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GENERAL BACKGROUND 

Industrialised countries are confronted with a large incidence of coronary heart disease, stroke, 

hypertension, diabetes and cancers, which are the most common causes of death. While the main 

factors age, sex and genetic susceptibility are unchangeable, many of the risks associated with 

these factors can be changed. It is now well established that inadequate dietary habits and 

physical inactivity are the major preventable risks for the occurrence of chronic diseases. 

Nutrition is coming to the front as a major modifiable determinant of chronic disease, with 

scientific evidence increasingly supporting the view that alterations in diet have strong effects, 

both positive and negative, on health throughout life (World Health Organization, 2003). 

Despite attempts to provide education about healthier eating patterns, there are several barriers 

such as a lack of interest towards changing one’s diet, or concerns about having to compromise 

on taste or enjoyment (Kearney & McElhone, 1999). In this view, enhancing the composition of 

popular food products is applied worldwide and its contribution to a healthier society is accepted. 

Hereby, increasing the content of health-promoting n-3 polyunsaturated fatty acids (PUFA) and 

lowering the nitrite content of meat products are two aspects that are discussed in this 

dissertation, with focus on the sensory quality of these enhanced meat products. 

The concept meat quality is multi-factorial and covers many attributes. The criteria consumers 

associate with the quality of meat are: nutritional value, wholesomeness, freshness, leanness, 

juiciness, taste and tenderness (Grunert, 1997). In this PhD research the attributes colour, 

oxidative stability, texture and taste are considered. In general, the oxidation-reduction process is 

defined as a chemical reaction in which one or more electrons are transferred from one atom or 

molecule to another. Lipid oxidation and pigment oxidation are recognised as the most important 

causes of quality deterioration of both fresh and processed meat during storage and are 

extensively studied (see reviews e.g. Gray et al., 1996; Pegg & Shahidi, 1997; Morrissey et al., 
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1998; Mancini & Hunt, 2005). Only recently, the importance of protein oxidation on the quality 

of muscle food has been acknowledged (reviewed by Lund et al., 2011; Zhang et al., 2012). 

 

1. Nitrite 

Nitrite and health 

Ingested nitrite can form nitric oxide within the human body. Nitric oxide is identified as one of 

the most important cellular signalling mechanisms. It signals arteries to relax and expand, immune 

cells to kill bacteria, and brain cells to communicate with each other (Parthasarathy & Bryan, 2012). 

The lack of nitric oxide production can lead to hypertension, atherosclerosis, heart failure, and 

thrombosis leading to heart attack and stroke. Remarkably, all of these conditions have been 

shown to be positively affected by dietary nitrite interventions (Lundberg et al., 2008). On the 

other hand, potentially carcinogenic N-nitroso compounds can be formed from nitrite in the 

presence of low molecular weight secondary amines. The International Agency for Research on 

Cancer (2008) concluded that “ingested nitrate or nitrite under conditions that result in 

endogenous nitrosation is probably carcinogenic to humans” (Ferlay et al., 2008). The World 

Cancer Research Fund (2011) recommended to avoid processed meat based on a meta-analysis 

of cohort studies showing increased risk of colorectal cancer with increased intake of processed 

meats (Demeyer et al., 2008). Although it is not clear to what extent the nitrite used in curing salt 

is related to this issue, public concern raises and a shift in consumers preferences towards the 

consumption of natural foods is observed (Sebranek & Bacus, 2007). As a result, the meat 

producers and meat scientists are challenged to search for reliable alternatives for nitrite. 
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Nitrite and meat 

Preservation of meat with nitrite has become important in controlling meat against Clostridium 

botulinum and in producing safe and palatable meat products with good keeping properties even 

at ambient temperature (Skibsted, 2011). When added to a meat system, nitrite has different fates. 

It is partially oxidized to nitrate by sequestering oxygen or reduced to nitric oxide that 

subsequently binds to different substances, such as myoglobin and other proteins (Honikel, 

2008). One of the most noteworthy properties of nitrite is its ability to produce the characteristic 

pink colour of cooked cured meat products. Actually, it is the nitric oxide that reacts with the raw 

meat pigment to produce red nitric oxide myoglobin, which converts to pink 

nitrosylmyochromogen upon cooking (Pegg & Shahidi, 1997). The antioxidant effect of nitrite is 

likely due to the same mechanisms responsible for cured colour development, involving 

reactions with heme proteins and metal ions, chelation of free radicals by nitric oxide, and the 

formation of nitroso- and nitrosyl-compounds having antioxidant properties (Honikel, 2008). 

Cured meat flavour continues to be one of the least understood aspects of nitrite curing. Nitrite 

chemistry and associated reactions likely play a role in the formation of the unique flavour, 

however, the specific compounds involved, are still not yet known (Sindelar & Milkowski, 2011). 

The antimicrobial action of nitrite against Clostridium botulinum involves activity against the 

iron-containing enzymes ferredoxin and pyruvate oxidoreductase. Various other bacteria are also 

inhibited by nitrite, although specific modes of action are unclear (Simpson & Sofos, 2009).  

