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General Summary  

Necroptosis was recently defined as a caspase-independent programmed cell 

death. Necroptosis plays an important role in physio-pathological processes. It was 

shown to act as a prominent antiviral mechanism and is often associated with 

neurodegenerative diseases and ischemiareperfusion injuries. Yet our 

understanding of the underlying mechanisms is only beginning to emerge. Tumor 

Necrosis Factor alpha (TNFα)-induced necroptosis relies on a signaling pathway 

involving mainly two serine-threonine kinases: Receptor-Interacting Protein Kinase 1 

and 3 (RIPK1 and RIPK3). In 2012, the pseudo-kinase Mixed-Lineage Kinase Like 

(MLKL) was identified as the crucial executioner of necroptosis downstream of 

RIPK3.  

One of the best-studied models of receptor-induced necroptotic cell death is 

the L929 mouse fibrosarcoma cell line stimulated by the pleiotropic cytokine TNFα. 

Although the activation of different types of Mitogen-Activated Protein Kinases 

(MAPKs) has been studied in cell death, molecular mechanisms underlying MAPKs 

activation are poorly understood i n the context of necroptosis. Interestingly, activation 

of Extracellular signal-Regulated Kinases 1 and 2 (ERK1/2) was reported to be 

involved in different modes of programmed cell death such as apoptosis, autophagy 

and ferroptosis in various cellular models. It is now accepted that the regulation of the 

duration, magnitude and subcellular compartmentalization of ERK1/2 activity by 

specific spatio-temporal regulators is interpreted by the cell towards cell fate 

determination.  

To investigate the involvement of ERK1/2 in TNFα-induced necroptosis in 

L929 cells, the effects of chemical inhibitions of the ERK1/2 cascade were monitored. 

Inhibition delayed necroptosis considerably in a dose dependent manner but did not 

block it. Our results are in agreement with previous studies and provide arguments 

for a pro-necrotic function of ERK1/2 in this context. Phosphorylation patterns of 

ERK1/2 revealed a compartmentalized biphasic phosphorylation of ERK1/2 when 

L929 cells were exposed to a necrotic trigger. In addition, combined treatment of 

L929 with TNFα and necrostatin-1, a specific inhibitor of RIPK1 activity, altered the 

phosphorylation patterns of ERK1/2, corroborating previous findings indicating that 

RIPK1 activity is required for TNFα-mediated ERK1/2 activation.  
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Owing to the importance of ERK1/2 spatio-temporal dynamics in determining 

cellular responses, we investigated the ERK1/2 temporal code in necroptosis using 

fluorescence-based reporters of both ERK1/2 activity and localization in single living 

cells. To faithfully monitor ERK2 subcellular distribution in living cells throughout 

necroptosis, we developed a new genetically encoded reporter of ERK2 localization 

named ERK2-LOC. This reporter was fully characterized and validated in order to 

provide an accurate and reliable read-out of ERK2 localization during cell survival 

and cell death processes. We observed a transient translocation of ERK2 when 

necroptosis was triggered, followed by progressive ERK2 accumulation in the 

nucleus, which is a hallmark of ERK1/2-mediated cell death.  

To investigate ERK1/2 activity profiles in living cells, we first used a genetically 

encoded FRET biosensor for ERK1/2 (EKAR-EV). However, this reporter failed to 

reveal any changes in ERK1/2 activity upon TNFα-induced necroptosis in L929 cells, 

which was inconsistent with our biochemical data. Using a newly developed 

approach, we optimized EKAR-EV to generate a new ERK1/2 biosensor with a 

substantially improved dynamic range (ERK1/2-ACT). Using ERK1/2-ACT, a 

dedicated spatio-temporal signature of ERK1/2 activity was recorded for the first time 

during necroptosis. 

 Finally, to correlate the necroptosis ERK1/2 code with necroptosis occurrence, 

we also engineered a first generation of FRET-based kinase biosensors to report on 

both RIPK1 and RIPK3 activities during necroptosis. 
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Algemeen overzicht  

Necroptose werd recent geïdentificeerd als een vorm van caspase-

onafhankelijke geprogrammeerde celdood die een belangrijke rol speelt in fysio-

pathologische processen. Er werd aangetoond dat necroptose een prominente rol 

speelt als antiviraal mechanisme en dat het in een aantal gevallen geassocieerd is 

met neurodegeneratieve ziekten en ischemie-reperfusie orgaanbeschadiging. De 

moleculaire mechanismen die necroptose induceren zijn echter nog weinig 

begrepen. Tumor Necrosis Factor alpha (TNFα)-geïnduceerde necroptose is 

afhankelijk van een signaaltransductieweg die gebruik maakt van twee serine-

threonine kinasen: ‘Receptor-Interacting Protein Kinase’ 1 en 3 (RIPK1 and RIPK3). 

In 2012 werd het pseudo-kinase ‘Mixed-Lineage Kinase Like’ (MLKL) geïdentificeerd 

als RIPK3 substraat en cruciale molecule tijdens membraanpermeabilisatie bij 

necroptose.  

TNFα-geïnduceerde necroptose in de muis L929 fibrosarcoma cellijn is één 

van de best bestudeerde receptor-geïnduceerde necroptose modelsystemen. 

Alhoewel de activering van verschillende types Mitogen-geactiveerde Proteïne 

Kinasen (MAPKs) reeds bestudeerd werden celdood inductie, zijn de moleculaire 

mechanismen van MAPKs activering tijdens necroptose weinig gekend. Activering 

van ‘Extracellular signal-Regulated Kinases 1 en 2’ (ERK1/2) werd reeds 

gerapporteerd tijdens verschillende vormen van geprogrammeerde celdood, zoals 

apoptose, autofagie en ferroptose. Het is nu geaccepteerd dat de regulatie, duratie, 

magnitude en subcellulaire compartimentalizatie van de ERK1/2 activiteit door 

spatio-temporale regulatoren vertaald wordt door de cel tot passend antwoord 

van die cel op de initiële stimulus. 

Om de betrokkenheid van ERK1/2 in TNFα-geïnduceerde necroptose in L929 

cellen te onderzoeken werden de cellen met chemische ERK1/2 inhibitoren 

behandeld. ERK1/2 inhibitie resulteerde in een aanzienlijke vertraging van, maar 

geen bescherming tegen, TNF-geïnduceerde necroptose. Onze resultaten zijn in 

overeenstemming met voorafgaande studies en suggereren een pro-necrotische 

functie van ERK1/2. De ERK1/2 fosforylatiepatronen vertonen een 

gecompartimentalizeerde bi-fasische fosforylatie wanneer L929 cellen behandeld 

werden met TNF. Gecombineerde behandeling van L929 cellen met TNFα en 
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necrostatine-1, een RIPK1-specifieke inhibitor, resulteerde in een gewijzigd ERK1/2 

fosforylatiepatroon. Deze observatie is in overeenstemming met het feit dat RIPK1 

activiteit nodig is voor TNFα-geïnduceerde ERK1/2 activering.  

Omwille van het belang van de ERK1/2 spatio-temporale dynamiek bij het 

bepalen van cellulaire responsen onderzochten wij de ERK1/2 temporale code 

tijdens necroptose gebruik makend van fluorescente ERK1/2-activiteit 

rapporteermoleculen. Deze rapporteermoleculen geven zowel de activiteit als de 

localizatie van geactiveerd ERK1/2 aan in levende cellen. Om de ERK2 subcellulaire 

distributie betrouwbaar weer te geven in levende of necroptotische cellen werden 

genetisch gecodeerde rapporteerconstructen, ERK2-LOC genaamd, in de cellen 

gebracht. Deze rapporteerconstructen werden volledig gekarakteriseerd en 

gevalideerd. We namen een transiënte ERK2 translocatie waar bij TNF-

geïnduceerde necroptose, gevolgd door ERK2 accumulatie in de nucleus, wat een 

kenmerk is van ERK1/2-afhankelijke celdood.  

Om de ERK1/2 activiteitsprofielen in levende cellen te onderzoeken, 

gebruikten we eerst een genetisch gecodeerde ERK1/2 FRET biosensor (EKAR-EV). 

Dit rapporteerconstruct kon echter geen veranderingen in ERK1/2 activiteit 

detecteren, wat in tegenspraak is met onze biochemische data. Daarom 

ontwikkelden we een geoptimaliseerde ERK1/2 biosensor met een substantieel 

verbeterde dynamisch bereik (ERK1/2-ACT). Gebruik makend van ERK1/2-ACT 

konden we wel een spatio-temporaal verschil in ERK1/2 activiteit waarnemen tijdens 

TNF-geïnduceerde necroptose. 

Tenslotte ontwikkelden we eveneens een eerste generatie van FRET-

gebaseerde RIPK1 en RIPK3 kinase biosensors.  
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Résumé général 

La nécroptose a récemment été définie comme une mort programmée 

caspase indépendante. Elle présente un rôle physiopathologique et montre une 

implication dans certains mécanismes antiviraux, des maladies neuro-dégénératives 

ou encore les phénomènes d’ischémie–reperfusion. Cependant, notre 

compréhension des mécanismes moléculaires de la nécroptose commence tout juste 

à voir le jour. La nécroptose induite par le Tumor Necrosis Factor alpha (TNFα) fait 

intervenir une voie de signalisation spécifique impliquant deux kinases, les Receptor-

Interacting Protein Kinases 1 et 3 (RIPK1 et RIPK3) et la pseudo-kinase Mixed 

Lineage Kinase domain-Like protein (MLKL), identifiée en 2012 comme l’exécuteur 

crucial de la nécroptose en aval de RIPK3. 

Un des modèles cellulaire les plus étudiés de la nécroptose est la lignée de 

fibrosarcome de souris L929 stimulée par le TNFα. Bien que l’activation de différents 

types de Mitogen Activated Protein Kinases (MAPKs) ait été impliquée dans ce 

processus, les mécanismes moléculaires mis en œuvre dans le cadre de la 

nécroptose demeurent mal compris. De manière intéressante, l’activation des 

kinases Extracellular signal-Regulated Kinase 1 et 2 (ERK1/2) a été rapportée dans 

plusieurs types de morts cellulaires programmées telles que l’apoptose, l’autophagie 

ou encore la ferroptose. Par ailleurs, la régulation de l’activité de ERK1/2 en termes 

d’amplitude, de durée et de localisation via des régulateurs spatio-temporels 

spécifiques est interprétée par la cellule pour la détermination du destin cellulaire. 

Afin d’étudier l’implication de ERK1/2 dans la nécroptose induite par le TNFα 

dans les L929, nous avons testé l’effet d’inhibiteurs chimiques sur la cascade de 

signalisation ERK1/2. Nos résultats mettent en évidence un retard significatif de la 

nécroptose de manière dose-dépendante, sans pour autant la bloquer. Nos données 

sont en accord avec les études antérieures suggérant ainsi un rôle pro-nécrotique 

de ERK1/2 dans ce contexte cellulaire. Les profils de phosphorylation de ERK1/2 

révèlent une activité biphasique et compartimentée dans ces conditions 

expérimentales. Par ailleurs, l’inhibition de l’activité de RIPK1 par la nécrostatine-1 

dans des L929 traitées par le TNFα perturbe les profils de phosphorylations de 

ERK1/2, indiquant que RIPK1 est impliquée dans l’activation de ERK1/2 induite par 

le TNFα.  
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La régulation spatio-temporelle de l’activité de ERK1/2 étant déterminante 

dans l’engagement du processus cellulaire, nous avons étudié le code d’activation 

temporel de ERK1/2 au cours de la nécroptose via l’utilisation en cellules vivantes 

de rapporteurs fluorescents de l’activité et de la localisation de ERK1/2. Afin 

d’assurer un suivi fidèle de la distribution subcellulaire de ERK2, nous avons 

développé un nouveau rapporteur génétiquement codé, appelé ERK2-LOC. Cet outil 

nous a permis d’observer une translocation transitoire de ERK2 suite à la stimulation 

des L929 par le TNFα, suivi d’une accumulation nucléaire progressive de ERK2. 

Cette signature est considérée comme caractéristique de l’implication de ERK1/2 

dans les processus de mort cellulaire. 

L’examen des profils d’activité de ERK1/2 au cours de la nécroptose a été 

initialement réalisé grâce à l’utilisation d’un rapporteur basé sur le Förster 

Resonance Energy Transfer (FRET) d’activité kinase (EKAR-EV). Ce biosenseur n’a 

pas permis l’enregistrement de variations d’activité, contrairement aux résultats 

obtenus par biochimie. L’optimisation de EKAR-EV, par une approche nouvellement 

développée, a amélioré substantiellement sa gamme dynamique (ERK1/2-ACT). 

L’utilisation de ERK1/2-ACT a permis de mettre en évidence pour la première fois 

une signature spatio-temporelle spécifique de l’activité de ERK1/2 au cours de la 

nécroptose.  

Dans la perspective de corréler les signatures d’activité de ERK1/2 avec 

celles des kinases RIPK1 et RIPK3, nous avons également développé une première 

génération de biosenseurs FRET pour ces kinases initiatrices de la nécroptose. 
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 Abstract 

Cell death contributes to the maintenance of homeostasis, but mounting 

evidence has confirmed the involvement of programmed cell death in some diseases. 

The concept of “programmed cell death,” which was coined several decades ago to 

refer to apoptosis, now also encompasses necroptosis, a newly characterized cell 

death program. Research on programmed cell death has become essential for the 

development of some new therapies. To study cell death signaling and its molecular 

mechanisms, new biochemical and fluorogenic approaches have been devised. We 

first provide an overview of programmed cell death modes and the importance of 

dynamic cell death studies. Next, we focus on both apoptotic and necroptotic 

signaling and their mechanisms by providing a systematic review of all the methods 

and approaches that have been used. We emphasize the contribution of advanced 

approaches based on fluorescent probes, reporters, and FRET-based biosensors for 

studying programmed cell death. Because apoptosis and necroptosis signaling 

pathways share some effectors molecules, we discuss how these new tools could be 

used to discriminate between apoptosis and necroptosis. We also describe how we 

developed specific FRET-based biosensors for detecting necroptosis. Finally, we 

touch on how dynamic measurement of biomolecules in living models will play a role 

in personalized prognosis and therapy. 

 

Keywords 

Cell Death, Biosensors, Cytochrome C, RIPK, Caspase 
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 Abreviations 

ADP  ..................... adenosine diphosphate  
AFM ...................... atomic force microscopy 
AIF........................ apoptosis inducing factor 
ALA ...................... δ-aminolevulinic acid 
AMC ..................... 7-amino-4-methylcoumarin 
ANT ...................... adenine nucleotide translocase 
Apaf-1 ................... apoptotic protease-activating factor 1 
ATP ...................... adenosine triphosphate  
Bad ....................... Bcl-2-associated death promoter 
Bak ....................... Bcl-2 homologous antagonist/killer 
Bax ....................... Bcl-2-associated X protein 
Bcl-2  .................... B-cell lymphoma-2  
Bcl-XL ................... B-cell lymphoma-extra large 
BCR-ABL .............. breakpoint cluster region-abelson 
BFP ...................... blue fluorescent protein 
BH domain ............ Bcl-2 homology domain 
BHK-21 ................. baby hamster kidney cells 
Bid ........................ BH3 interacting domain death agonist 
Bok ....................... Bcl-2 related ovarian killer 
BrdUTP ................. 5-Bromo-2’-deoxyuridine 5’-triphosphate 
CA-GFP ................ caspase-activatable GFP 
Caspase ............... cystein-dependent aspartate-directed protease 
CB-NP .................. cathepsin B nanoprobe 
CD95 .................... cluster of differentiation 95 
CdS-QDs .............. cadmium sulfide quantum dots 
CFP ...................... cyan fluorescent protein 
cIAP1/2 ................. cellular inhibitor of apoptosis protein 1/2 
CML ...................... chronic myeloid leukemia cells 
CrkL ...................... v-Crk avian sarcoma virus CT10 oncogene homolog-like 
Cyt c ..................... cytochrome c 
DD ........................ death domain 
DISC ..................... death inducing signaling complex 
DNA ...................... deoxyribonucleic acid 
DR ........................ death receptor 
ECL ...................... electrochemiluminescence 
eGFP .................... enhanced GFP 
ER ........................ Endoplasmic reticulum 
ETO ...................... etoposide 
FADD.................... Fas associated protein with death domain 
FRET .................... förster resonance energy transfer 
GBM ..................... glioblastoma-multiforme cells 
GFP ...................... green fluorescent protein 
GSK3b .................. glycogen synthase kinase 3b 
HeLa ..................... Henrietta Lacks cells 
HMGB1 ................. high-mobility group protein B1 
ID ......................... intermediary domain 
IMS ....................... intermembrane space 
IMS-RP ................. intermembrane space reporter protein 
KAR ...................... kinase activity reporter 
KD  ....................... kinase domain 
MAPK/ERK ........... mitogen-activated protein kinase / extracellular signal-regulated kinase 
MCF-7 .................. Michigan Cancer Foundation-7 cells 
Mcl-1 .................... induced myeloid leukemia cell differentiation protein 
mESCs ................. mouse embryonic stem cells 
MLKL .................... mixed lineage kinase-like domain protein 
MOMP .................. mitochondrial outer membrane permeabilization 
MRE ..................... molecular recognition element 
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MTP ...................... mitochondrial transmembrane potential 
NIRF ..................... near-infrared fluorescence 
OXPHOX .............. oxidative phosphorylation 
PARP.................... poly(ADP)-ribose polymerase 
PC-12 ................... pheochromocytoma-12 cells 
PCD  ..................... programmed cell death 
PDT ...................... photodynamic therapy 
PI .......................... propidium iodide 
PS ........................ phosphatidylserine 
PTP ...................... permeability transition pore 
Puma .................... p53 upregulated modulator of apoptosis 
RFP ...................... red fluorescent protein 
RHIM .................... RIP homology interaction motif 
RIP-KARs ............. RIPK kinase activity reporters 
RIPK1/3 ................ receptor interacting protein kinase 1/3 
ROS ..................... reactive oxygen species 
siRNA ................... small interfering RNA 
Smac .................... second mitochondria-derived activator of caspases 
tBid ....................... truncated Bid 
TC ........................ tetracysteine motif 
TMRE ................... tetramethylrhodamine ethyl ester 
TMRM................... tetramethylrhodamine methyl ester 
TNF ...................... tumor necrosis factor 
TNFR1 .................. tumor necrosis factor receptor 1 
TRADD ................. TNF-α receptor associated deat domain 
TRAF2/5 ............... TNF-α receptor associated factor 2/5 
TRAIL ................... TNF-α related apoptosis-inducing ligand 
TUNEL.................. terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling 
YFP  ..................... yellow fluorescent protein 
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 Introduction 

In adult humans, several million cells die per minute to balance the number of 

newly formed cells. Every cell in an organism is programmed to respond specifically 

to extracellular signals. The delivery of this information to subcellular levels, which 

requires the mobilization of intracellular signaling pathways, modulates the functions 

of subcellular compartments such as mitochondria, ER, and nucleus, to generate the 

appropriate response. Pre- and post-translational modifications of molecules regulate 

cellular processes quickly and reversibly. At the organism level, cellular homeostasis 

is essential and relies on three processes: proliferation, differentiation and cell death. 

In the past, much attention was given to the study of cell proliferation and 

differentiation while cell death was relatively neglected.  

The concept of programmed cell death (PCD) was first introduced, in 1923, to 

describe the response of a plant cell infected by an incompatible fungus [1]. In plants, 

PCD is involved in xylogenesis, loss of foliage in autumn, cellular responses to 

counter pathogens and the preservation of the organism under environmental  

stress [2-5]. While plant scientists allowed physiologists to generalize this concept to 

other contexts in animal cells, it was not until the seventies that attention was given 

to cell death. The term “programmed cell death” was then used to define particular 

cellular events that occur during embryonic development [6-8]. In animals, PCD has 

been characterized in the cells of interdigital spaces, disappearance of certain 

embryonic structures, remodeling of early neural structures to establish functional 

synaptic connections, and death of certain cells of the immune system to prevent 

autoimmune diseases (for review [8]). 

PCD is fundamental in both plant and animal physiology, playing a prominent 

role in the regulation and maintenance of cellular homeostasis. Programmed cell 

death is genetically regulated, relies on specific signaling pathways, and has been 

strongly conserved throughout evolution [9-15]. So it has become essential to gain a 

deep understanding of this process and to elucidate its mechanisms at the molecular 

level.  

Mutations in cell death genes contribute to the development of many diseases 

such as cancer [16, 17] and immunologic [18-20], neurodegenerative [21, 22] and 

cardiovascular diseases [23-25]. The involvement of PCD malfunction in 
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pathogenesis has raised interest and contributed to the emergence of a new 

biomedical research field. 

Indeed, cardiovascular diseases, including heart failure, myocardial infarction 

and ischemia/reperfusion, are the leading cause of death worldwide. Cell death 

mechanisms are involved in the development of these disorders, and 

pharmacological inhibition of PCD decreases the severity and progression of cardiac 

injuries (for review [26]). 

Alzheimer's disease is characterized by progressive neuronal cell death, 

mainly in the neocortex and limbic system structures. Accumulation and aggregation 

of amyloid  peptides promote cell cytotoxicity and alter the activation state of several 

kinases, which provoke subsequent activation of cell death signaling  

pathways [27, 28].  

Viruses can counteract the defense mechanisms of infected cells by 

controlling both extrinsic and intrinsic apoptotic machinery that lead to cell suicide. 

Some viruses can hijack the cell’s defense mechanisms, to the detriment of the cell. 

However, depending on the cellular context, certain cells can escape viral attacks by 

triggering necrotic cell death [19, 20, 29]. 

In cancer, depending on the severity and accumulation of mutations, cells 

either repair the defects or, to preserve genetic integrity, they activate signaling 

pathways leading to cell death. However, evasion of cell death is a hallmark of 

cancer (for review [30, 31]), as some cells can escape PCD and engage in 

tumorigenesis [31, 32].  

Based on morphological and biochemical criteria, three distinct major types of 

cell death have been identified: apoptotic cell death (type I), autophagic cell death 

(type II) and necrotic cell death (type III) [33]. While autophagy has been considered 

more as a cell survival mechanism, it has also been shown to promote cell death in a 

cell context-specific manner [34]. Autophagic cell death is a type of cell death that 

lacks chromatin condensation but involves massive autophagic vacuolization of the 

cytoplasm. Unlike apoptotic cells which are efficiently cleared by macrophages, 

autophagic cells are not engulfed by phagocytes [33].  

Recently, two new types of cell death have been described. The first, 

charontosis, is a type of PCD occurring in mouse embryonic stem cells (mESCs) 
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upon etoposide (ETO) treatment [35]. Another type of cell death, ferroptosis, is a 

unique iron-dependent form of non-apoptotic cell death that is induced by  

erastin [36]. 

In this review, we focus on apoptotic and necroptotic cell death. We review the 

biochemical and live-cell imaging approaches developed to track specific markers 

and discriminate between these two types of PCD. Because cellular processes are 

dynamic, we emphasize approaches that capture this dynamic feature in living cells. 

 Importance of dynamic studies of signaling 
pathways 

Recently, many papers have shown that the biological response is dictated by 

the duration, magnitude and subcellular compartmentalization of enzymatic activity 

[37-39]. Specifically, the response of the cell is based on the modulation of the 

spatiotemporal dynamics of kinase activity. One of the most striking examples is the 

kinase MAPK/ERK. A central question about the MAPK/ERK signal transduction 

cascade is how the same protein kinase can elicit different cellular  

responses [38, 40, 41]? 

In cell death processes, cell fate is the result of a dynamic balance between 

extracellular signals promoting survival or cell death. In the absence of trophic 

factors, cells initiate programmed cell death. Depending on cell type and stimulus, 

ERK dynamics can mediate different programmed cell death modes, such as 

apoptosis, autophagy, or senescence in various cellular models (for review [42]). The 

involvement of ERK in various cell death forms requires its sustained and 

sequestered activity. These two characteristics are recognized as hallmarks of ERK-

mediated cell death. Sustained cytoplasmic ERK activity triggers senescence or 

autophagy by activating pro-death proteins in the cytoplasm [43, 44]. By contrast, 

sustained nuclear compartmentalization of ERK activity can promote apoptosis [45]. 

It has been suggested that signals provoking sustained activation of ERK in different 

subcellular compartments trigger cell death.  

It is essential to determine the spatiotemporal patterns of initiator and 

executioner molecules that lead progressively and irreversibly to a particular type of 

cell death. The specific enzyme activity profiles required for cell death initiation and 

execution should be identified in living cells. Biosensors and reporters are suitable for 



Introduction  The Programmed Cell Death (PCD) 

12 

such approaches [46]. It is important, though, to distinguish between biosensors and 

bioprobes. A bioprobe provides only a snapshot of the cellular state at a given time, 

and is often discarded after its use. A biosensor can follow modifications of 

biomolecules in living cells with improved spatiotemporal resolution, while a reporter 

will indicate the occurrence of a specific event.  

There are two main types of genetically encoded biosensors: environment-

sensitive fluorophores and biosensors based on Förster resonance energy  

transfer (FRET).   

Environment-sensitive fluorophores are the result of fluorescent protein 

engineering. In this situation, biomolecules binding to specifically engineered 

fluorophores modulate the fluorescence intensity of the fluorophore, which provides 

information about the concentration changes of the biomolecule inside the cell. 

Environment-sensitive biosensors include those reporting on the concentration of 

several ionic and reactive oxygen species (for review [47-50]).  

By contrast, FRET biosensors consist of two parts: the  “bioreceptor” part 

allows specific recognition of the biomolecule of interest, whereas the “transducer” 

part converts biochemical information into a photo-physical signal that is then 

recorded by a microscope (for review [51]).  

It is important to distinguish intermolecular from intramolecular FRET 

biosensors [41]. Intermolecular FRET biosensors consist of two distinct proteins of 

interest, each of which is fused to a fluorescent protein [52, 53], and are well suited 

for proteinprotein interaction studies.  

Intramolecular FRET biosensors useful for the study of PCD include cleavage 

reporters and conformational change biosensors, which sense post-translational 

modifications such as proteolysis and phosphorylation in living cells (for review [54, 

55]). FRET biosensors are based on the arrangement of several components, and in 

particular two fluorescent proteins flanking a molecular recognition element (MRE). 

Many types of FRET biosensors are now available, and in particular Kinase Activity 

Reporters  (KAR) (for review [46]). While KAR show an increase in FRET between 

the two fluorophores upon phosphorylation, protease biosensors, such as caspase 

reporters, are based on FRET decrease after protease cleavage at a specific site 

between two FRET compatible fluorophores.  
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Many caspase reporters have been developed in attempts to identify the type 

of PCD and monitor the activity of initiator and executioner caspases in cells 

undergoing cell death [56-58]. They are reviewed below.  

 Apoptosis  

Apoptosis is essential for cell homeostasis and during embryonic development 

[59, 60]. An excellent example of apoptosis playing a central role in morphogenesis is 

the development of the vertebrate limb [60]. 

Morphologically, apoptosis is characterized by membrane blebbing, cell 

shrinkage, chromatin aggregation, and appearance of apoptotic bodies [59]. 

Depending on the initial signal, two major signaling pathways can be distinguished: 

the intrinsic and the extrinsic signaling pathway. Intrinsic signaling involves the 

mitochondrial pathway and is usually induced by internal stimuli, such as DNA 

damage, inhibition of cell survival factors, defective cell cycle, hypoxia, or other forms 

of cellular stress. The signaling cascade induced in the mitochondrial pathway 

depends on the release of proapoptotic proteins from the mitochondrial 

intermembrane space (IMS), such as cytochrome c (cyt c). This protein binds 

apoptotic protease-activating factor 1 (Apaf-1), inducing a conformational change and 

oligomerization that leads to the formation of a caspase activation platform called the 

apoptosome. The formed complex recruits, dimerizes, and activates initiator 

caspase-9, which in turn cleaves and activates caspase-3 [61]. On the other hand, 

extrinsic signaling is induced by activation of transmembrane receptors of the death 

receptor family, including Fas/CD95, tumor necrosis factor-alpha (TNF-α) receptor 1 

(TNFR1), and two death receptors (DR4 and DR5), which bind to TNF-α related 

apoptosis-inducing ligand (TRAIL) [62]. As the signaling of the extrinsic pathway is 

shared by apoptosis and necroptosis (the regulated form of necrosis) we will 

emphasize its molecular mechanism. 

Molecular pathways of apoptosis 

 The intrinsic pathway of apoptosis 

This pathway is engaged at the mitochondrial level by mitochondrial outer 

membrane permeabilization (MOMP), which is tightly regulated by members of the 

Bcl-2 family. Coordinated function of Bcl-2 family proteins is critical during apoptosis. 

The Bcl-2 family members have some homologous regions known as Bcl-2 homology 
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(BH) domains. These molecules can be divided in two groups: anti-apoptotic proteins 

such as Bcl-2, Bcl-XL, Bcl-w and Mcl-1, which contain BH domains 1 – 4 and pro-

apoptotic proteins, including the multi-domain effectors (comprising BH domains 1–3) 

Bax, Bak, Bok and BH3-only proteins such as Bid, Bim and  

Bad (For review see [63]). The induction of MOMP is promoted by pro-apoptotic 

proteins Bax and Bak, which oligomerize to form pores in the outer mitochondrial 

membrane (OMM) [64]. BH-3 only proteins function as either direct activators of Bax 

and Bak, or as de-repressors of anti-apoptotic Bcl-2 and Bcl-XL [65, 66]. Currently, 

there are two opposite models describing the activity of BH-3 only proteins (see 

review [67]). According to one model, Bax and Bak are constantly repressed by the 

anti-apoptotic activity of Bcl-2 like proteins. Activated BH3-only proteins associate 

with Bcl-2 like proteins, thereby releasing Bax and Bak to promote MOMP. The other 

model indicates that some BH3-only proteins, such as Bid, Bim and Puma, directly 

bind to and activate Bax and Bak. But in normal conditions, their exposed BH3-

domains interact with and are sequestered by anti-apoptotic Bcl-2 proteins. Binding 

of other BH3-only proteins, such as Bad, to the anti-apoptotic proteins results in the 

release of Bid, Bim and Puma, allowing them to activate Bax (for review [63]).  

Figure 1A shows a representation of the mitochondrial pathway. 

 The extrinsic pathway of apoptosis 

As mentioned above, several stimuli, such as Fas ligand and TRAIL, can lead 

to apoptosis. However, the most extensively studied mechanism is the one induced 

by TNF. Binding of TNF to the extracellular domain of TNFR1 [68] results in the 

formation of complex I, which contains TNF-α receptor associated death domain 

(TRADD), the E3-ubiquitin ligases TNF-α receptor associated factor 2/5 (TRAF2/5), 

and the cellular inhibitor of apoptosis proteins (cIAP1/2), which promote K63-linked 

ubiquitination of receptor interacting protein kinase 1 (RIPK1) [69, 70].  

RIPK1 is a serine/threonine kinase of the RIPK family and is considered as a 

molecular switch between RIPK1 kinase-dependent apoptosis and necroptosis [71]. 

The RIPK1 ubiquitination state is crucial because it determines whether RIPK1 

functions as a molecular platform for the recruitment of molecular adapters that can 

elicit a pro-survival response, or as a kinase that promotes cell death. 
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In apoptosis, K63-linked ubiquitination of RIPK1 finally leads to the induction of the 

nuclear factor-kappa B signaling pathway, which generates a pro-survival response. 

When the ubiquitination of RIPK1 is inhibited [72-74], it dissociates from complex I 

and forms, together with Fas associated protein with death domain (FADD) and 

initiator caspase-8, the cytoplasmic death inducing signaling complex (DISC) [75]. 

Recruitment and oligomerization of caspase-8 monomers in the DISC result in its 

autocatalytic activation [76]. Functional caspase-8 subsequently activates 

executioner caspase-3 and -7 by limited proteolysis within their interdomain linker. By 

contrast to caspase-8, the executioner caspase zymogens exist in the cytosol as 

inactive dimers [77]. The activated executioner caspases finally mediate apoptosis by 

proteolytically processing their substrates, such as poly(ADP)-ribose polymerase 

(PARP) [78, 79]. Figure 1B shows a representation of the apoptosis and necroptosis 

signaling pathways and key molecular effectors. 

Approaches for apoptosis assessment  

As apoptosis plays an essential role in cell homeostasis, it has to be fully 

characterized in order to define specific molecular targets to modulate it 

therapeutically. Multiple analytical procedures have been developed to determine 

apoptosis presence and its extent. These approaches can be divided into two 

groups: biochemical assays and fluorogenic assays.  

 Biochemical assays 

Apoptosis is characterized by the cleavage of DNA at internucleosomal (linker) 

sections by an activated endonuclease [80], and by membrane blebbing [81]. In 

electrophoretic gels the fragmented DNA shows a typical ladder pattern [80]. The 

morphological changes in the plasma membrane can be detected by atomic force 

microscopy (AFM), which has been successfully applied in studies on K562, HeLa 

and Ishikawa cell lines [81, 82].  

An alternative approach for identifying apoptotic cells is based on the detection 

of DNA strand breaks by labeling their 3’OH termini by using exogenous terminal 

deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay [83]. The 

labeling substrates include biotin- or digoxigenin-conjugated nucleotides [84, 85] and 

BrdUTP [86]. The TUNEL assay has been successfully used to detect, at earlier 

stages of apoptosis, the activation of a serine protease that hydrolyzes protein(s) 
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associated with the internucleosomal linker DNA. In this way, the serine protease, 

increases the accessibility of DNA to the apoptosis-associated endonuclease [84]. 

Moreover, by performing TUNEL staining on organ sections, cell death can be 

precisely localized in situ [87]. 

 

Figure 1:  Programmed cell death signaling pathways and dedicated fluorescent probes and FRET based 
biosensors. (A) The intrinsic pathway. Signaling pathways are indicated by solid-line arrows. Release of 
cytochrome c and Smac from mitochondria is indicated by a dashed-line arrow. Red T signs indicate protein 
inhibition. Red arrows indicate protein activation. Cleavage of the protein is denoted by zigzag lines. Fluorescent 
probes and biosensors are indicated by callouts (rectangles: biosensors; rounded rectangles: bioprobes; black: 
conditional biosensors; blue: for cyt c; red: for Smac, green: for caspase-7; purple for caspase-9). Names and 
domain compositions of fluorescent indicators are indicated and are followed by the references in parentheses. 
Domain names are linked with hyphens from the N- to the C-terminus. casp, caspase; cyt c, cytochrome c. (B) 
The extrinsic pathway. Signaling pathways are indicated by solid-line arrows. Curved arrows indicate post-
translational modifications (red: ubiquitination; black: phosphorylation). Crossovers denote the absence of the 
functional protein or post-translational modification. Zigzag lines designate the cleavage of the protein. 
Fluorescent probes and biosensors are indicated by callouts (rectangular: for caspase-8; rounded rectangular: for 
caspase-3; oval: for caspase-9; red callout: fluorescent probe; blue callout: biosensor). Names and domain 
compositions of fluorescent indicators are designated and are followed by the references in parentheses (black 
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font: single caspase indicators; red font: biosensor designed for caspase-8 and -3; blue font: biosensor designed 
for caspase-3 and -6). Domain names are linked with hyphens from the N- to the C-terminus. Ub, ubiquitin; casp, 
caspase; P, phosphate. (Figure designed using references [58, 99–102, 105–107, 110, 111, 113–115, 117, 119, 
122–125].) 

Another characteristic of apoptosis widely used to detect it is the external 

exposure of phosphatidylserine (PS), which is normally located on the inner surface 

of the lipid bilayer [88]. The anticoagulant protein annexin V binds phosphatidylserine 

with high affinity. Upon induction of apoptosis, cells surface-exposing 

phosphatidylserine are available to annexin V. During the early stages of apoptosis, 

cells can still exclude cationic dyes such as propidium iodide (PI). Therefore, during 

the early stages of apoptosis cells bind annexin V and exclude PI, becoming PS+/PI-. 

At later stages of apoptosis, cells can no longer exclude PI and become double 

fluorescent, PS+/PI+. The use of fluorochrome-conjugated annexin V in flow 

cytometry is now widespread [89, 90]. In 2000, Belloc et al. used flow cytometric 

analysis with annexin V and anti-active caspase-3 antibodies to show that a partial 

caspase-3 activation precedes external exposure of PS [91]. Recently, a new 

technique called eletrochemiluminescence (ECL) cytosensing has been introduced. 

This technique uses annexin V immobilized on L-cysteine-capped cadmium sulfide 

quantum dots (CdS-QDs)/Polyaniline nanofibers. Interaction between PS on the 

surface of apoptotic cells and annexin V can be probed by ECL. This method is 

highly sensitive, selective, reproducible and simple [92]. 

An alternative approach frequently used to detect apoptosis is the 

measurement of cyt. c release. This analysis can be performed using various 

fractionation techniques whereby cells are either permeabilized with digitonin or 

mechanically ruptured followed by separation of the cytosolic fraction from the heavy 

membrane fraction containing mitochondria. Both fractions are analyzed by western 

blotting to determine cyt. c distribution and amount [93]. This method has been 

successfully applied to demonstrate that cell death stimuli such as Bax- or Bax/Bak-

dependent pro-apoptotic drugs induce hierarchical release of the mitochondrial 

factors involved in the induction of cell death [94].  

As mentioned above, the relatively early caspase activation is a major event 

and a hallmark of apoptosis [78]. One way to determine caspase activation is by 

detection of the cleavage products of caspase substrates such as PARP1 [78, 79] by 

western blotting [78] or flow cytometry [95]. The latter technique has been used to 

show the difference in kinetics between apoptosis induced by camptothecin and that 
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caused by TNFα together with cycloheximide [95]. Another way to assess activation 

of caspases is by detecting the epitope of the activated (cleaved) caspases with 

specific antibodies using western blotting analysis or flow cytometry [91]. Like TUNEL 

staining, immunohistochemistry can be used to detect apoptotic cell death, and an 

antibody directed against activated caspase-3 can be used on organ sections to 

identify the localization of cell death in situ [87]. The use of specific substrates for 

caspase-3 has been successfully applied in vivo. By performing positron emission 

tomography in mice, apoptosis could be traced using caspase-3 substrates labeled 

with CP18 or ICMT-11 [18F] [96-98]. Table 1 summarizes the biochemical approaches 

used to assess apoptosis. 

Cellular structure/biomolecule Approach/ technique Reference 

DNA cleavage at 
internucleosomal sections 

Gel electrophoresis [80] 

Membrane blebbing Atomic force microscopy (AFM) [81, 82] 

DNA strand break Tunnel [83-87] 

External exposure of 
phosphatidylserine (PS) 

Flow cytometry [89-91] 

 Electrochemiluminescence cytosensing [92] 

 

Cytoplasmic cyt. c release Fractionation techniques followed by western 
blotting 

[93, 94] 

Caspase activation Western blotting against caspase substrates 
(PARP1) or activated  

caspases 

[78, 91] 

Flow cytometry against caspase substrates (PARP1) 
or activated caspases 

[91, 95] 

Immunohistochemistry against activated caspases [87] 

Positron emission tomography [96-98] 

Table 1: Biochemical approaches for assessing apoptosis 

 Fluorogenic assays 

The techniques mentioned above are useful for detecting cells undergoing 

apoptosis. However, most of these techniques have one major disadvantage: the 

analysis requires lysis or fixation of the cells, which hampers spatiotemporal 

resolution. Besides, these methods cannot characterize the dynamics of key 

biomolecules involved in apoptosis. So, approaches that can monitor apoptosis in 

living cells have been developed. One example of such a system is the use of 

fluorogenic caspase substrates [99-103]. These are peptides that are not fluorescent 

but emit strong fluorescence upon caspase-induced cleavage. As they are highly 
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permeant and not cytotoxic, these reporters can be used effectively in living cells 

even during long-term incubations [100]. A high content screening with the cell death 

siRNA pool and using NucView488TM as a caspase-3 fluorogenic substrate 

demonstrated the reliability of fluorescent signal production [104]. 

Kasili et al., 2004 described the use of a fluorogenic probe containing a 

cleavage site for caspase-9 linked to 7-amino-4-methylcoumarin (AMC). This probe 

was used to reveal caspase-9 involvement in apoptotic MCF-7 cells after 

photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) [105]. 

Recently, several caspase activity reporters that use GFP as a fluorescent 

label have been described. One of them, Caspase Activatable-GFP (CA-GFP), is 

specific for caspase-7 and contains a version of GFP that does not show any 

fluorescence due to the presence of a hydrophobic quenching peptide that 

tetramerizes GFP, thus preventing its maturation. The fluorescence can be 

completely restored by catalytic removal of the quenching peptide following caspase 

activation. The reporter appeared to be more sensitive than other apoptosis 

reporters: in mammalian cells it provides a three-fold increase in fluorescence upon 

induction of apoptosis and activation of caspases. The system is effective for time-

resolved observation of apoptosis [106]. Another recently described reporter contains 

an enhanced green fluorescent protein (eGFP) and a luciferase encompassing a 

caspase cleavage sequence flanked by a proteasome recognition site. In the 

absence of active caspases, the proteasome recognition site gets ubiquitinated and 

is degraded by the proteasome. But when caspases are activated, the caspase 

recognition sequence is cleaved, releasing luciferase and GFP. The presence of both 

luciferase and GFP makes this versatile reporter suitable for both in situ and in vivo 

use. Using this reporter Huang et al. demonstrated caspase-3 activation in solid 

tumors during radiotherapy [107]. 

Another approach that is gaining much attention is the use of FRET-based 

biosensors and probes to assess the initiation and execution of apoptosis. This 

method makes use of two GFP derivatives encompassing a peptide substrate 

specific for a certain caspase [108]. In the absence of active caspase, the two 

proteins are brought together and non-radiative energy is transferred from the donor 

to the acceptor fluorophore. But when caspase activity is present, the peptide is 

cleaved, separating the two fluorophores and eliminating FRET [108]. The two most 
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commonly used fluorophores are cyan fluorescent protein (CFP) and yellow 

fluorescent protein (YFP) [109-112] or its improved version Venus [113]. Another 

combination is TagGFP (an enhanced bright mutant of the GFP-like protein) and 

TagRFP (a monomeric red fluorescent protein) generated from the wild-type RFP 

[114]. This biosensor (TagGFP-DEVD-TagRFP sensor) has a wide dynamic range, 

bright fluorescence, and enhanced pH and photo-stability [114]. Nguyen and 

Daugherty described an improved FRET pair, CyPet-YPet that has a 20-fold 

ratiometric FRET signal change, which is much greater than the 3-fold change of the 

parental pair CFP-YFP [115].  

Currently used apoptotic biosensors are specific for the activation of caspase-

3 [111, 113, 114, 116] or caspase-8 [110, 117]. They enable visualization of the 

dynamics of caspase activity with high spatial resolution [110, 113]. For instance, the 

use of a caspase-8 biosensor that contains the Bid protein, a known caspase-8 

substrate [118], fused to YFP and CFP at the N- and C-terminus, respectively, 

showed a difference in caspase-8 activation in SK-N-SH cells by anti-Fas antibody 

and Aβ or tunicamycin. Moreover, this biosensor has been used for real-time 

detection of cytoplasmic caspase-8-mediated cleavage of Bid, which is followed by 

translocation of truncated Bid [118] (tBid)-CFP to mitochondria [117]. In 2006, Wu et 

al. developed a dual FRET biosensor for caspase-3 and caspase-6 [58]. The study 

highlighted a difference in activity kinetics between caspase-3 and -6. The analysis 

revealed that following apoptosis induction, caspase-3 activation preceded caspase-

6 by ~30 min [58]. Another apoptotic biosensor recently developed by Kominami et 

al. monitors the activities of both caspase-8 and caspase-3. This biosensors detected 

distinct activation patterns of caspase-8 and -3 in response to different apoptotic 

stimuli in mammalian cells. This study emphasizes the necessity for positive 

feedback amplification of caspase-8 activation [119].  

Cell death can be characterized by monitoring not only caspase activity but 

also the activation of the intrinsic apoptotic pathway, which includes the assessment 

of mitochondrial transmembrane potential (MTP) modulation. MTP modulation can be 

recorded by tetramethylrhodamine-based fluorescent probes, such as 

tetramethylrhodamine ethyl ester (TMRE) and tetramethylrhodamine methyl ester 

(TMRM). These probes are cell permeant, positively-charged dyes that readily 

accumulate in active mitochondria due to their relative negative charge. Depolarized 
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or inactive mitochondria fail to sequester the probes due to their decreased 

membrane potential. Using TMRE and in HeLa cells stimulated with staurosporine, 

actinomycin D or TNF together with cycloheximide Goldstein et al. showed that a 

decrease of MTP is an early event in apoptosis [120]. By contrast, Vanden Berghe et 

al. showed that mitochondria membrane is hyperpolarized in L929sAhFas cells (L929 

cells stably expressing human Fas receptor). This study demonstrated that the 

hyperpolarization kinetic is stimulus-dependent. Upon TNF stimulation, mitochondria 

were hyperpolarized with biphasic kinetics, whereas H2O2 stimulation caused 

immediate hyperpolarization that rapidly returned to baseline [121].  

Activation of the intrinsic apoptotic pathway can be monitored using FRET 

based approaches that can be used for biosensing as well as for proteinprotein 

interaction studies. By performing FRET measurements on NIH3T3, BHK-21 and 

porcine aortic endothelial cells co-expressing BFP-Bcl-2 and GFP-Bax, Mahajan et 

al. not only showed their cellular localization but also demonstrated interaction 

between the two proteins during apoptosis [122]. A similar approach showed 

multimerization of Bax at the mitochondria following mitochondrial permeability 

transition pore (PTP) using COS-7 cells expressing either CFP-Bax or YFP-Bax. In 

the same study, use of cyt c coupled to eGFP also indicated that the release of cyt c 

following PTP opening takes place within minutes but occurs only several hours after 

the PTP has been locked in the open conformation [123]. 

Researchers also investigated the cytosolic release kinetics during apoptosis 

of other mitochondrial intermembrane space proteins, such as Smac, Omi and 

adenylate kinase-2. Recombinant proteins were fused to a short tag 10 – 15 amino 

acids containing a tetracysteine motif (TC). This motif is specifically recognized by a 

cell-permeant fluorescein- or resorufin-based fluorescent dye that binds covalently to 

the tag. A confocal microscopy-based, real-time approach using fluorescently labeled 

proteins revealed that cyt c, adenylate kinase-2, Smac, and Omi are released rapidly 

and simultaneously and that their release does not depend on caspase activity [124]. 

More recently, Albeck et al. described a fluorescent reporter for MOMP based on a 

fusion of mitochondrial import sequence of Smac and RFP. Inter-membrane space 

reporter protein (IMS-RP) differs from the Smac fusion protein described above, by 

the absence of an IAP-binding motif and is consequently biochemically inactive. 

Using IMS-RP in combination with specific initiator caspase reporters revealed that 
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MOMP occurs at a later stage during apoptosis in HeLa cells and is preceded by the 

activity of initiator caspases [125].  

 Necrosis and necroptosis 

For a long time necrosis was considered as an accidental cell death. In 1988 it 

was discovered that TNF stimulation triggers distinct responses in different cell lines. 

It was then observed that some cell lines show ‘classical’ features of apoptosis in 

response to TNF while others exhibit a rounded up morphology without nuclear 

disintegration [126]. Two decades later, in 2005, a new term ‘necroptosis’ was 

introduced to describe a new regulated form of necrotic cell death [127]. Necroptosis 

is an important mechanism of virus-induced inflammation and innate immune control 

of viral infections [128, 129]. In animal models deficient in caspase-8 or FADD, 

necroptosis appears to play an important role during development [130, 131]. In 

addition, necroptosis is involved in pathologies in animal models of acute pancreatitis 

[132], hypoxic/ischemic injury [127], and septic shock [133]. Inhibition of necroptosis 

reduces tissue damage in models of cardiac infarction [134] and ischemic brain injury 

[127]. These findings demonstrate the biological importance of necroptosis, but the 

molecular components regulating this newly reported cell death program are not well 

defined. 

Molecular pathway of necroptosis 

As mentioned above, the molecular pathway triggered by TNF is shared by 

apoptosis and necroptosis. Functional caspase-8 proteolytically inactivates RIPK1 

and RIPK3, which are important in necroptosis, thus promoting the initiation of 

apoptosis [135]. However, when the proteolytic activity of caspase-8 is 

pharmacologically or genetically inhibited, the cell undergoes a shift from apoptosis 

to necroptosis. In such a cellular context, RIPK1 and RIPK3 are not proteolytically 

inactivated, and they form a complex called the necrosome, which regulates various 

downstream effectors of signaling cascades [129, 135, 136]. A new component of the 

necrosome was recently identified: mixed lineage kinase-like domain protein (MLKL). 

This protein is phosphorylated by RIPK3 and then recruited to the necrosome, 

triggering necroptosis [137, 138]. Figure 1B shows a representation of the signaling 

pathway of necroptosis and highlights the cross-talk with the apoptosis pathway. 
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The serine/threonine kinases, RIPK1 and RIPK3, of the RIPK family have 

similar modular structures consisting of an N-terminal kinase domain (KD) and an 

intermediary domain (ID). Both domains play a significant role in necrosome 

formation. The intermediary domain is important for RIPK1−RIPK3 interaction 

because it contains the RIP homology interaction motif (RHIM). Mutation of RHIM 

disturbs the RIPK1–RIPK3 interaction and therefore necrosome formation. The 

kinase activity of the kinase domains is necessary for the phosphorylation of RIPK1 

and RIPK3, because it promotes necrosome formation and complex stabilization 

[129, 135]. Unlike RIPK3, RIPK1 contains an additional C-terminal death domain 

(DD). The DD belongs to the ‘death-fold’-superfamily of homotypic interaction motifs 

[139] and is necessary for the interaction of RIPK1 with other DD-proteins, such as 

TNFR1 and FADD [140].  

Although the molecular mechanisms of necroptosis initiation are well 

characterized, less is known about the downstream signaling cascades responsible 

for the disruption of specific cellular functions. Cellular functions associated with 

necroptotic cell death include increased mitochondrial production of reactive oxygen 

species (ROS) [141], reduction of the cellular energy by unregulated ATP-consuming 

processes and disturbed ATP synthesis [142], lysosomal membrane permeabilization 

[121], and plasma membrane permeabilization [121] at the final stage of necroptosis.  

Some of these perturbations have been linked to the formation of the necrosome 

complex. The kinase activity of RIPK3 is central in necroptosis, as it plays a role in 

the overactivation of various metabolic cascades. The resulting increased 

concentration of breakdown products enhances the activity of Krebs cycle, which 

results in increased ROS production by mitochondria [136]. A sudden decrease in 

cellular ATP during necroptosis can be partially explained by the RIPK1-mediated 

inhibition of the adenine nucleotide translocase (ANT). This ATP/ADP antiporter is 

located at the inner mitochondrial membrane and is necessary for keeping the 

mitochondrial ADP concentration in balance for efficient ATP production and 

transport to the cytoplasm. Temkin et al. showed that RIPK1 inhibits ANT following 

TNFR1 stimulation. This leads to inhibition of ADP/ATP exchange and decrease of 

cellular ATP, and subsequently to necrotic cell death [142].  
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Approaches for necroptosis assessment  

The methods for detecting necroptosis can be divided into two groups: 

biochemical and fluorogenic assays.  

 Biochemical assays 

Necroptotic cell can be analyzed morphologically by time-lapse microscopy or 

electron microscopy [87]. During necroptosis the cellular morphology is characterized 

by cellular swelling and formation of a balloon-like structure, known as oncosis [87]. 

Necroptosis is characterized by the absence of caspase activity. In the absence of 

caspase activity one can assess the involvement of necroptosis by using a novel 

necroptotic marker, RIPK1-dependent RIPK1/RIPK3 phosphorylation [129, 135, 136]. 

Normally, RIPK1 and -3 are phosphorylated in a biphasic way: an early wave (5–15 

min after TNF stimulation) and a late wave (90–120 min after TNF stimulation). Only 

the late phosphorylation peak of RIPK1/3, which is dependent on RIPK1, is linked to 

necroptosis induction [143]. Therefore, the second RIPK1/3 phosphorylation has to 

be blocked by adding the RIPK1 kinase inhibitor, Necrostatin-1 [87]. 

Necroptosis can be assessed by using the RIPK1 specific inhibitor 

Necrostatin-1 [127], or by knocking down RIPK3 [144] or MLKL [137] expression, and 

then determining the phosphorylation profiles of necroptotic kinases by western blot 

analysis. 

Calpains, ubiquitous cysteine proteases activated by calcium signaling, have 

important roles in cell death programs. Although this molecular effector is not 

described here, the interconnection with caspases is crucial and approaches to 

determine caspases and calpain activities simultaneously have been considered in 

neurosciences [145]. AlphaII-spectrin, a substrate of both caspases and calpain, was 

used in a biochemical approach to determine necroptosis and to distinguish it from 

apoptosis. The study performed by Zhang et al. in pheochromocytoma-12 (PC-12) 

cells after various treatments triggering either apoptosis or necroptosis aimed at 

assessing caspase versus calpain activity relied on multiple alphaII-spectrin 

breakdown products using specific antibodies. Table 2 summarizes the biochemical 

approaches to assess necroptosis. 
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 Fluorogenic assays 

To distinguish necroptotic cells from apoptotic cells undergoing secondary 

necrosis, the nucleus is stained with PI. As secondary necrotic cells have already 

passed through an apoptotic stage, their nuclei are condensed and/or fragmented. 

The internucleosomal fragmentation of the DNA in apoptotic cells produces a 

homogenous DNA staining with PI. As necrotic cells retain their chromatin structure, 

their nucleoli show prominent staining [87]. 

A calpain FRET biosensor designed to follow synaptic activity in dendritic 

spines [146] was characterized in cell lines and dissociated hippocampal neurons. 

This biosensor composed of the micro-calpain cleavage site from alpha-spectrin 

flanked by eCFP and eYFP fluorescence proteins and should be used in combination 

with caspases activity reporters in a different cell death context. 

Cellular structure / Biomolecule Approach / technique Reference 

Cellular swelling and formation of 
balloon-like structure 

Time-lapse microscopy or electron microscopy [87] 

RIPK1-dependent RIPK1/RIPK3 
phosphorylation  

In vitro kinase assay [129, 135, 
136] 

Formation of the necrosome complex Inhibition by RIPK-1 specific inhibitor 
Necrostatin-1, knockdown of RIPK3 or MLKL 
followed by western blotting 

[127, 137, 
144] 

AlphaII-spectrin breakdown by 
calpains 

Western blotting or immunocytochemistry 
against breakdown products of alphaII-spectrin 

[136] 

Table 2: Biochemical approaches for assessing necroptosis 

To date, only caspase FRET biosensors can be used negatively. Because 

caspase biosensors function on the basis of FRET decrease upon caspase 

activation, and caspase activity is inhibited during necroptosis, it might be possible to 

monitor non-FRET change in living cells. However, if the cells are in secondary 

necrosis, this approach is not valid because caspases are activated during apoptosis 

and the protease biosensor is intrinsically irreversible. 

Although RIPK1 and RIPK3 kinases are involved in initiating necroptosis, no 

FRET biosensors have been developed for these molecules so far. Thus, 

development and optimization of FRET biosensors for “positive” detection of this 

particular PCD should be considered. In line with this idea, we are using a genetically 

encoded FRET-biosensor of the sandwich design to develop RIPK kinase activity 

reporters (RIP-KARs). Specific RIK1 and RIPK3 substrates were identified by 
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proteomic approaches in cells undergoing necroptosis. RIP-KARs are currently being 

tested and optimized (personal communication). 

Finally, cathepsins, which are proteases involved in final protein degradation 

by lysosomes, have been used to monitor apoptosis. Lysosomes are tightly linked 

with cell death. Several studies reported that release of cathepsins mediated by 

lysosome rupture leads to mitochondrial membrane permeabilization and a 

subsequent cyt c leakage into the cytoplasm, resulting in further caspase 9 activation 

(for review [147, 148]. A relationship between the amount of lysosomal proteins 

released following lysosomal rupture and the type of cell death has been established. 

It was reported that a small leakage of lysosomal proteins into the cytoplasm triggers 

apoptosis whereas extensive lysosomal rupture leads to rapid necrosis [149]. Thus, 

cathepsin activity should be monitored during necrosis. Cathepsin activity has been 

assessed mainly with chemical activity-based probes both in vitro and in vivo (for 

review, [150]). To investigate cathepsin B activity, Yhee et al. developed a cathepsin 

B nanoprobe (CB-NP) consisting of a near-infrared fluorescence (NIRF) dye, a dark 

quencher, and highly specific cathepsin-sensitive substrate [151]. CB-NP was 

delivered in mouse tumor tissues to monitor the fluorescent signal in the cytosol in 

response to cathepsin B activity [152]. Cathepsin probes are often used to monitor 

the effects of various pharmacological inhibitors of several cathepsins at different 

stages of tumor progression [153]. 

 Perspectives  

In this review, we also focus on the recent contribution of fluorogenic 

approaches using biosensors and reporters for cancer therapy design and treatment.   

Necroptosis: the new player in cancer therapy 

Most anti-cancer therapeutic strategies cause death of tumor cells by inducing 

damage that is recognized as an apoptosis signal. However, cancer cells undergo 

mutations of key effector proteins of the apoptotic machinery, such as p53, and 

thereby acquire resistance to therapeutic agents [154]. Before 2004, apoptosis was 

the only cell death program considered for the blocking of tumor growth. In most solid 

tumors, cancer cells metabolism is completely reorganized and consist of a complex 

metabolic reprogramming [155]. Generally, cancer cells present oxidative 

phosphorylation (OXPHOX) defects and an increase in aerobic glycolysis pathway 
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(“Warburg phenomenon”). Although OXPHOX is more effective than glycolysis in 

terms of energetic yield, cancer cells prefer using this metabolic shunting to generate 

intermediates for anabolic reactions [156]. Cancer-specific metabolic molecules 

production may therefore favor cell death evasion, angiogenesis, tissue invasion, 

metastasis and immunosuppressive effects. Interestingly, mutations of oncogenes 

and/or tumor suppressor genes contribute to the control of cancer cells metabolic 

reprogramming [157].  

In 2004, Zong et al. showed for the first time that alkylating agents provoke 

necroptosis in tumor cells [158, 159]. Indeed, alkylating agents activate the DNA 

repair PARP, which catalyzes the synthesis of poly(ADP-ribose) chains on specific 

nuclear proteins. In these experimental conditions, cells using aerobic glycolysis 

undergo rapid depletion of ATP and cell death while cells maintaining OXPHOS are 

resistant to ATP depletion and cell death. Based on the fact that most cancer cell 

relies on aerobic glycolysis for ATP production, the authors propose this mechanism 

for tumor cell death induction following alkylating agents treatment. 

The mitochondrial intermembrane space protein, apoptosis inducing factor 

(AIF), also mediates necroptosis. Indeed, in response to DNA alkylation and 

subsequent PARP activation, AIF is released in the cytosol and rapidly relocalizes to 

the nucleus, where it promotes DNA degradation, leading to apoptosis or necroptosis 

[160, 161]. In this AIF-dependent necroptosis, RIPK1 participates in AIF release from 

mitochondria [162]. Emerging anticancer therapeutic strategies targeting AIF-

mediated PCD have been developed for patients with metastatic breast and 

pancreatic cancers. These compounds can induce high levels of ROS, leading to AIF 

release from mitochondria and necroptosis of cancer cells without affecting 

neighboring normal cells (for review, [163]). 

By contrast to apoptosis, necroptotic cancer cells drive a local inflammatory 

reaction by releasing pro-inflammatory molecules into the extracellular space, such 

as the nuclear factor high-mobility group protein B1 (HMGB1) [164], which promotes 

tumor cell death. Cancer cells can become resistant to current chemotherapeutic 

agents, targeting necroptosis has become a potential alternative approach for fighting 

cancer (for review [165]). Recent studies have confirmed the sensitivity of cancer 

cells to necroptosis [166, 167].  
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The main objective of therapeutic strategies used to be the targeting of caspases in 

cancer cells to trigger apoptosis. Nowadays, induction of necroptosis is recognized 

as an effective means for killing cancer cells, especially when they are apoptosis-

resistant. It is important to keep in mind that apoptosis and necroptosis are not 

mutually exclusive processes that are entirely separated [168-170]. Apoptosis and 

necroptosis share many common molecular effectors. Depending on cell context and 

specifically on the caspase activation state, a cell can die by apoptosis or necroptosis 

[136, 171, 172]. In line with this view, detailed analysis of the enzyme activation state 

of a tumor cell line is thought to be crucial for establishing a prognosis before 

treatment (Figure 2). Applying this approach might help predict effective treatment in 

order to kill tumor cells. Genetically encoded FRET biosensors are particularly 

relevant for this purpose because several parameters could be measured 

dynamically, including activation state and concentration of specific biomolecules. 

The monitoring of biochemical events in real time in living cells can yield qualitative 

and quantitative information on signal integration mechanisms and kinetics of signal 

transduction. Very recently, Earley et al. [173] used MOMP probes [125] to visualize 

drug-induced apoptosis of single cells in live mice. Breast and pancreatic cancer cell 

lines stably expressing an intermembrane space reporter (IMS-RP) were established 

to detect IMS-RP release into the cytoplasm upon induction of apoptosis. 

Comparison of apoptotic rates between in cellulo and in vivo models showed that 

cancer cells outside the tumor are more sensitive to drugs. This study highlights not 

only the importance of improving high-resolution intra-vital microscopy [174] for in 

vivo biosensing, but also the necessity of taking into account the pathophysiological 

context of tumors for the development of adapted therapy. Recently, Bagci-Onder et 

al. [175] elegantly used both bioluminescence and fluorogenic reporters to overcome 

TRAIL resistance in glioblastoma- multiforme (GBM) cells in cellulo and in vivo. Dual 

bioluminescence imaging of the death receptors DR4/DR5 identified chemical 

modulators of DR4/DR5 expression to sensitize GBM cells to apoptosis. Live-cell 

imaging of GBM cells expressing FRET caspase biosensors allowed the monitoring 

of the effects of TRAIL stimulation on GBM cells. This study also evaluated GBM cell 

responses to engineered neural stem cells delivering secreted TRAIL [176] in cellulo 

and in vivo. This innovative and original approach provided an effective method using 

live-cell imaging technology, relevant biosensors, and pertinent use of stem cells 

properties.  
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FRET biosensors for prognosis and therapy design 

A combination of several FRET biosensors and/or ionic species probes such 

as ROS can be used for multiparameter assays in living cells with high 

spatiotemporal resolution ([56, 177]; (for review) [178]). This “lab-on-chip” approach 

based on biosensors and reporters might increase our understanding of the 

molecular mechanisms of tumorigenesis and tumor resistance to therapeutic agents. 

This approach could detect cellular abnormalities and identify kinetic changes in 

enzyme activation and/or aberrant enzymatic activities in order to develop more 

effective strategies for cancer therapy. For example, if tumor cells are resistant to 

apoptosis, the treatment can be aimed to induce necroptosis. In addition, biosensors 

can also be used to monitor cellular responses to therapeutic agents [179].  

A very recent study has identified a specific targeted molecule that could bypass 

apoptosis resistance of p53-/- colon carcinomas cells. Analysis of carcinoma cells by 

tissue microarray revealed overactivation of glycogen synthase kinase 3b (GSK3b) 

compared to normal cells from the same patient. Downregulation of the kinase in 

combination with chemotherapy promotes AIF-mediated necroptosis of drug-resistant 

colon carcinoma cells [180]. A “lab-on-chip” approach using a specific GSK3b FRET 

biosensor could have helped identifying GSK3b as overactivated in the cellular 

context, adapting treatment to the phenotype of tumor cells and finally monitoring the 

necroptotic process. Now there is only an atypical half-life biosensor for measuring 

the activity of GSK3 kinase [181]. 

The concept of personalized prognosis and therapy design relying on FRET-

based biosensors was illustrated in a study by Mizutani et al. [182]. They developed 

a reliable genetically encoded FRET-based biosensor to measure breakpoint cluster 

region-abelson (BCR-ABL) activity directly in living chronic myeloid leukemia cells 

(CML) obtained from a patient. Since chimeric BCR-ABL kinase exists only in tumor 

cells, Imatinib (US) and Gleevec (EU) work specifically in tumor cells without 

affecting neighboring normal cells. This biosensor approach is radically different from 

conventional techniques trying to capture a snapshot of BCR-ABL activity by 

assessing the phosphorylation level of its substrate v-Crk avian sarcoma virus CT10 

oncogene homolog-like (CrkL) in vitro. This novel dynamic approach has enabled the 

identification of a small population of CML cells resistant to Gleevec. The biosensor 

approach was then applied to optimize therapy design for targeting both drug-
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sensitive and drug-resistant CML cells according to the patient’s tumor stage [183, 

184]. Interestingly, this biosensor approach was also used to evaluate and compare 

BCR-ABL mutation effects on cell sensitivity to several inhibitors in order to predict 

the most appropriate treatment, thus providing a new method for prognosis. 

 

Figure 2: The evolution of therapeutic strategies and biotechnologies for cancer therapy and the use of 
FRET biosensor strategies for evaluating cancer drug combinations. A few years ago, treatments were 
mainly based on cellular and molecular markers and limited to chemotherapy with both anti-proliferative and pro-
apoptotic drugs. These treatments remained ineffective against various resistances developed by cancer cells. 
Nowadays, new strategies tend to analyze the activation state of the enzymes within patient tumor cells to tailor 
treatment, including both chemotherapeutics and agents that target specific enzymes responsible for the 
aggressiveness of the tumor. FRET biosensors provide powerful tools for accurate determination of the activation 
state profiles of key regulators in a patient’s tumor cells. Live-cell, biosensor-based dynamic approaches can be 
used to refine therapy design and to monitor treatment efficacy. Biosensors and reporters can also be used for in 
cellulo screening of new drug candidates. In the near future, therapeutic strategies relying on biosensors will 
surely contribute to personalized medicine.  

 

 In conclusion, to overcome the drawback of biochemical approaches, 

biosensors and reporters with greater spatiotemporal resolution have been 

developed by molecular engineering to cope with new challenges in biology, namely, 

the measurement of activity and interaction of biomolecules in living cells in real time. 

These new powerful and optimized tools are slowly but surely joining the biologist’s 

toolbox to determine the dynamics of biomolecules in their physiological context 
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[185-187]. These dynamic approaches will surely help us deepen our understanding 

of the molecular mechanisms of PCD, and will allow us to develop new therapeutic 

strategies to improve the efficacy of personalized treatment. 
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1.1.2. MLKL as a new executioner in necroptosis 

progression 

In 2012, a new necroptosis effector was characterized: the pseudo-kinase 

Mixed-Lineage Kinase Like (MLKL) that is catalytically inactive due to a lack two of 

the three conserved catalytic domain crucial for phosphoryl transfer activity [1–3]. 

MLKL is composed of an N-terminal coiled-coil domain and a kinase-like domain 

located at its C-terminus. MLKL is considered as the crucial executioner of 

necroptosis signaling downstream of Receptor Interacting Protein Kinase (RIPK) 3 

[4,5]. Indeed, MLKL deletion impairs necroptosis accomplishment in several cellular 

models (e.g. HT-29, Jurkat, MEF, L929) [1–3,5–7].  

