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Abstract

The exponential growth of the dimension of the exact wavefunction with the

size of a chemical system makes it impossible to compute chemical properties of

large chemical systems exactly. A myriad of ab initio methods that use simpler

mathematical objects to describe the system has thrived on this realization.

These methods avoid hitting the exponential wall by using low order densities

or density matrices. Density Functional and first order density matrix methods

have gained significant popularity, but can only approximate the relationship

between the energy and the density or density matrix. Second-order density

matrix methods take a special place in the hierarchy of these methods because

the second order density matrix (2DM) exactly and explicitly determines the

energy.

As was already realized in the 1950’s, the most straightforward way to derive

a 2DM for a chemical system from scratch simply applies the variational principle

to it. In the 1990’s, progress in semidefinite optimization techniques revived this

idea.

The aim of my thesis has been to evaluate the use of variational second

order density matrix (v2DM) methods for chemistry and to identify the major

theoretical and computational challenges that need to be overcome to make

it successful for chemical applications. This research has led to the following

conclusions.

The theoretical challenges that the method faces follow from the need for



the 2DM to be N-representable. After all, even if the method does not make

any reference to a wavefunction for the N-electron system, the 2DM still needs

to be derivable from an ensemble of N-electron states. Failure of the 2DM to be

N-representable is reflected in a too low energy. But even though the variational

procedure focuses on the energy, the starting point of our research has been to

look at chemical properties other than the energy. This can be motivated by a

simple observation: even when the energy is constrained to be exact, variational

optimization of the 2DM under approximate N-representability constraints may

lead to a wrong 2DM and therefore incorrect chemical properties.

We have identified several problems when commonly used N-representability

constraints are applied to chemical problems. First of all, low order positivity

conditions generally lead incorrectly to fractionally charged dissociation products.

This phenomenon can be explained by the method’s failure to represent the

ensemble of states from which systems with fractional charges must arise. This

finding is numerically illustrated for, for instance, NO+ in this work. Secondly,

commonly used approximate N-representability conditions are not size-consistent.

This can be illustrated clearly and explicitly for a system of two-electron non-

interacting fragments under the P-condition. Although the P-condition is exact

for any two-electron system, it is not exact for a system of several two-electron

non-interacting fragments. It is shown that the resulting energy for such a

system originates completely from the one-electron terms in the Hamiltonian

which leads to an incorrect structure of both the 1DM and 2DM. We have derive

constraints on the energy of subspaces of the one-particle basis space that solve

these problems, albeit in an ad-hoc manner.

Another topic that needs to be further explored is the description of molecular

spin in the v2DM method. Because the 2DM only carries information up to

two-electron interactions, ensuring that it represents a proper spin state is a

difficult problem. We have applied spin conditions derived from a pure spin

state wavefunction and more general conditions that allow the 2DM to describe

an ensemble of mixed spin states with a fixed Ŝ2 eigenvalue. Two major

shortcomings of these conditions applied to the v2DM method are false multiplet



splitting and size-inconsistency. These spin conditions are less strong applied

to a system of non-interacting fragments than when they are applied to these

fragments separately. These problems are not specific to the v2DM method -

in fact, they turn up in all methods based on low order densities and density

matrices, although they take different forms in different theories. Understanding

these problems is therefore of fundamental importance.

The computational challenges that the method faces derive from its formula-

tion as a vast semidefinite optimization problem under generalized inequality

constraints on the 2DM. Because the dimension of the 2DM is quadratic in

the dimension of the single particle basis set, and typical basis sets used in

chemistry include up to a few hundreds of basis functions, the dimension of a

typical 2DM surpasses that of a standard semidefinite optimization problem in

mathematics. Although much progress has been made in the field of semidefinite

programming from the 1990’s on, the computational scaling of typical algorithms

applied to the 2DM remains prohibitive. We have implemented and compared

four different semidefinite optimization algorithms for the v2DM method, in

which we exploited the specific structure of the problem. Even so, none of

the algorithms performed significantly better than the others. Three of the

algorithms we tried were so-called second order methods, related to the barrier

method, which employ the gradient and hessian of the problem, and one of them,

the boundary point method, was a zeroth order method, which does not use

a gradient nor hessian. Remarkably, all of these methods performed more or

less similar, with only minor trade-offs between speed, accuracy and robustness.

Moreover, the maximal system size our programs can handle is comparable

to that of other implementations used in the literature, such as the first-order

non-linear method applied by David Mazziotti. This suggests that the origin

of the slow convergence of v2DM methods, the singularity of the optimal 2DM,

manifests itself in all of these methods, even though it is most explicit in the

barrier method. Finding a way to deal with the ill-conditioned equations will be

the key factor to making this method workable.



To conclude, significant progress in both the aforementioned theoretical and

computational aspects is needed to make the v2DM method competitive to

comparable wavefunction based methods. The theoretical challenges that follow

from the N-representability problem are fundamentally different to the computa-

tional challenges, because in theory, the exact N-representability constraints for

each system are available through full configuration interation calculations. The

problem is only to generalize them to all molecular systems. The computational

challenge is less straightforward, because it requires developing new algorithms,

which is a rather empirical field of research. Only trial calculations can really

prove a new method’s success or failure.

Nonetheless, if we find ways to overcome these challenges, the v2DM method

will prove a valuable alternative to wavefunction based methods. It is highly

complementary to wavefunction based methods, because of its fundamentally

different approach to solving the electron correlation problem, independent from

any reference system. Herein lies its strength and its future.



Samenvatting

De exponentiële groei van de dimensie van de golffunctie met de grootte van

een chemisch systeem maakt het onmogelijk om chemische eigenschappen van

grote chemische systemen exact te berekenen. Een verscheidenheid aan ab

initio methoden die eenvoudigere wiskundige objecten gebruiken om het sys-

teem te beschrijven gedijen op deze vaststelling. Ze vermijden de ‘exponentiële

muur’ door lage orde densiteiten en densiteitsmatrices te gebruiken. Densiteits

Functionaal en eerste orde densiteits matrix methoden hebben aanzienlijke pop-

ulariteit verworven, maar kunnen de relatie tussen de energie en de densiteit

of densiteitsmatrix enkel benaderen. Tweede orde densiteitsmatrix methoden

nemen een bijzondere plaats in de hiërarche van deze methoden omdat de tweede

orde densiteitsmatrix (2DM) de energie exact en expliciet bepaalt.

Het is al bekend vanaf de jaren 1950 dat de meest voor de hand liggende methode

om een 2DM voor een chemisch systeem te bepalen eenvoudigweg het varia-

tionele principe erop toepast. Dit idee bloeide opnieuw op in de jaren 1990 door

vooruitgang in semidefiniete optimalisatietechnieken.

Het doel van mijn thesis was om het gebruik van variationele tweede orde

densiteitsmatrix (v2DM) methoden voor chemische doeleinden te beoordelen en

om de belangrijkste theoretische en computationele uitdagingen te identificeren

die overwonnen moeten worden om de methode succesvol te maken voor chemische

toepassingen. Dit werk heeft tot de volgende conclusies geleid.

De theoretische uitdagingen waar de methode voor staat komen voort uit de



noodzaak dat de 2DM ‘N-representabel’ moet zijn. Zelfs als de methode geen

referentie maakt naar een golffunctie, moet de 2DM immers af te leiden zijn uit

een ensemble van N-elektron toestanden. Als de 2DM niet N-representabel is,

levert hij een te lage energie op. Hoewel de variationele procedure zich enkel richt

op de energie, was het uitgangspunt van ons onderzoek om naar andere chemische

eigenschappen dan de energie te kijken. Dit idee kan gemotiveerd worden met

een eenvoudige observatie: zelfs als de energie exact opgelegd wordt kan de

variationele optimalisatie onder noodzakelijke maar niet voldoende voorwaarden

een verkeerde 2DM opleveren, en dus ook verkeerde chemische eigenschappen.

We hebben verschillende problemen met veelgebruikte N-representabiliteits-

voorwaarden toegepast op chemische problemen aangekaart. Ten eerste leiden de

lage orde positiviteitsvoorwaarden vaak incorrect tot fractioneel geladen dissoci-

atieprodukten. Dit fenomeen kan verklaard worden door het onvermogen van de

methode om het ensemble van toestanden te beschrijven waarvan systemen met

een fractionele lading uit ontstaan. Deze vaststelling werd numeriek gëıllustreerd

voor, bijvoorbeeld, NO+ in dit werk. Ten tweede zijn veelgebruikte N-represen-

tabiliteitsvoorwaarden over het algemeen niet ‘size-consistent‘. Dit kan expliciet

gëıllustreerd worden voor een systeem bestaande uit niet-interagerende twee-

elektron fragmenten onderhevig aan de P-voorwaarde. Hoewel de P-voorwaarde

exact is voor elk twee-elektron systeem, is het niet exact voor een systeem

bestaande uit meerdere niet-interagerende twee-elektron fragmenten. We hebben

aangetoond dat de energie voor zo’n systeem volledige voortkomt uit de één

elektron termen van de Hamiltoniaan, hetgeen tevens leidt tot een 1DM en 2DM

met een verkeerde structuur.

Een ander onderwerp dat voorlopig onderbelicht is in dit onderzoeksgebied,

is de beschrijving van moleculaire spin in de v2DM methode. Omdat de 2DM

enkel informatie bevat over n- en twee-electron interacties, is het een moeilijk

probleem om ervoor te zorgen dat hij een correcte spin toestand voorstelt. We

hebben verschillende spin voorwaarden afgeleid uit een zuivere spin toestand en

meer algemene voorwaarden die de 2DM toelaten om een ensemble van gemengde

toestanden met een welbepaalde Ŝ2 eigenwaarde voor te stellen. Twee belangrijke



nadelen deze voorwaarden toegepast op de v2DM methode zijn oneigenlijke

splitsing van multipletten en size-inconsistency. Deze spin voorwaarden zijn

minder sterk toegepast op een systeem van niet-interagerende fragmenten dan

wanneer ze toegepast worden op deze fragmenten apart. Deze problemen zijn

niet specifiek voor de v2DM methode - in feite duiken ze op in alle methoden

die gebaseerd zijn op lage orde densiteiten en densiteitsmatrices, hoewel ze

een verschillende vorm aannemen in verschillende theorieën. Deze problemen

begrijpen is daarom van fundamenteel belang.

De computationele uitdagingen waar deze methode voor staat komen voort

uit zijn formulering als een grootschalig semidefiniet optimalisatie probleem

onderhevig aan veralgemeende ongelijkheidsvoorwaarden. Omdat de dimensie

van de 2DM kwadratisch is in de dimensie van de eendeeltjes basis set, en

basis sets in chemische toepassingen typisch een paar honderd basis functies

bevatten, overtreft de dimensie van een typische 2DM dat van een standaard

semidefiniet optimalisatieprobleem in de wiskunde. Hoewel aanzienlijke vooruit-

gang is geboekt in het domein van semidefiniete optimalisatie vanaf de jaren

1990 blijft de computationele kost van typische algoritmen toegepast op 2DM

onoverkomelijk. We hebben verschillende semidefiniete optimalisatiealgoritmen

voor de v2DM methode gëımplementeerd en vergeleken, waarbij we de specifieke

structuur van het probleem in acht genomen hebben. Nochtans presteerde geen

enkele van de algoritmen significant beter dan de anderen. Drie van deze algorit-

men waren zogenaamde tweede orde methoden, verwant aan de barrière methode,

die de gradiënt en Hessiaan van het probleem gebruiken. Opvallend genoeg

presteerden ze gelijkaardig, met slechts kleine verschillen in snelheid, accuratesse

en robuustheid. Bovendien is de maximale systeemgrootte die onze programma’s

aankunnen vergelijkbaar met die van andere implementaties gebruikt in de liter-

atuur, zoals de eerste orde niet-lineaire methode toegepast door David Mazziotti.

Dit suggereert dat de oorzaak voor de trage convergentie van v2DM methoden,

de singulariteit van de optimale 2DM, zich in al deze methoden manifesteert,

hoewel het het meest expliciet is in de barriere methode. Een manier vinden om



met de slecht geconditioneerde vergelijkingen om te gaan vormt de sleutel tot

een praktisch werkbare methode.

Om te besluiten is aanzienlijke vooruitgang in de voorgenoemde theoretische

en computationele aspecten nodig opdat de v2DM methode de concurrentie

zou kunnen aangaan met vergelijkbare golffunctie gebaseerde methoden. De

theoretische uitdagingen die voortvloeien uit de N-representabiliteitsvoorwaarde

zijn fundamenteel verschillend van de computationele uitdagingen. In theorie zijn

de exacte N-representabiliteitsvoorwaarden voor elk systeem immers toegankelijk

via een ‘full configuration interaction’ berekening. Het probleem is echter om deze

te veralgemenen, of ten minste efficiënt te automatiseren, naar alle moleculen toe.

De computationele vraagstukken zijn weliswaar minder voor de hand liggend,

omdat ze nieuwe algoritmen vereisen. Het ontwikkelen van nieuwe algoritmen is

eerder een empirische zoektocht omdat enkel testberekeningen kunnen uitwijzen

of de methode een succes is.

Niettemin, als we een manier vinden om deze uitdagingen succesvol aan te

gaan, zal de v2DM methode een waardevol alternatief vormen voor golffunctie

gebaseerde methoden. De methode is immers sterk complementair met golffunctie

gebaseerde methoden, omwille van zijn fundamenteel verschillende aanpak om

elektroncorrelatie te beschrijven, onafhankelijk van enig referentiesysteem. Hierin

ligt zijn kracht en zijn toekomst.
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Introduction

The holy quantum chemical grail is to find a method to calculate molecular

properties exactly, within the limitations imposed by a finite basis set, without

needing an exponentially increasing computation time as the size of the molecule

grows. Though utopian, ab initio quantum chemists persevere in their quest

for methods that provide the best trade-off between computational speed and

chemical accuracy. Strongly correlated systems form the main obstacle for

wavefunction-based methods: describing their correlation effects well requires a

multi-determinantal description, making them inherently expensive to compute.

Hence alternative approaches are being pursued, focused on lower-order densities

and density matrices. These approaches can beat the curse of exponential scaling

that approaches based on the full wavefunction suffer from, as the dimension

of their basis descriptors does not grow explicitly with the number of electrons.

Such methods include density functional theory, density matrix functional theory,

cumulant-based methods and second order density matrix-based methods.

Second order density matrix methods are particularly interesting from a con-

ceptual point of view because the second order density matrix (2DM) determines

the energy exactly, and therefore these methods do not require approximate

functionals to calculate the energy, unlike density and first order density matrix

methods. The importance of this property was already realized by Husimi,

Coulson and Löwdin in the 1950’s.1–3 This realization naturally lead to the idea

of a variational second order density matrix (v2DM) method as an extension

xi



of the variational principle for wavefunctions to the 2DM.3 However, they soon

realised that practical 2DM based methods suffer from another fundamental

problem. Since they avoid making any reference to a wavefunction, they must

guarantee that there exists some ensemble of wavefunctions from which the

2DM can be derived such that it represents a physical N-electron system. Such

a matrix is ’N-representable’.4 In contrast to the N-representability problem

for the 1DM, for which N-representability can be established in polynomial

time, N-representability of the 2DM is QMA-hard.5,6 Therefore, in practice

N-representability can only be imposed approximately, introducing errors in the

2DM.7 Moreover, the most natural conditions on the 2DM take the form of

semidefinite constraints and turn the v2DM method into a difficult semidefinite

optimization problem.

The wonderfully simple idea of variational optimization of the 2DM sparked

off a lot of enthusiasm in the fifties and sixties, but was halted by the limitations

of the semidefinite optimization algorithms available at that time.8–11 In the

nineties, the realization that the highly successful interior-point methods for

linear programming could be extended to the field of semidefinite programming

by Nesterov, Nemirovski and Alizadeh12,13 revived interests in the field of

variational second order density matrix methods. The increased performance of

semidefinite algorithms allowed several interesting applications to chemistry.14–16

Nevertheless, most of these applications are rooted more in physics than in

chemistry.

The object of my research has therefore been first of all to assess the variational

second order density matrix method’s use for chemical electronic structure

calculations and secondly to apply this knowledge to make it more effective. I

will establish what I believe to be the major strengths of the v2DM method and

the major obstacles that must be overcome in order to apply it successfully to

molecular calculations. These insights inspired several ideas to improve on it.

In order to address these questions, my colleagues Brecht Verstichel, Ward

Poelmans and I have collaborated to develop several semidefinite programs that
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carry out the variational 2DM optimization and apply them to study chemical

properties of small test molecules under 2-index constraints for N-representability.

This thesis highlights the two principal aspects of practical v2DM methods:

the theoretical N-representability problem in chapter 1 - 2 and its formulation

as a semidefinite optimization problem in chapter 3.

Chapter 1 introduces the concept of N-representability, which is central to the

accuracy of practical v2DM methods, and evaluates the approximate 2-positivity

conditions on molecular calculations. Their most severe shortcoming is their

size-inconsistency, which is also addressed in this chapter.

Chapter 2 focuses explicitly on the implications of approximate N-representability

constraints on molecular spin, the S-representability problem. It presents several

approaches to describing spin in a second-order 2DM framework and discusses

them in the context of non-singlet state molecules.

Chapter 3 addresses the formulation of the v2DM method as a semidefinite

program and compares several optimization techniques for molecular calculations.
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It has frequently been pointed out that a conventional many-electron wave function

tells us more than we need to know. There is an instinctive feeling that matters

such as electron correlation should show up in the two-particle density matrix

. . . but we still do not know the conditions that must be satisfied by the density

matrix.

C. A. Coulson, 1959 1
N-representability

1.1 Introduction

The fundamental quantum chemical problem of describing a many-electron

system is replaced by the N-representability problem of the second order density

matrix (2DM) in the variational second order density matrix (v2DM) method.

The equivalence of both approaches derives from the nature of the electron

interaction: since electrons interact pairwise, the 2DM fully characterizes their

correlated motion. As a consequence, it also determines the energy exactly.

Therefore the variational problem shifts from describing electron correlation by a

multideterminantal trial wavefunction to ensuring that the trial 2DM corresponds

to a physical N-electron system, i.e., that it is ‘N-representable’. However,

because the exact necessary and sufficient conditions for N-representability have

a worst-case complexity that is practically intractable, only a subset of necessary

N-representability conditions is implemented.

This chapter, as well as the remainder of this thesis, will focus on 2-index

constraints for N-representability, since the computational scaling of these con-

1
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straints is considerably better than 3- or higher order index constraints and

computation time is the most prohibitive bottleneck to v2DM methods. Section

1.2 introduces the concept of reduced density matrices, which naturally raises

the question of N-representability in section 1.3. The approximations made in

practical applications of this method are explained in section 1.4 and the results

of our applications to molecular calculations are discussed in section 1.5. It

examines these 2-index constraints from a chemical point of view, and focuses

on a major shortcoming that is apparent from these applications: an erroneous

description of molecular dissociation which violates size-consistency.

1.2 Physical importance of the 2DM

1.2.1 Nth order density matrix

The N-th order density matrix carries all information about an N-electron

system. In practice, the wavefunction for such a system is expressed using an

orthonormal K-dimensional basis of single-particle (sp) orbitals {φ1, . . . , φK}

and will be assumed real throughout. A configuration interaction (CI) expansion

for the wavefunction can be written

|Ψ〉 =

K∑
i1,...,iN

ci1...iN |i1(1) . . . iN (N)〉 (1.1)

where |i1(1) . . . iN (N)〉 are antisymmetrized N-particle states composed of the

sp basis functions indicated by their indices i1, . . . , iN .

Its N-th order DM can be expressed as an operator,

Γ(N) = |Ψ〉〈Ψ|

=

K∑
i1,...,iN

K∑
j1,...,iN

ci1...iN cj1...jN |i1(1) . . . iN (N)〉〈j1(1′) . . . jN (N ′)|

which is normalized to 1. Alternatively, it can be represented as a matrix, which

gives its expansion coefficients in terms of the antisymmetrized N-particle states,
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for which we will use the normalization N !

Γ
(N)
i1...iN j1...jN

= N !ci1...iN cj1...jN (1.2)

Throughout, we will use the normalization 1 for the N-th order density matrix

in first quantization, its wavefunction representation, and the normalization N !

in second quantization, its projection onto an antisymmetrized N -particle basis.

Such an N-th order density matrix describes a pure state wavefunction, which

makes it idempotent. As a consequence of fermion statistics, it must also be

antisymmetric under exchange of any two indices ik, il and jk, jl. Additionally,

it is positive semidefinite and normalized to tr Γ(N) = N !.

A mixed state, on the other hand, is described by a weighted, and normalized,

combination of pure state N-th order density matrices. Mixed states provide a

natural way of representing statistical ensembles – real systems are rarely well

described by a pure state – but also provide the most general representation for

an ensemble of degenerate states. They can be represented through an operator,

Γ(N) =
∑
k

wk|Ψk〉〈Ψk|

=
∑
k

wk

K∑
i1,...,iN

K∑
j1,...,jN

cki1...iN c
k
j1...jN |i1(1) . . . iN (N)〉〈j1(1′) . . . jN (N ′)|

or a matrix

Γ
(N)
i1...iN j1...jN

= N !
∑
k

wkc
k
i1...iN c

k
j1...jN (1.3)

where the weights 0 ≤ wk ≤ 1 with
∑
k wk = 1 may, for instance, describe a

Boltzmann distribution in a canonical ensemble. In the following, however, we

will always be concerned with the ground state at absolute zero temperature.

Admitting a mixed ground state is still relevant, however, as it allows for the

most general description of a degenerate system.

An N-th order density matrix for a mixed state is antisymmetric, normalized and

positive semidefinite, just like a pure state N-th order DM, but is not idempotent.

The N-th order density matrix, as well as lower order density matrices, are ten-

sor operators since the creation/annihilation operators transform independently
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from each other under a basis transformation a†α =
∑
i Uαia

†
i .

1.2.2 2nd order density matrix

The 2DM is a reduction of the Nth order DM that still contains its information

on one- and two-particle interactions. It is derived from the N-th order DM by

contraction of all but two of its indices

Γ
(2)
i1i2j1j2

=
1

(N − 2)!

∑
i3...iN

Γ
(N)
i1i2i3...iN j1j2i3...iN

≡ L2
N (Γ(N))i1i2j1j2 (1.4)

It thus inherits the properties of positive semidefiniteness and antisymmetry from

the N-th order density matrix, and is normalized to N(N − 1). In practice, the

2DM is often represented as a 2-dimensional matrix, by mapping the indices i1i2

and j1j2 onto two-particle (tp) indices I and J . The partial trace operation that

projects an N-th order density matrix onto a 2DM will be denoted L2
N (), following

the notation introduced by Coleman17 and Kummer.18 It establishes the essential

connection between the N-electron system and its reduced representation in

terms of 2-electron interactions only.

The importance of the 2DM lies in its characterization of the electron-electron

interaction. Because electrons interact pairwise, the 2DM fully describes electron

correlation. It therefore determines the expectation value of any operator

involving up to two particle interactions. The expectation value of an operator Â

acting on an (in general mixed) state is given by the inner product of its matrix
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representation with the N-th order DM∑
k

wk〈Ψk|Â|Ψk〉

=
∑
k

wk
∑
i1...iN

∑
j1...jN

cki1...iN c
k
j1...jN 〈j1j2 . . . jN |Â|i1i2 . . . iN 〉

=
∑
i1...iN

∑
j1...jN

Γ
(N)
i1...iN j1...jN

〈j1j2 . . . jN |
1

N !
Â|i1i2 . . . iN 〉

=
∑
i1...iN

∑
j1...jN

Γ
(N)
i1...iN j1...jN

A
(N)
i1...iN j1...jN

where the matrix A(N) is the projection of the operator Â onto the basis.

However, when Â is a two-electron operator, this can be further simplified.

The elements A
(N)
i1...iN j1...jN

= 〈j1j2 . . . jN | 1
N ! Â|i1i2 . . . iN 〉 are nonzero only if the

bra and ket states differ in at most two occupied orbitals. Consequently, its

matrix representation can be written as the antisymmetrized product of a second

order reduced matrix A(2) with elements

A
(2)
i1i2j1j2

=
1

N(N − 1)
〈j1j2|Â|i2i1〉

and an (N − 2)th order identity matrix I(N−2), such that

A(N) =
1

(N − 2)!
A(2) ∧ I(N−2)

≡ ΓN
2 (A(2))

where ∧ denotes the antisymmetrized normalized Grassmann product. The

operation ∧ I(N−2) expands a second order reduced representation to an N-th

representation, and will be denoted ΓN
2 (). This expansion operator is the adjoint

under the trace operation to the contraction operator L2
N , which reduces an N-th

order matrix to its second order reduced representation by taking its (N − 2)-th

order partial trace.

tr [ΓN
2 (A(2)) Γ(N)] = tr [A(2) L2

N (Γ(N))]

Therefore, if the operator Â only involves up to 2-electron interactions, its

expectation value can be expressed using a second order reduced representation
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of the N-th order density matrix,

tr A(N)Γ(N) =
1

(N − 2)!
tr (A(2) ∧ I(N−2))Γ(N)

=
1

(N − 2)!

∑
i1i2

∑
j1j2

A
(2)
i1i2j1j2

∑
i3...iN

Γ
(N)
i1i2i3...iN j1j2i3...iN

=
∑
i1i2

∑
j1j2

A
(2)
i1i2j1j2

L2
N (Γ(N))i1i2j1j2

≡ tr A(2)Γ(2)

where the antisymmetry of the N-th order density matrix produces N(N − 1)

similar reduced factors that can be written in terms of the second order DM

(2DM), defined as

Γ
(2)
i1i2j1j2

= L2
N (Γ(N))i1i2j1j2 =

1

(N − 2)!

∑
i3...iN

Γ
(N)
i1i2i3...iN j1j2i3...iN

(1.5)

and normalized to N(N − 1).

This concept can be generalized to any p-th order DM (p ≤ N), normalized to

N !
(N−p)!

Γ
(p)
i1i2...ipj1j2...jp

= LpN (Γ(N))i1i2...ipj1j2...jp

=
1

(N − p)!
∑

ip+1...iN

Γ
(N)
i1...ipip+1...iN j1...jpip+1...iN

As a consequence, the 2DM also contains the first order DM (1DM),

Γ
(1)
i1j1

=
1

N − 1

∑
i2

Γ
(2)
i1i2j1i2

(1.6)

which is normalized to N .

Just like the N-th order density matrix is the projection onto the chosen sp

basis of its spatial representation, the 2DM’s spatial representation, the pair

density matrix, is often denoted ρ(2)(x1, x2;x′1, x
′
2). It can be expanded in the

same basis as Γ(N),

ρ(2)(x1, x2;x′1, x
′
2) =

∑
ijkl

Γ
(2)
ijklφi(x1)φj(x2)φk(x′1)φl(x

′
2)

Its ’diagonal form’, which has x1 = x′1, x2 = x′2, is called the pair density.
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The 2DM thus determines the expectation value of all one and two-electron

operators, including the energy. A Hamiltonian composed of a one-particle

operator ĥ and a two-particle operator V̂ in its antisymmetrized second order

reduced form has elements

H
(2)
ijkl =

1

N − 1
〈ij|ĥ|kl〉+ 〈ij|V̂ |kl〉

=
1

N − 1
(δjlhik + δikhjl − δilhjk − δjkhil) + Vijkl (1.7)

with hik = 〈k|ĥ|i〉. The energy of the system is a linear matrix function of the

second order density matrix

E =
∑
ijkl

H
(2)
ijklΓ

(2)
ijkl = tr [H(2)Γ(2)] (1.8)

The 2DM may thus be used as an alternative to the wavefunction in variational

procedures! The very simple idea to apply the variational principle to the 2DM

instead of to the wavefunction,

min︸︷︷︸
Γ(2)�0, tr Γ(2)=N(N−1)

E = tr [H(2)Γ(2)] (1.9)

has unchained a whole area of research from the 1950’s on, variational second

order density matrix theory .17,19,20 The advantage of using the 2DM as descriptor

for a chemical system as opposed to the wavefunction has been its major driving

force. Whereas the number of variational degrees of freedom in the wavefunction

increases exponentially with the number of particles, the size of the 2DM is

not directly influenced by the number of particles, only by the dimension of

the one-particle basis set. This has invoked such enthusiasm for v2DM theory

that a ‘quantum mechanics without wavefunctions’ was envisaged.21 However,

the first trial calculations that aimed to minimize the energy over a normalized,

positive semidefinite 2DM, (1.9), gave energies that were in a sense ‘too strongly

correlated’, as they were well below the exact energy.22 This finding indicated

that the variational space over which the energy was minimized was much too

large.23 It has led to the realization that, using the term Coleman coined to

describe this problem, the 2DM must be N-representable.4
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1.3 N-representability

1.3.1 Definition of N-representability

In the foregoing, by defining the 2DM as the second order reduction of an

N-th order DM, Γ(2) = L2
N (Γ(N)), it has been tacitly assumed N-representable.

However, when given a random matrix with the same dimension as the 2DM,

does there even exist a physically correct Γ(N) from which it can be reduced

under the contraction L2
N? This is the essence of the N-representability problem.

When the 2DM Γ(2) is derivable from an N-th order DM Γ(N) that is antisym-

metric, Hermitian, normalized and positive semidefinite under the contraction

L2
N , it represents a physically correct N-electron system. It is thus ensemble

N-representable.

When the 2DM Γ(2) is derivable from an N-th order DM Γ(N) that is antisym-

metric, Hermitian, normalized and positive semidefinite as well as idempotent

under the contraction L2
N , it is pure state N-representable, since an idempotent

N-th order density matrix represents a pure state. However, we will not be

concerned with pure state N-representability here and will always interpret

‘N-representable’ to mean ‘ensemble N-representable’.

The set of N-representable 2DMs is convex. An ensemble 2DM that derives

from a proper N-th order density matrix by contraction is a weighted combination

of pure state N-representable 2DM’s. Consequently, the set of ensemble N-

representable 2DM is the convex hull of all pure state N-representable 2DM. Its

convexity plays an important role in v2DM methods.

Given the linear dependence of the energy on the 2DM, the 2DMs on the

boundary of the set of N-representable 2DM correspond to the ground state of

some Hamiltonian. More specifically, an extreme point on the boundary has a

pure state preimage in the set of N-representable N-th order density matrices,

although the reverse is not necessarily true.4

In fact, an exposed point on the boundary of the set of N-representable 2DM
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must correspond uniquely to either a non-degenerate ground state or a degenerate

ground state for which the degeneracy cannot not be distinguished through any

2-electron operator. Determining whether the one-to-one correspondence of

an exposed point to a ground state can actually be narrowed down to a non-

degenerate ground state, has not been solved.19 A flat or extreme non-exposed

point corresponds to a degenerate ground state for which the degeneracy can be

removed by adding some infinitesimal operator.19

Since any convex set is completely determined by its extreme points by virtue

of the Krein-Milman theorem, it would suffice to characterize the extreme points

of the set of N-representable 2DM’s, which have a pure state preimage in the set

of N-representable N-th order density matrices,4 or even the extreme exposed

points. However, even though the extreme points of the 1DM are easily identified,

the geometry of the second order N-representable set is much more intricate.

The set of N-representable 1DM’s is completely described as the convex hull

defined by the single Slater determinant 1DM’s, which are projectors onto an

N-dimensional subspace of the K-dimensional Hilbert space. The set of all these

projectors is the set of extreme points of the 1DM N-representable set.17,24,25

The correspondence of extreme 1DM’s to Slater type 1DM’s can be understood

as follows. First of all, to show that an extreme 1DM corresponds to a single

Slater type 1DM, consider its pure state preimage in the natural orbital basis.

Every extreme 1DM’s preimage in the set of N-representable N-th order density

matrices contains a pure state. The 1DM derived from a pure state in its natural

orbital basis is

|Ψ〉 =
∑
i1...iN

ci1...iN |i1 . . . iN 〉

Γ
(N)
i1...iN j1...jN

= N ! ci1...iN cj1...jN

Γ
(1)
kl = Nδkl

∑
i2...iN

c2ki2...iN

The normalization of the wavefunction implies that |ci1...iN | ≤ 1√
N !

, with equality

holding only for a single Slater determinant. Therefore, the diagonal elements of
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the 1DM lie between 0 and 1

Γ
(1)
kl = Nδkl

∑
i2...iN

|cki2...iN |2

≤ Nδkl
(N − 1)!

N !
= δkl (1.10)

However, the assumption of extremity only allows 0 and 1 occupations; any

other occupation number would imply that the 1DM can be written as a linear

combination of 1DM’s. As a consequence, any extreme 1DM has a single Slater

determinant preimage.

Conversely, a Slater determinant type 1DM has diagonal elements 0 and 1 and

is therefore extreme.

However, the set of single determinant 2DM’s does not fully characterize the

set of extreme points of the set of N-representable 2DM, because their linear

combinations do not cover the whole N-representable set. A linear combination

of single determinant 2DM’s cannot have an eigenvalue larger than one, which

can occur for the 2DM (cfr. infra, 1.16). Moreover, because the 2DM in general

cannot be diagonalized by a suitable choice of the sp basis, the N-representability

conditions for the 2DM are not expressible in terms of its spectrum. This simple

argument explains why the N-representability problem for the 2DM is so much

harder than that for the 1DM.

In the following discussion on the N-representability problem we focus on the

2DM’s, using the notation Γ for Γ(2) and H for H(2). To make the distinction

with the 1DM, the 1DM will be denoted γ instead of Γ(1).

1.3.2 Necessary and sufficient conditions for N-represen-

tability

Of course, any method based solely on the 2DM requires a formulation of N-

representability in terms of the 2DM itself. In fact, the necessary and sufficient

conditions for a 2DM to be N-representable are known in terms of the 2DM, but
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impossible to apply to realistic problems. Intuitively, they follow directly from

the separating hyperplane theorem, which states that26

Separating hyperplane theorem

Suppose C and D are two convex sets that do not intersect, i.e. C ∩D = φ,

then there exist a 6= 0 and b such that aTx ≤ b ∀x ∈ C and aTx ≥ b ∀x ∈

D. The hyperplane
{
x|aTx = b

}
is called a separating hyperplane for the

sets C and D.