The ingoing and residual nitrite content of cured meat products is restricted by government 

regulations, because of the possible formation of harmful N-nitroso compounds. An all-round 

alternative for nitrite, including all four features of nitrite has not yet been found. 
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2. n-3 Polyunsaturated fatty acids 

n-3 PUFA and health 

Fatty acids can be considered the defining components of lipids. Their structure, biochemistry 

and functions have been extensively studied and reviewed (AOCS Lipid Library, 2014). Two 

principal families of PUFA, n-6 and n-3, are derived biosynthetically from respectively linoleic 

acid (LA, C18:2n-6) and α-linolenic acid (ALA, C18:3n-3). LA is the precursor of the bioactive 

arachidonic acid (AA, C20:4n-6), while ALA is the precursor of the bioactive eicosapentaenoic 

acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). Both precursors are 

converted to their long chain metabolites by a series of desaturation and elongation steps and 

share common enzymes for these metabolic transformations (Williams, 2000). LA and ALA are 

strictly essential fatty acids, as they can not be synthesized de novo and must be obtained from 

the diet. In addition, as the conversion of ALA towards EPA and especially DHA is low in 

humans (Hussein et al., 2005), it is advised to consume foods rich in EPA and DHA, such as 

fatty fish (Aranceta & Pérez-Rodrigo, 2012). However, the intake of fish is low in Western 

countries and the consumption of n-3 PUFA from terrestrial animal products (e.g. meat, eggs) 

may be important (Howe et al., 2006). 

Besides their contribution to energy supply and their structural function as part of the 

phospholipid bilayer in cell membranes, EPA and DHA are used to produce hormone-like 

substances, eicosanoids, which regulate a wide range of biological functions. These functions 

extend from developmental roles, especially in the nervous system, during infancy to the 

attainment and maintenance of optimal mental and physical health status throughout adult life. 

Moreover, these fatty acids have a protective influence on several chronic diseases due to their 

beneficial cardiovascular, anti-thrombotic, anti-inflammatory and immune-suppressive 

properties (reviewed by Ruxton et al., 2004; Narayan et al., 2006; Simopoulos, 1999). It is 
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believed that ALA has limited biological functions and its principal role is being a substrate for 

synthesis of EPA and DHA (Burdge, 2004). As the dietary intake of EPA and DHA is low and 

the daily recommendations are often not fulfilled, Mantzioris et al. (2000) proposed that n-3 

PUFA enriched foods would provide a solution in achieving the desired biochemical effects of n-

3 PUFA without the intake of supplements, or change in dietary habits. 

However, one must be cautious when consuming high amounts of PUFA, given their 

susceptibility to oxidation. Lipid hydroperoxides and their decomposition products may cause 

damage to proteins, membranes and biological components, thus affecting vital cell functions 

(Frankel, 1984). It should therefore not be ignored that the beneficial effects of n-3 PUFA may 

be affected by these oxidative changes. 

n-3 PUFA and meat 

Although meat only partly contributes to the total fat intake of the diet, optimizing its fatty acid 

profile deserves attention due to the high meat intake in industrialized countries (Howe et al., 

2006). Meat fatty acid content and composition is affected by several genetic (e.g. species, breed 

and fatness) and environmental factors, amongst which the dietary supply of fatty acids is 

generally considered to be the most important (Raes et al., 2004). Fat deposition in the pig’s 

carcass is determined by de novo fatty acid synthesis and the uptake of exogeneous fatty acids 

(De Smet et al., 2004). The fatty acids synthesized by the pig are mostly saturated and 

monounsaturated fatty acids, while the deposition of PUFA occurs if they are included in the diet. 

The incorporation of n-3 PUFA rich products like grass, rapeseed, algae, linseed and fish oil in 

livestock feeds, resulting in accumulation of these fatty acids in animal products, received a lot 

of interest (Wood et al., 2008; Raes et al., 2004). As conversion of ALA to EPA and DHA in 

animals is low, fish oil and algae in the feed can be used to directly increase the EPA and DHA 
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content of the meat products. Next to introducing n-3 PUFA in animal feed, these fatty acids can 

also be added as an ingredient during processing (Valencia et al., 2006). 

Including n-3 PUFA in meat might also have adverse effects, as these fatty acids are prone to 

oxidation. Oxidation processes in meat result in reduced nutritional value and the generation of 

oxidation products (e.g. malondialdehyde and volatile compounds), leading to off-taste and off-

flavour (reviewed by Morrissey et al., 1998). A special challenge when increasing the tissue 

concentration of n-3 PUFA, is thus to counteract this increased oxidative susceptibility of the 

meat products. For instance, including antioxidants in animal feed or during processing increases 

the oxidative stability of meat products (reviewed by e.g.; Decker, 1998; Pokorny et al., 2001). 
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The aim of this PhD research was to produce healthier meat products that meet consumers’ 
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RESEARCH OBJECTIVES AND THESIS OUTLINE

The aim of this PhD research was to produce healthier meat products that meet consumers’ 

expectations. The overall objective was to change the composition of fresh and processed meat 

ensory quality. 

