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PREFACE 

This thesis merges two fascinating, relatively new research areas: human embryonic stem cell 

biology and epigenetics. Despite the thousands of reports that have been published up to now on 

both these subjects, numerous questions and research opportunities still remain. One such question is 

addressed in this dissertation: Is histone proteolysis an important part of stem cell biology? 

Embryonic stem cells (ESC) have proven to serve as an excellent model for studying fundamental 

biological processes involved in the early development of (human) organisms. Equally important, they 

served as a template for the generation of induced pluripotent stem cells (iPSC) and will contribute to 

a better (clinical) application of these cells in the future. The awarding of the 2012 Nobel prize in 

Physiology or Medicine to John B. Gurdon and Shinya Yamanaka illustrates the importance of this 

research and its place in the scientific community. These two scientists were honored for discovering 

the potential of specialized cells to be reprogrammed to immature cells capable of differentiating 

towards all cell types of the body [1]. Despite the hurdles in the reprogramming process, the iPSC 

safety issues and the overall question on ESC and iPSC in vivo relevance, stem cells have yet proven 

useful in regenerative medicine, modeling diseases and candidate-drug screenings, and will continue 

to play an important role as such [2]. 

Also in the field of epigenetics, which studies gene expression regulatory mechanisms that are not 

based on DNA sequence alterations, an extending number of challenges and applications lies ahead. 

Aberrant recruitment of epigenetic modifiers amongst other factors, is involved in a number of 

pathologies, primarily cancer. Because of the potential reversibility of epigenetic marks such as histone 

modifications, they are promising therapeutic targets when dealing with human pathologies. This is 

illustrated by the approval of several so-called epi-drugs by the US Food and Drugs Administration 

and the European Medicines Agency for cancer treatment and the various other candidate drugs that 

are undergoing clinical trials for both mono- or combination therapy [3]. 

The aim of this thesis was to dig deeper into the field of regulated histone proteolysis as a 

posttranslational histone modification (PTM) in human ESC (hESC), thus combining the two 

aforementioned themes.  

The first section of Chapter 1 gives a broad introduction on hESC biology, culture methods and 

differentiation possibilities. Subsequently the epigenetics part of this thesis is launched by generally 

introducing the term, defining the different levels of epigenetic regulation and finally submitting this 

back to a hESC setting. Upon hESC differentiation, the epigenetic signature shifts drastically, leading to 

equally drastic changes in transcription. One of the possible techniques to monitor such changes is 



Preface 

 
8 

reverse transcription-quantitative PCR (RT-qPCR). In Chapter 2, an optimization for RT-qPCR analysis 

of samples obtained from differentiating hESC is described. More specifically, a panel of suitable 

reference loci is provided for correct normalization of RT-qPCR data. 

Chapter 3 and Chapter 4 describe in more detail our findings on the presence of histone H3 clipping 

in hESC. While this event has been reported in many distinct biological settings, the true role of this 

modification however remains unclear. Notwithstanding its potential epigenetic function as a PTM that 

sweeps away en masse all other modifications, histone clipping is not picked up by the broader 

scientific community, although nowadays over 5000 papers are published on histones every year. In 

Chapter 5 we thus discuss its current position in biology, while also reviewing the different reports on 

histone proteolysis in the past. This thesis adds one more piece to the puzzle by demonstrating for the 

first time that histone clipping also occurs in hESC, in which basic processes as self-renewal, 

pluripotency and lineage programming are highly epigenetically determined. 
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1. INTRODUCTION 

1.1. Human embryonic stem cells 

1.1.1. Establishment and characterization of embryonic stem cells 

Human embryonic stem cells (hESC) are hallmarked by their prolonged proliferation potential and their 

capacity to differentiate towards all cell types of the human body.  

Human ESC lines are derived from the blastocyst’s inner cell mass (ICM), usually from ‘spare’ 

blastocyst-stage embryos that were in first instance intended for clinical use. In case of infertility issues, 

patients can opt for assisted reproductive technologies such as in vitro fertilization (IVF), intra uterine 

insemination and intracytoplasmic sperm injection. During the IVF procedure, the embryos are kept in 

culture for several days until they reach the blastocyst-stage. On day 5-6, the quality of the blastocysts 

is scored (e.g. according to the Stephenson grading system [4]), thus determining whether an embryo 

is suitable for being transferred back to the patient or not. Good quality embryos that are left unused 

after successful implantation and that do not have to be cryopreserved for any future pregnancy 

attempts, can be donated for research with informed consent from the patient. Also the embryos of 

poor quality, insufficient for re-implantation, can serve as a source for the derivation of new hESC lines. 

Once the blastocyst-stage has been reached, five days after fertilization, the embryo consists of an 

ICM, surrounded by trophectoderm cells and the blastocoel cavity. In vivo, the ICM (or embryoblast) 

gives rise to the eventual embryo, whilst the trophectoderm develops into extra-embryonic tissues. For 

cell line derivation, the blastocyst as a whole or the isolated ICM can be plated on a mouse embryonic 

fibroblast (MEF) feeder layer or another adherent substrate for culturing. Via a post-ICM intermediate 

(PICMI) outgrowth formed within 7 days after plating, the ICM evolves towards an established ESC line 

(Figure 1.1) [5]. As such, the first human ESC line was derived in 1998 by J. Thomson [6].  

The quality of a hESC line can be monitored via a range of characteristics. Morphologically, 

undifferentiated hESC colonies in culture appear round and flat-growing, and they have well-defined 

edges (Figure 1.2A-B). The individual cells have a high nucleus-to-cytoplasm ratio (Figure 1.2C). 

Pluripotent hESC also display an abbreviated cell cycle (16 h) compared to differentiated cells, due to a 

shortened G1 phase and thus have a high proliferation rate [7, 8].  

For more detailed investigation of their molecular signature, the expression of cell surface markers 

such as the glycolipid antigens stage-specific embryonic antigen (SSEA)-3 and -4, and the keratin 

sulfate antigens TRA-1-60 and TRA-1-81 is often evaluated by immunofluorescence (microscopy 

and/or flow cytometry) as a marker for undifferentiated hESC [9–11]. The specific transcription factors 
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Oct4 (encoded by POU5F1), Nanog (NANOG) and Sox2 (SOX2) amongst others, are essential in early 

development and in propagation of the undifferentiated state, and share many target genes. The 

expression of these pluripotency factors can be quantitatively monitored via RT-qPCR or microarray 

assays [9, 10, 12] (optimization for RT-qPCR analysis described in Chapter 2 [13]). Also the elevated 

activity of telomerase and alkaline phosphatase is a characteristic feature [6, 9, 10, 14]. Besides the 

evaluation of specific markers and expression profiling, also a cytogenetic analysis needs to be carried 

out in order to monitor the genetic stability over time. By evaluating the karyotype, usually obtained 

via G-banding, chromosomal abnormalities can be revealed (Figure 1.2E) [11]. Additionally, the typical 

epigenetic profile of hESC can be assessed too, which is described in more detail further in this chapter 

(Section 1.3).  

 

Figure 1.1. Development of a blastocyst and derivation of human embryonic stem cells. After in 

vitro blastocyst maturation, hESC are derived from the blastocyst’s inner cell mass. They are characterized by the 

potential for self-renewal and their capacity to differentiate towards all cell types of the three germ layers, their 

respective progeny and germ cells. 
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Besides the aforementioned features, also the differentiation potential of hESC can be evaluated via 

different tests. The capability to form embryonic bodies in vitro, spherical clusters spontaneously 

formed by hESC in suspension, is used as a criterion for pluripotency and thus hESC line quality [10, 11, 

15]. Additionally, a range of in vitro differentiation protocols are readily available to direct the hESC 

towards a particular lineage. Via expression-analysis of cell type-specific markers the generation of 

cells from all three germ layers can be followed [10, 11]. Furthermore, also the in vivo differentiation 

capacity can be assessed. As the formation of chimeras is obviously not possible for human cells, 

teratoma formation in immunocompromised animals is considered to be the most stringent method 

for measuring pluripotency [10, 11, 15]. In order to maintain the self-renewing hESC status and inhibit 

spontaneous differentiation, specific and adjusted culture methods are required as outlined below. 

1.1.2. Human embryonic stem cell culture systems 

HESC can be maintained in culture both on a feeder layer or in feeder-free conditions. The most 

commonly used feeder layer consists of MEF, although also human feeders have been applied [16–18]. 

To preserve the hESC from being overgrown by the feeder cells, the latter are mitotically inactivated 

with e.g. mitomycin C, a DNA-crosslinker which inhibits DNA synthesis and cell division. Feeder cell 

density, the time span of culturing and the MEF exposure time to mitomycin C are determining for the 

feeder’s ability to support hESC growth [19, 20]. The feeders sustain the self-renewing, pluripotent 

hESC status by secretion of factors such as basic fibroblast growth factor (bFGF or FGF-2), transforming 

growth factor β, activin A and antagonists of the bone morphogenetic protein (BMP) signaling 

pathway, all of which have proven to be involved in hESC self-renewal. The downside is that the exact 

composition of that secretome is often unknown and batch-to-batch variability is thus easily induced. 

On top of that, working with feeders makes the culturing protocol rather time-consuming and labor-

intensive. 

As we want to move away from these undefined and variable circumstances, culture protocols have 

been adapted during the last couple of years towards better determined conditions, preferably feeder-

free and definitely xeno-free [15]. The exclusion of xenogenic contaminants is unquestionably crucial 

when moving on to implementation of hESC and hiPSC in the clinic e.g. for transplantation purposes 

and regenerative medicine [21, 22]. The use of Matrigel as hESC support was a first step in adjusting 

culture methods [23], although it is still a mixture of extracellular matrix constituents of mouse origin. 

By taking a closer look at the responsible components supporting the hESC, several recombinant 

proteins were tested as adherent substrate; as such e.g. vitronectin proved to be an optimal substrate 

for maintaining the undifferentiated hESC state [15, 24] (illustrated in Figure 1.2B).  
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Figure 1.2. Human embryonic stem cells in culture. Undifferentiated hESC grow in round, flat colonies 

with well-defined borders, as can be seen in A: a culture on a MEF feeder layer or in B: feeder-free culture (with 

vitronectin coating). C: The high nucleus-to-cytoplasm ratio of the individual cells becomes clear when studying a 

hESC colony in more detail. D: Differentiation sets in at the contact area of different colonies (indicated with red 

arrow), where subsequently cells will pile-up and acquire a more lengthened shape (All scale bars = 100 µm). E: 

Cytogenetic analysis reveals a normal karyotype for the UGENT2 cell line. All images shown were gathered 

throughout the research for this dissertation. 

The concomitant culture media originally contained fetal bovine serum, which suffers from batch-to-

batch variability and also has the disadvantage of being of animal origin. Serum products were 
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switched to serum-replacements over time, but recently even less complex and more specialized 

media have been introduced, e.g. Essential
 
8 (E8) medium accompanying vitronectin-based feeder-free 

culture [25, 26]. The component that has remained constant during the fine tuning of cell culture 

media was the addition of bFGF, a molecule part of the FGF/extracellular signal-regulated kinase 

signaling pathway which promotes the self-renewing state. This factor is considered as an 

indispensable component for keeping hESC undifferentiated, although a wide range of applied 

concentrations is found in literature [27].  

ESC culture is characterized by the need to refresh the feeder layer or feeder-free substrate on at least 

weekly basis, in order to sustain pluripotency and prevent overgrowing colonies with subsequent 

spontaneous in vitro differentiation (Figure 1.2D) [11, 15]. Depending on the culture methodology, a 

different passage technique is employed. Originally, hESC were mechanically passaged by dissociating 

the mature colonies into small cell clumps with a sharpened needle [15]. As this is however not a 

feasible method when scaling up cultures, enzymatic dissociation has been implemented as an 

alternative approach. Frequently used agents are collagenase IV, dispase or other proteolytic enzymes 

and combinations thereof [11]. In feeder-free cultures, non-enzymatic detachment is achieved by 

chelation of calcium and magnesium with EDTA [15]. Of note, cell survival after dissociation into single 

cells is very low and might also cause aneuploidies; hence, irrespective of the passaging method 

applied, it is essential that the hESC remain in small clumps during the splitting procedure [11, 15]. 

Additionally, oxygen exposure appears to be an important parameter to be controlled for in hESC 

culture: the capacity to maintain the undifferentiated hESC state is believed to be enhanced under 5 % 

oxygen growth conditions compared to atmospherical oxygen pressure (20 %) [28–30]. 

1.1.3. ESC differentiation 

The level of differentiation potential can be classified in different potency-types [31]. The 

totipotent/omnipotent zygote is capable of forming both embryonic and extra-embryonic tissues, and 

develops further into the blastocyst. The ICM and the embryonic stem cells derived thereof are 

pluripotent, thus they can give rise to all cell types of the three germ layers but no longer to extra-

embryonic tissues (see Section 1.1.1). As development continues, the differentiation capacity gets 

progressively more restricted. The subsequent stem cells are multipotent and are able to develop into 

the various cells of a few lineages. The probably best studied example in this category is the 

hematopoietic stem cell. Further specialization generates oligopotent stem cells or progenitors, only 

competent to differentiate into a few cell types of a particular lineage. The last step before reaching 

the differentiation-terminus consists of specific precursor cells (unipotent). 
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Besides the spontaneous differentiation in hESC culture [30, 32], a variety of protocols and 

differentiation agents are available to push development in general as well as towards a specific cell 

lineage (non-exhaustive overview in Figure 1.3) [33]. As such, ascorbic acid is e.g. applied to direct 

hESC differentiation into cardiac myocytes [34]. Chen and colleagues succeeded in pushing hESC into 

the pancreatic lineage via indolactam V addition [35]. BMP4-supplementation after hESC derivation in 

the presence of Activin A enhances the competence to differentiate towards primordial germ cell-like 

cells [36]. Another widely applied differentiating agent, also in the research conducted for this thesis, is 

all-trans retinoic acid (RA) [37], of which the resulting cell types are concentration- and exposure time-

dependent [38].  

A first feature of differentiation is the morphological change that takes place. Although the final 

outcome is dependent on the differentiation protocol applied, differentiation starts in general with the 

loss of the round shape of the hESC colonies and their well-defined borders. The morphology of the 

individual cells alters drastically and cells begin to pile up at the colony periphery where different 

colonies get into contact. Also in the colony center, cells start to accumulate.  

The hESC cell cycle lengthens upon lineage specialization as the cells acquire an elongated G1 phase 

[39, 40], a phenomenon also readily seen in the differentiation experiments conducted for this thesis 

(Figure 1.4). When comparing pluripotency-promoting culture conditions on one hand and induced 

differentiation on the other, flow cytometry analysis with propidium iodide (PI) shows that the 

proportion of cells present in the G1 phase clearly increases in differentiation-allowing conditions and 

this occurs earlier in forced than in spontaneous differentiation. 

Besides morphological and cell cycle changes, all characteristic features of unspecialized hESC 

described in Section 1.1.1 also change considerably. The surface antigens SSEA-3, SSEA-4, TRA-1-60 

and TRA-1-81 become downregulated, whilst differentiation markers such as SSEA-1 are upregulated 

[41]. Alkaline phosphatase expression diminishes [41] and the pluripotency factors’ expression levels, 

e.g. of Oct4, decrease [42]. Of note, the formation of Oct4-positive “islands” within each colony has 

been detected during RA-induced differentiation of hESC cultured on MEF [43, 44]. However, the 

biology behind this colony heterogeneity remains to be elucidated. Furthermore, also from an 

epigenetic point of view radical changes occur (described in more detail in Section 1.3).  
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Figure 1.4. Cell cycle analysis of hESC. A: Flow cytometric analysis after PI staining displays the cell 

population’s distribution over the different cell cycle phases. The PI intensity is directly correlated to the amount 

of DNA present in the cell; hence, the intensity of the signal shifts from G2 > S > G1. B: Illustration of the 

lengthening cell cycle due to an increasing number of cells in the G1 phase. When comparing three different 

cultures (E8 medium = pluripotent cells; -bFGF = spontaneous differentiation; -bFGF / +RA = forced 

differentiation) the relative proportion of the S and G2 phase evidently decreases when differentiation is launched 

in comparison to cells maintained in the pluripotency-preserving E8 medium. Samples were taken on day 0 and 

day 1, 6 and 12 after onset of differentiation. 

1.1.4. Human versus mouse: Primed versus naïve 

Whether hESC and mESC really represent the true pluripotent state is a question still open for debate. 

Recent findings suggest that hESC resemble more mouse epiblast stem cells than mESC, and that they 

thus represent a more developed, more heterogeneous, primed pluripotent state [45, 46]. Mouse ESC 

are considered to be more naïve and ground state pluripotent. 

Naïve pluripotent stem cells are more homogeneous in terms of gene expression than primed 

populations (both within and amongst different cell lines) and are less ‘biased’ towards a certain 

lineage specification. Hence, they are believed to be better controllable during differentiation 

experiments. Moreover, they can be passaged as single cells and thus allow better for bulk culture. 

The first mESC derivations date back to 1981 [47, 48]. They have several features in common with 

hESC. Mouse ESC are also rapidly proliferating and they do display a similar abbreviated cell cycle 

comparable to hESC, which also lengthens upon differentiation [49]. However, the observed 

differences indicate that caution needs to be taken when comparing data from both cell types [50]. 
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Already in terms of morphology, mESC tend to grow more dome-shaped in comparison to the flat 

hESC colonies [45]. Unlike hESC, which are bFGF-dependent, mESC rely on Leukemia inhibitory factor 

(LIF)-supplementation in the culture medium to sustain their pluripotent, self-renewing status and they 

thus maintain a slightly different signaling network [51]. Although they rely on the same core 

pluripotency transcription factor network (Oct4, Nanog and Sox2), the expression of several surface 

antigens differs: mESC do express SSEA-1 in pluripotent state, but lack SSEA-3, SSEA-4, TRA-1-60 and 

TRA-1-81 [50]. The same holds for the levels of other specific differentiation markers [50]. Finally, the 

epigenetic signature of hESC and mESC is dissimilar; e.g. female mESC lines have two active X 

chromosomes, whilst in hESC one of the two is epigenetically silenced [46].   

Only recently several labs succeeded in also deriving naïve hESC [52–54]. This naïve pluripotency, 

which is believed to resemble more the status of the ICM cells [46], obviously holds many research 

opportunities for the future. 

1.1.5. Inducing pluripotency 

The study of naïve pluripotency is increasingly being complemented by the research on induced 

pluripotent stem cells. In 2006, Yamanaka and co-workers established the first iPSC from mouse 

fibroblasts, by means of a four factor-mix [55]. The introduction of OCT4, SOX2, c-MYC and KLF4 into 

somatic cells generated cells that exhibited the same morphology, growth properties and marker 

genes as ESC. In 2007, they applied the same cocktail to create the first human iPSC, starting from 

adult dermal fibroblasts [56]. Simultaneously, the Thomson lab published the production of hiPSC with 

a combination of OCT4, SOX2, NANOG and LIN28 [57]. Since then, several attempts have been made 

to improve the protocol and enhance reprogramming efficiency e.g. by the inclusion of small 

molecules. As such, hiPSC have yet been generated from an assortment of different somatic cell types 

[58–60]. 

Human ESC are grateful subjects for basic developmental research and hold great potential for (future) 

applications in regenerative medicine. However, they inevitably bring along ethical and scientific 

issues, to which iPSC could provide a solution. The use of human embryos, even very early ones, is still 

a touchy topic for discussion but could be made irrelevant when applying iPSC. Another advantage of 

iPSC is that, for disease modeling and regenerative purposes (e.g. [61–64]), the starting material for 

reprogramming can be directly taken from the patient, thus (theoretically) overcoming the rejection 

issues that accompany transplantation. 

However, the potential application of iPSC clearly still has to overcome many hurdles before they can 

be put to use in an actual clinical setting [65]. Human iPSC lines apparently are more susceptible to 
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DNA duplications, mutations and rearrangements than hESC lines. Perhaps even more important is the 

tumorigenicity of iPSC. Of the four Yamanaka factors used for reprogramming, c-MYC enhances the 

still rather low reprogramming efficiency substantially but is also a well-known oncogene. Although 

efforts have been made to improve the composition of the reprogramming cocktail and to establish 

iPSC without chromosomal integration, many publications still describe the administration of the 

original transcription factor combination, thus still carrying the added risk of tumor formation [65, 66]. 

Thus, whether iPSC could functionally replace ESC remains a subject of discussion. There are plenty of 

reports both accentuating the differences between those two cell types or stating that iPSC could 

replace ESC research [67, 68]. Although the latter would be eagerly welcomed out of an ethical point of 

view, even Yamanaka himself pointed out that ESC are still the best standard to which iPSC 

developments should be compared [67]. 
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1.2. Epigenetics 

1.2.1. The term “Epigenetics” 

The central dogma in molecular biology states that DNA is transcribed into RNA, which in turn is 

further translated to proteins. All cells within one individual comprise the same DNA with >20.000 

protein coding genes, but epigenetic mechanisms regulate their transcription and thus sort these cells 

into >200 cell types [69]. “Epigenetics” (literally “on top of genetics”) was termed for the first time in 

the 1940’s [70, 71], and serves as the connecting link between “genotype” and “phenotype”. The 

resulting “epigenotype” is thus defined as a network of developmental processes where both genetic 

and environmental changes are brought together, towards phenotypic development. Epigenetic 

regulatory instructions on top of the genomic information are found on both the DNA, the RNA and 

the histone level (Figure 1.5) [72]. Epigenomics thus explores in depth the mitotically and/or meiotically 

inherited variation of gene expression based on changes in histone code, DNA methylation and non-

coding RNA mechanisms, instead of changes in the primary DNA sequence [73, 74].  

Nucleosomes, the basic DNA packaging elements, capture (environmental) stimuli via histone 

modifications and other mechanisms, which collaborate to regulate gene expression [74]. As such, two 

chromatin forms can be distinguished: euchromatin and heterochromatin, each accompanied by their 

own characteristic modifications. Heterochromatin is the highly compacted form where only low levels 

of transcriptional activity are found, whereas in euchromatin the nucleosomes are much less tightly 

compacted and display clear traits of high gene expression.  

1.2.1. Non-histone epigenetics 

This thesis focusses exclusively on histone epigenetics, though for completeness, also the other 

mechanisms are briefly described in the following paragraphs. 

DNA methylation 

Methylation at the 5’ end of cytosine (5mC) is mostly associated with transcriptional repression and is 

established via members of the DNA methyltransferase (DNMT) family [72]. These DNMTs do not only 

establish de novo marks but also maintain methylation, thus making DNA methylation a long-term 

mark. DNA methylation-mediated silencing, which is established via chromatin remodeling complexes 

or by direct blocking of transcription factor binding, is involved in cellular programming events, X 

chromosome inactivation and genomic imprinting [72, 75, 76]. The 5mC mark mostly occurs at CpG-

dinucleotides in mammalian genomes and 70-80 % of those CpGs are methylated. Exceptional are the 

so-called CpG-islands, areas with 50 % CG-content or higher, which are mostly unmethylated and are 

often found at active gene promotors [69]. 
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Figure 1.5. Overview of epigenetic mechanisms. DNA methylation, posttranslational histone modifications 

and RNA-based mechanisms constitute the epigenetic network (Image taken from [77]).   

Although for a long time considered to be irreversible, recently several mechanisms for both passive 

and active demethylation have been proposed [72, 75]. 5mC can be modified by TET enzymes to 5-

hydroxymethylcytosine (5hmC) and possibly further oxidized to 5-formylcytosine (5fmC) and 5-

carbonylcytosine (5caC). Via base excision repair mechanisms these residues can be re-converted to an 

unmodified cytosine. Next to these active demethylation processes, the methyl marks can also dilute 

passively over several cell divisions, upon loss of DNMT function or (sustained) lack of their 

recruitment. 

RNA-based epigenetic mechanisms  

Although only 1-2 % of the total human genome actually encodes for proteins, a major part of it is 

transcribed anyway thus leading to a large pool of non-coding RNAs (ncRNAs), among which 

ribosomal RNAs (rRNAs), transfer RNAs and regulatory RNAs such as microRNAs (miRNAs) and long 

ncRNAs (lncRNAs) [72, 78]. MiRNAs, Piwi-interacting RNAs (piRNAs) and short interfering RNAs 

(siRNAs) are all short ncRNAs, but differ in their biogenesis and target regulatory mechanism [78]. 