Since the set of N-representable 2DM and any single non N-representable

2DM form disjoint convex sets, the separating hyperplane theorem can be

applied to it. It implies that for any non-N-representable 2DM, there exists a

second order reduced ’Hamiltonian’ H(2) that defines a separating hyperplane

tr H(2)Γ = E0(H) that spatially separates it from the set of N-representable

2DM. Such a separating hyperplane can always be constructed as the hyperplane

through the point in the N-representable set that is nearest to the non-N-

representable 2DM under consideration and normal to the difference between

both. In other words, it supports the N-representable set in the point closest to

the non N-representable 2DM under consideration, such that this point is its

orthogonal projection onto the plane.

∀ Γ̃(2) that are not N-representable

∃H(2) : tr [H(2)Γ̃(2)] ≤ E0(H)

Because this must hold for any non N-representable 2DM, the necessary and

sufficient condition for N-representability is that there exists no hyperplane that

separates it from the N-representable set

Γ̃(2) is N-representable⇔

∀ H(2) : tr [H(2)Γ(2)] ≥ E0(H(2)) (1.11)

with E0(H(2)) the ground state energy for the Hamiltonian. A mathematically

more rigorous proof of these conditions was derived by Garrod and Percus,27

and refined by Kummer.18
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E
exact

H

N-representable H

E= tr H

non N-representable

Figure 1.1: For any 2DM that does not lie in the set of N-representable 2DM, there

exists a separating hyperplane tr HΓ = E0(H) that separates it from the

N-representable set.

Clearly, this formulation of the necessary and sufficient conditions for N-re-

presentability is hardly practicable, and although it was believed for quite a

while28 that the necessary and sufficient conditions for N-representability of the

2DM could be formulated in a simple manner, this has not been realized up to

now. If anything, it seems that the difficulty of this problem has become more

apparent.29 The formulation (1.11) of the necessary and sufficient conditions

for N-representability makes it at least as hard as full configuration interaction

(FCI).

In fact, the problem of determining whether a given 2DM is N-representable,

has been shown to be Quantum Merlin Arthur (QMA)-complete, when the

number of electrons is considered the ’size’ of the system. The QMA complexity

class is the quantum analog of the Nondeterministic Polynomial time complexity

class (NP) in a probabilistic setting. A problem is said to be complete in a

complexity class if any other problem in this class can be reduced to it, and

it is in this class itself. Completeness of a problem is rarely proven directly

based on this definition, however. Instead, it is usually proven by showing that

the problem lies in the complexity class under consideration and that another

problem that has already been proven to be complete in this class can be reduced

to it, as this implies that any other problem in the class can be reduced to it.

Consequently, proofs of completeness of different problems have been generated
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in a tree-like fashion, with branches of proofs of completeness that rely on its

predecessor’s proof of completeness, and which finally, all depend on one problem

at the base of the tree, of which completeness has been proven directly based on

its definition. The classical satisfiability (SAT) problem is such a problem for

NP, as its NP-completeness has been proven directly by Cook.30

Verstraete et al.6 have proven that deciding whether a 2DM is N-representable

is QMA-complete, first of all by showing that the problem is in QMA, and,

secondly, that it can be reduced to the problem of finding the ground state

energy of the local Hamiltonian problem with 2-body interactions. The local

Hamiltonian problem is similar in spirit to the MAX-SAT problem generalized

to a probabilistic quantum setting. In fact, the k-local Hamiltonian problem

contains the MAX-k-SAT problem. As a consequence, the 2-local Hamiltonian

problem is NP-hard because the MAX-2-SAT problem is NP-complete. Kitaev

and al. have narrowed this result down by specifying that it is QMA-complete.5

The 1-local Hamiltonian problem, however, is in P.

The N-representability problem can be linked to the 2-local Hamiltonian

problem by realizing that any 2-local Hamiltonian of fermions with an sp basis

of dimension 2N can be mapped onto a 2-local Hamiltonian of spins.6 Although

the QMA-completeness of the 2-local Hamiltonian problem implies that the

N-representability problem is QMA-complete, it is not necessarily intractable in

practice. The specific symmetry present in molecular systems may simplify the

problem.

1.3.3 Necessary conditions implied by N-representability

Because the formulation (1.11) of generally holding necessary and sufficient

conditions for N-representability is at least as hard as full CI from the complexity

point of view, it is useless in practice. Nevertheless, subsets of the constraints

(1.11) determined by classes of exactly solvable Hamiltonians provide useful

necessary conditions on the 2DM.

A straightforward set of such necessary conditions is provided by the Hamilto-
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nians of the form Ĥ =
∑
ij c

A
i c

A
j Â†i Âj , which must have a positive expectation

value. Different forms of the operator A lead to different positivity conditions.

∑
ij

cAi c
A
j 〈Ψ|Â

†
i Âj |Ψ〉 ≥ 0 ∀cA 6= 0

⇔〈Ψ|Â†Â|Ψ〉 � 0

where the symbols � 0 and � 0 denote an ordering with respect to the positive

semidefinite cone. The notation 〈Ψ|Â†Â|Ψ〉 � 0 therefore indicates that the

matrix 〈Ψ|Â†Â|Ψ〉 has positive eigenvalues. This type of condition is independent

of the choice of basis, because the spectrum of the constraint matrices does

not change under a unitary basis transformation. These conditions are called

p-positivity conditions, where p indicates the order of the creation-/annihilation

operator string involved. Using the anticommutation relationships for creation

and annihilation operators, the above constraint matrix 〈Ψ|Â†Â|Ψ〉 can be

expressed as a linear function of the 2DM.

1-Positivity

The 1-positivity conditions originate from operators Â involving one particle/hole

operator. The ’p-condition’ imposes that the 1DM must be positive semidefinite,

whereas the ’q-condition’ imposes that the first order hole DM must be positive

semidefinite4

p-condition

p � 0 with pij = 〈Ψ|a†jai|Ψ〉 (1.12)

q-condition

q � 0 with qij = 〈Ψ|aja†i |Ψ〉 (1.13)

However, since qij = δij − pij

p � 0

I − p � 0
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Therefore all eigenvalues λ(1) of the 1DM must lie between 0 and 1

0 ≤ λ(1) ≤ 1 (1.14)

This condition is necessary but also sufficient for N-representability of the

1DM, which was first proven by Coleman17 and illustrated above by considering a

CI-expansion for the wavefunction (1.10). Since the concept of N-representability

is independent of the choice of sp basis and the 1DM can always be made diagonal

by choosing a suitable sp basis, N-representability of the 1DM can be formulated

completely in terms of its spectrum.

2-Positivity

Unlike N-representability of the 1DM, necessary and sufficient conditions for N-

representability of the 2DM cannot simply be expressed in terms of the spectrum

of the 2DM.4 Moreover, contrary to early beliefs, the eigenvalues of the 2DM

are not constrained to a value between 0 and 1. As Sasaki, Yang and Coleman

have established,4,31,32 a tight upper bound for the eigenvalues of the 2DM is

0 ≤ λ(2) ≤ N for N even (1.15)

0 ≤ λ(2) ≤ N − 1 for N odd (1.16)

Garrod and Percus have introduced a set of necessary, but in general not

sufficient, conditions for N-representability27 that can be derived by considering

an operator Â with two creation/annihilation operators. This leads to four

2-positivity constraints, only three of which are independent. The so-called

P-,Q- and G-condition impose positive semidefiniteness of the particle-particle,

hole-hole and particle-hole matrix.

P-condition

P � 0 with Pijkl = 〈Ψ|a†ka
†
l ajai|Ψ〉 (1.17)

The P-matrix is simply the 2DM, Γ(2).



16 Chapter 1 N-representability

Q-condition

Q � 0 with Qijkl = 〈Ψ|akala†ja
†
i |Ψ〉 (1.18)

The Q-matrix is a linear function of the 2DM,

Qijkl = δikδjl − δilδjk

− 1

N − 1

∑
m

(δikΓjmlm + δjlΓimkm − δilΓjmkm − δjkΓimlm) (1.19)

+ Γijkl (1.20)

or written more concisely using an unnormalized Grassmann wedge product

Q = δ ∧ δ − δ ∧ γ + Γ

It will be convenient to consider it as a homogeneous linear mapping acting on

an antisymmetric two-particle/hole matrix, Q : Γ→ Q(Γ)

Q(Γ)ijkl = (δikδjl − δilδjk)
1

N(N − 1)

∑
mn

Γmnmn

− 1

N − 1

∑
m

(δikΓjmlm + δjlΓimkm − δilΓjmkm − δjkΓimlm) (1.21)

+ Γijkl (1.22)

G-condition

G � 0 with Gijkl = 〈Ψ|a†kala
†
jai|Ψ〉 (1.23)

In contrast to the P- and Q-matrices, the G-matrix is not antisymmetric.

Nonetheless, the image of the antisymmetric 2DM under the G-map has a

specific symmetry that originates from the antisymmetry of the 2DM. Viewed

as a linear homogeneous matrix map, G : Γ→ G(Γ) is

G(Γ)ijkl = δjl
1

N − 1

∑
m

Γimkm − Γilkj (1.24)

A completely analogous map can be applied to the domain of G-like matrices

that have the same symmetry as the G-matrix derived from an antisymmetric

2DM, for instance when considering the squared map, G(G(Γ)). We will use the

same notation for both cases, as the distinction will be clear from the context.
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G̃-condition

G̃ � 0 with G̃ijkl = 〈Ψ|aka†l aja
†
i |Ψ〉 (1.25)

This constraint is already implied by the G-condition. Its positive semidefiniteness

follows from the positive semidefiniteness of the G-matrix.

G̃ijkl = Gjilk + δklδij − δklγij − δijγkl

xT G̃x =
∑
ijkl

xijxkl
∑
abcd

Gabcd(δajδbiδclδdk +
1

N2
δklδijδabδcd

− 1

N
δklδcdδajδbi −

1

N
δijδabδclδdk)

=
∑
ijkl

xijxkl
∑
abcd

Gabcd(δajδbi −
1

N
δabδij)(δclδdk −

1

N
δcdδkl)

≥ 0 ∀x

Historically, the G-condition was introduced by Garrod and Percus in a

nonlinear, but equivalent, form27

G′ � 0

G′ijkl = δjlγik − Γilkj − γijγkl

= Gijkl − γijγkl

This form is equivalent to the definition (1.23) of the G-condition. Positive

semidefiniteness of G′ trivially implies positive semidefiniteness of G:

xTGx = xTG′x+ (xT γ)2 ≥ 0

≥ (xT γ)2

≥ 0 ∀x

Conversely, positive semidefiniteness of G also implies positive semidefiniteness
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of G′. Since a positive semidefinite G-matrix can be factored as G = RRT

xTG′x = xTGx− (xT γ)2

=
1

N2
(xTGx)(eTGe)− 1

N2
(xTGe)2

=
1

N2
(xTR)(RTx)(eTR)(RT e)− 1

N2
(xTR)(RT e)(xTR)(RT e)

≥ 0 ∀x (1.26)

The vector e is the vector representation of the identity matrix in the tp basis,

eij = δij , such that (eTG)ij =
∑
kGkkij = Nγij and eTGe =

∑
ij Giijj = N2.

In the last line, the Cauchy-Schwarz inequality was invoked. Therefore, the

linear form G(Γ) and the nonlinear form G′(Γ) are equivalent conditions.

In general, p-positivity conditions imply lower order positivity conditions. In

particular,

P � 0⇒ p � 0

Q � 0⇒ q � 0

G � 0⇒ p � 0, q � 0

The G-condition implies both the p− and q−condition, because it can contract

to either of these, depending on whether it is contracted according to the particle

index or the hole index of the particle-hole state.

3-Positivity

When the operator Â is a string of three creation/annihilation operators, pos-

itivity conditions on the third order DM emerge. Although the 3DM is not

available in an approach based on the 2DM, lower order conditions can be

derived from the 3-positivity conditions. Two-index matrix conditions can be

obtained by recognizing that the anticommutators of operators Â involving

three creation-/annihilation operators not only preserve positive semidefiniteness,

but also remove their dependence on the 3DM. These conditions were derived
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by Erdahl33 and are referred to as the ‘T-conditions’. The anticommutator

〈Ψ|Â†Â+ ÂÂ†|Ψ〉 for Â =
∑
ijk c

A
ijkaiajak leads to the ‘T1 condition’

T1-condition

T 1
ijklmn � 0 with T 1

ijklmn = 〈Ψ|a†l a
†
ma
†
nakajai + anamala

†
ia
†
ja
†
k|Ψ〉 (1.27)

The T1-condition depends only on the 2DM because the commutator of both

terms yields

T 1
ijklmn = δnkΓmlji − δnjΓmlki + δinΓmlkj

− δmkΓnlji + δjmΓnlki − δimΓnlkj

+ δklΓnmji − δjlΓnmki + δilΓnmkj

− (δnkδmj − δnjδmk)γil + (−δinδmk + δnkδmi)γjl

− (δnkδil − δinδlk)γmj + (−δnjδkl + δnkδjl)γmi

− (δnjδmi − δinδmj)γkl + (−δinδjl + δnjδil)γmk

− (δmkδjl − δjmδkl)γin + (−δimδkl + δmkδil)γnj

− (δjmδil − δimδjl)γkn

− δniδmjδkl − δnjδmiδkl + δnkδmjδil

+ δnjδmkδil − δnkδmiδjl + δniδmkδjl

which can be written in a very compact manner using the unnormalized Grass-

mann wedge product

T 1 = δ ∧ Γ− δ ∧ δ ∧ γ + δ ∧ δ ∧ δ

T 2-condition

Similarly, another 3-index constraint can be derived on the 2DM by considering

the anticommutator

T 2 � 0 with T 2
ijklmn = 〈Ψ|a†l a

†
mana

†
kajai + a†namala

†
ia
†
jak|Ψ〉 (1.28)
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which is independent of the 3DM

T 2
ijklmn = δknΓijkm + γnk(δilδjm − δimδjl)

− δilΓkmnj + δimΓklnj + δjlΓkmni − δjmΓklni

The above T 2-condition arises from 〈Ψ|Â†Â+ ÂÂ†|Ψ〉 with Â =
∑
ijk c

A
ijka

†
ia
†
jak.

However, changing the relative position of the creation operators and the annihi-

lation operator leads to a different constraint. Instead of imposing all different

conditions, the dependence on the arrangement of the creation and annihilation

operators can be removed by imposing that

〈Ψ|(Â† + â†)(Â+ â) + ÂÂ†|Ψ〉 � 0

with â =
∑
i c
a
i ai a one-electron operator. Equivalently,

∀cA, ca :
∑

ijkk′lmnn′

cAijkc
a
k′

T 2
ijklmn Γijkn′

Γk′lmn γk′n′

 cAlmnc
a
n′ ≥ 0

Although these 3-index constraints only depend on the 2DM, they are still

expensive to impose. Being 3-index constraints, their dimension scales as K6, as

opposed to K4 for the 2-positivity constraints. With current computational and

algorithmic means, they are practically unworkable in any chemically relevant

basis set. For this reason, I have decided to work primarily with 1- and 2-index

constraints. An alternative could be to impose partial 3-positivity conditions,34

for instance only conditions on the diagonal. That way, one could even attempt

to impose partial higher order conditions.35,36
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P-,Q- and G-type maps and their inverse maps

The P-,Q- and G-map, and other 2-index maps on the 2DM derived from them,

have a structure similar to the map Y Q() or Y G()

Y Q(Γ)ijkl = cQ0 Γijkl + cQ1
∑
n

(δilΓjnkn + δjkΓinln − δikΓjnln − δjlΓinkn)

+ cQ2 (δikδjl − δilδjk)
∑
mn

Γmnmn (1.29)

Y G(Γ)ijkl = cG0 Γilkj + cG1
∑
n

δjlΓinkn (1.30)

where the coefficients cQ0 , c
Q
1 , c

Q
2 and cG0 , c

G
1 determine the nature of the map.

The map Y Q is antisymmetric and has a structure similar to the Q-map. The

map Y G has the same symmetry as the G-map. The inverse of such a map Y ()

is of the same form, because it can be constructed from Y () and its first and

second order contractions

∑
n

Y Q(Γ)inkn = cQ0
∑
n

Γinkn + cQ1
∑
n

(Γinkn + Γinkn − δikΓmnmn −KΓinkn)

+ cQ2 (δikK − δik)Γmnmn

=
∑
n

Γinkn(cQ0 + (2−K)cQ1 ) +
∑
mn

Γmnmnδik(cQ2 (K − 1)− cQ1 )

∑
mn

Y Q(Γ)mnmn = (cQ0 + 2cQ1 (1−K) + cQ2 K(K − 1))
∑
mn

Γmnmn∑
n

Y G(Γ)inkn = (cG0 + cG1 K)
∑
n

Γinkn

The coefficients for the zeroth, first and second order contractions in the inverse

maps Y −1(Γ) are then chosen to remove any dependence on the contractions of
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Γ when they act on Y (Γ), such that Y −1(Y (Γ)) = Γ,

cQ,−1
0 =

1

cQ0

cQ,−1
1 =

−cQ1
cQ0

1

cQ0 + cQ1 (2−K)

cQ,−1
2 =

−2cQ1

cQ0

cQ2 (K − 1)− cQ1
cQ0 + 2cQ1 (1−K) + cQ2 K(K − 1)

1

cQ0 + cQ1 (2−K)

− cQ2

cQ0

1

cQ0 + 2cQ1 (1−K) + cQ2 K(K − 1)

=
1

cQ0

2(cQ1 )2 − cQ0 c
Q
2 − c

Q
1 c

Q
2 K

cQ0 + 2cQ1 (1−K) + cQ2 K(K − 1)

1

cQ0 + cQ1 (2−K)
(1.31)

and

cG,−1
0 =

1

cG0

cG,−1
1 =

−cG1
cG0

1

cG0 + cG1 K

Any linear combination of the P-, Q- and G-condition of the form (1.29) or

(1.30) is therefore exactly invertible. For instance, the inverse Q- and G-maps

are

Q−1(Γ)ijkl = Γijkl +
1

K −N − 1

∑
n

(δilΓjnkn + δjkΓinln − δikΓjnln − δjlΓinkn)

+
1

(K −N)(K −N − 1)
(δikδjl − δilδjk)

∑
mn

Γmnmn

G−1(Γ)ijkl = −Γilkj +
1

K −N + 1
δjl
∑
n

Γinkn

Moreover, powers of the P-, Q- and G- maps have the same structure as these

maps and are thus exactly invertible. In particular, the map L† : Γ → Γ +

Q(Q(Γ)) +A(G(G(Γ))) with A an antisymmetrizer, is of the form Y Q(Γ) and

has a straightforward inverse, that will be exploited in semidefinite programming

applications (see chapter 3). The quadratic P-map is equal to itself; given the
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Q-map’s contractions

∑
n

Q(Γ)inkn =
N −K + 1

N − 2

∑
n

Γinkn + δik
K −N − 1

N(N − 1)

∑
mn

Γmnmn

∑
mn

Q(Γ)mnmn =
∑
mn

Γmnmn
(K −N − 1)(K −N)

N(N − 1)

the quadratic Q-map is

Q(Q(Γ))ijkl = Γijkl +
2N −K
(N − 1)2

∑
n

(δilΓjnkn + δjkΓinln − δikΓjnln − δjlΓinkn)

+
4N2 +K2 − 4KN + 2N −K

N2(N − 1)2
(δikδjl − δilδjk)

∑
mn

Γmnmn

Given the G-map’s contraction

∑
n

G(Γ)inkn =
K − 1

N − 1

∑
n

Γinkn

the quadratic G-map and its antisymmetrization are

G(G(Γ))ijkl = Γijkl +
K −N
N − 1

δjl
∑
n

Γinkn

A (G(G(Γ)))ijkl = 4Γijkl −
K −N
N − 1

∑
n

(δilΓjnkn + δjkΓinln − δikΓjnln − δjlΓinkn)

Any linear combination of these maps is therefore of the form (1.29) for which

(1.31) gives its inverse map.

1.4 Practical variational second order density ma-

trix methods

Because the known necessary and sufficient conditions for N-representability

are, in general, intractable, practical v2DM methods attempt to minimize the

energy as a function of the 2DM under some set of necessary, but not sufficient,

conditions. Given the importance of the basis set dimension for chemically

relevant results, we will deal primarily with 2-index conditions, which enable us

to express the matrices in a moderately sized basis set.
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In addition to Hermiticity, antisymmetry and normalization, 2-positivity

conditions are imposed. This leads to the following semidefinite optimization

problem, which forms the basis of all applications considered here

min︸︷︷︸
Γ

E = tr [HΓ]

subject to Γ = Γ†

Γijkl = −Γjikl

tr Γ = N(N − 1)

Γ � 0

Q(Γ) � 0

G(Γ) � 0 (1.32)

Some techniques to solve this type of optimization problem, with semidefinite

constraints, are discussed in chapter 3. The properties of Hermiticity (symmetry)

and antisymmetry under electron exchange can be imposed by construction.

Because the Hamiltonians to be considered are real, the 2DM may be assumed

real as well.

Because the feasible set of all 2DM that satisfy the conditions imposed in

(1.32) is convex, and the v2DM(PQG) method aims to minimize a linear function

E = tr [HΓ] over this convex set, a global minimum is always found.

The v2DM(PQG) method may be pictured as follows (figure 1.2 illustrates

the approach for the P-condition). An unconstrained minimization would follow

the direction of the negative Hamiltonian, which is the direction in which the

energy decreases most rapidly. However, the optimum must be found within

the feasible set, the set of points that satisfy all conditions in (1.32). Each of

the positive semidefinite constraints defines an infinite number of constraint

hyperplanes on the 2DM. The smallest convex hull of all these constraint planes

then defines the set over which the energy is minimized in practice, which

includes the set of N-representable 2DM as a subset. Because the dependence

of the energy on the 2DM is linear, the N-representability constraints imposed
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Figure 1.2: The P-condition defines an infinite number of constraint hyperplanes

of the form tr [Γ xxT ] = 0 on the set of Hermitian, antisymmetric and

normalized 2DM, because for any vector x: xT Γx ≥ 0 must hold. The

resulting set contains, but is bigger than, the set of N-representable 2DM.

Although the multidimensionality of the problem cannot be properly

depicted in the 2-dimensional plane, the Q- and G-condition similarly

define an infinite number of constraint hyperplanes. For most problems,

all three constraints impose non-redundant (active) bounds on the 2DM.

determine the optimum, which therefore lies on the boundary of the feasible

set (figure 1.3). This implies that in order to obtain the exact energy, the

imposed N-representability conditions need to capture the boundary of the

N-representable set exactly, at least at the point of the lowest energy under the

Hamiltonian under consideration. This realization stresses the importance of

the N-representability conditions for practical v2DM methods.

Without the necessary and sufficient conditions to ensure N-representability,

the optimum will be found outside of the true N-representable set and will

have an energy lower than the exact energy. The method therefore generates a

lower bound on the exact energy for the system within the basis set. In a finite

basis set, the lower bound provided by the v2DM method may not be a hard

lower bound on the exact basis set limit, but it is a lower bound to the exact

energy in that basis set. As an increasing number of – active – N-representability

constraints are imposed during the optimization, the energy will rise, eventually

closing the gap with the exact energy in the basis set upon imposing sufficient
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H

E = tr H

E
exact

E
v2DM

Figure 1.3: In the v2DM(PQG) method, the energy is minimized over the convex

hull of all constraint hyperplanes defined by the P-, Q- and G-condition.

The set of N-representable 2DM is a subset of this set. As a consequence,

minimizing the energy over this set yields an energy lower than the exact

energy.

N-representability constraints.18,27 This idea forms the basis for practical v2DM

approaches in which results can be improved by including a bigger number of

active N-representability constraints or more stringent active constraints.

1.5 Applications to chemistry

The v2DM method can be seen as a complementary approach to wavefunction

based methods, because it approaches the electron correlation problem from a

completely different perspective. The increasing accessibility and performance of

semidefinite optimization programs has renewed interests in applications of v2DM

theory in the past two decades, including applications to chemistry.14,15,21,37

Nonetheless, most applications on chemical systems have focused on reproducing

correct energies. Therefore, we aim to provide chemical insight into the effects

of approximate N-representability on chemical systems by evaluating necessary

N-representability constraints on the PES of several small molecules, focusing

on computationally tractable 2-index constraints.

Section 1.5.2 discusses the numerical accuracy and stability of v2DM theory

from a chemical point of view. It demonstrates a fundamental shortcoming,

namely molecular dissociation into unphysical fractionally charged atoms or
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molecules under 2-positivity conditions. Although this is a serious shortcoming in

itself, it signals a more profound problem, which affects many chemical properties.

Moreover, it seems to be a persistent problem: even 3-index constraints do not

solve it adequately. Section 1.5.3 therefore traces the origin of this problem

and proposes additional N-representability constraints to solve it. Section 1.5.4

analyzes the effect of the proposed constraints on several molecular applications.

Since molecular dissociation is so badly described, section 1.5.5 examines the

concepts of size-consistency and separability in practical v2DM methods.

1.5.1 Computational details

All v2DM calculations are done with the cc-pVDZ basis set, unless otherwise

specified. The molecules are constrained to singlet states (conditions 2.5.1 in

chapter 2 for the v2DM method), unless stated otherwise.

The PES are generated from single point calculations, using our own clas-

sical barrier method (section 3.4 of chapter 3) to carry out the semidefinite

optimization (1.32) and Molpro for generating reference CASSCF and MRCI

calculations.38

In the calculations on the 14-electron isoelectronic series in section 1.5.2,

the active space of the full-valence CASSCF comprises 10 electrons and all 8

valence orbitals, and the doubly-occupied inactive orbitals (mostly 1s core) were

also optimized. The MRCI calculations were performed subsequently, with the

full-valence CASSCF as a reference. The core (1s) orbitals were kept frozen in

the MRCI expansion.

1.5.2 Strengths and failures of 2-index N-representability

constraints in chemical applications

Ideally, a numerically reliable approximative ab initio method

computes the energy and other chemical properties accurately. If not exact,

its potential energy surface (PES) is parallel to the exact PES, such that

it still leads to correct spectroscopic constants;
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provides the same level of accuracy within each finite basis set;

has stable errors with respect to the number of electrons, the atomic number,

spin state and molecular geometry;

is size-extensive and size-consistent.

These aspects only establish its numerical reliability. In reality, there is always a

trade-off between numerical accuracy and computational speed. Therefore, the

ideal ab initio method has all these desirable properties while requiring a compu-

tation time that scales up significantly better than FCI. The computational side

of the v2DM method is discussed in chapter 3 and we focus here on its numerical

accuracy, which is directly related to the strength of the N-representability

conditions imposed.

The PES for a set of N2 isoelectronic molecules under the P-,Q- and G

condition (figure 1.11) and Be2 calculated in different basis sets (figures 1.8 and

1.9), allow us to make the following observations, which will be a starting point

for further examination in sections 1.5.3 to 1.5.5.

For near-equilibrium structures, 2-positivity conditions give a fair, albeit

overestimated, description of electron correlation. Because they take electron

correlation into account, they capture the basic chemistry in a qualitative manner,

even in multireference cases that are difficult to describe using wavefunction

based methods. Several examples to illustrate this point will be discussed in

upcoming sections. For instance, the 2-positivity conditions are able to describe

the most important chemical differences between several 14-electron diatomic

molecules, including the kinetically stable pseudo bound state of O2+
2 , which is

a typical failure case for ab initio methods such as MP2. They capture the van

der Waals and covalent bonding in Be2, although they exaggerate it. They also

correctly produce a potential energy well for the near-equilibrium geometries of

the F−3 ion, although the nature of its bonding remains a source of debate.39–42

However, the lower bound method’s overestimation of correlation is reflected

in all chemical properties. Because of this, it is expected to give
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too low energies for transition states compared to the equilibrium and there-

fore underestimate energy barriers

too low dissociation energies

wrong electron affinities and ionization energies

too high polarizabilities

too low band-gaps and overestimated charge-transfer energies

which are problems that other density and density matrix methods face as well.

The most important of these consequences will be discussed in more detail in

the next sections. Since 2-positivity conditions are only exact for systems with

up to two electrons, they cannot provide quantitative accuracy in general, and

they are expected to perform best on systems with configurations that resemble

a two or three particle or hole system.

The accuracy of the optimal energy under 2-positivity conditions is most

improved by the G-condition. The P-condition only gives a very poor approxima-

tion (table 1.3), because it basically forces all electron pairs into the lowest energy

eigenfunction of the second order reduced Hamiltonian (see chapter 3 section

3.2). The 3-index constraints T1 and T2 decrease the error significantly for

near-equilibrium structures, up to mHartree precision, which agrees with findings

by Nakata et al. and Mazziotti et al.37,43 However, all of these constraints

improve the energy much less in the dissociation limit.

The errors in the v2DM(PQG) energy may originate both from the potential

energy and from kinetic energy, and cancel out to some extent. The v2DM(PQG)

method may overestimate the potential energy and underestimate the kinetic

energy, as illustrated by Be2 in the 6-31+G* basis set (figure 1.4) or underestimate

the potential energy and overestimate the kinetic energy, as illustrated by BeB+

in the D95V basis set (figure 1.6). Separating the total energy into its kinetic

energy and potential energy contributions may therefore produce bigger errors

in each of these contributions than in the total energy.
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Figure 1.4: The v2DM(PQG) method (solid lines) overestimates the potential energy

of Be2 in the 6-31+G* basis set and overestimates the kinetic energy

compared to FCI(FC) calculations (dotted lines), such that the two errors

partially cancel out in the total energy. The ratio of potential and kinetic

energy is consistently slightly higher than that of FCI(FC) calculations

(figure 1.5).
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Figure 1.5: The v2DM(PQG) method (solid lines) gives consistently higher virial

ratios for Be2 in the 6-31+G* basis than FCI(FC) calculations (dotted

lines).
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Figure 1.6: The v2DM(PQG) method (solid lines) underestimates the potential

energy of BeB+ in the D95V basis set and overestimates the kinetic

energy compared to FCI(FC) calculations (dotted lines), such that the

two errors partially cancel out in the total energy. Nonetheless, the ratio

of potential and kinetic energy agrees well with FCI(FC) calculations

(figure 1.7).
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Figure 1.7: The v2DM(PQG) method (solid lines) gives highly similar virial ratios

for the BeB+ in the D95V basis set to FCI(FC) calculations (dotted lines)

even though differences in kinetic and potential energy are non-neglible.
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The improvement of the v2DM(PQG) method’s accuracy with the basis set is

not always consistent with that of an exact calculation. Even though the basis set

dependence is rather stable for atomic systems,44 there are important differences

between PES for Be2 in different basis sets calculated with the v2DM(PQG)

method and with FCI(FC). Moreover, the differences between the PES for the

two methods are not consistent with the choice of basis set (figures 1.8 and 1.9).

The v2DM(PQG) method tends to produce a more strongly bound PES than

FCI(FC) (figure 1.10), even in basis sets in which FCI(FC) does not describe

Be2 as a stably bound molecule, such as in the 6-31+G* basis set. In this basis

set the distance between the two PES is significantly larger than in the other

basis sets considered, which may indicate that the v2DM(PQG) method is more

sensitive to the inclusion of diffuse functions in the basis set. The distance

between the v2DM(PQG) and FCI(FC) PES is smallest for basis sets that do

not contain polarization or diffuse functions.

Admittedly, wavefunction based results for the combined van der Waals-

covalent bonding present in the Be dimer also depend heavily on the basis set.

High-quality PES for the Be dimer not only require a multireference method

to describe the bonding attributable to the near degeneracy of the 2s and 2p

orbitals, but also a basis set that includes f- or higher angular momentum basis

functions.45–48

Although in principle the v2DM method may produce an incorrect 2DM with

correct energy, we do not observe any obvious inconsistencies between the energy

of the variationally optimized 2DM and other chemical properties. In theory, a

single constraint on the energy, tr HΓ ≥ E0(H) with H the Hamiltonian of the

system under consideration, would suffice to obtain a 2DM with the exact energy.

However, the optimal 2DM under this hypothetical constraint would lie in the

intersection between the hyperplane described by tr HΓ = E0(H) and the convex

hull determined by the other necessary N-representability constraints imposed.

This does not necessarily lead to the exact N-representable 2DM, which would

lie in the intersection of the same hyperplane with the true N-representable set.
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Figure 1.8: The shape of the v2DM(PQG) PES of Be2 depends heavily on the basis

set, but not in the same way as the FCI(FC) PES given in figure 1.9.

The v2DM(PQG) PES tends to overestimate the combination of van

der Waals attraction and chemical bonding between the Be atoms. The

STO-6G PES is depicted on a secondary axis because it is much higher

in energy.
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Figure 1.9: The shape of the FCI(FC) PES of Be2 also depends heavily on the basis

set. Some smaller basis sets do not reproduce the potential energy well

due to the combination of van der Waals attraction and chemical bonding

between the Be atoms. The STO-6G PES is depicted on a secondary

axis because it is much higher in energy.
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Figure 1.10: Comparison of the Be2 PES of the v2DM(PQG) method with FCI(FC)

in the biggest basis sets considered, and an experimental PES generated

from spectroscopic data47 (only relative energies are shown), confirms

that the v2DM(PQG) method exaggerates the bonding. It overestimates

the dissociation energy by a factor two in the 6-31G(2df) basis. In the

6-31+G* basis, dissociation energy is considerably smaller, but FCI(FC)

does not even yield a stably bound minimum in this basis.
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This hypothetical example justifies the need to study properties other than the

energy in order to make a full assessment of the v2DM method.

Nonetheless, no such inconsistencies between the energy and other chemical

properties appear in our v2DM(PQG) calculations. In fact, shortcomings in

our calculated chemical properties are signaled by increasing errors in the

energy. In particular, both the energy and chemical properties calculated with

the v2DM(PQG) method generally agree fairly well with MRCI properties for

near-equilibrium geometries and the increasing errors in the energy towards

dissociation prove to be an indication of serious shortcomings in other chemical

properties as well (tables 1.1 and 1.2).

