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Abstract: We propose a new interaction index derived from the computation of Sobol indices. In optimization, interac-
tion index can be used to detect lack of interaction among input parameters. First order interaction indices if
they return zero, means that those parameters can be optimized independently holding other parameters con-
stant. Likewise, second order interaction indices can tell if a combination oftwo parameter can be optimized
independently of other parameters. In this way, the original optimization problem may be decomposed into
a set of lower dimensional problems which may then be solved independently and in parallel. The interac-
tion indices can potentially be useful in robust optimization as well, since it provides importance measure in
minimizing output variances.

1 INTRODUCTION

In today’s engineering endeavor, it is common to
run computer simulations to understand the behavior
of complex systems and optimize their parameters to
obtain satisfactory designs before actual physical pro-
totypes are built. Very often we encounter optimiza-
tion problems with many parameters for which op-
timum values are sought. The simulation codes are
usually complex and are expensive to run. Optimizing
such high-dimensional problems with expensive ob-
jective functions is still a big challenge even at the dis-
posal of powerful computational facilities. Building
surrogate models that approximate the mapping of in-
put to output of expensive simulation models is a way
to mitigate the difficulty in evaluating the expensive
functions many times. However, creating such sur-
rogate models in high-dimensional parameter space
is yet another challenge. In this paper, we propose
an approach to decompose high-dimensional problem
into a set of lower dimensional problem via our new
interaction indices. Calculation of these indices is a
simple extension to Sobol indices and gives informa-
tion about particular parameter(s) being independent
or interacting with other parameters.

We begin by describing High Dimensional Model
Representation and Sobol indices in the next section
and in the following section. Then, we describe the

use of variance information obtained in the calcula-
tion of Sobol indices in optimization problems (sec-
tion 4), and define the interaction indices (section 5).
We compare interaction index with an existing inter-
action detection method (section 6). Then, we give
a simple example (section 7) showing the results of
Sobol and interaction indices and their implication are
discussed in the subsequent section (section 8).

2 HDMR AND SOBOL’ INDICES

Consider a deterministic modely = f (x) where
x = (x1,x2, . . . ,xn) is a vector ofn input variables and
y is the model output.f (x) can be decomposed into a
form referred to as high dimensional model represen-
tation.

f (x) = f0+∑
i

fi (xi)+∑
i< j

fi j (xi,x j)

+ ∑
i< j<k

fi jk (xi,x j,xk)+ . . . (1)

This decomposition of the function is not unique as
the lower order can be selected arbitrarily and the
highest order term can be written as the difference be-
tween f (x) and the lower order terms. However, if
the average of each of the term in the summands of
the right hand side of equation (1) is set to zero and
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f0 is set to be a constant, the expression is proven to
be unique (Sobol’, 1993). The terms are given as the
following.

f0 = E (y) (2)

fi (xi) = E (y|xi)− f0 (3)

fi j (xi,x j) = E (y|xi,x j)− fi (xi)

− f j (x j)− f0 (4)

fi jk (xi,x j,xk) = E (y|xi,x j,xk)− fi j (xi,x j)

− fik (xi,xk)− f jk (x j,xk)

− fi(xi)− f j(x j)− fk(xk)

− f0. (5)

The first order sensitivity index for variablexi is
given by

Si =
V [E (y|xi)]

V (y)
, (6)

and if we calculated the indices to the highest order,
we have

n

∑
i=1

Si +
n

∑
i=1

n

∑
j=i+1

Si j + . . .+Si j...n = 1. (7)

The numerator in equation (6) means “variance of ex-
pected value ofy givenxi”, the denominator is the “to-
tal (unconditional) variance”. TheSis are called first
order Sobol’ indices (European Commission, Joint
Research Centre of Ispra, Italy, ; Sobol’, 2001; Chan
et al., 1997).

