
FACULTY OF SCIENCES

Faculty of Sciences
Department of Physics and Astronomy

Variational Renormalization Group Methods

for Extended Quantum Systems

Jutho Haegeman

Thesis submitted in fulfillment of the requirements for the degree of
Doctor (Ph.D.) in Sciences: Physics

Year 2010-2011

Supervisor : Prof. Dr. Henri Verschelde









WORD OF THANKS

Preparing for a Ph.D. is not a short trip; it is a long journey. Along this journey, guidance
and support of many people has been indispensable. Having reached the destination, it
is time to look back and honor those without which this dissertation would not have
been. Four years of meeting people is a long time, and despite my best effort, the list
below is only a poor and incomplete summary.

At first I would like to thank my supervisor Henri Verschelde, who enabled me to start
this journey. I myself could not have foreseen the destination. I am very grateful for
pointing me in the right direction, both at the start and whenever I got lost. Secondly, I
greatly acknowledge the support I have received from three people during the last year
and a half of this journey: Frank Verstraete, Tobias J. Osborne and J. Ignacio Cirac. They
are digging into new and fascinating unexplored territories of the land of Theoretical
Physics, and were so kind to include me in their team. In a short amount of time, I
gathered a lot of knowledge from their experience and expertise. Without their guidance
through the rugged terrain that is scientific research, I would not have been able to
complete the final rush toward my goal. Hopefully this will be, not the end, but only the
beginning of an exciting expedition with many treasures yet to be discovered. Finally,
I would also like to thank Guifre Vidal and Dimitri Van Neck. While we have not yet
shared common goals —who knows what the future might bring— I strongly appreciate
the interest they have shown in my journey.

Acknowledgement is also due to the sponsor of this journey, the Research Fund Flanders,
for providing financial support with minimal administrative overhead.

All long journeys require time to relax and to rest. For this, I would like to thank
the fellow-minded travelers on my path. Office mates and colleagues, plenty art thou,
each with gifts and specialties. Nele (1), Dirk, Benjamin, Nele (2), Hans, David, Jos,
Karel, Virginie, as well as many others: thank you for the occasional chats, (semi-)
scientific discussions, practical support with matters of all kind, and last but not least,
the tradition of Wednesday soccer games. All of us are indebted to our secretary Inge,
system administrator Gerbrand and technician Guy for allowing us to focus solely on
research and making sure that everything around us keeps running smoothly.

In the same spirit of rest and relaxation, a second paragraph is devoted to all my friends
and buddies out there, to whom I am grateful for giving me the chance to revitalize from
time to time. My hike through physics was often exchanged for physical hikes through
the beautiful landscapes of Mother Earth thanks to Isabelle en Nelson. Reinvigorating
fluids were absorbed with Matthieu, Stephane, Wouter and Piet during our biweekly
exploration of the many bars in Ghent, or with Jan, Sarah, Dieter, Inge, Soetkin,

iii



Boudewijn, Pieter and Anneleen during the weekends. Mens sana in corpore sano and
therefore I am grateful to Tomas for the physical labor of Sunday morning mountain
biking. And a final word of thanks goes out to Soetkin for the many evenings filled with
home-made pizza and British comedy, which were of utmost importance after long and
tiring days.

As we have already reached a second page, it is time to thank those people that have
been there during a great part of my life. I would like to thank my mother and Jan,
for giving me the chance not only to undertake this journey, but also to prepare for it,
by enabling me to study both Engineering and Physics, and in the broader sense, for
everything they have given me in life. I should not fail to mention my brother Dietwin,
although our passions in life are different, for always being interested in my well-being.
And as tradition dictates, the final place is reserved for the most important person. I
wouldn’t know where to start with thanking my girlfriend —or should I say wife— Karo
for her unlimited support throughout my whole journey, and these last tough months in
particular. I am grateful for the many things, small and large. Providing me with deli-
cious meals every evening, proofreading my papers and dissertation, being my personal
scheduler, having such wonderful and helpful parents; it is only the beginning of a very
long list. Thank you for always being there for me and for helping me to accomplish my
goals. Thank you for your existence.

Jutho Haegeman
September 23rd, 2011

iv



PREFACE

This dissertation focusses on the application of variational methods to the setting of
extended quantum systems. Two major types of extended systems are lattice systems
and field theories. The start of this line of research can arguably be dated back to 1992,
when White developed its renowned density-matrix renormalization group. It was
later realized that the density-matrix renormalization group can be reformulated as a
variational method that optimizes over a class of variational ansatz states called matrix
product states. This area of research benefited greatly from insights and concepts that
were developed in quantum information theory and are now successfully applied to
quantum lattice systems and quantum field theories, with a central role being played
by the characterization of entanglement in such systems. We contribute by developing
a new method for studying time evolution of one-dimensional quantum lattices with
matrix product states, based on the time-dependent variational principle. In addition,
we introduce a new variational ansatz for studying the dispersion relation of low-lying
excitations of one-dimensional lattices, including topologically non-trivial excitations in
systems with spontaneous symmetry breaking. We also show how this ansatz is related
to the time-dependent variational principle. The same techniques for time evolution and
excitations are then applied to the setting of continuous matrix product states, which
were recently developed by Verstraete and Cirac (2010). Thirdly, we develop a continuum
formulation of the process of entanglement renormalization, introduced by Vidal in 2005.
This results in a new variational ansatz that can be used to study quantum field theories
at criticality and also has great theoretical value in the search for the relation between
entanglement renormalization and the AdS/CFT correspondence. Finally, we devote
a separate chapter to the application of these variational strategies to relativistic field
theories, where the the absence of an ultraviolet cutoff poses a major difficulty.

Keywords

entanglement, area laws, variational methods, renormalization group, holography, quan-
tum lattice systems, quantum field theories, matrix product states, continuous matrix
product states, entanglement renormalization, quantum dynamics, excitations, symme-
try breaking, domain walls and kinks, transverse Ising model, Heisenberg model, XXZ
model, Gross-Neveu model, Dirac model, Klein-Gordon model
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DUTCH SUMMARY —
NEDERLANDSTALIGE SAMENVATTING

The following pages provide a Dutch summary of the contents of this thesis.

Plaatsing van het onderzoek

Deze thesis behandelt kwantummechanische veeldeeltjessystemen van macroscopische
omvang. In tegenstelling tot microscopische systemen zoals moleculen of atoomkernen
bevatten zulke systemen een macroscopisch groot aantal deeltjes of vrijheidsgraden.
Meestal zijn we dan geïnteresseerd in de eigenschappen van de bulk, zodat de thermo-
dynamische limiet genomen wordt waarbij het aantal vrijheidsgraden oneindig wordt
en alle randeffecten verdwijnen. Macroscopische systemen vallen op te delen in twee
grote klassen: roostersystemen en veldentheorieën. Beide komen in deze thesis aan
bod.

Centraal bij onze studie van kwantummechanische roostersystemen en veldentheorieën
is een bepaling van de grondtoestand en de laagste geëxciteerde toestanden. In de termino-
logie van statistische fysica werken we dus steeds bij de absolute minimumtemperatuur
van 0 K. In een kwantummechanische formulering beogen we een accurate bepaling van
de laagste eigenwaarden, en bijbehorende eigentoestanden, van de Hamiltoniaan die het
systeem modelleert. Hiervoor gebruiken we methoden gebaseerd op het variationele
principe, dat heel krachtig is voor de benadering van kwantummechanische ééndeeltjes-
problemen. Ook voor veeldeeltjessystemen bieden variationele methoden een aantal
interessante vooruitzichten. In tegenstelling tot Monte Carlo gebaseerde technieken
voor de bemonstering van de partitiefunctie hebben variationele methoden geen last
van het beruchte tekenprobleem, dat verantwoordelijk is voor de ontoepasbaarheid
van Monte Carlo technieken op fermionische systemen of gefrustreerde spinsystemen.
Bovendien herleiden Monte Carlo technieken de kwantummechanische partitiefunctie
tot een groot aantal —hopelijk representatieve— klassieke configuraties. Informatie over
geëxciteerde toestanden kan slechts onrechtstreeks worden bekomen. Bij toepassing van
het variationele principe wordt een rechtstreekse benadering van de eigentoestanden van
de Hamiltoniaan bepaald —zowel voor de grondtoestand als mogelijks voor geëxciteerde
toestanden— wat toelaat om fundamenteel kwantummechanische eigenschappen zoals
verstrengeling te onderzoeken. Zulke eigenschappen kunnen niet of moeilijk met Monte
Carlo technieken worden bepaald. Zoals verderop wordt aangetoond, kunnen we zelfs
variationele methoden formuleren die rechtstreeks in de thermodynamische limiet of in
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DUTCH SUMMARY

het continuum werken. Onze variationele toestanden zijn intelligent genoeg geconstru-
eerd om een grondtoestand met oneindig veel vrijheidsgraden te comprimeren in een
eindig aantal variationele parameters.

Inleiding en achtergrond

Hoofdstuk 1 introduceert en bespreekt algemene begrippen en concepten die belangrijk
blijken voor de verdere studie van kwantummechanische roosterssytemen en veldentheo-
rieën. Sectie 1 behandelt algemene eigenschappen van kwantummechanische systemen in
de thermodynamische limiet. Vooraf wordt kort ingegaan op enkele moeilijkheden geas-
socieerd aan de traditionele beschrijving in termen van Hilbertruimten. Wanneer zulke
beschrijving wordt toegepast op kwantumsystemen met oneindig veel vrijheidsgraden,
leidt dit tot het probleem van unitair inequivalente representaties en —als manifestatie
hiervan— de orthogonaliteitscatastrofe: elke twee inequivalente grondtoestanden zijn
noodzakelijk orthogonaal. Een wiskundig rigoureuze behandeling vereist een formu-
lering in termen van C ∗-algebra’s, maar met enige voorzichtigheid en welwillendheid
zullen we ons in deze thesis toch beperken tot de traditionele Hilbertruimte. Vervolgens
komt de algemene structuur van het spectrum van geëxciteerde toestanden aan bod voor
systemen die invariant zijn onder translaties, een gangbare veronderstelling doorheen de
rest van dit werk. De thermodynamische limiet laat toe dat de grondtoestand ontaard
is en spontane symmetriebreking vertoont. Bepaalde symmetrieën van het systeem
komen niet tot uiting in de grondtoestand en de gebroken symmetrieën transforme-
ren de ene grontoestand in andere grondtoestanden met dezelfde energie. Net zoals
in thermodynamische systemen kan de realisatie van symmetrie in de grondtoestand
veranderen als functie van de parameters van het systeem, wat aanleiding geeft tot het
concept van kwantummechanische fasetransities. Deze spelen zich af bij temperatuur
T = 0 en worden dus niet geïnduceerd door thermische fluctuaties maar eerder door
kwantumfluctuaties.

Sectie 2 van Hoofdstuk 1 gaat dieper in op de aard van deze kwantumfluctuaties in
de meest interessante klasse van systemen: sterk gecorreleerde systemen met interac-
ties met korte dracht. Net zoals in statistische fysica maken de sterke correlaties deze
systemen ontoegankelijk voor gemiddeld-veld technieken. Deze correlaties worden nu
echter veroorzaakt door kwantummechanische eerder dan thermische fluctuaties en zijn
daardoor van een totaal verschillende aard. Een enorme vooruitgang van ons inzicht
in kwantumfluctuaties werd geboekt door de toepassing van concepten uit kwantumin-
formatietheorie. Centraal staat het begrip ‘verstrengeling’, dat uitdrukt in welke mate
twee deelsystemen van een kwantumsysteem gecorreleerd zijn op een manier die klassiek
onmogelijk is. Verstrengeling is een gevolg van de mogelijke superpositie van klassieke
toestanden in één kwantummechanische toestand. In geïsoleerde bipartiete systemen kan
deze best worden gekwantificeerd met behulp van de verstrengelingsentropie, hoewel
ook andere maten bestaan. Er bestaat geen unieke maat die optimaal is in alle om-
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standigheden, bijvoorbeeld wanneer ook klassieke correlaties aanwezig zijn (zoals bij
eindige temperatuur). Hoewel kwantumcorrelaties sterker zijn dan klassieke correlaties
in termen van de Bell-ongelijkheden, zijn ze ook aan restricties gebonden en voldoen
ze in het bijzonder aan de monogamiteitseigenschap: twee maximaal verstrengelde deel-
systemen kunnen niet verstrengeld zijn met een derde deelsysteem. In het begin van de
jaren ’90 groeide het besef dat verstrengeling tevens een belangrijke eigenschap is om het
fasediagram van kwantummechanische veeldeeltjessystemen te onderzoeken. Hoewel
de verstrengelingsentropie van een deelsysteem met de rest van het systeem evenredig is
met het volume van het deelsysteem voor willekeurige kwantumtoestanden, blijkt een
evenredigheid met de oppervlakte van de rand van het deelsysteem de gangbare regel
in de grondtoestand en laagste geëxciteerde toestanden van systemen met korte-dracht
interacties. Enkel voor de kwantummechanische kritische punten in een fasetransitie
is een logaritmische afwijking mogelijk. De determinerende grootheid blijkt het bereik
van interagerende lengteschalen, gaande van een ultraviolette minimumlengte zoals de
roosterparameter of de gemiddelde afstand tussen twee deeltjes in een niet-relativistische
veldentheorie tot een infrarode maximumlengte, zijnde de correlatielengte. In kritische
theorieën of relativistische veldentheorieën divergeert de verhouding tussen beide omdat
de correlatielengte oneindig wordt of de ultraviolette minimumlengte naar nul gaat.
In alle andere systemen blijkt deze ‘schaling met de oppervlakte’ een feit en duidt ze
op een soort intrinsieke holografische eigenschap: de informatie in de grondtoestand
van een d -dimensionaal systeem kan worden gecomprimeerd in een equivalent (d − 1)-
dimensionaal systeem. Dergelijke oppervlakteschaling werd ook gevonden voor de
entropie van een zwart gat. Theorieën voor kwantumgravitatie worden eveneens ge-
kenmerkt door een holografische principe, zoals aangetoond door ’t Hooft en Susskind
(1993). De overeenkomst tussen beide is niet enkel vanuit theoretisch oogpunt belangrijk.
De oppervlakteschaling van verstrengelingsentropie toont aan dat grondtoestanden van
systemen met korte-dracht interacties slechts een klein hoekje van de totale Hilbertruimte
kunnen bezetten. De holografische eigenschap blijkt de sleutel tot een efficiënte para-
meterisatie van dit hoekje als een klasse van variationele toestanden. Voor kritische
systemen, tenslotte, is een andere vorm van holografie belangrijk. Kritische systemen
blijken immers schaalinvariant. Maldacena was in 1999 de eerste die een holografische
equivalentie vermoedde waarbij de fysische, schaalinvariante theorie in d dimensies
nu op de rand leeft van een (d + 1)-dimensionale gravitatietheorie in een zogenaamde
anti-de Sitter ruimte. De verstrengeling van een fysisch deelsysteem werd door Ryu en
Takayanagi in 2006 gerelateerd aan de lengte of oppervlakte van de geodetische curve
of het geodetische oppervlak die het deelsysteem omgeeft in de (d + 1)-dimensionale
bulk. Op deze manier krijgt verstrengeling eveneens een geometrische betekenis, wat in
verband blijkt te staan met een andere klasse van variationele toestanden die onder meer
geschikt blijkt voor de beschrijving van kritische kwantumsystemen.

Ten slotte wordt in Sectie 3 van Hoofdstuk 1 de renormalisatiegroep geïntroduceerd.
Deze is uitermate belangrijk voor de studie van systemen met oneindig veel vrijheidsgra-
den die over een groot bereik van lengteschalen met elkaar interageren. Vertrekkende
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van de gekende renormalisatiegroep in relativistische kwantumveldentheorieën en sta-
tistische fysica belichten we ook enkele moderne ontwikkelingen. Zo valt de extra
dimensie van de anti-de Sitter ruimte in de conjectuur van Maldacena te interpreteren
als een renormalisatieschaal. Voortbouwend op Wilson’s pionierend werk introduceren
we ook het gebruik van de renormalisatiegroep als numerieke methode, in nauwe over-
eenstemming met het variationele principe. Wilson, die bijdroeg tot de ontwikkeling
van zowel de correcte interpretatie van de renormalisatiegroep als verschillende analy-
tische renormalisatieschema’s, was tevens de eerste om renormalisatie te gebruiken als
een numerieke procedure om de grondtoestand van een onoplosbare Hamiltoniaan te
benaderen. Hij bedacht reeds in 1974 een manier om het Kondo probleem —de ver-
strooiing van conductie-elektronen aan een gelokaliseerde magnetische onzuiverheid
in een metaal— af te beelden op een equivalent roosterprobleem, dat dan iteratief kan
aangroeien en waarbij de laagste energietoestanden van het vorige rooster kunnen wor-
den gebruikt om de grondtoestand van het huidige rooster te benaderen. Helaas werkte
Wilson’s aanpak niet voor algemene roosterproblemen, en dit bleef zo tot White in
1992 zijn dichtheidsmatrix-renormalisitatiegroep formuleerde. Deze methode was in
staat heel accurate waarden voor de grondtoestandsenergie van allerhande ééndimensi-
onale spinroosters te produceren en vormt nog steeds de meest krachtige methode om
ééndimensionale kwantummechanische roostersystemen te bestuderen. Enkele jaren
later werd de dichtheidsmatrix-renormalisatiegroep geherformuleerd als een variationele
methode over de klasse van matrix product toestanden. Deze doorbraken gaven het
startschot voor een hele resem aan nieuwe ontwikkelingen, geïnspireerd door inzichten
uit kwantuminformatietheorie. Renormalisatie wordt nu opgevat als een actief proces
dat inwerkt op kwantumtoestanden en iteratief informatie verwijdert, wat tot gevolg
geeft dat de verstrengeling in opeenvolgens gerenormaliseerde toestanden afneemt (of
constant wordt voor kritische punten). Dit culmineert uiteindelijk in de idee dat elke
renormalisatiegroeptransformatie voor kwantumtoestanden op zichzelf een klasse van
variationele toestanden definieert, zoals wordt aangetoond in Sectie 1 van Hoofdstuk 5.
Voor de dichtheidsmatrix-renormalisatiegroep zijn dit de matrix product toestanden,
maar deze missen de eigenschap dat ze in staat zijn verstrengeling te verminderen om-
dat ze niet op een correcte manier over de verschillende schalen werken. Een correcte
implementatie leidt uiteindelijk tot het proces van verstrengelingsrenormalisatie, dat
aanleiding geeft tot variationele toestanden die ook kritische grondtoestanden kunnen
beschrijven.

Daar waar Hoofdstuk 1 alle noodzakelijke achtergrond samenvat die nodig is voor de
formulering van geschikte klasses van variationele toestanden voor de beschrijving van
sterk gecorreleerde kwantummechanische veeldeeltjesssystemen, richt Hoofdstuk 2 zich
op de theorie die toelaat om deze variationele toestanden concreet toe te passen op
interessante systemen. Centraal is het alom gekende variationele principe, dat stelt dat de
beste benadering voor de grondtoestand van een Hamiltoniaan binnen een variationele
variëteit die toestand is die de verwachtingswaarde van de Hamiltoniaan minimaliseert.
Wanneer de variationele variëteit zelf een vectorruimte vormt die opgespannen wordt
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door een aantal basisvectoren gekozen binnen de totale Hilbertruimte leidt dit tot de
zogenaamde Rayleigh-Ritz methode. Voor een meer algemene variëteit leidt het variatio-
nele principe tot een stelsel niet-lineaire vergelijkingen waarvoor in het meest algemene
geval een benaderde oplossingsmethode nodig is. Het variationele principe is echter
niet beperkt tot het bepalen van eigentoestanden van de Hamiltoniaan. In Sectie 2 van
Hoofdstuk 2 formuleren we het zogenaamde tijdsafhankelijke variationele principe van
Dirac, dat in staat stelt de volledige dynamica van een systeem te projecteren binnen
de variationele subruimte. We tonen aan onder welke voorwaarde deze geprojecteerde
evolutie de symmetrieën van de exacte evolutie in de totale Hilbertruimte behoudt, en
construeren een foutmaat die op elk moment aangeeft hoe sterk de exacte evolutie af-
wijkt van de geprojecteerde evolutie. Wanneer het tijdsafhankelijke variationele principe
gebruikt wordt om een evolutie in imaginaire tijd te beschrijven, bekomen we een krach-
tige methode om het stelsel van niet-lineaire vergelijkingen van het tijdsonafhankelijke
variationele principe op te lossen en om dus de optimale variationele benadering van
grondtoestanden te vinden. Nadien wordt in Sectie 3 van Hoofdstuk 2 aangetoond hoe
een linearisatie van het tijdsafhankelijk variationele principe rond een optimum van het
tijdsonafhankelijk variationele principe kan gebruikt worden om te besluiten dat het
raakvlak aan het optimum een goede variationele variëteit vormt voor de beschrijving
van de laagste geëxciteerde toestanden van de Hamiltoniaan. Een benadering voor de
laagste geëxciteerde eigentoestanden van de Hamiltoniaan kan dus worden gevonden
door toepassing van de Rayleigh-Ritz methode op de vectorruimte opgespannen door
de raakvectoren van de variationele variëteit in het variationele optimum voor de bena-
dering van de grondtoestand. Tenslotte bespreken we in Sectie 4 van Hoofdstuk 2 nog
enkele bijzonderheden van het variationele principe wanneer het wordt toegepast op
systemen met oneindig veel vrijheidsgraden. We besteden in het bijzonder de nodige
aandacht aan Feynman’s ontevredenheid met het variationele principe. Feynman gaf
in 1987 drie sterke argumenten waarom hij geloofde dat het variationele principe nooit
succesvol toepasbaar zou zijn op systemen met oneindig veel vrijheidgraden. Hoewel
Feynman in de eerste plaats dacht aan relativistische kwantumveldentheorieën, gaan zijn
argumenten ook op voor de andere systemen die in deze thesis bestudeerd worden. Voor-
eerst bekritiseerde Feynman het variationele principe ervan te gevoelig te zijn aan hoge
frequenties. In systemen waarbij vrijheidsgraden over een groot bereik van lengteschalen
interageren, wordt de grondtoestandsenergie typisch gedomineerd door de vrijheids-
graden op de kortste lengteschalen. Alle variationele parameters in de variëteit zullen
door toepassing van het variationele principe zo afgestemd worden om de best mogelijke
benadering te verkrijgen van het gedrag op korte afstandsschalen. Fysische observabelen
daarentegen worden bepaald door het lange afstandsgedrag van de golffunctie en zullen
heel slecht benaderd worden. Verder was Feynman de mening toegedaan dat het quasi
onmogelijk is om een variationele ansatz te construeren die enerzijds de extensiviteit van
de grondtoestand respecteert, en anderzijds toelaat om efficiënt en nauwkeurig verwach-
tingswaarden te berekenen. Dit zijn uiteraard noodzakelijke eisen om het variationele
principe succesvol te kunnen toepassen. Deze thesis stelt tot doel om een variationale
ansatz te ontwikkelen die elk van Feynman’s argumenten overwint.
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Matrix product toestanden voor roosters en velden

Hoofdstuk 3 beschrijft de variationale variëteit van matrix product toestanden, die het
laatste decennium succesvol werd toegepast op talloze ééndimensionale roostermodellen.
Sectie 1 van dit hoofdstuk introduceert de noodzakelijke definities en vat de bestaande
literatuur in verband met de eigenschappen van deze fysische toestanden en van hun
parameterisatie als matrix product toestand samen. In de eerste plaats wordt aangetoond
waarom deze klasse van toestanden in staat is de grondtoestand van Hamiltonianen met
korte-dracht interacties accuraat te benaderen. Belangrijk is dat de verstrengelingsen-
tropie van elk deelsysteem eindig blijft, zodat matrix product toestanden niet kunnen
worden gebruikt voor kritische grondtoestanden. Elke matrix product toestand heeft
een eindige correlatielengte. Er wordt aangetoond hoe verwachtingswaarden efficiënt
kunnen worden berekend —in het bijzonder in geval van open randvoorwaarden— en
hoe systemen in de thermodynamische limiet kunnen worden beschreven. Een nieuwe
bijdrage in deze sectie is een systematische studie van het raakvlak aan de variëteit. In het
bijzonder wordt uitgebreid bestudeerd hoe de ijkvrijheid die aanwezig is in de representa-
tie van matrix product toestanden tot uiting komt in het raakvlak. Aan deze raakvectoren
werd tot voor kort geen belang gehecht, en pas met de toepassing van het tijdsafhankelijke
variationele principe en onze ansatz voor excitaties is het belang van een grondige studie
van het raakvlak duidelijk geworden. De toepassing van het tijdsafhankelijke variationele
principe vormt het onderwerp van Sectie 2 van Hoofdstuk 3. Er wordt besproken hoe
dit algoritme numeriek kan worden geïmplementeerd, zowel voor eindige roostersys-
temen met open randvoorwaarden als voor systemen in de thermodynamische limit.
In imaginaire tijd ontspruit hieruit een krachtig optimalisatie-algoritme dat een heel
accurate bepaling van het variationele optimum toelaat. Voor eindige systemen zou dit
algoritme vergeleken kunnen worden met de bestaande variationele strategie gebaseerd
op de dichtheidsmatrix-renormalisatiegroep en wordt een hogere effeciëntie verwacht.
Het resulterende algoritme werd echter enkel geïmplementeerd in de thermodynamische
limiet, omdat op deze systemen de nadruk ligt in deze thesis. Voor dynamische simu-
laties in reële tijd wordt beschreven hoe een symmetrische numerieke integrator kan
worden geconstrueerd die de tijdsomkeringsinvariantie van de differentiaalvergelijkingen
respecteert. Het resulterende algoritme overtreft bestaande algoritmes voor tijdsevolutie
met matrix product toestanden op het vlak van behoud van symmetrieën, zoals wordt
geïllustreerd aan de hand van een voorbeeld. Sectie 3 van Hoofdstuk 3 behandelt ten
slotte het gebruik van het raakvlak als ansatz voor geëxciteerde toestanden. Een efficiënte
implementatie wordt geconstrueerd. Verder wordt ook een sterk gelijkende ansatz voor-
opgesteld die kan gebruikt worden om topologisch niet-triviale excitaties te beschrijven in
systemen met spontane symmetriebreking. Aan de hand van verschillende voorbeelden
wordt aangetoond dat een uiterst accurate bepaling van dispersierelaties in spinsystemen
mogelijk is met bescheiden computationele vereisten. Tevens wordt aangetoond hoe
de bekomen dispersierelaties kunnen helpen bij de studie van kwantummechanische
fasetransities en wordt de relatie met de linearisatie van het tijdsafhankelijk variationele

xii



NEDERLANDSTALIGE SAMENVATTING

principe expliciet geïllustreerd.

In 2010 werd door Verstraete en Cirac een continue matrix product toestand ontwikkeld,
die kan gebruikt worden voor de rechtstreekse studie van ééndimensionale veldenthe-
orieën. Voordien was het enkel mogelijk om veldentheorieën te bestuderen door ze
eerst te discretiseren en op een rooster te plaatsen. De variationele variëteit van con-
tinue matrix product toestanden wordt behandeld in Hoofdstuk 4. Deze klasse van
toestanden werd ontwikkeld door het nemen van een continuumlimiet voor een speciale
subklasse van matrix product toestanden, en is uitermate geschikt voor de beschrijving
van niet-relativistische systemen met een eindige dichtheid aan deeltjes. De gemiddelde
afstand tussen twee deeltjes speelt nu de rol van een effectieve ultraviolette lengteschaal.
Relativistische theorieën missen zulke ultraviolette minimumlengte en vereisen een spe-
ciale behandeling, wat het onderwerp vormt van Hoofdstuk 6. De volledige analyse
van Hoofdstuk 3 kan worden overgedaan voor continue matrix product toestanden.
Gezien de recente ontwikkeling van deze klasse van toestanden zijn de meeste resultaten
in Hoofdstuk 4 nieuw en tot op heden ongepubliceerd. Bovendien zijn er weinig of
geen referentiemogelijkheden, op exacte modellen na. De implementatie van het tijdsaf-
hankelijk variationele principe en van de Rayleigh-Ritz methode voor excitaties in het
raakvlak wordt ontwikkeld in Sectie 2 van Hoofdstuk 4. Aangezien de interpretatie
parallel is aan deze uit Secties 2 en 3 van Hoofdstuk 3, ligt de nadruk op de afleiding en
de implementatie. De resulterende algoritmen worden toegepast op twee eenvoudige
voorbeelden in Sectie 3, waar wordt aangetoond dat een vergelijkbare nauwkeurigheid
als voor roostersystemen met matrix product toestanden haalbaar is.

Renormalisatie van verstrengeling

Matrix product toestanden —voor roostersystemen of voor veldentheorieën— zijn ex-
tensieve toestanden die toelaten om op efficiënte wijze verwachtingswaarden exact te
berekenen. Op deze manier overwinnen ze reeds twee van Feynman’s argumenten. Ze
worden echter geplaagd door de gevoeligheid aan hoge frequenties wanneer het bereik van
interagerende schalen divergeert, wat verklaart waarom ze niet kunnen worden toegepast
op kritische theorieën. In Hoofdstuk 5 wordt dit probleem geanalyseerd in de context
van renormalisatiegroeptransformaties die werkzaam zijn op kwantumtoestanden. De
renormalisatiegroeptransformatie geassocieerd aan matrix product toestanden is niet
voldoende in staat om de verschillende lengteschalen die werkzaam zijn in het systeem te
scheiden. Een verbeterde poging leidt tot de zogenaamde ‘renormalisatie van verstren-
geling’, een proces dat werd geïntroduceerd voor roostersystemen door Vidal in 2005.
Deze verbeterde renormalisatiegroeptransformatie definieert een nieuwe variationele
klasse die het concept van matrix producten veralgemeent tot een contractie van een
tensornetwerk en wel in staat blijkt om kritische grondtoestanden te beschrijven. De ei-
genschappen van deze variationele ansatz voor roostersystemen in willekeurige dimensies
d worden besproken in Sectie 1 van Hoofdstuk 5. In het bijzonder ondersteunen deze
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toestanden algebraïsch afvallende correlatiefuncties (dus met oneindige correlatielengte)
en logarithmisch divergerende verstrengelingsentropie in ééndimensionale systemen.
Bovendien laten deze toestanden eenvoudig toe om kritische exponenten te berekenen
in de buurt van kwantummechanische fasetransities, en vertoont de geometrie van het
tensornetwerk een kwalitatieve overeenkomst met de geometrie van de anti-de Sitter
ruimte in de Maldacena-conjectuur.

Sectie 2 van Hoofdstuk 5 bespreekt hoe we er in geslaagd zijn om een continuüformule-
ring van het concept ‘renormalisatie van verstrengeling’ te definiëren. De geassocieerde
variationele ansatz kan eveneens gebruikt worden voor een rechtstreekse studie van
veldentheorieën. We tonen aan dat deze toestanden dezelfde eigenschappen hebben
als hun roostervariant. Bovendien illustreren we hoe deze toestanden een renormali-
satiegroeptransformatie induceren die rechtstreeks toepasbaar is op operatoren eerder
dan op verwachtingswaarden van operatoren. Deze continuümformulering zal hopelijk
bruikbaar zijn in verder onderzoek naar het verband tussen renormalisatie van verstren-
geling en de Maldacena-conjectuur. De variationele parameters van onze ansatz zijn nu
kwantummechanische veldoperatoren en niet langer tensoren, wat nadelig is vanuit prak-
tisch oogpunt. De renormalisiegroepvergelijking voor operatoren wordt in het meest
algemene geval sterk niet-linear en kan niet exact worden geïntegreerd. Een numerieke
implementatie van het variationele principe voor de meest algemene ansatz is dan niet
meer vanzelfsprekend en vormt stof voor verder onderzoek. Desalniettemin kunnen
we enkele interessante eigenschappen van onze ansatz illustreren door te beperken tot
een subklasse van Gaussische toestanden, wat het onderwerp vormt van Sectie 3 van
het desbetreffende hoofdstuk. In het bijzonder tonen we aan dat deze in staat zijn om
quasi exact de grondtoestand van vrije theorieën te beschrijven. In de buurt van een
kritisch punt kunnen we uit de renormalisatiegroepvergelijking voor schalingsexponen-
ten en bijbehorende schalingsoperatoren afleiden. Tot slot onderzoeken we ook hoe
een uitbreiding van onze ansatz aanleiding kan geven tot logaritmische afwijkingen
van de schalingswet voor verstrengelingsentropie voor dimensies d > 1, zoals wordt
waargenomen in kritische fermionsystemen.

Relativistische kwantumveldentheorieën

Doorheen deze thesis werden nieuwe methoden ontwikkeld die werden getoetst aan
gebruikelijke referentiemodellen. Eén van de initiële doelstellingen van deze thesis was
ook om deze verschillende klassen van variationele methoden toe te passen op relati-
vistische kwantumveldentheorieën. Door het gebrek aan een expliciete ultraviolette
minimumlengte vereisen deze een speciale behandeling en vormen ze het onderwerp van
Hoofdstuk 6. Sectie 1 beschrijft de traditionele aanpak. Een interessante relativistische
veldentheorie in één dimensie, het Gross-Neveu model, wordt gediscretiseerd en de
veldoperatoren worden op roostersites geplaatst. Dit lost het divergentieprobleem op,
aangezien de momentumruimte en dus het bereik van interagerende schalen eindig wordt.
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We kunnen deze roostertheorie bestuderen met onze methoden uit Hoofdstuk 3 geba-
seerd op de klasse van matrix product toestanden. Onze resultaten kunnen echter pas
worden vergeleken met analytische oplossingen van de veldentheorie als we de gepaste
continuümlimiet nemen. Deze vereist dat de correlatielengte constant wordt gehouden
terwijl de roosterparameter naar nul wordt geschaald en correspondeert dus met een
kritische punt van de roostertheorie. In deze limiet wordt het moeilijk om accurate
resultaten te bekomen met de matrix product toestand. In Sectie 2 van Hoofdstuk 6
trachten we daarom rechtstreeks de continue matrix product toestand toe te passen. In
het continuüm is de afwezigheid van een minimale lengteschaal echt catastrofaal, zoals
voorspeld door Feynman. Zonder een manuele toevoeging van een ultraviolette schaal
kunnen geen zinvolle resultaten worden bekomen. We bespreken hoe de continue matrix
product toestand ons dus tot een nieuwe manier leidt om relativistische kwantumvelden-
theorieën te regulariseren en niet-perturbatieve resultaten te bekomen. We passen dit
toe op zowel vrije Dirac-fermionen, waarvan we tevens de Casimir-energie berekenen
met onze numerieke aanpak, als op het Gross-Neveu-model. Tot slot schakelen we in
Sectie 3 van dit hoofdstuk over op de continue verstrengelingsrenormalisatie-ansatz.
Hoewel we voorlopig beperkt zijn tot vrije theorieën levert dit toch reeds enkele nuttige
inzichten op. Ook bij deze strategie zijn we verplicht om handmatig een ultraviolette
momentumschaal in te voeren, maar nu kunnen we deze terug naar oneindig zenden
op het einde van het proces. We bestuderen vrije fermionen (Dirac-veld) en bosonen
(Klein-Gordon-veld) in een willekeurig aantal dimensies.

Besluiten en vooruitzichten

In dit gebied van de fysica zijn we op een uiterst interessant punt gekomen waar er
sterke kruisbestuiving is tussen vele verschillende onderzoeksdomeinen die elk op zich
reeds hun diensten bewezen hebben. De samenkomst van ideeën uit vaste-stoffysica,
kwantuminformatietheorie, renormalisatiegroeptheorie en zelfs kwantumgravitatie heeft
tot een resem aan baanbrekende ontwikkelingen geleid. Centraal staat de vaststelling dat
verstrengelingsentropie schaalt als de oppervlakte van de rand, die toelaat te besluiten dat
ook in kwantumveeldeeltjessystemen een holografisch principe werkzaam is. Dit heeft
geleid tot de formulering van nieuwe klassen van variationele toestanden die willekeurig
ver kunnen afwijken van de Gaussische toestand uit de gemiddeld-veld theorie, en toch
toelaten om efficiënt en nauwkeurig verwachtingswaarden te berekenen. We zijn tevreden
om een bescheiden bijdrage aan dit gebied te kunnen leveren, en voorzien een aantal
intrigerende ontwikkelingen die hieruit zouden kunnen voortvloeien.

In Hoofdstuk 3 werd een nieuw algoritme voorgesteld om tijdsevolutie in ééndimensio-
nale kwantummechanische roostersystemen te simuleren met matrix product toestanden,
alsook een nieuwe variationele ansatz voor excitaties. Deze blijken extreem nauwkeurig
en bovendien computationeel efficiënt. Het expliciet inbouwen van bepaalde symme-
trievoorwaarden zou de methoden verder ten goede komen. Het meest uitdagende
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vooruitzicht is echter om deze technieken ook toe te passen op meer algemene tensor
netwerk toestanden die de veralgemening vormen van de matrix product toestand voor
hogerdimensionale roostersystemen. Hoewel dit eenvoudige idee vrij snel zal leiden tot
een heel complex algoritme met vele iteratieve en benaderde stappen, toch is het voor-
uitzicht van een accurate bepaling van dispersierelaties in willekeurige roostersystemen
uitermate aanlokkelijk. Aangezien onze methoden polynomiaal schalen in de parameter
die de nauwkeurigheid bepaald, zal zulke implementatie zeker haalbaar worden naarmate
de rekenkracht van computers verder toeneemt.

Totaal vernieuwend is de formulering van een niet-Gaussische variationele ansatz die
rechtstreeks op kwantumveldentheorieën kan worden toegepast, zoals ontwikkeld door
Verstraete en Cirac in 2010. In deze thesis werden de variationale technieken uit Hoofd-
stuk 3 ook toegepast op deze continue matrix product toestand, zowel voor niet-relati-
vistische veldentheorieën in Hoofdstuk 4 als voor relativistische theorieën in Sectie 2
van Hoofdstuk 6. Relativistische theorieën vereisen de invoering van een nieuwe regu-
larisatiestrategie die voorlopig enkel toepasbaar is op fermionische systemen. Hoewel
ééndimensionale relativistische bosontheorieën een andere regularisatiestrategie vereisen,
staat er verder niets in de weg om deze ook met de continue matrix product toestand te
bestuderen. Verder dringt de vraag zich op of ook deze ansatz een veralgemening kent
voor hoger-dimensionale systemen. Hoewel er reeds een voorstel werd gegeven in de
literatuur, moet nog worden uitgezocht of het mogelijk is om het variationele optimum
op een numerieke manier te bepalen. Zelfs indien dit niet mogelijk blijkt, kunnen zulke
meer-dimensionale ansätze toch nut hebben voor theoretische doeleinden.

Tot slot is er de continuümformulering van ‘renormalisatie van verstrengeling’. De meest
fundamentele vraag betreft hier de mogelijkheid om het variationele principe toe te
passen op een niet-Gaussisch element uit deze variationale variëteit. Dit zou toe laten
om de renormalisatiegroep op een variationele manier te implementeren: de aanwezige
vrijheidsgraden zouden optimaal gekozen worden om de beste benadering te vinden voor
de grondtoestand van algemene veldentheorieën, zonder dat er gevreesd moet worden
voor Feynman’s gevoeligheid aan hoge frequenties. De variationele vrijheidsgraden
bepalen het gedrag op een specifieke lengteschaal en worden niet beïnvloed door de
kortste lengteschalen die de energie domineren. Een andere beloftevolle denkpiste is
het vinden van een kwantitatief verband tussen ‘verstrengeling van renormalisatie’ en de
Maldacena-conjectuur met behulp van onze continuümansatz. Een formele afleiding zou
kunnen dienen als bewijs van deze conjectuur en zou tevens toelaten om holografisch
duale theorieën te construeren voor modellen die niet schaalinvariant zijn.
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INTRODUCTORY REMARKS

General introduction

This dissertation deals with extended quantum systems, which, in contrast to microscopic
systems such as molecules and nuclei, contain a macroscopic number of particles or
degrees of freedom. The main focus of this dissertation is on the bulk properties of
such systems, which allows us to take the thermodynamic limit: the number of degrees
of freedom becomes infinite and all boundary effects or finite size effects disappear.
Extended quantum systems contain two major classes: lattice systems and field theories.
Both are studied in this dissertation.

The main objective of our study is a determination of the ground state and possibly lowest
excited states of a quantum lattice system or a quantum field theory. In terms of statistical
physics, we are always working at the absolute zero temperature. Our main objective is
thus to find the lowest eigenvalues and corresponding eigenvectors of the Hamiltonian
that describes the system. Our toolbox contains methods based on the variational
principle, which has proven extremely powerful for single particle quantum mechanics.
Additionally, it offers interesting prospects for quantum many body systems as well.
In contrast to techniques based on Monte Carlo sampling of the partition function,
variational strategies do not suffer from the notorious sign problem, that hinders the
applicability of Monte Carlo methods to fermionic systems and frustrated spin systems.
Since Monte Carlo methods reduce the partition function to a number of classical
configurations, which are hopefully representative, information about e.g. excited states
can only be extracted indirectly. This is in sharp contrast to variational approaches,
where a direct approximation of the eigenvectors of the Hamiltonian —both the ground
state as well as excited states— can be constructed, allowing a direct exploration of
fundamental quantum mechanical properties such as entanglement. Such properties are
hard to probe with techniques based on Monte Carlo sampling of the classical partition
function. As will be illustrated throughout this dissertation, variational ansätze can be
constructed that can directly be applied in the thermodynamic limit or in the continuum
(i.e. to field theories). The variational classes explored in this dissertation are constructed
in such an intelligent manner that they can compress the ground state of systems with an
infinite number of degrees of freedom into a finite set of variational parameters.
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INTRODUCTION

Overview

This area of research has progressed quickly over the last two decades thanks to a cross
fertilization between different branches of theoretical physics, including condensed
matter physics, quantum information theory and renormalization group theory, with
even some ingredients of quantum gravity added to the picture. Chapter 1 extracts a
general background from each of these fields. Section 1 introduces basic notions about
quantum lattice systems and quantum field theories. While the mathematically rigorous
framework for quantum systems with an infinite number of degrees of freedom is briefly
highlighted, we choose to stick to a traditional description in terms of Hilbert spaces and
only remind to be cautious. The nature of the spectrum of excited states for translation
invariant systems is discussed, as well as the aspect of symmetry and breaking thereof.
The concept of quantum phase transitions is introduced. The true quantum nature of
these systems is only fully appreciated thanks to insights from quantum information
theory, which awards a key role to the concept of entanglement, as discussed in Section 2.
The pursuit of the characterization of entanglement in quantum many body systems has
resulted in the observation that ground states of quantum theories with short-ranged
interactions are special. The entanglement of a subsystem with the remainder scales only
as the area of its boundary in gapped systems, with possible logarithmic corrections at
quantum critical points. This observation implies that quantum ground states have a
holographic property which reminds strongly of similar statements in quantum gravity
theories. Section 3 discusses the basics of renormalization group theory, which is the
required tool to deal with systems with degrees of freedom interacting over a large range
of length scales. Starting from the traditional framework in relativistic quantum field
theory and statistical physics, we also discuss the revolutionary work of Wilson and
later White to use renormalization as a numerical approach to approximate eigenstates
of quantum Hamiltonians. In addition, we discuss the modern approach to apply
renormalization group transformations as an active process on quantum states, which
removes short distance information and hence reduces entanglement under successive
transformations.

While Chapter 1 summarizes all necessary background information to formulate ad-
equate variational ansätze for ground states of extended quantum systems, Chapter 2
discusses in great detail the set of tools that can be used to actually apply these ansätze in
approximation methods for eigenstates of the Hamiltonian. After discussing the well
known time-independent variational principle in Section 1, we devote Section 2 to the
time-dependent variational principle of Dirac, which allows to project a complete quan-
tum dynamical time evolution into the variational manifold. Furthermore, Section 3
illustrates how the time-dependent variational principle associates to any variational
manifold a new variational manifold, namely the tangent plane of the original manifold
at the variational optimum, for studying excited states of the system. Finally, Section 4
discusses some peculiarities regarding the application of the variational principle to
quantum systems with an infinite number of degrees of freedom, with in particular
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some important arguments of Feynman that need to be kept in mind throughout the
remainder of this dissertation.

Chapter 3 introduces the variational manifold of matrix product states for studying
one-dimensional quantum lattice systems. Its main properties are well studied in the
literature and summarized in Section 1. In addition to a literature survey, this section
provides a systematic study of the tangent vectors of matrix product states, as required
for the remainder of this chapter. Section 2 discusses how to apply the time-dependent
variational principle to the class of matrix product states and explains its benefits over
existing methods for both real and imaginary time evolution, which are then also
illustrated with numerical examples. The third section elaborates on the implementation
of our ansatz for excitations and introduces a similar ansatz for topologically non-trivial
excitations in systems with spontaneous symmetry breaking. The adequacy of these
ansätze are illustrated using examples.

Chapter 4 applies the same analysis to the variational manifold of continuous matrix
product states, a revolutionary new ansatz developed by Verstraete and Cirac in 2010, that
can be directly applied to quantum field theories. Section 1 discusses their basic properties
and their close relationship with matrix product states for lattice systems. The application
of the time-dependent variational principle and the ansatz for excitations to continuous
matrix product states is completely parallel to the case of matrix product states, so
that Section 2 of Chapter 4 focusses mainly on the derivation of the required formulae
and the construction of an efficient implementation. The power and possibilities of
continuous matrix product states are illustrated in Section 3 using two simple benchmark
models.

Chapter 5 starts with an exploration of the general relationship between renormalization
strategies and variational ansätze in Section 1. This allows to conclude that the renor-
malization scheme associated to matrix product states is not able to separate degrees
of freedom living at different length scales and can thus be improved, resulting in the
entanglement renormalization scheme developed by Vidal in 2005. Fundamental proper-
ties of the associated multi-scale entanglement renormalization ansatz are discussed. In
Section 2, we develop a continuum formulation of the process of entanglement renor-
malization and hence define a new variational ansatz for quantum field theories. While a
direct application of the variational principle to this manifold is far from trivial, we do
show that our ansatz has very promising features. We further illustrate this in Section 3
by using a restricted submanifold of Gaussian instances that are used to approximate the
ground states of free field theories.

The last chapter is devoted to the study of relativistic theories, which require a separate
treatment due to the lack of an ultraviolet cutoff scale. The traditional approach is to
discretize the fields and put them on the sites of a lattice, to which we can now apply the
matrix product state. This approach is explored in Section 1 of Chapter 6. In the second
section, we try to use the newly developed continuous matrix product state, which
automatically directs us towards a new regularization scheme for relativistic quantum
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field theories. In Section 3, we use the continuous entanglement renormalization ansatz
of Chapter 5 to describe the ground state of free field theories and show that we can
easily send the cutoff scale back to infinity.

A note on notation

We have tried to maintain a consistent notation throughout this dissertation. The follow-
ing conventions were used. General sets or manifolds are denoted with a calligraphic font
S ,L ,M , . . . . If a set S has a notion of cardinality or volume, this value is denoted
as |S |. Vector spaces and Hilbert spaces as well as the elementary fields of the natural,
integral, real and complex numbers are denoted with a blackboard bold font V,H, N, Z,
R and C. Elements of a general vector space are denoted using a bold font v, unless they
correspond to spatial vectors in the Euclidean space Rd , in which case an arrow notation
~v is employed. The norm of the vector is denoted as ‖~v‖. The symbol d is reserved for
the number of spatial dimensions. The standard notation L(V) is used for the space of
linear transformations or homomorphisms of a vector space V, while the notation TM
is reserved for the tangent plane of a manifoldM . Endomorphisms or general linear
maps between different vector spaces are denoted using a script font M, E, P, . . . , which
should be distinguishable from the calligraphic font S ,L ,M for sets and manifolds.
The symbol O is reserved for the mathematical ‘order’ operator, used in both series
expansions and in the specification of computational complexity. Symmetry groups
are denoted with a sans serif font G. For example, the standard groups of unitary and
special unitary transformations of degree D are denoted as U(D) and SU(D). The general
linear group of degree D over the real or complex numbers is denoted as GL(D;R) or
GL(D ;C). Algebras are denoted using a fraktur font A. In particular, the group algebra
corresponding to a group G is denoted using a small latter g. For the standard groups,
this results in the notations u(D), su(D), gl(D ;R) or gl(D ;C).
This dissertation deals with extended quantum systems, which, as we explain in the next
chapter, should in principle be described using a C ∗-algebra A of observables, where
quantum states correspond to linear functionals on A. We always use capital greek
letters Ψ, Φ, Ξ for pure quantum states, while sticking to the traditional notation ρ
for a mixed state. Small greek symbols ψ, φ are reserved for one-particle quantum
states, which are not encountered often. In the traditional description in terms of a
Hilbert space H, the pure states Ψ corresponds to kets |Ψ〉 ∈H, whereas mixed states
ρ correspond to density operators ρ̂ ∈ L(H). All operators in L(H) are denoted with
a hat, including the unit operator 1̂. Hermitian conjugation of operators is denoted
using the dagger † superscript. We also introduce the bras 〈Ψ| as linear functionals onH.
Unless specified otherwise, the symbol Ψ is reserved for ground states, while Φ and Ξ
correspond to topologically trivial and topologically non-trivial excitations respectively.
In quantum field theories, the field operators in real-space are denoted as ψ̂(~x), φ̂(~x) or
π̂(~x), corresponding to the interpretation of ‘second quantized’ one-particle functions.
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The Fourier transformed fields in momentum space are denoted as Ψ̂ (~p), Φ̂(~p) and Π̂(~p),
which should be distinguishable from quantum states since slanted greek capitals are
used (and the hat points to their operator character). The notation p is reserved for
momentum, both on the lattice ( p ∈ [−π,π)) as in the continuum ( p ∈R). The gradient
is denoted as ~∇ in real space, while the analogous gradient in momentum space is denoted
as ~È (which is not the Fourier transform of ~∇).

In Chapters 3 and 4 we will encounter virtual systems or ancillae corresponding to a
virtual Hilbert spaceHancilla =CD . Elements ofHancilla are denoted using the standard
vector notation v, whereas operators (D × D matrices) are denoted without special
indication. We do however introduce a special notation for the Hilbert spaceHancilla⊗
Hancilla. Elements and linear functionals of this Hilbert space are denoted using a rounded
braket notation |v) and (v |, while operators of L(Hancilla⊗Hancilla) are denoted using a
breve Ĕ . While this summarizes most of the special notations encountered throughout
dissertation, any additional non-standard notation will be properly defined at time of
introduction.
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1
THE CORNERSTONES

This chapter introduces some basic notions about extended systems that are governed
by the laws of quantum mechanics. Fundamental properties of quantum systems are
revised. The concept of entanglement is defined and its importance is motivated. Entan-
glement characterizes the strong quantum fluctuations that are present in ground states
of quantum mechanical systems. In extended systems, these fluctuations exist over a wide
range of scales. Another important development that enables us to deal with phenomena
occuring at such wide range of scales is renormalization, which is the topic of the last
section. This chapter thus summarizes some hallmarks of modern theoretical physics
that are of key importance for the developments in the remainder of this thesis.

1. Quantum mechanics of extended systems

This dissertation treats many-body theories and field theories that are described by the
postulates of quantum mechanics. Extended systems or field theories have degrees of
freedom associated to every site or point of a lattice or a continuum of macroscopic
dimensions. For all practical purposes, the volume of the system can be considered
infinite, and so is the number of degrees of freedom. In addition, we often assume that
these systems are translation invariant, unlike finite systems such as molecules, nuclei,
etc.

The physical state Ψ of a quantum system at a certain point of time t is described by
a wave vector |Ψ(t )〉 that lives in a Hilbert space H, or more generally by a density
operator ρ̂(t ) ∈L(H), which is a self-adjoint, positive, linear operator of unit trace [1].
A general density operator ρ̂ describes a mixed state ρ. The density matrix of a pure
state Ψ is given by ρ̂Ψ = |Ψ〉 〈Ψ| and has a single eigenvalue 1. Physical observables A are
identified with self-adjoint operators Â∈L(H), and its expectation value for a system in
state ρ is given by

〈Â〉= tr[ρ̂Â] (1.1)

The density operator ρ̂ itself is associated to the observable corresponding to the state-
ment “the system is in the state ρ”. While this formalism is highly successful for single
particle and few-particle quantum mechanics, it is plagued by difficulties for systems
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with an infinite number of degrees of freedom, i.e. for the systems under study in this
dissertation. This was first noted in [2, 3, 4, 5, 6].

From an operational point of view, a more general algebraic construction of quantum
mechanics is obtained by specifying the set of observables A of the theory. One can
easily show that this set has an identity and can be given the structure of a C ∗-algebra A
[7, 8], for which the observables correspond to the self-adjoint elements. The state of
the system is then given by a linear functional ρ : A 7→C that satisfies

• ∀A∈A : ρ(A†A)> 0 (positivity),

• ρ(1A) = 1 (normalization).

As linear functionals, a pure state Ψ is set apart from a mixed state ρ by the fact that the
latter can be decomposed as a convex sum

ρ= λρ1+(1−λ)ρ2, 0< λ< 1. (1.2)

while this is impossible for the former. From this abstract setting, a representation of
observables as operators acting on a Hilbert space of states can be recovered through
the Gelfand-Naimark-Segal (GNS) construction [9, 10]. A brief elaboration is in order,
as the GNS construction will implicitly be used a number of times in the remainder of
this section. A ∗-representation of a C ∗-algebra A is in this context formally defined as
a mapping π from A to the algebra B(H) ⊂ L(H) of bounded operators on a Hilbert
spaceH (i.e. π : A 7→B(H) : A 7→π(A) = Â), such that

• π is a ring homomorphism (π(A+ B) = π(A) +π(B) and π(AB) = π(A)π(B),
∀A,B ∈A) which carries involution on A into involution of operators;

• π is non-degenerate (i.e. the set {π(A) |Ψ〉 ,∀A ∈ A,∀|Ψ〉 ∈ H} is dense in H),
which implies that π(1A) = 1̂.

If there exists a vector |Ψ〉 ∈ H, such that the set {π(A) |Ψ〉 ,∀A ∈ A} is norm-dense
in H, then the representation π is cyclic and |Ψ〉 is called the cyclic vector. The GNS
construction asserts that for a given pure state Ψ (a linear functional on A) there is
a cyclic ∗-representation π of A with a cyclic vector |Ψ〉 such that 〈Ψ|Â|Ψ〉 = Ψ(A),
∀A ∈ A. The GNS construction is typically used in combination with the ground
state of a given Hamiltonian H . In the resulting Hilbert space, |Ψ〉 is the ground state
of the Hamiltonian operator Ĥ = π(H ), and Ĥ can be diagonalized to yield the full
spectrum of excitations. If the representation π is irreducible, every vector in H is a
cyclic vector, so the construction also works by starting from excited states. Difficulties
arise in systems with an infinite number of degrees of freedom, because the observables
A∈ A that define the theory and the canonical commutation relations between them
can have different unitarily inequivalent representations. Different states Ψ then define
different Hilbert spaces H(Ψ) that can be completely disjoint (i.e. any vector from one
Hilbert space has zero overlap with any vector from another Hilbert space).

This dissertation restricts to a description in terms of Hilbert spaces and operators. For
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systems with an infinite number of degrees of freedom we often implicitly assume that
this Hilbert space was obtained by applying the GNS construction to the ground state.
Some of the ‘complications’ related to this approach are mentioned throughout this
section and will also be encountered in later chapters. Nevertheless, we will not use an
explicit description in terms of C ∗-algebras and will always assume that we can embed
the relevant physical states in a total Hilbert spaceH. We thus take a pragmatic view: we
use the nice properties of systems with an infinite number of degrees of freedom —e.g.
possibility for translation invariance, symmetry breaking, etc in the thermodynamic
limit— but avoid the mathematical difficulties as much as possible by assuming, when
necessary, that the number of degrees of freedom is finite. Hereto we assume that e.g.
the volume is finite, albeit macroscopically large, or that a continuous system has an
intrinsic cutoff at some fundamental scale. This seems to correspond to the physical
reality, since no physical system (including the universe) is truly infinitely large and since
fundamental field theories are predicted to have a discrete structure at the Planck scale
by quantum gravity.

1.1. Quantum lattice models

A latticeL can formally be defined as a discrete subsetL ⊂Rd , where d can be identified
with the number physical space dimensions. To every site ~n ∈ L , we associate an
elementary quantum variable with Hilbert spaceH~n . The dimension q~n = dimH~n can be
finite, e.g. when the site contains a elementary spin J variable (q = 2J +1) or accomodates
N species of particles with fermion statistics (q = 2N ), or can be denumerably infinite,
e.g. when the site accomodates one or more species of particles with bosonic statistics.
The state of the quantum system defined on the latticeL is given by a wave vector in or
a density operator on the Hilbert space

HL =
⊗
~n∈L
H~n . (1.3)

In most physical systems, all sites are equivalent and q~n = q , ∀~n ∈ L . If we assume
that we can construct the Hilbert space H~n by acting with creation operators ĉ†

~n
on a

reference state |0~n〉 ∈Hn that is annihilated by the corresponding annihilation operator
ĉ~n (i.e. ĉ~n |0〉~n = 0), then

H~n = span
� (ĉ†

~n
)s

p
s !
|0〉~n ,∀s ∈Zq

�
. (1.4)

This construction is valid for fermions, bosons and spin-½ systems (where ĉ~n = σ
−
~n

and ĉ†
~n
= σ+

~n
). The generalization to a multi-particle setting or general spin-J systems is
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straightforward. We can then directly constructHL

HL = span
�∏
~n∈L

(ĉ†
~n
)s~n

p
s~n !
|0〉 ,∀s ∈Z⊗Lq

�
, (1.5)

where the product
∏

~n∈L has a fixed order if the creation operators at different sites
anticommute (fermion statistics), and the reference state |0〉 is defined as

|0〉=
⊗
~n∈L
|0〉~n . (1.6)

The dimension ofHL is
dimHL = q |L | (1.7)

and scales exponentially in the number of sites |L |. This exponential scaling is the basis
for the complexity of quantum systems. It restricts the application of exact numerical
techniques (exact diagonalization) to very low values of |L |. Even for the simplest
quantum system with q = 2, a doubling in computing power only enables an increase of
the maximal system size that can be studied by one site.

The above construction starts from the full Hilbert spaceH~n of a single site ~n (i.e. any
number of particles) and subsequently adds other sites to construct HL . It can only
formally be defined through a limit procedure if |L | = +∞. A Hilbert space for a
quantum lattice model can also be defined using the Fock construction [11], even when
|L |=∞. The Fock construction starts from the single-particle problem on the lattice
L , corresponding to the Hilbert space

H(1)L = span
� |~n〉 ,∀~n ∈L 	, (1.8)

where the basis vector |~n〉 = ĉ†
~n
|0〉 indicates that the particle is localized at site ~n and

〈~n| ~m〉= δ~n, ~m . Next, the Hilbert space for the N -particle problem is defined as

H(N )L = span
�∏
~n∈L

(ĉ†
~n
)s~n

p
s~n !
|0〉 ,∀s~n ∈Zq |

∑
~n∈L

s~n =N
�

, (1.9)

resulting in dimH(N )L =
�|L |+N−1

N

�
if q is denumerably infinite and dimH(N )L =

�|L |
N

�
if

q = 2. Finally, the Fock space is constructed as

HF
L =

(q−1)|L |⊕
N=0

H(N )L . (1.10)

The standard procedure is to first construct Fock space and then define the creation
and annihilation operators afterwards, as we will do for continuous systems in the
next subsection. For bosons (fermions), the N -particle Hilbert spaceH(N )L contains all
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symmetric (antisymmetric) tensors of rank N , where the indices can take values inL .
H(0)L is identified with C. For a lattice L of finite size |L |, the Fock construction is
equivalent to the previous construction (i.e. HL ≡ HF

L ). However, problems arise in
the thermodynamic limit (|L | →∞), since the corresponding limit of the dimension
ofHL given in Eq. (1.7) (lim|L |→+∞ q |L |) represents a non-denumerable infinity, both
for q finite and q denumerably infinite. In contrast, the Fock construction HF

L can

be obtained as the direct sum of the N -particle Hilbert spaces H(N )L directly in the
thermodynamic limit, and thus has a denumarably infinite dimension by construction.
Indeed, lim|L |→∞ dimH(N )L = lim|L |→∞O(|L |N ) represents a denumerable infinity and

thus so does dimHF
L =

∑+∞
N=0 dimH(N )L . The difference between both Hilbert spaces can

be understood by noting that every state |Ψ〉 ∈HF
L produces a finite expectation value

for the number operator:

〈Ψ|N̂ |Ψ〉
〈Ψ|Ψ〉 <∞,∀|Ψ〉 ∈HF

L , (1.11)

with
N̂ =

∑
~n∈L

ĉ†
~n

ĉ~n , (1.12)

while it is easy to construct a normalized state |eΨ〉 ∈HL for which the expectation value
of N̂ diverges.

If we construct a different set of creation operators ˆ̃c†
~n

—related to ĉ†
~n

and ĉ~n through

a local Bogoliubov transform [12]— with corresponding annihilation operator ˆ̃c~n and
vacuum |0̃~n〉 (such that ˆ̃c~n |0̃~n〉= 0), then the Hilbert space of the single sites ~n can also
be constructed as

H~n = span
� (ˆ̃c†

~n
)s

p
s !
|0̃〉~n ,∀s ∈Zq

�
.

We can then define the Hilbert space H̃F
L by applying the Fock construction to the

different one-particle Hilbert space

H̃(1)L = span
� |~̃n〉= ˆ̃c†

~n
|0̃〉 ,∀~n ∈L 	 (1.13)

with |0̃〉=⊗~n∈L |0̃〉~n . If |L |=∞, the overlap between any state |Ψ〉 ∈HF
L and any state

|Ψ̃〉 ∈ H̃F
L satisfies 〈Ψ|Ψ̃〉= 0. The Hilbert spaces HF

L and H̃F
L constitute inequivalent

representations of the algebra of observables of the theory. In particular, the expectation
value of the number operator N̂ defined with respect to the operators (ĉ†

~n
, ĉ~n) diverges

for any state |Ψ̃〉 ∈ H̃(F)L , indicating that H̃(F)L is not in the domain of definition of N̂ . The

different Fock spacesH(F)L and H̃(F)L divide the formally defined Hilbert spaceHL into
mutually exclusive “equivalence classes”, where states within an equivalence class differ
from each other by at most a finite number of occupation numbers. There are no proper
unitary operators transforming a set of states from one equivalence class to another. The
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number of equivalence classes is also denumerably infinite. The implications of these
observations are studied in the next subsection.

1.2. Quantum field theories

Let now the region R be a continuous subset R ⊂ Rd , with a corresponding size or
volume |R|. To every point ~x ∈R , we can associate an elementary Hilbert spaceH(~x).
The Hilbert space of a quantum system defined onR can formally be defined through
the continuum limit of some lattice approximation ofR . More precisely, if {Lk ,∀k ∈N}
represents a set of lattices that satisfyLk ⊂R , ∀k ∈N and limk→+∞Lk is dense inR ,
then we can formally define

HR = lim
k→+∞
HLk

. (1.14)

An example is to takeR = [0,1]⊂R andLk = {i/2k ,∀i ∈Z2k+1}. Since limk→∞ |Lk |=
+∞, this construction indicates that problems that were encountered for lattice models
in the thermodynamic limit can already appear for quantum field theories in regionsR
of finite size |R|<∞.

A rigorous definition of a Hilbert space for a non-relativistic quantum field theory
on R is obtained through the Fock construction. The quantum mechanical wave
function of a non-relativistic particle on R is a vector in the Hilbert space of square
integrable functions on the region R , so that H(1)R = L2(R). In order to define the
N -particle Hilbert space, we define the symmetric (S) or antisymmetric (A) subspace
R (N )

S,A
of R (N ) = R ×R × · · · ×R (Cartesian product of N copies of R), and define

H(N )R = L2(R (N )
S,A
), with S for bosons and A for fermions. Finally, the Fock space is

constructed as

H(F)R =
+∞⊕
N=0

H(N )R . (1.15)

In Fock space, we can construct for every point ~x ∈ R creation and annihilation
operators ψ̂†(~x) and ψ̂(~x) that satisfy

{ψ̂(~x), ψ̂†(~y)}∓ = δ(~x −~y), ∀~x,~y ∈Rn , (1.16)

with {·, ·}∓ representing a commutator (−) for bosons and an anticommutator (+) for
fermions. The number operator is defined as

N̂ =
∫
R

dd x ψ̂†(~x)ψ̂(~x) (1.17)

and has a finite expectation value with respect to all states |Ψ〉 ∈HF
R .

If |R| is finite, H(1)R has a denumerably infinite dimension and an orthonormal basis
{|ϕk〉 , k ∈N} can be constructed. We can define then creation and annihilation opera-
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tors

ĉ†
k
=
∫
R

dd x ϕk (~x)ψ̂
†(~x), ĉk =

∫
R

dd x ϕk (~x)ψ̂(~x), (1.18)

so that the reference vacuum |Ω〉 ∈H(0)R is completely characterized by ĉk |Ω〉= 0 and the

one-particle states |ϕk〉 are obtained as |ϕk〉= ĉ†
k
|Ω〉. All N -particle Hilbert spacesH(N )R

are denumerably infinite-dimensional, and so is HF
R . Ground states and excited states

of non-relativistic field theories on finite regionsR (|R|<∞) have a finite number of
particles and can thus be described in HF

R . Despite the infinite number of degrees of
freedom in a field theory, non-relativistic field theories are well behaved because they
possess an intrinsic cutoff: the finite number of particles in the ground state |Ψ〉 of a
Hamiltonian defines a particle density ρ= 〈Ψ|N̂ |Ψ〉/|R| that will be related to a real
space cutoff length a = ρ−1/d , with d the number of dimensions of space. As for quantum
lattice models, the mathematical complications only appear in the thermodynamic limit.
As a particular example, the vacuum state |Ω〉 is the only translation invariant state that
can be normalized to one in the thermodynamic limit. All other translation invariant
states (momentum zero) in H satisfy a δ-normalization. A nontrivial, normalizable
and translation invariant ground state of a translation invariant Hamiltonian is thus
unitarily inequivalent to the vacuum state |Ω〉 and lives in a different Hilbert space. This
phenomenon is called the orthogonality catastrophe by Anderson [13]. Because it depends
on the system size, it is an infrared effect.

Matters are more complicated for relativistic theories, as they cannot easily be described
in a fixed Fock space. Relativistic theories should be described in the Hilbert space created
using the GNS constructions starting from the exact ground state (as linear functional in
the C ∗-algebra of observables). Thus, constructing the Hilbert space requires knowledge
of the exact ground state. Consider as an example a scalar massive boson (such as the
scalar meson) described by the free Klein-Gordon Hamiltonian with mass parameter
m. While this model is typically defined inR =Rd , problems already arise in regions
R with finite size. We therefore consider a Klein-Gordon Hamiltonian in a subspace
R = [0, L]d and introduce periodic boundary conditions, so that R is topologically
equivalent to the d -dimensional torus T (d ). The relevant Hilbert space for this theory
can be obtained by applying the Fock construction to the single particle Hilbert space,
which is given by H(1)R = L2

µ
(R), i.e. the space of functions that are square integrable

with respect to the measure µ, i.e.

∀φ,ψ ∈H(1)R : (φ,ψ)µ =
∫
R

dd x
∫
R

dd yµ(~x,~y)φ(~x)ψ(~y)<∞ (1.19)

with

µ(~x,~y) =
1

Ld

∑
~k∈Zd

ei 2π~k
L ·(~x−~y)

È�
2π‖~k‖

L

�2
+m2

. (1.20)
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As the measure µ depends on the parameter m of the Hamiltonian, so does the single
particle subspaceH(1)R . The resulting Fock spacesHF

R corresponding to different values of
the mass parameter m are unitarily inequivalent. Since this is already true at systems of fi-
nite size |R|<∞, there is now an ultraviolet orthogonality catastrophe. More generally,
Haag’s theorem proofs that any two inequivalent ground states of relativistic theories (as
linear functionals on the C ∗-algebra of observables) define unitarily inequivalent Hilbert
spaces [14, 15], based on the following assumptions:

1. Lorentz covariance of the Hamiltonian;

2. the existence of a positive-definite norm in each Hilbert space;

3. local commutativity, i.e. operators at spacelike different spacetime points commute;

4. existence of a Lorentz invariant and normalizable vacuum;

5. positive-definiteness of the excitation spectrum.

Within each Hilbert spaceHF, there is a unique normalizable and Lorentz invariant state.
This has serious implications, since ground states corresponding to slightly different
values of the parameters in the theory are unitarily inequivalent. Hence, the interaction
picture, which forms the basis for perturbation theory, does not even exist! Now suppose
that the Hilbert spaces corresponding to all possible ground states can be embedded in
a formally defined Hilbert spaceH (e.g. using the lattice approximation), that contains
several (non-denumerably infinitely many) normalizable and Lorentz invariant states.
Then we can conclude that the difference between the expectation value of a Lorentz
covariant Hamiltonian with respect to its ground state and with respect to another
Lorentz-invariant normalizable state is a Lorentz invariant quantity. But since it is an
energy (difference), the only Lorentz-invariant possibilities are either zero or infinity.
The Hamiltonian can thus have a degenerate ground state subspace, but the energy
expectation value with respect to any other Lorentz-invariant normalizable state diverges!
This explains the divergence of the ground state energy of an interacting field theory
when it is evaluated in the Hilbert space constructed for the free theory.

Most of these problems can be avoided by introducing a cutoff into the theory, which
will also be our strategy henceforth. Obtaining physically unambiguous results from
this strategy requires the introduction of the renormalization group, to be developed in
Section 3.

1.3. Ground states and excitations of physical systems

Let us now assume that the correct Hilbert space H for a particular system has been
constructed, so that the Hamiltonian has a representation as a linear operator Ĥ ∈L(H).
We are most often interested in the ground state and lowest lying excited states of this
Hamiltonian, i.e. its lowest lying eigenvalues and the corresponding eigenvectors. Most
physically interesting models have local interactions, so that the Hamiltonian can be

14



§1. Quantum mechanics of extended systems

written as

Ĥ =
∑
~n∈L

ĥ~n or Ĥ =
∫
R

dd x ĥ(~x) (1.21)

where ĥ~n or ĥ(~x) acts non-trivially only on a small region around site ~n ∈L or point
~x ∈ R . No attempt is made to define the necessary conditions more formally. In ad-
dition, one can often assume that the Hamiltonian is translation invariant, so that all
operators ĥ~n or ĥ(~x) are shifted versions of a unique operator ĥ with compact support.
The Hilbert space can then be divided into sectors with different momentum, and the
Hamiltonian will be block diagonal with respect to this division. It can thus be diago-
nalized within the different momentum sectors. The resulting eigenvalues for different
values of the momentum constitute the spectrum of the Hamiltonian. We have assumed
that the ground state is unique and falls in the trivial representation of the translation
symmetry (i.e. in the momentum zero sector). If the ground state manifold would be
degenerate, then we know from the previous subsections that different ground states
generate inequivalent Hilbert spaces (through the GNS construction) in the thermody-
namic limit. In particular, if some of these ground states break translation invariance, the
corresponding Hilbert space would not even constitute a representation for the group of
translations. This more general scenario is treated in the next subsection.

Let us now quantify these statements. For lattice systems, translations constitute a
discrete symmetry group and there is no generator that can be identified with the
momentum operator. We can however introduce a unitary translation operator T̂i
that shifts a state |Ψ〉 ∈ H over a single lattice site in dimension i = 1,2, . . . , d . Shifts
over m ∈Z lattice sites in dimension i are obtained by acting with (T̂i )

m . Translation
invariance of the system is thus characterized by [T̂i , Ĥ] = 0, ∀i = 1,2, . . . , d . For
a system with periodic boundary conditions of length Ni in dimension i , we obtain
(T̂i )

Ni =±1 (+ for bosons and even number of fermions, − for odd number of fermions).
The spectrum of eigenvalues of T̂i is then given by

σ(T̂i ) =
¨
λ(k)i = exp

�
−i

2πk

Ni

�
,∀k ∈ZNi

«
(1.22)

or by

σ(T̂i ) =
¨
λ(k)i = exp

�
−i

2π

Ni

�
k +

1

2

��
,∀k ∈ZNi

«
(1.23)

respectively. In the thermodynamic limit (Ni →∞), the distinction between both cases
disappear and the spectrum becomes continuous:

σ(T̂i ) =
n
λ(k)i = exp[−ik],∀k ∈ [−π,+π)

o
. (1.24)

The values pi = i log(λi ) ∈ [−π,+π) can be identified with the momentum in dimension
i = 1,2, . . . , d of the corresponding eigenstates.
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CHAPTER 1. THE CORNERSTONES

For field theories, translations constitute a continuous symmetry group that is generated
by Hermitian operators which are identified with the momentum operator. A translation
over a distance x ∈R in a dimension i is obtained by the action of the unitary operator
T̂i (x) = exp(−ixP̂i ). Translation invariance is obtained if [Ĥ , P̂i] = 0, ∀i = 1,2, . . . , d .
If the system is periodic in dimension i with total length Li , then the spectrum of P̂i is
given by

σ(P̂i ) =
¨

p (k)i =
2πk

Li
,∀k ∈Z

«
(1.25)

or by

σ(P̂i ) =
¨

p (k)i =
2π

Li

�
k +

1

2

�
,∀k ∈Z

«
(1.26)

when an odd number of fermions are present. In the thermodynamic limit (Li →∞),
the continuous spectrum is given by

σ(P̂i ) = {pi ,∀pi ∈R} . (1.27)

The corresponding eigenspaces divide H into the aformentioned momentum sectors
which are labeled by the eigenvalue pi .

Every eigenstate of the Hamiltonian represents a physical state with a real energy ex-
pectation value that is stable (i.e. it does not decay) and does not interact with other
states (since the matrix element of Ĥ with respect to two different eigenstates is zero by
definition). For extended systems with translation invariance and short-ranged interac-
tion, the spectrum of eigenstates is expected to have some nice properties. It should be
possible to create states that look similar to the ground state1 in most ofL orR , and
deviate only in a compact subspace ofL orR . Because of the assumed locality of the
terms ĥn or ĥ(x) in the Hamiltonian, this disturbance is only felt in a (slightly larger)
compact region, resulting in a finite increase in energy for this state. These local clumps
of energy are henceforth referred to as elementary excitations. Of course, eigenstates of
momentum represent superpositions of these local disturbances that are spread out all
over space. Nevertheless, because the system is supposed to be in the thermodynamic
limit, it should even be able to support any finite number of these elementary excitations
—each with fixed momentum— and still keep them sufficiently far apart so that they do
not feel each others presence (because the interaction is assumed to be short-ranged). If
these properties are fulfilled, the spectrum of excited states has a special structure that
was described by Lieb [16]:

“ . . . and as is undoubtedly true, in general, the spectrum of low-lying
states falls into a pattern. There exists one or more sets of energy vs momen-
tum curves such that: (a) For each point on one of these curves there is an
eigenstate; (b) if we add together the energy and momenta corresponding
to several points on one or more of the curves, we obtain (in the thermody-

1 This qualitative statement is to be made more precise in the next subsection.
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namic limit) a resultant energy and momentum corresponding to an exact
wave function of the system. The converse is also true: every state can be
thought of as a sum of the elementary states.

These basic energy vs momentum curves we call elementary excitations.
From this point of view, elementary excitations are a bookkeeping arrange-
ment. There does not exist any simple operator which, acting on the ground
state, gives these elementary states, nor can “compound” states be obtained
from the elementary ones by simple operators. Nevertheless, when one
attempts to diagonalize the many-body Hamiltonian by some method, it is
the elementary excitations in the above sense that one is calculating . . . ”

The elementary excitations correspond to the physical notion of a particle, which have a
specific energy versus momentum relationship that is called the dispersion relation.

1.4. Symmetries and spontaneous breaking thereof

In the previous subsection, translation invariance was used to divide the Hilbert spaceH
into different sectors in which the Hamiltonian is block diagonal. Let us first assume that
the number of degrees of freedom is finite, so that there are no representation problems
and there is a unique and well-defined Hilbert space H. In general, any symmetry of
the Hamiltonian can be used to further divide the Hilbert space. Let thus g ∈ G be a
symmetry transformation corresponding to a symmetry group G that can be discrete or
continuous. The Hilbert spaceH constitutes a representation of G in terms of unitary
(or anti-unitary) operators Û (g ), as was proven by Wigner [17]. If the symmetry
transformations in G leave the Hamiltonian invariant (i.e. [Û (g ), Ĥ ] = 0, ∀g ∈ G), then
we can use the decomposition of H into irreducible representations of G to bring the
Hamiltonian into block-diagonal form. Translation invariance that was exploited in
the previous subsection is a particular example of this general result. Other symmetry
transformations related to the spacetime structure of the system are rotations, Galileo
or Lorentz transformations, parity transformations and time-reversal transformations.
These last two are discrete symmetry transformations that are obtained by the unitary
operator Π̂i (for a reflection through the hyperplane orthogonal to dimension i at
the origin) and by the anti-unitary operator R̂ (for a time-reversal transformation).
For bosonic systems, the parity transformation and the time-reversal transformation
are idempotent (as in classical physics), so that Π̂i = Π̂

†
i = Π̂

−1
i (∀i = 1,2, . . . , d ) and

R̂= R̂−1 (one cannot define the adjoint of an anti-linear operator). Fermionic systems
are more complicated, since a state |Ψ〉with half-integral spin satisfies R̂2 |Ψ〉=−|Ψ〉 and
Π̂2

i |Ψ〉=−|Ψ〉. Note that Π̂i T̂i Π̂
†
i = T̂ †

i , so that parity transformations and translations
do not commute. As a consequence, they cannot be diagonalized simultaneously. A
state with momentum pi is transformed into a state with momentum −pi by the parity
transform. Only the zero momentum sector can be further subdivided into sectors
corresponding to even or odd parity.
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Besides symmetries related to the spacetime structure of the model, the Hamiltonian can
also be invariant with respect to a group of internal symmetry transformations. These act
on the quantum variables within the local Hilbert spacesH~n (~n ∈L ) orH(~x) (~x ∈R)
rather than on the spacetime structure of the model. Most common are global symmetries
where the transformation can be defined locally as û~n(g ) ∈L(H~n) or û(g ;~x) ∈L(H(~x)),
∀g ∈ G and ∀~n ∈L or ∀~x ∈R , but where the Hamiltonian is only invariant under the
global transformations Û (g ) ∈L(H), defined by

Û (g ) =
⊗
~n∈L

û~n(g ) or Û (g ) =
⊗
~x∈R

û(g ;~x), (1.28)

so that [Ĥ , Û (g )] = 0, ∀g ∈ G. Note that transformation operators that can be defined in
this way are translation invariant ([Û (g ), T̂ ] = 0). A different class of symmetries are the
local or gauge symmetries, for which the Hamiltonian commutes with transformation
operators that are non-trivial only at a small number of sites ofL or a small region of
R . No attempt is made to define these in a general setting, since they are not used in this
dissertation.

Global symmetries can manifest themselves in two ways: In the Wigner-Weyl realization,
the ground state is unique and transforms according to a one-dimensional representation.
Typically, the ground state is assumed to transform according to the trivial representation.
One notable exception is the abelian group U(1) corresponding to particle number or
charge conservation, for which all irreducible representations are one-dimensional, and
ground states corresponding to each irreducible representation can be created by adding
a suitable chemical potential to the Hamiltonian. Since the Hamiltonian commutes with
all symmetry operators, all eigenstates of the Hamiltonian can be labeled by irreducible
representations of the symmetry group G. All eigenstates within a certain irreducible
representation have the same energy eigenvalue, which can thus also be labeled by these
quantum numbers. If the Wigner-Weyl realization survives the thermodynamic limit
or continuum limit, these statements remain true and the Hilbert space associated to
the ground state through the GNS construction still constitutes a representation for
the symmetry group. Another possibility in the thermodynamic limit is the Nambu-
Goldstone realization, where there exists a higher-dimensional manifold of ground states
that are not individually invariant under the symmetry transformations: this corresponds
to the well-known phenomenon of symmetry breaking. This realization is a consequence
of the infinite number of degrees of freedom and cannot exist for systems with a finite
number of degrees of freedom (except for some pathologically simple models where
quantum fluctuations are totally absent, i.e. classical models). At finite size, different
candidate ground states can tunnel into each other and quantum fluctuations restore
the symmetry. A gap opens between the nondegenerate ground state and the lowest
lying excited state. This gap vanishes exponentially in the system size. In the Nambu-
Goldstone realization, a Hilbert space H(Ψ) can be constructed from every symmetry
breaking ground state |Ψ〉 through the GNS construction. This Hilbert space does not
constitute a representation of the symmetry group, i.e. the transformation operators
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§1. Quantum mechanics of extended systems

Û (g ) do not even exist within thisH(Ψ)2.

Because the Nambu-Goldstone realization cannot be described within a single Hilbert
space, we would need to resort to a description in terms of the C ∗-algebra A of observ-
ables for a further discussion of the properties of this realization (see [18]). For the sake
of simplicity, we assume that the relevant problem can be described in a ‘total’ Hilbert
spaceH, e.g. by taking the direct sum of all inequivalent Hilbert spacesH(Ψ) obtained by
applying the GNS construction to all possible ground states Ψ. The different ground
states Ψ can then be represented as vectors |Ψ〉 ∈H and span a subspace S(g) ⊂H. The
transformation operators are improper unitary operators inH. They can be used to map
different ground states, and in fact their corresponding Hilbert spaces, to each other. We
can then also try to decompose the ground state subspace into the different irreducible
representations of G. Let now S ⊂ G be the largest subgroup of G, which leaves every
state within the ground state subspace S(g) unchanged. For any g ∈ G and s ∈ S, and for
an arbitrary ground state |Ψ〉 ∈ S(g) we find

Û (g )Û (s)Û (g )† |Ψ〉= Û (g )Û (s) |Ψ′〉= Û (g ) |Ψ′〉= |Ψ〉

so that every ground state is also invariant under the action of Û (g s g−1) and S must be
an normal subgroup of G. The Hilbert space H(Ψ) obtained from an arbitrary ground
state |Ψ〉 ∈ H(Ψ) ⊂ H only constitutes a representation of the smaller group S (i.e. the
operators Û (s ) are proper unitary operators inH(Ψ), ∀s ∈ S) and the ground state |Ψ〉 is
in the trivial representation of S. In the total Hilbert spaceH, the ground state subspace
S(g) constitutes an improper representation of the quotient group Z= G/S. Define gz ∈ G
as the group element that corresponds to the elements z ∈ Z of the quotient group, so
that G=

⋃
z∈Z{gz s ,∀s ∈ S}. Because infinitely many quantum variables are non-trivially

affected by the improper operators Û (gz ), they can be collected into effectively classical
variables that can be identified with the elements z ∈ Z. More precisely, the ground state
subspace S(g) can be identified with the regular representation3 of Z. It is possible to
choose a ground state |Ψ1〉 and identify ground states to any z ∈ Z as

|Ψz〉= Û (gz ) |Ψ1〉 , (1.29)

so that 〈Ψz |Ψz ′〉= δz,z ′ and

S(g) = span{|Ψz〉 ,∀z ∈ Z}. (1.30)

These special states |Ψz〉 correspond to our intuitive notion of classical symmetry break-
ing solutions (e.g. a ferromagnet pointing in a specific direction), whereas a general
quantum mechanical ground state can be in any superposition of these ‘classical states’.
Using these states |Ψz〉 as basis for S(g) does identify the ground state subspace with

2 Unless the Hilbert space is constructed using a ground state in the trivial representation [see Eq. (1.31)].
3 In principle, it is also possible that S(g) contains the regular representation an integral number of times. As this

is often a consequence of a remaining hidden symmetry that has not been exploited, we ignore this subtlety.
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the regular representation of Z, since Û (gz ′) |Ψz〉 = Û (gz ′ gz ) |Ψ1〉 = |Ψz ′z〉, ∀z, z ′ ∈ Z.
The ground state subspace S(g) thus contains all irreducible representations of Z, and in
particular it contains one state |Ψtriv〉 in the trivial representation of Z and of G. This
state can be obtained as

|Ψtriv〉 ∼
∫

G
dg Û (g ) |Ψ〉=

∫
Z

dz Û (gz ) |Ψ〉 (1.31)

for any ground state |Ψ〉 ∈ S(g). Different Hilbert spacesH(Ψz ) andH(Ψz′ ) are completely
disjoint and the ‘total’ Hilbert space H is obtained as H =⊕z∈ZH(Ψz ). Furthermore,
we can use the improper unitary transformations to map these Hilbert spaces onto each
other as Û (gz ′)H(Ψz ) = {Û (gz ′) |Φ〉 ,∀|Φ〉 ∈H(Ψz )}=H(Ψz′ z ).

We now introduce the concept of an order parameter, which is an observable that maps
to an operator Ô ∈L(H)—we still assume the existence of the total Hilbert space H—
and satisfies ∫

G
dg Û (g )ÔÛ (g )† = 0. (1.32)

The order parameter can be a scalar, vector or tensor quantity. For a ground state |Ψ〉
in the trivial representation (which is typically the case in the Wigner-Weyl realization),
〈Ψ|Ô|Ψ〉 = 0. However, when the ground state subspace is higher-dimensional and
contains non-trivial irreducible representations (Nambu-Goldstone realization), the
restriction of Ô to the ground state subspace S(g), to which we henceforth refer as Ô (g),
is not trivially zero. We can then try to diagonalize Ô (g) and use the set of eigenvectors as
a basis for the ground state manifold S(g). One can easily be convinced (intuitively) that
these states also correspond to the notion of classical symmetry breaking solutions, so
that the eigenvectors of Ô (g) are precisely the states |Ψz〉. Henceforth, we refer to these
states as the ground states with maximal symmetry breaking. A specific state |Ψz〉 can be
physically obtained by coupling the order parameter to some external field in a suitable
manner, and determining the ground state of the system in the limit for which the field
strength goes to zero. For symmetries that can be defined from local transformation
operators [as in Eq. (1.28)], it is possible to also define the order parameter locally, which
we denote as ô~n (~n ∈ L ) or ô(~x) (~x ∈ R). The ground state subspace always contains
linear superpositions |Ψ〉 of the states |Ψz〉, in particular the state |Ψtriv〉 in the trivial
representation [see Eq. (1.31)], that have 〈Ψ|Ô|Ψ〉 = 0. Symmetry breaking can thus
not always be detected from the expectation value of the order parameter. However, for
a given ground state |Ψ〉 ∈ S(g), the Nambu-Goldstone realization can be detected by a
non-vanishing limit

lim
‖ ~m−~n‖→∞

G(o)
~m,~n
6= 0 or lim

‖~x−~y‖→∞
G(o)(~x,~y) 6= 0 (1.33)

where the correlation function of the local order parameter is defined as

G(o)
~m,~n
= 〈Ψ|ô ~m ô~n |Ψ〉 ,∀ ~m,~n ∈L or G(o)(~x,~y) = 〈Ψ|ô(~x)ô(~y)|Ψ〉 ,∀~x,~y ∈R . (1.34)
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This definition also allows to illustrate the difference between the ground states |Ψz〉 of
maximal symmetry breaking and a general superposition

|Ψ〉=
∑
z∈Z

cz |Ψz〉 . (1.35)

The ground states of maximal symmetry breaking satisfy the property

lim
‖ ~m−~n‖→∞

〈Ψz |ô ~m ô~n |Ψz〉= 〈Ψz |ô ~m |Ψz〉 〈Ψz |ô~n |Ψz〉
or lim

‖~x−y‖→∞
〈Ψz |ô(~x)ô(~y)|Ψz〉= 〈Ψz |ô(~x)|Ψz〉 〈Ψz |ô(~y)|Ψz〉 (1.36)

so that the long-range limit of the connected correlation function

Γ(o)
~m,~n
= 〈Ψ|(ô ~m −〈Ψ|ô ~m |Ψ〉)(ô~n −〈Ψ|ô~n |Ψ〉)|Ψ〉 ,∀ ~m,~n ∈L

or Γ(o)(~x,~y) = 〈Ψ|(ô(~x)−〈Ψ|ô(~x)|Ψ〉)(ô(~y)−〈Ψ|ô(~y)|Ψ〉)|Ψ〉 ,∀~x,~y ∈R . (1.37)

vanishes, a property that is called clustering. In contrast, for the superposition |Ψ〉 of
Eq. (1.35) we obtain

lim
‖ ~m−~n‖→∞

〈Ψ|ô ~m ô~n |Ψ〉=
∑
z∈Z

cz 〈Ψz |ô ~m |Ψz〉 〈Ψz |ô~n |Ψz〉

6= 〈Ψ|ô ~m |Ψ〉 〈Ψ|ô~n |Ψ〉
or lim

‖~x−~y‖→∞
〈Ψ|ô(~x)ô(~y)|Ψ〉=

∑
z∈Z

cz 〈Ψz |ô(~x)|Ψz〉 〈Ψz |ô(~y)|Ψz〉

6= 〈Ψ|ô(~x)|Ψ〉 〈Ψ|ô(~y)|Ψ〉
(1.38)

and the connected correlation function does not vanish in the long-range limit. The
importance of the clustering property will become clear in the next sections.

So far, only properties of the ground states of systems with symmetry breaking have
been discussed. For every ground state |Ψ〉 ∈ S(g), the corresponding Hilbert spaceH(Ψ)
constitutes a representation of the Hamiltonian as a Hermitian operator Ĥ , that can
be diagonalized to yield the excitation spectrum. If |Ψ〉 is translation invariant and the
Hamiltonian is local [as in Eq. (1.21)], the excitation spectrum has the same properties
as for the case of a unique ground state discussed in the previous subsection, i.e. all
states will either describe an elementary excitation or a finite number thereof. The same
spectrum is obtained for any chosen ground state |Ψ〉 and corresponding eigenvectors
can be mapped across different Hilbert spaces with the improper unitary operators
Û (gz ), ∀z ∈ Z. In addition, the local order parameter ô will map to 〈Ψ|ô|Ψ〉 1̂, since a
finite number of excitations cannot change its value. These states are said to describe
topologically trivial excitations.

In local systems with a Nambu-Goldstone realization of symmetry, it is also possible
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to have topologically non-trivial excitations [19]. These go under the name of solitons,
kinks, domain walls, . . . Like particles, they represent states with a finite amount of
energy that is localized in a space. At the boundary ofL orR —which lies at infinite in
the thermodynamic limit— these states are also locally similar to a ground state. But since
there is now a range of ground states, it is possible to construct states with this property
that have a non-trivial topology. Assume for the sake of simplicity that the state under
construction is locally similar to a ground state |Ψz〉 of maximal symmetry breaking,
where the index z can smoothly change along the boundary ∂L or ∂R . Imposing that
a state looks similar to a ground state at the boundary ∂L or ∂R thus boils down to
specifying a continuous4 map ϕ from ∂L or ∂R to Z. If these maps can be continuously
deformed to a single point z ∈ Z, the state is topologically trivial. More generally,
we define an equivalence relation between maps such that two maps are equivalent if
they are homotopic (i.e. if they can be continuously deformed into each other). The
physical motivation for this definition is the assumption that a local Hamiltonian can
only induce a local change to a state, corresponding to a continuous deformation. The
different equivalence classes of all possible maps ϕ : ∂L → Z or ϕ : ∂R → Z constitute
a group, the homotopy group H. Excited states with a finite, localized energy can
thus be labeled by an element h ∈ H, which is often called the topological quantum
number. Topologically trivial excited states correspond to the unit element h = 1.
Topologically non-trivial excitations correspond to the other elements h ∈ H. The group
multiplication rules dictate the possible scattering processes that are allowed between
these kind of excitations, e.g. an excitation with topological quantum number h can
combine with an excitation with topological quantum number h−1 in order to decay
into a topologically trivial excitation, or a ground state. A single topological excitation
with h 6= 1 is automatically stable against decay into the ground state. A simple example
is that of a one-dimensional system (so that ∂L or ∂R contains two separated points)
that breaks a discrete ZN symmetry, the corresponding homotopy group of which is
ZN . For two-dimensional systems on a flat surface, ∂R is topologically equivalent to S1
(the circle), and the homotopy group is given by the first fundamental homotopy group
π1(Z). In particular, π1(Z) = 0 for all discrete groups Z. Finally, note that systems with
periodic boundary conditions have ∂L = ; or ∂R = ;, and topologically non-trivial
excitations are impossible.

We conclude this subsection by stating some interesting theorems related to symmetry
breaking in quantum systems. Firstly, Goldstone’s theorem (and its non-relativistic
counterpart) states that the breaking of a continuous symmetry results in the existence

4 This definition only works well for systems in the continuum (i.e. field theories), since a continuous map
cannot be defined on the discrete space ∂L . The underlying physical assumption is that the change of the
index z that labels the ground state to which the excitation is locally similar, is sufficiently slow and hence
negligable within the support of a single term h(x). This term can thus not detect the difference between
the true ground state |Ψz 〉 and the excited state. For lattice systems, we analoguously assume that a map is
‘continuous’ if the change in the index z is arbitrarily small over a number of sites given by the support of the
local energy terms hi . More formally, since ∂L contains infinitely many points (in the thermodynamic limit),
we can embed it in a compact continuous spaceK such that ∂L is dense inK . The map ϕ on ∂L can then
be called continuous if it has a continuous extension onK .
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of massless excitations with boson statistics, called Nambu-Goldstone bosons [20, 21,
22, 23]. If the symmetry group G is a Lie group with Lie algebra g, and the unbroken
subgroup S corresponds to the Lie algebra s, then the number of Goldstone bosons is
given by dimg−dims= dimz, with z the Lie algebra of the quotient group Z. However,
Goldstone bosons are very uncommon in d = 1 (spatial) dimension, since continuous
symmetries corresponding to an order parameter that does not commute with the
Hamiltonian cannot be broken in one-dimensional quantum systems at zero temperature
(i.e. ground states) according to Coleman’s theorem [24]. This is the quantum version of
the Mermin-Wagner-Hohenberg theorem in statistical mechanics [25, 26]. The massless
Nambu-Goldstone bosons that would result from such breaking restore the symmetry for
d = 1 spatial dimensions due to their strong contribution to the quantum fluctuations in
the ground state. At finite temperature, thermal fluctuations of these massless excitations
can similarly restore the symmetry in d = 2 (spatial) dimensions. Local symmetries can
never be broken according to Elitzur’s theorem [27]. This can easily be understood in
the same way that spontaneous breaking of global symmetries is not possible for a finite
number of degrees of freedom. Since local symmetries only act locally, they can only
detect a finite number of degrees of freedom and fluctuations are always able to restore
the symmetry. Nevertheless, there is the possibility of the Englert-Brout-Higgs-Guralnik-
Hagen-Kibble mechanism [28, 29, 30], which corresponds to a breaking of the global
symmetry that remains after the gauge degrees of freedom have been fixed. Finally, we
note that it is possible for quantum systems to have a degenerate ground state manifold
without breaking any symmetry. This is discussed in the next subsection.

1.5. Quantum phases and quantum order

As discussed in the previous subsection, Hamiltonians that are invariant with respect to
the action of some symmetry transformations can roughly be divided into two classes,
depending on how this symmetry is manifested in the ground state. Consequently, it
is possible —in the thermodynamic limit— that the symmetry manifestation changes
from the Wigner-Weyl realization to the Nambu-Goldstone realization as a parameter
in the Hamiltonian is varied. This process is very familiar to the statistical mechanics
of classical models, where such a ‘classical’ phase transition is triggered by a change of
temperature T . Analoguously, the corresponding transition in the ground state (thus at
T = 0) of a quantum Hamiltonian is called a quantum phase transition [31, 32]. More
specifically, we are discussing second order quantum phase transitions where the energy is
continuous but not analytical at the point of the transition. As mentioned, this requires
an infinite number of degrees of freedom, as the ground state energy should be analytical
in all parameters of the Hamiltonian for any model with a finite number of degrees of
freedom (except in the case of a simple level crossing). A quantum phase transition —just
like a classical phase transition— separates two phases of matter that differ in the type
of order and correlations that are present in the ground state. But this transition is now
triggered by quantum fluctuations rather than thermal fluctuations. These quantum
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fluctuations behave differently —they can have quantum statistics— and the difference
between quantum and classical (thermodynamic) phase transitions that originate from
this are outlined in the following sections.

All second order classical phase transistions are captured by the Landau-Ginzburg-
Wilson paradigm [33, 34, 35, 36], that links all phase transitions to a change in the
manifestation of a symmetry of the model, as measurable by a local order parameter.
This framework explains the universality hypothesis, since observational physics near
the critical point is determined by the long-wavelength (low-energy) fluctuations of the
order-parameter degree of freedom, so that the only relevant parameters are the number
of spatial dimensions d and the type of order parameter. However, not all quantum
phase transitions correspond to a change in the symmetry pattern in the ground state.
Quantum systems do allow for other types of order that are not related to symmetry and
have no classical analogon. In particular, quantum systems can undergo phase transitions
without changing the realization of the symmetry, or without having any symmetry at
all! In such a phase transition, the quantum state develops topological order[37]. The
effective low energy behavior is then not described by a Landau-Ginzburg-Wilson field
theory for the order parameter, since topological order cannot be detected with local
order parameters. Topological order is even hard to define in general. Some properties
of a topologically ordered phase are:

• gapped spectrum (i.e. finite separation between the lowest eigenvalue (possibly
degenerate) and the second lowest eigenvalue of the Hamiltonian);

• ground state degeneracy depends on the topology ofL orR ;

• different ground states seem ‘locally’ similar;

• elementary excitations with fractional statistics (anyons).

The third property indicates that no local order parameter can detect the presence of
topological order. Whereas a phase transition towards an ordered state in the previous
case resulted in symmetry breaking, topological order is associated with an increase
of symmetry: it looks very much like a liquid phase and the corresponding phase is
often called a quantum liquid. Topological order can be explained through the physical
mechanism of string-net condensation[38], which shows that infinitely many different
topological orders can exist. The best known example of topological order in nature
is the fractional quantum Hall effect[39, 40], but other realizations have been found.
Whereas the mathematical foundation of symmetry-breaking order is group theory, a
complete classification of the possible topological orders is attempted through tensor
category theory [41].

As a last point, we introduce the fidelity F between two quantum states. The fidelity is a
measure for the “closeness” of two quantum states, and is for pure states Ψ and Ψ′ given
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by the absolute value of the overlap

F (Ψ,Ψ′) =
|〈Ψ|Ψ′〉|Æ
〈Ψ|Ψ〉 〈Ψ′|Ψ′〉

. (1.39)

A generalized definition for mixed states also exists [42, 43]. If F = 1, the states are
identical. In the thermodynamic limit, the fidelity scales to zero due to the orthogonality
castrastrophe. The rate of “orthogonalization” ro can be defined through

lim
|L |→∞

F ∼ e−ro|L | or lim
|R|→∞

F (Ψ,Ψ′)∼ e−ro|R| (1.40)

for two states Ψ or Ψ′ living on the latticeL or in the continuumR . In the continuum,
ro scales as r0 ∼ a−d with a the cutoff length, and hence diverges for relativistic theories.
Either ro = 0 if Ψ and Ψ′ live in the same Hilbert space, or ro =+∞ if the states Ψ and
Ψ′ live in unitarily inequivalent Hilbert spaces. Consequently, F = 0 already occurs for
systems of finite size, corresponding to the ultraviolet character of the orthogonality
catastrophe in relativistic theories. On the lattice, ro is dimensionless and can be used to
define a fidelity per site d (Ψ,Ψ′) = ero , or thus directly as

d (Ψ,Ψ′) = exp

�
lim
|L |→∞

log F (Ψ,Ψ′)
|L |

�
. (1.41)

Recently, it has been shown that d (Ψ,Ψ′) is an important quantity for characterizing
quantum phase transitions. For Ψ=Ψ(λ) and Ψ′ =Ψ(λ′) with Ψ(λ) the ground state
of a Hamiltonian Ĥ (λ) with parameters λ, the fidelity per site is defined as d (λ,λ′) =
d (Ψ(λ),Ψ(λ′)). Near a critical point λ=λc, the ground state fidelity per site develops
singular behavior that encodes universal information about the quantum phase transition
[44, 45, 46, 47] and can be characterized using the curvature of the surface d (λ,λ′) [48,
49, 50]. See also [51] for a review on fidelity and [52] for the relation with topological
order.

2. Quantum correlations and entanglement

While the previous section has summarized the most important properties of extended
quantum systems, it did not discuss the quantum nature of these systems by which they
are set apart from classical systems. By far the utmost important and astonishing property
of quantum systems is entanglement. The concept of entanglement was introduced by
Schrödinger [53] and was the cause of Einstein’s dissatisfaction with quantum mechanics
[54], because it resulted in a “Spukhafte Fernwirkung”. It is most easily introduced for a
system C that can be divided into two disjoint subsystems or parties A and B , so that
A∪B =C and A∩B = ;. The bipartition of C into subsystems A and B can correspond
to a bipartition of the spatial regionL orR on which C is defined, but a more general
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abstract bipartition is equally possible. If O (A) and O (B) represent two observables that
act non-trivially only on party A, respectively on party B , then the connected correlation
function ΓA,B is defined as

ΓA,B = 〈O (A)⊗O (B)〉− 〈O (A)〉 〈O (B)〉 . (1.42)

For local classical theories, these correlations are bound by the Bell inequality [55]
or the Clauser-Horne-Shimony-Holt inequality [56], whereas entanglement allows for
a violation of these inequalities for quantum theories, thus indicating that quantum
theories cannot be explained by underlying classical models. Entanglement is made
possible by the tensor product construction of Hilbert spaces for composite systems.
A simple classical state ρ(C ) of the system C would look like ρ(C ) = ρ(A)⊗ρ(B) so that
ρ(C )(O (A)⊗O (B)) = ρ(A)(O (A))ρ(B)(O (B)) = ρ(C )(O (A))ρ(C )(O (B)) and ΓA,B = 0. Classical
systems can of course have non-zero correlations due to probabilistic mixtures (e.g. due
to thermal fluctuations). The most general class of states that do not violate the Bell
inequalities for classical correlations is called the class of separable states ρ(C )sep and are given
by [57]

ρ(C )sep =
∑

k

pkρ
(A)
k
⊗ρ(B)

k
. (1.43)

A general quantum state ρ(C ) cannot be decomposed in this way. The subsystems A and
B are then entangled, resulting in non-classical correlations between them. Nevertheless,
the fundamental role of entanglement did at first not get widely accepted in standard
quantum mechanics. Only after quantum information theory identified entanglement as
the key resource for an exponential speedup with quantum computers, the importance
of entanglement in strongly correlated quantum systems became clear.

2.1. Measures and properties

The concept of entanglement is most easily introduced for isolated systems C that
allow for a bipartition into a subsystem A and B . By the assumption of isolation of
C , we imply that the quantum state of C is given by a pure state ρ(C ) = Ψ, to which
corresponds a state vector |Ψ〉 ∈H(C ) =H(A)⊗H(B) or a density operator ρ̂(C )Ψ = |Ψ〉 〈Ψ|.
We henceforth assume that dimH(C ) = dimH(A)+ dimH(B) is finite so that there is no
problem with defining these Hilbert spaces. If we introduce orthogonal bases {|Φ(A)

α
〉 ;α=

1, . . . , dimH(A)} and {|Φ(B)
β
〉 ;β= 1, . . . , dimH(B)} forH(A) andH(B), then we can construct

the product basis {|Φ(A)
α
〉⊗ |Φ(B)

β
〉 ;α= 1, . . . , dimH(A);β= 1, . . . , dimH(B)} forH(C ) and

expand |Ψ〉 as

|Ψ〉=
dimH(A)∑
α=1

dimH(B)∑
β=1

cα,β |Φ(A)α 〉⊗ |Φ(B)β 〉 . (1.44)
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For an unentangled system, the coefficient matrix cα,β has rank 1 and can be written as

cα,β = c (A)
α

c (B)
β

so that the state |Ψ〉 factorizes into

|Ψ〉= |Ψ(A)〉⊗ |Ψ(B)〉

with |Ψ(A)〉=
dimH(A)∑

i=1

c (A)
α
|Φ(A)
α
〉 , |Ψ(B)〉=

dimHB∑
j=1

c (B)
β
|Φ(B)
β
〉 (1.45)

and the state of subsystem A (respectively B ) is given by the pure state |Ψ(A)〉 (respectively
|Ψ(B)〉). All separable pure states are thus product states and result in a total absence
of correlations, since this corresponds to ΓA,B = 0. For the more general case, the
singular-value decomposition or Schmidt decomposition [58] of the coefficient matrix
cα,β =

∑D
γ=1 Uα,βλγVβ,γ (with D =min(dimH(A), dimH(B)) allows to write

|Ψ〉=
D∑
γ=1

λγ |Ψ(A)γ 〉⊗ |Ψ(B)γ 〉

with |Ψ(A)
γ
〉=

dimH(A)∑
α=1

Uα,γ |Φ(A)α 〉 , |Ψ(B)〉=
dimH(B)∑
β=1

Vβ,γ |Φ(B)β 〉 , (1.46)

which is called the Schmidt decomposition of the state |Ψ〉. Since U and V are unitary
operators (or can be expanded to be unitary if D < dimH(A) or D < dimH(B)), the
states |Ψ(A)

γ
〉 are mutually orthogonal (and idem ditto for the states |Ψ(B)

γ
〉). The singular

values λγ ≥ 0 are called the Schmidt coefficients and satisfy
∑D

γ=1 λ
2
γ
= 1 because of

normalization. Subsystem A and B are now described by the mixed state ρ(A) and ρ(B)

corresponding to the density operators

ρ̂(A) = trB

�
ρ̂(C )

�
=

D∑
γ=1

λ2
γ
|Ψ(A)

γ
〉 〈Ψ(A)

γ
| ,

ρ̂(B) = trA

�
ρ̂(C )

�
=

D∑
γ=1

λ2
γ
|Ψ(B)

γ
〉 〈Ψ(B)

γ
| .

(1.47)

The density operators ρ̂(A) and ρ̂(B) thus have the same spectrum of eigenvalues, given by
the square of the Schmidt coefficients. The vectors |Ψ(A)

γ
〉, |Ψ(B)

γ
〉 are the corresponding

eigenvectors and are henceforth called the Schmidt vectors. The entanglement between
the complementing subsystems A and B is measured by the entanglement entropy S (A,B),
which is defined as

S (A,B) =− tr
�
ρ̂(A) ln ρ̂(A)

�
=− tr

�
ρ̂(B) ln ρ̂(B)

�
=−

D∑
γ=1

λ2
γ

lnλ2
γ
. (1.48)
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The spectrum of (the square of) the Schmidt-coefficients is therefore called the entangle-
ment spectrum. A maximally entangled state is obtained when λγ = 1/

p
D , ∀γ = 1, . . . , D

resulting in S = log D . For a bipartite system in a pure state, the entanglement entropy is
the unique measure of entanglement that satisfies the following properties [59]:

• S (A,B) is invariant under local unitary operations in A or B ;

• S is continuous (see [60] for a precise definition);

• S is additive, i.e. if we add a second bipartite system C ′ = A′ ∪ B ′ so that the
total state of C ∪C ′ is given by ρ(C∪C ′) = ρ(C ) ⊗ ρ(C ′), we obtain S (A∪A′,B∪B ′) =
S (A,B)+ S (A

′,B ′).