[1] lowering the ingoing nitrite level by replacing it with other compounds

3 PUFA content through animal feeding 

To meet these objectives, several experiments were conducted. Part I 

performed on lowering the ingoing nitrite in various cooked cured meat products. In 

frankfurters were produced containing dog rose extracts as a natural antioxidant and no sodium 

nitrite or sodium ascorbate. Quality parameters such as colour, tenderness, lipid and protein 

Chapter 2 deals with the effectiveness of partly replacing sodium 

nitrite by sodium ascorbate for antioxidant activity in liver pâté, while in Chapter 3 

act as alternative source for nitrite in liver pâté was investigated. In both 

chapters the effect of the lower nitrite content on colour, lipid and protein oxidative processes 

Introduction 

AND THESIS OUTLINE  

The aim of this PhD research was to produce healthier meat products that meet consumers’ 

expectations. The overall objective was to change the composition of fresh and processed meat 

placing it with other compounds 

Part I describes the work 

performed on lowering the ingoing nitrite in various cooked cured meat products. In Chapter 1, 

extracts as a natural antioxidant and no sodium 

such as colour, tenderness, lipid and protein 

deals with the effectiveness of partly replacing sodium 

Chapter 3 the use of a 

act as alternative source for nitrite in liver pâté was investigated. In both 

chapters the effect of the lower nitrite content on colour, lipid and protein oxidative processes 
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was assessed. The role of sodium nitrite on protein oxidation has been investigated from a more 

mechanistic point of view in Chapter 4 using two meat model systems. Furthermore, a marker 

for protein nitration, 3-nitrotyrosine, was introduced in meat.  

In Part II, research concerning the increase of n-3 PUFA in meat products and its effect on 

oxidative stability and nutritional quality is given. For this study, different n-3 PUFA sources 

(linseed oil, fish oil and dried microalgae) were added to pig feed and the effect on the fatty acid 

profile (Chapter 5) and sensory quality (Chapter 6) of fresh loin, dry fermented sausage and 

long ripened dry cured ham was investigated. In Chapter 7, the effect of supplementing supra-

nutritional levels of α-tocopherol in n-3 PUFA enriched pig feed was described. It was 

investigated if these high α-tocopherol doses affected the α-tocopherol content in fresh loin and 

dry fermented sausages and whether the oxidative stability of these meat products was improved. 

To explore the effect of n-3 PUFA enriched meat on the health status, cooked n-3 PUFA 

enriched loin was administered to rabbits and the blood lipids, oxidative status and 

atherosclerosis were assessed (Chapter 8). To conclude, a general discussion and future 

prospects are given in Chapter 9. 

 

Part I  Lowering the ingoing nitrite dose Part II  Increasing the n-3 PUFA content 

CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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The specific null hypotheses that were formulated for the own research and their relation to the 

chapters are presented the Table 1. 

 

Table 1. Specific null hypotheses of the own research and their relation to the chapters 

Hypothesis Chapter 

H1 Lowering the ingoing nitrite doses in meat products compromises colour 
formation  

1,2,3 

H2 Lowering the ingoing nitrite doses in meat products compromises colour 
stability 

1,2,3 

H3 Lowering the ingoing nitrite doses in meat products decreases lipid oxidative 
stability  

1,2,3 

H4 Lowering the ingoing nitrite doses in meat products decreases protein oxidative 
stability 

1,2,3 

H5 The antioxidant role of nitrite in meat products can be compensated by the use 
of other food additives 

1,2,3 

H6 Sodium nitrite can be used as an antioxidant against protein oxidation  4 

H7 3-nitrotyrosine is a good marker for protein nitration in meat products 4 

H8 The efficacy to increase the n-3 PUFA concentration of meat products depends 
on the n-3 PUFA source in the feed  

5 

H9 Supplementation of microalgae in pig feed is a suitable and sustainable 
alternative to fish oil for the production of pork products enriched in EPA and 
DHA 

5,6 

H10 Increasing the n-3 PUFA content of meat products compromises its oxidative 
stability 

6 

H11 Dietary α-tocopherol supplementation at high levels reduces oxidation 
processes in n-3 PUFA enriched dry fermented sausages 

7 

H12 Increasing EPA and DHA concentrations in plasma and other tissues depends 
on the type of n-3 PUFA in the n-3 PUFA enriched meat 

8 

H13 Consumption of n-3 PUFA enriched meat improves the health status 8 
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People are advised to reduce their intake of nitrite for health reasons. 

