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Chapter 1

Introduction

1.1 Setting

A classical problem in statistics is concerned with studying the association between a univariate

outcome Y and a d-dimensional set of predictorsX . In Section 2.5.1, for example, we describe

a case study where Y is a measure of a child’s lung capacity and X contains the age, gender,

and smoking status of the child. The primary focus is to understand the association between the

smoking behaviour and the lung capacity, while possible confounding factors, such as gender

and age, should be accounted for. In Section 2.5.2 we describe a mental health study where Y

denotes a subject’s mental impairment and X its life index and socio-economic status. Interest

then lies in exploring the relationship between the socio-economic status and the mental impair-

ment while controlling for the life index. As a third example, we consider a dataset where Y

denotes the annual food expenditure of a household and X the annual household income. The

data are used to examine Ernst Engel’s hypothesis which states that the proportion of income

spent on food decreases with increasing income; see Section 2.5.3 for details.

When examining the relationship between an outcome and a set of predictors it is natural to

model Y mathematically as a function ofX , say Y = g(X), for some function g(·). However,

since Y is a random variable, this model will often be inappropriate. In the study related to

the smoking behaviour, the lung capacity is affected by many other factors in addition to age,

gender, and smoking status. So in general, it will be impossible to find a function g(·), such

that Y = g(X) for all children, because it is reasonable to believe that two children of the same

1



2 Chapter 1. Introduction

age and gender and with the same smoking behaviour, can still have different lung capacities.

Therefore, Y will often be modelled as a function of X by means of a statistical model; for

example Y = g(X) + ε, where ε denotes an unobservable random variable accounting for the

remaining variability which cannot be explained by the data at hand.

Once an appropriate statistical model is established, the association between Y and X can be

partially examined by investigating the function g(·) (partially because the outcome also de-

pends on the unobservable ε). If interest lies in studying the effect ofX on the full distribution

of Y , a solution consists of imposing assumptions on ε, e.g. a normal distribution with mean

zero and an unknown variance which can be estimated from the data. If such an assumption is

infeasible or if there is no interest in describing the effect ofX on the whole outcome distribu-

tion, the statistical model is often restricted to a summary measure of Y , for example the mean.

If E (ε |X) = 0, the statistical model becomes E (Y |X) = g(X), so that g(·) describes the

relationship between the predictors and the mean outcome. In addition to the mean, quantiles

are popular summary measure as well.

Restricting Y to a summary measure often allows describing the association between outcome

and the predictors more concisely. This approach inevitably results in an information loss as

compared to when describing the effect of X on the whole outcome distribution. However,

selecting the summary measure carefully can often still provide an informative description of

the underlying process. For the smoking behaviour example it can arguably be sufficient to

describe the association between the smoking status and the average lung capacity of children

of a given age and gender, instead of describing it for each child separately.

Selecting the appropriate summary measure is important and depends on various factors: the

scale and shape of the outcome, the data at hand, the research question of interest, etc. The

majority of the statistical models used by data analysts focus on the mean outcome because

it often has a meaningful interpretation and it has interesting mathematical properties, among

other arguments. However, the mean is not always the most interesting summary measure.

When considering household income, for example, the majority of the population have a low to

moderate income, while only a small fraction of the population has an extremely high income

(it is often said that 20% of the population owns 80% of the wealth), resulting in a skewed

distribution. These high incomes have a substantial effect on the mean so that that the mean is

no longer representative for the majority of the population. The median income can arguably
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be a more appropriate summary measure: what income does half of the population have at

least and half of the population have at most? As another example, in the mental health study,

the mental impairment outcome is ordinal on a 4-level scale, with categories 1 (not impaired),

2 (mild symptom formation), 3 (moderate symptom formation), and 4 (impaired). Here the

mean has no straightforward interpretation because the difference between levels 1 and 2 is

not necessarily the same as the difference between levels 2 and 3 or 3 and 4. Therefore, the

4-level scale could also have been coded as 0 (not impaired), 1 (mild symptom formation), 50

(moderate symptom formation), and 1000 (impaired). Instead of considering mean impairment

one can focus on, for example, the probability that the impairment score does not exceed a

particular level.

In this dissertation a novel statistical model for assessing the association between Y and X

is developed where the summary measure is not related to the mean or quantiles, but to the

probability that the outcome increases if the predictors change. This model forms an alternative

to the popular statistical models which focus on the mean or quantiles and can be used if the

outcome is ordinal, interval, or ratio-scale. The model, however, is not developed to replace

these existing techniques; it should merely serve as an additional tool for data analysts. In the

following section, we describe the setting more formally.

1.2 Introduction to the model

Let fYX and fY |X denote the density functions of the joint distribution and the conditional

distribution of Y given X , respectively. For a continuous outcome Y , most statistical meth-

ods focus on the conditional mean of Y given X . For example, in linear regression models

E (Y |X) = ZTβ, where Z is a p-dimensional vector with elements that are functions of

the covariates X and where β is a p-dimensional parameter vector. Sometimes the complete

conditional distribution of Y given X is specified, e.g. the normal regression model, allowing

for likelihood-based inference. This is often replaced by some mild assumptions on the higher-

order moments of the conditional distribution so that the likelihood is no longer defined and

asymptotic semiparametric theories are required for inference, e.g. estimation based on gen-

eralized estimating equations (Liang and Zeger, 1986; Zeger and Liang, 1986), of which least

squares is a well known example.
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In this dissertation we propose models that quantify the effects of the covariates through the

probabilistic index (PI), which, in the present setting, is defined as

P (Y 4 Y ′ |X,X ′) := P (Y < Y ′ |X,X ′) +
1

2
P (Y = Y ′ |X,X ′) , (1.1)

where (Y,X) and (Y ′,X ′) are independently and identically distributed (i.i.d.) with density

fYX . Although we use the term density, (Y,X) can also be discrete or a combination of discrete

and continuous variables. Furthermore, X may also be fixed by design, but for notational

convenience we will treat it as a random vector.

When Y is continuous P (Y = Y ′ |X,X ′) = 0 and the PI simplifies to P (Y 4 Y ′ |X,X ′) =

P (Y < Y ′ |X,X ′). Definition (1.1) is also meaningful and convenient when the outcome

is discrete and it implies that P (Y 4 Y ′ |X = X ′) = 0.5 for both continuous and discrete

outcomes.

Although the PI requires the conditional distribution fY |X , here we do not make full distribu-

tional assumptions on fY |X . Apart from some minimal technical assumptions we only assume

that fY |X satisfies

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (1.2)

in whichm(·) is a function with range [0, 1] and β a p-dimensional parameter vector. In Chapter

2 more details will be given. To simplify notation, we sometimes drop the condition statement

in the PI and write model (1.2) as P (Y 4 Y ′) = m(X,X ′;β). Equation (1.2) implies a

restriction on fY |X that describes how the covariateX affects the outcome distribution in terms

of the PI. If Ω ⊆ R denotes the support of the distribution function of Y , then restriction (1.2)

can be explicitly expressed as a function of fY |X ,∫
y∈Ω

∫
y′∈Ω

I (y 4 y′) fY |X(y |X)fY |X(y′ |X ′)dλ(y)dλ(y′) = m(X,X ′;β), (1.3)

where I (y 4 y′) := I (y < y′) + 0.5I (y = y′), with I (·) the indicator function and λ(·) the

counting measure for discrete outcomes and the Lebesgue measure for continuous outcomes.

Because fY |X is not fully specified by (1.3), model (1.2) represents a semiparametric model

which we refer to as the Probabilistic Index Model (PIM). Inference on the parameter vector β

thus requires semiparametric theory which is presented in Chapters 2 and 7.
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1.3 The probabilistic index

When no covariates are present, the PI has been discussed already by many authors. To our

knowledge, however, there is no unambiguous terminology used throughout the literature.

Acion et al. (2006) use the term probabilistic index, while some authors even use the nota-

tion “P (Y < Y ′)” in the title of their papers; see e.g. Enis and Geisser (1971); Halperin et al.

(1987); Tian (2008); Zhou (2008); Kakade et al. (2008); Browne (2010).

Others have called it the individual exceedance probability (Senn, 1997), stochastic improve-

ment (Lehmann, 1998), common language effect size (McGraw and Wong, 1992), probability

of superiority (Grissom, 1994), and in engineering science, the reliability from stress-strength

relationships (Church and Harris, 1970).

Probabilities of the form (1.2) also appear in the analysis of ROC curves. We refer to Pepe

(2003) for an overview. The PI may be interpreted as the area under the curve (AUC) of the pop-

ulation probability-probability plot (PP-plot), which is defined as the curve {(p, F1[F−1
2 (p)]) |

p ∈ [0, 1]}, where F1 and F2 are the distribution functions of Y | X = x1 and Y ′ | X ′ = x2,

respectively. Suppose that Y is a continuous outcome and that F1 and F2 have the same support

Ω. Then, for fixed covariates x1 and x2, the AUC becomes∫ 1

0

F1[F−1
2 (p)]dp =

∫
y∈Ω

F1(y)dF2(y) = EY ′|x2
[
PY |x1 (Y ≤ y | y = Y ′, x1) | x1, x2

]
= PY Y ′|x1,x2 (Y ≤ Y ′ | x1, x2) = P (Y 4 Y ′ | x1, x2) , (1.4)

with Y | x1 and Y ′ | x2 independently distributed; we will often drop the subscript Y Y ′ | x1, x2

from the probability operator. In the context of ROC curves, we refer to Dodd and Pepe (2003)

and Brumback et al. (2006), who proposed regression models for the AUC.

The PI is also closely related to stochastic ordering. A distribution F1 is said to be stochastically

smaller than F2 if and only if F1(y) ≥ F2(y) for all y ∈ Ω and with strict inequality for a non-

empty subset of Ω. When F1 is stochastically smaller than F2, equation (1.4) immediately

implies that P (Y 4 Y ′ | x1, x2) > 0.5. The implication does not hold necessarily in the other

direction. Stochastic ordering is thus a stronger property than PI > 0.5.

To illustrate the interpretation of the PI consider a two-sample setting where Y | (X = E)

denotes the outcome (e.g. blood pressure) under an experimental treatment and Y ′ | (X ′ = P )
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the outcome under a placebo treatment. Assume that the outcome is continuous. The PI

P (Y < Y ′ | X = E,X ′ = P ) , (1.5)

then gives the probability that the outcome of a randomly chosen subject of the placebo group

exceeds the outcome of a randomly chosen subject of the experimental group. Many authors

have argued that the PI is well suited as an effect size measure, mainly because 1) it often has

an informative and intuitive interpretation which can also be understood by non-statisticians, 2)

it provides a general measure for the difference between two populations, and 3) it is robust and

scale-free; see, for example, Wolfe and Hogg (1971); Laine and Davidoff (1996); Acion et al.

(2006); Newcombe (2006a,b); D’Agostino et al. (2006); Zhou (2008); Tian (2008); Kieser et al.

(2012). The PI has also been extended to multiple outcomes; see, for example, Buyse (2010).

Despite the useful features of the PI as an effect size measure, there are settings for which it can

be a misleading summary measure. For example, with lower outcomes being better, the PI (1.5)

does not necessarily give the probability that for a single patient, the experimental treatment is

better than placebo; instead, it compares the outcomes of two randomly selected patients. This

is discussed in more detail in Section 2.6. We refer to Hand (1992); Senn (2006, 2011, 2012)

for interesting discussions on the limitations of the PI as an effect size measure.

1.4 Relationship with other statistical techniques

An interesting special case arises when X is a binary (0, 1) design variable which refers to

two populations. With m(X,X ′; β) = 0.5 + β(X ′ − X) and P(Y0 4 Y1) := P(Y 4 Y ′ |

X = 0, X ′ = 1) model (1.2) becomes

P (Y0 4 Y1) = 0.5 + β,

which is the parameter of interest in the Wilcoxon–Mann–Whitney (WMW) test (Wilcoxon,

1945; Mann and Whitney, 1947). In particular, under the general two-sample null hypothesis

H0 : fY0 = fY1 , the PI equals P (Y0 < Y1) = 0.5 when the outcome variable is continuous,

and thus β = 0. Under mild conditions, the WMW test is consistent against the alternative

H1 : P (Y0 < Y1) 6= 0.5, (see, for example, Hollander and Wolfe, 1999), which is equivalent to

H1 : β 6= 0. The class of models presented here can be considered as extensions of the WMW

setting. Just as a linear regression model and the t-tests for testing the covariate effects in the
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linear model embed the two-sample t-test when the linear regression model has only one 0/1

dummy covariate, so do the tests for testing covariate effects in the PIM result in a WMW-type

test in a two-sample design. In a similar fashion, PIMs embed the Kruskal–Wallis (Kruskal

and Wallis, 1952) and Friedman (Friedman, 1937) rank tests for the K-sample and randomized

complete block designs, respectively. This is discussed in greater detail in Chapter 4.

A PIM can also be seen as an extension of the work of Dodd and Pepe (2003) and Brumback

et al. (2006), who proposed models for the PI, but with the restriction that Y and Y ′ are con-

tinuous outcome variables that always belong to two different populations or treatment groups.

In terms of our formulation this restriction could be expressed as X and X ′ being distinct in

at least one component which is a binary indicator for two treatment groups. They thus pro-

vide a WMW-type test for comparing two treatment groups, while controlling for one or more

covariates. The methods proposed in this dissertation does not impose such a particular re-

striction on the covariate vector X . Moreover, they further improve on Dodd and Pepe (2003)

and Brumback et al. (2006) by being directly applicable to both continuous and discrete out-

come variables, and by providing a consistent estimator of the variance-covariance matrix of

the parameter estimators so that no computationally intensive bootstrap procedure is required.

PIMs are closely related to the pairwise ordering regression models developed by Follmann

(2002). The regression model considers the pairwise ordering of patients’ clinical histories and

the model parameters have an interpretation which is related to the PI. More specifically, Foll-

mann (2002) models the probability that the (possibly multidimensional) outcome of a patient

is better than the outcome of another patient, where better can be defined in various ways.

A PIM is also related to a Bradley–Terry model (BTM) for ordinal outcomes (Bradley and

Terry, 1952; Bergsma et al., 2009, 2012). Instead of the PI, a BTM models the probability

P (Y > Y ′)− P (Y < Y ′) .

Bergsma et al. (2009) provide full maximum likelihood estimators for BTMs when covariates

are discrete. PIMs, however, are not restricted to an ordinal outcome or discrete predictors and

estimation is based on semiparametric theory instead of maximum likelihood.

As pointed out by Van Keilegom (2012), a PIM can be considered as a transformation model

(Carroll and Ruppert, 1988; Linton et al., 2008). Since

P (Y 4 Y ′ |X,X ′) = E (P (Y 4 y | y = Y ′,X) |X,X ′) ,
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PIM (1.2) can be expressed as

h(Y ′) = m(X,X ′;β) + ε,

where h(y) = P (Y 4 y |X), E (ε |X,X ′) = 0, and Var (ε |X,X ′) a function of X and

X ′. However, estimating the unknown function h(y) will be difficult, especially when many

predictors are present. In Chapters 2 and 7 we avoid estimating h(·) by considering the PIM as

a restricted moment model fitted to pseudo-observations.

1.5 An example

To demonstrate the scope and the interpretation of the models that form the topic of this disser-

tation, we first introduce an example data set. In psychiatry, the mental state of a patient is often

assessed by means of patient-rated questionnaires. For example, the Beck Depression Inven-

tory (BDI) (Beck et al., 1988) is a 21-item self-report rating inventory measuring characteristic

attitudes and symptoms of depression. The BDI is the sum of the scores on the 21 items; it

ranges from 0 to 63, with 63 indicating severe depression. Van den Eynde et al. (2008) reported

on a study in which patients with a borderline personality disorder (BPD) were treated with

quetiapine, which is an antipsychotic drug. It is of interest to know how the quetiapine dose

affects the patients in terms of the BDI. As the design of the original study is quite complicated,

only partial results from a simplified setting are presented. The outcome variable of interest is

the improvement in BDI, which is calculated as the BDI at baseline minus the BDI at the end

of the study and which we denote by BD. The regressor variable is the total dose of quetiapine

measured in grams (DOSE). Figure 1.1 shows a scatter-plot of the data. We consider the PIM

P (BD 4 BD′ | DOSE,DOSE′) = expit [β(DOSE′ − DOSE)] , (1.6)

with expit(x) = exp(x)/[1 + exp(x)]. Using the methods described in this dissertation, we

find the estimate β̂ = 0.1711 with estimated standard error 0.0398. The p-value for testing

H0 : β = 0 versus H1 : β 6= 0 is smaller than 0.0001, and thus at the 5% level of significance

the null hypothesis is rejected. Since expit(β) = P (BD 4 BD′ | DOSE′ = DOSE + 1), we

can conclude that patients treated with a larger dose of quetiapine are more likely to show a

larger improvement. In particular, when the dose is increased by 5 grams, the estimated PI

equals expit(5β̂) = 70.2%; that is, when comparing a group of patients treated with quetiapine
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with a group that received an extra 5 grams of quetiapine, we conclude that, with probability

70.2%, the BDI of a patient from the high-dose group shows a larger improvement than for a

patient from the low-dose group.

The data could as well have been analyzed with a regression model which models the mean BD

instead of the PI. However, the right-hand panels of Figure 1.1 demonstrate that the dose affects

not only the mean outcome, but also the variance and the skewness of the BDI distribution.

Hence, the mean as an effect size is arguably not the most appropriate choice. The PI, on the

other hand, acts as a quantity that summarizes the covariate effect on the outcome distribution

in a meaningful effect size measure and which is not restricted to the mean.

Another important characteristic of the example is that BDI is basically an ordinal score vari-

able. Although the BDI scale counts 64 levels, the mean BDI does not necessarily have an

unambiguous interpretation and regression techniques that focus on the conditional mean of

the BDI are perhaps not to be recommended. The interpretation of the PI, on the other hand,

applies to ordinal, interval, and ratio-scale outcomes, since it only requires an ordering among

the outcomes. Note that by subtracting the BDI at the end of the study from the baseline BDI,

it is implicitly assumed that BDI is interval-scaled instead of ordinal. This is just to avoid a

complicated PIM in the introduction. If the BDI is truly ordinal, then the BDI at baseline can

be included as a predictor without violating its ordinal nature. This is addressed in more detail

in Section 2.5.4.

Note that, instead of a PIM, cumulative logit models (McCullagh, 1980), among other tech-

niques, may be used for the analysis of ordinal data; see, for example, Agresti (2007) or Liu

and Agresti (2005) for extensive overviews on methods for ordinal data.

1.6 Some other applications

There are many examples of outcome variables measured on an ordinal scale. In pain man-

agement, for example, the effectiveness of treatments is often measured on an ordinal scale.

Patients may be asked to fill out a questionnaire with questions related to their (subjective)

pain experience, resulting in a pain score that has an ordinal meaning. The scale of Turk et al.

(1993), for example, is a 0 − 10 rating scale. The analysis of pain scores with PIMs would
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Figure 1.1: A scatter-plot of the BDI improvement versus the dose (left). The dashed and

dotted lines show the linear regression model fits based on least squares and Huber’s robust

M-estimator, respectively. Histograms of the BDI improvements for small doses (top right) and

large doses (bottom right).

result in probabilities that quantify how likely it is that the (reporting of) pain will decrease as a

function of a set of covariates. Pain may also be measured on the visual analogue scale (VAS)

of Wallerstein (1984), where the patient is presented with a horizontal line of 10 centimeter,

anchored by the words “no pain” and “very severe pain” at the two ends. The patient is asked

to mark the point on the line that best represents his or her level of pain at that moment. The

distance, measured in millimeter, between the left-hand end of the line and the point marked by

the patient is the numerical value used as a measure of pain. This is an example of a continuous

outcome variable that may be interpreted as being ordinal, so that statements involving order

comparisons, such as P (Y 4 Y ′), make sense. See Myles et al. (1999) for more details of the

VAS scale.

PIMs may also turn out to be useful for analyzing genuine continuous outcome variables on a

ratio scale for which classical regression models also seem to be appropriate. Beyerlein et al.

(2008) observed that a child’s body mass index (BMI) may be affected by several risk factors

that, however, do not act only on the mean BMI. In particular, the skewness of the BMI distribu-

tion may change with covariate patterns. As illustrated in the BDI example, the PI summarizes

the covariate effects on the shape of the outcome distribution, while retaining an informative
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interpretation of the covariate effect sizes. Hence, PIMs could be a valuable alternative for

BMI data. Beyerlein et al. (2008) suggested analyzing the BMI data with quantile regression

methods, which forms another important class of models. It focuses on the τ th quantile of

the distribution of Y given X , Qτ (Y | X), say. Without the complete specification of the

joint distribution of Y and X , the τ th quantile of the distribution of Y given X is modelled

as Qτ (Y | X) = ZTβτ . These models are also semiparametric as the distribution of Y given

X is not completely specified or parametrized. We refer to Koenker (2005) for an extensive

overview on quantile regression.

If interest lies in assessing the effect of a regressor on several characteristics of the outcome

distribution, quantile regression can arguably be the method of choice, since it allow for a rich

analysis of the data by modelling multiple quantiles simultaneously. On the other hand, if it is

desirable to summarize the effect of a predictor on the outcome distribution in terms of the PI,

a PIM can be advocated.

These examples give already a flavour of the usefulness of the PIM. In particular when, the

outcome variables are defined on an ordered scale, which can be discrete or continuous, for

which the mean of the difference Y − Y ′ does not have a proper interpretation as an effect

size, but for which the PI does. More generally, the PIM may be the statisticians’ method of

choice whenever the PI is considered as a meaningful parameter for quantifying effect sizes.

Of course, a PIM will not replace any of the existing statistical methods, it is merely a new

tool in the statisticians’ toolbox. Furthermore, since a PIM only considers a relative ordering

among the outcomes, there can be more information loss as compared to models which exploit

the richness of outcome in case it is interval or ratio-scale (van de Wiel, 2012).

1.7 Objectives and outline

The main objective of this dissertation is the development of a flexible semiparametric regres-

sion framework to model the probabilistic index: the probabilistic index model. Once this

modelling framework is constructed, we are interested in studying the relationship between the

PIM and a) regression methods and b) rank tests. Since the PIM is semiparametric, we will

construct goodness-of-fit tools for assessing model validity. We illustrate the flexibility of a

PIM by applying the model to complex genomic data. A final objective is the construction of
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semiparametric efficient estimators for the PIM model parameters.

The dissertation is organized as follows.

In Chapter 2 some popular statistical methods are reviewed and the PIM is formally introduced

together with the parameter estimation and asymptotic distribution theory. The validity of the

asymptotic approximations for finite samples is empirically evaluated in a simulation study and

the interpretation of PIM is illustrated with several examples.

In Chapter 3 the PIM is situated within the statistical landscape by exploring the relationships

with several well-known statistical methods such as linear regression, the Cox proportional

hazards model, AUC regression, rank regression, and the concordance index. The performance

of a PIM and some of these methods is evaluated in a simulation study.

In Chapter 4 the PIM methodology is situated within a broad class of rank tests. More specif-

ically, relationships are established with the WMW, Kruskal– Wallis, and Friedman rank tests,

among other. The performance of these methods relative to a PIM is evaluated in a simula-

tion study. The PIM framework allows extending these popular rank tests to more complicated

designs, while retaining an intuitive interpretation. This is illustrated with an example.

In Chapter 5 goodness-of-fit (GOF) methods are developed for assessing the quality of the

model fit of a PIM. The theoretical properties are evaluated in a simulation study and the GOF

methods are illustrated on the examples of Chapters 2 and 3. Since well-established GOF

methods do not apply well to PIMs, a new methodology is developed. Despite the relatively

good performance, the proposed methodology should be considered as a first initiative in testing

GOF of PIMs and still needs maturation.

In Chapter 6 a case study is worked out in detail. More specifically, the PIM framework is

used for the analysis of genomic reverse transcription quantitative polymerase chain reaction

(RT-qPCR) data. A PIM will turn out to be appropriate for the analysis of such complex data

while retaining a biologically relevant interpretation. In this chapter we summarize the most

important characteristics of RT-qPCR data, without going into the biological details, so that the

essence of the chapter should be understandable to data analysts unfamiliar with RT-qPCR.

In Chapter 7 the estimation theory of Chapter 2 is revisited and new semiparameteric theory

specifically constructed for PIMs is developed. A first initiative is taken towards deriving the

efficient estimator and some of its properties are evaluated in restricted simulation study. This
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chapter is mathematically more challenging as compared to the previous chapters and can be

skipped by readers not interested in the technical details of the estimation theory.

In Chapter 8 some conclusions are formulated and future research perspectives are discussed.

In Appendix A it is illustrated by examples how the R-package pim can be used to fit PIMs to

data.

Contribution

Most of my dissertation is based on 3 published papers, one submitted paper, and a software

package. The research is the result of a close collaboration with Olivier Thas, Lieven Clement,

Stijn Vansteelandt, Karel Vermeulen, Nick Sabbe, and Jean–Pierre Ottoy. The idea of a PIM

originates from O. Thas and it was my privilege to collaborate with all aforementioned re-

searchers – all with their own expertise – in the development of several aspects of a PIM.

A more detailed listing of my contributions:

• Chapters 2 and 3 are based on Thas et al. (2012d). The basic construction of a PIM was

the work of O. Thas. I have contributed to all aspects of the theory development and I

have performed the simulation study, implemented the R code, and conducted all data

analyses.

• Chapter 4 is based on a manuscript that is submitted and which is currently under review

(authors: De Neve, J., Thas, O., and Ottoy, J.P.). I have been involved in all aspects of the

research (model formulation, theory development, literature review, simulation studies,

and data analysis). Most of the work was in close collaboration with O. Thas.

• Chapter 5 is based on De Neve et al. (2013a). I have taken the lead in this research, with

guidance from O. Thas.

• Chapter 6 is based on De Neve et al. (2013c). The model formulation and the simulation

set-up are a result of many discussions with L. Clement and O. Thas. I have taken the

lead in writing the paper.

• Chapter 7 is the result of many discussions with, and internal reports from, O. Thas, S.

Vansteelandt, and K. Vermeulen. However, the final form of Chapter 7 is from my own

hand and goes beyond these internal reports.
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• Appendix A is based on the R-package pim (De Neve and Sabbe, 2013). I have imple-

mented all code used in this dissertation. N. Sabbe has further developed and profession-

alized the package and increased the applicability substantially.



Chapter 2

The probabilistic index model

The content of this chapter is primarily based on the results published in

Thas, O., De Neve, J., Clement, L., and Ottoy, J.P. (2012) Probabilistic index models (with

discussion). Journal of the Royal Statistical Society - Series B, 74:623–671.

More specifically, it is based on sections 2, 3, 5, and 6 of the manuscript as well as on the

discussions of Thomas Alexander Gerds, Stephen Senn, Lori E. Dodd, and Stijn Vansteelandt.

2.1 Outline

In Section 2.2 several popular statistical models are briefly reviewed with emphasis on esti-

mation and interpretation. In Section 2.3 the probabilistic index model (PIM) is formally in-

troduced, together with the parameter estimation and asymptotic theory. The validity of the

asymptotic approximations for finite samples is empirically assessed in a simulation study in

Section 2.4. In Section 2.5 several case studies are discussed and analyzed with a PIM as well

as with more conventional statistical methods. In Section 2.6 some issues related to the inter-

pretation of the probabilistic index (PI) are discussed and Section 2.7 gives the conclusions and

discussion.

15
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2.2 A brief review of some statistical models

This section merely serves as a concise overview of several popular statistical models. It is

briefly illustrated how the model parameters can be estimated and interpreted. However, many

known and important results are omitted because they fall outside the scope of this dissertation.

2.2.1 The linear regression model

The linear regression model (LRM) is defined as

Y = ZTβ + ε, (2.1)

where β ∈ Rp, E (ε) = 0, X ⊥⊥ ε, and Cov (εi, εj) = σ2δij , i.e. the errors have a constant

variance and are uncorrelated. The p-dimensional vector Z is a function of the d-dimensional

covariate X , for example if d = 1 with X = X , then ZT = (1, X,X2) corresponds to a

quadratic model with intercept which is linear in the parameters. Consider a random sample

of i.i.d. observations {(Yi,X i) | i = 1, . . . , n}. The Gauss–Markov theorem states that the

ordinary least squares (OLS) estimator, defined as

β̂ := argminβ

n∑
i=1

(
Yi −ZT

i β
)2
,

is the best linear unbiased estimator of β. Sometimes the additional assumption ε d
= N(0, σ2)

is required for obtaining finite sample distributional properties of β̂. However, most of these

properties asymptotically hold even if this normality assumption is not fulfilled.

Model (2.1) implies

E (Y |X) = ZTβ. (2.2)

To illustrate the interpretation consider a one-dimensional continuous predictorX and the LRM

E (Y | X) = β0 + β1X.

Then

β1 = E (Y | X = x+ 1)− E (Y | X = x) , (2.3)

i.e. β1 quantifies the additive change in mean outcome if the predictor is increased by one unit.

We refer to Kutner et al. (2004) for an extensive overview of linear models. Note, that if (Y,X)
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and (Y ′, X ′) denote i.i.d. observations, equation (2.3) can be equivalently written as

β1 = E (Y ′ − Y | X = x,X ′ = x+ 1) .

Throughout this dissertation we often use this notation since it is closely related to the notation

of effect sizes in terms of the PI. The interpretation of the LRM is also illustrated on an example

dataset in Section 2.5.1.

2.2.2 The binary regression model

If the outcome variable Y is binary, when modelling, for example, success or failure, model

(2.1) is no longer appropriate. Without loss of generally, let Y take values in {0, 1}, where

Y = 1 denotes success and Y = 0 failure. The binary regression model is given by

g [P (Y = 1 |X)] = ZTβ, (2.4)

where g(·) is a link function, required to assure that the predictions are within the unit interval.

Usually the logit g(x) = log(x/[1 − x]) or probit g(x) = Φ−1(x) link function is considered.

The corresponding models are referred to as logistic and probit regression models, respectively.

An estimator of β can be obtained by maximizing the likelihood, i.e.

β̂ := argmaxβ

n∏
i=1

g−1(ZT
i β)Yi

[
1− g−1(ZT

i β)
]1−Yi

.

Consider a one-dimensional continuous predictor X and the logistic regression model

logit[P (Y = 1 | X)] = β0 + β1X.

If we define the odds as odds (A) = P (A) /[1− P (A)] for an event A, the interpretation of β1

follows from

β1 = log

(
odds (Y = 1 | X = x+ 1)

odds (Y = 1 | X = x)

)
,

i.e. exp(β1) quantifies the multiplicative change in odds on success if the predictor is increased

by one unit. We refer to Hosmer and Lemeshow (2000) for an extensive overview of logistic

regression models.
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2.2.3 The restricted moment model

Both the linear and binary regression model can be embedded in a semiparametric restricted

moment model (Chamberlain, 1987; Newey, 1988). Such a model is defined as

E (Y |X) = g−1(ZTβ), (2.5)

for which the model parameter β is estimated semiparametrically, i.e. apart from some mild

regularity conditions, model (2.5) is the only restriction on the the conditional distribution of

the outcome.

Model (2.5) can be extended to the setting with longitudinal or clustered data {(Y i,X i) | i =

1, . . . , n} with Y i an m-vector of outcomes, X i an m × d matrix of predictors, and Cov (Y i)

not necessarily a diagonal matrix, indicating that the elements of Y i can be correlated.

Let (Y i,X i) be i.i.d., then the restricted moment model is expressed as

g [E (Y i |X i)] = Ziβ, (2.6)

with Zi an m × p matrix. The model parameter β can be estimated by using Generalized

Estimating Equations (GEE) (Liang and Zeger, 1986; Zeger and Liang, 1986). Let Cov (Y i) =

A
1/2
i Cor (Y i)A

1/2
i , with Ai the diagonal matrix of marginal variances. The estimator β̂ is

defined as the solution of
n∑
i=1

∂g(Ziβ)

∂βT

(
A

1/2
i RiA

1/2
i

)−1

[Y i − g(Ziβ)] = 0, (2.7)

with Ri the working correlation matrix of Y i. This estimator is consistent and asymptotically

normally distributed even if Ri is misspecified. Let Σ̃i = A
1/2
i RiA

1/2
i . A consistent sandwich

estimator of Cov
(
β̂
)

is given by

Σ̂n(β̂) =

(
n∑
i=1

∂gT (Ziβ̂)

∂β
Σ̃
−1

i

∂g(Ziβ̂)

∂βT

)−1

(
n∑
i=1

∂gT (Ziβ̂)

∂β
Σ̃
−1

i

[
Y i − g(Ziβ̂)

] [
Y i − g(Ziβ̂)

]T
Σ̃
−1

i

∂g(Ziβ̂)

∂βT

)
(

n∑
i=1

∂gT (Ziβ̂)

∂β
Σ̃
−1

i

∂g(Ziβ̂)

∂βT

)−1

.

See, for example, chapter 8 of Molenbergs and Verbeke (2005) or chapter 4 of Tsiatis (2006)

for more details on restricted moments models and GEE.
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2.2.4 The cumulative logit model

If the outcome variable Y is ordinal with k levels, the conditional mean E (Y |X) may not

have a relevant interpretation. Consider the cumulative logit model

logit [P (Y ≤ j |X)] = αj +ZTβ, j = 1, . . . , k − 1. (2.8)

The likelihood function is constructed based on multinomial mass functions and is used to

define the maximum likelihood estimator(
α̂1, . . . , α̂k−1, β̂

T
)T

:= argmaxαj ,β

n∏
i=1

(
k∏
j=1

[
expit(αj +ZT

i β)− expit(αj−1 +ZT
i β)

]I(Yi=j))
.

LetX = X and consider the model

logit [P (Y ≤ j | X)] = αj + βX, j = 1, . . . , k − 1.

The interpretation of β follows from

β = log

(
odds (Y ≤ j | X = x+ 1)

odds (Y ≤ j | X = x)

)
,

i.e. exp(β) quantifies the multiplicative change in odds that the outcome does not exceed a

particular level if the predictor is increased by one unit. Model (2.8) is also referred to as the

proportional odds model, since the effect of a covariate on the odds ratio is independent of the

category j. These models can however be extended if the proportional odds assumption does

not hold. We refer to Agresti (2010) for an extensive overview of proportional odds models.

In Section 2.5.2 the interpretation of the cumulative logit model is illustrated on an example

dataset.

2.2.5 The quantile regression model

For an ordinal, interval, or ratio-scale outcome Y , conditional quantiles are defined as

Qτ (Y |X) := infy
{
y | FY |X(y |X) ≥ τ

}
, τ ∈ (0, 1).

A linear quantile regression model (QRM) models this conditional quantile as a function of the

covariates

Qτ (Y |X) = ZTβτ . (2.9)
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The model parameter βτ depends on τ , which allows quantifying different effects sizes for

quantile(s) of interest. If the covariate X affects different moments of the outcome distribution

(e.g. mean, variance, skewness, etc.), the effect of X on, for example, the median (τ = 0.5) is

not necessarily the same as the effect on, for example, the 90% percentile (τ = 0.9).

If we define a loss function as

ρτ (u) := u[τ − I (u < 0)],

then a consistent estimator of βτ is given by

β̂τ := argminβ

n∑
i=1

ρτ (Yi −ZT
i β).

The minimum can be found by reformulating the problem as a linear program and by using

simplex methods; see chapter 6 in Koenker (2005) for more details.

Consider the QRM for a simple predictor X ,

Qτ (Y | X) = β0τ + β1τX.

The interpretation of β1τ follows from

β1τ = Qτ (Y | X = x+ 1)−Qτ (Y | X = x) ,

i.e. β1τ quantifies the additive change in the τ th quantile if the predictor is increased by one

unit. We refer to Koenker (2005) for an extensive overview of quantile regression models. The

interpretation of a QRM is also illustrated in Section 2.5.3.

2.3 The probabilistic index model

In this section we introduce a new model: the probabilistic index model.

2.3.1 Model formulation

Let (Y,X) and (Y ′,X ′) be i.i.d., then a PIM is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (2.10)
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where m(·) is a function with range [0, 1] and subject to some smoothness conditions, which we

address later. Here, β is the p-dimensional parameter vector. For the model to have a coherent

interpretation, the function m(·) must satisfy m(X,X ′;β) = 1−m(X ′,X;β), i.e. m(·) must

be antisymmetric about 1. This follows from P (Y 4 Y ′ |X,X ′) + P (Y ′ 4 Y |X,X ′) = 1,

which also holds for discrete outcomes because of the definition of the PI as in (1.1). The

antisymmetry condition implies that m(X,X;β) = 0.5.

When m(·) does not satisfy the antisymmetry condition, the model may still be coherent when

(2.10) is only defined for allX ≺X ′ orX �X ′. The former refers to an order relation among

the covariate patterns; so does the latter, but it includesX = X ′. An order relation that we will

use throughout the dissertation is the lexicographical ordering.

Definition 1 (lexicographical ordering). Let X = (X1, X2)T and X ′ = (X ′1, X
′
2)T denote

two vectors, then X is lexicographically smaller or equal to X ′, denoted as X �lex X ′, if

X1 < X ′1, or if X1 = X ′1 then X2 ≤ X ′2.

By applying this definition recursively we can extend this order relation to vectors of dimension

larger than two. See Fishburn (1974) for more information about the lexicographical order.

To avoid having to make throughout the dissertation always the distinction between models for

which the antisymmetry condition holds and models for which an order restriction is imposed,

we introduce the set X of elements (X,X ′) for which model (2.10) is defined.

We use the notation X0 when no order restriction is imposed, i.e. X0 := {(X,X ′) | ∀X,X ′},

further referred to as the no-order restriction. When the lexicographical order restriction is

imposed, we use the notation Xlex, i.e. Xlex := {(X,X ′) |X �lex X ′}.

To summarize, the PIM is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β) for all (X,X ′) ∈ X . (2.11)

This model expresses restrictions on the conditional distribution of Y given X , but it does not

fully specify this distribution, so that it is a semiparametric model. When P (Y = Y ′ |X,X ′) =

0 for all (X,X ′) ∈ X model (2.11) may just as well be defined in terms of P (Y < Y ′ |X,X ′).

For the smoothness conditions, we impose the function m(·) to be related to a linear predictor,

say, ZTβ with Z a p-vector with elements that may depend on X and X ′. In many examples
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Z = X ′ −X will be a convenient and meaningful choice. More specifically, we consider a

model function m(·) of the form

m(X,X ′;β) = g−1(ZTβ), (2.12)

with g(·) a sufficiently smooth link function that maps [0, 1] onto the range of ZTβ, which is

usually the real line. In this dissertation we restrict g(·) to the logit, probit, and identity link.

However, other link function can be used as well.

Although ZTβ may include an intercept or an offset, we sometimes choose to write the lin-

ear predictor as β0 + ZTβ, where β0 is the intercept or offset. If the scope of the PIM in-

cludes X = X ′ and the outcome is continuous, the offset β0 must be set to a constant so that

P (Y 4 Y ′ |X = X ′) = 0.5. The offset thus depends on the link function. For example, when

Z = X ′ −X the offsets for the logit, probit, and identity link become β0 = 0, β0 = 0, and

β0 = 0.5, respectively.

2.3.2 Parameter estimation and inference

Define I (Y 4 Y ′) := I (Y < Y ′) + 0.5I (Y = Y ′) in which I (Y < Y ′) and I (Y = Y ′) denote

the usual indicator functions evaluated for the events {Y < Y ′} and {Y = Y ′}, respectively.

Since

E (I (Y 4 Y ′) |X,X ′) = E (I (Y < Y ′) |X,X ′) +
1

2
E (I (Y = Y ′) |X,X ′)

= P (Y < Y ′ |X,X ′) +
1

2
P (Y = Y ′ |X,X ′)

= P (Y 4 Y ′ |X,X ′) ,

and upon using (2.12), PIM (2.11) can be written as

E (I (Y 4 Y ′) |X,X ′) = g−1(ZTβ), (X,X ′) ∈ X . (2.13)

If {(Yi,X i) | i = 1, . . . , n} denotes a sample of n i.i.d. random observations, model for-

mulation (2.13) suggests that the β parameter vector can be estimated using the set of pseudo-

observations Iij := I (Yi 4 Yj) for all i, j = 1, . . . , n for which (X i,Xj) ∈ Xn := {(X i,Xj) |

i, j = 1, . . . , n∧ (X i,Xj) ∈ X}. In terms of the random sample, model (2.13) is equivalent to

E (Iij |X i,Xj) = g−1(ZT
ijβ), (X i,Xj) ∈ Xn, (2.14)
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where Zij is function ofX i andXj; e.g. Zij = Xj −X i.

In particular, model (2.13) resembles a semiparametric restricted moment model as discussed

in Section 2.2.3, in which the conditional mean of the pseudo-observations is specified. In the

spirit of generalized estimating equations (Liang and Zeger, 1986; Zeger and Liang, 1986), we

propose to estimate the parameters by solving the estimating equations

Un(β) =
∑

(i,j)∈In

U ij(β) =
∑

(i,j)∈In

A(Zij;β)[Iij − g−1(ZT
ijβ)] = 0, (2.15)

where In is the set of indexes (i, j) for which (X i,Xj) ∈ Xn, i.e. In := {(i, j) | (X i,Xj) ∈

Xn}, andA(Zij;β) is a p-dimensional vector function of the regressorsZij , subject to smooth-

ness and regularity conditions which are discussed in greater detail in Chapter 7. For now, we

often consider

A(Zij;β) =
∂g−1(ZT

ijβ)

∂β
V −1(Zij;β), (2.16)

where V (Zij;β) = ν−1Var (Iij | Zij) with ν a scale parameter. This choice corresponds to

the generalized estimating equations (2.7) with the independent working correlation matrix.

However, since I (Yi 4 Yj)
2 = I (Yi < Yj) + 0.25I (Yi = Yj) = I (Yi 4 Yj) − 0.25I (Yi = Yj),

it follows that

Var (Iij | Zij) = E(I (Yi 4 Yj)
2 |X i,Xj)− E(I (Yi 4 Yj) |X i,Xj)

2

= g−1(ZT
ijβ)[1− g−1(ZT

ijβ)]− 1

4
P (Yi = Yj |X i,Xj) .

If the outcome is continuous P (Yi = Yj |X i,Xj) = 0 and

V (Zij;β) =
1

ν
g−1(ZT

ijβ)[1− g−1(ZT
ijβ)]. (2.17)

For a discrete outcome P (Yi = Yj |X i,Xj) 6= 0, but for simplicity we still use the variance

function (2.17). Let β̂n denote the estimator, defined as the root of (2.15), where for notational

convenience we sometimes write β̂ suppressing the dependence on n.

The conditional mean in (2.13) does not refer to the mean of the conditional distribution of

the outcome, but it refers to the conditional mean of the pseudo-observations. Moreover, the

pseudo-observations are not mutually independent. For example,

Cov[I (Yi 4 Yj) , I (Yi 4 Yk)] = P[Yi < min(Yj, Yk)] +
1

2
P (Yi = Yk ∧ Yi < Yj) +

1

2
P (Yi = Yj ∧ Yj < Yk) +

1

4
P (Yi = Yj = Yk)−

P (Yi 4 Yj) P (Yi 4 Yk) .
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For a continuous outcome this simplifies to

Cov[I (Yi < Yj) , I (Yi < Yk)] = P[Yi < min(Yj, Yk)]− P (Yi < Yj) P (Yi < Yk) ,

which is, in general, different from zero. The pseudo-observations possess a cross-correlation

structure, i.e. if two pseudo-observations share a common outcome, they will in general not be

independent. Consider three independent outcomes Yi, i = 1, 2, 3, then I (Y1 4 Y2) is associated

with I (Y1 4 Y3), I (Y3 4 Y1), I (Y2 4 Y3), I (Y3 4 Y2), and I (Y2 4 Y1).

Despite the close relationship between our method of estimation and generalized estimating

equations, the asymptotic distributional properties of the estimator β̂ do not follow immedi-

ately from these theories, because the cross-correlation results in a different dependence struc-

ture than, for example, block independence as in clustered or longitudinal data. Neither does

the correlation structure resembles the decaying associations as in time-series or as in spatial

processes.

Lemmas 1 and 2 following state that the pseudo-observations possess the sparse correlation

structure, as introduced by Lumley and Mayer-Hamblett (2003). This result makes their semi-

parametric theory directly applicable to our setting. Theorems 1 and 2 following summarize the

most important distribution theory results for the PIM.

Note that when g−1(ZT
ijβ) = 1−g−1(ZT

jiβ), i.e. the model is antisymmetric about one, and for

A(·) as in (2.16), it follows thatA(Zij;β) = −A(Zji;β). Furthermore, the solution of (2.15)

for the no-order restriction is identical to the solution for a lexicographical order restriction.

This follows from

n∑
i=1

n∑
j=1

A(Zij;β)[Iij − g−1(ZT
ijβ)] = 0

⇔
n−1∑
i=1

n∑
j=i+1

A(Zij;β)[Iij − g−1(ZT
ijβ)] +

n−1∑
j=1

n∑
i=j+1

A(Zij;β)[Iij − g−1(ZT
ijβ)] +

n∑
i=1

A(Zii;β)[0.5− 0.5] = 0

⇔
n−1∑
i=1

n∑
j=i+1

A(Zij;β)[Iij − g−1(ZT
ijβ)] = 0.

The last step follows from Iij = 1 − Iji, g−1(ZT
ijβ) = 1 − g−1(ZT

jiβ), and A(Zij;β) =

−A(Zji;β). Therefore, when the PIM satisfies the antisymmetry condition, the lexicographical
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ordering is preferred over the no-order restriction, for only half of the pseudo-observations are

needed.

We start with the defining sparse correlation in the context of pseudo-observations. A more

general definition can be found in Lumley and Mayer-Hamblett (2003).

Definition 2 (Sparse correlation). Let {Iij | (i, j) ∈ In} denote a set of pseudo-observations.

For each pseudo-observation Iij , a set of pairs of indices {Sij | (i, j) ∈ In} is defined such that

(k, l) /∈ Sij and (i, j) /∈ Skl implies Iij and Ikl are independent. Let Mnij denote the number of

pairs in Sij , let Mn = max(i,j)∈In Mnij and let mn denote the size of the largest subset T such

that Sij ∩ Skl = � for all pairs (i, j), (k, l) ∈ T . Then the set of pseudo-observations is called

sparsely correlated if we can choose {Sij | (i, j) ∈ In} so that Mnmn = O(|In|), with |In| the

number of pseudo-observations.

In the following lemmas we demonstrate that the pseudo-observations are sparsely correlated

when the no-order restriction or the lexicographical order restriction are imposed.

Lemma 1 (Sparse correlation: no-order restriction). The no-ordered pseudo-observations pos-

sess the sparse correlation structure.

Proof. Each pseudo-observation Iij with (i, j) ∈ In = {(i, j) | i 6= j and i, j = 1, . . . , n}

is correlated with 4n − 7 other pseudo-observations. Indeed, let k = 1, . . . , n with k 6= i and

k 6= j, then Iij is correlated with Iik, Ikj, Iki, Ijk, Iji, and with itself. ThusMn = Mnij = 4n−6.

The largest set of pseudo-observations that are mutually independent consists of any Iij and all

other Ikl with i, j, k, l mutually distinct. The size of this set is thus bn/2c, i.e. the largest integer

not larger than n/2. Suppose that n is even. Then

Mnmn = (4n− 6)n/2 = 2n2 − 3n = O(n2).

Since O(|In|) = O(n2), the lemma holds for n even. Similarly, when n is odd, Mnmn =

(4n− 6)bn/2c = O(n2) = O(|In|).

Lemma 2 (Sparse correlation: lexicographical order restriction). The lexicographical ordered

pseudo-observations possess the sparse correlation structure.

Proof. The lexicographical pseudo-observations Iij for which X i �lex Xj can be obtained

by sorting the data (Y,X) based on lexicographical ordering on X and then considering the
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pseudo-observations Iij with (i, j) ∈ In = {(i, j) | i < j and i, j = 1, . . . , n}. Each pseudo-

observation Iij is correlated with 2n − 4 other pseudo-observations. Indeed Iij is correlated

with

• Iik where k = i+ 1, . . . , n and k 6= j,

• Ikj where k = 1, . . . , j − 1 and k 6= i,

• Iki where k = 1, . . . , i− 1,

• Ijk where k = j + 1, . . . , n,

and with itself. Thus Mn = Mnij = 2n − 3. The largest set of pseudo-observations that are

mutually independent consists of any Iij and all other Ikl with i < j, k < l mutually distinct.

The size of this set is thus bn/2c. Suppose that n is even. Then

Mnmn = (2n− 3)n/2 = n2 − 3n/2 = O(n2).

Since O(|In|) = O(n2), the lemma holds for n even. Similarly, when n is odd, Mnmn =

(2n− 3)bn/2c = O(n2) = O(|In|).

Since the following two theorems are special cases of theorem 7 of Lumley and Mayer-Hamblett

(2003) we will omit the proof. We define the true β parameter, β0, as the unique solution of

lim
n→∞

E

|In|−1
∑

(i,j)∈In

A(Zij;β)
[
I (Yi 4 Yj)− g−1(ZT

ijβ)
] = 0. (2.18)

The regularity conditions in the statement of Theorem 1 imply the existence of β0. For a more

detailed discussion on the regularity and smoothness conditions under which the asymptotic

properties of the estimator as given in Theorems 1 and 2 hold, we refer to Chapter 7, where

asymptotics for PIMs are developed without relying on the sparse correlation theory.

Theorem 1 (Asymptotic normality). Consider the PIM (2.14) with predictorsZij taking values

in a bounded subset of Rp. We make the following assumptions:

A1 the pseudo-observations are sparsely correlated as in Lemma 1 or Lemma 2;

A2 the link function g(·) and the variance function V (·) have three continuous derivatives;
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A3 the true parameter β0, as defined by (2.18), is in the interior of a convex parameter space;

A4 there exist a vectorW and positive definite matrix T such that

|In|−1
∑

(i,j)∈In

Zij
p→W and |In|−1

∑
(i,j)∈In

ZijZ
T
ij

p→ T ;

A5 lim supn−1Var
(∑

(i,j)∈In Iij

)
> 0.