 

Figure 1: Cascade of molecular events leading to necroptosis. The different steps and molecular 
effectors involved in necroptosis initiation and execution are indicated. The “no entry sign” represents 
action of chemical inhibitors (Nec-1, Necrostatin 1; RIP3i, RIP3 inhibitor; NSA, necrosulfonamide). 
NSA inhibits necroptosis by targeting the cysteine 86 of human MLKL [1]. Highlighted molecules 
indicate their “active” forms.  

RIPK1 and RIPK3 interact via their homotypic RIP Homology Interaction Motif 

(RHIM) domain to form the core of the necrosome which also includes Fas 

Associated Protein With Death Domain (FADD) and Caspase-8 [8,9]. RIPK1/RIPK3 

interaction was shown to lead to the formation of amyloid-like filamentous structures 

in vitro  [10]. RIPK3/MLKL complexes were detected in living cells (HeLa, HT-29) but 

the amount of these complexes increased drastically upon necroptosis induction [1]. 

The RIPK3/MLKL interaction occurs through the kinase domain of RIPK3 and the 

kinase-like domain of MLKL [1]. RIPK3 kinase activity is necessary for RIPK3/MLKL 

interaction and the subsequent autophosphorylation of RIPK3 on serine 227 was 

shown to reinforce the stability of RIPK3/MLKL complexes [1]. In response to TNF, 

MLKL is phosphorylated by RIPK3 on the threonine 357 and the serine 358 residues 

located within its activation loop [1] leading to a conformational change of MLKL from 
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an inactive to an active state [3,11,12]. This major event appears to be essential for 

MLKL translocation to the plasma membrane, as it allows the exposure of a positively 

charged amino-acid patch located on the 4 helical bundle domain (4-HBD) at its N-

terminus [13–15]. In line with this, it was demonstrated that the N-terminus domain 

that contained the 4-HBD interacts with phosphatidylinositol phosphates (PIPs) or 

cardiolipins (CL) in lipid rafts at the plasma membrane [13,14,16]. Additionally, 

translocation of the 4-HBD domain was necessary and sufficient to trigger 

necroptosis [6,7,13].  

Several research groups have proposed that MLKL oligomerization is also a 

key step for necroptosis to proceed [6,7,13,14,16]. The phosphorylated MLKL 

molecules appears to form oligomers that localize at the plasma membrane but the 

precise stoichiometry of phosphorylated MLKL oligomers remains controversial 

ranging from trimers [6], tetramers [7] to hexamers [14] and even more [13]. The 

sequence of events concerning the oligomerization of phosphorylated MLKL and 

MLKL plasma membrane translocation is still under investigation and might actually 

be dependent on the cellular context (Figure 1).  

Upon necroptosis induction, phosphorylated MLKL oligomers were shown to 

compromise plasma membrane integrity leading to cellular swelling and ultimately to 

cell membrane rupture [13,14,16]. Several studies support this hypothesis, where 

MLKL would possibly contribute to ionic flux modifications across the plasma 

membrane, yielding to plasma membrane permeabilization and rupture [6,7]. There 

are some apparent discrepancies on the types of ion channels affected by MLKL 

[17]. Han and colleagues described a rapid influx of sodium during necroptosis in 

L929 cells [7], while Liu and colleagues reported a TRPM7-mediated calcium intake 

in HT29 cells [6]. In silico studies based on structure prediction analysis revealed that 

MLKL shares structural similarities with bacterial α-pore-forming toxins, which do 

oligomerize and form a pore in plasma membrane [13]. In vitro experiment performed 

with recombinant MLKL reported its capacity to permeabilize PIPs-containing 

liposomes, hence revealing an important role of PIPs in its plasma membrane 

recruitment and thus, supporting a direct pore-forming capacity of MLKL in plasma 

membrane [13,14,16]. Recently, several observations reported that phosphorylated 

MLKL as well as RIPK1 and RIPK3 translocate to the nucleus of cells exposed to a 

necroptotic trigger before MLKL relocalization at plasma membrane [18]. MLKL 
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nuclear translocation occurs through a bipartite Nuclear Localization Sequence (NLS) 

motif found at its C-terminus in the kinase-like domain that is exposed following 

MLKL phosphorylation [18]. Phosphorylated MLKL translocation seems to contribute 

to its cytotoxic function as mutations in the NLS region decreased cell death [18].  

Altogether, it remains important to elucidate the function of MLKL and to 

illuminate its dynamic after RIPK3-mediated activation. 

1.1.3. Other cell death processes  

 Autophagy  

Autophagy is evolutionary conserved, highly regulated and genetically 

controlled. This process was initially described as a physiological “self-eating” 

catabolic program to protect the cell from nutrient or growth factor deprivation [19]. 

Autophagy was thus considered as a pro-survival mechanism in cell homeostasis in 

response to metabolic cellular stress. The term “autophagy” generally referred to 

“macro-autophagy”. Beside this non-selective autophagy, it exists other types of 

autophagy including selective autophagy targeting the mitochondria (mitophagy), the 

peroxisomes (pexophagie), the nucleus (nucleophagy), the ribosomes (ribophagy) 

and the endoplasmic reticulum (ER-phagy or reticulophagy) [20,21]. Micro-autophagy 

also known as a chaperone-mediated autophagy is described as chaperone-

dependent degradation of cytosolic proteins directly targeted to lysosomes [22,23].  

Autophagy is mainly characterized by the formation of double-layered 

membrane vesicles termed autophagosomes that encircled cytoplasmic material 

including soluble macromolecules and organelles [19]. These sequestered 

cytoplasmic components are then directed to the lysosomes for recycling. Autophagy 

occurs through a multiple step process including the initiation, elongation, formation 

and maturation of the autophagosome before the fusion and degradation by 

lysosomes (Figure 2) [24]. Numerous studies conducted in yeast identified a specific 

group of molecules highly conserved in the evolution known as autophagy-related 

(ATG) proteins in different steps of autophagosome formation [25,26].  

However, although autophagy is a cellular response to maintain survival and 

to preserve cellular integrity when faced with cellular stress [27], autophagic cells 

were often observed in dying cell populations [28]. Therefore it has been questioned 
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whether autophagy is a specific cell death program or a consequence due to an 

extensive autophagy in an attempt to rescue stressed cells from death. There is now 

compiling evidences that autophagy may be specifically triggered in response to 

intensive stress signals leading to cell death, now classified as type II programmed 

cell death [29]. Hence, autophagy activation could elicit both a pro-survival or pro-

death mechanism depending on the cellular context [21,23,30]. Emerging studies 

reveal that autophagy is a highly regulated process by several signaling pathways 

including PI3K-I/AKT/mTOR pathway (mTOR for mammalian Target Of Rapamycin), 

MAPK (JNK, p38, ERK) pathways, AMP-activated protein Kinase (AMPK) pathway, 

calcium or endoplasmic reticulum stress pathway [23,31]. These pathways are thus 

acting as sensors of energetic reserves to modulate autophagy activation and 

expression level and/or activities of autophagy-related proteins. In line with this view, 

autophagy outcome appears to be modulated through the crosstalk with other 

programmed cell death pathways including apoptosis and necroptosis [28,30,32]. 

Several studies highlight the prominent role of autophagy in the development of 

pathology including heart and liver diseases and cancer [20]. Indeed, the 

dysfunction/deletion of numerous autophagy-related genes or autophagy-regulated 

factors has been associated with the emergence of several cancers [33]. While 

autophagy can operate as a tumor suppressor in oncogenesis, pro-tumor functions of 

autophagy have been reported in tumorigenesis [34], emphasizing the ambiguous 

role of autophagy during cancer progression. 

 Paraptosis  

Paraptosis is a form of caspase-independent cell death characterized by 

cytoplasmic vacuolization and organelles swelling, including mitochondria and 

endoplasmic reticulum [35]. This particular cell death does not exhibit morphological 

and molecular hallmarks of apoptosis since caspases inhibitors as well as anti-

apoptotic Bcl-2 family proteins overexpression do not prevent paraptosis 

accomplishment. Paraptosis appears to be triggered both by the receptor Toxicity 

and JNK inducer (TAJ, also known as TROY), an orphan TNF receptor superfamily 

member, and by the insulin-like growth factor receptor I [36,37]. Additionally, few 

studies revealed that several members of the mitogen-activated protein kinase family 

could be involved in IGFR1-mediated paraptosis, including MEK-2 and Jun-NH2 

terminal Kinase-1 (JNK-1) [36]. While paraptosis is fundamentally different from 
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apoptosis, it is still unclear whether paraptosis presents similarities or cross-talk with 

autophagy or other PCDs. 

 

 

Figure 2: Molecular characterization of autophagy, apoptosis, and necrosis. (a) The scheme 
describes molecular and phenotypic features of autophagy, apoptosis and programmed necrosis and 
illustrates that these cell death share several common characteristics. LC3-I, microtubule-associated 
protein 1A/1B-Light Chain 3-I; SQSTM1, sequestosome 1 protein also called p62; MMP, Mitochondrial 
Membrane Permeabilization; LMP, Lysosomal Membrane Permeabilization, PS, Phospatidylserine; 
ROS, Reactive Oxygen Species (b) Human osteosarcoma U2-OS cells expressing a green 
fluorescent protein tagged-LC3-I correspond to the basal state without stimulation (homeostasis). 
Cells were then stimulated for 12 hours either by rapamycin (autophagic trigger) or staurosporine 
(apoptotic trigger) or a combined treatment of stautosporine and benzyloxycarbonyl-Val-Ala-Asp-
fluoromethylketone (zVAD-fmk) (necrotic trigger). Cells were stained both with Hoechst and propidium 
iodide (PI). Autophagy exhibits aggregation of GFP-LC3-I, whereas apoptosis shows nuclear 
condensation. Programmed necrosis displays PI uptake (adapted from [38]). 
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 Ferroptosis  

A new form of regulated necrosis was recently described and defined as 

ferroptosis [39]. It is a RIP3-independent programmed necrosis sharing common 

morphological features with necrosis. This is an iron-dependent form of non-apoptotic 

cell death, induced by erastin, an oncogenic toxic small molecule. Erastin functions 

as an inhibitor of the System Xc
– Cys/Glu antiporter resulting in an inhibition of 

extracellular cystine uptake and in a charge of intracellular glutamate transport 

across the plasma membrane. The reduction of cystine to cysteine is then blocked 

which provokes a progressive depletion of glutathione (GSH) causing a cascade of 

events including a loss-of-function of GSH peroxidase 4 (GPX4) [40,41], increasing 

levels of intracellular hydrogen peroxide (H2O2), reactive oxygen species (ROS)-

mediated lipid peroxidation, and ultimately cell death (for review, [42]). Ferroptosis 

critically depends on intracellular iron metabolism and is inhibited by iron chelators, 

lipophilic anti-oxidants and ferrostatin-1 (Fer-1) [39,43].  

Upon full amino acid deprivation, it was shown that serum could induce and 

potentiate necrosis in MEF cells in a RIP3-independent manner. Serum-components 

including L-glutamine as well as transferrin (an iron carrier protein) have been 

identified in serum-induced necrosis, which was further determined to be 

ferroptosis.Ferrostatin-1 was reported to block this serum-induced necrosis upon 

deprivation of full amino acids or of cysteine alone. Conversely, L-glutamine, 

transferrin as well as glutaminolysis metabolic pathway are essential for erastin-

induced ferroptosis (for review, [44]). However, the precise molecular regulatory 

mechanisms and the interplay between cellular metabolism and iron/redox 

homeostasis still need to be clarified.  

Amounting evidences indicated that ferroptosis is involved in the pathogenesis 

of several human diseases such as neurodegenerative diseases, 

ischemia/reperfusion-induced organ injury (e.g. kidney, hepatic, heart injury) and 

cancers [45,46]. Abnormalities in iron metabolism characterized by aberrant 

accumulation of iron and/or ROS production are implicated in the pathogenesis of 

degenerative diseases (e.g. Friedrich’s ataxia (FRDA) disease) [45]. GPX4 deficiency 

in neurons results in neurodegeneration. A pronounced decrease of cystine in blood 

in ischemic conditions could increase the susceptibility to ferroptosis. Patients with 

deficiency in cystine uptake, cystine maturation, or glutaminolysis-related enzymes 
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are at higher risk for ferroptosis initiation [44]. Recent studies highlighted the 

modulation of ferroptosis by the Protein kinase C (PKC) and MAPK signaling 

pathways. PKC-mediated phosphorylation of the heat shock protein beta-1 (HSPB1) 

results in a protection against erastin-induced ferroptosis [47]. Finally, cancer cells 

with oncogenic Ras are more susceptible to ferroptosis induction [40]. These findings 

shed new light on the potential pharmacological targeting of ferroptosis in cancer 

therapy. 

 Parthanathos  

Parthanathos is a form of caspase-independent and RIPK1/RIPK3-

independent regulated necrosis, since caspases or RIPK1 and RIPK3 inhibitors 

cannot rescue it. Parthanatos shares necrotic but not apoptotic-like morphological 

features such as loss of plasma membrane integrity (but not swelling) and can be 

specifically distinguished from apoptosis by large-scale DNA fragmentation (for 

review, [42]).  

Parthanatos has been described as the result of the rapid overactivation of 

PARP1, a member of poly(ADP-ribose) polymerase (PARP) family that is involved in 

DNA repair. PARP1, also called poly(ADP-ribose) transferase, catalyzes the transfer 

of ADP-ribose groups from NAD+ (Nicotinamide Adenine Dinucleotide) to its protein 

targets (also referred as poly(ADP-ribosyl)ation or PARylation) at the site of DNA 

damage [42]. As observed in several cellular models, PARP1-mediated parthanathos 

is induced by severe DNA damages in response to numerous chemical agents and 

toxic conditions including alkylating agents such as N-methyl-N-nitro-N-

nitrosoguanidine (MNNG), Ultra-Violet (UV) radiation, ROS production such as H2O2, 

NO generation or even oxygen-glucose deprivation (ischemia conditions) in a time 

and dose-dependent manner [48–50]. The rapid activation of PARP1 is crucial to 

favor parthanatos over other regulated necrosis. It causes a cascade of events 

including accumulation of Poly(ADP)-Ribose (PAR) polymer in the cytosol and 

mitochondria, calpains activation, cleavage of Apoptosis-Inducing Factor (AIF), 

translocation of active truncated form of AIF in the nucleus and subsequent PARP1 

activation due to enhanced DNA damages [50–52]. Once this positive feedback loop 

is active, NAD+ and Adenosine Triphosphate (ATP) intracellular reserves are 

progressively depleted, ultimately leading to cell death.  
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Parthanatos shares biochemical features with other forms of cell death, such 

as PARP1 activation, mitochondrial depolarization or caspase activation at the very 

late stage [50]. The sequence of event leading to parthanatos depends on the 

duration and/or intensity of the stimulation, distinguishing thereby parthanatos from 

other cell death [42,50]. In addition, specific inhibitors of PARP1 do not protect from 

TNF-induced cell death in several cell lines. But these inhibitors were reported to 

completely prevent parthanatos. PARP1 inhibitors are of great interest in cancer 

therapy in combination with other chemotherapeutic, in order to induce cell death of 

cancerous cells and to impair the recruitment of DNA repair machinery [53]. This 

approach could be adapted and applied to treat vascular and neurodegenerative 

disorders [50].  
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1.2. The MAPK signaling pathways  

The MAPK signaling pathways are highly conserved through evolution of 

eukaryotic cells, bridging cell surface receptors to specific effector molecules for 

signal integration. Consisting of interconnected signaling nodes, MAPKs signaling 

pathways share characteristic three-tiered signaling core architecture, ensuring not 

only signal transduction but also amplification of signals from different membrane-

stimulated receptors, such as Receptor Tyrosine Kinases (RTK) and G Protein-

Coupled Receptors (GPCRs) [54,55] (Figure 3). Typically each level of the cascade 

is composed of a kinase. At the top of the cascade, the Mitogen-Activated Protein 

Kinase Kinase Kinases (MAPKKKs or MAP3K) – Ser/Thr kinases activated by 

interaction with a member of the Ras/Rho family – initiate a series of sequential 

phosphorylation [54]. MAPKKKs activation leads to the phosphorylation and the 

subsequent activation of the downstream Mitogen-Activated Protein Kinase Kinases 

(MAPKKs or MAP2K), which in turn provoke the phosphorylation and the activation of 

the MAPKs. Finally, in response to extracellular stimuli, activated MAPKs 

phosphorylate a myriad of substrates in different subcellular compartments to 

execute specific gene expression programs required to generate the appropriate 

biological response such as cell survival, proliferation, differentiation, migration as 

well as cell death [56,57] (Figure 3). The specificity of the biological outcome is 

mainly dictated by scaffolding proteins [58,59] and docking sites-mediated high-

affinity protein-protein interactions [60,61]. MAPKs are grouped into three main 

families or modules including ERKs, JNKs and p38/SAPKs (Stress-Activated Protein 

Kinases) (for review, [62]) which are known to play a prominent role in the control or 

modulation of cell death.  

 

In the following paragraphs, the three main members of MAPK family 

will be briefly defined and presented as follows: (1) definition and 

stimulation conditions, (2) molecular mechanisms of activation, and (3) 

substrates and biological functions. 
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Figure 3: Schematic representation of MAPKs signaling pathways. The three main groups of 
MAPKs are represented (ERKs – JNKs – p38/SAPK) (adapted from [55]).  

1.2.1. JNK pathway 

The first member of JNK family also named Stress Activated Protein Kinase is 

activated by stress stimuli [63]. There are three isoforms of JNK: JNK1 (SAPKγ or 

MAPK8), JNK2 (SAPKα or MAPK9) and JNK3 (SAPKβ or MAPK10) [55,64,65], 

expressed from three distinct genes known to produce spliced isoforms ranging from 

46 to 55 kDa [66]. JNK1 and JNK2 are ubiquitously expressed in a wide range of 

tissues, whereas JNK3 expression seems mainly restricted to a few organs and 

tissues including testis, neuronal and heart tissues [67].  

JNK signaling pathway is mainly activated by various environmental stress 

stimuli including heat and osmotic shock, ionizing radiation, UV radiation, oxidative 

stress, alkylating agents-induced DNA damages as well as inflammatory cytokines 

such as members of TNF family, protein synthesis inhibitors, severe growth factor 

starvation and growth factor stimulation (for review, [68]) The stimulation of the JNK 

signaling pathway involves Ras/Rho family members, RTKs, and GPCRs and leads 

to the dual phosphorylation of JNKs kinases on Thr and Tyr residues occurring within 
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a highly conserved TPY motif located in the activation loop. These phosphorylations 

on JNKs kinases are conducted in a cooperative manner both by  the Mitogen-

Activated Protein Kinase Kinase 4 and 7 (MKK4 and MKK7) [69], which are 

themselves phosphorylated and activated by several upstream MAPKKKs including: 

Mitogen-activated protein kinase kinase kinase 1, 2, 3, and 4 (MEKK1/2/3/4), Mixed 

Lineage Kinase 2 and 3 (MLK2/3), mixed lineage kinase Dual Leucine zipper Kinase 

(DLK), Tumor progression locus 2 protein kinase (Tpl2), regulated Apoptotic Signal 

Kinase 1 (ASK1), and Transforming Growth Factor (TGF) Activated Kinase 1 (TAK1) 

(for review [70]) (Figure 4).  

Upon stimulation of the pathway, it was reported that a pool of activated JNK 

kinases translocates to the nucleus to modulate the activity of wide array of 

transcription factors regulating specific genes expression [71–73]. Many transcription 

factors have been identified as being phosphorylated by JNK kinases such as c-Jun, 

Activating transcription factor 2 (ATF-2), Signal Transducer and Activator of 

Transcription 3 factor (STAT3) or E26 transformation-specific (also know as E-

twenty-six, ETS) domain-containing protein Elk-1 (Elk1) [57,64,68]. The precise 

contribution of each JNK kinase to the transcription factors regulation is not clear and 

remains to be determined. The same holds true concerning the nature of the 

cytoplasmic targets of JNK kinases. JNK kinases play a prominent role in the control 

of cell cycle progression, inflammation, metabolism and cell death [74–77]. JNK1/2-

dependent c-Jun transactivation contributes to AP-1 complex formation leading to the 

regulation of cell cycle-related genes expression including Cyclin D1 and Cyclin-

Dependent Kinases (CDKs) [57,74,78,79]. It has been shown a JNK-dependent 

modulation of mRNA stability of several cytokines (e.g. IL-2, IL-3 and VEGF) [80–82]. 

Cumulative evidences highlighted the involvement of JNK kinases in apoptosis 

signaling [83,84]. Indeed, MEF generated from JNK1-/- and JNK2 -/- mice exhibited a 

marked resistance to apoptosis in response to genotoxic or environmental stresses 

[85]. Similar resistance to UV-induced apoptosis was also reported with a non-

phosphorylatable form of c-Jun [86]. Moreover, hippocampal neurons isolated from 

JNK3-/- but not from JNK1-/- and JNK2-/- mice exhibited resistance to glutamate-

induced apoptosis [87], which reflects a differential activation of JNK isoforms 

depending on the cell type and the stimulus. Additionally, other studies reported the 

role of JNK kinases in growth factors- (e.g. TNFα), Fas-ligand-, and other cellular 
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stresses-induced apoptosis [88–90]. JNK kinases can promote c-Jun-AP-1-mediated 

expression of pro-apoptotic genes (e.g. TNFα, Fas-L, Bak), concomitant with the 

repression of pro-survival genes [91]. Besides JNK-mediated c-Jun-AP-1 complexes 

formation, JNK kinases can stabilize p53 expression level resulting in an increase of 

p53-mediated expression of pro-apoptotic genes including Bcl2-associated X protein 

(Bax) and p53-upregulated modulator of apoptosis (PUMA) [92,93]. JNK kinases are 

also reported to directly activate and inhibit mitochondrial pro-apoptotic (BH3-only 

family, [94]) and anti-apoptotic (Bcl2, [95,96]) proteins, respectively. Finally, it is now 

accepted that the duration and the strength of JNK activation often determined cell 

fate. Indeed, several studies suggest that a sustained activation of JNK may 

preferentially lead to apoptosis, whereas cell proliferation or a survival response may 

be more associated with a transient JNK activation [97,98].  

1.2.2. p38/SAPK pathway 

The first member of p38 family, p38α, also known as SAPK2, is the best 

characterized member and is much more activated by stress stimuli by comparison to 

JNK kinases [99]. In addition to p38α, there are three other isoforms: p38β, p38γ (or 

SAPK3) and p38δ (or SAPK4) (for review, [100]). p38α and p38β are ubiquitously 

expressed in a wide range of tissues and cell lines, whereas p38γ and p38δ 

expression is more restricted to specific tissues and may therefore exert particular 

functions [101]. Indeed, the expression of p38γ is particularly high in skeletal muscle 

[102]. Additionally, p38α is highly expressed in comparison to p38β in cell lines, so 

that p38/SAPK refers more often to p38α isoform in the literature.  

p38/SAPK signaling pathway is mainly activated by environmental stresses 

(e.g. heat stress, hyperosmolarity, UV irradiation, oxidative stress), inflammatory 

cytokines such as Interleukin 1 (IL-1) and TNFα, quite similarly to what has been 

reported to stimulate JNK kinases (for review, [100,103]). The stimulation of the 

p38/SAPK signaling pathway relies on the stimulation of Ras/Rho family members 

and GPCRs, as well as TNF Receptor 1 (TNFR1) and IL-1 receptors [104,105]. 

TNFR1 and IL-1 receptors initiate the signaling cascade through the recruitment of 

TNF Receptor Associated Factor (TRAF) adaptors that bind to specific MAPKKKs 

and thereby facilitate their subsequent activation [106]. Most MAPKKKs involved in 

p38/SAPK signaling pathway including MEKK1/2/3/4, MLK2/3, DLK, Tpl2, ASK1 and 
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TAK1 [100,107], also contribute to the stimulation of JNK signaling pathway (Figure 

4). MKK3 and MKK6 are the main downstream MAPKKs responsible for p38/SAPK 

activation [108] even if MKK4 (a MAPKK also shared by JNK signaling) has been 

reported to be preferentially involved in response to UV-irradiation [69,109]. While 

MKK6 does not exhibit selectivity over p38/SAPK isoforms, MKK3 seems to 

preferentially activate p38α, p38γ as well as p38δ isoforms. The specificity of 

p38/SAPK activation could be due to the formation of multiple complexes between 

various MKK3/4/6 and p38/SAPK isoforms depending on the stimulus, the cell type 

and expression level of both MKKs and p38/SAPK isoforms [62]. Indeed, MKK3 and 

MKK6 have been identified as the main activators of p38/SAPK kinases in murine 

mesangial cells and in thymocytes, respectively [110,111]. Finally, p38/SAPK kinases 

are in turn activated by a MAPKK by dual phosphorylation on Thr and Tyr residues 

occurring within a highly conserved TGY motif located in their activation loop 

[109,112,113].  

 

Figure 4: Crosstalk between JNK and p38/SAPK signaling pathways. These pathways display the 
characteristic three-tier core cascade MAPK architecture and share several upstream effectors 
(from [114]).  
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In quiescent cells, p38/SAPKs are homogeneously distributed between the 

cytoplasm and the nucleus but translocate from the cytoplasm to the nucleus when 

expose to cellular stresses [103,115]. Like other members of MAPK family, 

p38/SAPKs subcellular localization relies on interaction with scaffold proteins 

depending on specific docking domains [116,117]. Once p38/SAPK becomes 

activated, it can phosphorylate a large number of cytoplasmic and nuclear substrates 

on Ser or Thr residues, depending on the stimulus and p38/SAPK isoform 

[100,118,119]. Cytoplasmic substrates include the cytosolic phospholipase A2 

(cPLA2), MAPK iNteracting Kinases (MNK) 1/2, MAPK-activated protein kinase (MK) 

2/3 and Bax. Nuclear substrates include many transcription factors such as ATF1/2, 

Elk-1, p53 and Mitogen- and Stress-activated protein Kinase (MSK) 1/2 (for review, 

[100]). p38α isoform plays a prominent role in inflammatory responses [100,120] by 

inducing pro-inflammatory genes (e.g. IL-1 or TNFα, [121]). Besides its role in 

inflammation, p38 pathway plays a role in the regulation of metabolism as p38α and 

p38β isoforms have been shown to phosphorylate cPLA2 and the glycogen synthase 

[70,122,123]. Unlike other p38 isoforms, p38α knockout mice are not viable [124], but 

a tissue-specific knockout strategy for p38α revealed the involvement of this isoform 

in cell proliferation and survival of cardiomyocytes [125,126]. p38α is also implicated 

in the control of cell cycle checkpoints through the differential regulation of cyclins 

and cyclin-dependent kinase inhibitors (CDKI) gene expression [127–129]. Several 

studies demonstrated the crucial role of p38α and p38γ isoforms in the differentiation 

of myoblasts into myotubes [102,130,131]. Indeed, it was shown that myoblasts from 

knockout mice for p38α isoform do not differentiate, hence suggesting the role of 

p38α at the early phase of myogenesis [132]. At the opposite, p38γ isoform level 

increase gradually throughout the differentiation and accumulate in the skeletal 

muscle [102]. Other studies reported a preponderant role for p38δ isoform in the 

differentiation of keratinocytes [133]. However, compelling evidences indicated that 

p38α activation leads to apoptosis during ischemia-reperfusion [131,134,135] and 

that p38α inhibition prevents cardiomyocytes apoptosis and necrosis after myocardial 

ischemia-reperfusion [136]. Additionally, inhibition of p38α completely impairs Bax 

translocation to the mitochondria [137] thereby reinforcing p38α involvement in 

cellular stress-induced cell death through regulation of death receptors and pro- or 

anti-apoptotic Bcl-2 family genes expression [138]. In contrast, p38α isoform was 

also associated with cardioprotection by activating the extended p38/SAPK signaling 
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(also named p38α – Mitogen-Activated Protein (MAP) Kinase Activated Protein 

Kinase (MAPKAPK)) cascade, following cardiac failure [139–141]. MAPKAPK family 

contains several members including MSK1/2, MNK1 and MK2/3/5 [62]. Finally, 

p38/SAPK and JNK signaling pathways have been suggested to play a synergistic 

role in Nerve Growth Factor (NGF)-withdrawal-induced PC-12 apoptosis [142].  

1.2.3. ERK1/2 pathway 

 Components of the ERK1/2 pathway  

ERK1/2 signaling pathway displays the characteristic three-tier core cascade 

MAPK architecture [143] (Figure 3) and is composed of the three main MAPKKKs A-

Raf, B-Raf and C-Raf, also known as Raf-1, at the first cascade level. Rafs are dual 

specificity Ser/Thr kinases composed of three conserved regions (CRs). The CR1 

contains two Ras Binding Domains (RBD) and a cysteine-rich domain (CRD). The 

CR2 domain harbors numerous positive and negative regulatory Ser/Thr 

phosphorylation sites required to activate the catalytic kinase domain (CR3) (for 

review, [144]).  While Raf-1 isoform is highly expressed in all tissues, A-Raf isoform 

shows restricted expression in intestine, cartilage, spleen, heart, urogenital tissues, 

thymus and muscles. B-Raf isoform is predominately expressed in neuronal tissues, 

testes and hematopoietic cells (for review, [145–148]). Depending on cell type and 

cellular stimulation, other MAPKKKs are involved to stimulate the pathway including 

c-Mos in reproductive tissues [149], Tpl2 in transformed cells [150], and MEKK1 

activated under stress conditions [151] (for review, [57,58]) (Figure 5) 

The second level of the cascade is formed by the MAPKKs named MAPK/ERK 

Kinase (MEK) 1 and 2 with a molecular weight of 45 kDa and 46 kDa, respectively. 

These dual threonine and tyrosine kinases display high sequence homology and 

contain a Nuclear Export Signal (NES), a D-domain (also known as Docking site for 

ERK and JNL, LXL (DEJL)) with basic residues, a proline-rich domain and a kinase 

domain [152,153]. While MEK2 isoform is highly expressed in mouse embryonic 

tissues, MEK1 isoform appears to be mainly expressed in adult tissues [154].  

The evolutionary conserved MAPKs ERK1 (MAPK3) and ERK2 (MAPK1) form 

the last level of the cascade. ERK1 (44 kDa) and ERK2 (42 kDa) are dual specificity 

Ser/Thr kinases and share more than 80% identical amino acids. ERKs consist of a 

catalytic kinase domain and a CD domain (also known as common docking (CD) 
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domain) containing acidic and hydrophobic residues required for high-affinity protein 

interaction with their substrates [155]. ERK1 and ERK2 are ubiquitously expressed in 

a wide range of tissues and cell lines, with higher levels found in certain tissues such 

as the brain, the heart, the thymus and skeletal muscle [62]. Alternative splicing has 

been described for components of each level of the cascade. These additional 

variants contribute to determine the signaling specificity of the cascade, though they 

are expressed at lower levels than the mains isoforms [58]. 

 

Figure 5: ERK1/2 MAPK signaling pathway (from [55]). 

The alternative splicing of B-Raf isoform results in the expression of ten 

variant isoforms with a variable basal B-Raf activity [156]. The presence of exon 10a 

insertion located before the kinase domain increases the basal activity of MEK1/2 

whereas the exon 8a insertion has an opposite effect [157]. On the other hand, the 
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alternative spliced isoform MEK1b lacking a portion in the kinase domain was 

previously considered as an inactive kinase [152,158]. It has later been shown that 

not only MEK1b exhibited kinase activity but also that it specifically phosphorylated 

and activated an alternative spliced isoform of ERK1 (ERK1c) [159]. Alternative 

splicing could modify the substrate specificity of each variant isoform leading to the 

phosphorylation of different downstream substrates; thereby contributing to form an 

independent signaling pathways and therefore increase the signaling diversity and 

specificity of the cascade. Finally, at the last tier of the cascade, other alternative 

spliced isoforms have been identified for ERK1 (ERK1b [160], ERK1c [161] and 

ERK1d [162]) and ERK2 (ERK2b [162]). These variant isoforms exert distinct 

functions depending on tissue-specific expression and subcellular distribution, 

extending again the diversity and specificity of the signaling cascade [58,146].  

 Activation of ERK1/2 pathway and substrates  

A wide range of extracellular triggers stimulates the pathway, including 

numerous growth factors such as Epidermal Growth Factor (EGF), Fibroblast Growth 

Factor (FGF), Platelet-Derived Growth Factor (PDGF), Nerve Growth Factor (NGF) 

and insulin, but also cytokines, agonists targeting GPCR, osmotic stress as well as 

certain cell adhesion proteins [57,62]. Extracellular stimulation and subsequent 

activation of cell surface receptors such as Receptor Tyrosine Kinases (RTK), G 

Protein-Coupled Receptors (GPCRs) and ion channels [163–166] trigger sequential 

phosphorylation of Rafs, MEK1/2 and ERK1/2 that constitute a conserved signaling 

module [55]. In the case of EGF Receptor (EGFR), stimulated-membrane receptors 

harbor numerous tyrosine phosphorylation sites serving as binding sites for specific 

proteins such as Growth-factor-Receptor-Bound protein 2 (GRB2) that contain 

corresponding phosphotyrosine docking domains such as Src Homology 2 (SH2). 

Upon stimulation of EGFR, Son Of Sevenless (SOS) proteins relocalize from the 

cytoplasm to the plasma membrane due its interaction with GRB2. Acting as a 

Guanine nucleotide Exchange Factor (GEF), SOS binds to GDP-Ras and induces 

exchange with Guanosine Triphosphate (GTP) leading to the conformational change 

of Ras thereby eliciting Ras activation [167]. In humans, there are four isoforms for 

Ras including H-Ras, N-Ras and two alternatives spliced isoforms of K-Ras referred 

to as K-Ras-4A and K-Ras-4B. Although these isoforms are able to bind to Raf 

proteins, K-Ras is more effective in the activation of Raf proteins than H-Ras or N-
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Ras. Several studies have shown different localization of Ras isoforms at plasma 

membrane and membrane of organelles, due to the differential prenylation and 

palmitoylation states of Ras proteins [168–170] leads to distinct Ras isoform-

mediated signaling cascades [171,172].  

Before stimulation of the pathway, cytoplasmic Raf proteins are 

phosphorylated (inhibitory phosphorylations) and blocked in a 14-3-3-mediated 

inactive conformation. This inhibition occurs through the phosphorylation of Ser 

residues located in the CR2 domain (Ser 259 and Ser 621 in the case of Raf-1) that 

involves Protein Kinase A (PKA), Protein Kinase B (PKB or AKT), Serum and 

Glucocorticoid-inducible Kinase (SGK) and Phosphoinositide-Dependent protein 

Kinase 2 (PDK1) depending on the Raf isoform [173]. Upon Ras activation, Raf 

kinases are recruited to the plasma membrane due to interaction of GTP-bound Ras 

with the RBD domain of Raf proteins [174]. GTP-bound Ras promotes Raf proteins 

activation by removing 14-3-3 from Rafs and allowing the recruitment of the Protein 

Phosphatase 1 (PP1) and the Protein Phosphatase 2A (PP2A) to the CR2 domain 

[175]. The full activation occurs through the phosphorylation of multiple Ser/Tyr 

residues located both in the CR2 and in the kinase domain CR3 and involves P21 

protein (Cdc42/Rac)-Activated Kinase (PAK) 1 and 3, the Phospho-Inositide 3-Kinase 

(PI3K) pathway [176,177] and the kinase Src [178].  

In order to transmit the signal to downstream components, activated Raf binds 

and catalyzes the dual phosphorylation of MEK1/2 on two Ser residues occurring 

within a highly conserved typical Ser-X-Ala-X-Ser/Thr motif located in the activation 

loop (Ser 218 and Ser 222 for human MEK1; Ser 222 and Ser 226 for human MEK2) 

[179,180]. As mentioned above, Rafs isoforms activate MEK1/2 differentially. A-Raf 

is considered as a weak activator of MEK1/2, B-Raf displays a better affinity and 

activates preferentially MEK1 and Raf-1 efficiently activates both MEK1 and MEK2 

[147]. MEK1/2 activity is also positively or negatively regulated by non-canonical 

phosphorylations outside their activation loop [181,182] that involves PAK1 (Ser 298 

of MEK1).  

Finally, activated MEK1/2 bind and activate their downstream kinases, ERK1 

and ERK2, by phosphorylation on Thr and Tyr residues within a conserved Thr-Glu-

Tyr (TEY) motif located in the activation loop [123]. MEK1/2 are crucial effectors for 

the activation of the ERK1/2 cascade (Thr 185 and Tyr 187 for ERK1 and Thr 202 
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and Tyr 204 for ERK2) [183,184]. Following extracellular stimulations and activating 

phosphorylations, MEK1/2 and ERK1/2 are released from cytoplasmic anchors and 

this event is mainly characterized by their rapid translocation into the nucleus where 

ERK1/2 regulates positively or negatively the expression of multiple target genes 

under the control of specific associated-transcription factors including Elk-1, c-Fos, c-

Jun and Erf-1 [185–188]. Several hundreds of substrates of ERK1/2 have been 

identified and contain the common consensus sequence Pro-X-Ser/Thr-Pro (or 

Ser/Thr-Pro) in the immediate vicinity of the phosphorylation sites [185,189,190]. By 

the phosphorylation of their substrates, ERK1/2 control their activity and/or their 

stability by preventing or accelerating their degradation by the proteasome [191,192]. 

Cytoplasmic substrates of ERK1/2 include the Death-Associated Protein Kinase 

(DAPK), the cPLA2, the tuberous sclerosis complex (TSC) 2, the p90 Ribosomal S6 

Kinase (RSK) and the MNK. The kinases RSK, MNK and MSK are identified as 

MAPKAPKs that extend the ERK1/2 signaling [62,123]. Other members of the MAPK 

family also target these MAPKAPKs, thereby highlighting the increased complexity of 

these MAPK signaling pathways. Finally, other substrates are located in cellular 

membranes such as the EGFR, the Spleen tyrosine kinase (Syk) and the calnexin. 

Cytoskeletal components such as the neurofilament proteins and paxillin are also 

targeted by activated ERK1/2 [62]. But, the majority of ERK1/2 substrates are nuclear 

proteins and regulate mainly nuclear functions such as transcription, chromatin 

condensation and nuclear translocation that appear to be an essential feature of the 

ERK1/2 signaling pathway [185,193].  

 The regulation of ERK1/2 activity 

Kinase-mediated ERK1/2 regulation  

The ERK1/2 activity is controlled by a fine-tuned balance between kinases and 

phosphatases activities targeting the Thr/Tyr residues required for ERK1/2 activity 

[194,195]. ERK1/2 activity is heavily regulated by multiple phosphorylations occurring 

outside the activation loop to modulate ERK1/2 activity. Theses MEK1/2 independent 

phosphorylations are not directly involved in ERK1/2 full activity but rather play a 

regulatory role in both ERK1/2 activity and localization [196,197].  
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Phosphatase-mediated ERK1/2 regulation 

The timing of ERK1/2 activation depends on the cell type and the stimuli. Upon 

EGF stimulation, ERK1/2 activity can last 20 minutes with an activation peak 

between 10-15 minutes (referred as transient activation) or remains elevated for 

several hours after the stimulus in the case of NGF stimulation in PC12 cells 

(referred as sustained activation) [198]. Because the duration of ERK1/2 is also very 

important for cell fate determination [98] (developed in the following paragraphs), 

inactivation of ERK1/2 requires the removal of phosphate(s) from Thr and/or Tyr 

residues in the activation loop by phosphatases. While dual phosphorylation is crucial 

for full activation of ERK1/2, a single dephosphorylation is sufficient to provoke the 

full inactivation. Three phosphatases families enable the dephosphorylation of 

ERK1/2: Ser/Thr phosphatases such as PP2A [199], specific Tyr phosphatases such 

as STriatal-Enriched protein tyrosine Phosphatase (STEP), STEP-Like Protein 

Tyrosine Phosphatase (PTP-SL) [200] or Hematopoietic Protein Tyrosine 

Phosphatase (HePTP) [201,202], and the DUal-Specificity Phosphatases (DUSP) 

also known as MAP Kinases Phosphatases (MKP) [203]. MKPs include nuclear 

phosphatases MKP1 (or DUSP1) and MKP2 (or DUSP4) and the cytosolic 

phosphatase MKP3 (or DUSP6). The distinct distribution of MKPs in the different 

subcellular compartments contributes to the spatio-temporal control of ERK1/2 

activity [204,205]. Moreover, MKPs are identified as immediate-early gene products 

which expression is directly induced [206], stabilized [207] or repressed [191] by 

ERK1/2 signaling. Upon the stimulation, the initial pool of MKP could inactivate 

phosphorylated-ERK1/2 resulting in a transient activation pattern of ERK1/2, while 

new synthetized MKPs could definitively inactivate ERK1/2 for signal termination 

[208]. MKPs also serve as anchors for ERK1/2 and become active after an ERK1/2-

mediated conformational change [58].  

Crosstalk between PKA and ERK1/2  

In addition to numerous regulations and extensive crosstalk previously 

described for the activation of the ERK1/2 cascade, compelling evidences 

demonstrated that the ERK1/2 cascade is regulated by cAMP/PKA pathway (for 

review, [209,210]). This crosstalk was reported to modulate the duration and the 

strength of ERK1/2 activity [211]. In the cellular model PC12, it is now well 

established that EGF stimulation is responsible for a transient activation of ERK1/2, 
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whereas NGF stimulation provokes a sustained activation leading to the proliferation 

or the differentiation of PC12 cells [212,213]. Differences in ERK1/2 activity mainly 

rely on both Ras/C-Raf-1/MEK/ERK and Rap1/B-Raf/MEK/ERK differential activation, 

respectively, and involved the Ras-like small G-proteins (Rap1) coupled with the 

Nerve Growth Factor Receptor (NGFR). Upon EGF stimulation, elevated levels of 

cAMP, by activating adenylyl cyclases (AC) or inhibiting phospodiesterases (PDE), 

leads to a sustained activation of ERK1/2 resulting in the differentiation of PC12 cells. 

Activation of the Exchange protein directly activated by cAMP (Epac) by increasing 

cAMP concentration triggers the activation of Rap1 and sustained activation of B-

Raf/MEK/ERK pathway [210,214]. But PKA activation is generally known to directly 

inhibit C-Raf-1 mediated by A Kinase Anchoring Proteins (AKAP) preserving 

overactivation of MEK/ERK pathway from high cAMP levels [215]. This controversial 

role of cAMP in the regulation of ERK1/2 pathway is cell-type specific and is 

explained by the expression level of the different isoforms of Raf [210,211]. cAMP 

was reported to either inhibit C-Raf-1 or activate B-Raf. Therefore, cells expressing 

low level of B-Raf will preferentially impair mitogenic signals in response to cAMP 

release.  

Feedback and feedforward loops 

In a biological context, signaling pathways can be considered as specific 

“modules” contributing to generate a complex cellular “system”. The “cellular module” 

can be therefore conceptualized as a set of compartmentalized biochemical reactions 

thereby integrating extracellular signals and finally leading to the modulation of the 

biological response. Each module is not disconnected but rather interconnected with 

other modules. Moreover, “modularity” is the main characteristic of an efficient 

“system” providing therefore flexibility and adaptability (for reviews, [216,217]). As 

mentioned above, differential ERK1/2 activation in PC12 cells involves two 

interconnected “modules” in response to EGF or NGF to engage cell proliferation and 

differentiation respectively. Depending on cell type and cell stimulation, ERK1/2 

cascade can activate several control mechanisms involving positive and/or negative 

feedback loops (FBL) as well as feedforward loops (FFL) to regulate its own activity 

and elicit a specific biological response [218,219]. Indeed, in PC12 cells, EGF-

mediated cell proliferation requires a negative feedback loop from ERK1/2 to SOS 
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and Raf-1, whereas NGF-mediated cell differentiation in PC12 cells relies on a Rap1-

mediated positive feedback loop [213,220].  

Briefly, a feedback loop is defined as a loop in which a protein A induces 

expression or activation of a protein B that in turn regulates positively or negatively 

the protein A. A feedforward loop corresponds to a regulatory mechanism in which a 

protein A regulates a protein B via other intermediate proteins, and can be 

considered as coherent or incoherent depending on the action mechanism of each 

participating protein [221]. These feedback mechanisms precisely control the spatio-

temporal profile of ERK1/2 activation and adjust activity of the network upon 

extracellular or intracellular perturbations by soliciting other redundant modules and 

thereby ensure the specificity and the reproducibility of the outcome in any 

circumstances [219,222]. Additionally, these control mechanisms operate over a 

different time scale upon stimulation and include positive or negative 

phosphorylations, endocytosis of plasma membrane receptors, and transcriptional 

regulation of moderators of the cascade such as phosphatases [222]. 

 

 

Figure 6: Feedback mechanisms in the regulation of ERK1/2 cascade. “Before EGF stimulation”: 
the use of a RSK inhibitor BI-D1870 increases the basal level of ERK1/2 activation and decrease S6K 
activity, reflecting the negative regulation of RSK on ERK1/2, as previously described [223]. RSK is 
known to phosphorylate and inactivate TSC1/2 complex leading to the activation of Rheb [224] and 
inhibition of Raf-1 [225]. A decrease of Rheb expression reveals a significantly increased ERK1/2 
activity. “In the early phase of EGF stimulation”: inhibitions of PI3K by PI-103 and expression of Ras 
and Rac-1 dominant negative mutants block EGF-induced ERK1/2 activity as previously reported in 
the literature [226,227]. “In the late phase of EGF stimulation”: inhibition of MEK1 by PD184352 
decreases EGFR activity suggesting a negative regulation of EGFR by ERK1/2 [228] (from [219]). 
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As a negative FBL, ERK1/2 enable to negatively regulate Raf-1 by 

phosphorylation of specific residues located in the CR2 domain such as Ser43 (for 

review, [229]). In the same line, ERK1/2 could also phosphorylate and inhibit the 

upstream kinase MEK1 [230]. Recently, Matsuda’s research unit revealed several 

FBL and FFL between the ERK1/2 and PI3K/Akt pathways by using a kinase-

inhibiting strategy associated with a Förster Resonance Energy Transfer- (FRET) 

biosensor imaging [219] (Figure 6). Here is a compilation of feedback mechanisms 

identified:  

- a negative FBL from RSK to Raf-1 mediated by TSC2 and the Ras 

homolog enriched in brain (Rheb) (Figure 6) 

- a coherent FFL from Ras to Raf-1 mediated by PI3K and Ras-related C3 

botulinum toxin substrate 1 (Rac1) (Figure 6) 

- a negative FBL from ERK1/2 to SOS and EGFR (Figure 6) 

- a negative FBL from ERK1/2 to Raf-1 mediated by TSC2 and Rheb [231]  

- a positive FBL from activated GTP-bound Ras to SOS [232] 

- a positive FBL from ERK1/2 to Raf-1 mediated by Raf Kinase Inhibitor 

Protein (RKIP) inhibition [218] 

 ERK1/2 subcellular distribution  

In resting cells, due to interaction with cytoplasmic scaffold/anchoring proteins, 

components of ERK1/2 signaling are localized in the cytoplasm [58]. One of the 

positive regulators of ERK cascade is the evolutionary conserved Kinase Suppressor 

of Ras (KSR) that acts by bringing components of ERK signaling into close proximity 

with Ras at the plasma membrane to facilitate activation of the pathway [117,233]. 

MEK1/2 is sequestered in the cytoplasm of resting cells also via its N-terminal NES 

and functions as a cytoplasmic anchor for inactive ERK [234,235]. Besides its 

apparent cytoplasmic localization, 5% of MEK1/2 can be found in the nucleus at the 

peak of activation of the pathway [236]. MEK1/2 can rapidly transit between the 

cytoplasm and the nucleus much faster than ERK1/2 and acts therefore as a nuclear 

export shuttle for ERK1/2 and other nuclear proteins [237]. Mitogenic stimulation is 

followed by a rapid entry of ERK1/2 in the nucleus, being detectable only a few 

minutes after pathway stimulation, and then a massive nuclear accumulation of 
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ERK1/2 after several hours following the stimulation can be observed. At the 

opposite, non-mitogenic stimulation provokes only a rapid nuclear translocation of 

ERK1/2 and does not cause any accumulation in the nucleus [208,238]. It has been 

reported that nuclear ERK1/2 accumulation occurring several hours after the 

stimulation required nuclear anchors such as MKP1 and MKP2 phosphatases which 

expression is induced by ERK1/2 signaling for signal termination [206,208]. 

Calculation of MEK/ERK ratios in several cellular models revealed strong differences. 

In HeLa cells, the concentration of MEK exceeds that of ERK (1,4μM and 0,96μM 

respectively) whereas a ratio of 0,7:9 were estimated in NIH-3T3 cells [239,240]. But, 

because ERK1/2 is sequestered in the cytoplasm in most cellular models before 

stimulation, other scaffold proteins than MEK1/2 exist to maintain ERK1/2 in the 

cytoplasm (Figure 7).   

 

Figure 7: Subcellular distribution of ERK1/2 mediated by specific ERK1/2 scaffold proteins thereby 
ensuring the transmission of the signal into the nucleus and multiple organelles to facilitate ERK1/2 
substrates phosphorylation (from [58]). 

Remarkably, depending on the cell type and MEK1/2 and ERK1/2 cellular 

relative concentrations, a large portion of ERK1/2 (between 30-70%) translocates to 



The MAPK signaling pathways Introduction 

   63 

the nucleus after stimulation of the pathway [187,238]. A large number of cytoplasmic 

anchors including Phosphoprotein Enriched in Astrocytes 15 kDa (PEA-15), MEK 

Partner 1 (MP-1), Similar expression to fgf genes (Sef-1) and Voltage Dependent 

Anion Channel (VDAC) guide and retain a significant portion of activated ERK1/2 in 

the cytoplasm, the endosomes, the Golgi apparatus and the mitochondria 

respectively. Compartmentalized ERK1/2 exert their specific cytoplasmic functions 

such as regulating intrinsic activities of organelles and prevent therefore an 

excessive accumulation in the nucleus after stimulation of the pathway [241–245]. 

Moreover, specific docking domains mediate the specificity of the interaction of 

ERK1/2 with its partners and may explain distinct their spatio-temporal subcellular 

localization. Several studies revealed the interaction between proteins containing a 

D-domain and/or F-site (also known as Docking site for ERK, FXF (DEF) motif) with 

the CD domain and FRS (also known F-site recruitment site) of an ERK1/2 protein, 

respectively [246–250]. Importantly, ERK1/2 binding affinity with a specific substrate 

is governed by conformational changes of ERK1/2 proteins in the docking domains 

upon Thr-Glu-Tyr (TEY) phosphorylation [251]. Interaction of ERK1/2 with DEJL motif 

is non-reversible even upon TEY phosphorylation and therefore prevents mobility of 

ERK1/2 proteins in particular subcellular regions such as cytoskeletal filaments [252].  

 ERK1/2 nuclear translocation   

ERK1/2 translocation was initially thought to be a mechanism based on both 

passive diffusion and active transport involving dimerization of ERK1/2 [253,254]. 

While ERK1/2 proteins do not contain a dedicated NLS, a particular domain named 

MAPK Insert Domain (KID) was shown to be involved in ERK1/2 nuclear import 

[255]. In 2008, Seger’s laboratory clearly identified a Ser-Pro-Ser motif (SPS motif) 

within the KID domain. Upon stimulation, phosphorylation patterns of the SPS motif 

were correlated with the rate of ERK1/2 translocation. This SPS motif acts as a 

Nuclear Translocation Signal (NTS) (Figure 8). The phosphorylated SPS motif then 

binds to the nuclear translocating protein Importin 7 (Imp7) that mediates the 

transport of activated ERK1/2 into the nucleus through the interaction with Nuclear 

Pore proteins (NUPs) [196]. Plotnikov et al., proposed the Casein Kinase 2 (CK2) as 

the major kinase responsible for SPS phosphorylation. Point mutations on the two 

serine residues contained in the SPS motif as well as depletion or inhibition of CK2 

systematically prevent ERK1/2 translocation without altering ERK1/2 activity in the 
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cytoplasm reflecting that ERK1/2 activation by MEK1/2 and CK2-mediated ERK1/2 

translocation are independent events [256,257]. Moreover, similar NTS sequences 

were identified in other NLS-lacking proteins such as MEK1/2 and can therefore be 

considered as generic sequences mediating protein nuclear translocation upon 

stimulation [258].  

 

Figure 8: Molecular mechanisms of ERK1/2 translocation into the nucleus involving first the TEY-
ERK phosphorylation by MEK1 and then the CK2-mediated ERK1/2 phosphorylation on SPS motif 
leading to its nuclear translocation mediated by Imp7. This translocation enables activated ERK1/2 to 
phosphorylate numerous substrates and activate specific gene expression programs. Ran: RAs-
related Nuclear protein; NUP: NUcleoPorins; Kinase1: unknown kinase but now identified as CK2; 
Imp7: Importin 7 (from [193]).  

 Uncoupling mechanisms  

As described in previous studies, mitogenic stimulation is followed by a rapid 

entry of ERK2 in the nucleus and then a massive nuclear accumulation of ERK2 

several hours after the stimulation for signal termination. At the opposite, non-

mitogenic signals trigger solely the initial translocation of ERK2 [208,238]. ERK2-

mediated phosphorylation of MKPs triggers inactivation and nuclear retention of 

ERK2 through high-affinity interactions, limiting access to cytoplasmic activated 

MEK1. Consistent with previous studies, this late accumulation of ERK2 in the 
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nucleus is uncoupled from MEK1-dependent TEY-phosphorylation of ERK2. In 

addition, recent findings identified a similar uncoupling mechanism of TEY-

phosphorylation from ERK2 nuclear localization at the early phase of the stimulation 

[259,260]. This uncoupling mechanism is not explainable by the sole expression of 

specific nuclear anchors and relies on a Casein Kinase 2-dependent SPS-

phosphorylation in the kinase insert domain of ERK2 that is independent of ERK2 

activation [196,257,258]. These findings shed light the importance to closely correlate 

ERK1/2 activation to its subcellular localization to determine cell fate and assess 

involvement of specific spatio-temporal regulators of ERK1/2 pathway. This has 

become particularly relevant when considering the kinase-independent functions of 

ERK1/2 that has been reported both in the cytoplasm and in the nucleus [261]. In 

combination with ERK1/2 subcellular distribution, monitoring of compartmentalized 

ERK1/2 activity would address the complete spatio-temporal signature of ERK1/2 

and reveal potential uncoupling mechanisms depending on the cellular context 

[262,263].  

 Biological functions and physiopathology of 
ERK1/2 module  

ERK1/2 signaling pathway plays an important role in cellular signaling network 

by regulating several cellular processes including survival, proliferation, 

differentiation, cell migration, neuronal plasticity and cell death depending on cellular 

context and the type of stimulation [57,59,264].  

ERK1/2 is involved in cell proliferation at different levels (for review, [265]). 

ERK1/2 is known to regulate the pyrimidine nucleotides biosynthesis through the 

phosphorylation of Carbamoyl Phosphate Synthetase for II (CPSII) on Thr 456 

residue [266]. ERK1/2-mediated MSK1 and MSK2 activation is also involved in the 

chromatin remodeling through the phosphorylation of Histone 3 (H3) and High 

Mobility Group (HMG) proteins [267]. Moreover, ERK1/2-mediated MNK1 activation 

induces phosphorylation and activation of the translation initial factor 4E (eIF4E) 

leading to increased protein translation [268]. Protein translation is also up-regulated 

both by PI3K/AKT (for review, [269]) and ERK1/2 interconnected pathways through 

inhibition of the tuberous sclerosis (TSC) proteins 1 and 2 complex [231,224]. 

During the cell cycle, ERK1/2 activity is essential for the G1/S transition 

through the induction of Cyclin D1 expression and therefore the activation of 
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CDK4/Cyclin D1 complex. ERK1/2 regulates Cyclin D1 expression through the 

activation of Elk-1 [270], the Fos family of transcription factors including c-Fos and 

Fra-1 [271], but also via the Myc transcription factor [272]. At the opposite, ERK1/2 

negatively regulates the transcription of anti-proliferative genes such as JunD [273], 

providing another strategy for ERK1/2 to control cell cycle progression (for review, 

[265]).  

ERK1/2 activity was also reported to regulate the G2/M transition. In the 

Xenopus laevis oocyte model, M-phase-promoting factor (MPF) and ERK2 pathways 

are interconnected, and MPF may control the magnitude and duration of ERK2 

activation [274,275]. By contrast, in mammalian cells, the role of ERK1/2 is more 

controverted. While inhibition of ERK1/2 expression or activity was reported to 

provoke an accumulation of cells in G2/M [276–278], other studies showed no 

particular effect on the kinetics of entry into mitosis or the duration of the mitosis 

[279]. However, the study of the role of ERK1/2 in the proliferation and homeostasis 

of human epidermis provided new insights. ERK1/2 depletions in skin fibroblast cells 

resulted in a G1 arrest due to a decrease of Cyclin D1 expression level, whereas its 

loss in epithelial cells resulted in a G2/M arrest [280]. Upon ERK1/2 overactivation in 

immortalized mammary epithelial cells, increased levels of mRNAs encoding mitotic 

proteins have been detected such as Cyclin B1, CDK1, CENtrosome-associated 

Protein E (CENP-E), Budding uninhibited by benzimidazoles 1 (Bub1), Mitotic arrest 

deficient 2 (Mad2) and Aurora A during early to mid-G2 phase [281], suggesting 

thereby a role of ERK1/2 in the regulation of G2/M progression of epithelial but not 

fibroblast cells. 

While amino acid sequences of ERK1 and ERK2 as well as their activation 

and regulation are highly similar, ERK1 and ERK2 exert some specific functions. 

Recently the role of ERK2 has been emphasized. In a murine system, ERK2-/- 

embryonic lethality was attributed to failure of placenta and trophoblastic 

development [282], while ERK1-/- embryos are viable and fertile [283–285] but have 

problems in thymic development [286]. In the same line, knockdown of ERK2 in 

zebrafish model prevents epiboly and the blastula to gastrula transition, while ERK1 

knockdown provokes subtle defects in the embryogenesis [287]. In addition, it has 

been reported recently that spatiotemporal subcellular localization of ERK1/2 controls 

either myogenic proliferation (nuclear) or differentiation (cytoplasmic) fates of mouse 
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embryonic muscle progenitors [288]. These findings underline that ERK1/2 have a 

prominent role in embryonic development and in cell differentiation. 

Briefly, inhibition of ERK1/2 signaling by chemical inhibitors or dominant 

negative forms of MEK1 causes abnormalities in the assembly/disassembly of focal 

adhesions. ERK1/2 signaling was reported to be a target of the Focal Adhesion 

Kinase (FAK)/Src signaling involved in the adhesion turnover [289]. In addition, a 

decrease in ERK1/2 activation level was described in FAK-/- MEF cells. Activated 

ERK1/2 are localized to focal adhesions and may promote the phosphorylation of the 

Myosin Light Chain Kinase (MLCK) involved in cell contractility [290].  

Proteins responsible for ERK1/2 signaling cascade are derived from the 

expression of proto-oncogenes. If cells fail to receive or integrate external signals into 

the molecular jungle of cell signaling network, it may lead to cellular homeostasis 

dysfunctions and diseases. Indeed, there is considerable evidences for the 

involvement of ERK1/2 cascade in pathogenesis, progression and oncogenic 

behavior of several human cancers including lung cancer, breast cancer, colorectal 

cancer as well as pancreatic cancer, glioblastoma and melanoma [291–295]. For 

example, 10% of colorectal cancer patients and 60% of melanoma patients exhibit a 

substitution of valine with glutamate at position 600 (V600E) in the B-Raf proto-

oncogene resulting in a constitutively active form of B-Raf [293,296,297]. This leads 

to consider this molecular pathway as a potential target in antiproliferative therapeutic 

strategies [13]. Deregulation of the pathway is also associated with the development 

of other human diseases including neurodegenerative and cardio-vascular diseases 

[298,299]. For example, overexpression of EGFR, that is frequently found in brain 

tumors, alters the duration of ERK1/2 signaling via diverse mechanisms [300,301], 

thereby pushing the cells into (uncontrolled) cell proliferation.  
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1.3. Involvement of ERK1/2 in cell death processes 

In tumors, ERK1/2 was shown to promote the expression and the 

activity of anti-apoptotic proteins and to repress pro-apoptotic proteins 

hence contributing to cell survival and tumorigenesis [302]. At the 

opposite, an increasing number of studies report the pro-death function 

of ERK1/2 activity in various programmed cell death depending on cell 

type and the intensity of cell stimulation. 

1.3.1. ERK1/2 in apoptosis 

The first evidence of pro-apoptotic function of ERK1/2 was described in 1996 

where depletion of Raf rescues MCF-7 cells from taxol-induced apoptosis [303]. 

MEK1 depletion was also shown to block bufalin-induced apoptosis in leukemic cells 

[304]. Chemical inhibitions (U0126 [305] and PD 098059 [306]) as well as dominant 

negative [307] or constitutively active forms [308] of MEK1 clearly emphasized a 

significant role for ERK1/2 in mediating apoptosis. ERK1/2-mediated apoptosis was 

observed upon stimulation with antitumor compounds such as taxol [303,309] or 

shikonin [310] and DNA-damage agents such as etoposide [311–313] or UV 

irradiation [312]. Several of these pro-apoptotic drugs that induced ERK1/2-mediated 

apoptosis are defined in Table 1. These drugs can activate the intrinsic apoptotic 

pathway but ERK1/2 activity has also been involved in the activation of the extrinsic 

apoptotic pathway by specific death receptors in response to TNFα [314–316], Fas 

[307,317] or TNFα-Related Apoptosis-Inducing Ligand (TRAIL) [318–322]. Numerous 

other stimuli including oxidative stress such as ROS [323–326], toxic heavy metals 

such as cadmium [327–329], survival growth factors withdrawal [330] and pro-death 

signals such as interferon-α (IFNα) [331], can induce ERK1/2-related cell death 

signaling pathways and be counteracted by premature ERK1/2 inhibition. In addition, 

it was demonstrated that ERK1/2 sustained activation associated with p53 activation 

[332] or c-Myc overexpression [333] could activate apoptosis, emphasizing the 

undeniable role of ERK1/2 in promoting cell death. Moreover, Cagnol and colleagues 

demonstrated that a sustained activation of ERK1/2 pathway using an inducible form 

of Raf-1 in HEK293T cells (Table 1) was sufficient to induce the extrinsic pathway 

through caspase-8 activation independently of the intrinsic pathway [334]. Depending 
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on cell type and under certain cellular insults, ERK1/2-induces apoptosis through 

either intrinsic or extrinsic apoptotic pathway.  

 

Figure 9: ERK1/2-mediated apoptosis. ERK1/2 is involved at different levels to regulate apoptosis 
and cell survival. The blue box corresponds to the position of ERK1/2 to promote apoptosis (from 
[335]).  

 ERK1/2 regulation of extrinsic pathway 

ERK1/2 may induce apoptosis through regulation of the extrinsic pathway by 

increasing production of pro-inflammatory cytokines such as TNFα [336] and IL-1β 

[337] or by increasing the level of death receptors such as Fas [338] and other 

members of TNFR family [321]. Transcription factors of the ERK1/2 signaling 

pathway such as c-Fos has been involved in the up-regulation of death receptors 

[321]. ERK1/2 activity was reported to induce FADD expression [334,338]. Cagnol 

and colleagues elegantly showed that prolonged ERK1/2 activation promotes 

activation of caspase-8 and hence triggers apoptosis independently of death 

receptors and FADD [334]. In addition, overexpression of an anti-apoptotic factor, 

Bcl-XL, did not prevent ERK1/2-induced apoptosis, reflecting a direct regulation of the 

apoptotic pathway at the level of caspase-8 [334]. However, the protein PEA-15 
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contains an N-terminal Death Effector Domain (DED) and binds to ERK1/2 to control 

its subcellular distribution [241,339]. PEA-15 was shown to prevent death receptor-

activated apoptosis by binding to the DED of FADD [340]. Because FADD binds to 

the DED of caspase-8 to activate apoptosis, PEA-15 could regulate the extrinsic 

apoptotic pathway independently of the death receptors (Figure 9).  

 ERK1/2 regulation of intrinsic pathway 

ERK1/2 activity was associated with the features of apoptosis. Several studies 

revealed that activated ERK1/2 is localized in mitochondria and more precisely in 

mitochondrial membranes [341,342]. ERK1/2 activation was associated with the loss 

of mitochondrial functions and mitochondrial membrane depolarization in cisplatin-

induced apoptosis [308,336,341–343] leading to mitochondrial membranes 

disruption, cytochrome c release and subsequent caspase-3 activation [343–345]. 

Moreover, ERK1/2 activation could act on cytochrome c release by regulating the 

expression of Bcl2 family members. Indeed, upon apoptotic stimulation, ERK1/2 

activation was shown to up-regulate pro-apoptotic proteins such as Bax 

[308,346,347] and Bak [331] and down-regulate anti-apoptotic proteins such as Bcl2 

[309,312,348] and Bcl-XL [349]. Bax is known to promote the release of pro-apoptotic 

proteins from the mitochondria [350]. Inhibition of the ERK1/2 pathway reverts these 

effects on Bcl2 family members expression [308,347]. The pro-apoptotic protein Bid 

is cleaved after ERK1/2 induced capsase-8 activation, leading to the activation of the 

intrinsic apoptotic pathway [349]. However, targeting p53 using genetic or chemical 

approaches revealed that p53 is a prominent actor in ERK1/2-mediated apoptosis. In 

apoptotic conditions, ERK1/2 activation was found to increase p53 expression via 

phosphorylation on its Ser 15 residue, leading to p53 stabilization and subsequent 

accumulation [312,332,348,351,352]. ERK1/2-mediated p53 phosphorylation on the 

Thr 55 residue was also found to activate pro-apoptotic functions of p53 by up-

regulating pro-apoptotic genes expression [348]. Activated p53 is also localized in the 

mitochondria to counteract Bcl- XL action [353] and to promote Bax/Bak activation 

finally leading to cytochrome c release [354,355]. Although p53 is an important 

regulator in ERK1/2-mediated apoptosis, several studies report, in certain 

circumstances, a p53-independent ERK1/2-mediated apoptosis [309,356] (Figure 9).  
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  Other actors in ERK1/2-mediated apoptosis 

cPLA2 is involved in unsaturated fatty acids production. ERK1/2-mediated 

cPLA2 phosphorylation [357] is associated with cytochrome c release and 

subsequent caspase-3 activation [358].  

DAPK is a pro-apoptotic protein located in the cytoplasm, which is involved in 

IFNγ-mediated apoptosis [359,360]. DAPK was found to interact with the D-Domain 

of ERK1/2 through its death-domain leading to cytoplasmic sequestration of ERK1/2 

and subsequent blockage of ERK1/2-mediated pro-survival functions [361]. Upon 

IFNγ stimulation, ERK1/2 phosphorylates DAPK on Ser 735 resulting in the increase 

of DAPK activity and finally leads to apoptosis [361]. Similarly, Bik, a member of Bcl2 

family, enables sequestration of activated ERK1/2 in IFNγ-mediated apoptosis [362].  

Upon etoposide exposure, DNA-damages induced Ataxia Telangiectasia 

Mutated (ATM) activation enables the sustained ERK1/2 activation independently of 

p53, which promotes apoptosis [312,363,364].  