MiRNAs are small RNAs (about 21 nucleotides long), that help in regulating messenger RNA (mRNA) 

stability and thus protein abundance, primarily in inhibitory mode [72, 78]. They are initially transcribed 
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as single stranded RNAs and subsequently fold into stem-loop structures, which are then processed by 

the RNase III-endoribonuclease Dicer. One of the resulting single stranded miRNAs interacts with the 

RNA-induced silencing complex (RISC), which then binds the specific target mRNA containing a 

sequence complementary to the miRNA loaded on RISC. This consequently induces the degradation of 

this mRNA or blocks its translation [78]. PiRNAs interact with Piwi proteins for chromatin remodeling 

and transposon silencing [78]. Also lncRNAs (>200 base pairs) exert functions at several stages of gene 

expression, from targeting epigenetic modifications to mRNA stability and translation modulation e.g. 

in the regulation of X chromosome inactivation [78, 79]. These lncRNAs can act as scaffolds for the 

generation of ribonucleoprotein complexes and networks containing diverse chromatin modifiers and 

remodelers, to modulate chromatin states (mostly silencing) by functioning at the histone – genome 

interface ([80] and Supplementary Material of [81]). Alternatively, lncRNAs operate as a protein decoy 

by sequestering proteins such as DNMT1 from their sites of action thus preventing the protein from 

exerting its function [80]. In summary, both short and long regulatory ncRNAs are thus involved in 

epigenetic regulation e.g. via RNA interference [78] and also fulfill specific roles in ESC (Section 1.3).  

Chromatin remodeling complexes 

ATP-dependent chromatin remodeling complexes modulate the interaction of DNA and histone 

octamers, leading to a change in chromatin architecture [72]. These enzymes transiently disrupt this 

interaction which allows for nucleosome sliding, translocation, eviction and replacement on one hand 

and compositional nucleosome changes due to histone variant exchange on the other. The numerous 

remodeling complexes are divided into several families, based on activity and composition, e.g. 

SWI/SNF, NuRD or CHD1 complexes [72, 82]. In ESC, some of these are closely involved in 

pluripotency-regulation. 

1.2.2. Epigenetics on the histone level 

Nucleosomes, the building blocks of chromatin [83, 84], are composed of 146 bp of DNA wrapped 

around two copies of four core histones (H2A, H2B, H3 and H4) kept together via electrostatic 

interactions and hydrogen bonds (Figure 1.6) [85]. Histones mutually interact via a characteristic 

“handshake” motif [83]. Two H2A-H2B dimers combine with an H3-H4 tetramer and thus altogether 

form the histone octamer. The interaction of consecutive nucleosomes creates a “beads on a string” 

formation, which further tightens in combination with linker H1 histones [86], linker DNA and other, 

non-histone proteins. This hierarchical compaction leads to local chromatin loops, then chromatin 

domains and ultimately chromosome territories [87]. Hence, via both protein-protein and protein-DNA 

interactions a more compact, higher-order structure is formed, termed the “30 nm chromatin fiber” in 
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its most condensed form [88]. The approximately two meter-long strand of DNA in a human diploid 

cell thus fits perfectly into the cell’s nucleus [89]. 

 

Figure 1.6. The nucleosome. A: The structural organization of the core histones (Image adapted from [90]). B: 

The histone ‘handshake’ motif illustrated for H3 and H4 (Image taken from [91]). C: The assembly of a histone 

octamer (Image adapted from [92]). D: A nucleosome particle, with protruding histone tails (with H2A = yellow - 

H2B = red - H3 = blue - H4 = green) (Image taken from [84]). 

Core histones are small proteins, basic in nature and found in almost all eukaryotic cells [93]. Genes 

encoding for these histones are usually clustered in repeat arrays and their transcription is tightly 

connected with the cell cycle and DNA replication [94]. Their amino acid sequence is highly conserved 

throughout evolution and also their 3D-structure seems comparable between different eukaryotic 

species [95]. The globular domains of the core histones share the similar structure of a histone fold 

domain, which consists of three α-helices and two loops in between [94]. As such, about half of the 

histone octamer is arranged in α-helices while only a small fraction is organized in β-strands and the 

remaining part adopts a random-coil configuration [83]. In addition to its structural and packaging 

role, this higher-order organization participates in regulating the accessibility of the genomic material 

and as such in gene expression management amongst other functions [83, 87]. 

Posttranslational histone modifications 

The N-terminal histone tails and the C-tail of H2A are protruding out of the nucleosome and are a 

well-known target for posttranslationally modifying enzymes [94]. Despite some conflicting 
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publications, it has become clear that the N-terminal tails with their modifications do play important 

roles in stabilizing both the higher-order structure of chromatin as well as the nucleosome itself [96, 

97]. The first reports of PTMs date from the early 1960’s [98] and described histone acetylation. Over 

the years, a whole spectrum of (reversible) modifications was revealed, together with their 

accompanying installing and removing enzymes (termed “writers” and “erasers” respectively) [99–102]. 

Gradually it became clear that not only the histone tails but also the globular domains can be modified 

(Figure 1.7) [103, 104].  

The core histone tails are particularly rich in lysine and arginine residues (about 20 % of their amino 

acid composition) and consequently the N-termini compose 32 % of all positive charges of the histone 

complex [97]. These lysines and arginines underlie the histones’ basic nature and are frequently 

targeted for modification, e.g. by acetyl- and methyltransferase enzymes. 

 

Figure 1.7. Histone modifications. A non-exhaustive list of possible histone PTMs of the four core histones. 

Abbreviations: ph = phosphorylation - ac = acetylation - ub1 = mono-ubiquitination - me = methylation. The 

ovals represent the histones’ globular domains (Image taken from [103]). 

Several different types of histone PTMs can be induced: the addition of a functional group or another 

protein to a specific amino acid, modification of the chemical nature of the residue itself or more 

drastic structural changes of the histone protein can be brought about. Well-studied examples in 

which a group or protein is added are lysine methylation, arginine methylation, lysine acetylation and 

ubiquitination amongst others, while citrullination and proline isomerization convert the amino acid 
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itself. An overview of this kind of modifications is given in Table 1.1. Histone clipping on the other 

hand, leads to a more radical change, as a fragment of the histone tail is cleaved off. However, histone 

clipping surprisingly still remains an outcast in the epigenetic landscape. Our findings on histone 

clipping are elaborately described in Chapter 3 and 4 [44], followed by a more in-depth discussion in 

Chapter 5.  

All modifications bring along their own effect due to the changes in chromatin structure they directly 

induce or due to the recruitment of other transcriptional regulators [99, 105]. Chromatin structure is 

directly modulated by modifications such as acetylation, phosphorylation and ubiquitination. Lysine 

acetylation induces a change by neutralizing the positive histone charge, thereby loosening the 

histone-DNA interaction and creating a more open chromatin organization [103]. Phosphorylation 

might similarly have an impact via charge changes [99]. H2B ubiquitination is believed to physically 

separate chromatin fibers, hence making the DNA more accessible [105]. Nevertheless, most biological 

consequences are accommodated under the second group and are mediated via “reader” proteins 

[105]. For example, lysine or arginine methylation does not induce any net change in charge or steric 

hindrance and thus exerts its influence indirectly via the recruitment of other non-histone proteins [81]. 

To this end the modifications serve as an anchor site and are recognized via specific binding domains.  

These binding pockets can be categorized according to their architecture and are able to distinguish a 

particular sequence surrounding a PTM, allowing for very specific chromatin targeting by their host 

proteins to ensure the proper biological outcome. The major binding domain types, as displayed in 

Figure 1.8A [99], can be found in various histone modifiers and chromatin remodeling complexes or 

components that recruit these (extensively reviewed in [81]). As such, specific domains for methyl-

lysine, methyl-arginine, acetyl- and phospho-sites have already been identified. Unmodified and 

methylated lysines can be recognized by different domain families such as Tudor, Chromodomain, 

Plant Homeodomain (PHD) finger, Proline-Tryptophan-Tryptophan-Proline (PWWP) and MBT 

(Malignant Brain Tumor) amongst others. For example, heterochromatin protein 1 (HP1) and Polycomb 

proteins bind their targets via a chromodomain. Analogously, some of these families’ members are 

also involved in arginine and methyl-arginine readout. Bromodomains are one of the best studied 

acetylation recognition sites and are a known component of several histone acetyl transferases and 

remodeling complexes. Phosphorylated residues are recognized by 14-3-3 proteins, which are involved 

in several regulatory processes such as signal transduction and chromosome condensation [81, 106]. In 

any case, the different types of binding modules are often simultaneously incorporated in reader 

complexes, to cooperatively recruit the necessary nuclear signaling network components to chromatin 

[81, 106]. 
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The binding of such reader proteins might go via several modes (Figure 1.8B-C-D). First, multisite 

recognition occurs when the same mark is recognized on several locations, on the same or different 

histone tails. Second, for combinatorial PTM readout a single reader engages in reading several 

different marks simultaneously. The modifications may mutually antagonize or enhance binding. 

Finally, in multivalent binding a protein complex that comprises several binding sites interacts with 

coinciding modifications at the same time.  

In terms of the resulting functional effect, it is now clear that the modification’s context is one of the 

determining factors. As such, different modifications often cooperate to achieve the aimed effect via 

mutual communication or so-called “histone crosstalk” within the same or among different histone 

tails (Figure 1.8E) [99, 107]. Such communication can occur at several levels [99]. (I) Lysine residues are 

very susceptible targets for a whole set of modifications. Obviously these marks cannot be placed on a 

specific residue at the same time, implicating that some PTMs are mutually exclusive and thus regulate 

each other’s deposition. (II) As described above, one mark can interfere with and disrupt the binding 

of another non-histone protein on another modification (Figure 1.8C). The binding of specific enzymes 

may also be influenced: (III) a modification can compromise the enzyme’s recognition site or (IV) 

conversely, the placement of an adjacent mark is able to enhance the enzyme recognition of an earlier 

deposited modification. 

Thus, whether they directly alter the biophysical properties of nucleosomes or act as a histone code 

that is decoded by specific effector proteins, histone PTMs participate both directly and indirectly in 

dictating the global character of the chromatin environment [99, 108]. Euchromatin (Section 1.2.1) 

displays high levels of acetylated lysines and trimethylation on H3K4, H3K36 and H3K79 residues. 

Heterochromatin on the contrary, is associated with low levels of acetylation and phosphorylation and 

high levels of certain methylations (H3K9, H3K27, H4K20) together with DNA methylation and siRNAs. 

The silent heterochromatin state is thus installed and maintained through e.g. the recruitment of HP1 

via the H3K9me mark. Heterochromatin can be further subdivided into constitutive and facultative 

heterochromatin, which is respectively a stable form and a reversible chromatin state. A rather 

exceptional third form of chromatin organization, is the so-called “bivalent domain”, where both 

activating and repressive histone modifications are combined into one with resulting silent genes that 

are yet poised for transcriptional activation (discussed in more detail in Section 1.3). Initially they were 

considered as a unique ESC feature, but also in other cells evidence for these domains has been found 

[72, 109].  
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Figure 1.8. Binding of histone readers. A: Possible binding domains interacting with histone PTMs. B: 

Multisite recognition: e.g. the reader CGI72 can bind both H3K4me1 and H4K20me1. C: Combinatorial readout of 

H3S10ph and H3K9me3 by HP1. The phosphorylation prevents HP1 from binding to the neighboring methyl mark. 

D: Multivalent binding of the TAF1, a component of the TFIID transcription factor, has two bromodomains that 

can bind acetylated lysines on H4 via their bromo-domains. E: Histone PTM crosstalk illustrated (positive influence 

= arrow, negative = dish-line) (Images taken and adapted from [99] and [105]). 
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Histone variants 

Another level of variation in epigenetics is introduced by the replacement of canonical histones by 

histone variants (Table 1.2) [72]. They differ (slightly) in primary sequence, hence they alter chromatin 

structure and have a different modification susceptibility, leading to a different epigenetic regulation 

and altered chromatin dynamics [72, 94]. In contrast to their canonical counterparts, their expression 

(generally originating from a single gene) is often not replication-coupled; variants can be expressed 

throughout the whole cell cycle. Usually they get help from their own specific chaperone proteins for 

their implementation [94].  

Table 1.2. Overview of the known histone variants of core histone H2A and H3 and linker 

histone H1 in ESC. Based on [72]. 

H2A H3 H1 

H2A.X 

H2A.Z 

macroH2A 

H2A-BDB 

H3.1 

H3.2 

H3.3 

CENP-A 

H1.0 

H1.1 

H1.2 

H1.3 

H1.4 

H1.5 

H1X 

 

Histone variants are involved in transcription, DNA repair, meiotic recombination, sperm chromatin 

packaging, etc. [94, 110]. H3.1, H3.2 and H3.3 are the main histone H3 forms and only differ by one to 

five amino acids. They show a different PTM pattern with H3.1 carrying both repressive and activating 

marks, H3.2 being enriched with inhibitory modifications and H3.3 mainly bearing active modifications, 

which might imply distinct roles for each [111–113]. As such, H3.3 is associated with transcriptional 

elongation and is deposited at active genes and promotors or at least at genes that are poised for 

activation. CENP-A, the human centromeric histone H3 variant, is essential for the kinetochore-

assembly during mitosis. H2A.Z is involved in both gene activation and silencing, DNA repair, 

nucleosome turnover, heterochromatin, antagonizing DNA methylation in plants, etc. These often 

contradictory roles can at least be partially explained by the different possible PTMs found on H2A.Z 

(e.g. acetylation versus ubiquitination). The H2A.X variant is participating in DNA repair amongst other 

roles.  

Apart from these aforementioned universal eukaryotic histone variants, several specific variants also 

exist, such as macroH2A isoforms, mostly implicated in gene silencing e.g. on the X chromosome, or 

testis-specific variants, which in combination with protamines tightly pack DNA in sperm cells. 



Introduction: Epigenetics 

 
33 

In summary, the PTM pattern introduced at a specific locus is dependent on the specific chromatin 

assembly pathway that is chosen (determining the histone variant and modifying enzymes before 

histone deposition) and on the local neighborhood (locally acting modifiers after histone installation) 

[111].  

1.2.3. Epigenetic memory 

The stable passing on of a change in gene expression induced by developmental or environmental 

signals, i.e. the epigenetic memory, is established by multiple mechanisms which often include 

chromatin-based changes such as posttranslational histone modifications [114]. There are at least 

three types of epigenetic memory that can be defined: (I) cellular memory, (II) transcriptional memory 

and (III) transgenerational memory.  

(I) Cellular memory is instituted during development in response to developmental (environmental) 

stimuli. The induced changes outline the cell’s identity and its differentiation potential and are 

maintained through subsequent cell divisions, even if the initial stimuli are abrogated. For example, 

Polycomb Group (PcG) proteins bookmark genes that need to remain repressed during mitosis by 

means of H3K27 methylation [114]. 

(II) Transcriptional memory involves the changes that are achieved by cells and organisms in response 

to changes in their environment in order to adapt and survive in that habitat. As such, the reactivation 

of interferon gamma (IFNγ)-dependent HLA-DRA in HeLa cells is stronger and more rapidly achieved if 

cells have been exposed to IFNγ before. This example of transcriptional memory occurs through the 

propagation of H3K4 dimethylation [114]. 

(III) Previous experiences can lead to epigenetically changed gene expression in offspring via 

transgenerational memory. Maternal habits (e.g. in context of nutrition, stress, etc.) and environment as 

well as paternal behavior and environment can impact the next generation’s physiology and behavior 

substantially, via epigenetic mechanisms such as genomic imprinting. The resulting phenotype can be 

maintained to adulthood and even in subsequent generations [114].  

To what extent and how exactly the epigenetic memory is established still remains to be elucidated 

[114]. The DNA methylation pattern on a newly synthesized strand can be directly copied from the 

template strand. However, the mechanisms by which histone modifications get passed on are not fully 

understood [115]. During DNA replication, also the histone content needs to double to provide each 

daughter cell with a complete chromatin structure [111]. These histones are recycled from the parent 

cell or synthesized de novo, produced from replication-dependent canonical histone genes and/or 

replacement histone variant genes whose expression is not restricted to the S phase. One hypothesis 
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to maintain the existing PTMs and variants in the progeny is that the H3-H4 tetramer evenly splits into 

two dimers, which are partitioned to the daughter cells and serve as a template for copying the 

respective PTMs. This is however not totally supported by the findings of Xu et al. [115]. Their results 

indicate that most canonical H3-H4 tetramers remain intact, but some variant H3-H4 tetramers 

however, can indeed be split. Whether this splitting is unique for specific loci remains uncertain. They 

show that silent PTMs are maintained by literally copying from preexisting neighboring nucleosomes, 

but for active marks it is not so clear. Since the H3.3 variant is predominantly associated with 

transcriptionally active regions, splitting of H3.3-containing tetramers is proposed as one way for 

partitioning and maintaining this euchromatic feature.  

Alternatively, Greer and Shi propose that histones on the newly synthesized DNA immediately become 

modified after binding, based on evidence that PcG proteins can remain bound during replication 

[116]. Another idea states that histones get marked before deposition. However, this would also imply 

that not all types of methylation marks are inherited since it is impossible for the cell to keep all 

possible modification combinations in stock. They too confirm that the splitting of tetramers is rather 

unlikely, but state that the segregation of entire octamers to each of the daughter strands is possible. 

Other models involve the collaboration of other epigenetic marks. For example, DNA methylation 

might help in maintaining histone methylation by recruiting the correct modifiers. However, it is not 

yet certain that the correlation between DNA and histone methylation always holds. It is also 

suggested that lncRNAs take care of the modifiers’ recruitment or that siRNAs lend a hand in 

preserving heterochromatin regions. 

In summary, it is clear that epigenetic variation and plasticity are crucial to how organisms develop, 

adapt and interact with their environment. Importantly, the impact of epigenetic changes can both be 

beneficial or harmful, depending on the context [114]. It is increasingly becoming clear that our 

genome is not the only determining factor for development, evolution, the occurrence of diseases, etc. 

Anand and colleagues boldly state that cancer development is predominantly environmentally 

regulated and consequently epigenetics is turning into a major focus in the search for molecular 

changes underlying disease [74, 117]. 
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1.3. Epigenetic reorganization upon ESC differentiation 

Waddington conceptuated an epigenetic landscape model [118] in which a progenitor cell is illustrated 

as a rolling ball in a landscape divided into several valleys or tracks, representing the various possible 

phenotypes in which the cell can differentiate (Figure 1.9). The correct track is chosen once the cell is 

committed towards a certain cell lineage. The development towards a specific phenotype is however 

canalized, which means that minor variations do not influence the one definite lineage commitment, 

which is illustrated by the high ridges that enclose the phenotypic valleys [119]. Nowadays, the 

emergence of cell programming possibilities supplements this model [109, 120]. Somatic cells can be 

pushed back up in vitro to generate induced pluripotent stem cells (Section 1.1.5). Alternatively, during 

direct conversion or transdifferentiation, a cell can directly jump over a hill to convert into another 

related tissue-specific cell or into a cell type of another germ layer. 

 

Figure 1.9. The original epigenetic landscape model of Waddington. A progenitor cell rolls into a 

specific valley after lineage commitment (Image taken from [121]). 

The specific epigenetic characteristics of hESC are now increasingly being taken into account for their 

characterization as a hallmark of pluripotency. In general, ESC have a loose chromatin structure with 

accompanying high levels of gene activity. Heterochromatin markers are barely concentrated and 

highly dynamic in ESC and become more focused at specific loci upon differentiation [109].  

At the DNA level, genes involved in the control of cell differentiation in mammalian germ cells are 

methylated and thus inactive. However, during embryonic development the paternal as well as the 

maternal genome gets to be heavily demethylated via both active and passive removal processes. 

After this genome-wide reorganization, promotors of pluripotency-associated genes such as POU5F1 
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encoding Oct4, thus become hypomethylated in ESC. E.g. DNA hydroxymethylation, often associated 

with transcriptional activation, helps in this demethylation process in mESC [72]. Upon differentiation 

however, progressive gene silencing occurs through DNA hypermethylation [109]. Also, TET levels 

decline and hydroxymethylation levels at pluripotency gene promotors decrease, which in combination 

with upregulated methylation at these sites leads to gene silencing [72]. 

Non-coding RNAs such as miRNAs also play an important role in both mESC differentiation and the 

self-renewal program [72, 109]. They can promote differentiation via reduction of the pluripotency 

factors’ protein levels [109]. Oct4, Nanog and Sox2 have been found to occupy the promotors of 

several miRNAs in mESC to regulate the expression thereof [72].  

Epigenetic changes on histones play an equally important role during stem cell differentiation. The 

most extensively studied histone PTMs in this context are acetylation and methylation [109]. Histone 

methylation, as described above, can have an inhibitory or an activating effect on transcription and 

chromatin structure. The main mediators for altering methyl marks on histone tails during the 

differentiation process are HMT proteins belonging to either the PcG or trithorax Group (trxG). These 

respectively install repressing or activating methylation marks on histones positioned at e.g. the 

developmentally important Homeobox genes amongst numerous other genes [112]. As such, in 

pluripotent hESC so-called bivalent domains are established at up to 16 % of the gene content, 

preferably at key developmental genes [122, 123]. In these domains, activating trimethylation on lysine 

4 of H3 (H3K4me3) (trxG) and repressing trimethylation on lysine 27 (H3K27me3) marks (PcG) are 

combined [109, 123], resulting in silent but poised genes ready for rapid transcriptional activation. As 

differentiation progresses, these marks will resolve in either the activating mark or the repressing, 

depending on the lineage specification of that cell type. Also in multipotent stem cells of mouse and 

human origin, neural progenitors and terminal neurons, evidence for bivalency has been found, where 

it is believed to help with gene plasticity [72, 109]. The low levels of repressive H3K9 trimethylation and 

high overall acetylation levels found in mESC correspond with their general open chromatin structure 

and high transcriptional activity, that diminish largely upon differentiation [109]. The acetylation 

pattern on H3K56, which correlates positively with Oct4, Nanog and Sox2 binding along promotors in 

pluripotent hESC, undergoes upon differentiation a substantial redistribution from pluripotency-

related genes towards developmental genes [124]. Recently, also citrullination of histone H1, H3 and 

H4 was added to the list of ESC PTMs as it leads to chromatin decondensation favoring the expression 

of mESC pluripotency markers [125].  

The achievement of substantial PTM changes during differentiation such as the resolution of bivalent 

domains can be effectuated through several mechanisms [44, 126, 127]. First and most obviously, the 
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installing enzymes are counteracted by modification-removing enzymes, as happens e.g. during 

enzymatic lysine demethylation (Table 1.1). Second, histone exchange and the deposition of histone 

variants also notably contributes to a changed epigenetic pattern. In one such example, Duncan and 

colleagues found that the ratio of (H3.2+H3.3)/(H3.1) increased after RA induction of mESC due to an 

increase in H3.2 and/or H3.3 or a decrease in H3.1 [112]. Finally, the removal of a histone tail by 

enzymatic histone proteolysis provides another mechanism by which multiple modifications can be 

erased at once in both hESC and mESC ([44, 127]; further elucidated in Chapter 3 - 5). Despite the 

seemingly drastic nature of this latter modification, surprisingly little publications reporting this 

phenomenon attempt to figure out the full mechanism behind it. In any case, it is clear that different 

factors collaborate to specifically bring about the necessary changes in the epigenetic ESC landscape. 
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2. APPLICATION OF RT-QPCR IN HUMAN EMBRYONIC STEM CELL RESEARCH 

As previously outlined in the introduction, the epigenetic signature of hESC undergoes a considerable 

shift upon differentiation. This heralds an accordingly drastic change in transcription. One targeted 

technique to follow up changes in the expression of specific genes is reverse transcription-quantitative 

PCR (RT-qPCR). Following a general introduction on the technical aspects of this method, this chapter 

describes the optimization for adequate RT-qPCR data analysis of samples obtained from 

differentiating hESC. 

2.1. An introduction to RT-qPCR 

RT-qPCR combines the amplification of small complementary DNA (cDNA) sequences by PCR with 

their quantification via fluorescence measurement and is widely distributed to monitor gene 

expression levels, even in high throughput.  

PCR was introduced in the 1980’s by Kary Mullis [128]. During the PCR process, a specific piece of DNA 

is exponentially amplified to generate a large number of identical copies of this sequence. The PCR 

cycle starts with a denaturation step, during which double stranded DNA is separated by heat (95 °C) 

to two single stranded molecules. In the following annealing step, specific primers bind to the DNA 

(around 60 °C) and are subsequently elongated by DNA polymerase (at 72 °C) (Figure 2.1). Depending 

on the protocol, the PCR cycle can be reduced to two steps by combining the annealing and 

elongation step at 60 °C.  

By combining the PCR technology with fluorescence detection of the formed products during the 

course of the PCR cycle (instead of endpoint detection), gene expression levels can be accurately 

quantified. The complete RT-qPCR workflow is displayed in Figure 2.2. 

2.1.1. Setting up an RT-qPCR experiment 

The starting material for RT-qPCR is RNA. Cells or tissue samples are collected and stored in TRIzol 

reagent for cell lysis. After RNA isolation and DNase treatment to remove genomic DNA (gDNA), cDNA 

is synthesized via reverse transcription. This cDNA is then further on used for amplification, after 

removal of the RNA template by RNase.  

