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Summary 

 

 

 

More than one in three people in the western world will be diagnosed with 

cancer at some point during their lifetime (1, 2). Breast cancer and prostate 

cancer represent the most common types of cancer with high survival rates. An 

important treatment modality in cancer management is radiotherapy (RT) with 

approximately half of all cancer patients receiving this treatment. Despite 

advances in technologies, radiation-induced side effects still occur and vary 

widely among patients which can broadly be related to radiation dosimetric 

variables, adjuvant cancer treatments and factors inherent to the patient, 

including genetics. As these side effects can impair the quality of life of cancer 

survivors, therapy-induced toxicity has become very important. The subject of 

this PhD dissertation is the identification of factors predicting or influencing the 

development of normal tissue toxicity and the development of integrated models 

that are able to predict which cancer patients are most likely to develop adverse 

events after RT. 

  

RT treatment for prostate cancer can result in toxicity to the gastrointestinal 

(GI), genitourinary (GU) and reproductive organs. In this PhD research, only GU 

symptoms were evaluated in prostate cancer patients treated with high-dose 

primary or post-operative intensity-modulated RT (IMRT), as GI toxicity was 

very rare. Acute RT-induced nocturia is in our study population the predominant 

acute toxicity endpoint; it is a frequently occurring but under-reported GU 

symptom. Nocturia was recently found to be associated with a decreased 

quality of life and with an increased prevalence of depression because of more 

frequent nightly voids. A number of clinical, dosimetric parameters and SNPs in 

TGFB1, capturing all common variants in the 5’ region of the gene, were tested 
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for association with the endpoint. The presence of mild pre-treatment 

complaints, treatment with primary IMRT and two polymorphisms in TGFB1 

were identified as risk factors. These results were published in a first paper, 

presented in Paper I (chapter 6). 

 

Recent refinements of radiotherapy techniques allow for a better sparing of 

the rectum resulting in a minimization of GI toxicity. In contrast to the incidence 

of late GU symptoms that remains unchanged due to the full inclusion of the 

bladder neck and, in case of postoperative RT, the vesicourethral anastomosis 

in the high-dose region. Late radiation-induced haematuria and nocturia are the 

most frequently observed late GU symptoms. Models for prediction of these 

endpoints were build using an in-house developed statistical algorithm 

considering clinical, dosimetric and genetic data. The genetic data were 

obtained by a custom-designed Illumina GoldenGate platform containing 384 

genetic variations. The variations were selected based on an extended 

candidate gene approach. Both integrated prediction models have acceptable 

predictive performance. The model predicting late haematuria and late nocturia 

has an AUC of 0.82 and 0.76, respectively. The paper resulting from this study 

is presented in Paper II (chapter 7).  

 

Acute skin toxicity is assessed in breast cancer patients treated with 

adjuvant RT after breast-conserving surgery. The endpoints of interest are the 

development of moderate to severe acute dermatitis and moist desquamation. 

Normofractionated (25x2 Gy) or hypofractionated (15x2.67 Gy) IMRT in prone 

or supine position is prescribed. Systemic therapies like chemotherapy, 

hormone therapy and trastuzumab are administered when indicated. Eight 

SNPs were selected based on literature data regarding a possible involvement 

in toxicity after cancer therapy. BMI, large bra cup size, fractionation schedule 

and concurrent hormone therapy were significantly associated with the 

development of dermatitis and moist desquamation. Additional factors modifying 

the risk of dermatitis were supine IMRT, the administration of trastuzumab and 

the genetic variation MLH1 rs1800734. The paper resulting from this study is 

presented in Paper III (chapter 8). 
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Some issues to improve research in the field of normal tissue injury can be 

addresses. First, a distinction should be made between individual approach 

(prediction) and population approach (association) which are both different in 

their objectives, measurements and their applicability in the clinical context. 

Secondly, due to a diversity in symptoms recorded by multiple scoring systems 

the comparison between studies and the pooling of data is hampered. In 

addition, predicting a dichotomised endpoint is accompanied with a loss of 

information but a new level of complexity is added when an ordinal endpoint is 

predicted. This is illustrated by the prediction of acute dermatitis. Thirdly, the 

added value of genetic polymorphisms, each conferring small effect sizes, in 

predicting a complex trait should be discussed. Together with alternative 

approaches for the prediction of radiation-induced toxicity, like cellular, 

apoptosis and gene-expression assays are overviewed. 

In conclusion, the success of predicting normal tissue toxicity will depend on 

our efforts to collaborate in joining expertise of different research areas and in 

creating a standardized manner of collecting dosimetric, clinical and biological 

data. 
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Samenvatting 

 

 

 

Meer dan een derde van de mannen en vrouwen in de westerse wereld zal ooit 

de diagnose van kanker krijgen (1, 2) met borst- en prostaatkanker als de twee 

meest voorkomende types; beiden hebben een hoge kans op overleving. 

Radiotherapie (RT) is een belangrijke behandeling die wordt toegepast bij 

ongeveer de helft van de kankerpatiënten. Ondanks de technologische 

vooruitgang treden nog steeds neveneffecten op ten gevolge van de bestraling. 

Deze variëren sterk tussen patiënten onderling en kunnen verband hebben met 

de ontvangen dosis door de gezonde weefsels, met ondersteunende 

kankerbehandelingen en met factoren inherent aan de patiënt, zoals de 

genetica onder de vorm van single nucleotide polymorfismen (SNPs). Daar 

deze neveneffecten de levenskwaliteit van de overlevenden sterk kan 

beïnvloeden, is het belangrijk dit verder te onderzoeken. Het onderwerp van dit 

proefschrift is het identificeren van factoren die geassocieerd of voorspellend 

zijn voor het optreden van straling-geïnduceerde normale weefsel toxiciteit en 

het genereren van geïntegreerde modellen die kunnen voorspellen welke 

kankerpatiënten de grootste kans hebben om deze toxiciteit te ontwikkelen. 

 

RT behandeling voor prostaatkanker kan leiden tot schade aan de gastro-

intestinale (GI), genito-urinaire (GU) en de voortplantingsorganen. Aangezien 

het optreden van GI symptomen eerder ongewoon is, werden in dit onderzoek 

enkel GU symptomen onderzocht bij prostaatkanker patiënten die behandeld 

zijn met hoge-dosis primaire of postoperatieve intensiteit-gemoduleerde RT 

(IMRT). Acuut RT-geïnduceerde nycturie is in onze studiepopulatie de 

voornaamste vorm van acute toxiciteit; het is een veel voorkomend maar weinig 

gemeld GU symptoom. Nycturie werd onlangs in verband gebracht met een 

verminderde levenskwaliteit en met een verhoogd voorkomen van depressie 
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vanwege het frequenter nachtelijk opstaan. Een aantal klinische, dosimetrische 

parameters en SNPs in TGFB1, die alle varianten in de 5'-regio van het gen 

omvat, werden onderzocht op hun relatie met het eindpunt. De aanwezigheid 

van milde klachten voor de start van RT, behandeling met primaire IMRT en 

twee polymorfismen in TGFB1 kwamen naar voor als als risicofactoren. Deze 

resultaten werden gepubliceerd in Paper I (hoofdstuk 6) . 

 

Recente technologische ontwikkelingen in RT kunnen het rectum beter 

vrijwaren van bestraling met een minimaal voorkomen van GI toxiciteit tot 

gevolg. Daarentegen, het voorkomen van late GU symptomen blijft onveranderd 

door de volledige inclusie van de blaashals en – in geval van postoperatieve RT 

– de vesicourethrale anastomose, in de hoge dosis regio. Chronische straling-

geïnduceerde hematurie en nycturie zijn de meest voorkomende chronische GU 

symptomen. Modellen die het optreden van deze eindpunten voorspellen, 

werden gebouwd met behulp van een intern ontwikkeld statistisch algoritme 

waarin klinische, dosimetrische en genetische data werden opgenomen. De 

genetische data werden verkregen door een op maat ontworpen Illumina 

GoldenGate platform met 384 genetische variaties. De polymorfismen werden 

geselecteerd op basis van een uitgebreide kandidaatgen benadering. Beide 

geïntegreerde modellen hebben een aanvaardbare voorspellende waarde. Het 

model dat chronische hematurie en nycturie voorspelt, heeft een AUC van, 

respectievelijk, 0.82 en 0.76. Paper II geeft deze resultaten weer (hoofdstuk 7). 

 

Acute huidreacties werden geregistreerd bij borstkanker patiënten 

behandeld met adjuvante RT na borstsparende chirurgie. De eindpunten zijn 

het ontwikkelen van matige tot ernstige acute dermatitis en vochtige 

desquamatie. Normofractionering (25x2 Gy) of hypofractionering (15x2.67 Gy) 

IMRT in buik- of ruglig wordt voorgeschreven. Systemische therapieën zoals 

chemotherapie, hormoontherapie en trastuzumab worden toegediend wanneer 

nodig. Acht SNPs werden geselecteerd die volgens literatuurdata mogelijks 

betrokken zijn bij het ontwikkelen van toxiciteit na kankertherapie. BMI, grote 

bh-maat, fractioneringsschema en hormoontherapie gelijktijdig met RT, waren 

significant geassocieerd met de ontwikkeling van dermatitis en vochtige 

schilfering. Bijkomende factoren die het risico op dermatitis wijzigen bleken 
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IMRT in buiklig, de toediening van trastuzumab en de genetische variatie MLH1 

rs1800734. De paper als gevolg van deze studie wordt weergegeven in Paper 

III (hoofdstuk 8). 

 

Het onderzoek naar normale weefsel schade ten gevolge van RT staat nog 

voor een aantal grote uitdagingen. Ten eerste moet een duidelijk onderscheid 

gemaakt worden tussen de individuele (predictie) en de algemene (associatie) 

benadering die beiden verschillen in hun doelstellingen, meetmethodes en hun 

toepasbaarheid in klinische context. Ten tweede wordt de vergelijking tussen 

studies en het uitwisselen van data bemoeilijkt. Dit is het gevolg van meerdere 

scoringssystemen die een verscheidenheid aan symptomen beoordeeld. 

Bovendien gaat het voorspellen van een binair eindpunt gepaard met verlies 

aan informatie maar meer complexiteit wordt geïntroduceerd wanneer een 

ordinaal eindpunt voorspeld wordt. Dit wordt aangetoond bij de predictieanalyse 

van acute dermatitis. Ten derde zou de toegevoegde waarde van genetische 

polymorfismen, die elk slechts een klein effect bijdragen, in het voorspellen van 

een complex kenmerk moet worden besproken. Alternatieve methodes voor de 

voorspelling van straling-geïnduceerde toxiciteit, zoals cellulaire, apoptose en 

genexpressie assays worden ook besproken. 

Tot slot, het succes om normale weefsel toxiciteit te voorspellen zal 

afhangen van onze inspanningen tot samenwerken in het verzamelen van 

expertise in verschillende onderzoeksdomeinen en in het creëren van een 

gestandaardiseerde manier om dosimetrische, klinische en biologische 

gegevens te verzamelen. 
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Résumé 

 

 

 

Plus d'un tiers des hommes et des femmes du monde occidental sera 

diagnostiqué avec le cancer à un moment donné de leur vie (1, 2). Le cancer du 

sein et le cancer de la prostate sont les deux types de cancers les plus 

fréquents; les deux ont un taux de survie élevé. La radiothérapie (RT) est un 

traitement important qui est utilisé pour environ la moitié des patients atteints de 

cancer. Malgré les progrès technologiques, les effets secondaires induits par 

les radiations ionisantes se manifestent encore. Ceux-ci varient 

considérablement entre les patients et peuvent être associés à la dose reçue 

par les tissus sains, aux thérapies de soutiens et à des facteurs inhérents au 

patient, comme la génétique sous forme de polymorphisme d'un nucléotide 

(SNP). Étant donné que ces effets secondaires peuvent fortement affecter la 

qualité de vie des survivants au cancer, il est important d'étudier davantage 

cette question. Le sujet de cette thèse de doctorat est d’identifier des facteurs 

prédictifs ou des facteurs qui influencent le développement de la toxicité du 

tissu normal et le développement de modèles intégrés qui peuvent prédire 

quels patients atteints de cancer sont les plus susceptibles de développer des 

effets indésirables après la RT. 

 

Le traitement RT du le cancer de la prostate peut entraîner une toxicité à 

l'appareil gastro–intestinal (GI), génito-urinaire (GU) et aux organes 

reproducteurs. Dans cette thèse, seuls les symptômes GI sont évalués dans les 

patients atteints du cancer de la prostate traités par une dose élevée primaire 

ou post-opératoire avec radiothérapie conformationelle avec modulation 

d'intensité (IMRT), étant donné que la toxicité gastro-intestinale était très rare. 

La nycturie aiguë induite par la RT, critère prédominant de toxicité aiguë dans 
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notre population d’étude, est un des symptômes GU commun mais sous-

déclaré. La nycturie a récemment été associée à une diminution de la qualité de 

vie et une incidence accrue de dépression à cause des mictions nocturnes 

fréquentes. Un certain nombre de paramètres cliniques et dosimétriques, et les 

SNP de TGFB1, contant tous les variants communs dans la région 5' du gène, 

ont été testés pour la relation avec le point de terminaison. La présence de 

plaintes légères avant le début de la radiothérapie, le traitement primaire avec 

IMRT et deux polymorphismes dans TGFB1 ont été identifiés comme des 

facteurs de risque. Ces résultats ont été publiés dans un premier document, 

présenté dans Paper I (chapitre 6). 

 

Les améliorations récentes des techniques de radiothérapie permettent une 

meilleure épargne du rectum, résultant dans une incidence minimale de toxicité 

GI. Contrairement à l'incidence des symptômes tardifs GU qui reste inchangé 

en raison de l’inclusion du col de la vessie et, en cas de radiothérapie 

postopératoire, de l'anastomose vésico-urétrale dans la région à forte dose. 

L’hématurie et la nycturie radio-induite sont les symptômes GU chroniques les 

plus courants. Les modèles qui prédisent la présence de ces paramètres ont 

été élaborées en utilisant un algorithme statistique tenant compte des données 

cliniques, génétiques et dosimétriques. Les données génétiques ont été 

obtenues grâce à une plateforme Illumina GoldenGate conçue sur mesure avec 

384 variations génétiques. Les variations ont été sélectionnées basée sur une 

approche de gène candidat étendue. Les deux modèles de prévision intégrés 

ont des performances prédictives acceptables. Le modèle qui prédit que 

l'hématurie chronique et la nycturie, ont une AUC de, respectivement, 0.82 et 

0.76. Paper II montre les résultats (chapitre 7). 

 

Des réactions aiguës de la peau ont été évaluées chez les patients de 

cancer du sein traitées avec la radiothérapie adjuvante après chirurgie 

mammaire conservatrice. Les paramètres d'intérêt sont le développement de la 

dermatite aiguë modérée à sévère et de desquamation. L’IMRT normo 

fractionnée (25x2 Gy) ou hypofractionnée (15x2.67 Gy) en position décubitus 

ventral ou dorsal est prescrit. Les traitements systémiques comme la 

chimiothérapie, l'hormonothérapie et le trastuzumab sont administrées lorsque 



xv 

 

 
 

indiqué. Huit SNP ont été sélectionnés, sur la base de données de la littérature, 

qui pourrait être impliqués dans le développement de la toxicité après la 

thérapie du cancer. L’IMC, une grande taille de poitrine, le fractionnement et 

l'hormonothérapie simultanément avec la RT, étaient significativement associés 

avec le développement de la dermatite et de desquamation. D'autres facteurs 

modifiant le risque de dermatite ont été IMRT en position couchée, 

l'administration de trastuzumab et la variation génétique MLH1 rs1800734. Le 

document qui résulte de cette étude est présenté dans Paper III (chapitre 8). 

 

La recherche de toxicité tissulaire normale causée par RT est encore 

confrontée à plusieurs défis. Tout d’abord, il convient de faire une distinction 

claire entre l’approche de l’'individu (prédiction) et approche globale 

(association) car les deux diffèrent dans leurs objectifs, méthodes de mesure et 

de leur applicabilité dans le contexte clinique. Deuxièmement, la comparaison 

entre les études et l'échange de données plus difficile. Ceci est le résultat de 

plusieurs systèmes de notation revue une variété de symptômes. En outre, les 

prévisions d'un critère binaire associée à la perte d’information, mais plus la 

complexité est introduite lorsqu'un point d'extrémité ordinal est prévu. En outre, 

la prévision d'un critère dichotomique est accompagnée d’une perte 

d’information, mais un nouveau niveau de complexité est ajouté quand un 

critère ordinal est prévu. Ceci est démontré dans la prédiction de la dermatite 

aiguë. Troisièmement, la valeur ajoutée des polymorphismes génétiques, 

chacun contribuant que peu d'effet dans la prévision d'un trait complexe, devrait 

être discuté. Des méthodes alternatives pour la prédiction de la toxicité induite 

par les rayonnements, tel que de essaies cellulaires, d'apoptose et l'expression 

des gènes, sont également examinés. 

En conclusion, la réussite de la prédiction de la toxicité tissulaire normale 

dépendra de nos efforts pour coopérer à la collecte d'expertise dans différents 

domaines de recherche et à la création d’une méthode rationalisée pour la 

collecte de données dosimétriques, cliniques et biologiques. 
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1 Radiotherapy is an important treatment modality in 

cancer management 

Yearly, almost 700.000 women in the western world are diagnosed with breast 

cancer and the same number of men with prostate cancer. They represent the 

most common types of cancer (1). For all stages together, the 5-year survival 

rate for breast cancer patients is 89% and more than 90% for prostate cancer 

patients (2). Mammographic screening for breast cancer patients and PSA-

screening for prostate cancer patients result in early diagnosis, which improves 

the chances of successful treatment.  

This chapter outlines the use of radiotherapy as a cornerstone in cancer 

management, the impact of the treatment at the DNA level and the cascade of 

effects associated with DNA damage. The application of radiotherapy in the 

treatment of breast and prostate cancer is then explained in more detail. 

 

1.1 Radiotherapy in cancer management 

Just a few years after Wilhelm Roentgen discovered x-rays in 1895 and Antoine 

Becquerel discovered radioactivity in 1898, various forms of radiation were used 

to treat cancer. Immediately, it was apparent that radiation therapy (RT) held 

great promise as an effective therapeutic modality (3). Approximately 50% of all 

cancer patients receive RT at some point during the course of their treatment 

(4). At present, RT is the most important non-surgical modality for curative 

treatment of cancer. Since it accounts for only 5% of the total cost of cancer 

care, it is also cost effective (5). 

Radiation is mainly delivered by external beam RT. An external radiation 

source generates ionizing radiation (IR) that is directed towards the tumour. The 

most frequently used form of external beam RT is high-energy x-rays generated 

by linear accelerators (6). Other forms are particle therapy which uses high-

energy charged particles, like electrons, protons and carbon ions. In 

brachytherapy, a radiation source is brought into the tumour site either by 

implantation or an afterloader (6).  
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RT is based on the balance between cure and toxicity. The success of RT in 

cancer treatment principally depends on the total radiation dose given, which is 

limited by the tolerance of the normal tissues surrounding the tumour (7) This 

can be quantitatively described by dose-response curves for tumour control and 

normal tissue damage, see Figure 1.1.  

 

Figure 1.1: Dose-response curves for 

radiotherapy. Sigmoidal shaped 

response curves for tumour control and 

normal tissue damage. The probability of 

tumour cure increases with radiation dose 

with accompanying probability of severe 

late normal tissue damage. The dotted 

line shows a theoretical dose associated 

with ~60% tumour control and ~5% 

severe late toxicity. Adapted from Barnett 

et al. (7).  

 

External beam RT is usually given over a course of multiple fractions as it 

maximises tumour kill and minimizes normal tissue damage. Based on empirical 

studies with respect to these normal tissue reactions, conventional fractionation 

regimens of 1.8-2 Gy per fraction at a rate of five fractions per week have been 

the backbone over the last decades in most institutions (8, 9).  

Altered fractionation regimens and new technologies like computerized 

treatment planning systems, image-guided RT and intensity-modulated 

radiotherapy (IMRT) can substantially improve the therapeutic ratio by better 

tumour control and reduction of normal tissue toxicity (10, 11). Cure rates can 

be further improved by combining molecular targeting agents, hormone and 

chemotherapy with radiotherapy (5).  

In this PhD dissertation, all patients were treated with IMRT, an advanced 

form of three-dimensional conformal RT. IMRT includes modulation of the beam 

intensity; this is achieved by beam modifiers, such as multileaf collimators. As a 

result, concave-shaped dose distributions and tight dose gradients are created 

to closely sculpt the 3D shape of the target. In addition, IMRT allows the 
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delivery of high radiation doses to the tumour while limiting the radiation dose to 

the normal tissues, as shown in Figure 1.2 (6, 12). 

 

Figure 1.2: Concept of IMRT for 

example in prostate cancer 

(transversal slice of the male 

abdomen). In each direction, the 

beam is modulated by varying the 

intensity of its smaller units. This 

precise radiation dose conforms to the 

shape of the tumour and the amount of 

radiation to normal tissues surrounding 

the treated area is minimized. Adapted 

from (13).  

 

 

1.2 Radiotherapy – mode of action 

RT is the treatment of cancer using IR. Interaction of IR with the cellular 

environment results in energy depositions causing ionizations (8, 14). 

Ionizations produce highly reactive free radicals, that have the potential to break 

chemical bonds. Damage to DNA is the most harmful effect to cells, for 

example, single-strand breaks (SSBs), double-strand breaks (DSBs), DNA 

crosslinks and various base modifications leading to SSBs and/or DSBs (8, 15). 

Of them, DSBs are biologically the most important lesions as they are more 

difficult to repair than other DNA lesions because the two DNA ends can 

separate, and accompanying base damage hampers DSB ligation (14, 16). 

DNA damage can be induced by direct interaction of IR with DNA or indirectly 

by the generation of reactive species (oxygen (ROS) and nitrogen (RNS)) in 

close proximity to the DNA (15).  

Upon DNA damage, a complex coordinated system is triggered that 

determines the fate of the cell. This DNA damage response (DDR) 

encompasses processes of DNA repair and signal transduction mechanisms 

that alert the cell to the presence of DNA damage. Firstly, sensor proteins 

detect the sites of damage within the DNA. This signal is then amplified by a set 
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of proteins known as transducers. They function to relay the signal to 

downstream effector pathways determining cell fate, either arrest the cell cycle 

to allow repair of damaged DNA or, if the damage is beyond repair, initiate the 

cell to undergo programmed cell death or apoptosis (8, 16, 17). Figure 1.3 lists 

many of the key genes involved. The DDR is explained in more detail. 

 

Figure 1.3: 

Summary of the 

pathways and 

mechanisms 

involved in cell 

response to RT. 

Adapted from West 

et al. (14).  

 

 

 

 

 

 

ATM lies at the heart of the signalling response induced by DNA damage 

and is activated through the MRN (MRE11-RAD50-NBN) complex which is the 

primary sensor of DSBs (15). Cells rely on two major pathways to repair DSBs: 

non-homologous end joining (NHEJ) and homologous recombination (HR) (16). 

They are complementary and are used under different circumstances (17). HR 

requires a homologous template, usually a sister chromatid, occurs in S and G2 

phases of the cell cycle and is error free. NHEJ repairs DSBs without requiring 

sequence homology throughout the cell cycle (16, 17). Although it was 

commonly believed that HR plays a major role in G2 phase, recent studies have 

shown that NHEJ represents the major DSB repair pathway in G2, with HR only 

being essential for the repair of a minor subset ( 15%) of IR-induced DSBs 

(18). When the classical route is impeded due to missing or mutated NHEJ 

components, alternative NHEJ pathways can operate which rely on factors 

involved in HR and SSB repair like the MRN complex, PARP1, XRCC1 and 

LIG1 or LIG3 (17). SSBs are initially detected by PARP1 and are through ATR 
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activation, repaired by the mechanisms base excision repair (BER) or 

nucleotide excision repair (NER). The latter corrects bulky helix-distorting 

lesions, the BER system targets nonbulky lesions (base modifications) and 

abasic sites (15). It is, however, estimated that 1% of these single-strand 

lesions are converted into DSBs which are repaired by NHEJ or HR through 

ATR and ATM activation (15). In addition, mismatch repair (MMR) removes 

nucleotides arising from replication errors and accumulating data suggest that 

MMR proteins are involved in DDR upon exposure of IR (19). ATM activation 

leads to phosphorylation of CHK2, TP53 and CDC25 which triggers checkpoint 

activation and cell cycle arrest, in G1/S and/or G2/M phase. These checkpoints 

induce transient cell cycle arrest, allowing sufficient time for DNA repair (8). 

ATR, on the other hand, signals via CHK1 to promote cell cycle arrest. If DSB 

repair fails, apoptosis or cellular senescence is induced via ATM/ATR signalling 

(14). Another function of ATM is shown to be the protection of cells from ROS 

accumulation by stimulating NADPH production and promoting the synthesis of 

nucleotides required for DSB (20). 

Besides DNA damage, ROS and RNS may also damage proteins, lipids and 

mitochondrial DNA (21). They may spread from targeted cells to non-targeted 

bystander cells through intercellular communication mechanisms, where the 

oxidative metabolism is further disrupted (21).  

 

1.2.1 Efficacy of radiation treatment 

Splitting up radiation dose in multiple dose fractions, maximizes tumour control 

and minimizes normal tissue damage. The rationale behind it is explained by 

radiobiological factors summarized as the five Rs of RT: DNA repair, 

reoxygenation, repopulation, redistribution and intrinsic radiosensitivity (22). In 

this context, it is believed that radiation-induced lethality is primarily caused by 

DNA damage in targeted cells. 

Fractionation spares normal tissue because it allows the cell to repopulate 

and to recover from the DNA damage. Tumour cells, on the other hand, 

proliferate faster than normal tissue leaving them less time to repair the damage 

and together with the many genetic changes, they are more susceptible for 

radiation-induced cell death. Redistribution brings with each successive 
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radiation dose more cells into radiosensitive phases of the cell cycle. Decreased 

tumour burden leads to better vascularity and oxygenation, which increases the 

radiosensitivity in the tumour (8). Intrinsic radiosensitivity represents the 

radiosensitivity of different cell types and tumour cells (9). 