When system C =A∪B itself is in a mixed state, classical correlations are present: e.g.
thermal correlations corresponding to thermal equilibrium at temperature T = β−1

are obtained when the system C is in the Gibbs state ρβ corresponding to the density

operator ρ̂(C )
β
∼ exp(−βĤ ). The spectrum of ρ̂(A) is no longer equal to the spectrum

of ρ̂(B) and the entanglement entropy is no longer well defined. It is difficult to find a
measure that fully separates the pure quantum correlations from the classical correlations.
Even for the simplest case where A and B both represent a single qubit (i.e.H(A) ≡H(B) ≡
C2), there is no unique measure for entanglement. Similar problems arise if one tries to
quantify the entanglement corresponding to a multipartite division (C = ∪m

i=1Ai with
Ai ∩Aj = ; if i 6= j ) of the system. General properties of a good entanglement measure
E (A1,...,Am ) corresponding to such a division can be formulated [61, 60]:

• Separable states contain no entanglement:
E (A1,...,Am ) = 0 if ρ(C ) =

∑
k pk

⊗m
i=1ρ

(Ai )
k

.

• All non-separable states have non-zero entanglement:
E (A1,...,Am ) > 0⇔ ρ(C ) 6=∑k pk

⊗m
i=1ρ

(Ai )
k

.

• The measure E is an entanglement monotone:
E (A1,...,Am ) cannot be increased with local operations (i.e. quantum measurements
or unitary operations restricted to the individual subsystems Ai ) or classical com-
munication between the subsystems.

Unlike for bipartitions, it is not possible to define maximally entangled states for en-
tanglement measures corresponding to multipartite divisions. Since this dissertation is
concerned with isolated systems at zero temperature, the state of the system C can always
be assumed to be a pure state Ψ. A suitable multipartite entanglement measure is then
given by the geometric entanglement measure Egeom(A1, . . . ,Am), defined as [62]

E (A1,...,Am )
geom =− ln

�
max
{ψi }
|〈ψ1 · · ·ψm |Ψ〉|2

�
, (1.49)

with |ψ1 · · ·ψm〉= |ψ1〉1⊗ · · ·⊗ |ψm〉m .
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For any state ρ and any 0<α≤∞ we now define the Rényi entropy Sα(ρ) as

Sα(ρ) =
1

1−α ln (tr ρ̂α) . (1.50)

In the limit α→ 1, the Rényi entropy yields the von Neumann entropy

S(ρ) = S1(ρ) = lim
α→1

1

1−α ln (tr ρ̂α) =− tr[ρ̂ ln ρ̂] . (1.51)

The entanglement entropy S (A,B) of a system C =A∪B corresponding to a bipartition
into complementary subsystems A and B given in Eq. (1.48) can thus be recognized as
the von Neumann entropy of either subsystem A or B : S (A,B) = S(ρ(A)) = S(ρ(B)). Both
notations will be used interchangeably. We can now also define a generalized bipartite
entangled entropy as

S (A,B)
α
= Sα(ρ

(A)) = Sα(ρ
(B)). (1.52)

If system C is not in a pure state then Sα(ρ
(A)) 6= Sα(ρ

(B)) so that this definition is still
restricted to the setting of isolated systems C .

Let A and B now represent general subsystems of system C , so that not necessarily
A∩B = ; nor A∪B =C . The von Neumann entropy satisfies a very interesting property
called strong subadditivity [63, 64, 65]:

S(ρ(A∪B))+ S(ρ(A∩B))≤ S(ρ(A))+ S(ρ(B)). (1.53)

In particular, for disjoint subsystems A∩B = ;, this allows to define the mutual informa-
tion between subsystems A and B as

I (A : B) = S(ρ(A))+ S(ρ(B))− S(ρ(A∪B)). (1.54)

The mutual information is restricted to the range 0≤ I (A : B)≤ 2min[S1(ρ
(A)), S1(ρ

(B))].
It is directly related to the connected correlation function ΓA,B since [66]

(ΓA,B )
2 ≤ 2‖Ô (A)‖2‖Ô (B)‖2I (A : B). (1.55)

Entanglement between parties A and B (as measured by the mutual information) thus
yields an upper bound for the maximum correlation, or —vice versa— the connected
correlation function yields a lower bound for the minimum amount of entanglement
required to sustain these correlations. This relation is further investigated in the case of
extended systems in the next subsection.
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2.2. Quantum correlations in extended systems

In an extended system, the connected correlation function becomes position dependent.
More precisely, if at every site ~n ∈L or any point ~x ∈R a complete set of observables
is given by O (α)

~n
or O (α)(~x), then all two-point connected correlation functions can be

obtained from

Γ(α,β)
~m,~n
= 〈O (α)

~m
⊗O (β)

~n
〉− 〈O (α)

~m
〉 〈O (β)

~n
〉 or

Γ(α,β)(~x,~y) = 〈O (α)(~x)⊗O (β)(~y)〉− 〈O (α)(~x)〉 〈O (β)(~y)〉 . (1.56)

In translation invariant systems, the connected correlation function only depends on
the distance ‖ ~m − ~n‖ or ‖~x −~y‖ and allows to define a physical correlation length ξc
as

ξ −1
c = lim

‖ ~m−~n‖→∞
max
α,β


−

log
h
Γ(α,β)
~m,~n

i

a‖ ~m− ~n‖


 , ξ −1

c = lim
‖~x−~y‖→∞

max
α,β


−

log
�
Γ(α,β)(~x,~y)

�

‖~x −~y‖


 ,

(1.57)

where one also needs rotation invariance or parity invariance for this limit to be direction
independent. For lattice systems, we have introduced the lattice spacing a in order to
give ξc the physical dimension of a length in lattice and continuum systems alike. Note
that the clustering property of connected correlation function is a necessary (but not
sufficient) condition to obtain a finite correlation length; a finite correlation length
requires the connected correlation functions to be exponentially clustering.

Since correlations only offer a lower bound for entanglement, a similar construction
is needed to evaluate the entanglement between points that are separated over a long
distance. In principle, we could use the mutual information with party A equal to site
~m ∈L or point ~x ∈R and party B equal to site ~n ∈L or point ~y ∈R . This allows to
similarly define an entanglement length ξe as

ξ −1
e = lim

‖ ~m−~n‖→∞

 
− log

�
I ( ~m : ~n)

�
2a‖ ~m− ~n‖

!
, ξ −1

e = lim
‖~x−~y‖→∞

 
− log

�
I (~x : ~y)

�
2‖~x −~y‖

!
. (1.58)

The inequality in Eq. (1.55) allows to conclude that

ξe ≥ ξc. (1.59)

However, mutual information is still not the best measure to fully separate classical from
quantum correlations. For spin systems on a latticeL , a more operational construction
was already provided in [67], hereby defining the measure of localizable entanglement
E ~m,~n (∀ ~m,~n ∈ L ) as follows. By performing a series of local measurements M on all
|L |−2 spins in the latticeL except for spin ~m and spin ~n, the subsystem containing the
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two spins ends up in a pure state |φs 〉with a probability ps (due to the collapse postulate).
Using an entanglement measure E(φ) for this simple bipartite system in pure state φ,
the localizable entanglement is obtained as

E ~m,~n =max
M

∑
s

ps E(φs ), (1.60)

where the maximization is performed with respect to all possible series of local mea-
surements M. Rather than I ( ~m : ~n), one can then use E ~m,~n in the definition of the
entanglement length ξe [Eq. (1.58)]. While the difference between the entanglement
length and the correlation length can be small, it can also be extreme. In particular, it is
possible to construct quantum states for which all correlations Γ(α,β)

~m,~n
= 0 but which are

nevertheless in a strongly entangled state [68].

Even though quantum correlations can violate bounds on maximal correlations as
expressed by the Bell inequalities, entanglement is not an unlimited resource. More
precisely, it satisfies a fundamental property called entanglement monogamy [69, 70, 71,
72]. If a single party A1 of a quantum system is maximally entangled with another party
A2, there can be no entanglement between either A1 or A2 and any other party Ai , i > 2.
Let E (Ai ,Aj ) be a bipartite entanglement measure that quantifies the entanglement between
two parties Ai and Aj . Unfortunately, we cannot use the entanglement entropy for this,
and a different measure was used in the proof in [72]. The entanglement E (A1,C\A1)

between a single party A1 and the rest of the system is limited to some amount E (A1)
max

depending on the entanglement measure E . If party A1 has to share this entanglement
with many other parties Ai , i = 2, . . . , k (e.g. due to symmetry), it can only be weakly
entangled with each of them. The quantitative statement is given by

E (A1,A2)+ E (A1,A3)+ . . .+ E (A1,Ak ) ≤ E (A1,
⋃k

i=2 Ak ) ≤ E (A1)
max (1.61)

Ultimately, entanglement monogomy is a consequence of the no-cloning theorem [73,
74]. Classical correlations can easily be shared, since it is sufficient to copy the state
of A2 to all other parties Ai , i = 3, . . . , k in order to obtain equally strong correlations
between A1 and any of the Ai , ∀i = 2, . . . , k. This operational strategy is not feasible for
quantum systems because the quantum state of party A2 cannot be copied to all other
parties. Hence, the monogamy of entanglement also induces a strong limitation on
the shareability of non-local quantum correlations (i.e. on correlations that violate the
Bell inequalities) [75, 76, 77, 78]. In particular, in symmetric systems with an infinite
coordination number (e.g. Bethe lattice) quantum correlations are completely absent and
mean-field theory is able to provide an exact solution.

The limited shareability of quantum entanglement combined with the non-commutativi-
ty of the different terms ĥ in the Hamiltonian Ĥ of a system [see Eq. (1.21)] induces a
kind of frustration in quantum systems [79, 80]. Frustration is defined as the inability to
minimize simultaneously the energy of all competing interactions. In classical systems,
frustration is of geometric origin, because the order that is favored by the interactions
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cannot propagate throughout space as a result of an incompatibility between correlations
along closed loops [81, 82, 83]. This incompatibility is a consequence of different
competing interactions or because of the lattice geometry. The most simple example
is the impossibility of having antiferromagnetic correlations on a triangular lattice.
The relation between frustration and the Bell inequality for classical correlations are
explored in [84]. Classically frustrated systems possess a ground state degeneracy that
increases exponentially in the volume of the system —and thus violate the third law
of thermodynamics— as well as local zero energy modes and algebraically decaying
correlations. However, they are not critical, as they do not separate a disordered phase
from an ordered phase. The most famous example of a classically frustrated system is
(water) ice [85], but similar effects occur in magnetic systems (e.g. spin ice). In quantum
systems, the many classical ground states that are induced by geometric frustration
can tunnel into each other and exotic phases of matter (e.g. topological order) can be
created [86]. However, quantum systems can also be frustrated without any classical
counterpart. As a simple example, an antiferromagnetic Heisenberg interaction J~S ~m · ~S~n
(J > 0) between spin-½ systems on sites ~m and ~n is minimized by putting sites ~m and
~n into a singlet state |φ〉 = (|↑ ~m↓~n〉 − |↓ ~m↑~n〉)/

p
2. However, since this is a maximally

entangled state, sites ~m and ~n can no longer be entangled with any other sites. Vice
versa, if site ~n has an antiferromagnetic Heisenberg interaction with each of its neighbors,
entanglement monogomy prevents the interactions to all be minimized individually. By
expanding ~S ~m · ~S~n as σ̂ x

~m
σ̂ x
~n
+ σ̂ y

~m
σ̂ y
~n
+ σ̂ z

~m
σ̂ z
~n

, this frustration can also be attributed to the

non-commutativity of the individual terms. The individual Hamiltonians Ĥ (x,y,z) given
by

Ĥ (x) =
∑
〈 ~m,~n〉

σ̂ x
~mσ̂

x
~n , Ĥ (y) =

∑
〈 ~m,~n〉

σ̂ y
~m
σ̂ y
~n
, Ĥ (z) =

∑
〈 ~m,~n〉

σ̂ z
~mσ̂

z
~n , (1.62)

would each produce classical ground states with corresponding ground state energies
E (x,y,z)

0 . However, the non-commutativity of the terms H (x,y,z) in the total Hamiltonian
Ĥ = Ĥ (x) + Ĥ (y) + Ĥ (z) requires the ground state of the total system to be in some
superposition and thus induces entanglement [87]. If the ground state energy of Ĥ
is given by E0, we can define the frustration energy as E (f) = E0 − E (x)0 − E (y)0 − E (z)0
and relate it to the entanglement in the ground state (see e.g. [88] for the application
to a different model). This opens up the idea to use the Hamiltonian of the system
as an entanglement witness, which is the general name for an observable that is able to
discriminate between entangled and factorizing states [89, 90, 91]. A unified treatment
of geometric and quantum contributions to frustration is endeavored in [92].

2.3. Scaling of quantum correlations near quantum critical points

Quantum phase transition, as classical phase transitions, are generally accompanied by
a diverging correlation length ξc (as defined in Eq. (1.57)). At the critical point, the
correlations decay algebraically. Since we are working at T = 0, there are no thermal
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fluctuations and all correlations are of quantum nature. The divergence of the correlation
length implies the lack of an intrinsic length scale in the system, so that fluctuations at
different length scales are self-similar. The long distance behavior (far away from the
ultraviolet cutoff length a) becomes scale invariant at the critical point. Similarly, the
temporal coherence length τc diverges as ξ z

c , thereby defining a dynamic scaling exponent
z. With ξc and τc being the only relevant time and length scales in the neighborhood
of the critical point, an observable O measured at wave vector k and frequencyω must
satisfy

O(k ,ω) = ξ dO
c fO (kξc,ωτc) (1.63)

where dO is the scaling dimension of the observable and the scaling function fO (x, y)
must satisfy for large values of the arguments x and y

fO (x, y) = x−dO f̃O (x
z/y) (1.64)

in order for the observable to have a sensible limit as the critical point is approached. At
the critical point, we then obtain

O(k ,ω) = k−dO f̃O (k
z/ω), (1.65)

which indicates the presence of fluctuations at all length scales. Similar scaling behaviors
and relations between the different scaling dimensions dO were first proposed by Essam
and Fisher [93] and by Widom [94, 95] in the context of classical phase transitions.
Kadanoff was the first to use renormalization group arguments to explain these relations
[96]. For classical phase transitions, the dynamic exponent z only enters when studying
dynamic behavior of systems in the neighborhood of their critical points. For example,
static connected correlation functions Γ(~x,~y) at the critical point scale as Γ(~x,~y) ∼
1/‖~x −~y‖d−2+η so that its Fourier transform diverges at small values of k as k−dΓ with
thus dΓ = 2−η.

For quantum critical points, the dynamics cannot be decoupled from the static properties
due to Heisenberg’s uncertainty relation. Algebraically decaying correlations at the
critical point require the closing of the energy gap∆E → 0 in the system, as was proven
in [97] for a general class of lattice systems. Vice versa, if a system has a finite energy gap
∆E > 0 away from the critical point, then correlations decay exponentially with the size
of the gap∆E , which was proven for lattice systems in [98, 99]. Near the critical point,
we can write∆E ∼ ξ −z

c , where the dynamic exponent z reappears in order to conserve
Heisenberg’s relation∆E∆t ≥ ħh. As a result, the dynamic exponent even enters in static
correlation functions Γ(~x,~y) as Γ(~x,~y)∼ 1/‖~x −~y‖d+z−2+η. The origin of the effective
dimension d + z of quantum phase transitions is explained in Section 3.

A quantum phase transition thus characterizes a transition where the nature of quantum
correlations changes drastically from one side of the critical point to the other. This
drastic change is accompanied by singular behavior in physical observables, which is
characterized by a universal set of critical exponents. The intimate connection between
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correlations and entanglement explored in the previous subsections indicates that this
difference may propagate into the entanglement structure of the ground state. In particu-
lar, investigating whether the entanglement also has singular and/or universal behavior
in the neighborhood of the critical point is the logical next step.

2.4. Entanglement and quantum phases

The study of entanglement in strongly correlated quantum systems —more specifically
spin systems— was initiated in [100, 101, 102]. The behavior of entanglement in the
neighborhood of critical points in one-dimensional lattice models was first investigated
in [103, 104, 105]. These papers focussed on pairwise entanglement between two sites
m and n (nearest neighbors or next-nearest neighbors), which is non-analytic at the
phase transition but does not develop a universal behavior. The pairwise entanglement
can be discontinuous (in case of a level crossing) but can just as well be smooth. It
attains a maximum close to but not necessarily at the phase transition point. Because the
correlation length ξc diverges at the transition point, Eq. (1.59) automatically implies
a diverging entanglement length ξe

5. So a site m is strongly entangled with all sites
n at arbitrarily large distances. Because of the monogamy of entanglement, this is
not automatically compatible with a maximal pairwise entanglement between two
specific sites m and n. The pairwise entanglement is not a good measure of the global
entanglement in the ground state.

The global entanglement can be studied by evaluating the entanglement of a block of
spins as function of the size of the block. In the remainder of this chapter, we will often
consider a bipartition C =A∪B of a system C where A is associated to a spatial region
A ⊂L orA ⊂R withL orR the lattice or continuum on which C lives. We then
simply denote subsystem A by its spatial region A . For the complementary region
L \A orR ⊂A associated to B , we introduce the notation −A . The entanglement
entropy S (A ,−A ) is then abbreviated as S (A ). In exactly solvable one-dimensional lattice
models, the entanglement entropy S (A ) of a blockA of physical length of ` containing
`/a contiguous spins was found to diverge as S (A ) ∼ log(`/a) in [107, 108] at the critical
point, indicating that the long-range fluctuations responsible for the phase transition
are indeed of quantum mechanical origin. For one-dimensional lattice systems, it can
also be proven (see [109, 110]) that the presence of a finite gap∆E > 0 implies that the
entanglement entropy S of a blockA of ` spins necessarily saturates to some constant
value S (A ) ∼ logξc for `→∞, a result that is known as an area law (since the area of a
one-dimensional intervalA of length ` is constant: |∂A|= 2). A similar proof of the
intimate connection between a gapped spectrum and an area law for the entanglement
entropy does not (yet) exist in higher dimensions. In (quasi) free bosonic system an

5 Note that Eq. (1.59) allows for the possibility that ξe→∞ whereas ξc <∞. As shown in [106], the energy
gap does not need to close and this is not a critical point. The diverging entanglement length is caused by the
hidden topological order in the model under investigation. A diverging entanglement length is also obtained
for a general superposition of ground states with maximal symmetry breaking due to its violation of the
clustering property, as explained further on in this subsection.
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area law for the entanglement entropy was analytically found even at the critical point
[111, 112], but in fermionic systems a multiplicative logarithmic violation of the area
law is possible for critical systems with a finite Fermi surface [113, 114, 115].

Two ground states |Ψ(0)〉 and |Ψ(1)〉 of respective Hamiltonians Ĥ (0) and Ĥ (1) are
defined to be equivalent if there exists a smooth path of short-ranged Hamiltonians
Ĥ (g ) (g ∈ [0,1]) such that there is no quantum phase transition along the path. A
sufficient criterion6 is thus that the spectrum of Ĥ (g ) is gapped ∀g ∈ [0,1]. This
definition of an equivalence relation allows to interpret different phases of matter as
different equivalence classes. It can then also be shown that different states within a
single equivalence class can be transformed into each other by acting with local unitary
transformations [116, 117]. These local unitary transformations can alter the short-range
entanglement in the ground state, but not the long-range entanglement. For example,
it is shown in [118] that all gapped one-dimensional short-range interacting systems
are equivalent to frustration free systems with an increased interaction length. For
lattice systems in arbitrary dimensions, the ground state of frustration-free systems can
efficiently be determined, and the entanglement entropy of a regionA can be proven
to satisfy an area law SA ∼ |∂A| [119]. Unfortunately, for d > 1 spatial dimension, it
is not generally proven that all ground states of gapped Hamiltonians are equivalent to
frustration-free states and hence satisfy an area law.

Results in the previous paragraphs were obtained for lattice models. For a field theory
on the continuumR , the definition of the entanglement entropy S (A ) of a spatial region
A ⊂ R is more intricate. In non-relativistic theories, the Fock construction of the
Hilbert spaceH(F)R [see Eq. (1.15)] satisfies

H(F)R =H
(F)
A ⊗H(F)−A

and the entanglement entropy can straightforwardly be defined. Similar results as for
lattice models are obtained, where physical lengths are weighted by the inverse cutoff
length a−1 = ρ1/d with ρ the finite particle density. Matters are more complicated for
relativistic field theories. Whereas the operator algebra defining the field can unambigu-
ously be localized in a partA ⊂ R = Rd , there is no Lorentz invariant partition of
the Hilbert space H(F) corresponding to a spatial regionA and its complement. Due
to the presence of the measure in the definition ofH(1)R , there is no covariant definition

of localization of single-particle states and H(1)A cannot be defined. A manifestation of
this fact for a scalar field theory is that it is impossible to choose a single particle state
|Ψ〉 ∈H(1)R such that 〈0|φ̂(x)|Ψ〉 and 〈0|π̂(x)|Ψ〉 vanish in the same region x ∈ −A . If
the entanglement entropy S (A ) = S(ρ(A )) would be finite, combining the positivity of
the von Neumann entropy S with strong subadditivity and the Poincaré-invariance of the
vacuum would suffice to prove an area law and to conclude that the mutual information
I (A :B) between any two disjoint spatial regionsA ∩B = ; is identically zero [120].

6 Note that this is not a required criterion, since the Hamiltonian of a system with spontaneous breaking of a
continuous symmetry is gapless arbitrarily far away from the critical point.
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Entanglement entropy may thus not have a finite covariant meaning in quantum field
theory. However, the mutual information I (A :B) is well defined and only diverges
when the distance betweenA andB goes to zero. By lifting the restriction of positivity,
a finite entropy function S̃(ρ(A )) for relativistic field theories can be constructed that
produces the same mutual information [121].

For practical purposes, an ultraviolet cutoff length scale a is introduced in order to render
the entanglement entropy S (A ) finite. In d = 1 spatial dimensions, a special role is played
by the class of conformal field theories, characterized by a central charge c . They serve
as effective field theories for the low-energy behavior of critical quantum models, such
as the lattice models discussed in the beginning of this subsection. For these conformal
field theories, the entanglement entropy of an interval A of length ` can be exactly
computed [122, 123, 124] for many different scenarios. For a conformal field theory
having periodic boundary conditions on a line of length L, the generalized entanglement
entropy S (A )

α
[see Eq. (1.52)] of a blockA of length ` is given by

S (A )
α
=

c + c

12

�
1+

1

α

�
log
� L

πa
sin
�π

L
`
��
+ k , (1.66)

with c and c the holomorphic and antiholomorphic central charge of the theory and k a
non-universal constant depending on the regularization scheme. In the thermodynamic
limit (L→∞), the entanglement entropy thus reduces to S (A ) = 2(c+c)/12 log(`/a)+k,
where the explicit factor 2 represents the area (number of boundary points) of the interval
A . If a chain of finite length L with open boundary condition is divided into a left part
A with length ` and a right part −A with length L− ` ≥ `, then there is only one
internal boundary point and the generalized entanglement entropy S (A )

α
is exactly half

the value of Eq. (1.66). These results thus proof the findings of [107, 108] for critical
lattice models. The prefactor of the logarithmic scaling is universal and only depends
on the central charges c and c of the theory. As for lattice systems, analytic results for
the entanglement entropy of higher-dimensional quantum field theories can only be
obtained for free theories. Calculations supporting the area law were performed much
earlier [125, 126] in the context of black hole entropy, a relation that is discussed in more
detail in the next subsection. A recent overview of different methods to obtain analytic
results can be found in [127]. The general expression for the entanglement entropy of a
subsystem A corresponding to the spatial regionA in n spatial dimensions is given by
[128]

S (A ) = gd−1(∂A )a−(d−1)+ gd−2(∂A )a−(d−2)+ . . .+ g0(∂A ) log(a)+ f (A ) (1.67)

where f (A ) is a finite part and the functions gi are local and extensive functions on
the boundary ∂A , which are homogeneous of degree i . For i ≥ 1, they depend on
the regularization procedure and are not universal. They are not physical since they
are not related to continuum quantities. Only for spherical regionsA is it possible to
conclude that gd−1(∂A )∼ |∂A|, hence producing the area law. The function g0(∂A )
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is independent of the regularization scheme. Universal contributions can be present in
f (A ), but they have to be carefully extracted since the finite part is affected by changes
in the cutoff.

This subsection is concluded by discussing the influence of quantum order on the
entanglement entropy. Firstly, for the classical paradigm of symmetry-breaking order,
the ground state manifold is degenerate. If a discrete symmetry is broken, the lowest
excited state above the ground state manifold (which can be topologically non-trivial) is
massive (gapped) away from the critical point. In contrast, when a continuous symmetry
is broken, Goldstone’s theorem ensures the presence of massless (gapless) excitations. The
previous section has introduced ground states |Ψz〉 with maximal symmetry breaking
(∀z ∈ Z with Z the quotient group that is spontaneously broken) and illustrated that they
are clustering [see Eq. (1.37)]. Let a bipartitation into a regionA and its complement
produce a Schmidt decomposition for the state |Ψz〉

|Ψz〉=
∑
α

λα |Ψ(A )z,α 〉 |Ψ(−A )z,α 〉 . (1.68)

If we assume, as in the definition in Eq. (1.29), that |Ψz〉 is obtained by acting with an
(improper) unitary operator Û (gz ) on |Ψ1〉, where Û (gz ) is a product of local operators
û(gz ) and can thus be decomposed as Û (gz ) = Û (A )(gz )⊗ Û (−A )(gz ), then the Schmidt
coefficients are independent of the label z and the corresponding Schmidt vectors can be
obtained as |Ψ(A )z,α 〉 = Û (A )(gz ) |Ψ(A )1,α 〉 and |Ψ(−A )z,α 〉 = Û (−A )(gz ) |Ψ(−A )1,α 〉, ∀α. Indeed,
the locality of these unitary transformations implies that the different ground states with
maximal symmetry breaking are in the same phase. If an area law for the states |Ψz〉 is
assumed, then

S (A )z = S(ρ(A )z ) =−
∑
α

λ2
α

logλ2
α
∼ |∂A|. (1.69)

The complement −A is infinite so that the Schmidt vectors automatically fulfill the or-
thonormalization condition 〈Ψ(A )z,α |Ψ(−A )z ′,α′

〉= δz,z ′δα,α′ due to the orthogonality catastro-
phe. For a general superposition |Ψ〉 as in Eq. (1.35), this can be used to compute

ρ̂(A ) =
∑
z∈Z

∑
α

|cz |2λ2
α
|Ψ(A )z,α 〉 〈Ψ(A)z,α| . (1.70)

The entanglement entropy of the superposition |Ψ〉 is thus given by

S (A ) = S(ρ(A )) =−
∑
z∈Z

∑
α

|cz |2λ2
α

log |cz |2λ2
α

=−
∑
α

λ2
α

logλ2
α
−
∑
z∈Z
|cz |2 log |cz |2.

(1.71)

The superposition |Ψ〉 thus has a higher entanglement content, which is required to
explain the violation of the clustering property by the connected correlation function
of the order parameter [see Eq. (1.38)]. The states |Ψz〉 of maximal symmetry breaking
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can therefore also be identified as the minimally entangled ground states. If Z is a dis-
crete group with a finite number of elements, then the additive contribution is finite.
But for infinite groups or continuous symmetry groups, there might be a diverging
additive contribution to the entanglement entropy and thus a very peculiar violation
of the area law. The macroscopic extent of this entanglement makes these states ex-
tremely vulnerable against decoherence. Interactions with the environment can collapse
a general superposition |Ψ〉 to one of the ground states of maximal symmetry breaking
|Ψz〉.
Finally, states with topological order are also characterized by a higher entanglement
entropy. For a bipartition into the spatial region A and its complement −A , the
entropy of a state |Ψ〉 with topological order is given by

S (A ) = α|∂A| − γ +O(1/|∂A|), (1.72)

where the prefactor α depends on the ultraviolet cutoff and the geometry ofA . But
now, the additive contribution γ is universal and is called the topological entanglement
entropy [129, 130]. It is given by γ = logQ, where Q is called the quantum dimension
[131]. The topic of topological entanglement entropy is not further explored in this
dissertation.

2.5. Area laws and holography

The previous subsection sketched the most important feature of the entanglement
structure in ground states of short-ranged Hamiltonians: the entanglement S (A ) between
a subsystemA and its compliment scales as the area |∂A|, with at most logarithmic
violations for critical systems. For arbitrary quantum states, the entropy S (A) is upper
bounded by log(dimH(A )) (assuming that A is smaller than its complement). Since
dimH(A ) scales exponentially with the volume ofA , the entanglement entropy in a
general quantum state is extensive (i.e. it scales with the volume). An area law thus
indicates that ground states of short-ranged Hamiltonians are special and only occupy a
small part of the total Hilbert space. This observation is of major importance for the
formulation of efficient variational ansätze in the remainder of this dissertation.

Before trying to interpret the physical origin of the area law, it is possible to extend its
validity beyond the case of ground states. For free field theories, power-law corrections
to the area law were found when the field is in a superposition of its ground state and
low-lying excited states [132, 133, 134]. For large areas, these are negligable and the area
law still holds. An area law was also found for low-lying excited states in an integrable
one-dimensional lattice model [135]. In [136] an area law is proven for all low-energy
states —not restricted to eigenstates— of short-range interacting lattice models under
some technical conditions, including a sufficiently rapid decay of connected correlation
functions and an upper bound on the number of low-lying excitations in a subsystem A
corresponding to a compact spatial regionA . More precisely, if Ô (A ) has non-trivial
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support on the spatial regionA and Ô (B) acts non-trivially only in a compact spatial
regionB at a distance d (A ,B) ofA , then the proof requires that

���〈Ô (A )Ô (B)〉− 〈Ô (A )〉 〈Ô (B)〉
���≤ (d (A ,B)− ξ ln|A |)−d ,

with ξ some constant. Secondly, if ĤA contains all terms of the Hamiltonian Ĥ with
spatial support completely contained inA , then the number ΩA (e) of eigenvalues of
ĤA smaller than e should fulfill

ΩA (e)≤ (τ|A |)γ (e−e0)+η|∂A|,

with τ, γ and η some constants and e0 the lowest eigenvalue of ĤA .

If a system is at thermal equilibrium for a finite temperature T = β−1, then the von
Neumann entropy of the total state ρβ [associated to the thermal density operator

ρ̂β = exp(−βĤ )/ tr{exp(−βĤ )}] returns the thermodynamic entropy of the state,
which is proportional to the volume. Thus, the entanglement of a compact regionA as
measured by the von Neumann entropy S (A ) also contains a contribution of the thermal
entropy proportional to the volume |A |. This is of course a consequence of the von
Neumann entropy not being able to separate classical and quantum correlations. In [66]
an area law is exactly proven for short-ranged lattice model, if as entanglement measure
the mutual information I (A : −A ) between a subsystem A and its complement is
used. More precisely

I (A :−A )≤ 2‖ĥ‖β|∂A|, (1.73)

where ‖ĥ‖ denotes the largest eigenvalue of any term ĥ in the Hamiltonian that acts
across the boundary ∂A . At zero temperature, β diverges and the area law can be
violated.

Finally, area laws even exist beyond equilibrium. If a (possibly time-dependent) Hamilto-
nian Ĥ (t ) on a bipartite latticeL =A ∪−A can be written as

Ĥ (t ) = Ĥ (A )(t )+ Ĥ (−A )(t )+
∑

k

rk (t )Ĵ
(A )(t )⊗ Ĵ (−A )(t ), (1.74)

where Ĥ (±A )(t ) and Ĵ (±A )(t ) act non-trivially only on region ±A and ‖Ĵ (±A )(t )‖ ≤ 1,
then the increase of entanglement for a random intitial state Ψ(0) under time evolution
with Ĥ (t ) is given by (see [137, 138])

dS (A )

dt
(t )≤ η

∑
k

|rk (t )| (1.75)

with η some absolute constant smaller than 2. Thus, if the initial state Ψ(0) satisfies
an area law and the number of terms rk (t ) is proportional to the area |∂A| —which is
the case in short-range interacting systems— then the state Ψ(t ) satisfies an area law for
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any finite time t . These results are derived using the Lieb-Robinson bound [139] for
lattice systems, which states that for operators Ô (A ) and Ô (B) acting non-trivially only
at disjoint compact spatial regionsA andB , time dependent correlations satisfy

[Ô (B)(t ), Ô (A )]


‖Ô (A )‖‖Ô (B)‖
≤ ηmin (|A |, |B|)exp

�
−d (A ,B)− v t

ξ

�
(1.76)

with η, v and ξ some constants and Ô (B)(t ) = e+iĤ t Ô (B)(t )e−iĤ t for some short-ranged
Hamiltonian Ĥ . The Lieb-Robinson bound thus provides a notion of causality for non-
relativistic systems, since the commutator between two operators at distance d (A ,B)
and time-difference t is exponentially small if d (A ,B)> v t , where v is the effective
speed of light —or speed of information— of the lattice model. While the original proof
was restricted to bounded operators for a lattice systems with bounded interactions, it
has been generalized to many different scenarios in [140, 98, 99, 141, 142, 143, 144, 145,
146, 147].

Now that the validity of the area law is established for a number of cases, an elaboration
on its interpretation is in order. For arbitrary quantum states, a bipartition of the
system into a spatial regionA and its complement results in an entanglement S (A ,−A )

that can only be bounded by S (A ,−A ) ≤min(dimH(A ), dimH(−A ))∼min(|A |, |−A |).
However, since S (A ,−A ) is a common property of subsystemA and its complement,
a short-range interacting Hamiltonian should not be able to detect the volumes ofA
or −A individually, but only the shared area |∂A|. Only when the correlation length
diverges is it possible for the interaction to penetrate the complete regionsA and −A .
On the other hand, thermodynamic entropy is almost always an extensive quantity,
with one well-known example being the entropy of a black hole, which is given by
[148, 149, 150]

SBH =
|∂A|
4Gd

, (1.77)

whereA is the part of space taken by the black hole and Gd is Newton’s gravitional
constant in d spatial dimensions, so that Gd = `

d−1
P

with `P the Planck length in these
units. The attempt to explain the black hole area law as the entanglement entropy of the
quantum fields obscured by the horizon of the black hole was the original motivation
for the computation of the entanglement entropy in free field theories [125, 126] and
conformal field theories [151] (see also [152] for a review).

Since entropy also serves as a measure of the information contained in a system, the
area law for black holes indicates that the maximal amount of information that can be
encoded in any subsystem of the universe scales as the area rather than the volume of
the system. This allows to conclude that the universe itself can be interpreted as the
hologram of a theory that completely lives at the boundary [153, 154, 155]. Even though
the holographic principle is believed to be an exclusive feature of gravity, the area law
in the ground states of short-range interacting Hamiltonians also indicates that such
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Figure 1.1: Holographic interpretation of von Neumann entropy S (A ) of a spatial regionA as the
length or area |γA | of the geodesic or minimal surface γA that encapsulatesA in the AdS bulk (up
to a factor): a) if the system is in a pure state, γA = γ−A and the entanglement entropy is defined
as S (A ) = S1(ρ

(A )) = S1(ρ
(−A )); b) at thermal equilibrium, the presence of a black hole creates two

different minimal surfaces and S1(ρ
(A )) 6= S1(ρ

(−A )); c) ifA equals to complete domain R on
which the system lives, S1(ρ

(A )) represents the thermodynamic entropy of the system, which is
equal to the black hole entropy of the corresponding black hole in the AdS space.

a holographic description is possible, an observation that characterizes the corner of
Hilbert space in which these ground states live and can be used to interpret the variational
ansätze in Chapters 3 and 4.

Another realization of the holographic principle is the duality between conformal field
theories in d spatial dimensions and quantum gravity theories living in the product space
of a d + 1 dimensional anti-de Sitter space7 and some closed manifold, known as the
Maldacena conjecture or the AdS/CFT correspondence [156, 157, 158]. Here, the theory
of interest (the conformal theory) is living at the boundary and is itself acting as the
holographic screen that encodes a gravity theory in one higher dimension. It can also
be used to study systems at thermal equilibrium, by placing a black hole at the center
of the gravity theory with a Hawking-temperature corresponding to the temperature
of the boundary system. It was used by Ryu and Takayanagi to postulate that the von
Neumann entropy of a subregionA of the boundary theory is related to the length or
area of the geodesic or minimal surface γA encapsulating this boundary regionA in the
AdS bulk [159, 160] by

S1(ρ
(A)) =

|γA |
4Gd

. (1.78)

This endows the entanglement entropy with the geometric interpretation in Figure 1.1,
that also allows to very easily derive the “strong subadditivity” property [161] (see
Figure 1.2). An overview of results obtained with this approach is given in [162] and a
first contribution towards deriving the postulate of Ryu and Takayanagi can be found in
[163].

7 This is the maximally symmetric vacuum solution of Einstein’s field equations with constant negative curvature.
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Figure 1.2: Holographic derivation of “strong subadditivity” [161]: |γA |+ |γB | = |γ̃A∪B |+|γ̃A∩B | ≥ |γA∪B |+ |γA∩B | where the last inequality follows from the fact that γ̃A∪B and γ̃A∩B
are not guaranteed to be geodesics or minimal surfaces.

3. Renormalization of quantum systems

Critical phenomena (both classical and quantum mechanical) and relativistic quantum
field theories are both characterized by fluctuations (quantum mechanical or statistical)
over an infinitely large range of scales. In critical phenomena, there is often an explicit
ultraviolet cutoff scale in terms of a lattice spacing a or the inter-particle separation
a = ρ−1/d (with ρ the particle density), but the infrared scale ξc diverges. In relativistic
field theories, the infrared cutoff ξc may (or may not) be finite, but there is no finite
ultraviolet cutoff (a → 0). Thus, the range of scales ξc/a over which fluctuations act
diverges in both cases. There is no definite length or energy scale in the system for
which the fluctuations dominate and that can thus be used in a dimensional analysis.
Fluctuations on all scales from a to ξc are equally important. Even when a system is
very simple at the fundamental scale (the Hamiltonian), very complex dynamics at the
observational scale can emerge [164]. The mathematical tool to study the change of
behavior along a shift in the observational scale is the renormalization group, which is
studied in this section.

The renormalization group was developed simultaneously for classical phase transitions
and for relativistic quantum field theories. Classical and quantum systems differ in terms
of the number of relevant dimensions. Criticality corresponds to a diverging correlation
length ξc→∞, which requires the presence of at least one spatial dimension that is of
infinite size. For a quantum theory in d spatial dimensions, Feynman’s path integral
formalism or other approaches exist to bring the partition function in an equivalent
classical form

Z = tr
�

exp(−βĤ )
�
=
∫
[Dφα]exp

(
−
∫ +β/2
−β/2

dτ LE(φα(τ))

)

=
∫
[Dφα]exp{−SE[φα(τ)]} ,

(1.79)

where the quantum theory is assumed to be defined in terms of a set variables φα that
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can live in the continuum (for a field theory) or on a lattice (for a lattice theory). Even
though we are studying equilibrium systems, capturing the quantum fluctuations re-
quires the introduction of an explicit (imaginary) time τ dependence of the fields φα(τ).
Time appears as additional dimension in the partition function: the quantum partition
function thus looks like a classical partition function in d + 1 dimensions, where the
role of the Hamiltonian is now played by an object that can often be interpreted as the
Euclidean action SE[φ

α] =
∫+β/2
−β/2 dτ LE(φ

α(τ)). At finite temperature, this additional

dimension is finite. In particular, near thermodynamic phase transitions, the thermal
fluctuations are much more important than the quantum fluctuations and the model can
be considered effectively classical. When studying quantum phase transitions, i.e. transi-
tions in quantum systems at zero temperature, the length of this additional dimension
also diverges (β→∞)8. Properties of thermodynamic phase transitions in d dimensions
are then valid for quantum phase transitions in d − 1 dimensions. For example, the
Mermin-Wagner-Hogenberg theorem [26, 25] states that interacting thermal fluctuations
of a system with continuous symmetry will always restore the symmetry for d ≤ 2, so
that a thermodynamic phase transition towards a phase with symmetry breaking is only
possible in d ≥ 3. Quantum fluctuations are able to restore the same symmetry only for
d ≤ 1 and a symmetry broken ground state exists for d ≥ 2 [24]. Therefore, a quantum
system is often labeled by the number of spacetime dimensions (d + 1). This is only
correct for relativistic systems, where time and space coordinates enter the action SE on
the same footing: Lorentz invariance becomes Euclidean invariance in the Euclidean
action SE. For non-relativistic systems, interactions in the action SE can differ between
the temporal direction and the spatial directions, and the temporal coherence length
τc is related to the spatial correlation length ξc by the dynamic exponent z. Under a
change of scale, we need to map x 7→ b x and τ 7→ b zτ, so that the volume element
dτdd x 7→ b d+zdτdd x. The effective number of relevant dimensions for the quantum
phase transition is given by d + z, where z can be positive (the general case), zero (the
marginal case generally associated to the quantum critical point being the T = 0 endpoint
of a thermodynamic critical line), or negative (a peculiar case that occurs in some random
magnetic systems and results in dimensional reduction).

3.1. Perturbative renormalization and divergences

The infinite range of fluctuations in critical phenomena and quantum field theories
are responsible for non-analytic behavior. In particular, the absence of an ultraviolet
cutoff scale in (relativistic) quantum field theories leads to divergences in the expectation
value of physical observables. This interpretation should be contrasted to the statements
in Subsection 1.1, where the divergences were attributed to the evaluation of physical
observables in the wrong Hilbert space. Expectation values of observables with respect
to the ground state of an interacting theory should not be evaluated by computing

8 At small nonzero temperature near a quantum phase transition, a crossover region exists [32]. This dissertation
is restricted to T = 0.
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the expectation value of the representation of this observable as an operator acting on
the Hilbert space of a free theory. However, since the ground state of the interacting
theory is not exactly known, there is no other possibility then to regularize the theory
by explicitly introducing an ultraviolet cutoff scale a = Λ−1, where Λ is henceforth
called the cutoff frequency. The number of degrees of freedom in a finite volume is then
finite, and most problems with inequivalent representations and divergences are cured.
However, results should not depend on this cutoff frequency and it should be possible to
consistently take the limit Λ→∞ at the end of the calculation.

The first person to compute a finite value for a physical observable from the difference of
two diverging quantities was Bethe, who computed the Lamb shift —the difference in the
2s and 2 p energy levels of the hydrogen atom caused by quantizing the electromagnetic
field— in 1947 [165]. Shortly after, Schwinger computed the anomalous magnetic
momentum of the electron [166]. Both computations were in very good agreement
with the experimental results (respectively [167] and [168]). The theory of “Quantum
electrodynamics” was further developed by Tomonaga [169], Schwinger [170, 171,
172] and Feynman [173, 174, 175]. In 1949, Dyson proved that the application of the
renormalization procedure to quantum electrodynamics leads to finite values up to every
order in perturbation theory [176, 177].

A basic outline of the renormalization procedure that was unfolded by these pioneers
can now be given. Starting from a bare (fundamental) Lagrangian with bare parameters
e0 (electron charge) and m0 (electron mass), one introduces a regularization procedure
(depending on a cutoff frequency Λ) and computes finite renormalized (physical) values
e and m for the electron charge and mass (using perturbation theory). It is then possible
to invert these relations in order to obtain

e0 =e +
1

2
c1e3 ln(Λ/m)+ . . . , m0 =m+ c2me2 ln(Λ/m),

so that all occurrences of the bare parameters e0 and m0 in physical quantities can be
replaced by the physical values e and m. One can then consistently send Λ→∞ and still
obtain finite values for physical observables. While highly succesfull, it was a miracle that
this procedure worked. In effect, this procedure does not work for all theories but only
for the so-called renormalizable field theories. Hence, the renormalization procedure was
considered an embarrassment by many theorists (including Dirac). The bare parameters
e0 and m0 diverge in the limit Λ→∞ and their interpretation is unclear. A solution was
sought along several lines:

• The origin of the problem is perturbation theory and would disappear in exact
solutions or summations up to all order [178], a hypothesis which was very quickly
abandoned as it proved to be untrue [179].

• The problem was of mathematical nature: the procedure for generating renor-
malized perturbation theory had to be modified to avoid introducing unphysical
divergences and automatically generating finite terms, so that the bare Lagrangian
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has no physical meaning. This line of thought led to the Bogoliubov-Parasiuk-
Hepp-Zimmerman formalism [180, 181, 182] and later to the causal perturbation
theory of Epstein and Glaser [183], where the problem of divergences in posi-
tion space (rather than momentum space) was reduced to a proper definition of
products of singular distributions.

• Quantum electrodynamics was only an effective theory and the cutoff scale was
physical because of a more fundamental theory with unknown interactions at very
small scale. This point of view corresponds best to our current interpretation of
the standard model.

In the mid-fifties, it was noted by Stueckelberg and independently by Gell-Mann and
Low that a theory of massless electrons lacks a natural energy scale on which the
renormalization procedure should be based [184, 185]. In terms of dimensional analysis,
a dimensionless coupling constant e cannot be related to a cutoff frequency Λ if there
is no other energy scale present. A new mass scale µ has to be introduced in order
to define a renormalized coupling constant e . This mass scale is completely arbitrary,
and other couples {µ′, e ′} should yield the same physical results. This implies the
existence of an equivalence class of parametrizations {µ, e(µ)} and different couples
within the equivalence class are related through a reparametrization transformation that
has to satisfy a (semi) group law. This renormalization group does not provide any new
intelligence for exact solutions of the field theory. But since its group character is violated
by perturbation theory, a restoration of the group character can be used to improve
the perturbative results. The flow e(µ) of the renormalization group is captured by a
differential equation

de(µ)2

d lnµ
=β(e(µ)2) (1.80)

where the beta function β(e2) is analytic and can be expanded in a power series of
e2. The different terms can be computed in different orders of perturbation theory.
Integrating the RG flow improves the perturbation results as it boils down to an automatic
resummation of a subclass of the perturbation terms to all orders. The renormalization
group predicts running coupling constants, i.e. the value of the coupling constant e(µ)
depends on the energy scale µ with which the theory is probed, as was later established
experimentally.

In 1970, the relation between the renormalization group and scale invariance was discov-
ered by Callen [186], Symanzik [187, 188]. In particular, they related the β function
to the canonical trace anomaly, indicating the breaking of scale invariance in massless
quantum field theories. Critical quantum field theories do not break this scale invariance
and have β= 0. In addition, they formulated the Callan-Symanzik equation for n-point
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correlation functions G(n)(x1, . . . , xn ;{gβ};µ) = 〈φ1(x1) · · ·φn(xn)〉, given by


µ ∂

∂ µ
+
∑

k

βk (gk )
∂

∂ gk
+

n∑
i=1

γi


G(n)(x1, . . . , xn ;{gk};µ) = 0 (1.81)

for a theory of fields φi with scaling dimension γi , where the theory contains the
dimensionless renormalized coupling constants gk defined at renormalization scaleµ and
the corresponding beta functions βk (gk ) are given by βk =µ∂ gk/∂ µ. This equation
expresses the independence of physical correlation functions on the renormalization
scale µ. When dimensional parameters such as masses are present, a mass-independent
renormalization scheme is required in order to be able to trivially generalize the Callan-
Symanzik equation.

3.2. Development of the renormalization group: from scaling to
holography

Wilson was the first to realize that the way fluctuations are summed over in the per-
turbative renormalization procedure developed for quantum electrodynamics is not
appropriate since fluctuations at all scales are treated on the same footing in Feynman
diagrams. This only works when the expansion parameter for the Feynman diagram
expansion is small so that there is only a small coupling between fluctuations at different
scales. As Wilson stated: “ This procedure is only safely applicable when the basic
physics is already well understood.” Wilson thus had to idea to organize the summa-
tion over fluctuations in a better way, based on the underlying idea that fluctuations
at different scales are locally coupled: i.e. the behavior of fluctuations at one scale is
only strongly influenced by fluctuations at nearby scales [189]. This cascade picture
has two principal features. Firstly, the scaling feature expresses that the behavior of
fluctuations at intermediate scales (far from the ultraviolet or infrared scale) should be
identical, up to a scale transformation. Secondly, fluctuations can add up coherently
resulting in an amplification or deamplification of certain effects as the cascade develops.
Deamplification washes out the details of the fundamental theory at the ultraviolet scale
and underlies the universality hypothesis. When Wilson, who was working in high energy
field theory, learned about the theory of critical phenomena, he discovered that he had
been scooped by Kadanoff, who applied a real space version of the renormalization group
argument to the Ising model [96] in order to explain the scaling relations, as discussed
in the context of quantum critical points in Subsection 2.3. Kadanoff assumed that a
block of spins should behave like a single spin, only interacting with the nearest neighbor
blocks but with modified coupling constants (temperature and magnetic field strength).
He did not construct the actual transformation. This assumption was on itself sufficient
to explain the scaling relations that were proposed by Essam and Fisher [93] and by
Widom [94, 95].

To actually compute the scaling dimensions, an explicit construction of the renormaliza-
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tion group transformation is required. In contrast to the common approach in relativistic
field theories and to Kadanoff’s approach, Wilson learned that the effective action gener-
ated by the renormalization group transform does not necessarily need to be identical,
but rather that a complicated effective action containing infinitely many interactions
—and thus infinitely many coupling constants— can arise, without this being a disaster
[190]. This major breakthrough paved the way for the interpretation of the renormal-
ization group as a flow in the space of all possible Hamiltonians. Wilson reanalyzed
Kadanoff’s real-space renormalization group transformation and was able to recast it in a
differential form [191], which he then used to show that the critical point corresponds
to a fixed point of the differential equations and that critical exponents follow from a
linearization of the differential equations around the critical point. He visualized this
flow for an extended toy model and discussed the effect of irrelevant variables, which
were just ignored by Kadanoff. In the second paper in this series [192], Wilson used a
phase-space analysis9 to study the Landau-Ginzburg model —the effective field theory
of a symmetry breaking phase transition— in three dimensions for the Ising-like case
(Z2 breaking). The resulting renormalization iterations could numerically be solved
in order to obtain estimates for the critical exponents that deviate from the mean-field
prediction (the classical solution of the Landau-Ginzburg model) and agree impressively
well with known estimates. Wilson also realized that the non-trivial critical point of the
Landau-Ginzburg model describing the symmetry breaking phase transition becomes
trivial (i.e. the fixed point is a quadratic theory and the mean-field solution becomes exact)
for dimensions d ≥ 4. Soon after, he and Fisher analytically studied the critical points of
the Landau-Ginzburg model in d = 4− ε dimensions as a perturbative expansion in ε,
and obtained the critical exponents for the Ising-like and the XY-like case (Z2 breaking
and O(2) breaking respectively) [193]. Using his background in field theory, Wilson then
constructed a diagrammatic approach to facilitate these integrations and he computed
the ε expansion of general Heisenberg models (O(m) breaking for arbitrary m) [194].
These papers gave light to the momentum-shell renormalization group, where fluctuations
with momenta ~p satisfying Λ/b < |~p|<Λ are (approximately) integrated out, followed
by a scaling ~p 7→ ~p ′ = b~p to bring the maximal momentum back to ‖~p ′‖=Λ 10. This
formalism was further strengthened by Wegner [195, 196, 197] and formed the basis
for some high-precision computations of the critical exponents for d = 3 (ε= 1) using
expansions to high orders in ε [198].

For d = 2 (ε= 2), the ε expansion is no longer valid and another expansion for d = 2+ ε
had to be developed [199, 200, 201]. Real-space approaches were also being explored:
transformation schemes for integrating out blocks of spins by replacing them with ef-
fective spins —a step often called decimation or coarse graining— were first constructed
in [202, 203, 204, 189] for the Ising model and one was able to very accurately repro-
duce the exact Onsager solution [205]. Continuous symmetries cannot be broken for
d = 2, but there is the possibility of the infinite order phase transition called the Berezin-

9 Wilson devised a kind of wavelet that was maximally localized both in momentum-space and in real-space to
the extent allowed by Heisenberg’s uncertainty relation4xi4p j ≤ δi , j /2.

10 From hereon, the symbol Λ is exclusively reserved for the momentum cutoff.
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skǐı-Kosterlitz-Thouless transition that separates a phase with exponentially decaying
correlation funtions from a phase with algebraically decaying correlation functions with
a temperature-dependent power [206, 207, 208, 209]. No true long-range order develops
in the low-temperature phase, but the high-temperature phase is set apart because entropy
considerations allow the spontaneous formation of vortices (i.e. topologically non-trivial
configurations11).

It was noted by Wegner and Houghton [210] that the renormalization group trans-
formation law of the ε expansion of Wilson and Fisher can be computed exactly by
integrating out only an infinitesimally small momentum-shell of fluctuations (b = eds

with ds → 0). By iterating this process, an exact renormalization group in differential
form can be constructed. A similar exact renormalization group was proposed even earlier
by Wilson, although it was only published in [36]. Wilson proposed to use a smooth
cutoff rather than the sharp cutoff of Wegner and Houghton, as this last choice results
in strongly non-local interactions in position space. Polchinski [211] used Wilson’s
construction to prove the perturbative renormalizability of the four-dimensional λφ4

theory to all orders, without having to resort to complicated techniques that are required
when using perturbative renormalization (e.g. superficial degrees of divergence, topology
of graphs, . . . ). While it is often impossible to integrate the exact renormalization group
equations, it is possible to construct approximation schemes that are non-perturbative
in nature, hence the name non-perturbative renormalization group equations. Initially,
the non-perturbative renormalization group was not often used, because of the success
of perturbation theory for both the O(m) models for critical phenomena and for the
relevant field theories for particle physics, and because the non-perturbative approxima-
tions in the non-perturbative renormalization group seemed uncontrolled. However,
perturbative expansions do not converge and are asymptotic series at best. They require
resummation methods which often fail to produce converged results. Results obtained
with the non-perturbative renormalization group have good convergence properties
(see [212] and references therein) and eventually the non-perturbative renormalization
group became adopted in particle physics. However, the renormalized action Ss —the
Wilsonian effective action for degrees of freedom below scale e−sΛ— that appears in the
Wilson-Polchinski approach after having integrated out all modes between scale e−sΛ
and cutoff scale Λ, is a highly abstract object. It does not contain all the information in
the initial theory, as it does not allow to compute correlation functions of the degrees
of freedom that have been integrated out. A different formulation under the name of
effective average action method was introduce by Wetterlich [213]. Rather than comput-
ing a Wilsonian action for the remaining degrees of freedom, the central object is now
the vertex function or Legendre effective action Γ (also called the Gibbs free energy in
statistical physics) of the degrees of freedom that have been integrated out. Hence, the
free energy Γs at some scale s is obtained by applying an infrared cutoff Λe−s ≤ ‖~p‖
to the computation of the free energy. All information on the model (fixed points,

11 Note that this phenomenon is totally unrelated to a topologically ordered quantum phase, where correlations
still decay exponentially away from the critical point.
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correlation functions, . . . ) is contained within this single object Γs .

The latest development in renormalization group theory is given by the insight that the
renormalization scale s can be interpreted as an additional dimension of a holographic
nature. Vice versa, it was soon realized that in the particular example of the AdS/CFT
correspondence, the additional dimension into the bulk of the anti-de Sitter space can
indeed be interpreted as a renormalization scale [214]. This has resulted into the formula-
tion of the holographic renormalization group [215, 216, 217, 218], where the equations of
motion for the fields living in the anti-de Sitter bulk correspond to the renormalization
group equations (i.e. Callan-Symanzik equations) for the boundary theory [219].

3.3. Renormalization group flow: critical phenomena and field the-
ories

Different formulations of the renormalization group exist. For example, the exact
renormalization group can be represented as a functional differential equation or as
a functional integral for the Wilsonian action Ss , or as an infinite set of differential
equations in the coupling constants. This last formulation, thanks to Wilson [36],
might not be the best formulation for practical computations but is the most intuitive
one. Let S[φα;K,Λ] represent a general family of field theory actions in d spatial
dimensions with a built in regularization scheme associated to the ultraviolet scale Λ,
given in terms of momentum or energy units. The regularization can be in terms
of a hard or soft momentum cutoff around Λ. The dimensional parameter Λ can be
used to map all coupling constants in the action to the set of dimensionless parameters
K ∈K . The spaceK of coupling constants is assumed to correspond to all short-range
interaction terms that respect a certain group of symmetry transformations. ‘Short-range’
interactions have an interaction length of the order of the cutoff. Long-range interactions
are excluded as they interfere with the qualitative ideas about critical behavior: e.g. the
universality hypothesis is known to be false if long range interactions are permitted
[220]. The renormalization group flow is now interpreted as a flow of the set of coupling
constants K in the space K as a function of the renormalization group parameter s .
Let us now describe the qualitative features that will be used in the remainder of this
dissertation.

Integrating out degrees of freedom maps the initial action S[φα;K0,Λ] to a new action
S[φ′

α
;K ′, e−sΛ], where φ′

α
represents the new set of fields that remain after the integra-

tion, i.e. φ′
α
(~p ′) = φα(~p ′)θ(|~p ′| < e−sΛ) in the case of a hard cutoff. The new action

S[φ′
α
;K ′, e−sΛ] produces the same result as the action S[φα;K,Λ] for observables suffi-

ciently far below the cutoff e−sΛ. In particular, they have the same correlation length
ξc. In order to obtain fixed point behavior, two additional steps are necessary. Firstly,
a scaling transformation with scale parameter b = es restores the cutoff at its original
value Λ. Alternatively, we can convert all dimensional observables to dimensionless
values using the cutoff scale. Hence, the dimensionless set K uniquely determines a
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dimensionless correlation length ξ̃ = ξcΛ, which can clearly not depend on the only
dimensional parameter Λ. Similarly, the parameter setK′ corresponds to a dimensionless
correlation length ξ̃ ′ = ξ̃cΛ/b = ξ̃ /b . Working with dimensionless parameters thus
eliminates the need to apply the additional scale transformation. The parameter space
K can be divided into surfaces of parameter configurations resulting in dimensionless
correlation lengths ξ̃ , ∀0≤ ξ̃ ≤+∞.

Secondly, the path integral Z =
∫
[Dφ]exp(−S[φα;K,λ]) has a general reparametriza-

tion invariance in the fields φα, that induces a ‘gauge invariance’ in the coupling
constants K: different ‘gauge-equivalent’ values of the coupling constants define the
same theory. In order to detect a fixed point K∗ of the renormalization group, it
is necessary to fix this gauge freedom. A (partial) gauge fixing is possible by e.g.
bringing the kinetic part of the action in standard form, for which we rescale the
fields as φ′

α
= ζα(φβ; s). Inserting this scaling law in S[φ′

α
;K′, e−sΛ], we can write

S[ζα(φβ; s);K′, e−sΛ] = S[φα;K(s), e−sΛ]. The renormalization group flow is now
captured by a differential equation, the renormalization group equation, given by

dK

ds
(s) =R(K(s)) (1.82)

withR the renormalization group transformation law. Note that the transformation law
does not depend explicitly on s as a consequence of the self-similarity of the process. If the
initial theory has a dimensionless correlation length ξ̃ (0) = ξ̃0, then the set of parameters
K(s ) lies somewhere in the surface corresponding to ξ̃ (s ) = e−s ξ̃0. The renormalization
group equation allows to transform the complete spaceK into a subspaceK (s)⊂K
for any s > 0. While a differential equation is invertible in principle, an arbitrary action
S[φα;K,Λ] corresponding to a pointK ∈K that is not inK (s) will be mapped to a
Hamiltonian with long-range interactions if it is integrated over a time −s . The resulting
Hamiltonian can thus not be described by a set of parameters inK .

For s →∞, it is assumed thatK(s ) converges to some fixed pointK∗. Fixed pointsK∗

correspond toR(K∗) = 0 and have either ξc = 0 or ξc =+∞. While a different limiting
behavior is possible in principle, convergence to fixed points is generally assumed. For
any starting pointK0 corresponding to ξ̃0 <+∞, the renormalization group trajectory
K(t ) has to converge to a fixed point with ξ̃ ∗ = 0. Figure 1.3 depicts a very simple sketch
of the parameter spaceK . A particular physical model corresponds to the surfaceK0(λ)
where λ describes the physically accessible range of parameters. The renormalization
group trajectories originating from these points leave this subspace, and do thus not
correspond to physically accessible transformations. As the physical parameters λ
vary across the value λc , the renormalization group trajectory converge to two distinct
fixed pointsK∗a andK∗b , indicating a phase transition from a phase a to some phase b .
Precisely at the configuration λc , the correlation length in the physical model diverges,
indicating the presence of a critical point. The renormalization group trajectory starting
in K0(λc ) converges to the fixed point K∗c . The low-energy behavior of the model is

50



§3. Renormalization of quantum systems

ξ̃ = 0
ξ̃ = 1/2

ξ̃ = 1

ξ̃ = 2

ξ̃ =+∞

ξ̃ = 2

ξ̃ = 1

ξ̃ = 1/2

ξ̃ = 0

K∗
a

K∗
b

K∗
c

K0(λ)

K0(λc )

Figure 1.3: SpaceK of dimensionless coupling constants with indication of surfaces of constant ξ̃
(black lines), some renormalization group trajectories K(t ) (red lines) originating from physically
accessible parameter configurations K0(λ) (blue line), two fixed points K∗

a and K∗
b with ξ̃ ∗a,b = 0

and one fixed point K∗
c with ξ̃ ∗c =+∞ (green dots).

determined by the corresponding fixed pointsK∗a ,K∗b orK∗c . All configurations λ to
one side of the critical point correspond to the same phase and the same low-energy
physics. Two points λ and λ′ close to the critical point (thus with very large correlation
length ξ̃0) remain close to the surface ξ̃ =+∞ and thus close to each other as long as
e−t ξ̃0� 1. But if they are at different sides of the critical point λc , they will eventually
flow away from each other and end up in different fixed points.

Different physical models K0(λ) and fK0(eλ) that are described in the same parame-
ter space K can have critical points λc and eλc such that the renormalization group
trajectories starting in K0(λc ) and fK0(eλc ) end up at the same fixed point K∗c . Their
low energy physics are then equivalent, which explains the universality hypothesis. If
the renormalization group transformation R is analytic near K∗c , we can linearize it
in order to obtain R

�
K∗c + εK

�
= εR∗c ·K. The matrix R∗c can be diagonalized12

12 This is an assumption, as R∗c is not symmetric. It can have complex eigenvalues (in conjugate pairs) resulting in
a spiral-like renormalization group flow around the fixed point, or it can only have a Jordan normal form.
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with eigenvalues d (i) and corresponding eigenvectors K(i) that constitute a complete
set13. A renormalization group trajectory starting atK0 =K

∗
c + ε

∑
i c (i)K(i) flows as

K(t ) =K∗c +ε
∑

i c (i)ed (i) tK(i). Since any coupling constant K j is associated to an ‘oper-

ator’ O j in the action S[φα,K,Λ], we can define scaling operators O (i) =
∑

j K (i)j O j for

which d (i) is the scaling dimension. In the action S, the scaling operators O (i) contain
local combinations of the field operators φα and its derivatives, which are integrated
over the complete spacetime: O (i) =

∫
dτ
∫

dd x o(i)(x,τ) where o(i)(x,τ) is combination
of φα(x

′,τ′) and its derivatives with ‖(x,τ)− (x ′,τ′)‖ ® O(Λ−1). Typically then, the
local operators o(i)(x,τ) are in itself scaling operators and can be associated to true local
operators ô(i)(x) acting on the Hilbert space of the problem. One particular example
of scaling operators are the field operators φα: the field rescaling φ′

α
= ζα(φβ; s) is for

an infinitesimal renormalization step ds given by ζα(φβ; ds) = (δα,β+ ds[dφ]α,β)φβ.
By choosing the fields φα such that [dφ] is diagonal, we obtain the scaling dimension of
field φα as the eigenvalue [dφ]α,α = d (φα).

Scaling operators O (i) with d (i) > 0 are relevant, they correspond to directions in which
the renormalization group flow moves away from the fixed point. They define the
scaling functions that were defined in Subsection 2.3. Scaling operators O (i) with d (i) < 0
are called irrelevant and determine the small corrections to the scaling laws away from
the critical point. Finally, if d (i) = 0, the corresponding scaling operators are marginal
and a higher order expansion is required to determine whether the renormalization
group flow moves towards (marginally irrelevant) or away from (marginally relevant) the
fixed point along this direction [196]. Note that the scaling dimension of an operator
decreases as the number of spatial dimensions d is increased. Consequently, an upper
critical dimension dc is associated to every relevant operator, such that this operator
becomes marginal at d = dc and irrelevant for d > dc. In addition to scaling operators,
there are also redundant operators, which follow from the invariance of the physical
model under e.g. field reparametrizations. The scaling fields of physical observables do
not depend on these redundant operators and the associated eigenvalues, which can be
non-universal.

We can conclude this subsection by discussing the relation with renormalizable quantum
field theories. Renormalizable interactions correspond to marginal operators, super-
renormalizable interactions to relevant operators and non-renormalizable interactions to
irrelevant operators. Renormalization is then equivalent to starting with a bare action
S0(φα;λΛ,Λ) = S(φα;K0(λΛ),Λ) with only a few interaction terms and associated bare
coupling constants λΛ at cutoff scale Λ, and taking the limit Λ→∞ in such a way that
the low energy physics remains unchanged. Since the renormalization group transforma-
tion decreases the cutoff, taking this limit boils down to inverting the renormalization
group to s = −∞. For general points K ∈ K , this operation is impossible, so that a
special fine tuning is required. In order to obtain a fixed physical correlation length

13 This too is an assumption, since the set of parameters is infinite dimensional and it is not guaranteed that the
eigenvectors of R∗c constitute a complete set.
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ξc, the bare action (i.e. its coupling constants K0(λΛ)) has to lie in the surface with
dimensionless coupling constant ξ̃ = ξcΛ. For Λ→∞, the bare action has to approach
the critical surface with ξ̃ =∞, so that the bare coupling constants have to be tuned to
a critical value limΛ→∞λΛ = λcrit. In this limit, the renormalization group trajectory
of the bare action decomposes into two parts: the renormalized coupling constants
first evolve along the critical surface until they approach an ultraviolet (unstable) fixed
point K∗c and then they move away along the line or surface connecting this ultravi-
olet fixed point with an infrared (stable) fixed point. This limit represents a singular
point of the renormalization group differential equations, since the initial conditions
no longer uniquely determine the trajectory. Instead, the theory is now determined by
the renormalization prescriptions at an arbitrary observational scale µ. The number of
conditions required to fix the theory is given by the dimensionality of the surface from
the ultraviolet fixed point to the infrared fixed point, or thus by the number of relevant
directions. The renormalized theory lives in this surface and is completely determined
by fixing the relevant couplings, i.e. by specifying renormalized couplings λµ at scale µ.
As we increase the observational scale µ, we run backwards along the trajectory towards
the ultraviolet fixed point. Note that the renormalized theory contains interactions that
were not initially present in S0(φα;λΛ,Λ), but these are completely fixed by specifying
λΛ as function of λµ, µ and Λ. If on the other hand we try to fix an irrelevant interaction,
we take the renormalized theory away from the surface between the ultraviolet and
the infrared fixed point. The limit Λ → ∞ of this theory cannot correspond to the
submanifold spanned by S0(φα;λΛ,Λ) and requires in general infinitely many other
interactions to be introduced and corresponding coupling constants to be fixed. The
theory then loses its predictive power.

3.4. Numerical real-space renormalization group methods

Not only did Wilson massively contribute to the consistent modern framework of
renormalization group theory, he also initiated the use of numerical renormalization
group methods to obtain highly non-trivial information about models that are not exactly
solvable. Wilson’s first attempt in [221] failed for the particular model under study, but
when he applied a similar approach to the Kondo model, he was able to obtain very
accurate information [189]. The Kondo model is a basic model to capture the effect of a
magnetic impurity to a conduction band electrons and is described by the Hamiltonian
(in dimensionless units)

ĤK =
∫ +1

−1
dk
∑

s
εk â†

k ,s
âk ,s − J

∑
s ,s ′

�
Â†

s ~σs ,s ′Âs ′
� · ~̂S (1.83)

with ~ak ,s the annihilator of a conduction electron with momentum k and spin s , ~σ

the vector of Pauli-matrices, ~̂S the quantum spin of the impurity, and Âs the real-space
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annihilator of a conduction electron with spin s at position zero:

Âs ′ =
∫ +1

−1
dk âk ,s . (1.84)

The momentum index k is scalar, since this model only describes the s -wave electrons.
Higher partial waves do not couple to the impurity. Wilson discretized the conduction
band into energy levels ±Λ−n with exponential scaling. By only retaining a single
electron per energy level, he obtained a good approximation for ĤK in terms of the
lattice model

Ĥ =
+∞∑
n=0

∑
s
Λ−n/2

�
f̂ †
n,s f̂n+1,s + f̂ †

n+1,s f̂n,s

�
− J̃
∑
s ,s ′

�
f̂ †
0,s~σs ,s ′ f̂0,s

�
· ~̂S. (1.85)

If we now define the Hamiltonian of a block of L sites by restricting the sum over n to
values n = 0, . . . , L, a renormalization group equation is obtained as

Ĥ (L+1) =
∑

s

�
f̂ †
L,s f̂L+1,s + f̂ †

L+1,s f̂L,s

�
+Λ1/2Ĥ (L). (1.86)

A fixed point is obtained when the lowest eigenvalues of ĤL become independent of L.
Rather than computing these exactly, which is computationally intractable except for
very small values of L, Wilson devised the following renormalization group procedure
to iteratively increase L, starting from a small value where exact diagonalization is still
possible:

1. Diagonalize Ĥ (L) numerically.

2. Reduce the Hilbert spaceH(L) to the linear span of the eigenvectors corresponding
to the D lowest eigenvalues of Ĥ (L): eH(L) = span{|Ψ(L)

α
〉 ,α= 1, . . . , D}. Project all

relevant operators Ô ∈L(H(L)) to D ×D -dimensional operators Ô ′ = P̂D Ô P̂ †
D on

eH(L).
3. Add a site using Eq. (1.86) in the tensor product spaceH(L+1) = eH(L)⊗Hsite.

4. Set L→ L+ 1 and reiterate.

With two spin-components per electron, dimHsite = 4 and the dimension of the Hamil-
tonian ĤL that has to be diagonalized never exceeds 4D. The error in each step can
be shown to be Λ−1/2. In addition, the error resulting from the discretization of the
conduction band is of order (1−Λ−1) and the value of Λ should be chosen close to
Λ = 1. At this point, errors from reducing the Hilbert space HL grow large and the
renormalization group procedure no longer converges. However, by starting from Λ≈ 2
and extrapolating results for Λ→ 1, Wilson was able to obtain very accurate estimates
for the expectation value of relevant operators with respect to the ground state.
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The key to the success of Wilson’s numerical renormalization group procedure is the
exponential decrease of the interaction strength along the chain, which is a consequence
of the sites representing spherical shells at increasing distance beyond the magnetic
impurity. When applied to one-dimensional quantum lattice models with equally strong
interactions between every two nearest neighbors, Wilson’s real-space renormalization
group procedure fails. While the basic ingredient —namely that configurations corre-
sponding to high local energies should be irrelevant for the description of low-energy
states of the total lattice— is still valid, the way to reduce the local Hilbert space should
be modified. At an informal lecture in 1986, Wilson did himself isolate the problem for a
very simple toy model describing a single particle hopping on a lattice of finite size (i.e. a
lattice version of a particle in a box), corresponding to the Hamiltonian

Ĥ (L) =−
L−1∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)− 2
L∑

n=1

|n〉 〈n| . (1.87)

Since the dimension of the single particle Hilbert space H(L) now only increases linearly
in L, a single renormalization step should double the length L. Since all lowest eigenstates
of Ĥ (L) have nodes at the boundaries, so will any state in the reduced Hilbert space eH(L).
On a lattice of size 2L, all states in the tensor product eH(L) ⊗ eH(L) have a node in the
middle, whereas the exact ground state of Ĥ (2L) reaches a maximum in the middle and is
thus not well represented in eH(L)⊗ eH(L). For this toy model, a simple solution is obtained
by adding to eH(L) states with different boundary conditions [222]. These boundary
conditions can be specified explicitly, or implicitly by embedding the subsystem into
a larger superblock of L′ > L sites. The reduced Hilbert space eH(L) is then obtained
as the linear span of the restriction of the lowest lying excited states of Ĥ (L

′) onto the
L sites under consideration. While it was at first not clear how this approach could
be generalized to ordinary lattice models with interactions in the full Hilbert space
H(L) (whose dimension scales exponentially in L), it is the idea of the superblock that
eventually provided the answer.

In 1992, White introduced the density matrix renormalization group [223, 224]. The
isolated smaller subsystems that were considered by Wilson are not representative for
the total system, because they interact with their environment, hence creating entan-
glement. This can be modeled by considering a superblock of 2L sites: the left L sites
are called the system block S, the right L sites the environment block E . Unlike in the
previous case, the ground state of the Hamiltonian Ĥ (S∪E) of the superblock cannot be
projected to a single state on the system block, but requires many different states for
its description. However, using the Schmidt decomposition from the previous section
and its relation to the important resource that is entanglement, it goes without saying
that the most important states to keep in a reduced Hilbert space H′L are the Schmidt
vectors corresponding to the largest Schmidt coefficients. This observation results in the
following renormalization algorithm:

1. Having a system S of L sites with (reduced) Hilbert space eH(S) = span{|Ψ(S)
α
〉 ,α=
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1, . . . , D}, add a site to obtain the enlarged system S ′ with Hilbert space H(S ′) =
eH(S)⊗Hsite = span{|Ψ(S)

α
〉⊗ |s〉 ;α= 1, . . . , D ; s = 1, . . . , d}. Similarly, define a new

environment E ′ by adding a site to the existing environment E of L sites with
reduced Hilbert space eH(E) = span{|Ψ(E)

α
〉 ,α= 1, . . . , D}.

2. Define the superblock S ′ ∪ E ′, construct the Hamiltonian Ĥ (S
′∪E ′) and determine

its ground state |Ψ(S ′∪E ′)〉 ∈H(S ′)⊗H(E ′), where dimH(S ′) = dimH(E ′) =Dd .

3. Determine the Schmidt decomposition |Ψ(S ′∪E ′)〉=∑d D
α=1 λα |Ψ(S

′)
α
〉 |Ψ(E ′)

α
〉, where

the Schmidt coefficients λα are ordered in decreasing order.

4. Define the reduced Hilbert spaces for the system block S ′ and the environment
block E ′ by retaining only the Schmidt vectors corresponding to the D largest
Schmidt coefficients: eH(S ′) = span{|Ψ(S)

α
〉 ,α = 1, . . . , D} and eH(E ′) = span{|Ψ(E)

α
〉 ,

α= 1, . . . , D}. Project relevant operators into these reduced Hilbert spaces.

5. Set S = S ′ and E = E ′. Reiterate.

This algorithm is called the infinite size algorithm, as the lattice steadily grows with two
sites per iteration. The resulting ground state can be further improved by applying the
following finite size algorithm, which requires that the bases {|Ψ(S)

α
〉 ,α= 1, . . . , D} and

{|Ψ(E)
α
〉 ,α = 1, . . . , D} were stored for all sizes of the system block S and environment

block E . Now the system S is shrunk by one site and the environment E is enlarged by
one site, keeping the total superblock length constant. A new ground state calculation
and its Schmidt decomposition redefines the optimal basis for a system block S with
L− 1 sites and an environment block with L+ 1 sites. This process is repeated untill the
system S has reached a minimal size where its D dimensional basis spans the complete
Hilbert space. Then the system is grown and the environment is shrunk. This whole
process defines one sweep of the finite size algorithm. Since this approach is variational,
the energy exceptation value monotonically decreases in every step of the sweeping
process. Convergence is often obtained after a small number of sweeps. The basis of
the Hilbert space H(S ′∪E ′) of the superblock is d 2D2 dimensional, and by exploiting
symmetries and using a sparse eigensolver for finding the ground state of Ĥ (S

′∪E ′) large
values of D (up to D ≈ 105) can be obtained [225, 226]. Soon after, it was realized by
Östlund and Rommer [227, 228] that the infinite size algorithm gives rise to a class of
variational ansatz states called matrix product states, to be discussed in Chapter 3, and
that the finite size algorithm is a procedure to optimize over this variational class. The
number D of states kept determines the maximal number of non-zero Schmidt values
and is thus strongly related to the maximal amount of entanglement in the state. In
particular, the entanglement between two halves of arbitrary length L of the chain is
limited by log D. For large values of D, this limit is sufficient to determine the ground
state energy of gapped systems and critical systems of sufficiently small size to machine
precision, thanks to the area law (and the fact that it is only logarithmically violated by
critical systems).
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§3. Renormalization of quantum systems

3.5. Quantum aspects of the renormalization group

Despite the success of the density matrix renormalization group, it does not constitute
a genuine renormalization group transformation: the fixed points are matrix product
states with an area law for the entanglement entropy; they are not scale invariant and
cannot accurately represent the ground states of critical points in the thermodynamic
limit (see Chapter 3). The density matrix renormalization group fails to exploit the
behavior of quantum states along the renormalization group flow. Let us now investigate
precisely what these quantum aspects of the renormalization group entail. We therefore
assume to have at our disposal a renormalization group transformation that applies to
quantum states, either by defining a renormalized quantum state as the ground state
of a corresponding renormalized Hamiltonian, or by a direct scheme to integrate out
short-range fluctuations (see e.g. [229]).

Firstly, we can study the evolution of fidelity as function of the renormalization group
time s . Let |Ψ(λ)〉 and |Ψ(λ′)〉 represent the ground states of a Hamiltonian Ĥ (λ)
at different values λ and λ′ of the coupling constants between which the fidelity is
computed. If these states are in the same phase a, both states flow to the same fixed
point |Ψ∗a〉 at s →∞. The fidelity F (s) monotonically increases as a function of s . At
the fixed point, the fidelity reaches its maximal value F (+∞) = F (Ψ∗a ,Ψ∗a) = 1. The
states are completely indistinguishable. At finite renormalization group times s , short
range fluctuations that are still present in the ground states hide the fact that these states
are in the same phase and make the two states distinguishable. Contrastingly, if these
states were initially in different phases a and b , they flow for s →∞ to different fixed
points |Ψ∗a〉 and |Ψ∗b 〉 respectively. The fidelity F (s ) decreases monotonically to reach its
minimal value F (+∞) = F (Ψ∗a ,Ψ∗b ), where the two phases are most distinguishable. At
finite renormalization group times s , the short range fluctuations present in the ground
states partially hide the distinguishability of the two phases. Due to the orthogonality
catastrophe, it is better to rephrase this paragraph in terms of a local fidelity measure,
such as the fidelity per site [46].

It is also possible to investigate the properties of a single state |Ψ〉 under the renor-
malization group flow, and entanglement turns out to be an interesting quantity to
look at. For quantum systems in d = 1 spatial dimension, it can be shown that the
entanglement entropy of a subsystem of length ` decreases monotonically under renor-
malization group transformations, both for lattice systems [230, 231] and for relativistic
field theories [121, 232]. Because of the appearance of the central charge c in the block
entanglement entropy near the critical point, this result is inspired by Zamolodchikov’s
c -theorem, which states that the central charge —a measure for the degrees of freedom in
a theory— decreases monotonically under the renormalization group flow. Zamolod-
chikov’s c -theorem is based on the correlation function of the energy-momentum tensor
and thus involves the complete Hilbert space. However, the monotonic decrease of the
entanglement can be proven independently from the existing c -theorem, and allows
to formulate an entropic c -theorem, based entirely on properties of the ground state.
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Rather than using the energy momentum correlation function, the central quantity is
now the function

c(`) = `
dS(`)

d`
, (1.88)

with S(`) = S (A`) the entropy of a blockA` of length `. Under the renormalization
group transformation, this function flows as c(`; s) = c(es`) and thus converges to
c(`;+∞) = c(∞) for every value of the arugment. For conformal theories, Eq. (1.66)
indicates that c(+∞) is proportional to the conformal charge of the theory. For systems
with an area law, S(`) saturates to a horizontal asymptote for large values of the argu-
ment and c(`, s) decreases monotonically to c(+∞) = 0. This monotonic decrease of
entanglement is not only present in the global entanglement entropy. There is a fine
grained loss of entanglement as expressed by the fact that some density matrix ρ̂(s1) at a
point s1 along the renormalization group flow is majorized by the same density matrix at
a point s2 > s1: ρ̂(s1)≺ ρ̂(s2) [231]. This topic is not further explored in this dissertation.
For higher dimensional systems, few analogous results are known. In particular, there
is no c -theorem due to the wide range of shapes of two-dimensional subsets and other
intrinsic problems [232].

We can now return to the first paragraph of this subsection: the loss of entanglement
along the renormalization group flow is not exploited by the density matrix renormal-
ization group. It is therefore not able to accurately capture critical points. A different
variational ansatz that does capture the hierarchical structure of quantum fluctuations
and of the entanglement created by these fluctuations will be encountered in Chap-
ter 5.
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2
VARIATIONAL PRINCIPLE IN QUANTUM

MECHANICS

This chapter recapitulates the fundamental methods that will be used in the remainder
of this thesis. Firstly, the time-independent variational principle is developed in full
detail. Secondly, a time-dependent variational principle is formulated that transforms the
time-dependent Schrödinger equation (a linear differential equation) for any quantum
system (including many body systems) into a non-linear one-body problem (a set of
coupled non-linear differential equations for the variational parameters). In combination
with imaginary time evolution, the time-dependent variational principle yields a pow-
erful method to find an optimal solution for the time-independent variational method.
The time-dependent variational principle can also be used to study real-time evolution,
which is often used to extract information about the dynamic properties of a system. In
particular, the third section discusses how a linearization of the time-dependent varia-
tional principle equations can provide information about the low-lying excited states of a
quantum Hamiltonian. While none of the material in this chapter is new, it constitutes
the foundation for the material in the subsequent chapters and is therefore treated in full
detail.

Results in this chapter are formulated for general quantum systems that live in a Hilbert
spaceH. The dynamics of this quantum system are described by a Hamiltonian Ĥ ∈L(H)
that can possibly be time-dependent (in the second section). As we are discussing
variational methods, we have to define a class of variational ansatz states. We introduce
the general set of states |Ψ(z)〉, where z denotes a finite or countably infinite set of
complex parameters z i ∈ C. In principle, we can also deal with a continuous set of
parameters — which is required in Chapters 4 and 5 — by replacing derivatives with
respect to the parameters z i by functional derivatives. For the sake of simplicity, we
restrict to ordinary derivatives in this chapter. Alternatively, we could say that we are
using the DeWitt notation when having a continuous set of parameters. We furthermore
assume that any combination of complex numbers z yields a valid state |Ψ(z)〉 ∈ H,
and that the dependence on all parameters z i is holomorphic. We can then define the
variational manifoldM as

M = {|Ψ(z)〉 | ∀z i ∈C,∀i} (2.1)
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We explicitly denote the antiholomorphic character of the linear functional 〈Ψ(z)|,
introduce the short-hand notation ∂i = ∂ /∂ z i and use barred indices ı for complex
conjugate parameters z ı , which constitute an independent set of parameters. We also use
Einstein’s summation convention, unless specified otherwise.

1. Time-independent variational principle

The variational principle is a general name for a number of methods in physics, chemistry
and mathematical physics that try to find a particular solution by finding the function or
functional that this solution should minimize or —more generally— extremize. Examples
include Fermat’s principle in optics and the principle of least action in classical mechanics.
The quantum mechanical version of the principle of least action is studied in the next
section. However, for quantum mechanics, the best known variational principle is the
time-indepedent variant, which asserts that for any state |Ψ〉 ∈H, one obtains an energy
expectation value that exceeds the ground state energy, i.e.

E (0) ≤ 〈Ψ|Ĥ |Ψ〉〈Ψ|Ψ〉 ,

with E (0) the ground-state energy (lowest eigenvalue) of the Hamiltonian Ĥ . This
assertion also applies to the variational ansatz states |Ψ(z)〉 ∈M . If we define the energy
function

H (z,z) =
〈Ψ(z)|Ĥ |Ψ(z)〉
〈Ψ(z)|Ψ(z)〉 , (2.2)

then the variational principle could allow to conclude that the best approximation of the
ground state of Ĥ within the variational classM can be found by looking for the set of
the parameters z? that minimize the energy function H (z,z). An optimum z? is thus
characterized by the set of equations




∂i H (z?,z?) = 0,

∂ı H (z
?,z?) = 0.

(2.3)

However, this result should be used with caution. There is no unique definition of “the
best approximation” of a state, and an approximation that has the lowest ground state
energy can produce an incorrect description of other physical quantities, as we discuss at
the end of this section.

This version of the variational principle is not restricted to finding approximations of
ground states of quantum Hamiltonians Ĥ . By using an ansatz state that is orthogonal to
the ground state (or an approximation thereof) one can try to construct approximations
for low-lying excited states of the Hamiltonian. (Single-particle) quantum mechanics is
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just a special case of a general class of boundary value problems with Sturm-Liouville
operators, to which the variational method can be applied. One particular example
of ansatz states that has proven to be very succesfull for this class of problems is the
expansion into a finite basis {|Ψi 〉 , i = 1,2, . . . , I }, such that |Ψ(z)〉 = z i |Ψi 〉. The
variational manifold is then an I -dimensional vector space

M = span{|Ψi 〉 , i = 1,2, . . . , I }.

The resulting approach is known as the Rayleigh-Ritz method [233, 234]. Applying
Eq. (2.3) learns that

HΨz = ENΨz with [HΨ]ı, j = 〈Ψı |Ĥ |Ψ j 〉 and [NΨ]ı, j = 〈Ψı |Ψ j 〉 . (2.4)

The Rayleigh-Ritz method thus boils down to solving a generalized eigenvalue equation
(HΨ,NΨ). The eigenvalues E give variational estimates for the exact eigenvalues of Ĥ ,
and the corresponding eigenvectors z provide an estimate |Ψ(z)〉 for the corresponding
eigenstate of the Ĥ . The Rayleigh-Ritz method can successfully be applied to single-
particle and many body quantum physics alike. A typical approach would be to include
in the basis {|Ψi 〉} the ground state and lowest lying excited states of a nearby or related
Hamiltonian Ĥ ′ that can be diagonalized exactly.

However, the variational principle is more generally applicable to any variational man-
ifoldM , even when it is not a vector space. Its success depends on the adequacy of
the variational manifold to capture the relevant physical effects present in the exact
ground state, and on the applicability of an efficient method to find the variational
optimum. When applicable, the variational method offers some powerful advantages
over alternative approaches. It is free of any sign problem that hinders the application
of Monte-Carlo sampling to many interesting problems, and it is perfectly able to re-
produce non-perturbative effects. It lies at the basis for a tremendous number of highly
successful tools in many-body physics. Examples include self-consistent (mean) field
theory (Hartree-Fock [235, 236, 237, 238] or Hartree-Fock-Bogoliubov theory [239]),
density functional theory [240, 241], Wilson’s numerical renormalization group and
finally the density matrix renormalization group, the variational manifold of which will
be studied in the next chapter.

Let us conclude this section by evaluating the accuracy that can be obtained by a varia-
tional optimum |Ψ(z?)〉. Most of these results are only valid for systems with a small
number of degrees of freedom. Since the main interest of this thesis is in extended
systems with a large or infinite number of degrees freedom, we return to this question
in Section 4. Let now {E (n), |Ψ(n)〉 , n = 0,1, . . .} be the set of exact eigenvalues and
corresponding normalized eigenvectors of a Hamiltonian Ĥ , with E (0) the ground state
energy. Suppose that the best variational approximation within the manifoldM is given
by |Ψ?〉= |Ψ(z?)〉 satisfying

|Ψ?〉=
p

1− ε2 |Ψ(0)〉+ ε |Ψ?err〉 , with 〈Ψ?err|Ψ?err〉= 1, 〈Ψ(0)|Ψ?err〉= 0. (2.5)
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The state error between the exact solution |Ψ(0)〉 and the variational approximation |Ψ?〉
is given by

‖|Ψ?〉− |Ψ(0)〉‖=
q
|
p

1− ε2− 1|2+ ε2 = ε+O(ε3) (2.6)

so that ε is a good first order approximation of the state error. For the expectation value
of the Hamiltonian we obtain

〈Ψ?|Ĥ |Ψ?〉− E (0) = ε2 〈Ψ?err|Ĥ |Ψ?err〉− ε2E (0) =O(ε2) (2.7)

which implies that the energy is already accurate up to second order in ε, provided that
〈Ψ?err|Ĥ |Ψ?err〉 is finite. Even with ansätze that are only moderately adequate, a good
approximation of the ground state energy can be obtained. The reason for the quadratic
convergence in ε of the energy expectation value is of course that we are approximating
an eigenvector of Ĥ . An error of O(ε2) is also obtained for the expectation value
〈Ψ?|Ô|Ψ?〉− 〈Ψ(0)|Ô|Ψ(0)〉 of any operator that has |Ψ(0)〉 as eigenvector, since

〈Ψ?|Ô|Ψ?〉− 〈Ψ(0)|Ô|Ψ(0)〉=−ε2 〈Ψ(0)|Ô|Ψ(0)〉+ ε2 〈Ψ?err|Ô|Ψ?err〉=O(ε2). (2.8)

For all other operators however, the state error ε is important, since we obtain

〈Ψ?|Ô|Ψ?〉− 〈Ψ(0)|Ô|Ψ(0)〉= 2ε
p

1− ε2ℜ�〈Ψ(0)|Ô|Ψ?err〉
�
+O(ε2) =O(ε). (2.9)

This is a bad sign, since we are often more interested in the expectation value of such
operators then in the energy: e.g. order parameters, correlation functions, . . . A good
convergence of the energy does not necessarily indicate a good convergence of the
physically relevant observables. In practice, we would like to be able to estimate ε. An
estimate of the order of ε can be obtained by the error measure ε(z?,z?) =∆H (z?,z?),
which satisfies

ε(z?,z?)2 =∆H (z?,z?)2 = 〈Ψ?|(Ĥ −〈Ψ?|Ĥ |Ψ?〉)2|Ψ?〉= ε2 〈Ψ?err|(Ĥ − E (0))2|Ψ?err〉 .
(2.10)

In addition, it is easy to prove that if an arbitrary state |Ψ〉 has energy expectation
value 〈Ψ|Ĥ |Ψ〉 and∆H 2 = 〈Ψ|Ĥ 2|Ψ〉− 〈Ψ|Ĥ |Ψ〉2, then an exact eigenvalue of Ĥ must
exist in the interval [〈Ψ|Ĥ |Ψ〉−∆H , 〈Ψ|Ĥ |Ψ〉+∆H]. In combination with the varia-
tional principle, we thus hope to be able to refine this statement for a good variational
approximation |Ψ?〉 to

E (0) ∈ [〈Ψ?|Ĥ |Ψ?〉− ε(z?,z?), 〈Ψ?|Ĥ |Ψ?〉] (2.11)

This result is however suboptimal, since we know that the error between 〈Ψ?|Ĥ |Ψ?〉
and E (0) is O(ε2), whereas the lower bound of this estimate is O(ε). Other variational
approaches for finding a lower bound of the ground state energy can be found in [242,
243].

62



§2. Time-dependent variational principle

2. Time-dependent variational principle

The (time-independent) variational principle [244, 245, 246] is a very powerful approach
to find good approximations of the lowest lying eigenstates of a time-independent Hamil-
tonian Ĥ within a variational manifoldM . The variational manifold can also be used
to study quantum dynamics, which are governed by the time-dependent Schrödinger
equation

i
d

dt
|Ψ(t )〉= Ĥ (t ) |Ψ(t )〉 , (2.12)

which is a linear first-order differential equation inH. Note that we now allow for the
Hamiltonian Ĥ to be time-dependent. An initial state |Ψ(z(0))〉 in the variational mani-
foldM will in general leave the manifold under time evolution. This section introduces
the time-dependent variational principle, which allows to construct an approximation
|Ψ(z(t ))〉 of the exact time evolution of |Ψ(z(0))〉 that is confined toM .

When applied to a mean-field ansatz for a many-body wave function, the time-dependent
variational principle results in the the time-dependent Hartree-Fock method [244] or the
time-dependent Gross-Pitaevskii equation (for bosons) [247, 248]. The time-dependent
variational principle is here discussed in full generality, and will be applied to some
specific variational manifoldsM in the subsequent chapters.

2.1. Principle of least action

The time-dependent Schrödinger equation can be derived by applying the variational
principle of least action to the action functional

SH[Ψ,Ψ] =
∫ +∞
−∞

� i

2
〈Ψ(t )|Ψ̇(t )〉− i

2
〈Ψ̇(t )|Ψ(t )〉− 〈Ψ(t )|Ĥ (t )|Ψ(t )〉

�
dt . (2.13)

Indeed, requiring stability with respect to an infinitesimal variation 〈Ψ(t )| → 〈Ψ(t )|+
〈δΨ(t )| results in the time-dependent Schrödinger equation [Eq. (2.12)], whereas sta-
bility with respect to |Ψ(t )〉→ |Ψ(t )〉+ |δΨ(t )〉 requires the complex conjugate of the
Schrödinger equation to hold.

In order to confine the dynamics of a quantum state to the variational manifoldM , we
can analoguously apply the principle of least action to

SM [z,z] =
∫ +∞
−∞

� i

2

�
ż j (t )∂ j − ż


(t )∂ 

� 〈Ψ(z(t ))|Ψ(z(t ))〉

− 〈Ψ(z(t ))|Ĥ (t )|Ψ(z(t ))〉
�

dt . (2.14)

Stability of the action functional SM with respect to a variation z(t ) 7→ z(t )+ δz(t ) or
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z(t ) 7→ z(t )+ δz(t ) is obtained by imposing the Euler-Lagrange equations



+i 〈∂ıΨ(z(t ))|∂ jΨ(z(t ))〉 ż j (t ) = 〈∂ıΨ(z(t ))|Ĥ (t )|Ψ(z(t ))〉 ,
−iż


(t ) 〈∂ Ψ(z(t ))|∂iΨ(z(t ))〉= 〈Ψ(z(t ))|Ĥ (t )|∂iΨ(z(t ))〉 .

(2.15)

We can define the Hermitian matrix G(z,z) as

Gı, j (z,z) = 〈∂ıΨ(z)|∂ jΨ(z)〉 (2.16)

and interpret G(z,z) as the metric of the manifoldM in the point (z,z). This metric
appears in Eq. (2.15) in order to map the contravariant vector ż i to a covariant vector.
The matrix G(z,z) can also be recognized as the Gram matrix containing the scalar
product between any two tangent vectors. If the map Ψ : z 7→ |Ψ(z)〉 is injective, the
inverse function theorem guarantees that this metric can be inverted for every (z,z)
such that the Euler-Lagrange equations [Eq. (2.15)] define a unique solution z(t ). As
is common in differential geometry, the inverse metric is denoted by the same symbol
G, and the only distinction is in the position of the indices. The inverse metric satisfies
G i , (z,z)G,k (z,z) = δ i

k
and Gı, j (z,z)G j ,k (z,z) = δk

ı and allows to rewrite the Euler-
Lagrange equations [Eq. (2.15)] as




+iż i (t ) =G i , (z(t ),z(t )) 〈∂ıΨ(z(t ))|Ĥ (t )|Ψ(z(t ))〉 ,
−iż

ı
(t ) =G ı, j (z(t ),z(t )) 〈Ψ(z(t ))|Ĥ (t )|∂ jΨ(z(t ))〉 .

(2.17)

These equations are henceforth referred to as the flow equations of the time-dependent
variational principle. The time-dependent variational principle thus approximates the
linear Schrödinger equation inH by a set of non-linear first order differential equations
in the variational parameters z. Since the number of variational parameters is ideally
much smaller than the dimension ofH, these non-linear differential equations can more
easily be dealt with, e.g. with numerical methods. It is however not guaranteed that a
variational manifoldM can successfully capture the long-time dynamics of an initial
state |Ψ(z(0))〉 under the real time evolution corresponding to a Hamiltonian Ĥ , even
whenM is capable of capturing the ground state and low-lying excited states of Ĥ . As
was explained in Subsection 2.5 of the previous chapter, the entanglement in a state
generally increases linearly under time evolution. This will turn out to be the effect that
limits the length of the maximal time interval that can accurately be captured by the
variational manifolds in the next chapters.
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2.2. Geometric construction

The flow equations [Eq. (2.17)] of the time-dependent variational principle can also
be obtained from a purely geometric construction, which is sketched here in order to
improve the insight into the precise nature of the approximation made by the time-
dependent variational principle. If time evolution could be exactly captured within the
variational manifoldM , the time-dependent state |Ψ(z(t ))〉 would need to satisfy the
time-dependent Schrödinger equation [Eq. (2.12)], resulting in

iż j (t ) |∂ jΨ(z(t ))〉= Ĥ (t ) |Ψ(z(t ))〉 . (2.18)

Note that the left hand side of this equation is a vector living in the tangent plane
TM (z(t )) ofM in the point |Ψ(z(t ))〉, which is defined as

TM (z) = span{|∂iΨ(z)〉 ,∀i}. (2.19)

A general tangent vector |Φ(c;z)〉 ∈TM (z) is defined as

|Φ(c;z)〉= c j |∂ jΨ(z)〉 . (2.20)

Only when the right hand side of Eq. (2.18) is exactly captured by the tangent plane
TM (z(t )) is it possible to describe the exact quantum-mechanical time evolution. Since
in general the right hand side can be any vector inH, we need to look for an approximate
solution of Eq. (2.18). By using the standard norm defined in H, we can approximate
Ĥ (t ) |Ψ(z(t ))〉 by the tangent vector |Φ(c?(t );z(t ))〉 where

c?(t ) = arg min
c

|Φ(c;z(t ))〉− Ĥ (t ) |Ψ(z(t ))〉
2

.

The least square solution c?(t ) can be obtained by expanding this norm and solving
the quadratic minimization problem in the expansion coefficients c. Equivalently, we
can just project the Schrodinger equation [Eq. (2.18)] onto the basis of tangent vectors
〈∂ıΨ(z(t ))|, resulting in the first line of Eq. (2.17). By using the inverse of the Gram
matrix of the tangent vectors, we can define an orthogonal projector P̂TM (z,z) as

P̂TM (z,z) = |∂ jΨ(z)〉G j ,ı (z,z) 〈∂ıΨ(z)| , (2.21)

which allows to rewrite the flow equations [Eq. (2.17)] in wave vector format



+i d

dt |Ψ(z(t ))〉= P̂TM (z(t ),z(t ))Ĥ (t ) |Ψ(z(t ))〉 ,
−i d

dt 〈Ψ(z(t ))|= 〈Ψ(z(t ))| Ĥ (t )P̂TM (z(t ),z(t )).
(2.22)

The time-dependent variational principle thus projects the exact evolution onto the
tangent plane of the manifold, as is illustrated in Figure 2.1.
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�
�� (z )

|∂1Ψ(z )〉
|∂2Ψ(z )〉

|Ψ(z )〉

|Ψ(z (t ))〉
Ĥ |Ψ(z )〉

P̂�� (z , z )Ĥ |Ψ(z )〉

Figure 2.1: Sketch of the variational manifoldM (red) with indication of the tangent vectors
(green dashes) and the resulting tangent plane TM (z) in the point |Ψ(z)〉. The exact dynamics
are given by the evolution vector Ĥ |Ψ(z)〉 (blue arrow), whereas the evolution according to the
time-dependent variational principle follows the projected vector P̂TM Ĥ |Ψ(z)〉 (green arrow).
This results in the flow |Ψ(z(t ))〉 (black curve).

2.3. Norm-preserving dynamics

While the previous subsections summarize the basic ingredients of the time-dependent
variational principle, it is necessary to introduce some essential modifications. Whereas
the exact solution of the Schrödinger equation is a unitary process (norm-preserving),
this is not guaranteed for the solution of the flow equations [Eq. (2.17)] of the time
dependent variational principle. Norm-preserving dynamics are obtained by defining a
modified action

eSM =
∫ +∞
−∞

i
2

�
ż j (t )∂ j − ż


(t )∂ 

� 〈Ψ(z(t ))|Ψ(z(t ))〉− 〈Ψ(z(t ))|Ĥ |Ψ(z(t ))〉
〈Ψ(z(t ))|Ψ(z(t ))〉 dt

=
∫ +∞
−∞

� i

2

�
ż j (t )∂ j − ż


(t )∂ 

�
lnN (z(t ),z(t ))−H (z(t ),z(t ))

�
dt ,

(2.23)

where
N (z,z) = 〈Ψ(z)|Ψ(z)〉 (2.24)

and H (z,z) was defined in Eq. (2.2). Note that we henceforth omit the explicit time-
dependence of the Hamiltonian Ĥ for the sake of simplicity. For a time-dependent
Hamiltonian Ĥ (t ), the energy function H would have an explicit time-dependence [i.e.
H (z,z, t )], but this has no other effect on the resulting expressions.

Firstly, note that the stability of eSH with respect to variations 〈Ψ(t )| 7→ 〈Ψ(t )|+ 〈δΨ(t )|
requires �

1̂− |Ψ(t )〉 〈Ψ(t )|〈Ψ(t )|Ψ(t )〉
��

i
d

dt
|Ψ(t )〉− Ĥ |Ψ(t )〉

�
= 0. (2.25)

Applying the variational principle to the modified action eSH thus imposes the Schrö-
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dinger equation in the plane orthogonal to the vector |Ψ(t )〉, whereas it leaves the
evolution in the direction of the current vector |Ψ(t )〉 unspecified. Since a nonzero
parallel component of the evolution vector (〈Ψ(t )|Ψ̇(t )〉 6= 0) results in norm or phase
changes, the use of the modified action unties the restriction to a specific choice of phase
and normalization of the state.

The Euler-Lagrange equations for the modified action eSM are given by




+i eGı, j (z(t ),z(t ))ż

j (t ) =Hı (z(t ),z(t )),

−iż

(t ) eG,i (z(t ),z(t )) =Hi (z(t ),z(t )).

(2.26)

We have introduced the modified metric

eGı, j (z,z) = ∂ı∂ j lnN (z,z) =
Gı, j (z,z)

N (z,z)
− 〈∂ıΨ(z)|Ψ(z)〉 〈Ψ(z)|∂ jΨ(z)〉

N (z,z)2
(2.27)

and the gradients

Hı (z,z) = ∂ı H (z,z) =
〈∂ıΨ(z)|Ĥ |Ψ(z)〉

N (z,z)
− 〈∂ıΨ(z)|Ψ(z)〉 〈Ψ(z)|Ĥ |Ψ(z)〉

N (z,z)2
,

Hi (z,z) = ∂i H (z,z) =
〈Ψ(z)|Ĥ |∂iΨ(z)〉

N (z,z)
− 〈Ψ(z)|∂iΨ(z)〉 〈Ψ(z)|Ĥ |Ψ(z)〉

N (z,z)2
.

(2.28)

As for the evolution produced by eSH in the full Hilbert space, one can now define the
orthogonal projector onto the space orthogonal to |Ψ(z)〉 as

P̂0(z,z) = 1̂− |Ψ(z)〉 〈Ψ(z)|〈Ψ(z)|Ψ(z)〉 = 1̂−
|Ψ(z)〉 〈Ψ(z)|

N (z,z)
(2.29)

and observe that

eGı, j (z,z) =
〈∂ıΨ(z)|P̂0(z,z)|∂ jΨ(z)〉

N (z,z)
,

Hı (z,z) =
〈∂ıΨ(z)|P̂0(z,z)Ĥ |Ψ(z)〉

N (z,z)
.

The modified Euler-Lagrange equations [Eq. (2.26)] thus encode the projection of the
modified Schrödinger equation [Eq. (2.25)] onto the tangent plane TM (z).

We can now not straightforwardly assume that the modified metric eG can be inverted.
In the full Hilbert space, the Euler-Lagrange equation [Eq. (2.25)] does not fix the
component of |Ψ̇(t )〉 parallel with |Ψ(t )〉, as discussed above. For general manifoldsM ,
we have to distinguish between two cases.
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(a) If the manifoldM allows for norm and phase variations of states, i.e. if |Ψ(z)〉 ∈
TM (z), one can define the contravariant vector Ψi (z) such that Ψi (z) |∂iΨ(z)〉=
|Ψ(z)〉. By definition we have that P̂0(z,z) |Ψ(z)〉 = P̂0(z,z) |∂iΨ(z)〉Ψi (z) = 0
and we can conclude that eGı j (z,z) has an eigenvalue zero, since eGı, j (z,z)Ψ j (z) =

0=Ψ
ı
(z) eGı, j (z,z), from which we immediately obtain the corresponding eigen-

vector. The metric G(z,z) allows to also define the covariant vector Ψı (z,z) =
Gı j (z,z)Ψ j (z) = 〈∂ıΨ(z)|Ψ(z)〉 so that Ψi (z,z)Ψi (z) = 〈Ψ(z)|Ψ(z)〉= N (z,z).
With these definitions, we can write

eGı, j (z,z) =
Gı, j (z,z)

N (z,z)
− Ψı (z,z)Ψ j (z,z)

N (z,z)2
. (2.30)

Even though eG(z,z) is not invertible, we can still define a pseudo-inverse as

eG i , (z,z) =N (z,z)G i , (z,z)−Ψi (z)Ψ

(z), (2.31)

such that

eG i , (z,z) eG,k (z,z) = δ i
k −
Ψi (z)Ψk (z,z)

N (z,z)
,

eGı, j (z,z) eG j ,k (z,z) = δk
ı −
Ψı (z,z)Ψ

k
(z)

N (z,z)
.

Since we can rewrite Hı (z,z) as

N (z,z)−1(δ k
ı −N (z,z)−1Ψı (z,z)Ψ

k
(z,z)) 〈δkΨ(z)|Ĥ |Ψ(z)〉 ,

we are allowed to apply this pseudo-inverse to the Euler-Lagrange equations given
by Eq. (2.26) in order to obtain




+iż i (t ) = eG i , (z(t ),z(t ))H (z(t ),z(t )),

−iż
ı
(t ) = eG j ,ı (z(t ),z(t ))Hi (z(t ),z(t )).