If β̂n is defined as the solution of (2.15) with A(·) as in (2.16), then, as n → ∞,
√
n(β̂n −

β0) converges in distribution to a multivariate Gaussian distribution with zero mean and some

positive definite variance-covariance matrix Σ.

Theorem 2 (Consistent variance estimator). Under the regularity conditions of Theorem 1, the

variance-covariance matrix Σ can be consistently estimated by the sandwich estimator nΣ̂β̂n
,

where

Σ̂β̂n
=

 ∑
(i,j)∈In

∂U ij(β̂n)

∂βT

−1 ∑
(i,j)∈In

∑
(k,l)∈In

φijklU ij(β̂n)UT
kl(β̂n)

 ∑
(i,j)∈In

∂U ij(β̂
T

n )

∂β

−1

,

for which the indicator φijkl is defined as φijkl = 1 if Iij and Ikl are correlated and φijkl = 0

otherwise.

In summary, for large finite n and if the PIM (2.14) holds, the distribution of β̂n is approximately

multivariate normal with mean β0 and a variance-covariance matrix which can be estimated

by Σ̂β̂n
. In the following section this approximation for finite sample sizes is evaluated in a

simulation study.

In the remainder of this dissertation we often drop the subscript n in β̂n and Σ̂β̂n
. The distri-

butional properties of Theorems 1 and 2 allow to estimate and to construct confidence intervals

for the model parameters β. Furthermore, null hypotheses of the form

H0 : βi = β0,

for some fixed constant β0 (not to be confused with the intercept) can be tested with Wald-type

statistics
β̂i − β0√(

Σ̂β̂

)
ii

,
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which have an approximate standard normal null distribution, where (B)ii denotes the ith diag-

onal element of a matrixB. Similarly, a general linear null hypothesis

H0 : Cβ = β0,

with β0 a vector of constants and C a contrast matrix, can be tested with the generalized

quadratic from (
Cβ̂ − β0

)T (
CΣ̂β̂C

T
)− (

Cβ̂ − β0

)
,

which has a chi-squared null distribution with degrees of freedom equal to the rank ofCΣ̂β̂C
T

and whereB− denotes a generalized inverse of a square matrixB.

2.4 Simulation study

A generic problem in the set-up of simulation studies for the evaluation of semiparametric

methods is that a semiparametric model encompasses a large class of parametric data generating

models. For example, the semiparametric linear regression model (SLRM)

E (Y | X) = αX, (2.19)

encompasses the infinite class of data generating models {Y = αX + ε | E (ε | X) = 0}. For

example, the parametric normal linear model with ε d
= N(0, σ2), results in the SLRM (2.19).

However, this also holds for linear models with a t-distributed error, i.e. ε d
= tf , or for other zero

mean error distributions. Thus many parametric models can result in the same semiparametric

model. A similar argumentation holds for the semiparametric PIMs. However, in general the

relationship between PIMs and data generating models is often more complicated than that of

the SLRM.

We have chosen to generate data with a normal linear regression model and an exponential

generalized linear model. Each of these parametric models embed a PIM; this is discussed in

detail in Sections 3.2 and 3.3. Table 2.1 summarizes the relationships between three parametric

data generating models and the induced PIM.

All computations have been performed with the R software (R Core Team, 2012) and all PIMs

are defined for the lexicographical order restriction and are equivalent to the no-order restriction

as they all satisfy the antisymmetry condition; see Section 2.3.2 for more information.
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Table 2.1: Three parametric data generating models and their corresponding PIM

data generating model embedded PIM relationship

Y | X P (Y 4 Y ′ | X,X ′)

N(αX , σ2) Φ[β(X ′ −X)] β = α/
√

2σ2

N(αX , σ2X) Φ[β(X ′ −X)/
√
X ′ +X] β = α/σ

Exponential[exp(αX)] expit[β(X ′ −X)] β = −α

2.4.1 The normal linear model

We consider the model

Yi = αXi + εi, i = 1, . . . , n, (2.20)

where εi | Xi
d
= N[0, σ2

ε(Xi)]. Sample sizes of n = 25, n = 50, and n = 200 are considered.

The predictor X takes equally spaced values in the interval [0.1, u] where u = 1 or 10. The

parameter α equals 1 or 10. Table 2.2 presents the results for a constant standard deviation, i.e.

σε(X) = σ, with σ = 1 or σ = 5. From Table 2.1 the corresponding PIM is given by

Φ−1 [P (Y 4 Y ′ | X,X ′)] = β(X ′ −X), (2.21)

where β = α/
√

2σ2.

For each setting, 1000 Monte Carlo simulation runs are used for the empirical investigation of

the distribution of the semiparametric estimator of β. The semiparametric estimator of Section

2.3.2 is denoted by β̂, and it is further referred to as the PIM estimator. Table 2.2 shows for each

simulation setting the true β parameter and the average of the simulated estimates. The latter

is an approximation of the true mean of the estimator. The table also reports the average of

the simulated sandwich variance estimates, which is an approximation of the expectation of the

sandwich estimator, and the sample variance of the 1000 estimates β̂, which is an approximation

of the true variance of the estimator β̂. The empirical coverages of 95% confidence intervals for

β are also reported.

From Table 2.2 we conclude that the PIM estimator of β is nearly unbiased, particularly for

sample sizes of 50 and more. A similar conclusion holds for the sandwich variance estimator.

The empirical coverages of the 95% confidence intervals are relatively close to their nominal
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level for sample sizes of 50 and more, except for α = 10 and u = σ = 1 because of an

underestimation of the variance. Figure 2.1 shows the normal QQ-plots of 1000 simulated

estimates when α = 1, u = 10, and σ = 1 or σ = 5, respectively. For σ = 1 there is

a substantial deviation from normality in the right tail for n = 25 and n = 50 due to tied

estimates. This can be explained as follows. For this setting, the outcome Y has low variability

and the pseudo-observations I (Y 4 Y ′) will be similar to I (X 4 X ′). Since the covariates are

fixed by design and lexicographically ordered, I (X 4 X ′) is fixed for the 1000 simulation runs.

Consequently, the pseudo-observations will be very similar over the simulation runs, explaining

the tied estimates in the right tail. As the sample size increase, the distribution of the design

points becomes more dense, so that, in general, I (Y 4 Y ′) will be different from I (X 4 X ′)

because of the random error and hence the tied estimates disappear. This is illustrated in the top

right panel of Figure 2.1. Furthermore, for σ = 5 the normal approximation of the estimator is

reasonable, even for sample size n = 25.

Table 2.3 shows the results of simulations of heteroscedastic data with σε(X) = σ
√
X and

X > 0, where σ = 1 or σ = 5. The corresponding PIM is given by (see Table 2.1)

Φ−1 [P (Y 4 Y ′|X,X ′)] = β
X ′ −X√
X ′ +X

,

where β = α/σ. Similar conclusions hold as for the homoscedastic setting, except for α = 10,

u = 1, and σ = 1 for which the sandwich estimator consistently overestimates the true variance.

This is a consequence of many tied estimates, similar as in the top left panel of Figure 2.1

(results not shown). Furthermore, the coverages of the confidence intervals are slightly worse

as compared to the homoscedastic setting.

2.4.2 The exponential model

Let Yi | Xi
d
= Exponential[γ(Xi)] with

γ(Xi) = exp(αXi), i = 1, . . . , n. (2.22)

Sample sizes of n = 25, n = 50, and n = 200 are considered. The predictor X takes equally

spaced values in the interval [0.1, u] where u = 1 or 10 and α takes on the value 0.1 or −2. The

corresponding PIM is

logit [P (Y 4 Y ′ | X,X ′)] = β(X ′ −X), (2.23)
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Table 2.2: Simulation results for the normal linear homoscedastic model, based on 1000 Monte

Carlo runs. β is the true parameter, Av(β̂) the average of the β PIM estimates, Var(β̂) the sam-

ple variance of the simulated β̂, Av(Ŝβ̂) the average of the sandwich variance PIM estimates,

EC the empirical coverage of a 95% confidence interval for β.

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC (%)

n = 25

1 1 1 0.707 0.736 0.33900 0.27877 92.0

1 1 5 0.141 0.130 0.32438 0.27008 92.8

1 10 1 0.707 0.721 0.00990 0.01184 93.0

1 10 5 0.141 0.149 0.00332 0.00248 90.2

10 1 1 7.071 7.309 1.55061 1.22519 85.7

10 1 5 1.414 1.463 0.40365 0.29884 88.7

n = 50

1 1 1 0.707 0.736 0.16640 0.15048 92.9

1 1 5 0.141 0.148 0.14905 0.14542 93.5

1 10 1 0.707 0.714 0.00615 0.00634 94.4

1 10 5 0.141 0.147 0.00148 0.00139 93.4

10 1 1 7.071 7.224 0.78701 0.67363 89.1

10 1 5 1.414 1.465 0.18646 0.16191 92.5

n = 200

1 1 1 0.707 0.716 0.03803 0.03942 95.3

1 1 5 0.141 0.145 0.04048 0.03817 94.8

1 10 1 0.707 0.709 0.00179 0.00170 94.3

1 10 5 0.141 0.141 0.00037 0.00036 95.6

10 1 1 7.071 7.110 0.19105 0.17489 93.2

10 1 5 1.414 1.427 0.04400 0.04308 95.0
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Figure 2.1: QQ-plots of β̂ associated with PIM (2.21) for α = 1, u = 10, n = 25, 50, and 200,

and σ = 1 (upper panels) or σ = 5 (lower panels)
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Table 2.3: Simulation results for the normal linear heteroscedastic model, based on 1000

Monte Carlo runs. β is the true parameter, Av(β̂) the average of the β PIM estimates, Var(β̂)

the sample variance of the simulated β̂, Av(Ŝβ̂) the average of the sandwich variance PIM

estimates, EC the empirical coverage of a 95% confidence interval for β.

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC (%)

n = 25

1 1 1 1 1.052 0.34771 0.27673 91.2

1 1 5 0.2 0.192 0.31399 0.26122 92.8

1 10 1 1 1.045 0.05487 0.03584 90.1

1 10 5 0.2 0.206 0.02317 0.01884 92.2

10 1 1 10 9.268 0.50991 1.75345 93.9

10 1 5 2 2.080 0.46761 0.32145 88.4

10 10 5 2 2.088 0.13541 0.10231 85.5

n = 50

1 1 1 1 1.032 0.17125 0.15259 92.9

1 1 5 0.2 0.210 0.14692 0.14205 94.4

1 10 1 1 1.025 0.02554 0.01967 90.0

1 10 5 0.2 0.208 0.01086 0.01034 94.4

10 1 1 10 9.410 0.22462 0.95066 96.0

10 1 5 2 2.063 0.20438 0.17953 92.5

10 10 5 2 2.046 0.06469 0.05539 91.4

n = 200

1 1 1 1 1.010 0.03905 0.04005 95.1

1 1 5 0.2 0.204 0.03891 0.03740 95.2

1 10 1 1 1.006 0.00568 0.00557 93.6

1 10 5 0.2 0.198 0.00271 0.00275 95.8

10 1 1 10 9.576 0.04093 0.26446 97.1

10 1 5 2 2.016 0.05006 0.04843 94.1

10 10 5 2 2.007 0.01548 0.01465 94.1
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where β = −α. Table 2.4 gives the results when model (2.23) is analyzed with the semipara-

metric PIM theory, resulting in β̂.

From Table 2.4 we conclude that the PIM estimator of β and the sandwich variance estimator

are nearly unbiased, particularly for sample sizes of 50 and more. The empirical coverages of

the 95% confidence intervals are close to their nominal level for sample sizes of 50 and more.

Table 2.4: Simulation results for the exponential model, based on 1000 Monte Carlo runs. β

is the true parameter, Av(β̂) the average of the β PIM estimates, Var(β̂) the sample variance of

the simulated β̂, Av(Ŝβ̂) the average of the sandwich variance PIM estimates, EC the empirical

coverage of a 95% confidence interval for β.

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC (%)

n = 25

−2 1 1 −2 −2.226 1.19067 0.89060 90.4

0.1 10 1 0.1 0.110 0.00902 0.00630 91.1

n = 50

−2 1 1 −2 −2.083 0.54166 0.47159 93.7

0.1 10 1 0.1 0.103 0.00337 0.00333 95.0

n = 200

−2 1 1 −2 −2.023 0.12394 0.12220 94.7

0.1 10 1 0.1 0.098 0.00090 0.00087 94.6

2.5 Examples

To illustrate the interpretation of the PIM we present several examples. In Section 2.5.1 we

present the data analysis for a continuous outcome and two predictors showing an interaction

effect. The example of Section 2.5.2 has an ordinal outcome variable and two predictors without

an interaction effect. An example data set with a continuous outcome and a single continuous

regressor is presented in Section 2.5.3. Unless stated otherwise, all PIMs are defined for the

lexicographical order restriction, but since they all satisfy the antisymmetry condition, they are

equivalent to the no-ordered restricted PIMs; see Section 2.3.2 for more information. To avoid
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lengthy formulas we sometimes drop the conditioning in the PI notation. All hypothesis tests

are performed at the 5% level of significance and all computations are performed with the R

software (R Core Team, 2012).

2.5.1 The childhood respiratory disease study

The Childhood Respiratory Disease Study (CRDS) is a longitudinal study following the pul-

monary function in children. We only consider the part of this study provided by Rosner (1999).

The outcome is the forced expiratory volume (FEV), which is an index of pulmonary function

measured as the volume of air expelled after one second of constant effort. Along with FEV

(litres), the AGE (years), HEIGHT (inches), SEX, and SMOKING status (1 if the child smokes,

0 if the child does not smoke) are provided for 654 children of ages 3− 19. See Rosner (1999,

p. 41) for more information. The primary focus is on the analysis of the effect of smoking

status on the pulmonary function. The left and middle panels of Figure 2.2 display the FEV as a

function of the AGE and SMOKING status; note that all very young children are non-smokers.

It is believed that age may be a potential confounder, and thus the effect of smoking on FEV

should be adjusted for age. Figure 2.3 shows nonparametric density estimates of the FEV distri-

butions for several combinations of smoking status and age. This figure suggests an interaction

effect between age and smoking status. In addition to the smoking effect, it is also of interest to

quantify the effect of age.
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Figure 2.2: Left: FEV as a function of AGE for smokers. Middle: FEV as a function of AGE

for non-smokers. Right: Studentized residuals in function of the fitted values of LRM (2.24).

The solid line corresponds to a nonparametric estimate of the regression function.
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Figure 2.3: Kernel density estimates of the FEV distributions for non-smokers (solid line —

) and smokers (dashed line − − −) of age 12 years (top left), 13 years (top right), 14 years

(bottom left), and 15 years (bottom right). The densities are estimated using a Gaussian kernel

with a bandwidth of 0.5. Beneath (non-smokers) and above (smokers) each kernel density plot

is a rug plot to identity better the individual sample observations that are used for the density

estimation.
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For comparison purposes we first analyze the data with a linear regression model (LRM) with

mean

E(FEV | AGE,SMOKE) = α0 + α1AGE + α2SMOKE + α3AGE ∗ SMOKE. (2.24)

Table 2.5 gives the model fit with ordinary least squares (OLS). Since the residual plot in the

right panel of Figure 2.2 indicates non-constant variance of the error, we also fit the regression

model using weighted least squares (WLS) (see Table 2.5). The weights were obtained by fitting

the absolute residuals of OLS in a linear regression model with the fitted values of OLS as the

regressor.

Table 2.5: Results of the OLS and WLS fits of model (2.24) and the results of the fit of the PIM

(2.25)

Estimate SE p-value

LRM OLS

intercept (α0) 0.25 0.083 0.002

AGE (α1) 0.24 0.008 < 0.001

SMOKE (α2) 1.94 0.41 < 0.001

AGE*SMOKE (α3) −0.16 0.03 < 0.001

LRM WLS

intercept (α0) 0.32 0.054 < 0.001

AGE (α1) 0.24 0.007 < 0.001

SMOKE (α2) 1.84 0.51 < 0.001

AGE*SMOKE (α3) −0.15 0.03 < 0.001

PIM

AGE (β1) 0.61 0.03 < 0.001

SMOKE (β2) 5.31 1.04 < 0.001

AGE*SMOKE (β3) −0.46 0.08 < 0.001

With WLS the age-specific effect of smoking on the mean level of FEV, upon using the notation
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E (Y ′ − Y |X,X ′), is estimated as

Ê (FEV′ − FEV | AGE = AGE′,SMOKE = 0,SMOKE′ = 1)

= Ê(FEV | AGE,SMOKE = 1)− Ê(FEV | AGE,SMOKE = 0)

= α̂2 + α̂3AGE = 1.84− 0.15AGE.

If we consider, for example, the age categories 12, 13, 14, and 15 of Figure 2.3, the effect

of smoking on the mean FEV is estimated by 0.01, −0.14, −0.29, and −0.45, respectively,

and the 95% confidence intervals are given by [−0.19, 0.21], [−0.33, 0.05], [−0.49,−0.09],

and [−0.68,−0.21]. Thus for the ages of 14 and 15 years the mean FEV of non-smokers is

significantly larger. These estimated effects and corresponding confidence intervals are also

displayed in the left panel of Figure 2.4, for ages ranging from 11 years to 16 years. This

figure illustrates that the negative effect of smoking on the average lung capacity becomes more

pronounced as the age increases.

When the smoking status is fixed and for an age difference of one year, the mean FEV is

estimated to change by

Ê (FEV′ − FEV | AGE′ = AGE + 1,SMOKE = SMOKE′)

= α̂1 + α̂3SMOKE = 0.24− 0.15SMOKE.

For non-smokers this effect is estimated by 0.24 with a 95% confidence interval of [0.22, 0.25],

whereas for smokers this is 0.082 with 95% confidence interval [0.009, 0.156]. Figure 2.3 sug-

gests that, while controlling for age, smoking does not only affect the mean. The effect of

smoking is also visible in higher-order moments. The probabilistic index is well suited to quan-

tify effects that do not act on a single moment of the outcome distribution.

We consider the probabilistic index model with interaction:

logit[P (FEV 4 FEV′)] = β1(AGE′ − AGE) + β2(SMOKE′ − SMOKE)

+β3(AGE′ ∗ SMOKE′ − AGE ∗ SMOKE). (2.25)

The model has no intercept, because, when AGE′ = AGE and SMOKE′ = SMOKE, the model

must give P (FEV 4 FEV′) = expit(0) = 0.5. The parameter estimates are presented in Table

2.5. For a fixed age, the probability of having a smaller FEV for a randomly selected non-
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smoker as compared to a randomly selected smoker, is estimated as

P̂ (FEV 4 FEV′ | AGE = AGE′,SMOKE = 0,SMOKE′ = 1)

= expit(β̂2 + β̂3AGE) = expit(5.31− 0.46AGE).

This illustrates that the effect of smoking on the PI depends on the age. For the age cate-

gories 12, 13, 14, and 15 from Figure 2.3, the estimated probabilities of having a smaller FEV

for a non-smoker are 46%, 35%, 26%, and 18%, respectively, with 95% confidence intervals

[35%, 57%], [26%, 45%], [18%, 35%], and [11%, 27%]. Thus if the age increases it becomes

less likely that smokers have a larger FEV than non-smokers. This effect is significant at the 5%

level of significance for ages of 13, 14, and 15 years. These estimated effects and corresponding

confidence intervals are also displayed in the right panel of Figure 2.4, for ages ranging from 11

years to 16 years. This figure illustrates that the negative effect of smoking on the lung capacity

becomes more pronounced as the age increases, but instead of focussing on the change in mean

FEV, the effect size is quantified based on the PI.

On the other hand, for two randomly selected children with the same smoking status, but with

a difference of one year in age, the probability that the oldest has a larger FEV is estimated as

P̂ (FEV 4 FEV′ | AGE′ = AGE + 1,SMOKE = SMOKE′)

= expit(β̂1 + β̂3SMOKE) = expit(0.61− 0.46SMOKE).

For non-smokers this probability is estimated by expit(0.61) = 65% while for smokers this

drops to expit(0.15) = 54%. The 95% confidence intervals are given by [63%, 66%] and

[50%, 57%], respectively.

The PIM, just like any parametric or semiparametric regression model, expresses restrictions

on the joint distribution of the outcome and the covariates. As for any other regression model,

it is important to assess the validity of the model for a given data set. Residual plots are used

to assess the goodness-of-fit (GOF) of the LRM (2.24). For PIMs, however, new GOF-tools are

needed and this forms the content of Chapter 5. Therefore, the discussion of assessing the GOF

of PIM (2.25) is postponed to Chapter 5.
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Figure 2.4: Left: estimated effect of smoking on mean FEV, while

keeping AGE fixed and as a function of AGE for model (2.24), i.e.

Ê (FEV′ − FEV | AGE = AGE′,SMOKE = 0,SMOKE′ = 1). Right: estimated effect of

smoking on the PI, while keeping AGE fixed and as a function of AGE for model (2.25),

i.e. P̂ (FEV 4 FEV′ | AGE = AGE′,SMOKE = 0,SMOKE′ = 1). The grey bars indicate the

pointwise 95% confidence intervals and the dashed line (− − −) represents the absence of a

smoking effect.
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2.5.2 The mental health study

The Mental Health Study (MHS) is a study of mental health for a random sample of 40 adult

residents of Alachua County, Florida. See Agresti (2007, p. 185) for more information. The

outcome is Mental Impairment (MI), which is ordinal with categories 1 (well), 2 (mild symp-

tom formation), 3 (moderate symptom formation), and 4 (impaired). Along with the mental

impairment, the life index (LI) and the socioeconomic status (SES) are reported. The SES is

a binary variable coded as 0 (low SES) and 1 (high SES). The LI is a composite measure that

quantifies the severity and the number of important life events such as birth of a child, death in

family, divorce, etc. One of the objectives of the study is to assess whether the SES has an effect

on MI. As it is believed that the LI may be a potential confounder, we consider it as a covariate.

As the average MI score has no clear interpretation, a cumulative logit model can be considered

logit[P (MI ≤ j | SES,LI)] = µj + α1SES + α2LI, j = 1, 2, 3. (2.26)

Table 2.6 presents the parameter estimates based on the MASS R package (Venables and Ripley,

2002).

The cumulative logit model (2.26) gives no significant effect of SES at the 5% level of signifi-

cance (p = 0.07). However, there is a significant effect of the life index on the cumulative logit

(p = 0.008). Since

ˆodds(MI ≤ j | SES,LI + 1)

ˆodds(MI ≤ j | SES,LI)
= exp(α̂2) = exp(−0.32) = 0.73,

it follows that the odds that the mental impairment score is not larger than a particular level

decreases by an estimated factor 0.73 if the LI is one unit higher. The corresponding 95%

confidence interval is [0.56, 0.91]. The cumulative logit model (2.26) can be further extended

so that the covariate effect on the odds ratios for the events MI ≤ j depends on the level j.

Since this more complex model does not fit significantly better (results not shown, p = 0.68),

we keep the model with the proportional odds assumption.

Now consider the PIM

logit [P (MI 4 MI′)] = β1(SES′ − SES) + β2(LI′ − LI). (2.27)

The parameter estimates are presented in Table 2.6. The PIM analysis shows that, at the 5%

level of significance, SES and LI have significant effects on the MI score in terms of the PI.
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Table 2.6: Results of the fits of the cumulative logit model (2.26) and the PIM (2.27)

Parameter Estimate SE p-value

cumulative logit model

intercept 1 (µ1) −0.28 0.64 0.66

intercept 2 (µ2) 1.21 0.66 0.07

intercept 3 (µ3) 2.21 0.72 0.002

SES (α1) 1.11 0.61 0.07

LI (α2) −0.32 0.12 0.008

PIM

SES (β1) −0.74 0.34 0.03

LI (β2) 0.20 0.07 0.006

Moreover, since

P̂ (MI 4 MI′ | SES = 0,SES = 1,LI = LI′) = expit(β̂1) = expit(−0.74) = 32%,

we conclude that, for two randomly chosen persons with equal LI, someone with a high SES

has an estimated probability of 32% to have a larger MI score than someone with a low SES

and a 95% confidence interval is given by [20%, 48%]. People with a low SES are thus more

likely to be mentally impaired than others with a high SES, while all having the same LI.

Similarly, since

P̂ (MI 4 MI′ | SES = SES′,LI′ = LI + 1) = expit(β̂2) = expit(0.2) = 55%,

we conclude that, for two randomly chosen persons with the same SES and a unit difference

of LI, the person with the lowest LI will have a lower MI score with an estimated probability

of 55%, with a 95% confidence interval of [51%, 59%]. Thus, the larger the LI, the more likely

someone is to be mentally impaired.

The PIM (2.27) can also be extended so that the effects of SES and LI on the PI do not only

depend on the differences SES′ − SES and LI′ − LI, but also on the covariates themselves. For
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example,

logit [P (MI 4 MI′)] = β1(SES′ − SES) + β2(LI′ − LI)

+β3SES + β4LI, (2.28)

which is well defined for the strict lexicographical order restriction SES < SES′, or SES = SES′

and LI < LI′. However, this more complex model did not fit significantly better, in the sense

that the null hypothesis

H0 : β3 = β4 = 0,

was not rejected at the 5% level of significance (p = 0.77). Note that the addition of β3SES and

β4LI in model (2.28) is another way of introducing an interaction effect. However, it may not

be consistent with a data generating model as it is difficult to think of a PIM that satisfies the

antisymmetry condition and that reduces to (2.28) for the strict lexicographical ordering. This

illustrates that the flexibility of the PIM framework may lead to models which are not coherent

with an underlying data generating model. Future research should focus on establishing a solid

connection between a PIM and data-generating mechanisms. However, for certain predictor

values, these models can perhaps still provide a good approximation. GOF tools are useful for

assessing model adequacy.

Similar as for the previous example, we postpone the GOF assessment of PIM (2.27) to Chapter

5.

2.5.3 The food expenditure study

The food expenditure data set contains data on the food expenditure (FE, in Belgian francs)

and the annual household income (HI, in Belgian francs) for 235 Belgian working-class house-

holds. Ernst Engel provided these data to support his hypothesis that the proportion spent on

food falls with increasing income, even if actual expenditure on food rises. The data are also

used in Koenker (2005) to illustrate quantile regression and are available in the quantreg

R package (Koenker, 2011). The left panel of Figure 2.5 plots the absolute food expenditure

versus household income. The right panel plots the relative food expenditure percentage (i.e.

FEP := 100FE/HI). These plots suggest that the absolute food expenditure increases with

increasing household income, while the relative food expenditure decreases.
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Consider the quantile regression model (QRM)

Qτ (FEP | HI) = α0τ + α1τHI. (2.29)

Table 2.7 presents the parameter estimates for τ = 0.1, τ = 0.5, and τ = 0.9. If the household

income increases with 1000 Belgian francs, the 10% percentile of relative food expenditure

significantly decreases with an estimate of 9% (95% confidence interval [5%, 13%]). For the

median and the 90% percentile, this effect is 7% ([5%, 12%]) and 6% ([2%, 10%]), respectively.

This analysis supports Engel’s hypothesis that the proportion spent on food falls with increasing

income. The estimated decrease is smaller for households that have a higher relative food

expenditure. This difference is, however, not significant (p = 0.6).

Engel’s hypothesis is also supported by the analysis of the data with the PIM,

logit[P (FEP 4 FEP′)] = β(HI′ − HI). (2.30)

The parameter estimate is presented in Table 2.7. If the household income is, for example, 1000

Belgian francs higher, then the probability of a larger relative food expenditure percentage is

estimated as

P̂(FEP 4 FEP′ | HI′ = HI + 1000) = expit(β̂1000) = expit(−0.94) = 28%,

indicating it is unlikely that the household with the highest income will have a higher relative

food expenditure. The 95% confidence interval is given by [20%, 37%].

The GOF of PIM (2.30) is again postponed to Chapter 5. Furthermore, in Section 3.2 we analyze

the food expenditure data with a more complex PIM.

2.5.4 The Beck depression inventory revisited

In Section 1.5 we analyzed the Beck depression inventory study where the outcome was the

BDI improvement (denoted as BD), defined as the BDI at baseline (BDI0) minus the BDI at the

end of the study (BDI1). Since the BDI is an ordinal outcome, the difference may not have a

meaningful interpretation. Therefore we analyze the data with a more complicated PIM than

(1.6), which does not violate the ordinal nature of the BDI. We consider the PIM

P (BDI1 4 BDI′1) = expit
[
α[I (BDI0 < BDI′0)− I (BDI0 > BDI′0)] + β(DOSE′ − DOSE)

]
.

(2.31)
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Figure 2.5: Left: absolute food expenditure as a function of the household income. Right:

relative food expenditure as a function of the household income. The solid line corresponds to

a nonparametric estimate of the regression function.

Table 2.7: Results of the fits of the QRM (2.29) and the PIM (2.30)

Parameter Estimate SE p-value

QRM

τ = 0.1

intercept (α0) 63 2.68 < 0.001

HI (α1) −0.0094 0.0027 < 0.001

τ = 0.5

intercept (α0) 73 1.84 < 0.001

HI (α1) −0.0073 0.0017 < 0.001

τ = 0.9

intercept (α0) 82 0.9 < 0.001

HI (α1) −0.0062 0.0021 0.005

PIM

HI (β) −0.00094 0.00021 < 0.001
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In both the left and right hand side of the PIM only an ordering between the ordinal BDI’s is

considered. The interpretation of the model parameters follow from

expit(α) = P (BDI1 4 BDI′1 | BDI0 < BDI′0,DOSE′ = DOSE) ,

and

expit(β) = P (BDI1 4 BDI′1 | BDI0 = BDI′0,DOSE′ = DOSE + 1) .

The parameter estimates are α̂ = 2.47 (SE : 0.21, p < 0.001) and β̂ = −0.11 (SE : 0.023,

p < 0.001). We conclude that for two randomly selected patients that received the same dose of

quetiapine, the estimated probability that the patient with highest BDI at baseline will also have

a higher BDI at the end of the study is expit(2.47) = 92%. On the other hand, if we randomly

select two patients with the same baseline BDI and for which one patient receives a dose of

quetiapine which is 5 gram higher, there is an estimated expit(−0.55) = 37% chance that this

patient will have a higher BDI at the end of the study. This suggests that it is more likely

that patients will benefit from the treatment, a conclusion similar to one obtained in Section

1.5 (recall that higher BDI indicates more depressed). Since it is difficult to think of a data

generating model that implies the PIM (2.31), the parametrizations needs to be studied in more

detail. This is beyond the scope of this dissertation.

The GOF of PIM (2.31) is postponed to Chapter 5.

2.6 Subject-specific probabilistic index versus population prob-

abilistic index

In this section we briefly discuss the issue of non-collapsibility for the PI. For a similar discus-

sion on the odds ratio we refer to, for example, Groenwold et al. (2011).

Consider a paired design and a completely randomized independent two sample design. The

data generating mechanisms that we consider here are very simple because this section merely

serves for pointing out potential pitfalls while interpreting the PI on population level versus

interpreting the PI on subject level. A deeper discussion of non-collapsibility within the PIM

framework is beyond the scope of the dissertation. We refer to Hand (1992); Senn (2011);

Vansteelandt (2012) for more details.
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Consider the setting where we want to assess the effect of a treatment on an outcome by means

of a paired design. Let the outcome prior to treatment (no treatment N) be YN
d
= N(µN , σ

2),

and assume that the treatment effect D d
= N(δ, σ2

D), so that the outcome after treatment, say YT ,

is given by YT = YN + D. For this paired design the subject-specific treatment effect in terms

of the PI is given by

P (YN ≤ YT ) = P (YN − YT ≤ 0)

= P (−D ≤ 0)

= P

(
Z ≤ δ

σD

)
where Z =

−D + δ

σD

d
= N(0, 1)

= Φ

(
δ

σD

)
,

while, the subject-specific treatment effect in terms of the mean is given by

E (YT − YN) = E (D) = δ.

Suppose it is infeasible to set up a paired design. As an alternative strategy, the treatment can be

randomized over the subjects so that half of the subjects receive the treatment while the other

half remains untreated (or receives a placebo treatment).

Denote the outcomes prior to the assignment of the treatment for both groups as Ỹ1 and Ỹ2,

respectively, both distributed as N(µN , σ
2), with Ỹ1 and Ỹ2 statistically independent. Suppose

the first group does not receive the treatment so that ỸN := Ỹ1, while for the group receiving

the treatment this is ỸT := Ỹ2 +D. Consequently

ỸN
d
= N(µN , σ

2) and ỸT
d
= N(µN + δ, σ2 + σ2

D).

For these data generating mechanisms, the population PI is given by

P
(
ỸN ≤ ỸT

)
= P

(
ỸN − ỸT ≤ 0

)
= P

(
Z ≤ δ√

2σ2 + σ2
D

)
where Z =

(
ỸN − ỸT

)
+ δ√

2σ2 + σ2
D

d
= N(0, 1)

= Φ

(
δ√

2σ2 + σ2
D

)
.

Consequently, P(ỸN ≤ ỸT ) 6= P (YN ≤ YT ). For the population mean, on the other hand,

E(ỸT − ỸN) = E(ỸT ) − E(ỸN) = δ, so that E(ỸT − ỸN) = E (YT − YN). Therefore, where

a randomized trial allows to quantify the subject-specific effect in terms of the mean (since the
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subject-specific effect coincides with the population effect), this does no longer hold for the PI

so that, for this specific example, the Mann–Whitney estimator of the PI will be a consistent

estimator for the population PI, but not for the subject-specific PI.

2.7 Discussion

A general class of semiparametric models for the PI is introduced and is referred to as a prob-

abilistic index model (PIM). PIMs apply to ordinal, interval, and ratio-scale outcomes and the

model parameters have an informative and intuitive interpretation in terms of the probabilistic

index.

The asymptotic theory is based on the work of Lumley and Mayer-Hamblett (2003), using the

concept of sparse correlation. The estimating equations make use of the score function of re-

gression models under the working independence condition. Although this choice results in

consistent and asymptotically normally distributed parameter estimators, it does not guaran-

tee semiparametric efficient estimators. In Chapter 7 we improve the methods further by the

construction of the asymptotic theory without making use of sparse correlation and by the con-

struction of efficient score functions.

The results of the simulation study demonstrate that the theoretical properties of the parameter

and variance estimators apply relatively well to moderately sized samples. In Chapters 3 and

4 the finite sample properties of these estimators are compared with other techniques. Several

case studies are considered to illustrate the PIM. The assessment of the model adequacy is,

however, postponed to Chapter 5, where goodness-of-fit methods for PIMs are constructed.

Although the PI may be considered as an intuitive effect size measure, there are some pitfall

related to its interpretation in a randomized study. However, this needs to be studied in more

detail.



Chapter 3

Relationship with regression models

The content of this chapter is primarily based on the results published in

Thas, O., De Neve, J., Clement, L., and Ottoy, J.P. (2012) Probabilistic index models (with

discussion). Journal of the Royal Statistical Society - Series B, 74:623–671.

More specifically, it is based on sections 4 and 5 of the manuscript as well as on the discussions

of Thomas Alexander Gerds and Joseph McKean.

3.1 Outline

The main aim of this chapter is to situate the PIM within the statistical landscape of regression

methods. More specifically, the relationship with linear regression is addressed in Section 3.2,

with the Cox proportional hazards model in Section 3.3, with AUC-regression in Section 3.4,

with rank regression in Section 3.5, and with the cumulative logit model in Section 3.6. We also

explore the relationship with the concordance index and show how it can be embedded within

a PIM in Section 3.7. The performance of some of these methods is empirically assessed in a

simulation study in Section 3.8. Section 3.9 gives the conclusions and discussion.

49
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3.2 The linear regression model

Without loss of generality we limit the discussion to a one-dimensional covariate X . Consider

the linear model

Y = µ+ αX + ε, (3.1)

where ε d
= Fε, E (ε) = 0, and ε ⊥⊥ X for a continuous ε . The model can be equivalently

formulated as

Y − (µ+ αX) | X ∼ Fε.

Since Y is continuous, P (Y 4 Y ′) = P (Y < Y ′). Consider the conditional PI for this class of

regression models,

P (Y < Y ′ | X,X ′) = P (µ+ αX + ε < µ+ αX ′ + ε′ | X,X ′)

= P (ε− ε′ < α(X ′ −X) | X,X ′) = F∆[α(X ′ −X)], (3.2)

where F∆ is the distribution function of ε − ε′. Consider a PIM with link function g(·) and

covariate pattern Z that depends on X and X ′

P (Y < Y ′ | X,X ′) = g−1(βZ). (3.3)

Combing (3.2) and (3.3) leads to the relationship

F∆[α(X ′ −X)] = g−1(βZ). (3.4)

If the linear model (3.1) holds, then relationship (3.4) suggests for PIM (3.3) to choose

g−1(u) = F∆(u) and Z = X ′ −X,

for which the model parameter relationship β = α is obtained. We work this out for two linear

models with normal errors.

3.2.1 The homoscedastic normal linear model

Consider the normal linear regression model for which the error term ε
d
= N(0, σ2), i.e.

Fε(u) = Φ
(u
σ

)
,
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with Φ(·) the standard normal distribution function. Since −ε d
= N(0, σ2) and the sum of

two independently normally distributed variables is also normally distributed, if follows that

ε− ε′ d= N(0, 2σ2) so that

F∆(u) = Φ

(
u√
2σ2

)
.

Equation (3.4) becomes

Φ

(
α(X ′ −X)√

2σ2

)
= g−1(βZ).

With Z = X ′ −X and the probit link function g−1(·) = Φ(·), a simple relationship between α

and β is established

β =
α√
2σ2

,

which expresses that β is proportional to α. See, for example, Tian (2008) where this relation-

ship is used to estimate the PI parametrically. From model (3.1) it follows that

α = E (Y | X + 1)− E (Y | X) and σ2 = Var (Y | X) .

Consequently

β =
E (Y | X + 1)− E (Y | X)√

2Var (Y | X)
. (3.5)

Under the normality, linearity, and homoscedasticity assumptions of the regression model we

therefore conclude that β also has an interpretation in terms of the effect ofX on the conditional

mean of the outcome, relative to its conditional variance. Consequently, the PI does not only

quantify the effect of X on the mean outcome, but also takes the variability into account. This

is illustrated in Figure 3.1. For both panels the mean difference is one, while the variance in

the right panel is five times the variance of the left panel. This increase in variance results

in a decrease of the PI. The probability that an observation of the dashed density exceeds an

observation of the solid density is 76% for the left panel, while for the right panel this decreases

to 62%. When the regression model assumptions do not hold, the equivalence (3.5) does not

necessarily hold, but the parameter β in the PIM is still related to the PI according to

β = g [P (Y 4 Y ′ | X,X ′ = X + 1)] .

3.2.2 The heteroscedastic normal linear model

We can also establish the relationship between α and β when the residual variance σ2 is not con-

stant but depends on X , i.e. ε d
= N[0, σ2(X)], which corresponds to Fε(u | X) = Φ[u/σ(X)].
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Figure 3.1: Left: densities for N(0, 1) (solid line —) and N(1, 1) (dashed line − − −). The

probability that an observation of the dashed density exceeds an observation of the solid density

is 76%. Right: densities for N(0, 5) (solid line —) and N(1, 5) (dashed line − − −). The

probability that an observation of the dashed density exceeds an observation of the solid density

is 62%.

Without loss of generality we assume that X > 0 and we only discuss σ2(X) = γX as the

variance function. Similar as for the homoscedastic model one can show that

F∆(u | X,X ′) = Φ

(
u√

γ(X ′ +X)

)
.

Equation (3.4) becomes

Φ

(
α(X ′ −X)√
γ(X ′ +X)

)
= g−1(βZ).

With Z = (X ′−X)/
√
X ′ +X and the probit link function g−1(·) = Φ(·), a simple relationship

between α and β is established

β =
α
√
γ
.

This suggests that the PIM for the heteroscadstic model should be formulated as

P (Y < Y ′ | X,X ′) = Φ

(
X ′ −X√
X ′ +X

β

)
. (3.6)

Model (3.6) gives a slightly different interpretation of β in terms of the PI as compared to the

homoscedastic PIM. For X ′ = X + 1, we find

P (Y < Y ′ | X,X ′ = X + 1) = Φ

(
β√

2X + 1

)
.
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This expression illustrates that the effect of X on the distribution of Y diminishes as X in-

creases, at least in terms of the PI. The increasing residual variance does not affect the co-

variate effect on the mean outcome, but it results in a negative effect modulation in terms

of the PI. This is illustrated in Figure 3.2; the left panel shows heteroscedastic data and the

related regression model E (Y | X) = X . The slope of the regression model is fixed, i.e.

E (Y ′ − Y | X,X ′ = X + 1) = 1, implying that the effect of a unit-increase inX on E (Y | X)

is independent of X , hence ignoring the effect of X on the residual variance. The right panel

shows the corresponding P (Y < Y ′ | X,X ′ = X + 1), which depends on X . Indeed, for ex-

ample, P (Y < Y ′ | X = 1, X ′ = 2) = 72%, while P (Y < Y ′ | X = 9, X ′ = 10) = 59%.

This phenomenon was also noticed by Brumback et al. (2006) and it suggests that one should

take care in interpreting the mean effect parameter in a normal regression model with non-

constant variance because the importance of the covariate effect may actually depend on the

covariate value.
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Figure 3.2: Left: the outcome Y is distributed according to a normal distribution with mean X

and variance X . The solid line corresponds to the regression model E (Y | X) = X . Right: the

corresponding P (Y < Y ′ | X,X ′ = X + 1) as a function of X .
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3.2.3 The food expenditure study revisited

To illustrate the PIM associated with heteroscedastic data, we consider the food expenditure

example of Section 2.5.3. The left panel of Figure 3.3 shows the absolute food expenditure

as a function of the household income. This plot has already been shown in the left panel of

Figure 2.5, but now the household incomes are restricted to 1500 Belgian francs so as to have

a better visualization. It is clear that the variability in absolute food expenditure increases with

increasing household income. Instead of modelling the relative food expenditure percentage

(FEP), we now model the absolute food expenditure (FE) with a PIM similar to (3.6):

P (FE 4 FE′ | HI,HI′) = Φ

[
(HI′ − HI)√

HI′ + HI
β

]
. (3.7)

The estimated slope is β̂ = 0.39 (SE : 0.07) and is highly significant (p < 0.001). The right

panel of Figure 3.3 shows the estimated PI related to a household income increase of 100 Bel-

gian francs, as well as pointwise 95% confidence bounds. For example, if the household income

is 500 Belgian francs then the probability of more food expenditure with a household income

of 600 Belgian francs is estimated as 88.0% with a 95% confidence interval of [77.4%, 94.5%].

When we compare households of 1500 and 1600 Belgian francs this estimated probability drops

to 75.8% with a 95% confidence interval of [67.3%, 82.9%]. This is an example of the negative

effect modification of the increasing error variance.

3.3 The Cox proportional hazards model

Cox proportional hazards regression models (Cox, 1972) form a very popular class of models

for the analysis of survival data, or, more generally, time-to-event data. Although the PIM was

not known during the 1970s, several papers on Cox regression models appear to present results

that are closely related to PIMs. For example, Holt and Prentice (1974), while studying Cox

regression models for paired data, showed that the marginal likelihood of their models contains

factors of the form P (Y1i < Y2i | X1i, X2i), where Y1i and Y2i are paired survival times (e.g.

from twin studies) with covariates X1i and X2i. Under the assumption of proportional hazards

in the absence of censored or tied data, they found that

logit [P (Y1i < Y2i | X1i, X2i)] = β(X1i −X2i),
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Figure 3.3: Left: absolute food expenditure (FE) in function of household income (HI). The

solid line corresponds to a nonparametric estimate of the regression function. Right: estimated

PI associated with a household income increase of 100 Belgian francs based on model (3.7).

The dashed lines correspond to pointwise 95% confidence bounds.

in which the parameter β originates from the hazard function λ(y | X) = λ0(y) exp(βX). Note,

however, that for the PIMs presented in this dissertation, it is assumed that all observations are

mutually independent, whereas Holt and Prentice (1974) developed their method for paired

outcome variables (paired survival times).

Also the marginal likelihood formulation of Kalbfleish and Prentice (1973), which is related

to the ranks of the survival times, is closely related to a PIM and the parameters are again

interpretable in the proportional hazards model.

We will show that conditional distributions that belong to the class of proportional hazards

models imply a PIM with logit link. Let SY |X(y | X) = 1− FY |X(y | X) denote the survival

function. The hazards function is defined as

λ(y |X) = − d

dy
log
[
SY |X(y |X)

]
=
fY |X(y |X)

SY |X(y |X)
. (3.8)

In a proportional hazards model the hazards function allows a factorization of the form

λ(y |X) = λ0(y) exp(XTβ), (3.9)

in which λ0(y) is the baseline hazards function that does not depend on the covariateX . Com-
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bining (3.8) and (3.9) leads to

λ0(y) exp(XTβ) = − d

dy
log
[
SY |X(y |X)

]
⇔ exp(XTβ)

∫
λ0(y)dy = − log

[
SY |X(y |X)

]
. (3.10)

It follows that
∫
λ0(y)dy = − log

[
SY |X(y |X = 0)

]
. If we define the baseline survival func-

tion S0(y) := SY |X(y |X = 0), then from (3.10) we have

exp(XTβ) log[S0(y)] = log
[
SY |X(y |X)

]
.

Thus, within the class of proportional hazards models the survival function is of the form

SY |X(y |X) = [S0(y)]exp(XTβ) . (3.11)

From (3.11) it follows that

dSY |X(y |X)

dy
=

exp(XTβ)

S0(y)
[S0(y)]exp(XT β) dS0(y)

dy

=
exp(XTβ)

S0(y)
SY |X(y |X)

dS0(y)

dy
. (3.12)

This can be equivalently expressed as

SY |X(y |X) =
dSY |X(y |X)S0(y) exp(−XTβ)

dS0(y)
. (3.13)

We substitute these expressions in the conditional PI

P (Y < Y ′ |X,X ′) =

∫
FY |X(y |X)dFY |X(y |X ′)

= −
∫ [

1− SY |X(y |X)
]
dSY |X(y |X ′)

= 1 +

∫
SY |X(y |X)dSY |X(y |X ′) (3.14)

= 1 +

∫ [
dSY |X(y |X)S0(y) exp(−XTβ)

dS0(y)

]
(3.15)

×
[

exp(X ′Tβ)

S0(y)
SY |X(y |X ′)

]
dS0(y)

= 1 + exp
[
(X ′ −X)Tβ

] ∫
SY |X(y |X ′)dSY |X(y |X)

= 1− exp
[
(X ′ −X)Tβ

]
[1− P (Y > Y ′ |X,X ′)]

= 1− exp
[
(X ′ −X)Tβ

]
P (Y < Y ′ |X,X ′) , (3.16)
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where in equation (3.14) we substituted (3.12) and (3.13). Equation (3.16) is equivalent to

P (Y < Y ′ |X,X ′)
{

1 + exp
[
(X ′ −X)Tβ

]}
= 1

⇔ P (Y < Y ′ |X,X ′) =
1

1 + exp [−(X −X ′)Tβ]

⇔ P (Y < Y ′ |X,X ′) = expit[(X −X ′)Tβ].

For survival functions satisfying (3.11), it therefore holds that

logit [P (Y < Y ′ |X,X ′)] = (X −X ′)Tβ.

This illustrates that the PIM with a logit link and with Z = X −X ′ arises naturally from a

widely applicable class of distributions. A straightforward example is the exponential distribu-

tion with rate parameter γ which has a survival function S(y) = exp(−γy). Equation (3.11) is

satisfied with S0(y) = exp(−y) and γ(X) = exp(XTβ).

We refer to Follmann (2002) for the relationship between the PI and the proportional hazards

model in the presence of censoring.

3.4 The AUC regression model

Let Y denote the continuous outcome for a binary classifier, for example, a medical test. Let

X1 denote the two states, where, for example X1 = 0 corresponds to non-diseased and X2 = 1

to diseased patients. For a threshold yt, let Y > yt denote the classification into class X1 =

1. The true positive rate is then defined as P (Y > yt | X1 = 1) and the false positive rate

as P (Y > yt | X1 = 0). The Receiver Operating Characteristic (ROC) curve plots the true

positive rate in function of the false positive rate for varying threshold yt. Figure 3.4 shows the

ROC curves for three classifiers. The solid line results in a relatively good classification: at a

false positive rate of 10%, the true positive rate is 50%. The dashed line correspond to a poor

classification: at a false positive rate of 50%, the true positive rate is only 10%. However, by

changing the predicted labels, this classifier has the same performance as the solid line. The

dotted line corresponds to a classification based on random guessing: for a false positive rate of

x%, the true positive rate is also x%, for x ∈ [0, 100].

As a summary of the performance of a classifier, the Area Under the Curve (AUC) of an ROC
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Figure 3.4: Simulated ROC curve. The solid line (—) corresponds to a relatively good classifi-

cation, the dashed line (−−−) to a bad classification, and the dotted line (· · · ) to a classification

based on random guessing.

curve is considered. As shown by (1.4) in Section 1.3, the AUC corresponds to the PI

P (Y 4 Y ′ | X1 = 0, X ′1 = 1) .

The AUCs corresponding to the solid line and the dashed line of Figure 3.4 are 78% and 22%,

respectively. For the dotted line this is 50%. Dodd and Pepe (2003) developed statistical meth-

ods which allow the AUC to depend on additional covariates, say X . More specifically, their

AUC regression model for a continuous outcome is given by

P (Y < Y ′ | X1 = 0,X, X ′1 = 1,X ′) = g−1(ZTβ), (3.17)

with Z depending on X and X ′. This is a special case of a PIM. Indeed, let X̃
T

= (X1,X
T ),

then model (3.17) can be written as a PIM

P
(
Y < Y ′ | X̃, X̃

′)
= g−1(ZTβ), (X̃, X̃

′
) ∈ X ,

whereX = {(X̃, X̃
′
) | X1 < X ′1}. Dodd and Pepe (2003) provide estimating equations similar

to the estimating equation we propose, as given by (2.15). Their estimator of the variance, how-

ever, is different from the sandwich estimator in Theorem 2. More specifically, their estimator

involves the conditional distribution function FY |X , which must be replaced by a consistent es-

timator. Due to the sparseness of the covariate space this may be obstructed in real data settings.

Dodd and Pepe (2003) therefore suggest to use bootstrap standard errors when covariate data

are continuous or sparse.