 

1.3 Radiotherapy for breast cancer and prostate cancer 

Breast-conserving surgery followed by breast irradiation, is recommended as 

the primary treatment for early-stage breast cancer (23). RT reduces the risk of 

local recurrence substantially and prevents the need for mastectomy (24-26). 

Moderate whole breast hypofractionated regimens (42.5 Gy in 16 fractions or 40 

Gy in 15 fractions) were shown to be equally effective as to the standard RT 

schedule of 50 Gy in 25 fractions (27, 28). This was expected based on the 

radiobiological model that a larger dose per fraction given over a shorter period 

of time is just as effective as the more traditional longer regimen (29). The use 

of sequential tumour bed boost improves local control but with higher rates of 

fibrosis (30). Introduction of modern technologies has facilitated the planning 

and delivery of for example simultaneous integrated boost, to further shorten 

course of RT (31), or, optimization of prone positioning to reduce toxicity rates 

(32). In addition, modalities like accelerated partial breast irradiation and 

extreme breast hypofractionation are currently under investigation (31).  

RT is also combined with systemic treatment. Hormonal therapy under the 

form of tamoxifen or aromatase inhibitors can be administered to oestrogen 

positive-receptor breast cancer patients. Chemotherapy, preferably not given 

concomitantly with RT to avoid toxicity, is mostly a combination of antracyclines 

and taxanes (33). The targeted agent trastuzumab has been shown to improve 

survival in patients with HER-2 positive tumours (34). 

 

Management options for prostate cancer are more diverse. They include radical 

prostatectomy, RT (external beam or brachy), and watchful waiting or closely 

monitoring the cancer in slowly growing or low graded prostate cancer (35). 

Radical prostatectomy and RT show a similar level of effectiveness (36).  

Currently, most men who receive external beam RT are treated with 

conventionally fractionated treatment regimens to a total dose of 74-80 Gy. 
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Such dose escalation has shown to improve biochemical control over standard-

dose RT of 64-70 Gy (37). Moreover, hypofractionated regimens (2.1-3.5 Gy) 

are tested in clinical trials but there is no clear evidence that those schedules 

improve outcomes or result in lower toxicity when compared with conventionally 

fractionated regimens (38). Extreme hypofractionation and high-dose rate 

brachytherapy are alternative approaches and are currently under investigation 

(37, 39, 40). Hormone therapy like LHRH-analogues or anti-androgens are 

often used concomitantly with RT in prostate cancer patients. 

 

In this PhD research, breast cancer patients are treated with the standard 

fractionation schedule (50 Gy in 25 fractions) or with moderate 

hypofractionation of 40 Gy in 15 fractions. Prostate cancer patients are treated 

either with radical RT with three different dose levels (74 Gy in 36 fractions, 76 

Gy in 37 fractions or 80 Gy in 38 fractions), or with postoperative RT after 

radical prostatectomy. The prostatic bed received 74 Gy in 36 fractions in the 

adjuvant setting and 76 Gy in 37 fractions in the salvage setting. 
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2 Radiation-induced side effects are inevitable 

Many patients receiving curative radiotherapy will experience toxicity due to the 

unavoidable irradiation of surrounding healthy tissue.  

The first section of this chapter describes radiation-induced toxicity in 

general and the specific effects in breast and prostate cancer patients. It also 

gives an overview of the available scoring systems to assess toxicity. The 

pathogenesis is explained in more detail in the second section of this chapter 

and the third section deals with the factors influencing the development of 

normal tissue toxicity. These factors can be implemented in models that predict 

an individual’s probability for developing radiation-induced side effects. 

 

2.1 Radiation-induced normal tissue toxicity 

Normal tissue is inevitably included in the irradiated target volume to ensure 

coverage of the microscopic tumour burden or to anticipate upon tumour and 

organ movement between fractions (8, 41). The tolerance of these normal 

tissues to radiation dictates the dose that is prescribed which is limited by late 

toxicity. Typically, RT schedules are designed to ensure that the risk of severe 

adverse effects does not exceed 5-10%. This basically means that the dose is 

submaximal in the majority of the patients (7).  

Dose-response relationships for normal tissues are suggested to have a 

threshold at low doses and saturate at high doses (Figure 2.1). There is 

evidence that normal tissue dose-response relationships are steep, which 

means that small changes in dose results in relatively large differences in 

toxicity (42). Normal tissue complication probability (NTCP) models have been 

introduced to predict the probability of a defined undesirable effect on the 

patient as a function of dose or biologically equivalent dose and volume. Curves 

for normal tissue complications are less well-defined than tumour control 

probability curves (TCP). They are steeper, reflecting less heterogeneity in the 

biology of normal tissues (8).  
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Figure 2.1: Cumulative frequency dose-

response curves for skin telangiectasia 

and for spinal cord necrosis. Adapted from 

Barnett et al. (7). 

 

 

 

 

 

Some tissues are thought to be functionally organised in series. The failure 

of a critical part of the tissue leads to a complication and largely depends on the 

maximum dose delivered to the organ. This is the case in nerves, 

gastrointestinal (GI) tract and bronchi (43). Recently, breast tissue is also 

shown to behave as a serial organ (44). In parallel organs, regions of an organ 

can be damaged without impairing global organ function; there is a ‘functional 

reserve’ which allows a certain volume fraction to lose function before a clinical 

unacceptable endpoint is reached. The response of such organs is dependent 

on the volume of the organ affected, for example lung, liver or kidney (43). 

 

Depending on the time of symptom appearance, radiation toxicity is 

commonly classified as acute, consequential or late effects (Figure 2.2). Acute 

toxicity is observed during or within weeks after completion of RT and is usually 

reversible. It occurs in rapidly proliferating tissues as a result of cell death, such 

as in epithelial surfaces of the skin or the mucosa of the alimentary tract. Acute 

effects are generally manageable and transient due to proliferation and 

repopulation of surviving stem cells (41). Late side effects are progressive and 

manifest six months to many years after treatment in tissues with a slow 

turnover of cells. They include radiation-induced fibrosis, atrophy, vascular 

damage, neural damage and a range of endocrine and growth-related effects 

(Figure 2.2) (45). Severe late toxicity impacts negatively on the quality of life 

and can, in extreme cases, be life-threatening. The long-time course for their 

development prevents titration of dose against toxicity in individual patients. 

Acute reactions that fail to heal completely and persist into the late period are 
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consequential late effects. They are related to the severity of acute reactions 

(14, 41). 

 

 

Figure 2.2: The toxicity of RT. From Barnett et al. (7). 

 

In breast cancer patients, RT has a direct effect on the skin; other organs 

like lung, heart and coronary arteries are at risk as well. When the node region 

is irradiated, the shoulder, brachial plexus and axillary lymphatic are also at risk 

for potential injury. Acute skin reactions such as erythema, dry desquamation, 

hyperpigmentation and moist desquamation and the symptom of fatigue 

dominate the early toxicity profile. Late toxicity can be divided into two groups: 

the more common effects on the cosmetic appearance of the breast such as 

persistent breast oedema, hyperpigmentation, atrophy, telangiectasia and 

fibrosis, and the uncommon permanent injury to other organs such as brachial 

plexopathy, radiation pneumonitis, cardiac morbidity or secondary malignancy 

(46). 

Male pelvic irradiation injury can occur in GI, genitourinary (GU) and 

reproductive organs. Radiation can cause functional effects in organs including 

the small bowel, rectum, anus, bone and bone marrow, bladder, urethra, ureter, 
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testicles and sexual organs. The most commonly recorded symptoms are: 

abdominal cramps, diarrhoea, mucus loss, rectal bleeding, faecal incontinence 

and urgency at the GI system and, dysuria, nocturia, pollakiuria, haematuria, 

urgency and incontinence at the GU system. Long-term symptoms can be seen 

at variable intervals following radiation (46). 

 

2.1.1 Assessment of normal-tissue effects 

Several classification systems are used to record normal-tissue reactions. The 

most widely used scoring systems in radiation oncology are RTOG/EORTC 

(Radiation Therapy Oncology Group/ European Organization for Research and 

Treatment of Cancer) (47), LENT/SOMA (Late Effects Normal Tissues: 

Subjective, Objective, Management and Analytic) (48) and the comprehensive 

dictionary for recording and grading side effects, the CTCAE (Common 

Terminology Criteria for Adverse Effects) (49). The most recent developed 

system is CTCAEv.4.0 (50). At the Ghent University Hospital, an in-house 

developed toxicity score is used which is based on RTOG, CTCAEv3.0 and 

LENT/SOMA toxicity scoring systems (51, 52). Toxicity is graded according to 

severity on a scale of none, mild, moderate or severe, with some as either none 

or yes. This assortment of diverse scoring systems leads however to the 

assessment of multiple and different endpoints which hampers comparisons 

across studies and pooling of data. 

 

2.2 Pathogenesis of normal tissue side effects 

The development of radiation-induced tissue injury begins with an ionizing event 

that results in direct damage to DNA but also initiates a cascade of events on 

the cellular and molecular level that is similar to the wound healing process as 

shown by Figure 2.3. 

Until the 1990s, the pathogenesis of normal tissue effects was described 

through the ‘target-cell theory’, which states that radiation-induced toxicity is a 

direct consequence of killing parenchymal and vascular cells (53). Possible 

mechanisms for radiation-induced cellular lethality are apoptosis, which can be 

directly activated by the DDR, and, mitotic death in which cells fail to complete 
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mitosis correctly (8). The timing of developing the symptomatic injury depends 

on the proliferation kinetics of the irradiated tissue; chronic injury is caused by a 

delayed reduction in the number of target cells. Subsequent healing is based on 

the proliferation of the surviving stem cells within irradiated volume or by 

migration of them from non-irradiated tissue (8). This hypothesis is, however, 

inadequate to explain the pathogenesis of late effects but remains useful to 

explain the effects of the early responding tissue (45). 

 

Figure 2.3: Radiation-induced fibrosis (below) has features in common with the 

normal wound healing response (above). From Bentzen et al (45).The final tissue 

remodeling phase in normal wound healing, which becomes less active with time, is 

deregulated in radiation fibrosis. Instead of resolving, a progressive increase in fibrosis 

occurs over many months or even years (54). 

 

Since the mid-1990s, it became clear that radiation-induced injury is an 

orchestrated, active biological response which is initiated at the time of 

irradiation and persists until the late effects manifest clinically (55). Radiation 

injury includes damage to the stromal (fibrosis), the parenchymal (atrophy) and 

vascular compartments where cytokines play an important role, as shown in 

Figure 2.4. An immediate early gene response is induced by radiation with a 

rapid increase of the expression of pro-inflammatory cytokines such as TNFα, 
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IL-1, IL-6, IFN, VEGF and EGFR. They drive the formation of inflammatory 

lesions with changes in the local vasculature allowing infiltration of neutrophils, 

macrophages and lymphocytes (56). Anti-inflammatory cytokines like TGFβ, IL-

10 and IL-4, restore the integrity and homeostasis through promoting 

angiogenesis and tissue regeneration or replacement by fibrosis with deposition 

of extracellular material. The involvement and impact of any cytokine will vary 

with cell type or tissue and with time (57). 

 

 

Figure 2.4: Cytokine network underlying the development of normal tissue response 

following radiation exposure. From Schaue et al. (56). DAMPs: damage-associated 

molecular patterns; PMN: polymorphonuclear leukocytes; Mɸ: macrophage; M1: killer 

macrophages; M2: repair macrophages. 

 

ROS formation, directly after irradiation, is followed by downstream activation of 

metabolic sources of pro-oxidant production. This includes mitochondria, nitric 

oxide synthases and oxidoreductase enzymes, such as the NADPH oxidases 

and may be secondarily linked to DNA damage response pathways (56, 58). 

Changes in the balance between free radicals and antioxidants (59-61) may 

participate in radiation injury by the activation of redox-sensitive signaling 

pathways. Some radiation-inducible redox-sensitive transcription factors are 

NFκB, Egf1 and AP-1, involved in the cytokine production, ATM, the core 
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protein of the DDR and HIF-1, a major contributor to angiogenic cytokine 

production (62-64). 

Pro-inflammatory cytokines generate cellular ROS and require ROS for 

signal pathway activation (65, 66). In contrast, anti-inflammatory cytokines tend 

to inhibit ROS/RNS mediated effects and display anti-oxidant properties (67, 

68). This balance of pro- and anti-inflammatory cytokines is critical in 

determining the outcome; it may shift back and forth for a long time after 

radiation exposure and it appears that the redox status of the cell is the turning 

point (56). 

 

2.3 Factors influencing the development of radiation-

induced toxicity 

A substantial degree of variability among patients in the response to a standard 

course of RT has been observed for a long time. A variety of factors influence 

the likelihood of a patient developing toxicity; these can broadly be related to 

dosimetry, adjuvant cancer treatments and factors inherent to the patient.  

Dosimetry-related factors include total dose, dose per fraction, irradiated 

volume and dose inhomogeneity (7). Late effects tend to be more sensitive to 

changes in fraction size, and are less sensitive to changes in overall treatment 

time than early responses. In this respect, an increase of fraction size must be 

accompanied with a reduction of the total dose (29). The volume of normal 

tissues exposed to high radiation doses will also affect development of toxicity 

and depends on the organizational structure (parallel vs. serial) and the 

radiosensitivity of the critical components (functional subunits) (69, 70).  

Interaction with other treatment modalities, typically surgery and/or systemic 

therapy such as chemotherapy or hormone therapy, may influence the pattern 

of toxicity after RT (71, 72). 

Age, body weight, pre-existing symptoms, use of cigarettes are all factors 

that can possibly affect the development of normal tissue toxicity (72-75). In 

addition, patients with certain underlying conditions or diseases may be more 

susceptible for the development of adverse events. Case reports suggest that 

patients with co-morbid conditions like collagen vascular diseases, diabetes or 
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hypertension and inflammatory bowel disease are at greater risk for developing 

normal tissue toxicities. However, retrospective studies have generally not 

found substantial increases in the risk for toxicity (76-79). 

  

2.3.1 Factors associated with toxicity in breast and prostate cancer 

patients 

Large breasts and dose inhomogeneity are established risk factors for acute 

and late skin toxicity after whole-breast RT (80, 81). Additionally, post-operative 

infection and boost to the tumour bed have previously been shown to be 

associated with the development of late skin toxicity (80, 82). A recent study 

suggests, however, that the development of breast fibrosis depends more on 

the maximum RT dose instead of the effect of treated breast volume (44). 

Cardiac disease after breast cancer RT, especially present in patients with left-

treated breasts, is found to be associated with the mean dose to the heart, with 

a 7.4% increase rate in major coronary event per Gy (83). Women with pre-

existing cardiac risk factors are at higher absolute risk than other women (83).  

 

Established risk factors for acute and late rectal radiation-induced toxicities 

for prostate cancer include prior abdominal surgery, concomitant androgen 

deprivation and previous co-morbid conditions as diabetes mellitus, 

haemorrhoids, or inflammatory bowel disease (78, 84-86). Development of 

acute rectal toxicity is also associated with an increased risk of developing late 

rectal complications (87-90). The volume of rectal tissue exposed to high doses 

of RT has been shown to be associated with the development of rectal toxicity 

which is consistent with the serial behaviour of the GI tract (8, 89, 91). 

Factors associated with GU toxicity are pre-treatment GU complaints, prior 

transurethral resection of the prostate (TURP) and the presence of acute GU 

toxicity (84, 86, 92-94). Evaluation of the dosimetry and the relationship with GU 

complications is difficult due to highly variable bladder filling (95) and 

differences in bladder contouring: for some studies the bladder is a solid organ, 

containing the bladder wall and its entire contents (51, 93), whereas others 

contour the bladder wall alone (96-98). Prostate cancer patients treated at GUH 

undergo daily medical imaging to verify bladder filling and the bladder is 
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contoured as a solid organ. Acute symptoms are suggested to be related to 

swelling and inflammation of the prostatic urethra (99); late toxicity is possibly 

related to damage to the bladder neck and dose to the trigone region (100). 

Recently, image-guided RT using implanted prostatic fiducial markers showed 

to reduce the dose to this region together with the levels of urinary toxicity (94). 

Late bladder toxicity typically manifests many years after rectal toxicity with 

increasing rates over time (89). 

Erectile dysfunction (ED) is a relatively common complication in prostate 

cancer treatment and the occurrence of spontaneous erections before treatment 

is the best indicator for the preservation of erections sufficient for intercourse 

(101). Other factors associated with decline in erectile function are higher age, 

worsening co-morbid conditions and androgen deprivation therapy (102, 103). 

Moreover, the use of magnetic resonance imaging permits, by vessel-sparing 

RT, a reduction in the dose delivered to vascular structures critical for erectile 

function (104). At the start of this PhD research, erectile function prior to RT 

was not standard recorded and was therefore not analysed. 

 

2.3.2 Different approaches for prediction modelling 

The parameters mentioned above can be used to develop predictive models 

which would enable us to calculate the individual’s probability to develop 

radiation-induced side effects in order to personalize RT treatment. Their 

predictive value can be evaluated applying several approaches. The most 

commonly used methods for predictor selection are logistic regression for binary 

outcome and Cox regression for time-to-event outcome. A brief overview of the 

clinically usable models with applied methodology is given. 

 

Predictive models are created in prostate cancer patients with the focus on 

rectal toxicity symptoms such as rectal bleeding and faecal incontinence. Within 

the AIROPROS 0102 trial, a number of prediction models, displayed as 

nomograms, were constructed that deal with clinical and dosimetric factors 

(105-107). The nomograms were developed based on forward and backward 

multivariate logistic regression analysis, incorporating covariates associated 

with univariate analysis (p≤0.20), to yield an individualised estimation of the 
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toxicity risk. The performance of the models was quantified by AUC and the 

sensitivity and specificity. For some models, calibration was assessed and 

bootstrapping was applied to correct for overfit (106). The authors were able to 

develop nomograms for the different rectal symptoms (105-107). The most 

recent model that predicts mean faecal incontinence is given as example (107), 

see Figure 2.5.  

 

 

Figure 2.5: Nomogram for late mean faecal incontinence (longitudinal definition) 

according to Fiorino et al (2012) (107). V40 Gy (%): the percentage of the rectum receiving 

40 Gy or more. This model has an AUC of 0.73 with sensitivity = 66.7% and specificity = 

74.0%. Use of the nomogram: each predictor represents a number of points, achieved by 

drawing a straight upwards line to the ‘Pre-points’ axis. Subsequently, the points for each 

predictor are summed and this sum is located on the ‘Total points’ axis. Then, draw a line 

straight downwards to find the patients probability of developing late faecal incontinence. 

 

 

The EORTC trial could demonstrate that an additional RT-boost in breast 

cancer patients reduces the risk of local recurrence but increases the rate of 

development of fibrosis at 10 years of follow-up (30). For guiding clinicians in 

their decision of delivering a boost, the authors proposed nomograms to predict 

the risk of moderate or severe fibrosis at 10 years. Therefore, the dataset was 

split in a model development dataset and in a validation dataset. Models were 

developed applying multivariate Cox analysis including only the factors 

univariately significant at the 0.20 level, via backward elimination at the 0.10 

statistical significance level. Furthermore, bootstrap resampling for model 

calibration and for internal validation, provided a bias-corrected estimate of the 



20 

c-index. Sensitivity and specificity of the models were not calculated but 

according to the total points derived from the nomogram, patients were 

classified in subgroups, as shown in Figure 6.2. 

 

 

Figure 2.6: Prediction of the 10-year risk of moderate or severe fibrosis when treated 

with a boost according to Collette et al (2008) (30). (A) Nomogram; the c-index of the 

model is 0.66 in the development set and 0.62 in the validation set. (B) The cumulative 

incidence according to the total prognostic score derived from the nomograms. The 

horizontal line indicates 20% cumulative incidence of moderate to severe fibrosis. The 

model is able to discriminate the patients with >125 points on the nomogram (high-risk 

subgroup), the patients that show a low risk of fibrosis (<125 points) are not well 

discriminated (30). 

 

Another methodology was applied for the prediction of esophagitis after RT 

in non-small cell lung cancer patients (108). Again, patients were divided into a 

training set and a validation set. Multivariate logistic regression models were 
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generated on the training set by the use of forward-stepwise selection 

procedures. Factors included in the model needed to meet three criteria: they 

should be statistically significant, they should increase the discriminating ability 

of the model and the model should be well-calibrated. Then, three risk groups 

(low, intermediate, high) were created by recursive partitioning analysis (RPA) 

including the significant predictors from multivariate analysis. The performance 

of the model, under the form of c-statistic, and the RPA were evaluated using 

the validation set, see Figure 2.7. 

 

 

Figure 2.7: Recursive partitioning analysis (RPA) for radiation esophagitis (RE) grade 

≥2 and grade ≥3 according to Palma et al. (2013). T: Training set; V: Validation set. The 

percentage of the volume of the oesophagus receiving 60 Gy (V60) is the only factor with 

good discrimination score (c > 0.60). The c-statistic of the predictive model for grade ≥2 

was 0.58 and for grade ≥3 was 0.66 (108). 

 

 

In this PhD, associations between different types of parameters (clinical, 

treatment and dosimetric) and the endpoint of interest were investigated by 

applying logistic regression. Prediction models were developed applying the 

least absolute shrinkage and selection operator or Lasso method. Additionally, 

we add genetic data under the form of genetic polymorphisms, as it is 

suggested that they play an important role in influencing the susceptibility for 

development of radiation injury and, thus, may enrich the predictive 

performance of models (109, 110). This genetic part is discussed in more detail 

in the following chapter.  
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3 Radiosensitivity is influenced by genetic factors 

The study of genetic variation on radiation response is called radiogenomics; it 

focuses on uncovering the underlying genetic causes of individual variation in 

sensitivity to radiation. The most common source of variation between humans 

are single nucleotide polymorphisms or SNPs.  

In this chapter, we start by describing the suggested allelic architecture of 

radiosensitivity and explain the unique features of SNPs. Furthermore, different 

approaches to select polymorphisms and genotyping assays are discussed. 

 

3.1 Radiosensitivity heritability and allelic architecture 

Radiosensitivity can result in different observations. This can be (i) in cellular 

context (measured in the laboratory using a clonogenic, chromosome damage, 

DNA damage or apoptosis assay) or (ii) in clinical setting, described by 

differences in toxicity after RT with some tissues more radiosensitive than 

others, or (iii) susceptibility to radiation-induced cancer (111, 112). The high 

heritability of enhanced chromosomal and cellular radiosensitivity has been 

shown by many studies with values ranging from 58% to 78% (113-117). In 

contrast, data to assess the heritability of clinical radiosensitivity based upon 

family history are not available, but, is perhaps somewhat lower than for 

chromosomal and cellular radiosensitivity (117). One study comparing intra- and 

interpatient variability, estimated that about 80% of the total variation in the 

development of skin telangiectasia was attributed to patient-related factors, 

such as genetics and physiology (118). Cellular and clinical radiosensitivity 

follow an approximately Gaussian distribution as is the case for height, which 

has a strong heritability component (111, 119, 120).  

Radiosensitivity is considered to be a complex polygenic trait (7, 110). It is 

previously proposed that the allelic architecture of this trait includes a spectrum 

of sequence alterations ranging from rare highly penetrant alterations to 

common alterations with small relative risks (1.1 – 1.5), as shown in Figure 3.1 

(111, 120, 121). Earlier studies identified rare homozygous mutations resulting 

in large effects on clinical radiosensitivity with a high relative risk (>10) (121), for 

example in patients with severe syndromes such as ataxia telangiectasia, 
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Blooms syndrome and Nijmegen breakage syndrome (122). However, it is 

unknown whether high-risk radiosensitivity alleles exist outside patients with 

genetic Mendelian syndromes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Allelic architecture of radiosensitivity. From West et al. (111). Allelic 

architecture refers to the number, type, effect size and frequency of susceptibility variants 

in relation to a specific trait. Rare high-risk alleles are typically discovered by family studies 

and linkage analysis, rare intermediate-risk alleles by re-sequencing in case–control 

studies and common low risk alleles by candidate gene SNP studies and GWAS (123).  

 

3.2 Single Nucleotide Polymorphisms 

A SNP is a single base substitution and may occur every 100 to 300 bases 

among the 3 billion base-pair genome; they are generally described as allelic 

variants that occur in the population with a frequency of >1% and are typically 

characterized as low-penetrance variants. This is in contrast to mutations, which 

are usually rare, but associated with high penetrance. The allele frequencies 

may differ between ethnic groups or in different geographical regions, usually as 

a result of genetic drift or natural selection (111, 124). The human genome is 

organised into haplotype blocks separated by recombination hot spots. Within 

each block, alleles of multiple SNPs are inherited together as a single unit; they 

are in linkage disequilibrium (LD).  
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In genetic studies, SNPs can serve as genomic markers for their association 

with complex diseases and traits and for predicting disease susceptibility and 

drug response, contributing to personalised medicine. They are also used in 

studies of human migration and evolution (124). Depending on their position, 

genetic variants can have an impact on function; SNPs in coding regions can 

have an effect at the protein level, with altered protein stability or catalytic 

activity. SNPs in regulatory regions of the genome can affect gene expression, 

and those in non-coding sequences can influence splicing, RNA cleavage, 

stability or export (125). Identification of the variants causing the disease or trait 

may bring more insights into disease aetiology. However, most SNPs do not 

cause disease, they rather represent a physical location to pinpoint the disease 

on the human genome map. Hence, most SNPs that are statistically associated 

with the disease from genetic association studies, are likely in LD with the true 

causative alleles. The next step to investigate the causal role are additional 

functional and mechanistic studies (126). Additionally, SNPs can be used to 

determine the likelihood that an individual will develop a disease which can 

serve as the basis for a prediction assay. These assays might enable us to 

permit an earlier intervention to prevent development of the disease of interest. 

For example, in pharmacogenomics, the FDA recommendation of the dosage of 

warfarin, given to prevent systemic embolism, is based on a SNP profile in the 

CYP2C9 gene and the VKORC1 gene (127).  