(2.32)

These equations are henceforth called the (modified) flow equations. In principle,
the component of ż(t ) along the zero eigenspace Ψi (z(t )) of eG(z(t ),z(t )) can be
chosen freely. But, with the particular solution in the equation above, we satisfy

Ψi (z(t ),z(t ))ż
i (t ) = 〈Ψ(z(t ))|∂iΨ(z(t ))〉 ż i (t ) = 0

and
ż

ı
(t )Ψı (z(t ),z(t )) = ż

ı
(t ) 〈∂ıΨ(z(t ))|Ψ(z(t ))〉= 0.
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We hence obtain

d

dt
〈Ψ(z(t ))|Ψ(z(t ))〉=

ż
ı
(t ) 〈∂ıΨ(z(t ))|Ψ(z(t ))〉+ 〈Ψ(z(t ))|∂iΨ(z(t ))〉 ż i (t ) = 0, (2.33)

so that the norm of the state |Ψ(z(t ))〉 is fixed to its initial value at t = 0 and
we can also refer to Eq. (2.32) as the norm-preserving flow equations. In the full
Hilbert space, adding norm preservation to Eq. (2.25) results in a norm- and phase
preserving Schrödinger equation

i
d

dt
|Ψ(t )〉= P̂0

�
Ψ(t ),Ψ(t )

�
Ĥ |Ψ(t )〉= �Ĥ −H

�
Ψ(t ),Ψ(t )

�� |Ψ(t )〉 . (2.34)

More generally, for any variational manifold for which |Ψ(z)〉 ∈TM (z), it is clear
from the definition of the pseudo-inverse eG i , (z,z) that

eG i , (z,z)H (z,z) =N (z,z)−1G i , (z,z)H (z,z)

=G i , (z,z) 〈∂ Ψ(z)|P̂0(z,z)Ĥ |Ψ(z)〉 .

We thus obtain the modified Euler-Lagrange equations [Eq. (2.26)] from the geo-
metric construction by projecting the modified Schrödinger equation [Eq. (2.25)]
onto the tangent plane TM (z(t )). The specific choice of pseudo-inverse in the
modified flow equations [Eq. (2.32)] corresponds to a projection of the exact
evolution vector P̂0(z,z)Ĥ |Ψ(z)〉 of the norm- and phase-preserving Schrödinger
equation [eq. (2.34)] into the tangent plane TM (z(t )). This observation results in
an alternate formulation of the modified flow equations [Eq. (2.32)] as





+i d
dt |Ψ(z(t ))〉=+iż j (t ) |∂ jΨ(z(t ))〉

= P̂TM (z(t ),z(t ))P̂0(z(t ),z(t ))Ĥ |Ψ(z(t ))〉 ,
−i d

dt 〈Ψ(z(t ))|=−iż

(t ) 〈∂ Ψ(z(t ))|

= 〈Ψ(z(t ))| Ĥ P̂0(z(t ),z(t ))P̂TM (z(t ),z(t )).

Alternatively, by restricting the tangent plane to the set of tangent vectors that are
orthogonal to |Ψ(z)〉, there is no difference between the Euler-Lagrange equations
in Eq. (2.15) and in Eq. (2.26). Indeed, since we have assumed that |Ψ(z)〉 ∈TM (z)
or thus P̂TM (z,z) |Ψ(z)〉= |Ψ(z)〉, we obtain

P̂0(z,z)P̂TM (z,z) = P̂0(z,z)P̂TM (z,z)P̂0(z,z) = P̂TM (z,z)P̂0(z,z).

We henceforth denote the orthogonal complement of |Ψ(z)〉 in the tangent plane
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TM (z) as T⊥M (z), and thus define

P̂T⊥M (z,z) = P̂0(z,z)P̂TM (z,z)P̂0(z,z). (2.35)

We now obtain the wave vector formulation of the modified flow equations



+i d

dt |Ψ(z(t ))〉=+iż j (t ) |∂ jΨ(z(t ))〉= P̂T⊥M (z(t ),z(t ))Ĥ |Ψ(z(t ))〉 ,
−i d

dt 〈Ψ(z(t ))|=−iż

(t ) 〈∂ Ψ(z(t ))|= 〈Ψ(z(t ))| Ĥ P̂T⊥M (z(t ),z(t )).

(2.36)

(b) In contrast, if the manifoldM does not contain the freedom to change the norm
and phase of a state, the modified metric eG has the same rank as the original
metric G, which we assumed to be invertible. The inverse of eG can thus be defined
without any problem and the same set of modified flow equations in Eq. (2.32) are
formally reproduced. In general, the dynamics extracted from the modified action
eSM will be different from the dynamics obtained from SM . The modified metric
can be recognized as the Gram matrix of the set of vectors {P̂0(z,z) |∂iΨ(z)〉 ,∀i}.
We can thus define a generalized ‘projector’

Q̂TM (z,z) = |∂iΨ(z)〉 eG i , (z,z) 〈∂ Ψ(z)| (2.37)

that satisfies
Q̂TM (z,z)P̂0(z,z)Q̂TM (z,z) = Q̂TM (z,z) (2.38)

in order to rewrite the modified flow equations [Eq. (2.32)] in vector format as





+i d
dt |Ψ(z(t ))〉=+iż j (t ) |∂ jΨ(z(t ))〉

= Q̂TM (z(t ),z(t ))P̂0(z(t ),z(t ))Ĥ |Ψ(z(t ))〉 ,
−i d

dt 〈Ψ(z(t ))|=−iż

(t ) 〈∂ Ψ(z(t ))|

= 〈Ψ(z(t ))| Ĥ P̂0(z(t ),z(t ))Q̂TM (z(t ),z(t )).

(2.39)

This equation indicates that

d

dt
N (z(t ),z(t )) =−i 〈Ψ(z(t ))|Q̂TM (z(t ),z(t ))P̂0(z(t ),z(t ))Ĥ |Ψ(z(t ))〉

+ i 〈Ψ(z(t ))|Ĥ P̂0(z(t ),z(t ))Q̂TM (z(t ),z(t ))|Ψ(z(t ))〉 6= 0. (2.40)

Indeed, since the manifoldM has a unique norm N (z,z) associated to every state
|Ψ(z)〉, the norm cannot be kept constant in general. Hence, the modified flow
equations are not norm-preserving in this case.

Clearly, the physically most relevant scenario is a variational manifoldM in which
the normalization is equal for all states. This requires that |Ψ(z)〉 ⊥TM (z) such
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that ∀i : P̂0(z,z) |∂iΨ(z)〉= |∂iΨ(z)〉 and allows to define T⊥M (z) =TM (z). One
then obtains

eGı, j (z,z) =N (z,z)−1Gı, j (z,z),

Hı (z,z) =N (z,z)−1 〈∂ıΨ(z)|Ĥ |Ψ(z)〉 ,

so that the modified flow equations [Eq. (2.32)] are identical to the original flow
equations [Eq. (2.17)]. Q̂TM is then equivalent to the ordinary projector P̂TM ,

which can also be written as P̂T⊥M , so that Eq. (2.39) can also be written as in the
form of Eq. (2.36). The equivalence between both cases is evident. Any manifold
M with fixed normalization can be converted into a manifold that allows norm
and phase variation by adding an additional variational parameter that multiplies
every state. Vice versa, in any manifoldM that allows norm and phase variations,
a fixed point on every ray of states can be chosen, which effectively reduces the
number of variational parameters by one. This norm (and phase) fixing removes
the direction |Ψ(A)〉 from the tangent plane TM (A,A).

2.4. Symplectic properties of real time evolution

One can define for every pair of functions f :M 7→C : (z,z) 7→ f (z,z) and g :M 7→
C : (z,z) 7→ g (z,z) a Poisson bracket

{ f , g}(z,z) = ∂i f (z,z) eG i , (z,z)∂  g (z,z)− ∂i g (z,z) eG i , (z,z)∂  f (z,z). (2.41)

The modified flow equations [Eq. (2.32)] can then be written down as




ż j (t ) = i{H , z j }(z(t ),z(t )),
ż

(t ) = i{H , z }(z(t ),z(t )). (2.42)

In addition, if we now associate to any operator Ô ∈L(H) the function

O : (z,z) 7→ 〈Ψ(z)|Ô|Ψ(z)〉〈Ψ(z)|Ψ(z)〉 (2.43)

that maps the coordinates (z,z) of a state |Ψ(z)〉 in the manifoldM to its expectation
value, then we can write the evolution of this expectation value under the (modified)
flow of the time-dependent variational principle as

d

dt
O(z(t ),z(t )) = i{H ,O}(z(t ),z(t )). (2.44)

71



CHAPTER 2. VARIATIONAL PRINCIPLE IN QUANTUM MECHANICS

The generalization for time-dependent operators Ô(t ) is straightforwardly given by

d

dt
O(z(t ),z(t ), t ) = i{H ,O}(z(t ),z(t ), t )+

∂ O

∂ t
(z(t ),z(t ), t ). (2.45)

The manifoldM is thus a symplectic manifold, which was first derived in [249]. From
the antisymmetry of the Poisson bracket we find {H , H} = 0, which implies that the
energy expectation value H (z(t ),z(t )) of the state |Ψ〉 ∈M is conserved under exact
integration of the flow equations of the time-dependent variational principle for a time-
independent Hamiltonian Ĥ .

The symplectic properties of the time-dependent variational principle also conserve other
symmetries. Assume that the Hamiltonian is invariant under the action of a symmetry
operator Û (which should be a unitary operator), such that [Ĥ , Û ] = 0. In order to
be able to transfer this symmetry to the manifoldM , we need to assume that for any
state |Ψ(z)〉 ∈ M , the action of Û is mapped to a new state |Ψ(u(z))〉 = Û |Ψ(z)〉 ∈
M . Because of the unitarity of Û , we have N (u(z),u(z)) = N (z,z), from which we
obtain

∂ı u (z) eG,k (u(z),u(z))∂l uk (z) = eGı,l (z,z), (2.46)

The condition [Ĥ , Û ] = 0 also allows to conclude H (u(z),u(z)) =H (z,z) and thus

∂ı u (z)H (u(z),u(z)) =Hı (z,z),

H j (u(z),u(z))∂i u j (z) =Hi (z,z).
(2.47)

The (modified) metric and the gradient thus transform covariantly under the symmetry
transformation and can be used to transform Eq. (2.32) into



+i∂ı u (z(t )) eG,k (u(z(t )),u(z(t )))

d
dt uk (z(t )) = ∂ı u (z(t ))H (u(z(t )),u(z(t ))),

−i d
dt u ı (z(t )) eGı, j (u(z(t )),u(z(t )))∂k u j (z(t )) =H j (u(z(t )),u(z(t )))∂k u j (z(t )).

By using the injectivity of the map u(z), we can eliminate the Jacobians ∂ı u  and
∂k u j in order to obtain the correct flow equations in terms of the new coordinates
(u(t ),u(t )).

One case that is not covered by the general derivation of the previous paragraph is
when Û is an anti-linear operator, since u will then depend on z anti-holomorphically.
Anti-linear transformations appear in quantum mechanics exclusively for time-reversal
transformations. However, since z denotes a set of coordinates that is independent of
z, we temporarily use an asterisk to denote complex conjugation, so that z∗ represents
the complex conjugate of the set of coordinates z. Let us define the vector function r
that depends anti-holomorphically on z as R̂ |Ψ(z)〉= |Ψ(r(z∗))〉 with R̂ the operator of
an elementary time-reversal transformation. Because of the anti-unitarity of R̂ and its
commutation relation with the Hamiltonian (i.e. [Ĥ , R̂] = 0 where we assume Ĥ to be
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time-reversal invariant), we obtain N (r(z∗),r(z∗)) = [N (z,z)]∗ and H (r(z∗),r(z∗)) =
[H (z,z)]∗. We can derive

eGı, j (z,z) =
∂
�

r k (z∗)
�∗

∂ z ı

h eGk,l (r(z
∗),r(z∗))

i∗ ∂
�

r l (z∗)
�∗

∂ z j
(2.48)

and

H j (z,z) =
∂
�

r l (z∗)
�∗

∂ z j

�
Hl (r(z

∗),r(z∗))
�∗ ,

Hı (z,z) =
∂
�

r k (z∗)
�∗

∂ z ı

�
Hk (r(z

∗),r(z∗))
�∗

.

(2.49)

Inserting these relations into Eq. (2.32) and taking the complex conjugate, we ob-
tain





−i ∂ r k

∂ z∗ı
(z∗(t )) eGk,l (r(z

∗(t )),r(z∗(t ))) d
dt r l (z∗(t ))

= ∂ r k

∂ z∗ı
(z∗(t ))Hk (r(z

∗(t )),r(z∗(t ))),

+i d
dt r k (z∗(t )) eGk,l (r(z

∗(t )),r(z∗(t ))) ∂ r l

∂ z∗ j (z∗(t ))
=Hl (r(z

∗(t )),r(z∗(t ))) ∂ r l

∂ z∗ j (z∗(t )),

or, by eliminating the Jacobian of the transformation and introducing the new coordi-
nates (r(t ),r(t ))




−i eGı, j (r(t ),r(t ))

d
dt r j (t ) =Hı (r(t ),r(t )),

+i d
dt r (t ) eG,i (r(t ),r(t )) =Hi (r(t ),r(t ))

(2.50)

Note that the signs of the two equations have been switched due to the complex conjuga-
tion, which is necessary to revert the time evolution for the new coordinates (r(t ),r(t )).
For a time-reversal invariant Hamiltonian Ĥ and a variational manifoldM that contains
the time-reversed state R̂ |Ψ(z)〉 ∈ M for each of its elements |Ψ(z)〉 ∈ M , the flow
equations of the time-dependent variational principle are also time-reversal invariant.
This can be exploited in numerical integration schemes in order to construct symmetric
schemes with improved stability (see next chapter).

Returning to the case of linear symmetry transformations Û , the expectation value
U (z,z) is a constant of motion of the exact evolution according to the Schrödinger
equation [Eq. (2.12) or Eq. (2.25)]. For the evolution according to the time-dependent
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variational principle, we obtain

d

dt
U (z(t ),z(t )) = i{H , U }(z(t ),z(t )).

and by combining this with the modified flow equation [Eq. (2.39)]

{H , U }(z,z) =
〈Ψ(z)|Ĥ P̂0(z,z)Q̂TM (z,z)P̂0(z,z)Û |Ψ(z)〉

〈Ψ(z)|Ψ(z)〉

− 〈Ψ(z)|Û P̂0(z,z)Q̂TM (z,z)P̂0(z,z)Ĥ |Ψ(z)〉
〈Ψ(z)|Ψ(z)〉 . (2.51)

The constant of motion is thus not automatically reproduced by the evolution accord-
ing to the time-dependent variational principle. However, the expectation value of a
symmetry operator is often not an interesting quantity. For extended systems, one
typically has that either U (z,z) = 1 (if |Ψ(z)〉 is invariant under the action of Û ) or
U (z,z) = 0 (due to the orthogonality catastrophe if |Ψ(z)〉 is not invariant). In the first
case, P̂0(z,z)Û |Ψ(z)〉 ∼ (Û − 1) |Ψ(z)〉 = 0 and it is clear from the previous equation
that {H , U }= 0, so that the invariance of |Ψ(z)〉 under Û is conserved by the evolution
according to the time-dependent variational principle.

Finally, we study the case where the symmetry operator Û corresponds to a continuous
symmetry generated by the Hermitian generator K̂ ∈L(H), with [K̂ , Ĥ ] = 0. Thus, the
expectation value of the generator K̂ is also conserved under exact evolution. In contrast
to the expectation value of the symmetry operator Û , this is an interesting constant of
motion. We define a one-parameter family of transformations Û (ε) = exp(iεK̂). Since we
require that for every state |Ψ(z)〉 in the manifoldM , Û (ε) |Ψ(z)〉= |Ψ(u(z,ε))〉 ∈M ,
we can differentiate this defining relation with respect to ε and set ε = 0 in order to
learn

iK̂ |Ψ(z)〉= ∂ u i

∂ ε
(z, 0) |∂iΨ(z)〉 . (2.52)

The action of K̂ on a state |Ψ(z)〉 thus has to be exactly captured in TM (z), resulting
in

P̂0(z,z)Q̂TM (z,z)P̂0(z,z)K̂ |Ψ(z)〉= P̂0(z,z)K̂ |Ψ(z)〉 ,
from which we obtain

{H ,K}(z,z) =
〈Ψ(z)|Ĥ P̂0(z,z)K̂ |Ψ(z)〉

〈Ψ(z)|Ψ(z)〉 − 〈Ψ(z)|K̂ P̂0(z,z)Ĥ |Ψ(z)〉
〈Ψ(z)|Ψ(z)〉

=
〈Ψ(z)|[Ĥ −H (z,z), K̂ −K(z,z)]|Ψ(z)〉

〈Ψ(z)|Ψ(z)〉 = 0. (2.53)

Generators of continuous symmetry transformations are thus constants of motion of
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the evolution according to the time-dependent variational principle, provided that the
symmetry transformation can be captured exactly in the manifoldM .

2.5. Properties of imaginary time evolution

The flow equations [Eq. (2.32)] can also be used to simulate imaginary time evolution
by setting t =−iτ. In the full Hilbert spaceH, imaginary time evolution will converge
any random initial state to the exact ground state, provided that the initial state is not
orthogonal to this ground state. Note that imaginary time evolution in combination
with the modified Schrödinger equation [Eq. (2.34)] does not change the norm of the
state. Imaginary time evolution then describes a continuous steepest descent for a convex
energy function H (Ψ,Ψ) in the convex subspace of constant norm 〈Ψ|Ψ〉 and thus
converges monotonically to the unique minimum1.

The flow of the time-dependent variational principle given by Eq. (2.32) does not rep-
resent a simple steepest descent in parameter space, unless the parameterization of the
states |Ψ(z)〉 is chosen such that the metric eG is proportional to the unit matrix. The
flow equations offer the best approximation to a steepest descent flow in the physical
Hilbert spaceH. For this flow, the rate of change of the energy expectation value is given
by

d

dτ
H (z(τ),z(τ)) =−2Hi (z(τ),z(τ)) eG i , (z(τ),z(τ))H (z(τ),z(τ))≤ 0. (2.54)

The energy expectation value thus decreases monotonically until the flow reaches a mini-
mum (z?,z?) of the time-independent variational principle [characterized by Eq. (2.3)].
If the energy functional H (z,z) onM has many local minima, there is no guarantee
that the flow of the time-dependent variational principle converges towards the global
minimum (which is assumed to provide the best approximation of the exact ground
state). However, if the variational manifoldM is able to accurately approximate the
exact imaginary time evolution, one can hope that the flow inherits the global minimiza-
tion character of the exact imaginary time flow and does indeed converge to the global
optimum for most random initial states.

2.6. Convergence and error measures

We refer once again to the (modified) flow equations in the format of Eq. (2.39). At a
point (z,z) corresponding to |Ψ(z)〉 ∈M , the evolution vector for the time-dependent
variational principle is given by Q̂TM (z,z)P̂0(z,z)Ĥ |Ψ(z)〉. Note that there is no sig-
nificant difference between real and imaginary time evolution, since we work with a

1 The full energy function H (Ψ,Ψ) in the restriction ofH to a convex subspace of constant norm and phase can
have saddle points corresponding to higher eigenstates, but has a single minimum corresponding to the ground
state.
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complex representation. It thus does not matter whether the time derivative of the
variational parameters z contains an additional factor i. Since only the component of
the evolution orthogonal to |Ψ(z)〉 is of importance, we can evaluate the ‘norm’ of the
evolution vector as

η(z,z)¬ P̂0(z,z)Q̂TM (z,z)P̂0(z,z)Ĥ |Ψ(z)〉
= 〈Ψ(z)|Ĥ P̂0(z,z)Q̂TM (z,z)P̂0(z,z)Ĥ |Ψ(z)〉1/2

=
�

Hi (z,z) eG i , (z,z)H (z,z)
�1/2

(2.55)

Note that this is not the true norm due to the appearance of an additional P̂0(z,z).
But when |Ψ(z)〉 ∈ TM (z) or |Ψ(z)〉 ⊥ TM (z) (these cases result in a conserved norm
under the modified flow equations), one has Q̂TM (z,z) = P̂0(z,z)P̂TM (z,z)P̂0(z,z) and

η(z,z) =
Q̂TM (z,z)P̂0(z,z)Ĥ |Ψ(z)〉, such that η(z,z) measures the true norm of

the evolution vector.

When applying the time-dependent variational principle to simulate imaginary time
evolution, one tries to converge the state to a fixed point z? where η(z?,z?) = 0.
The measure η(z,z) can be interpreted as the norm of the physical gradient and can
thus be used as a measure of convergence towards the steady state solution (z?,z?).
Note that the rate of decrease of the energy expectation value in Eq. (2.54) is given by
dH (z(τ),z(τ))/dτ =−2η(z(τ),z(τ))2. The energy thus converges quadratically faster
than the state itself, which is also a manifestation of the quadratic convergence of energy
encountered in the time-independent case of the previous section.

On the other hand, we can also assess the error between the evolution according to the
time-dependent variational principle and the exact evolution given by the Schrödinger
equation [Eq. (2.34)], which is relevant both for real and imaginary time evolution. We
thereto define the error measure ε(z,z) as

ε(z,z)¬ P̂0(z,z)
�
1̂− Q̂TM (z,z)

�
P̂0(z,z)Ĥ |Ψ(z)〉,

=
�〈Ψ(z)|Ĥ P̂0(z,z)Ĥ |Ψ(z)〉−η(z,z)2

�1/2
,

=
�
∆H (z,z)2−η(z,z)2

�1/2
,

(2.56)

with ∆H (z,z) =
P̂0(z,z)Ĥ |Ψ(z)〉 = 〈Ψ(z)|(Ĥ −H (z,z))2|Ψ(z)〉1/2. In the steady

state solution (z?,z?) of the imaginary time evolution (η(z?,z?) = 0), we trivially obtain
ε(z?,z?) =∆H (z?,z?) as it was defined in Eq. (2.10).

3. Probing the excitation spectrum

The flow equations of the time-dependent variational principle [Eq. (2.32)] can be used
to study dynamic properties of quantum systems, and to acquire information about
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the excitation spectrum. In particular, the stability of the steady state solution (z?,z?)
can be examined by linearizing the flow equations: inserting the solution

�
z(t ) =

z?+ εz1(t ),z(t ) = z
?+ εz1(t )

�
into Eq. (2.32) yields at O(ε)




+i eGı, j (z

?,z?)ż j
1 (t ) =Hı, j (z

?,z?)z j
1 (t )+Hı, (z

?,z?)z 1(t ),

−iż


1(t )
eG,i (z

?,z?) = z j
1(t )H ,i (z

?,z?)+ z j
1 (t )H j ,i (z

?,z?).

where we have assumed that the energy function H ∈C 2(M ) so that Schwarz’s theorem
can be applied, and we have defined

Hı, j (z,z) = ∂ı∂ j H (z,z) =
〈∂ıΨ(z)|P̂0(z,z)Ĥ P̂0(z,z)|∂ jΨ(z)〉

〈Ψ(z)|Ψ(z)〉

−H (z,z)
〈∂ıΨ(z)|P̂0(z,z)|∂ jΨ(z)〉

〈Ψ(z)|Ψ(z)〉 (2.57a)

together with

Hi , j (z,z) = ∂i∂ j H (z,z) =
〈Ψ(z)|Ĥ P̂0(z,z)|∂i∂ jΨ(z)〉

〈Ψ(z)|Ψ(z)〉

− 〈Ψ(z)|Ĥ P̂0(z,z)|∂ jΨ(z)〉 〈Ψ(z)|∂iΨ(z)〉
〈Ψ(z)|Ψ(z)〉2

− 〈Ψ(z)|Ĥ P̂0(z,z)|∂iΨ(z)〉 〈Ψ(z)|∂ jΨ(z)〉
〈Ψ(z)|Ψ(z)〉2 . (2.57b)

In the steady state solution (z?,z?) the last two terms of Eq. (2.57b) cancel. If we now
introduce the Hermitian matrices N ? and H ?, and the symmetric matrix M ?, as

[N ?]ı, j = eGı, j (z
?,z?) (2.58a)

[H ?]ı, j =Hı, j (z
?,z?) (2.58b)

[M ?]ı,  =Hı, (z
?,z?) (2.58c)

and set z1(t ) = z+e−iωt + z−e+iωt , we can rewrite the linearized flow equation as a
generalized Hermitian eigenvalue equation

ω


N ? 0

0 −N ?




z+
z−


=


H ? M ?

M ? H ?




z+
z−


 . (2.59)

The matrix appearing in the right hand side of Eq. (2.59) is the Hessian of the energy
functional H (z,z) in the steady state solution (z?,z?). If the variational extremum
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(z?,z?) is a minimum, this matrix should be positive definite. Note that M ? = (M ?)†

and that [M ?]ı,  contains 〈∂ı∂ Ψ(z)|P̂0(z,z)Ĥ |Ψ(z)〉. Thus, M ? measures the projection

of the exact evolution vector P̂0(z,z)Ĥ |Ψ(z)〉 of the Schrödinger equation [Eq. (2.34)]
onto the double tangent plane

T(2)M (z) = span
¦|∂i∂ jΨ(z)〉 ,∀i , j

©
(2.60)

which is much larger (higher-dimensional vector subspace ofH) than the tangent plane
T(1)M (z) =TM (z) to which P̂0(z,z)Ĥ |Ψ(z)〉 is projected in the framework of the time-
dependent variational principle, as discussed in Subsection 2.2. Indeed, when this linear
response theory is applied to the time-dependent Hartree-Fock theory, one obtains the
Random Phase Approximation [250], which goes well beyond the mean-field ansatz of
the Hartree-Fock theory. For the Gross-Pitaevskii equation, the linearization in Eq. (2.59)
is called the Bogoliubov-de Gennes equation [251]. Note that for any eigenvalueω =ω(k)

with corresponding eigenvector (z(k)+ ,z(k)− ), we obtain another eigenvalueω(−k) =−ω(k)
with corresponding eigenvector (z(−k)

+ = z(k)− ,z(−k)
− = z(k)+ ). The spectrum of eigenvalues

is thus symmetric around zero.

Since ‖M ?‖ ≤ ‖P̂0(z,z)Ĥ |Ψ(z?)〉‖ = ε(z?,z?), it can be expected that be small when
|Ψ(z?)〉 is a good approximation to the exact ground state of Ĥ . In contrast, H ? is
independent of ε(z?,z?) and contains the restriction of Ĥ to TM (z?). We can thus
expect ‖H ?‖� ‖M ?‖ and we can approximate Eq. (2.59) by

ω


N ? 0

0 −N ?




z+
z−


=


H ? 0

0 H ?




z+
z−


 .

The two different components z+ and z− then decouple. Note that the matrix H ? is
in itself positive semidefinite if (z?,z?) represents a variational minimum. We thus find
eigenvaluesω(k) ≥ 0 for which the z(k)− = 0 and, by using the mapping discussed in the

previous paragraph, eigenvalues ω(−k) = −ω(k) ≤ 0 with z(−k)
− = z(k)+ and z(−k)

+ = 0.
These eigenvalues and corresponding eigenvectors produce identical solutions z1(t ). We
can thus restrict to the z+ component, which can be interpreted as an application of the
time-independent variational principle to the variational manifold TM (z?). Indeed, this
generalized eigenvalue problem is also obtained by applying the Rayleigh-Ritz method
to the set of states {|Φ(z+;z?)〉= z i

+ |∂iΨ(z
?)〉} with z? fixed. Thus, if |Ψ(z?)〉 accurately

approximates the exact ground state of Ĥ (such that ε(z?,z?)� 1), then we can hope
that the tangent plane TM (z?) contains a good approximation for the lowest excited
state(s).

If ε(z?,z?) 6� 1, then the generalized eigenvalue equation [Eq. (2.59)] can still give a
reasonable estimate for the excitation energies, but there is no associated variational
ansatz that can be interpreted as an approximation for the corresponding eigenvectors of
the Hamiltonian Ĥ .
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4. Variational principle for extended quantum systems

Despite the many successes of the (time-independent) variational principle, it should
be used carefully. As was already illustrated in Section 1 that the energy converges
quadratically faster than most other expectation values, so that a good estimate of
the energy in the variational optimum |Ψ?〉 = |Ψ(z?)〉 not necessarily implies a good
approximation of physical observables and the general physical behavior of the state. For
systems with an infinite number of degrees of freedom, the results at the end of Section 1
are rendered moot due to the orthogonality catastrophe (see Section 1 of the previous
chapter). Almost any variational approximation |Ψ?〉 of an extended system without
ultraviolet (relativistic theories) or infrared (thermodynamic limit) cutoff that is not the
exact ground state |Ψ(0)〉 satisfies 〈Ψ?|Ψ(0)〉= 0, hence invalidating the starting expression
in Eq. (2.5).

4.1. Local error and convergence measures

If the variational approximation is locally similar to the exact ground state, in terms of a
local state error ε̃ so that

‖ρ̂?A− ρ̂(0)A ‖ ≤ ε̃ (2.61)

with ρ̂?A and ρ̂(0)A the density matrix of the variational approximation and of the exact
ground state in some compact subspaceA , it should still be possible to accurately obtain
the expectation value of local observables. A suitable length scale ofA that guarantees
good global properties of the state is given by the correlation length ξc.

We now evaluate the ∆H (z?,z?) for a translation invariant local Hamiltonian Ĥ =∑
n∈L ĥn or Ĥ =

∫
R dx ĥ(x) as in Eq. (1.21), for a system living on a lattice L or a

continuumR . Using translation invariance of the ground state approximation |Ψ?〉 and
defining h(z?,z?) = 〈Ψ?|ĥn |Ψ?〉 or h(z?,z?) = 〈Ψ?|ĥ(x)|Ψ?〉, we obtain

∆H (z?,z?)2 =
∑

m,n∈L
〈Ψ?|

�
ĥn − h(z?,z?)

��
ĥm − h(z?,z?)

�
|Ψ?〉

= |L |
∑
n∈L
〈Ψ?|

�
ĥ0− h(z?,z?)

��
ĥn − h(z?,z?)

�
|Ψ?〉

or∆H (z?,z?)2 =
∫
R

dxdy 〈Ψ?|
�

ĥ(x)− h(z?,z?)
��

ĥ(y)− h(z?,z?)
�
|Ψ?〉

= |R|
∫
R

dx 〈Ψ?|
�

ĥ(0)− h(z?,z?)
��

ĥ(x)− h(z?,z?)
�
|Ψ?〉 . (2.62)

In the thermodynamic limit, the prefactor |L | or |R| is diverging. The remaining factor
represents the connected correlation function of the terms of the Hamiltonian: due
to the expected clustering properties of physical states, this sum or integrand should
produce a finite result, since the terms should converge rapidly to zero for |n| ≥ ξc/a or
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|x| ≥ ξc (with a the lattice spacing; see Eq. (1.57)). An estimate ε̃(z?,z?) of the local state
error ε̃ (see Eq. (2.61)) in the variational optimum |Ψ(z?)〉 is thus given by

ε̃(z?,z?) =
Æ
∆H (z?,z?)2/|L |= ε(z?,z?)/|L |1/2

or ε̃(z?,z?) =
Æ
∆H (z?,z?)2/|R|= ε(z?,z?)/|R|1/2 (2.63)

If |Ψ(z)〉 represents a translation invariant variational ansatz for systems in the ther-
modynamic limit, then all of its tangent vectors |∂iΨ(z)〉 are also translation invariant.
Assuming that |Ψ(z)〉 and the tangent plane TM (z) live in the same Hilbert space,
the normalizability of |Ψ(z)〉 automatically implies that the tangent vectors cannot be
normalized and thus satisfy

〈∂iΨ(z)|∂ jΨ(z)〉 ∼ |L | or 〈∂iΨ(z)|∂ jΨ(z)〉 ∼ |R|.

As a generalization of Subsection 2.6, we can now define local convergence and error
measures η̃(z,z) and ε̃(z,z) for the time-dependent variational principle in all points
|Ψ(z)〉 ∈M using the identification

η̃(z,z)¬ η(z,z)/|L |−1/2 or η̃(z,z)¬ η(z,z)/|R|−1/2, (2.64)

ε̃(z,z)¬ ε(z,z)/|L |−1/2 or ε̃(z,z)¬ ε(z,z)/|R|−1/2. (2.65)

4.2. Feynman’s objections

Unfortunately, it turns out a small local error ε̃(z?,z?) is hard to obtain in systems where
the the range of interacting scales ξc/a grows very large, with a representing any kind of
ultraviolet cutoff. Three conceptual issues standing in the way of a successful application
of the variational principle in this regime where outlined by Feynman in a talk given in
1987 [252]. While Feynman focussed on the case of relativistic quantum field theories
(where a = 0), his arguments can easily be extended to any system having a large ratio
ξc/a and are thus worth studying in some detail.

Sensitivity to high frequencies

We have already seen how the energy expectation value of the variational approximation
|Ψ?〉 has a much smaller error with respect to the exact solution then the expectation
value of most other operators. In systems with a large number of degrees of freedom,
this dominance of the ground state energy is much more dramatic. In systems with a
large range of interacting energy scales, the ground state energy is typically dominated
by the degrees of freedom living at the ultraviolet scales. However, observable physical
quantities, i.e. the expectation values that we are interested in computing, are related to
the degrees of freedom living at the infrared scale. But since the only driving force for any
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variational approach is the ground state energy (density), all variational parameters z will
be exploited to obtain the best possible description of the ultraviolet degrees of freedom.
Variational methods do in general not care about the relatively tiny energy penalty
resulting from having an ill-described infrared behavior. Interesting physical expectation
values will then be very badly approximated when using the variationally optimized state
|Ψ(z?)〉. This argument can even lead to the paradoxical situation where the addition of
variational parameters provides a worse approximation to physical quantities.

While this problem is a major issue for any system with a large range of relevant energy
scales, it is truly catastrophic when the range of energy scales ξ /a diverges: relativistic
field theories and critical systems. In relativistic systems, the ultraviolet scales are often
associated to the high momentum modes or high frequencies. Feynman was thus accusing
the variational principle of being too “sensitive to the high frequencies”. To lowest order,
the ground state of a relativistic quantum field theory contains the zero-point fluctuations
from all energy scales. But since these energy contributions are in itself proportional to
the frequency which they are at, the corresponding ground-state energy is dominated
by the contribution of the high frequencies. Since there is no ultraviolet cutoff, these
high frequency modes are infinitely abundant and create a divergence in the ground
state energy (density). Hence, the prime quantity of interest for the application of the
variational principle is ill-defined, which already signals a difficulty that the variational
principle will face.

In principle, this sensitivity only poses an issue in interacting theories, since free (qua-
dratic) theories can be diagonalized exactly by going to momentum space. The different
momentum scales decouple and an exact solution for each scale independently is possible.
Only when interactions are present is there no longer an obvious way to decouple the
different scales of the system. However, any variational method where the variational
parameters z affect both ultraviolet and infrared scales suffer from Feynman’s first
argument. In particular, this dissertation focusses on variational ansätze formulated in
real space, where variational parameters are associated to a specific point of the latticeL
or continuumR . These variational parameters influence both the infrared and ultraviolet
behavior of the theory. Hence the sensitivity to high frequencies of the variational classes
of the next chapters can already be investigated for free theories.

Only Gaussians

Feynman’s second concern is on the nature of suitable variational ansatz states, rather
than on an inherent feature of the variational method. His observation was again
formulated for relativistic theories, but applies equally to all extended quantum systems.
Feynman remarks that a suitable ansatz for an extended quantum system should be
extensive or size consistent, i.e. the expectation value of any extensive observable
—in particular the Hamiltonian– with respect to the trial states |Ψ(z,z)〉 should be
proportional to the volume |L | or |R| of the system. For compact systems, one can
easily construct a set of variational ansatz states by taking the span of the ground state
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and a few of the excited states of a nearby free Hamiltonian that can be diagonalized
exactly, to which the Rayleigh-Ritz method can then be applied. One famous example
in this class is the ‘configuration interaction method’ for quantum chemistry problems,
where first the Hartree-Fock problem is solved and then a basis is constructed from the
Hartree-Fock ground state and its lowest lying excitations.

For extended systems, this approach fails because the excited states are not extensive and
can thus not contribute to the energy expectation value. We thus end up trying to apply
the variational method by using the ground state of a free theory —a Gaussian state— as
variational ansatz, which is thus equivalent to mean field theory.

We still have to compute expectation values

Feynman’s third objection is closely related to the previous. Starting from the ground
state of a nearby free theory, it is clear that extensive states can be obtained by creating
states with a finite density of excitations. The creation of excitations should then appear
inside the argument of an exponential. In quantum chemistry, such an approach is
know as coupled cluster theory [253], which has also been used in combination with
lattice field theory [254, 255, 256]. However, Feynman argued that for (relativistic)
field theories (in the continuum), evaluating expectation values with an analoguous
ansatz is as difficult as computing the path integral describing the quantum field theory,
but in one dimension less: time has disappeared from this Hamiltonian framework.
For non-Gaussian states, Feynman believed that it is impossible to accurately calculate
expectation values, as he considered perturbation theory the only means possible to
compute these integrals. The resulting errors have a strong influence on the optimal state
|Ψ(z?)〉 obtained by applying the variational method and thus on observable quantities
derived from it.

4.3. Outlook

Feynman’s argument present three major barriers that need to be overcome by any
variational approach for extended quantum systems. Not only do we need a good
variational class of ansatz states |Ψ(z,z)〉 that is both extensive and is capable of capturing
a wide range of physical effects, we also need to ensure that we can efficiently compute
expectation values with these ansatz states, either exactly or approximative with a very
good accuracy. Preferably, we would like to be able to decouple the different scales in
the system in order to also escape Feynman’s first argument. If we are not able to do so,
the variational approach will inevitably run into trouble in the neighborhood of critical
systems and for relativistic theories.

Feynman himself seemed very pessimistic at first and concluded his plea with the follow-
ing conclusion:
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“I’am going to give away what I want to say, which is that I didn’t get
anywhere. I got very discouraged and I think I can see why the variational
principle is not very useful. So I want to take, for the sake of argument, a
very strong view —which is stronger than I really believe— and argue that it
is no damn good at all!”

However, in the discussion after his talk, Feynman gave away that he already had a strong
suspicion that there might be a way out:

“Now, in field theory, what’s going on over here and what’s going on
over there and all over space is more or less the same. Why do we have to
keep track in our functional of all things going on over there while we are
looking at the things that are going on over here? . . . It’s really quite insane,
actually: we are trying to find the energy by taking the expectation value of
an operator which is located here and we present ourselves with a functional
which is dependent on everything all over the map. That’s something wrong.
Maybe there is some way to surround the object, or the region where we
want to calculate things, by a surface and describe what things are coming in
across the surface. It tells us everything that’s going on outside.”

Feynman even had an intuition for how such a construction could look like:

“I think it should be possible some day to describe field theory in some
other way than with the wave functions and amplitudes. It might be some-
thing like the density matrices where you concentrate on quantities in a
given locality and in order to start to talk about it you don’t immediately
have to talk about what’s going on everywhere else . . . ”

Clearly, in light of recent discoveries about the behavior of entanglement in such systems
and the relationship with holography (as discussed in Section 2 of the previous chapter),
Feynman’s intuition was correct. It should be possible to holographically encode the
information in a region by a theory living on its boundary and this insight turns out
to be crucial in the construction of very flexible variational classes in the next chapters,
while still allowing an efficient evaluation by using the boundary theory. Insights
from renormalization group theory can provide methods for decoupling the interacting
degrees of freedom and eventually lead to algorithms and even a variational ansatz that
naturally supersedes Feynman’s first objection in Chapter 5.
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3
MATRIX PRODUCT STATES FOR QUANTUM

LATTICES

A first answer to Feynman’s supposed lack of good variational ansätze is the class of
matrix product states, a very powerful ansatz for strongly correlated quantum lattice
systems in d = 1 spatial dimension. Matrix product states arise as the variational ansatz
underlying the density matrix renormalization group (see Subsection 3.4 of Chapter 1),
even though this was not immediately clear from the original formulation. This obser-
vation, first made by Östlund and Rommer [227, 228], allowed for an explosion in the
power of this approach. While the density matrix renormalization group was originally
a method for computing ground states (and a few excited stated) of finite chains with
open boundary conditions, the matrix product state formalism together with quantum
information theoretical insights concerning entanglement in extended systems have
resulted in the development of powerful extensions for chains with periodic boundary
conditions, infinite chains, higher-dimensional systems, finite-temperature properties
and nonequilibrium physics (see [257, 258, 259] for an overview). This chapter starts
with a summary of definitions and properties regarding matrix product states. Next, the
general variational methods for time dependence and excitations that were introduced in
the previous chapter are being applied to the variational class of matrix product states.
Despite the generality of these methods, this had not been done before and new powerful
algorithms for studying the dynamical properties of one-dimensional quantum lattice
systems are obtained.

1. Definition and properties of the manifoldMMPS

Consider a one-dimensional lattice L with |L | = N sites labeled by the integer n ∈
L = {1, . . . ,N}. The physical length of the system is given by L=Na with a the lattice
spacing. Every site n contains a qn -dimensional quantum variable, so that local Hilbert
space Hn

∼= Cqn is spanned by a basis {|sn〉 | sn = 1, . . . , qn}. The total Hilbert space is
given byHL =

⊗N
n=1Hn and spanned by the product basis

HL = span{|s1 s2 . . . sN 〉= |s1〉1⊗|s2〉2⊗· · ·⊗|sN 〉N | ∀sn = 1, . . . , qn ,∀n = 1, . . . ,N}. (3.1)
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The dimension ofHL is thus given by dimHL =
∏N

n=1 qn , and the specification of an ar-
bitrary state |Ψ〉 ∈HL requires a value for each of the coefficients cs1,s2,...,sN

corresponding
to the element |s1 s2 . . . sN 〉 of the basis.

A matrix product state |Ψ[A]〉 ∈HL is defined as

|Ψ[A]〉¬
q1∑

s1=1

q2∑
s2=1

· · ·
qN∑

sN=1

tr[As1(1)As2(2) · · ·AsN (N )] |s1 s2 · · · sN 〉 , (3.2)

where we misuse the functional notation [A] for the dependence on a discrete set of
objects A= {A(n) | n = 1, . . . ,N}. For every value of sn = 1, . . . , qn , the quantity Asn (n)
represents a matrix of size Dn−1 ×Dn , with D0 = DN . The coefficients cs1,s2,...,sN

are
thus obtained as a product of matrices, hence the name. The objects A(n) can also be
interpreted as rank 3 tensors with entries Asn

α,β
(n), where there is one physical index

sn = 1, . . . , qn and two virtual indices α = 1, . . . , Dn−1 and β = 1, . . . , Dn . The integers
Dn are called the bond dimension or virtual dimension of the matrix product state.
Note that it is always useless to choose Dn > qn Dn−1 or Dn−1 > qn Dn . For example,
if Dn > Dn−1qn then define the (Dn−1qn ×Dn)-matrix A(αs),β(n) from reordering and
grouping the indices of the tensor A(n). The rank of the matrix A(αs),β(n) is limited
by Dn−1qn , and there exists a Dn−1qn × Dn−1qn matrix B(αs),γ (n) and Dn−1qn × Dn

matrix Qγ ,β such that A(αs),β(n) =
∑Dn−1qn

γ=1 B(αs),γQγ ,β. Without loss of accuracy, we can
redefine As (n)← B s , As (n+ 1)←QAs (n+ 1) and Dn←Dn−1qn . A similar proof holds
for the case Dn−1 > qn Dn .

For a given latticeL with local Hilbert spacesHn and fixed bond dimensions {Dn ,∀n =
1, . . . , L}, the variational manifoldMMPS ⊂HL is thus given by

MMPS =
¦|Ψ[A]〉 ,∀Asn (n) ∈CDn−1×Dn | ∀sn = 1, . . . , qn ,∀n = 1, . . . , L

©
. (3.3)

The notationMMPS will not be cluttered with explicit notation of the latticeL or the
local Hilbert dimensions {qn}. This information will always be clear from the context.
The bond dimensions {Dn} can be indicated explicitly asMMPS{Dn} when confusion
between different choices of {Dn} is possible. If a different set of bond dimensions {D ′n}
satisfies D ′n ≤ Dn , ∀n = 1, . . . ,N , thenMMPS{D ′n} ⊂MMPS{Dn}. A matrix product state
|Ψ[A′]〉 ∈MMPS{D ′n} can be identified with a state |Ψ[A]〉 ∈MMPS{Dn} by setting, ∀s =
1, . . . , qn , As

α,β
(n) = (A′)s

α,β
(n) for α = 1, . . . , D ′n−1 and β = 1, . . . , D ′n , and As

α,β
(n) = 0

for all other combinations of α and β. The manifold MMPS{Dn} is definitely not a
vector space, since for two states |Ψ[A1]〉 , |Ψ[A2]〉 ∈ MMPS{Dn}, the matrix product
state representation of |Ψ[A1]〉+ |Ψ[A2]〉 requires in the most general case a set of
bond dimensions {D ′n = 2Dn}. Put differently, in the most general case we obtain
|Ψ[A1]〉+ |Ψ[A2]〉= |Ψ′[A′]〉 ∈MMPS{D ′n}, where (A′)s (n) is constructed as (A′)s (n) =
As

1(n)⊕As
2(n), ∀s = 1, . . . , qn , ∀n = 1, . . . ,N . The variational manifold does however

contain complete rays of states, since for a state |Ψ[A]〉 ∈ MMPS{Dn} and λ ∈ C, the
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state λ |Ψ[A]〉 ∈MMPS{Dn} and a matrix product state representation can be obtained by
multiplying the matrices As (n) for one particular value of n by λ. The arbitrariness in
the value of n already indicates that there is some redundancy in the matrix product state
representation. We now define the matrix product state parameter space AMPS as

AMPS =
N⊕

n=1

CDn−1×qn×Dn , (3.4)

with

dimAMPS =
N∑

n=1

Dn−1qn Dn . (3.5)

The matrix product state then represents a map

Ψ :AMPS 7→MMPS ⊂HL : A= {A(n) | n = 1, . . . ,N} 7→ |Ψ[A]〉 (3.6)

that is not injective. We thus have dimMMPS < dimAMPS.

We now also define the tangent plane TMMPS
[A] = TMPS[A] ⊂ HL at a certain point

A= {A(n) | n = 1, . . . ,N} ∈AMPS. For the tangent vectors, the general notation

|Φ[A][B]〉= |Φ[B ;A]〉¬
N∑

n=1

Dn−1qn Dn∑
i=1

B i (n)
∂

∂ Ai (n)
|Ψ[A(n)]〉

=
N∑

n=1




q1∑
s1=1

· · ·
qn∑

sn=1

· · ·
qN∑

sN=1

tr[As1(1) · · ·B sn (n) · · ·AsN (N )] |s1 s2 · · · sN 〉



(3.7)

is introduced, where i is a collective index i = (α, s ,β) that contains both the physical
index s and the matrix indices α and β. A general tangent vector |Φ[B ;A]〉 is thus
built from N matrix product states, where one of the tensors A(n) is replaced by B(n).
Given the remark above, the smallest manifoldMMPS{D ′n} in which TMPS[A] for a general
point A= {A(n) | n = 1, . . . ,N} can be embedded has bond dimensions {D ′n = N Dn}.
Obviously, the tangent plane TMPS[A] is a vector space, and we can define Φ[A] as the
linear homomorphism

Φ[A] :AMPS 7→TMPS[A]⊂HL : {B(n) | n = 1, . . . ,N} 7→ |Φ[A][B]〉= |Φ[B ;A]〉 (3.8)

for every fixed value of A= {A(n) | n = 1, . . . ,N}. Note in particular that |Φ[A;A]〉=
N |Ψ[A]〉, so that |Ψ[A]〉 ∈ TMPS[A]. This will proof relevant want applying the time
dependent variational principle, as was discussed in general in Subsection 2.3 of the
previous chapter. We thus also define the orthogonal complement of |Ψ[A]〉 in TMPS[A]
as T⊥MPS[A]. T⊥MPS[A] only contains tangent vectors |Φ[B ;A]〉 that do not induce a in
the norm of |Ψ[A+ηB]〉 up to the first order of η. This requires that B is restricted
to those values for which 〈Ψ[A]|Φ[B ;A]〉 = 0. When no confusion is possible, the
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point A = {A(n) | n = 1, . . . ,N} at which the tangent plane is constructed will be
omitted from the notation of the tangent vectors and the tangent plane. Both the
mathematical as well as the physical properties of the non-linear map Ψ, the linear map
Φ and the corresponding setsMMPS, AMPS and TMPS are studied in the remainder of this
section.

1.1. Density matrix renormalization group and Schmidt decompo-
sitions

A suitable variational ansatz for a system on a lattice with open boundary conditions
can be obtained by choosing D0 =DN = 1 in the general form of Eq. (3.2). The trace in
the definition of |Ψ[A(n)]〉 then becomes redundant. As was realized by Östlund and
Rommer in [227, 228], the infinite size algorithm of density matrix renormalization
group (see Subsection 3.4 of Chapter 1) implicitly creates such matrix product states
with open boundary conditions. Indeed, in every step, the ground state on a superblock
(S ′ ∪ E ′) corresponding to a latticeL ′ with |L ′|=N + 2 is computed. The respective
Hilbert spaces of S ′ = {1, . . . , n+1} and E ′ = {n+2, . . . , |L ′||} (with n =N/2) are given
byH(S ′) = span{|Φ(S)

α
〉⊗|s〉n+1 | α= 1, . . . , Dn ; s = 1, . . . , qn+1} andH(E ′) = span{|s〉n+2⊗

|Φ(E)
α
〉 | s = 1, . . . , qn+2;α = 1, . . . , Dn+2}, with {|Φ(S)

α
〉 | α = 1, . . . , Dn} and {|Φ(E)

α
〉 | α =

1, . . . , Dn+2} the left (system) and right (environment) Schmidt vectors corresponding to
the Dn =Dn+2 largest Schmidt vectors of the ground state on the superblock from the
previous iteration. If the new ground state |Ψ′〉 has a Schmidt decomposition

|Ψ′〉=
min(qn+1,qn+2)Dn∑

α=1

λ′
α
(n+ 1) |Φ(S ′)

α
〉⊗ |Φ(E ′)

α
〉 , (3.9)

then new reduced Hilbert spaces for S ′ and E ′ can be constructed asH(S ′) = span{|Φ(S ′)
α
〉 |

α= 1, . . . , Dn+1} andH(E ′) = span{|Φ(E ′)
α
〉 | α= 1, . . . , Dn+1} where the new bond dimen-

sion Dn+1 satisfies Dn+1 < min(qn+1, qn+2)Dn . We can then express the new Schmidt
vectors as

|Φ(S ′)
α
〉=

Dn∑
β=1

qn+1∑
s=1

Ls
β,α(n+ 1) |Φ(S)

β
〉⊗ |s〉n+1 , ∀α= 1, . . . , Dn+1 (3.10)

and

|Φ(E ′)
α
〉=

qn+2∑
s=1

Dn+2∑
β=1

Rs
α,β(n+ 2)λβ(n+ 2) |s〉n+2⊗ |Φ(E)β 〉 , ∀α= 1, . . . , Dn+1. (3.11)

88



§1. Definition and properties of the manifoldMMPS

Grouping everything together and shifting n← n− 1, we obtain as final ground state
|Ψ〉 on the latticeL

|Ψ〉=
q1∑

s1=1

q2∑
s2=1

· · ·
qN∑

sN=1

Ls1(1) · · ·Lsn (n)C Rsn+1(n+ 1) · · ·RsN (N ) |s1 . . . sn sn+1 . . . sN 〉 , (3.12)

with n = N/2 and where C is a diagonal matrix of size Dn ×Dn that contains on its
diagonal the Schmidt values of the last iteration. The matrix C is sometimes called the
center matrix and can be absorbed into either L(n) or R(n+ 1). A matrix product state
with bond dimensions {Dn} satisfying Dn = DN−n is obtained, where n is henceforth
again an arbitrary site label (i.e. n = 1, . . . ,N ) is obtained. Because of the orthonormality
of the Schmidt vectors, the matrices Ls (n) and Rs (n) satisfy respectively left and right
orthogonality conditions given by

qn∑
s=1

Ls (n)†Ls (n) = 1Dn
, ∀n = 1, . . . ,

N

2
, (3.13a)

qn∑
s=1

Rs (n)Rs (n)† = 1Dn−1
∀n =

N

2
= 1, . . . ,N . (3.13b)

The normalization of the state is given by 〈Ψ|Ψ〉= tr(C †C ). In the infinite size algorithm,
the ground state on the new superblock (S ′∪E ′) is constructed from the reduced Hilbert
spaces eH(S) and eH(E) that were optimal for the representation of the ground state on
(S ∪E). It is not automatically true that these reduced Hilbert spaces are also optimal for
the ground state on (S ′ ∪ E ′). The finite size algorithm sets as it goal to further refine the
reduced Hilbert spaces with respect to every bipartition of the latticeL = {1, . . . ,N}
into a left partL (n)L = {1, . . . , n} and a right partL (n)R = {n+ 1, . . . ,N}, corresponding
to a cut in the chain between site n and site n+ 1. It hereto optimizes over sites n and
n+1 while keeping the Schmidt vectors of the system {1, . . . , n−1} and the environment
{n+ 2, . . . ,N} fixed, where the position n is swept from left to right and back several
times. This algorithm served as an inspiration for a variational strategy for matrix
product states. Since the matrix product state ansatz is linear in each of the tensors A(n)
individually, when all other tensors are kept fixed, the variational optimization with
respect to A(n) alone is a simple eigenvalue equation. The non-linearity stems from
the coupling between the different tensors. However, good convergence is obtained by
fixing all tensors but A(n), optimizing A(n) and sweeping n back and forth several times.
This is the standard method for solving the time-independent variational optimization
problem in case of matrix product states with open boundary conditions. It differs from
the original formulation of the density matrix renormalization group in the fact that
now a single site is optimized and it therefore is truly variational: the energy decreases
monotonically in every step.

If the bond dimensions {Dn} can grow unboundedly, an exact matrix product state
representation of any state |Ψ〉 ∈ HL can be constructed —following the analysis of
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[260]— by successive Schmidt decompositions. Let the Schmidt decomposition of |Ψ〉
corresponding to the cut between sites n and site n+ 1 be given by

|Ψ〉=
Dn∑
α=1

λα(n) |Φ[1···n]α
〉⊗ |Φ[(n+1)···N]

α
〉 (3.14)

where λα(n) are the Schmidt coefficients and |Φ[1···n]
α
〉, |Φ[(n+1)···N]

α
〉 are respectively the

left and right orthonormal Schmidt vectors (∀α= 1, . . . , Dn), with the Schmidt number
Dn given by

Dn =min
�

dimHL (n)L
, dimHL (n)R

�

=min

 
n∏

m=1

qm ,
N∏

m=n+1

qm

!
, ∀n = 1, . . . ,N − 1. (3.15)

In addition, we define D0 = DN = 1. The right Schmidt vectors according to the cut
between site n− 1 and n can be expressed in terms of the local basis at site n and the
right Schmidt vectors according to the cut between site n and n+ 1, resulting in

|Φ[n···N]
α

〉=
qn∑

s=1

Dn∑
β=1

Γs
α,β(n)λβ(n) |s〉n ⊗ |Φ[(n+1)···N]

β
〉 . (3.16)

Reiterating this equation from n = 2 to n =N −1, and using that the left Schmidt vector
for the cut between site 1 and site 2 can be written in terms of the local basis at site 1
as

|Φ[1]
α
〉=

q1∑
s=1

Γs
α
(1) |s〉1 (3.17)

and the right Schmidt vector for the cut between site N − 1 and site N can be written in
terms of the local basis at site N as

|Φ[N]
α
〉=

qN∑
s=1

Γs
α
(N ) |s〉N , (3.18)

we obtain

|Ψ〉=
q1∑

s1=1

q2∑
s2=1

· · ·
qN∑

sN=1

Γs1(1)Λ(1)Γs2(2)Λ(2) · · ·ΓsN (N ) |s1 s2 . . . sN 〉 , (3.19)

where the Γs (n) are Dn−1×Dn matrices (∀s = 1, . . . , qn) and Λ(n) is a Dn ×Dn diagonal
matrix containing the Schmidt spectrum of the state |Ψ〉 according to cut between sites n
and n+ 1. Every state inHL can thus be represented as a matrix product state, provided
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that the maximally allowed bond dimension D can grow to

D ≥max
n

h
min

�
dimHL (n)L

, dimHL (n)R

�i
. (3.20)

There is plethora of choices for defining the matrices As (n) in terms ofΛ(n−1), Γs (n) and
Λ(n), which is related to the redundancy in the matrix product state representation. Up
to a reordering in the Schmidt spectra on the diagonal of Λ(n), the current decomposition
of a state is unique. The left Schmidt vectors corresponding to a cut between site n
and site n+ 1 can now also be expressed in terms of the local basis at site n and the left
Schmidt vectors corresponding to a cut between site n− 1 and site n as

|Φ[1···n]
α
〉=

Dn−1∑
β=1

qn∑
s=1

λβ(n− 1)Γs
β,α(n) |Φ[1···(n−1)]

β
〉⊗ |s〉n . (3.21)

The orthonormality of the Schmidt vectors and the normalization of the state (i.e.
〈Ψ|Ψ〉= 1) now imply left and right orthogonality conditions in the form

qn∑
s=1

Γs (n)†Λ(n− 1)2Γs (n) = 1Dn
, (3.22a)

qn∑
s=1

Γs (n)Λ(n)2Γs (n)† = 1Dn−1
, ∀n = 1, . . . ,N . (3.22b)

1.2. Entanglement scaling and representation accuracy

Even though it is nice to know by choosing the set of bond dimensions {Dn} according
to Eq. (3.15) we obtainMMPS{Dn} =HL , the matrix product state formalism will then
be more complex then just working with the original coefficients cs1,s2,...,sN

, because of
the redundancy in the representation. In practice, we are interested in matrix product
states where D =maxn Dn is much smaller than the bound given in Eq. (3.20), which
results in D = qL/2 if qn = q for all sites and would thus requires an exponential scaling
in the system size. For a maximum bond dimension D , the maximal amount of bipartite
entanglement corresponding to a cut between two sites is given by Smax = log D, by
choosing all Schmidt values λα = 1/

p
D, ∀α = 1, . . . , D. Since our goal is an accurate

representation of ground states of locally interacting quantum systems, the worst case
scaling of entanglement is found for critical systems [one half of Eq. (1.66) for a system
with open boundary conditions]. A very naive comparison would allow to conclude that
D ∼ (L/2)(c+c)/12 with c and c the holomorphic and antiholomorphic central charge of
the conformal theory that describes the low-energy behavior of the critical point. This
polynomial scaling in the system size is already a big improvement on the exponential
scaling required to represent the complete Hilbert space HL and is a first indication
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that ground states of short-range interacting Hamiltonians can be encoded efficiently1 by
matrix product states.

However, this naive argument cannot be considered a proof, since the spectrum of
Schmidt values λα in extended quantum systems is not constant up to some value
α=D and zero beyond. The asymptotic formula for the entanglement spectrum λ2

α
∼

exp(−k ln2α) (with k some arbitrary constant) was derived in [261]. The strategy of the
density matrix renormalization group is to retain the Schmidt vectors corresponding
to the largest Schmidt values. It can be shown that this is a good strategy that keeps
errors small. For a general bipartite system C = A∪ B , let |Ψ〉 be a given state with
Schmidt decomposition |Ψ〉 = ∑D

α=1 λα |Φ(A)α 〉 ⊗ |Φ(B)α 〉, where there are D non-zero
Schmidt coefficients2 λα which are assumed to be ordered in decreasing order λ1 ≥ λ2 ≥
. . . ≥ λD . If |Ψ〉 has to be approximated by a state |Ψ′〉 where only D ′ < D non-zero
Schmidt coefficients are allowed, then the best approximation —in terms of minimizing|Ψ〉− |Ψ′〉— is obtained by choosing |Ψ′〉 = ∑D ′

α=1 λα |Φ(A)α 〉 ⊗ |Φ(B)α 〉. Indeed, this
statement is equivalent to stating that the best approximation of a matrix Ψi , j with
rank D by a matrix Ψ′i , j with rank D ′ is obtained by computing the singular value
decomposition of Ψ and only retaining the D ′ largest singular values, which is a well
known property of the singular value decomposition. The total error is given by the
sum of the squares of the neglected Schmidt coefficients, i.e.

ε2 =min
Ψ′

|Ψ〉− |Ψ′〉2 =
D∑

α=D ′+1

λ2
α
. (3.23)

In addition, for every operator Ô having non-trivial support either in subsystem A or B ,
we obtain ���〈Ψ|Ô|Ψ〉− 〈Ψ′|Ô|Ψ′〉

���= ε2‖Ô‖. (3.24)

If on a latticeL with open boundary conditions, the state |Ψ〉 ∈HL =MMPS{Dn} has an
exact matrix product state representation |Ψ[A(n)]〉 and it has to be approximated by a
state |Ψ′[A′(n)]〉 ∈MMPS{D ′n} with D ′n ≤Dn , ∀n = 1, . . . ,N , then a trivial generalization
of the above construction fails as the approximation made in one set of Schmidt coef-
ficients λα(n) corresponding to a cut between sites n and n+ 1 influences the Schmidt
vectors corresponding to a cut between sites n′ and n′+ 1. It can however be shown that
the best approximation |Ψ′[A′(n)]〉 satisfies (see [262])

ε2 = min
{A′(n)}

|Ψ[A(n)]〉− |Ψ′[A′(n)]〉2 ≤ 2
N−1∑
n=1

ε(n)2, (3.25)

1 For D ∼O(poly(N )), the number of parameters in the matrix product state representation is much smaller
than dimHL ∼ exp(N ) and the coding scheme is thus efficient. That matrix product states also allow for
efficient simulability (e.g. computing expectation values, simulating time evolution, . . . ) is illustrated further
on.

2 The number of non-zero Schmidt coefficients can be counted by using the Rényi entropy Sα(ρ
(A)) = Sα(ρ

(B))
for α→ 0.
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with

ε(n)2 =
Dn∑

α=D ′n+1

λα(n)
2. (3.26)

Proving that this bound implies an efficient encoding of ground states satisfying area laws
(with at most logarithmic violations) requires some additional steps. Unfortunately, such
a statement cannot be proven using the Von Neumann block entropy as entanglement
measure. Such a proof is however possible by using the generalized bipartite entanglement
entropy S (A )

α
= Sα(ρ

(A )) of a regionA and its compliment, with Sα(ρ
(A )) the Rényi

entropy of the reduced density matrix ofA . If a density matrix ρ̂ has to be approximated
by at most D ′ of its largest eigenvalues, one can proof that (∀0<α < 1)

ln
�
ε2
�
= ln




+∞∑
α=D ′+1


≤ 1−α

α

�
Sα(ρ)− ln

�
D ′

1−α
��

, (3.27)

where we have symbolically set +∞ for the number of non-zero eigenvalues of ρ̂.
Combining this relation with Eq. (3.25) and using the worst-case scaling of the generalized
entanglement entropy for critical theories [one half of Eq. (1.66)], we obtain a sufficient
condition for the bond dimension D ′ to approximate a critical state on a finite lattice
with N sites up to a state error ε as

D ′ ≥ (1−α)
�2N

ε2

� α
1−α

N
c+c
12 (1+1/α). (3.28)

This polynomial scaling in N is much slower than the exponential scaling of the bond
dimension D of the exact representation [Eq. (3.20)]. For the ordinary entanglement
entropy α→ 1, this bound diverges so that knowledge about the Rényi entropy of a
block is required in order to conclude efficient representability. Not even a strict area
law (gapped systems) for the entanglement entropy is sufficient to conclude efficient
representability with matrix product states. This was shown in [263], where the relation
between efficient representability and scaling of the generalized entanglement entropy
for α < 1, α= 1 and α > 1 was further investigated. Henceforth, we reserve the symbol
D for the bond dimension of the matrix product state approximation and do no longer
refer to the bond dimension of the exact representation.

1.3. Alternative constructions

While the Schmidt decomposition is very powerful and allows to derive analytic repre-
sentability bounds, it is restricted to the setting of one-dimensional lattices with open
boundary conditions. If the lattice L has periodic boundary conditions, a single cut
between two sites does not result in a bipartition ofL . The original formulation of the
density matrix renormalization group was therefore not able to obtain the same accu-
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racy for systems with periodic boundary conditions and new concepts from quantum
information theory were necessary. We discuss here three different interpretations of the
variational class of matrix product states that highlight different aspects and have proven
relevant in the construction of generalizations beyond matrix product state with open
boundary conditions.

Matrix product states as valence bond solids

The concept of a valence bond was introduced in chemistry in 1916 by Lewis: a covalent
bond between two atoms is formed by a pairing of two electrons, each living —initially
unpaired— in a valence atomic orbital of either atom. The availability of different yet
equivalent valence bond configurations gives rise to the phenomenon of resonance —the
quantum state is a superposition over all different valence bond configurations— as
pointed out by Pauling. The idea of resonating valence bond states for extended systems,
where a macroscopic number of equivalent configurations are available, was adopted
by Anderson as a proposal for a new type of insulator [264] and later as a proposal to
explain high temperature superconductivity [265, 266].

The seminal work of Affleck, Kennedy, Lieb and Tasaki introduced a different kind of
valence bond state, the valence bond solid [267, 268]. With respect to our purpose, a
valence bond solid for a latticeL can be introduced by adding to every site n a number
of ancillas an , bn , . . . describing a D-dimensional quantum variable. Valence bonds can
be constructed by placing ancillas of different sites in a maximally entangled state, e.g.
|VB〉an ,bn+1

=
∑D

α=1 |α〉an
⊗|α〉bn+1

. For D = 2, the maximally entangled state is equivalent
to (but not equal to) the spin singlet of two pairing electrons. When all valence bonds
have been created, the joint state of all ancillas of a particular site n are projected to a
physical state of the site with a projection operator

A(n) =
qn∑

s=1

D∑
{α,β,...}=1

As
α,β,...(n) |s〉n

�〈α|an
⊗〈β|bn

⊗ · · ·� . (3.29)

This construction was introduced in quantum information theory in [269] as a scheme
for universal quantum computation based on local measurements. For nearest-neighbor
or other short-range interacting Hamiltonians, the number of ancillas per site can be
chosen equal to the coordination number of the lattice, and a valence bond between each
site and its nearest neighbors can be constructed. Through the projection, a physical
state with long-range entanglement is obtained. For a one-dimensional lattice with
periodic boundary conditions, this gives rise to the matrix product states and indicates
the necessity of the trace in Eq. (3.2) in order to establish a bond between site 1 and site N
[270], as in Figure 3.1(a). This construction can also be used to define general variational
classes for lattice systems in arbitrary dimensions, where the rank N coefficient tensor
cs1,s2,...,sN

is obtained through the contraction of a network of lower rank tensors. The
straightforward generalization of matrix product states to higher dimensions are the so-
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called projected entangled pair states [271], sketched in Figure 3.1(b). As will be explained
in the next subsection, the computational complexity of evaluating expectation values
increases as the number of loops of valence bonds increases. Hence, the matrix product
state with open boundary conditions (zero loops) is more efficient than the matrix
product state with periodic boundary conditions (one loop), whereas the projected
entangled pair state (macroscopic number of loops) requires approximate methods for
the evaluation of expectation values.

Finally, as a generalization of the proof in [272] for valence bond solids, it was proven in
[273] that every matrix product state is the exact ground state (uniqueness is only guar-
anteed under additional conditions) of a frustration free Hamiltonian (see Subsection 2.2
of Chapter 1) with interaction length 2 log D/ log q .

(a)

(b)

A(n)

an

bn bn+1

an−1

Figure 3.1: Tensor networks as valence bond solids: (a) the matrix product state for a lattice with
periodic boundary conditions; (b) the projected entangled pair state for two-dimensional lattices.
The dashed lines indicate valence bonds created between the ancillas (black dots). The red circles
represent the projectors A(n).

Matrix product states through sequential generation

Another idea that traces back to quantum information theory is to generate states
with long-range entanglement sequentially. One of the most promising candidates
for implementing a quantum computer is by using photons as qubits, since they can
easily be transported over long distances. Entangled multiqubit states can be prepared
sequentially, as photons that are created inside a resonator and gradually leave the cavity
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[274]. Through an abstraction of this process, matrix product states can be interpreted
as entangled multiqubit states that are sequentially generated through interaction with
a D-dimensional ancilla [275]. Let the ancilla start in a state vR ∈ Hancilla ≡ CD and
the physical system in the state |1〉 = |1〉1 ⊗ |1〉2 ⊗ · · · ⊗ |1〉N ∈ HL . We now assume
that the ancilla interacts with the physical system at site N − n during the time interval
[n4t , (n+ 1)4t] according to the unitary interaction U(α,s);(α′,s ′)(N − n), after which
this site is ‘emitted’ and the ancilla interacts with the next site. At the end of the process,
the ancilla is projected onto the state vL in order to disentangle it from the physical
system, leaving the physical system in the pure state |Ψ〉 given by

|Ψ[A]〉=
q1∑

s1=1

q2∑
s2=1

· · ·
qN∑

sN=1

v†
LAs1(1)As2(2) · · ·AsN (N )vR |s1 s2 . . . sN 〉 , (3.30)

with As
α,β
(n) = U(α,s);(β,1)(n). Because of the unitarity of the evolution, the matrices

As (n) now satisfy
qn∑

s=1

As (n)†As (n) = 1D ∀n = 1, . . . ,N . (3.31)

The boundary vectors vL and vR can easily be absorbed into the matrices As (1) and
As (L) respectively, although this alternative representation with boundary vectors is
used occasionally throughout the remainder of this chapter. The boundary vectors can
be chosen fixed, and are not included in the set of the variational parameters. Note
that, before the projection onto vL the total state of the physical system and the ancilla
is normalized to ‖vR‖. The projection of the ancilla will leave the physical system
in an unnormalized state unless vL is properly chosen. This process is sketched in
Figure 3.2.

...

...

...

|Ψ〉

vRv†
L

=

...

...

|1〉

U
(N
)

U
(1
)

U
(2
)

Figure 3.2: The sequential generation of matrix product states.

This picture of sequential generation learns that the quantum state of the one-dimensio-
nal physical system, as described by the matrix product state, is encoded by an ancilla
that lives in zero spatial dimensions. It is thus a realization of the holographic principle,
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described in Subsection 2.5 of Chapter 1, and automatically implies an exact area law
for matrix product states. Hence, for a fixed bond dimension D, a matrix product
state description of critical systems eventually fails if the system size is increased. This
formulation is explored in more detail in the next chapter, where it becomes the natural
strategy to formulate holographic quantum states in the continuum [276].

Other formulations of the sequential generation picture for matrix product states do
exist, with or without an explicit ancilla, and it can also be used to generate a subclass of
projected entangled pair states that allow for a more efficient evaluation of expectation
value by exploiting the unitarity properties [277]. In fact, many different variational
ansätze can be unified by rewriting them solely in terms of unitary matrices, for which a
suitable variational optimization strategy can then be constructed [278].

Matrix product states and exactly solvable models

For exactly solvable models, the solution obtained by the Bethe ansatz can also be
cast in a matrix product state representation [279, 280]. For example, for the S = 1/2
Heisenberg model, which is critical, an explicit matrix product state representation was
derived in [281]. By defining a reference state |⇓〉 =⊗N

n=1 |↓〉n , the eigenstates of the
Heisenberg model can be labeled by the number k of ‘particles’ ↑ living in the reference
vacuum |⇓〉, which is equivalent to specifying the eigenvalue M = (2k−N )/2 of the total
spin component Ŝ z . The bond dimension D in the matrix product state representation
of an eigenstate k is D = 2k . For the ground state, which has k = L/2, the exponential
scaling D = 2L/2 is reproduced. While reassuring that the matrix product state ansatz
can reproduce the Bethe ansatz, this connection is not further explored.

Closely related is the strategy to replace the matrices in the matrix product state by
physical operators, and hence replacing the finite-dimensional Hilbert space CD of the
ancilla with an infinite-dimensional Hilbert space, which allows to accurately describe
critical systems and violate the area law [282, 283].

1.4. Computation of expectation values

We now evaluate the expectation value of an operator Ô ∈ L(HL ) with respect to a
matrix product state |Ψ[A(n)]〉 ∈HL , where Ô is given by

Ô =
N⊗

n=1

Ôn , (3.32)

with Ôn a local operator acting non-trivially only onHn . Any operator can be expressed
as a sum of such elementary ‘product’ operators. Using tr(A) tr(B) = tr(A⊗B) = tr(B⊗A)
we obtain

〈Ψ[A]|Ô|Ψ[A]〉= tr
�

ĔO1
(1)ĔO2

(2) · · · ĔON
(N )
�

, (3.33)
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where the superoperators ĔO (n), denoted by an inverse hat, are given by

ĔO (n)¬
qn∑

s ,s ′=1

〈s |Ô|s ′〉As ′(n)⊗As (n). (3.34)

The superoperator ĔO (n) acts in the tensor product space of the ancilla and its complex

conjugate CDn ⊗CDn and has its range in CDn−1 ⊗CDn−1 . Each superoperator ĔO (n) can
be represented as a matrix of size D2

n−1 ×D2
n . For the evaluation of the expectation

value, these superoperators have to be multiplied, which is in general an operation with
computational complexity O(D6). By exploiting the tensor product structure of ĔO (n),
a reduction of the computational complexity to O(D5) is possible.

To every superoperator ĔO (n) we can associate a map E
(n)
O : L(CDn ) 7→ L(CDn−1) from

operators x acting on the ancilla space CDn to operators E(n)O [x] acting on the previous
ancilla space CDn−1 through the prescription

E
(n)
O :L(CDn ) 7→L(CDn−1) : x 7→ E

(n)
O [x]¬

qn∑
s ,s ′=1

〈s |Ô|s ′〉As ′(n)xAs (n)†. (3.35)

Analogously, a second map eE(n)O is defined as

eE(n)O :L(CDn−1) 7→L(CDn ) : x 7→ eE(n)O [x]¬
qn∑

s ,s ′=1

〈s |Ô|s ′〉As (n)†xAs ′(n). (3.36)

Through the Choi-Jamiołkowski isomorphism [284, 285, 286, 287], operators x in

L(CDn ) can be associated to vectors |x) in the ancilla product spaceCDn⊗CDn , for which
we introduce a rounded braket notation. The relation between the maps EO , eEO and
the superoperator ĔO is given by ĔO (n)|x) = |E(n)O [x]) and (y|ĔO (n) = (eE(n)O [y]|. Note
that these maps only require multiplication of matrices in the original ancilla space,
and can thus be implemented as operations with computational complexity O(D3). A
particular role is played by the map E

(n)
1
= E(n), which is completely positive and for

which the matrices As (n) are the Kraus operators. This map appears whenever Ôn acts
trivially (i.e. Ôn = 1̂) which is almost everywhere for most relevant operators. The
corresponding superoperator Ĕ1(n) = Ĕ(n) is reminiscent of the concept of transfer
operators in statistical mechanics and is henceforth referred to as such. In the remainder
of this section, we will often use the generalized superoperator

ĔA
B ¬

q∑
s=1

As ⊗B s , (3.37)

so that Ĕ(n) = ĔA(n)
A(n) .

In a system with open boundary conditions, the trace is absent and the expectation value
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can be computed through a successive application of the maps E(n)O as

〈Ψ[A]|Ô|Ψ[A]〉
= E

(1)
O1

h
E
(2)
O2

h
. . .
h
E
(N )
ON
[1]
i

. . .
ii
= eE(N )ON

h
. . .
heE(2)O2

heE(1)O1
[1]
ii

. . .
i

(3.38)

or thus (∀n = 1, . . . ,N )

〈Ψ[A]|Ô|Ψ[A]〉
= tr

�eE(n)On

h
. . .
heE(2)O2

heE(1)O1
[1]
ii

. . .
i
E
(n+1)
On+1

h
E
(2)
O2

h
. . .
h
E
(N )
ON
[1]
i

. . .
ii�

.

(3.39)

For a lattice with open boundary conditions, the expectation value of product operators
Ô can be computed with computational complexity O(D3). Most interesting operators
(e.g. local operators, short-range interaction terms in the Hamiltonian, correlation func-
tions) can be written as a small sum of such product operators, so that the computation
of their expectation values inherit this very favorable computational complexity. Since
most operators are trivial (Ô(n) = 1̂) on the majority of sites, we define the set of
virtual density matrices l (n) and r (n) for the auxiliary system through the recursive
definitions

l (0) = 1, l (n) =eE(n)
1
[l (n− 1)], ∀n = 1, . . . ,N ; (3.40a)

r (N ) = 1, r (n− 1) =E(n)
1
[r (n)], ∀n = 1, . . . ,N ; (3.40b)

all of which can be computed with computational complexity O(D3). The expec-
tation value of a strictly local operator is then given by 〈Ψ[A]|Ôn |Ψ[A]〉 = (l (n −
1)|ĔOn

(n)|r (n)) and the normalization of the state is given by 〈Ψ[A]|Ψ[A]〉 = l (N ) =
r (0) = tr[l (n)r (n)] = (l (n)|r (n)), ∀n = 0, . . . ,N . For systems with periodic boundary
conditions, a similar simplification does not occur due to the lack of a starting point.
Alternative schemes have been constructed for obtaining a O(D3) complexity for lattice
with periodic boundary conditions, based on approximations of the transfer operator
[288, 289] or the variational Quantum Monte Carlo approach [290]. The increased
computational complexity of contracting the tensor network for periodic matrix product
states is part of a general rule, where the complexity increases as the number of loops
increases. For every loop, a pair of open legs has to be dragged along. Consequently,
tensor networks with a macroscopic number of loops such as projected entangled pair
states cannot be contracted efficiently. However, an efficient scheme has been developed
to approximately evaluate expectation values with projected entangled pair states to
great numerical accuracy [257, 291], and Monte Carlo strategies can be used as well
[292, 293].

One particular set of operators that straightforwardly generalizes the set of product
operators is the so-called class of matrix product operators, which were introduced in
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[294, 295] as density operators to describe quantum systems at thermal equilibrium. A
matrix product operator has the general form

Ô[C ] =
q2

1∑
t1=1

q2
2∑

t2=1

· · ·
q2

N∑
tN=1

tr
�

C t1(1)C t2(2) · · ·C tN (N )
�

Ô t1
1 ⊗ Ô t2

2 ⊗ · · ·⊗ Ô tN
N , (3.41)

where C t (n) is a eDn−1× eDn matrix (∀t = 1, . . . , q2
n) and {O t

n | t = 1, . . . , q2
n} is a complete

set of local operators on site n (∀n = 1, . . . ,N ). The expectation value of this class of
operators is given by

〈Ψ[A]|Ô[C ]|Ψ[A]〉= tr
�

F̆ (1)F̆ (2) · · · F̆ (N )� , (3.42)

where the quantities F̆ (n) now represent D2
n−1
eDn−1×D2

n
eDn matrices given by

F̆ (n) =
qn∑

s ,s ′=1

q2
n∑

t=1

〈s |Ô t
n |s ′〉As ′(n)⊗As (n)⊗C t (n). (3.43)

In many occasions, the label t is just a combined label t = (s , s ′) and Ô t
n = |s〉 〈s ′|. Even

for small values of eD , the class of matrix product operators can encode short-range and
certain long-range interacting Hamiltonians, as well as a Lie-Trotter-Suzuki decomposed
step of the exponential of short-range interacting Hamiltonians [296, 297, 298].

1.5. Gauge invariance in the manifold and its tangent plane

In the previous subsections, we have encountered different formulations of the matrix
product state, or different constraints satisfied by the matrices As (n). These constraints
do not result in a restriction of the variational class, since they can always be imposed
as a consequence of the representation redundancy present in the original definition of
|Ψ[A(n)]〉 in Eq. (3.2). Indeed, the matrix product state |Ψ[A(n)]〉 is equal to |Ψ[Ã(n)]〉
where Ãs (n) = g (n− 1)As (n)g (n)−1 with g (n) ∈ GL(Dn ;C), ∀n = 1, . . . ,N and g (0) =
g (N )3. The representations A= {A(n) | n = 1, . . . ,N} ∈ AMPS{Dn} and Ã= {Ã(n) | n =
1, . . . ,N} ∈AMPS{Dn} are thus equivalent representations, as defined by the action of the
group of local, multiplicative gauge transformations GMPS{Dn} = {g (n) ∈ GL(Dn ;C) | n =
1, . . . ,N}, with

dimGMPS{Dn} =
N∑

n=1

D2
n . (3.44)

Put differently, the parameter spaceAMPS{Dn} is intersected by gauge orbits corresponding
to GMPS{Dn}, where all points on a gauge orbit correspond to equivalent representations.

3 Note that the condition g (0) = g (N ) is required for both open and periodic boundary conditions, since having
g (0) 6= g (N ) in the case of open boundary conditions (D0 = DN = 1) would produce a change in phase or
normalization |Ψ[Ã]〉= g (0)g (N )−1 |Ψ[A]〉.
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Vice versa, GMPS{Dn} describes the most general equivalence relations between to matrix

product state representations. Thus, if |Ψ[A]〉 = |Ψ[Ã]〉 then there necessarily exist
matrices g (n) ∈ GL(Dn ,C) (∀n = 1, . . . ,L ) such that

Ãs (n) = g (n− 1)As (n)g (n)−1. (3.45)

We will proof below that the only transformation {g (n)} ∈ GMPS{Dn} that maps A to
itself is given by the choice {g (n) = c1Dn

| n = 1, . . . ,N}, such that the dimension of the
gauge orbits is given by dimGMPS{Dn}−1. Because GL(D ;C) is a connected group and the
equivalence relation is continuous, the gauge orbits are connected too. The dimension of
the manifold then follows from the quotient space AMPS{Dn}/GMPS{Dn} as

dimMMPS{Dn} = dim
�
AMPS{Dn}/GMPS{Dn}

�
= dimAMPS{Dn}− dimGMPS{Dn}+ 1. (3.46)

By restricting to normalized states (i.e. 〈Ψ[A]|Ψ[A]〉 = 1), the dimensionality of the
manifold is further reduced by one.

It is now possible to specify gauge fixing constraints such that each state |Ψ〉 ∈MMPS is
linked to a unique set of matrices A= {A(n)|n = 1, . . . ,N} ∈AMPS{Dn}. These matrices
{A(n)} label the different orbits living in the quotient space AMPS{Dn}/GMPS{Dn}. A
matrix product state |Ψ[A]〉 is then said to be in the canonical form. Canonical forms
for matrix product states were derived in [273]. For a matrix product state with open
boundary conditions, a unique decomposition is obtained in Eq. (3.19). If we want to
express this form in terms of a representation with matrices As (n), we can choose to
set As (n) = Γs (n)Λ(n), which corresponds to the following conditions for the right-
canonical form4:

• Right orthonormalization condition:
∑qn

s=1 As (n)As (n)† = E(n)(1Dn
) = 1Dn−1

so
that r (n) = 1Dn

and the gauge freedom is reduced from g (n) ∈ GL(n;C) to
g (n) ∈ U(n;C) (∀n = 1, . . . ,N + 1);

•
∑qn

s=1 As (n)† l (n − 1)As (n) = eE(n)[l (n − 1)] = l (n) with l (0) = l (N ) = 1 (for a
normalized state 〈Ψ[A]|Ψ[A]〉= 1), where l (n) is strictly positive definite, satisfies
tr[l (n)] = 1 and can be diagonalized, hence fixing the remaining unitary gauge
freedom. Clearly, l (n) = Λ(n)2 and contains the entanglement spectrum.

Alternatively, we could have chosen As (n) = Λ(n− 1)Γs (n), corresponding to the left-
canonical form, which is characterized by the gauge fixing conditions

• Left orthonormalization condition:
∑qn

s=1 As (n)†As (n) = eE(n)(1Dn−1
) = 1Dn

so
that l (n) = 1Dn

and the gauge freedom is reduced from g (n) ∈ GL(n;C) to g (n) ∈
U(n;C) (∀n = 0, . . . ,N );

•
∑qn

s=1 As (n)r (n)As (n)† = E(n)[r (n)] = r (n − 1) with r (0) = r (N ) = 1 (for a

4 We assume that all Schmidt values are λα(n) are strictly nonzero. Otherwise, the state can exactly be described
by a matrix product state with lower bond dimension.
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normalized state), where r (n) is diagonal, strictly positive definite and satisfies
tr[r (n)] = 1 (∀n = 1, . . . ,N ).

We refer to [273, 259] for more information on how to obtain the canonical form starting
from an arbitrary matrix product state. For systems with periodic boundary conditions,
a canonical form is more difficult to derive. The result for a translation invariant state
will be stated in the next subsection.

We similarly derive the effect of gauge invariance on the tangent plane TMPS{Dn}[A],
for which it is sufficient to consider infinitesimal transformations. Let {g (n;η) | n =
1, . . . ,N} represent a one-parameter family of gauge transformations so that

d

dη
g (n;η)

�����
η=0

= x(n) with x(n) ∈ gl(Dn ;C)≡CDn×Dn . (3.47)

We now define gMPS{Dn} =
⊕N

n=1 gl(Dn ;C) with

dimgMPS{Dn} = dimGMPS{Dn} =
N∑

n=1

D2
n , (3.48)

such that a one-parameter family of gauge transformations is characterized around η= 0
by a point x = {x(n) | n = 1, . . . ,N} ∈ gMPS{Dn}. The corresponding family of points
A(η) = {A(n;η) | n = 1, . . . ,N} with As (n;η) = g (n − 1;η)As g (n;η)−1 lies within a
gauge orbit, so that the matrix product state |Ψ[A(η)]〉 is independent of η. We hence
obtain

|Φ[NΦ[x];A]〉= d

dη
|Ψ[A(η)]〉

�����
η=0

= 0 (3.49)

so that N[A]Φ , which is given by the prescription

N
[A]
Φ [x] =NΦ[x;A] with Ns

Φ[x;A](n) = x(n− 1)As (n)−As (n)x(n), (3.50)

represents a linear homomorphism from gMPS{Dn} to the null space NΦ[A] ∈AMPS{Dn} of
the map Φ[A]:

N
[A]
Φ : gMPS{Dn} 7→AMPS{Dn} : x = {x(n) ∈ gl(Dn ;C) | n = 1, . . .N} 7→NΦ[x;A]. (3.51)

For every tangent vector |Φ[B ;A]〉, we obtain |Φ[B]〉 = |Φ[B +NΦ[x;A];A]〉, so that
the point B ∈ AMPS{Dn} is gauge equivalent to B +NΦ[x;A], ∀x ∈ gMPS{Dn}. The mul-
tiplicative gauge invariance of the matrix product state representation has turned into
an additive gauge invariance in the representation of the tangent plane. We henceforth
discard the explicit notation of the point A.

We can now relate the description of gauge invariance in both the tangent plane and
the variational manifold. The null space NΦ can be considered as the tangent plane to
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the gauge orbit of equivalent parameterizations in AMPS{Dn}. Gauge transformations
that map A to itself are generated by choices of x such that NΦ[x] = 0, i.e. they
are generated by points x in the kernel of N

[A]
Φ , which we now investigate for the

case of a matrix product state with open boundary conditions. Let Ns
Φ[x](n) = 0,

∀s = 1, . . . , qn , ∀n = 1, . . .N . We can choose x(0) = c ∈ gl(D0,C) ≡ C. Using the full
rank assumption of

∑qn
s=1 As (n)†As (n) at n = 1, it automatically follows that x(1) = c1D1

.
Continuing along this way proofs x(n) = c1Dn

∀n = 1, . . . ,N , such that the kernel of
NΦ is one-dimensional. This corresponds to the transformation g (n) = eηc1Dn

that we
introduced above. The case of periodic boundary conditions will be treated in the next
subsection, but only for the restricted case of translation invariance. We thus obtain that
dimNΦ = dimgMPS{Dn} − 1 and thus dimTMPS{Dn} = dimAMPS{Dn} − dimgMPS{Dn} + 1.
However, TMPS{Dn} also contains the state |Ψ[A]〉 which has to be eliminated for the
application of the time-dependent variational principle, as discussed in Subsection 2.3
of Chapter 2. The part T⊥MPS{Dn} of the tangent plane that is orthogonal to |Ψ[A]〉
satisfies

dimT⊥MPS{Dn} = dimAMPS{Dn}− dimgMPS{Dn}. (3.52)

Finally, we try to specify a set of gauge fixing conditions for the representation B ∈
AMPS{Dn} of the tangent vectors |Φ[B]〉, such that every tangent vector in TMPS{Dn} is
associated to a unique representation B , living in the quotient space AMPS{Dn}/NΦ. We
restrict again to the case of open boundary conditions, and postpone the case of periodic
boundary conditions to the next subsection. Let now As (n;η) represent a general one-
parameter family of points in AMPS{Dn} and let

B s (n) =
d

dη
As (n;η)

�����
η=0

(3.53)

represent the infinitesimal variation of A around η= 0. In the following sections, two
different gauge fixing conditions turn out to be beneficial. Either of the following two
conditions completely specify a unique representation B :

• Left-gauge fixing condition:

qn∑
s=1

As (n)† l (n− 1)B s (n) = 0 ⇔ (l (n− 1)|ĔB(n)
A(n) = 0, ∀n = 1, . . . ,N . (3.54)

• Right-gauge fixing condition:

qn∑
s=1

B s (n)r (n)As (n)† = 0 ⇔ ĔB(n)
A(n) |r (n)) = 0, ∀n = 1, . . . ,N . (3.55)

The left [right] gauge fixing condition ensures that the density matrix l (n) [r (n)] is
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not changed at first order in η under a substitution As (n) → As (n) + ηB s (n). These
conditions do more than fixing the gauge, as they also include norm preservation to first
order, i.e. they guarantee that

〈Ψ[A]|Φ[B]〉=
N∑

n=1

(l (n− 1)|ĔB(n)
A(n) |r (n)) = 0. (3.56)

An efficient implementation to impose these conditions is presented in the following
section. We conclude this subsection by proving that the gauge freedom can indeed
be used to impose the left gauge fixing conditions in Eq. (3.54). Let thus B̃ be a pa-
rameterization of a tangent vector that does not satisfy the left gauge fixing conditions,
and define B = B̃ +N

[A]
Φ [x]. We explicitly construct the choice x such that B satisfies

Eq. (3.54). The proof for the right gauge fixing condition in Eq. (3.55) is analogous. Since
〈Ψ[A]|Φ[B]〉 is a gauge invariant, its value cannot be changed by gauge transformations,
and we need to start from a tangent vector |Φ[B̃]〉 orthogonal to |Ψ[A]〉, such that
〈Ψ[A]|Φ[B̃]〉= 〈Ψ[A]|Φ[B]〉= 0.

Because of the condition g (0) = g (N ) for gauge transformations of the matrix product
state |Ψ[A]〉, the gauge transformations in the tangent plane also satisfy x(0) = x(N ). Let
the required gauge transformation to map B̃ to B start with some value x(0) = c ∈ C.
Now assume that x(k) has been fixed up to some value k = n− 1. We find for the left
gauge fixing condition on B s (n):

As (n)† l (n− 1)[B̃ s (n)+ x(n− 1)As (n)−As (n)x(n)] = 0,

from which we can solve

l (n)x(n) =As (n)† l (n− 1)[B̃ s (n)+ x(n− 1)As (n)], (3.57)

with x(n− 1) already determined and l (n) assumed to have full rank, hence fixing x(n)
completely. Repeating this process from n = 1 to n =N fixes all x(n) including x(N ).
But we should have x(N ) = x(0) = c for consistency, which turns out to be the condition
that requires 〈Ψ[A]|Φ[B̃]〉= 0. Indeed, we can reiterate

l (n)x(n) =As (n)† l (n− 1)[B̃ s (n)+As (n)† l (n− 1)x(n− 1)As (n)]

=
n∑

k=1

As (n)† · · ·As (k + 1)†As (k)† l (k − 1)B̃ s (k)As (k + 1) · · ·As (n)

+As (n)†As (n− 1)† · · ·As (1)† l (0)x(0)As (1) · · ·As (n− 1)As (n).

Now, for n = N , we can use that DN = 1, and furthermore use l (0) = 1 and l (N ) =
〈Ψ[A]|Ψ[A]〉 to obtain

〈Ψ[A]|Ψ[A]〉 x(N ) = 〈Ψ[A]|Φ[B̃]〉+ 〈Ψ[A]|Ψ[A]〉 x(0).
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Hence, x(N ) = x(0) requires that 〈Ψ[A]|Φ[B̃]〉= 0. When this condition is fulfilled, the
choice of the initial value x(0) = c is completely free. Suppose we now define a different
gauge transformation starting with x̃(0) = x(0)+ c̃ . Then we find

l (1)x̃(1) =As (1)† l (0)[B̃ s (1)+ x(0)As (1)]+ c̃As (1)† l (0)As (1) = l (1)x(1)+ c̃ l (1) (3.58)

so that x̃(1) = x(1) + c̃1D1
. Continuing along this line, we find x̃(n) = x(n) + c̃1Dn

,
∀n = 1, . . . ,N . Hence, this freedom of choice just corresponds to the kernel of the map
N
[A]
Φ , so that N[A]Φ (x) =N

[A]
Φ (x̃).

1.6. Translation invariance and the thermodynamic limit

Because of the macroscopic size of interesting extended quantum systems, one is often
interested in the bulk properties of these systems, far away from any boundary. In
addition, our main interest goes out to systems which are translation invariant. These
requirements vote in favor of systems with periodic boundary conditions, where there
are no boundary effects —only finite-size effects with nice scaling behavior— and trans-
lation invariance can easily be reproduced. On a lattice with periodic boundary con-
ditions (where translation invariance of the models dictates a site-independent qn = q),
a translation invariant subclass of matrix product state can be obtained by choosing
the bond dimensions Dn =D site-independent and using a translation invariant repre-
sentation, i.e. by also choosing the matrices site independent: As

n = As , ∀s = 1, . . . , q ,
∀n = 1, . . . , L. The resulting variational class is called the class of uniform matrix prod-
uct states MuMPS(D) ⊂ MMPS{Dn=D}. Uniform matrix product states are denoted as
|Ψ(A)〉 ∈MuMPS(D), with A∈AuMPS(D) ≡CD×q×D . Note that a general (translation non-
invariant) gauge transformation will ruin the translation invariance of the representation.
The only allowed gauge transformation in AuMPS(D) is a global transformation with
site-indepedent matrices g (n) = g , ∀n = 1, . . . ,N , where g ∈ GuMPS(D) ≡ GL(D ;C). Vice
versa, a translation invariant matrix product state might only have a representation as
uniform matrix product state after a suitable site-dependent gauge transform. In addition,
some translation invariant matrix product states do not allow for a translation invariant
representation without enlarging the bond dimension (see [273]). Thus,MuMPS(D) does
not contain all translation invariant states ofMMPS{Dn=D}.

As before, the equivalence relation given by the gauge transformations g ∈ GuMPS(D)
traces out gauge orbits inAuMPS(D). These gauge orbits have dimension dimGuMPS(D)−1=
D2− 1, since the trivial elements g = c1D with c ∈ C map any A∈ AuMPS(D) to itself.
The variational manifold thus has a dimension given by dimMuMPS(D) = (q − 1)D2+ 1.
By imposing a normalization condition, the dimension is further reduced to (q − 1)D2.
An important role is played by the transfer matrix Ĕ =

∑q
s=1 As ⊗As and its associated

completely positive maps E and eE, all of which are now site-independent. The transfer
matrix Ĕ has eigenvaluesω(k) and corresponding left and right eigenvectors which we

denote as (l (k)| and |r (k)) ∈ CD ⊗CD
. They correspond to linear operators l (k), r (k) ∈
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L(CD ), with CD being the ancilla space, and are related to the associated maps by
E(r (k)) =ω(k) r (k) and eE(l (k)) =ω(k) l (k). A canonical representation labeling the states
inMuMPS(D) was derived in [273]. For a uniform matrix product |Ψ(A)〉 ∈MuMPS(D),
the D ×D matrices As have a block decomposition into J ≥ 1 blocks as

As =




λ1As
1 0 · · · 0

0 λ2As
2 · · · 0

...
...

. . .
...

0 0 . . . λJ As
J




, (3.59)

where As
j are matrices of size D j×D j , ∀ j = 1, . . . , J , with

∑J
j=1 D j =D . The coefficients

λ j satisfy 0< λ j ≤ 1 and are chosen such that the corresponding transfer operators Ĕ j =∑q
s=1 As

j ⊗A
s

j have 1 as eigenvalue with largest absolute value. The block decomposition
is constructed such that this eigenvalue is non-degenerate for each block. The remaining
gauge invariance is reduced to gauge transformation matrices g that decompose as g =⊕J

j=1 g j , with g j ∈ GL(D j ;Cn). These can be used to impose the following conditions
on As

j :

•
∑q

s=1 As
j A

s
j
† = E j (1D j

) = 1D j
,

•
∑q

s=1 As
j
† l j A

s
j =

eE j (l j ) = l j where l j is a diagonal matrix with strictly positive
eigenvalues.

The remaining gauge freedom is thus fixed by bringing the left and right eigenvectors
(l (1)j | and |l (1)j ) of Ĕ j corresponding to its unique eigenvalue ω(1)j = 1 into the specific

format l (1)j = l j (diagonal) and r (1)j = 1D j
. If J > 1, the block decomposition states that

the uniform matrix product state |Ψ(A)〉 can be written as a superposition

|Ψ(A)〉=
J∑

j=1

λN
j |Ψ j (Aj )〉 , (3.60)

where |Φ j (Aj )〉 ∈MuMPS(D j )
is a uniform matrix product state with lower bond dimen-

sion D j < D. Let now As be the (set of) matrices appearing in a single block, so that
the spectral radius ρ(Ĕ) = 1 and the transfer operator has a unique eigenvalue 1. It can
be shown that Ĕ then has P eigenvaluesω(p) = exp(i2π(p − 1)/P ) ( p ∈ZP ) on the unit
circle. A further decomposition, called the periodic decomposition, is possible:

As =




0 As
1 0 · · · 0

0 0 As
2 · · · 0

...
...

...
. . .

...
As

P 0 0 · · · 0




, (3.61)
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where As
p is a matrix of size Dp−1×Dp with D0 = DP and

∑P
p=1 Dp = D. The eigen-

states l (p) and r (p) corresponding to the eigenvalues ω(p) (p ∈ ZP ) of unit magnitude
correspondingly decompose into

l (p) =




l1 0 0 · · · 0
0 e−i 2π

P (p−1) l2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · e−i(P−1) 2π
P (p−1) lP




, (3.62a)

r (p) =




e+i(P−1) 2π
P (p−1) rP 0 0 · · · 0
0 r1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · e+i(P−2) 2π
P (p−1) rP−1




, (3.62b)

where
∑q

s=1 As
p

† lp As
p = lp+1 ∈ CDp×Dp and

∑q
s=1 As

p rp As
p

† = rp−1 ∈ CDp−1×Dp−1 (∀p ∈
Zp ). If P is a factor of N , the state |Ψ(A)〉 can be written as

|Ψ(A)〉=
∑
p∈Zp

T̂ p |Ψ̃[Ã]〉 , (3.63)

where |Ψ̃[Ã]〉 ∈MMPS{D̃n} is a non-uniform matrix product state with Ãs (n) =As
n mod P

and D̃n = Dn mod P . The state |Ψ̃[Ã]〉 is thus P -periodic (T̂ P |Ψ̃[Ã]〉 = |Ψ̃[Ã]〉) and
|Ψ(A)〉 is a translation invariant superposition of |Ψ̃[Ã]〉 and its shifted versions. If P is
not a factor of N , |Ψ(A)〉= 0.

Despite the nice properties of systems with periodic boundary conditions, the increased
computational complexity of evaluating expectation values with respect to matrix prod-
uct states with periodic boundary conditions has hindered their applicability. This
increased computational complexity is caused by the fact that correlations between two
points can travel along two different ways on the circle. In contrast, systems with open
boundary conditions can have strong boundary effects (e.g. Friedel oscillations) that
extend deeply into the bulk, especially for (near)-critical systems. However, for very
large systems —which are finite size restrictions of translation invariant Hamiltonians
in the thermodynamic limit— we still expect the matrices of the matrix product state
approximation of the ground state to become site-independent when sufficiently far
from the boundaries. By exploiting the translation invariance in either a matrix prod-
uct state with periodic boundary conditions or in the bulk of a matrix product state
with open boundary conditions, we can directly define a uniform matrix product state
representation in the thermodynamic limit. The computational disadvantages of the
matrix product state with periodic boundary conditions disappear, since observable with
compact support cannot distinguish between open or periodic boundary conditions. On
the other hand, boundary effects are also undetectable by operators that live deep in the
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bulk. We can therefore discard them and restrict to the translation invariant bulk of a
system with open boundary conditions.

A quantitative verification of these statements requires the definition of the class of
uniform matrix product states |Ψ(A)〉 in the thermodynamic limit. Starting with a system
with periodic boundary conditions on the latticeL = {−N ,−N + 1, . . . ,N − 1,N}, this
limit is straightforwardly obtained as

|Ψ(A)〉= lim
N→∞

q∑
{sn}=1

tr


 +N∏

n=−N

Asn


 |{sn}〉=

q∑
{sn}=1

tr


∏

n∈Z
Asn


 |{sn}〉 . (3.64)

The norm of the state is given by 〈Ψ(A)|Ψ(A)〉 = limN→∞ tr[Ĕ2N+1], so that normal-
izability requires that ρ(Ĕ) = 1. Let z (k) for k = 1, . . . ,K be the eigenvalues on the
unit circle with corresponding left and right eigenvectors (l (k)| and |r (k)), which are
normalized as (l (k)|r (k)) so that S̆ (k) = |r (k))(l (k)| is a projector onto the corresponding
eigenspace. For the normalization of the state, we obtain

〈Ψ(A)|Ψ(A)〉= lim
N→∞

K∑
k=1

(ω(k))2N+1. (3.65)

If a product operator Ô has non-trivial support only on the sites {−M ,−M +1, . . . ,+M}
with M some constant, then the correlations acting along the other side of the circle have
to travel over an infinite distance. They are thus transported by the eigenvalues of Ĕ on
the unit circle and we obtain

〈Ψ(A)|Ô|Ψ(A)〉= lim
N→∞

K∑
k=1

(ω(k))2N−2M (l (k)|ĔO(−M )ĔO(−M+1) · · · ĔO(M )|r (k)). (3.66)

This expectation value can be computed using the iterative construction for matrix
product states with open boundary conditions, resulting in a computational complexity
O(KD3). Since the number of eigenvalues K on the unit circle is typically much smaller
than D2, the increased computational complexity of periodic boundary conditions
disappears, provided that we can efficiently determine the K eigenvalues and their
corresponding eigenvectors using an iterative eigensolver.

Starting from a lattice with open boundary conditions, we use the sequential generation
picture to define [see Eq. (3.30)]

|Ψ(A)〉= lim
N→∞

q∑
{sn}=1

v†
L


 +N∏

n=−N

Asn


vR |{sn}〉=

q∑
{sn}=1

v†
L


∏

n∈Z
Asn


vR |{sn}〉 . (3.67)
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The normalization of the state is given by

〈Ψ(A)|Ψ(A)〉= lim
N→∞

K∑
k=1

(ω(k))2N+1(v†
L r (k)vL)(v

†
Rl (k)vR) (3.68)

and the expectation value of Ô is given by

〈Ψ(A)|Ô|Ψ(A)〉= lim
N→∞

K∑
k=1

(ω(k))2N−2M (v†
L r (k)vL)(v

†
Rl (k)vR)

× (l (k)|ĔO(−M )ĔO(−M+1) · · · ĔO(M )|r (k)). (3.69)

When there is a unique eigenvalue on the unit circle (K = 1 with thus z (1) = 1), both
formulations produce the same normalized expectation values. In the remainder of
this chapter, we always assume that such states are then normalized to unity, which
is automatically fulfilled for the formulation with periodic boundary conditions and
requires (v†

L r (k)vL)(v
†
Rl (k)vR) = 1 in the case of open boundary conditions. The next

subsection discusses for which systems K = 1 is a valid assumption. Note that, while
open and periodic boundary conditions produce the same result in the thermodynamic
limit, the possibility of using open boundary conditions will prove essential for study-
ing topologically non-trivial excitations (see Subection 1.4 of Chapter 1), which do
not exist on a lattice with periodic boundary conditions. Henceforth, we always as-
sume to be working in the setting of an infinite lattice with open boundary conditions
[Eq. (3.67)] when talking about uniform matrix product states |Ψ(A)〉, unless explicitly
stated otherwise.

Note that these uniform matrix product states are also known as finitely correlated states
and were studied —as a generalization of the valence bond solid— by Fannes, Nachtergaele
and Werner in [299], before the advent of the density matrix renormalization group. The
class of finitely correlated states is even more general, and the subclass that corresponds
to the uniform matrix product states are the so-called purely generated finitely correlated
states. When the transfer matrix Ĕ has a unique eigenvalue 1 (i.e. J = 1 in the block
decomposition), the state is called ergodic, and when this is also the only eigenvalue with
modulus 1 (i.e. P = 1 in the periodic decomposition), the state is called a pure finitely
correlated state. Unlike the ordinary matrix product state |Ψ[A]〉, which is linear in
each of its arguments A(n) separately, the uniform matrix product state |Ψ(A)〉 is highly
non-linear in its argument. It took some major breakthroughs before an algorithm was
constructed that allowed the variational optimization of the uniform matrix product
state ansatz [300].

One particularly interesting operator is the connected correlation function of Eq. (1.56),
which is now given by

Γ(α,β)(n) = (l |ĔOα Ĕ n−1ĔOβ |r )− (l |ĔOα |r )(l |ĔOβ |r ) = (l |ĔOαQ̆Ĕ n−1Q̆ĔOβ |r ). (3.70)
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The correlation length ξc is thus determined by the largest eigenvalue of Q̆ĔQ̆ as

ξc =
a

log
�
ρ(Q̆ĔQ̆)

� . (3.71)

If the uniform matrix product state is pure, so that Ĕ contains a unique eigenvalue on
the unit circle, then ρ(Q̆ĔQ̆)< 1 and the correlation length ξc is finite. Hence, all pure
uniform matrix product states are exponentially clustering. The correlation length is
determined by ρ(Q̆ĔQ̆), which is equal to the eigenvalue of the transfer matrix Ĕ that is
second largest in absolute value.

The overlap between two uniform matrix product states is given by

F (A, Ã) = |〈Ψ(A)|Ψ(Ã)〉| ∼ lim
N→∞

ρ
�

Ĕ Ã
A

�2N+1
, (3.72)

where the states |Ψ(A)〉 and |Ψ(Ã)〉 are assumed to be normalized to unity. We can
thus define d (A, Ã) = ρ(Ĕ Ã

A ) as the fidelity per site between the two uniform matrix

product states |Ψ(A)〉 and |Ψ(Ã)〉. If both states are pure, so that ĔA
A and Ĕ Ã

Ã
have a unique

eigenvalue 1 with corresponding left and right eigenvectors (l |, ( l̃ | and |r ), | r̃ ), and all
other eigenvalues lie strictly within the unit circle, then there are two possibilities. Either
d (A, Ã) < 1, and F (A, Ã) = 0 due to the orthogonality catastrophe (see Subsection 1.1
of Chapter 1), or d (A, Ã) = 1 and the two states are equivalent. Indeed, for ρ(Ĕ Ã

A ) = 1,

we denote the largest eigenvalue of Ĕ Ã
A as eiϕ and the corresponding left and right

eigenvector as (gL| and |gR). We thus obtain
∑q

s=1 Ãs gRAs † = eiϕ gR, which implies [due

to ρ(ĔA
A ) = 1 and ρ(Ĕ Ã

Ã
) = 1] that Ãs = eiϕ gAs g−1 with g = gRr−1 = g−1

L l . When the
uniform matrix product states are not pure, it is sufficient that they contain an equivalent
pair of blocks in order to obtain ρ(Ĕ Ã

A ) = 1. Note that the presence of the infrared
orthogonality catastrophe within the variational manifoldMuMPS indicates that uniform
matrix product states are not tied to a single Fock space. Many different translation
invariant states defining completely separated Hilbert spaces can be represented by a
uniform matrix product state with fixed bond dimension D .