Survival growth factors deprivation is known to elicit apoptosis through a 

sustained activation of ERK1/2, which in turn down-regulates PI3K/Akt and 

suppresses survival signaling pathways [330,365]. Chemical inhibition of ERK1/2 

cascade prevents the decrease of Akt activity and rescues cells from apoptosis [330]. 

Conversely, Akt is also known to act downstream of ERK1/2 by phosphorylating 

PEA-15 [366], which in turn retains activated ERK1/2 in the cytoplasm and thereby 

suppresses once more the survival functions of ERK1/2 [367,368].  

Finally, ROS production is involved in ERK1/2-mediated apoptosis [369]. 

ROS can induce oxidative DNA damages such as DNA strand breaks [370] leading 

to ATM activation and subsequent p53 phosphorylation, which in turn promotes cell 

cycle arrest and apoptosis. ERK1/2 inhibition was reported to rescue several cell 

types from ROS-induced apoptosis [344,371].  

1.3.2. ERK1/2 in autophagy 

Several studies reported ERK1/2 activation with cytoplasmic vacuolization and 

cell rounding independently of caspases activation (for review, [372]). Prolonged 

ERK1/2 activation induced by Raf [334], serum deprivation [373], cadmium exposure 

in MES-13 cells [328,374], TNFα stimulation in MCF-7 [316] and L929 cells [315] 
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were associated with autophagic cell death. Prolonged ERK1/2 activation is sufficient 

to promote autophagic cell death in response to carcinogens exposure [375]. It was 

also reported that sustained ERK1/2 activation perturbes the maturation of 

autophagosomes [375]. In addition, depending on the cell type, PEA-15-mediated 

cytoplasmic sequestration of activated ERK1/2 was associated with autophagy 

activation [376]. ERK1/2-mediated autophagy is implicated in the regulation of 

autophagy-related markers including coiled-coil moesin-like Bcl2-interacting protein 1 

(Beclin-1) induction and microtubule-associated protein 1A/1B-Light Chain 3-I (LC3-I) 

conversion to LC3-II [315] that are considered as sensitive molecular markers of 

autophagy. In TNFα-induced autophagy in L929 cells, ERK1/2 activation leads to 

phosphorylation of p53 on Ser 392 [315], suggesting a role of p53 in autophagic cell 

death. In certain neurodegenerative diseases, ERK1/2 activity was involved in 

neuronal autophagic cell death [377,378]. However, ERK1/2 was found in 

cytoplasmic vacuoles [379] but also in membranes of these vacuoles [380]. Recently, 

upon growth factors stimulation, components of ERK1/2 cascade were located at the 

luminal face of autophagosomes where they interact with membranes-associated Atg 

or LC3-II proteins acting as scaffolding proteins to regulate ERK1/2 phosphorylation 

[380]. It was also shown that AMPK-MEK1/ERK2-TSC-mTOR pathway is implicated 

in the regulation of autophagy through a non-canonical activation of ERK1/2 cascade 

implicating directly MEK1 [381]. These findings indicate that ERK1/2 activation can 

either promote or regulate autophagic cell death.  

1.3.3. ERK1/2 in paraptosis  

Only few articles have described the potential role of ERK1/2 in paraptosis. In 

2004, Sperandio and colleagues revealed that the Insulin-like Growth Factor I 

Receptor (IGFIR) signaling triggers paroptosis. Both Insulin-like Growth Factor I 

(IGF-I) and active truncated IGFIR result in a significant decrease of cell survival by 

inducing paroptosis. The molecular mechanisms underlying paraptosis are not clear 

and remain to be investigated. But, it was shown that IGFIR-induced paraptosis is 

mediated by MAPKs including MEK-2 and JNK-1 as both chemical inhibition and 

genetic approaches completely prevented paraptosis [36]. Recently, hesperidin, 

which exhibits anti-oxidant and anti-cancer properties, was involved in ERK1/2-

mediated paraptosis in HepG2 cells. The features of apoptotic and autophagic cell 

death are lacking and the inhibition of ERK1/2 was shown to block hesperidin-
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induced paraptosis [382]. Finally, oligomeric procyanidins (F2) exposure resulted in 

ERK1/2 and p38 activation leading to the paraptosis of human glioblastoma U87 cells 

[383].  

1.3.4. ERK1/2 in ferroptosis  

Similarly, very few articles highlighted a link between ERK1/2 activation and 

ferroptosis. Yagoda and colleagues described the first evidence of ERK1/2-mediated 

ferroptosis in 2007 [384]. Erastin is an anti-tumor compound known to induce 

mitochondrial dysfunctions and generate ROS towards a non-apoptotic and non-

autophagic cell death, so-called ferroptosis. Interestingly, H-RasV12-expressing cell 

lines are more sensitive to erastin. Conversely, RNA interference for K-Ras exhibits 

resistance to erastin-induced ferroptosis. These findings indicate therefore that 

activated ERK1/2 signaling pathway could be required for erastin-induced ferroptosis 

[384]. In 2010, Carr and colleagues highlighted that ERK1/2 activity regulates the 

glutamine uptake and metabolism in T cells that are particularly sensitive to 

glutamine variations [385]. GPX4 acts as a scavenger of phospholipid 

hydroperoxides to avoid membrane lipid peroxidation. Recently, Matsushita and 

colleagues revealed that inhibition of ERK1/2 signaling pathway impairs GPX4-

deficient T cell death by ferroptosis suggesting that ERK1/2 is activated by lipid 

peroxides in ferroptosis [386]. 

1.3.5. ERK1/2 in parthanatos  

Upon ROS production by ROS-generating myeloid cells or by exogenous ROS 

such as H2O2, phosphorylation of ERK1/2 was detected in Natural Killer (NK) cells 

and CD8+ lymphocytes. Increasing concentration of ROS promotes PARP1 activation 

and accumulation of PAR polymer leading to cell death by parthanatos. ROS-induced 

ERK1/2 phosphorylation was reported to be independent of PARP1 activity. Inhibition 

of ERK1/2 pathway by chemical inhibitors completely blocks parthanatos, suggesting 

a prominent role for ERK1/2 in ROS-induced parthanatos [387].  
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1.3.6. Hallmarks of ERK1/2 in cell death  

 ROS-mediated sustained ERK1/2 activation 

ERK1/2-mediated cell death is associated with a prolonged ERK1/2 activation 

from several hours up to several days (Table 1). ERK1/2 inhibition by chemical 

agents such as U0126 or PD98059 reduces or prevents this sustained 

phosphorylation [334]. It was reported that ERK1/2 phosphatases are sensitive to 

oxidative stress so that ROS could inactivate ERK1/2 phosphatases functions and 

alter the balance between phosphorylation/dephosphorylation of ERK1/2 leading to a 

sustained ERK1/2 activation [388,389]. ROS scavengers have been used in 

combination with cell death stimuli and it appears that ERK1/2-mediated cell death 

requires ROS production [324,325,390,391]. Cell death stimuli including anti-tumor 

compounds, DNA-damages agents, pro-inflammatory cytokines and directly oxidative 

stress contribute to increase ROS production and subsequent ERK1/2 activation 

[391–394]. ROS-mediated sustained ERK1/2 could be therefore considered as a 

hallmark of ERK1/2-mediated cell death (for review, [372]). ROS act at different 

levels to up-regulate the ERK1/2 cascade:  

- Activation of plasma membrane receptors such as EGFR [395]  

- Activation of adaptor proteins such as Shc [396]  

- Oxidation of Cys 118 residue on Ras promoting Raf activation at plasma 

membrane [397] 

- Oxidation of multiple cysteine residues located on the CRD of Raf leading 

to its auto-activation [398] 

- Nitration of MEK1 by the peroxynitrite promoting its auto-activation [325] 

Downstream of ERK1/2, ROS-mediated sustained ERK1/2 phosphorylation 

can occur through inactivation of ERK1/2 phosphatases by oxidation of their redox-

sensitive cysteine residues within their active site (for review, [399]): 

- Oxidation of tyrosine phosphatase PP1 on Cys 62 residue [400]  

- Oxidation of tyrosine phosphatase PP2A on Cys 62 residue [400] 

- Oxidation of nuclear MKP1 on Cys 258 residue [401] 

- Oxidation of cytosolic MKP3 on Cys 293 residue [401]  

The duration of ERK1/2 activation plays a prominent role in determining cell fate [98]. 

ROS-induced cell death is usually associated with biphasic activation of ERK1/2 
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and corresponds to a transient phosphorylation followed by a sustained 

phosphorylation of ERK1/2 finally leading to cell death [327]. ROS-induced activation 

of molecular effectors upstream of ERK1/2 is responsible for the transient activation 

of ERK1/2 (first phase of the biphasic activation), whereas ROS-induced inactivation 

of ERK1/2 phosphatases is associated with the second phase of ERK1/2 activation 

(for review, [372,402]). However, cell death stimuli can cause either a progressive 

ERK1/2 phosphorylation [311,344] or a delay of several hours between the 

stimulation and ERK1/2 phosphorylation [344,403].  

 

Figure 10: Hallmarks of ERK1/2-mediated cell death. Upon mitogenic stimulation (grey arrow), 
ERK1/2 is activated and translocates into the nucleus to regulate pro-survival gene expression 
including specific MKPs for its signal termination. The “death promoting activity” remains therefore 
very low. At the opposite, cell death stimuli result in ROS production, MKP inhibition, and sustained 
ERK1/2 activation thereby switching “death promoting activity” from low to high levels sufficient to 
induce cell death (red line). ROS-induced MKP inactivation leads to a compartmentalized ERK1/2 
activation required to elicit a specific cell death (from [372]). 

 Sequestration of ERK1/2 

Besides the duration of ERK1/2 activation, the compartmentalization of 

ERK1/2 activity is crucial to elicit a specific cell death [98]. The study of both activity 

level and subcellular distribution of ERK1/2 could address a specific spatio-temporal 
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signature of ERK1/2 activity to a specific cell death. ERK1/2 sequestration relies on 

expression of scaffolding proteins including nuclear and cytoplasmic MKPs 

[58,222,404]. Upon binding to ERK1/2, phosphatases exhibited an elevated catalytic 

activity to dephosphorylate ERK1/2 [405]. ROS production inactivates phosphatases 

so that they cannot dephosphorylate activated ERK1/2 but instead MKPs can interact 

with activated ERK1/2 leading to an abnormal accumulation of activated ERK1/2 in a 

specific subcellular compartment depending on the type of docking phosphatases 

[372]. Nuclear sequestration of ERK1/2 activity is associated with apoptosis, whereas 

cytoplasmic sequestration of ERK1/2 elicits different cell death depending on ERK1/2 

activity. Indeed, cytoplasmic sequestration of ERK1/2 through PEA-15 interaction 

impairs its translocation to the nucleus for up-regulation of pro-survival gene 

expression and leads to autophagy [376]. At the opposite, cytoplasmic sequestration 

of activated ERK1/2 promotes senescence [406] (Figure 10). For example, 

stimulation of cultured cells with pro-apoptotic stimuli such as doxorubicin or 

cephaloridine promote accumulation of activated ERK1/2 in the nucleus and 

subsequent apoptosis [346,392]. In addition, overexpression of active MKP1 

prevents taxol-induced apoptosis, reflecting inactivation of endogenous MKP1 by 

ROS production [407]. 
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Cellular model Cell death stimuli 
Duration of 

ERK activation 
Characteristics Refs 

NIH-3T3 
Etoposide, UV, 

doxorubicin 
24h DNA degradation [311] 

NIH-3T3 γ-irradiation 48h 
Membrane integrity, 

Annexin V 
[346] 

HeLa Cisplatin 18h 
Caspase-9,  

PARP cleavage 
[308] 

HeLa Shikonin 12h Caspase-8, Caspase-3 [310] 

MCF-7 Taxol 24h DNA fragmentation [309] 

HT-29 TRAIL 5h 
Membrane integrity 

Nuclear condensation 
PARP cleavage 

[321] 

Immortalized L929 H2O2 3h 
DNA fragmentation 

Annexin V 
[391] 

Mouse immortalized 
osteoblast 

H2O2 Biphasic (12h) 
Cell viability  

Membrane integrity 
[347] 

HEK293 Cadmium Biphasic (96h) 
Caspase-8, Caspase-3 

PARP cleavage 
[327] 

MCF-7 Tamoxifen 1h Membrane integrity [408] 

Primary mouse 
kidney proximal 

tubular epithelial cells 
EGF deprivation 120h Cell viability [330] 

U937 Bufalin 12h DNA fragmentation [304] 

NIH-3T3 DAPK Constitutive Cell viability [361] 

HEK293 ΔRaf1:ER Constitutive 

Membrane integrity  
DNA fragmentation 
DNA condensation 

Annexin V 
Caspase-8, Caspase-3 

PARP cleavage 
Vacuolization 

[334] 

L929 TNFα ND 
Cell viability 

LC3-II induction 
Beclin induction 

[315] 

MES-13 Cadmium 3h 
Cell viability MTT 
LC3-II induction 

[328] 

MCF-7 TNFα 10h 
Cell viability 

LC3-II induction 
[316] 

IMR90 RasV12 Constitutive LC3-II induction [379] 

42GPA9 Lindane 24h 
LC3 relocalization 

Vacuolization 
[375] 

HT-22 Glutamate ND Cell viability  [409] 

Rat retina 
Ischemia-

reperfusion 
12-24h c-FLIP, RIP3 accumulation [410] 

HepG2 Hesperidin ND 
Vacuolization, mitochondria 

and ER swelling  
[382] 

BJ- TERT/LT/ST H-RasV12 Erastin ND ROS production [384] 

NK and CD8+ 
lymphocytes 

ROS ND 
PAR polymer, ROS 

production 
[387] 

Table 1: ERK1/2-mediated cell death in different cellular models. ERK1/2-mediated apoptosis 
(yellow), autophagy (green), necroptosis (blue), necrotic-like cell death (cyan) in multiple cellular 
models. The panel reflects the diversity of cell-death stimuli that induced ERK1/2-mediated cell death 
and exhibits the most representative evidences that support ERK1/2 involvement in the different 
programmed cell death. Red selection highlights the low number of publications about the role of 
ERK1/2 in necroptosis. c-FLIP: cellular FLICE-like inhibitory protein. ND: not determined (adapted 
from [372]).   
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1.4. Why use dynamic approaches to elucidate ERK1/2 

functions?  

While biochemical events of ERK1/2 signaling pathway have been well 

characterized, a central question remained: how can this signaling pathway 

triggers different cellular outcomes? A simple model would be that a single 

signaling pathway promotes a specific cell response in response to a specific 

stimulus (Figure 11) but many studies indicated that this model is not insufficient to 

explain the complexity of the signaling network and the diversity of cell responses, 

thereby suggesting numerous crosstalk and regulations mechanisms to deal with the 

information flow. An increasing number of papers have highlighted that the duration, 

the magnitude and subcellular compartmentalization of ERK1/2 activity by specific 

key regulators represent as much as qualitative and quantitative differences in 

ERK1/2 activity that are interpreted by the cell for determining cell fate 

[59,98,222,411]. A classic example is the differential activation of ERK1/2 pathway in 

response to EGF or NGF in a same cellular model. EGF stimulation causes a 

transient activation of ERK1/2 and hence proliferation, whereas a sustained 

activation leads to differentiation and neurite outgrowth of PC12 cells.  

 

Figure 11: A new model for signals-induced ERK1/2 activation. (A) Simple model in which 
extracellular stimuli activate a single signaling pathway resulting in a single mode of ERK1/2 activity 
and hence a unique cellular response. (B) Stimulus-specific spatio-temporal patterns of ERK1/2 
activity elicit an appropriate cellular response. This contributes to generate a temporal ERK1/2 
activation code dependent on the cell type and cell stimulation (from [98]). 

In addition, depending on the stimulation, multiple ERK1/2 protein partners are 

able to change their binding affinity to promote a remodeling of the cascade, 

indicating that cell fate is also governed by the dynamic ERK1/2 interactome [190]. 

Adding to the cellular network complexity, chemical inhibition of potential effectors 
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and computational approaches led to the identification of negative and positive 

feedback loops to modulate ERK1/2 pathway hence resulting in widespread increase 

in network connectivity. Spatio-temporal changes in ERK1/2 activity and connectivity 

generate therefore a particular ERK1/2 code to elicit various cellular responses from 

cell survival and proliferation to cell death processes [218,219,229,412] (Figure 14). 

 

Figure 12: Time scale for dynamical studies of signaling pathways. Molecular events for 
transmitting signals occur within seconds for calcium variations and can take up to several hours for 
transcriptional gene expression (top). The scheme illustrates also the temporal window for each class 
of reporter to capture qualitative and quantitative read-outs (middle) with regard to the time scale of 
several approaches to manipulate signaling pathways (from [413]). 

The time scale for the dynamic study of signaling pathways has to be taken 

into account (Figure 12) (for review, [413]). Indeed, calcium oscillations occur within 

seconds while phosphorylation and activation of protein kinases can be achieve on a 

time scale of minutes. In the case of ERK1/2 pathway, ERK1/2 translocate into the 

nucleus to activate a specific gene expression program within 5 to 10 minutes. But 

according to several studies, secondary regulatory mechanisms due to crosstalk 

could affect or modulate the initial outcome at the transcriptional level leading often to 

data misinterpretations. Although biochemical data, snapshot acquisitions or time-

points measurement can provide very valuable information, dissecting and 

manipulating signaling pathways and crosstalk require high spatio-temporal 
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resolution that can be achieve by live-cell functional imaging. To this effect, 

appropriate engineered tools are required to monitor and modulate kinase activities 

in living cells and in real time at the appropriate time scale. This offers powerful 

approaches, which can provide new insights in signaling and cell fate regulation.  

 

Figure 13: “Vocabulary” for the characterization of oscillatory kinase activation. (adapted 
from [414]).  

Over the last decade, major advances have been made in our fundamental 

understanding of the regulatory mechanism of ERK1/2 pathway. While 

immunostaining of ERK1/2 localization and phosphorylation provide a snapshot of 

compartmentalized ERK1/2 activity at different time points, live cellular imaging of 

ERK1/2 activities in subcellular compartments have uncovered unexpected dynamics 

of ERK1/2. Recently, several elegant studies provided new evidences on oscillatory 

ERK1/2 activation. In the context of circadian rhythms and somitogenesis, FGF-

induced Notch effector Hes1 oscillatory expression was associated with an oscillatory 

activation of ERK1/2 pathway depending on a negative feedback loop from ERK1/2 

to SOS [415]. Similarly, Albeck and colleagues showed that ERK1/2 is activated in 

asynchronous pulses (stochastic ERK1/2 activation) at the basal state and that 

components at different levels of the pathway can modulate amplitude or frequency 

of EGF-induced ERK1/2 activity and hence regulate cellular proliferation under 

certain circumstances [416] (Figure 13). Finally, Aoki and colleagues highlighted 

another type of oscillatory activations of ERK1/2 using also a FRET-based biosensor 

approach. They found that Raf induces stochastic ERK1/2 activation pulses under 

normal cell culture conditions and that different cell densities regulate the frequency 

but not amplitude of ERK1/2 oscillations and hence cell proliferation. They also nicely 

demonstrated the propagation of these ERK1/2 oscillations to other adjacent cells.  
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Besides monitoring kinase activity, certain components of signaling pathways 

can relocalize to convey specific signals to specific subcellular compartments. This 

subcellular redistribution may reflect the activation of the pathway and provide 

qualitative and quantitative read-outs. For example, ERK1/2 [208,238] as well as 

STAT1/6 [417,418] and NF-κB [419,420] translocate into the nucleus upon activation 

of their respective signaling pathways. Tagged-version of these proteins led to the 

characterization of distinct molecular mechanisms required for their translocation but 

also the identification of specific anchors. For example, Shankaran and colleagues 

found that EGF-induced ERK1/2 activation in human mammary epithelial cells 

(HMECs) elicits oscillatory translocation of ERK1/2 between the cytoplasm and the 

nucleus depending on a negative feedback loop that is now considered as a hallmark 

of an oscillatory behavior (for review, [421]).  

In conclusion, dynamical studies of cellular processes are powerful 

approaches as they increase spatiotemporal resolution at the single living cell level. 

Monitoring ERK1/2 activity has already revealed how the spatio-temporal dynamic of 

ERK1/2 activity affects the cellular responses. Moreover, the concept that emerge 

from studying spatio-temporal kinase activity is that a specific temporal activation 

code is required to elicit an appropriate cellular response (for review, [413]). This new 

trend in cell biology suggests that the information flow may be encoded temporally in 

frequency, amplitude and duration of the signal but also in space to control cell fate 

decisions (for review, [221,414]). Therefore, the main challenge nowadays is to 

decode this spatio-temporal activation code leading to a specific cellular response to 

finally elucidate regulation mechanisms and crosstalk between pathways. 
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Figure 14: General scheme of regulatory mechanisms for ERK1/2 activation to address a specific 
spatio-temporal signature of ERK1/2 activity to a specific cellular response depending on cell type and 
cell stimulation (right). Major spatial and temporal modulators of ERK1/2 activity are also indicated 
(left) (from [98]).   
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Abstract 

Delineating the complexity of the phosphorylation-based signaling network has 

become imperative for the understanding of cell functions both in physiological and 

pathological contexts, and for therapeutically perspectives. Protein kinases MAPK, 

PKA and Akt were here taken as examples of protein kinases whose respective 

spatiotemporal regulations are crucial for specific cellular functions achievement. To 

overcome the shortcomings of traditional methods, imaging approaches have been 

developed, using FRET or bioluminescence, providing high temporal and spatial 

resolutions for single cell and tissues analysis. Here are discussed properties of 

kinase activity reporters either based on FRET or bioluminescence. 
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Background 

Cellular functions require accurate translation of extracellular stimuli into 

functional responses via intracellular signaling cascades, many of which are critically 

regulated by protein kinases. Protein kinases covalently transfer the c-phosphate of 

ATP to recipient amino acid side chains on target proteins. These processes can be 

mediated by Serine / Threonine kinases (on Serine or Threonine residues) or by 

Tyrosine kinases (on Tyrosine residues). Phosphorylation of the target proteins 

results in changes in activities, interactions, localizations, or stability, thereby 

propagating a signal, which influences cellular decisions and functions. Signaling 

cascade propagation through mobilization of protein kinases is tightly controlled by 

combinations of regulation motifs, including feedforward and feedback mechanisms, 

which ensure irreversible, sustained or transitory decisions (Novak et al, 2007; Tyson 

and Novak, 2008; Czsikasz-Nagy et al, 2009). These mechanisms are tightly 

controlled to prevent aberrant protein kinases activation or inactivation, and cellular 

decisions are themselves subjected to regulatory checkpoint like those controlling 

cell cycle progression throughout replication and division (Nurse, 2000; Morgan, 

2007).  

In the human genome, 518 protein kinases have been identified, nearly half of 

which being expressed from loci associated with specific disease or from regions 

amplified in human cancers (Manning et al., 2002). Deregulations of protein kinases 

have been involved since then in various pathologies including cancer, neurological 

disorders, rheumatoid arthritis, immune, cardiac, metabolic and infectious diseases 

(Blume-Jensen and Hunter, 2001; Kumar et al., 2007; Mueller et al., 2005; Westra 

and Limburg, 2006; Wirth, 2010). As a result, protein kinases have become one of 

the major therapeutic targets for the last two decades (Cohen, 2002, Scapin, 2006). 

With one third of all intracellular proteins being phosphorylated (Johnson and Hunter, 

2005), one might consider that virtually all cellular signaling processes involve the 

transfer of phosphate groups and implies that inhibition of aberrant kinases activity is 

considered to repair the deregulation of cellular signaling.  

Delineating the complexity of the phosphorylation-based signaling network has 

become imperative for the understanding of cell functioning both in physiological and 

pathological contexts, and for therapeutically perspectives. Such a task may be 
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undertaken either (1) by focusing on specific protein kinases, which act as main 

effectors or contributors in many pathological contexts, that serve as converging hub 

for oncogenic stimuli, like PKA (Protein Kinase A), Akt or MAPK (Mitogen Activated 

Protein Kinases), or (2) by considering protein kinases in a global manner through 

kinome profiling. The latter aims at analyzing all protein kinases in cells or tissues, 

with respect to their abundance, activity, substrate specificity, phosphorylation 

pattern and even mutational status (Johnson and Hunter, 2005).  

1.5.1. Spatiotemporal dynamics of kinase drives 

cellular functions: case review of MAPK/Erk, PKA and 

Akt 

Kinase activation profiles are tightly associated to cellular decision. Actually, 

MAPK/Erk cascade provides a stunning example of how cells division might be 

driven by MAPK/Erk dynamics. Indeed, the phenotypical outcome of external stimuli 

might depend on the temporal profile of active, phosphorylated proteins recruited, as 

it is the case for MAPK/Erk (Murphy et al., 2002; Santos et al., 2007). Typically, the 

MAPK/Extra-cellular Regulated Kinase (Erk) cascade is a highly conserved signaling 

pathway throughout eukaryotic cells, bridging cell surface receptors to diverse 

executor proteins, integrating signals and modulating many aspects of cell life such 

as cell cycle, survival, differentiation and cell migration. Serving as a node into a 

network for signal integration, the MAPK cascade consists of three layers, each one 

being composed of a kinase (MAPKKK or MAP3K, MAP2K or MEK and MAPK). 

Deregulation of the MAPK/Erk pathway due to alterations affecting the expression or 

function of a number of pathway components has long been associated with 

numerous pathologies including cancers, resulting in the constitutive activation of 

ERK and continual cell proliferation (Bodart et al., 2002; Orton, 2009).  

Nevertheless, the MAPK-Erk network exhibits plasticity and different 

dynamical properties may arise from connections within this network. For instance, 

rewiring of Erk pathway architecture in the context of NGF and EGF stimulation in 

PC12 cells (model for neurone differentiation) is believed to built the dynamical 

response observed for these growth factors; transient or sustained MAPK/Erk 

cascade activation following EGF or NGF stimulation, respectively. (Santos et al., 

2007, Kriegsheim, 2008). 
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Similar dynamical properties of the MAPK/Erk pathway have been suspected 

to affect signaling cascade involved in cell death (Mebratu and Tesfaigzi, 2009). In 

fact, it is now clear that Erk is directly linked to cell death signaling although 

molecular mechanisms involved in Erk1/2-mediated cell death remain poorly 

understood. The MAPK/Erk1/2 cascade promotes also cell survival through 

inactivation of cell death machinery components and increase of pro-survival genes 

transcription rate. These mechanisms contribute to decrease cell sensitivity to 

apoptosis and promote cell proliferation since the balance between the intensity and 

duration of pro- and anti-apoptotic signals transmitted by MAPK/Erk influence the 

decision of a cell to proliferate or die. In this respect, subcellular localization of 

MAPK/Erk pathway components and dynamical spatiotemporal changes are believed 

to determine cell fate between proliferation and death (Ebisuya et al., 2005). 

Sustained Erk activation observed in cadmium poisoning conditions and in the 

engineered cellular system Raf-1:ER (Cagnol et al., 2006) can be associated with a 

cell death signaling, whereas transient activation observed following growth factors 

stimulation protects cells from death. Sustained ERK activation, which is sufficient to 

induce cell death, is often associated with cell death mediated by ROS (Dong et al. 

2004) because these radicals can suppress protein-phosphatases activities of MKP 

(MAPK-specific Phosphatases), exerting key roles in the regulation of MAPK/Erk 

dynamics (Boutros et al., 2008). Inhibition of MAPK/Erk activation using inhibitors 

against components of the MAPK cascade, has a survival effect on cells induced to 

die following chemicals or physicals challenges. Forced MAPK/Erk cytosolic 

localization prevents a survival or a mitogenic response, but potentiates activities of 

specific pro-apoptotic proteins such as DAPK (Chen et al., 2005), Bik (Mebratu et al., 

2008) and PEA-15 (Trencia et al., 2003) via the activation of PI3K/Akt pathway. 

Compartmentalized MAPK/Erk activity is therefore key to promote a survival or a 

death signaling. Thus, spatial signatures for the signal propagation of the MAPK/Erk 

signaling pathway have started to be explored both at experimental and theoretical 

levels in many different cellular models, from gametes to tissues (Maeder et al., 

2007; Kholodenko and Birtwistle, 2010; Blossey et al., 2011). Mechanisms leading to 

MAPK/Erk signal propagation are challenging issues, especially when considering 

MAPK/Erk signaling over long distance as in neural tissue or in giant cells like 

oocytes. 
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Figure 1. Spatiotemporal signatures of MAPK/Erk signaling drive cell fate between cell death 
and survival / proliferation. Transient and sustained MAPK activities (in blue) « promote » cell 
decision while spatial propagation of the signal is crucial to the final integration leading to cellular 
decision. 

MAPK/Erk is not the only protein-kinase exhibiting complex spatial patterns, 

ranging from gradient to microdomains, tightly associated to cellular functions. 

Spatio-temporal regulation of PKA, whose activity is involved in many biological 

processes such as regulation of gene transcription, cell survival, cell cycle 

progression or cell migration, is known to be crucial for determination of cell 

response. PKA is a tetramer made up with a regulatory subunit dimmer and two 

inactive catalytic subunits. When two cyclic Adenosine MonoPhosphate (cAMP) 

molecules bind with one regulatory dimer, the enzyme dissociates into a regulatory 

dimer and two active catalytic subunits. The balance between cAMP synthesis by 

Adenylate cyclase and degradation by phosphodiesterase (PDE), contributes to 

generate temporal activity profiles, whereas different A Kinase Anchoring-Proteins 

(AKAPs) restrains PKA to specific subcellular localizations (Taylor et al., 2003) and 

target PKA to their substrates (Faux and Scott, 1996; Dell’Aqua et al., 2006). As an 

example, it appeared that a balance of PKA activity- either in extent, space, time, or 

all three- is necessary for cell movement. In this context, PKA regulates several key 

events like membrane protrusion or filopodia formation, by controlling the activation 

states of Rho-GTPases Rac and cdc42 (Howe, 2004). In this context, PKA activity is 

compartmentalized in protrusive cellular structures formed during chemotaxis. 

Reorganization of actin cytoskeleton and polarization during cell migration depends 

also on PKA activity cellular gradients. Those are, at least in part, dependent on the 

AKAP-Lbc anchoring function that might retain PKA close to its substrates during this 

migration process (Paulucci-Holthauzen et al., 2009). 
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Since its identification as an oncogene in 1991 (Bellacosa et al., 1991; Jones 

et al., 1991), Akt has been targeted by many strategies to unravel its role and 

mechanisms of activation. Growth factors, cytokines and hormones stimulate the 

phosphatidylinositol 3-Kinase (PI3K), which generate a secondary messenger 

phosphatidylinositol (3,4,5)-triphosphate. The latter induces Akt translocation from 

the cytosol to the plasma membrane, where it is activated by phosphorylation on 

residue Thr308 and Ser473 (Fayard et al., 2005). Convergent literature had 

suggested a role of lipid rafts for Akt activation (cholesterol and sphingolipid-enriched 

detergent resistant compartments) however, proofs have been difficult to gather due 

to the absence of adequate tools. Genetically encoded fluorescent reporters for 

kinase activity exhibited amenability to the purpose of dissecting the role of lipid rafts 

in Akt activation and led to determine that PDGF- (Platelet Derived Growth Factor) or 

IGF-1- (Insulin Growth Factor-1) mediated Akt activation was differentially controlled 

between raft and non-raft regions at the plasma membrane (Gao and Zhang, 2008; 

Gao and Zhang, 2009). 

1.5.2. Getting into more dynamism: FRET-Based 

Kinase Activity Reporters 

How a cell integrates multiple signals into a fate remains rahter challenging 

since cell-specific responses are mainly achieved through common effectors of 

signaling networks. Answer to this question is commonly addressed through the 

targeting of downstream effectors substrates (such as cytoplasmic targets, 

transcription factors and terminal enzymes), which ultimately process cell-specific 

phenotypes. Specific cell response to stimuli may arise from two possible 

mechanisms. On one hand, a signaling event may drive different cell phenotypes, but 

the latter depends only on the cell type that is stimulated because the molecular 

contributors of signal integration are cell-specific. On another hand, the nature of the 

activating signal (i.e. being transitory, delayed or sustained) is responsible for the 

typical or adapted cell response to stimulus. In order to purpose to decipher 

dynamical properties of signaling networks, integrative approaches have been 

developed. Indeed, mathematical and computational models have emerged as useful 

and original tools to address cellular signaling. When working synergistically, 

experimental and theoretical approaches increase the understanding of information-
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processing mechanisms, which mainly involve protein kinases and their regulators 

(Orton et al., 2009; Kholodenko and Birtwistle, 2009; Gilbert et al., 2010). 

Nevertheless, traditional methodologies failed to feed synergistically this work, which 

request quantitative measurements for implementing mechanistic models as well as 

for verifying generated predictions. Knowledge of how cell regulatory systems are 

organized to allow signal integration with robust fidelity remains crucial to predicting 

drug action, understanding pathological deregulation and identifying effective 

molecular targets for drug discovery. 

Suitable tools and methodologies are also requested to enable the dissection 

of signaling mechanisms at the single cell level up to complex and malignant 

environment. Thus, acquisition of dynamical parameters is resting upon the 

development and promises of molecular imaging, through innovations enabling real-

time and non-invasive, or at least the less invasive, monitoring of protein kinases as 

biomarkers in living cells and organisms. These innovations are called to change our 

view on how disease may be diagnosed, staged, monitored and treated, and how cell 

decide their fate or drive themselves into such or such phenotypic decision. So far, 

western blotting, immunostaining and immunohistochemistry for phosphorylated 

isoforms of kinase, when available, have provided valuable insights into kinases 

function but these methods only allow obtaining static snapshots of cellular events. 

For in vitro kinase assays, cellular integrity is disrupted (mechanical lysis), and the 

phosphorylation of an exogenous substrate is classically monitored over time by 

radioactivity or phosphorylation-specific antibodies. Though these assays can detect 

kinase activity, the biological context is mainly lost during cell fixation or lysis. 

At clinical levels, information are also requested regarding the dynamic 

changes within malignancy and its environment since biopsies only provide 

snapshots of biomarkers at the time where the sample is retrieved. These snapshots 

do not allow adapting rational molecular therapies in real time for clinical oncology 

purposes, where therapies are called to be adapted at the case-by-case level (bench 

to bedside approach). Nevertheless, several strategies have been developed for 

protein kinases profiling such as phosphoproteomic approaches (Opermann et al., 

2009; Li et al., 2010), reverse protein arrays (Pawlak et al., 2002; Rubic et al., 2008) 

and kinase peptide substrate arrays (Tuynman et al., 2008; Schrage et al., 2009; 

Sikkema et al., 2009; Versele et al., 2009) or peptide reporters (Wu et al., 2010). 
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Although these techniques cannot overcome the inconvenient of providing snapshots 

and are demanding in term technology platforms, they are considered as potential 

clinical diagnostic tool to predict tumor evolution and response to targeted therapies 

(Piersma et al., 2010). Such techniques will not be further discussed in this article 

since we aim at focusing on gain from imaging strategies for protein kinases studies. 

 

Figure 2. Designs and mechanisms of molecular tools for reporting kinase activity; (A) Kinase 
activity Reporters: a conformational of the molecular switch is induced by phosphorylation (red circle), 
which results in a subsequent intramolecular binding between the phosphorylated substrates (light 
grey box) and the phosphoamino acid-binding domain (PAABD, dark grey box). When this switch 
occurs, it enables a change in FRET for the pair of FRET donor (black cylinder) and acceptor (white 
cylinder). (B) Bioluminescence kinase activity reporters: N-Luc (amino acids 2-416; black cylinder) and 
C-Luc (amino acids 398-550; white cylinder) are terminals domains of luciferase that are incorporated 
between phospho-Serine/Threonine binding domain (FAH2 domain; dark grey box), a substrate 
peptide (light grey box) and flexible linkers; when phosphorylated, the conformation of the construct 
maintains the two luciferase domains apart, that has minimal bioluminescence while the 
dephosphorylation of the peptide substrate leads to the association of N-Luc and C-Luc and 
restoration of bioluminescence. (C, D) Kinase inducible bimolecular switch (KIBS): they are made of 
kinase specific substrate (light grey box), phosphoamino acid-binding domain (PAABD, dark grey 
box), which will bind to the phosphorylated substrate, in an intermolecular manner contrasting with the 
intramolecular principle of KAR. Two reporting unit are fused with each domain (reporting unit A, black 
symbol, reporting unit B, white symbol). These couple might be composed of FRET pairs (C) or 
Bioluminescent reporting units (D).  

Development of imaging approaches overcome the shortcomings of traditional 

methods, when providing high temporal and spatial resolution for single living cell 

analysis (Verveer and Bastiaens, 2008) and tissues. To this extent, kinase activity 

biosensors have been developed. Biological processes are intrinsically dynamics. 

Although traditional methods provide valuable insights for the understanding of many 

biological phenomenon, the possibility nowadays to measure, quantify and localize 

protein activity within a cell, a tissue, an embryo has revolutionized our train of 

thoughts and has encourage scientists to develop molecular tools for the assessment 

of protein activity within their physiological context. These ongoing efforts are resting 
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on the emergence of biophotonics and the everlasting improvement of fluorophores, 

allowing precise and reliable measurements of cellular functions dynamics. The 

march of the “in vivo biochemistry” has begun, already yielding breathtaking results, 

using mostly PKA kinase activity reporter: AKAR (see for review Zhang et al., 2007).  

 

Figure 3. MAPK changes in activity, upon stimulation by Epidermal Growth Factor. HeLA cells 
were transfected using Nuclear EKAR Cerulean-Venus (genetically encoded fluorescent sensor of 
ERK activity, Addgene plamid # 18681, Harvey et al., 2008). Cells were deprived in serum, stimulated 

by EGF (100ng/mL) and treated by MEK inhibitor U0126 (20M). Phase and modulation lifetime 
acquisitions were performed in living cells (upper panel) to achieve localized measurements of MAPK 
activity along time. The mean fluorescence lifetime was measured on the whole cell and normalized to 
achieve a quantitative view of MAPK/Erk activity as depicted in the graph. For detailed description of 
the phase and modulation setup and acquisition protocol, see Leray et al., 2009. 

As one major class of kinase biosensors, kinase activity reporters (KAR) serve 

as surrogate substrates for kinases and allow reporting of phosphorylation dynamics 

by FRET changes. FRET is a quantum mechanical process involving the 

radiationless transfer of energy from a donor fluorophore to an appropriately 

positioned acceptor fluorophore. Then, when two fluorescent reporters are close 

enough due to a conformational change of the KAR, the excitation of the donor 

induces an energy transfer from the donor to the acceptor resulting in the quenching 

of the donor and a rise of acceptor fluorescence (Camuzeaux et al., 2005). Such 

reporters have been developed for various kinases. These reporters utilize, as a 

molecular switch, a substrate domain highly specific for the kinase of interest, 

attached to a phosphoamino acid binding domain (PAABD) tailored for maximum 

recognition of the phosphorylated substrate domain. Upon phosphorylation of the 

substrate, the PAABD binds the phosphopeptide, altering either the distance and/or 

the orientation between donor and acceptor fluorophores, resulting in a detectable 

change in FRET (Figure 2A).  
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While KAR represent a very attractive option for assessment of kinase activity 

dynamics in living cells, set-up and optimization of experimental conditions, 

acquisition technique and data analysis can be time-consuming and at time rather 

discouraging. After optimizing these conditions, real time kinase activity 

measurement can be performed every 30sec in living cells. Moreover, depending on 

the imaging technique utilized for FRET measurements, sub-cellular and even 

localized kinase activity foyers can be readily identified as well.  

An example of what can be performed nowadays using KAR is illustrated in 

Figure 3. Genetically encoded FRET biosensor of reporting ERK kinase activity 

(EKAR) has been expressed in living cells. Kinase activity dynamic is readily visible 

in cell upon stimulation and subsequent inhibition of the MAPK/ERK pathway. 

1.5.3. Bioluminescence-based reporters for protein 

kinase activity  

As an alternate to genetically encoded reporters using fluorescence, 

luciferases derivatives were considered for reporting kinase activity. Similarly to 

previously mentioned kinase activity reporters (KAR), these tools are called to enable 

non-invasive, real-time, repetitive imaging for studies of biological processes in intact 

cells or tissues in whole organisms. Firefly luciferase has appeared an attractive 

reporter because 30% of the light generated has an emission spectra above 600 nm, 

at a region where the signal attenuation by the absorbing and scattering properties of 

living tissues in mammalian, is minimal (Contag and Ross, 2002; Greer and Szalay, 

2002). Indeed, the use of GFP or alternate fluorescent reporter systems in animal 

model is impaired by the high levels of background resulting from the excitation of 

subject tissue. However, the use of bioluminescence might overcome this 

disadvantage due to the low level of background autoluminescence in mammalian 

tissues (Welsh and Kay, 2005). 

Nevertheless, one problem remains when using bioluminescence resting on 

luciferase derivatives, the substrate, luciferin, needs to be provided to the 

experimental system. As for FRET-based kinase activity measurements, more on 

more red-shifted fluorophores are being characterized which should enable optimized 

in-depth imaging in living tissue.  
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As for KAR, bioluminescence-based reporters are initially monomeric 

construct, which consists of two separate components, whose close proximity re-

constitutes a reporter activity (Figure 2B): each component is inactive when taken 

individually but when they are brought together by conformational rearrangement, the 

luciferase enzymatic activity is restored due to the intramolecular complementation. 

Re-constitution of luciferase was based upon protein complementation assays that 

were previously used to monitor either protein-protein interaction, or kinase / 

protease activities (Fields and Song, 1989); the latter was validated upon 

complementation assays screening truncation libraries of N- and C-terminal 

fragments of luciferase. The complementation assays was noticeably used to 

demonstrate the phosphorylation-dependent interaction between hCdc25C and 14-3-

3e in vitro and the FRB-FKBP12 interaction in real time non-invasively (Luker and 

Piwnica-Worms, 2004; Piwnica-Worms and Luker, 2005). As previously stated, while 

these bioluminescence-based reporters, do not need exogenous illumination, they 

could allow decreased background signals, thus increasing  kinase activity reporting 

sensitivity. 

A bioluminescent Akt Reporter (BAR) was built using an Akt consensus 

substrate peptide and phospho-amino acid binding domain (FHA2), flanked with N- 

and C-Terminal luciferase domains.When in presence of Akt, phosphorylation of the 

consensus site on the peptide leads to its interaction with the FHA2 domain. This 

interaction prevents the restoration of a functional luciferase activity through stearic 

contraints. Once Akt activity is inhibited, this constraint is released and thus restores 

vicinity between the N- and C-terminal domains of luciferase, thereby enabling 

detection of bioluminescence. Thus, Akt inhibition can be easily monitored and 

quantitative and dynamical characteristics of Akt inhibitors like API2 may be 

assessed in vivo and compared to other inhibitors such as perfosine, an inhibitor of 

PI-3Kinase, which acts upstream Akt (Nyati et al., 2010). Differential activation of Akt 

has been reported through the use of BAR, following EGFR (Epidermal Growth 

Factor Receptor) stimulation in presence of EGFR inhibitor, erlotinib. BAR was able 

to detect erlotinib-mediated inhibition of EGFR and Akt, in the erlotinib-sensitive 

HCC287 cell lines while NCI-H1975 cell lines. Contrarily, erlotinib-resistant lung 

cancer cell lines, did not exhibit changes in Akt activity levels, therefore validating the 

utility/specificity of this reporter (Zhang et al., 2007). Furthermore, API2 and perfosine 
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in vivo interactions with substrates were assessed and results were reflective of 

differences of bioavailability of the drugs at the tumor site, since perfosine induced 

12-fold induction of bioluminescence in contrast to API2, which only induced a 4-fold 

induction (Nyati et al., 2010). 

One of the main advantages of these constructions based on bioluminescent 

is to result in less false positives than other cell-based reporters screen. Kinase 

reporters in case of bioluminescence are built to result in a gain of function assay, 

with the inhibition of kinase activity being monitored by an increase in 

bioluminescence. In standard enzyme-based assays, toxic compounds lead to loss of 

signal resulting in cell death and show up as false positives. With reporters such as 

BAR, signals from toxic agents are eliminated and not considered since having no 

effect on bioluminescence levels. The increase in bioluminescence will only arise 

from Akt inhibition. Then, bioluminescent kinase reporters may arise as attractive 

tools for screening validation in case of kinases inhibitors libraries high throughput 

analysis. In this effort, platforms have been developed (Nyati et al., 2010) and 

bioluminescent kinase reporters have been developped for Glycogen Synthase 

Kinase 3-beta (Gsk-3), Casein Kinase 1-alpha, FADD or Met-tyrosine kinase 

activities (Khan et al., 2010; Nyati et al., 2010; Zhang et al., 2011). 

Kinase activity reporters using fluorescence suffer from limited dynamic range 

(Kerppola, 2006 ; Hodgson et al., 2010), which is a critical parameter for detection of 

subtle changes in kinase activity (VanEngelenburg and Palmer, 2008; Ni et al., 

2011), since these subtle changes might have non-neglecteable cellular outcomes. In 

order to overcome these inconvenient, kinase inducible molecular switch (KIBS) were 

built based on bioluminescence advantages. KIBS consists of a kinase specific 

substrate and a phosphoamino acid binding domain designed to bind the 

phosphorylated form of the peptide substrate, but in constrast to KAR these two 

domains are held by two separate reporting unit (Figure 2C). Thus, recognition of the 

phosphorylated form of the substrate peptide by the phosphoamino acid domain 

brings two reporter units in vicinity which enable either a FRET (C) or a 

bioluminescent (D) signal. Several bimolecular sensors were recently built. In a first 

step, FRET-based bimolecular sensor were designed to report for PKA and Protein 

Kinase C, named respectively BimAKAR and C-KIBS and appeared to conserve the 

advantages of unimolecular KAR regarding subcellular localization while improving 
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their dynamical range in HEK293T cells (Herbst et al., 2011). Secondly, biomolecular 

sensors were turn on bioluminescence for readout: a bioluminescent-based reporter 

for PKA, LumAKAR, was tested and exhibited reversibility, accurate temporal 

resolution and subcellular localization, enabling for example to detect basal 

PKA/AMPc states (Herbst et al., 2011). 

1.5.4. Concluding remarks 

The molecular toolkits for kinases activity reporter are then called to be 

strengthened by new sensors, whose development will result in the improvement of 

sensitivity and kinetic properties, the enlargement of dynamic range, the conservation 

of reversibility and an increased resolution for subcellular localization in living cells. 

Building other bioluminescent reporters will take also advantages from numerous 

published resources and methodologies for identification of peptide as specific 

substrates. From a clinical point of view, the disadvantages for bioluminescence, as 

for any genetically encoded reporters, is that their use is restricted to the acceptance 

of a gene therapy protocols in patients. It remain also challenging to determine which 

protein kinases are “essential” and should be targeted; mostly, the Achilles’heel(s) of 

specific oncogenic events remain likely to be determined. Nevertheless, kinase 

activity reporters offer major advantages (1) for fondamental research in the 

understanding of how protein kinases integrate and achieve cellular functions in 

physiological and pathological situations, such as in aberrant oncogenic signaling, (2) 

for drug-target validation, (3) for identification of next drugs generation and (4) for 

monitoring therapeutic outcomes.  
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2.1. Scientific Objectives  

TNFR1 signaling occurs through a complex multi-step pathway based on cell 

death checkpoints directing the cell to a specific cellular response [422]. The first 

checkpoint is organized by the kinase RIPK1 that is positioned at the crossroads of 

cell death and survival [423]. The second checkpoint decides on cell death type 

depending on the pro-death complex that binds RIPK1. Localized in complex I of the 

TNFR1 signaling upon TNFα stimulation, RIPK1 contributes to the stimulation of 

MAPKs, including JNK, p38 and ERK1/2 [424]. However, although several studies 

have examined MAPKs activation in response to TNFα, the function and molecular 

mechanisms of RIPK1 in TNFα-induced MAPKs activation is still unclear [424–427]. 

TRAF2 is an adaptor recruited at the membrane with RIPK1 upon TNFα stimulation, 

and was implicated in JNK and IκB kinase (IKK) activation [428,429]. Moreover, 

TRAF2 overexpression was reported to activate p38 and ERK1/2 signaling pathways 

[424]. Devin and colleagues investigated the molecular mechanism between RIPK1 

and MAPKs by using both RIPK1-/- and TRAF2-/- MEF [430]. They provided strong 

evidences of the implication of both RIPK1 and TRAF2 in TNFα-induced JNK, p38 

and ERK1/2 activation as a drop of 70% in ERK1/2 activity was observed in RIPK1 -/- 

cells. Interestingly, by using a kinase-dead form of RIPK1, RIPK1 (K45A), in RIPK1-/- 

cells, they revealed that the kinase activity of RIPK1 is only required for ERK1/2 but 

not for p38 and JNK activation [430,431]. However, the identity of downstream 

substrates of TRAF2/RIPK1 remains to be investigated since MEKK1 and MEKK3 as 

well as A-Raf and B-Raf seems to be dispensable in TNFα-induced JNK, p38 and 

ERK1/2 activation [430]. But redundancy mechanism among MAP3 kinases could 

explained that depletion of specific MAP3K do not alter ERK1/2 phosphorylation in 

response to TNFα. Therefore, the precise events leading to ERK1/2 cascade 

activation are still not fully understood. Given that ERK1/2 activation requires RIPK1 

kinase activity upon TNFα stimulation and that RIPK1 is essential in TNFα-induced 

necroptosis [432], the role of ERK1/2 in necroptosis remains to be elucidated.  

 Few studies only suggest that ERK1/2 is involved in TNFα-induced 

necroptosis depending on the cell type and cell death stimulus. Zhang and 

colleagues revealed that ERK1/2 might play a prominent role in glutamate-induced 

necroptosis in HT-22 cells [409]. Glutamate-induced necroptosis in HT-22 cells is 
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associated with elevated ERK1/2 activation levels [433,434] and ERK1/2 inhibition 

prevents this cell death. It was reported that RIPK1 inhibition abrogates glutamate-

induced necroptosis in HT-22 cells by inhibiting ERK1/2 phosphorylation [409]. While 

Nec-1 inhibits ERK1/2 phosphorylation, no particular effects on p38 or JNK have 

been detected further demonstrating the role of ERK1/2 in glutamate-induced 

necroptosis in HT-22 cells. Conversely, another study reported that shikonin-induced 

apoptosis in HL60 and K562 leukemia cells is enhanced by RIPK1 inhibition through 

the inhibition of ERK1/2 activation, suggesting therefore a pro-survival role of 

ERK1/2 in this context [435]. However, in the context of ischemia-reperfusion (IR) 

injury in rat retinas, Gao and colleagues uncovered a link between ERK1/2 activation 

and RIPK1/3 pathway [410]. They found elevated ERK1/2 phosphorylation levels and 

accumulation of RIPK3 bot not RIPK1 proteins in retinal ganglion cells (RGC) 12h 

after IR injury of rat retinas associated with increased levels of FLIP expression. 

Intravitreal injection of U0126 abrogated ERK1/2 activation and down-regulated 

RIPK3 expression and subsequent necroptosis [436,437], suggesting a crucial role of 

ERK1/2 in the execution of necroptosis [410]. Given that RIPK1 and RIPK3 

phosphorylations drive necrotic complex formation, and this is generally occuring 

upstream of ERK1/2, their data actually support a different view: phosphorylation of 

ERK1/2 upstream of RIPK3. These findings that are not in agreement with the 

conventional TNFR1-mediated necroptosis pathway, are increasing our curiosity 

towards ERK1/2 involvement in the initiation of necroptosis.  

The molecular mechanisms underlying RIPK1-mediated ERK1/2 cascade 

activation are poorly understood. Recently, a study showed that a novel atypical 

RIPK1-dependent apoptotic cell death induced by eleostearic acid (ESA) is mediated 

through ERK1/2 pathway [438]. It was shown that ESA-induced apoptosis was 

neither caspase-3 dependent nor PARP1 dependent. This study also revealed that 

RIPK1 could interact constitutively with ERK1/2 and transiently with MEK2. It was 

further demonstrated that ESA-mediated apoptosis was associated with RIPK1 

dephosphorylation and subsequent MEK2-mediated ERK1/2 phosphorylation and 

decrease in AIF phosphorylation. Both AIF and ERK1/2 were shown to translocate 

to the nucleus accompanied by ROS production and mitochondria dysfunctions 

ultimately leading to cell death. However, in the context of RIPK1-dependent 

necroptosis upon TNFα stimulation, phosphorylations between RIPK1 and RIPK3 
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contribute to stabilize RIPK1/RIPK3 complex so-called ripoptosome leading to a 

progressive ROS production and subsequently cell death [439,440]. Regarding the 

well-known inhibition of ERK1/2 phosphatases due to elevated intracellular ROS 

production levels [372,401], ERK1/2 activation occurring during cell death might be 

more a consequence rather than a cause of ROS production. In addition, in 

accordance with previous studies, a RIPK1 kinase-dependent ERK1/2 

phosphorylation upon TNFα stimulation was reported in L929 cells [439]. Under 

cIAP1 inhibition (using BV6), ERK1/2 phosphorylation levels were increased as well 

as RIPK1 kinase activity, accompanied by augmented ROS production [439], hence 

emphasizing a protecting role of cIAP1 from TNFα-induced necroptosis but also 

reflecting the involvement of cIAP1 in the regulation of RIPK1-dependent ERK1/2 

phosphorylation.  

In the context of TNFα-induced MAPK activation, it was reported that TNFα 

induces a biphasic activation of JNK, which started with a transient activation 

followed by a sustained activation of JNK for several hours, [441]. Upon TNFα 

stimulation in L929 cells, transient JNK and p38 activations were detected and 

followed by a prolonged activation of p38 only. Sustained activation of JNK was 

further observed following the inhibition of JNK phosphatases by TNFα-induced ROS 

accumulation [401,442]. Transient MAPKs activation could promote a cell survival 

and abrogate cell cytotoxicity, whereas sustained MAPKs activation may trigger a cell 

death response [443,444], stressing once more the importance of monitoring kinase 

activity dynamics in living cells. More recently, a study described oscillatory activation 

of JNK and ERK1/2 in living cells upon TNFα or IL-1β stimulation of 3T3 cells using 

specific translocation reporters for each kinase [445]. In addition, it was reported that 

other pathways such as p38/SAPK could also modulate the frequency but not 

amplitude of ERK1/2 oscillations under certain conditions. Regarding the oscillations 

of ERK1/2 activities, it is crucial to emphasize the importance of single-cell 

measurements, because stochastic and growth factors-induced oscillatory kinase 

activation as well as heterogeneity in cellular responses will be obscured in 

averaged cell population.  

Owing to the importance of MAPKs spatio-temporal dynamics in determining 

cellular responses and evidences of ERK1/2 involvement in TNFα-induced 

necroptosis, we investigated the ERK1/2 temporal code in necroptosis using 
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fluorescence-based reporters of both ERK1/2 activity and localization in single living 

cells. Using this appraoch, combine with chemical inhibition strategy targeting 

specific effectors of necroptosis, we aim to clearly define the relationship between 

ERK1/2 and RIPK signaling pathways.  

 

 

 

In summary, the scientific objectives of this thesis were:  

- Investigate involvement of ERK1/2 in TNFα-induced necroptosis in L929 

cells and MEF cells,   

- Monitor spatio-temporal dynamics of ERK1/2 during necroptosis using 

genetically encoded constructs,  

- Determine molecular effectors responsible of the TNFα-induced ERK1/2 

phosphorylation (eg ROS production, protein-protein interactions) and 

crosstalks between ERK1/2 and RIPK signaling pathways,  

- Correlate the spatio-temporal dynamics of ERK1/2 with read-outs of 

necroptosis occurrence.  
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2.2. Biotechnological Objectives 

Various studies used ERK2 tagged with GFP-like fluorescent proteins to 

monitor the spatiotemporal localization of ERK2 in individual living cells [446–450]. 

We assessed therefore the subcellular distribution of overexpressed eGFP-ERK2 in 

L929 and MEF cells in serum-starved and non-stimulated conditions. Surprisingly, 

cells overexpressing eGFP-ERK2 exhibited a strong nuclear localization 

independently of ERK2 phosphorylation status. Indeed, eGFP-rERK2 accumulated in 

the nucleus of brightly fluorescent cells but was homogenously distributed between 

cytoplasm and nucleus in weakly fluorescent cells. To provide an accurate and 

faithful read-out of the subcellular distribution of ERK2 regardless of its expression 

level, and to monitor the spatiotemporal signature of ERK2 in living cells by 

fluorescence imaging, we need a genetically encoded reporter of ERK2 

localization. It became obvious that proper quantification of ERK2 dynamics in 

response to specific stimuli requires a robust system for reliable expression at the 

single cell level. 

Besides the assessment of ERK1/2 spatio-temporal localization, we 

investigated subcellular ERK1/2 activity following a necrotic signal. We first used a 

genetically encoded FRET biosensor for ERK1/2 (Erk Kinase Activity Reporter with 

Eevee linker, EKAR-EV) [451]. However, this reporter failed to reveal any changes in 

ERK1/2 activity upon TNFα-induced necroptosis in L929 cells, which was 

inconsistent with previous biochemical data. Questionning whether the non-detection 

of ERK1/2 variations was: (i) a biological paradigm (phosphorylation is not 

necessarily correlated with activation, [452,453]), (ii) problems inherent to the 

experimental design or,  (iii) limitated dynamic range of the molecular tools used, we 

decided to tackle this issue by developing a method to build and/or optimize 

genetically encoded FRET biosensor.  

Finally, to evaluate the involvement of specific kinases in necroptosis, there is 

a need for read-out systems that will allow us to monitor this cell death process. Due 

to the lack of molecular read-outs / hallmarks to correlate the spatio-temporal 

ERK1/2 code with necroptosis occurrence [38] , we set out to develop new FRET-

based kinase biosensors to monitor at subcellular level the kinase activity of RIPK1 

and/or RIPK3 that are crucial in the initiation step of necroptosis [454]. FRET 
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biosensors are powerful tools for monitoring spatio-temporal biochemical activities in 

living samples. A very exciting challenge would be to monitor several kinase 

activities in the same time on the same sample [455] to correlate several kinase 

activities and so study crosstalks between each signaling node. 

 

 

 

In summary, the biotechnological objectives of this thesis were:  

- Resolve the problem of GFP-ERK2 overexpression hampering dynamical 

studies of ERK2 subcellular distribution during necroptosis,  

- Optimize the previous FRET biosensor of ERK (EKAR-EV) to decipher the 

spatio-temporal signature of ERK1/2 activity upon TNFα-induced 

necroptosis,  

- Develop new FRET biosensors for RIPK1 and RIPK3 activity as a read-out 

of necroptosis initiation,  

- Development of a methodology to monitor two kinases activities at the 

same time towards dissecting crosstalks between ERK1/2 and RIPK 

pathways.   
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3.1. 2A-mediated eGFP-ERK2 and MEK1 coexpression 

system to monitor ERK2 in living cell 

In order to study the multi facet of ERK2 spatio-temporal features with respect 

to different cellular context and processes, we set out to tackle the issue concerning 

ERK2 faithful localization dynamics in living cells and tissues. Our strategy was to co-

express ERK2 and MEK1 with a strict equimolar stoichiometry to avoid cell-to-cell 

variability in ERK2 subcellular distribution and especially to ensure a robust and 

reliable live-cell read-out of ERK2 localization in a variety of cellular processes 

including cell death programs.  

Different approaches exist to co-express multiple heterologous proteins in 

living cells such as Internal Ribosomal Entry Site (IRES) sequence [456,457] and 

bidirectional or multiple promoters in a same plasmid [458] but all these strategies 

pointed out problems linked to co-expression efficiency. In the case of IRES 

sequence, several limitations have been reported including the length of the IRES 

element (approximately 500bp), the translation efficiency of the different proteins 

(upstream protein is expressed as almost 10-fold higher than the downstream 

protein), and the modulation of IRES activity depending on the position of specific 

genes [459]. Conversely, as a more promising approach, the “2A peptide” was 

chosen. 2A peptide was initially identified in Foot and Mouth Disease Virus (F2A) 

(FMDV, member of the genus Aphthovirus) belonging to the Picornaviridae family 

[460]. It was also found in other Picornaviridae including Porcine teschovirus-1 (P2A), 

Thosea asigna virus (T2A) and Equine rhinitis A virus (E2A) but also in other 

biological systems as “2A-like” peptides [461]. Depending on the virus origin, it 

consists of a highly conserved short peptide of only 18-22 amino acids fused in frame 

between two protein-coding sequences derived from a single Open Reading Frame 

(ORF). 2A peptide functions as a “ribosomal skipping” mechanism or  “stop-go” and 

“stop carry-on” translation and are now referred to as CHYSELs (cis-acting hydrolase 

elements) [462]. The translation results in co-translational “cleavage” of the 

polypeptide occurring between the C-terminus glycine of 2A peptide and the proline 

of the downstream fused protein [463,464]. Expression of 2A-linked proteins was 

efficiently performed in vitro, in a wide range of eukaryotic cultured cells and 

embryonic stem cells and even in vivo especially in embryos and total organism 
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[461,463,465–467]. While no protein degradation and side effects of premature 

termination of translation were reported [468], previous work described variability in 

the 2A peptide-mediated cleavage depending on the choice of 2A peptide and 

cellular model [461,464]. Further support for the 2A strategy is found in previous 

studies demonstrating robust equimolar coexpression in studies of the molecular 

interactions of G-coupled proteins [469] and T-cell development in CD3-deficient 

mice [470].  

 

 

Figure 15: Scheme of the ribosome skipping leading to co-expression of two peptides from one 

polypeptide. This process is induced by a 2A-like sequence inserted between two distinct peptides. 

From http://viralzone.expasy.org/. 

http://viralzone.expasy.org/
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Abbreviations 

A ........................... acceptor 
AKAR.................... A-kinase activity reporter 
Akt ........................ Protein Kinase B 
AMDI .................... adaptive Monte Carlo data inflation  
ATP ...................... adenosine triphosphate 
BFP ...................... blue fluorescent protein 
Bik ........................ Bcl-2-interacting killer 
cAMP .................... cyclic adenosine monophosphate 
CCD ..................... charge coupled device 
cDNA .................... complementary DNA 
CFP ...................... cyan fluorescent protein 
CKAR ................... C-kinase activity reporter 
cp ......................... circularly permuted 
CyPET .................. Optimized eCFP for FRET 
D .......................... donor 
DAPK.................... death associated protein kinase 
DC ........................ direct current 
DCR ..................... dual channel ratio 
DNA ...................... deoxyribonucleic acid 
DsRed .................. Discosoma sp. red fluorescent protein  
DVR ...................... dual view ratio 
EGF ...................... Epidermal Growth Factor 
eGFP .................... enhanced green fluorescent protein 
EKAR.................... extracellular regulated kinase activity reporter 
Epac ..................... exchange protein activated by cAMP 
ERK ...................... extra-cellular regulated kinase 
FD ........................ frequency domain 
FHA ...................... forkhead associated 
FLIM ..................... fluorescence lifetime imaging microscopy 
FP......................... fluorescent protein 
FRET .................... Förster resonance energy transfer 
GFP ...................... green fluorescent protein 
GTPase ................ hydrolase enzyme that can bind and hydrolyze guanosine  triphosphate (GTP) 
IRF ....................... instrumental response function 
JNK ...................... c-Jun N-terminal kinase 
KAR ...................... kinase activity reporter 
LED ...................... light emitting diode 
LSM ...................... least square method 
MAPK  .................. mitogen-activated protein kinase 
MLE ...................... maximum likelihood estimation 
MPK ..................... mitogen-activated protein kinase phosphatase 
MRE ..................... molecular recognition element 
NGF ...................... Nerve Growth Factor 
PAABD ................. phosphoamino acid binding domain 
PEA ...................... Astrocytic phosphoprotein 
PKA ...................... protein kinase A 
PKC ...................... protein kinase C 
PKG ...................... protein kinase G 
PMT ...................... photomultiplier tube 
PTB ...................... phosphotyrosine binding 
R .......................... ratio 
Rac ....................... subfamily of the Rho family of GTPases 
RFP ...................... red fluorescent protein 
RNA ...................... ribonucleic acid 
ROS ..................... Reactive oxygen species 
siRNA ................... small interfering RNA 
SR ........................ sequential ratio 
TCSPC ................. time correlated single photon counting 
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TD ........................ time domain 
U2OS.................... Osteosarcoma cell line 
YPet ..................... optimized YFP for FRET 
YFP ...................... yellow fluorescent protein 

Foreword 

Biological processes are intrinsically dynamic. Although traditional methods 

provide valuable insights for the understanding of many biological phenomenon, the 

possibility nowadays to measure, quantify and localize proteins within a cell, a tissue 

and even an embryo has revolutionized our train of thoughts and has encouraged 

scientists to develop molecular tools for the assessment of protein or protein complex 

dynamics within their physiological context. These ongoing efforts rest on the 

emergence of biophotonic techniques and the everlasting improvement of fluorescent 

probes, allowing precise and reliable measurements of dynamic cellular functions. 

The march of the “in vivo biochemistry” has begun, already yielding breathtaking 

results. 
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3.2.1. Introduction 

How cells sense external and internal signals and how these signals are 

processed to drive specific responses in a multiscale context are major questions for 

biology. 

Protein phosphorylation plays a significant role in a wide range of cellular 

processes such as cell proliferation, differentiation, and cellular death. In eukaryotes, 

phosphorylation occurs on serine, threonine, tyrosine and histidine residues. Protein 

phosphorylation can alter activity of many proteins causing a chain reaction leading 

to the phosphorylation of many proteins involved in a particular cellular process. 

Conventional analytical methods have identified and characterized various post-

translational modifications but the major drawback is that these methods provide only 

a snap shot of the cell. In fact, in order to assess activity of protein kinases, 

immunoblotting and immunocytochemistry with phospho antibodies toward specific 

residues described to report on kinase activation are global and indirect/static 

approaches. They are limited to the time resolution and the quality of cell 

fractionation assay under analysis. In addition, antibodies toward specific phospho-

residues do not really reflect activity of the kinase of interest.  

To go beyond the snap shot, tools have been developed to answer the new 

challenges of today’s biology quest: protein localization, interaction and activity when 

applicable. Concerning the latter, fluorescent biosensors are gaining increasingly the 

biologist’s toolbox to visualize especially spatiotemporal dynamics of kinase signaling 

in living systems. They provide high sensitivity and versatility while minimally 

perturbing cell physiology.   

The word “biosensor” is a rather generic term that is used to define a wide 

array of systems enabling the sensing of various analytes. Typically, a biosensor is 

composed of two parts harboring distinct functions. The first one, referred to as the 

bioreceptor, that recongnize the analyte, is responsible for the selectivity and the 

sensitivity of the whole biosensor. The second, named transducer is in charge of 

conveying the signal from the recognition part towards the adapted  

instrument (Fig 1). 
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Figure 1: Schematic representation of biosensor basic principle. 