Before moving on to the actual reverse transcription, amplification and expression quantification, the 

quality and quantity of the input RNA needs to be assessed as it is obviously determining for the 

downstream results. A SPUD assay, a 5’/3’ ratio mRNA integrity assay and the determination of the 

RNA quality index (RQI) and 28 S/18 S rRNA ratio can all be employed to this end. The latter reflects 

the ratio of the 28 S and the 18 S rRNA species, which are both derived from a common transcription 



Application of RT-qPCR in human embryonic stem cell research 

 
42 

unit, thus providing the exact same number of both molecules in a cell. Since they are approximately 

5 kb and 2 kb in size respectively, their theoretical ratio equals 2.7, but in practice a ratio of 2 is 

considered as high quality RNA. The RQI translates this ratio into a value from 1 (degraded RNA) to 10 

(good quality). In a 5’/3’ ratio mRNA integrity assay, cDNA is synthesized from the RNA template with 

the use of oligo(dT) primers that anneal specifically to the mRNA 3’ polyA-tail. In a following PCR step, 

two sets of primers are included in order to amplify both 5’ and 3’ fragments. The ratio of these 

amplified fragments provides a direct indication for RNA integrity and equals 1 for good quality RNA. 

As degradation often starts at the 5’ end, amplified fragments of the latter will be outnumbered 

compared to 3’ fragments, resulting in a lower ratio. A SPUD assay can be included to detect possible 

PCR inhibitors present in a sample. For this assay, an artificial template is added to the samples, 

together with the corresponding primers, which will render a specific quantification cycle (Cq) value. If 

there are inhibiting compounds present, this Cq will shift to a higher value compared to the control 

reaction. 

 

Figure 2.1. Polymerase chain reaction. A: PCR consists of a repeated cycle of denaturation, annealing and 

elongation. B: The according thermal profile. C: The amount of DNA doubles in each cycle, thus leading to an 

exponential increase in nucleotide material (Images taken and adapted from [129]).  
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Figure 2.2. Overview of the RT-qPCR workflow.  

In the reverse transcription reaction, random or oligo(dT) primers or a combination thereof can be 

used. Oligo(dT) primers is only bind specifically to a polyA-tail which is present on mRNA. However, 

the use of random primers is more desirable when working with partially degraded samples, as these 

primers do not require a specific sequence such as the polyA-tail and thus can enable a higher 

coverage. Alternatively, specific primers can be applied to bind directly to the gene of interest. In this 

way, the reverse transcription and amplification can be combined into one. After reverse transcription, 

the cDNA can be quantified by fluorescent assays such as Quant-iT OliGreen kit (Life Technologies), to 

provide the same starting amount for each sample. 

Theoretically the DNA amount doubles each cycle when PCR-efficiency is 100 %. In practice this 

efficiency cannot be taken for granted and thus a preceding step-by-step optimization is required. The 

startup of a PCR experiment begins with an adequate primer design [130, 131]. In general the optimal 

primer length is about 18 to 30 bp long, with a melting temperature (Tm) of about 60-65 °C which is 

favorably similar for the two primers of the primer pair. The Tm or temperature where an 

oligonucleotide duplex is 50/50 double-stranded/single-stranded, is determined by the GC-content of 

the oligonucleotide (optimal 40-60 %). This parameter is decisive for the choice of annealing 

temperature in the PCR cycle, which will be 55-60 °C. Mismatches, complementarities within a primer 

and between the primers need to be avoided. To prevent co-amplification of possibly contaminating 

gDNA, it is best to design intron-spanning primers, as cDNA only consists of exon sequences in 

contrast to gDNA (with the exception of retrotransposed pseudogenes, which also lack introns). 
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Alternatively, intron-flanking primers can be applied, although these still possibly allow for gDNA 

amplification and are only advantageous if the resulting amplicons are sufficiently longer than the 

target amplicon. The length of the amplicon of interest is generally set between 80 to 150 bp and also 

here possible secondary structures need to be avoided. Several software tools are available to assist in 

primer design and assure the specificity and uniqueness of the primer pair. Some examples are Primer-

BLAST from NCBI [132], RTPrimerDB [133], Primer3 [134] or applications designed by qPCR product 

vendors (ABI, IDT, Eurogentec,…). 

The additional mastermix components necessary to bring the PCR reaction to completion are the 

dNTPs (the four nucleotide triphosphates, alias the building blocks for synthesizing new DNA strands), 

a thermo-stable Taq polymerase, MgCl2 as a buffer component and co-factor for the DNA polymerase 

and a fluorophore (probe or intercalating dye) used for quantification. Often a HotStart Taq DNA 

polymerase is used to reduce aspecific binding during the startup of the reaction. A preceding heating 

step at 95 °C for several minutes is included to abrogate the activity-block (antibody-based or 

chemical blocking) of the Taq enzyme.  

In quantitative PCR the amount of the product formed is monitored during the reaction by 

fluorescence [135]. The value used for quantification is determined once the fluorescence intensity 

reaches a certain threshold i.e. the Cq or threshold cycle (Ct) value (Figure 2.3). 

 

Figure 2.3. Determination of the Cq or Ct value (Image taken from [130]).  
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To this end different detection-chemistries are possible. In general, two groups can be distinguished: 

DNA-intercalating fluorescent dyes on one hand and specific fluorescent probes on the other – each 

with its own advantages and shortcomings [130, 131, 136].  

Of the general DNA-binding dyes (Figure 2.4A), SYBR Green is one of the most commonly used 

reagents. This non-sequence-specific dye binds in the minor groove of double-stranded DNA (dsDNA). 

It only emits a strong fluorescent signal when bound to dsDNA, which increases during the elongation 

step and decreases again during denaturation. Alternatively, High Resolution Melting dyes such as 

EvaGreen can be used.  

Because of the reversible nature of this fluorescent signal, it is possible to generate melting curves. For 

this purpose, at the end of the PCR run an additional heating step with a temperature ranging from 60 

to 95 °C is added and fluorescence is measured in function of that temperature gradient. The 

fluorescence intensity drops upon denaturation at the PCR product’s melting point (breakpoint in the 

melting curve). By transforming this curve to its negative first derivative, the melting point is 

determined as the maximum of the melting peak. In case of specific PCR products, only one tight peak 

will be visible; if additional products such as primer-dimers are also formed, the peak will be blurred or 

extra peaks appear. The fact that non-specific amplification can be visualized in this way adds a 

considerable advantage to the use of intercalating dyes. Also, as multiple dye molecules can bind to 

the amplified material, sensitivity is increased. In addition, they are the cheaper option and easy in use, 

as they do not require a designing step as is the case for specific fluorescent probes. The downside of 

their aspecificity is that multiplexing is impossible and that they might generate false positive signals. 

The latter is not a problem when using fluorescent probes, as in case of aspecific amplification due to 

e.g. mispriming or primer-dimers, these side-products will not be detected since specific hybridization 

between probe and template is necessary for fluorescence emission [130]. Useful application of probes 

does call for adequate design of the probe specifically for the amplicon of interest. In general the same 

rules as for primer design apply: length of 18-30 bp, no (self-)complementarity, analogous GC-content.  

Different types of labeled probes and primers can be applied, both with a double-dye as well as with 

fluorophores that change their fluorescence properties upon DNA-binding [130, 136]. One of the most 

frequently used double-dye probes is a so-called TaqMan probe (Figure 2.4B). This hydrolysis probe 

has both a fluorescent reporter and a quencher covalently attached. After excitation, the fluorophore 

passes on its energy via Fluorescence Resonance Energy Transfer (FRET) to the quencher, because of 

their vicinity. During the elongation process the bound probe is cleaved due to the 5’-3’ exonuclease 

activity of the DNA polymerase, so that both dyes are separately released in solution and FRET is 
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abolished. The emitted reporter signal is detected and fluorescence intensity gradually increases over 

time. An often used combination is Fluorescein amidite (FAM) as the reporter dye and 

Tetramethylrhodamine (TAMRA) as the quencher. The diverse possibilities in fluorophore choice allow 

for multiplex reactions. Since the fluorescent signal when working with probes is irreversible, melting 

curves and peaks cannot be obtained, but are also less necessary as the probes do not bind aspecific 

primer products. But, despite their general advantage of high specificity for the target of interest, 

labeled probes require suitable design and are more expensive in comparison to aspecific DNA-

binding dyes.  

 

Figure 2.4. Fluorescence reporter mechanisms. A: Non-sequence-specific DNA-binding dyes e.g. SYBR 

Green, only emit a fluorescent signal when bound to dsDNA. B: Hydrolysis probes such as TaqMan probes 

(Images adapted from [130]). 

Most mastermixes also contain a reference dye such as ROX. This dye serves to provide a stable 

baseline signal and normalizes for non-PCR-related fluctuations in fluorescence. 
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Before proceeding to the actual quantification, the quality of the qPCR run needs to be evaluated 

[131]. Negative controls e.g. a no-template, a no-amplification and a no-RT control can be included in 

the run and provide information on unwanted co-amplification, contamination issues and possible 

probe degradation. Also positive controls are useful as they give an idea about the quality of the 

employed reagents. The implementation of those controls, the type of thermocycler available and the 

normalization strategy all need to be taken into account when developing a PCR plate layout. Sample 

maximization is preferred over gene maximization, i.e. it is better to load all samples for one gene on 

one plate instead of running all genes for one sample in one plate. Sample maximization avoids 

interrun variation, although this is not always possible (in case of prospective studies or too large 

sample numbers). For that matter, a number of samples can be run repeatedly on each plate, the so-

called interrun calibrators and aid to correct for this variability later on during data analysis. 

2.1.2. Data analysis 

The measured fluorescence is directly correlated with the amount of DNA present in the sample. As 

such, this can be accurately quantified, both relatively and absolutely. In absolute quantification the 

exact copy number of a gene of interest (GOI) is calculated by means of a standard curve. In case of 

relative quantification, as also applied in this thesis, the fold change in expression of a GOI is compared 

between different samples, whether or not after rescaling to a reference sample (= calibrator) and to a 

(set of) reference gene(s). The determined Cq values are put in a calculation based on the delta delta 

Ct (ΔΔCt) method: 

      (   )    (              ) 

     [   ]       [   ]           

                   

A fold change value of > 1 indicates an upregulation of the GOI towards the reference, a value < 1 

signifies a GOI downregulation. 

This calculation however assumes that the PCR efficiency equals 100 %. If there is more than 10 % 

deviation from this ideal situation, the true efficiency needs to be taken into account. In this case “2” in 

the latter formula is replaced by the value calculated as follows: 

      
[ (   )       (                 )]

[ (         )              (                 )]
 

where E is the PCR efficiency. The efficiency itself can be determined by running a sample dilution 

series and evaluating the slope of the resulting standard curve (see equation below). A 2-fold dilution 
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gives a ΔCt of 1, a 10-fold dilution gives a difference of about 3.2. As stated above, an efficiency of 90-

110 % is acceptable. 

  (  
 

 
       )       

Although other normalization methods are available (see Section 2.2), the most widespread is the 

implementation of reference genes. Normalization to reference genes provides correction of any 

technical variability resulting from sample handling, variable input and differing enzymatic efficiencies, 

brought along in the procedure from sample preparation to the PCR reaction itself. The prerequisite 

for those references is that they remain stably expressed throughout all samples included in the RT-

qPCR analysis. Reference gene stability can be evaluated via several available tools such as geNorm 

[137], BestKeeper [138] and Normfinder [139]. Multiple reference genes can be taken into account 

simultaneously and normalization is then based on the geometrical averaging thereof [137, 140]. In 

fact, the inclusion of multiple references is even preferred, as the use of only a single reference gene 

results in more erroneous normalization due to the inherent oscillations in expression for each gene. 

Hence, normalization based on more than one reference gene averages these variations and allows for 

more accurate measurement of expression levels [137]. Reference gene sets might not be ubiquitously 

applicable and thus need to be optimized for each experimental set-up. A reference gene optimization 

for RT-qPCR analysis of hESC samples is described in the second part of this chapter [13], proposing β-

2-microglobulin (B2M), ribosomal protein L13A (RPL13A) and Alu repeats as suitable references.  

It is generally accepted that all relevant information to reproduce experiments should be fully 

disclosed when publishing PCR data. The Minimum Information for Publication of Quantitative Real-

Time PCR Experiments (MIQE) guidelines help in providing the essential info [141, 142], although they 

are not always consequently applied [143].  

The newest trend for absolute quantification is digital PCR [144], which is very well suited for detection 

of low abundant targets. This method provides an absolute measure of nucleic acids and does not 

even require a standard series. The first step in droplet digital PCR (ddPCR) is partitioning the sample 

into hundreds or thousands of droplets, representing a large number of reaction chambers. Hereby the 

input molecules are randomly distributed so that some droplets do contain one or more copies and 

others do not. The use of fluorescent probes during the following PCR reaction delivers a binary signal 

for each droplet: “0” for no-template-containing and “1” where a GOI is amplified. By registering the 

number of positive signals, the original amount can be calculated based on Poisson statistics. 

Accordingly, also for ddPCR MIQE guidelines have been established [145].  
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2.2. Reference loci for RT-qPCR analysis of human embryonic stem cells 

2.2.1. Abstract 

Background: Selecting stably expressed reference genes is essential for proper RT-qPCR gene 

expression analysis. However, this choice is not always straightforward. In the case of differentiating 

hESC, differentiation itself introduces changes whereby reference gene stability may be influenced.  

Results: In this study, we evaluated the stability of various references during RA-induced (2 µM) 

differentiation of hESC. Out of 12 candidate references, β-2-microglobulin (B2M), ribosomal protein 

L13A (RPL13A) and Alu repeats are found to be the most stable for this experimental set-up. 

Conclusions: Our results show that some of the commonly used reference genes are actually not 

amongst the most stable loci during hESC differentiation promoted by RA. Moreover, a novel 

normalization strategy based on expressed Alu repeats is validated for use in hESC experiments. 
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2.2.2. Background 

Human ESC, derived from the inner cell mass of a blastocyst stage embryo, are able to differentiate 

into all cell types of the adult body and have the potential for unlimited growth [6, 10, 146, 147]. As a 

consequence of their pluripotency and self-renewal capacity, hESC are ideal for investigating the basic 

mechanisms of development and cell differentiation. In addition, they may be a source of 

differentiated cells of a particular cell type, to be used in toxicity screening, cell replacement therapies 

and many other applications [10, 148].  

Pluripotent cells are characterized by several features, such as the expression of pluripotency factors 

(Oct4 (encoded by POU5F1), Nanog (NANOG) and Sox2 (SOX2)), the presence of specific cell surface 

antigens (e.g. SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81), and distinct chromatin signatures [9, 10, 12, 

82, 149].  

To date, the molecular basic mechanisms of (spontaneous) hESC differentiation and development are 

largely unknown [42, 147]. Differentiation can be induced in vitro under specific culture conditions, 

such as the addition of RA, a morphogen commonly used for multilineage differentiation of ESC in 

general and for specific development along the neural lineage [37, 41, 150]. Amongst other 

techniques, RT-qPCR is very well suited for monitoring pluripotency and differentiation, as it allows 

accurate messenger RNA quantification of numerous samples at the same time [137, 151]. In the 

context of hESC characterization, RT-qPCR is applied for evaluating the expression of the transcription 

factors Oct4 and Nanog, since the expression of these core pluripotency circuitry members [12] 

decreases drastically within a few days after onset of differentiation [41, 42].  

For proper RT-qPCR data evaluation, several variables need to be taken into account. These include 

sample handling and storage, starting material quantity and quality, efficiency of different enzymatic 

reaction steps and overall transcriptional activity differences between cells [137, 152].  

To correct for these variables, different normalization methods have been reported. Gene expression 

levels can be standardized to cell number, however, it is not always possible to obtain an accurate 

enumeration of cells. In addition, this strategy does not consider possible insufficient enzymatic 

reaction efficiencies [137, 153]. Alternatively, data are normalized for RNA mass quantity, although this 

is not always representative for the mRNA content. Ribosomal RNA molecules make up the major part 

of the total RNA mass and may be regulated, thus resulting in a variable rRNA/mRNA ratio [137, 152–

154]. The most frequently utilized strategy is the inclusion of one or preferably more reference genes 

as an internal standard. The expression of these references should ideally not vary between cells of 

interest or as a consequence of experimental handling [137, 152, 153, 155].  
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Selecting stable reference genes is critical for correct interpretation of RT-qPCR data. However, when 

studying differentiating hESC, proper reference gene selection is not straightforward. Differentiation 

does not only include various morphological changes, but also major alterations in gene expression 

levels of numerous genes. The regulation of some reference genes may be associated with these 

cellular changes, hence the stability of the used references has to be evaluated. The available 

differentiation protocols may induce distinct gene expression variability, which impedes finding stably 

expressed reference genes over the different samples and making protocol-dependent optimization 

required [42, 137, 152, 153, 155, 156].  

In this study, we emphasize the importance of determining suitable reference genes by performing an 

expression stability analysis for RA induced differentiating hESC, using the geNorm algorithm in the 

qbase+ software (Biogazelle) [137, 140]. The possibility of co-regulation was reduced by opting for 11 

candidate reference genes from different functional categories [137]. In addition to these candidates, a 

new normalization strategy was applied, based on the measurement of expressed Alu repeats. 
 

Alu insertions are repetitive DNA sequences, approximately 300 bp long and occurring generally at 

high copy number in introns, 3′ untranslated regions (UTR) of genes and intergenic genomic regions 

[157]. These short interspersed mobile elements are not equally spread throughout the human 

genome, since they preferentially accumulate in gene-rich regions [152, 157]. In total, Alu elements 

comprise more than 10 % of the genome mass, thus being the most abundant of all mobile elements 

and they are divided in several well-conserved subfamilies (e.g. AluSq, AluSx, AluY) [152, 157, 158]. Alu 

repeats, named after a recognition site for the restriction enzyme Alu I, are thought to be amplified by 

retrotransposition, a process in which the Alu element is transcribed by RNA polymerase III, followed 

by reverse transcription and incorporation into the genome [152, 157–159].  

Because of their genome-wide distribution, including in the 3′ UTR of protein-coding genes, individual 

gene expression variability in the cells of interest will not substantially influence total Alu element 

expression. This feature makes the Alu repeats a valuable and interesting strategy for RT-qPCR 

normalization for biological systems such as differentiating stem cells [152, 157, 160].  

2.2.3. Methods 

Human embryonic stem cell cultures and sample preparation 

Human ESC (UGENT1 (XY) and UGENT2 (XX) cell line) were generated in-house [161]. The cells were 

cultured in 6-well dishes or flasks on a nearly confluent layer of Mitomycin C (Sigma-Aldrich, 

Steinheim, Germany, #M4287) treated MEF (passage 3), in knock-out DMEM (#41965-039) 

supplemented with knock-out serum replacement (#10828-010), antibiotics (PenStrep, #15140-122), L-
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glutamine (#25030-024), bFGF (#13256-059), non-essential amino acids (#11140-035, all culture 

medium products purchased from Invitrogen, Carlsbad, CA, USA) and β-mercaptoethanol (Sigma-

Aldrich, #M7522) and incubated at 37 °C, 5 % CO2, 5 % O2.  

Differentiation of hESC was induced by adding 2 μM RA (Certa, Braine-l’Alleud, Belgium, #640327 T) to 

the culture medium, and eliminating bFGF. Cells were harvested using 0.25 % trypsin-EDTA (Invitrogen, 

#15596-026) and glass beads (Sigma-Aldrich, #Z265926-1EA). For Experiment 1 hESC (passage 30) 

were isolated every 24 hours during 8 days after onset of differentiation, plus an extra sample on day 

12. In Experiment 2 (passage 43), samples were also collected every 24 hours, during 6 days. For 

Experiment 3 (passage 32), samples were collected every 4 hours during day 3, 4 and 5 after 

differentiation was induced. For each time point, approximately 2 × 10
5
 cells were isolated.  

The hESC were split two days before the start of a differentiation experiment, using 1 % collagenase 

(Type IV, Invitrogen, #17104-019) and glass beads. 

Microscopy 

Phase contrast and bright field images of the hESC culture were acquired with an Axiovert 25 light 

microscope (Carl Zeiss, Munich, Germany) (objective magnification 5×) and a Sony Alpha 100 camera.  

RNA isolation and RNA quality assessment  

After isolation, the cells were immediately resuspended in 1 ml of TRIzol (Invitrogen, #15596-026) and 

stored at −80 °C. For RNA isolation, 200 μL chloroform (Sigma-Aldrich, #C2432) was added to the 

thawed samples, with subsequent phase separation and purification using an RNeasy Mini kit (Qiagen, 

Valencia, CA, USA, #74104). After DNase treatment (Qiagen, #79254) and a washing step, RNA was 

eluted and concentrated using Vivacon 500 spin columns (Sartorius Stedim Biotech, Aubagne Cedex, 

France, #VN01H32).  

RNA quality was assessed for a representative set of samples (6 extra samples taken during Experiment 

1) by means of microfluidic capillary electrophoresis. An RNA HighSens Chip (Experion, Bio-Rad 

Laboratories, Hercules, CA, USA, #7007105) was used to determine a 28 S/18 S rRNA ratio and an RQI, 

after determining RNA concentrations using a Quant-iT RiboGreen RNA kit (Invitrogen, #R11490). The 

28 S/18 S rRNA ratios ranged from 1.59 to 1.78 and the RQIs from 8.7 to 9.9, which indicate good 

quality samples. 

cDNA synthesis 

Complementary DNA (cDNA) was synthesized using a Superscript II kit with oligo(dT) primers 

(Invitrogen, #11904-018). The cDNA concentration was determined with a Quant-iT OliGreen ssDNA 
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Assay kit (Invitrogen, #O11492), using a spectrophotometer (Tecan, Männedorf, Switzerland). Samples 

were stored afterwards at −20 °C.  

Reverse transcription quantitative PCR 

Two different devices were used for RT-qPCR. When using the LightCycler 480 (Roche, Basel, 

Switzerland), for each reaction 2 μl of cDNA (2.5 ng/μl) was mixed with 3 μl of mastermix, in a 384-well 

plate. Utilising the ABI Prism 7000 Sequence Detection System (Applied Biosystems, Foster City, CA, 

USA), each reaction consisted of 5 μl of cDNA (2 ng/μl) and 20 μl of mastermix, in a 96-well plate. The 

same thermocycling conditions were applied for both systems: 2 min at 95 °C before 45 cycles of 

15 sec at 95 °C followed by 1 min at 60 °C. When applicable, an additional heating step from 60 °C to 

95 °C was added to obtain melting curves.  

The mastermix comprises the primers, iTaq Supermix with ROX (Bio-Rad Laboratories, #1725855) and 

water. Depending on the locus of interest, probes were included or iTaq Supermix containing SYBR 

Green (#1725851) was used.  

The primers for ACTB (Forward: AGAAAATCTGGCACCACACC; Reverse: TAGCACAGCCTGGATAGCAA, 

SYBR Green detection), and primers and 6-FAM probes for PPIA (F: CAAATGCTGGACCCAATACAAA; R: 

GCCATCCAACCCCTCAGTCT; Probe: TGTTCCCAGTGTTTCATCTGCACTGCC) and GAPDH (F: 

AGCCTCAAGATCAGCAATG; R: ATGGACTGTGGTCATGAGTCCTT; Probe: 

CCAACTGCTTAGCACCCCTGGCC) were designed and validated in-house (obtained from Applied 

Biosystems). These primers were applied at a concentration of 300 nM. The primer sequences for the 

remaining references (final concentration 250 nM, all detected with SYBR Green) are available in the 

RTPrimerDB database (http://www.rtprimerdb.org) [133]: B2M (RTPrimerDB ID #2), HMBS (#4), HPRT1 

(#5), RPL13A (#6), SDHA (#7), UBC (#8), YWHAZ (#9). The primer sequences for TBP are described in 

[32]. The sequence of the Alu repeats primers is CATGGTGAAACCCCGTCTCTA for the forward primer 

and GCCTCAGCCTCCCGAGTAG for the reverse primer. TaqMan assays (Applied Biosystems) were used 

for the analysis of POU5F1 (Hs01895061_u1) and NANOG (Hs02387400_g1). All reactions were 

performed in duplo and no template controls were included for all genes. All primer efficiencies lie 

within the range of 90 % to 110 %. 

Data analysis 

Stability analysis of the different references was performed using the geNorm application in the 

qbase+ software version 2.0 (Biogazelle) [137, 140]. Relative quantification of the pluripotency markers 

data (Oct4 and Nanog) was calculated using the qbase+ software version 2.0. Each sample was 

rescaled to a calibrator, in this case undifferentiated hESC (day 0), and was normalized for three 
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reference loci; for GAPDH, ACTB and PPIA on the one hand, or B2M, AluSq and RPL13A on the other 

hand.  

The relative quantification data for both normalization strategies were statistically analyzed performing 

an analysis of variance (ANOVA) in R (version 2.13.1). 

2.2.4. Results  

Human ESC were induced to differentiate for several days by addition of RA to the culture medium. 