The 2-positivity conditions fail dramatically in describing structures far from

their equilibrium geometry and lead to unphysical dissociation limits.49,50 No

accounts of this problem have been made in existing v2DM studies of poten-

tial energy surfaces, which focus on the energy and mostly study homonuclear

molecules up to relatively short bond lengths, 2 or 3 Å.51,52 Our v2DM(PQG)

calculations on the heteronuclear diatomic molecules CO, CN– and NO+ nonethe-

less indicate a serious failure of the v2DM(PQG) method: their energy, atomic

charges and dipole moment diverge from their MRCI counterparts as the bond

length increases (figure 1.12, tables 1.1 and 1.2). The dipole moments calculated

with the v2DM(PQG) method do not correspond to the correct dissociation limit

consisting of two neutral or a neutral and a singly charged atom, but to dissoci-

ated atoms with a residual non-integer charge. This shortcoming is confirmed

by the appearance of non-integer atomic Mulliken charges in the dissociation

limit (table 1.2). For instance, NO+ dissociates into N+0.47 + O+0.53 instead

of N0.0 + O+1.0 and CN– into C−0.60 + N−0.40 instead of C−1.0 + N0.0. Even

the CO molecule carries minor atomic charges in the dissociation limit, which

produce a significant dipole moment due to the large spatial separation. The

heteronuclear diatomics, on the other hand, dissociate into correct products

under 2-positvity because of symmetry.
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MRCI (10 Å) DM2 (10 Å) DM2 (20Å)

NO+ 22.39 -0.11 -0.28

CN– 25.83 7.01 13.38

CO 0.00 -0.90 -1.71

Table 1.1: v2DM(PQG) dipole moments in the dissociation limit (in Debije, origin

chosen in the centre of mass), do not correspond to the integer-charged

dissociation products, but to dissociated atoms with a fractional residual

charge.

Mulliken population (20 Å) fitted minimum to atomic sum graph

N2 7.00/7.00 7.00/7.00

O2+
2 7.00/7.00 7.00/7.00

NO+ 6.53/7.47 6.51/7.49

CN– 6.60/7.40 6.58/7.42

CO 5.98/8.02 5.98/8.02

Table 1.2: The Mulliken populations of the dissociated molecule (20 Å) are remarkably

similar to the minimum populations obtained by fitting a polynomial to

the graph of summed atomic energies as a function of the population on

one of the atoms (and for a total of 14 electrons)

.

The appearance of such fractional residual charges in the dissociation limit

of heteronuclear diatomics indicates a fundamental flaw in the 2-positivity

conditions. Fractionally charged dissociation species can occur naturally when

several symmetry-equivalent charged species are formed upon dissociation, but

they are unjustified in heteronuclear diatomic molecules.

The v2DM(PQG) method does not adequately describe systems with a

fractional number of electrons.50,53 This shortcoming is the origin of its failure

to describe structures far from equilibrium geometry. Theoretically, a state with

a fractional number of electrons can only arise from an ensemble of states with
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Figure 1.11: The v2DM(PQG) PES has a similar shape to the PES calculated with

MRCI and CASSCF for the homonuclear O2 and N2, but has a different

dissociation limit behavior than the MRCI and CASSCF PES for the

heteronuclear molecules NO+ and CN–. This is confirmed by the relative

energy differences shown in figure 1.12.
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Figure 1.12: The errors between the v2DM(PQG) and MRCI energy increase towards

dissociation for the heteronuclear diatomics NO+, CN– and CO, yet

decrease towards dissociation for the homonuclear diatomics.

different, but integer, numbers of electrons. It thus lies in the convex hull of

pure states with integer numbers of electrons. Because the energy is linear in

the 2DM, the ground state for an ensemble with a fractional number of electrons

must be a linear combination of ground states with integer numbers of electrons.

This always leads to a dissociated state with an integer number of electrons, if

no degeneracies are present.

The observed fractionally charged dissociation products for CO, NO+ and

CN– may thus arise from a convex relation between the energy and the number

of electrons, when the number of electrons is regarded as a continuous quantity.

Indeed, v2DM(PQG) energies for most atoms and molecules are convex functions

of the number of electrons (figure 1.13), when the number of atoms is regarded

as a continuous quantity in the setup (1.32). The sum of the energies of the

constituent atoms of the molecule is therefore also convex in-between consecutive

integer numbers of electrons. As a consequence, the molecule may reach a lower

energy by dissociating into atoms with a fractional number of electrons. This

idea is illustrated in figure 1.14. In fact, we find a remarkable correspondence

between the estimated minimum of the sum of the energies of the constituent
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atoms and the observed charges in the molecular dissociation limit (table 1.2).

Of course, the N-representability conditions imposed here only rigorously hold

for ensembles of N-electron states, and do not allow for ensembles of states

with other electron numbers as well. In this sense, applying this approach to

systems with fractional electron number is physically not justified. However, the

numerical data presented here suggest that the system in the dissociation limit

nonetheless acts like a combination of systems with fractional electron number

under the applied N-representability conditions (the P-, Q- and G-condition on

the molecular system imply similar conditions on the subsystems). Ultimately,

this shortcoming is a consequence of imposing necessary, but not sufficient,

N-representability conditions.

The difficulty of approximate v2DM methods to describe structures far from

equilibrium geometry is not only present at the level of 2-positivity conditions.

Although several studies on 3-index conditions conclude that they greatly improve

accuracy,37,43 trial calculations on N2 in a minimal basis set show that 3-

positivity conditions much improve the energy over 2-positivity conditions around

equilibrium geometries, but much less so in the dissociation limit. Fractionally

charged dissociation products still turn up under 3-positivity conditions, as the

energy remains a convex function of the number of electrons in between integer

occupations. Imposing 3-positivity conditions may lessen the convexity, but does

not remove it completely (table 1.3).

The convexity of the energy for systems with fractional numbers of electrons

has far-reaching implications for chemical applications, not only for dissociation.

Although its effects may not be as obvious as in the dissociation limit, it affects

chemical properties at other geometries as well. Because the dissociation limit

energy is too low, dissociation energy and therefore spectroscopic constraints

are wrong. Similar problems to those occurring in the dissociation limit affect

reaction intermediates, which involve partially broken and formed bonds. The

reaction barrier can thus be expected to be too low, which leads to an inaccurate

prediction of its kinetics. At any geometry, polarizability can be expected to be
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Figure 1.13: The v2DM(PQG) energies are convex functions of the number of elec-

trons for most atoms, except, it seems, for atoms with less than two

electrons and similar occupations – that is, atomic configurations with

one or more filled shells and less than two electrons in the next shell.
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Figure 1.14: Because the energies of both the oxygen and the nitrogen atom are

strictly convex functions of the fractional number of electrons, the sum

of the atomic energies is also convex, yielding a minimum for fractional

occupations on each atom. This explains the unphysical fractional

charges on the N and O atom of the dissociated NO+ molecule.
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constraints only change the energy by a small amount. Consequently, the

dissociation problem persists even under the three-index T-constraints.
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R= 1.1365 Å R= 20.0000 Å

singlet any spin singlet any spin

P -375.1036 -375.1037 -393.5293 -393.5293

PQ -129.6224 -129.6515 -132.3706 -132.3706

PG -128.6968 -128.7026 -128.6766 -128.6892

PQG -128.6421 -128.6440 -128.5190 -128.5221

PQGT -128.6268 -128.5167

FCI -128.6256 -128.3950

Table 1.3: Comparing the different 2-positivity conditions for NO+ (in the STO-6G

basis set), the G-condition affects the energy stronger than the Q-condition.

The P-condition only gives energies that are about 3 times too low! Near

the equilibrium geometry, the T-conditions (T1 and T2, see paragraph

1.3.3) raise the energy significantly, but the difference from FCI remains

substantial in the dissociation limit. v2DM(PQGT) energies were only

calculated without imposing spin constraints (column ‘any spin’).

too high, because an additional negative charge produces a larger than usual

decrease in energy. The absence of discontinuities in the energy at integer electron

numbers produces incorrect electron affinities (EA) and ionization energies (IE).

The EA and IE are directly related to the right and left derivative of the energy

to the number of electrons for the neutral atom with N0 electrons:

EA = −
( ∂E
∂N

)
N
>→N0

(1.33)

IE = −
( ∂E
∂N

)
N
<→N0

(1.34)

The lack of discontinuities in the energy as a function of the number of electrons

in v2DM methods (figure 1.13) implies that the EA equals the IE, which may

have a profound influence on chemical properties.

The 2-positivity conditions are not size-consistent, nor size-extensive. Because

the 2DM is not an additively separable quantity, it can be expected that necessary

but insufficient conditions for N-representability lead to an approach that fails to
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be size-consistent and size-extensive.54 Calculations on the dissociation limits of

the isoelectronic 14-electron series estimate the extent to which size-consistency

is violated in typical calculations. The differences between the energy of the

dissociated NO+ and CN– molecule and the dissociation products calculated

separately is of the order of 10−1 Hartree (1.4). However, part of this difference is

due to the fact that it compares the energy of the fractionally charged dissociation

products with the integer charged correct dissociation products. But even when

atoms with the same fractional charges that arise in the dissociated molecule

are taken as a reference, a significant energy difference remains.

Therefore, the method is not size-consistent, which also rules out the possibility

of size-extensivity. A more detailed consideration, taking the structure of the

2DM in the dissociation limit into account, is made in section 1.5.5. Nakata et

al. have made an independent study of size-extensivity and size-consistency in

v2DM(PQG) theory.51,55 They consider the dissociation of mainly homonuclear

diatomics in a minimal STO-6G basis, which dissociate into the correct products

by symmetry. Still, they observe violations of size-extensivity and size-consistency,

which agrees with our findings.

To conclude, the v2DM(PQG) method captures electron correlation, but

overestimates it by a fair amount. The method suffers two main shortcomings: a

failure to describe electronic structure for non-equilibrium geometries and a failure

to be size-consistent. Near equilibrium, results agree fairly well with accurate

wavefunction based methods such as MRCI and CASSCF, and are comparable

to CCSD in terms of accuracy, in agreement with findings by Mazziotti et al.

and Nakata et al.14,51,52,56 However, they rapidly deteriorate with bond length.

In the dissociation limit, the v2DM(PQG) method tends to produce unphysical

fractionally charged dissociation products with much too low an energy, as a

consequence of its convex energy-occupancy relationship. This is a profound

problem and its convergence to the correct behaviour by including increasingly

higher order index constraints may not be as fast as previously believed, since

including 3-index constraints still leaves a significantly bigger discrepancy in the
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EAB − EA − EB EAB − EA+ν − EB−ν

N2 -0.0035 -0.0035

O2+
2 -0.0045 -0.0045

NO+ -0.1357 -0.0041

CN– -0.0797 -0.0028

CO -0.0036 -0.0034

Table 1.4: The v2DM(PQG) energy differences between the molecular 2DM energy

at 20 Å and the sum of the atomic 2DM energies for the correct dissoci-

ation products, EAB − EA − EB , are of the order 10−1 Hartree for the

heteronuclear diatomics. This is mainly due to the fact that the molecules

dissociate into fractionally charged dissociation products with too low

energies under 2-positivity constraints. However, the energy differences

between the molecular 2DM energy at 20 Å and the sum of the atomic

v2DM(PQG) energies with the same populations as the molecular dissoci-

ation products, EAB − EA+ν

− EB−ν , is still non-negligible. The method

is therefore not size-consistent.
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dissociation limit than near equilibrium.

Because the 2DM is not a separable quantity, approximate N-representability

conditions lead to size-consistency defects. However, attempts to formulate

the v2DM approach in a size-consistent manner based on cumulants are not

straightforward, because N-representability manifests itself directly in terms

of the 2DM, and not in terms of the cumulant. For this reason, Kutzelniggs

size-consistent cumulant based approach relies on a Hartree-Fock reference.54,57

Although size-consistency will thus be difficult to achieve in any approximate

v2DM method, we aim to find additional N-representability constraints that

tackle the convex energy-occupancy relationship. This particular problem is

a profound and fundamental problem as it arises in very similar forms in any

practical density and density matrix based method.
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1.5.3 Additional subspace energy constraints to correct

molecular dissociation

Heteronuclear diatomic molecules do not dissociate into fractionally charged

atoms. As simple as this fact is, it is far less straightforward to establish in

reduced density matrix theories. Yet, such fundamental physical properties

are needed to make them applicable to geometries other than the equilibrium

structure. Non-equilibrium structures like molecules with stretched or partly

broken bonds, such as reaction intermediates or dissociation products, play

an important role in chemical processes. Despite numerous efforts, they still

cause problems in Density Functional Approximations58–61 and Density Matrix

Functional Theory.62–64 The previous results show that the v2DM(PQG) method

also fails in this respect. Although this method cannot be expected to be fully

size-consistent because the 2DM is not a separable quantity under a strict subset

of N-representability conditions,65 its failure in describing dissociating chemical

systems is dramatic.

But, unlike DFT and DMFT, there is a straightforward approach to solve

the problem because the 2DM fully determines the energy in a known manner.

Here, we exploit this property and introduce linear constraints on the energy of

subspaces of the one-particle basis space for the molecule,53 defined as the set of

basis functions centered on a particular atom, to solve the dissociation problem.

These subspace constraints are a physical expression of the notion of separability

in chemistry,66 and can be generalized to subspaces with any other topology.

The following paragraphs give a theoretical background on the subspace

constraints and illustrate their effectiveness by applying them to the PES of

the 14-electron diatomic molecules considered in previous section. A concept

similar to our subspace energy constraints has been adopted by Shenvi et al. to

generate active-space constraints on the 2DM.67
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Theoretical background on the subspace energy constraints

The set of necessary conditions (1.17)-(1.23) can be extended with linear sub-

space constraints to improve the description of long-distance interactions. As

shown in the previous section, the failure of v2DM theory to describe long-range

interactions can be attributed to the strictly convex relationship between the

energy and the number of electrons on the atom, considered as a continuous

quantity, which is ultimately a result of imposing necessary but not sufficient

conditions for N-representability. In any exact theory, the relationship between

the energy and the number of electrons is piecewise linear.68 Improper fraction-

ally charged dissociation products cannot occur, because the piecewise linear

relationship between energy and electron number ensures the minimum energy

always corresponds to an integer electron number for a non-degenerate state.68

Separability constraints offer a computationally affordable way to impose this

behavior. They aim to correct the dissociation problem by forcing the energy of

(poly-)atomic subspaces in the molecule to lie above the piece-wise linear graph

determined by the v2DM(PQG) energies for integer number of electrons.

The 1DM and 2DM for a subspace A are obtained by projecting onto the

subspace A. Suppose the subspace A is spanned by a – not necessarily orthonor-

mal – basis {φa, φb, φc, φd, . . . , φKA}. Projecting the creation and annihilation

operators in the orthonormal molecular sp basis {φi, φj , φk, φl, . . . , φK} onto the

subspace gives an expression for the subspace 1DM and 2DM γ̃A and Γ̃A in

terms of the 1DM and 2DM γ and Γ in the orthonormal molecular basis:

γ̃Aab =

K∑
ij

waiwbjγij =
1

N − 1

K∑
ijk

wiawbjΓikjk (1.35)

Γ̃Aabcd =

K∑
ijkl

waiwbjwckwdlΓijkl (1.36)

The coefficients wai follow from the projection
∑
ab|a〉〈b|(SA

−1

)ab from the K-

dimensional orthonormal MO basis onto the KA-dimensional non-orthogonal
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subspace basis

wai ≡
KA∑
b

K∑
c

(SA
−1

)abSbcCic (1.37)

with SA the KA dimensional overlap matrix between the non-orthogonal basis

functions of subspace A, S the K-dimensional overlap matrix between basis

functions of all subspaces that span molecular basis space and Cic the expansion

coefficient of the MO i in terms of the basis function c.

The expectation values of a one-electron operator ĥA and a two-electron operator

ĤA expressed in the subspace A are then

〈ĥA〉 =
∑
ab

γ̃ab〈b|ĥA|a〉

〈ĤA〉 =
∑
abcd

Γ̃abcd〈cd|ĤA|ab〉

For instance, the number of electrons in the subspace A is

NA =
∑
ab

γ̃AabS
A
ab

These expectation values can also be expressed directly in terms of the full 2DM

in the orthonormal MO basis, since (1.35) and (1.36) express the subspace 1DM

and 2DM in terms of the full 1DM and 2DM. Therefore

〈ĥA〉 =
∑
ij

γijh
A
ij =

∑
ij

γij〈j|ĥA|i〉

〈ĤA〉 =
∑
ijkl

ΓijklH
A
ijkl =

∑
ijkl

Γijkl〈kl|ĤA|ij〉

with

hAij =

KA∑
ab

waiwbj h̃
A
ab

KA∑
ab

waiwbj〈b|ĥA|a〉

HA
ijkl =

KA∑
abcd

waiwbjwckwdlH̃
A
abcd =

KA∑
abcd

waiwbjwckwdl〈cd|ĤA|ab〉

The subspace dependence can thus be incorporated into the operator in MO

space, avoiding the necessity for a transformation of the 2DM to the subspace

each time a subspace expectation value needs to be calculated.



50 Chapter 1 N-representability

In the previous section, it was observed that the v2DM(PQG) method for a

system of non-interacting units acts much like separate v2DM(PQG) procedures

on each of the non interacting units while allowing them to have a fractional

portion of the total number of electrons. Therefore imposing a piecewise linear

energy-occupancy relationship on each of those units solves the dissociation

problem. We will call this type of constraint a subspace energy constraint. The

theoretical justification for such a constraint is built on the property that any

pair of subspace 1DM and 2DM (1.35,1.36) must be derivable from an ensemble

of N-representable 2DM corresponding to the subspace population NA

γ̃ab =
∑
i

xiγ
Ni
ab

Γ̃abcd =
∑
i

xiΓ
Ni
abcd (1.38)

The weights {xi} represent a physical ensemble corresponding to a fractional

number of electrons NA if they satisfy

0 ≤ xi ≤ 1 i = 0, . . .∞ (1.39)

∞∑
i=0

xi = 1 (1.40)

∞∑
i=0

xiNi = NA (1.41)

for integer Ni. We shall refer to this property as fractional N-representability ,53

which generalizes the concept of integer-N representability.

Because the 2DM that make up the ensemble (1.38) with fractional electron

number must be integer-N representable, any Hamiltonian HA acting on the

subspace A, expressed here in MO basis space, imposes a necessary condition on

the 2DM expressed in MO basis

tr[HAΓ] ≥ min︸︷︷︸
{xi}

∞∑
i=0

xiE
A,exact
Ni

≥ min︸︷︷︸
{xi}

∞∑
i=0

xiE
A,2DM
Ni

(1.42)

where the EexactNi
are exact ground state energies for the Hamiltonian HA acting

on a system with an integer number Ni electrons, which are higher than the
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v2DM energies for the same system. The objective will therefore be to minimize

the molecular energy subject to (1.32) and (1.39)-(1.41).

Even though the indices in formulae (1.39)-(1.41) run over all positive integers,

two low lying states with smaller and bigger integer particle number than the

fractional number NA determine the ground-state energy of an ensemble with

NA electrons. If the set of energies Eni , i = 1,∞ with NA ∈ [N,N + 1] is a

convex set, the lowest energy ensemble is a linear combination of the states with

N and N+1 electrons (figure 1.16). The assumption of convexity of the set of

energies is reasonable; we have never encountered a violation. Consequently,

only two indices i=N and i=N+1 in equations (1.39)-(1.41) are practically

relevant. All other weights xi with i 6= N,N + 1 are zero and the weights

xN and xN+1 are completely determined by relation (1.41), which implies that

NxN + (N + 1)xN+1 = NA. Since only xN and xN+1 are non-zero, expressions

(1.40) and (1.41) are bounded. In summary, under the above assumptions, the

constraint reduces to

tr[HAΓ] ≥ (N + 1−NA)EN + (NA −N)EN+1 (1.43)

To compose the constraint equations (1.43), the v2DM(PQG) energy of the

subspace for N, N+1 electrons needs be calculated before the actual molecular

v2DM(PQGs) calculation. Additional background on the subspace constraints

can be found in Verstichel et al.49 and van Aggelen et al.53

Computational details

The subspace energy constraints are simple linear inequality constraints, which

can be incorporated in a barrier method for semidefinite programming (chapter

3, section 3.4) by an additional scalar barrier term for the inequality. In the

following numerical application we reconsider the set of 14-electron diatomic

molecules in the Cartesian cc-pVDZ basis of section 1.5.2. The v2DM(PQG)

subspace energies are calculated under 2-positivity conditions, but no conditions

on spin are imposed, whereas the molecular system is constrained to a singlet.
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N N+1 N+2N-1

E

N-2 N N+1 N+2N-1

E

N-2

E(N+0.25)
E(N+0.25)

Figure 1.16: An ensemble corresponding to a fractional number of electrons is com-

posed of integer-electron states, each with a positive weight. The lowest

energy ensemble is then determined by the two lowest-energy integer

occupied states that can form such an ensemble. When the energies for

integer electron numbers form a convex set, the states with the nearest

smaller and bigger integer electron number determine the ensemble.

This situation is pictured on the left, the non-convex case on the right.

In practice, we have only encountered convex sets of integer-N energies.
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In chapter 2, we come back on this decision and consider the possibility of

incorporating spin into the subspace reference calculations.

The subspace energy is calculated by projecting the Hamiltonian expressed

in the non-orthogonal subspace onto the orthonormal molecular basis space.

The previously introduced coefficients {wia} carry out this projection, such

that the subspace Hamiltonian H̃A in the subspace basis can be expressed as a

Hamiltonian HA in MO space as

HA
ijkl =

KA∑
abcd

wiawjbwkcwldH̃
A
abcd (1.44)

This transformation only needs to be carried out at the start of the semidefinite

program, to generate the constraint matrix HA.

Numerical illustration of the subspace energy constraints

The subspace constraints are applied to the constituent atoms of the 14-electron

diatomic molecules considered in section 1.5.2. What is their effect on the energy

and other chemical properties?

The subspace energy constraints become active at long bond distances and

raise the energy of the heteronuclear diatomics considerably.

They become active between 2 and 4 Å, as the v2DM(PQG) calculation simply

does not violate the constraints at shorter bond lengths (figure 1.17). They

greatly improve the energy of the heteronuclear diatomics in the dissociation

limit (compare figure 1.18 with figure 1.12). Whereas the v2DM(PQG) disso-

ciation energy of NO+ is underestimated by 0.1 Hartree compared to MRCI,

the difference decreases to 0.016 Hartree upon inclusion of subspace constraints

(1.5).

The subsystem constraints force the molecule to dissociate into the correct

dissociation products in the dissociation limit. This is reflected in the dipole

moments and Mulliken populations (tables 1.6 and 1.7). At 20 Å, NO+ has

dissociated into a nitrogen atom and oxygen cation with near-integer occupations.
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Figure 1.17: Imposing subspace constraints alongside 2-positivity conditions corrects

the increasing non-parallelity error of the v2DM(PQG) PES relative

to the MRCI PES towards dissociation. The subspace constraints only

become active between 2 and 4 Å and affect the heteronuclear diatomics

more than the homonuclear diatomics.
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Figure 1.18: Subspace constraints reduce the non-parallelity errors of the

v2DM(PQG) method relative to MRCI considerably (compare with

figure 1.12). The biggest non-parallelity errors now occur between 1.5

and 2 Å, just before the molecules start to dissociate.

R (Å) N2 O2+
2 NO+ CN– CO

v2DM(PQG) 0.335 0.089 0.257 0.301 0.368

v2DM(PQGs) 0.337 0.089 0.378 0.367 0.371

MRCI 0.322 0.116 0.362 0.353 0.387

Table 1.5: Dissociation energies (without correction for zero-point energies) are much

improved upon addition of subspace constraints in the v2DM(PQG)

method. Without subspace constraints, it tends to underestimate dis-

sociation energies. In case of O2+
2 , the barrier height for dissociation is

given instead.
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R (Å) v2DM(PQG) v2DM(PQGs) MRCI

NO+ 4.0 0.07 5.68 8.76

10.0 -0.11 20.97 22.39

20.0 -0.29 44.18

CN– 4.0 3.35 7.63 9.94

10.0 7.01 25.77 25.83

20.0 13.38 52.11

CO 4.0 -0.40 0.01 0.04

10.0 -0.90 0.00 0.00

20.0 -1.71 0.00

Table 1.6: When subspace constraints are imposed in the v2DM(PQG) method (de-

noted ’v2DM(PQGs)’), dipole moments (in Debije) in the dissociation limit

correspond correctly to integer-charged dissociation products. Reference

MRCI(FC) calculations were not available for bond lengths beyond 10 Å.

Nonetheless, the convergence to the dissociation limit energy and populations

is clearly slower than for the MRCI method, for which the NO+ molecule has

already dissociated into a nitrogen atom and oxygen cation at 4 Å.

The subspace constraints are not only active on heteronuclear molecules.

Although the homonuclear molecules N2 and O2 dissociate into the correct

atomic products due to their symmetry, the energy in the dissociation limit is

slightly lower than the sum of the atomic energies calculated separately. The

subspace constraints close this gap and raise the energy of N2 and O2+
2 at 20 Å

from -148.9305 to -148.9267 Hartree and from -109.0332 to -109.0303 Hartree.

In fact, these energies could be constrained even more strongly by including a

spin condition in the reference subspace energy, which is explained in section

2.5.3 of chapter 2.
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R (Å) v2DM(PQG) v2DM(PQGs) MRCI

NO+ 4.0 6.54 6.85 7.00

10.0 6.53 6.97 7.00

20.0 6.53 6.99

CN– 4.0 6.64 6.88 6.99

10.0 6.61 7.00 7.00

20.0 6.60 7.00

CO 4.0 5.98 6.00 6.00

10.0 5.98 6.00 6.00

20.0 5.98 6.00

Table 1.7: When subspace constraints are imposed in the v2DM(PQG) method

(denoted ’v2DM(PQGs)’), Mulliken populations in the dissociation limit

correspond correctly to integer-charged dissociation products. Reference

MRCI(FC) calculations were not available for bond lengths beyond 10 Å.

1.5.4 Application of subspace energy constraints to poly-

atomic molecules

The subspace energy constraints introduced in previous paragraph, ensure correct

dissociation in v2DM based methods. Nonetheless, some questions concerning

these constraints remain. The number of possible subspaces that can be composed

of all basis functions centered on one or more atoms in an M-atomic system,

namely 2M − 2, scales exponentially with the size of the molecule. In practice,

however, some subspace constraints may not be active. Which of them are

active depends on the geometry and nature of the system. How fast does the

number of practically relevant, i.e. active, subspace constraints grow with the

number of atoms in the molecule? And can these active constraints be predicted

beforehand? We clarify these issues by means of a relevant chemical system, the

PES of the F–
3 ion.69
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1

R
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Figure 1.19: Numbering of the atoms and bond lengths of F−
3 used in section 1.5.4.

Computational details

The F–
3 calculations are done in the D95V basis set, as implemented in Gaus-

sian03,70 and constrained to linear geometries. Numbering of the atoms is done

as follows The reference MRCI calculations were performed with Molpro.38 The

configurations included in the MRCI expansion were determined by a preceding

full-valence CASSCF, with an active space of 22 electrons and all 12 valence or-

bitals, except that the molecular orbitals were taken from an analogous CASSCF

calculation for the neutral species with doubly occupied inactive orbitals (mostly

1s core).

Application of subspace constraints to the PES of F–
3

The shape of the potential energy surface (PES) calculated with the variational

v2DM(PQG) method is severely incorrect, especially for molecular geometries

with one or more stretched bonds. It is compared to that of an accurate MRCI

PES in figures 1.20 and 1.21. Both graphs are composed of non-equidistant data

points and show an equally large interval on the energy axis, which is truncated

to enhance visibility of the bonding region. There are two striking differences

between the two PES. First of all, the 2DM method yields a shallower well

corresponding to the formation of the F−3 anion, with a minimum at a somewhat

larger bond length compared to MRCI (1.9 Å for 2DM theory versus 1.8 Å

for MRCI). Secondly, in the outer regions of the v2DM(PQG) potential energy

surface, describing the dissociation of the F−3 ion, the energy does not increase

but rather decreases. The decrease in energy upon dissociation is so strong that

the optimal F−3 geometry is only a local minimum in the 2DM potential energy

surface. The cause of this problem can clearly be traced back to the strictly
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Figure 1.20: The outer regions of the potential energy surface of F−
3 obtained with

the v2DM(PQG) method, corresponding to geometries with dissociated

bonds, show an erroneous decrease in energy.

convex dependence of the v2DM(PQG) energy on the number of electrons. As

a consequence, the dissociating system may reach a lower energy by allowing

a fractional number of electrons on both atoms. Unless the decrease in energy

caused by allowing a fractional charge on one atom is countered by a bigger

increase in energy for the corresponding fractional charge on the other atom, the

molecule will incorrectly dissociate into fractionally charged products with too

low an energy.

The subspace constraints only affect molecular structures with large bond

lengths. They aim to solve the aforementioned dissociation problem by constrain-

ing the energy of mono- or diatomic subspaces in the molecule to lie above the

lowest ensemble energy for the isolated subspace with the same fractional number

of electrons as the subspace in the molecule. The lowest-energy dissociated state

will then be automatically obtained at integer occupations on the atoms. These

constraints are already satisfied by v2DM(PQG) calculations for geometries with

both bond lengths shorter than 2.75 Å (figure 1.22). The bond length of 2.75
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Figure 1.21: A reference potential energy surface of F−
3 , obtained with MRCI, shows

the correct shape of the potential energy surface.

Å marks the onset of the ‘long-distance behavior’. The constraints that are

violated in geometries with dissociated bonds largely obey the following trends.

When only one bond (R1) is dissociated, and the other bond (R2) is relatively

short, the v2DM(PQG) calculation only violates the C1 and C23 constraints,

which act on the spatially separated atomic and diatomic unit in the system.

When both bonds are dissociated, however, all constraints are violated by the

v2DM(PQG) calculations.

The subspace constraints ensure correct dissociation of the F−3 ion into F−2

and F. Without subspace constraints, the F−3 ion dissociates into F−0.56
2 + F−0.44,

which is the minimum energy structure among all structures with one bond

dissociated, shown in the lower graph of figure 1.23. In fact, all these structures

with one short bond and one dissociated bond (20 Å) should have an electronic

structure recognizable as either F2+F− or F−2 +F. However, without subspace

constraints, the electronic charge delocalizes over the dissociation species (table

1.8).

When all subspace constraints are imposed, the electronic charge becomes
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Figure 1.22: Different combinations of subspace constraints are violated by the

v2DM(PQG) calculations in different parts of the PES. While no sub-

space constraints are violated for geometries with only short bond

lengths (indicated by light gray squares in the PES), all of them are

violated by calculations on fully stretched geometries (indicated by red

squares in the PES). A schematic representation indicates with black

dots on which atom the basis functions that span the subspace of the

violated constraints are centered. Black squares in the overview of the

PES indicate geometries at which yet another combination of subspace

constraints was violated.
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Figure 1.23: The v2DM(PQGs) method applied to the cut of the PES of F−
3 with

one bond length fixed at 20 Å reveals the crossing between the two

competitive dissociations F2 + F− and F−
2 + F.

properly localized on the dissociation products (table 1.8). The energies of the

structures with one short bond and one dissociated bond are then given by the

uppermost graph in figure 1.23, which has a kink between 1.5 and 1.6 Å. At this

point, the energy of the dissociation into F−2 + F becomes lower than that of the

alternative dissociation F2 + F−. The minimum energy dissociation under the

subspace constraints is F−2 + F with a bond length of 2.05 Å and charges -0.50 on

both F atoms in the F−2 molecule. These results agree with MRCI calculations,

for which F−2 + F is also the lowest energy dissociation, with a bond length of

1.95 Å in the F−2 molecule.

The set of subspace constraints acting on the spatially separate units in

the system is the smallest set of subspace constraints that produces the correct

dissociation in geometries with either short or dissociated bonds. Not all subspace

constraints that are violated in the v2DM(PQG) calculation need be imposed

in the v2DM(PQGs) calculation in order to obtain the correct dissociation.

Some of them may overrule others, rendering them inactive in the resulting

2DM. For example, in the fully dissociated molecule, with three nuclei with
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R1 = 20.0 Å R2(Å) PQG PQG/C1,C2,C3 PQG/C1,C23

1.00 9.98 10.00 10.00

1.20 9.84 9.98 10.00

1.30 9.72 9.87 10.00

1.40 9.62 9.70 10.00

1.50 9.55 9.58 9.99

1.60 9.49 9.50 9.13

1.70 9.46 9.44 9.01

1.75 9.45 9.42 9.00

1.80 9.44 9.41 9.00

1.85 9.44 9.39 9.00

1.90 9.43 9.38 9.00

1.95 9.43 9.37 9.00

2.00 9.43 9.37 9.00

2.05 9.43 9.36 9.00

2.10 9.42 9.35 9.00

2.20 9.42 9.34 9.00

Table 1.8: Subspace constraints on the atomic subspaces C1, C2, C3 are not sufficient

to ensure correct atomic (Mulliken, shown are those on F1) populations

on systems with one dissociated bond R2 = 20 Å and one short bond R1

ranging from 1.00 to 2.20 Å. The set of constraints C12, C3 on the spatially

separated units in the system – one diatomic and one atomic – is the

smallest set of constraints that ensures a correct dissociation with integer

charges on the dissociated species.
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R1 = 20.0 Å R2(Å) PQG PQG/C1,C2,C3 PQG/C1,C23 ∆

1.00 -298.1694 -298.1638 -298.1629 -0.0002

1.20 -298.4873 -298.4640 -298.4626 -0.0005

1.30 -298.5687 -298.5278 -298.5198 0.0000

1.40 -298.6234 -298.5726 -298.5486 0.0004

1.50 -298.6572 -298.6036 -298.5605 -0.0002

1.60 -298.6769 -298.6226 -298.5673 -0.0017

1.70 -298.6860 -298.6317 -298.5870 -0.0001

1.75 -298.6884 -298.6341 -298.5937 -0.0002

1.80 -298.6893 -298.6351 -298.5983 -0.0002

1.85 -298.6897 -298.6354 -298.6017 -0.0003

1.90 -298.6887 -298.6344 -298.6035 -0.0002

1.95 -298.6875 -298.6332 -298.6047 0.0002

2.00 -298.6860 -298.6317 -298.6052 0.0001

2.05 -298.6844 -298.6302 -298.6055 -0.0003

2.10 -298.6822 -298.6281 -298.6050 -0.0001

2.20 -298.6792 -298.6252 -298.6047 -0.0006

Table 1.9: Subspace constraints on the atomic subspaces C1, C2, C3 alone are not

sufficient to ensure the energy (in atomic units) of systems with one

dissociated bond (R2 = 20 Å) and one short bond (R1) equals the sum

of the energies of the dissociated species. The set of constraints C12, C3

on the two spatially separated units in the system, one diatomic and one

atomic, is the smallest set of constraints that ensures the energy reproduces

the sum of the energies of those units calculated separately – the energy

difference between these two is given in the last column denoted ‘∆’.
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large separations, all six subspace constraints are violated by v2DM(PQG).