This subsection is concluded by a quick study of the tangent plane TuMPS(D)(A). A simple
repetition of previous derivations starts with the introduction of

|Φ(B ;A)〉= |Φ(A)(B)〉= Bi

∂

∂ Ai
|Ψ(A)〉

=
∑
n∈Z

q∑
{sn}=1

v†
L



 ∏

m<n
Asm

!
B sn



∏
m′>n

Asm′




vR |{sn}〉 .

(3.73)

For the application of the variational principle to the study of translation invariant
phenomena, this tangent plane —consisting completely out of translation invariant
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states— is sufficient. However, we can also interpret |Ψ(A)〉 as a special point in the larger
classMMPS{Dn=D} =MMPS(D) and define tangent vectors

|Φ(A)[B]〉=
∑
n∈Z

q∑
{sn}=1

v†
L



 ∏

m<n
Asm

!
B sn (n)



∏
m′>n

Asm′




vR |{sn}〉 (3.74)

with site dependent matrices B s (n). These vectors span TMPS(D)(A). This larger tangent
plane turns out to be important when studying excited states, for which translation
invariance is no longer a good assumption. However, when both the Hamiltonian
and its ground state is translation invariant, we know that we can label the excited
states by a momentum quantum number p ∈ [−π,π) (see Subsection 1.3 of Chapter
3). The momentum p sector of the tangent plane TMPS(D)(A) is obtained by choosing
B s (n) = B s ei pn , and we define

|Φp (B ;A)〉= |Φ(A)p (B)〉=
∑
n∈Z

ei pn
q∑

{sn}=1

v†
L



 ∏

m<n
Asm

!
B sn



∏
m′>n

Asm′




vR |{sn}〉 ,

(3.75)
with thus |Φ0(B ;A)〉 = |Φ(B ;A)〉. Thus, Φ(A)p represents a linear map from AuMPS(D) to
the momentum p sector of the tangent plane TMPS(D)(A) at the translation invariant
point |Ψ(A)〉, the explicit notation of which is henceforth discarded. This momentum
p sector of the tangent plane is denoted as TΦp

⊂ TMPS(D) ⊂ HL , so that TMPS(D) =⊗
p∈[−π,+π)TΦp

and TuMPS(D) = TΦ0
. These notations are used interchangeably. The

null space NΦp
⊂ AuMPS(D) follows from applying infinitesimal site-dependent gauge

transformations g (n;η) = 1D+ηx(n)where x(n) = xei pn with x ∈ gl(D ;C). Expressing
the invariance of |Ψ(A)〉 under such infinitesimal gauge transformations allows to define
a linear map

NΦp
: gl(D ;C) 7→NΦp

: x 7→NΦp
(x) with Ns

Φp
(x) = e−i p xAs −As x,∀s = 1, . . . , q .

(3.76)
The dimensionality of NΦp

, and hence of TΦp
, can be obtained from the dimension of

the null space of NΦp
. We assume that the uniform matrix product state |Ψ(A)〉 is pure,

i.e. that Ĕ has a unique eigenvalue 1 with eigenvectors (l | and |r ), which is also the only
eigenvalue on the unit circle. If Ns

Φp
(x) = 0 (∀s = 1, . . . , q), this requires that

Ĕ |x r ) = e−i p |x r ). (3.77)

For p 6= 0, this equation has no solutions, so that dimNΦp
=D2 and dimTΦp

= (q−1)D2.
For p = 0, this equation has the unique solution x =µ1D with µ ∈C, so that dimNΦ0

=
D2− 1 and dimTΦ0

= (q − 1)D2+ 1. But of course, |Ψ(A)〉 ∈TΦ0
, and restricting to the

part T⊥Φ0
that is orthogonal to |Ψ(A)〉 also reduces the dimension to dimT⊥Φ0

= (q−1)D2.

111



CHAPTER 3. MATRIX PRODUCT STATES FOR QUANTUM LATTICES

The additive gauge freedom in the representation |Φp (B)〉 can be removed by restricting
to tensors B satisfying either of the following gauge fixing conditions:

• Left-gauge fixing condition:

q∑
s=1

As † l B s = 0 ⇔ (l |ĔB
A = 0. (3.78)

• Right-gauge fixing condition:

q∑
s=1

B s r As † = 0 ⇔ ĔB
A |r ) = 0. (3.79)

Since these conditions are D2 dimensional, they fix all D2 linearly independent gauge
transformations in NΦp

for p 6= 0. For p = 0, there are only D2 − 1 linearly indepen-

dent gauge transformations, and these D2 gauge fixing conditions also include norm
preservation, i.e. they imply 〈Ψ(A)|Φ0(B)〉 = 0 or thus |Φ0(B)〉 ∈ T⊥Φ0

. For p 6= 0, all

states automatically satisfy 〈Ψ(A)|Φp (B)〉= 0 due to the orthogonality of the different
momentum sectors, so that T⊥Φp

=TΦp
.

As in the previous subsection, we can actually construct the gauge transformation x that
maps an arbitrary choice B̃ satisfying 〈Ψ(A)|Φp (B̃)〉= 0 to a different parameterization

B = B̃ +NΦp
(x) that satisfies the left-gauge fixing condition in Eq. (3.78). Inserting this

transformation and imposing the gauge fixing condition on B as

(As )† l [B̃ s + e−i p xAs −As x] = 0

results in
(l x|(1̆− e−i p Ĕ) = (l |Ĕ B̃

A , (3.80)

with |l x) the D2-component vector associated to the matrix product l x. For p 6= 0,
the operator 1̆− e−i p Ĕ is non-singular and can be inverted, hence fixing l x and thus x,
since l is assumed to have full rank. For p = 0, 1̆− Ĕ has a single eigenvalue zero with
left and right eigenvectors (l | and |r ). We thus have to take a pseudo-inverse, which
is only possible if (l |Ĕ B̃

A has no support in the eigenspace corresponding to eigenvalue

zero. Hence, we need to restrict to choices B̃ that satisfy (l |Ĕ B̃
A |r ) = 0. If this equation

is fulfilled, then we can take the pseudo-inverse, and (l x| is only determined up to
an additive part in the zero subspace, i.e. if x is a solution, then so is x̃ satisfying
(l x̃|= (l x|+ c(l |, or thus x̃ = x+ c1D . This freedom corresponds of course to the kernel
of NΦ0

, so that NΦ0
(x̃) =NΦ0

(x).
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1.7. Symmetries and quantum phases

Finally, a quick note on symmetry and symmetry breaking phases in relation to matrix
product states is in order. When a matrix product state |Ψ[A]〉 ∈MMPS is expected to be
invariant under the action of a symmetry transformation, the point {A(n)} ∈AMPS in its
representation must be transformed to some point {Ã(n)} ∈AMPS that is gauge equivalent
to the original. In particular, when applying an internal symmetry transformation
Û =

⊗
n∈L ûn that is expected to leave the state |Ψ[A]〉 unchanged, this requires

Ãs (n) =
q∑

s ′=1

〈s |ûn |s ′〉As ′(n) = g (n− 1)As g (n)−1,∀n = 1, . . . , D . (3.81)

By imposing a gauge fixing condition on A, the transformation matrices g in the virtual
space can easily be shown to be unitary. If the symmetry group of the problem is given
by G, then we can define for every h ∈ G a physical transformation Ûh , and define
the associated transformation in the virutal space as gh . By applying Ûh1

Ûh2
= Ûh1 h2

,
we can proof that we must have gh1 h2

= eiω(h1,h2) gh2
gh1

. The additional phase does

not feature in Ãs , so that the matrices gh constitute a projective representation of G.
The phase ω(h1, h2) can be non-trivial throughout the group, which implies that it
cannot be gauged away to ω̃(h1, h2) = 0 (∀h1, h2 ∈ G) by redefining g̃h = eiα(h) gh with
α(h) some phase for every element h ∈ G. The corresponding redefinition for ω is
given by ω̃(h1, h2) = ω(h1, h2) + α(h1) + α(h2)− α(h1h2) mod 2π. This equivalence
relation defines different cohomology classes which cannot be transformed into each
other [301]. Among them is the trivial class which containsω(h1, h2) = 0 (∀h1, h2 ∈ G)
but non-trivial can classes also exist. The (projective) representation gh allows us to
decompose the decompose the virtual space into irreducible transformations of the
group G, so that the entries As

α,β
within an irreducible representation are completely

determined by the Clebsch?Gordan coefficients, as is dictated by the Wigner-Eckart
theorem [302, 303]. Since all elementary operations can then be applied to the different
irreducible representations separately, a big gain in computational efficiency is obtained.
In addition, by exploiting the decomposition into irreducible representations, quantum
states with specific quantum numbers can be constructed and the variational optimization
can be restricted to certain symmetry sectors. In particular, the variational wave function
for the ground state can be forced to transform according to the trivial representation,
whereas a variational optimization in the full space could result in an approximation
that does not perfectly fall into this representation. However, as shown in the next
section, using the time-dependent variational principle with imaginary time is a very
good strategy to reproduce the expected symmetry of the ground state without enforcing
it. We do not exploit symmetry in this chapter and refer to [304, 305, 306, 302, 303, 307]
for more information about the use of internal symmetries in combination with the
density matrix renormalization group, matrix product states or general tensor network
states.
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Another class of symmetries are the spacetime symmetries. Translation invariance has
already been discussed at length in the previous subsection. For one-dimensional systems,
other possible spacetime symmetries of the model are parity and time-reversal invariance.
A time-reversal transformation in an elementary quantum spin-S systems is obtained by
acting with the anti-unitary operator

R̂= exp
�−iπŜ y

�
K̂ , (3.82)

with Ŝy the total spin operator in the y-direction and K̂ the anti-linear operator that

acts trivially on the standard basis of Ŝz (i.e. it transforms the expansion coefficients
of the state in the basis {|s〉 , s = −S, . . . , S} into their complex conjugate values). The
generalization to a lattice L of spin-S systems is straightforward, by introducing the

total spin operator ~̂J =
∑

n∈L ~̂Sn . We henceforth ignore the additional factor exp(−iπĴ y )
that rotates the spin of the system around the y-axis and identify the effect of the anti-
linear operator K̂ with a time-reversal transformation. A Hamiltonian Ĥ is time-reversal
invariant if [K̂ , Ĥ] = 0, which implies that Ĥ has real matrix entries in the standard
basis. Since K̂ |Ψ[A]〉 = |Ψ[AK]〉 with As

K (n) = As (n) (∀s = 1, . . . , qn ; ∀n = 1, . . . ,N )
time-reversal invariance is obtained if there exists a gauge transform {gK (n)} that estab-
lishes As (n) = gK (n− 1)As (n)gK (n)

−1, ∀s = 1, . . . , qn , ∀n = 1, . . . ,N . Applying K̂ again
learns that gK (n)gK (n) = 1Dn

, ∀n = 1, . . . ,N (by using the assumption that the matrix
product state representation has full rank). It is now interesting to ask whether a gauge
transformed representation eAs (n) = g (n−1)As (n)g (n)−1 can be chosen such that it trans-
forms trivially, i.e. such that eAs (n) is real, ∀s = 1, . . . , qn , ∀n = 1, . . . ,N . The required

condition is that gK (n) = g (n)
−1

g (n), ∀n = 1, . . . ,N . Note that this decomposition is
compatible with gK (n)gK (n) = 1Dn

. It can be constructed by computing the logarithm

of gK (n), which exists for every invertible matrix. Imposing that gK (n)gK (n) = 1Dn

requires log gK (n) to be purely imaginary, or thus, gK (n) = exp[ix(n)] with x(n) a real
matrix. It is then sufficient to choose g (n) = exp[ix(n)/2]. A matrix product state that
is time-reversal invariant can thus always be written in a gauge where the matrices are
real.

The effect of parity transformation Π̂ is most easily discussed for a translation invariant
state |Ψ(A)〉, where the specific origin of the reflection does not contribute. We then
obtain Π̂ |Ψ(A)〉 = |Ψ(AΠ)〉 where As

Π =
∑q

s ′=1
πs ,s ′(A

s ′)T, ∀s = 1, . . . , q , with π an

idempotent q × q matrix (for fermionic systems, it is possible that π2 = −1̂). We
henceforth ignore the appearance of π (i.e. πs ,s ′ = δs ,s ′ ), similar to ignoring the unitary
matrix in front of K̂ for time-reversal transformations. Parity invariance of the uniform
matrix product state |Ψ(A)〉 then requires the existence of a gauge transformation gΠ ∈
GL(D ,C) such that (As )T = gΠAs g−1

Π , ∀s = 1, . . . , q . Applying the parity transformation
again learns that g−1

Π g T
Π = 1D , so that gΠ is a complex-symmetric matrix. We now define

a gauge transformed set of matrices Ãs = gAs g−1 where we would like to choose g such
that Ã transforms trivially under the parity transform (i.e. Ãs is a complex-symmetric
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matrix, ∀s = 1, . . . , q). This requires that gΠ = gT g , which is compatible with gΠ
being complex symmetric. Defining the (complex-symmetric) matrix x = log gΠ, we
can set g = exp(x/2) in order to obtain gT = g and gΠ = g 2. A matrix product state
that is parity-invariant can thus be written in a gauge where the matrices are complex-
symmetric.

We now start from a time-reversal invariant matrix product state that is written down
using real matrices. If we know that this state is also parity-invariant, can we then
further tune the gauge so as to obtain real symmetric matrices? Repeating the analysis
from the previous paragraph, we now find in general As

Π = [A
s]T = gΠAs g−1

Π where
the real matrix gΠ ∈ GL(D ,R) is symmetric (g T

Π = gΠ) and thus has real eigenvalues.
Can we now find a real gauge transform g ∈ GL(D ,R) such that gΠ = gT g ? Clearly,
this is only possible if gΠ is positive definite, which is not true in general. We can try
to loosen the restriction of real symmetric matrices, and perform a general complex
gauge transform g ∈ GL(D ,C) so as to obtain a Hermitian matrices eAs = gAs g−1. This
requires gΠ = g † g and is also only possible when gΠ is positive definite. By starting from
a parity invariant matrix product state and trying to impose time-reversal invariance, one
runs into similar trouble. Clearly, the K -gauge, in which A transforms trivially under
the action of K̂ , is in general not compatible with the Π-gauge, in which A transforms
trivially under the action of Π̂. Because of the computational advantage of working
with real variables, the parity invariance is often sacrificed. It is of course recovered,
either exactly or approximately, in a good approximation of the ground state. A physical
motivation for the incompatibility between the two gauges can be found by noting that
real-symmetric or hermitean matrices As would imply that the transfer matrix Ĕ has real
eigenvalues x (k) only. Since these eigenvalues feature in correlation functions as

〈Ψ(A)|ÔmÔm+n |Ψ(A)〉=
D2∑

k=1

ck (x
(k))n , (3.83)

all correlation functions can at most have an oscillating behavior with period 2. Oscilla-
tions with longer periods, which are very common in systems with finite density, would
be excluded.

We conclude this section with a discussion of the relation between matrix product state
and spontaneous symmetry breaking, for which we necessarily work in the thermo-
dynamic limit. Let us first assume that the ground state manifold S(g) does not break
translation invariance, so that we can use the uniform matrix product state ansatz. Be-
cause the approximation accuracy of matrix product states is related to the amount
of entanglement in the state, a variational optimization algorithm starting from a set
of random matrices As will end up in a state |Ψ(Az )〉 that (hopefully) provides a good
approximation for one of the minimally entangled ground states |Ψz〉 (see Subsections 1.4
and 2.4 in Chapter 1). Away from the critical point, the system is gapped in the symmetry
broken regime (for discrete symmetry breaking) and the corresponding ground states are
exponentially clustering. We can thus expect that Ĕz has a unique eigenvalue 1, and all
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other eigenvalues are inside the unit circle. Let now |Ψ(Az )〉 and |Ψ(Az ′)〉 represent the
best uniform matrix product state approximation for the exact ground states |Ψz〉 and
|Ψz ′〉. Note that, using Eq. (1.29), the matrices As

z ′
can be derived from As

z by acting on

|Ψ(Az )〉 with Û (gz ′ )Û (gz )
†, thus yielding As

z ′
=
∑z

s ′=1 〈s |û(gz ′)û(gz )
†|s ′〉As ′

z , with û(g )
the local transformations associated to the symmetry group. All minimally entangled
ground states thus have an equally good approximation within the variational manifold
MuMPS(D) for a fixed value of D . An equally good uniform matrix product state represen-
tation of a general superposition |Ψ〉 of the minimally entangled ground states requires a
set of matrices As =

⊕
z As

z , where the range of z contains all ground states z that are
present in |Ψ〉. The increased entanglement thus requires a much larger bond dimension.
Finally, we can require normalizability and orthogonality of the different ground state
approximations (〈Ψ(Az )|Ψ(Az ′)〉= δz,z ′ . Using

〈Ψ(Az )|Ψ(Az ′)〉 ∼ lim
N→∞

ĔAz′
Az

2N+1
, (3.84)

this boils down to

ρ(ĔAz
Az
) = 1, and ρ(ĔAz′

Az
)< 1 for z 6= z ′. (3.85)

If on the other hand ρ(ĔAz′
Az
) = 1 where As ′ is obtained as Û (gz ′)Û (gz )

† |Ψ(Az )〉 =
|Ψ(Az ′)〉, then we can conclude that there exists a gauge transformation g such that
As

z ′
= eiϕ gAs

z g−1 (see previous subsection) and the matrix products states |Ψ(Az )〉 and
|Ψ(Az ′)〉 are equal. The fidelity per site d (Az ,Az ′) = 1 and the system is in a symmetric
phase, provided that the matrix product states approximate the exact ground states
accurately. Note that continuous symmetries for which the order parameter does not
commute with the Hamiltonian cannot be broken in one-dimensional systems. They
can however be critical. Close to the critical point, a matrix product state approximation
of the ground state might falsely predict symmetry breaking, whenever it can create an
excited state with nearly massless excitations that has much less entanglement than the
ground state (see [308] for an example).

If the ground state manifold S(g) of a system breaks translation invariance and is only
invariant under T̂ P , the minimally entangled ground states |Ψz〉 cannot be described
by a uniform matrix product state. Applying the variational manifold within the class
of uniform matrix product states then results in an approximation of some translation
invariant superposition

∑
p∈ZP

T̂ p |Ψz〉=
∑

p∈ZP
|Ψ(z+p) mod P 〉. The matrices As then

have a periodic decomposition with period P . A description of the minimally entangled
ground states |Ψq〉 requires a P -periodic matrix product states. An alternative approach
is to group P sites into one effective site. And sometimes it is possible to transform
the Hamiltonian Ĥ of the system by local unitary operators Û such that the new
Hamiltonian Ĥ ′ = Û Ĥ Û † is still translation invariant and has a ground state manifold
S(g)′ that does not break translation invariance.
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Different theoretical results regarding the relation between symmetry breaking and
matrix product or finitely correlated states have been obtained. In particular, one can
proof that, if a uniform matrix product state |Ψ(A)〉 has a canonical representation with
J blocks (A=

⊕J
j=1 Aj ), it is the ground state of a parent Hamiltonian for which the

ground state manifold has a degeneracy J . All the states |Ψ(A(k))〉 are exact ground states
of this Hamiltonian [299, 273]. In fact, for any set of given uniform matrix states |Ψ(Aj )〉
with j = 1, . . . , J , a parent Hamiltonian can be constructed for which the ground state
manifold is exactly spanned by these uniform matrix product states. The corresponding
broken symmetry in this Hamiltonian is in general highly complex and unphysical
[309]. Note that a matrix product state description can aid in the characterization of
quantum phases with both local order parameters [310] or string order parameters [311].
In addition, because the fidelity is very easily evaluated for (uniform) matrix product
states, it can be used to characterize a phase transition [312]. The formalism of matrix
product states and higher dimensional generalizations can even be used to characterize
all phases (including topological phases) in physical systems [301], based on previous
ideas regarding renormalization group transformations of quantum states described by
tensor networks [229, 313]. These renormalization group transformations do however
fail to include critical points as fixed points, and a matrix product description of second
order phase transitions including non-analytic ground state energy, algebraically decaying
correlations and a diverging entanglement entropy is impossible for finite values of the
bond dimension D . Very close to the critical point, the matrix product state description
eventually reproduces the mean field result for e.g. the value of the critical exponents
[314]. It is however possible to engineer special quantum phase transitions which are not
characterized by these properties and do allow an exact matrix product state description
[315, 316].

2. Time-dependent variational principle forMMPS

Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn,
Henri Verschelde, Frank Verstraete.

“Time-dependent variational principle for quantum lattices”.
Physical Review Letters 107, 070601 (2011).

2.1. Introduction

In this section we apply the time-dependent variational principle (see Section 2 of
Chapter 2) to the variational manifoldMMPS{Dn} andMuMPS(D). Despite the generality
of the time-dependent variational principle, it had not been used in previous algorithms
for time evolution with matrix product states. Initial attempts to expand the possibilities
of the density matrix renormalization group beyond the case of ground states did not
rely on the matrix product state concept. Rather than trying to fully approximate the
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time-evolving wave function, these early algorithms centered on a direct evaluation of
the spectral function

Gα,β
m,n(ω+ iη)¬ 〈Ψ|Ôα

m(EΨ+ω+ iη− Ĥ )−1Ôβ
n |Ψ〉 , (3.86)

with |Ψ〉 the ground state (approximation), EΨ the corresponding (approximate) ground
state energy and η some small constant that should be scaled to zero. The spectral
function gα,β

m,n(ω) is obtained as the Fourier transform of the time-dependent correlation
function

Gα,β
m,n(t − t ′)¬ 〈Ψ|Ôα

m(t )Ô
β
n (t

′)|Ψ〉 . (3.87)

Using a full set of eigenvectors |Ψk〉 and corresponding eigenvalues Ek of the Hamiltonian
Ĥ (with |Ψ〉 exactly or approximately equal to |Ψ0〉 and EΨ exactly or approximately
equal to E0), the spectral function gα,β

m,n(ω) can be expanded as

Gα,β
m,n(ω+ iη) =

∑
k

〈Ψ|Ôα
m |Ψk〉 〈Ψk |Ôβ

n |Ψ〉
1

ω+ iη− (Ek − EΨ)
. (3.88)

For η→ 0, the spectral function has poles at the (exact or approximate) excitation energies
Ek − EΨ, so that the spectral function can be used to probe the spectrum of excitated
states. The pioneering algorithms for evaluating the spectral function in Eq. (3.86) were
based on a variety of techniques. Examples include Lanczos vector dynamics [317] and
the correction vector method [318, 319]. This last method was reformulated in terms of
a variational principle under the name of “dynamical density matrix renormalization
group” [320]. A recent overview of these methods can be found in [321].

The use of spectral functions is restricted to studying the time evolution of localized
perturbations with respect to a time-independent Hamiltonian. Time-dependent pertur-
bations and parameter quenches require an approximation of the full time evolution of
the initial state. Early algorithms based on the density matrix renormalization group for
directly simulating time evolution of quantum states were constructed in [322, 323, 324].
However, all modern approaches are based on the time evolving block decimation, which
was first developed in the context of matrix product states [325]. It was later reformu-
lated in order to be compatible with traditional density matrix renormalization group
implementations [326, 327]. It is based on an iterative application of a Lie-Trotter-
Suzuki decomposition [328, 329] of the exact evolution operator for a small time step dt
as

exp(iĤdt ) = exp(iĤ (A)dt )exp(iĤ (B)dt )+O(dt 2). (3.89)

Higher order decompositions with an error of O(dt p ) are also possible [330]. Ĥ (A)

and Ĥ (B) provide a decomposition of the (possibly time-dependent) Hamiltonian Ĥ =
Ĥ (A)+ Ĥ (B), such that Ĥ (A) and Ĥ (B) separately contain local terms that all commute.
If necessary, a decomposition into more than two parts is also possible. For a nearest-
neighbor Hamiltonian Ĥ =

∑
n∈Z ĥn,n+1, a possible decomposition scheme is into even

and odd terms: Ĥ (A) =
∑

n∈Z ĥ2n,2n+1 and Ĥ (B) =
∑

n∈Z ĥ2n+1,2n+2. The individual

118



§2. Time-dependent variational principle forMMPS

operators exp(iĤ (A)) and exp(iĤ (B)) then split into a product of local unitaries, that can
be dealt with in a parallelized and efficient way. When applied to a matrix product
state |Ψ[A]〉 ∈MMPS{Dn}, these individual evolution operators take the state outside the
original manifold to a state |Ψ′[A′]〉 ∈MMPS{D ′n}, since they have the effect of increasing
the virtual bond dimension. To proceed, one then approximates the new state |Ψ′[A′]〉
by a matrix product state |Ψ[Ã]〉 in the original variational manifoldMMPS{Dn}. The best
strategy for truncating a single bond dimension is obtained by discarding the smallest
Schmidt values (see Subsection 1.1). When several bond dimensions are simultaneously
truncated, this strategy still serves as a good initial guess but is not globally optimal. For
latticesL of finite size, the global minimization of ‖|Ψ′[A′]〉− |Ψ[Ã]〉‖ can accurately
be solved using algorithms inspired by the sweeping process of the finite-size algorithm
of the density matrix renormalization group.

The time evolving block decimation can also be applied to translation invariant systems
in the thermodynamic limit. By combining it with an imaginary time evolution, this
allowed for the first time to use the class of uniform matrix product states as a varia-
tional ansatz [300]. However, no globally optimal strategy for truncation of the bond
dimension is known. In addition, the strategy based on locally discarding the smalllest
Schmidt values assumes that the local time evolution operators are unitary, which is no
longer true for imaginary time evolution. As a variational strategy, the infinite size time
evolving block decimation then requires a scaling of dt → 0 as the optimal approximation
is approached. Since the exact imaginary time evolution automatically slows down in
the neighborhood of the ground state (approximation), the need for scaling induces an
additional unfavorable slowing down.

In addition, both for finite and infinite systems, not all symmetries of the Hamilto-
nian Ĥ are inherited by the individual Trotter evolution operators exp(iĤ (A)dt ) and
exp(iĤ (B)dt ). In itself, the Lie-Trotter-Suzuki decomposition is symplectic and under an
exact iterative application of the Trotter operators, errors resulting from these broken
symmetries would be strongly bound. However, the additional truncation after every
evolution step ruins the symplecticity and drifting errors are possible. In particular, for a
time-independent Hamiltonian Ĥ , the expectation value of the Hamiltonian is a constant
of motion, but will drift away in a simulation based on the time evolving block decima-
tion. The time-dependent variational principle provides a solution to these problems,
as it is a symplectic method that is globally optimal (also in the thermodynamic limit)
and never leaves the variational manifold, so that no truncation of any kind is necessary.
There is no need for a Trotter decomposition and hence no corresponding Trotter error.
This approach is also perfectly applicable in case of imaginary time evolution (there is no
symplecticity of course). Since only the computation of expectation values is required,
the time-dependent variational principle can also perfectly be combined with strategies
for exploiting symmetry. So far, this has not been done.

The time-dependent variational principle produces a highly non-linear set of coupled
differential equations and thus requires a numerical integration scheme with time step
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dt . Time discretization errors are thus present, but they can easily be controlled. For
imaginary time evolution, a simple first order Euler-step algorithm is sufficient. The
relevant formulae for the variational manifoldsMMPS{Dn} andMuMPS(D) are presented
in Subsection 2.2 and 2.3 respectively and an efficient implementation, based on the
Euler algorithm, is sketched. Even though large (second-order) errors can be present,
this is not an issue since imaginary time evolution is extremely stable and self-correcting,
and always strives to end up in an energy minimum. For imaginary time evolution
with the time-dependent variational principle we expect a monotonically decreasing
energy expectation value. As long as the step size dt is small enough to reproduce this
monotonic decrease, there is no need to change it. A decrease of the time step should thus
only be considered when higher-order effects result in an energy increase. In contrast to
the time-evolving block decimation, no scaling of dt → 0 is necessary, since the algorithm
automatically slows down near the minimum.

For real time-evolution, it is often important that the numerical integration scheme
inherits the symplectic properties and a more advanced numerical integration scheme is
necessary, to be discussed in Subsection 2.5. Since entanglement grows linearly under real
time evolution [see Eq. (1.75) in Subsection 2.5 of Chapter 1], a dynamic increase of the
bond dimension is sometimes useful. This is straightforwardly accomplised in the time
evolving block decimation (by skipping the truncation step), but requires more effort
in combination with the time-dependent variational principle, which naturally stays in
the original manifold. Subsection 2.6 describes a strategy for a dynamical increase of
the bond dimension. Subsection 2.7 concludes this section by showing some exemplary
results.

2.2. Generic matrix product states

The flow equations of the time-dependent variational principle [Eq. (2.17)] for the
variational manifoldMMPS{Dn} of generic matrix product states on latticesL of finite
size were written down for the first time in [331], but they were not further investigated
and no attempt was made to implement these equations into an efficient algorithm for
real or imaginary time evolution. Setting dAs (n; t )/dt = B(n; t ), we obtain

d

dt
|Ψ[A(t )]〉= |Φ[A(t )][B(t )]〉 , (3.90)

where the tangent vectors |Φ[A][B]〉 were defined in Eq. (3.7). According to Subsec-
tion 2.2 of the previous chapter, the flow equations boil down to finding the set of tensors
B(n; t ) from

B(t ) = arg min
B

|Φ[B ;A(t )]〉− Ĥ |Ψ[A(t )]〉
2

. (3.91)
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The expansion of Eq. (3.91) contains the metric of the tangent vectors, which is encoded
in the overlap elements

〈Φ[B ;A]|Φ[B ′;A]〉=
N∑

n<n′=1

(l (n− 1)|ĔA(n)
B(n)

 
n′−1∏

m=n+1

ĔA(m)
A(m)

!
ĔB ′(n′)

A(n′)
|r (n′))

+
N∑

n′<n=1

(l (n′− 1)|ĔB(n′)
A(n′)




n−1∏
m=n′+1

ĔA(m)
A(m)


 ĔA(n)

B(n) |r (n))+
N∑

n=1

(l (n− 1)|ĔB ′(n)
B(n) |r (n)),

(3.92)

where the definitions in Eq. (3.37) and Eq. (3.40) were used. The metric is thus a
complicated matrix of size dimAMPS{Dn}×dimAMPS{Dn}, that couples all variations B(n)
and B ′(n′) at different sites n and n′. It seems like an impossible task to invert this
gigantic matrix, which is required by the time-dependent variational principle. This
problem could be solved by using an iterative implementation, but the evaluation of
〈Φ[A][B]|Φ[A][B ′]〉 would still scale as O(L2), which is also very unfavorable. However,
we still have to fix the gauge of B and can exploit this to simplify the overlap, as will
now become clear. In addition, we also have to pay attention to the fact that |Φ[A;A]〉=
N |Ψ[A]〉 ∈TMPS{Dn}[A], which requires to use the modified time-dependent variational
principle discussed in Subsection 2.3 of the previous chapter. Rather than defining a
modified metric and gradient as in Eq. (2.27) and (2.28), we can simply restrict to tensors
B such that |Φ[B ;A]〉 ∈ T⊥MPS{Dn}[A]. Both fixing the gauge freedom and restricting to

T⊥MPS{Dn}[A] is obtained by imposing the gauge fixing conditions in Eq. (3.54) or (3.55).
Either of these gauge fixing conditions simplify the overlap to

〈Φ[B ;A]|Φ[B ′;A]〉=
N∑

n=1

(l (n− 1)|ĔB ′(n)
B(n) |r (n)) (3.93)

and eliminate all non-local terms. We henceforth omit the explicit notation [A] in the
tangent vectors.

It is now easy to find a linear parameterization5 B =BΦ[x] depending on N matrices
x(n) (n = 1, . . . ,N ) of size Dn−1 × (qn Dn −Dn−1), where BΦ[x](n) depends only on
x(n), so that BΦ[x] satisfies the right gauge fixing conditions [Eq. (3.55)] and so that
the effective Gram matrix becomes the unit matrix. We thereto define the qn Dn ×Dn−1
matrices R(n) as

[R(n)](α,s);β = [r (n)
1/2As (n)†]α,β (3.94)

and then construct a (qn Dn −Dn−1)× qn Dn matrix VR(n) so that VR(n)
† contains an

orthonormal basis for the null space of R(n)†, i.e. VR(n)R(n) = 0 and VR(n)VR(n)
† =

1qn Dn−Dn−1
, for all n = 1, . . . ,N . Setting [V s

R(n)]α,β = [VR(n)]α;(β,s), we then define the

5 It is important that this representation is linear in order to preserve the vector space structure of the tangent
plane, and in particular to preserve the quadratic character of the optimization problem in Eq. (3.91).
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representation Bs[x](n) as

Bs[x](n) = l (n− 1)−1/2x(n)V s
R r (n)−1/2 (3.95)

in order to obtain

〈Φ[BΦ[x]]|Φ[BΦ[y]]〉=
L∑

n=1

tr
�

x(n)†y(n)
�

(3.96)

and
∑qn

s=1 B
s
Φ[x](n)r (n + 1)As (n)† = 0, ∀n = 1, . . . ,N . Analogously, an alternative

representation eBΦ[x] in terms of matrices x(n) of size (qn Dn−1 − Dn)× Dn (∀n =
1, . . . ,N ) can be constructed, so that the matrices B s (n) = eBs

Φ[x](n) satisfy the left gauge
fixing conditions [Eq. (3.54)]. Define thereto the Dn × qn Dn−1 matrix L(n) as

[L(n)]α;(s ,β) = [A
s (n)† l (n− 1)1/2]α,β (3.97)

and then construct a qn Dn−1×(qn Dn−1−Dn)matrix VL(n) that contains an orthonormal
basis for the null space of L(n), i.e. L(n)VL(n) = 0 and VL(n)

†VL(n) = 1, for all
n = 1, . . . ,N . By defining [V s

L (n)]α,β = [VL(n)](sα),β, the representation eBΦ[x] is
obtained as

eBs
Φ[x](n) = l (n− 1)−1/2V s

L x(n)r (n)−1/2. (3.98)

For evaluating 〈Φ[B]|Ĥ |Ψ[A]〉, we assume that Ĥ is a nearest neighbor Hamiltonian Ĥ =∑L−1
n=1 ĥn,n+1 with ĥn,n+1 acting non-trivially only on sites n and n+1. The generalization

to Hamiltonians with interactions over three or more sites is straightforward. Assuming
that B satisfies the right gauge fixing condition, we obtain

〈Φ[B]|Ĥ |Ψ[A]〉=
L∑

n=1

�
θ(n <N )(l (n− 1)|ĔC (n)

B(n)A(n+1)|r (n+ 1))

+θ(n > 1)(l (n− 2)|ĔC (n−1)
A(n−1)B(n)|r (n))

+θ(n <N − 1)
N−1∑

m=n+1

(l (n− 1)|ĔA(n)
B(n)


 m−1∏

k=n+1

ĔA(k)
A(k)


 ĔC (m)

A(m)A(m+1)|r (m+ 1))
�

, (3.99)

where θ is a discrete Heaviside function that yields one if its argument is true and zero
otherwise, where

C s ,t (n) =
qn∑

u=1

qn+1∑
v=1

〈s , t |ĥn,n+1|u, v〉Au (n)Av (n+ 1) (3.100)

122



§2. Time-dependent variational principle forMMPS

and where we have extended the definition of ĔA
B in order to include

ĔC (n)
A(n)B(n+1) =

qn∑
s=1

qn+1∑
t=1

C s ,t (n)⊗As (n)B t (n+ 1). (3.101)

In case of left gauge fixing, the last term in Eq. (3.99) would be replaced by a term
containing all contributions of the Hamiltonian acting to the left of B(n). These terms
are familiar from the standard variational sweeping algorithm for matrix product states,
and it is well known how to construct them efficiently and iteratively. Note that
〈Φ[B]|Ĥ |Ψ[A]〉 can be interpreted as the energy gradient, which had been computed
before in a matrix product state framework [289], in order to apply a steepest descent
algorithm. However, the time-dependent variational principle together with a detailed
study of the representation of the tangent plane TMPS{Dn} learns that the best direction
to travel along for converging to the optimum is not the mere gradient, except when a
suitable representation is chosen for which the metric is the identity matrix.

We now have all the ingredients to evaluate

|Φ[B ;A]〉− Ĥ |Ψ[A]〉
2
= 〈Φ[B ;A]|Φ[B ;A]〉− 〈Φ[B ;A]|Ĥ |Ψ[A]〉

− 〈Ψ[A]|Ĥ |Φ[B ;A]〉+ 〈Ψ[A]|Ĥ 2|Ψ[A]〉 . (3.102)

Inserting the current solution A(t ) and a representation B = BΦ[x] and differentiat-
ing with respect to x(n)† produces the solution x?(t ) that minimizes Eq. (3.102); we
obtain

|Φ[BΦ[x?(t )];A(t )]〉= P̂T⊥MPS
[A(t ),A(t )]Ĥ |Ψ[A(t )]〉

⇔ x?(n; t ) =
∂

∂ x(n)†
〈Φ[BΦ[x];A(t )]|Ĥ |Ψ[A(t )]〉 . (3.103)

Let us now outline all the necessary steps in a single iteration of a simple Euler imple-
mentation for imaginary time evolution, where the value of A is overwritten after every
step:

1. Define K(N + 1) = 0 (scalar) and K(N ) = 0 (DN−1×DN−1 matrix) and compute
the Dn−1×Dn−1 matrices K(n) as

K(n) =
qn∑

s=1

qn+1∑
t=1

C s ,t (n)r (n+ 1)At (n+ 1)†As (n)†+
qn∑

s=1

As (n)K(n+ 1)As (n)†

(3.104)
for n =N − 1,N − 2, . . . , 1, with C (n) given in Eq. (3.100). K(1) corresponds to
the energy expectation value H[A,A] if |Ψ[A]〉 is normalized to unity.

2. Define, for n = 1, . . . ,N , the qn Dn × Dn−1 matrices R(n) as in Eq. (3.94) and
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construct the (qn Dn −Dn−1)× qn Dn matrices VR(n) so that VR(n)R(n) = 0 and
VR(n)VR(n)

† = 1qn Dn−Dn−1
.

3. Define the (qn Dn−1−Dn)×Dn matrices F (n) (n = 1, . . . ,N ) as

F (n) =

θ(n <N )
qn∑

s=1

qn+1∑
t=1

l (n− 1)1/2C s ,t (n)r (n+ 1)At (n+ 1)† r (n)−1/2V s
R(n)

†

+θ(n > 1)
qn−1∑
t=1

qn∑
s=1

l (n− 1)−1/2At (n− 1)† l (n− 2)C t ,s (n− 1)r (n)1/2V s
R(n)

†

+θ(n <N − 1)
qn∑

s=1

l (n− 1)1/2As (n)K(n+ 1)r (n)−1/2V s
R(n)

†, (3.105)

so that 〈Φ[A][BΦ[x]]|Ĥ |Ψ[A]〉=
∑N

n=1 tr[x(n)†F (n)].

4. Set x?(n) = F (n), ∀n = 1, . . . ,N . Take a step As (n)←As (n)− dτBs[x?](n).

5. Set l (0) = 1 and compute l (n) =
∑qn

s=1 As (n)† l (n− 1)As (n) for n = 1, . . . ,N . The
norm of the new state is given by l (N ); renormalize if necessary. Set r (N ) = 1 and
compute

r (n) =
q∑

s=1

As (n+ 1)r (n+ 1)As (n+ 1)†

for n =N − 1, . . . , 0. Bring A back to chosen canonical representation (optional).

6. Repeat step 1 and evaluate the energy H[A,A] of the new state. Change dt if
necessary.

Every step can be computed with computational complexity O(N D3), just as in the stan-
dard time-independent sweeping algorithm. However, unlike in the sweeping algorithm,
the determination of the change As (n)←As (n)− dtBs[x](n) — even though only valid
for dt not too large — is globally optimal and thus includes all correlations from the
changes at every other site in the lattice. This has to be compared to the variational
sweeping algorithm, where the energy is minimized with respect to a single tensor A(n)
while keeping all other tensors fixed. While the update of A(n) is not restricted to small
variations —the optimization problem for A(n) alone is quadratic and can be solved
exactly— it is possible that the large update is only locally optimal and receives large
corrections in the next sweep, when the other tensors in the sites have been updated.
In addition, solving this quadratic problem is an eigenvalue problem, which is done
iteratively in order to keep the computational complexity at O(D3). This operation
dominates the computational speed at large values of the bond dimension D. When
using the time-dependent variational principle as a variational optimization method, the
update for the matrices A(n) is straightforwardly computed through a number of D ×D
matrix multiplications. No iterative eigensolver or linear solver is required. Hence,
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one ‘sweep’ (iteration step) of the time-dependent variational principle will be much
faster than a corresponding sweep in the traditional variational sweeping algorithm. It
is thus interesting to see whether this implementation can outperform the traditional
sweeping algorithm in convergence speed. In particular, this might be the case near
critical points where the traditional algorithm also requires many sweeps due to the long
range correlations which are not taken into account in the local update. However, the
time-dependent variational principle for generic matrix product states has not yet been
implemented. Since the focus of this dissertation is extended systems with translation
invariance, only the algorithm for uniform matrix product states, to be discussed in the
next subsection, has been implemented.

For lattices of finite size with periodic boundary conditions, the gauge freedom cannot
be exploited to fully decouple variations at different sites. The resulting algorithm is
much more complicated and an exact implementation with computational complexity
O(D3) is impossible. This situation is familiar from the traditional approaches for matrix
product states with periodic boundary conditions.

2.3. Uniform matrix product states

The tangent vectors |Φ(B ;A)〉 in a point |Ψ(A)〉 of the variational manifoldMuMPS(D) are
defined in Eq. (3.73). Setting dAs (t )/dt = B s (t ), the time dependent variational principle
dictates to choose B(t ) as

B(t ) = arg min
B

|Φ(B ;A(t ))〉− Ĥ |Ψ(A(t ))〉
2

. (3.106)

All relevant quantities can just as easily be computed for the generalized set of tangent
vectors |Φp (B ;A)〉 spanning the tangent plane TMPS(D)(A), as defined in Eq. (3.75). These
expressions are required in the next section anyway and it automatically follows that
only |Φ0(B ;A)〉= |Φ(B ;A)〉 contributes to the time-dependent variational principle when
applied to translation invariant Hamiltonians.

We henceforth assume that |Ψ(A)〉 is pure, so that the transfer matrix Ĕ = ĔA
A has a

unique eigenvalueω(1) = 1 with corresponding left and right eigenvectors (l (1)|= (l | and
|r (1)) = |r ) that we assume to be normalized as (l |r ) = 1, and that all other eigenvalues
ω(k), k > 1 lie strictly within the unit circle. If the largest eigenvalue ω(1) of Ĕ differs

from one, the matrices A have to be rescaled as A/
p
ω(1). We also define S̆ (1) = S̆ = |r )(l |

as a projector onto the eigenspace of eigenvalue 1, and its complement Q̆ = 1̆− S̆.
We further assume that these eigenvector can be obtained from the application of an
iterative eigensolver to the efficiently implementable maps E and eE, so that all required
information is available at a computational cost of O(D3).

We now start by computing the overlap between two tangent vectors 〈Ψp ′(B
′)|Ψp (B)〉,

which encodes the metric. We have to be very careful with the infinite sums over the
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positions n ∈Z and n′ ∈Z of B and B ′. When a diverging result is obtained, it is easily
possible to make errors by miscounting. Only when the result is guaranteed to be finite
can we freely use index substitutions. We therefore replace every occurrence of Ĕ n

by a ‘regularized’ operator Q̆Ĕ nQ̆ = Ĕ nQ̆ = Q̆Ĕ n = Ĕ n − |r )(l | = Q̆(Q̆ĔQ̆)nQ̆ with
ρ(Q̆ĔQ̆)< 1 and a ‘singular’ part S̆ = |r )(l |. The reason of this notation becomes clear
if we now evaluate 〈Ψp (B ;A)|Ψp ′(B

′;A)〉 as

〈Φp (B ;A) | Φp ′(B
′;A)〉

=
+∞∑

n=−∞

+∞∑
n′=−∞

e+i p ′n′−i pn
�
θ(n = n′)(l |ĔB ′

B |r )

+θ(n′ > n)(l |ĔA
B (Ĕ)

n′−n−1ĔB ′
A |r )

+θ(n′ < n)(l |ĔB ′
A (Ĕ)

n−n′−1EA
B |r )

�

=
+∞∑

n0=−∞
ei(p ′−p)n0

+∞∑
∆n=−∞

ei p∆n
�
θ(∆n = 0)(l |ĔB ′

B |r )

+θ(∆n > 0)(l |ĔA
B Q̆Ĕ∆n−1Q̆ĔB ′

A |r )
+θ(∆n < 0)(l |ĔB ′

A Q̆Ĕ−∆n−1Q̆ĔA
B |r )

�

+(l |ĔA
B |r )(l |ĔB ′

A |r )
+∞∑

n=−∞

n−1∑
n′=−∞

ei p ′n′−i pn

+(l |ĔB ′
A |r )(l |ĔA

B |r )
+∞∑

n=−∞

+∞∑
n′=n+1

ei p ′n′−i pn .

By using the well known result for the geometric series of an operator with spectral
radius smaller than one, we obtain

+∞∑
n=0

Q̆Ĕ nQ̆ =
+∞∑
n=0

Q̆(Q̆ĔQ̆)nQ̆ = Q̆(1̆− Q̆ĔQ̆)−1Q̆ (3.107)

and thus

〈Φp (B ;A)|Φp ′(B
′;A)〉=

2πδ(p ′− p)
�
(l |ĔB ′

B |r )+ (l |ĔA
B Q̆(1̆− ei p Q̆ĔQ̆)−1Q̆ĔB ′

A |r )
+ (l |ĔB ′

A Q̆(1̆− e−i p Q̆ĔQ̆)−1Q̆ĔA
B |r )

+(2πδ(p)− 1)(l |ĔB ′
A |r )(l |ĔA

B |r )
�

(3.108)

As expected, momentum eigenstates cannot be normalized to unity in an infinitely large
system, but rather satisfy a δ normalization. For equal momenta, 〈Φp (B ;A)|Φp (B

′;A)〉
contains the diverging factor 2πδ(0) = |Z| where the cardinality |Z| represents the
diverging system size (L = Z). Inside the square brackets, the regular part Q̆ĔQ̆
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produces a finite contribution where B and B ′ are strongly connected. We therefore
also refer to these terms as the connected contribution. For p = 0, the product Q̆(1̆−
e±i p Q̆ĔQ̆)−1Q̆ can be interpreted as the pseudo-inverse of the singular superoperator
1̆−Ĕ , which has an eigenvalue zero associated to the left and right eigenvectors (l | and |r ).
We henceforth define (1̆− e±i p Ĕ)P = Q̆(1̆− e±i p Q̆ĔQ̆)−1Q̆, so that (1̆− Ĕ)P(1̆− Ĕ) =
(1̆− e±i p Ĕ)(1̆− e±i p Ĕ)P = Q̆ = 1̆− |r )(l |. Only for zero momentum does (1̆− e±i p Ĕ)P

denote a true pseudo-inverse. For momentum zero, there is an additional divergence
inside the square brackets coming from the singular part S̆ . Here B and B ′ appear in two
separate factors, and this term is henceforth referred to as the disconnected contribution.
It can be traced back to the component of |Φ0(B)〉 that is parallel to the uniform matrix
product state |Ψ(A)〉. Indeed, we similarly obtain

〈Ψ(A)|Φp (B ;A)〉= 2πδ(p)(l |ĔB
A |r ) (3.109)

so that all states |Φp (B)〉 with p 6= 0 are automatically orthogonal to |Ψ(A)〉, but for
p = 0 we have to restrict to tensors B that are solutions of the linear system (l |ĔB

A |r ) = 0.
Put differently, |Φ0(A)〉 = |Z| |Ψ(A)〉, and we have to impose (l |ĔB

A |r ) = 0 in order to
restrict to the tangent vectors |Φ0(B)〉 ∈T⊥Φ0

. For any vector |Φp (B)〉 in the tangent plane

T⊥Φp
, we can impose the left or right gauge fixing conditions Eq. (3.78) or (3.79). Either

choice cancels the non-local terms in Eq. (3.108), resulting in

〈Φp (B ;A)|Φp (B ;A)〉= 2πδ(p ′− p)(l |ĔB ′
B |r ). (3.110)

A linear parameterization B =BΦ(x) depending on a D×D(q− 1)matrix x can now be
constructed, analogously to the construction in the previous subsection but now in a
translation invariant setting. We first define the qD ×D matrices R as

[R](α,s);β = [r
1/2As †]α,β (3.111)

and then construct a (q−1)D×qD matrix VR such that V †
R contains an orthonormal basis

for the null space of R†, i.e. VRR= 0 and VRV †
R = 1(q−1)D . Setting [V s

R]α,β = [VR]α;(β,s),
we then define the representation Bs

Φ(x) as

Bs
Φ(x) = l−1/2xV s

R r−1/2 (3.112)

in order to obtain

〈Φp ′(BΦ(x))|Φp (BΦ(y))〉= 2πδ(p − p ′) tr
�

x†y
�

, (3.113)

in combination with the right gauge fixing condition
∑q

s=1 B
s
Φ(x)r As † = 0. The repre-

sentation eBΦ(x) satisfying the left gauge fixing conditions follows similarly.

As a last step, we have to evaluate 〈Φp (B)|Ĥ |Ψ(A)〉. We again assume that the Hamil-
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tonian, which should now be translation invariant, only contains nearest-neighbor
interactions, i.e. Ĥ =

∑
n∈Z T̂ n ĥT̂ −n where ĥ has non-trivial support only on sites zero

and one. We hence obtain

〈Φp (B ;A) | Ĥ |Ψ(A)〉=
+∞∑

n=−∞

+∞∑
n′=−∞

e−i pn
�
θ(n = n′)(l |H̆ AA

BA |r )+θ(n = n′+ 1)(l |H̆ AA
AB |r )

+θ(n > n′+ 1)(l |H̆ AA
AA (Ĕ)

n−n′−2ĔB
A |r )

+θ(n < n′)(l |ĔB
A (Ĕ)

n′−n−1H̆ AA
AA |r )

�
,

where we have defined a new superoperator

H̆ A1A2

A3A4
¬

q∑
s ,t ,u,v=1

〈u, v |ĥ|s , t 〉As
1At

2⊗Au
3 Av

4 , (3.114)

with which we can write for the expectation value of the energy density

h(A,A) = 〈Ψ(A)|ĥ|Ψ(A)〉= (l |H̆ AA
AA |r ). (3.115)

Using a translation invariant version of the definition in Eq. (3.100), namely

C s ,t =
q∑

u,v=1

〈s , t |ĥ|u, v〉As At (3.116)

we can rewrite H̆ AA
AB = ĔC

AB and H̆ AA
BA = ĔC

BA. Repeating the same tricks as for the
evaluation of 〈Φp ′(B

′)|Φp (B)〉 leads to

〈Φp (B ;A)|Ĥ |Ψ(A)〉=
2πδ(p)

�
(l |H̆ AA

BA |r )+ (l |H̆ AA
AB |r )+ (l |H̆ AA

AA (1̆− Ĕ)PĔB
A |r )

+(l |ĔB
A (1̆− Ĕ)PH̆ AA

AA |r )+ (|Z| − 2)(l |H̆ AA
AA |r )(l |ĔA

B |r )
�

. (3.117)

As expected, the translation invariant state Ĥ |Ψ(A)〉 has zero overlap with momentum
eigenstates with p 6= 0. For p = 0, the overlap is proportional to 2πδ(0) = |Z|, which
matches with the same factor in 〈Φ0(B ;A)|Φ0(B ;A)〉. There is an additional divergence
inside the brackets, which cancels due to

〈Φp (B ;A)|P̂0Ĥ |Ψ(A)〉= 〈Φp (B ;A)|Ĥ −H (A,A)|Ψ(A)〉
= 〈Φp (B ;A)|Ĥ |Ψ(A)〉− |Z|h(A,A)2πδ(p)(l |ĔA

B |r ),

where we assume |Ψ(A)〉 to be normalized to unity and we have defined the (normalized)
expectation values H (A,A) = 〈Ψ(A)|Ĥ |Ψ(A)〉 = |Z|h(A,A) = |Z|(l |H̆ AA

AA |r ). As before,
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this divergent factor automatically cancels by restricting to tangent vectors |Φ0(B)〉 ∈T⊥Φ0
.

By imposing the left gauge fixing condition [Eq. (3.78)], the third and the fourth term in
Eq. (3.117) cancel, while for the right gauge fixing condition [Eq. (3.79)], the second and
fourth term cancel.

For either choice of the gauge fixing conditions, one non-local term survives in the
expression for 〈Φp (B ;A)|Ĥ |Ψ(A)〉 [Eq. (3.117)], which requires the computation of the
pseudo-inverse of 1̆− Ĕ . An exact computation of (1̆− Ĕ)P would be an operator of
O(D6), but an iterative strategy is also possible. If we represent B as BΦ(x), so that the
right gauge fixing conditions are fulfilled, we have to compute

|K) = (1̆− Ĕ)PH̆ AA
AA |r ) = Q̆(1̆− Q̆ĔQ̆)−1Q̆H̆ AA

AA |r ) = (1̆− Q̆ĔQ̆)−1Q̆H̆ AA
AA |r ), (3.118)

where Q̆H̆ AA
AA |r ) can be computed efficiently. Since the action of (1̆− Q̆ĔQ̆) on a

vector |K) can also be implemented as an operation with computational efficiency O(D3)
using the maps E and eE, and since (1̆− Q̆ĔQ̆) itself is non-singular, an iterative solver
such as the biconjugate gradient stabilized method can be used to compute |K) with a
computational cost that scales as O(D3). We then also define

F =
q∑

s ,t=1

l 1/2C s ,t r At † r−1/2V s
R

†

+
q∑

s ,t=1

l−1/2At † l C t ,s r 1/2V s
R

†+
q∑

s=1

l 1/2As K r−1/2V s
R

†, (3.119)

in order to obtain

〈Φp (BΦ(x);A)|Ĥ |Ψ(A)〉= 2πδ(p) tr
�

x†F
�

. (3.120)

The solution to the minimization of
 |Φ0(B ;A(t ))〉 − Ĥ |Ψ(A(t ))〉2 is thus given by

B =BΦ(x
?(t )) with x?(t ) = F (t ), so that we can write

|Φ(BΦ(x?(t ));A(t ))〉= P̂T⊥uMPS(D)
(A(t ),A(t ))Ĥ |Ψ(A(t ))〉 . (3.121)

A simple Euler-based algorithm for imaginary time evolution can then be constructed
as in the previous subsection. Rather than having to perform O(N D3) operators, the
implementation for uniform matrix product states rquires O(NiterD3) operations, with
Niter the number of iterations necessary in the iterative eigensolvers for l , r and in the
iterative linear solver for K .
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2.4. Error and convergence measures

For the remainder of this section, we restrict to the setting of uniform matrix prod-
uct states in the thermodynamic limit. We can compute the convergence and error
measures η(A,A) and ε(A,A) as defined in Subsection 2.6 of the previous chapter [see
Eq. (2.55) and (2.56) respectively]. The quantity η(A,A) =

 |Φ0(BΦ(x
?);A)〉 can be

interpreted as a measure for the convergence of an imaginary time evolution. We obtain
η(A,A) =

�|Z| tr[(x?)†(x?)]�1/2 so that the convergence measure is always infinity, unless
x? is exactly zero. This was expected for infinite systems, as was discussed in general
in Subsection 4.1 of the previous chapter. This is a consequence of the infrared orthog-
onality catastrophe and the ability of uniform matrix product states to vary between
different Fock spaces, which was discussed in Subsection 1.6. Since our interest is often
restricted to expectation values of local observables such as the energy density, it is better
to define a local measure of convergence as in Eq. (2.64), which now results in

η̃(A,A)¬
Æ

tr[(x?)†(x?) = ‖x?‖. (3.122)

Just as the total energy expectation value H (A,A) converges quadratically in η(A,A),
the expectation value of the energy density h(A,A) converges quadratically in the local
measure η̃(A,A).

The error measure ε(A,A) can be used to monitor the deviation between the exact
evolution and the flow according to the time-dependent variational principle. It can
be computed as ε(A,A)2 =∆H (A,A)2− η(A,A)2. With Ĥ being our nearest neighbor
Hamiltonian, we obtain

∆H (A,A)2 = 〈Ψ(A)|

∑

n∈Z
T̂ n(ĥ − h(A,A)T̂ −n




2

|Ψ(A)〉

= |Z|
� 1∑

n=−1

〈Ψ(A)|(ĥ − h(A,A))T̂ n(ĥ − h(A,A))|Ψ(A)〉

+ 2(l |ĔC
AA(1̆− Ĕ)PĔAA

C |r )
�

. (3.123)

The first term results in

〈Ψ|(ĥ − h)(ĥ − h)|Ψ〉=
q∑

s ,t ,u,v=1

〈u, v |(ĥ − h)2|s , t 〉 (l |As At ⊗A
u
A

v |r ) =∆h(A,A)2
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and

〈Ψ|(ĥ − h)T̂ (ĥ − h)|Ψ〉=
q∑

r,s ,t ,u,v,w=1

〈u, v, w|(ĥ − h)T̂ (ĥ − h)T̂ −1|r, s , t 〉 (l |Ar As At ⊗A
u
A

v
A

w |r ),

for n = 0 and n = 1 respectively, and in the complex conjugate of the last expression for
n =−1. Thus, both terms in ε(A,A)2 are proportional to |Z|, and it is better to define a
local measure as in Eq. (2.65), or thus

ε̃(A,A) =
q
∆H (A,A)2/|Z| − η̃(A,A)2. (3.124)

When the exact time evolution is accurately captured in the manifold of (uniform) matrix
product states, ε̃ contains the difference of two terms which are of comparable size.
In addition, the computation of ∆H (A,A)2/|Z| contains four terms that can be both
positive and negative and can neutralize each other. This can result in large numerical
errors in the computation of these quantities. A better strategy for evaluating these
quantities as a sum of strictly positive terms is constructed in Subsection 2.6.

While almost all technical details of the algorithm have been discussed in the previous
subsection, we have left open the choice of gauge imposed on the matrices A in the
uniform matrix product state representation. The choice of gauge for the tangent vectors
can be combined with any choice of gauge for A. We could thus choose for the left- or
right-canonical form for A, or just do not enforce any specific gauge at all (we do have
to renormalize after every step though, since the norm —which is related to the largest
eigenvalue of the transfer operator Ĕ— is only conserved up to first order in the time
step). We have chosen to use a symmetric gauge, where the left and right eigenvectors l
and r of the transfer operator are diagonal and equal: l = r (note that this does not imply
that As or Ĕ is symmetric). In terms of the unique singular value decomposition from
Subsection 1.1, we set As =Λ1/2ΓsΛ1/2, with thus l = r =Λ. This has the advantage that
the entanglement spectrum P =Λ2, which contains many small values when D becomes
large and the approximation error ε̃ becomes small, is evenly distributed as Schmidt
values over both l and r . Since the implementation of the time-dependent variational
principle depends heavily on both l−1/2 and r−1/2, it is important to keep both matrices
as well conditioned as possible. The minimally obtainable state error ε̃ can roughly be
estimated as follows: Since a localized state error ε̃ implies that the neglected Schmidt
values are O(ε̃), the condition number of l and r can be estimated as O(ε̃−1). Let δ be
the relative numerical precision of the computation, with thus δ ≈ 10−15 for the double
precision floating-point number format. Since F , the most important quantity that is
computed in the implementation of the time-dependent variational principle, depends
on l−1/2 and r−1/2 separately (but not together in a single term), it can be evaluated
with numerical precision δ/ε̃−1/2. Since the state directly depends on F , we obtain as
bound on the minimal value of the convergence measure η̃ the relation η̃ > δ/ε̃−1/2.
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The minimal state error ε̃ is obtained when ε̃ = η̃, resulting in η̃ = ε̃ > δ2/3 ≈ 10−10.
At this point, the error on the energy density expectation value is dominated by the
numerical precision δ, rather than by ε̃2. The practical limit will be slightly higher due
to the many iterative computations involved, which have the effect of increasing δ. For
smaller values of D , where the minimum value of ε̃ is not yet obtained, lower values of
the convergence towards the variational optimum (e.g. η̃= 10−12) are possible.

2.5. Numerical integration scheme for real time evolution

As discussed in Subsection 1.7, a Hamiltonian Ĥ with real entries is time-reversal invari-
ant. In the case of imaginary time evolution, we can then restrict to a real representation
for the matrices As , x?, and BΦ(x

?). When using the time-dependent variational principle
to simulate real-time evolution, we are no longer able to restrict to a real representation.
The quantities A, x?, and BΦ(x

?) become complex, even when the operator ĥ has only
real entries. Nevertheless, the algorithm sketched in the previous subsections remain
valid by replacing dτ with idt . However, the second order errors that are introduced by
the Euler method can now accumulate in time. A prime indicator of this is a drifting
expectation value H (A(t ),A(t )) = 〈Ψ(A(t ))|Ĥ |Ψ(A(t ))〉 when the state |Ψ(A)〉 is evolved
in time according to a time-independent Hamiltonian Ĥ . For an exact integration of
the flow equations of the time-dependent variational principle, the energy expectation
value should be conserved. The accumulation of systematic errors can be eliminated
by implementing a numerical integrator for the Euler-Lagrange equations that respects
the symplectic structure of the time-dependent variational principle. However, this
structure is much more complicated than the typical structure of classical dynamics with
a separable Hamiltonian H (q , p) = T (p) +V (q). In particular, the relation H (A,A)
is highly nonlinear and not separable. Consequently, none of the existing symplectic
algorithms from classical dynamics can be applied to the time dependent variational
principle.

When the Hamiltonian has real entries and is thus time-reversal invariant, this symmetry
is inherited by the time-dependent variational principle (see Subsection 2.4 of the previous
chapter). When a set of differential equations is invariant under time reversal, it is a good
policy to at least devise a numerical integration scheme that respects this time-reversal
symmetry. Numerical integration schemes that respect time-reversal symmetry are called
symmetric and share many nice properties with symplectic integration schemes such as
a stable long-time behavior, a linear growth of the global error and a near-preservation
of first integrals [332]. The following paragraphs describe the details of a second order
numerical integration scheme that respects time-reversal symmetry, although it can of
course also be applied to Hamiltonians which are not invariant under time reversal or
which are time-dependent, in which case it is a simple second-order numerical integrator.
At any point, the projection of Ĥ |Ψ(A)〉 into the tangent planeT⊥Φ (i.e. the determination
of x?) can be computed using the construction from the previous subsections.
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|Ψ(A(t + dt ))〉

|Ψ(A(t ))〉
|Ψ( �A)〉

�⊥�Φ ( �A)

P̂�⊥�Φ
( �A, �A) |Ψ(A(t + dt ))〉

−i dt P̂�⊥�Φ
( �A, �A) |Ψ( �A)〉P̂�⊥�Φ

( �A, �A) |Ψ(A(t ))〉

Figure 3.3: Sketch of the location of the midpoint to be used in a symmetric integration scheme
on a manifold.

The main problem one encounters when trying to construct a symmetric integrator
for differential equations on manifolds is that the tangent plane at the points |Ψ(A(t ))〉
and |Ψ(A(t + dt ))〉 are different. Most algorithms thus start with the determination of a
midpoint |Ψ( eA)〉 so that

P̂T⊥eΦ
( eA, eA) |Ψ(A(t ))〉+ P̂T⊥eΦ

( eA, eA) |Ψ(A(t + dt ))〉= 0, (3.125)

with TeΦ the tangent plane of the midpoint eA, spanned by the vectors |Φ(B ; eA)〉= |eΦ(B)〉.
This relation only specifies the location of the midpoint once a relation between A(t ) and
A(t + d t ) is known. In principle, the midpoint can be combined with any integration
scheme that transform eA into A(t ) when taking a step −dt/2 and transforms eA into
A(t + dt ) when taking a step dt/2. If we thus use the simple Euler step, we obtain the
additional relation

P̂T⊥eΦ
( eA, eA) |Ψ(A(t + d t ))〉− P̂T⊥eΦ

( eA, eA) |Ψ(A(t ))〉

= i dt P̂T⊥eΦ
( eA, eA)Ĥ |Ψ( eA)〉=−i dt |eΦ(BeΦ(ex?))〉 . (3.126)

This is sketched in Figure 3.3. This specific combination of midpoint with Euler step
immediately tells us that A(t + dt ) = Ã− i dt/2BeΦ(ex?). A similar reasoning leads to the

conclusion that the midpoint is implicitly defined by A(t ) = eA+ i dt/2BeΦ(ex?).
However, this reasoning was just a little bit too quick and sloppy. We also have to
take into account the normalization preservation and gauge fixing that is applied in
every step. Instead of setting A(t + dt ) = A− i dt/2BeΦ(ex?), we find a scalar constant

c ∈C and a D×D matrix g ∈ GL(D) such that As (t +dt ) = c g[ eAs − i dt/2BeΦ(ex?)]g−1,

where c is chosen such that ĔA(t+d t )
A(t+d t )

has 1 as largest eigenvalue, and g is chosen such
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that A(t + dt ) satisfies a prescribed gauge fixing condition. Analogously, we also have to
look for (different) c ∈C and g ∈ GL(D;C) by which the inverse Euler step is given as
c−1 g−1As (t )g = eAs+ i dt/2BeΦ(ex?) and which are chosen such that c−1 g−1As (t )g− eAs is
compatible with the gauge fixing constraints that are built into the representation BeΦ(ex?).
Since every BeΦ(ex) satisfies ĔBeΦ(ex?)

eA |er ) = 0 with |er ) the right eigenvector corresponding

to eigenvalue 1 of Ĕ eA
eA , we have to tune c and g such that

Ĕ c−1 g−1A(t )g− eA
eA |er ) = 0 ⇒ ĔA(t )

eA |ger ) = c |ger 〉

Put differently, c is the largest eigenvalue of EA(t )
eA and g is chosen such that |ger ) is the

corresponding right eigenvector.

Since we cannot solve the resulting implicit relation c−1 g−1As (t )g = eAs − i dt/2BeΦ(ex?)
exactly, we have to devise a numerical scheme to determine the mid point eA. The resulting
algorithm doesn’t satisfy time-reversal symmetry exactly, but only up to the accuracy of
the numerical determination of eA, which can be near machine precision. We can try to
solve the implicit relation for the midpoint by a simple error correct strategy. We choose
as an initial guess the forward Euler step starting at A(t ), so that eA0 ∼A(t )−i dt/2BΦ(x

?),
where the ‘similarity sign’ is used to indicate that eA0 has already been transformed in order
to satisfy norm and gauge fixing constraints. Having a guess |Ψ( eAn)〉 with corresponding
tangent vectors |eΦn(B)〉= |Φ(B ; eAn)〉, we can iteratively try to improve it as follows. We
calculate the difference fdA

s

n = c−1
n g−1

n As (t )gn − eAs
n − i dt/2BeΦn

(ex?n), where cn and gn

are chosen such that ĔA(t )
eAn

|ern gn) = cn |ern gn). We then set eAn+1 ∼ eAn +fdAn and repeat

this process. At any point in the iteration, we can measure the size of the correction as

‖ |eΦn(fdAn)〉 ‖= |Z|1/2(eln |Ĕ
fdAn

fdAn

|ern)
1/2. As argued in the previous subsection, we can safely

omit the overall |Z|1/2 in order to obtain a local measure ζ̃ = (eln |Ĕ
fdAn

fdAn

|ern)
1/2. When ζ̃

dives below a tolerance level that can be chosen near-machine precision, we can stop
the iteration. When the chosen time step is not too big — for example dt ≈ 0.01 — this
algorithm converges in a few (less then 20) iteration steps. Better strategies in terms of
higher order iterative solvers for non-linear equations can be devised.

The general outline of an algorithm for real time evolution is thus:

1. iteratively determine the midpoint from A(t )∼ eA+ i dt/2BeΦ(ex?)
2. set A(t + d t )∼ eA− i d t/2BeΦ(ex?)

Note that all operations can be implemented with computational complexity O(D3).
We of course have to use iterative eigensolvers to determine the eigenvalues and eigen-
vectors of ĔA(t )

eA , Ĕ eA
eA and ĔA(t+d t )

A(t+d t )
. The midpoints |Ψ( eA)〉 can in fact be interpreted as

|A(t + dt/2)〉. Thus the algorithm produces twice the resolution as initially requested.
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However, it is only (approximately) time-reversal invariant after an integral number of
steps dt . Furthermore, since the (backwards) Euler method is used to step from A(t )
to A(t + dt/2), the error in this step is expected to be O(dt 2/4). Similarly, the error in
the step A(t + dt/2) to A(t + dt ) is expected to be of the same order. Nevertheless, the
resulting step from A(t ) to A(t+dt ) is correct up to second order, and the error is actually
O(dt 4) because odd-powered effects are forbidden by the symmetry of the construction.
Higher order errors are obtainable by combining the midpoint construction with more
advanced Runge-Kutta schemes.

2.6. Dynamic expansion of the variational manifold

Both for real and imaginary time evolution, we have introduced the local error measure
ε̃ [see Eq. (3.124)] that captures the tendency of the exact evolution to move away from
the manifoldMuMPS(D). If this quantity exceeds a given tolerance value, we might try to
reduce the error by expanding the variational class. For uniform matrix product states
with bond dimension D , we can expandMuMPS(D) by increasing the bond dimension to

some value eD. If at some point the state |Ψ〉 ∈MuMPS(D) is a uniform matrix product
state with D ×D matrices As , we can try to better approximate the exact evolution over
the time step dt by embedding this state into a larger manifoldMuMPS( eD) by defining

new eD × eD matrices eAs with eD ≥D and

eAs =


As 0

0 0


 . (3.127)

For the evolution over the time step dt , we can now use a larger variation fdA
s

given
by

fdA
s
=


dAs

00 dAs
01

dAs
10 dAs

11


 , (3.128)

with dAs
00 a D ×D matrix, dAs

01 a D × ( eD −D) matrix, dAs
10 a ( eD −D)×D matrix

and dAs
11 a ( eD − D)× ( eD − D) matrix. However, by assuming fdA ∼ dt , we obtain

|eΨ( eA+fdA)〉−|eΨ( eA)〉= |eΨ( eA+fdA)〉−|Ψ(A)〉= |Φ(dA00;A)〉. The newly added variations
do not feature to first order. The time-dependent variational prinicple is very keen to
restricting its flow to the original manifoldMuMPS(D). A solution is obtained by choosing
dAs

00 as O(dt ), dAs
10 and dA01 as O(dt 1/2) and dA11 as O(dt 0). We then obtain as first

order
|eΨ( eA+fdA)〉− |Ψ(A)〉= |deΨ0〉+ |deΨ1〉 (3.129)

with
|ÝdΨ0〉= |Φ(dA00,A)〉 (3.130)
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and

|ÝdΨ1〉=
∑
n∈Z

T̂ n

 q∑
{s j }=1

+∞∑
m=0

v†
L

�
· · ·As−2 As−1

�
dAs0

01dAs1
11 · · ·

× dAsm
11 dAsm+1

10

�
Asm+2 · · ·

�
vR |{sn}〉

!
. (3.131)

Clearly the increased bond dimension allows for an action on an arbitrary number of
neighboring sites, which increases the entanglement entropy from some initial value
smaller than log(D) to some new value that is smaller than the new bound log( eD). If
we try to imitate the geometric strategy of the time-dependent variational principle, we
have to optimize the variation fdA so as to minimize

 |ÝdΨ0〉+ |ÝdΨ1〉− Ĥ |eΨ( eA)〉2. (3.132)

Eq. (3.132) is a complicated expression that couples the four sets of parameters dAs
00, dAs

01,
dAs

10 and dAs
11. Luckily, here too we can hope to simplify the expressions by applying

gauge transformations such as

eg =

1+ηx00 η1/2x01

η1/2x10 exp(x11)


=


1 0

0 exp(x11)




 1+ηx00 η1/2x01

η1/2 exp(−x11)x10 1


 ,

from which we obtain up to O(η)

eg−1 =


1−ηx00+ηx01 exp(−x11)x10 −η1/2x01

−η1/2 exp(−x11)x10 1+ηexp(−x11)x10x01




1 0

0 exp(−x11)




=


1−ηx00+ηx01 exp(−x11)x10 −η1/2x01 exp(−x11)

−η1/2 exp(−x11)x10 exp(−x11)+ηexp(−x11)x10x01 exp(−x11)




and thus

eg eAs eg−1 = eAs + eNs (x)

with eNs (x) =


η[x00,As]+As x01x10 −η1/2As x01 exp(−x11)

η1/2x10As −ηx10As x01 exp(−x11)


 .

Any variation fdA is thus gauge equivalent to fdA+ eNs (x). Since x11 has prefactor η0, it
could not be considered infinitesimal. By redefining x01← x01 exp(−x11), it is clear that
x11 does not feature explicitly in eN(x). We can use x00 to impose a gauge fixing condition
on dA00, x01 to impose a condition on dA01 and x10 to impose a condition on dA10. There
is, at first sight, no additional freedom to impose any condition on dA11. However, fdA
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also has a multiplicative gauge invariance, since its first order contribution |ÝdΨ0〉+ |ÝdΨ1〉
is similarly obtained for the equivalent choice fdA

′
, given by

fdA
′s
=


 dAs

00 dAs
01 g−1

11
g11dAs

10 g11dAs
11 g−1

11


 ,

which can be used to impose a different kind of condition on dA11.

We first impose the following gauge fixing conditions on dA01 and dA10:

(l |ĔdA01

A = 0, ĔdA10

A |r ) = 0. (3.133)

We then obtain

〈ÝdΨ1|Ψ(A)〉= 0, 〈ÝdΨ1|ÝdΨ0〉= 0, (3.134)

and

〈ÝdΨ1|ÝdΨ1〉= |Z|
+∞∑
m=0

(l |ĔdA01

dA01
(ĔdA11

dA11
)m ĔdA10

dA10
|r ). (3.135)

Thus, |ÝdΨ1〉 is automatically orthogonal both to the original uniform matrix product

state |Ψ(A)〉 and to all of its tangent vectors |ÝdΨ0〉= |Φ(dA00;A)〉. The optimization then
completely decouples into a part in T⊥uMPS(D)(A) that can be solved as in the previous
subsections. In particular, we still have the gauge freedom in x00 at hand to impose either
the left or right gauge fixing condition [Eq. (3.78) or (3.79) respectively] on dA00. In

addition, the choice of gauge in Eq. (3.133) guarantees that contributions to |ÝdΨ1〉 of
length m only overlap with themselves in Eq. (3.135).

With the right choice of gauge, |ÝdΨ1〉 thus effectively captures a part of the contribution
of P̂0Ĥ |Ψ(A)〉 that falls outside the tangent plane TuMPS(D)(A). Two cases of special
interest are discussed. Firstly, if Ĥ only contains nearest neighbor interactions described
by ĥ, then all contributions of length m > 0 in |ÝdΨ1〉 disappear from 〈ÝdΨ1|Ĥ |Ψ(A)〉,
so that dA11 does not feature and can be put to zero. For the optimization problem in
dA01 and dA10, we can use a parameterization that is based on the definitions in the
first subsection of this section. We define B s

01(x) = l−1/2V s
L x with x a (D − 1)q × ( eD −

D) matrix of independent components, and analogously B s
10(y) = yV s

R r−1/2 with y a

( eD −D)× (D − 1)q matrix of independent components. We then define B s t
1 (x, y) =

B s
01(x)B

t
10(y) in order to find

〈ÝdΨ1|ÝdΨ1〉= |Z|(l |ĔB1(x,y)
B1(x,y) |r ) = |Z|tr

�
(xy)(xy)†

�
,

〈ÝdΨ1|Ĥ |Ψ(A)〉= |Z|(l |ĔC
B1(x,y)|r ) = |Z|tr

�
G(xy)†

�
,

with G =
∑q

s ,t=1(V
s

L )
† l 1/2C s t r 1/2(V t

R)
† and C as in Eq. (3.116). Since we have to
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minimize

tr
�
(xy)(xy)†

�− tr
�

G(xy)†
�− tr

�
(xy)G†

�
+ constant,

we are looking for the optimal matrix xy of rank eD−D such that ‖xy−G‖ is minimized,
with ‖·‖ the Hilbert-Schmidt norm. The best approximation (x, y) can be found by
performing a singular value decomposition of the (q − 1)D × (q − 1)D matrix G and
retaining the largest eD −D singular values. If eD = qD , we can exactly capture one step
of the discretized flow of the time-dependent variational principle applied to a nearest
neighbor Hamiltonian.

Another case of a more academic interest is when Ĥ looks as

Ĥ =
∑
n∈Z

 
ĥn +

+∞∑
m=1

p̂n ŝn+1 ŝn+2 · · · ŝn+m−1 q̂n+m

!
, (3.136)

where the subscripts only serve to indicate the position, but the terms are site-indepen-
dent. This Hamiltonian has a one-site contribution and a string-type of interaction.
This includes exponential interactions, where ŝ = e−λ1̂. For this Hamiltonian, an exact
evolution step can be constructed by choosing eD = 2D and

dAs
00 =

q∑
t=1

〈s |ĥ|t 〉At , dAs
01 =

q∑
t=1

〈s | p̂|t 〉At ,

dAs
10 =

q∑
t=1

〈s |q̂ |t 〉At , dAs
11 =

q∑
t=1

〈s | ŝ |t 〉At .

For any other choice of eD or when more complicated interactions are present, the
optimization problem with dA11 included becomes very difficult.

The most interesting case is thus obtained for nearest-neighbor Hamiltonians. This
construction is very useful in combination with imaginary time evolution in order to
correctly converge a random initial state to the optimal state within the variational
manifold. Rather then starting from a random uniform matrix product state for some
large bond dimension eD, it is better to use a previous optimal uniform matrix product
state |Ψ(A)〉 at a smaller bond dimension D and combine it with the construction above
to form an initial state eA+fdA for the simulation at the new bond dimension eD. Note
that, if A represents the optimal solution at D , we can choose dAs

00 = 0, or thus |ÝdΨ0〉= 0.
This approach avoids a particular problem of the imaginary time evolution with the
time-dependent variational principle: For large D, the current implementation of the
flow equations is susceptible to converging some random initial states to a state where
the purity assumption (i.e. ĔA

A has a unique largest eigenvalue 1 and all other eigenvalues
lie inside the unit circle) no longer holds. At this point, the formulas for the gradient and
the gram matrix derived in the previous subsections are no longer valid. An incorrect
application of these formulas often results in the algorithm getting trapped. While we
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could of course implement more advanced formula’s that take this scenario into account
and with which the implementation would be able to continue the convergence process,
using the aforementioned construction avoids the occurrence of this problem completely.
In addition, at higher values of D , fewer iterations are required by starting from a good
initial guess. Clearly, this is the preferred approach.

In principle, the same construction can be used in combination with real time evolution.
After quantum quenches, the entanglement entropy typically increases and so does the
error measure ε̃. When ε̃ increases beyond a certain tolerance level, we can choose
to use the above construction to dynamically increase D, which brings ε̃ back to an
acceptable level. However, since this whole step is only well defined at first order, it
cannot be included in a higher order numerical integrator. The dynamic expansion of
the variational manifold should thus be used carefully in real time evolution, since it
breaks the time-reversal symmetry.

Finally, we can also use the results from this subsection for another purpose. With |ÝdΨ0〉
capturing the projection of P̂0(A,A)Ĥ |Ψ(A)〉 = [Ĥ −H (A,A)] |Ψ(A)〉 in the tangent

plane TuMPS(D) (i.e. |ÝdΨ0〉 = P̂T⊥uMPS(D)
(A,A)Ĥ |Ψ(A)〉 = P̂TuMPS(D)

(A,A)P̂0(A,A)Ĥ |Ψ(A)〉),
we have defined η̃(A,A)2 = |Z|−1 〈ÝdΨ0|ÝdΨ0〉. By choosing D̃ = d D, |ÝdΨ1〉 exactly cap-
tures the remnant [1̂− P̂T⊥uMPS(D)

(A,A)][Ĥ −H (A,A)] |Ψ(A)〉 that is orthogonal to the

tangent plane TuMPS(D) for a nearest-neighbor Hamiltonian. We can now redefine ε̃

from Eq. (3.124) as ε̃(A,A)2 = |Z|−1 〈ÝdΨ1|ÝdΨ1〉 = tr[(xy)(xy)†]. Thus, ε̃ now follows
from a manifestly positive expression, and can be computed much more accurately
than from Eq. (3.124), where two terms of comparable size are subtracted. In ad-
dition, the expression for ∆H (A,A)2 given in Eq. (3.123) also contains 4 contribu-
tions which might almost cancel each other if |Ψ〉 is very close to an eigenstate of Ĥ .
This too can produce large numerical errors, and it is better to compute ∆H (A,A) as
∆H (A,A) = (〈ÝdΨ0|ÝdΨ0〉+ 〈ÝdΨ1|ÝdΨ1〉)1/2 where the square root contains two positive
numbers.

2.7. Exemplary results

We now illustrate the power of our approach using both an imaginary time and a real
time example. For the imaginary time evolution, we stress the accuracy that can be
obtained, not only in the energy but also in the state itself. For real time evolution,
the focus is on the conservation of constants of motion as predicted by symmetry,
which is a consequence of using an algorithm that (approximately) respects time-reversal
invariance.
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Imaginary time evolution as a variational optimization method

Using imaginary time evolution with the simple Euler implementation of the time-
dependent variational principle we now obtain a uniform matrix product state approxi-
mation for the ground state of the S = 1 antiferromagnetic Heisenberg model, which is
given by the Hamiltonian

Ĥ (S=1)
Heisenberg

= J
∑
n∈Z

Ŝ x
n Ŝ x

n+1+ Ŝ y
n Ŝ y

n+1+ Ŝ z
n Ŝ z

n+1. (3.137)

This model has a continuous SU(2) invariance and can thus not be in a symmetry-broken
state in one spatial dimension. However, the ground state has a hidden topological order
that is measured by the string order parameter S, given by [333]

S = lim
n→∞GS (n0, n0+ n)

with GS (n0, n0+ n) = 〈Ψ|Ŝ z
n0

exp(iπ
n0+n∑
m=n0

Ŝ z
m)Ŝ

z
n0+n |Ψ〉 . (3.138)

When trying to exploit SU(2) symmetry in a matrix product state approximation for
the ground state of Ĥ (S=1)

Heisenberg
, one would be inclined to decompose the ancilla space

into integral spin representations of SU(2), since the physical degrees of freedom are all
S = 1 variables. It was however found that decomposing the ancilla into half-integral
spin representations gives far better result [227, 228], which corresponds to the fact that
the topological ordered phase of the ground state is characterized by S = 1/2 edge states
[334]. In addition, this phase has exponentially decaying correlations and is gapped. This
was first conjectured by Haldane [335, 336] for all Heisenberg antiferromagnets with
integral spin S. The computation of an accurate estimate of the so-called Haldane gap is
discussed in the next section.

Due to the O(D3) computational efficiency, an ordinary laptop or personal computer
allows one to find the ground state up to D = 1024 in less then one hour (without exploit-
ing symmetries), resulting in a ground state energy density h/J =−1.4014840389712(2)
which is accurate up to 14 significant digits. This result was obtained with a constant step
size dt = 0.1. Since the gradient —expressed through the value x?— has zero length at the
variational minimum (‖x?‖= 0), it automatically decreases in size as we approach it, and
there is typically no need to reduce the size of the time step. This should be compared
with the time-evolving block decimation for infinite lattices, where reduction of the time
step, and thus automatic slowing down, is necessary to overcome the Trotter error and
to validate the truncation step, which was only (locally) correct for unitary operations
(real-time evolution). Having a very low value of the state convergence is useful to e.g.
obtain a very accurate convergence in the entanglement spectrum. The entanglement
spectrum can offer valuable information but is hard to get converged very accurately by
other approaches. Table 3.1 shows how the first Schmidt values of the uniform matrix
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product state approximation for the ground state of the Heisenberg chain at D = 128,
which was converged up to η̃= 10−10, accurately reproduce the degeneracy according to
half-integral spin representations, without imposing this structure in any way.

Table 3.1: First 24 Schmidt values of the D = 128 uMPS approximation for the ground state of the
S = 1 Heisenberg antiferromagnet. The degeneracy in the Schmidt spectrum as a result of SU(2)
symmetry manifests itself, not by exploiting the symmetry, but rather by converging up to ‘state
tolerance’ η̃= 10−10.

0.6961989782 0.0057700505 0.0014877669
0.6961989782 0.0057700505 0.0014877669
0.0860988815 0.0057700505 0.0014877669
0.0860988815 0.0057700505 0.0014877669
0.0860988815 0.0016659093 0.0014877669
0.0860988815 0.0016659093 0.0014877669
0.0200132616 0.0016659093 0.0011065273
0.0200132616 0.0016659093 0.0011065273

Color labels:
S=1/2
S=3/2
S=5/2

Real time evolution and constants of motion

Using the time-reversal invariant numerical integrator discussed in Subsection 2.5, we can
simulate a real-time evolution using the flow equations of the time-dependent variational
principle. We start with the D = 128 uniform matrix product state |Ψ(A)〉 that best
approximates the ground state of the X X -model with magnetic field µ/J = 1/2 along
the z-axis, which is described by the Hamiltonian

ĤXX =
∑
n∈Z

J (σ̂ x
n σ̂

x
n+1+ σ̂

y
n σ̂

y
n+1)+µσ̂

z
n . (3.139)

For the given parameter configuration, this model is critical. The ground state has a non-
zero magnetization expectation value 〈σ̂ z〉 6= 0 along the z -axis, whereas 〈σ̂ x〉= 〈σ̂ y〉= 0
due to a U(1) symmetry (spin rotations around the z -axis as generated by

∑
n∈Z σ̂ z

n ). We
evolve this state according to the S = 1/2 antiferromagnetic Heisenberg model, given
by

Ĥ (S=1/2)
Heisenberg

= J
∑
n∈Z

σ̂ x
n σ̂

x
n+1+ σ̂

y
n σ̂

y
n+1+ σ̂

z
n σ̂

z
n+1, (3.140)

so the expectation values 〈σ̂ x,y,z〉 should be conserved due to the SU(2) symmetry.
Unlike the integral S cases, the Heisenberg antiferromagnets are critical for half integral
spins.

Comparative results for a second order implementation of the time-dependent variational
principle and a second order, translation-invariant implementation of the time-evolving
block decimation (based on [298]) are shown in Fig. 3.4. They illustrate that the time-
evolving block decimation is much more capable of describing the evolution of conserved
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quantities. Not only does the real time flow of the time-dependent variational principle
have the same advantages as the imaginary time algorithm — conservation of translational
invariance and internal symmetries — the (approximate) time-reversal invariance makes
the algorithm extremely stable over longer simulation times. In principle, the first
step in a real time simulation based on the time-evolving block decimation is even
better, because evolving over a small time using a Lie-Trotter-Suzuki decomposition is a
symplectic operation. However, since the time-evolving block decimation takes the state
outside the manifold of uniform matrix product states with fixed bond dimensions, this
step is followed by a truncation that breaks both the symplectic symmetry and the time
reversal symmetry. Consequently, the results of the time-evolving block decimation for
the quantities h(A(t ),A(t )) and σ z (A(t ),A(t )) start to deviate considerably from their
initial value h(A,A) and σ z (A,A) after some time t . For the results obtained with the
time-dependent variational principle, no deviation is noticeable at the same scale. Small
deviations at O(dt 4) do of course exist, as is visible in the flow of σ x (A(t ),A(t )). For the
simulation based on the time-evolving block decimation, the evolution σ x (A(t ),A(t ))
fluctuates at the same order and does not show a strong deviation, which is a consequence
of the invariance of the Lie-Suzuki-Trotter decomposition under the discrete symmetry
transformation Û = exp(iπ/2

∑
n∈Z σ̂ z

n ), which maps σ̂ x ↔ −σ̂ x and σ̂ y ↔ −σ̂ y

and thus prohibits a non-zero expectation value σ x (A(t ),A(t )) if the initial state has
σ x (A,A) = 0.

σx
(A

(t
), 

A
(t

))

−2×10−11

0

2×10−11

σz
(A

(t
), 

A
(t

))

0.061

0.062

0.063

h(
A

(t
), 

A
(t

))

−1.68

−1.66

t
0 1 2 3 4 5 6 7 8 9 10

TDVP TEBD

Figure 3.4: Comparison of real-time simulation results at D = 128 with time step dt = 5×10−3 for
conserved quantities e (energy density), 〈Ŝ x〉 and 〈Ŝ z〉 obtained with the time-dependent variational
principle (TDVP, dashed lines) and the time-evolving block decimation (TEBD, dotted lines).
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After having applied the real time evolution algorithm to evolve the state |ψ(A)〉 at
t = 0 to |ψ(A(t ))〉 at time t for a total time t f , we can explicitly apply the time reversal

operator K̂ to the final state |ψ(A(tf))〉 and use the resulting state |ψ(A(tf))〉 as the initial
value for a new time evolution over a total time t f , resulting in states |ψ(A′(t )〉 at time t

with thus A′(0) =A(tf). We should then compare the states K̂ |ψ(A′(tf− t ))〉= |ψ(Ã(t ))〉
[with Ã(t ) = A′(tf− t )] to the states |ψ(A(t ))〉. We measure the equality between two
uMPS |ψ(A)〉 and |ψ(Ã)〉 by the fidelity per site, which is given by the spectral radius

of Ĕ Ã(t )
A(t ) . The fidelity per site is one for equivalent uniform matrix product states and

is smaller than one for states that differ. Fig. 3.5 compares the results of this set-up for
the time-reversal symmetric integrator of the time-dependent variational principle with
results for the implementation based on the time-evolving block decimation. At t = tf,
A(t ) and Ã(t ) are equal by definition. As t evolves towards t = 0, they are expected
to diverge for algorithms that break the time reversal invariance. This is very clearly
seen for the results obtained with the time-evolving block decimation. The result for

ρ(Ĕ Ã(t )
A(t ) ) obtained with the time-dependent variational principle stays nicely at one at

the same observational scale. There are of course small fluctuations, since the numerical
integration scheme is only time reversal invariant up to a precision ζ̃ , which was given
the value ζ̃ = 10−10.

1 
- 
ρ(

 Ĕ
Ã
(t
)

A
(t
) )

0

5

10×10−3

t
012345678910

Figure 3.5: Comparison of time reversal invariance in a simulation based on the time-dependent
variational principle (TDVP, dashed lines) and on the time-evolving block decimation (TEBD,

dotted lines). Illustrated is (one minus) the spectral radius ρ(Ĕ Ã(t )
A(t ) ), where Ã(t ) = A′(t f − t )

(t f = 10, dt = 5× 10−3, ζ = 10−10)
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3. Excitations in the tangent plane TMPS

Jutho Haegeman, Bogdan Pirvu, David J. Weir,
J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, Frank Verstraete.

“A variational matrix product ansatz for dispersion relation”.
arXiv:1103.2286 (2011).

3.1. Introduction

The density matrix renormalization group was originally developed for finding ground
states of strongly correlated quantum lattice systems in one spatial dimension. By
applying the variational principle to a state that is enforced to be orthogonal to previously
found states, low-lying excited states on finite lattices can be found. Typically, these
are not the states that one is interested in. On the finite lattice with open boundary
conditions, the momentum quantum number does not exist. Low-lying excited states can
easily be related to boundary effects and have no relation to the momentum eigenstates in
the bulk of a macroscopic system. In the thermodynamic limit, the suggested approach
fails, since any two states are likely to be orthogonal due to the orthogonality catastrophe.
Even if we were able to construct a uniform matrix product state approximation for
the lowest lying excited state with momentum zero, the finite excitation energy would
spread out over an infinite lattice and is undetectable from computing the expectation
value of the energy density. States with a different energy density as the ground state
contain a finite density (and thus an infinite number) of elementary excitations. On
a more mathematical level, we do not expect the class of matrix product states in the
thermodynamic limit to have the correct properties for describing elementary excited
states, since matrix product states are normalizable, and excited states with definite
momentum are not.

Two different strategies for solving this problem emerge. Information about the spectrum
of excited states can be obtained from the spectral functions Gα,β

m,n(ω) defined in Eq. (3.86)
in Subsection 2.1. Initially, algorithms for directly evaluating these spectral functions
were developed. But since the development of the time-evolving block decimation,
time evolution can be approximated so well that modern state-of-the-art algorithms first
compute the time-dependent correlation function Gα,β

m,n(t ) [see Eq. (3.87)] for some finite
interval t ∈ [0,T ], and then compute the Fourier transform [337, 338]. Starting from
a disturbance of the ground state of a large but finite lattice, the time evolution can be
computed for any time T below which the information of the disturbance has not yet
reached the edges of the lattice. The finite time T results in a broadening of the spectral
function, but by combining advanced linear prediction techniques to extend T beyond
the computable range with complex statistical machinery for isolating the location of
the poles, a fairly accurate determination of the dispersion relation of the elementary
excitation in the Heisenberg model was obtained [338]. Because of the (approximately)
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linear increase of entropy under time evolution, very large bond values are required in
order to accurately approximate the time evolution all the way up to time T . This is in
sharp contrast with the observation that low-lying excited states also satisfy an area law
for the scaling of entanglement entropy (see Subsection 2.5 of Chapter 1), and that it
should thus be possible to construct a direct and efficient approximation.

A different strategy is thus to construct a variational ansatz that is suited to directly probe
the spectrum of excited states. Nevertheless, variational ansätze for excited states based
on the matrix product concept are rare. The interest in energy-momentum dispersion
relations of translation invariant Hamiltonians automatically redirects us to a lattice
with periodic boundary conditions. A direct construction in the thermodynamic limit
seems impossible due to the remarks above. Together with their seminal work on matrix
product states for ground states, Rommer and Östlund proposed the following ansatz
for excited states with momentum p [227, 228]

|Φ̃p (x)〉=
N∑

n=1

ei pnT̂ n
q∑

{sn}=1

tr[xAs1 As2 · · ·AsN ] |s1 s2 · · · sN 〉 , (3.141)

which allowed them to get an early estimate of the Haldane gap∆Haldane. The matrices
As are fixed to the value for which the uniform matrix product state |Ψ(A)〉 (of finite size
N ) best approximates the ground state, and one can hope that several branches of the
energy-momentum spectrum can be captured by different values of x. The rationale of
this ansatz is that low-lying excited states can be described as a momentum superposition
of a local disturbance, which is encoded in the virtual system using the virtual operator
x ∈L(CD ). Using a series expansion in the system size N , Rommer and Östlund were
even able to extrapolate their results to the thermodynamic limit. A different type of
variational class are the so-called “projected entangled multipartite states”, given by the
ansatz [339]

|Υp[A]〉=
1p
N

N∑
n=1

ei pnT̂ n
q∑

{sn}=1

tr[As1(1)As2(2) · · ·AsN (N )] |s1 s2 · · · sN 〉 , (3.142)

which contains a momentum superposition of the non-translation invariant matrix
product state |Ψ[A]〉. Here all matrices As (n) are variational parameters, and different
branches of the spectrum are obtained by creating mutually orthogonal states at a fixed
momentum p. This specific superposition is expected to be able to introduce long-range
information: writing |Υ0[A]〉 as a uniform matrix product state |Ψ̃(Ã)〉 requires a bond
dimension D̃ = N D if D represents the bond dimension of the matrix product state
|Ψ[A]〉. The computational complexity of this algorithm scales as O(N 2D5), and it is
thus restricted to lattices of moderate size and small values of the bond dimension D.
This last aspect is partially compensated by the higher entanglement that is allowed in
this state.

The idea that low-lying excited states can be regarded as (momentum superpositions
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of) local disturbances on the ground state is of course inspired by the case of quadratic
theories, where creation operators â†(p) can be defined that create elementary excitations
when acting on the ground state. Most elementary collective excitations do indeed have
this pointlike structure. Bijl, Feynman and Cohen generalized this concept by acting on
the ground state with general operators Ô(p), which represent the Fourier transform
of some local operator Ô with compact support, for studying excitations in liquid
Helium [340, 341, 342]. If {Ôα} represents a complete set of local observables, then the
Feynman-Bijl operator Ô can be expanded as Ô = cαÔα and {cα} can be treated as the
set of variational parameters. This ansatz was first used in the context of spin systems
by Arovas, Auerbach and Haldane [343] and is then referred to as the single-mode
approximation. The single-mode approximation was first combined with matrix product
states in [344], and generalized to local operators acting on up to 4 sites in [345].

A direct generalization of both the Östlund and Rommer ansatz, where the excitation
is represented as an operator in the virtual space, and the single-mode approximation,
where the excitation is represented as an operator in the physical space, was recently
proposed by Pirvu et al. [346]. The variational ansatz

|Φp (B)〉=
N∑

n=1

ei pnT̂ n
q∑

{sn}=1

tr[B s1 As2 · · ·AsN ] |s1 s2 · · · sN 〉 , (3.143)

was studied, where A is kept fixed to the value for which |Ψ(A)〉 best approximates the
ground state of the lattice of N sites. While we now recognize |Φp (B)〉 as a tangent
vector living in the momentum p sector of TMPS(A), this relation was not explored
in [346]. By choosing B s = X As , the Östlund and Rommer ansatz is reproduced,
whereas the Feynman-Bijl ansatz with a one-site operator Ô is obtained by setting
B s =

∑q
t=1 〈s |Ô|t 〉At . Feynman-Bijl operators with a larger support of n > 1 sites are

not strictly included in this variational class, but by transferring information along the
virtual space all operators acting on n ≈ 2 logq D sites are effectively included. We can
even hope that the D left and D right Schmidt vectors throw away irrelevant information
on the nearest sites in favor of keeping relevant information on sites that are further
away. The optimal choice of B s for the lowest lying excitation with momentum p could
then correspond to a Feynman-Bijl operator with local support that is significantly larger
than 2 logq D sites. It was noted in [346] that not only the lowest branches of elementary
excitations, but also higher branches of composite excitations are well reproduced when
the system size N is not too large.

Unfortunately, all of the existing proposals are restricted to the setting of a finite lattice
with periodic boundary conditions, which implies that their computational complexity
scales as O(D5) and hinders their practical applicability. We now apply the variational
principle to the tangent vectors |Φp (B)〉 ofMMPS(D) at a point |Ψ(A)〉 ∈MuMPS(D) in the
thermodynamic limit. Not only does this allow for an efficient implementation, where
the computational complexity scales as O(D3), it is also a necessary extension in order
to be able to describe topologically non-trivial excitations. In one spatial dimension,
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topologically non-trivial excitations exist in a phase of discrete symmetry breaking as
kinks or domain walls that interpolate between two ground states with a different value
of the order parameter. This ansatz includes the topologically non-trivial analogon of the
Feynman-Bijl operators, which are the Mandelstam operators [347]. We also relate our
approach to the time-dependent variational principle from the previous section.

3.2. Topologically trivial states

Let Ĥ be a given translation invariant Hamiltonian on an infinite lattice, which we
assume to contain only nearest-neighbor interactions: Ĥ =

∑
n∈Z T̂ n ĥT̂ −n . We first

look for the ground state, which we approximate with a uniform matrix product state
|Ψ(A)〉 ∈ MuMPS(D). We use the time-dependent variational principle with imaginary
time evolution to find an energy minimum, i.e. a solution of the difficult set of equations
that is imposed by the time-independent variational principle. We henceforth assume
that A is the value of at least a local —and hopefully the global— minimum. We again
assume that the uniform matrix product state |Ψ(A)〉 is pure, so that Ĕ has a unique
eigenvalue 1 and all the other eigenvalues lie strictly within the unit circle.

We now apply the time-independent variational principle to the set of states |Φp (B ;A)〉 ∈
TMPS(D)(A). Since we are interested in excited states, we need to impose orthogonality
to the ground state approximation |Ψ(A)〉. We can thus restrict to T⊥MPS(D)(A), as was
also the case when applying the time-dependent variational principle. The momentum p
sector of T⊥MPS(D)(A), denoted as T⊥Φp

(A), is (q−1)D2-dimensional for any p ∈ [−π,+π).

We can recylce the parameterization B = BΦ(x) from Eq. (3.112) in terms of the D ×
(q − 1)D matrix x. Since |Φp (B ;A)〉 is linear in B and BΦ(x) is linear in x, we effectively
have a variational manifold that is spanned by the states |Φ j 〉 = |Φ(BΦ(xi );A)〉 with
{xi | i = 1, . . . , (q − 1)D2} a basis for x, so that x = z i xi and |Φ〉 = z i |Φi 〉. The
energy expectation value 〈Φ(BΦ(x);A)|Ĥ |Φ(BΦ(x);A)〉 is quadratic in x or thus in the
coefficients z. Applying the time-independent variational principle does then not require
to solve a complicated set of equations, but reduces simply to the Rayleigh-Ritz equation
[see Eq. (2.4) in the previous chapter], i.e. a generalized eigenvalue equation.

Two remarks are in order. Firstly, the ansatz states |Φp (B)〉 (we henceforth omit the
explicit notation of the variational minimum A) are momentum eigenstates in an infinite
volume and can thus not be normalized to unity. Secondly, unlike for the ground state,
we cannot restrict to an evaluation of the energy density expectation value. As explained
in the introduction, the finite excitation energy in a momentum eigenstate is spread out
over the complete lattice, and the energy density

〈Φp (B)|ĥ|Φp ′(B
′)〉

〈Φp (B)|Φp ′(B
′)〉
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is undistinguishable from its ground state value h(A,A) = 〈Ψ(A)|ĥ|Ψ(A)〉 (where |Ψ(A)〉
is assumed to be normalized to unity). We thus have to evaluate the expectation value
of the full Hamiltonian 〈Φp (B)|Ĥ |Φp ′(B

′)〉, where the excitation energy is present as

a finite shift (times the infinite normalization 〈Φp (B)|ĥ|Φp ′(B
′)〉) above a divergent

contribution from the extensive ground state energy H (A,A) = |Z|h(A,A) (times the
infinite normalization 〈Φp (B)|ĥ|Φp ′(B

′)〉). Subtracting this ground state energy can
quickly become a source of errors, as we have to subtract precisely |Z| times the ground
state energy density, and counting errors are easily made. The safest strategy is to
subtract H (A,A) from Ĥ from the beginning. Note that, unlike in the evaluation
of 〈Φp (B)|Ĥ |Ψ(A)〉 that was required by the time dependent variational principle, the
ground state energy contribution is not automatically subtracted by restricting to tangent
vectors |Φp (B)〉 that are orthogonal to |Ψ(A)〉. We thus redefine ĥ← ĥ − h(A,A), where

h(A,A) = (l |H̆ AA
AA |r ) [see Eq. (3.114)]. With this newly defined ĥ, we thus obtain

(l |H̆ AA
AA |r ) = 0.

We are now ready to evaluate the required quantities appearing in the Rayleigh-Ritz
equations. The Gram matrix 〈Φp (B)|Φp ′(B

′)〉 appearing in the right hand side was

computed in Eq. (3.108) of the previous section. Expanding 〈Φp (B)|Ĥ |Φp ′(B
′)〉 is a lot

more involved, as we now have to deal with three infinite sums. The three summation
indices indicate the position of B , B ′ and the first site acted upon by ĥ. In between
these three positions are transfer matrices Ĕ , which can be decomposed into connected
contributions coming from Q̆ĔQ̆ and disconnected contributions coming from S̆ =
|r )(l | (see Subsection 2.3). Thanks to the redefinition of the hamiltonian terms ĥ, we
obtain (l |H̆ AA

AA S̆ = 0 and S̆ H̆ AA
AA |r ) = 0 and no disconnected contributions coming from

H̆ AA
AA can arise. The connected contributions yield finite results, and we are free to

introduce substitutions of the summation indices. Disconnected contributions coming
from ĔA

B and ĔB ′
A might give rise to additional divergences and should be treated carefully.

The total expression is of the general format

〈Φp (B)|Ĥ |Φp ′(B
′)〉=

+∞∑
n=−∞

+∞∑
n′=−∞

+∞∑
n0=−∞

ei p ′n′−i pn
h

B at site n, B ′ at site n′ and ĥ on sites n0 and n0+ 1
i

We first focus on the terms where everything is connected, thus where all transfer
operators have been replaced by their corresponding regularized version Q̆ĔQ̆. We can
now safely introduce the substitution n′← nc, n← nc+∆n and n0← nc+∆n0. The
summation over nc immediately yields the momentum conserving factor 2πδ(p ′− p),
since the terms within the summation are independent of the global position nc. If we
change ∆n to n and ∆n0 to n0 for notational simplicity and omit the overall factor
2πδ(p ′− p), we are left with

(l |H̆ B ′A
BA |r )+ (l |H̆ AB ′

AB |r )
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+
+∞∑
n0=1

(l |ĔB ′
B Q̆Ĕ n0−1Q̆H̆ AA

AA |r )+
−2∑

n0=−∞
(l |H̆ AA

AA Q̆Ĕ−n0−2Q̆ĔB ′
B |r )

+
−1∑

n=−∞
e−i pn

h
θ(n =−1)(l |H̆ AB ′

BA |r )

+ (l |ĔA
B Q̆Ĕ n−1Q̆H̆ B ′A

AA |r )+ (l |H̆ AA
AB Q̆Ĕ−n−1Q̆ĔB ′

A |r )
+θ(n <−1)(l |ĔA

B Q̆Ĕ−n−2Q̆H̆ AB ′
AA |r )

+θ(n <−1)(l |H̆ AA
BA Q̆Ĕ−n−2Q̆ĔB ′

A |r )

+
+∞∑
n0=1

(l |ĔA
B Q̆Ĕ−n−1Q̆ĔB ′

A Q̆Ĕ n0−1Q̆H̆ AA
AA |r )

+
n−2∑

n0=−∞
(l |H̆ AA

AA Q̆Ĕ−n0+n−2Q̆ĔA
B Q̆Ĕ−n−1Q̆ĔB ′

A |r )

+θ(n <−2)
−2∑

n0=n+1

(l |ĔA
B Q̆Ĕ−n+n0−1Q̆H̆ AA

AA Q̆Ĕ−n0−2Q̆ĔB ′
A |r )

i

+
+∞∑
n=1

e−i pn
h
θ(n = 1)(l |H̆ B ′A

AB |r )

+ (l |ĔB ′
A Q̆Ĕ n−1Q̆H̆ AA

BA |r )+ (l |H̆ AB ′
AA Q̆Ĕ n−1Q̆ĔA

B |r )
+θ(n > 1)(l |ĔB ′

A Q̆Ĕ n−2Q̆H̆ AA
AB |r )

+θ(n > 1)(l |H̆ B ′A
AA Q̆Ĕ n−2Q̆ĔA

B |r )

+
+∞∑

n0=n+1

(l |ĔB ′
A Q̆Ĕ n−1Q̆ĔA

B Q̆Ĕ n0−n−1Q̆H̆ AA
AA |r )

+
−2∑

n0=−∞
(l |H̆ AA

AA Q̆Ĕ−n0−2Q̆ĔB ′
A Q̆Ĕ−n−1Q̆ĔA

B |r )

+θ(n > 2)
n−2∑
n0=1

(l |ĔB ′
A Q̆Ĕ n0−1Q̆H̆ AA

AA Q̆Ĕ n−n0−2Q̆ĔA
B |r )

i
.