 

3.2.1 Different genetic inheritance models 

Bi-allelic polymorphisms can occur under the form of three genotypes; wild type 

and homozygous variant genotype when two copies of the, respectively, major 

or minor alleles are present and the heterozygous genotype when one of each 

allele is present. To assess the genetic effect of each genotype, different 

genetic inheritance models can be defined. The most commonly used genetic 

models are the recessive, dominant, additive and codominant models. In the 

recessive model, patients carrying the homozygous variant genotype are 

considered to be different from the group of patients with the wild type and 

heterozygous genotype. In the dominant model, patients containing at least one 

minor allele are grouped and compared with patients carrying the wild type. In 
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the additive model, it is assumed that the effect of the heterozygous genotype is 

in between the effects of both homozygous genotypes in a dose-dependent 

manner. A comparison of the three genotypes is performed in the codominant 

model, with usually the wild type as a reference compared with the 

heterozygous and homozygous variant genotype separately. A special case is 

the over-dominant model where the risk conferred by the heterozygous 

genotype falls outside both homozygous risks (128). This can be tested by 

comparing the heterozygous genotypes to all homozygous genotypes. 

In the present PhD research, the dominant, recessive and codominant 

models are tested for association of SNPs with the phenotype. Testing multiple 

hypotheses at the conventional significance level of 0.05 may lead to inflated 

false-positive results and requires multiple-testing correction. In this work, 

multiple testing is performed by the Benjamini-Hochberg procedure. 

 

3.3 How are SNPs selected? 

Genetic studies can be performed using different approaches, the candidate 

gene approach and the genome-wide approach. 

In candidate gene association studies, there is a prior knowledge of the 

genes based on the pathogenesis of the phenotype. The idea is that maximising 

the biological plausibility would increase the chance of success. This approach, 

however, is limited by its reliance on the existing knowledge to identify 

candidate genes (126) but can be broadened by selecting genes that participate 

in the entire pathway of interest. In this way, the variability in that pathway is 

explored without restricting the analysis to a single gene (129). Subsequently, 

different criteria can be applied to perform the SNP selection. Some criteria are 

listed: the validation status of the SNP, to increase the certainty of selecting 

genuine polymorphic variants, the position of the variant in the different gene 

regions (3’ or 5’ near gene or untranslated region (UTR), introns or exons), the 

functionality of the polymorphism, which can already be extensively studied or 

examined in silico by different web-based tools, like SNPs3D (130). SNPs can 

also be selected within evolutionary conserved sequences within different 

species which are likely of functional importance (129). 
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Genome-wide association studies (GWASs) are primarily designed to 

provide an unbiased survey of the effects of common genetic variants (131). LD 

is exploited to tag the most common haplotypes which are extracted from the 

International HapMap Project data set. However, despite the density of the 

SNPs on the arrays, it covers only a fraction of the total variation in the genome 

(131). The drawback of this method is the large dataset necessary to identify 

SNPs related to the phenotype at a certain confidence level taking into account 

the multiple testing correction. 

 

3.4 SNP genotyping methods 

There is a diversity of high-fidelity SNP genotyping techniques, with different 

strategies; some of them are preceded by a polymerase chain reaction (PCR). 

The restriction fragment length polymorphism (RFLP) technique involves 

restriction endonucleases and their affinity to bind and cleave unique and 

specific restriction sites. The single base extension reaction (SnapShot®) is 

based on primer extension incorporating a single fluorescently labelled 

dideoxynucleotide by DNA polymerase and TaqMan Assays rely on the 5’-3’ 

nuclease activity of the Taq polymerase and fluorophore-based detection (132). 

The High Resolution Melting Analysis (HRMA) technique measures the 

differential fluorescence of double-strand specific DNA intercalating dyes while 

the DNA amplicon is melted. SNP platforms are based on direct hybridisation to 

allele-specific oligonucleotides or on the combination of primer extension and 

ligation or by aggregating both techniques for example in the Affymetrix 

GeneChip, Illumina GoldenGate and Infinium Beadchips arrays. Other arrays 

using mass spectrometry (iPlex), denaturing high performance liquid 

chromatography or quantitative-PCR are also available but are not further 

discussed. 

 

The predominantly used genotyping techniques in this PhD research are 

PCR-RFLP and HRMA. Additionally, a custom Illumina GoldenGate platform 

containing 384 SNPs was designed by applying the extended candidate gene 

approach. After a comprehensive literature search, genes within an entire 

pathway were selected. The pathways are involved in the early response to IR, 
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DNA checkpoint control and repair of DNA damage upon exposure to IR, ROS 

metabolism and hormonal metabolism. SNPs in those genes were selected 

either based on evolutionary conservation or on evidence for functionality. They 

were supplemented by SNPs previously shown to be associated with cancer 

predisposition in GWA case-control studies. 
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4 Aim of the research 

A substantial degree of variability exists among patients in their response to RT 

(118). Although long-term severe, sometimes life-threatening, side effects are 

present in only a minority of the patients, more patients experience moderate 

toxicity which can seriously impair patients’ quality of life. Examples are poor 

cosmetic outcome following breast irradiation or rectal and urinary complaints 

after prostate irradiation. Acute toxicity can cause pain and discomfort (81). In 

addition, there is growing clinical evidence that acute reactions are associated 

with the development of late toxicity; in breast cancer patients, telangiectasia 

seem to be late sequelae of moist desquamation and acute erythema seems to 

be a risk factor for poor cosmetic outcome (133, 134).  

The first aim of this thesis was to investigate the influence of patient-, 

treatment-, dosimetric parameters and genetic variation on the risk of 

developing acute radiation-induced toxicity in breast and prostate cancer 

patients.  

The second aim was to develop integrated predictive risk models for late 

toxicity in prostate cancer patients that allows a patient individualized estimation 

of its pre-treatment risk. Such models are clinical applicably to guide the 

allocation of patients to treatment groups based on their probability of severe 

RT-induced toxicity and simultaneously improve the therapeutic ratio.  
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5 Outline of the research 

External beam RT is a standard treatment modality for localized and locally 

advanced prostate cancer. More recent technologies such as IMRT allow for the 

delivery of high doses to the prostate, together with a better sparing of the 

rectum which results in a low rate of severe GI complications. Due to the full 

inclusion of the bladder neck and the vesicourethral anastomosis in the high-

dose region, the risk of developing severe GU toxicity remains, however, 

unchanged (88). In this PhD research, we have chosen to break down the 

overall toxicity to specific symptoms that are likely to reflect a specific radiation 

pathophysiology. As GI toxicity is very rare in our study cohort of prostate 

cancer patients, the analysis was performed for GU symptoms only: dysuria, 

incontinence, haematuria, urgency, nocturia and increased daily frequency.  

Acute RT-induced nocturia is in our study population the predominant acute 

toxicity endpoint in prostate cancer patients treated with primary or 

postoperative high-dose IMRT. A number of clinical and dosimetric parameters, 

together with five SNPs in the TGFB1 gene, capturing all common variants in 

the 5’ region of the gene (135), were tested for association with the endpoint. 

The polymorphic sites were examined by PCR-RFLP and HRMA. The results of 

this study are presented in a first paper (chapter 6) entitled ACUTE RADIATION-

INDUCED NOCTURIA IN PROSTATE CANCER PATIENTS IS ASSOCIATED WITH 

PRETREATMENT SYMPTOMS, RADICAL PROSTATECTOMY, AND GENETIC MARKERS IN THE 

TGFB1 GENE. 

Late radiation-induced haematuria and nocturia are the most frequently 

observed late GU symptoms. Models for prediction of these endpoints are 

developed containing clinical, dosimetric and genetic data. The genetic data 

were obtained by a custom-designed Illumina GoldenGate platform containing 

384 genetic variations. To deal with missing data and the high number of 

predictors, the EMLasso, an in-house developed and validated method, was 

applied. The results of this study are presented in a second paper (chapter 7) 

entitled INTEGRATED MODELS FOR THE PREDICTION OF LATE GENITOURINARY 

COMPLAINTS AFTER HIGH-DOSE INTENSITY-MODULATED RADIOTHERAPY FOR PROSTATE 

CANCER: MAKING INFORMED DECISIONS. 
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The current breast cancer cohort is treated with adjuvant RT after breast-

conserving surgery. Normofractionated (25x2 Gy) or hypofractionated (15x2.67 

Gy) IMRT in prone or supine position is prescribed. Systemic therapies like 

chemotherapy, hormone therapy and trastuzumab are administered when 

indicated. The endpoints of interest are the development of acute dermatitis and 

moist desquamation. In this PhD research, treatment- and patient-related 

factors such as bra size cup, body mass index (BMI) and smoking status, 

supplemented with eight SNPs are investigated for the association with the 

endpoints. Five of the eight SNPs were selected based on their putative effect 

on the expression levels of radiation-responsive genes (136). The other SNPs 

were chosen based on their previous association with toxicity induced by RT or 

methylating agents (137-140). The polymorphic sites were examined by PCR-

RFLP, HRMA and single base extension technique. The results of this study are 

represented in the third paper (chapter 8) entitled FACTORS MODIFYING THE RISK 

FOR DEVELOPING ACUTE SKIN TOXICITY AFTER WHOLE-BREAST INTENSITY MODULATED 

RADIOTHERAPY.  
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SUMMARY 

Severe nocturia occurs in approximately 25% of the prostate cancer patients as 

a side effect of radiation therapy, and thus sleep disturbance diminishes 

patients’ quality of life. This study of 322 patients demonstrates that clinical 

factors such as prior radical prostatectomy and the presence of mild 

pretreatment symptoms, as well as genetic markers in the TGFB1 gene, 

contribute to the development of severe radiation-induced nocturia. 
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ABSTRACT 

Purpose: After radiation therapy for prostate cancer, approximately 50% of the 

patients experience acute genitourinary symptoms, mostly nocturia. This may 

be highly bothersome with a major impact on the patient’s quality of life. In the 

past, nocturia is seldom reported as a single, physiologically distinct endpoint, 

and little is known about its aetiology. It is assumed that in addition to dose-

volume parameters and patient- and therapy-related factors, a genetic 

component contributes to the development of radiation-induced damage. In this 

study, we investigated the association among dosimetric, clinical, and TGFB1 

polymorphisms and the development of acute radiation-induced nocturia in 

prostate cancer patients. 

Methods and Materials: Data were available for 322 prostate cancer patients 

treated with primary or postoperative intensity modulated radiation therapy 

(IMRT). Five genetic markers in the TGFB1 gene (-800 G>A, -509 C>T, codon 

10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and 

dosimetric parameters were considered. Toxicity was scored using an symptom 

scale developed in-house. 

Results: Radical prostatectomy (P<.001) and the presence of pretreatment 

nocturia (P<.001) are significantly associated with the occurrence of radiation-

induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) 

genotypes are significantly associated with an increased risk for radiation-

induced acute nocturia. 

Conclusions: Radical prostatectomy, the presence of pretreatment nocturia 

symptoms, and the variant alleles of TGFB1 -509 C>T and codon 10 T>C are 

identified as factors involved in the development of acute radiation-induced 

nocturia. These findings may contribute to the research on prediction of late 

nocturia after IMRT for prostate cancer. © 2013 Elsevier Inc. 

INTRODUCTION 

External beam radiation therapy (RT) is a standard treatment modality for 

localized and locally advanced prostate cancer (1). Modern technologies such 

as intensity modulated radiation therapy (IMRT) allow for the delivery of high 

doses to the prostate while lowering the dose to the neighboring organs at risk 
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(2, 3). This combination is of importance because a higher dose to the prostate 

improves local tumor and biochemical control (3). The use of modern radiation 

technology is needed to avoid excessive late toxicity with higher doses, as has 

been shown in randomized trials (4).  

However, even with IMRT, up to 50% of the patients treated with doses >70 

Gy experience bladder or bowel symptoms during treatment – so-called acute 

toxicity (5). Clinical variables such as any pretreatment genitourinary (GU) 

symptoms, androgen suppression, and prior transurethral resection of the 

prostate (TURP) appeared to be important prognostic factors for radiation-

induced acute GU toxicity (2, 6). Although late toxicity is reported more 

frequently, acute toxicity has been found to be an independent predictor for late 

toxicity (7). Radiation-induced GU toxicity is frequently scored using the 

Radiation Therapy Oncology Group (RTOG) scoring scale (8). This grading 

method includes criteria such as increased urinary frequency, nocturia, dysuria, 

urgency, and haematuria. 

A frequently occurring and under-reported GU symptom, occurring during or 

shortly after radiation therapy is nocturia (2, 3). Nocturia was recently found to 

be associated with a decreased quality of life and with an increased prevalence 

of depression because of more frequent nightly voids. Quality of life and well-

being are already affected in patients with a nocturnal voiding frequency of ≥2 

times (9). Nocturia is a storage problem of the bladder with a dynamic and 

irritative character (10) and is suggested to result from radiation-induced 

inflammation of the prostatic urethra (11). The majority of clinical studies do not 

evaluate nocturia as a specific endpoint or use grading systems other than 

RTOG to score nocturia (6, 12). In addition, many studies combine multiple 

symptoms, which are all suggested to differ in aetiology (10), into a single 

toxicity score (1, 6, 7).  

Because extrinsic factors, such as RT planning and delivery, are better 

controlled today, factors intrinsic to the patient arise as potentially more 

important in the development of radiation-induced toxicity. Identification of 

genes that possess genetic markers associated with clinical radiosensitivity may 

lead to a better understanding of the molecular pathogeneses underlying 

normal tissue injury and may allow a more rational approach to prevent 

radiation toxicity (13). 
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The multifunctional cytokine transforming growth factor-β1 (TGFB1) triggers 

a wide diversity of radiation responses depending on the genetic makeup and 

environment of the target cell. It is considered a biomarker of inflammatory and 

fibrotic responses to RT and has also been shown to play a key role in the 

cellular response to radiation-induced DNA damage (14). The 5’ region of the 

TGFB1 gene is highly polymorphic and likely to have an impact on the 

pathogenesis of numerous diseases through altered TGFB1 expression (15). 

Several studies have claimed associations between polymorphisms in the 

TGFB1 gene and acute or late adverse effects of RT in lung, prostate, breast, 

and gynecological cancer patients (13, 16, 17). Up to now, no studies have 

considered the relationship between TGFB1 polymorphisms and radiation-

induced nocturia in prostate cancer. 

Because dosimetric and patient-related risk factors add variability in 

radiation toxicity outcome, it is necessary to take these factors into account 

when trying to link genotype with a clinical phenotype (13). Therefore, we 

examined the effects of dose parameters, clinical, and individual genetic 

variations in TGFB1 to the development of radiation-induced nocturia during RT 

or within 3 months after RT in prostate cancer patients treated with high-dose 

IMRT. 

MATERIALS AND METHODS 

Patients 

The study population consisted of 322 Caucasian men treated with IMRT as 

primary or postoperative treatment for prostate cancer at the Ghent University 

Hospital between 1999 and 2010. All patients had a follow-up of at least 3 

months to be considered eligible for this study. 

The dose was prescribed as the median dose to the planning target volume, 

and the maximal rectal dose (R) was used as hard constraint. Prescription 

doses of 74, 76, or 80 Gy were delivered in, respectively, 36 (74R72), 37 

(76R74), or 38 (80R76) fractions with 18-MV photons of an Elekta linear 

accelerator (Crawley, United Kingdom) as described previously (2, 3, 18). Two 

hundred twenty-two patients were treated with primary IMRT, and 100 patients 

were treated with postoperative IMRT after radical prostatectomy (Table 1). 
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Table 1: Overview of prescription doses and RT-induced nocturia in primary and post-

operative IMRT setting. 

Treatment 

Prescription group 

All 

(n=322) 

No 

RT-induced  

nocturia 

(n=240) 

RT-induced  

nocturia 

(n=82) 

Primary IMRT (n = 222) 
    

 
P74R72 13 (5.9) 7 (53.8) 6 (46.2) 

 

P76R74 24 (10.8) 21 (87.5) 3 (12.5) 

 

P80R76 185 (83.3) 122 (65.9) 63 (34.1) 

Post-operative IMRT (n = 100) 
    

Adjuvant A76R74 51 (51.0) 47 (92.2) 4 (7.8) 

Salvage S74R72 49 (49.0) 43 (87.8) 6 (12.2) 

Abbreviations: RT = radiotherapy; IMRT = intensity-modulated radiation therapy; P = 

prescription; A = adjuvant; S = salvage; R = maximal rectal dose. 

Data in parentheses are percentages. 

 

To check the relationship between dosimetric parameters and acute 

nocturia, the following dose-volume parameters were investigated: the maximal 

bladder dose (Bmax [Gy]), the median dose to the clinical target volume (CTV) as 

surrogate for urethral dose (CTVmedian [Gy]), the maximal dose to the CTV 

(CTVmax [Gy]), and the CTV volume (CTVVol [cc]).  

Androgen deprivation therapy, consisting of administration of a luteinizing 

hormone releasing hormone analogue, was prescribed for 194 patients. 

A fixed questionnaire was used to register patients’ medical and surgical 

history and pretreatment GU symptoms for each patient (3).  

During treatment, patients were seen on a weekly basis and on the last 

treatment day. Afterward, follow-up was performed at 1 and at 3 months after 

treatment. Acute toxicity was recorded as the maximal score during radiation or 

within 3 months after the end of RT. In the present study, patients suffered from 

RT-induced GU haematuria, dysuria, urgency, nocturia, and increased 

frequency. However, because of the low incidence of the other symptoms, only 

RT-induced nocturia was included in the study. Grading was performed 

prospectively following the grading system proposed by De Meerleer et al (3). 

Pretreatment nocturia was taken into account to avoid overgrading. In brief, 

grade 1 nocturia was defined as 2-3 mictions overnight. Grade 2 nocturia was 

defined as 4-6 mictions overnight, a doubling of the pretreatment nocturia 

frequency, or the need for medication (tamsulosin or terazosin). Grade 3 

nocturia was defined as >6 mictions overnight. For this study, RT-induced 
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nocturia was defined as an increase in toxicity according to grade 2 or 3 in the 

toxicity scale. 

Genomic DNA was obtained from fresh blood using the Puregene genomic 

DNA purification kit (Gentra Systems, Minneapolis, MN). The study was 

approved by the local ethical committee and all study patients provided written 

informed consent. 

 

Genotyping analysis 

The single nucleotide polymorphisms (SNPs) -800 G>A, -509 C>T, codon 10 

T>C, codon 25 G>C, and g.10780 T>G in the TGFB1 gene were selected to 

capture all common variants in the 5’ region of the gene, according to (15). The 

polymorphic sites at position -800 (c.1638G>A; rs1800468), -509 (c.1347C>T; 

rs1800469), and codon 25 (Arg/Pro, c.74G>C; rs1800471) in the TGFB1 gene 

were examined by polymerase chain reaction-restriction fragment length 

polymorphism (PCR-RFLP) analysis as described previously by (19). The 

codon 10 (Leu/Pro, c.29T>C; rs1800470) and the intronic g.10780 (T>G; 

rs2241717) SNPs were determined by high-resolution melting curve analysis 

(HRMA). Primer sequences and restriction-enzymes can be found in Tables e1 

and e2 in the Supplement. The HRMA assays were performed on an Applied 

Biosystems 7500 Fast Real-Time PCR system (Life Technologies, Gent, 

Belgium). Using the Applied Biosystems HRM v2.0 software, melt data and 

output profiles were generated.  

 

Statistical analysis 

Patients with or without RT-induced nocturia were compared by means of the 

Mann-Whitney test for continuous variables and the χ²-test for categorical 

variables. Tests for Hardy-Weinberg equilibrium (HWE) were conducted using 

the observed genotype frequencies and the χ² test with 1 degree of freedom 

(P>.0001). Estimation of haplotypes and calculation of the linkage 

disequilibrium (LD) coefficient r² was performed as described previously (19). 

To assess the independent effect of each polymorphism, unconditional logistic 

regression analyses were performed to calculate crude odds ratios (ORs). In 

addition, multiple unconditional logistic regression analyses with adjustment for 
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possible confounders were performed to calculate adjusted ORs. To correct for 

possible interaction between variables in the multivariate analysis, variance 

inflation factors (VIFs) are calculated to assess multicollinearity. VIF >10 

indicates multicollinearity. The Benjamini-Hochberg procedure was used for 

multiple testing (ie, 33 tests: 18 genetic and 15 clinical parameter tests). 

Statistical analysis was performed using SPSS 17.0 software (SPSS, Chicago, 

IL). 

RESULTS 

Pretreatment nocturia 

Overall, 137 of 322 patients (43%) presented with a form of nocturia existing 

pretreatment. Of them, 78% had grade 1 nocturia (ie, 2-3 times/night), 19% had 

grade 2 nocturia (ie, 4-6 times/night or needing medication), and 3% had grade 

3 nocturia (>6 times/night). 

 

Evolution of pretreatment nocturia 

Data concerning the presence of radiation-induced nocturia were available for 

all patients. Of these, 82 patients (25%) developed acute radiation-induced 

nocturia; 73 patients developed grade 2, and 9 patients developed grade 3 

radiation-induced nocturia. The occurrence of radiation-induced nocturia was 

not significantly different between the prescription doses for both treatment 

regimens (Table 1), but patients receiving postoperative RT seem to be less 

prone to the development of RT-induced acute nocturia (P<.001; Table 2). Only 

8% of the patients with grade 2 pretreatment nocturia and none of the patients 

with grade 3 pretreatment nocturia experienced worsening, whereas 49% of the 

patients with grade 1 pretreatment nocturia had an increase in grade. 
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Table 2: Associations between patient- and therapy-related characteristics and RT-induced acute nocturia. 

 
All patients  Primary IMRT group 

 All 

(n=322) 

No 

RT-induced 

nocturia 

(n=240) 

RT-induced 

nocturia 

(n=82) P-value 

 
All 

(n=222) 

No  

RT-induced 

nocturia 

(n=150) 

RT-induced 

nocturia 

(n=72) P-value 

Age (y) 
    

     

Median 66.0 65.0 66.0 
 

 67.0 67.0 68.0  

Range 49.0-82.0 49.0-81.0 51.0-82.0 .076  51.0-82.0 51.0-81.0 51.0-82.0 .398 

Missing 0 0 0 
 

 0 0 0  

Nicotine abuse (n) 
    

     

Former + never 267 (82.9) 198 (74.2) 69 (25.8) 
 

 183 (82.4) 123 (67.2) 60 (32.8)  

Current 54 (16.8) 42 (77.8) 12 (22.2) .576  39 (17.6) 27 (69.2) 12 (30.8) .807 

Missing 1 (0.3) 0 1 
 

 0 0 0  

Diabetes mellitus (n) 
    

     

No 282 (87.6) 210 (74.5) 72 (25.5) 
 

 191 (86.0) 129 (67.5) 62 (32.5)  

Yes 39 (12.1) 29 (74.4) 10 (25.6) .988  30 (13.5) 20 (66.7) 10 (33.3) .924 

Missing 1 (0.3) 1 0 
 

 1 (0.5) 1 0  

Hypertension (n) 
    

     

No 227 (70.5) 174 (76.7) 53 (23.3) 
 

 155 (69.8) 109 (70.3) 46 (29.7)  

Yes 95 (29.5) 66 (69.5) 29 (30.5) .178  67 (30.2) 41 (61.2) 26 (38.8) .182 

Missing 0 0 0 
 

 0 0 0  

Hypercholesteremia (n) 
    

     

No 188 (58.4) 138 (73.4) 50 (26.6) 
 

 126 (56.7) 83 (65.9) 43 (34.1)  

Yes 71 (22.0) 52 (73.2) 19 (26.8) .979  49 (22.1) 33 (67.3) 16 (32.7) .853 

Missing 63 (19.6) 50 13 
 

 47 (21.2) 34 13  

     
  continued on next page 
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Table 2 (continued) 

 

  

 
All patients  Primary IMRT group 

 All 

(n=322) 

No 

RT-induced 

nocturia 

(n=240) 

RT-induced 

nocturia 

(n=82) P-value 

 
All 

(n=222) 

No  

RT-induced 

nocturia 

(n=150) 

RT-induced 

nocturia 

(n=72) P-value 

Abdominal surgery (n) 
    

     

No 182 (56.5) 136 (74.7) 46 (25.3) 
 

 115 (51.8) 74 (64.3) 41 (35.7)  

Yes 139 (43.2) 103 (74.1) 36 (25.9) .899  106 (47.7) 75 (70.8) 31 (29.2) .288 

Missing 1 (0.3) 1 0 
 

 1 (0.5) 1 0  

TURP (n) 
    

     

No 271 (84.2) 198 (73.1) 73 (26.9) 
 

 176 (79.3) 112 (63.6) 64 (36.4)  

Yes 49 (15.2) 40 (81.6) 9 (18.4) .206  44 (19.8) 36 (81.8) 8 (18.2) .022 

Missing 2 (0.6) 2 0 
 

 2 (0.9) 2 0  

Nocturia pre-treatment (n) 
    

     

Grade 0 185 (57.5) 157 (85.4) 28 (14.6) 
 

 124 (55.9) 98 (79.0) 26 (21.0)  

Grade 1+ 137 (42.5) 83 (60.6) 54 (39.4) <.001   98 (44.1) 52 (53.1) 46 (46.9) <.001 

Missing 0 0 0 
 

 0 0 0  

Lymph node dissection (n) 
    

     

No 195 (60.6) 142 (72.8) 53 (27.2) 
 

 149 (67.1) 101 (67.8) 48 (32.2)  

Yes 122 (37.9) 95 (77.9) 27 (22.1) .314  69 (31.1) 46 (66.7) 23 (33.3) .870 

Missing 5 (1.5) 3 2 
 

 4 (1.8) 3 1  

Androgen deprivation (n) 
    

     

No 126 (39.1) 96 (76.2) 30 (23.8) 
 

 77 (34.7) 52 (67.5) 25 (32.5)  

Yes 194 (60.3) 142 (73.2) 52 (26.8) .549  143 (64.4) 96 (67.1) 47 (32.9) .952 

Missing 2 (0.6) 2 0 
 

 2 (0.9) 2 0  

     
  continued on next page 
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Table 2 (continued) 

 

  

 
All patients  Primary IMRT group 

 All 

(n=322) 

No 

RT-induced 

nocturia 

(n=240) 

RT-induced 

nocturia 

(n=82) P-value 

 
All 

(n=222) 

No  

RT-induced 

nocturia 

(n=150) 

RT-induced 

nocturia 

(n=72) P-value 

Radical prostatectomy (n) 
    

     

No (primary IMRT) 222 (68.9) 150 (67.6) 72 (32.4) 
 

 - - -  

Yes (post-operative IMRT) 100 (31.1) 90 (90.0) 10 (10.0) <.001  - - - - 

Missing 0 0 0 
 

     

Bladdermax (Gy) 
    

     

Median 79.0 78.0 79.0 
 

 79.0 79.0 79.0  

Range 10.0-87.0 10.0-87.0 73.0-83.0 .001  10.0-87.0 10.0-87.0 75.0-83.0 .561 

Missing 1 (0.3) 0 1 
 

 1 (0.5) 0 1  

CTVmedian (Gy) 
    

     

Median 78.0 77.0 78.0 
 

 79.0 79.0 79.0  

Range 72.0-86.0 72.0-86.0 72.0-83.0 <.001  74.0-86.0 74.0-86.0 74.0-83.0 .302 

Missing 1 (0.3) 0 1 
 

 1 (0.5) 0 1  

CTVmax (Gy) 
    

     

Median 81.0 80.0 82.0 
 

 82.0 82.0 82.0  

Range 70.0-89.0 74.0-89.0 70.0-88.0 <.001  77.0-89.0 77.0-89.0 77.0-88.0 .135 

Missing 2 (0.6) 1 1 
 

 2 (1.0) 1 1  

CTVVol (cc) 
    

     

Median 41.0 39.0 49.5 
 

 53.0 52.5 53.5  

Range 7.0-129.0 7.0-129.0 13.0-124 .003  17.0-129.0 19.0-129.0 17.0-124.0 .648 

Missing 4 (1.2) 2 2 
 

 3 (1.5) 1 2  

Abbreviations: RT = radiotherapy; TURP = transurethral resection of the prostate; IMRT = intensity-modulated radiation therapy; CTV 

= clinical target volume. Data in parentheses are percentages. 
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Association between clinical and dose parameters and RT-induced acute 

nocturia 

The associations between dose and clinical parameters and RT-induced acute 

nocturia are represented in Table 2. All studied dose parameters, radical 

prostatectomy, and the presence of pretreatment nocturia were significantly 

associated with the development of acute nocturia in univariate analysis. The 

difference in dose between patients with and without radiation-induced nocturia 

is statistically significant but clinically irrelevant. This difference is mainly driven 

by the patients in the postoperative setting who are treated with a lower dose 

prescription. Because the occurrence of acute nocturia was 3 times higher in 

patients treated with primary IMRT, the analyses were repeated in the primary 

IMRT group (Table 2). In this group, only TURP in patient’s medical history and 

presence of pretreatment symptoms were statistically significantly associated 

with the development of acute nocturia.  