Nonetheless, the ‘diatomic’ subspace constraints are unlikely to have a meaningful

contribution over the atomic subspace constraints, since their own energy violates

the atomic subspace constraints. Indeed, they are made redundant by the atomic

subspace constraints (the bright red area in figure 1.24). For all systems with

a single dissociated bond, consisting of a diatomic unit and an atomic unit

at very large internuclear distance, there are only two active constraints: a

constraint on the diatomic unit and a constraint on the atomic unit. Therefore,

in systems composed of (poly-) atomic units that are widely separated, the

necessary constraints for correct dissociation act on the subspaces associated

with the units, i.e. the subspace spanned by all basis functions centered on the

atoms in the unit.

Unfortunately, this does not hold for all geometries. In systems with bonds

that are stretched but not clearly dissociated, around 2.75 Å, additional diatomic

constraints may be active (the dark red area in figure 1.24). As a consequence

the number of active constraints does not always increase linearly with the size

of the molecule.

The subspace constraints correct the shape of the dissociative regions of the

v2DM(PQG) PES, but do not alter results for bound systems with short bonds.

They turn the previously observed potential energy wells at long bond lengths

into proper potential walls, such that a single well remains, corresponding to

the bound F−3 (with R1 = R2 = 1.9 Å the global minimum, see figure 1.25).

Moreover, they not only correct the energy for geometries with one or more large

bond lengths, but correct other chemical properties, such as dipole moments,

as well. Nonetheless, the v2DM(PQGs) method still overestimates the bond

strength compared to wavefunction-based ab initio methods (table 1.10). The

subspace constraints do not alter the equilibrium F−3 calculation and merely

ensure the calculation on the dissociated system is energetically equivalent to

separate calculations on the dissociated units. In order to obtain more accurate

chemical properties, constraints are needed that improve results for short bond
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Figure 1.24: Although all subspace constraints are violated by the v2DM(PQG)

method for geometries with both bonds dissociated, only the atomic

subspace constraints are active when imposed in the calculation (indi-

cated by bright red squares in the PES). A schematic representation

indicates with black dots on which atom the basis functions that span

the subspace of the active constraints are centered. For geometries with

either clearly dissociated or short bonds, the active constraints target

subspaces that coincide with the spatially separate units of the system.

However, in structures with stretched – but not yet dissociated – bonds

more subspace constraints are active (indicated by dark red squares

in the PES). Black squares indicate geometries at which yet another

combination of subspace constraints was active.
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Figure 1.25: Imposing all mono- and diatomic subspace constraints corrects the

dissociative regions of the potential energy surface of F−
3 compared to

the v2DM(PQG) potential energy surface of figure 1.20

lengths as well. A combination of higher-index constraints to improve the

accuracy for near-equilibrium geometries with subspace constraints to improve

accuracy for dissociated geometries should improve results for both short and

long bond distances, but would be much more costly.

In conclusion, subspace constraints offer a computationally cheap way to

obtain correct molecular dissociation of small molecules in variational 2DM

theory. Nonetheless, practical difficulties may arise when they are applied to

larger systems. First of all, the number of subspace constraints needed to ensure

correct dissociation does not always grow linearly with the number of atoms. In

geometries with either clearly dissociated or short bonds, the correct dissociation

can be obtained using only constraints on the spatially separated units in the

system, which may include up to M atoms in an M-atomic molecule, or up to 2

atoms in the F−3 molecule examined here. However, this does not hold for all

geometries. Additional constraints may be active in geometries with stretched,

but not fully dissociated, bonds. Secondly, constructing the constraints requires
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MRCI(FC) CCSD(FC) v2DM(PQGs)

E(A.U.) R(Å) E(A.U.) R(Å) E(A.U.) R(Å)

F−3 -298.5385 1.80 -298.5792 1.75 -298.6724 1.90

F -99.4690 -99.4703 -99.4928

F− -99.5307 -99.5350 -99.5441

F2 -198.9637 1.60 -198.9652 1.52 -199.0189 1.60

F−2 -199.0404 1.95 -199.0557 1.94 -199.1125 2.00

F−2 + F -298.5094 -298.5260 -298.6053

De(F−2 ,F) 0.0532 0.0671

De(F,F,F−) 0.1353 0.1036 0.1426

Table 1.10: The accuracy of the v2DM(PQGs) method remains poor, as the subspace

constraints only correct for improper dissociation. The v2DM(PQGs)

dissociation energies De for dissociation into F−
2 + F and F + F + F− are

substantially bigger than those obtained with CCSD and MRCI. MRCI

calculations on the dissociated system F−
2 + F did not converge properly,

hence no value is specified for the dissociation energy. Equilibrium bond

lengths R are, in the case of FCI(FC), MRCI(FC) and v2DM(PQGs),

determined in steps of 0.05 Å.
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separate calculations for each geometry of the multi-atomic subspaces. Multi-

atomic subspaces may be needed because the correct dissociation cannot always

be realized through constraints on the atomic subspaces only. Assembling the

constraint data thus becomes a time-consuming process when applied to large

PES. Finally, the subspace constraints merely correct the faulty long-range

behavior under the P-,Q- and G-condition, they do not affect the accuracy of

the v2DM(PQG) method for geometries with short bonds.
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1.5.5 Size-consistency and separability under 2-index con-

straints

Size-consistency is usually defined in terms of additive separability of the energy.

An ab initio method is size-consistent if its energy for a system of non-interacting

units equals the sum of its energies for these units considered separately. In

previous sections, we have already established the lack of size-consistency in the

v2DM(PQG) method and argued that subspace constraints correct energetic

size-consistency defects. But what about the relationship between the 2DM for

a system of non-interacting units and the 2DM’s of each of the units calculated

separately: are they consistent? An exact method imposes a relationship between

them, which is a much stronger requirement than only consistency of the energy.

If the 2DM is consistent with the 2DM’s for the fragments calculated separately,

not only the energy but also other chemical properties will be size-consistent as

well.

Hence we examine to what extent the energy and 2DM are separable for a

system of non-interacting units under 2-positivity conditions, both with and

without the addition of subspace energy constraints. The first subsection exam-

ines the relationships between the concepts of size-consistency, separability and

entanglement. The second subsection examines these concepts applied to some

simple molecular systems at their dissociation limits.

Theoretical background on size-consistency and separability

A system of non-interacting units can always be described by a separable 2DM,

which is the antisymmetrized product of the 1DM’s and 2DM’s of the non-

interacting units. The N-electron Hamiltonian for a system of non-interacting

units A and B is the sum of the Hamiltonians for the fragments. To describe

each fragment, we consider a KA-dimensional set of orthonormalized basis

functions
{
ψAi
}

for A and a KB-dimensional orthonormal basis set
{
ψBi
}

for

B. The orthonormal bases used to describe two different fragments are strongly

orthogonal. The number of atoms in fragment A is denoted NA, the number
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of atoms in fragment B is denoted NB and superscripts are used to specify to

which of the two basis sets the indices refer to.

Ĥ = ĤA + ĤB (1.45)

ĤA =

KA∑
ij

hAAij a†jai +

KA∑
ijkl

V AAAAijkl a†ka
†
l ajai

ĤB =

KB∑
ij

hBBij a†jai +

KB∑
ijkl

V BBBBijkl a†ka
†
l ajai

〈ψAi |ψAj 〉 = δij orthonormalized basis

〈ψBi |ψBj 〉 = δij orthonormalized basis

〈ψAi |ψBj 〉 = 0 strong orthogonality

Given the additive separability of the Hamiltonian (1.45), such a non-interacting

system can be described by a multiplicatively separable wavefunction that is the

antisymmetrized product of wavefunctions for each of the non-interacting units

|Ψ(x1, . . . , xNA+NB )〉 = |ΨA(x1, . . . xNA)〉 ∧ |ΨB(xNA+1, . . . xNA+NB )〉 (1.46)

This type of wavefunction covers the whole variational space of the additively

separable Hamiltonian (1.45) and is therefore a physically plausible representation

of the non-interacting system.

The 1DM and 2DM that correspond to this separable wavefunction follow

from integration over all but two variables and have the block structure

γ =

γAA 0

0 γBB

 Γ =


ΓAAAA 0 0

0 ΓBBBB 0

0 0 ΓABAB

 (1.47)

The blocks of the 1DM correspond to the 1DM’s for A and B

γAAik = 〈ΨA|a†kai|Ψ
A〉

γBBik = 〈ΨB |a†kai|Ψ
B〉
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The blocks of the 2DM correspond to the antisymmetrized product of the reduced

matrix elements for each of the non-interacting fragments

ΓAAAAijkl = 〈ΨA|a†ka
†
l ajai|Ψ

A〉

ΓBBBBijkl = 〈ΨB |a†ka
†
l ajai|Ψ

B〉

ΓABABijkl = 〈ΨA|a†kai|Ψ
A〉〈ΨB |a†l aj |Ψ

B〉 (1.48)

This implies that

(NA − 1)
∑
j

ΓABABijkj = NB
∑
j

ΓAAAAijkj

(NB − 1)
∑
j

ΓBABAijkj = NA
∑
j

ΓBBBBijkj (1.49)

and since the 1DM is formed as
∑
j ΓABABijkj + ΓAAAAijkj = (N − 1)γAAik

ΓABABijkl = γAAik γBBjl (1.50)

This condition is equivalent to the condition that the separable state forms an

eigenfunction of the operator N̂A and N̂B

(NN̂A −NAN̂)|ΨA〉 ∧ |ΨB〉 = 0

(NN̂B −NBN̂)|ΨA〉 ∧ |ΨB〉 = 0

which requires that the vector corresponding to this operator lies in the nullspace

of the G-matrix.

The separable 2DM leads to an additively separable cumulant. The 2DM

can be separated into first order contributions and contributions that are not

expressible in terms of its first order contraction. The part of the 2DM that is

not expressible as an antisymmetrized product of its first order contractions is

referred to as the cumulant ∆,17,65,71

Γ = γ ∧ γ + ∆

Γijkl = γikγjl − γilγjk + ∆ijkl
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Because of the separable structure of the 2DM, ΓABABijkl = γAAik γBBjl , the ABAB

block of the cumulant is identically zero.

∆ABAB
ijkl = ΓABABijkl − γAAik ΓBBjl − γABil γABkj

= 0

The structure of the cumulant for the separable system can therefore be written

as ∆ = ∆A ⊕∆B ; it is additively separable.

∆ =


∆AAAA 0 0

0 ∆BBBB 0

0 0 0

 (1.51)

The separable structure of the 2DM guarantees size-consistency. The ΓABAB

block does not contribute to the electron-electron repulsion, but contributes to

the energy of the non-interacting system via the one-electron energy, because

the one- and two-electron parts of the Hamiltonian have the block structure

h =

hAA 0

0 hBB

 V =


V AAAA 0 0

0 V BBBB 0

0 0 0

 (1.52)

so the energy is

E = tr [V AAAAΓAAAA] + tr [V BBBBΓBBBB ] + tr [hAAγAA] + tr [hBBγBB ]

= tr [V AAAAΓAAAA] + tr [V BBBBΓBBBB ]

+
1

N − 1

∑
ijk

hAAik ΓAAAAijkj +
1

N − 1

∑
ijk

hAAik ΓABABijkj

+
1

N − 1

∑
ijk

hBBik ΓBBBBijkj +
1

N − 1

∑
ijk

hBBik ΓBABAijkj (1.53)

where IAA, IBB are identity matrices for the orbitals spanning A and B. Because

of the separability of the ABAB block (1.50), the energy expression for the

separable wavefunction becomes equivalent to the expression for the energy of
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the separate fragments with electron numbers NA and NB :

E = tr [V AAAAΓAAAA] + tr [V BBBBΓBBBB ]

+
1

NA − 1

∑
ijk

hAAik ΓAAAAijkj +
1

NB − 1

∑
ijk

hBBik ΓBBBBijkj (1.54)

Since this kind of separable wavefunction is a valid representation of a noninter-

acting system composed of units A and B, wavefunction based ab initio methods

typically generate wavefunctions with this structure for non-interacting systems.

Non-interacting systems with degeneracies can be, but are not necessarily,

represented by a separable state. Such degeneracies may include

charge degeneracy: for instance N + N+ ↔ N+ + N

degenerate states in either A or B: for instance, due to spin degeneracy, the

singlet dissociated hydrogen dimer may described as H↑ + H↓ ↔ H↓ + H↑

When such degeneracies are present, the system need not be described by a

pure state, but can be a mixed and/or entangled state. These states do not

necessarily lead to a 2DM with the same block diagonal structure (1.48) as a

separable pure state. The ground state wavefunction for such a system may be

entangled,

|Ψ(x1, . . . , xNA+NB )〉 =
∑
ab

cABab |ΨA
a (x1, . . . xNA)〉 ∧ |ΨB

b (xNA+1, . . . xNA+NB )〉

(1.55)

where the indices a, b may run over all orthonormal degenerate ground states and

the coefficients cABab satisfy
∑
ab(c

AB
ab )2 = 1 but cannot necessarily be factorized

as cAa c
B
b , as is the case for any separable state. Because these states allow several

degenerate representations, the density matrix may be mixed as well as entangled

Γ(N) =
∑
n

wn
∑
ab

∑
cd

cAB,nab cAB,ncd |ΨA
c 〉 ∧ |ΨB

d 〉〈ΨA
a | ∧ 〈ΨB

b |

with
∑
a,b(c

AB,n
ab )2 = 1 ∀n. An entangled density matrix for a system of non-

interacting fragments clearly is not necessarily separable into density matrices
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for these systems calculated separately (1.48). In fact, it may lead to a second

order cumulant that is not additively separable

ΓABABijkl =
∑
n

wn
∑
ab

∑
cd

cAB,nab cAB,ncd 〈ΨA
a |a
†
kai|Ψ

A
c 〉〈ΨB

b |a
†
l aj |Ψ

B
d 〉

γAAik =
∑
n

wn
∑
ac

∑
b

cAB,nab cAB,ncb 〈ΨA
a |a
†
kai|Ψ

A
c 〉

γBBjl =
∑
n

wn
∑
bd

∑
a

cAB,nab cAB,nad 〈ΨB
b |a
†
l aj |Ψ

B
d 〉

∆ABAB
ijkl = ΓABABijkl − γAAik γBBjl

6= 0 in general

Even when the state is separable, but mixed, the cumulant need not be additively

separable,

ΓABABijkl =
∑
n

wn
∑
ab

∑
cd

cA,na cB,nb cA,nc cB,nd 〈ΨA
a |a
†
kai|Ψ

A
c 〉〈ΨB

b |a
†
l aj |Ψ

B
d 〉

γAAik =
∑
n

wn
∑
a

∑
c

cA,na cA,nc 〈ΨA
a |a
†
kai|Ψ

A
c 〉

γBBjl =
∑
n

wn
∑
b

∑
d

cB,nb cB,nd 〈ΨB
b |a
†
l aj |Ψ

B
d 〉

∆ABAB
ijkl = ΓABABijkl − γAAik γBBjl

6= 0 in general, unless wn = 1 for some n

However, this implies that if either A or B is non-degenerate, the cumulant will

still be separable. In order to establish whether the v2DM(PQG) method leads

to a structurally correct 2DM for non-interacting states, we will focus on systems

that only admit a separable state in the dissociation limit. More specifically, we

will consider diatomic molecules that dissociate into non-degenerate closed shell

singlet states.

Discussion on size-consistency and separability in v2DM theory

The 2-positivity conditions do not produce the correct structure of the 2DM

for a non-interacting system. As explained in previous section, the 2DM for a
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dissociated system without any degeneracies must be described by a 2DM that

is separable. The 2DM must have a structure that is consistent with the 2DM’s

calculated separately for the dissociation products (1.47). But even when the

reference system is taken as the fragments with the same non-integer occupations

that occur in the non-interacting composite system, the 2DM under 2-positivity

conditions does not correspond to the 2DM’s of those fractionally charged non-

interacting fragments (table 1.11). Although the variationally optimized 2DM

under 2-positivity conditions has the typical block structure of a system of

non-interacting units, given by (1.47), its blocks are not related in the way they

would be for a separable system (1.48). The cumulant is not additively separable,

indicated by a non-zero block ∆ABAB. V2DM(PQGs) calculations on several

non-degenerate dissociated states yield cumulant blocks ∆ABAB with Frobenius

norms as big as 10−1, whereas this block would be zero in a separable pure state

(table 1.11).

The failure of the 2DM for a system of non-interacting fragments to be

consistent with the 2DM’s for each of the non-interacting fragments calculated

separately also explains why the energy is not size-consistent in homonuclear

diatomics, as observed in section 1.5.3.

The failure of the 2-positivity conditions to be size-consistent becomes ap-

parent by considering a system composed of two non-interacting two-electron

systems. Although the P-, Q- and G-condition on the whole system imply a

P-,Q- and G-condition on each pair of subspace 1DM and 2DM, they are not

sufficient for N-representability, because they do not guarantee that the subspace

1DM and 2DM can be derived from the same physical ensemble corresponding

to the subspace population.

The 2DM can be projected onto an orthonormal basis for the subspace, for

instance by considering a symmetrical orthonormalization of the non-orthogonal

subspace basis {φa, φb, . . .} considered before (1.37), leading to the projection

coefficients wαi from the orthonormal molecular basis {φi, φj , . . .} onto the
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PQG ‖ Γ− (1.47) ‖F ‖ ∆ABAB ‖F EAB EAB − (EA + EB) NA NB

Be2 1.2E-09 8.2E-02 -29.2315 -1.6E-04 4.00 4.00

Be4+
2 3.9E-09 1.1E-05 -27.2217 1.6E-05 2.00 2.00

BeB+ 1.0E-14 1.6E-02 -38.9560 -4.9E-02 4.00 4.00

H2–
2 1.7E-07 1.3E-02 -0.9397 5.0E-07 2.00 2.00

He2 1.0E-08 9.7E-03 -5.7752 -2.2E-07 2.00 2.00

HeH– 4.4E-16 1.1E-02 -3.3575 -7.8E-05 2.00 2.00

HeH+ 3.8E-16 3.9E-08 -2.8876 1.3E-06 2.00 0.00

HeLi+ 4.8E-15 3.5E-04 -10.1247 3.0E-08 2.00 2.00

Li2+
2 1.2E-09 7.9E-06 -14.4721 1.4E-05 2.00 2.00

Li2–
2 1.3E-10 2.8E-01 -15.6311 -7.4E-01 4.00 4.00

P ‖ Γ− (1.47) ‖F ‖ ∆ABAB ‖F EAB EAB − (EA + EB) NA NB

Be2 4.2E-12 9.6E-01 -63.6285 -3.4E+01 4.00 4.00

Be4+
2 5.4E-12 1.6E-01 -31.8142 -4.6E+00 2.00 2.00

BeB+ 7.1E-15 1.0E+00 -81.6286 -4.3E+01 4.00 4.00

H2–
2 5.5E-13 8.6E-01 -1.9971 -1.1E+00 2.00 2.00

He2 2.0E-12 8.2E-01 -7.9745 -2.2E00 2.00 2.00

HeH– 2.2E-15 8.4E-01 -4.9858 -1.6E+00 2.00 2.00

HeH+ 3.8E-16 1.2E-08 -2.8876 1.2E-06 2.00 0.00

HeLi+ 5.8E-15 7.0E-01 -12.9159 -2.8E+00 2.00 2.00

Li2+
2 1.2E-09 7.9E-06 -14.4721 1.5E-05 2.00 2.00

Li2–
2 1.1E-12 8.5E-01 -35.5894 -2.1E+01 4.00 4.00

Table 1.11: The 2-positivity conditions do not guarantee that the ABAB block

of the cumulant ∆ in non-interacting, non-entangled singlet states is

identically zero. These tables show the influence of the different 2-

positivity conditions (specified in the upper left corner) on the block-

diagonal structure of the 2DM, measured by the Frobenius norm of the

off-diagonal part Γ− (ΓAAAA⊕ΓBBBB ⊕ΓABAB), cumulant separability

measured by the Frobenius norm of its ABAB block ‖ ∆ABAB ‖F , the

energy EAB and the size-consistency error EAB − (EA + EB). For the

molecules with first-row atoms, a cc-pVDZ basis was used, and a D95V

basis for the other molecules. All bond lengths are greater than 104 Å.
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PQ ‖ Γ− (1.47) ‖F ‖ ∆ABAB ‖F EAB EAB − (EA + EB) NA NB

Be2 1.0E-08 4.7E-01 -29.6119 -3.8E-01 4.00 4.00

Be4+
2 1.0E-08 1.8E-05 -27.2223 -5.7E-04 2.00 2.00

BeB+ 4.0E-15 4.3E-01 -39.7492 -8.4E-01 4.00 4.00

H2–
2 9.4E-10 7.5E-03 -0.9560 -1.6E-02 2.00 2.00

He2 2.0E-07 7.2E-03 -5.8149 -4.0E-02 2.00 2.00

HeH– 6.8E-16 7.7E-03 -3.3923 -3.5E-02 2.01 1.99

HeH+ 3.8E-16 1.3E-08 -2.8876 1.3E-06 2.00 0.00

HeLi+ 5.8E-15 7.0E-01 -12.9159 -2.8E+00 2.00 2.00

Li2+
2 1.3E-10 2.8E-01 -15.6311 -7.4E-01 2.00 2.00

Li2–
2 5.8E-09 1.5E-05 -14.4723 -1.3E-04 4.00 4.00

PG ‖ Γ− (1.47) ‖F ‖ ∆ABAB ‖F EAB EAB − (EA + EB) NA NB

Be2 2.1E-09 8.0E-02 -29.2318 -5.2E-04 4.00 4.00

Be4+
2 2.0E-07 5.0E-06 -27.2217 1.2E-05 2.00 2.00

BeB+ 1.1E-14 2.8E-02 -38.9694 -6.2E-02 4.00 4.00

H2–
2 2.9E-09 1.4E-02 -0.9397 7.9E-07 2.00 2.00

He2 4.2E-06 9.4E-03 -5.7752 7.7E-08 2.00 2.00

HeH– 4.5E-16 3.2E-03 -3.3583 -8.3E-04 2.00 2.00

HeH+ 3.8E-16 4.2E-08 -2.8876 1.4E-06 2.00 0.00

HeLi+ 4.8E-15 2.9E-04 -10.1249 -2.0E-04 2.00 2.00

Li2+
2 3.6E-09 7.6E-02 -14.8939 -2.7E-04 2.00 2.00

Li2–
2 1.7E-06 5.1E-06 -14.4721 9.9E-06 4.00 4.00

(continued from table 1.11) Different subsets of 2-positivity conditions are not enough to

guarantee separability in a non-entangled non-interacting system. The 2DM does have

a block diagonal structure, which is just a consequence of the Hamiltonian’s structure.

Under P-condition only, all electrons end up in the ΓABAB block of the 2DM, which

produces an energy that corresponds completely to the one-electron Hamiltonian. The

G-condition improves the structure of the 2DM and its energy significantly, much more

than the Q-condition, but does not make it exact. Even for systems that dissociate

into two 2-electron atoms, the 2-positivity conditions are not exact.
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orthonormal subspace basis {φα, φβ , φγ , φδ, . . .}

wαi ≡
KA∑
b

K∑
c

(SA
−1/2

)αbSbcCic

where SA is the overlap matrix between the non-orthonormal basis functions

of subspace A and S is the overlap matrix between the non-orthonormal basis

functions of all subspaces. In the dissociation limit, the overlap matrix becomes

block diagonal, so these coefficients reduce to

wαi ≡
KA∑
bc

(SA
1/2

)αcCic

The creation and annihilation operators in this orthonormal subspace basis define

a P-, Q- and G-condition on the subspace, with matrix elements expressed in

terms of the subspace 1DM, 2DM pair

Γ̃A � 0 with Γ̃Aαβγδ = 〈Ψ|a†γa
†
δaβaα|Ψ〉

Q(Γ̃A, γ̃A) � 0 with Q(Γ̃A, γ̃A)αβγδ = 〈Ψ|aγaδa†βa
†
α|Ψ〉

G(Γ̃A, γ̃A) � 0 with G(Γ̃A, γ̃A)αβγδ = 〈Ψ|a†γaδa
†
βaα|Ψ〉

These conditions are implied by the P-,Q- and G-condition on the whole system.

Because of the relation between the subspace basis {φα} and the molecular basis

{φi},

a†α =
∑
i

wαiai

But even though only the P-condition ensures N-representability of a two-

electron system, the P-condition on two-electron subspaces is not enough to

ensure N-representability. Expression (1.53) for the energy of such a system shows

immediately why: putting all electrons into the ΓABAB block satisfies the P-

condition and yields a lower energy than the P-condition applied to separate two-

electron systems (1.54) because it only references the one-electron Hamiltonian

and therefore no electron-electron repulsion term enters the energy expression

(table 1.11). Similarly, the ΓABAB block leads to have more variational freedom

under 2-positivity constraints on the whole system than on the subsystems
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considered separately because they do not require that the subspace 1DM and

2DM are derivable from the same fractional N ensemble.

The subspace constraints impose size-consistency but do not impose the

exact 2DM structure of a system of non-interacting units in the dissociation

limit. As can be expected from their formulation, including the subspace

energy constraints in the v2DM(PQG) method makes the energy size-consistent.

Calculations on a set of dissociated 14-electron diatomic molecules with bond

lengths larger than 104 Å in the Cartesian cc-pVDZ basis confirm this numerically.

In order to rule out any inconsistencies between the molecular and atomic

systems, spin constraints were imposed in neither the molecular nor the subspace

calculations. However, even though the energy of the dissociated system is

completely consistent with the energies of the dissociation products calculated

separately, the structure of the 2DM need not be. Imposing subspace constraints

alongside the 2-positivity conditions does not enforce separability of the 2DM.

The subspace constraints fall short in correcting the lack of separability because

they only act on the energy of the dissociated system. In terms of the notation

used here, the subspace constraints in the dissociation limit impose that the

energy expression (1.53) must be greater than or equal to the separable energy

given by (1.54). This is not enough to guarantee that the 2DM is separable into

2DM’s for the dissociation products.

These findings agree with those of Nakata et al.55 based on a different ap-

proach. They studied the separability of the 2DM for systems of non-interacting

molecular clusters in a minimal basis set. The 2DM is made block diagonal by

construction to describe the non-interacting system. The resulting deviations

from zero they observe in the ∆ABAB block are of the same order of magnitude

as those observed here.

In conclusion, calculations on a supersystem composed of non-degenerate non-

interacting subsystems establish that, even though they allow for an energetically

size-consistent description of long-range electronic interactions, the subspace

constraints do not ensure separability. The structure of the 2DM for a system
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composed of non-interacting fragments obtained under these constraints cannot

be separated into 2DM’s for non-interacting fragments. Even the 1DM under

separability constraints for such a system need not be consistent with the 1DM

obtained by separate calculations. This implies that one- and two-electron

properties other than the energy are not necessarily size-consistent.

Pure state separability is not a necessary condition for N-representability in

a system of non-interacting fragments, as degeneracies in the non-interacting

fragments may lead to an ensemble state that may be entangled as well. However,

any system of non-interacting units allows a description in terms of a pure

separable state. Therefore it can be imposed, but it would only be meaningful if

it follows as the dissociation limit behaviour of a more general constraint.





The whole is more than the sum of the parts.

Aristotle

2
S-representability

2.1 Introduction

Electronic spin lies at the heart of chemistry. The surprisingly simple quantum

chemical description of spin has helped us to understand the most fundamental

properties of matter.72 However, when we do not wish to work with the full

wavefunction, which is an impractical mathematical object, and work with

more compact descriptors instead, describing spin is problematic. In Density

Functional Approximations (DFA), one often resorts to symmetry breaking.73 A

recent approach by Yang et al. adjusts DFA functionals to correct the origin of

the spin problem.74,75

Although v2DM theory is typically a ground state method, it can be applied

to find the lowest-energy state for a specific spin state. Nonetheless, the problem

of describing non-singlet spin states in v2DM theory has received little attention,

although Valdemoro and co-workers have made a thorough study of spin purifi-

cation procedures in the context of the contracted Schrödinger equation.76,77

Mazziotti has pointed out the advantages of spin and spatial symmetry adap-

83
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tation, providing a framework for singlet and non-singlet state calculations in

a spin adapted basis in v2DM theory, but illustrates them only with singlet

state calculations.78 Very little about non-singlet state v2DM calculations has

appeared in the literature.79

A consistent treatment of non-singlet spin states in v2DM theory is much

needed, not only because many important molecules are non-singlet states in their

ground state, but also because many singlet molecules dissociate into non-singlet

states. Spin may therefore help us understand and solve the size-consistency

and dissociation issues discussed in the previous chapter.

For this reason, we make a comparative assessment of several spin constraints

in v2DM theory. Section 2.2 discusses the incorporation of electronic spin in the

tp basis, followed by an examination of necessary constraints for S-representability

in sections 2.3 and 2.4. The constraints in section 2.3 aim to describe a pure

spin state, whereas this requirement is lifted in section 2.4 allowing the 2DM to

describe an ensemble of spin states. Section 2.5 analyses both approaches by

applying them to the PES of non-singlet molecules.

2.2 Representation of electronic spin in the 2DM

Representation of two particle/hole matrices in uncoupled spin basis

The tp states in a general ‘uncoupled’ spin basis can be described as

|imijmj 〉 = a†jmj
a†imi
|〉

where mi = 1
2 or − 1

2 , denoting the spin projection of the electron in orbital i. In

the following we will either specify the spin projection mi or use the shorthand

notation ai to denote ai 1
2

and aī to denote ai− 1
2

.

The tp states are eigenfunctions of Ŝz

Ŝz|imijmj 〉 = (mi +mj)|imijmj 〉 (mi +mj) ∈ {−1, 0, 1}

but not necessarily of Ŝ2.
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The elements of the 2DM for a pure spin state |SM〉, which are given by the

operators |kmk lml〉〈imijmj | acting on the state |SM〉, can only return a non-zero

value if they can couple to an overall zero spin projection, M ′ = 0. Equivalently,

the only blocks of the 2DM that can be non-zero after spin integration from a

pure spin state wavefunction are
Γαααα

0 Γββββ

0 0 Γαβαβ

 (2.1)

where the superscripts σiσjσkσl are used to denote the spin projections of the

orbital indices ijkl of the elements Γijkl that make up the block. Because of

antisymmetry, the blocks ΓABBA,ΓBAAB and ΓABAB are redundant. Likewise,

the 1DM has a spin block structureγαα 0

0 γββ

 (2.2)

In the uncoupled spin basis, the 1DM and 2DM are thus described in terms of

sp and tp states which are eigenfunctions of Ŝz but not necessarily of Ŝ2.

Representation of two-particle/hole matrices in spin coupled basis

A spin coupled basis consists of tp states which behave like proper spin states un-

der the spin operators. A creation operator ÂSMkl that creates a two particle/hole

state with spin S′ and spin projection M ′ must satisfy

[Ŝz, Â
S′M ′

kl ] = M ′ ÂS
′M ′

kl

[Ŝ+, ÂS
′M ′

kl ] =
√

(S′ −M ′)(S′ +M ′ + 1) ÂS
′M ′+1

kl

[Ŝ−, ÂS
′M ′

kl ] =
√

(S′ +M ′)(S′ −M ′ + 1) ÂS
′M ′−1

kl

where its spin S′ can take the values 0 or 1, and its spin projection M ′ the values

−S′, . . . , S′ ∈ {−1, 0, 1}. Such spin coupled two-particle, two-hole and particle-

hole creation operators to describe the P-, Q- and G-matrix can be expressed as

a linear combination of the corresponding operators in the uncoupled spin basis

in the following manner.
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Spin coupled two-particle states

Spin coupled tp creation operators that form a basis for the 2DM can be composed

from two particle creation operators a†ka
†
l with suitable normalization through

Â0 0
kl =

1√
2(1 + δkl)

(a†ka
†
l̄

+ a†l a
†
k̄
)

Â1−1
kl = a†

k̄
a†
l̄

Â1 0
kl =

1√
2

(a†ka
†
l̄
− a†l a

†
k̄
)

Â1 1
kl = a†ka

†
l

The operator Â0 0
kl generates a singlet pair state and the operators Â1−1

kl , Â1 0
kl

and Â1 1
kl generate a triplet pair state. In general, elements ijkl of the 2DM in

the spin coupled basis are therefore

〈Ψ|ÂS2 M2

kl

(
ÂS1 M1
ij

)†
|Ψ〉

although spin symmetry implies that only certain combinations of S2, S1 and

M2,M1 can couple to a non-zero element (section 2.3).

Spin coupled two-hole states

The same spin coupled tp state creation operators may serve as a basis for the

spin coupled representation of the Q-matrix, since its representation simply

involves the Hermitian adjoint operators from those that express the 2DM

〈Ψ|
(
ÂS2 M2

kl

)†
ÂS1 M1
ij |Ψ〉

Spin coupled particle-hole states

A spin coupled basis for the G-matrix can be generated by means of the following
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particle-hole creation operators

Â0 0
kl =

1√
2

(a†kal + a†
k̄
al̄)

Â1−1
kl = a†

k̄
al

Â1 0
kl =

1√
2

(a†kal − a
†
k̄
al̄)

Â1 1
kl = a†kal̄

such that the G-matrix in spin-coupled basis in its most general form has elements

〈Ψ|ÂS2 M2

kl

(
ÂS1 M1
ij

)†
|Ψ〉

The resulting G-map, expressed in terms of a matrix in two particle space, can

also be applied to a matrix in particle-hole space, with the only difference being

that the latter is not antisymmetrical.

The spin coupled particle-hole creation operators also constitute a basis for the

1DM in spin coupled representation.

