgenin. The triterpene Q. saponaria bark saponin received 

special attention because of its high activity and availability. We studied their effects on one 

dipteran (embryonal Schneider S2 cells) and two lepidopteran insect cell lines (ovarian Bm5 

cells and midgut CF-203 cells of Choristoneura fumiferana). A series of different experiments 
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were performed to investigate potential mechanisms of action by saponins with regard to 

ecdysteroid receptor (EcR) responsiveness, cell viability, cell membrane permeation, and 

induction of apoptosis with DNA fragmentation and caspase-3 like activity.  

 

Major results were that exposure of S2 and Bm5 cells containing an EcR-based reporter 

construct to a concentration series of saponin caused no EcR activation, but did result in a 

dose-dependent loss of ecdysteroid signalling with median inhibitory concentrations (IC50’s) 

of 10-50 µM for S2 and 3-10 µM for Bm5 cells. In parallel, we saw a similar loss of cell 

activity in MTT cell viability assays with median effective concentrations (EC50’s) of 50-700 

µM for S2 cells; both lepidopteran cell lines showed an even higher sensitivity to all four 

saponins, with EC50’s of 7-200 µM. A trypan blue assay with Q. saponaria saponin confirmed 

that the effect was due to cell membrane permeation leading to cell toxicity, with a median 

lethal concentration (LC50) value of 44 µM for S2 cells, and this effect became apparent 

within minutes. Exposure to 20E at 500 nM as used in the EcR-based report assay also 

induced caspase-3 like activities, which may help to explain the discrepancies between the 

EcR-responsiveness and cell viability assays. Likewise, low concentrations of saponins 

induced DNA fragmentation and caspase-3 like activities, confirming their potential to induce 

apoptosis. Eventually, we found that the saponin effects were counteracted by the addition of 

cholesterol to the culture medium.  

 

The data provide evidence that saponins exert a strong activity on both dipteran and 

lepidopteran cells; however, the anti-ecdysteroid action by saponins is not based on a direct 

antagonistic interaction with EcR signalling, but rather on a cytotoxic effect due to permeation 

of the insect cell membrane. An additional apoptosis-inducing activity of the saponins was 

identified. 

 

In another series of experiments, we investigated the effects of saponins in vivo on two 

important insect pest species: a model piercing-sucking insect, the pea aphid Acyrthosiphon 

pisum (Hemiptera), and a biting-chewing insect, the cotton leafworm Spodoptera littoralis 

(Lepidoptera). Aphids were challenged by oral and contact exposure to demonstrate aphicidal 

activities, and in choice experiments to support use as a natural deterrent. In addition, we 

tested the entomotoxic action of Q. saponaria saponin with primary midgut cell cultures and 

larval stages of S. littoralis.  
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When aphids were exposed to supplemented artificial diet for 3 days, a strong aphicidal 

activity was recorded for three of the four saponins, with an LC50 of 0.55 mg/ml for Q. 

saponaria saponin, 0.62 mg/ml for aescin and 0.45 mg/ml for digitonin. The LT50 values 

ranged between 1 and 4 days, depending on the dose. For diosgenin, only low toxicity (14%) 

was scored for concentrations up to 5 mg/ml. For caterpillars, third instars of S. littoralis fed 

with Q. saponaria saponin at a dose of 30-70 mg/g in the diet showed a significant reduction 

in larval weight gain of about 45-58% already after 1 day of treatment, and this negative effect 

continued during subsequent feeding. After 2 weeks, at the moment of successful pupation in 

the control, there was 70-84% mortality at pupation for concentrations of 30-70 mg/g saponin; 

sigmoid curve fitting estimated an LC50 of 44 mg/g. With lower concentrations of 10-20 mg/g, 

there was no loss of survival at pupation above the control; however, we observed a delay in 

development in these larvae as it took 4-5 days longer from the third instar to the pupal stage.  

 

In choice experiments with saponin-treated versus untreated artificial diet, a deterrence index 

of 0.97 was scored for Q. saponaria saponin at 1 mg/ml, meaning that none or very few 

aphids were found on the treated diet. In contrast, direct contact with saponins applied on 

glass plates showed no repellent effect. Spraying of Vicia faba bean plants with Q. saponaria 

saponin resulted in an LC50 of 8.2 mg/ml, and confirmed the deterrent effect, though the 

concentrations needed to achieve the same activity were higher. 