Total effect index (Homma and Saltelli, 1996) in-
cludes interaction effects in addition to the first order
sensitivity indices, and can be defined as

STi = 1−S−i, (8)

whereS−i signifies sum of all the sensitivity indices
except those that include variances due toxi. For ex-
ample, ifi ∈ {1,2,3}, the total effect index ofx1 is

ST1 = S1+S12+S13+S123

= 1−S2−S3−S23. (9)

The total effect index defined in equation (8) is use-
ful in variable screening. Variables withSTi ' 0 can
be held constant at an arbitrary value within its lower
and upper bounds since it means that the variable’s
value does not contribute to the variance in the out-
put. The first order sensitivity indices in equation (6)
alone cannot be used for this purpose if there are sig-
nificant amount of interactions among the variables.

The virtue of this variance based sensitivity analy-
sis is that it takes all the nonlinearities and interactions
into account as compared to “one variable at a time”
way of sensitivity analysis. Moreover, even if we con-
duct the sensitivity analysis only to the first order, we
will always have an idea of what remains unexplained
by calculating 1−∑n

i=1 Si.

3 FORMULATION

Following the discussion in the previous section,
we now formulate the way to compute the first order
sensitivity indices. As before,we express a surrogate
model withn-dimensional input space as

y = f (x1,x2, . . . ,xn) . (10)

The total variance is therefore

D = V
X∈Rn

( f (X))

=
∫

X∈Rn

f 2 (x1,x2, . . . ,xn)dx1dx2 . . .dxn

− f 2
0 . (11)

The multidimensional integral of equation (11) can be
computed using the Monte Carlo integration. Simi-
larly, the following equation gives theE (y|xi).

fi (xi) =
∫

1

∫

2

. . .

∫

n−1

f (x1,x2, . . . ,xn)dx−i − f0, (12)

wheredx−i ≡ dx1dx2 . . .dxi−1dxi+1 . . .dxn. We also
defineV (y|xi) for later use in our discussion,

V
x−i

(y|xi) =

∫

1

∫

2

. . .

∫

n−1

f 2 (x1,x2, . . . ,xn)dx−i − f 2
0 . (13)

This is the variance ofy when xi is fixed at certain
value. Again, in equations (12) and (13), the integra-
tions are performed using the Monte Carlo method,
but this timexi is held constant. By fixingxi at var-
ious values, we can conduct the next integration to
obtainV [E (y|xi)].

Di =V
xi
( fi (xi)) =

∫

xi

f 2
i (xi)dxi (14)

Then,

Si =
Di

D
. (15)

The computation offi(xi) at different values ofxi
to calculateDi in equation (14) is a brute-force ap-
proach. It requiresm× (n× l + 1) function evalua-
tions, wherem is the number of Monte Carlo samples,
n is the number of input variables, andl is the number
of different xi values that are used to compute equa-
tion (14). There is a more efficient method in which
all Sis andSTis are calculated inm × (n + 2) func-
tion evaluations (Saltelli, 2002; Saltelli et al., 2008)
provided that all input variablesxis’ distributions are
independent.



4 EXTRACTING INFORMATION
FOR OPTIMIZATION

In the process of optimization, for example min-
imizing y by judicious choice ofxis, one would also
be interested in the variance ofy given xi, V (y|xi) or
more generally, the distribution ofy given xi. Let us
denote such distribution (or probability density func-
tion) asp(y|xi). These information can easily be ob-
tained during the course of calculating the first order
Sobol’ Indices. This information can be used in three
ways. First, it tells you for what value ofxi one could
possibly have the smallesty. Second, it tells you if
xi has any interaction with other parameters. Finally,
it tells you what value ofxi would satisfy certain re-
liability criteria. That is, one could draw a threshold
value fory beyond which these variances should not
exceed.