 

Association between TGFb1 polymorphisms and RT-induced acute 

nocturia 

The minor allele frequencies of the TGFb1 polymorphisms in all patients with 

and without RT-induced acute nocturia are represented in Fig. e1 in the 

Supplement. All SNPs were in HWE. Univariate logistic regression analysis 

revealed that the TGFB1 -509, codon 10, and g.10780 polymorphisms were 

statistically significantly associated with an increased risk for RT-induced 

acute nocturia (Table 3). All associations hold after Benjamini-Hochberg 

procedure. 

 

Table 3: Associations between TGFB1 genotypes and RT-induced acute 

nocturia. 

 

All patients 

 

No 

RT-induced 

nocturia 

RT-induced 

nocturia OR 

BH 

adjusted 

p-value 

TGFB1 -800 G>A 
   

 

GG 198 (82.5) 64 (78.1) 1  

GA 39 (16.3) 15 (18.3) 1.19 0.846 

AA 3 (1.2) 1 (1.2) 1.03 1 

dominant (GA+AA vs GG) 
  

1.18 0.846 

recessive (AA vs GG+GA) 
  

1.00 1 

Missing 0 2 (2.4) 
 

 

continued on next page 
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Table 3 (continued) 
   

 

 

All patients 

 

No 

RT-induced 

nocturia 

RT-induced 

nocturia OR 

BH 

adjusted 

p-value 

TGFB1 -509 C>T 
   

 

CC 134 (55.9) 29 (35.4) 1  

CT 86 (35.8) 44 (53.7) 2.36 0.008 

TT 20 (8.3) 7 (8.5) 1.62 0.568 

dominant (CT+TT vs CC) 
  

2.22 0.010 

recessive (TT vs CC+CT) 
  

1.06 1 

Missing 0 2 (2.4) 
 

 

    
 

TGFB1 codon 10 T>C 
   

 

TT 106 (44.1) 18 (21.9) 1  

TC 100 (41.7) 54 (65.9) 3.18 0.001 

CC 34 (14.2) 9 (11.0) 1.56 0.568 

dominant (TC+CC vs TT) 
  

2.77 0.005 

recessive (CC vs TT+TC) 
  

0.78 0.802 

Missing 0 1 (1.2) 
 

 

    
 

TGFB1 codon 25 G>C 
   

 

GG 196 (81.7) 67 (81.7) 1  

GC 44 (18.3) 13 (15.9) 0.86 0.854 

CC 0 0 -  

dominant (GC+CC vs GG) 
  

0.86 0.854 

recessive (CC vs GG+GC) - - -  

Missing 0 2 (2.4) 
 

 

    
 

TGFB1 g.10780 T>G 
   

 

TT 92 (38.3) 18 (21.9) 1  

TG 107 (44.6) 50 (61.0) 2.39 0.015 

GG 41 (17.1) 13 (15.9) 1.62 0.491 

dominant (TG+GG vs TT) 
  

2.18 0.025 

recessive (GG vs TT+TG) 
  

0.93 1 

Missing 0 1 (1.2) 
 

 

Abbreviations: RT = radiotherapy; OR = odds ratio; BH = Benjamini-

Hochberg procedure; TGFB1 = transforming growth factor β1. 

Data in parentheses are percentages. 

 

Next, multivariate analysis was performed with following variables: 

pretreatment nocturia symptoms, radical prostatectomy, TURP, TGFB1 -509, 

codon 10, and g.10780 polymorphisms. Because the -509 and the codon 10 

SNP are not independent (VIF -509 = 34.1; VIF codon 10 = 38.7), only 1 of 

these SNPs was included in the analysis. Moreover, because the dose 

differences for RT-induced nocturia are clinically irrelevant, these were not 

included. Because of its clinical importance, TURP was also entered in the 
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analysis. This multivariate analysis revealed that the development of acute 

radiation-induced nocturia is significantly associated with radical prostatectomy, 

presence of pretreatment nocturia symptoms, previous TURP, and the TGFB1 

codon 10 and -509 polymorphisms (Table 4). The TGFB1 g.10780 SNP does 

not remain significantly associated with the development of radiation-induced 

nocturia in multivariate analysis. 

 

Table 4: Effect of clinical and genetic factors on the risk of radiation-induced nocturia from 

multivariate logistic regression. 

Analysis 1 
 

Analysis 2 

Clinical/Genetic 

Factor 
OR P-value 

 

Clinical/Genetic 

Factor 
OR P-value 

Nocturia pre-treatment (n) 4.64 <0.001 
 

Nocturia pre-treatment (n) 4.01 <0.001 

Radical prostatectomy (n) 0.14 <0.001 
 

Radical prostatectomy (n) 0.15 <0.001 

TURP (n) 0.31 0.010 
 

TURP (n) 0.37 0.016 

TGFB1 codon 10 T>C 
   

TGFB1 -509 C>T 
  

TT 1 
  

CC 1 
 

TC 3.45 0.001 
 

CT 2.50 0.030 

CC 0.95 0.927 
 

TT 1.93 0.377 

TGFB1 g.10780 T>G 
   

TGFB1 g.10780 T>G 
  

TT 1.00 
  

TT 
  

TG 1.84 0.107 
 

TG 1.42 0.441 

GG 1.45 0.473   GG 0.83 0.777 

Analysis 1: multivariate analysis with factors nocturia pre-treatment, radical prostatectomy, 

TURP, TGFB1 g.10780 T>G, TGFB1 codon 10 T>C. 

Analysis 2: multivariate analysis with factors nocturia pre-treatment, radical prostatectomy, 

TURP, TGFB1 g.10780 T>G, TGFB1 -509 C>T. 

 

 

Linkage analysis and haplotype determination 

All polymorphisms are located in the 5’ region of the TGFB1 gene. LD was 

measured among the SNPs using the allele frequency data of all patients. 

There was LD between the -509 and the codon 10 polymorphism (r²=.66) and 

between the -509 polymorphism and the intronic g.10780 (r²=.55). There was 

no LD between the other polymorphisms (r²≤.32). The polymorphisms have 

been used to reconstruct five TGFB1 haplotypes (H1-H5) (Table 5). The most 

frequent haplotype (H1) composes all wild-type alleles (GCTGT) and was 

considered as reference haplotype. To correlate haplotypes with clinical 

radiosensitivity, haplotype frequencies were calculated for the group with and 

without RT-induced acute nocturia. This analysis showed that the H2 haplotype 
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was more frequent in the acute nocturia group; however, this was not 

statistically significant (OR = 1.68; P=.124). 

 

Table 5: Associations between TGFB1 haplotypes and RT-induced acute nocturia. 

      
Estimated frequency (%)   

 

-800 
G>A 

-509 
C>T 

codon 
10 T>C 

codon 
25 G>C 

g.10780 
T>G 

All 
(n=322) 

No 
RT-

induced 
nocturia 
(n=240) 

RT-
induced 
nocturia 
(n=82) 

  

 
OR P-value 

H1 G C T G T 40.3 42.3 34.4 1 
 

H2 G T* C* G G* 28.4 26.0 35.6 1.68 0.124 
H3 G C T G G* 12.5 13.1 10.6 0.99 0.836 
H4 A* C T G T 9.5 9.4 10.0 1.31 0.730 
H5 G C C* C* T 8.6 8.8 8.1 1.13 0.999 

Abbreviations: RT = radiotherapy; OR = odds ratio. *alleles differing from the reference 

haplotype H1. 

DISCUSSION 

This study was performed to analyze the influence of nongenetic and genetic 

factors on the development of acute radiation-induced nocturia. Significant 

associations were found between the TGFB1 -509 C>T and codon 10 T>C 

variant alleles and the development of RT-induced acute nocturia in prostate 

cancer patients. Also, primary IMRT (as opposed to postoperative IMRT) and 

the presence of pretreatment nocturia contribute to the variability in radiation 

toxicity. 

This study is the first that examines genetic markers in TGFB1 and their 

association with acute nocturia following IMRT for prostate cancer patients. The 

polymorphisms in TGFB1 have been extensively examined in normal tissue 

radiobiology. Much research has been performed to find associations between 

SNPs in the TGFB1 gene and several RT-induced late adverse events (13). 

These results show no consistency, however. Currently, the radiogenomics 

consortium is working on a meta-analysis of published and unpublished data to 

confirm or refute the relationship between TGFB1 SNPs and late radiotoxicity 

(20). Only 2 studies have reported on the correlation of SNPs in the TGFB1 

gene and acute radiation toxicity. Whereas Suga et al (16) could not find an 

association between -509 C>T and early skin reactions in Japanese breast 

cancer patients, Zhang et al (17) were able to demonstrate an association of the 

variant allele of -509 C>T with an increased risk of acute radiation-induced 
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oesophageal toxicity in Chinese lung cancer patients. Our study demonstrates a 

significant association between the variant alleles of TGFB1 -509 C>T and 

codon 10 T>C and the occurrence of radiation-induced acute nocturia in 

prostate cancer patients.  

In this study, 1 specific radiation-induced side effect –nocturia- was 

considered. Former studies (13) used a single grade that resulted of combining 

multiple symptoms such as haematuria, dysuria, urgency, nocturia, and 

increased frequency. Using this approach in our study, 105 instead of 82 

patients would have been categorized as having RT-induced acute GU toxicity. 

Subdividing the patients in this manner leads to the loss of the significant 

associations between the TGFB1 polymorphisms (-509 C>T and codon 10 T>C) 

and the general radiation-induced GU injury (data not shown). This illustrates 

that combining multiple symptoms can mask significant effects and confound 

the analysis. 

In this study, pretreatment nocturia was strongly linked to the development 

of acute RT-induced nocturia. This was also found in the study of Peeters et al 

(6). Registering pretreatment symptoms data is mandatory, but omitting the 

registration implicates that the pretreatment symptom cannot be included as a 

confounding factor, leading to an inaccurate quantification of RT-induced 

toxicity. Jereczek-Fossa et al (7) showed that the development of acute 

genitourinary side effects is strongly correlated with the development of late 

events. This is also the case for nocturia in our study. Of the patients 

developing acute grade ≥2 nocturia, 51% developed at least late grade 1 

nocturia (ie, 2-3 times/night), and 38% developed late grade ≥2 nocturia (>4 

times/night or medication needing).  

Our study shows that the incidence of acute nocturia was 3 times lower in 

patients treated with postoperative IMRT compared with patients treated with 

definitive IMRT. This is in accordance with Zelefsky et al (11). Therefore, we 

hypothesize that edema of the prostatic urethra is the predominant factor 

contributing to acute urinary complications. This might also explain the excellent 

response to α-blocker therapy (1). The lack of a significant response of 

nonsteroidal anti-inflammatory drugs (NSAIDs) suggests that the inflammatory 

component is clinically less important (11). Nevertheless, the current study 

indicates that TGFB1, a mediator of inflammation, is one of the many factors 
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involved in the pathogenesis of RT-induced nocturia. Because evidence exists 

that acute GU toxicity originates from damage to the urethra, we introduced a 

surrogate for the urethral dose, the CTVmedian. The difference between patients 

with and without acute nocturia was found to be clinically irrelevant. This raises 

the question of whether the parameter chosen is an adequate surrogate for the 

urethral dose. Nevertheless, in future work, it will be necessary to study the 

complete dose-volume histogram of the urethra. This will be difficult because it 

is not easy to delineate the urethra. 

A strength of our investigation is the relatively large number of patients 

enrolled. We were also able to build a nearly complete data set with few missing 

values (with the exception of hypercholesterolemia status). Furthermore, 

patients were from an ethnically homogeneous population, and patient 

recruitment as well as clinical outcome data collection were carried out 

prospectively. We investigated 1 endpoint of RT-induced GU injury and were 

able to include a large number of clinical and treatment variables, including the 

presence of pretreatment symptoms. Nevertheless, a major issue in genetic 

association studies is the increasing risk for false-positive findings. We 

anticipated this problem by controlling the false discovery rate by means of the 

Benjamini-Hochberg procedure. Although the associations hold after correcting 

for multiple testing, the results of this study should be validated in an 

independent study.  

In conclusion, radical prostatectomy and the presence of mild nocturia 

before therapy and the variant alleles of TGFB1 -509 C>T and codon 10 T>C 

are identified as factors involved in the development of acute radiation-induced 

nocturia. Because a specific symptom was investigated, this study is unique 

and is also a call for standardization of radiation toxicity assessment in RT 

treatment of prostate cancer. The results of this study may be useful in research 

focusing on prediction of late severe nocturia after IMRT for prostate cancer. 
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SUPPLEMENTARY MATERIAL 

 

Table e1: Polymerase chain reaction-restriction fragment length polymorphism (RFLP) 

methods. 

db SNP-ID Genotype Ta 
Restriction 

Enzyme 
Primers 

rs1800469 -800 G>A 60°C HpyCh4IV 
5'-GCA GTT GGC GAG AAC AGT TG-3' 

5’-TGG GTC ACC AGA GAA AGA GG-3' 

rs1800469 -509 C>T 60°C Bsu36I 
5'-GCA GTT GGC GAG AAC AGT TG-3' 

5’-TGG GTC ACC AGA GAA AGA GG-3' 

rs1800471 Arg25Pro 58°C BgI I 

5'-TGT TCG CGC TCT CGG CAG-3' 

5'-GAC CTC CTT GGC GTA GTA G-3' 

Abbreviations: Ta: annealing temperature of PCR reaction. 

 

 

Table e2: High Resolution Melting curve Analysis (HRMA) methods. 

db SNP-ID Genotype Ta Primers 

rs1800470 Leu10Pro 64°C 
5'-ACC ACA CCA GCC CTG TTC-3'  

5’-AGC ACC AGT AGC CAC AGC AG-3’ 

rs22241717 g.10780 T>G 60°C 
5’-GTC GGC TGG TTA CAA GGT C-3’  

5’-GCT TGG CAA CAG AGT GAG AC-3’ 

Abbreviations: Ta: annealing temperature of HRMA reaction. 
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ABSTRACT 

Background and purpose: To develop predictive models for late radiation-

induced haematuria and nocturia allowing a patient individualized estimation of 

pre-treatment risk. 

Materials and methods: We studied 262 prostate cancer patients treated with 

curative intensity modulated radiotherapy to the intact prostate or prostate bed. 

A total of 372 variables were used for prediction modeling, among which 343 

genetic variations. Toxicity was scored using an in-house developed toxicity 

scale. Predictor selection is achieved by the EMLasso procedure, a penalized 

logistic regression method with an EM algorithm handling missing data and 

crossvalidation avoiding overfit. Model performance was expressed by the area 

under the curve (AUC) and by sensitivity and specificity. 

Results: Variables of the model predicting late haematuria (36/262) are bladder 

volume receiving ≥75 Gy, prostatic transurethral resection and four 

polymorphisms. (AUC = 0.80, sensitivity = 83.3%, specificity = 61.5%). The 

AUC drops to 0.67 when the genetic markers are left out. The model that 

predicts for late nocturia (29/262) contains the minimal clinical target volume 

(CTV) dose, the CTV volume and three polymorphisms (AUC = 0.76, sensitivity 

= 75.9%, specificity = 67.4%). This model is a better predictor for nocturia 

compared to the nongenetic model (AUC of 0.60).  

Conclusions: We were able to develop models that predict for the occurrence 

of late radiation-induced haematuria and nocturia, including genetic factors 

which might improve the prediction of late urinary toxicity. 

INTRODUCTION 

Long-term toxicity after radiotherapy may cause substantial morbidity (1). 

Quality of life outcomes are of particular importance as most patients survive 

early-stage prostate cancer after treatment and should therefore be part of the 

treatment decisions (2). Prediction models of radiotherapy-induced side effects 

impairing patients’ quality of life, can help this medical decision making.  

Recent refinements of intensity-modulated radiotherapy (IMRT) and image-

guided techniques allow for a better sparing of the rectum, which results in an 
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acceptable level of severe late gastrointestinal (GI) complications, such as 

rectal bleeding (1-3). In contrast, due to the full inclusion of the bladder neck 

and, in case of postoperative RT, the vesicourethral anastomosis in the high-

dose region, the risk of developing severe genitourinary (GU) toxicity has 

remained rather unchanged (1, 4). GU symptoms occur with a 10-year 

cumulative incidence of approximately 20% in patients treated with high-dose 

IMRT.  

Moreover, the incidence does not seem to plateau, as it is the case for GI 

toxicity (1, 2). Factors already known to predict for chronic GU toxicity are pre-

treatment urinary complaints, prior transurethral resection of the prostate 

(TURP) and the presence of acute toxicity (5-7). Although bladder dose-volume 

effects are demonstrated (8-10), methodological differences have obscured the 

link between lower urinary tract dose and toxicity (11). Intrinsic factors as 

genetic polymorphisms, which are mainly responsible for the interpatient 

variability, can add predictive value to the pre-treatment risk-estimation of an 

individual patient. Therefore, the purpose of this study was to develop 

integrated predictive models containing clinical, dosimetric and genetic data for 

the prediction of late GU sequelae in prostate cancer patients. This would 

enable us to individualize patient treatment. 

MATERIALS AND METHODS. 

Study population 

This study enrolled 262 patients treated with IMRT as primary (n = 180) or post-

operative treatment (n = 82) for prostate cancer at the Ghent University Hospital 

between 1999 and 2011. All patients had at least 12 months of follow-up (range: 

1–13 yr). 

The dose was prescribed as the median dose to the planning target volume. 

Prescription doses were delivered with 18 MV photons of an Elekta linear 

accelerator (Crawley, UK) as described in detail in (7, 12, 13). Patients in the 

postoperative setting were treated with 74 Gy (adjuvant) or with 76Gy (salvage). 

Three dose levels (74, 76 and 80 Gy) were given to patients treated with 

primary IMRT. Patient setup, verification, target volume description and normal 

tissue constraints are reported previously (7, 12, 13). 
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Adjuvant androgen deprivation consisting of a luteinizing hormone-releasing 

hormone analog, was administered in 157 patients. Patient characteristics are 

listed in Table 1. 

 

Table 1: Patient and tumour characteristics. 

Characteristics All patients 

Age, yr 
 

Median 65 

Range 49-82 

Follow-up, yr 
 

Median 4 

Range 1-13 

Prescribed radiotherapy dose, Gy 
 

Median 80 

Range 74-80 

Prescription protocol  

74 Gy, 36 fractions 54 (20.6) 

76 Gy, 37 fractions 63 (24.0) 

80 Gy, 38 fractions 145 (55.3) 

Radical Prostatectomy 
 

Yes 82 (31.3) 

No 180 (68.7) 

Tumor stage 
 

T1 78 (29.8) 

T2 110 (42.0) 

T3 70 (26.7) 

T4 4 (1.5) 

Gleason score 
 

≤6 131 (50.0) 

7 83 (31.7) 

8-10 45 (17.2) 

Unknown 3 (1.1) 

PSA before RT, ng/ml 
 

Median 6.7 

Range 0.0-150.0 

≤10 ng/ml 187 (71.4) 

>10 ng/ml 75 (28.6) 

Lymph node dissection 
 

Yes 93 (35.5) 

No 168 (64.1) 

Unknown 1 (0.4) 

Adjuvant AD 
 

Yes 156 (59.5) 

No 106 (40.5) 

continued on next page 



67 

 

 
 

  
Table 1 (continued) 

Characteristics All patients 

Prior TURP 
 

Yes 39 (14.9) 

No 223 (85.1) 

Pre-treatment symptoms 
 

Yes 108 (41.2) 

No 154 (58.8) 

Abbreviations: PSA = prostate-specific antigen; 

AD = androgen deprivation; TURP = transurethral 

resection of the prostate. 

Data are given as no. (%) unless otherwise 

indicated. 

 

In order to have a comfortably filled bladder (>200 mL) patients were 

instructed to drink ±750 cc prior to their therapy. Bladder filling was checked to 

match the volume on planning computed tomography (CT) to avoid 

under/overfilling of the bladder. Before 2010, this was checked by a portable 

bladder ultrasound, thereafter, daily cone-beam CT was applied (7, 14). The 

maximum bladder dose was set at 80 Gy. Dose-volume histograms (DVH) were 

calculated using an in-house-developed planning system, with a final dose 

computation using a commercial radiotherapy planning system (Pinnacle; 

Philips Medical Systems, Best, The Netherlands). The bladder was delineated 

as a solid organ. The minimal, mean and maximal dose to the clinical target 

volume (CTV), the CTV volume (cc), the mean and maximal bladder dose (Gy), 

the bladder volume (Bvol (cc)) and the percentage of the bladder volume 

receiving more than 10, 20, 30, 40, 50, 60, 65, 70 and 75 Gy (termed B10 (%) 

to B75 (%)) were considered as predictors.  

All patients completed a pre-IMRT questionnaire, registering baseline GU 

symptoms and patients’ medical history (diabetes, hypertension, previous 

surgery, and smoking). These factors were also considered as predictors. 

Toxicity was registered following an in-house developed grading system (see 

Supplementary Table e1) based on the Radiation Therapy Oncology Group 

(RTOG), the Common Toxicity Criteria for Adverse Events (CTCAE v.3.0) and 

SOMA/LENT toxicity scoring systems (12, 13). It was defined as an increase in 

toxicity symptoms, taking the pre-RT score into consideration, and was 

recorded as the maximal score of radiation-induced toxicity. If symptom scores 
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improved (fewer symptoms after than before RT), these were recorded as a 

zero score. Acute toxicity was defined as toxicity occurring during or within 3 

months after the end of RT. Late toxicity was defined as toxicity occurring for 

the first time >3 months after the end of IMRT or as acute toxicity lasting longer 

than 3 months. Severe late GU symptoms were defined as grade 2 or 3 toxicity. 

Prediction models were only generated for symptoms with an incidence >10%. 

 

Genomic DNA was obtained from fresh blood using the Gentra Puregene 

Blood kit. The study was approved by the local ethics committee 

(UZG2007/560) and all study patients provided written informed consent.  

 

Single nucleotide polymorphism (SNP) selection 

Genes encoding proteins involved in the early response, DNA damage 

response, DNA repair, oxidative metabolism and steroid hormonal metabolism, 

were chosen after comprehensive literature search (more details in 

Supplementary File 1). SNPs in these genes were selected using ECR browser 

(15). This was based on functional tagging of multispecies evolutionary 

conserved regions, which is an indication for biological function. Details can be 

found in (16). The selection was expanded with a number of SNPs previously 

reported to be associated with radiation-induced injury or cancer. Finally, 384 

SNPs were retained.  

 

Genotyping 

Genotyping was performed using the Illumina GoldenGate assay (DNAVision, 

Charleroi, Belgium), genotyping data and clustering of SNP genotypes were 

managed in GenomeStudio (Illumina). Upon processing, quality control 

processes were run to guarantee the accuracy of the genotyped dataset. 

Genotypes were excluded based on call rate (<75%), GenCall score (<0.4) 

which is a measure of quality and reliability, minor allele frequency (<0.05) and 

deviation from Hardy-Weinberg equilibrium (p<0.001). This resulted in the 

elimination of approximately 9% of the SNPs.  
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Statistical analysis 

In a first step, model selection is achieved by the EMLasso procedure. The 

Lasso is a penalized regression method that shrinks down to zero the 

coefficient of the markers that have little apparent effect on the trait and retains 

those variables that have the strongest collective impact (17). Missing data are 

handled by a stochastic expectation-maximization (EM) algorithm that is 

imposed to the predictors. To control for overfit tenfold cross-validation is used. 

As such, a limited set of variables is selected (adding more variables does not 

increase the predictive stability). Details of the method are published by Sabbe 

et al. (18) and discussed by De Ruyck et al (19). Secondly, a simple logistic 

regression model is fit to the data with only the selected variables to obtain the 

model coefficients (β). The individual probabilities (p) were calculated through ln 

p/(1-p) = β0+β1*x1+β2*x2+β3*x3… with x = predictor. Subsequently, the 

prediction performance is measured by the area under the curve (AUC) of the 

receiver operating curve (ROC) and by sensitivity and specificity in the optimal 

operator point of the ROC curve. This point is determined with a higher penalty 

(1.5) for false negatives. To check for calibration the Hosmer-Lemeshow 

goodness-to-fit (GOF) test was applied. P-values >0.05 indicate that the fitted 

model adequately describes the observed outcomes in the data (20). Estimates 

of late GU probabilities were calculated using the Kaplan-Meier method. For all 

analyses, the statistical platform R was used (packages addendum, NumDfr, 

GLoMo, snowfall, EMLasso, Survival) (21).  