 

Looking for the cause behind the insect toxicity, we examined the midgut-specific effects of 

Q. saponaria saponin using both primary midgut cell cultures from S. littoralis and 

microscopic slides of the A. pisum aphid gut. Results showed that Q. saponaria saponin 

caused clear symptoms of cytotoxicity in primary midgut cell cultures of S. littoralis, and this 

effect was concentration-dependent with an EC50 of 4.7 µM (0.009 mg/ml). Under the 

confocal fluorescence microscope, cells exposed to 100 µM (0.2 mg/ml) of Q. saponaria 

saponin for 5 h showed strong blebbing and damaged basolateral membranes, as shown by the 

absence of an intact actin network next to the basolateral cell edge. In contrast, the control 

cells showed a large nucleus in the cell centre and intact membrane all around the cell as 

confirmed by the actin staining.  

 

Histological analysis of aphids fed on artificial diet containing 10 mg/ml of Q. saponaria 

saponin for 24 h demonstrated strong aberrations of the aphid gut epithelium: the epithelium 

cells had collapsed and did not show defined cellular structures such as the nucleus or a 
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plasma membrane. In contrast, the epithelium of the control sample was intact. In aphids fed 

on low saponin concentrations of 0.1 mg/ml, the epithelium did not show any damage and 

was similar to that of the control aphids. The effect is similar to that observed in primary 

midgut cells from S. littoralis, suggesting the insect midgut epithelium to be a primary target 

of saponin activity. 

 

We concluded that saponins (especially Q. saponaria) have a strong and fast-acting effect on 

the pea aphid A. pisum and the cotton leafworm S. littoralis, most likely due to a combination 

of deterrent activity and cell membrane permeation leading to destruction of the cells of the 

insect midgut epithelium, causing the insect to starve and die. A similar deterrence and 

mortality could be observed when saponins were sprayed on plant leaves, though higher 

concentrations were required here. These observations provide strong evidence that saponins 

are natural insecticides and deterrents. For them to be successful in the control of pest insects 

within Integrated Pest Management, trials under field conditions are needed as well as an 

evaluation of the possible risks to natural enemies and beneficials, the environment and the 

human health. 
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SAMENVATTING 

 

Met het oog op het steeds groter wordende probleem van resistentie tegen de meest gebruikte 

soorten insecticiden, bestaat er een grote interesse in de ontwikkeling van nieuwe 

alternatieven om deze toenemende resistentie het hoofd te bieden. Op zoek naar nieuwe, 

insectspecifieke pesticiden maakten we gebruik van een in vitro celgebaseerde biotoets om 

producten te screenen op EcR-agonistische en -antagonistische activiteit, met name in 

natuurlijke ecdysteroïden. Producten werden getest op hun vermogen om de transcriptie van 

een ecdysteroïd-geïnduceerd luciferase reporter gen te activeren in cellijnen getransfecteerd 

met het reporter plasmide ERE-b.act.luc. We gebruikten één diptere en één lepidoptere cellijn, 

Schneider S2 cellen van Drosophila melanogaster en Bm5 cellen van Bombyx mori, 

respectievelijk.  

 

Volgens de metingen was er enkel een EcR-agonistische activiteit in cyasterone, zowel in S2 

(IC50 = 3,3µM) als in Bm5 cellen (IC50 = 5,3µM). Deze activiteit was echter laag in 

vergelijking met commerciële insecticiden. Een antagonistische activiteit werd gevonden in 

castasterone in S2 cellen, met een IC50 van 0,039µM; in Bm5 cellen werd dit effect pas 

zichtbaar bij veel hogere concentraties (IC50 = 18µM) en  dit zou te wijten kunnen zijn aan een 

algemeen cytotoxisch effect en niet aan een rechtstreeks antagonistisch effect op de receptor. 

Driedimensionale modellen van de interactie met de EcR-receptor gaven aan dat er geen 

rechtstreekse binding op de receptor plaatsvindt. 

 

Hoewel de geteste producten in deze studie niet erg geschikt leken voor de ontwikkeling van 

nieuwe, selectieve insecticiden waren we wel in staat om te bevestigen dat de hier geteste 

celgebaseerde biotoets nuttig is voor de screening van EcR-agonisten en -antagonisten. De 

methode maakt het mogelijk om grote aantallen potentieel actieve ecdysteroïden en andere 

producten te testen in korte tijd. 