For optimization, one would be interested in the
minimum of y given xi. Let us denote this value as
min(y|xi). Then, one would choosexi such that

x∗i = argmin
xi

(min(y|xi)) . (16)

If you had control of only one parameterxi, sayx1, x∗1
would be the point at whichE (y|x1) would be mini-
mum, because no matter what the values for other pa-
rameters may be, on average argmin

x1

(E(y|x1)) would

return minimumy. However, if we know that other
parameters are also controllable, global minimumy
can be obtained by solving equation (16) because
each point in the distributionp(y|x1) is a determin-
istic realization ofy for certain combination of pa-
rametersxi 6=1 with x1 held constant. One can iterate
through other parameters determiningx∗i in the same
way via equation (16) to obtain the minimum. In the
actual calculation of Sobol indices,p(y|xi) is obtained
at finite number of values ofxi. Thus, a good strategy
would be to bracket thex∗i with a new upper and lower
bound ofxi, and obtainp(y|xi) for a new set of finite
number of values ofxi in this new interval. One can
repeat this procedure until the upper and lower bound
of x∗i becomes narrow enough. Sincexi is fixed at fi-
nite set of values in the interval, it is possible that the
minimum escapes the search. Therefore, we cannot
guarantee if global optimum is found. Note that once
the upper and lower bound changes, so will the Sobol
indices in equation (6).

If some or all of thexis contain uncertainties such
that their intervals cannot be reduced beyond certain
level, the resultingp(y|xi)s will represent the uncer-
tainties in the output due to the uncertainties in these
xis. For reliability purposes, one may also be inter-
ested in max(y|xi) which is the other end of the distri-

bution tail showing the maximumy that could occur
givenxi.

Figure 1 shows an example of representingp(y|xi)
as box plots. The example shows the spread ofy i.e.
p(y|xi) in vertical axis with respect to four input pa-
rametersx1, x2, x3, andx4in horizontal axis. We see
by visual inspection thatx2 and x3 are independent
parameters becauseV (y|x2) andV (y|x3) are constant
across different values ofx2 andx3 respectively. On
the other hand,x1 andx4 have interactions with other
parameters becauseV (y|x1) andV (y|x4) are not con-
stant. Since we have only four parameters we can
conclude thatx1 andx4 interact with each other. The
red arrows indicate the interval of interest if one is
seekingxi for minimum of y. The green arrows in-
dicate the interval of interest if one is seekingxi for
minimum variance.

5 INTERACTION INDICES

In order to quantify the interaction or indepen-
dence of input variables, we propose the following
interaction index,

Ii =
V [V (y|xi)]

V 2(y)
, (17)

where we can computeV (y|xi) from equation (13).
We can then set a thresholdε below which we say that
the inputxi does not have significant interaction with
other input variables and thus can be treated indepen-
dently. Note that an interaction indexIi is not constant
if the upper and lower bound ofx changes. In the opti-
mization process in which these bounds change every
iteration, we need to keep track ofIis. At certain point
in the iteration,Ii ≤ ε may hold forxis that wereIi > ε
at the beginning.

We can extend this concept to detect two and
higher dimensional subproblems.

Ii j =
V [V (y|xi,x j)]

V 2(y)
, (18)

Ii jk =
V [V (y|xi,x j,xk)]

V 2(y)
, (19)

. . .

6 COMPARISON

It is also possible to detect interaction via the total
effect indices and first order Sobol indices,STi − Si.
However, there are some important differences be-
tween the two methods. First,STi − Si does not give
the relative importance among input variables driving



Figure 1: Examples ofp(y|xi)

V [V (y|xi)]. For exampleSi j that is one of the sum-
mands ofSTi does not give information about relative
importance betweenxi andx j in driving the variance
of fi j(xi,x j). Thus,xi could be interacting with many
other variables but having minor importance in each
of them. In such a case,STi −Si may give a mislead-
ing impression of importance in interaction. In the
next section, we will see a case in which

STi −Si = ST j −S j

but
Ii 6= I j.