3.5. Rank regression and the Hodges–Lehmann estimator 59

3.5 Rank regression and the Hodges–Lehmann estimator

For the class of linear models of Section 3.2 the parameters can be estimated by means of several

methods. With no full parametric assumption on the error distribution, least squares is arguably

the most popular method. However, least squares suffers from the drawback that it is sensitive

to outliers. Rank regression is considered as a robust alternative to least squares. We refer to

McKean (2004) and McKean et al. (2009) for reviews.

Although rank regression parameter estimation can be defined in a general way, we will formu-

late it here only with the Wilcoxon scores. The slope parameter of the linear regression model

(3.1) is estimated by minimizing

n∑
i=1

(
R[Yi − (µ+ αXi)]

n+ 1
− 1

2

)
[Yi − (µ+ αXi)] , (3.18)

where R[Yi− (µ+αXi)] denotes the rank of the residual Yi− (µ+αXi) among the n residuals.

As we will see below, minimizing (3.18) is independent of µ since it drops out of the equation.

The intercept is then typically estimated as µ̂ = mediani(Yi − α̂Xi). The estimate of α is

obtained by solving the estimating equation based on the partial derivative of (3.18),

n∑
i=1

Xi

(
R[Yi − (µ+ αXi)]

n+ 1
− 1

2

)
= 0. (3.19)

The relationship with the estimating equation (2.15) of the PIM parameters becomes more trans-

parent when the rank in (3.19) is replaced by an expression involving the pseudo-observations.

We assume that there are no ties in the residuals. The rank of Yi among the n observations can

be expressed in terms of pseudo-observations as follows

R(Yi) =
n∑
j=1

I (Yj ≤ Yi) =
n∑
j=1

I (Yj 4 Yi) +
1

2
.

Equation (3.19) may then be written as

1

n+ 1

n∑
i=1

Xi

(
n∑
j=1

I[Yj − (µ+ αXj) ≤ Yi − (µ+ αXi)]−
n+ 1

2

)
= 0

⇔ 1

n+ 1

n∑
i=1

Xi

(
n∑
j=1

I[Yj − (µ+ αXj) 4 Yi − (µ+ αXi)]−
n

2

)
= 0

⇔ 1

n+ 1

n∑
i=1

n∑
j=1

Xi

(
I[Yj − (µ+ αXj) 4 Yi − (µ+ αXi)]−

1

2

)
= 0.
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This can be simplified to

n∑
i=1

n∑
j=1

Xi

(
I[Yj 4 Yi − α(Xi −Xj)]−

1

2

)
= 0. (3.20)

To relate this to the PIM framework, consider the PIM

P (Yi 4 Yj | Xi, Xj) =
1

2
+ β(Xi −Xj), (Xi, Xj) ∈ X0,

and the estimating equation (2.15) with the simple index function A(Zij; β) = Zij = Xi −Xj .

Then

n∑
i=1

n∑
j=1

(Xi −Xj)

(
I (Yi 4 Yj)− β(Xi −Xj)−

1

2

)
= 0

⇔
n∑
i=1

n∑
j=1

Xi

(
I (Yi 4 Yj)− β(Xi −Xj)−

1

2

)
−

n∑
i=1

n∑
j=1

Xj

(
I (Yi 4 Yj)− β(Xi −Xj)−

1

2

)
= 0

⇔
n∑
i=1

n∑
j=1

Xi

(
I (Yi 4 Yj)− β(Xi −Xj)−

1

2

)
+

n∑
i=1

n∑
j=1

Xj

(
I (Yj 4 Yi)− β(Xj −Xi)−

1

2

)
= 0

⇔
n∑
i=1

n∑
j=1

Xi

(
I (Yi 4 Yj)− β(Xi −Xj)−

1

2

)
= 0. (3.21)

By comparing the two estimating equations (3.20) and (3.21), we note that the major difference

is that in rank regression the linear predictor α(Xi −Xj) appears within the indicator function,

whereas for the PIM estimation method the linear predictor β(Xi − Xj) appears outside the

indicator function.

Another interesting observation is that the scores Xi and Xi − Xj are interchangeable in the

PIM estimating equation. This also holds true in the estimating equation (3.20) of the rank

regression estimator. Thus pseudo-observations with equal covariate patterns do not contribute

to the estimation of the parameter.

We now take a closer look at both approaches for the two-sample problem, i.e. when the covari-

ate X is a dummy variable coding for two groups. Let X = 1 be used for group 1 and X = 0

for group 2, and suppose that the sample observations are ordered so that the first n1 form group
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1 and the last n2 form group 2. The estimating equation (3.20) becomes

n1∑
i=1

n∑
j=n1+1

(
I (Yi 4 Yj − α̂)− 1

2

)
= 0

⇔ 1

n1n2

n1∑
i=1

n∑
j=n1+1

I (α̂ 4 Yj − Yi) =
1

2

⇔ α̂ = median{Yj − Yi | i = 1, . . . , n1, j = 1, . . . , n2},

which is the Hodges–Lehmann estimator (Hodges and Lehmann, 1963). The PIM estimator is

now the solution of
n1∑
i=1

n∑
j=n1+1

(
I (Yi 4 Yj)− β̂ −

1

2

)
= 0

⇔ β̂ =
1

n1n2

n1∑
i=1

n∑
j=n1+1

I (Yi 4 Yj)−
1

2
,

which is Mann–Whitney statistic divided by n1n2 and minus a half.

3.6 The cumulative logit model

The cumulative logit model (CLM) is briefly discussed in Section 2.2.4 and illustrated in Sec-

tion 2.5.2. Here we consider the specific setting of a single predictor X so as to focus on the

differences in interpretation between a CLM and a PIM. Let the outcome Y be ordinal with

levels {1, . . . , k} and X continuous. Assume that the following CLM is appropriate

logit[P (Y ≤ j | X)] = µj + αX, j = 1, . . . , k − 1. (3.22)

The interpretation of α follows from

exp(α) =
odds(Y ≤ j | X = x+ 1)

odds(Y ≤ j | X = x)
,

i.e. exp(α) quantifies the multiplicative change in odds that the outcome does not exceed a

particular level if the predictor is increased by one unit. On the other hand, if the PIM

logit[P (Y 4 Y ′ | X,X ′)] = β(X ′ −X), (X,X ′) ∈ X0,

is appropriate, the interpretation of β follows from

exp(β) = odds(Y 4 Y ′ | X = x,X ′ = x+ 1),
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i.e. exp(β) quantifies the odds that the outcome increases if the predictor is increased by one

unit. Thus the parameter of the CLM is related to an odds ratio, whereas the parameter of the

PIM is related to an odds and therefore quantifying the effect more directly.

If the predictor is ordinal, a linear modelling of X as in (3.22) will in general not hold. If X

has l levels, say {1, . . . , l}, then a CLM with a dummy-coded X may be more appropriate. For

example

logit[P (Y ≤ j | X)] = µj +
l−1∑
i=1

αiI (X = i) , j = 1, . . . , k − 1, (3.23)

where X = l is the reference group. The interpretation then follows from

exp(αi) =
odds(Y ≤ j | X = i)

odds(Y ≤ j | X = l)
, i = 1, . . . , l − 1.

SometimesX can have many levels; the Beck depression inventory of Section 1.5 is ordinal and

has 64 levels. The visual analogue scale of Section 1.6 is an example of a continuous ordinal

variable. A dummy-coding for these types of predictors will often result in too many parameters.

The PIM framework allows to include such predictors at the cost of a single parameter and

without violating its ordinal nature. More specifically, if the following PIM holds

logit[P (Y 4 Y ′ | X,X ′)] = γ[I (X < X ′)− I (X > X ′)], (X,X ′) ∈ X0, (3.24)

the interpretation follows from

exp(γ) = odds(Y 4 Y ′ | X < X ′),

i.e. exp(γ) gives the odds that the outcome associated with a higher predictor value exceeds the

outcome associated with a lower predictor value. Of course, as for any of the models presented

in this section, goodness-of-fit methods are needed to assess the model adequacy. This forms

the topic of Chapter 5. As we will see in the following section, PIM (3.24) is closely related to

the concordance index.

3.7 The concordance index

The concordance index or C-index has been discussed by several authors; see, for example,

Harrell et al. (1982, 1996). It is especially useful for discrimination of survival prediction



3.7. The concordance index 63

models; see, for example, Gerds et al. (2010); Gerds (2012); Koziol and Jia (2009). A pair of

two variables (Xi, Yi), i = 1, 2, are called concordant if

sign(X1 −X2) = sign(Y1 − Y2).

For a random sample of i.i.d. observations {(Yi, Xi) | i = 1, . . . , n}, with continuous outcome

Y , the C-index is defined as the proportion of concordant pairs, i.e.

C =

∑
{i,j|Xi<Xj} I (Yi < Yj)∑

i,j I (Xi < Xj)
.

Consider the PIM with identity link function

P (Y < Y ′ | X,X ′) =
1

2
+ β[I (X < X ′)− I (X ′ > X)], (X,X ′) ∈ X0.

The interpretation of β follows from

β = P (Y < Y ′ | X < X ′)− 1

2
, (3.25)

i.e. the probability that an outcome associated with a higher X exceeds the outcome associated

with a lower X , reduced with a half. It also holds that

β =
1

2
− P (Y < Y ′ | X ′ < X) ,

which is equivalent to (3.25), since

β =
1

2
− P (Y < Y ′ | X ′ < X)

=
1

2
− [1− P (Y ′ < Y | X ′ < X)]

= P (Y ′ < Y | X ′ < X)− 1

2
.

Let ZT
ij = (1, Zij), with Zij = I (Xi < Xj)− I (Xj > Xi), and βT = (0.5, β). The estimating

equations (2.15) with index functionA(Zij;β) = Zij , become
n∑
i=1

n∑
j=1

Zij

[
I (Yi < Yj)−ZT

ijβ̂
]

= 0

⇔
n∑
i=1

n∑
j=1

Zij

[
I (Yi < Yj)−

(
1

2
+ Zijβ̂

)]
= 0

⇔
∑

{i,j|Xi 6=Xj}

Zij

[
I (Yi < Yj)−

(
1

2
+ Zijβ̂

)]
= 0

⇔
∑

{i,j|Xi<Xj}

[
I (Yi < Yj)−

(
1

2
+ β̂

)]
−

∑
{i,j|Xi>Xj}

[
I (Yi < Yj)−

(
1

2
− β̂

)]
= 0

⇔
∑
{i,j|Xi<Xj} I (Yi < Yj)∑

i,j I (Xi < Xj)
− 1

2
= β̂

⇔ C − 1

2
= β̂.
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This relates the C-index to the PIM-framework. This allows to extend the C-index to multiple

predictors. Consider a random sample of i.i.d. observations {(Yi,X i = (X1i, X2i)
T ) | i =

1, . . . , n}, and the PIM defined for the no-order restriction

P (Y < Y ′ |X,X ′) =
1

2
+β1[I (X1 < X ′1)− I (X ′1 > X1)] +β2[I (X2 < X ′2)− I (X ′2 > X2)].

The interpretation follows from

β1 = P (Y < Y ′ | X1 < X ′1, X2 = X ′2)− 1

2
,

i.e. the probability that an outcome associated with a higher X1 exceeds the outcome associated

with a lower X1, reduced by 1/2 and while keeping X2 fixed. A similar interpretation holds for

β2.

3.8 Simulation study

In Section 2.4 the theoretical properties of Theorems 1 and 2 were evaluated in a simulation

study, where data were generated according to a normal linear model with constant or varying

variance and an exponential generalized linear model. Here we reconsider these simulation set-

tings together with the cumulative logit regression model to examine the theoretical properties

of the PIM estimators in more detail. The relationships with a PIM are provided in Sections 3.2,

3.3, and 3.6 respectively.

Since for each of the three settings the data-generating model is known, their parameters can

also be estimated by means of maximum likelihood. Variances of the maximum likelihood es-

timators and powers of the Wald tests using the maximum likelihood estimators will also be

reported in this section. These variances and powers need to be interpreted as optimistic bench-

marks as they only give an impression of the parametric lower bound of the variances and upper

bound of the powers. Moreover, it is unfair to compare variances and powers from a semipara-

metric method with their counterparts from a parametric method because the former methods

will usually only be applied when the data-generating mechanism is unknown or incompletely

specified so that no parametric statistical analysis is advised. We also remind the reader that

we have introduced PIMs as a flexible class of semiparametric models to be used when the fo-

cus is on the PI as an effect-size measure. In the absence of strong parametric assumptions no

parametric methods can be used for this purpose.
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For each data-generating model we also consider semiparametric estimators, such as the least-

squares estimator for the normal linear model and the semiparametric proportional hazards

estimator for the exponential model.

All computations have been performed with the R software (R Core Team, 2012) and all PIMs

are defined for the lexicographical order restriction because they all satisfy the antisymmetry

condition; see Section 2.3.2 for more information.

For the reader’s convenience, we summarize all data generating models in this section, but most

have already been discussed in Section 2.4.

3.8.1 The normal linear model

We consider the model

Yi = αXi + εi, i = 1, . . . , n, (3.26)

where εi | Xi
d
= N [0, σ2(Xi)]. Sample sizes of n = 25, n = 50, and n = 200 are considered.

The predictor X takes equally spaced values in the interval [0.1, u] where u = 1 or 10. The

parameter α equals 1 or 10. Table 3.1 presents the results for a constant standard deviation, i.e.

σ(X) = σ, with σ = 1 or σ = 5. The corresponding PIM is given by

Φ−1 [P (Y 4 Y ′ | X,X ′)] = β(X ′ −X),

where β = α/(
√

2σ). For each setting, 1000 Monte Carlo simulation runs are used for the em-

pirical investigation of the distributions of the semiparametric estimator of β. The semiparamet-

ric estimator of Section 2.3.2 is denoted by β̂, and it is further referred to as the PIM estimator.

Table 3.1 shows for each simulation setting the true β parameter and the average of the simu-

lated estimates. The latter is an approximation of the true mean of the estimator. The table also

reports the average of the simulated sandwich variance estimates, which is an approximation

of the expectation of the sandwich estimator, and the sample variance of the 1000 estimates β̂,

which is an approximation of the true variance of the estimator β̂. The empirical coverages of

95% confidence intervals are also reported. As a result of the identity β = α/(
√

2σ), β can also

be estimated through the estimation of α and σ in (3.26) by means of least squares (LS) and

maximum likelihood (ML). In the normal linear regression model LS and ML give the same

point estimator of α, but their estimators of the residual variance σ2 are different up to a factor

(n− 1)/n. Hence, the methods give different estimators of β, particularly in small samples.
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From Table 3.1 we conclude that, for all sample sizes, the parametric estimators are much more

efficient as compared to the PIM estimators. When α or the range ofX increases, the difference

in efficiency, however, decreases.

Table 3.2 shows the results of simulations of heteroscedastic data with σ(X) = σ
√
X , where

σ = 1 or σ = 5. The corresponding PIM is given by

Φ−1 [P (Y 4 Y ′ | X,X ′)] = β
X ′ −X√
X ′ +X

,

where β = α/σ.

All three estimators are nearly unbiased, particularly for sample sizes of n = 50 or more.

Surprisingly the semiparametric PIM estimator is more efficient than LS and ML when α = 10,

u = 1, and σ = 1. As already discussed in Section 2.4, this is a consequence of the many ties

in the PIM estimates.

We also examine empirically the power of tests for testing the no-effect null hypothesis in terms

of the PI. In particular, we will look at the PIM,

g [P (Y 4 Y ′ | X1, X2, X
′
1, X

′
2)] = β1(X ′1 −X1) + β2(X ′2 −X2), (3.27)

where X1 and X ′1 are 0/1 dummies that, for example, code for two treatment groups, active

treatment and placebo, say, and X2 and X ′2 refer to a continuous covariate, age, say. The no-

treatment-effect null hypothesis, H0 : β1 = 0, is of interest. It expresses that, among patients

of the same age, the chance that a treated patient’s outcome is higher than the outcome of an

untreated patient is 50%. To our knowledge there are hardly any statistical tests described in the

literature for this problem. In Section 1.4 we have discussed the most important competitors.

In this simulation study we have opted for the test of Dodd and Pepe (2003), as discussed in

Section 3.4. Their test is also semiparametric, but it is limited to testing the no-treatment-effect

null hypothesis in the presence of covariates, whereas our framework allows for a broad range

of extensions. Their method can be embedded in a particular PIM,

g [P (Y 4 Y ′ | X1 < X ′1, X2, X
′
2)] = δ1 + δ2(X ′2 −X2), (3.28)

which does not allow for X1 = X ′1. Their test is based on the test statistic B = δ̂1/S1, where δ̂1

is their estimator of δ1 and S1 is an estimator of the standard error of β̂1 which is obtained by

the bootstrap. For computational reasons we limit the bootstrap procedure to 200 runs.
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Table 3.1: Simulation results for the normal linear homoscedastic model, based on 1000 Monte

Carlo runs. β is the true parameter, Av(β̂) the average of the β estimates according to the

semiparametric PIM theory (PIM), Var(β̂) the sample variance of the simulated β̂, Av(Ŝβ̂)

the average of the sandwich variance estimates according to the semiparametric PIM theory,

EC the empirical coverage of a 95% confidence interval for β, Av(β̄) the average of the least-

squares (LS) estimates, Var(β̄) the sample variance of the simulated β̄, Av(β̃) the average of

the maximum-likelihood (ML) estimates and Var(β̃) the sample variance of the simulated β̃.

PIM LS ML

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC Av(β̄) Var(β̄) Av(β̃) Var(β̃)

n = 25

1 1 1 0.707 0.736 0.33900 0.27877 92.0 0.729 0.06814 0.744 0.07098

1 1 5 0.141 0.130 0.32438 0.27008 92.8 0.135 0.05817 0.138 0.06059

1 10 1 0.707 0.721 0.00990 0.01184 93.0 0.729 0.01214 0.745 0.01265

1 10 5 0.141 0.149 0.00332 0.00248 90.2 0.145 0.00106 0.148 0.00111

10 1 1 7.071 7.309 1.55061 1.22519 85.7 7.320 1.36451 7.471 1.42136

10 1 5 1.414 1.463 0.40365 0.29884 88.7 1.444 0.10516 1.474 0.10954

n = 50

1 1 1 0.707 0.736 0.16640 0.15048 92.9 0.718 0.03465 0.725 0.03536

1 1 5 0.141 0.148 0.14905 0.14542 93.5 0.148 0.02759 0.150 0.02815

1 10 1 0.707 0.714 0.00615 0.00634 94.4 0.714 0.00568 0.721 0.00580

1 10 5 0.141 0.147 0.00148 0.00139 93.4 0.145 0.00052 0.146 0.00054

10 1 1 7.071 7.224 0.78701 0.67363 89.1 7.171 0.59224 7.244 0.60433

10 1 5 1.414 1.465 0.18646 0.16191 92.5 1.439 0.05014 1.454 0.05117

n = 200

1 1 1 0.707 0.716 0.03803 0.03942 95.3 0.710 0.00798 0.712 0.00802

1 1 5 0.141 0.145 0.04048 0.03817 94.8 0.145 0.00673 0.146 0.00676

1 10 1 0.707 0.709 0.00179 0.00170 94.3 0.709 0.00128 0.710 0.00128

1 10 5 0.141 0.141 0.00037 0.00036 95.6 0.141 0.00013 0.142 0.00013

10 1 1 7.071 7.110 0.19105 0.17489 93.2 7.089 0.14540 7.107 0.14613

10 1 5 1.414 1.427 0.04400 0.04308 95.0 1.421 0.01164 1.424 0.01170
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Table 3.2: Simulation results for the normal linear heteroscedastic model, based on 1000 Monte Carlo

runs. β is the true parameter, Av(β̂) the average of the β estimates according to the semiparametric

PIM theory (PIM), Var(β̂) the sample variance of the simulated β̂, Av(Ŝβ̂) the average of the sandwich

variance estimates according to the semiparametric PIM theory, EC the empirical coverage of a 95%

confidence interval for β, Av(β̄) the average of the least-squares (LS) estimates, Var(β̄) the sample

variance of the simulated β̄, Av(β̃) the average of the maximum-likelihood (ML) estimates and Var(β̃)

the sample variance of the simulated β̃.

PIM LS ML

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC Av(β̄) Var(β̄) Av(β̃) Var(β̃)

n = 25

1 1 1 1 1.052 0.34771 0.27673 91.2 1.097 0.12945 1.053 0.10286

1 1 5 0.2 0.192 0.31399 0.26122 92.8 0.206 0.09299 0.198 0.08389

1 10 1 1 1.045 0.05487 0.03584 90.1 1.096 0.05970 1.051 0.03285

1 10 5 0.2 0.206 0.02317 0.01884 92.2 0.219 0.01163 0.209 0.00963

10 1 1 10 9.268 0.50991 1.75345 93.9 10.987 4.94362 10.563 2.79136

10 1 5 2 2.080 0.46761 0.32145 88.4 2.169 0.27392 2.086 0.17884

10 10 5 2 2.088 0.13541 0.10231 85.5 2.209 0.23559 2.114 0.12025

n = 50

1 1 1 1 1.032 0.17125 0.15259 92.9 1.044 0.06014 1.026 0.05177

1 1 5 0.2 0.210 0.14692 0.14205 94.4 0.214 0.03981 0.211 0.03839

1 10 1 1 1.025 0.02554 0.01967 90.0 1.039 0.02407 1.019 0.01525

1 10 5 0.2 0.208 0.01086 0.01034 94.4 0.212 0.00533 0.208 0.00464

10 1 1 10 9.410 0.22462 0.95066 96.0 10.471 1.99398 10.244 1.18719

10 1 5 2 2.063 0.20438 0.17953 92.5 2.093 0.11833 2.056 0.08404

10 10 5 2 2.046 0.06469 0.05539 91.4 2.089 0.08120 2.047 0.04754

n = 200

1 1 1 1 1.010 0.03905 0.04005 95.1 1.010 0.01361 1.006 0.01161

1 1 5 0.2 0.204 0.03891 0.03740 95.2 0.206 0.00939 0.205 0.00921

1 10 1 1 1.006 0.00568 0.00557 93.6 1.013 0.00557 1.005 0.00345

1 10 5 0.2 0.198 0.00271 0.00275 95.8 0.201 0.00118 0.200 0.00111

10 1 1 10 9.576 0.04093 0.26446 97.1 10.098 0.47093 10.051 0.28679

10 1 5 2 2.016 0.05006 0.04843 94.1 2.022 0.02577 2.014 0.01907

10 10 5 2 2.007 0.01548 0.01465 94.1 2.020 0.01913 2.008 0.01061
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Data are generated according to

Yi = α1X1i + α2X2i + εi, εi
d
= N(0, 1),

and are analyzed by least-squares in a marginal linear model with conditional mean

E (Y | X1, X2) = γ1X1 + γ2X2,

by the PIM (3.27) with probit link function, and by bootstrap test (BT) based on (3.28) with

probit link. The LS results serve as an indication of the best powers that can be expected. The

geepack R package (Højsgaard et al., 2005) is used to fit the marginal model which allows

using sandwich variance estimates in the construction of the LS-based test.

The following design is considered. The covariate X1 is a 0/1 balanced dummy variable, X2

is equally spaced over [0.1, 10], α1 takes on the values 0, 0.5, and 1 while α2 is fixed at 1.

Sample sizes of 20, 50, and 200 are considered. All tests described above are applied for testing

H0 : γ1 = 0 versus H1 : γ1 6= 0, H0 : β1 = 0 versus H1 : β1 6= 0, or H0 : δ1 = 0 versus

H1 : δ1 6= 0. All tests are applied at the 5% level of significance. Table 3.3 shows the empirical

powers based on 1000 Monte Carlo simulation runs.

For a sample size n = 20 the BT-based test shows complete breakdown by showing virtually

no power, and the tests based on the PIM and LS are liberal. When n = 50 the PIM-based test

has a size not too far away from the nominal level of 5%, while the LS-based test is slightly

liberal and the BT-based test is still conservative. When n = 200 all tests are nearly unbiased.

The powers of the tests in the PIM framework are generally larger than those of the BT-based

test; this can perhaps be attributed to limited number of bootstrap runs. The test based on LS

are slightly more powerful, as expected.

3.8.2 The exponential model

Let Yi | Xi
d
= Exponential[γ(Xi)] with

γ(Xi) = exp(αXi), i = 1, . . . , n. (3.29)

Sample sizes of n = 25, n = 50, and n = 200 are considered. The predictor X takes equally

spaced values in the interval [0.1, u] where u = 1 or 10 and α takes on the value 0.1 or −2. The
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Table 3.3: Empirical powers (%) based on 1000 Monte Carlo runs for the normal linear model:

PIM, least-squares (LS), or bootstrap (BT)

α1 PIM LS BT PIM LS BT PIM LS BT

n = 20 n = 50 n = 200

0.0 7.6 9.5 0.0 5.7 6.4 2.0 4.7 5.3 4.2

0.5 15.0 27.3 0.0 35.3 50.6 24.4 93.4 98.0 91.0

1.0 45.9 72.3 0.2 89.5 97.5 78.7 100.0 100.0 100.0

corresponding PIM is

logit [P (Y 4 Y ′ | X,X ′)] = β(X −X ′), (3.30)

where β = α. Table 3.4 gives the results when model (3.30) is analyzed with the semipara-

metric PIM theory, resulting in β̂. As a result of the identity β = α, the parameter β can also

be estimated based on the semiparametric proportional hazards theory, resulting in β̄. The R

package survival (Therneau and Lumley, 2010) is used for fitting the proportional hazards

model. The estimator of β based on maximum likelihood theory is denoted by β̃. From Table

3.4 we conclude that the PIM estimator of β and the sandwich variance estimator are nearly

unbiased for sample sizes of 50 and more. The empirical coverages of the 95% confidence

intervals are close to their nominal level for sample sizes of 50 and more.

To examine the power, let Yi | (X1i, X2i)
d
= Exponential[γ(X1i, X2i)], with

γ(X1, X2) = exp(α1X1 + α2X2).

The data are analyzed by partial likelihood in a proportional hazards model with hazards func-

tion

λ(X) = exp (γ1X1 + γ2X2) ,

by the PIM (3.27) with logit link and by the BT test based on (3.28) with logit link. The powers

with the partial-likelihood method may be considered as a semiparametric competitor of PIM,

although the proportional hazards model does not coincide with the class of PIMs: they express

different restrictions on the conditional outcome distribution. The same design is considered

as for the power study based on the normal linear model. All tests are applied at the 5% level
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Table 3.4: Simulation results for the exponential model, based on 1000 Monte Carlo runs. β is

the true parameter, Av(β̂) the average of the β estimates using the semiparametric PIM theory

(PIM), Var(β̂) the sample variance of the simulated β̂, Av(Ŝβ̂) the average of the sandwich

variance estimates using the semiparametric PIM theory, EC the empirical coverage of a 95%

confidence interval for β, Av(β̄) the average of the semiparametric proportional hazards (PH)

estimates, Var(β̄) the sample variance of the simulated β̄, Av(β̃) the average of the maximum-

likelihood (ML) estimates and Var(β̃) the sample variance of the simulated β̃.

PIM PH ML

α u σ β Av(β̂) Var(β̂) Av(Ŝβ̂) EC Av(β̄) Var(β̄) Av(β̃) Var(β̃)

n = 25

−2 1 1 −2 −2.226 1.19067 0.89060 90.4 −2.178 0.87454 −1.963 0.10657

0.1 10 1 0.1 0.110 0.00902 0.00630 91.1 0.110 0.00720 0.104 0.00130

n = 50

−2 1 1 −2 −2.083 0.54166 0.47159 93.7 −2.083 0.41978 −1.986 0.05564

0.1 10 1 0.1 0.103 0.00337 0.00333 95.0 0.103 0.00262 0.103 0.00060

n = 200

−2 1 1 −2 −2.023 0.12394 0.12220 94.7 −2.018 0.08917 −1.999 0.01460

0.1 10 1 0.1 0.098 0.00090 0.00087 94.6 0.100 0.00072 0.100 0.00015
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of significance. Table 3.5 shows the empirical powers based on 1000 Monte Carlo simulation

runs. For a sample size n = 20 the BT based test shows complete breakdown by showing

virtually no power, and the tests based on the PIM is liberal. When n = 50 the PIM based

test is still liberal, while the PL based test is only slightly liberal and the BT based test is still

conservative. When n = 200 all tests are nearly unbiased. The powers of the tests for n = 200

(i.e. when all tests correctly control the type I error) in the PIM framework are slightly larger

than those of BT based test, while the test based on PL is most powerful. Note that the PL

theory is semiparametrically efficient within the class of proportional hazards models, while

the PIM theory is not guaranteed to be efficient within the class of PIMs. The semiparametric

efficiency of PIMs is studied in more detail in Chapter 7.

Table 3.5: Empirical powers (%) based on 1000 Monte Carlo runs for the exponential model:

PIM, partial-likelihood (PL), or bootstrap (BT)

α1 PIM PL BT PIM PL BT PIM PL BT

n = 20 n = 50 n = 200

0.0 9.7 4.3 0.0 8.1 6.4 3.3 4.8 4.7 4.1

0.5 22.7 16.2 0.0 30.1 38.4 17.5 77.1 93.3 75.3

1.0 42.3 44.4 0.0 76.0 89.2 57.6 100.0 100.0 100.0

3.8.3 The cumulative logit model

We consider a logistic linear model through the discretization of a continuous latent variable.

In particular, the latent outcome variable is modelled as

Zi = α1X1i + α2X2i + εi,

where εi are i.i.d. standard logistic. The latent outcome variable Zi is discretized into four

ordered categories as described in section 6.2 of Agresti (2007). The resulting ordinal outcome

is denoted by Yi. The data are analyzed by maximum likelihood in the cumulative logit model

logit [P (Y ≤ j | X1, X2)] = µj + γ1X1 + γ2X2,

and by the PIM (3.27) with logit link and by the BT test based on (3.28) with logit link. Since

there is no direct relation between the PIM model parameters and the cumulative logistic model,
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we can not compare efficiency of different estimators, because they estimate different popula-

tion parameters. We only consider the logistic data-generating model for power comparison.

The R package MASS (Venables and Ripley, 2002) is used to fit the cumulative logit model.

The same design is considered as for the power study based on the normal linear model. All

tests are applied at the 5% level of significance. Table 3.6 shows the empirical powers based on

1000 Monte Carlo simulation runs. The PIM-based test is liberal for all sample sizes, while the

BT-based test and the ML-based test have sizes close to the nominal level of 5%. The powers of

all tests are comparable, especially for a sample size of n = 200. However, since the PIM-based

test is liberal, the corresponding powers have no unambiguous interpretation.

Table 3.6: Empirical powers (%) based on 1000 Monte Carlo runs for the logistic linear model:

PIM, maximum-likelihood (ML), or bootstrap (BT).

α1 PIM ML BT PIM ML BT PIM ML BT

n = 20 n = 50 n = 200

0.0 10.8 4.5 2.2 7.7 5.1 4.9 7.1 6.1 6.4

0.5 14.1 7.3 2.8 18.3 15.6 12.9 36.8 37.5 35.6

1.0 25.3 16.8 4.8 39.7 37.5 33.4 88.5 88.8 87.4

3.9 Discussion

The relationship between PIMs and several regression methods is explored. For the linear and

Cox proportional hazards models there are direct relations between the model parameters. Start-

ing from these models a PIM can be constructed, but, in general, the opposite does not hold

implying that a PIM imposes less restrictions on the conditional outcome distribution.

The AUC regression model and the concordance index can be embedded within the PIM frame-

work and can therefore be considered as special cases of a PIM. The flexible PIM modelling

framework allows extending these methods to more complicated designs.

There is no direct relationship between the model parameters of a PIM and those of rank regres-

sion, but there are some interesting similarities: both estimation methods make use of pseudo-
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observations. For rank regression the model parameters are within the pseudo-observations,

while for PIM the model parameters are outside the pseudo-observations.

Both the PIM and the cumulative logit model are regression methods that allow analyzing or-

dinal outcomes. Where the former has an interpretation in terms of the odds, the latter has an

interpretation in terms of the odds ratio. Both interpretations are distinct but share some simi-

larities. The PIM also allows to include ordinal predictors with many levels at the cost of only

single model parameter.

A simulation study is considered to empirically examine the performance of some of these meth-

ods. The simulation results demonstrate that the theoretical properties of the PIM parameter and

variance estimators apply well to moderately sized samples, but that there is a substantial effi-

ciency loss as compared to parametric estimators. The PIM imposes weaker restrictions on the

conditional outcome distribution as compared to more parametric methods and if these para-

metric assumptions hold – which is the case in our simulation study – the former will often

underperform as compared to the latter because it does not fully exploit all information.



Chapter 4

Relationship with rank tests

The content of this chapter is primarily based on the manuscript

De Neve, J., Thas, O., and Ottoy, J.P. (2013) A semiparametric framework for rank tests for

factorial designs. Submitted.

4.1 Introduction

The Wilcoxon–Mann–Whitney (WMW) (Mann and Whitney, 1947; Wilcoxon, 1945) and Kruskal–

Wallis (KW) (Kruskal and Wallis, 1952) tests are well known and popular rank tests to analyze

two- andK-sample designs. These rank tests are distribution-free, robust, intuitively appealing,

and do not necessarily focus on the mean outcome. For the WMW test, for example, the alter-

native hypothesis is expressed in terms of the probability P (Y1 4 Y2), where Y1 (Y2) denotes

the outcome of the first (second) group. It is the probability that a random observation of the

second group exceeds a random observation of the first group. The WMW null hypothesis im-

plies P (Y1 4 Y2) = 0.5. The alternative hypothesis of the KW test can be expressed in terms

of the probabilities, P (Y. 4 Yi), where Yi denotes the outcome in group i = 1, . . . , K, and Y.

the outcome associated with the marginal outcome distribution; see, for example, section 9.6.1

in Thas (2009). It is the probability that a random observation in group i exceeds a random

observation of the marginal distribution. Under additional assumptions, such as location-shift,

the alternative can also be expressed in terms of the mean or median, and for a given family

of distributions, rank tests may be constructed to be the locally most powerful rank test for

75



76 Chapter 4. Relationship with rank tests

testing equality of means. For example, for the logistic distribution the WMW test is opti-

mal in this sense. We refer to the textbooks of Hájek et al. (1999) and Lehmann (1998) for

extensive overviews of these theories. Since this optimality theory requires strong parametric

assumptions, and since most statisticians use rank tests when no such assumptions can be made

or assessed, we will not work under location-shift, but under the less restrictive assumptions

imposed by a PIM.

After the introduction of the first rank tests for the 2- and K-sample designs, a vast number

of rank tests for more complicated designs have been developed; see, for example, Hollander

and Wolfe (1999) for a broad overview. Despite the many papers and textbooks covering this

topic, a non-experienced user is unlikely to use most of these rank tests, because 1) some of the

tests have no standard name which makes finding them difficult, 2) their construction is often

quite complicated and only valid for a particular design, 3) the interpretation on population

level is not always understood, and 4) the majority of these tests is not implemented in standard

statistical software. For classical parametric tests with focus on the mean outcome, such as

the two-sample t- or ANOVA F-test, this barrier is circumvented because they arise naturally

from the General Linear Model (GLM) framework. Hence, for more complicated designs the

appropriate GLM may be formulated, resulting in the correct t- or F-test. Basic knowledge on

GLMs is often sufficient for analyzing data from a variety of designs. Moreover, the GLM is

available in most statistical software packages.

In this chapter we situate a large class of rank tests within the PIM methodology. The PIM

can in a way be seen as the rank-equivalent of the GLM, but should not be confused with the

rank-transform approach of Conover and Iman (1981). We will show that a transformation to

the pseudo-observations is more flexible than the rank-transform, and by embedding the method

in the PIM framework we can relate the tests to parameters with a well defined interpretation

on population level in terms of the PI. Depending on the parametrization of the model, we

can establish a simple connection between the PIM and the WMW, KW, Friedman (Friedman,

1937), Mack–Skillings (MS) (Mack and Skillings, 1980), Brown–Hettmansperger (BH) (Brown

and Hettmansperger, 2002), Jonckheere–Terpstra (JT) (Jonckheere, 1954; Terpstra, 1952), and

Mack–Wolfe (MW) (Mack and Wolfe, 1981) rank tests.

The PIM framework also allows for developing new rank tests for more complicated designs,

even when a continuous confounder or covariate is present. In addition to hypothesis testing,
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PIMs naturally model effect sizes with an informative interpretation. Estimates of the param-

eters assist on reporting the effect sizes. The PIM is thus the natural model to describe the

restrictions on the outcome distributions for which rank tests are the natural tests for null hy-

potheses involving the PIM parameters.

In Section 4.2 we introduce notation and in Section 4.3 we propose a PIM parametrization for

factorial designs and establish the connection with the KW, Friedman, and MS tests. We do

not only generate existing rank tests, but for each of the designs considered, we also propose

a different type of rank test. In Section 4.4 we consider a second PIM parametrization and

demonstrate the connection with the WMW, BH, JT, and MW tests. For both sections, the PIM

is restricted to factorial designs with one predictor and one blocking variable. It is demonstrated

in Section 4.5 how rank tests can be extended to control for a continuous covariate. Section 4.6

extends the one-way to the two-way layout. In Section 4.8 we evaluate the performance of

some new tests in a simulation study and in Section 4.9 we illustrate with an example how the

model can be used for one continuous and multiple categorical predictors. Section 4.10 gives

the conclusions and discussion.

4.2 Notation

For the factorial design we write the predictor asXT = (X,B), whereX is a factor variable re-

ferring to groups or treatments, and B is a blocking factor which is here considered as nuisance.

Without loss of generality we assume that X takes K distinct values, say 1, . . . , K, and B takes

L distinct values, say 1, . . . , L. The number of replicates for X = i and B = j is denoted by

nij and the total sample size is denoted by N =
∑K

i=1

∑L
j=1 nij . Let Fij denote the distribution

function of Y given X = i and B = j. In the absence of blocks, set B = 1 and let ni denote

the number of replicates for X = i and Fi the distribution function of Y given X = i.

Sometimes it will be easier to work with the classical ANOVA notation. Throughout the chapter

it will be clear from the context when which notation is used; we therefore use Y again as the

outcome variable. In particular, for the one way layout Yij denotes a random outcome variable

in treatment group i = 1, . . . , K and block j = 1, . . . , B. The index j becomes obsolete in

the absence of blocks. We use Y.j to denote the random outcome variable whose distribution

is marginalized over the treatment groups, but still conditional on block j. For the reader’s
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convenience we resume the general PIM, as defined by (2.11), for a random sample of i.i.d.

observations {(Yi,X i) | i = 1, . . . , n}

P (Yi 4 Yj |X i,Xj) = m(X i,Xj;β) = g−1(ZT
ijβ), (X i,Xj) ∈ Xn, (4.1)

where Zij is a function of X i and Xj and g(·) a link function which, for this chapter, will

often be the identity link g(u) = u. To distinguish between the notation and model as in

(4.1) and the ANOVA form, we refer to the former as the regression model, whereas models

with the ANOVA notation will be referred to as the ANOVA model. Just like with classical

linear regression models, ANOVA models will have to be translated into regression models

with dummy variables for the coding of the factors, before the estimation of the parameters.

4.3 The marginal probabilistic index model

As a first model we define the marginal PIM for the K-sample design in the absence of

blocks. It is marginal in the sense that we only condition on one treatment within the PI, i.e.

P (Yi 4 Yj | Xj). This PI refers to the distribution of the outcome of observation j conditional

on the covariate (Yj | Xj), and the marginal outcome distribution of an observation i (Yi). In

terms of the ANOVA notation for Xj = k this becomes P (Y. 4 Yk), with Yk the outcome in

group k. Consider the marginal PIM model in ANOVA form,

P (Y. 4 Yk) = αk. (4.2)

The interpretation of αk is immediate: it is the probability that a random observation of group k

exceeds a random observation of the marginal distribution. The corresponding PIM regression

model is obtained upon defining

ZT
ij = [I (Xj = 1) , . . . , I (Xj = K)] (4.3)

for all pairs of predictors (Xi, Xj) and by considering the identity link. LetαT = (α1, . . . , αK).

Model (4.2) now becomes

P (Yi 4 Yj | Xj) = ZT
ijα, (Xi, Xj) ∈ X0, (4.4)

which we define for the no-ordering restriction X0. This model is closely related to the compar-

ison mid-probability index as discussed in Parzen and Mukhopadhyay (2012a,b). Our model

also follows from the nonparametric model of Akritas and Arnold (1994); see Section 4.7.
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Let α̂ denote the estimator of α, defined as the solution of the estimating equations (2.15),

which, for a general PIM (4.1) with parameter β, are given by∑
(i,j)∈In

A(Zij;β)[I (Yi 4 Yj)− g−1(ZT
ijβ)] = 0. (4.5)

Since the indentity link is used in (4.4), we suggest to set A(Zij;β) = Zij so as to obtain the

ordinary least squares solution. The following lemma and corollary give the explicit form of α̂

as a linear combination of the pseudo-observations. Note that Lemma 3 applies more generally

to all regression PIMs with identity link andA(Zij;β) = Zij .

Lemma 3. The estimator of β in (4.1) with identity link function, defined as the solution of (4.5)

withA(Zij;β) = Zij , is given by

β̂ = (ZTZ)−1ZTIp,

with Ip the |In|-vector of pseudo-observations I (Yi 4 Yj), (i, j) ∈ In and Z the |In| × p

matrix with rows ZT
ij corresponding to the pseudo-observations in Ip. This estimator is thus an

ordinary least squares (OLS) estimator.

The proof of Lemma 3 is immediate by recognizing that the estimation equations give the OLS.

Corollary 1. The OLS estimator of an individual αk in (4.2) or (4.4) may be written as

α̂k =
1

Nnk

N∑
i=1

N∑
j=1

ckjI (Yi 4 Yj) , (4.6)

where ckj = I (Xj = k).

In the remainder of this section we assume that there are no ties among the sample outcome

observations. This is to avoid lengthy formulas of the rank statistics. All results, however, can

be extended to allow for ties.

The next lemma provides the covariance structure of the pseudo-observations. It forms the basis

of many results presented later.

Lemma 4. Let Yi, Yj , Yk, and Yl denote four i.i.d. random variables, then

• Var[I (Yi 4 Yj)] = 1/4,
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• Cov[I (Yi 4 Yj) , I (Yi 4 Yk)] = Cov[I (Yi 4 Yj) , I (Yk 4 Yj)] = 1/12,

• Cov[I (Yi 4 Yj) , I (Yk 4 Yi)] = Cov[I (Yi 4 Yj) , I (Yj 4 Yk)] = −1/12,

• Cov[I (Yi 4 Yj) , I (Yk 4 Yl)] = 0.

Proof. From

P (Yi 4 Yj) = P (Yi < Yj) =
1

2
,

and

P[Yi 4 min(Yj, Yk)] = P[Yi < min(Yj, Yk)] =
1

3
,

the statement follows by recognizing that

Var[I (Yi < Yj)] = E[I (Yi < Yj)]− E[I (Yi < Yj)]
2,

and

Cov[I (Yi < Yj) , I (Yi < Yk)] = E[I (Yi < Yj) I (Yi < Yk)]− E[I (Yi < Yj)]E[I (Yi < Yk)],

where

I (Yi < Yj) I (Yi < Yk) = I[Yi < min(Yj, Yk)].

4.3.1 The K-sample design

The following lemma gives the covariance matrix of α̂ under the null hypothesis of equal dis-

tributions. The proof follows directly from combining Corollary 1 and Lemma 4.

Lemma 5. If H0 : F1 = · · · = FK is true, then the variance of α̂l in (4.6) associated with PIM

(4.2) or (4.4), is given by

Var (α̂l) =
(N − nl)(N + 1)

12N2nl
,

and the covariance by

Cov (α̂k, α̂l) = −N + 1

12N2
, k 6= l.

Let 1 denote the unit vector of length K. From Lemma 5 if follows that, under H0,

Σ0 := Cov (α̂) =
N + 1

12N
diag(n−1

1 , . . . , n−1
K )M , (4.7)
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with

M = I − 1

N
diag(n1, . . . , nK)11T ,

where I denotes the K×K identity matrix. The following theorem establishes the relationship

between the marginal PIM and the KW test for which the test statistic is given by

KWs :=
12

N(N + 1)

K∑
l=1

nl

(
R̄l −

N + 1

2

)2

, (4.8)

where R̄l denotes the average rank of the sample observations in group X = l, for which the

ranking is performed in the pooled sample. Let B− denote a generalized inverse of a square

matrixB.

Theorem 3 (Kruskal–Wallis). For the K-sample design let α̂ denote the estimator of αT =

(α1, . . . , αK) in (4.2) or (4.4), given by (4.6), and let Σ0 denote its covariance matrix under the

null hypothesis of equal distributions (4.7), then(
α̂− 1

2
1

)T
Σ−0

(
α̂− 1

2
1

)
= KWs. (4.9)

Proof. SinceM is idempotent a generalized inverse of Σ0 is given by

Σ−0 =
12N

N + 1
Mdiag(n1, . . . , nK).

Consequently (
α̂− 1

2
1

)T
Σ−0

(
α̂− 1

2
1

)
= A1 − A2,

where

A1 =
12N

N + 1

(
α̂− 1

2
1

)T
diag(n1, . . . , nK)

(
α̂− 1

2
1

)
,

and

A2 =
12

N + 1

(
α̂− 1

2
1

)T
diag(n1, . . . , nK)11Tdiag(n1, . . . , nK)

(
α̂− 1

2
1

)
.

From Corollary 1 it follows that N−1
∑K

l=1 nlα̂l = 0.5, therefore

1Tdiag(n1, . . . , nK)

(
α̂− 1

2
1

)
= 0,

and hence A2 = 0. Furthermore,

α̂l =
1

Nnl

∑
{j|Xj=l}

(
N∑
i=1

I (Yi ≤ Yj)− 0.5

)
=

1

N

(
R̄l − 0.5

)
.
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It follows that

A1 =
12N

N + 1

K∑
l=1

nl

(
α̂l −

1

2

)2

=
12

N(N + 1)

K∑
l=1

nl

(
R̄l −

N + 1

2

)2

.

Observe that we denote the KW test statistic as KWs. The subscript s is used to indicate that

this is a score-type of test, in the sense that the covariance matrix Σ0 in (4.9) is only consistent

under H0. The PIM theory provides a sandwich estimator of the covariance matrix, given by

Theorem 2, which is also consistent under the alternative and which we denote by Σ̂. It is thus

straightforward to also construct a Wald-type KW test by replacing Σ0 by Σ̂ in (4.9). We refer

to this statistic as KWw. Since the marginal PIM parameters are interpretable effect sizes, Σ̂

can also be used for constructing confidence intervals for these parameters.

The WMW test is a special case of the KW test and is also embedded within the marginal PIM.

However, for didactical purposes we postpone the discussion of the WMW test to Section 4.4.

4.3.2 The randomized complete block design

The marginal PIM can be extended to block designs. In ANOVA notation this becomes

P (Y.l 4 Ykl) = αk, (4.10)

where k = 1, . . . , K refers to the treatment group and l = 1, . . . , L to the block. The interpre-

tation of αk is immediate: it is the probability that a random observation in group k exceeds a

random observation from the marginal distribution within the same block. The corresponding

PIM regression model is obtained withZij as in (4.3) andαT = (α1, . . . , αK) as before. Model

(4.10) now becomes

P (Yi 4 Yj | Bi, Xj, Bj) = ZT
ijα, (X i,Xj) ∈ Xn, (4.11)

which is now only defined for Xn = {(X i,Xj) | Bi = Bj, i, j = 1, . . . , N}, i.e. we restrict

the PI to comparisons within blocks. At this point it is important to stress that the blocking

does not result in extra parameters in the model, but it affects the estimating equations through

a limitation on the pseudo-observations to include (expressed in the sets Xn and In). Lemma 3

remains valid, and Corollary 2 gives the explicit form of the estimator of α.
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Corollary 2. The OLS estimator of an individual αk in (4.10) or (4.11) may be written as

α̂k = dk

N∑
i=1

N∑
j=1

bijckjI (Yi 4 Yj) , (4.12)

where

• bij = 1 if Bi = Bj and bij = 0 otherwise,

• ckj = I (Xj = k),

• dk =
(∑N

i=1

∑N
j=1 bijckj

)−1

.

Thas et al. (2012a) also studied statistics of the form of (4.12), but without reference to a PIM.

Consider a randomized complete block (RCB) design for which each treatment-block combi-

nation has a fixed number of replicates, i.e. nij = n ≥ 1. For testing the null hypothesis

H0 : F1j = · · · = FKj (j = 1, . . . , L), the MS test (Mack and Skillings, 1980) is an appropriate

test for this design and its test statistic is given by

MSs :=
12

K(N + L)

K∑
l=1

(
R̄l −

N + L

2

)2

, (4.13)

where R̄l = n−1
∑L

i=1

∑n
j=1Rlij and Rlij denotes the ranking of jth replicate of the outcome

observation of treatment l in block i, where the ranking is performed within blocks. The test

statistic asymptotically has a chi-squared null distribution with K − 1 degrees of freedom.

The marginal PIM is now only defined for comparisons within blocks and to establish a rela-

tionship with the MS test we need the covariance matrix of α̂ under H0. The proof follows

directly from combining Corollary 2 and Lemma 4.

Lemma 6. If H0 : F1j = · · · = FKj , j = 1 . . . , L, is true, then the variance of α̂l in (4.12)

associated with PIM (4.10) or (4.11), is given by

Var (α̂l) =
(K − 1)(K + n−1)

12nLK2
,

and the covariance by

Cov (α̂k, α̂l) = −K + n−1

12nLK2
, k 6= l.
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The covariance matrix of the vector α̂, under H0, may thus be written as

Σ0 := Cov (α̂) =
nK + 1

12LKn2
M , (4.14)

where M = I − K−111T . The following theorem establishes the link between the marginal

PIM and the MS test.

Theorem 4 (Mack–Skillings). For a RCB design, let α̂ denote the estimator of α in (4.10) or

(4.11), given by (4.12), and let Σ0 denote its covariance matrix under the null hypothesis of

equal distributions within blocks (4.14), then(
α̂− 1

2
1

)T
Σ−0

(
α̂− 1

2
1

)
= MSs.