RESULTS 

Late GU toxicity 

The most frequently observed late grade 2+ GU symptoms were haematuria 

and nocturia present in 36 (14%) and 29 (11%) of the patients, respectively, 

with grade 3 toxicity present only in 1 and 4 patients. Together, they encompass 

more than 50% of the late urinary symptoms. Fig. 1 shows the cumulative 

incidence of grade 2–3 haematuria and nocturia. Other radiation-induced 

urinary toxicity included dysuria (n = 4), urgency (n = 9), increased daily 

frequency (n = 18) and incontinence (n = 20); the latter predominantly occurred 

in patients treated in the postoperative setting. The occurrence of late radiation-
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induced toxicity was not significantly different between the three prescription 

regimens. 

 

 
 

 

 

Fig 1: Cumulative incidence of late  Fig 2: ROC curves for the different 

radiation-induced haematuria and nocturia. endpoints. 

 

Prediction modeling 

Patient and clinical characteristics are depicted in Table 1. The 343 genetic 

polymorphisms and the 29 patient- and treatment-related parameters under 

consideration are available in Supplementary Tables e2 and e3. In total, 372 

variables were available for model selection. 

Late haematuria. The prediction model for late haematuria has an AUC of 0.80 

and consists of six parameters: B75, prior TURP and the genotypes 

rs3931914CG, rs2293054AG, rs708498GG and rs845552AG (GOF χ² = 10.5; p 

= 0.234). Sensitivity and specificity are 83.3% and 61.5%, respectively, at the 

threshold of 8%. The AUC drops to 0.67 when the 4 genetic markers are left out 

(Figure 2). Data for the variables in the model are shown in Table 2.  

 

Table 2: Data for factors included in the model for late haematuria. 

 

No  

RT-induced haematuria 

(n=226) 

RT-induced haematuria 

(n=36) 

B75 (%)   

Median 5.0 8.0 

Range 0-22 1-22 

Unknown 5 1 

continued on next page 
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Table 2 (continued) 

 

No  

RT-induced haematuria 

(n=226) 

RT-induced haematuria 

(n=36) 

Prior TURP 
  

No 200 (89.7) 23 (10.3) 

Yes 26 (66.7) 13 (33.3) 

HMGRC rs3931914   

CC 145 (92.4) 12 (7.6) 

CG 67 (75.3) 22 (24.7) 

GG 14 (87.5) 2 (12.5) 

NOS1 rs2293054   

GG 105 (82.0) 23 (18.0) 

GA 102 (94.4) 6 (5.6) 

AA 19 (73.1) 7 (26.9) 

PTGER2 rs708498   

GG 167 (90.8) 17 (9.2) 

GA 51 (75.0) 17 (25.0) 

AA 8 (80.0) 2 (20.0) 

EGFR rs845552   

AA 75 (92.6) 6 (7.4) 

AG 101 (80.2) 25 (19.8) 

GG 49 (90.7) 5 (9.8) 

Unknown 1 0 

Abbreviations: RT = radiotherapy; B75 = percentage of the bladder volume 

receiving 75 Gy or more; TURP = transurethral resection of the prostate; 

HMGRC = hydroxy-methyl-glutaryl CoA reductase gene; NOS1 = nitric 

oxide synthase 1 gene; EGFR = epidermal growth factor receptor gene; 

PTGER2 = prostaglandin E receptor 2 gene. 

Data are given as no. (%) unless otherwise indicated. 

 

 

Late nocturia. Variable selection procedure revealed a model comprising the 

following variables: the CTV min, the CTV volume and the rs1799983GT, 

rs1045485GG and rs4808611TC genotypes (GOF χ² = 3.8; p = 0.878). This 

model has an AUC of 0.76 with sensitivity of 75.9% and specificity of 67.4% at 

the threshold of 9%. Data for the variables in the model are shown in Table 3. 

The model including the SNPs was a better predictor for nocturia compared to 

the non-genetic model (AUC of 0.60) (Figure 2). The presence of acute grade 2 

toxicity also adds predictive value to the model (AUC = 0.78). This factor can, 

however, not be included in the model as the occurrence of acute toxicity is 

unknown before the start of RT (data not shown).  
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The coefficients for the calculation of the probability are available in 

Supplementary Tables e4 and e5. 

 

Table 3: Data for factors included in the model for late nocturia. 

 

No 

RT-induced nocturia 

(n=235) 

RT-induced nocturia 

(n=29) 

CTV min (Gy)   

Median 72 73 

Range 64-79 67-78 

Unknown 9 1 

CTV volume (cc)   

Median 41 54 

Range 7-129 17-127 

Unknown 7 0 

NOS3 rs1799983   

GG 83 (80.6) 20 (19.4) 

GT 122 (96.1) 5 (3.9) 

TT 27 (87.1) 4 (12.9) 

Unknown 1 0 

CASP8 rs1045485   

GG 178 (93.2) 13 (6.7) 

GC 49 (77.8) 14 (22.2) 

CC 6 (75.0) 2 (25.0) 

NR2F6 rs4808611   

CC 157 (94.0) 10 (6.0) 

CT 69 (80.2) 17 (19.8) 

TT 5 (71.4) 2 (28.6) 

Unknown 2 0 

Abbreviations: RT = radiotherapy; CTV = clinical target volume; 

NOS3 = nitric oxid synthase 3 gene; CASP8 = caspase 8 gene; 

NR2F6 = nuclear receptor subfamily 2, group F, member 6 gene. 

Data are given as no. (%) unless otherwise indicated. 

DISCUSSION 

The main purpose of the current study was to design predictive models suitable 

in clinical practice to identify patients at risk for developing severe urinary 

symptoms. Late radiation toxicity is related to both dosimetric and clinical risk 

factors, as well as, the patients’ genetic make-up. We were able to construct 

well-calibrated models for late radiation-induced haematuria and nocturia. 

This study shows that genetic factors have the potential to improve 

prediction of late toxicity. There are several advantages using genotypes as 
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biomarkers: easy to analyze, stable and affordable. Four genetic markers are 

included in the model predicting late radiation-induced haematuria. The 

potentially functional 5’UTR SNP, rs3931914, is situated in the HMGCR gene 

encoding hydroxy-methylglutaryl-coenzyme A reductase. This enzyme is rate-

limiting in the novo synthesis of cholesterol. The SNP can generate a binding 

motif and can induce the loss of several other motifs for transcription factors 

(22). In the current study, heterozygotes predict for the development of late 

haematuria. The other variants rs2293054, rs708498 and rs845552 in the 

NOS1 gene, the PTGER2 gene and the EGFR gene, respectively, were 

selected based on their evolutionary conservation. In case of nocturia, three 

genetic variants provide additional predictive value. The variant rs1799983 

(Asp298Glu) is located in the NOS3 gene, which protein is responsible for nitric 

oxide (NO) production. The functional variant has been shown to result in a 

reduction of the NO production which results in lower levels of oxidative stress 

(23). We show that carriers of the heterozygote genotype have a lower risk to 

develop late nocturia. Previous studies could demonstrate a similar effect for 

this SNP with a decreased risk for radiation-induced telangiectasia and 

pneumonitis (23, 24). Two SNPs included in our model were previously shown 

to be associated with breast cancer risk, rs4808611 and rs1045485 

(Asp302His) (25, 26). This is plausible as it is hypothesized that there is an 

overlap between polymorphisms associated with breast cancer and 

radiosensitivity (27). In the current study, rs4808611 heterozygotes and carriers 

of the variant allele of rs1045485 have a higher risk to develop late nocturia. 

Radiosensitivity is considered to be an inherited complex, polygenic trait 

dependent on many SNPs each with small effect sizes (28). Although, in this 

study, we notice that the contribution of SNPs is more than expected. This can 

be due to sample size. 

Only few studies were able to develop predictive models of late urinary 

toxicity including dose-volume information (8, 10). This is due to the highly 

variable bladder filling during radiotherapy which leads to difficulties in 

calculating the actual dose to the bladder (5). Specific instructions to ensure a 

stable bladder volume have been shown to minimize the discrepancy between 

the planning DVH and the actual dose (11). In the current study, daily medical 

imaging was applied to verify bladder filling and the discrepancy is expected to 
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be low. The percentage of the bladder volume receiving ≥75 Gy is shown to be 

predictive for late GU toxicity. Previous studies (8-10) also indicated that small 

high-dose regions contribute to the development of late GU injury, which 

confirms the serial behavior of the bladder for chronic urinary toxicity. The 

minimal dose to the CTV and the CTV volume indicate the involvement of the 

prostatic urethra for late nocturia as the prostatic urethra was not considered as 

an organ at risk in the planning system. 

We found prior TURP to be predictive for a higher occurrence of late 

haematuria. Previous studies have shown that TURP before RT was associated 

with less acute toxicity (7, 29). This procedure was probably performed to 

alleviate baseline urinary symptoms, as those increase the risk for acute 

toxicity. Nevertheless, this procedure might deteriorate the late urinary 

symptoms (30). We and many others found that the presence of acute 

radiation-induced grade 2 GU symptoms is predictive for the development of 

late toxicity (4-6). This factor is, however, unknown at the start of RT and is 

therefore no genuine predictor. The presence of baseline urinary symptoms was 

not found to be predictive for late toxicity. 

The prediction of radiation morbidity has been valued by others (6). 

Predictive models can guide the allocation of patients to treatment groups 

based on their probability of severe radiotherapy toxicity and simultaneously 

improve the therapeutic ratio. Patients at high risk may be offered an alternative 

treatment, such as, radical prostatectomy or active surveillance. Or, for patients 

who receive radiotherapy, advanced planning corrections can be introduced to 

better individualize radiotherapy treatment. It can enable us to define 

acceptance criteria for future use in RT treatment for prostate cancer. Current 

analyses are suitable for practice. Nevertheless, validation and assessment of 

clinical usefulness are needed before implementing these models in the clinic 

for routine use. Clinical usefulness can be quantified by decision-analytic 

methods, such as net benefit and decision curve analysis (20, 31). Therefore, 

an optimal clinical decision threshold should be determined taking into account 

the harms and benefits of the alternative treatment. In this context, adopting an 

alternative treatment without impairing local tumour control and survival, is a 

matter of further research and debate. In the current study, the threshold for late 

haematuria and late nocturia penalizes the number of false negatives. From a 
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clinical point of view, this is rather arbitrary as the alternative treatment is not 

yet known. 

This study is susceptible to the shortcomings of every retrospective analysis. 

We did not include the time-course of the events, which may restrict the 

applicability of the resulting models at different time points, especially when the 

events are reversible or transient. We welcome other centers to join in, testing 

the predictive power in independent cohorts and upgrading the number of 

events.  

 

In conclusion, late radiation-induced haematuria and nocturia can be 

predicted by combining clinical, dosimetric and genetic data. Inclusion of 

genetic data can refine prediction of late urinary toxicity. Validation and 

assessment of the clinical usefulness are necessary before implementing these 

models in the clinic. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table e1: The in-house developed Genitourinary (GU) toxicity scale. 

GU Grade 1 Grade 2 Grade 3 Grade 4 

Nocturia Increase in 

frequency  

≤2 normal 

Increase >2 

normal  

but less than 

every hour 

Once or more 

per hour 

Not defined 

Frequency Increase in 

frequency 

≤2 normal 

Increase >2 

normal  

but less than 

every hour 

Once or more 

per hour 

Not defined 

Haematuria Microscopic Gross Gross with 

cloths 

Requiring 

transfusion 

Dysuria No therapy Oral treatment 

(no narcotic 

analgesics) 

Narcotic 

analgesics 

Not defined 

Urgency No therapy Urgency 

requiring 

therapy 

Narcotic 

analgesics 

Not defined 

Incontinence No therapy Therapy or 

using two or 

fewer pads per 

day 

Using more 

than two pads 

per day 

Surgery 
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Supplementary file 1 – References of the selection of SNPs 

 
SNPs selected for the current study were based on the reported association of 

several genes identified in the early response to ionizing radiation, DNA 

checkpoint control and repair of DNA damage upon exposure of cells to ionizing 

radiation [1-7]. We also included SNPs from genes encoding proteins involved 

in the metabolism of side products of the radiolysis of water [8]. In addition, 

genes in the hormonal metabolism were selected [9-12], complemented with 

SNPs in a variety of genes shown to be involved in radiation response [13-18]. 

Several of the selected SNPs are shown to be associated with cancer 

predisposition in case-control studies [19-28].  
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Table e1: The selection of 343 genetic polymorphisms suitable for analysis. 

Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

DNA damage response     

       

ATM Ataxia 
Telangiectasia 
Mutated 

rs1801516 0.14 G>A Coding Asn1853Asp 

ATR Ataxia 
telangiectasia and 
Rad3 related 

rs1802904 0.17 A>G Coding Gln= 

 rs2229032 0.17 G>A Coding Arg2425Gln 

 rs2227929 0.37 T>C Coding Asp= 

 rs2227928 0.44 C>T Coding Met211Thr 

MRE11 Meiotic 
recombination 11 
homolog A 

rs2509943 0.45 G>C Coding Leu= 

      

RAD50 DNA repair protein 
RAD50 

rs17166050 0.22 C>T Intronic  

H2AFX H2A histone family, 
member X 

rs643788 0.42 T>C 5’-flanking  

MDC1 Mediator of DNA-
damage 
checkpoint1 

rs28986317 0.07 G>C Coding Ala= 

CHK1 Checkpoint kinase 
1 (Ser/Thr kinase) 

rs491528 0.30 G>T Intronic  

CHK2 Checkpoint kinase 
2 (Ser/Thr kinase) 

rs2236141 0.13 C>T 5’-flanking  

BRCA1 Breast cancer 1, 
early onset 

rs12516 0.32 C>T 3’-UTR  

 rs4986850 0.07 G>A Coding Asp693Asn 

BRCA2 Breast cancer 2, 
early onset 

rs9534262 0.49 C>T Intronic  

TP53 Tumor protein p53 rs2287498 0.07 G>A 5’-flanking  

TP53BP1 Tumor protein p53 
binding protein 1 

rs560191 0.33 G>C Coding Asp= 

TP53BP2 Tumor protein p53 
binding protein 2 

rs17739 0.16 C>T 3’-UTR  

 rs1153933 0.07 C>T Coding Ser= 

 rs34683843 0.09 C>A Coding Gln229Lys 

MDM2 MDM2 oncogene, 
E3 ubiquitin protein 
ligase 

rs769412 0.07 A>G Coding Glu= 

CDKN2B Cyclin-dependent 
kinase inhibitor 2B 

rs2069426 0.12 C>A   

CDKN2C Cyclin-dependent 
kinase inhibitor 2C 

rs12855 0.09 C>T 3’-UTR  

WRN Werner syndrome, 
RecQ helicase-like 

rs2230009 0.07 G>A Coding Val114Ile 

CDKN3 Cyclin-dependent 
kinase inhibitor 3 

rs2179896 0.28 G>A Intronic  

PLK2 Polo-like kinase 2 rs32613 0.07 G>T 3’-UTR  

 rs15009 0.35 C>G 3’-UTR  

 rs1042994 0.12 T>C Coding Phe= 

 rs702723 0.44 A>G Intronic  

 rs702722 0.13 T>C Coding Ile= 

 rs15915 0.21 G>A 5’-UTR  
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Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

cdc6 Cell division cycle 6 rs13706 0.12 G>A Coding Val441Ile 

  rs4134994 0.14 A>G 5’-flanking  

CCND1 Cyclin D1 rs1944129 0.49 G>A 5’-flanking  

 rs9344 0.48 G>A Coding Pro= 

 rs7177 0.46 A>C 3’-UTR  

CCND2 Cyclin D2 rs1049612 0.41 A>G 3’-UTR  

       

DNA repair       

       

Non-homologous end-joining     

KU70 X-ray repair cross-
complementing 
protein 6 

rs2267437 0.38 C>G 5’-flanking  

KU80 X-ray repair cross-
complementing 
protein 5 

rs207906 0.14 G>A Coding Thr= 

 rs7581055 0.11 A>G Intronic  

 rs1438162 0.39 A>G Intronic  

XRCC4 X-ray repair cross-
complementing 
protein 4 

rs17284218 0.43 A>T Intronic  

 rs11951257 0.48 T>C Intronic  

 rs6872787 0.07 G>C Intronic  

 rs1056503 0.13 T>G Coding Ser= 

PRKDC Protein kinase, 
DNA activated, 
catalytic 
polypeptide 

rs10109984 0.38 T>C Intronic  

 rs8178071 0.17 G>A Intronic  

LIG4 DNA ligase IV rs1805388 0.13 C>T Coding Thr9Ile 

 rs9520823 0.31 T>G Intronic  

XLF Non-homologous 
end-joining factor 1 

rs1378641 0.32 T>C Intronic  

 rs17608747 0.21 C>T Intronic  

POLM DNA polymerase 
mu 

rs3218655 0.16 G>T Coding Leu= 

POLL DNA polymerase 
lambda 

rs3730477 0.23 C>T Coding Arg438Trp 

 rs3730475 0.31 T>C Intronic  

RPA1 Replication protein 
A1 

rs3786136 0.23 C>T Intronic  

 rs12150513 0.47 T>G Intronic  

 rs2230930 0.17 C>T Coding Ser= 

 rs3744766 0.15 G>C 3’-UTR  

 rs12727 0.20 G>C 3’-UTR  

 rs17734 0.34 A>G 3’-UTR  

Homologous recombination     

Rad51 DNA repair protein 
RAD51 homolog 1 

rs1801320 0.06 G>C 5’-UTR  

XRCC2 X-ray repair cross-
complementing 
protein 2 

rs3218536 0.09 G>A Coding Arg188His 

XRCC3 X-ray repair cross-
complementing 
protein 3 

rs1799796 0.35 A>G Intronic  

 rs861539 0.36 C>T Coding Thr241Met 

 rs1799794
 

0.20 A>G 5’-UTR  

RAD52 DNA repair protein 
RAD52 homolog 

rs7303748 0.44 C>T Intronic  
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Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

Base-excision repair     

PARP-1 Poly-(ADP-ribose)-
polymerase 

rs732284 0.18 G>C Intronic  

 rs1805405 0.19 C>A Intronic  

OGG1 8-oxoguanine DNA 
glycosylase 

rs2269112 0.17 C>T Intronic  

 rs2072668 0.23 C>G Intronic  

NUDT1 Nucleoside 
diphosphate linked 
moiety X-type motif 
1 

rs1799832 0.21 C>T Coding Asp= 

APEX1 Apurinic-
apyrimidinic 
endonuclease 1 

rs2275007 0.41 G>A Coding Gln= 

 rs1130409 0.49 T>G Coding Asp148Glu 

XRCC1 X-ray repair cross-
complementing 
protein 1 

rs25487 0.37 G>A Coding Gln399Arg 

 rs1799782 0.08 C>T Coding Arg194Trp 

 rs3213245 0.41 T>C Coding Gly59Ser 

 rs2682587 0.17 C>A Intronic  

LIG3 DNA ligase 3 rs2066505 0.11 G>A Intronic  

PCNA Proliferating cell 
nuclear antigen 

rs17349 0.11 C>T Intronic  

FEN1 Flap structure-
specific 
endonuclease1 

rs174538 0.30 G>A 5’-flanking  

       

Nucleotide-excision repair     

       

XPC Xeroderma 
pigmentosum, 
complementation 
group C 

rs2279017 0.40 G>T Intronic  

 rs2227998 0.28 G>A Coding Arg= 

 rs2228000 0.25 C>T Coding Ala499Val 

 rs2228001 0.42 A>C Coding Lys939Gln 

ERCC1 Excision repair 
cross-
complementing 
rodent repair 
deficiency, 
complementation 
group 1 

rs3212961 0.16 C>A Intronic  

 rs11615 0.39 T>C Coding Asn= 

 rs3212986 0.24 G>T 3’-UTR  

ERCC2 Excision repair 
cross-
complementing 
rodent repair 
deficiency, 
complementation 
group 2 

rs13181 0.37 T>G Coding Lys751Gln 

 rs1052555 0.33 C>T Coding Asp= 

ERCC4 Excision repair 
cross-
complementing 
rodent repair 
deficiency, 
complementation 
group 4 

rs762521 0.23 G>A Intronic  

 rs1799801 0.31 T>C Coding Ser= 

RAD23B RAD23 homolog B rs1805330 0.11 C>T Intronic  

 rs1805329 0.17 C>T Coding Ala249Val 

 rs10868 0.13 C>T 3’-UTR  

POLK DNA polymerase 
kappa 

rs3213801 0.23 G>A Coding Ala= 
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Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

Oxidative metabolism     

       

SOD2 Superoxide 
dismutase 2, 
mitochondrial 

rs2842960 0.47 T>C Intronic  

CAT Catalase rs1049982 0.31 C>T 5’-UTR  

GPx2 Glutathione 
peroxidase 2 

rs3759681 0.27 C>T 5’-flanking  

GPx3 Glutathione 
peroxidase 3 

rs4958872 0.23 T>C Intronic  

 rs8177447 0.16 C>T Intronic  

GPx4 Glutathione 
peroxidase 4 

rs4807542 0.19 G>A Coding Pro= 

PRDX1 Peroxiredoxin 1 rs2356559 0.33 G>A Intronic  

TXNRD2 Thioredoxin 
reductase 2 

rs1139795 0.17 G>A Coding Pro= 

 rs5993853 0.33 C>T Intronic  

GSTA4 Glutathione S-
transferase alpha 4 

rs16883343 0.25 C>T 5’-flanking  

GSTA5 Glutathione S-
transferase alpha 5 

rs2397118 0.05 T>C Coding Val55Ile 

GSTP1 Glutathione S-
transferase pi 1 

rs1138272 0.09 C>T Coding Ala114Val 

 rs1871042 0.35 C>T Intronic  

GSTM2 Glutathione S-
transferase mu 2 

rs592792 0.14 G>A Coding Asn= 

GSTM5 Glutathione S-
transferase mu 5 

rs2229059 0.09 T>C Coding Leu= 

p22phox Cytochrome b-245, 
alpha polypeptide 

rs4673 0.34 C>T Coding Tyr72His 

NOS1 Nitric oxide 
synthase 1 

rs2291908 0.29 A>G Intronic  

 rs1093329 0.43 G>A Intronic  

 rs2293054 0.30 G>A Coding Ile= 

 rs11612772 0.27 G>C Intronic  

 rs561712 0.41 G>A Intronic  

 rs3782218 0.15 C>T Intronic  

NOS2 Nitric oxide 
synthase 2 

rs1137933 0.27 C>T Coding Asp= 

  rs3794763 0.21 G>A Intronic  

  rs3794766 0.26 C>T Intronic  

NOS3 Nitric oxide 
synthase 3 

rs3918226 0.09 C>T 5’-flanking  

 rs1799983 0.36 G>T Coding Asp298Glu 

 rs3918227 0.11 C>A 3’-UTR  

 rs3730305 0.09 C>A Intronic  

 rs753482 0.23 T>G Intronic  

 rs7830 0.32 C>A Intronic  

MT1X Metallothionein 1 rs4783950 0.38 T>C ncRNA  
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Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

Hormonal metabolism     

       

HMGCR 3-hydroxy-3-
methylglutaryl-CoA 
reductase 

rs11742194 0.09 C>T Intronic  

 rs3931914 0.24 C>G 5’-flanking  

  rs3846662 0.44 T>C Intronic  

CYP17A1 Cytochrome P450, 
family 17, subfamily 
A, polypeptide 1 

rs6163 0.38 C>A Coding Ser= 

Cyp19A1 Cytochrome P450, 
family 19, subfamily 
A, polypeptide 1 

rs17601241 0.09 G>A Intronic  

 rs4324076 0.43 C>A Intronic  

 rs4646 0.24 C>A 3’-UTR  

 rs6493497 0.12 G>A 5’-flanking  

HSD17B3 Hydroxysteroid (17-
beta) 
dehydrogenase 3 

rs7022250 0.39 G>C Intronic  

SRD5A2 Steroid-5-alpha-
reductase, alpha 
polypeptide 2 

rs523349 0.31 C>G Coding Leu89Val 

GnRH1 Gonadotropin 
releasing hormone 
1 

rs6185 0.24 G>C Coding Trp16Ser 

CGA Glycoprotein 
hormones, alpha 
polypeptide 

rs932742 0.30 A>G Intronic  

FSHB Follicle stimulating 
hormone, beta 
polypeptide 

rs609896 0.46 A>G Intronic  

FSHR Follicle stimulating 
hormone receptor 

rs2072488 0.26 T>C Intronic  

 rs12473181 0.13 C>T Intronic  

 rs3788981 0.44 G>T Intronic  

 rs3913668 0.38 T>C Intronic  

 rs3788982 0.13 G>A Intronic  

 rs3913665 0.43 C>T Intronic  

 rs1504190 0.48 C>T Intronic  

 rs11894971 0.06 C>T Intronic  

 rs13033004 0.25 T>C Intronic  

 rs1394205 0.28 G>A 5’-UTR  

 rs2268363 0.17 T>C Intronic  

ESR1 Estrogen receptor 1 rs3020331 0.44 C>T   

 rs6899458 0.26 G>A Intronic  

 rs7761133 0.18 T>C Intronic  

 rs12204714 0.38 T>C Intronic  

 rs3020328 0.27 T>C Intronic  

 rs3020432 0.32 A>G Intronic  

 rs9322351 0.12 T>C Intronic  

 rs1062577 0.08 T>A 3’-UTR  

 rs2228480 0.22 G>A Coding Thr= 

 rs2234693 0.43 T>C Intronic  
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Gene Description rs number MAF 
Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