To recapitulate, the second order particle-particle, hole-hole and particle-hole

matrix, P-, Q- and G-matrix, have elements of the form

〈SM |
(
ÂS2 M2

kl

)†
ÂS1,M1

ij |SM〉 (2.3)

where the operators ÂS1M1
ij are spin coupled two-particle, two-hole or particle-

hole generators, respectively. The first order particle and hole density matrix,

introduced as the p- and q-matrix in section 1.3.3 of chapter 1, have elements of

the form

〈SM |ÂS
′M ′

ij |SM〉

where the operators ÂS
′M ′

ij are spin coupled particle-hole or hole-particle genera-

tors, respectively.

When the state under consideration is a pure spin state |SM〉 with definite

spin eigenvalue S(S + 1) and spin projection M , only certain combinations of

operators
(
ÂS2 M2

kl

)†
ÂS1,M1

ij can couple to a symmetry that does not necessarily

lead to a zero expectation value. The P-,Q- and G-matrices therefore have a
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specific block structure that depends on the state under consideration. The

following sections eloborate on the consequences of spin symmetry and other

spin conditions on the 2DM.

2.3 S-representability conditions for pure spin

states

2.3.1 Spin symmetry

Although correct block structure of the 2DM induced by spin symmetry can be

considered an S-representability condition, it does not influence the energy in

general, because both the Hamiltonian, which is the driving force behind the

optimization, and the N-representability constraints have correct spin symmetry

by definition. Except for a few special cases where spin symmetry induces

additional symmetry in the 2DM, the variationally optimized 2DM will inherit

the right spin symmetry from the Hamiltonian.

Moreover, a spin adapted basis makes it easier to exploit such additional spin

symmetries, which occur in systems with zero spin projection (M = 0) and zero

spin (S = 0). These additional symmetries may impose an active constraint on

the energy and are much more difficult to exploit in an uncoupled spin basis.

The next paragraphs examine the effect of spin symmetry on the structure of

the 2DM, and consider necessary conditions on spin that the 2DM must satisfy

if it is derivable from a pure spin state |SM〉.

Implications of spin symmetry on the structure of the 2DM in a spin

coupled basis

The only elements 〈SM |ÂS2 M2

kl

(
ÂS1,M1

ij

)†
|SM〉 that are not necessarily zero

by spin symmetry considerations, are those in which the tp creation operator

ÂS2M2

kl and annihilation operator (ÂS1M1
ij )† are coupled to a total spherical tensor

operator that may have a nonzero expectation value acting on the state |SM〉.
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Because the Hermitian conjugate of a spherical tensor operator (ÂSMkl )† is

only guaranteed to be a spherical tensor operator itself upon inclusion of a

phase (−1)S−M , we will consider the operator B̂S−Mkl ≡ (−1)S−M (ÂSMkl )†. The

spherical tensor operators AS2M2

kl and B̂S−Mkl can couple to a total spherical

tensor operator [ÂS2

kl ⊗ B̂
S1
ij ]S

′M ′ with spin S′ and spin projection M ′.

Any matrix element in the spin coupled two particle/hole basis can be

expressed in terms of matrix elements of a total spherical tensor operator

〈SM |ÂS2M2

kl B̂S1M1
ij |SM〉

=
∑
S′M ′

〈SM |[ÂS2

kl ⊗ B̂
S1
ij ]S

′M ′ |SM〉(S2 M2 S1 M1 |S′ M ′) (2.4)

This is a unitary transformation, given by the Clebsch-Gordan coefficients. Under

which conditions can these terms make a non-zero contribution?

The expectation values 〈SM |[ÂS2

kl ⊗ B̂
S1
ij ]S

′M ′ |SM〉 occurring in the above sum-

mation can only be nonzero if

0 ≤ S′ ≤ 2S

M ′ = 0

if M = M ′ = 0 : S′ is even

The Clebsch-Gordan coefficients (S2 M2 S1 M1|S′ M ′) occurring in the summa-

tion can only be nonzero if

|S1 − S2| ≤ S′ ≤ |S1 + S2|

M1 +M2 = M ′

if M1 = M2 = M ′ = 0 : S′ + S1 + S2 is even

Since these conditions imply that M1 = −M2, spin coupled tp states with

different spin projection must be orthogonal. This requirement makes the 2DM

diagonal in the spin projection of the spin coupled tp basis, which can take the

values M1 = −M2 ∈ {−1, 0, 1}. Hence the P-, Q- and G-matrix of a pure spin

state in general have three non-zero spin blocks which can be labeled according
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to the spin eigenvalues S1, S2 and the mutual spin projection M1 = M2 ≡M ′

of the spin-coupled tp creation- and annihilation operator, so we introduce the

notation

ΓS1S2 M
′

ijkl = 〈Ψ|ÂS2,M
′

kl

(
ÂS1 M

′

ij

)†
|Ψ〉 for M ′ = −1, 0, 1

As for the coupling of the spins S1 and S2 of the two particle/hole creation and

annihilation operator in formula (2.4), there are several possibilities, depending

on the molecular spin state |SM〉 under consideration.

Singlet spin states

For a zero spin state, |00〉, the tp creation and annihilation operator must couple

to a total spherical tensor operator with zero spin, S′ = 0. This implies that

S1 = S2 ∈ {0, 1}. Therefore, the 2DM is not only diagonal in the spin projection

of the spin coupled tp basis, but also in its spin. Moreover, because a zero spin

state must be completely symmetrical in terms of α and β electrons, all triplet

blocks with S1 = S2 = 1 are equivalent, so only one needs to be stored. This

follows directly from their coupling (2.4),

〈00|ÂS2M2

kl B̂S2−M2
ij |00〉 = (−1)S2−M2〈00|ÂS2M2

kl

(
ÂS2M2
ij

)†
|00〉

= 〈00|[ÂS2

kl ⊗ B̂
S2
ij ]00|00〉(0 0 | S2 M2 S2 −M2)

= (−1)S2−M2
1√

2S2 + 1
〈00|[ÂS2

kl ⊗ B̂
S2
ij ]00|00〉

Therefore

〈00|ÂS2M
kl

(
ÂS2M
ij

)†
|00〉 =

1√
2S2 + 1

〈00|[ÂS2

kl ⊗ B̂
S2
ij ]00|00〉 (2.5)

Since the right hand side is independent of the spin projection M2 of the spin

coupled tp basis, all triplet blocks with S1 = S2 = 1 are equal.

In summary, there are only two linearly independent blocks in the 2DM for

a pure spin singlet state, a ‘singlet’ block with S1 = S2 = 0 and a ‘triplet’ block

with S1 = S2 = 1.

S = 0, M = 0 :

Γ00 0 0

0 Γ11 0 = Γ11 1 = Γ11 −1

 (2.6)
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Non-singlet spin states

There are two cases to discern for non-singlet spin states, depending on their

spin projection.

For a non-zero spin state with zero spin projection, |S0〉, the 2DM elements

〈S0|ÂS2M2

kl

(
ÂS1M2
ij

)†
|S0〉 can only be nonzero if the spins S1 and S2 can couple

to an even spin S′. Since S1 and S2 can only take the values 0, 1 this also implies

that the 2DM is diagonal in the spin of the tp states. The M1 = M2 = 0 block

of the 2DM thus splits into two blocks, Γ00 0 and Γ11 0.

A further reduction in storage and computation requirements can be made

by noting that the blocks Γ11 1 and Γ11 −1 must be equal.

〈S0|Â1M2

kl

(
Â1M2
ij

)†
|S0〉 = (−1)1−M2〈S0|[Â1

kl ⊗ B̂1
ij ]

00|S0〉(0 0 | 1 M2 1 −M2)

+ (−1)1−M2〈S0|[Â1
kl ⊗ B̂1

ij ]
20|S0〉(2 0 | 1 M2 1 −M2)

This leads to the same expression for M2 = 1 and M2 = −1. The Γ11 0 block is

different, however.

In summary, the structure of the 2DM in spin coupled tp basis for a zero spin

projection system is

S 6= 0, M = 0 :


Γ00 0 0 0

0 Γ11 0 0

0 0 Γ11 1 = Γ11 −1

 (2.7)

For any other nonzero spin state, the 2DM is only diagonal in the spin

projection of the tp basis. It thus has a structure

S 6= 0, M 6= 0 :


Γ00 0 Γ01 0 0 0

Γ10 0 Γ11 0 0 0

0 0 Γ11 1 0

0 0 0 Γ11 −1

 (2.8)
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Implications of spin symmetry on the structure of the 2DM in an

uncoupled spin basis

The additional spin symmetries for zero spin projection or zero spin states are

much more easily exploited in the spin coupled basis. They can be easily imposed

by construction in the spin coupled basis through their block diagonal structure

but do not take such a simple form in a general uncoupled spin basis.

For a state with zero spin projection |S0〉, the orthogonality between the sym-

metrical and antisymmetrical combination of αβ pairs, the spin coupled two

particle/hole states Â00|〉 and Â10|〉, implies that

Γij̄kl̄ = Γjīlk̄ for M = 0 (2.9)

in an uncoupled spin basis.

Additionally, for a zero spin state |00〉, the degeneracy between the antisym-

metrical combination of opposite spin pairs and same spin pairs, i.e. degeneracy

of the three triplet blocks in (2.6), imposes in an uncoupled spin basis that

Γijkl = Γīj̄k̄l̄ = Γij̄kl̄ − Γij̄lk̄ for S = 0 (2.10)

which would have to be imposed as constraint in an uncoupled spin basis. The

symmetry (2.10) which follows from zero spin truly constrains the system, whereas

the symmetry (2.9) which follows from its zero spin projection is already satisfied

by minimization under a spin independent Hamiltonian and spin constraints

that do not alter this symmetry.

2.3.2 Basic S-representability constraints

Because the 2DM only carries information up to two-electron interactions,

imposing that it is derivable from an N-electron wavefunction that is a proper

eigenfunction of Ŝ2 and Ŝz is a difficult problem. For 2-electron operators such

as Ŝ2, only their expectation value is directly available.

One-electron operators such as Ŝz and Ŝ+ can be used to formulate a set of

constraints for pure spin states, by demanding that – at least on the level of the

2DM – the state is an eigenstate of the one-electron operator.
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Ŝ2 based constraints

The Ŝ2 operator can be expressed in two particle space as

Ŝ2 = Ŝz + Ŝ2
z + Ŝ−Ŝ+

=
1

2

∑
i

a†iai − a
†
ī
aī +

1

4

∑
ij

(a†iai − a
†
ī
aī)(a

†
jaj − a

†
j̄
aj̄) +

∑
ij

a†
ī
aia
†
jaj̄

=
∑
ij

1

4

(
a†ia
†
jajai + a†

ī
a†
j̄
aj̄aī − 2a†ia

†
j̄
aj̄ai

)
− a†ja

†
ī
aj̄ai +

3

4

∑
i

a†iai + a†
ī
aī

Taking the normalization of the 2DM into account, its expectation value is thus

〈Ŝ2〉 =
1

4

(
N(N − 1)− 4

∑
ij

Γij̄ij̄

)
−
∑
ij

Γij̄jī +
3

4
N

=
N

2

(N
2

+ 1
)
−
∑
ij

(Γij̄ij̄ + Γij̄jī) (2.11)

or in spin coupled basis

〈Ŝ2〉 =
N

2

(N
2

+ 1
)
− tr Γ00 0 (2.12)

Ŝz based constraints

As the spin projection is a one-electron operator, we can do more than just

specify its expectation value

〈Ŝz〉 =
1

N − 1
(tr Γαααα − tr Γββββ)

for a pure spin state. As the state |SM〉 must be an eigenfunction of Ŝz

(N Ŝz −M N̂)|SM〉 = 0 (2.13)

where N̂ is the number operator and N the number of electrons. This condition

implies that the vector corresponding to this operator lies in the nullspace of

the G0 block of the G-matrix:

∀k, l :
∑
i

N G10 0
iikl − 2M G00 0

iikl = 0 (2.14)

∑
i

N G11 0
iikl − 2M G10 0

iikl = 0 (2.15)
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This condition ensures that the spin blocks of the 1DM can be derived from

the 2DM both by contraction over α orbital indices and by contraction over β

orbital indices. For this reason, it is sometimes referred to as the ‘contraction

condition’. In an uncoupled basis, it expresses that(N
2
−M

)∑
i

Γkili =
(N

2
+M − 1

)∑
i

Γkīl̄i (2.16)

(N
2

+M
)∑

i

Γk̄īl̄̄i =
(N

2
+M − 1

)∑
i

Γk̄il̄i (2.17)

As this must hold for all k ≤ l ∈
{

1, . . . K2
}

, it involves K
2 (K2 + 1) conditions on

the 2DM, although the number of practically relevant conditions is less if spatial

symmetry is taken into account. As is obvious from formula (2.13), it implies

correct Ŝz expectation value, and together with the normalization of the whole

2DM, trΓ = N(N − 1)/2, it implies normalization of the spin blocks to

tr Γ11 1 =
1

2

(
N

2
+M

)(
N

2
+M − 1

)
tr Γ11 −1 =

1

2

(
N

2
−M

)(
N

2
−M − 1

)
tr Γ00 0 + tr Γ11 0 =

(
N

2
+M

)(
N

2
−M

)

Ŝ+ based constraints

The maximal spin projection for a spin-S state, M = S, must satisfy the

condition

S+|SS〉 = 0 (2.18)

This condition forces the vector corresponding to the Ŝ+ operator to lie in the

nullspace of the G1 block of the G-matrix:

∀k, l :
∑
i

G11 1
iikl = 0 (2.19)

which implies K2

4 additional conditions on the 2DM. Along with the contraction

condition, it imposes the correct Ŝ2 expectation value, because the contraction

condition imposes

tr Γ00 0 + tr Γ11 0 =
(N

2
−M

)(N
2

+M
)
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and the maximal spin condition imposes

tr Γ00 0 − tr Γ11 0 = 2
(N

2
+M

)
The Ŝ2 expectation value (2.12) for the maximal spin projection M = S thus

becomes

〈Ŝ2〉 =
N

2

(N
2

+ 1
)
−
(N

2
− S

)(N
2

+ S + 1
)

= S(S + 1)

Of course, this constraint only holds for maximal spin states – or an equivalent

constraint for minimal spin states. A more general form of this constraint, which

holds for other pure state spin projections as well, can be derived by considering

the relationship between the first order density matrix and transition density

matrix elements.

2.3.3 Relationship between first order density matrix and

transition density matrix elements for different spin

projections

The first order density matrix and transition density matrix elements for different

spin projections are related, which is directly expressed by the Wigner-Eckart

theorem.80 It states that the action of any spherical tensor operator ÂS
′M ′ on

states with different spin projections is proportional; the proportionality factor

is the reduced matrix element, denoted with double lines in the bra-ket notation

Wigner-Eckart theorem

〈S̃M̃ |ÂS
′M ′ |SM〉 = (−1)S̃−M̃

 S̃ S′ S

−M̃ M ′ M

 〈S̃||ÂS′M ′ ||S〉 (2.20)

This theorem directly links the first order density and transition density matrix

elements for states with different spin projections to each other.
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The first order transition density matrix elements that we are interested in

are, with blm = (−1)
1
2 +mal−m,

〈SM |[a†k ⊗ bl]
11|SM − 1〉 =

(1

2

1

2

1

2

1

2
| 1 1

)
〈SM |a†

k 1
2

bl 12 |SM − 1〉

= −〈SM |a†kal̄|SM − 1〉 (2.21)

According to the Wigner-Eckart theorem, the spin projection dependence can

be filtered out

〈SM |[a†k ⊗ bl]
11|SM − 1〉 = (−1)S−M

 S 1 S

−M 1 M − 1

 〈S||[a†k ⊗ bl]1||S〉
= − 1√

2

√
(S +M)(S −M + 1)
√

2S + 1
√
S(S + 1)

〈S||[a†k ⊗ bl]
1||S〉

(2.22)

Since the same reasoning applies to the transition density matrix element for

the state with spin projection M + 1 as to the state with spin projection M

〈SM + 1|[a†k ⊗ bl]
11|SM〉 = − 1√

2

√
(S +M + 1)(S −M)
√

2S + 1
√
S(S + 1)

〈S||[a†k ⊗ bl]
1||S〉

Therefore these two transition density matrix elements are proportional

√
(S +M)(S −M + 1)〈SM + 1|[a†k ⊗ bl]

11|SM〉 =√
(S −M)(S +M + 1)〈SM |[a†k ⊗ bl]

11|SM − 1〉

or, equivalently,

√
(S +M)(S −M + 1)〈SM + 1|a†kal̄|SM〉 =√

(S −M)(S +M + 1)〈SM |a†kal̄|SM − 1〉 (2.23)

Similarly, the elements of the 1DM in a spin coupled basis for different spin

projections are related. First of all, the total spin density matrix, composed of the

sum of both αα and ββ components of the 1DM in an uncoupled representation,
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is independent of the system’s spin projection M

[a†k ⊗ bl]
00 =

∑
m

 1
2

1
2 0

m −m 0

 a†kmbl−m

=
1√
2

(
a†kal + a†

k̄
al̄

)
since the Wigner-Eckart theorem yields

〈SM |[a†k ⊗ bl]
00|SM〉 = (−1)S−M

 S 0 S

−M 0 M

 〈S||[a†k ⊗ bl]0||S〉
=

1√
2S + 1

〈S||[a†k ⊗ bl]
0||S〉

which is independent of the spin projection M . Therefore

〈SM |a†kal + a†
k̄
al̄|SM〉 = 〈SM + 1|a†kal + a†

k̄
al̄|SM + 1〉 (2.24)

Secondly, the ratio of the elements of the spin density matrices for states

with different spin projections M, M̃ , composed of the difference between the

αα and ββ components of the 1DM in an uncoupled representation, is given by

the ratio of the spin projections M
M̃

,

[a†k ⊗ bl]
10 =

∑
m

√
3

 1
2

1
2 1

m −m 0

 a†kmbl−m

=
1√
2

(a†kal − a
†
k̄
al̄) (2.25)

because their spin projection dependence is factored out by the Wigner-Eckart

theorem as follows

〈SM |[a†k ⊗ bl]
10|SM〉 = (−1)S−M

 S 1 S

−M 0 M

 〈S||[a†k ⊗ bl]1||S〉
=

M
√

2S + 1
√
S(S + 1)

〈S||[a†k ⊗ bl]
1||S〉 (2.26)

This result is directly proportional to the state’s spin projection. Equivalently,

(M + 1)〈SM |a†kal − a
†
k̄
al̄|SM〉 = M〈SM + 1|a†kal − a

†
k̄
al̄|SM + 1〉 (2.27)
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Moreover, the 1DM matrix elements in spin coupled basis are also proportional

to the transition density matrix elements

〈SM |a†kal̄|SM−1〉 =
1

2M

√
(S +M)(S −M + 1)〈SM |a†kal−a

†
k̄
al̄|SM〉 (2.28)

2.3.4 S-representability constraints derived from relations

between first order density and transition density

matrix elements

The relationship (2.23) between the first order transition density matrices defines

additional constraints on the 2DM, since the first order transition density matrix

elements for a state |SM〉 are available through the 2DM

√
(S +M)(S −M + 1)〈SM |akal̄|SM − 1〉 = 〈SM |akal̄S−|SM〉

=
∑
i

Gīikl̄ (2.29)

√
(S −M)(S +M + 1)〈SM |ak̄al|SM + 1〉 = 〈SM |ak̄alS+|SM〉

=
∑
i

Gīik̄l (2.30)

Because both first order transition density matrices are proportional

(S −M)(S +M + 1)
∑
i

Gīikl̄ = (S +M)(S −M + 1)Gīik̄l (2.31)

which holds for any index k and l, so it imposes K2

4 conditions on the 2DM.

There are several ways of deriving this condition; another way is to consider

〈SM |S−[a†kal, S
+]|SM〉

= (S −M)(S +M + 1)(〈ΨSM+1|a†kal|Ψ
SM+1〉 − 〈SM |a†kal|SM〉)

and replace its dependence on the 1DM for the state |SM + 1〉 by means of the

relationships between the 1DM’s for the states |SM + 1〉 and |SM〉 (2.24 and

2.27).
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As a special case of this condition, a state with maximal spin projection must

satisfy

∑
i

Gīik̄l = 0

∑
i

Γl̄iik̄ = γk̄l̄ (2.32)

which imposes on the level of the 2DM that S+|ΨSS〉 = 0.

States with zero spin projection are another special case. For these states,

the condition simply imposes that

∑
i

Gīikl̄ = Gīik̄l

γkl −
∑
i

Γil̄kī = γk̄l̄ −
∑
i

Γl̄iik̄ (2.33)

However, because of spin symmetry (2.7), this constraint does not add a condition

in spin coupled basis.

2.4 S-representability conditions for ensemble spin

states

Suppose that we allow the 2DM to represent an ensemble composed of different

spin projections of the spin state under consideration. What conditions on spin

properties must the 2DM then fulfil? Since the composition of the ensemble is

not fixed, most of the constraints considered above for pure spin states, cannot

be extended to a general spin ensemble without making assumptions about its

composition.

2.4.1 Implications of spin symmetry on the structure of

the 2DM

In contrast to a pure spin state 2DM, the 2DM for an ensemble spin state does

not need to have a block structure by spin symmetry, although in practice any
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v2DM calculation on such a system under the usual spin constraints, which do

have a spin block structure, will return a 2DM with the same block structure.

Because the different spin projections are degenerate, a general wavefunction

corresponding to a spin quantum number S may have the form

Ψ =
∑
M

cM |SM〉 with
∑
M

c2M = 1

with 〈Ŝz〉 =
∑
M c2MM . The N-th order density matrix may be a mixed state

Γ(N) =
∑
n

wn
∑
M M ′

cnMc
n
M ′ |SM〉〈SM ′| 0 ≤ wn ≤ 1,

∑
n

wn = 1,
∑
M

(cnM )2 = 1

with 〈Ŝz〉 =
∑
n wn

∑
M (cnM )2M . The corresponding 2DM is

Γ
(2)
ijkl =

∑
n

wn
∑
M M ′

cnMc
n
M ′〈SM ′|a

†
ka
†
l ajai|SM〉

This form of 2DM in general does not lead to a block diagonal structure, even

the off-diagonal blocks in terms of the tp state’s spin projection such as Γαααβ

may be non-zero because of a contribution from the transition density matrix

elements 〈SM ′|a†ka
†
l ajai|SM〉 M 6= M ′.

However, in order to reduce computational cost and save memory, the 2DM

may be restricted to have the same symmetry as a corresponding pure state

would have, since this is a valid, albeit not necessary, representation of the spin

state. In the case that a state with zero Ŝz expectation value is considered,

a further reduction in computational requirements can be made by assuming

an ensemble average over all states of the spin multiplet. Therefore we will

distinguish two cases.

Non-zero Ŝz expectation value

Although the ensemble does not need to have a block structure, it can be
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constrained to have the same block structure as a pure non-singlet state.

〈Ŝz〉 6= 0 :


Γ00 0 Γ01 0 0 0

Γ10 0 Γ11 0 0 0

0 0 Γ11 1 0

0 0 0 Γ11 −1

 (2.34)

Zero Ŝz expectation value

The dimension of the 2DM for an ensemble with 〈Ŝz〉 = 0 can be significantly

reduced by choosing the composition of the ensemble as an average over all spin

projections M = −S, . . . , S.

ΓS1S2 M2

ijkl =
1

2S + 1

∑
M

〈SM |
(
AS2M2

kl

)
AS1M2
ij |SM〉 (2.35)

Taking the spin averaged ensemble makes the α and β spins equivalent, such

that the 2DM can be reduced to two non-zero blocks, similar to that of a singlet

state (2.6).

1

2S + 1

∑
M

〈SM |AS2M2

kl

(
AS1M1
ij

)†
|SM〉

=
1

2S + 1

∑
M

∑
M ′S′

〈SM |[AS2

kl ⊗B
S1
ij ]S

′M ′ |SM〉(−1)S1−M1(−1)S1−S2+M ′

[S′]

 S1 S2 S′

−M1 M2 −M ′


=

1

2S + 1

∑
M

∑
M ′S′

〈S||[AS2

kl ⊗B
S1
ij ]S

′
||S〉(−1)S−M (−1)S1−M1(−1)S1−S2+M ′

[S′]

 S S′ S

−M M ′ M

 S1 S2 S′

−M1 M2 −M ′


=

1

2S + 1

∑
M

∑
S′

〈S||[AS2

kl ⊗B
S1
ij ]S

′
|S〉

 S S 0

M −M 0

 [S]

(−1)S1−M2(−1)S1−S2 [S′]

 S S′ S

−M 0 M

 S1 S2 S′

−M2 M2 0

 (2.36)
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where the factor (−1)S−M in the last line was replaced by the equivalent 3j-

symbol, and the formulae were simplified by realizing that only M1 = M2 and

M ′ = 0 can make a non-zero contribution. The notation [S′] ≡
√

2S′ + 1.

This expression can be further simplified by adding on terms that are zero by

symmetry but allow application of the orthogonality property of the 3j-symbols.

(2.36) =
1

2S + 1

∑
M

∑
S′

∑
M ′′

〈S||[AS2

kl ⊗B
S1
ij ]S

′
||S〉

 S S 0

M ′′ −M 0

 [S]

(−1)S1−M2(−1)S1−S2 [S′]

 S S S′

M ′′ −M 0

 S1 S2 S′

−M2 M2 0


=

δS1S2√
2S + 1

〈S||
[
AS2

kl ⊗B
S2
ij

]0
|S〉

Since S′ = 0 the elements can be non-zero only if S1 = S2. Moreover, this

expression is independent in the spin projections M1,M2 of the tp operators. So

the 2DM is diagonal in the spin of the tp state as well as in its spin projection

and its blocks corresponding to different spin projections are equal, leading to

the structure

〈Ŝz〉 = 0 and (2.35) :

Γ00 0 0

0 Γ11 0 = Γ11 1 = Γ11 −1

 (2.37)

2.4.2 Basic S-representability constraints

Unless a specific composition of the ensemble is assumed, there are few obvious

constraints that derive from its corresponding wavefunction. Imposing the

total spin of the ensemble is limited to specifying its correct expectation value.

Similarly, the Ŝz expectation value of the ensemble can be fixed.

〈Ŝ2〉 = S(S + 1)

〈Ŝz〉 =
∑
n

wn
∑
M

(cnM )2M

If the Ŝz expectation value is not specified, the symmetry present in the spinless

Hamiltonian will lead to a zero expectation value.
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2.4.3 S-representability constraints derived from the

Gutzwiller projection

A constraint that might be of interest in non-singlet states, is one which acts

directly on the space of singly occupied orbitals. Such constraints have proven

useful applied to the Hubbard model.81 Because v2DM(PQG) results for Hub-

bard models with half-filling are fairly accurate, but those for models with one

particle below half-filling are poor, it seems that singly occupied levels are not

properly described by the P-,Q- and G-condition.

In the same way that the first order particle and hole density matrix need to be

positive-semidefinite, the first-order particle and hole density matrix expressed in

the basis of singly occupied space need to be semidefinite as well. The creation

and annihilation operators acting only on the space of singly occupied orbitals

are

gi = ai(1− a†īaī)

g†i = (1− a†
ī
aī)a

†
i

The matrices γG and qG are thus positive semi-definite

γGij = 〈Ψ|g†jgi|Ψ〉 γG � 0

qGij = 〈Ψ|gjg†i |Ψ〉 qG � 0

Although both matrices involve terms acting on three-particle/hole space,

γGij = γij − Γij̄īi − Γīijī + 〈Ψ|a†
j̄
a†jaj̄a

†
ī
aiaī|Ψ〉

qGij = δij(1− 2γī̄i)− γij + Γij̄īi + Γīijī + 〈Ψ|a†
j̄
ajaj̄a

†
ī
a†iaī|Ψ〉

the term 〈Ψ|Â†jÂi|Ψ〉, with Â a three particle/hole operator, can be eliminated

by adding 〈Ψ|ÂjÂ†i |Ψ〉 = 〈Ψ|ÂiÂ†j |Ψ〉 to it,

γGij + 〈Ψ|a†
j̄
a†jaj̄a

†
ī
aiaī|Ψ〉

qGij + 〈Ψ|a†
j̄
ajaj̄a

†
ī
a†iaī|Ψ〉



104 Chapter 2 S-representability

which preserves positive semidefiniteness and eliminates the dependence on the

3-particle/hole space.

〈Ψ|a†
j̄
a†jaj̄a

†
ī
aiaī + a†

ī
aiaīa

†
j̄
a†jaj̄ |Ψ〉 = δijγī̄i

〈Ψ|a†
j̄
ajaj̄a

†
ī
a†iaī + a†

ī
a†iaīa

†
j̄
ajaj̄ |Ψ〉 = δijγī̄i

So the final expressions for the elements of the matrices that must be constrained

to be positive semidefinite, are

γGij = γij − Γij̄īi − Γīijī + δijγī̄i (2.38)

qGij = δij(1− γī̄i)− γij + Γij̄īi + Γīijī (2.39)

Because these constraints specifically target singly occupied orbitals, they might

prove useful in open shell, non-singlet systems. Unfortunately, it seems that

they are not violated by typical v2DM(PQG) calculations on molecular systems,

even when no spin constraints are imposed. The lowest eigenvalue of the γG

matrix is typically of the order 10−3 − 10−5 for chemical systems, whereas the

qG matrix is much less close to singularity, and becomes even more positive in

the dissociation limit in typical diatomic molecular systems under P-,Q- and

G-condition.

2.5 Applications

In order to examine the strength of the spin conditions discussed in sections

2.3 and 2.4, we have applied them to the PES for the carbon and oxygen dimer

for several spin states and their different spin projections. The singlet, triplet

and quintuplet states must become degenerate in the dissociation limit. Because

these systems are homonuclear, they do not suffer from unphysical dissociation

under 2-positivity conditions (section 1.5.5 chapter 1). These systems therefore

make a good test case for examining several issues regarding spin:

Overall, are the proposed spin constraints capable of reproducing the charac-

teristics of the PES for different spin states and spin projections?
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How do ‘pure spin state’ constraints compare to ‘ensemble spin state’ con-

straints?

How do different spin projections relate to each other?

How do spin constraints in the dissociation limit compare to those at short

bond lengths? Are they equally strong at all bond lengths?

In order to make this assessment, the following S-representability constraints

were taken into consideration.

2.5.1 Applied S-representability conditions

Pure spin state constraints

To describe a pure spin state

I the ‘contraction’ condition

∀k, l :
∑
i

N G10 0
iikl − 2M G00 0

iikl = 0 (2.40)

∑
i

N G11 0
iikl − 2M G10 0

iikl = 0 (2.41)

imposes the correct Ŝz expectation value and consistent contraction to the

1DM.

II the maximal spin projection for a spin-S state, M = S, must satisfy the

condition

∀k, l :
∑
i

G11 1
iikl = 0 (2.42)

This condition forces the vector corresponding to the Ŝ+ operator to lie in

the nullspace of the G1 block of the G-matrix, which implies K2

4 additional

conditions on the 2DM. Along with the contraction condition, it imposes

the correct Ŝ2 expectation value.

III a lesser spin projection of a spin-S state, |M | < S, must satisfy

∀k, l : (S −M)(S +M + 1)
∑
i

G11 1
iikl = (S +M)(S −M + 1)

∑
i

G11 −1
iikl

(2.43)
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which imposes a correct relation between the first order transition density

matrix elements. When combined with the contraction condition, it implies

the correct Ŝ2 expectation value, except for the case of zero spin projection.

In that case, the correct Ŝ2 expectation value must be imposed additionally.

Ensemble spin state constraints

To describe an ensemble spin state of different spin projection of a spin-S state,

with a fixed Ŝz expectation value:

I correct Ŝ2 expectation value is imposed through the generally holding

formula

tr S2Γ =
N

2

(
N

2
+ 1

)
− tr Γ00 0 = S(S + 1) (2.44)

II correct Ŝz expectation value is imposed, tr [SzΓ] =
∑
n wn

∑
M (cnM )2M .

Finally, in order to compare molecular dissociation products to the dissoci-

ation products calculated separately, we also consider them under correct Ŝz

expectation value only, since imposing correct Ŝ2 expectation value does not

guarantee correct Ŝ2 expectation value for the molecular dissociation products.

2.5.2 Computational and algorithmic details

All calculations are done in the double zeta basis set D95V as specified in

Gaussian03.70 Reference full configuration interaction calculations with core

electrons frozen (FCI(FC)) are carried out with Gaussian03. The potential

energy surfaces (PES) are composed from single point calculations. To carry out

the variational optimization of the 2DM under semidefinite constraints, we have

used our implementation of a modified barrier method (see chapter 3 paragraph

3.5).
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2.5.3 Results on S-representability calculations

In earlier work on atomic systems,44 we have reported calculations that assumed

an ensemble resulting in a zero Ŝz expectation value for non-singlet spin states,

and compared these to calculations for the pure spin state with maximal spin

projection. A more detailed comparison of both the pure spin state approach and

the ensemble spin state approach over the whole range of possible Ŝz expectation

values for several non-singlet atoms (figure 2.1) and for PES of the lowest energy

spin states of the oxygen and carbon dimer (figures 2.2, 2.3) reveals some more

interesting features.

As a first key observation, no degeneracy for different spin projections of the

same spin state is observed. This shortcoming was also noticed by Nakata.82

In fact, both in the pure spin state approach and in the ensemble spin state

approach, the energy is convex with respect to the Ŝz expectation value (figure

2.1). Interestingly, this is exactly the opposite behavior from that observed in

DFA.74 So the v2DM energy is not only convex with respect to the fractional

electron number in between two consecutive integer electron numbers, as observed

in previous work,49 but also with respect to fractional Ŝz expectation value

in between two consecutive allowed pure state spin projections. The v2DM

calculations for the maximal spin projection give the highest energy, both under

pure spin state constraints (2.5.1) and ensemble spin state constraints (2.5.1).

The pure spin state constraints are especially strong compared to the ensemble

spin state constraints near zero spin projection. In fact, as M → S, the v2DM

energy under ensemble spin constraints converges practically to that of the

pure state maximal spin projection. For near-zero spin projections, however,

the ensemble spin state conditions give a much lower energy. Even more so,

the 〈Ŝz〉 = 0 condition does not improve the energy at all. Due to the spin

independence of the Hamiltonian, the 〈Ŝz〉 = 0 condition without reinforcement

by other spin conditions, is equivalent to not imposing any spin condition.