This definition is of course applicable to molecular biosensors dedicated to 

sense biological events in living cells. Indeed, the analyte is represent ted by ions 

such as Ca2+, second messengers such as, cAMP, an enzymatic activity such as 

kinase or an active enzyme conformation. The bioreceptor or molecular recognition 

element (MRE) is materialized by calmodulin/M13 or TroponinC/M13, Epac 

(Exchange protein activated by cAMP), and substrate /phosphoamino acid binding 

domain (PAABD), respectively. The transducer element is represented in these 

cases by fluorescent proteins that when their distance allows it will generate a 

change in their fluorescent signal or spectral properties. The instrument thus 

dedicated to signal detection is an optical fluorescent microscope or a 

spectrofluorimeter. 

The first of a long line of such biosensors was developed in R. Tsien‘s lab and 

published in 1996 [1]. While of simple design, it was then first demonstrated that 

fluorescent protein variants could be used for biosensing. This first genetically 

encoded biosensor was composed of a blue fluorescent protein (BFP) and a green 

fluorescent protein (GFP) encompassing a trypsin cleavable linker. Thereafter, many 

different types of biosensors have been developed with various molecular structures 

(Fig 2).  

All genetically encoded FP-based biosensors are classified into groups 

depending on their structure [2, 3]. Kinase Activity Reporters (KARs) are included 

into the group based on intramolecular FRET. The archetypal structure of such 

biosensors consists of two FPs flanking an MRE (Fig 3). The interaction of an active 

kinase with its specific MRE (substrate + phosphor amino-acid binding domain) leads 

to a change in the molecular conformation of the MRE. This change alters the 

distance and/or relative orientation between the two FPs and consequently the FRET 

signal. This chapter will focus on genetically-encoded biosensors, and specifically 
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those dedicated to kinase activity measurements. Although kinase activity reporters 

vary in specificity depending on the choice of the substrate, the design strategy of 

these reporters remains universal [4].  

Genetically encoded FRET-biosensors can be used to analyze molecular 

events in single living cells, tissue and even expressed in animals (e.g. aquatic 

animals, transgenic mice). They are expressed in the native context of a living cell to 

report on dynamic events. However, as described by Frommer et al [2], these FRET 

biosensors sense actively (“active reporters”) cellular microenvironment and even the 

subcellular microenvironment and cannot be regarded as “passive reporters” such as 

simply fluorescent protein (FP) fused-protein.  

 

Figure 2: Evolution in genetically encoded FRET-based biosensors. 
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Figure 3: General scheme of the functional domains of FRET-based Kinase Activity Reporter 
(KAR). Schematic representation of biosensor conformational changes upon phosphorylation by the 
targeted kinase leading to an increase in FRET between donor and acceptor fluorophores. 

3.2.2. Fluorescence generalities 

 Introduction 

The relaxation of fluorophore from an excited state to its ground state, after the 

absorption of an electromagnetic radiation may result in the emission of photons 

called luminescence. If this transition occurs for an electron in the excited singlet 

state (with a spin opposite of that of a paired electron in the ground state), this 

emission is called fluorescence. The fluorescent molecule is often excited to S1 

excited states. In most cases a rapid relaxation subsequently occurs to the lowest 

vibrational level of the first excited state S1; this is the internal conversion process 

which usually occurs within approximately 10-12 s and results in some of the energy 

loss from the system responsible for the energy difference (Stokes’ Shift) between 

the absorption and emission spectra (See Jablonski diagram in Figure 4.1). The 

energy of the emitted photon is dependent upon the ground state towards which the 

transition occurs.  

 The absorption process  

The energy of the excited photon must be equal to, or greater than, the energy 

difference (E0 and E1) between the ground state (S0, ) and the excited state (S1). The 

frequency of this photon is ν=(E1-E0)/h, where h is the Plank constant. When a 

photon is absorbed, its energy is transferred to the valence electron and this electron 
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is promoted to a higher electronic orbit, thus putting the molecule into the excited 

state. This absorption is very fast, since it occurs within 10-15 s. 

A 

 

B 

 

Figure 4.1: (A) Jablonski’s diagram. S0 is the fundamental energy level of the electron and S1 is the 
first exited level, the small lines represent the vibrational energy levels. Eex is the energy of excitation, 
Eem is the energy of fluorescence emission, Kr is the radiative deexcitation rate and Knr is the non 
radiative deexcitation rate. (B) Scheme of the molecular equilibrium occurring between the absorption 
and emission processes where M is the fluorophore (molecule), M* is the excited state of the 
molecule, pha is the photon absorbed, phe is the photon emitted, ΔS is the entropy, kr is the radiative 
deexcitation rate and knr is the non radiative deexcitation rate. 

Experimentally, the efficiency of light absorption at a wavelength λ is 

characterized by the absorbance A(λ) related to the transmittance T(λ) by 

𝐴(𝜆) = log (
𝐼0

𝐼
) = − log 𝑇(𝜆)        eq1 

where I0 is the intensity of a monochromatic incident light of wavelength λ passing 

through an isotropic sample containing absorbing molecules at a concentration c 

(mol-1), I is the light intensity leaving the absorbing medium and l (cm) the absorption 

path length (sample thickness) of the sample (Figure 4.2). 

The absorbance follows the Beer-Lambert law  

 𝐴(𝜆) = 𝜀(𝜆)𝑙𝑐         eq2 



Review – From FRET imaging to practical methodology… Experimental strategies 

   123 

 

Figure 4.2: Physical parameters implicated in the absorbance measurements. 

Where ε(λ) is the molar absorption coefficient (L mol -1 cm-1) and l (cm) is the 

absorption path length (sample thickness) of the sample (Figure 4.2). 

The absorbance reflects the probability for a population of fluorophores to 

jump into an excited state under the effect of an incident photon at the wavelengh (λ).  

The absorption coefficient α(λ) is the absorbance divided by the optical path 

length (l) into the medium : 

𝛼(𝜆) =
𝐴(𝜆)

𝑙
=  

1

𝑙
log (

𝐼0

𝐼
) ; 𝐼 = 𝐼0𝑒−𝛼(𝜆)𝑙     eq3 

 The emission process 

When a molecule has been promoted to an excited state upon the absorption 

of an electromagnetic radiation, it necessary returns to a ground state through 

competition between radiative (Kr) and non-radiative (Knr) pathways. The radiative 

pathways involve photon emission and non-radiative pathways include energy 

transfer through collisions, resonance energy transfer through near field dipole-dipole 

interactions (such as FRET detailed in the next section), photochemical 

decomposition. A change in the vibrational and rotational states of the molecule can 

also cause a loss of energy via a non-radiative process [5]. 

The Jablonski diagram shown in Figure 4.1 illustrates the balance of energy 

through the excitation - relaxation cycle.  

The difference in energy (or wavelength) between the absorbed and the 

emitted photons is known as the Stokes shift shown in Figure 4.3. This phenomenon 

was first described by Sir G. G. Stokes in 1852. A large Stokes shift is often highly 

desirable for simplifying the wavelength separation between the fluorescence 

emission and the excitation [6].  
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Figure 4.3: Illustration of the Stokes shift between the absorption and emission spectra. 

There is a competition between the different de-excitation processes 

previously discussed (Kr and Knr). The quantum yield (Φ) is the ratio of the number of 

photons emitted to the number of photons absorbed. It can also be described using 

the rates of radiative (Kr) and non-radiative (Knr) process of de-excitation. 

 𝛷 =
𝐾𝑟

𝐾𝑟+𝐾𝑛𝑟
          eq4 

The quantum yield vary from 0 to 1, where 0 corresponds to non- fluorescent 

materials and 1 corresponds to highly fluorescent materials, where each photon 

absorbed results in a photon emitted. 

The excited molecules (M*) could be desexcited by radiative processes (Kr) or 

non-radiative (Knr) processes whose intersystem transfer as FRET (KT). In classical 

kinetics, the rate of disappearance of excited molecules is expressed by the 

differential equation: 

−
𝒅[𝑴∗]

𝒅𝒕
= (𝑲𝒓 + 𝑲𝒏𝒓)[𝑴 ∗]        eq5 

Integration of this equation yields the time evolution of the concentration of the 

excited molecules [M*] (see Figure 2.1).  

[𝑀 ∗] = [𝑀 ∗]0 𝑒(−𝑡
𝜏⁄ )        eq6 

With  𝝉 =
𝟏

𝑲𝒓+𝑲𝒏𝒓
         eq7 

 [M*]0 being the concentration of excited molecules at time 0 resulting from 

light excitation. The fluorescence lifetime τ is in the range of 10-9 s (0.5 - 20ns for 

commonly used fluorescence transitions).  describes the average time that a 

molecule stays in its excited state before emitting a photon [7]. The resonance 
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transfer or FRET (KT) is included in non-radiative deactivation pathways (Knr). It can 

be defined as the difference between the rates Knr of the donor only and Knr of the 

donor in presence of the acceptor. The fluorescence intensity begins to decrease 

when molecules are in their excited states. This decrease depends upon the rate of 

electron de-excitation and it can be deduced from eq7: 

𝑰𝒕 = 𝑰𝟎𝒆−𝒕
𝝉⁄           eq8 

With KT(r)=1/τD ,          eq9 

The rate of energy transfer KT is in fact the slope of the curve measuring the 

fluorescence donor lifetime in a semi-logarithmic representation (Figure 4.4).  

 

Figure 4.4 : Fluorescence lifetime decay profiles: τ2< τ1 (inspired from the Nikon website) . 

The fluorescence impulse response function I(t) is often represented by a 

multiexponential decay model 

 𝐼(𝑡) = ∑ 𝛼𝑖𝑒
−𝑡/𝜏𝑖

𝑖           eq10 

where τi are the decay times and αi are the amplitudes of the components. The 

values of αi and τi may have direct or indirect molecular signification. For a 

fluorophores mixture, if each component has a single decay time, τi are their decay 

times. The parameters αi and τi cannot always be attributed to molecular features of 

the sample. Alternatively, the measured intensity decay can be fitted with equation 

(10). The values of αi and τi can be used to calculate the fractional contribution fi of 

each decay time τi to the steady-state intensity: 

𝑓𝑖 =
𝛼𝑖𝜏𝑖

∑ 𝛼𝑖𝜏𝑖𝑖
          eq11 

The resolution of multiple τi is increasingly difficult as they are more closely 

spaced. The statistically significant resolution of closely τi requires a high signal-to- 

noise ratio and a large number of photons collected. The calculation of the energy 

transfer efficiency from the donor fluorescence lifetime in the presence and absence 

of the acceptor (equation 11) assumes that in experimental conditions the donor 
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decays according to a single-exponential model. If the donor displays a multi-

exponential decay, τi values can be used to calculate the average lifetime τ. It is 

defined as the average time that the fluorophore remains in the excited state and it is 

defined as: 

〈𝜏〉 =
∫ 𝑡 𝐼(𝑡)𝑑𝑡

∞
0

∫ 𝐼(𝑡)𝑑𝑡
∞

0

= ∑ 𝑓𝑖𝜏𝑖𝑖         eq12 

In order to simplify data representation, mean lifetime τmean has been largely 

used in FRET experiments [8-11]. It is given by 

  dttIa
i

iimean )(         eq13 

3.2.3. FRET measurement 

 Introduction  

Among the different previously described non-radiative deactivation processes 

(Knr) the energy transfer between dipoles was first described by Förster in 1926 and 

Perrin in 1932. Förster resonance energy transfer or FRET is a physical process in 

which the energy of a chromophore (called Donor [D]) in its excited state, is 

transferred non-radiatively to a neighbouring chromophore (called Acceptor [A]) while 

in its ground state [5]. This physical process has been often applied experimentally 

for investigating molecule interactions at distances beyond the diffraction limited 

resolution (for review see [5, 7]). For instance, FRET measurements (generally used 

in spectroscopy and microscopy) allow for the investigation of the formation of protein 

complexes in living cells and tissues, as well as for conformational changes of single 

proteins such as biosensors. {For review [6], [7], [12]}.  

 FRET basis  

FRET is one possible pathway for the relaxation of the excited state 

molecules. This phenomenon occurs only under appropriate conditions of proximity 

and orientation between two fluorophores (donor and acceptor): 

1. this form of energy transfer occurs in the near field of the donor. In 

other words, the distance (r) between the donor and the acceptor must 

be less than ten nanometers (r < 10nm) in order that KT ≠0. 
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2. the energy transfer is achieved between molecules with resonant 

oscillation dipole moments (overlapping wave functions). This requires 

an overlap between the donor emission spectrum and the acceptor 

excitation spectrum.  

3. the orientation of the emission dipole moment of the donor with respect 

to the excitation dipole moment of the acceptor must be fulfilled in order 

for FRET to occur.  

The theoretical concept for FRET was developed following both the classical 

model by Perrin in 1925 and the quantum-mechanical model by Perrin in 1932 and 

Förster in 1946-1949. [13], [14], [15] (for review [6] and [5]).  

If one considers a single donor and acceptor separated by the distance r, the rate of 

energy transfer KT(r) can be calculated as a probability of transfer energy quantum 

from donor to acceptor per time unit, given by the fundamental equation: 

𝐾𝑇(𝑟) =
𝛷𝐷𝜅2

𝜏𝐷𝑟6 (
9000ln(10)

128𝜋5𝑛4𝑁𝐴
) 𝐽(𝜆) ∫ 𝐹𝐷(𝜆)𝑑𝜆

∞

0
     eq14 

Where ΦD is the donor quantum yield (as previously described in this chapter) in the 

absence of acceptor, τD the donor lifetime in absence of acceptor; n is the refractive 

index of the medium; NA is the Avogadro’s number, J(λ) is the overlap integral, FD is 

the normalized fluorescence intensity of the donor; κ2 is the dimensionless orientation 

factor describing the relative spatial orientation of the donor and acceptor transition 

moments. Note that εA, ΦD and n are fixed by the choice of FRET pairs and medium. 

Therefore, KT(r) variation is mainly dependent on r and κ.   

Equation 14 is not easy to use for the design of biochemical experiments ([6]). This is 

why the Förster distance R0 was introduced by Förster in 1948. When the transfer 

rate KT(r) is equal to the decay rate of the donor in absence of acceptor, the one-half 

of the donor molecules decay by energy transfer process. Once the value of R0 is 

known, the rate of energy transfer KT can be easily calculated: 

𝐾𝑇 =
1

𝜏
(

𝑅0

𝑟
)

6

           eq15 

With  

KT(r)=1/τD          eq16 

One obtains (from eq 14)  

𝑅0
6 = 𝛷𝐷𝜅2 (

9000ln(10)

128𝜋5𝑛4𝑁𝐴
) ∫ 𝐹𝐷(𝜆)𝜀𝐴(𝜆)𝜆4𝑑𝜆

∞

0
      eq17 

R0 is given in M-1cm-1 and it could be simplified by: 
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𝑅0
6 = 8,79 10−5[𝛷𝐷𝜅2𝐽(𝜆)𝑛−4]        eq18 

This expression allows Förster distance to be calculated from the spectral 

properties of the donor and the acceptor, and from the donor quantum yield ΦD [13]. 

The FRET efficiency is dependent on the inverse sixth power of intermolecular 

separation (r) (discussed in the next section). 

Additionally, Förster distance is usually reported for an assumed value of κ2 of 

2/3 characterizing free FRET pairs. This question of dipole-dipole orientation is 

discussed later. 

Directly, if the transfer rate is much faster than the decay rate, then energy 

transfer will be efficient. Otherwise, FRET will be inefficient. 

 

A crucial step in the practical FRET implementation is the knowledge of several 

major parameters: 

- The quantum yield of the fluorophore donor only ΦD 

- The overlap integral J(λ) between donor and acceptor fluorophore 

- The orientation factor κ2 between two fluorophore dipole 

 Overlap integral J(λ) 

J(λ) is the overlap integral between the donor emission and the acceptor 

absorption spectra (expressed as M-1 cm-1 nm4) defined as  

 𝐽(𝜆) =
∫ 𝐹𝐷(𝜆)𝜀𝐴(𝜆)𝜆4𝑑𝜆

∞
0

∫ 𝐹𝐷(𝜆)𝑑𝜆
∞

0

        eq19 

Where FD(λ) is the corrected fluorescence donor (dimensionless) and εA is the 

extinction coefficient of the acceptor at λ (expressed in M-1cm-1).  

 Orientation factor κ2 

κ2 can vary from 0 to 4 according to the following equation: 

𝜅2 = (cos𝜃𝑇 − 3cos𝜃𝐷cos𝜃𝐴)2 = (sin𝜃𝐷sin𝜃𝐴cos𝛷 − 2cos𝜃𝐷cos𝜃𝐴)2  eq20 

Where θA, θD, θT and Φ are described in Figure 4.5: 

Additionally, the fluctuation of refractive index n could induce errors in calculated 

distance r but this effect is not usually considered.  
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Figure 4.5: Parameters intervening in the calculation of the orientation factor κ2.  

The orientation factor (κ2) characterizes the statistical average of the relative 

fluorophore orientations, which determines both how well the fluorophore dipoles are 

coupled and how efficiently energy is transferred (Figure 4.5). However, if the dipoles 

are perpendicular, κ2 becomes 0, which would result in serious errors in the 

calculated distance. This question has been discussed in detail [16] [17] [18]. In 

general, variation of κ2 does not induce major errors in the calculated distance, but 

for intramolecular FRET in biosensors this question can be discussed. In fact, in rigid 

molecule, (as polypeptide with 4 to 9 amino-acid residus) with isotropic orientational 

distribution (statistically randomly distributed) of the donor and the acceptor transition 

moments, but with no rotation during the lifetime of excited state (frozen), the value of 

κ2=0,476 can be used. The optimal value κ2 at room temperature is κ2=2/3 [19]. For 

fluorophore bound to macromolecules (i.e. fluorescent proteins) segmental motions 

of the donor and acceptor tend to randomize the orientations and κ2=2/3 is classically 

used [6, 20]. Computational simulations showed that κ2 converges to 2/3 in FRET 

sensor where the D–A pair is presumed to be freely mobile [21] Finally, the 

evaluation of errors in distance (r) induce by approximation on κ2 has been reported, 

but is no more than 10% [20].  

 Energy transfer Efficiency 

The efficiency of energy transfer (E) can be defined as the ratio of the 

relaxation rate due to energy transfer divided by the sum of all relaxation rates.  

 𝐸 =
𝐾𝑇(𝑟)

𝜏𝐷
−1+𝐾𝑇(𝑟)

          eq21 

The rate of energy transfer is often defined as a function of inverse sixth power 

of distance between the two molecules.  

 𝐸 =
𝑅0

6

𝑅0
6+𝑟6          eq22 
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The first factor that affects the FRET signal is the distance (r) between the 

fluorophores. The most sensitive range of r is between 0.7–1.4 R0, corresponding to 

90–10% FRET efficiency (Figure 4.6). R0 is usually ranging from 4 to 7 nm, hence, 

protein conformational change in this range is ideal for the largest FRET dynamic in 

biosensors. 

The transfer efficiency (E) is typically measured using the relative fluorescence 

intensity of the donor, in absence (FD) or presence (FDA) of acceptor.  






dttI

dttI

F

F
E

D

DA

D

DA

)(

)(
11         eq23 

 

 

Figure 4.6: FRET efficiency as a function of the distance between the donor and the acceptor. 
The FRET efficiency is 50% when the distance is equal to the Förster distance (R0). FRET efficiencies 
ranging from 10% to 90 % correspond to distances between fluorophores of 1,4 R0 and 0,7 R0 
respectively. 

Where FDA is the intensity of donor fluorescence emission in presence of 

acceptor and FD is the intensity of donor fluorescence in absence of acceptor and ID 

and IDA are respectively the intensity decays of the donor alone and the donor in the 

presence of the acceptor. 

The transfer efficiency can also be calculated from the lifetimes under these 

respective conditions (τD and τDA) 

D

DAE



1           eq24 

The FRET kinetic measurement can be performed by the calculation of ratio 

(R) between two stationary states of kinetic. This ratio (R) is classically used for 

measurement by FRET-based biosensors (see next section)[22]. 
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Both equations 23 and 24 are only applicable to donor acceptor pairs that are 

separated by a fixed distance. However, single exponential decays are rare in 

biology.  

The mean lifetime mean defined by Eq. 15 has been largely used in FRET 

experiments [8-11]. This mean lifetime is then equivalent to the area of the 

fluorescence intensity decay which is related to the FRET efficiency E. However, the 

mean lifetime does not correspond to the correct average lifetime, which is defined 

by Eq. 12. 

 FRET measurements of molecular populations 

In FRET analysis, particularly for biosensors, two elements must be usually 

considered: the interacting fluorophores population and the FRET efficiency.  

The distance distribution function P(r) describes the normalized probability of finding 

the specific donor/acceptor pairs separation.  

The transfer efficiency (E) can be written:  

 𝐸 = ∫
𝑃(𝑟)𝑅0

6

𝑅0
6+𝑟6

∞

0
𝑑𝑟         eq25 

Bulk measurements of FRET efficiency by intensity-based methods cannot 

distinguish between an increase in FRET efficiency (i.e., coupling efficiency) and an 

increase in FRET population (concentration of FRET species) since both parameters 

are not resolved. FRET measurements based on the analysis of the donor 

fluorescence lifetime may resolve this problem, with multi-exponential decay models 

([7] and [23]). The assumption that interacting and non-interacting populations are 

present, allow determining both the efficiency of interaction and the fractional 

population of interacting molecules. In the first instance, the presence/absence of 

FRET is determined by fitting experimental data to a single-exponential decay [6]. 

Sufficient reduction in the measured lifetime indicates the existence of FRET. 

Additional analysis is subsequently applied to determine the source of lifetime 

reduction. In this case, a bi-exponential fluorescence decay model applied to data, 

allows the determination of the fluorescence lifetimes of non-interacting and 

interacting subpopulations or two distinct levels of interaction in case of many 

biosensors. In time domain measurement (see next section), data may be fitted by 

iterative convolution with: 
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 𝐼(𝑡) = 𝐼𝑅𝐹(𝑡) ⊗ {𝑂𝑓𝑓𝑠𝑒𝑡 + ∑ 𝛼𝑖  𝑖𝑒
−𝑡/𝜏𝑖}     eq26 

Where IRF(t) is the instrumental response and Offset is the baseline, τ i are the 

lifetime of interacting or non interacting populations and αi are the pre-exponential 

factors relating to absolute species concentration [24]. 

 

Figure 4.7: Illustration of the convolution product. When the instrumental response function (IRF) 
of the FLIM system is temporally short, the measured intensity decay is almost identical to the sample 
decay. If the IRF is large, the collected decay becomes well different of the sample decay and it is thus 
necessary to take into account this IRF to obtain correct lifetime estimations. 

 Conclusion on FRET principles and applications 

It is difficult to obtain quantitative determination of labelled molecules which 

are in interaction from steady-state images. The fluorescence intensity does not only 

depend on the FRET efficiency but also on the unknown local concentration of dyes. 

Up to eight measurements at different excitation wavelengths and in different 

emission wavelength bands can be used to obtain calibrated FRET results from 

steady state data [7]. In lifetime data, however, FRET shows up as a dramatical 

decrease of the donor lifetime [6]. At first, qualitative FRET results can be obtained 

by fitting decay curves with a single exponential approximation. Quantitative 

measurements require multi-exponential decay analysis [6]. The proportion of donor 

molecules involved in energy transfer is given by the ratio of the two exponential 

decay amplitudes, α2/α1, while the average coupling efficiency of the FRET pairs is 

given by the lifetime ratio τ2 / τ1.  

A major complication of many in vivo FRET experiments is the large and 

differential contribution of cellular autofluorescence to the measured donor and 

acceptor fluorescence. Autofluorescence contributions can be sometimes corrected 
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by acquiring an additional image [25], or they can be minimized by the use of spectral 

lifetime image microscopy [26].  

When autofluorescence is substantial, determination of FRET efficiency by 

fluorescence lifetime measurement (FLIM) might be advantageous because 

autofluorescence lifetime is usually very short and can be included in the fit of lifetime 

data. Finally, one has to consider limitations imposed by the available 

instrumentation. For example, lifetime measurements require relatively sophisticated 

instrumentation that is not yet widely available.  

 Few considerations on Fluorescent Proteins 

Green Fluorescence Proteins from the jellyfish Aequorea Victoria is well 

characterized and has provided a myriad of applications in cellular biology [27, 28]. 

GFP engineering has generated a large range of fluorescent proteins of different 

colors [29] enabling scientists to consider dynamic localization of several proteins of 

interest in living cells [1].  

Properties of these fluorescent proteins (FP) reveal that they are excellent 

candidates for FRET based biological applications (see table 1). The choice of a 

particular FP as donor or acceptor is very important and is mainly based on the 

analysis of their respective excitation and emission spectra. FPs must meet certain 

criteria to form a FRET pair : (i) an effective overlap between the emission spectrum 

of the fluorophore donor and the excitation spectrum of the acceptor ; (ii) a large 

extinction coefficient at the region of excitation, (iii) a high quantum yield (ratio 

photons emitted / photons absorbed) ; (iv) a separation between the excitation and 

the emission spectra of the donor and of the acceptor; (v) good photostability ; (vi) 

high brightness ; (vii) minimal perturbation of environment by FPs (toxicity) ; (viii) 

minimum sensitivity to cellular environment (pH, chloride) and (ix) inability or at least 

limited capacity to dimerize and/or oligomerize. The last consideration is very 

important because the use of oligomerizing FPs may compromise the interpretation 

of the FRET signal. In 2006, Dunn et al [30] have elegantly demonstrated that the 

use of monomeric FPs significantly increased the FRET efficiency of a kinase activity 

reporter. However, FPs expression level must be sufficiently high to provide enough 

signal, but not too high otherwise it becomes cytotoxic. In contrast, some tetrameric 

FPs can be toxic to bacteria when produced in large quantities but this is not the 



Experimental strategies  Review – From FRET imaging to practical methodology… 

134 

case for monomeric FPs. All these requirements need to be considered and therefore 

suggest compromise in the choice of a particular FP in a specific context.  

Main Fluorescent Proteins 

Protein Color Organism 
Excitation 
peak (nm)* 

Emission 
peak (nm)* 

Brightness 
Photo- 

stability 

Oligome-
rization 

Reference 

eCFP Cyan 
Aequorea 

victoria 
433/445 475/503 ++ +++ 

Weak 
Dimer 

Cubitt et al., 
1995 

meCFP Cyan 
Aequorea 

victoria 
433/452 475/505 ++ +++ Monomer 

Zacharias et 
al., 2002 

Cerulean Cyan 
Aequorea 

victoria 
433/445 475/503 +++ ++ 

Weak 
Dimer 

Rizzo et al., 
2004 

mCerulean Cyan 
Aequorea 

victoria 
433/445 475/503 +++ ++ Monomer 

Rizzo et al., 
2004 

eGFP Green 
Aequorea 

victoria 
488 507 +++ ++++ 

Weak 
Dimer 

Tsien et al., 
1998 

meGFP Green 
Aequorea 

victoria 
488 507 +++ ++++ Monomer 

Heim et al., 
1995 

eYFP Yellow 
Aequorea 

victoria 
514 527 ++++ ++ 

Weak 
Dimer 

Miyawaki et 
al., 1999 

Venus Yellow 
Aequorea 

victoria 
515 528 ++++ + 

Weak 
Dimer 

Nagai et al., 
2002 

mVenus Yellow 
Aequorea 

victoria 
515 528 ++++ + Monomer 

Nagai et al., 
2002 

DsRed Red 
Discosoma 

sp. 
558 583 ++++ ++++ Tetramer 

Matz et al., 
1999 

mRFP1 Red 
Discosoma 

sp. 
584 607 ++ + Monomer 

Campbell et 
al., 2002 

tdTomato Red 
Discosoma 

sp. 
554 581 ++++ +++ 

Tandem 
Dimer 

Shaner et al., 
2004 

mCherry Red 
Discosoma 

sp. 
587 610 ++ +++ Monomer 

Shaner et al., 
2004 

Example of FRET Pairs Fluorescent Proteins 

FRET-pair 
Recommended 

Donors 
Recommende
d Acceptors 

Donor 
Excitation 

(nm) 

Acceptor 

Emission 
(nm) 

Laser Ro** Reference 

Cyan-Yellow 
meCFP / 

mCerulean 
eYFP / 

mVenus 
433-452 / 
433-445 

527 / 528 Violet 
4,92 ± 
0,10 

Allen and 
Zhang, 
2006. 

Green-Red meGFP 
mRFP1/ 

mCherry / 
tdTomato 

488 
607 / 610 / 

581 
Argon 

4,73 ± 
0,09 

Harvey et 
al., 2008 

* Maximal wavelengths of the excitation and emission spectra.  
** R0 : Förster distances r0 for FRET-pairs of fluorescent proteins. R0 values are given in nanometers. 
The number of “+” corresponds to the superiority degree of the specific parameter. The colors in the 
second column represent the emission fluorescence of the corresponding fluorescent protein.   

Table 1: Properties of frequently used FPs and their implementation as FRET pair for 
ratiometric and fluorescence lifetime imaging. (adapted from [33, 34]) [29, 33-45]. 
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Fortunately, FPs are continually subjected to molecular engineering to improve their 

intrinsic properties and to increase the number of variants [31, 32]. Generally, FRET 

can be evaluated by ratiometric methods measuring the fluorescence emitted by the 

acceptor in response to the excitation of the donor fluorophore. Others approaches 

have emerged in recent years with fluorescent protein engineering and rely on the 

donor fluorescence lifetime measurements. 

3.2.4. FRET measurements: methods and instrumentation. 

As previously described, FRET induces modification of several properties of 

the emitted fluorescence. Different techniques thus arise from these modification 

measurements [46, 47], such as monitoring the fluorescence emission spectrum, the 

lifetime, the anisotropy… In the particular case of biosensor application, the most 

popular technique is called the sensitized emission which consists in acquiring the 

fluorescence intensity emitted by the donor only and the acceptor only. However, 

several other techniques are very interesting alternative for quantifying the molecular 

activity: i) the spectral imaging which consists in exciting at one wavelength and 

measuring the whole emission spectrum and ii) the fluorescence lifetime imaging 

(FLIM) for measuring the donor fluorescent protein lifetime changes. 

Each of these techniques has its own advantages and drawbacks. Using two 

extreme examples, the sensitized emission is the simplest method and can be 

performed on nearly all conventional microscopes but it requires a great care 

regarding biological references while FLIM needs tricky instrumentations but can 

yield unambiguous measurements of FRET efficiency. In this part, we will thus 

describe systems needed to perform reliable biosensor imaging experiments. 

 Intensity based approaches 

The most intuitive and easy methods to perform FRET measurements are 

based on fluorescence intensity. The technique that we will discuss consists in 

imaging the sensitized emission i.e the fraction of acceptor emission induced by the 

non radiative energy transfer from the donor molecule. These measurements can be 

achieved through either ratiometric or spectral imaging. 
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Ratiometric approach 

FRET measurements using biosensors are usually performed by acquiring 

fluorescence emitted by the donor and the acceptor. Resulting data are usually 

represented by the ratio of these fluorescence measurements after appropriate 

corrections. The classical ratiometric approach, that is based on equation 14, 

consists in measuring at least 3 channels: i) excitation and observation of the donor 

(Idonor), ii) excitation of the donor and observation of the acceptor (IFRET) ,and iii) 

excitation and observation of the acceptor (Iacceptor). Iacceptor is needed to compensate 

for donor and acceptor concentration differences, thus accounting for bleed-through 

and nonspecific excitation [48]. In the case of biosensor measurements performed on 

living cell, the amount of donor and acceptor are identical and the last channel 

acquisition is useless. In this particular case, only i) and ii) are required and as we 

will see in the data analysis section, correction by acceptor channel will even 

decrease signal to noise ratio of measured ratio. This experimental condition is 

formally similar to the well described conditions used to image calcium with 

ratiometric indicators, except that calcium probes like fura-2 show a ratiometric 

change for two different excitation wavelength, whereas biosensors show a 

ratiometric change of the fluorescence emission for one excitation wavelength. 

One major advantage of this technique is that it only requires 2 wide-field or 

confocal images allowing high speed acquisitions of fluorescence images with 

systems equipped with appropriate filter sets available in most imaging core facilities 

(table 2).  

Channel Excitation filter Excitation Dichroic Emission filter 

Idonor 420/20 450 475/40 

IFRET 420/20 450 535/25 

Table 2: example of adapted filter set for the CFP/YFP FRET pair [48]. 

Special care must however be taken about the delay between the acquisition 

of Idonor and IFRET in order to avoid artifacts due to cell movement between two images 

(see methodology section). Traditional system needs a filter cube change and thus a 

delay of several hundreds of ms between images acquisitions, which is not negligible 

compare to cells or organelles movements. Instead of changing the fluorescence 

cube, which may worsen image registration, a faster solution is using a filter wheel 

between the microscope and the camera, which allow changes in the emission filter 
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in less than 100 msec. Solutions have also been developed to perform simultaneous 

acquisitions of both channels as described in the following scheme [49-51]  

These widefield configurations allow fast acquisition of both channels but they 

lack of optical sectioning capability. Confocal microscopes can also be used in the 

same way with excitation of the donor and simultaneous collection of the 

fluorescence emitted by donor and acceptor molecules. This allows for three 

dimensional localization of biosensor response, and video-rate confocal microscopes 

can be used when a high spatial resolution is needed, as shown by early use of 

biochemical biosensors [52]. The use of confocal microscope also opens the way to 

more complex acquisition procedure like spectral imaging. 

 

Figure 5: Examples of setup optimized for ratiometric FRET measurements. In panel A, images 
are acquired sequentially. Fast filter wheel allows fast switching between both acquisitions (10-30ms). 
In panel B, images are acquired simultaneously. A dichroic mirror is used to separate the emission 
from donor and acceptor molecules. A focusing lens can then be used for casting the light of both 
channels on each half of the same camera (B1) or two different cameras can be used for light 
collection (B2). 

Spectral imaging 

Most of the newest confocal microscopes are designed for spectral imaging 

either in sequential mode or most interestingly for biosensor imaging in simultaneous 

mode [53]. Indeed, for FRET applications, spectral imaging is a slower but more 

precise configuration for measuring sensitized emission. It consists in measuring for 

each pixel of an image the overall emission spectrum and not only limited to two 

bandwidth using filters (see figure 6 for more detail about the setup).  
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Figure 6: Simplified scheme of a confocal setup allowing spectral imaging in simultaneous 
mode. Briefly, lasers beam scans the specimen using scanning mirrors. The pinhole conjugated to the 
focal plane rejects light emitted by objects outside this focal plane and results in optical sectioning. 
Spectral separation is then achieved by a grating combined to recycling systems allowing minimal loss 
of light. The light is then collected using a multi-anode PMT. The fluorescence spectrum is recorded 
for each pixel . 

 Gathering fluorescence emission spectra then allows donor and acceptor 

emission spectra to be separated according to the distinct shape of both spectra after 

spectral unmixing. Fluorescence signal is then analyzed in the same way as with 

traditional ratiometric images. It however allows distinguishing the real FRET signal 

from other elements that may alter this measurement, such as autofluorescence or 

the presence of multiple fluorophores in the sample and can then be used in more 

complex biological environments. 

Lifetime based approaches 

Fluorescence lifetime is inherently quantitative and is most of the time 

independent on the concentration of fluorophore. Furthermore, FRET FLIM 

experiments only need measurements of the donor fluorescence lifetime (cf. Eqs. 16, 

18 and 29), which makes it extremely valuable for simultaneous multi biosensor 

measurements. Lifetime measurement however requires dedicated and more 

sophisticated instruments than ratiometric imaging. It can be determined in either the 

time domain (TD FLIM) or the frequency domain (FD FLIM) (Fig. 7). In the following 

paragraphs, we will focus on the two most representative techniques: Time 

Correlated Single Photon Counting (TCSPC) for TD FLIM and phase and modulation 

measurements for FD FLIM. 
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Time domain: TCSPC  

Most TCSPC systems are implemented on confocal microscope equipped 

with: 

 A pulsed laser source. The source must produce short laser pulses 

(from several hundred femtoseconds to picoseconds width) with a 

frequency usually ranging from 10 to 80 MHz. It is interesting to note 

that Ti:Sa laser matches these specifications which can be of great help 

for deep and non-invasive biosensor imaging. 

  Detectors with a fast instrumental response. Optimal instrumental 

response function can be obtained using multi-channel plate or latest 

generation of avalanche photodiodes (<50ps full width at half 

maximum) but they are extremely fragile and require special handling 

care. TCSPC manufacturers thus also provide more robust detectors 

i.e. optimized Photo-Multiplier Tubes, with an IRF around 250ps 

adapted for TCSPC experiments but which necessitates particular 

attention during photon decay curves analysis. 

 Photon counting card. All of them rely on the same principle based on a 

time amplitude converter. It consists in a linear tension ramp started by 

the arrival of a photon and stopped by the next laser pulse. The output 

voltage will thus be proportional to the photon arrival time. However, the 

ramp is only triggered by a photon arrival followed by a laser pulse, 

which means that if two-photon are acquired between two laser pulses, 

only the first photon will be measured. This is the pulse pile up effect 

(Fig 8A). To avoid this statistic selection of fastest photons, one have to 

limit the acquisition frequency to one hundredth of the excitation 

frequency (giving rise to an error every 10,000 photons) which explains 

the longer acquisition time of this technique. 

An example of such a setup [23] is presented in figure 8B. 
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Figure 7: Principle of lifetime measurements. (A) In time domain, a pulsed laser is used to excite 
fluorophores. The time between photon excitation and emission is measured and it is accumulated to 
get an histogram of photon emission time. Fluorescence lifetime is then estimated from the slope of 
this exponential decay. (B) In frequency domain; a modulated excitation is used to excite the sample. 
Monitoring of fluorescence phase and modulation shift compared to a reference with known 
fluorescence lifetime is used to calculate phase and modulation lifetimes. 

Frequency domain: phase and modulation 

In many experimental FD FLIM systems described in the literature, the 

modulated excitation light source is composed of a laser (laser diodes, solid-state, 

gas or dye lasers) combined with an external modulator (either an acousto-optic 

modulator or an electro-optic modulator) [54-56]. Recently, the advent of 

commercially available light emitting diode (LED), which can be directly modulated, 

contributed to simplify the instrumentation and reduces the cost of FD FLIM systems 

[57-59].  

Measurement of the phase and modulation quantities can be performed with two 

approaches: the heterodyne and the homodyne methods. The heterodyne method is 

the preferred approach for accurately estimating fluorescence lifetime components in 

cuvette experiments. It has also been successfully applied in FLIM experiments by 

combining it with scanning mode and single channel detector (usually with a gain 

modulated photomultiplier [54]). This method is thus compatible with laser scanning 
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microscopes (such as confocal and multiphoton microscope), which offer high three-

dimensional spatial resolution, and good signal to noise ratio. 

 

Figure 8: A: Principle of the time amplitude conversion. On the left, a fast photon is measured and 
starts the linear tension ramp resulting on a large ΔU corresponding to the difference in time between 
a photon emission and the following laser pulse. While excitation is at constant frequency, the 
measured ΔU is proportional to the photon emission time. The same explanation is also valid for a 
slow photon (middle scheme). However, if two photons are emitted between two laser pulses, only the 
first one is measured. This effect called “pulse pile up” induces an artifactitious decrease in the 
measured fluorescence lifetime. B: scheme of a typical TCSPC acquisition setup with a laser source 
allowing two-photon excitation. Pictures on the left show the injection of infrared laser in a confocal 
scanhead (upper panel) and the detection module adapted on the descanned position of the confocal 
microscope. 

The homodyne method, which consists in modulating the excitation light and 

the detector at the same frequency, is routinely used in many biological and 

biophysical laboratories because it can be performed with widefield detectors (like a 

modulated intensified CCD camera). This approach has then been implemented in 

classical fluorescence widefield microscopy which enables rapid FLIM image 

acquisition [57-60]. However, one limitation inherent to this system is the non-

confocality of the excitation, and consequently of the fluorescence emission. For 

improving axial discrimination of the FD FLIM system, it can be simply combined with 

either a single plane illumination strategy [61] or a spinning disk module [62, 63] (an 

example of such an implementation is presented in figure 9). 
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Nowadays, several companies (ISS, Intelligent Imaging Innovations, Lambert 

Instruments) propose commercial FD FLIM systems that can be fully integrated with 

all commercial multiphoton, confocal or wide-field microscopes. 

 

Figure 9: Scheme of a phase and modulation acquisition system adapted on a spinning disk system 
to ensure fast fluorescence lifetime measurement with optical sectioning capability. 

3.2.5. Data analysis 

 Ratiometric Imaging 

Data processing for reaching quantitative FRET measurements between two 

fluorescent molecules with ratiometric imaging has been exhaustively covered [64-

66]. Briefly, in order to correct for both varying unknown concentrations of the donor 

and acceptor and instrumental artifacts (e.g. spectral bleed-through), a large number 

of methods have been proposed with different number of images and thus different 

level of complexity [64, 65, 67]. Among all these, the most robust and widely used 

requires the acquisition of three fluorescence images. In this case, the ratio R is 

defined by [68]: 

Donor

AcceptorDonorFRET

I

III
R





          (27) 

where IAcceptor is the fluorescence intensity measured with acceptor emission filter 

after acceptor excitation, IDonor and IFRET are fluorescence intensities measured 
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respectively with spectral bandpass of donor and acceptor after donor excitation,  

and  are the correction factors for respectively the bleed-through of the donor into 

the acceptor emission filter after donor excitation and the bleed-through of the 

acceptor into the acceptor emission filter after donor excitation. 

In the particular case of a single-chain biosensor, the expression (27) can be 

simplified. Indeed donor and acceptor concentrations are identical which implies that 

bleed-through correction factors  and  are linearly dependent and that 

fluorescence intensities IAcceptor and IDonor are proportional. By taking into account 

these simplifications, a straightforward calculation leads to: 

c
I

I
R

Donor

FRET               (28) 

where c is a constant dependent on the fluorophores properties. This constant which 

is just an offset modification of the ratio R does not give any supplementary 

information.  

For a single-chain biosensor, the ratio R is then fully described by 

fluorescence intensities ratio IFRET /IDonor. Consequently the third fluorescence image 

IAcceptor (see Eq. (27)) is not useful; this additional image acquisition will just increase 

the complexity of instrumentation, the time of acquisition (and thus the related 

movements artifacts) and the noise propagation in the ratio calculation. 

Even if the expression of the ratio is extremely simple, we emphasize on the 

fact that obtaining reliable R values requires a special care and numerous corrections 

which have been exhaustively detailed elsewhere [68, 69]. Briefly, we need to 

compensate for instrumental artifacts (camera offset subtraction, shading or flat-field 

correction for the non-uniformity of the illumination, correction for misalignments 

between two fluorescence images due to chromatic aberration) and for chemical and 

biological artifacts (photobleaching correction for taking into account that the donor 

and acceptor photobleach at different rates [70]), optional autofluorescence 

subtraction, correction for cell movement or deformation between acquisition time).  

Calculation of the corrected ratio R from acquired fluorescence images can be 

performed instantaneously pixel by pixel and calculated R values can be displayed 

with pseudo-color superimposed on the fluorescence intensity image in real time 

enabling to follow in live the biosensor activity [71-73] (see Fig.10). Ideally for a 
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sensor binding to a single molecule (like fura-2), the ligand concentration [L] is 

directly related to the ratio as [74]. 

 
RR

RR
L






max

min             (29) 

where Rmin and Rmax are respectively the minimal and maximal ratios. However, 

regarding single chain biosensors, it is usually not possible to have access to these 

ratios. In this case, the normalized ratio R/Rto can be used for facilitating the 

comparison between all cell responses (cf. Fig.10). This normalized ratio is defined 

by 
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            (30) 

where Rt0 is the initial ratio (measured at time t=0). 

 

Figure 10: Data analysis for FRET imaging with a standard wide field epi-fluorescence 
microscope. The fluorescence intensity images of living cells transfected with TEpacVV acquired with 
two distinct filters sets: donor emission and acceptor emission (after donor excitation) are shown 
respectively in (A) and (B). The resulting ratio R can be calculated pixel by pixel (after instrumental 
correction) and the ratio distributions of both cells are indicated in (C) before (t=0) and after induction 
(t=25min). The mean ratio is extracted from these distributions for each cell and it is plotted as a 
function of time in (D). The corresponding ratio images are also represented in the upper part of the 

panel. Finally, we have also indicated in (D) the normalized ratio R/Rt0 which simplifies the 
comparison between cell responses. 

We emphasize on the fact that this normalized ratio (and the ratio R) gives just 

an indication on relative changes between the biosensor “on” and “off” state. In other 

words, determination of individual concentrations of both biosensor states with 
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ratiometric imaging is not feasible in the cellular environment [75], since all 

biosensors expressed are not optically active. In fact, the maturation and the photo-

degradation (photobleaching) of the two fluorescent proteins (donor and acceptor) 

are processed at different rates [70, 76]. This leads to a population of biosensors 

whose fluorescence emission is no more related to the physiological state of the cell 

(unresponsive donor only and acceptor only single-chain biosensor). 

 Fluorescence Lifetime Imaging 

Unlike ratiometric imaging which is based on fluorescence intensity directly 

related to the fluorophore concentration (of both the donor and the acceptor), lifetime 

measurements are independent of these concentrations. It allows determining 

quantitatively the proportion of interacting donor and the FRET efficiency in living 

cells. 

Frequency Domain (FD) lifetime imaging 

 Recovering phase shift and modulation depth in single frequency experiments. 

The first step of FD FLIM data analysis consists in retrieving the phase and 

modulation values ( and m) from fluorescent images acquired with either the 

heterodyne or the homodyne method (see section II: FRET measurements). 

With the heterodyne method, the detector is modulated at a frequency + 

(where  is a low frequency in the kHz range) which is slightly different of the 

modulation frequency  of the excitation source. The resulting signal collected by the 

FLIM system (Sheterodyne) is thus modulated in time at the low frequency  

)cos(
2

1heterodyne   t
mmm

S deex          (31) 

where  is the phase shift between the excitation and the detection, mex and mde 

are respectively the modulation amplitude of the excitation and the detection. By 

recording this signal Sheterodyne at various time-delays t and by fitting it as a function of 

time with a cosine function of the low cross-correlation frequency , we can extract 

the phase shift  and modulation depth m for each pixel of the FLIM image. 
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In the homodyne implementation (when the frequency of the excitation and 

detection are identical), the collected signal which is no more modulated is a DC 

component defined by 

)cos(
2

1homodyne  
mmm

S deex           (32) 

with mex and mde respectively the modulation amplitude of the excitation and the 

detection. The phase shift  between the excitation and the detection varies from 0 

to 360° (2) with K equally spaced intervals. For each phase shift , the DC 

collected signal is recorded for each pixel of the FLIM image. By fitting this collected 

signal Shomodyne with a cosine function of , the resulting phase  and modulation m 

are calculated pixel-by-pixel (cf. Fig.11). 

 Calculation of the fluorescence lifetime and data representation 

Once phase  and modulation m have been determined for each pixel of the 

image, these m and  values are further manipulated for evaluating the fluorescence 

lifetime of the sample. In order to obtain correct lifetime values with both methods 

(heterodyne and homodyne method), calibration of FLIM system with a reference of 

known fluorescence lifetime ref is indispensable for taking into account the phase 

shift and modulation introduced by the electronics and optics (cf. Eqs. (31)-(32)). The 

fluorescence lifetime of an unknown sample is then defined by [77] 
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where ref and mref are respectively phase and modulation values estimated from the 

reference. We emphasize on the fact that these fluorescence lifetimes (m and ) are 

calculated for each pixel. The resulting FLIM image, which is displayed using a color 

scale, is usually superimposed on the intensity image in order to highlight the 

brightest regions (see Fig.11).  
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Figure 11: Data analysis of fluorescence lifetime measurements acquired with homodyne 
method. (A) Experimental reference and sample fluorescence intensities (dots) as a function of the 

phase shift  between excitation and detection for one pixel; corresponding fits from which we 

deduced the phase  and modulation m are indicated with lines. (B) Fluorescence intensity image of 

living cells transfected with TEpacVV. Phase and modulation lifetimes (m and ) distributions for the 
selected area is represented in (C). Mean values are deduced from these distributions and their 
evolutions in time are shown in (D). Corresponding phase and modulation lifetime images are also 
displayed for three distinct times. 

When using FD FLIM system to record biosensor activity in living cells, 

evolutions in time of the phase and modulation lifetimes ( and m) are sometimes 

represented [73]. However this method gives just an indication on the relative 

changes between the two states of the biosensor. In fact, these phase and 

modulation lifetimes acquired during single frequency experiment do not correspond 

to true lifetimes of the biosensor. To recover these true lifetime components, it is 

necessary to acquire multiple frequency FLIM images and to fit pixel by pixel the 

experimental phase  and modulation m for each frequency  with a function of  

[59]. Experimental data are usually adjusted to the theory by minimizing an error 

function (using a Levenberg-Marquardt algorithm) without any a priory on lifetime 

components [59, 78, 79]. If it can be assumed that the lifetime information is the 

same for all pixels of the FLIM image, data can be globally analyzed [80, 81]. In both 

cases, obtaining reliable lifetime components is time consuming and it is hardly 

accessible to the nonexpert. 

Time Domain (TD) lifetime imaging 

 Extracting lifetime components 

In time domain methods, fluorescent samples are repeatedly excited by short 

pulses of light and resulting fluorescence intensity decay histograms can be recorded 
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for each pixel of the FLIM image with different detectors (see section II). Regardless 

of the technique employed, experimental lifetime components are usually deduced by 

adjusting experimental decay histograms with the theory. In TD FLIM, the theoretical 

detected intensity profile F(t) which is dependent of both the fluorescence sample 

and the instrumentation is defined by Eq. 26.  

This fitting procedure is usually performed with the least square method (LSM) 

which consists in minimizing an error function 2 defined as the total squared 

differences between experimental data points xi and theoretical values si deduced 

from Eq. (26) : 
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where Nd is the number of data points and p is the number of fitting parameters. The 

minimization of this error function is generally performed with the Levenberg 

Marquardt algorithm which has been implemented in most of the commercially 

available FLIM analysis software. This commonly used FLIM image analysis strategy 

is robust and gives reliable results when the number of photons is large [8, 11, 23, 

82] (cf. Fig.12). 

However, if the total number of photons is low, the LS method becomes 

inaccurate because its error function assumes that the noise is described with a 

Gaussian instead of a distribution which is incorrect. In the case of a low number of 

photons, one solution named adaptive Monte Carlo data inflation algorithm (AMDI) 

consists in inflating statistically the number of photons for being compatible with the 

LS method [11]. Another possibility which is called the maximum likelihood estimation 

(MLE) method [82, 83] is to modify the error function for taking into account the 

Poisson noise distribution. This error function is now defined as [83]: 
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It was demonstrated that both solutions (AMDI and MLE methods) give an 

accurate lifetime components estimation of multi-exponential intensity decays with a 

reduced number of photons, in comparison with the LS method [11, 82]. Finally, it 

has been recently demonstrated that an alternative method based on Bayesian 

analysis enables to estimate correctly the lifetime of mono-exponential decays with 
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few photons [84]. However this method was never applied with multi-exponential 

decays which prevents from envisaging it in the context of biosensor activity 

measurements. 

 Exploiting data 

As already mentioned, the fluorescence intensity decay of a single-chain 

biosensor is described with multi-exponential terms (cf. Eq. 10). 

Regardless of the fitting method employed (and previously described), the final 

purpose of the FLIM data analysis is to correctly extract both the proportions and the 

lifetime components for each pixel of the image. This can be achieved preferentially 

without constraining any fitting parameters (cf. Fig.12). However, for sample emitted 

fluorescence whose intensity decay is multi-exponential, the correct estimation of all 

parameters with standard fitting method requires a large number of photons 

(N>100000 [85]). For decreasing this number and consequently the acquisition time 

and phototoxicity, we have already detailed in previous paragraphs two solutions 

based on algorithm implementation (MLE and AMDI). An alternative solution consists 

in reducing the number of fitting parameters by constraining one of them, for example 

the donor lifetime but it necessitates that the donor lifetime is mono-exponential and 

that it has been precisely determined in a previous experiment (which requires a 

modified biosensor without acceptor). Another possibility is to analyze the data 

globally but it is valid only if one can assume that the lifetime information is identical 

for all pixels of the FLIM image (or a selected area) [86, 87]. In all cases, it requires 

expertise and computation time for obtaining reliable lifetime values with fitting 

methods. 

Once lifetime components have been correctly estimated, resulting lifetime 

images are displayed using a color scale and are usually overlaid on the intensity 

image for weighting the lifetime value with the fluorescence intensity (cf. Fig.12). 

However, due to the large number of parameters (proportion and lifetime 

components), it is not possible to represent the evolution of all of them. In order to 

simplify data representation, the mean lifetime mean defined by Eq. 13 has been 

largely used in FRET experiments [8-11]. However, the mean lifetime does not 

correspond to the correct average lifetime which is defined by Eq. 12. This average 

lifetime has been recently used for biosensor activity recording [88]. However, we 
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should inform the reader that this quantity is not monotonous as a function of the 

donor lifetime in presence of the acceptor. In other words, one average lifetime value 

can be found with two distinct donor lifetimes in presence of the acceptor for a fixed 

proportion of interacting donor. Consequently the knowledge of both the average 

lifetime and the fraction of interacting donor are not enough to entirely characterize 

the fluorescent sample. Due to the non-uniqueness of the average lifetime, it is also 

necessary to combine them with another parameter (e.g. FRET efficiency). 

 

Figure 12: Data analysis of fluorescence lifetime measurements acquired with the time 
correlated single photon counting (TCSPC) method. A1: typical experimental intensity decay 
(dots) acquired in few ms per pixel (corresponding to an acquisition time of 300s for the complete 
image represented in B); the fit obtained with standard least square method (LSM) is indicated with 

line. Due to low number of photon count N, the error function (2) is non flat and elevated indicating 
that the adjustment is not perfect. A2: one possibility to increase N consists in applying a spatial 
binning of factor n (sum all pixels comprised in a (2n+1)2 squared region). In this case, the fit is slightly 

improved but 2 is still non flat because the monoexponential model is not adapted. A3: when the 
biexponential model is used, the fit is satisfying which means that the sample proportion and lifetime 
can be correctly estimated. (B): fluorescence intensity image of living cells transfected with TEpacVV. 

The distributions of all fitting parameters (1, 1 and 2) for the complete image are shown in (C). We 

have also represented the mean lifetime m and the average lifetime <> distributions. Their evolutions 
as a function of time are plotted in (D). The corresponding mean and average lifetime images are also 
displayed in the upper part of the panel. 

Non fitting based approaches 

In the previous section, we mention the fact that the correct analysis of the 

acquired fluorescent signal with fitting methods is time consuming and necessitates a 

high level of expertise. In order to simplify the analysis of FLIM images and to make it 

accessible to the non-expert user, novel methods based on non-fitting approaches 
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have been developed recently [89-92]. In this section, we limit our review to two 

approaches which are applicable to a large range of lifetime acquisition techniques: 

the minimal fraction of interacting donor (mfD) [90] and the polar approach or phasor 

[89, 91]. We then voluntary omit the rapid lifetime determination which is restricted on 

time gated FLIM images with two temporal channels [93, 94]. 

The minimal fraction of interacting donor mfD which has been introduced by 

Padilla-Parra et al. [90] can be applied with all TD FLIM techniques (TCSPC, Time 

Gated,…). It is defined by 

  22

2

12/

/1









Dmf            (37) 

where 2 is the lifetime of the donor alone and  is the mean lifetime defined by Eq. 

(12) (see previous section). The computation of <τ> is straightforward and it can be 

performed pixel by pixel and be recovered on-line during FLIM acquisition. When the 

lifetime of the donor alone 2 is mono-exponential and known (implying that it has 

been measured in a previous experiment which is typically not performed in 

biosensor experiment), we deduce from Eq. (37) that the computation of the mfD is a 

simple calculation that can be performed on-line on a standard computer. This is a 

major advantage when following the biosensor activity during time in live cells, since 

the user has immediately quantitative information which is the minimal fraction of 

interacting donor. This indicator varies between 0 when there is no interaction and 1 

when all the donors interact. It is a robust indicator however we remind the reader 

that it only gives information on the minimum of the interacting proportion and not on 

the exact quantity 1. 

The polar approach or phasor is another non-fitting method that has been 

successfully applied in FLIM experiments. This method was initially described by 

Jameson et al. [95] and then successively improved by different groups [96-98]. It 

consists in converting the lifetime image into a new two dimensional histogram called 

polar or phasor. In this polar representation, each point which is defined with [u;v] 

coordinates corresponds to one pixel of the FLIM image and vice versa. 

Consequently, one FLIM image is transforming into a scatter diagram whose position 

gives an indication on the number of exponential present in the intensity decay. For 

example, when the fluorescence emitted by the sample decays mono-exponentially, 
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the scattered diagram is localized on the semicircle centered at [0.5, 0] with a radius 

of 0.5 (see Fig.13). Short fluorescence lifetimes are close to the coordinates [1, 0], 

whereas long lifetimes approach the origin ([0, 0]). If multiple lifetime components are 

present in the sample, the scattered histogram is located inside the semicircle which 

can be helpful for identifying a mixture of several molecular species or a FRET 

phenomenon [89, 96]. This approach can be applied with both FD [96] and TD [89, 

92] FLIM acquisition systems and it has been recently used with biosensor [75, 99]. 

In TD FLIM experiments, the u and v coordinates are respectively the cosine 

and sine transforms of the fluorescence intensity decay I(t) and they are defined by 

  dttIdtttIu )()cos()(            (38) 

  dttIdtttIv )()sin()(            (39) 

where  is the laser repetition angular frequency. 

For FD FLIM experiments,  is the angular frequency of light modulation and 

the u and v coordinates which are directly related to the phase  and modulation m 

measured with the FD FLIM system, are given by 

 cosmu               (40) 

 sinmv               (41) 

In both cases (TD and FD FLIM experiments), determination of the [u,v] 

coordinates can be performed instantaneously. However, the polar representation 

gives just visual information on the biosensor state but it does not allow obtaining 

really quantitative information on FRET parameters.  

 

Figure 13: Data analysis of fluorescence lifetime measurements with the polar approach or 
phasor. A: illustration of the polar representation. Lifetime measurements of fluorescent sample with 
single exponential decay are localized on the semicircle. If multiple lifetime components are present in 
the sample, the FLIM acquisitions are located inside the semi-circle. B: example of the polar 
representation with simulated FLIM images. As expected, spots corresponding to FLIM images 
simulated with monoexponential decays are positioned on the semi circle and spots issues from 
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simulated data with biexponential decays are inside. We have also represented with dashed line the 

FRET trajectory for a proportion of interacting donor 1=0.5. C: application of the polar representation 
to biosensor experiment realized in living cells transfected with TEpacVV. We can clearly distinguish 
two spots corresponding to both conformations of the biosensor (high FRET and low FRET). We have 
also displayed resulting phase lifetime images. 

Recently, Leray and coworkers have demonstrated that it is possible to 

retrieve quantitatively the FRET parameters from the polar coordinates [91]. In fact, 

the fraction of interacting donor 1 and the fluorescence lifetime of the donor in 

presence of the acceptor 1 can be analytically expressed with [91] 
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If the lifetime of the donor alone 2 is mono-exponential and it has been 

measured in a previous experiment (requiring a modified biosensor without 

acceptor), we can easily deduce from Eqs. (42)-(43) both the lifetime of the donor in 

presence of the acceptor and the fraction of the interacting donor. We emphasize on 

the fact that these calculations can be performed during the time lapse acquisition of 

the biosensor activity which makes possible to follow in live the evolution of both the 

FRET efficiency and the proportion of interacting donor 1. 

3.2.6. Design and optimization of genetically encoded 

Kinase activity reporters (KARs) 

Design of a FRET-biosensor for imaging biochemistry in live cells is based on 

the development of a single polypeptide capable of generating a conformational 

change which modulates FRET efficiency in response to a biochemical event such as 

phosphorylation in this context.  

A genetically encoded kinase activity reporter is composed of the following key 

elements: a molecular recognition element (MRE) consisting of a substrate peptide 

for the kinase of interest and a phosphoamino acid binding domain to detect the 

target activity, and a reporting element consisting of a fluorescent protein-based 

FRET couple flanking the sensing element. These functional parts are pasted 

together with linkers whose optimization is needed as they readily affect overall 

biosensor dynamic range. (Fig. 14).  
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Figure 14: Necessary ingredients for making KARs. 

The identification and/or optimization of the different constituents of a KAR are 

reviewed in this section. A range of kinase activity reporters has been designed on 

this model and allows activity monitoring of many tyrosine and serine/threonine 

kinases.  

 Substrate peptide identification 

Many methodological approaches have proven themselves useful in order to 

identify and characterize that a peptide sequence acts as a specific substrate for a 

kinase of interest.  

The first approach identifies a specific substrate in silico by using databases of 

known substrate sequences of kinases such as UniProtKB/Swiss-Prot which provide 

reliable protein sequences associated with a very high level of annotation and high 

level of integration with additional databases. However, peptides selected by some 

knowledge-based libraries (such as UniProt for instance) can have multiple phospho-

acceptor sites. Others database such as KinasePhos can predict phosphorylation 

sites within given proteins and provides information on the exact positioning of 

phosphorylation sites with a link to the corresponding catalytic protein kinases 

involved [4]. 

Another approach relies on the use of the kinase target sequence from a 

protein known to be phosphorylated by the kinase of interest. Since many kinases 

have multiple isoforms, substrate sequence could be modified to be more specific 
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toward a protein kinase isoform. The protein kinase C family, with its 10 members, is 

a good example [100, 101]. The first genetically encoded PKC-FRET-based reporter 

(CKAR) is an effective reporter for all PKC isoforms [102, 103] but each isoform has 

its own activation signature [104]. Kajimoto et al. have designed a new genetically 

encoded reporter based on the first CKAR but with an ultra specific substrate to 

measure only PKCδ activity in different cell compartments. In order to make CKAR 

more selective for PKCδ, they selected 11 known substrates of PKCδ threonine as 

phospho-acceptor residue and isoleucine at the position +3 was kept to facilitate 

binding of the PAABD (see below, section phosphoamino acid binding domain 

(PAABD)). Sensors with candidate substrate sequences were characterized in vitro 

and in cellulo (see below, section in vitro and in cellulo characterization) for specificity 

and selectivity. While being time-consuming, it can provide highly specific and 

selective kinase activity reporter. 

The last approach enables the identification of protein kinases substrates 

through large-scale analysis using high-density peptide microarrays from various 

biological samples. The use of high throughput technologies has become an 

essential step to create and/or optimize a kinase activity reporter especially when 

specific substrates of the kinase of interest are not yet known (for review[105]).  

To this extent, two libraries are established for substrate identification with 

peptide microarray. First, knowledge-based libraries contain many small peptide 

sequences isolated from known proteins. The second library contains de novo 

synthesized peptides using either randomly generated peptides or a combinatorial 

approach. The first type of library allows the determination of phosphorylation sites 

using overlapping peptide scans from a known protein sequence. Furthermore, 

combinatorial and randomly generated peptides libraries are useful to detect specific 

kinase substrates. Combinatorial libraries defined one or more amino acids at fixed 

positions (eg isoleucine at +3 position after the unique phospho-acceptor residue) 

while other amino acids (except serine, threonine, tyrosine) are placed at randomized 

positions. The number of generated peptides is very high compared to knowledge-

based libraries. Combinatorial libraries have successfully identified PKA [106, 107] 

and PKG substrates [107, 108]. 

In some cases, a phosphorylation site cannot solely determine substrate 

specificity of protein kinases. Substrate specificity is also determined by short 
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sequences named “docking site” which are specifically recognized by a kinase. 

Indeed, many studies report that docking sites dramatically increase the efficiency 

with which a substrate is phosphorylated by a kinase in vitro and in cellulo [109-111]. 

The case of the kinase MAPK/ERK is a good example because MAPK family 

members such as ERK, p38 and JNK have similar phosphorylation sites. Distinct 

docking sites for ERK, p38 and JNK have been identified. It ensures substrate 

targeting and can be used to design a kinase activity reporter with high sensitivity 

and selectivity.  

Erkus was the first genetically encoded FRET biosensor of ERK activity in 

different compartments of single living cells [112]. Erkus has a docking site (D 

domain) connected to the C-terminal of the sensor. This D domain is a common 

docking site contained in most known endogenous substrates of ERK and increases 

the probability of substrate phosphorylation by ERK [113, 114]. However, Harvey et 

al. [38] developed a new genetically encoded FRET-based biosensor EKAR (EKARc 

and EKARn target cytoplasm and nucleus respectively). As an improvement, EKAR 

exhibits a new ERK-specific docking site (FQFP), adjacent to the substrate resulting 

in a FRET signal 3 times larger than that of Erkus, while others potential docking 

sites tested in this context greatly reduced FRET signal of the sensor. This shows 

that docking sites are very important in the design of new specific and selective 

kinase activity reporters, (See for review [115]), and was recently highlighted in a 

sensor for the M-phase promoting factor [116].  

 Phosphoamino acid binding domain (PAABD) 

Upon specific phosphorylation, the PAABD recognizes and binds to the 

phosphorylated substrate resulting in a conformational change of the polypeptide that 

somehow alters in opposite way the fluorescence emission of the two fluorophores 

and the choice of a good PAABD is a key element of KAR design [117]. Protein 

phosphorylation may lead to the formation of molecular signaling complexes through 

interactions between specific phosphorylated residues and binding domains. Several 

binding domains named “modular domains” and “adaptors molecules” have been well 

characterized and are able to activate a specific pathway. Activation of 

transmembrane receptors triggers phosphorylation on tyrosine residues that results 

in the recruitment and binding of adapter molecules such as Src-homology 2 / 3 (SH2 

SH3) and phosphotyrosine binding (PTB) domains. Similarly, signal transduction 
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involves phosphorylation on serine/threonine residues and thus constitutes 

consensus sequences recognized by other adapter molecules including 14.3.3 

proteins, forkhead associated (FHA) domains, WW domains and WD40 domains. 

The phospho-acceptor residue within the substrate sequence then first guides the 

choice of the PAABD.  

Several factors should be considered as they can affect the efficiency and the 

reversibility of the PAABD binding to the phosphorylated substrate. For example, in 

order to measure compartmentalized PKA activity in single living cells, Zhang et al. 

[118] developed a genetically encoded A-kinase activity reporter (AKAR). This first 

generation of PKA sensor (AKAR1) used 14-3-3 as a PAABD. Due to the high 

binding affinity of this PAABD towards phosphorylated substrate, once 

phosphorylated, the sensor was blocked in closed conformation making it weakly 

sensitive to cellular phosphatases activity and thus irreversible and incompatible with 

dynamic measurements of PKA activity. To circumvent this problem, 14-3-3 was 

replaced by a FHA domain in subsequent versions of AKAR [119], yielding AKAR2. 

When tested in cells, it showed a better dynamic response and a reversible 

behaviour. Similarly, a FHA domain was also used in the first Erk biosensor Erkus 

[112]. Shortly after, the development of EKAR [38] saw the FHA domain replaced by 

a WW domain. Although both sensors followed the same design principle, 

comparative analysis of EKAR and Erkus reveals that dynamic response of EKAR is 

greatly improved; the dynamic range of EKAR was higher than those of Erkus [38].  

Considerations regarding FHA and WW domains can be found in [120], and 

[121], respectively. 