Can a dog rose extract replace sodium nitrite in frankfurters? 
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CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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CHAPTER 1 

DOG ROSE (ROSA CANINA L.) AS A FUNCTIONAL INGREDIENT IN 

PORCINE FRANKFURTERS WITHOUT ADDED SODIUM ASCORBATE  

AND SODIUM NITRITE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Redrafted after  

Vossen, E., Utrera, M., De Smet, S., Morcuende, D., Estévez, M. (2012). Dog rose (Rosa canina 

L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium 

nitrite. Meat Science 92, 451–457.  
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ABSTRACT  

The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and 

protein oxidation, colour stability and texture of frankfurters is investigated. Four treatments 

were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite 

(5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) 

and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal 

values were much higher throughout storage in NC compared to RC and PC frankfurters 

(P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC 

(P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to 

the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, 

but not as full replacer for sodium nitrite. 
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INTRODUCTION  

Lipid and myoglobin oxidation is a well-known phenomenon in meat products, which results in 

discolouration, off-odours and off-flavours during storage (Morrissey et al., 1998). Recently, 

also protein oxidation has been linked with impared meat quality, such as loss in juiciness and 

increased toughness of meat (Lund et al., 2011). Oxidation leading to degradation of lipids, 

proteins and pigments is one of the primary mechanisms of meat deterioration and can be 

prevented by including antioxidants in meat products. However, the increased public concern 

over the safety and toxicity of synthetic additives, challenges the meat industry to find natural 

alternatives. 

Natural alternatives can be antioxidant-containing extracts from herbs and spices (Yanishlieva et 

al., 2006). The main components contributing to the antioxidant effect of these extracts are 

phenolic compounds, due to their hydrogen-donating capacity and metal-chelating potential 

(Rice-evans et al., 1995). The rose hips of dog rose (Rosa canina L., RC) are rich in phenolic 

compounds and ascorbic acid (Demir & Ízcan, 2001) and are therefore believed to be a potential 

natural antioxidant. According to Ganhão et al. (2010a), the main phenolic compounds present in 

the RC extracts are procyanidins and catechins. In fact, RC extracts have shown high antioxidant 

activities in vitro, with water extracts having greater antioxidant activities against the DPPH and 

ABTS radicals compared to methanolic or ethanolic extracts (Ganhão et al., 2010a). The use of 

30 g Rosa canina in an extract that was added to porcine burger patties has resulted in positive 

effects on improving colour stability, texture properties and on delaying lipid and protein 

oxidation (Ganhão et al., 2010b). However, the relative efficiency of phenolic-rich extracts when 

applied in different food matrices can not be predicted even for very well-characterised extracts 

(Nissen et al., 2004). Therefore, although RC has shown some promising beneficial effects on 

burger patties, the use of RC in different meat products and different doses needs to be further 

investigated. 
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Among other synthetic additives, also the use of sodium nitrite should be revised according to 

the consumers’ opinion. However, this ingredient is very important for the meat industry as it 

plays a key role in colour development, fat oxidation, flavour and microbiological safety. It is 

particularly important for cooked meat products, such as frankfurters, as their characteristic pink 

colour originates from nitrosylhemochromogen, a reaction product of nitrite and denatured 

myoglobin (Pegg & Shahidi, 1997). However, the potential health risks related to the residual 

nitrite levels and the formation of harmful N-nitrosamines in meat and meat products demand for 

a significant decrease in the use of sodium nitrite (Honikel, 2008). As RC contains considerable 

amounts of nitrates (Cakilcioglu & Khatun, 2011), replacing sodium nitrite by nitrate could 

result in lower residual nitrite concentrations, reducing also the risk of N-nitrosamine formation 

during ingestion. In addition, as RC also contains high amounts of ascorbic acid, its use could 

result in less sodium ascorbate to be added during manufacturing.  

The objective of this research is to investigate the potential of RC as functional ingredient in 

porcine frankfurters without added sodium ascorbate and sodium nitrite in terms of texture and 

colour, lipid and protein oxidative stability. 

 

MATERIALS AND METHODS 

1. Extraction of dog rose 

Fruits of dog rose (Rosa canina L., RC) were collected at full ripeness in June in the Cáceres 

region (Spain) and immediately frozen at -80 ºC. For the extraction, whole fruits were ground 

and 5 or 30 g were weighted for low and high concentrated frankfurters, respectively. The 

ground fruits were homogenized 1:4 (w/v) in distilled water using an Ultra-Turrax. Subsequently, 

the homogenates were centrifuged (1400 g, 7 min, 4 °C) and the supernatant was filtered and 

collected. The residue was re-extracted once more with distilled water (1:2 w/v) following the 
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procedure previously described and the filtered supernatant was combined with the first 

supernatant. Finally, distilled water was added to the residue, shaken by hand, filtered and an 

amount of that filtrate was added to the combined supernatant until 180 ml of extract was 

obtained. The total phenolic content and antioxidant capacity using the 1,1– diphenyl-2-picryl 

hydrazyl radical assay (see below) were determined and the extracts were stored in refrigeration 

until the manufacturing of the frankfurters (less than 24 hours). 