The terms on the first line correspond to n = 0, i.e. where B and B ′ are on the same
site. Then we have all the terms corresponding to n < 0 and all the terms corresponding
to n > 0. For most terms, we can immediately evaluate the geometric series for n0,
followed by an evaluation of the additional geometric series in n for some terms. The
only exception are the terms with θ(n < −2) and θ(n > 2), where it is better to first
switch the two sums and express the summation bounds of n in terms of n0. Then we
first evaluate the geometric series in n, followed by the one in n0. We obtain

(l |H̆ B ′A
BA |r )+ (l |H̆ AB ′

AB |r )+ e+i p (l |H̆ AB ′
BA |r )+ e−i p (l |H̆ B ′A

AB |r )
+ (l |ĔB ′

B (1̆− Ĕ)PH̆ AA
AA |r )+ (l |H̆ AA

AA (1̆− Ĕ)PĔB ′
B |r )

149



CHAPTER 3. MATRIX PRODUCT STATES FOR QUANTUM LATTICES

+ e+i p (l |ĔA
B (1̆− e+i p Ĕ)PĔB ′

A (1̆− Ĕ)PH̆ AA
AA |r )

+ e−i p (l |ĔB ′
A (1̆− e−i p Ĕ)PĔA

B (1̆− Ĕ)PH̆ AA
AA |r )

+ e+i p (l |H̆ AA
AA (1̆− Ĕ)PĔA

B (1̆− e+i p Ĕ)PĔB ′
A |r )

+ e−i p (l |H̆ AA
AA (1̆− Ĕ)PĔB ′

A (1̆− e−i p Ĕ)PĔA
B |r )

+ e+i p (l |ĔA
B (1̆− e+i p Ĕ)PH̆ B ′A

AA |r )+ e−i p (l |ĔB ′
A (1̆− e−i p Ĕ)PH̆ AA

BA |r )
+ e+2i p (l |ĔA

B (1̆− e+i p Ĕ)PH̆ AB ′
AA |r )+ e−2i p (l |ĔB ′

A (1̆− e−i p Ĕ)PH̆ AA
AB |r )

+ e+i p (l |H̆ AA
AB (1̆− e+i p Ĕ)PĔB ′

A |r )+ e−i p (l |H̆ AB ′
AA (1̆− e−i p Ĕ)PĔA

B |r )
+ e+2i p (l |H̆ AA

BA (1̆− e+i p Ĕ)PĔB ′
A |r )+ e−2i p (l |H̆ B ′A

AA (1̆− e−i p Ĕ)PĔA
B |r )

+ e+3i p (l |ĔA
B (1̆− e+i p Ĕ)PH̆ AA

AA (1̆− e+i p Ĕ)PĔB ′
A |r )

+ e−3i p (l |ĔB ′
A (1̆− e−i p Ĕ)PH̆ AA

AA (1̆− e−i p Ĕ)PĔA
B |r ).

The symbolic notation (1̂− e±i p Ĕ)P = Q̆(1̆− e±i p Q̆ĔQ̆)−1Q̆ was introduced in the
previous section. Only for p = 0 is this truly a pseudo-inverse. For p 6= 0, the 1̂− e±i p Ĕ
is not really singular. Nevertheless, we had to separate the eigenvalue e±i p with modulus
1 from the operator e±i p Ĕ in order to use the formula for the geometric series.

We now consider the contributions resulting from disconnecting either B or B ′. They
cannot be disconnected both, since this would also imply that ĥ is disconnected, which
we’ve excluded above. Whenever B ′ appears on the complete left (right) side of a term,
and is separated from the rest by a transfer operator Ĕ , there is such a disconnected
contribution. We assume that we can still make the substitution to the global position
nc and the relative positions n and n0. Only making substitutions that changes the value
of finite bounds in the sum result in a possibility of miscounting contributions and
making errors. The summation over the global position J again yields the momentum
conservation. The total (left and right) contribution from disconnecting B is given by
(omitting the momentum conserving factor 2πδ(p ′− p))

(l |EA
B |r )

�
(l |H̆ B ′A

AA |r )
� −1∑

n=−∞
e−i pn +

+∞∑
n=2

e−i pn
�

+(l |H̆ AB ′
AA |r )

� −2∑
n=−∞

e−i pn +
+∞∑
n=1

e−i pn
�

+
−1∑

n=−∞
e−i pn

+∞∑
n0=1

(l |ĔB ′
A Q̆Ĕ n0−1Q̆H̆ AA

AA |r )

+
+∞∑
n=3

e−i pn
n−2∑
n0=1

(l |ĔB ′
A Q̆Ĕ n0−1Q̆H̆ AA

AA |r )

+
−3∑

n=−∞
e−i pn

−2∑
n0=n+1

(l |H̆ AA
AA Q̆Ĕ−n0−2Q̆ĔB ′

A |r )
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+
+∞∑
n=1

e−i pn
−2∑

n0=−∞
(l |H̆ AA

AA Q̆Ĕ−n0−2Q̆ĔB ′
A |r )

�
.

These terms should be treated carefully. They should generate a divergence at p = 0
through a 2πδ(p), but should be finite for any other p 6= 0. By inserting the result for the
finite geometric sums in n0, we obtain for the terms between the square brackets

(l |H̆ B ′A
AA |r )

�
2πδ(p)− 1− e−i p

�
+(l |H̆ AB ′

AA |r )
�

2πδ(p)− 1− e+i p
�

+
−1∑

n=−∞
e−i pn(l |ĔB ′

A (1̆− Ĕ)PH̆ AA
AA |r )

+
+∞∑
n=3

e−i pn(l |ĔB ′
A (1̆− Ĕ)P(Q̆ − Q̆Ĕ n−2Q̆)H̆ AA

AA |r )

+
−3∑

n=−∞
e−i pn(l |H̆ AA

AA (1̆− Ĕ)P(Q̆ − Q̆Ĕ−n−2Q̆)ĔB ′
A |r )

+
+∞∑
n=1

e−i pn(l |H̆ AA
AA (1̆− Ĕ)PĔB ′

A |r ).

Since (1̆− Ĕ)PQ̆ = (1̆− Ĕ)P, we can now group the first and second terms for both the
second and third line, and complete the sums in n to

∑+∞
n=−∞ e±i p = 2πδ(p), in order to

obtain

(l |H̆ B ′A
AA |r )

�
2πδ(p)− 1− e−i p

�
+(l |H̆ AB ′

AA |r )
�

2πδ(p)− 1− e+i p
�

+
�
2πδ(p)− 1− e−i p − e−2i p�(l |ĔB ′

A (1̆− Ĕ)PH̆ AA
AA |r )

−
+∞∑
n=3

e−i pn(l |ĔB ′
A (1̆− Ĕ)PQ̆Ĕ n−2Q̆H̆ AA

AA |r )

+
�
2πδ(p)− 1− e+i p − e+2i p�(l |H̆ AA

AA (1̆− Ĕ)PĔB ′
A |r )

−
−3∑

n=−∞
e−i pn(l |H̆ AA

AA (1̆− Ĕ)PQ̆Ĕ−n−2Q̆ĔB ′
A |r ).

Finally, we have to compute two converging geometric series in n. Note that the power
of (Q̆ĔQ̆) starts at one instead of zero (for n = 3 on line 3 and for n =−3 on line 5). We
can absorb the term with factor e−2i p from line 2 and the term with factor e+2i p from
line 4 respectively, in order to have a geometric series in (Q̆ĔQ̆) starting at power zero.
We hence obtain for the total disconnected contribution of B

(l |EA
B |r )

�
(l |H̆ B ′A

AA |r )
�

2πδ(p)− 1− e−i p
�
+(l |H̆ AB ′

AA |r )
�

2πδ(p)− 1− e+i p
�

+
�
2πδ(p)− 1− e−i p�(l |ĔB ′

A (1̆− Ĕ)PH̆ AA
AA |r )

− e−i2 p (l |ĔB ′
A (1̆− Ĕ)P(1̆− e−i p Ĕ)PH̆ AA

AA |r )
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+
�
2πδ(p)− 1− e+i p�(l |H̆ AA

AA (1̆− Ĕ)PĔB ′
A |r )

− e+i2 p (l |H̆ AA
AA (1̆− Ĕ)P(1̆− e+i p Ĕ)PĔB ′

A |r )
�

.

By adding a similar result from disconnecting B ′, we obtain as final result

〈Φp (B)|Ĥ |Φp ′(B
′)〉= 2πδ(p ′− p)×(

(l |H̆ B ′A
BA |r )+ (l |H̆ AB ′

AB |r )+ e+i p (l |H̆ AB ′
BA |r )+ e−i p (l |H̆ B ′A

AB |r )

+ (l |ĔB ′
B (1̆− Ĕ)PH̆ AA

AA |r )+ (l |H̆ AA
AA (1̆− Ĕ)PĔB ′

B |r )
+ e+i p (l |ĔA

B (1̆− e+i p Ĕ)PĔB ′
A (1̆− Ĕ)PH̆ AA

AA |r )
+ e−i p (l |ĔB ′

A (1̆− e−i p Ĕ)PĔA
B (1̆− Ĕ)PH̆ AA

AA |r )
+ e+i p (l |H̆ AA

AA (1̆− Ĕ)PĔA
B (1̆− e+i p Ĕ)PĔB ′

A |r )
+ e−i p (l |H̆ AA

AA (1̆− Ĕ)PĔB ′
A (1̆− e−i p Ĕ)PĔA

B |r )
+ e+i p (l |ĔA

B (1̆− e+i p Ĕ)PH̆ B ′A
AA |r )+ e−i p (l |ĔB ′

A (1̆− e−i p Ĕ)PH̆ AA
BA |r )

+ e+2i p (l |ĔA
B (1̆− e+i p Ĕ)PH̆ AB ′

AA |r )+ e−2i p (l |ĔB ′
A (1̆− e−i p Ĕ)PH̆ AA

AB |r )
+ e+i p (l |H̆ AA

AB (1̆− e+i p Ĕ)PĔB ′
A |r )+ e−i p (l |H̆ AB ′

AA (1̆− e−i p Ĕ)PĔA
B |r )

+ e+2i p (l |H̆ AA
BA (1̆− e+i p Ĕ)PĔB ′

A |r )+ e−2i p (l |H̆ B ′A
AA (1̆− e−i p Ĕ)PĔA

B |r )
+ e+3i p (l |ĔA

B (1̆− e+i p Ĕ)PH̆ AA
AA (1̆− e+i p Ĕ)PĔB ′

A |r )
+ e−3i p (l |ĔB ′

A (1̆− e−i p Ĕ)PH̆ AA
AA (1̆− e−i p Ĕ)PĔA

B |r )
(l |ĔA

B |r )
��

2πδ(p)− 1− e−i p
��
(l |H̆ B ′A

AA |r )+ (l |ĔB ′
A (1̆− Ĕ)PH̆ AA

AA |r )
�

+
�

2πδ(p)− 1− e+i p
��
(l |H̆ AB ′

AA |r )+ (l |H̆ AA
AA (1̆− Ĕ)PĔB ′

A |r )
�

− e−i2 p (l |ĔB ′
A (1̆− Ĕ)P(1̆− e−i p Ĕ)PH̆ AA

AA |r )
− e+i2 p (l |H̆ AA

AA (1̆− Ĕ)P(1̆− e+i p Ĕ)PĔB ′
A |r )

�

(l |ĔB ′
A |r )

��
2πδ(p)− 1− e+i p

��
(l |H̆ AA

BA |r )+ (l |ĔA
B (1̆− Ĕ)PH̆ AA

AA |r )
�

+
�

2πδ(p)− 1− e−i p
��
(l |H̆ AA

AB |r )+ (l |H̆ AA
AA (1̆− Ĕ)PĔA

B |r )
�

− e+i2 p (l |ĔA
B (1̆− Ĕ)P(1̆− e+i p Ĕ)PH̆ AA

AA |r )

− e−i2 p (l |H̆ AA
AA (1̆− Ĕ)P(1̆− e−i p Ĕ)PĔA

B |r )
�)

.

(3.144)

As expected, because of translation invariance of Ĥ , the δ normalizing factor is obtained.
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For momentum zero, the additional divergences δ(p) signal the need for imposing
(l |ĔA

B |r ) = 0 and (l |ĔB ′
A |r ) = 0, which boils down to restricting to tangent vectors

|Φ0(B)〉 , |Φ0(B
′)〉 ∈T⊥Φ0

. For other momenta, there is no need to impose these conditions
and these terms (i.e. the terms in the square brackets) are finite. However, thanks to
the gauge freedom we can still impose this condition, and even the more general right
or left gauge fixing conditions in Eq. (3.78) and (3.79) respectively. The terms in the
square brackets then all disappear, together with some additional terms on the upper
lines. Eq. (3.144) can thus strongly be simplified by a proper choice of the gauge fixing
conditions on B .

We now define the matrix representation of the effective Hamiltonian HΦp
and the

effective normalization matrix NΦ(p) of the Rayleigh-Ritz equations Eq. (2.4) as

〈Φp (B)|Φp ′(B
′)〉= 2πδ(p ′− p)B†NΦp

B′, (3.145)

〈Φp (B)|Ĥ |Φp ′(B
′)〉= 2πδ(p ′− p)B†HΦp

B′, (3.146)

whereB,B′ represent vectors containing the d D2 entries of the tensors B and B ′. If B
satisfies the right gauge fixing conditions [Eq. (3.79)], then we obtain

B†NΦp
B′ = (l |ĔB ′

B |r ) (3.147)

and

B†HΦp
B′ =(l |H̆ B ′A

BA |r )+ (l |H̆ AB ′
AB |r )+ e+i p (l |H̆ AB ′

BA |r )+ e−i p (l |H̆ B ′A
AB |r )

+ (l |ĔB ′
B (1̆− Ĕ)PH̆ AA

AA |r )+ (l |H̆ AA
AA (1̆− Ĕ)PĔB ′

B |r )
+ e+i p (l |ĔA

B (1̆− e+i p Ĕ)PĔB ′
A (1̆− Ĕ)PH̆ AA

AA |r )
+ e−i p (l |ĔB ′

A (1̆− e−i p Ĕ)PĔA
B (1̆− Ĕ)PH̆ AA

AA |r )
+ e+i p (l |ĔA

B (1̆− e+i p Ĕ)PH̆ B ′A
AA |r )+ e−i p (l |ĔB ′

A (1̆− e−i p Ĕ)PH̆ AA
BA |r )

+ e+2i p (l |ĔA
B (1̆− e+i p Ĕ)PH̆ AB ′

AA |r )+ e−2i p (l |ĔB ′
A (1̆− e−i p Ĕ)PH̆ AA

AB |r ).
(3.148)

Note that these expressions are only valid if B satisfies the right gauge fixing condition.
The best way to impose this is by using the linear parameterization B =BΦ(x). By defin-
ing NΦp (BΦ)

=B
†
ΦNΦp

BΦ and HΦp (BΦ)
=B

†
ΦHΦp

BΦ, where BΦ should be interpreted

as a qD2× (q − 1)D2 matrix that projects the vector x ontoB according to the linear
relation B = BΦ(x), we obtain NΦp (BΦ)

= 1(q−1)D2 and we have to solve the (q − 1)D2

dimensional ordinary eigenvalue problem for the Hermitean matrix HΦp (BΦ)
. This pro-

vides us with a set of estimates for excitation energies of excitations with momentum p.
Repeating this process for various values of p allows us to build an approximation of the
spectrum and the dispersion relation of the elementary excitations.
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A complete diagonalization of HΦp (BΦ)
has a computational cost O(D6) and is only

feasible for low values of D. As will become clear in the results, we are only interested
in the lowest eigenvalues of HΦp (BΦ)

, which correspond to elementary excitations. We
can then try to apply an iterative eigensolver, which is of course only useful if we can
implement HΦp (BΦ)

x efficiently (preferably with computational cost O(D3). It was
already explained in Subsection 2.3 how to efficiently construct B from x. An efficient
implementation of HΦp

B is a bit more complicated but also possible. Note that we

need to iteratively determine l , r and the action of the D2×D2 operators (1̆− Ĕ)P and
(1̆− e±i p Ĕ)P on a D2-dimensional vector. An algorithm for efficiently determining the
pseudo-inverse (1̆− Ĕ)P was also sketched in Subsection 2.3 and is equally applicable to
(1̆− e±i p Ĕ)P.

3.3. Topologically non-trivial states

In a system with symmetry breaking —necessarily discrete symmetry in one-dimensio-
nal systems— it is also possible to have topologically non-trivial states. Let |Ψ(A)〉 ∈
MuMPS(D) and |Ψ(Ã)〉 ∈ MuMPS(D̃) represent two uniform matrix product states with

bond dimensions D and D̃ that approximate two different instances from the ground
state manifold S(g) of Ĥ . The restriction to pure uniform matrix product states requires
that |Ψ(A)〉 and |Ψ(Ã)〉 represent minimally entangled ground states |Ψz〉 and |Ψz̃〉,
i.e. ground states with maximal symmetry breaking. Thus, both ĔA

A and Ĕ Ã
Ã

have a
unique eigenvalue 1, and we define the corresponding left and right eigenvectors as (l |,
|r ) and ( l̃ |, | r̃ ) respectively. Symmetry breaking implies that ρ(ĔA

Ã
) < 1. All of this

was explained in Subsection 1.7. As was shown there, it is always possible to choose
Ãs =

∑q
t=1 〈s |û(z̃)û(z)−1|t 〉At , so that D̃ = D and Ĕ Ã

Ã
= ĔA

A , and thus also l̃ = l and
r̃ = r . We allow for the more general case as well.

An ansatz for approximating the topologically non-trivial state with momentum p that
asymptotically looks like |Ψz〉 at −∞ and like |Ψz̃〉 at +∞ (i.e. a kink or domain wall) is
given by

|Ξp (B ;A; Ã)〉=
∑
n∈Z

ei pn
q∑

{sn}=1

v†
L



 ∏

m<n
Asm

!
B sn



∏
m′>n

Ãsm′




vR |{sn}〉 , (3.149)

with B s a set of D × D̃ matrices (∀s = 1, . . . , q). We now impose (v†
L rvL)(v

†
R l̃vR) = 1 so

as not to be troubled by the boundary vectors when computing expectation values. In

order for this state to have a finite excitation energy, we need to impose h(A,A) = h(Ã, Ã),
so that both uniform matrix product states approximate their respective ground state
equally well. As for the ansatz for topologically non-trivial excitations, the rationale
behind the ansatz in Eq. (3.149) is that the kink itself is a highly localized or point-like
object that is in a momentum superposition. It is not completely restricted to live on
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a single site, since it can spread out along the virtual dimension, and has non-trivial
support over at least logq D + logq D̃ sites. Creating a kink through the action of a
physical operator, analogously to the Feynman-Bijl operator, was first attempted by
Mandelstam [347]. He proposed to use as operator the Fourier transform of

Ô(n) = ôn

∏
m>n

ûn , (3.150)

with ôn a completely local operator on site n and
∏

m>n ûn a string of operators that has
the effect to transform the ground state to another ground state for m > n, i.e. in our
context ûn = ûn(z̃)ûn(z)

−1.

The states |Ξp (B ;A; Ã)〉 share many properties with the tangent vectors |Φp (B ;A)〉.
Using ρ(ĔA

Ã
) < 1 even allows for some simplifications. Firstly, 〈Ψ(A)|Ξp (B ;A; Ã)〉 =

〈Ψ(Ã)|Ξp (B ;A; Ã)〉= 0 for all values of the momentum p, including p = 0. The reason
is the appearance of factors ĔA

Ã
in a half-infinite space. Secondly, the linear map

Ξ(A;Ã)
p :CD×q×D̃ 7→HL : B 7→ |Ξ(A;Ã)

p (B)〉= |Ξp (B ;A; Ã)〉 (3.151)

has a non-trivial null space NΞp
(A; Ã). We henceforth omit the explicit notation of A and

Ã. The map

N
(A;Ã)
Ξp

:CD×D̃ 7→NΞp
: x 7→NΞp

(x) with NΞp
(x) = e−i p xÃs −As x,∀s = 1, . . . , q

(3.152)
defines a set of choices B =NΞp

(x) that produce |Ξp (B)〉= 0. It is easy to see that the
null space of NΞp

itself is empty ∀p, including p = 0, since Ns
Ξp
(x) = 0 (∀s = 1, . . . , q)

requires that ĔA
Ã
|x r̃ ) = e−i p |x r̃ ). But since ρ(ĔA

Ã
)< 1, this equation can have no solution.

If we define
TΞp
= {|Ξp (B)〉 | B ∈CD×q×D̃} (3.153)

then we obtain dimTΞp
= dimCD×q×D̃−dimNΞp

= (q−1)DD̃ , ∀p ∈ [−π,+π). To fix
the additive gauge freedom in the representation B , we can impose either of the following
conditions:

• left gauge fixing condition:

(l |ĔB
A = 0 ⇔

q∑
s=1

As † l B s = 0, (3.154)
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• right gauge fixing condition:

ĔB
Ã
| r̃ ) = 0 ⇔

q∑
s=1

B s r̃ Ãs† = 0. (3.155)

Both conditions impose in total DD̃ equations that completely fix the gauge freedom in
x. Linear parameterizations of the tensor B that automatically satisfy either the left or
right gauge fixing conditions are constructed below.

Applying the time-independent variational principle to
⊗

p∈[−π,+π)TΞp
also boils down

to solving the Rayleigh-Ritz equations [Eq. (2.4) in the previous chapter]. We first
compute the overlap 〈Ξp (B)|Ξp ′(B

′)〉. Since the superoperators ĔA
Ã

and Ĕ Ã
A that appear

between B and B ′ have a spectral radius smaller than one, they do not need ‘regularizing’
and we cannot have disconnected contributions at all. There is then also no need to
introduce pseudo-inverses. We simply obtain

〈Ξp (B)|Ξp ′(B
′)〉= 2πδ(p ′− p)

�
(l |ĔB ′

B | r̃ )+ (l |ĔA
B (1̆− e+i p ĔA

Ã
)−1ĔB ′

A | r̃ )

+ (l |ĔB ′
A (1̆− e−i p Ĕ Ã

A )
−1ĔA

B | r̃ )
�

. (3.156)

Similarly, all disconnected contributions that were present in 〈Φp (B)|Ĥ |Φp ′(B
′)〉 [terms

in square brackets in Eq. (3.144)] disappear in the evaluation of 〈Ξp (B)|Ĥ |Ξp ′(B
′)〉. If

we also redefine ĥ← ĥ − h(A,A) = ĥ − h(Ã, Ã), so that the correct ground state energy
is subtracted and there are no disconnected contributions from ĥ either, we immediately
obtain

〈Ξp (B)|Ĥ |Ξp ′(B
′)〉= 2πδ(p ′− p)×�

(l |H̆ B ′Ã
BÃ
| r̃ )+ (l |H̆ AB ′

AB | r̃ )+ e+i p (l |H̆ AB ′

BÃ
| r̃ )+ e−i p (l |H̆ B ′Ã

AB | r̃ )

+ (l |ĔB ′
B (1̆− Ĕ Ã

Ã
)PH̆ ÃÃ

ÃÃ
| r̃ )+ (l |H̆ AA

AA (1̆− ĔA
A )

PĔB ′
B | r̃ )

+ e+i p (l |ĔA
B (1̆− e+i p ĔA

Ã
)−1ĔB ′

Ã
(1̆− Ĕ Ã

Ã
)PH̆ ÃÃ

ÃÃ
| r̃ )

+ e−i p (l |ĔB ′
A (1̆− e−i p Ĕ Ã

A )
−1Ĕ Ã

B (1̆− Ĕ Ã
Ã
)PH̆ ÃÃ

ÃÃ
| r̃ )

+ e+i p (l |H̆ AA
AA (1̆− ĔA

A )
PĔA

B (1̆− e+i p ĔA
Ã
)−1ĔB ′

Ã
| r̃ )

+ e−i p (l |H̆ AA
AA (1̆− ĔA

A )
PĔB ′

A (1̆− e−i p Ĕ Ã
A )
−1Ĕ Ã

B | r̃ )
+ e+i p (l |ĔA

B (1̆− e+i p ĔA
Ã
)−1H̆ B ′Ã

ÃÃ
| r̃ )+ e−i p (l |ĔB ′

A (1̆− e−i p Ĕ Ã
A )
−1H̆ ÃÃ

BÃ
| r̃ )

+ e+2i p (l |ĔA
B (1̆− e+i p ĔA

Ã
)−1H̆ AB ′

ÃÃ
| r̃ )+ e−2i p (l |ĔB ′

A (1̆− e−i p Ĕ Ã
A )
−1H̆ ÃÃ

AB | r̃ )
+ e+i p (l |H̆ AA

AB (1̆− e+i p ĔA
Ã
)−1ĔB ′

Ã
| r̃ )+ e−i p (l |H̆ AB ′

AA (1̆− e−i p Ĕ Ã
A )
−1Ĕ Ã

B | r̃ )
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+ e+2i p (l |H̆ AA
BÃ
(1̆− e+i p ĔA

Ã
)−1ĔB ′

Ã
| r̃ )+ e−2i p (l |H̆ B ′Ã

AA (1̆− e−i p Ĕ Ã
A )
−1Ĕ Ã

B | r̃ )
+ e+3i p (l |ĔA

B (1̆− e+i p ĔA
Ã
)−1H̆ AA

ÃÃ
(1̆− e+i p ĔA

Ã
)−1ĔB ′

Ã
| r̃ )

+ e−3i p (l |ĔB ′
A (1̆− e−i p Ĕ Ã

A )
−1H̆ ÃÃ

AA (1̆− e−i p Ĕ Ã
A )
−1Ĕ Ã

B | r̃ )
�

. (3.157)

By imposing either the left or the right gauge fixing conditions of Eq. (3.154) or (3.155),
many terms in Eq. (3.156) and in Eq. (3.157) cancel. In particular, with either choice, the
overlap reduces to

〈Ξp (B)|Ξp ′(B
′)〉= 2πδ(p ′− p)(l |ĔB ′

B | r̃ ). (3.158)

We can then construct linear parameterizations BΞ(x) and eBΞ(y) in terms of a D × (q −
1)D̃ matrix x and a (q − 1)D × D̃ matrix y that respectively satisfy the right and left
gauge fixing conditions and that produce

〈Ξp (BΞ(x))|Ξp ′(BΞ(x
′))〉= 2πδ(p ′− p) tr[x†x ′],

〈Ξp (eBΞ(y))|Ξp ′(eBΞ(y ′))〉= 2πδ(p ′− p) tr[y†y ′].

We first define the d D̃ × D̃ matrices R̃ as

[R̃](α,s);β = [ r̃
1/2Ãs†]α,β (3.159)

and then construct a (q−1)D̃×qD̃ matrix ṼR̃ so that Ṽ †

R̃
contains an orthonormal basis

for the null space of R̃†, i.e. R̃R̃R̃= 0 and ṼR̃Ṽ †

R̃
= 1(q−1)D . Setting [Ṽ s

R̃
]α,β = [ṼR̃]α;(β,s),

we then define the representation BΞ(x) as

Bs
Ξ(x) = l−1/2xṼ s

R̃
r̃−1/2. (3.160)

The representation eBs
Ξ(y) follows similarly from a definition of L and VL (based on the

matrix A).

We can now also define an effective Hamiltonian HΞp
and effective normalization matrix

NΞp
for use in the Rayleigh-Ritz equation Eq. (2.4) as

〈Ξp (B)|Ξp ′(B
′)〉= 2πδ(p ′− p)B†NΞp

B′, (3.161)

〈Ξp (B)|Ĥ |Ξp ′(B
′)〉= 2πδ(p ′− p)B†HΞp

B′, (3.162)

and then induce a second pair of matrices using the representation BΞ as NΞp (BΞ)
=

B
†
ΞNΞp

BΞ = 1(q−1)DD̃ and HΞp (BΞ)
=B

†
ΞHΞp

BΞ. Applying the Rayleigh-Ritz method to
TΞp

thus boils down to diagonalizing HΞp (BΞ)
. For large D , an iterative implementation

with computational complexity O(D3) can be constructed.
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One final remark is in order. With two matrices A and Ã present in the ansatz for topolog-
ically non-trivial states |Ξp (B ;A; Ã)〉, both of which can be defined independently from
each other, there is some ambiguity present in the definition of the momentum. Suppose
we have A′ = eiϕA. We obtain |Ξp (B ;A′; Ã)〉= |Ξp (B ; eiϕA; Ã)〉 ∼ |Ξp+ϕ(B ;A; Ã)〉, where
the similarity sign means the two states are equal up to a global phase. This follows simply
from inserting A′ in e.g. Eq. (3.157). It is ultimately related to the fact that momentum is
not a good quantum number to start with in a system with open boundary conditions.
This problem did not occur in the ansatz for topologically trivial excitations, because
|Ψp (B)〉 can be defined starting from a finite lattice with periodic boundary conditions,
where p is a good quantum number. But for the kink states, this is not possible. Since
the momentum seems tightly connected to ĔA

Ã
in the sense that they appear together as

ei p ĔA
Ã

in Eq. (3.157), it makes sense to require that the relative phase of A and Ã is chosen

so that the eigenvalue with largest modulus of ĔA
Ã

is positive. This convention is adhered
to in the remainder of this section.

3.4. Relation to the time-dependent variational principle

The relation between using the tangent plane of a variational manifold as variational
ansatz for excitations and a linearization of the flow equations of the time-dependent
variational principle around a variational optimum were discussed in full generality
in Section 3 of the previous chapter. It was shown there that a linearization of the
flow equations produces a generalized eigenvalue equation of twice the size, which
corresponds to the Rayleigh-Ritz method for the tangent plane in the diagonal blocks.
In the off-diagonal blocks a new matrix arises which contains the projection of the exact
evolution vector P̂0Ĥ |Ψ〉 onto the double tangent plane. So let us first introduce the
double tangent plane T(2)

MPS(D) and its properties in general terms. We thereto define the
family of states

|Υ[A][B+,B−]〉= |Υ[B+,B−;A]〉=
∑

m,n∈Z
B i
+(m)B

j
−(n)

∂ 2

∂ Ai (m)∂ Aj (n)
|Ψ[A]〉

=
∑

m<n∈Z

q∑
{sn}=1

v†
L



�∏

k<m

Ask (k)
�

B sm
+ (m)

� ∏
m<k ′<n

Ask′ (k ′)
�

×B sn
− (n)

�∏
n<k ′′

Ask′′ (k ′′)
�
vR |{sn}〉

+
∑

m>n∈Z

q∑
{sn}=1

v†
L



�∏

k<w

Ask (k)
�

B sn
− (n)

� ∏
n<k ′<m

Ask′ (k ′)
�

×B sm
+ (m)

�∏
n<k ′′

Ask′′ (k ′′)
�
vR |{sn}〉 ,
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with i and j denoting collective indices of size D2q . These states span the tangent
plane T(2)

MPS(D), but not all states in T(2)
MPS(D) can be written in this format. Whereas

a general state in T(2)
MPS(D) would have a coefficient matrix C i , j (m, n) with respect to

∂ 2 |Ψ[A]〉/∂ Ai (m)∂ Aj (n), the state |Υ(A)[B+,B−]〉 corresponds to the factorized case
C i , j (m, n) = B i

+(m)B
j
−(n): they are the product states of T(2)

MPS(D). Note that T(2)
MPS(D)

contains TMPS(D), since |Υ[B ,A;A]〉 = (|Z| − 1) |Φ[B ;A]〉. From an intuitive perspec-
tive, the states |Υ(A)[B+,B−]〉 seem to be describing compound states containing two
elementary excitations. Note that for the general states the coefficient matrix satisfies
C i , j (m, n) =C j ,i (n, m), indicating that these excitations behave naively as bosons, due
to the commutativity of ∂ /∂ Ai (m) and ∂ /∂ Aj (n). Grassmann numbers would be
required to have a natural scheme for studying fermionic systems, which has also been
the key for applying general tensor networks to fermionic systems in higher dimensions
[348, 349, 350]. For translation invariant systems with a translation invariant ground
state (approximated by |Ψ(A)〉 ∈MuMPS(D)), we can introduce the momentum modes
B s
+(m) = B s

+ei p+m and B s
−(n) = B s

−(m)e
i p−n , and define

|Υ(A)p+, p−
(B+,B−)〉= |Υp+, p−(B+,B−;A)〉

=
∑

m<n∈Z
ei(p+m+p−n)

q∑
{sn}=1

v†
L



�∏

k<m

Ask

�
B sm
+

� ∏
m<k ′<n

Ask′
�

×B sn
−

�∏
n<k ′′

Ask′′
�
vR |{sn}〉

+
∑

m>n∈Z
ei(p+m+p−n)

q∑
{sn}=1

v†
L



�∏

k<w

Ask

�
B sn
−

� ∏
n<k ′<m

Ask′
�

×B sm
+

�∏
n<k ′′

Ask′′
�
vR |{sn}〉 .

(3.163)

The total momentum of this state is p = p++ p−. A general state in the momentum p sec-
tor of the double tangent plane T(2)

MPS(D) has C i , j (m, n) = ei p(m+n)/2C i , j (m− n).

In the current translation invariant setting, the linearized flow equation Eq. (2.59) also
decomposes into different diagonal blocks in the different momentum sectors. We
can repeat the analysis of Section 3 of the previous chapter for a state |Ψ[A(t )]〉 ∈
MMPS(D) by expanding A(t ) around the uniform solution A that best approximates
the ground state as As (n; t ) =As +B s

1 (n; t ), where B s
1 (n; t ) = B s

+(n)e
−iωt +B s

−(n)e
+iωt .

By using 〈Ψ(A)|Ψ(A)〉 = 1 and defining the momentum modes (B (p)+ )
s (n) = B s

+e+i pn

and (B (p)− )
s (n) = B s

−e−i pn , we can decompose the matrices H ?, N ? and M ? defined in
Eq. (2.58) as

B̃
(p̃)
+

†
N ?B

(p)
+ = 〈Φ p̃ (B̃+;A)|Φp (B+;A)〉
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= 2πδ(p − p̃) B̃+
†

NΦp
B+, (3.164a)

B̃
(p̃)
+

†
H ?B

(p)
+ = 〈Φ p̃ (B̃+;A)|Ĥ −H (A,A)|Φp (B+;A)〉
= 2πδ(p − p̃) B̃+

†
HΦp

B+, (3.164b)

B̃
(p̃)
+

†
M ?B

(p)
− = 〈Υ p̃,−p (B+,B−;A)|P̂0(A,A)Ĥ |Ψ(A)〉
= 2πδ(p − p̃) B̃+

†
MΥp,−p

B−, (3.164c)

where we recover the matrices HΦp
and NΦp

defined in Subsection 3.2 and a new matrix
MΥp

has been defined, whose existence follows from translation invariance. Note that

B
(p)
± represents a |Z|qD2-dimensional vector containing the qD2 entries of every tensor

B (p)± (n) on every site n ∈Z, whereasB± represents a qD2-dimensional vector containing
the qD2 entries in the constant tensor B±. The linearized flow equations of the time-
dependent variational principle can thus be grouped in blocks of momentum p as


 HΦp

MΥp,−p

MΥ−p, p
HΦp




B+
B−


=ω


NΦp

0

0 −NΦp




B+
B−


 , (3.165)

with MΥ−p, p
=M T

Υp,−p
. The matrix MΥp,−p

has a similar structure as HΦp
and its action on

a vectorB+ can also be efficiently implemented. We refer to Section 1 of Appendix A for
an explicit construction. We now discuss some details —specific to the matrix product
state framework— about the relation between the linearized flow equations of the time-
dependent variational principle and our ansatz for studying excited states.

We first restrict to the case of topologically trivial excitations |Φp (B ;A)〉. Since |Ψ(A)〉
is considered to be a variational minimum inMuMPS(D), the effective Hamiltonian HΦ0

is positive semidefinite, as it appears as a diagonal block in the Hessian of the energy
function H (A,A). The excitation energies we obtain from applying the Rayleigh-Ritz
method to TuMPS(D) =TΦ0

are all positive or zero. While this of course corresponds to
our physical expectation, it is in fact a non-trivial observation. The excitation energies
follow from subtracting from the eigenvalues of the Hamiltonian Ĥ the divergent ground
state energy E0. Even though the variational principle guarantees that we always obtain
an upper bound for the eigenvalues of Ĥ , this is not applicable to the excitation energies
since we have subtracted an estimate of the ground state energy H (A,A) which might
be too large (since H (A,A) ≥ E0, also according to the variational principle). Put
differently, the excitation energies are energy differences and the variational principle is
not applicable to energy differences. Errors on the excitation energies can thus be both
positive and negative. But the relation with the time-dependent variational principle
guarantees that we cannot obtain unphysical (i.e. negative) excitation energies.

By restricting toMuMPS(D), positive semidefineteness of HΦp
can only be proven for p =

0. If the uMPS |Ψ(A)〉 is also a minimum in the complete manifoldMMPS(D), translation
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non-invariant states included, then positive semidefineteness of HΦp
follows for every p ∈

[−π,+π). This requires that there is no translation-invariance breaking matrix product
state |Ψ[A′]〉 that can produce a lower energy expectation value H[A

′
,A′] < H (A,A).

Vice versa, if at a certain value of the parameters in the Hamiltonian, a branch of the
excitation spectrum becomes negative around some momentum p, then this might be an
indication for a tendency towards breaking of translation invariance. When the matrix
product state approximation is good, this can be the signal for a physical phase transition
where some elementary excitation of the spectrum develops a negative energy around
some momentum and condenses, thereby producing a state with broken translation
invariance. An example is studied in the next subsection.

The ansatz for topologically non-trivial excitations bears no immediate relationship to the
tangent plane TMPS(D). TΞp

can however be interpreted as a subspace of TMPS(D ′) at the

uniform matrix product state |Ψ′(A′)〉 ∈MMPS(D ′) with D ′ =D+ D̃ and (A′)s =As ⊕ Ãs .
Indeed, |Ξp (B)〉= |Φ′p (B ′)〉 with6

(B ′)s =


0 B s

0 0


 . (3.166)

While it is easy to prove that |Ψ′(A′)〉 is a stationary point of the energy functional on
MMPS(D ′), there is no guarantee that it should be a minimum. In particular, close to
the symmetry breaking phase transition, it is very likely that the energy could benefit
from mixing domain walls into the ground state, so as to lower the expectation value
of the order parameter and restore the symmetry. Far away from the phase transition,
|Ψ′(A′)〉will definitely not be the global minimum, since it does not represent a minimally
entangled ground state, but rather a superposition of the two ground states |Ψq〉 and |Ψq̃〉.
There will be a better minimum where the complete (D + D̃)-dimensional ancilla space
is used to encode a single minimally entangled ground state. Nevertheless, |Ψ(A′)〉 can
be a local minimum of the energy functional and all topologically non-trivial excitation
energies can be positive.

Finally we evaluate the added value of the off-diagonal blocks MΥp
in the linearized

TDVP equation Eq. (3.165). If the uniform matrix product state approximation of the
ground state is good (i.e. ε̃(A,A) � 1), we do not expect the states |Υ(A)p+, p−(B+,B−)〉
to contribute much to the elementary excitations, since they naturally look like two-
particle states and since ‖MΥp

‖ ∼ ‖P̂0(A,A)Ĥ |Ψ(A)〉‖|Z|−1/2 = ε̃(A,A). If |Φ(A)p (B)〉 also
approximates a multi-particle state, then the correction of MΥp

might be significant. But
for studying e.g. two-particle states, it should be much better to apply the Rayleigh-
Ritz method to the complete double tangent plane T(2)

MPS(D) anyway. The linearized
flow equations of the time-dependent variational principle in Eq. (3.165) can however

6 This correspondence is also key in proving that NΞp
(x) spans the complete null space NΞp

, by using infinitesi-

mal gauge transformations of |Ψ′(A′)〉.
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be useful to detect which pairs of excitations set the approximate ground state |ψ(A)〉
apart from the exact ground state. These claims are verified for a test model in the
next subsection by solving the generalized eigenvalue equation of Eq. (3.165). Let us
therefore study the properties of B̃†

+MΥp
B− ∼ 〈Υ(A)p+, p−(B+,B−)|P̂0(A,A)Ĥ |Ψ(A)〉 with

p+ = p = −p−. Since B+ and B− arise as infinitesimal variations of A, we should be
able to apply the same set of additive gauge transformations NΦp±

(x±) [see Eq. (3.76)]

on B±. We obtain |Υ(A)p+, p−(B++NΦp+
(x+),B−)〉= |Υ(A)p+, p−(B+,B−)〉+ |Φ(A)p++p−

(B)〉, with

B s = −e−i p+ x+B s
− + B s

−x+. The state |Υ(A)p+, p−(B+,B−)〉 is thus not invariant under the
additive gauge transformations NΦp±

(x±); the effect of such a gauge transformation

is to add a contribution in TMPS(D). However, the matrix M ? is invariant, since it

projects |Υ(A)p+, p−(B+,B−)〉 onto P̂0(A,A)Ĥ |Ψ(A)〉, where P̂0(A,A)Ĥ |Ψ(A)〉 ⊥TMPS(D) in

the variational optimum. We thus find 〈Υ(A)p+, p−(NΦp+
(x+),B−)|P̂0(A,A)Ĥ |Ψ(A)〉 = 0.

Similarly, we can eliminate the direction B± ∼A and restrict to values of B± that produce
tangent vectors |Φp±(B±)〉 ∈T⊥uMPS(D) for p± = 0. While |Υ(A)0, p−

(A,B−)〉 6= 0, we do obtain

|Υ(A)0, p−
(A,B−)〉 ∼ |Φ(A)p− (B−)〉 ∈TMPS(D), so that 〈Υ(A)p+, p−(B+,B−)|P̂0(A,A)Ĥ |Ψ(A)〉= 0 and

does not contribute. We can thus still impose the left or right gauge fixing conditions
Eq. (3.78) and Eq. (3.79) on B+ and B−, and reuse all the techniques from the previous
subsection for the (efficient) evaluation of MΥp

, which can be calculated similarly to
HΦp

.

3.5. Exemplary results

We now test our variational ansatz for topologically trivial and topologically non-trivial
excitations both qualitatively and quantitatively by studying some spin models.

Transverse quantum Ising model

The Hamiltonian of the transverse quantum Ising model is given by

ĤIsing =
∑
n∈Z
−J σ̂ x

n σ̂
x
n+1+ hσ̂ z

n , (3.167)

with J > 0 and h a magnetic field alignment term. It is invariant under the global
rotation Û =

⊗
n∈Z ûn with ûn = exp(iπ2 σ̂

z
n ) = σ̂

z
n , which is a discrete symmetry that

maps σ̂ x
n ↔−σ̂ x

n . The transverse quantum Ising model can be solved exactly, since the
Jordan-Wigner transformation [351]maps it to a quadratic fermion model that can be
solved using a Bogoliubov transformation [352]. The elementary fermion excitation has
a dispersion relation

ω(p) = 2
Æ
[J cos(p)− h]2+ J 2 sin2(p) = 2J

Æ
1+ h2/J 2− 2h/J cos p. (3.168)

162



§3. Excitations in the tangent plane TMPS

The model has critical points at h/J =±1 and the dispersion relation develops a node.
For |h/J |< 1 it has symmetry-breaking order and develops a non-zero expectation value
of the local order parameter Ôn = σ̂

x
n , whereas 〈Ψ|σ̂ z

n |Ψ〉= 0. The elementary fermion
excitation then maps to a topologically non-trivial excitation of the spin model: when the
elementary fermion excitation is mapped back to a spin excitation, the Jordan-Wigner
string

∏
m<n σ

z
m that appears in front of the creation operator maps one ground state to

another. For |h/J |> 1 the magnetic field term dominates and aligns the spins, so that
〈Ψ|σ̂ z

n |Ψ〉 6= 0 and the expectation value of the order parameter is given by 〈Ψ|σ̂ x
n |Ψ〉= 0.

This is a symmetric phase, and the elementary fermion excitation is topologically trivial
in terms of the original spin model.

Excitation eigenvalues ∆ obtained from an exact diagonalization of HΦp (BΦ)
and HΞp (BΞ)

are shown in Fig. 3.6 and Fig. 3.7 for respectively h/J = 2 and h/J = 1/2 at D = D̃ = 8.
Exact diagonalization is feasible up to D = 48, but becomes costly for values of D that
are much larger. However, already at D = 8 the qualitative features of the spectrum are
well reproduced. The lowest branch matches the exact result both for the topologically
trivial and topologically non-trivial case. Inside the continuous bands of multi-particle
excitations, a discrete set of eigenvalues is obtained. Our finite-dimensional eigenvalue
equation can of course not produce a continuous distribution of eigenvalues, and was
never meant to do so. We only argued the adequacy of our ansatz for the case of
elementary excitations. For e.g. the band of two-particle excitations, a different ansatz
such as |Υ(A)p1, p2

(B1,B2)〉 should be used. A continuum would then automatically arise
from the continuous distribution of relative momentum∆p = p2− p1 for every value
of the total momentum p = (p1+ p2). When both particles have fixed momentum p1

and p2, they are on average infinitely far apart. The states |Φ(A)p (B)〉 seem to be able
to describe some two-particle states with total momentum p, where a superposition
over states with fixed relative momentum ∆p is taken so as to be able to confine the
particles in a region of approximate size 2 logq D . The lowest eigenvalue produced with

|Φ(A)p (B)〉 in the two-particle band is thus expected to have a finite size energy correction
of O(1/ logq D) above the minimum of the band.

Also note the identical form of Fig. 3.6 and Fig. 3.7, which is caused by an exact duality of
the Ising model to itself, whereby h/J is mapped to J/h and the elementary topologically
non-trivial excitation is mapped onto the topologically trivial excitation and vice versa
[353]. This observation is of course very specific to this model. It can even be noticed
that the higher order excitations do not exactly reproduce this duality.

We could also assess the accuracy of our approach, but we would first like to establish
that our approach also works for more complicated models. In the Ising model, both
in the symmetric as in the symmetry broken case, the elementary excitations can be
created using Feynman-Bijl or Mandelstam operators with one-site local operators Ôn
(namely the creation operators obtained after solving the quadratic fermion model using
the Bogoliubov transformation). Any errors in the excitation energies are thus due to
errors in the ground state approximation.
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Figure 3.6: Spectrum of topologically trivial excitations (white circles) for the transverse quantum
Ising model with h/J = 2, obtained with the variational ansatz |Φ(A)p (B)〉 with bond dimension
D = 8. The exact branch of the elementary excitation (green line), as well as the exact two-particle
and three-particle continuum (green bands) are also shown.

S = 1 Bilinear-biquadratic antiferromagnetic Heisenberg model

A more complicated model that nicely illustrates many of the statements from the
previous subsection is the bilinear-biquadratic antiferromagnetic Heisenberg model with
S = 1 spins, which is described by the SU(2)-invariant Hamiltonian

ĤBB Heisenberg = J
∑
n∈Z

cosθ
�
Ŝn · Ŝn+1

�
+ sinθ

�
Ŝn · Ŝn+1

�2
, (3.169)

with an energy scale J > 0 and an angle θ ∈ [−3π/4,5π/4). This model has many inter-
esting phases and phase transitions as a function of θ. There cannot be antiferromagnetic
order due to Coleman’s theorem [see Subsection 1.4 of Chapter 1]. Ferromagnetic order
can exist, since the ferromagnetic order parameter commutes with the Hamiltonian,
and is indeed present for θ ∈ (π/2,5π/4). At θ = 0, this Hamiltonian describes the
antiferromagnetic Heisenberg model whose ground state was studied in the previous
section [see Eq. (3.137) in Subsection 2.7]. The ground state is then in a topologically
ordered phase, the Haldane phase, and the lowest lying excitation is an S = 1 triplet with
finite mass ∆Haldane, referred to as the Haldane gap [335, 336]. The same phase exists
throughout θ ∈ (−π/4,π/4). In particular, for tanθ= 1/3 this is the model studied by
Affleck, Kennedy, Lieb and Tasaki, which has an exact matrix product state representa-
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Figure 3.7: Spectrum of topologically trivial (white circles) and topologically non-trivial excita-
tions (white diamonds) for the transverse quantum Ising model with h/J = 1/2, obtained with the
variational ansätze |Φ(A)p (B)〉 and |Ξ(A)p (B)〉 respectively, both with bond dimension D = D̃ = 8. The
exact branch of the elementary excitation (red line), as well as the exact two-particle continuum
(green band) and three-particle continuum (red band) are also shown.

tion with bond dimension D = 2 [267, 268]. At θ=±π/4, an exact solution in terms
of the Bethe ansatz is possible and the model is critical. The dispersion relation shows
nodes for p = 0 and p =π for θ=−π/4 (the Takhtajan-Babudjan point), and the model
undergoes a second order phase transition to a dimer phase (only invariant under T̂ 2),
which exists for θ ∈ (−3π/4,−π/4). The existence of a small nematic phase between the
dimer phase and the ferromagnetic phase has recently been ruled out [354]. For θ=π/4
, the dispersion relation of the elementary excitation has nodes at p = 0 and p =±2π/3
for θ = π/4. This critical behavior exists throughout the range θ ∈ [π/4,π/2), no
trimerization occurs and the system is a nematic phase. The transition at θ = π/4 is
supposedly of the Kosterlitz-Thouless type. The whole phase diagram is summarized in
Fig. 3.8 (see [355, 356] and references therein).

We first concentrate on the point θ= 0, and try to reproduce the value of the Haldane
gap∆Haldane/J with our approach. Fig. 3.9 shows the spectrum of topologically trivial
excitations obtained by diagonalizing HΨp

for D = 30, where values are colored according
to their degeneracy and scaled with respect to∆Haldane, which is determined below. Note
that we did not explicitly include the SU(2) symmetry in the computation. By finding the
best matrix product state representation with the time-dependent variational principle
up to a state convergence of η̃ = 10−10, the degeneracy of the excitation spectrum is
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Figure 3.8: Phase diagram of the bilinear-biquadratic Heisenberg model (taken from [356]).

automatically replicated up to about the same precision η̃. This spectrum is in qualitative
agreement with previous studies of Östlund and Rommer using their more restrictive
ansatz [227], and by White and Affleck using a dynamic density matrix renormalization
group simulation on a finite chain of up to 400 sites with values for the bond dimension
up to D = 2000 [338]. As expected, the elementary excitation around momentum p =π
is the S = 1 magnon excitation. N -particle excitations arise from coupling N magnons
with angular momentum S = 1, and can thus have all values of the angular momentum
S = 0,1,2, . . . ,N . The presence of a spin S excitation thus indicates that at this place a
band of N -particle excitations with N ≥ S is present. At p = 0 the two-particle band
should start at ω/J = 2∆Haldane and at p = π the three-particle band should start at
ω/J = 3∆Haldane. The disappearance of the elementary magnon excitation around p = 0
is addressed below. Our ansatz is not able to approximate the minimum value of these
multi-particle bands, and the difference grows as the number of particles increases, which
is in full correspondence with our expectation.

We now focus on the elementary magnon excitation with excitation energyω(p). The
minimum value is obtained at p = π and defines the Haldane gap ∆Haldane =ω(π)/J .
A very accurate estimate ∆Haldane = 0.41047925(4) was computed in [338]. Despite
the numerical complexity of their approach for computing the magnon excitation, the
obtainable accuracy on the dispersion relationω(p) is not very high and the estimate
for the Haldane gap was computed using the the ordinary ground state algorithm of the
density matrix renormalization group with bond dimension D = 500 on the same finite
lattice of 400 sites. With modest computational resources (about one hour computation
time on a quad-core computer) we obtain similar results for various values of D up to
D = 192, which were chosen so that all Schmidt values with a certain degeneracy (given
by half-integral spin representations: see Table 3.1) are present. This is the only way in
which the SU(2) symmetry has explicitly been exploited. We elaborate on this at the
end of this paragraph when studying the relationship with the linearized time-dependent
variational principle. We denote ∆(D)

Haldane
as the value of the Haldane gap obtained at
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Figure 3.9: Spectrum of the lowest lying excitations of the S = 1 Heisenberg antiferromagnet at
D = 30.

bond dimension D. We can expect that the error |∆∞
Haldane

−∆(D)
Haldane

| scales to zero as
D→∞. It has been shown that near critical points errors on the ground state energy
scale as a power law in D [357, 358]. However, since we are far from a critical point
and we are dealing with the error on an excitation energy, this might not be the best
assumption. Since we have at our disposal the local state error ε̃(D) = ε̃(AD ,AD ) in
the variationally optimal uniform matrix product state approximation |Ψ(AD )〉 at bond
dimension D , it is more likely to assume a scaling

|∆(∞)
Haldane

−∆(D)
Haldane

|= c ε̃α. (3.170)

We can estimate∆Haldane =∆
(∞)
Haldane

as the value that minimizes the norm of the residu-

als obtained when applying linear regression to log|∆(∞)
Haldane

−∆(D)
Haldane

| as function of
log(ε̃(D)) (see Figure 3.10). In fact, we can omit the absolute value | · | since the excitation
energies are monotonically increasing. With these approach, we can improve the previous
estimate for the Haldane gap by two more significant digits:

∆(∞)
Haldane

= 0.410479248463+6×10−12

−3×10−12 . (3.171)

Error bars were obtained by taking these values where the norm of the residuals is 10%
larger than at the optimal value, as indicated in Figure 3.10. It turns out that for the
optimal value of∆(∞)

Haldane
, the power law dependence on ε̃(D) has an exponent α≈ 2, just

as for the ground state energy (density). Recovering this theoretically expected scaling,
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Figure 3.10: An estimate ∆(∞)
Haldane

for the Haldane gap ∆Haldane is obtained as the value that
minimizes the norm of the residuals corresponding to a linear regression for the differences
log|∆(D)

Haldane
−∆(∞)

Haldane
| as function of log(ε̃(D)) (note that the tilde is missing in the legend on the

graph), for D = 24, 26, 30, 48, 64, 72, 96, 120, 142, 162 and 192. A confidence interval for∆(∞)
Haldane

can be obtained as the interval in which the norm of residuals is within 10% of the optimal value.

both for the ground state energy density as for the excitation energy, together with the
very high value of the correlation coefficient strengthens the reliability of our approach.
Indeed, the same procedure has been applied to the ground state energy density to yield
(see Figure 3.10).

e (∞) =−1.4014840389711+1×10−13

−2×10−13 . (3.172)

This estimate is compatible with the value obtained in the previous section at D = 1024.
The error on the excitation energy thus scales equally fast as the ground state energy
density. We can thus identify the largest contribution to the error on the excitation
energy as the subtraction of an estimate of the ground state energy that is too large. Since
the error on the excitation energy is about one order of magnitude larger than the error
on the energy density, this indicates that the excitation is affected by about ten of these
faulty subtractions. We could thus conclude that the excitation spreads out over around
ten sites. This is perfectly allowed by our ansatz, which can support excitations that
spread out over at least 2 logq D+1≈ 11 sites for D = 192 (and q = 3). As a final remark,
it is important to note that we can now determine any point in the dispersion relation
of the elementary magnon with approximately the same accuracy, in contrast to the
dynamic density matrix renormalization group simulation method of [338].

Around p = pabs ≈ π/4, the elementary magnon excitation seems to be absorbed in
the two-particle band, as is also sketched in Figure 3.11(a). It was argued in [338] that
the elementary excitation with S = 1 ceases to exist at this point. At this point, the
elementary excitation is no longer stable and decays into a two-particle excitation (with
S = 1). The most precise estimation of this particular momentum pabs made in [338]
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Figure 3.11: (a) The elementary magnon dispersion relations (black lines) for D = 6, 8, 12, 22, 24,
26, 30, 48, 64, 72, 96, 120, 142, 162 and 208, as well as the two-magnon band computed using the
quasi-exact dispersion relation at D = 208 (red region, with the minimum of the band indicated
by the solid red line). (b) The momentum pabs at which the dispersion relation of the elementary
magnon is absorbed into the two-magnon band as function of the bond dimension D. At the
theoretically exact value of pabs, the elementary magnon ceases to exist. If this does not happen,
the minimum of the two-magnon band in (a) would instead be given by the dashed red line.

is about 0.23π− 0.24π. Figure 3.11(b) indicates that the true value is definitely lower.
If we perform a similar strategy as for the Haldane gap to estimate pabs, we obtain (see
Figure 3.12)

p (∞)
abs
= 0.2183+8×10−4

−22×10−4 ×π. (3.173)

This value was also used in the computation of the two-magnon band in Figure 3.11(a).
Note that this does not conflict, since the only part of the two magnon-band that is
modified by the value of pabs is not required for the computation of pabs.

Unlike for the energy, there is no motivation why the error on pabs should scale as
a power law of the local state error ε̃(D). The correlation coefficient at the optimal
estimate of p (∞)

abs
is slightly smaller then for the power law scaling of the energies in

Figure 3.10. The biggest problem however is that the obtained optimum is very unstable
at the lower side, as follows from the left side of Figure 3.12. It could just as well be that
pabs = 0. Let us now try to investigate the nature of this elementary magnon excitation
in some more detail. For p slightly larger than pabs, the magnon excitation should not
so much be regarded as a true elementary excitation but rather as a bound state of two
magnons. This picture is strongly supported by the convergence behavior as a function of
D . For a point-like elementary excitation, such as the magnon near p =π, the excitation
energyω(D)(p) as function of the bond dimension D increases monotonically up to some
limit valueω(∞)(p). While the excitation can spread out over a few sites, this is perfectly
allowed by the ansatz. The main error in the excitation energy is the subtraction of a
ground state energy density that is too large. A two-magnon bound state on the other
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for the momentum pabs at which the elementary Heisenberg
magnon is absorbed in the two-magnon continuum is obtained as the value that minimizes the
norm of the residuals corresponding to a linear regression for the differences log|p (D)

abs
− p (∞)

abs
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in which the norm of residuals is within 10% of the optimal value.

hand could easily spread out over a number of sites that is much larger than (2 logq D+1).
Forcing it to be described by our ansatz requires a confinement of the two particles in a
smaller number of sites which results in an energy increase. If this is the major source of
errors, then the dispersion relationω(D)(p) is expected to decrease to some limit value
ω(∞)(p) as a function of D, since the particles can spread out more and more as D is
increased. Figure 3.13(c) indicates that the transition between a point-like elementary
excitation and a two-magnon bound state is around p ≈ 0.8π. Since the separation
between the two particles is finite, the convergence is expected to be fairly quick for
bound states. This is in sharp contrast with a genuine two-magnon state. In particular,
our ansatz is not suited for determining the minimum energy of the two-magnon band
and the convergence speed decreases rapidly for p < pabs in Figure 3.13(c). Since this
rapid decrease of convergence speed agrees nicely with the location of the estimate pabs
from Eq. (3.173), we can assume that the given estimate is accurate and one should not
expect a much smaller or zero value for pabs.

Let us now try to better understand the two-magnon bound state for pabs < p ® 0.8π.
The minimum of the two-magnon band describes two magnons with momenta p± =π+
(p±prel)/2. The minimum condition requiresω′

�
π+(p+prel)/2

�
=ω′

�
π+(p−prel)/2

�
,

withω′ the derivative of the dispersion relation for elementary magnons. Since prel is
uniquely defined, Heisenberg’s uncertainty relation requires a completely undefined
value for xrel. In the bound state, xrel can be given a finite value by making a superposition
of particles with different momenta p± =π+(p ± prel± k)/2. This picture defines an
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effective single particle problem

Ĥ =
k̂2

2meff(p)
+Veff(x̂rel; p)+O(k̂3), (3.174)

where x̂rel and k̂ are canonically conjugate variables satisfying [x̂rel, k̂] = i and

1

2meff(p)
=

1

2
ω′′(π+ p/2+ prel)+

1

2
ω′′(π+ p/2− prel), (3.175)

withω′′ the second derivative of the elementary magnon dispersion relation. Veff is the
p-dependent effective attraction between magnons that is required for the formation
of a bound state. The effective mass meff(p) is sketched in Figure 3.13(b). It becomes
negative for p ¦ 0.8π, so that a bound state would collapse to xr e l = 0 if no higher order
terms in k are present. This is compatible with the interpretation of the one-magnon
curve as point-like excitation for p ¦ 0.8π. The easiest way to explain the sudden
disappearance of the two-magnon bound state at some value p = pabs would be that the
effective mass meff(p) becomes to light for the effective potential Veff to support bound
states, since lighter mass results in a larger separation xrel between the two particles. The
effective mass meff(p) is indeed decreasing around the estimated value of pabs. However,
it reaches a maximum value meff(p) = +∞ at the very near momentum p ≈ 0.26π, and
the observed convergence speed is not at all compatible with the computed value of
meff(p) alone. A more complete model, including higher order terms in k as well as the
p-dependence of Veff(xrel, p) is required. This cannot be derived from our numerical
simulation and is beyond the current scope.

As a final aspect of the Heisenberg model, we study the degeneracy in its Schmidt
spectrum using the relation between our ansatz for excitations and the linearized flow
equations of the time-dependent variational principle [Eq. (3.165)]. We exactly diagonal-
ize the generalized eigenvalue problem of Eq. (3.165), where the gauge fixing conditions
onB+ andB− can be chosen such that the the matrix in the right hand side is equal to
1(q−1)D2 ⊕ (−1(q−1)D2). For bond dimension D = 24, a comparative results between the
eigenvalues of this larger eigenvalue problem and the eigenvalues with our variational
ansatz for excitations is sketched in Figure 3.14. The doubled spectrum of eigenvalues
of Eq. (3.165) is reflection invariant around zero. As argued in Subsection 3.4, the
difference between the eigenvalues obtained from the linearized flow equation of the
time-dependent variational principle and the eigenvalues obtained with our variational
ansatz in TΦp

are small for elementary excitations. The error between both is plotted for
the lowest S = 1 excitation, which is an elementary point-like excitation around p =π.
This difference should be compared to a (local) state error ε̃≈ 3× 10−3 for this modest
value of D . Hence, for larger values of the bond dimension D , we expect the difference
between the two approaches to be practically inexistent for elementary excitations. As p
decreases to zero, the difference between the two curves increases, as the nature of this
lowest S = 1 excitation changes from an elementary excitation two a two-particle bound
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state and later to a true two-particle state.

Since bond dimension D = 24 allows to take into account all Schmidt vectors with the
same degenerate Schmidt value, we expect that the minimum is unique. In contrast,
at D = 23 or D = 25 the variational optimization has to choose between one of two
Schmidt vectors to keep for every bipartition resulting from a cut between two sites.
The variational optimum is no longer unique: there will be a flat valley of equally good
choices A that produce the same energy expectation values 〈Ψ(A)|Ĥ |Ψ(A)〉. Different
values of A correspond to different choices of Schmidt vector associated to the smallest
Schmidt coefficient. A first effect of this degenerate valley of energy optima is that
the location of the energy optimum with an imaginary time simulation according to
the time-dependent variational principle converges much slower. The effect on the
excitation spectrum obtained with the variational ansatz and with the linearized flow
equation is shown in Figure 3.15. While the variational ansatz |Φ(B ;A)〉 still produces
the correct excitation spectrum, the linearized flow equation produces a fake zero-mode.
Indeed, let A(s) be a one-parameter group of tensors A that runs through this valley.
Then 〈Ψ(A(s))|Ĥ |Ψ(A(s))〉 is s -independent. Since all of these are variational optima, we
automatically obtain 〈Ψ(A(s))|Ĥ |Φp (B ;A(s))〉 = 0 for any |Φp (B ;A(s))〉 ∈ T⊥MPS(A(s)).
We also obtain

d2

ds2
〈Ψ(A(s))|Ĥ |Ψ(A(s))〉

�����
s=0

=

2 〈Φ0(B ;A|Ĥ |Φ0(B ;A)〉+ 〈Ψ(A)|Ĥ |Υ0,0(B ,B ;A)〉+ 〈Υ0,0(B ,B ;A)|Ĥ |Ψ(A)〉=
h
B† B

†
i  HΦ0

MΥ0,0

MΥ0,0
HΦ0




B
B


= 0

with A= A(0) and B = dA/ds(0). Hence, the Hessian of the energy appearing in the
left hand side of Eq. (3.165) for p = 0 has a zero eigenvalue, and so does the generalized
eigenvalue equation of Eq. (3.165) itself. The variational ansatz that we have promoted
in this section does not suffer from the same artefact. This observation can also help in
detecting interesting degeneracies in the Schmidt spectrum.

We now turn to the more general bilinear-biquadratic Heisenberg model in the non-
critical region −π/4<θ <+π/4. As explained in the beginning of this paragraph, the
model becomes critical at the end points. As θ decreases from 0 to −π/4, the excitation
energy of the elementary magnon around p =π decreases until the gap in the system
becomes zero (see Figure 3.16). Simultaneously, the entanglement increases as can be
noticed by the Schmidt-values shifting upwards. At θ=−0.24π, the elementary magnon
has a slightly negative excitation energy at p = π. While this is of course an artefact
of the low value of the bond dimension D = 24, since the critical point is not until
θ = −0.25π, it does indicate a tendency of these magnons to condense, resulting in a
ground state that breaks translation invariance down to invariance under shifts over two
sites. Indeed, for θ < −π/4 the ground state of the system has a dimer configuration.
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While a zero (negative) excitation energy of the elementary magnon at p =π results in
zero (negative) excitation energies for two-magnon excitations with total momentum
p = 0, the excitation energies found with our ansatz are positive at p = 0, as required by
the optimality of our uniform matrix product state approximation. The negative energy
for the elementary excitation at p =π indicates that we could have found a lower energy
density if we would have used a two-periodic matrix product state with bond dimension
D = 24.

The same analysis can be repeated for θ increasing from 0 to π/4, which is sketched in
Figure 3.17. For θ slightly larger than 0, the excitation energy of the elementary magnon
around p = π increases, resulting in smaller correlation length and a decrease of the
entanglement entropy (as indicated by the Schmidt values shifting downwards). Indeed,
at θ= arctan(1/3)≈ 0.1024π this is the AKLT-model, for which the ground state has an
exact matrix product state representation with D = 2. For θ= 0.10π, the importance
of the Schmidt coefficients λα for α > 2 has strongly decreased. If θ is increased further,
the excitation energy of the elementary magnon starts to decrease around p = 2π/3 and
eventually a zero mode develops. Once again, the excitation energy is slightly negative
for θ = 0.24π, which is an artefact of the small bond dimension D = 24. This could
again be interpreted as an indication for condensation of elementary magnons with
momentum 2π/3 in the phase transition at θ=π/4, which would result in the breaking
of translation invariance down to invariance under shifts over three sites. However, in the
exact solution no such trimerization occurs and the model remains critical throughout
θ ∈ [π/4,π/2). Hence, while the matrix product state approximation and derived
methods for excitations can provide valuable information about the phase of a system
and the nature of a phase transition, such information is not always reliable and should
be used carefully.
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Figure 3.13: (a) One-magnon curve (green line) and the minimum of the two-magnon band (blue
line) obtained at D = 208. (b) Effective mass meff(p) for the two-magnon bound state. (c) The
convergence of the one-magnon curve as a function of D: |ω(D)(p)−ω(min)(p)| is plotted for
D = 24, 48, 64, 72, 96, 120, 142, whereω(min)(p) is equal toω(D=208)(p) for p > pabs and equal to
the minimum of the two-magnon band for p < pabs. The red dashed line indicates the position of
pabs, based on the estimate of Eq. (3.173). The red area shows the transition region from elementary
point-like excitation to a two-magnon bound state.
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Figure 3.14: Comparison of the excitation spectrumω obtained with the linearized flow equation
of the time-dependent variational principle [Eq. (3.165)] (green dots) with the excitation spectrum
obtained with our variational ansatz for excitations (red circles), for the Heisenberg model studied
at bond dimension D = 24. Also shown is the difference between the dispersion relationsω1(p)
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Figure 3.15: Similar comparison of the excitation spectrumω obtained with the linearized flow
equation of the time-dependent variational principle [Eq. (3.165)] (green dots) with the excitation
spectrum obtained with our variational ansatz for excitations (red circles), for the Heisenberg
model at bond dimension D = 23 and bond dimension D = 25.
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Figure 3.16: Excitation spectrum (left) and Schmidt spectrum (right) for the bilinear-biquadratic
antiferromagnetic Heisenberg model in the region θ ∈ (−π/4,0] obtained with a matrix product
state ansatz with bond dimension D = 24.
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Figure 3.17: Excitation spectrum (left) and Schmidt spectrum (right) for the bilinear-biquadratic
antiferromagnetic Heisenberg model in the region θ ∈ [0,π/4) obtained with a matrix product
state ansatz with bond dimension D = 24.
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S = 1/2 and S = 1 XXZ antiferromagnet

To study topologically non-trivial excitations in systems with spontaneous symmetry
breaking, we now turn towards the anisotropic XXZ antiferromagnet, for which the
Hamiltonian is given by

ĤXXZ = J
∑
n∈Z

Ŝ x
n Ŝ x

n+1+ Ŝ y
n Ŝ y

n+1+∆Ŝ z
n Ŝ z

n+1, (3.176)

with J > 0. We study this model both for S = 1/2 spins (Ŝ x,y,z = σ̂ x,y,z/2) and for
S = 1 spins. The anisotropy parameter explicitly breaks the SU(2) invariance, reducing
it to a U(1) × Z2 symmetry, where U(1) contains the elements {exp(iθ

∑
n Ŝ z

n ), and
the Z2 group contains the elements {1̂, exp

�
iπ
∑

n Ŝ x
n

�}. We could just as well have

chosen Ŝ y in the definition of Z2, or any linear combination cos(θ)Ŝ x + sin(θ)Ŝ y to
which Ŝ x is transformed by an element from U(1). For∆ sufficiently large, this model
transforms into the classical Ising model Ĥ ∼∑n Ŝ z

n Ŝ z
n+1 and has antiferromagnetic order

corresponding to the local order parameter (−1)n Ŝ z
n . Since this spontaneous symmetry

breaking also induces a breaking of translation invariance, we apply a spin flip exp(iπŜ x )
to every second site, so as to obtain a new Hamiltonian

Ĥ ′XXZ = J
∑
n∈Z

Ŝ x
n Ŝ x

n+1− Ŝ y
n Ŝ y

n+1−∆Ŝ z
n Ŝ z

n+1, (3.177)
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Figure 3.18: Spectrum of the lowest lying excitations of the S = 1/2 XXZ antiferromagnet with
anisotropy parameter∆= 4 at D = 33. Red circles indicate of topologically non-trivial excitations
whereas green squares indicate topologically trivial excitations.

Let us first discuss the S = 1/2 case, where the XXZ model is exactly solvable for all
values of ∆ using the Bethe ansatz [359]. The antiferromagnetic phase is realized all
the way up to the critical value∆c = 1, where the model turns into the critical S = 1/2
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Figure 3.19: (a) Simulation results for∆(D)XXZ as function of the anisotropy parameter∆, obtained
with our ansatz for topologically non-trivial excitations for various values of the bond dimension D
ranging from D = 10 up to D = 512 (red circles), as well as the exact result∆(∞)XXZ =∆XXZ obtained

with the Bethe ansatz (solid black line). (b) Error on the results for the gap∆(∞)XXZ−∆(D)XXZ versus

error on the ground state energy density e (D)XXZ− e (∞)XXZ for various values of the bond dimension D
ranging from D = 10 to D = 512.

Heisenberg model and full SU(2) invariance is recovered, hence forbidding symmetry
breaking. Figure 3.18 displays the full spectrum of excited states obtained with our
ansatz at D = 33 for ∆ = 4, resulting in (q − 1)D2 = 1089 topologically non-trivial
and 1089 topologically trivial excitations (full diagonalization becomes computationally
demanding for much larger values of D). As pointed out by Fadeev and Takhtajan in
[360], the elementary particle excitations in the symmetry broken phase are topologically
non-trivial kinks, and all topologically trivial excitations are compound states containing
an even number of kinks, in full accordance with our numerical results. The energy gap
of the XXZ model is the value of the kink dispersion relation at its minima, i.e. at p = 0
and p =π. Because this gap belongs to a topologically non-trivial excitation that only
comes in pairs on lattices with periodic boundary conditions, the value of the energy gap
calculated in [359] using the Bethe ansatz on a lattice with periodic boundary conditions
is twice the exact valueω(0)/J =ω(π)/J =∆XXZ. The exact gap∆XXZ as function of
the anisotropy parameter∆ is given by

∆XXZ =
π

2

sinh(Φ)

Φ

+∞∑
n=−∞

1

cosh
�
(2n+1)π2

2Φ

� , with Φ= arccosh(∆). (3.178)

Figure 3.19(b) shows results for ∆(D)
XXZ

as function of the anisotropy parameter ∆, as
obtained with our variational ansatz for topologically non-trivial excitations with bond
dimension D. Estimated values are now smaller than the exact result and, contrary to
the case of topologically trivial excitations, can be negative even at momentum zero.
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Positivity of the results is no longer guaranteed. The Bethe ansatz also provides us
with an exact value for the energy density eXXZ in the ground state as function of the
anisotropy parameter∆, which is given by

eXXZ = sinh(Φ)
+∞∑

n=−∞

1

1+ exp (2Φ|n|) , with Φ= arccosh(∆). (3.179)

We can then compare the error between the ground state energy e (D)
XXZ

density obtained

with a uniform matrix product state with bond dimension D and the exact result e (∞)
XXZ
=

eXXZ (where e (D)
XXZ

> e (∞)
XXZ

due to the variational principle) with the error between∆(D)
XXZ

and the exact result∆(∞)
XXZ
=∆XXZ given in Eq. (3.178). For small values of D , the error

on the ground state energy density converges quadratically faster than the error of the
energy gap. Hence, the energy gap converges much slower like most other observables
that do not commute with the Hamiltonian. But for∆> 1, when a finite gap is present
in the system, there is a transition point from where the error on the energy gap starts to
decrease equally fast as the error on the ground state energy. The corresponding value
of D is determined by the natural width of the excitation. Beyond this value of D, the
largest contribution to the error of the gap is due to the subtraction of a ground state
energy density that is too large, just as was the case for the topologically trivial excitation
in the S = 1 Heisenberg antiferromagnet of the previous paragraph. The offset between
the error on the energy density and the error on the gap can roughly be interpreted
as the number of times the energy density has been subtracted and thus as the width
of the excitation. For example, around ∆= 1.6 the difference between both errors is
roughly one order of magnitude, whereas the size of the gap and thus the inverse width
of the excitation is about 0.1 in natural units. As∆ approaches the critical value∆= 1,
the width of the excitation and thus the value of D at the transition point increases. At
∆ = 1, this transition point has shifted to infinity, and the gap converges only as the
square root of the energy for arbitrarily large values of the bond dimension D .

As a final example, we now examine the XXZ antiferromagnet for S = 1. This model is
no longer exactly solvable, but has an more interesting excitation spectrum with several
elementary excitations. For∆= 1, we recognize the S = 1 Heisenberg antiferromagnet
which has no symmetry breaking and is in a gapped, topologically ordered phase. There
is a phase transition to a symmetry broken state for some critical value ∆c > 1. This
model was studied by Mikeska in [361] with a mean field approach and the critical
point was pinpointed at∆c ≈ 2. In the classical limit∆→∞, the ground states are the
antiferromagnetic states |· · · ↑↓↑↓↑↓ · · ·〉 and |· · · ↓↑↓↑↓↑ · · ·〉. On top of that, the following
elementary excitations can be found

(a) kinks withω = 2∆J : |· · · ↑↓↑↑↓↑ · · ·〉 (a1) and |· · · ↑↓↑ 0 ↓↑ · · ·〉 (a2)

(b) spin deviation state withω = 2∆J : |· · · ↑↓↑ 0 ↑↓ · · ·〉
(c) topologically non-trivial bound state withω = 3∆J : |· · · ↑↓ 00 ↓↑ · · ·〉
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Figure 3.20: Spectrum of the lowest lying excitations of the S = 1 XXZ antiferromagnet with
anisotropy parameter∆= 3 at D = 32. Red circles indicate topologically non-trivial excitations
whereas green squares indicate topologically trivial excitations. We refer to the text for more
information about the indicated branches.

(d) topologically trivial bound state withω = 3∆J : |· · · ↑↓ 00 ↑↓ · · ·〉
These states are expected to exist at finite ∆ throughout the antiferromagnetic phase.
Fig 3.20 shows the lowest lying excited states for ∆= 3 with the different elementary
excitations indicated. Of the three states with energyω around 2∆, the kink (a2) receives
a first order correction from the kinetic term Ŝ x

n Ŝ x
n+1+ Ŝ y

n Ŝ y
n+1, resulting in large opposing

energy changes around momentum p = 0 and p = π. States (a1) and (b ) only receive
second order corrections from the kinetic term and are less strongly affected (and have
corrections in the same direction). States (c) and (d) are only marginally stable and will
be absorbed in the first continuous band of topologically non-trivial and topologically
trivial excitations if ∆ is further lowered. (Note that excitation (c) cannot decay into
topologically trivial excitations and is still stable at∆= 3, according to Fig. 3.20). These
results proof that our ansätze for topologically trivial and non-trivial excitations are able
to produce the full set of elementary excitations, and is able to accurately obtain their
excitation energy away from the critical point.

4. Summary and conclusion

In this chapter, we have discussed in great detail the matrix product state as a variational
ansatz. The properties of physical states within the variational manifoldMMPS as well
as the properties of the matrix product state representation Ψ : AMPS 7→ MMPS have
been surveyed. All of this is well known in the literature. We have however contributed
by performing the same study to the tangent plane TMPS. A precarious study of the
properties of the tangent plane had not yet been developed, as its use only became
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clear through the application of the time-dependent variational principle and the recent
introduction of the ansatz for momentum eigenstates in [346].

In the second section we have applied the time-dependent variational principle to the
variational class of matrix product states, and illustrated numerically (for uniform matrix
product states) how this defines a new algorithm that has the same computational effi-
ciency as existing algorithms based on the time-evolving block decimation, while solving
a number of important issues of such algorithms. Translation invariance and other
symmetries are automatically preserved, both for real and imaginary time simulations.
Using the time-dependent variational principle with imaginary time evolution results in
a very powerful algorithm to find solutions of the time-independent variational principle.
For real time evolution, a symmetric integrator of the flow equations was implemented
that is extremely stable and preserves first integrals over long simulation times.

In the third section, it was shown how the tangent plane TMPS constructed at a varia-
tionally optimal (uniform) matrix product state defines a natural ansatz for studying
low-lying excitations of one-dimensional quantum spin chains. This ansatz can easily be
generalized to also include topologically non-trivial excitations (kinks or domain walls)
in systems with (discrete) symmetry breaking. We have illustrated how this variational
strategy can be implemented efficiently, and we have obtained some very accurate results
for dispersion relations of elementary excitations in quantum spin chains.
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4
CONTINUOUS MATRIX PRODUCT STATES

FOR QUANTUM FIELDS

In the previous chapter we have introduced a variational ansatz that counters Feynman’s
second and third objection for extended lattice systems: MMPS is a manifold of non-
Gaussian ansatz states that allow for an efficient evaluation of expectation values. Since
matrix product states do not naturally overcome Feynman’s first objection, they do fail
at critical points where ξc/a →∞. However, because they are so efficient, the bond
dimension D that determines the variational flexibility can be chosen very large and
critical behavior can be approached very closely.

For field theories, few methods —variational or otherwise— allow to work directly in
the continuum. Numerical approaches require a finite number of degrees of freedom
in order to fit the problem in the memory of a computer. For compact systems such
as nuclei, atoms and molecules, an expansion into a finite-dimensional basis is possible,
but for extended systems this eventually results in a discretization to an effective lattice
system. This chapter introduces a new variational ansatz for field theories in d = 1 spatial
dimensions that was developed by Verstraete and Cirac in 2010 [362]. This ansatz is
formulated in the continuum and does not require an underlying lattice approximation. It
can be considered to be the continuum limit of a special subclass of matrix product states
and is therefore called the continuous matrix product state. Most results that were obtained
with matrix product states in the previous chapter can also be derived for continuous
matrix product states. The discrete operations that were required in the previous chapter
will naturally be cast into a continuum form. Due to the very short history of these
states, most of the results in this chapter have not yet been published, nor are there
any other publications to compare to. These results were derived in collaboration with
J. Ignacio Cirac, Tobias J. Osborne and Frank Verstraete.

1. Definition and properties of the manifoldMcMPS

Consider a one-dimensional continuum R = [−L/2,+L/2] that accommodates N
bosonic and/or fermionic particle species, created and annihilated by the operators ψ̂†

α

and ψ̂α with α= 1, . . . ,N . These satisfy the general commutation or anticommutation
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relations

ψ̂α(x)ψ̂β(y)−ηα,βψ̂β(y)ψ̂α(x) = 0, ψ̂α(x)ψ̂
†
β
(y)−ηα,βψ̂

†
β
(y)ψ̂α(x) = δα,βδ(x − y),

(4.1)

where ηα,β =−1 if both α and β represent fermionic particles and ηα,β = 1 as soon as
one of the two particles species α or β is bosonic. We always write sums over the species
index α explicitly and do not use Einstein’s summation convention with respect to this
index.

We can generalize the Fock construction from Section 1.2 of Chapter 1 to this problem in
order to obtain the Hilbert spaceH(F)R . We define the variational manifold of continuous

matrix product statesMcMPS(D) ∈H(F)R as

McMPS = {|Ψ[Q, R1, . . . , RN ]〉 | ∀Q :R →CD×D ;∀Rα :R →CD×D ,∀α= 1, . . . ,N},
(4.2)

where the continuous matrix product state |Ψ[Q, R1, . . . , RN ]〉 with bond dimension D
is given by

|Ψ[Q, R1, . . . , RN ]〉¬

tr

 
BPexp



∫ +L/2

−L/2
dx Q(x)⊗ 1̂+

N∑
α=1

Rα(x)⊗ ψ̂†
α
(x)



!
|Ω〉 , (4.3)

with Pexp the path ordered exponential (that orders arguments increasingly from left
to right) and |Ω〉 the empty vacuum that is annihilated by ψ̂α(x), ∀α= 1, . . . ,N . B is a
D ×D matrix that acts in the ancilla space CD and encodes the boundary conditions.
For a system with periodic boundary conditions one can choose B = 1D . In case of open
boundary conditions, we can choose B = vRv

†
L with vL and vR D -dimensional boundary

vectors. We do not include B in the set of variational parameters, as it can often be
completely fixed and does not enter in physical expectation values in the thermodynamic
limit. In contrast to the case of generic matrix product states at finite lattices, we cannot
use a space-dependent bond dimension D(x), since the required continuity of D in
combination with its discrete character enforces a constant value. Neither can we absorb
the boundary vectors into the matrices Q(−L/2), Rα(L/2) and Q(L/2), Rα(L/2) in the
case of open boundary conditions.

Henceforth, we compactly denote a continuous matrix product state |Ψ[Q, R1, . . . , Rn]〉
as |Ψ[Q,{Rα}]〉. It will always be clear from the context how many and which par-
ticle species are present. Most of the derivations in this chapter will for the sake of
simplicity and ease of notation be restricted to a single bosonic particle, for which the
continuous matrix product state is denoted as |Ψ[Q, R]〉. The variational manifold
McMPS(D) is not a vector space, since the representation of the sum of two elements
|Ψ[Q,{Rα}]〉+ |Ψ[Q ′,{R′α}]〉 requires in the most general case a continuous matrix

186



§1. Definition and properties of the manifoldMcMPS

product state |Ψ̃[Q̃,{R̃α}]〉 ∈McMPS(D̃) with bond dimension D̃ = 2D , where we choose
(∀x ∈ [−L/2,+L/2])

Q̃(x) =Q(x)⊕Q ′(x),

R̃α(x) = Rα(x)⊕R′
α
(x), ∀α= 1, . . . ,N

B̃ = B ⊕B ′.

The variational manifold does however contain almost complete rays of states, since
for any state |Ψ[Q,{Rα}]〉 ∈ McMPS(D) and any λ ∈ C0 = C \ {0} we can also repre-
sent λ |Ψ[Q,{Rα}]〉 as a continuous matrix product state with bond dimension D as
|Ψ[Q ′,{R′

α
}]〉, where Q ′(x) =Q(x)+µ(x)1D and R′

α
(x) = Rα(x) with

exp(
∫ +L/2

−L/2
dxµ(x)) = λ.

A special case is obtained for λ = 0, since this requires to redefine Q(x) as Q ′(x) =
Q(x)−∞1D . Hence, the null state is not contained withinMcMPS(D) but only in its
closure. Correspondingly, the variational manifoldMcMPS(D ′) with D ′ <D is not a subset
ofMcMPS(D). For example, if the boundary matrices are fixed to B ′ = 1D ′ and B = 1D
(periodic boundary conditions), then a representation of the continuous matrix product
state |Ψ′[Q ′,{R′

α
}]〉 with bond dimension D ′ as a continuous matrix product state

|Ψ[Q,{Rα}]〉 with bond dimension D >D ′ requires Q =Q ′⊕ (−∞×1D−D ′ ) and Rα =
R′
α
⊕ (0×1D−D ′), henceMcMPS(D ′) is only included in the closure ofMcMPS(D).

The embedding of |Ψ[Q,{Rα]〉 ∈McMPS(D) in the Fock spaceH(F)R for finite |R| can be
made explicit by rewriting it as

|Ψ[Q,{Rα]〉=
+∞∑
k=0

N∑
α1,...,αk=1

∫
−L/2≤x1≤···≤xk≤L/2

dx1 · · ·dxk φα1,...,αk
(x1, . . . , xk )

× ψ̂†
α1
(x1) · · · ψ̂†

αk
(xk ) |Ω〉 (4.4)

with

φα1,...,αk
(x1, . . . , xk ) =

tr
�

BPe
∫ x1
−L/2

Q(y)dy Rα1
(x1)Pe

∫ x2
x1

Q(y)dy · · ·Rαk
(xk )Pe

∫ L/2
xk

Q(y)dy
�

. (4.5)

Note that the k-particle wave functions φα1,...,αk
(x1, . . . , xk ) are only defined for x1 ≤

· · · ≤ xk . It can be extended to any order of the arguments by using the commutativity or
anticommutativity of the creation operators that multiply it in Eq. (4.4). Put differently,
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for any order of the arguments we can define

φα1,...,αk
(x1, . . . , xk ) = 〈Ω|ψ̂αk

(xk ) · · · ψ̂α1
(x1)|Ψ[Q,{Rα}]〉 . (4.6)

The non-relativistic kinetic energy requires that these functions are sufficiently regular,
which imposes certain constraints on the matrix functions Q and Rα that are to be
discussed in Subsection 1.3. We do thus not yet attempt to define the parameter space
of the variational manifoldMcMPS(D). As for matrix product states, there is a parameter
redundancy in the continuous matrix product state representation. For example, if
B = 1D (periodic boundary conditions) the physical state is invariant under a redefi-
nition Q(x)← gQ(x)g−1 and Rα(x)← g Rα(x)g

−1 with g ∈ GL(C, D). The full set
of local gauge transformations that leave the physical state invariant is constructed in
Subsection 1.5.

We can already define the tangent plane TMcMPS
[Q,{Rα}] =TcMPS[Q,{Rα}] at a certain

point |Ψ[Q,{Rα}]〉 ∈McMPS. For further reference, we first define

Û (y, z) = Pexp



∫ z

y
dx Q(x)⊗ 1̂+

N∑
α=1

Rα(x)⊗ ψ̂†
α
(x)


 , (4.7)

where Û (y, z) ∈ L(H⊗CD ) with CD the ancilla space, i.e. it is a D × D matrix of
operators. The matrix functions Q and Rα that appear in Û (y, z) will always be clear
from the context. If now the collective index i combines both virtual (matrix) indices
(α,β), we define a general tangent vector |Φ[V ,{Wα};Q,{Rα}]〉 as

|Φ[V ,{Wα};Q,{Rα}]〉= |Φ[Q,{Rα}][V ,{Wα}]〉

=
∫ +L/2

−L/2
dx


V i (x)

δ

δQ i (x)
+

N∑
β=1

W i
β
(x)

δ

δRi
β
(x)


 |Ψ[Q,{Rα}]〉

=
∫ +L/2

−L/2
dx tr


BÛ (−L/2, x)


V (x)⊗ 1̂+

N∑
β=1

Wβ(x)⊗ ψ̂†
β
(x)


 Û (x, L/2)


 |Ω〉 .

(4.8)

Note that by choosing V = 1D and Wα = 0 (∀α= 1, . . . ,N ) we obtain

|Φ[V ,{Wα};Q,{Rα}]〉= |R| |Ψ[Q,{Rα}]〉= L |Ψ[Q,{Rα}]〉 ,

so that |Ψ[Q,{Rα}]〉 ∈TcMPS[Q,{Rα}]. The orthogonal complement of |Ψ[Q,{Rα}]〉
in TcMPS[Q,{Rα}] is denoted as T⊥cMPS[Q,{Rα}].
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1.1. The continuum limit of matrix product states

The continuous matrix product state |Ψ[Q,{Rα}]〉 was originally constructed in [362]
as the continuum limit of a certain subclass of matrix product states. Let us explain this
construction in some more detail. We approximate the continuumR = [−L/2, L/2] by
a latticeL with lattice spacing a and N = L/a sites, where at the end we send a→ 0. On
every site of the lattice we can create and annihilate particles of type α by acting with
the creation and annihilation operators ĉ†

α
(n) and ĉα(n). The local basis on site n thus

consists of the states |0〉n (no particles), |α〉n = c†
α
(n) |0〉n , |α,β〉n = c†

α
(n)c†

β
(n) |0〉n , . . .

On this lattice, we can define a matrix product state |Ψ[A]〉 with matrices As (n) where
s can take values 0, α, (α,β), . . . If the local basis is infinite-dimensional, this matrix
product state definition is only formal, i.e. it cannot be used for practical computations.
In the limit a → 0, the number of sites L/a in the lattice L goes to infinity. As we
have concluded in the previous chapter, the matrix product state representation is not
restricted to a single Fock space in the thermodynamic limit and different matrix product
states are generally orthogonal due to the infrared orthogonality catastrophe. Since we
now aim to create quantum field states within the Fock spaceH(F)R , we need to restrict to
a special subclass of matrix product states where the total number of particles is finite
(on average: so that 〈N̂ 〉 is finite). Since a finite number of particles has to be distributed
over a diverging number of sites L/a, most of the sites in the latticeL will on average be
empty. So A0 will have to be the dominant matrix, and it turns out that the continuous
matrix product state |Ψ[Q,{Rα}]〉 ∈ H(F)R can be obtained from the continuum limit

(a → 0) of the matrix product state |Ψ[A]〉 ∈ HL by identifying ψ̂†
α
(na) = ĉ†

α
(n)/
p

a
and

A0(n) = 1D + aQ(na),

Aα(n) =
p

aRα(na),

A(α,β)(n) =





a
2 [Rα(na)Rβ(na)+ηα,βRβ(na)Rα(na)], α 6=β
a
2 Rα(na)2, α=β

(4.9)

. . .

together with |Ω〉 = |0〉 = ⊗n∈L |0〉n , ∀n = −L/2a,−L/2a + 1, . . . ,+L/2a − 1. This
equivalence can be obtained from a Taylor expansion of the exp-operator, and is only
completely mathematically rigorous when the entries of Q and Rα are finite and the
operators ψ̂†(x) are bounded (i.e. not for bosons). Most results for continuous matrix
product states in the remainder of this chapter can be derived from this correspondence
with matrix product states, but we aim to derive these results directly in the continuum
as much as possible.

The correspondence with matrix product states is useful for concluding that the en-
tanglement of one half of the chain with the other half (in the case of open boundary

189



CHAPTER 4. CONTINUOUS MATRIX PRODUCT STATES FOR QUANTUM FIELDS

conditions) is limited by the upper bound log D . By restricting to matrix product states
within a single Fock space in the thermodynamic limit, we avoid the orthogonality
catastrophe. The infrared orthogonality catastrophe of matrix product states in the ther-
modynamic limit would turn into an ultraviolet catastrophe when this infinitely-sized
lattice L would correspond to the continuum limit of a finitely sized continuum R .
Physically, this ultraviolet catastrophe is avoided because the finite number of particles
induce a physical cutoff aphys that is given, not by the lattice spacing a → 0 but by
aphys = ρ

−d = ρ−1 with ρ= 〈N̂ 〉/L the particle density. Note however that continuous
matrix product states still obey the infrared orthogonality catastrophe when formulated
in the thermodynamic limit (see Subsection 1.6). The presence of a physical length scale
can be detected from the physical dimensions of Q and Rα, which are given by [Q] = `−1

and [R] = `−1/2 with ` a generic length dimension. The nature of the physical cutoff
aphys and its relation to Q and Rα is discussed in Subsection 1.6. Shifting the cutoff from
the lattice spacing a to a physical value aphys is a very important step in the definition of
continuous matrix product states. Matrix product states with finite bond dimension D
have a finite amount of entanglement to which corresponds in general a finite range of
fluctuations ξc/a. Hence, they have in general a finite dimensionless correlation length
ξ̃ = ξc/a. As a is scaled to zero while ξ̃ remains finite, the physical correlation length
ξc would also scale to zero. It is because the physical cutoff is shifted to a finite value
aphys (with thus aphys/a→∞) that continuous matrix product states are able to combine
a finite amount of entanglement with a finite physical correlation length ξc (with thus
ξc/a→∞ but with ξc/aphys finite). The physical correlation length ξc is computed in
Subsection 1.6.

1.2. Alternative constructions

Rather than trying to construct a continuous matrix product state as the continuum
limit of a matrix product state, we could also try to directly define the continuum limit of
the processes that define matrix product states. Unfortunately, the process of sequential
Schmidt decompositions has no straightforward generalization to the continuum and
neither has the definition of valence bond solids. One can however define a continuum
version of the sequential generation process that creates matrix product states, based
on the paradigm of continuous measurement [363]. The resulting process for creating
continuous matrix product states is described in [276].

Continuous matrix product states through continuous measurement

As in the discrete case, let the ancilla start in a state vR ∈Hancilla =CD . This ancilla can
be interpreted as a resonating cavity with D internal levels, in which there is a particle
source that creates particles of type α (α= 1, . . . ,N ). These particles gradually leave the
cavity due to cavity losses. Since particles leaving the cavity at different times occupy
different positions in space (since they travel at a certain speed which we set equal to one),
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the resulting configuration of particles can be interpreted as a static spatially distributed
quantum state. For a compact cavity (i.e. a zero-dimensional system), the resulting
quantum state is one-dimensional. By abstracting the process, a (d − 1)-dimensional
cavity can be used to encode a d -dimensional holographic quantum state. We refer
to [276] for the general case, and henceforth restrict to the d = 1 case that produces
continuous matrix product states.

Between two particle emissions, the cavity evolves according to a Hamiltonian K ∈
L(Hancilla) (a Hermitean D ×D matrix), whereas the physical state outside the cavity
does not evolve. By observing the particles that are emitted from the cavity, we are
continuously measuring the state of the cavity (i.e. ancilla). The process of continuous
measurement as described in [363] also requires to be formulated as the continuum
limit of a discrete process. Let thus the total Hamiltonian Ĥ ∈L(CD ⊗H) of the cavity
(ancilla) and the physical system outside the cavity be given by

Ĥ (t ) =K(−t )⊗ 1̂D

+
p

a
L/2a−1∑

n=−L/2a

δ(t − na)
N∑
α=1

iRα(−t )⊗ ĉ†
α
(−n)− iRα(−t )†⊗ ĉα(−n). (4.10)

A few remarks are in order. Firstly, this Hamiltonian is totally unrelated to any physical
Hamiltonian for which the state of the physical system might approximate the ground
state. This Hamiltonian models the evolution of the ancilla and its interaction with the
physical system as a measurement process. The matrices K and Rα contain the variational
parameters that make up the variational manifold of physical states. The measurement
process is run for t ∈ [−L/2,+L/2]. The actual measurement by emission of particles is
restricted to discrete times t = na, with n =−L/2a,−L/2a+ 1, . . . ,+L/2a− 1. When a
particle α is emitted (created) by ĉ†

α
at time t = na, it ends up at spatial position x =−t

at the end of the process. The emission is accompanied by an interaction with the cavity,
as dictated by the D×D matrix Rα(−t ). The unitarity of quantum mechanical evolution
requires that the Hamiltonian also contains the Hermitian conjugate term which absorbs
a particle of type α at time t = na. Since the initial state outside the cavity was |Ω〉, no
particle will be present at time t = na before one has been emitted. The interaction
term in Ĥ (t ) only implies that particles can be —but not necessarily have to be— emitted
at every discrete time event t = na. In the end, we send a → 0 in order to obtain a
continuous measurement. Finally, the overall coupling strength of this interaction terms
scales as

p
a, which can be motivated by the fact that a stronger coupling (lower power

of a) would result in the quantum Zeno effect (continuous measurement of the ancilla
state would prevent any evolution at all) whereas a weaker coupling (higher power of a)
would result in trivial dynamics of the ancilla (no measurement or interaction at all). At
the end of the measurement (t = L) we project the ancilla onto the state vL in order to
decouple it from the physical state. We hence obtain
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|Ψ[Q,{Rα}]〉= lim
a→0
v†

LT exp

�
−i
∫ +L/2

−L/2
dt Ĥ (t )

�
vR |Ω〉=

v†
LPexp

 
−i
∫ +L/2

−L/2
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)− iRα(x)

†⊗ ψ̂α(x)
!
vR |Ω〉 ,

where we have identified ĉα(n) =
p

aψ̂α(na) and introduced x =−t . Note that the time-
ordered exponential T exp orders its arguments increasingly from right to left, whereas
the path-ordered exponential Pexp is here defined to order its arguments increasingly
from left to right. The resulting expression does not yet correspond exactly to Eq. (4.3)
but it can easily be brought in the required form. We therefore repartition the integral
over x ∈ [−L/2,+L/2] into infinitesimal patches x ∈ [na− a/2, na+ a/2] and use the
Baker-Campbell-Hausdorff formula to prove

exp

 
−i
∫ na+a/2

na−a/2
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)− iRα(x)

†⊗ ψ̂α(x)
!

=exp

 
−i
∫ na+a/2

na−a/2
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)

!

× exp

�
+i
∫ na+a/2

na−a/2
dx iRα(x)

†⊗ ψ̂α(x)
�

× exp

 
1

2

∫ na+a/2

na−a/2
dx
∫ na+a/2

na−a/2
dy

N∑
α=1

�
iRα(x)

†⊗ ψ̂α(x),K(y)⊗ 1̂
�

+
N∑

α,β=1

�
iRα(x)

†⊗ ψ̂α(x), iRβ(y)⊗ ψ̂†
β
(y)
�
+ . . .

!

=exp

 
−i
∫ na+a/2

na−a/2
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)

!

× exp

�
+i
∫ na+a/2

na−a/2
dx iRα(x)

†⊗ ψ̂α(x)
�

× exp

 
−1

2

∫ na+a/2

na−a/2
dx

N∑
α=1

R†
α
(x)Rα(x)⊗ 1̂

+
1

2

∫ na+a/2

na−a/2
dx
∫ na+a/2

na−a/2
dy

N∑
α=1

�
iRα(x)

†,K(y)
�⊗ ψ̂α(x)

+
1

2

∫ na+a/2

na−a/2
dx
∫ na+a/2

na−a/2
dy

N∑
α,β=1

�
iR†
α
(x), iRβ(y)

�
±⊗ ψ̂†

β
(y)ψ̂α(x)+ . . .


 .

The dots (. . .) in this equation represent higher order terms, which all produce corrections
of O(a2) or higher and are unimportant when we restore a→ 0. Note that we do not
need to use a path-ordered exponential since these infinitesimal patches are assumed
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to be ordered correctly (i.e. with n increasing from left to right). This partition into
infinitesimally small patches that are correctly ordered is precisely the definition of the
path-ordered exponential. Since this operator is going to act on |Ω〉, all terms that end
with ψ̂α(x) do not contribute at O(a) and we can write

exp

 
−i
∫ na+a/2

na−a/2
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)− iRα(x)

†⊗ ψ̂α(x)
!
|Ω〉=

exp

 ∫ na+a/2

na−a/2
dx


−iK(x)− 1

2

N∑
α=1

Rα(x)
†Rα(x)


⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)

!
|Ω〉 ,

which eventually leads to

|Ψ[Q,{Rα}]〉= v†
LPexp

 ∫ +L/2

−L/2
dx Q(x)⊗ 1̂+

N∑
α=1

Rα(x)⊗ ψ̂†
α
(x)

!
vR |Ω〉 (4.11)

with

Q(x) =−iK(x)− 1

2

N∑
α=1

Rα(x)
†Rα(x). (4.12)

This construction allows to introduce a unitary operator Û (y, z) ∈L(CD ⊗H)

Û (y, z) = Pexp

 
−i
∫ y

z
dx K(x)⊗ 1̂+

N∑
α=1

iRα(x)⊗ ψ̂†
α
(x)− iRα(x)

†⊗ ψ̂α(x)
!

.

(4.13)
As proven above, the former operator is equivalent to the operator Û (y, z) defined in
Eq. (4.7) only when acting on the empty physical vacuum |Ω〉. But where the latter is not
unitary in general, the former is. The unitary operator in Eq. (4.13) conserves the norm
of vR⊗ |Ω〉. This does not imply that the continuous matrix product state |Ψ[Q,{Rα}]〉
is automatically normalized to unity, because the definition also involves a projection to
vL. But the unitarity of Û (y, z) in Eq. (4.13) does guarantee that |Ψ[Q,{Rα}]〉 can easily
be normalized and has no norm that diverges or goes to zero in the large volume limit.
We return to the specific parameterization of Q(x) as in Eq. (4.12) with K a Hermitian
matrix in Subsection 1.5.

From a physical perspective, this construction is important as it clearly sketches the
holographic properties of the continuous matrix product state. The physical state of a
one-dimensional system is described by a zero-dimensional boundary theory. The spatial
coordinate of the physical system acts as a time coordinate in the boundary theory. The
physical state is created because the boundary theory interacts with the physical system,
where the position of the interaction shifts linearly in time. This interaction results in
the boundary theory not being at equilibrium, as will become clear in the following
subsections. This holographic property is of course strongly related with the intrinsic
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area law for entanglement that is present in continuous matrix product states.

Continuous matrix product states and exactly solvable models

As for matrix product states, it has been established in [364] that the Bethe ansatz
solution of an exactly solvable model can be written in terms of a continuous matrix
product state representation. We do not further explore this connection.

1.3. Regularity properties

In Eq. (4.6) we have defined the k-particle wave functions φα1,...,αk
(x1, . . . , xk ). For

x1 ≤ · · · ≤ xk these are completely specified by Eq. (4.5). However, for general choices of
the matrix functions Q and Rα, the extension of Eq. (4.5) to all orders of its arguments
will not satisfy the required properties that a physical k-particle wave function should
satisfy. For example, the k-particle wave functions should be differentiable in each of its
arguments if the state has to produce a finite kinetic energy.

We can check the regularity of the k-particle wave functions by immediately evaluating
the kinetic energy in second quantization. The kinetic energy operator T̂ is given
by

T̂ =
∫ +L/2

−L/2
t̂ (x)dx, (4.14)

where the kinetic energy density t̂ (x) at position x is given by

t̂ (x) =
N∑
α=1

1

2mα


dψ̂†

α

dx
(x)




dψ̂α

dx
(x)


 . (4.15)

Let us try to compute the kinetic energy expectation value 〈Ψ[Q,{Rα}]|T̂ |Ψ[Q,{Rα}]〉
by first evaluating

ψ̂α(x) |Ψ[Q,{Rβ}]〉= tr
�

BV̂α(−L/2, x)Rα(x)Û (x,+L/2)
� |Ω〉 ,

with Û (y, z) given in Eq. (4.7) and V̂α(y, z) ∈L(CD ⊗H) similarly defined as

V̂α(y, z) = Pexp



∫ z

y
dx Q(x)⊗ 1̂+

N∑
β=1

ηα,βRβ(x)⊗ ψ̂†
β
(x)


 . (4.16)

It is clear that ψ̂α(x)Û (y, z) = V̂α(y, z)ψ̂α(x) if x 6∈ [y, z]. We can easily derive

d

dy
Û (y, z) =−

 
Q(y)⊗ 1̂+

N∑
α=1

Rα(y)⊗ ψ̂†
α
(y)

!
Û (y, z),
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d

dz
Û (y, z) = +Û (y, z)

 
Q(z)⊗ 1̂+

N∑
α=1

Rα(z)⊗ ψ̂†
α
(z)

!
,

d

dy
V̂α(y, z) =−


Q(y)⊗ 1̂+

N∑
β=1

ηα,βRβ(y)⊗ ψ̂†
β
(y)


V̂α(y, z),

d

dz
V̂α(y, z) = +V̂α(y, z)


Q(z)⊗ 1̂+

N∑
β=1

ηα,βRβ(z)⊗ ψ̂†
β
(z)


 ,

which we can use to obtain

d

dx
ψ̂α(x) |Ψ[Q,{Rβ}]〉

= tr


BV̂α(−L/2, x)

�
[Q(x), Rα(x)]+

dRα
dx
(x)
�

Û (x,+L/2)


 |Ω〉

+ tr


BV̂α(−L/2, x)

� N∑
β=1

�
ηα,βRβ(x)Rα(x)

−Rα(x)Rβ(x)
�⊗ ψ̂†

β
(x)
�

Û (x,+L/2)


 |Ω〉 . (4.17)

Different terms in the expectation value of the kinetic energy density t̂ (x) are propor-
tional to

〈Ψ[Q,{Rα}]|(dψ̂†(x)/dx)(dψ̂(x)/dx)|Ψ[Q,{Rα}]〉= ‖(dψ̂(x)/dx) |Ψ[Q,{Rα}]〉‖2.

Since the term on the second line of Eq. (4.17) has particles of any species β= 1, . . . ,N
being created at the fixed position x, this term is not normalizable. Put differently,
‖(dψ̂(x)/dx) |Ψ[Q,{Rα}]〉‖2 contains a divergent contribution δ(0) (in position space),
unless we impose

ηα,βRβ(x)Rα(x)−Rα(x)Rβ(x) = 0, ∀x ∈R . (4.18)

Hence the matrices Rα should have the same statistics as the particle creation operators to
which they couple. For systems with a single species of bosons, the regularity condition
in Eq. (4.18) is automatically fulfilled. For systems with multiple species of bosons, it
requires that any two matrices Rα(x) and Rβ(x) at the same spatial point x commute. If
α is a fermionic particle species, the corresponding matrix Rα(x) has to satisfy Rα(x)

2 =
0, ∀x ∈ R . When two particles of fermionic type α approach each other, there is
a corresponding factor Rα(y)Pexp(

∫ z
y dx Q(x))Rα(z) in the k-particle wave function

φα1,...,α,α,...αk
(x1, . . . , y, z, . . . , xk ). For y→ z , the exponential factor continuously evolves

towards 1D , so that the k-particle wave function continuously becomes zero. Hence, the
finiteness of the kinetic energy requires that two fermionic particles of the same type
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cannot come arbitrarily close together and thus imposes Pauli’s principle.