 Optimal linker combinations in FRET-based 
biosensors 

Fooling around with linkers, (ie: swapping linker from one sensor to another) 

might prove to be an easier way, and should be considered on first instance. Making 

highly sensitive FRET-biosensors remains difficult and requires fine-tuning. While 

being dreadful and time consuming, linker optimization is a crucial step in biosensor 

design. In fact, FRET efficiency depends essentially on the distance and the 

orientation of the two fluorophores (See section I) [122], which places linkers at the 

heart of biosensor dynamic range. Linkers are mainly composed of amino acids such 

as glycine, proline, and alanine giving them full flexibility. The classical flexible linker 
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consists of (GGSGGS)n which keeps fluorophores at “safe” distance from one 

another [123], and the rigid linker is composed of (EAAAR)n where FPs are held in 

“fixed” distance and orientation. 

In order to optimize and accelerate the development of FRET-based 

biosensors, Ibraheem et al. [124] have used a reliable high throughput method by 

undertaking the optimization of a methylation-sensitive H3K27 sensor- H3K27-

MetBio (trimethylation of lysine 27 of Histone 3)- mainly based on change in length of 

linkers. They focused on the optimization of the linker between the PAABD and the 

substrate. Screening of biosensor variants was performed in colonies of E.coli, 

through the generation of many hundreds of different linker combinations using 

several screening libraries. The efficiency of H3K27-MetBio was improved with a 

FRET signal efficiency 2.3 times larger than the original sensor [124] . 

In a recent study, Piljic et al. focused on the optimization of linker flanking the 

FPs [125]. They developed a reliable and rapid method to generate multiple 

genetically encoded FRET sensors variants and tested them in reversely transfected 

mammalian cells. Long linkers improve the flexibility of the sensor and favor 

orientation of donor towards acceptor fluorophore even if sometimes, certain short 

and rigid linkers produce a greater FRET signal [125]. Improvements of biosensors 

could also be achieved by varying the linker composition in amino acids using 

combinatorial and randomly generated linker libraries for detecting the most effective 

linker composition.  

Finally, Komatsu et al. established highly sensitive FRET biosensor 

backbones. Their strategy completely abolished the dependence of the sensors on 

the orientation of the two fluorophores. Indeed, prediction of the exact orientation of 

the donor and the acceptor in optimized sensor is rather difficult [103, 126]. Instead, 

they optimized biosensor backbones relying entirely on the distance between both 

fluorophores by modifying the linker between the PAABD and the substrate [127]. 

Regular repetitions of the motif (SAGG)n (where n is the number of repetitions (13-

61)) and the 72 polyglycine linker [128] were utilized and compared [127]. All 

generated backbones highlighted that long and flexible linkers reduce the proportion 

of biosensors folding in the basal state therefore improve the biosensor dynamic 

range. 
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 Choosing a FRET pair 

Historically, the first FRET measurements were performed with the blue 

fluorescent protein (BFP) and the enhanced green fluorescent protein (eGFP) as 

FRET pair combination [1, 129]. Although these FPs meet the requirements for FRET 

measurements, BFP has an unfortunate tendency to bleach much faster than eGFP. 

The Cyan Fluorescent Protein (CFP) and the Yellow Fluorescent Protein (YFP) 

FRET pair quickly replaced the BFP-eGFP FRET pair to monitor Ca2+ variations in 

individual live cells [130].  

The everlasting improvement of fluorescent proteins while beneficial for 

biosensor optimization could become overwhelming, as the possible combination 

seems to be endless. Nowadays, cloning procedures are much easier, thus easing 

up the process. Choice for FRET pairs should be guided by 1) up to date/optimized 

fluorophores 2) red-shifted to minimize photo-toxicity 3) mono-exponential lifetime 

when considering FRET-FLIM measurement methods. The idea here is to tap into 

the distance (Ro) and eventually dipole-dipole orientation (2) in order to maximize 

FRET efficiency (see section I) 

Blue/Yellow FRET pairs 

This “original FRET-pair” is still used in most biosensors today because of its 

good spectral properties. Many variants derived from these FPs have rapidly 

emerged and significantly increased FRET efficiency. The monomeric (m)Cerulean 

[43] and the mTurquoise2 [131] are the preferred variant of the CFP, while 

monomeric citrine and Venus [42] proved to be the most popular variant of the YFP. 

Cerulean has a better quantum yield, a higher extinction coefficient, a fluorescence 

lifetime with a single exponential decay and an increased brightness than 

conventional CFP (see table 1). mCitrine shows a better tolerance to pH variations 

and quenching by chloride ions, while Venus is characterized by a quicker maturation 

within cells. 

Along these lines, a “sticky” FRET pairs, known as CyPET and YPet has been 

optimized from a cyan-yellow FRET pair by Daugherty’s lab in 2005, using 

quantitative evolutionary strategy [132]. The resulting FRET pairs showed a 20-fold 

ratiometric FRET signal change instead of the 3-fold for the parental pair, in a context 

where fluorophores were separated by a caspase 3 cleavable substrate. While this 
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FRET pair provides substantial improvement is sensitivity and dynamic range for 

some biosensor [132], the poor folding and expression of CyPET at 37°C limits its 

usefulness for live cell studies [34]. Nevertheless, YPet remains one of the brightest 

YFP and displays superior FRET efficiency when paired with a cyan donor 

fluorophore such as eCFP, alleviating from any ill effects stemming from CyPET, 

[127, 133].  

 

Figure 15: U20S cells transfected with AKAR3 (A) or AKAR 4 (B). PKA was activated using an 
adenylate cyclase activator (forskolin) and then inhibited with H-89. Lifetime measurements were 
performed in frequency domain, as described in (section II).Graphs represent the average phase 
fluorescence lifetime measured for the entire cell as a function of time. Images represent intensity (top 
left) and phase lifetime (others) at specific times. 

Lately circularly permuted (cp) fluorophores have appeared as a good way to 

enhance dynamic range of biosensor. These cp have flourish in scientific report has 

a solid solution for biosensor optimization [35, 71]. Technically, it consists of a 

fluorescent protein in which the N- and C- termini are fused together through a 

flexible linker. This protein engineering has allow for the emergence of other type of 

biosensor resting solely on the fluctuation of fluorescence properties upon binding of 

analyte to molecular switch positioned in the linker region [134]. Note that such 

fluorophores are more sensitive to their photochemical environment such as pH and 

temperature in this configuration/protein structure. The first biosensor successfully 

improved using this strategy is the Ca2+ indicator (yellow cameleon) exhibiting nearly 
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6 fold increase in dynamic range of FRET efficiency upon Ca2+ binding to the 

biosensor [135]. Since then, cpFPs essentially cpVenus has been implemented in 

other biosensors, including, AKAR3 [35], AKAR4 [71] and recently tEpacvv [136]. The 

simple swapping of the CFP for the Cerulean as donor between AKAR3 and AKAR4 

in combination with the cpVenus improves the dynamic range of AKAR series. 

Indeed AKAR4 shows a slight average difference in fluorescence lifetime in control 

experiments when compare to AKAR3 (Fig 15). 

 

Figure 16: Overall methodology for creation and/or optimization of KAR biosensors. 

Green/Red FRET pairs 

In 2004, many other variants of fluorescent proteins have emerged with the 

discovery and characterization of a new Red Fluorescent Protein (RFP) named 

Discosoma sp. red fluorescent protein (DsRed) isolated from the coral of Dicosoma 

genus in 1999 [40]. Although red-shifted FP variants would undoubtedly result in 

lower phototoxicity upon biological sample illumination (less energy) they are not 

commonly employed for sensing application. The only example is the ERK biosensor 

EKAR [38] in its green-red version that did not show a large dynamic range 

(unpublished results). However, green-red FRET pair has proven its usefulness in 

detection of molecular interaction by FRET-FLIM. Besides, even in their optimized 

versions, intrinsic fluorescence properties of RFPs (oligomerisation, quantum yield, 

brighteness….) do not stand a chance when compared with their yellow counterparts. 

Indeed the historical FRET pair is cyan-yellow based, and has received much 

attention directed towards its optimization. Ongoing efforts for developing red-shifted 

variants will most likely yield adequate acceptor that will prove themselves useful in 

multi-sensing approaches. 
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In light of opportunities offered by newly engineered FPs, many studies 

suggest alternatives to conventional FRET pairs. Combining the yellow or green 

fluorescent proteins as a donor with orange or red fluorescent proteins as acceptor is 

now possible. Although these FRET pairs have mostly been used in proteins 

interactions studies, they have recently emerged as an alternative to CFP/YFP FRET 

pair in biosensor design [38].  

The following figure (Fig. 16) illustrates the process necessary for the creation 

and/or the optimization of KAR biosensors 

 Targeting FRET-biosensors to subcellular 
compartments 

Biosensors can be addressed to distinct subcellular compartments in order to 

gain information on the compartmentalized activity of a kinase of interest. This is 

achieved by adding an additional amino acid sequence fused at the N-terminal or C-

terminal extremity of the sensor. Several subcellular targeting sequences have been 

isolated and are now well characterized (Table 3).  

Subcellular targeted location Targeting sequences Références 

Cytosol LALKLAGLDI (at C-terminal) Gallegos et al (2006) 

Nucleus PKKRKVEDA (at C-terminal) Gallegos et al. (2006) 

Ananthanarayanan et al. (2005) 

Golgi 33 amino residues of eNOS (at 
N-terminal) 

Sasaki et al. (2003) 

Gallegos et al. (2006) 

Endoplasmic reticulum MLLPVLLLGLLGAAAD (at N-
terminal) + KDEL (at C-
terminal) 

Palmer et al. (2004) 

Plasma membrane MGCIKSK (at N-terminal) Violin et al. (2003) 

Kunkel et al. (2005) 

Gallegos et al. (2006) 

 Table 3: Adapted from [4] & [102, 103, 126, 137-139]. 

 In vitro and in cellulo characterization of new FRET 
biosensors 

Two paths can be exploited to test newly built and optimized biosensors: in 

vitro and in cellulo. Note that results from one approach do not imply that similar 

results would be obtained when using the other one. However, characterization 

remains the bottleneck through which every biosensor has to pass. Characterization 

is a crucial step as it determines the efficiency of new FRET-based biosensors and 
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thus requires several considerations. The results should provide evidence that the 

sensor generated is specific to the kinase of interest and should assess the dynamic 

range of the biosensor in the presence of the activator and/or inhibitor. This step 

usually relies on pharmacological agents, which can be limited when considering 

their availability and specificity.  

In vitro characterization: Upon expression of biosensors, in bacterial system 

for instance, lysates are subjected to stringent purification procedures to retrieve only 

full-length protein from truncated protein due to proteolytic degradation. Now, in 

solution (see chapter 4, spectroscopy section) with the purified protein kinase of 

interest and ATP, in a 96 well plate screening format or in a spectrophotometer 

cuvette, properties of biosensor are evaluated. Ratiometric measurements methods 

(see section II for details) are then employed in different experimental conditions: 

before and after addition of ATP and purified kinase, and control wells for baseline 

ratio determination  

In addition, phosphorylation levels of the biosensor expressed in mammalian 

cells can be estimated by immunoprecipitation and detected by PhosphoTag 

western. Overall amounts of expressed biosensors is then revealed by anti-GFP 

antibody [127].  

In cellulo characterization consists of expressing the biosensor in a 

mammalian cell models and assessing the ratiometric signal in the presence of 

specific activator and inhibitors of the kinase of interest. Biosensor control constructs 

(earlier version or non phosphorylatable biosensor) undergoes similar experimental 

conditions. Transient transfection of plasmid DNA encoding biosensors is an 

accessible and inexpensive approach, which is sufficient to produce biosensors using 

cellular transcriptional machinery. Kinase activity measurement in a cellular context 

can also evaluate the specificity of a biosensor candidate: kinase blockers should 

prevent the ratiometric response to activators, demonstrating the involvement of one 

specific kinase family into the process being studied. This strategy is more often seen 

as a complementary than an alternative method to evaluate FRET efficiency of 

candidate sensors. 

In vitro and in cellulo characterizations are often used to evaluate 

quantitatively the effect of several kinase inhibitors to determine the most effective 

inhibitor of the kinase of interest. Indeed, they can serve as high-throughput 
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screening to evaluate rapidly the effects of several pharmacological treatments on 

activation or extinction of a particular pathway. For such assays, it remains essential 

that the biosensor exhibits a robust and reproducible signal. This is generally 

assessed by the Z-factor, a statistical parameter that compares the dynamic range to 

data variation [123]. A schematic representation of such an experimental design is 

proposed in figure 17 (Fig. 17). 

3.2.7. Considerations for KAR measurements 

 Controlling acquisition systems 

As previously described, several techniques allow quantifying FRET for KAR 

imaging. Each of them requires a dedicated setup and thus adapted characterization 

procedures. The most advanced acquisition techniques (spectral acquisition, TD and 

FD FLIM…) mainly require rigorous characterization of the systems and optimized 

acquisition conditions as described in the literature [23, 26, 59, 140]. They can then 

be directly used for KAR imaging and yield unambiguous quantification of FRET 

efficiencies. Ratiometric imaging, despite easier acquisition procedure, can results in 

erroneous interpretation of FRET efficiency due to classical drawbacks of quantitative 

fluorescence imaging. The apparent easier acquisition procedure makes it available 

to researchers who are unaware of the factor that might complicate fluorescence 

quantification. We will thus focus here on some key elements responsible for these 

misinterpretations. 

Fluorescence microscopy is mainly used for a qualitative imaging of proteins, 

lipids or nuclear acids distribution in cells. Indeed, quantifying the distribution of these 

molecules is strongly complicated by various optical, physical and biological 

parameters [141]. Many of them can be circumvented by ratiometric imaging and are 

not an issue in the case of KAR imaging. However several parameters remain 

critical. For example, the properties of the illumination sources, the optics of the 

microscope or the sensitivity and signal to noise ratio of the detectors can affect both 

fluorescence and ratio measurements. Some of these parameters can be easily 

optimized by an advised choice of the elements available on the acquisition systems. 

For instance, using apochromatic objective with corrected chromatic aberration to 

avoid focusing the excitation wavelength at two different positions will prevent strong 

border effects. Others are more difficult to avoid (Fig. 18 gives several examples) and 
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will strongly depend on the acquisition technique used for measuring the ratio 

(Sequential Ratio: SR, Dual View Ratio: DVR, Dual Channel Ratio, DCR). 

 

 

Figure 17: Schematic representation of the method for the evaluation of kinase inhibitor with 
FRET-based Biosensor EKAR by high throughput screening. 

Field illumination  

Non homogeneous field illumination and light collection is a classical problem 

encountered both in widefield and in confocal microscopy and can yield to significant 

differences in intensity measurements from the center to the border of an image. We 

encouraged users to verify the field homogeneity of its own system using a reference 

sample. In ratio imaging, this may not be a major issue if the field non-homogeneity is 

the same for sequential ratio (this is most of the time the case for SR, Fig.18 A). 

Indeed, if each pixel of the emitted IFRET and Idonor images are multiplied by a same 

factor, the ratio measurements will stay accurate despite non-homogeneities in the 

field. On the contrary, for dual-view or dual channel ratio, this may be a major issue 

because both images are measured on either two distinct detector parts or two 

different cameras. Detector variability is thus spatially uncorrelated and may strongly 

impact the ratio values (Fig. 18 B and C). It is thus absolutely required to suppress 

this field illumination homogeneity by acquiring reference images using fluorescent 

solutions. When differences in field illumination persist, corrections can be carried out 
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by normalizing pixel intensities using reference images. This procedure is called the 

shading correction [142]. 

Besides correcting for spatial field inhomogeneities, the shading correction 

also intrinsically calibrates the absolute ratio value. Shading images are acquired 

with a uniform sample of a fluorescent chromophore, chosen to emit fluorescence at 

both wavelenghts of interest. In the particular case of CFP-like and YFP-like 

chromophores, a suitable fluorescent dye is Coumarin 343, which emits at both 

wavelengths. When each acquired image is divided by its corresponding shading 

image, by definition, the ratio of coumarin dye is equal to 1 [74, 143]. This method 

thus defines ratio values with respect to a reference chromophore and thus defines 

the "balance" between the two channels. This procedure allows easier comparison 

between setups, which may have different spectral sensitivities. 

Image mis-registration between acquisition channels. 

In the sequential ratio set-up, the images acquired at two wavelengths may not 

be perfectly registered. This may result from wedge effects caused by the non-

parallel faces of the emission filter. This is easily corrected by a translation of one of 

the image by a few pixels and algorithm exist to determine the optimal sub-pixel 

registration correction [144]. In addition, if the objective has a chromatic aberration, 

sequential ratio allows for a focus correction by a fixed value which can be accurately 

determined using fluorescent beads. When cellular movement occurs at the time 

scale of the sequential acquisition, no correction can be applied and the system is 

just not fast enough for measuring the biological event of interest and simultaneous 

detection with dual view or dual channels may be needed. In these configurations, in 

addition to the linear translation of one image with respect to the other, non-linear 

deformation may occur as a result of different optical path followed by both 

wavelengths, and more elaborate algorithm that correct for image skewing must be 

applied. Misregistration effects are nonetheless a common cause of data 

misinterpretation and the experimenter should look carefully at the images for border 

effects which usually show a typical rainbow appearance (Fig 18 D). 

 Controlling biological samples 

Parameters such as temperature or pH can directly affect chromophore 

properties. In addition, these physical parameters plus other biologically relevant 
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parameters (osmolarity, ion and metabolites concentrations…) may alter the activity 

of signaling cascades (including kinases) and hence the measurements obtained 

with KAR biosensors. Experimental conditions must therefore be controlled in order 

to minimize the impact of such parameters. 

 

Figure 18: Field illumination and cell movement between IFRET and Idonor acquisition channels 
effects on ratio imaging. For each panel, cell exhibiting an equal IFRET and Idonor is imaged through a 
non-homogeneous field illumination and ratio image is calculated. Procedure is detailed in A. The 
expected ratio value is thus equal to one for the whole image. In B-D, we can see erroneous ratio 
images due to different sources of artifacts. See text for more details. 

Temperature 

Concerning the temperature, experiments must be carried out at a stable 

temperature (usually 37°C) inside thermostated space surrounding the whole 

microscope. These incubators require hours to warm up and reach a stable 

temperature and should always be turned on to ensure optimal stability. The 

temperature probe should be positioned as close as possible to the sample. The 

thermal inertia due to contact with both the objective and the microscope stage might 

need direct control with thermostatic controllers. While temperature probes are most 

of the time positioned in the air, there can be a large difference between the average 

enclosure and the sample temperature. Calibration of this difference must thus be 

performed by positioning the temperature probe in the medium [145].  
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Imaging media and perfusion 

In long-term experiments, drying of the imaging medium modifies ionic 

concentrations and pH. Buffered medium can be used for short-term experiments 

(from two to four hours depending on cell type). For longer measurements, the use of 

a CO2 incubator and a perfusion system to renew culture medium is recommended. 

In all cases, media containing phenol red should be avoided, as this molecule is 

slightly fluorescent and leads to an unwanted fluorescent signal. Phenol red free 

medium must be preferred. Details for the preparation of dedicated imaging media 

can be found in [38, 51]. 

Perfusion systems are very useful to add drugs into the sample. Alternatively, 

drugs in preheated medium can be applied manually in the dish with a Pasteur 

pipette. This can however lead to motion artifacts because of shear stress, and some 

practice is necessary. 

Biosensor expression level 

Transfection agents or electroporation are often chosen to transfect cells with 

biosensors plasmids. Viruses (for example: adenoviruses or Sinbis) can be 

considered for kinase activity measurement in cells resistant to classic transfection 

method [146], or in tissue [147]. However, the biosensor expression level can induce 

differences in amplitude response. Indeed, the FRET probes destabilize the reaction 

equilibrium between a kinase and its substrates. We therefore recommend 

performing measurements on cells with equivalent KAR expression level. To avoid 

the variations caused by the sensor expression levels, the creation of a stable cell 

line might be an alternative of choice. 

Photo-induced effects 

Photo-induced effects are other sources of artifacts. Among these effects the 

most obvious is cell death, easily noticeable by changes in cell morphology. Photo-

stress is more tricky to observe and can result in cell auto-fluorescence. While auto-

fluorescence spectra are broad and cannot be corrected by filters, and auto-

fluorescence lifetime is very short and can be confused with a FRET event, both 

spectral and lifetime properties of auto-fluorescence can create artifacts in 

measurements with both intensity ratio and lifetime based techniques. The last 

photo-induced effect is the photo-bleaching that can also falsify measurements with 
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all techniques, therefore leading to unacceptable errors in data interpretation. 

Extensive controls of photo-induced effect on cells expressing a KAR negative 

reference are thus indispensable (See paragraph negative control hereafter). 

These photo-induced effects depend on laser power and exposure time. Thus, 

it will be less critical for techniques that require a lower illumination power (Paverage: 

measured using a powermeter). For example, ratiometric measurements will be less 

affected than FD-FLIM experiments and TSCPC is the most stressful method 

because of the time necessary to scan an entire cell. Since most biosensors are 

based on the CFP/YFP FRET pair (or their variants such as Cerulean, Turquoise, 

CyPet, Venus, circularly permutated Venus, YPet...), we will focus on these 

fluorophores to exemplify the acquisition time and power required for each technique 

(performed on our systems).  

In ratiometric measurements, after exciting the donor, the exposure time is set 

to ~500 ms and ~200 ms (Paverage< 1 mW) for CFP and YFP respectively with our 

microscopy system [48]. As described in the analysis section of this chapter, 

acquiring a channel with excitation and observation of YFP is a requisite control in 

intermolecular FRET. It is, however, not recommended in the case of sensor 

imaging, because this optional correction step will increase both photo-induced 

effects and noise, without improving results. Acceptors excitation can however be 

useful in another way. Indeed, acceptor photo-bleaching can be a good negative 

control to recover a basal level after activation of the kinase of interest. The photo-

induced effect arising from this high energy laser excitation must however be 

controlled [71]. 

For FLIM, the acquisition time strongly depends on the technique used. For 

FD FLIM measurements using our set-up, the exposure time of the donor is 

comprised between 100 ms and 300 ms with a laser power Paverage= 4mW send to a 

spinning disk system equipped with a 63x oil objective (NA=1.4). To achieve optimal 

compromise between the number of phase images and the accuracy of lifetime 

determination, 12 phase shifted images are chosen. Moreover achieving a good 

signal to noise ratio often requires averaging each images three times. From these 

constraints, the overall exposure time for one lifetime image is comprised between 3 

to almost 10 sec. For time resolved lifetime measurements with our system, a field-

scan takes about 5 minutes (still with an average laser power of a few mW) and will 
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require data binning to achieve precise lifetime map while the measurements per 

pixel only takes few tens of milliseconds. 

 

Figure 19: U20S cells transfected with AKAR3 or AKAR3 inactive mutant. PKA was activated 

using an adenylate cyclase activator (forskolin, 12.5 M). Lifetime measurements were performed in 
frequency domain, as described in Section II. Graphs represent the average phase fluorescence 
lifetime measured for the entire cell as a function of time. Experiments with either biosensor were 
performed separately, but are represented on the same graph for clarity. Images represent phase 
lifetime before (left panel) and after (right panel) induction. 

The choice of imaging technique thus depends on i) the time resolution ii) the 

number of images needed iii) the spatial resolution. For example TCSPC can be 

used to obtain a precise image of the subcellular localization of kinase activity before 

and after the activation of the biological signal, while ratiometric measurement or 

phase and modulation technique will be preferred to achieve precise estimate of 

kinase activity kinetics over time. The use of biosensor targeted to subcellular 

compartment measured by ratio imaging can also be a solution to achieve precise 

activity localization without compromising acquisition speed. 

In conclusion, we suggest avoiding any unnecessary exposure of fluorophores 

especially the donor in FLIM experiments; moreover photo-bleaching of the CFP will 

occur faster than for YFP variants. For example (and if it is possible) find the focus 

using transmitted light rather than a mercury lamp. Due to the numerous possible 

photo-induced artifacts, negative controls are indispensable. 

Negative Control 

Sensing applications require the creation of a control biosensor. Concerning 

KAR the phosphorylable residue within the substrate (serine, threonine, or tyrosine) 

may be mutated to a non-phosphorylable amino acid such as glycine or alanine. 

Expressed in cells, it should not produce a FRET signal in response to the 
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stimulation of the kinase of interest. It will therefore serve as negative control and 

provide the basal level of FRET signal in living cells. An example of such an 

experiment is presented in figure 19 (Fig. 19). There is unfortunately no positive 

control for FRET measurements in living cells (all sensors in folded position), but a 

strong induction using activating agents can be envisaged as an alternative. 

Molecular strategies for such a positive control should be envisioned in the near 

future as both control biosensors could provide a complete sensing range. 

 Biosensor dynamic range and reproducibility 

The dynamic range of a biosensor is a critical parameter to consider, and 

increasing this range is often the purpose of biosensor optimization. The dynamic 

range depends directly on FRET efficiency and can be increased by switching 

fluorophores, improving linkers, and enhancing kinase binding to the biosensor (with 

the insertion of a docking domain for example) as described earlier (see section IV). 

Possessing the appropriate pharmacology allowing maximum stimulation and 

inhibition is essential for estimating this dynamic range. More than just control, the 

amplitude revealed (as well as other criterions such as sensitivity) directs the choice 

of the biosensor to use.  

As another example, the Extracellular regulated Kinase Activity Reporter 

(EKAR) [38] shows a relatively low dynamic range, both for ratiometric or lifetime 

based measures, compared to a cAMP biosensor (TEpacVV) recently published [136]. 

Indeed, cells expressing EKAR exhibit a 20% average ∆R/R and 120 ps ± 20 

average ∆τ, while cells expressing TEpacVV results in a mean ∆R/R of more than 80% 

and a mean ∆τ of 700 ps ± 50 ps both after maximum stimulation/inhibition (10 cells 

per conditions, unpublished results). While these biosensors differ in their 

composition, the fluorophores of TEpacVV were optimized to improved FRET 

efficiency whatever the technique employed. Indeed, the donor fluorophore of 

TEpacVV (mTurquoise) is characterized by a phase lifetime of 3,7 ns [148] instead of 

the 2,3 of Cerulean [149] in EKAR, which improved the dynamic range in 

fluorescence lifetime measurements. As an acceptor, TEpacVV use a dimer of 

CpVenus-Venus instead of a single Venus in EKAR, in order to improve detection of 

the sensitized emission (See section IV). 



Experimental strategies  Review – From FRET imaging to practical methodology… 

172 

After all these considerations related to fluorescence, FRET measurements, 

data analysis, creation/optimization of biosensor and methodologies for kinase 

activity measurements, we would like to enlighten the reader about the way data are 

being employed today in system biology approaches.  

3.2.8. Towards quantitative approaches in biological 

processes 

The molecular toolkit for kinases activity reporters is called to address the role 

of kinases in the orchestration of signal transmission within the cells. It remains 

challenging to understand how a signal pattern is organized and provides accurate 

integration and appropriate cellular decision while mobilizing common effectors in 

response to different inputs. Indeed kinases like Erk, PKA, Akt are considered as 

common effectors and their spatiotemporal dynamics drives cellular functions. 

Receptors are often acting as organizer of signal integration, giving its shape to the 

signal: transitory, sustained, all-or-none.  

Regarding Erk, MAPK/Erk network exhibits plasticity and different dynamical 

properties may arise from connections within this network. For instance, rewiring of 

Erk pathway architecture in the context of NGF or EGF stimulation in PC12 cells 

(model for neurone differentiation) is believed to built the dynamical response 

observed for these growth factors: transient or sustained MAPK/Erk cascade 

activation following EGF or NGF stimulation, respectively [150, 151]. 

Similar dynamical properties of the MAPK/Erk pathway have been suspected 

to affect signaling cascade involved in cell death [152]. Actually, subcellular 

localization of MAPK/Erk pathway components and dynamical spatiotemporal 

changes are believed to determine cell fate between proliferation and death [153]. 

Sustained Erk activation, which is sufficient to induce cell death, is often associated 

with cell death mediated by ROS [154] because these radicals can suppress protein-

phosphatases activities of MKP (MAPK-specific Phosphatases), exerting key roles in 

the regulation of MAPK/Erk dynamics [155]. Inhibition of MAPK/Erk activation using 

inhibitors against components of the MAPK cascade has a survival effect on cells 

induced to die following chemicals or physicals challenges. Forced MAPK/Erk 

cytosolic localization prevents a survival or a mitogenic response, but potentiates 

activities of specific pro-apoptotic proteins such as DAPK [156], Bik [157] and PEA-
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15 [158] via the activation of PI3K/Akt pathway. Depending on cell type and stimulus, 

compartmentalized MAPK activity will mediate either cell survival or cell death (see 

for review [3]). Thus, spatial signatures for the signal propagation of the MAPK/Erk 

signaling pathway have started to be explored both at experimental and theoretical 

levels in many different cellular models, from gametes to tissues [159-161]. 

Scaffolding proteins and interactions of kinases with specific components of 

the cell architecture also determine the spatial and temporal integration of the 

cAMP/PKA signal [162-164]. In addition, the simple spatial organization of the cell 

also determines the spatiotemporal organization of the signal leading to differential 

activation within the cell compartment. Indeed, in the case of the cAMP/PKA 

signaling cascade, modeling studies [165] and imaging experiments [166, 167] 

revealed the importance of cell morphology in the particular situation of neurons, 

where sub-membrane domains display faster and stronger responses than the bulk 

somatic cytosol [168]. It is therefore of great importance to address the question of 

intracellular signal integration bearing in mind the multi-dimensional -space and time- 

parameters which determine the physiological outcome of an external signal. 

Kinase Activity Reporters methodologies will definitely be able to generate 

enough data to be considered for modeling approaches. Still, while recording 

dynamical pathway, which may exhibit variation from one cell to another, one needs 

to identify within these apparently variable responses, reliable marks or features 

which are common between experiments and invariant to changes in cell 

morphologies or behaviors.  These marks may be obtained through acute stimulation 

/ inhibition of a pathway [169] but a response hierarchy may also be obtained from 

constitutive fluctuations in the activity of the biosensors [170]. The latter approach is 

performed in a non-perturbed pathway, in conditions closer to a physiological range 

than the one in acute inhibition or activation. In concept, fluctuation analysis is quite 

scalable to a large number of components and require further developed 

mathematical tools to ingrate this large sets of component activities. 

3.2.9. Outlook and perspective 

 What about multisensing? 

In prospect to detect several parameters simultaneously in the same cell, the 

idea of using multiple probes is becoming more and more attractive. As the number 



Experimental strategies  Review – From FRET imaging to practical methodology… 

174 

of available tools is increasing, monitoring several modulators of the same pathway 

provides opportunities towards the understanding of cells reaction dynamics. The 

principal challenge of those experiments is the combination of the well-chosen 

fluorophores pairs with the appropriate technique. Several parameters have to be 

considered and are well described and illustrated in the excellent review by Carlson 

and Campbell [171]. 

Piljic and coworkers [172] present such an example of multisensing applied to 

the monitoring of several effectors involved in the regulation of calcium chloride 

conductance. It was achieved in epithelial cell line using simultaneously 4 

biosensors, including 3 FRET-based sensors. These refined experiments were 

performed by ratiometric imaging taking advantage of i) the spectral shift between the 

two FRET pairs (namely CFP/YFP and mOrange/mCherry), and ii) the subcellular 

targeting of some of these sensor has been used to spatially discriminate signals 

from each reporters. 

Taking into account the complexity, dynamics and stress reactivity of cellular 

environment, measurements of molecular dynamics could require combination of 

fluorescence analysis techniques such as fluorescence lifetime, spectrum or intensity 

fluctuations analysis, and development of a multimodal microscopy suitable for 

different complexity degree of the living matter: cells, tissues and whole organism. So 

far biosensor recording has been achieved using mainly ratiometric techniques, 

however FRET-FLIM could emerge as an interesting alternative.  

 Kinase activity measurements in living animals. 

Studying kinase activity profiles in living tissue or animals provides new 

insights on cells behavior in intact biological context. Few publications describe the 

use of FRET-based biosensor in living animals. For example ATP levels in a 

transgenic worm (Caenorhabditis elegans expressing ATeam [173]) , or cAMP levels 

in the fruit-flies (transgenic Drosophilia melanogatser expressing GFP-PKA [174, 

175]) as well as Rac GTPase activity in zebrafish (pRaichu RacFRET mRNA 

microinjected in Danio rerio embryos [176]) has already been performed. 

However, these first experiments have highlighted some difficulties. Indeed, 

biosensor overexpression can lead to abnormal embryonic development or lethality 

depending on promoter strength, simply because the cAMP biosensor is built on an 
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active PKA enzyme bearing its intact catalytic activity [174]. It is therefore strongly 

suggested to use biosensors which have no biological effect such as AKAR and 

indeed, the expression of these sensors proved to be harmless and did not affect 

memory processes in the living drosophila [177]. The depth at which measurements 

must be done, combined to the required low KAR expression levels, render 

measuring relevant variations more difficult [176]. The use of two photon excitation 

microscope which increases the imaging depth and reduce the phototoxicity must be 

preferred for opaque tissues or deep imaging for both ratio imaging and TD-FLIM 

experiments and indeed provided new insight on cAMP/PKA signaling processes in 

living drosophila [177]. 

Generation of transgenic mice expressing FRET-based biosensor remains a 

challenge [178], for example because of the two fluorophore’s cDNAs recombination 

[179]. Although this has already been done, the low expression levels (probably due 

to gene silencing) complicate the imaging procedure [180]. Nevertheless, transgenic 

mice were generated for some KAR including EKAR and AKAR (with a high 

expression level), and successful kinase activity measurement were realized notably 

in auricular skin and small intestine [179]. Another line has been developed with a 

ubiquitous cAMP sensor expression which allowed direct cAMP measurement on a 

variety of primary cell preparations [181]. As a perspective, transgenic animals can 

be designed for ubiquitous or tissue specific KAR expression. Furthermore, the 

combination of animals expressing a KAR and mutated/KO/overexpressing gene 

involved in the regulation of the kinase of interest can increase our understanding of 

regulatory networks. 

While being somewhat challenging in a practical way, kinase activity 

measurements and biosensors in general, have help scientists better their 

understanding of biological processes. These tools allow for the generation of data 

set that can be exploited by mathematician for modeling approaches of regulatory 

networks. Finally, since biosensors experiments are performed within an intact 

physiological context, new light is being shed onto the spatiotemporal dynamic of 

molecular effectors involved in the regulation cellular functions.  
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Abstract 

Uncoupling of ERK1/2 phosphorylation from subcellular localization is 

essential towards the understanding of molecular mechanisms that control ERK1/2-

mediated cell-fate decision.  ERK1/2 non-catalytic functions and discoveries of new 

specific anchors responsible of the subcellular compartmentalization of ERK1/2 

signaling pathway have been proposed as regulation mechanisms for which dynamic 

monitoring of ERK1/2 localization is necessary. However, studying the 

spatiotemporal features of ERK2, for instance, in different cellular processes in living 

cells and tissues requires a tool that can faithfully report on its subcellular distribution. 

We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated 

coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully 

visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably 

and functionally both in vitro and in single living cells. We then assessed the 

subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in 

non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 

signaling pathway. Finally, we used our coexpression system in Xenopus laevis 

embryos during the early stages of development. This is the first report on 

MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there 

is a strong correlation between the spatiotemporal subcellular distribution of ERK2-

LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to 

study the spatiotemporal localization of ERK2 and its dynamics in a variety of 

processes in living cells and embryonic tissues. 

4.1.1. Introduction 

Extracellular signal-Regulated protein Kinases 1 and 2 (ERK1/2) are members 

of the Mitogen Activated Protein Kinase (MAPK) superfamily. The ERK1/2 signaling 

pathway plays an important role in the cellular signaling network by regulating 

several cellular processes, such as cell survival, proliferation, migration, 

differentiation and death, depending on the cellular context [1,2]. The ERK1/2 

signaling pathway displays the characteristic three-tiered core cascade MAPK 

architecture [3], ensuring not only signal transduction but also amplification of signals 

from different membrane-stimulated receptors, such as Receptor Tyrosine Kinases 

(RTK) and G Protein-Coupled Receptors (GPCRs) [4,5]. Activation of the pathway by 



Research article – Novel reporter for faithful monitoring of ERK2… Results 

   189 

different extracellular stimuli triggers sequential phosphorylation of the protein 

kinases Raf, MAPK/ERK Kinase 1/2 (MEK1/2) and ERK1/2, which constitute a 

conserved signaling module. Compelling evidence indicates that the ERK1/2 

cascade is involved in the pathogenesis, progression and oncogenic behavior of 

several human cancers, including lung, breast, colorectal and pancreatic cancer, as 

well as glioblastoma and melanoma [6,7].  

Though the biochemical events of ERK1/2 signaling have been well 

characterized, a central question remains: How can this signaling cascade trigger 

different cellular outcomes? An increasing number of papers have shown that 

modulation of the duration, magnitude and subcellular compartmentalization of 

ERK1/2 activity by specific key regulators are interpreted by the cell to determine cell 

fate [8,9]. Moreover, preservation of the integrity of cell decisions requires control of 

the dynamic subcellular distribution of ERK1/2 and its ability to access ERK1/2 

substrates. In resting cells, components of the ERK1/2 signaling pathway are mainly 

sequestered in the cytoplasm by cytoplasmic scaffold/anchoring proteins [10]. One of 

the positive regulators of the ERK1/2 cascade is the evolutionarily conserved Kinase 

Suppressor of Ras (KSR), which facilitates activation of the pathway by bringing the 

components of ERK1/2 signaling close to Ras at the plasma membrane [11]. MEK1 

is sequestered in the cytoplasm of resting cells by its N-terminal nuclear export 

sequence (NES) and functions as a cytoplasmic anchor for inactive ERK2 [12]. Upon 

extracellular stimulation and activating phosphorylation, MEK1 and ERK2 are 

released from cytoplasmic anchors and rapidly translocate into the nucleus [13–16]. 

Besides its apparent cytoplasmic localization, 5% of MEK1 can be found in the 

nucleus at the peak of activation of the pathway [17]. MEK1 can rapidly transit 

between the cytoplasm and the nucleus much faster than ERK2 and therefore acts 

as a nuclear export shuttle for ERK2 and other nuclear proteins [18]. Besides 

differences between cells in spatiotemporal dynamics of ERK1/2 [19], it appears that 

ERK1/2 phosphorylation and subcellular distribution are uncoupled in several cellular 

models due to interaction of ERK1/2 with various anchors/scaffolds [20,21]. Upon 

mitogenic stimulation, ERK1/2 signaling upregulates the expression of short-lived 

nuclear anchors such as MAPK phosphatases (MKP), which leads to 

dephosphorylation of ERK1/2 and accumulation of its inactive form in the nucleus 

several hours after pathway activation [21,22]. Monitoring the dynamic behavior of 
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ERK1/2 in single cells will resolve this apparently conflictual relationship and evaluate 

the effects of specific regulators of ERK1/2 compartmentalization on cell fate 

determination. 

To visualize ERK1/2 dynamics in living cells, various studies used ERK1/2 

tagged with GFP-like fluorescent proteins and found that overexpressed eGFP-ERK2 

is predominantly localized in the nucleus of resting cells. This unexpected localization 

of eGFP-ERK2 was due to the disruption of MEK/ERK balance [12,15]. This problem 

has been often ignored [16,23–25] or tackled by coexpression of MEK1 to restore the 

balance and the cytoplasmic localization of ERK2 expressed at high levels in serum-

starved cultures without stimulation [26,27]. These coexpression strategies mostly 

suffer from the inconsistency of the coexpression patterns of ERK2 and MEK1 in 

different cells. Coexpression of eGFP-ERK2 and MEK1 is generally associated with 

an abnormally short persistence of eGFP-ERK2 in the nucleus of resting cells, in 

contrast to endogenous ERK2, which remains in the nucleus several hours after 

mitogenic stimulation [21,26,27]. To overcome this difficulty, other studies selected 

cells expressing low levels of eGFP-ERK2 (100150 nM) compared to the estimated 

endogenous protein level (1 M) [28] to obtain a faithful localization profile of the 

kinase in serum-starved conditions [29]. However, transfected cells are dimly 

fluorescent, which are unsuitable for long-term video imaging. As a new approach to 

maintain the endogenous MEK/ERK balance, an exogenous tagged version of ERK1 

was re-expressed in ERK1-deficient cell lines by transient transfection of a plasmid 

encoding ERK1 under the control of a strong promoter [30]. Cells were selected for 

tagged-ERK1 expression level on the basis that the nucleus was not brighter than the 

cytoplasm in the starved conditions. Nevertheless, the delicate MEK/ERK balance 

was progressively disrupted a few hours after transfection, resulting again in aberrant 

nuclear accumulation of ERK1 in non-stimulated conditions. Another study used a 

retroviral tagging approach and introduced the full-length sequence of YFP as a new 

exon into one allele of the erk2 gene [19]. The tagged ERK2 was in minority 

compared to the wild-type protein, which led to proper subcellular distribution of 

tagged-ERK2 in the starved conditions. But again the fluorescent intensity was dim 

due to the low expression level. All these approaches are limited by the need for 

severe imaging conditions (causing phototoxicity, photobleaching and decrease of 
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signal to noise ratio) that are not compatible with live cell video-microscopy, 

especially considering the stress-sensitive nature of MAPK pathways [31]. 

To avoid the artefacts in ERK2 localization patterns and facilitate the long-term 

functional imaging, we developed a novel ERK2 localization reporter named ERK2-

LOC. We employed the T2A-mediated coexpression of ERK2 and MEK1 to enable 

faithful monitoring of eGFP-ERK2 localization dynamics in both basal and growth 

factor-stimulated conditions. Our procedure was characterized using standard 

biochemical approaches and validated by live-cell imaging in living NIH-3T3 cells. 

Final verification was conducted in the Xenopus laevis model during the early 

developmental stages. This is the first time that ERK2 localization is studied in living 

embryos. Our simple approach can be used for the reliable study of the 

spatiotemporal dynamic of ERK2 in living cells and in live model organisms. 

4.1.2. Materials and Methods 

Ethics Statement 

All animal experiments were performed at Lille 1 University according to the 

rules of the European Community Council guidelines (86/609/EEC) for laboratory 

animal experimentation.  The local institutional review board (Comité d’Ethique en 

Expérimentation Animale Nord-Pas-De-Calais (CEEA, 07/2010) approved all animal 

experimental protocols in this study.  

Reagents 

Recombinant mouse fibroblast growth factor 4 (FGF4, #5846-F4-025/CF) was 

purchased from R&D Systems and fetal bovine serum (FBS, #10082-147) from 

Gibco, Life Technologies. Other reagents, e.g., bovine serum albumin (BSA, fraction 

V, #05482), dimethylsulfoxide (DMSO, #D8418) and MEK inhibitor (U0126, #U120) 

were from Sigma Aldrich.  

Plasmid constructs 

The plasmid pCS2-Myr-TdTomato-T2A-Histone2B-GFP was kindly provided 

by Dr. Shankar Srinivas (Department of Physiology Anatomy and Genetics, 

University of Oxford, United Kingdom). Xenopus laevis ERK2 (xERK2) plasmid was a 

kind gift from Dr. Lynn Heasley (Health Science Center, University of Colorado, 

Denver, USA).   
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Primer name  Oligonucleotide sequence (5’3’) Tm(°C) / 

%GC 

BackboneΔAgeI-F GCTACTTGTTCTTTTTGCAACCGGTGGATCCCATCGATTCGAATTC 70 / 46 

Backbone7G-F1 CCGGTGGCGCGCC GCTAGCGGTGGCGGAGGTGGCGGAGGTTA 84 / 76 

Backbone7G-R1 CCGGTAACCTCCGCCACCTCCGCCACCGCTAGC GGCGCGCCA  84 / 76 

Backbone7G-F2 CTAGCGGCACCGGTGGCTGTACAAGGGAGGCGGTGGAGGCGGTGGG 82 / 72 

Backbone7G-R2 CTAGCCCACCGCCTCCACCGCCTCCCTTGTACAGCCACCGGTGCCG 82 / 72 

Backbone7G-F3 CCGGAGGTGGCGGAGGTGGCGGGACTAGTCCAGGCGCGCCTCCGC 84 / 78 

Backbone7G-R3 TCGAGCGGAGGCGCGCCTGGACTAGTCCCGCCACCTCCGCCACCT 84 / 73 

xERK2.AgeI-BamHI-F TACCGGT GGATCCACATGGCAGCGGCAGCGGCCTCGTC 79 / 68 

xERK2.XhoI-R GAGGCTCGAGTCAGTACCCTGGCTGGAATCTAGCG  71 / 60 

eGFP.AscI-F CGCCGGCGCGCCAGCCATGGTGAGCAAGGGCGAGG  81 / 77 

eGFP.NheI-R ACCGCTAGCCTTGTACAGCTCGTCCATGCC  70 / 60 

T2A.AscI-F 
CGCGCCGGACTAGTCCATCGATGGCAGTGGAGAGGGCAGAGGAAGTCTGCT

AACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGGTGG  
84 / 62 

T2A.AscI-R 
CGCGCCACCTGGGCCAGGATTCTCCTCGACGTCACCGCATGTTAGCAGACTT
CCTCTGCCCTCTCCACTGCCATCGATGGACTAGTCCGG   

84 / 62 

xMEK1.SpeI-F GGACTAGTCCAACATGCCTAAAAAGAAGCCT  64 / 45 

xMEK1.ClaI-F CCATCGATGGCCACTCCGGCGGCATGGGTTG  74 / 68 

mMEK1.SpeI-F1 GGACTAGTCCAAGATGCCCAAGAAGAAGCCG  67 / 55 

mMEK1.SpeI-F2 GGACTAGTCCCAAGAAGAAGCCGACGCCCATCCAGCTG 73 / 61 

mMEK1.ClaI-R CCATCGATGGCGATGCTGG CAGCGTGGGTTG  73 / 65 

mMEK1.AscI-R AGGCGCGCCTCAGATGCTGGCAGCGTGGGTTGGTGTGCTGGG 81/ 69 

Abbreviations: 7G, 7-glycine linker; F, forward primer; R, reverse primer. Restriction enzyme sites are 
underlined and start/stop codons are in bold.  

Table 1. Sequence of oligonucleotide primers used in this study. 

The plasmid encoding Rattus norvegicus ERK2 (rERK2) fused at its N-

terminal to the enhanced green fluorescent protein (eGFP-rERK2) was a kind gift 

from Dr. Georges Baffet (UMR1085 INSERM, University of Rennes, France). All 

oligonucleotides are listed in Table 1. The synthetized DNA sequence encoding the 

Thosea asigna virus 2A peptide (T2A peptide) was inserted into the pCS2+ 

backbone in frame between untagged Mus musculus MEK1 (mMEK1) and eGFP-

rERK2 to build the expression vector pCS2-mMEK1-2A-eGFP-rERK2 (abbreviated 

rERK2-LOC). We next fused a mCherry to the N-terminus of mMEK1 to generate the 

construct named pCS2-mCherry-mMEK1-2A-eGFP-rERK2. The full-length cDNA 

sequences of MEK1 and ERK2 from Xenopus laevis were subcloned upstream and 

downstream, respectively, of the T2A peptide. We fused an eGFP to the N-terminus 

of xERK2 to generate the construct named pCS2-xMEK1-2A-eGFP-xERK2 

(abbreviated xERK2-LOC). As a control, we fused the T2A sequence to the N-
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terminus of eGFP-xERK2 (pCS2-2A-eGFP-xERK2). Based on published studies, we 

kept a Gly-Ser-Gly (GSG) linker between MEK1 and the T2A sequences to optimize 

cleavage efficiency [32,33]. The cloning procedure is detailed in Supplementary 

Material (plasmid constructs).  All PCR products were gel purified and digested with 

restriction endonucleases according to the cloning strategies. All resulting constructs 

were verified by restriction digestion followed by agarose gel electrophoresis, or by 

PCR colony screening (#2200210, MasterTaq Kit, 5Prime), and then validated by 

sequencing (Genoscreen, France). Restriction endonucleases Pfu and Taq DNA 

polymerase, Klenow fragment, Mung Bean Nuclease, T4 Polynucleotide kinase 

(PNK), T4 DNA ligase, as well as dNTPs, ATP and specific buffers were purchased 

from New England Biolabs. All oligonucleotides were synthesized by Eurogentech 

(Belgium). Each complementary oligonucleotide designed to create double-stranded 

cassettes was 5’-phosphorylated by T4 PNK and then purified using Bio-Gel P-6 

Micro Bio-Spin chromatography columns (#732-6222, Biorad). DNA fragments were 

all purified on Qiagen plasmid purification columns (#28106, #28706 and # 27106, 

Qiagen).  

Cell Culture and Transfection 

NIH-3T3 cells were purchased from American Type Culture Collection (VA, 

USA) and maintained at 37°C under 5% CO2 in Dulbecco’s Modified Eagle Medium 

(DMEM, #11885-084) supplemented with 10% FBS and 100 U/mL 

penicillin/streptomycin (P/S, #15140-122) (Gibco, Life Technologies). For live 

imaging, NIH3T3 cells were plated on 35-mm dishes (#81156, ibiTreat, Ibidi) to reach 

60% confluence at the time of transfection, performed using JetPrime reagent (#114-

15, Polyplus) according to the manufacturer’s instructions. Cells were starved by 

adding 1% FBS for 24 h before experiments began. One hour before cell imaging, 

medium was replaced with preheated Leibovitz L-15 bicarbonate-free medium 

(#11415-049, Gibco, Life Technologies) supplemented with 1% FBS and 100 

units/mL P/S at 37°C in air.  

SDS-PAGE and Immunoblotting  

At specified intervals after treatment, NIH-3T3 cells were washed twice in ice-

cold PBS and scraped using ice-cold RIPA lysis buffer (50 mM Tris-HCl, pH 7.5; 150 

mM NaCl; 1 mM EDTA; 0.5% sodium deoxycholate; 1% Triton X-100 and 0.1% SDS) 
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or immunoprecipitation lysis buffer (10 mM Tris-HCl, pH 8.0; 150 mM NaCl; 2 mM 

EDTA; 10% glycerol and 1% NP40). Lysis buffer was freshly supplemented with 1X 

EDTA-free Complete protease (#05892791001, Roche) and 1X PhosStop 

phosphatase inhibitor cocktail (#04906845001, Roche). Extracted proteins (30 µg) 

were separated in 12% SDS polyacrylamide gels and then transferred onto 

nitrocellulose membranes (Amersham Bioscience). Protein extracts from 10 whole 

Xenopus laevis embryos were prepared as described [34] and loaded into a 12% 

SDS polyacrylamide gel. Membranes were blocked using TBS with 0.05% Tween20 

(TBS-T) containing 5% non-fat dry milk (Biorad) or in 2% BSA for phospho-

antibodies. The antibodies were anti-ERK2 (polyclonal rabbit IgG (C-14) and 

monoclonal mouse IgG2b (D-2) from Santa Cruz Biotechnology, 1:1000), anti-actin 

(polyclonal goat IgG (I-19) from Santa Cruz Biotechnology, 1:1000) and anti-GFP 

(monoclonal mouse IgG1κ, clones 7.1 and 13.1, from Roche (#11814460001), 

1:1000). The phosphorylated forms of MAPK/ERK1/2 were detected using the anti-

MAPK activated (diphosphorylated ERK1/2) antibody (monoclonal mouse IgG1, 

clone MAPK-YT, from Sigma Aldrich (M9692), 1:2000). HRP-conjugated secondary 

antibodies were anti-rabbit IgG, anti-mouse IgG or anti-goat IgG (whole antibody 

from Santa Cruz Biotechnology (sc-2004, sc-2005, sc-2020), 1:10000). Membranes 

were developed using the Luminata Classico Western HRP Chemiluminescence 

Detection Reagents (WBLUC0500, Millipore).  

Immunoprecipitation of MAPK/ERK2 and MBP 
phosphorylation assay 

NIH-3T3 cell lysates (300 µg of protein) were immunoprecipitated directly as 

described [35]. Briefly, 50 µL of protein G magnetic beads (Millipore) per condition 

were washed and then conjugated with 1 µg of anti-ERK2 (C-14) or anti-GFP 

antibodies on a rotating wheel at 4°C overnight. Note that this anti-ERK2 antibody 

can also detect ERK1 although to a lesser extent. Antibodies against HA 

(#11583816001, Roche) were used as a control. The next day, antibody-conjugated 

beads were added to each sample and incubated on a rotating wheel at 4°C for 2 h. 

Supernatant was removed and beads were washed in lysis buffer. The MBP 

phosphorylation assay was performed on immunoprecipitated endogenous ERK2 

and eGFP-ERK2 according to the manufacturer’s instructions (#2430444, Millipore). 

MBP proteins were subjected to SDS-PAGE (15% gel) and immunoblotted using an 
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anti-phospho MBP antibody (monoclonal mouse IgG, clone p12, from Millipore 

(#05429), 1:1000).  

Immunofluorescence 

NIH-3T3 cells were seeded in eight-well dishes (#80826, ibiTreat, Ibidi). At 

specified time intervals, cells were fixed in 4% paraformaldehyde in PBS for 10 min. 

Afterwards, cells were rinsed three times with PBS and permeabilized with 0.5% 

Triton X-100 in PBS for 5 min. Cells were then blocked in 2% FBS; 5% normal goat 

serum and 2% BSA in PBS) for 1 h at room temperature and with primary antibodies 

in blocking solution at 4°C overnight. The antibodies were anti-MAPK activated 

(diphosphorylated ERK1/2, 1:500), anti-ERK2 (D-2, 1:200) and anti-ERK1/2 

(polyclonal rabbit IgG from Abcam (ab17942), 1:200). The next day, cells were rinsed 

three times with PBS and incubated in blocking solution containing anti-mouse Alexa 

Fluor 488 (polyclonal goat IgG from Life Technologies (A-10667), 1:500) and/or anti-

rabbit Alexa Fluor 594 secondary antibodies (polyclonal goat IgG from Life 

Technologies (A-11012), 1:500) for 1 h at room temperature in the dark. After three 

more washes with PBS, slides were mounted in ProLong Gold anti-fading reagent 

(P36930, Life Technologies) and stored at 4°C in the dark.  

Xenopus embryo manipulation, RNA microinjection and 
immunostaining  

Hormonal stimulation of female frogs, eggs collection, fertilization and 

dejellying of embryos were performed as previously described [36]. Xenopus 

embryos were staged as described [37]. Plasmids encoding eGFP-xERK2, 2A-

eGFP-xERK2 and xMEK1-2A-eGFP-xERK2 were linearized with NotI, purified and 

transcribed using SP6 RNA polymerase and the mMessage mMachine kit (AM1340, 

Ambion, Life Technologies) according to the manufacturer’s instructions. Synthetic 

RNAs were purified with Chroma Spin column (#636073, Clontech). Embryos at the 

one-cell stage were microinjected with 500 pg of RNA. Embryos at different stages 

were collected for western blotting and immunostaining or directly processed for 

whole-embryo confocal microscopy. Blastula, gastrula and tailbud stage embryos 

were placed in an imaging chamber containing a layer of 2% agarose MP 

(#11388983001, Roche) and 1/10 Marc’s Modified Ringers (MMR) solution (1 M 

NaCl; 20 mM KCl; 10 mM MgCl2; 20 mM CaCl2 and 50 mM Hepes, pH 7.5). Xenopus 

laevis embryos were fixed in 4% paraformaldehyde at 4°C overnight with gentle 
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shaking in glass vials and then processed for whole-mount immunostaining [38]. 

Antibodies were anti-ERK2 (D-2, 1:50) and Alexa Fluor 488 goat anti-mouse IgG 

secondary antibodies (1:100). Embryos were cut in half at the equator, and the 

animal half was mounted on a curved slide in ProLong Gold anti-fading reagent and 

stored at 4°C in the dark.  

Fluorescence imaging and data analysis 

Live-cell, immunofluorescence imaging and FRAP experiments were all 

performed with an inverted confocal Leica TCS SP5 X microscope (DMI6000, Leica 

Microsystems). For all experiments, a 63x/1.2NA water immersion objective was 

used, except for the result shown in Fig. 1A (40x/1.3NA oil immersion objective). 

Image size was 1024 x 1024 pixels and the zoom factor was 1, for a pixel size of 0.5 

µm. The confocal pinhole was set to 1.0 Airy, for a 0.921 µm optical slice. Laser 

sources were either a white light laser (Koheras) for live-cell imaging and 

immunofluorescence preparations, or an argon laser (Leica Microsystems) used at a 

wavelength of 488 nm for FRAP experiments. All experiments were performed at 

37°C.  

To quantify ERK2 nuclear translocation, we measured the average 

fluorescence intensity in the nucleus (𝐹𝑛𝑢𝑐)  and in the cytoplasm (𝐹𝑐𝑦𝑡𝑜)  to 

determine a nucleo-cytoplasmic concentration index (CI) calculated as follows:  

𝐶𝐼 =
𝐹𝑛𝑢𝑐 − 𝐵𝐺

𝐹𝑐𝑦𝑡𝑜 − 𝐵𝐺
 

where BG corresponds to the average fluorescence intensity background. 

Fluorescence intensity in fixed cells was quantified manually using ImageJ software 

(National Institutes of Health) by drawing specific ROIs in the nucleus and cytoplasm, 

and outside the cell for background. Fluorescence intensity quantification of ERK2-

LOC dynamics in single cells was done automatically with Volocity image analysis 

software (Perkin Elmer), which required segmentation of fluorescence labeled cells 

throughout the entire time-lapse. This was done by incubating the cells with Hoechst 

before starting the experiment to discriminate nuclei from whole cells and to define a 

mask around each nucleus. Cytoplasm fluorescence intensity of ERK2-LOC was 

then measured by subtracting fluorescence intensity due to the nucleus from that of 

the whole cell.  
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Fig. 1. Overexpression of eGFP-rERK2 induces nuclear accumulation of eGFP-rERK2. (A) 
NIH3T3 cells were serum-starved for 24 h (a) and then stimulated with 10% serum (b) or 100 ng/mL 
FGF4 (f). In other conditions, cells were pretreated with 20 μM U0126 (c, e, g) or vehicle DMSO (d, h) 
for 30 min before stimulation with 10% serum (c, d) or FGF4 (g, h). Cells were fixed, processed for 
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double immunofluorescence with antibodies against total ERK1/2 and activated di-phosphorylated YT-
ERK1/2, and then imaged by confocal microscopy. A maximum-intensity projection of a 5-μm thick z-
stack (step size: 0.3 μm) for each overlapping image is shown. (B) NIH-3T3 cells were transiently 
transfected with increasing amounts of eGFP-rERK2 plasmid as indicated on the top left of each 
image, serum-starved for 24 h, fixed, and then imaged by confocal microscopy. The total amount of 
DNA was kept at 500 ng/mL of medium in all conditions. Higher magnification images of 
representative eGFP-rERK2 localization are shown in white squares (bottom right). Scale bars: 50 μm. 
(C) Relationship between the concentration of eGFP-rERK2 plasmid and the concentration index (CI). 
Higher CI values reflect greater accumulation of eGFP-ERK2 in the nucleus. Average CI was 
determined by examination of at least 30 randomly selected cells for each of the transfected 
conditions from two independent experiments. Average CI value for endogenous ERK1/2 in serum-
starved NIH-3T3 is also shown (green dotted line). (D) NIH-3T3 cells transfected with 25, 125 or 500 
ng/mL of eGFP-rERK2 were observed under severe imaging conditions to visualize cells that express 
very low level of eGFP-rERK2 protein (upper panel, white squares). Higher magnification images of 
these cells exhibiting mainly cytoplasmic localization of eGFP-rERK2 are also shown (bottom panel, 
white arrows). Scale bars: 50 μm.  

Whole Xenopus laevis embryos at early stages of development were imaged 

with an upright confocal Nikon A1 microscope (Eclipse FN1, Nikon). A 25x/1.1NA 

objective lens was used, and pinhole was set to 0.6 Airy for an optical slice of 1.04 

µm. Image size was 1024 x 1024 pixels acquired at a speed of 0.5 frames/sec 

(scanning speed of 512 Hz). The zoom factor was 1 for a pixel size of 0.5 µm. 3D 

reconstructions of the confocal z-stack images were performed using NIS Elements 

4.3 software (Nikon) and ImageJ (National Institutes of Health). Xenopus laevis 

embryos tailbud stage were imaged on an upright Nikon Eclipse 80i epifluorescence 

microscope equipped with a 4x/0.13NA Plan Fluor objective (Nikon) and a CoolSNAP 

ES CCD Photometrics camera (Roper Scientific).  

Fast-FRAP experiments 

In Fast-FRAP experiments, pre-bleach acquisition, bleaching and fluorescence 

recovery measurements were performed by repeatedly scanning one line across a 

targeted cell. Scanning was bidirectional at 1400 Hz. The zoom factor was 5, yielding 

a pixel size of 0.048 µm. Resulting X(t) images were 1024 x 14416 pixels. Pre-bleach 

acquisition was carried out to compensate for the loss of fluorescence due to the 

acquisition. A bleaching ROI was set across either the cell nucleus or the cytoplasm. 

Fast-FRAP acquisition was as follows: 1 sec of pre-bleach acquisition, 150 ms of 

bleaching, and 3 sec of fluorescence recovery measurements. Bleaching was 

achieved with the laser operating at 95% power with the AOTF set to 100%. For 

imaging, laser power was attenuated to 2% of the AOTF. Fluorescence was detected 

between 500 nm and 570 nm. Fluorescence recovery curves were exported and 

analyzed using LAS AF and MATLAB (MathWorks). Curve normalization was done 

using the “double normalization” formula [39]: 
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𝐼𝐹𝑅𝐴𝑃 𝑁𝑂𝑅𝑀 =  
𝐼𝑅𝑒𝑓 𝑃𝑟𝑒

𝐼𝑅𝑒𝑓 (𝑡)
∙  

𝐼𝐹𝑅𝐴𝑃(𝑡)

𝐼𝐹𝑅𝐴𝑃 𝑃𝑟𝑒
 

with 𝐼𝐹𝑅𝐴𝑃(𝑡) as the fluorescense intensity in the FRAP ROI, 𝐼𝑅𝑒𝑓(𝑡) as the reference 

fluorescence intensity along the same line scan,  𝐼𝐹𝑅𝐴𝑃 𝑃𝑟𝑒 as the mean fluorescence 

intensity before bleaching in the FRAP ROI, and 𝐼𝑅𝑒𝑓 𝑃𝑟𝑒 as the reference for mean 

fluorescence intensity before bleaching along the same line scan. All measurements 

were corrected for background noise.  

Statistics 

Results are presented as means ± SEM. Statistical analyses were performed 

using PRISM 6.0 software (GraphPad). One-way and two-way ANOVA and Dunnett’s 

test, accepting p ≤ 0.05 as significant, as well as a two-tailed unpaired t-test were 

used to compare CI values. Curves of FRAP experiments were fitted by one-phase 

exponential equations. Differences between two groups for half-life recovery and 

percentage of immobile fraction were analyzed using a two-tailed unpaired t-test. The 

cleavage efficiency of T2A peptide, the expression level of tagged-ERK2 and the 

ratio of phospho/total ERK2 were quantified by densitometry using Image J (National 

Institutes of Health). 

4.1.3. Results 

 Validation of endogenous ERK1/2 dynamics in 
NIH3T3 cells 

To ensure that our cellular system behaves as described [21], the 

phosphorylation profile and subcellular localization of endogenous ERK1/2 in NIH-

3T3 fibroblast cells were examined using specific activators and/or inhibitors of the 

pathway (Fig. 1A). In non-stimulated conditions, ERK1/2 displayed a basal 

phosphorylation and was localized mainly in the cytoplasm (a). Pretreatment of non-

stimulated cells with U0126 reduced this phosphorylation (e). Phosphorylation of 

ERK1/2 induced by serum (10%) or FGF4 (100 ng/mL) resulted in ERK1/2 nuclear 

translocation and homogenous distribution of ERK1/2 throughout the cells (b and f). 

U0126 pretreatment dramatically decreased both serum- and FGF4- induced 

phosphorylation of ERK1/2 and prevented the nuclear accumulation of ERK1/2 (c 

and g). However, ERK1/2 phosphorylation was not completely abolished when cells 
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were simultaneously treated with U0126 and serum: phosphorylation signals were 

still detectable in the cytoplasm and the nucleus (c). In contrast, neither 

phosphorylation nor localization of ERK1/2 was altered when cells were treated with 

DMSO and either serum or FGF4 (d and h). These results are in accordance with 

previous reports [21] and demonstrate the proper functioning of our biological 

system.  

 Artefacts in localization of over-expressed eGFP-
rEKR2 in NIH-3T3 cells 

We assessed the subcellular distribution of overexpressed eGFP-ERK2 in 

NIH-3T3 cells in serum-starved and non-stimulated conditions. We documented 

ERK2 localization in NIH-3T3 cells transiently transfected with the rat ERK2 (rERK2) 

fused to the C-terminus of the enhanced green fluorescent protein (eGFP-rERK2). 

Note that the eGFP-rERK2 function was not altered as previously reported [29]. To 

obtain various eGFP-rERK2 expression levels within a population of NIH-3T3 cells, 

they were transiently transfected with eGFP-rERK2 plasmids in concentrations 

ranging from 25 to 1000 ng/mL to generate dim and bright fluorescence. The 

subcellular distribution of overexpressed eGFP-ERK2 in serum-starved and non-

stimulated NIH-3T3 cells is presented in Fig. 1B. eGFP-rERK2 accumulated in the 

nucleus of brightly fluorescent cells but was homogenously distributed between 

cytoplasm and nucleus in weakly fluorescent cells. This pattern was confirmed by the 

nucleo-cytoplasmic concentration index (CI) results (Fig. 1C, red dots), which are 

different from those of endogenous ERK1/2 (CI = 0.733 ± 0.030, n = 16,) in similar 

experimental conditions (Fig. 1Aa and 1C, green dotted line). The differences 

observed in CI values among plasmid concentration (Fig. 1C) reflect important cell-

to-cell variations in eGFP-rERK2 expression and thus in eGFP-rERK2 subcellular 

distribution. eGFP-ERK2 in serum-starved NIH-3T3 cells across the range of plasmid 

concentrations used was faithfully detected only in the weakly fluorescent cells (Fig. 

1D) and when the previously described severe imaging conditions were used [29]. 