Second, the detection of independenceIi = 0 is
not sensitive to the accuracy of Monte Carlo integra-
tion. As long asV (y|xi) is computed with the same
samples inx−i, V (y|xi), remains constant - although
the value ofV (y|xi) may be approximate - throughout
different values ofxi. Thus, Ii should show zero to
arithmetic precision ifxi does not interact with other
variables. On the other hand,STi −Si is subject to the
Monte Carlo integration inaccuracy. Therefore, judi-
cious selection of threshold value is needed to detect
independence.

Third, as of this writing, computation ofSTi − Si
is less expensive than computation ofIi. The set of

STis andSis can be obtained fromm× (n+ 2) func-
tion evaluations, wherem is the number of Monte
Carlo samples,n is the number of input variables. We
currently use the brute-force approach to compute the
Iis at the cost ofm× (n× l +1) function evaluations,
wherel is the number of differentxi values that are
used to compute equation (14). The computation ofIi
does not require any further function evaluation (i.e.
computation of responsey) beyond what is required
for the computation of first order Sobol indicesSi.
ComputingSTi in brute-force approach, on the other
hand, is often infeasible (requiring computation of up
to n−1 order Sobol indices).

We expect that there are shortcuts like in the com-
putation ofSTis andSis to economize the computation
of Iis. However, the brute-force approach have some
advantages over the more efficient ones. It can work
even if the input variables are correlated, and it gives
distributions at specific values ofxis. This informa-
tion could further be exploited in the optimization of
input variables. To benefit from the shortcuts avail-
able for Sobol indices and total effect indices, we will
have to have uncorrelated input variables and we will
not have distributions for a specific value ofxi.



7 EXAMPLE

Consider the following simple example.

y1 = x1+2x2+4x3 (20)

y2 = x2
1− x2+ x2x3 (21)

where−1< x1,x2,x3 ≤ 1. We obtained the first order
Sobol indices ofy1 andy2 with respect tox1, x2, and
x3 as in Table 1. We calculated the results by 1000

Table 1: First order Sobol Indices for the example

y1 y2

x1 0.05 0.19
x2 0.19 0.65
x3 0.77 0.00
Higher Order -0.01 0.16

uniform random samples. Fifty different values for
xis were used to compute the values for equation (14).
The negative value for the second order and higher in-
teraction terms (i.e. the bottom row, second column)
is due to numerical error in the Monte Carlo integra-
tion and analytically it should be zero. The analytical
values of Sobol Indices fory1 can be easily calculated
and they are

S1 =
22

22+42+82 ' 0.04719, (22)

S2 =
42

22+42+82 ' 0.19048, (23)

S3 =
82

22+42+82 ' 0.76190. (24)

The interaction indices for the same example are
shown in Table 2. The zero entries in Table 2 indi-

Table 2: First order interaction indices for the example

y1 y2

x1 0.000 0.000
x2 0.000 0.036
x3 0.000 0.573

cate that corresponding variables do not interact with
other variables. Fory1, there are no interacting vari-
ables, and in optimization,x1, x2, andx3 can be op-
timized one by one while fixing the remaining vari-
ables as constants. Fory2, x1 is independent butx2
andx3 are interacting. Thus,x1 can be optimized with
other parameter fixed butx2 andx3 must be optimized
jointly while fixing x1 at a constant value.

Table 3 shows the result of calculatingSTi − Si
using 1000 samples for the Monte Carlo integration.
The column fory1 and the entry forx1 under the col-
umn for y2 should show zeros. The slightly positive

Table 3:STi −Si for the example

y1 y2

x1 0.03 0.03
x2 0.03 0.17
x3 0.03 0.17

values are again due to inaccuracies in Monte Carlo
integration. For they2 column, the equation (21) sug-
gests that the entry forx2 andx3 should show some
values for the interaction. Equations (25) to (27) show
the expressions ofSTi −Si for y2. The reason that

ST2−S2 = ST3−S3

in Table 3 can be understood from the equations (26)
and (27).

