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Prof. dr. Öncü Hazır TED University (Turkey)

Prof. dr. Pierre Bonnal CERN, the European Organization for

Nuclear Research (Switzerland)

Prof. dr. Broos Maenhout Ghent University

Prof. dr. Geert Poels Ghent University





Dankwoord

Het lijdt geen twijfel: het schrijven van een dankwoord is een NP-Hard probleem.

Schier onmogelijk is de taak om iedereen op te sommen met wie ik de afgelopen jaren

lief en leed heb gedeeld. In wat volgt zal ik een schuchtere poging ondernemen, maar

graag dek ik me op voorhand in tegen acute amnesie. Of je nu gëınteresseerd was

in mijn persoon, mijn werk of op zoek was naar de meest recente Photoshop-prent

of portie licht amusement, bedankt!

Vanzelfsprekend behoort de eerste bedanking toe aan mijn promotor, Mario Vanhoucke.

Mario (a.k.a Mister Ario), dankzij jou heb ik de gelegenheid gekregen om de onder-

zoekswereld te leren kennen. We hebben de afgelopen jaren vaak zeer succesvol kunnen

samenwerken. Daarbij bood je me veel opportuniteiten, waaronder lesgeven en het Lon-

dense avontuur aan UCL. Daarnaast ben ik ook dankbaar omdat je mij toeliet mijn

eigen weg voor dit doctoraat uit te stippelen. Het was zoals bij ieder traject een proces

van vallen en opstaan, maar ik apprecieer dat ik met voor onze onderzoeksgroep min-

der bekende technieken aan de slag mocht gaan. Ik koester ook de herinneringen aan

ochtendlijke fokkies, vitterijen als we van en voor elkaar iets corrigeerden en de gedeelde

attitude om te excelleren, ongeacht het belang van de opdracht. Nu ik de onderzoekswe-

reld achter mij laat, ben ik fier in de voetsporen te treden van de overige gedoctoreerde

welpen. Bedankt voor alles!

Gaëtane, bedankt om me steeds met een kamerbrede smile te verwelkomen als ik in het

weekend, geheel à l’improviste en enigszins schaapachtig lachend, aanbelde om Mario

een nieuwe draft van deze of gene paper te bezorgen.

Graag wil ik ook de leden van mijn examenjury uitdrukkelijk bedanken. Ik appre-

cieer enorm dat jullie ondanks de drukke agenda’s toch de nodige tijd willen investeren

in het lezen van dit doctoraat en het verbeteren van de kwaliteit ervan. Broos, jouw oog

voor detail is ongeëvenaard, getuige de vele relevante commentaren die ik van jou kreeg.

Geert, het feit dat jij dit doctoraat vanuit een ander perspectief benadert, heb ik als

verruimend en verfrissend ervaren. Bedankt om me aan te sporen om enkele assumpties
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toch duidelijker te staven. I am greatly indebted to the external members of my jury,

prof. dr. Pierre Bonnal and prof. dr. Öncü Hazır. Pierre, thank you for challenging

me to demonstrate the applicability of the proposed techniques from a practical point of

view. Öncü, who knew that, after reading your many excellent papers on the Discrete

Time/Cost Trade-off Problem, you would eventually become a member of my jury? It

is a great honour to have you on this jury. Thank you for the constructive criticism that

undoubtedly elevated the level of this dissertation.

Ook prof. dr. Roland Paemelaire en prof. dr. Paul Gemmel ben ik dank verschuldigd.

Zij waren bereid om te hulp te schieten toen het vinden van een datum voor de publieke

verdediging een wel zeer complex planningsprobleem werd.

Tevens wens ik het Fonds voor Wetenschappelijk Onderzoek (FWO) te bedanken omwille

van de financiële ondersteuning van dit doctoraat. De UGent verdient een woord van

dank voor het ter beschikking stellen van de High Performance Computing infrastruc-

tuur die voor de vele experimenten broodnodig bleek te zijn.

Achter elke sterke vakgroep schuilt een sterk secretariaat. Machteld & Martine (M&M),

bedankt om me wegwijs te maken als ik verloren liep in het bos der administratie. Wan-

neer ik werd geconfronteerd met de kinderziektes van Oasis, wist één persoon steeds

raad. Lena, bedankt om me steeds te helpen, om altijd met de glimlach klaar te staan

en onverwachtse traktaties aan te bieden. Zelden heb ik een zo goedhartig persoon

ontmoet als jij. Marleen, jij maakte van het kuisen van ons bureau geen routineklus,

maar koppelde er vaak hoogst entertainende gesprekjes aan vast. Bedankt om onze Miss

Proper te zijn!

Graag wil ik mijn collega’s in de bloemetjes zetten. Veronique, bedankt om me gans

in den beginne zo goed op te vangen, evenals voor onze vele betekenisvolle gesprekken.

Ik heb alvast gepoogd jouw erfenis om nieuwe welpen op te vangen verder te zetten.

Christophe, Thomas, Jeroen en Len: ongelofelijk hoe vaak mijn lachspieren dankzij jul-

lie op de proef werden gesteld! Bedankt om me de donkere krochten van het internet

te leren kennen, maar eveneens om lief en leed te kunnen delen. Met veel plezier blik

ik terug op onder andere het weekend in Londen en de EURO-conferentie in Rome.

Stars van Simply Red is sindsdien nooit hetzelfde geweest. Het was aangenaam een

collega-techneut aan te treffen in Louis-Philippe. De HPC-verzuchtingen, nerdtalk over

Raspberry Pi’s en het lange wachten op revisies schiep onvermijdelijk een band. Pieter,

Laura, Annelies en Jeroen B. wil ik bedanken voor de aangename lunches, bezoekjes aan

de OR en pauzes. Hoewel het onmogelijk is onze diversiteit aan gesprekken in enkele
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zinnen te gieten, is mijn dankbaarheid groot. Ook de Friday drinks waren in dit opzicht

aangenaam en werden opgeleukt door de aanwezigheid van Jordy, Jonas en Danica.

Jonas, bedankt om een fijne bureaugenoot te zijn tijdens deze laatste weken!

Tijdens de middagpauzes of voor een gesprekje in de gang was ik kind aan huis bij de

collega’s van EB09. Ann (a.k.a Penny) en Sofie, bedankt voor de fijne momenten, jullie

interesse in mijn doctoraat en de vele aanmoedigingen. Griet, Melissa, Kaat, Jonas,

Robin, Jolien en Anneleen: merci, zowel voor het luisterende oor als om mijn wereld

te verruimen met allerhande weetjes. Ongetwijfeld worden het perfecte wist-je-datjes

tijdens een receptie! Charlotte en Elien, bedankt voor jullie gezelschap. Fantastisch

hoe we elkaar tijdens onze studieperiode amper kenden, maar hoe een doctoraat hier

verandering in kon brengen. Laten we binnenkort de gesmaakte lunch herhalen! Bart

(Larivière), ik heb veel gehad aan de conversaties die we voerden. Jouw deur staat steeds

open en daarnaast heb ik fenomenaal veel respect voor wat je met CSI uitbouwt en de

manier waarop je jouw doctoraatsstudenten begeleidt. Je bent een voorbeeld voor velen!

Katrien, ook al kwam ik initieel jouw bureau binnen om Arne met Voseko-vragen te

bestoken, ik ben blij dat we mede daardoor aan de praat geraakt zijn. Ik herinner me

gesprekken over Kant (gelukkig met hoofdletter) en ethiek, maar evenzeer over lichtere

thema’s. Dat ik indien nodig ook bij jou terecht kon, betekent meer dan ik al heb gezegd.

Merci hiervoor! Arne, ongelofelijk waar je de tijd en energie vindt om iedereen te hulp

te snellen en er tevens een hoge productiviteit op na te houden. Ik heb veel bewondering

voor jou als onderzoeker en nog veel meer als mens. Over bewondering gesproken dien

ik ook die andere speciale collega te bedanken. Ine, queen van de iMessages, je bent

een van de meest energieke en eerlijke mensen die ik ken. Met plezier denk ik aan onze

lunches die steevast uitliepen, de vele berichtjes om gewoon te checken hoe het ging of

de geweldige fotosessie. Enorm bedankt voor jouw niet-aflatende steun!

Hoewel we elkaar niet vaak spreken, was het steevast aangenaam te kunnen bijpraten

met de Marketing-collega’s, onder wie Willem, Dries, Michel, Nanouk, Julie, Caroline

en Stefanie.

Doorheen dit doctoraal traject heb ik de kans gekregen van enkele verenigingen deel

uit te maken. Dank aan het FEB OAP-overleg en in het bijzonder aan Jolien en Xavier

om de belangen van doctorandi en assistenten te behartigen.

Meer tijd spendeerde ik aan Voseko, de alumnivereniging van onze faculteit. Ik leerde er

een geweldige groep toegewijde alumni kennen. Aan Vincent, Annelore, Katrien, Len,

Bregt, Fleur, Toon, Jürgen, Jens, Ward, Dauwe, Pieter en zovele anderen: bedankt voor

de prettige samenwerking! Ook merci aan onze decaan prof. dr. Marc De Clercq, die
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ondanks zijn drukke agenda steevast aanwezig was tijdens de vergaderingen en bereid

was om zijn netwerk aan te spreken bij de zoektocht naar bevlogen sprekers.

Een gezonde geest in een gezond lichaam! Een doctoraat vergt bepaalde kwaliteiten zoals

een ijzeren discipline en een ongeëvenaard doorzettingsvermogen. Mijn sportieve ac-

tiviteiten, immer een belangrijke uitlaatklep, brachten mij dit reeds vroeg bij. Hoewel

de klemtoon de laatste jaren is verschoven naar het voetbal, blik ik met veel plezier terug

op mijn tennisperiode bij TC Racso. In het bijzonder wil ik Gilles bedanken. Gilles,

we kennen elkaar ondertussen al ongeveer 20 jaar. Samen op een tennisveld opgroeien

schept een band en dat wordt bewezen door het feit dat we nog steeds samen een balletje

slaan, trashtalk incluis. Ik kijk er naar uit je ook in de toekomst van het kastje naar de

muur te spelen.

Mijn collega-wereldspelers van Galatasaray Ledeberg: bedankt voor de leuke voetbal-

momenten! Nog voor onze tegenstanders zijn bekomen van de schok dat ons team niet

uit buitenlanders bestaat, worden ze vakkundig in de pan gehakt door Gent en Lede-

bergs finest. Bedankt Tim, Jabbe, Lennert, Marius, Wouter, Arne, Lukas, Ben, Dauwe,

Stephan en Adrian. Laten we er alweer een topseizoen van maken!

Ook Economini, ons weireldploegsje in de personeelscompetitie, verdient een plaats in de

spotlight! Niet alleen mochten onze sportieve prestaties gezien worden, het was ook fijn

om mensen van andere vakgroepen te leren kennen en achteraf met een pint te kunnen

bijpraten over ernstige, maar veel vaker minder ernstige thema’s. Lembie, Taffer, Jeroen,

Phil, Klaas, Dauwe, Violi, Angelos, Brecht, Matthias en brave Sir Robin -het is een eer

en genoegen geweest pocketspits te zijn van dit team!

Ik prijs mezelf gelukkig te kunnen steunen op een ongelofelijke vriendenkring.

Aan onze bende van het middelbaar: we go way back! Hoewel de momenten waarop we

allemaal present tekenen schaars zijn geworden, betekenen ze nog altijd veel voor mij.

Bedankt voor de steun en ook om me erop te wijzen wanneer de balans te weinig naar

jullie overhelde. Omwille van dergelijke eerlijkheid koester ik onze vriendschap enorm.

Merci Elisah en Fortunato, Jolien D.B., Roos en Jonathan, Jolien J. en Filip, Karen en

Filip! Een zeer bijzonder woord van dank draag ik op aan Thomas, die op korte tijd

zoveel van zichzelf heeft geschonken.

Ook mijn studieperiode aan de universiteit heeft me in contact gebracht met mensen

die me na aan het hart liggen. Niels, Prilsken en Dauwe: ik wil jullie enorm bedanken

voor de mooie reizen die we samen hebben gemaakt en waar ik prachtige herinneringen
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aan overhoud. Hopelijk slagen we er nog eens in samen op reis of citytrip te gaan. Fré

en Lisanne: ik bewonder hoe jullie, ondanks de drukke agenda, steeds klaarstaan voor

jullie vrienden. Freddy, nogmaals bedankt voor het informatieve jobgesprek! Napoleon,

bedankt voor de warme, edoch harige vriendschap die je me hebt geschonken. De eerlijk-

heid gebiedt me wel te vermelden dat ik nog gelukkiger ben met jouw baasjes, Laurence

en David. Het is ook altijd feest als Polle en Jonas en San en Bram van de partij zijn!

Bedankt om steeds aangenaam, boeiend en positief gezelschap te zijn! Ook bedankt

aan Eulalie voor de diepgaande gesprekken alsook de gelegenheid om even te kunnen

ventileren. Uiteraard dien ik ook mijn dierbare Buddy Eva te vermelden. Samen een

thesis schrijven heeft in ons geval een diepe band gesmeed. Bedankt ook voor de after-

work aperitieven en om op een blauwe maandag met random, maar extreem hilarische

statements uit de hoek te komen! Evenzeer bedankt aan Joost, ongetwijfeld een van de

meest intelligente mensen die ik ken.

Ik ben extreem gelukkig en vereerd om Kim, Marie, Dieter en Tiffany tot mijn vrien-

denkring te mogen rekenen. We brachten veel tijd door tijdens de groepswerken voor

onze studies, maar ik ben zeer blij dat we ook nu nog steeds op regelmatige basis contact

houden. Laat ons de maandelijkse bijeenkomsten nog vele jaren verderzetten! Dieter,

bedankt om samen met mij zo’n geoliede groepswerkmachine te vormen!

Uiteraard wens ik ook mijn familie te bedanken. Zovelen onder jullie vroegen direct

of indirect naar “hoe het met mijn doctoraat ging”. Zelden kon ik daar een afdoend

antwoord op geven en moest ik me noodgedwongen beroepen op “het gaat, dank u”.

Inmiddels heb ik een aantal jaren nagedacht over deze vraag en ben ik dan ook trots te

melden dat het zeer goed gaat met mijn doctoraat.

Aan de leden van de kaartersclub, tante Wella, nonkel Walter en mamie, bedankt voor

jullie steun en de bijwijlen geanimeerde zondagse taferelen. Daarnaast hebben jullie

mijn kennis der Nederlandse taal uitgebreid met levenswijsheden als “het eerste gewin

is kattengespin” en “een tegenslag is ook een slag”.

Mamie, ik kan jou en papie niet genoeg bedanken voor alles wat jullie voor mij hebben

gedaan. Ik ben onmachtig om in woorden uit te drukken hoe dankbaar ik ben. Met

opperste bewondering kijk ik naar hoeveel liefde je iedereen schenkt en over welke on-

metelijke energie jij beschikt. Bedankt voor de jarenlange steun, ook aan papie, die

ongetwijfeld over jouw schouder meekijkt.

Broer, bedankt voor de talrijke leuke momenten die we de afgelopen jaren samen hebben

beleefd. Bij elke taalkundige kwestie weet je raad en ook voor het nalezen van dit doctor-

aat kon ik op je rekenen. Dankzij jou ben ik niet alleen een vitter, maar heb ik als geen
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ander leren improviseren. Hoewel velen mijn gevoel voor humor als “flauw” bestempelen

(ik vermoed dat dit ontspruit aan jaloezie!), ben ik blij dat we hetzelfde fijne gevoel voor

humor delen. Bedankt voor alles!

Papa, mama. Er bestaan geen woorden om jullie te bedanken. Van vieren tot ventileren,

ik kan met mijn volledige scala aan emoties bij jullie terecht. Zelfs als ik zelf twijfelde

aan “hoe ver ik stond”, jullie twijfelden nooit aan mij en bewezen steeds opnieuw dat de

liefde van een ouder onvoorwaardelijk is. Bedankt om mijn rotsen in de branding te zijn!

Annelies, ook al leerde ik je pas aan het einde van mijn doctoraatstraject kennen, het is

ongelofelijk hoeveel jij voor mij betekent. Ik wil je dan ook uit de grond van mijn hart

bedanken, niet alleen voor de hulp bij dit doctoraat, maar ook om van mij een completer

persoon te maken. Ik blik dan ook vol enthousiasme vooruit naar een nieuw avontuur

met jou aan mijn zijde!

Mathieu Wauters

Gent, 18 september 2015



Samenvatting

Operationeel onderzoek is een onderzoeksdiscipline die gewijd is aan het vinden van

(quasi-)optimale oplossingen voor complexe problemen. Wiskundige modellen, statisti-

sche methodes en het ontwerp van algoritmes worden aangewend om dergelijke oplossin-

gen te vinden en te evalueren. Operationeel onderzoek wordt vaak in één adem genoemd

met Management Science om aan te geven dat de oplossingsmethodes het management

moeten ondersteunen bij het nemen van beslissingen. Zo zijn het opstellen van een even-

wichtig personeelsplan, het plannen van productiesystemen en het zoeken naar de beste

locatie om een nieuwe fabriek te openen maar enkele voorbeelden waar academici zich

het hoofd over breken.

Projectmanagement kan worden beschouwd als een deeldomein van operationeel on-

derzoek. Hoewel vele definities worden gehanteerd die ofwel de nadruk leggen op softe

aspecten zoals teammotivatie en leiderschap ofwel op meer technische definities, vol-

gen we hier de definitie van Vanhoucke (2012b). Hij stelt dat projectmanagement de

discipline is van het plannen, organiseren en managen van hulpmiddelen om specifieke

doelstellingen succesvol tot stand te brengen. Sedert enkele jaren wordt het raamwerk

van dynamic scheduling gebruikt om verschillende problemen binnen projectmanage-

ment te kaderen (zie figuur 1). Dynamic scheduling omvat drie componenten, namelijk

baseline scheduling, schedule risk en project control. Voor aanvang van een project

(bijvoorbeeld het ontwikkelen van een iPhone-applicatie1 of het bouwen van een huis)

wordt een gedetailleerd plan opgesteld dat in grote lijnen weergeeft welke activiteiten

moeten plaatsvinden, in welke volgorde en wat de geschatte tijdsduur en kost zal zijn.

Baseline scheduling bundelt het onderzoek dat zich bezighoudt met het opstellen van

een dergelijk plan. Eens deze fase voltooid is, zal een projectmanager op zoek gaan naar

de voornaamste risico’s. Welke activiteiten lopen het meest gevaar en zullen bijgevolg

een grote impact hebben op de totale duurtijd en kosten van het project? Bij de laatste

component wordt het plan omgezet in werkelijkheid. Het project wordt uitgevoerd en

1http://www.or-as.be/orastalks

http://www.or-as.be/orastalks
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periodiek opgevolgd. Indien de doelstellingen onder druk komen te staan, wordt een

waarschuwingssignaal gegenereerd waardoor de projectmanager zal ingrijpen en pogen

om de werkelijkheid met het vooraf opgestelde plan te verzoenen.

Data mining omvat een (semi-)automatisch proces om nieuwe en nuttige informatie te

onttrekken aan grote databases (Olafsson et al. (2008)). Deze schat aan data kan afkom-

stig zijn van eerdere projecten die het bedrijf heeft uitgevoerd of kan verkregen worden

door middel van computersimulaties. Data mining ligt op de grens tussen statistiek en

toegepaste wiskunde en wordt verder opgesplitst naargelang het onderzoeksdoel en de

aard van de data (supervised versus unsupervised learning).

Hoewel de onderzoeksgemeenschap operationeel onderzoek en data mining als aparte

entiteiten beschouwt, vond reeds heel wat kruisbestuiving tussen beide velden plaats.

Hierbij werden technieken uit operationeel onderzoek gëıntroduceerd in data mining en

werd operationeel onderzoek verrijkt met beslissingstechnieken uit data mining. Het

onderzoek dat we in dit doctoraat presenteren, bevindt zich op de interface tussen ope-

rationeel onderzoek, projectmanagement en data mining. We gaan met andere woorden

op zoek naar wat we uit (echte of gesimuleerde) data kunnen leren binnen een project-

managementomgeving. Het doctoraat bestaat uit twee delen, die hieronder kort worden

besproken. Figuur 1 biedt een schematisch overzicht.

Dynamic
Scheduling

Schedule
Risk

Project
Control

Baseline
Scheduling

Deel I

Deel II

Figuur 1: Componenten van Dynamic Scheduling en focus van dit doctoraat
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Deel 1: Time/cost optimization In het eerste deel van dit doctoraat bestuderen

we het Discrete Time/Cost Trade-off Problem (DTCTP). Dit probleem stelt dat elke ac-

tiviteit van een project op meerdere manieren kan uitgevoerd worden. Hierbij vindt een

afweging plaats tussen de benodigde tijd en de kosten om deze activiteit te voltooien. De

projecten die we bestuderen, hebben bovendien een contractuele deadline. Indien deze

deadline overschreden is, wordt een dwangsom toegewezen per dag dat het project te laat

eindigt. Op die manier moet een afweging gemaakt worden tussen tijd en kosten, wat

de titel van Deel 1, Time/cost optimization, verklaart. De motivatie voor dit onderzoek

ontspruit aan een business game, genaamd het Project Scheduling Game (PSG), dat

in verschillende universiteiten en business schools voor educatieve doeleinden wordt ge-

bruikt. Participanten nemen de rol van projectmanager op zich en hebben zeggenschap

over een project dat uit de praktijk werd geplukt. Net zoals in het echte leven zijn de ac-

tiviteiten van het project onderworpen aan onzekerheid. De projectmanagers kunnen op

zes verschillende tijdstippen ingrijpen en de duurtijden van de verschillende activiteiten

aanpassen om de doelstellingen van het project (kostenminimalisatie) te vrijwaren. Dit

verklaart waarom deel 1 zich op de grens tussen Baseline Scheduling en Project Control

bevindt (zie figuur 1). Deel 1 van het doctoraat bestaat uit twee hoofdstukken die een

antwoord trachten te bieden op de volgende Onderzoeksvraag (O):

O1: hoe kunnen onderzoek en praktijk van het DTCTP op elkaar worden afge-

stemd?

Hieronder volgt een korte beschrijving van de bijdrage van beide hoofdstukken.

• In hoofdstuk 2 worden oplossingsstrategieën met betrekking tot het PSG geana-

lyseerd. Gedurende verschillende jaren werden data van honderden participanten

verzameld waaruit vervolgens twee strategieën werden gedistilleerd. Elke strategie

omvat vijf componenten die automatisch of door feedbacksessies werden opgesteld.

Uniek aan de aanpak van dit hoofdstuk is dat we softe aspecten, namelijk hoe

omgevingsvariabelen als onzekerheid en complexiteit worden gepercipieerd, com-

bineren met kwantitatieve aspecten. De bijdrage van dit hoofdstuk tot O1 ligt

in het opnemen van complexiteit en onzekerheid als contextuele factoren en door

de discrepantie tussen perceptie en realiteit expliciet te erkennen (Crawford et al.

(2006)).

• Hoofdstuk 3 vormt een uitbreiding op het vorige hoofdstuk door middel van de in-

voering van een energierestrictie. Tijd, geld en de inzet van personeel worden allen

aanzien als voorbeelden van een zekere inzet aan energie. In dit hoofdstuk wordt
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de participanten van deze uitbreiding op het PSG, genaamd PSG Extended, een

aantal strategische componenten voorgeschoteld. In tegenstelling tot hoofdstuk 2

is de feedback minder dynamisch. Er wordt enkel weergegeven wat de cumulatieve

energie is die men heeft gespendeerd, zonder enige info over tijd- en kostenperfor-

mantie te communiceren. Op die manier worden deelnemers gedwongen om aan

het grotere geheel te denken en strategische keuzes te maken in plaats van een

proces van trial-and-error aan te vatten. PSG Extended werd uitgerold in janu-

ari 2014 aan het University College of London (UK). De eerste resultaten stellen

ons in staat om een empirische evaluatie te maken. Bovendien hebben we op een

gestructureerde wijze oplossingen gegenereerd. We rapporteren de resultaten van

de empirische en computationele experimenten en wijden aandacht aan de invloed

van verschillende parameters en de strategische componenten. Door het invoeren

van een energierestrictie voeren we een real-life beperking toe aan het bestaande

onderzoek en dragen we zo bij tot het overbruggen van de kloof tussen onderzoek

en praktijk zoals geformuleerd in O1.

Deel 2: Forecasting In het tweede deel van dit doctoraat concentreren we ons op

projectcontrole. Het plan of baseline schedule wordt als gegeven beschouwd. De uitvoe-

ring van een project brengt verschillende uitdagingen met zich mee. Idealiter controleert

men de voortgang van elke activiteit en grijpt men in zodra zich een ernstig probleem

met een kritieke activiteit voordoet. In de praktijk blijkt een dergelijke aanpak op acti-

viteitsniveau (bottom-up approach) niet haalbaar. Een alternatieve aanpak aggregeert

de performantie van individuele activiteiten op een hoger niveau, bijvoorbeeld het pro-

jectniveau. Dit heeft als voordeel dat de projectmanager in een oogopslag een beeld

krijgt van de voortgang van het project. Het gevaar is echter dat de negatieve voortgang

van zeer belangrijke activiteiten wordt gemaskeerd door de positieve evolutie van an-

dere activiteiten. Vermits men op een hoger niveau rapporteert, wordt dit uitgemiddeld

en ontsnappen potentiële gevaren aan de aandacht van de projectmanager. Toch hou-

den we vol dat deze projectaanpak (top-down approach) de meest pragmatische uitweg

biedt. De top-down methodologie bij uitstek staat gekend als Earned Value Management

(EVM). In deel 2 gaan we met deze methodologie aan de slag en spitsen we ons toe op

het forecastingprobleem. Gegeven de voortgang van een project en de beschikbaarheid

van (echte of gesimuleerde) historische data, gaan we op zoek naar methodes die stabiele

en accurate voorspellingen maken. Dit deel bestaat uit drie hoofdstukken, waarbij de

volgende onderzoeksvraag centraal staat:

O2: hoe kunnen historische data gebruikt worden om de voorspellingskwaliteit te
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verbeteren?

De voorspellingskwaliteit van een gegeven methode bestaat uit stabiliteit en accuraat-

heid. De inhoud van elk hoofdstuk van deel II is als volgt:

• In hoofdstuk 4 nemen we de stabiliteit van voorspellingsmethodes onder de loep.

Een voorspellingsmethode wordt als stabiel ervaren wanneer opeenvolgende voor-

spellingen niet drastisch afwijken ten opzichte van elkaar. In dit hoofdstuk wordt

een kritische noot bij de vigerende stabiliteitsmaatstaf geplaatst en stellen we

een alternatief voor. De stabiliteit van de bestaande EVM-voorspellingsmethodes

wordt getest door middel van een computationeel experiment, gebruikmakende van

een topologisch diverse dataset. Zowel de nauwkeurigheid als de stabiliteit van de

methodes wordt gerapporteerd, wat de afweging tussen beide criteria faciliteert.

De stabiliteit wordt tevens getest aan de hand van twee real-life projecten, waarbij

de bevindingen van het computationele experiment grotendeels worden bevestigd.

Dit hoofdstuk vormt de basis voor hoofdstuk 6, waarin de stabiliteit van de voor-

gestelde methodes van hoofdstuk 5 wordt gemeten. Dit hoofdstuk houdt verband

met O2 door stabiliteit als onderdeel van voorspellingskwaliteit te onderzoeken en

hiervoor een nieuwe maatstaf naar voren te schuiven.

• In hoofdstuk 5 beschouwen we de nauwkeurigheid van voorspellingsmethodes. Eer-

der onderzoek richtte zich op de nauwkeurigheid van EVM-methodes. In dit hoofd-

stuk introduceren we een nieuwe familie methodes, die hun oorsprong vinden in

het domein van Artificiële Intelligentie (AI). Deze technieken hanteren historische

data om een bepaald verband (in dit geval de relatie tussen EVM-maatstaven en

voorspellingskracht) te leren. Vervolgens wordt het model dat hierbij wordt gecon-

strueerd toegepast op nieuwe data. Methodologisch voegen we eveneens technieken

als pre-processing, grid search en cross-validation toe. Door middel van een sensi-

tiviteitsanalyse worden de beperkingen van de voorgestelde methodes geduid. Dit

hoofdstuk toont de kracht aan van het gebruik van historische data (zie O2), gege-

ven dat de inputgegevens voldoende gelijkaardig zijn aan de werkelijke voortgang

van het project.

• In het laatste hoofdstuk van deel 2, hoofdstuk 6, integreren we aspecten van de twee

voorgaande hoofdstukken. Enerzijds gaan we na hoe goed de AI-methodes op het

vlak van stabiliteit scoren. Anderzijds breiden we de AI-methodes uit aan de hand

van de Nearest Neighbour-techniek. Het doel van deze techniek is tweeërlei. Ten

eerste kan de Nearest Neighbour-methode gebruikt worden om voorspellingen te
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maken en kunnen we de nauwkeurigheid en stabiliteit vergelijken met de predictieve

methodes uit hoofdstukken 4 en 5. Ten tweede wordt de Nearest Neighbour-

techniek als een nieuwe methodologische stap ingevoegd. Hierbij wordt de grootte

van de training set beperkt. Deze reductie wordt echter gecompenseerd door een

kwaliteitsverbetering: enkel de meest gelijkaardige observaties worden behouden.

Omwille van consistentie voeren we tests uit op data die grotendeels identiek zijn

aan die van hoofdstuk 5. Dit hoofdstuk kan beschouwd worden als een culminatie

van het onderzoek naar het gebruik van historische data voor beide dimensies van

voorspellingskwaliteit, namelijk stabiliteit en nauwkeurigheid. Daarom geloven

we dat dit hoofdstuk perfect de voor- en nadelen aantoont van het gebruik van

historische data en een genuanceerd antwoord biedt op O2.

Uit het gevoerde onderzoek vloeiden zes papers voort die werden gebundeld in vijf hoofd-

stukken. Hoofdstuk 7 rondt dit doctoraat af door conclusies en beperkingen van beide

delen te belichten. Daarnaast worden richtlijnen voor verder onderzoek gedefinieerd in

de hoop dat andere onderzoekers evenveel plezier ervaren als wij tijdens deze intensieve

onderzoeksperiode.



Table of Contents

Dankwoord i

Samenvatting vii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Part I: Time/cost optimization . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Part II: Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Conclusions & future research avenues . . . . . . . . . . . . . . . . 18

I Time/cost optimization 21

2 A study on complexity and uncertainty perception and solution strate-

gies for the time/cost trade-off problem 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Game description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Data structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Solution strategy components . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Link to the student data . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Strategic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



xiv Table of Contents

2.5.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Proposed strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2.1 Time strategy . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.2.2 Cost strategy . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Computational experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.A.1 Data Generation example . . . . . . . . . . . . . . . . . . . . . . . 59

3 Effort-based decision making for the Discrete Time/Cost Trade-off

Problem 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 The effort-based Project Scheduling Game . . . . . . . . . . . . . . . . . . 67

3.2.1 Schedule Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Activity Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Action Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Game Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.1 Baseline scenario . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.2 Impact of parameter changes . . . . . . . . . . . . . . . . 81

3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.1 Test design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.2 Main Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.2.1 Effect of the effort percentile . . . . . . . . . . . . . . . . 89

3.5.2.2 Effect of the deadline . . . . . . . . . . . . . . . . . . . . 89

3.5.2.3 Effect of the penalty . . . . . . . . . . . . . . . . . . . . . 90

3.5.2.4 Effect of uncertainty . . . . . . . . . . . . . . . . . . . . . 91

3.5.2.5 Effect of the SP indicator . . . . . . . . . . . . . . . . . . 91

3.5.3 Strategic component analysis . . . . . . . . . . . . . . . . . . . . . 92

3.5.3.1 Schedule Focus . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.3.2 Activity Focus . . . . . . . . . . . . . . . . . . . . . . . . 93



Table of Contents xv

3.5.3.3 Action Radius . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

II Forecasting 99

4 A study of the stability of Earned Value Management forecasting 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Computational Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1.1 General accuracy and stability observations . . . . . . . . 110

4.4.1.2 Impact of the SP indicator . . . . . . . . . . . . . . . . . 111

4.4.1.3 Impact of the Percentage Complete . . . . . . . . . . . . 113

4.4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.2.1 Impact of a change in mode . . . . . . . . . . . . . . . . . 117

4.4.2.2 Impact of a change in mean . . . . . . . . . . . . . . . . . 117

4.5 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Project Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 A comparative study of Artificial Intelligence methods for project du-

ration forecasting 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Artificial Intelligence methods . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1.2 Bagging & Random Forest . . . . . . . . . . . . . . . . . 131

5.2.1.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2.1 Capturing attributes . . . . . . . . . . . . . . . . . . . . . 137

5.3.2.2 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . 138



xvi Table of Contents

5.3.3 Training, validation and testing . . . . . . . . . . . . . . . . . . . . 140

5.4 Computational Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.2.1 Capturing attributes . . . . . . . . . . . . . . . . . . . . 143

5.4.2.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . 143

5.4.3 Training, validation and testing . . . . . . . . . . . . . . . . . . . . 144

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.1 Parameter fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.1.1 AI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.1.2 Principal Components . . . . . . . . . . . . . . . . . . . . 149

5.5.2 General performance . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.A.1 R template for AI forecasting on a sample project . . . . . . . . . 158

5.A.1.1 Required inputs . . . . . . . . . . . . . . . . . . . . . . . 158

5.A.1.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 A Nearest Neighbour extension to Earned Value Management fore-

casting with Artificial Intelligence 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Nearest Neighbour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 NN for prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.2 NN for hybridizing AI methods . . . . . . . . . . . . . . . . . . . . 168

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.1 Input modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.2 Project progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.3 Output measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.2 Nearest Neighbour Settings . . . . . . . . . . . . . . . . . . . . . . 176

6.4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.2.2 Number of neighbours . . . . . . . . . . . . . . . . . . . . 177

6.4.2.3 Utopian scenario . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Table of Contents xvii

6.5.1 Main Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5.1.1 Training set = test set . . . . . . . . . . . . . . . . . . . . 180

6.5.1.2 Training set 6= test set . . . . . . . . . . . . . . . . . . . . 185

6.5.2 Sensitivity experiments . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.2.1 ∆execution . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.2.2 ∆execution & ∆neighbours . . . . . . . . . . . . . . . . . 191

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.A.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Conclusions & future research avenues 201

7.1 General observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2 Part I: Time/cost optimization . . . . . . . . . . . . . . . . . . . . . . . . 204

7.3 Part II: Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.5 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

References 215





List of Figures

1 Componenten van Dynamic Scheduling en focus van dit doctoraat . . . . viii

1.1 The six phases of a project lifecycle (PMBOK (2004)) . . . . . . . . . . . 3

1.2 The three dimensions of dynamic scheduling (Vanhoucke (2012b)) . . . . 5

1.3 Focus of this PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Focus of this PhD in relation to the Dynamic Scheduling components . . 8

1.5 Time/cost profile for a single activity (figure 1.5(a)) and the project as a

whole (figure 1.5(b)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Intuitive explanation of forecasting quality: stability and accuracy . . . . 16

2.1 Overview of the PSG game process (Vanhoucke et al. (2005)) . . . . . . . 30

2.2 Boxplot of the focus for different decision moments (student data) . . . . 35

2.3 Sample quantiles of the intensity (student data) . . . . . . . . . . . . . . . 36

2.4 Frequency of the applied actions (student data) . . . . . . . . . . . . . . . 37

2.5 Global cost deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Activity on the Node network (2.6(a)) and Gantt chart (2.6(b)) for the

illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Gantt chart of the executed illustrative example . . . . . . . . . . . . . . 42

2.8 Strategic framework of the solution strategies . . . . . . . . . . . . . . . . 46

2.A.1Activity on the Node representation of the generated network . . . . . . . 59

2.A.2Efficient time/cost profile with and without the penalty of 350 monetary

units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Overview of the inputs of PSG Extended . . . . . . . . . . . . . . . . . . 69

3.2 Overview of the spreadsheet file of PSG Extended . . . . . . . . . . . . . 79

3.3 Relation between the schedule focus and project costs . . . . . . . . . . . 93

3.4 Relation between the slack consumption, deadline focus and deadline de-

viation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



xx List of Figures

3.5 Effect of DTCTP characteristics on solution quality . . . . . . . . . . . . 97

4.1 Impact of the SP factor on stability for cost forecasting . . . . . . . . . . 114

4.2 Impact of the SP factor on stability for the most accurate (4.2(a)) and

most stable (4.2(b)) methods for time forecasting . . . . . . . . . . . . . . 115

4.3 Impact of the percentage complete on stability for the most accurate

(4.3(a)) and most stable (4.3(b)) methods for time forecasting . . . . . . . 116

5.1 Summary of the 3 methodological blocks . . . . . . . . . . . . . . . . . . . 135

5.2 Relation between the percentage complete and number of principal com-

ponents for various levels of the explained variation . . . . . . . . . . . . . 150

6.1 k-NN for hybridizing AI methods . . . . . . . . . . . . . . . . . . . . . . . 169

6.2 Overview of the results section . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 Forecasting accuracy for ∆ execution . . . . . . . . . . . . . . . . . . . . . 191

6.4 Forecasting accuracy for ∆ execution and ∆ neighbour . . . . . . . . . . . 192

6.A.1Illustrative project network (source: Vanhoucke (2010a)) . . . . . . . . . . 195

7.1 Overview of the integration of Part I and Part II of this book . . . . . . . 211



List of Tables

1.1 Comparison of chapter 2 and chapter 3 . . . . . . . . . . . . . . . . . . . . 13

2.1 Recent literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Overview of the student results . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Summary of the type of actions . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Overview of the 5 components for the illustrative example . . . . . . . . 41

2.5 Alternative strategies for the illustrative example . . . . . . . . . . . . . . 43

2.6 Principal differences between the solution strategies . . . . . . . . . . . . 48

2.7 Overview of the solution strategies and their components . . . . . . . . . 49

2.8 Overview of the data generation parameters . . . . . . . . . . . . . . . . 52

2.9 Results of the main experiment (correct judgement) . . . . . . . . . . . . 54

2.10 Results of the main experiment (judgement error) . . . . . . . . . . . . . 55

2.A.1Generated delays for the data generation phase . . . . . . . . . . . . . . . 60

2.A.2Generated time/cost trade-offs for all activities . . . . . . . . . . . . . . . 62

3.1 Overview of the participant’s possibilities for the schedule focus at DM 3,

time/cost focus for activity 8 and cost/benefit analysis . . . . . . . . . . . 72

3.2 Overview of the priority rules for critical and non-critical activities . . . . 73

3.3 Overview of the settings for every decision moment i throughout PSG

Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Cost deviation for the participants of PSG Extended . . . . . . . . . . . . 81

3.5 Correlation for the different dimensions compared to the final project cost 82

3.6 Effect of uncertainty on project duration . . . . . . . . . . . . . . . . . . . 83

3.7 Effect of the deadline and penalty on project costs . . . . . . . . . . . . . 84

3.8 Settings for parameter generation of the elements of the strategic compo-

nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Settings for the computational experiment . . . . . . . . . . . . . . . . . . 88

3.10 Calculation of the performance metric for an objective O . . . . . . . . . 89



xxii List of Tables

3.11 Effect of the deadline in relation to the starting position . . . . . . . . . . 90

3.12 Effect of the penalty on project costs . . . . . . . . . . . . . . . . . . . . . 90

3.13 Effect of uncertainty on the project duration . . . . . . . . . . . . . . . . 91

3.14 Effect of the SP indicator on the consumed effort . . . . . . . . . . . . . . 92

3.15 Effect of the time/cost focus on the project costs . . . . . . . . . . . . . . 94

4.1 Summary table of EVM terminology and formulas . . . . . . . . . . . . . 107

4.2 Overview of the settings of the Monte Carlo simulations . . . . . . . . . . 109

4.3 Time forecasting results (main experiment) . . . . . . . . . . . . . . . . . 112

4.4 Cost forecasting results (main experiment) . . . . . . . . . . . . . . . . . . 112

4.5 Time forecasting results (sensitivity analysis) . . . . . . . . . . . . . . . . 119

4.6 Cost forecasting results (sensitivity analysis) . . . . . . . . . . . . . . . . . 120

4.7 Summary of the data of the two empirical projects . . . . . . . . . . . . . 122

4.8 MAPE and Mean Lags of the best performing method of the two empirical

projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Overview of the EVM attributes . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Overview of the training, validation and test sets . . . . . . . . . . . . . . 140

5.3 Generalized beta settings for the various scenarios . . . . . . . . . . . . . 143

5.4 Parameter settings of the AI methods . . . . . . . . . . . . . . . . . . . . 146

5.5 Overview of the best parameter settings of the AI techniques . . . . . . . 148

5.6 MAPE for different values of t . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7 General performance across the Early, On Time and Late scenarios . . . . 153

5.8 Robustness results for the AI methods: training set 6= test set . . . . . . . 155

5.9 Robustness results for the AI methods: training set ≈ test set . . . . . . . 155

6.1 Overview of the EVM attributes (source: chapter 5 (Wauters and Van-

houcke (2014a))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Generalized beta settings for the various scenarios (source: chapter 5

(Wauters and Vanhoucke (2014a))) . . . . . . . . . . . . . . . . . . . . . . 175

6.3 Settings for k, the number of neighbours, expressed as a percentage of the

training set observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4 MAPE (%) of the EVM forecasting methods (training set = test set) . . . 183

6.5 MAPE (%) of the AI and NN forecasting methods (training set = test set)183

6.6 Mean Lags (%) of the EVM forecasting methods (training set = test set) 183

6.7 Mean Lags (%) of the AI and NN forecasting methods (training set = test

set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



List of Tables xxiii

6.8 Average % improvement of the hybrid counterparts . . . . . . . . . . . . . 186

6.9 Optimal k for the hybrid counterparts . . . . . . . . . . . . . . . . . . . . 187

6.10 MAPE (%) of the AI and NN forecasting methods (training set 6= test set)187

6.11 Mean Lags (%) of the AI and NN forecasting methods (training set 6= test

set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.12 MAPE (%) of the EVM forecasting methods (training set 6= test set) . . . 189

6.13 Mean Lags (%) of the EVM forecasting methods (training set 6= test set) 189

6.A.1Activity and project durations for the 11 executions . . . . . . . . . . . . 196

6.A.2Overview of the EVM attributes (CPI and SPI(t)) . . . . . . . . . . . . . 197

6.A.3Nearest Neighbour distances and predictions for k = 3 . . . . . . . . . . . 199

7.1 Research contribution of this dissertation . . . . . . . . . . . . . . . . . . 203





1
Introduction



2 Chapter 1

1.1 General introduction

In this book, you can find the culmination of research that we conducted in the fields of

project scheduling and control. In order to understand the contribution of our research,

it is necessary to outline the general research fields in which we operated. The studies

contained in chapters 2-6 of this book combine project management problems with data

mining solution approaches. In this section, the reader is introduced to the fields of

Operations Research and Data Mining, which will then be refined to delineate the scope

of this book. Our contribution, as well as a detailed overview of the different chapters,

is provided in section 1.2.

Operations Research Operations Research (OR) is a research discipline that is de-

voted to solving complex problems to (near-)optimality. In order to solve these problems,

mathematical models, statistics, as well as algorithmic design are involved. OR is often

named in conjunction with Management Science to indicate that the ultimate goal is to

aid management in making decisions. Finding the best locations for new plants, person-

nel staffing or deployment of vehicle fleets are all example problems in which Operations

Research can facilitate the complex decisions management needs to take. The reader is

referred to Hillier and Lieberman (2005) for an introduction to OR.

Project Management Project management is a discipline that pairs quantitative

techniques with more qualitative influences from the psychological and human resources

realm. It primarily gained momentum when project planning approaches such as the

Critical Path Method (Kelley and Walker (1959), Walker and Sawyer (1959) and Kelley

(1961)) were conceived in the 1950s. Many animated discussions revolve around the

definition of a project, which can range from very technical explanations to descriptions

that put more emphasis on the human aspects. As an example, Tavares and Weglarz

(1990) define a project as “any purposeful transformation leading a system, Ω, from an

initial state, s, to a specific state, s′ and so s′ should represent the targets to be achieved.”

Contrary to this system-thinking approach, other authors take a soft paradigm approach

(Pollack (2007)) and include topics rooted in psychology such as leadership styles (Müller

and Turner (2007)) and motivation (Schmid and Adams (2008)). Vanhoucke (2012b)

reconciles the hard and soft aspects of the definition of a project, as follows:

“Project management is the discipline of planning, organizing and managing

resources to bring about the successful completion of specific project goals

and objectives.”
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This definition leaves room for managing human resources, focusing on soft skills and

psychological effects, as well as on mathematical models and procedures. Within organi-

zations, project managers are confronted with many projects which compete for limited

resources and require different degrees of attention, depending on the phase of the project

under study. The Project Management Book of Knowledge (PMBOK, PMBOK (2004))

discerns six phases every project goes through. These are illustrated in figure 1.1. The

six phases will briefly be discussed along the following lines:

• Concept phase: the need for a project arises, at a client’s request or through the

company’s internal processes.

• Definition phase: the goals, scope and technical requirements of the project are

charted. The Work Breakdown Structure (WBS), along with the project activities

and their precedence relations are identified.

• Scheduling: a timing of the different activities is made. Factors that can greatly

influence the project schedule are, among others, the project objective and the

presence of resources.

• Execution and control phase: part of the project is executed and monitored

throughout the control phase. Early warning signals indicate whether the project

is still on track and does not violate the normal variation. Once the project ob-

jectives are endangered, a warning signal triggers the need for corrective action.

This is represented by means of the feedback loop from the control phase to the

scheduling phase.

• Termination phase: upon completion, the project is evaluated by internal (the

company) and external (the client) stakeholders.