Proof. SinceM is idempotent, a generalized inverse is given by

Σ−0 =
12LKn2

nK + 1
M .

Consequently (
α̂− 1

2
1

)T
Σ−0

(
α̂− 1

2
1

)
= A1 − A2,

where

A1 =
12LKn2

nK + 1

(
α̂− 1

2
1

)T (
α̂− 1

2
1

)
,

and

A2 =
12Ln2

nK + 1

(
α̂− 1

2
1

)T
11T

(
α̂− 1

2
1

)
.

Let Ykij denote the sample observation of the jth replicate of treatment k in block i. From

Corollary 2 it follows that

α̂l =
1

KLn2

K∑
k=1

L∑
i=1

n∑
j=1

n∑
j′=1

I (Ykij 4 Ylij′) .

Consequently K−1
∑K

l=1 α̂l = 0.5 and similar as in Theorem 3 one can show that A2 = 0.

Let R̄lij′ denote the ranking of sample observation Ylij′ , where the ranking is performed within

blocks, then

α̂l =
1

KLn2

L∑
i=1

n∑
j′=1

(
K∑
k=1

n∑
j=1

I (Ykij ≤ Ylij′)−
1

2

)

=
1

KLn2

L∑
i=1

n∑
j′=1

(
Rlij′ −

1

2

)
=

1

N

(
R̄l −

L

2

)
,
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where R̄l = n−1
∑L

i=1

∑n
j′=1 Rlij′ . Hence

A1 =
12LKn2

nK + 1

K∑
l=1

(
α̂l −

1

2

)2

=
12

K(N + L)

K∑
l=1

(
R̄l −

N + L

2

)2

.

The Friedman test is also embedded in the marginal PIM, for it is a special case of the MS test

with n = 1, i.e. each treatment-block combination occurs exactly once.

Corollary 3 (Friedman). If each treatment-block combination in a RCB design has one replicate

and if α̂ denotes the estimator of α in (4.10) or (4.11), given by (4.12), and Σ0 its covariance

matrix under the null hypothesis of equal distributions within blocks (4.14), then(
α̂− 1

2
1

)T
Σ−0

(
α̂− 1

2
1

)
=

12L

K(K + 1)

K∑
l=1

(
R̄l −

K + 1

2

)2

, (4.15)

in which the right hand side of the equation is exactly the Friedman rank test statistic.

We refer to the Friedman statistic as Fs, where the subscript s denotes that this is a score-type of

test. Similar as for the KW test, we can construct a Wald-type Friedman statistic by replacing

Σ0 in (4.15) by the sandwich estimator Σ̂. We refer to this statistic as Fw. For completeness, the

following lemma shows that the pseudo-observations associated with the marginal PIM (4.11)

are sparsely correlated, so that the sandwich estimator Σ̂ is a consistent estimator of the true

variance.

Lemma 7 (Sparse correlation: randomized complete blocks). The pseudo-observations asso-

ciated with PIM (4.11) of a randomized complete block design possess the sparse correlation

structure.

Proof. Each pseudo-observation Iij with (i, j) ∈ In = {(i, j) | Bi = Bj and i, j = 1, . . . , N}

is only correlated with pseudo-observations of the same block. Each block has nK observa-

tions, thus similar as in Lemma 1 it follows that Iij is correlated with 4nK − 7 other pseudo-

observations, so that Mn = Mnij = 4nK − 6. The largest set of pseudo-observations that are

mutually independent consists of any Iij and all other Ikl with i, j, k, l mutually distinct. The
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size of this set is thus bN/2c (with N = nKL), i.e. the largest integer not larger than N/2.

Suppose that N is even. Then

Mnmn = (4nK − 6)nKL/2 = 2(nK)2L− 3nKL = O(n2K2L).

Since O(|In|) = O(n2K2L), the lemma holds for n even. Similarly, when N is odd, Mnmn =

(4nK − 6)bnKL/2c = O(n2K2L) = O(|In|).

4.4 The pairwise probabilistic index model

In the absence of blocks, the marginal PIM for the K-sample design is associated with rank

tests which are based on the joint ranking. It refers to the comparison of the marginal outcome

with an outcome in a particular treatment group, i.e. P (Y. 4 Yk). In this section we propose

a PIM that models pairwise comparisons of treatment groups. In particular, for the K-sample

design we propose the PIM (ANOVA notation)

P (Yk 4 Yl) = γkl. (4.16)

The parameter γkl thus gives the probability that a random observation of group l exceeds a

random observation of group k. The regression PIM follows from defining

ZT
ij = [I (Xi = 1) I (Xj = 2) , I (Xi = 1) I (Xj = 3) , . . . , I (Xi = K − 1) I (Xj = K)],

(4.17)

and γ the vector with the corresponding γkl and by considering the identity link. Then the

pairwise PIM becomes (regression notation)

P (Yi 4 Yj | Xi, Xj) = ZT
ijγ, (Xi, Xj) ∈ Xn (4.18)

with Xn = {(Xi, Xj) | Xi < Xj, i, j = 1 . . . , N}, i.e. we restrict the PI to all unique treatment

combinations.

The solution of the estimating equations (4.5) with A(Zij,β) = Zij for PIM (4.18) follows

immediately from Lemma 3. Corollary 4 gives the explicit formula for an individual parameter

estimate.
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Corollary 4. The estimate of γkl in (4.16) or (4.18), defined as the solution of (4.5) with

A(Zij;β) = Zij , is of the form

γ̂kl =
1

nknl

N∑
i=1

N∑
j=1

cikcjlI (Yi 4 Yj) , k < l, (4.19)

where cik = I (Xi = k).

The following lemma gives the elements of the covariance matrix of γ̂, denoted as Σ0, under

the null hypothesis of equal distributions. The proof follows directly from combining Lemma 4

and Corollary 4.

Lemma 8. If H0 : F1 = · · · = FK is true and if γ̂kl denotes the estimator of γkl in PIM (4.16)

or (4.18), given by (4.19), then

• Var (γ̂kl) = (nk + nl + 1)(12nknl)
−1, k 6= l,

• Cov (γ̂kl, γ̂k′l) = Cov (γ̂lk, γ̂lk′) = (12nl)
−1, k 6= l, k′ 6= l, k 6= k′,

• Cov (γ̂kl, γ̂lk′) = Cov (γ̂lk, γ̂k′l) = −(12nl)
−1, k 6= l, k′ 6= l, k 6= k′,

• Cov (γ̂kl, γ̂k′l′) = 0, if k, l, k′, and l′ are distinct.

4.4.1 The two-sample design

In the following theorem we establish the relationship between the pairwise PIM and the WMW

test. The proof follows immediately from Corollary 4 and Lemma 8.

Theorem 5 (Wilcoxon–Mann–Whitney). For the two-sample design let γ̂12 denote the estima-

tor associated with PIM (4.16) or (4.18) and let σ2
0 denote its variance under the null hypothesis

of equal distributions, then

γ̂12 − 0.5

σ0

=

∑
{i|Xi=1}

∑
{j|Xj=2} I (Yi 4 Yj)− n1n2/2√

[n1n2(n1 + n2 + 1)]/12
,

in which the right hand side of the equation is exactly the WMW statistic.
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4.4.2 The three-sample design

In this section we establish the relationship between the pairwise PIM and the rank test of

Brown and Hettmansperger (2002) for the three-sample design. The interpretation of their test

is related to the the concept of transitivity based on the probabilistic index.

Definition 3 (PI-transitivity). Let Yi be distributed according to Fi. A triplet (F1, F2, F3) is

called PI-transitive if P (Ya 4 Yb) ≥ 0.5 and P (Yb 4 Yc) ≥ 0.5 implies that P (Ya 4 Yc) ≥ 0.5,

for all (a, b, c) ∈ {1, 2, 3}.

The Efron dice (Gardner, 1970; Brown and Hettmansperger, 2002) illustrate nicely that not all

triplets are PI-transitive. For example, consider three dice with markings Ω1 = {2, 2, 6, 6, 7, 7},

Ω2 = {3, 3, 4, 4, 8, 8}, and Ω3 = {1, 1, 5, 5, 9, 9}. Let Yi (i = 1, 2, 3) denote a random variable

with a uniform distribution defined on Ωi (i.e. each face of the die has the same probability 1/6).

Then P (Y1 4 Y2) = P (Y2 4 Y3) = 5/9 > 0.5, but surprisingly P (Y1 4 Y3) = 4/9 < 0.5.

For real data examples for which the PI can be intransitive, we refer to Gillen and Emerson

(2007) and Thangavelu and Brunner (2007) in the setting of multi-arm clinical trails and non-

inferiority trials with active-controls and to Brown and Hettmansperger (2002) for a survey

example.

The KW test has two degrees of freedom, while three pairwise comparisons can be considered.

The following theorem illustrates that the KW test implicitly assumes PI-transitivity. Let Y.

denote the random variable with the marginal distribution of Y1, Y2, and Y3. For notational

convenience, let

Pj = P (Y. 4 Yj) and Pij = P (Yi 4 Yj) . (4.20)

Theorem 6. Let Fi denote the distribution function associated with group i = 1, 2, 3. It holds

that

1. if P1 = P2 = P3 = 0.5 and P12 = P13 = P23 = 0.5, then the triplet (F1, F2, F3) is

PI-transitive,

2. and conversely, if P1 = P2 = P3 = 0.5 and the triplet (F1, F2, F3) is PI-transitive, then

P12 = P13 = P23 = 0.5.
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Proof. If P12 = P13 = P23 = 0.5 and P12 = P13 = P23 = 0.5, then it follows that PI-transitivity

is fulfilled by applying Definition 3.

If P1 = P2 = P3 = 0.5, the system of equations Pl =
∑3

k=1 Pkl/3 simplifies to P12 = P23

and P13 = 1 − P23. This implies that if P12 = P23 ≥ 0.5, then P13 ≤ 0.5. If (F1, F2, F3)

is PI-transitive, then it follows that the system of equations has a unique solution given by

P12 = P13 = P23 = 0.5.

Since the KW test rejects in favour of the alternative H1a : Pi 6= 0.5 for at least one i = 1, 2, 3,

and since both H0 : P1 = P2 = P3 = 0.5 and H1b : Pij 6= 0.5 for some i, j = 1, . . . , 3, can be

true when there is PI-intransitivity, the KW-test can be insensitive to deviations from H0 in the

direction of H1b when there is PI-intransitivity. Therefore, Brown and Hettmansperger (2002)

proposed the statistic

BHs := KWs +
3n1n2n3

N

(
T12

n1n2

+
T23

n2n3

+
T31

n3n1

)2

, (4.21)

where Tkl =
∑
{i|Xi=k}

∑
{j|Xj=l} sign(Yj − Yi).

A large value of the second component of BHs suggests PI-intransitivity. In Brown et al. (2006)

they showed that BHs has asymptotically a null distribution equal to V 2
1 +
√

3/πV 2
2 , with V 2

1

distributed according to the chi-squared distribution with two degrees of freedom and with

V2 a standard logistic distributed variable. Let γ̂T = (γ̂12, γ̂23, γ̂13) denote the estimators of

the parameters in the PIM (4.18), and let Σ0 denote the covariance matrix of γ̂ under the null

hypothesisH0 : F1 = F2 = F3, then the following theorem establishes the relationship between

the pairwise PIM and the BHs test.

Theorem 7 (Brown–Hettmansperger). Let γ̂ denote the estimator associated with PIM (4.18)

and let Σ0 denote its covariance matrix under the null hypothesis of equal distributions, then(
γ̂ − 1

2
1

)T
Σ−1

0

(
γ̂ − 1

2
1

)
= BHs, (4.22)

with BHs given by (4.21).

Proof. LetT T = (T12, T23, T31) andV T = Cov (T ) underH0, then Brown and Hettmansperger

(2002) showed that an equivalent representation of BHs is given by

BHs = T TV −1
T T .
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Vector T can be expressed as a function of γ̂

T = 2diag(v)γ̂ − vT ,

where vT = (n1n2, n2n3,−n1n3) and consequently

V T = 4diag(v)Σ0diag(v).

Straightforward calculation shows that

BHs =

(
γ̂ − 1

2
1

)T
Σ−1

0

(
γ̂ − 1

2
1

)
.

As the asymptotic null distribution of BHs is not chi-squared, the null distribution of the

quadratic form in the left hand side of (4.22) is not chi-squared either. This can be partially

explained as follows. Let γ0 denote the true parameter associated with the pairwise PIM (4.18)

and let limN→∞ ni/N = λ, where 0 < λ < 1, then
√
N(γ̂ − γ0) converges in distribu-

tion to a mean-zero multivariate normal distribution with covariance matrix Σ. Under H0 a

consistent estimator of Σ is given by NΣ0, which has rank 3 for N < ∞, while its limit

Σ∞ := limN→∞NΣ0 has rank 2 and hence is singular. To illustrate this consider a balanced

design n := n1 = n2 = n3. The eigenvalues of Σ0 are given by λ1 = λ2 = (3n + 1)/(12n2)

and λ3 = 1/(12n2). Only two eigenvalues of Σ∞ are different from zero, and therefore Σ∞ has

rank two. The quadratic form N (γ̂ − 0.51)T Σ−∞ (γ̂ − 0.51), has an asymptotic chi-squared

null distribution with two degrees of freedom. However, since limN→∞(NΣ0)−1 6= Σ−∞, this

is not the case for the left hand side of (4.22). Moreover, the elements of
√
N γ̂ are linearly

dependent, since one can show that, under H0,

√
n [(γ̂12 − 0.5) + (γ̂23 − 0.5)− (γ̂13 − 0.5)]

p→ 0.

We refer to Fligner (1985) and Koziol and Reid (1977) for the details.

We can force the pairwise PIM (4.18) to imply PI-transitivity by imposing the restrictions γkl =

γ′k − γ′l for some new parameters γ′k. The model then simplifies to

P (Yk 4 Yl) = γ′k − γ′l. (4.23)

It is straightforward to see that this parametrization implies PI-transitivity. Furthermore, PIM

(4.23) corresponds to the Bradley–Terry model; see for example Thas et al. (2012c, p. 667) and

Bergsma et al. (2009, 2012).
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4.4.3 Ordered and umbrella alternatives

Thus far, all tests focused on rejecting the null hypothesis H0 : F1 = . . . = FK in favour of an

alternative that states that some particular PIs are not equal to 0.5. However, sometimes more

informative alternatives can be of interest. When the K treatments can be ordered (e.g. the

dosage of a drug), one can formulate an alternative for which the outcome tends to increase

or decrease with increasing treatment. Using notation (4.20), Mann (1945) defined an upward

trend as

Ho
1 :

2

K(K − 1)

K−1∑
k=1

K∑
l=k+1

Plk >
1

2
.

Under the location shift model

F1(y − τ1) = . . . = FK(y − τK), (4.24)

Ho
1 simplifies to the ordered alternative τ1 ≤ . . . ≤ τK , with at least one strict inequality. The

Jonckheere–Terpstra (JT) test (Jonckheere, 1954; Terpstra, 1952) is consistent against Ho
1 and

its test statistic is given by

JTs := σ−1
JT

K−1∑
k=1

K∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi 4 Yj)− µJT

 , (4.25)

where µJT = (N2 −
∑K

j=1 n
2
j)/4 and σ2

JT = [N2(2N + 3)−
∑K

j=1 n
2
j(2nj + 3)]/72.

The JT test can also be obtained from the PIM (regression notation)

P (Yi 4 Yj | Xi, Xj) =
1

2
+ δZij, (Xi, Xj) ∈ X0, (4.26)

where Zij = I (Xi < Xj) − I (Xi > Xj). The interpretation of δ comes from δ = P(Yi 4 Yj

| Xi < Xj) −0.5, i.e. the probability that an outcome of a higher factor level exceeds an out-

come of a lower factor level, reduced with 0.5. Equivalently, δ = 0.5−P (Yi 4 Yj | Xj < Xi).

Note that the offset 0.5 is a consequence of the definition of Zij and the identity link. Let

δ̂ denote the OLS estimator associated with PIM (4.26), then its variance under the null hy-

pothesis of equal distributions, say σ2
0 , can be obtained from combining the OLS expression

and Lemma 4. Indeed, if Σp denotes the matrix with elements given by Lemma 4, then

σ2
0 = (ZTZ)−1ZTΣpZ(ZTZ)−1. The hypothesis of interest can be expressed as Ho

0 : δ = 0.

We prefer to use the regression notation here, because the factor acts as an integer-valued re-

gressor. The following theorem establishes the relationship between PIM (4.26) and the JT

test.
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Theorem 8 (Jonckheere–Terpstra). Let δ̂ denote the OLS estimator associated with PIM (4.26)

and let σ2
0 denote its variance under the null hypothesis of equal distributions, then

δ̂

σ0

= JTs,

with JTs given by (4.25).

Proof. The estimating equations (4.5) withA(Zij;β) = Zij for PIM (4.26) simplify to

K−1∑
k=1

K∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

[
I (Yi 4 Yj)−

(
1

2
+ δ

)]
= 0

⇔ δ̂ =
1

Ñ

K−1∑
k=1

K∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi 4 Yj)

− 1

2
,

where Ñ =
∑K−1

k=1

∑K
l=k+1 nknl. The remainder of the proof follows from Hollander and Wolfe

(1999, p. 209).

The JT test is also related to the pairwise PIM; see Theorem 9. Consequently, after fitting a

pairwise PIM, it is not necessary to fit the PIM (4.26) to obtain the JT test. The proof is similar

to the proof of Theorem 8.

Theorem 9 (Jonckheere–Terpstra 2). Let γ̂ denote the estimator associated with the pairwise

PIM (4.18) and let Σ0 denote its covariance matrix under the null hypothesis of equal distribu-

tions, then
vT (γ̂ − 1/2)√

vTΣ0v
= JTs,

with JTs given by (4.25) and vT = (n1n2, . . . , nK−1nK).

Instead of an ordered alternative, an umbrella alternative can formulated. The outcome then

increases (decreases) with increasing treatment up to a given factor level, say X = P , and then

decrease (increases) with increasing factor level.

Under the location shift model (4.24) this becomes

τ1 ≤ τ2 ≤ . . . ,≤ τP ≥ τP+1 ≥ . . . ≥ τK ,

with at least one strict inequality. In terms of the PI this can be formulated as

Hu
1 :

2

P (P − 1) + (K − P )(K − P + 1)

( ∑
k<l, l≤P

Pkl +
∑

P≤l, k>l

Pkl

)
>

1

2
.
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The Mack–Wolfe (MW) test (Mack and Wolfe, 1981) is consistent against Hu
1 and is based on

the statistic

MWs := σ−1
MW

P−1∑
k=1

P∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi 4 Yj) +

K−1∑
k=P

K∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi < Yj)− µMW

 , (4.27)

where I (Yi < Yj) = 1− I (Yi 4 Yj),

µMW =
1

4

(
N2

1 +N2
2 −

K∑
i=1

n2
i − n2

P

)
,

and

σ2
MW =

1

72

(
2(N3

1 +N3
2 ) + 3(N2

1 +N2
2 )−

K∑
i=1

n2
i (2ni + 3)− n2

P (2nP + 3)+

12nPN1N2 − 12n2
PN
)
,

with N1 =
∑P

i=1 ni and N2 =
∑K

i=P ni. The MW test can also be obtained from the PIM

framework. Let

Zij = I (Xi < Xj ≤ P )− I (Xj < Xi ≤ P ) + I (Xi > Xj ≥ P )− I (Xj > Xi ≥ P ) ,

and consider the PIM (regression notation)

P (Yi 4 Yj | Xi, Xj) =
1

2
+ ζZij, (Xi, Xj) ∈ X0. (4.28)

The interpretation follows from ζ = P (Yi 4 Yj | Xi < Xj ≤ P ) −0.5, i.e. the probability that

an outcome of a higher factor level of at most P exceeds an outcome of a lower factor level

reduced with 0.5. Similarly ζ = P (Yi 4 Yj | Xi > Xj ≥ P ) − 0.5, i.e. the probability that

an outcome of a lower factor level of minimal P exceeds an outcome of a higher factor level

reduced with 0.5. The relationship between PIM (4.28) and the MW test is established in the

following theorem.

Theorem 10 (Mack–Wolfe). Let ζ̂ denote the OLS estimator associated with PIM (4.28) and

let σ2
0 denote its variance under the null hypothesis of equal distributions, then

ζ̂

σ0

= MWs,

with MWs given by (4.27).
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Proof. The estimating equations (4.5) withA(Zij;β) = Zij for PIM (4.28) simplify to

P−1∑
k=1

P∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

[
I (Yi 4 Yj)−

(
1

2
+ ζ

)]

+
K−1∑
l=P

K∑
k=l+1

∑
{i|Xi=k}

∑
{j|Xj=l}

[
I (Yi 4 Yj)−

(
1

2
+ ζ

)]
= 0

⇔ ζ̂ =
1

Ñ1 + Ñ2

P−1∑
k=1

P∑
l=k+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi 4 Yj)

+
K−1∑
l=P

K∑
k=l+1

∑
{i|Xi=k}

∑
{j|Xj=l}

I (Yi 4 Yj)

− 1

2

where Ñ1 =
∑P−1

k=1

∑P
l=k+1 nknl and Ñ2 =

∑K−1
l=P

∑K
k=l+1 nknl. The remainder of the proof

follows from Hollander and Wolfe (1999, p. 221).

The following theorem shows how the MW test can be obtained from the pairwise PIM. The

proof is similar to the proof of Theorem 10.

Theorem 11 (Mack–Wolfe 2). Let

γ̂T = (γ̂12, . . . , γ̂1P , γ̂2P , . . . , γ̂(P−1)P , γ̂1(P+1), . . . , γ̂P (P+1), γ̂P (P+2), . . . , γ̂(K−1)K),

denote the estimator associated with (4.18) and let Σ0 denote its covariance matrix under the

null hypothesis of equal distributions. Let

vT = (n1n2, . . . , n1nP , n2nP , . . . , nP−1nP , 0, . . . , 0,−nPnP+1,−nPnP+2, . . . ,−nK−1nK),

then
vT (γ̂ − 1/2)√

vTΣ0v
= MWs,

with MWs given by (4.27).

4.4.4 Extension to block designs

The pairwise PIM can be extended to block designs. In ANOVA notation the model for the

one-way layout becomes

P (Ykj 4 Ylj) = γkl, (4.29)
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where i = 1, . . . , K refers to the treatment group and j = 1, . . . , L to the block. The parameter

γkl thus gives the probability that a random observation of group l exceeds a random observation

of group k within the same block. The corresponding regression PIM is obtained with Zij as in

(4.17) and γ the vector with the corresponding γkl as before. Model (4.29) now becomes

P (Yi 4 Yj | Xi, Bi, Xj, Bj) = ZT
ijγ, (X i,Xj) ∈ Xn, (4.30)

with Xn = {(X i,Xj) | Xi < Xj, Bi = Bj, i, j = 1, . . . , N}, i.e. the PI is restricted to com-

parisons within blocks and to all unique treatment combinations.

Similar as for the marginal PIM, the blocking does not result in extra parameters in the model,

but if affects the estimating equations through a limitation on the pseudo-observations. Lemma

3 remains valid and Corollary 5 gives the explicit form of the estimator in the presence of blocks.

Corollary 5. The estimate of γkl in (4.29) or (4.30), defined as the solution of (4.5) with

A(Zij;β) = Zij , is of the form

γ̂kl = dkl

N∑
i=1

N∑
j=1

bijcikcjlI (Yi 4 Yj) , k < l, (4.31)

where

• bij = 1 if Bi = Bj and bij = 0 otherwise,

• cik = I (Xi = k),

• dkl =
(∑N

i=1

∑N
j=1 bijcikcjl

)−1

.

4.5 Correcting for continuous covariates

In the introduction of this chapter we argued that the PIM framework not only includes the

classical rank tests for factorial design, but it also gives the flexibility to construct tests for more

complicated designs. In this section we demonstrate briefly how a PIM may be constructed that

allows for testing for a factor effect while controlling for a continuous covariate.

Consider the K-sample design, and let x denote the continuous covariate. Let Ykx denote the

outcome variable in group k, conditional on covariate x. The marginal PIM (4.2) may now be
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extended to become (ANOVA notation)

P (Y.. 4 Ykx) = αk + δx, (4.32)

which still belongs to the class of PIMs. The interpretation of αk is the same as for model (4.2),

but now conditional on x = 0 (if x = 0 is not within the scope of the model, the covariate

may be centred first). The parameter δ has also an informative interpretation: it measures the

increase of the PI P (Y.. 4 Ykx) when x is increased with one unit within the same treatment

group. An interaction effect between the factor and the covariate variables may be modelled

by adding a term, say ζkx to (4.32); a restriction on the ζk is required to make the parameters

identifiable; e.g. ζ1 = 0 or
∑

k ζk = 0.

A potential drawback of (4.32) is that it does not result in a PI in [0, 1] for all x. Therefore, it

may be more appropriate the choose a logit or probit link function. For example, with a logit

link model (4.32) becomes

logit[P (Y.. 4 Ykx)] = αk + δx,

and thus expit(αk) has now the interpretation of αk in (4.32), and δ is the log odds ratio of the

PI for an increase of x with one unit within the same group.

The pairwise PIM (4.16) may also be extended to include the effect of x. For example, upon

using the identity link,

P (Ykx1 4 Ylx2) = γkl + η(x2 − x1). (4.33)

Thus γkl = P (Ykx 4 Ylx), i.e. the probability that a random outcome of group l exceeds

a random outcome of group k when both observations have the same continuous covariate

x1 = x2 = x. As for the marginal model, we recommend using a logit or probit link. An

example is given in Section 4.9.

4.6 The two-way layout

Consider the two-way layout where X1 (X2) corresponds to the first (second) factor with K1

(K2) levels. For the remainder of this section we consider no blocks, but all results can be

generalized to block-designs by limiting the summations in (4.5) to pseudo-observations defined

within the same block. All PIMs are defined for the no-order restriction.
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When using the ANOVA notation, Ykl denotes an outcome associated with groups X1 = k and

X2 = l. We use the notation Yk. to denote the outcome of the distribution marginalized overX2.

Similar for Y.l (marginalized over X1) and Y.. (marginalized over both X1 and X2). Consider

the marginal PIM in ANOVA notation

P (Y.. 4 Ykl) = µ+ αk + βl + γkl. (4.34)

Since this model is over-parametrized, restrictions are required. For example, α1 = 0, β1 = 0,

γk1 = 0, k = 1, . . . , K1, and γ1l = 0, l = 1, . . . , K2. The interpretation follows from αk+γkl =

P (Y.. 4 Ykl) − P (Y.. 4 Y1l), i.e. αk + γkl gives the difference in the marginal PI of group k

relative to the marginal PI of group 1 of factor X1, while keeping X2 fixed at group l. Since the

effect depends on the level l through γkl, the latter quantifies an interaction effect.

If the sum restriction is considered, i.e.
∑

k αk = 0,
∑

l βl = 0,
∑

l γkl = 0, k = 1, . . . , K1,

and
∑

k γkl = 0, l = 1, . . . , K2, then, for a balanced design, the interpretation follows from

αk + γkl = P (Y.. 4 Ykl) − P (Y.. 4 Y.l), i.e. αk + γkl gives the difference in the marginal PI

of group k relative to the marginal PI marginalized over factor X1, while keeping X2 fixed at

group l.

Model (4.34) may also be written as a regression PIM model by appropriate coding of dummies

in vectors Zij and a corresponding stacking of the model parameters in a vector, say α. The

model then becomes

P (Yi 4 Yj | X1j, X2j) = ZT
ijα. (4.35)

Lemma 3 is again valid. It states that the PIM estimation theory provides the OLS estimator of

α. Consequently, the linear PIM (4.35) can be viewed as a linear regression model fitted to the

pseudo-observations instead of the original outcome observations. The variance estimator of

the linear model is, however, not consistent, because the pseudo-observations are not mutually

independent. As before, the general PIM theory provides a consistent sandwich estimator of the

covariance matrix, but Lemma 4 may be used instead for obtaining the exact covariance matrix

under the null hypothesis that neither X1 or X2 affects the outcome distribution.

We can also extend the pairwise PIM to the two-way layout. With the ANOVA-notation the

no-interaction model becomes

P (Yij 4 Ykl) =
1

2
+ αik + βjl. (4.36)
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Since P (Yij 4 Yij) = 0.5, it follows that αii = 0 and βjj = 0. The interpretation follows from

αik = P (Yij 4 Ykj) − 0.5, i.e. αik is the probability that a random observation of group k of

factor 1 exceeds a random observation of group i of factor 1, when factor 2 is fixed at group j,

reduced with 0.5.

If we impose the restrictions αik = α′i−α′k and βjl = β′j − β′l , for some new parameters α′i and

β′j , PIM (4.36) simplifies to P (Yij 4 Ykl) = 0.5+α′i−α′k+β′j−β′l , which can be considered as

an extension of the Bradley–Terry model (4.23) to the two-way layout for which PI-transitivity

holds.

PIM (4.36) can be extended to include interaction. We suggest

P (Yij 4 Ykl) =
1

2
+ αik + βjl + γikjl. (4.37)

Since this model is over-parametrized, additional restrictions on the model parameters or a

reparametrization need to be imposed. For example, γikjl = δ′iI (i = k) + ζ ′jI (j = l). Then

αik + ζ ′j = P (Yij 4 Ykj) − 0.5, i.e. αik + ζ ′j is the probability that a random observation of

group k of factor 1 exceeds a random observation of group i of factor 1, within group j of factor

2, reduced with 0.5.

Patel and Hoel (1973) define a measure of interaction based on the PI as follows

µijkl := P (Yij 4 Yil)− P (Ykj 4 Ykl) and µ′ijkl := P (Yij 4 Ykj)− P (Yil 4 Ykl) .

No-interaction then corresponds to µijkl = µ′ijkl = 0. It is straightforward to see that for PIM

(4.36) µijkl = µ′ijkl = 0, while for PIM (4.37) µijkl = δ′i − δ′k and µ′ijkl = ζj − ζl, which are not

necessarily equal to 0. For other definitions of interaction in a nonparametric setting, we refer

to de Kroon and van der Laan (1981) and Marden and Muyot (1995).

By appropriate coding of dummies in vectors Zij and stacking the model parameters in a pa-

rameter vector, the general PIM estimation theory of Theorems 1 and 2 may once more be

invoked to give OLS estimators and consistent covariance matrix estimators.

4.7 Relationship with methods of Akritas and colleagues

Akritas et al. (2000) proposed a model that forms their basis for testing for no treatment effect

in the presence of a continuous covariate. In the absence of the covariate the model reduces to
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the models of Akritas and Arnold (1994) and Akritas et al. (1997). Tsangari and Akritas (2004)

further extend the model to more than one covariate. In the following sections we relate these

methods to the marginal and pairwise PIM.

4.7.1 The one-way layout

Let Fi denote the distribution function of the outcome variable in group i = 1, . . . , K and let Yi

denote the corresponding random variable. We use Y. to denote the outcome variable with the

marginal distribution function. Akritas and Arnold (1994) considered the decomposition

Fi(y) = M(y) + Ai(y), (4.38)

with
∑K

i=1Ai(y) = 0 for all y. This restrictions implies that for equally large groups, M(y)

is the marginal outcome distribution. Since (4.38) specifies a conditional outcome distribution

function, we can immediately obtain the probabilistic index, both for a marginal and a pairwise

model.

The marginal PIM gives

P (Y. 4 Yi) =

∫
M(y)dFi(y) =

1

2
+ αi,

with αi :=
∫
M(y)dAi(y) satisfying the restriction

∑K
i=1 αi = 0. This model is equivalent to

the PIM (4.2) after a reparameterization.

To establish the relationship with the pairwise PIM, the following lemma will be useful.

Lemma 9. For M(·) and Ai(·) as in (4.38), it holds that∫
M(y)dAi(y) = −

∫
Ai(y)dM(y). (4.39)

Proof. For notational convenience we consider a continuous outcome with support the real line.

Since Fi(·) and M(·) are both distribution functions, it follows that

lim
y→−∞

Fi(y) = lim
y→−∞

M(y) = 0,

and

lim
y→∞

Fi(y) = lim
y→∞

M(y) = 1.
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Consequently, from (4.38) it follows that

lim
y→−∞

Ai(y) = lim
y→∞

Ai(y) = 0. (4.40)

Upon using (4.40), it holds that ∫ ∞
−∞

d [M(y)Ai(y)] = 0. (4.41)

By using the product rule, the left hand side of (4.41) is also equal to∫ ∞
−∞

d [M(y)Ai(y)] =

∫ ∞
−∞

[M(y)dAi(y) + Ai(y)dM(y)] . (4.42)

Combining (4.41) and (4.42) now completes the proof.

The pairwise PIM becomes

P (Yi 4 Yj) =
1

2
+ αj − αi + (αα)ij, (4.43)

where we have used the identity (4.39), as well as the notation (αα)ij :=
∫
Ai(y)dAj(y). When

(αα)ij = 0 for all i, j, model (4.43) is the Bradley–Terry-type PIM (4.23).

If (αα)ij = 0 then the marginal PIM is as informative as the pairwise PIM. Indeed, the pairwise

PIM can be constructed from marginal PIM as follows

P (Yi 4 Yj) =
1

2
+ P (Y. 4 Yj)− P (Y. 4 Yi) .

The interpretation of (αα)ij follows from

(αα)ij = P (Yi 4 Yj)− P (Y. 4 Yj) + P (Y. 4 Yi)−
1

2
.

4.7.2 The two-way layout

For the two-way layout, Akritas and Arnold (1994) assume a decomposition of Fij ,

Fij(y) = M(y) + Ai(y) +Bj(y) + Cij(y), (4.44)
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with restrictions
∑

iAi(y) = 0,
∑

j Bj(y) = 0,
∑

iCij(y) = 0, and
∑

j Cij(y) = 0 for all y.

The marginal PIM (4.34) follows from

P (Y.. 4 Yij) =

∫
M(y)dFij(y)

=

∫
M(y)d [M(y) + Ai(y) +Bj(y) + Cij(y)]

=
1

2
+ αi + βj + γij, (4.45)

where αi :=
∫
M(y)dAi(y), βi :=

∫
M(y)dBj(y), and γij :=

∫
M(y)dCij(y). The restrictions

imposed by Akritas and Arnold (1994) imply that
∑

i αi = 0,
∑

j βj = 0,
∑

i γij = 0, and∑
j γij = 0.

The interpretation of the model parameters of (4.45) can be read from

P (Y.. 4 Yi.) =

∫
M(y)dFi.(y)

=

∫
M(y)d[M(y) + Ai(y)]

=
1

2
+ αi.

Hence αi = P (Y.. 4 Yi.)− 0.5. Similarly, for the interpretations of βj and γij , where

βj = P (Y.. 4 Y.j)− 0.5,

and

γij = P (Y.. 4 Yij)− P (Y.. 4 Yi.)− P (Y.. 4 Y.j) +
1

2
.

The pairwise PIM becomes

P (Yij 4 Ykl) =

∫
Fij(y)dFkl(y)

=

∫
[M(y) + Ai(y) +Bj(y) + Cij(y)]d [M(y) + Ak(y) +Bl(y) + Ckl(y)]

=
1

2
+ (αk − αi) + (βl − βj) + (γkl − γij) +

(αα)ik + (ββ)jl + (γγ)ijkl +

[(αβ)il − (αβ)kj] + [(αγ)ikl − (αγ)kij] + [(βγ)jkl − (βγ)lij], (4.46)

where the Greek letters α, β, and γ are used to denote the parameters originating from the Ro-

man lettersA,B, andC in (4.44), and in which we repeatedly used the property
∫
U(y)dV (y)+∫

V (y)dU(y) = 0, for U and V any of terms in (4.44). Model (4.46) is a special case of the

over-parametrized model (4.37). By setting some of the higher-order parameters to zero, better

interpretable PIMs may be obtained; see Section 4.6.
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4.7.3 The one-way layout with a continuous covariate

Let Fkx denote the distribution function the outcome variable in group k = 1, . . . , K, condi-

tional on the single covariate value x ∈ R, and let G(x) denote the distribution function or a

weight function (per design) of the covariate. Without loss of generality we assume that the

outcome is absolutely continuous; see Akritas et al. (2000) for details on how a minor change

in the definition of Fkx makes their methods applicable for discrete outcomes too. The model

of Akritas et al. (2000) assumes a decomposition of Fkx,

Fkx(y) = M(y) + Ak(y) +Dx(y) + Ckx(y), (4.47)

that satisfies the following restrictions:
∑K

k=1Ak(y) = 0 for all y,
∫
Dx(y)dG(x) = 0 for all y,∑K

k=1 Ckx(y) = 0 for all x and y, and
∫
Ckx(y)dG(x) = 0 for all k and y. LetXT

i = (X1i, Xi2)

withX1i = 1, . . . , K indicating the group, andX2i the continuous covariate x. Then, a marginal

PIM follows from

P (Y.. 4 Ykx) =

∫
M(y)dFkx(y)

=

∫
M(y)d [M(y) + Ak(y) +Dx(y) + Ckx(y)]

=
1

2
+ αk + δx+ γkx,

with αk :=
∫
M(y)dAk(y), δx :=

∫
M(y)dDx(y) and γkx :=

∫
M(y)dCkx(y). This model

is equivalent to our model (4.32) with the interaction term ζkx which was obtained without the

explicit assumption that the decomposition in (4.47) holds.

Similar calculations show that (4.47) also implies a pairwise PIM. In particular,

P (Yix1 4 Ykx2) =

∫
Fix1(y)dFkx2(y)

=

∫
[M(y) + Ai(y) +Dx1(y) + Cix1(y)] d [M(y) + Ak(y) +Dx2(y) + Ckx2(y)] ,

which gives 16 terms. Upon making similar assumptions as for the marginal PIM, and making

use of the property
∫
U(y)dV (y) +

∫
V (y)dU(y) = 0, for U and V any of terms in (4.47), we

find

P (Yix1 4 Ykx2)

=
1

2
+ αk − αi + (αα)ik + δ(x2 − x1) +

[(αδ)i + (αγ)ik + γk]x2 − [(αδ)k + (αγ)ik + γi]x1 +

[(δγ)k − (δγ)i + (γγ)ik]x1x2,
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where the Greek letters α, γ, and δ are used to denote the parameters originating from the

Roman letters A, C, and D in (4.47), and parameters formed by two Greek letters show from

which integral they have resulted. The pairwise PIM may be reparametrized to

P (Yix1 4 Ykx2) =
1

2
+ αk − αi + (αα)ik + δ(x2 − x1) + β1ikx1 + β2ikx2 + β12ikx1x2. (4.48)

This model, in the absence of the interaction terms with the β-parameters, is equivalent to our

model (4.33). Obviously, the established relationship depends on very stringent assumptions

on the A, C, and D functions, particularly when the continuous covariate is involved. Similar

assumptions were also used by Akritas et al. (2000) to show how their model relates to a linear

model for the conditional mean outcome.

4.8 Simulation study

In this section we present the results of a simulation study to examine the empirical performance

of the KW and Friedman test (KWs and Fs), their Wald-type variants (KWw and Fw), and the

BH test (BHs). Note that these Wald-type tests are new tests generated from a PIM. We consider

balanced three-sample designs with and without blocks.

4.8.1 Empirical type I error

The empirical type I error is evaluated for observations simulated from a standard normal dis-

tribution and a t-distribution with 2 degrees of freedom. Sample sizes of n = 5, 25, 50, 75, and

150 per group are considered. Table 4.1 gives the empirical rejection rates at the 1%, 5%, and

10% levels of significance based on 10000 simulation runs, where both the permutation null

distribution (approximated by 5000 permutations) and the asymptotic null distribution are con-

sidered. The results demonstrate that with the permutation null distribution, all tests correctly

control for the type I error and with the asymptotic null distribution, both score-tests KWs and

BHs have empirical rejection rates close to the nominal level, even for small samples. The

Wald-type test KWw, however, only correctly controls for the type I error rate if n ≥ 75. This

may be a consequence of its extra variability caused by the use of an estimated variance for

standardization.
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Table 4.1: Empirical type I error rates (%) at the 1%, 5%, and 10% levels of significance. Data

are simulated from a standard normal distribution, N(0, 1), and a t-distribution with 2 degrees

of freedom, t2. The number of observations of each group is denoted by n.

n KWs KWw BHs

1% 5% 10% 1% 5% 10% 1% 5% 10%

Permutation null distribution

N(0, 1)

5 1.04 4.97 10.18 1.17 5.43 10.17 0.90 4.95 10.26

25 0.92 5.05 10.60 0.89 5.30 10.15 0.86 5.16 10.74

50 0.86 4.68 9.26 0.95 4.73 9.32 1.08 4.48 9.53

t2

5 1.07 4.77 10.09 1.07 5.18 9.78 0.91 4.74 9.90

25 0.82 5.15 10.12 0.95 5.34 10.05 0.76 5.30 10.32

50 1.08 4.89 9.57 1.13 4.96 9.49 1.10 4.63 9.81

Asymptotic null distribution

N(0, 1)

5 0.36 4.53 8.92 17.66 25.74 31.99 0.93 4.60 9.98

25 0.85 4.76 9.68 2.52 7.82 13.90 1.57 5.59 10.49

75 0.86 4.63 9.38 1.31 5.68 10.91 1.58 5.84 10.52

150 0.99 5.11 10.26 1.30 5.72 10.85 1.49 6.16 10.97

t2

5 0.24 4.26 9.27 17.70 25.48 31.67 0.87 4.48 9.70

25 0.90 4.74 9.91 2.70 7.84 13.55 1.46 5.63 10.24

75 0.83 4.82 9.48 1.26 5.78 10.57 1.31 5.11 9.83

150 0.99 5.04 10.16 1.30 5.72 10.85 1.61 6.11 10.82
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4.8.2 Location-shift

To examine the empirical power under location-shift, data are generated with

Yij = µi + εij, i = 1, 2, 3, j = 1, . . . , n,

with ε d
= N(0, 1) or ε d

= t2, and µi = i/4. Using notation (4.20), for N(0, 1) it holds that

P12 ≈ 57%, P13 ≈ 64%, and P23 ≈ 57%, while P1 ≈ 43%, P2 ≈ 50%, and P3 ≈ 57%.

For t2 this is P12 ≈ 56%, P13 ≈ 61%, and P23 ≈ 55%, while P1 ≈ 45%, P2 ≈ 50%, and

P3 ≈ 55%. The permutation null distribution is used for p-value calculation and approximated

by 5000 permutations. All results are based on 10000 simulation runs and testing at the 5% level

of significance. Table 4.2 shows the results. KWs and KWw have similar powers for n = 5 and

n = 25. For all sample sizes, BHs has lower power than the KW-tests. Since location-shift

implies PI-transitivity, the BHs test suffers from a dilution effect by also including a component

that aims at detecting intransitivity.

Table 4.2: Empirical powers (%) at the 5% level of significance for the location shift model.

Errors are simulated from a standard normal distribution, N(0, 1), and a t-distribution with 2

degrees of freedom, t2. The number of observations of each group is denoted by n.

n KWs KWw BHs KWs KWw BHs

N(0, 1) t2

5 8.42 8.63 7.42 6.90 7.13 6.51

25 31.03 31.74 26.08 17.92 18.39 16.88

50 56.40 56.17 44.97 32.25 32.11 27.17

4.8.3 No location-shift but transitive

To examine the power properties when the location-shift model does not hold, data are simu-

lated from the standard normal distribution (referred to as group 1), Laplace distribution with

location parameter 0.5 and scale parameter 1 (group 2), and the Gumbel distribution with lo-

cation parameter 0 and scale parameter 1 (group 3). The left panel of Figure 4.1 shows these

densities, for which P12 ≈ 63%, P13 ≈ 62%, and P23 ≈ 49%, while P1 = 42%, P2 = 55%, and
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P3 = 54%. The permutation null distribution is used for p-value calculation. Table 4.3 gives the

empirical powers. The KW tests have similar powers, and BHs has the smallest power. Similar

as for the location-shift model, the distributions are PI-transitive and hence the BHs test looses

power.
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Figure 4.1: Left: Densities of the standard normal distribution (—), the Laplace distribution

with location parameter 0.5 and scale parameter 1 (− − −), and the Gumbel distribution with

location parameter 0 and scale parameter 1 (· · · ). Right: Densities corresponding to die Ω1

(—), Ω2 (−−−), and Ω3 (· · · ).

Table 4.3: Empirical powers (%) at the 5% level of significance when the location-shift model

does not hold for different group sample sizes n

n KWs KWw BHs

5 9.20 8.89 8.33

25 31.51 32.96 27.66

50 61.58 63.29 53.18
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4.8.4 Intransitive

Brown and Hettmansperger (2002) provided an algorithm to simulate data from intransitive

distributions based on the dice given in Section 4.4.2. For each die, a mixture distribution of six

normal distributions with fixed variance and mean equal to a marking of the die is considered.

The right panel of Figure 4.1 shows the densities when the variance is equal to 0.25. Table

4.4 shows the empirical powers when the permutation null distributions are used for p-value

calculation. Both KW tests have virtually no power, because P (Y. 4 Yk) = 0.5 for k = 1, 2, 3.

The empirical powers are even zero at the 5% significance level, indicating that the KW tests

are biased for this extreme situation. Since P (Yk 4 Yl) 6= 0.5, the BH test has non-trivial power

for n ≥ 30.

Table 4.4: Empirical powers (%) at the 5% level of significance when transitivity does not hold

but P (Y. 4 Yk) = 0.5 for k = 1, 2, 3, for different group sample sizes n

n KWs KWw BHs

12 0 0 2.70

30 0 0 70.90

60 0 0 99.43

4.8.5 Randomized complete blocks

To evaluate the performance of the Friedman test and the Wald-type version, we consider the

data generating model

Yij = µ+ µi + νj + εij, i = 1, 2, 3, j = 1, . . . , L,

with ε d
= N(0, 1) or ε d

= t2, νj = j/L if j > 1, and µ1 = ν1 = 0. To empirically evaluate

the type I error rate we set µi = 0, and to examine the power we set µi = (i − 1)/K. The

permutation null distribution, based on 5000 permutations, is used for p-value calculation. All

results are based on 10000 simulations. Table 4.5 shows the results for several choices of L.

The results show that Fs is slightly more liberal than Fw and both tests have a similar power.
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Table 4.5: Empirical rejection rates (%) and empirical powers (%) at the 5% level of signifi-

cance for the randomized complete block design. Errors are simulated from a standard normal

distribution, N(0, 1), and a t-distribution with 2 degrees of freedom, t2. The number of blocks

is denoted by L.

L Fs Fw Fs Fw

N(0, 1) t2

Empirical rejection rate

10 6.87 4.91 6.69 4.56

25 5.21 5.23 5.30 5.09

50 5.81 5.72 5.91 5.65

Empirical power

10 25.39 18.79 16.58 12.32

25 49.80 48.10 29.66 27.98

50 83.81 83.14 55.87 54.71

4.9 The surgical unit study

In this section we use an example data set to illustrate how a PIM can be used to construct new

rank tests when the design is more complex than a K-sample study.

We consider the surgical unit study provided by Kutner et al. (2004), section 9.2. The data

contain information on 54 patients who underwent a particular type of liver operation and it is

of interest to predict the survival based on pre-operation variables. In addition to the survival

time (Y , mean 702.1, St. Dev. 397.4) of each patient, several predictors are recorded. We

consider: enzyme function test score (X1: mean 77.1, St. Dev. 21.3), gender (X2: 0: male

53.7%, 1 : female 46.3%), and history of alcohol use (X3: 0: none 27.8%, 1: moderate 53.7%,

and 2: severe 18.5%). A PIM with the identity link function is inappropriate, because the

continuous predictor can cause predictions outside of the unit interval. We consider the logit

link function, for which, however, the exact covariance matrix of the parameter estimators does

no longer follow from Lemma 5 or Lemma 8. We thus need to rely on the Wald-type tests. We

fit two PIMs to the data, as well as a linear model for comparisons purposes. To illustrate the

interpretation of each model, we include the effect of the continuous predictor and the effect of
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severe versus no alcohol use history. We first consider the linear model, where the outcome is

log-transformed to obtain a better fit; see Kutner et al. (2004), section 9.2. In particular,

E(ln(Yi) |X i) = γ1 + γ2X1i + γ3I (X2i = 1) + γ4I (X3i = 1) + γ5I (X3i = 2) . (4.49)

Table 4.6 gives the estimates, standard errors (SE), and p-values. We conclude that the mean

log survival time increases with an estimate of 10γ̂2 = 0.14 for an enzyme function test score

of 10 units higher, while the other predictors remain fixed. Similarly, the mean log survival

time is an estimated γ̂5 = 0.46 units higher for patients with a severe alcohol use history as

compared to patients of the same gender and with the same enzyme function test score, but with

no history of alcohol use. It has been reported that moderate alcohol consumption is associated

with reduced mortality; see, for example, de Groot and Zock (1998); Foster (2010). On the

other hand, this association, for example, can perhaps be caused due to a heterogeneous sample

for which patients who have a history of alcohol use are not comparable to patients without a

history of alcohol use. The latter group can, for example, consist of patients who are very ill

and therefore need a liver operation, while the former group can consist of patients who are

healthier, but need to undergo a liver operation because of their drinking habits.

Consider now a marginal PIM with the same covariates as for the linear model. Since the PI is

invariant under monotonic transformations, a log transformation is not required. We write the

PIM as

logit [P (Yi 4 Yj |Xj)] = α1 + α2X1j + α3I (X2j = 1) + α4I (X3j = 1) +

α5I (X3j = 2) . (4.50)

The interpretation of α2 follows from

exp(α2) =
odds (Yi 4 Yj | X1j = x+ 1, X2j, X3j)

odds (Yi 4 Yj | X1j = x,X2j, X3j)
.