The fading undifferentiated state of hESC was assessed morphologically, using light microscopy. 

Differentiation was initially visible at the colony periphery where cells start to pile-up and in 

comparison to undifferentiated cells, differentiating colonies lost their round shape with well-defined 

borders, as illustrated in Figure 2.5. 

To confirm differentiation, the expression levels of pluripotency genes POU5F1 and NANOG can be 

followed over time using RT-qPCR. For this purpose, the most stable normalization references were 

determined by means of a stability analysis using the geNorm application in qbase+. The stability of 12 

candidate references (see Table 2.1 for gene names and function) was analyzed for a first series of 

samples, which were isolated every 24 hours during 8 days of differentiation (= Experiment 1). In the 

stability ranking, B2M, RPL13A and Alu repeats (AluSq) were found to be the most stable reference loci 

for this experimental set-up (reference stability ranking and accompanying M values displayed in Table 

2.2). The stability measure of these three references varied from 0.277 to 0.290, which indicates a high 

stability in comparison to the other candidates, as M values up to 0.500 are considered acceptably 

stable for homogenous samples [140]. In the determination of the optimal reference number, two 

appeared to be sufficient for RT-qPCR normalization, as the pairwise variation (V value) was 

approximately 0.09 for upgrading from two to three reference loci (V2/3). V values less than 0.15 

indicate that increasing the number of references would not add any more significant value to the 

assay.
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Table 2.1. Reference loci and target genes included in the experiments. 

Reference Name NCBI RefSeq Function 
Amplicon 

size (bp) 

Exon 

location 

ACTB* β-Actin NM_001101 Cytoskeletal protein 173 7p22 

B2M
§
 β-2-microglobulin NM_004048 

Major histocompatibility 

complex I component 
86 

15q21-

q22 

GAPDH* 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

NM_002046 

Oxidoreductase in 

glycolysis and 

gluconeogenesis 

111 12p13 

HMBS* 
Hydroxymethyl-bilane 

synthase 
NM_000190 

Porphyrin metabolism 

and heme synthesis 
64 11q23 

HPRT1* 

Hypoxanthine 

phosphoribosyl-

transferase 1 

NM_000194 
Purine synthesis in 

salvage pathway 
94 Xq26 

PPIA* 

Peptidylprolyl 

isomerase A 

(Cyclophilin A) 

NM_021130 

Catalyzation of cis-trans 

isomerization of proline 

imidic peptide bonds 

71 7p13 

RPL13A* 
Ribosomal protein 

L13A 
NM_012423 

60S ribosomal subunit 

structural component 
126 19q13 

SDHA* 

Succinate 

dehydrogenase 

complex, subunit A 

NM_004168 

Electron transporter in 

citric acid cycle and 

respiratory chain 

86 5p15 

TBP* 
TATA box binding 

protein 
NM_003194 

General transcription 

factor for RNA 

polymerase II 

89 6q27 

UBC* Ubiquitin C NM_021009 
Involved in protein 

degradation 
133 12q24 

YWHAZ
§
 

Tyrosine 3-

monooxygenase / 

tryptophan 5-

monooxygenase 

activation protein, 

zeta polypeptide 

NM_003406 

Signal transduction; 

binds to phosphorylated 

serine residues on 

several signaling 

molecules 

94 2p25 

AluSq Alu repeats, subfamily Sq 

POU5F1
§
 

POU class 5 

homeobox 1, Oct4 
NM_002701.4 

Marker for embryonic 

stem cell pluripotency 
130 6p21 

NANOG* Nanog homeobox NM_024865.2 
Marker for embryonic 

stem cell pluripotency 
109 12p13 

*
 
exon-spanning primer pair; 

§ 
forward and reverse primer localized in the same exon 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=37704380
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=83641890
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=114520617
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Figure 2.5. Morphological evaluation of human embryonic stem cell culture. Comparison of an 

undifferentiated colony (A: phase contrast – B: bright field image) with differentiated hESC on day 3 (C, D) and 

day 5 (E, F) after RA induction (scale bars = 100 µm).  

Table 2.2. Reference gene stability analysis.  

 Experiment 1 Experiment 2 Experiment 3 

Ranking Reference M value Reference M value Reference M value 

1 B2M 0,277 B2M 0,203 B2M 0,378 

2 AluSq 0,284 AluSq 0,213 RPL13A 0,378 

3 RPL13A 0,290 RPL13A 0,221 AluSq 0,386 

4 HPRT1 0,472 GAPDH 0,267 PPIA 0,480 

5 YWHAZ 0,593 SDHA 0,360 GAPDH 0,609 

6 TBP 0,696 TBP 0,409 HPRT1 0,672 

7 HMBS 0,886 YWHAZ 0,451 TBP 0,813 

8 ACTB 1,151 ACTB 0,480 YWHAZ 0,903 

9 GAPDH 1,350 HPRT1 0,506 HMBS 1,088 

10 PPIA 1,476 PPIA 0,524 SDHA 1,216 

11 SDHA 1,598 HMBS 0,550 ACTB 1,347 

12 UBC 1,697 UBC 0,579 UBC 1,484 

Reference gene stability analysis was analyzed for three independent hESC differentiation experiments, applying 

the geNorm algorithm. Results are displayed with decreasing stability from top to bottom. 
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As a confirmation for this first experiment, a reference stability analysis was performed during two 

more hESC differentiation experiments. For experiment 2, samples were collected every 24 hours 

during 6 days, and a third series was collected every 4 hours during day 3, 4 and 5 after onset of 

differentiation (= Experiment 3). Again, the same three reference loci were found to be the most stable 

in both experiments (Table 2.2). The M values for B2M, RPL13A and AluSq varied from 0.203 to 0.221, 

and from 0.378 to 0.386 for Experiment 2 and 3 respectively (all M values can be found in Table 2.2). 

Also in both cases, two references were shown to be enough for normalization, considering the low 

V2/3 values. 

 

Figure 2.6. Relative quantification of POU5F1 and NANOG. The importance of proper reference gene 

selection is illustrated by comparing normalized data of the pluripotency factors Oct4 and Nanog to different 

reference sets. The Cq values for the pluripotency genes POU5F1 and NANOG were both normalized following the 

ΔΔCt-method (applying qbase+ software), against the geometric average of two different reference sets: on the 

one hand for ACTB, GAPDH and PPIA (red triangle); on the other hand for B2M, RPL13A and Alu repeats (green 

rhomb). The resulting values represent the fold change in expression levels of the pluripotency factors, and are 

displayed for POU5F1 and NANOG for both normalization methods in respectively panel A and B. Data shown are 

obtained from differentiation Experiment 2 (sample isolation every 24 h during 6 days of differentiation) (mean 

and standard deviation of 2 replicates). 
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Subsequently, the expression data of POU5F1 and NANOG were normalized applying two different 

reference sets: relative quantification using three commonly used genes (GAPDH, ACTB and PPIA) 

versus the three most stable references determined in the analyses described above (B2M, RPL13A and 

AluSq). As can be expected, this comparison revealed a substantial difference in the change of 

expression levels of POU5F1 and NANOG, emphasizing the importance of proper reference gene 

selection. As illustrated for Experiment 2 in Figure 2.6, the decrease in expression of these pluripotency 

factors is significantly less pronounced using the ‘traditional’ reference genes (GAPDH, ACTB and PPIA) 

than with the most stable reference loci as defined in this study (B2M, RPL13A and AluSq) (ANOVA, p-

value = 1.30e-05). Also for the other two experiments a significant difference was seen (p-value = 

0.0034 and = 0.0215 for Experiment 1 and 3 respectively). 

2.2.5. Discussion 

Human ESC provide a unique opportunity to study early development and may hold great potential 

for regenerative medicine [10, 41, 148, 149]. The transcription factors Oct4 (POU5F1) and Nanog 

(NANOG) contribute to self-renewal and are required for maintaining the pluripotent state of hESC [12, 

82]. Therefore, the expression of these factors is commonly assessed with RT-qPCR, as mRNA levels 

decrease substantially within a few days after inducing differentiation [41, 42]. Morphological 

evaluation of the differentiating cells shows that hESC start to accumulate at the edges of the colonies 

and that individual cells adopt a more lengthened, neuronal-like phenotype during early hESC 

differentiation (Figure 2.5) [33].  

Adequate RT-qPCR normalization is essential for valid data interpretation. However, in vitro hESC 

differentiation entails massive gene expression alterations in general and specifically due to the 

differentiation agent itself, whereby the expression of individual reference genes may vary, thus 

making it difficult to select the most suitable and stable references [42, 151]. Synnergren and 

colleagues (2007) already made note of a unique reference gene expression pattern when 

differentiating hESC spontaneously [156]. And as Willems et al. (2006) also showed, normalization 

results vary substantially depending on the reference used [155].  

In this study, the suitability of 12 different references was evaluated using the geNorm algorithm [137, 

140]. From our results, it can be concluded that B2M, RPL13A and Alu repeats (AluSq) are the most 

stable reference loci for this specific differentiation protocol. The use of two references was shown to 

be sufficient for accurate normalization of RT-qPCR data, though generally the use of three stable 

references is recommended in literature [137].  
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The importance of selecting the most stable and suitable references is illustrated by normalization of 

gene expression levels of pluripotency factors Oct4 and Nanog. Comparison of B2M, RPL13A and 

AluSq with more ‘traditional’ reference genes, resulted in a significantly different normalization, 

indicating that classic reference genes such as GAPDH are not always appropriate for a given set-up. In 

the field of stem cell differentiation, optimization is required for each specific differentiation protocol.  

Despite the comparability of different algorithms for determining reference stability (Normfinder, 

Bestkeeper, Comparative Delta-Ct method), their application may result in a slightly different stability 

order in comparison with the geNorm applet. This may indicate though that different reference sets 

are applicable, resulting in analogous normalization data. When applying those algorithms to the 

results of Experiment 1, Alu repeats and RPL13A remain among the Top 3 stable reference loci (data 

not shown). B2M deteriorates a few ranks when using Normfinder and Bestkeeper, and is replaced by 

TBP as a more stable reference. Nevertheless, the comparison of normalization data for B2M, RPL13A 

& AluSq and TBP, RPL13A & AluSq, gave no significant difference (p-value > 0.5). In conclusion, B2M, 

RPL13A and AluSq are suitable reference loci for this experimental set-up of RA induced hESC 

differentiation.  

β-2-microglobulin (B2M) is a component of major histocompatibility complex I, hence being expressed 

in every nucleated cell, and has already been applied before as a normalization scalar in different set-

ups [162–164]. Ribosomal protein L13A (RPL13A) is involved in the process of transcript translation, 

and has also been widely included as a reference gene for RT-qPCR analyses [165–168], in spite of 

possible presence of pseudogenes [169]. However, pseudogene detection does not necessarily imply 

that a specific reference is not usable. The main point of interest is the reference stability, which in this 

case is clearly maintained as supported by the data described above. In our hands both B2M and 

RPL13A repeatedly do come forward as a stable reference, supporting their use as normalization 

genes.  

The fact that Alu repeats were one of the best scoring reference loci in the described analyses is not 

surprising. Because of their genome-wide distribution, they can be considered as a measure for the 

total amount of mRNA, and the overall Alu element expression will not be influenced by a variation in 

expression of individual genes [152, 157, 170]. For this reference, primer specificity is of minor 

importance. The more sequences are detected by the assay, the less the impact of individual 

expression variations on the total Alu content. Hence, Alu repeats provide a new strategy for reliable 

normalization of RT-qPCR data, in particular in experiments where dramatic changes are expected. An 

additional advantage when working with limited amounts of starting material, is that the input can be 

lowered, since Alu repeats are highly expressed and thus lead to low Cq values [152].  
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2.2.6. Conclusions 

This study shows that some of the commonly used reference genes cannot always be included as a 

stable normalization scalar. Selection of suitable references is highly dependent on the experimental 

set-up, as is illustrated here for early hESC differentiation induced by RA. Furthermore, a new 

normalization strategy based on Alu repeat expression is proposed and validated for hESC (RA 

induced) differentiation experiments. 
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3. HISTONE H3-CLIPPING ACTIVITY IN HUMAN EMBRYONIC STEM CELLS 

3.1. Abstract 

Histone PTMs are essential features in epigenetic regulatory networks. One of these modifications has 

remained largely understudied: regulated histone proteolysis. In analogy to the histone H3 clipping 

during early mouse ESC differentiation, we report for the first time that also in human ESC this 

phenomenon takes place in the two different analyzed cell lines. Employing complementary 

techniques, different cleavage sites could be identified, namely A21, R26 and residue 31. The enzyme 

responsible for this cleavage is found to be a serine protease. The formation of cleaved H3 follows a 

considerably variable pattern, depending on the timeframe, culture conditions and culture media 

applied. Contrary to earlier findings on H3 clipping, our results disconnect the link between declining 

Oct4 expression and H3 cleavage.  
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3.2. Background 

In all eukaryotes, DNA is tightly associated with histone proteins in order to form chromatin, of which 

the fundamental subunit is the nucleosome [84]. Each nucleosome consists of four different core 

histone types (H2A, H2B, H3 and H4), which have been very well evolutionarily conserved. Chromatin 

structure is essential for compaction of genomic DNA but also represents a physical barrier to control 

DNA accessibility and gene expression.  

In ESC the delicate balance of self-renewal and differentiation into specific lineages is determined by 

many lineage-restricted promoters that are associated with highly combinatorial histone PTM patterns 

which may determine their selective priming of gene expression during lineage commitment. Together 

with DNA methylation, ATP-dependent chromatin remodeling, RNA interference, non-coding RNA and 

incorporation of histone variants, these properties form the “epigenetic signature” [72].  

Not only ESC differentiation but also other biological contexts are characterized by a continuous 

interplay of installation and removal of histone PTMs. To accomplish the latter, several mechanisms 

can be at play. Apart from enzymatic elimination of modifications [72, 99] and histone exchange [72, 

171, 172], also regulated proteolytic histone cleavage has been suggested to play such role [127, 173]. 

Duncan et al. showed that H3 is proteolytically cleaved at its N-terminus during early differentiation of 

mouse ESC (mESC) and they provide evidence for the regulatory capacity of covalent modifications 

herein [127]. Cathepsin L was found to cleave histone H3, with alanine 21 being the primary site of 

cleavage [127, 174]. This truncated H3 form is detected during the first days of both monolayer 

differentiation (with and without RA induction) and embryonic body (EB) formation. Similar clipping 

events of H3 associated with other cellular processes including viral infection [175, 176], aging [177, 

178] and sporulation [179] have also been reported. Additionally, H3 protease activity was also found 

in chicken liver and Tetrahymena micronuclei [180–183]. Although the molecular consequences of any 

histone clipping event are yet to be defined, these data seem to suggest an evolutionary conserved 

process.  

Here, we show for the first time that histone H3 clipping also occurs in human ESC lines (hESC) in 

addition to mESC. Several cleavage sites were assigned and the clipping enzyme was characterized as a 

serine protease. The manifestation of this proteolytic event can theoretically have an impact on several 

levels such as pluripotency and differentiation. Our results indicate that H3 cleavage can indeed be 

accompanied by a loss of Oct4 expression but does not exclusively occur in this condition. Hence, a 

direct correlation between these two processes cannot be claimed. 
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3.3. Methods 

Cell culture 

Two human ES cell lines were used: the UGENT2 cell line (XX), created in-house and the WA01 Oct4-

eGFP knock-in reporter cell line (XY), obtained from WiCell [184]. Both cell lines were cultured (5 % O2 

and 5 % CO2 at 37 °C) on a feeder layer of Mitomycin C inactivated MEF. Cells were passaged every 4 

to 6 days, using 1 % collagenase type IV and glass beads. Culture medium consisted of knock-out 

DMEM supplemented with 2 mM L-glutamine, 1 % non-essential amino acids, 20 % knock-out serum 

replacement, 4 ng/ml bFGF, 100 U/ml penicillin and 100 µg/ml streptomycin. 

Feeder-free cultures were maintained on a Vitronectin XF coating (Primorigen), in combination with 

Essential 8 medium (E8, Life Technologies). Cultures were split every 2 to 3 days by means of EDTA-

passaging.  

Differentiation was induced by omitting bFGF from the medium and by adding RA to the culture 

medium at a final concentration of 2 µM. 

Fluorescence microscopy 

Fluorescence microscopy images of eGFP expression (ex. 485 nm, em. 515 nm, exposure time 5000 ms) 

were acquired on an Axiovert 200M inverted fluorescence microscope equipped with the Axiovision 

multichannel fluorescence module and an AxioCam MRM camera (Carl Zeiss). Colonies (without auto-

fluorescent medium) were screened at 10x magnification using a Carl Zeiss short distance Plan-

Acromat objective and visualized using Zeiss filter set n° 38 (BP 470/40, FT 495, BP 525/50). For larger 

colonies, several images were stitched by use of Photoshop CS4 on TIFF images (Adobe).  

Acid histone extraction 

Cells were isolated using 0.25 % trypsin-EDTA. After a washing step, cells were resuspended in Triton 

extraction buffer (TEB; 0.5 % Triton X 100 and 0.02 % NaN3 in PBS) at a cell density of 1x10
7
 cells/ml, 

and incubated for 10 min on ice. Subsequently the cells were centrifuged at 1500 rpm for 10 min at 

4 °C, and resuspended in half the volume of TEB. After centrifuging again, the cells were resuspended 

in 0.2 N HCl at a cell density of 4x10
7
 cells/ml and incubated overnight at 4 °C, after which the 

supernatant containing the histones, was isolated. Protease inhibitors (Roche, 11836170001) were 

freshly added to each buffer for every experiment, unless stated otherwise. Protein concentration of 

the extracts was measured by Bradford/Coomassie assay. 
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Direct boiling in Laemmli buffer 

Direct boiling in SDS-loading dye for protein isolation was performed. Human ESC were directly boiled 

(3 min at 100 °C) after harvesting with trypsin, in 2X Laemmli buffer (4 % SDS, 20 % glycerol and 10 % 

β-mercaptoethanol in 50 mM Tris (pH 6.8)).  

Gel electrophoresis and Western blotting  

Per sample the required amount of histone extract was vacuum-dried and dissolved in 2X Laemmli 

buffer, separated on a 15 % Tris-HCl gel (BioRad Laboratories) and tank-blotted on a nitrocellulose or 

a PVDF membrane. The membrane was incubated overnight at room temperature with the appropriate 

antibody. The following antibodies were purchased from commercial vendors: a C-terminus directed 

histone H3 Ab (1:1000; Abcam, ab10799), an N-terminus directed histone H3 Ab (1:1000; Merck 

Millipore, 05-499) and an antibody specific for the H3 N-terminus when cleaved after A21 (H3.cs1 Ab; 

1:1000; Active Motif, 39573). All blots were detected by chemiluminescence using a Versadoc imaging 

system (BioRad Laboratories). Biotinylated histone H3 (as described below) was specifically visualized 

using HRP-conjugated avidin (45 min incubation; 1:100000; eBioscience, 18-4100-94). When needed, 

blots were stripped by incubating at 50 °C for 4 to 6 hours in stripping buffer containing 2 % SDS, 

0.1 M β-mercaptoethanol, 0.05 M Tris (pH 6.8).  

In-gel digest of propionylated histones  

Vacuum-dried histones were propionylated as described [185] and separated by gel electrophoresis. 

Sypro Ruby (Invitrogen) stained gel pieces were cut out and subsequent in-gel digestion was 

performed as described before [186], with only a slight modification to the protocol: 25 mM 

ammonium bicarbonate buffer was used and the alkylating agent applied was iodoacetamide 

(100 mM). After peptide extraction out of the gel pieces, samples were vacuum-dried and a second 

round of propionylation was completed to propionylate the newly generated N-termini. 

Flow cytometry 

Oct4-eGFP levels were monitored after cell isolation and resuspension in flow buffer (1 % BSA, 0.1 % 

NaN3 in PBS) with an FC500 (Beckman Coulter) using the CXP analysis software. 

Reverse transcription – quantitative PCR 

RNA isolation, cDNA preparation and RT-qPCR analysis were performed as described before [13]. In 

short, cells were suspended in Trizol after isolation and stored at -80 °C. After reverse transcription 

(SuperScript II kit, Invitrogen), qPCR analysis was performed for pluripotency gene POU5F1 (Taqman 

assay Hs01895061_u1) with normalization to an optimized pool of 3 reference loci, namely B2M 
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(RTPrimerDB ID #2), RPL13A (#6) and AluSq (Forward: CATGGTGAAACCCCGTCTCTA – Reverse: 

GCCTCAGCCTCCCGAGTAG) (all SYBR Green assays). 

 Histone biotinylation 

One mg of purified histone H3, isolated from calf thymus (Roche), was biotinylated using the EZ-Link 

Sulfo-NHS-Biotinylation kit (Thermo Scientific, 21425), according to the manufacturer’s conditions. 

After the biotinylation reaction, the excess of biotin-label was removed by addition of 5 % 

hydroxylamine (HA)-solution in a concentration of 6 µl HA per 100 µl sample. 

N-terminal sequence analysis 

A histone extract taken one day after induction of differentiation and known to contain cH3 as 

validated by Western blotting, was blotted onto PVDF and proteins were visualized using Ponceau S 

staining. Subsequently the cleaved area was cut and subjected to Edman degradation, which was 

outsourced to Eurosequence (Groningen, The Netherlands) and performed according to standard 

procedures.  

Mass spectrometry method 

Propionylated peptides were dissolved in 0.1 % formic acid in water (buffer A) and separated on a 

PepMap 100 (C18) column (I.D. 75 µm, length 25 cm, particle size 5 µm) by use of a U3000 LC-system 

(Dionex) at a flow rate of 300 nl/min. Elution was performed with 80 % acetonitrile/0.1 % formic acid 

(buffer B) using a gradient of 10 % to 60 % buffer B in 60 min. A Q-TOF Premier mass spectrometer 

(Waters) was operated in the data-dependent mode, using a nano-ESI source with resolution of 

10.000. Survey MS scans were acquired (m/z 425-1300) and up to 7 precursors (m/z 50-2300) with 

charge state 2+, 3+ or 4+ exceeding the signal threshold were isolated for fragmentation by collision 

induced dissociation, using the collision energy profile as suggested by the manufacturer. An inclusion 

list contained precursor m/z value 574.3 since preliminary experiments suggested that this is a 

cleavage site fragment. 

Mass spectrometry data analysis 

Database searching was performed against a custom-made database containing human histone 

sequences obtained from the National Center for Biotechnology (NCBI) database, using a Mascot 2.3 

in house server (Matrix Science). Mass error tolerances for the precursor ions and its fragment ions 

were set at 0.35 Da and 0.45 Da respectively. Enzyme semi-specificity was set to Arg-C, allowing for up 

to two missed cleavage sites. Variable modifications included acetylation, dimethylation and 

propionylation on lysine (K), methylation and dimethylation on arginine (R) and oxidation of 
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methionine. Lysine monomethylation was searched as the sum of propionylation and methylation 

since monomethylated lysine residues can still be propionylated. N-terminal propionylation and 

carbamidomethylation of cysteine residues were set as fixed modifications. Redundant peptides were 

filtered including only the highest scoring match under the highest scoring protein containing that 

match. Low confidence identifications were excluded using an expectancy value cut-off of 0.05. 

Nevertheless all of the used spectra were additionally manually validated using Mascot Distiller 

software (Matrix Science).  

Nuclear extraction and protease inhibitor experiments 

Nuclear extracts were prepared using the commercially available Episeeker Nuclear Extraction Kit 

(Abcam, ab113474), omitting protease inhibitors during extraction. Calf H3 (1 µg) and nuclear extract 

(0.5 µg) were incubated together in buffer (150 mM NaCl, 2 mM β-mercaptoethanol, 0.1 mM EDTA, 

10 % glycerol and 25 mM Tris-HCl (pH 7.5)) at 37 °C for 1 hour, after which the assay was inactivated 

by incubation at 99 °C for 10 min. All samples were analyzed by Western blotting.  

For the inhibition assay the following commercially available inhibitors were used (Figure 3.8B): 4-(2-

Aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF, Sigma-Aldrich, 76307), E64 (Sigma-

Aldrich, E3132), EDTA (Sigma-Aldrich, E5134), Bestatin (Sigma-Aldrich, B8385), Pepstatin A (Sigma-

Aldrich, P5318), protease inhibitor cocktail tablets (PIC, Roche, 11836170001) and three specific 

cathepsin L inhibitors (I (219421), III (219427) and CAA0225 (219502), purchased from Calbiochem. 

Inhibitors were pre-incubated with the nuclear extract for 15 min at 37 °C prior to addition of the H3 

substrate. Their inhibitory capacity was validated and concentrations yielding aspecific inhibition were 

excluded from the assay. 