Concept Definition Scheduling Execution Control Termination

Feedback Loop

Figure 1.1: The six phases of a project lifecycle (PMBOK (2004))

While the project lifecycle provides a complete overview of the project’s conception

until it is terminated, the six distinct phases fail to fully grasp the dynamic nature of

scheduling and control. Even though the iron triangle (time, cost and scope) has received

a lot of attention (Crawford et al. (2006)), Perminova et al. (2008) advocate a larger



4 Chapter 1

emphasis on uncertainty and pinpoint the need for greater flexibility. The framework of

Dynamic Scheduling (Uyttewael (2005), Vanhoucke (2012b)) responds to this call for a

more dynamic interpretation of important project management aspects. While it does

not cover the full lifecycle from project inception until termination, it focuses on three

important dimensions that are dynamic in nature and can be interrelated. The three

dimensions, baseline scheduling, Schedule Risk Analysis (SRA) and project control, can

be found in figure 1.2 and are briefly explained as follows:

• Baseline scheduling: the construction of the timing of a project’s activities has

received significant attention from the research community. Temporal constraints,

resource constraints, activity concepts and project objectives all contribute to

the complexity of solving scheduling problems. An overview of the literature on

resource-constrained project scheduling can be found in the reviews of Herroelen

et al. (1998), Brucker et al. (1999) and Hartmann and Briskorn (2010). The im-

portance of the scheduling phase is widely recognized and apparent from a survey

of White and Fortune (2002). The authors reported that a realistic schedule is

among the top factors that are believed to be most critical to a project’s outcome.

• Schedule Risk Analysis: risk analysis allows for an identification of a schedule’s

weak points and permits project managers to prioritize their attention to a subset

of the most sensitive activities. Risk can be very loosely defined as probability

times impact. Multiple metrics exist to capture the degree of risk exposure on the

activity level. Because of its activity level focus, SRA is often named a bottom-up

technique. The reader is referred to Vanhoucke (2015) for an overview of the use

of SRA for the Project Management discipline.

• Project control: while constructing a baseline schedule is an integral part of project

management, its relevance should be weighed against the project control phase.

Throughout a project’s execution, the baseline schedule acts as a point of reference,

to compare the current time, cost, quality and scope with what was expected before

the project was initiated. Often, project control is inextricably linked with Earned

Value Management (EVM), a methodology that originated at the US Department

of Defense in the 1960s. EVM relies on three key metrics, Planned Value (PV),

Earned Value (EV) and Actual Cost (AC), to provide a quantitative indication of

a project’s health. Contrary to SRA, the activity level information is aggregated

to a higher level of the WBS. Effort-wise it is often infeasible to monitor every

single activity which explains why project level information is communicated. This

has been the subject of criticism (see e.g. Book (2006a,b) and Jacob and Kane
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(2004)), yet we follow the rationale of Vanhoucke (2010a), who claims that an

activity-level control approach lacks realism for any project of moderate size. An

introductory overview of EVM can be found in Vanhoucke (2014). The reader can

find a literature overview on project control and EVM in Willems and Vanhoucke

(2015).

Dynamic
Scheduling

Schedule
Risk

Project
Control

Baseline
Scheduling

Figure 1.2: The three dimensions of dynamic scheduling (Vanhoucke (2012b))

The next phase for dynamic scheduling is to combine the three dimensions to form an

integrated project management and control system. Scheduling methods should take

uncertainty a priori into account. The weak spots need to be identified and controlled.

Throughout the execution phase, early warning signals can trigger the need for corrective

action which takes project managers back to the (re)scheduling phase. Combining these

research topics into one Decision Support System (DSS) is undoubtedly a major challenge

for the future. Hazır (2015) stresses the importance of integrating the various approaches

and analytical models into a DSS, which can then be integrated into existing project

management software.

Data Mining Similar to Operations Research, substantial debate surrounds a conclu-

sive definition of Data Mining. Despite earlier contributions (e.g. Mangasarian (1965)),

the field of Data Mining as it is known today dates back to the 1990s (Meisel and Mat-

tfeld (2010)). Throughout this dissertation, the term Data Mining will be used to refer

to the aspects of a (semi-)automated process to extract previously unknown and poten-

tially useful knowledge from large databases (Olafsson et al. (2008)). Informally, Data

Mining can be thought of as learning from data. These data may result from real-life
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data sources or computational experiments such as simulations. Data Mining lies at

the intersection of statistics and applied mathematics and a subdivision is often made

based on whether data is labeled (supervised versus unsupervised learning) or on the

goal for which data mining is employed (classification, regression, association rule min-

ing). Comprehensive introductions to this multi-disciplinary research field can be found

in Tan et al. (2006) and Hastie et al. (2009).

While Operations Research and Data Mining are seen as distinct research fields, there

has been cross-pollination leading to synergies between both fields. Support Vector

Machines lie at the intersection of optimization and data mining (Vapnik and Lerner

(1963)). Meta-heuristics have found their entry in data mining literature to tune pa-

rameters for various Artificial Intelligence (AI) methods. Data Mining can also aid

further development of OR. Corne et al. (2012) list 3 manners in which Data Mining

can improve Operations Research algorithms, namely by increasing the quality of the

results, speeding up OR algorithms and employing Data Mining to select an algorithm

based on properties of the instance under study. A more exhaustive overview of the

synergies between Operations Research and Data Mining can be found in the works of

Corne et al. (2012), Meisel and Mattfeld (2010) and Olafsson et al. (2008).

A graphical overview of this section and the focus of this PhD is provided in figure 1.3.

The research fields of Operations Research and Data Mining were briefly introduced.

More attention was given to the main discipline of this book, namely Project Manage-

ment. While we outlined a couple of general synergies between OR and Data Mining,

the work presented in this book focuses on the intersection of Project Management and

Data Mining and Project Management, Data Mining and Operations Research. This

will be elucidated in section 1.2.

1.2 Research contribution

In the previous section, we established the research fields of Operations Research, the

sub-discipline Project Management and Data Mining. In this section, we will dive into

the intersection between Project Management and Data Mining and Project Manage-

ment, Data Mining and Operations Research (cf. figure 1.3) and outline the research we

have done. All chapters of this book revolve around learning from data for project man-

agement problems. A distinction is made along the Dynamic Scheduling components

which were discussed in section 1.1. A graphical representation is provided in figure 1.4.
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Operations Research Data Mining

Project Management

This PhD

Figure 1.3: Focus of this PhD

Part I focuses on the interplay of the Baseline Scheduling and Project Control step. We

study solution strategies of a Project Management business game, in which the baseline

schedule constitutes the starting point. Part of the project is executed and based on the

feedback, it is possible to make changes to the remainder of the project. The second part

exclusively concentrates on Project Control by means of the Earned Value Management

methodology. More specifically, the chapters of Part II deal with making predictions by

exploiting progress data and historical information.

Part I and part II should be regarded in light of a Decision Support System. As a

project is in progress, it is monitored by means of a technique that can detect abnormal

variation. This provides the project manager with a trigger for corrective action. A

drill-down into the Work Breakdown Structure will take place, in which a set of activi-

ties will be identified for which corrective actions may be executed. These actions may

consist of trade-off changes that are taken into account. Hence, the trade-off changes of

part I can be embedded in the project monitoring and control environment of part II of

this dissertation.

Each part of this book will be introduced in more detail. Section 1.2.1 introduces the

chapters that deal with time/cost optimization while section 1.2.2 elaborates on project

control forecasting. It is worth mentioning that a literature review is contained in each

chapter. Hence, we will not provide an exhaustive overview in this introduction but

choose to highlight the gap in literature that is filled by our contributions.
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Dynamic
Scheduling

Schedule
Risk

Project
Control

Baseline
Scheduling

Part I

Part II

Figure 1.4: Focus of this PhD in relation to the Dynamic Scheduling components

1.2.1 Part I: Time/cost optimization

Part I of this book comprises two chapters that deal with solution strategies for a

project management problem that is known as the Discrete Time/Cost Trade-off Prob-

lem (DTCTP). The main characteristic of the DTCTP consists of multiple ways in which

each project activity can be executed. A trade-off between the duration (time) and cost

of each activity exists, where an activity’s duration is a discrete, non-increasing function

of the amount of money allocated to it. It is worth noting that the work content (the

amount of resources times the period of time in which these resources are used) is not

necessarily fixed. Coordination problems and fixed costs (e.g. hiring costs) cause shorter

durations to come at a higher expense. The project manager needs to make a trade-off

choice for every activity. An example of a time/cost profile for one activity is given in

figure 1.5(a). The x-axis represents the time dimension, while the y-axis refers to the

costs. The graph clearly shows that there is a discrete number of time/cost combina-

tions. However, when the time/cost trade-offs for all project activities are translated

to the project level, a continuous line, as depicted in figure 1.5(b), appears. This is

due to the fact that different activity trade-off combinations give rise to a large number

of project outcomes. The solid line in figure 1.5(b) shows that as the duration of the

project is prolonged, the costs decrease. The dashed line depicts the influence of the

presence of a penalty cost. A cost is incurred for every day the project duration exceeds

the deadline. As a result, the cost curve is no longer monotonically decreasing. From a

certain point onwards, the decrease in activity costs no longer outweighs the increase in

penalty costs, causing the total costs to rise.
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Figure 1.5: Time/cost profile for a single activity (figure 1.5(a)) and the project as a whole
(figure 1.5(b))

Literature discerns three variants of the DTCTP. The budget problem (DTCTP-B)

aims to minimize the project duration within a limited budget. The deadline problem

(DTCTP-D) tries to find the minimal project costs while respecting a predefined dead-

line δ. Finally, the third variant generates the complete efficient time/cost frontier. The

scope of part I is limited to the deadline variant of the DTCTP which can be modeled

as follows.

Model formulation A project, consisting of n activities can be represented in an

Activity-on-the-Node (AoN) format which specifies the precedence relations between

activities. The precedence graph, G = (N,A), contains a set of nodes N and a set

of arcs A. N corresponds with the activities in addition to two dummy activities to

represent the start and end of the project, respectively. A represents the precedence

relations between activities. The time/cost trade-off problem is characterized by multiple

trade-off combinations which are often referred to as modes. Let Mj represent the set

of modes for each activity j. Each mode m possesses a duration djm and a cost cjm.

The DTCTP-D can be expressed as a mixed-integer programming model (Hazır et al.

(2011)).

min
n∑

j=1

∑

m∈Mj

cjmxjm (1.1)
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Subject to

∑

m∈Mj

xjm = 1 j = 1, ..., n (1.2)

Ci +
∑

m∈Mj

djmxjm ≤ Cj ∀(i, j) ∈ A (1.3)

Cn+1 ≤ δ (1.4)

Cj ≥ 0 ∀j ∈ N (1.5)

xjm ∈ {0, 1} ∀m ∈Mj , j = 1, ..., n (1.6)

The DTCTP was shown to be NP-Hard (De et al. (1997)) and can be solved using ex-

act and heuristic solution approaches (De et al. (1995)). Since the mid 2000s, research

efforts focused on two tracks, namely the consideration of extensions (Vanhoucke and

Debels (2007)) or including stochastic characteristics (Hazır et al. (2011, 2010)). A more

thorough literature review is provided in sections 2.1 and 3.1 of this book.

The approach of part I differs from the recent trend of studying extensions or including

stochastic characteristics. The main motivation for studying the DTCTP-D stems from

a project management business game entitled the Project Scheduling Game (PSG, Van-

houcke et al. (2005)). In this game, participants work with a real life project and have to

schedule and reschedule a project. Students receive updates on the status of the project

and finished activities in a periodical fashion. Based on this feedback, they can change

the durations of unfinished activities to bring the project back on track. The activities

are subject to Murphy’s law. While some activities finish sooner than anticipated, sev-

eral activities face delays. The real life project that is used by the students corresponds

with a relaxed version of the DTCTP-D. In this model, constraint (1.4) is not a hard

constraint. Exceeding the deadline does not lead to infeasibility but results in a penalty.

For every day the deadline is exceeded, a penalty cost of φ euros per day is added to

the total project cost. Hence, the objective can be expressed as the minimization of∑n
j=1

∑
m∈Mj

cjmxjm + φ ∗max(0, Cn+1 − δ).

The PSG is part of the educational curriculum of several Project Management pro-

grammes at a Master or MBA level. The changes that a player makes throughout the

game are recorded in a log file. The collection of log files of hundreds of participating

students in the PSG at Ghent University (Ghent (Belgium)), University College London
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(London (UK)), Vlerick Business School (Ghent, Leuven (Belgium)) and EDHEC Busi-

ness School (Lille (France)) was the main inspiration for the first chapter of this book.

Part 1 of this book, entitled Time/Cost Optimization, comprises two chapters. Both

chapters aim to provide an answer to the following Research Question (RQ):

RQ1 How can research and practice of the DTCTP become more aligned?

This question was raised by Hall (2012) and weighs a one-size-fits-all approach against

the contextual diversity managers face in real life. The two chapters that aim to bridge

this gap are briefly explained below.

• Chapter 2 presents the paper “A study on complexity and uncertainty perception

and solution strategies for the time/cost trade-off problem” (Wauters and Van-

houcke (2013)). Data from hundreds of student solutions of the PSG was distilled

into two main strategies. Each strategy is composed of five components (focus,

activity criticality, ranking, intensity and action), which were identified either au-

tomatically (from the available log files) or through feedback sessions and discus-

sions with students. Unique in our approach to the DTCTP-D is the reconciliation

of the hard and soft paradigms (Pollack (2007)). While the numeric information,

expressed in terms of time and cost, is still essential, we accord explicit attention

to concepts such as complexity, uncertainty and how these are perceived. The con-

sequence of an incorrect appraisal of complexity and uncertainty on time and costs

is examined in a large computational experiment. Consequently, we unify the solu-

tion strategies (hard paradigm) with perceptions of the external environment (soft

paradigm). The contribution of this chapter to RQ1 lies in the inclusion of com-

plexity and uncertainty as contextual factors and by recognizing the discrepancy

between perception and reality (Crawford et al. (2006)).

• Chapter 3 extends the Project Scheduling Game by focusing on effort restrictions.

Companies allocate limited amounts of funds to projects. Time, money and human

resources can all be regarded as examples in which the effort that can be allocated

is constrained. In this chapter, a number of strategic components are provided.

These components allow people to construct custom solutions to the DTCTP-D.

However, when the components are assembled and applied to a project, they are

constrained by a limited amount of effort. The effect of this effort limitation as well

as the settings of the individual components are tested empirically and computa-

tionally. The effort-based extension to the PSG is known as PSG Extended and was

rolled out for educational purposes in January 2014. Participant results allow us
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to test their strategies on real-life and computer-generated projects. Additionally,

strategies can be generated and tested by means of a computer, eliminating the

need for student experiments. We report on the results of the empirical and com-

putational data and demonstrate the influence of parameter settings and strategic

components on the quality of the attained solutions. By imposing an effort re-

striction, which is common in real-life environments, this chapter aids in bringing

research and practice closer to one another (RQ1).

A comparison between chapters 2 and 3 is provided in table 1.1. Both chapters embed

real-life aspects into the Discrete Time/Cost Trade-off Problem. Chapter 2 assesses

the quality of the derived solution strategies for different degrees of complexity and

uncertainty. Chapter 3 limits the amount of available effort, measured by the number

of trade-off changes that can take place. From a business game point of view, chapter 2

attained a high level of maturity, while PSG Extended, presented in chapter 3, recently

saw the light. While both PSG and PSG Extended require that the user takes decisions

for each of the 6 decision moments, the received feedback differs. As a participant of the

PSG makes a change to an activity’s trade-off, the project duration and cost is updated.

Hence, this type of feedback allows for clever strategies or trial-and-error approaches.

When the participant changes one of the settings of PSG Extended, the consumed effort

is updated. No information is provided concerning the current time and cost. Hence,

this forces participants to reflect strategically on the component changes that can be

made. PSG consists of 5 building blocks, whereas PSG Extended contains 3 strategic

components that can be subdivided into 7 elements. While there is very little overlap

between the components of both chapters, it is worth noting that the focus of chapter

2 corresponds with the schedule focus of chapter 3 and that ranking in both chapters

entails the application of a priority rule.
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1.2.2 Part II: Forecasting

As mentioned in section 1.1 of this chapter, baseline scheduling has received a lot of at-

tention from the research community. However, sooner or later the baseline schedule is

turned into reality and execution may render the detailed scheduling exercise moot. As a

result, the growing attention for project control within research circles is most welcome.

Once the project has started, it is of vital performance to track the progress and health

of the project, which is facilitated by Earned Value Management, one of the foremost

methodologies for project control. Project execution raises several important research

questions. When should a project manager take action? What is the expected final

duration and cost? Which parts of the schedule should the project manager focus on?

Our research group1 has provided answers to these questions and advanced the frontiers

of project control using EVM in multiple ways. Vandevoorde and Vanhoucke (2006) and

Vanhoucke and Vandevoorde (2007) examined project duration forecasting methods on

empirical and simulated data. Vanhoucke (2010b, 2011) compared a top-down approach

(EVM) and bottom-up approach (SRA) and called for further integration of these two

dynamic scheduling components. In this respect, Elshaer (2013) demonstrated the valid-

ity of this call by integrating sensitivity information into an Earned Schedule forecasting

method. Colin and Vanhoucke (2014) defined the concept of statistical project control

and examined the performance of project control charts. Batselier and Vanhoucke (2015)

constructed a real-life database that facilitates the access of researchers to empirical data

and can enrich and supplement their computational insights.

In the second part of this book, we turn our attention to project control forecasting.

While previous research within our research group examined this problem, our research

makes two distinct contributions. First of all, we are, to the best of our knowledge, the

first authors to investigate forecasting stability within EVM. The work of Vandevoorde

and Vanhoucke (2006) and Vanhoucke and Vandevoorde (2007) deals with forecasting

accuracy, while EVM stability research examined performance metrics such as the Cost

Performance Indicator (Christensen and Payne (1992), Christensen and Heise (1993),

Henderson and Zwikael (2008)) instead of the stability of prediction methods. Secondly,

by integrating Project Management and Data Mining, we introduce a new class of fore-

casting methods to the project control community. The performance of these methods is

assessed by means of forecasting accuracy and stability. Before proceeding to the outline

of the chapters of the second part of this book, an intuitive definition of stability and

1http://www.projectmanagement.ugent.be

http://www.projectmanagement.ugent.be
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accuracy will be provided.

Stability & Accuracy Stability and accuracy are two dimensions for assessing the

performance of a forecasting method. Ideally, a predictive method provides estimates

that do not vary much from one point in time until the next and that lie close to the true

value. Literature on EVM forecasting has been dominated by the accuracy perspective.

However, it is not beyond reason to imagine that some project managers would prefer es-

timates that do not vary much (stable) but are slightly more erroneous (accurate). This

train of thought applies when predictions are employed as a trigger for corrective action.

Unstable but accurate methods will provide a project manager with mixed signals and

leave one guessing what the correct course of action should be. Figures 1.6(a)-1.6(d)

each depict two time series. The x-axis displays time and should be interpreted as the

different points in time at which a prediction is made. The value of the prediction is

reflected on the y-axis. The solid line corresponds with the true value in all graphs. The

dashed line presents the predicted value across time. Figures 1.6(a) and 1.6(b) display

situations with a high degree of stability. The subsequent predictions vary only slightly.

Figure 1.6(b) pairs the high degree of stability with a high accuracy since the predicted

value lies close to the real value. Figures 1.6(c) and 1.6(d) depict situations in which the

stability is low. There is substantial variation in the predictions when moving from one

point to another along the x-axis.

Part II of this book consists of three chapters. These chapters revolve around the

following research question:

RQ2 How can historical data be leveraged to improve forecasting quality?

The quality of forecasting consists of accuracy and stability. The outline of the chapters

of Part II is as follows:

• Chapter 4 presents the results of the paper entitled “Study of the Stability of

Earned Value Management” (Wauters and Vanhoucke (2015)). This chapter com-

mences with a critical analysis of the stability metric that was used in previous

stability studies. A new criterion based on the Mean Lags is put forward. A com-

putational experiment with a topologically rich dataset gauges the stability of the

existing time and cost forecasting methods. Forecasting accuracy is reported in

order to facilitate a trade-off between accuracy and stability. As mentioned pre-

viously, there are certain circumstances in which a project manager may prefer a

more stable forecasting method instead of an accurate one. By reporting accuracy
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and stability results, we facilitate the choice for a certain predictive method. The

novel stability metric is tested on two real-life projects, in which the computational

conclusions are largely corroborated. This chapter lays the groundwork for chapter

6, in which the stability of the methods of chapter 5 will be assessed. It relates to

RQ2 by examining stability, a less investigated aspect of forecasting quality.

• Chapter 5 introduces Data Mining methods for project control forecasting. The

methods that we implemented hail from the Artificial Intelligence (AI) domain

and leverage the power of historical data. One of the suggested methods, namely

Support Vector Machines (SVM), ranks among the top 10 algorithms in Data

Mining (Wu et al. (2008)) and results on the performance of this method have

been published (Wauters and Vanhoucke (2014b)). In order to test all methods

with sufficient rigour, a large computer experiment is set up. Historical data,

as well as fictitious project executions were modeled by means of Monte Carlo

simulations. Methodological characteristics that are common for AI methods such

as pre-processing, grid search and cross-validation are heeded as well. Sensitivity

experiments allow to point out the limitations of the proposed AI methods. This

chapter demonstrates the power of employing historical data (cf. RQ2) given a

sufficient approximation of the input data to the real project progress.

• Chapter 6 extends the previous chapter. The k-Nearest Neighbour method (k-

NN), also among the top 10 algorithms in Data Mining (Wu et al. (2008)), is a

very straightforward technique that is widely used for classification and regression

purposes. In our research, the k-NN technique serves a dual purpose. First, it

acts as an additional predictive method. Secondly, it is used as an intermediate

methodological step to reduce the size of the training set. However, the reduction

in information is compensated by an increase in quality. Only the most similar

observations, based on the Nearest Neighbour distance, remain. This chapter

also extends the results of chapter 4 by incorporating the stability of the methods

presented in chapter 5. Consequently, this chapter can be regarded as a culmination

of the research done with regard to the use of historical data for the two dimensions

of forecasting quality, namely stability and accuracy. As a result, we believe this

chapter perfectly demonstrates the advantages and pitfalls of the use of historical

data and provides a nuanced answer to RQ2.
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1.2.3 Conclusions & future research avenues

In chapter 7, we reflect on the studies of chapters 2 through 6. While each chapter con-

tains a separate conclusion, this final chapter closes with more general remarks than the

specifics found in each chapter. The conclusion constitutes the finale of this dissertation

and looks back on the work we have done throughout these years of research. Since

no book is ever complete, we also provide a future outlook and discern future research

directions, going from small and incremental ideas that build on our research to more

ambitious and time-consuming studies.
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Part I

Time/cost optimization





2
A study on complexity and uncertainty perception

and solution strategies for the time/cost trade-off

problem

In this chapter, we revisit the Discrete Time/Cost Trade-off Problem (DTCTP)

in light of a student experiment by expanding on a previously published study

(Vanhoucke et al. (2005)). We derive a classification of student behaviour based

on data collected from 444 students and identify five dimensions which make up

a solution strategy. Two contextual factors, namely complexity and uncertainty,

are taken into account. In order to establish a link between the solution strategies,

the degree and perception of complexity and uncertainty and the overall solution

quality, a rigorous computer experiment is set up. Finally, we investigate the impact

of various settings on the solution quality.
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2.1 Introduction

Time/cost trade-offs in project scheduling find their roots in the Critical Path Method

(CPM), developed at the duPont company and at Remington Rand Univac (Kelley and

Walker (1959), Walker and Sawyer (1959) and Kelley (1961)). CPM is a project schedul-

ing technique to analyze and represent the tasks involved in completing a given project.

Although this method does not explicitly take resource requirements into account, it

assumes that the duration of an activity is a non-increasing function of the amount of

money allocated to it. Initial research efforts on the time/cost trade-off problem focused

on the continuous case and can be found in standard texts such as Elmaghraby (1977) and

Moder et al. (1983). Several techniques were used to solve this type of problem (Robin-

son (1975), Hindelang and Muth (1979), Phillips and Dessouky (1977) and Meyer and

Shaffer (1965)). An overview of the literature until the mid nineties is given by De et al.

(1995). We will cover the contributions related to the time/cost trade-off problem from

the mid nineties onwards. The Discrete Time/Cost Trade-off Problem (DTCTP), shown

to be NP-hard by De et al. (1997), was solved exactly by Demeulemeester et al. (1996).

In their paper, the authors present two approaches based on dynamic programming for

reaching the optimal solution of the three objective functions of the DTCTP. Three pos-

sible variants of the time/cost trade-off problem can be identified. Scheduling project

activities with the goal of minimizing the total project costs while meeting an imposed

deadline is known as the deadline problem (DTCTP-D). The budget problem specifies

a limit on the budget (DTCTP-B). The objective is then to minimize the duration of

the project. Finally, the third objective deals with generating a complete and efficient

time/cost profile. Demeulemeester et al. (1998) improved the computational results for

solving the DTCTP optimally. This is done using a branch-and-bound procedure that

calculates lower bounds by convex piecewise linear underestimations of the time/cost

trade-off curves of the activities. This contribution is of special relevance to this paper

since the procedure of Demeulemeester et al. (1998) will be used to provide an optimal

solution for the data instances of the computational experiment.

The last decade, two new research avenues on the time/cost trade-off problem were

examined. The first new direction is the extension of the (D)TCTP, while the second

direction focuses on the inclusion of stochastic characteristics to the (D)TCTP. A brief

overview of the key publications belonging to each avenue, along with their contribution,

is provided in table 2.1. The contribution this chapter makes to the existing body of

literature is threefold. First of all, the data of students participating in a project man-
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agement business game, the Project Scheduling Game (PSG), are analyzed. The data

files that were employed for this business game are instances of the DTCTP-D and are

transformed into solution strategies. Secondly, we take two contextual factors, namely

complexity and uncertainty, into account. While the first contribution employs real-life

data, experiments are constrained by the fact that classroom sessions need to be held

in order to gather additional data. The final contribution overcomes this problem by

testing the derived solution strategies on computer-generated project networks. In the

remainder of this section, we will elaborate on these contributions from a literature point

of view.
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Business games Business games have a long history within an educational context.

Early research focused on the internal validity through assessing advantages and disad-

vantages of simulations versus other pedagogies (Schumann et al. (1997)). Later on, the

validity of top management games was confirmed by Wolfe (1997). The most-cited ad-

vantages of the use of business games are their high degree of realism, a broader learning

environment, competition between players, as well as soft skills such as communication

skills, group behaviour and organization skills (Saunders (1997) and Faria (2001)). On

top of this, business games craft personal experiences by challenging participants on an

intellectual and behavioural level and hence fall within the nominator experiential learn-

ing (Kolb (1984)). Parente et al. (2012) argue in favour of business games by stating

that real-life experience imposes limitations since there is no opportunity to experience

the full range of possibilities and skill development. Business games have been applied

to simulate business and operations management in the electronics industry (Haapasalo

and Hyvönen (2001)), to teach business ethics (Schumann et al. (1997)), to develop en-

trepreneurial skills (Stumpf et al. (1991)) and to enhance systems thinking and business

process redesign (Van Ackere et al. (1993)).

Complexity and uncertainty What the papers of table 2.1 have in common is that

they focus on what Pollack (2007) describes as the hard paradigm, which is commonly

associated with quantitative techniques and deductive reasoning. However, the author

identifies research streams that suggest an increasing acceptance of the soft paradigm,

which focuses on qualitative techniques that emphasize contextual factors and relevance.

Examples of soft paradigm publications can be found in Turner and Müller (2005),

Ojiako et al. (2014), Green (2004) and Yang et al. (2011) and the reader is referred

to the relationship school and behavioural school of Söderlund (2011) for a literature

review on soft paradigm aspects. More and more, researchers are calling for a broader

view of project management (Hanisch and Wald (2011)), an increased alignment of

research and practice (Hall (2012)) or the inclusion of contextual factors (Crawford et al.

(2006)). With regard to the latter point, Maylor et al. (2008) argue that one-size-fits-all

approaches are inconsistent with the contextual diversity managers are confronted with.

In this paper, we take two contextual factors, namely complexity and uncertainty, into

account by means of data that result from students participating in a business game.

The choice for complexity and uncertainty is inspired by two reasons. Firstly, Howell

et al. (2010) noted that uncertainty was easily the most dominant theme, with com-

plexity being the second most common. This confirmed the findings of Shenhar (2001)

who discovered an emergence of uncertainty and complexity based on a review of the
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classical as well as the more recent literature. It is worth noting that the works dealing

with stochastic characteristics in table 2.1 can be regarded as dealing with uncertainty.

Additionally, the works of Thomas and Mengel (2008) and Hanisch and Wald (2011) ex-

plicitly recognize complexity and uncertainty as crucial (contextual) factors. Secondly,

integrating contextual factors can be regarded as a response to areas for future research.

Hanisch and Wald (2011) argued that the influence of complexity on the project out-

come needs to be studied, while Maylor et al. (2008) wondered whether a quantification

of complexity was feasible. While research on uncertainty has witnessed a spike in inter-

est from academics, it is still among the top challenges for future research (Hall (2012)).

Simulation Complexity can be defined from a hard paradigm perspective (see the

complexity measures of Pascoe (1966), Mastor (1970), Bein et al. (1992) and De Reyck

and Herroelen (1996)) or include soft paradigm aspects (such as organizational complex-

ity (Wolfe (1996)) or socio-political complexity (Geraldi et al. (2011)). In this work, we

focus on structural complexity and more specifically on system size (Sommer and Loch

(2004)). Apart from a large body of work that supports this stance (Dvir et al. (2006),

Geraldi and Adlbrecht (2007), Müller and Turner (2007)), the main rationale for focus-

ing on system size can be found in the final contribution this paper makes. Once the

student files are analyzed and turned into solution strategies, these strategies are applied

to computer-generated project networks, for which multiple settings are changed. In or-

der to do this, a more technical definition of complexity (and uncertainty) is required.

Specific attention will be allocated to the discrepancy between the actual complexity

and uncertainty and how these contextual factors are perceived. Individuals perceive

reality in their own way (Jaafari (2003)), implying that complexity and uncertainty are

also in the eye of the beholder (Nutt (1998), Vidal and Marle (2008), Osman (2010),

Ojiako et al. (2014)). Simulations aid decision makers in anticipating and quantifying

the effects of actions and events (Fang and Marle (2012)) and allow us to generate a

wide spectrum of outcomes.

The outline of this chapter is as follows. In section 2.2, a general overview of the

Project Scheduling Game is given. Section 2.3 focuses on the data collection phase. The

building blocks of the solution strategies, the link to the student data of section 2.3 and

how the solutions are evaluated are discussed in section 2.4. An illustrative example is

provided to demonstrate the 5 components that make up a solution strategy. Section 2.5

introduces the general framework that forms the foundation for the solution strategies

and introduces the time-based and cost-based solution strategy. Section 2.6 includes de-
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tails about the test design. Parameter settings are divided depending on whether they

are project-specific or whether they relate to the complexity and uncertainty dimension.

The results of the solution strategies are discussed in section 2.6.2, where a distinction

is made between the general performance, the performance in case of judgement errors

and an investigation of a varying degree of level of effort. Finally, a discussion of the

results and general conclusions can be found in section 2.7.

2.2 Game description

Crowston and Thompson (1967) were among the first authors to stress the importance

of the interaction between the planning, scheduling and control phase of a project. The

focus of the Project Scheduling Game, presented by Vanhoucke et al. (2005), lies in the

scheduling and control phases of the project life cycle. More precisely, it is the aim of

the player to follow an iterative approach, known as reactive scheduling, that compares

the project baseline schedule with the current project performance (simulated during the

execution phase) in order to control the project and take corrective actions in case the

project objective is in danger. The game consists of several phases which require periodic

input from the game player. An overview of the game process is given in figure 2.1. First

of all, the project network, along with a baseline schedule and other input data for the

game such as the trade-off details are proposed by the course teacher. The baseline

schedule ends at time T . In order to acquaint students with uncertainty, unexpected

events occur. A new deadline, δn < T , is imposed by the client along with a penalty cost

for every day the deadline is exceeded. Therefore, the PSG imposes a soft deadline that

need not be met. However, late project delivery is discouraged by means of a penalty that

is incurred for every day the project finishes after δn. These changes require an update

of the baseline schedule which is the task of the player of the game. The update process

of the baseline schedule boils down to a new trade-off selection for a number of activities.

New trade-offs lead to a shortened or prolonged duration of an activity and lie at the

heart of the CPM. Second, the project is divided into multiple decision moments. The

game then simulates periodic project progress in which uncertain events might occur.

Changes to the original activity durations lead to deviations from the initial baseline

schedule and endanger the project objective. For every decision moment, the player has

to evaluate periodic review reports and rebaseline the unfinished activities of the project

schedule in order to bring the project back on track. This process of rescheduling, taking

a decision and assessing the new information is repeated until the final decision moment

is reached. Third, after a predefined number of decision moments, the game reports
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Game input
Project network

Project schedule with completion time T

Unexpected events
Client stipulates new deadline δn < T
Penalty cost per day of exceedance

User input
Reschedule project

User input
Take decision

Game output
Simulate partial project progress

Game output
Project progress reports

Project 
finished?

Game input
Activity duration uncertainty

Game over
Evaluate total project cost
Feedback and discussion

Figure 2.1: Overview of the PSG game process (Vanhoucke et al. (2005))
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the final project status in terms of the total project duration and cost. At this point,

feedback is given by the course teacher regarding the main learning objectives of the

PSG.

2.3 Data collection

The PSG is taught to management and engineering students at 2 universities (Ghent

University (UGent, Belgium) and University College of London (UCL, United King-

dom)) and 2 business schools (Vlerick Business School (VBS, Belgium) and the EDHEC

business school (France). 444 data points were collected, among which 176 business en-

gineering students (UGent), 203 civil engineering students (UGent), 36 civil engineering

students (UCL), 5 management science students (UCL) and 24 MBA students at the

VBS and EDHEC school. Most of these students do not have previous working knowl-

edge. It is worth remarking that the students business engineering and most of the civil

engineering students hail from the same university (UGent).

A distinction can be made between data captured during game progress and final results.

All the data captured during game progress is saved in a log file. For every student play-

ing the PSG, a log file is available. These log files store commands students execute. The

most important commands are the change of an activity’s trade-off option and taking a

decision, implying a move to the next decision moment. Taking a decision executes the

new trade-off settings for the activities and simulates project progress for the next deci-

sion moment. Examination of the commands leading to intermediate and final solutions

permits an identification and classification of solution strategies taken by the students.

For instance, by executing the commands stored in the log files chronologically, it is

possible to know whether a student made a change to a critical or non-critical activity

and what that change consisted of. The final time and cost solution for every student is

only available at the end of the game. Table 2.2 summarizes the results of the different

student groups. The average deviation compared to the global minimum cost point is

less than 2% for all student groups. The best solution of the student groups displays

only a very small deviation from the best solution possible (less than 1%). The best

overall solution was found by a business engineering student, whereas on average, the

management science students of UCL report the best average score. They also achieve

the smallest standard deviation in cost and the lowest maximum cost deviation. It is

worth remarking that the group of management science students at UCL only comprises

5 people. Welch’s t-test was applied to find out whether the cost deviations between the
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Student Group #students
Cost deviation (%)

Minimum Maximum Average σ

Business Engineering (UGent) 176 0.19 12.46 1.52 1.76

Civil Engineering (UGent) 203 0.24 12.76 1.29 1.44

Civil Engineering (UCL) 36 0.38 4.52 1.75 0.82

Management Science (UCL) 5 0.50 1.79 1.10 0.54

Management (VBS & EDHEC) 24 0.38 4.60 1.72 1.34

Table 2.2: Overview of the student results

groups differ significantly. The only statistically significant difference (p<0.05) is found

for the students Civil Engineering at UGent and the students Civil Engineering at UCL.

2.4 Data structuring

Based on the aggregated data, the log files and time/cost deviations, it is necessary to

transform the data into information by finding a certain structure according to which

students play the PSG. This is accomplished by looking for recurring data patterns.

A data pattern that corresponds with a certain class of behaviour, exhibited by many

students, will be called a solution strategy. Section 2.4.1 expands on the 5 building blocks

that form one solution strategy. The following section explains the link between the

solution strategy components and the student data of section 2.3. Section 2.4.3 presents

details about the performance measures that will be used to evaluate the strategies.

Section 2.4.4 provides an illustrative example and shows the different steps going from

activity selection to applying a trade-off change.

2.4.1 Solution strategy components

From the data collection phase and through many discussions with the students at the

educational institutions, we learned that very few students approach the PSG without

any underlying logic. It is possible to discern 5 building blocks that are in line with

when and how students select a new mode for the different activities. The 5 components

that characterize a solution strategy are focus, activity criticality, ranking, intensity and

action. It is worth noting that the first 4 elements are related to selecting a set of

activities whereas the final element, action, determines how the trade-offs of the set of

activities will be altered. This corresponds with the three general building blocks of

heuristics (Gigerenzer and Gaissmaier (2011)). Search rules specify the direction of the
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search space and are accounted for by focus, activity criticality, ranking and intensity.

Stopping rules determine when the search process ends and is governed by the time limit

of the PSG. Decision rules elaborate on how the final decision is reached. This is done

by the fifth component, namely action. At the start of a decision moment, every activity

that has not started is subject to a possible change. Out of this group of activities,

focus, activity criticality, ranking and intensity perform a stepwise selection of a subset

of activities. The process of stepwise selection can be described as follows:

• Focus: specifies the length of the time window during which actions will be taken.

All activities that start or are still in progress during this time window are se-

lected. The focus is expressed as a percentage of the number of decision periods

that are taken into account and can vary from a local to a global orientation. A

local orientation is characterized by a narrow time window because the number of

decision periods taken into account is small. At the other end of the spectrum is

a global orientation, which uses a wide time window. In this case, many activities

will be subject to a possible trade-off change.

• Activity criticality: the subset of activities that start or are in progress during the

time window specified by the focus can be further refined based on whether these

activities are critical or non-critical at the current decision moment. If both critical

and non-critical activities are taken into consideration, the subset of activities

before this phase equals the subset at the end of the phase.

• Ranking: the elements of the subset of activities are ranked based on the value

of a priority rule. Within the context of human decision-making, priority rules

are easy to apply and in line with techniques that are used to give priority to

certain activities. A tight match could be witnessed between the followed solution

strategy and the selected priority rule. For instance, students who thought that

the minimum cost solution would lie in the neighbourhood of the deadline would

adopt a more time-based strategy and select a priority rule that takes into account

activity durations. This selection step does not reduce the subset of activities

but accords a ranking to the activities. These rankings serve as input for the

intensity phase. The priority rules used by the solution strategies are the Greatest

Rank Positional Weight (GRPW), Maximum Slack (MAXSLK) and Average Most

Expensive Activity (the activity cost divided by its duration) rules.

• Intensity: given the fact that students have a limited amount of time to take

decisions, it is crucial to focus on the most important activities. Intensity further
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Type of action Description

Swap Select neighbouring trade-off.
Slack consumption increase duration until no slack is left.
Minimum cost slope Select trade-off with maximum duration decrease at minimum cost.
Maximum savings slope Select trade-off with minimum duration increase at maximum savings.
Enumeration Enumerate all trade-off for set of activities.
Protect deadline Decrease/increase project duration until acceptable deviation from δn.

Table 2.3: Summary of the type of actions

selects activities by determining a cut-off point for the ranked subset that resulted

from the previous phase. A percentage between 0% and 100% of the number of

remaining activities of the ranked subset is used as a value for the intensity. This

percentage is multiplied by the number of elements that are present in the ranked

subset. This subset then serves as input for the action phase, where the trade-offs

of activities that are elements of the subset may be changed.

• Action: an action is defined as a move on the trade-offs of an activity that may

potentially change an activity’s cost and associated duration. This need not be

the case since a lot of students check whether the action leads to an immediate

cost decrease or not. This is done by comparing the penalty cost per day and the

cost or savings of a trade-off change. If there is no improvement, it is possible that

the activity’s cost and duration is reverted. Actions can go from simple to more

advanced operations. An overview of the type of actions and an accompanying

description is given in table 2.3.

The rationale for the different refinement phases leads back to the nature of the PSG,

where students only have a limited amount of time to make changes and advance to the

next decision moment. Hence, it is necessary to focus on the activities that are most

important. In order to clarify the building blocks of the solution strategies, the stepwise

selection and action will be illustrated using a straightforward example.

2.4.2 Link to the student data

The previous section outlined the different building blocks of a solution strategy. The

aim of this section is to connect the 5 components (focus, activity criticality, ranking,

intensity and action) to the student data of section 2.3. The link between these two

sections results from two aspects, namely data analysis and the feedback sessions with

the participants of the Project Scheduling Game. Most of the time, these aspects go

hand in hand. For instance, many of the conversations revealed that students first select
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a number of activities to which a trade-off change can be made. Further questioning led

to the formalization of this selection and to the inception of focus and intensity.

• Focus: the values for the focus and intensity could be retrieved from the log files

of the students. Figure 2.2 shows the boxplots of the focus for each of the decision

moments of the PSG. The boxplots are based on the data from all participants. It

can be seen that a wide focus range is used by the students, which explains why

low and high numbers for the focus are used by the solution strategies.
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Figure 2.2: Boxplot of the focus for different decision moments (student data)

• Activity criticality: Activity criticality is the second of the five building blocks

that make up a solution strategy. It is logical that both critical and non-critical

activities are changed.

• Ranking: arguably, the student feedback proved most valuable in identifying the

priority rules for the ranking phase that were used most often, especially since

these are much harder to keep track of in the log files.

• Intensity: the process of translating intensity from the student data to the solution

strategies was slightly different. Intensity, as defined in section 2.4.1, can reach

any value in the interval [0,100]. A careful trade-off needs to be made between

a sufficient data representation and having as few values for the intensity setting

as possible. In theory, it would be possible to incorporate all possible values the

intensity can achieve in the solution strategies. However, this entails that a huge
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number of branches need to be created to test which value will be applied under

which circumstances. Such a situation reflects the data in an extremely accurate

fashion but is no longer feasible for the computational experiment. As a rule-of-

thumb, the fewer different values that represent the data of the students’ adopted

intensity well, the better. Feedback from the students taught us that selection of a

number of activities typically occurred through a rule-of-thumb, such as “1 out of

4 activities” will be retained. Figure 2.3 depicts the probability on the x-axis and

the sample quantile on the y-axis. There are two principal reasons why the values

0.25, 0.5, 0.75 and 1 were embedded in the solution strategies. First of all, from a

cognitive point of view, it is better if the different values are equally spaced in the

interval that ranges from 0 to 100. Second, while there are only 4 different values,

the data is represented in a sufficiently accurate way, as evidenced from figure 3.

The 25th, 50th, 75th and 100th quantiles correspond with probabilities of 14, 50,

81 and 100%, respectively. Consequently, there is ample difference in probability

between the 4 selected quantiles.
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Figure 2.3: Sample quantiles of the intensity (student data)

• Action: the final element, the actions, once again resulted from the feedback and

the log files. For this dimension, it is easier to find in the data which actions were

followed, with one notable exception. An enumeration of different trade-off options

can easily be confused with sequential swaps. Figure 2.4 displays the 4 actions that

were frequently applied, along with their probability of occurrence. It is clear that

participants of the game make frequent use of swapping trade-off options. This
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also explains the frequent inclusion of this action in the solution strategies that

will be outlined in section 2.5.2.
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Figure 2.4: Frequency of the applied actions (student data)

2.4.3 Evaluation

The solution strategy components of the previous section were derived using the data

accessible from the log files. As mentioned in section 2.3, the second type of data,

the results, are gathered at the end of the game. In order to rate the quality of the

student solutions, represented by the derived solution strategies, it is necessary to define

performance measures. The proposed measures capture 2 dimensions of a final solution,

namely cost and level of effort. Every dimension can be measured using a specific metric,

which is outlined below and depicted in figure 2.5. The x-axis of figure 2.5 represents the

deviation from the deadline in absolute numbers, whereas the y-axis displays the total

costs. The curve shows the efficient time/cost profile. The time value of the minimum

cost solution across the entire efficient time/cost profile is denoted by t∗ . The dot stands

for the solution of a student at the end of the game.

• Cost performance: the cost deviation is measured using the global cost deviation.

This deviation compares the project cost of the solution strategy (the dot) to the

solution that yields the minimum cost across all possible time points of the com-

plete time/cost profile (the cost or y-value at time t∗). The global cost deviation
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is expressed as a percentage deviation:

∆costglobal =
cs − c∗t∗
cs

(2.1)

In this calculation, cs stands for the cost of the solution strategy and c∗t∗ denotes

the cost of the efficient time/cost profile at time t∗ . It is possible to break down the

global cost deviation into 2 constituent parts, namely activity costs and penalty

costs. If a project finishes later than the specified deadline, it incurs a penalty

cost. Hence, by looking at the penalty cost, we implicitly derive some information

as well.

• Level of effort: captures how much effort it takes to reach a solution, which results

from one of the solution strategies. It is worth noting that the level of effort is

a function of focus, activity criticality and intensity. As the focus increases, the

amount of potential activities that are changed rises and consequently, the level of

effort increases as well. This dimension aims to establish the link between solution

quality and the amount of work that was performed to reach that solution. One

unit of effort corresponds with one trade-off option that is considered for a change.

For instance, in order to determine the minimum cost slope, a number of trade-off

options are considered. Each of those trade-offs augments the level of effort by 1

unit.

2.4.4 Illustrative example

Figure 2.6(a) represents the Activity on the Node (AoN) notation of an example network.