The odds on a larger survival than the marginal survival of a randomly chosen patient is an

estimated exp(10α̂2) = 1.4 times the corresponding odds of a randomly chosen patient of the

same gender and with the same alcohol use history, but with an enzyme function test score which

is 10 units lower. Similarly, the odds of having a larger survival than the marginal survival of a

randomly chosen patient with a severe history of alcohol use is an estimated exp(α̂5) = 3 times

the corresponding odds of a randomly chosen patient with no history of alcohol use, but with

the same gender and enzyme function test score.
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We also consider a pairwise PIM, which results in a different, and perhaps simpler interpreta-

tion. In particular,

logit [P (Yi 4 Yj |X i,Xj)] = β1(X1j −X1i) + β2I (X2i = 0) I (X2j = 1) +

β3I (X3i = 0) I (X3j = 1) + β4I (X3i = 0) I (X3j = 2) +

β5I (X3i = 1) I (X3j = 2) . (4.51)

Since

expit(β1) = P (Yi 4 Yj | X1i = x,X1j = x+ 1, X2i = X2j, X3i = X3j) ,

expit(10β̂1) = 57% is the estimated probability that the survival is larger for a randomly chosen

patient as compared to a randomly chosen patient of the same gender and with the same alcohol

use history, but for which enzyme function score is 10 units lower. Similarly, expit(β4) =

P(Yi 4 Yj | X3i = 0, X3j = 2, X1i = X1j, X2i = X2j), thus expit(β̂4) = 88% is the estimated

probability that the survival is higher for a randomly chosen patient with a severe history of

alcohol use as compared to a randomly chosen patient with no history of alcohol use, and the

same enzyme function test score and gender. Model (4.51) allows us now to extend the JT test

for testing versus the ordered alternative in terms of the alcohol history while accounting for

the gender and enzyme function test score. The test statistic is constructed along the lines of

Theorem 9, based on the standardized contrast β̂3 + β̂4 + β̂5. In particular, the null hypothesis of

equal distributions is rejected in favour of the ordered alternative, which states that the survival

time increases as the history of alcohol use becomes more severe (p-value: 0.008). For the JT

test without the adjustment of the enzyme function test score and gender, the p-value is 0.0122.

The linear model showed no lack-of-fit (results not shown) and for both the marginal and pair-

wise PIM the goodness-of-fit (GOF) should be assessed. In Chapter 5, GOF methods are de-

veloped and used to assess the model adequacy of the PIMs which are fitted in the case studies

of Chapters 2 and 3. However, both the marginal and pairwise PIM are, in a way, more compli-

cated PIMs, and the current version of the software for assessing GOF of PIMs does not support

these models. Therefore, although important, assessing the GOF of these models is beyond the

scope of this dissertation.
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Table 4.6: Parameter estimates, standard errors (SE), and p-values for models (4.49), (4.50),

and (4.51)

Linear Model

γ1 γ2 γ3 γ4 γ5

Estimate 5.15 0.014 0.16 0.10 0.46

SE 0.194 0.002 0.095 0.109 0.141

p-value < 0.001 < 0.001 0.09 0.35 0.002

Marginal PIM

α1 α2 α3 α4 α5

Estimate −3.31 0.035 0.43 0.34 1.11

SE 0.647 0.010 0.276 0.323 0.380

p-value < 0.001 < 0.001 0.12 0.29 0.003

Pairwise PIM

β1 β2 β3 β4 β5

Estimate 0.028 0.57 0.71 2.04 1.27

SE 0.014 0.400 0.441 0.978 0.693

p-value 0.042 0.15 0.11 0.037 0.064
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4.10 Discussion

In this chapter it is shown how two parametrizations of a PIM can lead to rank tests for factorial

designs. Based on the marginal PIM parametrization, the Kruskal–Wallis (KW) test statistic

for a K-sample design and the Mack–Skillings and Friedman tests for a randomized complete

block design, arise naturally. The pairwise PIM results in the Wilcoxon–Mann–Whitney test for

the two sample design and the Brown–Hettmansperger (BH) test for the three sample design.

For the pairwise PIM, the Jonckheere–Terpstra (JT) and the Mack–Wolfe (MW) tests also arise

naturally. All these rank tests are score tests in the sense that their variances are obtained under

the null hypothesis. The PIM theory, however, provides a sandwich estimator of the variance

which is also consistent under the alternative. This allows to construct Wald-type versions

of these rank tests, as well as confidence intervals for the effect sizes. A simulation study is

performed for evaluating the performance of some of these tests. It is concluded that the rank

tests and their Wald-type versions have similar powers. The Wald-type tests, however, are more

liberal for small samples. The BH test has lowest power relative to the KW tests if PI-transitivity

holds. However, for PI-intransitive data, the BH test has superior power.

The PIM representation of rank tests allows extending rank tests for more complicated designs,

when, for example, a continuous confounder or multiple predictors are present. Furthermore,

the PIM representation also allows to extend the BH, JT, and MW tests to block designs.

The classical rank tests are very often referred to as nonparametric tests, but this term may be

misleading. Apart from some very simple settings (e.g. K-sample problem) rank tests relate

to parameters of a semiparametric model which expresses restrictions on the distribution of the

outcome variable. In this chapter we have demonstrated that the PIM is a natural model for rank

tests. Akritas and Arnold (1994) proposed another model for which they developed rank tests,

which, however, do not generally reduce to the classical tests. Their methodology was extended

to several designs and to the inclusion of continuous covariates (Akritas et al., 1997, 2000;

Brunner and Puri, 2002; Tsangari and Akritas, 2004). Their test statistics are rank-transform

statistics, in the sense that they are functions of the rank-transformed outcome observations.

Although their methods also rely on a model that expresses a restriction on the outcome dis-

tribution function, they cannot always estimate all terms in their model (Tsangari and Akritas,

2004). At this point it is also interesting to mention that the simple rank-transform methods

of Conover and Iman (1981) and Hora and Conover (1984) do not always relate clearly to a
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statistical model. The method consists in transforming the outcome observations to their ranks

and subsequently using these transformed observations in parametric methods. For example,

the two-sample t-test and the one-way ANOVA F-test applied to the rank-transformed data

gives the WMW and the KW test, respectively. However, for more complicated designs Akritas

(1990) showed that the parametric statistical model does no longer hold after the transforma-

tion. For example, the two-way ANOVA without interaction implies additivity of the effects on

the mean outcome, but this additivity is lost with the transformation. Without explicitly refer-

ring to the probabilistic index, he made the connection. In particular, upon using asymptotic

arguments, he replaced the rank-transformed outcome of Yi with nF (Yi), with F the marginal

distribution function of the outcome. When the outcome is continuous, the original parametric

model that models E(Yi | X i) becomes E(nF (Yi) | X i) = nP (Y ≤ Yi |X i), which resem-

bles the marginal PIM. The additivity of the effects on E(Yi | X i) thus becomes additive in

the marginal PIM with identity link. To some extent, the PIM may also be seen as a two-stage

approach in which first the n sample observations Yi are transformed to pseudo-observations

I (Yi 4 Yj) which are subsequently used as outcome observations in a linear regression model.

By restricting the set of pseudo-observations to comparisons within blocks, block designs can

be analyzed. However, despite this apparently simple trick, it is not encouraged to look at it

this way. Instead it is preferred to interpret the PIM within a genuine semiparametric mod-

elling framework. This will help in ensuring correct interpretation and reporting of the analysis

results.

Many rank tests are based on highly parametric models that express a location-shift effect. For

example, the WMW test is the optimal rank test for detecting shifts in means when the ob-

servations show a logistic distribution; see, for example, Hájek et al. (1999). However, most

statisticians choose for rank tests when no distributional assumptions can be made. Therefore,

the relationship between rank tests and PIMs, as discussed in this chapter, can perhaps con-

tribute to a better understanding of rank tests in the absence of such assumptions.
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Chapter 5

Assessing the goodness-of-fit

The content of this chapter is primarily based on the results published in

De Neve, J., Thas, O., and Ottoy, J.P. (2013) Goodness-of-fit methods for probabilistic index

models. Communications in Statistics: Theory and Methods, 42:1193–1207.

5.1 Introduction

The PIM, just like any parametric or semiparametric regression model, expresses restrictions on

the joint distribution of the outcome and the covariates. It is important to assess the validity of

the model for a given data set and to examine whether the proposed model is consistent with the

underlying data-generating model. Consequently, formal goodness-of-fit (GOF) methods and

graphical diagnostic tools are needed to assess model adequacy.

We first resume the general formulation of a PIM. Let (Y,X) and (Y ′,X ′) be i.i.d., then a PIM

is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β) = g−1(ZTβ), (X,X ′) ∈ X , (5.1)

with g(·) and link function and Z a p-vector with elements that may depend on X and X ′. X

denotes the set of covariates (X,X ′) for which the model is defined; throughout this section

this will be the lexicographical order restriction, because all models satisfy the antisymmetry

condition; see Section 2.3.2 for more information.

To illustrate our setting we consider the Childhood Respiratory Disease Study (CRDS) which

115
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is also discussed in Section 2.5.1. The outcome variable is the forced expiratory volume (FEV

in litres), and the age (AGE in years) and smoking indicator (SMOKE = 1 if the child smokes,

SMOKE = 0 if the child does not smoke) are recorded for 654 children of ages 3 − 19 years.

When analyzing the effect of smoking on the lung capacity, age may be a confounder, and

therefore should be taken into account. A part of the data is illustrated in Figure 5.1, which

shows nonparametric density estimates of the FEV distributions for several combinations of

smoking status and age. If we fit a linear PIM with logit link

logit {P [FEV 4 FEV′ | (SMOKE,AGE), (SMOKE′,AGE′)]}

= β1(AGE′ − AGE) + β2(SMOKE′ − SMOKE), (5.2)

We find β̂1 = 0.56 (SE : 0.028 and p < 0.0001) and β̂2 = −0.46 (SE : 0.25 and p : 0.064). The

estimated probability that FEV is larger for a smoking child as compared to a non-smoker of the

same age is P̂[FEV 4 FEV′ | SMOKE = 0,SMOKE′ = 1,AGE = AGE′] = expit(−0.46) =

39%. It is thus unlikely that a smoker has a better pulmonary function than a non-smoker of the

same age. The effect is not significant at the 5% level of significance, which is surprising, as

it is expected that smoking affects a child’s lungs. So perhaps the data contain no evidence for

this hypothesis or the study is underpowered. However, the lack of significance may also arise

when the model does not fit the data properly. Before drawing conclusions about the effect of

smoking on the lung function, it is therefore important to first assess the GOF of model (5.2).
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Figure 5.1: Kernel density estimates of the FEV distributions for non-smokers (—) and smok-

ers (− − −) of age 12 years (left), 13 years (middle), and 14 years (right). The densities are

estimated using a Gaussian kernel with a bandwidth of 0.5. Beneath (non-smokers) and above

(smokers) each kernel density plot is a rug plot to identity better the individual sample observa-

tions that are used for the density estimation.
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In Section 5.2 a GOF test and a graphical diagnostic tool are developed. Section 5.3 assesses

the performance of the test in a simulation study, and in Section 5.4, the GOF methods are

illustrated on the case studies of Sections 2.5 and 3.2.3. Section 5.5 gives the conclusions and

discussion.

5.2 Goodness-of-fit methods

5.2.1 Rationale

We start by considering a single continuous predictor in a specific setting to explain the ratio-

nale; the extension to multiple predictors is addressed at the end of the section.

To formally introduce the GOF null hypothesis we denote by m0(X,X ′) the PIM which is

consistent with the data-generating model, referred to as the true model, and we denote by

m(X,X ′;β) the PIM that will be fitted to the data, i.e. the right hand side of (5.1), referred to

as the working model. The GOF null hypothesis is

H0 : m0(X,X ′) = m(X,X ′;β), (X,X ′) ∈ X , (5.3)

for some β ∈ Rp. Let the quadratic probit PIM be the true model and the linear probit PIM be

the working model, i.e.

m0(X,X ′) = Φ
[
β1(X ′ −X) + β2

(
X ′2 −X2

)]
, m(X,X ′; β) = Φ [β(X ′ −X)] .

The null hypothesis (5.3) can now be written as

H0 : β2 = 0.

Consider the following settings: β1 = 0.3, β2 takes the values 0, −0.05, and −0.20 and the

predictor X takes n equidistant values in [−5, 5]. When β2 = 0 there is no quadratic effect and

the null hypothesis (5.3) holds, while when β2 = −0.05 (β2 = −0.20) there is a weak (strong)

quadratic effect and the null hypothesis does not hold.

Since a PIM involves a couple of predictors (X,X ′), a 3-dimensional plot is needed for visual-

ization; see Figure 5.2. Although this plot provides all information, it is difficult to interpret. We

therefore restrict (X,X ′) to a number of values which are relevant for the interpretation. When
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Figure 5.2: Quadratic probit PIM P (Y 4 Y ′ | X,X ′) = Φ[β1 (X ′ −X) + β2 (X ′2 −X2)],

with β1 = 0.3 as a function of X and X ′. A grey coding is used to indicate the value of

P (Y 4 Y ′ | X,X ′).

∆ denotes a fixed value, we restrict the plot to P (Y 4 Y ′ | X,X ′ = X + ∆), i.e. the proba-

bility that the outcome increases when the predictor is increased by ∆ units. For the example

setting, we can write

m0(X,X ′ = X + ∆) = Φ(β̃1 + β̃2X), β̃1 = β1∆ + β2∆2, β̃2 = 2β2∆. (5.4)

Equation (5.4) indicates that the choice of ∆ is important. As ∆ increases, the difference be-

tween m0(X,X ′ = X + ∆) and m(X,X ′ = X + ∆; β) = Φ(β∆) becomes more pronounced;

see Figure 5.3. Consider the left panel where ∆ = 1. When the linear PIM holds, i.e. β2 = 0,

P (Y 4 Y ′ | X,X ′ = X + 1) is fixed at Φ(β̃1) = Φ(0.3) ≈ 62% and independent of X . How-

ever, with increasing magnitude of β2, this probability depends more strongly on the predictor

X . When β2 = −0.20, for example, it holds that P (Y 4 Y ′ | X,X ′ = X + 1) > 95% for

X < −4, while for X > 4 this becomes P (Y 4 Y ′ | X,X ′ = X + 1) < 7%. The restricted

probability provides information on the difference between a quadratic and linear PIM, while

retaining a simple interpretation.

Ifm0(·) andβ are known the plot suggests that comparingm0(X,X ′ = X+∆) withm(X,X ′ =

X + ∆;β) captures information on the adequacy of the model fit. For a point x, consider the

difference R0 = m0(x, x′ = x + ∆) − m(x, x′ = x + ∆;β). If the working model provides

a good approximation R0 will be close to zero; if the models differ substantially, R0 provides

information on how to improve the working model. For practical usem0(·) can be replaced with

a nonparametric kernel estimator, say m̂0(·), and β by a consistent estimator β̂, but a drawback
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of this approach is that m̂0(·) may be biased (le Cessie and van Houwelingen, 1991). Therefore,

we consider a kernel estimator of R0 that is based on the residuals

Rij(β̂) := I (Yi 4 Yj)−m(Xi, Xj; β̂).

Since the conditional expectation underH0 is zero, there is no bias (le Cessie and van Houwelin-

gen, 1991; Hardle and Mammen, 1993). For a fixed ∆, we obtain a graphical tool by plotting

the smoothed residuals as a function of the predictor and we construct a statistical test by con-

sidering a quadratic form of these residuals.
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Figure 5.3: Quadratic probit PIM P (Y 4 Y ′ | X,X ′) = Φ[β1(X ′−X) +β2 (X ′2 −X2)] with

predictors restricted to X ′ = X + ∆, with ∆ = 1 (left), ∆ = 5 (middle) and ∆ = 10 (right),

β1 = 0.3 and β2 = 0 (—), β2 = −0.05 (−−−), and β2 = −0.2 (· · · )

5.2.2 The goodness-of-fit test

To construct a kernel estimator based on the residuals Rij(β̂) and since a PIM depends on

(X,X ′), we need to define appropriate kernels for our setting. Consider, for example, a multi-

variate kernel (Silverman, 1986)

Kh1,h2(x, x
′;X,X ′) = D

(
x−X
h1(x)

)
D

(
x′ −X ′

h2(x′)

)
, (5.5)

where h1 and h2 are bandwidths that may depend on x and x′ and D is a kernel function.

Examples of D include the Gaussian DG, boxcar DB, or Epanechnikov DE kernel function,

given by

DG(x) =
1√
2π

exp

(
−x

2

2

)
, DB(x) =

1

2
I (|x| ≤ 1) , DE(x) =

4

3

(
1− x2

)
I (|x| ≤ 1) .
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Figure 5.4: Gaussian, boxcar, and Epanechnikov kernels. The Dirac-delta function is approxi-

mated for several values of y.

Figure 5.4 shows these different kernel functions. The kernel (5.5) provides double smoothing,

i.e. for each (X,X ′), we consider the distance between X and x, and between X ′ and x′.

More weight is given to couples for which simultaneously X is close to x and X ′ to x′. If

no smoothing is desired, which, for example, may happen when a categorical predictor has

sufficient replicates, we write h1 = h2 = 0 and denote by D the Dirac-delta function DD,

which can be defined as

DD(x) = lim
y→0

1

y
√

2π
exp

(
− x2

2y2

)
. (5.6)

The bottom right panel of Figure 5.4 shows the right hand side of equation (5.6). As y goes to

zero, the function becomes zero except at the origin for which its value is infinity.

For notional convenience we drop the dependence on h1 and h2 in (5.5) and writeK(x, x′;X,X ′)

instead ofKh1,h2(x, x
′;X,X ′). A Nadaraya–Watson kernel estimator (Nadaraya, 1964; Watson,

1964) based on the residuals is defined by

R̂(x, x′) :=

∑
(k,l)∈In Rkl(β̂)K(x, x′;Xk, Xl)∑

(k,l)∈In K(x, x′;Xk, Xl)
. (5.7)

To derive the asymptotic null distribution of these smoothed residuals, let K(x, x′) denote the

-- I ~ 
-

-

- --
- _.., __ .. _; ï_:- __ =_ 
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|In|-vector with elements
K(x, x′;Xk, Xl)∑

(k,l)∈In K(x, x′;Xk, Xl)
.

Furthermore, let Ip denote the |In|-vector of pseudo-observations I (Yi 4 Yj), m(β) the |In|-

vector with elementsm(Xi, Xj;β), andV (β) the diagonal matrix with elementsm(Xi, Xj;β)[1

−m(Xi, Xj;β)]. Let β0 denote the true parameter, as defined by (2.18), and define

R(β̂) = Ip −m(β̂), R(β0) = Ip −m(β0). (5.8)

Upon using notation (5.8), we can write the smoothed residual (5.7) as

R̂(x, x′) = K(x, x′)TR(β̂).

The following theorem gives the asymptotic null distribution of the smoothed residual. For

simplicity let h := h1 = h2 denote the bandwidth.

Theorem 12. For R̂(x, x′), as defined by (5.7), it holds that for a fixed x and x′, as h→ 0 and

nh→∞, under H0,
R̂(x, x′)√

Var[R̂(x, x′)]

d→ N(0, 1),

with asymptotic variance

Var
[
R̂(x, x′)

]
= K(x, x′)T (I −H) Cov (Ip) (I −H)T K(x, x′),

withH as defined in the proof by (5.12).

Proof. First note that the estimating equations (2.15) with index function (2.16) can be con-

cisely written as

Un(β) =
∂m(β)T

∂β
V (β)−1 [Ip −m(β)] = 0.

To emphasise the dependence of β̂ on the sample size n, we write β̂n. Consider a Taylor

expansion ofm(β̂n) about β0

m(β̂n) = m(β0) +
∂m(β)

∂βT

∣∣∣
β=β0

(β̂n − β0) + op(n
−1/2). (5.9)

A Taylor expansion of Un(β̂n) leads to

0 = |In|−1Un(β̂n) = |In|−1Un(β0) + |In|−1∂Un(β)

∂βT

∣∣∣
β=β0

(β̂n − β0) + op(n
−1/2)

⇔ (β̂n − β0) = −
(
∂Un(β)

∂βT

∣∣∣
β=β0

)−1

Un(β0) + op(n
−1/2). (5.10)



122 Chapter 5. Assessing the goodness-of-fit

Combining (5.9) and (5.10), it follows that

m(β̂n) = m(β0)− ∂m(β)

∂βT

∣∣∣
β=β0

(
∂Un(β)

∂βT

∣∣∣
β=β0

)−1

Un(β0) + op(n
−1/2).

If we substitute Un(β0) in this expression, then

m(β̂n) = m(β0) +H [Ip −m(β0)] + op(n
−1/2), (5.11)

where

H = −∂m(β)

∂βT

∣∣∣
β=β0

(
∂Un(β)

∂βT

∣∣∣
β=β0

)−1
∂m(β)T

∂β

∣∣∣
β=β0

V (β0)−1. (5.12)

From (5.8) and (5.11) it follows that

R̂(x, x′) = K(x, x′)TR(β̂n)

= K(x, x′)T (I −H)R(β0) + op(n
−1/2).

Consequently, under H0 (5.3), the asymptotic expectation and variance are given by

E
[
R̂(x, x′)

]
= 0, Var

[
R̂(x, x′)

]
= K(x, x′)T (I −H) Cov (Ip) (I −H)T K(x, x′).

The central limit theorem of Lumley and Mayer-Hamblett (2003) (Theorem 4, page 13) now

guarantees that, under H0 (5.3),

R̂(x, x′)√
Var[R̂(x, x′)]

d→ N(0, 1).

Similar as in Pan (2002) and Evans and Li (2005), a consistent estimator of Var[R̂(x, x′)] can

be obtained by substituting β0 by β̂ inH and Cov (Ip) by Σ̂p defined as

(
Σ̂p

)
(ij),(kl)

=


[
I (Yi 4 Yj)−m(Xi, Xj; β̂)

] [
I (Yk 4 Yl)−m(Xk, Xl; β̂)

]
, if φijkl = 1,

0, if φijkl = 0,

(5.13)

with φijkl as defined in Theorem 2. For more details, see Lumley and Mayer-Hamblett (2003,

p. 18).

Theorem 12 allows to construct approximate confidence bounds for each smoothed residual.

Moreover, the theorem does not only hold for the Nadaraya–Watson smoothers, but it holds for

linear smoothers in general. The definition of a linear smoother is given below and is adapted

from definition 5.17 in Wasserman (2007).
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Definition 4 (Linear smoother). An estimator R̂(x, x′) of m0(x, x′) − m(x, x′;β0) is a lin-

ear smoother if, for each couple (x, x′), there exists an |In|-vector L(x, x′), with elements

L(x, x′;Xk, Xl), (k, l) ∈ In, such that

R̂(x, x′) = L(x, x′)TR(β̂).

Instead of a local constant smoother (5.7), which suffers from design and boundary bias, local

linear regression may be preferred (Fan and Gijbels, 1996; Wasserman, 2007). This is, however,

beyond the scope of this dissertation.

We focus on the probability P (Y 4 Y ′ | X,X ′ = X + ∆) and for assessing model adequacy

we plot the smoothed residuals R̂(x, x′ = x + ∆) as a function of x. These residuals provide

information on the bias of the working model and they are bounded in [−1, 1]. Figure 5.5

shows such a plot, based on random samples of size n = 150 for the 3 settings described

in the left panel of Figure 5.3 with ∆ = 1. The left panel of Figure 5.5 corresponds to the

setting under H0 and the residuals are close to 0. For a weak quadratic effect, the middle panel

indicates that the fitted model gives biased probabilistic index estimators. For X < −1 the

probability is underestimated, while for X > 1 it is overestimated. The right panel shows a

strong quadratic effect for which similar conclusions hold. For each figure we also show the

pointwise 95% confidence intervals. However, there is a multiplicity problem, as n confidence

intervals are calculated simultaneously. Therefore, these intervals are only indicative, but they

may be helpful in interpreting the graphical GOF tool.

For formal hypothesis testing we construct a single quadratic form of the smoothed residuals.

The quadratic form is simplistic and it does not use all smoothed residuals. Other GOF statistics

that use all residuals to form a Cramér–von Mises, Anderson–Darling, or Kolmogorov–Smirnov

type of test, will very likely outperform our test. However, extending these techniques to the

PIM framework is challenging because the pseudo-observations are sparsely correlated. In

Appendix 5.A we provide more details on these challenges and we briefly sketch how they can

be tackled; a more detailed study, however, falls beyond the scope of this dissertation.

Theorem 13. Consider a fixed finite number of points, say x1, . . . , xm, within the range of X ,

with m < n. Let R∆ denote the m-vector of residuals R̂(xi, xi + ∆) and define the quadratic

form

S∆ := RT
∆Cov (R∆)−1R∆, (5.14)
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with asymptotic covariance

Cov (R∆) = K∆(I −H)Cov (Ip) (I −H)TKT
∆

whereK∆ denotes the (m×|In|)-matrix of weightsK(xi, xi+∆;Xk, Xl)/
∑

(k,l)∈In K(xi, xi+

∆;Xk, Xl) andH as defined by (5.12). For a fixed finite m, under H0, as h→ 0 and nh→∞,

S∆
d−→ χ2

m. (5.15)

Proof. Similar as in the proof of Theorem 12, the first order approximation ofR(β̂) leads to

R∆ = K∆(I −H)R(β0) + op(n
−1/2).

Consequently, under H0 (5.3), the asymptotic expectation and variance are given by

E (R∆) = 0, Cov (R∆) = K∆(I −H)Cov (Ip) (I −H)T KT
∆.

By using the Cramér–Wold device and the central limit theorem of Lumley and Mayer-Hamblett

(2003, p. 13) it follows that, under H0,

R∆
d→ N[0,Cov (R∆)],

so that the quadratic from (5.15), asymptotically, follows a chi-squared distribution with m

degrees of freedom.

A consistent estimator of Cov (R∆) can be obtained by replacing Cov (Ip) with Σ̂p (5.13) and

β0 by β̂ in H . The quadratic form S∆ takes the estimated correlations between the residuals

R̂(xi, xi + ∆) and R̂(xj, xj + ∆) into account. In total m(m − 1)/2 correlations need to be

estimated. For finite sample approximations, when m is large relative to the sample size n, the

estimated covariance matrix ˆCov(R∆) is not guaranteed to be positive definite. Therefore m

should be chosen small relatively to the sample size n and the design points x1, . . . , xm should

cover the whole range of X so as to increase the likelihood of detecting departures from the

underlying model.
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Figure 5.5: Smoothed residuals R̂(x, x+∆) as a function of x according to the different settings

of the left panel of Figure 5.3 with ∆ = 1, for a random sample of size n = 150, and Gaussian

kernel with h1 = h2 = 1.5. The left panel corresponds to no quadratic effect, the middle panel

to a medium quadratic effect, and the right panel to a strong quadratic effect. The black dots are

the smoothed residuals, and the grey bars indicate pointwise 95% confidence intervals.

5.2.3 Multiple predictors

The methods can be extended to multiple predictors, say XT = (X1, . . . , Xd), by considering

multivariate kernels, e.g.

Kh1,h2(x,x
′;X,X ′) =

d∏
i=1

Kh1i,h2i(xi, x
′
i;Xi, X

′
i), (5.16)

where hTi = (hi1, . . . , hid). For high-dimensional data, however, smoothers based on a mul-

tiplicative kernel are not always useful in practice due to the curse of dimensionality and the

computational burden. Therefore, nonparametric smoothers can be restricted to, for example,

additive models.

5.2.4 Automatic bandwidth selection

It is known that the choice of bandwidth is often more important than the choice of kernel

(Wasserman, 2007). Bandwidths may be selected in a data-driven fashion by using, for example,

cross-validation (CV). The properties of the leave-one-out CV for independent outcomes has

been examined by many authors; see for example Wong (1983). This CV can result in poor

bandwidths if outcomes are dependent. Several modifications have been proposed; see, for

example, Chu and Marron (1991). We propose a modification of the leave-one-out CV score,

·~· ~ ·--------------------~ 
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accounting for the sparse correlation of the pseudo-observations.

We first introduce some definitions, of which most are based on chapters 4 and 5 of Wasserman

(2007). Denote the true error as

R0(x, x′) := m0(x, x′)−m(x, x′;β0). (5.17)

The mean squared error (MSE) associated with the smoothing residuals is given by

MSE(h1, h2) = E

|In|−1
∑

(i,j)∈In

[
R̂(Xi, Xj)−R0(Xi, Xj)

]2

 , (5.18)

where R̂(Xi, Xj) depends on the bandwidths h1 and h2. The optimal bandwidths, say (h∗1, h
∗
2),

can, for example, be defined as the minimizer of the MSE, i.e.

(h∗1, h
∗
2) = argmin(h1,h2)∈R2

+
MSE(h1, h2).

However, since R0 is unknown, this selection criterion cannot be used in practice. A intuitive

solution consists of replacing R0(Xi, Xj) in (5.18) by the residual Rij(β̂). This will often lead

to undersmoothing because Rij(β̂) is already used for obtaining R̂(Xi, Xj). Let I−(i,j)
n denote

the subset of In for which all elements with subscript i or j are removed, i.e.

I−(i,j)
n := {(k, l) | (k, l) ∈ In ∧ (i, j) ∩ (k, l) = ∅},

and

R̂−(i,j)(x, x
′) :=

∑
(k,l)∈I−(i,j)

n
Rkl(β̂)K(x, x′;Xk, Xl)∑

(k,l)∈I−(i,j)
n

K(x, x′;Xk, Xl)
.

Thus R̂−(i,j)(x, x
′) corresponds to the smoothed residual obtained by omitting all residuals con-

taining (Yi, Xi) or (Yj, Xj). This leads us to defining an adjusted leave-one-out cross validation

score.

Definition 5 (Adjusted leave-one-out cross validation score). The adjusted leave-one-out cross

validation score is defined by

CV(h1, h2) = |In|−1
∑

(i,j)∈In

[
Rij(β̂)− R̂−(i,j)(Xi, Xj)

]2

. (5.19)

The following lemma will be useful to relate the adjusted leave-one-out cross validation score

to the MSE.
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Lemma 10. It holds that

E

{[
Rij(β0)− R̂−(i,j)(Xi, Xj)

]2
}

= E
{

[Rij(β0)−R0(Xi, Xj)]
2}+

E

{[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]2
}
. (5.20)

Proof. IfX denotes the vector of predictors Xi (i = 1, . . . , n), it follows that

E
{

[Rij(β0)−R0(Xi, Xj)]
[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]}
= E

[
E (Rij(β0)−R0(Xi, Xj) |X) E

(
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj) |X

)]
= 0× E

[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]
= 0. (5.21)

Consequently,

E

{[
Rij(β0)− R̂−(i,j)(Xi, Xj)

]2
}

= E

{[
Rij(β0)−R0(Xi, Xj) +R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]2
}

= E

{
[Rij(β0)−R0(Xi, Xj)]

2 +
[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]2

+

2 [Rij(β0)−R0(Xi, Xj)]
[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]}
= E

{
[Rij(β0)−R0(Xi, Xj)]

2}+ E

{[
R0(Xi, Xj)− R̂−(i,j)(Xi, Xj)

]2
}
.

If we define

σ2 := E

|In|−1
∑

(i,j)∈In

[
Rij(β̂)−R0(Xi, Xj)

]2

 ,

then, upon using Lemma 10, it follows that

E[CV(h1, h2)] ≈ σ2 + MSE(h1, h2), (5.22)

relating the adjusted leave-one-out cross validation score to the MSE. Note that (5.22) is an

approximation rather than an equality, since we substituted β0 in (5.20) by the plug-in estimator

β̂ and we used the approximation E[R̂−(i,j)(Xi, Xj)] ≈ E[R̂(Xi, Xj)].

A data-driven choice of bandwidth can therefore be obtained by choosing (h1, h2) which mini-

mizes CV(h1, h2) (5.19). However, because |In| = O(n2), we often restrict the sum in (5.19)
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to a subset of Isub ⊂ In to reduce computation time. This subset will often be chosen such that

for (i, j) ∈ Isub it holds that Xj −Xi ≈ ∆.

Note that the proposed modified cross validation score is merely a first step in constructing an

automatic bandwidth selection procedure. More specifically, the current approach ignores the

change in distributional properties of S∆ due to the automatic bandwidth selection. Therefore

it is anticipated that the GOF test will be liberal. In Appendix 5.B we give more details on

the challenges for obtaining the appropriate null distribution when the bandwidth is selected

automatically.

5.3 Simulation study

The theoretical properties of S∆ (5.15) are empirically evaluated for single and multiple pre-

dictors by means of simulations. Since the test has several tunable parameters, the effect of the

choice of bandwidth and the effect of ∆ on the size and power of the test are examined. The

properties of the test with automatic bandwidth selection are also briefly examined.

All data-generating models are normal linear models associated with a probit PIM. However,

similar conclusions hold for the exponential models associated with a logit PIM (results not

shown).

5.3.1 A single predictor

Empirical sizes

To examine the empirical null distribution of S∆ we generate data with the simple linear model

Y = αX + ε, ε
d
= N(0, σ2), (5.23)

which embeds the PIM

P (Y 4 Y ′ | X,X ′) = m0(X,X ′) = Φ [β(X ′ −X)] , β =
α√
2σ2

. (5.24)

The predictor X takes n equidistant values in [−5, 5] and the following parameters are fixed:

α = 0.9
√

2 and σ2 = 9. Based on 1000 Monte Carlo simulation runs, the empirical type I error
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rates are calculated for the nominal significance levels of 1%, 5%, and 10%. The asymptotic

chi-squared distribution (5.15) is used for p-value calculation.

The null distribution is examined for different values of ∆, sample size n, and bandwidths h1

and h2, which we restrict to h1 = h2 and which is further denoted by h. The statistic is based

on three design points: x1 = −3, x2 = 0, and x3 = 3 with Gaussian kernel. Table 5.1 shows

the results. For a sample size n = 100 and a small bandwidth h = 0.5 the test is highly

conservative, while for a large bandwidth h = 2.5 it is highly liberal. Best results are obtained

for an intermediate bandwidth h = 1.5.

For n = 250 and h = 0.5 the test is too conservative for ∆ = 1 and slightly less conservative

for ∆ = 2. With h = 1.5 the test has approximately a correct size for all ∆, while for h = 2.5

the test remains too liberal.

For a sample size n = 500 and h = 0.5 the test is conservative for ∆ = 1 and has approximately

a correct size for ∆ = 2. For h = 1.5 the test has approximately a correct size, while for h = 2.5

the test remains liberal.

In conclusion, best results are obtained for a bandwidth of h = 1.5, while the choice of ∆ is less

important. However, for a bandwidth of h = 0.5 the test is conservative, while for a bandwidth

of h = 1.5 there is an inflation of the type I error.

Table 5.1: Empirical type I error rates (%) at the 1%, 5%, and 10% levels of significance based

on 1000 Monte-Carlo simulations for model (5.24)

h ∆ n = 100 n = 250 n = 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

0.5 1 0.0 0.7 3.8 0.2 3.1 7.3 0.3 3.5 7.7

0.5 2 0.0 1.7 5.1 0.3 3.2 9.0 0.5 4.9 9.9

1.5 1 0.5 4.4 8.8 0.4 5.1 9.5 1.2 4.4 11.1

1.5 2 0.3 3.6 9.3 0.6 4.7 11.2 1.2 5.8 11.7

2.5 1 3.4 9.6 15.4 2.6 8.0 14.1 2.3 7.7 13.4

2.5 2 2.3 7.4 14.4 1.9 7.8 13.8 1.8 7.5 13.0
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Empirical powers

To study the power properties, we generate data according to

Y = α1X + α2f(X) + ε, ε
d
= N(0, σ2). (5.25)

We fix α1 = 0.9
√

2 and σ2 = 9 and consider three cases.

• A quadratic model with f(X) = X2 and α2 = −0.05
√

2 or α2 = −0.125
√

2.

• A sine model with f(X) = sin(X) and α2 = −0.6
√

2 or α2 = −1.2
√

2.

• An exponential model with f(X) = exp(X) and α2 = 0.02
√

2 or α2 = 0.04
√

2.

The parameter values are chosen so that most empirical powers are bounded away from the

trivial powers of 5% and 100%. The PIM corresponding to model (5.25) is given by

P (Y 4 Y ′ | X,X ′) = m0(X,X ′) = Φ {β1(X ′ −X) + β2[f(X ′)− f(X)]} , (5.26)

where βi = αi/
√

2σ2, i = 1, 2. We analyze the data with the incorrect working model

m(X,X ′; β) = Φ[β(X ′ −X)].

Figure 5.6 shows the probabilities P (Y 4 Y ′ | X,X ′ = X + 1) associated with PIM (5.26) as

a function of X for the three models and for different β2 values.
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Figure 5.6: Conditional PI for X ′ = X + 1 for different values of β2 for the quadratic, sine,

and exponential versions of model (5.26)
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The results in Table 5.1 suggest that empirical sizes are best controlled for a medium bandwidth.

Therefore we restrict the power study to h1 = h2 = 1.5 in a Gaussian kernel with design points

x1 = −3, x2 = 0, and x3 = 3.

Table 5.2 gives the empirical rejection rates at the 5% level of significance based on 1000 Monte

Carlo simulations for the different data-generating models. The test succeeds in detecting lack-

of-fit (LOF). Under the conditions of the simulation study, for the quadratic and sine model,

highest powers are obtained with ∆ = 1 while for the exponential model this is ∆ = 2.

Table 5.2: Empirical powers (%) at the 5% level of significance for model (5.26) based on 1000

Monte-Carlo simulations

β2 n = 100 n = 250 n = 500

∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2

quadratic model

−0.017 12.0 11.0 42.1 40.7 78.2 75.5

−0.042 73.2 68.9 99.8 99.5 100.0 100.0

sine model

−0.2 14.6 8.7 53.6 36.3 89.2 70.5

−0.4 64.9 39.6 99.7 94.9 100.0 100.0

exponential model

0.007 14.0 14.2 49.6 57.2 82.4 89.7

0.013 38.1 42.1 96.9 98.6 100.0 100.0

5.3.2 Multiple predictors

Empirical sizes

Consider the data-generating model

Y = α1X1 + α2X2 + ε, ε
d
= N(0, σ2),

with embedded PIM

P (Y 4 Y ′ |X,X ′) = m0(X,X ′) = Φ [β1(X ′1 −X1) + β2(X ′2 −X2)] , (5.27)
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where X = (X1, X2) and βi = αi/
√

2σ2, i = 1, 2. The following parameters are fixed:

α1 = α2 = 1 and σ2 = 9, corresponding to β1 = β2 = 0.24. The predictor X1 takes n

equidistant values in the interval [−5, 5], while X2
d
= N(0, 4).

The statistic is based on three design points: (x11, x21) = (−3,−2.5), (x12, x22) = (0, 0), and

(x13, x23) = (3, 2.5), with Gaussian kernel and bandwidths h1 = h2 = (1.5, 1.5), and different

values for ∆ are considered.

Based on 1000 Monte Carlo simulation runs, the empirical rejection rates are calculated for the

significance levels of 1%, 5%, and 10% and for different sample sizes n.

The results are presented in Table 5.3. For a sample size n = 100 the test is highly conservative,

while it becomes less conservative when the sample size increases. For n = 500 the test has

approximately a correct size for all choices of ∆.

Table 5.3: Empirical type I error rates (%) at the 1%, 5%, and 10% levels of significance for

the model (5.27) based on 1000 Monte-Carlo simulations

∆ n = 100 n = 250 n = 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

(1, 1) 0.0 0.9 3.4 0.3 2.4 6.1 0.9 4.7 9.0

(1, 2) 0.0 1.1 4.5 0.2 2.3 6.9 1.1 4.3 10.2

(2, 1) 0.0 1.1 4.3 0.3 3.1 6.6 0.8 3.9 9.3

(2, 2) 0.0 0.7 5.3 0.3 3.6 6.8 0.9 3.4 10.8

Empirical powers

Consider the data-generating model with interaction

Y = α1X1 + α2X2 + α3X1X2 + ε, ε
d
= N(0, σ2). (5.28)

We fix α1 = α2 = 1 and σ2 = 9 and consider different values of α3. Let X = (X1, X2), then

the corresponding PIM is

P (Y 4 Y ′ |X,X ′) = m0(X,X ′) (5.29)

= Φ [β1(X ′1 −X1) + β2(X ′2 −X2) + β3(X ′1X
′
2 −X1X2)] ,
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with βi = αi/
√

2σ2. The data are analyzed with the incorrect working model

m(X,X ′;γ) = Φ [γ1(X ′1 −X1) + γ2(X ′2 −X2)] . (5.30)

Figure 5.7 plots P (Y 4 Y ′ | X ′1 = X1 + ∆1, X
′
2 = X2 + ∆2) as a function of the sum ∆2X1 +

∆1X2 when ∆ = (1, 1) and for different values of β3.
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Figure 5.7: P (Y 4 Y ′ | X ′1 = X1 + 1, X ′2 = X2 + 1) of model (5.29) as a function ofX1+X2

for different values of β3

Table 5.4 gives the empirical rejection rates at the 5% significance level, based on 1000 Monte

Carlo simulation runs. The statistic is based on three design points: (x11, x21) = (−3,−2.5),

(x12, x22) = (0, 0), and (x13, x23) = (3, 2.5), with Gaussian kernel and bandwidth h1 = h2 =

(1.5, 1.5).

The test succeeds in detecting an omitted interaction and under the conditions of the simulation

study highest powers are obtained for ∆ = (1, 2) or ∆ = (2, 2).

5.3.3 Misspecified link function

We examine the power of detecting a misspecified link function by simulating data according

to (5.23) while analyzing the data with the working model

m(X,X ′; γ) = expit[γ(X ′ −X)], (5.31)
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Table 5.4: Empirical powers (%) at the 5% level of significance for model (5.29) based on 1000

Monte-Carlo simulations

∆ (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

β3 n = 100 n = 250 n = 500

0.05 1.7 2.8 1.6 2.9 28.4 52.4 21.7 44.8 58.3 83.2 54.4 82.6

0.15 42.9 71.6 40.1 75.8 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0

i.e. the link function is the only difference between the true and working model.

Table 5.5 shows the empirical powers of the test with h1 = h2 = 1.5, design points x1 = −3,

x2 = 0, x3 = 3 with Gaussian kernel and ∆ = 1 or ∆ = 2. The test has low power for n = 100

and n = 250 and a moderate power for n = 500. Best results are obtained for ∆ = 1.

Table 5.5: Empirical powers (%) at the 5% level of significance for model (5.31) based on 1000

Monte-Carlo simulations

n = 100 n = 250 n = 500

∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2

16.8 12.4 31.9 27.6 60.0 52.1

5.3.4 Automatic bandwidth selection

To study the null distribution of S∆ when the bandwidth is selected based on the modified cross-

validation score (5.19), we reconsider the simulation set-up from Section 5.3.1 with ∆ = 1. We

restrict the sum in (5.19) to the subset Isub = {(i, j) | ∆ − 0.05 < Xj − Xi < ∆ + 0.05}.

For n = 250 and n = 500 the sum is even restricted to a random sample of size 100 from

Isub. The candidate set of bandwidths is restricted to {0.5, 1.5, 2.5} with h1 = h2. The chi-

squared distribution with 3 degrees of freedom is used for p-value calculation. As mentioned in

Section 5.2.4, this null distribution ignores the change in distributional properties of S∆ due to

the data-driven selection of the bandwidth.

Table 5.6 gives the empirical type I error rates. For all sample sizes the test is liberal. This
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is expected since the selection of the bandwidth is not accounted for in the null distribution.

As compared to Table 5.1 the results are slightly better with h1 = h2 = 1.5 and worse with

h1 = h2 = 0.5 or 2.5. For n = 500 the empirical rejection rates are close to their nominal levels

for 1% and 5% but too liberal for 10%.

To examine the empirical powers, we reconsider the quadratic model from Section 5.3.1 with

∆ = 1. Note that for n = 100 and n = 250 these powers can perhaps be too optimistic since

the type I error is not correctly controlled. The automatic cross-validation results in a power

loss as compared to Table 5.2.

Table 5.6: Empirical type I error (%) at the 1%, 5%, and 10% levels of significance and empiri-

cal powers (%) at the 5% level of significance when the bandwidth is automatically selected with

the modified cross-validation score. All results are based on 1000 Monte-Carlo simulations.

n = 100 n = 250 n = 500 β2 n = 100 n = 250 n = 500

Empirical type I error Empirical power quadratic model

1% 5% 10% 1% 5% 10% 1% 5% 10% −0.017 14.5 37.5 67.9

2.9 7.4 14.1 2.1 5.5 12.0 0.9 5.8 12.6 −0.042 68.4 87.6 96.1

5.3.5 Assessing goodness-of-fit with a graphical tool

In Figure 5.8 we show the GOF plots for three simulated datasets with sample size n = 150 for

the quadratic, sine, and exponential model of Section 5.3.1. The Gaussian kernel is used with

h = 1.5 and ∆ = 1. The GOF plots show similar shapes as Figure 5.6, indicating that GOF

plots are informative on how the true model differs from the working model.

Figure 5.9 shows the plots for a random sample generated by the interaction model (5.29) with

β3 = 0.15 and analyzed with PIM (5.30), as well as plots for random sample generated by (5.23)

and analyzed by the PIM with incorrect link function (5.31). Similarly, the plots succeeds in

indicating LOF.
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Figure 5.8: GOF plots for the quadratic (left), sine (middle), and exponential (right) models

(5.26) for a random sample of size n = 150. The grey bars indicate the pointwise 95% confi-

dence intervals.
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Figure 5.9: GOF plots for the interaction model (5.29) with β3 = 0.15 (left) and the model

with logit link (5.31) (right) for a random sample of size n = 150. The grey bars indicate the

pointwise 95% confidence intervals.
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5.4 Examples revisited

In this section we evaluate the GOF of the fitted PIM of Section 5.1 as well as of the fitted PIMs

of Sections 2.5 and 3.2.3. All smoothed residuals are constructed with a Gaussian kernel.

5.4.1 The childhood respiratory disease study

We return to the CRDS example of Section 5.1. In model (5.2) the effect of the smoking status

on the pulmonary function of a child is not significant. Smoothed residuals are constructed with

∆ = (1, 1) and bandwidths h1 = h2 = (h, 0) for several values of h, for which the optimal

bandwidth was selected based on the cross-validation score (5.19) with the sum restricted to

Isub = {(i, j) | AGEj − AGEi = 1} for computational reasons. Since the binary predictor

SMOKE has sufficient replicates, smoothing is unnecessary. The left panel of Figure 5.10

shows the CV-plot where the cross-validation score is plotted as a function of the bandwidth. A

minimum is attained for h = 3.5.

Since most (89%) of the smoking children are between 10 and 16 years old, we restrict the GOF

assessment to that age class. The middle panel of Figure 5.10 plots the smoothed residuals as a

function of age (AGE) for model (5.2). The plot suggest that the probability P(FEV 4 FEV′ |

SMOKE = 0,SMOKE′ = 1,AGE′ = AGE + 1) is underestimated for younger children, while

it is overestimated for the older. The GOF test confirms this: S∆ = 15.7 and p = 0.016. Both

the plot and the test thus indicate that PIM (5.2) is inappropriate and the plot suggests that an

interaction needs to be included. Therefore we fit an interaction model which takes this into

account

logit[P (FEV 4 FEV′)] = β1(AGE′ − AGE) + β2(SMOKE′ − SMOKE) +

β3(AGE′ ∗ SMOKE′ − AGE ∗ SMOKE), (5.32)

with estimates β̂1 = 0.61 (SE : 0.03, p < 0.0001), β̂2 = 5.3 (SE : 1.04, p < 0.0001), and

β̂3 = −0.46 (SE : 0.08, p < 0.0001). All effects are now highly significant. The right panel of

Figure 5.10 gives the GOF plot with h = 3.5 and the GOF test indicated no significant evidence

for LOF at the 5% level of significance: S∆ = 11.6 and p = 0.072. However, since the p-value

is close to the significance level and the plot shows no LOF, the model can perhaps be improved

by including additional predictors in addition to the age and smoking behaviour. After including
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additional predictors, model adequacy should be reassessed.

The estimated effect of smoking based on PIM (5.32), in terms of the probabilistic index, is

given by

logit
[
P̂ (FEV 4 FEV′ | SMOKE = 0,SMOKE′ = 1,AGE = AGE′)

]
= 5.3− 0.46AGE.

The probability for having a better pulmonary function for the smoking child decreases with

increasing age. The bottom right panel of Figure 5.10 shows this probability as a function of

AGE. At the age of 10, for example, the estimated probability is 68% with confidence interval

[53%, 80%]. This probability indicates that the lung function is better for smoking children,

which seems unreasonable. However, children who smoke at the age of ten are likely to have

only just started smoking and the smoking did not affect the lungs yet. By the age of 16 this

probability decreased to 12%, indicating it is highly unlikely that a smoking child has a better

lung function, suggesting an adverse effect of smoking; the confidence interval for this proba-

bility is [7%, 21%].

5.4.2 The mental health study

In Section 2.5.2 a PIM with main effects was fitted to the mental health study example

logit [P (MI 4 MI′)] = β1(SES′ − SES) + β2(LI′ − LI). (5.33)

Smoothed residuals are constructed with ∆ = (1, 1) and bandwidths h1 = h2 = (0, h) with

h ∈ {0.5, 1, 2, 3, 4, 5}, for which the optimal bandwidth is selected based on the cross-validation

score (5.19). The binary predictor SES has sufficient replicates, and smoothing is unnecessary.

The left panel of Figure 5.11 shows the score as a function of the bandwidth, where a minimum

is attained for h = 2. The right panel plots the smoothed residuals as a function of the life index

(LI) for model (5.33). There is no convincing evidence of LOF. The corresponding GOF test

confirms this: S∆ = 3.4 and p = 0.9.
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Figure 5.11: Cross validation score as a function of bandwidth (left) and the GOF plot (right)

of model (5.33)

5.4.3 The food expenditure study

Two PIMs were considered for the food expenditure study. In Section 2.5.3 the effect of the

household income (HI) on the relative food expenditure percentage (FEP) is examined with

PIM

logit[P (FEP 4 FEP′)] = β(HI′ − HI). (5.34)

Smoothed residuals are constructed with ∆ = 100 and bandwidths h1 = h2 = h with h ∈

{100, 125, 150}, for which the optimal bandwidth is selected based on the cross-validation score

(5.19) with the sum restricted to Isub = {(i, j) | 90 ≤ HIj − HIi ≤ 110} for computational

reasons. The top panel of Figure 5.12 shows the cross-validation score as a function of h; a

minimum is attained at h = 100.