Differentiability of the wave function is sufficient for a finite kinetic energy, which is by
far the most important physical requirement of the wave function. It is also possible to
impose higher regularity constraints on the k-particle wave functions. Assuming that
Eq. (4.18) is fulfilled, the second order derivative (d2ψ̂α(x)/dx2) |Ψ[Q,{Rβ}]〉 contains a
contribution with infinite norm unless

�
dRα
dx
(x)+ [Q(x), Rα(x)], Rβ(x)

�

∓
= 0, (4.19)

where [·, ·]∓ is a commutator (−) or anticommutator (+) for η = ±1. If Q and Rα
obey all equations to have a ‘well defined’ derivative up to order n, so that the state
(dnψ̂(x)/dxn) |Ψ[Q,{Rβ}]〉 is normalizable, the sufficient condition to eliminate all

harmful contributions from (dn+1ψ̂(x)/dxn+1) |Ψ[Q,{Rβ}]〉 is

� dn

dxn Rα(x)+
dn−1

dxn−1
[Q(x), Rα(x)]+

dn−2

dxn−2
[Q(x),[Q(x), Rα(x)]]

+ . . .+[Q(x),[. . . ,[Q(x), R(x)]] . . .], Rβ(x)
�
∓
= 0. (4.20)

We can also impose regularity of the mixed derivatives of the k-particle wave function,
by first evaluating ψ̂α(x)ψ̂β(y) |Ψ[Q,{Rγ }]〉

ψ̂α(x)ψ̂β(y) |Ψ[Q,{Rγ }]〉=
θ(y − x) tr

�
BŴα,β(−L/2, x)ηβ,αRα(x)V̂β(x, y)Rβ(y)Û (y,+L/2)

� |Ω〉
+θ(x − y) tr

�
BŴα,β(−L/2, y)Rβ(y)V̂α(y, x)Rα(x)Û (x,+L/2)

� |Ω〉
with

Ŵα,β(y, z) = Pexp



∫ z

y
dx Q(x)⊗ 1̂+

N∑
γ=1

ηα,γηβ,γRγ (x)⊗ ψ̂†
γ
(x)


 . (4.21)

Note that the regularity condition in Eq. (4.18) is sufficient for the annihilation of two
particles ψ̂α(x)ψ̂β(y) |Ψ[Q,{Rγ }]〉 to be continuous at x = y. By firstly differentiating
to x, we obtain


dψ̂α

dx
(x)


 ψ̂β(y) |Ψ[Q,{Rγ }]〉

= θ(y − x) tr


BŴα,β(−L/2, x)ηβ,α

�dRα
dx
(x)+

�
Q(x), Rα(x)

��
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× V̂β(x, y)Rβ(y)Û (y,+L/2)


 |Ω〉

+θ(x − y) tr


BŴα,β(−L/2, y)Rβ(y)V̂α(y, x)

×
�dRα

dx
(x)+ [Q(x), Rα(x)]

�
Û (x,+L/2)


 |Ω〉 ,

where we have assumed the regularity condition in Eq. (4.18) to hold. This allows to
eliminate the fixed insertion of particles at position x as well as the terms obtained from
differentiating the Heaviside functions (i.e. the therms proportional to δ(x − y)). Such
terms would indeed arise if ψ̂α(x)ψ̂β(y) |Ψ[Q,{Rγ }]〉 were not continuous at x = y. If
we now also differentiate with respect to y, we obtain a divergent contribution

−δ(x − y) tr


BŴα,β(−L/2, x)

�
Rβ(x),

dRα
dx
(x)+ [Q(x), Rα(x)]

�

∓
Û (x,+L/2)


 |Ω〉 .

If we differentiated with respect to y first, and then to x, the divergent contribution
is

δ(x − y) tr


BŴα,β(−L/2, x)


dRβ

dx
(x)+ [Q(x), Rβ(x)], Rα(x)



∓

Û (x,+L/2)


 |Ω〉 .

Since we are working under assumption of the regularity condition [Rβ(x), Rα(x)]∓ =
0 [Eq. (4.18)], it is easy to show that [Rβ(x), dRα(x)/dx]∓ = −[dRβ(x)/dx, Rα(x)]
and also [Rβ(x),[Q(x), Rα(x)]]∓ =−[[Q(x), Rβ(x)], Rα(x)]∓, so that both diverging
contributions are equal. By imposing

dRβ

dx
(x)+ [Q(x), Rβ(x)], Rα(x)



∓
=−

�
Rβ(x),

dRα
dx
(x)+ [Q(x), Rα(x)]

�

∓
= 0

(4.22)
the mixed derivative (dψ̂α(x)/dx)(dψ̂β(y)/dy) |Ψ[Q(x),{Rγ }]〉 is well defined and nor-
malizable.

We conclude this subsection by investigating what else can be learned from the physical
considerations concerning particle statistics. The regularity conditions [Eq. (4.18)]
already require that the matrices Rα behave as the corresponding operators ψ̂α in terms
of commutation and anticommutation relations. In a physical system, we should not
have fermionic condensates, i.e. 〈Ψ|ψ̂α(x)|Ψ〉= 0 if particle species α is fermionic. This
is a consequence of the invariance of an physical Hamiltonian Ĥ under the action of the
parity operator P̂ , which flips the sign of any fermionic operator (P̂ ψ̂α(x)P̂ = ηα,αψ̂α(x))
and is thus idempotent (P̂ = P̂−1 = P̂ †). Note that P̂ is not equivalent to the spatial
parity (reflection) operator Π̂ introduced in Subsection 1.4 of Chapter 1, which is not
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necessarily idempotent for fermionic systems. We can construct P̂ as

P̂ = exp


iπ

∑
α fermionic

N̂α


= exp


iπ

∑
α fermionic

∫
R

dx ψ̂†
α
(x)ψ̂α(x)


 . (4.23)

Physical states satisfy P̂ |Ψ〉 = eiφ |Ψ〉, where the idempotence of P̂ requires φ = 0
or φ = π. Physical states thus consist completely of a superposition of states, all
of which have either an even or an odd number of fermions. Imposing this same
property for continuous matrix product states requires to explicitly incorporate the
Z2 symmetry (with group elements {1̂, P̂}) in the matrix structure of Rα and Q. Since
P̂ |Ψ[Q,{Rα}]〉= |Ψ[Q,{ηα,αRα}]〉, we should also be able to define a virtual operator
P ∈L(CD ) such that PQP−1 =Q and P RαP−1 = ηα,αRα. This operator can in principle
be x-dependent, but we should then be able to apply a local gauge transformation (see
Subsection 1.5) in order to make P space-independent. In addition, it is clear from the
definition that P is idempotent (P = P−1). If we can assume that P is diagonalizable, then
P divides the ancilla space CD into a sector with positive parity (eigenspace of eigenvalue
+1) and a sector with negative parity (eigenspace of −1). A global gauge transformation
brings P into the diagonal form

P =


 1D (+) 0D (+)×D (−)

0D (−)×D (+) −1D (−)


 (4.24)

with D (+)+D (−) =D . The required transformation behavior of Q and Rα then requires
the following decomposition

Q =


 Q (+) 0D (+)×D (−)

0D (−)×D (+) Q (−)


 , (4.25)

Rα =


 R(+)

α
0D (+)×D (−)

0D (−)×D (−) R(−)
α


 (particle species α is bosonic), (4.26)

Rα =


0D (+)×D (+) R(+−)

α

R(−+)
α

0D (−)×D (−)


 (particle species α is fermionic). (4.27)

In the continuous matrix product state |Ψ[Q,{Rα}]〉, all contributions with either an
even or an odd number of fermions in Eq. (4.4) drop out, depending on the boundary
matrices B . If only states with an even number of fermions are allowed, B should have a
decomposition as

B =


 B (+) 0D (+)×D (−)

0D (−)×D (+) B (−)


 , (4.28)
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whereas a decomposition of the form

B =


0D (+)×D (+) B (+−)

α

B (−+)
α

0D (−)×D (−)


 (4.29)

is required to select only states with an odd number of fermions.

1.4. Computation of expectation values

The analog of the transfer matrix Ĕ(n) = Ĕ1(n) of the matrix product state |Ψ[A]〉
(see Subsection 1.4 of the previous chapter) for the continuous matrix product state
|Ψ[Q,{Rα}]〉 is given by the transfer matrix T̆ defined as

T̆ (x) =Q(x)⊗1D +1D ⊗Q(x)+
N∑
α=1

Rα(x)⊗Rα(x). (4.30)

To this transfer matrix, we can also associate linear maps T(x) : L(CD ) 7→ L(CD ) and
eT(x) :L(CD ) 7→L(CD ) that maps virtual operators f (D ×D matrices) as

T(x)( f ) =Q(x) f + f Q(x)†+
N∑
α=1

Rα(x) f Rα(x)
†, (4.31)

eT(x)( f ) = f Q(x)+Q(x)† f +
N∑
α=1

Rα(x)
† f Rα(x). (4.32)

If |Ψ[A]〉 is the matrix product state with matrices A as in Eq. (4.9), then the transfer
operator T̆ (x) is related to the transfer operator Ĕ(n) of the matrix product state |Ψ[A]〉
by Ĕ(n) = 1̆+ aT̆ (na)+O(a2). The normalization of the continuous matrix product
state |Ψ[Q,{Rα}]〉 is given by

〈Ψ[Q,{Rα}]|Ψ[Q,{Rα}]〉= tr

��
B ⊗B

�
Pexp

�∫ +L/2

−L/2
T̆ (x)dx

��
(4.33)

The expectation value of any normally ordered operator Ô =: O[{ψ̂†
α
},{ψ̂β}] : can be

computed by first acting with all annihilation operators ψ̂α(x) on |Ψ[Q,{Rβ}]〉 as we
did in the previous subsection. We therefore use

ψ̂α(x)Û (y, z) = V̂α(y, z)Rα(x)Û (x, z)+ηα,αV̂α(y, z)ψ̂α(x) (4.34)

where the second term does not contribute since it acts on |Ω〉. Similarly applying all
creation operators ψ̂†

α
(x) in Ô to 〈Ψ[Q,{Rβ}]|, we can then evaluate the overlap. We
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therefore generalize the definition of the transfer operator as

T̆α(x) =Q(x)⊗1D +1D ⊗Q(x)+
N∑
β=1

ηα,βRγ (x)⊗Rγ (x), (4.35)

T̆α,β(x) =Q(x)⊗1D +1D ⊗Q(x)+
N∑
γ=1

ηα,γηβ,γRγ (x)⊗Rγ (x). (4.36)

Note that T̆α,α(x) = T̆ (x) since η2
α,β
= 1. We can for example evaluate the correlation

function

Gα,β(x, y) = 〈Ψ[Q,{Rα}]|ψ̂†
α
(x)ψ̂β(y)Ψ[Q,{Rα}]〉

= θ(x − y) tr
��

B ⊗B
�
Pe
∫+x
−L/2 T̆α,β(z)dz�Rβ(y)⊗1D

�
Pe
∫ x

y T̆α(z)dz

× �1D ⊗Rα(x)
�
Pe
∫+L/2

x T̆ (z)dz
�

+θ(y − x) tr
��

B ⊗B
�
Pe
∫+x
−L/2 T̆α,β(z)dz�

1D ⊗Rα(x)
�
Pe
∫ y

x T̆β(z)dz

× �Rβ(y)⊗1D
�
Pe
∫+L/2

y T̆ (z)dz
�

. (4.37)

Note that all quantities in this expression, even if we could store and manipulate variables
with a fully continuous x-dependence, are D2×D2 matrices. Since such matrices need to
be multiplied, this is an operation with computational complexity of O(D6), or O(D5) if
we exploit the tensor product structure.

For physical systems, we can further simplify Eq. (4.37). When only bosonic particle
species are present, all ηα,β = 1 and T̆ = T̆α = T̆α,β. In case of the presence of fermionic
particle species, we should incorporate the Z2 parity symmetry discussed in the previous
subsection. We can then define an idempotent parity superoperator P̆ = P ⊗ P and we
obtain P̆ T̆ P̆ = T̆ , as well as P̆ T̆α P̆ = T̆α and P̆ T̆α,βP̆ = T̆α,β. This allows to conclude

that 〈Ψ[Q,{Rα}]|ψ̂†
α
(x)ψ̂β(y)|Ψ[Q,{Rα}]〉= 0 if only one of the two particle species

α or β is of fermionic nature. But when α and β are both bosonic or both fermionic,
T̆α,β = T̆ and T̆α = T̆β.

In case of open boundary conditions, we can define virtual density matrices l (x), r (x) ∈
L(CD ) which are defined through the initial conditions l (−L/2) = vLv

†
L and r (+L/2) =

vRv
†
R and the first order differential equation

d

dx
l (x) = eT(x)�l (x)

�
,

d

dx
r (x) =−T(x)�r (x)

�
. (4.38)

To these density matrices l (x) and r (x) we associate vectors |l (x)), |r (x)) ∈CD ⊗CD in
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the ancilla product space. Formally, the solution is given by

(l (x)|= (l (−L/2)|Pe
∫ x
−L/2 T̆ (y)dy ,

|r (x)) = Pe
∫+L/2

x T̆ (y)dy |r (+L/2)).

We can hence write

〈Ψ[Q,{Rα}]|Ψ[Q,{Rα}]〉=
�

l (−L/2)

�����Pexp

�∫ +L/2

−L/2
T̆ (x)dx

������r (+L/2)
�

= (l (x)|r (x)) = tr[l (x)r (x)] , ∀x ∈R . (4.39)

From the correspondence with completely positive maps, it can be shown that both
maps T(x) and eT(x) preserve the positivity of the virtual density matrices l (x) and r (x),
so that the norm is guaranteed to be positive. Note that, for the special parameterization
of Q(x) in the continuous measurement interpretation [Eq. (4.12)], we can write the
determining differential equation for r (x) as

d

dx
r (x) =−T(x)�r (x)

�
=

− i[K(x), r (x)]− 1

2

N∑
α=1

{Rα(x)†Rα(x), r (x)}+
N∑
α=1

Rα(x)r (x)Rα(x)
†. (4.40)

This is a master equation in Lindblad form, that describes the non-equilibrium Markov
dynamics of the ancilla (i.e. the cavity). Starting from a pure state r (L/2) = vRv

†
R at

t =−x =−L/2, it evolves through interaction with the physical system (through the
interaction operators Rα). At a general time t =−x, the density matrix r (x) is no longer
pure: non-equilibrium evolution is a dissipative process. Note that the evolution is trace
preserving, since tracing the equation above results in d tr[r (x)]/dx = 0. In addition, the
corresponding map eT(x) satisfies eT(x)(1D ) = 0.

In systems which only contain bosons, all ηα,β = 1 and there is no need to intro-

duce T̆α(x), T̆α,β(x), etc. We can then deduce all expectation values of normally or-

dered operators Ô =: O[{ψ̂†
α
},{ψ̂α}] : from a generating functional Z[{J α},{Jα}] as (see

[276])

〈Ψ[Q,{Rα]| : O[{ψ̂†
β
},{ψ̂β}] : |Ψ[Q,{Rα}]〉=

O



�
δ

δJβ

�
,
�
δ

δJβ

�Z[{J α},{Jα}]
����
J α ,Jα=0

(4.41)

with δ /δJα the functional derivative with respect to Jα, and
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Z[{J α},{Jα}] = tr


�B ⊗B

�
Pexp

�∫ +L/2

−L/2
dx T̆ (x)

+
N∑
α=1

Jα(x)[Rα(x)⊗ 1D]+ J α(x)[1D ⊗Rα(x)]
�
, (4.42)

which for a system with open boundary conditions results in

Z[{J α},{Jα}] =
 

l (−L/2)

�����Pexp
�∫ +L/2

−L/2
dx T̆ (x)

+
N∑
α=1

Jα(x)[Rα(x)⊗ 1D]+ J α(x)[1D ⊗Rα(x)]
������r (+L/2)

!
. (4.43)

Let us now illustrate this approach by defining a generic Hamiltonian for a single-boson
system with open boundary conditions

Ĥ = T̂ + V̂ +Ŵ =
∫ +L/2

−L/2
dx

1

2m

�
d

dx
ψ̂†(x)

��
d

dx
ψ̂(x)

�
+
∫ +L/2

−L/2
dx v(x)ψ̂†(x)ψ̂(x)

+
1

2

∫ +L/2

−L/2
dx
∫ +L/2

−L/2
dy w(x, y)ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) (4.44)

describing particles with mass m that interact with an external potential v(x) and with
each other through two-particle interaction w(x, y) = w(y, x). Using Eq. (4.41) we find
(henceforth omitting the arguments Q and R in the state |Ψ〉)

〈Ψ|ψ̂†(x)ψ̂(x)|Ψ〉= (l (x)|R(x)⊗R(x)|r (x)), (4.45)

and

〈Ψ|ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x)|Ψ〉=
θ(y − x)(l (x)|R(x)⊗R(x)Pe

∫ y
x dz T̆ (z)R(y)⊗R(y)|r (y))

+θ(x − y)(l (y)|R(y)⊗R(y)Pe
∫ x

y dz T̆ (z)R(x)⊗R(x)|r (x)). (4.46)

Defining R(l )x (x) = R(x)† l (x)R(x) for every x ∈ [−L/2,+L/2] and solving

d

dy
(R(l )x (y)|= (R(l )x (y)|T̆ (y) (4.47)

for every y ∈ [x, L/2], we can write the expectation value of the potential and interaction
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energy as

〈Ψ|V̂ |Ψ〉=
∫ +L/2

−L/2
dx v(x)(l (x)|R(x)⊗R(x)|r (x)), (4.48)

〈Ψ|Ŵ |Ψ〉=
∫ +L/2

−L/2
dx
∫ +L/2

x
dy w(x, y)(R(l )x (y)|R(y)⊗R(y)|r (y)). (4.49)

To evaluate the expectation value of the kinetic energy, we compute

〈Ψ|
�

d

dx
ψ̂†(x)

��
d

dx
ψ̂(x)

�
|Ψ〉= lim

x→y

d2

dxdy
〈Ψ|ψ̂†(x)ψ̂(y)|Ψ〉

= lim
x→y

d2

dxdy

�
θ(y − x)(l (x)|(1D ⊗R(x))Pe

∫ y
x dz T̆ (z)(R(y)⊗ 1D )|r (y))

+θ(x − y)(l (y)|(R(y)⊗ 1D )Pe
∫ x

y dz T̆ (z)(1D ⊗R(x))}|r (x))
�

= lim
x→y

d

dx


θ(y − x)

�
l (x)

���1D ⊗R(x)
�
Pe
∫ y

x dz T̆ (z)

×
��

T̆ (y), R(y)⊗ 1D
�
+
�
dR(y)/dy ⊗ 1D

����r (y)�

+θ(x − y)
�

l (y)
��
��

T̆ , R(y)⊗ 1D
�
+
�
dR(y)/dy ⊗ 1D

��

×Pe
∫ x

y dz T̆ (z)�1D ⊗R(x)
���r (x)�


.

We have used the defining equations [Eq. (4.38)] in the computation of d(l (y)|/dy =
(l (y)|T̆ (y) and d|l (y))/dy =−T̆ (y)|l (y)). Since T̆ (y) =Q(y)⊗1D+1D⊗Q(y)+R(y)⊗
R(y), we obtain [T̆ (y), R(y)⊗ 1D] = [Q(y), R(y)]⊗ 1D and thus

〈Ψ|
� d

dx
ψ̂†(x)

�� d

dx
ψ̂(x)

�
|Ψ〉=

lim
x→y

�
θ(y − x)

�
l (x)

��1D ⊗
�
[Q(x), R(x)]+ dR(x)/dx

�
Pe
∫ y

x dz T̆ (z)

× �[Q(y), R(y)]+ dR(y)/dy
�⊗ 1D

��r (y)�

+θ(x − y)
�

l (y)
���[Q(y), R(y)]+ dR(y)/dy)⊗ 1DPe

∫ x
y dz T̆ (z)

× 1D ⊗
�
1D ⊗ [Q(x), R(x)]+ dR(x)/dx

���r (x)�
�

,

where we used the same trick. Note that derivatives with respect to the Heaviside
functions (which would produce a diverging contribution δ(x − y)) nicely cancel for
both derivatives to y and to x. As noted in the previous subsection, the regularity
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condition Eq. (4.18) is automatically fulfilled for the case of a single boson. We thus
obtain

〈Ψ|T̂ |Ψ〉= 1

2m

∫ +L/2

−L/2
dx
�

l (x)
���[Q(x), R(x)]+ dR(x)/dx

�

⊗ �[Q(x), R(x)]+ dR(x)/dx
���r (x)�. (4.50)

Note that this result could also be obtained by the general strategy outlined at the
beginning of this section, i.e. by acting directly on the continuous matrix product state
with the operators ψ̂(x) and dψ̂(x)/dx and only afterwards computing the expectation
values. However, the generating function approach is very general and relates nicely to
the standard approach that is used to compute expectation values in quantum field theory.
Note that, if we introduce N = L/a discretization points in the interval [−L/2,+L/2]
on which to solve the integrals and differential equations, the scaling of our approach
is O(N 2) if long-range interactions are present [due to the required computation of
R(l )x (y)] and only O(N ) if no long-range interactions are present [thus if w(x, y) ∼
δ(x − y)].

1.5. Gauge invariance in the manifold and its tangent plane

In the introduction of this section, we have already remarked that the continuous
matrix product state representation is invariant under a global transformation Q(x)←
Q̃(x) = gQ(x)g−1 and Rα(x) ← R̃α(x) = g Rα(x)g

−1, ∀α = 1, . . . ,N , provided that
we also transform the boundary matrix B ← B̃ = gB g−1. From the relationship with
matrix product states, we expect to be also able to have invariance under local gauge
transformations g (x) ∈ GL(C, D). By using the correspondence with matrix product
states [Eq. (4.9)] and the gauge transformations for matrix product states constructed in
Subsection 1.5 of the previous chapter, we can identify

Ã0(n) = g ((n− 1)a)A0(n)g (na)−1

= g ((n− 1)a)g (na)−1+ a g ((n− 1)a)Q(na)g (na)−1

= 1D + a
�
−dg

dx
(na)g (na)+ g (na)Q(na)g (na)−1

�
+O(a2),

Ãα(n) = g ((n− 1)a)Aα(n)g (na)−1

=
p

a g (na)Rα(na)g (na)−1+O(a3/2),

Ã(α,β)(n) = g ((n− 1)a)A(α,β) g (na)−1

=





a
2 [R̃α(na)R̃β(na)+ηα,βR̃β(na)R̃α(na)]+O(a2), α 6=β
a
2 R̃α(na)2+O(a2), α=β

. . .
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The associated gauge transformation for the continuous matrix product state is thus
given by

Q̃(x) = g (x)Q(x)g (x)−1− dg

dx
(x)g (x)−1, R̃(x) = g (x)R(x)g (x)−1, (4.51)

where Q̃(x) contains an additive contribution that can be recognized as the infinites-
imal parallel transport, familiar from Yang-Mills gauge theory. Note that the gauge
transformation g (x) should be differentiable and thus continuous in order to obtain
finite matrices Q̃(x) and R̃(x). We also need to transform the boundary matrix as
B̃ = g (L/2)B g (−L/2)−1. When B is fixed, we either need to restrict to gauge transforma-
tions with the boundary conditions g (−L/2) = g (+L/2) = 1D (in case of open boundary
conditions) or with g (−L/2) = g (+L/2) (in case of periodic boundary conditions where
B = 1D ). As for matrix product states, we can use the gauge fixing conditions to impose
a certain canonical form on the matrices Q(x) and Rα(x). We restrict to the case of open
boundary conditions where we have at our disposal virtual density matrices l (x) and r (x)
which we assume to be positive and to have full rank. Under a gauge transformation, they
are mapped to l̃ (x) = (g−1(x))† l (x)g−1(x) and r̃ (x) = g (x)r (x)g (x)†. We can choose a
gauge transformation g (x) = l (x)1/2 so that l̃ (x) = 1D . Since

d

dx
l̃ (x) = Q̃(x)† l̃ (x)+ l̃ (x)Q̃(x)+

N∑
α=1

R̃α(x)
† l̃ (x)R̃α(x),

we can insert l̃ (x) = 1D in order to find (henceforth dropping the tildes)

Q(x)†+Q(x)+
N∑
α=1

Rα(x)
†Rα(x) = 0. (4.52)

This automatically implies that Q(x) is of the form in Eq. (4.12). It is equivalent to
the left orthonormalization condition of matrix product states. This does not fix the
gauge freedom completely, and we can use the remaining gauge freedom g (x) ∈ U(D) to
diagonalize r (x) at every point x, hence obtaining the left-canonical form. Alternatively,
we could have chosen to set r (x) = 1D , which results in the right orthonormalization
condition

Q(x)+Q(x)†+
N∑
α=1

Rα(x)Rα(x)
† = 0. (4.53)

and implies that

Q(x) =−iK(x)− 1

2

N∑
α=1

Rα(x)Rα(x)
† (4.54)

with K(x) a Hermitian matrix. By then diagonalizing l (x) we have obtained the right-
canonical form. Note that the parameterization of matrices Q(x) and Rα(x) that auto-
matically satisfy the left or right orthonormalization condition is much easier then in the
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case of matrix products states, where no explicit parameterization exists and such a con-
dition has to be imposed manually by applying the corresponding gauge transformation.
Unfortunately, the assumption of l (x) and r (x) having full rank fails near x = −L/2
or x =+L/2 respectively, since l (−L/2) = vLv

†
L and r (+L/2) = vRv

†
R. This problem

does not occur with matrix product states because the boundary vectors can there be
absorbed into the matrices, resulting in a dynamic decrease of the bond dimension D
near the boundary. As noted in the beginning of this section, the bond dimension cannot
be space dependent for continuous matrix product states, which poses a problem that
has yet to be overcome.

As in the previous chapter, the multiplicative gauge transformations induce an additive
gauge equivalence in the tangent plane TcMPS. Let Q(η) and Rα(η) (∀α = 1, . . . ,N ) be
a one-parameter family of matrix functions, so that Q(η) :R 7→ CD×D : x 7→ Q(x;η)
and similarly for Rα(η). If we define Q(0) = Q : x 7→ Q(x), Rα(0) = Rα : x 7→ Rα(x)
together with dQ/dη(0) =V : x 7→V (x) and dRα/dη(0) =Wα : x 7→Wα(x), then we
can write

d

dη
|Ψ[Q(η), Rα(η)]〉

�����
η=0

= |Φ[V ,{Wα};Q,{Rα}]〉 . (4.55)

If we now chose a one-parameter family of gauge equivalent states, so that Q(x;η) =
g (x;η)Q(x)g (x;η)−1− ∂ g (x;η)

∂ x g (x;η)−1 and R(x;η) = g (x;η)R(x)g (x;η)−1, where the
one-parameter family of gauge transforms is given by g (x;η) = exp(ηh(x)) and h(x) ∈
CD×D , ∀x ∈R , then we can use the gauge invariance of the continuous matrix product
state representation to obtain |Ψ[Q(x;η), R(x;η)]〉= |Ψ[Q(x), R(x)]〉 and thus

|Φ[M[Q]Φ [h],{N[Rα]Φ,α [h]};Q,{Rα}]〉= 0, (4.56)

where the maps M[Q]Φ and N
[Rα]
Φ,α (∀α= 1, . . . ,N ) are given by

M
[Q]
Φ [h](x) = [h(x),Q(x)]− dh

dx
(x), N

[Rα]
Φ,α [h](x) = [h(x), Rα(x)]. (4.57)

The maps M[Q]Φ and N
[Rα]
Φ,α thus establish a linear homomorphism from functions h :

R 7→ CD×D to the kernel of the representation |Φ[V ,{Wα};Q,{Rα}]〉 of the tangent
plane TcMPS[Q,{Rα}]. The counting argument is now less rigorous as in the discrete
case. In general, we have D2 parameters in h(x) to eliminate D2 degrees of freedom from
{V (x),W1(x), . . . ,WN (x)} at every point x. The only choice of h that does not produce
a non-zero state in the kernel is the constant function h(x) = c1D with c ∈C. However,
since TcMPS[Q,{Rα}] also contains |Ψ[Q,{Rα}]〉, we have to impose orthogonality
〈Ψ[Q,{Rα}]|Φ[V ,{Wα};Q,{Rα}]〉= 0, where

〈Ψ[Q,{Rα}]|Φ[V ,{Wα};Q,{Rα}]〉=
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∫ +L/2

−L/2
dx (l (x)|V (x)⊗1D +

N∑
α=1

Wα(x)⊗Rα(x)|r (x)). (4.58)

We can both fix the gauge of the state and restrict to tangent vectors |Φ[V (x),W (x)]〉 ∈
T⊥cMPS[Q,{Rα}] by imposing that

(l (x)|

V (x)⊗1D +

N∑
n=1

Wα(x)⊗Rα(x)


= 0, (4.59)

to which we refer as the left gauge fixing condition. Analogously, we can also define a
right gauge fixing condition


V (x)⊗1D +

N∑
α=1

Wα(x)⊗Rα(x)


 |r (x)) = 0. (4.60)

Note that once again we can easily find a parameterization that respects these gauge
fixing conditions. For the right gauge fixing condition, it is sufficient to parameterize
V as V (x) =

∑N
α=1 Wα(x)r (x)Rα(x)

† r (x)−1 and Wα(x) can be chosen freely. Simi-
larly, the left gauge fixing is automatically satisfied by the parameterization V (x) =∑N

α=1 l (x)−1Rα(x)
† l (x)Wα(x) where Wα(x) can be chosen freely.

Finally, note that we can even define a gauge transformation g (x) for the continuous
matrix product state |Ψ[Q,{Rα}]〉 ∈McMPS so that

Q̃(x) = g (x)Q(x)g (x)−1− dg

dx
(x)g (x)−1 = 0. (4.61)

It is sufficient to choose

g (x) = Pexp



∫ x

x0

Q(y)dy


 (4.62)

with x0 some arbitrary starting point. Hence, the continuous matrix product state can
now be written as

|Ψ[{R̃α}]〉= tr

 
B Pexp



∫ +L/2

−L/2
dx

N∑
α=1

R̃α(x)⊗ ψ̂†
α
(x)



!
|Ω〉 . (4.63)

This formulation is close in spirit to the bosonic mean field ansatz

|ϕ〉= exp

�∫ +L/2

−L/2
ϕ(x)ψ̂†(x)dx

�
|Ω〉

with ϕ a scalar (complex-valued) function, since it identifies the mean field ansatz with a
continuous matrix product state with bond dimension D = 1. This mean field ansatz
lies at the basis of the Gross-Pitaevskii equation [247, 248], that is still today used with
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great success. Since all variational degrees of freedom are now contained in the matrices
R̃α(x), and all gauge degrees of freedom have been eliminated (except for a global gauge
transformation if B = 1D ). The tangent plane is now spanned by the vectors

|Φ[{W̃α};{R̃α}]〉=
∫ +L/2

−L/2
dx tr

�
B Pe

∫ x
−L/2

∑N
α=1 R̃α(u)⊗ψ̂†

α
(y)dy

×



N∑
β=1

W̃β(x)⊗ ψ̂†
β
(x)


Pe

∫+L/2
x

∑N
α=1 R̃α(u)⊗ψ̂†

α
(y)dy

�
|Ω〉 . (4.64)

However, we will not employ this particular formulation in the remainder of this section.
For example, for a translation invariant state |Ψ[Q, Rα]〉, the matrices Q and Rα are
x-independent (see next subsection). This particular gauge transformation will map
the x-independent matrices Rα to x-dependent matrices R̃α(x) = e+Q x Rαe−Q x , so that
translation invariance is less easily recognized.

1.6. Translation invariance and the thermodynamic limit

For the ground state of translation invariant Hamiltonians, we can use the manifold
MucMPS of uniform continuous matrix product states |Ψ(Q,{Rα})〉, which are obtained
from taking Q(x) = Q and Rα(x) = Rα constant x-independent D × D matrices in
|Ψ[Q,{Rα}]〉. This approach is valid both for a finite system with periodic boundary
conditions (B = 1D ) or for a system in the thermodynamic limit (|R|= L→∞ or thus
R →R). We henceforth restrict to this last case. The transfer operator T̆ =Q ⊗ 1D +
1D ⊗Q+R⊗R also becomes translation invariant and Pexp[

∫ z
y dx T̆ ] = exp[T̆ (z− y)].

The normalization of the state |Ψ(Q, R)〉 is given by limL→∞ tr
�
(B ⊗ B)exp(T̆ L)

�
. If

µ=maxλ∈σ(T̆ ){ℜ(λ)}, then 〈Ψ(Q,{Rα})|Ψ(Q,{Rα})〉 ∼ limL→∞ exp(µL). Normalizing

this state by multiplying it with exp(−µL) results in Q←Q−µ/21D and T̆ ← T̆ −µ1̆,
so that the new transfer operator T̆ has at least one eigenvalue for which the real part
is zero and no eigenvalue has a positive real part. Let us assume that the eigenvalue
λ with ℜλ = 0 is unique. If |r ) is the corresponding right eigenvector, then we can
write the eigenvalue equation as T(r ) = λr with r the associated virtual density matrix.
Hermitian conjugation learns that T(r †) = λr †, so that the uniqueness of the eigenvalue
with ℜλ= 0 implies that λ= λ= 0 and r † = eiφ r , where we can choose the phase of
the eigenvector so that r is Hermitian. Similarly, the virtual density matrix l associated
to the left eigenvector |l ) can also be chosen Hermitian. If these vectors are normalized
such that (l |r ) = 1, then limL→∞ exp(T̆ L) = |r )(l | and we obtain

〈Ψ(Q,{Rα})|Ψ(Q,{Rα})〉= (l |B ⊗B |r ) = (v†
L rvL)(v

†
RlvR), (4.65)
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where the last equation is valid in the case of open boundary conditions. A full catego-
rization of the eigenvalue structure of T̆ can be obtained by identifying

T̆ = lim
a→0

1

a
ln Ĕ (4.66)

with Ĕ the corresponding transfer operator of the uniform matrix product state |Ψ(A)〉
with A related to Q and Rα as in Eq. (4.9). Clearly then, the transfer operator Ĕ of a
pure matrix product state has a single eigenvalue 1 that maps to the eigenvalue zero of T̆ ,
while all other eigenvalues of Ĕ lie strictly within the unit circle and map to eigenvalues
of T̆ with strictly negative real part.

For uniform continuous matrix product states, the gauge invariance is restricted to
global transformations Q← Q̃ = gQ g−1 and Rα← R̃α = g Rα g−1 with g ∈ GL(C, D).
This gauge transformation can be used to impose the left or right orthonormalization
conditions. Left orthonormalization boils down to fixing the left eigenvector l of
eigenvalue 0 to l = 1D , which requires that Q = −iK − 1/2

∑N
α=1 R†

α
Rα with K a

Hermitian matrix. The remaining unitary gauge equivalence can be used to diagonalize
r , bringing Q and Rα in the left-canonical form. The right-canonical form is obtained
analogously. In principle, an exact computation of the left and right eigenvectors l and r
corresponding to the eigenvalue with largest real part λ of the transfer operator T̆ are
computationally costly operations [O(D6)]. By using an explicit parameterization of
the left-canonical form in terms of Rα and the Hermitian matrix K , we know exactly
that λ = 0 and l = 1D . It is then possible to obtain r with an iterative solver with
computational efficiency O(D3).

By imposing the physical requirements discussed at the end of Subsection 1.3, we can
define the parity superoperator P̆ as in Subsection 1.4. Since P̆ T̆ P̆ = T̆ , we can expect
that the left and right eigenvectors |l ) and |r ) corresponding to the zero eigenvalue satisfy
(l |P̆ = (l | and P̆ |r ) = |r ), or thus P † l P = l and P r P † = r . Note that we can always
choose the gauge such that P is Hermitian. In addition, it is easy to proof that T̆α also
has an eigenvalue zero even if α refers to a fermionic particle species so that T̆α 6= T̆ .
The corresponding left and right eigenvectors are in that case given by l P = P † l and
P r = r P †. We now assume that the boundary vectors are chosen so that only states
with an even number of fermions are allowed, so that (v†

L rvL)(v
†
RlvR) 6= 0. We can then

compute correlation functions as

Cα,β(x, y) = 〈Ψ(Q,{Rα})|ψ̂†
α
(x)ψ̂β(y)|Ψ(Q,{Rα})〉

= θ(x − y)(l |[Rβ⊗1D]PeT̆α(x−y)[1D ⊗Rα]|r )
+θ(y − x)(l |[1D ⊗Rα]PeT̆α(y−x)[Rβ⊗1D]|r ), (4.67)

where we have used the physical requirement T̆α,β = T̆ and T̆α = T̆β for non-vanishing
correlation functions (see Subsection 1.4). Note that we have introduced a new symbol C
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for these correlation functions, because they are set apart from the correlation functions
G and its connected counterpart Γ defined in Subsection 2.2 of Chapter 1 by the fact
that ψ̂α and ψ̂†

β
do not form a complete set of operators (when bosons are present).

The correlation function Cα,β(x, y) is translation invariant and we define Cα,β(x, y) =
Cα,β(y − x). When α is bosonic and β fermionic, we automatically have Cα,β(x) = 0 if
the parity considerations from Subsection 1.3 are correctly built in. In the long range
limit, we obtain lim|x|→∞Cα,β(x) = (l |Rβ⊗1D |r )(l |1D ⊗Rα|r ). When both α and β
refer to fermionic particle species, this limiting value is automatically zero (also under the
assumption that parity is correctly built into the matrices). When both indices refer to
bosonic particles, a non-zero value is possible in the case of Bose-Einstein condensation.
We should then define a connected correlation function, which decays exponentially
as lim|x|→∞Cα,β(x) = O(exp[−|x|/ξc]) with ξc = (ℜλ1)

−1, where λ1 is the eigenvalue

of T̂α with second largest real part (i.e. skipping eigenvalue λ0 = 0). Clearly, Cα,β(x) is
continuous at x = 0. We can then compute the first derivative, which is only continuous
at x = 0 if we impose the regularity conditions in Eq. (4.18). This is another way to
derive these conditions. If Eq. (4.18) is satisfied, then the second derivative of Cα,β(x) at
x = 0 (which gives the expectation value of the kinetic energy density t̂ up to a factor
−1/2m) is finite and automatically continuous. The third derivative is then finite but
will not be continuous in general, without imposing further conditions as in Eq. (4.19)
or Eq. (4.20).

We define the Fourier transformed correlation function

nα,β(p, p ′) =
∫ +∞
−∞

dx

2π

∫ +∞
−∞

dx

2π
Cα,β(x, y)ei p x−i p ′y = δ(p ′− p)nα,β(p) (4.68)

with

nα,β(p) =
∫ +∞
−∞

dx

2π
Cα,β(x)e

−i p x ,

= (l |[1D ⊗Rα](−T̆α+ i p)−1[Rβ⊗1D]|r )
+ (l |[Rβ⊗1D](−T̆α− i p)−1[1D ⊗Rα]|r ). (4.69)

This expression is in principle ill-defined at p = 0 since T̆α has an eigenvalue zero. By
defining a projector Q̆ = 1̆− |r )(l | and introducing the notation Q̆(−T̆α ± i p)−1Q̆ =
(−T̆α± i p)P, we can rewrite nα,β(p) as

nα,β(p) = 2πδ(p)(l |1D ⊗Rα|r )(l |Rβ⊗1D |r )
+ (l |[1D ⊗Rα](−T̆α+ i p)P[Rβ⊗1D]|r )

+ (l |[Rβ⊗1D](−T̆α− i p)P[1D ⊗Rα]|r ). (4.70)

The first term is only present for bosonic particles that have condensed. It would also
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disappear in the proper Fourier transformation of the connected correlation function.
The large- p behavior of nα,β(p) follows from the regularity of Cα,β(x). If the regularity
conditions in Eq. (4.18) are satisfied, then the momentum-space correlation function
nα,β(p) decays for large values of p as O(Λ4/p4) (observe that nα,β(p) is a dimensionless

quantity). The eigenvalue spectrum of T̂α thus provides a definition for an ultraviolet cut-
off scale a =Λ−1. If we define Fourier transformed field operators Ψ̂ (p)—no confusion
between the state Ψ and the momentum-space operator Ψ̂ should arise— as

Ψ̂ (p) =
1p
2π

∫ +∞
−∞

dx ψ̂(x)e−i p x , (4.71)

then it is easy to see why we have used the suggestive notation nα,β for the Fourier
transform of Cα,β. We obtain

〈Ψ(Q,{Rα})|Ψ̂ †
α
(p)Ψ̂β(p

′)|Ψ(Q,{Rα})〉= δ(p − p ′)nα,β(p). (4.72)

Hence, nα,β(p) describes the occupation number of momentum levels. Rather than
defining the ultraviolet cutoff scale a =Λ−1 through the total particle density

ρα,β =
∫ +∞
−∞

d p

2π
nα,β(p), (4.73)

we have now defined a cutoff scale through the large momentum behavior of the mo-
mentum occupation number nα,β(p).

For two pure uniform continuous matrix product states |Ψ(Q,{Rα})〉 and |Ψ(Q ′,{R′
α
})〉

we can define a superoperator S̆ = Q ′ ⊗ 1D + 1D ⊗Q +
∑N

α=1 R′
α
⊗ Rα so that the

〈Ψ(Q,{Rα})|Ψ(Q ′,{R′α})〉 decays as limL→+∞ exp(λL), with λ the eigenvalue with lar-
gest real part of Ŝ . If the two uniform continuous matrix product states are inequivalent,
ℜ(λ) < 0 and there is an infrared orthogonality catastrophe. If ℜ(λ) = 0, then we
can define a phase φ = ℑ(λ) and a gauge transformation g ∈ GL(D;C) such that Q ′ =
gQ g−1+ iφ and R′

α
= g Rα g−1. With f being the right eigenvector corresponding to

eigenvalue λ= iφ of S̆, g can be obtained as g = f r−1.

Let us also illustrate how to compute the expectation value of a translation invariant
Hamiltonian. The generic Hamiltonian in Eq. (4.44) becomes translation invariant for
v(x) = v and w(x, y) = w(y − x) with w(x) = w(−x). Since the uniform continuous
matrix product state is extensive, expectation values are proportional to the volume
and it makes more sense to compute the expectation values of the kinetic, potential and
interaction energy densities t̂ , v̂ and ŵ. We obtain

〈Ψ(Q,{Rα})| t̂ |Ψ(Q,{Rα})〉=
1

2m
(l |[Q, R]⊗ [Q, R]|r ), (4.74)

〈Ψ(Q,{Rα})|v̂ |Ψ(Q,{Rα})〉= v(l |R⊗R|r ), (4.75)
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〈Ψ(Q,{Rα})|ŵ|Ψ(Q,{Rα})〉=
∫ +∞

0
dz w(z)(l |R⊗ReT̆ z R⊗R|r ). (4.76)

If w(z) has a Laplace transform L[w](σ) =
∫+∞

0 dzw(z)exp(−σ z) that is defined for
ℜσ ≥ 0, we obtain

〈Ψ|ŵ|Ψ〉= (l |R⊗R L[w](−T̆ )R⊗R|r ). (4.77)

Note that translation invariance has allowed to parameterize a field theory with a
continuous number of degrees of freedom by a discrete number of degrees of freedom.
Having l and r , the computational cost is O(D6) when long-range interactions are
present, since we then have to compute an arbitrary function L[w] of the transfer
operator T̆ . If only strictly local interactions are present w(x − y) ∼ δ(x − y), the
interaction energy (density) can be computed with computational complexity of O(D3)
just like the potential and the kinetic energy density. In special cases of long-range
interactions for which L[w] is extremely simple (e.g. exponentially decaying interaction),
an implementation with computational cost O(D3) can be constructed iteratively.

Finally we can construct the tangent vectors of |Ψ(Q,{Rα})〉. As in Subsection 1.6
of the previous chapter, it is fruitful to consider the complete tangent plane TcMPS at
the special uniform point |Ψ(Q,{Rα})〉, rather than to restrict to the tangent vectors
in TMucMPS

(Q,{Rα}) =TucMPS(Q,{Rα}). We can then decompose the complete tangent
plane into sectorsTΦp

of momentum p ∈R by introducing Fourier modes V (x) =V ei p x

and Wα(x) =Wαei p x in the generic tangent vectors of Eq. (4.8), hence defining

|Φp (V ,{Wα};Q,{Rα})〉= |Φ(Q,{Rα})
p (V ,{Wα})〉=

∫ +∞
−∞

dx ei p xv†
LÛ (−∞, x)

 
V ⊗ 1̂+

N∑
α=1

Wα⊗ ψ̂†
α
(x)

!
Û (x,+∞)vR |Ω〉 . (4.78)

As before, a one-parameter family of local gauge transformations g (x; s) = exp(s h(x))
with h(x) ∈ gl(D;C) induces a map to the kernel of the representation Φp of TΦp

by

setting h(x) = hei p x , so that

|Φp (M
(Q)
Φp
(h),{N(Rα)

α,Φp
(h)};Q,{Rα})〉= 0,

with

M
(Q)
Φp
(h) = [h,Q]− i p h and N

(Rα)
α,Φp
(h) = [h, Rα], ∀α= 1, . . . ,N . (4.79)

We henceforth omit the superscript notation of Q and Rα. The dimension of the kernel
of the map Φp is thus D2-dimensional, except at p = 0. This can easily be proven, since
for every non-zero h ∈ gl(D;C), MΦp

(h) 6= 0 or Nα,Φp
(h) 6= 0, ∀α = 1, . . . ,N . Indeed,
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suppose that MΦp
(h) = 0 and NΦp

(h) = 0. Imposing that

MΦp
(h)r +

N∑
α=1

Nα,Φp
(h)r R†

α
= 0

results in T̆ |h r ) = i p|h r ) which has no non-trivial solution except at p = 0, where we
find h = c1D with c ∈C. At nonzero momenta, we can use a gauge fixing condition to
reduce the number of parameters by D2. At p = 0, we can only reduce the number of
parameters by D2− 1 through gauge fixing. But whereas 〈Ψ(Q,{Rα})|Φp (V ,{Wα})〉= 0

for all nonzero momenta p, we obtain 〈Ψ(Q,{Rα})|Φ0(V ,{Wα})〉 ∼ (l |V ⊗ 1D +W ⊗
R|r ), where the proportionality factor is given by

∫+∞
−∞ dx = |R|=+∞. We thus need

to impose orthogonality to |Ψ(Q, R)〉 manually at p = 0, which allows to discard one
additional parameter. For any momentum p, we can uniquely fix the gauge of any
tangent vector in T⊥Φp

by setting (l |V ⊗ 1D +W ⊗ R = 0 or V ⊗ 1D +W ⊗ R|r ) = 0,

corresponding to the left and right gauge fixing conditions respectively.

1.7. Symmetries and quantum phases

As for matrix product states in Subsection 1.7 of the previous chapter, a continuous
matrix product state can be made to satisfy certain symmetry constraints. Translation
invariance, for one, has been studied in the previous section. Translation invariant
continuous matrix product states are obtained by the uniform representation where the
matrices Q and Rα x-independent, although an x-dependent gauge transform produces a
non-uniform continuous matrix product state that is still translation invariant. Whether
McMPS also contains translation invariant states that do not allow a uniform representa-
tion without increasing the bond dimension D is unknown, but seems likely.

Other spacetime symmetries, invariance under parity and time reversal transformations
in particular, can be treated much as in the case of matrix product states and produce the
same results. Ground states of systems which are time-reversal invariant —for simplicity
defined as Hamiltonians having real coefficients with respect to an expansion in the
operators ψ̂α(x) and ψ̂†

α
(x)— can be represented with real matrices Q and Rα. If the

ground state of a parity invariant Hamiltonian is being approximated, a representation
with complex-valued symmetric matrices Q and Rα can be used. Unfortunately, both
choices of gauge are incompatible. Time-reversal invariance combined with parity
invariant does not allow to represent the continuous matrix product state with real,
symmetric matrices Q and Rα. Such a choice would produce a real, symmetric transfer
operator T̆ with real eigenvalues, so that all correlations decay monotonically. No
periodic fluctuations (e.g. Friedel oscillations [365]) that are commonly associated to
systems with finite density would be allowed in such a continuous matrix product
state.
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For internal symmetry transformations Û that act as

Û ψ̂†
α
(x)Û † =

∑
β

uα,βψ̂
†
β
(x) (4.80)

we obtain Û |Ω〉= |Ω〉 and

Û |Ψ[Q,{Rα}]〉= |Ψ[Q,{
∑
β

uα,βRβ}]〉 . (4.81)

If the continuous matrix product state is to be invariant under this transformation, the
requirement is the existence of a gauge transformation gu such that

gu Q g−1
u =Q, gu Rα g−1

u =
∑
β

Rβuβ,α. (4.82)

If Û belongs to a symmetry group S, the matrices gu also constitute a representation of
S and the matrices Q and Rα transform as a scalar and as a vector respectively. Together
with the fact that the regularity condition Eq. (4.18) requires the matrices Rα to satisfy
the same (anti)commutation rules as the operators ψ̂†

α
, it is clear that Q and Rα are not

simply matrices with numbers but act as a physical objects in the ancilla space. The
holographic property of continuous matrix product states is thus even more manifest as
in the case of matrix product states. This insight may also provide a way to generalize
the concept continuous matrix product states to higher dimensions or to states with an
infinite-dimensional ancilla.

2. Time-dependent variational principle and excitations

We can now apply the time-dependent variational principle toMcMPS, as well as the
ansatz for studying the spectrum of low-lying excitations in TcMPS. These techniques
were discussed in Chapter 2 and applied to the class of matrix product states in Section 2
and Section 3 of the previous chapter respectively. We derive in this section all necessary
formula for computing with continuous matrix product states and their tangent vectors,
but omit a detailed discussion of the interpretation, which is analogous to the previous
chapter. In addition, we henceforth restrict to systems with a single bosonic particle
species for the sake of notational simplicity and apply our approach to the general
Hamiltonian in Eq. (4.44). Most results can trivially be generalized to the more general
case with an arbitrary number of particles present (at least when the regularity conditions
in Eq. (4.18) and the physical requirements concerning fermion parity are satisfied).
Occasionally, we state some comments regarding this generalization.

The time-dependent variational principle was first applied to the setting of continuous
matrix product states (see [366]) and only afterwards to matrix product states. While
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the time-dependent variational principle solves some fundamental issues with the time-
evolving block decimation based on the Lie-Trotter-Suzuki decomposition for matrix
product states, it was more urgently required for continuous matrix product states as
these are not susceptible to a treatment based on the Lie-Trotter-Suzuki decomposition.
The distinction between a ‘two-site’ operator such as the kinetic energy and a one-site
operator such as a local interaction disappears in the continuum. Another indication for
the impossibility of applying the time-evolving block decimation in the continuum, is
the fact that it works on matrix product states by locally increasing the bond dimension
between two sites (after which a reduction onto a matrix product state with original bond
dimension is required). In a continuous matrix product state, a local increase of bond
dimension is impossible. Luckily, the time-dependent variational principle provides an
approach for simulating time evolution without ever leaving the variational manifold
McMPS.

2.1. Time-dependent variational principle for generic continuous
matrix product states

The time-dependent variational principle for the manifoldMcMPS of generic continuous
matrix product states |Ψ[Q, R]〉 as defined in Eq. (4.3) is based on a computation of the
tangent vector

d

dt
|Ψ[Q(t ), R(t )]〉= |Φ[V (t ),W (t );Q(t ), R(t )]〉

with V (t ) : x 7→V (x; t ) = ∂ Q(x; t )/∂ t and W (t ) : x 7→W (x; t ) = ∂ R(x; t )/∂ t . We
first compute some relevant quantities. The overlap between two tangent vectors is given
by

〈Φ[V ,W ]|Φ[V ′,W ′]〉=
∫ +L/2

−L/2
dx (l (x)|W ′(x)⊗W (x)|r (x))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy
�

l (x)
��|�V ′(x)⊗ 1D +W ′(x)⊗R(x)

�
Pe
∫ y

x dz T̆ (z)

×�1D ⊗V (y)+R(y)⊗W (y)
�|r (y)�

+
∫ +L/2

−L/2
dx
∫ x

−L/2
dy
�

l (y)
���1D ⊗V (y)+R(y)⊗W (y)

�
Pe
∫ x

y dz T̆ (z)

×�V ′(x)⊗ 1D +W ′(x)⊗R(x)
���r (x)�. (4.83)

To compute more complex expectation values, we first evaluate (−L/2< x <+L/2)

ψ̂(x) |Φ[V ,W ]〉= v†
LÛ (−L/2, x)W (x)Û (x, L/2)vR |Ω〉
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+
∫ x

−L/2
dy v†

LÛ (−L/2, y)
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

× Û (y, x)R(x)Û (x, L/2)vR |Ω〉

+
∫ L/2

x
dy v†

LÛ (−L/2, x)R(x)Û (x, y)

×
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

Û (y, L/2)vR |Ω〉 . (4.84)

We also obtain that (without loss of generality we can set −L/2< x < y <+L/2)

ψ̂(y)ψ̂(x) |Φ[V ,W ]〉=
∫ x

−L/2
dz v†

LÛ (−L/2, z)
�

V (z)⊗ 1̂+W (z)⊗ ψ̂†(z)
�

× Û (z, x)R(x)Û (x, y)R(y)Û (y, L/2)vR |Ω〉
+
∫ y

x
dz v†

LÛ (−L/2, x)R(x)Û (x, z)
�

V (z)⊗ 1̂+W (z)⊗ ψ̂†(z)
�

× Û (z, y)R(y)Û (y, L/2)vR |Ω〉

+
∫ L/2

y
dz v†

LÛ (−L/2, x)R(x)Û (x, y)R(y)Û (y, z)

×
�

V (z)⊗ 1̂+W (z)⊗ ψ̂†(z)
�

Û (z, L/2)vR |Ω〉
+v†

LÛ (−L/2, x)W (x)Û (x, y)R(y)Û (y, L/2)vR |Ω〉
+v†

LÛ (−L/2, x)R(x)Û (x, y)W (y)Û (y, L/2)vR |Ω〉 . (4.85)

In addition, Eq. (4.84) allows to derive

d

dx
ψ̂(x) |Φ[V ,W ]〉=

∫ x

−L/2
dy v†

LÛ (−L/2, y)
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

× Û (y, x)
�
[Q(x), R(x)]+

dR

dx
(x)
�

Û (x, L/2)vR |Ω〉

+
∫ L/2

x
dy v†

LÛ (−L/2, x)
�
[Q(x), R(x)]+

dR

dx
(x)
�

Û (x, y)

×
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

Û (y, L/2)vR |Ω〉
+v†

LÛ (−L/2, x)
�

V (x)⊗ 1̂+W (x)⊗ ψ̂†(x)
�

R(x)Û (x, L/2)vR |Ω〉
−v†

LÛ (−L/2, x)R(x)
�

V (x)⊗ 1̂+W (x)⊗ ψ̂†(x)
�

Û (x, L/2)vR |Ω〉

+v†
LÛ (−L/2, x)

�
[Q(x),W (x)]+ [R(x),W (x)]⊗ ψ̂†(x)

+
dW

dx
(x)
�

Û (x, L/2)vR |Ω〉 ,
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which we can reorder to give

d

dx
ψ̂(x) |Φ[V ,W ]〉=

∫ x

−L/2
dy v†

LÛ (−L/2, y)
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

× Û (y, x)
�
[Q(x), R(x)]+

dR

dx
(x)
�

Û (x, L/2)vR |Ω〉

+
∫ L/2

x
dy v†

LÛ (−L/2, x)
�
[Q(x), R(x)]+

dR

dx
(x)
�

× Û (x, y)
�

V (y)⊗ 1̂+W (y)⊗ ψ̂†(y)
�

Û (y, L/2)vR |Ω〉

+v†
LÛ (−L/2, x)

�
[Q(x),W (x)]

+ [V (x), R(x)]+
dW

dx
(x)
�

Û (x, L/2)vR |Ω〉 . (4.86)

Note that the term with ψ̂†(x) at the fixed position x drops out, since single boson
systems automatically satisfy the regularity properties. For a system with multiple
species of particles, dψ̂α(x)/dx |Φ[V ,{Wβ}]〉 has a contribution containing

N∑
β=1

�
ηα,βWβ(x)Rα(x)−Rα(x)Wβ(x)

+ηα,βRβ(x)Wα(x)−Wα(x)Rβ(x)
�
⊗ ψ̂†

β
(x). (4.87)

This norm-divergent contribution disappears if Eq. (4.18) is satisfied at every time t ,
since imposing the regularity condition at all times implies that

∂

∂ t

�
ηα,βRβ(x; t )Rα(x; t )−Rα(x; t )Rβ(x; t )

�
= 0

with Rα(x; t ) = Rα(x) and ∂ Rα(x; t )/∂ t =Wα(x). This indeed results in Eq. (4.87).

For the generic Hamiltonian of Eq. (4.44), we obtain for the projection of the kinetic
energy

〈Φ[V ,W ]|T̂ |Ψ[Q, R]〉=
1

2m

∫ +L/2

−L/2
dx (l (x)|�[Q(x), R(x)]+

dR

dx
(x)
�

⊗ �[Q(x),W (x)]+ [V (x), R(x)]+
dW

dx
(x)
�|r (x))
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+
1

2m

∫ +L/2

−L/2
dx
∫ +L/2

x
dy (l (x)|�[Q(x), R(x)]+

dR

dx
(x)
�⊗�[Q(x), R(x)]+

dR

dx
(x)
�

×Pe
∫ y

x dz T̆ (z)�1D ⊗V (y)+R(y)⊗W (y)
�|r (y))

+
1

2m

∫ +L/2

−L/2
dx
∫ x

−L/2
dy (l (y)|�1D ⊗V (y)+R(y)⊗W (y)

�
Pe
∫ x

y dz T̆ (z)

× �[Q(x), R(x)]+
dR

dx
(x)
�⊗ �[Q(x), R(x)]+

dR

dx
(x)
�|r (x)), (4.88)

for the projection of the potential energy

〈Φ[V ,W ]|V̂ |Ψ[Q, R]〉=
∫ +L/2

−L/2
dx (l (x)|�R(x)⊗W (x)

�|r (x))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy v(x)(l (x)|�R(x)⊗R(x)

�
Pe
∫ y

x dz T̆ (z)

×�1D ⊗V (y)+R(y)⊗W (y)
�|r (y))

+
∫ +L/2

−L/2
dx
∫ x

−L/2
dy v(x)(l (y)|�1D ⊗V (y)+R(y)⊗W (y)

�

×Pe
∫ x

y dz T̆ (z)�R(x)⊗R(x)
�|r (x)), (4.89)

and for the projection of the interaction energy

〈Φ[V ,W ]|Ŵ |Ψ[Q, R]〉=
∫ +L/2

−L/2
dx
∫ +L/2

x
dy
∫ +L/2

y
dz w(x, y)(l (x)|�R(x)⊗R(x)

�
Pe
∫ y

x du T̆ (u)

× �R(y)⊗R(y)
�×Pe

∫ z
y du ′ T̆ (u ′)�1D ⊗V (z)+R(z)⊗W (z)

�|r (z))
+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy
∫ y

−L/2
dz w(x, y)(l (z)|�1D ⊗V (z)+R(z)⊗W (z)

�

×Pe
∫ x

z du T̆ (u)�R(x)⊗R(x)
�
Pe
∫ y

x du ′ T̆ (u ′)�R(y)⊗R(y)
�|r (y))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy
∫ y

x
dz w(x, y)(l (x)|�R(x)⊗R(x)

�
Pe
∫ z

x du T̆ (u)

×�1D ⊗V (z)+R(z)⊗W (z)
�
Pe
∫ y

z du ′ T̆ (u ′)�R(y)⊗R(y)
�|r (y))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy w(x, y)(l (x)|�R(x)⊗W (x)

�
Pe
∫ y

x du T̆ (u)�R(y)⊗R(y)
�|r (y))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dy w(x, y)(l (x)|�R(x)⊗R(x)

�
Pe
∫ y

x du T̆ (u)�R(y)⊗W (y)
�|r (y)).

(4.90)
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If we now want to apply the time dependent variational principle, we need to look for
the tangent vector |Φ[V ∗(t ),W ∗(t ))]〉 (where we henceforth omit the explicit inclusion
of Q(t ) and R(t ) in the notation of the tangent vectors) that is obtained as

{V ∗(t ),W ∗(t )}= min
{V ,W }

 |Φ[V ,W ]〉

− �Ĥ −H[Q(t ), R(t );Q(t ), R(t )]
� |Ψ[Q(t ), R(t )]〉


2

(4.91)

with H[Q(t ), R(t );Q(t ), R(t )] = 〈Ψ[Q(t ), R(t )]|Ĥ |Ψ[Q(t ), R(t )]〉. Since this problem
is quadratic in the combined variables V and W , we can expand the norm as

|Φ[V ,W ]〉− P̂0[Q, R;Q, R]Ĥ |Ψ[Q(t ), R(t )]〉
2
=

〈Φ[V ,W ]|Φ[V ,W ]〉− 〈Φ[V ,W ]|P̂0[Q, R;Q, R]Ĥ |Ψ[Q, R]〉
− 〈Ψ[Q, R]|Ĥ P̂0[Q, R;Q, R]|Φ[V ,W ]〉+ constant

and differentiate (functional derivative) with respect to V (x) and W (x). The resulting
equation for V (x) and W (x) is strongly non-local. However, by using the left gauge
fixing condition

(l (x)|[V (x)⊗ 1D +W (x)⊗R(x)] = 0, (4.92)

we can eliminate all non-local terms in the overlap, in order to obtain

〈Φ[V ,W ]|Φ[V ,W ]〉=
∫ +L/2

−L/2
dx(l (x)|W (x)⊗W (x)|r (x)).

In addition, this choice of gauge ensures that |Φ[V ,W ]〉 ⊥ |Ψ[Q, R]〉 so that

〈Φ[V ,W ]| P̂0[Q, R;Q, R] = 〈Φ[V ,W ]| .

This choice of gauge also eliminates the third term in Eq. (4.88) and (4.89) and the second
term in Eq. (4.90). We now define

(F (x)|=
∫ x

−L/2
dy (l (y)|

� 1

2m

�
[Q(y), R(y)]+

dR

dy
(y)
�⊗ �[Q(y), R(y)]+

dR

dy
(y)
�

+ v(y)R(y)⊗R(y)
�
Pe
∫ x

y dz T̆ (z)

+
∫ x

−L/2
dy
∫ x

y
dz w(y, z)(R(l )y (z)|R(z)⊗R(z)Pe

∫ x
z du T̆ (u), (4.93)

where R(l )y (z) was defined in Eq. (4.47). We can thus obtain (F (x)| from solving the
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differential equation

d

dx
(F (x)|= (l (x)|

� 1

2m

�
[Q(x), R(x)]+

dR

dx
(x)
�⊗ �[Q(x), R(x)]+

dR

dx
(x)
�

+ v(x)R(x)⊗R(x)
�

+(F (x)|T̆ (x)+
∫ x

−L/2
dy w(y, x)(R(l )y (x)|R(x)⊗R(x) (4.94)

with initial condition F (−L/2) = l (−L/2). The last term contains an additional integral
due to the presence of a long-range interactions. It would disappear for w(x, y)∼ δ(x−y).
Similar to the definition of R(l )x (y), we also introduce a quantity R(r )x (y) by setting
R(r )x (x) = R(x)r (x)R(x)† for every x ∈ [−L/2,+L/2] and solving

d

dy
|R(r )x (y)) =−T (y)|R(r )x (y))

for every y ∈ [−L/2, x]. Using the assumption that the left gauge fixing condition is
satisfied, we obtain

〈Φ[V ,W ]|Ĥ |Ψ[Q, R]〉=
∫ +L/2

−L/2
dy (F (y)|�1D ⊗V (y)+R(y)⊗W (y)

�|r (y))

+
∫ +L/2

−L/2
dx
∫ +L/2

x
dz
∫ z

x
dy w(x, z)(R(l )x (y)|

�
1D ⊗V (y)+R(y)⊗W (y)

�|R(r )z (y))

+
∫ +L/2

−L/2
dy (l (y)|

� 1

2m

�
[Q(y), R(y)]+

dR

dy
(y)
�

⊗
�
[Q(y),W (y)]+ [V (y), R(y)]+

dW

dy
(y)
�

+ v(y)R(y)⊗W (y)
�
|r (y))

+
∫ +L/2

−L/2
dy
∫ y

−L/2
dx w(x, y)(R(l )x (y)|R(y)⊗W (y)|r (y))

+
∫ +L/2

−L/2
dy
∫ +L/2

y
dx w(y, x)(l (y)|R(y)⊗W (y)|R(r )x (y)). (4.95)

We now explicitly parameterize V (x) = VΦ[Y ](x) =−l (x)−1R(x)† l (x)1/2Y (x)r (x)−1/2

and W (x) =WΦ[Y ](x) = l (x)−1/2Y (x)r (x)−1/2 in terms of a single matrix function
Y :R 7→CD×D : x 7→ Y (x) that contains all degrees of freedom. This parameterization
automatically satisfies the left gauge fixing condition and has an effective Gram matrix
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that is given by

〈Φ[VΦ[X ],WΦ[X ]]|Φ[VΦ[Y ],WΦ[Y ]]〉=
∫ +L/2

−L/2
dy tr

¦
X (y)†Y (y)

©
.

We thus obtain

Y ∗(x; t ) =
δ

δY (x)†
〈Φ[VΦ[Y ],WΦ[Y ]]|Ĥ |Ψ[Q(t ), R(t )]〉 . (4.96)

and with this V ∗(t ) = VΦ[Y
∗(t )] and W ∗(t ) =WΦ[Y

∗(t )]. This equation can rightfully
be called the quantum Gross-Pitaevskii equation, since it reduces to the ordinary Gross-
Pitaevskii equation if D = 1, for the particular choice of gauge in Eq. (4.63). We
don’t need to solve any differential equation in terms of the unknowns V ∗(x) and
W ∗(x). However, we do of course need to solve differential equations in Eq. (4.38) and
Eq. (4.94) in order to obtain l (x), r (x) and F (x). These differential equations are entirely
formulated in terms of Q(x) and R(x), which are known functions. They can thus be
solved efficiently (O(D3)) with any standard numerical integrator. Other integrals that
appear in Eq. (4.94) and Eq. (4.95) are a consequence of having long-range interactions
and will disappear if w(x, y)∼ δ(x − y). While the evaluation of the expectation value
of the Hamiltonian Ĥ with long range interactions for the continuous matrix product
state |Ψ[Q,{Rα}]〉 requires O(N 2D3) operations —with N the number of discretization
points on which the differential equations and integrals are solved—, the application of
the time-dependent variational principle requires in general O(N 3D3) operations. For a
strictly local interaction w(x, y) ∼ δ(x − y), O(N D3) operations suffices both for the
evaluation of the expectation value of Ĥ as for the application of the time-dependent
variational principle. As final note, we point out that the representation of V (x) and
W (x) in terms of Y (x)might be ill-defined near the boundaries, as l (−L/2) (r (+L/2))
is singular so that l (x) (r (x)) will be ill-conditioned near x =−L/2 (x =+L/2).

2.2. Time-dependent variational principle for uniform continuous
matrix product states

The application of the time-dependent variational principle cleans up significantly for
the case of uniform continuous matrix product states. In principle, we only need the set
of momentum zero tangent vectors |Φ0(V ,W )〉 for the application of the time-dependent
variational principle to the variational class of uniform continuous matrix product
states. However, we state results for general tangent states |Φp (V ,W )〉 with arbitrary
momentum p, as we need these results in the following subsections on excitations. We
can recycle some results from the previous subsection by setting Q(x) =Q, R(x) = R,
W (x) =W ei p x and V (x) =V ei p x and taking the thermodynamic limit L→∞.

Let (l | and |r ) the left and right eigenvectors corresponding to the zero eigenvalue of
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the transfer matrix T̆ . As in Subsection 1.6, we define Q̆ = 1̆− |r )(l | and (−T̆ ± i p)P =
Q̆(−T̆ ± i p)−1Q̆. Note that only for p = 0 this is a true pseudo-inverse. We can easily
evaluate the scalar product 〈Φp (V ,W )|Φp ′(V

′,W ′)〉 as

〈Φp (V ,W )|Φp ′(V
′,W ′)〉=

2πδ(p ′− p)
h

2πδ(p)(l |V ′⊗ 1D +W ′⊗R|r )(l |1D ⊗V +R⊗W
′|r )+ (l |W ′⊗W |r )

+ (l |(1D ⊗V +R⊗W )(−T̆ − i p)P(V ′⊗ 1D +W ′⊗R)|r )
+ (l |(V ′⊗ 1D +W ′⊗R)(−T̆ + i p)P(1D ⊗V +R⊗W )|r )� . (4.97)

States with different momenta are automatically orthogonal. As usual, states with a
definite momentum in an infinite system cannot be orthogonalized to a finite constant:
they satisfy a δ normalization. For p = 0, there is a divergence inside the factor
multiplying δ(p − p ′). This divergence is unphysical and disappears if we impose
orthogonality with respect to the state |Ψ(Q, R)〉, which boils down to

〈Ψ(Q, R)|Φ0(V ,W )〉= 2πδ(0)(l |V ⊗ 1D +W ⊗R|r ) = 0 (4.98)

for all states |Φ0(V ,W )〉. For p 6= 0, they are automatically orthogonal to the translation
invariant uniform cMPS |Ψ(Q, R)〉 and there is no physical nor mathematical need for
additional constraints. We can impose the left gauge fixing requirement, (l |[V ⊗ 1D +
W ⊗R] = 0, which eliminates all but the second term in Eq. (4.97) and automatically
imposes orthogonality at p = 0.

The overlap 〈Φk (V ,W )|Ĥ |Ψ(Q, R)〉 can be evaluated as

〈Φp (V ,W )|Ĥ |Ψ(Q, R)〉= 2πδ(p)

×
�

2πδ(p)(l | 1

2m
[Q, R]⊗ [Q, R]+ v(R⊗R)

+ (R⊗R)L[w](−T̆ )(R⊗R)|r )(l |1D ⊗V +R⊗W |r )
+ (l |

� 1

2m
[Q, R]⊗ [Q, R]+ v(R⊗R)+ (R⊗R)L[w](−T̆ )(R⊗R)

�

(−T̆ )P
�
1D ⊗V +R⊗W

�|r )
+ (l |�1D ⊗V +R⊗W

�
(−T̆ )P� 1

2m
[Q, R]⊗ [Q, R]+ v(R⊗R)+ (R⊗R)L[w](−T̆ )(R⊗R)

�
|r )

+
∫ +∞

0
dx
∫ x

0
dy w(x)(l |�R⊗R

�
eT̆ y�1D ⊗V +R⊗W

�
eT̆ (x−y)�R⊗R

�|r )

+ (l | 1

2m
[Q, R]⊗ �[Q,W ]+ [V , R]

�
+ vR⊗W
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+(R⊗W )L[w](−T̆ )(R⊗R)+ (R⊗R)L[w](−T̆ )(R⊗W )|r )
�

. (4.99)

The prefactor illustrates that only the set of tangent vectors with momentum zero
can have a non-zero overlap with the evolution vector for uniform continuous ma-
trix product states. It cancels with the diverging prefactor in the normalization of
|Φ0(V ,W )〉. The first term in the square brackets contains the divergent contribution
of 〈Ψ(Q, R)|Ĥ |Ψ(Q, R)〉, which disappears by replacing Ĥ by Ĥ −H (Q, R,Q, R) in the
evolution vector, or just by imposing the orthogonality 〈Ψ0(V ,W )|Ψ(Q, R)〉, as follows
from the second factor in this term. The term on the third line will once again disappear
by using the left gauge fixing condition. Note also that

(l |
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R+R⊗RL[w](−T )R⊗R

�
(−T̆ )P

is the steady state solution (F | as predicted from Eq. (4.94). The fourth line below the
equality sign is only present for long range interactions and disappears if w(x, y) ∼
δ(x − y). Evaluating it for general interactions w is easiest by diagonalizing T̆ , which
is an operation with computational cost of O(D6). If T̆ =

∑D2

k=1 λ
(k)|r (k))(l (k)| with

λ(1) = 0, |r (1)) = |r ) and (l (1)|= (l |, we can compute

∫ +∞
0

dx
∫ x

0
dy w(x)(l |(R⊗R)eT̆ y�1D ⊗V +R⊗W

�
eT̆ (x−y)(R⊗R)|r )

=
D2∑

α,β=1

(l |R⊗R|rα)(lα|
�
1D ⊗V +R⊗W

�|rβ)(lβ|R⊗R|r )

×
∫ +∞

0
dx
∫ x

0
dyw(x)e(λα−λβ)yeλβx

=
D2∑

α,β=1

(l |R⊗R|rα)(lα|
�
1D ⊗V +R⊗W

�|rβ)(lβ|R⊗R|r )

×
∫ +∞

0
dxw(x)

 
δα,βxeλαx +(1−δα,β)

eλαx − eλβx

λα−λβ

!

=
D2∑

α,β=1

(l |R⊗R|rα)(lα|
�
1D ⊗V +R⊗W

�|rβ)(lβ|R⊗R|r )

×
 
−δα,βL

′[w](−λα)+ (1−δα,β)
L[w](−λα)−L′[w](−λβ)

λα−λβ

!
, (4.100)

with L′[w] =L[−xw] and thus −L′[w](−λα) = d
dλα

L[w](−λα) the derivative of the

Laplace transform of w. At first sight, it seems as if computing (lα|
�
1D⊗V +R⊗W

�|rβ)
for all α,β= 1, . . . , D2 will be a O(D4D3) =O(D7) = operation. However, we can first
compute (lα|

�
1D ⊗V + R⊗W

�
for all α = 1, . . . , D2, which is a O(D2D3) = O(D5)
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operation and store this result. The computation of (lα|
�
1D ⊗V + R⊗W

�|rβ) for a
single combination (α,β) is then only O(D2), and the total cost is O(D6). At no point
does the memory cost exceeds O(D4).

If only local interactions [w(x) ∼ δ(x)] are present, we can use iterative methods
to compute the inverses of T̆ and to obtain a O(D3) method. Also, if all long-range
interactions are of the exponential type [w(x) =

∑k
α=1 cα exp(−µαx) with k � D2],

then we obtain

∫ +∞
0

dx
∫ x

0
dy w(x)(l |�R⊗R

�
eT̆ y�1D ⊗V +R⊗W

�
eT̆ (x−y)�R⊗R

�|r ) =
k∑
α=1

cα(l |
�

R⊗R
��
µα− T̆

�−1�1D ⊗V +R⊗W
��
µα− T̆

�−1�R⊗R
�|r ) (4.101)

and we can try to compute all functions of T̆ with iterative methods in order to obtain
an approach with computational cost O(kD3).

To impose the left gauge fixing condition, we can use a parameterization where V =
VΦp
(Y ) =−l−1R† l 1/2Y r−1/2 and W =WΦp

(Y ) = l−1/2Y r−1/2. Inserting this parame-
terization allows to determine Y ∗(t ) as

2πδ(0)Y ∗(t ) =
∂

∂ Y †
〈Φ0(VΦ0

(Y ),WΦ0
(Y ))|Ĥ |Ψ(Q(t ), R(t ))〉 (4.102)

and thus V ∗(t ) = VΦ0
(Y ∗(t )) and W ∗(t ) =WΦ0

(Y ∗(t )). We can combine this with the
left orthonormalization gauge for Q, R, so that l = 1D and Q = K − 1

2 R†R with K an
antihermitian matrix. In an imaginary time algorithm with time step, we would update
R as R(t+dt ) = R(t )−dtW ∗(t ) and Q(t+dt ) =Q(t )−dtV ∗(t ) =K(t )− 1

2 R†(t )R(t )+
dt R†(t )W ∗(t ). This update rule only conserves the left orthonormalization gauge to
first order, since Q(t + dt ) is no longer of the format Q(t + dt ) = K(t + dt )− 1

2 R(t +
dt )†R(t + dt ). However, if we completely eliminate Q, we can obtain the first order
update rule for K as K(t + dt ) =K(t )+ dt

2

�
R(t )†W ∗(t )−W ∗(t )†R(t )

�
. This produces

the same update rule for Q(t+dt ) up to a correction of second order in dt , but produces
a new antihermitean matrix K(t + dt ), so that the left orthonormalization gauge is
conserved exactly! We still have the freedom to apply a unitary gauge transform to
K(t + dt ) and R(t + dt ), in order to e.g. diagonalize r (t + dt ).

As for the case of matrix product states, we can in principle derive local convergence
and error measures η̃(Q, R;Q, R) and ε̃(Q, R;Q, R) for the uniform continuous matrix
product state |Ψ[Q, R]〉. The convergence measure is simply given by η̃(Q, R;Q, R) =
tr((Y ∗)†Y ∗) with Y ∗ the optimal value for the parameterization of the tangent vector
as defined above. The expression for the error measure becomes very cumbersome for
the case of long-range interactions, and diverges for the case of short range interactions,
since∆H 2 contains the expectation value of

∫
dx
∫

dy 〈ψ̂†(x)2ψ̂(x)2ψ̂†(y)2ψ̂(y)2〉. On

224



§2. Time-dependent variational principle and excitations

bringing this expression in normal order, we encounter
∫

dx 〈ψ̂†(x)2ψ̂(x)ψ̂†(x)ψ̂(x)2〉
which produces a δ(0). Hence, we do not attempt to derive general expressions for
the error measure. Finally, we can also develop a strategy to dynamically expand the
variational manifold by increasing the bond dimension D of the continuous matrix
product state at a certain time during the evolution. This is discussed in Subsection 2.1
of Appendix A.

2.3. Ansatz for topologically trivial excited states

We now define an ansatz for momentum eigenstates, that is suited to describe low-
lying, point-like excitations of translation invariant Hamiltonians, such as the generic
Hamiltonian of Eq. (4.44) with v(x) = v and w(x, y) = w(x− y). Our ansatz consists of
simply taking the states |Φp (V ,W )〉 living in the tangent plane T⊥Φp

(Q, R) of the uniform

continuous matrix product state |Ψ(Q, R)〉 ∈MucMPS that best approximates the ground
state of the Hamiltonian. In order to apply the variational principle, which boils down
to the Rayleigh-Ritz method, we need to compute 〈Φp (V ,W )|Φp ′(V ,W )〉, which was

determined in the previous section, and 〈Φp (V ,W )|Ĥ |Φp ′(V ,W )〉, which is determined
next.

Evaluating the expectation value of the Hamiltonian is a bit more involved. First of all, we
need to evaluate the full Hamiltonian, not only the Hamiltonian density. But, this expec-
tation value contains a divergent contribution 〈Ψ(Q, R)|Ĥ |Ψ(Q, R)〉=H (Q, R;Q, R) =∫+∞
−∞ dx h(Q, R;Q, R) from the ground state energy, which is an extensive quantity. The

best way to make sure that we subtract this infinite constant correctly, is to redefine the
Hamiltonian as

Ĥ ← Ĥ −
∫ +∞
−∞

dx h(Q, R;Q, R), (4.103)

with

h(Q, R;Q, R) = 〈l | 1

2m
([Q, R]⊗ [Q, R])+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)|r 〉 .

(4.104)
Correspondingly, the energy density is redefined as

ĥ(x) =
1

2m

�dψ̂†

dx
(x)
��dψ̂

dx
(x)
�
+ vψ̂†(x)ψ̂(x)

+
∫ +∞
−∞

dyw(y)ψ̂†(x)ψ̂†(x + y)ψ̂(x + y)ψ̂(x)− h(Q, R;Q, R)1̂. (4.105)

We can use the translation non-invariant results from the Subsection 2.1 in order to
obtain
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ψ̂(x) |Φp (V ,W )〉= ei p x 〈vL|Û (−∞, x)W Û (x,+∞)|vR〉 |Ω〉
+
∫ x

−∞
dy ei p yv†

LÛ (−∞, y)
�

V ⊗ 1̂+W ⊗ ψ̂†(y)
�

× Û (y, x)RÛ (x,+∞)vR |Ω〉
+
∫ +∞

x
dy ei p yv†

LÛ (−∞, x)RÛ (x, y)

×
�

V ⊗ 1̂+W ⊗ ψ̂†(y)
�

Û (y,+∞)vR |Ω〉 (4.106)

and

ψ̂(y)ψ̂(x) |Φp (V ,W )〉= ei p xv†
LÛ (−∞, x)W Û (x, y)RÛ (y,+∞)vR |Ω〉

+ ei p yv†
LÛ (−L/2, x)RÛ (x, y)W Û (y,+∞)vR |Ω〉

+
∫ x

−∞
dz ei p zv†

LÛ (−∞, z)
�

V ⊗ 1̂+W ⊗ ψ̂†(z)
�

× Û (z, x)RÛ (x, y)RÛ (y,+∞)vR |Ω〉
+
∫ y

x
dz ei p zv†

LÛ (−∞, x)RÛ (x, z)
�

V ⊗ 1̂+W ⊗ ψ̂†(z)
�

× Û (z, y)RÛ (y,+∞)vR |Ω〉
+
∫ +∞

y
dz ei p zv†

LÛ (−∞, x)RÛ (x, y)R(y, z)

×
�

V ⊗ 1̂+W ⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉 (4.107)

as well as

d

dx
ψ̂(x) |Φp (V ,W )〉=

ei p xv†
LÛ (−∞, x) ([V , R]+ [Q,W ]+ i pW ) Û (x,+∞)vR |Ω〉

+
∫ x

−∞
dy ei p yv†

LÛ (−∞, y)
�

V ⊗ 1̂+W ⊗ ψ̂†(y)
�

× Û (y, x)[Q, R]Û (x,+∞)vR |Ω〉
+
∫ +∞

x
dy ei p yv†

LÛ (−∞, x)[Q, R]Û (x, y)

×
�

V ⊗ 1̂+W ⊗ ψ̂†(y)
�

Û (y,+∞)vR |Ω〉 . (4.108)

We can now collect everything and evaluate the general overlap:

〈Φp (V ,W )|Ĥ |Φp ′(V
′,W ′)〉= 2πδ(p ′− p)×
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(��
l
��� 1

2m
([V ′, R]+ [Q,W ′]+ i pW ′)⊗ ([V , R]+ [Q,W ]− i pW )

+ vW ′⊗W

+(W ′⊗W )L[w](−T̆ )(R⊗R)+ (R⊗R)L[w](−T̆ )(W ′⊗W )
���r
�

+
�

l
���(W ′⊗W )(−T̆ )P

� 1

2m
[Q, R]⊗ [Q, R]

+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)
����r
�

+
�

l
���
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R

+(R⊗R)L[w](−T̆ )(R⊗R)
�
(−T̆ )P(W ′⊗W )

���r
�

+
∫ +∞

0
dx
∫ x

0
dy w(x)

�
l
���(R⊗R)eT̆ y (W ′⊗W )eT̆ (x−y)(R⊗R)

���r
��

+
��

l
���(W ′⊗R)L[w](−T̆ + i p)(R⊗W )

���r
�

+
�

l
���(R⊗W )L[w](−T̆ − i p)(W ′⊗R)

���r
��

+
��

l
���(V ′⊗1D +W ′⊗R)(−T̆ + i p)P

×
� 1

2m
[Q, R]⊗ ([Q,W ]+ [V , R]− i pW

�
+ vR⊗W

+(R⊗W )L[w](−T̆ )(R⊗R)

+ (R⊗R)L[w](−T̆ + i p)(R⊗W )
����r
�

+
�

l
���
� 1

2m
[Q, R]⊗ ([Q,W ]+ [V , R]− i pW )+ vR⊗W

+(R⊗W )L[w](−T̆ − i p)(R⊗R)

+ (R⊗R)L[w](−T̆ )(R⊗W )
�

× (−T̆ − i p)P(V ′⊗1D +W ′⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy w(x)

�
l
���(R⊗R)eT̆ y (V ′⊗1D +W ′⊗R)

× e(T̆−i p)(x−y)(R⊗W )
���r
�

+
∫ +∞

0
dx
∫ x

0
dy w(x)

�
l
���(R⊗W )e(T̆+i p)y

× (V ′⊗1D +W ′⊗R)eT̆ (x−y)(R⊗R)
���r
��
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+
��

l
���(1D ⊗V +R⊗W )(−T̆ − i p)P

×
� 1

2m
([Q,W ′]+ [V ′, R]+ i pW ′)⊗ [Q, R]+ vW ′⊗R

+(W ′⊗R)L[w](−T̆ )(R⊗R)

+ (R⊗R)L[w](−T̆ − i p)(W ′⊗R)
����r
�

+
�

l
���
� 1

2m
([Q,W ′]+ [V ′, R]+ i pW ′)⊗ [Q, R]+ vW ′⊗R

+(W ′⊗R)L[w](−T̆ + i p)(R⊗R)

+ (R⊗R)L[w](−T̆ )(W ′⊗R)
�

× (−T̆ + i p)P(1D ⊗V +R⊗W )
���r
�

+
∫ +∞

0
dx
∫ x

0
dy w(x)

�
l
���(R⊗R)eT̆ y (1D ⊗V +R⊗W )

e(T̆+i p)(x−y)(W ′⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy w(x)

�
l
���(W ′⊗R)e(T̆−i p)y

(1D ⊗V +R⊗W )eT̆ (x−y)(R⊗R)
���r
��

+
��

l
���(V ′⊗1D +W ′⊗R)(−T̆ + i p)P(1D ⊗V +R⊗W )(−T̆ )P

×
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)

����r
�

+
�

l
���(1D ⊗V +R⊗W )(−T̆ − i p)P(V ′⊗1D +W ′⊗R)(−T̆ )P

×
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)

����r
�

+
�

l
���
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)

�

× (−T̆ )P(V ′⊗1D +W ′⊗R)(−T̆ + i p)P(1D ⊗V +R⊗W )
���r
�

+
�

l
���
� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R+(R⊗R)L[w](−T̆ )(R⊗R)

�

× (−T̆ )P(1D ⊗V +R⊗W )(−T̆ − i p)P(V ′⊗1D +W ′⊗R)
���r
�

+
�

l
���(V ′⊗1D +W ′⊗R)(−T̆ + i p)P

� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R

+(R⊗R)L[w](−T̆ + i p)(R⊗R)
�
(−T̆ + i p)P(1D ⊗V +R⊗W )

���r
�

+
�

l
���(1D ⊗V +R⊗W )(−T̆ − i p)P

� 1

2m
[Q, R]⊗ [Q, R]+ vR⊗R
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+(R⊗R)L[w](−T̆ − i p)(R⊗R)
�
(−T̆ − i p)P(V ′⊗1D +W ′⊗R)

���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(R⊗R)eT̆ z (V ′⊗1D +W ′⊗R)e(T̆−i p)(y−z)

× (1D ⊗V +R⊗W )eT̆ (x−y)(R⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(V ′⊗1D +W ′⊗R)e(T̆−i p)z (R⊗R)

× e(T̆−i p)(y−z)(1D ⊗V +R⊗W )eT̆ (x−y)(R⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(R⊗R)eT̆ z (V ′⊗1D +W ′⊗R)e(T̆−i p)(y−z)

× (R⊗R)e(T̆−i p)(x−y)(1D ⊗V +R⊗W )
���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(R⊗R)eT̆ z (1D ⊗V +R⊗W )e(T̆+i p)(y−z)

× (V ′⊗1D +W ′⊗R)eT̆ (x−y)(R⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(1D ⊗V +R⊗W )e(T̆+i p)z (R⊗R)

× e(T̆+i p)(y−z)(V ′⊗1D +W ′⊗R)eT̆ (x−y)(R⊗R)
���r
�

+
∫ +∞

0
dx
∫ x

0
dy
∫ y

0
dz w(x)

�
l
���(R⊗R)eT̆ z (1D ⊗V +R⊗W )e(T̆+i p)(y−z)

× (R⊗R)e(T̆+i p)(x−y)(V ′⊗1D +W ′⊗R)
���r
��

+
�

l
���V ′⊗1D +W ′⊗R

���r
��

2πδ(p)
�

. . .
�
+ . . .

�

+
�

l
���1D ⊗V +R⊗W

���r
��

2πδ(p)
�

. . .
�
+ . . .

�)
.

As the Hamiltonian is a translation invariant operator, it conserves the momentum and
we once again find a δ(p ′− p) factor. The need for imposing (l |V ⊗ 1D +W ⊗R|r ) = 0
for p = 0 is once again apparent, as we would have divergences in the excitation energy
without this requirement. We have not explicitly computed the diverging terms, nor the
remaining finite terms that are present in principle when p 6= 0. All terms with integrals
disappear for strictly local interactions [w(x − y) ∼ δ(x − y)]. Terms are grouped in
square brackets for clarity. The first pair of square brackets contain all terms where
(V ,W ) and (V ′,W ′) act on the same location. The second pair contains terms where
both pairs act precisely on the location of the two points of the interaction. The third
pair contains all terms where (V ′,W ′) acts on a point of the Hamiltonian. Vice versa for
the fourth pair. The fifth pair contains all terms where there are four different points:
one for (V ,W ), one for (V ′,W ′) and two for (the interaction term of) the Hamiltonian.
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Since we can order these four points in 4! ways, but where the order of the two terms
in the interaction is irrelevant, we have 4!/2= 12 terms. The final terms are, as said in
the beginning of this paragraph, terms that will disappear if we use a left or right gauge
fixing condition so that (l |V ⊗ 1D +W ⊗R|r ) = 0 (also at nonzero momentum). They
have not been worked out explicitly. Note that for either two choices of gauge fixing
condition, additional terms will disappear in the other groups.

Clearly, the expressions for 〈Φp (V ,W )|Φp ′(V
′,W ′)〉 and 〈Φp (V ,W )|Ĥ |Φp ′(V

′,W ′)〉
are bilinear in the combined variables (V ,W ) and (V ′,W ′). They thus define a gener-
alized eigenvalue problem for which we can define an 2D2 × 2D2 effective norm and
Hamiltonian matrix NΦp

and HΦp
as

〈Φp (V ,W )|Φp ′(V
′,W ′)〉= 2πδ(p ′− p)

�
V † W †

�
NΦp


V
W


 (4.109a)

〈Φp (V ,W )|H̆ |Φp ′(V
′,W ′)〉= 2πδ(p ′− p)

�
V † W †

�
HΦp


V
W


 (4.109b)

where V and W represent the D2-dimensional vectors containing the entries of the
matrices V and W . We can now determine low lying excited states with momentum p
by solving the generalized eigenvalue problem

HΦp


V
W


=∆E NΦp


V
W


 , (4.110)

where the eigenvalue∆E gives the excitation energy. However, both NΦp
and HΦp

have

D2 eigenvalues zero, corresponding to pure gauge states in the tangent plane. These
zeros are eliminated by imposing the gauge fixing condition and restricting the number
of parameters to D2. If we use the parameterization W =WΦp

(Y ) = l−1/2Y r−1/2 and

V = VΦp
(Y ) = l−1R† l 1/2Y r−1/2, the effective norm matrix reduces to 1D2 and the

generalized eigenvalue problem is transformed into an ordinary eigenvalue problem.
When no long-range interactions are present, the application of HΦp

to a vector can

be implemented with a total computational cost of O(D3) using iterative solvers for
(−T̆ )P and (−T̆ ± i p)P. The eigenvalue problem can then also be solved iteratively with
computational cost of O(D3).

2.4. Ansatz for topologically non-trivial excited states

If the Hamiltonian Ĥ has a symmetry breaking phase, where two inequivalent ground
state (approximations) |Ψ(Q1, R1)〉 and |Ψ(Q2, R2)〉 can be found, we can propose an
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ansatz for topologically non-trivial excitations as

|Ξp (V ,W )〉=
∫ +∞
−∞

dx ei p xv†
LÛ1(−∞, x)

�
V ⊗ 1̂+W ⊗ ψ̂†(x)

�
Û2(x,+∞)vR |Ω〉 ,

(4.111)
where

Û1(y, z) = Pexp

�∫ z

y
dx Q1⊗ 1̂+R1⊗ ψ̂†(x)

�
,

Û2(y, z) = Pexp

�∫ z

y
dx Q2⊗ 1̂+R2⊗ ψ̂†(x)

�
.

We can repeat the same analysis for this ansatz. Little will change with respect to the
previous subsection. If we define

T̆11 =Q1⊗1D +1D ⊗Q1+R1⊗R1, (4.112)

T̆22 =Q2⊗1D +1D ⊗Q2+R2⊗R2, (4.113)

T̆12 =Q1⊗1D +1D ⊗Q2+R1⊗R2, (4.114)

T̆21 =Q2⊗1D +1D ⊗Q1+R2⊗R1, (4.115)

and furthermore define l1 (l2) and r1 (r2) as the left and right eigenvector of T̆11 (T̆22)
corresponding to eigenvalue zero, then we obtain

〈Ξp (V ,W )|Ξp ′(V
′,W ′)〉= 2πδ(p ′− p)

�
(l1|W ′⊗W |r2)

+ (l |(1D ⊗V +R⊗W )(−T̆12− i p)−1(V ′⊗ 1D +W ′⊗R)|r )
+ (l |(V ′⊗ 1D +W ′⊗R)(−T̆21+ i p)−1(1D ⊗V +R⊗W )|r )

�
. (4.116)

Similarly to Subsection 3.3 of the previous chapter, symmetry breaking requires that µ=
minλ∈σ(T̆12)

ℜ(λ)< 0. This results in a simplification, since no regularization is required,
no pseudo-inverses have to be defined and disconnected contributions are automatically
absent. For evaluating 〈Ξp (V ,W )|Ĥ |Ξp ′(V

′,W ′)〉, we can reuse the expression for

〈Φp (V ,W )|Ĥ |Φp ′(V
′,W ′)〉 from the previous subsection, where we substitute T̆11 for

any transfer operator T̆ appearing to the left of both (V ,W ) and (V ′,W ′), T̆22 for any
transfer operator T̆ appearing to the right of both (V ,W ) and (V ′,W ′), T̆12 + i p for
any virtual operator T̆ + i p appearing in between (V ,W ) and (V ′,W ′) and, finally,
T̆21 − i p for any virtual operator T̆ − i p appearing in between (V ′,W ′) and (V ,W ).
Since we assume all eigenvalues of T̆12 and T̆21 have a real part that is strictly negative,
we can replace the specially defined inverse P by a regular inverse and no disconnected
contributions can appear in 〈Ξp (V ,W )|Ĥ |Ξp ′(V

′,W ′)〉.
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3. Examples

Non-relativistic free bosons

As a benchmark, we now start with the approximation of a free theory with continuous
matrix product states. A non-relativistic free (quadratic) boson model can be obtained by
adding a number-violating term ψ̂(x)ψ̂(x) and its Hermitian conjugate. The Hamiltonian
we choose to study is given by

Ĥ =
∫ +∞
−∞



�dψ̂†

dx
(x)
��dψ̂

dx
(x)
�
+µψ̂†(x)ψ̂(x)

− ν
�
ψ̂†(x)ψ̂†(x)+ ψ̂(x)ψ̂(x)

�
dx. (4.117)

Let Ψ̂ (p) denote the Fourier transform of ψ̂(p). This quadratic theory can be solved by
a Bogoliubov transformation according to




Ψ̂ (p) = cosh

�
f (p)

�
Ξ̂(p)+ sinh

�
f (p)

�
Ξ̂†(−p),

Ψ̂ †(p) = cosh
�

f (p)
�
Ξ̂†(p)+ sinh

�
f (p)

�
Ξ̂(−p),

(4.118)

with Bogoliubov angle f (p) given by

f (p) =
1

2
arctanh

�
2ν

p2+µ

�
. (4.119)

The Hamiltonian in Eq. (4.117) can then be written as

Ĥ =
∫ +∞
−∞

ω(p)Ξ̂†(p)Ξ̂(p)+
∫ +∞
−∞

e0(µ, ν)dx (4.120)

with the dispersion relationω(p) of the elementary excitations created by Ξ̂†(p) given
by

ω(p) =
Æ
(p2+µ)2− 4ν2 (4.121)

and the ground state energy density e0(µ, ν) given by

e0(µ, ν) =
1

2

∫ +∞
−∞

d p

2π

�Æ
(p2+µ)2− 4ν2− (p2+µ)

�
. (4.122)

The elementary excitation has an energy gapω(0) = ∆=
Æ
µ2− 4ν2, and hence becomes
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Figure 4.1: (a) Spectrum of excitation energies (black dots) as function of momentum p for the
free boson model described by the Hamiltonian Eq. (4.117) for the choice of parameters ν = 1/2,
µ=

p
1+∆2 and∆= 0.1, obtained with the ansatz |Φ(V ,W ;Q, R)〉with bond dimension D = 41.

(b) Detail of (a) around momentum zero. The red line indicates the fundamental excitation with
∆E =ω(p), the yellow shaded area represents the band of two-particle excitations with minimal
energy 2ω(p/2) and the green shaded area represents the band of three-particle excitations with
minimal energy 3ω(p/3).

gapless at the critical point ν =µ/2. There is no real quantum phase transition since the
Hamiltonian is ill-defined for ν > µ/2.

We now study this model with the continuous matrix product state ansatz. While the
Hamiltonian in Eq. (4.117) is not of the form that was used in the previous sections, the
generalization for the additional terms is straightforward. Figure 4.1 shows the excitation
spectrum of the free boson model of Eq. (4.117) for the choice of parameters ν = 1/2,
µ =

p
1+∆2 and ∆ = 0.1, obtained with the ansatz |Φ(V ,W ;Q, R)〉 for excitations

with bond dimension D = 41 as described in the previous section. The parameter ∆
determines the exact gap ∆ = ω(p = 0) of the fundamental excitation. At this value
of the bond dimension, the fundamental excitation is almost exactly reproduced, as is
visible in Figure 4.1(a). But Figure 4.1(b) indicates that also many higher order excitations
are reproduced that fall within the continuum of two-, three- or more-particle excitations.
For∆� 1, we can interpret µ≈ 2ν = 1 as the ultraviolet cutoff in the model, and∆ as
the infrared cutoff. The range of interacting energy scales is thus equal to 1/∆, which
has the value 10 in the results of Figure 4.1.

The accuracy on both the estimation of the ground state energy density with |Ψ(Q, R)〉
and on the estimation of the gap with |Φ(V ,W ;Q, R)〉 for values∆= 0.1,∆= 0.01 and
∆= 0 is shown in Figure 4.2. As for the results of the antiferromagnetic XXZ lattice
model in the previous chapter, the error on the gap scales as the square root of the error
on the ground state energy density for small values of D, but then shifts to a linear
proportionality as D increases for gapped systems. For the critical case∆= 0, the square
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Figure 4.2: (a) Estimated value of the gap∆(D) as function of the bond dimension D for values of
the exact gap∆=∆(∞) = 0, 0.01 and 0.1. (b) Error on the estimation of the gap versus error on
the estimation of the ground state energy density for different values of the bond dimension D = 2,
4, 7, 10, 14, 19, 25, 33 and 41 and for different values of the exact gap∆=∆(∞) = 0, 0.01 and 0.1.

root dependency is observed for all values of the bond dimension D .

Lieb-Liniger model

We now study an interacting non-relativistic boson model that is exactly solvable. We
therefore consider the one-dimensional model with Hamiltonian

Ĥ −µN̂ =
∫ +∞
−∞




dψ̂†

dx
(x)




dψ̂

dx
(x)


+ g

�
ψ̂†(x)

�2�ψ̂(x)�2−µψ̂†(x)ψ̂(x)


 dx,

(4.123)
which describes non-relativistic bosons that interact through a simple δ interaction
with coupling constant g . We have explicitly separated the chemical potential term
with chemical potential µ that is responsible for creating a non-trivial ground state.
The ground state of this Hamiltonian was exactly determined by Lieb and Liniger in
[367], and the excitation spectrum by Lieb in [16]. This model has a continuous U(1)
symmetry corresponding to number preservation, which is spontaneously broken for
d > 1 resulting in Bose-Einstein condensation and the formation of a superfluid. For
all temperatures T in d = 1, and for T > 0 in d = 2, this symmetry is restored due to
Coleman’s theorem or the Mermin-Wagner theorem (see Subsection 1.4 of Chapter 1). In
particular, the ground state (T = 0) of the one-dimensional system (Lieb-Liniger model)
does not break the U(1) symmetry.

If we were to approximate the ground state by a mean-field construction using a factorized
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coherent state

|Ψ[ϕ]〉= D̂[ϕ] |Ω〉= exp
�
−1

2

∫
|ϕ(x)|2 dx

��∫
ϕ(x)ψ̂†(x)dx

�
|Ω〉 , (4.124)

with ϕ(x) a scalar-valued complex field and D̂[ϕ] the unitary displacement opera-
tor

D̂(ϕ) = exp
�∫ �

ϕ(x)ψ̂†(x)−ϕ(x)ψ̂(x)
�

dx
�

, (4.125)

then the variational optimum would be given by any uniform solution satisfying

|ϕ(x)|=
È
µ

2g
. (4.126)

Hence, the mean field solution breaks the symmetry. If we choose the real solution
ϕ(x) = ϕ0(x) =

p
2µ/g and define a transformed Hamiltonian Ĥ ′ = D̂[ϕ0]

†Ĥ D̂[ϕ0],
then the quadratic part of Ĥ ′ corresponds to the free boson Hamiltonian of the previous
section at the critical point ν = µ/2. The massless excitations then correspond to the
Goldstone modes resulting from this artificial symmetry breaking. The exact solution in
d = 1 has no symmetry breaking but remains critical, i.e. the low-lying excitations are
gapless.

Note that this factorized coherent state is included in the continuous matrix product
state ansatz by choosing R(x) = ϕ(x)1D and Q(x) = −|ϕ(x)|2/2×1D . However, for
bond dimension D > 1, this solution is no longer the variational optimum, and the
energy can be lowered by restoring the symmetry and creating entanglement in the
state. In order to now study the Lieb-Liniger model, we define the energy density e(g ,ρ)
as

e(g ,ρ) = 〈Ψ(Q, R)|

dψ̂†

dx
(x)




dψ̂

dx
(x)


+ g

�
ψ̂†(x)

�2�ψ̂(x)�2|Ψ(Q, R)〉 ,

= (l |[Q, R]⊗ [Q, R]+ g R2⊗R
2|r ),

(4.127)

where the particle density ρ is given by

ρ= 〈Ψ(Q, R)|ψ̂†(x)ψ̂(x)|Ψ(Q, R)〉= (l |R⊗R|r ) (4.128)

and is determined by the chemical potentialµ. Since ρ has the dimension of 1/`, with ` a
characteristic length, and e has a dimension 1/`3 (due to our choice of units in which ħh

2

2m =
1), the dimensionless quantity e(g ,ρ)/ρ3 can only depend on the dimensionless quantity
γ = g/ρ. To this dimensional analysis corresponds a physical scale transformation, which
can also be realized in the continuous matrix product state by defining a transformation
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Figure 4.3: (a) Normalized ground state energy density e/ρ3 for different values of the normalized
interaction strength γ = g/ρ and for different values of D , as compared to the exact value (black
line) (b) Absolute error on the ground state energy density.

Q = cQ and R′ =
p

cR. We obtain

e(g ,ρ) = (l |[Q ′, R′]⊗ [Q ′, R
′
]+ g (R′)2⊗ (R′)2|r ) = c3e(g/c ,ρ/c)

and thus, by choosing c = ρ,

e(g ,ρ) = ρ3e(g/ρ, 1). (4.129)

The compatibility of the continuous matrix product state ansatz with these scale trans-
formations is essential for the conclusion that the numerical results at finite values of the
bond dimension D also depend only on the dimensionless quantity γ = g/ρ. We first
study the ground state of the Lieb Liniger model, which is always critical. Figure 4.3
depicts the accuracy in the approximation of the ground state energy density for different
values of γ and for different values of the bond dimension D. Since the Lieb Liniger
model is critical, the accuracy only improves slowly, but nevertheless it is possible to
obtain values that are accurate up to order 10−6 for modest values of the bond dimension
D ≈ 40.

We can now also evaluate other properties of our approximate ground state, as well as
the approximation to the excited states that can be obtained with the ansatz |Φ(V ,W )〉.
The local order parameter for the U(1) symmetry is given by the expectation value
o = 〈Ψ(Q, R)|ψ̂(x)|Ψ(Q, R)〉 and can be normalized as o/ρ1/2. The exact ground state
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of the Lieb-Liniger model cannot break this continuous symmetry since the global
order parameter Ô =

∫
ψ̂(x)dx does not commute with the Hamiltonian; it has a

fixed number of particles so that o = 〈ψ̂〉 = 0. In addition, being in a critical phase,
the exact energy gap ∆, which can be normalized as ∆/ρ2, is zero. Figure 4.4 shows
results for the order parameter and for the gap as obtained with our continuous matrix
product state approximation. As for the critical case of the previous example, the
error on the energy gap scales roughly as the square root of the error on the energy
density. However, the error on the order parameter is very large and decreases very
slowly. The reason is of course to be sought in the fact that the continuous matrix
product state was not constructed to be a state with a fixed particle number, but as a
generalization of a coherent state with a superposition over different particle numbers.
Hence, 〈Ψ(Q, R)|ψ̂(x)|Ψ(Q, R)〉 is not automatically zero and in fact turns out to be
quite large. Hence, the continuous matrix product state still describes a symmetry
broken state. The particular choice to which the time-dependent variational principle
converges is determined by our initial state, which is the symmetry-broken coherent
state (D = 1) with R=

p
µ/(2g ). Any solution with Q̃ =Q and R̃= eiαR, ∀α ∈ [0,2π)

would be an equally good approximation to the ground state, so that there is a whole
valley of minima in the variational manifold. If we were to apply the full generalized
eigenvalue equation resulting from the linearized flow equations of the time-dependent
variational principle, we would in fact recover a massless excitation corresponding to
variations of the state along this valley, i.e. this is the Goldstone boson resulting from
this artificial symmetry breaking. With our variational approach towards excitations,
we do not recover the massless mode, but as the bond dimension D increases and the
approximation improves, the mass gap∆(D) resulting from this variational approach is
converging towards the exact value∆(∞) = 0.

Let us conclude this section by looking at the complete spectra obtained for different
values of γ . Lieb has computed two types of elementary excitations of the Hamiltonian
Ĥ (without the chemical potential term) in [16], both of which do not change the particle
number (so that the chemical potential term has no influence). However, these two types
of excitations are not independent, since either of them form a complete set, and one
type of excitation can be interpreted as a multi-particle excitation of the other type. With
our approach, we compute a set of excitations of Ĥ −µN̂ which can change the particle
number, as illustrated in Figure 4.5. Clearly, Lieb’s type II excitation corresponds to the
elementary excitation with lowest possible energy. However, the exact solution of this
excitation is only defined for |p|<πρ, whereas this excitation smoothly continues in
our numeric results. In addition, as γ = c/ρ increases, new low-energy regions around
p =±2πρ develop, corresponding to the umklapp excitations of the free fermion model,
to which the Lieb-Liniger model is strongly related in the γ →∞ limit.
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with our continuous matrix product state ansatz, as function of the bond dimension D and as
function of the error on the ground state energy density e/ρ3, for a value γ = g/ρ≈ 2. Since the
exact values of o and∆ are zero, these values are also equal to the corresponding error.