We note that this example merely serves as an illustration: the networks of the com-

putational study count more activities and different trade-off options. In this example,

there are 7 activities in total. The possible durations of the trade-off options for every

activity are indicated above each node. The associated costs of the trade-offs are listed

under each node. The currently selected trade-off is bolded. For instance, for activity

2, the currently selected trade-off has a duration equal to 2 at a cost of e100. Figure

2.6(b) depicts the earliest start Gantt-chart, taking into account the precedence relations

between the activities. Critical activities (activities 1, 3, 4, 5 and 7) are highlighted in

grey, whereas non-critical activities are indicated by the non-coloured bars (activities 2

and 6). There are also 3 different decision moments (DM). In this example, it is possible

to make changes to a set of activities at time points 0, 5 and 10 respectively. The total

duration of the project equals 16 days. We assume that a decision needs to be made at
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Figure 2.5: Global cost deviation

time point 0 and that a deadline of 13 days is present. If the project duration exceeds

the deadline, a penalty cost of e100/day is incurred. Hence, we are at the beginning of

the project. Let E denote the set of eligible activities. Eligible activities are defined as

activities for which the currently selected trade-off will be changed. Hence, at the start

of the project, the set E consists of every activity present in the network:

E = {1, 2, 3, 4, 5, 6, 7}

The example settings for the 5 components (focus, activity criticality, ranking, intensity

and action) are listed in table 2.4. The focus is assumed to be equal to 2 decision

moments (0.67 * 3, the total number of decision moments). From that set of activities,

only the critical activities will be retained. These will then be sorted according to the

Most Expensive Activity priority rule. From the ranked subset, only the first 67% will

be withheld. Finally, those remaining activities will be crashed by applying a swap

operator.

• Focus: in this example, a focus of 2 decision moments is used. Given the fact

that the current decision moment is equal to 1, the time window for the activities

that will be retained is equal to [1, 1 + 2[. Hence, activities that start later than
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Figure 2.6: Activity on the Node network (2.6(a)) and Gantt chart (2.6(b)) for the illustrative
example
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Component Setting

Focus 0.67

Activity criticality Critical

Ranking Most Expensive Activity

Intensity 0.67

Action Crash with Swap move

Parameter Value

Deadline 13 days

Penalty e100

Table 2.4: Overview of the 5 components for the illustrative example

decision moment 3 (after time point 10) will no longer be considered.

E = {1, 2, 3, 4}

• Activity criticality: only critical activities will be taken into consideration. This

implies that activity 2 will be removed from E.

E = {1, 3, 4}

• Ranking: cost is the most important objective for this example network. Hence,

the priority rule Most Expensive Activity will be used. Activity 1 has a cost of

e50, activity 3 a cost of e60 and activity 4 costs e40. Consequently, the activities

in E are reordered as follows:

E = {3, 1, 4}

• Intensity: further refinements can be made based on the intensity. In this example,

an intensity value of 0.67 will be used. This means that only 2 (0.67 * 3 activities)

activities will be left. Because of the ranking in the previous phase, the first two

activities will be selected.

E = {3, 1}

The 5 building blocks have gone from a set where all activities could be changed to a

situation where only 2 activities are left. In the final phase, an action will be applied to

those activities to change their selected trade-off:

• Action: activities 3 and 1 will be crashed by selecting the neighbouring trade-off
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option. This implies that the duration of activity 3 will become 3 time units, with

a cost of e120. Activity 1 will now take 4 days to complete at a cost of e80. This

leads to the Gantt-chart in figure 2.7, which will be the initial situation for the

next decision moment (decision moment 2). The Gantt-chart indicates that the

critical path has changed and now consists of activities 1, 4, 6 and 7. The total

duration of the project has decreased from 16 to 14 days. The project’s total cost

has decreased from e690 (e390 + 3 days * e100) to e580 (e480 + 1 day * e100).
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Figure 2.7: Gantt chart of the executed illustrative example

In order to demonstrate the trade-off between solution quality and Level Of Effort, 4

solution strategies are applied to the toy example described in the paragraphs above.

The first strategy consists of doing nothing, yielding a total cost of e690. Strategy 1

employs a focus and intensity of 0.33, strategy 2 assumes a focus and intensity of 0.66

and strategy 3 adopts a maximal focus and intensity (=1). These strategies are shown

in table 2.5, in which NA denotes that crashing is not possible because the minimum

duration has been reached. The upper part of table 2.5 shows which activities were

changed or considered for a change. The lower part displays the project’s final outcome

and compares it to a scenario where no action is taken. While there is an improvement

in cost between doing nothing and strategies 1 and 2, there is no advantage in increasing

the focus and intensity beyond 0.66. Hence, it is shown how an increasing focus and

intensity improves the cost objective until a point is reached where further increases lead

to a dramatic increase in Level Of Effort, to the same cost solution or both.
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Strategy Decision Moment Activity
Old trade-off New trade-off
Time Cost Time Cost

Strategy 1
1 1 5 50 4 80
2 5 3 80 NA
3 5 3 80 NA

Strategy 2

1
3 5 60 3 120
1 5 50 4 80

2 6 2 40 NA

3
6 2 40 NA
7 3 20 NA

Strategy 3

1

5 3 80 NA
3 5 60 3 120
1 5 50 4 80
6 2 40 NA
4 5 40 NA
7 3 20 NA

2
4 5 40 NA
6 2 40 NA
7 3 20 NA

3
6 2 40 NA
7 3 20 NA

Strategy Project duration Project cost Level Of Effort

Do nothing 16 690 0
Strategy 1 15 620 1
Strategy 2 14 580 3
Strategy 3 14 580 3

Table 2.5: Alternative strategies for the illustrative example
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2.5 Strategic framework

The strategic framework contains information about the conditions in which the derived

solution strategies operate. Two defining criteria are determined, namely complexity

and uncertainty. The general framework of the solution strategies, as well as complexity

and uncertainty appraisal, are the subject of section 2.5.1, in which the interplay of

these dimensions with the solution strategies will be clarified. Section 2.5.2 lists the 2

proposed solution strategies. One of these strategies will concentrate on time while the

other strategy adopts a cost-based point of view.

2.5.1 General framework

Section 2.4 described the 5 building blocks of a solution strategy: focus, activity critical-

ity, ranking, intensity and applying an action. These elements will be used to construct

the strategies that were derived based on the data collected in the log files and based

on the discussions with the students after finishing the game. However, the proposed

strategies take 2 important criteria into account, namely complexity and uncertainty.

A crucial element throughout this chapter is the difference between the real and the

perceived complexity or uncertainty. People make decisions based on the perceived

complexity or uncertainty without knowing their real value. Hence, it is possible that

judgement errors, in which the threshold value differs from the real value, occur. If

the uncertainty or complexity estimate exceeds a threshold value, the outcome for that

dimension will be judged high. Otherwise, that dimension will be judged low. Details

on these thresholds will be provided in section 2.6.1. The outcome of the judgement

of the complexity and uncertainty will steer the logic of the solution strategies into a

different direction. This implies that different settings for the stepwise activity selection

(focus, activity criticality, ranking and intensity) and action phases may be applied.

Complexity is measured by the average number of trade-offs of the different activities

and is calculated as follows:

C =

∑n
i=1 nrtoi
n

(2.2)

with n denoting the total number of activities and nrtoi the number of trade-off options

for activity i. Students often use the proportion of activities that were subject to a

delay in previous decision periods as an indicator for future uncertainty. Hence, the

uncertainty witnessed throughout the project is used to make a judgement about the

project’s overall uncertainty. The outcome of the complexity and uncertainty criteria is

a binary value: either a project is highly complex (or very uncertain) or not. The val-

ues for complexity and uncertainty are taken into account by all the solution strategies.
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The actual complexity and uncertainty is imposed by the decision maker. Individuals

differ on how they judge complexity and uncertainty (Mintzberg et al. (1976), Bour-

geois (1985)), which will be imitated in the computational experiment by incorporating

different threshold values, leading to a different judgement of complexity and uncertainty.

The general framework of the solution strategies is given in figure 2.8. At the start

of the project, the complexity is analyzed. If the complexity is low and the project is

about to start (the decision moment equals 0), a group of settings and actions labeled A

is triggered. If some activities are finished already, a new estimate of the uncertainty is

made. If uncertainty has shifted from low to high or high to low, the focus and intensity

are adapted (B). If uncertainty is smaller than the threshold value (U <), it is checked

whether the next activity in the priority list constructed by the ranking phase is critical.

The reader is reminded that these solution strategies ultimately change trade-off options

of individual activities. If this is the case, C will be triggered. In the alternative case,

the settings and actions encompassed in D are executed. Finally, if uncertainty is high,

a similar check with regard to the (non-)critical nature of an activity is performed. If

the activity is critical and has only 1 predecessor, the procedure moves to the branch

labeled E. If the activity is non-critical, the actions and settings comprised in F will be

activated. A similar but slightly more intricate pattern is executed in case the project’s

complexity exceeds the threshold value. When the project has just started, a couple of

additional branches (G-I) are present. Furthermore, if a critical activity has more than

1 predecessor, a set of settings and actions will be applied as well. After applying a set

of actions from one of the possible groups, a check is performed in order to determine

whether the project has ended. If this is not the case, the project moves to the next de-

cision moment. Otherwise, the output measures are calculated and the solution strategy

has come to an end. This framework and its different branches will be used in the next

section to structure the proposed solution strategies.

2.5.2 Proposed strategies

Armed with the data and the structure of section 2.5.1 that was used by many students,

it was possible to derive 2 solution strategies. The first strategy, treated in section

2.5.2.1, focuses on time and more specifically on reaching the imposed deadline δn.

The second strategy employs cost-saving measures at the expense of increased risk and

is discussed in section 2.5.2.2. The level of effort was controlled using the focus and

intensity parameters, which differ based on the level of complexity and uncertainty, and

activity criticality. This was necessary to ensure that the level of effort was equal across
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all settings for the computer experiment. In the following sections, we briefly highlight

the main characteristics of the time-based strategy (section 2.5.2.1) and the cost-based

strategy (section 2.5.2.2).

2.5.2.1 Time strategy

The goal of the time strategy is to approach the deadline as closely as possible. This

solution strategy, abbreviated SS1, uses three specific mechanisms that employ a time-

based focus. First of all, the Greatest Rank Positional Weight (GRPW) rule is invoked

in several branches. This rule takes the duration of the activity under study and the

durations of its immediate successors into account, thus capturing a small portion of the

network structure. Secondly, a buffer mechanism is employed. The buffer is based on the

Slack Duration Ratio (SDR) by Hazır et al. (2010) and implies that a minimum value for

the ratio of an activity’s slack to its duration should be maintained. Consequently, non-

critical activities are protected against delays that could turn them into critical activities

and delay the entire project. The buffer mechanism is invoked when the uncertainty

is judged to be high. Finally, the protect deadline action is used to ensure that the

project duration does not deviate too much from the imposed deadline. Protection of

the deadline is done when the project is in progress (DM 6=0). It ensures that the deadline

does not exceed student-specified bounds. If the project is slightly uncertain, the project

duration should lie between 98% and 101% of the deadline. For highly uncertain projects,

the lower bound on the deadline becomes 96%. Because of the increased uncertainty,

the delays will push the duration closer to the deadline, which explains why a smaller

lower bound is chosen. The downward protection of 98% and 96% is not applied when

the complexity is judged high. In this case, more effort is put into the examination of

different trade-off options. However, the protection of 101% of the deadline is still in

place in order to minimize penalty costs.

2.5.2.2 Cost strategy

The cost strategy, SS2, aims to minimize the sum of activity costs and the penalty

cost. Contrary to the time strategy, taking risk will be an integral part of this solution

strategy. This is done using 3 different mechanisms. First and foremost, the average

most expensive activity rule is used a lot more compared to the time strategy, implying

that the importance of costs versus the duration of an activity becomes more important.

Secondly, the elitism criterion is used frequently. Only accepting better solutions can

be done for simple and complex actions, for instance by selecting the best outcome of a
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Solution strategies
SS1 SS2

GRPW priority rule Avg MEA priority rule
Buffer (SDR of 30%) Elitism (only accept cost improvement)
Protect deadline Slack consumption

Table 2.6: Principal differences between the solution strategies

minimum cost or maximum savings slope. Third, consumption of slack plays a central

role. Including this action has a double effect. On the one hand, costs will decrease

because longer activity durations (at a lower cost) will be selected. On the other hand,

because there is less slack in the project’s schedule, the amount of risk increases. The

logical result is that activity delays will have a larger impact on the schedule, thus in-

creasing the penalty costs. Again, a distinction is made between judging projects to

possess a low or high degree of complexity.

A summary of the principal differences between both solution strategies is given in

table 2.6. The reader is referred to table 2.7 for an exhaustive overview of the two pro-

posed solution strategies. While this table is mainly relevant for researchers who want

to imitate our computational experiment with identical parameter settings, it can easily

be skipped by the reader without losing the general overview of the theme of this paper.

Table 2.7 lists the settings of the solution strategy components for every branch. The

letters of the respective branches correspond with those depicted in figure 2.8. For focus

and intensity, an additional distinction is made based on the actual complexity, which

can be low (denoted CL) or high (denoted CH). For the ranking component, Avg MEA

is the abbreviation for the average Most Expensive Activity priority rule, whereas Max

SLK denotes the maximum slack priority rule. Finally, in the action column, MC repre-

sents the Minimum Cost while MS stands for the Maximum Savings. The subscript elit

refers to elitism, meaning that if an action leads to a cost deterioration, the action will

be undone and the project reverts to the trade-offs before the action was applied. For

a step-by-step procedure of the data generation phase and the settings of the solution

strategies, the reader is referred to this chapter’s Appendix.
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2.6 Computational experiment

The computer experiment aims to reproduce the behaviour exhibited by the students

on a diverse set of generated projects. The goal of this section is not to compete with

existing exact and (meta-)heuristic approaches but rather to discern the circumstances

in which each solution strategy reaches the best results. In fact, large cost deviations

illustrate the limitations of human decision makers and identify the need for more in-

volved optimization techniques. These more advanced techniques were discussed in the

literature overview of section 2.1. The outline of this section is as follows. Section 2.6.1

provides details about the data generation process where a distinction is made between

project-based parameter settings and settings related to the complexity and uncertainty.

A baseline scenario is defined and will serve as the main vehicle to illustrate predominant

relations for the different complexity and uncertainty combinations. Using this baseline

scenario, the impact of judgement errors on the cost performance is studied. Finally,

the effect of a varying level of effort is discussed.

2.6.1 Data generation

A distinction can be made between project-based parameter settings and settings related

to the complexity and uncertainty. First of all, the project-based parameters will be

discussed and the baseline scenario will be established. Afterwards, the settings related

to complexity and uncertainty are divulged. All of these settings are summarised in

table 2.8 and discussed in the following paragraphs. Table 2.8 is illustrated on a specific

example and combined with the settings of one of the solution strategies in section 2.A.1

of the Appendix. The solution strategies were encoded in C++ on a Macbook featuring

a 2.4GHz dual core processor with 4 GB RAM.

Project-based settings 100 project networks with 30 activities were generated using

the RanGen2 generation engine (Vanhoucke et al. (2008)) for 9 values of the Serial/Par-

allel (SP) indicator, ranging from 0.1 to 0.9 in steps of 0.1. Although the SP indicator

is named the I2 indicator in the paper by Vanhoucke et al. (2008), it is commonly re-

ferred to as the SP indicator in several simulation studies (e.g. Vanhoucke (2010b)).

The SP indicator measures a network’s degree of closeness to a completely serial or par-

allel network (Tavares et al. (1999)). The following project-based parameter concerns

the nature of the generated trade-offs. These can be random, linear, convex or concave.

Convex trade-offs entail steeply increasing costs as an activity’s duration is crashed. The

opposite observation holds for concave trade-offs. We only consider random trade-offs.
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Robustness checks were performed for linear, convex and concave trade-offs without

leading to different results.

Imposing a deadline for the project is done after the instance is solved in an exact

way, using the procedure of Demeulemeester et al. (1998). The exact solution method

returns an efficient time/cost profile. Let Dmin denote the minimum project duration

and Dmax denote the maximum project duration. The deadline, δn, is determined using

the parameter θ, as follows:

δn = Dmin + θ ∗ (Dmax −Dmin) (2.3)

3 levels for θ are suggested: 0.25, 0.5 and 0.75. Finally, the penalty parameter determines

how extremely exceeding the deadline is discouraged. A low penalty setting (e350 per

day) and high penalty setting (e3,500 per day) are taken into consideration. The height

of the penalty has a direct influence on the global cost deviation. If a solution is reached

with only a small time deviation but the penalty is set to a high number, the global

cost deviation will be much higher than a situation with a low penalty setting. The

combination of a certain value for the deadline and penalty determines the location of

the optimal cost on the efficient time/cost profile. Finally, for every possible mode, a

combination of durations and costs needs to be generated. The number of modes will

be specified in the complexity and uncertainty settings paragraph. Activity costs range

from e500 to e2,500 with a maximum allowed interval of e1,000 between two modes of

an activity. The minimum durations of an activity go from 10 to 20 with a maximum

interval of 1 time unit.

Baseline Scenario The baseline scenario is used as an instrument to identify the

main effects of different combinations of the complexity and uncertainty parameter. The

characteristics that closely resemble the PSG’s properties were employed to construct

this scenario. An exception is made for the penalty parameter, where both values were

used.

Complexity and uncertainty settings Complexity refers to the average number

of trade-offs of the different activities and was first introduced in section 2.5.1. There

are two levels for the complexity of the generated projects. The activity modes of the

projects are generated according to a triangular distribution with 1, 4 and 6 modes as

the minimum, mode and maximum for projects with a low degree of complexity and 4,

7 and 9 modes for highly complex projects. There are two settings for the complexity
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Description Settings

Project parameters

SP factor 0.1-0.9, ∆=0.1
#Projects 100
Trade-offs Random
θ 0.25-0.75, ∆=0.25
Penalty e350-e3,500
Activity Costs ∼R(500-2,500)
Activity Durations ∼R(10-20)

Baseline scenario

SP factor 0.5
θ 0.5

Penalty
Low: e350
High: e3,500

Complexity & Uncertainty

Complexity
Low ∼Tri(1,4,6)
High ∼Tri(4,7,9)
Thresholds 0-10

Uncertainty
Low ∼R(0.2-0.4)
High ∼R(0.6-0.8)
Thresholds 0-1.0

Table 2.8: Overview of the data generation parameters

threshold which determine if a project is judged to be complex or not. The first threshold

setting is equal to 0, thus indicating that every project will be judged highly complex.

The other parameter value equals 10 and implies that every project will be judged lowly

complex.

The second dimension is uncertainty, which consists of 3 elements, namely the uncer-

tainty type, proportion and size. The uncertainty type denotes the amount of positive

and negative delays. A proportion of 90% positive delays (10% negative delays) is put

forward. Negative delays result in activities finishing earlier than planned and are in-

cluded to reflect that uncertainty can also yield opportunities (Ward and Chapman

(2003)). Consequently, the uncertainty type penalizes or rewards risk takers who do not

incorporate a lot of slack into their projects. Closely linked with the uncertainty type

is the percentage of activities subject to a delay. This is applied to move the project’s

execution closer to or further away from the baseline schedule. The percentage of activ-

ities subject to a delay is applied to all activities at the start of the project’s execution.

Hence, an activity can only be delayed once. If this percentage is low, few unanticipated

delays will distort the decisions about the activity modes taken by the project manager.

Two levels for the uncertainty proportion are proposed. A low degree of uncertainty

proportion corresponds with values that are drawn randomly from an interval with val-
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ues between 20% and 40%. A high degree of the uncertainty proportion originates from

a random draw with 60% and 80% as its lower and upper bound, respectively. The

third component of the delays is the size of the delays. This is drawn from a triangular

distribution and varies from 1 to 9, with the mode equal to 4. The parameter values for

the uncertainty threshold are equal to 0 and 1.0. Hence, the project will be judged to

be highly or only slightly uncertain, respectively. In the remainder of this chapter, the

term uncertainty will be used for the proportion of delays, unless noted otherwise.

2.6.2 Results

In the previous section, the settings for the baseline scenario were discussed. This

scenario will now be used to analyze the different links between complexity, uncertainty

and how these dimensions are judged. The results for the baseline scenario are divided

into 3 paragraphs. The first paragraph deals with the performance of both solution

strategies when complexity and uncertainty are assessed correctly. Two situations may

occur, namely when the complexity or uncertainty is low and when the complexity or

uncertainty is high. The second paragraph takes a look at the two possible judgement

errors. One of the dimensions, complexity or uncertainty, may be low in reality but can

be judged high. Alternatively, the real complexity or uncertainty may be high but judged

to be low. The significance results of a correct assessment and the judgement errors can

be found in tables 2.9 and 2.10. In both tables an asterisk denotes a significant difference

(p < 0.05). Table 2.9 deals with the significance results of the main experiment, whereas

the judgement error results can be found in table 2.10. The third paragraph looks at

how a higher level of effort impacts the cost performance of both solution strategies.

Performance Complexity refers to the average number of modes across all activities

of the project. Uncertainty refers to the proportion of activities that are subject to a

delay. The performance of the time-based solution strategy (SS1) and the cost-based

solution strategy (SS2) is measured using the global cost deviation. In this paragraph,

we limit ourselves to situations in which the decision maker judged the complexity and

uncertainty correctly. The following observations with regard to the performance of both

solution strategies can be made:

• The penalty costs for the time-based strategy (SS1) are lower compared to those of

the cost-based strategy (SS2) across all complexity, uncertainty and penalty levels.

This implies that the project duration attained by SS1 lies closer to the deadline

than it is for SS2, resulting in a lower amount of incurred penalty costs.
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Dimension Actual & Perceived Penalty
Global cost deviation Penalty share

SS1 SS2 Sign. SS1 SS2 Sign.

Complexity
Low

Low 11.65% 5.90% * 2.10% 5.06% *
High 20.14% 27.32% * 11.47% 25.21% *

High
Low 25.42% 13.13% * 1.04% 6.30% *
High 25.61% 25.30% 4.82% 15.18% *

Uncertainty
Low

Low 20.61% 13.08% * 0.97% 3.84% *
High 21.67% 22.55% * 4.56% 11.42% *

High
Low 17.97% 11.27% * 1.94% 5.08% *
High 25.75% 28.12% * 12.88% 21.57% *

Table 2.9: Results of the main experiment (correct judgement)

• For a high penalty setting, a larger deadline deviation leads to a steep cost de-

terioration. It is no surprise that due to this increased importance of the timing

aspect, SS1 thrives in a high penalty setting.

• Even though SS1 has a smaller share of penalty costs, the activity costs of SS2

are much lower, indicating that a better trade-off selection takes place. The tim-

ing aspect does not have a substantial impact when the penalty is low. Hence,

SS2 almost always returns better results than SS1. The difference between both

strategies is more pronounced for a high degree of complexity.

• The complex search process for better trade-offs proves advantageous for a cost-

based approach (SS2). When the complexity is high, SS2 is slightly but not sig-

nificantly better even when the penalty is high. In that case, the proportion of

penalty costs is larger than for SS1 but the activity costs are much lower.

• When there is little uncertainty, SS2 performs better or there is only a small

difference compared to SS1. Clearly, a low degree of uncertainty only has a minor

impact on a project’s duration.

Judgement Error A key topic in this chapter is the discrepancy between the real

complexity or uncertainty and how it is judged. Hence, judgement errors can be made

in which a dimension is low but judged to be high or vice versa. The results of these

judgement errors lead to the following conclusions:

• A general conclusion for both strategies is that safety is the best policy. It is better

to prepare for the worst and judge the complexity dimension to be worse (highly

complex) than it may be in reality (low complexity).
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Dimension Actual Perceived Penalty
Global cost deviation Penalty share

SS1 SS2 Sign. SS1 SS2 Sign.

Complexity
Low High

Low 13.48% 7.79% * 1.88% 3.34% *
High 20.96% 18.84% * 12.41% 13.04%

High Low
Low 27.10% 21.52% * 1.26% 3.41% *
High 28.84% 29.13% 6.53% 11.92% *

Uncertainty
Low High

Low 19.07% 11.25% * 1.03% 4.27% *
High 21.04% 21.13% 5.47% 12.30% *

High Low
Low 20.01% 12.74% * 2.33% 4.93% *
High 27.09% 28.79% * 12.33% 20.06% *

Table 2.10: Results of the main experiment (judgement error)

• For a high penalty setting, the time-based approach (SS1) performs well compared

to the cost-based approach (SS2).

– The preferred solution strategy depends on the (actual and perceived) com-

plexity of the judgement error. Even though the time-based strategy (SS1)

performs slightly better than the cost-based strategy (SS2) when the complex-

ity is high but judged to be low, the difference was found to be statistically

insignificant. When the complexity is low but judged to be high, the cost-

based strategy comes out on top.

– When it comes to the uncertainty dimension, SS1 performs slightly better

than SS2 for both judgement error positions. Interestingly, the activity costs

are lower for SS2 but the higher penalty costs push the global cost deviation

of SS2 higher than that of SS1.

• For a low penalty setting, the cost-based strategy (SS2) clearly outperforms the

time-based strategy (SS1).

Influence of the Level Of Effort In order to ensure that no large differences in the

level of effort materialize for the generated projects, the level of effort was controlled

using focus and intensity. The focus and intensity settings for the baseline scenario were

described in section 2.5.2. In this section, the effect of an increased level of effort is

studied. Three separate experiments were conducted to study the effect of an increased

level of effort on the performance of the solution strategies. The main findings can be

summarized as follows:

• The first experiment adopted a focus of 100% in absence of any uncertainty (U =

0). The intensity was varied from 0.6 to 1.0 in steps of 0.1. The results indicate

that an increased intensity leads to better cost deviations.
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• The second experiment adopted an intensity of 100% in absence of any uncertainty

(U = 0). The focus was varied from 0.6 to 1.0 in steps of 0.1. Similar to the first

experiment, the global cost deviation decreased as the focus was increased, but the

decrease was less steep compared to the findings of the first experiment.

• The last experiment reintroduced the uncertainty settings of the baseline scenario.

The focus was kept at 100% and the intensity was varied again from 0.6 to 1.0.

Hence, compared to the first experiment, these settings allowed us to explore the

influence of the uncertainty. As the intensity (and thus the level of effort) increased,

the global cost deviation decreased. However, the cost deviations are higher than

those of the first experiment, which can be attributed to uncertainty affecting the

activity durations.

Finally, we have also tested the influence of the deadline and the SP level. The deadline

parameter was varied by selecting the 25th and 75th percentile. Both solution strategies

share a decreasing deadline deviation trend as the deadline increases, without leading

to different conclusions for the overall performance. The SP factor was varied from

0.1 to 0.9 with steps of 0.1. No consistent trend for the solution strategies across the

complexity and uncertainty dimensions could be established.

2.7 Discussion and conclusion

In this chapter, three contributions were made. First, the decisions of students through-

out the Project Scheduling Game, a project management business game, were analyzed.

We learned that two major solution strategies could be discerned. These are comprised

of five building blocks, namely focus, activity criticality, ranking, intensity and action.

The first solution strategy focuses on time and employs three mechanisms to approach

the deadline. The Greatest Rank Positional weight priority rule is used, as well as a

buffer based on the slack duration ratio of Hazır et al. (2010) and a final check to pro-

tect the deadline is performed. The second solution strategy heavily focuses on costs,

at the expense of an increased exposure to risk. The Average Most Expensive priority

rule is used to rank activities. Elitism is applied to only accept cost improvements and

non-critical activities’ slack is consumed to a larger degree.

Second, complexity and uncertainty were included as contextual factors. The liter-

ature overview of section 1 indicated that these are dominant themes and that a link
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between complexity and project outcome (Hanisch and Wald (2011)) and a continued

study of uncertainty (Hall (2012)) were among the challenges for future research. To that

end, we have conducted a large computational experiment that allows us to quantify the

impact of complexity (Maylor et al. (2008)) and uncertainty. The following conclusions

can be drawn from the experiment:

• A high degree of complexity has a negative effect on the cost deviation. Since

heuristics are designed to make a trade-off between effort and accuracy (Gigerenzer

and Gaissmaier (2011)), complex situations call for either more advanced solution

methods or for an increase in additional resources and managerial attention, as

established by Shenhar (2001).

• The effect of uncertainty greatly depends on its impact, which was regulated using

the penalty parameter in our experiments. A high degree of uncertainty combined

with a severe penalty for deadline overruns led to steep cost increases. Hence,

the importance of meeting the deadline, for which the penalty acts as a proxy,

determines the extent to which uncertainty hampers the project’s objective.

• Individuals vary in how they assess complexity and uncertainty. An experienced

project manager will employ a different threshold for determining the degree of

complexity and/or uncertainty compared to a recent project management grad-

uate. This process was imitated by means of judgement errors, where different

thresholds were employed, steering the logic of the solution strategies into a dif-

ferent direction. We came to the conclusion that the direction of judgement errors

is crucial. Perceiving a project as highly complex and uncertain while this is not

true in reality yields significant advantages compared to the opposite scenario.

Hence, we recommend project managers who are incapable of correctly assessing a

project’s complexity and/or uncertainty (e.g. through limited information) to err

on the safe side.

• We identified the conditions in which each solution strategy thrives. The time-

based solution strategy performs particularly well when deadline overruns are

heavily penalized and in highly uncertain environments. The cost-based solution

strategy yields better results in low penalty and highly complex environments.

• Increasing the level of effort exhibits a positive effect on the capability of the

strategies.

In this chapter, we focused on quantifying the effect of complexity and uncertainty on

cost outcomes. Hence, the limitation of this paper is that little attention was paid to
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the behavioural and psychological aspects of complexity and uncertainty. For instance,

one can wonder what the effect of tight deadlines on team motivation is and how this

relates to previous research on this topic (Chang et al. (2003), Engwall and Westling

(2004)). Additionally, demographic variables such as age, background and project role

(cf. Ojiako et al. (2014)) could be included, especially when dealing with complexity

and uncertainty judgements.

From a data analysis and model perspective, two future research avenues can be iden-

tified. First of all, while we provided an initial analysis to discern between two ma-

jor solution strategies, it would be interesting to find out if participants of the PSG

switch between strategies throughout the game and by which circumstances this switch

is prompted. A similar question arises for niche strategies. Secondly, additional mech-

anisms can be put in place that further complicate the decision-making process. For

instance, increasing or decreasing the time participants have to make decisions through-

out the PSG, as well as the presence of a contingency budget may well lead to different

choices. Another possibility could be the inclusion of decision moments that are not

spread equally along the time dimension. Studying this in conjunction with the project’s

network topology would be a meritorious extension.
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2.A Appendix

This appendix contains results or clarifications that were either too expansive to add to

the main text of the chapter or did not alter its main insights. It provides an example of

the data generation process (section 2.6.1) and the link with table 2.8 of the main text.

2.A.1 Data Generation example

In this section, the data generation of the computational experiment, found in section

2.6.1, is illustrated by means of an example of the dataset. The different steps are

outlined below:

1. Network Generation - Generate a network with 32 activities and a value of the SP

indicator equal to 0.8. The Activity on the Node (AoN) representation is given in

figure 2.A.1.

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 21 22 23 24 25 28 29 32

11

31

26

27

14

30

Figure 2.A.1: Activity on the Node representation of the generated network

2. Generate time/cost trade-offs - In this example, a low complexity will be main-

tained. For each activity, the number of trade-offs is drawn from a triangular

distribution with 1, 4 and 6 as the minimum, mode and maximum respectively.

Each trade-off has a duration between 10 and 20 time units and a cost between 500

and 2,500 monetary units. A full overview of the generated time/cost trade-offs

for all activities can be found in table 2.A.2.

3. Generate delays - the uncertainty proportion determines the amount of activities

that will be subject to a delay. In this instance, a value of 0.2 is generated, implying

that 0.2 * 32 ≈ 6 activities will be delayed. The size of the delays is drawn from

a triangular distribution with 1 and 9 as the minimum and maximum and a mode

equal to 4. An overview of the activities that are delayed is shown in table 2.A.1.

4. Generate deadline and penalty - the example is solved exactly, resulting into an

efficient time/cost profile. Since no penalty is imposed yet, lengthening the project
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Activity Delay

6 6
8 5
10 4
13 6
15 3
25 5

Table 2.A.1: Generated delays for the data generation phase

leads to cost reductions. The deadline is set to 0.5 in this example, which corre-

sponds with the time value of the 20th (0.5 * 40) point of the efficient time/cost

profile. For every day the deadline is exceeded, a penalty cost of 350 monetary

units is incurred. Figure 2.A.2 shows how the penalty affects the efficient time/cost

profile.
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Figure 2.A.2: Efficient time/cost profile with and without the penalty of 350 monetary units

5. Apply one of the solution strategies to the problem at hand. In this example,

the actual complexity is low. Assume that the thresholds for complexity and

uncertainty are equal to 0. In that case, complexity and uncertainty will be judged

low. This implies that for the time-based strategy, the focus will be equal to 0.4

and the intensity will be 0.5. The GRPW priority rule will be invoked. Critical

activities will be crashed according to the minimum cost slope, whereas non-critical

activities will be prolonged following the maximum savings slope. The global cost
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deviation of the time-based solution strategy for this example is equal to 16.12%,

with the activity cost making up 100% of the global cost deviation. Hence, the

time-based solution strategy manages to finish before the project’s deadline.
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Activity

Trade-off info

Trade-off 1 Trade-off 2 Trade-off 3 Trade-off 4

Time Cost Time Cost Time Cost Time Cost

1 15 1485 16 1400 17 929 18 543

2 15 2421 16 1431 17 1194 18 593

3 10 4367 11 3443 12 2527 13 1949

4 16 2935 17 2848 18 2078 19 1986

5 17 3489 18 3095 19 2100 20 1241

6 19 2899 20 2588 21 2444 22 1961

7 15 3897 16 3029 17 2190 18 1494

8 17 1310 18 777

9 14 2324 15 1925 16 1739 17 906

10 14 1894 15 1331 16 623

11 17 949 18 615 19 587

12 18 1691 19 1428 20 1093 21 726

13 17 1410 18 516

14 18 2377 19 1440 20 1026

15 10 2921 11 2912 12 1990 13 1344

16 17 732

17 17 3794 18 3516 19 2869 20 1897

18 17 3298 18 3092 19 2176

19 16 3375 17 2769 18 2616 19 1923

20 14 2209 15 1786 16 1491

21 17 1553 18 1549 19 1517 20 1271

22 18 1453 19 1258 20 1160 21 619

23 18 762

24 12 3138 13 2320 14 1817 15 885

25 13 3441 14 2965 15 2104

26 17 2657 18 2246 19 1663 20 872

27 11 2485 12 2393 13 2389 14 1637

28 10 2240 11 2011 12 1258 13 1119

29 15 3524 16 2784 17 2508 18 1769

30 15 2025 16 1116

31 13 4820 14 4164 15 3279 16 2429

32 14 560

Table 2.A.2: Generated time/cost trade-offs for all activities
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Effort-based decision making for the Discrete

Time/Cost Trade-off Problem

In this chapter, a method for constructing custom solution strategies to the

Discrete Time/Cost Trade-off Problem is presented. Schedule focus, activity

focus and action radius constitute the components of crafting such a strategy.

The solutions are evaluated in a student learning environment with a limited

amount of effort. The effort-based decision-making process has been tested

in a classroom experiment by analyzing the student strategies. Additionally,

a dataset for computational experimentation has been generated. We report

on the influence of different parameter settings on various aspects of the

solution quality as well as on how the strategic components affect the attained

solutions.
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3.1 Introduction

With the advent of project scheduling in the 1950s, the well-known Critical Path Method

(CPM) came into existence following development at the duPont Company and at Rem-

ington Rand Univac (Kelley and Walker (1959), Walker and Sawyer (1959) and Kelley

(1961)). The CPM represents tasks according to precedence relations and aims to con-

struct a plan, which serves as the baseline schedule for project control efforts. An

inherent characteristic of CPM consists of time/cost trade-offs accompanying each ac-

tivity. The underlying assumption is that as an activity’s duration is shortened, more

resources need to be allocated. Typical real-life examples are additional manpower or

funds that need to be invested in order to bring about a decrease in duration. Ini-

tial research focused on activity costs being a continuous, linear and non-increasing

function of its duration. Research related to the continuous case, as well as its Linear

Programming model can be found in the texts of Elmaghraby (1977) and Moder et al.

(1983). A multitude of techniques were proposed to solve these types of problems, such

as dynamic programming (Robinson (1975), Hindelang and Muth (1979)), minimal cuts

(Phillips and Dessouky (1977)) and mixed integer linear programs (Meyer and Shaffer

(1965)). Varying the type of an activity’s cost function to assume concave, convex or

linear slopes proved to be another salient avenue for exploring. The literature of the

time/cost trade-off problem has been summarized by De et al. (1995). The same au-

thors showed that the discrete time/cost trade-off problem (DTCTP) is NP-hard (De

et al. (1997)). Three variants of the DTCTP are discerned within academic literature.

The deadline problem (DTCTP-D) schedules activities with the goal of minimizing the

project’s cost while meeting an imposed deadline. The budget problem (DTCTP-B)

minimizes the duration of the project, subject to a certain budget that is spent on activ-

ity costs. The last variant of the DTCTP can be seen as a combination of the latter two

variants by constructing a complete, efficient time/cost frontier. The three variants have

been solved exactly by Demeulemeester et al. (1996) using two dynamic programming

approaches. The computational results were improved by Demeulemeester et al. (1998)

with a branch-and-bound procedure. The lower bounds are calculated through the con-

vex, piecewise linear underestimation of the time/cost trade-off curves. An adaptation

of the labeling algorithm of Fulkerson (Fulkerson (1961)) computes a lower bound with

those underestimations. The procedure of Demeulemeester et al. (1998) is of special

relevance to this chapter since it will be used to calculate the optimal solution for the

real-life instance of the empirical experiment of this chapter.
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From the 2000s onwards, two novel research directions have been examined. The first

direction expands on extensions of the (D)TCTP. Time-switch constraints were incorpo-

rated by Vanhoucke et al. (2002) and Vanhoucke (2005). Vanhoucke and Debels (2007)

presented a metaheuristic procedure for time-switch constraints, work continuity and

net present value maximization. Another extension centred on the time/cost/quality

problem. Integer programming formulations (Tareghian and Taheri (2006)), as well as

metaheuristic solutions have been proposed to solve this problem (Pour et al. (2010)

and Tareghian and Taheri (2007)). Real-life analyses of these types of problems were

performed by El-Rayes and Kandil (2005) and Zhang and Xing (2010). Choi and Chung

(2014) analyzed the complexity of the linear TCTP with milestone objectives and com-

pletely ordered jobs. The second research direction consists of including stochastic char-

acteristics. Azaron et al. (2005) and Azaron and Tavakkoli-Moghaddam (2007) provide

solutions for activities following a generalized Erlang and exponential distribution respec-

tively. The stochastic TCTP has been solved using robust optimization (Cohen et al.

(2007)), a genetic algorithm (Ke et al. (2009)) and an ant system approach (Mokhtari

et al. (2011)). Schedule robustness, as well as other robustness measures were studied

by Hazır et al. (2011, 2010).

A different approach towards the DTCTP was taken by Vanhoucke et al. (2005), who

presented a business game entitled the Project Scheduling Game (PSG). The underlying

project network is a real-life instance of the DTCTP-D. However, the deadline constraint

is soft. Exceeding the deadline results in a penalty but does not render the problem in-

feasible. There are multiple decision moments. At each decision moment, a report on

the time and cost performance of activities that were finished in the previous decision

moments is given. The participants have the option to modify the ongoing or future

activities in light of this feedback report. As such, the participants go through a cycle of

scheduling, feedback and, if necessary, rescheduling. The goal of the game is twofold. On

the one hand, it provides an experiential learning environment displaying the need for

risk analysis. On the other hand, the game demonstrates the careful balance between

complexity and uncertainty. Faced with approximately 40 activities with on average

5 trade-off options, participants are overwhelmed with alternative choices. Hence, an

incentive to rely on state-of-the-art optimization algorithms is provided. On the other

hand, sole reliance on optimization without any thought for uncertainty proves futile. As

unexpected events create delays or offer opportunities, the project’s execution will differ

from the baseline schedule. Chapter 2 (Wauters and Vanhoucke (2013)) expands on this

careful balance between complexity and uncertainty, providing a time-based, as well as
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a cost-based solution strategy. The authors identify the circumstances in which each

strategy flourishes, making a distinction between the actual and perceived complexity

and uncertainty.

This chapter presents PSG Extended, an extension to the project scheduling game,

and has a twofold goal. First, a novel and modular way of constructing solutions to the

DTCTP is presented. This was achieved in a classroom experiment, in which students

needed to make decisions with regard to a number of parameters. Based on these param-

eters, a solution strategy is assembled and tested on the project at hand. The method

for constructing solutions can be divided into three components, namely schedule focus,

activity focus and action radius. Schedule focus selects a set of activities based on a

specified time window. Activity focus is subdivided into activity ranking and time/cost

focus, governing the order in which activities’ trade-offs will be changed and the amount

of trade-offs that are susceptible to a change. Action radius consists of the deadline

focus, slack consumption, cost/benefit analysis and effort loading. Deadline focus and

slack consumption decide whether changes to critical or non-critical activities take place.

Cost/benefit analysis determines whether and to which extent cost improvements or de-

teriorations are allowed. Finally, effort loading allows the decision-maker to emphasize

certain decision moments along the progress of the project. Since the solution strategies

are subjected to a maximum allowed total effort, participants need to determine where

they want to spend the bulk of the effort. The second goal of this chapter is to make rec-

ommendations for the DTCTP in light of this limited amount of effort. The managerial

implications are crucial. Based on a company’s project portfolio, a different degree of

effort is assigned to each project. This effort can be measured in units of time or in terms

of budget restrictions. As an example, the PSG of Vanhoucke et al. (2005) employed

a limited time window to make a new decision. Without loss of generality, effort will

refer to a dimensionless unit in the remainder of this chapter. By employing empirical

as well as computational results, the effects of a different availability of effort, as well

as how different characteristics of the DTCTP influence these, will be discussed. It is

worth noting that this chapter has no intention to compete with state-of-the-art solution

procedures but rather to develop a modular manner in which solution approaches can

be constructed given limited amounts of dispensable effort.

The outline of this chapter is as follows. In section 3.2, PSG Extended, the effort-based

extension to the Project Scheduling Game, is proposed. This is done by explaining the

goal of this business game extension, as well as clarifying the strategic components for
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constructing a solution to the DTCTP. Section 3.3 elaborates on how the strategic com-

ponents are combined into a solution procedure.

PSG Extended was implemented in 2014 and has led to data of 75 groups of students.

Section 3.4 focuses on the progress of the game and the main findings based on the stu-

dent strategies. Section 3.5 applies thousands of solutions to a computer-generated and

diverse dataset. Details on the test design are provided in section 3.5.1, where attention

is given to the parameter settings and the procedure to set the effort threshold. Section

3.5.2 links characteristics of the DTCTP with various aspects of the solution quality,

such as project cost, project duration and consumed effort. The impact of the effort

percentile (section 3.5.2.2), deadline (section 3.5.2.2), penalty (section 3.5.2.2), uncer-

tainty (section 3.5.2.4) and topological structure (section 3.5.2.5) is scrutinized. Section

3.5.3 links the settings for the key components of the solutions to the project outcome.

Finally, conclusions are drawn in section 3.6.

3.2 The effort-based Project Scheduling Game

The effort-based Project Scheduling Game is an extension to the Project Scheduling

Game proposed by Vanhoucke et al. (2005). The goal of the original PSG is to minimize

the total project cost, which is comprised of two parts. The activity costs result from the

chosen time/cost trade-off option for every activity, while the penalty costs are the con-

sequence of not meeting a predefined deadline. Hence, the penalty costs only affect the

cost objective when the project duration exceeds the deadline. The PSG has been stud-

ied in chapter 2 (Wauters and Vanhoucke (2013)), where solution strategies are derived

from the analysis of participants’ data. PSG Extended is introduced after participants

have played the PSG and acquired insights related to complexity, uncertainty and risk.

While the project, the number of decision moments and the inherent uncertainty are

equal to that of the PSG, the intent of the effort-based extension is completely different.

Participants are required to design a custom solution strategy by means of a number of

components. A decision on the components and their settings has to be made prior to

the project’s execution, implying no changes can be made throughout.

However, the settings of the components will be used in a project control environment

where trade-offs of activities are changed based on the settings for each of the compo-

nents. More specifically, the participant has to decide on settings for 7 elements that are

categorized into three strategic components (cf. sections 3.2.1-3.2.3). Incidentally, the

participant may vary the settings of every element throughout the decision moments.

The settings for the 7 elements along 6 decision moments are then collected and assem-
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bled to form a solution strategy. This custom strategy is tested on the project network

of the PSG, with an identical degree of uncertainty. Afterwards, the uncertainty, as well

as the deadline and penalty are modified to reflect the capability of each strategy to deal

with this change in circumstances.

The context of PSG Extended can be described as follows. Participants of the game

are in charge of the same project of the PSG and faced with a limited amount of total

effort. The presence of an effort restriction forces each participant to make a choice on

how to spend the available effort. To that end, a number of inputs can be changed,

often leading to a change in the consumed effort. The main rationale is that as the

inputs are changed, different trade-off options for some of the activities are chosen. In

turn, this leads to a different effort consumption pattern. Similarly to the original PSG,

a choice for the inputs has to be made for each decision moment. However, a crucial

difference lies in the feedback that participants receive. In PSG Extended, participants

only receive an update on the cumulative effort consumed across all decision moments.

Throughout the original PSG, participants receive an update on the time and cost per-

formance after each decision moment. Hence, they can review their approach after every

decision moment.

An overview of the inputs that can be tuned while respecting the effort threshold is

depicted in figure 3.1. The top of figure 3.1 displays an example network with 6 Decision

Moments (DM) and 8 activities which are scheduled as soon as possible. The inputs are

divided into three components, namely schedule focus, activity focus and action radius

and will be referred to as strategic components in the remainder of this chapter. They

will be briefly discussed along the following lines, while a more thorough explanation is

given in the following sections.

• Schedule Focus: typically, schedule focus is the first component to which a change

is made. It determines if the participant wants to focus on the short term or

long term. Schedule focus selects a set of activities based on a time window. If

this window is small (a local schedule focus), the activities of the current decision

moment will be inserted into the set of activities. However, it is possible that the

participant wishes to take future activities into account, in which case the time

window will be expanded and can range from a few to all decision moments (a

global schedule focus).