The middle left panel of Figure 5.12 plots the smoothed residuals as a function of the household

income for model (5.34). The middle right panel shows the smoothed residuals restricted to

HI < 2000. There is no convincing evidence for LOF and the GOF test based on the design

points HI ∈ {400, 600, 800, 100, 1200, 1400, 1600} confirms this: S∆ = 3.33 and p = 0.91.

In Section 3.2 the absolute food expenditure (FE) is examined with PIM

P (FE 4 FE′ | HI,HI′) = Φ

[
(HI′ − HI)√

HI′ + HI
γ

]
. (5.35)
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The bottom left panel of Figure 5.12 shows the smoothed residuals. For low household incomes,

the probability P (FE 4 FE′ | HI′ = HI + 100) is overestimated with PIM (5.35). The GOF test

confirms this: S∆ = 84.8 and p < 0.0001. As illustrated in Section 5.3.3 this can be caused

by an inappropriate link function. The bottom right panel of Figure 5.12 shows the smoothed

residuals for the PIM

P (FE 4 FE′ | HI,HI′) = expit

[
(HI′ − HI)√

HI′ + HI
δ

]
, (5.36)

with δ̂ = 0.39 (SE: 0.024 and p < 0.0001). The plot shows no LOF and the GOF test confirms

this S∆ = 5.7 and p = 0.68. For this model, if the household income is, for example, 500

Belgian francs, the probability of larger food expenditure with a household income of 600

Belgian francs is estimated as 76.4%, while for model (5.35) this is 88.0%.

5.4.4 The Beck depression inventory

In Section 1.5 the BDI example was analyzed with PIM

P (BD 4 BD′ | DOSE,DOSE′) = expit [β(DOSE′ − DOSE)] , (5.37)

where BD denotes the BDI improvement, defined as the BDI at baseline (BDI0) minus the BDI

at the end of the study (BDI1). Smoothed residuals are constructed with ∆ = 1 and bandwidths

h1 = h2 = h with h ∈ {0.5, 1, 2, 3, 4, 5}, for which the optimal bandwidth is selected based

on the cross-validation score. The left panel of Figure 5.13 shows the cross-validation score

which attains a minimum at h = 3. The middle panel shows the smoothed residuals. There is a

weak pattern visible. The GOF test based on design points BD ∈ {11, 15, 19, 23, 27}, however,

indicates that this LOF is not significant: S∆ = 6.5 and p = 0.26.

In Section 2.5.4 the BDI example is analyzed with PIM

P (BDI1 4 BDI′1) = expit [α[I (BDI0 < BDI′0)− I (BDI0 > BDI′0)] + γ(DOSE′ − DOSE)] .

(5.38)

The right panel of Figure 5.13 shows the smoothed residuals as a function of the sum BDI0 +

DOSE with ∆ = (1, 1) and h1 = h2 = (3, 3). There is no convincing evidence of LOF.

The GOF test based on design points (BDI0,DOSE) ∈ {(31, 11), (39, 16), (47, 21), (55, 26)}

confirms this: S∆ = 2.1 and p = 0.72.
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Figure 5.12: Top: cross validation score as a function of bandwidth h. Middle: GOF plot for

model (5.34) (left) and the GOF plot restricted to HI < 2000 (right). Bottom: GOF plots for

model (5.35) (left) and for model (5.36) (right).
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Figure 5.13: Left: cross validation score as a function of the bandwidth for model (5.37).

Middle: GOF plot for model (5.37). Right: GOF plot for model (5.38).

5.5 Discussion

We constructed an informative GOF plot together with a formal GOF test for PIMs. The GOF

plot provides information on how the model can be improved. The results of a power study sug-

gested a decent performance of the test for some settings, but, however, also indicated that the

test was sometimes too liberal, especially for sample sizes of 100 and 250. The GOF tools are

consistent with the interpretation of a PIM, where the probability P (Y 4 Y ′ |X,X ′ = X + ∆)

serves as a basis. The parameter ∆ should be chosen such that this probability has a meaningful

interpretation; for future research it can be interesting to focus on an adaptive selection of ∆.

The residuals are based on smoothers and the size of the test particularly depends on the choice

of bandwidth.

We proposed a modified cross validation score to select the bandwidth automatically. The

corresponding size were highly liberal, even for large sample sizes (n = 250). It may be of

interest to extend the wild bootstrap method of Hardle and Mammen (1993) to the pseudo-

observations setting, as this might improve the finite sample behaviour of the test. The test

has good power for detecting an omission of a quadratic, sine, and exponential term as well

as an omission of an interaction effect, while having low to moderate power for detecting a

misspecified link function.

Many GOF statistics use all residuals to form a Cramér–von Mises, Anderson–Darling or

Kolmogorov–Smirnov type of test. Because the pseudo-observations are sparsely correlated,

the distribution theory of such test statistics is much harder than for many other types of regres-
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144 Chapter 5. Assessing the goodness-of-fit

sion models. By constructing our test statistic as a quadratic form which uses only a limited

number of fixed design points, some technical difficulties are avoided. Future research may

focus on extending our method so as to use all residuals. It is anticipated that this would make

the method even more sensitive for detecting a wider range of model departures.

The methods constructed in this chapter can be considered as a first step towards developing

GOF tools for PIMs. However, more research is required to refine these methods.

5.A Other goodness-of-fit statistics

The test statistic S∆, given by (5.14), is a quadratic form which uses only a limited number of

fixed design points. As a result, the null distribution of S∆ can be easily derived. Of course,

other test statistics based on the smoothed residuals can be constructed, e.g. a Kolmogorov–

Smirnov type of statistic

K∆ :=
√
n sup

x

∣∣∣∣∣∣ R̂(x, x+ ∆)√
Var[R̂(x, x+ ∆)]

∣∣∣∣∣∣ .
To obtain the null distribution of K∆, we need to consider the smoothed residual R̂(x, x + ∆)

(or more generally R̂(x, x′)) as a stochastic process, which, in the context of PIMs, is not yet

developed and which we postpone to future research. It is anticipated that the theory of stochas-

tic U -processes will provide insights on how the null distribution of K∆ can be established; see,

for example, Sherman (1994). Alternative approaches for constructing appropriate test statistics

can be based on residual cusum processes; see, for example, Su and Wei (1991).

5.B Automatic bandwidth selection and null distribution

Selecting the bandwidth automatically will change the distributional properties of S∆ so that it

no longer has a limiting chi-squared null distribution with m degrees of freedom, as given by

Theorem 13. This is ignored in Sections 5.3.4 and 5.4, resulting in a liberal GOF test.

The appropriate null distribution can perhaps be approximated with bootstrapping techniques:

for each bootstrap sample, we select the optimal bandwidth with the cross validation score
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(5.19) and compute the test statistic. However, as mentioned in Section 5.5, this requires ex-

tending the wild bootstrap method of Hardle and Mammen (1993) to the pseudo-observations

setting. Furthermore, since |In| = O(n2), bootstrap and cross validation methods will be com-

putationally very demanding. Therefore, constructing the appropriate null distribution associ-

ated with S∆ with a data-driven choice of the bandwidth may be the topic of future research.
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Chapter 6

An application to genomic data

The content of this chapter is based on the results published in

De Neve, J., Thas, O., Ottoy, J.P., and Clement, L. (2013) An extension of the Wilcoxon–Mann–

Whitney test for analyzing RT-qPCR data. Statistical Applications in Genetics and Molecular

Biology (in press).

6.1 Introduction

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered as the

gold standard for accurate, sensitive, and fast measurement of gene expression (Derveaux et al.,

2010). The method is commonly used for the biological validation of differentially expressed

genes that were discovered in large screening experiments with microarray or next generation

sequencing technologies. The RT-qPCR is a cyclic process in which targeted molecules – here

genes or microRNAs – are amplified and simultaneously quantified by measuring a fluores-

cence intensity. The raw RT-qPCR data are typically processed by plotting the fluorescence as

a function of the cycle number and by summarizing this amplification curve in a single value,

the quantification cycle Cq; see Figure 6.1 for an illustration. Popular procedures for calcu-

lating Cq-values are based on the number of cycles needed for the intensity to cross a certain

threshold (illustrated in Figure 6.1), or on a cycle number derived from second derivatives of

the amplification curve (e.g. Guescini et al., 2008). The Cq is inversely related to the number of

target molecules (copy number): the larger the initial transcript abundance, the faster the inten-

147
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sity grows and thus the smaller the Cq. RT-qPCR data have some typical characteristics that we

introduce by examples. For more details on the biology, we refer to, for example, VanGuilder

et al. (2008) and references therein.

0 5 10 20 30

Cycle

In
te
n
si
ty

Figure 6.1: Illustrative plot of the fluorescence intensity as a function of the cycle number. The

horizontal dashed line shows the threshold and corresponds to a Cq-value of 17.

We consider a housekeeping gene (which is a kind of control gene) and two microRNAs

(miRNA) of two neuroblastoma studies. We refer to Section 6.4 for more details. Groups are

formed based on the MYCN status which is known to be associated with neuroblastoma (e.g.

Schulte et al., 2008; Alaminos et al., 2003). The left panel of Figure 6.2 shows nonparametric

densities for housekeeping gene UBC, which is expected not to be affected by the MYCN am-

plification. However, the plot suggests a lower expression (thus higher Cq-values) when MYCN

is amplified. This illustrates that RT-qPCR data are subject to experimentally induced variation

which is not necessarily equal in both groups. This variation can be attributed to, for example,

errors in the fluorescence quantification (Lalam, 2007) and differences in the amount of start-

ing material and enzymatic efficiencies (Vandesompele et al., 2002). These errors affect the

location and the tails of the densities.

The middle panel of Figure 6.2 shows the densities of miR-17-5p which is expected to be upreg-

ulated when MYCN is amplified (Fontana et al., 2008). Here MYCN amplification affects the

location as well as the tails of the density. In cancer studies, for example, genes can sometimes

only be expressed in a subsample of the populations during sampling (Tomlins et al., 2005; Thas
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et al., 2012b), and consequently the tails of the density are affected.

The right panel of Figure 6.2 shows a histogram of miR-639 when MYCN is amplified. If

a feature is not expressed or the amplification step fails, the threshold is not reached. The

expression is therefore undetermined and its value is set at the maximum number of cycles

conducted, here 35. We refer to these values as undetermined. In the present setting, these

undetermined values are considered as outliers.

Based on these characteristics, a test for assessing differential expression should therefore ac-

count for the experimental variation by providing a normalization constant, summarize location

and tail effects with an intuitive effect size measure, and be robust to outliers. The uncertainty

associated with the normalization should also be correctly propagated into the final statistical

summaries for differential expression.

We propose an extension of the Wilcoxon–Mann–Whitney (WMW) test which incorporates

normalization. In the microarray literature, tests that include preprocessing are often termed

unified tests; see, for example, Wu and Irizarry (2007). Therefore we name our test the unified

WMW test (uWMW).

The normalization constant and the effect size are defined in terms of the probabilistic index

(PI) P (Y 4 Y ′) (where Y and Y ′ denote independent Cq-values) since it has an intuitive inter-

pretation and is robust to outliers. The WMW test is a consistent rank test for testing the null

hypothesis that Y and Y ′ coincide in distribution, against the alternative that P (Y 4 Y ′) 6= 0.5.

Fligner and Policello (1981) extended the WMW test so that it can be used for testing the less

restrictive null hypothesis

H0 : P (Y 4 Y ′) =
1

2
.

The probabilistic index model (PIM) extends the Fligner and Policello WMW test by allowing

for covariate adjustment. In this chapter we use the PIM framework for the construction of

a WMW test for assessing differential expression, while normalizing the data simultaneously.

Note that the PI is invariant under monotonic transformations, which is a desirable property for

analyzing RT-qPCR data, as the relation between the number of molecules and the quantification

cycle Cq depends on the PCR efficiencies which are unknown.

In Section 6.2 the uWMW test is described and Section 6.3 evaluates its performance in a

simulation study. Section 6.4 illustrates the method on two case studies and Section 6.5 presents



150 Chapter 6. An application to genomic data

the conclusions and discussion.
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Figure 6.2: Nonparametric density estimates with Gaussian kernel for housekeeping gene

UBC (left panel) and microRNA miR-17-5p (middle panel) when MYCN is amplified (—, ◦)

and when MYCN is normal (- - -,4). Rug plots are added to visualize the sample observations.

The right panel shows the histogram of microRNA miR-639 with limit of detection equal to 35.

6.2 The unified Wilcoxon–Mann–Whitney test

We start by studying the null hypothesis of the t-test after normalization. This null hypothesis

is then reformulated in terms of the PI and a statistical test is proposed.

6.2.1 Null hypothesis

Let the random variable Yijk denote the quantification cycle Cq associated with feature i ∈

{1, . . . ,m + h} (which can be a miRNA or a gene) of sample j ∈ {1, . . . , nk} (e.g. patient or

tissue) in treatment group k ∈ {1, 2}. The first m features are of interest and, if available, the

last h features are the housekeeping features. In absence of housekeeping features set h = 0.

Let Yi.k denote the Cq-value of feature i for a randomly selected sample in treatment group k.

Let Y..k denote the Cq-value of a randomly selected feature of interest in a randomly selected

sample of treatment group k. Hence, Y..k has a distribution function which is marginalized over

all features of interest and over all samples. It will be convenient to denote the Cq-value of a

randomly selected housekeeping feature in a randomly selected sample of treatment group k as

Y ∗..k.

" ' I 
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A popular normalization strategy consists of subtracting a normalization constant from the Cq-

values for each sample. Vandesompele et al. (2002) consider the mean quantification cycles

over stable housekeeping features and assumes that housekeeping features are, on average, not

differentially expressed. We refer to this as housekeeping mean expression (HME) normaliza-

tion. In absence of stable housekeeping features, Mestdagh et al. (2009) consider the mean

quantification cycles over all expressed features, and assume, on average, a balance between

up- and downregulation over all features. We refer to this as overall mean expression (OME)

normalization.

The normalized data are given by

Ỹijk = Yijk − ĉjk,

with ĉjk = h−1
∑

i>m Yijk, for HME-normalization, and ĉjk = m−1
∑

i≤m Yijk for OME-

normalization. It is straightforward to show for feature i that the t-test based on normalized

data tests the null hypothesis

H0 : E (Yi.1 − Yi.2) = E (Yi.1)− E (Yi.2) = ∆1. (6.1)

For HME-normalization

∆1 ≡ E (Y ∗..1 − Y ∗..2) ,

i.e. ∆1 is the mean difference in expression of the housekeeping features. Hence, testing

if HME-normalized quantification cycles have, on average, a difference of 0, is equivalent to

testing whether the original quantification cycles have, on average, a difference of ∆1. A similar

reasoning holds for the OME-normalization, with

∆1 ≡ E (Y..1 − Y..2) .

If ∆1 is known, null hypothesis (6.1) can be tested with a classical t-test. In practice, however,

∆1 has to be estimated first and this estimation has to be accounted for by the test procedure.

The latter, however, is often ignored, so that an inflation of the type I error rate may be expected.

Hypothesis (6.1) can be reformulated in terms of the PI for constructing a null hypothesis which

is more natural when adopting the WMW test:

H0 : P (Yi.1 4 Yi.2) = ∆2, (6.2)

with

∆2 ≡ P (Y ∗..1 4 Y ∗..2) , (6.3)
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or, in absence of stable housekeeping features,

∆2 ≡ P (Y..1 4 Y..2) . (6.4)

The parameter (6.3) can be estimated by,

∆̂2 =
1

hn1n2

m+h∑
i=m+1

n1∑
j=1

n2∑
j′=1

I (Yij1 4 Yij′2) ,

where I (x 4 y) = I (x < y) + 0.5I (x = y), with I (·) the indicator function. In a similar way,

(6.4) can be estimated by

∆̂2 =
1

mn1n2

m∑
i=1

n1∑
j=1

n2∑
j′=1

I (Yij1 4 Yij′2) .

A naive approach for testing null hypothesis (6.2) is based on the statistic

iWMWi :=

∑
j,j′ I (Yij1 4 Yij′2)− n1n2∆̂2√
n1n2(n1 + n2 + 1)/12

, (6.5)

and using the null distribution of the classical WMW statistic. Note that iWMWi reduces to the

classical WMW statistic when replacing ∆̂2 by 0.5. This method has two drawbacks. First, the

test statistic is not properly standardized because the sampling variability of ∆̂2 is ignored, and

hence an inflation of the type I error rate may be expected. Second, it tests the more restrictive

null hypothesis that the distributions of Yi.1 and Yi.2 coincide, instead of testing null hypothesis

(6.2).

Therefore, in the next section, we extend the WMW test of Fligner and Policello (1981) for

testing null hypothesis (6.2), while accounting for the estimation of ∆2.

6.2.2 Test

PIMs are a natural framework to construct an appropriate test for (6.2). We first reprise the

general formulation of PIM. Let (Y,X) and (Y ′,X ′) be i.i.d., then a PIM is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β) = g−1(ZTβ), (X,X ′) ∈ X ,

with g(·) and link function and Z a p-vector with elements that may depend on X and X ′.

X denotes the set of covariates (X,X ′) for which the model is defined. In our context the

covariate vectorsX andX ′ contain the information on the treatment group k and the feature i.
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We restrict X to the couples (X,X ′) which are both associated with the same feature and so

that X corresponds to treatment group 1 and X ′ to treatment group 2. Consider the PIM with

logit link

P (Yi.1 4 Yi.2) = expit (β0 + βi) . (6.6)

Let odds (Y 4 Y ′) := P (Y 4 Y ′) /[1−P (Y 4 Y ′)]. In the presence of housekeeping features,

we impose the restriction βi = 0 for i = m+ 1, . . . ,m+ h, which implies

βi = log
odds (Yi.1 4 Yi.2)

odds (Y ∗..1 4 Y ∗..2)
, i = 1, . . . ,m.

In the absence of housekeeping features, we impose the restriction
∑m

i=1 βi = 0, leading to

βi = log
odds (Yi.1 4 Yi.2)

odds (Y..1 4 Y..2)
, i = 1, . . . ,m. (6.7)

Consequently, null hypothesis (6.2) is equivalent to

H0 : βi = 0, (6.8)

for the two types of normalization. Theorems 1 and 2 provide the asymptotic theory for a

consistent estimation of βT = (β1, . . . , βm). The estimator of β, say β̂, has an asymptotic

multivariate normal distribution with variance-covariance matrix Σβ̂. We denote the consistent

estimator for the variance-covariance matrix as Σ̂β̂. Hence, under null hypothesis (6.8),

uWMWi :=
β̂i√(
Σ̂β̂

)
ii

,

has an asymptotic standard normal distribution. This test is referred to as the unified WMW test.

Because PIM (6.6) models all data simultaneously, general linear null hypotheses that involve a

subset of s features out of the m features in the experiment, can be formulated as

H0 : Hβ = 0, (6.9)

for some s×m matrixH . The appropriate test statistic is given by

muWMWs :=
(
Hβ̂

)T (
HΣ̂β̂H

T
)− (

Hβ̂
)
. (6.10)

Under H0, muWMWs is asymptotically chi-squared distributed with degrees of freedom equal

to the rank of HΣ̂β̂H
T and where A− denotes a generalized inverse of a square matrix A.

This test is referred to as the multivariate unified WMW test.



154 Chapter 6. An application to genomic data

With the offset β0 = 0, the uWMW test simplifies to the WMW test of Fligner and Policello

(1981). Note that the PI is also well defined in the presence of ties so that the test remains valid

when undetermined values are substituted by the maximum number of cycles.

6.3 Simulation study

We present the results of three simulation studies to evaluate the performance of the uWMW

test. The first study examines the null distribution and the second and third the performance in

terms of detecting differentially expressed features.

6.3.1 Null distribution

The uWMW test is compared to the iWMW test, and to the WMW test after mean expression

normalization. The test statistic of the latter can be expressed as

nWMWi :=

∑
j,j′ I [(Yij1 − ĉj1) 4 (Yij′2 − ĉj′2)]− n1n20.5√

n1n2(n1 + n2 + 1)/12
, (6.11)

and is commonly used in the qPCR literature. Note that normalization is based on the mean,

while the effect size is in terms of the PI.

All p-values are calculated based on the asymptotic null distributions and data are simulated

according to two distributions: the normal distribution with mean 0 and variance 4, i.e. N(0, 4),

and the Laplace/double exponential distribution with mean 0 and variance 2, L(0, 2). The latter

is chosen to illustrate that the test has a correct size for non-normal distributions too. Theoretical

properties are empirically validated based on 1000 Monte-Carlo simulation runs and data are

simulated from the same distribution so that ∆2 = 0.5.

In a first set-up, the design is restricted to two features: one for normalization and one for test-

ing. Table 6.1 gives the empirical type I error rates at the 1%, 5%, and 10% significance levels,

and n = n1 = n2 denotes the number of samples in each group. All results are obtained with R

(R Core Team, 2012). The size of iWMW is consistently higher than its nominal level, because

the estimation of ∆2 is ignored. For n = 10, uWMW is slightly liberal and nWMW conser-

vative; for n = 25 and n = 50 both tests correctly control for the type I error rate. The null

distribution of WMW is conditional on the observed normalized data and is therefore condi-
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tionally independent of HME-normalization. This explains the correct size of nWMW, despite

the normalization is unaccounted for in the test. This is at the expense of a more restrictive null

hypothesis

H0 : Fi.1 = Fi.2,

with Fi.k the cumulative distribution function of the normalized data of feature i in treatment

group k.

Table 6.1: Empirical rejections rates (%) at the 1%, 5%, and 10% significance levels based

on 1000 Monte-Carlo simulations. The design is restricted to two features, where the first is

used for normalization and the second for testing. The Normal distribution with mean 0 and

variance 4, N(0, 4), and the Laplace distribution with mean 0 and variance 2, L(0, 2), are used

for simulating data for n = 10, n = 25, and n = 75 samples in each group.

n uWMW iWMW nWMW

1% 5% 10% 1% 5% 10% 1% 5% 10%

N(0, 4)

10 2 6.9 12.2 6.7 16.4 24.9 0.6 4.4 8.7

25 0.5 4.7 9.3 6.3 15.7 23.9 0.4 4.2 8.5

75 1.7 5.3 9.8 6.8 17.3 24.7 0.7 4.9 9.1

L(0, 2)

10 1.3 6.0 12.3 6.1 17.1 24.9 0.3 3.4 8.8

25 1.6 5.3 10.4 6.8 15.4 22.2 0.8 5.3 9.2

75 1.4 4.1 8.2 5.4 15.6 25.1 1.3 3.9 8.8

In a second set-up, the number of features, say m, is set to 5 or 20, the number of samples

to n = 10 or n = 25, and all features are considered for normalization. Table 6.2 gives

the empirical type I error rates at the 1%, 5%, and 10% significance levels. For uWMW and

nWMW similar conclusions hold as previously. The empirical type I error rate of iWMW is

closer to its nominal level, because ∆2 is now more accurately estimated by using all data.

However, for m = 5 iWMW is conservative.
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Table 6.2: Empirical rejections rates (%) at the 1%, 5%, and 10% significance levels based on

1000 Monte-Carlo simulations. The design is restricted to m = 5 or m = 20 features which are

all used for normalization. The Normal distribution with mean 0 and variance 4, N(0, 4), and

the Laplace distribution with mean 0 and variance 2, L(0, 2), are used for simulating data for

n = 10 and n = 25 samples in each group.

(m,n) uWMW iWMW nWMW

1% 5% 10% 1% 5% 10% 1% 5% 10%

N(0, 4)

(5, 10) 1.0 5.7 11.0 0.2 2.4 4.8 0.3 3.9 7.6

(5, 25) 1.2 5.5 10.4 0.4 3.1 6.7 1.1 4.6 9.4

(20, 10) 1.3 7.8 13.4 0.7 6.0 10.8 0.8 5.5 10.0

(20, 25) 1.1 5.6 10.6 0.7 4.9 9.6 0.7 5.2 10.6

L(0, 2)

(5, 10) 1.7 6.2 12.5 0.4 3.2 6.4 1.2 4.0 8.6

(5, 25) 1.3 6.6 11.9 0.1 3.3 7.5 0.8 5.2 11.1

(20, 10) 0.9 7.1 12.7 0.4 5.0 9.9 0.9 4.6 9.7

(20, 25) 1.0 5.6 11.3 0.7 4.6 9.6 1.0 5.3 9.3
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6.3.2 Performance

We consider two additional simulation studies for studying the sensitivity and the specificity of

uWMW. In summary, quantification cycles for 200 features are simulated over two groups, each

consisting of 30 samples. Of the 200 features, 30 are differentially expressed. Different types

of treatment effects are used in the simulation according to two set-ups. Appendix 6.A gives all

details.

Set-up A

In a first set-up, we consider 3 types of effects:

1. differential expression for 10 features according to a location-shift effect which consists

of adding a constant to all sample observations in one group. This corresponds to the

setting where the treatment affects all subjects in the treatment group.

2. differential expression for 10 features according to a tail effect which consists of adding

a constant to a third of the sample observations in one group. This corresponds to the

setting where the treatment only affects a part of the population.

3. differential expression for 10 features according to a contaminated location-shift effect

which consists of adding a constant to all sample observations in one group and by in-

cluding outliers in the other group. This corresponds to the setting where the treatment

affects all subjects in the treatment group, while for the other group, the PCR reaction

failed for some subjects, resulting in high Cq-values.

We study the performance for each type of effect separately as well as for all effects combined.

The latter is referred to as the overall effect.

For each simulated dataset, additional outliers for 10 non differentially expressed features were

included. This corresponds to the setting where the PCR reaction failed, resulting in high Cq-

values. These outliers allow for assessing the robustness of the normalization. Figure 6.6 in

Appendix 6.A.1 gives nonparametric density estimates for several features for the different

treatment effects.
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1000 datasets are simulated and analyzed with a) the uWMW test using the normalization based

on all features, b) the nWMW test using OME-normalization and, c) nWelch, a Welch t-test

upon OME-normalization.

The analysis of each simulated dataset results in an ROC-curve and Figure 6.3 shows the average

of these curves, where the average is calculated for each significance level. The false positive

rate is restricted to 30%.

For the overall effect, when all 30 differentially expressed features are included, uWMW slightly

outperforms nWMW, and both tests outperform nWelch.

For the separate types of differential expression, nWelch consistently underperforms uWMW

and nWMW. This can be clearly seen from the bottom right panel of Figure 6.3: the outliers

cancel out the location-shift on average. For the other effect types this can perhaps be explained

by the non-normality of the data (see also Figure 6.6 in Appendix 6.A.1), for which it is gener-

ally known that the t-test, even under the location-shift assumption, is not necessarily the most

powerful test. For the location-shift and contaminated location-shift effects, uWMW slightly

outperforms nWMW. This can be explained by the sensitivity of mean expression normalization

to the additional outliers. Both methods have a similar performance when the outliers for the

10 non differentially expressed features are excluded; see Figure 6.7 in Appendix 6.B.

Set-up B

We consider a second set-up to examine the impact of undetermined values, i.e. quantification

cycles that did not reach the threshold and which are imputed by the maximum number of cycles

(limit of detection, LOD). We first simulate differential expression for 30 features according to

a location-shift effect without undetermined values; see Section 6.A.2 for details. This corre-

sponds to the ideal setting without amplification failures. The left panel of Figure 6.4 gives

the average ROC-curves based on 1000 simulated datasets. All three methods have a good and

similar performance. In a second step, approximately a third of the data are randomly selected

as “undetermined values” and are substituted by the LOD. The normalization of nWMW and

nWelch is based on all expressed features (i.e. features which are not undetermined) following

the rationale of the OME-normalization of Mestdagh et al. (2009). Normalization of uWMW

is based on all features because it is robust to outliers. The right panel of Figure 6.4 gives the
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Figure 6.3: Average ROC-curves for uWMW (—), nWMW (- - -), and nWelch (· · · ). The top

left panel shows the ROC-curve when all 30 differentially expressed features are included. The

other panels show the average ROC-curve for each type of treatment effect separately, thus by

only including the corresponding 10 differentially expressed features.
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average ROC-curve. The performance of all three methods decreases as compared to the ideal

setting without undetermined values. The performance of nWelch decreased more drastically

as compared to uWMW and nWMW. This is a consequence of the sensitivity of the mean to

the undetermined values. nWMW is slightly superior to uWMW since the normalization of

nWMW ignores all undermined values. However, in practice, it can be difficult to distinguish

between an expressed feature that has an undermined value because of a failure in the amplifica-

tion and a feature that has an undetermined value because it is not expressed. The normalization

of uWMW makes use of all data at the expense of a minor decrease in performance.
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Figure 6.4: Average ROC-curves for uWMW (—), nWMW (- - -), and nWelch (· · · ). The left

panel shows the ROC-curve for a location-shift effect without undetermined values. The right

panel shows the ROC-curve based on the same data, but for which approximately a third of the

data are randomly substituted by the maximum number of cycles (undetermined values).

6.4 Examples

6.4.1 The neuroblastoma microRNA study

The data are taken from Mestdagh et al. (2009). 448 miRNAs and controls are quantified in 61

neuroblastoma (NB) tumor samples: 22 MYCN amplified and 39 MYCN single copy samples.

107 miRNAs consist of at least 85% undetermined values in both groups and are removed for

further analysis.
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The mir-17-92 cluster is a direct target of the MYC family of transcription factors using chro-

matin immunoprecipitation. In these NB cells, MYCN binds to the mir-17-92 promoter and ac-

tivates mir-17-92 expression, and therefore differential expression is expected (Mestdagh et al.,

2009; Fontana et al., 2008; O’Donnell et al., 2005).

The multivariate unified WMW test, with normalization based on all features, confirms that

at least one miRNA of this cluster is differentially expressed in terms of the PI (p-value <

0.00001). Table 6.3 shows the results of the uWMW test for each feature separately. The

false discovery rate is controlled by the method of Benjamini and Hochberg (1995) (BH-FDR)

using the multtest R-package (Pollard et al., 2010). At a 5% FDR, 7 of 8 miRNAs in the

mir-17-92 cluster are significantly upregulated when MYCN is amplified. We illustrate the

interpretation for miR-92: the odds for upregulation relative to the overall odds is estimated by

5.9. When MYCN is amplified, it is thus more likely that miR-92 is upregulated. Mestdagh

et al. (2009) argued that mir-181a and mir-181b should also be differentially expressed, which

is supported by our analysis; see Table 6.3. In summary, our results correspond to the findings of

Mestdagh et al. (2009), who concluded that all miRNAs, except miR-17-3p, were differentially

expressed. These results demonstrate that the uWMW test succeeds in detecting miRNAs which

are believed to be differentially expressed. Table 6.3 also shows the results of the nWMW test

as well as the associated effect size which is estimated by

γ̂i =
1

n1n2

∑
j,j′

I [(Yij1 − ĉj1) 4 (Yij′2 − ĉj′2)] . (6.12)

Since the OME-normalization is performed within the indicator operator, the interpretation of

this effect size on population level is obscured. However, both the uWMW and nWMW tests

suggest an upregulation when MYCN is amplified.

6.4.2 The neuroblastoma gene study

The second neuroblastoma study is part of a larger study (Vermeulen et al., 2009). The data,

quantifying 59 genes in 363 children, were used to train and to validate a multigene-expression

signature study for predicting outcomes for children with neuroblastoma. In addition to gene

expression, several risk factors, such as age at diagnosis, International Neuroblastoma Staging

System stage, and MYCN status are reported. Housekeeping genes are provided for normal-

ization. We focus on differential expression based on MYCN status, and because the genes are
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Table 6.3: Results of the neuroblastoma miRNA study according to the uWMW test, with β̂ the

estimate of (6.7), SE the corresponding standard error, and with p-value adjustment according

to BH-FDR, and according to the nWMW test, with γ̂ as in (6.12) and with p-value adjustment

according to BH-FDR.

uWMW nWMW

miRNA β̂ SE exp(β̂) adj. p-value γ̂ adj. p-value

miR-17-92

miR-17-3p 0.19 0.31 1.2 0.6810 0.61 0.2449

miR-17-5p 0.80 0.31 2.2 0.0369 0.70 0.0279

miR-18a 0.97 0.31 2.6 0.0151 0.75 0.0052

miR-18a# 1.12 0.31 3.1 0.0040 0.83 0.0002

miR-19a 1.21 0.31 3.3 0.0022 0.82 0.0003

miR-19b 0.89 0.31 2.4 0.0208 0.75 0.0060

miR-20a 1.10 0.32 3.0 0.0056 0.79 0.0010

miR-92 1.77 0.38 5.9 0.0003 0.90 < 0.0001

miR-181

miR-181a 1.37 0.33 3.9 0.0010 0.86 < 0.0001

miR-181b 0.90 0.31 2.5 0.0219 0.77 0.0030
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selected for outcome prediction, we expect most to be differentially expressed.

For the uWMW test with housekeeping normalization, all genes are differentially expressed at a

5% BH-FDR. Figure 6.5 shows the nonparametric density estimates for gene MRPL3. Based on

the WMW test without normalization, the odds for downregulation when MYCN is amplified is

estimated by 0.81 (adjusted p-value 0.23); hence it is unlikely that this gene is downregulated.

With the uWMW test, however, the odds for downregulation when MYCN is amplified relative

to the overall odds of the housekeeping genes is estimated by 1.6 (adjusted p-value 0.0087).

When MYCN is amplified it is now more likely that MRPL3 is downregulated. nWMW based

on housekeeping mean expression normalization confirms this (adjusted p-value < 0.00001).

The effect size is given by 0.74, but, as explained in Section 6.4.1, its interpretation is not

unambiguous.
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Figure 6.5: Nonparametric density estimates with Gaussian kernel for gene MRPL3 of the

neuroblastoma gene study for MYCN amplified (—, ◦) and MYCN normal (- - -,4). Rug plots

are added to visualize the sample observations.

6.5 Discussion

Differential expression analysis with RT-qPCR requires normalization so as to account for tech-

nical variation which cannot be attributed to the treatments. Current methods subtract a normal-

ization constant from the data prior to the downstream statistical analysis. When a t-test is used

within the data analysis pipeline, the effect size measure has an intuitive interpretation. How-
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ever, the t-test is sensitive to outliers, and whereas the treatment can affect the shape of the

outcome distribution, the t-test has only power for detecting difference in means. Therefore, the

Wilcoxon–Mann–Whitney (WMW) test is often preferred in practice. Applying the WMW test

on normalized data, however, obscures its interpretation. It is well known that the WMW test

can be interpreted in terms of the probabilistic index, but it is not clear how it can be interpreted

on a population level after subtracting a normalization constant from the data.

RT-qPCR experiments often aim at validating differentially expressed features that were dis-

covered with microarray or next generation sequencing screens. Such biological validation

experiments are often an (intermediate) endpoint of a study. Hence, quantifying and interpret-

ing the effects is very important for increasing the insight in the biological processes under

study. Within this context, we extended the WMW test by incorporating the normalization in

the statistical testing procedure. The method has the following properties:

• Both normalization and effect size are formulated in terms of the probabilistic index,

which results in an intuitive interpretation in terms of the odds for down- or upregulation,

keeps the normalization transparent, and is invariant under monotonic transformations.

• It detects location and tail effects while being robust to outliers.

• The uncertainty associated with the normalization is accounted for, so that the type I error

rate is (asymptotically) correctly controlled.

• Based on the results of a simulation study with realistic settings, the method is at least

competitive with classical approaches for analyzing differential expression in RT-qPCR

data.

• All data are modelled simultaneously, which allows a straightforward extension towards

tests on sets of features using general linear null hypotheses.

• The distributional theory is semiparametric requiring minimal assumptions and the asymp-

totic approximations are reasonable for moderated sample sizes.
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6.A Simulation set-ups

The MYCN single copy group of the neuroblastoma miRNA study is used to set up the sim-

ulation study. This study quantifies 430 miRNAs in 39 samples of which 135 miRNAs have

undetermined values in at least 50% of the samples. These miRNAs are not considered for the

simulation set-up and the remaining 295 miRNAs are used to fit nonparametric densities to the

expressed values (quantification cycles).

From these 295 densities 200 were selected at random for the generation of expressions for 60

samples, using the nonparametric density fits. Half of these samples are assigned to the first

group and the other half to the second. One simulated dataset thus consists of 200 features and

60 samples over two groups. Differentially expressed features are then introduced by adding a

constant to samples in one of the groups. The differentially expressed features are included in

a way so that up and down regulation is balanced, which is an assumption of uWMW, nWMW,

and nWelch.

6.A.1 Set-up A

We simulate differential expression according to a

• location-shift effect. Add a constant δ to the quantification cycles of all samples in group

1, where

– δ = 1 for features 1, 2, 3 for a small treatment effect.

– δ = 3 for features 4, 5, 6 for a moderate treatment effect.

– δ = 6 for features 7, . . . , 10 for a large treatment effect.

• tail effect. For features 11, . . . , 20 in group 2 add δ = 3 to samples 1, . . . , 10, so that only

a third of the samples in the second group are differentially expressed.

• contaminated location-shift effect. For features 21, . . . , 30 add δ = 3 to all samples in

the second group. We contaminate this location-shift effect by adding δ = 9 to samples

1 . . . , 10 in the first group.

Figure 6.6 shows nonparametric density estimates for randomly selected features according to

each type of treatment effect.
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To examine robustness of the normalization procedures, we also included outliers for non-

differentially expressed features: a constant δ = 9 is added to samples 1, . . . , 5 in the first

group for features 31, . . . , 40. These outliers make up 0.4% of the data.
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Figure 6.6: Nonparametric densities estimates of simulated data of group 1 (—, ◦) and group

2 (- - -, 4) for randomly selected features according to the different types of treatment effects:

location-shift effect (top left), tail effect (top right), and contaminated location-shift effect (bot-

tom). Rug plots are added to visualize the sample observations.

6.A.2 Set-up B

In a first step we simulate data without undetermined values and include of location-shift effect

for 30 of the 200 features by adding a constant

, , \ , 
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• δ = 1 to the quantification cycles of all samples in group 1 for features 1, . . . , 10.

• δ = 3 to the quantification cycles of all samples in group 1 for features 11, . . . , 20.

• δ = 6 to the quantification cycles of all samples in group 2 for features 21, . . . , 30.

In a second step, 34% (which corresponds to the percentage of undetermined values of the

neuroblastoma miRNA study with a detection cut-off of Cq = 35) of the data are randomly

selected and replaced by 35 so as to represent the undetermined values.

6.B Additional simulation study

Figure 6.7 gives the average ROC-curves for the simulation study as described in Appendix

6.A.1, without the outliers in samples 1, . . . , 5 of the first group for features 31, . . . , 40. The

performance of nWMW is now similar to uWMW.
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Figure 6.7: Average ROC-curves without outliers for uWMW (—), nWMW (- - -), and nWelch

(· · · ). The top left panel shows the ROC-curve when all 30 differentially expressed features

are included. The other panels show the average ROC-curve for each type of treatment effect

separately, thus by only including the corresponding 10 differentially expressed features.
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Chapter 7

Semiparametric efficiency

The content of this chapter is the result of many discussions with, and internal reports from,

Olivier Thas, Stijn Vansteelandt, and Karel Vermeulen. However, the final form of this chapter

is from my own hand and goes beyond these internal reports.

Many lemmas and theorems in Sections 7.2 and 7.3 are adapted from chapters 1-4 of Tsiatis

(2006) and chapter 8 of Newey and McFadden (1994).

7.1 Motivation and outline

In Chapter 2 we proposed a semiparametric estimator for PIM-parameters with asymptotic the-

ory based on the asymptotics of Lumley and Mayer-Hamblett (2003). Their estimating equa-

tions (2.15) make use of the independent working correlation matrix, i.e. for estimating the

model parameters, we use the working assumption that the pseudo-observations are mutually

independent. This working assumption is incorrect, since pseudo-observations which share a

common outcome, e.g. I (Y 4 Y ′) and I (Y 4 Y ′′), are generally not independent. This incor-

rect working assumption does not affect consistency and asymptotic normality of the estimator,

nor consistency of the variance sandwich estimator (Lumley and Mayer-Hamblett, 2003). How-

ever, it can affect efficiency so that the estimator does not attain the semiparametric efficiency

bound.

Furthermore, since we restrict the PIM framework to a random sample of i.i.d. observations it

169
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is anticipated that the assumption and the regularity conditions of Lumley and Mayer-Hamblett

(2003) are too strong since they hold for a more general class of data and models, i.e. marginal

models for sparsely correlated data. Therefore, in this chapter, we address the following ques-

tions:

• Can we find more efficient estimators than the one proposed in Chapter 2?

• Can we find the asymptotic properties of the estimators without relying on the results of

Lumley and Mayer-Hamblett (2003)?

To answer these questions we need some notion of the theory of semiparametric models. Since

this is based on Hilbert spaces and parametric submodels, we start by introducing these concepts

in Section 7.2. In Section 7.3 we construct the asymptotic theory for PIMs and in Section 7.4 we

apply the general theory to a specific setting. Section 7.5 gives the conclusions and discussion.

For literature on semiparameteric models and semiparametric estimation, we refer to Newey

and McFadden (1994); Powell (1994); Bickel et al. (1998); Tsiatis (2006).

7.2 Introduction

We start by formally introducing a semiparametric model. Consider a random sample of i.i.d.

observations {Zi = (Yi,X i) | i = 1, . . . , n} with joint density fZ(z) = fY |X(y | x)fX(x).

Here Z may be continuous, discrete, or a combination, but without loss of generality we refer

to fZ(z) as a density. ByM we denote the class of densities, i.e.

M :=

{
fZ(z) | fZ(z) ≥ 0, ∀z and

∫
fZ(z)dz = 1

}
.

Note that we use the notation dz for both the Lebesgue and counting measure.

Definition 6 (Semiparametric model). The class of densities corresponding to a semiparametric

model,MSP ⊂M, can be described as

MSP =
{
fZ(z;θ) | θT = (βT ,ηT ), β ∈ Θ ⊂ Rp

}
, (7.1)

i.e. the density can be described by a finite-dimensional parameter β and a possibly infinite-

dimensional nuisance parameter η.
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Hilbert spaces of random vectors form the cornerstone of semiparametric theory. The following

section is based on chapter 2 of Tsiatis (2006). It provides some useful results without going

into technical details.

7.2.1 Review on Hilbert spaces for random vectors

A real Hilbert space, sayH, is a complete normed linear vector space for which an inner product

is defined.

Definition 7 (Inner product). For a linear vector spaceH, an inner product, 〈·, ·〉 : H×H → R,

is a function satisfying, ∀h1,h2,h3 ∈ H and ∀λ ∈ R,

1. 〈h1,h2〉 = 〈h2,h1〉.

2. 〈h1 + h2,h3〉 = 〈h1,h3〉+ 〈h2,h3〉.

3. 〈λh1,h2〉 = λ〈h1,h2〉.

4. 〈h1,h1〉 ≥ 0 and 〈h1,h1〉 = 0 ⇔ h1 = 0.

Based on the inner product, a norm can be defined

‖h‖ :=
√
〈h,h〉, h ∈ H.

The norm can be used to describe the length of a vector h ∈ H, i.e. the distance from h to

the origin, denoted as 0. Furthermore, the inner product allows us to define orthogonality as

〈h1,h2〉 = 0, also denoted as h1 ⊥ h2.

We now construct a Hilbert space for random vectors. Consider a probability space (Ω,F ,P),

with Ω the sample space, F the corresponding σ-algebra, and P the probability measure over

(Ω,F) that generates the data Zi, i = 1, . . . , n.

Consider the space of p-dimensional measurable random functions h of Z with zero mean and

finite second moment

H :=
{
h(Z) | h(·) : Ω→ Rp, E[h(Z)] = 0, E[h(Z)Th(Z)] <∞

}
. (7.2)
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For notational convenience, elements of H will be written as hi corresponding to hi(Z). We

define an inner product as

〈h1,h2〉 = E
(
hT1h2

)
= E

[
h1(Z)Th2(Z)

]
,

referred to as the covariance inner product. Note that 〈h1,h1〉 is a scalar and thus does not

correspond to the covariance matrix which is given by E
(
h1h

T
1

)
. One can show that (H, 〈·, ·〉)

forms a Hilbert space; see, for example, Loève (1963). The origin of the Hilbert space is given

by the function h for which h(Z) = 0. Condition 4 in Definition 7 is fulfilled for the covariance

inner product if we define an equivalence class where h1 is equivalent to h2, i.e. h1 ≡ h2, if

P [h1(Z) 6= h2(Z)] = 0.

For a Hilbert space we can define a linear subspace.

Definition 8 (Linear subspace). A space U ⊂ H is a linear subspace if for all u1,u2 ∈ U and

λ1, λ2 ∈ R it follows that λ1u1 + λ2u2 ∈ U .

A linear subspace is closed if it contains all its limit points. An important result in Hilbert

spaces is given by the projection theorem. We refer to Luenberger (1969) for a proof.

Theorem 14 (Projection theorem). Let U denote a closed linear subspace of the Hilbert space

H, then for all h ∈ H, there exists a unique u0 ∈ U so that

‖h− u0‖ ≤ ‖h− u‖, for all u ∈ U ,

i.e. u0 is the unique element of U closest to h. Furthermore,

〈h− u0,u〉 = 0, for all u ∈ U ,

i.e. h−u0 is orthogonal to U . We denote this unique projection of h on U , i.e. u0, as Π(h | U).

7.2.2 Review on parametric theory

Before introducing the theory of semiparametric models, we first introduce some results related

to parametric models.

Definition 9 (Parametric model). The class of densities corresponding to a parametric model,

MP ⊂M, can be described as

MP =
{
fZ(z;θ) | θT = (βT ,ηT ), θT ∈ Θ ⊂ Rp+r

}
,



7.2. Introduction 173

i.e. the density can be described by a finite p-dimensional parameterβ and a finite r-dimensional

nuisance parameter η.

For both the parametric and semiparametric model, interest lies in estimating β. If θT0 =

(βT0 ,η
T
0 ) denotes the truth (i.e. the model parameters corresponding to the density that generates

the data), then we restrict the discussion to estimators for β which are asymptotically linear.

Definition 10 (Asymptotically linear estimator). An asymptotically linear (AL) estimator of β,

say β̂n, is a p-dimensional measurable function of the sample {Zi | i = 1, . . . , n}, so that there

exists a p-dimensional measurable random function ϕ(Z), such that

1. E[ϕ(Z)] = 0,

2. E[ϕ(Z)ϕ(Z)T ] is finite and non-singular,

3. and
√
n(β̂n − β0) =

1√
n

n∑
i=1

ϕ(Zi) + op(1).

The function ϕ(·) is named the influence function. Note that ϕ(Zi) measures the influence of

the ith observation on the estimator β̂n. The following theorem states that influence functions

are unique; a proof can be found in Tsiatis (2006, p. 23).

Theorem 15. An AL estimator has a unique influence function, i.e. if ϕ1 and ϕ2 denote two

influence functions associated with the AL estimator β̂n, then

P (ϕ1 = ϕ2) = 1.

There exist AL estimators which are super-efficient, i.e. which are asymptotically unbiased

and which have an asymptotic variance smaller than the Cràmer-Rao lower bound for some

parameter values. For an example, see section 3.1 in Tsiatis (2006). These estimators, however,

are unnatural and therefore we try to avoid them. This can be accomplished by defining regular

estimators.

Definition 11 (Regular estimator). Consider a local data generating process, where, for each

n, the data are distributed according to θn = (βTn ,η
T
n )T , where for some fixed parameter

θ∗ = (β∗T ,η∗T )T , it holds that
√
n(θn − θ∗)→ c,
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for some vector of constants c. Thus {Zi,n | i = 1, . . . , n} are i.i.d. with density fZ(z;θn). An

estimator β̂n, depending on Zi,n (i = 1, . . . , n), is regular if, for each θ∗,

√
n(β̂n − βn)

d→ F,

where F does not depend on the local data generating process.

For the remainder of this chapter we focus on regular asymptotically linear (RAL) estimators.

The notion of a score vector will help us in finding RAL estimators.

Definition 12 (Score vector). The score vector evaluated in a fixed point θ0, is defined as

Sθ(Z;θ0) :=
∂ log fZ(Z;θ)

∂θ

∣∣∣
θ=θ0

.

We can rewrite the score vector as Sθ(z;θ0)T = (Sβ(z;θ0)T ,Sη(z;θ0)T ), where

Sβ(z;θ0) :=
∂ log fZ(z;θ)

∂β

∣∣∣
θ=θ0

, Sη(z;θ0) :=
∂ log fZ(z;θ)

∂η

∣∣∣
θ=θ0

.

The following theorem presents a result that allows describing the geometry of influence func-

tions for RAL estimators. We refer to Tsiatis (2006, p. 28) for a proof.

Theorem 16. Consider an AL estimator β̂n with influence functionϕ(Z) such that E[ϕ(Z)Tϕ(Z)]

exists and E[ϕ(Z)Tϕ(Z)] is continuous in θ in a neighbourhood of θ0. If β̂n is RAL estimator,

then

E
[
ϕ(Z)Sβ(Z;θ0)T

]
= I, (7.3)

and

E
[
ϕ(Z)Sη(Z;θ0)T

]
= 0. (7.4)

One can also show that an element ϕ ∈ H satisfying (7.3) and (7.4) is the influence function of

some RAL estimator; see, for example, section 3.3 in Tsiatis (2006).

Sometimes it can be more natural to consider the parameter of interest β as a smooth p-

dimensional function of θ, i.e. β = β(θ). The previous theorem can be generalized to this

setting; see, for example, Theorem 3.2 in Tsiatis (2006).

Thus we can identify a RAL estimator β̂n through its influence function ϕ and the asymp-

totic distribution of ϕ determines the asymptotic distribution of β̂n. Indeed, since ϕ(Zi),
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i = 1, . . . , n are i.i.d. with finite non-singular second moment, the central limit theorem guar-

antees that
1√
n

n∑
i=1

ϕ(Zi)
d→ N[0,E

(
ϕϕT

)
].

If (some of) the predictors are fixed by design so that Zi and hence ϕ(Zi) are not i.i.d., then

the Lindeberg–Feller central limit theorem can be used to establish the asymptotic normality;

see, for example, van der Vaart (1998, p. 20).

Since β̂n is asymptotically linear and by using Slutksy’s lemma, it follows that

√
n(β̂n − β0)

d→ N[0,E
(
ϕϕT

)
].