ST1−S1 = S12+S13+S123= 0, (25)

ST2−S2 = S12+S23+S123= S23, (26)

ST3−S3 = S13+S23+S123= S23. (27)

The difference between Table 2 and Table 3 illus-
trates the difference between the two methods of de-
tecting interactions and independences. The reason
for I2 < I3 in Table 2 can be understood by factoring
equation (21) as in equation (28),

y2 = x2
1+ x2 · (−1+ x3). (28)

For the given upper and lower bounds ofx2 and
x3, we have 0<−1+ x3 ≤ 2 and−1< x2 ≤ 1. Thus,
if we samplex2 andx3 uniformly between -1 and 1,
we have the following. If we letx2 = 1 or −1, then
we get the largestV (y2|x2) with

V [x2 · (−1+ x3)|x2 =±1] =
(2−0)2

12
=

1
3
. (29)

On the other hand, if we letx3 =−1, then

V [x2 · (−1+x3)|x3 =−1] =
(2− (−2))2

12
=

4
3
, (30)

andV (y2|x3) is largest. Furthermore,

V [x2 · (−1+ x3)|x2 = 0] =

V [x2 · (−1+ x3)|x3 = 1] = 0. (31)

Thus,
I3
I2

=
V [V (y2|x3)]

V [V (y2|x2)]
=

42

12 = 16, (32)

which confirms Table 2.

8 DISCUSSION

In practical situations in which the calculation ofy
given an input vectorx is expensive, the computation



of Sobol and interaction indices may be prohibitive
due to the number of model evaluations needed to do
the Monte Carlo integration. In such cases, fitting sur-
rogate models to the dataset computed by the original
model may be useful. Surrogate models are approxi-
mation to the original function, and are much cheaper
to compute than the original model. It is usually fit on
a finite number of input-output data obtained from the
original model (usually a complex simulation model).
Kriging and Radial Basis Functions are some of the
popular surrogate models (Keane and Nair, 2005). Let
us denote the output produced by the surrogate model
as ŷ. We can compute the indices based on ˆys. It
is our experience that if Pearson’s correlation coeffi-
cient betweeny and ŷ is reasonable, say above 0.8,
the Sobol Indices calculated on the surrogate model
gives fairly accurate indication of important variables.
Whether this robustness holds for interaction indices
i.e. whether it reliably predicts non-interacting vari-
ables, is yet to be investigated.

An adaptive sampling and optimization method
can be conceived. In each iteration, surrogate model
can be fit and Sobol indices and interaction indices
can be evaluated on the surrogate model. Then, we
can determine the next sampling points and bounds of
each input parameters. We can also preform problem
decomposition to generate a set of lower dimensional
problems. The effective way to combine the search,
the sampling, and the problem decomposition needs
to be investigated. It is expected that the problem de-
composition provided by the interaction indices may
help in the accuracy of surrogate models since for a
given number of samples the lower the input parame-
ter dimension, the more accurate it is in general. For
example, one surrogate model could be fit for each of
the independent subcomponents. The development of
an efficient sampling method based on the evolving
information of interaction and sensitivity will be the
next step in the research.

The conventional way of detecting interaction ob-
scures each input variable’s relative importance in in-
fluencing the interaction with other variables. The
new interaction indices detects changes (variances) in
V (y|xi) and thus enables one to rank variables in terms
of ”influence to interaction”. This can be a valuable
information when conducting robust optimization. It
is expected that this will be helpful in devising algo-
rithms to perform problem decomposition to lower di-
mensional problems.

9 CONCLUSION

We have shown the potential use of Sobol in-
dices and our new interaction indices in decomposing
high-dimensional problem into a set of independent
lower dimensional problems in optimization. This
should effectively simplify the construction of surro-
gate models and optimization. The interaction index
exposes each parameter’s importance in influencing
the variance in the output through interaction. This
is expected to be useful in robust optimization. Ap-
plication to industrial problems is needed to under-
stand the effectiveness of the proposed index. Also,
further research is needed to exploit the concept de-
scribed in this paper to develop a surrogate model as-
sisted optimization algorithm that is scalable to high-
dimensional problems.
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