• Activity Focus: the ultimate goal of PSG Extended is to assemble a strategy that is
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Figure 3.1: Overview of the inputs of PSG Extended
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in line with the wishes of the participant throughout the project’s execution. The

execution may distort a project’s baseline schedule, resulting in undesirable situa-

tions that can be remedied by taking action. Within the context of the DTCTP,

this entails changing the trade-off of a number of activities. The order and the

number of trade-off options that are evaluated make up the core of the activity

focus input. Starting from the set of activities defined in the schedule focus phase,

the activities are ranked according to a priority rule, after which the time/cost

focus determines the range of trade-off options that will be evaluated.

• Action Radius: while schedule focus and activity focus determine a set of activities

and a range of trade-off options respectively, action radius determines a number of

strategic aspects of the project. It answers questions related to the importance of

costs versus risk, whether only cost improvements are allowed and if some decision

moments are more important to the participants than others.

The participants are required to cleverly combine these components by setting the pa-

rameters for each component for every decision moment. The combination of components

with specific settings results in a solution strategy, which is tested in a number of ways:

• Comparison PSG-PSG Extended: the results from the solution strategy of PSG

Extended are compared to the overall results of the original PSG. For the original

PSG, the changes that are made to the activities’ trade-offs are very specific.

However, the solution strategy that participants build throughout PSG Extended

are general and construct a solution strategy that can be tested on numerous

projects with a different structure or different characteristics.

• Impact of uncertainty: the degree of uncertainty is varied to assess which solution

strategies are better able to cope with this change.

• Project characteristics: the deadline and height of the penalty are modified to

diversify the ease of reaching the deadline and to vary the cost implications of

incurring a penalty.

• Impact of network structure and starting position: a large amount of computer-

generated solution strategies are tested on a diverse dataset such that general con-

clusions and managerial insights can be provided. For each network, the trade-offs

at the start of the project’s execution are varied to examine the relation between

the starting position and other project characteristics.
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Results from PSG Extended are analyzed in section 3.4, in which the impact of uncer-

tainty and several project characteristics are varied as well. While section 3.4 utilizes the

network of the original PSG, the computational study of section 3.5 subjects the solution

strategies to different network structures. Additionally, the starting position is changed

and the interrelation with uncertainty and project characteristics is highlighted. In the

following sections, a more detailed description of the strategic components (schedule

focus, activity focus and action radius) is offered.

3.2.1 Schedule Focus

Schedule focus is the first strategic component and allows the participant to adopt a

short-term or long-term perspective. Schedule focus selects a subset of the ongoing or

future activities by means of a time window. The strategic component of section 3.2.2

utilizes this subset to search for the most profitable trade-off change for the activities

within the subset. In order to explain the underlying concept, we refer to the top of

figure 3.1. A Gantt-chart of an illustrative project is displayed. The project counts

8 activities and there are 6 decision moments. We assume that the participant needs

to make a decision for decision moment 3. If the participant wishes to focus on the

short term, it makes sense to only include the activities of the current decision moment,

i.e. activities 4 and 5. However, it is possible to take future activities into account by

expanding the time window to include activities 6, 7 and 8 respectively. The possibilities

the participants have at DM 3 are listed in table 3.1.

As mentioned previously, the subset of activities will be searched for the most profitable

change in the following strategic component. Hence, the concept of schedule focus is

closely related to that of a local versus a global search. A limitation is imposed on the

allowed effort that can be consumed by the solution strategy of the participant. As a

result, a trade-off needs to be made between a local search (lower degree of schedule

focus), resulting in less consumed effort, or a global search, which consumes more effort.

By expanding the time window to include future decision moments and more activities,

larger cost reductions may be attained. However, this comes at the cost of an increased

effort consumption and limits the participant’s options in future decision moments.

3.2.2 Activity Focus

Activity focus is the second strategic component and departs from the subset of activities

that results from the schedule focus of section 3.2.1. Activity focus is comprised of two

elements, namely ranking and time/cost focus. The outcome of this strategic component
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Schedule focus

Schedule focus
Activities in subset

Setting Time window

1 DM 3 {4,5}
2 DM 3-4 {4,5,6}
3 DM 3-5 {4,5,6,7}
4 DM 3-6 {4,5,6,7,8}

Activity focus

Time/cost focus Trade-off option to consider

0.25 {4}
0.5 {3,4}
0.75 {2,3,4}
1.0 {1,2,3,4}

Action radius

Cost/benefit analysis

Activity Ratio Threshold

Critical P↓
C↑ > p, p ∈ {0.7, 0.9, 1.0, 1.1, 1.3}

Non-critical C↓
P↑

Table 3.1: Overview of the participant’s possibilities for the schedule focus at DM 3, time/cost
focus for activity 8 and cost/benefit analysis

is a proposal for a trade-off change for every activity. Whether this change is acceptable

will be determined by the third and final strategic component, namely action radius (cf.

section 3.2.3).

We refer to figure 3.1 to explain the purpose of ranking and time/cost focus. Let act

denote the vector of activities that results from the schedule focus component. The

ranking phase changes the order of the n elements of act by applying a priority rule.

When trade-off changes are executed, this will be done according to the activity order

that follows from applying this priority rule. The order in which adjustments to activ-

ities are made can alter the critical path and can lead to a different project duration.

The ranking phase distinguishes between critical and non-critical activities. Participants

may choose from the priority rules found in table 3.21. The second element of activity

focus is the time/cost focus. While schedule focus and ranking operate on the project

level, time/cost focus inspects the trade-offs of individual activities. Time/cost focus

is illustrated in figure 3.1 and the middle part of table 3.1. Suppose activity 8 has 5

1The interested reader is referred to http://pmknowledgecenter.com/dynamic_scheduling/

baseline/optimizing-regular-scheduling-objectives-priority-rule-calculations for an expla-
nation as well as sample calculations of these priority rules. Minimum criticality sorts activities based
on the amount of critical predecessors in increasing order.

http://pmknowledgecenter.com/dynamic_scheduling/baseline/optimizing-regular-scheduling-objectives-priority-rule-calculations
http://pmknowledgecenter.com/dynamic_scheduling/baseline/optimizing-regular-scheduling-objectives-priority-rule-calculations
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Critical activities Non-critical activities

Abbreviation Description Abbreviation Description

Random Random

MIS Most Immediate Successors LIS Least Immediate Successors

LPT Longest Processing Time SPT Shortest Processing Time

MinCrit Minimum Criticality MinSlack Minimum Slack

MaxCrit Maximum Criticality MaxSlack Maximum Slack

GRPW Greatest Rank Positional Weight SRPW Smallest Rank Positional Weight

Table 3.2: Overview of the priority rules for critical and non-critical activities

different trade-off options as shown in figure 3.1. Furthermore, we assume activity 8 is

critical and that the activity’s duration will be crashed. The time/cost focus specifies

the number of neighbouring trade-off options that will be searched such that the most

profitable trade-off change can be executed. A low degree for the time/cost focus implies

that only one of the neighbouring trade-off options will be considered. The available val-

ues for time/cost focus are shown in table 3.1. The trade-off options to be considered,

found in the second column of table 3.1, correspond with the numbers above each point

of the time/cost profile of figure 3.1. As the time/cost focus increases, more time/cost

combinations are evaluated. Similar to the schedule focus, an increase in time/cost fo-

cus comes at the expense of an increased effort consumption. For critical activities, the

trade-off option resulting in the minimum cost slope will be proposed, while the maxi-

mum savings slope for non-critical activities is suggested. Whether the trade-off change

is actually executed, depends on the cost/benefit analysis parameter of the third and

final strategic component, namely action radius. This component is explained in the

following section.

3.2.3 Action Radius

Action radius is the final strategic component and translates strategic matters such as

the importance of cost and risk into specific parameters. Action radius consists of 4

elements, namely deadline focus, slack consumption, cost/benefit analysis and effort

loading. Each of these elements will now be explained.

Deadline focus and slack consumption allow the participant to indicate the importance

of the deadline and costs respectively. If the deadline is an important objective, more

critical activities will be crashed in order to bring the expected project duration closer

to the predefined deadline. When the slack of non-critical activities is consumed, costs
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are saved but at the same time, the project’s risk rises. If the settings of deadline focus

and slack consumption are equal, the time aspect (reaching the deadline) is judged to

be as important as cost savings (prolonging non-critical activities). As a result, every

change to a critical activity will be followed by a change to a non-critical activity. The

setting for deadline focus and slack consumption is converted to a score, in which “Low’”

corresponds with a score of 1, “Medium” with 3 and “High” with 5. If the scores of

deadline focus and slack consumption are not identical, their scores indicate how many

consecutive moves on a critical activity (the deadline focus score) will be followed by

consecutive moves on non-critical activities (the slack consumption score).

The third element of action radius is cost/benefit analysis and evaluates whether the

proposed trade-off change that follows from the time/cost focus of section 3.2.2 is ac-

ceptable or not. This is achieved by comparing the cost/benefit ratio to a threshold

value. When the ratio exceeds the threshold, the trade-off change will be executed.

First, we will explain the ratio for critical and non-critical activities. Next, the thresh-

old value and its significance will be discussed. We refer to table 3.1 for a summary of

the cost/benefit analysis.

Critical activities are crashed according to the minimum cost slope, while non-critical

activities are prolonged according to the slope that yields maximum savings. In both

cases, costs and benefits may be incurred. When a critical activity is crashed, the activ-

ity costs, denoted by C in table 3.1, rise. On the other hand, the decreased duration of

that critical activity may entail a lower penalty cost (P ↓) if the project’s duration was

lowered.

Non-critical activities are prolonged according to the maximum savings slope. As an ac-

tivity’s duration is increased, the activity costs decrease (C ↓). However, if the increase

in duration consumes all available slack, the activity becomes critical and may lead to

an additional penalty cost (P ↑) if the project’s duration has risen.

The ratio of benefits and costs is compared to a parameter that is set by the participant

and may differ in value for each decision moment. When the ratio exceeds the value of

p, the proposed trade-off change is carried out. Otherwise, no change to the activity is

made. Participants can choose from 5 values for p (provided in table 3.1) for each of the

6 decision moments. p should be interpreted as follows:

• p = 1: the benefits are equal to the costs. Before an activity’s trade-off is changed,

the benefits should surpass or be equal to the costs. Hence, only cost improvements

or cost-neutral changes are allowed.
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• p < 1: the costs are allowed to exceed the benefits. Small cost deteriorations are

accepted.

• p > 1: the benefits need to outweigh the costs. Only improvements larger than p

will suffice.

Participants are required to make a choice on the parameter settings for each element

of the three strategic components, while operating under an effort restriction. The

cumulative effort across all decision moments cannot exceed 100%. The final element

of the action radius component allows participants to indicate the importance of each

decision moment. Effort loading applies a correction to the effort threshold for individual

decision moments, resulting in a higher allowed effort consumption for important decision

moments and less room for decision moments that are not judged to be important by

the participant.

3.3 Solution procedure

The previous section detailed the three strategic components, as well as the elements

each component is composed of. Once the parameter settings for the 7 elements and

for the 6 decision moments have been set, the components are combined into a solution

approach. The aim of this section is to explain how the elements are assembled and

which element impacts which part of the solution procedure.

An overview of the solution procedure can be found in algorithm 1. As mentioned

previously, participants need to make parameter choices. These are constrained by a

cumulative effort, which is divided across the decision moments. Based on the partici-

pant’s preference, the distribution of effort across decision moments can be altered. This

is achieved by means of the effort loading element. As a result, the effort threshold de-

pends on the effort loading parameter. Once this is done, the activities that fall within

the schedule focus are determined. The activities of this subset will be used in the sub-

sequent part of the solution procedure.

As long as the stop criterion is not met, trade-off changes occur. This will be explained

later on in this section. Whether a potential change to a critical or non-critical activity

is investigated depends on the deadline focus and slack consumption parameters. When

both elements assume the same value, reaching the deadline is as important as consum-

ing slack. Hence, every change to a critical activity will be followed by a change to a
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non-critical activity. However, if reaching the deadline is more important, more changes

to critical activities will be made. The (critical or non-critical) activities are ranked ac-

cording to the selected priority rules of table 3.2. Next, a search for the most profitable

trade-off change is conducted. Critical activities are crashed according to the minimum

cost slope, while non-critical activities are prolonged along the maximum savings slope.

This search for the smallest or largest slope is limited by the time/cost focus. Once the

best trade-off option has been found, a check on whether the proposed change exceeds

the cost/benefit analysis parameter p takes place.

Activity trade-offs are changed as long as a stop criterion is not met. The process of mod-

ifying trade-offs is stopped if one of two conditions is met. The first condition relates to

the effort threshold. Once all effort is consumed, the procedure moves to the next decision

moment and the effort threshold is reset based on that decision moment’s effort load-

ing value. The second condition, no crashing and no prolonging in algorithm 1, checks

whether the activities of the schedule focus subset can still be crashed (for critical activi-

ties) or prolonged (for non-critical activities). If none of the critical or non-critical activ-

ities can be crashed or prolonged respectively, no additional trade-off changes can take

place. This process continues until the final decision moment. The stop criterion ensures

that the effort for every decision moment and for the project as a whole is not exceeded.
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Algorithm 1: Assembly of the strategic components into a solution procedure

Data: Settings for the elements of the strategic components

for every decision moment do

Set effort threshold

Set focus activities

stop criterion ← false

while stop criterion ← false do

if change on critical activity then

Rank critical activities

Crash according to MC slope

else

Rank non-critical activities

Prolong according to MR slope

end

if remaining effort ≤ 0 || (no crashing & no prolonging) then

stop criterion ← true

else

// Do nothing

end

end

end

3.4 Empirical study

As mentioned previously, participants are required to change the settings for every strate-

gic component and for each decision moment. These components are then assembled

into a solution strategy, which can be applied to real-life instances or simulated project

networks. In this section, the results of students playing PSG Extended are reported.

The project that was used is equal to the one used in the original PSG. First, the process

of the game is described. Next, we discuss the performance of the solution strategies

and reveal the influence of changes in the uncertainty, deadline and penalty value.

3.4.1 Game Process

PSG Extended commences with an introductory session explaining the various compo-

nents used to build a solution (cf. section 3.2). Following this explanation, the partic-
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Component Possible values

Schedule Focus

Schedule Focus {1,DMS-(i-1)}
i = current decision moment, DMS=#decision moments

Activity Focus

Activity ranking Table 3.2

Time/Cost focus {0.25, 0.5, 0.75, 1}

Action Radius

Deadline focus {Low, Middle, High}
Slack consumption {Low, Middle, High}
Cost/benefit analysis {0.7, 0.9, 1, 1.1, 1.3}
Effort loading {Low, Middle, High}

Table 3.3: Overview of the settings for every decision moment i throughout PSG Extended

ipants open a spreadsheet file listing the different decision moments and components.

Default settings for every component and decision moment are set, leading to a cumu-

lative effort that is well below the threshold. A screenshot of the spreadsheet file can

be found in figure 3.2. The large number at the bottom represents the consumed effort

percentage. Participants are not allowed to exceed the threshold of 100%. As mentioned

before, the player only receives an update of the effort when one of the parameters

is changed. Contrary to the original PSG, feedback on time and cost performance is

excluded until the game has finished. Excluding time and cost performance feedback

prompts participants to focus on a clever strategy, rather than trial-and-error scenarios.

Participants are required to make a choice for each component throughout the different

decision moments. As a setting for one of the components is changed, the amount of

consumed effort, displayed as a percentage, is updated. An overview of the different

components, as well as the different values for each component, is given in table 3.3.

The value for every component can differ across decision moments. It is possible to as-

sume a low degree of effort loading in decision moment 1 combined with a high amount

of effort loading in decision moment 2. Consequently, the amount of solution strategies

that can be constructed by the participants is astronomical. After the game, a feedback

session takes place during which each participant or group of participants receives an

individual report. The report outlines the settings chosen by the participants, as well as

a comparison to the settings of the other groups. The time and cost performances are

provided and the percentiles indicate how the group compares against the other com-

peting groups. Additionally, a number of project characteristics are modified to assess
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Figure 3.2: Overview of the spreadsheet file of PSG Extended
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the influence on the solution quality:

• Impact of uncertainty: the delays of the original PSG are increased from their

current values (100%) to 200% in steps of 20%.

• Project characteristics: the deadline and height of the penalty are varied to inves-

tigate the time and cost implications. An alteration in the deadline can change

the ease with which the deadline can be reached while the penalty height regulates

the severity of incurring a penalty.

In the following section, the time and cost performance of the participants will be ana-

lyzed. Both the project instance of the original PSG and the impact of uncertainty and

different project characteristics will be scrutinized.

3.4.2 Empirical results

In this section, the performance of the student groups is presented. The settings of the

students are assembled into a solution strategy which is applied to the project file of

Vanhoucke et al. (2005). Labeled the “baseline scenario”, some descriptive statistics of

the participant population as well as the influence of the strategic components on the

attained cost is provided in section 3.4.2.2. Next, some characteristics of the project

of Vanhoucke et al. (2005) are modified to examine their effect on the overall solution

quality.

3.4.2.1 Baseline scenario

The session of PSG Extended is scheduled after the original PSG has been played. As

a result, participants are familiar with the characteristics of the project along with the

relation between slack and project risk. The project characteristics of this section are

identical to those presented by Vanhoucke et al. (2005). The project duration at the

start of the project is equal to 123 days. However, the client stipulates a deadline of

107 days. For every day the project’s duration exceeds the deadline, a penalty cost of

e500 will be incurred. The participants are required to tune the settings of the strategic

components of section 3.2 such that the total cost is minimized and the allowed effort

does not exceed 100%.

Descriptive statistics PSG Extended was first rolled out at University College of

London (UCL) in January 2014. 8 student participants worked on the same real-life

instance as in the original PSG of Vanhoucke et al. (2005). In January 2015, a second
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Group #Students
Cost Deviation (%)

Min Max µ σ

UCL (2014) 8 0.71 1.12 0.88 0.13

UCL (2015) 7 0.73 1.19 0.92 0.16

UGent 60 0.63 1.33 0.95 0.19

Table 3.4: Cost deviation for the participants of PSG Extended

student group at UCL participated in PSG Extended, counting 7 participants. 60 civil

engineering participants make up the third part of the empirical data and hail from

Ghent University (UGent). Some descriptive statistics can be found in table 3.4. This

table displays descriptive statistics with regard to the cost deviation for the partici-

pants of PSG Extended. The problem is solved to optimality using the procedure of

Demeulemeester et al. (1998). The 2014 group at UCL reached the smallest average

cost deviation. The UGent group reached the lowest minimum cost deviation. However,

the standard deviation, mean and maximum cost deviation are higher than those of the

UCL student groups.

Effort-based components We also analyzed how the different strategic component

settings affected the achieved project cost. The correlation between the schedule fo-

cus, time/cost focus, deadline focus, slack consumption, cost/benefit and effort loading

elements was compared to the project cost. An overview is given in table 3.5, which

displays the correlation between the various elements and the cost at the final decision

moment. A negative correlation implies that the project cost decreases as the setting

of the respective element is increased. Table 3.5 shows that schedule focus is the only

component with a positive correlation (0.10) to the project cost. A higher degree of

schedule focus leads, on average, to a higher project cost. For the real-life instance that

was used, adopting a local schedule focus pays off compared to a global search point

of view. Hence, it is better to change trade-off options on a limited set of activities

rather than making fewer changes to a large set of activities. A higher time/cost focus,

deadline focus, slack consumption, cost/benefit analysis and effort loading give rise to a

decreased project cost.

3.4.2.2 Impact of parameter changes

In this section, it is shown how changes in the parameters affect the results obtained by

the participants. In turn, the uncertainty, deadline and penalty height are modified. It
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Strategic component Element Correlation

Schedule focus Schedule Focus 0.10

Activity focus Time/Cost focus
Crit -0.31

Non-crit -0.17

Action radius

Deadline focus -0.24

Slack consumption -0.21

Cost/benefit
Crit -0.08

Non-crit -0.05

Effort loading -0.13

Table 3.5: Correlation for the different dimensions compared to the final project cost

is worth noting that only one parameter is changed per experiment. Hence, this section

does not take interaction effects into account.

Impact of uncertainty The aim of the PSG and PSG Extended is to discuss the

careful balance between complexity and uncertainty. There is a need for optimization

when dealing with complex problems, yet uncertainty may render this optimization ex-

ercise useless. As the project progresses, participants of the original PSG of Vanhoucke

et al. (2005) are confronted with delayed activities or certain opportunities. In PSG Ex-

tended, those delays and opportunities were increased in a stepwise manner, going from

the baseline scenario with an uncertainty equal to 100% to situations where uncertainty

was increased to 200% in steps of 20%. The time results are shown in table 3.6. The

table contains the project duration as a percentage of the duration when the uncertainty

is equal to 1. More specifically, the percentage Project Duration (D(%)) is calculated

as follows:

D(%) =
Dunc=u

Dunc=1
, u ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0} (3.1)

The project duration for the different uncertainty values u is divided by the project

duration for an uncertainty equal to 1. This allows us to assess the impact of an increase

in uncertainty. The table indicates that as the uncertainty rises, the project duration

increases as well. Since uncertainty is defined as a change in an activity’s duration, it

makes sense that this is, at least to some extent, propagated to the project level. We

also examined the effect of uncertainty on the project costs. However, the increase in

project cost is small compared to the rise in project duration, leading us to conclude

that uncertainty resorts a stronger effect on time than on cost.
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Group
Uncertainty (in %)

1.0 1.2 1.4 1.6 1.8 2.0

UCL (2014) 100% 101.35% 102.60% 102.91% 104.16% 105.93%

UCL (2015) 100% 101.43% 103.22% 102.74% 104.65% 106.44%

UGent 100% 101.34% 102.45% 102.56% 103.97% 105.57%

Table 3.6: Effect of uncertainty on project duration

Deadline impact The second characteristic that was changed is the deadline of the

project. When the deadline’s location shifts, the point at which a penalty is incurred

changes as well. When the deadline differs greatly from the starting position (a project

duration of 123 days in this case), reaching the deadline will become a difficult task. As

such, a modification of the deadline parameter affects the ease with which the deadline

can be reached. Altering the deadline was achieved as follows. The instance was solved

according to the exact procedure of Demeulemeester et al. (1998). Let Dmin and Dmax

denote the minimum and maximum project duration of the efficient time/cost frontier.

The deadline, δn, is set using the parameter θ and is provided in equation (3.2).

δn = Dmin + θ ∗ (Dmax −Dmin) (3.2)

For the deadline parameter, three values are used, namely θ ∈ {0.25, 0.5, 0.75}. We also

include the deadline of the original PSG, which corresponds with a value of θ = 0.29.

The cost results are calculated in a similar fashion to equation (3.1) and can be found

in the upper half of table 3.7.

The three student groups display a similar behaviour. As θ increases, the project cost

decreases. This trend can be explained as follows. The start duration of 123 days lies

closest to the deadline if θ = 0.75. Hence, the available effort can be spent on optimizing

the activity trade-offs, rather than spending all the effort on crashing activities in order

to approach the deadline more closely.

The conclusion is that as the starting position and deadline coincide, the project costs

are lower compared to situations where there is a large discrepancy between the starting

position and the deadline.

Penalty impact The final characteristic to be changed is the height of the penalty.

Increasing the penalty discourages participants to exceed the imposed deadline. The

penalty was increased from the original value of e500 to e1,000, e2,500 and e5,000.



84 Chapter 3

Group
θ

0.25 0.29 0.5 0.75

UCL (2014) 100% 99.85% 99.30% 98.68%

UCL (2015) 100% 99.86% 99.35% 98.71%

UGent 100% 99.87% 99.35% 98.71%

Group
Penalty

500 1,000 2,500 5,000

UCL (2014) 100% 101.75% 106.74% 115.12%

UCL (2015) 100% 101.66% 106.58% 114.80%

UGent 100% 101.76% 107.04% 115.73%

Table 3.7: Effect of the deadline and penalty on project costs

The results are shown in table 3.7. As can be expected, a higher penalty value will pose

more severe cost ramifications when the deadline is exceeded. As a result, the project

cost rises, on average, as the height of the penalty is increased.

3.4.3 Summary

Participants of PSG Extended are required to input settings of the three strategic compo-

nents. These are then combined into a solution strategy. In this section, the participant

solutions were tested on the project of the PSG of Vanhoucke et al. (2005). It was found

that a local schedule focus performs best and that an increase in settings for the other

elements gives rise to a lower project cost. Next, the uncertainty, deadline and penalty

height were altered. The main conclusions are that uncertainty leads to a longer project

duration, that an increase in penalty leads to higher project costs and that better cost

results are obtained when the starting position does not differ much from the deadline.

3.5 Computational results

Section 3.4 discussed participant results of PSG Extended. The parameter values for

each of the strategic components were carefully set by the students, after which the

components were assembled into a solution procedure as described in section 3.3. In

this section, computational results are reported and analyzed. A diverse dataset will be

employed in which the topological structure of the project networks, as well as different

settings for uncertainty, deadlines and penalties will be utilized. The computational

experiment allows us to assess whether the classroom results of section 3.4 can be gen-

eralized. Furthermore, we can take other aspects such as the topological structure of
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the project networks into account. Creation of the dataset as well as generation of the

parameter settings will be discussed in section 3.5.1. Once these settings have been eluci-

dated, results on the impact of the project characteristics on time and cost are divulged.

Section 3.5.3 concludes the computational results by assessing how the parameter values

affect the time and cost objective.

3.5.1 Test design

The test design contains details on the various settings that were used to construct a

computer-generated dataset. The section is broken down into five paragraphs. First, we

discuss the topological structure of the artificial project networks, as well as the time and

cost values for the activity trade-offs. Next, we explore how the uncertainty was varied.

Thirdly, project characteristics such as the deadline and penalty values are considered.

Fourthly, details are provided on how the files containing the parameter values were

generated. Finally, the manner in which the effort threshold was set is elaborated. PSG

Extended, including the solution procedure of section 3.3, was implemented in C++.

The experiments were conducted on Ghent University’s High Performance Computing

infrastructure. The Delcatty cluster, which possesses a quad-core Intel Xeon processor

of 2.6 GHz and 64GB RAM, was used.

Topological & trade-off settings 10 projects with 30 activities were generated by

means of the RanGen2 generation engine (Vanhoucke et al. (2008)) for each of the 9

values of the Serial/Parallel (SP) indicator, going from 0.1 to 0.9 with a 0.1 increment.

While Vanhoucke et al. (2008) employed the term I2 indicator, it was changed to its more

intuitive name, the SP indicator, in later simulation studies (cf. Colin and Vanhoucke

(2014), Wauters and Vanhoucke (2014b, 2015)). The goal of the SP indicator is to

measure a network’s degree of resemblance to a completely serial (high SP values) or

parallel (low SP values) network. The number of trade-offs for each activity is drawn

randomly between 1 and 10 options. For every possible trade-off option, a combination

of durations and costs needs to be generated. The minimum activity costs are drawn

randomly from the uniform distribution defined by the minimum of 500 cost units and

the maximum of 2,500. The difference in cost between two adjacent trade-offs is not

allowed to exceed 1,000 cost units. The minimum duration is drawn from 10 to 20 units

of time with a maximum of 1 time unit between neighbouring trade-off options.

Uncertainty As mentioned previously, unexpected delays or opportunities distort the

baseline plan. Uncertainty manifests itself in two ways, namely through the amount
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of activities subject to variation and the height of the variation. The minimum delay

height is equal to 1, whereas the maximum delay height amounts to 9 time units. The

proportion of activities subject to a delay is varied throughout our experiments, ranging

from 0 to 0.75 in steps of 0.25. For the remainder of this chapter, the term uncertainty

will be used to refer to the proportion of activities subject to a delay. If the uncertainty

is equal to 0.25, 8 (≈ 0.25 ∗ 30) activities will be delayed. 10% of the delayed activities

will be ahead of time, indicating that an activity finished sooner than expected. The

delay height for the activities that are ahead of time is drawn from the same distribution

as the activities that are behind on time.

Project characteristics The PSG and the effort-based PSG are soft variants of the

DTCTP-D. This implies that the deadline constraint is a soft one. Violating the deadline

does not render the problem infeasible but surpassing the deadline is penalized by means

of a penalty cost for every day the deadline is exceeded. Once trade-offs and, if applicable,

delays are generated for each activity, a deadline is imposed. This is done in the same

way as in section 3.4.2.2 and equation (3.2). For the deadline parameter, three values are

used, namely θ ∈ {0.25, 0.5, 0.75}. Four values for the penalty parameter are explored,

namely a cost of 500, 1,000, 2,500 and 5,000 cost units per day. Finally, the selected

trade-offs at the start of the project need to be set. In order to study the influence of

the starting position in conjunction with the other parameters, three alternatives are

proposed. In the first situation, every activity is set at its crash duration. In the second

position, the duration corresponding with the middle trade-off is selected. Finally, the

third starting position sets each activity at its longest duration.

Generating parameter files In section 3.4.2, the empirical results of PSG Extended

were discussed. These results follow from a project network that is based on a real-

life project and the settings that were fine-tuned by the participants of PSG Extended.

For the computational experiment, the parameter settings are computer-generated and

attempt to encompass a wide array of parameter values. The settings for the main

components of PSG Extended, namely schedule focus, activity focus and action radius

are provided in table 3.8. In that table, it is shown which values were used for the

various components. In total, 419,904 (3*6*6*4*4*3*3*3*3*3) parameter files were gen-

erated, leading to a vast array of different settings, ranging from a low to a high effort

consumption pattern. The results of the computational experiments are based on the

generated parameter files and will allow us to draw conclusions concerning the impact

of the various strategic components and their respective elements.
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Schedule focus

Schedule focus {minimal, middle, maximal}

Activity focus

Priority rule
Critical

Table 3.2
Non-critical

Time/Cost focus
Critical {0.25,0.5,0.75,1}
Non-critical {0.25,0.5,0.75,1}

Action radius

Deadline focus {low, medium, high}
Slack consumption {low, medium, high}

Effort loading {low, medium, high}

Cost/benefit analysis
Critical {0.7,1.0,1.3}
Non-critical {0.7,1.0,1.3}

Table 3.8: Settings for parameter generation of the elements of the strategic components

Effort threshold As mentioned previously, participants of PSG Extended are con-

strained in their choices by the effort threshold, which is not allowed to exceed 100%.

For every project instance, the effort threshold can be chosen from a range defined by a

minimum and maximum value. In order to set the effort threshold, each project instance

is solved twice:

• Unconstrained run: no effort threshold is imposed. The solution procedure of al-

gorithm 1 is followed but now includes a modified stopping criterion. The solution

procedure only advances to the next decision moment if no critical activity can be

crashed and no non-critical activity can be prolonged. Each of the 419,904 gener-

ated parameter files is applied to the project instance, resulting in a vast array of

values for the consumed effort. The files are sorted in increasing effort consump-

tion order. The effort limitation for each project is chosen as a percentile of the

sorted values. The effort threshold corresponding with the xth (x ∈ {10, 40, 70})
percentile is employed for the second run.

• Effort-constrained run: each of the parameter files is applied to the project in-

stance. The effort threshold constrains the trade-off changes that can be made.

When the remaining effort is equal to 0, the solution procedure proceeds to the

following decision moment, as described in section 3.3 and algorithm 1.

A summary of the settings of the paragraphs described above is provided in table 3.9.
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Description Settings

SP factor 0.1-0.9, ∆ = 0.1

#Projects 10

Activity Costs ∼ U(500, 2500)

Activity Duration ∼ U(10, 20)

Uncertainty 0-0.75, ∆ = 0.25

θ 0.25-0.75, ∆ = 0.25

Penalty {500,1000,2500,5000}
Starting position Crash, middle, longest duration

#preference files 419,904

Effort threshold {10,40,70}

Table 3.9: Settings for the computational experiment

3.5.2 Main Experiment

In this section, the main results of the computational experiment are discussed. Unless

mentioned otherwise, a number of parameters were fixed in order not to mix different

underlying effects. As a result, the 40th effort percentile, a value for the SP factor of

0.5 and an uncertainty level of 0.5 are used to report on the influence of the other para-

meter values. The effect of the effort percentile, deadline, penalty, uncertainty and SP

indicator are discussed in this section. Throughout these sections, we will comment on

the influence of the starting position.

The impact of the effort percentile, deadline, penalty, uncertainty and SP indicator

is measured using the same performance metric. Suppose our aim is to measure the

influence of a project characteristic on an arbitrary objective O, where O could signify

the average project cost, duration or effort. Since we want to determine the influence of

a given project characteristic, it is necessary to compare the objective O across different

values of the project characteristic, indexed by i. Therefore, the percentage increase

or decrease in O is calculated. This is shown in table 3.10. Table 3.9 listed the dif-

ferent values for every project characteristic. As an example, the deadline was varied

using parameter θ and could assume three values, namely 0.25, 0.5 and 0.75. If the

impact of the deadline on a given objective is to be studied, the percentage increase or

decrease, symbolized by O(%) in table 3.10, is calculated by dividing O for each value

θ = i (i ∈ {0.25, 0.5, 0.75}) by Oθ=0.25. Hence, O(%) is found by dividing by a baseline

value, found in the denominator in table 3.10.
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Effort Deadline Penalty Uncertainty SP indicator

O(%)
Oeff=i

Oeff=10

Oθ=i
Oθ=0.25

Op=i

Op=500

Ounc=i
Ounc=0

Osp=i

Osp=0.1

i ∈ {10, 40, 70} {0.25, 0.5, 0.75} {500, 1000, 2500, 5000} {0, 0.25, 0.5, 0.75} {0.1, ..., 0.9}

Table 3.10: Calculation of the performance metric for an objective O

3.5.2.1 Effect of the effort percentile

The major constraint for participants of PSG Extended lies in the imposed effort thresh-

old. Activity trade-offs can be changed until the remaining effort is equal to 0. This

was already detailed in section 3.3 and algorithm 1. In this section, we vary the ef-

fort threshold. Consequently, as the effort threshold is raised, there is more room to

make changes to activity trade-offs. Changing the effort percentile was found to have

an impact on the project costs. As explained in table 3.10, the project costs for the

10th, 40th and 70th percentile will be divided by the project costs of the 10th percentile.

Hence, a value smaller than 100% implies that as there is more room to execute trade-off

changes, the quality of the attained solutions rises. On average, the project cost at the

40th percentile was equal to 93.12% of the project cost at the 10th percentile, whereas

for the 70th percentile a project cost of 88.36% was reached.

Raising the effort threshold and allowing more activity trade-off changes to take place

leads, on average, to lower project costs. This implies that, as more trade-off changes

are allowed (for instance through the availability of a higher contingency budget), the

overall project costs will decrease.

3.5.2.2 Effect of the deadline

The deadline stipulates the point from which a penalty will be incurred. This section

aims to assess the impact of a change in the deadline’s location and how it interacts with

the project’s starting position.

The project cost for the alternative values of θ is studied in relation to the average project

cost of θ = 0.25 and the outcome is presented in table 3.11. Table 3.11 reveals that as

the discrepancy between θ and the starting position increases, the average project cost

increases as well. The minimum cost for each of the starting positions is indicated in

bold. As the starting position coincides with the deadline, more effort can be allocated

to trying to optimize the trade-off selections without having to alter the project duration

in a drastic manner.

The location of the deadline, along with the starting position, resorts an important effect
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θ
Starting position

Crash Middle Longest

0.25 100% 100% 100%

0.5 100.22% 79.32% 79.51%

0.75 101.00% 79.67% 62.17%

Table 3.11: Effect of the deadline in relation to the starting position

Starting position θ
Penalty

500 1000 2500 5000

Middle 0.25 100% 105.50% 120.67% 145.46%

Longest

0.25 100% 120.14% 169.69% 252.75%

0.5 100% 115.34% 152.37% 214.74%

0.75 100% 110.20% 136.98% 180.87%

Table 3.12: Effect of the penalty on project costs

on the project costs. The lowest costs are achieved when the location of the deadline

and the starting position are more aligned. It is worth noting that this conclusion is

identical to the deadline impact of the empirical study of section 3.4.

3.5.2.3 Effect of the penalty

The previous section varied the location of the deadline by means of a parameter θ. A

second element that determines the attractiveness of reaching the deadline is the penalty

cost. In this section we examine the impact of the penalty height on the cost objective.

The penalty cost assumes a value of 500, 1,000, 2,500 and 5,000. In our analysis, we limit

ourselves to the situations with a penalty cost > 0. The results are provided in table

3.12. As the discrepancy between the starting position and θ increases, the deviation

from the deadline increases and hence, the penalty cost becomes larger. This is apparent

for the position where the longest activity duration is selected at the start of the project.

The cost increase as the penalty becomes larger is higher for θ = 0.25 than for θ = 0.5.

Increasing the penalty height discourages exceeding the deadline. The penalty has an

impact on the cost objective and is closely related to the deadline and starting position.

As the difference between starting position and deadline increases, the penalty share

in the total project cost rises as well. This finding is similar to the observation of the

empirical study.
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Uncertainty

0 0.25 0.5 0.75

Project Duration 100% 107.68% 115.33% 122.68%

Table 3.13: Effect of uncertainty on the project duration

3.5.2.4 Effect of uncertainty

In section 3.5.1, uncertainty was defined to refer to the proportion of activities subject to

a delay. A higher value for the uncertainty corresponds with an increase in the number of

activities that are ahead of or behind schedule. The effect of uncertainty was not found

to differ along the starting position. Hence, we only report on the effect of uncertainty

on the project duration, averaged across all starting positions. The empirical study of

section 3.4 found that uncertainty influences the project duration rather than the project

costs. This observation is corroborated in our computational tests. Table 3.13 shows

that as the uncertainty increases, the average project duration increases almost linearly.

The effect on the resulting costs is less clear. The explanation lies in the deviation

from the deadline. While the uncertainty increases the average project duration, it does

not necessarily push the project duration beyond the deadline. As a result, the rise in

uncertainty does not always lead to higher penalty costs. In the few situations where

a higher degree of uncertainty leads to a positive deadline deviation, the conclusions

on the effect of the penalty of section 3.5.2.3 come into play. While the location of

the deadline and the penalty exhibit an effect on the cost objective, uncertainty affects

the time objective. A higher degree of variation mainly leads to an increase in project

duration.

3.5.2.5 Effect of the SP indicator

One of the computational experiment’s main advantages lies in the generation of differ-

ent settings and project networks. As a result, the impact of the topological structure

of the networks can be investigated.

We discovered that the topological structure affects the consumed effort. While the

penalty and deadline parameters do not produce a significant effect, the starting posi-

tion influences the effort as well. This finding is hardly surprising. The starting posi-

tion determines whether only non-critical activities (shortest duration), critical activities

(longest duration) or both (middle duration) can be changed at the start of the project.

Moreover, the topological structure regulates the amount of (non-)critical activities. As

the project network becomes more serial, the number of critical activities rises. As a
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Starting position
SP indicator

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Shortest 100% 89.52% 85.33% 84.26% 78.94% 61.57% 53.22% 40.30% 24.72%

Middle 100% 88.84% 85.23% 85.35% 81.56% 71.21% 67.71% 69.01% 60.82%

Longest 100% 106.74% 118.01% 138.43% 144.50% 135.41% 133.96% 135.42% 127.19%

Table 3.14: Effect of the SP indicator on the consumed effort

result, there should be an effort difference between the crash and longest duration along

the SP indicator.

The results are summarized in table 3.14. When every activity is set to its shortest

duration, the consumed effort greatly decreases as the project becomes more serial. At

the start of the project, the only possibility to change trade-offs consists of increasing the

duration of non-critical activities. Since serial project networks count few non-critical

activities, the effort is higher for networks with a lower SP indicator. It is expected that

as the starting position changes, this effect will become less pronounced. This obser-

vation is valid as the effort proportion for the middle and longest starting position is

equal to 60.82% and 127.19% for a value of the SP indicator of 0.9 respectively. These

percentages are considerably higher compared to the shortest starting position (24.72%).

3.5.3 Strategic component analysis

In section 3.2, the different strategic components that need to be carefully tuned by

the participants were discussed. This section discusses how the settings of the different

strategic components influence the attained solution quality. The outline of this section

is identical to that of section 3.2, where the strategic components of the effort-based

Project Scheduling Game were elucidated.

3.5.3.1 Schedule Focus

Three different combinations for the schedule focus were tested, resulting in a low,

medium and high degree of schedule focus. These concepts are closely related to a

local versus a global search. A high schedule focus selects all activities while a small

value only looks at the activities of the current decision moment. The results are de-

picted in figure 3.3. The x-axis displays the average schedule focus across all decision

moments, while the y-axis represents the project costs. A local schedule focus attains

the best results, except when every activity is set at its crashing duration. In that sit-

uation, a medium schedule focus is slightly better than the local focus. However, figure
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3.3 clearly shows that a global search leads to increased project costs, regardless of the

starting position.
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Figure 3.3: Relation between the schedule focus and project costs

3.5.3.2 Activity Focus

The order in which changes are made to activities is governed by the ranking phase.

The impact of priority rules can be related to the starting position of the projects. If

the activities are set to their lowest duration, there is no potential for crashing. As a

result, it matters little which priority rule is selected. The same observation can be made

for non-critical activities when every activity is set to its maximum duration. Since the

activities cannot be prolonged, the impact of the priority rule is very low. Disregarding

these situations, the best priority rules for critical activities are the Most Immediate Suc-

cessors and Longest Processing Time rules. Crashing an activity with a lot of successors

directly affects a large number of activities while activities with a long processing time

may provide great crashing potential. The best performing priority rule for non-critical

activities is the Maximum Slack rule. Activities with a lot of slack can be prolonged

without the risk of becoming critical. Hence, extending the duration leads to savings

without incurring a penalty cost.
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Starting Position (Non-)critical
Time/cost focus

0.25 0.5 0.75 1

Average
Critical 100% 99.77% 99.42% 99.03%

Non-critical 100% 99.62% 99.11% 98.78%

Crash
Critical 100% 100.25% 100.60% 100.79%

Non-critical 100% 99.31% 98.45% 97.72%

Middle
Critical 100% 101.03% 102.13% 102.10%

Non-critical 100% 99.47% 98.71% 98.42%

Longest
Critical 100% 98.03% 95.53% 94.20%

Non-critical 100% 100.07% 100.17% 100.21%

Table 3.15: Effect of the time/cost focus on the project costs

While the schedule focus operates on a project level, the time/cost focus drills down

to the activity level. The time/cost focus regulates the number of trade-off options that

are compared. For critical and non-critical activities, four combinations were tested.

The effect on the project cost can be found in table 3.15. On average, a higher degree of

time/cost focus for both critical and non-critical activities leads to cost improvements,

which can be found in the rows labeled “Average”. These results are averaged across all

penalty, deadline and starting position settings. However, closer inspection reveals that

the cost improvement for critical activities is solely due to the longest duration starting

position. When every activity is set to the trade-off with the longest duration, it will be

necessary to crash a lot of activities in order to approach the deadline more closely. A

higher degree of time/cost focus allows for either a larger reduction in duration, a better

cost solution or both. This explains why a higher degree of time/cost focus for critical

activities is mainly relevant for the longest duration starting position. The alternative

starting positions report cost improvements for a high time/cost focus for non-critical

activities and small deteriorations for critical activities.

3.5.3.3 Action Radius

Deadline focus, slack consumption, cost/benefit analysis and effort loading comprise ac-

tion radius. Deadline focus and slack consumption govern the change to a critical or

non-critical activity respectively. Adopting a high degree of deadline focus will, on av-

erage, result in more changes to critical activities while the opposite observation holds

true for slack consumption. Consequently, we hypothesize that different settings of slack

consumption and deadline focus will yield a different deviation from the deadline. This
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is shown in figure 3.4. On the x-axis the different values for slack consumption and

deadline focus are shown, while the deadline deviation is found on the y-axis. The graph

indicates that a higher value for the slack consumption (non-critical activities) leads to

a higher deadline deviation. Deadline focus follows the opposite trend. The explanation

for this phenomenon is straightforward. As the deadline focus increases, more changes

are made to critical activities, whose duration will be reduced.
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Figure 3.4: Relation between the slack consumption, deadline focus and deadline deviation

The degree to which cost improvements or deteriorations are allowed is controlled by the

cost/benefit parameter. Before proceeding to the analysis of the impact of this parame-

ter, it is vital to comment on situations where the parameter has little to no impact. We

discern two different kinds of circumstances in which changing the parameter is of little

use. First of all, when the project duration is much smaller than the deadline, the effect

of the cost/benefit parameter is low. Since there are no penalty costs (the deadline is

not exceeded), changes to critical activities only lead to increased costs, while prolonging

non-critical activities saves money. Secondly, the investments or savings are compared

to the penalty costs. For very large penalty values, the outcome will always be the same.

The explanation follows from the settings of the computational experiment. The differ-

ence in cost between adjacent trade-offs does not exceed 1,000 cost units. However, this

number is relatively low compared to the highest penalty settings of table 3.9. These two

reasons explain why the focus for our analysis was limited to situations with a penalty
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value of 500. The deadline was chosen according to the starting position: θ=0.25 for the

shortest, 0.5 for the middle and 0.75 for the longest starting position. Overall, a value

of 1.3 for critical activities yielded the best results. Changing the cost/benefit parame-

ter for non-critical activities had a much smaller effect compared to critical activities.

Compared to critical activities, prolonging a non-critical activity will rarely result in a

change of the critical path. Consequently, cost savings are made but there are no extra

costs implying that the ratio of savings and cost exceeds the cost/benefit parameter.

In other penalty and deadline situations, using a cost/benefit parameter value of 1 is

advised.

The final element of action radius is effort loading. The allowed effort is divided across

all decision moments but can be altered by means of the effort loading parameter. Rais-

ing the threshold for a decision moment entails that the threshold for a different decision

moment will be lowered to ensure that the threshold across all decision moments is still

equal to 100%. Three different settings for the effort threshold were utilized, in which

the effort was front-loaded, spread evenly or back-loaded. Front-loading corresponds

with a project in which the bulk of the effort will be expended in the early stages of the

project. Our results indicated that the front-loading setting is beneficial in most situa-

tions. There is only one exception, namely when the activities are set to their longest

duration and θ = 0.75. In that case, the best cost results are found when the effort is

back-loaded.