3.4. Results 

3.4.1. Feeder-Free cultured hESC show continuous histone H3 cleavage during 

differentiation  

To verify whether the histone H3 N-tail is cleaved during human embryonic stem cell differentiation in 

analogy to mESC [127], two hESC lines were monitored: an Oct4-eGFP reporter hESC cell line that 

expresses eGFP under the control of the Oct4 promoter and a non-reporter cell line UGENT2. Both cell 

lines were cultured in feeder-free conditions during 5 days after induction of differentiation by 

addition of 2 µM RA to the culture medium, in the absence of bFGF. Cells were isolated every 24h and 

histone extracts were prepared. 

The differentiation status during the experiments was validated for both cell lines. Morphologically 

each cell line displayed clear traits of differentiation, resulting in more lengthened cells and loss of 
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round colony shape (data not shown). To further validate the efficiency of differentiation, Oct4-eGFP 

reporter cells were directly monitored by both flow cytometry and fluorescence microscopy [43]. Flow 

data showed a clear drop in eGFP signal through time (Figure 3.1A), and microscopy imaging 

visualized a sustained but definite reduction in eGFP throughout the hESC colonies (Figure 3.1B). To 

monitor loss of pluripotency in the conventional non-reporter stem cell line (UGENT2), RT-qPCR 

analysis of the pluripotency gene POU5F1 encoding for the transcription factor Oct4, coordinately 

confirmed differentiation in these cells (Figure 3.1C).  

 

Figure 3.1. Histone H3 cleavage in human embryonic stem cells under feeder-free culture 

conditions. Human ESC samples were collected during five days after differentiation induction with RA. 

Differentiation was confirmed by A: flow cytometry Oct4-eGFP analysis for the Oct4-eGFP cell line. In addition, B: 

fluorescence microscopy data affirmed a drastic drop in Oct4-eGFP signal when comparing an undifferentiated 

colony (Und) and a colony after three days of differentiation (scale bars represent 200 µm). Also C: RT-qPCR 

analysis illustrated the decrease in POU5F1 expression (encoding for Oct4) over time for the UGENT2 cell line 

(mean and standard deviation of 2 replicates). D: Western blot analysis (2 µg histone extract per sample) using a 

C-terminal H3 antibody reveals N-terminal H3 clipping (cleaved H3 indicated with an asterisk) in both the Oct4-

eGFP reporter (upper image) and UGENT2 cell line (lower image).  
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Samples were monitored for histone H3 cleavage by means of Western blotting analysis, using an H3 

C-terminally directed antibody. For both cell lines, lower molecular weight bands of histone H3 

(indicated with an asterisk) were visualized at each time point throughout the differentiation 

experiment, indicating N-terminal cleavage of H3 (Figure 3.1D).  

3.4.2. Continuous histone H3 cleavage in the Oct4-eGFP reporter hESC line is not 

related to the Oct4 expression level 

The results above differ substantially from the data reported for differentiating mESC, which display a 

pattern with upcoming cleaved H3 (cH3), reaching a maximum intensity after 4 days, and decreasing 

again towards the end of the experiment [127]. The continuous H3 clipping found in feeder-free 

cultured hESC could be best explained by assuming that the timeframe was not extended enough to 

demonstrate the disappearance of cH3. The cH3 pattern might also be influenced by the speed and 

heterogeneity of differentiation, as also shown by Duncan et al., where spontaneous and RA induced 

differentiation and EB formation all lead to different cleavage patterns in terms of timescale. Therefore 

we repeated the experiment with the Oct4-eGFP reporter cell line, monitoring the hESC in feeder-free 

culture for a longer period of time (14 days), and subjected them to three different methods of 

differentiation to vary the speed at which they lose stemness throughout this timeframe: (i) in their 

undifferentiated status by culturing the cells in E8 medium, (ii) inducing spontaneous differentiation by 

omitting bFGF from the culture medium and (iii) enforcing directed differentiation by addition of RA. 

Morphological changes were observed using light microscopy (data not shown), global Oct4 

expression and differentiation were monitored using flow cytometry. According to the flow plots 

shown in Figure 3.2A, the three used culture conditions indeed differ greatly in their (non)maintenance 

of stemness throughout the experiment. When analyzing the hESC, it is clear that E8 medium 

promoted the undifferentiated status in contrast to both differentiation methods which led to a 

decreased Oct4 expression. While spontaneous differentiation divided the culture system into two 

groups with loss of the Gaussian distribution in the flow histogram, RA induced a collective decrease in 

Oct4 expression of all cells resulting in a preserved Gaussian distribution shifting towards lower 

fluorescence. Also, differentiation induced by RA occurred much faster and a minimal Oct4 expression 

was reached after 12 days of differentiation while spontaneous differentiation continued at a slower 

pace and did not reach a minimum limit in Oct4 expression after 14 days of differentiation.  

Despite the clear differences in Oct4 expression as described above, all time points in each culture 

condition appeared to display clear N-terminal H3 clipping when monitored with Western blotting 

(Figure 3.2B).  
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Figure 3.2. H3 cleavage in feeder-free cultured hESC under application of different culture 

media within an extended time frame. The Oct4-eGFP reporter cell line was cultured for 14 days in 

different conditions: (i) maintaining the pluripotent state in E8 medium, (ii) differentiating spontaneously (in the 

absence of bFGF) and (iii) differentiating after RA induction. A: Flow cytometry analysis displays a definite 

reduction in Oct4-eGFP levels under differentiation-allowing circumstances. The flow histogram plots show a 

variable shift in Oct4-eGFP signal under differentiating conditions: whilst the signal in RA-stimulated cells 

decreases collectively for the total population, the spontaneously differentiating cells are divided into two groups 

with different paces of differentiation. All data shown on the flow histogram depict data from the undifferentiated 

stage until day 14 of differentiation, with the most anterior graph representing the Oct4-eGFP signal from 

undifferentiated cells, and the graph most at the back illustrating day 14. B: Western blot images (2 µg samples, 

C-terminal H3 antibody) show continuous cH3 formation in hESC, regardless of the hESC culture condition.  

3.4.3. Histone H3 clipping in hESC is not an in vitro artifact  

To exclude the possibility that this continuous histone H3 cleavage in a feeder-free culturing system is 

actually an in vitro artifact induced during extraction, we spiked biotinylated calf histone H3 during 

hESC histone extraction at day 1 of differentiation for subsequent avidin-HRP detection on Western 

blot. We initially confirmed that indeed the biotinylated histone H3 still is susceptible to proteolytical 

degradation (Figure 3.3A). 
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After spiking biotinylated calf H3 during extraction, a lower band was detected on the Western blot 

from the histone extracts only when using the C-terminal H3 antibody. This band was absent when 

immunoblotting was done using avidin-HRP, which specifically highlights the biotinylated fraction 

(Figure 3.3B). This implies that the histone H3 cleavage was indeed already present during culturing 

and that the truncated form was not created during extraction. Moreover, when the extraction was 

performed both with and without protease inhibitors (PIC), no difference between these samples was 

found, confirming that no additional cleavage was induced during extraction.  

 

Figure 3.3. Histone H3 cleavage is not an in vitro artifact. A: The digestion of purified calf H3 and 

biotinylated calf H3 with both trypsin or GluC was compared, and Sypro Ruby staining after SDS-PAGE illustrated 

the analogous susceptibility of both samples. B: Comparison of spiked biotinylated H3 (Biot-H3) with the H3 

content extracted from hESC shows that only the latter undergoes truncation. As both immunoblotting images 

demonstrate, including the protease inhibitor cocktail (-PIC versus +PIC) during the extraction procedure does not 

influence the outcome. Per lane 2 µg sample was loaded. C: Illustrates the comparison of two different extraction 

protocols: TEB/HCl extraction (left, 2 µg sample) versus direct boiling in Laemmli buffer (right, 5 µl loaded). 

Western blotting analysis shows no difference in cH3 content between those protocols. 

In addition, the TEB/HCl extraction protocol was compared with direct boiling of the hESC after 

harvesting. Directly boiling in Laemmli buffer diminishes the steps of the extraction procedure and 

thus the steps in which cH3 can be artificially formed. For this experimental set-up, Oct4-eGFP reporter 

hESC were differentiated with 2 µM RA for 24h. After this the hESC were harvested and split into two to 

carry out both protocols simultaneously on the same starting material. As can be seen in Figure 3.3C, 

both protocols result in the same Western blotting image containing cH3.  

3.4.4. Similar histone H3 cleavage sites are found in mouse and human ESC  

To verify if this H3 truncation event has any parallel to the clipping event reported in mESC, we next 

set out to identify the cleavage site(s). 

Applying the antibody directed against the C-terminus of H3, cH3 is visualized, in some cases as 

multiple bands. As opposed to the C-terminal antibody, immunoblotting with an antibody directed 

against the N-terminal end of histone H3 detected no cH3 for both the Oct4-eGFP reporter and 

UGENT2 cell line (Figure 3.4A and 3.4B). Only the band of intact histone H3 was seen, indicating N-

terminal cleavage. When using the C-terminal antibody, the distance of the most intense cH3 band to 
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the intact H3 form, implies a loss of approximately 3 kDa, which roughly corresponds to about 30 

amino acids. Using the histone H3.cs1 antibody that was developed to specifically detect H3 truncated 

after A21 [127], a weak signal was detected for samples of the Oct4-eGFP cell line, suggesting A21 as a 

possible target site also in hESC.  

 

Figure 3.4. H3 cleavage in feeder-free cultured hESC under application of different culture 

media within an extended time frame. The application of differentially directed antibodies for 

immunoblotting (antibody epitopes displayed in A) illustrates that the cleavage is situated N-terminally, and 

proposes alanine 21 as one of the possible cleavage sites (B). C: Mass spectrometry analysis after propionylation 

of different hESC samples (Day 1, day 2, day 3 and day 6 of differentiation) also reveals residue 31 as a site of 

cleavage. D: An additional site, arginine 26, was annotated by Edman degradation. 

Apart from the most prominent A21, Duncan et al. found additional histone H3 cleavage sites in mESC, 

so we pursued further investigation of the presence of any other possible cleavage site(s) in hESC. A 

specific mass spectrometry (MS) approach for histone analysis was therefore optimized which is 

subsequently described in more detail. A regular bottom-up approach using trypsin would cleave after 

each lysine (K) or arginine (R) (except when followed by a proline), resulting in unidentifiably small 

peptides because of the abundant presence of these basic amino acids in histones. We thus 

propionylated the histones prior to digestion, which modifies all free primary amine groups (the N-

termini and the ε-amino group of unmodified and monomethylated K). Of note, when the N-terminus 

or a lysine residue is covered by an endogenous modification other than monomethylation, this 

residue cannot be propionylated but is also blocked from proteolytical digestion by that modification 
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itself. Consequently, trypsin now only cleaves C-terminal to arginine residues mimicking an Arg-C 

digestion for histone H3, resulting in larger, identifiable peptides [187]. By post-digestion 

propionylation all newly generated N-termini are subsequently being propionylated as well. The 

specific cleavage sites present in cultured hESC can then be detected as peptides containing a non-

arginine C-terminus or which start N-terminally with an amino acid not neighboring an arginine. 

Spectra corresponding to such so-called semi-Arg-C peptides were additionally manually validated. 

Hence we separated propionylated histone extractions of the feeder-free cultured Oct4-eGFP reporter 

cell line at four different time points after RA induction (D1, D2, D3 and D6) on SDS-PAGE (Figure 

3.4C). This way, multiple molecular weight bands could be cut out for subsequent in-gel digestion 

using trypsin. After a second round of propionylation, samples were analyzed by RPLC and ESI-MSMS. 

Of all identified histone H3 peptides, 100 % ended C-terminally with R and 94.4 % had an N-terminus 

adjoining an R, confirming successful propionylation. 

First, to confirm the N-terminal histone H3 cleavage by MS we monitored the presence or absence of 

an N-terminal histone H3 peptide in the intact H3 and the cH3 gel bands. The peptide K[9]STGGKAPR 

starting after R[8] covers the N-terminus of histone H3 and was only identified in the H3 bands and not 

the cH3 (Figure 3.4C), in contrast to the globular histone H3 peptides and the C-terminal 

V[117]TIMPKDIQLAR which were present in both. Two differentially modified semi-Arg-C peptides both 

started at residue 32 which N-terminally does not flank an R: T[32]GGVKpropKpropPHR and 

T[32]GGVKpropKme-propPHR (Figure 3.5). Since these spectra correspond to the peptide generated by 

cleavage after amino acid 31 and this residue itself is not represented in the spectrum, it is impossible 

to define whether amino acid 31 is an alanine or serine, coming from the H3.1/H3.2 or the H3.3 

isoform respectively. At each of the four different time points A[31] or S[31] clipping was identified in the 

gel pieces containing cH3, but not intact H3. Of note, using this mass spectrometry method no 

cleavage at an arginine residue can be detected, since the protocol itself introduces clipping after 

arginine during digestion. Indeed, by applying Edman degradation, we also assigned R26 as a cleavage 

site (Figure 3.4D). Since the amino acid at position 31 is identified by Edman degradation as an alanine 

this cleaved form is derived from the H3.1 and/or H3.2 isoforms.  

In conclusion, both Western blotting and mass spectrometry confirmed N-terminal cleavage with an 

intact C-terminus, and the latter assigned amino acid 31 as a cleavage site for histone H3 without 

isoform specification. N-terminal sequence analysis added R26 as a cleavage site, at least for the H3.1 

and/or H3.2 isoforms. 
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Figure 3.5. Manual validation of cleaved H3 peptides. Validation of the MSMS spectrum representing A: 

T[32]GGVKpropKpropPHR and B: T[32]GGVKpropKme-propPHR respectively. Matching fragments are displayed in red. 
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3.4.5. When grown on MEF hESC cleave H3 in an identical temporal window compared 

to mESC 

Since mESC differentiation showed various temporal clipping patterns depending on the 

differentiation protocol applied, we further extended the different culture conditions to also include 

the more classical culture system on a MEF feeder layer. Although these MEF are mitotically inactivated 

prior to cell culturing, cH3 formation derived from MEF cannot be excluded. Thus, RA was first added 

to a culture consisting only of a confluent layer of MEF, without hESC present. No cleavage was 

detected by immunoblotting (Figure 3.6). 

 

Figure 3.6. Mouse embryonic fibroblasts display no histone H3 cleavage. When incubating a culture 

consisting only of MEF with RA for 5 days, no cH3 could be detected. 

When RA was added to hESC cultured on MEF, both morphological assessment of the differentiated 

status, and flow cytometry as well as RT-qPCR confirmed a decrease in Oct4 level as differentiation 

proceeded for the Oct4-eGFP reporter and UGENT2 cell line respectively (Figure 3.7A and 3.7B). Of 

note, as seen by fluorescence microscopy within one colony patches or ‘islets’ of undifferentiated cells 

became apparent, indicating heterogeneous stemness within colonies (Figure 3.7C). Remarkably, this 

Oct4 expression pattern is clearly different from what was seen when growing hESC feeder-free, which 

showed a diffuse expression pattern in the abovementioned experiments. 

Surprisingly, when analyzing these histone extracts with Western blotting, a more ‘mouse-like’ pattern 

of H3 cleavage becomes visible: on day 2 of differentiation cH3 appears, attains a maximum on day 4 

and fades considerably on the last day of the experiment. This pattern was visualized for both cell lines, 

again confirming the cleavage capability of both the reporter and non-reporter cell line (Figure 3.7D).  

Also here the N-terminal nature of the H3 cleavage was double-checked using the N-terminally 

directed antibody, which visualized only the band of intact histone H3. In addition, a clear signal was 

detected using the H3.cs1 antibody for the UGENT2 sample, once more pointing out A21 as a possible 

cleavage site (Figure 3.7E). 
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Figure 3.7. A different H3 cleavage pattern is seen in MEF cultured hESC. Aside from the application 

of feeder-free culture, additional differentiation experiments with hESC cultured on a MEF feeder layer were 

conducted. The differentiated status is again confirmed by A: flow cytometry and B: RT-qPCR (mean and standard 

deviation of 2 replicates). C: Fluorescence microscopy analysis indicates differentiation heterogeneity among 

colonies, as within each colony several ‘islets’ of concentrated Oct4-eGFP expression were seen (scale bars 

represent 200 µm). D: Western blotting analysis reveals that when hESC are cultured on MEF, a cleavage pattern is 

shown that resembles more to the mESC results. E: Also, the N-terminal orientation of the cleavage and A21 as a 

possible cleavage site is confirmed by application of the N-terminal and H3.cs1 antibody respectively. 

3.4.6 Histone H3 clipping activity in hESC is exerted by a serine protease 

In order to identify the clipping enzyme, we conducted different calf H3 incubation assays, whether or 

not with the application of various protease inhibitors. To this end, we prepared a nuclear extract (NE) 

from Oct4-eGFP hESC for which histone H3 cleavage was confirmed in the corresponding histone 
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extract, and validated it to be capable of calf H3 proteolysis. Endogenous H3 was not detectable in the 

amount of NE used in these experiments. 

In a first experiment we compared the incubation of H3 with hESC NE after immunoblotting with the 

three different antibodies described before. This confirmed that the cleavage pattern induced by the 

NE is similar to what was seen in the histone extract of Oct4-eGFP hESC: the cleavage is exclusively of 

N-terminal nature and there is no detection of A21 as a possible cleavage site (Figure 3.8A).  

 

Figure 3.8. The histone H3 clipping activity in hESC is exerted by a serine protease. A: In order to 

investigate the responsible cleavage enzyme, incubation assays were set up in which 1 µg calf histone H3 was 

incubated with 0.5 µg hESC NE. The nuclear extract was prepared from the Oct4-eGFP cell line and contains N-

terminal histone H3 cleavage activity, as was confirmed in the corresponding histone extracts (data not shown). 

Immunoblotting analysis of the incubation product displays several clipped H3 (cH3) fragments, with confirmed 

N-terminal origin. A21 could not be confirmed as a cleavage site (H3.cs1 Ab). The list of all inhibitors included, 

with their targets, the applied concentrations and their outcome in the inhibition assay is displayed in panel B. C: 

Western blotting analysis points out that only when using a serine protease inhibitor the cleavage activity of the 

nuclear extract can be inhibited. The latter is confirmed by the additional inhibitory effect of the protease inhibitor 

cocktail, targeting mainly serine and cysteine proteases. 

In the following inhibition assay, several inhibitors were included (Figure 3.8B), comprising both 

general inhibitors for a certain protease enzyme class and specific inhibitors for cathepsin L, in parallel 

to the mESC results, where cathepsin L was identified as the responsible clipping enzyme. Western 

blotting analysis pointed out that only AEBSF, a serine protease inhibitor, could establish inhibition of 

the cleavage, whereas all other inhibitors could not demonstrate any notable effect on the incubation. 
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Also the PIC was able to inhibit the proteolytic activity on histone H3. The specific inhibitors for 

cathepsin L were not able to diminish the cleavage (Figure 3.8C). 

3.5. Discussion 

Histone clipping was reported for the first time even before these proteins received their current 

nomenclature [188, 189]. Surprisingly however, these truncation events are still greatly understudied. 

Yet, from a practical point of view, techniques such as chromatin-immunoprecipitation run the risk of 

not detecting the substantial influence that histone clipping might have on their outcome. All 

techniques employing specific antibodies to the H3 N-terminus in general or to modifications thereof 

in particular, will fail in case of H3 proteolytic cleavage. Also mass spectrometry-based (quantitative) 

comparisons of e.g. H3K4 and H3K27 methylations devaluate when dealing with samples where 

clipped histones are present. 

Histone clipping has been reported in several distinct biological systems [175–178, 180–183], entailing 

different biological settings and thus potential roles of this PTM. However, only recently it was 

admitted into the epigenetic landscape with the discovery of transient histone H3 clipping in 

differentiating mESC [127] and sporulating yeast [179]. The evolutionarily conserved sequence of 

histone proteins has been suggested to underlie the surprising occurrence of A21 clipping in both 

mouse and yeast, and we thus set out to verify whether the H3 clipping that accompanies mESC 

differentiation also takes place during hESC differentiation.  

Duncan and colleagues monitored cH3 levels under several differentiation protocols in mESC, namely 

spontaneous monolayer differentiation after withdrawal of LIF, induced differentiation with RA and EB 

formation. Depending on the protocol applied, a different cH3 pattern was visualized. Where RA 

induction leads to an undulating pattern of upcoming and decreasing H3 clipping centered around 

day 2 and 3 of differentiation, EB formation displayed a faster migrating H3 band which peaked 

between day 8 and 12 but did not disappear completely after 14 days. 

Here, we report that indeed histone H3 N-terminal clipping occurs in differentiating hESC and that its 

temporal appearance is equally influenced by the culture conditions. In feeder-free conditions, the two 

hESC lines tested (UGENT2 and WA01 Oct4-eGFP) show a continuous cH3 pattern after RA induced 

differentiation, resembling the results of EB formation in mESC. In contrast, when switching to culturing 

hESC on a feeder layer of MEF, both these cell lines obtain a pattern of upcoming cleavage appearing 

on day 1, reaching a maximum intensity at day 4 and fading again at the last day of the experiment, 

similar to the temporal pattern described for RA induced mESC differentiation. Together, this suggests 

that within both human and mouse, the specific control over histone H3 cleavage during 
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differentiation is profoundly influenced by experimental culture conditions applied. Although the 

cleavage event in mESC and hESC is appreciably similar, caution should be taken when functionally 

comparing these events, not in the least because hESC resemble more mouse epiblast stem cells than 

regular mESC. The latter are considered to represent a more homogeneous and naïve pluripotent state 

compared to hESC, which are designated to be in a heterogeneous and primed pluripotent condition 

and thus probably reflect a more developed state [5, 46, 52]. In contrast to Duncan et al., we could not 

find any clear correlation between the progression of differentiation and histone H3 clipping. The 

pluripotency status was monitored in this report by following Oct4 levels, i.e. specifically with an Oct4-

eGFP reporter cell line. When monitoring three different differentiation methodologies, H3 cleavage 

seemed to be unaffected, while the Oct4 status was found to be influenced in the predicted way: a 

decrease in expression following (induced) differentiation. Considering the open and highly dynamic 

state of pluripotent hESC chromatin, this might not be such a surprise [72]. In line with this, on a Sypro 

Ruby stained SDS-PAGE gel we also observed some reduction in H4 band intensity at some time 

points (data not shown). Whether this indeed is a clipping event remains to be determined. Of note, 

when Duncan et al. inhibited cathepsin L, H3 clipping was abrogated while Oct4 expression still 

decreased, adding yet another argument against a direct link between Oct4 expression levels and 

histone clipping. 

Histone H3 cleavage is not in vitro generated during the experiment as visualized here by the use of 

biotinylated histone H3 during the extraction procedure. Also, protease inhibitors did not seem to 

influence the cH3 intensity, whether or not they are present. Moreover, both TEB/HCl extraction and 

direct boiling in SDS-PAGE Laemmli yields the same results, further supporting the endogenous 

formation of cH3. The fact that MEF themselves do not display any clipping, but can completely 

change the temporal appearance of cH3 in differentiating hESC, further argues in favor of a 

biologically regulated process. Of note, we also verified the occurrence of H3 clipping in a human, 

terminally differentiated cell line (Burkitt’s lymphoma Raji cells) and these cells did not form any 

clipped histone H3 (data not shown).  

Many different histone H3 cleavage sites have been reported in the past, even within one study. In 

differentiating mESC [127], A21 is the primary site of cleavage, though multiple other sites were also 

found at T22, K23, A24, R26 and K27. By the use of Western blotting, Edman degradation and mass 

spectrometry respectively, we confirmed two of those cleavage sites in hESC, namely A21 and R26, and 

assigned residue 31 as an additional new cleavage site in hESC. Unfortunately, with the techniques 

applied, no definite distinction could be made between the H3.1/H3.2 or H3.3 isoform cleavage 
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respectively. Nevertheless, we expect H3.1 or H3.2 to be the cleaved isoform, since A31 is followed by 

threonine just as A21, which can thus be suspected to be susceptible to a similar enzyme activity.  

It is worth noting that despite the many hurdles that need to be overcome when using mass 

spectrometry for the analysis of histone H3, several arguments add up to the likelihood of this newly 

identified cleavage site at residue 31. First, the annotated peptide was N-terminally propionylated, 

indicating no in-source decay causing this fragment to appear. Second, elution time patterns of the 

precursor and its cleaved form are distinct, further arguing against in-source formation of the cleaved 

fragment out of the intact precursor. Third, by first separating the histones with SDS-PAGE, the 

location of annotated histone H3 and its cleaved form in the gel allows to project the peptide data 

back onto the precursor proteins: the N-terminally cleaved fragment could only be annotated in lower 

MW (cH3) gel bands, in contrast to the N-terminal peptide itself which was found only in the highest 

MW (intact H3) fraction. Finally, all spectra corresponding to a cleaved peptide were manually 

validated by an expert before taken into account. On the other hand, more cleavage sites are expected 

to be present which cannot be identified by MS, as seen for the A21 and R26 sites detected by a 

specific antibody and Edman degradation respectively. This can be explained by the limited 

possibilities of MS to annotate small peptides with high reliability. When a cleavage site is found to be 

close to an arginine, which is cleaved during digestion, the resulting peptides will consist of too little 

amino acids to be identified reliably. As a result not all possible cleavage sites can theoretically be 

identified by MS but their existence should not be disregarded.  