A second key observation is that the spin constraints are not size-consistent:
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Figure 2.1: The v2DM(PQG) energy is a convex function of the spin projection under

both pure spin state and ensemble spin state conditions. The maximal

spin projection has the highest energy, even when only the Ŝz expectation

value is imposed. The 〈Ŝz〉 = 0 energy without additional spin constraints

is equivalent to the energy of a spin unconstrained problem, due to the

spin independence of the Hamiltonian.
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Figure 2.2: The differences between the v2DM PES of the oxygen dimer under pure

spin state conditions (2.5.1) for different spin projections M of the same

spin state S are remarkable. In the dissociation limit, the difference in

the energy for different spin projections seems primarily attributable to

the different Ŝz expectation value of the dissociated atoms because their

energies are very similar to atomic energies obtained under the same Ŝz

expectation value (table 2.1).
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Figure 2.3: Differences between the v2DM PES of the carbon dimer under pure

spin state conditions (2.5.1) for different spin projections M of the same

spin state S are remarkable. In the dissociation limit, the difference in

the energy for different spin projections seems primarily attributable to

the different Ŝz expectation value of the dissociated atoms. Only the

S = 2,M = 1 state gives atomic energies in the dissociation limit that

are slightly higher than those obtained under 〈Ŝz〉 = 1.



Applications 111

the constraints on the molecular system do not imply equivalent spin constraints

on the dissociation products. The Ŝz expectation values of the dissociation

products, being a one-electron property, are fixed to half the homonuclear

molecule’s Ŝz expectation value, but none of their other spin properties is

determined by the spin constraints on the molecule. Of course, even when

the molecule is constrained to be a pure spin state, the dissociation products

need not be pure spin states, but they need to have a proper Ŝ2 expectation

value. The applied spin constraints, however, lead to dissociated oxygen atoms

with Ŝ2 expectation values around 2.05. Moreover, the effect of imposing spin

constraints on the dissociated molecule should be equivalent to imposing them on

the dissociation products separately in order to produce size-consistent energies,

but this is not true for the applied spin constraints (table 2.2). In fact, the

dissociated oxygen atoms have similar energy and Ŝ2 expectation value under

the pure spin state conditions to a calculation constrained only to have the same

Ŝz expectation value (figures 2.4, 2.5 and table 2.1). However, when the pure

spin state constraints are imposed in separate calculations on the isolated oxygen

atoms, they increase the energy significantly compared to a calculation that only

imposes Ŝz expectation value (table 2.2).

The absence of degeneracy between different spin projections of the same

spin state may have far reaching implications on chemical calculations. Non-

interacting states that can couple to different degenerate spin states, such as

dissociated molecules, may not be treated on equal footing. Consider for example

two triplet oxygen atoms, infinitely far apart. The two states can couple to either

a singlet, triplet or quintuplet state. Theoretically, all three spin states, and

all of their spin projections, are energetically equivalent. So the singlet, triplet,

and quintuplet oxygen dimer should yield the same energy in the dissociation

limit. Unfortunately, under the pure state spin constraints only the zero spin

projection gives the same dissociation limit for all spin states (figures 2.2 and 2.3)

because, for each of the spin states, the zero spin projection leads to dissociated

atoms with zero spin projections in a homonuclear molecule. When considering
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Figure 2.4: Although all of the v2DM(PQG) singlet, triplet and quintuplet PES

for the oxygen dimer (black, blue, red) should converge to the same

dissociation limit, only the same spin projections converge to a very

similar dissociation limit, which practically coincides with the dissociation

limit under a constraint on Ŝz expectation value only, 〈Ŝz〉 = M (gray

lines).
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Figure 2.5: Although all of the v2DM(PQG) singlet, triplet and quintuplet PES

for the carbon dimer (black, blue, red) should converge to the same

dissociation limit, only the same spin projections converge to a very

similar dissociation limit, which practically coincides with the dissociation

limit under a constraint on Ŝz expectation value only, 〈Ŝz〉 = M (gray

lines).
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molecular state |S0〉:

S 0 1 2 not fixed

Eatom -74.8809 -74.8809 -74.8808 -74.8809

〈Ŝz〉atom 0.00 0.00 0.00 0.00

〈Ŝ2
z 〉atom 0.68 0.45 0.28 0.68

〈Ŝ−Ŝ+〉atom 1.36 1.59 1.76 1.36

〈Ŝ2〉atom 2.04 2.04 2.04 2.04

molecular state |S1〉:

S 1 2 not fixed

Eatom -74.8794 -74.8793 -74.8795

〈Ŝz〉atom 0.50 0.50 0.50

〈Ŝ2
z 〉atom 0.51 0.48 0.69

〈Ŝ−Ŝ+〉atom 1.03 1.07 0.85

〈Ŝ2〉atom 2.04 2.05 2.04

molecular state |S2〉:

S 2 not fixed

Eatom -74.8718 -74.8725

〈Ŝz〉atom 1.00 1.00

〈Ŝ2
z 〉atom 1.01 1.01

〈Ŝ−Ŝ+〉atom 0.05 0.05

〈Ŝ2〉atom 2.06 2.06

Table 2.1: The properties of the dissociated atoms in the oxygen dimer in the disso-

ciation limit, denoted by the superscript ’atom’, are remarkably similar

for molecular states that lead to dissociated atoms with the same spin

projection, both when pure spin state conditions are imposed and when

only spin projection is specified (column ’not fixed’).
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atomic state |S0〉 :

S 2 not fixed

Eatom -74.8772 -74.8794

〈Ŝz〉atom 0.00 0.00

〈Ŝ2
z 〉atom 0.00 0.69

〈Ŝ−Ŝ+〉atom 2.00 1.37

〈Ŝ2〉atom 2.00 2.06

atomic state |S1〉 :

S 2 not fixed

Eatom -74.8662 -74.8706

〈Ŝz〉atom 1.00 1.00

〈Ŝ2
z 〉atom 1.00 1.01

〈Ŝ−Ŝ+〉atom 0.00 1.05

〈Ŝ2〉atom 2.00 2.06

Table 2.2: The pure state spin constraints are much stronger when imposed on the

triplet atoms separately than when they are imposed on the dissociated

singlet, triplet or quintuplet oxygen dimer, even though they should be

equivalent (compare with table 2.1).

the maximal spin projections for the singlet, triplet and quintuplet, the different

spin projections of the dissociated atoms seem to be the main cause of energy

differences in the dissociation limit: the energies of the dissociated molecules

under maximal spin projection conditions are very similar to those constrained

to the same Ŝz expectation value only (figures 2.4 and 2.5).

None of the spin constraints applied to different spin projections of the

lowest-lying spin states of the oxygen and carbon dimer gives a truly satisfying

picture of the molecule’s properties. The zero spin projection constraints treat

all spin states equivalently in the dissociation limit, but fail to reproduce the

correct features of the PES for the different spin states. Most remarkably, they

produce a triplet PES that is lower than the singlet PES for the carbon dimer,

in contradiction with FCI(FC) results (figure 2.7). In case of the oxygen dimer,

they make the quintuplet state much too strongly binding (figure 2.6).

The maximal spin projection constraints give the most strongly constrained

results, but do not reproduce degeneracy of the different spin states upon

dissociation. They do give the lowest equilibrium energy for the singlet state

of the carbon dimer (figure 2.9), in agreement with FCI(FC) data, but they

severely underestimate the singlet-triplet energy gap, in both the carbon and
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Figure 2.6: The pure spin state conditions for the zero spin projection v2DM(PQG)

PES (solid lines) treat all different spin states of the oxygen dimer

equivalently in the dissociation limit. Yet they do not give a fully

satisfying picture of its properties; the quintuplet state becomes much

too strongly binding compared to FCI(FC) calculations (dotted lines).

oxygen dimer (figure 2.8).

The PES of the carbon dimer has also been computed in a 6-31G* basis

set under singlet conditions by Gidofalvi and Mazziotti. The conditions they

imposed on the singlet 2DM are equivalent to the conditions we use here, except

that they did not explicitly impose the equivalence of the three triplet blocks

of the 2DM in their early work.52 The current comparison of the singlet PES

with other spin states shows the subtle, but crucial, effect that spin constraints

may have. Depending on the spin projection under consideration, the wrong

spin state may be obtained as the lowest energy state under approximate spin

constraints.

Imposing the conditions that describe a pure state maximal spin projection

is theoretically the preferred method for describing spin because these conditions

are the most stringent. Computationally, however, these constraints are also

the most expensive. The pure state maximal spin projection constraints provide
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Figure 2.7: The pure spin state conditions for the zero spin projection v2DM(PQG)

PES (solid lines) of the carbon dimer singlet yield energies lower than those

for the triplet around equilibrium bond length. Yet FCI(FC) calculations

(dotted lines) prove that their relative order should be exactly opposite.
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-149.90

-149.60

1.0 10.0

energy (A.U.)

bond length (Å)

v2DM(PQG) max spin projection versus FCI

singlet
triplet
quintuplet

Figure 2.8: The v2DM(PQG) PES (solid lines) for the maximal spin projections

of the singlet, triplet and quintuplet of the oxygen dimer under pure

spin state constraints (2.5.1) are not consistent: they do not converge to

equivalent dissociated states. Moreover, they give a singlet-triplet gap

that is much too small compared to FCI(FC) data (dotted lines).



Applications 119

-75.80

-75.40

1.0 10.0

energy (A.U.)

bond length(Å)

v2DM(PQG) max spin versus FCI

singlet
triplet
quintuplet

Figure 2.9: The v2DM(PQG) PES (solid lines) for the maximal spin projections of the

singlet, triplet and quintuplet of the carbon dimer under pure spin state

conditions (2.5.1) are not equivalent in the dissociation limit. Nonetheless,

they do give the correct order of singlet and triplet PES, similar to that

in FCI(FC) calculations (dotted lines). The zero spin projection PES of

the singlet and triplet have exactly the opposite ordering.
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the most stringent lower bound on the energy and, moreover, give the correct

relative order of the different spin projections for the carbon dimer. Although

it does not seem straightforward to derive conditions that directly constrain

non-maximal spin projections to the same extent, it is possible to derive a 2DM

for a lower spin projection M < S from the maximal spin projection M = S

by means of the Wigner-Eckart theorem.80 By construction, the resulting 2DM

for the M < S spin projection will have the exact same energy as the maximal

spin projection. This justifies the use of maximal spin projection conditions to

get the strictest lower bound on the energy. Additionally, the inconsistencies

that arise in the dissociation limit of the maximal spin projections of degenerate

spin states, such as those occurring in the dissociation limit of the oxygen and

carbon dimer, can be corrected by imposing subspace energy conditions.50,53,69

At the same time, these constraints will correct size-consistency defects and

incorrect dissociation – in contrast to the molecules under consideration here, non-

homonuclear molecules generally dissociate into fractionally charged products in

practical v2DM methods.49

A spin condition can be incorporated indirectly into the subspace constraints

by requiring that the energy of the subspace in the molecule must be at least

equal to the energy of the lowest-energy spin state of the subspace treated as

a separate system. Moreover, because of the lack of degeneracy in multiplets

calculated with the v2DM method, the tightest constraint is obtained if the

maximal spin projection is considered for the subspace system:

tr[HAΓ] ≥ E0(HA)|S=S0,M=S

with HA a Hamiltonian matrix for the atomic or molecular subspace A expressed

in the molecular basis space, tr [HAΓ] the energy of the subspace A in the

molecule and E0(HA)|S=S0,M=S the ground state v2DM energy for this atomic

or molecular subspace calculated separately in the maximal spin projection of

the lowest energy spin state S0. Because the energy of the reference system A

should be degenerate for different spin projections, considering the highest spin
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Figure 2.10: When subspace constraints are imposed on the singlet, triplet and quin-

tuplet v2DM(PQG) PES under pure spin state maximal spin projection

conditions (2.5.1), both the violation of size-consistency and the absence

of degeneracy among dissociated states with different spin projection

(solid lines) are corrected in the resulting PES (dotted lines). The shapes

of the different spin surfaces remain poor, however.

projection is fully justified. This constraint can be considered an extension of

the ’flat plane condition’ developed by Yang et al. in DFA74,75 to v2DM theory.

Although this constraint ensures that the energy of maximal spin projections of

degenerate spin states effectively becomes degenerate in the dissociation limit, it

does not improve the poor relative position of the different spin states around

equilibrium bond length, because the subspace constraints only become active

upon dissociation (figure 2.10).53,69
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2.6 Conclusions on describing spin

in v2DM theory

Two main shortcomings concerning spin constraints in v2DM theory explain the

incorrect features of the PES of the carbon and oxygen dimer for different spin

states. First of all, spin constraints on a system composed of non-interacting

atoms or molecules do not imply equally strong constraints on the non-interacting

atoms or molecules separately. They are therefore a source of size-inconsistency.

This shortcoming is inherent to the method, and will be difficult to correct except

through a ‘quick fix’, like the subspace energy constraints introduced in previous

work and applied to the PES of the oxygen dimer in figure 2.10.

Secondly, the v2DM energy is a convex function of the Ŝz expectation value,

with the highest energy for the maximal spin projection. The pure spin state

conditions for the maximal spin projection are therefore the most stringent

conditions on the 2DM that one can formulate directly in terms of the spin

operators. An equivalent 2DM for a lower spin projection is derivable from

the maximal spin projection by application of the Wigner-Eckart theorem. As

a consequence of the lack of degeneracy between different spin projections of

a multiplet, maximal spin projections of higher spin states are more severely

constrained than those of lower spin states, which becomes especially apparent in

the dissociation limit, where theoretically degenerate spin states fail to become

degenerate in the v2DM method. These differences, together with size-consistency

defects and incorrect dissociation, can also be fixed by means of subspace

constraints.

Even though the pure spin state maximal spin projection conditions are the

strongest, they are also significantly more expensive than the ensemble spin state

conditions, because describing them requires about twice as much variables. The

ensemble approach allows to consider a spin-averaged ensemble with resulting

〈Ŝz〉 = 0, which has similar spin symmetry to the pure state singlet (2.6). This
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reduces the number of variables by about a factor 2. Given the typical scaling

of O(K6) of semidefinite programs with basis set dimension K, this makes the

ensemble approach considerably cheaper. Future work may therefore focus on

ways of improving on an ensemble approach. However, the inherent lack of

information on the composition of such an ensemble makes it much more difficult

to find stringent constraints that apply to it.





For a given maximum problem with maximum M, we shall often be able to find

an equivalent minimum problem with the same value M as minimum; this is a

useful tool for bounding M from above and below.

Courant and Hilbert in Methods of Mathematical Physics I (1953)

3
Semidefinite optimization of the 2DM

3.1 Introduction

As well as the theoretical challenges that come with the N-representability prob-

lem in practical applications, variational second order density matrix methods

also pose a major computational challenge. Since the key N-representability

conditions impose positive semidefinite constraints on the 2DM, v2DM methods

are semidefinite optimization problems. Originating as an extension of interior

point methods for linear programming,12,13 semidefinite optimization methods

have thrived from the 90’s on, stimulating applications in engineering, economics,

. . . , and chemistry. The surge of powerful semidefinite programming algorithms

renewed interest in v2DM theory.29,34

Typical applications for v2DM methods, however, involve many more vari-

ables than standard problems in mathematics. Because the dimension of the 2DM

scales as O(K2), with K the dimension of the sp spin basis, the number of vari-

ables involved for typical basis set dimensions (K =100-300) is huge. Although

the performance of current semidefinite programs has much improved compared

125
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to early applications from the 70’s using cutting plane based methods7,9 similar

to the simplex method for linear programming, applications of the v2DM method

are still limited to few-atom systems in modest basis sets.14,15,83 Therefore,

the challenge is to find the semidefinite optimization method that works best

for the particular problem of variational optimization of second order density

matrices, balancing speed with accuracy. For this reason, we have implemented

several optimization algorithms, adjusted to suit atomic and molecular structure

calculations, and have made a comparative assessment of these methods.

Section 3.2 gives a concise background to semidefinite optimization. Sections

3.4 to 3.7 introduce some semidefinite programming techniques: the classical

barrier method and a modified barrier method, a primal-dual framework and

a boundary point method. They give a brief explanation of the working of the

method, followed by a report on their application to molecular calculations. Of

course, this is by no means an exhaustive coverage of semidefinite programming

techniques. Other approaches include the first-order non-linear approach84 taken

by Mazziotti,15 which replaces the semidefinite constraint matrices by their

square root or Cholesky factorization, such that they are positive-semidefinite by

construction, but sacrifices linearity; the primal barrier approach taken by Cances

et al.;85 bundle methods,86,87 and other variants of augmented Lagrangian based

algorithms.88

3.2 Basics

The dual formulation of the v2DM optimization problem, where the dual variable

is the 2DM Γ, is

min︸︷︷︸
Γ

tr HΓ

subject to L(Γ) � 0 (3.1)
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The 2DM can be expressed in an n-dimensional basis of traceless matrices
{
F i
}

to incorporate the correct normalization by construction

Γ = F 0 +

n∑
i=1

ΓiF
i (3.2)

Its dependence on the antisymmetrical identity matrix I is then fixed in the

basis matrix F 0

F 0 =
N(N − 1)

K(K − 1)
I

Iabcd = δacδbd − δadδbc

because tr F i = 0 for i = 1, . . . , n. N is the number of electrons and K the

dimension of the one particle spin basis set. We will assume the basis matrices

F i form an orthonormal set, orthogonal to F 0, and use a projector P⊥F 0() to

denote the part of the matrix in the traceless space spanned by the basis
{
F i
}

P⊥F 0(Γ) =
∑
i

ΓiF
i

The positive semidefinite constraints on Γ (chapter 1, section 1.3.3) are generically

denoted L(Γ) = L(F 0) +
∑
i ΓiL(F i) � 0. L is a homogeneous linear matrix

map, which may map the 2DM onto a matrix with a different symmetry or even

different dimension. Its adjoint under the trace operation, L†, is defined through

tr L(X)Y ≡ tr XL†(Y ) (3.3)

Hence the adjoint of the Q-map is the Q-map itself, Q†() = Q() and the G-

map’s adjoint requires an additional antisymmetrizer, G†() = A{G()}. The

antisymmetrizer A is a projector onto the space of antisymmetrical matrices.

In case of the v2DM(PQG) method, the semidefinite constraint matrix L(Γ) is

the direct sum of the P-, Q- and G-matrix

L(Γ) = Γ⊕Q(Γ)⊕G(Γ) = F 0⊕Q(F 0)⊕G(F 0)+
∑
i

Γi
(
F i ⊕Q(F i)⊕G(F i)

)
The Hermitian adjoint map L† that maps a block diagonal matrix X ≡ XP ⊕

XQ ⊕ XG, where the blocks XP , XQ, XG have the same dimension and
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symmetry as the P-, Q- and G-matrix, onto an antisymmetrical matrix of the

same dimension as the 2DM and satisfies tr L(Γ)X = tr L†(X)Γ, is

L†(X) = XP +Q(XQ) +G†(XG)

Every dual optimization problem has an associated primal problem, which

follows from considering the Lagrangian of the problem. The Lagrangian for the

dual problem (3.1) is

L(Γ, X) = tr HΓ− tr XL(Γ) (3.4)

where the positive semidefinite Lagrange multiplier X enforces positive semidefi-

niteness of L(Γ), since XL(Γ) ≥ 0 if L(Γ) � 0. Minimizing the Lagrangian over

Γ will provide a lower bound on the optimal value, tr HΓ∗, of the objective

function.

∇ΓL(Γ, X∗)i = tr HF i − tr X∗L(F i) = 0

P⊥F 0(H) = P⊥F 0(L†(X))

min︸︷︷︸
Γ

L(Γ, X) = trHF 0 − tr X∗L(F 0) ≤ tr HΓ∗

Since this gives a lower bound on the optimal value of the objective function,

maximizing this expression over the primal variable X will give the tightest

lower bound on the optimal value of the objective function. The resulting

primal optimization problem is a different way of approaching the original, dual,

optimization problem.

max︸︷︷︸
X

min︸︷︷︸
Γ

L(Γ, X)

= max︸︷︷︸
X

tr HF 0 − tr XL(F 0)

subject to X � 0

tr HF i = tr XL(F i) (3.5)

The problem of minimizing the trace of L(X) under positive semidefiniteness of

X and the equality constraint tr XL(F i) = tr HF i i = 1, . . . n is the primal



Basics 129

to the dual problem statement (3.1) that follows directly from the physical

formulation of the v2DM problem. It is simply a different perspective on the

same problem. Intuitively, both perspectives should be equivalent. This is true

for the v2DM problem, but it is not always true in general, since one or both

formulations may not have a bounded solution.

As can be expected, the primal problem will give an optimal value which is

less than or equal to that of the dual problem, since for any subset S, S′ ∈ Rn

sup︸︷︷︸
X∈S′

inf︸︷︷︸
Γ∈S

L(Γ, X) ≤ inf︸︷︷︸
Γ∈S

sup︸︷︷︸
X∈S′

L(Γ, X) (3.6)

This is the weak duality property, which can also be verified by noting that the

difference between the dual and the primal objective function is

tr HΓ− tr HF 0 + tr XL(F 0) =
∑
i

tr [XL(F i)]Γi + tr [XL(F 0)] (3.7)

= tr XL(Γ) ≥ 0 (3.8)

The inequality in the last line follows from positive semidefiniteness of both L(Γ)

and X. Weak duality thus states that the duality gap tr XL(Γ) between the

primal and the dual problem formulation must be positive. Hence, optimality is

obtained when the primal and dual problem give the same optimal value and

the duality gap vanishes

tr X∗L(Γ∗) = 0 X∗, Γ∗ optimal

In contrast to linear programming, the existence of feasible dual and primal

points does not guarantee a zero duality gap at the optimum. Some problems

may have a solvable dual formulation, but an infeasible primal formulation, or

the other way around. Strict feasibility of either the dual or the primal problem,

however, guarantees the existence of an optimal solution for both and a zero

duality gap at the optimum.86,89 In practical applications, the duality gap plays

an important role, as it gives an upper bound on the deviation from optimality

of the current primal and dual variable.
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Under the assumption of strict feasibility of either the dual or the primal

problem, which holds for the v2DM minimization problem, the necessary and

sufficient conditions for the linear semidefinite programming problem (3.1) are

thus

tr XL(F i) = tr HF i i = 1, . . . , n (3.9)

L(Γ) � 0 (3.10)

X � 0 (3.11)

XL(Γ) = 0 (3.12)

which are equivalent to the Karush-Kuhn-Tucker (KKT)-conditions in linear

programming.26 The condition of zero duality gap, tr XL(Γ) = 0, implies

that XL(Γ) = 0 since both matrices are constrained to be positive semidefinite.

Alternatively, this implies that X and L(Γ) can be diagonalized simultaneously

such that their corresponding eigenvalues satisfy the complementary slackness

condition

λi(L(Γ))λi(X) = 0 ∀i = 1, . . . dim(X)

The complementary slackness condition implies that a non-zero eigenvalue in the

primal variable X must correspond to a zero eigenvalue in the dual constraint

matrix L(Γ) and, conversely, that a nonzero eigenvalue of L(Γ) must correspond

to a zero eigenvalue of X.

The primal formulation thus gives a different, but equivalent, perspective

on the v2DM problem. It attempts to find the positive semidefinite X that

describes the traceless Hamiltonian by L†(X), P⊥F 0(H) = P⊥F 0(L†(X)), and

that minimizes the trace of L†(X) while remaining positive semidefinite. Because

X is block diagonal, with each block corresponding to a block in the constraint

matrix L(Γ), the primal problem to the dual formulation of the v2DM(PQG)



Basics 131

problem with L(Γ) = Γ⊕Q(Γ)⊕G(Γ) and X = XP ⊕XQ ⊕XG is

max︸︷︷︸
XP ,XQ,XG

(tr H − tr XP − tr Q(X)Q − tr G†(XG))
N(N − 1)

K(K − 1)

subject to XP , XQ, XG � 0

P⊥F 0(XP +Q(XQ) +G†(XG)) = P⊥F 0(H)

To understand the relation between the primal and dual formulations of the

v2DM problem better, it is instructive to consider the P-condition only. The

primal formulation to the v2DM(P) problem has a simple interpretation.

max︸︷︷︸
X

(tr H − tr X)
N(N − 1)

K(K − 1)

subject to X � 0

P⊥F 0(X) = P⊥F 0(H) (3.13)

Only the trace of X is not fixed by (3.13), but since it must be minimal without

violating its positive-semidefiniteness, X must be

X = H − λmin(H)I

which gives a primal optimal value of −λmin(H)N(N − 1), equal to the dual

optimal function value. Therefore, under the P-condition only, the energy

simply equals the energy of an N(N − 1)/2-fold electron pair occupation of the

lowest eigenstate of the second-order reduced Hamiltonian. The 2DM follows

from the complementary slackness condition ΓX = 0 and corresponds to this

interpretation:

Γ = N(N − 1) v1v
T
1

where v1 is the eigenvector of the Hamiltonian corresponding to its lowest

eigenvalue. The optimal 2DM is thus a rank-1 matrix for an N(N − 1)/2-fold

electron pair occupation of the lowest-energy eigenvector of H. Clearly, this is a

very poor approximation to most chemical systems and explains why additional

N-representability constraints are needed to obtain sensible results (see chapter

1).
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Most interior point methods are based on the centrality conditions, which

consider a perturbation of the complementary slackness condition, XL(Γ) = tI,

with t ≥ 0:

tr XL(F i) = tr HF i i = 1, . . . , n

L(Γ) � 0

X � 0

XL(Γ) = tI (3.14)

The optimum of the perturbed optimality conditions defines a central path,

parametrized by t. The central path converges to the optimum of the original

problem as t → 0, since these equations approach the KKT-conditions when

t → 0. This path forms a guideline to the optimum for most interior point

methods, which converge to the optimum from within the feasible set.

To summarize, dual methods attempt to solve the dual problem

min︸︷︷︸
Γ

tr HΓ

subject to L(Γ) � 0. (3.15)

Primal methods attempt to solve the primal problem

max︸︷︷︸
X

tr HF 0 − tr XL(F 0)

subject to X � 0

tr HF i = tr XL(F i) i = 1, . . . , n (3.16)

Primal-dual methods attempt to solve the primal and the dual problem simulta-
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neously, while minimizing the primal-dual duality gap.

min︸︷︷︸
Γ,X

∑
i

HiΓi + trL(X)F 0 = tr [XL(Γ)]

subject to L(Γ) � 0

X � 0

tr HF i = tr XL(F i) i = 1, . . . n (3.17)

The primal and dual problem can be cast in an equivalent formulation by

introducing an additional variable Z in the dual problem statement which has

the same dimension as the primal variable X and must satisfy Z = L(Γ). The

duality gap then takes the form tr XZ = tr XL(Γ).

Sections 3.4 to 3.7 discuss several semidefinite optimization algorithms and

their application to the v2DM method. Some aspects common to all implemen-

tations of the v2DM method are discussed in the next section.

3.3 Computational aspects

The beauty of the v2DM method lies in its complete independence of any other

method. The only information it requires is the specification of the system, given

by the Hamiltonian matrix projected onto a finite-dimensional basis. The choice

of basis and the expression of the Hamiltonian in this basis are discussed in the

next paragraph.

Interior-point algorithms also require a feasible ‘interior’ starting point, a

problem which is briefly addressed in the subsequent paragraph.

3.3.1 Input and data storage

Storing and handling symmetry in the 2DM

In order to reduce computation and memory requirements, only unique elements

of the 2DM are stored and manipulated. The 2DM must obey several different

symmetries:
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antisymmetry of electrons: only unique antisymmetrical tp-states |ij〉 =

1√
2

(|ij)− |ji)) with i < j need be taken into account, such that the

dimension of the 2-dimensional 2DM is K
2 (K − 1) with K the dimension

of the (spin) sp-basis

Hermiticity of the 2DM: only the upper diagonal part of the 2DM needs to be

referenced, which amounts to 1
8K(K − 1)(K(K − 1) + 2) antisymmetrical

2DM elements

spin symmetry: spin considerations impose a further block diagonalization of

the 2DM, depending on the spin state under consideration (see chapter 2,

sections 2.3 and 2.4)

spatial symmetry: spatial symmetry imposes yet another block diagonalization

of the 2DM, because the MO’s ψi in which the 2DM is expressed belong to

an irreducible representation χi of the point group to which the molecule be-

longs. The symmetry of the tp creation/annihilation operators corresponds

to the direct product of the irreducible representations of the sp states

ψi, ψj involved, χi ⊗ χj . Hence, they can only give a nonzero result acting

on the wavefunction when coupled with another particle/hole operator

with symmetry χk⊗χl such that their direct product (χk⊗χl)⊗ (χj ⊗χi)

contains the fully symmetrical representation.

angular momentum symmetry: in the same way that spin adaptation leads to

additional block diagonalization of the 2DM, angular momentum adap-

tation will impose an additional block structure. However, we have not

implemented this symmetry for molecular systems.

Exploiting these symmetries, the dimension of the 2DM is at most K
2 (K−1) and

the total number of elements is at most 1
8K(K−1)(K(K−1)+2). Depending on

spin and spatial symmetries, the dimension may be further reduced. Nonetheless,

the formally quadratic scaling of its dimension with the basis set size makes the

cost of semidefinite programming algorithms grow very quickly with the basis set
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dimension and emphasizes the need for fast semidefinite optimization algorithms

with a favorable scaling.

Composing the Hamiltonian

In all applications, the electronic Hamiltonian, within the Born-Oppenheimer

approximation, is considered in its second-order reduced form (see section 1.2 of

chapter 1) form

Ĥ =
1

N − 1

(
−1

2
(∇2

i +∇2
2)−

∑
n

(
Zn

|r1 −Rn|
+

Zn
|r2 −Rn|

))
+

1

|r1 − r2|

(3.18)

=
1

N − 1

(
ĥ1 + ĥ2

)
+ V̂

and then is projected onto an antisymmetrical two-particle basis

Hijkl = 〈kl|Ĥ|ij〉

=
1

N − 1
(δikhjl + δjlhik − δilhjk − δjkhil) + Vijkl

with hik = 〈k|ĥ|i〉 and Vijkl = 〈kl|V̂ |ij〉, such that the dimension of the Hamilto-

nian matches that of the 2DM. The elements of the electron-electron repulsion ma-

trix V and the one-electron Hamiltonian h expressed in a basis of atom-centered

functions are obtained from Gaussian0370 and transformed to an orthonormal

basis of (Hartree-Fock type) molecular orbitals.

Because most of chemistry is determined by the valence electrons, the fully

occupied core shells can be treated as ‘uncorrelated’ to a good approximation.

The electrons of the fully occupied inner shells are considered ‘frozen’ by only

considering their mean-field effect. Especially for small molecules with light

nuclei, freezing the core electrons has a minor effect on the energy, but it may

considerably reduce the dimension of the ‘active’ part of the sp-basis.

The mean field effect of the inner shells can be incorporated into the Hamilto-

nian elements for the valence electrons, such that the dimension of the Hamilto-

nian and the resulting 2DM may be reduced. In fact, due to the structure of the
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wavefunction under the frozen core approximation, the expectation value of any

operator can be expressed as a sum of a contribution from the valence electrons

and a constant term for the core electrons. This is because the wavefunction for

a system with N core of its N electrons frozen can be written as an antisymmetric

product of a single-determinant wavefunction for the core electrons |Ψcore〉 and

a correlated wavefunction |Ψvalence〉 for the valence electrons.

|Ψ〉 = |Ψcore(1, . . . , N core) 〉 ∧ |Ψvalence(N core + 1, . . . , N) 〉

such that there is no explicit correlation between the core and valence electrons.

The 2DM for such a system then has the following blocks of non-zero elements,

Γccccijkl = 〈Ψcore|a+
k a

+
l ajai|Ψ

core〉 = δikδjl − δilδjk

Γvvvvijkl = 〈Ψvalence|a+
k a

+
l ajai|Ψ

valence〉

Γcvcvijkl = 〈Ψcore|a+
k ai|Ψ

core〉〈Ψvalence|a+
l aj |Ψ

valence〉 = δik〈Ψvalence|a+
l aj |Ψ

valence〉

where the superscripts indicate whether the sp orbitals are frozen core (c) orbitals

or valence (v) orbitals. As a consequence, the expectation value for a 2-electron

operator Ĥ can be separated into a valence-electron dependent term and a

constant contribution depending only on core electrons.

tr HΓ =
∑

i<j,k<l

Hcccc
ijkl Γ

cccc
ijkl +

∑
ijkl

Hcvcv
ijkl Γcvcvijkl +

∑
i<j,k<l

Hvvvv
ijkl Γijkl

=
∑
ij

Hcccc
ijij +

∑
jl

∑
i

Hcvcv
ijil γ

vv
jl +

∑
i<j,k<l

Hvvvv
ijkl Γi<j,k<l

=
∑
ij

Hcccc
ijij +

∑
jkl

(
1

N − 1

∑
i

Hcvcv
ijil

)
Γvvvvjklk +

∑
i<j,k<l

Hvvvv
ijkl Γijkl

=
∑
ij

Hcccc
ijij +

∑
i<j,k<l

H̃vvvv
ijkl Γijkl

The core electron contribution is thus incorporated into a Hamiltonian H̃ that

is reduced to the active orbitals

H̃vvvv
ijkl = Hvvvv

ijkl +
δik

N − 1

∑
n

Hcvcv
njnl +

δikδjl
N(N − 1)

∑
mn

Hcccc
mnmn

It has dimension 1
2K̃(K̃ − 1), where K̃ = K − N core is the number of spin

orbitals that are not frozen.
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3.3.2 Feasible starting points for interior-point algorithms

Interior point algorithms require initial starting points that are strictly feasible.

In general, the primal matrix Γ needs to satisfy

L(Γ) � 0 (3.19)

tr AiΓ = ai i = 1, . . . , p

in order to be feasible. The constraints tr AiΓ = ai can be, for instance, spin

constraints like those applied in chapter 2. To find a matrix that satisfies these

constraints, an initial optimization algorithm may be used that starts from a

starting point which does not satisfy (3.19). The equality constraints can be

imposed simply by projection.

max︸︷︷︸
Γ,s

det (L(Γ) + sI)

subject to tr AiΓ = ai

The initial value s > 0 is chosen to make the initial matrix L(Γ) + sI � 0

positive-definite. As soon as the algorithm produces a matrix L(Γ) � 0, which

is a feasible starting point, it can be stopped.