3.6 Conclusion

The goal of this chapter was twofold. First of all, we have proposed a novel way of

constructing solutions for the Discrete Time/Cost Trade-off Problem. A crucial element

in building these solutions is a limitation on the available effort. The constrained effort

forces participants of PSG Extended, an effort-based extension to the PSG of Vanhoucke

et al. (2005), to make a choice with regard to the components of the solution. The so-

lution components, coined strategic components, are schedule focus, activity focus and

action radius. For each element of the strategic components and for each decision mo-

ment, participants are required to carefully tune the elements’ parameters. Once this is

done, the components are combined into a solution approach, which is then applied to

a project network with certain characteristics such as a deadline, penalty and degree of

uncertainty.
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As mentioned, the modular manner of creating solutions for the DTCTP has been stud-

ied in light of a limited amount of effort. Its link with real life is evident since project

managers are always confronted with a limited amount of effort (manpower, cash). PSG

Extended was rolled out at University College London and Ghent University. Participa-

tion data enabled us to perform a first analysis of the empirical results, which revealed

the negative impact of the penalty height and the important influence of the dead-

line on the cost objective. Uncertainty was found to exhibit a negative influence on the

project duration, rather than the project costs. The empirical data enabled us to analyze

the settings of the elements of the strategic components. Schedule focus proved to be of

particular interest, since a more global schedule focus hampered the overall project costs.

Apart from an empirical perspective, this chapter offered a computational perspective

as well. We constructed a dataset, characterized by a large variety of settings for the

penalty, deadline, uncertainty and topological structure of the projects. Additionally,

the starting position was varied as well. A carefully controlled process of setting the

parameters for the elements of the strategic components resulted in 419,904 files that

were applied to each project instance.

First, we established the influence of DTCTP characteristics on the solution quality,

regardless of the settings of the individual solutions. Interestingly, the characteristics

have an impact on different dimensions of the solution quality, as depicted in figure 3.5.

Time

CostEffort

Uncertainty

SP indicator
Effort threshold

Penalty
Deadline
Effort threshold

Figure 3.5: Effect of DTCTP characteristics on solution quality
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A higher effort percentile is associated with a lower project cost, while a higher

penalty value affects the project costs negatively. The minimum cost solution for dif-

ferent values of the deadline interacts with the starting position. As the discrepancy

between the starting position and deadline rises, so do the costs. The impact of an in-

crease in uncertainty is mainly felt in the attained project duration, while the topological

structure (measured by the SP indicator) resorts an effect on the expended effort.

Secondly, it is possible to make a number of recommendations with regard to the solu-

tion settings. It is advised to adopt a low degree of schedule focus, studying only the

activities of the current decision moment. The best performing priority rules to rank

the activities are the MIS and LPT rules for critical activities and the MaxSlack rule

for non-critical activities. The time/cost focus for critical activities is best kept limited,

unless a lot of activity crashing needs to take place. If reaching the deadline is an impor-

tant objective, the deadline focus should be increased since it leads to a lower deadline

deviation. While an increased slack consumption leads, on average, to longer projects,

the associated risk will rise as well. Since more changes to non-critical activities occur,

the amount of slack will be reduced, leading to a smaller buffer against uncertainty. In

general, a cost/benefit parameter value of 1 is the most rational choice, with one notable

exception. If the project duration and the deadline are close to one another, changes to

critical activities are best made if the savings greatly compensate the investment (a value

of 1.3). Effort loading applies a correction to a decision moment’s allowed threshold. A

front-loaded, back-loaded and even effort loading consumption pattern were compared.

In general, the front-loaded effort consumption yielded the best cost results.

It is our hope that future research efforts will allow us to expand on the empirical

results, both in an academic and practical setting. When more real-life data is accumu-

lated, it will be possible to map the real-life projects to the generated dataset and to

corroborate or contradict the findings of the computational section of this chapter. Fur-

thermore, additional priority rules can be tested and their impact can be compared with

the priority rules of table 3.2. The adaptation of existing heuristics to include an effort

restriction and reporting on the deviation from the optimal solution would constitute a

valuable follow-up study to this chapter.
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Forecasting





4
A study of the stability of Earned Value

Management forecasting

In this chapter, we focus on the stability of Earned Value Management (EVM)

forecasting methods. The contribution is threefold. First of all, a new criterion

to measure stability that does not suffer from the disadvantages of the historically

employed concept is proposed. Secondly, the stability of time and cost forecasting

methods is compared and contrasted by means of a computational experiment on

a topologically diverse data set. Throughout these experiments, the forecasting ac-

curacy is reported as well, facilitating a trade-off between accuracy and stability.

Finally, it is shown that the novel stability metric can be used in practical environ-

ments using two real-life projects. The conclusions of this empirical validation are

found to be largely in line with the computational results.
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4.1 Introduction

Earned Value Management (EVM) is a project control methodology that allows project

managers to assess the status of their project in terms of time and cost. EVM originated

in the 1960s when the American Department of Defense (DoD) was looking to standard-

ize its processes for the appraisal of project performance. The methodology falls back on

three key metrics to evaluate the status of a project. Several indicators use a combina-

tion of the Planned Value (PV), Earned Value (EV) and Actual Cost (AC) to present a

project manager with a quantitative indication of the health of the project under study.

Hence, these indicators provide early warning signals that may trigger either corrective

actions or the exploitation of project opportunities.

In order to overcome the unreliable behaviour of the time performance indicators, Lipke

(2003) proposed an alternative, known as the Earned Schedule (ES) concept. Inciden-

tally, the time performance indicators were modified to reflect the implementation of

a time dimension. ES was included with EVM in standard texts, such as Fleming and

Koppelman (2005) and Vanhoucke (2010a). Considerable attention was given to the pre-

diction of the final cost and final duration of a project, where the emphasis was placed

on accuracy, i.e. predicting the real duration or real cost as correctly as possible. Sev-

eral empirical and simulation-based studies were conducted, as found in Zwikael et al.

(2000), Christensen and Templin (2002) and overview articles of Christensen (1993) and

Christensen et al. (1995). With the advent of Earned Schedule, comparative studies were

carried out to determine whether the Planned Value (PV), Earned Duration (ED) or

Earned Schedule (ES) performed best and which Performance Factor (PF) yielded the

best performance. A comparison can be found in Anbari (2003), Rujirayanyong (2009),

Vandevoorde and Vanhoucke (2006) and Vanhoucke and Vandevoorde (2007).

In recent years, research on project control has increasingly focused on the integra-

tion of three aspects of the project lifecycle, namely baseline scheduling, risk analysis

and project control. This is known as dynamic scheduling. The reader is referred

to Vanhoucke (2013) for an extensive overview of the aspects and the interrelation of

the dynamic scheduling dimensions. A dynamic scheduling study was undertaken by

Vanhoucke (2011), in which a direct comparison between a bottom-up project tracking

approach (Schedule Risk Analysis (SRA)) and a top-down project tracking approach

(EVM) is made. It was found that top-down approaches work well for serial projects

whereas bottom-up approaches are at an advantage for parallel project networks. Elshaer
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(2013) followed the argumentation of Vanhoucke (2012a) who proposed to integrate sen-

sitivity information with EVM data. The time forecasting problem was tackled by

embedding activity sensitivity measures in the Earned Schedule forecasting methods.

The results showed that including sensitivity information reduced the error caused by

false warning signals originating from non-critical activities.

The literature on project control forecasting has largely been inspired by accuracy. Con-

sequently, the body of literature dedicated to the stability of forecasting methods is

limited compared to accuracy studies. Nevertheless, the importance of stability cannot

be underestimated. In supply chains, increased variability is passed on to the following

stage, leading to increasing distortions because of the bullwhip effect (Lee et al. (1997)).

Schnaars (1984) notes that one of the factors affecting forecast accuracy lies in the lack

of stability of the underlying time series. This statement is valid for project control situ-

ations since a lack of stability in the Cost Performance Indicator (CPI) will be reflected

in the forecasting methods that make use of this performance metric. Christensen and

Payne (1992) note that a stable Cost Performance Index (CPI) is evidence that the

contractor’s systems are working correctly. On top of this, a stable CPI value can be

combined with the To Complete Performance Index to inspire confidence in declaring

the contractor’s performance out of control. When large fluctuations of any of the EVM

metrics arise, it leads to growing suspicions concerning the contractor’s ability to manage

the project at hand. Therefore, it is more difficult to judge whether warning signals are

true or false. A stable CPI on the other hand shows that variances are being identified

and corrected in a timely fashion (Christensen and Heise (1993)).

Of the few contributions on stability, most are concerned with the stability of an index

rather than the consequences they exhibit on forecasting accuracy and stability. The first

contribution in this respect was provided by Payne (1990) who defined a stable CPI as

one that does not vary more than 10% once a project has surpassed the 50% completion

point. A number of years later, this definition was relaxed in a paper by Christensen

and Heise (1993), where a stable CPI was defined as not being subject to a change of

more than 10% from the 20% completion point onwards. The accuracy and stability of

the final project cost was assessed by Zwikael et al. (2000). The authors used a regres-

sion analysis to come to the conclusion that the accuracy improves along the percentage

complete and utilize visual inspection of the forecasting errors to determine the point

of stability. Christensen and Templin (2002) tested the stability of the cumulative CPI

on a number of projects and were able to confirm the stability of this indicator using

the same rule-of-thumb for stability judgement. Finally, project performance stability
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was also tested by Henderson and Zwikael (2008), where the CPI and SPI(t) indicators

were subjected to the widely reported CPI stability rule. It is interesting to note that

while the behaviour of the SPI(t) was found to be highly consistent with the CPI, the

stability rule could not be confirmed.

While this chapter focuses on assessing the accuracy and stability of deterministic fore-

casting methods, several methods have been proposed that rely on stochastic analysis or

forecasting. The reader is referred to Barraza et al. (2000, 2004) (stochastic S-curves),

Nassar et al. (2005) (Weibull distributions) and Kim and Reinschmidt (2009, 2010)

(Kalman filter and Bayesian statistics) for a number of applications of stochastic fore-

casting.

The motivation for this research stems from the paper by Henderson and Zwikael (2008)

who showed that the CPI stability rule cannot be generalized, not even for the Depart-

ment of Defense portfolio. On top of these findings, it is worth noting that the CPI

stability depends on arbitrary and subjective thresholds, namely the percentage com-

plete and the allowed deviation. Project managers in dissimilar industries may utilize

different thresholds and thus have a different judgement of stability.

The contribution of this chapter is threefold. First and foremost, a new criterion for

measuring stability which does not depend on subjective thresholds and can be used

across industries is proposed. It is worth mentioning that this criterion yields a degree

of stability rather than a binary outcome. Secondly, the stability of time and cost fore-

casting methods is assessed on a topologically rich data set that results from simulations

according to predefined statistical distributions. This is of particular relevance for the

cost forecasting methods for which research has been largely dominated by empirical

evidence. Accuracy results are reported as well, permitting a trade-off between accuracy

and stability of the reported forecasting methods. Thirdly, the findings of the computa-

tional study are validated using real-life data from two consultancy projects, executed

for one of Europe’s leading logistics groups.

The outline of this chapter is as follows. In section 4.2, the methodology of this chap-

ter is broken down into three parts. Network generation, Monte Carlo simulation and

solution quality metrics are the three methodological components. Section 4.3 details

the settings of the computational experiment using the structure of the previous section.

The following section, section 4.4, provides the results of the experiment. The results are

divided into two main parts. Section 4.4.1 discusses general observations of the accuracy
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and stability of the forecasting methods, as well as the impact of the topological struc-

ture and the percentage complete. Section 4.4.2 analyzes the consequences of a change

in coefficient of variation due to either a change in the mode or the mean of the underly-

ing distribution. The findings of the computational experiment are supplemented by an

empirical study, which was conducted on two warehousing projects at a large logistics

company. This can be found in section 4.5. Finally, conclusions and a future outlook

are provided.

4.2 Methodology

Network Generation In the first phase of the methodology, a dataset is constructed

that consists of projects with a varying topological structure. Even though a number

of different topological indicators exist, we opted for the Serial/Parallel (SP) indica-

tor. Originally, the paper of Vanhoucke et al. (2008) used the term I2 indicator but

later project management simulation studies (Vanhoucke and Vandevoorde (2007, 2008,

2009)) adopted a more intuitive term, the SP indicator. This indicator measures a net-

work’s resemblance to a completely serial or parallel project and assigns the network

a value in the interval [0,1]. It is based on the progressive level concept proposed by

Elmaghraby (1977). The SP indicator determines the maximum number of levels, which

corresponds to the longest chain of serial activities in the network. Let m be the maxi-

mal progressive level and n the number of non-dummy activities in the project network.

Then the SP indicator can be defined as SP = m−1
n−1 for projects with more than one

activity. For a completely serial network, SP = 0, whereas a completely parallel network

corresponds with SP = 1. In practice, most projects assume an intermediate value. The

rationale for preferring the SP indicator stems from the observation of Vanhoucke and

Vandevoorde (2007), who established a clear link between the SP indicator and the fore-

casting accuracy. The authors came to the conclusion that the performance of the EVM

forecasting methods for time performed best for more serial project networks, which was

corroborated in a research contribution by Vanhoucke (2012a).

Monte Carlo simulation In order to introduce uncertainty, Monte Carlo simulations

that impose variability on the durations of the activities are used. The random variation

is generated according to the generalized beta distribution, which has been employed

in previous project management studies (e.g. Vanhoucke (2010b) and Wauters and

Vanhoucke (2014b)), as well as in simulation studies for construction projects (AbouRizk

et al. (1994)). Following its straightforward interpretation or as an approximation to the



106 Chapter 4

beta distribution, the triangular distribution is often preferred (Johnson (1997)). Despite

its widespread use, the caution of Kuhl et al. (2007) who advise against the use of the

triangular distribution if empirical datapoints are absent was followed. Consequently, the

computational nature of the experiments makes us more inclined to the generalized beta

distribution. The generalized beta distribution is a continuous probability distribution

that depends on 4 parameters, namely a lower limit a, an upper limit b and shape

parameters θ1 and θ2. Its probability density function is given as follows, where Γ(·)
refers to the gamma function:

f(x) =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)(b− a)θ1+θ2−1
(x− a)θ1−1(b− x)θ2−1, x ∈ [a, b] (4.1)

In general, the mean, µ, and mode, m, of the generalized beta distribution are given by

equations (4.2) and (4.3).

µ = a+ (b− a)
θ1

θ1 + θ2
(4.2)

m = a+ (b− a)
θ1 − 1

θ1 + θ2 − 2
(4.3)

In this chapter, we choose to set the values for µ and m and subsequently derive the

shape parameters θ1 and θ2. For given values of µ and m, the shape parameters are

given by equations (4.4) and (4.5).

θ1 = −(b+ a− 2m)(a− µ)

(m− µ)(a− b) (4.4)

θ2 =
(b+ a− 2m)(b− µ)

(m− µ)(a− b) (4.5)

Solution quality metrics Once the simulations have been executed, it is possible to

make a prediction for the various time periods and for all simulation runs. At this point

in time, the solution quality needs to be measured which is done using a metric for the

accuracy and one for the stability of the forecasting method under study. The accuracy

is measured using the Mean Absolute Percentage Error (MAPE) as is frequently done

in forecasting studies (see e.g. Vanhoucke (2010a)) and provides an indication of how

well a method predicts the final duration (equation (4.6)) or cost (equation (4.7)) of a

project. EAC(t) denotes the Estimate At Completion for time, whereas EAC specifies

the cost Estimate At Completion. rp indexes the time period at which a prediction is

made and ranges from 1 to R, the total number of time periods.
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Key indicators

PV Planned Value SPI EV
PV

AC Actual Cost SPI(t) ES
AT

BAC Budget At Completion CPI EV
AC

EV PC ∗BAC ES t+ EV−PVt
PVt+1−PVt

Time forecasting Cost forecasting

EAC(t)PV1 PD − (EV−PV )∗PD
BAC

EAC1 AC + (BAC − EV )

EAC(t)PVSPI
PD
SPI

EAC2 AC + BAC−EV
CPI

EAC(t)PVSCI
PD

CPI∗SPI EAC3 AC + BAC−EV
SPI

EAC(t)ED1 PD +AD ∗ (1− SPI) EAC4 AC + BAC−EV
SPI(t)

EAC(t)EDSPI
PD
SPI

EAC5 AC + BAC−EV
SCI

EAC(t)EDSCI
PD

SPI∗CPI +AD ∗ (1− 1
CPI

) EAC6 AC + BAC−EV
SCI(t)

EAC(t)ES1 AD + PD − ES EAC7 AC + BAC−EV
0.8CPI+0.2SPI

EAC(t)ESSPI(t) AD + PD−ES
SPI(t)

EAC8 AC + BAC−EV
0.8CPI+0.2SPI(t)

EAC(t)ESSCI(t)
PD−ES

CPI∗SPI(t)

EAC(t)ES2α AD + PD−ES′
SPI(t)′

Table 4.1: Summary table of EVM terminology and formulas

MAPEt =
1

R

R∑

rp=1

|RD − EAC(t)rp|
RD

(4.6)

MAPEc =
1

R

R∑

rp=1

|RC − EACrp|
RC

(4.7)

The stability is measured using the Mean Lags, which is similar in interpretation to the

MAPE but gauges the deviation between subsequent values regardless of the accuracy

of the forecasting method. The Mean Lags metric can be defined as follows for the time

dimension:

Mean Lags =
1

R− 1

R∑

rp=2

|EAC(t)rp−1 − EAC(t)rp|
EAC(t)rp−1

(4.8)

For time forecasting, the PV, ED and ES method with three performance factors (1, SPI

and SCI = SPI * CPI) will be used. In addition, the 6 forecasting methods proposed

by Elshaer (2013) will be tested, leading to 15 time-based prediction methods. For the

predictions of a project’s final cost, 8 different performance factors are used. The cal-

culation of the different forecasting methods, as well as the key indicators of EVM are

summarized in table 4.1. The time performance indicators are known as the Schedule

Variance (SV) or Schedule Performance Index (SPI), while the cost performance indica-

tors include the Cost Variance (CV) and Cost Performance Index (CPI). Additionally,
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PC denotes the Percentage Complete and α denotes one of the six sensitivity metrics

proposed by Elshaer (2013).

4.3 Computational Experiment

In this section, the methodological steps that were outlined in section 4.2 will be rendered

concrete by discussing the settings of the network generation, Monte Carlo simulation

and solution quality metric phases. An identical order to the previous section will be

maintained throughout the discussion of these phases.

Network Generation 90 Activity On the Node (AoN) project networks with 30

activities and random activity costs and durations were generated. This corresponds with

10 networks for every level of the SP indicator, which ranges from 0.1 to 0.9 in steps of

0.1. In order to generate the networks according to these parameters, the RanGen engine,

proposed by Demeulemeester et al. (2003) and refined by Vanhoucke et al. (2008), was

employed. The dataset of this study can be found at http://www.projectmanagement.

ugent.be/evms.html and has been used in previous EVM studies (Vandevoorde and

Vanhoucke (2006), Vanhoucke and Vandevoorde (2007), Colin and Vanhoucke (2014)

and Wauters and Vanhoucke (2014b)). The baseline costs and durations for the different

activities of the network are drawn randomly. For the costs, the lower and upper bounds

are equal to 50 and 100, respectively. The costs are entirely variable indicating that the

cost deviation is completely in line with a deviation in the duration of an activity.

Consequently, it is assumed that the baseline costs are expressed in monetary units per

time unit. A longer duration then results in more man-hours required to finish the

activity, in turn leading to a higher associated cost. The baseline duration for every

activity is also drawn from a random distribution and varies between 20 and 40 units of

time.

Monte Carlo simulation Monte Carlo simulations allow for the introduction of time

and cost deviations on the activity level which are translated to the project level by

EVM measurements. As mentioned in section 4.2, the input settings for the Monte

Carlo simulations are based on values for the mode m and the mean µ. In this chapter,

a distinction will be made between the general performance and a sensitivity analysis.

The CV will be used as the main instrument to vary the distributions and is defined as
σ
µ . The standard deviation σ of the generalized beta distribution is provided in equation

http://www.projectmanagement.ugent.be/evms.html
http://www.projectmanagement.ugent.be/evms.html
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Use Scenario
Settings

a b m µ θ1 θ2 CV

General Performance

Early 0.1 2 0.5 0.6 2.93 8.22 0.4

On Time 0.2 4 0.82 1 2.94 11.03 0.4

Late 0.2 4 1.2 1.4 2.83 6.14 0.4

Sensitivity

∆m

Early
0.1 2 0.55 0.6 5.45 15.25 0.3

0.1 2 0.41 0.6 1.78 5 0.5

On Time
0.2 4 0.91 1 5.39 20.22 0.3

0.2 4 0.67 1 1.81 6.79 0.5

Late
0.2 4 1.30 1.4 5.28 11.45 0.3

0.2 4 0.98 1.4 1.69 3.67 0.5

∆µ

Early
0.1 2 0.50 0.55 5.44 17.57 0.3

0.1 2 0.50 0.71 1.68 3.55 0.5

On Time
0.2 4 0.82 0.91 5.29 23.16 0.3

0.2 4 0.82 1.19 1.79 5.07 0.5

Late
0.2 4 1.20 1.30 5.37 13.25 0.3

0.2 4 1.20 1.65 1.53 2.49 0.5

Table 4.2: Overview of the settings of the Monte Carlo simulations

(4.9).

σ =

√
(b− a)2θ1θ2

(θ1 + θ2)2(θ1 + θ2 + 1)
(4.9)

For the general performance, three different scenarios are used, where each scenario has a

CV equal to 0.4. However, by changing the mean and mode, the Monte Carlo simulations

imitate an early, on time and late performance respectively. For the sensitivity analysis,

the CV is varied from 0.3 and 0.5 in steps of 0.1. We opted to change the CV by

changing the mode of the distribution while keeping the mean constant (denoted by

∆m) and by changing the mean while keeping the mode constant (denoted as ∆µ). A

detailed overview of the settings for the general performance, where the CV is equal to

0.4, and the sensitivity analysis is given in table 4.2. Every project is simulated 1,000

times using the generalized beta distribution with one of the settings of table 4.2.

Solution quality metrics The progress of the projects is measured at different points

in time for two reasons. First of all, progress data is collected in order to construct the

mean based on a sufficient number of data points. Second, capturing data at different

points in time allows to inspect the MAPE and Mean Lags throughout the progress of

the project. In the computational study, EVM data was collected at every 5% complete,

leading to R = 20 data points per simulation run.
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4.4 Results

In this section, an overview of the results of the computational experiment is given.

For the simulation of the EVM data, P2 Engine (Vanhoucke (2014)) was used. P2 En-

gine is a command line utility tool based on the LUA scripting language that allows

researchers to generate project data. The calculation of the stability and further analy-

ses were performed on Ghent University’s High Performance Computing infrastructure.

The computational experiment was run on the Delcatty cluster, which has 64 GB RAM

available and makes use of a quad-core Intel Xeon processor with 2.6 GHz.

As mentioned in section 4.2, the MAPE and Mean Lags will be reported as the cri-

terion for forecasting accuracy and stability, respectively. Consequently, if the MAPE or

Mean Lags are reported for a percentage complete, this reflects the Absolute Percentage

Error or Lags, averaged up until the period under study. This criterion was chosen be-

cause it seems more reasonable to assess a method’s performance on average, rather than

at a specific time instance, as would be the case if the APE or Lags would be reported.

This section is structured as follows. In section 4.4.1, the results of the Early, On

Time and Late scenarios are studied. An answer is given as to whether the most accu-

rate method coincides with the most stable method and what the impact is of the SP

factor and the Percentage Complete. In section 4.4.2, we turn towards the sensitivity

of the results by studying a change in CV. The section is broken down into two parts,

depending on whether a change in the mode (section 4.4.2.1) or a change in the mean

(section 4.4.2.2) is studied.

4.4.1 General results

In this section, the performance for the Early, On Time and Late scenarios with a CV

of 0.4 is studied. The settings of these scenarios can be found in table 4.2. The main

research question that begs an answer is whether the most accurate method is the same

as the most stable method. Afterwards, the results are disaggregated by looking at the

impact of the SP indicator and the Percentage Complete.

4.4.1.1 General accuracy and stability observations

The results of the time forecasting methods are given in table 4.3, whereas the results of

the cost forecasting methods are provided in table 4.4. For the prediction of a project’s

final duration, the best Planned Value (PV), Earned Duration (ED), Earned Schedule
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(ES) and Elshaer method is reported. Table 4.3 also has a column entitled Criterion.

This column indicates whether the most accurate or most stable method is provided. In

order to make a trade-off between accuracy and stability, the MAPE and Mean Lags of

the most accurate and the most stable method is given. The principal take-aways from

tables 4.3 and 4.4 can be summarized as follows:

• The most accurate forecasting method generally does not coincide with the most

stable forecasting method. For the time dimension, the methods with a PF equal

to SPI (SPI(t)) or the SI yield the lowest MAPE. The methods with a PF equal

to 1 lead to the lowest values for the Mean Lags.

• For the On Time scenario, methods with a Performance Factor (PF) equal to 1

prove to be most accurate and most stable. This scenario is the only situation in

which the most accurate and most stable method is the same.

• Time: for the Early scenario, there is a large difference in MAPE between the most

accurate and most stable method. This is due to the fact that methods with a PF

equal to 1 do not score well for projects finishing early. For the other scenarios the

difference in MAPE is often double the difference in Mean Lags.

• Cost: the difference between the most accurate and most stable method is generally

small except for the Late scenario. In this case, the difference can amount to 7%.

The most stable methods are characterized by a performance factor equal to 1. Hence,

these methods assume that the remainder of the project will be executed according to

the baseline schedule. While this is not beneficial from an accuracy point of view, these

methods yield stable predictions. The most accurate methods take the current progress

into account (PF 6= 1).

4.4.1.2 Impact of the SP indicator

The topological structure of the projects was varied by means of the SP indicator, which

ranged from 0.1 (more parallel network) to 0.9 (more serial network) in steps of 0.1.

Previous studies pointed out that there is a decreasing trend in MAPE as the SP indi-

cator rises for time forecasting (Vanhoucke (2011)), whereas no relation between the SP

indicator and MAPE can be established for cost forecasting (Wauters and Vanhoucke

(2014b)). The reason for this improvement for more serial networks lies in the fact that

the critical path masks fewer deviations compared to a more parallel network, resulting

in fewer false warning signals and an improved prediction of the project’s duration. Both
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Scenario Criterion Metric PV ED ES Elshaer

Early

Accuracy

PF SPI SPI SPI(t) SI

MAPE 16.22% 16.22% 10.70% 10.84%

Mean Lags 5.48% 5.48% 4.04% 3.71%

Stability

PF 1 1 1 SI

MAPE 34.28% 39.37% 34.82% 10.84%

Mean Lags 2.92% 2.59% 2.68% 3.71%

Medium Accuracy & Stability

PF 1 1 1 SI

MAPE 7.84% 7.54% 7.14% 10.80%

Mean Lags 1.73% 1.52% 1.38% 3.66%

Late

Accuracy

PF SPI SPI SPI(t) SI

MAPE 16.46% 12.66% 10.63% 10.82%

Mean Lags 5.58% 5.18% 4.07% 3.75%

Stability

PF 1 1 1 SI

MAPE 21.68% 18.66% 17.27% 10.82%

Mean Lags 2.73% 2.41% 2.09% 3.75%

Table 4.3: Time forecasting results (main experiment)

Scenario Metric EAC1 EAC2 EAC3 EAC4 EAC5 EAC6 EAC7 EAC8

Early
MAPE 31.47% 6.99% 8.97% 7.79% 20.40% 21.33% 7.00% 6.97%

Mean Lags 2.64 % 2.45% 3.96% 3.25% 5.59% 5.32% 2.60% 2.54%

On Time
MAPE 3.94% 6.91% 7.54% 7.75% 11.74% 11.97% 6.88% 6.90%

Mean Lags 0.95% 2.40% 3.27% 3.22% 4.69% 4.69% 2.48% 2.49%

Late
MAPE 14.18% 7.03% 8.18% 7.75% 17.88% 19.99% 7.01% 6.99%

Mean Lags 1.80% 2.50% 3.62% 3.28% 5.41% 5.31% 2.56% 2.58%

Table 4.4: Cost forecasting results (main experiment)
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the presence of the decreasing MAPE trend for time forecasting and the absence of any

trend for cost forecasting could be corroborated in this experiment.

However, our main interest lies in the behaviour of the Mean Lags for time and cost

forecasting. This is depicted in figure 4.1 for cost forecasting and figures 4.2(a)-4.2(b)

for time forecasting. The x-axis shows the different levels for the SP indicator. The

y-axis shows the Mean Lags as a percentage, following equation (4.8). For time forecast-

ing, a distinction is made between the Mean Lags of the most accurate methods (figure

4.2(a)) and the most stable methods (figure 4.2(b)).

• The stability indicates an opposite trend compared to the accuracy: as the SP

indicator rises, the mean lags increase as well. Because the project progress is

almost exclusively governed by the progress of an individual activity for serial

networks, the variability of the key EVM indicators can be larger compared to

parallel projects. For parallel projects, the project performance comprises that of

multiple activities, which causes the performance of one activity to be compensated

by the performance of another activity. Consequently, as a project becomes more

serial, the predictions become on average more accurate but more fluctuations

appear.

• For time forecasting, the most stable methods (figure 4.2(b)) display a smaller

increase in Mean Lags compared to the most accurate methods found in figure

4.2(a).

• For cost forecasting, the performance of EAC1 is remarkable. The Mean Lags

barely increase as the SP indicator rises. For an SP level equal to 0.1, many

methods have a better stability than EAC1 but because of the increasing trend of

the other methods, their stability is worse from an SP level of 0.3 onwards.

4.4.1.3 Impact of the Percentage Complete

Similar to the section studying the SP indicator, the Percentage Complete also leads

to different conclusions based on whether the most accurate or most stable method

is employed. The impact on the time dimension is shown in figures 4.3(a) and 4.3(b),

where the x-axis shows the Percentage Complete and the y-axis indicates the Mean Lags.

Interestingly, the trend of the most accurate and most stable methods differs along the

percentage complete:
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Figure 4.1: Impact of the SP factor on stability for cost forecasting

• The Mean Lags of the most accurate methods display a decreasing trend along the

percentage complete, indicating that the stability improves over time.

• For the most stable methods, the Mean Lags slightly increase, meaning that the

stability shows a minor deterioration across time. It is worth noting that the Mean

Lags are still considerably lower than those of the most accurate methods.

• The Elshaer method with SI as its performance factor shows the best performance

for accuracy and stability, as established previously.

4.4.2 Sensitivity analysis

The scenarios that were used to judge the general performance have a CV of 0.4. In

order to assess the impact of a change in the distribution, the CV was varied to 0.3

and 0.5 by changing the mode while keeping the mean constant and by changing the

mean while keeping the mode constant. The results of both situations can be found in

tables 4.5 and 4.6. In table 4.5, the accuracy, as measured by the MAPE, and stability,

measured by the Mean Lags, is given for the most accurate and most stable PV, ED,

ES and Elshaer methods. The first 6 rows represent the percentages of a change in the

mode, while the lower half shows the influence of a change in the mean. These situations

will be analyzed in sections 4.4.2.1 and 4.4.2.2 respectively.
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Figure 4.2: Impact of the SP factor on stability for the most accurate (4.2(a)) and most stable
(4.2(b)) methods for time forecasting



116 Chapter 4

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●

0.0

2.5

5.0

7.5

10.0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Percentage Complete (%)

M
ea

n 
La

gs
 (

%
) Variable

● PV2

ED2

ES2

Elshaer

(a) Time: stability for the most accurate methods

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

0.0

2.5

5.0

7.5

10.0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Percentage Complete (%)

M
ea

n 
La

gs
 (

%
) Variable

● PV1

ED1

ES1

Elshaer

(b) Time: stability for the most stable methods

Figure 4.3: Impact of the percentage complete on stability for the most accurate (4.3(a)) and
most stable (4.3(b)) methods for time forecasting
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4.4.2.1 Impact of a change in mode

The key observation following from the top half of table 4.5 is that the MAPE and Mean

Lags of all methods increase as the CV rises. However, it is possible to make a distinction

between the behaviour of the most accurate and most stable methods, as follows:

• The increase in MAPE for a rising CV is higher for the most accurate methods

than for the most stable methods. The average increase in MAPEt for the most

accurate methods is equal to 4.64%, while this number is only 2.26% for the most

stable methods. For cost forecasting, the difference in accuracy is 0.78% for the

most stable method (EAC1) and 4.11% for the most accurate method (EAC8).

• A similar observation holds for the Mean Lags, where the increase in stability is

lower for the most stable methods than for the most accurate methods.

While the most stable methods are at a disadvantage when it comes to accuracy, these

methods gain importance as the CV increases since the decrease in performance is less

steep compared to the most accurate methods.

4.4.2.2 Impact of a change in mean

The impact of a change in mean largely shares the effect of a change in mode. The

MAPE of the most accurate methods rises along the CV and the Mean Lags rise as well,

indicating a decrease in stability for an increasing CV. It is worth noting that the values

for the MAPE and Mean Lags are slightly higher than those of a change in the mode,

suggesting that a change in mean has a slightly more pronounced effect than a change

in mode.

When looking at the overall accuracy of the most stable methods, no consistent trend is

followed. Sometimes, the MAPE increases or decreases as the CV changes. While this

finding appears to be an anomaly, it can be explained as follows:

• The increase or decrease of the MAPE for a change in CV is determined by the

performance of the forecasting method for the different modes. For the On Time

and Late scenarios (m equal to 0.82 and 1.2, respectively), the MAPE increases

for a CV increment. However, for the Early scenario (m equal to 0.5), a rising

CV entails that the mean of the generalized beta distribution is pushed closer to 1

(cf table 4.2). Since the most stable methods are those with a performance factor

equal to 1, the MAPE decreases for a rising CV. The behaviour of the overall
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MAPE as shown in table 4.5 depends on whether the decrease in MAPE for m =

0.5 offsets the increase in MAPE when m equals 0.82 or 1.2.

• The behaviour of the MAPE of the Planned Value method is caused by the decrease

for the Early scenario which cancels out the increase in MAPE for the other two

scenarios. This is not the case when the CV goes from 0.4 to 0.5. Hence, the

average MAPE in table 4.5 increases again.

• The Earned Schedule method also exhibits a strange evolution with a MAPE that

skyrockets when the CV moves from 0.3 to 0.4 and slightly decreases afterwards.

This is due to the fact that the most stable method for a CV equal to 0.3 and

m equal to 0.5 is ES2. The stellar forecasting performance of this method greatly

influences the average MAPE, thus explaining the low MAPE value for a CV of

0.3. In case ES1 was the most stable method across all levels for the CV and mode,

the MAPE would follow the characteristic, decreasing trend as the mean of the

generalized beta distribution lies closer to 1.

While the discussion of the inconsistent MAPE trend was limited to time forecasting,

an identical train of thought applies to the cost forecasting results of table 4.6.
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Metric CV
Method

EAC1 EAC2 EAC3 EAC4 EAC5 EAC6 EAC7 EAC8

∆Mode

MAPE

0.3 16.16% 4.98% 6.37% 5.62% 14.83% 15.89% 5.00% 4.97%

0.4 16.53% 6.98% 8.23% 7.76% 16.67% 17.76% 6.96% 6.95%

0.5 16.94% 9.13% 10.27% 10.03% 19.03% 20.17% 9.08% 9.08%

Mean Lags

0.3 1.68% 1.73% 2.95% 2.38% 4.17% 3.91% 1.83% 1.80%

0.4 1.79% 2.45% 3.62% 3.25% 5.23% 5.11% 2.55% 2.54%

0.5 1.95% 3.24% 4.37% 4.16% 6.44% 6.43% 3.33% 3.34%

∆Mean

MAPE

0.3 18.51% 4.98% 6.44% 5.62% 14.79% 15.63% 5.00% 4.97%

0.4 16.53% 6.98% 8.23% 7.76% 16.67% 17.76% 6.96% 6.95%

0.5 15.80% 9.29% 10.43% 10.17% 19.96% 22.32% 9.24% 9.23%

Mean Lags

0.3 1.76% 1.73% 2.97% 2.38% 4.19% 3.93% 1.83% 1.80%

0.4 1.79% 2.45% 3.62% 3.25% 5.23% 5.11% 2.55% 2.54%

0.5 1.99% 3.31% 4.40% 4.27% 6.56% 6.67% 3.39% 3.42%

Table 4.6: Cost forecasting results (sensitivity analysis)

4.5 Empirical Validation

In the previous section the results of the computational experiment that made use of

simulated data were discussed. The goal of this section is to establish whether the find-

ings are valid for practical environments. In general, the methodology can be translated

as follows. First of all, the SP indicator can easily be calculated using the Activity

on the Node network (AoN) of the project under study. In the previous section, the

whole spectrum of SP indicators was investigated, whereas in practice each project cor-

responds with 1 value of the SP indicator. Secondly, practitioners can use historical data

to construct one or multiple distributions in order to test the stability of the different

forecasting methods. Hence, they can choose to evaluate all forecasting methods or only

a subset. In the computational experiment, multiple distributions were evaluated as well

as the effect of changes in the mode and mean in order to provide recommendations that

are valid for a wide range of projects and progress data.

In section 4.5.1, the data of both projects are described. Section 4.5.2 links the ob-

servations of the two projects back to the computational study. We check which of the

results of the computational study are reflected in the empirical validation and provide

an explanation for those results that do not correspond.

4.5.1 Project Data

Data from two real-life consultancy projects were analyzed with the goal of validating

the findings of the computational experiment. While it is obvious that the findings of
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two projects cannot be generalized, they are representative in the way that a consulting

methodology that was used throughout the 2000s was applied to these projects. These

consultancy projects were performed for one of Europe’s leading logistics groups, with

plants across multiple countries. The first project involved the determination of an im-

proved schedule for the different machines. The project consisted of three phases, namely

data validation, programming the optimization algorithm and charting a blueprint for

the implementation in the company’s Enterprise Resource Planning (ERP) software.

The budgeted cost of this project was equal to e249,780. The second project followed

up on this study and involved implementing the improved job scheduler in the ERP soft-

ware. It counted multiple concurrent phases, often related to functional and technical

analyses of different IT components. Within the Work Breakdown Structure, 5 different

activity blocks could be identified. The first two are related to an optimal search for the

best location. The third block involved reporting the optimal allocation from orders to

order pickers. The fourth block took care of overbooking the existing inventory of two lo-

cations. The last part of the project contained the development of new work instructions

for the people on the floor. The budget at completion for this project was e139,263.

The difference in structure is evidenced by the SP indicator, which was equal to 0.23 for

the optimization project, while the follow-up project, the ERP implementation, had a

value of the SP indicator of 0.52.

Throughout the progress of both projects, time and costs were monitored using Earned

Value Management. At each review period, a forecast was made using the same methods

that were introduced in section 4.2. It is worth noting that the main purpose of these

forecasts was to communicate to the company’s management, rather than to act as a

signal for corrective action. Because of the highly specialized nature of both projects,

adding human resources to the project in a short timespan proved impossible.

For both projects, an overview of the project data is given in table 4.7. This table

contains data that resulted from the planning, the actual situation as well as dynamic

progress data. The SCI (SCI(t)) denotes the Schedule Cost Index and is equal to the

product of the CPI and SPI (SPI(t)). For the optimization project, there were 13 review

periods whereas 23 review periods were used for the ERP implementation project. The

progress of the optimization project indicates an excellent schedule performance, with

the project ending early. However, the costs turned out to be slightly higher than ex-

pected: the CPI at project’s end is equal to 0.87. The total project cost was e286,211

and the project ended 8 weeks earlier than anticipated. The reason for the cost overrun
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Optimization Project ERP project

Plan
Parameter Value

SP 0.23 0.52
PD 106 days 95 days

BAC e249,780 e139,263

Execution
RD 65.46 days 109.5 days

RAC e286,211 e159,657

Performance Data
Min Max Average Final Min Max Average Final

CPI 0.84 0.93 0.88 0.87 0.83 0.89 0.87 0.87
SPI 1.52 2.13 1.81 1.64 0.72 1.00 0.90 1.00

SPI(t) 1.47 2.40 1.73 1.63 0.77 0.86 0.84 0.83
SCI 1.31 1.85 1.58 1.43 0.60 0.87 0.78 0.87

SCI(t) 1.26 2.16 1.52 1.42 0.64 0.76 0.73 0.72

Table 4.7: Summary of the data of the two empirical projects

lies in the fact that is was difficult to estimate the baseline costs. For some activities,

the actual cost was much lower than anticipated, whereas the opposite conclusion holds

for other activity groups. The minimum activity CPI was equal to 0.63 (for determining

the criteria that led to a choice of location) and the maximum activity CPI was equal to

2 (for robustness checks). The implementation of the improved job scheduler turned out

to be more burdensome. The final CPI, SPI and SPI(t) are all lower than 1, indicating

that the actual situation deviates from the plan. The project is behind schedule and

suffers from a slight cost overrun. This overrun is caused by many activities that exceed

their budgeted cost moderately. Additionally, the project suffered a 4 week delay. It is

worth remarking that table 4.7 demonstrates the unreliable behaviour of the SPI since

it gravitates towards 1 at the end of the project.

4.5.2 Observations

In this paragraph, the observations of time and cost forecasting methods are linked back

to the findings of the computational study, which were outlined in section 4.4. Because

of a lack of historical data, the Elshaer methods were not included as a benchmark for

time forecasting. The observations can be summarized as follows:

• For both projects, the most accurate method does not coincide with the most

stable one. This is in line with the results from the computational study. Table 4.8

contains the best performing method and the MAPE and Mean Lags percentages.
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The discussion is limited to the conclusions of the table.

– The most accurate time forecasting method is ESSPI whereas the most stable

time forecasting method is ES1.

– The most accurate cost forecasting method is EAC2 for both projects. This is

little surprising since this method displayed a similar performance to EAC8 in

the computational results of section 4.4.1. EAC1 is the most stable forecasting

method.

• The MAPE of the ERP project is lower than that of the Optimization project.

This result is interesting because it confirms that a project with a more serial

network structure (a higher value for the SP indicator) leads to a lower forecasting

error.

• The Mean Lags of the ERP project are lower compared to the Mean Lags of

the Optimization project. While this seems to contradict the findings of section

4.4.1.3, there is a simple explanation for this behaviour. The link between the

SP indicator and the Mean Lags does not hold because of the volatile SPI of the

Optimization project. Contrary to this, the SPI of the ERP project is much more

stable. Consequently, this differing SPI behaviour would be equivalent to compar-

ing the performance of two projects that originated from different distributions in

the computational experiment.

• The forecasts generally improve as the Percentage Complete increases. There is

one exception, namely for the Optimization project, where the Planned Value

and Earned Duration methods with SPI or SCI as the performance indicator do

not improve along the Percentage Complete. Similar to the Mean Lags behaviour

discussed above, this is due to the instability of the SPI indicator, which is reflected

in the forecasting estimates.

Optimization Project ERP project

Time Cost Time Cost
Method % Method % Method % Method %

MAPE ESSPI 8.06% EAC2 2.01% ESSPI 3.48% EAC2 1.00%
Mean Lags ES1 4.19% EAC1 1.07% ES1 0.90% EAC1 0.59%

Table 4.8: MAPE and Mean Lags of the best performing method of the two empirical projects
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4.6 Conclusion

In this chapter, we focused on a topic that received little attention in the project con-

trol community, namely the stability of forecasting methods. Attention was accorded to

three distinct contributions. First and foremost, a new criterion for measuring stabil-

ity was proposed. Employing the Mean Lags of the project outcome predictions comes

with two advantages. First of all, the interpretation and scale of this metric is simi-

lar to the MAPE, which was used to assess forecasting accuracy, hence facilitating a

trade-off between accuracy and stability. Second, the Mean Lags do not make use of

arbitrary thresholds, which was a weakness of the currently used stability rule-of-thumb.

The second contribution involved setting up a large computational experiment in order

to assess stability using the newly proposed Mean Lags metric. Looking at prediction

methods from a simulation point of view was particularly welcome for the cost forecasting

methods. The results of the computational study revealed some interesting managerial

insights. It was found that, apart from the On Time scenario, the most accurate method

generally does not coincide with the most stable method. The relation between accu-

racy and the SP indicator does not hold for the stability criterion. On the contrary, the

tests brought to light that the stability deteriorates for an increase in SP value. The

stability of the most accurate methods improves along the percentage complete, while

the stability of the most stable methods remains constant or displays a slight deteri-

oration. Finally, a sensitivity analysis was executed. The CV was changed following

a change in the mean or the mode of the underlying generalized beta distribution. In

general, a higher CV leads to a worse accuracy and stability. However, the performance

drop was less steep for the most stable methods compared to the most accurate methods.

Ultimately, the choice for a certain forecasting method depends on a project manager’s

preference. However, the conducted experiments allow to make a couple of recommenda-

tions. The general experiments showed that the most stable methods possess a MAPE

that is twice as high but also twice as stable compared to the most accurate methods.

Because the difference in MAPE is rather large, one would be inclined to opt for the

most accurate method. However, in case the project manager fails to assert the vari-

ability of the activities’ duration in an adequate manner, the MAPE and Mean Lags

rise rather steeply compared to the most stable method. For the time dimension, the

Elshaer method with the Significance Index (SI) strikes a good balance between accuracy

and stability. For the cost dimension, it is more difficult to put one method forward.
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Depending on one’s inclination towards accuracy or stability, EAC8 or EAC1 should be

used. However, given the poor accuracy of EAC1, we recommend the use of EAC8 for

cost forecasting.

The final contribution validated the computational findings using two real-life projects.

It was shown how the research methodology can be used for practical environments.

While generalizations based on two projects are hard to make, the real-life studies were

representative because they followed a consulting approach that was used frequently

throughout the past decade. The first project aimed to find an improved schedule for

the machines, while the second project involved the implementation of an ERP system.

The projects asserted the excellent stability performance of the EAC1 and ES1 method,

while the forecasting accuracy depends on the convergence (or lack thereof) of the sched-

ule and cost performance.