ESR2 Estrogen receptor 2 rs2987983 0.32 T>C Intronic  

PGR Progesterone 
receptor 

rs1042838 0.19 G>T Coding Val660Ala 

SHBG Sex hormone-
binding globulin 

rs13894 0.09 C>T Coding Arg126Cys 

 rs858521 0.42 C>G Intronic  

 rs6259 0.13 G>A Coding Asp356Asn 

COMT Catechol-O-
methyltransferase 

rs4633 0.47 T>C Coding His= 

CYP1B1 Cytochrome P450, 
family 1, subfamily 
B, polypeptide 1 

rs1056836 0.45 C>G Coding Leu432Val 

NR5A2 Nuclear receptor 
subfamily 5, group 
A,                 
member 2 

rs2821361 0.49 G>A Intronic  

 rs17722672 0.05 A>C Intronic  

 rs2821367 0.33 T>C Intronic  

 rs2821368 0.17 C>G Coding Pro= 

 rs3828112 0.29 A>G Intronic  

 rs2247328 0.35 A>G Intronic  

 rs2737673 0.46 T>C Intronic  

 rs12041297 0.14 A>C Intronic  

 rs2737679 0.13 A>T Intronic  

 rs2816969 0.13 T>C Intronic  

 rs3790800 0.30 C>T Intronic  

 rs16846145 0.06 A>G Intronic  

 rs7556049 0.11 T>C Intronic  

 rs2247019 0.19 C>T Intronic  

 rs1060060 0.33 G>A Coding Asn= 

 rs1060061 0.48 C>T 3’-UTR  

 rs2816912 0.34 C>A 3’-UTR  

NCOA1 Nuclear receptor 
coactivator 1 

rs11125744 0.10 C>G Coding Thr= 

 rs2289394 0.44 G>A Intronic  

 rs3731628 0.09 A>T Coding Pro= 

 rs17737058 0.24 C>G 3’-UTR  

NCOA3 Nuclear receptor 
coactivator 3 

rs1537306 0.11 G>C Intronic  

 rs2230782 0.09 G>C Coding Gln586His 

 rs4810648 0.12 T>C Intronic  

 rs11699879 0.27 A>G 3’-UTR  

 rs11547289 0.25 G>A 3’-UTR  

       

Early response 

       

EGR1 Early growth 
response 1 

rs11743810 0.41 T>C Intronic  

FOS FBJ murine 
osteosarcoma viral 
oncogene homolog 

rs2239615 0.26 A>T 5’-UTR  

 rs7101 0.26 T>C 5’-UTR  
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Allele 

substitution 
Genomic 
location 

Amino acid 
substitution 

       

FOSB FBJ murine 
osteosarcoma viral 
oncogene homolog 
B 

rs2282695 0.31 C>G Coding Ala= 

 rs1049739 0.41 A>G 3’-UTR  

NFKB1 Nuclear factor of 
kappa light 
polypeptide gene 
enhancer in B-cells 
1 

rs3774932 0.45 G>A Intronic  

 rs230492 0.34 G>A Intronic  

 rs3774964 0.34 A>G Intronic  

ATF2 Activating 
transcription factor 
2 

rs212348 0.20 T>A Intronic  

 rs212347 0.15 T>C Intronic  

 rs12693057 0.08 G>A Intronic  

MAPK1 Mitogen-activated 
protein kinase 1 

rs7286558 0.06 C>T Intronic  

 rs2986657 0.45 A>G Intronic  

 rs4233292 0.10 A>G Intronic  

 rs1982227 0.18 C>G Intronic  

MAPK11 Mitogen-activated 
protein kinase 11 

rs2076139 0.22 C>T Coding Ser= 

 rs742185 0.23 G>A Intronic  

MAPK12 Mitogen-activated 
protein kinase 12 

rs1129880 0.32 C>T Coding Ser= 

MAPK13 Mitogen-activated 
protein kinase 13 

rs1059227 0.31 C>A Coding Thr= 

NFKBIA Nuclear factor of 
kappa light 
polypeptide gene 
enhancer in B-cells 
inhibitor, alpha 

rs8904 0.41 C>T 3’-UTR  

 rs2233419 0.19 C>T Intronic  

 rs1050851 0.21 C>T Coding Ala= 

 rs1957106 0.35 G>A Coding Asp= 

 rs2233409 0.23 C>T 5’-flanking  

CHUK Conserved helix-
loop-helix 
ubiquitous kinase 

rs11597086 0.44 A>C Intronic  

 rs2230804 0.48 A>G Coding Ile268Val 

IKBKB Inhibitor of kappa 
light polypeptide 
gene enhancer in 
B-cells, kinase beta 

rs2294100 0.06 T>A Intronic  

Varia       

       

DDX17 DEAD (Asp-Glu-
Ala-Asp) box 
helicase 17 

rs1043402 0.29 G>A 3’-UTR  

 rs5750609 0.12 C>T Intronic  

POLA2 Polymerase (DNA 
directed), alpha 2, 
accessory subunit 

rs487989 0.11 G>A Coding Gly583Arg 

PPP2CA Protein 
phosphatase 2, 
catalytic subunit, 
alpha isozyme 

rs2302599 0.15 G>T Intronic  

PPP6C Protein 
phosphatase 6, 
catalytic subunit 

rs6744 0.49 G>A 3’-UTR  

 rs4838249 0.35 A>G 3’-UTR  
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Allele 
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Genomic 
location 

Amino acid 
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PPARγ Peroxisome 
proliferator-
activated receptor 
gamma 

rs13433696 0.25 G>A Intronic  

 rs1801282 0.12 C>G Coding Pro12Ala 

 rs2972162 0.47 T>C Intronic  

 rs709158 0.35 A>G Intronic  

 rs1175543 0.35 A>G Intronic  

 rs3856806 0.12 C>T Coding His= 

HSPA1A Heat shock 70kDa 
protein 1A 

rs1043618 0.47 G>C 5’-UTR  

HSPA1L Heat shock 70kDa 
protein 1-like 

rs2227956 0.18 T>C Coding Thr493Met 

COX1 Prostaglandin-
endoperoxide 
synthase 1 

rs1213266 0.07 G>A Intronic  

 rs5788 0.15 C>A Coding Gly= 

COX2 Prostaglandin-
endoperoxide 
synthase 2 

rs689466 0.20 A>G 5’-flanking  

 rs20417 0.17 G>C 5’-flanking  

 rs5275 0.36 T>C 3’-UTR  

 rs5277 0.15 G>C Coding Val= 

PTGES Prostaglandin E 
synthase 

rs2302821 0.08 A>C 3’-UTR  

PTGER2 Prostaglandin E 
receptor 2 (subtype 
EP2) 

rs708498 0.17 G>A Intronic  

 rs708494 0.37 T>C 5’-flanking  

PTGER3 Prostaglandin E 
receptor 3 (subtype 
EP3) 

rs493489 0.12 C>A Intronic  

PTGER4 Prostaglandin E 
receptor 3 (subtype 
EP4) 

rs11957406 0.45 A>G Intronic  

mTOR Mechanistic target 
of rapamycin 

rs1135172 0.26 C>T Coding Asp= 

 rs2295080 0.30 T>G 5’-flanking  

AKT v-akt murine 
thymoma viral 
oncogene                          
homolog 1 

rs1130233 0.28 G>A Coding Glu= 

 rs2494748 0.35 T>C Intronic  

IL1A Interleukin 1, alpha rs2856836 0.30 T>C 3’-UTR  

 rs3783550 0.29 A>C Intronic  

 rs3783546 0.29 G>C Intronic  

 rs17561 0.29 G>T Coding Ala114Ser 

 rs3783539 0.28 G>A Intronic  

EGFR Epidermal growth 
factor receptor 

rs4947963 0.37 T>C Intronic  

 rs11766798 0.29 G>A Intronic  

 rs2302535 0.33 A>C Intronic  

 rs11238350 0.16 T>C Intronic  

 rs845552 0.45 A>G Intronic  

 rs1050171 0.43 A>G Coding Gln= 

 rs1140475 0.11 C>T Coding Thr= 

 rs2293348 0.30 G>A Intronic  

 rs2293347 0.11 G>A Coding Asp= 

 rs2227983 0.27 G>A Coding Lys521Arg 
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ENG Endoglin rs16930129 0.09 C>T Coding Leu= 

 rs10987759 0.07 T>C 5’-flanking  

ITGB2 Integrin, beta 2 rs235326 0.35 C>T Coding Val= 

 rs2230528 0.23 G>A Coding Gly= 

TGFB1 Transforming 
growth factor,     
beta 1 

rs1800468 0.10 G>A 5’-flanking  

 rs1800469 0.28 C>T 5’-flanking  

 rs1800470 0.37 T>C Coding Pro10Leu 

 rs1800471 0.09 G>C Coding Arg25Pro 

 rs2241717 0.42 T>G Intronic  

       

SNPs previously found associated with cancer susceptibility through GWAS analysis 

       

  rs3888929 0.30 G>A Unknown  

  rs4867592 0.39 C>A Unknown  

HAL Histidine ammonia-
lyase 

rs7970524 0.25 T>C 5’-flanking  

  rs12003093 0.27 A>G Unknown  

VDR 1,25- 
dihydroxyvitamin 
D3 receptor 

rs4760658 0.34 A>G Intronic  

EPDR1 Ependymin related 
protein 1 

rs1376264 0.35 C>T 5’-flanking  

MRE11A Meiotic 
recombination 11 
homolog A 

rs2155209 0.33 T>C 3’-UTR  

MRE11A rs569143 0.44 C>G Intronic  

     

GWAS Breast cancer     

CASP8 Caspase 8 rs1045485 0.14 G>C Coding Asp302His 

IL1B Interleukin 1, beta rs1143634 0.24 C>T Coding Phe= 

IL4 Interleukin 4 rs2070874 0.15 C>T 5’-UTR  

FGFR2 Fibroblast growth 
factor receptor 2 

rs2981582 0.38 C>T Intronic  

FGFR2 rs2981579 0.39 C>T Intronic  

CASC16  Long intergenic 
non-protein coding 
RNA 918 

rs3803662 0.23 C>T ncRNA  

  rs889312 0.27 A>C Unknown  

  rs13281615 0.39 A>G Unknown  

LSP1 Lymphocyte-
specific protein 1 

rs3817198 0.32 T>C Intronic  

EMBP1 Embigin 

pseudogene 1 

rs11249433 0.40 T>C Intronic  

RAD51B RAD51 homolog B rs999737 0.25 C>T Intronic  

  rs2067980 0.14 A>G Unknown  

STXBP4 Syntaxin binding 
protein 4 

rs6504950 0.29 G>A Intronic  

CCDC170 Coiled-coil domain 
containing 170 

rs3757318 0.06 G>A Intronic  

  rs1562430 0.43 A>G Unknown  

TNNT3 Troponin T type 3 rs909116 0.49 T>C Intronic  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=643714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=647121
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  rs13387042 0.46 A>G Unknown  

CDKN2B-

AS1 

CDKN2B antisense 

RNA 1 

rs1011970 0.17 G>T Intronic  

ZMIZ1 Zinc finger, MIZ-
type containing 1 

rs704010 0.42 G>A Intronic  

  rs614367 0.14 C>T Unknown  

BABAM1 BRISC and BRCA1 
A complex member 
1 

rs8170 0.20 C>T Coding Lys= 

BABAM1 rs3745185 0.41 G>A Intronic  

NR2F6 Nuclear receptor 
subfamily 2, group 
F, member 6 

rs4808611 0.18 C>T Intronic  

ANKLE1 Ankyrin repeat and 
LEM domain 
containing 1 

rs2363956 0.48 T>G Coding Leu184Trp 

     

GWAS Prostate cancer     

  rs2660753 0.10 C>T Unknown  

SLC22A3 Solute carrier family 
22, member 3 

rs9364554 0.28 C>T Intronic  

LMTK2 lemur tyrosine 
kinase 2 

rs6465657 0.44 T>C Intronic  

  rs6983267 0.42 G>T Unknown  

LOC727677 uncharacterized 
LOC727677 

rs1447295 0.14 C>A Intronic  

MSMB microseminoprotein
, beta- 

rs10993994 0.47 C>T 5’-flanking  

CTBP2 C-terminal binding 
protein 2 

rs4962416 0.28 T>C Intronic  

HNF1B HNF1 homeobox B rs4430796 0.46 A>G Intronic  

HNF1B rs11649743 0.20 G>A Intronic  

  rs1859962 0.46 G>T Unknown  

  rs2735839 0.15 G>A Unknown  

CLPTM1L CLPTM1-like rs401681 0.47 C>T Intronic  

JAZF1 JAZF zinc finger 1 rs10486567 0.23 G>A Intronic  

DAB2IP DAB2 interacting 
protein 

rs1571801 0.25 C>A Intronic  

EEFSEC Eukaryotic 
elongation factor, 
selenocysteine-
tRNA-specific 

rs10934853 0.34 C>A Intronic  

  rs16902094 0.17 A>G Unknown  

  rs445114 0.31 T>C Unknown  

  rs8102476 0.40 C>T Unknown  

  rs11228565 0.24 G>A Unknown  

EHBP1 EH domain binding 
protein 1 

rs2710647 0.42 C>T Intronic  

EHBP1 rs721048 0.20 G>A Intronic  

  rs6545977 0.48 G>A Unknown  

THADA thyroid adenoma 
associated 

rs1465618 0.25 G>A Intronic  

PDLIM5 PDZ and LIM 
domain 5 

rs17021918 0.35 C>T Intronic  

PDLIM5 rs12500426 0.47 C>A Intronic  
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  rs7679673 0.35 C>A Unknown  

  rs1512268 0.48 G>A Unknown  

  rs5759167 0.48 G>T Unknown  

  rs10086908 0.32 T>C Unknown  

  rs620861 0.30 C>T Unknown  

  rs4242382 0.14 G>A Unknown  

  rs7841060 0.24 T>G Unknown  

  rs12543663 0.30 A>C Unknown  

  rs1016343 0.25 C>T Unknown  

  rs13252298 0.27 A>G Unknown  

  rs4871008 0.40 C>T Unknown  

  rs6470494 0.31 C>T Unknown  

  rs10090154 0.14 C>T Unknown  

 

 

 

Table e3: Overview of the 29 patient and treatment related parameters. 

Patient data 

(n=9) 

Treatment parameters 

(n=20) 

Pre-therapy symptoms Lymph node dissection 

(RT-induced acute symptoms) Radical prostatectomy 

Age Gleason score 

Diabetes Adjuvant androgen deprivation 

Hypertension B10 (%) 

Smoking B20 (%) 

Haemorrhoids B30 (%) 

Previous surgery B40 (%) 

Crohn disease or irritable bowel disease B50 (%) 

Transurethral resection of the prostate B60 (%) 

 B65 (%) 

 B70 (%) 

 B75 (%) 

 Bladder Mean (Gy) 

 Bladder Max (Gy) 

 Bladder Volume (cc) 

 CTV Min (Gy) 

 CTV Mean (Gy) 

 CTV Max (Gy) 

 CTV Volume (cc) 

Abbreviations: RT = radiotherapy; PSA = prostate-specific antigen; BX = 

percentage of the bladder volume receiving X Gy or more; CTV = clinical 

target volume. 
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Table e4: Outcome of modeling analysis for late haematuria. 

 Complete model Non-SNP model 

Model Predictors Coefficients  

(Intercept) -3.32 -3.67 

Bladder Vol 75 (cc) 0.44 0.40 

HMGRC_rs3931914_CG 1.67 - 

NOS1_rs2293054_GA -1.46 - 

PTGER2_rs708498_GG -1.42 - 

EGFR_rs845552_AG 0.95 - 

TUR 1.20 1.43 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
For both models: Model expression: ln p/(1-p) = β0 + β1*x1 + β2*x2 + β3*x3 + β4*x4 + β5*x5 + β6*x6 

+ … with p=probability to develop severe late haematuria/nocturia, β=coefficient, 

x=variable/parameter/predictor and e
β1

=increase in odds for predictor 1 (in the case of 

continuous variables: for an increase of the predictor by 1) when the other predictors remain 

unchanged. 

 

Table e5: Outcome of modeling analysis for late nocturia. 

 Complete model Non-SNP model 

Model Predictors Coefficients  

(Intercept) -1.34 -2.21 

CTV Volume (cc) 0.36 0.31 

CTV Min (Gy) 0.27 0.36 

NOS3_rs1799983_GT -1.67 - 

CASP8_rs1045485_GG -1.30 - 

NR2F6_rs4808611_CT 1.14 - 
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ABSTRACT 

Background: After breast-conserving radiation therapy most patients 

experience acute skin toxicity to some degree. This may impair patients’ quality 

of life, cause pain and discomfort. In this study, we investigated treatment and 

patient-related factors, including genetic polymorphisms, that can modify the 

risk for severe radiation-induced skin toxicity in breast cancer patients. 

Methods: We studied 377 patients treated at Ghent University Hospital and at 

Clinic and Maternity Sainte-Elisabeth in Namur, with adjuvant intensity 

modulated radiotherapy (IMRT) after breast-conserving surgery for breast 

cancer. Women were treated in a prone or supine position with 

normofractionated (25x2 Gy) or hypofractionated (15x2.67 Gy) IMRT alone or in 

combination with other adjuvant therapies. Patient- and treatment-related 

factors and genetic markers in regulatory regions of radioresponsive genes and 

in LIG3, MLH1 and XRCC3 genes were considered as variables. Acute 

dermatitis was scored using the CTCAEv3.0 scoring system. Desquamation 

was scored separately on a 3-point scale (0-none, 1-dry, 2-moist).  

Results: Two-hundred and twenty patients (58%) developed G2+ dermatitis 

whereas moist desquamation occurred in 56 patients (15%). Normofractionation 

(both p<0.001), high body mass index (BMI) (p=0.003 and p<0.001), bra cup 

size ≥D (p=0.001 and p=0.043) and concurrent hormone therapy (p=0.001 and 

p=0.037) were significantly associated with occurrence of acute dermatitis and 

moist desquamation, respectively. Additional factors associated with an 

increased risk of acute dermatitis were the genetic variation in MLH1 

rs1800734, smoking during RT (p=0.008) and supine IMRT (p=0.004). Patients 

receiving trastuzumab showed decreased risk of acute dermatitis (p<0.001).  

Conclusions: The normofractionation schedule, supine IMRT, concomitant 

hormone treatment and patient related factors (high BMI, large breast, smoking 

during treatment and the genetic variation in MLH1 rs1800734) were associated 

with increased acute skin toxicity in patients receiving radiation therapy after 

breast-conserving surgery. Trastuzumab seemed to be protective.  

 

 

 



97 

 

 
 

BACKGROUND 

Breast-conserving therapy with the adjuvant use of radiotherapy (RT) has 

gained an established role in the treatment for early-stage breast cancer with 

excellent long-term local control and survival (1). During or shortly after the 

course of breast cancer RT, a large portion of the patients will experience acute 

radiation dermatitis to some degree, varying from mild to brisk erythema with or 

without moist desquamation and occasionally ulceration of the skin (2). There is 

accumulating clinical evidence that acute reactions are associated with the 

development of late toxicity: Lilla et al. showed that telangiectasia are in fact 

late sequelae of moist desquamation and acute erythema is shown to be a risk 

factor for poor cosmetic outcome (3-5). Though the skin is not a dose-limiting 

tissue, skin toxicity is associated with impairment of patients’ quality of life, 

causes pain and discomfort and limits activities (2, 6). The challenge is to 

minimize these side effects without losing efficacy of the treatment. 

Over the years, many attempts have been made to reduce the number of 

patients experiencing acute skin toxicity and inferior cosmetic outcome by 

introducing improved radiation techniques, such as intensity-modulated 

radiotherapy (IMRT). This technique has been shown to be superior over 

conventional wedge-based whole breast irradiation by delivering a more 

homogenous dose through the breast and removing the radiation hot spots; it 

results in an approximately 20% reduction of the frequency of moist 

desquamation (6, 7). Large breast size significantly contributes to dose 

inhomogeneity, hot spots and toxicity (7, 8). The variation in clinical response is, 

however, only partly explained by treatment factors such as radiation dose, 

fractionation scheme, and concomitant therapies. Patient-related features (e.g. 

bra cup size and body mass index (BMI)) also play a role together with an 

unknown contribution from genetic factors. Up to now there are no data 

available to estimate directly the heritability of clinical radiosensitivity based 

upon family history of radiotherapy toxicity, but it is likely to be somewhat lower 

than for chromosomal and cellular radiosensitivity, which have been calculated 

to be 58-78% (9). 

Acute toxicity is initiated by depletion of acutely responding epithelial tissues 

and damage to microvessels (10). Numerous studies have reported on genetic 
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variations modifying the clinical radiosensitivity risk, predominantly in pathways 

based on mechanistic understanding of the radiation pathogenesis (reviewed in 

(11)). In the present study, single nucleotide polymorphisms (SNPs) in genes 

involved in major DNA repair pathways (LIG3, XRCC3, MLH1) and in regulatory 

regions that influence the expression levels of radioresponsive genes are 

considered (12-16).  

To gain a better insight into the development of radiation-induced dermatitis 

and moist desquamation, we evaluated the association between patient and 

treatment features with these endpoints. The association between SNPs and 

the different clinical endpoints was also studied.  

METHODS 

The study population consists of 377 breast cancer patients treated with 

adjuvant IMRT with curative intent after breast-conserving surgery (stage T1-3, 

N0-1, M0). Of them, 282 breast cancer patients were treated at the Ghent 

University Hospital (GUH) and 95 patients were treated at Clinique and 

Maternité Sainte-Elisabeth (CMSE) in Namur. All patients had a follow-up of at 

least 3 months after RT. 

At GUH, patients were treated in prone or supine position using a multi-

beam IMRT technique in supine position and a tangential 2-beam field-in-field 

IMRT technique in prone position as described previously (17). The whole 

breast was treated with hypofractionated radiotherapy (40.05 Gy in 15 fractions 

(18)) with 6-MV photons of an Elekta Synergy linear accelerator (Crawley, 

United Kingdom). An additional photon boost of 10 Gy in 4 fractions to the 

tumour bed was given to 75% of the patients. For the prone patient setup, a 

unilateral breast holder (Van De Velde, Schellebelle, Belgium) and a prone 

breast board (Orfit Industries) were used (19). Twenty-two patients were treated 

in prone position with voluntary moderate deep inspiration breath hold. At 

CMSE Namur, a sliding window tangential field-IMRT technique was used 

associated with moderate deep inspiration breath hold whenever the primary 

beam intersected the heart as previously described by Remouchamps et al 

(20). Patients with bra cup size ≥D received normofractionated radiotherapy 

(50.00 Gy in 25 fractions), women with bra cup size <D received 

hypofractionation or normofractionation according to the preference of the 
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radiation oncologist (n=28). More than 90% received an additional boost of 10 

Gy in 4 fractions with electron beams.  

 

Adjuvant systemic therapy 

Adjuvant hormone therapy, consisting of tamoxifen or aromatase inhibitors, was 

administered in most patients concomitantly with IMRT. The others received 

hormone therapy sequentially after IMRT. Patients who received adjuvant 

chemotherapy, combination of antracyclines and taxanes, completed 

chemotherapy before IMRT, while trastuzumab was allowed concomitantly with 

IMRT.  

 

Data collection 

Data on patients’ medical history, tumor and treatment characteristics were 

collected prospectively. Table 1 gives an overview of the patient characteristics 

for patients treated at GUH and CMSE Namur.  

Acute toxicity was assessed weekly during treatment and at 1-2 weeks after 

treatment. The reported toxicity represents the maximal reported acute toxicity, 

either during or after completion of IMRT. Acute dermatitis was documented 

according to a standard protocol using the Common Terminology Criteria for 

Adverse Events (CTCAE) v3.0 scoring system. This grades patients with mild 

erythema or dry desquamation as 1, moderate to brisk erythema or patchy 

moist desquamation mostly confined to the skin folds as 2 and confluent moist 

desquamation as 3. Desquamation was scored separately on a 3-point scale (0-

none, 1-dry, 2-moist). Grade 2-3 toxicity was considered clinically relevant and 

was included in the analysis. Genomic DNA was isolated from a fresh blood 

sample taken before start of radiotherapy, using the Puregene genomic DNA 

purification kit (Gentra Systems, Minneapolis, MN). The study was approved by 

the local ethics committees and all study patients provided written informed 

consent. 
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Table 1: Patient characteristics for patients treated at 

GUH and CMSE Namur. 

Patient/clinical factor 
GUH 

(n=282) 

CMSE Namur 

(n=95) 

Age (years)   

Median 57.5  59,0  

Range 30-82 35-82 

Bra cup size   

Small 

A 13 (4.6) 3 (3.2) 

B 85 (30.2) 33 (34.7) 

C 101 (35.8) 34 (35.8) 

   

Large 

D 53 (18.8) 16 (16.8) 

E 16 (5.7) 5 (5.3) 

F 7 (2.5) 3 (3.2) 

G + H 2 (0.6) 1 (1.0) 

Missing 5 0 

BMI   

Median 25.5 26  

Range 16-50 16-38 

Missing 2 0 

Menstruation   

No 235 (83.3) 76 (80.0) 

Yes 45 (16.0) 18 (18.9) 

Missing 2 1 

Smoking during RT   

No 244 (86.5) 79 (83.2) 

Yes 35 (12.4) 16 (16.8) 

Missing 3 0 

Diabetes   

No 254 (90.1) 84 (88.4) 

Yes 22 (7.8) 11 (11.6) 

Missing 6 0 

Hypertension   

No 196 (69.5) 66 (69.5) 

Yes 81 (28.7) 29 (30.5) 

Missing 5 0 

Fractionation   

Normo 0 45 (47.4) 

Hypo 282 50 (52.6) 

Missing 0 0 

Treatment position   

Supine 195 (69.1) 95 (100.0) 

Prone 87 (30.9) 0 

Missing 0 0 

continued on next page 
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Table 1 (continued) 

Patient/clinical factor 
GUH 

(n=282) 

CMSE Namur 

(n=95) 

Boost   

No 64 (22.7) 7 (7.4) 

Yes 218 (77.3) 88 (92.6) 

Missing 0 0 

Nodal irradiation   

No 241 (85.5) 87 (80.6) 

Yes 41 (14.5) 21 (19.4) 

Missing 0 0 

Hormonal therapy   

No 46 (16.3) 25 (26.3) 

Concomitant 236 (83.7) 7 (7.4) 

Sequential (after IMRT) 0 63 (66.3) 

Missing 0 0 

Chemotherapy   

No 188 (66.7) 55 (57.9) 

Yes 94 (33.3) 40 (42.1) 

Missing 0 0 

Trastuzumab   

No 257 (91.1) 83 (87.4) 

 Yes 25 (8.9) 12 (12.6) 

Missing 0 0 

Abbreviations: GUH = Ghent University Hospital; CMSE = 

Clinic Maternity Sainte-Elisabeth; BMI = Body Mass 

Index.  