4. Summary and conclusions

In this chapter, we have introduced the variational manifold of continuous matrix product
states, the natural extension of matrix product states to the setting of one-dimensional
quantum field theories. Definitions and properties of these states are given in Section 1,
while the necessary machinery to apply the time-dependent variational principle and to
study excitations has been developed in Section 2. Section 3 completes this chapter by
studying two exemplary benchmark models.

Continuous matrix product states are extensive non-Gaussian states that allow for an
efficient evaluation of expectation values. The natural ultraviolet cutoff on the lattice
has been replaced by an effective ultraviolet cutoff given by the inter-particle distance,
which can be optimally chosen for any given Hamiltonian. As for matrix product states,
continuous matrix product states have a finite amount of bipartite entanglement and
are in theory restricted to systems which have both a finite ultraviolet cutoff and a
finite infrared cutoff, i.e. gapped non-relativistic systems. However, as shown in the
examples, reasonable results for the ground state energy and the excitation spectrum
can also be obtained for critical non-relativistic systems. According to Feynman’s
“sensitivity to high frequencies”, one should of course be careful with the computation of
observables that truly depend on low frequencies, such as the expectation value of the
order parameter.

In Chapter 6 we will also apply the continuous matrix product state ansatz to relativistic
systems, in order to investigate the effect of having no ultraviolet cutoff.
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5
ENTANGLEMENT RENORMALIZATION

This chapter introduces the concept of entanglement renormalization, which is a real-
space renormalization group transformation that acts on quantum states in an arbitrary
number of spatial dimensions d . It was introduced for lattice systems by Vidal in
2005 [368]. Entanglement renormalization defines a variational ansatz that is called
multi-scale entanglement renormalization ansatz [369]. It is related to matrix product
states and its higher-dimensional generalizations within the more general framework
of tensor network states. It differs by the fact that the tensor network for the multi-
scale entanglement renormalization ansatz has a (d + 1)-dimensional structure, where
the additional dimension can be interpreted as the renormalization scale and thus as a
holographic dimension (see Subsection 3 of Chapter 1).

Entanglement renormalization on the lattice corresponds to a discrete renormalization
group transformation and has proven to indeed inhibit all the expected properties of
renormalization. Different states in the same phase are renormalized to the same fixed
point. Unlike matrix product states, the multi-scale entanglement renormalization
ansatz is also capable of describing ground states of critical quantum models. These
correspond to non-trivial fixed points of the entanglement renormalization scheme and
hence become scale-invariant. From the linearized renormalization transformation at
the fixed point the critical exponents can be derived with great accuracy. Entanglement
renormalization also respects the intrinsic quantum mechanical properties of renormal-
ization. Entanglement decreases monotonically along the renormalization scale and
true quantum phases with topological order can also be characterized by fixed points of
the renormalization process. In addition, as a variational ansatz the multi-scale entan-
glement renormalization ansatz answers each of Feynman’s concerns (Subsection 4.2
of Chapter 2). Just like the (continuous) matrix product state ansatz, the multi-scale
entanglement renormalization ansatz is a non-Gaussian extensive state that allows for
an efficient evaluation of expectation values (for d = 1,2, . . .). But due to the intrinsic
multi-scale aspect, it also naturally overcomes Feynman’s first argument regarding the
sensitivity to high frequencies. Variational parameters living at the long-range scales do
not attempt to minimize the energy by modifying the short-range degrees of freedom,
since these have already been “integrated out”.

There is also a qualitative agreement between the way that entanglement is created
in the multi-scale entanglement renormalization ansatz and the postulate by Ryu and
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Takayanagi for computing entanglement with the AdS/CFT correspondence (Subsec-
tion 2.5 of Chapter 1). In order to investigate this relationship further, it would be
beneficial to be able to define entanglement renormalization as a continuous process with
infinitesimally small renormalization steps. Such infinitesimal steps are impossible on the
lattice and require to define entanglement renormalization for ground states of quantum
field theories. Since the process of grouping sites has no meaning in the continuum, a
generalization to the continuum is not straightforward. In collaboration with Tobias
J. Osborne and Frank Verstraete, we have been able to propose a continuum limit of the
multi-scale entanglement renormalization ansatz, which is described in Section 2. But
we first recapitulate the conceptual elements of entanglement renormalization on the
lattice.

1. Entanglement renormalization on the lattice

This section surveys the concept of entanglement renormalization on the lattice and
the results obtained with it, based on the outstanding review by Vidal [370]. Consider
hereto a latticeL of sites with Hilbert spaceHsite andHL =H⊗|L |site

. Let Ĥ ∈L(HL ) be
a Hamiltonian for this lattice system and |Ψ〉 its corresponding ground state. We now
construct a renormalization group transformation that acts directly on the quantum state
|Ψ〉, and learn that inverting this transformation gives rise to a variational class.

1.1. Renormalization of quantum states

Traditional renormalization schemes are based on the partition function (Section 3 of
Chapter 1), which can be related to the density matrix ρ̂ ∼ limβ→+∞ exp(−βĤ ) ∼
|Ψ〉 〈Ψ|. The standard approach for relativistic theories is to integrate out a shell of
spacetime momenta (ω,~p) with e−sΛ ≤ ‖(ω,~p)‖ ≤ Λ. For non-relativistic quan-
tum systems at zero temperature, we can also devise a scheme where we integrate
out modes with spatial momentum e−sΛ ≤ ‖~p‖ ≤ Λ over all time scales or frequen-
cies ω. We then don’t need to introduce a cutoff in the (imaginary) time direction
and the resulting partition function uniquely defines a new Hamiltonian Ĥ (s) so that
ρ̂(s )∼ limβ→+∞ exp(−βĤ (s ))∼ |Ψ(s)〉 〈Ψ(s)|. We can now try to completely formulate
this renormalization process in terms of quantum mechanical operations. Intuitively,
integrating out modes with spatial momentum e−sΛ≤ ‖~p‖ ≤Λ boils down to a partial
trace so that ρ̂(s ) =Rs (ρ̂) = tre−sΛ<‖~p‖<Λ(ρ̂). However, this trace integrates out all modes
which have momentum e−sΛ≤ ‖p‖ ≤Λ at τ =−β/2=−∞ and at τ =+β/2=+∞.
Only for free theories does the momentum of these modes not change during the evo-
lution over −∞ < τ < +∞ and do the two schemes agree. Indeed, for free theories
there is no entanglement between the momentum modes and ρ̂(s) is still a pure density
matrix that allows to define a state |Ψ(s)〉 such that ρ̂(s ) = |Ψ(s)〉 〈Ψ(s)|. For interacting
theories, the entanglement between the modes that are traced out and the rest of the
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system results in a mixed density matrix ˆρ(s) and no renormalized state |Ψ(s)〉 can be
defined.

To overcome this problem, we now attempt to define a renormalization group transforma-
tion that acts directly on states |Ψ〉. Consider the renormalization group transformation
|Ψ〉 7→ |Ψ′〉 = R(|Ψ〉) that eliminates degrees of freedom, so that |Ψ′〉 lives in a smaller
Hilbert space H′L and R represents a map R :HL 7→H′L . Since we are now focussing
on real-space transformations R and the real-space degrees of freedom live on lattice
sites, H′L should correspond to the Hilbert space HL ′ of a smaller lattice L ′. Since
all transformation that can be performed on quantum systems are linear, it should be
possible to construct R as a linear homomorphism R ∈ Hom(HL ′ ,HL ). As for the
Wilsonian effective action, the resulting state |Ψ′〉 = R |Ψ〉 contains less information.
Given only |Ψ′〉, it is no longer possible to compute the expectation value of any physical
observable Ô ∈ L(HL ). However, since we also know R, we can define an associated
linear map R :L(HL ) 7→L(HL ′ ) : Ô 7→ Ô ′ =R(Ô) that is given by Ô ′ =R(Ô) = RÔR†.
If we require that R(1̂) = 1̂′ with 1̂′ the identity operator inHL ′ , we obtain RR† = 1̂′ so
that R is an isometry. Rather than integrating out or tracing out degrees of freedom we
now project out these degrees of freedom and R represents the projection matrix from
HL toHL ′ . We now require that

〈Ψ′|Ô ′|Ψ′〉= 〈Ψ|R†RÔR†R|Ψ〉 ≈ 〈Ψ|Ô|Ψ〉 . (5.1)

Hence R† contains the information to restore the high-energy degrees of freedom in
|Ψ′〉. This requires R†R |Ψ〉 ≈ |Ψ〉, so that |Ψ〉 is (approximately) contained in the
support of the orthogonal projection operator R†R. In addition, the renormalization
group transformation on quantum states also defines a scheme to obtain a renormalized
Hamiltonian Ĥ ′ =R(Ĥ ).

By reiterating the renormalization group transform we obtain

〈Ψ|Ô|Ψ〉 ≈ 〈Ψ′|Ô ′|Ψ′〉 ≈ 〈Ψ′′|Ô ′′|Ψ′′〉 ≈ . . . (5.2)

In the end, |Ψ′′′〉= R′′′ · · ·R′R |Ψ〉 becomes trivial, especially for finite latticesL , since
L ′′′ will have only a few sites left. For example, we can then exactly diagonalize
Ĥ ′′′ = R′′′ · · ·R′RĤ R†R′† · · ·R′′′† and find |Ψ′′′〉 as ground state. Define |0〉 = |Ψ′′′〉 =
R′′′ · · ·R′R |Ψ〉 so that

〈Ψ|Ô|Ψ〉 ≈ 〈Ψ′′′|Ô ′′′|Ψ′′′〉= 〈0|Ô ′′′|0〉= 〈0|R′′′ · · ·R′RÔR†R′† · · ·R′′′†|0〉 (5.3)

It is easy to choose the final R′′′ so that |0〉 becomes some fixed state. We can now
interpret R†(R′)† · · · (R′′′)† |0〉 for different choices of R, R′, . . . and a fixed end state
|0〉 as a class of variational ansätze and optimize over R, R′, . . . using the variational
principle.

Note that White’s density matrix renormalization group (Subsection 3.4 of Chapter 1)
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also follows this general scheme. The renormalization group transformation on quantum
states R is defined as a transformation R : CD ⊗HL 7→ CD ⊗HL ′ , i.e. the lattice is
extended with an ancilla space CD . In every renormalization step, one site is projected
out by defining a map R : CD ⊗Hsite 7→ CD . After |L | renormalization steps, the
lattice L has been completely absorbed into the ancilla space CD . The physical state
|Ψ〉, extended with some initial state for the ancilla vL, has been mapped to a state
vR = (R

′′′ · · ·R′RvL ⊗ |Ψ〉) ∈ CD , as sketched in Figure 5.1. All physical operators Ô
are first extended to L(CD ⊗HL ) as vLv

†
L ⊗ Ô and are then transformed into virtual

operators O ∈L(CD ), which is sketched in Figure 5.2. We thus obtain

(v†
L⊗〈Ψ|)(vLv

†
L⊗ Ô)(vL⊗ |Ψ〉)≈ v†

ROvR

By fixing vL and vR and considering R, R′, . . . as variational parameters, we define the
class of matrix product statesMMPS as in Figure 5.3. If R removes sites 1, R′ removes
site 2 and so on, and we now define R= R(1), R′ = R(2), . . . , then we can relate this to
the matrices As (n) in the matrix product state as As

α,β
(n) = [R(n)†](α,s);β = [R(n)]β;(α,s).

This construction strongly resembles the sequential generation picture described in
Subsection 1.3 of Chapter 3. However, as already announced in Section 3.5 of Chapter 1,
the density matrix renormalization group does not satisfy the required properties of a
good renormalization scheme: fixed points do not correspond to ground states of critical
models. In every step, the next set of degrees of freedom that are to be projected out are
not degrees of freedom living at the shortest length scale but just the degrees of freedom
of the next site. The degrees of freedom of this site influence the physics at all length
scales, which is why matrix product states do also suffer from Feynman’s “sensitivity
to high frequencies” near critical points. The same remarks apply to continuous matrix
product states as well.

|Ψ〉

vL vR

R
R�

R���

=. . .

. . .

. . .

Figure 5.1: The density matrix renormalization group as a renormalization process on quantum
states.
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R
R�

R���

. . .

. . .

. . .

Ô

vLv†
L

...

...

...

R†

R���†

R�†

=O

Figure 5.2: The corresponding renormalization scheme of operators Ô.

...

...

...

R†

R���†

R�†

|Ψ〉

vRv†
L

=

Figure 5.3: The class of variational ansatz statesMMPS as defined by the renormalization scheme
above.
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1.2. Disentangling degrees of freedom

|Ψ〉

w† w†w† w†

R

|Ψ�〉
=

Figure 5.4: A quantum analog of Kadanoff’s
spin blocking with b = 2 for one-dimensional
quantum states.

As for the real-space renormalization group
transformations developed by Kadanoff
and others for lattice models in statistical
physics, we can construct R by course grain-
ing the lattice, i.e. by grouping blocks
B of b d sites into an effective site with
Hilbert spaceHsite′ so that dimHsite′ = q ′ ≤
dimH⊗b d

site
= q b d

with q = dimHsite and
d the number of spatial dimensions. In
the spirit of familiar renormalization group
transformations we would have q ′ = q ,
i.e. we replace b d spins by one effective
spin and short range fluctuations within the
block B of b d spins have been removed.
Let us define w† ∈Hom(Hsite′ ,H⊗b

site
) as the

isometry (ww† = 1̂) that maps b d sites onto a single effective site. We have explicitly
included the Hermitian conjugation since the resulting variational ansatz will be defined
in terms of (w†)† = w. We can now group all sites n ∈L in blocksBn′ (n′ ∈L ′) of b d

sites, with |L ′| = |L |/b d . We then define R =
⊗

n′∈L ′ w
†
n′

. For translation invariant
states, we can choose all isometries wn′ equal as is sketched in Figure 5.4 for d = 1 and
b = 2. The associated map R for operators is displayed in Figure 5.5. The resulting
variational class depicted in Figure 5.6 is the class of tree tensor network states [371], and
allows an efficient evaluation of expectation values when q ′, q ′′, . . . can be chosen small
(e.g. O(q)).

Unfortunately, this last requirement is exactly where the blocking scheme fails. In order
to obtain the required behavior R†R |Ψ〉 ≈ |Ψ〉, the local projectors wb w†

b
should project

onto the support of the reduced density matrix of the corresponding block B of `
sites. But because the block is strongly entangled with the rest of the state, the Schmidt
decomposition of |Ψ〉 with respect to a bipartition into a blockB and the rest of the
system, written as

|Ψ〉=
q`∑
α=1

λα |Ψ(B)α
〉 |Ψ(L\B)

α
〉 (5.4)

contains many non-zero Schmidt-coefficients: λα 6= 0 for α = 1, . . . , q ′. We can lower-
bound q ′ by exp[S(B)] with S(B) the entanglement entropy of a blockB of b d sites,
as discussed in Subsection 2.4 of Chapter 1. In particular, for one-dimensional critical
systems we can use the scaling law in Eq. (1.66) to infer that q ′ ≥ exp(c/6 log b ) and
thus q ′′ ≥ exp(c/6 log b 2) ≈ (q ′)2 and so on. The short range quantum fluctuations
thus accumulate, resulting in a rapid increase in the required Schmidt dimension. This
behavior was to be expected. We try to reduce the degrees of freedom by discarding the
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quantum fluctuations within a block of b d sites. But the partition of the lattice into such
blocks is arbitrary, and the same short-range fluctuations exist across the boundaries of
these blocks. The area law allows some benefit from discarding short range fluctuations
within a block (see e.g. [372]) in comparison to exact diagonalization, where we would
need a double exponential scaling q ′ = q b d

, q ′′ = q (b
d )2 , . . . However, the cross-boundary

fluctuations are still responsible for a large entanglement between each block and the rest
of the system. We should thus also try to eliminate these short-range fluctuations before
trying to reduce the number of degrees of freedom within a single block.

w† w†w† w†

R

wwww
R†

Ô

=

Ô �

Figure 5.5: Kadanoff’s associated blocking transformation of operators.

|Ψ〉 =
w � w �

R�†

w ��
R��†

wwww
R†

|0〉

Figure 5.6: The variational class of tree tensor network statesMTTNS as defined by the quantum
analog of Kadanoff’s blocking scheme defined above.
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w† w†w† w†

R

u† u† u† u†

|Ψ�〉
=

|Ψ〉

Figure 5.7: The entanglement renormalization
step with b = 2 for one-dimensional quantum
states with periodic boundary conditions.

This naturally leads to the process of entan-
glement renormalization as was first defined
in [368], the renormalization transforma-
tion R of which is sketched in Figure 5.7 for
one-dimensional systems. The renormal-
ization step R now also contains unitary
operators u† ∈L(H⊗2

site
) that act on the two

neighboring sites of different blocksB and
B ′. This construction can be generalized
in a number of ways to higher dimensions,
but important is to act with unitary oper-
ators across the boundaries of neighboring
blocks. These unitary operators are appro-
priately called disentanglers. The resulting
variational ansatz is called the multi-scale
entanglement renormalization ansatz and
is sketched in Figure 5.8. This variational

class was studied in great detail in [369] and allows to efficiently evaluate expectation
values when q ′, q ′′, . . . remain small. Unlike in the previous case, this is now a valid
assumption. Even with q = q ′ = q ′′ = . . . this ansatz allows for algebraically decaying
correlation functions and can thus be used to describe both critical and non-critical
systems. In Subsection 1.4, we recapitulate the argument that shows how the multi-scale
entanglement renormalization ansatz produces an area law for the entanglement entropy
S (A ) of a spatial regionA in arbitrary dimensions d > 1, while allowing logarithmic
violations compatible with the conformal field theory result of Eq. (1.66) for d = 1. Since
the lowest layers R† effectively eliminate the degrees of freedom living at the shortest
length scale, the variational parameters in the higher layers u ′ and w ′ only influence the
long-range behavior of the wave function. These parameters do thus not suffer from
Feynman’s sensitivity to high frequencies. The only downside is that the arbitrariness
of grouping blocks of b spins together results in a general instance of this variational
class not being translationally invariant, even when all transformations u and w within a
single layer are chosen to be identical.

Let us now compare this renormalization scheme to a scheme based on tracing out
degrees of freedom in the density matrix ρ̂= |Ψ〉 〈Ψ|. When q = q ′ = q ′′ = . . ., we can
rewrite the isometries w, w ′, . . . as a b d -site unitary operators w̃ where b d − 1 of the
input sites are in a fixed state |0〉, as in Figure 5.9(a) for b = 2 and d = 1. The Hermitian
conjugate transformation w† appearing in the renormalization group transformation R
acting on quantum states can then be written as a unitary transformation w̃† followed
by a projection of b − 1 of the b sites onto the reference state |0〉. Let us now denote the
successive action of u† and w̃† as R̃, so that R consists of the unitary quantum cirquit R̃
followed by the projection onto |0〉. In the ideal case, where R†R |Ψ〉= |Ψ〉, this implies
that R̃ is able to completely disentangle |L \L ′|= |L |(b d − 1)/b d degrees of freedom,
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|Ψ〉 =

w ��
R��†

R†

w w w w

u u u u

w � w �
R�†

u u

|0〉

� =�0

s

� � =�1

� �� =�2

Figure 5.8: The multi-scale entanglement renormalization ansatz with b = 2 for one-dimensional
systems with periodic boundary conditions.

so that R̃ |Ψ〉= |Ψ′〉⊗ |0〉⊗|L\L ′|. In that case, there is no difference between projecting
onto the fixed states |0〉 or just tracing these degrees of freedom, so that

ρ̂′ = trL\L ′
�

R̃ρ̂R̃†
�
= |Ψ′〉 〈Ψ′| (tr[|0〉 〈0|])|L \L ′| = |Ψ′〉 〈Ψ′| . (5.5)

In the general case where such a complete disentanglement is not exactly obtainable, we
should explicitly include a projection P̂L\L ′ = (|0〉 〈0|)⊗|L\L

′| in order to obtain

ρ̂′ =R(ρ̂) = Rρ̂R† = trL\L ′
�

P̂L\L ′ R̃ρ̂R̃†
�
= |Ψ′〉 〈Ψ′| . (5.6)

Hence, we have generalized the intuitive tracing operation from the beginning of the
previous subsection to a more general format, where we first operate on the density
matrix ρ̂ before tracing out degrees of freedom. This operation includes a unitary
transformation that tries to disentangle the degrees of freedom, followed by a projection
that ensures that the resulting density matrix is pure even when the disentanglement was
not complete. Since the following renormalization steps no longer act on the disentangled
degrees of freedom, we can postpone the projection step until the very end. Reversing
this process defines the multi-scale entanglement renormalization ansatz as a special
quantum circuit acting on the initial state |0〉⊗|L |, as depicted in Figure 5.10.
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w
w̃

|0〉
=

w†

|0〉

w̃†

=

?⇒

(a) (b)

u† u† u† u†

|Ψ�〉
=

|Ψ〉

w̃† w̃† w̃† w̃†

⊗

R̃

|0〉 |0〉 |0〉 |0〉

Figure 5.9: (a) The isometry w can for b = 2 be recast as a two-site unitary operator w̃ with a
reference state |0〉 acting as fixed input for one site; the projection w† acts as a unitary transforma-
tion w̃† after which one output is projected onto the fixed state |0〉. (b) The renormalization group
transformation R acting on quantum states can now be interpreted as a unitary quantum circuit
that tries to completely disentangle half of the degrees of freedom.

1.3. Fixed points, quantum phases and critical exponents

Further evidence that the process of entanglement renormalization defines a proper
renormalization group transformation comes from numerically applying it to test models
and investigating its fixed point structure. Numerical investigation of critical and non-
critical spin models chains have been conducted in [373] for d = 1 and in [374, 375]
for d = 2 and agree well with Monte-Carlo results. For two-dimensional models, the
multi-scale entanglement renormalization ansatz has also proven to be successful to
describe systems that are not accessible by Monte Carlo techniques, i.e. frustrated
antiferromagnets [376] and interacting fermion systems [377, 378], both at finite size
and in the thermodynamic limit. These simulations learn that for non-critical models (e.g.
disordered phases or symmetry breaking ordered phases), the tensors u and w become
trivial after a number of layers s such that ξ̃c/b s ® 1, with ξ̃c = ξc/a the dimensionless
correlation length in terms of the number of lattice spacings a. Hence, the layers above
layer s can be omitted. As an active renormalization process, the ground state |Ψ〉 has
been completely disentangled after the application of s renormalization steps R, R′, . . .
In contrast, for critical models the transformations u and w can be chosen equal for
the successive layers, with a possible transient regime in the first few layers. Hence, the
low-energy behavior of the ground state of critical models becomes scale invariant. The
multi-scale entanglement renormalization can also describe phases with topological order
[379, 380]. While these models are non-critical and all fluctuations can be projected out
with a finite number of s layers, the resulting state is not completely disentangled. In a
system of finite size, the top tensor w ′′′ introduces a global entanglement in the system
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|Ψ〉 =

u u u u

u u

w̃ w̃ w̃ w̃

w̃ w̃

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

w̃ ��

R̃†

R̃�†

R̃��†

Figure 5.10: The multi-scale entanglement renormalization ansatz as a unitary quantum circuit
acting on a fixed input state |0〉⊗|L |.

that lives at the scale of the system size. This entanglement gives rise to the topological
entanglement entropy γ discussed in Subsection 2.4 of Chapter 1 [see Eq. (1.72)]. Very
recently, the multi-scale entanglement renormalization ansatz has even been applied to a
simple Z2 lattice gauge theory [381], where the local symmetry can be incorporated in
the tensor network. Accurate estimates for the energy gap and the Wilson loop can be
obtained.

As a valid renormalization group transformation, entanglement renormalization should
also enable us to compute scaling exponents and the corresponding scaling operators near
critical points through linearization of the fixed point transformation law. In the current
scheme of renormalization of quantum states, the renormalization group transformation
law R(Ô) = RÔR† can already be considered as this linearization. For the scheme
of entanglement renormalization, R contains the tensors u and w of a scale-invariant
multi-scale entanglement renormalization ansatz representation of the ground state of a
critical model. Non-linear contributions to the renormalization group transformation
law of operators are obtained by taking into account the change in u and w under the
substitution Ĥ ← Ĥ +ηÔ. The transformation R(Ô) is depicted in terms of u and w
in Figure 5.11(a) for b = 2 and d = 1. We can use u†1̂u = 1̂′ and w†1̂w = 1̂′ to note
that local operators, which act as 1̂ on most sites, are mapped to local operators. In
particular, for the binary one-dimensional scheme (b = 2 and d = 1) of Figure 5.11(a),
all operators with finite support are automatically contracted onto three-site operators
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after a number of successive iterations. Hence, as a proper renormalization group
transformation, the map R does not induce long-range interactions. While this is a
general feature of entanglement renormalization, the number of sites to which all local
operators converge is specific to the chosen implementation. For b = 3 and d = 1,
all local operators are contracted to two-site operators. We are now interested in the
eigenvalues λ(α) and corresponding operators Ô (α) of R —so that R(Ô (α)) = λ(α)Ô (α)—
since these define the scaling operators and scaling exponents. The scaling exponents∆
are then obtained as − logλ(α)/ log b . For b = 2, all eigenoperators are either three-site
operators or have an infinitely large support. Note that the map R is b -periodic, i.e.
it is only translation invariant under shifts over b sites. The output Ô ′ = R(Ô) for a
local operator depends on the position of the operator. It is therefore better to define
for local operators an averaged map A(Ô) which is called the ascending superoperator
and is sketched in Figure 5.11(b). Local scaling operators and corresponding scaling
exponents are obtained from the eigenvalues and eigenoperators of A in [382, 383, 384]
for one-dimensional critical spin models and are in very good agreement with the exact
results from conformal field theory. In addition, the transformation law R can also
be used to obtain non-local scaling operators [385], which consist of a local operator
times a semi-infinite string (i.e. like the Mandelstam operators for creating topologically
non-trivial excitations introduced in Section 3 of Chapter 3). Finally, the multi-scale
entanglement renormalization ansatz can be used to study boundary critical phenomena
and obtain boundary scaling operators [386].
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Ô

w w w

u u

w† w†w†

u† u†

1

2
+

1

2
A(Ô) =
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R(Ô) =

Figure 5.11: (a) The entanglement renormalization step induces a renormalization group transfor-
mation law for operators Ô ′ =R(Ô). (b) An averaged renormalization group transformation law
for local operators Ô ′ =A(Ô) with A the ascending superoperator.
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1.4. Scaling of entanglement

The success of the multi-scale entanglement renormalization ansatz can of course be
explained by the precarious way it deals with entanglement. Entanglement is created by
quantum fluctuations of degrees of freedom living at different length scales and thus has
itself a multi-scale structure. Let us now label the latticesL ,L ′, . . . appearing through
successive renormalization steps asLs , with s labeling the number of renormalization
steps (so thatL =L0,L ′ =L1, . . . ). A blockBs of nd sites at latticeLs corresponds
to n s d sites on the original lattice. For one-dimensional critical models, the entanglement
entropy ofBs with the rest of the lattice would thus be given by S (Bs ) = (c+c)/6 log n s ∼
s log n if no entanglement had been renormalized away. The entanglement entropy of
a block with a fixed number of sites would thus increases linearly in s , corresponding
with an exponential increase of the required dimension of the effective sites in the case of
tree tensor networks. As was illustrated in [368], the disentanglers are able to reduce
this scaling down to a constant (s -independent) entanglement entropy S (Bs ) for critical
models, whereas the entanglement entropy S (Bs ) scales to zero for non-critical models (if
the absence of topological order is assumed). As discussed in the previous section, the
successive renormalization steps acting on |Ψ〉 produce a disentangled state after s steps
such that ξ̃c/b s ® 1.

w w w w

u u u

w† w†w† w†

u† u† u†

ρ̂�ρ̂ =

Figure 5.12: Creation of entanglement in the
multi-scale entanglement renormalization ansatz
for a local reduced density matrix ρ̂′ that is ob-
tained from a smaller reduced density matrix ρ̂′ in
a higher layer.

This observation of course explains why
the multi-scale entanglement renorma-
lization ansatz is able to accurately de-
scribe ground states of critical models
even with q = q ′ = q ′′ = . . .. Let us
now reverse this argument and analyze
directly how entanglement is created in
the multi-scale entanglement renorma-
lization ansatz for an arbitrary number
d of spatial dimensions. Let ρ be the
density matrix of a blockB of nd sites
inL . The density matrix ρ̂ is obtained
from a density matrix ρ̂′ corresponding
to a blockB ′ of sites in latticeL ′, and
so on. The corresponding transforma-
tion is sketched for d = 1 and b = 2 in
Figure 5.12. Let us reintroduce the in-
dex s that labels the latticeLs on which
ρ̂s is defined. If the disentanglers act
only between nearest neighbors across
the boundary of blocks of linear size
b , then the linear size ns+1 of ρ̂s+1 is given in terms of the linear size ns of ρ̂s as
ns+1 = d(ns + 2)/be. Hence, the linear size of ρs decreases up to some constant value
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n = ns after s ≈ logb n renormalization steps. In the most extreme case, ρ̂s is in a totally
mixed state, so that S(ρ̂s ) = nd log q , where we still assume that q = q ′ = . . . = qs . In
every step, the ρ̂s is obtained from ρ̂s+1 by some isometric transformations (which do
not increase the entropy) followed by tracing out approximately 2d n(d−1)

s boundary
sites, where tracing out one site increases the entanglement by at most log q . Hence, we
obtain

Ŝ (B) ≤ nd log q +
s∑

s=0

2d n(d−1)
s log q . (5.7)

For d = 1 this leads to

Ŝ (B) ® 2 log q

log b
log n+ cst∼ log|B|, (5.8)

while for d > 1 it results in

Ŝ (B) ® nd log q + 2d n(d−1) log q
logb n∑

s=0

b−s(d−1) = k2n(d−1)+ cst∼ |∂B|. (5.9)

We have ignored the constant term for large blocksB . Hence, the sum over the different
layers is able to create a logarithmic violation of the area law in d = 1 but not in higher
dimensions. As a result, certain fermionic models with logarithmic violations to the
area law in d > 1 cannot be captured by the multi-scale entanglement renormalization
ansatz. A solution to this problem is provided by a generalized tensor network structure
where at each renormalization step the theory branches into two or more decoupled
theories [387, 388], the so-called branching multi-scale entanglement renormalization
ansatz.

Finally, we return to the nature of the additional dimension s that is present in the
tensor network structure of the multi-scale entanglement renormalization ansatz. We
have given ample proof that s labels the renormalization scale. But can we now also
interpret s as a holographic dimension? A first step towards such a correspondence
was provided in [389] and further explored in [388]. If we now reverse the postulate
of Ryu and Takayanagi [Eq. (1.78) in Subsection 2.5 of Chapter 1], we can define the
geometry of this additional dimension through entanglement. The length or surface of a
blockB ⊂L of sites can be defined to be proportional to its entanglement S (B). The
corresponding geodesic or minimal surface is then obtained as the connection of all the
bonds that are responsible for creating S (B), i.e. all bonds that had to be traced out in
order to obtain ρ̂(B). This definition endows the bulk containing the collection of all
latticesL ,L ′,L ′′, . . . with the structure of a discrete anti-de Sitter space. Such a discrete
anti-de Sitter space has also been recovered in an explicit construction of holographic
duals for large N lattice gauge theory [390].
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2. Entanglement renormalization for quantum fields

Jutho Haegeman, Tobias J. Osborne, Henri Verschelde, Frank Verstraete.
“Entanglement renormalization for quantum fields”.

arXiv:1102.5524 (2011).

Despite the many interesting properties of the entanglement renormalization prescrip-
tion for quantum lattice systems, we can isolate two drawbacks. The first one was already
mentioned in the previous section: entanglement renormalization defines a variational
ansatz that can not easily be made translation invariant. Secondly, while the choice
q = q ′ = q ′′ = ... already produces a variational ansatz with the correct entanglement
and correlation structure, a small increase of qs in the lowest layers is in general required
in order to obtain truly accurate results. This can be easily understood. In the discrete en-
tanglement renormalization scheme, we are trying to eliminate a large fraction (b −1)/b
of all degrees of freedom in a single layer. Rephrased in terms of the quantum circuit R̃,
we are trying to disentangle a large fraction of all degrees of freedom by a very simple
quantum circuit consisting of a layer of two-site unitary operators u followed by a shifted
layer of b -site unitary operators w̃ [see Figure 5.9(b)].

This last issue has two easy solutions. Either we can try to increase the complexity
of the quantum circuit (see e.g. [278]), which might very quickly jeopardize the effi-
cient contractibility of the tensor network, or we can try to take infinitesimally small
renormalization steps. However, being able to define infinitesimal renormalization
group transformations forces us to abandon the latticeL and move to the continuum
R . As we show momentarily, this also enables us to overcome the first problem and
formulate a variational ansatz for field theories that can easily be made translation in-
variant. A continuum formulation is also very appealing from the theoretical point of
view, since it will facilitate further research regarding the connection with the AdS/CFT
correspondence.

2.1. Towards a continuum formulation of entanglement renormal-
ization

We first introduce a continuum formulation of entanglement renormalization as a re-
normalization group transformation acting on quantum states. Through the strategy of
the previous section, this renormalization group transformation automatically defines
a variational ansatz that is discussed in the next subsection. Extracting a continuum
limit from the entanglement renormalization scheme for lattice systems starts from
the observation that there is some asymmetry in the definition of the entanglement
renormalization process of e.g. Figure 5.7 (d = 1 and b = 2), since entanglement between
an even and odd nearest neighbor site is removed with a disentangler u†, whereas
entanglement between an odd and even nearest neighbor site is removed by an isometry
w†. We can eliminate this assymetry by redefining w† = w†

0 v† where v† is a disentangler
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acting on odd-even pairs and w†
0 is a fixed isometry. For the unitary quantum circuit

of Figure 5.9(b), the same substitution results in w̃† = w̃†
0 v†, with w̃†

0 a fixed unitary
operator. The resulting tensor network is displayed in Figure 5.13. While we have
of course performed a trivial substitution, this allows for a level of abstraction that is
required in order to obtain a continuum limit.

|Ψ�〉
=

u† u† u† u†

|Ψ〉

v† v† v† v†

�

�
≈ exp

�
i∆s L̂

�

≈ exp
�

i∆s K̂
�

|0〉

w̃†
0

|0〉

w̃†
0

|0〉

w̃†
0

|0〉

w̃†
0

−→ |Ω〉

Figure 5.13: A reinterpretation of the entanglement renormalization process required to obtain
the continuum limit.

We can now interpret the double layer of disentanglers u† and v† as a first order Lie-
Trotter-Suzuki decomposition of an evolution operator exp(i∆s K̂) with respect to a
nearest neighbor Hamiltonian K̂ =

∑
n∈L k̂n,n+1. In the original definition of s as

the number of discrete renormalization steps, we would have ∆s = 1. However, for
reasons that are explained in the next paragraph, we now redefine dimension s such
that a single layer corresponds to ∆s = log b , with b = 2 in Figure 5.13. This picture
immediately explains and cures the two shortcomings of the multi-scale entanglement
renormalization ansatz for lattice systems. Firstly, for translation invariant systems
we expect that we are able to choose K̂ translation invariant. This will result in all
disentanglers u = v = exp(i∆s k̂) being equal. But as a general feature of the Lie-
Trotter-Suzuki decomposition that also plagues the Time-Evolving Block Decimation
(see Subsection 2 of Chapter 3), the decomposition of a translation invariant operator is
not translation invariant. Secondly, it explains why keeping q constant in the multi-scale
entanglement renormalization ansatz cannot provide highly accurate results: the two
layers of shifted disentanglers are only a rough first order approximation of the large
evolution step exp(i∆s K̂) with∆s =O(1). A better ansatz would be to include in each
renormalization step R several layers of shifted disentanglers representing a higher order
Lie-Suzuki-Trotter decomposition, but this destroys the efficient contractibility of the
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tensor network. It is now straightforward how to define exp(i∆s K̂) in the continuum,
since it suffices to replace K̂ by a field theory Hamiltonian defined in terms of creation
and annihilation operators ψ̂†

α
(~x) and ψ̂α(~x), ~x ∈R . One subtlety should not be ignored.

On the lattice, K̂ disentangles degrees of freedom at the shortest length scale available
in the lattice, i.e. degrees of freedom living at the scale of the lattice spacing. In the
continuum, such a length scale is missing and we should manually include a cutoff
a =Λ−1 in the definition of K̂ . This is the scale at which K̂ acts to disentangle degrees
of freedom. This situation is similar to Wilson’s renormalization group discussed in
Section 3 of Chapter 1: without the introduction of an explicit cutoff this process can
not be defined in the continuum. When required, we can always send Λ→∞ at the end
of the process.

We still have to deal with the isometries w†
0 , or alternatively the unitary operators w̃†

0
followed by the projection onto the ancillas |0〉. By removing sites from the lattice, we
obtain a coarser lattice with lattice spacing a′ = ba. However, operators and states on
the lattice have no notion of the physical length of the lattice spacing. All distances are
naturally measured in terms of lattice spacings. Hence, the operator K̂ ′ of renormaliza-
tion step R′ naturally disentangles degrees of freedom living at scale a′ = ba. This is no
longer true in the continuum: we either need to redefine the explicit cutoff in K̂ ′ or we
need to apply a scale transformation that brings degrees of freedom living at scale Λ/b
back to the cutoff scale Λ. These two solutions are of course complementary and both
have there merits, as we illustrate in the remainder of this chapter. The last point of view
is however closest to the original formulation of Wilson’s renormalization group, where
such an explicit scale transformation is also present. We can thus interpret w†

0 as applying
this scale transformation. For example, if every lattice site can either be empty (|0〉) or
occupied (|1〉 = ĉ† |0〉) by a particle, then choosing w†

0 = |0〉 〈00|+ |1〉 (〈01|+ 〈10|)/p2
acts naturally as a scale transformation on a single particle state |ϕ〉 =∑n∈L ϕn ĉ†

n |0〉
with |0〉= |0〉⊗|L |, since

|ϕ′〉= (w†
0 )
⊗|L ′| |ϕ〉=

∑
n∈L ′

ϕ2n−1+ϕ2np
2

(ĉ ′n)
† |0′〉 . (5.10)

In the continuum, there is no easy way to project onto a continuous subspace of degrees
of freedom and it is easier to use the unitary quantum circuit with unitary operators w̃†

0 of
Figure 5.13, where the projection step can be postponed until the very end of the process.
We can then identify the unitary operation (w̃†

0 )
⊗|L ′| with a scaling transformation,

which is indeed a unitary operation in quantum field theories. Let L̂ be the generator of
scaling transformations in d spatial dimensions, which in terms of the field creation and
annihilation operators ψ̂†

α
(~x) and ψ̂α(~x) is given by

L̂=− i

2

N∑
α=1

∫
dd x ψ̂†

α
(~x)
h
~x · ~∇ψ̂α(~x)

i
−
h
~x · ~∇ψ̂†

α
(~x)
i
ψ̂α(~x). (5.11)
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Since the different field species α decouple, we continue henceforth with a single species.
We define

ψ̂†(~x; s) = eis L̂ψ̂†(~x)e−is L̂ (5.12)

so that
∂

∂ s
ψ̂†(~x; s) = i[L̂, ψ̂†(~x; s)]. (5.13)

Since L̂(s) = eis L̂L̂e−is L̂ = L̂ we immediately obtain

∂

∂ s
ψ̂†(~x; s) =−1

2
~∇ · (~xψ̂†(~x; s))− 1

2
~x · ~∇ψ̂†(~x; s) =−~x · ~∇ψ̂†(~x; s)− d

2
ψ̂†(~x; s) (5.14)

and thus
ψ̂†(~x; s) = e−s d/2ψ̂†(e−s~x). (5.15)

If we now define a single particle state as |ϕ〉= ∫ dd x ϕ(~x)ψ̂†(~x) |Ω〉 with |Ω〉 the vacuum
that is annihilated by every ψ̂(~x), we obtain

|ϕ′〉= ei∆s L̂ |ϕ〉=
∫

dd x ϕ(~x)ψ̂†(~x;∆s)ei∆s L̂ |Ω〉= e−d∆s/2
∫

dd x ′ϕ(e∆s~x ′)ψ̂†(~x ′) |Ω〉
(5.16)

since L̂ |Ω〉= 0. Setting ∆s = log b establishes the relationship between Eq. (5.16) and
its discrete version Eq. (5.10) for d = 1 and b = 2. However, in the continuum we
are no longer restricted to choosing ∆s equal to the logarithm of an integer, and we
can hence define a infinitesimal entanglement renormalization step by sending∆s → 0
and iterating this process infinitely many times. Every infinitesimal renormalization
step ds at total renormalization scale s will disentangle the degrees of freedom living
at momentum scale [e−s−dsΛ, e−sΛ] until all modes have been disentangled. Note that
here and in the remainder of this chapter, even though we speak about momentum
scales according to common practice, these intervals of scales should not be interpreted
as having sharp cutoffs in momentum space. We are in fact free to implement the
cutoff however we deem appropriate. This disentangling process is generated by the
operator K̂(s ), which can depend on the scale s . Note that due to the rescaling step, K̂(s )
always disentangles degrees of freedom effectively living at the momentum cutoff scale
[e−dsΛ,Λ], but that this corresponds to the physical momentum scale [e−s−dsΛ, e−sΛ].
In principle, this process continues forever (s →∞). However, for non-critical systems
we can expect that at a scale s such that ξc� esΛ−1, the state has been transformed into
a fully disentangled reference state |Ω〉 and can thus be projected onto it (in the assumed
absence of topological order). Put differently, K̂(s) converges to zero for s � log(ξcΛ).
For critical systems, on the other hand, the scale invariance of the low-energy behavior
of the theory allows to assume that K̂(s ) develops a horizontal asymptote for s →∞, i.e.
it becomes effectively constant after some possible transient regime.
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2.2. Continuous entanglement renormalization ansatz

The infinitesimal entanglement renormalization transformation introduced in the previ-
ous subsection immediately defines a variational ansatz for quantum field theories, to
which we henceforth refer to as the continuous entanglement renormalization ansatz

|Ψ[K̂]〉¬ Sexp


−i

∫ sξ

sa

K̂(s)+ L̂ds


 |Ω〉 . (5.17)

Here, a = Λ−1 represents the minimal length scale cutoff and s can run from sa up
to sξ such that esξ−sa � ξc/a = ξcΛ. We can always fix one of the two end points of
the integration interval, such as sa = 0. The operation Sexp represents a scale ordered
exponential where the argument is ordered for increasing values of the scale parameter
s from left to right, i.e. the argument for sa appears completely at the left while the
argument for sξ appears completely to the right acting on |Ω〉. |Ω〉 represents a completely
unentangled reference state (for systems without topological order). For non-relativistic
field theories defined in terms of creation and annihilation operators ψ̂†

α
(~x) and ψ̂α(~x), we

can choose |Ω〉 as the vacuum that is annihilated by all annihilation operators ψ̂α(~x). The
variational parameters are now given by the (possible s -dependent) Hermitian operator
K̂ of the form

K̂(s) =
∫

dd x k̂(~x; s), (5.18)

where k̂(~x; s ) has non-trivial support in a small region of approximate linear size a =Λ−1

around the point ~x. It is easy to show that a translation invariant choice K̂(s) (∀s ∈
[sa , sξ ]) produces a translation invariant quantum state. While L̂ is in itself not translation
invariant, a dilatation of a translation invariant state is always again translation invariant.
More formally,

exp(−i~x0 · ~̂P )L̂exp(+i~x0 · ~̂P ) = L̂−~x0 · ~̂P (5.19)

with the momentum operator ~̂P given by

~̂P =−i
∫

dd x ψ̂†(~x)~∇ψ̂(~x). (5.20)

The second term in Eq. (5.19) does not contribute when acting on a translation invariant
state. Similarly, for K̂(s) rotation invariant (∀s ∈ [sa , sξ ]), the resulting state |Ψ[K̂]〉 is
rotation invariant.

By redefining s =−t and sa =−ta and sξ =−tξ we can reformulate Eq. (5.17) as

|Ψ[K̂]〉= T exp


−i

∫ ta

tξ

K̂(−t )+ L̂dt


 |Ω〉 , (5.21)

with T exp an ordinary time-ordered exponential that orders its arguments for decreasing
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values of t from left to right. Finally, we also define the unitary circuit that prepares the
continuous entanglement renormalization ansatz as

Û (sa , sξ ) = Sexp


−i

∫ sξ

sa

K̂(s)+ L̂ds


 . (5.22)

Note that we have always assumed to be working in the thermodynamic limit, in order to
be able to define continuous scale transformations. Hence, Û (sa , sξ ) does not represent a
proper unitary transformation, since it transforms one state |Ω〉 to another state |Ψ[K̂]〉
that probably does not live in the same Hilbert space. Since K̂(s) is assumed to have
a cutoff, the resulting orthogonalization catastrophe is only of infrared nature (see
Subsection 1.2 of Chapter 1). We henceforth ignore this potential problem.

Let us now interpret our ansatz as an active quantum circuit that transforms the unen-
tangled reference state |Ω〉 into a highly entangled state |Ψ〉. Initially the operator K̂(sξ )
entangles degrees of freedom in |Ω〉 that are living in the range of scales up to momentum
scale Λ during an infinitesimal ‘renormalization time’ ds . Then, an infinitesimal dilation
ds L̂ is applied that transports these degrees of freedoms to longer length scales and new
unentangled degrees of freedom that were originally living above momentum scale Λ
are introduced at scale Λ. This process is then iterated. Note that the decomposition
of K̂(s) + L̂ into two parts is somewhat artificial, since only the action of the sum is
well defined. The decomposition is based on K̂(s) being fully responsible for creation
all entanglement. The scaling part L̂ does not increase or reduce the entanglement. In
particular, the scaling transformation maps any unentangled state into an unentangled
state. This property alone is not sufficient to fully specify L̂ and we can still add to L̂
an operator that has the same property, i.e. a strictly local operator that contains only
the field operators and no derivatives thereof. In most systems, there is a well-defined
generator of physical scaling transformations, that contains two parts: one part is re-
sponsible for transforming the argument ~x of local operators by acting as ~x · ~∇, while
the second part is responsible for generating the canonical scaling dimensions. Adding a
strictly local operator in the definition of L̂ (and subtracting it again in K̂) changes the
canonical scaling dimensions. As we show in the next paragraph, it is also beneficial
to choose a reference state that is scale invariant (L̂ |Ω〉). In some cases, it is useful to
use the freedom in the definition of L̂ for this. After having fixed L̂, there are still
many different choices of K̂(s) that result in the same physical state |Ψ[K̂]〉. Hence,
as the other variational classes encountered in the previous chapters, the continuous
entanglement renormalization ansatz also has a gauge invariance. This is discussed in
Subsection 2.5.

In principle we always have to set sξ − sa → +∞. For ground states of non-critical
systems, we expect that K̂(s) automatically converges to zero for s →+∞ by applying
the variational principle, so that arbitrarily good approximations can be obtained with
a finite range of renormalization scales [sa , sξ ]. For critical systems on the other hand,
we expect that the variational principle forces K̂(s) to develop a non-zero horizontal
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asymptote. We test this premise for an explicit example in the Section 3.

2.3. Renormalization group flow

We now establish how to evaluate expectation values and illustrate how this naturally
lead to a renormalization group transformation law for operators in a Hamiltonian
framework. Expectation values are given by

〈Ψ[K̂]|Ô|Ψ[K̂]〉= 〈Ω|Û (sa , sξ )
†ÔÛ (sa , sξ )|Ω〉= 〈Ψ(s)|ÔR(s)|Ψ(s)〉 , ∀s ∈ [sa , sξ ]

(5.23)
where we have defined a renormalized operator ÔR(s) and a renormalized state |ΨR(s)〉
at renormalization scale s as

ÔR(s) = Û (sa , s)†ÔÛ (sa , s), |ΨR(s)〉= Û (sa , s)† |Ψ[K̂]〉= Û (s , sξ ) |Ω〉 . (5.24)

In particular, at s = sξ , |ΨR(sξ )〉 = |Ω〉, so that evaluating the operator Ô defined
at the ultraviolet cutoff scale sa with respect to |Ψ[K̂]〉 boils down to evaluating the
renormalized operator ÔR(sξ ) at the infrared scale sξ with respect to the reference state
|Ω〉. For any renormalization scale s , we can indeed interpret ÔR(s ) as the renormalized
operator, where all quantum fluctuations between momentum scales e−sΛ and Λ have
been integrated out. However, ÔR(s ) is still defined with respect to an effective cutoff Λ
due to the additional scaling transformation in Û . The renormalization group equation
for the renormalized operator ÔR(s) is given by

d

ds
ÔR(s) = i[K̂(s)+ L̂, ÔR(s)]. (5.25)

For critical systems, we expect that K̂(s) becomes s -independent. If the commutator
i[K̂ + L̂, ·] has eigenoperators Ô (α) with corresponding eigenvalues λ(α), so that

i[K̂ + L̂, Ô (α)] = λ(α)Ô (α), (5.26)

then operator Ô (α) is a scaling operator and λ(α) is the corresponding scaling exponent:
Ô (α)R (s ) = eλα s Ô (α). For local operators, this behavior is to restricted. Any local operator
Ô(~x) that is defined as a homogeneous polynomial of degree n in terms of the field
operators ψ̂α(~x) and ψ̂†

α
(~x) satisfies

[L̂, Ô(~x)] =−~x · ~∇Ô(~x)− nd

2
Ô(~x) (5.27)

with thus nd/2 the canonical scaling dimension. Hence, if Ô(~x) satisfies

[K̂ + L̂, Ô(~x)] =−~x · ~∇Ô(~x)−λÔ(~x), (5.28)
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then Ô(~x) is a local scaling operator with scaling dimension λ, and its renormalization
group flow is given by

ÔR(~x; s) = e−sλÔ(e−s~x) (5.29)

If Ô(~x) is homogenous in the field operators so that it has a well defined canonical
scaling dimension nd/2, then we can define λ− nd/2 as the anomalous scaling dimen-
sion.

Note that the renormalized operators ÔR(s) correspond roughly to the operator Ô
in the Heisenberg picture with respect to the s -dependent Hamiltonian K̂(s) + L̂, the
only difference being the fact that Û contains a scale ordered exponential that orders its
arguments in the reverse direction. Hence, the first argument K̂(s )+L̂ of the commutator
is still defined in the ‘Schrödinger picture’ and should not be ‘renormalized’. This
difference is only present when K̂(s) actually depends on s , since otherwise K̂R(s) +
L̂R(s) = K̂ + L̂. By considering L̂ as a free Hamiltonian and K̂ as the interactive part,
we can introduce another picture that is complementary to the interaction picture. We
thereto define the physically renormalized operator ÔP(s) as

ÔP(s) = e−i(s−sa )L̂ÔR(s)e
+i(s−sa )L̂ = e−i(s−sa )L̂Û (sa , s)†ÔÛ (sa , s)e+i(s−sa )L̂. (5.30)

It straightforwardly follows that ÔP(s) is defined by

ÔP(s) = i[K̂ ′(s), ÔL(s)] (5.31)

with
K̂ ′(s) = e−i(s−sa )L̂K̂(s)e+i(s−sa )L̂. (5.32)

The physically renormalized operator ÔP(s ) is equal to the renormalized operator ÔR(s )
up to the fact that the excess scaling has been removed, so that it is truly defined with
respect to a physical momentum cutoff e−sΛ. It arises from Ô by disentangling all modes
living at momentum scale in the interval [e−sΛ,Λ]. Note that these modes have not yet
been projected out, they have only been disentangled. Correspondingly, K̂ ′(s) is now
an operator that disentangles mode at the scale-dependent physical cutoff e−sΛ. Hence,
even if K̂ is s -independent, K̂ ′(s ) is not. We also define the physically renormalized states
|ΨP(s)〉

|ΨP(s)〉= e−i(s−sa )L̂ |ΨR(s)〉= e−i(s−sa )L̂Û (s , sξ ) |Ω〉 , (5.33)

so that all expectation values can be obtained as

〈Ψ[K̂]|Ô|Ψ[K̂]〉= 〈ΨP(s)|ÔP(s)|ΨP(s)〉 , ∀s ∈ [sa , sξ ]. (5.34)

We obtain
d

ds
|ΨP(s)〉= iK̂ ′(s) |ΨP(s)〉 (5.35)

and |ΨP(sξ )〉= e−i(sξ−sa )L̂ |Ω〉. If the reference state is now chosen to be scale invariant, as
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was announced in the previous subsection, we can use |ΨP(sξ )〉= |Ω〉 to redefine

|ΨP(s)〉= Sexp
�
−i
∫ sξ

s
K̂ ′(s)ds

�
|Ω〉 . (5.36)

This corresponds to the interpretation given to K̂ ′(s) given above, but now in an active
sense: K̂ ′(s ) entangles degrees of freedom immediately at the correct scale e−sΛ and there
is no need for L̂ to bring these freshly entangled degrees of freedom to the correct scale.
The scale invariance of |Ω〉 implies that degrees of freedom at all scales were identical
before being entangled. When introducing new unentangled degrees of freedom, it does
not matter from which scale they are coming since all scales are identical in |Ω〉. We can
then also write

|Ψ[K̂]〉= |ΨP(sa)〉= Sexp


−i

∫ sξ

sa

K̂ ′(s)ds


 |Ω〉 , (5.37)

and we can use this formulation as an alternative definition of the continuous entan-
glement renormalization ansatz. But as for the Wilsonian renormalization group, the
additional scale transformations in the original definition of |Ψ[K̂]〉 is better suited to
detect a critical point, as indicated by K̂(s) developing a non-zero horizontal asymp-
tote.

2.4. Entanglement and correlations

As for the multi-scale entanglement renormalization ansatz for lattice systems, it is
easy to proof that the continuous entanglement renormalization ansatz supports alge-
braically decaying correlations and a logarithmic violation of the area law for d = 1
spatial dimension. Regarding the correlations, it is sufficient to look at state |Ψ[K̂]〉
with K̂ being s -independent and translation invariant. Let Ô (α)(~x) and Ô (α

′)(~x ′) be
two local scaling operators. The operator Ĉ (α,α′)(~x,~x ′) = Ô (α)(~x)Ô (α′)(~x ′) that pro-
duces the correlation function as expectation value renormalizes as Ĉ (α,α′)

R (~x,~x ′; s) =

es[λ(α)+λ(α′)]Ô (α)(e−s~x)Ô (β)(e−s~x ′) as long as e−s |~x − ~x ′| � a = Λ−1. If for s ≈ log(|~x −
~x ′|Λ) we obtain 〈ΨR(s)|Ô (α)(e−s~x)Ô (β)(e−s~x ′)|ΨR(s)〉= c then we can write

〈Ψ[K̂]|Ĉ (α,α′)(~x,~x ′)|Ψ[K̂]〉 ≈ es[λ(α)+λ(α′)]c ∼ |~x −~x ′|λ(α)+λ(α′) . (5.38)

For computing the entanglement entropy of a spatial regionA , we can use the results
regarding entanglement growth under quantum mechanical (time) evolution of Sub-
section 2.5 of Chapter 1. Using the variable t = −s and the operator K̂ ′(s), we can
define

|ΨP̃(t )〉= T exp


−i

∫ t

tξ

K̂ ′(−t )dt


 |Ω〉 (5.39)
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so that |ΨP̃(t )〉 = |ΨP(−t )〉. K̂ ′(−t ) is a local Hamiltonian with momentum cutoff
et−taΛ. Clearly, the entanglement entropy of regionA in |Ω〉 is zero. The entanglement
remains very small as long as eta−t a� L with L the linear size of regionA . For these
time scales, the regionA is much smaller then the minimal region on which K̂ ′(−t ) acts
and very little entanglement is being created. Let now t ≈ ta− log L/a = ta− log LΛ and
let the entropy of regionA in |ΨP̃(t )〉 be given by some small constant k. In generalizing
Eq. (1.75) to the continuum, we have to assume that we have to measure the boundary
|∂A| of regionA in terms of the cutoff, so that we obtain

d

dt
S (A )(t )≤ c |∂A|(Λet−ta )d−1, (5.40)

and thus

S (A ) = S (A )(ta)≤ k + c
∫ ta

t
|∂A|Λd−1e(t−ta )(d−1) dt . (5.41)

Hence, for d = 1 we recover

S (A ) ≤ k + 2c
∫ ta

t
dt = 2c log L/a+ k , (5.42)

while for d > 1 we obtain

S (A ) ≤ k + c |∂A|
∫ ta

t
Λd−1e(t−ta )(d−1) dt

=
c

d − 1
|∂A|Λd−1


1− 1

(LΛ)(d−1)


+ k ∼ |∂A|Λd−1. (5.43)

These results are of course no surprise. We can now define a continuous path or surface of
points (x, s ) for which the corresponding operators k̂(x, s ) contributes to the generation
of the entanglement ofA . This could then be contrasted to the minimal surfaces of
Ryu and Takayanagi [Eq. (1.78) in Subsection 2.5 of Chapter 1], in order to establish
a connection between the continuous entanglement renormalization ansatz and the
holographic duality between anti-de Sitter space and conformal field theories.

2.5. Gauge invariance of the continuous entanglement renormal-
ization ansatz

As for the Wilsonian renormalization group flow described in Subsection 3.3 of Chap-
ter 1, there is a massive gauge invariance or reparameterization invariance in the entan-
glement renormalization scheme, since many different choices of K̂ produce (for a fixed
choice of L̂) the same state |Ψ[K̂]〉. This is also the case in the multi-scale entanglement
renormalization ansatz for lattice systems, where we can act with a one-site unitary
operator and its inverse on the legs of two tensors that are contracted in the tensor
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network. For the continuous entanglement renormalization ansatz, we can define in-
finitesimal layers Û (s , s + ds ) = exp(−ids[K̂(s )+ L̂])≈ exp[−ids K̂(s )]exp[−ids L̂] and
insert between every two layers Û (s − ds , s )Û (s , s + ds ) a unitary gauge transformation
Ĝ(s ) and its inverse as Ĝ(s )Ĝ†(s ), where we absorb the first factor into Û (s − ds , s ) and
the second factor into Û (s , s+ds ). We obtain invariance under the gauge transformation
Û (s , s + ds)← Û ′(s , s + ds) where

Û ′(s , s + ds)

= Ĝ(s)† exp
�−ids K̂(s)

�
exp
�−ids L̂

�
Ĝ(s + ds)

= exp
�−idsĜ(s)†K̂(s)Ĝ(s)

�
Ĝ(s)†e−ids L̂Ĝ(s + ds)e+ids L̂ exp

�−ids L̂
�

= exp
�−idsĜ(s)†K̂(s)Ĝ(s)

�
Ĝ(s)†

×
¨

Ĝ(s)+ ds
d

ds
Ĝ(s)− ids

�
L̂, Ĝ(s)

�«
exp
�−ids L̂

�

= exp

�
−ids

�
Ĝ(s)†K̂(s)Ĝ(s)+ iĜ† d

ds
Ĝ(s)+ Ĝ(s)†

�
L̂, Ĝ(s)

���
exp
�−ids L̂

�
.

Hence, the continuous entanglement renormalization ansatz |Ψ[K̂]〉 is invariant under a
substitution of the variational parameters K̂← K̂ ′, where the gauge transformed operator
K̂ ′(s) is given by

K̂ ′(s) = Ĝ(s)†K̂(s)Ĝ(s)+ iĜ† d

ds
Ĝ(s)+ Ĝ(s)†

�
L̂, Ĝ(s)

�

= Ĝ(s)†K̂(s)Ĝ(s)+ iĜ† d

ds
Ĝ(s)+ Ĝ(s)†L̂Ĝ(s)− L̂.

(5.44)

The gauge transformation Ĝ thus consists of an s -dependent unitary operator, where
we require Ĝ(sa) = 1̂. At sξ , we either need to accompany the gauge transformation
by a transformation of the reference state as |Ω〉 ← |Ω′〉 = Ĝ(sξ )

† |Ω〉, or we need to
restrict to choices Ĝ(sξ )

† that leave the reference state invariant. If K̂ is translation
invariant, then Ĝ should also be translation invariant to produce a translation invariant
K̂ ′. However, applying a translation non-invariant gauge transformation to a translation
invariant choice K̂ indicates that translation invariant states |Ψ[K̂]〉 can be represented by
a translation non-invariant choice K̂ ′. The same argument applies to rotation invariance
and other symmetries.

For critical theories, we expect that K̂(s) becomes s -independent after some transient
regime, i.e. that K̂(s) develops a horizontal asymptote for s → +∞. Clearly, apply-
ing an s -dependent gauge transformation might transform this horizontal asymptote
into a general s -dependent behavior with no converging limit. As for Wilson’s renor-
malization scheme, we need to impose certain renormalization conditions that fix the
gauge invariance in order to be able to detect the presence of a horizontal asymptote
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lims→+∞ K̂(s) = K̂ 6= 0̂ for critical theories.

Finally, we investigate the effect of an infinitesimal gauge transformation generated by Ĵ
as Ĝ(s) = exp[iηĴ (s)]. We obtain for the corresponding transformation of K̂ :

K̂ ′ = K̂ +η
�
− d

ds
Ĵ (s)+ i

�
K̂(s)+ L̂, Ĵ (s)

��
. (5.45)

The shift in K̂ for an infinitesimal gauge transformation is equal in form to the renor-
malization group flow equation for renormalized operators ÔR(s ). This correspondence
might be related to the correspondence between the Callan-Symanzik equation and the
equations of motion for the bulk fields in the holographic renormalization scheme, and
might thus provide another angle in which the equivalence between the continuous entan-
glement renormalization scheme and the AdS/CFT duality might be investigated.

3. Entanglement renormalization of free field theories

Let us now apply the continuous entanglement renormalization ansatz to free field
theories —quadratic and translation-invariant theories— where we can hopefully compute
everything analytically. Since the exact ground state is a Gaussian state, we can construct
a Gaussian continuous entanglement renormalization ansatz where K̂ contains only
quadratic interactions. We show how this already illustrates many of the general claims
and predictions of the previous section.

3.1. Scaling in momentum space

Since free theories can be solved exactly, we first determine the pure scaling case K̂(s ) = 0
in momentum space. In real space, we can generalize Eq. (5.15) to learn that

ψ̂R(~x; s) = e+i(s−sa )L̂ψ̂(~x)e−i(s−sa )L̂ = e−(s−sa )
d
2 ψ̂
�

e−(s−sa )~x
�

. (5.46)

Defining momentum-space operators via

Ψ̂ (~p)¬ 1

(2π)d/2

∫ ∞
−∞

e−i~p·~xψ̂(~x)dd x, (5.47)

we obtain

L̂=
i

2

∫ ¦
Ψ̂ †(~p)

�
~p · ~ÈΨ̂ (~p)�−�~p · ~ÈΨ̂ †(~p)

�
Ψ̂ (~p)

©
dd p (5.48)
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with ~È the gradient operator in momentum space (~eµ · ~È = ∂ /∂ pµ, ∀µ = 1, . . . , d ).
This scaling operator automatically results in

Ψ̂R(~p; s) = e (s−sa )
d
2 Ψ̂ (e s−sa~p). (5.49)

Note that in the pure scaling case, K̂(s ) = 0 also implies K̂ ′(s ) = 0 so that ψ̂P(~x; s ) = ψ̂(~x)
and Ψ̂P(~p; s) = Ψ̂ (~p).

3.2. Gaussian continuous entanglement renormalization ansatz

A Gaussian continuous entanglement renormalization ansatz can be defined as being
generated by a choice of K̂(s) that is quadratic in the field operators. A quadratic
choice of K̂(s) only generates a Gaussian state if the unitary circuit Û (sa , sξ ) acts on a
Gaussian reference state |Ω〉. The reference vacuum |Ω〉 should in principle not contain
any variational degrees of freedom, as any local unitary that would transform |Ω〉 to a
better reference state could also be absorbed into the unitary quantum circuit Û (sa , sξ ).
Nevertheless, it is sometimes beneficial to allow some degree of variational freedom in
|Ω〉. For the non-relativistic examples in the next subsection, we fix |Ω〉 to the vacuum of
the annihilation operators ψ̂(~x).

Since free field theories can be solved by an appropriate Bogoliubov transformation in
momentum space, it is sufficient to investigate states |Ψ[K̂]〉 that can be prepared with
an operator K̂(s) that generates Bogoliubov transformations. We define

K̂(s) =
i

2

∫ h
G(~p; s)Ψ̂ †(~p)Ψ̂ †(−~p)−G(~p; s)Ψ̂ (−~p)Ψ̂ (~p)

i
dd p. (5.50)

Since Ψ̂ †(~p)Ψ̂ †(−~p) is even (odd) in the argument ~p for bosons (fermions), we can without
loss of generalization impose that G(~p; s ) is even (odd) in the argument ~p, since the odd
(even) part cancels anyway. In order to end up with a strictly local operator, G(~p; s)
should be polynomial in the argument ~p. Since the scale variable s is dimensionless,
K̂(s) should be as well. Hence, the function G(~p; s) should be dimensionless, which
can be realized by using the yet-to-be introduced ultraviolet cutoff length scale a, or the
momentum cutoff Λ= a−1. We thus define

G(~p; s) = g (~p/Λ, s) = γ (~p/Λ, s)r (‖~p‖/Λ) (5.51)

where γ (~p/Λ, s ) is an even or odd polynomial in its first argument, with the s -dependent
coefficients acting as the variational parameters, and where r (c) is a fixed cutoff function
with natural cutoff 1, such as the normal distribution

r (c) = exp(−c2). (5.52)

Note that any cutoff function adds a non-polynomial contribution to g (~p/Λ, s ), so that
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K̂(s) is only local up to O(a). If g (~p/Λ, s) were a pure polynomial then K̂(s) would be
strictly local but would act nontrivially on all momenta ~p and would not exhibit any
cutoff behavior. We can, equivalently, interpret K̂(s) as a strictly local combination
(polynomial in ~p)

K̂(s) =
i

2

∫ h
γ (~p/Λ, s)Ψ̂ †

r (~p)Ψ̂
†
r (−~p)− γ (~p/Λ, s)Ψ̂r (−~p)Ψ̂r (~p)

i
dd p (5.53)

of regularized or smoothed operators ψ̂r (~x) given by

ψ̂r (~p) =
1p
2πa

∫
ψ̂(~x ′)exp

�
−‖~x −~x

′‖2

2a2

�
dd x ′ ↔ Ψ̂r (~p) = Ψ̂ (~p)exp

 
−‖~p‖

2

2Λ2

!
.

For the remainder of this section, it is easier to combine the polynomial γ (~p/Λ, s ) and the
cutoff function r (‖~p/Λ‖) into a single function g (~p/Λ, s ) than to work with smoothed
operators. Note finally that for a Hamiltonian with real coefficients with respect to the
real-space operators Ψ̂ (~x) and Ψ̂ †(~x), it should be possible to choose exp(iK̂(s )) such that
it is real when expressed in terms of the operators Ψ̂ (~x) and Ψ̂ †(~x). This requires that
iK̂(s ) has real coefficients with respect to the real-space operators. For bosons, g (~p/Λ, s )
is even in ~p and should be chosen real. For fermions, g (~p/Λ, s) is odd in ~p and should
be chosen imaginary.

Bosons

Let’s warm up by integrating the renormalization group equation [Eq. (5.25)] for the
field operators when we have an s -independent operator K̂ with g (~p/Λ, s) = ϕ(~p/Λ)
(with ϕ an even complex-valued function) while temporarily ignoring the scaling, i.e.
setting L̂ = 0. We choose the convenient definition sa = 0. Since K̂ = eiK̂ s K̂e−iK̂ s , so
that

K̂ =
i

2

∫ h
ϕ(~p/Λ, s)Ψ̂ †

R(~p; s)Ψ̂ †
R(−~p; s)−ϕ(~p/Λ, s)Ψ̂R(−~p; s)Ψ̂R(~p; s)

i
dd p (5.54)

with Ψ̂R(~p; s) = eiK̂ s Ψ̂ (~p)e−iK̂ s , we obtain

∂

∂ s
Ψ̂R(~p; s) = ϕ(~p/Λ)Ψ̂ †

R(−~p; s), and
∂

∂ s
Ψ̂ †

R(~p; s) = ϕ(~p/Λ)Ψ̂R(−~p; s), (5.55)

which can be integrated (∀s > 0) as

Ψ̂R(~p; s) = cosh(|ϕ(~p/Λ)|s)Ψ̂ (~p)+ ϕ(~p/Λ)

|ϕ(~p/Λ)| sinh(|ϕ(~p/Λ)|s)Ψ̂ †(−~p), (5.56)
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and its hermitian conjugate. Without the scaling transformation the evolution under K̂
does not approach a limit when s grows to +∞.

If we now assume that g (~p; s) is a real-valued function and include the scaling, we
can put forward as general solution for the renormalization group flow of the field
operators:

Ψ̂R(~p; s) = cosh
�

f (~p; s)
�

e s d
2 Ψ̂ (e s~p)+ sinh

�
f (~p; s)

�
e s d

2 Ψ̂ †(−e s~p), (5.57)

and Hermitian conjugate, where the Bogoliubov angle f (~p; s) should be even in ~p.
Substituting this expression into the renormalization group flow equation [Eq. (5.25)],
we obtain

∂

∂ s
Ψ̂R(~p; s)− i

�
L̂, Ψ̂R(~p; s)

�
=

∂ f (~p; s)

∂ s

h
sinh

�
f (~p; s)

�
e s d

2 Ψ̂ (e s~p)+ cosh
�

f (~p; s)
�

e s d
2 Ψ̂ †(−e s~p)

i
,

which should equal

i
�

K̂(s), Ψ̂R(~p; s)
�
=

g (e s~p; s)
h

sinh
�

f (~p; s)
�

e s d
2 Ψ̂ (e s~p)+ cosh

�
f (~p; s)

�
e s d

2 Ψ̂ †(−e s~p)
i

.

We thus find

f (~p; s) =
∫ s

0
g (ew~p/Λ, w)dw (5.58)

where we’ve used the initial value condition f (~p, 0) = 0. At the level sξ of evaluation,
the Bogoliubov angle f (~p) is given by f (~p; sξ ). We can always take sξ =+∞ for both
critical and non-critical systems. In non-critical systems, g (~p/Λ, s ) automatically goes to
zero for s �O(log(ξc/a)) =O(log(ξcΛ)). Because g (~p/Λ, s ) is expected to decay rapidly
when the norm of its first argument |~p/Λ| grows beyond one, the Bogoliubov angle will
be very small for all ‖~p‖> Λ. For all ‖~p‖< Λ, it will be determined by the value of g at
scales 0≤ s ® O(log‖~p‖/Λ) and the integral converges for all ~p with ‖~p‖> 0. At zero
momentum, we find

f (~0) =
∫ +∞

0
g (~0, w)dw (5.59)

and the convergence of this integral depends on the choice of g (~0, s).

Fermions

We study an analogous choice for K̂ in the fermionic case. If we once again start
with an s -independent operator K̂ (thus g (~p/Λ, s) = ϕ(~p/Λ) with ϕ now a complex-

270



§3. Entanglement renormalization of free field theories

valued odd function) and temporarily ignore the scaling, i.e. we set L̂= 0, we obtain an
renormalization group equation [Eq. (5.25)] for the field operators

∂

∂ s
Ψ̂R(~p; s) = ϕ(~p/Λ)Ψ̂ †

R(−~p; s), and
∂

∂ s
Ψ̂ †

R(~p; s) = ϕ(~p/Λ)Ψ̂R(−~p; s), (5.60)

which can be integrated (∀s > 0) to produce

Ψ̂R(~p; s) = cos
�|ϕ(~p/Λ)|s� Ψ̂ (~p)+ ϕ(~p/Λ)

|ϕ(~p/Λ)| sin
�|ϕ(~p/Λ)|s� Ψ̂ †(−~p), (5.61)

and its hermitian conjugate. We now turn back to the general case, were we assume
that g (k , s) is a real-valued function and reintroduce the scaling. We put forward the
following general solution of the renormalization group flow equation

Ψ̂R(~p; s) = cos
�

f (~p; s)
�

e s d
2 Ψ̂ (e s~p)+ sin

�
f (~p; s)

�
e s d

2 Ψ̂ †(−e s~p), (5.62)

and complex conjugate, where the Bogoliubov angle f (~p; s) should now be odd in ~p.
Substituting this expression into the renormalization group equation, we obtain

∂

∂ s
Ψ̂R(~p; s)− i

�
L̂, Ψ̂R(~p; s)

�
=

∂ f (~p; s)

∂ s

h
− sin

�
f (~p; s)

�
e s d

2 Ψ̂ (e s~p)+ cos
�

f (~p; s)
�

e s d
2 ψ̂†(−e s~p)

i
,

which should equal

i
�

K̂(s), Ψ̂R(~p; s)
�
=

g (e s~p; s)
h
− sin

�
f (~p; s)

�
e−s d

2 Ψ̂ (e s~p)+ cos
�

f (~p; s)
�

e−
s
2 Ψ̂ †(−e s~p)

i
.

We thus find

f (~p; s) =
∫ s

0
g (ew~p/Λ, w)dw (5.63)

where we have used the initial value condition f (~p, 0) = 0. Similar considerations as for
bosons apply. Note that, because g (~p/Λ, s) is odd in its first argument, we must have
g (~0, s) = 0 and f (~0, s) = 0 and thus

f (~0) = lim
sξ→+∞

f (~0, s) = 0. (5.64)

The order of the limits is of course important, and it could just as well be that

f (~0) = lim
|~p|→0

f (~p) 6= 0. (5.65)
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Since f (~p) is an odd function, this limit does not exist (i.e. is direction-dependent) if it is
not zero.

3.3. Example 1: applying the variational principle to a non-relati-
vistic boson system

Here we apply the variational principle to the Gaussian continuous entanglement renor-
malization ansatz as introduced in the previous subsection. We use the parameteriza-
tion

g (~p/Λ, s) = γ (~p/Λ, s)r (|~p/Λ|) (5.66)

with γ (~p/Λ, s) an even (respectively, odd) polynomial in the first argument for bosons
(respectively, fermions) with s -dependent coefficients that constitute the set of variational
parameters and r (c) is a fixed function that is cut off beyond c> 1. As we show in the
example below, we can already obtain quite accurate results by terminating γ (~p; s ) at the
lowest order in ~p. For the bosonic model, this boils down to choosing γ (~p; s) = χ (s).
The resulting Bogoliubov angle f (~p) = limsξ→∞ f (~p; sξ ) can acquire an arbitrary ~p-
dependence thanks to s -dependence of χ (s) and the presence of a cutoff. Note that the
energy expectation value E = 〈Ψ[K̂]|Ĥ |Ψ[K̂]〉 = 〈Ω|ĤR(sξ )|Ω〉 is a functional of the
variational parameters. The variational method thus boils down to choosing χ (s) such
that the functional derivative of E[χ ] with respect to χ (s) is zero:

δ

δχ (s)
E[χ ] = 0. (5.67)

Many non-relativistic models are naturally described with creation and annihilation
operators ψ†(x) and ψ(x). Since most non-relativistic models are characterized by a
finite density of particles, the exact ground state |Ψ〉 will typically not contain particles
with very large momenta, i.e. Ψ̂ (~p) |Ψ〉 ≈ 0 for |~p| sufficiently large. If we choose |Ω〉 as
the vacuum annihilated by all annihilation operators (ψ̂(~x) |Ω〉= 0, so that Ψ̂ (~p) |Ω〉= 0),
then all particles in the resulting Gaussian entanglement renormalization ansatz |Ψ[K̂]〉
are created by K̂ and live below the ultraviolet momentum cutoff Λ. We now study a
Gaussian model of non-relativistic bosons, governed by the Hamiltonian

Ĥ (µ, ν) =
∫ h�

~∇ψ̂†(~x)
�
·
�
~∇ψ̂(~x)

�
+µψ̂†(~x)ψ̂(~x)− ν

�
ψ̂†(~x)2+ ψ̂(~x)2)

�i
dd x,

(5.68)
where 0≤ 2ν ≤µ is required for this model to be well defined. In terms of the momentum
space operators Ψ̂ (~p), the Hamiltonian is given as

Ĥ (µ, ν) =
∫ ��‖~p‖2+µ

�
Ψ̂ †(~p)Ψ̂ (~p)− ν �Ψ̂ †(~p)Ψ̂ †(−~p)+ Ψ̂ (~p)Ψ̂ (−~p)�� dd p. (5.69)
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This model is the d -dimensional generalization of the one-dimensional model to which
the continuous matrix product state ansatz was applied in the previous chapter. It is
solved by a Bogoliubov transformation with the exact Bogoliubov angle

fexact(~p) =
1

2
arctanh

�
2ν

‖~p‖2+µ

�
. (5.70)

As for the one-dimensional model, the momentum space density 〈Ψ|Ψ̂ †(~p)Ψ̂ (~p)|Ψ〉 goes
as 4ν2/‖~p‖4 for large ‖~p‖, so that we can interpret

p
2ν as the ultraviolet momentum

cutoff. The energy gap is given by
Æ
µ2− 4ν2, which explains the requirement µ≥ 2ν.

At µ= 2ν, the correlation length diverges and the model becomes critical. There is no
real quantum phase transition since the Hamiltonian is ill-defined for µ< 2ν.

In order to study this model using the Gaussian continuous entanglement renormaliza-
tion ansatz |Ψ[K̂]〉, we first compute the renormalized Hamiltonian ĤR(s ); the integrand
becomes

e s (‖~p‖2+µ)
�

cosh[ f (~p; s)]Ψ̂ †(e s~p)+ sinh[ f (~p; s)]Ψ̂ (−e s~p)
�

× �cosh[ f (~p; s)]Ψ̂ (e s~p)+ sinh[ f (~p; s)]Ψ̂ †(−e s~p)
�

−e s ν
��

cosh[ f (~p; s)]Ψ̂ †(e s~p)+ sinh[ f (~p; s)]Ψ̂ (−e s~p)
�

× �cosh[ f (~p; s)]Ψ̂ †(−e s~p)+ sinh[ f (~p; s)]Ψ̂ (e s~p)
�

+
�

cosh[ f (~p; s)]Ψ̂ (e s~p)+ sinh[ f (~p; s)]Ψ̂ †(−e s~p)
�

× �cosh[ f (~p; s)]Ψ̂ (−e s~p)+ sinh[ f (~p; s)]Ψ̂ †(e s~p)
��

.

The energy expectation value E[χ ] = 〈Ω|ĤR(sξ )|Ω〉 is thus given by

E[χ ] = e sξ

∫
δ(e sξ ~p − e sξ ~p)

�
(~p2+µ) sinh[ f (~p)]2− 2ν sinh[ f (~p)]cosh[ f (~p)]

�
dd p,

(5.71)
with f (~p) = f (~p; sξ ) and where e sδ(e s~p− e s~p) = δ(~0) = |R|/(2π)d = |R|d/(2π)d gives
the familiar volume factor, as energy is an extensive quantity. This illustrates a first
property: our ansatz is clearly extensive. We define the energy density as

e[χ ] =
1

(2π)d

∫ �
(‖~p‖2+µ) sinh[ f (~p)]2− 2ν sinh[ f (~p)]cosh[ f (~p)]

�
dd p. (5.72)

We apply the variational principle by demanding the stationarity of e[χ ] under variations
in χ (s). Note that from Eq. (5.58) we obtain the functional derivative

δ f (k)

δχ (s)
= r (e s‖~p‖/Λ), (5.73)
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so the chain rule gives us (∀s ∈ [0,+∞))

δe[χ ]

δχ (s)
=
∫ dd p

(2π)d
¦
(‖~p‖2+µ) sinh[2 f (~p)]− 2ν cosh[2 f (~p)]

©
r (e s‖~p‖/Λ) = 0.

(5.74)
Since the integrand is an even function in k, this is a highly non-trivial relation that fixes
χ (s ) completely. Eq. (5.74) illustrates a second property of the continuous entanglement
renormalization ansatz. The variation of the ground state energy (density) with respect
to the variational parameter χ (s) at scale s contains all contributions to the energy
coming from modes with ‖~p‖< e−sΛ. The variational optimization with respect to χ (s )
is thus not influenced by the dominating energy contributions from modes at higher
momentum scale. Whereas the variational optimization with respect to other variational
classes is usually dominated by these modes, the entanglement renormalization ansatz
(both for the continuum and for the lattice) allows for a clear separation of scales and
thus a way to overcome Feynman’s “sensitivity to high frequencies” (see Subection 4.2 of
Chapter 2). While this is of course always possible for free theories, we expect the same
result to hold for interacting models with the general (i.e. non-Gaussian) continuous
entanglement renormalization ansatz. If the cutoff is correctly implemented (e.g. through
smoothed field operators), interaction terms contain a higher power of the field operators,
and are more strongly suppressed in the scaling process.

In order to proceed, it is useful to choose r (c) = θ(1− |c|), with θ the Heaviside step
function. While this results in a highly non-local operator in real space, it allows an
easy solution of the integral equations. Better behaved cutoff functions produce similar
results, but require the solution of a more difficult set of integral equations. With the
sharp cutoff, Eq. (5.74) tells us that the argument should be zero for all ‖~p‖ ≤ Λ. We
thus need to reproduce the exact Bogoliubov angle f (~p) = fexact(~p) from Eq. (5.70) up to
the momentum cutoff ‖~p‖ ≤Λ. Indeed, we can write (∀s ∈ [0,+∞))

δe[χ ]

δχ (s)
=
∫ e−sΛ

0

2 pd−1 d p

(4π)
d
2 Γ(d/2)

n
(p2+µ) sinh[2 f̃ (p)]− 2ν cosh[2 f̃ (p)]

o
= 0. (5.75)

where we have used that f (~p) = f̃ (‖~p‖). Differentiating with respect to s does indeed
result in

f̃ (p) =
1

2
arctanh

�
2ν

p2+µ

�
θ(Λ− p). (5.76)

Since

f (~p) = f̃ (‖~p‖) =
∫ +∞

0
χ (s)θ(1− es‖~p‖/Λ)ds =

∫ log(Λ/‖~p‖)

0
χ (s)ds (5.77)
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we can differentiate with respect to |~p| in order to obtain

χ (s) =
2(ν/Λ2)e−2s

(e−2s +µ/Λ2)2− 4(ν/Λ2)2
+

1

2
arctanh

�
2ν/Λ2

1+µ/Λ2

�
δ(s)

=
2ν/Λ2

(e−2s +[µ2/Λ4− 4ν2/Λ4]e+2s )+ 2µ/Λ2
+

1

2
arctanh

�
2ν/Λ2

1+µ/Λ2

�
δ(s).

(5.78)

This expression has been rewritten in terms of the dimensionless variables µ/Λ2 and
ν/Λ2. It contains a singular contribution at s = 0. Since f (~p) = 0 for ‖~p‖> Λ, while the
exact Bogoliubov angle fexact becomes only exactly zero at infinite momentum, this δ-
peak acts so as to immediately eliminate the error for ‖~p‖=Λ. However, for ‖~p‖2�µ,
the exact angle fexact(~p) approaches zero very quickly (namely as O(ν/‖~p‖2)), and so does
the amplitude of the δ contribution. By choosing Λ2�O(µ)≈O(ν), the second part
can be ignored, resulting in an error | f (~p)− fexact(~p)|<O(µ/Λ2). If we were to further
increase Λ, the deepest layers of the continuous entanglement renormalization ansatz
between the value s for which Λ2e−2s ≈O(µ) and s = sa = 0 would have little effect as
K̂(s)≈ 0. Non-relativistic systems do indeed possess a natural cut off at momenta ‖~p‖
much larger then the particle density.

Note that the distribution χ (s) is peaked at s = 1
2 log[Λ2/∆], where∆= (µ2− 4ν2)1/2

represents the energy gap of the system. In a non-relativistic system, the gap scales
as the square of the momentum scale. The disentangling strength χ (s) thus increases
up to the scale s for which ∆= e−2sΛ2, and then decreases to a horizontal asymptote
χ (s) = 0 for s → +∞. Thus, χ (s) ≈ 0 for s � log(Λ2/∆) + O(log(Λ2/µ)) and so
we can safely stop the integration of the renormalization group flow at a scale s = sξ
satisfying this relation. As 2ν → µ the distribution never reaches its peak, but rather
develops a nonzero horizontal asymptote: lims→+∞χ (s ) = 1/2. For 4ν→µ the system
becomes critical and we need to integrate all the way up to sξ →+∞ in order to obtain
a correct description of the infinite range of fluctuations existing in the system. Hence,
the expected behavior regarding gapped and critical phases is recovered automatically by
applying the variational principle. At criticality, neither the state |Ψ[K̂]〉 nor the exact
ground state |Ψ〉 are scale invariant: non-relativistic ground states have a finite density
of particles. True scale invariance is only possible when the ultraviolet cutoff Λ→+∞.
However, the appearance of a horizontal asymptote indicates that the system effectively
becomes scale invariant far up in the renormalization group flow, if we have moved far
away from the cutoff region that was set by the finite density of particles.

For the s -independent horizontal asymptote χ = 1/2, we obtain

i[K̂ + L̂, Ψ̂ (~p)] =
1

2
Ψ̂ †(−~p)θ(Λ−‖~p‖)+ d

2
Ψ̂ (~p)+~p · ~ÈΨ̂ (~p),

i[K̂ + L̂, Ψ̂ †(~p)] =
1

2
Ψ̂ (−~p)θ(Λ−‖~p‖)+ d

2
Ψ̂ †(~p)+~p · ~ÈΨ̂ †(~p).
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Below the cutoff ‖~p‖<Λ, we can thus create scaling operators

φ̂(~p)∼ (Ψ̂ (~p)+ Ψ̂ †(−~p)) ⇒ i[K̂ + L̂, φ̂(~p)] =−−d − 1

2
φ̂(~p)+~p · ~Èφ̂(~p), (5.79)

π̂(~p)∼ i(Ψ̂ (~p)− Ψ̂ †(−~p)) ⇒ i[K̂ + L̂, π̂(~p)] =−−d + 1

2
π̂(~p)+~p · ~Èπ̂(~p), (5.80)

with scaling dimension (−d − 1)/2 for φ̂(~p) and (−d + 1)/2 for π̂(~p). Correspondingly,
the real space fields φ̂(~x) and π̂(~x) have scaling dimensions (d − 1)/2 and (d + 1)/2
respectively, and can be recognized as the field operator and the canonical momentum
of the (uncharged) Klein-Gordon model. Hence, the low-energy behavior of Ĥ (µ, ν)
in the critical limit µ = 2ν is described by the massless Klein-Gordon model in d
spatial dimensions. Slightly away from criticality, we can expect that the low-energy
behavior corresponds to a massive Klein-Gordon theory. We return to this in Section 3
of Chapter 6.

3.4. Example 2: entanglement renormalization and non-relativistic
fermions

Let us now study the most simple fermionic system, described by the Hamiltonian

Ĥ (µ) =
∫ h�

~∇ψ̂†(~x)
�
·
�
~∇ψ̂(~x)

�
−µψ̂†(~x)ψ̂(~x)

i
dd x. (5.81)

This model is solved by filling the momentum levels up to the Fermi momentum pF =p
µ (in these units where 2m = 1). In terms of the Bogoliubov transformation, we have

fexact(~p) =
π
2 θ(pF−‖~p‖). We already detect a problem, since our Gaussian continuous

entanglement renormalization ansatz was only able to produce Boguliubov angles f (~p)
that are odd in the argument ~p for fermionic systems. We could immediately have
known that this would be problematic, since we cannot construct a rotation-invariant
function f (~p) that is odd in ~p. Indeed, the continuous entanglement renormalization
ansatz |Ψ[K̂]〉 with a local operator K̂ cannot describe such free fermion systems, since
it does not support the logarithmic violation of the entropic area law exhibited by these
systems, except for d = 1. Note that the argument based on rotation invariance is no
longer valid for relativistic systems, where different fermion species (different Dirac
indices) are present and a wider range of operators K̂(s) can be constructed that are
rotation invariant. Correspondingly, the ground state of the relativistic free fermion
model (Dirac fermions) does not violate the area law for entanglement entropy (except
for d = 1 in case of massless fermions). This is discussed in the next chapter.

Let us now first analyze the non-relativistic free fermion model for the case of d = 1
spatial dimension, where a logarithmic violation is a general feature of the continuous en-
tanglement renormalization ansatz when K̂(s ) develops a non-zero horizontal asymptote
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for s →+∞. We use a simple form of K̂ , namely

K̂(s) =
i

2

∫ +∞
−∞

χ (s)
� p

Λ

�2n+1
r (|p|/Λ)�Ψ̂ †(p)Ψ̂ †(−p)− Ψ̂ (−p)Ψ̂ (p)

�
d p (5.82)

with n some integer. In principle, we can restrict to n = 0, but there is some merit to
choosing n > 0 as is shown below. The renormalized Hamiltonian is given by

ĤR(s) =
∫ +∞
−∞

d p (p2−µ)�cos[ f (p; s)] e
s
2 Ψ̂ †(e s p)+ sin[ f (p; s)] e

s
2 Ψ̂ (−e s p)

�

× �cos[ f (p; s)] e
s
2 Ψ̂ (e s p)+ sin[ f (p; s)] e

s
2 Ψ̂ †(−e s p)

�
(5.83)

and we can thus define the energy (density) functional as

e[χ ] =
∫ +∞
−∞

d p

2π
(p2−µ) sin[ f (p)]2 (5.84)

with f (p) = f (p; sξ ). Since we now have

δ f (p)

δχ (s)
=
�

e s p

Λ

�2n+1
r (es |p|/Λ) (5.85)

the variational degrees of freedom χ (s) should be tuned such that

δe

δχ (s)
[χ ] =

∫ +∞
−∞

d p

2π
(p2−µ) sin[2 f (p)]

�
e s p

Λ

�2n+1
r (es |p|/Λ) = 0, ∀s ∈ [0,+∞).

(5.86)
Since the integrand is even in p, this is a non-trivial relation. Clearly, the energy function
e[χ ] has stationary points for any configurations where f (p) = 0 or f (p) =±π/2 for
any p ∈R. The only true minimum is when f (p) =±π/2 for |p|< pF and f (p) = 0
for |p|> pF. Since

f (p) =
∫ +∞

0
χ (s)

�
es p

Λ

�2n+1
r (es |p|/Λ)ds (5.87)

it can be made compatible with the choice

fexact(p) = sgn(p)
π

2
θ(pF− |p|), (5.88)

which is also odd in p. We thus need to solve

∫ +∞
0

χ (s)e(2n+1)s r (es |p|/Λ)ds =
π

2

�
Λ

|p|
�2n+1

θ(pF− |p|). (5.89)
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Let us again take the sharp cutoff function r (c) = θ(1−|c|) and differentiate the left and
right hand side of this equation with respect to |p| in order to obtain

χ (log(Λ/|p|))
�
Λ

|p|
�2n+1�

− 1

|p|
�
=

π

2

�
−(2n+ 1)

Λ2n+1

|p|2n+1

�
θ(pF− |p|)−

π

2

�
Λ

|p|
�2n+1

δ(p − pF).

By inserting |p|= e−sΛ we obtain

χ (s) = (2n+ 1)
π

2
θ(pF− e−sΛ)+

π

2
pFδ(e

−sΛ− pF)

= (2n+ 1)
π

2
θ
�

s − log(Λ/pF)
�
+
π

2
δ
�

s − log(Λ/pF)
�

.
(5.90)

The disentangling strength χ (s) is exactly zero for s < log(Λ/pF), so that pF represents
the physical cutoff momentum. The sharp δ-spike is a consequence of the sharp Fermi
surface in combination with the sharp cutoff function r (c) = θ(1−|c|). The sudden jump
in f (p) at the Fermi surface pF results in a strong spike in χ (s) around s = log(Λ/pF)
for any cutoff function r (|p|/Λ). Since f (±Λ) = 0 = fexact(±Λ), the equality of the
derivatives ensures that f (p) = 0= fexact(p) for all p 6= 0. The continuous entanglement
renormalization ansatz representation of the ground state is thus exact. Indeed, we
find

f (p) =
π

2


sgn(p)−

�
p

pF

�2n+1
θ(pF− |p|)+

π

2

�
p

pF

�2n+1

θ(pF− |p|). (5.91)

The first, respectively second, term corresponds to the first, respectively second, term
of Eq. (5.90) for χ (s). This illustrates that for |p|< pF, the importance of the δ-spike
at s = log(Λ/pF) decreases for increasing values of n. For s → 0 [and in fact for any
s > log(Λ/pF)], the disentangling strength χ (s) has a non-zero horizontal asymptote
of value (2n+ 1)π/2, which indicates the criticality of the model and is responsible for
power-law decay of correlations and for the logarithmic violation of the area law for
entanglement entropy.

There is no obvious way to generalize this construction for the ground state of the
free fermion model to higher dimensions. On the one hand, we expect that a rotation
invariant ground state can be constructed using a rotation invariant choice for K̂(s ). On
the other hand, it is clear that it is impossible to create a rotation invariant K̂(s) that is
odd in ~p. While there are no rotations in d = 1, the above construction K̂(s) already
violates parity invariance. We can safely expect that it is impossible to cast the ground
state of the free fermion model for a higher number of dimensions d > 1 in the form
of a continuous entanglement renormalization ansatz with a local operator K̂(s), since
this construction is incompatible with the logarithmic violation to the area law observed
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for free fermions. A more general construction could correspond to the continuum
formulation of the branching multi-scale entanglement renormalization ansatz proposed
in [387, 388].

4. Summary and conclusion

In this chapter we have introduced the continuous entanglement renormalization ansatz.
As we have illustrated, this variational ansatz naturally overcomes all of Feynman’s
criticisms. It is extensive and in general (for arbitrary non-quadratic choices of K̂)
non-Gaussian. It naturally allows to decompose the system in different scales, and
variational parameters living at one scale are not influenced by the energy contributions
coming from higher momenta: the variational parameters are not ‘too’ sensitive to high
frequencies.

Our set of variational parameters is now a d + 1 dimensional continuum of operators
k̂(~x; s) defined in terms of field operators. Clearly we have come a long way from the
discrete set of matrices that constituted the set of variational parameters for the matrix
product state of Chapter 3. This much wider variational class has both advantages and
disadvantages. From a practical point of view, we have moved away from a variational
class that easily allows for a numerical black-box implementation. It is not immediately
clear how to use this variational class beyond what is analytically feasible (i.e. the subclass
of Gaussian continuous entanglement renormalization ansatz states). We have only
tested this approach for free field theories, for which a Gaussian state provides the
correct solution. In principle we can also apply the Gaussian continuous entanglement
renormalization ansatz to interacting theories. This results in a complicated method
for doing mean field theory, which could nevertheless provide valuable information
regarding criticality and renormalization.

It remains to be seen whether a numeric or analytic implementation of the variational
optimization process for interacting theories can be constructed. The success of the
multi-scale entanglement renormalization ansatz should proof that, if such an implemen-
tation exists, the continuous entanglement renormalization ansatz should also be able to
accurately describe ground states of interacting theories. As long as we are able to accu-
rately compute ÔR(s ) and from this expectation values 〈Ψ[K̂]|Ô|Ψ[K̂]〉= 〈Ω|ÔR(sξ )|Ω〉,
the variational principle guarantees that it will tune K̂ in the best way possible at all
scales. Maybe this is the variational strategy that Feynman was dreaming of.

Disadvantages and advantages of the continuous entanglement renormalization ansatz
go hand in hand. For example, the use of a Lie-Trotter-Suzuki-like structure in the multi-
scale entanglement renormalization ansatz for lattice systems was the reason for the
absence of translation invariant instances but also allowed for efficient contractibility. In
the continuum formulation, translation invariance is easily obtained by choosing k̂(~x; s )
equal for all ~x, but the Lie-Trotter-Suzuki decomposition is no longer accessible for
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evaluating the renormalization group flow. The previous chapter on continuous matrix
product states might provide a solution by using e.g. the time-dependent variational
principle in a variational subclass of operator space to evaluate ÔR(s).

The use of operators in the variational class also has many benefits. As with continuous
matrix product states, we are no longer restricted to theories for which the local dimen-
sion q is finite. Even stronger, the continuous entanglement renormalization ansatz can
be applied to field theories which are not even formulated in terms of non-relativistic
creation- and annihilation operators, since we can construct k̂(~x; s) from any set of
field operators that define the theory. For example, by using only gauge-independent
operators F̂i , j (~x) in k̂(~x; s ), it is easy to construct a unitary circuit Û (sa , sξ ) that is gauge
invariant. In addition, the analytic structure of our ansatz will hopefully facilitate
the quest of finding the relation of entanglement renormalization with holographic
renormalization and the AdS/CFT correspondence.
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6
APPLICATIONS TO RELATIVISTIC THEORIES

In the previous chapters we have introduced different variational classes for both lattice
systems and field theories. All of these ansätze are non-Gaussian and extensive. In
addition, they allow for an efficient evaluation of expectation values (the non-Gaussian
continuous entanglement renormalization ansatz is still a bit of a puzzle). We now
investigate how Feynman’s first criticism, namely the “sensitivity to high frequencies”,
manifests itself when these variational ansätze are applied to relativistic theories.

In the first section, we employ the matrix product state to study a relativistic fermion
model that has been discretized, so that the degrees of freedom are living on a lattice
with lattice spacing a. We need to take the continuum limit a→ 0 in order to recover the
expected results for the field theory. In doing so, we require that the physical correlation
length ξc remains constant, so that ξ̃c = ξc/a → ∞ and the model becomes critical.
We know that matrix product states eventually fail in this limit. The second section
eliminates the necessity of taking a continuum limit by using the continuous matrix
product state to study the field theory in the continuum. This approach has proven
fruitful in Chapter 4 to study non-relativistic field theories with ξc/a→∞. The success
of this approach was due to the fact that the original lattice spacing is replaced by a
different ultraviolet length scale such as the inter-particle separation aphys = ρ

−1/d . When
ξc/aphys→∞, the continuous matrix product state faces the same problems as the matrix
product state. When applying the continuous matrix product state to relativistic theories,
the lack of a physical ultraviolet cutoff (i.e. aphys = 0) will indeed trigger Feynman’s
“sensitivity to high frequencies” and forces us to manually introduce a cutoff. In the third
section, we show how using the (Gaussian) continuous entanglement renormalization
ansatz to describe (free) field theories allows to overcome this problem. While we need
to introduce some ultraviolet cutoff a =Λ−1 in order to define the process, we can safely
send a→ 0 at the end of the process.

1. Relativistic fermions on the lattice

Before the development of continuum ansätze that can directly approximate ground
states of quantum field theories, the only way to numerically study quantum field
theories was on the lattice. This is not too bad, since the lattice naturally provides an
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ultraviolet regularization of quantum field theories: the momentum space is rendered
finite and the number of ‘high frequencies’ that plague most variational techniques is
manageable. Also with non-variational techniques such as Monte Carlo sampling of the
path integral, a discretization of the field theory to the lattice is required. In the end, we
have to take the continuum limit by sending the lattice spacing a→ 0. At the same time,
we need to keep the physical correlation length ξc = ξ̃ca constant, so we also have to
vary coupling constants λ(a), which generates the renormalization group flow discussed
in Subsection 3.3 of Chapter 1. Since a→ 0 requires ξ̃c→∞, the lattice theory becomes
critical and the possibility of Feynman’s ‘sensitivity to high frequencies’ comes back into
play. Note that Monte Carlo based techniques suffer from their own problems in this
limit (e.g. critical slowing down).

In this section, we apply the variational manifoldMMPS of matrix product states intro-
duced in Chapter 3 to one-dimensional relativistic field theories that have been mapped
to a lattice. Since the numerical implementation of matrix product states requires a finite
dimensional local Hilbert space, we restrict to fermionic theories. Bosonic theories can
be studied by restricting the maximal number of bosons that can occupy a single site
[391]. We first introduce the most important properties of relativistic fermions that
we would like to recover in our simulation, and discuss some peculiarities regarding the
mapping to the lattice.

1.1. A brief survey of relativistic fermions for one spatial dimen-
sion

In d = 1 spatial dimensions, relativistic fermions are described by a 2-component Dirac
spinor ψ(x) with components ψα(x), α = 1,2. The relativistic kinetic energy of the
fermion field is given by

Ĥkinetic =
∫ +∞
−∞


− i

2
ψ̂†(x)αx dψ̂

dx
(x)+

i

2

dψ̂†

dx
(x)αxψ̂(x)


 dx

=
∫ +∞
−∞


−iψ̂†(x)αx dψ̂

dx
(x)


 dx (6.1)

with αx the 2× 2 Dirac matrix acting on the spinor components. By choosing the Dirac
matrices αx and β (which features in the mass term) as αx = σ y and β= σ z , we obtain a
Hamiltonian with real coefficients. To this kinetic term, we can add potential terms such
as the mass term, resulting in the Dirac Hamiltonian

ĤD =
∫ +∞
−∞


− i

2
ψ̂†(x)αx dψ̂

dx
(x)+

i

2

dψ̂†

dx
(x)αxψ̂(x)+mψ̂†(x)βψ̂(x)


 dx, (6.2)
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or interaction terms. One particularly interesting model for interacting relativistic
fermions in d = 1 is the Gross-Neveu model [392], where N flavors of massless fermions
interact through a quartic potential as described by

ĤGN =
∫ +∞
−∞

�
− i

2

N∑
b=1

ψ̂†
b
(x)αx dψ̂b

dx
(x)+

i

2

N∑
b=1

dψ̂†
b

dx
(x)αxψ̂b (x)

− g 2

2

 
N∑

b=1

ψ̂†
b
(x)βψ̂b (x)

!2�
dx. (6.3)

Note that the field ψ now both has a spinor index α and a flavor index b . This Hamilto-
nian is derived from the Gross-Neveu action

SGN =
∫

dt
∫

dx
� N∑

b=1

ψ†
b
(x, t )

�
γ 0 ∂

∂ t
− iγ 1 ∂

∂ x

�
ψb (x, t )

+
g 2

2


 N∑

b=1

ψ†
b
(x, t )γ 0ψb (x, t )




2�
. (6.4)

Here we have introduced Dirac’s γ -matrices as

γ 0 = γ0 =β, γ 1 =−γ1 =βα
x , (6.5)

and we also define

γ 5 = γ5 = γ
0γ 1 = αx . (6.6)

Let us now discuss the properties of relativistic fermions. Physical models will always be
invariant under the U(1) transformations ψ̂(x)← exp(iθ)ψ̂(x), which induces conserva-
tion of charge or particle number

N̂ =
∫ +∞
−∞

dx ψ̂†(x)ψ̂(x). (6.7)

The kinetic energy is also invariant under the chiral rotation ψ̂(x)← exp(iθγ 5)ψ̂(x).
This invariance is explicitly broken by the mass term. Chiral invariance (and the breaking
thereof) plays a very important role in the standard model: coupling fermions to gauge
fields results in a spontaneous breaking of chiral invariance that is generally associated
to the dynamic generation of mass. Since chiral invariance is a continuous symmetry,
it cannot be broken for d = 1. We can however define a discrete chiral transformation
ψ̂(x)← γ 5ψ̂(x) (θ=π/2). Discrete chiral invariance still forbids the presence of a mass,
since it maps m→−m. However, the Gross-Neveu model is invariant under discrete
chiral transformations but breaks this symmetry spontaneously, which also results in
the dynamic generation of mass. Chiral invariance is also the source of the problems
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that arise when trying to discretize the fermion field in order to put it on a lattice, as we
explore in the next subsection.

1.2. Mapping fermions to the lattice

We first define how to discretize our fermion models and map them to lattice models
that return the correct continuum results when the proper continuum limit a→ 0 is
taken. Introducing a lattice with lattice spacing a, we can set

ψ̂(x = j a)→ φ̂( j )p
a

with {φ̂†
α
( j ), φ̂β( j

′)}= δα,βδ j , j ′ . (6.8)

The first problem one encounters when mapping relativistic Dirac fermions to the
lattice is the notorious “fermion doubling problem”. If one discretizes n of the (d + 1)
spacetime dimensions using a naive scheme to discretize the derivatives in the kinetic
term in the Hamiltonian or action, the resulting lattice theory has 2n different low-energy
regions in its Brillouin zone, which should be interpreted as 2n different species. This
fermion doubling is often attributed to the presence of a single (instead of a double)
derivative. It is a feature of the classical equations of motion and also occurs in e.g.
studies of acoustics and (classical) electromagnetism using the finite-difference time-
domain method. The problem can there completely be overcome by using a staggered
configuration of the discretization points for the different fields, resulting in e.g. the
Yee cell for electromagnetism [393]. For relativistic fermions, the same idea results
in the staggered fermion approach of Kogut and Susskind [394, 395]. However, this
approach is not able to remove all doublers. Clearly, the problem turns out to be
more fundamental and is in fact related to the chiral symmetry of the kinetic energy.
The no-go theorem of Nielsen and Ninomiya ensures that every local, unitary and
chirally symmetric lattice theory will have a degenerate excitation spectrum, with at
least two independent fermion flavors [396, 397, 398]. Solutions to circumvent the
fermion doubling problem include using Wilson fermions [399], which explicitly break
chiral symmetry, overlap fermions, which are highly nonlocal, or domain wall fermions,
which require an additional spatial dimension to be introduced. Recently, there has been
renewed interest in the construction of so-called minimally doubled models, where the
number of fermions has been reduced to the minimal number of two, inspired by the
two-dimensional realization in graphene [400].

Luckily, there is one case that escapes the Nielsen-Ninomiya no-go theorem, which
is the Hamiltonian lattice (only spatial dimension is discretized) in d = 1. Here, the
staggered formulation of Kogut and Susskind is able to eliminate all doublers (since there
is only one). A key ingredient of the staggered formulation is to choose an asymmetric
definition for the lattice version of the derivative of the fields, for example by using the
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left and right lattice derivative according to

dψ̂1

dx
( j a)→ φ̂1( j + 1)− φ̂1( j )

a
p

a
, (6.9a)

dψ̂2

dx
( j a)→ φ̂2( j )− φ̂2( j − 1)

a
p

a
. (6.9b)

It is then possible to stagger the two components of the Dirac equation to single-
component fermionic fields ĉ living on subsequent sites of an auxiliary lattice of twice
the number of sites. With the definition

φ̂1( j )→ (−1) j ĉ(2 j − 1), φ̂2( j )→ (−1) j+1 ĉ(2 j ), (6.10)

we obtain for the lattice version of the kinetic energy term in the Hamiltonian

Ĥ ′kinetic =
1

a

∑
n

ĉ(n)† ĉ(n+ 1)+ ĉ(n+ 1)† ĉ(n). (6.11)

This relativistic kinetic energy thus boils down to a typical lattice hopping term that
also appears in non-relativistic models such as the Hubbard model. However, whereas
ĉ would represent a single fermion flavor in non-relativistic models, the even and odd
sites should here be interpreted as representing the two different components of the
Dirac spinor. Rather than interpreting Eq. (6.9) as an asymmetric lattice prescription of
derivatives, we could also reinterpret the discretization scheme as

ψ̂1
�

x = ( j − 1/2)a
�→ ĉ(2 j − 1)p

a
and ψ̂2

�
x = j a

�→ ĉ(2 j )p
a

. (6.12)

The different spinor components are ‘sampled’ at different spatial locations so that
the derivative of a component is required in between the two sampling points of that
component, hence resulting in a symmetric prescription of the derivative.