No research is without its limitations. The stability tests in this chapter were run

on a set of fictitious data, as well as on a limited set of empirical data. Consequently,

academics and practitioners should view this chapter as an open invitation to use the

proposed Mean Lags criterion for testing on additional real-life data, which are abundant

in the project control literature. A second limitation lies in the reliance on determinis-

tic forecasting methods. Future research could focus on evaluating the stability of the

maximum likelihood estimate of stochastic forecasting methods.
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5
A comparative study of Artificial Intelligence

methods for project duration forecasting

Artificial Intelligence (AI) methods attempt to learn the relation between data in-

puts and one or multiple output values. In this chapter, the forecasting performance

of five AI methods is benchmarked against the best performing Earned Value Man-

agement/Earned Schedule methods. A methodology that employs Monte Carlo sim-

ulation, Principal Component Analysis, grid search and cross-validation is proposed.

The forecasting accuracy of all prediction methods is compared across a topologi-

cally diverse project dataset. A large computational experiment demonstrates the

strength of the AI methods when the training and test sets coincide. A sensitivity

analysis examines the effects of a change in the mean and standard deviations of the

underlying statistical distribution in order to establish the limitations of methods

that rely on historical data.
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5.1 Introduction

With the advent of the Critical Path Method (CPM, Kelley (1961); Kelley and Walker

(1959)) and the Program Evaluation and Review Technique (PERT, Fazar (1959)),

project planning increasingly became a separate research discipline. While the former

method focuses on the construction of a baseline schedule, the latter turns the atten-

tion to the relation between the project duration and activity duration variability. The

construction of the baseline plan should be accompanied by an identification of its weak

spots, namely those activities that are most likely to have the largest and possibly detri-

mental impact on the project outcome. As such, regardless of the presence of limited

resources, the baseline schedule should be seen as a point of reference with which actual

performance can be compared and contrasted. By relating the actual performance of the

project to the planned performance, corrective actions can be triggered as soon as the

project is deemed to be out of control. These three aspects, baseline scheduling, schedule

risk analysis and project control, are coined dynamic scheduling (Uyttewael (2005) and

Vanhoucke (2012b, 2014)).

The emphasis of this chapter lies on one of the dynamic scheduling aspects, namely

project control. A popular methodology for tracking project progress is Earned Value

Management (EVM). It originated at the US Department of Defense (DoD) in the 1960s

and aids project managers in controlling the projects’ time and cost by using three key

metrics that form the foundation of a number of performance indicators. An overview of

the fundamentals of EVM can be found in Fleming and Koppelman (2005). While initial

studies were dominated by the cost objective, the work of Lipke (2003) proved to be a

turning point as Earned Schedule (ES) allowed project managers to track progress in

units of time rather than monetary units. Along with the inception of Earned Schedule,

academic studies shifted to the time dimension. A popular topic involved forecasting

the final duration (or previously the project’s real cost) based on progress data. The

importance of an accurate estimate for the project’s end cannot be underestimated. Not

only does it allow a project manager to look ahead, it also implies an implicit call for

action. Forecasting methods can be embedded in decision support systems that trigger

a warning once the expected duration exceeds a user-defined threshold. Obviously, the

validity of this warning signal greatly depends on the trustworthiness of the underlying

forecasting method. The performance of three Planned Value, three Earned Duration

and three Earned Schedule methods has been investigated on simulated data (Vanhoucke

and Vandevoorde (2007)) as well as on real-life projects (Vandevoorde and Vanhoucke
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(2006)). Vanhoucke (2010b, 2011) advocated the integration of top-down control sys-

tems such as EVM with bottom-up sensitivity indicators which result from schedule risk

analysis. This was followed up by Elshaer (2013) who proposed an adaptation of the

Earned Schedule forecasting method using activity sensitivity information.

In this chapter, a new class of methods is implemented to construct project duration esti-

mates. Artificial Intelligence (AI) is a research branch dedicated to learning the relation

between inputs and outputs and applying that relation for classification or prediction

purposes. To the best of our knowledge, only three works deal with one AI method that

involves EVM metrics. Cheng et al. (2010) deploy a Support Vector Machine (SVM)

to estimate the final cost of two construction projects. The parameters are tuned with

a fast messy genetic algorithm. The combination of a basic meta-heuristic as a tuning

mechanism and the SVM was united with fuzzy logic. Cheng and Roy (2010) tested this

system for function approximation and cost estimation. Wauters and Vanhoucke (2014b)

applied Support Vector Regression for project control time and cost forecasting. The

authors compared its performance with the best performing EVM and ES methods on

a large dataset and revealed the pitfalls in a robustness experiment. The computational

experiment revealed that SVMs outperform the current EVM forecasting methods when

the training set is equal or at least similar to the test set.

The implementation of Support Vector Machines heralded the introduction of Artificial

Intelligence methods in the project control community. To the best of our knowledge,

no Artificial Intelligence method other than SVMs has been incorporated in an EVM

setting. The goal of this chapter consists of introducing Artificial Intelligence methods

for constructing better predictions of the final duration of a project. The contribution

of this chapter to the body of project control literature is fourfold. First, we propose

five Artificial Intelligence methods for predicting a project’s final duration. AI methods

use historical or simulated data to learn the relation between inputs and one or multi-

ple outputs. In a project control environment, the simulated data contains information

with regard to the progress of the project. The proposed methods learn how the per-

formance indicators are related to the project’s Real Duration (RD). This knowledge is

then applied to new data to come up with an estimate of the project’s final duration.

Secondly, a generally applicable methodology is put forward starting with the generation

of project and progress data. This serves two purposes. The first purpose lies in the

nature of the AI methods which learn a relation from existing data. Secondly, a wide

array of data allows us to reach general conclusions. Apart from the data generation, a
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decision needs to be made on which progress data will be fed to the AI methods. These

progress data contain periodic measurements of EVM performance indicators, as well as

EVM forecasting estimates. The high volume of data may be correlated and some data

may be irrelevant. In order to alleviate these problems, Principal Component Analysis is

applied. This data pre-processing technique forms a linear combination of the progress

data, eliminating noise and retaining only the data that explains most of the variation.

Once the relevant data are selected, the AI methods need to be fine-tuned, since their

performance is highly dependent on the chosen parameters. By dividing the historical

data into a smaller training and a validation set, the prediction performance on the vali-

dation set will be used to find the best parameters for each method. The parameters are

used to construct forecasts for the projects of the data generation step. Hence, the third

contribution lies in assessing the general performance of the AI methods and compar-

ing it against the EVM/ES methods. Incidentally, the impact of the project network’s

topology and percentage complete is identified. Finally, the main experiment assumes

that the project manager can provide an accurate estimate of the variability. As a result,

the training and test sets are drawn from a distribution with identical parameters. In

real-life situations, it is extremely difficult to appraise the variability affecting project

activities. In line with this reasoning, a robustness experiment in which the training and

test sets no longer coincide is set up. By varying the mean and standard deviations of

the underlying distributions the vulnerabilities of data-rich methods are identified. The

situation in which the training and test sets are similar but not identical to one another

has been tested as well, showing that the proposed methods still outperform the current

EVM/ES forecasting methods.

The outline of this chapter is as follows. In section 5.2, an overview of the Artificial

Intelligence methods is supplied. Section 5.3 goes over the process of data generation,

the EVM progress data, data pre-processing with PCA and training, validation and

test sets to construct a forecast. The steps of the methodology are revisited in section

5.4 which proffers specific settings. The results found in section 5.5 first elaborate on

fine-tuning the parameters of the AI methods (section 5.5.1.1) and the desired level of

explained variation for the principal components (section 5.5.1.2). Section 5.5.2 dis-

cusses the general accuracy, the impact of the topology and the percentage complete.

The sensitivity analysis varies the mean and standard deviation of the underlying distri-

bution and proves how data-intensive methods conform to the well-known “garbage-in,

garbage-out” principle. Section 5.6 concludes this chapter by sharing the main insights

of our research.
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5.2 Artificial Intelligence methods

In this section, a general overview of the employed Artificial Intelligence methods will

be given. All of these methods will be used to construct a forecast of the final project’s

duration. In section 5.3, it will be shown how these techniques are embedded in the

presented methodology.

5.2.1 Decision Tree Learning

5.2.1.1 Decision Trees

Decision Tree learning finds its roots in the seminal work by Morgan and Sonquist (1963).

In their paper, the authors deal with automated interaction detection and propose a new

procedure for data analysis and regression, which is now known as decision tree learning.

Inspired by this new research direction, Breiman et al. (1984) and Quinlan (1993) inde-

pendently came up with algorithms that are comprised of two phases. In the first phase,

the solution space is partitioned using a binary (Breiman et al. (1984)) or multi-way

(Quinlan (1993)) split after which, in the second phase, a constant model is applied to

each node of the partition. These algorithms are known as Classification And Regression

Trees (CART) and C4.5, respectively. The approach of these well-known techniques is

subject to two pitfalls, namely overfitting and selection bias. The overfitting problem

results from the lack of statistical significance, as noted by Mingers (1987). Even though

some information measure is maximized in order to make a split in the decision tree,

there is no way of establishing whether this split is significant. The selection bias follows

from the fact that attributes with more split points are preferred. This issue was raised

by Breiman et al. (1984) but no remedy was provided.

The solution was found by Hothorn et al. (2006b), who proposed a conditional infer-

ence framework that makes use of permutation tests developed by Strasser and Weber

(1999). These permutation tests look for dependence between the outcome and the

different predictors, after which the predictor with the smallest p-value is selected for

splitting. Consequently, the conditional inference framework meets the need for a sta-

tistical approach to recursive partitioning, as demanded by White and Liu (1994).

5.2.1.2 Bagging & Random Forest

The principal shortcoming of decision trees lies in their instability when small changes

in learning data occur. Variable selection and selection of the cutpoint for the selected
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variable(s) highly depend on the observations in the learning sample. If the first splitting

variable were different due to a minor change in the learning data, the entire structure

of the tree may be altered. Hence, single tree predictions display a high variability.

In order to alleviate this shortcoming, a new class of methods called ensemble meth-

ods saw the light of day when Breiman (1996) introduced bagging predictors. Bagging,

as well as other tree-based ensemble methods, employ the fact that singular trees may

yield instable results but produce the right prediction on average. Bagging trains a

number of trees on a bootstrap sample of the learning set and applies all the constructed

trees on the test set. The final prediction is the average value of the predictions resulting

from each tree. The superiority of bagging over singular classification or regression trees

was demonstrated by Bühlmann and Yu (2002). In that paper, the authors analyze the

reduction of variance following the use of bagging.

A few years later, Breiman (2001) added another source of variation to rectify the short-

coming of decision trees. Random forests make use of a restricted number of predictors

that can be selected at each split. Bagging can be regarded as a special case of random

forests where the number of randomly preselected predictors coincides with the total

number of predictors. Segal (2004) identified the need for careful parameter tuning for

settings where maximally sized trees overfit. Random Forests have also been researched

from a statistical point of view by linking them with adaptive Nearest Neighbour meth-

ods (Lin and Jeon (2006)) or by examining their consistency for classification purposes

(Biau et al. (2008)).

5.2.1.3 Boosting

The main premise of boosting, a weak learning algorithm that can be boosted into a

strong learner, is very similar to other ensemble methods. However, boosting works dif-

ferently since it is a stagewise procedure. Base learners, such as decision trees, are fitted

to the training data in an iterative fashion, where an increased importance is put on

instances that are hard to classify or predict. The first boosting algorithm that can be

solved in polynomial time was presented by Schapire (1990). A couple of years later, Fre-

und and Schapire (1997) introduced AdaBoost, a boosting algorithm for classification

purposes that solved practical issues which earlier boosting algorithms suffered from.

An overview of boosting with the key focus on AdaBoost was given by Schapire (2003).

In that contribution, the author examined similarities to game theory and linear pro-

gramming, as well as extensions for multiclass classification problems. Bagging, boosting
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and randomization were compared in an experiment conducted by Dietterich (2000), who

researched the performance of the three techniques with and without classification noise.

Boosting for regression problems was conceived by Friedman (2001), who developed

a general paradigm for boosting based on gradient descent. In general, the boosting

procedure for regression proceeds as follows. In the first step, a learner is constructed

that maximally reduces a specified loss function. For each following step, the focus shifts

to the residuals resulting from the first step. A new learner is fitted to the residuals of

the previous step and added to the model. Consequently, by focusing on residuals it is

clear that boosting emphasizes instances that are hard to predict. For additional details

about the boosting procedure, we refer to Friedman (2001) and the introductory articles

of Elith et al. (2008) and Natekin and Knoll (2013). Similar to their perspective on

bagging, Bühlmann and Hothorn (2007) examined boosting from a statistical point of

view, according special attention to model estimation problems.

5.2.2 Support Vector Machines

Support Vector Machines (SVM) in their current form were developed at AT&T Bell

Laboratories and gained momentum with the publication of Cortes and Vapnik (1995).

SVMs build a model involving a decision surface by mapping the predictors into a higher-

dimensional feature space. In this feature space, linear regression is executed. This

translation of the predictors into a different feature space is necessary because of the

unknown relation between predictors and outcomes. In case this relation is assumed

to be non-linear, it is necessary to employ kernel functions. Any function satisfying

Mercer’s condition (Vapnik (2000)) can be used as a kernel function. The main goal of

the kernel consists of achieving linear separability between training points in the higher-

dimensional feature space. The reader is referred to Smola and Schölkopf (2004) for

more details on kernel functions for Support Vector Machines.

5.3 Methodology

In this section, it is shown how the Artificial Intelligence methods of section 5.2 are used

in a project control environment. Before the methods can be applied, it is necessary

to generate progress data from which the methods can learn the relation with the real

duration. At the same time, generating a high volume of diverse projects enhances gen-

eralization of the results. The generated data is captured for different periods in time.

The performance of the project is tracked using EVM and ES metrics, revealing how
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the project evolves across time. Before the data is fed to one of the AI methods, it is

pre-processed such that the problems of noise and correlated data are solved. Next, a

division into a training and a test set is made. The static phase focuses on the training

set and by dividing the training set into a smaller training set and a validation set, the

optimal parameters for each of the AI methods discussed in section 5.2 are found. These

parameters are used in the dynamic phase. The dynamic phase trains an AI method

on the training set with the best found parameters and assesses the performance on the

executions of the test set. These executions can be regarded as real-life executions. A

prediction is made for each of the review periods, resulting in an overall performance

measure. The performance measure serves as a tool for comparing the proposed AI

methods with the currently known EVM and ES forecasting methods.

Even though the employed methodology has similarities to the one used by Wauters

and Vanhoucke (2014b), there are some notable differences. First of all, generation of

the progress data is done differently. While we still make use of the generalized beta

distribution, a different parametrization is applied to construct simulation scenarios.

Secondly, Principal Component Analysis (PCA) is used as a pre-processing technique

to combine only the relevant attributes in principal components. The final and largest

methodological difference lies in the division between training, validation and test sets.

In Wauters and Vanhoucke (2014b), parameters are tuned across multiple projects. In

this chapter, the best parameter combination for every individual project is selected.

The methodology is divided into 3 main blocks, namely data generation, attributes and

training, validation and testing. Each of these blocks is discussed below. The different

aspects of the 3 methodological blocks are depicted in figure 5.1.

5.3.1 Data Generation

The data generation is comprised of two distinct phases. The baseline data involve the

construction of the project network, as well as assigning baseline costs and durations to

the network. The resulting schedule is obtained using the critical path method’s earliest

start calculations. The fictitious project networks are generated in a controlled manner

by varying the Serial/Parallel (SP) indicator. The SP indicator, originally proposed by

Vanhoucke et al. (2008), was first called the I2 indicator but later project management

studies adopted the more intuitive name. Its calculation is based on the progressive

level concept of Elmaghraby (1977) by determining the maximum number of levels in

a network. This corresponds with the longest chain of critical activities in a network.
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Data generation (I)
1.1 Baseline

Goal: reference point for project control
Technique: CPM

Estimate of baseline
cost

&
duration

SP indicator

1.2 Sensitivity metrics

Goal: calculation Elshaer (2013) forecasting methods
Technique: simulation, expert judgement, historical data.

Activity
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metric
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1.3 Progress data

Goal: imitate project progress
Technique: Monte Carlo simulation

Attributes (2)

Goal:
1. Forecasting results (EVM/ES & Elshaer (2013))
2. Input data for AI techniques

Technique: results from Monte Carlo simulations
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s Name Attribute Calculation

Schedule Performance Index SPI EV
PV

Schedule Performance Index (time) SPI(t) ES
AT

Cost Performance Index CPI EV
AC

Earned Schedule ES t + EV �PVt

PVt+1�PVt

Estimate At Completion (time) - Planned Value
EAC(t)PV1

PD � (EV �PV )⇤PD
BAC

EAC(t)PV2

PD
SPI

EAC(t)PV3

PD
CPI⇤SPI

Estimate At Completion (time) - Earned Duration
EAC(t)ED1

PD + AD ⇤ (1� SPI)
EAC(t)ED2

PD
SPI

EAC(t)ED3

PD
SPI⇤CPI + AD ⇤ (1� 1

CPI )

Estimate At Completion (time) - Earned Schedule
EAC(t)ES1

AD + PD � ES
EAC(t)ES2 AD + PD�ES

SPI(t)

EAC(t)ES3

PD�ES
CPI⇤SPI(t)

Estimate At Completion (time) - Elshaer (2013) EAC(t)ES2↵ AD + PD�ES0

SPI(t)0

Table 5.1

Goal: 
1. Reduce data overload
2. Resolve collinearity
3. Eliminate noise

Technique: Principal Component Analysis

2.1 Capturing attributes

X = TPT

P ⇤ = arg min
f

Pf
i=1 �iPP
i=1 �i

� t

2.2 Data pre-processing

Principal Components:
Linear combinations of attributes 

of table 5.1

Training, validation & test sets (3)

nbrex

...

...
k folds

Test Set

Cross-validation

...

Validation Set

Training Set’

Training Set
Goal: find optimal parameters
Technique: algorithm 2

3.1 Static phase

3.2 Dynamic phase

Goal: test performance on unseen data
Technique: algorithm 3

AI methods
• Tree-based
• SVM

Performance comparison

Existing methods
• EVM/ES
• Elshaer (2013)

Figure 5.1: Summary of the 3 methodological blocks
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Let m denote the maximal progressive level and n the number of non-dummy activities

in the project’s network. The SP indicator is then equal to m−1
n−1 . As a result, the SP

indicator assumes a value in the interval [0,1] and measures the degree of resemblance

to a completely serial (SP=1) or a completely parallel (SP=0) network.

The progress data introduce variation in the activity durations. In this chapter, Monte

Carlo simulations are used. The process of applying Monte Carlo simulations to a

project management environment is as follows. First of all, a probability distribution is

constructed which controls the degree and probability of the variability in activity du-

rations. In this research, the generalized beta distribution is used. This distribution has

been implemented in academic (Vanhoucke (2011), Elshaer (2013), Colin and Vanhoucke

(2014)) as well as practical environments (AbouRizk et al. (1994)). The probability den-

sity function of a generalized beta distributed random variable x can be expressed as

follows:

f(x) =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)(b− a)θ1+θ2−1
(x− a)θ1−1(b− x)θ2−1, x ∈ [a, b] (5.1)

a and b refer to the lower and upper limits of the random variable respectively. Γ(·)
refers to the gamma function and θ1 and θ2 are two shape parameters. In this chapter,

the simulations are controlled using a, b and the mean µ and mode m of the distribution.

The shape parameters θ1 and θ2 can be calculated from equations (5.2) and (5.3).

θ1 = −(b+ a− 2m)(a− µ)

(m− µ)(a− b) (5.2)

θ2 =
(b+ a− 2m)(b− µ)

(m− µ)(a− b) (5.3)

The use of a, b, µ and m allows for a wide array of distributional shapes, which is ideally

suited for simulations for which different project outcomes are desired.

A number of Monte Carlo runs are performed to calculate sensitivity metrics, which

are required to calculate the predictions of the Elshaer (2013) forecasting methods. Six

different sensitivity metrics were selected, consistent with the works of Elshaer (2013)

and Vanhoucke (2010b), namely the Criticality Index (CI), the Significance Index (SI),

the Schedule Sensitivity Index (SSI) and the Cruciality Index using Pearson’s product

moment (CRIr), Spearman’s rank correlation (CRIρ) and Kendall’s τ rank correlation

(CRIτ ).
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5.3.2 Attributes

This section consists of two parts. In section 5.3.2.1, we specify which attributes are

captured along the project’s progress. Section 5.3.2.2 discusses the application of Prin-

cipal Component Analysis as a pre-processing technique to reduce the amount of data

while retaining as much information as possible.

5.3.2.1 Capturing attributes

The progress data resulting from the Monte Carlo simulations lead to calculating Earned

Value Management measures. These give the project manager an indication of the

health of the project and form the input measures for the different Artificial Intelligence

methods. Inputs for AI methods are often referred to as attributes. The AI methods

learn the relation between EVM measures (input) and forecasting values (output) and

apply the learned relation to unseen data. The attributes are given in table 5.1. The

performance metrics SPI, SPI(t) and CPI all make use of EVM’s key metrics, namely

PV, EV and AC. The time forecasting methods are denoted as the Estimated time

At Completion (EAC(t)), where a subdivision is made according to the Planned Value

(PV), Earned Duration (ED) or Earned Schedule (ES) method. AD and PD stand for

the Actual Duration and Planned Duration respectively. The Budget At Completion

(BAC) results from the baseline schedule and captures the total project expenditure if

every activity is executed according to plan. The final forecasting method of table 5.1,

EAC(t)ES2α merits further discussion. This method was proposed by Elshaer (2013), who

suggested an adaptation of the PV and EV calculations taking sensitivity information

into account.

PV ′α,t =
∑

j

αjPVj,t (5.4)

EV ′α =
∑

j

αjEVj,AT (5.5)

Equation (5.4) shows that the PV of sensitivity metric α at time point t is made up of the

sum of the PV of all activities indexed by j. A similar reasoning applies to equation (5.5).

Following equations (5.4) and (5.5), the calculation of the Earned Schedule and Schedule

Performance Indicator changes as well. This is reflected in the table by adopting the

notation ES′ and SPI(t)′ respectively. α represents the sensitivity metric (α ∈ {CI, SI,

SSI, CRIr, CRIρ, CRIτ}).
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Name Attribute Calculation

Schedule Performance Index SPI EV
PV

Schedule Performance Index (time) SPI(t) ES
AT

Cost Performance Index CPI EV
AC

Earned Schedule ES t+ EV−PVt
PVt+1−PVt

Estimate At Completion (time) - Planned Value

EAC(t)PV1 PD − (EV−PV )∗PD
BAC

EAC(t)PV2
PD
SPI

EAC(t)PV3
PD

CPI∗SPI

Estimate At Completion (time) - Earned Duration

EAC(t)ED1 PD +AD ∗ (1− SPI)

EAC(t)ED2
PD
SPI

EAC(t)ED3
PD

SPI∗CPI +AD ∗ (1− 1
CPI

)

Estimate At Completion (time) - Earned Schedule

EAC(t)ES1 AD + PD − ES
EAC(t)ES2 AD + PD−ES

SPI(t)

EAC(t)ES3
PD−ES

CPI∗SPI(t)

Estimate At Completion (time) - Elshaer (2013) EAC(t)ES2α AD + PD−ES′
SPI(t)′

Table 5.1: Overview of the EVM attributes

5.3.2.2 Data Pre-Processing

Ever since the inception of Principal Component Analysis by Pearson (1901), it gained

popularity as a dimensionality reduction technique. PCA presumes that the observations

can be projected on a new set of axes, removing data redundancy and system noise in

the process. Principal components are linear combinations of the original variables. The

principal components are the directions that comprise the new coordinate axes. In a

second phase, the observations are plotted onto the new axes using the score matrix.

We only provide a small summary of the working of PCA and refer the reader to Jolliffe

(2005) for a more comprehensive overview. Suppose we have an (L × P ) matrix X

holding L observations of random variable x with P different attributes. The first

principal component can then be formulated as a linear combination of the original

variables explaining a maximum amount of variation, as follows:

t1 = xp1 = x1p11 + x2p12 + ...+ xP p1P (5.6)

Incidentally, p1 should be a unit vector. The loadings pi determine the directions of

the principal components and correspond with the coefficients of the original variables

in equation (5.6). The scores ti constitute the coordinates of the ith observation on

the new coordinate axes. In matrix notation, the matrix of the scores T is an (L × P )

matrix, whereas the loadings matrix contains (P × P ) elements. Principal Component
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decomposition can then be written as given in equation (5.7):

X = TPT (5.7)

Naturally, there would be little use for PCA if all P components were retained. Hence,

a criterion needs to be put forward that selects a number of principal components that

explain a reasonable amount of variation. It can be shown (Shlens (2005)) that the prin-

cipal components of X are the eigenvectors of the covariance matrix of X. Let λi denote

the eigenvalue of the associated principal component i. If all P principal components are

retained, the P eigenvalues explain all variation in the measurements. In this chapter,

the minimum number of principal components P ∗ will be selected representing at least t

percent of the explained variation. This can be formulated according to equation (5.8):

P ∗ = arg min
f

∑f
i=1 λi∑P
i=1 λi

≥ t (5.8)

In this equation, the numerator refers to the summed variation explained by the first f

principal components, whereas the denominator represents the total amount of variation

explained by the P eigenvalues.

In general, there are three methodological grounds for opting for a PCA. These are

briefly outlined below. The reader is referred to Colin et al. (2015) for a more elaborate

discussion.

• Data overload: the overload of data results from project control metrics that are

captured periodically. Hence, as the project progresses, the amount of information

at a project manager’s disposal grows. By combining the information into a select

number of Principal Components, this issue can be resolved.

• Collinearity: collinearity occurs when multiple variables are influenced by a com-

mon factor and is arguably a major cause for concern in project control. Since

all EVM metrics and forecasting methods are derived from three key numbers

(Planned Value, Earned Value and Actual Cost), it is reasonable to assume the

presence of collinearity within EVM data.

• Noise: noise is defined as the presence of an unexplained source of variation in

a sample (Colin et al. (2015)). Since Earned Value Management is a top-down

method, noise may result from the translation of variation on the activity level to

a higher level of the Work Breakdown Structure.
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Phase Static Phase Dynamic Phase

Set Training Set Test Set

Goal Find optimal parameters Test performance on unseen data

Type of data
Historical data

Real-life execution
Simulations

Size of training, validation and test sets

Phase Set #executions

Static

Training set train% ∗ nbrex
• Training set’ k−1

k
∗ (train% ∗ nbrex)

• Validation set (1− k−1
k

) ∗ (train% ∗ nbrex)

Dynamic Test set (1− train%) ∗ nbrex

Table 5.2: Overview of the training, validation and test sets

In the context of this chapter, which makes use of simulations and progress data that

is captured periodically, the L observations correspond with the total number of Monte

Carlo executions. For ease of reference, this will be termed nbrex in the remainder of

this chapter. For each time period, indexed by rp = 1,...,R, 19 attributes as given in

table 5.1 are captured. Consequently, matrix X contains nbrex = L observations and

P = rp ∗ 19 attributes for a given review period rp.

5.3.3 Training, validation and testing

Section 5.3.1 covered the creation of a dataset that is as diverse as possible. Section

5.3.2.2 then assured that only relevant information is retained by combining the at-

tributes of table 5.1. The complete dataset is typically decomposed into three distinct

sets, namely a training, validation and test set. An overview of these sets is given in

the bottom third of figure 5.1 and table 5.2. In a first phase, the training and test sets

are separated. train% of the total amount of executions, nbrex, of a project are chosen

for the training set, while the remainder is included in the test set. The training set

is subdivided into a smaller training set and a validation set. The importance of the

validation set is closely linked with the observation that each AI method needs to be

tuned with care. The smaller training set serves to learn the relation between inputs

and outputs, while the validation set is used to gauge the performance. The goal of the

validation set is to determine the best parameter combination for the AI method under

study.

In this chapter, we opt for a combination of a grid search procedure and cross-validation

to determine the best parameter settings. Among the variants of cross-validation, we
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opted for k-fold cross-validation. In k-fold cross-validation the data is partitioned into k

equally sized folds. One of those k folds is used as a validation set while the remaining

k − 1 folds are used for training. This is shown at the bottom of figure 5.1 where k

partitions into a smaller training set (shown in white) and a validation set (shown in

grey) are made. Since k − 1 folds are used for training, the small training set contains
k−1
k of the executions of the larger training set, as indicated in table 5.2. The remaining

1 − k−1
k of the larger training set comprises the validation set. The prediction results

are averaged across the folds and form a proxy for the AI method’s performance on

the test set. The results of the prediction are used to determine the optimal parameter

combination. Obviously, a criterion to measure the performance needs to be put for-

ward. A previously employed metric for assessing forecasting accuracy (Vanhoucke and

Vandevoorde (2007), Wauters and Vanhoucke (2014b)) is the Mean Absolute Percentage

Error (MAPE), calculated according to equation (5.9).

MAPE =
1

R

R∑

rp=1

|RD − EAC(t)rp|
RD

∗ 100 (5.9)

This equation calculates the MAPE as the sum across all review periods R, indexed by

rp, of the percentage deviation between the Real Duration (RD) and the forecast value,

EAC(t)rp at time point rp. Once the parameter combination that yields a minimum

MAPE is found, the AI method is retrained on the larger training set and the learned

relation is applied to the test set, yielding the true MAPE.

5.4 Computational Experiment

In this section, the various settings used for the computational experiment will be out-

lined. The three items of section 5.3, data generation, attributes and training, validation

and testing, are revisited and made more concrete.

5.4.1 Data Generation

The data generation phase comprised three phases, namely the baseline data which

revolved around constructing a baseline schedule, the progress data, in which Monte

Carlo simulations were executed and generation of the sensitivity metrics to construct

the Elshaer (2013) forecasts. The topology of the networks was varied using the SP

indicator. For our experiment, 90 Activity on the Node (AoN) networks were generated.

Randomly sampled activity costs and durations were assigned to the 30 activities of
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each AoN network. The SP indicator was varied from 0.1 to 0.9 in steps of 0.1. Hence,

there are 10 projects for each level of the SP indicator. Generation of the networks was

executed using the RanGen engine (Demeulemeester et al. (2003) and Vanhoucke et al.

(2008)). The topological structure of the employed dataset has been utilized in previous

EVM studies (e.g. Colin and Vanhoucke (2014) and Elshaer (2013)) and can be down-

loaded from www.projectmanagement.ugent.be/evms.html. The baseline duration of

each activity was randomly drawn from the interval [200,300] and the costs were gener-

ated randomly from the interval [50,100]. We only used variable costs, entailing that a

deviation in duration of one of the activities is completely reflected in a cost deviation.

The subsequent assumption is that the activity costs express a monetary unit per unit

of time. If an activity takes longer to complete, more man-hours are required and the

expenses rise.

The progress data allows for deviations from the baseline schedule. This variation will

be represented in the EVM measures which in turn will be used to construct estimates

for the project’s final duration. Four key numbers were used to characterize settings for

the generalized beta distribution. a and b represent the lower and upper limit of the

random variable where µ and m refer to the distribution’s mean and mode, respectively.

In order to assess the general performance of the AI forecasting methods, 3 scenarios

are constructed. These scenarios represent situations in which the project finishes early

(Real Duration (RD) < Planned Duration (PD)), on time (RD ≈ PD) and late (RD

> PD), respectively. a, b, µ and m were chosen in such a way that the Coefficient of

Variation (CV = σ
µ) is equal to 0.4 for the three scenarios. In a separate sensitivity

experiment, the effect of changing one of the scenario’s parameters will be studied. The

sensitivity experiment studies the following two situations:

• ∆µ: a change in the distribution’s mean while keeping the standard deviation σ

constant. This is done by changing m from 60% to 140% of the On Time scenario’s

mode in steps of 20%. Once the mode is known, µ is calculated while keeping σ

equal to 0.4.

• ∆σ: a change in the distribution’s standard deviation while keeping the mean

constant. The standard deviation is modified from 60% to 140% of the On Time

scenario’s σ in steps of 20%.

The settings for the various scenarios are given in table 5.3. Each project is executed

1,000 times according to one of the generalized beta distributions specified in table 5.3.

From this set of executions, the sensitivity metrics can be computed. These are required

www.projectmanagement.ugent.be/evms.html
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Scenario a b m µ θ1 θ2 σ

General Performance

Early 0.1 2 0.5 0.6 2.93 8.22 0.24

Middle 0.2 4 0.82 1 2.94 11.03 0.40

Late 0.2 4 1.2 1.4 2.83 6.14 0.56

Sensitivity

Change in µ

∆µ1 0.2 4 0.49 0.79 1.67 9.13 0.40

∆µ2 0.2 4 0.65 0.89 2.24 10.13 0.40

∆µ3 0.2 4 0.98 1.12 3.80 11.87 0.40

∆µ4 0.2 4 1.14 1.25 4.75 12.35 0.40

Change in σ

∆σ1 0.2 4 0.94 1 8.53 31.99 0.24

∆σ2 0.2 4 0.89 1 4.72 17.70 0.32

∆σ3 0.2 4 0.70 1 1.98 7.44 0.48

∆σ1 0.2 4 0.53 1 1.40 5.26 0.56

Table 5.3: Generalized beta settings for the various scenarios

to calculate PV’α,t and EV’α which are prerequisites to construct the forecasting methods

of Elshaer (2013).

5.4.2 Attributes

Similar to section 5.3.2, a distinction is made between capturing the attributes (section

5.4.2.1) and pre-processing them using Principal Component Analysis (section 5.4.2.2).

5.4.2.1 Capturing attributes

The attributes from which the AI methods learn the relationship between inputs and

outputs were already provided in table 5.1. These are captured for every 10% complete,

ranging from 10% to 90%. Incidentally, R in equation (5.9) is equal to 9.

5.4.2.2 Data Pre-processing

Table 5.1 contains the 19 attributes (4 performance indicators, 9 EVM forecasting meth-

ods and 6 Elshaer forecasting methods) that are captured for every 10% complete. At

the 90% completion point, there are 171 (9 × 19) attributes. In order to reduce this

amount to the combination of attributes that explains a maximum amount of variation,
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Principal Component Analysis is used. In section 5.3.2.2, we explained that the min-

imum number of principal components are selected such that at least t percent of the

variation is explained. This was detailed in equation (5.8). In our tests, 4 levels for t

were examined, i.e. t ∈ {0.5, 0.9, 0.95, 0.99}.

5.4.3 Training, validation and testing

One of the principal differences compared to the work of Wauters and Vanhoucke (2014b)

lies in the division between training, validation and test sets. In this chapter, the param-

eters are tuned on the project level whereas the other work tunes parameters on a more

aggregated level. Every project is executed 1,000 times (nbrex = 1, 000) after which the

forecasting procedure can be initiated. These executions are then divided into a training

set and a test set. The training set is further subdivided into a smaller training set and

a validation set. The goal of this disaggregation is to find the optimal parameters for

the AI method that is utilized. For each of the 10 projects per level of the SP factor,

the optimal parameters are determined. Once the optimal parameters have been found,

the AI model is retrained and tested on unseen data, which is contained in the test set.

Of the 1,000 executions of each project, 80% (800 executions) is used for training and

20% for testing (200 executions). Consequently, train% of section 5.3.3 is equal to 80%.

The smaller training set contains 80% of the larger training set’s executions, totalling

640 executions (0.8 * 800). The validation set comprises the remaining 160 executions

(0.2 * 800).

As previously mentioned, the smaller training set and the validation set serve the pur-

pose of finding the best parameters of the AI method. This was done using k-fold

cross-validation. For this chapter, 5 (k=5) folds were implemented, implying that each

time 640 executions are used for training and 160 for testing. Since every run is used

once for validation, cross-validation counters the effect of overfitting. An overview of

the parameters and their settings is provided in table 5.4. For some methods, the grid

search was refined in order to identify the point from which the validation error began

to rise again. In table 5.4, a sequence is indicated using the following notation: (lb−ub,
∆=increment), in which lb specifies the lower bound of the sequence, ub specifies the up-

per bound and ∆ represents the step size. The parameter settings are briefly explained

along the following lines:

• Decision Tree, Bagging, Random Forest: the tree-based approaches rely on 2 or

3 parameters. For a single decision tree, the confidence interval determines the
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p-value for splitting. As discussed in section 5.2.1.1, a test of independence is

conducted between the response variable and the predictors. The split and bucket

determine the weights in a node or terminal node respectively and govern the

process of splitting, resulting into an additional level in the decision tree’s structure.

Bagging and random forest approaches are ensemble methods that draw results

from multiple trees. The number of trees that is grown is one of the parameters.

While bagging takes all of the predictors into account, random forests sample a

number of input variables. As a result, the number of variables that are used is an

additional parameter for this AI technique.

• Boosting: boosting employs regression trees by adding them to the model one at a

time. The learning rate or shrinkage parameter determines the contribution of each

tree to the model. A slower learning rate has the advantage that the parameters

leading to an optimal performance are not skipped by accident. On the other

hand, convergence to an optimum solution is slow, requiring a low learning rate to

go hand in hand with a higher number of trees. The interaction parameter is in

charge of the complexity of the tree, leading to additional nodes in the tree as the

number of interactions between variables increases.

• Support Vector Machine: Support Vector Machines, like other AI techniques, try to

find an optimal balance between learning the relation between inputs and outputs

while maintaining a good generalization error, which is reflected in the performance

on the test set. An improved generalization may be obtained at the expense

of additional training errors, primarily controlled by the parameter C. Other

parameters depend on the kernel choice. In this chapter, the Radial Basis Function

(RBF) kernel was used, for similar reasons to those of Wauters and Vanhoucke

(2014b). The RBF depends on 1 parameter, namely γ.
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5.5 Results

The performance of the Artificial Intelligence methods will be compared to the EVM and

Elshaer forecasting methods in this section. The AI techniques were implemented in R

(R Core Team (2013)) for which the following packages were used: party (Hothorn et al.

(2006a,b)) for decision trees, bagging and random forests, gbm (Ridgeway (2013)) for

boosting and LIBSVM (Meyer et al. (2012)) for Support Vector Machines. The computa-

tional experiments were conducted on Ghent University’s High Performance computing

infrastructure. We made use of the Delcatty cluster, which boasts 64GB RAM and has

a quad-core Intel Xeon processor with 2.6 GHz at its disposal. As mentioned in section

5.3.3, the criterion for assessing forecasting accuracy is the MAPE. Unless specifically

stated otherwise, the MAPE will be reported, indicating that the performance of a

method is better on average, rather than outperforming a method at a certain point in

time, as would be the case for the Absolute Percentage Error.

Tuning Artificial Intelligence methods with care is an integral part of deploying these

methods for prediction purposes. In section 5.5.1, the best found parameters are re-

ported. Additionally, we report on the percentage of explained variation for data pre-

processing using principal components. Section 5.5.2 examines the results of the AI

methods in relation to the other forecasting methods for the Early, On Time and Late

scenarios specified in table 5.3. The impact of the topological structure, measured by

the SP indicator, and the percentage complete is discussed as well. Section 5.5.3 con-

cludes the results by investigating the robustness of the AI techniques in a sensitivity

experiment. The impact of a change in the distribution’s mean and standard deviation

illustrates the limitations of turning to Artificial Intelligence methods.

5.5.1 Parameter fine-tuning

5.5.1.1 AI Methods

One of the key issues of employing Artificial Intelligence methods lies in tuning their

parameters. The parameter settings, along with a concise explanation, were presented

in table 5.4. The goal of the smaller training set and the validation set consists of finding

the combination of parameters that yields the lowest MAPE. We remark that because we

follow a project-based approach, parameter settings are optimized per project, rather

than on a more aggregated level. Table 5.5 displays the results for the various AI

techniques. The column labeled “Share” shows the percentage when a parameter’s value

yielded the best results and is aggregated across all scenarios, projects and values of the
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Method Parameter Value Share

Decision Tree

Confidence Interval

0.5 3.70%

0.9 41.11%

0.95 37.78%

0.99 17.41%

Split 20 100%

Bucket

1 5.19%

4 2.96%

7 3.33%

10 6.67%

13 8.52%

16 15.93%

19 14.07%

20 14.81%

50 22.59%

100 5.93%

Bagging

Split

5 42.59%

10 50.74%

50 6.67%

#Trees

50 0.37%

100 4.81%

500 94.84%

Random Forest

Split

5 7.78%

10 78.89%

20 8.15%

30 3.70%

40 1.11%

50 0.37%

#Trees
100 2.96%

500 97.04%

#Try

1 11.48%

3 6.67%

4 1.48%

5 78.15%

6 2.22%

Boosting

Shrinkage

0.005 5.93%

0.001 87.04%

0.01 7.04%

#Trees

1000 9.63%

5000 9.63%

10000 33.33%

20000 47.41%

Interaction

1 5.93%

2 38.15%

4 55.93%

Support Vector Machine

Cost

23 19.26%

25 14.81%

27 2.22%

29 18.52%

211 4.07%

213 25.19%

215 15.93%

γ

2−20 27.78%

2−15 38.15%

2−10 34.07%

Table 5.5: Overview of the best parameter settings of the AI techniques
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t DT Bag RF Boost SVM Average

0.5 7.44% 7.12% 7.15% 7.00% 7.13% 7.17%

0.9 7.47% 7.00% 7.04% 6.88% 6.75% 7.03%

0.95 7.48% 6.99% 7.05% 6.90% 6.76% 7.04%

0.99 7.48% 7.05% 7.04% 6.91% 6.83% 7.06%

Table 5.6: MAPE for different values of t

SP indicator. If one or more of the settings of table 5.4 are missing in table 5.5 it means

that that parameter value did not occur as one of the optimal settings.

5.5.1.2 Principal Components

In section 5.4.2.2, it was mentioned that the minimal number of principal components

needed to explain t percent of the variation was retained. Four levels of t were proposed,

namely 50%, 90%, 95% and 99%. Obviously, as t increases, the number of principal

components rises as well. Consequently, a trade-off needs to be made between the desired

amount of explained variation and the resulting number of principal components. As the

number of principal components rises, noise (cf. section 5.3.2.2) is re-introduced (Jolliffe

(2005)). Figure 5.2 depicts the relation between the percentage complete (on the x-axis)

and the number of principal components (on the y-axis) for the different levels of t. We

can infer that the difference in number of principal components between t=0.95 and

t=0.99 is quite steep. The difference in performance between the different levels of t

for the AI methods is presented in table 5.6. The lowest average MAPE is indicated in

bold in the table. In general, the average MAPE across the levels of t is not that large.

Following figure 5.2 and table 5.6, a trade-off needs to be made between the number of

principal components and the forecasting accuracy. A value of 0.9 for t strikes the best

balance between these criteria. In the remainder of this section, results are reported for

this level of explained variation.

5.5.2 General performance

In this section, the performance of the Artificial Intelligence methods is compared to that

of the EVM and Elshaer forecasting methods. Performance is split up along the Early,

On Time and Late scenarios, for which the settings were provided in table 5.3. The

reader is reminded that these scenarios differ in the average outcome but have an equal

value for the coefficient of variation (CV=0.4). In this section, we examine the mean

MAPE and its standard deviation, the effect of the network’s topology and the impact
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Figure 5.2: Relation between the percentage complete and number of principal components for
various levels of the explained variation

of the percentage complete. All results are given in table 5.7. For the Planned Value,

Earned Duration, Earned Schedule and Elshaer forecasting methods, the forecasting

accuracy of the best performing method is presented along with its performance factor

or sensitivity index, respectively.

General accuracy The general accuracy is captured using the mean MAPE across all

levels of the SP indicator. Along with the mean value, the standard deviation provides

an indication of the variability of the forecasting accuracy.

• The first observation is that there is very little difference in performance between

the Early and Late scenarios for the EVM and Elshaer forecasting methods. An

improved forecasting accuracy can be noted for the On Time scenario, where those

methods with a performance factor of 1 perform best. In general, a performance

factor indicates the expected future behaviour of the project’s performance. A

performance factor of 1 assumes that the remainder of the project will perform as

planned, which aligns with reality for the On Time scenario. Since the AI methods

do not employ a performance indicator, their forecasting accuracy is very similar

across the three scenarios.

• All of the AI methods predict the final duration of the project more accurately
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than the best performing EVM and Elshaer methods. The ensemble methods which

combine multiple decision trees attain better results than the decision tree method.

The difference in forecasting accuracy between bagging and random forests is neg-

ligible for all scenarios. Boosting and SVM perform even better than the decision

tree-based approaches.

• Apart from the great average performance of the AI methods, the standard devi-

ation is also lower compared to the EVM and Elshaer forecasting methods. The

Elshaer method with the SI as its sensitivity index yields the lowest standard de-

viation among all EVM/ES methods. However, the standard deviation of the AI

methods is about 44% lower (3.60−2
3.60 ). Because of the improvement in forecasting

accuracy of the EVM and Elshaer methods, the difference in performance with the

AI methods is smallest for the On Time scenario.

Impact of the SP indicator The topology of the AoN networks is dictated by the SP

indicator. Vanhoucke (2011) established that forecasting performance of EVM methods

improves as the project becomes more serial (larger value of the SP indicator). As

a project becomes more serial, its performance coincides with that of one of the few

activities in progress. This is contrary to parallel projects where multiple activities are

in progress at the same point in time. Since Earned Value Management is a top-down

technique, the poor performance of critical activities may be masked by the non-critical

activities that are ahead of schedule, leading to false warning signals. As a project

becomes more serial, the findings of CPM and EVM converge. In order to assess the

relation between the SP indicator and forecasting accuracy, we make use of the following

formula:

∆MAPESP =
MAPESP=0.1 −MAPESP=0.9

MAPESP=0.1
∗ 100 (5.10)

The formula of equation (5.10) returns the relative percentage improvement in MAPE

between projects with an SP value of 0.1 and 0.9. A visual inspection preceded the

construction of this equation to ensure that no jumps in performance for intermediate

levels of the SP indicator occur. Table 5.7 reveals that the relation between forecasting

accuracy and the SP indicator holds for all methods and across all scenarios. Hence, we

corroborate the findings of Vanhoucke (2011) and add that an identical relation holds for

the Artificial Intelligence methods. The difference in performance is steepest for the On

Time scenario where forecasting predictions for more serial projects are approximately

70% more accurate than those for more parallel projects. While the performance of the

AI methods increases by more than 50%, the performance improvement is slightly less
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than that of the Earned Schedule and Elshaer methods.