Different RAL estimators forβ, say β̂
1

n, β̂
2

n, . . .may differ in their asymptotic variance E
(
ϕiϕ

T
i

)
,

where ϕi is the influence function of the RAL estimator β̂
i

n, i = 1, 2, . . . Therefore, if we have

a set of candidate RAL estimators, we can choose the estimator with the smallest asymptotic

variance, i.e. the most efficient estimator. To obtain this, two problems need to be addressed.

1. How do we extend the notion of smallest variance if the variance is as p × p covariance

matrix associated with a p-dimensional estimator?

2. How can we find the RAL estimator with smallest asymptotic variance?

To answer these questions we first need to introduce some definitions and theorems. We start

by defining a tangent space.

Definition 13 (Tangent space). The tangent space is defined as

T := {BSθ(Z,θ0) | ∀ real p× (p+ r) matrices B}.

Definition 14 (Nuisance tangent space). The nuisance tangent space is defined as

Λ := {BSη(Z,θ0) | ∀ real p× r matrices B}.

From a geometrical point of view, condition (7.4) states that ϕ is orthogonal to the linear sub-

space Λ.

Definition 15 (Direct sum). If M and N denote two linear subspaces in H, then M ⊕ N is a

direct sum of M and N if M ⊕N is a linear subspace inH and every element x ∈M ⊕N has

a unique representation of the form x = m+ n, wherem ∈M and n ∈ N .
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Definition 16 (Orthogonal linear subspace). The set of elements in a Hilbert space which are

orthogonal to a linear subspace M , is denoted as M⊥ and referred to as the orthogonal com-

plement of M .

It holds that M⊥ is a linear subspace and thatH = M ⊕M⊥. If Tβ denotes the linear subspace

Tβ := {BSβ(Z,θ0) | ∀ real p× p matrices B},

then one can show that

T = Tβ ⊕ Λ.

The following definition allows generalizing the notion of efficiency to a multivariate setting.

Definition 17 (Asymptotic variance in multiple dimensions). Consider two influence functions

for β, say ϕ1 and ϕ2, both p-dimensional, then

Cov (ϕ1) ≤ Cov (ϕ2)⇔ ∀a ∈ Rp : Var
(
aTϕ1

)
≤ Var

(
aTϕ2

)
.

Hence Cov (ϕ1) ≤ Cov (ϕ2) is equivalent to saying that E
(
ϕ2ϕ

T
2

)
−E

(
ϕ1ϕ

T
1

)
is nonnegative

definite.

The Pythagorean theorem is crucial for finding the most efficient influence function. The theo-

rem can be extended to multiple dimensions, for which we first need to introduce p-replicating

linear spaces.

Definition 18 (p-replicating linear space). A linear subspace U ⊂ H is a p-replicating linear

space if U can be written as

U = U1 × · · · × U1 =
{
U1
}p
,

where U1 denotes a linear subspace in the Hilbert space of one-dimensional mean-zero random

function of Z and where {U1}p consists of elements h such that

hT = (h1, . . . , hp), hi ∈ U1.

Both T and Λ are p-replicating linear spaces; see, for example, Tsiatis (2006, p. 44). For these

p-dimensional linear spaces the Pythagorean theorem can be extended.
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Theorem 17 (Multivariate Pythagorean theorem). Let h ∈ U ⊂ H with U a p-replicating linear

space, and let h′ ∈ H denote a element orthogonal to U , i.e. 〈h,h′〉 = 0, then

Cov (h+ h′) = Cov (h) + Cov (h′) .

Definition 19 (Linear variety). A translation of a linear subspace away from the origin is called

a linear variety, say V . A linear variety can be written as V = x+M , where x ∈ H, x 6∈ M ,

‖x‖ 6= 0, with M a linear subspace.

The following theorem gives the set of all influence functions. We refer to Tsiatis (2006, p. 45)

for a proof.

Theorem 18. The set of all influence functions of the parameter β, i.e. elements ofH satisfying

conditions (7.3) and (7.4), corresponds to the linear variety

ϕ∗(Z) + T ⊥,

where ϕ∗(Z) is any influence function of the parameter β.

All these results allow us to find the most efficient influence function and hence the RAL estima-

tor for β with smallest asymptotic variance. Consider an arbitrary influence function ϕ and de-

fine leff := ϕ−Π(ϕ | T ). From Theorem 14 if follows that leff ∈ T ⊥. Define ϕeff := Π(ϕ |

T ). By definitionϕeff ∈ T so that 〈ϕeff , leff〉 = 0. Sinceϕeff = ϕ−leff it follows by Theo-

rem 18 that ϕeff is a proper influence function. Because 〈ϕeff , leff〉 = 0 and ϕ = ϕeff + leff ,

the multivariate Pythagorean theorem guarantees that Cov (ϕ) = Cov
(
ϕeff

)
+ Cov (leff ) and

hence Cov
(
ϕeff

)
≤ Cov (ϕ) in the multivariate sense. Since this holds for an arbitrary ϕ,

ϕeff is the efficient influence function. The following theorem gives an explicit formulation of

ϕeff .

Theorem 19. The efficient influence function is given by

ϕeff (Z) = E
(
Seff (Z;θ0)Seff (Z;θ0)T

)−1
Seff (Z;θ0),

with Seff (Z;θ0) the efficient score, given by

Seff (Z;θ0) = Sβ(Z;θ0)− Π(Sβ(Z;θ0) | Λ),

i.e. the residual of the score vector with respect to β after projecting it onto the nuisance tangent

space.
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The proof can be found in Tsiatis (2006, p. 46).

Once we have identified the set of influence functions associated with β, the corresponding esti-

mators can be constructed as follows. Let ϕ(·;β, ξ) denote an influence function (we explicitly

state its dependence on the parameter of interest β and on an r̃-dimensional nuisance parameter

ξ where r̃ ≤ r, with r the dimension of η), then an estimator of β can be obtained by solving

the set of equations

n−1

n∑
i=1

ϕ(Zi;β, ξ̂) = 0,

where ξ̂ denotes a first-step estimator, obtained by solving

n−1

n∑
i=1

ψ(Zi; ξ) = 0,

for some r̃-dimensional vector function ψ(·). Chapter 6 of Newey and McFadden (1994) de-

scribes the asymptotic properties of such a two-step estimator for β. For example, they provide

primitive conditions under which the estimation of ξ does not affect the asymptotic distribution

of β̂. Since we model PIMs semiparametrically, we postpone this discussion to Section 7.3.4,

where it is shown how semiparametric two-step estimators can be constructed starting from an

influence function.

7.2.3 Review on semiparametric theory

In this section we extend the theory of parametric modelsMP to semiparametric modelsMSP

(7.1) which is based on the notion of parametric submodels.

Definition 20 (Parametric submodel). Let f0(z) := fZ(z;β0,η0) ∈MSP denote the truth, i.e.

the density that generated the data. A class of densities, denoted as

Mβ,γ =
{
fZ(z;β,γ) | (βT ,γT ) ∈ Θ ⊂ Rp+r

}
,

is a parametric submodel if

1. Mβ,γ ⊂MSP ,

2. f0(z) ∈Mβ,γ .
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Thus a parametric submodel of a semiparametric model consist of a subset ofMSP with finite-

dimensional parameters and which contains the truth. This allows us to define a RAL estimator

for a semiparametric model.

Definition 21 (Semiparametric RAL estimator). An estimator for β is a RAL estimator for a

semiparametric model if it is a RAL estimator for every parametric submodel.

Based on the parametric submodels we define the nuisance tangent space for a semiparametric

model.

Definition 22 (Semiparametric nuisance tangent space). The nuisance tangent space for a semi-

parametric model, say Λ, is defined as the mean-square closure of parametric submodel nui-

sance tangent spaces Λγ , where

Λγ = {BSγ(Z;β0,γ0) | ∀ real p× r matrices B},

with Sγ(Z;β0,γ0) the score vector for the nuisance parameter γ for some parametric sub-

modelMβ,γ . If we index these parametric submodels by j, then

Λ :=
{
h ∈ H | ∃ a sequence (BjSγ,j) such that ‖h−BjSγ,j‖2 j→∞−→ 0

}
.

The semiparametric nuisance tangent space consists of the union of all parametric submodel

nuisance tangent spaces together with all the limit points. In general, Λ is not necessarily a

linear space, but in the remainder of this chapter, it will always be linear. The notion of Λ

allows us to define the semiparametric efficient score vector.

Definition 23 (Semiparametric efficient score). The semiparametric efficient score for β is de-

fined as

Seff (Z;β0,η0) := Sβ(Z;β0,η0)− Π(Sβ(Z;β0,η0) | Λ).

Definition 24 (Semiparametric efficiency bound). If

Seffβ,γ(Z;β0,γ0) = Sβ(Z;β0,γ0)− Π(Sβ(Z;β0,γ0) | Λγ),

denotes the efficient score of a parametric submodel, then we can define the semiparametric

efficiency bound as

sup
(all parametric submodelsMβ,γ)

E
(
Seffβ,γS

effT

β,γ

)−1

.
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The following theorem relates the semiparametric efficiency bound to the semiparametric effi-

cient score; we refer to Tsiatis (2006, p. 64) for a proof.

Theorem 20. The semiparametric efficiency bound is equal to the inverse of the variance matrix

of the semiparametric efficient score, i.e.

sup
(all parametric submodelsMβ,γ)

E
(
Seffβ,γS

effT

β,γ

)−1

= E
(
SeffS

T
eff

)−1
.

Definition 25 (Semiparametric efficient influence function). The influence function of a semi-

parametric RAL estimator that achieves the semiparametric efficiency bound, if it exists, is

named the efficient influence function.

Similar as for the parametric models, we can characterize the influence functions based on the

score vectors; see Tsiatis (2006, p. 66) for a proof.

Theorem 21. Any semiparametric RAL estimator for β must have an influence function ϕ that

satisfies

1. E[ϕ(Z)STβ(Z;β0,η0)] = E[ϕ(Z)STeff (Z;β0,η0)] = I ,

2. Π(ϕ(Z) | Λ) = 0, i.e. ϕ(Z) ∈ Λ⊥.

The efficient influence function is the unique element satisfying conditions 1 and 2 and whose

variance-covariance matrix equals the efficiency bound, and is equal to

ϕeff (Z;β0,η0) = E
(
SeffS

T
eff

)−1
Seff (Z;β0,η0).

Theorem 22. If a semiparametric RAL estimator for β exists, then the influence function of this

estimator must belong to the linear variety

ϕ(Z) + T ⊥,

with ϕ(Z) the influence function of any semiparametric RAL estimator for β and T the semi-

parametric tangent space, i.e. the mean-square closure of all parametric submodel tangent

spaces. If the semiparametric efficient estimator exists, then the influence function must be the

unique and well-defined element

ϕeff (Z) = ϕ(Z)− Π(ϕ(Z) | T ⊥) = Π(ϕ(Z) | T ).
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7.3 Semiparametric theory for probabilistic index models

We now use the theory of the previous section to find the semiparametric efficient estimator

associated with a PIM. We start by expressing a PIM as a restricted moment model

P (Y 4 Y ′ |X,X ′) = E (I (Y 4 Y ′) |X,X ′) = m(X,X ′;β). (7.5)

The major difference with the more conventional restricted model, as given by (2.5), is that

the definition of a PIM involves a couple of observations Z = (Y,X) and Z ′ = (Y ′,X ′).

This makes the theory for semiparametric restricted moment models as described in section

4.5 of Tsiatis (2006) not directly applicable. We will, however, follow a similar strategy. In

the remainder of this section we consider PIMs which are defined for the no-order restric-

tion X0 = {(X i,Xj) | i, j = 1, . . . , n} and for which the model satisfies m(X i,Xj;β) +

m(Xj,X i;β) = 1. All results, however, can be extended to other order restrictions Xn.

7.3.1 The semiparametric model

The model restriction (7.5) is equivalent to∫
I (y 4 y′) fY |X(y | x)fY |X(y′ | x′)dydy′ = m(x,x′;β),

and since
∫
fY |X(y | x)fY |X(y′ | x′)dydy′ = 1, (7.5) is equivalent to∫

[I (y 4 y′)−m(x,x′;β)]fY |X(y | x)fY |X(y′ | x′)dydy′ = 0.

We use the latter expression to characterize the semiparametric model associated with a PIM.

More specifically, letMPIM
SP ⊂M denote the class of densities for which

MPIM
SP : =

{
fZ(z;β,η) = fY |X(y | x;β,η1)fX(x;η2) | β ∈ Θ ⊂ Rp and∫
[I (y 4 y′)−m(x,x′;β)]fY |X(y | x;β,η1)fY |X(y′ | x′;β,η1)dydy′ = 0

}
.

We denote the truth as

f0(z) = fZ(z;β0,η0) = f0(y | x)f0(x) = fY |X(y | x;β0,η10)fX(x;η20),
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where ηT0 = (ηT10,η
T
20). Let Mβ,γ1,γ2

⊂ MPIM
SP denote a parametric submodel of MPIM

SP ,

which we characterize as

Mβ,γ1,γ2
=

{
fZ(z;β,γ) = fY |X(y | x;β,γ1)fX(x;γ2) |

(βT ,γT1 ,γ
T
2 )T ∈ Θβ,γ ⊂ Rp+r1+r2 and∫

[I (y 4 y′)−m(x,x′;β)]fY |X(y | x;β,γ1)fY |X(y′ | x′;β,γ1)dydy′ = 0
}
,

where γ1 is an r1-dimensional vector and γ2 an r2-dimensional vector, and γT = (γT1 ,γ
T
2 )

an r-dimensional vector with r = r1 + r2. As before, the truth is denoted as (βT0 ,γ
T
0 ) and is

assumed to be contained within the parametric submodel. Since proper densities in the para-

metric submodel can be defined for any combination of γ1 and γ2, we say that γ1 and γ2 are

variationally independent.

Consider the parametric submodel nuisance score vector

Sγ(Z;β0,γ0) =
(
Sγ1

(Z;β0,γ0)T ,Sγ2
(Z;β0,γ0)T

)T
,

where

Sγ1
(Z;β0,γ0) =

∂ log fY |X(Y |X;β0,γ1)

∂γ1

∣∣∣
γ1=γ10

,

and

Sγ2
(Z;β0,γ0) =

∂ log fX(X;γ2)

∂γ2

∣∣∣
γ2=γ20

.

The former score does not depend on γ20, therefore we write Sγ1
(Z;β0,γ10), and similarly,

the latter score does not depend on Y , β0, and γ10, therefore we write Sγ2
(X;γ20).

The parametric submodel nuisance tangent space

Λγ := {BSγ(Z;β0,γ0) | ∀ real p× r matrices B} ,

can be written as a direct sum

Λγ = Λγ1
⊕ Λγ2

,

where

Λγ1
:=
{
BSγ1

(Z;β0,γ10) | ∀ real p× r1 matrices B
}
, (7.6)

and

Λγ2
:=
{
BSγ2

(X;γ20) | ∀ real p× r2 matrices B
}
. (7.7)

Lemma 11. The space Λγ1
as defined by (7.6) is orthogonal to the space Λγ2

as defined by

(7.7).
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Proof. From ∫
fY |X(y | x;β0,γ1)dy = 1, ∀x,γ1,

it follows that
∂

∂γ1

∫
fY |X(y | x;β0,γ1)dy

∣∣∣
γ1=γ10

= 0. (7.8)

Upon using the chain-rule and by interchanging integration and differentiation evaluated at γ10,

it follows that

∂

∂γ1

∫
fY |X(y | x;β0,γ1)dy

∣∣∣
γ1=γ10

=

∫
∂

∂γ1

fY |X(y | x;β0,γ1)dy
∣∣∣
γ1=γ10

=

∫
Sγ1

(y,x;β0,γ10)fY |X(y | x;β0,γ10)dy.

Substituting this last expression in (7.8) leads to

E[Sγ1
(Y,X;β0,γ10) |X] = 0.

Consider now an arbitrary element of Λγ1
, sayB1Sγ1

(Y,X;β0,γ10), and an arbitrary element

of Λγ2
, sayB2Sγ2

(X;γ20), then it follows that

〈B1Sγ1
(Y,X;β0,γ10),B2Sγ2

(X;γ20)〉 = E
[
Sγ1

(Y,X;β0,γ10)TBT
1B2Sγ2

(X;γ20)
]

= E
[
E
(
Sγ1

(Y,X;β0,γ10)T |X
)
BT

1B2

Sγ2
(X;γ20)

]
= 0.

The second equality holds because of the law of iterated expectation.

7.3.2 The semiparametric nuisance tangent space

The semiparametric nuisance tangent space Λ is defined as the mean-square closure of all para-

metric submodel nuisance tangent spaces Λγ = Λγ1
⊕ Λγ2

. Since γ1 and γ2 are variationally

independent it follows that

Λ = Λ1s ⊕ Λ2s, (7.9)

where Λ1s is the mean-square closure of all Λγ1
and Λ2s the mean-square closure of all Λγ2

.

Since we can write the nuisance tangent space as a direct sum of Λ1s and Λ2s, we explicitly

derive the elements of these spaces.
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Theorem 23 (The space Λ2s). The nuisance tangent space with respect to η2 is given by

Λ2s = {h(X) ∈ H} ,

i.e. the space of all p-dimensional mean-zero measurable functions of X with finite second

moment.

Proof. Consider an arbitrary element of any parametric submodel Λγ2
, say BSγ2

(X;γ20).

From ∫
fX(x;γ2)dx = 1, ∀γ2,

it follows that, by using similar arguments as in the proof of Lemma 11,

E[BSγ2
(X;γ20)] = 0,

hence Λγ2
⊂ Λ2s. We now show that an arbitrary element of Λ2s is either an element of

Λγ2
for some parametric submodel or a limit of such elements. Consider a bounded element

h∗(X) ∈ Λ2s for which we construct the parametric submodel with density

fX(x;γ2) = f0(x)[1 + γT2h
∗(x)],

where γ2 is a p-dimensional vector so that

[1 + γT2h
∗(x)] ≥ 0, ∀x.

Since h∗(X) is bounded such a γ2 exists. Thus fX(x;γ2) is nonnegative and since∫
fX(x;γ2)dx =

∫
f0(x)dx+

∫
γT2h

∗(x)f0(x)dx (7.10)

= 1 + γT2 E[h∗(X)] = 1 + 0 = 1, (7.11)

it follows that fX(x;γ2) is a proper density function. It is now easy to see that the score vector

for this parametric submodel is given by

Sγ2
(X;γ20) = h∗(X),

hence h∗(X) ∈ Λγ2
. Since arbitrary h∗(X) ∈ Λ2s can always be taken as a limit of bounded

mean-zero functions ofX , the statement follows.

The following theorem gives the elements of the space Λ1s.
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Theorem 24 (The space Λ1s). The space Λ1s is the space of all p-dimensional random functions

h(Y,X) ∈ H that satisfy both

1. E (h(Y,X) |X) = 0.

2. E {[I (Y 4 Y ′)−m(X,X ′;β0)][h(Y,X) + h(Y ′,X ′)] |X,X ′} = 0 with (Y,X) and

(Y ′,X ′) i.i.d.

Proof. For an arbitrary element of any parametric submodel Λγ1
, say BSγ1

(Y,X;β0,γ10),

because
∫
fY |X(y | x;β0,γ1)dy = 1 ∀γ1, it follows that, by using similar arguments as in the

proof of Lemma 11,

E
[
BSγ1

(Y,X;β0,γ10) |X
]

= 0.

Hence, every element of Λγ1
satisfies condition 1 of the theorem. Furthermore, the model

restriction states that∫
[I (y 4 y′)−m(x,x′;β0)] fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)dydy′ = 0, ∀x,x′,γ1.

Consequently

∂

∂γ1

∫
[I (y 4 y′)−m(x,x′;β0)] fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)dydy′

∣∣∣
γ1=γ10

= 0

⇔
∫

[I (y 4 y′)−m(x,x′;β0)]
∂

∂γ1

[
fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)

] ∣∣∣
γ1=γ10

dydy′

= 0

⇔
∫

[I (y 4 y′)−m(x,x′;β0)]
[
Sγ1

(y,x;β0,γ10) + Sγ1
(y′,x′;β0,γ10)

]
fY |X(y | x;β0,γ10)fY |X(y′ | x′;β0,γ10)dydy′ = 0.

Since this holds for all (x,x′) it now follows that

E
{

[I (Y 4 Y ′)−m(X,X ′;β0)]
[
Sγ1

(Y,X;β0,γ10) + Sγ1
(Y ′,X ′;β0,γ10)

]
|X,X ′

}
= 0,

and thus also

E
{

[I (Y 4 Y ′)−m(X,X ′;β0)]
[
BSγ1

(Y,X;β0,γ10) +BSγ1
(Y ′,X ′;β0,γ10)

]
|X,X ′

}
= 0.

Hence, every element of Λγ1
satisfies condition 2 of the theorem, and thus Λγ1

⊂ Λ1s. Now

we will show that an arbitrary element of Λ1s is either an element of Λγ1
for some parametric
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submodel or a limit of such elements. Consider a bounded element h∗(Y,X) ∈ Λ1s for which

we consider the parametric submodel Λγ1
with density

fY |X(y | x;β0,γ1) = f0(y | x)
[
1 + γT1h

∗(y,x)
]
, (7.12)

where γ1 is a p-dimensional vector so that

[
1 + γT1h

∗(y,x)
]
≥ 0, ∀y,x.

Similar as in the proof of Theorem 23 one can show that fY |X(y | x;β0,γ1) is a proper density

function. To show that Λγ1
is a valid parametric submodel, the density (7.12) must satisfy the

model restriction. Thus we need to show that∫
[I (y 4 y′)−m(x,x′;β0)]fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)dydy′ = 0. (7.13)

We first discuss some intermediate results.

• Because f0(y | x) is the truth, it satisfies the model restriction∫
[I (y 4 y′)−m(x,x′;β0)]f0(y | x)f0(y′ | x′)dydy′ = 0. (7.14)

• Because h∗(Y,X) is an element of Λ1s, it follows that∫
[I (y 4 y′)−m(x,x′;β0)][h∗(y,x) + h∗(y′,x′)]f0(y | x)f0(y′ | x′)dydy′ = 0.

(7.15)

• Since fY |X(y | x;β0,γ1) is a proper density function, it follows that the left hand side

of (7.13) can be equivalently written as Pγ1
(Y 4 Y ′) −m(x,x′;β0) where we use the

subscript γ1 to indicate that the probability operator is defined with respect to the density

(7.12). Because both the probability and the model restriction are bounded by the unit-

interval, it follows that the left hand side of expression (7.13) lies within the interval

[−1, 1]. Therefore it holds that

−1 ≤
∫

[I (y 4 y′)−m(x,x′;β0)]fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)dydy′ ≤ 1

⇒ 0 ≤ ∂

∂γ1

∫
[I (y 4 y′)−m(x,x′;β0)]fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)dydy′ ≤ 0

⇒
∫

[I (y 4 y′)−m(x,x′;β0)]
∂

∂γ1

[fY |X(y | x;β0,γ1)fY |X(y′ | x′;β0,γ1)]dydy′

= 0. (7.16)
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After substituting (7.12) and upon using (7.15), one can show that (7.16) is equivalent to∫
[I (y 4 y′)−m(x,x′;β0)]γT1h

∗(y,x)γT1h
∗(y′,x′)f0(y | x)f0(y′ | x′)dydy′ = 0.

(7.17)

Proving that (7.13) holds is now straightforward upon combing the results (7.14), (7.15), and

(7.17) after substituting fY |X(y | x;β,γ1) by (7.12) in (7.13). Thus Λγ1
is a valid parametric

submodel.

It holds that

Sγ1
(Y,X;β0,γ10) = h∗(Y,X).

Consequently h∗(Y,X) ∈ Λγ1
. Since arbitrary h∗(Y,X) ∈ Λ1s can always be taken as a limit

of bounded mean-zero functions of Y andX , the statement follows.

Similar as for the parametric submodel tangent spaces Λγ1
and Λγ2

, the semiparametric tangent

spaces Λ1s and Λ2s are orthogonal.

Lemma 12. Λ1s is orthogonal to Λ2s.

Proof. Consider two arbitrary elements h1(Y,X) ∈ Λ1s and h2(X) ∈ Λ2s. It follows that

〈h1(Y,X),h2(X)〉 = E
[
h1(Y,X)Th2(X)

]
= E

[
E
(
h1(Y,X)T |X

)
h2(X)

]
= E

[
0Th2(X)

]
= 0.

The semiparametric nuisance tangent space can be written as the direct sum (7.9). Furthermore,

Λ1s is the intersection of the two linear subspaces

Λ1sa := {h(Y,X) ∈ H | E (h(Y,X) |X) = 0} ,

and

Λ1sb := {h(Y,X) ∈ H | E {[I (Y 4 Y ′)−m(X,X ′;β0)] [h(Y,X) + h(Y ′,X ′)] |X,X ′} = 0,

with (Y,X) and (Y ′,X ′) i.i.d.} .
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Thus Λ1s = Λ1sa ∩ Λ1sb and we can write the semiparametric nuisance tangent space as Λ =

(Λ1sa ∩ Λ1sb)⊕ Λ2s.

The following three lemmas are useful for simplifying the expression of the space Λ.

Lemma 13. It holds that Λ1sa = Λ⊥2s.

Proof. Consider an arbitrary h1(Y,X) ∈ Λ1sa and an arbitrary h2(X) ∈ Λ2s, then

〈h1(Y,X),h2(X)〉 = E
[
h1(Y,X)Th2(X)

]
= E

[
E
(
h1(Y,X)T |X

)
h2(X)

]
= E

[
0Th2(X)

]
= 0,

i.e. h1 ∈ Λ⊥2s, and thus Λ1sa ⊆ Λ⊥2s. We now show that each element h ∈ H can be written

as h = h1 ⊕ h2, where h1 ∈ Λ1sa and h2 ∈ Λ2s. This follows immediately by taking h1 =

h−E (h |X) andh2 = E (h |X), for which it is straightforward to show thath−E (h |X) ∈

Λ1sa and E (h |X) ∈ Λ2s. These results also imply that Π(h | Λ2s) = E (h |X) and Π(h |

Λ1sa) = h− E (h |X).

Lemma 14. It holds that Λ2s ⊂ Λ1sb.

Proof. Consider an arbitrary h(X) ∈ Λ2s, then

E {[I (Y 4 Y ′)−m(X,X ′;β0)] [h(X) + h(X ′)] |X,X ′}

= {E [I (Y 4 Y ′) |X,X ′]−m(X,X ′;β0)} [h(X) + h(X ′)]

= 0[h(X) + h(X ′)] = 0.

The last equality follows from the model restriction E (I (Y 4 Y ′) |X,X ′) = m(X,X ′;β0).

Hence h(X) ∈ Λ1sb.

Lemma 15. It holds that Λ = Λ1sb.

Proof. It holds that Λ = (Λ1sa∩Λ1sb)⊕Λ2s. Consider now an arbitrary elementh1 ∈ Λ1sa∩Λ1sb

and an arbitrary h2 ∈ Λ2s. By definition h1 ∈ Λ1sb and because of Lemma 14 h2 ∈ Λ1sb.

Therefore, h1 + h2 ∈ Λ1sb since Λ1sb is a linear space, so that Λ ⊆ Λ1sb.
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Consider an arbitrary h ∈ Λ1sb. Since for each h ∈ H, E[E (h |X)] = E (h) = 0 it holds that

E (h |X) ∈ Λ2s. Because of Lemma 14 it follows that E (h |X) ∈ Λ1sb. Because Λ1sb is a

linear space it follows that h− E (h |X) ∈ Λ1sb. Thus h can be written as E (h |X) + [h−

E (h |X)] where E (h |X) ∈ Λ2s and [h − E (h |X)] ∈ Λ1sb. However, [h − E (h |X)] ∈

Λ1sb is also an element of Λ1sa and hence [h−E (h |X)] ∈ (Λ1sa∩Λ1sb). Thus Λ1sb ⊆ Λ.

In summary, the semiparametric nuisance tangent space is given by

Λ =
{
h(Y,X) ∈ H | E {[I (Y 4 Y ′)−m(X,X ′;β0)] [h(Y,X) + h(Y ′,X ′)] |X,X ′} = 0,

with (Y,X) and (Y ′,X ′) i.i.d.
}
.

We now derive the space orthogonal to Λ which will provide us the influence functions of the

RAL estimators for β.

Theorem 25. If holds that

Λ⊥ =
{
h(Y,X) ∈ H | h(Y,X) = E (B(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X) ,

for a p-dimensional function B(X,X ′) such that (7.18)

B(X,X ′) +B(X ′,X) = 0
}
.

Moreover, the projection of an arbitrary h ∈ H onto Λ is

Π(h | Λ) = h(Y,X)− E (Bh(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X) , (7.19)

whereBh(X,X ′) is the solution of (7.22) as given in the proof, assuming it exists.

Proof. Throughout the proof we use the equalities I (Y 4 Y ′)+I (Y ′ 4 Y ) = 1 andm(X,X ′;β)+

m(X ′,X;β) = 1. We first show that the spaces

S1 := {S(X,X ′) | ∃ a p-dimensional functionA(X,X ′) such that

S(X,X ′) = A(X,X ′)−A(X ′,X)},

and

S2 := {B(X,X ′) | B(X,X ′) is p-dimensional and

B(X,X ′) +B(X ′,X) = 0},
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are equal. Indeed, consider an arbitrary element S(X,X ′) ∈ S1. There exists a function

A(X,X ′) such that S(X,X ′) = A(X,X ′) − A(X ′,X) and consequently S(X,X ′) +

S(X ′,X) = 0, i.e. S(X,X ′) ∈ S2. Consider an arbitrary B(X,X ′) ∈ S2, then it follows

thatB(X,X ′) = 0.5B(X,X ′)− 0.5B(X ′,X), and thusB(X,X ′) ∈ S1. Hence S1 = S2.

Consequently, the space (7.18) can be written as

Λ⊥ =
{

E{[A(X,X ′)−A(X ′,X)][I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X},

∀ p-dimensional functions A(X,X ′)
}
.

We now show that this space is orthogonal to Λ. Consider an arbitrary h1 ∈ Λ and h2 :=

E {[A(X,X ′)−A(X ′,X)] [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X} for some arbitrary p-dimensional

functionA(X,X ′), i.e. h2 ∈ Λ⊥. We show that 〈h1,h2〉 = 0. It follows that

〈h1,h2〉 = E
(
h1(Y,X)TE {[A(X,X ′)−A(X ′,X)] [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X}

)
= E

[
h1(Y,X)TE (A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X)

]
+

E
[
h1(Y,X)TE (A(X ′,X) [−I (Y 4 Y ′) +m(X,X ′;β0)] | Y,X)

]
= E

[
h1(Y,X)TE (A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X)

]
+

E
[
h1(Y,X)TE (A(X ′,X) [I (Y ′ 4 Y )−m(X ′,X;β0)] | Y,X)

]
= E

[
h1(Y,X)TE (A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X)

]
+

E
[
h1(Y ′,X ′)TE (A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y ′,X ′)

]
= E

{
h1(Y,X)TA(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)]

}
+

E
{
h1(Y ′,X ′)TA(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)]

}
= E

{[
h1(Y,X)T + h1(Y ′,X ′)T

]
A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)]

}
.

Let h1i denote the ith element of h1 andAi(X,X ′) the ith element ofA(X,X ′). Since h1 ∈ Λ

it follows that

E {[h1i(Y,X) + h1i(Y
′,X ′)] [I (Y 4 Y ′)−m(X,X ′;β0)] |X,X ′} = 0, i = 1, . . . , p.

Consequently

E
{[
h1(Y,X)T + h1(Y ′,X ′)T

]
A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)]

}
= E

(
E
{[
h1(Y,X)T + h1(Y ′,X ′)T

]
A(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] |X,X ′

})
= E

(
p∑
i=1

Ai(X,X ′)E {[h1i(Y,X) + h1i(Y
′,X ′)] [I (Y 4 Y ′)−m(X,X ′;β0)] |X,X ′}

)
= 0,
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and thus 〈h1,h2〉 = 0. To show that the space (7.18) is the orthogonal complement of Λ, we

must show that an arbitrary element h ∈ H can be written as h1 + h2, where h1 is an element

of (7.18) and h2 ∈ Λ. This is equivalent to saying that for each h ∈ H there exists a function

Bh(X,X ′) such that

h∗(Y,X) := [h(Y,X)− E (Bh(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X)] ∈ Λ,

(7.20)

for whichBh(X,X ′) +Bh(X ′,X) = 0. For notational convenience we write

ε(Z,Z ′) := I (Y 4 Y ′)−m(X,X ′;β0). (7.21)

Since h∗(Y,X) must be in Λ, it must satisfy

E (ε(Z,Z ′) [h∗(Y,X) + h∗(Y ′,X ′)] |X,X ′) = 0.

Through (7.20) this equation depends on Bh(X,X ′). In particular, upon using (7.20), this

equation becomes

E (ε(Z,Z ′) [h(Y,X) + h(Y ′,X ′)] |X,X ′) =

E (ε(Z,Z ′)E (Bh(X,X∗)ε(Z,Z∗) | Z) |X,X ′) +

E (ε(Z,Z ′)E (Bh(X ′,X∗)ε(Z ′,Z∗) | Z ′) |X,X ′)

⇔ E (ε(Z,Z ′) [h(Y,X) + h(Y ′,X ′)] |X,X ′) = (7.22)

E (ε(Z,Z ′) [Bh(X,X∗)ε(Z,Z∗) +Bh(X ′,X∗)ε(Z ′,Z∗)] |X,X ′) ,

subject to Bh(X,X ′) +Bh(X ′,X) = 0. If such a Bh(X,X ′) exists, the theorem follows.

According to Theorem 21, influence functions of RAL estimators for β are orthogonal to Λ,

thus are elements of Λ⊥. However, not all elements of Λ⊥ correspond to influence functions,

because according to Theorem 21, they must also satisfy

E[ϕ(Y,X)STβ(Y,X;β0,η0)] = I,

i.e. they need to be properly normalized. Thus an arbitrary influence function is given by

ϕ(Y,X) = CE (B(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X) ,
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with B(X,X ′) +B(X ′,X) = 0 and C the normalization factor. It is straightforward to see

that the normalization factor is given by

C = E
[
B(X,X ′)[I (Y 4 Y ′)−m(X,X ′;β0)]STβ(Y,X;β0,η0)

]−1
.

In Section 7.3.4 we show how the elements of the space Λ⊥ can be used to construct estimating

equations for RAL estimator.

7.3.3 The efficient influence function

We take a first initiative towards deriving the efficient estimator. In the previous section we have

shown that an arbitrary influence function for β is given by

ϕ(Y,X) = CE (B(X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X) , (7.23)

with

C = E
[
B(X,X ′)[I (Y 4 Y ′)−m(X,X ′;β0)]STβ(Y,X;β0,η0)

]−1
.

Thus different choices of the index function B(X,X ′) result in different influence functions.

The following theorem gives the system of equations that needs to be solved to obtain the index

function associated with the efficient influence function. First we introduce some notation. Let

D(X,X ′;β0) =
∂m(X,X ′;β)

∂β

∣∣∣
β=β0

, (7.24)

and

V (X,X ′,X ′′,X ′′′) = Cov (I (Y 4 Y ′) , I (Y ′′ 4 Y ′′′) |X,X ′,X ′′,X ′′′) . (7.25)

Theorem 26. The index function associated with the efficient influence function (7.23), say

Beff (·), is the solution of

D(X,X ′;β0) = E (B(X,X∗)V (X,X ′,X,X∗) +

B(X ′,X∗)V (X,X ′,X ′,X∗) |X,X ′) , (7.26)

subject toB(X,X ′) +B(X ′,X) = 0 and assuming it exists, withD(·) and V (·) as in (7.24)

and (7.25), respectively.
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Proof. By definition

Seff (Y,X;β0,η0) = Sβ(Y,X;β0,η0)− Π(Sβ(Y,X;β0,η0) | Λ),

and by using Theorem 25 this becomes

Seff (Y,X) = E (Beff (X,X ′) [I (Y 4 Y ′)−m(X,X ′;β0)] | Y,X) , (7.27)

for a function Beff (·) that satisfies (7.22) with h(Y,X) = Sβ(Y,X;β0,η0) and Bh(·) =

Beff (·). The system of equations (7.22) can further simplified. From the model restriction it

follows that∫
[I (y 4 y′)−m(x,x′;β)]fY |X(y | x;β,η10)fY |X(y′ | x′;β,η10)dydy′ = 0, ∀x,x′,β,

so that

∂

∂β

∫
[I (y 4 y′)−m(x,x′;β)]fY |X(y | x;β,η10)fY |X(y′ | x′;β,η10)dydy′

∣∣∣
β=β0

= 0

⇔ ∂m(x,x′;β)

∂β

∣∣∣
β=β0

=

∫
[I (y 4 y′)−m(x,x′;β0)]

∂

∂β
[fY |X(y | x;β,η10)fY |X(y′ | x′;β,η10)]

∣∣∣
β=β0

dydy′.

If we use the chain rule in the right hand side, it follows that

∂m(X,X ′;β)

∂β

∣∣∣
β=β0

= E {[I (Y 4 Y ′)−m(X,X ′;β0)] [Sβ(Y,X) + Sβ(Y ′,X ′)] |X,X ′} ,

(7.28)

where, for notation convenience, Sβ(Y,X) = Sβ(Y,X;β0,η0).

Consequently, upon using notation (7.21) and (7.24) and plugging in (7.28) into (7.22) with

h(Y,X) = Sβ(Y,X) andBh(·) = Beff (·), (7.22) is equivalent to

D(X,X ′;β0) = (7.29)

E (ε(Z,Z ′)[Beff (X,X∗)ε(Z,Z∗) +Beff (X
′,X∗)ε(Z ′,Z∗)] |X,X ′) .

The statement follows by using the law of iterated expectation and by recognizing that

E (ε(Z,Z ′)ε(Z,Z∗) |X,X ′,X∗)

= E {[I (Y 4 Y ′)−m(X,X ′;β0)][I (Y 4 Y ∗)−m(X,X∗;β0)] |X,X ′,X∗}

= Cov (I (Y 4 Y ′) , I (Y 4 Y ∗) |X,X ′,X∗)

= V (X,X ′,X,X∗),
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upon using notation (7.25) in the last equation.

Finding the most efficient influence function is not straightforward, since it requires

• solving a system of equations that involves a conditional expectation.

• modelling the covariance functions V (X,X ′,X,X∗).

In Section 7.4 we consider a simplified setting where we solve this integral equation.

Note that for continuous Y ,

V (X,X ′,X,X∗) = Cov (I (Y < Y ′) , I (Y < Y ∗) |X,X ′,X∗)

= E (I (Y < Y ′) I (Y < Y ∗) |X,X ′,X∗)−

E (I (Y < Y ′) |X,X ′) E (I (Y < Y ∗) |X,X∗)

= P (Y < min(Y ′, Y ∗) |X,X ′,X∗)−m(X,X ′;β0)m(X,X∗;β0).

Consequently, finding the efficient influence function requires modelling P(Y < min(Y ′, Y ∗) |

X,X ′,X∗).

7.3.4 Semiparametric two-step estimators

Based on Theorem 25 and under regularity conditions, a consistent and asymptotically normally

distributed estimator for β0 can be obtained as the solution of

1

n

n∑
i=1

E (B(X i,X;β) [I (Yi 4 Y )−m(X i,X;β)] | Yi,X i) = 0, (7.30)

for an arbitrary p-dimensional index functionB(·) subject toB(X,X ′;β) +B(X ′,X;β) =

0. For a proof we refer to the literature of Z-estimators; see, for example, Huber (1964); van der

Vaart (1998); Stefanski and Boos (2002). However, since the estimating equation involves a

conditional expectation it cannot be directly used in practice. We will first need to estimate this

expectation. Consider a nuisance function α(·) and let

V [Z,β,α(·)] :=

∫
B(X,x;β)[I (Y 4 y)−m(X,x;β)]dα(z), z = (y,x),
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then estimating equation (7.30) can be written as

1

n

n∑
i=1

V [Zi,β, FZ(·)] = 0,

with FZ(·) the cumulative distribution function of Z. If we want to estimate β0, we will first

need to estimate the nuisance function. The empirical distribution function α̂(z) = F̂Z(z)

forms a natural choice. If we substitute this nuisance estimator we obtain the estimating equa-

tion

1

n

n∑
i=1

V [Zi;β, F̂Z(·)] =
1

n2

n∑
i=1

n∑
j=1

B(X i,Xj;β) [I (Yi 4 Yj)−m(X i,Xj;β)] = 0.

(7.31)

Note that this estimating equation corresponds closely to the estimating equation (2.15) of the

sparse correlation theory applied to the no-ordering restriction.

We denote the solution of (7.31) as β̂n and the solution of (7.30) as β̄n. From the Z-estimator

literature we know that, under regularity conditions, β̄n is a consistent estimator of β0 and is

asymptotically normally distributed and we can construct a consistent sandwich estimator for

its variance; see, for example, section 3.2 in Tsiatis (2006). We now try to find similar results

for the estimator β̂n. For more general results on semiparametric two-step estimators, we refer

to section 8 of Newey and McFadden (1994).

Consistency

The solution of (7.30) is an example of a Z-estimator (sometimes referred to as an M-estimator),

which is more generally defined as the solution of

gn(β) :=
1

n

n∑
i=1

g(Zi;β) = 0, (7.32)

for a known vector valued function g(·). The following theorem can be found in van der Vaart

(1998, p. 46) and gives conditions under which the solution of (7.32) is consistent. Let ‖x‖2
∗ =

xTx denote a norm and let Θ denote the parameter space of β.

Theorem 27 (Consistency). Let g0(β) denote a fixed vector valued function of β such that for

all ε > 0

1. supβ∈Θ ‖gn(β)− g0(β)‖∗
p→ 0,
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2. infβ:‖β−β0‖∗>ε ‖g0(β)‖∗ > 0 = ‖g0(β0)‖∗.

Then β̃n so that gn(β̃n) = op(1) is a consistent estimator of β0.

Loosely speaking the theorem states that if gn(β) and g0(β) have a unique root and if gn(β)

converges uniformly to g0(β), then the root of former will converge in probability to the root of

the latter. We are now interested in finding the solution of (7.31), which can be considered as a

generalization of Z-estimators, since the function g(·) now depends on a couple of observations,

i.e. an estimator of β can be written as the solution of

1

n2

n∑
i=1

n∑
j=1

g(Zi,Zj;β) = 0.

Newey and McFadden (1994) refer to these estimators as V-estimators, since they are closely

related to V-statistics (Serfling, 1980).

The following lemma will be convenient to assess consistency for V-estimators. We refer to

Newey and McFadden (1994, p. 2214) for a proof.

Lemma 16. Let {Zi | i = 1, . . . , n},Z, andZ ′ be i.i.d., g(Z,Z ′;β) continuous at each β ∈ Θ

with probability one, E
(
supβ∈Θ ‖g(Z,Z;β)‖∗

)
<∞, and E

(
supβ∈Θ ‖g(Z,Z ′;β)‖∗

)
<∞,

then E[g(Z,Z ′;β)] is continuous in β ∈ Θ and

sup
β∈Θ

∥∥∥∥∥n−2

n∑
i=1

n∑
j=1

g(Zi,Zj;β)− E [g(Z,Z ′;β)]

∥∥∥∥∥
∗

p→ 0.

Define

U (Z,Z ′;β) := B(X,X ′;β) [I (Y 4 Y ′)−m(X,X ′;β)] , (7.33)

V n(β) :=
1

n

n∑
i=1

V
[
Zi;β, F̂Z(·)

]
= n−2

n∑
i=1

n∑
j=1

U(Zi,Zj;β), (7.34)

and

V 0(β) = E {V [Z;β, FZ(·)]} = E[U (Z,Z ′;β)]. (7.35)

The following theorem gives the conditions under which β̂n will be consistent.

Theorem 28. Let U(Z,Z ′;β), V n(β), and V 0(β) as defined in (7.33), (7.34), and (7.35)

respectively. If (i) U(Z,Z ′;β) is continuous at each β ∈ Θ with probability one and Θ

compact, (ii) E( supβ∈Θ ‖U(Z,Z ′;β)‖∗) <∞, (iii) V 0(β) has a unique root, then β̂n, defined

as the root of V n(β) = 0, is a consistent estimator for β0.
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Proof. Since

V n(β) = n−2

n∑
i=1

n∑
j=1

U(Zi,Zj;β), V 0(β) = E[U(Zi,Zj;β)], U (Z,Z;β) = 0,

it follows from Lemma 16 that

sup
β∈Θ
‖V n(β)− V 0(β)‖∗

p→ 0.

As defined previously, β0 denotes the true parameter (i.e. the parameter corresponding to the

data generating model). We need to show that β0 is the root of V 0(β). This can be seen as

follows. By definition it holds that E (I (Y 4 Y ′) |X,X ′) = m(X,X ′;β0), so that

V 0(β0) = E {B(X,X ′;β0) [I (Y 4 Y ′)−m(X,X ′;β0)]}

= E {B(X,X ′;β0) [E(I (Y 4 Y ′) |X,X ′)−m(X,X ′;β0)]} = 0.

By Lemma 16 it follows that V 0(β) is continuous and since Θ is compact and β0 is the unique

root it follows that

inf
β:‖β−β0‖∗>ε

‖V 0(β)‖∗ > 0 = ‖V 0(β0)‖∗.

Since V n(β̂n) = 0 all assumptions of Theorem 27 are fulfilled so that β̂n is consistent for

β0.

Normality

Once consistency is established, we can use an expansion to obtain the asymptotic distribution

of
√
n(β̂n − β0). It follows that

0 =
1

n

n∑
i=1

V [Zi; β̂n, F̂Z(·)]

=
1

n

n∑
i=1

V [Zi;β0, F̂Z(·)] +
1

n

n∑
i=1

∂V [Zi;β, F̂Z(·)]
∂βT

∣∣∣
β=β∗n

(β̂n − β0),

with β∗n an intermediate value between β̂n and β0. Consequently

√
n(β̂n − β0) = −

(
1

n

n∑
i=1

∂V [Zi;β, F̂Z(·)]
∂βT

∣∣∣
β=β∗n

)−1
1√
n

n∑
i=1

V [Zi;β0, F̂Z(·)].

Since β̂n and F̂Z(·) are consistent, under regularity conditions, it follows that

1

n

n∑
i=1

∂V [Zi;β, F̂Z(·)]
∂βT

∣∣∣
β=β∗n

p→ E

(
∂V [Zi;β, FZ(·)]

∂βT

∣∣∣
β=β0

)
,
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see, for example, section 8.2 of Newey and McFadden (1994). The asymptotic distribution

of n−1/2
∑n

i=1 V [Zi;β0, F̂Z(·)] is, however, more complicated, since the nuisance estimator

F̂Z(·) should be accounted for. We refer to theorem 8.1 of Newey and McFadden (1994) for

more details.

The following theorem gives the asymptotic distribution of
√
n(β̂n − β0) and is a special

case of Theorem 8.6 of Newey and McFadden, since U(Z,Z;β) ≡ 0 because I (Y 4 Y ) =

m(X,X;β) = 0.5

Theorem 29. Let {Zi | i = 1, . . . , n} be i.i.d., β̂n
p→ β0, (i) E (‖U(Z,Z ′;β0)‖2

∗) < ∞,

(ii)U(Z,Z ′;β0) is continuously differentiable on a neighbourhood of β0 with probability one,

and there is a neighbourhood N of β0 such that

E

(
sup
β∈N

∥∥∥∥∂U(Z,Z ′;β)

∂βT

∥∥∥∥
∗

)
<∞,

and (iii)

J(β0) := E

(
∂U(Z,Z ′;β)

∂βT

∣∣∣
β=β0

)
is nonsingular, then

√
n(β̂n − β0)

d→ N(0,Σ),

with

Σ = 4J(β0)−1Cov [E (U(Z,Z ′;β0) | Z)]J(β0)−1T .

Consistent sandwich estimator

The following theorem gives a consistent estimator for the variance of the asymptotic distribu-

tion of
√
n(β̂n − β0). See Newey and McFadden (1994, p. 2203) for a proof.

Theorem 30. If the conditions of Theorem 29 are fulfilled and if

E

(
sup
β∈N

∥∥∥∥∂U(Z,Z ′;β)

∂βT

∥∥∥∥2

∗

)
<∞,

then with

Ĵ(β̂n) :=
1

n2

n∑
i=1

n∑
j=1

∂U(Zi,Zj;β)

∂βT

∣∣∣
β=β̂n

,

and

K̂(β̂n) :=
4

n3

n∑
i=1

n∑
j=1

n∑
k=1

U (Zi,Zj; β̂n)U(Zi,Zk; β̂n)T ,
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it holds that

Ĵ(β̂n)−1K̂(β̂n)Ĵ(β̂n)−1T p→ Σ. (7.36)

7.3.5 Relationship with sparse correlation theory

In this section we relate the results of Theorems 28, 29, and 30 to the results of Section 2.3.2

for the no-order restriction X0. Upon using (2.15) and (2.16), the estimator discussed in Section

2.3.2 can be written as the solution of
n∑
i=1

n∑
j=1

∂m(X i,Xj;β)

∂β

[I (Yi 4 Yj)−m(X i,Xj;β)]

m(X i,Xj;β)[1−m(X i,Xj;β)]
= 0. (7.37)

Upon using

B(X i,Xj;β) =
∂m(X i,Xj;β)

∂β
{m(X i,Xj;β) [1−m(X i,Xj;β)]}−1 ,

equation (7.37) can be equivalently written as

1

n2

n∑
i=1

n∑
j=1

B(X i,Xj;β) [I (Yi 4 Yj)−m(X i,Xj;β)] = 0.

Since B(X i,Xj;β) + B(Xj,X i;β) = 0, equation (7.37) is a special case of the class of

estimating equations of Theorem 28.