Only few of the published histone clipping reports actually also categorize the protease responsible for 

this event (reviewed in [190]). Duncan and colleagues (2008) assigned the cleavage to cathepsin L, a 

lysosomal cysteine protease, whilst glutamate dehydrogenase has been brought forward by Mandal et 

al. (2013). Santos-Rosa et al. (2009) who originally published the yeast clipping event, could only 

categorize the enzyme as a serine protease. It was just recently that Xue and colleagues [191] found 

that the vacuolar protein Prb1 (Cerevisin) is required for the N-terminal H3 clipping in Saccharomyces 

cerevisiae. Finally, the Foot-and-Mouth disease virus expresses the so-called protease 3C, a cysteine 

protease, in the host cells which mediates clipping of host histone H3 at leucine 20 [175, 176]. 

The incubation assays performed here with the application of different inhibitors point out that the 

clipping enzyme is a serine protease, since apart from AEBSF none of the inhibitors for other protease 

classes could establish any effect on the incubation. This was confirmed by the fact that the PIC, which 

inhibits mainly serine and cysteine proteases, was also able to inactivate the clipping activity. We also 

included three specific inhibitors for cathepsin L, in analogy to the clipping in mESC, but no decrease in 

cleavage was seen due to these inhibitors. However, caution should be taken in the search for the 
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responsible enzyme. As also others already suggested [127, 179], enzyme redundancy and overlapping 

functions could impede its identification. 

Despite the great epigenetic promise of such radical PTM, histone clipping and more specifically its 

biological potential and the mechanisms by which it could exert its transcriptional effects, remain 

surprisingly understudied. Since the two landmark discoveries of H3 clipping in mouse and yeast in 

2008 and 2009 respectively, four major mechanisms have been formulated by which histone 

proteolysis can influence gene expression programs [173]. 

First, in yeast, a direct regulatory role of gene expression has been attributed to the removal of the N-

tail and its repressive marks at promoter regions [179]. As such, histone H3 cleavage clears repressive 

marks massively, hence allowing for gene expression activation. Second, cH3 might provide a new 

binding site for protein complexes that could not be bound before clipping, thus fulfilling an active 

role in protein recruitment. On the other hand, also a passive regulatory role should be considered if 

other proteins are no longer able to bind the shortened histone H3 [173, 179]. Third, Santos-Rosa and 

colleagues [179] also proposed nucleosome eviction and histone replacement as another framework in 

which clipping might regulate gene expression, as they report that H3 clipping precedes nucleosome 

eviction and subsequent gene induction. Finally, the N-terminal peptide itself might establish its 

translation regulation by binding its own mRNA [173]. Which of these mechanisms, if any, is at play in 

(differentiating) hESC remains to be elucidated. 

In short, based on previous findings and theoretical background, H3 clipping could be involved in 

several processes linked to gene expression control and differentiation. But the question still remains 

as to whether H3 proteolysis correlates directly with or causes such processes. Further studies will 

hopefully help elucidate the role of this new epigenetic mark in hESC and their differentiation process. 

3.6. Conclusions 

As a member of the epigenetic network, regulated histone proteolysis has been occasionally described 

earlier in diverse biological settings, yet being largely understudied. Histone H3 clipping and histone 

proteolysis in general might skew experimental findings substantially, both from a biological and a 

technical point of view. In this report we show for the first time that this posttranslational modification 

is also present in human ESC, and is mediated by a serine protease. The temporal pattern of cleaved 

H3 is highly dependent on the culture protocol applied, as seen for both cell lines used in this report. 

Although in first instance we too detected the clipping upon early stem cell differentiation, we found 

that the clipping process is not necessarily accompanied by a decrease in Oct4 expression, as also 
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undifferentiated hESC can contain cleaved H3 fragments. Thus, more research is needed to fully 

elucidate the potential biological role(s) of histone H3 cleavage. 
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4. SUPPLEMENTARY FINDINGS 

4.1. Abstract 

H3 clipping is present as a histone PTM in hESC, but a clear framework of its biological function is still 

lacking. Preliminary data obtained from MEF cultured hESC initially led to the hypothesis that this 

event is cell cycle related. However, the clipping data collected from other, synchronized cell lines 

(THP-I and Raji cells) in combination with data retrieved from feeder-free hESC experiments contradict 

this hypothesis. Initially also a link with ongoing differentiation was proposed, but as discussed in 

Chapter 3, this seems implausible. After conducting two more control experiments to exclude in vitro 

H3 clipping, we also ruled out two of the best studied clipping proteases as potential mediators of the 

clipping event: cathepsin L/V nor neutrophil elastase are probable candidates for the responsible 

clipping enzyme. 
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4.2. Background 

Several epigenetic mechanisms cooperate in regulating stem cell biology, but the elucidation of this 

complex network still has a long way to go. Histone clipping illustrates perfectly how much more 

research is needed to complete current insights. As clipping is still an under-studied PTM despite its 

epigenetic potential, it is hard to attribute the correct biological context to new experimental findings. 

On top of the results on hESC H3 clipping described in the previous chapter, some additional 

unpublished data are outlined here. They helped in phrasing the discussion in the manuscript in 

Chapter 3, but were not included as results because of their unclear biology. Nevertheless, they can 

contribute to build the correct framework for histone clipping in hESC.  

4.3. Methods 

Cell cultures and differentiation 

Human ESC culture and their differentiation were performed as described in Methods 3.3. The 

following cell lines were applied: UGENT1 (G1 (XY)), UGENT2 (G2 (XX)) and a WA01 Oct4-eGFP knock-

in cell line. 

THP-I cells were maintained in suspension culture in completed RPMI consisting of RPMI medium 

supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin and 10 % fetal 

bovine serum (37 °C, 5 % CO2). Medium was replenished or refreshed totally every other day. 

Differentiation was induced by addition of 1 µM RA. 

Raji cells (suspension) were cultured in completed DMEM consisting of DMEM medium supplemented 

with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin and 10 % fetal bovine serum 

(37 °C, 5 % CO2). Medium was replenished or refreshed totally every other day. 

Cell cycle synchronization 

Raji and THP-I cells were synchronized by means of a double thymidine block. A first blocking was 

reached by exposure to an excessive amount of thymidine (2 mM) overnight. After this incubation 

period the cells were released again for 7 to 8 hours by washing off the thymidine. Subsequently a 

second overnight thymidine block was applied, after which the cells were synchronized at the early S 

phase. 

PI staining and flow cytometry analysis 

The results of the cell cycle synchronization can be monitored with flow cytometry. To this end, the 

cells were stained with PI (ex. 488 nm, em. 617 nm). Prior to staining, the cells were fixated in ethanol 

at 4 °C during at least 2 hours. After washing the cells with PBS, staining was performed in the dark 
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during 30 min (50 µg/ml PI and 10 µg/ml RNase in PBS). The flow cytometric analysis afterwards was 

carried out with an FC500 (Beckman Coulter) using the CXP analysis software. 

Protein sample preparation 

Histone extraction from the different cell types and the nuclear extraction from Raji cells were 

performed as described in Methods 3.3. 

The protocol applied for isolating the nuclear fraction of THP-I cells used in the first step a hypotonic 

lysis buffer (10 mM Tris (pH 8), 1 mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol, PIC), in which the cells 

were incubated for 30 min at 4 °C. After centrifugation (10 min, 4 °C, 2000 rpm), the isolated nuclei 

were resuspended in R1-buffer (40 mM Tris, supplemented with tributylphosphine, phosphatase 

inhibitors, PIC and endonuclease) and sonicated for 10 min.  

SDS-PAGE and western blotting 

Gel electrophoresis, Sypro Ruby staining and blotting analysis were performed as described in 

Methods 3.3. The applied primary antibodies for the additional experiments were: anti-cathepsin L 

catalytic domain antibody (1:1000; ab49984), anti-cathepsin L mature domain antibody (1:500; 

ab58991), anti-cathepsin V antibody (1:1000; ab49982), anti-neutrophil elastase antibody (1:500; 

ab21595), all purchased from Abcam. 

RT-qPCR 

RNA isolation, cDNA preparation and RT-qPCR analysis were performed as described in Methods 3.3. 

The additional TaqMan assays used were: cathepsin L (Hs00377632_m1), cathepsin V 

(H100426731_m1), neutrophil elastase (Hs00975992_g1 and Hs00975994_g1), all purchased from Life 

Technologies. 

In vitro enzymatic incubation assays 

Recombinant active cathepsin L was purchased from Abcam (ab81780). Recombinant pro-cathepsin V 

was obtained from Enzo Life Sciences (BML-SE554-0010) and could be activated by pre-incubating the 

proenzyme in assay buffer for 5 to 30 min. The pH 5.5 buffer consisted of 10 mM HEPES, 10 mM KCl, 

1.5 mM MgCl2, 0.34 M sucrose, 10 % glycerol and 5 mM β-mercaptoethanol. The pH 7.5 buffer was 

composed of 25 mM Tris-HCl, 150 mM NaCl, 0.1 mM EDTA, 10 % glycerol and 2 mM β-

mercaptoethanol. Incubations were performed at 37 °C for 1 hour.  
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4.4. Results 

4.4.1. Histone H3 clipping in differentiating MEF-cultured hESC follows an undulating 

pattern 

The initial differentiation experiments carried out on MEF-cultured hESC were also repeated both in a 

more detailed time frame and over a more extended time period. To acquire a sufficient number of 

cells in the least possible number of passages, two hESC lines (G1 and G2) were combined in these 

experiments. Although this may have yielded a different clipping pattern from what might have been 

obtained when using a single cell line, both G1 and G2 display a pattern of upcoming and decreasing 

H3 cleavage (Figure 4.1).  

 

Figure 4.1. Undulating pattern of H3 clipping in MEF cultured hESC. A: The initial differentiation 

experiment showed cleavage for both the G1 and the G2 cell line, with upcoming cH3 on day 2 and fading again 

on day 4 of differentiation. B: When increasing the time resolution on day 3, 4 and 5 of differentiation, western 

blotting analysis shows a ‘wave’ pattern of upcoming and decreasing clipping. C: The same result is obtained on a 

larger time scale when the experiment was extended up to 12 days. Also for B and C samples from both cell lines 

were used, as indicated on the blot image. Respectively 3 µg (B) and 2 µg (C) histone extract were loaded per lane. 

The time points of sample collection are indicated on all images (“x hours/days” after onset of differentiation). 
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This ‘wave’ pattern is in stark contrast with the continuous cleavage found in feeder-free cultured hESC 

and emphasizes again the crucial role that is played by the culture conditions applied. However, we 

interpreted this undulating pattern to be possibly cell cycle-related, as the addition of RA to the cell 

culture most probably also has a somewhat synchronizing effect on the stem cell cycle, as they are 

primed for differentiation. One possibility is then that the clipping occurs during the S phase, in which 

the DNA is duplicated and the histone content is replenished accordingly. As the DNA structure is 

loosened upon replication, it becomes more susceptible for clipping proteases. This also implies it is 

more accessible to aspecific and/or cytoplasmic enzymatic activity. In vitro enzyme activity does thus 

become an important experimental concern, although this does not necessarily exclude any biological 

functionality for histone clipping.  

4.4.2. Artificial in vitro clipping 

If the clipping is indeed merely induced during cell lysis, this too could generate an undulating pattern, 

assuming that the clipping primarily occurs when DNA structure is less condense. Apart from the 

experiments reported in Results 3.4.3, we also performed a final experiment that circumvented the 

need for biotinylated H3, although we validated that biotinylated histone H3 displayed sustained 

enzymatic susceptibility (Figure 3.3A). In this experiment, we added an excessive amount of calf 

histone H3 to the buffers during the extraction procedure. This calf H3 did not carry a biotin- or any 

other label and was thus in se not distinguishable from the endogenous hESC H3 content by means of 

western blotting analysis. The comparison of the H3 intensity from hESC samples with and without 

extra H3 added showed a diminished cH3 intensity in the former samples (Figure 4.2A). Although we 

cannot exclude that this was due to an inhibitory effect of the excess calf H3 towards the clipping of 

the endogenous H3, this result at least suggests that the added calf H3 was probably not clipped to a 

notable amount during extraction and did not contribute to the cH3 content in the hESC samples. 

Besides the experiments to exclude possible unwanted in vitro clipping activity during the histone 

extraction protocol, we also briefly looked into whether or not the other core histones are processed 

during our hESC experiments. In the mass spectrometry data obtained in search for the clipping sites 

(Results 3.4.4), we could not find any evidence for other clipped histone forms. Additionally, we 

analyzed several samples from differentiating hESC by means of Sypro Ruby staining after SDS-PAGE 

to visualize possible additional protein bands indicative of other degradation products. Again, no 

obvious changes in histone patterns were found, except for that of histone H3 (Figure 4.2B). Although 

this is evidently not stringent enough to affirm their absence, it does add to the evidence for the 

specificity of this clipping event.  
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Taking these data together, we conclude that the detected H3 fragments must have been generated 

prior to the extraction procedure in our experiments. Nevertheless, undisputable confirmation hereof 

could only be attained by detecting the specific fragment in intact cells, e.g. by live-cell 

immunofluorescence staining with the H3.cs1 antibody. Yet, we consider the evidence outlined here 

adequate to imply a biological origin of the cH3 fragments in differentiating hESC. 

 

Figure 4.2. No in vitro clipping in hESC. A: Western blotting analysis showed that the cH3 intensity 

decreased in samples where an excessive amount of calf H3 was added during the extraction procedure, at least 

suggesting that the cH3 content originated from before extraction and was already present in the hESC. For each 

lane 2 µg histone extract was loaded of samples obtained from the Oct4-eGFP reporter cell line (feeder-free 

culture) after 24 hours of RA exposure. B: Sypro Ruby staining after SDS-PAGE (upper panel) shows no notable 

changes in any other core histone content other than histone H3. Specific western blotting analysis (lower panel) 

with the C-terminal H3 antibody clearly showed the cH3 content. Samples were obtained from a differentiation 

(2 µM RA) experiment performed on Oct4-eGFP reporter cells (MEF culture) during 5 days. The input for each lane 

was 3 µg histone extract. 

4.4.3. Is clipping linked to the cell cycle? Is differentiation involved in its regulation? 

If not generated in vitro, this undulating clipping pattern still suggests cell cycle involvement. To 

investigate this hypothesis, a cell cycle synchronization experiment was performed with Raji cells 

(Burkitt’s lymphoma). Synchronization was most optimally induced by subjecting the cells to a double 

thymidine block (stop in early S phase) and could be visualized by flow cytometric analysis after PI 

staining (as shown in Figure 4.3A). As already mentioned in the discussion of 3.5, no cH3 was seen in 

Raji cells, disregarding whether they are synchronized or not (Figure 4.3B). Next, also the progenitor 

THP-I cell line (acute monocytic leukemia) was included, which displays H2A clipping activity when 

stimulated with RA or phorbol 12-myristate 13-acetate (PMA) [192–194]. Samples were isolated on 
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several time points after onset of differentiation (1 µM RA). Although the obtained THP-I results were 

not always consistent, they do show that these cells are capable of H3 clipping (Figure 4.3B). However, 

cell cycle synchronization did not alter the constant pattern of clipping found in these cells. 

Since these cell lines do not have an equal differentiation capacity, the involvement of differentiation in 

clipping could be monitored simultaneously. Raji cells are terminally differentiated, while the THP-I’s 

are pro-monocyte cells. Yet, differentiating the latter with RA did not induce any changes in the 

abundance of the H3 clipping (Figure 4.3B); this in support of our hESC results in Section 3.4, which 

indicate that differentiation as such (monitored via Oct4 expression) does not seem to be a major 

biological process at work in histone clipping. 

 

Figure 4.3. Histone H3 clipping in other cell lines. A: Validation of cell cycle synchronization. Flow plots 

after PI staining show a clear shift in population distribution after release from the thymidine block, compared to 

the steady profile of the control samples. B: No cH3 was observed in Raji cells in western blotting analysis, neither 

in unsynchronized or synchronized conditions (T0 = starting point right after release of second thymidine block, 

other time points indicate number of hours after release). THP-I cells on the other hand are capable of H3 

clipping, but the addition of RA does not influence the clipping pattern (Time points given are the number of 

hours after onset of differentiation).  

In summary, these findings suggest that the clipping is not directly correlated to either cell cycle or 

differentiation but nevertheless seem to imply that some degree of differentiation capacity is required 
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for it to occur. As ESC in general have a more loosened chromatin structure compared to terminally 

differentiated cells, it is plausible that their DNA is more susceptible for clipping protease activity. 

4.4.4. The clipping enzyme 

Besides the inhibition experiments described in Section 3.4.6, we also applied a targeted approach 

towards the cysteine protease cathepsin L, the cleavage enzyme in mESC and thus an obvious 

candidate for H3 clipping in hESC. Importantly, there are two cathepsin L isoforms present in human 

cells, namely cathepsin L (or L1) and cathepsin V (or L2). We first verified whether cathepsin L and V 

were capable of generating H3 fragments in vitro, by comparing their proteolytic activity on calf H3 in 

both pH 5.5 and pH 7.5. They both appeared to be capable of doing so, as visualized by western 

blotting. In contrast to the enzymatic activity of the NE from hESC however, they were more active in 

acid environment than at neutral pH (Figure 4.4A). 

Next, we checked the expression of cathepsin L and V in hESC. RT-qPCR analysis showed that there 

was indeed expression of both cathepsins but no obvious quantitative correlation was found with the 

H3 clipping pattern (Figure 4.4B). Western blotting analysis only yielded inconclusive data about 

whether the active form of cathepsin L or V was present in the hESC nuclear extract (data not shown). 

Similarly, we verified the expression of both proteases in THP-I cells. Also these cells showed 

expression, albeit very low according to the RT-qPCR results (data not shown).  

 

Figure 4.4. The clipping enzyme in hESC. A: The enzymatic activity of the hESC NE was compared with that 

of cathepsin L in two different reaction buffers. The latter enzyme was more active in acid environment, while the 

NE showed higher clipping activity at neutral pH. B: The expression of cathepsin L does not show any quantitative 

correlation with the cH3 pattern. 
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Nevertheless, the experiment outlined in Results 3.4.6 pointed out that the enzymatic activity in hESC is 

mediated by a serine protease. Though the option is still open that the aforementioned cathepsins 

might mediate histone clipping in hESC, the inhibition assay contradicts that the main responsibility 

lies with these cysteine proteases. Of note, the cH3 found in THP-I seemed to have a slightly higher 

MW than the fragment(s) found in hESC. The involvement of another enzyme in these cells should thus 

be taken into consideration for future experiments. 

As such, a serine protease seems responsible, at least partially, for the clipping activity in hESC. In 

parallel with the study described here, our lab discovered that the serine protease neutrophil elastase 

was responsible for the H2A clipping in THP-I cells [195]. Therefore we also checked this enzyme’s 

expression in hESC. However, no expression was seen with RT-qPCR analysis and simultaneous western 

blotting analysis also suggested that this enzyme is not present in hESC, or at least not in a 

considerable amount (data not shown). Taken together these results seem to suggest that instead of 

cathepsin L/V a serine protease, but not neutrophil elastase, executes the H3 clipping in hESC. 

4.5. Conclusions 

The lack of a biological framework hampers the research on histone cleavage and many open 

questions still remain. Although the clipping activity was thus far only found in cell lines that are not 

terminally differentiated, any data functionally linking clipping to the process of differentiation is 

missing. Chapter 5 provides a general discussion wherein the current literature on histone proteolytic 

events is classified for the first time, to give, in combination with our own results, a first impulse to 

build a biological framework for histone clipping. 
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5. DISCUSSION 

Human ESC still serve as the gold standard in studying early development. Epigenetic mechanisms play 

an important role in hESC biology. Epigenetics is mediated via histone PTMs, histone variants, DNA 

methylation and RNA-based mechanisms, which all cooperate in a far from completely defined, 

complex network to regulate essential processes such as e.g. maintenance of pluripotency and 

controlling differentiation in hESC. Histone proteolysis or the enzymatic removal of several amino 

residues of a histone’s tail, is assumed to be a rather new, emerging candidate to participate in that 

network. It is surprising that despite the numerous reports that propose such a potential epigenetic 

function, only few actually tried to attribute a biological significance and that this process does not 

have a broader scientific basis.  

Our own findings on H3 and H2A clipping [44, 195] could as such not easily be submitted back to 

compare with earlier findings and hypotheses. Hence, in order to provide a general framework to build 

on further research and interpret new findings, we propose a first categorization of histone proteolysis 

into “histone degradation” and “histone clipping” [196] (further divided into several (biologically 

relevant) functional classes). Of note, for convenience we mainly focus here on reports on mammalian 

cells, though histone proteolysis also has been described in other eukaryotes such as amphibians and 

Tetrahymena. After summarizing this suggested categorization, we here frame our own results in this 

new classification.  

5.1. Classifying histone proteolysis 

5.1.1. Histone degradation 

The earliest reports on histone proteolysis already date from over 50 years ago. Its theoretical 

implications in a living cell suggest themselves when considering the histones’ nuclear functions, but 

conclusive evidence of transcriptional consequences is only now gradually emerging. Reports on 

specific enzymatic interactions with an epigenetic connotation are all classified under “histone 

clipping”. However, these histones might have been degraded instead of being truncated inside the 

nucleosome and these events are subsequently classified as “histone degradation”. These two 

categories are often hard to distinguish both experimentally and biologically, e.g. because of the fact 

that some proteolytic enzymes proved to be able to mediate both. And although the focus for this 

thesis is on histone clipping, also histone degradation provided us with some interesting insights 

nevertheless and is discussed here first to illustrate the complexity of histone proteolysis.  
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Biologically unclassified degradation 

Although degradation might seem rather random at first sight, it is an important biological process. 

Early reports from the 1970’s already described a “neutral protease” activity, mainly degrading histone 

H1 and H3. This enzymatic activity was attributed to a serine protease with trypsin-like activity and was 

primarily found in rat liver and calf thymus, but a biological function could not convincingly be 

attributed (e.g. [197, 198]).  

Histone degradation has also been induced in vitro in enzymatic incubation assays conducted for 

structural purposes. These showed that histone proteins retain their globular structure even after the 

tails are removed [199], but also that these histone tails are essential for correct formation of higher-

order chromatin structures [96, 97]. Upon enzymatic incubation, histone H1 appears to be the most 

susceptible substrate, followed by histone H3 and subsequently H2A > H4 > H2B [200]. This is not 

surprising as the linker histone H1 is not part of the histone octamer and is more accessible, and 

histone H3 has the largest protruding N-tail out of a nucleosome. Similarly, incubation experiments 

with crude protein extracts from different tissues can deliver plausible candidates for those proteolytic 

events in which the responsible enzyme has not been elucidated yet and can indicate which tissues are 

thus most prone to histone degradation.  

Biologically classified degradation 

Histone degradation in a biological context can be further divided in continuous degradation and 

degradation coupled to specific biological processes. At least two general mechanisms are responsible 

for the continuous degradation of histones: lysosomal and proteasome processing. Lysosomes are 

small membrane-bound cell organelles, filled with (proteolytic) enzymes in an acidic environment. For 

example, in senescent cells, the histone content in cytoplasmic chromatin fragments budded off the 

nucleus is processed by the lysosomal pathway [201]. Of note, cathepsin L – the mESC H3 cleavage 

enzyme – is also a lysosomal component and thus helps in mediating this histone processing. The 

proteasome processes proteins after they have been tagged for degradation with polyubiquitination 

marks. In the case of histones, also acetylation seems to play a role herein [202].   

Degradation can also occur associated with specific transitions in development. For example, histones 

are removed during spermatogenesis when they need to be replaced with protamines [203]. Further 

on, upon early embryogenesis, these protamines and the remaining sperm histones again need to be 

degraded. Of note, this latter degradation process was recently attributed to a nuclear cathepsin L 

[204].  
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Also in the immune system histone proteolysis can fulfill specific roles [205, 206]. Neutrophil 

extracellular traps (NET) are composed of decondensed chromatin and antimicrobial proteins, and 

have evolved in neutrophils, amongst other cell types, as a way to eliminate invading pathogens. 

Neutrophil elastase plays an important role in these NET. During T-cell and natural killer cell granule-

mediated apoptosis, histone digestion by GranzymeA arranges the unfolding of compacted chromatin 

and facilitates endogenous DNase access to DNA [206]. 

5.1.2. Histone clipping 

Histone clipping represents the group of the more specific, epigenetically important proteolytic events 

and also the findings reported in this dissertation are dealt with as histone clipping.  