Impact of the Percentage Complete A measurement of the attributes of table 5.1

is made every 10% complete ranging from 10% complete to 90% complete. At those

points in time, the information from the attributes is used to construct a new estimate

for the project’s final duration. In general, it is expected that as a project progresses

and more information becomes available, a more accurate estimate of its duration can

be made. Similar to equation (5.10), a metric was defined that captures the relative

percentage improvement between the 10% completion point and the 90% completion

point, as follows:

∆MAPEPC =
MAPEPC=10% −MAPEPC=90%

MAPEPC=10%
∗ 100 (5.11)

The findings of the the percentage complete can be summarized as follows:

• Table 5.7 shows that the forecasting accuracy improves as the project progresses.

• For the traditional EVM methods, the improvement is lowest for the On Time

scenario, where the methods with a performance factor of 1 yield the best results.

This finding is sensible since those methods assume the project progresses according

to plan, regardless of the indications of the progress data.

• While the estimates of the Artificial Intelligence methods improve as the project

proceeds, the improvement is less steep compared to the EVM and Elshaer meth-

ods. This implies that while the overall performance of the AI methods is better

on average, the gap with the EVM and Elshaer methods shrinks along the per-

centage complete. This is a significant contribution since the EVM/ES forecasting

methods do not perform well for the early and mid-stages of a project (Vanhoucke

(2010a)). While the gap in performance decreases along the percentage complete,

the AI methods still come out on top.
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5.5.3 Sensitivity Analysis

In this section, a search for the limitations of the AI methods is conducted. The previous

section assumed that the variability could be estimated accurately. The parameters of the

distribution for the training and test sets were equal. In real-life situations, appraising

this variation in a correct manner proves to be a difficult task. Hence, it is possible

that the training and test sets do not coincide or that they are similar in nature but not

identical. To that end, the mean and standard deviation of the distributions that govern

the variability of the activity durations were changed in this section. The settings for

these additional scenarios were discussed in section 5.4.1. For this robustness experiment,

the dataset was limited to those projects with a value of 0.5 for the SP indicator and

the On Time scenario as the training set. The results are shown in table 5.8. The same

notation as in table 5.3 was used to indicate the various scenarios. The main conclusions

of table 5.8 can be summarized along the following lines. These conclusions hold for

both sensitivity settings (a change in the mean and a change in the standard deviation)

unless specified otherwise.

• The SVM method performed admirably when the training and test sets coincide.

When these sets do not align, the MAPE quickly skyrockets, reaching average

forecast errors of more than 60%.

• Both the EVM methods and the Artificial Intelligence techniques suffer more from

a change in mean compared to a change in standard deviation. The MAPE of all

methods is higher for scenarios ∆µ1−4 than for ∆σ1−4.

• The discrepancy between the AI methods and the EVM/ES methods diminishes

as the mean of the generalized beta distribution increases. For scenarios ∆µ1

and ∆µ2, there is a substantial difference between the AI methods and the best

performing PV, ED, ES and Elshaer method. However, this difference becomes

marginal for the scenarios where µ > 1.

• As the variation captured by a change in standard deviation increases, the accuracy

drops for all methods. Scenarios ∆σ1−4 demonstrate that as the standard deviation

becomes larger, the forecast accuracy decreases. This conclusion holds for the

EVM/ES methods and the AI techniques.

The mean and standard distribution were modified to a large extent. We also investigate

how the performance of the AI methods is impacted by smaller changes, in which the

training and test sets are similar but not identical. Wauters and Vanhoucke (2014b) con-

structed a symmetric, random and uniform class of distributions to examine situations
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Scenario PV ED ES Elshaer DT Bag RF Boost SVM

∆µ1 15.37% 15.37% 13.53% 13.91% 28.85% 33.38% 33.29% 28.66% 94.43%

∆µ2 10.16% 11.01% 10.08% 12.77% 18.73% 21.23% 21.17% 18.83% 86.36%

∆µ3 8.12% 8.21% 7.69% 9.89% 9.41% 10.06% 10.05% 8.64% 63.13%

∆µ4 10.92% 10.30% 8.62% 8.91% 11.66% 14.10% 14.10% 10.38% 59.13%

∆σ1 4.19% 4.21% 3.98% 6.91% 9.45% 9.95% 9.92% 9.63% 69.44%

∆σ2 5.48% 5.52% 5.23% 9.05% 10.34% 10.87% 10.84% 10.36% 69.77%

∆σ3 8.11% 8.18% 7.80% 13.39% 12.40% 13.08% 13.05% 12.17% 70.68%

∆σ4 9.35% 9.42% 9.00% 15.43% 13.45% 14.19% 14.16% 13.08% 71.00%

Table 5.8: Robustness results for the AI methods: training set 6= test set

Scenario PV ED ES Elshaer DT Bag RF Boost SVM

R(E-OT-L) 7.99% 8.06% 7.60% 14.45% 7.32% 6.82% 6.84% 6.70% 6.51%

R(∆µ) 6.93% 6.97% 6.59% 11.99% 6.80% 6.38% 6.40% 6.21% 6.06%

R(∆σ) 6.75% 6.74% 6.42% 13.84% 6.94% 6.51% 6.49% 6.32% 6.14%

R(All) 7.34% 7.24% 6.98% 13.70% 7.21% 6.83% 6.83% 6.71% 6.55%

Table 5.9: Robustness results for the AI methods: training set ≈ test set

in which the training and test sets are similar. In this chapter, we focus on the class

of random distributions. The distribution that specifies the activity duration is chosen

randomly from a set of scenarios. A random number is drawn for each activity, after

which the distribution belonging to the random number is applied to that activity. In

this manner, 4 scenarios were constructed. A combination of the Early, On Time and

Late scenarios was used, one in which the 4 scenarios of a change in the mean were used,

one for a mix of a change in the standard deviation and finally, a combination of all 11

scenarios. The notation for these scenarios is R(E-OT-L), R(∆µ), R(∆σ) and R(All)

respectively. The settings of the individual scenarios were provided in table 5.3. The

results are shown in table 5.9. When different distributions for the activities are drawn,

the AI methods outperform the EVM/ES methods, regardless of the scenario. Conse-

quently, the results of Wauters and Vanhoucke (2014b) with regard to the similarity

between training and test sets can be corroborated.

5.6 Conclusion

In this chapter, four contributions to the existing body of project control literature were

made. First and foremost, the forecasting performance of 5 different Artificial Intelli-
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gence methods was benchmarked against the best performing EVM and ES methods.

To the best of our knowledge, this chapter is the first work to introduce these techniques

in a project control context that makes use of Earned Value Management metrics. Sec-

ondly, the methods were embedded in a methodology that was comprised of 4 parts.

The data generation phase involved generating topologically diverse project networks

and constructing the baseline schedule. This schedule served as a point of reference for

the progress data, for which generalized beta distributions were employed. The statis-

tical distributions introduce variability on the activity level, which is captured by the

EVM attributes. The attributes constitute the inputs for the various AI methods. In

order to restrict the amount of information and the computational burden, the data is

pre-processed using Principal Components. The training and validation sets serve the

purpose of finding the optimal parameters for each AI technique. These are tuned with

a combination of a grid search and cross-validation procedure. Thirdly, we examined the

performance of the AI methods when the training and test sets coincide. In this situa-

tion, it was shown that all AI methods outperform the best performing Planned Value,

Earned Duration, Earned Schedule and Elshaer methods. Both the mean and standard

deviation of the Mean Absolute Percentage Error were considerably lower than that of

the EVM/ES methods. Additionally, there was a substantial difference in performance

for the early and middle stages of the project progress. The AI methods proved to out-

perform the current EVM/ES methods. This contribution is a significant improvement

since the early and middle stages were previously characterized by large prediction er-

rors. Researching the sensitivity of the AI methods to varying levels of the mean and

standard deviation of the activity duration distributions is the final contribution of this

chapter. The results revealed that all methods are more sensitive to a change in the

mean than to a change in standard deviation. The great performance of the Support

Vector Machines in the main experiment needs to be weighed against the steep drop

in performance when the inputs of the underlying distribution change. While the per-

formance of the AI methods is not as detrimental as to prohibit their implementation,

it shows that their performance is dependent on the correct appraisal of the variability

affecting the activities. This reliance on either historical data, expert judgement or sta-

tistical distributions is the biggest asset and liability of this type of methods.

Two distinct research avenues are identified. First of all, we relied on simulation-based

executions of the project networks. While this allows us to draw conclusions on the

progress of an extremely wide spectrum of projects, the Artificial Intelligence techniques

have yet to pass the test of empirical validation. This can be done by applying the pro-
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posed methodology to real-life projects and using expert judgement or historical data

as proxies for the generalized beta distributions. An alternative would be to include

sector- or project-specific attributes as inputs for the learning techniques. Secondly, this

chapter studied the prediction problem setting. A different application area for Artifi-

cial Intelligence lies in classification problems. Searching for and solving classification

problems in a project control context forms a viable challenge for academics.
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5.A Appendix

5.A.1 R template for AI forecasting on a sample project

In this appendix, a description of a working template in R is provided. The template in

R can be downloaded from the www.projectmanagement.ugent.be research page. The

goal of this appendix is to show how the methodology of training and validation (the

static phase) and testing (the dynamic phase) can be applied to a sample project using

the Artificial Intelligence techniques of this chapter. The R template allows the user to

provide parameters for the training and validation phase. Next, it selects the optimal

parameters using a fivefold cross-validation procedure and then applies the optimal pa-

rameters to the test set. It is worth noting that the findings based on this sample project

may differ from those in the presented chapter. The results in the chapter are averaged

across multiple projects. The outline of this appendix is as follows. First, the required

inputs for the template are listed. Next, a short description of the functions and their

relation to the chapter’s methodology is given. Finally, the pseudocode of the static and

dynamic phase is included.

5.A.1.1 Required inputs

From the research page available at www.projectmanagement.ugent.be, the following

files should be downloaded and placed in the working directory of R:

• OutputProject1.txt.bz2 - this zipped file contains the periodic measurements of

the EVM attributes reported in table 5.1. Each row corresponds with 1 execu-

tion, resulting in a total of 1,000 executions. P2 Engine (Vanhoucke (2014)) was

employed to generate this file.

• 5Folds.txt - this file contains the executions that make a division between the

training and test sets. The 1,000 executions found in OutputProject1.txt.bz2 are

partitioned into 800 executions (training set) and 200 executions (test set).

• 5Folds-Validation.txt - this file contains the executions that make a division be-

tween the smaller training set and the validation set. The 800 executions found in

the training set are partitioned into 640 executions (training set’ ) and 160 execu-

tions (validation set).

• The packages party, gbm and e1071 need to be installed if one wishes to test all

AI methods.

www.projectmanagement.ugent.be
www.projectmanagement.ugent.be
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/package=gbm
http://cran.r-project.org/package=e1071
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Outline

• loadData - this function loads the required libraries, as well as global variables.

Important: please ensure that the path of the working directory is changed to

the directory in which the required input files reside.

• prepareData - this function reads the input files.

• constructForecast - this is one of the main methods and takes as arguments a

dataframe with the periodic data, a string that indicates which AI method will be

used, a parameter vector and a boolean called folds to activate cross-validation.

constructForecast() makes use of several auxiliary methods described below:

– executePCA - applies principal component analysis to a dataframe labeled

somedf. If sometestdf is provided, the same principal components as for

somedf are utilized.

– constructPrediction - this method requires a training set, test set, AI method

and parameter vector. The parameters of the AI method are applied to the

training phase, after which the model is run on the test set. This method

returns the forecasted values for each execution of the test set.

5.A.1.2 Pseudocode

The pseudocode of the static and dynamic phases is given in algorithms 2 and 3 respec-

tively. The input files and a user-defined list of parameters Par constitute the input for

the training and validation processes. For each element of Par, k-fold cross-validation

is applied. Principal Component Analysis is executed throughout all review periods

rp = 1, ..., R, after which the final project duration is forecast with the parameters

par ∈ Par. The prediction error is averaged across the executions and folds. Finally,

the optimal parameter vector is defined as the vector that yields the minimum MAPE

across all folds and review periods.

The dynamic phase requires the output of the static phase as one of the inputs. The

optimal parameters par∗ are applied for predicting the final project duration RD. The

structure of the pseudocode is similar to that of algorithm 2, with the exception that no

cross-validation takes place.
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Algorithm 2: Pseudo-code for the static phase

Data: The files described in Required inputs and a parameter vector Par

Result: The optimal parameter vector par∗

Divide the nbrex executions into a trainset and testset

for par ∈ Par do

while fold ≤ k do

Update trainset & valset with executions of fold

for rp← 1 to R do

Update trainset & valset: select the first rp ∗ 19 columns // 19 =

#attributes of table 5.1

Execute PCA

Forecast duration using AI method with parameters in par

Training data = trainset

Test data = valset

for e← 1 to (1− k−1
k ) ∗ (train% ∗ nbrex) do

APEe,rp,fold = |RD−R̂D|
RD ∗ 100

// R̂D is the prediction of RD resulting from the

applied AI method

end

APErp,fold = 1
(1− k−1

k
)∗(train%∗nbrex)

∑(1− k−1
k

)∗(train%∗nbrex)

e=1 APEe,rp,fold

end

MAPEfold = 1
R

∑R
rp=1APErp,fold

end

MAPEpar = 1
k

∑k
fold=1MAPEfold

end

par∗ = arg minparMAPEpar



A comparative study of Artificial Intelligence methods for project duration

forecasting 161

Algorithm 3: Pseudo-code for the dynamic phase

Data: The files described in Required inputs and the optimal parameters par∗

Result: The forecasting accuracy of the AI method

for rp← 1 to R do

Update trainset & valset: select the first rp ∗ 19 columns // 19 =

#attributes of table 5.1

Execute PCA

Forecast duration using AI method with parameters in par∗

Training data = trainset

Test data = testset

for e← 1 to (1− train%) ∗ nbrex do

APEe,rp = |RD−R̂D|
RD ∗ 100

// R̂D is the prediction of RD resulting from the applied AI

method

end

APErp = 1
(1−train%)∗nbrex

∑(1−train%)∗nbrex)
e=1 APEe,rp

end

MAPE = 1
R

∑R
rp=1APErp
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6
A Nearest Neighbour extension to Earned Value

Management forecasting with Artificial

Intelligence

In this chapter, we provide a Nearest Neighbour-based extension for project control

forecasting with Earned Value Management. The k-Nearest Neighbour method is

employed as a predictor and to reduce the size of a training set containing more

similar observations. An Artificial Intelligence (AI) method then makes use of the

reduced training set to learn the relation between project control data and the real

duration of a project. Additionally, we report on the forecasting stability of the

various AI methods and their hybrid Nearest Neighbour counterparts.

A large computer experiment is set up to assess the forecasting accuracy and sta-

bility of the existing and newly proposed methods. The added value of the Nearest

Neighbour method as a predictor and as a hybrid method in conjunction with an

AI method is identified. A sensitivity analysis in which the amount of observations

of the training set and the amount of neighbours are varied provides additional

insights.
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6.1 Introduction

Operations research is a branch devoted to solving complex problems to (near-)optimality

by applying mathematical modeling, statistics and algorithms. Project and production

scheduling are among its most widely researched subdivisions (Tavares (2002)). Re-

search related to project scheduling was fueled by the inception of the Critical Path

Method (CPM, Kelley (1961); Kelley and Walker (1959)) and the Program Evaluation

and Review Technique (PERT, Fazar (1959)). Both methods have become straightfor-

ward standards for the construction of a baseline schedule and a rudimentary assessment

of the relation between project duration and activity variability. PERT as well as other

schedule risk analysis methods nuance the view of the CPM in which a binary view of

criticality is presented. CPM stipulates that an activity is either critical or not, while

PERT allocates a probability of being critical to every activity. While baseline scheduling

and risk analysis are crucial components of the preparatory phase of a project’s lifecy-

cle, they ultimately serve the purpose of acting as a point of reference for the project

control phase. In this phase, the project is being executed and the project’s progress is

compared to and contrasted with the plan. When the progress deviates too much from

the plan, the project manager may decide to take corrective actions to bring the project

back on track. Baseline scheduling, risk analysis and project control as well as their

interrelationships are the main constituents of dynamic scheduling (Uyttewael (2005)

and Vanhoucke (2012b, 2014)).

The focus of this chapter lies on the control dimension of dynamic scheduling. The

methodology that will be utilized in this chapter is Earned Value Management (EVM),

which was conceived in the 1960s by the American Department of Defense. EVM tracks

the progress of a project on an aggregated Work Breakdown Structure level. Even though

this has inspired criticism (see e.g. Book (2006a,b), Jacob and Kane (2004)), Vanhoucke

(2010a) argues that controlling a project on the activity level is simply not feasible for

many moderately sized projects. EVM measures a project’s progress by means of three

key metrics, namely Planned Value (PV), Earned Value (EV) and Actual Cost (AC).

For an overview of the essentials of EVM, we refer to Fleming and Koppelman (2005).

The paper of Lipke (2003) heralded a turning point for the research community. While

research efforts focused on the cost objective, the inception of the Earned Schedule (ES)

metric enabled time monitoring.

The ultimate goal of project control is to safeguard the project’s final duration and bud-

get. This can be achieved by finding mechanisms that serve as triggers for corrective
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action. Bowman (2006) specified control limits on the activity level while Colin and

Vanhoucke (2014) defined a state of control on a more aggregated level of the Work

Breakdown Structure. Raz and Erel (2000) examined how the timing of points at which

the project’s performance will be assessed can be optimized. A more exhaustive overview

of project monitoring and control models, approaches and decision support systems can

be found in Hazır (2015). In the remainder of this section, we will focus on project

control forecasting.

A trigger for corrective action can also be initiated by means of estimating the final

project duration or cost. The project manager wishes to get a realistic estimate of the

project’s final duration or budget based on progress data and historical data or simu-

lations. Realistic estimates are provided by forecasting methods, which have received

considerable attention from the project control research community. Two aspects pro-

vide an indication of a forecasting method’s qualities, namely accuracy and stability. A

brief literature overview of these two aspects will be given in the following paragraphs.

Accuracy An accurate forecasting method generates estimates that do not deviate

much from the final value it aims to predict. Predictive methods have been studied

extensively from an accuracy point of view. Vanhoucke and Vandevoorde (2007) and

Vandevoorde and Vanhoucke (2006) investigated the forecasting performance of three

Planned Value (PV), Earned Duration (ED) and Earned Schedule (ES) methods on

simulated data and on real-life projects. Elshaer (2013) followed the argumentation of

Vanhoucke (2010b, 2011) to incorporate bottom-up sensitivity information into top-down

control systems by including activity sensitivity information in one of the ES forecasting

methods. Artificial Intelligence (AI) follows a different process for making accurate

predictions. It aims to learn the relation between inputs and outputs by exploiting

simulations or other historical data. The relation is then applied to the project at

hand. Cheng et al. (2010) used Support Vector Machines to predict the final cost of two

construction projects. Cheng and Roy (2010) tested the same system for cost estimation

and function approximation. While the latter two works focused on real-life projects

and applications, Wauters and Vanhoucke (2014b) applied Support Vector Regression

across a large, computer-generated dataset for time and cost forecasting. In chapter 5

(Wauters and Vanhoucke (2014a)), we introduced a number of AI methods to project

control and examined the strengths and weaknesses of the different methods.

Stability Forecasting methods or project control indices are said to be stable if their

successive estimates or values do not deviate substantially. Traditionally, the stability
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of EVM metrics has been studied. Payne (1990) defined a stable Cost Performance

Index (CPI) as one that does not vary more than 10% from a 20% completion point

of the project onwards. Henderson and Zwikael (2008) demonstrated the lack of gen-

eralization of the CPI stability rule. Additionally, chapter 4 (Wauters and Vanhoucke

(2015)) highlighted two points of criticism with regard to this stability measure. First of

all, the thresholds are chosen in a completely arbitrary manner. No empirical evidence

supports the general use of these thresholds. As such, these thresholds may well vary

across projects and industries. Secondly, stability is reduced to a binary outcome: either

a forecasting method or measure is stable or not. Chapter 4 (Wauters and Vanhoucke

(2015)) resolved these problems by establishing a new stability measure, namely the

mean lags. This metric has the advantage that no assumptions need to be made and

that it allows for the definition of a degree of stability rather than a binary result.

The aim of this chapter is twofold. First, we extend previous research by reporting

on the stability of the Artificial Intelligence methods of chapter 5 (Wauters and Van-

houcke (2014a)). Secondly, a new method for predicting the final duration of a project

is proposed. The Nearest Neighbour (NN) technique does not learn the relation between

inputs and outputs like the AI methods but it exploits historical data. The accuracy and

stability of the NN method will be tested on a computer-generated dataset. Likewise,

the historical data will result from simulations in which multiple project executions are

imitated. Monte Carlo simulations allow us to draw activity durations from distribu-

tions and lead to deviations from the baseline schedule. These deviations are captured

periodically by means of EVM metrics. Whenever these EVM metrics are gathered,

a new estimate of the project’s final duration will be made. The different estimates

are aggregated into an output measure, which serves to assess the overall accuracy and

stability. The Nearest Neighbour method serves a second purpose, namely to reduce

the training set of an Artificial Intelligence method to a smaller set, consisting of more

similar observations. The performance of the combination of Nearest Neighbours and

an Artificial Intelligence method will be compared and contrasted with the AI methods

presented in chapter 5 (Wauters and Vanhoucke (2014a)).

The outline of this chapter is as follows. In section 6.2, the principles of applying

Nearest Neighbours for prediction (section 6.2.1) and for hybridizing the various AI

methods (section 6.2.2) are divulged. Section 6.3 explains the methodology. The input

modeling phase, in which the process of activity duration variation takes place, as well

as the project progress and forecasting output measures are described. The methodol-
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ogy of simulating variation, tracking the progress of a project and constructing forecasts

is repeated for every experiment. Section 6.4 elaborates on the design of experiments.

Specific settings for the input modelling phase are provided in section 6.4.1. Section

6.4.2 gives additional details with regard to the Nearest Neighbours. The results of the

computational experiments can be found in section 6.5. The main experiment of section

6.5.1 varies the number of neighbours and makes a distinction along the similarity of

the training and test sets. The sensitivity experiments of section 6.5.2 conclude the

results section. The number of observations in the training set are varied and a change

in the number of observations and the number of neighbours is made. Finally, we draw

conclusions and provide opportunities for future research in section 6.6.

6.2 Nearest Neighbour

As mentioned in section 6.1, the Nearest Neighbour technique employs historical data to

identify the Nearest Neighbours of a given data point. Applications of the NN method

typically revolve around a similar domain to that of AI methods, namely classification

and prediction. Cover and Hart (1967) proposed k-Nearest Neighbours, in which the

nearest k neighbours are considered for assigning a class label to a data instance. The

main asset of NN techniques lies in their ease of use. However, issues regarding memory

requirements and computational complexity led to the inception of many variants of the

k-NN technique. A recent overview is given by Bhatia and Vandana (2010). The variant

of this chapter uses a multidimensional binary search tree (also known as k-d tree) and

is admirably suited for the organization of multi-dimensional points, which explains its

relevance for this research.

Nearest Neighbour methods have a long history within the research community. Its appli-

cations include but are not limited to credit risk (Henley and Hand (1996)), bankruptcy

prediction (Kumar and Ravi (2007)), text classification (Wan et al. (2012)), direct

marketing (Govindarajan and Chandrasekaran (2010)) and TV audience forecasting

(Nikolopoulos et al. (2007)).

In section 6.2.1, an outline is given of the general principle of k-Nearest Neighbours

for prediction purposes. The main principle of k-NN will be part of section 6.2.2, in

which we describe how Nearest Neighbours can be used to hybridize Artificial Intelli-

gence methods.



168 Chapter 6

6.2.1 NN for prediction

Prediction, along with classification, is one of the main purposes for applying a Nearest

Neighbour technique. As mentioned previously, k-NN exploits historical data, which

may result from earlier projects or simulations. Similar to the nomenclature of the AI

body of literature, the set of known instances will be referred to as the training set. The

goal of k-NN in this chapter will be to predict the final duration of a new observation. In

order to compute that prediction, the training instances closest to the new observation

will be utilized. Let y denote a vector of P attributes indexed by j. y symbolizes an

unseen instance and comprises (part of) the test set. The training set consists of L

observations (xi, oi), where i indexes training observation i and oi denotes the output

value of training instance i. xi also contains P attributes. The k Nearest Neighbours of

y are found by calculating the distance between each point of the training set i and the

instance y. The formula to calculate the Euclidean distance between a training instance

i and the new observation is provided in equation (6.1). The equation calculates the

square root of the square difference between all attributes j of the training instance i

and the new observation.

||y− xi|| =

√√√√
P∑

j=1

(yj − xij)2 (6.1)

Once the k Nearest Neighbours have been identified, the output value of instance y is

calculated as the average of the output values of the k Nearest Neighbours.

ô =

∑k
i=1 oi
k

(6.2)

In this chapter, forecasts are made periodically. EVM metrics are captured at different

points in time and can be regarded as a time series. As a result, the total number of

attributes depends on the time period rp and is given by equation (6.3).

P = #attributes/time period ∗ rp (6.3)

6.2.2 NN for hybridizing AI methods

In this section, the second goal of the Nearest Neighbour technique will be elaborated.

We commence by providing brief background information on the process of training and

testing an Artificial Intelligence method and outline the role of the k-NN technique.
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Every AI method aims to find a good balance between an acceptable training per-

formance and a good generalization. An extreme focus on the training phase leads to

overfitting and prevents the method from classifying or predicting new observations well.

Consequently, it is required to allocate sufficient attention to the training phase, in which

the parameters of the AI method are fine-tuned. The set consisting of known observa-

tions is referred to as the training set, while the unknown observations constitute the

test set. In order to tune the parameters, the training set is subdivided into a second,

smaller training set and a validation set. A model of the AI method is built based on

the small training set, after which its performance is tested by means of the validation

set. This process may be repeated to prevent overfitting. A popular method to do this is

cross-validation, in which the division of training and validation is repeated a number of

times. We refer to chapter 5 (Wauters and Vanhoucke (2014a)) for a detailed overview

of how cross-validation is implemented in a project control environment. Once the best

parameters are found, the AI model is trained on the initial training set and applied to

the observations of the test set.

The inclusion of the Nearest Neighbour technique occurs in the testing phase. Hence, the

best parameters for the AI method are found. As mentioned in the previous paragraph,

the AI method will be trained on the larger training set and its performance will be

assessed by means of the observations in the test set. The Nearest Neighbour technique

operates on the larger training set and reduces it to a smaller set of observations that

are more similar to the observations of the test set. The process is depicted in figure 6.1.

Similar to section 6.2.1, the training set consists of L observations with P attributes. For

each observation of the test set, the k Nearest Neighbours are identified using equations

(6.1) and (6.2). As a result, the training set now only consists of k observations (k rows

in figure 6.1). The AI method will be trained on the reduced training set consisting

of fewer, high-quality observations instead of the original training set that contains L

observations.

Training set Nearest Neighbour Reduced training set

bo =

Pk
i=1 oi

k

||y� xi|| =

vuut
mX

j=1

(yj � xij)2
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2
64
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...
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3
75

2
64

x11 . . . x1P

...
. . .

xk1 · · · xkP

3
75

Figure 6.1: k-NN for hybridizing AI methods
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6.3 Methodology

Section 6.2 explained the main contribution of this chapter, namely the dual purpose the

Nearest Neighbour technique serves. In this section, we will elaborate on the methodol-

ogy and translation of the Nearest Neighbour technique to a project control environment.

Prior to the project control phase, a baseline schedule needs to be constructed. A

prerequisite for the baseline schedule is that an estimate of the activities’ duration and

cost is made. Once the baseline schedule is built, the project is executed. In this chapter,

a computer-generated dataset will be employed. This implies that for every execution,

the durations of the activities will be drawn from statistical distributions with certain

parameter settings. While variation of the durations occurs on the activity level, project

progress takes place on the project level by means of Earned Value Management metrics.

These metrics are gathered periodically and comprise the input for the different forecast-

ing methods. The Artificial Intelligence and NN methods leverage historical data, while

the three Planned Value, Earned Duration and Earned Schedule methods only take the

information of the current project’s execution into account. Ultimately, we strive to

assess the performance of the various forecasting methods. Hence, output measures that

measure how accurate and how stable the predictions are need to be defined.

The outline of this section is as follows. In section 6.3.1, the necessary inputs for the

baseline scheduling phase are provided. In addition, details on imitating fictitious project

executions are given. Section 6.3.2 picks up where section 6.3.1 left off by elucidating the

project progress phase. More specifically, it addresses which information is captured and

how often. Finally, the performance metrics of the forecasting methods are described in

section 6.3.3.

6.3.1 Input modeling

The power of simulation for project management lies in the wide array of projects with

different time and cost characteristics that can be generated. Kwak and Ingall (2007)

recognize that Monte Carlo simulation can play a vital role in understanding the effects

of uncertainty on projects. Additionally, it allows us to quantify the impact of uncer-

tainty. In this chapter, the effect of uncertainty will be reflected in the accuracy and

stability of the various forecasting methods.

The topological structure of the dataset is drawn from the dataset that was generated
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by the project generation tool RanGen (Demeulemeester et al. (2003) and Vanhoucke

et al. (2008)) and that has been employed in previous simulation studies (Elshaer (2013),

Colin and Vanhoucke (2014), Colin et al. (2015)). In this chapter, we focus on 10 projects

counting 30 activities each and possessing a value of 0.5 for the Serial/Parallel (SP) in-

dicator. The SP indicator serves as a metric for a project’s topological structure and

quantifies a project network’s resemblance to a completely serial or parallel project. The

main rationale for fixing the SP value to 0.5 results from previous studies (Vanhoucke

(2011), Wauters and Vanhoucke (2014a,b)) that established a clear relation between

the performance of EVM systems and forecasting and the topological structure. As a

project’s network structure becomes increasingly serial, EVM forecasting performance

improves. This result is hardly surprising. Earned Value Management is a top-down

control method. As a project becomes more serial, the performances on the activity and

project levels coincide.

The baseline duration and cost for each activity is drawn from the interval [200, 300] and

[50, 100], respectively. The costs are entirely variable and imply that a deviation from

the baseline duration is translated into costs.

Once the baseline schedule is built, fictitious progress executions are generated. To

that end, it is necessary to specify how the real durations of the activities will deviate

from their baseline durations. This is done by means of a probability distribution. For

every execution, a number will be drawn according to the activity’s probability func-

tion. In this chapter we opt for the generalized beta distribution, which was used for

academic and practical purposes (AbouRizk et al. (1994)). Additionally, the generalized

beta distribution has the advantage that it is relatively straightforward to modify the

mean µ and mode m of the distribution. The probability density function of a random

variable x is given in equation (6.4). Γ(·) refers to the gamma function and θ1 and θ2 are

two shape parameters. a and b are the lower and upper limits of the random variable.

f(x) =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)(b− a)θ1+θ2−1
(x− a)θ1−1(b− x)θ2−1, x ∈ [a, b] (6.4)

We control the simulations by modifying a, b, µ and m. The shape parameters of the

generalized beta distribution can then be calculated based on these 4 numbers, with

θ1 = − (b+a−2m)(a−µ)
(m−µ)(a−b) and θ2 = (b+a−2m)(b−µ)

(m−µ)(a−b) .
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6.3.2 Project progress

Activity variation is achieved by drawing numbers from the generalized beta distribu-

tion specified in equation (6.4). For practical reasons, it is impossible to track each

activity’s progress along the execution. Hence, EVM aggregates the performance of in-

dividual activities and translates them to the project level. EVM makes use of three key

numbers, namely Planned Value (PV), Earned Value (EV) and Actual Cost (AC). The

performance metrics and forecasting methods are all derived from these key metrics.

Throughout our experiments, it is assumed that the Earned Value for an activity follows

a linear accrue from 0 until its Budget At Completion (BAC). Likewise, the Planned

Value is accrued in a linear manner (Vanhoucke (2010a)).

The EVM metrics and forecasting methods that are calculated periodically are provided

in table 6.1. In this table AD and PD denote the Actual Duration and Planned Dura-

tion. The final forecasting method of table 6.1 requires additional explanation. Elshaer

(2013) responded to the call of Vanhoucke (2011) to incorporate sensitivity informa-

tion in EVM metrics by adapting the calculation of EV and PV. The Planned Value

of a sensitivity metric α at time point t is equal to the sum of the activities’ planned

values multiplied by the activities’ values for sensitivity metric α. A similar reasoning

applies to the adaptation of EV. In accordance with Elshaer (2013) we include 6 sensitiv-

ity metrics, namely the Criticality Index (CI), the Significance Index (SI), the Schedule

Sensitivity Index (SSI) and the Cruciality Index with Pearson’s product moment (CRIr),

Spearman’s rank correlation (CRIρ) and Kendall’s τ rank correlation (CRIτ ). Hence,

α ∈ {CI, SI, SSI, CRIr, CRIρ, CRIτ}. Since the PV and EV calculations were changed,

the subsequent calculation of ES and SPI(t) differ as well. This is reflected in table 6.1

by means of an apostrophe.

The EVM attributes of table 6.1 are captured every 10% complete. As a result, the

project manager possesses multiple estimates and metrics near the end of the project.

Table 6.1 summarizes the calculations of the 19 attributes (4 performance indices, 9

EVM forecasting methods and 6 Elshaer (2013) methods). These 19 attributes corre-

spond with #attributes of equation (6.3). At the 90% complete point (rp = 9), there are

P = 171 (9 * 19) attributes. The attributes are used by the Artificial Intelligence meth-

ods. Furthermore, they correspond with the P attributes of equation (6.1), indexed by j.

The k Nearest Neighbours are calculated as the difference between the EVM attributes

of the test set observation(s) and the instances of the training set.
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Name Attribute Calculation

Schedule Performance Index SPI EV
PV

Schedule Performance Index (time) SPI(t) ES
AT

Cost Performance Index CPI EV
AC

Earned Schedule ES t+ EV−PVt
PVt+1−PVt

Estimate At Completion (time) - Planned Value

EAC(t)PV1 PD − (EV−PV )∗PD
BAC

EAC(t)PV2
PD
SPI

EAC(t)PV3
PD

CPI∗SPI

Estimate At Completion (time) - Earned Duration

EAC(t)ED1 PD +AD ∗ (1− SPI)

EAC(t)ED2
PD
SPI

EAC(t)ED3
PD

SPI∗CPI +AD ∗ (1− 1
CPI

)

Estimate At Completion (time) - Earned Schedule

EAC(t)ES1 AD + PD − ES
EAC(t)ES2 AD + PD−ES

SPI(t)

EAC(t)ES3
PD−ES

CPI∗SPI(t)

Estimate At Completion (time) - Elshaer (2013) EAC(t)ES2α AD + PD−ES′
SPI(t)′

Table 6.1: Overview of the EVM attributes (source: chapter 5 (Wauters and Vanhoucke
(2014a)))

6.3.3 Output measures

Section 6.3.2 discussed the information that is retained to keep track of the project’s

progress and to apply the AI methods and k-NN technique. Since the project’s perfor-

mance is assessed every 10% complete, there are 9 review periods. At each review period,

a new estimate of the project’s final duration is made. This is done for the three PV, ED

and ES methods, the 6 Elshaer (2013) methods, the AI methods of chapter 5 (Wauters

and Vanhoucke (2014a)), their hybrid counterparts as detailed in section 6.2.2, and the

k-NN technique of section 6.2.1. The output measures of forecasting methods should

quantify the capability of each method to produce an accurate or stable prediction. A

good forecasting method produces predictions that do not deviate much from the actual

value (accurate) and do not differ much along subsequent time periods (stable).

Accuracy From an accuracy point of view the Mean Absolute Percentage Error (MAPE)

metric has been used in previous project control studies (Vanhoucke and Vandevoorde

(2007), Elshaer (2013) and Wauters and Vanhoucke (2014b)). The MAPE is calculated

according to equation (6.5), in which EAC(t)rp denotes the Estimate At Completion

(time) for review period rp. The deviation from the Real Duration is measured and

averaged across all R review periods. A new prediction is made every 10% complete
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implying that R = 9.

MAPE =
1

R

R∑

rp=1

|RD − EAC(t)rp|
RD

∗ 100 (6.5)

Stability Measurement of the stability of a forecasting method is done by the Mean

Lags criterion proposed in chapter 4 (Wauters and Vanhoucke (2015)). Compared to

the previous stability rule, measuring the Mean Lags has the advantage of assigning a

degree of stability to a forecasting method instead of a binary outcome. Calculation of

the Mean Lags is provided in equation (6.6). The stability of the forecasting method

appraises the difference between two subsequent estimates in time, regardless of how

much the estimate is separated from the actual value. However, the combination of the

MAPE and Mean Lags yields a complete picture of the capability of a given predictive

method.

Mean Lags =
1

R− 1

R∑

rp=2

|EAC(t)rp − EAC(t)rp−1|
EAC(t)rp−1

∗ 100 (6.6)

6.4 Experimental design

This section will provide information with regard to the computational experiments

we conducted. The goal of these experiments is to assess the quality of the various

forecasting methods and the effect of the Nearest Neighbour technique as a predictor

and as an addition to various AI methods. This section will lay down the structure of

the results which are presented in section 6.5. Additionally, we discuss the settings for

k, the number of Nearest Neighbours.

6.4.1 Experiments

Section 6.3.1 discussed the use of statistical distributions to imitate fictitious project ex-

ecutions. Artificial Intelligence techniques rely on data resulting from these simulations

to learn the relationship between inputs and outputs. In a project control environment,

the inputs constitute EVM information (found in table 6.1) while the output is forecast-

ing performance. The k-NN technique also relies on simulated data in order to identify

the k Nearest Neighbours. While this technique does not learn the relationship between

inputs and outputs, it requires the presence of historical or simulated data to function

properly. In our experiments, we made use of the generalized beta distribution. The

various settings that were employed for the generalized beta distribution can be divided

into two classes, namely a class in which the training set coincides with the test set and a
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Scenario a b m µ θ1 θ2 σ

Training = Test

Early 0.1 2 0.5 0.6 2.93 8.22 0.24

Middle 0.2 4 0.82 1 2.94 11.03 0.40

Late 0.2 4 1.2 1.4 2.83 6.14 0.56

Training 6= Test

Change in µ

∆µ1 0.2 4 0.49 0.79 1.67 9.13 0.40

∆µ2 0.2 4 0.65 0.89 2.24 10.13 0.40

∆µ3 0.2 4 0.98 1.12 3.80 11.87 0.40

∆µ4 0.2 4 1.14 1.25 4.75 12.35 0.40

Change in σ

∆σ1 0.2 4 0.94 1 8.53 31.99 0.24

∆σ2 0.2 4 0.89 1 4.72 17.70 0.32

∆σ3 0.2 4 0.70 1 1.98 7.44 0.48

∆σ1 0.2 4 0.53 1 1.40 5.26 0.56

Table 6.2: Generalized beta settings for the various scenarios (source: chapter 5 (Wauters and
Vanhoucke (2014a)))

class where this is not the case. For the latter class, gradual changes to the mean µ and

standard deviation σ were made. Table 6.2 shows the settings of the generalized beta

distributions for both classes. The first three rows correspond with situations where

the training set is equal to the test set. As a result, the simulations to train the AI

methods or to select the Nearest Neighbours are drawn from the same distribution as

the simulations of the test set. Alternatively, the training and test sets were varied by

either modifying the mean and keeping the standard deviation constant or vice versa.

For each of the 10 projects and every scenario, 1,000 executions were performed. Identi-

cal to chapter 5 (Wauters and Vanhoucke (2014a,b)), 800 executions were dedicated to

training and validation whereas the remainder served the purpose of testing the accuracy

and stability. As mentioned in section 6.3.2, a prediction is made for each review period

which means that for every execution, the MAPE and Mean Lags are based on 9 data

points.
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6.4.2 Nearest Neighbour Settings

Researching the potential of the Nearest Neighbour technique forms the main contri-

bution of this chapter. In this paragraph we discuss three aspects related to Nearest

Neighbours, namely pre-processing, the settings for k that were tested and the inclusion

of the optimal neighbours.

6.4.2.1 Pre-processing

In section 6.2, we discussed how the Nearest Neighbours are calculated based on the

distance between all attributes of a training instance and the new observation. In the

context of this chapter, the attributes were provided in table 6.1. However, an impor-

tant caveat surrounds the use of the EVM attributes. The indicators SPI, SPI(t) and

CPI are expressed as fractions, while Earned Schedule as well as the various forecasting

methods are expressed in absolute numbers. Hence, calculation of the distance will be

biased by those attributes that are subject to a different scale. Normally, the difference

in distance of forecasting methods will be much higher compared to the difference of one

of the Performance Indices. Consequently, the Nearest Neighbour calculations will be

dominated by the difference in forecasting estimates.

In order to eliminate this pre-dominance of EVM forecasting methods in Nearest Neigh-

bour calculations, pre-processing of the attributes of table 6.1 was included and resulted

in three Nearest Neighbour variants. These variants will be explained in the following

paragraphs.

No pre-processing The first variant did not include pre-processing.

Scaling Scaling is the second variant and executes pre-processing as follows. It per-

forms two operations on a vector x, which consists of a number of values indexed by i.

The first operation is centering by subtracting the mean of x from xi. Secondly, scaling

takes place by dividing the value from the first operation by the standard deviation of

x. It is worth noting that for a given attribute j, the notation of this paragraph cor-

responds with the notation of equation (6.1) in which i symbolized a training instance.

The scaling operation can be expressed mathematically by equation (6.7).

xi − x̄
σx

(6.7)
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Principal Component Analysis The final variant applies Principal Component

Analysis (PCA, Pearson (1901)) to the attributes of table 6.1. PCA removes data

redundancy and noise by creating a number of principal components which are linear

combinations of the original attributes. The notion of data redundancy is not trivial in

a project control context since the forecasting methods employ some of the performance

factors (SPI, SPI(t) and CPI) which are individual attributes as well. The reader is

referred to Jolliffe (2005) and chapter 5 (Wauters and Vanhoucke (2014a)) for details on

how the principal components were derived. In order to preserve consistency, the num-

ber of principal components was determined in the same way as in chapter 5 (Wauters

and Vanhoucke (2014a)). The minimum number of principal components that explains

t = 90% of the explained variation will be retained.

6.4.2.2 Number of neighbours

The k-NN technique serves two purposes in this chapter. First of all, a prediction is

made by means of the average Real Duration of the k Nearest Neighbours that lie clos-

est to the test set instance. Secondly, the k Nearest Neighbours reduce the training set

to a smaller training set with more similar observations. Both aspects were discussed at

length in section 6.2.

In this section we provide the settings that were implemented for our experiments. The

various settings for k are provided in table 6.3. The column labeled “k(%)” refers to the

percentage of the observations of the training set. Section 6.4.1 revealed that there are

800 observations in the training set, implying that a percentage of 0.00125 corresponds

with 1 (= 0.00125 ∗ 800) neighbour. Table 6.3 shows that there is a difference in val-

ues for k(%) depending on the purpose for which the Nearest Neighbour technique is

applied. When the Real Duration is predicted (the second row of table 6.3), the values

of the hybridization (the third row of table 6.3) are supplemented by lower values for

k(%). The reason why no extremely low values for k(%) are allowed when hybridizing AI

methods is because the AI methods require a minimum number of training observations

in order to construct a model. We employ the notation lower value-upper value, ∆ =

increment in table 6.3 to denote a sequence of values. For hybridizing AI methods the

number of neighbours goes from 10% to 90% with a 10% increment.
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Purpose k(%)

Prediction {0.00125,0.0025,0.01,0.05, (0.1-0.9,∆=0.1)}
Hybridization 0.1-0.9, ∆ = 0.1

Table 6.3: Settings for k, the number of neighbours, expressed as a percentage of the training
set observations

6.4.2.3 Utopian scenario

All observations of the training set are assumed to be known. This implies that the entire

project progress, as well as the Real Duration, is known. The observations of the test

set are new observations. Hence, only the progress information up to review period rp is

known, while the Real Duration is the main variable of interest. The Nearest Neighbour

technique makes a prediction by finding the neighbours that are closest to the test set

observations and utilizing the average of the neigbours’ Real Duration as a prediction.

The distance calculation follows from the fact that the test set’s RD is unknown. Hence,

the EVM attributes serve as a proxy for the RD. The k-NN technique implicitly as-

sumes that the Nearest Neighbours, found by calculating the distance between all EVM

attributes, will also be the Nearest Neighbours in terms of their RD.

Throughout the results of our experiments, we will also report on the “Utopian” sce-

nario. This scenario assumes that we can find the optimal neighbours by calculating the

difference between the RD of the training set and the test set observation. Equation

(6.1) then becomes ||y − xi|| = RD − RDi. While this scenario is unrealistic (the test

set’s RD is unknown), it provides an estimate of the upside potential of the k-NN tech-

nique. The inclusion of the utopian scenario is of particular relevance for hybridization.

When hybridizing the AI methods with the k-NN technique, one can wonder whether

forecasting accuracy is driven by the limitations of simulation, the inability to identify

the optimal neighbours or both. If the difference in forecasting accuracy between the

hybrid AI methods and their Utopian counterparts is small, it can be concluded that the

influence of the optimal neighbours is small. In the opposite case we can conclude that

the simulations contain sufficient and relevant EVM information but that the problem

lies in finding the optimal neighbours.
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6.5 Results

In this section, the forecasting performance of the k-NN technique will be compared

with and contrasted to the existing methods. Among those are three PV, ED and ES

techniques, as well as the 6 Elshaer (2013) methods and the AI techniques proposed

in chapter 5 (Wauters and Vanhoucke (2014a)). We report on the accuracy, measured

by the MAPE, and the stability, measured by the Mean Lags. The simulations, along

with the calculation of project progress metrics, are achieved by P2 Engine (Vanhoucke

(2014)), a LUA-based scripting tool. The AI techniques and accuracy and stability

calculations were implemented in R Core Team (2013), the open-source programming

language. The packages of Meyer et al. (2012), Ridgeway (2013), Hothorn et al. (2006b)

and Beygelzimer et al. (2013) were employed to train and test the (hybrid) AI methods.