Consistent with previous studies, plasmids encoding eGFP-rERK2 and mCherry-

mMEK1 (Fig. 2A, #2 and #3) were transiently co-transfected in equal amounts (final 

concentration of 1 μg/mL) to avoid saturation of ERK2 binding partners in the 

cytoplasm and subsequent nuclear accumulation of eGFP-rERK2 [26,27]. Twenty-

four hours after transfection and serum starvation, confocal images of fluorescent 
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Fig. 2. Equimolar co-expression of eGFP-rERK2 and mMEK1 restores cytoplasmic localization 
of eGFP-rERK2. (A) Schematic representation of all genetically encoded molecular constructs used in 
this study. The corresponding amino acid sequence of 2A (yellow box) encodes a T2A peptide 
isolated from plasmid Myr-TdTomato-2A-H2B-eGFP (#1). Amino acids (GSG) and (GGAP) improve 
cleavage efficiency. The red slash symbol at the peptide C-terminal end indicates the 2A peptide 
cleavage site. (B) Fluorescence confocal imaging of NIH-3T3 cells after transfection with different 
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plasmids and serum starvation for 24 h: top, transfection with eGFP-rERK2 (#2) and mCherry-mMEK1 
(#3) plasmids; bottom, transfection with mCherry-mMEK1-2A-eGFP-rERK2 (#5). Representative 
images are shown of rERK2 protein distribution (green: a, e), mMEK1 distribution (red: b, f) and the 
merged image (c, g). Corresponding scatter plots of green and red intensities of each pixel on the 
whole images are shown (d, h). Co-localized pixels are visualized in yellow. Scale bar: 20 μm. (C) 
Fluorescence confocal imaging of NIH-3T3 cells transfected with mCherry-mMEK1 (middle, red) and 
labeled with an anti-ERK2 antibody (left, green) after 24 h of serum starvation. Co-localization of 
rERK2 and mCherry-mMEK1 is shown in the merged images (right, yellow). White arrows point to 
nuclei of transfected cells. Scale bar: 20 μm. (D) Western blot analysis of NIH-3T3 cells transfected 
with rERK2-LOC at the indicated time-points. Cell lysates were analyzed by immunoblotting with the 
indicated antibodies (left of each blot). The percentage of uncleaved polypeptide (full-length mMEK1-
2A-GFP-rERK2, red triangle) was quantified by densitometry. Quantitative comparison of the levels of 
overexpressed rERK2-LOC and endogenous ERK2 (green triangles, middle panel) is indicated below 
the blot as IrERK2-LOC/ IrERK2. (E) After 24 h of serum starvation, NIH-3T3 cells transfected with rERK2-
LOC were left untreated or were pretreated for 1 h with U0126 or DMSO, and then stimulated with 
serum or FGF4 for 15 min. Corresponding cell lysates were immunoblotted with the indicated 
antibodies (left of each blot). Relative phosphorylation levels of rERK2-LOC (green triangles) and 
endogenous ERK2 (blue triangles) were measured by densitometry. The ratios of phosphorylated 
protein to total proteins (IpYT-rERK2-LOC / IrERK2-LOC and IpYT-ERK2 / IERK2) are indicated below the top blot. (F) 

rERK2-LOCtransfected NIH-3T3 cells were serum starved for 24 h and then left untreated or 
incubated or not with U0126 for 1 h before stimulation with serum or FGF4 for 15 min. Cells lysates 
were immunoprecipitated with anti-eGFP (top panel) or anti-ERK2 antibodies (middle panel), and 
ERK1/2 kinase activity was assayed in vitro. The phosphorylated form of MBP (pMBP) was detected 
by immunoblotting. Unconjugated beads and beads conjugated with anti-HA antibodies were used as 
a control in the assays. Lysate inputs for immunoprecipitation were probed with anti-β-actin antibody 
as a loading control. At least two independent experiments and 15 cells were measured from fixed 
cells. Biochemical data are representative of at least two independent experiments. 

single cells in the red and green channels showed a marked heterogeneous 

expression of mCherry-mMEK1 and eGFP-rERK2 due to transient transfection (Fig. 

2B, upper panel). In cells coexpressing eGFP-rERK2 and mCherry-mMEK1 in similar 

proportions, eGFP-rERK2 was localized in the cytoplasm. But cells expressing more 

eGFP-rERK2 in comparison to mCherry-mMEK1 showed a more prominent nuclear 

localization of the kinase (Fig. 2Bc-d).  

 Faithful eGFP-ERK2 localization restored in living 
NIH3T3 cells 

To provide an accurate and faithful read-out of the subcellular distribution of 

ERK2 regardless of its expression level, and to monitor the spatiotemporal signature 

of ERK2 in living cells by fluorescence imaging, we constructed and validated a novel 

molecular tool: rERK2-LOC (Fig. 2A, #4). Based on previous reports and our own 

observations (Figs. 1 and 2B, a-d), we reasoned that over-expression of eGFP-

rERK2 should be counter-balanced by coexpression of equal amounts of mMEK1, 

the main interacting partner of ERK2, in order to maintain the system’s equilibrium. 

To that end, we used the T2A peptide, which functions as a reliable ribosomal skip 

mechanism to produce multiple polypeptides from a unique translation start site (Fig. 

2Aa and Materials and Methods). 
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To assess mouse ERK2 localization in serum-starved conditions, NIH-3T3 

cells transiently transfected with the mCherry-mMEK1-2A-eGFP-rERK2 plasmid (Fig. 

2B, lower panel) were imaged by fluorescence confocal microscopy. eGFP-rERK2 

and mCherry-mMEK1 were co-expressed in all transfected cells, as observed in the 

overlay image (Fig. 2Bg). Co-localization analysis based on the generation of a 

scatter-plot on the whole image of red intensities versus green intensities for each 

pixel confirmed co-localization and indicated comparable expression levels of ERK2 

and MEK1 (Fig. 2Bh). The results show that T2A mediated the equimolar 

coexpression of eGFP-rERK2 and mCherry-mMEK1 and that cytoplasmic localization 

of eGFP-ERK2 was restored in serum-starved, non-stimulated cells regardless of the 

expression level (Fig. 1Aa). However, the nuclei of transfected cells appear “darker” 

than the nuclei of non-transfected cells harboring a more uniform distribution of 

endogenous ERK1/2 between the cytoplasm and the nucleus (Figs. 1Aa and 2C, 

ERK2 immunostaining). We hypothesized that this could be due to the disruption of 

the initial MEK1/ERK2 ratio in NIH-3T3 cells after T2A-mediated coexpression of 

eGFP-rERK2 and mCherry-mMEK1 [40]. To increase the proportion of MEK1 with 

respect to that of endogenous ERK2, NIH-3T3 cells were then transfected with 

mCherry-mMEK1, serum starved for 24 h, and then immunostained for total ERK2 

(Fig. 2C). Interestingly, mCherry-mMEK1 overexpression decreased the level of 

endogenous ERK2 in the nucleus, consistent with our previous observations (Fig. 

2Be).  

 Functional validation of the 2A-mediated eGFP-
rERK2 and rMEK1 coexpression system 

Analysis of western blot data from NIH3T3 cells transfected with the mMEK1-

2A-eGFP-rERK2 plasmid and harvested 0, 6, 24, 36, 48, and 60 h later showed that 

eGFP-rERK2 expression was detectable 24 h after transfection and remained stable 

from 36 h (Fig. 2D, upper and middle panel). Interestingly, the average abundance of 

eGFP-rERK2 ranged from 0.6- to 1.2-fold relative to that of endogenous ERK2 (Fig. 

2D, below middle panel) normalized against actin (Fig. 2D, lower panel). Average 

cleavage efficiency decreased slightly over time from 95.2% to a minimum of 92.1% 

(Fig. 2D, below upper panel). All experiments were performed 24 h after transfection, 

when average cleavage efficiency and relative abundance were optimal. rERK2-LOC 

was validated by monitoring its phosphorylation status (Fig. 2E) and kinase activity 
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(Fig. 2F) on NIH3T3 cells transfected with rERK2-LOC upon activation and/or 

inhibition of the ERK1/2 signaling pathway. Similar phosphorylation patterns were 

observed for rERK2-LOC and endogenous ERK1/2 (Fig. 2E, upper panel). rERK2-

LOC and endogenous ERK2 were substantially phosphorylated in response to serum 

and FGF4 compared to absence of stimulation. However, densitometry (below the 

upper panel) revealed a pronounced effect of serum (between 5.2- and 7.4-fold 

higher, lanes 2 & 6) and FGF4 (7.9-fold higher, lane 3) relative to the basal 

phosphorylation of rERK2-LOC (lane 1) when compared with the phosphorylation 

status of endogenous ERK2 (between 3.4- to 3.6-fold higher in serum-treated 

conditions (lanes 2 & 6) and 2.8-fold higher in FGF4-treated condition (lane 3) 

relative to the basal value. Pretreatment with U0126 prevented serum- and FGF4-

induced phosphorylation of both rERK2-LOC and endogenous ERK2; no 

phosphorylation signal was detectable in lanes 4 and 5, except for endogenous 

ERK2 in lane 5, which has a 0.4-fold phosphorylation signal relative to the basal 

value. In a complementary approach, MBP-based in vitro kinase assay was used to 

determine the kinase activities of rERK2-LOC (Fig. 2F, upper panel) and endogenous 

ERK2 (Fig. 2F, middle panel). Phospho-MBP (p-MBP) immunoblotting showed that 

rERK2-LOC and endogenous ERK2 had equivalent phosphorylation capabilities in 

cells treated with serum or FGF4, demonstrating the functional kinase activity of 

rERK2-LOC. Treatment with U0126 impaired the kinase activity of both rERK2-LOC 

and endogenous ERK2 alike. The results of biochemical assays show that eGFP-

rERK2 was coexpressed with mMEK1 by means of the 2A system, and that it fulfills 

the biochemical functions of endogenous ERK2 in NIH3T3 cells.  

 Enhanced contrast monitoring of eGFP-ERK2 in 
living cells 

The relevance and the faithfulness of our novel ERK2 localization reporter 

were further characterized. The subcellular distributions of overexpressed eGFP-

rERK2 and rERK2-LOC were examined and compared to immuno-localized 

endogenous ERK1/2 proteins monitored by fluorescence imaging on fixed NIH-3T3  
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Fig. 3. rERK2-LOC expression faithfully reports localization of ERK2.(A) Non-transfected (top 
row) and transfected NIH-3T3 cells overexpressing either eGFP-rERK2 (middle row) or rERK2-LOC 
(bottom row) were serum starved for 24 h, and then were left untreated or were treated with U0126 or 
DMSO for 1 h. Next, they were stimulated with serum or FGF4 for 15 min, or were left unstimulated 
(baseline). All cells were fixed and non-transfected cells were processed for immunofluorescence 
using the anti-ERK1/2 antibody (top row) and all cells were imaged by confocal microscopy. Shown 
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are representative images of ERK2 localization under the different treatments. Scale bars: 20 μm. (B) 
Quantitative comparison of the nucleo-cytoplasmic concentration index (CI) of ERK2 between 
endogenous ERK1/2 (blue bars), overexpressed eGFP-rERK2 (red bars) and rERK2-LOC (green 

bars). CI values were normalized between 0 and 1 (𝐶𝐼̅̅ ̅ values), where 0 and 1 are respectively the 
minimal and maximal CI values obtained. Bsln: baseline, S: serum, F: FGF4, U0: U0126, V: vehicle 
(DMSO). (C) Non-transfected (top row) and transfected NIH-3T3 cells overexpressing rERK2-LOC 
(bottom row) were serum starved for 24 h and then stimulated with serum or FGF4 for 1 or 2 h, or left 
untreated (baseline). All cells were fixed and non-transfected cells were processed for 
immunofluorescence using the anti-ERK1/2 antibody (top row) and all cells were imaged by confocal 
microscopy. Shown are representative images of ERK2 localization under the different treatments. 
Scale bar: 20 μm. (D) Quantitative comparison of nucleo-cytoplasmic concentration index (CI) of 
ERK2 at the indicated time-points between endogenous ERK1/2 (blue bars) and overexpressed 
rERK2-LOC (green bars). CI values were normalized between 0 (minimum obtained) and 1 (maximum 

obtained) (𝐶𝐼̅̅ ̅ values). Bsln: baseline; 1S and 1F: 1 h serum and 1 h FGF4; 2S and 2F: 2 h serum and 
2 h FGF4. (E) Monitoring of the subcellular distribution of rERK2-LOC in (24h) serum-starved NIH-3T3 
cells by time-lapse confocal microscopy every 2 min for 10 min (baseline) and after FGF4 stimulation 
(100 ng/mL) for 30 min. (F) Nuclear and cytoplasmic intensities of each rERK2-LOC transfected cell 
were measured with Volocity software for each time-point to calculate the concentration index values 
(CI). Vertical error bars represent the average ± SEM. Two-way ANOVA test, accepting p ≤ 0.05 as 

significant, was performed to compare 𝐶𝐼̅̅ ̅ values differences between endogenous ERK1/2, eGFP-
rERK2 and rERK2-LOC for a same treatment. One-way ANOVA test, accepting p ≤ 0.05 as significant, 

was performed to compare 𝐶𝐼̅̅ ̅  values among all the treatments (Table 2 and 3). At least two 
independent experiments were performed. The number of cells per condition (n) from fixed cells is 
indicated in Table 2 and Table 3 for statistical analysis; at least 80 cells were measured for time-lapse 
microscopy.  

cells following different treatments. In accordance with our other observations (Fig. 

1B), overexpressed eGFP-rERK2 accumulated heavily in the nucleus in both non-

stimulated and treated cells regardless of the treatment (Fig. 3A, middle panel). By 

contrast, T2A-mediated MEK1/ERK2 coexpression resulted in a subcellular 

distribution of rERK2-LOC (Fig. 3A, lower panel) like that of endogenous ERK1/2 

(Fig. 3A, upper panel). The results show that rERK2-LOC localization was strictly 

cytoplasmic when the ERK1/2 signaling pathway was inhibited, and that it 

accumulated in the nucleus when the pathway was activated.  

To quantify the ERK2 subcellular distribution in different experimental 

conditions, CI values were normalized between 0 and 1 (abbreviated 𝐶𝐼̅̅̅ values) (Fig. 

3B) and are listed in Table 2. We noticed no significant variations in overexpressed 

eGFP-rERK2 subcellular distribution regardless of the treatment used to activate or 

inhibit the ERK1/2 pathway, except for 𝐶𝐼̅̅̅U0+S and 𝐶𝐼̅̅̅V+S (Table 2). More importantly, 

incubation of the cells with U0126 in the presence or absence of serum or FGF4 

failed to reestablish the cytoplasmic localization of eGFP-rERK2. Normalized CI 

values for eGFP-rERK2 transfected cells treated with serum (𝐶𝐼̅̅̅S) or U0126 and 

serum (𝐶𝐼̅̅̅U0+S) were respectively 1.1- and 1.3-fold higher than non-stimulated cells 

(referred as baseline condition, 𝐶𝐼̅̅̅Bsln) (0,692 ± 0,083, n = 5 and 0.767 ± 0.043, n = 6 

versus 0.586 ± 0.024, n = 10; p ≤ 0.05), indicating that eGFP-ERK2 concentrated 



Research article – Novel reporter for faithful monitoring of ERK2… Results 

   207 

much more in the nucleus in U0126 condition. These data do not agree with the 

effect of treatments on endogenous ERK1/2 (Table 2). Remarkably, consistent with 

the data in Fig. 2B-C, 𝐶𝐼̅̅̅Bsln as well as 𝐶𝐼̅̅̅U0 values for cells expressing rERK2-LOC 

were respectively 3.1- and 2.5-fold lower than that of endogenous ERK1/2 in non-

stimulated conditions (0.064 ± 0.009, n = 12 versus 0.200 ± 0.009, n = 16; p ≤ 0.001) 

(Table 2). Whereas in non-stimulated cells rERK2-LOC was localized mainly in the 

cytoplasm, stimulation by serum or FGF4 provoked nuclear accumulation that was 

markedly enhanced relative to endogenous ERK1/2. 𝐶𝐼̅̅̅ values of rERK2-LOC in cells 

stimulated with serum or FGF4 were 7.5- and 7.9-fold higher than non-stimulated 

cells, respectively. In comparison, 𝐶𝐼̅̅ ̅ values of endogenous ERK1/2 were 1.4- and  

 Treatments 𝑪𝑰̅̅ ̅ n S p value 
Fold-

change 
Δ𝑪𝑰̅̅ ̅ 

Ratio 

rERK2-LOC 
/ IF:ERK1/2 

eGFP-rERK2 Baseline 0.586 ± 0.024 10      

 Serum 0.692 ± 0.083 5 ns 0.4658 1.18   

 FGF4 0.643 ± 0.050 6 ns 0.9065 1.10   

 U0126 0.659 ± 0.054 8 ns 0.6977 1.13   

 U0126 + serum 0.767 ± 0.043 6 * 0.0355 1.31   

 U0126 + FGF4 0.598 ± 0.019 11 ns 0.9997 1.02   

 DMSO + serum 0.759 ± 0.068 7 * 0.0353 1.30   

 DMSO + FGF4 0.701 ± 0.036 10 ns 0.1933 1.20   

IF:ERK1/2 Baseline 0.200 ± 0.009 16      

 Serum 0.273 ± 0.007 9 *** 0.0003 1.37 0.073 ± 0.011  

 FGF4 0.291 ± 0.008 27 **** < 0.0001 1.46 0.091 ± 0.012  

 U0126 0.204 ± 0.011 13 ns 0.9996 1.02 0.004 ± 0.014  

 U0126 + serum 0.230 ± 0.012 12 ns 0.2652 1.15 0.030 ± 0.016  

 U0126 + FGF4 0.214 ± 0.019 7 ns 0.957 1.07 0.014 ± 0.021  

 DMSO + serum 0.271 ± 0.010 18 **** < 0.0001 1.36 0.071 ± 0.013  

 DMSO + FGF4 0.287 ± 0.025 6 *** 0.0002 1.44 0.087 ± 0.026  

rERK2-LOC Baseline 0.064 ± 0.009 12      

 serum 0.480 ± 0.007 7 **** < 0.0001 7.50 0.416 ± 0.041 5.70 

 FGF4 0.508 ± 0.008 16 **** < 0.0001 7.94 0.444 ± 0.040 4.88 

 U0126 0.083 ± 0.011 15 ns 0.9952 1.30 0.019 ± 0.016 4.75 

 U0126 + serum 0.082 ± 0.012 6 ns 0.9994 1.28 0.018 ± 0.014 0.60 

 U0126 + FGF4 0.112 ± 0.019 11 ns 0.7481 1.75 0.048 ± 0.013 3.43 

 DMSO + serum 0.353 ± 0.010 7 **** < 0.0001 5.52 0.289 ± 0.058 4.07 

 DMSO + FGF4 0.358 ± 0.025 18 **** < 0.0001 5.60 0.294 ± 0.026 3.38 

Statistical significance for differences among overexpressed eGFP-rERK2, endogenous ERK1/2 and 
rERK2-LOC was tested by one-way ANOVA and Dunnett’s test, accepting p ≤ 0.05 as significant. The 

ratio between Δ𝐶𝐼̅̅ ̅ of endogenous ERK1/2 and rERK2-LOC shows the differences in magnitude order 

in function of the treatment. Symbols: 𝐶𝐼̅̅ ̅, average of CI values ± SEM; Δ𝐶𝐼̅̅ ̅, difference between means 
compared to baseline value as reference; SEM, Standard Error of Mean; n, number of cells analyzed; 
S: statistically significant; ns, p > 0.05; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001. 

Table 2. Statistical analysis of 𝑪𝑰̅̅ ̅ and Δ𝑪𝑰̅̅ ̅ values for overexpressed eGFP-ERK2, endogenous 
ERK1/2 and rERK2-LOC, 15 min after serum or FGF4 stimulation. 
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1.5-fold higher than baseline value under the same experimental conditions 

(Table 2). The difference of averaged 𝐶𝐼̅̅̅ values (Δ𝐶𝐼̅̅̅) between baseline and serum 

or FGF4 stimulation for rERK2-LOC was 5.7- and 4.9-fold higher than that for 

endogenous ERK1/2, confirming several orders of magnitude in the nuclear 

translocation for rERK2-LOC (Table 2). In addition, treatment with U0126 alone or 

combined with serum or FGF4 caused no significant change in 𝐶𝐼̅̅̅ for rERK2-LOC, in 

accordance with endogenous ERK1/2 (Table 2).  

As several studies reported that simple coexpression of MEK1 with tagged-

ERK2 derived from different plasmids disturbed the distribution of tagged ERK2, 

evidenced by its abnormally short persistence in the nucleus upon stimulation 

[26,27,30], we monitored the localization of rERK2-LOC and compared it with that of 

endogenous ERK1/2 at 1 and 2 h after serum or FGF4 stimulation (Fig. 3C). 

Consistent with a previous study [21], endogenous ERK1/2 was distributed relatively 

homogenously throughout the cells 1 h after addition of serum or FGF4 (Fig. 3C, 

upper panel). But 2 h after serum or FGF4 stimulation, it accumulated in the nucleus. 

Surprisingly, the results clearly show that rERK2-LOC mimicked endogenous ERK1/2 

in response to the different treatments (Fig. 3C, bottom panel) and exhibited 

progressive nuclear accumulation in serum-starved NIH-3T3 cells treated with serum 

or FGF4 (Fig. 3D).  𝐶𝐼̅̅̅ values of rERK2-LOC after 2 h in serum- or FGF4-stimulated 

conditions were 5.7- and 5.2-fold higher than baseline, respectively. In comparison, 

𝐶𝐼̅̅ ̅ values of endogenous ERK1/2 were only 2.0- and 1.7-fold higher than baseline 

under the same experimental conditions (Table 3). The difference of averaged 𝐶𝐼̅̅̅ 

values (Δ𝐶𝐼̅̅̅) between baseline and 2 h serum or 2 h FGF4 stimulation for rERK2-

LOC was 1.7- and 2.2-fold higher than that for endogenous ERK1/2, confirming that 

late nuclear accumulation is also markedly enhanced using rERK2-LOC (Table 3).  

To monitor rERK2-LOC dynamics at higher temporal resolution in living NIH-

3T3 cells, we used automated time-lapse confocal microscopy with a temporal 

resolution of 2 min for 40 min. After a baseline period of 10 min (CI = 0.582 ± 0.004), 

rERK2-LOC entered the nucleus between 2 and 4 min after FGF4 addition and 

reached a maximum within 8 min after stimulation (CI = 0.880 ± 0.002) (Fig. 3E-F 

and S1 Movie). These results are in agreement with previous studies on ERK2 

translocation kinetics following FGF4 treatment on NIH-3T3 cells [29].  Whereas a 

sustained ERK2 nuclear localization was reported in similar experimental conditions 
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[21,29], our results show a decrease of 54% from the initial peak, but sill 46% above 

the baseline for the remaining time of the experiment (CI = 0.719 ± 0.006). Taken 

together, these results show that our novel molecular reporter of ERK2 localization 

substantially set up the monitoring of ERK2. It provides an emphasized relocation of 

the coexpressed ERK2 while remaining faithful to that of the endogenous under all 

experimental conditions. 

 Treatments 𝑪𝑰̅̅ ̅ n S p value 
Fold-

change 
Δ𝑪𝑰̅̅ ̅ 

Ratio 
rERK2-LOC 

/ IF:ERK1/2 

IF:ERK1/2 Baseline 0.267 ± 0.016 18      

 1 h - serum  0.357 ± 0.013 21 ** 0.0066 1.34 0.090 ± 0.021  

 1 h - FGF4  0.343 ± 0.009 27 * 0.0172 1.29 0.077 ± 0.018  

 2 h - serum 0.529 ± 0.029 19 **** < 0.0001 1.98 0.262 ± 0.033  

 2 h – FGF4 0.449 ± 0.035 14 **** < 0.0001 1.68 0.183 ± 0.038  

rERK2-LOC Baseline 0.093 ± 0.018 13      

 1 h - serum  0.189 ± 0.025 11 ns 0.4524 2.03 0.096 ± 0.031 1.07 

 1 h - FGF4  0.367 ± 0.066 15 *** 0.0003 3.95 0.274 ± 0.069 3.56 

 2 h - serum 0.532 ± 0.053 16 **** < 0.0001 5.72 0.439 ± 0.055 1.68 

 2 h – FGF4 0.486 ± 0.026 12 **** < 0.0001 5.23 0.393 ± 0.032 2.15 

Statistical significance for differences among endogenous ERK1/2 and rERK2-LOC was tested by 

one-way ANOVA and Dunnett’s test, accepting p ≤ 0.05 as significant. The ratio between Δ𝐶𝐼̅̅ ̅ of 
endogenous ERK1/2 and rERK2-LOC shows the differences in magnitude orders in function of the 

treatment. Symbols: 𝐶𝐼̅̅ ̅, average of CI values ± SEM; Δ𝐶𝐼̅̅ ̅, difference between means compared to 
baseline value as reference; SEM, Standard Error of Mean; n, number of cells analyzed; S: statistically 
significant; ns, p > 0.05; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001.  

Table 3. Statistical analysis of 𝑪𝑰̅̅ ̅ and Δ𝑪𝑰̅̅ ̅ values for endogenous ERK1/2 and rERK2-LOC, 1 h 
and 2 h after serum or FGF4 stimulation.  

 rERK2-LOC provides a relevant read-out for ERK2 
mobility 

To finalize our characterization and validation in living cells, we determined 

mobility of rERK2-LOC in living NIH-3T3 cells in comparison to that of overexpressed 

eGFP-rERK2 or eGFP alone using high-speed FRAP measurements. Fixed NIH3T3 

cells expressing eGFP were used to calibrate our imaging setup (Fig. 4A). Based on 

rERK2-LOC dynamics in serum-starved NIH-3T3 cells after FGF4 stimulation (Fig. 

3E), only serum-stimulated cells with rERK2-LOC accumulating in the nucleus were 

imaged and compared to cells overexpressing free eGFP or eGFP-rERK2 (Fig. 4B-

C).  

Comparative analysis of cumulative fluorescence recovery curves showed that 

nuclear free eGFP (blue curve) retained very high mobility, reflecting the passive 

diffusion of the fluorescent protein throughout the cell (Fig. 4D). The fluorescence  
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Fig. 4. Mobility of rERK2-LOC measured by high-speed FRAP. (A) eGFP-transfected NIH-3T3 
cells were fixed. Individual living cells were imaged as described in the Materials and Methods section. 
Image sequences before (left) and after (right) photobleaching are shown. Scale bars: 10 μm. (B) NIH-
3T3 cells were transfected with eGFP (left), eGFP-rERK2 (middle) or rERK2-LOC (right) and then 
serum starved for 24 h. Cells overexpressing rERK2-LOC were stimulated with serum to trigger its 
nuclear translocation. Bleached ROI correspond to the red lines drawn across the nuclei. Scale bars: 
10 μm. (C) Representative kymograms (xt) of fluorescence intensity measured along the line (both red 
and white) across the selected cells for each experimental condition over-time are shown, indicating 
the FRAP measurement sequence: pre-bleach of 1 s (broken dark line), bleach of 150 ms (red lines) 
and post-bleach of 2 s (solid dark line). Correction for overall bleaching effects was applied. Nucl: 
nucleus (green line), Cyto: cytoplasm (purple line), BG: background (yellow line). (D-E) Curves of 
cumulative fluorescence recovery over time for fixed eGFP (grey curve), free eGFP (blue curve), 
overexpressed eGFP-rERK2 (red curve) and rERK2-LOC after serum stimulation (green curve, 8 min 
after serum stimulation) were normalized (D) and fitted (E).  (F-G) Average half-life of recovery (t1/2) 
and immobile fraction (IF) calculation for cells serum-starved for 24 h and overexpressing free eGFP 
(blue symbol) or eGFP-rERK2 (red symbol), and serum-stimulated cells overexpressing rERK2-LOC 
(green symbol, 8 min after serum stimulation). At least two independent experiments were performed. 
The number of individual cells used for each condition is indicated above each symbol. Statistical 
significance was determined by a two-tailed unpaired t-test (ns, no significant; *, ≤ 0.05; ****, ≤ 
0.0001). 
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recovery curve of overexpressed eGFP-rERK2 (red curve) mimicked that of free 

eGFP, as previously reported [29]. In contrast, after serum stimulation and 

accumulation of rERK2-LOC in the nucleus (t = 8 min after stimulation), fluorescence 

recovery of rERK2-LOC (green curve) indicated a marked reduction of mobility in the 

nucleus, which contrasts with a previous study reporting no difference in mobility 

measurements between overexpressed free eGFP and eGFP-rERK2 [26]. 

Next, fluorescence recovery curves were fitted to a one-phase exponential-

association equation (Fig. 4E) and the recovery process was characterized by the 

half-life of fluorescence recovery (t1/2) to accurately describe and compare protein 

mobility (Fig. 4F). In comparison with the extremely high mobility of free eGFP (t1/2  = 

0.046 s ± 0.005, n = 24), the half-life recovery of overexpressed eGFP-rERK2 versus 

rERK2-LOC were 0.123 s ± 0.010 (n = 23) and 0.155 s ± 0.009 (n = 20), respectively 

(p = 0.03). We did not observe a more significant difference between eGFP-rERK2 

and rERK2-LOC, indicating that overexpressed eGFP-rERK2 may still bind slightly to 

nuclear partners. We also calculated the percentage of the immobile fraction (IF) 

(Fig. 4G) defined by the value between the complete fluorescence recovery 

asymptote and the pre-bleach value being equal to 1 (Fig. 4E, black dotted line). The 

corresponding values for free eGFP and overexpressed eGFP-rERK2 were 12.68% ± 

0.85 (n = 24) and 9.95% ± 0.68 (n = 23), respectively (p ≤ 0.05). This was clearly 

significantly different from the value obtained with rERK2-LOC (IF = 18.37% ± 0.80, n 

= 20, p ≤ 0.0001). Thus, despite very rapid ERK2 shuttling to and from the nucleus, 

we detected, as previously reported [29], a significantly slower mobility and turnover 

of rERK2-LOC in the nucleus of stimulated cells compared to overexpressed eGFP-

rERK2.  

Additional FRAP experiments were next performed to assess changes in the 

mobility of rERK2-LOC between the cytoplasm and the nucleus of serum-starved 

NIH-3T3 cells before and after serum stimulation (S1 Fig). Following the same 

experimental protocol, a stripe across the nucleus and the cytoplasm of the same cell 

was bleached a few seconds apart (S1A Fig). As shown in S1B-D Fig., the immobile 

fraction of rERK2-LOC was significantly reduced in the cytoplasm of serum-

stimulated cells (IF = 6.36% ± 0.99, n = 12) in comparison to that of rERK2-LOC in 

the cytoplasm of serum-starved cells (IF = 14.00% ± 2.70, n = 9, p ≤ 0.05), 

demonstrating the dissociation of a pool of rERK2-LOC from its cytoplasmic partners 
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upon stimulation. Interestingly, the immobile fraction of rERK2-LOC in the nuclei of 

serum-stimulated cells (IF = 14.83% ± 1.26, n = 12) was significantly larger from that 

of rERK2-LOC in the cytoplasm of the same analyzed cells (p ≤ 0.0001). We 

observed also similar immobile fractions of rERK2-LOC in the nuclei of serum-

stimulated cells and the cytoplasm of serum-starved cells, suggesting that rERK2-

LOC binds to nuclear and cytoplasmic scaffolds/anchors, respectively. Collectively, 

the data obtained with equimolar expression of eGFP-rERK2 and mMEK1 are 

consistent with previous studies using different strategies to report ERK1/2 dynamics 

in living cells [29,30]. In contrast to these studies, no stringent imaging conditions 

were required, making our approach compatible with long-term functional monitoring 

of ERK2 dynamics in living cells. 

 Spatiotemporal subcellular distribution of xERK2-
LOC in Xenopus laevis embryo 

After fully characterizing and successfully validating the faithful reporting of 

ERK2 dynamics by our T2A-mediated coexpression system in living cells, we tested 

our reporter rERK2-LOC in a relevant multicellular model organism. In Xenopus 

laevis embryos, FGF signaling plays a crucial role in the formation of mesoderm [41] 

and particularly in maintenance of the mesoderm through a feedback loop that 

involves MAPK/ERK2 cascade-mediated stabilization of Brachyury expression [42–

44]. Several studies used a specific antibody against activated ERK1/2 in whole 

Xenopus laevis embryos at different stages of development. Immunohistochemical 

analysis showed strong activation of ERK2 in whole-mount embryos at the end of 

gastrulation around the dorsal lip of blastopore [45,46]. To gain insight into ERK2 

localization in relation to spatiotemporal patterns of ERK2 activation at different 

stages of development (Fig. 5B), we further employed our 2A-mediated coexpression 

approach. To test whether the T2A peptide functions in Xenopus laevis embryos, we 

microinjected mRNA from the original plasmid pMyr-TdTomato-T2A-H2B-eGFP (Fig. 

2A, #1) into embryos at the one-cell stage. Maximum-intensity projection showed that 

in stage 8 embryos H2B-eGFP and Myr-TdTomato were present exclusively in the 

nucleus and at the plasma membrane, respectively, as reported in other model 

organisms [47,48] (Fig. 5A). To determine the subcellular distribution of endogenous 

xERK2, we immunostained fixed, whole-mount, stage 8 embryos with anti-ERK2 
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Fig. 5. Spatiotemporal subcellular distribution of xERK2-LOC in living Xenopus laevis embryo. 
(A) Embryos were injected with 500 ng of Myr-TdTomato-T2A-Histone2B-GFP mRNA. Maximum-
intensity projection of a z-stack of 40 confocal images with a z-step of 0.59 μm is shown at 40X (left, 
scale bar: 10 μm) and at 63X magnification (right, scale bar: 20 μm). Pictures were merged to 
visualize Myr-mCherry at the plasma membrane and H2B-eGFP in the nucleus. (B) xERK2-LOC 
subcellular distribution was visualized at several stages of Xenopus laevis development (stage 9 
blastula, stage 12 blastula and stage 32 tadpole). Scale bar: 200 μm. (C) Stage 9 embryos were fixed 
and processed for immunofluorescence with antibody against total ERK2 (green) and stained for DNA 
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with Hoechst (blue) as described in the Materials and Methods section. Scale bar: 100 μm. (D) Protein 
extracts were prepared from uninjected (WT, lane 1), H2O injected (lane 2) and xERL2-LOC 
overexpressing embryos (lane 3) and immunoblotted with antibodies against GFP (top panel), ERK2 
(middle panel) and β-actin (bottom panel). The percentage of uncleaved xERK2-LOC was measured 
by densitometry and is shown below the top panel in lane 3. The levels of overexpressed xERK2-LOC 
relative to endogenous ERK2 (green triangles, middle) are indicated below the blot as IxERK2-LOC/ IxERK2. 

(E) Embryos were injected with 500 ng of eGFP-xERK2, 2A-eGFP-xERK2 (control) or xERK2-LOC 
mRNA. Projections of at least 60 confocal 0.7-μm sections of animal cells at stage 9 blastula are 
shown. Higher magnification images of representative subcellular distributions of xERK2 are shown in 
white squares (top left). Scale bar: 150 μm. (F) Monitoring of xERK2-LOC subcellular distribution in 
the cells of the dorsal blastoporal lip (left panel) and the yolk plug (right panel) in stage-12 gastrula. 
Projection and 3D reconstruction of z-series of 108 confocal 1.50-μm sections (left panel) and 86 
confocal 1.00-μm sections (right panel) are shown. White arrows indicate the trajectories of the cells 
leading to a progressive internalization of the yolk plug. Scale bar: 150 μm. (G-H) Several images from 
different viewpoints were recorded and combined to create a whole image of the developing embryos 
expressing xERK2-LOC, head to the left, at stage 32 (G) and stage 38 (H) tadpoles. The 
spatiotemporal localization of xERK2-LOC (green) in the embryonic structures, enhanced by 
autofluorescence of embryo and yolk (red signal), corresponds to notochord (nc), neural tube (nt) 
(both white arrows), otic vesicle (ov) and branchial arch region (bar) (both white asterisks) (G). Higher 
magnification of the forebrain-midbrain boundary (fmb) and para-axial structures (pax) are shown in 
yellow squares (H). Small white arrows indicate xERK2-LOC nuclear accumulation in several cells of 
the forebrain-midbrain boundary. Scale bar: 500 μm. At least two independent experiments were 
performed from animal caps, fixed embryos, or live embryos, and at least ten embryos were imaged. 
Biochemical data are representative of at least two independent experiments. 

antibody (Fig. 5C). Overlay of anti-ERK2 and Hoechst staining revealed that most 

xERK2 was localized in the cytoplasm of ectodermal cells. 

To explore xERK2 dynamics in living embryos, we microinjected embryos at 

the one-cell stage with mRNA encoding eGFP-xERK2, 2A-eGFP-xERK2 without 

xMEK1 sequence as a control, or xMEK1-2A-eGFP-xERK2 (xERK2-LOC). Given that 

ERK2 can be activated by mechanical stress or wounding [46], live imaging of intact 

embryos was performed, while preserving ectodermal tissue integrity (Fig. 5E). 

Maximum-intensity projection revealed nuclear accumulation of eGFP-xERK2 and 

2A-eGFP-xERK2. In contrast, expression of xERK2-LOC resulted in a more 

homogenous distribution of the kinase within blastomeres, with a slight tendency 

towards the cytoplasm, reminiscent of the immuno-localization of endogenous ERK2 

in fixed embryos (Fig. 5C). In parallel, we assessed xERK2-LOC protein expression 

levels in embryos at stage 8 by western blot analysis (Fig. 5D) using both anti-GFP 

(upper panel) and anti-ERK2 (middle panel) antibodies. The proportion of uncleaved 

polypeptide was slightly lower in Xenopus laevis embryos (5.3%) in comparison to 

cultured NIH-3T3 cells (Fig. 2D, upper panel).  

At the gastrula stage (stage 11), we investigated xERK2-LOC subcellular 

distribution in embryonic cells of the dorsal lip of the blastopore region, where FGF 

signaling is known to activate ERK1/2 pathway. In line with this information, we 
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observed a patch of ectodermal cells just above the dorsal lip of the blastopore 

exhibiting a strong accumulation of xERK2-LOC in the nucleus (Fig. 5F, left panel 

and S3 Movie). These observations are in agreement with the previously reported 

immuno-localization of activated di-phosphorylated ERK2 [46]. Finally, a nuclear 

localization of xERK2-LOC was seen in large endodermal cells of the yolk plug (Fig. 

5F, right panel and S4 Movie), although no activation of ERK2 had been detected by 

immunohistochemistry [46].  

Since no toxicity was observed and embryos developed normally, we explored 

the localization of xERK2-LOC at later developmental stages in living embryos. At the 

early tadpole stage (stage 32), GFP fluorescence was detected mainly in the neural 

tube, the notochord, and the somites (white arrows), as well as in the otic vesicle and 

the branchial arch region (white asterisks) (Fig. 5G). Red fluorescence due to known 

autofluorescence of Xenopus laevis embryos was advantageously used to achieve 

optimum contrast for accurate localization of xERK2-LOC in embryonic structures. At 

stage 38, when the Xenopus laevis tadpole becomes transparent, xERK2-LOC was 

widespread in the head region and the para-axial structures (Fig. 5H and S5 Movie). 

Remarkably, xERK2-LOC accumulated in the nuclei of a small patch of cells in the 

forebrain-midbrain boundary but not in para-axial structures (Fig. 5H and S5 Movie). 

Once again, our results highlighted the faithful subcellular distribution of xERK2 

provided by xERK2-LOC in comparison to immuno-localized activated di-

phosphorylated ERK2 in the Xenopus laevis embryo.  

4.1.4. Discussion 

The MAPK/ERK1/2 pathway plays an important role in many cellular 

processes: cell proliferation, migration, differentiation, and even cell death [14,49–

51]. Aside from the activity of ERK1/2, its subcellular localization is instrumental in 

signal integration in the cell fate decision [8,52,53]. Many approaches have been 

used to monitor ERK1/2 dynamics in living cells, but some of them do not localize the 

kinase of interest correctly in non-stimulated cells [24,26]. Moreover, they are often 

laborious and unsuitable for long-term imaging [29], or they are time consuming 

because transgenic cell lines have to be generated [30]. We overcame these 

limitations by designing a novel molecular tool, ERK2-LOC. Characterization and 
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validation of the tool in living cells and tissue showed that ERK2-LOC is functional, 

faithful, easy to use, and biologically relevant. 

Various studies used ERK2 tagged with GFP-like fluorescent proteins to 

monitor the spatiotemporal localization of ERK2 in individual living cells. However, 

these studies disregarded the predominantly nuclear localization of eGFP-rERK2 in 

resting cells [16,23–25] (Fig. 1). It has been known for a long time that disruption of 

the MEK/ERK balance disturbs ERK2 localization [12,15]. Aside from favoring 

conditions where a low expression level of eGFP-rERK2 was managed [29] (Fig. 1D), 

this problem was solved by co-expressing mMEK1, thereby restoring the proper 

cytoplasmic localization of overexpressed eGFP-rERK2 in serum-starved cultures 

without stimulation [26,27]. This results in a more controlled MEK/ERK ratio in 

transfected cells (Fig. 2B, upper panel). Given that expression levels of co-

transfected mCherry-MEK1 and eGFP-ERK2 in the same cell cannot be controlled 

due to the limitations of co-transfection techniques [26] (Fig. 2B, upper panel), ERK2 

subcellular distribution throughout the cell is necessarily affected. From this 

observation, it became obvious that proper quantification of ERK2 dynamics in 

response to specific stimuli requires a robust system for reliable coexpression at the 

single cell level. While multiple heterologous proteins can be coexpressed in living 

cells by different approaches, such as use of the Internal Ribosomal Entry Site 

(IRES) sequence and use of bidirectional or multiple promoters in the same plasmid, 

these systems suffer from problems related to coexpression efficiency [54,55]. A 

more promising approach described as a 2A-mediated coexpression system (for 

review [33,48,56]), was used in our study. 2A-linked proteins have been efficiently 

expressed in vitro in a wide variety of cultured eukaryotic cells and embryonic stem 

cells, and even in vivo in embryos and whole organisms [47,48] but never reported in 

Xenopus laevis model. While no protein degradation or side effects of premature 

termination of translation have been reported [57], previous work described variability 

in the 2A peptide-mediated cleavage, depending on the choice of 2A peptide and the 

cellular model [48]. Further support for the 2A strategy is found in previous studies 

demonstrating robust equimolar coexpression of this approach in studies of the 

molecular interactions of G-coupled proteins [55] and T-cell development in CD3-

deficient mice [58]. Although we used an optimized peptide (see Materials and 

Methods), a slight difference in cleavage efficiencies between NIH-3T3 cells and an 
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embryonic cell system was noted. The efficiency ranged from 91.1% (Fig. 2D) in 

NIH3T3 cells to 94.7% in Xenopus embryos (Fig. 5D); the presence of an uncleaved 

MEK1/ERK2 polypeptide could affect ERK2 functions in both model systems. 

Actually, MEK1ERK2 fusion polypeptide was reported to produce a constitutively 

active fusion ERK2 in the absence of upstream signaling [59]. In this context, a 

mutated form of MEK1 (nuclear export/activity region) in fusion with ERK2 was able 

to induce PC12 differentiation and NIH3T3 transformation. Wild type and mutated 

MEK1-ERK2 fusions had no effect on the activity of endogenous ERK1/2 [59]. 

Interestingly, immunofluorescence results showed that the subcellular localization of 

the mutated MEK1ERK2 fusion protein was nuclear, while that of the wild type was 

essentially cytoplasmic. A more efficient 2A derived peptide, such as P2A, might be 

used to alleviate system perturbation linked to uncleaved MEK1ERK2 polypeptide 

[48]. 

Recent studies quantified the MEK/ERK ratio in different cellular contexts by 

biochemical approaches [60,61]. Both proteins are in the micromolar range, but the 

reported MEK/ERK ratios in HeLa cells are considerably different: 3.1/2.1 [62], 

1.4/0.96 [60] and 1/10 [61], as well as in PC12 cells, 0.6/1.25 [63] and 0.68/0.26 [64]. 

They also varied depending on the cell type, ranging from 1 in Xenopus laevis 

oocyte, Cos7 and Rat1 cells, to about 2 in CHO, 208F, and PC12 cells, and up to 

almost 13 in NIH3T3 cells [40,60,61]. Recently the role of ERK2 has been 

emphasized. In a murine system, ERK2-/- embryonic lethality was attributed to failure 

of placenta and trophoblastic development [65,66], while ERK1-/- embryos are viable 

and fertile but have problems in thymic development. In the same line of thought, 

knockdown of ERK2 in zebrafish model prevents epiboly and the blastula to gastrula 

transition, while ERK1 knockdown provokes subtle defects in the embryogenesis 

[67].  Moreover, the reported 4/1 ERK2/ERK1 ratio in NIH-3T3 cells in both relative 

and activated forms was proposed to explain the preeminent role of ERK2 in cellular 

functions over that of ERK1 [68]. In the Xenopus laevis model, the maternally 

inherited ERK2 isoform is important for oocyte maturation and the MEK/ERK ratio is 

1:1 [60,69]. In all cellular models, ratios were determined in systems at equilibrium. In 

our approach, one can only assume that co-expression generated equimolar ERK2 

and MEK1 concentrations, but these were not quantified in our experimental systems 

at equilibrium. Therefore, we settled on a consensual 1:1 co-expression ratio of 
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MEK1/ERK2 based on the following considerations. First, these studies quantified 

the pool of ERK1/2 and MEK1/2 rather than distinct isoforms. Second, various 

MEK/ERK ratios have been reported for the same cell type. Third, it is technically 

difficult to express 13 times more rERK2 than mMEK1 proteins in living NIH3T3 cells. 

Fourth, we intended to use our reporter in the Xenopus laevis model system. Indeed, 

our purpose here was foremost to counter-balance eGFP-rERK2 overexpression with 

identical amounts of its partner MEK1. We did not intend to reproduce a mammalian 

expression system shadowing that of the cellular model system or even a synthetic 

network, but rather to faithfully mimic the subcellular distribution of the endogenous 

ERK2 for functional monitoring purposes. 

Our approach resulted in the intended disruption of the initial MEK/ERK 

balance by co- overexpression of ERK2 and MEK1 in equimolar proportions at the 

single cell level. We show that it did not disturb ERK2 dynamics in living cells (Fig. 

3E) or embryos (Fig. 5G-H). Although ERK2 is the only ERK isoform expressed in 

Xenopus embryos until mid-blastula transition, a two-fold increase in the proportion of 

total xERK2 (Fig. 5D) and overexpression of xMEK1 via our xERK2-LOC reporter did 

not alter embryonic development (Fig. 5G-H). In addition, overexpression of eGFP-

xERK2 was not toxic to Xenopus embryos, indicating that artefacts in eGFP-xERK2 

nuclear localization were not detrimental to ongoing cellular programs at these 

developmental stages (data not shown). Specific GFP fluorescence signals were 

detected at later stages (late gastrula, tadpole), pointing to the long half-life of 

exogenous xERK2 protein in these embryos. We conclude that our strategy is a non-

invasive method for assessing functional ERK2 dynamics in living embryos during 

early Xenopus laevis embryogenesis. We were well aware of the uncoupling 

functions of ERK, but we used ERK2 localization in Xenopus as a surrogate for ERK 

activation. Any disruptive effects of xERK2-LOC on the signaling network will be 

further characterized in the future. 

In contrast to overexpressed eGFP-rERK2, the dynamics of ERK2-LOC was 

faithful under our experimental conditions. Visualization of rERK2-LOC was actually 

enhanced at the single living cell level, as shown by fluorescence microscopy (Fig. 

3B,D). Depending on the treatment, ERK2-LOC nuclear translocation or cytoplasmic 

retention was readily visible (Fig.  3A) and faithfully matched that of the endogenous 

pattern. This was not the case for overexpressed eGFP-rERK2 even in U0126 pre-
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treated cells (in the presence or absence of serum or FGF4). Cells accumulated 

overexpressed eGFP-rERK2 in the nucleus independently of MEK1-mediated TEY-

phosphorylation (Fig. 3A, middle image row, U0126 treatments), pointing-out the limit 

of eGFP-rERK2 over-expression and questioning the consequences and relevance 

of MEK1 phosphorylation of the overexpressed eGFP-rERK2 in this experimental 

context. The marked absence of a fluorescence signal in the nuclei of rERK2-LOC 

transfected cells in non-stimulated conditions (Fig. 2B, lower panel and Fig. 3A, 

bottom row left) resembles the endogenous situation (Fig. 3A, top row left). This 

prompted us to assess the role of overexpressed MEK1, and we showed that the 

increased amount of MEK1 in the cellular system was responsible for retention of the 

pool of endogenous ERK2 in the cytoplasm (Fig. 2C).  

Protein over-expression is bound to affect signaling networks and cellular 

functions. Using figure 2B as an example, FGF increases the CI for endogenous 

ERK1/2 by about 50% but increases it about ten-fold for the rERK2-LOC reporter. 

The balance of ERK2 binding to MEK1 versus other interacting proteins, such as 

anchors, scaffold, activators and effectors, is likely influenced. ERK2 activation of 

targets may well be increased, and overexpressed MEK1 likely also influences 

endogenous ERK2 and the binding of exogenous ERK2 to DNA and microtubules. 

To prevent over-expression from perturbing the spatio-temporal aspects of the 

signaling pathways, recently developed alternative approaches could be 

implemented. Nowadays, based on directed genome editing technology by Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) [70], endogenous 

proteins can be knocked in to insert fluorescent proteins. However, based on our 

experience, two conditions should be met to make long-term functional imaging 

feasible: the expression level of the protein of interest should be sufficiently high, and 

fluorescent proteins with a high quantum yield (brightness) should be used.  

Quantitative analysis of rERK2-LOC after different treatments (Fig. 3B) also 

faithfully shadowed that of endogenous ERK2, with comparable kinetic in NIH3T3 

cells (Fig. 3F and S1 Movie) and in HeLa cells (S2 Movie). This enhanced 

translocation was seen in time-lapse experiments, in which NIH3T3 cells expressing 

rERK2-LOC were monitored every 2 min before and after FGF4 treatment (Fig. 3F). 

Based on the calculated concentration index, an initial nuclear burst of rERK2-LOC 

was visible, peaking between 4 to 8 minutes after FGF4 induction, as expected [29]. 
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With regards to over-expression driven perturbations of the signaling network, 

several explanations can be proposed for the subsequent CI decrease. Nuclear 

anchors saturation and the presence of exogenous MEK1 in ERK2 export from the 

nucleus could be responsible. However the expected sustained activation profile of 

ERK2 [29] has been maintained since CI did not decrease to initial baseline level. 

Concerning ERK2 diffusion, the significantly slower mobility of rERK2-LOC 

compared to overexpressed eGFP-rERK2 in FRAP experiments (Fig. 4D) indicates 

the stimulus-dependent binding of ERK2 to specific nuclear targets. So, saturation of 

ERK2-binding sites due to overexpression of eGFP-rERK2 without sufficient amount 

of MEK1 around altered the shuttling and resulted in accumulation of the kinase in 

the nucleus, where eGFP-rERK2 behaved as a free monomer. However the slight 

difference in diffusion of overexpressed eGFP-rERK2 (Fig. 4D) could indicate that it 

might still bind slightly to nuclear partners. Our results using rERK2-LOC 

unambiguously showed a decrease of ERK2 mobility in the nucleus, demonstrating 

that equimolar coexpression of mMEK1 counterbalances the overexpression of 

eGFP-rERK2 and thus prevents saturation of the limited ERK2 nuclear binding sites. 

This result is at odds with a previous study [26] that reported no difference in mobility 

between overexpressed free eGFP and eGFP-rERK2, and which was attributed to 

the use of cells with strong overexpression [29]. Because of the high ERK2 nuclear 

concentration, detection of eGFP-rERK2 nuclear binding upon stimulation of the 

pathway was not possible in their experimental settings. 

As described in previous studies, mitogenic stimulation triggers rapid entry of 

ERK2 into the nucleus followed by massive nuclear accumulation of ERK2 several 

hours after the stimulation. On the other hand, non-mitogenic signals trigger only the 

initial translocation of ERK2 [21,71]. The characteristic mitogenic response was 

observed in NIH-3T3 cells transfected with rERK2-LOC, whereas an abnormally brief 

nuclear localization of ERK2 was generally associated with uncontrolled 

coexpression of MEK1/ERK2 [26,27,30]. Indeed, rERK2-LOC subcellular distribution 

was identical to that of endogenous ERK1/2 [21], with progressive nuclear 

accumulation 1 h and 2 h after either serum or FGF4 stimulation. It was reported that 

the late nuclear accumulation of ERK2 requires nuclear anchors such as MKP1 and 

MKP2, the expression of which is induced by ERK1/2 signaling [21,22,71]. ERK2-

mediated phosphorylation of MKPs triggers inactivation and nuclear retention of 
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ERK2 through high-affinity interactions, limiting access to activated MEK1 in the 

cytoplasm. Consistent with previous studies, this late accumulation of ERK2 in the 

nucleus is uncoupled from MEK1-dependent TEY-phosphorylation of ERK2 [20,22]. 

Thus, since rERK2-LOC subcellular distribution matched endogenous ERK2 

localization over time, we suggest that our rERK2-LOC reporter is regulated in the 

same way as the endogenous ERK2 by the endogenous regulatory proteins of the 

ERK1/2 signaling pathway. In addition, recent findings identified a similar mechanism 

for uncoupling TEY-phosphorylation from ERK2 nuclear localization at the early 

phase of the stimulation [20]. This uncoupling mechanism is not explainable by the 

sole expression of specific nuclear anchors and relies on a Casein Kinase 2-

dependent SPS-phosphorylation in the kinase insert domain of ERK2 that is 

independent of ERK2 activation [72]. In Xenopus laevis embryo, spatiotemporal 

distribution of xERK2-LOC coincided with that of phosphorylated ERK2 in the region 

around the blastopore at stage 12, where an increase of ERK2 activation occurs, as 

well as at late gastrula and tadpole stages [46] (Fig. 5E, left panel, Fig. 5G-H and S3 

Movie). In addition, we also found xERK2-LOC in the nuclei of large cells of the yolk 

plug at stage 12 (Fig. 5F, right panel and S4 Movie), although no activation of ERK2 

was previously detected by immunohistochemistry [46]. These findings shed light on 

the importance of closely correlating ERK1/2 activation to its subcellular localization 

to determine cell fate and assess the involvement of specific spatiotemporal 

regulators of the ERK1/2 pathway. Considering the kinase-independent functions of 

ERK2 that have been reported both in the cytoplasm and in the nucleus [73,74], this 

has become particularly relevant. 

4.1.5. Conclusion 

In this study, limitations in eGFP-tagged ERK2 expression were solved by 

using a T2A “self-cleaving” peptide in bicistronic plasmids. Previous studies have 

shown that the cleavage efficiency of T2A is much higher than that of other 2A 

sequences [47,48]. So we fused the T2A sequence in frame between MEK1 and 

ERK2. The 2A peptide strategy enabled equimolar coexpression of MEK1 and ERK2 

and restored the localization dynamics of ERK2. More importantly, we show that the 

expression pattern of the coexpressed proteins was consistent among the 

transfected cells. We confirmed the functionality of rERK2-LOC by using several 

biochemical approaches. Upon stimulation, rERK2-LOC rapidly translocated into the 
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nucleus, but its translocation was blocked by MEK1/2 inhibition. Fast-FRAP 

experiments in the nucleus and in the cytoplasm revealed a differential diffusion of 

rERK2-LOC, depending on its activation state and its subcellular localization. Given 

the stability of T2A-linked protein coexpression, we coexpressed MEK1 and eGFP-

xERK2 in Xenopus laevis embryos to monitor xERK2 localization at different 

embryonic developmental stages. This is the first report on the subcellular 

localization of xERK2 in living embryos. Our ERK2-LOC reporters could be used in 

conjunction with ERK1/2 activity measurements [60,75,76] in several biological 

systems to assess whether pharmacological inhibitors affect specifically ERK1/2 

activity and/or ERK2 subcellular distribution [7]. Finally, this 2A-mediated 

coexpression system is versatile and makes it possible to build on existing reporters 

by adding coding sequences from other genes (Raf, KSR, PEA-15) that are relevant 

to the regulation of the ERK1/2 signaling pathway. Taken together, our study has 

revealed that 2A-mediated coexpression of eGFP-ERK2 and MEK1 is a reliable and 

user-friendly strategy to faithfully monitor ERK2 in living cells and in a whole 

organism.  
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Supporting Information 

Plasmid Constructs 

pCS2-xMEK1-2A-GFP-xERK2 

The Xenopus laevis ERK2 sequence (xERK2) was amplified by polymerase 

chain reaction (PCR) using the forward primer xERK2.AgeI-BamHI-F (AgeI and 

BamHI sites underlined; start codon in bold), and the reverse primer xERK2.XhoI-R, 

(XhoI site underlined; stop codon in bold). To amplify eGFP from pEGFP-N1 

(Clontech, USA), forward primer eGFP.AscI-F (AscI site underlined) and reverse 

primer eGFP.NheI-R (NheI site underlined) without stop codon were then designed. 

xERK2 and eGFP PCR products were purified, digested and ligated sequentially into 

the pCS2-7G backbone at the AgeIXhoI and AscINheI sites, respectively, to create 

the intermediary vector  pCS2-eGFP-7G-xERK2. We adopted a cassette-cloning 

strategy using the complementary oligonucleotides T2A.AscI-F and T2A.AscI-R to 

generate a double-stranded cassette containing the 2A peptide sequence derived 

from the Thosea asigna virus (italic) and two unique restriction sites, SpeI and ClaI 

(underlined). The resulting cassette flanked by AscI overhangs was then ligated into 

the pCS2-eGFP-7G-xERK2 vector at the AscI site to create the control vector pCS2-

2A-eGFP-7G-xERK2. The Xenopus laevis MEK1 sequence (xMEK1) was then 

obtained by two-step PCR from five stage-8 blastula embryos. Poly(A)+ RNA was 

reverse transcribed into cDNA, and after first-strand synthesis, the cDNA was used 

as a template for the PCR step. xMEK1 was amplified by PCR using the forward 

primer xMEK1.SpeI-F and the reverse primer xMEK1.ClaI-R, containing SpeI and 

ClaI sites, respectively (underlined). The PCR product was ligated into the SpeI and 

ClaI sites in the T2A cassette to produce the final expression vector pCS2-xMEK1-

2A-eGFP-7G-xERK2. Note that the Gly-Ser-Gly (GSG) linker between MEK1 and the 

T2A sequences was maintained to optimize cleavage efficiency [32,77]. 

pCS2-mMEK1-2A-GFP-rERK2 

The eGFP-rERK2 sequence from peGFP-C1-rERK2 was obtained by 

digestion with NheI and BamHI restriction enzymes. eGFP-rERK2 was then purified 

and ligated into the NheI and BamHI sites in the pCS2-7G backbone to create the 

expression vector pCS2-eGFP-rERK2. The Mus musculus MEK1 (mMEK1) 

sequence was obtained using the procedure described above for xMEK1, using 100 
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ng of total RNA extracted from NIH-3T3 cells. mMEK1 was amplified by PCR using 

the forward primer mMEK1.SpeI-F and the reverse primer mMEK1.ClaI-R, containing 

SpeI and ClaI sites, respectively (underlined). The PCR product was ligated into the 

SpeI and ClaI sites in the previously constructed pCS2-2A-eGFP-7G-xERK2 to 

produce the intermediary vector pCS2-mMEK1-2A-eGFP-7G-xERK2. The mMEK1-

2A fragment was excised from the intermediary vector using AscI, purified, and 

ligated in frame to the corresponding restriction site in linearized pCS2-eGFP-rERK2 

to create the final expression vector pCS2-mMEK1-2A-eGFP-rERK2.  

pCS2-mCherry-mMEK1-2A-GFP-rERK2 

The peGFP-N1 vector was digested with AgeI and NotI to remove the eGFP 

sequence, and then filled in with Klenow and re-ligated. The resulting vector was cut 

with NheI and a cassette containing a 7-glycine linker (italic) and two unique 

restriction sites, AgeI and BsrGI (underlined), were inserted in the NheI site, 

producing pClontech-N1-7G. The forward and reverse complementary 

oligonucleotides used to create the cassette were Backbone-7G-F2 and Backbone-

7G-R2. The mCherry sequence from pmCherry-N1 vector was then subcloned into 

the AgeI and BsrGI restriction sites of pClontech-N1-7G to generate the pClontech-

7G-mCherry intermediary vector. pClontech-N1-7G-mCherry and pCS2-mMEK1-2A-

eGFP-rERK2 were digested with NheI and SpeI, respectively, and incubated with 

Mung Bean Nuclease to create blunt-ends extremities. The resulting 7G-mCherry 

fragment was ligated into pCS2-mMEK1-2A-eGFP-rERK2, producing the final 

expression vector pCS2-mCherry-mMEK1-2A-eGFP-rERK2.  

pmCherry-7G-mMEK1 

The pmCherry-C1 vector was cut with BspEI and XhoI. Complementary 

oligonucleotides Backbone-7G-F3 and Backbone-7G-R3 were annealed to each 

other to generate a double-stranded cassette containing a 7-glycine linker (italic) and 

two unique restriction sites, SpeI and AscI (underlined). The cassette flanked by 

BspEI and XhoI overhangs was then ligated into the pmCherry-C1 at BspEI and XhoI 

sites to create the pmCherry-C1-7G intermediary vector. mMEK1 was amplified by 

PCR using the forward primer mMEK1.SpeI-F2, incorporating a SpeI site 

(underlined) and a stop codon (bold), and the reverse primer mMEK1.AscI-R (AscI 

site underlined). The PCR product was ligated into pmCherry-C1-7G at the SpeI and 

AscI sites, producing the final expression vector pmCherry-C1-7G-mMEK1. 
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Supplementary Figure 

 

S1 Fig. Comparison of rERK2-LOC mobility in the nucleus and cytoplasm of NIH-3T3 by high-
speed FRAP measurements. (A) NIH-3T3 cells were transfected with rERK2-LOC and serum-
starved for 24 h. Bleaching was first performed in the cytoplasm of non-stimulated cells, and in both 
the nucleus and the cytoplasm of the same cell after serum stimulation along the red lines drawn (left 
panel). Representative kymograms (xt) of fluorescence intensity measured along the lines (both red 
and white) across the selected cells for each experimental condition over time are shown (right panel). 
Scale bar: 10 μm. (B-C) Curves of cumulative fluorescence recovery over time for rERK2-LOC in 
resting cell cytoplasm (blue curve), and in cytoplasm (green curve) and nucleus (red curve) 8 min after 
serum stimulation were normalized (B) and fitted (C).  (D) Immobile fractions (IF) were calculated for 
all conditions (corresponding color symbols). The number of photobleached cells is indicated above 
each symbol. Statistical significance was determined by a two-tailed unpaired t-test (ns, no significant; 
*, ≤ 0.05; ****, ≤ 0.0001). 
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Movie Captions 

S1 Movie. rERK2-LOC spatiotemporal localization in 
serum-starved NIH-3T3 cells after FGF4 stimulation.  

S2 Movie. rERK2-LOC spatiotemporal localization in 
serum-starved HeLa cells after hEGF stimulation.  

S3 Movie. xERK2-LOC subcellular distribution in a living 
Xenopus laevis embryo at the dorsal lip of the blastopore.  

The movie shows a vegetal view of the embryo (stage 12, late gastrula) and is 

made from 108 confocal z-planes using a 1.50-μm step size between sections. The 

confocal z-series 3D reconstruction of the dorsal lip of blastopore shows the 

accumulation of rERK2-LOC in the nuclei of blastoporal cells located in the push 

inward area.  

S4 Movie. xERK2-LOC subcellular distribution in a living 
Xenopus laevis embryo at the yolk plug.  

The movie shows a vegetal view of the embryo (stage 12, late gastrula) 

overexpressing xERK2-LOC and is made from 86 confocal z-planes using a 1.00-μm 

step size between sections. The confocal z-series 3D reconstruction of the yolk plug 

shows the accumulation of rERK2-LOC in the nuclei of large endodermal cells.  

S5 Movie. Imaging of xERK2-LOC in a whole living 
Xenopus laevis stage 38 tadpole.  

The embryo, head to the left, shows substantial nuclear accumulation of 

xERK2-LOC in the cells of the forebrain-midbrain boundary. 
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4.2.1. Introduction 

Real-time cellular network interrogation provides spatio-temporal information 

necessary to study intricate signal transduction in dynamic cellular processes leading 

to cell fate decision [1–3]. Fluorogenic approaches relying on fluorescent indicators 

are considered nowadays as instrumental towards this goal.  Description of 

promising prospect of Förster Resonance Energy Transfer (FRET) [4] applied to 

biology has enhanced experimental strategy designs to study biochemical events in 

their native context. In this repertoire, genetically encoded intramolecular biosensors 

based on FRET (hereafter called FRET biosensors) have enriched the scientist 

toolbox. The archetypal structure of such reporters comprised a molecular 

recognition element (MRE) serving as bioreceptor usually flanked by two fluorescent 

proteins (FPs) acting as transducer (for review, [5]). Using rather simple ratiometric 

measurements, recordings of ionic species [6,7] and second messengers 

concentration fluctuation [8,9] as well as post-translational modifications [10–13] and 

protease activities [14,15] in conjunction with dedicated cellular events are within our 

reach. Kinase activity reporter is one of such subtype of FRET biosensors. A Kinase 

Activity Reporter (AKAR), the first of its kind, was engineered to report specifically on 

protein kinase A (PKA) activity [16]. However, to provide meaningful and detailed 

spatiotemporal kinase activity signature in living cells, several rounds of optimization 

and additional refining were necessary to yield a specific and sensitive FRET 

biosensor. The case of AKAR is a clear example and much was learnt along the way 

considering substrate specificity, biosensor reversibility and sensing domain topology 

as well as recognition domain optimization for adequate pairing with the sensitized 

substrate [17].  

Genetically encoded FRET biosensors present several advantages in 

comparison with other fluorogenic probes including high signal-to-noise ratio, easy to 

transfect into cell lines and simple ratiometric imaging [18,19]. The dark side of FRET 

biosensors concerns their sensitivity in particular for in vivo applications. To be 

efficient such a FRET biosensor must allow spatio-temporal functional imaging at 

high frequency sampling [20,21], harbor no innate localization and behave in an inert 

fashion so as to avoid buffering effect [17] onto the evaluated signaling molecule. In 

addition, a few biosensors’ key requirements [17,20,22–26] should be considered. To 

fit to this tender, the developer is facing additional challenges. While specific 
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structural requirements/constraints favorable for FRET to occur between fluorescent 

proteins are known [4], concerning intramolecular FRET biosensor, orientation of 

fluorescent proteins is not foreseeable, and no 3D structure prediction is possible so 

far. In an attempt to establish some ground rules for biosensor engineering, 

biophysical modeling of biosensor based on small-angle X-ray scattering (SAXS) 

experimental data was reported. But data were gathered from already validated 

biosensors [7,27]. Mathematical modeling was also employed to infer fluorescent 

proteins dimerization and linker length on distance dependent FRET in the context of 

intramolecular biosensor [26]. The current consensus in the field is that, biosensor 

engineering remains a time consuming empirical optimization process by trials and 

errors.  

To produce sensitive FRET biosensors, several research groups focused on 

the engineering of fluorescent proteins to provide GFP variants with improved 

fluorescent properties dedicated for FRET applications [24,28,29]. But these new 

optimized variants, were not sufficient for generating highly sensitive FRET 

biosensors. Other parameters could affect biosensor efficiency such as the 

orientation and the distance between fluorescent proteins [4]. The emergence of 

circularly permutated (cp) fluorescent protein variants [9,30] as well as the design of 

rigid or flexible linkers with various lengths [26] led to the generation of new FRET 

biosensors with increased dynamic range. Several positional combinations of key 

molecular elements comprised in these FRET biosensors were investigated to 

generate a suitable arrangement for dynamic range improvement [20]. For example, 

structural evidences support that CFP should be preferentially positioned at the C-

terminal of the biosensor and not at the N-terminal as usually found [26]. In light of 

the diversity of potential combinations to produce an optimized FRET biosensor, a 

ready-to-use plasmid library with various FRET pairs was made available [25], a 

generic backbone with enhanced performance was validated [26] and a versatile 

toolkit [31] was reported. However, the time-consuming constraint remains since the 

aforementioned strategies rely on classical molecular cloning method to produce a 

vast number of potential successful combinations.  