2. Manufacture of frankfurters 

The experimental frankfurters were manufactured in a pilot plant and the same formulation was 

used for all frankfurters. For each treatment 1 kg of frankfurters was prepared. The basic recipe 

was as follows (g/kg raw batter): 700 g porcine meat, 100 g backfat, 180 g distilled water or 

extract, 20 g sodium chloride and 5 g sodium di- and tri-phosphates (all from ANVISA, Madrid, 

Spain). Four different types of frankfurters were considered: a negative control (NC) consisting 

of a basic recipe, without sodium nitrite nor sodium ascorbate; a positive control (PC) consisting 

of a basic recipe with 0. 1 g/kg sodium nitrite and 0.5 g/kg sodium ascorbate and 2 experimental 

frankfurters (5RC and 30RC) manufactured with a basic recipe, without sodium nitrite nor 

sodium ascorbate and, and to which 180 g of Rosa canina L. extract (from 5 g or 30 g whole 

fruits, respectively, see extraction procedure) was added instead of 180 g distilled water. The 

meat was chopped into small cubes (1 cm3) and mixed with the sodium chloride (and for PC also 

sodium nitrite and sodium ascorbate). Then, the meat was minced in a cutter (Stephan UMC 5 

Electronic) for 2 min at 2000 g, together with water or extract. After that, the fat was added and 

minced for 4 min until a homogeneous raw batter was obtained. Finally, the mixture was stuffed 

into 18 mm diameter cellulose casings, hand-linked at 15 cm intervals and given a thermal 

treatment for 30 min in a hot water bath (70 °C). After cooling in an ice bath, the frankfurters 

were wrapped with an oxygen permeable polyvinylchloride film, dispensed in polypropylene 

trays and subsequently stored for 60 days at 2 ºC in the dark. At each sampling day (days 1, 20, 
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40 and 60), four frankfurters per treatment were taken out of the refrigerator. A portion of the 

frankfurters was used for colour and texture measurements and the remainders were frozen at -80 

ºC until analysis. 

3. Total phenolics content and antioxidant activity of the extracts 

The Folin Ciocalteau reagent was used for the quantification of total phenolics present in the RC 

extracts, as described by Turkmen et al. (2006) with minor modifications as follows: 0.2 ml 

extract was mixed with 1 ml of Folin Ciocalteau reagent (10% in distilled water). After 5 min, 

0.8 ml of sodium carbonate (7.5% in distilled water) was added and the samples were allowed to 

stand for 2 h at room temperature in the darkness. The absorbance was measured at 740 nm 

using a spectrophotometer. A standard curve with gallic acid was used for quantification. Results 

were expressed as mg of gallic acid equivalents (GAE) per ml extract and analysed in duplicate.  

The antioxidant activity of the RC extracts was evaluated by using the 1,1– diphenyl-2-picryl 

hydrazyl radical (DPPH) assay (Kähkönen & Heinonen, 2003). Briefly, aliquots of 0.033 ml 

were mixed with 2.0 ml DPPH solution (6×10-5 M in methanol). The reaction mixture was stirred 

and kept in the dark for 6 min at room temperature. The absorbance was measured 

spectrophotometrically at 517 nm using methanol as a blank. The antioxidant activity against the 

DPPH radical is expressed as percentage of radicals scavenged after 6 min reaction time (%) and 

analysed in duplicate. 

4. Proximate composition of the frankfurters 

Moisture and crude protein content of the frankfurters were determined (AOAC, 2000) and the 

method of Folch et al. (1957) was used for isolating the fat. Analyses were carried out in 

duplicate and results are expressed as g/100g frankfurter. 
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5. Volatile compounds 

Lipid oxidation was assessed by determining the lipid-derived volatiles hexanal, heptanal, 

octanal and nonanal according to Estévez et al. (2003). One gram of homogenized frankfurter 

was placed in a 2.5 ml vial and the SPME fibre (divinyl-benzene–carboxen– 

polydimethylxilosane, 50/30 µm) was exposed to the headspace while the sample equilibrated 

during 30 min immersed in water at 37 °C. Analyses were performed on a HP5890GC series II 

gas chromatograph (Hewlett-Packard) coupled to a mass-selective detector (Agilent model 

5973). Volatiles were separated using a 5% phenyl–95% dimethyl polysiloxane column (30 m, 

0.25 mm id., 1.0 µm film thickness; Restek). Compounds were positively identified by 

comparing their mass spectra with those from standard compounds run on the same conditions. 

The area of each peak was integrated using ChemStation software and the total peak area was 

used as an indicator of lipid-derived volatile generated from the samples. Samples were analysed 

in quadruplicate and results are provided in arbitrary area units (AAU × 106). 

6. Analysis of α-aminoadipic and γ-glutamic semialdehydes  

The protein oxidation products α-aminoadipic semialdehyde (AAS) and γ-glutamic 

semialdehyde (GGS) were analysed according to Utrera, Morcuende, Rodriguez-Carpena, & 

Estévez (2011). Briefly, the frankfurters were minced and subsequently homogenized 1:10 (w/v) 

in 10 mM phosphate buffer containing 0.6 M NaCl. Aliquots of 0.2 ml were taken and proteins 

were precipitated twice using trichloroacetic acid (10%). Then, protein carbonyl groups were 

derivatized using: 250 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 6.0) 

containing 1% sodium dodecyl sulfate and 1 mM diethylenetriaminepentaacetic acid, 250 mM 