3.4 Barrier method

The barrier method is the first semidefinite optimization method to be discussed

here, because of both its fundamental role in the development of interior points

methods and its conceptual simplicity.

3.4.1 Theoretical background

The barrier method is a straightforward extension of the barrier method for

linear programming, developed by Fiacco and McCormick in the 1960’s,90 to

semidefinite programming. The extension of interior point methods for linear

programming to more general convex programming problems was independently
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done by Alizadeh13 and by Nesterov and Nemirovski.12 They showed that for

any conic set that has a self-concordant barrier function, there is an interior

point algorithm that optimizes a linear function over this set. Such problems

can be solved through a sequence of minimizations in which the conic constraint

is incorporated by adding a barrier term to the original objective function. The

sequence is parametrized in such a way that the subsequent minima generated in

this manner converge to the minimum of the original optimization problem. The

Φ = log det() function is a self-concordant barrier for the positive semidefinite

cone. Its self-concordance, i.e. Φ′′′ ≤ 2Φ′′3/2, is of theoretical importance because

it makes it possible to derive an upper bound to the number of Newton iterations

required for convergence, such that the algorithm can be proven to converge in

polynomial time, but it does not necessarily imply that the logarithmic barrier

is superior to other barrier functions in practice.26 The barrier function enforces

the semidefinite constraints by preventing its arguments from becoming singular

because it grows infinitely large upon singularity. The strength of the barrier,

mediated by a penalty parameter t, is decreased in subsequent minimization

problems of the form (3.20).

Algorithm

initial Γ : L(Γ) � 0

do while t ≥ ε

minimize over Γ : f(Γ, t) = tr[HΓ]− t ln det L(Γ)

update t : t = µt with µ < 1

end do (3.20)

Intuitively, the barrier function approaches a step-function as t → 0. As

t→ 0, it switches on an infinitely high penalty on negative eigenvalues, acting

much like an infinitely high step function for which the problem reduces to the

original constrained optimization problem (figure 3.1). It can thus be expected

to converge to the solution of the original problem in the limit t→ 0.
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Figure 3.1: As the value of the barrier parameter t, specified in the legend, decreases

to zero, the logarithmic barrier approaches an infinitely high step function.

The sequence of optimal points Γ∗(t) as a function of t is called the central

path, because each of these optimal dual feasible points yields a primal feasible

point X∗(t) such that the pair (Γ∗(t), X∗(t)) satisfies the centrality equations

(3.14). The matrix X∗(t) ≡ tL(Γ)−1 is primal feasible, because its positive

semidefinitess follows from X∗ � 0 and because the optimality condition on

the inner iteration in (3.20) implies that it satisfies tr X∗L(F i) = tr HF i for

i = 1, . . . n

∇f(Γ, t)i = tr[HF i]− t tr[L(Γ)−1L(F i)] = 0

= tr[HF i]− tr[X∗(t)L(F i)] = 0

Therefore, the matrices Γ∗(t) and X∗(t) defined in this way satisfy the centrality

conditions (3.14). The duality gap for the pair Γ∗(t), X∗(t) is

tr[L(Γ∗(t))X∗(t)] = t dim(X∗)

which gives an upper bound on the deviation of the energy, tr[HΓ∗(t)], from

the optimal energy. This confirms the intuitive idea that solving the barrier

equations for t→ 0 will lead to the optimal energy.

Referring back to the geometrical picture of the v2DM optimization under
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semidefinite constraints sketched in section 1.4 of chapter 1, the central path

parameterized by the sequence Γ∗(t) approaches the boundary of the feasible

set as the barrier parameter t is decreased to zero. As the barrier parameter

decreases, the 2DM is allowed to become increasingly close to singular; therefore

active constraints can set in as the feasible path approaches the boundary of the

feasible set. These singularities mean that the equations become increasingly

ill-conditioned as Γ∗(t) approaches the boundary.

Even though the method performs relatively well given the severity of its ill-

conditioning, concerns about its ill-conditioning have encouraged mathematicians

to develop methods which treat the problem in a more stable manner. The

most sophisticated way of handling the problem is by simultaneously optimizing

the primal and the dual variable, leading to primal-dual methods, discussed in

section 3.6. A modified barrier method, which is based on the classical barrier

method discussed here but adds an approximate treatment of the primal problem

to the purely dual optimization problem, is discussed in section 3.5.

3.4.2 Implementation of a barrier method

The barrier method is a very straightforward and robust way to carry out the

constrained semidefinite optimization and has therefore served as a basis for

our other implementations. The following paragraphs motivate the choice of

inner optimization method and outer iteration updates used in our Fortran

implementation of the logarithmic barrier method and discusses its overall

performance on molecular systems. Our comparative assessment of the different

algorithms focuses on one test system in particular, the LiH molecule with bond

length R = 1.5417Å in a STO-6G basis set, because this system’s dimensions

are small enough to study it in detail. In order to compare the performance of

the classical barrier method with the other semidefinite optimization algorithms

presented in the next sections, the different algorithms have been compiled and

run on the same computer and linked to the same Lapack and BLAS libraries.
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Inner iterations

The inner iterations of the barrier method aim to solve Newton’s equations for

the Newton direction ∆

∇2
Γf(Γ, t) ∆ = −∇Γf(Γ, t) (3.21)

where f(Γ, t) is the log-barrier objective function

f(Γ, t) = tr HΓ− t ln det(L(Γ)) (3.22)

Solving Newton’s equations is the rate-determining step of second-order semidef-

inite programming methods. Because the dimension of the Hessian depends

quadratically on the dimension of the 2DM, its dependence on the basis set

dimension is quartic. Storing the Hessian thus becomes impossible except for

small basis sets. Instead of factorizing the Hessian to solve the equations exactly,

we are forced to use an iterative solver, such as a Krylov subspace method.

Krylov subspace method

Krylov subspace methods are especially advantageous in solving Newton’s equa-

tions when constructing the full Hessian becomes too expensive, because they

only require the Hessian-vector product. The Hessian-vector product can either

be approximated by a finite-difference scheme or, in this case, can easily be

calculated exactly. The Hessian involved in the dual barrier method allows a

simple analytic expression for the Hessian-vector product that is similar in speed

to its finite-difference approximation.

(∇2f)ij = t tr [L(Γ)−1L(F i)L(Γ)−1L(F j)] (3.23)

For any traceless update vector ∆ =
∑
i ∆iF

i, the Hessian-vector product
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becomes

(∇2f)∆ = t
∑
i

tr [L(Γ)−1L(F i)L(Γ)−1
∑
j

L(F j)∆j ]F
i

= t
∑
i

tr [L†
(
L(Γ)−1L(∆)L(Γ)−1

)
F i]F i

= t P⊥F 0

(
L†
(
L(Γ)−1L(∆)L(Γ)−1

) )
More specifically, for L(Γ) = Γ⊕Q(Γ)⊕G(Γ)

(∇2f)∆ = t P⊥F 0

( (
Γ−1∆Γ−1

)
+Q

(
Q(Γ)−1Q(∆)Q(Γ)−1

)
+G†

(
G(Γ)−1G(∆)G(Γ)−1

) )
Because of the matrix-matrix multiplications, assembling the Hessian-vector

product takes O(K6) flops.

An inherent drawback of Krylov subspace methods is their inefficiency when

dealing with ill-conditioned systems of equations. Because the barrier optimiza-

tion problem (3.22) is convex, the Hessian involved in Newton’s equations is

positive semidefinite. For this reason, the conjugate gradients (CG) method seems

the most suitable approach to solving them in an iterative manner. However, the

speed of convergence of the CG method depends heavily on the condition number

of the Hessian and on the extent to which its eigenvalues are clustered. The

ill-conditioning of the Hessian towards convergence (figure 3.2) severely slows

down convergence on the inner iterations of the final outer loops of the barrier

program (figure 3.3). The Hessian’s spectrum covers a wide range of values,

from near-zero to very large eigenvalues, and becomes less and less clustered

towards the optimum. This makes it an especially difficult optimization problem.

The conjugate gradient method may even need substantially more iterations to

converge than necessary to span the whole n-dimensional Krylov space for small

values of t.

As an alternative to the CG method, we have tried a minimum residual

method adjusted to deal with a positive-semidefinite Hessian to solve the inner

Newton’s equations, because it may deal better with near-singularities. In
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Figure 3.2: The evolution of the spectrum, with its eigenvalues indexed in increasing

order, of the projected Hessian for LiH shows its increasing ill-conditioning

as the barrier parameter t is decreased. The barrier parameter t is a

measure of the duality gap, dim(L(Γ))t = 276 t. The Hessian for the LiH

molecule in the STO-6G basis was projected onto the space of traceless

matrices, P(H) = (I−e0eT0 )H(I−e0eT0 ) with e0 the vector representation

of the identity matrix, and then diagonalized in its reduced-rank form.

general, MINRES needs about half as many iterations as CG to obtain a result

with similar accuracy.

Preconditioners

Since the rate of convergence of typical Krylov subspace methods applied to

Newton’s equations depends so heavily on the spectrum of the Hessian, an

equivalent equation could be solved which has a better structured spectrum,
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Figure 3.3: Due to the increasing ill-conditioning of the Hessian, the CB method

needs an increasing number of inner Krylov subspace iterations to solve

Newton’s equations as the barrier parameter – and the duality gap – are

decreased to zero.

such as

M−1∇2f∆ = −M−1∇f

The matrix M−1 is then called a preconditioner, because it aims to make

the Hessian’s spectrum more tightly clustered or better conditioned in order

to speed up convergence. Indeed, when M−1 is a good approximation to

(∇2)−1f , the equations may be expected easier to solve. The workings of

preconditioners are not always well understood, and their justification may be

based pragmatically on the fact that they speed up convergence. However, it is

not easy to find a good preconditioner for typical Hessians that arise in the v2DM

barrier method. Straightforward preconditioning techniques, such as diagonal

preconditioners, were counterproductive. Block diagonal preconditioners were

only productive when the dimension of the blocks considered was very large.

Incomplete factorization techniques only caused a speed-up at very low drop

tolerances (≤ 10−6), making them ineffective. These techniques, however, require

storage of the Hessian, which is highly undesirable.
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The main difficulty in our setup is to find good preconditioners that only

require the Hessian-vector product and do not need to access the full Hessian.

Most general-purpose preconditioning techniques, such as Jacobi, Gauss-Seidel

and incomplete factorization techniques, require at least several rows or columns

at the same time. Although we have observed that limited-memory quasi-Newton

schemes to approximate the inverse Hessian91 did not give the desired accuracy,

especially in the final outer loops, we might use the concept to construct a

preconditioner, since it builds an approximation to the inverse Hessian-vector

product. This leads to the idea of an ’automatic preconditioner’92 that is

constructed from the Hessian-vector products generated in an iterative Krylov

subspace method.

The quasi-Newton type ’automatic preconditioner’ is constructed by storing

a number of Krylov subspace vectors m generated in subsequent Krylov subspace

iterations, and can then be applied right away to speed up the convergence of the

Krylov subspace method. The notation H̃ is used to denote the quasi-Newton

type approximation to the inverse Hessian, and is constructed according to

H̃(k+1) =

(
I − 1

∆x(k)T ∆r(k)
∆r(k)∆x(k)T

)
H̃(k)

(
I − 1

∆x(k)T ∆r(k)
∆r(k)∆x(k)T

)T
+

1

∆x(k)T ∆r(k)
∆x(k)∆x(k)T

∆x(k) = x(k+1) − x(k)

∆r(k) = r(k+1) − r(k)

where x(k) are the iterates generated in the Krylov subspace method and r(k) the

residuals. This formula guarantees a symmetrical positive definite approximation

to the inverse Hessian, as long as ∆x(k)T∆r(k) > 0, which is by definition

fulfilled if they are taken as the CG iterates and residuals. Since storing the

Hessian requires too much memory, a recursive formula for calculating the

inverse Hessian-vector product H̃v can be used that only requires the set of

stored vectors
{

∆x(k)
}
,
{

∆r(k)
}

.93 Only a small number m of such vectors

can be stored for large optimization problems. These can be chosen from the
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first m Krylov subspace iterations or follow a specific distribution within the

set of generated Krylov subspace vectors. Constructing the quasi-Newton type

preconditioner, however, adds some overhead to each Krylov subspace iteration,

and is therefore only advantageous if the reduction in the number of iterations

needed to converge is large enough. However, applications of a quasi-Newton type

preconditioner constructed from a variable number of stored Krylov subspace

vectors indicates that the reduction in the number of Krylov subspace iterations

for a small number of stored vectors m is only modest and a more substantial

reduction requires storing and manipulating a lot more vectors. Overall this

approach did not lead to a significant reduction in CPU time (table 3.1).

Line search

After the Newton direction ∆ has been calculated, a line search will prevent the

2DM from leaving the feasible set upon updating Γ to Γ + α∆. A line search

procedure based on a generalized eigenvalue decomposition avoids the need to

compute the lowest eigenvalue of L(Γ) in every iteration.

The eigenvalue decomposition of L(Γ)−1/2L(∆)L(Γ)−1/2 is computed

L(Γ)−1/2L(∆)L(Γ)−1/2 = V ΛV T (3.24)

The directional derivative of the objective function can then be expressed in

terms of its eigenvalues, making its dependence on the line search coefficient

explicit.

∂f(Γ + α∆)

∂α

= tr H∆− t tr [L(Γ + α∆)−1L(∆)]

= tr H∆− t tr
[(
L(Γ)1/2(I + αV ΛV T )L(Γ)1/2

)−1

L(Γ)1/2V ΛV TL(Γ)1/2

]
= tr H∆− t tr

[
L(Γ)−1/2V (I + αΛ)−1V TL(Γ)−1/2L(Γ)1/2V ΛV TL(Γ)1/2

]
= tr H∆− t tr

[
(I + αΛ)−1Λ

]
= tr H∆− t

∑
i

λi
1 + αλi
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m # PCG # PCR

0 231 188

3 359 1146

5 317 995

8 262 587

10 220 973

15 149 394

20 129 654

30 117 375

50 150 359

70 203 342

80 96 251

Table 3.1: The number of conjugate gradient (PCG) and conjugate residuals (PCR)

iterations needed to calculate the Newton step for t = 10−6 in the LiH

(STO-6G) test system can be reduced by about a factor 2 by using an

’automatic’ L-BFGS type preconditioner constructed from the first m

vectors generated in the Krylov subspace method, using an initial matrix

H̃(0) = I. Adjusting the weight of the initial matrix H̃(0) = wI may greatly

influence the number of iterations needed, but even the best choices for

w do not reduce the number of iterations by much more than a factor

2− 3. At least for this choice of initial H(0), the automatic preconditioner

was much more effective in the PCG method than in the PCR method

(algorithms A.2 and A.5).
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The minimum ∂f(Γ+α∆)
∂α = 0 can then be found easily by means of a bisection

method in the interval
[
0, −1

λmin

]
, which guarantees positive semidefiniteness of

L(Γ + α∆) after update.

Outer iterations and overall performance

Since the duality gap in the classical barrier method decreases linearly with the

barrier parameter t, it needs to be decreased to a very small value. The duality

gap t dim(L(Γ)) is substantially bigger than t, as typical dimensions of L(Γ) are

of the order 102 or more. Therefore the outer iterations are repeated until t is

decreased to ε ≈ 10−9. We have chosen to use a static update t(k+1) = t(k)µ

with a constant factor µ = 1.075 (figure 3.4).

The overall scaling of the barrier method with the sp basis dimension is at

least O(K6).

The barrier method algorithm is a four-fold loop:

The outermost iterations optimize f(Γ, t) for decreasing values of t. The number

of outermost iterations is fully determined by the update scheme for t, and

can be kept constant with system size.

On a lower level, solving Newton’s equations to minimize f(Γ, t) requires several

Newton’s iterations in which a system ∇2f(Γ, t) ∆ = −∇f(Γ, t) is solved.

Our calculations indicate that the number of Newton iterations does not

change much with system size and is very small (often less than 5).

Calculating each Newton step ∆ is done by a Krylov subspace method. De-

pending on the spectrum of the Hessian, this may take a nearly constant

number of iterations, but in the worst case the number of iterations equals

the dimension and is therefore O(K2). Given the spectrum of the Hessian

(figure 3.2) for typical systems, calculating the Newton direction for the

initial values of t takes a nearly constant number of iterations, whereas for

small values of t the number will grow as O(K2).
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Figure 3.4: The cumulative number of inner Krylov subspace iterations needed by the

classical barrier method to converge for the LiH (STO-6G) test system is

smallest when an update factor for the penalty parameter around 1.075

is used. More aggressive update schemes make Newton’s equations more

difficult to solve, resulting in an overall larger number of inner iterations,

despite a smaller number of outer iterations. For this reason, we have

used an update factor of 1.075 throughout, unless specified otherwise.

The innermost iterations are the Krylov subspace iterations and take O(K6)

flops to assemble the Hessian-vector product.

Therefore, the barrier method’s overall scaling may range from O(K6) to O(K12)

in the worst-case scenario, though practical calculations suggest it is closer to

O(K6) (figure 3.5).

Because of the method’s ill-conditioning and the use of approximate iterative

methods to solve the inner Newton iterations, its accuracy is limited to about

10−4 Hartree.
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Figure 3.5: The CPU times required by the CB algorithm to optimize the energy of

half-filled Hubbard models, with an equal number of spatial orbitals K
2

and particles N , K
2

= N , and interaction strength 1.0, confirms that the

algorithm scales roughly as O(K6) with the dimension of the sp basis.

3.5 Modified barrier method

A modified barrier method has been developed by Polyak for linear and nonlinear

programming94 to overcome the explicit ill-conditioning of the classical barrier

method. These algorithms for linear programming have inspired us to adjust

our previously discussed classical barrier method to a modified barrier method,

which resulted in an extension to semidefinite programming that is very similar

to the one made by Stingl and Kocvara.95,96 Another extension to semidefinite

programming, similar to the approach by Zibulevski et al.,97 in our calculations

often resulted in an infeasible update. Therefore, we focus here on the first

approach.
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3.5.1 Theoretical background

The inherent ill-conditioning of the Newton equations involved in the classical

barrier method originates from the non-existence of the classical barrier function

at the solution, and its divergence to infinity as it approaches the solution.

The barrier function can be modified to exist at the solution by shifting the

argument. Instead of the constraint L(Γ) � 0, the modified barrier method

considers a shifted constraint 1
tL(Γ) � −I, which becomes equivalent to the

original constraint as the penalty parameter t decreases to zero. However, this

will only shift the poles of the barrier function. The main difference from the

classical barrier method is that the modified barrier method attempts to make

contact with the primal problem by introducing a positive-semidefinite Lagrange

multiplier X into the objective function along with a matrix barrier Φ to impose

the constraint 1
tL(Γ) � −I

f(Γ, X, t) = tr [HΓ] + t tr
[
XΦ

(1

t
L(Γ)

)]
(3.25)

This method is a straightforward extension of the modified barrier method for

linear programming, first developed by Polyak,94 to semidefinite programming.

The scalar barrier function φ used in linear programming can be extended to

semidefinite programming by applying it to the eigenvalues of a semidefinite

constraint matrix with eigenvalue decomposition V diag(λ1, . . . , λn) V T to yield

a matrix barrier function Φ

Φ(V diag(λ1, . . . , λn) V T ) = V diag(φ(λ1), . . . , φ(λn)) V T

Suitable barrier functions φ(λ) with domain dom φ =]− 1,+∞[ satisfy

φ is strictly decreasing, strictly convex, twice differentiable (3.26)

limλ→−1φ
′(λ) = −∞ (3.27)

limλ→∞φ
′(λ) = 0 (3.28)

φ(0) = 0 (3.29)

φ′(0) = −1 (3.30)



152 Chapter 3 Semidefinite optimization of the 2DM

0

1

0.0 0.5 1.0 1.5 2.0

(x/t+1)-1

x

2.0000

1.0000

0.1000

0.0100

0.0001

Figure 3.6: The inverse barrier φ(λ) = (λ+ 1)−1 is a suitable barrier for the modified

barrier method. Shown here are the functions φ(λ) = ( 1
t
λ + 1)−1 for

several values of t, specified in the key.

The barrier function must preserve the convexity of the original optimization

problem and penalize negative eigenvalues, but allow inactive constraints to

remain inactive – hence the properties (3.26) to (3.28). At the same time, it must

return the original objective function at the optimum, which is ensured by the

property (3.29). The last requirement (3.30) on the barrier function, φ′(0) = −1,

ensures that Lagrange multipliers corresponding to active constraints remain

unchanged on update (vide infra). The logarithmic barrier φ(λ) = −ln (λ+1) and

the inverse barrier φ(λ) = (λ+1)−1, for instance, fulfil these requirements (figure

3.6). Because the logarithmic barrier is more difficult to extend to a matrix barrier

function, we will mainly focus on the inverse barrier φ(λ) = (λ + 1)−1 which

gives a matrix barrier Φ(X) = (X + I)−1 with conveniently closed expressions

for the first and second derivatives. The specific objective function considered is

thus

f(Γ, X, t) = tr [HΓ] + t tr
[
X
(1

t
L(Γ) + I

)−1]
(3.31)

The fundamental idea behind the method is to accelerate convergence to
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the optimum by updating a Lagrange multiplier X alongside Γ in the modified

barrier function, even if X is only a crude approximation to the primal variable.

The modified barrier function f(Γ, X, t) shares some key properties with the

Lagrangian

f(Γ∗, X∗, t) = tr[HΓ∗] = E∗ (3.32)

∇Γf(Γ∗, X∗, t)i = Hi − tr[X∗L(F i)] = 0 (3.33)

f(Γ, X, t) is convex in Γ ∀Γ : L(Γ) � −tI (3.34)

Yet it has an advantage over the Lagrangian, as it can be proven (under strict

complementarity of X∗ and the constraint matrix L(Γ∗)) that f(Γ, X∗, t) is

strongly convex for all t < t0 for a certain value t0 > 0, in a neighborhood of

Γ∗.95

Updating the Lagrange multiplier in each outer loop allows a faster than

linear decrease of the duality gap with the penalty parameter. In contrast to

a primal-dual approach, the modified barrier method does not optimize the

Lagrange multiplier X, it only updates it after each minimization of the modified

barrier function over Γ. Key to this method is the choice of update for the

Lagrange multiplier X. The update is chosen in such a way that minimizing

the modified barrier function (3.31) ensures that the Lagrangian L(Γ, X) for the

original problem is minimized over the 2DM at the same time, such that the

update defines a primal feasible point,

∇Γf(Γ(k+1), X(k), t(k)) = ∇ΓL(Γ(k+1), X(k+1)) = 0 .

This can be effected by choosing the update

X(k+1) =
( 1

t(k)
L(Γ(k+1)) + I

)−1

X(k)
( 1

t(k)
L(Γ(k+1)) + I

)−1

(3.35)

which preserves positive semidefiniteness and symmetry and is primal feasible

if exact optimality holds. The duality gap for the primal-dual feasible pair is
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therefore bounded above by

tr
[
X(k+1)L(Γ(k+1))

]
= tr

[( 1

t(k)
L(Γ(k+1)) + I

)−1

X(k)
( 1

t(k)
L(Γ(k+1)) + I

)−1

L(Γ(k+1))

]
=
∑
i

(vTi X
(k)vi)

λi

( 1
tλi + 1)2

with L(Γ(k+1)) =
∑
i

λiviv
T
i

This update for the Lagrange multiplier will help to reduce the duality gap by

increasing the barrier function’s sensitivity to negative eigenvalues in the dual

matrix L(Γ) and decreasing its sensitivity to positive eigenvalues of L(Γ).

Several alternative update strategies for the penalty parameter t and the

Lagrange multiplier X exist. They can be updated simultaneously at each outer

iteration or alternatingly, depending on how much progress was made in the

previous iteration. The alternating update scheme is advocated by Conn et al.

for linear programming,98 but is more complicated than simultaneous updating.

However, convergence can also be proven for a simultaneous update scheme for t

and X, where t is updated by a constant factor.94 We have therefore chosen a

simultaneous update scheme (algorithm 3.36).

In contrast to the classical barrier method, for which a limit on the number

of iterations needed for convergence can be proven, such a limit has not been

proven for the modified barrier problem.

Because this method relaxes the original semidefinite constraint on the 2DM,

strictly speaking it is not an interior point method with respect to the original

optimization problem. It is only an interior point method with respect to the

modified constraint 1
tL(Γ) � −I. Therefore, it does not require a starting point

with positive definite P-,Q- and G-map.

More detailed information on the method can be found in work by Stingl95 and

Kocvara et al.96
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Algorithm

initial Γ : L(Γ) � 0

initial X : X ≡ I

do while tr [XL(Γ)] ≥ ε or ∆E > ε

minimize over Γ : f(Γ, t) = tr[HΓ] + t tr

[(
1

t
L(Γ) + I

)−1

X

]

update X : X(k+1) =
( 1

t(k)
L(Γ(k+1)) + I

)−1

X(k)
( 1

t(k)
L(Γ(k+1)) + I

)−1

update t : t = µt with µ < 1

end do (3.36)

3.5.2 Implementation of a modified barrier method

The modified barrier method updates a Lagrange multiplier alongside the 2DM

in order to make the duality gap decrease faster than in the barrier method,

where it is bound to decrease linearly with the penalty parameter. Although

the main incentive behind the modified barrier method is to keep the objective

function from becoming singular upon convergence, our applications suggest

that its improvement over the classical barrier method is mainly due to its use

of an approximate primal variable alongside the dual variable.

Our implementation of the modified barrier (MB) method with an inverse

barrier function was done in Fortran. It was based on our implementation of

the CB method, so both programs have the same framework and underlying

routines.

Inner iterations

In practice, the modified barrier method still bears a strong resemblance to the

classical barrier method. Its inner iterations optimize the matrix barrier function

over Γ

f(Γ, X, t) = tr HΓ− t tr

[
X

(
1

t
L(Γ) + I

)−1
]

(3.37)
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which is done by solving Newton’s equations.

∇2f(Γ, X, t)∆ = −∇Γf(Γ, X, t)

Krylov subspace method

The inner Newton’s equations can be solved iteratively by means of a Krylov

subspace method, using an exact expression for the Hessian-vector product.

(∇2f)ij

=
1

t
tr

[
X

(
1

t
L(Γ) + I

)−1

L(F i)

(
1

t
L(Γ) + I

)−1

L(F j)

(
1

t
L(Γ) + I

)−1
]

+
1

t
tr

[
X

(
1

t
L(Γ) + I

)−1

L(F j)

(
1

t
L(Γ) + I

)−1

L(F i)

(
1

t
L(Γ) + I

)−1
]

For any traceless update vector ∆ =
∑
i ∆iF

i, the Hessian-vector product

becomes

(∇2f)∆

=
1

t

∑
i

tr

[(
1

t
L(Γ) + I

)−1

X

(
1

t
L(Γ) + I

)−1

L(∆)

(
1

t
L(Γ) + I

)−1

L(F i)

]
F i

+
1

t

∑
i

tr

[(
1

t
L(Γ) + I

)−1

L(∆)

(
1

t
L(Γ) + I

)−1

X

(
1

t
L(Γ) + I

)−1

L(F i)

]
F i

=
1

t
P⊥F 0

(
L†

((
1

t
L(Γ) + I

)−1

X

(
1

t
L(Γ) + I

)−1

L(∆)

(
1

t
L(Γ) + I

)−1
))

+
1

t
P⊥F 0

(
L†

((
1

t
L(Γ) + I

)−1

L(∆)

(
1

t
L(Γ) + I

)−1

X

(
1

t
L(Γ) + I

)−1
))

Although the inner Newton’s equations in the modified barrier method are

not better conditioned than in the classical barrier method, the modified barrier

method converges faster to the optimum. The Hessian is not considerably better

conditioned nor significantly more clustered than in the classical barrier method

(figure 3.7). It may even be more ill-conditioned for the same penalty parameter

(3.8, 3.9). Nonetheless, the modified barrier method needs an overall smaller
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number of inner Krylov subspace iterations to converge to an ε-suboptimal energy

than the classical barrier method because it needs considerably fewer outer

iterations. In contrast to the classical barrier method, the penalty parameter

does not need to be decreased to 10−8 or 10−9, but only to 10−5 or 10−6, since

the duality gap decreases faster than linearly with the penalty parameter (figure

3.11). Given its smaller penalty parameter upon convergence, it can be expected

to be a little better conditioned than the classical barrier method (3.10), although

the biggest reduction in computational cost (table 3.2) comes from the reduced

number of outer iterations.

Similarly to the classical barrier method, the MINRES method needs fewer

inner iterations to solve Newton’s equations than the CG method, hence we have

chosen to use the MINRES method in all applications.
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Figure 3.7: The projected Hessian for different values of the penalty parameter t for

the system LiH (STO-6G) in the MB method is not better conditioned

than the Hessian in the CB method for the same penalty parameter

(figure 3.2).
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Figure 3.8: The projected Hessian’s condition number for LiH may even be worse in

the MB method than in the CB method for the same penalty parameter

t = 10−2.
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Figure 3.9: The projected Hessian for LiH may even be worse conditioned in the MB

method than in the CB method for the same penalty parameter t = 10−4.
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Figure 3.10: At convergence, both the Hessians involved in the MB and CB Newton’s

equations are highly ill-conditioned. However, because the MB method

takes lesser outer iterations to converge (t = 10−5 at convergence, as

opposed to t = 10−8 in the CB method), it is faster for almost all

systems.
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Figure 3.11: The MB method reduces the PD gap faster with the cumulative number

of outer iterations performed than the CB method by approximating a

primal variable alongside the dual variable. It is thus able to provide

faster than linear convergence of the duality gap. As a consequence,

the penalty parameter does not need to be reduced as far as in the CB

method.
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Figure 3.12: The MB method reduces the duality gap faster than linearly with the

number of outer iterations, but also requires slightly more inner Krylov

subspace iterations to solve Newton’s equations. Nonetheless, due to

its smaller number of outer iterations needed to converge, it also needs

an overall smaller number of Krylov subspace iterations to reach the

duality gap shown on the vertical axis.
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Figure 3.13: Although the idea behind the MB method is to make its inner iterations

better conditioned, in fact it needs a few more inner Krylov subspace

iterations to solve Newton’s equations for the same penalty parameter.

This agrees with the finding that its Hessian’s condition number is not

smaller, or is even higher, than in the CB method for the same penalty

parameter.
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Line search

A similar line search to that used in the CB method, based on a generalized eigen-

value composition of L(∆), can be used for the MB method. Although it requires

taking an additional inner product with the matrix X, this can be done before-

hand so it is not needed in every step of the bisection method. The eigenvalue

decomposition of
(

1
tL(Γ) + I

)−1/2
L(∆)

(
1
tL(Γ) + I

)−1/2
is computed,

(
1

t
L(Γ) + I

)−1/2

L(∆)

(
1

t
L(Γ) + I

)−1/2

= V ΛV T (3.38)

such that the directional derivative of the objective function can be expressed in

terms of its eigenvalues and its dependence on the line search coefficient.

∂f(Γ + α∆)

∂α

= tr H∆−tr

[
X

(
1

t
L(Γ) +

α

t
∆ + I

)−1

L(∆)

(
1

t
L(Γ) +

α

t
∆ + I

)−1
]

= tr H∆−tr
[
X

(
1

t
L(Γ) + I

)−1/2 (
I +

α

t
V ΛV T

)−1

V ΛV T

(
I +

α

t
V ΛV T

)−1
(

1

t
L(Γ) + I

)−1/2 ]
= tr H∆−

∑
i

λi
(1 + α

t λi)
2

(
V T

(
1

t
L(Γ) + I

)−1/2

X

(
1

t
L(Γ) + I

)−1/2

V

)
ii

The additional rightmost coefficients required can be stored beforehand, just like

the eigenvalues, after which a simple bisection method in the interval
[
0, −tλmin

]
yields the line search coefficient.

Outer iterations and overall performance

We have chosen to update the Lagrange multiplier X and the penalty param-

eter t simultaneously in each outer iteration. Alternate updating schemes

were less successful and more difficult to adapt to work for all cases. At

the end of each outer iteration, the Lagrange multiplier is updated to sat-

isfy ∇f(Γ(k+1), X(k), t(k)) = ∇L(Γ(k+1), X(k+1)) = 0, which is fulfilled by the
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update

X(k+1) =
( 1

t(k)
L(Γ(k+1)) + I

)−1

X(k)
( 1

t(k)
L(Γ(k+1)) + I

)−1

Clearly, this update preserves the symmetry and positive semidefiniteness of X.

After updating the multiplier X, the penalty parameter t is reduced by a

constant factor (figure 3.14), unless reducing it would result in infeasibility, that

is, 1
tL(Γ) � −I would fail to hold. In practice, however, this rarely happens

when t is not updated too aggressively.

The modified barrier method converges to the optimum from outside the

feasible set, because it replaces the original constraint L(Γ) � 0 by 1
tL(Γ) � −I.

Moreover, it does not require a starting point Γ(0) that satisfies L(Γ(0)) � 0

since the initial value of t can be adjusted. Because it converges to the optimum

from outside the feasible region, it will have residual negative eigenvalues upon

convergence.

The modified barrier method scales similarly to the classical barrier method, at

least O(K6), with the dimension of the sp-basis. The modified barrier algorithm

has the same structure as the classical barrier algorithm, essentially a four-

fold loop in which each level requires the following number of rate-determining

operations

• iterate over t, the barrier parameter, to minimize f(Γ, t) by Newton’s

method: ∼ O(1) iterations

• iterate Newton’s method until a direction ∆ is found that solves ∇2f∆ =

−∇f : ∼ O(1) iterations

• iterate the Krylov subspace method chosen to calculate each step in

Newton’s method: O(1) to O(K2) iterations

• compose the Hessian-vector product needed in every Krylov subspace

iteration: O(K6) flops
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Figure 3.14: The cumulative number of inner iterations needed in the MB method

to converge for the LiH (STO-6G) test system is smallest for an update

factor for the penalty parameter around 1.075 and for bigger factors.