To compare the sandwich estimator of Theorem 30 with the sandwich estimator of Theorem 2

letU ij(β) := U(Zi,Zj;β) = B(X i,Xj;β)[I (Yi 4 Yj)−m(X i,Xj;β)]. From Theorem 2

it follows that the sandwich estimator of
√
n(β̂n − β0) can be written as

J̃(β̂n)−1K̃(β̂n)J̃(β̂n)−1T ,

with

J̃(β̂n) :=
1

n2

n∑
i=1

n∑
j=1

∂U(Zi,Zj;β)

∂βT

∣∣∣
β=β̂n

,

and

K̃(β̂n) :=
1

n3

n∑
i=1

n∑
j=1

U ij(β̂n)

[
n∑
k=1

U ik(β̂n)T +
n∑
k=1

U ki(β̂n)T

+
n∑
k=1

U jk(β̂n)T +
n∑
k=1

U kj(β̂n)T −U ij(β̂n)T

]
.

If follows that

J̃(β̂n) = Ĵ(β̂n),
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and, since U ij(β̂n) = U ji(β̂n),

K̃(β̂n) = K̂(β̂n)− 1

n3

n∑
i=1

n∑
j=1

U ij(β̂n)U ij(β̂n)T , (7.38)

with Ĵ(β̂n) and K̂(β̂n) as defined in Theorem 30. Since the last term in (7.38) converges in

probability to zero, both sandwich estimators are asymptotically equivalent.

7.4 An example

As a first attempt to study the efficient estimator in more detail, we consider a specific setting

where the outcome follows a normal distribution and is linearly related to one-dimensional

discrete predictor.

7.4.1 The data-generating model

Consider the special setting where Z = (Y,X), with X ∈ {x1, . . . , xK} a one-dimensional

discrete predictor with finite support. The outcome Y is continuous, has infinite support and is

related to X according to

Y = αX + ε, ε
d
= N(0, σ2), (7.39)

with associated PIM

P (Y 4 Y ′ | X,X ′) = Φ[β(X ′ −X)].

To find the efficient estimator of β, we need to solve the integral equation (7.26). Since X is

discrete, it follows that

E[Beff (X,X
∗)V (X,X ′, X,X∗) +Beff (X

′, X∗)V (X,X ′, X ′, X∗) | X,X ′] (7.40)

=
K∑
k=1

[Beff (X, xk)V (X,X ′, X, xk) +Beff (X
′, xk)V (X,X ′, X ′, xk)]P (X∗ = xk) ,

where Beff (·) is the index function associated with the efficient estimator. If is of interest to

find Beff (·) so as to obtain the efficient score (7.27).

For notational convenience letBij := Beff (xi, xj),Dij := D(xi, xj; β0), Vijkl := V (xi, xj, xk, xl),

and pi = P (X = xi). The integral equation (7.26) is now equivalent to the linear system of
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equations

Dij =
K∑
k=1

BikVijikpk +
K∑
k=1

BjkVijjkpk, ∀i, j = 1, . . . , K. (7.41)

This system of equations can be further simplified. Since Vijkl = −Vijlk = Vklij , Bij = −Bji,

Dij = −Dji, Bii = 0, Dii = 0, and Viijk = 0 if follows that the equations for which i = j do

not contribute and that

Dji =
K∑
k=1

BjkVjijkpk +
K∑
k=1

BikVjiikpk

⇔ Dij =
K∑
k=1

BjkVijjkpk +
K∑
k=1

BikVijikpk.

Hence, the set of equations (7.41) reduces to

Dij =
K∑
k=1

BikVijikpk +
K∑
k=1

BjkVijjkpk, ∀i < j

⇔ Dij =
∑
k<i

BkiVijkipk +
∑
k>i

BikVijikpk +
∑
k<j

BkjVijkjpk +
∑
k>j

BjkVijjkpk. (7.42)

For simplicity, let p1 = . . . = pK = 1/K. Since Vijkl = 0 if (i, j) ∩ (k, l) = ∅, (7.42) can be

expressed as

Dij =
1

K

K−1∑
k=1

K∑
l=k+1

BklVijkl +
1

K
BijVijij, ∀i < j. (7.43)

To solve this system of equations, we rewrite (7.43) in matrix notation. LetD (Beff ) denote the

K(K− 1)/2-vector of elements Dij (Bij) with i < j and V the [K(K− 1)/2]× [K(K− 1)/2]

matrix with element Vijkl with i < j and k < l, and V ind the [K(K − 1)/2] × [K(K − 1)/2]

diagonal matrix with elements Vijij with i < j. Equation (7.43) is equivalent to

KD = Beff (V + V ind).

Since V and V ind are positive definite, so is (V +V ind) and the index function corresponding

to the most efficient estimator is given by

Beff = KD(V + V ind)
−1. (7.44)

Note that the index function of the estimating equations based on the independence working

correlation matrix, i.e. the equations (2.15) with index function (2.16), are given by

Bind = DV −1
ind. (7.45)
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7.4.2 Simulation results

We set up a small simulation study. Consider the data-generating model

Y = αX + ε, ε
d
= N[0, σ2(X)], P (X = xi) =

1

K
, i = 1, . . . , K, (7.46)

where σ2 can be fixed, i.e. σ2(X) = σ2, or a function of X , i.e. σ2(X) = σ2X . Here, X is

discrete and takes on K = 5 equidistant values in the interval [0.1, u] where u = 1 or u = 10.

For each simulation run a sample size of n = 1000 is considered.

The homoscedastic model (7.46) with σ2(X) = σ2 is associated with the PIM

P (Y < Y ′ | X,X ′) = Φ [β(X ′ −X)] , β =
α√
2σ2

,

while for the heteroscedastic model σ2(X) = σ2X this is

P (Y < Y ′ | X,X ′) = Φ

[
β

(X ′ −X)√
X ′ +X

]
, β =

α

σ
.

The index functions Beff (7.44) and Bind (7.45) both depend on β and/or the nuisance pa-

rameters V . For simplicity, these nuisance parameters are not estimated from the data, but are

approximated based on 10000 Monte-Carlo simulations.

Table 7.1 gives the simulation results based on 1000 Monte-Carlo simulations, where β̂eff (β̂ind)

corresponds to the estimator of the estimating equations (7.31) with index functionBeff (Bind).

Except for the heteroscedastic model with α = 1, u = 10, and σ = 1, β̂eff is more efficient.

The difference is, however, negligible, suggesting that, for this simulation set-up, β̂ind is a good

approximation of the efficient estimator. However, more research is needed to study the prop-

erties of these estimators in more detail. Furthermore, the current approach of approximating

the nuisance parameters based on the Monte-Carlo simulations is not useful in practice and

methods for estimating these nuisance parameters from the data should be constructed. This

estimation can potentially have an impact on the performance of the efficient estimator.

7.5 Discussion

In this chapter we have studied efficient estimators for probabilistic index models. Based on the

semiparametric theory as described in Tsiatis (2006), we have constructed the efficient score
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Table 7.1: Simulation results for the normal linear model, based on 1000 Monte Carlo runs.

β is the true parameter, Av(β̂eff ) the average of the β estimate associated with index function

(7.44), Var(
√
nβ̂eff ) the sample variance of the simulated

√
nβ̂eff , Av(β̂ind) the average of

the β estimate associated with index function (7.45), Var(
√
nβ̂ind) the sample variance of the

simulated
√
nβ̂ind.

α u σ β Av(β̂eff ) Av(β̂ind) Var(
√
nβ̂eff ) Var(

√
nβ̂ind)

Homoscedastic linear model

1 1 1 0.707 0.708 0.708 4.329 4.333

1 10 1 0.707 0.709 0.709 0.351 0.355

1 1 5 0.1414 0.1434 0.1434 5.0875 5.0876

1 10 5 0.1414 0.1415 0.1416 0.0544 0.0553

Heteroscedastic linear model

1 1 1 1 1 1 5.056 5.119

1 10 1 1 1 1 1.194 1.165

1 1 5 0.2 0.2 0.2 4.836 4.838

1 10 5 0.2 0.2 0.2 0.346 0.349
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for PIMs. However, the efficient score is not directly applicable in practice since it involves

a conditional expectation and an integral equations needs to be solved to find the appropriate

index function.

We have shown that the conditional expectation can be replaced by a sample average resulting

in a semiparametric two-step estimator as described by Newey and McFadden (1994). The

estimator is consistent and asymptotically normally distributed. We also provide a consistent

estimator for its asymptotic variance. Most results correspond closely to the results of Chapter

2 which are based on the sparse correlation theory of Lumley and Mayer-Hamblett (2003).

We have briefly examined the performance of the efficient estimator for a specific setting where

the predictor is discrete so that the integral equation reduces to a set of equations. The results of

the simulation study indicate that the variance of the efficient estimator is similar to the variance

of the estimator based on the independent working correlation matrix, suggesting that the latter

is a good choice in practice. However, this should be examined in more detail.

Moreover, solving the integral equation in general seems to be complicated and should also

be studied in more detail. Primitive conditions should be developed under which the integral

equations has a solution. Furthermore, the integral equation depends on nuisance parameters for

which estimators should be constructed and a strategy for solving the integral equations should

also be developed. A first solution can perhaps be obtained by writing the integral equation

as a conditional expectation and by replacing the conditional mean with a sample average.

Alternatively, one can try to apply the results of the V-estimation theory as developed by Newey

(1989).



Chapter 8

Discussion and future research

perspectives

Regression methods form an important, flexible, and powerful tool for the analysis of data.

Statisticians can choose out of a variety of methods to select the most appropriate one(s); a

choice that mainly depends on the research question(s) and, in all its facets, on the data at hand.

Based on the research question and/or the data one can select a summary measure of interest;

e.g. is the mean outcome sufficient informative or do quantiles describe the underlying process

more accurately? Once this measure is selected, one can choose the type of regression model;

e.g. are the predictors linearly related to the summary measure or should one consider more

flexible models such as generalized additive models?

Without any doubt, the collection of regression methods is vast and provides sufficient tools for

the analysis of most datasets. As stated by Thomas Gerds in his discussion of the probabilis-

tic index models paper: ...experienced statisticians [who] know how to apply the wrong tools

and still arrive at sound conclusions (Gerds, 2012). So even applying the wrong method can

lead to correct conclusions, as long as the statistician sufficiently understands the potential and

limitations of the method applied.

Despite the richness of the existing regression methods, we believe that there is still room for

introducing new regression models. More specifically, in this dissertation we have proposed a

regression model for a summary measure different from the mean and quantiles. The measure

of interest is the probabilistic index (PI), i.e. the probability P (Y 4 Y ′) := P (Y < Y ′) +

205
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0.5P (Y = Y ), where Y and Y ′ denote two independent outcomes. As argued in Chapter 1, this

measure has been promoted by many authors as an informative and intuitive effect size measure

and is applicable to ordinal, interval, and ratio-scale outcomes. However, as for all summary

measures, it inevitably results in information loss and can sometimes be misunderstood.

The PI is a well-known statistic for those familiar with the Wilcoxon–Mann–Whitney (WMW)

test, since the WMW two-sided alternative hypothesis states that H1 : P (Y1 4 Y2) 6= 0.5, with

Y1 (Y2) a random outcome of the first (second) group. This two-sample setting can be translated

into a regression context by defining a predictor which indicates the two groups, e.g. X = 1 for

the first group and X = 2 for the second. Let Y denote the outcome associated with X and Y ′

the outcome associated with X ′. If we model the PI as follows

P (Y 4 Y ′ | X = 1, X ′ = 2) = β(X ′ −X) ≡ β,

then the alternative hypothesis of the WMW test can be expressed as H1 : β 6= 0.5. Thus

the WMW test can be reformulated as a regression problem. A natural next step consists of

extending the regression model for the PI to more complicated designs than the two-sample

problem, e.g. the K-sample problem, a setting with continuous predictors, etc. This extension

has been the focus of this dissertation. We have proposed a flexible modelling framework for

the PI, named probabilistic index models (PIM). If Y denotes the outcome associated with the

(possibly multidimensional) predictor X and Y ′ the outcome associated with the predictor X ′

such that (Y,X) and (Y ′,X ′) are independently and identically distributed, a PIM is defined

as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (X,X ′) ∈ X , (8.1)

for a function m(·) subject to regularity and smoothness conditions, where X denotes the set of

couples of predictors for which the model is defined, and β is the unknown model parameter.

In Chapter 2 we have developed semiparametric asymptotic theory for PIMs upon using the

concept of sparse correlation as introduced by Lumley and Mayer-Hamblett (2003). The results

of a simulation study demonstrate that the theoretical properties of the asymptotic theory apply

well to moderately sized samples. For future research it can be interesting to improve the

asymptotic approximations for small samples. More specifically, extending bootstrap schemes

to the PIM framework can perhaps lead to better small sample approximations.

Since a PIM involves a couple of observations (Y,X) and (Y ′,X ′), the relationship with well
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known models forms an important first step in understanding the type of functional relation

between the PI and the predictors X and X ′. More specifically, how should we choose the

function m(·) in (8.1)? In Chapter 3 we have shown that there is direct relationship between the

model parameters of a PIM and the model parameters of the normal linear model and the Cox

proportional hazards model. More specifically, these relationships suggest a functional form

m(X,X ′;β) = g−1
[
(X ′ −X)Tβ

]
,

with g(·) the logit or probit link. This choice of m(·) results in PIM parameters with an in-

formative interpretation. As an illustration, consider a one-dimensional predictor X and the

PIM

P (Y 4 Y ′ | X,X ′) = expit[(X ′ −X)β], expit(u) =
exp(u)

1 + exp(u)
.

It follows that expit(β) = P (Y 4 Y ′ | X = x,X ′ = x+ 1), i.e. when comparing a group of

subjects for whichX = xwith a group for whichX = x+1, expit(β) gives the probability that

the outcome of a randomly selected subject with X = x+1 exceeds the outcome of a randomly

selected subject with a predictor values which is one unit lower.

There is also a close relationship between the PIM on the one hand and the AUC-regression

model, the concordance index, the Hodges–Lehmann estimator, and the rank regression model

on the other hand. For future research it would be interesting to extend the Hodges–Lehmann

estimator so as to account for confounders. We briefly sketch how this could be done. Let

XT = (X,CT ) where X ∈ {0, 1} is a dummy variable indicating two groups and where C

denotes a set of confounders. Consider the PIM

P (Y 4 Y ′ − α | X = 0, X ′ = 1,C,C′) = expit[(C ′ −C)Tβ],

where α is the parameter of interest and β is nuisance. For C = C ′, the model reduces to

P (Y 4 Y ′ − α | X = 0, X ′ = 1,C = C′) =
1

2
,

where the estimator of α will be an extension of the Hodges–Lehmann estimator, but now

controlling for the confounding variables.

In Chapter 4 we have studied the relationship between the PIM and many popular rank tests.

It turns out that the PIM plays the role of a general linear model (GLM) in the rank world;

whereas a GLM facilitates the generalization of two-sample t-tests and ANOVA F-tests to more

complicated designs, a PIM does the same trick for the WMW, Kruskal–Wallis, Friedman and
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many more rank tests. Embedding these rank tests into the statistical modelling framework of

a PIM allows for a better understanding of the hypotheses tested and allows for constructing

confidence intervals for the associated effect sizes. Embedding all these rank tests in a single

modelling framework can perhaps make these tests more accessible to non-experienced users

and boost its popularity.

Since the PIM (8.1) is a semiparametric model, the adequacy of the proposed model m(·)

should be assessed. Therefore, in Chapter 5 we have developed goodness-of-fit (GOF) meth-

ods: a statistical test as well as a graphical diagnostic tool. The GOF plot provides informa-

tion on how the model can be improved. The results of a power study suggested a decent

performance of the test, but, however, also indicated that the test was sometimes too liberal.

Both methods are consistent with the interpretation of a PIM and are based on the probabil-

ity P (Y 4 Y ′ |X,X ′ = X + ∆) for a fixed constant ∆. Smoothed residuals are used for

both the construction of the test and for the graphical tool. A modified cross-validation score

is proposed to select the bandwidth automatically. The test based on this automatic bandwidth

selection, however, showed a decrease in performance and an inflated type I error rate. For

future research, it can be interesting to focus on an adaptive selection of the parameter ∆.

Furthermore, the automatic choice of bandwidth is computationally intensive so that the devel-

opment of alternative criteria for an automatic selection is desirable. The test is constructed

based on a subset of the smoothed residuals so as to avoid theoretical difficulties. However,

it is anticipated that using all residuals to form a Cramér–von Mises, Anderson–Darling, or

Kolmogorov–Smirnov type of test will make the method more sensitive for detecting a wider

range of model departures.

In Chapter 6 we have worked out a case study in detail. More specifically, the PIM method-

ology is used to analyze genomic differential expression studies based on reverse transcription

quantitative polymerase chain reaction (RT-qPCR). The data generated by RT-qPCR techniques

require normalization so as to account for technical variation which cannot be attributed to the

treatments. Furthermore, since RT-qPCR experiments often aim at validating differentially ex-

pressed genes that were discovered by microarrays or next generation sequencing screens – and

RT-qPCR biological validation experiments are often an (intermediate) endpoint of a study –

quantifying and interpreting the effects is important for increasing the insight in the biological

processes under study. The PIM turns out to be appropriate for both goals: it allows for normal-
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izing the data in a straightforward fashion, while keeping an intuitive interpretation in terms of

the odds for down- or upregulation.

In Chapter 7 we have studied efficient estimators for PIMs in a semiparametric setting. The

index function associated with the efficient score corresponds to the solution of an integral

equation. The results of a small simulation study indicate that the variance of the efficient esti-

mator is similar to the variance of the estimator based on the independence working correlation

matrix. However, this needs to be studied in more detail: more research needs to done so as

obtain primitive conditions under which the integral equation has a solution and how this solu-

tion should be obtained. Furthermore, the efficient score depends on nuisance parameters which

need to be estimated. These nuisance parameters are related to a kind of second order PIM

P [Y 4 min(Y ′, Y ′′) |X,X ′,X ′′] = m̄(X,X ′,X ′′;γ),

for a function m̄(·). These models are also interesting beyond the efficiency context. For ex-

ample, consider the setting where there are three treatments: a new treatment (X), the standard

treatment (X ′), and a placebo treatment (X ′′) and let lower outcomes be better. The second or-

der PIM models the probability that a randomly selected subject treated with the new treatment

will be better off as compared to both a randomly selected subject treated with the standard

treatment and a randomly selected subject treated with placebo.

Based on the theory of semiparametric two-step estimators as described by Newey and McFad-

den (1994), in Chapter 7 we have also developed asymptotic theory for PIMs without relying

on the sparse correlation theory of Lumley and Mayer-Hamblett (2003).

Since the PIMs form a new class of regression models, there are many extensions which can to

be developed. We just name a few.

• Functional data analysis. Let Y (t) denote a random outcome function and X(t) the

associated random predictor function. Then the PIM methodology can be extended to

P[Y (t) 4 Y ′(t) |X(t),X ′(t)] = m[X(t),X ′(t);β(t)], t ∈ T . (8.2)

Since the estimation of such a model will involve binary processes I[Y (t) 4 Y ′(t)] t ∈ T ,

with I (·) the indicator function, as a first step, a simplified version of model (8.2) can be

studied. For example, Y (t) can be considered as a random outcome independent of t, i.e.

Y (t) = Y . In their discussion of the probabilistic index model paper, Inácio et al. (2012)

sketch how this problem can be tackled.
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• Additive modelling of the predictors. In Chapter 5 we have used smoothing techniques to

construct GOF methods. This can form the basis to extend PIMs so as to allow a more

flexible modelling of the predictors. More specifically, an additive PIM can be defined as

P (Y 4 Y ′ |X,X ′) = g−1

[
β0 +

d∑
j=1

fj(Xj, X
′
j)

]
,

where Xj denotes the jth element of the d-dimensional predictor X and with fj(·) func-

tions which are adaptively estimated. This additive modelling will considerably enlarge

to applicability of the PIMs.

• Censoring. When censoring occurs, the asymptotic theory as developed in Chapters 2 and

7 does no longer apply. Cheng et al. (1995) describe how inverse weighting can be used

to estimate parameters of models similar to PIMs. This may be used as a good starting

point.

• Robustness. The PIM clearly has some robustness properties, e.g. it is robust in the

outcome space since it models merely a relative ordering P (Y 4 Y ′). The modelling

flexibility further allows a robust modelling in the predictor space by, for example, in-

cluding predictors as I (X < X ′). The robustness properties of the associated estimators

can be studied in more detail and can be compared to some robust Z-estimators.

To end this dissertation, I would like to emphasis once more that, although the PIM can be the

method of choice for some settings, other regression techniques, such as quantile regression,

can provide a much richer and detailed analysis of the data. So the PIM is not intended to

replace any statistical method, it is merely a new tool for the data analyst.



Appendix A

Probabilistic index models in R

The R-package pim is originally developed by Jan De Neve up to version 1.0.2. From version

1.1.0 the package has been further developed by Nick Sabbe who increased the flexibility and

applicability substantially.

De Neve, J. and Sabbe, N. (2013). pim: Probabilistic Index Models. R package version

1.1.0.6/r22.

A.1 Installing the package

The package is available on R-forge https://r-forge.r-project.org/R/?group_

id=1120 and can be downloaded and installed as follows:

install.packages("pim", repos="http://R-Forge.R-project.org")

library("pim")

All outputs are generated by using R, version 2.15.1 (R Core Team, 2012).

The package has many functionalities and only a few will be discussed and illustrated in this

chapter. The package is still under development and its functionality/implementation can be

different in other versions. Up-to-date information can be found by consulting the help-files

and vignettes in the usual way.

?pim

vignette("pim")

vignette("pim.legacy")
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In Section A.2 we illustrate how the package can be used to obtain the fitted PIMs of the child-

hood respiratory disease study of Section 2.5.1. In Section A.3 we analyze the mental health

study of Section 2.5.2, while in Section A.4 the analysis of the food expenditure study of Sec-

tion 2.5.3 is considered. In Section A.5 it is shown how the package can be used to fit PIMs to

factorial designs with the surgical unit study of Section 4.9 as an example.

A.2 The childhood respiratory disease study

The data can be loaded from the package as follows:

> data("FEVData")

> head(FEVData)

Age FEV Height Sex Smoke

1 9 1.708 57.0 0 0

2 8 1.724 67.5 0 0

3 7 1.720 54.5 0 0

4 9 1.558 53.0 1 0

5 9 1.895 57.0 1 0

6 8 2.336 61.0 0 0

> dim(FEVData)

[1] 654 5

We first consider the PIM with logit link and without interaction

logit[P (FEV 4 FEV′)] = β1(AGE′ − AGE) + β2(SMOKE′ − SMOKE). (A.1)

This is an example of a standard PIM, i.e. a PIM with logit link and a covariate function of the

form Z = X ′ −X . Such a model can be fitted by using similar syntax as in the lm() and glm()

functions.

> pim.fit1a <- pim(formula = FEV ˜ Age + Smoke, data = FEVData)

> summary(pim.fit1a)

Call:

pim(formula = FEV ˜ Age + Smoke, data = FEVData)

Estimate Std. Error Z value Pr(>|z|)

Age 0.555035 0.027966 19.8466 <2e-16 ***

Smoke -0.457537 0.246376 -1.8571 0.0633 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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It follows that β̂1 = 0.56 (SE : 0.028 and p < 0.0001) and β̂2 = −0.46 (SE : 0.25 and p =

0.063). By default the no-order restriction X0 is considered. Since PIM (A.1) is antisymmetric

about one, the lexicographical order restriction Xlex can be used to obtain the same estimates.

For a sample size n = 654, it holds that |Xlex| = n(n− 1)/2 = 213531, while for the no-order

restriction this is |X0| = n2 = 427716. So using the lexicographical order restriction will reduce

the computation time; this can be obtained with the argument poset = lexiposet.

> pim.fit1b <- pim(formula = FEV ˜ Age + Smoke, data = FEVData, poset = lexiposet)

> summary(pim.fit1b)

Call:

pim(formula = FEV ˜ Age + Smoke, data = FEVData, poset = lexiposet)

Estimate Std. Error Z value Pr(>|z|)

Age 0.555035 0.028081 19.7651 < 2e-16 ***

Smoke -0.457537 0.247016 -1.8523 0.06399 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The PIM with interaction

logit[P (FEV 4 FEV′)] = γ1(AGE′ − AGE) + γ2(SMOKE′ − SMOKE) +

γ3(AGE′ ∗ SMOKE′ − AGE ∗ SMOKE), (A.2)

can be fitted as follows:

> pim.fit2 <- pim(formula = FEV ˜ Age * Smoke, data = FEVData)

> summary(pim.fit2)

Call:

pim(formula = FEV ˜ Age * Smoke, data = FEVData)

Estimate Std. Error Z value Pr(>|z|)

Age 0.607600 0.029993 20.2582 < 2.2e-16 ***

Smoke 5.306885 1.040823 5.0987 3.419e-07 ***

Age:Smoke -0.455388 0.078275 -5.8178 5.963e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It follows that γ̂1 = 0.61 (SE : 0.030 and p < 0.0001), γ̂2 = 5.31 (SE : 1.04 and p < 0.0001),

and γ̂3 = −0.46 (SE : 0.078 and p < 0.0001).
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A.3 The mental health study

We load the data.

> data("MHData")

> head(MHData)

mental ses life

1 1 1 1

2 1 1 9

3 1 1 4

4 1 1 3

5 1 0 2

6 1 1 0

> dim(MHData)

[1] 40 3

We fit the logit PIM with main effects

logit [P (MI 4 MI′)] = β1(SES′ − SES) + β2(LI′ − LI), (A.3)

where MI = mental, SES = ses, and LI = life.

> pim.fit3 <- pim(formula = mental ˜ ses + life, data = MHData)

> summary(pim.fit3)

Call:

pim(formula = mental ˜ ses + life, data = MHData)

Estimate Std. Error Z value Pr(>|z|)

ses -0.740163 0.330491 -2.2396 0.025118 *

life 0.201179 0.070893 2.8378 0.004543 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

If follows that β̂1 = −0.74 (SE : 0.33 and p = 0.025) and β̂2 = 0.20 (SE : 0.07 and p =

0.0045). Consider the more complicated PIM which is not of the standard form

logit [P (MI 4 MI′)] = γ1(SES′ − SES) + γ2(LI′ − LI) + γ3SES + γ4LI, (A.4)

defined for the strict lexicographical order restriction. This model can be fitted as follows:

> form.tmp <- mental ˜ ses + life + L(ses) + L(life) - 1

> pim.fit4 <- pim(formula = form.tmp, data = MHData, poset = lexiposet, interpretation = "

regular")

> summary(pim.fit4)

Call:
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pim(formula = form.tmp, data = MHData, poset = lexiposet, interpretation = "regular")

Estimate Std. Error Z value Pr(>|z|)

ses_R-_L -0.670723 0.382665 -1.7528 0.079642 .

life_R-_L 0.205459 0.069989 2.9356 0.003329 **

ses_L -0.034676 0.163157 -0.2125 0.831693

life_L -0.021601 0.039843 -0.5422 0.587711

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The formula statement is now more complicated for PIM (A.4) since the covariate function

cannot be written as Z = X ′ −X . If we use the option interpretation = "regular", then we

can specify the right hand side of (A.4) by using the functions L() and R(), to indicate the

covariate corresponding to the outcome in the left and right hand side of the inequality within

the probability operator of the probabilistic index. For example, L(ses) is associated with SES

while for R(ses) this is SES′. Predictors without the L() or R() function will be automatically

converted to Z = X ′ −X . Since the PIM (A.4) has no intercept, we add -1 in the formula

statement. Furthermore, the PIM is only defined for the strict lexicographical order restriction

so that we use the option poset = lexiposet.

In the output, the functional form is explicitly shown by using underscores. For example, ses

_R-_L stands for the difference of SES associated with the outcome in right hand side of the

inequality in the PI minus the SES value associated with the outcome in the left hand side:

SES′ − SES. Similarly ses_L corresponds to SES.

It follows that γ̂1 = −0.67 (SE : 0.38 and p = 0.080), γ̂2 = 0.21 (SE : 0.07 and p = 0.003),

γ̂3 = −0.035 (SE : 0.16 and p = 0.83), and γ̂4 = −0.022 (SE : 0.04 and p = 0.59). The general

linear null hypothesis

H0 : γ3 = γ4 = 0,

can be tested as follows:

> stat <- t(coef(pim.fit4)[3:4])%*%solve(vcov(pim.fit4)[3:4,3:4])%*%coef(pim.fit4)[3:4]

> p.tmp <- 1 - pchisq(stat, 2)

> stat

[,1]

[1,] 0.5339321

> p.tmp

[,1]

[1,] 0.7656991
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A.4 The food expenditure study

We load the data and create a new variable: the relative food expenditure defined as FEP =

100FE/HI, with FE the food expenditure and HI the household income.

> data("Engeldata")

> head(Engeldata)

income foodexp

1 420.1577 255.8394

2 541.4117 310.9587

3 901.1575 485.6800

4 639.0802 402.9974

5 750.8756 495.5608

6 945.7989 633.7978

> dim(Engeldata)

[1] 235 2

> Engeldata$relfoodexp <- Engeldata$foodexp/Engeldata$income*100

Consider the standard PIM

logit[P (FEP 4 FEP′)] = β(HI′ − HI), (A.5)

which is antisymmetric about one, so it is sufficient to fit the model according to the lexico-

graphical order restriction.

> pim.fit5 <- pim(formula = relfoodexp ˜ income, data = Engeldata, poset = lexiposet)

Warning message:

In .handleError(paste("Fit could not be obtained: nonconvergence of the algorithm:", :

Fit could not be obtained: nonconvergence of the algorithm: x-values within tolerance ‘xtol’

> summary(pim.fit5)

Call:

pim(formula = relfoodexp ˜ income, data = Engeldata, poset = lexiposet)

Estimate Std. Error Z value Pr(>|z|)

income -0.00094061 0.00021243 -4.4279 9.516e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It follows that β̂ = −0.00094 (SE : 0.0002 and p < 0.0001). There is a warning that the algo-

rithm to find the roots of the estimating equations (2.15) did not convergence within the default

tolerance (which is 10−6). Therefore, we have a look at the function value of the estimating

equation evaluated at the estimate:

> pim.fit5$morefitinfo$fvec

[1] -3.128659e-06
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Since this value is close to zero, the non-convergence is not problematic.

Consider the more complicated heteroscedastic PIM of Section 3.2.3 with probit link

P (FE 4 FE′ | HI,HI′) = Φ

[
(HI′ − HI)√

HI′ + HI
γ

]
. (A.6)

Since this PIM is not of the form Z = X ′ − X we use the interpretation="regular" option

and the L() and R() functions in the formula statement. Since the right hand side of (A.6)

involves some mathematical operators, we use the I() operator in the formula statement. With

link = "probit" we can choose for the probit link instead of the default logit link. The PIM is

antisymmetric about one so computational time can be gained by restricting the model to the

lexicographical order restriction.

> form.tmp <- foodexp ˜ I((R(income)-L(income))/sqrt(R(income)+L(income)))-1

> pim.fit6a <- pim(formula = form.tmp, data = Engeldata, link = "probit", interpretation = "

regular", poset = lexiposet)

Warning message:

In .handleError(paste("Fit could not be obtained: nonconvergence of the algorithm:", :

Fit could not be obtained: nonconvergence of the algorithm: No better point found (algorithm

has stalled)

> summary(pim.fit6a)

Call:

pim(formula = form.tmp, data = Engeldata, link = "probit", poset = lexiposet,

interpretation = "regular")

Estimate Std. Error Z value Pr(>|z|)

I((income_R-income_L)/sqrt(income_R+income_L)) 0.1324129 0.0079613 16.632 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Once again the algorithm did not converge. Let us have a look at the function values of estimat-

ing equation evaluated at the estimate:

> pim.fit6a$morefitinfo$fvec

[1] 1.340781e+154

The estimate is clearly no root of the estimating equation. The standard algorithm to find the

roots is estimator.nleqslv() of the nleqslv package (Hasselman, 2012). However, other algo-

rithms are available, e.g. estimator.glm() of the glm() function.

> pim.fit6b <- pim(formula = form.tmp, data = Engeldata, link = "probit", estimator =

estimator.glm(), interpretation = "regular", poset = lexiposet)

Warning message:

In eval(expr, envir, enclos) : non-integer #successes in a binomial glm!
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> summary(pim.fit6b)

Call:

pim(formula = form.tmp, data = Engeldata, link = "probit", poset = lexiposet,

interpretation = "regular", estimator = estimator.glm())

Estimate Std. Error Z value Pr(>|z|)

I((income_R-income_L)/sqrt(income_R+income_L)) 0.389705 0.071588 5.4437 5.218e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> pim.fit6b$morefitinfo$converged

[1] TRUE

The warning message is a consequence of the definition of the pseudo-observations I (Y 4 Y ′) :=

I (Y < Y ′) + 0.5I (Y = Y ′) which can take on three values: 0, 0.5, and 1. It follows that

γ̂ = 0.39 (SE : 0.072 and p < 0.0001). The name of the estimated coefficient in the output

(here I((income_R-income_L)/sqrt(income_R+income_L))) can sometimes be too long, especially for

complicated PIMs. These names can be summarized by the user with extra.nicenames option.

> pim.fit7 <- pim(formula = form.tmp, data = Engeldata, link = "probit", estimator = estimator

.glm(),

+ interpretation = "regular", extra.nicenames = data.frame(org = "I((R(income)-L(income))/sqrt

(R(income)+L(income)))", nice = "Z"), poset = lexiposet)

Warning message:

In eval(expr, envir, enclos) : non-integer #successes in a binomial glm!

> summary(pim.fit7)

Call:

pim(formula = form.tmp, data = Engeldata, link = "probit", poset = lexiposet,

interpretation = "regular", estimator = estimator.glm(),

extra.nicenames = data.frame(org = "I((R(income)-L(income))/sqrt(R(income)+L(income)))",

nice = "Z"))

Estimate Std. Error Z value Pr(>|z|)

Z 0.389705 0.071588 5.4437 5.218e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

A.5 The surgical unit study

We load the data:

> data("SUData")

> head(SUData)
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EnT Gender Alcohol SurvivalTime

1 81 0 1 695

2 66 0 0 403

3 83 0 0 710

4 41 0 0 349

5 115 0 2 2343

6 72 1 1 348

> dim(SUData)

[1] 54 4

We rename the variables to be consistent with the notation of Section 4.9.

> names(SUData) <- c("X1", "X2", "X3", "Y")

> summary(SUData)

X1 X2 X3 Y

Min. : 23.00 0:29 0:15 Min. : 181.0

1st Qu.: 67.25 1:25 1:29 1st Qu.: 482.0

Median : 79.00 2:10 Median : 605.5

Mean : 77.11 Mean : 702.1

3rd Qu.: 89.50 3rd Qu.: 750.5

Max. :119.00 Max. :2343.0

The marginal PIM

logit [P (Yi 4 Yj |Xj)] = α1 + α2X1j + α3I (X2j = 1) + α4I (X3j = 1) +

α5I (X3j = 2) , (A.7)

can be fitted with the argument interpretation = "marginal". The factors will be automatically

converted to dummy-variables.

> pim.marginal <- pim(formula = Y˜ X1 + X2 + X3, data = SUData, interpretation = "marginal")

> summary(pim.marginal)

Call:

pim(formula = Y ˜ X1 + X2 + X3, data = SUData, interpretation = "marginal")

Estimate Std. Error Z value Pr(>|z|)

(Intercept) -3.3099991 0.6478452 -5.1092 3.235e-07 ***

X1_R 0.0352055 0.0096093 3.6637 0.0002486 ***

X2_R1 0.4272539 0.2757351 1.5495 0.1212595

X3_R1 0.3427110 0.3233750 1.0598 0.2892382

X3_R2 1.1090179 0.3799358 2.9190 0.0035120 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It follows that α̂1 = −3.3 (SE : 0.65 and p < 0.0001), α̂2 = 0.035 (SE : 0.0.0096 and

p = 0.0002), α̂3 = 0.43 (SE : 0.28 and p = 0.12), α̂4 = 0.34 (SE : 0.32 and p = 0.29), and
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α̂5 = 1.11 (SE : 0.38 and p = 0.0035).

To fit the pairwise PIM

logit [P (Yi 4 Yj |X i,Xj)] = β1(X1j −X1i) + β2I (X2i = 0) I (X2j = 1) +

β3I (X3i = 0) I (X3j = 1) + β4I (X3i = 0) I (X3j = 2) +

β5I (X3i = 1) I (X3j = 2) , (A.8)

we use the F() function in the formula statement to indicate that we want to consider all unique

pairwise comparisons of the factor and set the interpretation to interpretation = "regular". The

model is defined for the strict lexicographical order restriction which is obtained by setting

poset = lexiposet. Since the lexicograpical order restriction assumes that the predictors can be

ordered, we first need to redefine them.

> SUData$X2 <- factor(SUData$X2, ordered = TRUE)

> SUData$X3 <- factor(SUData$X3, ordered = TRUE)

> form.tmp <- Y ˜ X1 + F(X2) + F(X3) - 1

> pim.pairwise <- pim(formula = form.tmp, data=SUData, interpretation = "regular",

+ poset = lexiposet)

> summary(pim.pairwise)

Call:

pim(formula = form.tmp, data = SUData, poset = lexiposet, interpretation = "regular")

Estimate Std. Error Z value Pr(>|z|)

X1_R-_L 0.028222 0.013865 2.0354 0.04181 *

X2_L_R_0_1 0.574692 0.399510 1.4385 0.15029

X3_L_R_0_1 0.714924 0.441137 1.6206 0.10510

X3_L_R_0_2 2.040005 0.978036 2.0858 0.03700 *

X3_L_R_1_2 1.269355 0.693014 1.8316 0.06700 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It follows that β̂1 = 0.028 (SE : 0.014 and p = 0.042), β̂2 = 0.57 (SE : 0.40 and p = 0.15),

β̂3 = 0.71 (SE : 0.44 and p = 0.11), β̂4 = 2.04 (SE : 0.98 and p = 0.037), and β̂5 = 1.27

(SE : 0.69 and p = 0.064).
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Samenvatting

Een klassiek probleem in statistiek bestudeert de associatie tussen een enkelvoudige uitkomst-

variabele Y en een d-dimensionale onafhankelijke variabele X . De variabele Y kan bijvoor-

beeld een maat zijn voor de longinhoud van een minderjarige, terwijl X de leeftijd, het ges-

lacht en de rookstatus van de minderjarige voorstelt. De focus ligt dan op het bestuderen van

de associatie tussen het rookgedrag en de longinhoud, terwijl mogelijke confouding factoren,

zoals geslacht en leeftijd, in rekening moeten worden gebracht. Men kan een bepaald type re-

gressiemodel gebruiken om dergelijke onderzoeksvraag te bestuderen. Een populaire keuze is

het regressiemodel dat de gemiddelde uitkomst modelleert. Het gemiddelde is echter niet altijd

relevant of andere samenvattingen van de uitkomstvariabele kunnen interessant zijn. Beschouw

als voorbeeld de mentale toestandsscore van een patiënt (Y ), met X zijn/haar levensindex en

socio-economische status. Men wenst de relatie tussen de socio-economische status en de men-

tale toestand te onderzoeken terwijl men ook rekening wenst te houden met de levensindex.

De mentale toestandsscore kan uitgedrukt worden op een schaal met 4 niveaus: Y = 1 (een

gezonde mentale toestand), Y = 2 (een milde psychische aandoening), Y = 3 (een gematigde

psychische aandoening) en Y = 4 (een sterke psychische aandoening). De gemiddelde mentale

toestandsscore heeft geen eenduidige interpretatie vermits de uitkomstvariabele ordinaal is.

In de thesis stellen we een nieuw regressieraamwerk voor dewelke toelaat de associatie tussen

Y and X te bestuderen voor zowel ordinale, interval en ratio-schaal uitkomstvariabelen Y .

In het bijzonder modelleren we de kans dat de uitkomstvariabele toeneemt in functie van de

onafhankelijke variabelen. Deze kans wordt de probabilistic index (PI) genoemd. Indien (Y,X)

en (Y ′,X ′) onafhankelijk en gelijk verdeelde variabelen voorstellen, dan is de PI gedefinieerd

als

P (Y 4 Y ′ |X,X ′) := P (Y < Y ′ |X,X ′) +
1

2
P (Y = Y ′ |X,X ′) .

Een probabilistic index model (PIM) modelleert deze kans in functie van de onafhankelijke
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variabelenX enX ′. Meer bepaald is een PIM gedefinieerd als

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (X,X ′) ∈ X , (A.9)

metm(·) een functie met bereik [0, 1], X de verzameling van koppels onafhankelijke variabelen

waarvoor het model gedefinieerd is en β is de p-dimensionale parameter vector.

In deze thesis zijn zeven contributies aan de PIM methodologie voorgesteld.

1. We introduceren de PIM op een formele wijze samen met semiparametrische schatters en

asymptotische distributietheorie. De resultaten van een simulatiestudie geven aan dat de

asymptotische benaderingen geldig zijn voor eindige steekproefgroottes. Verschillende

datasets zijn geanalyseerd geweest met behulp van een PIM om de interpretatie en flexi-

biliteit van de methode te illustreren.

2. We hebben de PIM gesitueerd binnen het landschap van statistische methodes door mid-

del van de relatie tussen een PIM en meer conventionele technieken te onderzoeken.

Om de functionele vormm(·) in (A.9) beter te begrijpen, hebben we de relatie bestudeerd

tussen een PIM en normale lineaire modellen (NLM) en Cox proportionele hazards mod-

ellen (CPHM). Er volgt dat er een directe relatie is tussen de modelparameters van een

PIM en de modelparameters van een NLM, respectievelijk CPHM. Deze verbanden sug-

gereren een functionele vorm m(X,X ′;β) = g−1[(X ′ −X)Tβ] waar g(·) de logit of

probit linkfunctie is. Deze keuze resulteert in een intuı̈tieve interpretatie van de mod-

elparameters. Voor een enkelvoudige continue onafhankelijke variabele X volgt dat

g(β) = P (Y 4 Y ′ | X = x,X ′ = x+ 1), i.e. de kans dat de uitkomstvariabele waar-

voor X = x+ 1 groter is dan de uitkomstvariabele waarvoor X = x.

De PIM voorziet ook een regressieraamwerk voor de concordantie index en breidt de

AUC-regressie methodologie uit. Verder zijn er ook interessante gelijkenissen en ver-

schillen tussen een PIM en rankregressie, respectievelijk cumulatieve logit modellen.

3. We hebben de verbanden bestudeerd tussen een PIM en populaire ranktesten. Onder an-

dere de Wilcoxon–Mann–Whitney, Kruskal–Wallis en Friedman ranktest kunnen ingebed

worden in het PIM raamwerk. Deze inbedding laat toe om deze ranktesten uit te breiden

naar meer complexe designs terwijl een intuı̈tieve interpretatie behouden blijft. Verder

laat deze inbedding ook toe om voor de overeenkomstige effectmaten betrouwbaarhei-

dsintervallen te construeren.
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4. We hebben Goodness-Of-Fit (GOF) methoden ontwikkeld om de geschiktheid van het

vooropgesteld modelm(·) in (A.9) na te gaan. Een grafisch diagnostische figuur toont hoe

het model kan verbeterd worden en een test om formeel de GOF te testen is beschikbaar.

Beide methoden zijn gerelateerd aan de interpretatie met een PIM en zijn gebaseerd op

de kans P (Y 4 Y ′ |X,X ′ = X + ∆) voor een vaste waarde ∆.

5. We hebben een toepassing in detail uitgewerkt. Meer bepaald hebben we de PIM method-

ologie gebruikt om genomische studies gebaseerd op reverse transcription quantitative

polymerase chain reaction (RT-qPCR) te analyseren. Data gegenereerd door RT-qPCR

vereisen een normalisatie om zo technische variatie in rekening te brengen. Verder wor-

den RT-qPCR experimenten vaak gebruikt om differentieel geexpresseerde genen – die

bijvoorbeeld ontdekt zijn door microarrays – te valideren. Dit impliceert dat het kwan-

tificeren en interpreteren van de resultaten belangrijk is om inzicht te verwerven in de

biologische processen die bestudeerd worden. Een PIM blijkt geschikt te zijn voor beide

doelen: het laat toe de data te normaliseren en heeft een intuı̈tieve interpretatie in termen

van de waarschijnlijkheid op neer- en opregulatie.

6. We hebben efficiënte schatters voor de PIM binnen een semiparametrische context bestudeerd.

De indexfunctie die geassocieerd is met de efficiënte score komt overeen met de oploss-

ing van een integraalvergelijking. De resultaten van een beknopte simulatiestudie geven

aan dat de variantie van de efficiënte schatter ongeveer gelijk is aan de variantie van de

schatter die gebruikt maakt van de onafhankelijke werk-correlatie matrix. Deze resultaten

moeten echter nog verder in detail worden bestudeerd.

7. We hebben een R-pakket ontwikkeld waarmee de meeste voorbeelden van deze thesis

kunnen geanalyseerd worden.

Niettegenstaande in deze thesis een aanzienlijk aantal van de basis technieken om een PIM te

fitten zijn ontwikkeld, moeten nog veel uitbreidingen onderzocht worden zodanig de PIMs een

breder toepassingsdomein kunnen bestrijken.
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Summary

A classical problem in statistics is concerned with studying the association between a univariate

outcome Y and a d-dimensional set of predictors X . As an example, Y can be a measure of

a child’s lung capacity and X contains the age, gender, and smoking status of the child. The

primary focus is to understand the association between the smoking behaviour and the lung

capacity, while possible confounding factors, such as gender and age, should be accounted for.

To address these questions, a regression model can be used. Popular choices are regression

models which model the mean outcome. However, the mean may not be the only useful sum-

mary measure or sometimes the mean may not have a relevant interpretation. To illustrate this,

consider an example where Y denotes a person’s mental impairment and X its life index and

socio-economic status. Interest lies in studying the relationship between the socio-economic

status and the mental impairment while controlling for the life index. The mental impairment

is an ordinal outcome on a 4-level scale with categories Y = 1 (not impaired), Y = 2 (mild

symptom formation), Y = 3 (moderate symptom formation), and Y = 4 (impaired). The mean

mental impairment has no straightforward interpretation since the outcome is ordinal and not

interval-scale. This implies that regression models which focus on the mean can be inappropri-

ate.

In this dissertation, we propose a new regression framework for assessing the association be-

tween Y and X which can be used for ordinal, interval, and ratio-scale outcomes Y . More

specifically, we model the probability that the outcome increases as a function of the predictors.

We refer to this probability as the probabilistic index (PI). Formally, if (Y,X) and (Y ′,X ′)

denote independently and identically distributed random variables, then the PI is defined as

P (Y 4 Y ′ |X,X ′) := P (Y < Y ′ |X,X ′) +
1

2
P (Y = Y ′ |X,X ′) .

A probabilistic index model (PIM) then models the PI as a function of the predictors X and
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X ′. More specifically, a PIM is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (X,X ′) ∈ X , (A.10)

where m(·) is a function with range [0, 1], X denotes the set of couples of predictors for which

the model is defined, and β is a p-dimensional parameter vector.

In this dissertation, seven contributions to the PIM methodology are presented.

1. We have formally introduced PIMs together with a semiparametric parameter estimation

and asymptotic distribution theory. The results of a simulation study showed that the

asymptotic approximations are valid for finite samples. Several example datasets were

analyzed with a PIM to illustrate its interpretation and flexibility.

2. We have situated the PIM within the statistical landscape by exploring the relationships

with several well-known statistical methods.

More specifically, to understand the functional form of m(·) in (A.10), we studied the

relationship between a PIM and the normal linear regression model (NLRM) as well as

the Cox proportional hazards model (CPHM). It turns out that there is a direct relation-

ship between the model parameters of a PIM and the model parameters of a NLRM and

a CPHM, respectively. These relationships suggest a functional form m(X,X ′;β) =

g−1[(X ′ −X)Tβ], with g(·) the well-known logit or probit link function. This choice

results in an intuitive interpretation of the model parameters. For a univariate continuous

predictor X , it follows that g(β) = P (Y 4 Y ′ | X = x,X ′ = x+ 1), i.e. the probability

that the outcome for which X = x+ 1 exceeds the outcome for which X = x.

A PIM also provides a regression framework for the concordance index and extends the

AUC-regression methodology. There are also interesting similarities and disparities be-

tween a PIM and rank regression and the cumulative logit model, respectively.

3. We have studied the relationship between a PIM and popular rank tests. The Wilcoxon–

Mann–Whitney, Kruskal–Wallis, and Friedman rank test, among others, can be embedded

within the PIM framework. This embedding allows to extend these rank tests to more

complicated designs, while retaining an intuitive interpretation. Furthermore, it allows to

construct confidence intervals for the associated effects sizes. Embedding all these rank

tests in a single modelling framework can perhaps make these test more accessible to

non-experienced users.
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4. We have developed goodness-of-fit (GOF) methods to assess the adequacy of the pro-

posed model m(·). A graphical diagnostic tool shows how the model can be improved

and a test allows for formal hypothesis testing. Both methods are related to the interpreta-

tion of a PIM and are based on the probability P (Y 4 Y ′ |X,X ′ = X + ∆) for a fixed

value ∆.

5. We have worked out a case study in detail. More specifically, the PIM methodology

is used to analyze genomic differential expression studies based on reverse transcrip-

tion quantitative polymerase chain reaction (RT-qPCR). The data generated by RT-qPCR

techniques require normalization so as to account for technical variation which cannot be

attributed to the treatments under study. Furthermore, since RT-qPCR experiments often

aim at validating differentially expressed genes that were discovered by microarrays or

next generation sequencing screens – and RT-qPCR biological validation experiments are

often an (intermediate) endpoint of a study – quantifying and interpreting the effects is

important for increasing the insight in the biological processes under study. The PIM

turns out to be appropriate for both goals: it allows for normalizing the data in a straight-

forward fashion, while keeping an intuitive interpretation in terms of the odds for down-

or upregulation.

6. We have studied efficient estimators for PIMs in a semiparametric setting. The index

function associated with the efficient score corresponds to the solution of an integral equa-

tion. The results of a small simulation study indicated that the variance of the efficient

estimator is similar to the variance of the estimator based on the independence working

correlation matrix. However, these results need to be studied in more detail.

7. We have written an R-package with which most of the examples studied in this disserta-

tion can be analyzed.

Although most of the basic tools to fit a PIM to data are developed and studied in this disserta-

tion, many extension still need to be constructed so as to increase to applicability of PIMs.
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