MES buffer containing 50 mM p-amino benzoic acid (ABA) and 250 mM MES buffer 

containing 100 mM NaCNBH3. The mixture was incubated at 37°C for 90 min and the proteins 

were subsequently precipitated and simultaneously washed. Afterwards, the precipitates were 

hydrolysed with 6 N HCl at 110 °C for 18 h and the hydrolysates were dried in vacuo at 40 °C 
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using a Savant speed-vac concentrator. Hydrolysates were finally reconstituted with 0.2 ml 

Milli-Q water and analysed using HPLC (15 cm × 4.6 mm × 5 µm COSMOSIL 5C18-AR-II RP-

HPLC column) with fluorescence detection (excitation and emission wavelength of 283 and 350 

nm respectively). The mobile phase was a mixture of 50 mM sodium acetate buffer (pH 5.4) and 

acetonitrile, varying gradually the acetonitrile concentration from 0% to 8% at a flow rate of 1.0 

ml/min. Identification of both derivatized semialdehydes in the FLD chromatograms was carried 

out by comparing their retention times with those from standard AAS and GGS (synthesised in 

vitro according to Akagawa et al. (2006)). Samples were analysed in quadruplicate and results 

are expressed as nmol carbonyls/mg protein as quantified using an ABA standard curve. 

 

7. Colour measurements 

Colour measurements were performed in fivefold on the surface of the frankfurters using a 

Minolta Chromameter CR-300 (Minolta Camera Corp., Meter Division, Ramsey, NJ), which 

consists of a measuring head (CR-300), with an 8 mm diameter measuring area and a data 

processor (DP-301). Colour measurements were made at room temperature with illuminant D65 

and a 0° angle observer at days 1, 20, 40 and 60 of chilled storage. The L*, a* and b* values 

(CIE L*a*b* colour system) were assessed as a measure of respectively lightness, redness and 

yellowness. 

8. Texture measurements 

Texture profile analysis was carried out at room temperature with a Texture Analyser TA-XT2i 

(Stable Micro Systems, Surrey, UK). Nine samples (height 2.0 cm) of each treatment were taken 

and subjected to a two-cycle compression test. The samples were compressed to 40% of their 

original height with a cylindrical probe of 5 cm diameter and a cross-head speed of 5 mm/s. 

Following parameters were determined according to descriptions by Bourne (1982): Hardness (g) 
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is the maximum force required to compress the sample; adhesiveness (g×s) is the work necessary 

to pull the compressing plunger away from the sample; chewiness (g) is the work needed to 

masticate the sample for swallowing; springiness (dimensionless) is the ability of the sample to 

recover its original shape after the deforming force is removed; cohesiveness (dimensionless) is 

the extent to which the sample could be deformed prior to rupture; resilience (dimensionless) is 

how well the product regains its original height, measured on the first withdrawal of the cylinder. 

9. Statistical analysis 

The data were analysed using the general linear model ANOVA procedure considering ‘storage 

day’ and ‘treatment’ as independent variables. Mean differences between groups were tested 

using Tukey’s post hoc test operating at a 5% level of significance. All the statistical analyses 

were carried out by SPSS for Windows (15.0). 

 

RESULTS 

The total phenolic content of the extracts was 109±3 and 554±2 mg GAE/100 ml extract for 5RC 

and 30RC respectively. The antioxidant activity against the DPPH radical was 42.8±6.0 and 

76.0±4.3 % for the 5RC and 30RC extracts respectively.  

The moisture, fat and protein content of the frankfurters was 70.0±0.7 g/100g, 9.9±0.6 g/100g 

and 18.6±0.9 g/100g frankfurter, respectively. No significant differences between treatments 

were found. 

The results regarding lipid oxidation in frankfurters during chilled storage are summarised in 

Table 1.1. A clear antioxidant effect of RC was observed since up to tenfold lower hexanal 

values were found in frankfurters treated with RC compared to NC counterparts (P<0.001). Also 

the heptanal and octanal values were lower in the RC frankfurters compared to NC across 

storage days (P<0.001), whereas the nonanal content was not affected by RC addition (P>0.05). 
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No dose response of RC on hexanal was observed based on the absence of a significant 

difference between the 5RC and 30RC treatments. Unexpectedly, at days 1 and 20 of chilled 

storage heptanal and octanal were detected in the 30RC samples, while these volatiles were not 

found in the 5RC samples.  

For all treatments, hexanal values increased with time of chilled storage (P<0.01). However, this 

increase was more intense in the NC-treated samples than in the 5RC-, 30RC and PC-treated 

samples. Heptanal increased with time (P<0.001) in the NC samples and was not detected in the 

frankfurters containing 5 g/kg RC at day 1 and 20. For the 30RC and PC samples, heptanal 

values were higher (P<0.05) at day 40 compared to the other days of storage. Octanal increased 

in NC, 5RC and PC with time (all P<0.01), while in the 30RC-samples octanal did not change 

with time of storage (P>0.05). Nonanal increased (P<0.05) in the NC samples, while for the 

other treatments no changes were observed (all P>0.05). 
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Table 1.1. Lipid oxidation (AAU × 106) during chilled storage of frankfurters with added dog 
rose extract 