 

Een andere interessante soort natuurlijke moleculen zijn de saponines, een klasse secundaire 

plantmetabolieten bestaande uit een suikergroep in glycosidische binding met een 

hydrofobisch aglycon (sapogenin) die vaak insecticidale eigenschappen bezitten. Voor deze 

studie werden vier saponines geselecteerd: twee triterpene, Quillaja saponaria saponine en 

aescine, en twee steroïdale, digitonine en diosgenine. Het triterpene Q. saponaria schors 

saponine werd extra onder de loep genomen omwille van haar hoge activiteit en 
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beschikbaarheid. We bestudeerden de effecten van de saponines op één diptere (embryonale 

Schneider S2 cellen) en twee lepidoptere cellijnen (eierstok Bm5 cellen en middendarm CF-

203 cellen van Choristoneura fumiferana). Een reeks experimenten werden uitgevoerd om het 

werkingsmechanisme van saponines te onderzoeken met betrekking op EcR-activiteit, 

celviabiliteit, celmembraanpermeatie en inductie van apoptose via DNA fragmentatie en 

caspase-3-gelijkende activiteit.  

 

De voornaamste resultaten waren dat het blootstellen van S2 en Bm5 cellen met een 

ingebouwd EcR-gebaseerd reporter construct aan een concentratieserie van saponine geen 

EcR-activatie veroorzaakte, maar wel een concentratieafhankelijk verlies aan 

ecdysteroïdactiviteit, met ‘median inhibitory concentrations’ (IC50’s) van 10-50 µM voor S2 

en 3-10 µM voor Bm5 cellen. We zagen een gelijkaardig verlies aan celactiviteit in MTT 

celviabiliteitstoetsen, met ‘median effective concentrations’ (EC50’s) van 50-700 µM voor S2 

cellen; de twee lepidoptere cellijnen vertoonden een nog hogere gevoeligheid t.o.v. alle vier 

de saponines, met EC50’s van 7-200 µM. Een trypaanblauwbiotoets met Q. saponaria 

saponine bevestigde dat het effect te wijten was aan celmembraanpermeatie leidend tot 

celtoxiciteit, met een ‘median lethal concentration’ (LC50) waarde van 44 µM voor S2 cellen, 

en dit effect was na een paar minuten al zichtbaar. Blootstelling aan 20E aan concentraties van 

500 nM, zoals gebruikt in de EcR-biotoets, leidde ook tot inductie van een caspase-3-

gelijkend effect, hetgeen de discrepantie tussen de EcR activiteit en celviabiliteitscurves zou 

kunnen verklaren. Op dezelfde manier vonden we ook dat lage saponineconcentraties DNA 

fragmentatie en caspase-3-gelijkende effecten induceerden. Tot slot zagen we ook dat de 

effecten van saponines konden worden tegengewerkt door toevoegen van cholesterol aan het 

celmedium.  

 

De data zijn het bewijs dat saponines een sterk effect uitoefenen op zowel diptere als 

lepidoptere cellen; maar de anti-ecdysteroïd activiteit waargenomen in de testen is niet 

gebaseerd op een rechtstreeks effect op de EcR-receptor, maar wel op een cytotoxisch effect 

door permeatie van de celmembraan. Een bijkomende apoptose-inducerende activiteit van de 

saponines werd eveneens geïdentificeerd. 

 

In een andere reeks experimenten onderzochten we het effect van saponines in vivo op twee 

belangrijke pestinsecten: een model voor de stekend-zuigende insecten, de erwtenbladluis 

Acyrthosiphon pisum (Hemiptera), en een model voor de bijtend-kauwende insecten, de 
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katoenuil Spodoptera littoralis (Lepidoptera). Bladluizen werden getest via orale toediening 

en direct contact, en in keuze-experimenten om een eventuele afschrikkende/afwerende 

activiteit van saponines te bepalen. Daarnaast testten we het entomotoxisch effect van Q. 

saponaria saponine met primaire middendarmcellen en larvale stadia van S. littoralis.  