Charge conservation is still expressed by the invariance under U(1) transformations
ĉ(n)← exp(iθ)ĉ(n), ∀n. Chiral transformations are more difficult. Since we do not
longer discretize different components of the spinor at the same point in space, we can
no longer define a continuous chiral transformation that mixes these two components. In
higher dimensions d , the staggered fermion construction results in N different fermion
species (N = 2 species on the Hamiltonian lattice for d = 3, N = 4 species on the
Euclidean lattice for d = 3) that survive in the continuum limit. In the continuum
description of N massless fermions, the chiral symmetry mixes with the SU(N ) symmetry
to produce a SU(N )L ⊗ SU(N )R symmetry. In the lattice model, only a single one-
dimensional symmetry is present, which corresponds to the axial isospin transformation
of the continuum.

We can however still define a lattice version of the discrete chiral transformation ψ̂(x)←
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γ 5ψ̂(x). We hereto define the transformation {φ̂1( j )←−iφ̂2( j ), φ̂2( j )←+iφ̂1( j + 1)}.
In terms of Eq. (6.12), this transformation formula indicates that we also have to shift
the discretization points by half a lattice site in order to define a map between φ̂1 and
φ̂2. Using Eq. (6.10), we obtain as discrete chiral transformation ĉ(n)← iĉ(n + 1) =
iT̂ ĉ(n)T̂ −1. Up to a redundant phase factor that can be gauged away using the U(1)
fermion number symmetry, a discrete chiral transformation is obtained by shifting the
lattice over a single site. Hence, the translation invariance of Ĥ ′

kinetic
in Eq. (6.11) is partly

due to the chiral invariance and partly due to the translation invariance of the continuum
formulation. Other terms that are translation invariant in the continuum, such as the
mass term, are only invariant under shifts over two sites. For example, the lattice version
of the Dirac Hamiltonian is given by

Ĥ ′D =
1

a

∑
n

ĉ(n)† ĉ(n+ 1)+ ĉ(n+ 1)† ĉ(n)+ (−1)n m̃ĉ(n)† ĉ(n), (6.13)

with m̃ = ma the dimensionless mass. Under a discrete chiral transformation (shift over
a single site), the mass term changes sign.

Chirally invariant field theories should thus map to translation invariant lattice models.
Spontaneous breaking of (discrete) chiral symmetry in the continuum is then mapped to
a breaking of translation invariance, which result in a gapped phase (dynamic generation
of mass). For the Gross-Neveu interaction term, we obtain

− g 2

2

∫
dx


 N∑

b=1

ψ̂†
b
(x)βψ̂b (x)




2

7→− g 2

2a

∑
j


 N∑

b=1

ĉb (2 j − 1)† ĉb (2 j − 1)− ĉb (2 j )† ĉb (2 j )




2

=− g 2

2a

∑
j

� N∑
b ,b ′=1

ĉb (2 j − 1)† ĉb (2 j − 1)ĉb ′(2 j − 1)† ĉb ′(2 j − 1)

+
N∑

b ,b ′=1

ĉb (2 j )† ĉb (2 j )ĉb ′(2 j )† ĉb ′(2 j )

− 2
N∑

b ,b ′=1

ĉb (2 j − 1)† ĉb (2 j − 1)ĉb ′(2 j )† ĉb ′(2 j )
�

.

Clearly, this expression is not invariant under our lattice definition of discrete chiral
transformations (i.e.ăshifts over single sites). Since we are free to make changes up to
order a, as was also done in the definition of the discrete chiral transformation on the
lattice, we can redefine the Gross-Neveu Hamiltonian on the lattice as

Ĥ ′GN =
1

a

∑
n

N∑
b=1

ĉb (n)
† ĉb (n+ 1)+ ĉb (n+ 1)† ĉb (n)
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− g 2

2a

∑
n

N∑
b ,b ′=1

n̂b (n)n̂b ′(n)+
g 2

2a

∑
n

N∑
b ,b ′=1

n̂b (n)n̂b ′(n+ 1). (6.14)

We have introduced the number operators n̂b (n) = ĉb (n)
† ĉb (n). No confusion between

the number operator n̂ and the site index n should arise. This definition of Ĥ ′GN has the
expected properties and will be studied with the matrix product state ansatz in the next
subsection.

Finally, we can map Ĥ ′GN to a spin Hamiltonian using the Jordan-Wigner transformation

ĉb (n) =




b−1∏
b ′=1

+∞∏
m′=−∞

σ̂ z
b ′(m

′)




 n−1∏

m=−∞
σ̂ z

b (m)


 σ̂+

b
(n), (6.15a)

ĉb (n)†=




b−1∏
b ′=1

+∞∏
m′=−∞

σ̂ z
b ′(m

′)




 n−1∏

m=−∞
σ̂ z

b (m)


 σ̂−

b
(n). (6.15b)

The string of operators σ̂ z
b ′

over flavors b ′ < b will not contribute. We obtain

Ĥ ′GN =
1

a

∑
n

N∑
b=1

σ̂−
b
(n)σ̂+

b
(n+ 1)+ σ̂−

b
(n+ 1)σ̂+

b
(n)

− g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n)+

g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n+ 1),

=
1

2a

∑
n

N∑
b=1

σ̂ x
b (n)σ̂

x
b (n+ 1)+ σ̂ y

b
(n+ 1)σ̂ y

b
(n)

− g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n)+

g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n+ 1).

(6.16)

Hence, the Gross-Neveu model can also be interpreted as a multi-layer spin model with
an antiferromagnetic nearest neighbor coupling and a ferromagnetic coupling between
the sites on the same spatial location. In the next subsection, we study some more
properties of this model and then try to recover these from simulations based on matrix
product states.

1.3. Excitations in the Gross-Neveu model

We now study the properties of the Hamiltonian in Eq. (6.16) using the uniform matrix
product state ansatz. Before discussing the results, let us provide a short summary of
the properties of the continuum model that we hope to reproduce. The Gross-Neveu
model defined by the action SGN in Eq. (6.4) was first proposed by Gross and Neveu
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in [392] as a simple model to gain deeper insight in some of the non-perturbative
properties of quantum chromodynamics, and has since been thoroughly studied. The
four-fermion interaction triggers the dynamical breaking of the chiral symmetry of the
massless fermions, resulting in a dynamically generated fermion mass mF. Obviously,
this is a non-perturbative effect, since the chiral invariance prohibits a mass term at
all orders of perturbation theory. Dynamical mass generation is strongly connected
to asymptotic freedom, as was argued by Gross and Neveu. The β-function of the
Gross-Neveu model can easily be computed and exhibits the property of asymptotic
freedom, as expected. The Gross-Neveu model was first studied in the large N limit.
The ground state properties were obtained by Gross and Neveu in their original paper,
and the spectrum of bound states by Dashen, Hasslacher and Neveu in [401]. Later,
Zamolodchikov and Zamolodchikov calculated the exact S-matrix of the elementary
fermions for the finite N -model [402], and Karowski and Thun calculated the complete
S-matrix [403]. The exact mass gap was computed by Forgacs, Niedermayer and Weisz
[404, 405]. Recent studies of the Gross-Neveu model are mainly concerned with the
phase diagram at finite temperature and finite chemical potential.

We can now state some results obtained in the large N limit or with exact methods, using
dimensional regularization in the MS scheme, which is a modification of the minimal
subtraction scheme (MS). The evolution of the coupling constant under renormalization
group transformations is described by the β-function

β(g ) =µ
dg (µ)

dµ
=−N − 1

2π
g (µ)3+

N − 1

4π2
g (µ)5+O(g (µ)7), (6.17)

which allows for the definition of a renormalization group invariant mass scale

M =µg (µ)
1

N−1 e
− π

(N−1)g (µ)2
�

1+O(g (µ)2)
�

. (6.18)

One exception is N = 1, where the β-function is identically zero and the Gross-Neveu
model describes a critical system with exact conformal invariance at the quantum level.
There are no masses (M = 0) and thus, no chiral symmetry breaking occurs. In corre-
spondence, for N = 1 the lattice Hamiltonian Ĥ ′GN reduces to the XXZ model with
dimensionless anisotropy parameter∆= g 2/4. For∆< 1 (g < 2), this is a critical model
with a conformally invariant low energy region.

For all N > 1, the breaking of discrete chiral symmetry produces a two-dimensional
vacuum subspace and we denote the ground states of maximal symmetry breaking (see
Subection 1.4 of Chapter 1) as |Ψ±〉. The order parameter for the chiral symmetry
breaking is given by the composite operator ψ(x)ψ(x), which acquires a finite vacuum
expectation value

σ± =±σ0 = g 2(N − 1)
〈Ψ±|∑N

a=1 ψ̂
†
a(x)γ

0ψ̂a(x)|Ψ±〉
N

=
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g 2(N − 1) 〈Ψ±|ψ̂†
a(x)γ

0ψ̂a(x)|Ψ±〉 , (6.19)

where this last ground state expectation value is independent of the flavor a. The
appearance of the prefactor g 2(N − 1) will immediately be clarified. In fact, this factor
also appears in Eq. (6.17) and Eq. (6.18) and can therefore be defined as an effective
coupling strength λ

λ= g 2(N − 1). (6.20)

Due to the property of entanglement monogamy (see Subsection 2.2 of Chapter 1),
the entanglement between the different flavors disappears in the limit N →∞. The
ground state of the Gross-Neveu Hamiltonian is then a product state over the different
flavors, and we can use the definition of σ0 above to write down an effective mean-field
Hamiltonian for a single fermion flavor a as

Ĥmean field =
∫ +∞
−∞


−iψ̂†

a(x)α
x dψ̂a

dx
(x)+σ±ψ̂

†
a(x)βψ̂a(x)+

g 2

2

�
ψ̂†

a(x)βψ̂a(x)
�2


 dx

(6.21)
The order parameter σ± thus appears as a mass for the elementary fermions (note that
a relativistic mass can be negative, since this is equivalent to switching particles and
antiparticles). The proper N → ∞ limit is thus obtained by keeping λ = g 2(N − 1)
constant. Hence, g 2 = λ/(N − 1) → 0 and the self-interaction of the flavor in the
mean field Hamiltonian disappears, reducing the mean field Hamiltonian to a free
theory. The value of the order parameter σ0 can then self-consistently be obtained
since it represents the mass of a free Dirac theory for which 〈ψ̂†γ 0ψ̂〉= λσ0. Hence, σ0
represents the dynamically generated fermion mass mF for N →∞. For finite N , σ0
is not a renormalization group invariant, and the relation between σ and the fermion
mass mF requires higher order corrections due to the self interaction and due to the
entanglement between the different flavors. The fermion mass mF should always be
a renormalization group invariant and is thus proportional to the mass scale M of
Eq. (6.18). In the MS scheme, the exact expression is given by

mF =
(4e)

1
2(N−1)

Γ
�

1− 1
2(N−1)

�M . (6.22)

While the Gross-Neveu model clearly has SU(N ) flavor symmetry, it can in fact be shown
that this symmetry can be enlarged to a full O(2N) symmetry between the different
Majorana-components. The appearance of the the factors 2(N−1) in the exact results is a
consequence of this being the Coxeter number of the O(2N ) group [406]. The complete
excitation spectrum of the Gross-Neveu model can be subdivided in a topologically trivial
and a nontrivial sector, which can also be categorized according to the representations
of O(2N ). The topologically non-trivial sector contains the Callen-Coleman-Gross-Zee
kink, which interpolates between the two degenerate vacua and has a mass mK. These
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excitations can also be understood in terms of the mean field construction using a
spatially dependent background field σ(x) that is able to bind elementary fermions in
a self-consistent way [407, 408]. At x →±∞, we must have σ(x) = σ+ or σ(x) = σ−,
hence describing topologically trivial or topologically non-trivial excitations when both
limits are equal or opposite. The resulting excitations and degeneracies are of course
compatible. For example, kinks transform according to the two spinor representations
of the O(2N ) group, each of which has dimension 2N−1. The self-consistent kink
background σ(x) is a reflectionless potential with an N -fold degenerate bound state, in
which the N fermion flavors can either bind or not bind, thus producing a QK = 2N

degenerate topologically non-trivial excitation. The topologically trivial excitations can
be understood as a bound state of a kink and anti-kink, which are held together by the
fermions binding to the background field. They are labeled by a principle quantum
number n = 1, . . . ,N − 2 and have masses

mn = 2mK sin

�
πn

2(N − 1)

�
. (6.23)

Note that the large-N result predicts a factor N instead of N − 1 in the denominator of
the argument of the sine function in the equation above. The substitution N →N − 1
is also based on the Coxeter number of the O(2N ) symmetry group. It predicts that
for n =N − 1, the bound state is no longer stable (mN−1 = 2mK) and separates into an
unbound kink and anti-kink pair. The bound state n = 1 describes the fundamental
massive fermion of the Gross-Neveu model, which implies that m1 = mF and that the
fundamental fermion is only part of the stable spectrum for N > 2. For N > 2, states
with n odd are fermionic and states with n even are bosonic. For each n, the bound
states can be labeled by a second quantum number r = n, n− 2, . . . ,≥ 0, which indicates
that these states transform according to the antisymmetric tensor representation of
rank r under O(2N ) transformations, so that Qn,r =

�2N
r

�
. For example, the state at

n = 1 transforms according to the fundamental representation and has dimensionality
2N , whereas the state at n = 2 contains a subspace of dimension 2N (2N − 1)/2 that
transforms as an antisymmetric matrix and a subspace of dimension 1 that transforms as
a scalar.

We now try to recover this excitation spectrum by applying the uniform matrix product
state ansatz and the resulting ansatz for excitations (see Chapter 3) to the lattice Hamilto-
nian (6.16) in the continuum limit a→ 0. However, since a only appears as a prefactor,
the true continuum limit is obtained by a correct scaling of the coupling constant g (a)
as dictated by the asymptotic freedom of the Gross-Neveu model:

lim
a→0

g (a)→ 0. (6.24)

Hence, the continuum limit is obtained by taking the limit towards the critical point
g = 0. Due to the sharp increase of the site dimension as function of the number of
flavors (q = 2N ), we restrict to the cases N = 2 and N = 3. The number of flavors also
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has a strong influence on the attainable accuracy, especially in the critical continuum
limit g → 0. For N massless free fermions, which is equivalent to N copies of the XX
model, the entanglement entropy of one half of the chain is N times larger than the
entanglement entropy of a single fermion flavor. This dominating term will also be
present in the continuum limit g → 0, so that the dimension D of the matrices should
also scale exponentially in N in order to obtain comparable accuracies as for the single
flavor model. As N increases, it very rapidly becomes unfeasible to probe deeply into
the continuum limit.

Because of the antiferromagnetic spatial ordering, we perform a spin flip on every second
site, and actually use the Hamiltonian

Ĥ ′′GN =
1

2a

∑
n

N∑
b=1

σ̂ x
b (n)σ̂

x
b (n+ 1)− σ̂ y

b
(n+ 1)σ̂ y

b
(n)

− g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n)−

g 2

8a

∑
n

N∑
b ,b ′=1

σ̂ z
b (n)σ̂

z
b ′(n+ 1).

(6.25)

In the lattice Hamiltonian, two neighboring sites correspond to the two components of
the Dirac spinor at a single location. Hence, the lattice momentum p corresponds to a
physical momentum pphys = (2 p mod 2π)/a. The charge conjugation symmetry of the
original fermion model result in the spectrum of this Hamiltonian being similar around
p = 0 and p =π. Both sectors produce equal types of excitations with the same physical
momentum pphys = 0. They correspond to states with an eigenvalue +1 (p = 0) or −1
(p = π) with respect to the charge conjugation operation. When trying to reproduce
the spectrum of the continuum model at pphys, we should thus double any degeneracy
we find in the excitation spectrum of our lattice model at momentum p = 0. However,
the lattice model does not share the full S0(2N ) symmetry with the continuum model,
and is only invariant under SU(N ) flavor transformations. We thus expect to find other
degeneracies dictated by the smaller group SU(N ) for our lattice model, and can only
hope that the correct degeneracies are properly restored in the continuum limit.

While not directly related to the continuum limit, it is intuitive to first look at the strong
coupling limit g →∞. The Hamiltonian Ĥ ′′GN of Eq. (6.25) then turns into a classical
Ising-like model with N spins per site with ferromagnetic interaction. Since we do not
expect any phase transition throughout the range g ∈ (0,+∞), we can already try to
connect the different states to associated excitations in the spectrum of the continuum
model. The ground state of this classical model is a fully polarized state, with all spins on
every site either all up or all down. These states will thus flow into the two symmetry
broken ground states for g → 0. We first look at topologically non-trivial states. The
fundamental kink and anti-kink are obtained by gluing the two classical ground states to
each other. The resulting domain wall has an excitation energy and degeneracy

m′K = m′K,0 =N 2 g 2

4a
, Q ′K =Q ′K,0 = 2. (6.26)
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We treat kink and anti-kink as different states, but obtain a two-fold degeneracy by
counting the two momentum sectors around p = 0 and p =π, which both contribute
to the sector pphys = 0. We use single primes for the notation of the masses and the
degeneracies since Ĥ ′GN and Ĥ ′′GN should produce the same spectrum (up to shifts over
momentum π which have no effect on the spectrum). Aside from the fundamental kinks,
we can also create states that start with all spins up, then have a single site with n <N
spins up and N − n spins down, and then all spins down. These are also topologically
non-trivial states with mass and degeneracy

m′K,n =
�
N 2+ 2n(N − n)

� g 2

4a
, Q ′K,n = 2

N !

n!(N − n)!
. (6.27)

Unlike in the continuum, adding additional fermions (spin flips) to the fundamental kink
now costs energy. We can hope that that this energy cost disappears in the continuum
limit g → 0. However, not all of the states above can become degenerate with the
fundamental kink for g → 0, since

∑N−1
n=0 Q ′K,n >QK = 2N . In the large g limit, we can

treat the kinetic term as a perturbation. The masses of these topologically non-trivial
states undergo first order shifts. It is thus not a priori impossible that the energy of
some states is lowered and they will eventually become degenerate with the fundamental
kink, while the energy of other states is shifted upwards and they are driven into the
continuum. Topologically trivial states in the large g limit are obtained by flipping n of
the N spins on a single site. The resulting excitation energy mn and degeneracy Qn are
given by (again counting both momentum sectors)

m′n =
�
2nN + 2n(N − n)

� g 2

4a
= 2n(2N − n)

g 2

4a
, Q ′n = 2

�N

n

�
= 2

N !

n!(N − n)!
. (6.28)

The state n = 1 with a single flipped spin has degeneracy 2N and can be related to the
fundamental fermion in the continuum. However, unlike in the continuum, it is already
stable for N = 2. In the large g -limit, the states here constructed are only unstable for
n = N . We then find mN = 2mK,0, so that the state with N flipped spins decays into
two fundamental kinks. The degeneracies of the states with n > 1 bare no resemblance
to those predicted by the O(2N ) of the continuum. In addition, we now have too
few states to account for all expected topologically trivial states in the continuum and
additional states with flipped spins on neighboring sites will have to be mixed in. The
topologically trivial states here constructed are stable at first order when the kinetic term
is treated as a perturbation. The masses m′n only receive corrections at second order in
the perturbation, which are always negative. A complete classification of the spectrum
and a group theoretic study of how it can possibly evolve into the continuum spectrum
for general values of N is beyond the scope of this section.

We now focus on the cases N = 2 and N = 3 for which we study the continuum limit
using the matrix product state ansatz. Figure 6.1 depicts the spectrum of Ĥ ′′GN for
N = 2 and λ = 4 (g = 2), which is still in the large g regime but already with large
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corrections. This spectrum was obtained using our ansatz for excitations with bond
dimension D = 12. We have also indicated the zeroth order energies for the fundamental
kink [m′K,0 in Eq. (6.26)], the kink with bound fermion [m′K,1 in Eq. (6.27)] and the
fundamental fermion [m′1 in Eq. (6.28)]. It is clear that the fundamental kink and
fundamental fermion only receive small second order corrections (necessarily negative)
around momentum p = 0 and p = π, whereas the kink with bound fermion receives
large first order corrections which are opposite at p = 0 and p =π. Indeed, if we define
the lattice kinetic energy —our perturbation term—

Ĥ ′′kinetic =
1

2a

∑
n

N∑
b=1

σ̂ x
b (n)σ̂

x
b (n+ 1)− σ̂ y

b
(n+ 1)σ̂ y

b
(n)

=
∑

n

N∑
b=1

σ̂+(n)σ̂+(n+ 1)+ σ̂−(n)σ̂−(n) (6.29)

and label the two kink states with bound fermion as

|K1,1〉=
�����
· · · ↑ ↑ ↓ · · ·
· · · ↑ ↓ ↓ · · ·

+
, |K1,2〉=

�����
· · · ↑ ↓ ↓ · · ·
· · · ↑ ↑ ↓ · · ·

+
, (6.30)

then we obtain

Ĥ ′′kinetic |K1,1〉 ∼ (T̂ + T̂ −1) |K1,b 〉+ . . . (6.31)

with T̂ the shift operator. If we create momentum superpositions of the states |K1,i 〉
with momentum p, then we can write Ĥ ′′

kinetic
in the two-dimensional subspace spanned

by the basis {|K(p)1,1 〉 , |K(p)1,2 〉} as

[Ĥ ′′kinetic] =


 0 2

a cos p
2
a cos p 0


 . (6.32)

Hence, the degeneracy between the levels |K(p)1,1 〉 and |K(p)1,2 〉 is lifted for all momenta

p 6=π/2, by attributing to the linear combinations |K(p)1,±〉= |K(p)1,1 〉± |K(p)1,2 〉 a first order
energy shift ±2/a cos(p).

We now investigate whether the lowest of these two energies does eventually combine
with the energy of the fundamental kink in the continuum limit g → 0. In addition,
we also examine whether the lowest topologically trivial excitation, which is still stable
at the value of g in Figure 6.1, becomes unstable in the continuum limit. We therefore
compute the two lowest topologically non-trivial excitation energies as well as the two
lowest topologically trivial excitation energies for decreasing values of λ = (N − 1)g 2

up to λ ≈ 2/3 with our ansatz for excitations. We use different values of the bond
dimension ranging up to D = 512 in order to obtain mass estimates m(D). We then use

293



CHAPTER 6. APPLICATIONS TO RELATIVISTIC THEORIES

m'K,0

m'K,1 = m'1

ex
ci

ta
tio

n 
en

er
gy

 ω
 ×

 a

0

1

2

3

4

5

6

7

8

9

10

momentum p
0 π/4 π/2 3π/4 π

Figure 6.1: Spectrum of the Gross-Neveu lattice Hamiltonian Ĥ ′′
GN (see Eq. (6.25)) for N = 2 and

g = 2 using our ansatz for lattice excitations with bond dimension D = 12. Also indicated are the
zeroth order excitation energies obtained in the large g limit.

the approach of Subsection 3.5 of Chapter 3 to obtain an estimate m(∞) (i.e. a fit based on
a power-law scaling of the differences |m(D)−m(∞)| as a function of the local state error
ε̃ as in Figure 3.10). The results are displayed in Figure 6.2. The mass of the fundamental
fermion quickly rises above the value of twice the mass of the fundamental kink. Since
we know that two fundamental kinks with momentum p = 0 can appear together to
form a topologically trivial state with an excitation energy that is twice the kink mass,
this clearly shows the inadequacy of our ansatz to describe multi-particle excitations.
In addition, the extrapolation of m(∞) based on a power law scaling of the deviations
as function of the local state error ε̃ is no longer suitable for multi-particle excitations.
The ratio of the mass of the kink with bound fermion and the mass of the fundamental
kink first decreases as the coupling constant g is decreased, but then starts to rise again
and finally seems to saturate around a value of mkink+bound fermion/mfundamental kink ≈ 1.2.
At this point, we are already quite deep in teh continuum limit, since the kink mass
is around 0.02 in lattice units, so the corresponding correlation length spans around
50 sites. While the relative uncertainty on the mass estimates m(∞) is quite large for
the points furthest in the continuum regime —due to two flavors each contributing
to the amount of entanglement— it dos not supersede the order of 1 %. Hence, the
mass ratio of about 1.2 around λ ≈ 2/3 will not shift substantially by improving the
approximation. Two possible explanations easily come to mind. It might be that we have
to probe much deeper into the continuum limit before the theoretically expected mass
ratio of 1 is obtained. Another possibility is that the low energy region of our lattice

294



§1. Relativistic fermions on the lattice

mfundamental fermion

mkink + bound fermion

mfundamental kink

mkink + bound fermion

mfundamental kink

mfundamental fermion

mfundamental kink

m
as

s 
 m

 ×
 a

0.01

0.1

1

10

100

m
ass ratios

0.5

1.0

1.5

2.0

2.5

λ-1

0 0.5 1.0 1.5

λ-1

0 0.5 1.0 1.5

Figure 6.2: Masses of the elementary excitations of the Gross-Neveu lattice Hamiltonian Ĥ ′′
GN as

function of the inverse coupling constant λ−1 = [(N − 1)g 2]−1, as extrapolated from the results of
our ansatz for lattice excitations for different values of the bond dimension ranging up to D ≈ 500.

Hamiltonian Ĥ ′′GN for N = 2 in the critical limit (continuum limit) is not described by
the N = 2 Gross-Neveu field theory, but rather flows towards a different fixed point
under renormalization group transformations. Since our lattice model does not have
the full O(2N ) invariance of the Gross-Neveu model but only SU(N ) invariance, this
argument is not completely improbable. There is a priori no reason to assume that the
O(2N ) symmetry should automatically be restored in the continuum, and a different
field theory with only SU(N ) flavor symmetry might describe the low-energy behavior
of Ĥ ′′GN in the critical limit.

We now repeat this analysis for the N = 3 case. Since the entanglement is even larger
due to the additional flavor, the attainable accuracy in the continuum limit will be even
smaller. The spectrum of Ĥ ′′GN for N = 2 and λ= 4 (g =

p
2) is depicted in Figure 6.3,

as obtained obtained using our ansatz for excitations with bond dimension D = 9. The
fundamental kink and fundamental fermion have received small second order energy
contributions, which are negative around p = 0 and p =π. For N = 3, the zeroth order
energy for the kink with one or two bound fermions is degenerate in the large g limit.
These states are mixed by the kinetic term Ĥ ′′

kinetic
as defined in Eq. (6.29). Indeed, let us

define the states

|K1,1〉=
�������

· · · ↑ ↑ ↓ · · ·
· · · ↑ ↑ ↓ · · ·
· · · ↑ ↓ ↓ · · ·

+
, |K2,1〉=

�������

· · · ↑ ↓ ↓ · · ·
· · · ↑ ↓ ↓ · · ·
· · · ↑ ↑ ↓ · · ·

+
,

|K1,2〉=
�������

· · · ↑ ↑ ↓ · · ·
· · · ↑ ↓ ↓ · · ·
· · · ↑ ↑ ↓ · · ·

+
, |K2,2〉=

�������

· · · ↑ ↓ ↓ · · ·
· · · ↑ ↑ ↓ · · ·
· · · ↑ ↓ ↓ · · ·

+
,
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|K1,3〉=
�������

· · · ↑ ↓ ↓ · · ·
· · · ↑ ↑ ↓ · · ·
· · · ↑ ↑ ↓ · · ·

+
, |K2,3〉=

�������

· · · ↑ ↑ ↓ · · ·
· · · ↑ ↓ ↓ · · ·
· · · ↑ ↓ ↓ · · ·

+
.

We can then write expressions such as

Ĥ ′′kinetic |K1,i 〉 ∼ T̂ |K2,i 〉+ . . . (6.33)

Making momentum superpositions of the states |K1,i 〉 and |K2,i 〉, we can write the

perturbation Ĥ ′′
kinetic

within the two-dimensional subspaces spanned by {|K(p)1,i 〉 , |K
(p)
2,i 〉}

as

[Ĥ ′′kinetic] =


 0 1

a e−i p

1
a ei p 0


 . (6.34)

Hence, the degeneracy between the levels |K(p)1,i 〉 and |K(p)2,i 〉 is lifted and the linear combi-

nations |K(p)1,i 〉±|K
(p)
2,i 〉 are given an energy shift±1/a. The first order energy correction is

thus momentum independent. The momentum dependence of these levels in Figure 6.3
is a result of second and higher order corrections, which explains why the shift is equal
and not opposite for momenta p = 0 and p =π. The degeneracy between the three levels
i = 1,2,3 does of course remain, and these levels transform according to the fundamental
representation of SU(3). Combining the sectors around momentum p = 0 and momen-
tum p =π, we can hope that they constitute a fundamental representation of O(6) in the
continuum limit. Note finally that the topologically trivial state with n = 2 fermions is
still stable at the current value of g . In fact, there is one more topologically trivial stable
state at the current value of g . This is a state that transforms according to the trivial
representation of SU(3) and was lying in the two-kink continuum for g =∞. However,
it is stabilized by the second order energy shift of the kinetic part of the Hamiltonian.
This seems to be compatible with the fact that the second topologically trivial state in
the continuum Gross-Neveu spectrum, while being unstable again, contains a state that
transforms according to the trivial representation of the O(6) group. However, there
should be 15 remaining states that transform according to an antisymmetric tensor of
rank 2. The total degeneracy of this level is thus 16, while we have only 8 states in the
expected energy range (4 at momentum p = 0 and 4 at momentum p =π). Since these
states should become unstable in the continuum limit anyway, we cannot access them
with our ansatz and we make no further attempt of trying to find all of them.

Figure 6.3 shows the masses obtained with our ansatz for various values of λ ranging
down to λ = 2/3. As before, we have computed mass estimates m(D) for different
values of the bond dimension D ranging up to D ≈ 500, and then extrapolated these
results to find an estimate m(∞). The mass ratio of the fundamental fermion, which
is now stable, and the fundamental kink seems to converge to the correct value of
2 sin(π/4) =

p
2. Also, the kink state with bound fermion seems to become degenerate

with the fundamental kink for g → 0. However, the relative uncertainty on these ratios
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Figure 6.3: Spectrum of the Gross-Neveu lattice Hamiltonian Ĥ ′′
GN (see Eq. (6.25)) for N = 3 and

g =
p

2 using our ansatz for lattice excitations with bond dimension D = 9. Also indicated are the
zeroth order excitation energies obtained in the large g limit.

is of the order of a few percent. In addition, the limiting behavior is only setting in so
we would need to probe deeper into the continuum limit with higher accuracy in order
to be able to conclude that the low-energy behavior of the lattice model under study
is described by the N = 3 Gross-Neveu field theory in the critical limit. It is also not
clear why our lattice model would flow to the Gross-Neveu field theory under the action
of the renormalization group for N = 3, but not for N = 2. Unfortunately, going to
larger values of N is almost impossible without drastically increasing the bond dimension
D .

Clearly, the matrix product state approximation performed less well for the model under
study in this section then for the spin models that were studied in Section 3. This is not
due to the relativistic aspect of the current model. While studying the relativistic field
theory requires that we take the continuum limit and approach closely to the critical
point, computing with the matrix product state approximation is sufficiently efficient
to allow to go to large values of the bond dimension where there is enough variability
to also capture long range correlations. The main problem with the current model is
that each fermion flavor or spin flavor contributes equally to the entanglement entropy,
so that the total entanglement entropy is roughly N times higher than for a single spin
model with comparable correlation length. However, the structure of this entanglement
is quite trivial, since for large N the exact ground state will be very close to state that
factorizes over the different flavors due to the monogamy property of entanglement.
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Figure 6.4: Masses of the elementary excitations of the Gross-Neveu lattice Hamiltonian Ĥ ′′
GN as

function of the inverse coupling constant λ−1 = [(N − 1)g 2]−1, as extrapolated from the results of
our ansatz for lattice excitations for different values of the bond dimension ranging up to D ≈ 500.

We can then approximate the ground state by a direct product of independent matrix
product states over each flavor, which is an approach that we pursue using continuous
matrix product states in the next section. However, there is no easy way to systematically
improve this product state or to find a suitable middle way between the a mean field
product of matrix product states and a single matrix product states where all flavors are
included in a single physical index, which was the approach of the current section. Larger
bond dimensions could be obtained by implementing explicit symmetry considerations,
but this too becomes very complex for the general SU(N ) group.

2. Relativistic fermions with continuous matrix prod-
uct states

Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, Frank Verstraete.
“Applying the variational principle to (1+ 1)-dimensional quantum field theories”.

Physical Review Letters 105, 251601 (2010).

2.1. Introduction

In the previous section we have applied the matrix product state formalism to study a
relativistic fermion model that was discretized and put on a lattice. When scaling the
results back to the continuum limit, the model approaches criticality and the matrix
product state approximation worsens. Since we also have a variational ansatz that
is in itself a continuum limit of the matrix product state, we now investigate what
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§2. Relativistic fermions with continuous matrix product states

happens when we immediately apply this continuous matrix product state to a relativistic
field theory. As we will show in this section, the absence of a physical cutoff aphys
in relativistic theories (aphys = 0) implies ξc/aphys → ∞ and the sensitivity to high
frequencies now becomes catastrophic: there are an infinite amount of high-energy
modes and all physical expectation values obtained with our variational ansatz would be
totally wrong. Feynman’s criticism manifests itself in a very particular way and the only
solution is to manually introduce an ultraviolet cutoff lengthscale a =Λ−1.

Once again, we restrict to fermionic theories (in d = 1), since these are naturally defined
in terms of creation and annihilation operators ψ̂α(x) and ψ̂†(x)α that can be used in
the definition of the continuous matrix product state. The index α now runs over the
values α = 1,2 and labels the two components of the Dirac spinor in d = 1 spatial
dimension. Since the ground state of relativistic field theories should definitely be
translation invariant for d = 1, we can try to approximate this ground state with
the uniform continuous matrix product state |Ψ(Q, R1, R2)〉 with bond dimension D.
In order to satisfy the regularity condition Eq. (4.18), the matrices R1 and R2 have
to anticommute. A representation for these matrices that automatically satisfies this
property is constructed in Subsection 2.2 of Appendix A. The state |Φ(Q, R1, R2)〉 arises
by acting with the path-ordered exponential Û (−∞,+∞) [see Eq. (4.7)] on the empty
vacuum |Ω〉, for which all levels are empty (ψ̂α |Ω〉 = 0). For free Dirac fermions, the
path-ordered exponential should thus fill the Dirac sea.

The kinetic energy term of relativistic fermions was already introduced in the previous
section. With respect to the continuous matrix product state |Ψ(Q, R1, R2)〉, we obtain
for the kinetic energy density (henceforth omitting the arguments of |Ψ〉)

− i

2
〈Ψ|ψ̂†(x)αx dψ̂

dx
(x)|Ψ〉+ i

2
〈Ψ|dψ̂

†

dx
(x)αxψ̂(x)|Ψ〉

= ℑ
� 2∑
α,β=1

σ y
αβ
(l |[Q, Rα]⊗Rβ|r )

�
,

=−(l |[Q, R1]⊗R2|r )+ (l |[Q, R2]⊗R1|r ). (6.35)

In order to obtain real coefficients, we have again chosen the convention αx = σ y and
β= σ z for the Dirac matrices. The D2-component vector (l | and |r ) are, respectively,
the left and right eigenvectors of the transfer operator T̆ =Q⊗1+1⊗Q+

∑2
α=1 Rα⊗Rα

corresponding to eigenvalue zero (see Subsection 1.6 of Chapter 4). We focus on the
kinetic energy density as it is the dominant term in the ultraviolet region, which is
the region responsible for divergences and for Feynman’s first criticism. Eq. (6.35)
indicates that the kinetic energy density is finite —and thus regularized— as long as the
D ×D matrices Q and Rα have finite entries. This regularization can be understood as a
consequence of the internal momentum cutoff Λ that is built into the continuous matrix
product state. As discussed in Subsection 1.6 of Chapter 4, the momentum occupation
number nα,β(p) [see Eq. (4.72)] decays for large values of the momentum as O(Λ4/p4)
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with Λ determined by the eigenvalues of the transfer operator T̆ , provided that the
regularity conditions [Eq. (4.18)] are satisfied. Since the relativistic kinetic energy is
proportional to the momentum p, a p−4 decay of the momentum occupation number is
indeed sufficient to regularize every relativistic field theory. Hence, Λ can be interpreted
as a soft momentum cutoff.

2.2. Avoiding Feynman’s criticism

We can now investigate how Feynman’s “sensitivity to high frequencies” manifests itself
for the continuous matrix product state. The problem is situated in the ability to describe
a scale transformation x 7→ c x (c > 0) by an equivalent transformation Q ′ = cQ and
R′
α
=
p

cRα. Since this transformation does not change (l | and |r ), the kinetic energy
density is simply multiplied by a factor c2. In renormalizable theories, the kinetic energy
has the highest scaling dimension, together with other terms with dimensionless coupling
constants. These are thus the dominant terms in the ultraviolet region. However, in
contrast to the non-relativistic case, the relativistic kinetic energy is not a positive
definite operator and can acquire a negative expectation value. If |Ψ[Q, R1, R2]〉 is
a continuous matrix product state for which the sum of terms with highest scaling
dimension has a negative energy expectation value, then the total ground state energy can
always be decreased by a scale transformation with c sufficiently large. Any variational
optimization method will thus try to push c→∞, in order to approximate the divergent
(kinetic) energy of the exact solution. Under such a transformation, the momentum
occupation changes to n′

α,β(k) = nα,β(k/c) and the intrinsic cutoff determined by n′ is
given by Λ′ = cΛ. Hence, the variational principle does not like the effective cutoff that
is imposed by the continuous matrix product state and tries to shift it to infinity for
relativistic theories.

This change of scale will be accompanied by a worse description of the low frequency
region, as predicted by Feynman. The precise underlying cause for this effect in our
variational class is that a cMPS can only accurately describe states with a finite amount
of entanglement. The maximal entanglement entropy in a one-dimensional system
with energy gap ∆ ≈ ξ −1

c (in the relativistic case) and momentum or energy cutoff Λ
is roughly given by S ∼ log(Λ/∆), and a continuous matrix product state with bond
dimension D proportional to O(exp(S)) should suffice to provide a good description. If
D is too low to obtain a good approximation of the exact ground state, the variational
method makes compromises in that part of the frequency spectrum that contributes least
to the ground state energy, i.e. the low-frequency region. In non-relativistic systems, the
cutoff is set by the particle density or thus by the chemical potential. But in a relativistic
Hamiltonian, there is no physical cutoff and we only have the intrinsic momentum
cutoff Λ of the cMPS. If we start from a cMPS with negative energy expectation value,
the variational method can quickly lower the energy by shifting the cutoff to Λ′ = cΛ
with c →∞. As c goes to infinity, all low-energy modes will eventually fall into the
region that is poorly described and the description of any observable quantity will be
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§2. Relativistic fermions with continuous matrix product states

completely wrong for every finite value of the bond dimension D . This is schematically
illustrated in Figure 6.5 for a free field theory, where we have single-particle energy levels
that should be filled if they correspond to a negative energy level.
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Figure 6.5: Hypothetical momentum distribution of an optimal cMPS for a free fermionic
theory: high-frequency degrees of freedom are well-approximated up to a cutoff Λ, after which the
momentum occupation decays as p−4. Also shown is the effect of a scale transformation.

A solution is now straightforward as we can prevent c from running to infinity by
imposing a constraint on the matrices Q and Rα: since Q has the dimension of a
momentum and Rα has the dimension of the square root of a momentum, constraining
the norm of Q and Rα prevents c from running and regularizes the resulting theory
by introducing a scale, i.e. a dimensionful parameter, into the system, similar to what
happens in analytical regularization techniques or lattice regularization. In the sequel,
we will constrain the norm of the commutator [Q, Rα] by fixing the expectation value
of (dψ̂†/dx)(dψ̂/dx). Indeed, the expectation value of this operator is given by

〈Ψ(Q, R1, R2)|(dψ̂†/dx)(dψ̂/dx)|Ψ(Q, R1, R2)〉=
2∑
α=1

(l |[Q, Rα]⊗ [Q, Rα]|r ) (6.36)

and —with l and r positive definite matrices— can rightfully be interpreted as a norm of
[Q, Rα]. In order to fix this expectation value, we add this term to the Hamiltonian with
a Lagrange multiplier 1/Λ, i.e. Ĥcutoff = Λ

−1 ∫ dx (dψ̂†/dx)(dψ̂/dx). This apparently
arbitrary choice is motivated by the requirement that the constraint needs to penalize
high values of the momentum p, to which [Q, Rα] is related by the calculational rules
of continuous matrix product states. Hcutoff gives a p2 contribution in momentum
space, which is low enough to ensure a finite result in combination with a momentum
occupation that decays as p−4. It is, however, also strong enough to penalize high
frequency modes, even the ones that give a contribution −|p| to the (kinetic) energy.
Put differently, it is a positive definite term with a higher scaling dimension than the
relativistic kinetic energy. As such, it is non-renormalizable, which by means of Wilson’s
renormalization group indicates that it will be irrelevant for the description of the low-
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frequency modes and cannot strongly influence the expectation value of observable
quantities. Note that it also respects the chiral symmetry of the kinetic energy term.
It does of course break relativistic invariance, which is inevitable when introducing
a momentum cutoff in a Hamiltonian framework. We expect that any other norm
constraint with similar properties and respecting the symmetries of the system should
also work.

2.3. Casimir energy of the Dirac field

We now illustrate our arguments by applying them to relativistic fermion models. As
a benchmark, we first consider free Dirac fermions with mass m, as described by the
Hamiltonian ĤD given in Eq. (6.2). In the exact ground state of ĤD + Ĥcutoff, the
regularization procedure introduces a sharp cutoff at

pcutoff =Λ(1/2+(1/4+m2/Λ2)1/2)1/2, (6.37)

which is equal to Λ up to corrections of O(m2/Λ2). The cMPS ansatz will not be able to
reproduce this sharp cutoff because it decays as p−4. Indeed, this cutoff is not expected
to be reproduced very well, because the new Hamiltonian is gapless at p = ±pcutoff.
However, this is not a problem, as we do not expect these high-frequency modes to
influence physical properties. Note that both zeros in the dispersion relation occur at
physically different momenta and do thus not result in fermion doubling.

Since we do not aim at reproducing the exact solution in the high-frequency regime, we
cannot compare the corresponding energy as a measure of the accuracy of our solution.
Instead, we have computed the momentum occupation of the exact positive (particle)
and negative (antiparticle) levels according to the definitions

〈Ψ(Q, R1, R2)|â†(p)â(p ′)|Ψ(Q, R1, R2)〉= δ(p ′− p)n++(p), (6.38a)

〈Ψ(Q, R1, R2)|b̂ †(p)b̂ (p ′)|Ψ(Q, R1, R2)〉= δ(p ′− p)n−−(p), (6.38b)

〈Ψ(Q, R1, R2)|â†(p)b̂ (p ′)|Ψ(Q, R1, R2)〉= δ(p ′− p)n+−(p), (6.38c)

with â(p) the annihilator of particles with momentum p, and b̂ (p) the creator of
antiparticles with momentum−p, which is a slightly different convention from standard
field theory books. These expectation values can be computed from nα,β(p) using the

relation with Ψ̂α(p), the Fourier transform of ψ̂α(x),

â(p) =
m+ω(p)p

2ω(p)[m+ω(p)]
Ψ̂1(p)−

i pp
2ω(p)[m+ω(p)]

Ψ̂2(p), (6.39a)

b̂ (p) =− i pp
2ω(p)[m+ω(p)]

Ψ̂1(p)+
m+ω(p)p

2ω(p)[m+ω(p)]
Ψ̂2(p), (6.39b)
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withω(p) =
Æ

m2+ p2.

The results corresponding to the optimal uniform continuous matrix product state are
shown in Figure 6.6. The exact solution has the Dirac sea filled (n−−(p) = 1) all the
way up to pcutoff, after which n−−(p) = 0 for |p| > pcutoff, and n++(p) = n+−(p) = 0,
∀p. These results were obtained using a continuous matrix product state where Q and
Rα act on an ancilla Hilbert spaceHancilla =C2⊗C2⊗CD , so that the bond dimension
is given by 4D. The first two two-dimensional Hilbert spaces inHancilla accommodate
auxiliary fermions which are used to impose the anticommutation relations on Rα. This
construction can be found in Subsection 2.2 of Appendix A. It is clear from the results
of Figure 6.6 that the low-energy behavior is approximated very well for the massive
Dirac theory, and the accuracy greatly increases by increasing D. As anticipated, the
cutoff behavior is approximated less well. In the case m = 0, the theory is critical and
the low-energy behavior is also approximated less well. Here, Feynman’s sensitivity to
high frequencies is still at work since ξc/a = Λ/m =+∞. Critical theories cannot be
well described with (continuous) matrix product states. However, from the fact that
|n+−| ≈ 0 for m = 0, we see that the algorithm automatically converges to a continuous
matrix product state respecting chiral symmetry, except at D = 2.
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Figure 6.6: Momentum occupation of the antiparticle levels n−−(k), the particle levels n++(k) and
the mixing |n+−(k)| in a continuous matrix product state approximation of the ground state of the
Dirac field with mass m. The ancilla space of the continuous matrix product state is C2⊗C2⊗CD .
The vertical line indicates the position of the exact cutoff pcutoff according to Eq. (6.37).
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Figure 6.7: Energy density e for Dirac fermions with m/Λ= 1/10 in a system where ‘plates’ are
present at position x = 0 and x = 50/Λ. These plates enforce the bag-model boundary conditions.
The ground state energy density e0 in the infinite vacuum is plotted for comparison.

To give a non-trivial example of what can be done with this approach we have also
calculated the Casimir energy of the massive Dirac field. We simply recycle the matrices
Q and Rα from the simulation above, and add suitable operators B(x) to the ansatz
at the location of the ‘plates’ or defects (x = 0 and x = L), which impose the correct
boundary conditions. The boundary conditions only fix a part of these operators, the
remaining elements can be used to optimize the energy with fixed Q and Rα. While a
more complete approach would be to use x-dependent matrices Q and Rα, this simple
approach works already quite well. It is similar in spirit to the ansatz we have used to
study excitations in Chapter 3 and Chapter 4. By transferring information through the
ancilla system, the boundary effect can spread over some distance O(ξc). All boundary
effects can be incorporated in the boundary operators B . For relativistic fermions,
one typically imposes the bag-model boundary conditions (1+ inγ x )ψ = 0, where
γ x = −iσ x in our convention, and the outward normal n = −1 at x = 0 and n = +1
at x = L. Since these boundary conditions completely shield the fermions in the three
different regions of space (x < 0, 0 < x < L and x > L), we can replace the boundary
operators by appropriate left and right vectors in the ancilla, so that B(0) = vRv

†
L and

B(L) =wRw
†
L. The vectors are thus chosen such that (R1+R2)vR = (R1+R2)wR = 0

and v†
L(R1−R2) =w

†
L(R1−R2) = 0. Using the structure of R1 and R2 (see Subsection 2.2

of Appendix A) one can show that these equations have a 2D -dimensional solution space,
and we can choose the particular solution that optimizes the energy. For the regions
x < 0 and x > L, the energy is quadratic in respectively vR and wL, and the solution
follows straightforwardly. For the region 0< x < L, the energy is biquadratic in both
vL andwR simultaneously. This optimization problem can be solved with a variational
sweeping procedure, where we first optimize vL for a fixedwR, then optimizewR and
then repeat this process until convergence.
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Figure 6.8: The total Casimir energy as a function of the distance L between the ‘plates’. For
m = 0, the exact Casimir energy, both in our model with cutoff, and analytically through zeta
function regularization, is also displayed.

In Figure 6.7 we show the energy density for a particular configuration of ‘plates’ in
the (1+ 1)-dimensional free-fermion model. A clear manifestation of the Fermi surface
at a finite momentum pcutoff is present in the form of Friedel oscillations. The Casimir
energy EC as a function of the distance L between the plates is plotted in Figure 6.8. The
presence of the momentum cutoff, and thus of a finite particle density, also introduces
a strong oscillatory behavior in EC (L), which was already observed in studies of the
interaction energy between defects in one-dimensional quantum liquids [409, 410]. Local
minima correspond to values of L where the number of allowed modes is such that the
density of fermions between the plates is exactly equal to the density of fermions outside
the plates. The sharp maxima appear when this condition is most strongly violated. In
the limit pcutoff→∞, the density of fermions is infinite, both in between and outside
the plates, and the equal density condition is always satisfied. So the physical Casimir
energy, which is expected to be cutoff independent, can be found by the envelope of
the local minima. This is illustrated for the m = 0 case, where the exact solution in our
model is compared to the value of the Casimir energy for massless Dirac fermions in
(1+ 1) dimensions, as calculated with zeta-function regularization, i.e. EC(L) = − π

12L .
Note that the Casimir energy will always have an asymptotic exponential decay when
computed using a continuous matrix product state approximation, but that it can be well
approximated at intermediate values of L. Because the Casimir energy is a difference of
energies, approximate results can be lower than the exact solutions, as was also noticed
for excitation energies. This is clearly the case in Figure 6.8. We attribute this effect to
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the fact that the additional degrees of freedom present in the boundary vectors allow one
to further optimize the energy in their immediate vicinity. Nevertheless, the qualitative
behavior of the energy is already reproduced by this simple approach. For m 6= 0,
exact results are much more difficult to obtain and we only show the approximative
result.

2.4. Symmetry breaking in the Gross-Neveu model

As a final proof of principle, we study a theory with interactions. We therefore recycle
the Gross-Neveu model that was discussed at length in the previous section. The Gross-
Neveu Hamiltonian ĤGN is given in Eq. (6.3). We now study the large N behavior of
the theory, and employ as a variational ansatz a product state of continuous matrix
product states across the different fermion flavors. Because the exact ground state has
SN flavor symmetry (which is a subgroup of the actual O(2N ) symmetry of the model),
the nearest product state should also be invariant under SN [411]. We can thus use the
same continuous matrix product state for every flavor. This amounts to a Hartree-Fock
approximation of the theory, where the self-interaction of the flavor is treated exactly,
and the self-consistent mean-field approach is only applied to the interactions between
different flavors. We add the same cutoff term Ĥcutoff to the Hamiltonian for every
fermion flavor, so as to respect the flavor symmetry. Since this term introduces our
regularization parameter Λ, we know that the coupling constant g will have to depend
on Λ in order to have a consistent theory. In the N → ∞ limit, we can solve this
problem exactly, and we obtain the well-known result for σ = λ 〈χ |ψ̂†σ zψ̂|χ 〉 (with
λ=N g 2)

π

λ
=
∫ pcutoff

0

d pÆ
σ2+ p2

⇒ |σ | ≈ 2Λe−
π
λ(Λ)

where pcutoff ≈ Λ if |σ | � Λ. This indicates that the cutoff fixing term Ĥcutoff has no effect
other then what it is meant to do, i.e. introducing a cutoff. With the current Hartree-Fock
ansatz based on continuous matrix product states, we can calculate an approximation for
any λ and N . Numerical results with the mean-field approach are illustrated in Figure 6.9
for N =∞. At strong coupling (λ > 1) they agree very well with the exact result. The
discrepancies between the exact solution and the cMPS approximation for N =∞ are
clearly finite-D effects. They become more pronounced as σ/Λ gets smaller, since σ is
exactly equal to the mass gap in the N =∞ limit.

3. Relativistic fields with the continuous entanglement
renormalization

In the previous section, we have shown that continuous matrix product states can be used
to study relativistic field theories (in d = 1 spatial dimension), provided that we introduce

307



CHAPTER 6. APPLICATIONS TO RELATIVISTIC THEORIES

λ(
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λ-1(Λ) = [(N - 1)g(Λ)2]-1
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exacta

fitb

D = 6

D = 8
D = 10
D = 16

Figure 6.9: Expectation value of σ = 〈χ | ψ̂†σ zψ̂ |χ 〉 in the Gross-Neveu model as function of
λ(Λ) for N =∞. A fit of the form c1e−c2/λ to the numerical results for λ−1 ≤ 1 at D = 16 results in
c2 = 3.142+0.047

−0.047 and c1 = 2.057+0.074
−0.072, to be compared to the exact values c1 = 2 and c2 =π (see main

text).

an ultraviolet momentum cutoff Λ. The accuracy of the ground state approximation
depends on the ratio ξcΛ, and we should choose the bond dimension as log D ∼ log(ξcΛ).
For critical field theories, the continuous matrix product state approximation will always
fail. So let us now try to use the continuous entanglement renormalization ansatz for the
description of relativistic ground states. As before, we have to introduce a cutoff in order
to define our ansatz. However, the continuous entanglement renormalization ansatz puts
no restriction on ξcΛ and we can even send Λ→∞ at the end of the process. Since we
have not (yet) developed how to evaluate expectation values of interacting theories, we
restrict to a description of free field theories using the Gaussian continuous entanglement
renormalization ansatz.

3.1. Dirac fermions in (1+ 1) dimensions

We start again with discussing relativistic fermions in one spatial dimension, described
by Ĥ = ĤD in Eq. (6.2). For each of the two Dirac components ψ̂α(x) —or Ψ̂α(p) in
momentum space— we can use the generator of scale transformations L̂ in Eq. (5.48).
Since we have now two fermion flavors, the quadratic operator K̂(s) featuring in the
Gaussian continuous entanglement renormalization ansatz can be more general and we
are no longer restricted to odd Bogoliubov angles f (−p) =− f (p). We now show that
we can use the choice

K̂(s) =
∫

d p g (p; s)
�
Ψ̂ †

1 (p)Ψ̂2(p)+ Ψ̂
†
2 (p)Ψ̂1(p)

�
= i
∫

d p g (p; s)Ψ̂ †(p)γ 1Ψ̂ (p), (6.40)

with γ 1 defined in Eq. (6.5) and where we still choose g (−p; s ) =−g (p; s ) even if this is
not necessary. Since the Dirac Hamiltonian has real coefficients in real space, we can use
that g (p; s) contains only odd powers of p to show that iK̂(s) has real coefficients with
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respect to the real-space operators ψ̂α(x) and ψ̂†
α
(x). We now obtain

Ψ̂1,R(p; s) = cos( f (p; s))e s/2Ψ̂1(e
s p)− i sin( f (p; s))e s/2Ψ̂2(e

s p), (6.41)

Ψ̂2,R(p; s) = cos( f (p; s))e s/2Ψ̂2(e
s p)− i sin( f (p; s))e s/2Ψ̂1(e

s p), (6.42)

where the Bogoliubov angle satisfies ∂
∂ s f (p, s) = g (e s p, s) and we have again chosen

sa = 0. We can then compute the renormalized Hamiltonian as

ĤR(s) =
∫

d p
�−i pΨ̂ †

1 (p; s)Ψ̂2(p; s)+ i pΨ̂ †
2 (p; s)Ψ̂1(p; s)

+mΨ̂ †
1 (p; s)Ψ̂1(p; s)−mΨ̂ †

2 (p; s)Ψ̂2(p; s)
�

=
∫

d p e s [−p sin(2 f (p; s))+m cos(2 f (p; s))]

×�Ψ̂ †
1 (e

s p)Ψ̂1(e
s p)− Ψ̂ †

2 (e
s p)Ψ̂2(e

s p)
�

− ie s [p cos(2 f (p; s))+m sin(2 f (p; s))]

×�Ψ̂ †
1 (e

s p)Ψ̂2(e
s p)− Ψ̂ †

2 (e
s p)Ψ̂1(e

s p)
�

.

By setting f (p) = f (p, sξ ) and choosing |Ω〉 such that Ψ̂1(p) |Ω〉 = Ψ̂ †
2 (p) |Ω〉 = 0, we

obtain for the energy functional

E[χ ] = 〈Ω|ĤR(sξ )|Ω〉=−
∫

d pδ(e s p − e s p)e s [−p sin(2 f (p))+m cos(2 f (p))]

=−
∫

dx
∫ d p

2π
[−p sin(2 f (p))+m cos(2 f (p))] , (6.43)

where we now use the minimal form g (p/Λ, s ) = χ (s )p/ΛΓ(|p|/Λ) with χ (s ) represent-
ing the variational degrees of freedom. As expected, the energy is extensive, but now the
energy density diverges: for |p|> Λ, we have f (p) = 0 so that this region contributes
a diverging part −m

∫
|p|>Λ d p/2π to the integral. We can remove this divergence by

subtracting from this energy the value 〈Ω|ĤR(sa)|Ω〉 = 〈Ω|Ĥ |Ω〉 that the vacuum |Ω〉
would produce without the action of the unitary network Û (sξ , sa). We define the
regularized energy density as

ereg[χ ] =−
∫ d p

2π

�
−p sin

�
2 f (p)

�−m
�

1− cos
�
2 f (p)

��
. (6.44)

Using the functional derivative

δ

δχ (s)
f (p) = e s p

Λ
Γ
�

e s |p|
Λ

�
, (6.45)
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in combination with the chain rule, we obtain the requirement (∀s ∈ [0, sξ ])

δereg[χ ]

δχ (s)
=
∫ d p

2π
[p cos(2 f (p))+m sin(2 f (p))]2

p

Λ
e sΓ
�

e s |p|
Λ

�
= 0. (6.46)

Since the integrand is an even function in p, this is a nontrivial relation. If we send
sξ →∞ and again choose the sharp momentum cutoff Γ(c) = θ(1− |c|), this integral
equation translates to

[p cos(2 f (p))+m sin(2 f (p))] = 0, ∀|p|<Λ. (6.47)

As expected, we need to reproduce the exact Bogoliubov angle below the cutoff, so
that

f (p) = fexact(p)θ(Λ− |p|) =−
1

2
arcsin


 pÆ

m2+ p2


θ(Λ− |p|). (6.48)

This should be compared with

f (p) = lim
sξ→∞

∫ sξ

0
g (e s k; s)ds =

p

Λ

∫ log(Λ/|p|)

0
esχ (s)ds .

Differentiating the relation

∫ log(Λ/|p|)

0
esχ (s)ds =− Λ

2 p
arcsin


 pÆ

m2+ p2


θ(Λ− |p|) =

− Λ

2|p| arcsin


 |p|Æ

m2+ p2


θ(Λ− |p|)

with respect to |p| learns that

χ (s) =−1

2
arcsin


 e−s

Æ
m2/Λ2+ e−2s


+ e−s m/Λ

2(m2/Λ2+ e−2s )

−δ(s)1
2

arcsin


 1Æ

m2/Λ2+ 1


 . (6.49)

There is now a diverging contribution at s = 0, that immediately sends the Bogoliubov
angle from f (p) = 0 to f (p) = −arcsin[(m2/Λ2 + 1)−1/2]/2. The amplitude of this
δ-spike does not decrease by increasing Λ, since every finite value of Λ is still infinitely
far away from the physical cutoff (which does not exist or thus lies at infinity). For
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arbitrary momenta p, this divergent part of the ‘disentangling strength’ χ (s) in the
lowest layer contributes a term p/Λarcsin[(m2/Λ2+ 1)−1/2]/2 to f (p), so that its effect
can be ignored and the δ-spike can be omitted in the limit Λ→∞.

The behavior at large values of s can be obtained from a Taylor expansion of the defining
relation Eq. (6.49)

lim
s→∞χ (s) =−

1

3

� Λ
m

�3

e−3s +O(e−5s ),

from which we infer that for s � log(Λ/m), χ (s)≈ 0 and we can stop the integration
of the RG flow. Hence, for the massive case (m 6= 0), it is sufficient to choose sξ �
log(Λ/m), which was to be expected as m = ξ −1

c is the energy gap of the model and thus
defines the correlation length. Note, however, that as we try to restore the exact behavior
for arbitrarily large p by setting Λ→∞ we automatically find the requirement sξ →∞.
Indeed, any relativistic model exhibits quantum fluctuations across an infinite range of
scales.

For the massless case m = 0, we obtain χ (s) =−π/4 for s > 0. We then obtain

i[K̂ , Ψ̂α(p)] = (π/4)(p/Λ)γ
1
α,βΨ̂β(p), for |p|<Λ. (6.50)

While we need a finite cutoff scale Λ to define the action of the continuous entanglement
renormalization ansatz, we can send Λ→∞ for the computation of the critical expo-
nents. Hence, the disentangler K̂ does not contribute to the critical exponents, and the
scaling operators are just the field operators Ψ̂α(x) and Ψ̂ †

α
(x) with their canonical scaling

dimension. This was to be expected for a free theory.

3.2. Dirac fermions in (3+ 1) dimensions

The Dirac Hamiltonian for massive fermions with mass m in (3+ 1) dimensions is given
by

Ĥ =
∫
ψ̂†(~x)

�
−i~α · ~∇+mβ

�
ψ̂(~x)d3x, (6.51)

with the Dirac spinor ψ̂(~x) now containing four components, and the Dirac matrices ~α
and β given by

αi =


 0 σ i

σ i 0


= σ x ⊗σ i , β=


1 0

0 −1


= σ z ⊗1, (6.52)

and 1= 12 the 2×2 unit matrix. We now try to generalize K̂(s ) from Eq. (6.40) to

K̂(s) = i
∫
χ (s)Γ(‖~p‖/Λ)


Ψ̂ †(~p)

 
~p ·~γ
Λ

!
Ψ̂ (~p)


 d3 p, (6.53)
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with ~γ the spatial components Dirac’s γ matrices given by

γ 0 = γ0 =β γ i =−γi =βα
i . (6.54)

The renormalization trajectories of the field operators are now given by

Ψ̂R(~p; s) = cos
�

f (‖~p‖; s)
�

e s/2Ψ̂ (e s~p)+ sin
�

f (‖~p‖; s)
�

e s/2

 
~p

‖~p‖ ·~γ
!
Ψ̂ (e s p), (6.55)

with
∂ f

∂ s
(p; s) = χ (s)

es p

Λ
Γ(pes/Λ). (6.56)

The renormalized Hamiltonian is thus given by

ĤR(s) =
∫

d3 p
�

es cos
�
2 f (‖~p‖; s)

�
Ψ̂ †(es~p)

�
~p ·~α+mβ

�
Ψ̂ (es~p)

+ es sin
�
2 f (‖~p‖; s)

�
Ψ̂ †(es~p)

�
~p ·~α+mβ

� 
β
~α ·~p
‖~p‖

!
Ψ̂ (es~p)

�
. (6.57)

If we now define the vacuum |Ω〉 such that

ψ̂1(~x) |Ω〉= ψ̂2(~x) |Ω〉= ψ̂†
3(~x) |Ω〉= ψ̂†

4(~x) |Ω〉= 0, ∀x, (6.58)

then we obtain

Ereg[χ ] = 〈Ω|ĤR(sξ )|Ω〉− 〈Ω|Ĥ |Ω〉

=−2
∫

d3x
∫ d3 p

(2π)3
�

m
�
cos
�
2 f (‖~p‖)�− 1

�−‖~p‖ sin
�
2 f (‖~p‖)�� ,

(6.59)

with f (‖~p‖) = f (‖~p‖; sξ ). The variational principle requires that

δereg[χ ]

δχ (s)
= 2
∫ d3 p

(2π)3

�
m sin

�
2 f (‖~p‖)�+ ‖~p‖cos

�
2 f (‖~p‖)�

�
2
‖~p‖
Λ
χ (s)Γ(‖~p‖/Λes ).

(6.60)
If we choose again the hard momentum cutoff function Γ(c) = θ(1− |c|), then the
variational principle imposes the same condition as in Eq. (6.47). Hence we obtain the
same solution χ (s) as in Eq. (6.49).

What can we learn from this? In contrast to the case of non-relativistic fermions discussed
in Section 3.4 of the previous chapter, it is possible to create a rotation invariant quadratic
expression that is odd in the momentum ~p for the multi-component relativistic fermion
spinor. In fact, we can rewrite the fundamental operator featuring in K̂(s ) in a relativistic
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fashion as

Ψ̂ †(~p)
�
~p ·~γ�Ψ̂ (~p) =−Ψ̂ (~p)�piγ

0γ i�Ψ̂ (~p) = i

2
pi Ψ̂ (~p)σ

0i Ψ̂ (~p)

with Ψ = Ψγ 0 and

σµν =
i

2

�
γµ,γ ν]. (6.61)

It can easily be shown that the bilinear
ˆ
ψ(~x)σµνψ̂(~x) transforms as an antisymmetric

tensor under a general Lorentz transformations xµ← Λµ
ν
xν . Hence, the combination

pi Ψ̂ (~p)σ
0i Ψ̂ (~p) featuring in K̂(s) transforms as the zero-component of a four-vector. It

is invariant under rotations but not under Lorentz boosts. This was to be expected,
since we are working in a Hamiltonian framework where we are imposing a cutoff in
momentum space, which is a manifestly Lorentz non-invariant operation.

Note that the representation of the ground state of the higher-dimensional Dirac field as
a (Gaussian) continuous entanglement renormalization ansatz implies that this ground
state satisfies the area law, both for nonzero and zero mass m. More precisely, with the
hard momentum cutoff we have filled the Dirac sea up to ‖~p‖ ≤Λ. In the massless case,
this looks very much like a Fermi sea with Fermi momentum kF =Λ. However, unlike
the Fermi sea this massless Dirac sea does not produce a logarithmic divergence of the
area law for entanglement entropy.

3.3. Klein-Gordon bosons in (d + 1) dimensions

As a final example we study relativistic free (scalar, uncharged) bosons with mass m in
(d + 1) dimensions, which are described by the Klein Gordon Hamiltonian

Ĥ =
∫

dd x
1

2

�
π̂(~x)2+

�
~∇φ̂(~x)

�2
+m2φ̂(~x)2

�
,

=
∫

dd p
1

2

�
Π̂(~p)Π̂(−~p)+ (|~p|2+m2)Φ̂(~p)Φ̂(−~p)� ,

(6.62)

where the field operator φ̂(~x) and its conjugate momentum π̂(~x) are hermitian opera-
tors satisfying the canonical commutation relation [φ̂(~x), π̂(~x ′)] = iδ(~x −~x ′), and the
corresponding momentum-space operators satisfy Φ̂(~p)† = Φ̂(−~p), Π̂(~p)† = Π̂(−~p) and
[Φ̂(~p),Π̂(−~p ′)] = iδ(~p −~p ′).
We have already encountered the operators φ̂(~x) and π̂(~x) as scaling operators in the
critical limit of the non-relativistic boson model studied in Subsection 3.3 of Chap-
ter 4. Their scaling dimension was modified from the value d/2 for the creation and
annihilation operators ψ̂(~x) and ψ̂†(~x) to respectively (d − 1)/2 for φ̂(~x) and (d + 1)/2
for π̂(~x). Whether we formulate the unitary operator of the continuous entanglement
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renormalization ansatz in terms of the creation and annihilation operators ψ̂(~x) and
ψ̂†(~x) or in terms of the field operator φ̂(~x) and its canonical conjugate momentum
π̂(~x) does not make any difference, since both are trivially equivalent. What does make
a difference, however, is whether we use the non-relativistic scaling generator L̂ that
generates equal scaling dimensions d/2 for φ̂(~x) and π̂(~x), or we define a new relativistic
scaling generator L̂′ given by

L̂′ =−1

2

∫
dd x


π̂(~x)~x · ~∇φ̂(~x)+~x · ~∇φ̂(~x)π̂(~x)

+
d − 1

2
φ̂(~x)π̂(~x)+

d − 1

2
π̂(~x)φ̂(~x)


,

=+
1

2

∫
dd p


Π̂(−~p)~p · ~ÈΦ̂(~p)+~p · ~ÈΦ̂(~p)Π̂(−~p)

+
d + 1

2
Π̂(−~p)Φ̂(~p)+ d + 1

2
Φ̂(~p)Π̂(−~p)


.

(6.63)

Indeed, in the pure scaling case K̂ = 0, the scaling operator L̂′ = Û (0, s)†Û (0, s) results
in the renormalization group equations

∂

∂ s
φ̂R(~x; s) = i[L̂′(s), φ̂R(~x; s)] =−

�
~x · ~∇+ d − 1

2

�
φR(~x; s),

∂

∂ s
πR(~x; s) = i[L̂′(s), π̂R(~x; s)] =−

�
~x · ~∇+ d + 1

2

�
πR(~x; s),

from which we obtain

φ̂R(~x; s) = e−s d−1
2 φ̂(e−s~x), π̂R(~x; s) = e−s d+1

2 π̂(e−s~x), (6.64)

and, for the momentum space operators,

Φ̂R(~p; s) = e s d+1
2 Φ̂(e s~p), Π̂R(~p; s) = e s d−1

2 Π̂(e s~p). (6.65)

Hence, the relativistic scaling generator L̂′ automatically produces the correct relativistic
scaling dimensions, which agree with the physical units of these operators.

In order to fully specify the Gaussian continuous entanglement renormalization ansatz
|Ψ[K̂]〉, we also have to define a Gaussian reference state |Ω〉. A general factorized
Gaussian state with width∆−1 can be defined via



È
∆

2
φ̂(~x)+ i

È
1

2∆
π̂(~x)


 |Ω〉= 0, (6.66)
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where the operator between the square brackets can of course be interpreted as one par-
ticular choice of annihilation operator ψ̂(~x) depending on an energy scale∆. However,
this reference state is not invariant under the relativistic scaling transformation because
|Ω′〉= e is L |Ω〉 is an equivalent factorized Gaussian state with inverse width ∆′ = e s∆.
Only the very singular choices∆= 0 or∆=+∞ produce a reference vacuum |Ω〉 that
is invariant under relativistic scaling transformations.

For any inverse width∆, the reference state |Ω〉 is however invariant under the action of
the non-relativistic scaling transformation generated by L̂, which is in terms of the fields
φ̂(~x) and π̂(~x) given by

L̂=−1

2

∫
dd x

�
π̂(~x)~x · ~∇φ̂(~x)+~x · ~∇φ̂(~x)π̂(~x)+ d

2
φ̂(~x)π̂(~x)+

d

2
π̂(~x)φ̂(~x)

�
.

(6.67)
Since L̂ also generates the desired scaling behavior of the arguments, we use the operator
L in combination with K(s ). Below the cutoff, only the effect of K̂(s )+L= K̂ ′(s )+ L̂′ is
uniquely defined and we can absorb the correction for the relativistic scaling dimensions
in K̂(s), as happened automatically in the critical limit of the non-relativistic boson
model in the previous chapter. Above the cutoff, the scaling of modes is irrelevant if
L̂ |Ω〉= 0. Let us now investigate the effect of choosing K̂(s) as

K(s) =
∫

dd p
1

2

h
g (~p/Λ, s)Φ̂(~p)Π̂(−~p)+ g (~p/Λ, s)Π̂(−~p)Φ̂(~p)

i
, (6.68)

which results in renormalization trajectories

Φ̂R(~p; s) = e+ f (+~p;s)e+s d
2 Φ̂(es~p), (6.69)

Π̂R(~p; s) = e− f (−~p;s)e−s d
2 Π̂(es~p), (6.70)

with

f (~p; s) =
∫ s

0

g (ew~p/Λ, w)+ g (−ew~p/Λ, w)

2
dw. (6.71)

We can choose g (~p/Λ, s ) a real-valued function that is even in the first argument, so that
f (~p; s) = f (−~p; s). We again parameterize g (~p/Λ, s) as γ (~p/Λ, s)Γ(‖~p‖/Λ) with Γ the
cutoff function. In addition, it turns out to be sufficient to take the lowest order form
γ (~p/Λ, s) = χ (s). Note that K̂(s) is rotation invariant (trivially) but also transforms as
the zero component of a relativistic four-vector under general Lorentz transformations,
since φ̂(~x) is a relativistic scalar while π̂(~x)∼ dφ̂(~x)/dt . This was also the case for the
operator K̂(s) of Eq. (6.53) for the free Dirac field.

In order to evaluate the energy functional, we first calculate ĤR(s) as

ĤR(s) =
∫

dd p
1

2

�
e−2 f (~p;s)e s d Π̂(e s~p)Π̂(−e s~p)
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+(‖~p‖2+m2)e+2 f (~p;s)e s d Φ̂(e s~p)Φ̂(−e s~p)
�

. (6.72)

Using the gaussian reference state with width∆−1 we obtain

〈Ω| bφ(~p) bφ(~p ′)|Ω〉= 1

2∆
δ(~p +~p ′) 〈Ω|bπ(~p)bπ(~p ′)|Ω〉= ∆

2
δ(~p +~p ′), (6.73)

and thus find

E[χ ] = 〈Ω|ĤR(sξ )|Ω〉− 〈Ω|Ĥ |Ω〉

=
∫

dd x
∫ dd p

(2π)d
1

4


(e−2 f (~p)− 1)∆+

|~p|2+m2

∆
(e+2 f (~p)− 1)


 , (6.74)

where f (~p) = f (~p; sξ ) and we have once again subtracted the energy expectation value
of the reference vacuum, in order to eliminate the diverging contribution coming from
the modes above the cutoff. The variational optimization results in

δe[χ ]

δχ (s)
=−

∫ dd p

(2π)d
1

2


e−2 f (~p)∆− |~p|

2+m2

∆
e+2 f (~p)


Γ(|~p|/Λe−s ) = 0. (6.75)

Using the hard cutoff function Γ(c) = θ(1− |c|), the variational principle tries to set
f (~p) equal to the exact solution

f (~p) = fexact(~p)θ(Λ−‖~p‖) =−
1

2
log



Æ

m2+ ‖~p‖2

∆


θ(Λ−‖~p‖), (6.76)

up to the cutoff ‖~p‖ ≤Λ. By sending sξ →∞, we can write

f (~p) =
∫ log(Λ/‖~p‖

0
χ (w)dw, (6.77)

and by differentiating f (~p) = fexact(~p)θ(Λ−‖~p‖) with respect to ‖~p‖, we find

χ (s) =
1

2

e−2s

e−2s +(m/Λ)2
− 1

2
log



p

m2+Λ2

∆


δ(s). (6.78)

As before, we have a diverging contribution in the lowest layer (s = 0) that immediately
imposes the correct solution for the momenta at ‖~p‖=Λ. We still have the inverse width
∆ of the reference vacuum as a variational parameter, and we can now choose∆≈ Λ, so
that the amplitude of the δ-spike goes to zero if we send Λ→∞. The δ-spike would not
feature at all if we set∆=

p
m2+Λ2, but this is only possible because we can exactly

solve this free theory. For s � log(Λ/m)—and thus for all s in the massless case— the
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disentangling strength χ (s) is (approximately) equal to χ (s)≈ 1/2, which restores the
correct relativistic scaling dimensions of φ̂(~x) and π̂(~x). However, for s � log(Λ/m),
the disentangling strength goes to zero and we can stop the integration at some finite
sξ � log(Λ/m). Hence, at the trivial massive fixed point, the non-relativistic scaling
operator L̂ generates the correct scaling dimensions. Put differently, at the massive fixed
point the scaling operators are given by the non-relativistic creation and annihilation
operator.

4. Summary and conclusion

In this final chapter we have illustrated how the three variational ansätze that were
introduced in this dissertation can be applied to relativistic field theories. Using matrix
product states involves writing down a lattice Hamiltonian for which the field theory
describes the low energy behavior close to its critical point. The nice thing is that the lat-
tice provides a natural cutoff that regularizes the field theory. Since this was pretty much
the only method available until recently, a lot of research on good lattice Hamiltonians
exist. However, this does not imply that the construction of a suitable Hamiltonian is
problem free, especially not for relativistic fermions, which are plagued by the fermion
doubling problem. Since we have to study the lattice Hamiltonian in the vicinity of its
critical point, one can argue whether matrix product states are an adequate choice. While
using the multi-scale entanglement renormalization ansatz might be a better alternative,
matrix product states are sufficiently efficient to produce a high accuracy deep in the
continuum limit, i.e. when the correlation length is already of the order of 100 sites. Us-
ing the approach constructed in Chapter 3, they easily allow to determine the excitation
spectrum, which is one of the main interesting quantities.

The development of continuous matrix product states has opened a new alternative for
studying relativistic field theories. While these do not require to discretize the field
theory —and thus allow to overcome such problems as the fermion doubling problem—
another kind or regularization still has to be provided. We have taken a first step in
showing how such a regularization scheme for fermionic theories can be constructed.
Bosonic theories and gauge theories will however require different strategies, so that
additional research is required in this direction. In addition, a further investigation of
the effect of the regularization procedure on e.g. the low energy excitation spectrum is
still in order.

The most natural ansatz for relativistic field theories is without doubt the continuous
entanglement renormalization ansatz. This ansatz has no intrinsic difficulties with the
infinite range of quantum fluctuations that is present in relativistic theories. In addition,
it naturally defines a renormalization group flow that can be used to extract scaling
operators, which are also very important in the study of relativistic field theories. Of
course, this approach is currently only applicable to free theories and it remains to be seen
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whether a truly variational strategy for interacting theories can be developed. If such an
approach turns out to be feasible, the continuous entanglement renormalization ansatz
might provide a completely new and very powerful toolbox for the non-perturbative
study of relativistic field theories.
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‘ ‘A conclusion is the place where you get tired of thinking.”
Martin Henry Fischer, in Encore : A Continuing Anthology (1945).

Having come at the end of this dissertation, what can we conclude to have learned? We
have successfully developed a few new variational methods and ansätze for quantum
lattice systems and quantum field theories in Chapters 3, 4 and 5. Individual conclusions
about these approaches were already provided at the end of the respective chapters.
If there is one unifying conclusion to be made, then it is most certainly that we are
at the very interesting crossing point where different branches of theoretical physics
—each of which has its individual merits— join together and allow for revolutionary
new breakthroughs. The combined effort of quantum information theory, condensed
matter physics, renormalization group theory and even quantum gravity and black-hole
physics have resulted in powerful new methods and ideas to study and think about
quantum many body systems. Indeed, a systematic study of entanglement in condensed
matter systems has resulted in the area law for entanglement entropy, which strongly
hints towards a holographic principle as exists in quantum gravity theories. Numerical
renormalization based on insights regarding this area law has provided us with a general
class of tensor network states that have now grown to be more than a mere variational
ansatz to be used in numerical implementations. They are now deployed as theoretical
tools to study in general terms the possible phases of quantum systems, including exotic
phases such as topological order. They can be used to obtain new proofs for old theorems
and maybe even proof new theorems. This is a very exciting area of research that has
certainly not yet come to rest. Intriguing possibilities await to be discovered.

Let us now use the remainder of this chapter to present a personal outlook on future
research that can sprout from our modest contributions. Most research has up till now
been focussed on lattice systems, using matrix product states and higher dimensional
generalizations, i.e. projected entangled pair states, or using the multiscale entanglement
renormalization ansatz. We were able to develop a new algorithm for simulating time
evolution as well as provide a new ansatz for studying excitations and obtain accurate
estimates of the dispersion relation of spin systems. Essential for both developments was
a systematic study of the tangent plane of the variational manifold with a full characteri-
zation of the gauge invariance. The implementation of the time-dependent variational
principle can be used in imaginary time as an optimization method for finding the varia-
tionally optimal representation of the ground state within the variational manifold. This
approach is very stable, can achieve high accuracy and automatically respects all symme-
tries of the system. An implementation for a lattice with open boundary conditions was
also outlined but not tested. It will certainly be interesting to see how this algorithm
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would compete with the traditional variational sweeping procedure, both in terms of
accuracy and in terms of computational efficiency. The presented algorithms can also be
further improved by explicitly incorporating symmetries. A more challenging project
would be to try apply the same methods to the variational manifold of projected entan-
gled pair states. In particular, the prospect of having a simple yet accurate method for
determining dispersion relations of two-dimensional (and maybe even three-dimensional)
lattice systems is very enticing. However, we can no longer expect to be able to choose a
gauge condition that locally maps the metric of the manifold to the unit matrix, and a
complex approximative implementation with many iterative operations will be required.
But as long as the computational complexity scales polynomially, this will eventually
become a feasible strategy as computing power increases. Contrastingly, the multiscale
entanglement renormalization ansatz by Vidal does not easily lend itself to a similar
treatment, since it is impossible to characterize the translation invariant instances in the
variational manifold, and the tangent plane cannot simply be decomposed in different
momentum sectors.

A very recent breakthrough is the formulation of variational ansätze that can go arbi-
trarily far beyond mean field theory and can be directly applied to quantum fields. The
correspondence between the continuous matrix product state and the well-studied matrix
product state should allow a rapid transition of the many algorithms that were developed
for the latter, enabling for example to study one-dimensional quantum field theories at
finite temperature. We have already developed a strategy to apply the continuous matrix
product state to relativistic fermion theories in Section 2 of Chapter 6. While relativistic
bosons require a different regularization strategy, they should also be amenable to a
treatment with continuous matrix product states. There is also the question of higher-
dimensional generalizations of the continuous matrix product state. While some ideas
are already floating around, it remains to be seen whether they also allow a numeric black
box implementation that can be used to study all kinds of interesting field theories. If not,
then it is still worthwhile to construct such generalizations as a theoretical tool.

Last but not least there is the continuous entanglement renormalization ansatz. At
this point, only free theories have been studied using a Gaussian restriction of the full
ansatz. This Gaussian ansatz can also be applied to interacting theories, resulting in
a complicated way of doing mean field theory, but which may nevertheless provide
interesting results or insights. As soon as the operator K̂(s), which now contains all
variational degrees of freedom, contains higher powers of the field operators, an exact
integration of the renormalization group equation for operators, and hence an exact
evaluation of expectation values, is no longer feasible. However, it might be possible
to find approximative integration schemes that are still very accurate. Renormalization
group theory has learned that most operators generated by the renormalization group
equation are irrelevant anyway and quickly scale away. Finding a strategy to implement
the variational principle for the non-Gaussian continuous entanglement renormalization
ansatz would provide us with an exciting new tool to study field theories of all kinds.
Since it is variational, such an approach would be self-correcting since the available de-
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grees of freedom in K̂(s )would be optimally tuned to approximate the exact ground state
as well as possible. And since degrees of freedom with different label s act on different
length scales, there is no ‘sensitivity to high frequencies’ that could potentially harm
this approach. Another intriguing line of research is also to find a formal connection
between the process of entanglement renormalization and the AdS/CFT correspondence
using the continuous entanglement renormalization ansatz. In fact, since the AdS/CFT
correspondence is only a conjecture, such a connection might eventually result in a proof
of the AdS/CFT correspondence. And since the continuous entanglement renormal-
ization ansatz is not limited to conformal theories, it might even enable us to construct
holographic duals of non-conformal field theories.
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A
SOME MORE CALCULATIONS

This appendix provides some additional details that have been omitted from Chapters 3
and 4 because of their technicality. Section 1 is concerned with the matrix product state
ansatz. An explicit expression for the matrix MΥp,−p

that appears in the linearization
of the time-dependent variational principle is developed. Section 2 fills in the missing
pieces regarding the continuous matrix product state ansatz. Firstly, we develop a
construction to expand the variational manifold by going to a larger value of the bond
dimension D within a simulation according to the time-dependent variational principle.
The second subsection explains how the matrices Q and Rα for the application of
the continuous matrix product state to relativistic fermion systems in Chapter 6 are
parameterized.

1. Additional results for matrix product states

1.1. The matrix MΥ−p, p

In Subsection 3.4 of Chapter 3 we have introduced states |Υp+, p−(B+,B−;A)〉 living in
the double tangent plane of the variational manifoldMuMPS at the point |Ψ(A)〉 [see
Eq. (3.163)]. We have also defined a D2d ×D2d matrix MΥp,−p

as

〈Υ p̃,−p (B+,B−;A)|Ĥ −H (A,A)|Ψ(A)〉= 2πδ( p̃ − p)B†
+MΥp,−p

B−

Using a derivation similar to the one in Subsection 3.2 of Chapter 3, we obtain

〈Υp+, p−(B+,B−)|Ĥ −H (A,A)|Ψ(A)〉= 2πδ(p++ p−)×(
e+i p+(l |H̆ AA

B+B−
|r )+ e−i p+(l |H̆ AA

B−B+
|r )

+ e+i p+(l |ĔA
B+
(1̆− e+i p+ Ĕ)PĔA

B−
(1̆− Ĕ)PH̆ AA

AA |r )
+ e−i p+(l |ĔA

B−
(1̆− e−i p+ Ĕ)PĔA

B+
(1̆− Ĕ)PH̆ AA

AA |r )
+ e+i p+(l |H̆ AA

AA (1̆− Ĕ)PĔA
B+
(1̆− e+i p+ Ĕ)PĔA

B−
|r )
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+ e−i p+(l |H̆ AA
AA (1̆− Ĕ)PĔA

B−
(1̆− e−i p+ Ĕ)PĔA

B+
|r )

+ e+i p+(l |ĔA
B+
(1̆− e+i p+ Ĕ)PH̆ AA

B−A|r )+ e−i p+(l |ĔA
B−
(1̆− e−i p+ Ĕ)PH̆ AA

B+A|r )
+ e+2i p+(l |ĔA

B+
(1̆− e+i p+ Ĕ)PH̆ AA

AB−
|r )+ e−2i p+(l |ĔA

B−
(1̆− e−i p+ Ĕ)PH̆ AA

AB+
|r )

+ e+i p+(l |H̆ AA
AB+
(1̆− e+i p+ Ĕ)PĔA

B−
|r )+ e−i p+(l |H̆ AA

AB−
(1̆− e−i p+ Ĕ)PĔA

B+
|r )

+ e+2i p+(l |H̆ AA
B+A(1̆− e+i p+ Ĕ)PĔA

B−
|r )+ e−2i p+(l |H̆ AA

B−A(1̆− e−i p+ Ĕ)PĔA
B+
|r )

+ e+3i p+(l |ĔA
B+
(1̆− e+i p+ Ĕ)PH̆ AA

AA (1̆− e+i p+ Ĕ)PĔA
B−
|r )

+ e−3i p+(l |ĔA
B−
(1̆− e−i p+ Ĕ)PH̆ AA

AA (1̆− e−i p+ Ĕ)PĔA
B+
|r )

+ (l |ĔA
B+
|r )
��

2πδ(p+)− 1− e−i p+
�

×
�
(l |H̆ AA

B−A|r )+ (l |ĔA
B−
(1̆− Ĕ)PH̆ AA

AA |r )
�

+
�

2πδ(p+)− 1− e+i p+
�

×
�
(l |H̆ AA

AB−
|r )+ (l |H̆ AA

AA (1̆− Ĕ)PĔA
B−
|r )
�

− e−i2 p+(l |ĔA
B−
(1̆− Ĕ)P(1̆− e−i p+ Ĕ)PH̆ AA

AA |r )

− e+i2 p+(l |H̆ AA
AA (1̆− Ĕ)P(1̆− e+i p+ Ĕ)PĔA

B−
|r )
�

+(l |ĔA
B−
|r )
��

2πδ(p+)− 1− e+i p+
�

×
�
(l |H̆ AA

B+A|r )+ (l |ĔA
B+
(1̆− Ĕ)PH̆ AA

AA |r )
�

+
�

2πδ(p+)− 1− e−i p+
�

×
�
(l |H̆ AA

AB+
|r )+ (l |H̆ AA

AA (1̆− Ĕ)PĔA
B+
|r )
�

− e+i2 p+(l |ĔA
B+
(1̆− Ĕ)P(1̆− e+i p+ Ĕ)PH̆ AA

AA |r )

− e−i2 p+(l |H̆ AA
AA (1̆− Ĕ)P(1̆− e−i p+ Ĕ)PĔA

B+
|r )
�)

. (A.1)

As was shown in Subsection 3.4 of Chapter 3, at the variational optimum where

〈Φ(B ;A)|Ĥ −H (A,A)|Ψ(A)〉= 0,

we can also use gauge transformation on B+ and B− to eliminate e.g. the disconnected
terms in the last six lines, as well as some other terms in this expression.
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2. Additional results for continuous matrix product states

2.1. Dynamic expansion of the variational manifold

This subsection is restricted to the case of uniform continuous matrix product states for
the sake of simplicity, but it can straightforwardly be generalized to generic continuous
matrix product states. For the generic translation invariant Hamiltonian, the exact
evolution vector looks like

[Ĥ −H (Q, R;Q, R)] |Ψ(Q, R)〉=−H (Q, R;Q, R) |Ψ(Q, R)〉
+
∫ +∞
−∞

dx v†
LÛ (−∞, x)

�
vR⊗ ψ̂†(x)

�
Û (x,+∞)vR |Ω〉

+
∫ +∞
−∞

dx v†
LÛ (−∞, x)

�
[Q, R]⊗ dψ̂†

dx
(x)
�

Û (x,+∞)vR |Ω〉

+
∫ +∞
−∞

dx
∫ +∞
−∞

dy v†
LÛ (−∞, x)

�
R⊗ ψ̂†(x)

�
w(x − y)

× Û (x, y)
�

R⊗ ψ̂†(y)
�

Û (y,+∞)vR |Ω〉 . (A.2)

If we apply the time-dependent variational principle to the Hamiltonian Ĥ , we try to
approximate the exact evolution vector by tangent vectors given by

|Φ0(V ,W )〉=
∫ +∞
−∞

dx v†
LÛ (−∞, x)

�
V ⊗ 1̂+W ⊗ ψ̂†(x)

�
Û (x,+∞)vR |Ω〉 . (A.3)

If at some point in the evolution, the error ε̃(Q(t ), R(t );Q(t ), R(t )) between the exact
evolution and the projected evolution in MucMPS(D) grows too large, we can try to
dynamically expand the variational manifold by increasing the bond dimension D to
some new value eD >D. As mentioned in Section 1 of Chapter 4, a continuous matrix
product state with |Ψ[Q, R]〉 with bond dimension D cannot be exactly represented
as a continuous matrix product state |eΨ[ eQ, eR]〉 ∈ McMPS( eD) for systems of finite size
|R|= L. For example, in case of a uniform continuous matrix product state on a finite
system with periodic boundary conditions, the choice

eQ =

Q 0

0 α×1 eD−D


 , eR=


R 0

0 0


 (A.4)

results in |eΨ( eQ, eR)〉 = |Ψ(Q, R)〉+ eαL |Ω〉, so we need to take α → −∞ for an exact
representation. In the thermodynamic limit L→∞, any negative value would suffice.
For systems with open boundary conditions, which is the scenario we are always working
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in, it is sufficient that the boundary vectors are given by

evL =


vL

0


 , evR=


vR

0


 , (A.5)

to ensure that |eΨ( eQ, eR)〉= |Ψ(Q, R)〉 for every value of α. We hence set α= 0, but will
automatically recover such a contribution in the remainder of this subsection.

For the evolution over the time step dt , we can now use the larger variations ÝdQ and fdR
given by

ÝdQ =


dQ00 dQ01

dQ10 dQ11


 , fdR=


dR00 dR01

dR10 dR11


 . (A.6)

As for the case of matrix product states, we have to choose dQ00 and dR00 of O(dt ), dQ01,
dQ10, dR01 and dR10 of O(dt 1/2) and dQ11 and dR11 of O(dt 0). We then obtain up to
order dt

|dΨ〉= |Ψ( eQ +ÝdQ, eR+fdR)〉− |Ψ(Q, R)〉= |dΨ0〉+ |dΨ1〉 (A.7)

with
|dΨ0〉= |Φ0(dQ00, dR00)〉 (A.8)

and

|dΨ1〉=
∫ +∞
−∞

dx
∫ +∞

x
dy v†

LÛ (−∞, x)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(x)
�

Û11(x, y)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(x)
�

Û (y,+∞)vR |Ω〉 (A.9)

where Û11(x, y) = Pexp
n∫ y

x dz dQ11⊗ 1̂+ dR11⊗ ψ̂†(z)
o

. We have to determine the

optimal choice for ÝdQ and fdR by minimizing the distance between the exact evolution
vector and |dΨ〉. In order to do so, we can use gauge freedom and orthonormality to the
ground state to impose

(l |dQ00⊗ 1D + dR00⊗R= 0 (A.10a)

(l |dQ01⊗ 1D + dR01⊗R= 0 (A.10b)

dQ10⊗ 1D + dR10⊗R|r ) = 0 (A.10c)

such that 〈dΨ0|dΨ1〉 = 0 and 〈Ψ(Q, R)|dΨ1〉 = 0. As a result, the optimization with
respect to dQ00 and dR00 can be dealt with independent of the optimization with respect
to dQ01, dQ10, dQ11, dR01, dR11 and dR11, using the scheme outlined in Subsection 2.2
of Chapter 4. We furthermore find

〈dΨ1|dΨ1〉= 2πδ(0)(l |�dR01⊗ dR01
�
(−T̆11)

−1�dR10⊗ dR10
�|r ) (A.11)
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with T̆11 = dQ11⊗1 eD−D +1 eD−D ⊗ dQ11+ dR11⊗ dR11.

The evaluation of 〈dΨ1|Ĥ |Ψ(Q, R)〉 is a bit more involved. We first compute

ψ̂(x) |dΨ1〉=∫ +∞
x

dy
∫ +∞

y
dz v†

LÛ (−∞, x)RÛ (x, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

× Û11(y, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ +∞

x
dz v†

LÛ (−∞, x)dR01Û11(x, z)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ x

−∞
dy
∫ +∞

x
dz v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)dR11

× Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ x

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

× Û11(y, x)dR10Û (x,+∞)vR |Ω〉
+
∫ x

−∞
dz
∫ z

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, z)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z, x)RÛ (x,+∞)vR |Ω〉 .

Then, we can compute

dψ̂

dx
(x) |dΨ1〉=
∫ +∞

x
dy
∫ +∞

y
dz v†

LÛ (−∞, x)[Q, R]Û (x, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

× Û11(y, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

−
∫ +∞

x
dz v†

LÛ (−∞, x)R
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(x)
�

Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ +∞

x
dz v†

LÛ (−∞, x)
h�

Q ⊗ 1̂+R⊗ ψ̂†(x)
�
dR01

− dR01
�
Q11⊗ 1̂+R11⊗ ψ̂†(x)

��

× Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

327



CHAPTER A. SOME MORE CALCULATIONS

−v†
LÛ (−∞, x)dR01

�
dQ10⊗ 1̂+ dR10⊗ ψ̂†(x)

�
Û (x,+∞)vR |Ω〉

+
∫ x

−∞
dy
∫ +∞

x
dz v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)

× [dQ11, dR11]Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ +∞

x
dz v†

LÛ (−∞, x)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(x)
�

dR11

× Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

−
∫ x

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)

× dR11

�
dQ10⊗ 1̂+ dR10⊗ ψ̂†(x)

�
Û (x,+∞)vR |Ω〉

+
∫ x

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)

×
h�

dQ11⊗ 1̂+ dR11⊗ ψ̂†(x)
�
dR10− dR10

�
Q ⊗ 1̂+R⊗ ψ̂†(x)

��

× Û (x,+∞)vR |Ω〉
+v†

LÛ (−∞, x)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(x)
�

dR10Û (x,+∞)vR |Ω〉

+
∫ x

−∞
dz
∫ z

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, z)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z, x)[Q, R]Û (x,+∞)vR |Ω〉

+
∫ x

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(x)
�

RÛ (x,+∞)vR |Ω〉 .

At first sight, this expression contains many contributions ψ̂†(x) at the fixed position
x, which could result in a divergent contribution to the kinetic energy. It can however
easily be seen that they all cancel, resulting in

dψ̂

dx
(x) |dΨ1〉=
∫ +∞

x
dy
∫ +∞

y
dz v†

LÛ (−∞, x)[Q, R]Û (x, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

× Û11(y, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ x

−∞
dy
∫ +∞

x
dz v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+dR01⊗ ψ̂†(y)
�

Û11(y, x)[dQ11, dR11]

× Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉
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+
∫ x

−∞
dz
∫ z

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, z)

×
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z, x)[Q, R]Û (x,+∞)vR |Ω〉

+
∫ +∞

x
dz v†

LÛ (−∞, x)
�

QdR01−RdQ01+ dQ01dR11− dR01dQ11
�

× Û11(x, z)
�

dQ10⊗ 1̂+ dR10⊗ ψ̂†(z)
�

Û (z,+∞)vR |Ω〉

+
∫ x

−∞
dy v†

LÛ (−∞, y)
�

dQ01⊗ 1̂+ dR01⊗ ψ̂†(y)
�

Û11(y, x)

×
�

dQ10R− dR10Q + dQ11dR10− dR11dQ10

�
Û (x,+∞)vR |Ω〉

+v†
LÛ (−∞, x)

�
dQ01dR10− dR01dQ10

�
dR10Û (x,+∞)vR |Ω〉 .

Due to the gauge fixing conditions in Eq. (A.10), all terms with integrals over y and z
will disappear from the final expression for 〈dΨ1|(dψ̂†(x)/dx)(dψ̂(x)/dx)|Ψ(Q, R)〉, so
that only the last term survives. In the same way, we can deal with the interaction term,
and we eventually obtain

〈dΨ1| Ĥ |Ψ(Q, R)〉= 2πδ(0)×
�
(l |[Q, R]⊗ �dQ01dR10− dR01dQ10

�|r )
+ (l |�R⊗ dR01

�
L[w](−T̆1)

�
R⊗ dR10

�|r )
+
∫ +∞

0
dx
∫ +∞

0
dy
∫ +∞

0
dz w(x + y + z)(l |�R⊗R

�
eT̆ x�1D ⊗ dQ01+R⊗ dR01

�

× eT̆1y�1D ⊗ dQ10+R⊗ dR10
�
eT̆ z�R⊗R

�|r )
�

(A.12)

where T̆1 = Q ⊗ 1 eD−D + 1D ⊗ dQ11 + R⊗ dR11. Note that the external potential v
does not feature. While we could try to proceed a little bit further with the general case
of long range interactions, this soon becomes very complicated. Most relevant is the
scenario of strictly local interactions w(x − y) = cδ(x − y), for which

〈dΨ1| Ĥ |Ψ(Q, R)〉=
2πδ(0)

h
(l |[Q, R]⊗ �dQ01dR10− dR01dQ10

�|r )+ c(l |R2⊗ (dR01dR10)|r )
i

If we set dR11 = 0 and dQ11 = α1 eD−D with α ∈R then we also find

〈dΨ1|dΨ1〉= 2πδ(0)
1

α2
(l |(dR01dR10)⊗ (dR01dR10)|r )

The two insertions dR01 and dR10 can appear at positions x and y with a weight propor-
tional to exp(α|x − y|), so that only for α→−∞ they are truly localized together. This
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is the same α from the beginning of the paragraph, which now necessarily reappears in
order to obtain a finite norm (up to the volume factor 2πδ(0)) for |dΨ1〉.
We can use these expressions to find the best dR01 and dR10. The corresponding dQ01
and dQ10 are completely specified by the gauge fixing conditions in Eq. (A.10) as

dQ01 =−l−1R† l dR01, dQ10 =−dQ10 r R† r−1,

so that we can rewrite

〈dΨ1| Ĥ |Ψ(Q, R)〉= 2πδ(0)
h
(l |�−R[Q, R]+ [Q, R]R+ cR2�⊗ �dR01dR10

�|r )
i

.

Setting X = α−1 l 1/2dR01dR10 r 1/2, we obtain

〈dΨ1|dΨ1〉=2πδ(0) tr[X †X ], (A.13)

〈dΨ1| Ĥ |Ψ(Q, R)〉= 2πδ(0)α tr[X † l 1/2(−R[Q, R]+ [Q, R]R+ cR2)r 1/2]. (A.14)

We thus need to find the D × D matrix X with maximal rank eD − D that mini-
mizes

‖X −αl 1/2(−R[Q, R]+ [Q, R]R+ cR2)r 1/2‖2 (A.15)

with ‖·‖ the Hilbert-Schmidt norm. We can hence obtain X from a singular value
decomposition of αl 1/2(−R[Q, R] + [Q, R]R+ cR2)r 1/2, where we only retain the
eD−D largest singular values. From this, we also obtain dR01 and dR10. Having obtained
the optimal values for dR01 and dR10 —and thus also for dQ01 and dQ10— we can update
eQ and eR, where we should in principle use α=−∞, given the remark above. In practice,
we need to find a finite value of α for which our small step is valid.

2.2. Representation of a two-fermion system

In Section 2 of Chapter 6 we have used the continuous matrix product state ansatz to
describe relativistic fermion systems which are described by a two-component spinor field.
The regularity condition Eq. (4.18) of Chapter 4 requires that the matrices {Rα,α= 1,2}
have ‘Fermi statistics’ and thus satisfy

{Rα, Rβ}= 0. (A.16)

This relation has been derived from the necessity of having a finite non-relativistic kinetic
energy, and it is not immediately obvious that we should also impose this condition for
relativistic systems. However, any fermionic system with any number of negative energy
levels would have a diverging energy if we would not impose the condition R2 = 0, since
this would allow to stack infinitely many fermions in the same level. Put differently,
the condition R2 = 0 —or the more general condition of Eq. (A.16) in case of several
fermions— imposes, through the continuity of the wave function, the Pauli principle,
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which is also valid in relativistic systems. Hence, for free relativistic Dirac fermions
there would be two sources of divergences if this condition was not imposed: both the
fact that there are infinitely many energy levels with negative energy and the fact that
infinitely many fermions can be put in each of these levels. Only the first of these is
physical.

We could try to start with an initial choice of matrices {Rα} that satisfy Eq. (A.16) and
then apply the general evolution in imaginary time according to the time dependent
variational principle, as discussed in Chapter 4, in order to obtain optimized matrices.
The regularity condition of the tangent vectors in Eq. (4.87) ensures that the regularity
condition remains fulfilled up to first order. However, higher order corrections will be
present and slowly the matrices will start to violate Eq. (A.16). We could try to reimpose
the regularity condition exactly after every step, but there is no straightforward strategy
to map a general set of matrices {Rα} to a nearby set {R′

α
} that satisfies the required

condition. It is therefore better to use an explicit parameterization that always satisfies
Eq. (A.16) exactly. This will constrain the allowed set of gauge transformations, so that
we cannot choose a gauge condition for the tangent vectors that maps the metric to
the identity matrix. We then have to use the full flow equations of the time-dependent
variational principle including the computation of the inverse of the transfer matrix. It
is therefore a good idea to restrict the parameterization such that all gauge freedom has
been eliminated, because the metric would be singular otherwise.

The easiest parameterization for a general set {Rα,α, 1, . . . , n}matrices is given by

Rα = gαcα⊗1D̃ (A.17)

where {cα,α = 1, . . . , n} is a set of virtual fermion annihilation operators, that can be
parameterized as

cn =
�⊗

k<n

σ z
k

�⊗σ−n . (A.18)

The auxiliary space is thus given by the Kronecker product of the Hilbert space (C2)⊗n of
these n auxiliary fermions and an additional D̃ dimensional Hilbert space CD̃ on which
we impose no constraints (for now). In principle, we should assign to the Rα matrices
some non-trivial commuting matrices R̃α on the D̃ dimensional space: Rα = cα ⊗ R̃α
with the additional condition [R̃α, R̃β] = 0. The remaining gauge freedom is in itself

not sufficient to be able to transform each R̃α to the form gα1D̃ . The physical picture
of continuous matrix product states being defined through continuous measurement
(see Subsection 1.2 of Chapter 4) does allow to interpret Rα as a virtual fermion (inside
the cavity) that is annihilated whenever a physical fermion (outside the cavity) is cre-
ated. The parameter gα acts as a coupling strength. Alternatively, we can interpret this
parameterization as a restricted variational ansatz, with gα the minimal amount of varia-
tional freedom that is required in order to be compatible with the scaling transformation
Q← cQ and R←pcR, which plays a crucial role in Section 2 of Chapter 6. However,
it turns out that even in the larger variational space, the time-dependent variational
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principle automatically converges towards a solution within this restricted space, i.e.
where R̃α ∼ 1D̃ .

Since we have used the picture of continuous measurement to define the Rα matrices, we
now also parameterize Q as

Q = iK − 1

2

∑
α

R†
α

Rα (A.19)

with K a Hermitian matrix. Since the Hamiltonians under consideration have real
coefficients, we should also be able to choose Q real and we thus replace iK by a real
skew-symmetric matrix S . In order to impose parity preservation in the physical system,
and thus to have 〈ψα〉 = 〈ψ†

α
〉 = 0, we also have to define some kind of parity in the

auxiliary system. To this end, we define a parity operator

P =
n∏
α=1

�
1− 2c†

α
cα
�⊗ P̃ (A.20)

where P̃ is some D̃ × D̃ matrix which acts as a parity operator in the D̃-dimensional
part of the auxiliary space. The parameterization of Rα is compatible with additional
gauge transformations in the D̃ -dimensional subspace of the auxiliary space. These gauge
transformation should be orthogonal in order to preserve the parameterization of Q. In
the first place, we can diagonalize P̃ , which will of course only have eigenvalues +1 and
−1. The degeneracy D̃+ and D̃− of these eigenvalues (with D̃++ D̃− = D̃) results in the
gauge freedom not being completely fixed, and additional gauge transformations in the
subspaces with positive and negative parity are still possible.

In order to preserve parity, the skew-symmetric matrix S should be parity preserving,
i.e. P SP = S. For the case of n = 2, such as for the relativistic Dirac Hamiltonian in
Chapter 4, we can use a parameterization

S =




S+11 S−12 S−13 S+14
−(S−12)

T S+22 S+23 S−24
−(S−13)

T −(S+23)
T S+33 S−34

−(S+14)
T −(S−24)

T −(S−34)
T S+44




(A.21)

R1 = g1




0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0




(A.22)

R2 = g2




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0




(A.23)
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where the elements are matrices in the D̃ dimensional space. The matrices S+11, S+22, S+33
and S+44 on the diagonal should be skew-symmetric, while there is no such restriction on
the off-diagonal blocks. The superscript ± indicates the parity of these matrices with
respect to P̃ , i.e. P̃ S+

k l
P̃ = S+

k l
and P̃ S−

k l
P̃ =−S−

k l
. If we order the eigenvalues of P̃ as first

all +1’s, followed by all −1’s, than these matrices will have a block diagonal form

S+
k l
=


S++

k l
0

0 S−−
k l


 , S−

k l
=


 0 S+−

k l
S−+

k l
0


 . (A.24)

Finally, in order to fix the gauge freedom completely, we can further fix the parameter-
ization of one of these Hk l matrices. The best approach is to work on a matrix with
positive parity, as we can then choose the orthogonal transformations on the + and the
− subspace independently. The matrices on the diagonal are not the best candidates,
because the fact that they are skew-symmetric implies that they will commute with a
linear combination of the generators of all possible orthogonal transformations, and that
we will not be able to fix the gauge completely. So the remaining possibilities are H+23 or
H+14. We have chosen the latter one. With

H+14 =


H++14 0

0 H−−14


 ,

fixing the gauge boils down to choosing a fixed format for H++14 and H−−14 that is always
obtainable from a general matrix by performing on orthogonal transformation. Since
we can always write a general matrix as a sum of a symmetric and a skew-symmetric
matrix, we can choose the orthogonal transformation such that it diagonalizes the
symmetric part. We thus choose a representation in which H++14 and H−−14 are skew-
symmetric, except for the fact that the diagonal elements are non-zero. Since this final
choice completely eliminates all gauge freedom, the tangent vectors resulting from this
parameterization will all be linearly independent and their Gram matrix will not have
zero eigenvalues. It can then safely be inverted in the application of the time-dependent
variational principle.
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