Driven by flexibility and versatility to produce tailor-made biosensor without 

hampering the dynamic range and therefore the sensitivity, we have developed a 

method for accelerating the development and optimization of FRET biosensors. 
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Considering the number of potential kinase substrates, the existence of several 

different Phospho Amino Acid Binding Domain (PAABD) and fluorescent protein 

variants available, four libraries based on the Gateway technology [32] were built: a 

library of flanking N-terminal and C-terminal fluorescent proteins, a substrate domain 

library and a recognition domain library. In this context the Gateway att 

recombination sequences are acting as short linkers flanking each functional element 

of the biosensor. This methodology was applied on both PKA and ERK1/2 

biosensors. While characterization and validation conducted in different cellular 

models showed no detrimental effect on AKAR performance, the sensitivity and 

dynamic range of EKAR (ERK-ACT) were much improved. ERK-ACT was then 

utilized for the spatio-temporal monitoring of ERK1/2 activity throughout the cell cycle 

in single living cells, revealing particular signatures of ERK1/2 activity that were not 

recorded before with previous ERK biosensors [23,26].  

4.2.2. Material and Methods  

All steps used for generating FRET biosensors were rigorously 

described and detailed in a patent application. Application nr GB 

1400997.1. Riquet F et al. Priority date: 2014.06.20. 

Cell culture and transfection 

HeLa cells (ECACC 93021013) and HEK 293T (ATCC CRL-11268) were 

maintained at 37 °C under 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM, 

#11885-084) supplemented with 10% Fetal Bovine Serum (FBS, qualified, heat 

inactivated, EU-approved, South America Origin) and 100 U/mL 

Penicillin/Streptomycin (P/S, #15140-122) (Gibco, Thermo Fisher Scientific, 

Waltham, MA, USA). For live imaging, cells were resuspended in Fluorobrite DMEM 

(A18967, Life Technologies) after trypsinization and seeded on 8-well dishes ibiTreat 

(#80826, Ibidi, Martinsried, Germany) at a density of 40.000 cells/mL to reach 60% 

confluence at the time of transfection. Transfection was performed using JetPrime 

reagent (#114-15, Polyplus, Illkirch, France) according to the manufacturer’s 

instructions. Media were changed with fresh medium 4h after transfection to reduce 

cytotoxicity. HeLa cells were starved by adding 1% FBS for 24 h before experiments 

began. The cells were placed directly inside a microscope stage chamber controlling 

temperature, CO2 and humidity (top stage incubator, Okolab, Burlingame, CA, USA) 
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1h before cell imaging to avoid aberrant cellular responses due to cell stress (e.g. 

temperature changes, cell manipulation, etc.).  

Ratiometric imaging 

Wide-field images were captured with a Nikon TiE inverted microscope with a 

20x 0.5NA objective and a DS-Qi2 CMOS camera (Nikon, Japan). Images were 

acquired at intervals of 2 min with the Nikon NIS-Elements acquisition software using 

JOBS module (Nikon). A Lumencor Spectra X LED Light Engine (Lumencor, 

Beaverton, OR, USA) provided the excitation light source. Ratio imaging used a 

440/30 excitation filter, a t440/510/575rpc multi-band dichroic mirror, and two 

emission filters (ET480/40M (CFP) and AT545/30M (FRET)). Excitation filters were 

provided by Lumencor and all dichroic mirrors and emission filters were obtained 

from Chroma Technology (Brattleboro, VT, USA). An automated emission filter wheel 

Lambda 10-B Smart Shutter (Sutter Instrument, Novato, CA, USA) was used. 

Analysis of EKAR and AKAR FRET biosensors was performed with custom routines 

written in IGOR Pro environment (Wavemetrics, Lake Oswego, OR, USA). FRET 

intensity was calculated as a ratio of the CFP/YFP signal for each pixel on 

background subtracted images. Pseudocolor images represent both the ratio and the 

fluorescence intensity values, where warmer colors denote high FRET and cooler 

colors low FRET efficiency. The calibration bar shows the fluorescence intensity 

values at the bottom and the ratio values on the right. The micron-scale of the 

images corresponds to the size of the calibration bar.  
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4.2.3. Results  

 

Figure 1: Overview of the Gateway cloning process adapted to Kinase Activity Reporter 
development. (A) The fluorescent proteins (FP1 and FP2) and the Phospho-Amino Acid Binding 
Domain (PAABD) were PCR amplified using the appropriate att sequences. PCR products were 
recombined with the corresponding pDONR vector creating Entry clones. (B) Due to the small length 
of the substrate, recombination reactions were inefficient, so an intermediate vector was especially 
designed to alleviate this problem. To this effect, the LacZ operon was PCR amplified with appropriate 
att sequences and the product was recombined with the corresponding pDONR. The substrate was 
cloned in the LacZ generated Entry clone using classical molecular cloning strategy, so to produce an 
Entry clone which length was also amendable for subsequent steps. (C) The destination vector was 
constructed from an original biosensor backbone, in which a “Rf” cassette was inserted using classical 
molecular strategy. (D) Intermediate expression clone was made by LR reaction with the four entry 
clones containing FP1, FP2, PAABD or the substrate, with the appropriate Destination vector. (E) 
Excision of the LacZ fragment by classical molecular cloning yielded the final expression clone coding 
for the desired kinase activity reporter. 
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Figure 2: Optimization of AKAR3-EV biosensor by recombination cloning method. (A) Structure 
of the biosensors generated using the Gateway system. Top panel shows the structure of the 
biosensor for which the cloning system was used only for the substrate. Middle panel depicts a similar 
structure, but by inserting the substrate in an intermediate commercial vector resulting in the presence 
of additional sequences on either side of the substrate. Bottom panel shows the structure where the 
construction was achieved using multisite gateway. Red rectangles represent att sequences; black 
and white rectangles show additional sequences from the intermediate vector (pENTR3C). (B) 
Representative FRET/CFP ratio images before and after stimulation with FSK and after inhibition with 
H89, with AKAR3-EV mutant (upper), AKAR3-EV (middle), and pEX-AKAR3-EV GW4.0 (bottom) are 
shown in the intensity-modulated display mode. HEK293T cells were imaged 24h after transient 
transfection with a time resolution of 2min. A baseline was acquired during 10min before being 
stimulated with 12,5µM Forskolin (FSK) for 30min, follow by inhibition with 20µM H89. (C) 
Representation of the FRET/CFP ratio. The ratio of each cell was normalized by dividing by the 
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average of the FRET/CFP ratio before stimulation (baseline). (D) Maximal ratio after FSK activation 
(Rmax) and minimal ratio after H89 inhibition (Rmin) are plotted for each biosensor. Explanation 
concerning the graphical representation of Rmax and Rmin is shown in panel (L). (E-G) Fit curves of 
the FRET/CFP ratio for the activation and the inhibition respectively. (F-H) Average half-life (t1/2) of the 
activation and the inhibition dynamic are plotted. (I-K) Ratiometric gains, differences between Rmax 
and Rmin, and Rmin proportions based to the Rmax, respectively, are plotted for each biosensor. (L) 
Graphical representation of the different measured parameters. The mean and SEM from at least 35 
cells, from at least two independent experiments, are plotted. 
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Figure 3: Marked optimization of EKAR-EV biosensor through Gateway cloning system. (A) 
Structure of the EKAR-EV GW4.0 biosensors generated using the multisite Gateway system. Red 
rectangles represent att sequences. (B) Representative FRET/CFP ratio images of HeLa transfected 
with EKAR-EV mutant (upper), EKAR-EV (middle), and pEX-EKAR-EV GW4.0 (bottom) are shown in 
the intensity-modulated display mode before and after stimulation with PMA and after inhibition with 
U0126. HeLa cells were imaged 24h after transient transfection with a time resolution of 2min. A 
baseline was acquired during 10min before being stimulated with 1µM Phorbol Myristate Acetate 
(PMA) for 30min, followed by inhibition with 20µM U0126. (C) Representation of the FRET/CFP ratio. 
The ratio of each cell was normalized by dividing by the average of the FRET/CFP ratio before 
stimulation (baseline). (D) Maximal ratio after PMA activation (Rmax) and minimal ratio after U0126 
inhibition (Rmin) are plotted for each biosensor. Explanation concerning the graphical representation 
of Rmax and Rmin is shown in Fig.2 panel (L). (E-G) Fit curves of the FRET/CFP ratio for the 
activation and the inhibition respectively. (F-H) Average half-life (t1/2) of the activation and the inhibition 
dynamic are plotted. (I-J) Ratiometric gains, and differences between Rmax and Rmin, respectively, 
are plotted for each biosensor. The mean and SEM from at least 35 cells, from at least two 
independent experiments, are plotted. 



Results Research article – A novel gateway-based system for rapid… 

242 

 

Figure 4: Comparative analysis of ERK biosensor performance in MEF and L929. Two mouse 
fibroblast cellular models relevant for necroptosis studies were transfected with the above-mentioned 
ERK biosensors. Both cell lines were imaged 24h after transient transfection with a time resolution of 
2min. A baseline was acquired during 10min before stimulation of the MAPK/ERK1/2 pathway with 
1µM PMA for 30min, followed by inhibition with 20µM U0126. (A) and (C) Representation of the 
FRET/CFP ratio. The ratio of each cell was normalized by dividing by the average of the FRET/CFP 
ratio before stimulation (baseline). (B) and (D) Ratiometric gains are plotted for each biosensor. 
Explanation concerning the graphical representation of Rmax, Rmin and gain is shown in Fig.2 panel 
(L). (E) Representative FRET/CFP ratio images of L929 (left) and MEF (right) transfected with EKAR-
EV (upper), or pEX-EKAR-EV GW4.0 (bottom) are shown in the intensity-modulated display mode 
before and after stimulation with PMA and after inhibition with U0126.  
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4.2.4. Conclusion  

We have developed a method for accelerating the development of FRET 

biosensors through the generation of biosensor libraries with multiple potential 

combinations based on Gateway cloning technologies. Application of this approach 

facilitated efforts for the construction of both PKA and ERK1/2 biosensors as a proof 

of feasibility and led to the identification of att recombination sequences as efficient 

linkers to upgrade biosensor’s dynamic range. Newly generated PKA (AKAR3-EV-

GW) and ERK1/2 (EKAR-EV-GW) biosensors exhibited an improved emission ratio 

change in comparison with previous constructs in single cells measurements. In 

addition, the reversibility of these biosensors was also upgraded hence rendering 

biosensors more accessible to specific phosphatases. Our methodology should be 

therefore applicable to the optimization and the development of further FRET 

biosensors.  
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4.3.1. Introduction  

For a long time, necrosis has been considered as an uncontrolled and 

unregulated form of cell death, but accumulating evidence suggests that its 

occurrence is tightly regulated and involves signaling pathways [1]. This contributed 

to the characterization of a new form of programmed necrosis referred to as 

“necroptosis” [2–6]. Tumor Necrosis Factor alpha (TNFα)-induced necroptosis relies 

on a signaling pathway involving mainly two serine-threonine kinases: Receptor-

Interacting Protein Kinase 1 and 3 (RIPK1 and RIPK3) [5]. Recently, the pseudo-

kinase Mixed-Lineage Kinase Like (MLKL) was identified as the crucial executioner 

of necroptosis downstream of RIPK3 [7,8].  

TNF signaling occurs through a complex multi-step pathway based on cell 

death checkpoints directing the cell to a specific cellular response [9]. The first 

checkpoint is organized by the kinase RIPK1 that is positioned at the crossroads of 

cell death and survival [2]. RIPK1 ubiquitination state is crucial as it determines 

whether RIPK1 functions as a molecular platform allowing the recruitment of 

molecular adapters with the ability to elicit a pro-survival response or as a kinase that 

promotes cell death. The second checkpoint decides on cell death type depending on 

the pro-death complex that binds RIPK1 [3,9]. Upon phosphorylation by RIPK3 and a 

conformational change, MLKL appears to form oligomers that localize at the plasma 

membrane and compromise its ability to preserve ionic homeostasis leading to its 

permeabilization [8,10–12]. However, regulatory mechanisms of necroptosis remain 

poorly understood. This is even more complex because molecules mobilized to 

activate a specific cell death pathway are mostly common to other programmed cell 

death. The identification of molecules or processes that are specifically required for 

necroptosis induction and regulation would upgrade necroptosis from a signaling 

cascade to a specific cellular function. 

Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) which are 

members of the mitogen activated protein kinase (MAPK) superfamily are able to 

engage cell proliferation, survival and cell death depending on the cellular context 

[13,14]. Interestingly, activation of ERK1/2 was reported to be involved in different 

modes of programmed cell death such as apoptosis, autophagy and ferroptosis in 

various cellular models [15–20]. It is now accepted that the regulation of the duration, 

magnitude and subcellular compartmentalization of ERK1/2 activity by specific 
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spatio-temporal regulators is interpreted by the cell towards cell fate determination 

[21]. Sustained cytoplasmic ERK1/2 activity, besides inhibiting survival and 

proliferative signals in the nucleus, is rather implicated in senescence and autophagy 

by potentiating activity of cytoplasmic pro-death proteins. In contrast, sustained 

nuclear compartmentalization of ERK1/2 activity might promote apoptosis [18]. 

However, Devin and colleagues investigated the molecular mechanism between 

RIPK1 and MAPKs by using both RIPK1-/- and TRAF2-/- mouse embryonic fibroblasts 

(MEF) [22]. They provided strong evidences of the implication of both RIPK1 and 

TRAF2 in TNFα-induced JNK, p38 and ERK1/2 activation as a drop of 70% in 

ERK1/2 activity was observed in RIPK1-/- cells. Interestingly, by using a kinase-dead 

form of RIPK1, RIPK1 (K45A), in RIPK1-/- cells, they revealed that RIPK1 kinase 

activity is only required for ERK1/2 but not for p38 and JNK activation. Moreover, in 

accordance with previous studies, a RIPK1 kinase-dependent ERK1/2 

phosphorylation upon TNFα stimulation was reported in L929 cells [23]. Recently, 

Zhang and colleagues revealed that ERK1/2 might play a prominent role in 

glutamate-induced necroptosis in HT-22 cells [24]. However, in the context of 

ischemia-reperfusion (IR) injury in rat retinas, Gao and colleagues uncovered a link 

between ERK1/2 activation and RIPK1/3 pathway [25].  

Owing to the importance of ERK1/2 spatio-temporal dynamics in determining 

cellular responses [26,27] and compelling evidences of ERK1/2 involvement in 

necroptosis, we investigated the ERK1/2 spatio-temporal code in TNFα-induced 

necroptosis using fluorescence-based reporters of both ERK1/2 activity and 

localization in single living cells. In combination with chemical inhibition strategies 

targeting specific effectors of necroptosis we report on the complex relationships 

between ERK1/2 and RIPK signaling pathways.  

4.3.2. Materials and methods  

Antibodies, Cytokines and Reagents  

Recombinant human TNFα, produced in our laboratory, has a specific 

biological activity of 3x107 IU/mg and was used at 600 IU/ml to stimulate L929 and 

MEF cells. MEK1/2 inhibitor U0126 and propidium iodide (PI) (Sigma Aldrich, 

Steinheim, Germany) was used at 20μM and 3μM respectively. RIPK1 inhibitor, 

necrostatin-1 (Nec-1) (Calbiochem, Merck KGaA, Darmstadt, Germany) was used at 
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10mM. The caspase peptide inhibitor, zVAD-fmk (Bachem, Bubendorf, Switzerland) 

was used at 10μM. IAP antagonist BV6 was used at 1μM (Genentech Inc., South 

San Francisco, CA, USA). SytoxGreen (Thermo Fisher Scientific, Waltham, MA, 

USA) was used at 5μM. The following antibodies were used for western blot: anti-

ERK1/2 (Abcam, Cambridge, UK, ab17942, 1:1000), anti-β-actin (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA, I-19, 1:1000), anti-ERK2 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA, C-14, 1:1000), anti-RIPK1 (BD Biosciences, 

Franklin Lakes, NJ, USA, 610459, 1:1000), anti-β tubulin (Abcam, Cambridge, UK, 

ab6046, 1:1000) and anti-activated MAPK/ERK1&2 (diphosphorylated ERK1/2) 

antibody (clone MAPK-YT, Sigma Aldrich, M9692, 1:2000). HRP-conjugated 

secondary antibodies were anti-rabbit IgG, anti-mouse IgG or anti-goat IgG (Santa 

Cruz Biotechnology, sc-2004, sc-2005, sc-2020 respectively, 1:10000).  

Plasmids 

The plasmid encoding eGFP-ERK2 and MEK1 in equimolar proportion has 

been used for spatio-temporal localization of ERK2 (ERK2-LOC) and has been 

described by Riquet and colleagues (in press). The plasmid encoding an optimized 

version of the previous FRET biosensor EKAR-EV [28] has been used to monitor 

ERK1/2 activity in single cells measurements (ERK1/2-ACT) (Sipieter et al., in 

preparation).  

Cell culture  

L929 and MEF cells were cultured at 37 °C under 5% CO2 in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS, 

qualified, heat inactivated, EU-approved, South America Origin) and 100 U/mL 

Penicillin/Streptomycin (Gibco, Thermo Fisher Scientific). For live imaging, cells were 

resuspended in Fluorobrite DMEM (Gibco, Thermo Fisher Scientific) after 

trypsinization and seeded on 8-well dishes ibiTreat (Ibidi, Martinsried, Germany) at a 

density of 15.000 cells/mL to reach 60% confluence at the time of transfection. 

Transfections were performed using JetPrime reagent Polyplus, Illkirch, France) 

according to the manufacturer’s instructions. The medium was changed with fresh 

medium 4h after transfection to reduce cytotoxicity. Cells were starved by adding 1% 

FBS for 12 h before experiments began. For microscopy experiments, cells were 

placed directly inside a microscope stage chamber under controlled temperature, 
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CO2 and humidity (top stage incubator, Okolab, Burlingame, CA, USA) 1h before cell 

imaging.  

Western blotting 

At specified time intervals after TNFα addition, L929 cells were washed twice 

in ice-cold PBS and scraped using ice-cold RIPA lysis buffer (50 mM Tris-HCl, pH 

7.5; 150 mM NaCl; 1 mM EDTA; 0.5% sodium deoxycholate; 1% Triton X-100 and 

0.1% SDS) freshly supplemented with EDTA-free Complete protease inhibitor 

cocktail tablets (no. 11873580001) and phosphatase inhibitor cocktail tablets 

(PhosSTOP, no. 04906837001) (Roche Diagnostics Belgium N.V., Vilvoorde, 

Belgium). Extracted proteins (30 µg) were separated on 12% SDS polyacrylamide 

gels and then transferred onto nitrocellulose membranes (Amersham Bioscience, 

UK). Membranes were blocked using TBS with 0.05% Tween20 (TBS-T) containing 

5% non-fat dry milk (Biorad, CA, USA) or in 2% BSA for phospho-antibodies. 

Luminata Classico Western HRP Chemiluminescence Detection Reagents (Millipore, 

Molsheim, France) was used for antibodies detection.  

Immunostaining  

At specified time intervals upon TNFα addition, L929 cells were fixed with 4% 

paraformaldehyde in PBS for 10 min. Afterwards, cells were rinsed three times with 

PBS and permeabilized with 0.5% Triton X-100 in PBS for 5 min. Cells were 

incubated with a blocking solution composed of 2% FBS; 5% normal goat serum and 

2% BSA in PBS for 1 h at room temperature and then further incubated with primary 

antibodies in blocking solution at 4°C overnight. The antibodies were anti-MAPK 

activated (Sigma Aldrich, 1:500). After washing steps, cells were incubated in 

blocking solution containing anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific, A-

10667, 1:500) for 1 h at room temperature in the dark. Finally, cells were incubated 

for 10 min in Hoechst 33258 (10μg/mL) and then slides were mounted in ProLong 

Gold anti-fading reagent (Thermo Fisher Scientific, P36930).  

In situ proximity ligation assay (PLA) 

PLA was performed on fixed cells following a standard immunostaining 

protocol according to the manufacturer’s instructions. At the time of incubation of 

secondary antibodies, we used anti-mouse MINUS and anti-rabbit PLUS PLA probes 

for the recognition of RIPK1 and ERK1/2 respectively.  
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Analysis of cell death 

Cell death was determined by measuring Sytox Green intensity using a 

FLUOstar Omega fluorescence plate reader (BMG Labtech, USA) with 

excitation/emission filters of 485/520nm (Gain set at 1100, 20 flashes per well, orbital 

averaging with a diameter of 3 mm). Triton X-100 at a final concentration of 0.1% 

was added at the end of time-lapse experiments during 1h to obtain the maximal 

fluorescence intensity. Cell death was also detected by monitoring Hoechst and PI 

fluorescence intensity using video-microscopy with excitation filters 395/25 & 575/25, 

and emission filters 440/40 & 632/60, respectively; and quantified using Image J.  

Fluorescence and Ratiometric imaging 

Wide-field images were captured with a Nikon TiE inverted microscope with a 

20x 0.5NA objective and a DS-Qi2 CMOS camera (Nikon, Japan). Images were 

acquired at intervals of 4 min with the Nikon NIS-Elements acquisition software using 

JOBS module (Nikon). A Lumencor Spectra X LED Light Engine (Lumencor, 

Beaverton, OR, USA) provided the excitation light source. Ratio imaging used a 

440/30 excitation filter, a t440/510/575rpc multi-band dichroic mirror, and two 

emission filters (ET480/40M (CFP) and AT545/30M (FRET)). For ERK2 distribution 

imaging a 395/25 (Hoechst), 470/24 (GFP), and 555/25 (mCherry and PI) excitation 

filters, a t390/475/515/630rpc multi-band dichroic mirror, and three emission filters 

(ET480/40m (Hoechst), ET525/50m (GFP) and ET632/60m (mCherry and PI)) were 

used. Excitation filters were provided by Lumencor and all dichroic mirrors and 

emission filters were obtained from Chroma Technology (Brattleboro, VT, USA). An 

automated emission filter wheel Lambda 10-B Smart Shutter (Sutter Instrument, 

Novato, CA, USA) was used. Analysis of ERK1/2-ACT biosensor was performed with 

custom routines written in IGOR Pro environment (Wavemetrics, Lake Oswego, OR, 

USA). FRET intensity was calculated as a ratio of the CFP/YFP signal for each pixel 

on background subtracted images. Pseudocolor images represent both the ratio and 

the fluorescence intensity values, where warmer colors denote high FRET and cooler 

colors low FRET efficiency. The calibration bar shows the fluorescence intensity 

values at the bottom and the ratio values on the right. The micron-scale of the 

images corresponds to the size of the calibration bar. A kymographic FRET image 

measured among the selected cells was performed on ImageJ. Analysis of 

subcellular distribution of ERK2 in individual live cells for time-lapse of 16 h was 
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performed manually using Image J to avoid errors due to automated tracking. The 

results are represented as kymographic images as well.  

4.3.3. Results and discussion  

 ERK1/2 is a pro-necrotic molecule 

To investigate the involvement of ERK1/2 activity in TNFα-induced 

necroptosis, L929sAhFas were treated with increasing concentrations of MEK 

inhibitor U0126 (Fig. 1A and 1B) and then monitored by video-microscopy in the 

presence of PI and Hoechst stains. Results show that ERK1/2 signaling pathway 

inhibition reduced necroptosis in a dose dependent manner (Fig. 1B). More 

interestingly, necroptosis was not abolished by ERK1/2 inhibition but only delayed. 

Similarly, data collected with an alternative cell death assay (Sytox Green), under the 

same experimental conditions, showed the same trend: the number of dead cell is 

decreased by almost 50% with U0126 (Fig. 1A), suggesting that ERK1/2 is a pro-

necroptotic molecule in this cellular context. These results are in agreement with a 

previous study reporting that ERK1/2 inhibition protects L929 from TNFα-induced 

necroptosis but to a lesser extent compared to Nec-1 that specifically inhibits RIPK1 

kinase activity [29]. However, Cho and colleagues also observed a decrease of 

TNFα-induced necroptosis by U0126 in Jurkat cells. In contrast, another study did not 

observed inhibition of TNFα+BV6-induced necroptosis after ERK1/2 signaling 

pathway inhibition in L929 cells [23]. 

 Biphasic phosphorylation of ERK1/2 during TNFα 
induced necroptosis in L929 

Most studies advocating a predominant role of ERK1/2 pathway in cell death 

processes indicate a sustained and compartmentalized ERK1/2 phosphorylation 

between 6 and 72h (for review, [18]). In L929 cells, phosphorylation patterns of 

ERK1/2 during TNFα-induced necroptosis recorded by western blot showed a 

biphasic phosphorylation of ERK1/2. Indeed, TNFα provoked a rapid and transient 

phosphorylation of ERK1/2 between 5 and 15min after TNFα treatment followed by 

sustained phosphorylation starting 2h after TNFα stimulation (Fig. 1C). Surprisingly, 

combined treatment with TNFα and Nec-1 decreased the duration of transient 

phosphorylation of ERK1/2 and markedly reduced the late sustained phosphorylation  
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Figure 1: ERK1/2 is affected during TNFα-induced necroptosis in L929 cells. (A) L929 cells were 
pretreated for 30 min with 20μM of the MEK1/2 inhibitor U0126 and then stimulated with TNFα. Cell 
death was analyzed by Sytox Green staining at different time points using Fluostar fluorometer. (B) 
L929 cells were pretreated or not for 30 min with U0126 at 10μM, 20μM or 50μM and subsequently 
stimulated by TNFα. DMSO was added as a control at a volume equivalent to 50μM treatment 
condition. Cell death was monitored by Hoechst staining and PI uptake by video-microscopy for 10 h 
after TNFα stimulation and analyzed. preT: pretreatment with U0126. (C-D) L929 cells were serum-
starved for 12h and then pretreated (D) or not (C) for 30 min with Nec-1 and subsequently stimulated 
with TNFα at the indicated time points. Cells were then lysed and immunoblotted as indicated on the 
left of each blot. Corresponding molecular weights are also indicated on the right of each blot. (E-F) 
L929 cells were serum-starved for 12h and then pretreated (F) or not (E) with 10μM Nec-1 and 
subsequently stimulated with TNFα at the indicated time points. Cells were fixed and processed for 
immunofluorescence with antibody against di-phosphorylated activated ERK1/2 (green) and stained 
for DNA with Hoechst (blue). DMSO was added as a control at a volume equivalent to 10μM treatment 
condition. ABII corresponds to a control with the secondary antibodies but without primary antibodies. 
Scale bar: 40μm.  
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of ERK1/2 (Fig. 1D). These observations could suggest that RIPK1 kinase activity is 

involved in the phosphorylation of ERK1/2 in accordance with previous studies 

[22,23]. To definitively determine the effect of RIPK1 on ERK1/2 phosphorylation, we 

evaluated the effect of Nec-1 in serum-induced ERK1/2 phosphorylation in L929 

cells. We found that Nec-1 did not alter ERK1/2 phosphorylation under these 

experimental conditions, suggesting thereby a RIPK1-mediated phosphorylation of 

ERK1/2 upon TNFα stimulation [29] (Fig. 2A). However, combined treatment with 

TNFα and U0126 (30min before 2h and 30min before 4h TNFα stimulation) abolished 

the late sustained phosphorylation of ERK1/2 (Fig. 2B). These observations suggest 

that the late sustained ERK1/2 phosphorylation is conducted by ERK1/2 signaling 

and not by an alternative inhibition of ERK1/2 specific phosphatases due to ROS 

production [18,30,31] occurring in the late phase of necroptosis [6,32]. 

 ERK1/2 phosphorylation is mainly cytoplasmic 
during TNFα-induced necroptosis in L929 

Together with a sustained activity, ERK1/2 sequestration is also considered as 

hallmarks of ERK1/2-mediated cell death [18]. Assessment of phosphorylated-

ERK1/2 localization during TNFα-induced necroptosis in L929 by 

immunofluorescence confirmed the biphasic phosphorylation of ERK1/2 and its 

inhibition by Nec-1 (Fig. 1E and 1F). Upon TNFα stimulation, phospho-ERK1/2 is 

mainly localized in the cytoplasm in both the early and late stages of ERK1/2 

phosphorylation. However, it remains unclear whether the kinase is sequestered or 

not. While immunostaining provide a snapshot of compartmentalized ERK1/2 activity 

at different time points, live imaging of ERK1/2 is required to uncover unexpected 

dynamics of ERK1/2 in correlation with TNFα-induced necroptosis. For example, in 

response to TNFα, RIPK1 is rapidly modified with ubiquitin chains (between 5 and 15 

min after TNFα treatment), which is associated with a pro-survival response [9,33] 

and could therefore provoke a transient translocation of ERK1/2 to the nucleus [34], 

undetectable by immunofluorescence.  

 ERK2 and RIPK1 interacts 

Due to the toxicity of over-expression of RIPK1/3 in living cells, it was critical to 

over-express tagged-RIPK proteins in MEF or L929 cells. Therefore, we used in situ 

proximity ligation assay (PLA) [35] to examine whether ERK2 and RIPK1 interact. 

Interestingly, upon TNFα stimulation of L929 cells, results show a strong interaction 
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of ERK2 and RIPK1 at the time-point of 30min visualized by an increasing number of 

red spots compare to the control condition without TNFα stimulation (Fig. 3). 

Recently, a study showed that RIPK1 could interact constitutively with ERK1/2 and 

transiently with MEK2 upon eleostearic acid (ESA)-induced atypical RIPK1-

dependent apoptotic cell death [36]. However, regarding the kinetic of ERK1/2 

phosphorylation and the detection of interaction between RIPK1 and ERK2 in L929 

cells, the functional interaction between ERK2 and RIPK1 in this cellular context 

should be further studied.  

 

Figure 2: Nec-1 does not alter ERK1/2 phosphorylation upon serum stimulation in L929.  
(A) L929 cells were serum-starved for 12h and then pretreated or not for 30 min with either Nec-1 at 
30μM and 50μM or U0126 at 20μM or DMSO at a volume equivalent to 50μM treatment condition. 
Cells were subsequently stimulated with 10% serum (fetal bovine serum, FBS). Cells were lysed and 
immunoblotted as indicated on the left of the blot. (B) L929 cells were serum-starved for 12h and 
stimulated with TNFα for 4 hours. 30 min before the time point, cells were treated with U0126 at 20μM 
for 30min and then lysed and immunoblotted as indicated on the left on the blot.  

 Spatio-temporal activity of ERK1/2 in necroptosis 

We investigated ERK1/2 activity dynamics following necroptosis stimulation. 

We first used a genetically encoded FRET biosensor for ERK1/2 (EKAR-EV) [28]. 

However, this reporter failed to reveal any changes in ERK1/2 activity upon TNFα-

induced necroptosis in L929 cells, which was inconsistent with our biochemical data. 

We estimated the phosphorylation level of ERK1/2 upon TNFα stimulation of serum-

starved L929 cells compared with those upon serum stimulation. We found ERK1/2 

phosphorylation was increased 1,5-fold in L929 cells stimulated with serum relative to 

TNFα stimulation, explaining thereby in part why the biosensor used did not detect 
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any changes in ERK1/2 activity level in TNFα-induced necroptosis. Recently, we 

developed a method to build and/or optimize genetically encoded FRET biosensor 

(Sipieter et al., in preparation) leading to the optimization of ERK1/2 FRET biosensor 

(ERK1/2-ACT). We characterized the biosensor dynamic range in our cellular models 

(L929 and MEF) by activating and inhibiting ERK1/2 signaling pathway with phorbol 

myristate acetate (PMA) and U0126 respectively. The results showed an emission 

ratio change that was almost improved by 2-fold relative to the initially construct in 

these cellular models (Sipieter et al., in preparation). Our newly optimized biosensor 

has facilitated our efforts to monitor the spatio-temporal dynamics of ERK1/2 over a 

long period.  

 

Figure 3: ERK2 and RIPK1 interact upon TNFα-induced necroptosis in L929. L929 cells were 
serum-starved for 12h and subsequently stimulated with TNFα for the indicated time. Cells were fixed 
and processed for immunofluorescence with antibodies against ERK2 and RIPK1. ERK2 and RIPK1 
association was visualized by a PLA. Red spots correspond to detected interactions between ERK1 
and RIPK1. Scale bar: 50μm.  

Time-lapse FRET imaging of ERK1/2-ACT in MEF cells revealed a stochastic 

ERK1/2 activity pulses in the control condition in accordance with previous reports 

[37] (Fig. 4A-C). This stochastic ERK1/2 activation can be observed in a wide range 

of cellular models without stimulation during a time-lapse acquisition [37]. We further 

investigated the effect of a necroptotic and an apoptotic trigger on ERK1/2 activity. 

Kymographic FRET images revealed that the frequency of ERK1/2 activity pulses 
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markedly increased upon TNFα+BV6+zVAD-induced necroptosis in the signaling 

phase of necroptosis (Fig. 4G-I). Notably, we also observed a higher basal ERK1/2 

activity in the last phase of cell death. In contrast, a gradual increase of ERK1/2 

activity was detected upon TNFα+BV6-induced apoptosis (Fig. 4J-L). However, BV6 

+ zVAD condition show a basal increase of ERK1/2 activity consistent with previous 

studies [23] (Fig. 4D-F). These findings argue for a specific spatio-temporal signature 

of ERK1/2 depending on the programmed cell death. In order to uncover the 

molecular mechanisms underlying the spatio-temporal activity of ERK1/2, we used 

different chemical inhibitor of ERK1/2 signaling. For example, ERK1/2 activity pulses 

were suppressed with Raf inhibitor AZ628 (data not shown), reflecting a Raf-

dependent phosphorylation of ERK1/2 upon necroptosis and apoptosis stimulation. 

Our next efforts will include inhibitors of RIPK pathway such as Nec-1 and RIPK3 

inhibitors to elucidate crosstalk between RIPK and ERK1/2 signaling pathways 

through potential feedback loops. 

 Spatio-temporal distribution of ERK2 in necroptosis 

Cytoplasmic or nuclear ERK1/2 sequestration is considered as hallmark of 

ERK1/2-mediated cell death. We further monitored subcellular ERK1/2 distribution 

following cell death stimulation in MEF cells by time-lapse microscopy. Using ERK2-

LOC reporter, we observed brief transient translocations of ERK1/2 in the nucleus in 

the control condition but also in stimulated conditions, which might reflect stochastic 

ERK1/2 activation over a long time-lapse (Fig. 5). But interestingly, our results 

revealed a progressive accumulation of ERK1/2 in the nucleus starting between 1 to 

2 hours before cell death upon both TNFα+BV6-induced apoptosis (Fig. 5B and 5C) 

and TNFα+BV6+zVAD-induced necroptosis (Fig. 5D and 5E). We want to further 

elucidate the molecular mechanism underlying this ERK2 nuclear accumulation 

 Development of kinase activity reporters for RIPK1 
and RIPK3 

Read-outs / hallmarks to correlate the spatio-temporal ERK1/2 code with necroptosis 

occurrence [38] are scarce. Since the kinase activity of RIPK1 and/or RIPK3 are 

crucial in the initiation step of necroptosis, we set out to develop new FRET-based 

kinase biosensors to specifically report on RIPK1 and RIPK3 kinase activities [39]. 

Based on our innovative methodology for the generation of new FRET biosensors, 

several biosensors have been efficiently generated for RIPK1 and RIPK3. Numerous 
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substrate peptides included sequences containing auto-phosphorylation sites of 

RIPK1 and RIPK3, RIPK3 substrates such as MLKL, as well as phosphorylation 

peptides derived from non-published RIPK1 substrates, phosphopeptides identified 

during phosphoproteomics experiments and from CelluSpotsTM peptide arrays 

containing phosphoserine and/or phosphothreonine. The generated RIPK1 and 

RIPK3 biosensors and their negative controls have been transiently introduced in 

L929 and MEF cells to check their efficiency upon the appropriate necroptosis 

triggers to induce the kinase activity of RIPK1 and RIPK3. Our first results in TNFα-

induced necroptosis in L929 cells show a response for several biosensors (emission 

ratio of 10-15%) leading to a first generation of FRET biosensors for RIPK1 and 

RIPK3. We still need to determine the specificity and selectivity of these biosensors 

by using a chemical inhibitory approach of RIPK signaling before optimization of their 

dynamic range.  

 

Figure 4: ERK1/2 activity profiles upon cell death stimulation in MEF. MEF cells were transiently 
transfected with the FRET biosensor ERK1/2-ACT and serum starved for 12h. After 24h, cells were 
pretreated or not with 10μM BV6 and/or 10μM zVAD for 1h and then stimulated or not with 600IU 
TNFα for 15h. (A), (D), (G), and (J) Representative FRET/CFP ratio images before TNFα stimulation 
are shown. Each panel combines two different fields and selected cells are shown. (B), (E), (H), and 
(K) Kymographic FRET images of indicated cells 10 h after the beginning of the experiment are 
shown. Images were acquired every 4 min. The dashed line corresponds to the induction. (C), (F), (I), 
and (L) FRET/CFP ratio of indicated cells are plotted against time.  
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Figure 5: ERK1/2 subcellular distribution upon cell death stimulation in MEF. MEF cells were 
transiently transfected with the ERK2 localization reporter, ERK2-LOC, and serum starved for 12h. 
After 24h, cells were pretreated or not with 10μM BV6 and/or 10μM zVAD for 1h and then stimulated 
or not with 600IU TNFα for 15h. (A), (B) and (D) Kymographic images of ERK2 concentration index 
(CI) 10 h after the beginning of the experiment are shown. Each line corresponds to one cell. Images 
were acquired every 4 minutes. CI is representative of ERK2 subcellular distribution and is calculated 
as (F nucleus – F background) / (F cytoplasm – F background), where F corresponds to the 
fluorescence intensity. Green colors reflect a localization of ERK2 mostly cytoplasmic whereas red 
colors denote rather an accumulation of ERK2 into the nucleus. The CI scale bar is defined between 
0,5 and 1,5 CI values. (C) and (E) Representative images of ERK2 localization during apoptosis (C) 
and necroptosis (E). Line color is representative of the CI values. Dark color indicates dead cells. 
Scale bar: 50μm. 

4.3.4. Conclusion  

Here, we provide evidences for the involvement of ERK1/2 in TNFα-induced 

necroptosis in L929 cells as ERK1/2 inhibition markedly delays necroptosis in a 

dose-dependent manner. We revealed a biphasic phosphorylation of ERK1/2 and a 

RIPK1-mediated phosphorylation of ERK1/2 depending on the cellular context. 

Owing to the importance of ERK1/2 spatio-temporal dynamics in determining cellular 

responses, we used FRET biosensors to determine relationships between ERK1/2 

and RIPK. We found a differential spatio-temporal signature of ERK1/2 activation 

depending on the type of cell death in MEF cells. Regarding the oscillations of 

ERK1/2 activities in necroptosis observed for the first time, it is crucial to emphasize 

the importance of single-cell measurements because stochastic and growth factors-

induced oscillatory kinase activation as well as heterogeneity in cellular responses 

are obscured in averaged cell population [26]. Although there is a lack of tools or 
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markers for detection of necroptosis, further studies using ERK biosensor and RIPK 

biosensors will provide new insights into the molecular mechanisms underlying 

necroptosis. A very exciting challenge would be to monitor several kinase activities at 

the same time in the same sample [40] to correlate several kinase activities and 

hence determining the  precise crosstalk between each signaling node (Demeautis et 

al.,  to be submitted). 
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Abstract 

Genetically encoded Förster Resonance Energy Transfert (FRET) biosensors 

are powerful tools for monitoring spatiotemporal biochemical activities in living 

samples. A very exciting challenge is to follow two FRET biosensors at the same 

time in the same sample and in the same cellular compartment. But the multiplex 

approach suffers from two limitations: (i) a spectral bleed-through of the first acceptor 

in the second donor emission band that depends on the concentration of the two 

biosensors and (ii) the multiple excitation wavelengths which necessitates sequential 

acquisition that is not adequate to follow fast signal changes in highly dynamic 

biochemical activities. 

Taking advantage of the long stoke shift of LSSmOrange, we have used 440 

nm single excitation wavelength of the two donor mTFP1 and LSSmOrange and a 

dual color FLIM to simultaneously measure two genetically encoded FRET 

biosensors. Moreover, thanks to the non-fluorescent acceptor sREACh for mTFP1 

and of red-shifted mKate2 for LSSmOrange, we were able to avoid any spectral 

bleed-trough. With a dual spectral FLIM system we were able to detect fluorescence 

lifetime images of mTFP1 and LSSmOrange simultaneously and in the same cellular 

localization. We validated our approach by applying this methodology to 

simultaneously determine ERK and PKA activation in the same Hela cell using 

EKAR2G and AKAR4 biosensors respectively modified with mTFP1/sREACh and 

LSSmOrange/mKate2 fluorescent protein pairs. The activation of PKA signaling 

pathway with forskolin, had no effect on ERK1/2 activity. However, activating ERK1/2 

signaling pathway with EGF, led to the identification of two distinct HeLa cell 

subpopulations, highlighting a cross talk between these two signaling pathways 

poorly understood in this cellular model. 
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4.4.1. Introduction 

Genetically encoded Förster Resonance Energy Transfert (FRET) biosensors 

are powerful tools for monitoring spatiotemporal biochemical activities in living 

samples. Since the cameleon [1], the first biosensor using fluorescent proteins 

developed to measure calcium concentration, several families of genetically encoded 

biosensors were engineered such as: RhoGTPase activities reporters for 

cytoskeleton dynamics studies [2,3], cAMP and cGMP towards functional imaging of 

signaling pathways in neuroscience [4,5], quite a few specific kinase activities [6–9] 

and tension sensor across proteins [10,11]. The main advantage of these tools is to 

monitor the amplitude, the duration and the location of a biochemical activity during 

time-lapse fluorescence microscopy acquisition in intact living samples. Such 

methodology is already widely used, particularly in cell biology where spatio-temporal 

regulation is a key parameter. Owing to complex crosstalk between signaling 

pathways, multi-parameter biosensing experiments have become essential to 

correlate biochemical activities without lag time during a dedicated cellular process. A 

very exciting challenge has thus been to follow several FRET biosensors on the 

same sample at the same time and in the same location [12].  

Commonly, FRET is measured by the fluorescence intensity ratio of the 

acceptor to the donor (ref). In that case, whatever the two fluorescent protein FRET 

pairs chosen, CFP/YFP and mOrange/mCherry [13], mTFP1/mCitrine and 

mAmetrine/tdTomato [14,15], mTagBFP/sfGFP and mVenus/mKok [16], the multiplex 

approach suffers from two limitations: (i) a spectral bleed-through of the first acceptor 

in the second donor emission band that depends directly from the respective 

quantities of the two biosensors and (ii) the multiple excitation wavelength which 

requires sequential acquisition that is not adequate to follow fast signal dynamics or 

signal changes in highly motile sample. To overcome the first limitation, a meroCBD 

biosensor modified with a far red organic fluorophore (Alexa750) was used for 

probing Cdc42 simultaneously with a genetically encoded CFP/YFP FRET-based 

biosensor for Rho A [17]. This approach prevents spectral bleed-through but cannot 

be generalized to all genetically encoded FRET biosensors where organic 

fluorophores are not easily usable to replace fluorescent proteins. Very recently, an 

elegant method based on linear unmixing of 3D excitation/emission fingerprints 

applied to three biosensors simultaneously was published [18]. This type of approach 
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based on image calculation is often limited by the different biosensors expression 

level and a poor signal to noise ratio after complex image corrections. To overcome 

the second limitation, the two FRET pairs CFP/YFP and Sapphire/RFP in 

combination with a single violet excitation were used [19] resulting in no lag time in 

biochemical activity recording. But again in this case the spectral bleed-through and 

excitation crosstalk necessitates linear unmixing. Another interesting approach for 

multiplexing two FRET activities simultaneously was developed by Schervakova and 

co-workers (2012) by using a large stokes shift orange fluorescent protein 

(LSSmOrange). The authors used a CFP-YFP together with LSSmOrange-mKate2 

biosensors enabling imaging of apoptotic activity and calcium fluctuations in real time 

[20] using intensity-based methods.Other studies were carried out utilizing 

Fluorescence Lifetime Imaging Microscopy (FLIM) instead of ratio imaging to 

measure FRET. When FRET occurs, donor fluorescence lifetime decreases. This 

method requires measurement of the donor fluorescence only and is independent of 

emission from the acceptor. By using CFP and YFP as donor and the same red 

acceptor (tHcRed), FLIM of CFP and YFP donor allows distinguishing the two 

different FRET signals [21]. Combination of FLIM-FRET of a red-shifted 

TagRFP/mPlum pair with ratio imaging of a CFP/Venus pair allows maximizing the 

spectral separation while at the same time overcoming the low quantum yield of the 

far-red acceptor mPlum [22]. The two last examples alleviated the spectral bleed-

through but not the limitation associated to the multiple excitations.  

Here, we report a method dealing with the different limitations presented 

above. Taking advantage of the long stoke shift of LSSmOrange [20], we have used 

440 nm single excitation wavelength of the two donor mTFP1 and LSSmOrange and 

a dual color FLIM to measure simultaneously signals from two genetically encoded 

FRET biosensors. Moreover, we have used the non-fluorescent acceptor sREACh 

[23] for mTFP1 and of red-shifted mKate2 [24] for LSSmOrange, avoiding the 

spectral bleed-trough between the two biosensors. We validated our approach by 

applying this methodology to monitor, for the first time, simultaneously two kinase 

activities with no lag time or spatial distribution discrimination using three different 

FLIM setups. ERK and PKA interplay in living HeLa cells was re-examined using 

EKAR2G [25] and AKAR4 [26] biosensors respectively modified with 

mTFP1/sREACh and LSSmOrange/mKate2 fluorescent protein pairs. By activating 
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PKA with forskolin, the ERK pathway is not activated as expected. But surprisingly, 

by activating ERK with EGF, PKA is also activated for a subpopulation of cells 

denoting a cross talk between these two signaling pathways in Hela cell line.  

4.4.2. Materials and methods 

Reagents 

Human epithelial growth factor (EGF, #E9644) was purchased from Sigma 

Aldrich and Forskoline (Fsk, #1099) from Tocris. PKA inhibitor (H89 dihydrochloride, 

#2910) and phosphodiesterase inhibitor (IBMX, #2845) were purchased from Tocris 

and MEK inhibitor (U0126, #U120) and dimethylsulfoxide (DMSO, #D8418) from 

Sigma Aldrich.  

Plasmids 

FRET biosensor plasmid EKAR2G (mTFP1/Venus, Addgene plasmid #39813) 

was a gift from Pr. Olivier Pertz (Department of Biomedicine, University of Basel, 

Switzerland). AKAR4 plasmid was kindly provided by Dr. Jin Zhang (Department of 

Pharmacology and Molecular Sciences, Johns Hopkins University School of 

Medicine, Baltimore, USA). EKAR2G (mTFP1/Venus) vector was digested with NotI 

and KpnI to release the Venus insert generating the EKAR2G (mTFP1/-) vector. 

sREACh was amplified from the pmTFP1-10-sREACh plasmid using the forward 

primer sREACh.NotI-F (NotI site underlined) and the reverse primer sREACh.KpnI 

(KpnI site underlined). sREACh PCR product was then inserted into the 

corresponding restriction sites in the EKAR2G (mTFP1/-) backbone in frame with 

EKAR2G Molecular Recognition Element (MRE) and the upstream mTFP1 

fluorescent protein to create the new expression vector EKAR2G (mTFP1/sREACh) 

AKAR4 (Cerulean/cpVenus) vector was digested to remove sequentially Cerulean 

(BamHI and SphI) and cpVenus (SacI and EcoRI) inserts. LSSmOrange and mKate2 

fluorescent proteins were then amplified from pLSSmOrange-C1 and pmKate2-N1 

respectively using the following primers pairs (forward/reverse): 

LSSmOrange.BamHI-F/ LSSmOrange.SphI-R and LSS-mKate2.SacI-

F/mKate2.EcoRI-R. LSSmOrange and mKate2 PCR products were subsequently 

sub-cloned into the corresponding restriction sites in the AKAR4 (-/cpVenus) and 

AKAR4 (LSSmOrange/-) backbones respectively in frame with the AKAR4 MRE to 

create the new expression vector AKAR4 (LSSmOrange/mKate2). All resulting 
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constructs were verified by restriction digestion followed by agarose gel 

electrophoresis and then validated by sequencing (VIB). All enzymes and buffers 

were purchased from New England Biolabs. All oligonucleotides were synthesized by 

Integrated DNA Technologies (Belgium). DNA fragments were all purified on Qiagen 

plasmid purification columns (#28106, #28706 and # 27106, Qiagen).  

Cell Culture and Transfection 

HeLa cells were purchased from the European Collection of Cell Cultures 

(UK). Hela and U2OS cells are maintained at 37°C under 5% CO2 in Dulbecco’s 

Modified Eagle Medium (DMEM, #E15-009, PAA) supplemented with 10% fetal 

bovine serum (FBS, #A15-101, PAA), 1% penicillin/streptomycin (P/S, #15140-122, 

Gibco, Life Technologies) and 1% L-Glutamine (Glu, #25030024, Gibco, Life 

Technologies). For live imaging, HeLa cells were plated on Lab-Tek 4 wells 

(#055078, Dominique Dutscher). Transfections were performed using JetPrime 

reagent (#114-15, Polyplus) according to the manufacturer’s instructions. One well 

on 4 of the Lab-Tek received 1 μg of total DNA per mL of medium. Four hours 

following transfection, medium was replaced with normal medium. 

Imaging for biosensing experiments 

Twelve hours before the acquisitions, normal medium was replaced with 

FluoroBrite phenol red-free medium (#A18967-01, Life Technologies) containing 

0.1% FBS at 37°C in air (400µl in each well). For cell induction under microscope, 

the activators or inhibitors were diluted in pre-heated FluoroBrite medium (qsp 100µl) 

and were carefully added to avoid full activation of ERK1/2 signaling pathway. 

Single wavelength excitation dual color FLIM systems 

To achieve our methodology, a FLIM system with particular features is 

needed. The scheme in Figure 1 describes these characteristics: single wavelength 

excitation at 440 nm of a pulsed laser coupled to a live cell fluorescence microscope 

and dual color detection coupled to a FLIM detection. For this study, we have used 

three different systems: 

Time gated FLIM system 

The fastFLIM is a time-gated FLIM prototype developed for its capability of 

very fast time-lapse acquisition [27]. Briefly, a picosecond pulsed supercontinuum 
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laser at 80 MHz frequency was used for excitation. After wavelength selection of the 

supercontinuum at 440 nm (with about 10 nm narrow band of excitation), the laser is 

coupled to a multifocal spinning disk CSU10 (Yokogawa, Japan) and cells are 

imaged using a 63x or 20x oil immersion objective (NA = 1.4 or 0.70 respectively). At 

the emission side, an identical dual view system (480/30 nm and 579/34 nm 

channels) is used in front of a High Rate Intensifier coupled to a CCD camera 

(Picostar, LaVision, Germany). Five time-gated images of 2 ns gate width are 

sequentially acquired (from 100 to 300 ms exposure time depending on the intensity 

of the sample) with different delays from 0 to 8 ns. The stack of images is then used 

for direct calculation of mean fluorescence lifetime in a pixel by pixel basis [28]. 

TCSPC confocal system 

This system is a confocal microscope Leica SP8 (Manheim, Germany) with 

SMD module based on Picoquant hardware (Berlin, Germany). Briefly, a 440 nm 

diode pulsed laser at 40MHz repetition rate is fiber-coupled to the confocal head of 

an inverted microscope with a 63x or 40x oil immersion objective (NA = 1.4 or 1.30 

respectively) and the fluorescence emission after passing through pinhole set at 1 

Airy unit is directed to the external port connected to a two color coupling module 

with a dicroic mirror of 505 nm splits the fluorescence in two channels with 480/30 

nm and 579/34 nm band pass filters. Two optical fibers are used to couple two SPAD 

detectors (MPD for the cyan channel and TauSPAD for the orange channel) used as 

Single Photon Counting detectors. A Picoharp 300 is used for Time-Correlation and 

for image reconstruction using scanning signals to recover FLIM images (TTTR 

method). Lifetime determination from cell to cell was determined by fitting the 

fluorescence decay of the whole cell Region Of Interest with a single exponential 

model. 

Frequency Domain FLIM system 

This microscope is a LIFA system from Lambert Instrument (Groningen, 

Netherlands) in a widefield mode. The system was used during MiFoBio 2014 a 

thematic school supported by CNRS with the support of Photonlines (Saint-Germain-

en-Laye, France). Briefly, a 440 nm modulated laser diode at 40 MHz frequency was 

directed to a liquid fiber connected to an Olympus inverted microscope for Khoeler 

illumination using a 60x oil immersion objective (NA = 1.4). At the emission side, a 

dual view is used to split the field of view of the camera in two color with a dicroic 
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mirror of 505 nm spliting the fluorescence in two channels with 480/30 nm and 

579/34 nm band pass filters. The intensified CCD camera is modulated in a 

homodyne mode at 40 MHz frequency and 12 images at different phase shift are 

acquired. Phase lifetime are then calculated by fitting the sinusoidal response of the 

fluorescence emission and by comparing it with a calibration measurement on 

fluorescein (4 ns lifetime). 

 

Figure 1: General scheme of single wavelength excitation dual color FLIM systems. Sample 
illumination is performed by either a pulsed or a modulated laser source at 440 nm that is injected into 
the microscope. The microscope, a SP8 SMD, a Lifa or fastFLIM, is coupled to a dicroic mirror of 505 
nm splitting the fluorescence in two channels with 480/30 nm (blue channel) and 579/34 nm (orange 
channel) band pass filter to achieve dual color imaging. Fluorescence lifetimes are measured using a 
TCSPC Picoquant module for the SP8 SMD, a modulated intensified CCD for the Lifa or a time-gated 
intensified CCD for the fastFLIM. 

Data analysis 

The fastFLIM system gives us an intensity image from the first time-gated 

image and a lifetime image from the calculation of the direct first order temporal 

mean of the recorded decay (<> =  ti Ii /  Ii where ti and Ii correspond to the 

correlated time and the intensity of the time-gated channel I, respectively). 

Segmentation of the different cells was carried out to recover the mean lifetime at 

different time points of the experiments. 

For the TCSPC analysis, Symphotime software (Picoquant, Berlin, Germany) 

was used to analyze our acquisitions. The channel 1 (blue channel) or 2 (orange 

channel) was selected. The Region of Interest on the different cells were fitted using 

a single exponential decay. 

For frequency domain FLIM, we used the calculated phase image done by the 

LiFA software, the modulation image being noisier. Segmentation of the different 
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cells was carried out to recover the mean phase lifetime at different time points of the 

experiments. 

4.4.3. Results and discussion 

LSSmOrange is an appropriate FRET donor for mKate2 and 
can be simultaneously used with mTFP1 in single wavelength 
excitation dual color FLIM 

Here, we propose an original methodology based on single wavelength 

excitation associated to FRET-FLIM. To complement a cyan donor for FRET excited 

at 440 nm, we looked for a second donor with the capabilities to be excited at the 

same wavelength but with a red-shifted emission. Large Stoke Shift mOrange 

(LSSmOrange) has the property to be excited at 440 nm and to emit in the orange at 

572 nm [20]. First of all, we verified that this fluorescent protein harbors appropriate 

fluorescent properties for FRET by FLIM. By acquiring its fluorescence decay using 

TCSPC method, we showed that LSSmOrange exhibits a mono-exponential 

fluorescence decay, with a lifetime of 2.75+/-0.07 ns (n=11) (Fig. 2A). Then we 

verified that mKate2 is an appropriate acceptor for LSSmOrange by constructing an 

LSSmOrange-mKate2 tandem (the donor and the acceptor being joined by a short 

peptide linker YSDLELKLRILQSTVPRARDPPVAT). LSSmOrange alone and 

LSSmOrange-mKate2 tandem were transfected in U2OS cells. We have acquired 

FLIM with both systems (TCSPC using Leica SP8 with SMD module and time gated 

FLIM using the fastFLIM prototype [27]). By comparing the fluorescence decays 

acquired by TCSPC, we observed a faster decay for LSSmOrange-mKate2 tandem 

compare to LSSmOrange alone directly related to FRET process between 

LSSmOrange and mKate2 (Fig. 2A). This difference in the decay indicates that 

mKate2 is an appropriate acceptor for LSSmOrange as previously seen [20] for 

intensity based measurements. Images acquired using the fastFLIM system are 

presented in Fig 2B. The system is equipped with a dual view system and, as 

expected, the fluorescence emission is only recorded in the orange channel. When 

LSSmOrange was expressed alone, we recovered a lifetime of 2.76 +/-0.03 ns (n = 

34) but when we expressed LSSmOrange-mKate2 tandem we have measured a 

decreased lifetime of 2.32 +/- 0.08 ns (n = 56) corresponding to a mean FRET 

efficiency (pseudoE = 1 - <> / <D where <D relates to the lifetime of the donor 

alone) of 0.16 (Fig. 2B). For the comparison, by using an equivalent FLIM system, 
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the donor lifetime for the EGFP/mCherry pair decreases from 2.45 ns alone to 2.23 

ns in tandem (mean FRET efficiency of 0.09) and the donor lifetime for the 

mTFP1/EYFP pair decreases from 2.71 ns alone to 2.08 ns in tandem (mean FRET 

efficiency of 0.23) [29]. It indicated that LSSmOrange/mKate2 FRET pair presents an 

interesting potential with a higher FRET efficiency in tandem compared to 

EGFP/mCherry pair, the mTFP1/EYFP pair remaining the best pair compared to the 

two others.  

mTFP1 is a monomeric Teal Fluorescent Protein [30] which is excited at 440 

nm In this study and is an appropriate cyan donor for FRET by FLIM [29]. Since 

LSSmOrange can also be excited at 440 nm, is this fluorescent protein compatible 

with mTFP1 in our dual color FLIM approach when using single wavelength 

excitation? To answer this question, by using 440 nm single wavelength excitation 

and cyan / orange channels for dual color FLIM, we have verified that mTFP1 and 

LSSmOrange co-expressed in the same cell harbored the same lifetime compared to 

what was found for the both fluorescent proteins alone (Fig. S1). These results 

demonstrate that these two donors can be simultaneously used as FRET donors 

using single wavelength excitation FLIM. 

4.4.4. sREACh is a good non-fluorescent FRET acceptor for 

mTFP1 to avoid spectral bleed-through in 

LSSmOrange channel when using dual color FLIM 

Next, we co-expressed mTFP1-YFP and LSSmOrange-mKate2 tandems in 

U2OS cell to determine whether both FRET acceptors, YFP and mkate2, were also 

compatible with single wavelength excitation dual color FLIM approach. As shown in 

Fig. 3A, the recovered lifetime in the orange channel was not -comparable to the 

lifetime recover in cells expressing only LSSmOrange-mKate2. The recovered 

lifetime in the orange channel depends of the mTFP1-YFP expression. When the 

mTFP1-YFP contribution increased (monitored by the fluorescence intensity ratio 

between cyan channel and orange channel), the lifetime of LSSmOrange-mKate2 

also increased from 2.3 ns to 2.9 ns. It has to be noted that the lifetime of 2.9 ns 

corresponds to the YFP lifetime. In fact, the orange filter is a 579/34 nm band pass 

allowing the end of YFP spectrum to pass through. Thus, the increased lifetime of 
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LSSmOrange-mKate2 tandem corresponds to a spectral bleed-through of YFP in the 

LSSmOrange donor channel.  

To avoid this problem, we replaced the YFP acceptor by sREACh (super 

Resonance Energy Accepting Chromoprotein). This protein, which is a YFP variant, 

is also excited at 514nm (same excitation spectrum as YFP) but emits one hundred 

times less than YFP [23]. Using a purposefully developed mTFP1-sREACh tandem, 

we compared acceptor efficiency of sREACh to that of YFP in an attempt to resolve 

the spectral bleed-through artifact caused by yellow acceptor in orange channel 

(Fig. S2).  

 

Figure 2: Mono-exponential decay (A) and lifetime (B) of LSSmOrange and LSSmOrange-
mKate2 tandem. (A) Graphical representation of fluorescence lifetime decay profiles acquired on 
U2OS cells expressing either LSSmOrange or LSSmOrange-mKate2 tandem. LSSmOrange shows a 
mono-exponential decay while LSSmOrange-mKate2 tandem harbors a bi-exponential decay The 
LSSmOrange-mKate2 decay has a shorter slope than the LSSmOrange decay corresponding to a 
shorter lifetime (B). Intensity and Fluorescence lifetime measurements of LSSmOrange or 
LSSmOrange-mKate2 expressed in U2OS cells using the fastFLIM system. The orange channel 
provides either intensity or fluorescence lifetimes for LSSmOrange alone or for LSSmOrange-mKate2 
tandem. Difference in LSSmOrange fluorescence lifetimes between both conditions is visible. mKate2 
is a good acceptor for LSSmOrange and this two fluorescent proteins is a good FRET pairs. 

Next, we wanted to verify that both FRET pairs mTFP1/sREACh and 

LSSmOrange/mkate2 were adapted for single wavelength excitation dual color 

approach. To record potential LSSmOrange-mKate2 lifetime differences correlated to 

mTFP1-Yellow acceptor expression levels, U2OS cells were co-transfected with a 

fixed concentration of LSSmOrange-mKate2 plasmid (0.5µg/µl) while varying 

mTFP1, mTFP1-YFP or mTFP1-sREACh plasmids concentration (0.25µg/µl up to 
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1µg/µl). We then measured the corresponding lifetime of LSSmOrange-mKate2 (and 

potential spectral bleed-through signals) in the orange channel. Results are plotted 

versus the intensity ratio of cyan channel to orange channel in Fig. 3B. In the 

presence of mTFP1 alone, the measured LSSmOrange-mKate2 lifetime slightly 

increased from 2.42 to 2.6 ns (only 7.4 % increase) occurring between an intensity 

ratio of 0.71 to 2.66. The increase corresponds to the lifetime contribution of mTFP1 

(2.6 ns) in the orange channel. In presence of mTFP1-sREACh, the measured 

LSSmOrange-mKate2 lifetime decreased from 2.29 to 2.15 ns (only 6.1 % decrease). 

This slight decrease occurred between an intensity ratio of 0.78 up to 2.28 and 

corresponds to the lifetime contribution of sREACh (short lifetime) in the orange 

channel. Finally, in the presence of mTFP1-YFP, the LSSmOrange-mKate2 lifetime 

measured ranged from 2.49 to 2.83ns (up to 13.7% increase) as already seen  

in Fig. 4. 

 

Figure 3: co-expression of mTFP1-YFP and LSSmOrange-mKate2 with a mTFP1-YFP or mTFP1-
sREACh concentration gradient. Fluorescence intensity or lifetime images of U2OS cells expressing 
either mTFP1-YFP (A) or mTFP1-sREACh (B) with LSSmOrange-mKate2 acquired using fastFLIM 
system. (A) The higher fluorescence intensity of mTFP1-YFP in presence of LSSmOrannge-mKate2 
correlated with the measurement of a higher LSSmOrange fluorescence lifetime in the orange 
channel. A striking 600ps (2,3ns to 2,9ns) increase between LSSmOrange fluorescence lifetimes was 
calculated depending on mTFP1-YFP intensity measurements. mTFP1 fluorescence lifetimes was 
measured for each condition and remained steady at 2,1ns. (B) The high expression level of mTFP1-
sREACh, in presence of LSSmOrange-mKate2, only amounted to a negligible fluorescence lifetime 
decrease in the orange channel when compare to the fluorescence lifetime measured in the orange 
channel when mTFP1-sREACh was weakly expressed. 
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This steep increase began when the cyan to orange intensity ratio reached 0.29 and 

continued until 1.20. This difference of intensity ratio range is coherent with the 

potential spectral bleed-through of the YFP acceptor in the orange channel since the 

intensity bleed-through in the orange channel coming from cyan expression 

increases the orange intensity and then decreases the ratio. Then, the spectral 

bleed-through lifetime contribution in the orange channel is definitely less important 

when using sREACh compared to YFP. In the standard condition of equivalent 

expression of cyan pair and orange pair (about 1.5 ratio in our experimental 

conditions), we can conclude that when using LSSmOrange-mKate2 and mTFP1-

sREACh pairs, the spectral bleed-through contribution gives about 3% variation in 

the orange channel lifetime which is negligible.  

 

Figure 4: mTFP1-sREACh avoids spectral bleed-through when used in combination with 
LSSmOrange-mKate2 with dual color FLIM. Graphical representation of LSSmOrange-mKate2 
lifetimes in presence of mTFP1, mTFP1-YFP and mTFP1-sREACh plotted as a function of cyan 
channel over orange channel intensity ratio. In the presence of mTFP1, LSSmOrange-mKate2 lifetime 
was slightly increased (2,42ns to 2,6ns), while it was markedly increased in the presence of mTFP1-
YFP (2,49ns to 2,83ns). In presence of mTFP1-sREACh, LSSmOrange-mKate2 lifetime was 
decreased from 2,29ns to 2,15ns. The spectral bleed-through lifetime contribution in the orange 
channel is less important when using sREACh versus YFP as an acceptor for mTFP1. 

4.4.5. Single wavelength excitation dual color FLIM 

methodology can be used to simultaneously monitor 

ERK and PKA kinase activities in a single cell 

As a proof of concept/feasibility we decided apply our approach to the 

simultaneous monitoring of two major proteins kinases, Protein Kinase A (PKA) and 

Extracellular Regulated Kinase 1/2 (ERK1/2). Two main reasons motivated our 
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choice. The interplay between cAMP/PKA and ERK1/2 signaling pathways has been 

well established and documented (for review [31]). Compelling evidences 

demonstrated that the ERK1/2 cascade is regulated by cAMP/PKA pathway (for 

review [32]). This crosstalk was reported to modulate the duration and the strength of 

ERK1/2 activity [33]. Kinase Activity Reporters for both PKA [26,34,35] and ERK1/2 

[25,36–38] have already pass few rounds of optimization, so we reasoned that the 

effect of FRET pairs swapping on biosensors performances would not preempted 

kinase activity monitoring in living cells.  

To this end, we generated new versions of AKAR4 and EKAR2G, that we 

named AKARdual and EKARdual harboring the following FRET pairs 

LSSmOrange/mKate2 and mTFP1/sREACh, respectively. To characterize of our 

optimized biosensors for dual color-FLiM, standard biosensing reference experiments 

were carried out on HeLa cells co-epxressing AKARdual and EKARdual and single 

kinase activity recordings were performed using fast-FLIM system. Biosensor 

sensitivity was assessed upon dedicated activation and subsequent inhibition of 

either cAMP/PKA or ERK1/2 signaling pathways (Fig. S3). AKARdual and EKARdual 

both show the typical and expected response.  