However, because choosing the update factor too big (bigger than 3.0

for this system) results in infeasibility of the constraint 1
t
L(Γ) � −I

upon update, we have used an update factor of 1.075 throughout, unless

specified otherwise.

The outer iterations are stopped when the energy remains constant upon updating

and complementary slackness holds to good precision, tr [XL(Γ)] < ε. The total

number of Newton’s iterations this requires is roughly the same for different

systems. Just like in the CB method, the cost of solving Newton’s equations

is dominated by assembling the Hessian in each step of the Krylov subspace

method, and is therefore at least O(K6), but with a smaller scaling factor than

the CB method due to its faster than linear convergence of the duality gap

(figure 3.15).
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log  t = 4.8605 log  K - 3.1162
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Figure 3.15: The CPU times required by the MB algorithm to optimize the energy of

half-filled Hubbard models, with an equal number of spatial orbitals K
2

and particles N , K
2

= N , and interaction strength 1.0, suggests that the

algorithm in practice scales a bit better than O(K6) with the dimension

of the sp basis.
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3.6 Primal-dual interior point method

3.6.1 Theoretical background

The primal-dual interior point path-following method is in spirit similar to the

dual barrier method, as both aim to follow the central path approximately to

reach the optimum from within the feasible set. However, whereas the dual

barrier method only provides a primal feasible matrix in terms of the dual

matrix after each inner minimization, the primal-dual method optimizes the

dual and primal problem simultaneously and independently. This allows it to

reduce the duality gap in a much faster way than the dual barrier method. A

path-following primal-dual method attempts to solve the centrality conditions

for both Z ≡ L(Γ) and X such that ZX = tI and subsequently reduces t to

move closer to the optimum. The ‘predictor-corrector’ method is a particular

instance of this method, which alternates ’corrector’ centering steps that force

the iterates X and Z to stay close to the central path with ‘predictor’ steps that

reduce the duality gap.

The primal-dual centering equations are overdetermined and nonlinear, hence

in practice several different ways to linearize and symmetrize them have been

put forward.86 The primal-dual centering equations that need to be solved are

tr XL(F i) = tr HF i i = 1, . . . , n

Z = L(Γ) � 0

X � 0

XZ = tI

where an additional variable Z ≡ L(Γ) is used for the dual constraint matrix.

The equalities and positive semidefinite inequalities are easily imposed starting

from strictly feasible variables. The nonlinear centrality condition, however, is

difficult to impose during the optimization. The centrality condition requires
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that the updates ∆X and ∆Z satisfy

(X + ∆X)(Z + ∆Z) = tI

which needs to be linearized and symmetrized in order to obtain the updates

∆X and ∆Z by means of a Newton-Raphson approach. Different ways of doing

this lead to different directions, among them the frequently used Nesterov-Todd

direction.

The Nesterov-Todd direction makes the primal and dual direction symmetric,

by applying a scaling matrix D that can be considered the metric geometric

mean of X and Z−1

D = Z−1/2(Z1/2XZ1/2)1/2Z−1/2

such that

D−1/2XD−1/2 = D1/2ZD1/2 ≡ V

Applying this scaling matrix to the centrality condition, the scaled update

directions ∆VX = D−1/2∆XD−1/2 and ∆VZ = D1/2∆ZD1/2 must satisfy

D−1/2(X + ∆X)D−1/2D1/2(Z + ∆Z)D1/2 = tI

(V + ∆VX)(V + ∆VZ) = tI

This expression is linearized by neglecting the second order terms

∆VZV + V∆VX + V 2 = tI

and symmetrized

1

2
(∆VZ + ∆VX)V +

1

2
V (∆VX + ∆VZ) = tI − V 2

The symmetrical scaled directions ∆VX , ∆VZ that satisfy this requirement are

∆VX + ∆VZ = tV −1 − V
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Equivalently, the unscaled updates ∆X, ∆Z satisfy

∆X +D∆ZD = tZ−1 −X (3.39)

which determines the Nesterov-Todd direction.

Primal-dual methods differ mostly in the update scheme for the parameter t

involved in the centering steps and the type of line search to calculate the step

length in the obtained Newton direction. Predictor-corrector methods alternate

predictor steps that aim to reduce the duality gap with corrector steps that ensure

that the iterates stay sufficiently close to the central path (algorithm 3.40). The

predictor steps solve the standard Newton equations for KKT-optimality of the

primal and dual variable (3.39 with t = 0) to reduce the duality gap. The primal

and dual variable are then updated as Z ≡ Z+α∆Z, X ≡ X+α∆X, where the

line search coefficient α is chosen to ensure that the updated variables remain

feasible and stay close enough to the central path. The step length therefore also

determines the decrease in duality gap upon update. The subsequent corrector

step then solves the primal and dual centering equations (3.39) to ensure that

the primal and dual variable stay close enough to the central path, but does not

change the duality gap. Ensuring that they stay in a neighborhood of the central

path guarantees that the following predictor step can bring about a substantial

reduction of the duality gap. The predictor-corrector steps are alternated in this

way until the primal-dual gap reaches a desired accuracy.

Algorithm

X,Z strictly feasible, sufficiently close to the central path

t = tr XZ

do while tr XZ > ε

corrector step
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solve for ∆X, ∆Z :

∆X +D∆ZD = tZ−1 −X

update X,Z : X = X + ∆X, Z = Z + ∆Z predictor step

solve for ∆X, ∆Z :

∆X +D∆ZD = −X

choose 0 ≤ α ≤ 1

update X,Z : X = X + α∆X, Z = Z + α∆Z

calculate duality gap: t = tr XZ

end do (3.40)

3.6.2 Implementation of a primal-dual interior point method

Just like the classical barrier method, the primal-dual predictor-corrector method

follows the central path to the optimum. But unlike the classical barrier method,

it simultaneously optimizes the primal and the dual problem. It can therefore

make much faster progress towards the optimum, but it comes with a price: the

primal-dual method is significantly more expensive.

The implementation of a primal-dual (PD) predictor-corrector method in

C++ that was used here was provided by our co-workers Brecht Verstichel and

Ward Poelmans.99,100 It was compiled and run on the same computer and linked

to the same Lapack and BLAS libraries as the barrier methods considered before.

Inner iterations

Both the inner iterations of the predictor and the corrector steps can be solved

by the conjugate gradients method, which only requires a linear map of the

update vector in each inner iteration. Because the primal and dual direction

∆X and ∆Z are orthogonal, projecting the primal-dual equation (3.39) onto

their respective spaces gives a separate expression for both directions.

Since the primal variable X must satisfy tr XL(F i) = tr HF i, the primal



Primal-dual interior point method 173

direction ∆X must satisfy

tr ∆XL(F i) = 0

Projecting (3.39) onto the basis
{
L(F i)

}
therefore separates out the dependence

on the dual direction ∆Z:

tr [D∆ZDL(F i)] = t tr [Z−1L(F i)]− tr[XL(F i)]

tr [DL(∆Γ)DL(F i)] = t tr [Z−1L(F i)]− tr[HF i]

P⊥F 0(L†(DL(∆Γ)D)) = t P⊥F 0(L†(Z−1))− P⊥F 0(H) (3.41)

where the projection P⊥L(F 0) projects onto the traceless space spanned by
{
F i
}

.

Since Z = L(Γ) = L(F 0) +
∑n
i=1 L(F i), the dual direction can be expanded

in the basis of matrices L(F i)

Z = L(∆Γ) =

n∑
i=1

∆ΓiL(F i)

Suppose the orthogonal complement of the space spanned by L(F 0) and
{
L(F i)

}
is spanned by an orthonormal basis

{
Ci
}

, such that the space of all block

diagonal matrices of the same dimension as X is spanned by the bases
{
L(F 0)

}
∪{

L(F i)
}
∪
{
Ci
}

. Since Z = L(F 0) +
∑
i ΓiL(F i) and ∆Z =

∑
i ∆ΓiL(F i) lie

in the orthogonal complement of the space spanned by
{
Ci
}

, projecting the

primal-dual centering equation (3.39) onto the basis
{
Ci
}

gives

tr [D−1∆XD−1Ci] = t tr [D−1Z−1D−1Ci]− tr [D−1XD−1Ci]

= t tr [X−1Ci]− tr [ZCi]

= t tr [X−1Ci]

P{Ci}
(
D−1∆XD−1

)
= t P{Ci}

(
X−1

)
(3.42)

where the projection P{Ci} onto the orthogonal complement of the space spanned

by
{
L(F 0)

}
∪
{
L(F i)

}
is done by projecting out the part of the matrix that

lies in the space spanned by
{
L(F 0)

}
∪
{
L(F i)

}
. Using this mapping requires

O(K6) floating point operations because of the matrix square root and matrix

multiplications involved.
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Theoretically, solving (3.41) for the dual ∆Γ would give a primal matrix ∆X

by substituting it in (3.39). However, this did not provide the desired accuracy

for the dual step in our applications. Instead, the resulting ∆X can be used as

the initial point for solving the dual equations by conjugate gradients. For this

reason, solving the dual equations takes far fewer inner CG iterations (figure

3.16).

To ensure that the updated primal and dual matrices stay feasible and close

enough to the central path, a bisection line search is performed. Similarly to the

CB method, it uses a logarithmic potential function

Φ(X,Z) = −ln det XZ + ln det

(
tr [XZ]

dim(I)
I

)
= −ln det XZ + dim(I)ln

(
tr [XZ]

dim(I)

)
(3.43)

to penalize infeasibility of the updates X + α∆X and Z + ∆Z. It considers

the difference between the current primal-dual pair and a primal-dual pair with

the same duality gap that lies on the central path. Limiting this difference

therefore constrains the updates to lie in a neighborhood of the central path,

such that the subsequent centering steps will not take too many iterations.

Adjusting the size of the neighborhood of the central path will thus adjust

the balance between the number of predictor and corrector iterations. In our

implementation, the distance from the central path upon update, measured

by Φ(X + α∆X,Z + α∆Z), is limited to 2.0. This choice of deviation from

the central path makes the subsequent predictor and corrector iterations about

equally time-consuming to compute (figure 3.16).

Outer iterations and overall performance

Although the inner iterations in the primal-dual method are more expensive

than in the classical barrier method, the primal-dual method needs fewer outer

iterations to converge to an energy that is ε-suboptimal, measured by the duality

gap (figure 3.17). Because it optimizes both the primal and the dual variable,
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Figure 3.16: The allowed deviation from the central path upon update with the

predictor direction is limited to 2.0 (3.43), such that the predictor and

corrector steps take a similar number of inner iterations. The primal

Newton direction is used to approximate the initial dual direction in

the Krylov subspace method, such that solving the dual equations only

takes a small number of iterations compared to the primal equations.
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Figure 3.17: The primal-dual gap decreases considerably faster with the number of

outer iterations performed in the PD method than in the CB method.

The decrease of the duality gap is only linear in the CB method, but the

PD method is able to reduce it faster than linearly as it simultaneously

optimizes the primal and the dual problem. Surprisingly, the MB

method decreases the duality gap at a similar rate.

its progress towards the optimum is much more aggressive than in the barrier

method.

In spite of its small number of outer iterations to reach the optimum, explicitly

optimizing both the primal and the dual matrix is the most expensive way of

solving the optimization problem. Optimizing both the primal and the dual

makes it possible to approach the optimal energy both from below and above,

yielding an error estimate at all times, but requires more O(K6) floating-point

operations in each inner iteration to do so than the barrier methods because the

primal matrix for the P-,Q- and G-condition has three blocks of similar dimension

to the 2DM. So even though the use of a mapping for the Hessian-vector product

reduces its scaling to O(K6) compared to O(K12) for a factorization of the

Hessian it is considerably more expensive than the other methods considered

(table 3.2).
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Figure 3.18: Even though the duality gap decreases much faster with the number

of outer iterations in the PD method than in the CB method, the PD

method needs many more Krylov subspace iterations to solve Newton’s

equations than the CB and MB method (figure 3.19). As a consequence,

the overall number of inner Krylov subspace iterations performed at

convergence is bigger for the PD method.
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Figure 3.19: The primal-dual method needs considerably more inner Krylov subspace

iterations than the CB and MB method to solve Newton’s equations

resulting in the duality gap shown on the horizontal axis.

3.7 Boundary point method

3.7.1 Theoretical background

In contrast to the interior point methods discussed before, the boundary point

method is a zeroth order method: it does not require a gradient or Hessian, it

only solves a linear system of equations in its inner iterations. Its application

to v2DM theory is particularly interesting because the inner equations can be

solved exactly, without needing an iterative solver.

In contrast to primal-dual interior point methods, the boundary point method
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aims to converge to an optimal pair X,Z that satisfies

tr XL(F i) = tr HF i i = 1, . . . , n (3.44)

Z = L(Γ) (3.45)

Z � 0 (3.46)

X � 0 (3.47)

XZ = 0 (3.48)

by optimizing a primal variable X � 0 and dual variable Z � 0 that satisfy

ZX = 0 at any time, but only become primal and dual feasible (3.45 and 3.44)

upon convergence to the optimum. The inner minimization over Γ yields a primal

feasible X � 0 and a matrix Z � 0 that satisfies XZ = 0 but is not dual feasible,

as it does not satisfy Z = L(Γ). Optimality is reached for the outer loops when

Z becomes dual feasible up to a small deviation. In contrast to interior-point

methods, the boundary point method convergences to the optimum from the

boundary of the positive semidefinite cone for the primal and the dual variable

until they both become feasible upon convergence. Hence its name ’boundary

point method’.

The boundary point method is a particular instance of an augmented La-

grangian method.101,102 It considers an augmented Lagrangian for the dual

problem

L(Γ, Z,X) = tr HΓ + tr[X(Z − L(Γ))] +
σ

2
‖Z − L(Γ)‖2

where X is the Lagrange multiplier. By defining a matrix W

W ≡ L(Γ)− 1

σ
X

the augmented Lagrangian can be written as

L(Γ, Z,X) = tr HΓ +
σ

2
‖Z −W (Γ)‖2 − 1

2σ
‖X‖2

The augmented Lagrangian approach minimizes f(Γ, Z) defined as

f(Γ, Z) ≡ tr HΓ +
σ

2
‖Z −W (Γ)‖2
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in its inner iterations to obtain Γ and Z � 0, and then updates the Lagrange

multiplier X according to

X ≡ X + σ(Z − L(Γ))

The inner minimization in the augmented Lagrangian method

min︸︷︷︸
Γ,Z

f(Γ, Z) = min︸︷︷︸
Γ,Z

tr HΓ +
σ

2
‖Z −W (Γ)‖2

corresponds to a primal problem with primal variable V and Lagrangian L′(Γ, Z, V )

L′(Γ, Z, V ) = tr HΓ +
σ

2
‖Z −W (Γ)‖2 − tr ZV

for which the KKT-conditions for optimality are

∇ΓL′(Γ, Z, V ) = P⊥F 0(H)− σP⊥F 0

(
L†(Z −W (Γ))

)
= 0 (3.49)

∇ZL′(Γ, Z, V ) = σ(Z −W (Γ))− V = 0 (3.50)

V � 0

Z � 0

V Z = 0

The minimization over both Γ and Z can be uncoupled by alternating minimiza-

tion of f(Γ, Z) over Γ and updating Z(Γ) with the obtained Γ. The matrix Z

that minimizes f(Γ, Z) for fixed Γ is simply W (Γ)+,

argmin︸ ︷︷ ︸
Z�0

(
f(Γ, Z) = tr HΓ +

σ

2
‖Z −W (Γ)‖2

)
= W (Γ)+,

which is the positive semidefinite part of W (Γ), as it can be decomposed into

a positive semidefinite part and a negative definite part W (Γ) = W (Γ)+ +

W (Γ)−, for example by separating its eigenvalue decomposition. From the

KKT-conditions (3.50), an expression for the Lagrange multiplier V in terms of

W (Γ)− follows

V = σ(W (Γ)+ −W (Γ)) = −σW (Γ)− � 0
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which satisfies V Z = 0.

The only KKT-condition for optimality that is not satisfied yet is ∇ΓL′ = 0

(3.49).

The inner iterations will thus consist of iteratively solving ∇ΓL′ = 0 (3.49)

to obtain Γ, and updating Z and V in terms of the obtained W (Γ). The update

of the Lagrange multiplier for the augmented Lagrangian of the outer iteration

is also determined by W (Γ):

X ≡ X + σ (Z − L(Γ))

= X + σ

(
Z −W (Γ)− 1

σ
X

)
= σ(Z −W (Γ))

= V

= −σW (Γ)− (3.51)

which is clearly positive semidefinite and satisfies XZ = −σW (Γ)−W (Γ)+ = 0.

Each inner iteration therefore yields a matrix X = V , which becomes primal

feasible if

tr[V L(F i)] = tr HF i

The inner iterations are therefore stopped when this criterion is satisfied to

suitable precision. The matrix X is then updated as X ≡ V in the outer loop,

after which the inner minimizations are repeated. The outer iterations are

stopped when the matrix Z is nearly dual feasible, Z ≈ L(F 0) +
∑
i ΓiL(F i).

Algorithm

do while ‖Z − L(Γ)‖ ≥ ε

do while
∥∥P⊥F 0(L†(V ))− P⊥F 0(H)

∥∥ ≥ σε
solve for Γ : P⊥F 0(H)− σP⊥F 0

(
L†(Z −W (Γ))

)
= 0
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W ≡ L(Γ)− 1

σ
X

Z ≡W+

V ≡ −σW−

end do

X = V

end do (3.52)

3.7.2 Implementation of a boundary point method

The boundary point method may be an alternative to the computationally

expensive second-order methods discussed in previous sections. It is a zeroth

order method, as it does not require a gradient or Hessian in its optimization.

This property is both its strength and its weakness. On the one hand, it makes

its inner iterations much easier to solve. On the other hand, it makes slower

progress towards the optimum in each outer iteration than second-order methods

like the interior point methods discussed before. Since solving the inner iterations

is the major obstacle for second order methods, this algorithm may be a faster

alternative. Our calculations suggest that it is faster than the barrier method

for most systems, but its slow convergence near the optimal energy can remove

its advantage over the barrier method when the parameters involved in the

algorithm are not carefully optimized.

The C++ implementation of a boundary point (BP) method used here to

study its performance on molecular systems was provided by our co-workers

Brecht Verstichel and Ward Poelmans and is based on the algorithms of Povh and

Rendl et al.101,102 A reference wavefunction-based CCSD routine to compare

with is provided by the GAMESS package103 and compiled and run on the same

computer as the semidefinite optimization programs.
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Inner iterations

The strength of the boundary point algorithm for applications to v2DM theory

lies in the ease of solving its inner iterations (3.49). The inner system of equations

∇ΓL′(Γ, Z,X) = 0

P⊥F 0

(
σL† (L(Γ))

)
= P⊥F 0

(
σL†(Z) + L†(X)−H

)
Γ =

(
L†(L)

)−1
(
P⊥F 0

(
L†(Z) +

1

σ
(L†(X)−H)

))
(3.53)

can be solved exactly because the inverse map
(
L†(L)

)−1

can be expressed

analytically. The squared P-,Q- and G-map take the same form as the regular

maps, but with different normalization coefficients. The sum of any combination

of these maps has a straightforward inverse map (chapter 1, section 1.3.3).

In our implementation, the number of inner iterations is limited to one,

such that the resulting primal variable is not exactly primal feasible after each

inner minimization. However, in the convergence limit, both the primal and the

dual variable become feasible (figure 3.20). In order to increase the sensitivity

to primal infeasibility, an additional parameter τ is introduced in the inner

equations (3.53), following Mazziotti’s implementation,102 which is set to 1.6 for

all calculations performed here. So instead of (3.53), the equation

Γ =
(
L†(L)

)−1(
P⊥F 0

(
L†(Z) +

τ

σ
(L†(X)−H)

))
is solved.

Outer iterations and overall performance

The boundary point method needs many more outer iterations to converge to

the optimum than any of the second-order methods discussed before, as it does

not use any information about the system’s gradient or Hessian. Consequently,

as the method approaches the optimal energy, subsequent outer iterations do
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Figure 3.20: The convergence to a primal and dual feasible point with the cumulative

number of outer iterations is very slow. The primal and dual infeasibility

norm converge to zero at a very similar rate.

not decrease the energy as significantly as in the CB method. However, its inner

iterations are much faster to solve than the inner Newton equations in the second

order methods, but more expensive than each inner CG iterations involved in

solving Newton’s equations in the second order methods. This is because the

boundary point method’s inner iterations require a diagonalization of the matrix

W (Γ) in order to split it into a positive semidefinite and negative definite part,

on top of solving the linear system. Therefore it scales at least as O(K6) with

the sp basis dimension K, if the number of outer iterations is considered more

or less constant. Although this is similar to the way the CB method scales with

the dimension, it turns out to be faster than the CB method for most systems

(table 3.2).

The main difficulty in practical implementations of the boundary point

method is therefore to find an update scheme for the parameter σ that minimizes

the number of outer iterations required to obtain near-feasibility of the primal

and dual variable. Choosing the update factor σ either too large or too small

will result in an increase in CPU time (figure 3.21).
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Figure 3.21: The cumulative number of inner iterations needed by the boundary

point method to converge for the LiH STO-6G test system is smallest

for an update factor close to 1 for the parameter σ that determines

the strength of the penalty (algorithm 3.52). For this reason, we have

used an update factor of 1.01 in all applications of the boundary point

method throughout this chapter.



186 Chapter 3 Semidefinite optimization of the 2DM

1E-08

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

0 1500

co
n

v
e

rg
e

n
ce

 c
ri

te
ri

o
n

# outer iterations

convergence vs outer iterations

boundary point - dual infeasibility

classical barrier - duality gap

modified barrier - duality gap

primal-dual - duality gap

Figure 3.22: The convergence criterion for the second order methods is the duality

gap. The convergence criterion for the boundary point method is the

dual infeasibility, as measured by its Frobenius norm. The duality gap

decreases much faster with the number of outer iterations in second

order methods than the dual infeasibility decreases in the zeroth order

boundary point method. The number of inner iterations was limited

to 1 in the BP method, therefore the total number of inner iterations

performed equals the number of outer iterations.
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Figure 3.23: Even though the second-order methods reduce the duality gap faster

with the number of outer iterations than the zeroth order boundary

point method reduces the primal and dual feasibility, they need many

more inner Krylov subspace iterations to solve Newton’s equations. As

a consequence, the second-order methods converge much more slowly in

terms of the cumulative number of inner iterations. Nonetheless, their

inner iterations are more rapidly solvable than each BP method’s inner

iteration, such that the two approaches still lead to CPU times of the

same order of magnitude (table 3.2).
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Figure 3.24: The CPU times, t, required by the MB algorithm to optimize the energy

of half-filled Hubbard models, with an equal number of spatial orbitals

K
2

and particles N , K
2

= N and interaction strength 1.0, suggests that

the boundary point algorithm in practice scales even better than O(K6)

with the dimension of the sp basis.
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Figure 3.25: The CPU times required by the MB method and BP method to optimize

the energy of half-filled Hubbard models, with an equal number of

spatial orbitals K
2

and particles N , K
2

= N and interaction strength 1.0,

grow less fast with the basis set dimension than those required by the

CB method. The BP method calculates these models faster than the

barrier methods, although its superiority on molecular systems is less

pronounced (table 3.2).
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STO-6G D95V

MB PD BP MB BP CCSD

BH 1.40 0.41 1.17 1.44 0.61 61.35

C2H2 1.68 0.12 0.44 3.60 1.88 5660.68

C2H4 3.26 0.14 0.68 4.27 2.43 12459.11

CH2O 4.82 0.22 1.84 5.65 2.01 14216.12

CH2 1.69 0.42 0.61 2.43 1.01 126.33

CH4 1.63 0.30 0.59 1.75 1.20 661.69

CH 2.25 0.60 2.25 2.46 0.58 80.18

CO 3.50 0.17 3.24 5.81 1.75 3720.00

F2 10.83 0.26 5.62 4.05 0.57 2992.18

H2O2 5.59 0.16 11.41 4.60 1.14 7724.03

H2O 3.08 0.43 4.44 3.02 0.53 297.09

HCN 3.72 0.21 1.04 4.32 1.47 4020.82

HF 4.00 0.73 4.00 2.55 0.51 105.20

HNC 2.49 0.17 0.51 5.32 1.95 5018.79

HNO 6.35 0.11 4.87 3.49 0.74 3767.17

HOF 5.42 0.10 7.57 6.29 1.20 7433.02

Li2 1.68 0.18 1.01 2.15 1.58 858.62

LiF 6.68 0.29 6.00 3.84 0.55 2643.11

LiH 1.40 1.17 1.17 1.79 1.37 50.15

N2H2 1.80 0.09 0.27 4.92 1.65 7132.11

NH3 1.33 0.21 2.50 2.72 1.20 720.06

NH 1.63 0.81 6.50 3.71 1.22 124.62

Table 3.2: The speed-up of our implementations of several semidefinite programming

algorithms compared to the classical log-barrier method, measured by the

inverse ratio of their wall clock times, tCB/t, shows that the modified

barrier method (MB) gives the biggest speed-up for most of the systems

considered. The boundary point (BP) method also gives a substantial

speed-up compared to the CB method for most, but not all, systems.

The primal-dual (PD) predictor-corrector method is more accurate but

significantly slower. Hence, we have only applied it to the STO-6G basis

set. The molecules considered were at their experimental equilibrium

geometries.104
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3.8 Conclusions:

Comparison of selected algorithms

None of the semidefinite algorithms that we have applied to the v2DM(PQG)

method approaches the speed of a wavefunction-based method of the same ‘level’

of theory, such as CCSD. The CCSD method provides a similar level of theory to

the v2DM(PQG) method as it is also exact for to 2-electron systems. Just like

the v2DM(PQG) algorithms considered, it scales as O(K6) with the dimension

of the sp basis. But even when we take into consideration that our semidefinite

programs are not fully optimized, their computation times clearly have a much

larger prefactor than the CCSD method (table 3.2 includes CCSD computation

times in the D95V basis set).

The second-order methods’ strength lies in their substantial progress towards

the optimal energy in each outer iteration; their weakness is the difficulty of

solving the inner Newton’s equations. Although our primal-dual program is by far

the slowest, a thoroughly optimized implementation may be very powerful,29,105

as it is able to make faster than linear progress towards the optimum. The

classical barrier method only allows linear convergence of the duality gap with

the outer iteration, but it is the most robust. It may be slow, but it will converge,

and can be considered a ’black box’ approach to the problem. The modified

barrier method combines the advantages of the barrier method with the faster

than linear convergence of a primal-dual approach. Unfortunately, it is not as

robust. A suitable line search procedure, however, may avoid infeasibility upon

update of the Lagrange multiplier or penalty parameter.

The zeroth-order boundary point method’s strength lies in its rapidly solvable

inner iterations, and its weakness in its slow convergence close to the optimum.

This drawback meant that we were not able to confirm Mazziotti’s promising

results of this method’s application to molecules in a double-zeta basis set.16

Mazziotti has reported a 10-20 fold speed-up compared to his implementation of
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a first-order non-linear method.21 Although the computation time may depend

heavily on the convergence criterion due to the method’s slow convergence near

the optimum, we were not able to get the desired accuracy (≤ 10−4) after

the 1000-1500 outer iterations that Mazziotti’s algorithm reportedly needed to

converge.16 Still, the boundary point method is substantially faster than the

classical barrier method for the majority of test systems considered, but is slower

for others. Moreover, based on the calculations in a STO-6G and D95V basis

set, its superiority may be less distinct in larger basis sets.



Conclusions on v2DM methods for

chemical calculations

The v2DM method faces two major challenges: the N-representability problem

on the theoretical side, which determines the method’s accuracy, and the algo-

rithmic challenge of a large-scale semidefinite program on the computational

side, which determines its speed. More stringent necessary N-representability

constraints may improve the accuracy without increasing computation time

significantly, while more efficient algorithms make it feasible to impose higher-

order constraints that improve the accuracy. The calculations presented here

demonstrate that significant progress in both of these areas is needed to make the

method competitive to wavefunction based methods with similar scaling, such as

CCSD, for the v2DM(PQG) method. The v2DM(PQG) method is several orders

of magnitude slower and is less accurate, especially for molecular geometries

with stretched bonds.

On the theoretical side, two major defects of currently applied N-representability

methods for chemical applications are size-inconsistency and an inconsistent

description of non-singlet spin states. Both shortcomings can be regarded as a

failure of approximate positivity conditions to describe subsystems with frac-

tional electron number and spin by a formalism that assumes integer electron

number and half-integer spin for the whole system.

Although the v2DM method under sufficient N-representability conditions

is size-consistent, the v2DM(PQG) method is by nature not size-consistent,

because the positivity constraints are directly formulated in terms of the 2DM,

which is not a separable quantity. There is no straightforward way to force it to

treat a system composed of non-interacting molecules equivalently to separate

calculations on each of those moieties.



Similarly, the formulation of the v2DM(PQG) problem does not allow a

straightforward way of treating different spin states on equal footing, resulting

in non-degenerate energies for theoretically degenerate spin states as well as

size-inconsistency. A pragmatic solution to the non-degeneracy of different spin

projections in a multiplet is to apply the most stringent conditions and argue that

any other spin projection can be generated from it by applying the Wigner-Eckart

theorem.

Any size-inconsistencies can be resolved in an ad-hoc manner using subspace

energy constraints. However, these constraints directly tackle the energy and

are not strong enough to impose the correct structure on the 2DM. Therefore,

in general chemical properties other than the energy are not size-consistent.

On the computational side, the scale-up of current semidefinite algorithms

with basis dimension forms a major challenge. In order to be competitive

with wavefunction based methods of the same level of theory, such as CISD

or CCSD, the v2DM(PQG) method needs to have similar speed. Although

current algorithms for the v2DM(PQG) method technically scale up similarly

to wavefunction based approaches such as CISD and CCSD, O(K6), all of the

zeroth order, first order, and second order methods examined here and in the

literature have a much bigger prefactor, making them several orders of magnitude

slower. On the positive side, the v2DM does not suffer from the typical pitfalls

of wavefunction-based approaches, such as convergence to a wrong root, and

a robust algorithm could make it an ideal ‘black box’ method for calculating

ground states.

On a more personal level, this research has taught me a lot about the

fundamental differences between wavefunction-based approaches and density-

matrix-based methods, which build up a descriptor for the system ‘from scratch’

without having any of the self-evident properties of the wavefunction. In the

absence of these certainties, I have come to appreciate the complexity of the

many-electron problem. Rather than dismiss the method as a ‘dead end’, as

was once suggested to me during a conference, I believe that there must be a



formulation that makes the method competitive to wavefunction based methods,

although it may require improvements in the field of semidefinite programming

and it may be system-dependent. The N-representability problem is of a different

nature from the computational problem, as the exact solution is available to us,

whereas the computational problem involves trial and error.

Experience gained in the field of the v2DM may prove useful to other density-

matrix-based methods, which hold the ability to break the prohibitive exponential

scaling of the wavefunction with the size of the molecule. I currently view the

method not as a dead end, but rather as an open end.





A
Krylov subspace methods

We have used two iterative Krylov subspace methods for solving a linear system

of equations of the form Ax = b, with A � 0: the conjugate gradients method

and the conjugate residuals method.

A.1 Conjugate gradients

The conjugate gradients algorithm minimizes the error e = x − A−1b, A � 0,

and only requires the matrix-vector map A()

p0 = r0 = b−A(x0)

αi =
rTi ri

pTi A(pi)

xi+1 = xi + αipi

ri+1 = ri + αiA(pi)

βi+1 =
rTi+1ri+1

rTi ri

pi+1 = ri+1 + βi+1pi (A.1)



The preconditioned conjugate gradients method, which only references the

preconditioner-vector map M−1(x), can be formulated as follows

p0 = r0 = b−A(x0)

αi =
rTi M

−1(ri)

pTi A(pi)

xi+1 = xi + αipi

ri+1 = ri + αiA(pi)

βi+1 =
rTi+1M

−1(ri+1)

rTi M
−1(ri)

pi+1 = M−1(ri+1) + βi+1pi (A.2)

A.2 Conjugate residuals

The MINRES or conjugate residuals algorithm minimizes the residual r =

b−A(x)

p0 = r0 = b−A(x0)

αi =
rTi A(ri)

(A(pi))TA(pi)

xi+1 = xi + αipi

ri+1 = ri + αiA(pi)

βi+1 =
rTi+1A(ri+1)

rTi A(ri)

pi+1 = ri+1 + βi+1pi

A(pi+1) = A(ri+1) + βi+1A(pi) (A.3)

The preconditioned conjugate residuals method, which only references the



preconditioner-vector map M−1(x), can be formulated as follows

p0 = r0 = b−A(x0)

αi =
(M−1(ri))

TA(M−1(ri))

(A(pi))TM−1(A(pi))

xi+1 = xi + αipi

ri+1 = ri + αiA(pi) (A.4)

βi+1 =
M−1(ri+1)TA(M−1(ri+1))

(M−1(ri))TA(M−1(ri))

pi+1 = M−1(ri+1) + βi+1pi

A(pi+1) = A(M−1(ri+1)) + βi+1A(pi) (A.5)
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The major theoretical challenges originate from

the need for the second order density matrix to be

N-representable: it must derive from an ensemble of

N-electron states. Our calculations have pointed out

major drawbacks of commonly used N-representability

conditions in this method, such as incorrect dissociation

into fractionally charged molecules and size-inconsistency.

The exponential growth of the dimension of the

exact wavefunction with the size of a chemical

system makes it impossible to compute chemical

properties of large chemical systems exactly.

A myriad of ab initio methods that use

simpler mathematical objects to describe

the system has thrived on this

realization, among which the

variational second order

density matrix

method.

The aim of

my  thesis has been

to evaluate the use of

variational second order

density matrix methods

for chemistry and to identify

the major  theoretical and

computational challenges that need

to be overcome to make the method

successful for chemical applications.

The major computational challenges originate from its formulation as a

vast semidefinite optimization problem.  We have implemented and

compared several algorithms that exploit the specific structure of the

problem. Even so, their slow speed remains prohibitive.

If we find ways to overcome these challenges, this method will prove a

valuable alternative to wavefunction based methods.  It is highly

complementary to wavefunction based methods, because of its

fundamentally different approach to solving the electron correlation

problem.  Herein lies its strength and its future.
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