The direct expression of truncated histone forms in vivo illustrates the potential molecular impact of a 

clipping event. Although the tails are dispensable for viability as was found for yeast [207–210] and 

human embryonic kidney cells [211, 212], the truncation of C- and N-termini has an important 

influence on transcription and chromatin compaction. This also illustrates the caveats inherent to 

studying histone clipping: as histone tails can be discarded genome-wide without affecting viability, 

while they can also be modified by an extensive mix of PTMs (as outlined in Table 1.1), cells seem to 

survive through redundancy of regulation. This redundancy might hamper the interpretation of 

experimental results. 

Up to now, only H2A C-tail and H3 N-tail clipping have been described in considerable detail and 

these are outlined below more elaborately (also partially reviewed in [190]). 

H2A clipping 

The first reports in this context date from the 1970’s and 80’s [213–217]. The group of Moudrianakis 

described for the first time a chromatin-bound proteolytic activity in calf thymus with unique 

specificity for H2A. A “H2A-specific protease” was able to clip H2A after valine 114, under high ionic 

strength. A similar cleavage pattern was described in several myeloid and lymphatic leukemia cell 

types shortly after [218, 219]. However, it took another two decades for an additional confirmation of 

these results. The research group of Ohkawa found that an analogous clipping event and an additional 

N-terminal truncation took place in THP-I cells, an acute monocytic leukemia cell line [192, 193] after 

stimulation with RA or PMA. Only recently, we were able to define the so-called “H2A-specific 

protease” responsible for the V114-proteolytic activity as neutrophil elastase [194, 195].  

H2A clipping has also been implicated in host defense. Enzymatically generated fragments of the H2A 

N-terminus can function as antimicrobial peptides called buforins. Such pepsin-mediated activity has 

also been found in the gastric fluid from human, bovine and pig species [220]. 
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H3 clipping 

In 2008, Duncan et al. published their findings on the N-terminal proteolytic processing of histone H3 

in differentiating mESC [112, 127]. They found that cathepsin L cleaves H3, with alanine 21 as the 

primary clipping site, independently of the differentiation protocol applied. This manuscript inspired us 

to investigate whether hESC have a similar mechanism and define this clipping event in a broader 

context. Simultaneously another report described H3 truncation after alanine 21 in yeast during the 

stationary phase or sporulation by a serine protease [179]. Recently vacuolar proteinase B1 (PRB1) was 

proposed to be at least partially responsible for this clipping activity in yeast [191]. Glutamate 

dehydrogenase appears to be the responsible enzyme for H3 cleavage in chicken liver cells [182, 183]. 

In parallel, also in quail liver and oviduct H3 clipping appears under circumstances of aging and steroid 

induction [178, 221]. Legumain activity from colorectal cancer cells yields a 12 kDa H3 form, analogous 

to the one produced by cathepsin L in mESC [222]. The latest publications report histone H3 clipping 

activity in mammary glands upon involution and adipocyte differentiation [223, 224]. Two labs 

described this proteolytic event independently from each other, but they attributed the enzymatic 

activity to two different enzymes, namely calpain 1 and cathepsin D.  

Most of the aforementioned clipping events share cleavage sites within the same H3 sequence stretch, 

namely amino acids 20 to 30 on the N-terminus, as was also found here for hESC. The fact that the 

same clipping site can be targeted by different enzymes and that multiple clipping sites can be 

generated by one proteolytic enzyme again alludes on redundancy, in line with the high sequence 

conservation of histones along eukaryotic evolution. E.g. Xue et al. [191] found that there was still a 

slight residual proteolytic activity in nuclear extracts of PRB1 mutants, a similar finding to what we have 

seen for histone H2A in neutrophil elastase knock-out mice [195]. Also the description of histone 

clipping during mammary gland involution and its attribution to two different enzymes, is an excellent 

example of the enzyme redundancy that might be at play. Furthermore, another indirect indication for 

redundancy was deduced from the fact that cathepsin L knock-out mice are still viable and fertile [127]. 

5.2. Histone H3 clipping in hESC 

In this dissertation, we show for the first time that also in hESC histone H3 clipping takes place [44]. At 

first sight, this proteolytic event seems very similar to the one reported for mESC, but in fact turned 

out to be very different. Nevertheless, as this publication was the starting point for our own 

investigation, we first shortly summarize this report below.  

Histone H3 can be N-terminally processed by cathepsin L upon mESC differentiation, whether 

occurring spontaneously, upon EB formation or induced by RA [127]. The H3.2 variant in particular 

appeared to be preferentially cleaved over H3.1, but H3.3 was no substrate for this proteolytic activity. 
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Since the H3 N-terminus in general is highly prone to PTMs, Duncan et al. also investigated the 

clipping’s PTM environment. Both active and repressive histone marks were present and had the ability 

to modulate the cathepsin L activity. As such, dimethylation of H3K27 strongly increased the clipping 

activity, as did acetylation on H3K18. H3K23 acetylation on the contrary abrogated the cleavage almost 

completely, disregarding whether or not it was deposited in combination with K18 acetylation. A 

potential functional effect of this clipping, was that cleavage after alanine 21 greatly reduced the 

binding affinity of the Polycomb protein Chromobox homolog 7 (CBX7). 

Although we also found the N-terminal processing of histone H3 in (whether or not differentiating) 

hESC, the latter appears to have a very different molecular regulation in comparison to mouse. 

Culture conditions dictate H3 clipping activity in hESC 

One of our most important conclusions is that the ESC culture conditions substantially influence the 

pattern of this proteolytic activity. Duncan et al. described a temporally different cleavage pattern in 

mESC depending on the differentiation protocol applied. After RA induction, the truncated H3 form is 

obvious in samples taken on day 2 and 3 of differentiation. In contrast, when differentiation is not 

forced by RA, the clipping event is delayed in time and does not fade as abruptly (in spontaneous 

differentiation) or does not disappear at all (after EB formation). Nevertheless, they seem to associate 

clipping with the differentiation process itself, disregarding the differentiation protocol applied and 

consider the RA-induced clipping as sufficiently representative to complete their experiments. In 

contrast, their following observations describe that the inhibition of cathepsin L does not influence 

Oct4 levels and does not have an influence on the maintenance of pluripotency or the capacity for 

differentiation, although the authors initially seemed to suggest so.  

Our results in Chapter 3 and 4 illustrate that for hESC cultured in feeder-free conditions the cleavage 

pattern differs from that one seen in MEF-cultured hESC. Feeder-free hESC display more or less 

continuous H3 clipping, under both pluripotent and differentiating conditions (Figure 3.2), while 

feeder-culture hESC yield a similar pattern to that one of mESC after RA induction (Figure 3.7). 

Studying differentiation in MEF hESC cultures in a more extended and detailed time frame, even 

visualized a sort of undulating pattern of upcoming and decreasing H3 cleavage (Figure 4.1). The 

difference in clipping outcome between culture conditions might be explained by the difference in 

mechanical cues these culture systems induce. It is known that processes such as lineage specification 

and stem cell differentiation are also determined by the mechanical and geometrical properties of the 

cells’ environment (e.g. 2D MEF culture versus 3D EB culture) [225]. In the case of ESC H3 clipping, the 

differential response to different culture conditions might be expressed in the form of a distinct 
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clipping pattern, as mechanical stress and forces acting on a cell may alter chromatin organization and 

gene expression.    

Of note, one of the most important questions popping up in this context is whether there is an 

artificial in vitro contribution during the acid histone extraction procedure as the cells’ 

compartmentalization is lost and their content is released. Based on the results of the different 

experiments outlined in Chapter 3 and 4, we believe that there is no in vitro clipping of histone H3. 

Similarly, we could not find any evidence of other core histones being cleaved and we interpret this as 

an additional argument for the specificity of this hESC H3 clipping event.  

H3 clipping in hESC is not primarily determined by the cell cycle 

We initially interpreted the undulating pattern of cH3 as potential evidence for cell cycle involvement. 

Also Duncan et al. state that the H3 clipping can be cell cycle-dependently regulated. In mESC, the 

H3.2 variant was preferably cleaved while contrastingly, H3.3 was no substrate for histone cleavage, 

which consequently was interpreted as an indication for being S phase- or replication-dependent 

[112]. The preferred clipping of H3.2, whose expression is tightly replication-coupled, over H3.3, which 

on the other hand can be expressed throughout the whole cell cycle, might indicate a preference of 

the cleavage event towards the S phase. Of note, mESC divide rapidly and have a relatively high 

proportion of cells residing in the S phase. In addition, they refer to the processing of the CDP/Cux 

transcription factor by cathepsin L, which also occurs during the G1/S phase transition [226]. The same 

reasoning might hold for hESC, as our data also indirectly indicate that H3.1 and/or H3.2 are the 

preferred cleaved variants in our set-up. However, our results from synchronization experiments on 

other cell lines and the vast influence of the culture conditions applied argue that the cell cycle is not 

the primary factor determining histone clipping.  

The hESC clipping process does not seem differentiation-coupled 

Analogously to H3 clipping in mESC, our first experiments were carried out only on differentiating 

hESC and thus initially supported such a correlation. Nevertheless, when introducing hESC maintained 

under pluripotent conditions (E8 medium) in a feeder-free culture, our results showed that also then 

histone H3 is continuously clipped. As no direct link to the Oct4-expression became apparent, a direct 

correlation to differentiation seemed rather unlikely (Figure 3.2). Although the meta-analysis of several 

previous reports on H3 seems to suggest that clipping is a plausible common feature of differentiation, 

it could not be confirmed in hESC that clipping is a specific differentiation-feature.  

Nevertheless, it appears that cells require a certain degree of multipotency for the clipping to occur, 

illustrated by the fact that terminally differentiated Raji cells are incapable of H3 clipping in contrast to 
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oligopotent THP-I cells. In general, the more pluripotent the cells are, the more their chromatin 

structure is loosened – as such this might explain their higher susceptibility to histone clipping. 

Importantly, from a substrate’s point of view, it might also be that the histone H3 content present in 

cells unable to form cH3 does not contain the ‘correct epigenetic signature’ or is not accessible 

enough to allow for clipping. Alternatively, it is possible that these cells fail to activate the responsible 

clipping enzyme(s), if they even express such protease(s). 

The hESC clipping enzyme is a serine protease 

Besides the characterization of the clipping event itself, we also tried to define the clipping enzyme 

responsible in hESC. We applied both a targeted and a general approach to deal with this question.  

The targeted method focused mainly on cathepsin L, the responsible clipping enzyme in mESC and 

thus a very likely candidate for the clipping event in hESC [127]. In contrast to mouse cells, two variants 

of this cysteine protease can be present in human cells, namely cathepsin L (L1) and cathepsin V (L2) 

[227]. In terms of amino acid composition, cathepsin V exerts a higher sequence homology to the 

mouse variant than does cathepsin L but at the other hand its expression is much less ubiquitous. We 

took both variants into account for our experiments. Despite their ability to clip H3 in vitro, neither of 

them seems a plausible candidate for exerting H3 clipping in hESC, as none of the specific inhibitors 

for these enzymes or the general cysteine protease inhibitors could abrogate the cleavage event when 

histones were incubated with hESC NE that displayed clipping capability. Although the cleavage sites 

found in hESC are very similar to those in mESC and the clipping process itself seems highly conserved, 

these findings caution for blindly extrapolating results from one system to another. 

In analogy, we also briefly investigated the expression of neutrophil elastase in hESC, as we just 

identified this to be the H2A-specific protease, the serine protease which clips histone H2A after valine 

114 [195]. However, we could not find conclusive evidence for such presence in hESC. 

In parallel, we also incubated purified calf H3 with hESC NE supplemented with a whole range of 

protease inhibitors, as outlined in Section 3.4.6. As the serine protease inhibitor AEBSF was the only 

inhibitor able to abrogate the processing of histone H3, we concluded that a serine protease is 

responsible (at least in part) for the clipping activity in hESC. As mentioned earlier (Section 5.1.2), 

possible enzymatic redundancy as seen by Xue et al. [191], is still an important consideration. 

Whether the clipping enzyme - assumed to be a serine protease - is solely located in the nucleus also 

needs to be explored in the future. It might very well be that the cleavage is catalyzed by e.g. a 

cytoplasmic enzyme that traffics to the nucleus due to a certain trigger. Several examples of nuclear 
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active enzymes usually located elsewhere have already been reported, e.g. cathepsin L in mESC and 

NIH3T3 cells [127, 226], and cathepsin B in thyroid carcinoma cells [228].  

The potential (biological) outcomes of histone clipping 

The histone H3 N-terminus protrudes out of the nucleosome and is thus very susceptible for a whole 

range of PTMs (as illustrated in Table 1.1), among which also histone clipping. One exemplary case of 

the involvement of these PTMs in epigenetic regulation, is the interaction of the modifications 

deposited by the PcG and trxG proteins. The group of PcG proteins can be further subdivided into 

several Polycomb repressive complexes (PRC1 and PRC2), which respectively mediate H2A 

ubiquitination and H3 methylation. In this hierarchical recruitment model, PRC2 first installs a trimethyl 

group on H3K27, which in turn serves as an anchor site for the PRC1 complex that subsequently 

deposes a ubiquitin on lysine 119 of H2A. The trxG proteins on the other hand trimethylate H3K4 and 

have an activating effect on transcription. When occurring together in bivalent domains, these 

modifications counteract to result in silent genes that are poised for activation. Obviously, histone tail 

clipping can severely disturb this mechanism (and its downstream effects) or any other PTM cascade. 

Also other arginine and lysine methylations, lysine acetylation, citrullination and phosphorylation 

reside on the histone H3 tail, each bringing along their own effect. The latter three types of 

modification usually have an activating effect towards transcription, whilst for methylation the situation 

is more context- and residue-dependent and can lead both to activation or repression of the 

transcription process.  

As most PTMs exert their effect via mediator proteins, histone clipping will not only impair the 

deposition of other PTMs but also the binding of their according effector proteins, as e.g. Psathas et al. 

show that the H3 N-tail removal interferes with intratail regulatory mechanisms [229]. Additionally, also 

Duncan found that the binding of the Polycomb protein CBX7 decreased significantly when the N-tail 

was cleaved off. On the other hand, it might also provide (a) new binding site(s) for other regulatory 

proteins that could not bind before due to e.g. sterical hindrance or the presence of other inhibitory 

modifications.  

When considering the more global level of chromatin organization, it is plausible that clipping can tag 

nucleosomes that need to be evicted and replaced by new canonical and/or variant histones. As 

preferably H3.1 and 3.2 are cleaved over H3.3, this might represent a mechanism for H3.3 to be 

included after removal of the other two variants. Also the higher-order compaction of the chromatin 

fiber will be affected by histone clipping, as histone N-termini have proven to play an important role in 

the organization of the general chromatin structure. 
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For interpreting H3 clipping in mESC, it is noteworthy that cells lacking cathepsin L do have an 

abnormal distribution of euchromatic and heterochromatic marks and factors across the genome, 

suggesting a role for the cathepsin L activity in the epigenetic regulation of gene expression [107]. 

Another article worth mentioning in this context is that of Pauli et al. [230], who encountered an H3 

clipping event in protein extracts from Drosophila salivary glands. Their experiments served to 

investigate the transcriptional changes caused by depletion of cohesin, a multisubunit complex 

essential for sister chromatid cohesion and mitotic chromosome segregation. The depletion of one of 

the subunits of cohesion, Rad21, induced some drastic (posttranslational) alterations, e.g. upregulation 

of actin protein levels and histone H3 clipping. Surprisingly, coincidentally with the H3 clipping there 

appeared a presumably heavily posttranslationally modified form of RNA polymerase II (RNAPII). 

Personal communication with the authors learned that they assumed it to be a phosphorylated or even 

a ubiquitinated form of RNAPII, probably emerging as a stress-response, but they did not further 

pursue this matter. Phosphorylation of the serine and threonine residues in its carboxy-terminal 

domain aids in RNAPII functioning and is essential for correct 3’ end processing, 5’ capping, 

transcription termination, etc. [231]. These phosphorylated forms are enriched at active and/or poised 

genes [232]. As such, this RNAPII modification and histone clipping might be possibly co-operating to 

promote transcription at certain regions.  

The regulation of this enzymatic activity also remains elusive. Duncan et al. already showed that the 

neighboring PTMs on the H3 tail in mESC do have a substantial influence on the clipping activity, as 

outlined above. This effect is most probably due to its influence on the level of histone folding and 

interaction, as differential modification of histone peptide substrates does not substantially impact 

cathepsin L activity [174]. Alternatively, the presence of natural enzyme inhibitors in the nucleus might 

provide another level of clipping regulation. Ceru et al. already showed the interaction of stefin B 

(cystatin B), an endogenous cysteine protease inhibitor, with histones and cathepsin L in the nucleus of 

T98G human glioblastoma cells amongst other cell lines [227]. Increased levels of stefin B will thus 

influence the cathepsin L activity on e.g. the CDP/Cux transcription factor and help in regulating cell 

cycle progression into the S phase. The interaction with histone H2A.Z, H2B and H3 in vitro even 

seemed to enhance the inhibitory activity of stefin B on cathepsin L.  

Considering all of above arguments, although only delivering indirect evidence, clipping is definitely a 

plausible candidate to be involved in the complex network regulating transcription, also in hESC. 

Technical implications 

On top of the biological consequences, we also should take some technical implications of histone 

clipping into account. All techniques that are focusing on a specific modification within the H3 N-
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terminus or other histone tails such as e.g. chromatin immunoprecipitation, risk being blind for 

clipping events and hence create biased results. From our western blotting analyses it is clear that the 

amount of cH3 can be up to 50 % or more of the total histone content at certain time points in our 

hESC differentiation experiments, illustrating the extent of the potential impact. The lack of detection 

can be minimized by applying different antibodies to monitor both the N- and C-terminus of the core 

histones, as we did for histone H3 in hESC. In addition, also techniques such as Top Down mass 

spectrometry could provide an applicable platform, as they take all proteoforms into consideration. 

Nevertheless, only by circumventing the need for isolating histones all together, the presence of and 

the correlation between histone clipping and degradation can be studied in a cellular context, which 

could for example be attained by directly staining truncated histone forms in fixed cells. 

5.3. Conclusions 

We have shown for the first time that histone H3 clipping needs to be considered as an important 

player in the histone landscape of hESC, adding another layer of complexity to the already extended 

network of PTMs. We conclude that the applied culture conditions exert a substantial influence on the 

clipping pattern and that the underlying mechanism is at least more determining the clipping activity, 

than does the process of differentiation or cell cycle organization. Nevertheless, a certain degree of 

differentiation capacity seems required for the clipping to occur, as terminally differentiated cell lines 

are incapable of forming cH3. The real regulating mechanisms behind histone clipping remains thus 

elusive. 

The responsible clipping enzyme in this context is most probably a serine protease. Cathepsin L/V and 

neutrophil elastase, previously shown to be the clipping enzyme in mESC (H3) and myeloid cell lines 

(H2A) respectively, were excluded as potential clipping candidates in hESC. 

Finally, we propose a categorization for histone proteolysis into “histone clipping” and “histone 

degradation”, although we also emphasize that these classes are hard to distinguish. Despite 

numerous previous reports and the piece to the puzzle that was added in this dissertation, histone 

clipping remains an epigenetic outcast.  
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SUMMARY  

Epigenetic mechanisms help in regulating gene expression and variations thereof without altering the 

primary DNA sequence. Instead, these mechanisms are based on posttranslational histone 

modifications (PTM), incorporation of histone variants, DNA methylations and RNA-based processes. 

One very relevant model to study these modifications are human embryonic stem cells (hESC). These 

cells are hallmarked by their indefinite capacity for self-renewal and their ability to differentiate 

towards all cell types of the adult body. The biology of hESC is more comprehensively described in the 

first part of Chapter 1. Subsequently this chapter also elaborates on the domain of epigenetics, the 

involved mechanisms and the levels on which they manifest. Submitting this back in a stem cell 

context, epigenetics is shown to be the key to coordinate the development of all different cell types 

within an organism, as all cells of that organism contain the same genetic material. 

When differentiation is induced, the epigenetic signature of hESC alters substantially, which as a 

consequence will also affect their transcriptional activity. Hence, e.g. the expression of the core 

pluripotency factors such as Oct4 decreases upon the differentiation process. These changes in 

expression levels can be monitored via a number of techniques. One such, often employed method is 

relative quantification via reverse transcription-quantitative PCR (RT-qPCR). To make RT-qPCR analysis 

successful several possible (technical) variations need to be taken into account, such as sample 

handling, sample quality and enzymatic (in)efficiencies, which can be normalized for during data 

processing. This normalization is based on e.g. on one or more reference genes amongst other 

possible strategies. These reference genes should be equally expressed throughout all samples and 

thus need to be carefully selected for each experimental set-up. Thus Chapter 2 summarizes suchlike 

optimization for differentiating hESC. By use of the geNorm algorithm (qbase+ software), we found 

that the genes β-2-microglobulin (B2M), ribosomal protein L13A (RPL13A) and Alu repeats were the 

most stable reference loci in the setting we applied (i.e. hESC differentiation induced by retinoic acid). 

Moreover, their combination appeared to be much better than applying the ‘classic’ references such as 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or β-actin (ACTB). As stated before, this method 

can thus conveniently be applied to validate if hESC are keeping up in culture or to monitor how they 

evolve during differentiation experiments.  

Getting back to the epigenetics part, the main question addressed in this dissertation is whether 

histone clipping also plays an important role in hESC. Histones are highly conserved proteins that 

compact DNA into the nucleus of a cell and help regulating its transcription. The four core histones 

compact together in duplo to form the histone octamer, around which circa 146 bp of DNA is 

wrapped, forming altogether the nucleosome, alias the building block of chromatin. The tails of these 



Summary 

 
112 

small basic proteins protrude out of the nucleosome and are thus highly susceptible for 

posttranslationally modifying enzymes such as methyltransferases and demethylases, kinases, 

acetyltransferases and deacetylases, etc. These modifications can participate in gene expression 

regulation via direct genome accessibility management and/or recruitment of other effector proteins 

involved in the transcription process. 

One such modification of particular interest to us is histone clipping, a process in which a series of 

amino residues gets to be enzymatically cleaved off of a histone tail. Histone proteolysis in general can 

be roughly subdivided in “histone degradation” and “histone clipping”, but only in the latter category 

the processing of histones is more considered as an epigenetically important PTM. This proteolytic 

event has been described in several cell types, tissues and organisms under different circumstances 

and for different histones. For example, H2A clipping has been described in myeloid cells catalyzed by 

neutrophil elastase. H3 clipping has been investigated in more detail and has been reported in yeast, 

chicken and quail liver, colorectal cells and mammary glands. A notably interesting report discusses the 

clipping of histone H3 primarily after alanine 21 by the cysteine protease cathepsin L in differentiating 

mouse ESC (mESC). The authors found that this event could have a substantial influence on 

transcription by e.g. impacting the binding affinity of effector proteins such as the Polycomb protein 

Chromobox homolog 7, an enzyme involved in transcriptional silencing. 

In analogy, we analyzed whether this N-terminal H3 cleavage is also present in hESC, in which basic 

processes such as pluripotency and self-renewal are equally highly epigenetically determined. Indeed, 

we were able to show for the first time that this clipping event is actually taking place in hESC. Our 

findings are outlined in Chapter 3 and 4 and further discussed in Chapter 5. We studied several hESC 

lines, in feeder-free culture as well as maintained on a feeder layer of mouse embryonic fibroblasts 

(MEF), during various differentiation experiments. The clipping of histone H3 -analyzed by western 

blotting- appeared in both culture systems, albeit in a different pattern which highlights the influence 

culture conditions can exert. Feeder-free culture hESC displayed continuous clipping during the course 

of our experiments, whilst more of an undulating pattern with fluctuating clipped H3 (cH3) intensity 

was seen in MEF cultured hESC. When elaborating on the feeder-free hESC, we saw that they 

continued to show this clipping even after extension of the studied time frame to two weeks. 

Moreover, whether they were being forced into differentiation or not (by application of retinoic acid) 

did not seem to have an influence on the character of the cleavage. Since we could not find an obvious 

direct correlation with Oct4 expression, we suspect that this clipping event in hESC might not be 

related the process of differentiation, although contrastingly previous cH3 reports pointed in that 

direction and yet some differentiation capacity is required. However, this clipping process might very 
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well have different functionalities depending on the setting. Along the course of our experiments, we 

could also exclude the possible in vitro origin of this truncated H3 form during the histone extraction 

procedure. Furthermore, we were able to validate three clipping sites in hESC by means of 

complementary techniques: alanine 21 (western blotting), arginine 26 (Edman degradation) and 

residue 31 (mass spectrometric analysis). Of note, these cleavage sites are very similar to the ones 

found in mESC.  

In the pursuit of finding the responsible clipping enzyme, we set up an incubation assay in which 

purified calf H3 was incubated with the nuclear protein fraction isolated from hESC. By applying several 

inhibitors for the distinct protease classes, we found that not cathepsin L but a serine protease instead 

is processing histone H3 in hESC.  