Data are given as no. (%) unless otherwise indicated. 

 

Selection of candidate genes/polymorphisms and genotyping 

Eight candidate polymorphisms were selected for genotyping (Table 2). Of 

these, five SNPs (rs3888929, rs4867592, rs7970524, rs12003093, rs4760658) 

were chosen as they putatively affect the expression levels of radiation-

responsive genes directly, or by trans effects, based on genetic linkage and 

association analysis as described previously by Smirnov et al.. The authors 

suggested that those regulatory variants might be able to contribute to the 

development of genetic tools for radiosensitivity (16). The other SNPs were 

chosen based on their previous association with toxicity induced by 

radiotherapy or methylating agents (XRCC3 rs861539, LIG3 rs3744355, MLH1 

rs1800734) (12-15). Genotyping was performed using restriction fragment 

length polymorphism analyses, high resolution melting curve analyses, single 
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base extension techniques or direct sequencing. For reproducibility control, 

15% of all samples were duplicated. The concordance rate between duplicate 

samples was 100%. Primers details are available on request. Tests for 

deviation from Hardy-Weinberg equilibrium, for the entire sample showed that 

the rs4867592 SNP had a p-value <0.0001 and was excluded from further 

analyses. 

 

Table 2: Characteristics of the SNPs. 

Gene or 

gene 

regulator rs number MAF* 

Nucleotide 

substitution 

Genomic 

location 

Amino 

acid 

substitution Ref. 

LIG3 rs3744355 9.1 G>C 5’-flanking - [12, 13] 

MLH1 rs1800734 22.6 G>A 5’-UTR - [14] 

XRCC3 rs861539 39.0 C>T Coding Thr241Met [15] 

PHLDA3 rs3888929 30.3 G>A Unknown - 

[16] 

LCP2 rs4867592 19.1 C>A Unknown - 

LTHA4 rs7970524 25.1 T>C 5’-flanking - 

NDUFB6 rs12003093 23.4 A>G Unknown - 

VDR rs4760658 36.6 A>G Intronic - 

Abbreviations: Minor allele frequency in Caucasian population. 
 

 

Statistical analysis  

The studied endpoints were development of acute radiation-induced dermatitis 

(CTCAE G2+) and moist desquamation. For the clinical association analysis, 

univariate analysis was initially carried out to assess the relationship between 

patient- (age, bra cup size (A+B+C vs. ≥D), BMI, menstruation, smoking during 

RT, diabetes, hypertension) and treatment-related factors (fractionation 

scheme, treatment position, boost dose to tumour bed, nodal irradiation, 

hormone therapy, chemotherapy and trastuzumab) and the endpoints. Patients 

with and without G2+ acute skin toxicity were compared by means of the Mann-

Whitney test for continuous variables and the χ²-test for categorical variables. 

Power calculations were performed with Power for Genetic Association 

analyses (21). For these we took into account: the incidence of dermatitis (58%) 

or moist desquamation (15%) observed in our cohort, the lowest minor allele 

frequency (9%) of the considered SNPs, a probability adjusted by the number of 

SNPs (α=6.25 x 10-3) under a dominant genotypic test, and a genotype relative 

risk of ≥1.5. This resulted in a power of 94.3% for acute dermatitis and 60.9% 
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for moist desquamation. To assess the independent effect of each 

polymorphism, unconditional logistic regression analyses were performed to 

calculate crude ORs. The Benjamini-Hochberg (BH) procedure was used to 

control for multiple testing (i.e. 43 tests per endpoint: 28 genetic and 15 clinical 

parameter tests) to reduce the risk of finding false-positive associations. 

Variables with p<0.05 were tested in a multivariate logistic regression analysis. 

Statistical analyses were performed using SPSS 17.0 software (SPSS Inc., 

Chicago, IL). R library multtest (http://www.r-project.org/) was used to perform 

the multiple testing analyses. 

RESULTS 

Acute radiation-induced skin toxicity data were available for all 377 patients. 

Two-hundred twenty patients (58%) developed G2+ dermatitis. The occurrence 

of dermatitis did not differ between both centres (GUH: 57% (162/282), CSME: 

61% (58/95)). Moist desquamation (patchy or confluent) occurred in 56 patients 

(15%) and differed between both centres: 10% of the patients treated at GUH 

and 30% of the patients treated at CMSE (p<0.001).  

 

Table 3: Associations between patient- and therapy-related characteristics and acute G2+ 

dermatitis. 

Patient/clinical factor  

All 

(n=377) 

G0-1 

(n=157) 

G2+ 

(n=220) P-value PBH-value 

Bra cup size      

A+B+C 269 (71.4) 130 (48.3) 139 (51.7)   

≥D 103 (27.3) 26 (25.2) 77 (74.8) <0.001 0.001 

BMI      

Median 26 24 26   

Range 16-50 16-37 16-50 <0.001 0.001 

Smoking during RT      

No 323 (85.7) 141 (43.7) 182 (56.3)   

Yes 51 (13.5) 14 (27.5) 37 (72.5) 0.029 0.156 

Fractionation      

Normo 45 (11.9) 6 (13.3) 39 (86.7)   

Hypo 332 (88.1) 151 (45.5) 181 (54.5) <0.001 <0.001 

Treatment position      

Supine 290 (76.9) 108 (37.2) 182 (62.8)   

Prone 87 (23.1) 49 (56.3) 38 (43.7) 0.002 0.019 

continued on next page 
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Table 3 (continued) 

Patient/clinical factor  

All 

(n=377) 

G0-1 

(n=157) 

G2+ 

(n=220) P-value PBH-value 

Nodal irradiation      

No 315 (83.6) 141 (44.8) 174 (55.2) 
 

 

Yes 62 (16.4) 16 (25.8) 46 (74.2) 0.006 0.037 

Hormonal therapy      

No 71 (18.8) 39 (54.9) 32 (45.1) 
 

 

Concomitant 243 (64.5) 94 (38.7) 149 (61.3)   

Sequential (after IMRT) 63 (16.7) 24 (38.1) 39 (61.9) 0.041 0.207 

Hormones (concomitant)      

Tamoxifen 155 62 (40.0) 93 (60.0)   

Aromatase inhibitor 85 32 (37.6) 53 (62.4)   

Chemotherapy      

No 243 (64.5) 92 (37.9) 151 (62.1) 
 

 

Yes 134 (35.5) 65 (48.5) 69 (51.5) 0.045 0.215 

Trastuzumab      

No 340 (90.2) 133 (39.1) 207 (60.9) 
 

 

Yes 37 (9.8) 24 (64.9) 13 (35.1) 0.003 0.026 

Abbreviations: G = CTCAEv.3 grade; BMI = Body Mass Index; pBH = corrected p-value by 

Benjamini-Hochberg procedure.  

Data are given as no. (%) unless otherwise indicated. 

 

Acute radiation-induced skin toxicity 

Table 3 depicts the parameters associated with acute G2+ dermatitis, in 

univariate analysis. Bra cup size ≥D (p<0.001), BMI (p<0.001) and smoking 

during RT (p=0.029) were associated with the development of G2+ dermatitis. 

Irradiation of the nodal region (p=0.006) and the use of concomitant hormone 

therapy (p=0.041) were also associated with an increased risk of acute 

dermatitis, with no difference in incidence between aromatase-inhibitors and 

tamoxifen. In contrast, patients receiving trastuzumab or having received 

chemotherapy seem to be less prone to the development of RT-induced acute 

dermatitis (p=0.003 and p=0.045, respectively). Furthermore, patients treated 

with hypofractionated radiotherapy develop less dermatitis when compared to 

patients treated in the normofractionated regimen (p<0.001). And, patients 

treated in prone position developed less dermatitis than patients treated supine 

(p=0.002). In multivariate analysis, chemotherapy and nodal irradiation were no 

longer significant (Table 4).  
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Table 4: Multivariate analysis for G2+ dermatitis and moist desquamation. 

Clinical/genetic factor 
Acute G2+ dermatitis  Moist desquamation 

OR P-value  OR P-value 

Center (CMSE vs. GUH) - -  3.206 0.158 

BMI 1.088 0.003  1.170 <0.001 

Bra cup size (cup ≥D vs. cup A+B+C) 2.833 0.001  2.146 0.043 

Smoking (yes vs. no) 2.711 0.010  - - 

Fractionation (hypo vs. normo) 0.083 <0.001  0.096 <0.001 

Treatment position (prone vs. supine) 0.399 0.004  0.373 0.074 

Hormone therapy      

No 1   1  

Concomitant 3.207 0.001  4.770 0.037 

Sequential (after IMRT) 1.003 0.994  1.078 0.901 

Nodal irradiation (yes vs. no) 1.975 0.100  - - 

Chemotherapy (yes vs. no) 0.954 0.877  - - 

Trastuzumab (yes vs. no) 0.177 <0.001  - - 

MLH1 rs1800734 G>A      

GG 1   -  

GA 0.492 0.008  - - 

AA 0.537 0.232  - - 

Abbreviations: GUH = Ghent University Hospital; CMSE = Clinic Maternity Sainte-

Elisabeth; BMI = Body Mass Index; MLH1 = MutL protein homolog 1 

 

For moist desquamation, univariate significant associations were found with 

bra cup size ≥D (p<0.001), BMI (p<0.001), normofractionation (p<0.001), supine 

positioning (p=0.002), concurrent hormone therapy (p=0.004) and CSME center 

(p<0.001) (Table 5). In multivariate analysis (Table 6), bra cup size ≥D, BMI, 

fractionation and hormone therapy remained statistically significant. Treatment 

center was no longer significantly associated with moist desquamation due to 

the fact that the normofractionated schedule was only prescribed at CMSE. 

 
Table 5: Associations between patient- and therapy-related characteristics and moist 

desquamation. 

 Patient/clinical factor  

All 

(n=377) 

No 

(n=321) 

Yes 

(n=56) P-value PBH-value 

Bra cup size      

A+B+C 269 (71.4) 242 (90.0) 27 (10.0) 
 

 

≥D 103 (27.3) 76 (73.8) 27 (26.2) <0.001 0.001 

BMI      

Median 26 25 29 
 

 

Range 16-50 16-40 21-50 <0.001 <0.001 

Fractionation      

Normo 45 (11.9) 22 (48.9) 23 (51.1) 
 

 

Hypo 332 (88.1) 299 (90.1) 33 (9.9) <0.001 <0.001 

continued on next page 
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Table 5 (continued) 

 Patient/clinical factor  

All 

(n=377) 

No 

(n=321) 

Yes 

(n=56) P-value PBH-value 

Treatment position      

Supine 290 (76.9) 239 (82.4) 51 (17.6) 
 

 

Prone 87 (23.1) 82 (94.3) 5 (5.7) 0.002 0.019 

Hormonal therapy      

No 71 (18.8) 62 (87.3) 9 (12.7)   

Concomitant 243 (64.5) 214 (88.1) 29 (11.9)   

Sequential (after IMRT) 63 (16.7) 45 (71.4) 18 (28.6) 0.004 0.029 

Hormones (concomitant)      

Tamoxifen 155 139 (89.7) 16 (10.3)   

Aromatase inhibitor 85 74 (87.1) 11 (12.9)   

Abbreviations: GUH = Ghent University Hospital; CMSE = Clinic Maternity Sainte-

Elisabeth; BMI = Body Mass Index; pBH = corrected p-value by Benjamini-Hochberg 

procedure.  

Data are given as no. (%) unless otherwise indicated. 

 

 

Genetic analysis 

The only significant p-value, in univariate analysis, was for acute radiation-

induced dermatitis with the GA genotype of rs1800734 in the MLH1 gene with a 

BH-adjusted p-value of 0.029 (Table 6). Adjusting for above mentioned factors 

by multivariate regression analysis had no effect on the statistically significant 

association. None of the other SNPs had any effect on the risk of acute skin 

toxicity. 
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Table 6: Effect of MLH1 rs1800734 on radiotherapy acute skin reactions. 

 
Acute G2+ dermatitis  Moist desquamation 

 

G0-1 

(n=157) 

G2+ 

(n=220) OR P-value PBH-value  

No 

(n=321) 

Yes 

(n=95) OR P-value PBH-value 

MLH1 rs1800734 G>A 
    

  
    

 

GG 81 (51.6) 146 (66.4) 
  

  189 (58.9) 38 (67.9) 
  

 

GA 64 (40.8) 60 (27.3) 0.52 0.004 0.029  110 (34.3) 14 (25.0) 0.63 0.172 0.477 

AA 9 (5.7) 12 (5.5) 0.74 0.514 0.804  17 (5.3) 4 (7.1) 1.17 0.788 0.915 

Missing 3 (1.9) 2 (0.9) 
  

  5 (1.6) 0 
  

 

     
  

    
 

GG vs. GA+AA 

(dominant)   
0.55 0.005 0.033  

  
0.71 0.257 0.575 

GG+GA vs. AA 

(recessive)   
0.94 0.889 0.936  

  
1.35 0.600 0.860 

Abbreviations: MLH1 = MutL protein homolog 1, pBH = corrected p-value by Benjamini-Hochberg procedure. 

Data are given as no. (%) unless otherwise indicated. 
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DISCUSSION 

This study was performed to analyze the influence of treatment and patient-

related factors on the development of acute radiation-induced skin toxicity. Bra 

cup size, BMI, smoking, treatment position, choice of RT schedule and the 

administration of adjuvant therapies seem to contribute to the variability in 

radiation skin toxicity. Also, the MLH1 rs1800734 SNP was found to be 

significantly associated with the development of acute dermatitis.  

 

Our data support the hypothesis that acute toxicity does not increase with 

moderate hypofractionation (22). In fact, the occurrence of acute skin toxicity 

was significantly higher among patients treated with normofractionation 

compared to the hypofractionated schedule. There are only few reports studying 

hypofractionation in overweighed or large-breasted patients (23, 24). We 

observe a 20% decrease in dermatitis and an even larger decrease (70%) in 

moist desquamation in large-breasted patients treated in supine position with 

hypofractionation compared to normofractionation (see supplementary table 

e1). Bra cup size and BMI were also confirmed as significant risk factors for the 

development of acute skin toxicity, in accordance with the majority of published 

reports (7, 8, 25-27). Both are measures of breast volume as BMI was 

previously found to be strongly correlated with breast volume (27). The 

association between larger breast volume and toxicity is thought to be due to 

dose inhomogeneity, high dose regions, and the bolus effect in the 

inframammary and axillary regions (8). Due to the unavailability of dose 

homogeneity and hot spot data for the complete dataset, we were unable to test 

this for the total patient population, but the hypothesis is confirmed in a subset 

of the population (19). Goldsmith et al. show that dose inhomogeneity is 

insufficient to explain the association and other factors like the presence of 

more adipose tissue might also play a role (25). In prone position, the skin 

creases disappear, dose homogeneity is improved and hot spots are reduced 

leading to a reduction in acute skin toxicity (17). In this study, we found a 

decrease in radiodermatitis and moist desquamation in patients treated with 

prone-IMRT. Especially patients with large breast sizes are expected to have a 

great benefit from prone-IMRT as shown by Mulliez et al. (19). 
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In this study, two types of adjuvant hormone therapy, tamoxifen or 

aromatase-inhibitors, were concurrently administered with radiotherapy to 

hormone receptor positive breast cancer patients. Present data show that use 

of hormone therapy is, regardless the type, associated with an increase in 

radiation-induced dermatitis. This is in accordance with a previous study 

investigating the effect of tamoxifen on acute skin reactions (26). But in contrary 

with the COHORT randomized trial, that shows no difference between 

concurrent and sequential administration of letrozole; the latter was 

administered 3 weeks after RT when it is supposed that the radiosensitising 

effect of endocrine therapy is minimal (28). Concurrent administration of 

trastuzumab and IMRT was found to be associated with lower rates of acute 

dermatitis in the present study. This finding needs to be put in perspective as it 

is in contradiction with the observation of a large randomized study that could 

not find a difference in acute toxicity (29). Longer follow-up will be necessary to 

observe the effect of concurrent administration on cardiac toxicity. 

 

Our study shows an association between the MLH1 rs1800734 SNP and 

lower rates of acute radiation-induced dermatitis: heterozygotes are less 

present in the G2+ dermatitis group. The SNP maps 93 base pairs upstream of 

the MLH1 transcription site in the core promoter, a region essential for 

maximum transcriptional activity (30). The SNP was previously shown to be 

associated with acute myeloid leukemia after methylating chemotherapy for 

Hodgkin disease (15). MLH1 gene encodes MutL protein homolog 1 which is 

involved in DNA mismatch repair. Suga et al. found statistically significant 

associations with rs3744355 in the 5’ flanking region of the LIG3 gene and 

acute radiation-induced skin reactions in the Japanese population and Murray 

et al. provided replicated evidence for this association in a European Caucasian 

population (12, 13). We, however, could not confirm this association. Smirnov et 

al. hypothesized that regulatory variants might be able to contribute to the 

development of genetic tools to predict for radiosensitivity (16). This could not 

be demonstrated in our study population. 

Radiation-induced dermatitis includes erythema, edema, dry and moist 

desquamation as symptoms of inflammation probably triggered by cell death 

(31). One of the shortcomings in this study is the fact that erythema was not 
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measured objectively with a colorimeter. As the CTCAE criteria are based on 

subjective scoring, the difference between mild, moderate and brisk erythema is 

observer-dependent. This probably explains the large number of patients 

developing G2+ acute dermatitis when compared to other reports. A strength of 

our investigation is the nearly complete data set for a relatively large number of 

patients enrolled. Furthermore, patient recruitment as well as clinical outcome 

data collection were carried out prospectively. Although the associations hold 

after correcting for multiple testing, the results of this study should be validated 

in an independent study. 

CONCLUSION 

A number of treatment and patient related factors are identified that modify the 

risk for the development of acute skin toxicity after whole-breast IMRT. Large 

bra cup, BMI, normofractionation and concomitant hormone therapy contribute 

to the development of moist desquamation. Patient related factors (high BMI, 

large breast, smoking during treatment and the genetic variation MLH1 

rs1800734), choice of RT schedule and the administration of adjuvant therapies 

affect the development of radiodermatitis.  
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SUPPLEMENTARY MATERIAL 

Table e1: Toxicity in large-breasted patients (cup ≥D) treated in supine position for the 

different fractionation schedules. 

 

Acute G2+ dermatitis  Moist desquamation 

 

G0-1 
(n=10) 

G2+ 
(n=59) P-value  

No 
(n=46) 

Yes 
(n=23) P-value 

Fractionation        

Normo 0 17 (100.0)   5 12 (70.6)  
Hypo 10 42 (79.2) 0.058  41 11 (20.8) <0.001 



 

 
 



 

 
 

 

 

 

 

 

 

Part III 

General discussion 
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9 Challenges in radiation toxicity research 

In this section, different issues will be discussed based on the hurdles that we 

got over during current PhD project and these will need to be taken into 

consideration in future research in the field. 

Predicting the risk to develop normal tissue toxicity has been referred to as 

‘the Holy Grail of radiobiology’ (1). Two approaches can be applied for risk 

stratification: the individual and the population approach (2). The individual 

approach identifies individuals at high risk for whom an alternative to the 

conventional treatment can prevent the development of toxicity or, conversely, 

identifies the patients at low risk for whom intensification of treatment is a 

possibility. The population approach focuses on identifying the underlying cause 

of treatment-related toxicity and provides a generalized intervention that shifts 

the whole risk distribution at the population level (3). The different 

characteristics of prediction (individual approach) and association (population 

approach) are described in the first section.  

Because of the lack of standardising the assessment of radiation-induced 

toxicity, multiple symptoms are recorded by multiple scoring systems. In the 

second section, possible approaches are described that handle this kind of 

information. Adverse events are usually scored as a graded response but 

analysed as a binary endpoint, with potential loss of information. In this section, 

special interest goes to the prediction of an ordinal response which is illustrated 

by the prediction of acute dermatitis. 

The first generation of GWASs provided valuable insights into the genetic 

basis of human traits and diseases with common variants conferring small 

increments in risk (4). In the third section, the predictive value of these variants 

under the form of polygenic risk profiles is illustrated in other traits and diseases 

with a longer history of genetic research, like height and cancer susceptibility. 

Then, an overview is given of the progress made in the radiogenomics field.  
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9.1 Association versus prediction 

This PhD dissertation includes association models for severe acute radiation-

induced nocturia in prostate cancer patients (chapter 6) and for severe acute 

radiodermatitis and moist desquamation in breast cancer patients (chapter 8). It 

also includes prediction models for late radiation-induced nocturia and 

haematuria in prostate cancer patients (chapter 7). Such association and 

prediction models are different in their objectives, their measurements, and their 

applicability in clinical context. Association studies aim to identify aetiological 

associations of factors with a disease and may be an indication for potential 

interventions for preventing or treating the disease (5). Prediction studies, on 

the other hand, are applied to evaluate factors in making individual clinical 

decisions. The performance measures of association studies, odds ratio (OR), 

relative risk or correlation coefficient, are related to statements made at 

population level, but do not apply in decision making; a strong association 

between a factor and disease is usually not sufficient to adequately discriminate 

individuals between different outcomes (5, 6). The performance of prediction 

models should be assessed on three fundamental levels: (i) discrimination, 

reflecting the ability to discriminate between different outcomes, can be 

quantified by measures as sensitivity, specificity and area under the receiver 

operating characteristic curve (AUC) (or concordance statistic), (ii) calibration, 

reflects how close the predictions are similar to the actual risk and (iii) clinical 

usefulness, by quantifying the harms and benefits of the alternative leading to 

an optimal decision threshold (as discussed in chapter 7) (7, 8). A good 

prediction model is a model that includes the smallest number of factors while 

preserving predictive value. 

 

Many studies (9-12) use the standard back- or forward stepwise procedure 

for predictor selection. This method sequentially introduces predictors into the 

model and makes a judgement solely based on p-values. This is in contrast to 

the method applied in this PhD dissertation. Here, we performed the Lasso 

method that is based on effect sizes by imposing penalties to the regression 

coefficients. The Lasso procedure is particularly useful when a large amount of 

predictors is considered. It is a logistic regression method that includes only a 
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subset of predictors into the model, setting the coefficients of the variables with 

negligible effects to zero (13). In this PhD research, models are developed to 

predict urinary toxicity in prostate cancer patients. The models contained 

dosimetric and clinical variables and genetic markers and resulted in acceptable 

predictive performance (results see chapter 7). A comparable approach was 

previously performed to predict esophagitis in lung cancer patients (including 

chemotherapy treatment, lymph node stage, mean esophageal dose, gender, 

overall treatment time, RT technique and four polymorphisms), dysphagia 

(including concurrent chemotherapy, dose delivered to 2% of the superior 

pharyngeal constrictor muscle and one polymorphism) and xerostomia 

(including age, mean dose to contralateral parotid glands, to ipsilateral parotid 

gland and to contralateral submandibular gland, volume of contralateral 

submandibular gland and baseline xerostomia score) in head-neck cancer 

patients (14-16). The Lasso method is the recommended approach for normal 

tissue complication modelling over stepwise selection and Bayesian model 

averaging due to its better predictive power (16). 

Other modelling methods to obtain an individualised estimation of the risk of 

toxicity including dosimetric and clinical factors, involve machine learning 

techniques like artificial neural networks, support vector machines or random 

forest model (17, 18).  

 

A totally different approach to predict normal tissue toxicity includes the 

radiobiological NTCP models; they calculate the probability that a certain 

percentage of patients will experience adverse reactions. These models convert 

dose inhomogeneity within an organ at risk to the equivalent uniform dose 

(EUD), incorporating information from the entire dose-volume histogram (DVH) 

(19). In the previous approach single dose-volume points derived from the 

DVHs are included. Recently, NTCP models with inclusion of known clinical risk 

factors and genetic data have been developed. Two studies investigated late 

rectal toxicity in prostate cancer patients: DeFraene et al. published results on 

NTCP models on rectal bleeding (including abdominal surgery and 

cardiovascular disease), late faecal incontinence (including abdominal surgery 

and diabetes) and on high stool frequency (including baseline stool frequency) 

(20) and Rancati et al. developed models for late rectal bleeding (including 
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abdominal surgery and acute toxicity), severe chronic faecal incontinence and 

mean faecal incontinence (both including disease of the colon or abdominal 

surgery) (21). One study developed an NTCP model for radiation pneumonitis in 

lung cancer patients including mean lung dose, smoking status and four 

polymorphisms (22). For GU toxicity, clinically useful prediction tools have not 

yet been developed. Several studies have, however, defined dose constraints to 

limit late GU toxicity (23-26). As these models can be used as a guidance tool in 

clinical practice, they are more indicative for average trends rather than 

outcomes on individual patients (19). 

 

9.2 Normal tissue toxicity phenotype 

In radiation oncology, the search for (bio)markers associated with or predictive 

for radiation-induced toxicity is impeded by the use of multiple and diverse 

endpoints from a variety of scoring systems (27). First, multiple individual 

symptoms of a specific organ, are merged into a single grade (28, 29). For this 

PhD research, we chose to study the individual urinary symptoms, with nocturia 

being the most prevalent, as the aetiology of these different symptoms is 

unknown and probably different from each other (30). We showed that 

aggregation of multiple symptoms is associated with a loss of specificity and 

statistical resolution (chapter 6). This approach is supported by Bentzen et al. 

who demonstrate that there is no association between the late reactions fibrosis 

and telangiectasia in breast cancer patients and, because of their difference in 

aetiology, they recommend to analyse them as two separate endpoints (31). 

Second, miscellaneous scoring systems impair between-study comparisons and 

pooling of data. These problems can be anticipated by the development of a 

novel metric like the Standardized Total Average Toxicity (STAT) score, 

measuring the overall clinical radiosensitivity (27). Another possible direction is 

the investigation of one type of normal tissue reaction, like fibrosis, assessed in 

different patient cohorts, instead of examining different normal tissue reactions 

in patients treated for the same disease (32).  