The structure of this section mainly follows the outline of section 6.4.1. The main

experiment assesses the accuracy and stability of the k-NN technique and the hybrid AI

methods. A distinction is made based on whether the training and test sets coincide

(cf. table 6.2). The number of neighbours are varied according to table 6.3 as discussed

in section 6.4.2.2. We also conduct some sensitivity experiments. In these experiments,

the influence of the hybrid AI methods is investigated when either the number of ob-

servations of the training set or the observations of the training set and the number

of neighbours are varied. These experiments allow us to establish the influence of the

amount of observations on the forecasting accuracy and stability.

A schematic overview of the results section is depicted in figure 6.2. Section 6.5.1 con-

tains the results of the main experiment. 800 executions (=100%) make up the training

set, while the number of neighbours is varied from 0.00125 (or 0.1) to 1.0. In the sen-

sitivity experiments, the number of executions of the training set is modified from 0.1

(80 neighbours) to 1.0 (800 neighbours) in 0.1 increments (section 6.5.2.1). Next, we

also assess the impact of a simultaneous change in executions and neighbours (section

6.5.2.2).

6.5.1 Main Experiment

The main experiments of this chapter investigate the forecasting performance when the

number of neighbours is changed. All executions are included in the training set, which

consists of 800 observations (cf. figure 6.2). A division is made based on whether the

training and test sets coincide (section 6.5.1.1) or not (section 6.5.1.2).



180 Chapter 6

%executions

%neighbours

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Section 6.5.1

Se
ct

io
n 

6.
5.

2.
1

Se
cti

on 6.
5.2

.2

Figure 6.2: Overview of the results section

6.5.1.1 Training set = test set

In this section, the observations of the training set and test set are drawn from identical

distributions. This implies that the project manager is capable of making a fair assess-

ment of the variability that will occur throughout the project’s progress. The accuracy

results of the EVM methods and the AI/NN methods are provided in tables 6.4 and 6.5,

respectively. These tables provide the forecasting accuracy (measured by the MAPE of

equation (6.5)) for each scenario. The names of the scenarios correspond with those of

table 6.2. Before proceeding to the discussion of the results, it is necessary to elaborate

on the structure of table 6.5, which will also be used for section 6.5.1.2. Table 6.5 counts

3 rows for each scenario, which will be described along the following lines:

• The row labeled “Regular” provides the results of the AI techniques of chapter

5 (Wauters and Vanhoucke (2014a)) or the Nearest Neighbour methods. Three

Nearest Neighbour methods are included, according to the pre-processing technique

that was applied (cf section 6.4.2.1). Principal Component Analysis and Scaling

are denoted by PCA and Scaling, respectively, while the absence of pre-processing

is indicated by a hyphen.

• The row labeled “Hybrid” lists the results of the hybrid AI methods. The k-NN



A Nearest Neighbour extension to Earned Value Management forecasting with

Artificial Intelligence 181

technique first reduced the training set according to the procedure of figure 6.1,

after which the AI method under study is executed. Obviously, no hybridization

takes place for the NN methods which explains why there are only 5 output measure

values for these rows.

• “Utopian” provides the results of the AI or Nearest Neighbour method for the

utopian scenarios described in section 6.4.2.3. The reader is reminded that while

the utopian scenario assumes perfect knowledge, it provides a good measure of the

upside potential of the Nearest Neighbour method, either as a predictor or as a

hybridizer for the AI methods.

Tables 6.6 and 6.7 show the stability results of the EVM, AI and Nearest Neighbours

methods respectively. The stability is measured by means of the Mean Lags criterion of

equation (6.6). The accuracy and stability results are summarized along the following

lines. First, we compare the AI performance with that of the various EVM forecasting

methods. Secondly, the accuracy and stability of the Nearest Neighbour methods is

discussed. Finally, we dedicate attention to the performance of the Utopian scenario.

• AI performance: two main observations with regard to the performance of the

Artificial Intelligence methods can be made.

– First, the performance of the AI (and Nearest Neighbour) methods does not

vary much along the scenario. This observation holds for both forecasting

accuracy and stability. The performance of the EVM methods differs greatly

along the scenario. This performance gap is most visible for the MAPE of

table 6.4. The worst performance is noted for the Early scenario, followed

by the Late and Middle scenarios respectively. The ES2 and Elshaer (2013)

methods, which are based on the ES2 method, do not suffer from this dis-

crepancy in performance.

– Secondly, one of the goals of this chapter consisted of extending the stability

results of chapter 4 (Wauters and Vanhoucke (2015)) to the AI methods. Ta-

ble 6.7 shows that the AI methods outperform the EVM methods, especially

for the Early and Late scenarios.

• Nearest Neighbour performance: we comment on the accuracy and stability perfor-

mance on the Nearest Neighbour methods as a predictor and evaluate the hybrid

AI methods.

– The Nearest Neighbour methods outperform the EVM methods in terms of

accuracy for the Early and Middle scenarios. The Nearest Neighbour methods
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are slightly less accurate than the other AI techniques. The main asset of the

Nearest Neighbour methods is found in their stellar stability performance.The

Nearest Neighbour method without pre-processing yields the best results. The

difference with the incumbent method, RF, is on average 60.50%.

– The hybrid counterparts are able to improve the performance of the Decision

Tree method. On average, the MAPE improvement is equal to 3.93%. A

possible explanation for this improvement is related to the instability of trees

(Hastie et al. (2009)). Small changes to the input data can result in a com-

pletely different tree structure. By restricting the training set to more similar

observations, more stable trees may be obtained. The other AI methods build

ensembles, making them less susceptible to this problem.

• Utopian scenario: we draw the reader’s attention to the excellent performance of

the Utopian scenario, which leads us to conclude that there is vast potential for

the Nearest Neighbour methods. The challenge lies in finding a good proxy for

reliably estimating the difference in RD between training and test set observations

without any knowledge of the RD of the test set.
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6.5.1.2 Training set 6= test set

This section assumes that the project manager is not able to estimate the activity vari-

ation correctly. As a result, some parameters of the underlying generalized beta distri-

bution differ from the training set. These differences were classified into two categories,

namely a class in which the mean µ was modified and one where the standard deviation

σ was changed. Similar to the previous section, the main conclusions based on table 6.10

(accuracy) and 6.11 (stability) are listed below. First we make a general observation,

after which we comment on the performance of the AI methods and the Nearest Neigh-

bour methods. Finally, room for improvement is measured by means of the Utopian

scenario.

• General observation: a change in the distribution’s mean resorts a larger, more

negative effect on the forecasting accuracy than a change in the standard deviation.

Interestingly, this conclusion is not valid for the forecasting stability, implying that

the predictions are further removed from the Real Duration but do not necessarily

fluctuate more.

• EVM performance: the accuracy results of the various EVM methods are similar to

those reported in section 5.5.3 of chapter 5. While the EVM methods yield a lower

MAPE compared to the AI and NN forecasting methods, the difference becomes

smaller as the mean increases. Stability-wise, ES1 is the most stable forecasting

method. We observe that as the standard deviation increases, the Mean Lags

increase on average.

• AI performance: the Support Vector Machine method is most sensitive to input

changes. This is reflected in the MAPE and Mean Lags performance, which is

considerably higher than the performance of the other AI and Nearest Neighbour

methods. Consequently, we can corroborate earlier findings (cf. chapter 5 (Wauters

and Vanhoucke (2014b))) and add that this sensitivity to input changes also holds

true for forecasting stability.

• Nearest Neighbour performance: two observations concerning the NN performance

can be made. The first one is related to Nearest Neighbours as a predictor, while

the latter revolves around hybridization of the AI methods.

– The Nearest Neighbour methods with scaling and without pre-processing are

the most stable methods. Similar to section 6.5.1.1, a large difference with

the incumbent method can be noted.



186 Chapter 6

∆ DT Bagging RF Boost SVM

Accuracy

∆σ 2.79 4.79 4.67 6.19 8.29

∆µ 1.71 1.72 2.50 2.72 5.30

Stability

∆σ 35.59 4.84 9.95 2.77 0.00

∆µ 32.58 4.87 6.94 2.80 21.99

Table 6.8: Average % improvement of the hybrid counterparts

– The hybrid counterparts of the AI methods play a more important role com-

pared to section 6.5.1.1. When the training and test sets coincide, the hybrid

counterparts could only improve the DT method. If the training and test

set observations are no longer drawn from the same distribution, every AI

method is improved by the inclusion of the Nearest Neighbours technique.

The average improvement for a change in σ and µ is provided in table 6.8.

Additionally, we have provided details on the optimal number of neighbours

to use. These can be found in table 6.9. Interestingly, the best values for k

remain rather stable across all variations of σ and µ. We observe that Support

Vector Machines benefit from a higher number of neighbours (k = 0.8), while

the other techniques operate on a limited amount of data (k < 0.3 in most

cases). It is worth noting that the hybrid counterparts of the AI methods

have a very favourable effect on the overall stability.

• Utopian scenario: similar to section 6.5.1.1, the Utopian scenario reveals the

promising potential for the hybrid and Nearest Neighbour methods. It is worth

mentioning that the MAPE trend (MAPE ∆µ > MAPE ∆σ) also holds true for

the Utopian scenarios. While the SVM performance can be greatly improved, it

remains the most sensitive method among the AI techniques.
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Scenario DT Bagging RF Boost SVM

Change in σ

∆σ1 0.2 0.2 0.2 0.3 0.8

∆σ2 0.2 0.2 0.2 0.3 0.8

∆σ3 0.2 0.2 0.2 0.3 0.8

∆σ4 0.2 0.2 0.2 0.3 0.8

Change in µ

∆µ1 0.1 0.2 0.2 0.3 0.8

∆µ2 0.2 0.2 0.2 0.3 0.8

∆µ3 0.2 0.3 0.3 1 0.8

∆µ4 0.2 1 1 1 1

Table 6.9: Optimal k for the hybrid counterparts

Scenario Criterion
Artificial Intelligence Nearest Neighbour

DT Bagging RF Boost SVM PCA Scaled -

Change in σ

∆σ1

Regular 9.28 9.13 9.35 9.86 31.31 11.55 12.87 11.58

Hybrid 8.82 8.49 8.8 8.91 28.67

Utopian 1.75 1.58 1.6 1.57 9.26 0.1 0.1 0.1

∆σ2

Regular 10.09 9.92 10.13 10.54 31.82 12.3 13.49 12.37

Hybrid 9.73 9.36 9.6 9.73 29.02

Utopian 2.17 1.99 2 1.73 9.68 0.19 0.19 0.19

∆σ3

Regular 12.21 12.03 12.26 12.35 33.17 14.21 15.22 14.35

Hybrid 12.02 11.59 11.76 11.81 30.42

Utopian 3.32 3.07 3.09 2.41 10.56 0.42 0.42 0.42

∆σ4

Regular 13.35 13.14 13.38 13.32 33.83 15.37 16.24 15.54

Hybrid 13.21 12.77 12.91 12.91 31.24

Utopian 3.98 3.69 3.72 2.84 11.38 0.61 0.61 0.61

Change in µ

∆µ1

Regular 30.23 29.96 30.92 29.7 49.26 33.05 36.37 32.65

Hybrid 30.13 29.22 29.58 28.36 44.93

Utopian 15.53 14.43 14.56 10.87 21.24 3.7 3.7 3.7

∆µ2

Regular 18.64 18.5 19.04 18.67 39.34 21.14 23.23 21.08

Hybrid 18.39 17.77 18.09 17.48 35.08

Utopian 7.02 6.44 6.51 4.7 14.77 0.96 0.96 0.96

∆µ3

Regular 9.27 8.87 8.96 9.28 29.16 11.42 12.25 11.31

Hybrid 9.01 8.83 8.9 9.28 28.7

Utopian 2.32 2.22 2.23 1.87 9.48 0.57 0.57 0.57

∆µ4

Regular 12.73 12.2 12.58 11.87 28.78 15.07 15.91 14.12

Hybrid 12.43 12.2 12.58 11.87 28.78

Utopian 5.05 4.79 4.82 3.73 12.26 1.61 1.61 1.61

Table 6.10: MAPE (%) of the AI and NN forecasting methods (training set 6= test set)
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Scenario Criterion
Artificial Intelligence Nearest Neighbour

DT Bagging RF Boost SVM PCA Scaled -

Change in σ

∆σ1

Regular 3.91 3.25 2.88 6.45 34.94 2.51 0.76 0.92

Hybrid 2.53 3.09 2.57 6.15 34.94

Utopian 0.12 0.45 0.39 1.41 7.86 0 0 0

∆σ2

Regular 3.92 3.26 2.89 6.49 35.46 2.38 0.75 0.87

Hybrid 2.55 3.11 2.58 6.24 35.46

Utopian 0.13 0.47 0.41 1.49 10.94 0 0 0

∆σ3

Regular 4.04 3.33 2.94 6.56 40 2.16 0.75 0.83

Hybrid 2.61 3.17 2.66 6.43 40

Utopian 0.16 0.53 0.45 1.71 9.99 0 0 0

∆σ4

Regular 4.11 3.37 2.96 6.54 37.76 2.12 0.78 0.9

Hybrid 2.6 3.2 2.7 6.5 37.76

Utopian 0.18 0.56 0.47 1.8 16.22 0 0 0

Change in µ

∆µ1

Regular 3.94 3.29 2.87 6.55 35.47 2.18 0.78 1.18

Hybrid 2.64 3.16 2.71 6.56 35.47

Utopian 0.28 0.89 0.73 3.49 11.93 0 0 0

∆µ2

Regular 4.01 3.3 2.91 6.57 35.2 2.26 0.75 1.03

Hybrid 2.6 3.15 2.66 6.57 35.17

Utopian 0.2 0 0.67 0.57 2.45 11.45 0 0 0

∆µ3

Regular 3.88 3.31 2.9 6.41 65.07 2.33 0.76 0.91

Hybrid 2.6 3.1 2.63 6.05 48.16

Utopian 0.15 0.46 0.39 1.24 15.99 0 0 0

∆µ4

Regular 3.67 3.23 2.81 6.27 91.58 2.26 0.8 0.93

Hybrid 2.6 3.08 2.69 5.92 34.65

Utopian 0.23 0.62 0.51 1.71 13.85 0 0 0

Table 6.11: Mean Lags (%) of the AI and NN forecasting methods (training set 6= test set)
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6.5.2 Sensitivity experiments

The main experiments judged the performance of the various forecasting methods when

the amount of neighbours was changed. Another salient research avenue is to discover the

importance of having little or lots of information available. Hence, this section answers

the following question: if fewer observations can be used to learn the relation between

inputs and outputs, which effect does it have on forecasting accuracy and stability?

Section 6.5.2.1 varies the amount of executions from 0.1 to 1.0 in steps of 0.1, while

employing all neighbours (k% = 1.0). Section 6.5.2.2 varies the amount of executions

and neighbours simultaneously from 0.2 to 1.0 in increments of 0.1.

6.5.2.1 ∆execution

Throughout the main experiment, the training set comprised 800 observations. These

resulted from 800 Monte Carlo simulation runs, in which a number for every activity’s

duration was drawn from a generalized beta distribution. The amount of neighbours

was varied, which leads to a reduced training set of more similar observations for the

hybrid AI methods. In this section the amount of neighbours is fixed at 100%. As a

result, the training set is not reduced because of the inclusion of the k-NN technique.

However, we assume that fewer than 800 simulation runs are available. This is a small

but crucial nuance. When the number of neighbours was modified in section 6.5.1, the

best observations were selected from the training set. In this section, fewer observations

are available and no selection of the best found samples takes place.

Figure 6.3 depicts the forecasting accuracy when the training and test sets coincide.

Since no AI methods vary much along the scenario, the MAPE was averaged across

the Early, Middle and Late scenarios. The x-axis displays the % executions, while the

y-axis represents the MAPE. We can infer from figure 6.3 that generally, all AI methods

benefit from having more Monte Carlo simulations available in the training set. Hence,

the availability of more progress data is beneficial to the forecasting accuracy.

We also analyzed the stability results, as well as the scenarios where the training and

test sets differ. The trend of figure 6.3 was absent in both circumstances with the MAPE

and Mean Lags displaying a more or less level behaviour as the amount of executions

was changed. We believe this can be explained as follows:

• Training set 6= test set: since the observations of the training and test sets are

drawn from different distributions, the number of executions does not have an
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influence on the accuracy of the test set examples. Because there is a lack of repre-

sentative observations in the training set, it matters little how many observations

the training set contains.

• Stability: throughout our experiments, stability is a result of the forecasting meth-

ods’ estimates. The AI techniques learn to predict the Real Duration and are tuned

to optimize forecasting accuracy instead of stability. Hence, there is no logical ba-

sis to presume the presence of a relation between the number of executions and

the forecasting stability.
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Figure 6.3: Forecasting accuracy for ∆ execution

6.5.2.2 ∆execution & ∆neighbours

The final computational experiment we conducted varied the amount of executions and

neighbours. Both parameters were changed identically, implying that the %execution

was always equal to the %neighbours. Since most AI techniques require a minimum

number of observations, the minimum value for the executions and neighbours was 0.2.

The forecasting accuracy is depicted in figure 6.4 and reveals a similar behaviour to

figure 6.3 for all methods except the Decision Tree method.

An explanation can be derived from the earlier results for the DT technique. In section
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6.5.1.1 we established that the best results of the DT technique were found for very few

neighbours (0.1). However, the sensitivity experiment of section 6.5.2.1 concluded that

the lowest MAPE was found when the %execution was equal to 1.0. Combining these

two findings leads us to hypothesize that fewer observations in the training set only

yield results when these observations are of high quality. Clearly, this is the case when

the Nearest Neighbour technique is applied (the best observations result from equation

(6.1)). However, when the %execution is varied, these executions are not necessarily the

best observations that can be found. In this section, the best results for DT are found

when %execution and %neighbour are equal to 0.1. Consequently, it can be conjectured

that this is due to the limited amount of neighbours.
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Figure 6.4: Forecasting accuracy for ∆ execution and ∆ neighbour

6.6 Conclusion

In this chapter, research on project control forecasting was advanced in two ways. On

the one hand, we extended previous research by reporting on the stability of Artificial

Intelligence methods. On the other hand, a Nearest Neighbour extension for forecasting

was proposed. The purpose of this extension was twofold. First, the k-Nearest Neigh-

bour technique was deployed as a predictor and allowed us to benchmark its accuracy

and stability with the existing EVM and AI methods. Secondly, Nearest Neighbours

were utilized to hybridize the Artificial Intelligence methods by reducing the training set
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to a smaller training set with more similar observations.

The performance of the forecasting methods was tested on a computer-generated dataset.

Deviations from the baseline schedule were generated through activity variations, based

on Monte Carlo simulations. These simulations permit the imitation of fictitious project

executions by drawing the duration for every activity from a statistical distribution.

In this chapter we opted for the generalized beta distribution. Various Earned Value

Management performance indicators as well as forecasting information were captured

throughout each project’s progress. This information served as inputs for the Artificial

Intelligence methods. Finally, the forecasting performance is assessed by means of the

Mean Absolute Percentage Error for accuracy and the Mean Lags for stability.

The main experiment of this chapter varied the number of neighbours and judged the

impact of the (dis)similar nature of the training and test sets. When the training and test

set observations result from identical distributions, the AI methods score admirably in

terms of accuracy and stability. The main advantage of the Nearest Neighbour method

lies in its stable predictions, greatly outperforming the incumbent forecasting methods.

Nearest Neighbours were also put to use to hybridize the AI methods, proving particu-

larly advantageous when the training and test sets do not coincide. We observed that

a change in the distribution’s mean endangers the accuracy more than a change in the

standard deviation and that the performance of all AI methods was improved by their

hybrid counterparts. Incidentally, the stellar forecasting accuracy of the Nearest Neigh-

bour methods is worth noting.

The experiments were concluded with a number of sensitivity checks, in which the

amount of executions and a simultaneous change in the number of executions and neigh-

bours were scrutinized. The former experiment led us to conclude that the AI methods

benefit from having the full amount of simulations available. The same conclusion was

reached for the latter experiment with the Decision Tree technique as an exception.

It is our belief that future research should focus on two avenues. The first direction

stems from a limitation of the present chapter in which fictitious data was employed

to assess forecasting accuracy and stability. We call upon researchers and practitioners

to validate these findings in real-life projects. While the application of AI techniques

requires a minimum of project data in order to function properly, this limitation is not

as strict for the presented Nearest Neighbour methods. The second incentive for future



194 Chapter 6

research follows directly from the Utopian scenarios. The potential of the Nearest Neigh-

bour methods is vast. If the optimal neighbours can be found, the forecasting accuracy

and stability can be greatly improved. Hence, additional research in which different

weights are accorded to the various attributes for the distance calculations of equation

(6.1) would be an area worth exploring. An alternative option consists of finding different

proxies for the Real Duration of the observations of the test set.
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6.A Appendix

6.A.1 Illustrative example

In this appendix, the Nearest Neighbour methodology will be explained by means of

an illustrative example. The project network that will be employed consists of 10 non-

dummy activities and was first introduced by Vanhoucke (2010a). An Activity on the

Node (AoN) representation can be found in figure 6.A.1. The duration in days of each

activity is indicated above each node while the baseline cost can be found below each

node. It is worth mentioning that each activity’s cost is entirely variable. Hence, if an

activity is delayed during the execution phase, its cost will increase by BACi
di

, with BACi

denoting the Budget At Completion of activity i and di denoting the baseline duration

of activity i. The Planned Duration (PD) of the project is 16 days and the BAC is equal

to e456.
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0
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0

€ 0
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€ 36 € 6 € 0

€ 25 € 20 € 120

€ 21

€ 60

Figure 6.A.1: Illustrative project network (source: Vanhoucke (2010a))

Similar to the methods of Wauters and Vanhoucke (2014a), the k-NN method oper-

ates using a training and a test set. The training set results from historical data, which

can be obtained using computer simulations or historical data from past projects. In

order to keep this example tractable, the training set consists of 10 executions (for which

it is assumed that the entire progress and the project’s Real Duration (RD) is known).

The test set consists of 1 execution. The goal is to forecast the RD of the execution

of the test set. In this example we made use of computer simulations to generate the
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Ex
Activity

RD
1 2 3 4 5 6 7 8 9 10

1 1 2 1 2 3 1 4 2 1 1 9

2 1 10 1 2 4 1 6 2 2 2 12

3 1 5 1 2 5 1 4 6 2 1 11

4 2 7 1 3 2 1 8 5 1 1 12

5 3 6 1 5 3 1 5 8 2 1 16

6 2 3 1 2 2 1 5 7 2 2 11

7 4 3 1 5 4 1 4 11 2 2 20

8 1 5 1 3 4 1 8 5 2 1 14

9 2 4 1 3 4 1 5 3 1 2 11

10 1 5 1 1 2 1 5 4 1 1 9

11 1 5 1 1 2 1 4 3 2 3 8

Table 6.A.1: Activity and project durations for the 11 executions

executions. Uncertainty was generated by means of the generalized beta distribution of

equation (6.4). The parameter settings for this example are a = 0.1, b = 2, µ = 0.6

and m = 0.5. Table 6.A.1 shows the Real Duration of the 10 non-dummy activities

as well as the project’s RD, which follows from a simple critical path calculation. The

executions are abbreviated by “Ex”. The first 10 executions comprise the training set

while execution 11 makes up the test set. It is worth noting that the Real Durations of

the activities only become known as the project progresses and are merely provided for

the sake of completeness.

While variability is introduced at the activity level, performance monitoring is per-

formed at the project level, using the Earned Value Management methodology. For this

example, two EVM attributes, namely CPI and SPI(t), are employed. The attributes

are captured every time period and can be found in table 6.A.2.
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Applying the k-NN method commences by calculating the distance between the at-

tributes of every instance of the training set (execution 1 to 10) and the instance of

the test set (execution 11). Distance calculation takes place using equation (6.1). The

distance values for each period of the test set execution’s project duration can be found

in table 6.A.3.

A sample calculation for the value indicated in bold will be given. Since we are at

time period 2 (rp = 2), P = 2 ∗ 2 (following equation (6.3)). The distance between

the test set observation y and observation 1 of the training set, denoted by x1, can be

calculated as follows:

||y − x1|| =
√

(2.51− 2.29)2 + (3.64− 3.26)2 + (2.44− 2.72)2 + (2.98− 3.07)2

=
√

0.2793 ≈ 0.53
(6.8)

Performing this calculation for all executions across all periods yields a list of distances.

In the next step, the Nearest Neighbours are identified. In this example, the 3 (k = 3)

Nearest Neighbours are used. For period 2, the set of Nearest Neighbours consists of

executions 1, 3 and 10 with distances of 0.53, 0.80 and 0.00 respectively. The output

value of the test set execution is then computed by taking the average output of the k

Nearest Neighbours (equation (6.2)). In a project control forecasting setting, oi and ô

of equation (6.2) correspond with the RD of execution i and the estimated RD of the

test set execution, respectively. Applying equation (6.2) yields the following prediction:

ô =
9 + 11 + 9

3
≈ 9.67 (6.9)

The set of k Nearest Neighbours, as well as the prediction for each period of the test

set’s execution is provided in the last two rows of table 6.A.3.
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Ex
Period

1 2 3 4 5 6 7 8

1 0.44 0.53 0.63 0.93 0.93 0.98 1.01 1.09

2 0.15 0.95 1.18 1.25 1.35 1.4 1.56 1.75

3 0.00 0.80 1.02 1.11 1.22 1.37 1.57 1.70

4 1.73 2.38 2.63 2.67 2.69 2.69 2.74 2.81

5 2.24 3.18 3.53 3.61 3.67 3.69 3.75 3.82

6 1.45 1.96 2.11 2.12 2.13 2.14 2.15 2.20

7 2.27 3.25 3.63 3.72 3.79 3.85 3.96 4.06

8 0.00 1.07 1.37 1.41 1.48 1.52 1.58 1.71

9 1.58 2.23 2.49 2.52 2.55 2.58 2.66 2.73

10 0.00 0.00 0.01 0.01 0.32 0.51 0.57 0.7

k-NN {3,8,10} {10,1,3} {10,1,3} {10,1,3} {10,1,3} {10,1,3} {10,1,2} {10,1,3}
ô 11.33 9.67 9.67 9.67 9.67 9.67 10 9.67

Table 6.A.3: Nearest Neighbour distances and predictions for k = 3
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Conclusions & future research avenues
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7.1 General observations

In this chapter, we look back on the work presented in chapters 2 to 6. The research

we conducted is situated on the intersection of the Operations Research, Project Man-

agement and Data Mining disciplines. As such, the central theme of this book can be

phrased as learning from data in a Project Management environment. While syner-

gies between Data Mining and Operations Research were covered by multiple authors,

the integration between Data Mining and Project Management is still in its infancy.

However, with the recent Big Data hype, it is expected that techniques from statistical

learning, Artificial Intelligence, Machine Learning and many related fields will find their

way to the field of Project Management. In this respect the research of Smith-Miles et al.

(2009) proves particularly interesting. These authors compare two common scheduling

heuristics and construct a decision tree to determine which heuristic should be preferred

for a certain kind of problem structure.

In general, there is vast potential for integrating Project Management and Data Mining.

The link between algorithm performance and problem structure can be facilitated by

Data Mining techniques given that sufficient data is available. Selection of the best-

performing solution method could be handled by a data mining technique, facilitating

the implementation of state-of-the-art techniques in Decision Support Systems. Recent

advances on finding algorithm strengths and weaknesses can be found in Branke and

Pickardt (2011) and Smith-Miles et al. (2014).

In this book, we presented learning approaches from data for two distinct project man-

agement problems, namely the Discrete Time/Cost Trade-off Problem and project con-

trol forecasting. In this final chapter, we revisit these problems to identify limitations

and attempt to look at future challenges. The outline of this chapter is as follows. For

each part of this book, we give a synopsis of how and for which purpose we learned

from a project management problem’s data. Furthermore, we draw main conclusions,

demonstrate limitations and exploit these to draft plans for future research. Table 7.1

summarizes the data, Project Management problems and contributions of each chapter.

These aspects will be elucidated in the following sections. Part I, Time/cost optimiza-

tion, can be found in section 7.2. Section 7.3 deals with Part II, forecasting in a project

control environment. The most ambitious challenge for future research is found in the

integration of both parts. A separate section (section 7.4) is dedicated to the goals and

requirements of this research.



Conclusions & future research avenues 203

P
a
rt

C
h

a
p

te
r

D
a
ta

P
ro

b
le

m
C

o
n
tr

ib
u

ti
o
n

T
im

e/
co

st
o
p

ti
m

iz
a
ti

o
n

C
o
m

p
le

x
it

y
&

u
n

ce
rt

a
in

ty
p

er
ce

p
ti

o
n

E
m

p
ir

ic
a
l

(s
tu

d
en

t)
&

si
m

u
la

te
d

D
T

C
T

P
-D

S
o
lu

ti
o
n

st
ra

te
g
ie

s

(C
h

a
p

te
r

2
)

C
o
n
te

x
tu

a
l

fa
ct

o
rs

E
ff

o
rt

-b
a
se

d
d

ec
is

io
n

m
a
k
in

g
E

m
p

ir
ic

a
l

(s
tu

d
en

t)
&

si
m

u
la

te
d

D
T

C
T

P
-D

E
ff

o
rt

-b
a
se

d
p

ro
b

le
m

in
si

g
h
ts

(C
h

a
p

te
r

3
)

V
a
li

d
a
ti

o
n

st
ra

te
g
ic

co
m

p
o
n

en
ts

F
o
re

ca
st

in
g

S
ta

b
il
it

y
o
f

E
V

M
fo

re
ca

st
in

g
E

m
p

ir
ic

a
l

(r
ea

l-
li
fe

)
&

si
m

u
la

te
d

E
V

M
:

ti
m

e
&

co
st

N
ew

st
a
b

il
it

y
m

et
ri

c

(C
h

a
p

te
r

4
)

T
ra

d
e-

o
ff

st
a
b

il
it

y
&

a
cc

u
ra

cy

C
o
m

p
a
ri

so
n

o
f

A
I

m
et

h
o
d

s
S

im
u

la
te

d
E

V
M

:
ti

m
e

In
tr

o
d

u
ct

io
n

5
A

I
m

et
h

o
d

s

(C
h

a
p

te
r

5
)

G
en

er
a
l

m
et

h
o
d

o
lo

g
y

P
er

fo
rm

a
n

ce
im

p
ro

v
em

en
ts

N
ea

re
st

N
ei

g
h
b

o
u

r
ex

te
n

si
o
n

S
im

u
la

te
d

E
V

M
:

ti
m

e

S
ta

b
il
it

y
o
f

A
I

&
N

N
m

et
h

o
d

s

(C
h

a
p

te
r

6
)

D
u

a
l

p
u

rp
o
se

n
ei

g
h
b

o
u

rs

U
to

p
ia

n
sc

en
a
ri

o

T
a
b

le
7
.1

:
R

es
ea

rc
h

co
n
tr

ib
u

ti
o
n

o
f

th
is

d
is

se
rt

a
ti

o
n



204 Chapter 7

7.2 Part I: Time/cost optimization

In the first part of this book we studied the deadline variant of the DTCTP (DTCTP-D)

by means of a student experiment. Solution strategies were distilled from participants of

the Project Scheduling Game (PSG), an IT-supported project management game that

focuses on (re)scheduling a project given uncertainty. Real-life data originating from hu-

man decisions was analyzed to craft the solution strategies of chapter 2. The manner in

which students tackle the DTCTP was translated into general constructs (focus, activ-

ity criticality, ranking, intensity and action) to eliminate the need to conduct classroom

experiments. Contextual factors, namely complexity and uncertainty, were strongly em-

bedded in the framework of the solution strategies. A large computational experiment

delineated the strengths and weaknesses of each solution strategy.

Chapter 3 adopted a slightly different approach. Students have to construct a custom

solution to the DTCTP-D subject to an effort restriction. The feedback participants

receive is static and only communicates the average effort consumption. As a result,

students are forced to think in strategic terms rather than changing dials to optimize

costs without a larger picture in mind. We conceived three strategic components, namely

schedule focus, activity focus and action radius, each of which may contain a number

of elements. This effort-based extension is known as PSG Extended. Two data sources

were analyzed. The first source consists of real-life solutions from students having par-

ticipated in this novel game. The second source was generated by means of a computer

and consists of more than 400,000 solution files. Both sources enable us to determine the

impact of DTCTP parameters (e.g. the deadline and penalty height) and the influence

of the solution strategy components.

Based on the research of Part I, Research Question 1 can be answered as follows:

RQ1: How can research and practice of the DTCTP become more aligned?

? Current and future research efforts should take contextual factors into ac-

count. Complexity and uncertainty are but two examples that can influence

the choice for a certain solution method. Hence, instead of focusing on one-

size-fits-all procedures, explicit attention should be allocated to the environ-

ment in which each technique performs best.

? Secondly, researchers should recognize that Project Managers are constrained

in the amount of effort (which can be measured in monetary terms, time

or the amount of personnel changes that can be executed) available to them.
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Consequently, a search for heuristics and truncated searches should take place

in which procedures are able to realize maximum gains given a limited number

of allowed changes.

Limitations The main limitation of Part I of this book follows from the generalizations

drawn from real-life data. For chapter 2 this entails that certain students may follow

variants of the time-based or cost-based solution strategy. While a principal distinction

between solution strategies (time versus costs) has been made, it is entirely possible that

small groups of students follow a niche strategy that we have yet to identify. Obviously

this process will become easier as more data becomes available. In this respect the

data growth following from the cooperation with University College of London (UK),

Vlerick Business School (Belgium), EDHEC (France) and Ghent University (Belgium)

constitutes an excellent prospect. An assumption we made throughout chapter 2 is

closely related to these niche strategies. We presupposed that solution strategies are

static and do not shift throughout the game. It is possible that certain students could

not be categorized because they follow neither a cost-based strategy nor a time-based

strategy and change plans as the game proceeds. While chapter 3 also operates on

student data, we recognize its limited availability. PSG Extended was first rolled out

in January 2014 and has not yet reached the same maturity as the Project Scheduling

Game of chapter 2. Hence, there may be discrepancies between the empirical findings and

the computational experiment. As we accumulate data, it will be possible to investigate

situations in which differences arise and search for the causes of this divergent behaviour.

Future research The first study of Part I reconciled the soft and hard paradigms of

project management. Attention was given to the perception of complexity and uncer-

tainty and consequences of judgement errors were highlighted. While these dimensions

play a crucial role in project management (cf. Pich et al. (2002)), it is possible to take

other factors into account or provide the participants with additional information. We

provide three examples:

• Adding information regarding the risk of individual activities may alter the selected

course of action. It was shown previously by Vanhoucke and Wauters (2015) that

knowledge of risk analysis contributes to time/cost optimization. However, the

impact of additional information in terms of activity sensitivity metrics is yet to

be tested.

• The appearance of “Black Swan” events (Taleb (2010)) may prompt participants

to follow a more risk-averse approach.
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• While students have a limited amount of time to complete the PSG, they are not

constrained in the expenses they make to bring the project back on track. A fixed

contingency budget would be a worthwhile addition and introduces the challenge

of dividing the budget strategically across decision moments.

Chapter 2 also assumed that strategies are static. A student follows a certain strategy

throughout the game. However, as more data and more strategies are found, it would

be interesting to see whether strategy changes occur and by which circumstances these

changes are caused (e.g. Black Swan events mentioned above). Both chapters of Part

I of this book are deeply rooted in an educational context. As such, future research

intentions also involve a more educational orientation. We are currently working on

elevating PSG Extended to a higher level of maturity. This includes incorporating it

into the curriculum of academic and commercial Project Management programmes, as

well as creating a personalized report at the end of the game. The main goal is to turn

PSG Extended into a full-fledged business game. The session within a PM curriculum

would comprise an introduction, playing the game, a feedback session and handing each

participant their custom report. The reader is referred to www.pmgamecenter.com for

an update on the status of PSG Extended.

7.3 Part II: Forecasting

In the second part of this book, we gained insights into project control forecasting by

learning from simulated data. Hence, the Project Management problem and data source

differ from those of Part I. In Chapter 4 we shed light on forecasting stability by defining

a new criterion that outputs a degree of stability rather than a binary value. Existing

forecasting methods were tested by means of a large computational experiment as well

as two real-life projects. Throughout the experiments, we reported on stability and ac-

curacy, facilitating a trade-off between both objectives and providing a more nuanced

view of the best performing forecasting method.

Large data volumes were employed for chapters 5 and 6. Predictive methods from the

field of Artificial Intelligence (AI) were used to make predictions for the final project

duration. Well-known techniques such as Monte Carlo simulation, grid search and cross-

validation were included in the research methodology. Variation in the durations of

activities was modeled with generalized beta distributions. The advantage of imple-

menting this distribution lies in its flexibility in modifying its moments. Dissimilar

distributions led to the creation of diverging training and test sets, demonstrating that

the AI techniques follow the “garbage-in garbage-out” principle.

www.pmgamecenter.com
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Chapter 6 extended previous research by reporting the stability results of the AI meth-

ods of chapter 5. The Nearest Neighbour technique achieved admirable stability results

and its integration in the hybrid methods greatly improved performance for dissimi-

lar training and test sets. Constructing and tracking the Utopian scenario highlighted

project control forecasting’s vast potential and is an excellent departure point for future

research efforts.

The research done in chapters 4 to 6 allows us to formulate an answer to Research

Question 2:

RQ2: How can historical data be leveraged to improve forecasting quality?

? Forecasting quality consists of accuracy and stability. When two methods

display a similar accuracy, stability can provide an answer as to which method

to pick. Stable forecasting methods also yield a consistent warning signal

when embedded in a Decision Support System.

? The implemented Artificial Intelligence methods show the power of histori-

cal data, given that they are sufficiently representative. Additionally, having

more data available and combining it with a technique such as Nearest Neigh-

bours can yield distinct advantages. Hence, it makes sense for companies to

store the right data in large quantities.

Limitations There are two major limitations to the research of part II of this book.

First, many of the proposed techniques have yet to be tested on numerous case studies

or real-life projects. The findings of chapters 4 to 6 are almost exclusively based on

fictitious projects. Computational tests have the distinct advantage that a wide set of

projects with different characteristics can be tested but empirical validation, for instance

on the database of Batselier and Vanhoucke (2015), is still required. Implementation

of our research in practical environments is straightforward for the stability criterion

but will prove much harder for the Artificial Intelligence techniques of chapters 5 and

6. The major hindrance lies in the wealth of data required by the AI methods. Real-

life companies that can benefit from these techniques need to possess a certain level of

maturity such that they capture relevant project control data and either have a large

database of historical project data or a powerful simulation engine at their disposal.

These requirements may pose quite the conundrum in practice.

Future research As mentioned in section 7.1, there is vast potential for integrating

Data Mining principles into Project Management. In this paragraph, we limit ourselves
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to applications that extend the research presented in the chapters of Part II. We pinpoint

two directions for further scrutiny.

• Forecasting as a trigger for corrective action: while predicting the final duration

or cost of a project is a piece of key information for a project manager, project

control should be action-driven. In other words, when does a project manager

decide to take action based on a prediction of the future? In figure 1.1 of chapter

1, the PM lifecycle was presented. This research would focus on the feedback loop

from the control phase to the scheduling phase. As in the research of Colin and

Vanhoucke (2014), performance can be measured using true and false positive and

negative signals. In addition, an approach similar to Vanhoucke (2011) could be

implemented, in which a standard corrective action is applied when the threshold

for corrective action is exceeded.

• Classification: throughout this dissertation, the Artificial Intelligence techniques

have been applied to the regression problem of forecasting. Another fruitful and

thoroughly investigated research branch of Data Mining consists of classification

tasks. Classification aims to assign a category to a new instance after a relation

has been learned by means of training data. Binary classification and assignment

of multi-class labels belong to classification. We briefly propose two ideas to apply

classification in a project control context.

– Classification of failing projects: Artificial Intelligence techniques have been

successfully implemented for bankruptcy prediction (Kumar and Ravi (2007)).

In order to discern failing and healthy firms, financial ratios are exploited. We

make two recommendations to academics who take up the challenge of clas-

sifying projects. First, it would be interesting to see whether the attributes

we used for prediction (table 5.1 of chapter 5) also lead to an acceptable per-

formance for classification. Some techniques, such as Random Forests, can

provide insights into which attributes help explain the distinction between

healthy and failing projects. A second recommendation requires preliminary

risk research. While risk metrics have been defined on the activity level, few

attempts have been made to define risk on the project level. Drawing the par-

allel with finance literature, these risk metrics then assume an identical role

to the financial ratios that distinguish between successful and failing compa-

nies. It would be particularly interesting to assess classification performance

along the percentage complete. What is the increase in reliability as the

project progresses and from which point onwards is classification sufficiently
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effective?

– Schedule control: this research builds on the work of Colin and Vanhoucke

(2014) who constructed tolerance limits to detect unacceptable variation through-

out a project. It is possible to train Artificial Intelligence methods to detect

the points at which performance exceeds the normal project variation. The

main contribution of this research does not consist of training but predicting

when a project will exceed a tolerance limit given its progress. It is our belief

that such a proactive approach would greatly expand the value of the existing

research.

7.4 Integration

The most ambitious idea for future research follows from the combination of Part I

and Part II of this dissertation. In general, few studies have considered the integration

of project scheduling and control. An exception can be found in Hazır and Schmidt

(2013), who model optimal control and combine it with the Discrete Time/Cost Trade-

off Problem. The key difference with the idea we will outline lies in the Work Breakdown

Structure level. While Hazır and Schmidt (2013) consider individual activities, we follow

the rationale of Vanhoucke (2010a) that it is impossible to monitor and control projects

by means of individual activities. Hence, we resort to Earned Value Management and

its inherent strengths and weaknesses. It is expected that the use of EVM in an inte-

grated scheduling and control context will be less effective for parallel project networks

than for more serial networks (Vanhoucke (2010a) and Wauters and Vanhoucke (2014b)).

The major impediment to pursuing this integrated research lies in the fact that pre-

liminary research needs to be done regarding corrective actions. Very few publications

deal with Earned Value Management and taking action to bring an endangered project

back on track. We call upon researchers to conduct an in-depth analysis of which type of

corrective action (e.g. crashing and fast-tracking) performs best, as well as the intensity

of the action. For instance, one could wonder whether it is best to crash an activity in

an extreme manner or take a more gradual approach in which multiple review periods

are utilized to align the project with its baseline schedule. The reader is referred to the

literature on match-up scheduling (Akturk and Gorgulu (1999) and Sabuncuoglu and

Bayız (2000)) for further inspiration.

In this paragraph, we will explain what an integrated scheduling and control approach
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should include. The end goal should be to incorporate the managerial insights of this

research into a Decision Support System (Hazır (2015)). A graphical outline is provided

in figure 7.1. A baseline schedule is either assumed to be given or results from a specific

exact or meta-heuristic procedure. The project transitions from the planning to the exe-

cution phase and is monitored periodically. A related issue consists of finding the optimal

points for project control (Raz and Erel (2000)). Once a performance metric exceeds its

lower or upper bound, a trigger for corrective action is issued. The performance bounds

may result from the tolerance limits of Colin and Vanhoucke (2014) or the Schedule or

Cost Control Index of Pajares and López-Paredes (2011). At this point in time it is

necessary to drill down into the Work Breakdown Structure and find out which activity

is the culprit for the unacceptable project progress. Actions can be taken on the activity

that denotes the worst EVM performance. Incidentally, the project manager may wish

to act proactively by modifying future activities based on the sensitivity metric values.

Once the activity that causes detrimental performance is found, its duration and associ-

ated cost can be modified according to its time/cost profile. In essence, taking corrective

action corresponds with finding the optimal mode for a selected activity to bring the

project back on track. It is in this phase that multiple characteristics of the DTCTP-D

make an appearance. To conclude this section, we provide a number of characteristics

or constraints that can influence the process of bringing the project back on track. The

reader will find that some of these characteristics are similar to those of chapters 2 and

3 of this book.

• Presence of a deadline and penalty: similar to the PSG, a deadline and penalty

can be imposed as an incentive to satisfy the client. We presume that the height of

the penalty as well as the relation of the deadline to the project’s baseline duration

will play an important role in changing activities’ durations and costs.

• Activity time/cost profile: convex and concave time/cost profiles can influence

the decision to change an activity’s duration. Based on the time/cost profile, the

project manager may be tempted to choose a more drastic crashing option.

• Topological structure: while we advocate the use of EVM for pragmatic and prac-

tical reasons, it implies that the flaws of EVM will be inherent to the integrated

scheduling and control model. Project managers should take special care when

dealing with project networks with a parallel topological structure.

• Contingency budget: a project manager is typically in charge of a limited contin-

gency budget. Including this as an extra constraint (a monetary restriction can
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be seen as an exercise in effort-based decision making (cf. chapter 3)) gives rise to

several interesting research questions. For example, how does a project manager

divide the budget along the percentage complete? At the end of the project, the

degrees of freedom have greatly declined and there is little room for changes. How-

ever, it is more straightforward to obtain an overview of the impact of corrective

actions on the overall project.

Activity

Time

Baseline Scheduling Project Control

Time

Lower 
bound

Upper 
bound

Project Monitoring

Trigger for
corrective action

Activity drill-down

Activity

Sensitivity
metric

Rescheduling

Activity trade-offs

Time

Cost

Figure 7.1: Overview of the integration of Part I and Part II of this book
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7.5 Closing remarks

In this book we have presented two parts that are connected by the overall theme of

learning from data in a project management context. Sections 7.2 and 7.3 highlighted

future research avenues. It is our hope that academics and practitioners take up the

gauntlet and tackle the challenges we have laid out in those sections. Researchers who

do not shy away from a challenge will find great pleasure in developing an integrated

scheduling and control approach. The foundation of such experiments can be found in

section 7.4. We hold a firm belief in the potential synergies between Project Management

and Data Mining and can only hope that others find as much pleasure in the Project

Management playground as we have had in these past years.
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