 

Wanneer bladluizen werden blootgesteld aan een artificieel dieet aangevuld met saponines 

voor 3 dagen zagen we een sterke aphicidale activiteit voor drie van de vier saponines in het 

experiment, met een LC50 van 0,55 mg/ml voor Q. saponaria saponine, 0,62 mg/ml voor 

aescine en 0,45 mg/ml voor digitonine. De LT50 waarden varieerden tussen 1 en 4 dagen, 

afhankelijk van de dosis. Voor diosgenine werd slechts een lage toxiciteit gevonden (14%) 

voor concentraties tot 5 mg/ml. Rupsen in het derde ontwikkelingsstadium van S. littoralis 

gevoerd met 30-70 mg/g 
Q. saponaria saponine in het dieet vertoonden een significante 

reductie in gewichtstoename van 45-58% vanaf de eerste dag van de behandeling, en deze 

negatieve trend zette zich voort doorheen het experiment. Na twee weken, op het moment van 

verpopping in de controle, was er een mortaliteit van 70-84% voor concentraties van 30-70 

mg/g saponine; ‘sigmoid curve fitting’ schatte de LC50 op 44 mg/g. Met lagere concentraties 

van 10-20 mg/g was er geen additionele mortaliteit bij verpopping, maar wel een vertraging in 

de ontwikkeling: de rupsen hadden 4-5 dagen langer nodig om het popstadium te bereiken. 

 

In keuze-experimenten met saponine-behandeld versus onbehandeld artificieel dieet vonden 

we een ‘deterrence index’ van 0,97 voor 1 mg/ml Q. saponaria saponine, met geen of heel 

weinig bladluizen op de behandelde voeding. Direct contact met saponines aangebracht op 

een glasplaat daarentegen had geen afschrikkend effect. Vicia faba boonplanten besproeien 

met Q. saponaria saponine resulteerde in een LC50 van 8,2 mg/ml, en bevestigde de 

afwerende activiteit, hoewel er hogere concentraties nodig waren om hetzelfde effect te 

bereiken. 

 

In een volgende stap onderzochten we de middendarmspecifieke effecten van Q. saponaria 

saponine met behulp van primaire middendarmcellen van S. littoralis en histologische 

darmcoupes van A. pisum, op zoek naar de oorzaak van de insecticidale activiteit. De 

resultaten toonden aan dat Q. saponaria saponine symptomen van cytotoxiciteit veroorzaakte 

in primaire middendarmcelculturen van S. littoralis, en dat dit effect concentratieafhankelijk 

was met een EC50 van 4,7 µM (0.009 mg/ml). Onder de confocale fluorescentiemicroscoop 

zagen we duidelijke tekenen van ‘blebbing’ en beschadigde basolaterale membranen bij cellen 
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blootgesteld aan concentraties van 100 µM (0.2 mg/ml) Q. saponaria saponine voor 5 uur, als 

aangetoond door de afwezigheid van een intact actinenetwerk naast de basolaterale rand van 

de cel. In de controlecellen daarentegen vonden we een grote celkern in het midden van de cel 

en intacte membranen rondom, als bevestigd door de actinekleuring. 

 

Histologische analyse van bladluizen gevoerd met artificieel dieet met 10 mg/ml Q. saponaria 

saponine voor 24 h toonde sterke afwijkingen in het darmepithelium: de epitheliumcellen 

waren zwaar beschadigd en er waren geen afgelijnde structuren zichtbaar zoals de kern of het 

plasmamembraan. Het epithelium van het controlestaal was wel in goede staat. Bij bladluizen 

gevoerd met lagere saponineconcentraties van 0,1 mg/ml was het epithelium niet beschadigd 

en leek op dat van de controle. Het effect is gelijkaardig aan dat geobserveerd in de primaire 

middendarmcellen van S. littoralis, en suggereert een belangrijke rol voor het 

middendarmepithelium als (hoofd)doelwit voor saponineactiviteit. 

 

We concluderen dat saponines (vooral Q. saponaria) een sterk en snel effect uitoefenen op de 

erwtenbladluis A. pisum en de katoenuil S. littoralis, hoogstwaarschijnlijk te wijten aan een 

combinatie van een afwerende activiteit en celmembraanpermeatie leidend tot de vernietiging 

van de cellen van het middendarmepithelium, wat ervoor zorgt dat het insect verhongert en 

sterft. Een gelijkaardige afwerende en lethale activiteit werd waargenomen bij bladeren 

besproeid met saponines, al waren de benodigde concentraties hier wel hoger. Deze 

observaties verschaffen bewijs dat saponines actief zijn als natuurlijke insecticiden en 

afweerstoffen. Om te zien of ze toepasbaar zijn in het kader van Integrated Pest Management 

zijn wel nog extra testen nodig, met name proeven onder veldcondities en een evaluatie van 

de mogelijke risico’s t.o.v. natuurlijke vijanden, gewenste insecten, het milieu en de 

volksgezondheid. 
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