Normal tissue reactions can be ordered into a spectrum ranging from simple 

biological endpoints to complex functional endpoints as shown in Figure 9.1 

(32). Depending on the nature of the research, a pragmatic patient-centred or a 
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mechanistic biology-centred approach can be applied. If the aim of the study is 

to establish predictive signatures suitable for clinical decision making, patient-

oriented endpoints are of importance. Conversely, biological endpoints will be 

more appropriate for the analysis of the pathogenic mechanisms (28, 32). This 

is of particular importance in studies using genome-wide approaches, where 

robust phenotyping is essential (33).  

 

Figure 9.1: Spectrum of normal tissue 

reactions. From Andreassen et al. (32). 

 

 

 

 

 

The available toxicity scoring systems allocate dynamic continuous 

symptoms into different grades, ranging from 0 to 5 according to the severity of 

the symptoms. These graded endpoints are in many studies dichotomised into 

no or mild (G0-1) and moderate or severe toxicity (G2+). Although this 

approach is associated with a loss of information, it is often applied for statistical 

reasons. Moreover, logistic regression modelling of binary endpoints has 

advantages in terms of interpretation of the findings (28, 34). Considering 

outcome as an ordinal variable is another possibility and is illustrated in 9.2.1 for 

the prediction of acute dermatitis in breast cancer patients. 

 

Nonetheless, grading of continuous symptoms is prone to subjectivity which 

can be related to differences in toxicity scales between research groups and, 

when medical intervention is included in the scoring system, to the physician’s 

clinical practice and perception of the severity of the event (34, 35). Therefore, it 

would be of great interest to define radiation-induced injury by objective, 

quantitative measurements on a continuous scale (35). Kelsey et al. uses the 

dose-dependent changes in single photon emission computed tomography 

(SPECT) lung perfusion as an objective measure of radiosensitivity (36). De 

Ruysscher et al. studied the potential of CT density changes to quantify 

radiation-induced lung damage (35). Moist desquamation could be predicted in 
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hairless mice by measuring the thermal effusivity of the skin by three-

dimensional thermal tomography (37). Tissue compliance meter is recently 

shown to be a reproducible method to quantify radiation-induced fibrosis (38). 

Furthermore, bladder and rectal function could be objectively measured by anal 

sphincter pressures and rectal capacity or by an urodynamic examination 

including flowmetry and cystometry (39, 40). 

Such objective measurements together with laboratory tests can, in their 

turn, serve as surrogate endpoints which might be useful as early indicators of a 

subclinical effect since some symptoms appear after a long latency period. 

Evidently, surrogacy requires an association between changes in the clinical 

endpoint and changes in surrogate endpoints (28). This is a matter of further 

investigation. 

 

9.2.1 Prediction of acute dermatitis as ordinal endpoint 

In paper III of this PhD dissertation, the association of patient and treatment 

factors with acute dermatitis after irradiation for breast cancer was investigated. 

It was recorded by the CTCAEv3.0 scoring system that grades symptoms like 

mild erythema or dry desquamation as grade 1 (G1), moderate to brisk 

erythema or patchy moist desquamation mostly confined to the skin folds is 

classified as grade 2 (G2) and confluent moist desquamation as grade 3 (G3). 

Further details of treatment and patient characteristics can be found in paper III. 

As the dataset has very few missing values, a complete case analysis was 

performed omitting the patients with incomplete data. 

 

To predict acute dermatitis, two approaches were studied. For the binary 

approach, patients with moderate-severe (G2+) versus no-mild (G0-G1) toxicity 

were considered; the ordinal approach handles all separate grades. Binary and 

ordinal logistic regression, respectively, were applied for prediction modeling. 

Variable selection was performed by the LASSO procedure for both 

approaches. The final binary model was based on the AUC, the final ordinal 

model was based on the VUS (Volume under the ROC surface). For both 

models maximisation of the Youden Index (J) was used to define the optimal 

cut-off values. A J=0 is complete overlap and J=1 is complete separation of the 
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different classes, prediction models with J≥0.20 have acceptable prediction 

performance (41). All steps are carried out with cross validation to control for 

overfit, 10-fold cross validation for binary outcome, 3-fold for ordinal approach 

which is preferred over 5 and 10-fold cross validation as the analysis deals with 

all classes. 

Individual risk scores are calculated according to the formula, with β the 

coefficient of its corresponding predictor Χ: 

Risk score = β1Χ1 + β2Χ2 + … + βpΧp 

The higher the risk score, the higher the risk for developing toxicity. Based on 

these risk scores, the probability to develop a certain grade of toxicity is 

calculated for each patient. In case of ordinal analysis, this risk score will give 

each patient its probability to develop G0, G1, G2 or G3 toxicity. 

 

In total, 345 breast cancer patients can be included in the analysis. Of them, 

3.2% develop no toxicity (G0), 38.3% develop G1 dermatitis, G2 toxicity is 

present in 48.1% and 10.4% develop G3 toxicity; one hundred forty-three 

patients develop no toxicity and two hundred and two patients develop G2+ 

dermatitis. 

 

The final prediction model for the binary outcome is shown in Table 9.1. This 

model has an AUC of 0.77 with sensitivity of 83% and specificity of 61% at 

cutoff of 20% with J=0.20 (Figure 9.2). The model contains, apart from smoking, 

all the variables that remained statistically significant in multivariate modeling. 

Nodal irradiation, on the other hand, was picked up in the prediction model, 

while it did not reach statistical significance in the association study. 
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Table 9.1: Predictors and their coefficients 

for acute dermatitis as a binary endpoint. 

Predictors (Χ) Coefficients (β) 

Intercept 1.342 

BMI 0.022 

Hypofractionation 

schedule 
-0.748 

Prone treatment 

position  
-0.406 

Nodal irradiation 0.119 

Trastuzumab -0.559 

Bra cup size cup ≥D 0.539 

Concomitant hormone 

therapy 
0.106 

MLH1 rs1800734 GG 0.104 

 

Figure 9.2: ROC curves for acute 

dermatitis as binary endpoint. 

 

 

The model to predict acute dermatitis as an ordinal endpoint is shown in 

Table 9.2. Nodal irradiation, hormone therapy and the MLH1 SNP are no longer 

selected compared to the binary prediction model. This is a consequence of 

selecting variables for optimal prediction of four classes instead of two classes. 

The model has a VUS of 0.72 with J=0.28. 

 
 
Table 9.2: Predictors and their coefficients 

for acute dermatitis as an ordinal endpoint. 

Predictors (Χ) Coefficients (β) 

BMI 0.098 

Hypofractionation 

schedule 

-1.792 

Prone treatment 

position 

-1.112 

Trastuzumab -1.431 

Bra cup size cup ≥D 0.662 

 

Based on the coefficients, risk scores and probabilities are calculated; they 

are plotted against each other in Figure 9.3. The risk score cut-offs separate the 

different classes, optimizing the number of true positives in each class.  
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Figure 9.3: Risk scores vs. the probability to develop a certain grade of toxicity for 

the study population. The latter is represented by the coloured lines. The vertical lines 

represent the risk score cut-off values to classify patients into different classes. In a model 

with perfect classification, the highest probabilities to develop a certain grade of toxicity 

would correspond to the category the patient is classified to. For the current model, there is 

moderate overlap as represented by the VUS of 0.72. 

 

For this preliminary analysis, it was chosen to calculate cut-off values based 

on the maximisation of J; this is comparable with the calculation of sensitivity 

and specificity by taking the minimal distance to the perfect point of the ROC 

curve when considering a binary endpoint. Dependent on the harms and 

benefits of the alternative treatment (clinical usefulness), this trade-off between 

false negatives and false positives can be penalized differently, for example as 

applied in paper II (chapter 7). In the prediction analysis of an ordinal endpoint, 

this trade-off is more difficult; the grades in-between are bounded by two cut-off 

values which makes it difficult to optimize sensitivity and specificity for each 

grade. This means that more choices need to be made in relation to the costs 

and benefits of the alternative treatments. Uniformity of scoring by different 
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clinicians becomes a more critical issue in ordinal approach. And, another 

criticism to the ordinal approach is that there is more chance to have classes 

that are not well-balanced from statistical point of view, especially for the 

extremes. This can add more uncertainty into the model and can lead to an 

underestimation of the coefficients. Nonetheless, the ordinal prediction 

approach goes together with gain in information compared to the binary 

approach, it also enters a new level of complexity. For these reasons it is 

recommended to implement an ordinal approach model only when different 

alternative treatments are available and adjust the number of classes to the 

number of available alternatives. 

Hypofractionated IMRT in prone position would be a valid alternative to offer 

patients at high risk for developing G2 or G3 toxicity. With the right guidance 

and expertise, it would be feasible to implement this technique and it does not 

affect tumour control. Therefore, the binary approach would be the best solution 

to reduce severe acute skin toxicity after breast irradiation. 

These results warrant some caution as all the measurements are performed 

on the same patient population and should be validated in an independent 

cohort before clinical implementation. 

 

9.3 Added value of genomics 

Entering the era of GWASs, the search for genetic variants associated with 

common traits and diseases was accelerated with impressive results in finding 

genetic factors involved in many conditions (a comprehensive list of studies can 

be found at www.genome.gov/gwastudies/ (42, 43). In order to make this 

possible, large consortia were established to facilitate and promote multi-centre 

collaboration of researchers. The GIANT consortium, for example, identified in 

183.727 individuals more than 180 loci influencing height, the most heritable 

human trait (44). These loci, which explain ~10% of the phenotypic variation, 

are non-randomly clustered within biologically relevant pathways and probably 

underlie relevant functional and biological information to the study of human 

growth (44).  

Furthermore, GWASs have identified common genetic variants that confer 

susceptibility to different types of cancer. Although, the low effect size of each 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271320&_issn=01678140&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.genome.gov%252Fgwastudies%252F
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sequence variant implies a poor predictive utility of a genetic test based on one 

risk allele. The combination of multiple susceptibility alleles, assuming a 

multiplicative model, may result in a polygenic risk profile that can be used for 

risk prediction (45). To date, a total of 76 susceptibility loci for breast cancer and 

77 for prostate cancer have been identified in approximately 87.000 and 50.000 

individuals, respectively, performed by the COGS consortium (46-48). The 

estimated proportion of familial risk explained by those loci is ~15% for breast 

cancer and ~30% for prostate cancer (47, 48). The polygenic risk profile for 

breast and prostate cancer based on these susceptibility loci shows an AUC of 

0.63 and 0.68, respectively (49) and can identify a small portion of the 

population at a clinically meaningful level of risk; the top 1% of the individuals in 

the highest risk stratum has a 3.2-fold greater risk for breast cancer and a 4.7-

fold greater risk for prostate cancer, relative to the population average (3, 48, 

49). For comparison, the latter risk estimate is similar to that conferred by 

deleterious mutations in BRCA2 (48, 50). These findings suggest that polygenic 

profiling is promising for risk stratification which can be further improved as 

more susceptibility loci are identified and by adding more information (like 

lifestyle factors) into the risk model. 

 

In radiogenomics research, the radiogenomics consortium (RGC) was 

established in 2009 and has about 150 members from >80 institutions in 19 

countries, among them are major collaborative groups from the United Kingdom 

(RAPPER) (51), the United States (GenePARE) (52) and Japan 

(RadGenomics) (53). The RGC acts as a framework to pursue grant 

applications, share data and samples and conduct meta-analyses (54, 55). It 

also develops guidelines to encourage best practices for data collection and for 

reporting radiogenomics studies (56). 

Many, mostly small, studies have reported associations between SNPs in 

candidate genes involved in DNA repair, inflammation and radiation response 

pathways, and radiation toxicity in multiple types of cancer (reviewed in (57)). 

The most intensively studied genetic variant in radiogenomics is the -509 

(rs1800469) SNP in the TGFB1 gene. Large studies or meta-analyses testing 

this association with radiation-induced toxicity could, however, not confirm the 

previous associations. Two literature based meta-analyses (58, 59), a large 
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RAPPER study comprising 778 participants (60) and a meta-analysis conducted 

through a joint RGC effort, including published and unpublished data from 2782 

patients (61), did not detect any significant association between the TGFB1 

SNP and late toxicity. The latter two studies were well-powered to detect small 

differences (60, 61). All other previously reported associations were tested in a 

large (n=1613) independent validation study and could also not confirm the 

associations (62). Recently, the first well-replicated report identified a SNP near 

the TNFα gene to be associated with late RT adverse reactions in breast 

cancer. This candidate gene study was carried out on a test set containing 340 

women, followed by replication of these results in three additional cohorts, two 

German cohorts containing 748 patients and a RAPPER cohort including 948 

women (63).  

Several GWASs in radiogenomics have been performed (64-68). The first 

GWAS was published by Kerns et al.. Radiation-induced ED was studied in 

African-American men (n=79) after prostate cancer treatment. The rs2268363 

SNP in the FSHR gene was found to be associated with the endpoint at the 

genome-wide significance level (p=5.5 × 10-8) (64). The RadGenomics project 

performed a genome-wide screen of microsatellites in 360 patients with diverse 

cancer types. They identified a marker in the SEMA3A promoter region 

associated with acute adverse reactions (65). Furthermore, three 2-stage 

GWASs, consisting of a discovery and replication cohort, were performed in 

prostate cancer patients treated with RT to identify SNPs with the development 

of late urinary symptoms, defined as the change in AUA Symptom Score 

relative to baseline, late rectal bleeding and late ED (66-68). Late urinary 

symptoms are associated with the 9p21.2 region containing 8 SNPs, with 

combined p-values ranging from 8.8x10-6 to 6.5x10-7. These variants reside in a 

haplotype block encompassing the IFNK gene which is involved in inflammation 

(66). Two SNPs that tag the 11q14.3 locus have combined p-values reaching 

genome-wide significance (5.4x10-8 and 6.9x10-7) for association with late rectal 

bleeding. A polygenic risk score including the top 17 SNPs resulted in an OR of 

1.7 and an AUC of 0.74 in the replication cohort (67). For ED, 12 SNPs were 

identified in both cohorts. Combining these SNPs in a cumulative score, a one-

allele increase in the cumulative SNP score increased the OR of developing ED 

with 2.2, taking into account the nongenetic factors age, androgen deprivation, 
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treatment and ancestry. This model including SNPs and the nongenetic factors, 

resulted in an AUC of 0.89 which drops to 0.75 when the genetic markers are 

left out. The model was validated in two small external cohorts (68). In our 

study, we did not first perform association tests to select the SNPs for the 

prediction model. We relied on the Lasso method to select those SNPs (and 

other variables) with the largest effect size. We noticed the same trend that 

including genetic information into a model already containing patient or 

treatment-related data, increases the predictive performance. The AUC of the 

models for haematuria or nocturia decreases more than 0.10 points of AUC 

when the genetic data was left out (see paper II). However, the rather large 

effect of the SNPs on the predictive performance can be an overestimation due 

to sample size. The findings need to be confirmed in additional validation 

studies with larger sample sizes. 

 

We noticed in this doctoral research, that for some cases the heterozygous 

genotypes but not the homozygotes for the minor allele are associated with 

toxicity. A possible explanation is that these results are consistent with the over-

dominant model in which the heterozygotes confer an advantageous effect over 

both homozygotes. However, in large GWASs most SNPs are consistent with 

the additive (allele-dose) model (69), with only a minority of SNPs deviating 

from this and follow the common dominant or recessive models (47, 48). This 

means that our results might be biased by insufficient numbers of patients 

carrying the homozygous variant genotype. 

 

In this PhD research, the SNP selection was predominantly based on the 

candidate gene approach. We notice that genome-wide significance (p≤5x10-8) 

(70) is difficult to achieve and that the GWAS approach is the way to go. 

Progress is already made by studies performed by Kerns et al. (66-68) but 

larger cohorts and independent validation sets are needed to identify true 

susceptibility loci. Currently, the OncoArray project is ongoing. OncoArray is a 

custom-genotyping chip containing, besides 300,000 GWAS backbone SNPs, 

1,000 prostate SNPs and 1,000 breast SNPs specifically chosen by the RGC 

(71). In total, 5,450 RGC prostate samples will be genotyped from five RGC 

groups, including the Ghent group.   
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10 Alternative strategies to predict radiosensivity 

Other than genetic variations, cellular assays can be developed to predict 

clinical radiosensitivity. Among them are DNA damage assays, radiation-

induced apoptosis and gene expression profiles. They involve the analysis of 

changes before and after the ex vivo irradiation of a blood or cell sample.  

A number of in vitro methods have been examined to determine the intrinsic 

radiation sensitivity of patients. These include clonogenic cell survival assays, 

chromosomal damage (dicentrics, micronuclei) and chromatid breaks (G2 

assay) but have shown to be of limited use (72-75). 

 

One of the earliest steps in the cellular repair of DNA DSB is 

phosphorylation of thousands of H2AX molecules, presented as γH2AX, in the 

chromatin flanking the DSB site (76). γH2AX foci, each representing one DSB, 

can be measured by flow cytometry or counted in cell nuclei by 

immunofluorescence microscopy (77). The kinetics of foci loss is a measure of 

DNA repair capacity and can be exploited as a measure of cellular 

radiosensitivity (78-80). Several studies evaluated whether patients with severe 

toxicity have impaired DNA repair mechanisms, with the intention to develop a 

diagnostic test predicting these responses. In the study of Rübe et al., the highly 

sensitive γH2AX foci assay was applied to identify patients with impaired DSB 

repair capacity. They could distinguish ATM homozygote, heterozygote and 

normal individuals. They were also able to detect DSB repair deficiencies in 

three of 23 children with solid tumours. Of them, two children manifested 

unexpected serious adverse events, like life-threatening radiation pneumonitis 

and lethal spinal cord necrosis (81). Chua et al. assessed the number of 

γH2AX/53BP1 foci in lymphocytes of breast cancer patients exhibiting severe 

late clinical radiation-induced photographic changes compared to women (n=7) 

with mild or no changes (n=7). Higher levels of residual DSB were expressed in 

women with clinical changes (82). γH2AX/53BP1 foci were stained as 53BP1 

co-localizes with γH2AX in order to ensure the enumeration of genuine 

radiation-induced foci (82). Residual γH2AX expression in head-neck cancer 

patients increased with the severity of acute mucositis and skin reactions (83). 

The findings of Burton et al. and Li et al. are in line with these results; persistent 
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γ-H2AX expression, measured by flow cytometry, is higher in lymphocytes from 

overreactors compared to lymphocytes of non-overreactors (84, 85). Li et al. 

confirmed the predictive value of γ-H2AX expression for severe mucositis. A 

relative fluorescence intensity of γ-H2AX cut-off value was determined at 24 h 

post-irradiation, with an AUC value of approximately 0.80 and sensitivity and 

specificity being 100% and 53.8%, respectively (85). Other studies could, 

however, not verify this correlation between γ-H2AX foci and acute or late tissue 

damage (86-89). These studies are performed in rather small study populations 

and large prospective cohorts are necessary to validate these findings. 

 

A French research group proposed radiation-induced lymphocyte apoptosis 

(RILA) as a useful tool for the prediction of radiation-induced toxicity. RILA is 

assessed by flow cytometry on fresh blood samples exposed to 8 Gy x-rays. A 

decreased apoptotic response of CD4+ or CD8+ T-lymphocytes to irradiation 

has been observed in AT patients and in patients suffering from late radiation-

induced adverse events when compared to healthy controls (90-95). This assay 

was prospectively investigated in 399 patients with miscellaneous cancers 

treated with RT. The AUC for the development of grade ≥2 at 2 years was for 

CD8 0.83 and 0.71 for CD4, reflecting a greater effect for the CD8 than the CD4 

apoptosis assay. Sensitivity and specificity for the cut-off values of the 

percentage apoptotic CD4 >15% and ≤10%, were ~80% and for the cut-off 

values of CD8 >24% and ≤16% were ~90% (94). The discriminative power of 

the test was confirmed in a recent study of the research group (96). CD4+ and 

CD8+ T-lymphocytes were chosen because of their better flow cytometrical 

separation compared with other types of lymphocytes (90, 93). There is still no 

biological explanation for this relationship. Nowadays, other research groups 

have replicated this finding (97-99) but not always with success (89, 100-102). 

Although, the ones that refute the predictive potential of RILA, deviated from the 

protocol proposed by Oszahin et al. (94).  

 

Gene expression profiling is another approach for the prediction of normal 

tissue toxicity. Its potential is already proven in other disciplines, for example 

the development of Mammaprint® for the identification of women at risk of 
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breast cancer metastasis (103, 104). A number of studies investigated gene 

expression profiles to predict normal tissue toxicity after RT (105-114). 

However, only one study has been validated (113, 115). A classifier was 

developed containing 13 genes that show differential expression in fibroblast 

cell lines irradiated in vitro with the fractionated scheme of 3x3.5 Gy in intervals 

of 24h. The cell lines were derived from 14 breast cancer patients (113, 114). 

This classifier was reduced to 9 genes for technical reasons in the validation 

study. It was tested in fibroblast cultures derived from 160 head-neck cancer 

patients. The classifier showed a sensitivity of 100% and a very low specificity 

of 19.5% for the prediction of grade 3 subcutaneous fibrosis (115). 
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11 Final conclusions 

Knowledge of the factors that modify the risk or models calculating the risk for 

toxicity are useful in clinical practice to prevent the development of radiation-

induced toxicity. In this PhD research, factors related to RT dosimetry, adjuvant 

cancer treatments, acquired co-morbid conditions or factors inherent to the 

patient are investigated for their association or their predictive value for the 

endpoint under investigation.  

Acute and late radiation-induced nocturia in prostate cancer patients was a 

frequently recorded urinary symptom in our patient cohort. The presence of mild 

pre-treatment complaints and treatment with primary RT were confirmed as risk 

factors. Additionally, an association between acute nocturia and the -509 and 

codon 10 TGFB1 SNPs were found and remain statistically significant after 

multiple testing correction. Acute radiation-induced nocturia improves the 

predictive performance of the prediction model developed for late nocturia. 

Although, as it is no genuine predictor (unknown at start RT) it cannot be 

included in the model to calculate the individualized pre-treatment risk. Other 

factors in the model are the minimal clinical target volume (CTV) dose, the CTV 

volume and the NOS3 rs1799983GT, CASP8 rs1045485GG and NR2F6 

rs4808611TC genotypes. They had an acceptable level of discriminating ability 

(AUC=0.76) with sensitivity of 75.9% and specificity of 67.4%. Another urinary 

symptom, predominantly expressed in late phase, is haematuria. A prediction 

model was constructed and included the bladder volume receiving ≥75 Gy, 

prostatic transurethral resection and the HMGRC rs3931914CG, NOS1 

rs2293054AG, PTGER2 rs708498GG and EGFR rs845552AG polymorphisms. 

The model also shows a good discrimination with AUC=0.80 and with sensitivity 

of 83.3% and specificity of 61.5%. The AUC drops to 0.60 and 0.67 for nocturia 

and haematuria, respectively, when leaving the genetic markers out of the 

model. This research implies a valuable role for genetic polymorphisms in 

prediction, albeit with a smaller contribution. Radiation-induced moist 

desquamation and radiation-induced dermatitis, an aggregation of inflammatory 

symptoms like erythema, edema and desquamation, were studied in breast 

cancer patients. The factors influencing the development of both these 

symptoms are BMI, large bra cup size, fractionation schedule and concurrent 
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hormone therapy. Additional factors modifying the risk of acute dermatitis were 

supine IMRT, the administration of trastuzumab and the genetic variation MLH1 

rs1800734. The latter association holds after correction for multiple testing.  

This PhD research shows that the success of predicting normal tissue 

toxicity after RT will depend on our efforts to collaborate. On the one hand, this 

research field connects experts from different disciplines like radiobiologists, 

radiation oncologists and geneticists but also radiation physics and statisticians. 

On the other hand, large patient groups with a standardized collection of 

radiation dosimetric, clinical and biological data will be necessary to perform the 

genotyping studies. Recently, through the RGC, a EU-funded project called 

REQUITE is started. This project aims at validating the existing prediction 

models, with or without genetics, in 5,300 prostate, breast and lung cancer 

patients undergoing RT using identical treatment and toxicity data collection 

forms.   
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12 Future perspectives 

The aim of developing a prediction model is to find a combination of factors that 

accurately predicts an individual patient’s outcome. Validating such a model 

should demonstrate that the combination of these factors is reliable and suitable 

in independent external datasets. Then, the clinical usefulness should be 

determined by comparing the tailored treatment with standard treatments in the 

clinic (116). It should, however, be noticed that alleviating normal tissue toxicity 

may not be at the expense of local tumour control or survival. Therefore large 

integrated predictive systems will have to be developed incorporating factors 

simultaneously predicting for local control, survival, treatment toxicity, quality of 

life and costs (116). 

Furthermore, in highly technological, innovative and rapidly evolving fields 

such as radiotherapy, predictive models will need continuous re-evaluation 

(116, 117). As evidence-based medicine and consecutive guidelines always lag 

somewhat behind practice, data mining of historical data from routine clinical 

practice could be used for decisions concerning new patients, also known as 

Rapid Learning, to speed-up this process (118-121). An additional advantage is 

the large number of readily available patients with unbiased selection compared 

to clinical trials (only 3% of cancer patients are included in clinical trials). A 

drawback of this approach is the low quality of the data (117). 

 

Even after large GWASs of tens of thousands of people, much of the 

heritability remains unexplained. This is also referred to as the ‘missing 

heritability’ (4, 122). Some of this can be attributed to imperfect tagging of a 

strongly associated SNP leading to underestimation of the true effect size (123) 

or to the presence of rare variants with relatively large effects that are not 

tagged by the typical markers used in GWAS (4, 33). These variations can be 

identified by extending the reach of GWAS through fine mapping, imputation 

and denser single-nucleotide polymorphism (SNP) arrays (122). An additional 

drawback of GWAS is the ineffective capturing of structural variations such as 

insertions, deletions, inversions and copy number variants, which commonly 

occur in the human genome (124). Such variants have already been shown to 

have strong associations with several conditions (125, 126). Another possibility 
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is the application of next-generation sequencing technologies, which enable 

identification of rare and private (unique to an individual or family) variants 

through whole-exome or whole-genome sequencing (33, 127). Subsequently, 

acquiring such an enormous amount of data will require the development and 

optimisation of available software to handle data storage and data analysis 

(128). Other sources of phenotypic variation to explore are through 

transcriptome and proteome profiling, miRNAs, epigenomics and protein 

modification studies. 
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