To validate and evaluate the transferability of our approach we simultaneously 

monitored PKA and ERK1/2 activities by single wavelength excitation dual color FLIM 

(Fig. 5) using fastFLIM (A), Lifa (B), and TCSPC (C) systems. These experiments 

were performed in HeLa expressing AKARdual and EKARdual, upon co activation and 

co inhibition of both signaling pathways. Although three different systems were used 

a readily visible trend was observed, showing characteristic biosensors responses. 

Pathway activations resulted in a lifetime decrease consistent with biosensors 

conformational changes after their respective phosphorylation by PKA for AKARdual 

and ERK1/2 for EKARdual. Upon dual pathway inhibitions increased lifetime values 

were recorded as a consequence of biosensor relaxation due to the shift in the 

equilibrium of the kinase/phosphatase balance. These results show that the 

applicability of our methodology is independent on the system employed and can be 

easily transposed to any FLIM microscope. It is noteworthy to indicate that, 

differences in the amplitude of measured lifetime and in terms of temporal resolution 

across imaging systems. First, results on the LiFa system presents a clear delay in 

ERK1/2 activation. But this does not come from the FLIM method used and can be 
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attributed to the temperature since frequency domain FLIM time-gated experiments 

carried out at 37°C using a microscope incubator. Second, the lifetime decrease after 

activation for both biosensors appears slower when using TCSPC. It corresponds 

typically on the result of a long acquisition time for this method (here 1 minute each 6 

minutes) for TCSPC compared to fastFLIM or LiFA (here few seconds each 2 

minutes). In fact, the first time point in TCSPC is the measurement of the mean 

activation of the two biosensors between 0 to 1 minute after activation which 

corresponds an intermediate lifetime. For fastFLIM and LIFA, there is no intermediate 

lifetime. The first time point was measured between 0 to few seconds after activation 

(high lifetime), the two biosensors having no time to be activated. The second one 

was measured 2 minutes after activation (low lifetime) when the two biosensors are 

already completely activated. FLIM methods such as fastFLIM or LiFA take benefit to 

non-fitting approaches where the number of detected photons for reliable lifetime 

measurement is low [39]. Our work validates the use of these methods having fast 

acquisition to reveal fast cellular processes (such as kinase activation pathway). 

Finally, as expected, the lifetime difference between non-activated to activated 

biosensor is not in favor of the fastFLIM approach where the 2ns temporal gate 

promotes a less precise lifetime than for TCSPC but still sufficient. For LiFA 

comparison, it is more difficult to conclude since the nature of the measurements are 

different (phase lifetime vs mean lifetime).  

In order to further control that spectral bleed-through add to no effect on 

kinase activity measurements, we performed the following crosscheck experiments. 

HeLa cells transfected with both AKARdual and EKARdual were subjected to either 

forskolin/H89 or to EGF/U0126 treatment and monitored by fastFLIM system along 

time (Fig. 6). As expected, the forskolin-mediated increase in intracellular levels of 

cAMP resulted in an activation of PKA and so a decrease in AKARdual fluorescence 

lifetime while amounting to no effect on EKR1/2 activity. H89-mediated PKA inhibition 

counteracted the recorded PKA activation by an increase in AKARdual fluorescence 

lifetime back to the basal activity level. Interestingly, EKARdual fluorescence lifetime 

did increase upon H89 treatment. This come to no surprise with respect to the known 

multifaceted pharmacology of H89 that has also been reported to inhibit other 

kinases including mitogen activated protein kinase kinas- 1 (MEK1) [40] (Fig. 6A). 
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Figure 5: Simultaneous spatio-temporal monitoring of ERK and PKA kinase activities using 
fastFLIM, Lifa and TCSPC. Fluorescence lifetime measurements of AKARdual and EKARdual on the 
fastFLIM (A), Lifa (B) and TCSPC (C) system. Graphs represent AKARdual (orange) and EKARdual 
(blue) fluorescence lifetime measurements during the baseline, activation and inhibition phases. For 
the three systems, fluorescence lifetimes during the baseline phase remained stable, PKA and ERK 
pathway stimulations (Forskolin and EGF) resulted in a decrease in fluorescence lifetime for both 
biosensors. The subsequent addition of inhibitors (H89 and U0126) caused a fluorescence lifetime 
increase of both biosensors. 
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When monitoring ERK and PKA kinase activities upon EGF/U0126 treatment (Fig. 

6B), EKARdual presented its characteristic behavior. First a decrease and then an 

increase of EKARdual fluorescence lifetime were measured upon EGF and 

subsequent U0126 treatment, respectively. Surprisingly, an increase of PKA activity 

when also recorded in response to EGF, as witness by the marked decrease of 

fluorescence lifetime for AKARdual, which was barely affected by U0126 treatment in 

these experimental conditions. The intricate relationship between PKA and ERK 

signal transduction pathways has been amply studied. It is usually presented from 

the following perspective: how cAMP/PKA modulates ERK1/2 activity [31] where Raf 

isoforms expression levels were shown to be implicated in the various responses 

exerted by cAMP/PKA on MAPKs signaling. Recently a specific position (Y330) on 

the PKA catalytic subunit was identified and shown to be directly regulated by RTK 

[41]. This confirmed earlier report showing an EGF-stimulated PKA activity increase 

in mammalian cells [42]. 

 

Figure 6: activation and inhibition of one biosensor: activation and inhibition of AKAR (A) or 
EKAR (B) when both biosensors are expressed on the fastFLIM system. Fluorescence lifetime 
measurement of AKARdual and EKARdual on the fastFLIM system. The graphs plot the AKARdual 
(orange) and EKARdual (blue) lifetime during the baseline, AKARdual (A) or EKARdual (B) activation and 
inhibition. During the baseline phase, the lifetimes remained stable. Forskolin addition (A) caused a 
lifetime decrease corresponding to the biosensor conformational changes after the phosphorylation by 
PKA for AKARdual. The EKARdual lifetime remained stable so EKARdual was not activated. The H89 
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addition (A) provoked a lifetime increase related to biosensor inhibitions. (B) EGF stimulation caused 
a lifetime decrease of both biosensors. U0126 addition prompted a marked lifetime increase for 
EKARdual; and the AKARdual lifetime slightly increased upon U0126. 

In light of this result, we went on to closely examine the EGF-mediated effect 

on PKA activity in HeLa cells transfected with AKARdual (Fig. 7). Representation of 

the average fluorescence lifetime along time reflected the already observed 

response, a decrease of AKARdual fluorescence lifetime symptomatic of an increase 

of PKA activity which was unaffected by U0126 treatment (Fig. 7A). Conversely, 

when fluorescence lifetimes for each single cell were plotted, it clearly highlighted the 

presence of two distinct cell populations showing a difference in PKA activity upon 

EGF treatment (Fig. 7B), for which average responses were plotted (Fig. 7C). 

The heterogeneous nature of all cultured cell lines and HeLa cells in particular, could 

be a starting point towards the explanation of cellular subtype responses. In a 

ultimate experimental conditions, we set out to untangle potential the crosstalk 

between PKA and ERK1/2 signaling pathway on HeLa cells co-transfected with 

AKARdual and EKARdual and analyzed on the basis of the sub-population differential 

response (Fig. 7D). Interestingly, cells in which PKA activity was moderately affected 

were the ones that showed a poor increase in ERK activity upon EGF treatment. By 

opposition, cells harboring an increased PKA activity showed also an augmented 

ERK activity. This last data set clearly exemplified the relevance of our 

multiparametric kinase activity measurements in these experimental settings and 

how it can further our understanding of signal transduction pathways involving protein 

kinases. 

4.4.6. Conclusion 

Here we report on the validation of a multiplexing approach to follow two 

genetically encoded FRET-based kinase activity reporters at the same time in the 

same sample and in the same cellular compartment. We have applied this approach 

to study simultaneously ERK1/2 and PKA kinases activities in Hela cells. A surprising 

behavior of two cellular subpopulations upon EGF stimulation was uncovered in 

these cells. Conventional biochemical approaches provide an averaged cell 

population response and thus forbid subpopulation behavior analysis. Conversely, 

immunofluorescence could allow this kind of evaluation but definitely not with the 

same temporal resolution.  
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Since FLIM is adequate for quantitative intermolecular FRET [43], our 

approach is easily transposable to study protein-protein interactions. It opens open 

new perspectives to multiplex interactions studies. Based on continuous fluorescent 

proteins engineering, the possibility to expand our method to three biosensors is 

near; for example by using a non-fluorescent acceptor for LSSmOrange, and third 

large stoke shift donor such as LSSmKate [44] in combination with an infra-red 

acceptor such as IRFP670 [45]. 

 

Figure 7: activation and inhibition by EGF and U0126 of AKARdual alone (A, B and C) or co-
expressed (D) with EKARdual on the fastflim system. The graph plots the AKARdual lifetime during 
the baseline, activation by EGF and inhibition by U0126. The average of the lifetime measurement of 
all cells was plotted in A. The graph B represents AKARdual lifetime measurements cell by cell during 
the 3 phases. (C). Two distinct patterns can be discriminated. The red line corresponds to the cells not 
responding to the activation and the green line corresponds to the cells responding to the activation by 
EGF. (D) The AKARdual and EKARdual fluorescence lifetime during the baseline, activation by EGF and 
inhibition by U0126 are represented. Now data were plotted for each biosensor taking the 
aforementioned patterns into consideration; for EKARdual (middle plot), two responses were identified, 
cells responding weakly (red line) or strongly (green line) to the EGF. For AKARdual, two responses 
were also identified, cells not responding (red line) and cells responding (green line) to EGF 
stimulation. 
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Supplementary Material 

 

 

Supplementary Figure 1: mTFP1 and LSSmOrange simultaneously used as FRET donors with 
single wavelength excitation FLIM. Dual color FLIM images were acquired simultaneously in the 
cyan (480/30 nm) and in the orange (579/34 nm) channels at 440 nm single wavelength excitation on 
U2OS cells expressing mTFP1 alone, LSSmOrange alone and both fluorescent proteins. These 
acquisitions were carried out using the fastFLIM prototype with the dual view. The lifetimes are 
measured distinctly for each channel. When mTFP1 was expressed alone we observed a major part of 
the fluorescence emission in cyan channel. But, due to the large emission spectrum of mTFP1, 
spectral bleed-through was detectable in the orange channel. However, this intensity was insufficient 
to determine a fluorescence lifetime in this channel. For the cyan channel, we found a lifetime of 
2.62 +/- 0.03 ns (n=28). When LSSmOrange was expressed alone, as expected no signal was 
detectable in cyan channel and the lifetime measured in the orange channel was of 2.76 +/- 0.03 ns 
(n=34). Interestingly, when both fluorescent proteins were co-expressed in U2OS cells, lifetimes 
identical to those previously recovered in cells expressing donors alone with 2.62 +/- 0.03 ns (n=23) 
for mTFP1 and 2.76 +/- 0.04 (n=23) for LSSmOrange in the two distinct channels. The small mTFP1 
spectral bleed-through was not sufficient to corrupt LSSmOrange lifetime measurements. 
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Supplementary Figure 2: Spectral bleed through of mTFP1, mTFP1-YFP and mTFP1-sREACh in 
the orange channel. Acquisitions of U2OS cells expressing mTFP1, mTFP1-YFP and mTFP1-
sREACh alone were carried out on the fastFLIM system. For each condition, the lifetime in the cyan 
channel is measured. For mTFP1-YFP, the high lifetime is measured on the orange channel 
corresponding at the YFP lifetime. For the mTFP1-sREACh, the short lifetime is measured on the 
orange channel corresponding at the mix of the little mTFP1 spectral bleed through and the sREACh 
lifetime. By comparing mTFP1, mTFP1-YFP and mTFP1-sREACh on U2OS cell line; we noted that for 
a equivalent intensity in the cyan channel corresponding to a similar mTFP1 expression, we recovered 
more intensity in orange channel when mTFP1-YFP was expressed compare to mTFP1-sREACh. So 
sREACh significantly decreases the spectral bleed-through in the orange channel. Moreover, mTFP1-
sREACh tandem exhibited a lifetime of 2.1 +/- 0.06 ns (n=56). This lifetime is equivalent to the 
mTFP1-YFP lifetime (2.1 +/- 0.03 ns, n=40) showing that YFP can be replaced by sREACh as 
acceptor for mTFP1. mTFP1-YFP and mFP1-sREACh lifetime are similar (2,1ns). sREACh is a good 
acceptor for mTFP1 and decrease the spectral bleed through on the orange channel. 
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Supplementary Figure 3: AKARdual and EKARdual characterization by FLIM. Acquisitions of HeLa 
cells co-expressing AKARdual (A) or EKARdual (B) were carried out on the fastFLIM system. The graphs 
plot the AKARdual (orange) and EKARdual (blue) lifetime during the baseline, activation, and inhibition 
phases. Treatment of HeLa cells with either forskolin and IBMX or EGF resulted in a lifetime decrease 
characteristic of PKA and ERK1/2 pathway activation. Subsequent treatment of cells with either H89 
or U0126 produced a lifetime increase consistent with PKA or ERK1/2 signaling pathway inhibition.  
For AKARdual and EKARdual, the biosensor activation involves a lifetime decreases (≈60ps) and the 
biosensor inhibition imply a lifetime increases (≈80ps). Note that in both cases, control experiments 
performed in the presence of DMSO amounted to no sensible variation in lifetime measurements 
confirming that biosensor specificity was unaffected and that recorded responses were symptomatic of 
the signaling pathway being examined.  
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ERK1/2 signaling pathway plays an important role in cellular signaling network 

by regulating several cellular processes including survival, proliferation, 

differentiation, cell migration, neuronal plasticity and cell death depending on cellular 

context and the type of stimulation [57,59,264]. ERK1/2 was reported to mediate 

different programmed cell death such as apoptosis and autophagy in various cellular 

models (for review, [372]). This involvement of ERK1/2 in different cell death forms 

translates into its sustained and sequestered activity. This is considered as hallmarks 

of ERK-mediated cell death and is often linked to the presence of ROS [372]. 

Sustained cytoplasmic ERK1/2 activity, besides inhibiting survival and proliferative 

signals in the nucleus, triggers autophagy [376]. In contrast, sustained nuclear 

compartmentalization of ERK1/2 activity might rather promote apoptosis [346,392]. 

Sequestration of ERK1/2 depends also on expression of ERK1/2 specific subcellular 

anchors such as MKP1, MKP2 and MKP3 phosphatases [400,401]. The first report of 

ERK1/2 involvement in TNFα-induced necroptosis came from Devin and colleagues 

who investigated the molecular mechanism between RIPK1 and MAPKs by using 

both RIPK1-/- and TRAF2-/- MEF [430]. It was shown that TRAF2 and the kinase 

activity of RIPK1 are required for ERK1/2 phosphorylation but not for p38 and JNK 

activation upon TNFα stimulation [430,431]. The identity of downstream substrates of 

TRAF2/RIPK1 remains to be investigated because depletion of specific MAP3K does 

not alter TNFα-mediated ERK1/2 phosphorylation probably due to redundancy 

mechanisms. Nevertheless, multiple cell models using other stimuli than TNFα and 

both genetic and chemical approaches to inhibit ERK1/2 strongly suggest a 

prominent role of ERK1/2 in the execution of necroptosis [409,410].  

In order to study the role of ERK1/2 in TNFα-induced necroptosis in L929 

cells, we first used MEK1/2 inhibitor U0126. We could reduce necroptosis in a dose 

dependent manner. Interestingly, necroptosis was not blocked by ERK1/2 inhibition 

but only delayed. In agreement, similar results were obtained with an alternative cell 

death assay suggesting that ERK1/2 is a pro-necroptotic molecule. One study has 

revealed a similar effect of ERK1/2 inhibition on TNFα-induced necroptosis in L929 

cells [471] but to a lesser extent compared to Nec-1 inhibitory effect of necroptosis. In 

this same study, a decrease of TNFα-induced necroptosis in Jurkat cells by U0126 

was observed, supporting once more the idea that ERK1/2 could protect and act as a 

modulator of necroptosis. In contrast, another study in L929 cells did not observe 



Summary and discussion Research Article – Single wavelength excitation dual color… 

294 

inhibition of TNFα+BV6-induced necroptosis by U0126 [439]. However, it was shown 

that neither p38, JNK and ERK were required for TNFα-induced necroptosis in MEF 

cells [440]. These conflicting observations could indicate that ERK1/2 involvement in 

TNFα-induced necroptosis is cell type dependent. Note that in this last study, cell 

death was quantified only 24 h after treatment of MEF cells with TNFα and U0126, 

which can hamper evaluation and interpretation of ERK1/2 inhibitory effect on cell 

death. Indeed, our results show that the number of dead cells is decreased by almost 

50% with U0126 at the time point of 8h after TNFα stimulation, whereas the number 

of dead cells is quite similar at 24h, hence emphasizing the importance to consider 

effect of ERK1/2 inhibition on the cell death kinetic. In a next step the specific 

contribution of ERK1/2 in necroptosis could be examine by knockdown or other 

chemical inhibitors of the pathway.  

Using L929 model, we then assessed phosphorylation patterns of ERK1/2 

upon TNFα stimulation. Interestingly, we observed a biphasic phosphorylation: an 

initial rapid and transient phosphorylation followed by a sustained phosphorylation 

starting 2 h after TNFα stimulation and lasting several hours. In agreement, similar 

results were obtained for JNK and p38 in L929 cells upon TNFα stimulation. 

Transient activation could promote a cell survival and abrogate cell cytotoxicity, 

whereas sustained activation may trigger the cell death machinery [443,444]. 

Therefore we tested whether RIPK1 inhibition could impact ERK1/2 phosphorylation. 

Combined treatment with TNFα and Nec-1 decreased the duration of transient 

phosphorylation of ERK1/2 and strongly reduced the late sustained phosphorylation, 

in accordance with previous studies [430,439]. To definitively determine the effect of 

RIPK1 on ERK1/2 phosphorylation, we evaluated the effect of Nec-1 in serum-

induced ERK1/2 phosphorylation in L929 cells. We found that Nec-1 did not alter 

ERK1/2 phosphorylation under these experimental conditions, suggesting thereby a 

RIPK1-dependent phosphorylation of ERK1/2 upon TNFα stimulation. However, it is 

not clear whether ERK1/2 sustained phosphorylation is directly attributable to RIPK1 

or represent secondary effects. To assess whether ROS production could be 

responsible for the sustained phosphorylation of ERK1/2 due to the inhibition of 

phosphatases as previously reported for JNK [472,473], a late inhibition of MEK1/2 

by U0126 was performed 4 hours after TNFα stimulation. This led to a strong 

decrease of ERK1/2 phosphorylation. So, our data suggest that the late sustained 
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ERK1/2 phosphorylation is conducted by ERK1/2 signaling pathway and not by an 

alternative inhibition of phosphatases due to ROS production [97,372,400] occurring 

in the late phase of necroptosis [474,475]. Together with a sustained activity, ERK1/2 

sequestration is also considered as hallmarks of ERK1/2-mediated cell death [372]. 

Immunofluorescence study performed on L929 upon TNFα stimulation revealed that 

phosphorylated-ERK1/2 is mainly localized in the cytoplasm in both the early and late 

stages of ERK1/2 phosphorylation. It remains unclear whether the kinase is 

sequestered or transiently translocated into the nucleus in response to TNFα. While 

the exact mechanism of RIPK1-dependent ERK1/2 phosphorylation is not clearly 

established, we wondered if ERK1/2 could interact with RIPK1 or RIPK3. 

Interestingly, our results showed a strong interaction of ERK2 and RIPK1 at the time-

point of 30min after TNFα stimulation of L929 cells. In agreement, a recent study 

reported that RIPK1 could interact constitutively with ERK1/2 and transiently with 

MEK2 upon eleostearic acid (ESA)-induced atypical RIPK1-dependent apoptotic cell 

death [438]. However, regarding the kinetic of ERK1/2 phosphorylation and the 

detection of interaction between RIPK1 and ERK2 in L929 cells, the functional 

interaction between ERK2 and RIPK1 in this cellular context should be further 

studied. In a next step, it would be interesting to reduce the time scale during the 

signaling phase of necroptosis and to evaluate the ability of RIPK1 and ERK2 

inhibition to suppress this interaction. 

Although biochemical data, snapshot acquisitions or time-points measurement 

can provide very valuable information, dissecting and manipulating signaling 

pathways require high spatio-temporal resolution that can be achieve via functional 

imaging. Study of ERK1/2 dynamics in subcellular compartments has already 

uncovered unexpected functions of ERK1/2 for determining cell fate. Shankaran and 

colleagues found that EGF-induced ERK1/2 activation in HMEC cells elicits 

oscillatory translocation of ERK1/2 between the cytoplasm and the nucleus [476]. 

More recently, oscillatory activation of JNK and ERK1/2 in 3T3 cells have been 

detected with TNFα or IL-1β using specific translocation reporters [445]. Owing to the 

importance of ERK1/2 spatio-temporal dynamics in determining cellular responses 

[413,477] and compelling evidences of ERK1/2 involvement in necroptosis, it became 

crucial to investigate the spatio-temporal dynamic of ERK1/2 in TNFα-induced 

necroptosis. To that effect, we developed, optimized and used fluorescence-based 
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reporters of both ERK1/2 activity and ERK2 localization in single living cells in real 

time.  

To visualize ERK1/2 dynamics in living cells, various studies used ERK1/2 

tagged with GFP-like fluorescent proteins and found that overexpressed eGFP-ERK2 

is predominantly localized in the nucleus of resting cells. This unexpected localization 

of eGFP-ERK2 was due to the disruption of MEK/ERK balance [234]. This problem 

has been often ignored [449] and several studies selected cells expressing low levels 

of eGFP-ERK2 compared to the endogenous to obtain a faithful localization profile of 

the kinase in serum-starved conditions [446]. However, transfected cells were dimly 

fluorescent, which is unsuitable for long-term video imaging. To avoid artefacts in 

ERK2 localization patterns and facilitate long-term functional imaging, we developed 

a novel ERK2 localization reporter named ERK2-LOC. We employed the T2A-

mediated equimolar coexpression of ERK2 and MEK1 [461,462,478] to enable 

faithful monitoring of eGFP-ERK2 localization in both basal and growth factor-

stimulated conditions. ERK2-LOC was characterized using standard biochemical 

approaches and validated by live-cell imaging in living NIH-3T3 cells and ultimately in 

the Xenopus laevis model during early developmental stages.  

To monitor ERK1/2 activity following cell death induction, we first used a 

genetically encoded FRET biosensor for ERK1/2 (EKAR-EV) [451]. However, this 

reporter failed to reveal any changes in ERK1/2 activity upon TNFα-induced 

necroptosis in L929 cells. We developed a method to build and/or optimize 

genetically encoded FRET biosensor (Sipieter et al., in preparation) that led to the 

optimization of ERK1/2 FRET biosensor (ERK1/2-ACT). We characterized the 

dynamic range of this newly optimized ERK biosensor in our cellular models (L929 

and MEF) by activating and inhibiting ERK1/2 signaling pathway with PMA and 

U0126 respectively. Results showed an emission ratio change that was almost 

improved by 2-fold relative to the initially construct (Sipieter et al., in preparation). In 

addition, the reversibility of these biosensors was also upgraded hence rendering 

biosensors more accessible to specific phosphatases. 

The newly optimized fluorescent-based reporters have facilitated our efforts to 

monitor the spatio-temporal dynamics of ERK1/2 over long period in our cellular 

context. Time-lapse FRET imaging of ERK1/2-ACT in MEF cells revealed a 

stochastic ERK1/2 activation in basal condition without stimulation in accordance with 
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previous reports [479]. This stochastic activation was observed in a wide range of 

cellular models [479]. We further investigated the effect of a necroptotic and an 

apoptotic trigger in MEF cells on ERK1/2 activity. Upon TNFα + BV6 + zVAD-induced 

necroptosis, we observed that the frequency of ERK1/2 activity pulses markedly 

increased in the signaling phase of necroptosis followed by a higher basal ERK1/2 

activity in the last phase of cell death. In contrast, a gradual increase of ERK1/2 

activity was detected upon TNFα + BV6-induced apoptosis. These results argue for a 

specific spatio-temporal signature of ERK1/2 depending on the programmed cell 

death at least in MEF cells. Therefore it would be interesting to extend the spatio-

temporal study of ERK1/2 activity in other cellular models such as L929 and Jurkat 

cells. Indeed, TNFα + zVAD-induced necroptosis in Jurkat cells was inhibited by Nec-

1 and by U0126 as well [471]. In the same line, the use of different triggers leading to 

a same cell death program could be performed to determine if these spatio-temporal 

signatures of ERK1/2 activities can be considered as markers of a particular cell 

death process or not. TNFα-, TNFα + zVAD-, IFNβ/dsRNA- and FasL + zVAD-

induced necroptosis could be used. However, we could observed a basal increase of 

ERK1/2 activity upon BV6 + zVAD stimulation consistent with previous studies [439]. 

ERK1/2 was reported to have elevated phosphorylation levels under cIAP1 inhibition 

by using BV6 [480] accompanied by increased RIPK1 kinase activity upon TNFα 

stimulation, hence emphasizing a protecting role of cIAP1 from TNFα-induced 

necroptosis [439]. In a next step, the specific contribution of cIAP1 in ERK1/2 activity 

could be examined. For instance, it has already been shown that a differential spatio-

temporal signature of ERK1/2 activity depending on the type of cell death. It would 

therefore be interesting to use different chemical inhibitor of ERK1/2 signaling to 

uncover the molecular mechanisms underlying the spatio-temporal activity of 

ERK1/2.  

Our next efforts will include inhibitors of RIPK1/3 pathway such as Nec-1 and 

RIPK3 inhibitors to elucidate crosstalk between RIPK1/3 and ERK1/2 signaling 

pathways through potential feedback loops [219]. Subcellular ERK1/2 distribution 

following cell death stimulation in MEF cells was also monitored. Using ERK2-LOC 

reporter, we observed brief transient translocations of ERK1/2 in the nucleus in the 

control condition but also in stimulated conditions, which might reflect stochastic 

ERK1/2 activation over a long time-lapse [479]. Interestingly enough, our results 
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revealed a progressive accumulation of ERK1/2 in the nucleus starting between 1 to 

2 hours before cell death upon both TNFα+BV6-induced apoptosis and 

TNFα+BV6+zVAD-induced necroptosis. It remains therefore to elucidate the 

molecular mechanism underlying this ERK2 nuclear accumulation. Likely, ROS 

production and subsequent inhibition of ERK1/2 phosphatases could be responsible 

at that timing [372]. However, it would be interesting to inquire whether mere 

impairment of ERK1/2 nuclear translocation through PEA-15 overexpression 

[241,481] could affect cell death progression.  

Regarding ERK1/2 activity oscillations upon necroptosis stimulation, it appears 

essential to emphasize the importance of single-cell measurements because 

stochastic activation, TNFα-induced oscillatory kinase activation and the 

heterogeneity in cellular responses would have been impossible to monitor using 

averaged cell population assays. In addition, our efforts to improve the ERK1/2 FRET 

biosensor have contributed greatly to these findings because the optimization led to 

increase both its dynamic range and its reversibility. It would have been quite difficult 

to easily detect oscillations in ERK1/2 activity in our cellular models with previous 

versions of EKAR harboring a poor reversibility, thereby hampering the monitoring of 

fast ERK1/2 activity variation. Similarly, Regot et al. developed a new approach to 

monitor oscillations in JNK activity, as the previous JNK FRET biosensor was too 

slow in reporting JNK inhibition [445]. This emphasizes once more the importance of 

biosensors/tools engineering to avoid data misinterpretation even if the time-

consuming constraint remains. This led us to create a new methodology for 

accelerating the development and optimization of sensitive FRET biosensors. 

Although MAPKs pathways have been extensively studied over the last decade (for 

review [62]), we believe that major findings about regulatory mechanisms of ERK1/2 

signaling for cell fate determination remain to be elucidated using these FRET 

biosensors. Recently, live imaging of ERK1/2 activities in subcellular compartments 

has uncovered unexpected dynamics of ERK1/2. Albeck and colleagues showed that 

ERK1/2 is activated in asynchronous pulses at the basal state and that components 

at different levels of the pathway can modulate amplitude or frequency of EGF-

induced ERK1/2 activity and hence regulate cellular proliferation [416]. In addition, 

Aoki and colleagues found that Raf induces stochastic ERK1/2 activation pulses 

under normal cell culture conditions and that different cell densities regulate the 
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frequency but not amplitude of ERK1/2 oscillations and hence cell proliferation [479]. 

They also elegantly demonstrated the propagation of these ERK1/2 oscillations to 

other adjacent cells. 

Read-outs / hallmarks to correlate the spatio-temporal signature of ERK1/2 

activity with necroptosis occurrence are scarce [38]. Since the kinase activity of 

RIPK1 and/or RIPK3 are crucial in the initiation step of necroptosis, we set out to 

develop new FRET-based kinase biosensors to specifically report on RIPK1 and 

RIPK3 kinase activities [454]. Based on our innovative methodology for the 

generation of new FRET biosensors, several biosensors have been efficiently 

generated for RIPK1 and RIPK3. Our first results in TNFα-induced necroptosis in 

L929 cells show a response for several biosensors (emission ratio of 10-15%) 

leading to a first generation of FRET biosensors for RIPK1 and RIPK3. We still need 

to determine the specificity and selectivity of these biosensors by using a chemical 

inhibitory approach of RIPK signaling before optimization of their dynamic range.  

A very exciting challenge would be to monitor several kinase activities at the 

same time in the same sample [455] to correlate RIPK1 and RIPK3 as well as 

ERK1/2 activities hence determining the precise crosstalk between each signaling 

node. To this aim, we recently contribute to the development of a multiplex FRET 

biosensor approach based on new mTFP1/sREACh and LSSmOrange/mKate2 

FRET pairs (Demeautis et al., to be submitted). 

Altogether, based on compelling evidences of ERK1/2 involvement in TNFα-

induced necroptosis, we hypothesized that ERK1/2 spatio-temporal dynamics could 

be modulated. Results gathered though functional imaging approaches revealed 

oscillations in ERK1/2 activity that so far has not been reported in this particular 

context, which reinforce the idea that ERK1/2 is implicated in TNFα-induced 

necroptosis. 
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Figure 16: Schematic overview summarizing the strategy established for this research project. 
This project brain map, in a sort of decision tree shape, has helped throughout the guidance of this 
thesis. Outputs at both the scientific and biotechnological levels have also been indicated for reviewing 
purposes. 
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Résumé de la thèse 

1. Introduction 

1.1. Les morts cellulaires programmées 

La nécroptose est aujourd’hui définie comme une mort programmée caspase 

indépendante. Elle présente un rôle physiopathologique et montre une implication 

dans certains mécanismes antiviraux, des maladies neuro-dégénératives ou encore 

les phénomènes d’ischémie–reperfusion. Cependant, notre compréhension des 

mécanismes moléculaires de la nécroptose commence tout juste à voir le jour. La 

nécroptose induite par le TNFα fait intervenir une voie de signalisation spécifique 

impliquant deux kinases, RIPK1 et RIPK3 et la pseudo-kinase MLKL, identifiée en 

2012 comme étant l’exécuteur crucial de la nécroptose en aval de RIPK3.  

Sipieter F, Ladik M, Vandenabeele P, Riquet F. Shining light on cell death processes 

- a novel biosensor for necroptosis, a newly described cell death program. Biotechnol 

J. 2014;9: 224–40. doi:10.1002/biot.201300200 

Résumé 

La mort cellulaire contribue au maintien de l'homéostasie, mais 

de nouvelles preuves confirment l’implication de la mort cellulaire 

programmée dans certaines maladies. Le concept de mort cellulaire 

programmée, qui a été proposé il y a plusieurs décennies concernant 

l'apoptose, englobe désormais la nécroptose, un programme de mort 

cellulaire nouvellement caractérisé. Les recherches sur la mort 

cellulaire programmée sont devenues essentielles pour le 

développement de nouvelles thérapies. Pour étudier les signalisations 

de mort cellulaire et leurs mécanismes moléculaires, de nouvelles 

approches biochimiques et fluorogéniques ont été conçues. Ici, nous 

apportons d'abord un aperçu des différents types de morts cellulaires 

programmées puis l'importance des études de la mort cellulaire d’un 

point de vue plus dynamique. Ensuite, nous nous focalisons à la fois 

sur les signalisations, apoptotique et nécroptotique ainsi que sur leurs 

mécanismes moléculaires en fournissant pour chacune une revue 
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systématique de toutes les méthodes et approches qui ont été utilisées. 

Nous soulignons ensuite la contribution des approches avancées 

d’imagerie basées sur les sondes fluorescentes, les rapporteurs et les 

biosenseurs FRET pour l'étude de la mort cellulaire programmée. Parce 

que les voies de signalisation apoptotique et nécrotique partagent 

plusieurs effecteurs moléculaires, nous discutons comment ces 

nouveaux outils pourraient être utilisés pour discriminer l'apoptose de la 

nécroptose. Nous décrivons aussi notre stratégie expérimentale vers le 

développement des biosenseurs FRET pour la détection de la 

nécroptose en cellules vivantes. Enfin, nous ouvrons sur la façon dont 

la mesure dynamique des biomolécules dans des modèles vivants 

jouera un rôle dans le pronostic et le traitement personnalisé des 

patients. 

1.2. Les voies de signalisation ERK1/2 

La cascade de signalisation ERK1/2 est une voie de signalisation très 

conservée chez les eucaryotes. Elle intègre de nombreux signaux afin de moduler la 

réponse de la cellule. Les protéines ERK1 et ERK2 sont des sérines/thréonines 

kinases. Elles ont 83% d’identité et sont exprimées de façon ubiquitaire. Les MAPKs 

régulent divers programmes cellulaires comme l’embryogenèse, la prolifération, la 

différenciation et l’apoptose selon le type de stimulation, l’état d’activation et 

l’environnement de la cellule. La cascade ERK1/2 est constituée de trois niveaux, 

chacun étant composé d’une kinase. La kinase la plus proche de la source du signal 

est appelée MAP3K (isoformes de Raf) qui est activée par une protéine en amont 

(fixation de petites protéines G de la famille Ras sur la partie C terminale et 

phosphorylation). Elle phosphoryle et active ensuite une MAP2K (MEK1/2) qui à son 

tour phosphoryle et active une MAPK (ERK1/2). Ces enzymes sont finement 

régulées afin d’engager une réponse cellulaire spécifique. Ces réponses sont 

dépendantes de nombreux paramètres tels que la durée d’activation, la localisation 

subcellulaire des kinases ou encore l’interaction avec d’autres protéines. La 

modulation des fonctions des acteurs de la cascade est réalisée par des 

mécanismes de type déphosphorylation/phosphorylation et des interactions protéine-

protéine. Les phosphatases influencent ainsi la cascade ERK1/2 de façon soit 

positive soit négative dépendamment de leur position dans la cascade.  
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Les kinases ERK1/2 sont des protéines nucléocytoplasmiques dont la 

localisation subcellulaire est dépendante du type et de l’intensité du signal. Afin de 

mettre en évidence et de mesurer les mécanismes régulant la localisation 

subcellulaire d’ERK1/2, l’imagerie en cellules vivantes a été utilisée. Des études 

utilisant le phénomène biophysique de FRET ont montré que MEK1 et ERK2 

interagissaient et que cette interaction est en grande partie responsable de la 

rétention cytoplasmique de ERK2. La distribution subcellulaire de ERK1/2 est ainsi 

contrôlée par le nombre et l’affinité des partenaires de ERK1/2 dans chacun des 

compartiments cellulaires. L’activation des protéines ERK1/2 induit leur translocation 

nucléaire permettant à ERK1/2 l’accès aux facteurs de transcription qui sont alors 

phosphorylés et/ou stabilisés dans le but de modifier l’expression de gènes cibles. La 

forme active de ERK1/2 transite dans le noyau grâce à un transport actif impliquant 

la phosphorylation d’un motif SPS par la CK2 et l’interaction avec l’importine 7.  

1.3. Implication de ERK1/2 dans les processus de mort 

cellulaire 

Bien que l’activation de différentes MAPKs ait été impliquée dans de 

nombreux processus cellulaires, l’activation des kinases ERK1/2 a également été 

rapportée dans plusieurs types de morts cellulaires programmées telles que 

l’apoptose, l’autophagie ou encore récemment la ferroptose. Par ailleurs, la 

régulation de l’activité de ERK1/2 en termes d’amplitude, de durée et de localisation 

via des régulateurs spatio-temporels spécifiques est interprétée par la cellule pour la 

détermination du destin cellulaire. 

1.4. Pourquoi utiliser des approches dynamiques pour la 

compréhension des fonctions de ERK1/2 ? 

Les techniques d’analyse classiques ont déjà permis d’identifier et de 

caractériser de nombreux mécanismes de régulation liés à l’activité des protéines 

kinases. Cependant, ces techniques, telles que l’immunoblot ou l’immunocytochimie 

utilisant des anticorps reconnaissant les résidus phosphorylés, génèrent des 

résultats moyennés à l’échelle d’une population cellulaire et ne représentent qu’un 

cliché à un instant donné du processus cellulaire étudié. Le développement 

d’approches d’imagerie est donc nécessaire pour s’affranchir des inconvénients des 
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méthodes expérimentales traditionnelles. Les biosenseurs FRET codés 

génétiquement permettent de révéler et de suivre la dynamique de protéines kinases 

en cellules vivantes avec une résolution spatiale et temporelle élevée, tout en 

préservant l’intégrité et l’environnement cellulaire (contexte physiologique). Dans le 

contexte de la voie de signalisation ERK1/2, cette approche permettrait sans doute 

de répondre à certaines interrogations : comment l’activation d’une seule protéine 

kinase (ERK1/2) est-elle capable d’engager des réponses cellulaires aussi variées ? 

Le type cellulaire, le type de stimulation mais également la modulation de la 

dynamique spatio-temporelle de ERK1/2 seraient à l’origine de la diversité des 

réponses cellulaires engagées.  

1.5. Article de revue – Reporting kinase activities: 

paradigms, tools and perspectives 

Riquet F, Vandame P, Sipieter F, Cailliau-Maggio K, Spriet C, Héliot L and Bodart J-

F. Reporting Kinase activities: paradigms, tools and perspectives. Journal of 

Biological Medicine 2011:1(2) 10-18. 

Résumé 

Etudier la complexité des réseaux de signalisation impliquant la 

phosphorylation est devenu une nécessité vers une meilleure 

compréhension des fonctions cellulaires tant au niveau physiologique 

que pathologique, ainsi que dans une perspective thérapeutique. Nous 

choisissons ici d’illustrer le propos en prenant à titre d’exemple les 

protéines kinases MAPKs, Akt et PKA, pour lesquelles la régulation 

spatio-temporelle de leurs activités respectives est cruciale pour 

l’accomplissement de fonctions cellulaires spécifiques. Afin de 

dépasser les limites des approches traditionnelles, des nouvelles 

méthodes d’imagerie basées sur la fluorescence (FRET) et la 

bioluminescence ont été développées. Elles génèrent des données 

avec une résolution spatiale et temporelle augmentée en cellule unique 

et à l’échelle du tissu. Nous discutons  également des propriétés des 

rapporteurs d’activité kinase basés sur le FRET ou la bioluminescence. 
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2. Buts et objectifs 

2.1 Objectifs scientifiques 

L’activation du TNFR1 par le TNF constitue le modèle d’étude de la 

nécroptose le plus utilisé à ce jour. Selon le contexte cellulaire, l’activation du TNFR1 

est à l’origine de 3 voies de signalisation distinctes, comprenant chacun des points 

de contrôle spécifiques.  

Le premier point de contrôle est déterminé par RIPK1, qui selon son état 

d’ubiquitination, engagera soit une voie de survie, soit la mort cellulaire. Dans le cas 

d’un engagement vers la mort cellulaire (e.g. déubiquitination de RIPK1, inhibition de 

la voie de survie), un second point de contrôle détermine le type de mort cellulaire 

qui sera engagée, et cela en fonction de la nature des complexes pro-morts 

interagissant avec RIPK1. Au sein du complexe I assemblé après stimulation par le 

TNFα, RIPK1 contribue à l’activation des MAPKs, telles que p38, JNK et ERK1/2. 

Bien que plusieurs études aient rapporté ce phénomène en réponse au TNFα, le rôle 

de RIPK1 et les mécanismes moléculaires concourant à l’activation des MAPKs 

restent encore indéterminées. TRAF2 est une molécule adaptatrice recrutée à la 

membrane suite à l’activation du TNFR1 par le TNFα. Des études ont mis en 

évidence l’implication de TRAF2 dans l’activation des kinases JNK et IKK. De plus, la 

surexpression de TRAF2 engendre l’activation de p38 et ERK1/2. Devin et 

collaborateurs ont examiné les mécanismes moléculaires impliqués entre RIPK1 et 

les MAPKs dans des fibroblastes embryonnaires de souris (MEF) déficients pour 

RIPK1 ou TRAF2. Leurs résultats mettent en évidence l’implication de RIPK1 et de 

TRAF2 pour l’activation de JNK, p38 et ERK1/2 en réponse à la stimulation par 

TNFα. En effet, une diminution de 70% de l’activation de ERK1/2 a été observée 

dans les cellules RIPK1-/-. De plus, l’expression dans cette lignée d’une forme mutée 

de RIPK1 pour son activité kinase (K45A) a permis de mettre en évidence la 

nécessité de l’activité de RIPK1 pour l’activation de ERK1/2, contrairement à p38 et 

JNK. L’identification des effecteurs moléculaires en amont de l’activation de ERK1/2 

reste à déterminer puisque ni MEKK1 ni MEKK3 ni même A-Raf et B-Raf semblent 

nécessaires à l’activation de JNK, p38 et ERK1/2 en réponse au TNFα. Des 

mécanismes de redondances suite à la présence de nombreuses isoformes de 

MAP3K pourrait expliquer ce résultat. A ce jour, la séquence d’évènements 
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conduisant à l’activation de ERK1/2 par le TNFα, dépendante de l’activité de RIPK1, 

n’est pas élucidée et le rôle de ERK1/2 dans ce contexte cellulaire reste à 

déterminer.  

Seulement quelques publications suggèrent un rôle de ERK1/2 dans la 

nécroptose stimulée par le TNFα. Zhang et collaborateurs ont mis en évidence le rôle 

primordial de ERK1/2 dans la nécroptose induite par le glutamate dans les cellules 

HT-22. Leur étude a révélée des niveaux d’activation de ERK1/2 élevés dans ces 

conditions et un blocage de la nécroptose suite à l’inhibition de ERK1/2. Il a été 

rapporté que l’inhibition de RIPK1 par Nec-1 empêche la nécroptose provoquée par 

le glutamate dans les cellules HT-22 via l’inhibition de la phosphorylation de ERK1/2. 

Cependant, l’inhibition de RIPK1 ne présente aucune conséquence sur p38 et JNK, 

soulignant ainsi le rôle de ERK1/2 dans cette mort nécrotique induite par le 

glutamate. De manière contradictoire, une autre étude a montré que l’apoptose 

induite par la shikonine dans les cellules leucémiques HL60 et K562 était amplifiée 

par l’inhibition de RIPK1 via l’inactivation de ERK1/2, suggérant ici un rôle pro-survie 

de ERK1/2 dans ce contexte.  Par ailleurs, un lien entre l’activation de ERK1/2 et la 

voie de signalisation RIPK1/3 a été mis en évidence par Gao et collaborateurs dans 

un contexte d’ischémie–reperfusion de rétines de rat. 12h après le traumatisme, il a 

été observé dans des cellules ganglionnaires rétiniennes de rat des niveaux de 

phosphorylation élevés de ERK1/2 ainsi qu’une accumulation de RIPK3, mais aucun 

effet sur RIPK1. L’injection intravitréenne d’U0126 a permis d’inhiber ERK1/2 et 

d’empêcher l’accumulation de RIPK3 ce qui a conduit à une diminution de la 

nécroptose. Ces résultats soulignent de nouveau le rôle de ERK1/2 dans l’exécution 

de la nécroptose. Cependant, cette étude indique un rôle de ERK1/2 en amont de 

RIPK3, ce qui est en contradiction avec le modèle actuel préconisant un rôle pour 

ERK1/2 en aval du complexe pro-nécrotique.  

 Les mécanismes moléculaires sous-jacents à l’activation de ERK1/2 

par RIPK1 sont mal connus. Récemment, une étude a mis en évidence une nouvelle 

forme de mort cellulaire apoptotique RIPK1-dependante induite par l’acide 

éléostéarique (ESA) au niveau de laquelle la voie de signalisation ERK1/2 est 

impliquée. Dans ce contexte il a été montré que ERK1/2 interagissait de façon 

constitutive avec RIPK1, et de manière transitoire avec MEK2. Les auteurs ont 

également montré que l’apoptose ESA-induite nécessitait la déphosphorylation de 
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RIPK1, puis la phosphorylation de ERK1/2 via MEK2, ainsi qu’une diminution de la 

phosphorylation des protéines AIF. AIF, tout comme ERK1/2, se trouvent alors 

relocalisés dans le noyau. Ce processus s’accompagne d’une production de ROS et 

de dysfonctionnements mitochondriaux, aboutissant à la mort cellulaire. Cependant, 

dans le cadre de la nécroptose RIPK1-dependante induite par le TNFα, les 

phosphorylations croisées entre RIPK1 et RIPK3 contribuent à la stabilisation du 

ripoptosome ce qui entraine une production progressive de ROS. De plus, étant 

donné que l’élévation des niveaux intracellulaires de ROS contribue à inhiber les 

phosphatases spécifiques de ERK1/2, l’activation de ERK1/2 au cours de la 

nécroptose pourrait être davantage une conséquence qu’une cause de la production 

de ROS. Par ailleurs, en accord avec de précédentes études, la phosphorylation de 

ERK1/2 RIPK1-dépendante a été observée dans le contexte des cellules L929 

stimulées par le TNFα. Dans ce même contexte cellulaire, l’inhibition de cIAP1 par le 

BV6 a entrainé une augmentation significative des niveaux de phosphorylation de 

ERK1/2 ainsi que de l’activité de RIPK1, accompagnés par une élévation de la 

production de ROS. Ces résultats soulignent ici le rôle protecteur de cIAP1 dans la 

nécroptose induite par le TNFα, ainsi que l’implication de cIAP1 dans la régulation de 

la phosphorylation de ERK1/2. 

En lien avec l’activation des MAPKs induite par le TNFα, il a été rapporté que 

le TNFα entrainait une activation biphasique de JNK, constitué d’une première 

activation transitoire, suivie d’une activité soutenue sur plusieurs heures. Dans les 

cellules L929, la stimulation par le TNFα entraine également une activité transitoire 

de JNK et p38, puis seule une activation soutenue de p38 a été détectée. L’activation 

soutenue de JNK a pu être mise en évidence suite à l’inhibition des phosphatases de 

JNK par les ROS consécutive à la stimulation par le TNFα.  

La mesure des variations d’activité kinase, telle que ERK1/2, en cellules 

vivantes est nécessaire tant elles participent à la détermination de l’engagement 

dans un processus cellulaire spécifique. En effet, alors qu’une activation transitoire 

est promotrice de la survie cellulaire et permet de contrecarrer les signaux de mort, 

une activation soutenue constitue quant à elle un marqueur de l’engagement d’un 

processus de mort cellulaire. Récemment, une étude a décrit des comportements 

oscillatoires de l’activation de JNK et ERK1/2 dans les cellules 3T3 stimulées par le 

TNFα ou l’IL-1β, par le biais de rapporteurs de localisation. De plus, il a aussi été 
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montré que d’autres voies de signalisation, telle que p38/MAPK, pouvaient moduler 

la fréquence sans pour autant affecter l’amplitude des oscillations de l’activité 

ERK1/2. Au regard des profils oscillatoires d’activité de ERK1/2, il est important ici de 

souligner l’apport des mesures d’activité en cellules uniques permettant d’isoler ce 

type de profil d’activité provenant de la stochasticité du système ou de l’action de 

facteurs de croissance et cytokines. Ces mesures peuvent ainsi contribuer à la mise 

en évidence de l’hétérogénéité des réponses cellulaires. Cependant, l’utilisation 

d’approches plus globales telles que des approches biochimiques ne permettent pas 

de mettre en évidence ce type de signature individuelle tant elles contribuent à 

moyenner la réponse d’une population cellulaire à un temps donné.  

 Au vu de l’importance de la dynamique spatio-temporelle des MAPKs 

dans l’orientation de la réponse cellulaire et des faisceaux d’indices de l’implication 

de ERK1/2 dans la nécroptose stimulée par le TNFα, nous avons entrepris l’étude de 

la dynamique de ERK1/2 dans le contexte de la nécroptose induite par le TNFα via 

l’utilisation de rapporteurs fluorescents de la localisation et de l’activité de ERK1/2 en 

cellules vivantes. En combinaison avec l’utilisation d’inhibiteurs chimiques 

spécifiques de la nécroptose et de la voie de signalisation ERK1/2, nous avons 

commencé à clarifier le lien entre les voies de signalisation ERK1/2 et RIPK1/3.  

 

 

Les objectifs scientifiques de cette thèse sont les suivants: 

- Etudier l’implication de ERK1/2 dans la nécroptose induite par le 

TNFα dans les cellules L929 et MEF, deux modèles murins d’étude de 

la nécroptose TNFR1 dépendante 

- Déterminer la dynamique spatio-temporelle de ERK1/2 dans ce 

processus de nécroptose 

- Identifier les effecteurs moléculaires impliqués dans la 

phosphorylation TNFα-induite de ERK1/2 et l’interrelation entre les 

cascades de signalisation RIPK1/3 et ERK1/2 

- Corréler la signature spatio-temporelle de ERK1/2 avec des 

marqueurs de l’initiation et de l’exécution de la nécroptose 
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2.2. Objectifs biotechnologiques: 

Plusieurs études ont rapporté la localisation spatio-temporelle de ERK2 en 

cellules uniques par la surexpression de ERK2 étiquetée avec un variant de la GFP. 

L’expression de la GFP-ERK2 dans les cellules L929 et MEF a entrainé une 

accumulation nucléaire anormale de la GFP-ERK2 en condition de privation sérum et 

en l’absence de stimulation de la voie de signalisation ERK1/2. En effet, de manière 

indépendante de la phosphorylation, les cellules surexprimant la GFP-ERK2 

présentaient une accumulation nucléaire lorsque l’intensité de fluorescence était 

élevée, alors que la protéine surexprimée était distribuée de manière homogène 

entre le cytoplasme et le noyau dans les cellules présentant un faible niveau de 

fluorescence. Sur la base de cette observation et de nos ambitions, il est donc 

apparu nécessaire de développer un outil moléculaire permettant un suivi fidèle et 

dynamique de la distribution subcellulaire de ERK2 en cellules vivantes par imagerie 

de fluorescence.  

En parallèle de la localisation, nous avons entrepris la mesure de l’activité 

spatio-temporelle de ERK1/2. Afin d’établir les profils d’activité de ERK1/2 dans le 

contexte de la nécroptose induite par le TNFα, nous avons utilisé un rapporteur 

d’activité kinase génétiquement codé reposant sur le FRET (EKAR-EV). Cependant 

ce rapporteur n’a pas permis l’enregistrement de variation d’activité de ERK1/2 lors 

de la nécroptose stimulée par le TNFα dans les cellules L929, ce qui était en 

désaccord avec nos données biochimiques préalables. Nous avons donc avancé 

deux hypothèses: (i) la phosphorylation de ERK1/2 ne s’accompagne pas 

systématiquement de variation d’activité, ou (ii) le rapporteur fait défaut n’étant pas 

suffisamment sensible pour détecter les variations d’activité dans le contexte de la 

signalisation du TNFα. Après avoir écarté la première hypothèse dans notre contexte 

d’étude, nous avons développé une méthode rapide pour la construction et/ou 

l’optimisation de biosenseurs FRET génétiquement codés. Enfin, dans le but de 

corréler l’activité de deux kinases, le développement d’une approche permettant la 

mesure simultanée d’activités kinase dans un même échantillon biologique semble 

aussi être requis. 
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Les objectifs technologiques de cette thèse sont les suivants: 

- Résoudre les problèmes liés à la surexpression de la GFP-ERK2, 

source de la distribution artéfactuelle de la kinase 

- Optimiser le rapporteur d’activité kinase de ERK1/2 (EKAR-EV) afin 

de réaliser les mesures spatio-temporelles d’activité de ERK1/2 dans 

le contexte de la nécroptose TNFα-induite 

- Développer des rapporteurs d’activité kinase pour RIPK1 et RIPK3 

pour le suivi de l’initiation et de l’exécution de la nécroptose 

- Développer une approche d’imagerie fonctionnelle pour la mesure 

simultanée de deux activités kinase dans un même échantillon 

biologique 
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3. Approches Expérimentales  

3.1. Co-expression équimolaire des kinases GFP-ERK2 et 

MEK1 pour le suivi dynamique de GFP-ERK2 en 

cellules vivantes 

Dans cette section, nous présentons la stratégie de co-expression des kinases 

GFP-ERK2 et MEK1 utilisant un peptide viral « 2A » de la famille des Picornaviridae 

qui permet la génération de deux polypeptides distincts issus d’un seul polypeptide 

par un mécanisme traductionnel de « skipping » ribosomal ou CHYSEL. Ce 

mécanisme permet ainsi une production équimolaire fixe des protéines co-

exprimées. De nombreuses versions de la séquence 2A ont été développées et 

optimisées. Plus petites et plus fiables qu’une séquence IRES, les séquences 2A 

sont de plus en plus utilisées en biotechnologie et en biomédecine.   

3.2. Chapitre d’ouvrage – From FRET imaging to practical 

methodology for kinase activity sensing in living cell. 

Sipieter F, Vandame P, Spriet C, Leray A, Vincent P, Trinel D, Bodart J-F, Riquet 

FB, Héliot L. From FRET imaging to practical methodology for kinase activity sensing 

in living cells. Prog Mol Biol Transl Sci. 2013;113: 145–216. doi:10.1016/B978-0-12-

386932-6.00005 

Résumé: 

Les processus biologiques sont intrinsèquement dynamiques. 

Bien que les méthodes traditionnelles apportent des indications 

précieuses pour la compréhension de nombreux phénomènes 

biologiques, la possibilité de mesurer, quantifier et de localiser des 

protéines dans une cellule, un tissu, et même un embryon a 

révolutionné notre façon de pensée et a encouragé les scientifiques à 

développer des outils moléculaires pour mesurer/évaluer la dynamique 

des protéines ou de complexes protéiques dans leur contexte 

physiologique. Ces efforts actuels reposent sur l'émergence de 

techniques de biophotonique et l'amélioration de sondes fluorescentes, 

permettant des mesures précises et fiables des fonctions cellulaires. La 
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marche de la «biochimie in vivo » a commencé, apportant déjà des 

résultats impressionnants.  

4. Résultats 

4.1. Article de recherche – Novel reporter for faithful 

monitoring of ERK2 dynamics in living cells and 

model organisms. 

Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J-F, Cailliau-Maggio K, 

Vandenabeele P, Héliot L, Riquet FB. Novel reporter for faithful monitoring of ERK2 

dynamics in living cells and model organisms. PlosOne 2015. In press.  

Résumé: 

Le découplage entre la phosphorylation et la localisation de 

ERK1/2 est essentiel à la compréhension des mécanismes 

moléculaires contrôlés par ERK1/2. De plus, les fonctions non 

catalytiques de ERK1/2 et la découverte de nouvelles ancres 

spécifiques responsables de la compartimentation subcellulaire de la 

voie de signalisation ERK1/2 ont été proposés comme des mécanismes 

de régulation pour lesquels la mesure et le suivi dynamique de la 

localisation de ERK1/2 est nécessaire. Cependant, l'étude des 

caractéristiques spatio-temporelles de ERK2, par exemple, dans 

différents processus cellulaires dans les cellules et tissus vivants 

nécessite un outil qui puisse rapporter sa distribution subcellulaire le 

plus fidèlement possible à l’endogène. Nous avons développé un tel 

outil moléculaire nommé ERK2-LOC, basé sur la co-expression 

équimolaire de MEK1 et de eGFP-ERK2 grâce à la séquence virale 

T2A. MEK1 et eGFP-ERK2 ont été co-exprimés de manière fiable et 

fonctionnelle à la fois in vitro et en cellules vivantes. Nous avons 

ensuite évalué la distribution subcellulaire et la mobilité d’ERK2-LOC 

par microscopie de fluorescence en condition basale et également 

après activation et inhibition de la voie de signalisation ERK1/2. Enfin, 

nous avons utilisé notre système de co-expression dans l’embryon de 

Xénope pendant les premiers stades du développement embryonnaire. 
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C’est la première fois que ERK2 et MEK1 sont co-exprimés dans des 

embryons vivants et les résultats révèlent une forte corrélation entre la 

distribution spatio-temporelle d’ERK2-LOC et les profils de 

phosphorylation de ERK1/2. Enfin, notre approche peut être utilisée 

pour étudier la localisation spatio-temporelle d’ERK2 dans une variété 

de processus cellulaires à la fois en cellules vivantes et dans les tissus 

embryonnaires. 

4.2. Article de recherche en préparation – A novel 

approach for rapid development of optimized FRET-

based biosensors for signaling network interrogation 

in living cells  

Sipieter F, Cappe B, Gavet O, Héliot L, Vincent P and Riquet FB. A novel approach 

for rapid development of optimized FRET-based biosensors for signaling network 

interrogation in living cells. 2015. In preparation. 

La dynamique des protéines kinases est déterminante dans de nombreux 

processus cellulaires. Dans ce contexte, il est donc devenu nécessaire de disposer 

d’outils permettant l’analyse de la dynamique de ces protéines kinases. De 

nombreux résultats ont été obtenus grâce à l’utilisation de biosenseurs FRET 

rapporteur d’activité kinase. Toutefois, leur répertoire est très loin de couvrir 

l’ensemble des kinases du vivant. A l’heure actuelle, environ 518 kinases ont été 

identifiées et environ 26 biosenseurs kinasiques ont été obtenus. 

Le faible nombre de biosenseurs de kinase disponibles s’explique en grande 

partie par la complexité de ces outils moléculaires. En effet, la construction des 

biosenseurs FRET codés génétiquement nécessite l’insertion précise d’éléments 

spécifiques dans une séquence nucléotidique selon un enchaînement donné. Aussi, 

compte tenu de la complexité structurale de ces outils moléculaires, il est impossible 

de prédire quel enchainement adéquat produira un biosenseur performant. A l’heure 

actuelle, l’unique façon de procéder repose sur la construction empirique des 

biosenseurs issus de la combinaison multiple d’éléments spécifiques.  

Le processus de construction des biosenseurs repose ainsi exclusivement sur 

des techniques classiques de clonage moléculaire. Cependant, ces techniques de 
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clonage requièrent un investissement extrêmement important en termes de temps et 

de coûts pour réaliser chacune des constructions envisagées avant même de 

connaître si ces dernières se révéleront efficaces ou non.  

Il existe par conséquent un réel besoin de nouveaux biosenseurs de kinase, et 

d’une technologie qui facilite leur construction.  

Patent: « Biosenseurs de kinase et leur procédé de fabrication. » Application nr GB 

1400997.1. Riquet F et al. (including Sipieter F): Priority date: 2014.06.20. 

Résumé: 

La présente invention concerne des acides nucléiques codant 

des biosenseurs de kinase construits à partir d’éléments modulables, 

leur procédé de fabrication, ainsi que les biosenseurs de kinase codés 

par lesdits acides nucléiques. 

4.3. Article de recherche en préparation – Spatio-temporal 

characterization of ERK activity in survival, apoptosis 

and necroptosis. 

Sipieter F, Cappe B, Grootjans S, Ladik M, Vincent P, Vandenabeele P and Riquet 

FB. Spatio-temporal characterization of ERK activity in survival, apoptosis and 

necroptosis. 2016. In preparation. 

Afin d’étudier l’implication de ERK1/2 dans la nécroptose TNFα-induite dans 

les L929, nous avons testé l’effet d’inhibiteurs chimiques de la cascade de 

signalisation ERK1/2. Nos résultats mettent en évidence un retard significatif de la 

nécroptose de manière dose-dépendante, sans pour autant la bloquer. Nos données 

sont en accord avec les études antérieures suggérant ainsi un rôle pro-nécrotique de 

ERK1/2 dans ce contexte cellulaire.  

Les profils de phosphorylation de ERK1/2 révèlent une activité biphasique et 

compartimentée dans ces conditions expérimentales. Par ailleurs, l’inhibition de 

l’activité de RIPK1 par la nécrostatine-1 dans les L929 stimulées préalablement par 

le TNFα perturbe les profils de phosphorylation de ERK1/2, suggérant ainsi que 

RIPK1 soit impliquée dans l’activation de ERK1/2 induite par le TNFα.  
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La régulation spatio-temporelle de l’activité de ERK1/2 étant déterminante 

dans l’orientation de la réponse cellulaire, nous avons étudié le code d’activation 

spatio-temporel de ERK1/2 au cours de la nécroptose via l’utilisation en cellules 

vivantes de rapporteurs fluorescents de l’activité et de la localisation de ERK1/2. Afin 

d’assurer un suivi fidèle de la distribution subcellulaire de ERK2, nous avons 

développé un nouveau rapporteur génétiquement codé, appelé ERK2-LOC. Cet outil 

nous a permis d’observer une translocation transitoire de ERK2 suite à la stimulation 

des L929 par le TNFα, suivi d’une accumulation nucléaire progressive de ERK2. 

Cette signature est considérée comme caractéristique de l’implication de ERK1/2 

dans les processus de mort cellulaire. 

L’examen des profils d’activité de ERK1/2 au cours de la nécroptose a été 

initialement réalisé grâce à l’utilisation d’un rapporteur FRET d’activité kinase (EKAR-

EV). Ce biosenseur n’a pas permis l’enregistrement de variations d’activité, 

contrairement aux résultats obtenus par biochimie. L’optimisation de EKAR-EV, par 

une approche nouvellement développée, a amélioré substantiellement sa gamme 

dynamique (ERK1/2-ACT). L’utilisation de ERK1/2-ACT a permis de mettre en 

évidence pour la première fois une signature spatio-temporelle spécifique de l’activité 

de ERK1/2 au cours de la nécroptose.  

Dans la perspective de corréler les signatures d’activité de ERK1/2 avec celles 

des kinases RIPK1 et RIPK3, nous avons également développé une première 

génération de biosenseurs FRET pour ces kinases initiatrices de la nécroptose. 

4.4. Article de recherche en préparation – Single 

wavelength excitation dual color FLIM for multiplexing 

genetically encoded FRET biosensors. 

Déméautis C, Sipieter F, Roul J, Chapuis C, Padilla-Parra S, Riquet FB and Tramier 

M. Single wavelength excitation dual color FLIM for multiplexing genetically encoded 

FRET biosensors (to be submitted in Biophysical Journal, 2015).  

Résumé: 

Les biosenseurs codés génétiquement basés sur le Förster 

Resonance Energy Transfert (FRET) sont des outils performants pour 

la mesure spatio-temporelle d’activités biochimiques dans des 
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échantillons biologiques vivants. A l’heure actuelle une des nécessités 

consiste en la mesure simultanée de deux activités kinase en cellules 

vivantes et dans un même compartiment subcellulaire. Cependant 

l’approche multiplex souffre de certaines limitations : (i) une fuite 

spectrale du premier donneur dans le canal d’émission du deuxième 

donneur, et ceci en lien avec la concentration relative entre les deux 

biosenseurs, (ii) de multiple longueurs d’onde d’excitation nécessitant 

une acquisition séquentielle incompatible avec le suivi de variations 

rapides d’activités biochimiques. Sur la base du long déplacement de 

Stoke de la LSSmOrange, nous avons utilisé une longueur d’onde 

unique d’excitation pour les donneurs mTFP1 et LSSmOrange sur notre 

microscope « dual color FLIM » permettant ainsi la mesure simultanée 

d’activités kinase via deux biosenseurs FRET indépendants. De plus la 

combinaison d’un accepteur non-fluorescent sREACh avec mTFP1 et 

un accepteur rouge-lointain mKate2 avec LSSmOrange a résolu les 

problèmes liés à la fuite spectrale. L’utilisation d’un système « dual 

color FLIM » a permis de réaliser la mesure simultanée des durées de 

vie de fluorescence de mTFP1 et LSSmOrange dans un même 

compartiment cellulaire. Par la suite, l’approche a été validée dans un 

contexte biologique spécifique visant à mesurer simultanément les 

variations d’activités de ERK1/2 et PKA en cellules HeLa. Dans cette 

perspective, les biosenseurs EKAR2G et AKAR4 ont été 

respectivement modifiés avec les couples de protéines fluorescentes 

mTFP1/sREACh et LSSmOrange/mKate2, puis validés. L’activation de 

la voie de signalisation PKA par la forskoline a été sans effet sur 

l’activité de ERK1/2. En revanche, l’activation de la voie de signalisation 

ERK1/2 par l’EGF a conduit à l’identification de deux sous-populations 

distinctes de cellules HeLa tout en mettant en évidence une 

interrelation entre ces deux voies de signalisation.  
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5. Discussion générale et conclusion 

Sur la base d’un faisceau d’indices concernant l’implication de ERK1/2 dans la 

nécroptose, nous avons fait l’hypothèse d’un rôle possible de ERK1/2 dans la 

régulation de la nécroptose TNFα-induite. Les premiers résultats ont rapidement 

confirmés que l’inhibition de la voie signalisation ERK1/2 entrainait un retard 

prononcé de la nécroptose stimulée par le TNFα. A la vue de récentes études 

rapportant la pertinence de la dynamique spatio-temporelle dans l’orientation de la 

réponse cellulaire vers un processus cellulaire spécifique, nous nous sommes 

naturellement dirigé vers une approche expérimentale permettant d’accéder à ce 

niveau d’information. Nos efforts concentrés dans le développement et l’optimisation 

de rapporteurs fluorescents génétiquement codés ont permis de révéler un 

comportement encore jamais détecté de ERK1/2 dans la nécroptose TNFα-induite 

dans des lignées de fibroblastes murins. Une accumulation nucléaire progressive de 

ERK1/2 a été mise en évidence entre une à deux heures avant la mort de la cellule 

par apoptose et par nécroptose. De plus, une augmentation de la fréquence des pics 

d’activité de ERK1/2 lors de la phase de signalisation de la nécroptose a été 

observée et se distingue de la dynamique spatio-temporelle de l’activité de ERK1/2 

dans l’apoptose médiée par le TNFα dans le même modèle cellulaire. Ces résultats 

renforcent l’idée de l’implication de ERK1/2 dans la nécroptose TNFα-induite RIPK1 

dépendante.  

Par ailleurs, considérant le manque de marqueurs pour la détection et la 

visualisation de la nécroptose en cellules vivantes, nous avons entrepris le 

développement de biosenseurs FRET rapporteurs d’activité kinase pour RIPK1 et 

RIPK3. Puis, dans l’optique de pouvoir réaliser la mesure simultanée de l’activité de 

ces deux kinases, nous avons participé au développement et à la validation d’une 

méthode d’imagerie dédiée. Enfin,  les approches développées et utilisées dans ce 

travail de thèse sont en adéquation avec l’étude dynamique des processus 

biologiques et nous encourage à poursuivre nos efforts concernant les kinases 

RIPK1, RIPK3 et ERK1/2 tant dans la nécroptose que dans d’autres processus 

cellulaires dans lesquelles ces kinases sont impliquées. 
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