Despite the reports yet published on histone clipping, this topic has remained a surprisingly 

understudied modification. Though more research is needed to elucidate its exact role in the 

epigenetic scenery, we nevertheless showed that histone cleavage is also occurring in (differentiating) 

hESC.  

Considering its potential effects, it might represent an epigenetically important process. Histone tails 

seem dispensable for a cell’s viability but do play an essential role in the organization of the higher-

order structure of chromatin. Proteolytic processing of these tails could thus evidently have a 

substantial influence on that organization. Clipping could also abrogate the binding of other effector 

proteins on the histone tails by removing the site of interaction or alternatively tag histones to be 

excised and replaced by e.g. a histone variant and thus as such provide new binding sites.  

Additionally to its potential biological influence, histone proteolysis should also be taken into account 

from a technical point of view. All studies using techniques based on the specific detection of 

particular modifications within the first part of the H3 N-terminus (e.g. chromatin 

immunoprecipitation) may generate biased results because of the lack of those modifications’ 

detection. Instead, methods that monitor the total protein with its corresponding proteoforms, such as 

Top Down mass spectrometry, are better suited for this purpose.  

In conclusion, more research will be needed to fully uncover the purpose of histone clipping but we 

can yet conclude that this proteolytic event definitely claims its spot, not only in hESC but also in other 

biological systems. 
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SAMENVATTING  

Epigenetica bestudeert de mechanismen die instaan voor de regulatie van genexpressie waarbij geen 

veranderingen aan de primaire DNA-sequentie aangebracht worden. In plaats daarvan zijn deze 

mechanismen gebaseerd op posttranslationele histonmodificaties, het incorporeren van 

histonvarianten, DNA-methylatie en RNA-gebaseerde processen. Een dankbaar model om deze 

modificaties te bestuderen zijn humane embryonale stamcellen (hESC). Deze worden gekenmerkt door 

hun capaciteit om zichzelf in vitro oneindig in stand te houden en door hun vermogen om te 

differentiëren naar eender welk celtype van het volwassen lichaam. Aldus wordt in het eerste deel van 

Hoofdstuk 1 een overzicht van hESC biologie gegeven. Vervolgens gaat dit hoofdstuk dieper in op 

epigenetica en de mechanismen die daarbij betrokken zijn. Epigenetische processen vervullen een 

sleutelrol binnen de ontwikkeling van alle verschillende celtypes in een organisme, gezien het feit dat 

alle cellen van dat organisme toch hetzelfde genetisch materiaal bevatten.  

De epigenetische handtekening van hESC verandert sterk wanneer differentiatie geïnduceerd wordt en 

bijgevolg zal ook hun transcriptionele activiteit wijzigen. Zo zal de expressie van bepaalde specifieke 

pluripotentie-transcriptiefactoren zoals Oct4 sterk dalen tijdens het differentiatie-proces. Deze 

veranderingen in expressie kunnen met behulp van verschillende technieken gevolgd worden, 

waaronder relatieve kwantificatie via reverse transcriptie-kwantitatieve PCR (RT-qPCR). Om RT-qPCR 

correct toe te passen, moeten tijdens de data-analyse verschillende (technische) variabelen in rekening 

gebracht worden zoals de kwaliteit van de stalen en de efficiëntie van de verschillende enzymatische 

reacties. Om zulk een normalisatie-strategie op te stellen kan onder meer gebruikt gemaakt worden 

van een calibrator-staal en één of meerdere referentie-genen. Zulke referentie-genen worden geacht 

een stabiel expressie-patroon te vertonen over de stalen heen en moeten zorgvuldig gekozen worden 

per nieuwe experimentele set-up. In Hoofdstuk 2 wordt een dergelijke optimalisatie van de meest 

gepaste referentie-genen voor differentiërende hESC toegelicht. Analyse met geNorm wees uit dat in 

deze setting van retinoïnezuur-geïnduceerde hESC β-2-microglobuline (B2M), ribosomaal proteïne 

L13A (RPL13A) en Alu repeats de meest stabiele referentie-genen zijn. Bovendien bleek de toepassing 

van hun combinatie beter dan die van de klassieke en veelgebruikte glyceraldehyde-3-fosfaat 

dehydrogenase (GAPDH) en β-actine (ACTB). Zodoende kan deze geoptimaliseerde methode gebruikt 

worden om de pluripotentie van hESC in cultuur te monitoren of om hun evolutie na te gaan tijdens 

een differentiatie-experiment. 

De belangrijkste onderzoeksvraag binnen deze thesis was of histonklieving ook plaatsvindt in een 

hESC setting, wat ons terug brengt naar de epigenetica. Histonen zijn sterk geconserveerde eiwitten 

die zorgen voor de compacte verpakking van DNA in een celkern en die helpen in de regulatie van het 
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transcriptie proces. De vier kernhistonen worden in duplo gecombineerd tot een histon-octameer, 

waarrond vervolgens ongeveer 146 bp DNA gewikkeld worden en zo de nucleosomen, ofwel de basis-

units van het chromatine, vormen. De uiteinden of ‘staarten’ van deze kleine, basische eiwitten steken 

uit het nucleosoom en zijn dus zeer vatbaar voor posttranslationeel modificerende enzymen zoals 

methyltransferases en demethylases, kinases, acetyltransferases en deacetylases, enz. Deze 

modificaties spelen een belangrijke rol in de regulatie van genexpressie doordat zij rechtstreeks de 

toegankelijkheid van het DNA kunnen beïnvloeden of meewerken aan de rekrutering van andere 

effector-proteïnen betrokken in transcriptie.  

Een dergelijke modificatie is histonklieving, waarbij een reeks aminozuren van een histonstaart 

enzymatisch verwijderd wordt. Algemeen kan histonproteolyse onderverdeeld worden in enerzijds 

histondegradatie en anderszijds histonklieving, waarbij het proces enkel in de laatste categorie als een 

epigenetisch belangrijke histonmodificatie beschouwd wordt. Histonklieving is reeds beschreven voor 

verschillende celtypes en organismen, voor verschillende biologische settings én voor verschillende 

histonen. Bijvoorbeeld H2A-klieving, gekatalyseerd door neutrofiel elastase, werd reeds beschreven in 

myeloïde cellijnen en H3-klieving werd al gerapporteerd in gistcellen, kip- en kwartel-levercellen, 

colorectale cellen en melkklierweefsel. Een specifiek belangrijke publicatie handelt over H3-klieving, 

voornamelijk na alanine 21, gekatalyseerd door het cysteïne protease cathepsine L in differentiërende 

muis ESC (mESC). De auteurs vonden dat deze klieving wel degelijk een beduidende invloed kan 

hebben op transcriptie, bijvoorbeeld door het beïnvloeden van de bindingsaffiniteit van Polycomb 

Group eiwitten zoals Chromobox homolog 7, een enzym betrokken in transcriptie-respressie.  

Analoog trachtten wij hier het voorkomen van deze N-terminale H3 klieving na te gaan in humane 

ESC, aangezien ook in deze cellen basis-processen zoals zelf-vernieuwing en pluripotentie grotendeels 

epigenetisch geregeld worden. Als dusdanig konden wij voor het eerst aantonen dat deze modificatie 

ook in hESC wel degelijk plaatsvindt. Hoofdstuk 3 en 4 geven onze belangrijkste 

onderzoeksresultaten weer, die vervolgens verder besproken worden in Hoofdstuk 5 met de 

bijhorende conclusies. In onze opzet werden verschillende hESC lijnen opgenomen, zowel gekweekt op 

een feeder layer van muis embryonale fibroblasten als in feeder-vrije culturen, en geanalyseerd via 

western blotting. Ongeacht de cellijn, werd de klieving onder de verschillende cultuuromstandigheden 

teruggevonden, weliswaar in een ander patroon, wat de mogelijke invloed van de cultuurcondities 

sterk benadrukt. Feeder-vrij gecultiveerde hESC vertoonden een continu klievingspatroon binnen de 

differentiatie-experimenten, terwijl er bij de op MEF gehouden hESC eerder sprake is van een soort 

golfpatroon met een fluctuerende intensiteit van de geknipte H3-vorm. Bij het uitbreiden van de 

feeder-vrije experimenten naar een totale duur van twee weken bleef de klieving aanhouden. Uit deze 
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experimenten kon bovendien afgeleid worden dat het wel of niet toepassen van differentiatie (door 

toevoeging van retinoïnezuur aan het cultuurmedium) geen verschil uitmaakt voor het bekomen 

resultaat. Aangezien we geen directe link konden vinden tussen de klieving en de expressie van Oct4, 

lijkt de beschouwing van de klieving als een algemeen differentiatie-mechanisme niet plausibel – 

hoewel vorige publicaties wel in die richting deden vermoeden. Niettemin is het wel mogelijk dat de 

klieving een verschillende functionele rol speelt naargelang de biologische set-up waarin het 

voorkomt. Doorheen deze experimenten konden we tevens mogelijke in vitro-klieving tijdens de 

histonextractie uitsluiten. Verder konden we ook drie verschillende klievingsplaatsen identificeren met 

behulp van complementaire technieken, namelijk alanine 21 (western blotting), arginine 26 (Edman 

degradatie) en aminozuur 31 (massa spectrometrie). Niet onbelangrijk is dat deze sites zeer 

gelijk(aardig) zijn aan degene teruggevonden in mESC.  

In de context van het klievingsenzym, ontwikkelden we een incubatie assay waarin opgezuiverd kalf H3 

geïncubeerd werd met de nucleaire eiwitfractie geïsoleerd uit hESC. Door hierin meerdere inhibitoren 

voor verschillende protease-klassen te includeren, vonden we dat niet cathepsine L maar wel een 

serine protease verantwoordelijk is voor de H3-klieving in hESC. 

Niettegenstaande er al verschillende publicaties over histonklieving verschenen zijn, blijft het een 

relatief weinig bestudeerde modificatie. En hoewel er meer onderzoek nodig is om het totaalbeeld op 

te helderen, konden wij hier aantonen dat deze klieving ook voorkomt in (differentiërende) hESC. De 

potentiële effecten ervan beschouwend, kunnen we stellen dat histonklieving mogelijk een 

epigenetisch belangrijk regulatiemechanisme is. Histonstaarten lijken niet essentieel voor de viabiliteit 

van een cel maar spelen wel een cruciale rol in de organisatie van de chromatine-structuur. Het 

knippen van de histonstaarten kan dus een belangrijke invloed hebben op die organisatie. Ook kan de 

binding van andere effector-proteïnen door klieving verhinderd worden doordat de interactiesite 

verwijderd is of kunnen daar tegenover gesteld bestaande histonen als het ware ‘gelabeld’ worden om 

vervolgens verwijderd en vervangen te worden door bijvoorbeeld een andere histonvariant en zo 

nieuwe bindingssites voor andere effectors te creëren. 

Ook vanuit technisch oogpunt moet dit proces in rekening gebracht worden. Alle technieken die 

gefocust zijn op een specifieke modificatie op het eerste deel van de H3 N-terminus (zoals chromatine 

immunoprecipitatie) kunnen een bias aan hun resultaten meegeven doordat ze dergelijke modificaties 

kunnen missen in geval van histonklieving. In plaats hiervan zouden technieken moeten toegepast 

worden die het eiwit in zijn geheel met bijhorende proteovormen, kan monitoren, zoals bijvoorbeeld 

Top Down massaspectrometrie. 
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Kort samengevat kan gesteld worden dat er nog meer onderzoek nodig is om het volledige karakter 

van de klieving en zijn (biologische) rol op te helderen, maar niettemin eist histonklieving zijn plaatsje 

op, niet enkel in hESC maar ook in andere biologische settings. 
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- Reference genes for RT-qPCR analysis of differentiating human embryonic stem cells 

(presenting author) 

Vossaert L., O’Leary T., Heindryckx B., Van Neste C., Vandewoestyne M., Vandesompele J., 

De Sutter P. & Deforce D. Scientific afternoon FFW, Gent, Belgium, May 16, 2012  

 

Courses and conference attendances 

- First meeting of Belgian Society for Stem Cell Research (BeSSCR), Gent, Belgium, September 

12, 2014 

- “Quantitative Proteomics and Data analysis” Course, Biochemical Society, Chester, UK, March 

24-25, 2014 

- Assistenten practicumtraining UGent, Gent, Belgium, February 18, 2014 

- Protein Purification and Analysis Seminar BioRad, Grimbergen, Belgium, October 17, 2013 

- “The Epigenetics Revolution: development and disease biology revisited” Conference, VIB, 

Leuven, Belgium, July 1-4, 2013 

- Basisassistententraining UGent, Gent, Belgium, June 18, 2013 

- Droplet Digital PCR Road show BioRad, Grimbergen, Belgium, June 13, 2013 

- BePa Proteomics day, Gent, Belgium, November 29-30 2012 

- Quantitative PCR Seminar Tour BioRad, Grimbergen, Belgium, October 26, 2011 

- Stem cell seminar Life Technologies, VUB, Jette, Belgium, September 22, 2011 

- Scientific afternoon FFW, Gent, Belgium, May 26, 2011 



 

 

- “Academic English writing skills”, Ghent University, Gent Belgium, February – May 2011 

- KVCV Flanders Proteomics, Antwerpen, Belgium, December 16-17, 2010 

- “qPCR experiment design and data-analysis” Course, Biogazelle, Gent, Belgium, November 8-9, 

2010 

- “Epigenetics and Stem Cells” Conference, Abcam, Copenhagen, Denmark, August 25-27, 2010 

- Protein purification and analysis seminar GE Healthcare, Liège, Belgium, June 16, 2010 

- Scientific afternoon FFW, Gent, Belgium, May 12, 2010 

- “Introduction to Bioinformatics” Course, VIB BITS, Leuven, Belgium, May 4-5, 2010 

- Stem Cell Workshop BD, Erembodegem, Belgium, January 14, 2010 

 

Educational experience 

- Practical courses 

 Practical course Phytochemistry (2
nd

 Bachelor students) 

 Practical course Pharmaceutical Biotechnology (3
rd

 Bachelor students) 

 Lab-instructor Pharmaceutical Bachelor Proof (3
rd

 Bachelor students) 

- Supervising thesis dissertations 

 Sarah Dewulf (Master of Science in Industrial Pharmacy – UGent, 2013/2014):  

“Onderzoek naar het enzym verantwoordelijk voor histonproteolyse in hESC” 

 Ine Coene (1
st
 Master of Pharmaceutical care – UGent, 2012/2013):  

“Histonklieving H3 tijdens Humane stamceldifferentiatie” 

 Maarten Batens (Master of Science in Industrial Pharmacy – UGent, 2012/2013):  

“De klieving van histon H3 bij humane embryonale stamcellen” 

 Erika D’haenens (Master in Industrial Sciences: Biochemistry – HoGent, 2012/2013):  

“N-glycaananalyse van human serum en rhEPO met een DNA-sequencer” 

 Stefi Premereur (1
st
 Master of Pharmaceutical care – UGent, 2011/2012):  

“Humane embryonale stamcellen: Histonklieving binnen stamceldifferentiatie” 

 Paulien Meert (1
st
 Master of Pharmaceutical care – UGent, 2009/2010):  

“Histonklieving als posttranslationele modificatie tijdens stamceldifferentiatie” 

 

 

  



 

  

 

  



 

 

 

  



 

  

DANKWOORD 

En ten slotte, het thesis-hoofdstuk met de hoogste impact factor, het gepaste bedankingswerk! 

Beste Dieter, een origineel dankwoord schrijven wordt er moeilijker en moeilijker op, gezien de hele 

reeks doctoraatsstudenten die je hier al hebt zien passeren – maar ik ben blij daar één van te zijn. Ik wil 

je bedanken voor alle kansen die ik tot nu toe op het labo gekregen heb én voor de gelegenheid om 

hier nog een tijdje te blijven. Je wist mij als promotor steeds bij te sturen waar nodig met je inzichten 

en vindingrijkheid, vaak met hoog doe-het-zelf gehalte. Maar ook de teambuildings, BBQ’s, jaarlijkse 

personeelsdag-cadeautjes, enz. naast het werk worden erg geapprecieerd! 

Vanzelfsprekend wil ik ook de andere leden van de lees- en examencommissie bedanken voor de tijd 

die ze genomen hebben om dit werk te lezen en te beoordelen. Een speciaal woord van dank aan mijn 

co-promotor prof. Petra De Sutter, om ook de deuren van haar labo open te zetten voor mijn 

onderzoek. Bedankt prof. Björn Heindryckx, Tom, Margot, Galbha, Sharat, Jitesh, Sabitri, Dimitra & Jasin 

om hierbij te helpen.  

Bedankt prof. Jo Vandesompele, voor alle hulp bij het (uiteindelijk!) publiceren van de geNorm-paper. 

Nurten, bedankt voor de praktische bijstand voor alle PCR’s die bij jullie gerund zijn.  

En zo kom ik ook terecht bij mijn andere co-promotor, Maarten. Jouw (wetenschappelijk) 

enthousiasme blijft aanstekelijk! Bedankt om mij te introduceren en te begeleiden in de boeiende 

wereld van Epigenetica & Proteomics. Je passie voor wetenschap en je creativiteit kennen hun gelijke 

niet. 

De administratieve motor achter Lab FBT: Astrid & Nadine – bedankt om de boel hier draaiende te 

houden! ;) Uiteraard ook dank je Inge, voor het enthousiast en vlot regelen van de laatste 

administratieve doctoraatsloodjes! David en de dames van het DNA labo, bedankt om mij de voorbije 

jaren op regelmatige basis van groene mapjes te voorzien (oh ironie ;)) maar meer nog voor de 

babbels & mopjes tussen het vele werk door om de sfeer erin te houden. Yens & Sofie, de logistieke 

krachten in het labo, ook jullie staan altijd klaar om met een glimlach een praktische oplossing aan te 

bieden. 

Katleen, het gemak waarmee jij 100 projecten en evenveel externen, het bieden van hulp & goede raad 

aan collega’s, het kwaliteitssysteem én je gezin lijkt te combineren, siert je. Ik hoop dat we in de 

toekomst nog veel morgen samenwerken (en demo’s mogen ‘verknoeien’ ;)) Trees, je bureau bevindt 

zich intussen twee verdiepingen lager, maar onze lach-decibels kunnen dat gelukkig moeiteloos 

overbruggen  Bart, bedankt voor de occasionele vrolijke noot op het 2
e
  Ik bewonder je ambitie en 



 

 

enorme motivatie voor je werk, die je zelfs aan de dag legt (of misschien nog meer) als het om 

statistiek gaat – Goe bezig! ;) Ellen, de award voor grootste doorzettingsvermogen gaat zeker naar jou. 

Ik wens jou en Koen veel geluk met de kleine baby die je binnenkort op de wereld gaat zetten. 

Elisabeth, één van onze laatste aanwinsten voor het histon-onderzoek en die ‘aanwinst’ mag je 

letterlijk nemen. Geloof in jezelf, je kan het. Lieselot, die andere 1,5 meter van Lab FBT ;) ik hoop dat 

het IWT intussen ook begrepen heeft wat voor een straffe madam je bent! De nieuwste lichting, Senne 

& Laura, nog maar net begonnen aan het Grote Doctoraatsavontuur; jullie gaan dat goed doen! ‘De 

mannen van beneden’ Yannick, Dieter, Christophe & Filip, bedankt voor het oplossen van de vele IT-

probleempjes, voor de statistische hulp, voor de filosofische insteek in elk gesprek en voor de stoere 

verhalen tijdens de middagpauze. 

Vervolgens, mijn buddies van het eerste uur en mede-IWT-gesneuvelden (nu we toch alle drie op het 

einde zitten, mag een mens er al eens mee lachen ): Veerle & Pieter. Veerle, bedankt voor alle 

mentale steun die je mij de voorbije 5 jaar als bureau-buurvrouw gegeven hebt ;) Van 

(niet)wetenschappelijke discussies, over uit de bol gaan op labo-uitstapjes & vrijgezellenfeestjes, tot 

een aperitiefje op de Coupure (de mogelijkheden zijn legio ;)), met jou valt er altijd wat te beleven! De 

courage met je laatste thesis-loodjes! Pieter, mijn tijdsbesef is er duidelijk op achteruit gegaan sinds ik 

mijn horloge niet meer gelijk kan zetten met jouw “het is 10 uur ‘s morgens”-Dinokoek. Ik mis onze 

big- en smalltalk gaande van het ventileren over onze resultaten en de laatst nieuwe histon-publicaties 

tot de laatst nieuwe series op TV. Ik was al overtuigd van je wetenschappelijke capaciteiten, maar ik 

weet zeker dat je ook in het apotheek-leven je plan zal trekken, succes ermee!  

And last but not least, Paulien. Het klikte al meteen tijdens je thesisperiode in ons labo en vervolgens 

hebben we als collega’s en uiteindelijk ook als vriendinnen samen de woelige histone clipping-

watertjes doorzwommen. Op het moment dat ik er de brui aan wou geven, heb jij mij de stimulans 

gegeven om toch door te bijten. Je hebt mij steeds een luisterend oor geboden, zowel op als naast het 

werk. Bedankt hiervoor! En alvast een gelukkige verjaardag voor morgen  

Ook bedankt aan mijn ex-collegaatjes Kelly (voor alle hulp bij de start van mijn doctoraatsperiode), 

Marlies (voor jouw steeds nuchtere kijk, ongezouten mening & bijhorende lachbuien), Sandra (voor al 

het duimen), Mado (mijn verjaardagsbuddy ;) voor jouw praktische aanpak), Jip (voor de leuke 

gesprekjes in het koffiekot), Bert (voor alle loop-uitstapjes) & Shahid (good luck with your thesis!). En 

uiteraard ook een grote dankjewel aan de thesisstudenten die meegeholpen hebben aan dit werk: 

Sarah, Maarten, Ine, Erika & Stefi.  



 

  

“Een gezonde geest in een gezond lichaam”. Mijn gezonde geest werd/wordt mede in stand gehouden 

dankzij Joke, Tina, Anke & Maarten. Jullie kennen mij als geen ander en we slagen er keer op keer in 

om elkaar perfect aan te vullen. Bedankt voor elke lach, alle ontspannende momenten en uitlaatklep 

die jullie mij al heel lang bieden. You rule! 

Uiteraard ook een grote dankjewel aan de andere PortoPull’n/scoutsvriendinnetjes An, An-Sofie, Elke, 

Lynn, Sanne, Sien, Sandrine, … en alle mannen Brecht, Dirkske, Tom, Jonas, Niels, Frank, Lennert, 

Wouter, Stijn, Matthi, Gorik, … voor de leuke weekends & zotte verkleedfeestjes. Ik hoop dat we nog 

tot in het rusthuis regelmatig in aangepaste verkleedkledij een porto’ke mogen drinken met elkaar ;) 

Nog een speciaal woordje van dank voor An-Sofie voor alle tijd die je in het cover-ontwerp van dit 

boekje gestoken hebt. Amélietje, bedankt voor alle leuke babbels & veel succes met de aankomende 

examens! Bedankt reisgenootjes Steph, Karo, Veerle, Liesbeth (F), Karen, Liesbeth (C), Céline, Trien, 

Jonas, Stijn, … om van elke trip een dol avontuur van te maken! Vlien, we zien elkaar niet genoeg, maar 

onze internaat/kot-tijden lijken nog steeds alsof het gisteren was ;) En ten slotte nog de andere ‘farma-

girls’ Marijke, Evelien, Lien, Daf, Magalie & Delphine (+ wederhelften & kindjes), we moeten dringend 

nog eens een volgend etentje vastleggen!!  

Tantien, bij onze eerste ontmoeting was ik nog niet zo enthousiast ;) maar dat is snel veranderd! 

Tegenwoordig lukt het afspreken iets minder, maar niettemin ben ik je dankbaar voor alles. Ilse, mijn 

‘oudste’ kameraadje, jij hebt intussen zelf al twee schatten van kindjes, je doet dat goed  

Tantekes & nonkels, neefjes & nichtjes, ik heb geluk met jullie! Ik kijk al uit naar de volgende familie-

feestjes... Bobo & Parrain, Oma & Opa, jullie hebben het tot stand komen van dit werk helaas niet 

meer mogen meemaken, maar ik koester de mooie herinneringen en draag deze thesis dan ook aan 

jullie op. 

Paps & Christine, het lukt soms moeilijk om onze agenda’s te matchen, maar toch weet ik dat ik altijd 

bij jullie terecht kan/zal kunnen. Ik wens jullie ook veel succes met de carrière-switch die er stilaan zit 

aan te komen – dat gaat in orde zijn!  

Godfried, bedankt voor alle steun, logistieke hulp en vrijheid om te doen wat ik wil, die je mij al jaren 

onvoorwaardelijk gegeven hebt. Mams, bedankt om mij steeds te motiveren het beste van mezelf te 

geven en zelfs meer in mij te geloven dan ik zelf deed. Ondanks je drukke job, weet je toch tijd te 

maken voor de occasionele moeder/dochter-uitstapjes ;) Ik ben een supertrotse “dochter van”! 

 