NC 5RC 30RC PC SEM1 P 
Hexanal day 1 1.35c,x 0.70c,xy 1.50b,x 0.30b,y 0.15 0.004 

20 16.35b,x 1.60bc,y 1.30b,y 0.60a,y 1.75 <0.001 
40 23.15ab,x 2.36b,y 2.50b,y 0.48ab,y 2.43 <0.001 
60 27.52a,x 7.08a,y 4.46a,yz 0.53a,z 2.76 <0.001 

SEM2 2.68 0.66 0.38 0.04   
P <0.001 <0.001 <0.001 0.011   

  
Heptanal day 1 0.20b n.d. 0.18b 0.10b 0.02 0.149 

20 0.55a,x n.d. 0.32b,y 0.10b,y 0.06 <0.001 
40 0.63a,xy 0.32y 0.98a,x 0.30a,y 0.08 <0.001 
60 0.86a,x 0.45y 0.39b,yz 0.17b,z 0.07 <0.001 

SEM2 0.07 0.05 0.09 0.02   
P <0.001 0.216 <0.001 <0.001   

  
Octanal Day 1 0.30b,x n.d. 0.20xy 0.10b,y 0.03 0.019 

20 0.60b,x n.d. 0.20y 0.40ab,xy 0.06 0.006 
40 0.70ab,x 0.22b,y 0.40xy 0.74a,x 0.07 0.005 
60 1.10a,x 0.78a,xy 0.50y 0.78a,xy 0.08 0.045 

SEM2 0.09 0.08 0.05 0.08   
P 0.004 <0.001 0.092 <0.001   

  
Nonanal day 1 1.60b 0.90 1.90 1.15 0.16 0.107 

20 2.95ab 1.70 1.80 1.40 0.24 0.083 
40 3.08ab 1.84 2.16 2.58 0.23 0.270 
60 5.02a 2.48 2.05 2.75 0.44 0.051 

SEM2 0.41 0.24 0.22 0.27   
P 0.010 0.138 0.951 0.054   

5RC: 5 g/kg Rosa canina L.;30RC: 30 g/kg Rosa canina L.; PC: Positive control, NC: Negative 
control;  
a–c Effect of storage: values with a different letter within a column of the same treatment are 
different (P < 0.05);  
x-z Effect of treatment: values with a different letter within a row of the same storage day are 
different (P < 0.05);  
1Standard error of the mean within the same storage day (n=16); 
2Standard error of the mean within the same treatment (n=16). 
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Similarly to lipid oxidation, protein oxidation occurred scarcely in the PC frankfurters, while the 

highest amounts of protein oxidation products were found in the NC samples (Table 1.2). 

Intermediate values for the RC treatments and no significant differences (all P>0.05) between the 

two RC doses were observed for both AAS and GGS. The protein oxidation products increased 

for all treatments during the chilled storage period (all P<0.001). Overall, higher amounts of 

AAS were formed during the experiment compared to the amounts of GGS. Both protein 

carbonyls, AAS and GGS, increased more intensively during 60 days of storage in the NC-

frankfurters, followed by the 5RC, 30RC and finally the PC-samples. It is worth noting that GGS 

was only formed after 20 days of chilled storage, except for the NC frankfurters, while AAS was 

present from day 1 on.  

Table 1.2 Protein oxidation (nmol carbonyls/mg protein) during chilled storage of frankfurters 
with added dog rose extract 

NC 5RC 30RC PC SEM1 P 
AAS day 1 0.72b,x 0.35c,y 0.36b,y 0.14c,z 0.06 <0.001 

20 1.03b,x 0.76bc,xy 0.55b,yz 0.18bc,z 0.09 <0.001 
40 1.26b,x 1.06ab,x 1.00a,x 0.27ab,y 0.10 <0.001 
60 2.02a,x 1.53a,xy 1.12a,y 0.38a,z 0.17 <0.001 

SEM2 0.14 0.13 0.08 0.03   
P <0.001 <0.001 <0.001 <0.001   

  
GGS day 1 0.18c n.d. n.d. n.d. 0.02 - 

20 0.41b n.d. n.d. n.d. 0.06 - 
40 0.60b,x 0.20b,y 0.14b,y 0.22y 0.05 <0.001 
60 0.90a,x 0.42a,y 0.37a,yz 0.18z 0.07 <0.001 

SEM2 0.07 0.05 0.04 0.03   
P <0.001 0.021 <0.001 0.111   

5RC: 5 g/kg Rosa canina L.; 30RC: 30 g/kg Rosa canina L.; PC: Positive control, NC: Negative 
control;,AAS: α-amino adipic semialdehyde, GGS: γ-glutamic semialdehyde;  
a–c Effect of storage: values with a different letter within a column of the same treatment are 
different (P < 0.05);  
x-z Effect of treatment: values with a different letter within a row of the same storage day are 
different (P < 0.05); 
1Standard error of the mean within the same storage day (n=16); 
2Standard error of the mean within the same treatment (n=16). 
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Addition of RC extracts had a significant effect on the colour parameters of the frankfurters 

(Table 1.3). Dose-dependent responses of RC (P<0.05) were observed as lower L* values and 

higher a* and b* values were found on the 30RC frankfurters compared to those containing 5 

g/kg RC. Throughout the whole storage period, the a* values of the RC frankfurters were higher 

(P<0.05) compared to the NC samples and the a* values of the PC frankfurters were higher 

(P<0.05) compared to the other groups.  

During the storage period, L* values of the 5RC, 30RC and PC samples decreased slightly (all 

P<0.05), in contrast to the NC frankfurters which did not change (P>0.05) during the storage 

period. The a* values of the 5RC and NC frankfurters did not change during storage (both 

P>0.05), while an increase was observed for the 30RC and PC samples (both P<0.01), however 

the difference was less than 1 and 2 units respectively. The b* values of the 5RC, 30RC and NC 

frankfurters increased during storage (all P<0.05), however all these differences were also small. 

No clear pattern could be found for the b* values of the PC frankfurters. Also the internal surface 

of the frankfurters was measured (data not shown). In general the lightness of the frankfurters 

was similar compared to the external surface, while the redness was lower and the yellowness 

higher on the outside of the frankfurters compared to the internal surfaces. Similar to the external 

surface, higher a* values and b* values were found in the RC frankfurters compared to NC, but 

the highest a* values were found in the PC frankfurters.  

  



Chapter 1 

30 

Table 1.3. Colour parameters of the external surfaces of frankfurters with added dog rose extract 
during chilled storage 

NC 5RC 30RC PC SEM1 P 
L*  Day 1 75.40w 75.88a,w 74.03a,x 76.37a,w 0.24 <0.001 

20 75.83w 74.78ab,wx 73.79a,x 73.82b,x 0.23 <0.001 
40 76.10w 74.65b,x 72.51b,y 74.23b,x 0.31 <0.001 
60 76.16w 74.18b,x 72.20b,y 73.13b,xy 0.36 <0.001 

SEM2 0.22 0.19 0.23 0.29  
P 0.642 0.006 <0.001 <0.001  

 
a* Day 1 3.83y 4.21y 5.08b,x 7.99c,w 0.38 <0.001 

20 3.61z 4.09y 5.20b,y 9.09b,w 0.50 <0.001 
40 3.89z 4.40y 5.80a,x 9.59ab,w 0.47 <0.001 
60 3.70z 4.26y 5.18b,x 9.83a,w 0.51 <0.001 

SEM2 0.05 0.05 0.09 0.16  
P 0.151 0.107 0.008 <0.001  

 
b*  Day 1 11.01b,y 12.20b,x 15.50b,w 10.58a,y 0.45 <0.001 

20 11.17b,y 12.16b,x 15.64b,w 8.67b,z 0.58 <0.001 
 40 13.00a,x 12.71a,x 15.44b,w 9.20b,y 0.48 <0.001 
 60 12.40a,x 12.80a,x 17.53a,w 10.31a,y 0.57 <0.001 
 SEM2 0.21 0.10 0.23 0.19   
 P <0.001 0.027 <0.001 <0.001   

5RC: 5 g/kg Rosa canina L.; 30RC: 30 g/kg Rosa canina L.; PC: Positive control, NC: Negative 
control; 
a–c Effect of storage: values with a different letter within a column of the same treatment are 
different (P < 0.05); 
w-z Effect of treatment: values with a different letter within a row of the same storage day are 
different (P < 0.05); 
1 Standard error of the mean within the same storage day (n=20);  
2 Standard error of the mean within the same treatment (n=20). 
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The addition of RC extracts resulted in several significant changes on the texture parameters of 

the frankfurters (Table 1.4). However, some differences were very small and no obvious trends 

could be found. Therefore, data concerning springiness, cohesiveness and resilience are not 

shown. In general, but with some exceptions, the 30RC treatment led to frankfurters with higher 

hardness and related chewiness values, compared to the other treatments. No differences in 

hardness and chewiness were found between the 5RC and PC samples (P>0.05), except for day 

40 with higher values in the former (P<0.05). The adhesiveness was higher in the NC samples 

compared to the 30RC samples (P<0.05) at more than 20 days of storage.  

Throughout the storage period changes were observed for the texture parameters. When 

comparing the results at the end of the experiment with the start of the experiment, the texture 

parameters were affected the most in the NC frankfurters: the hardness and chewiness decreased 

(P<0.05) and the adhesiveness increased (P<0.05). On the other hand no changes (P>0.05) 

between day 1 and day 60 were found in the 5RC and commercial frankfurters (PC) for hardness, 

chewiness and adhesiveness For the 30RC treatment decreased adhesiveness values were found 

(P<0.05) along the storage period, while hardness and chewiness were not affected during the 

storage period (both P>0.05). 
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Table 1.4. Texture parameters measured during chilled storage of frankfurters with added dog 
rose extract 

NC 5RC 30RC PC SEM1 P 
Hardness  day 1 3.63a,x 3.16b,y 3.44xy 3.26ab,xy 0.06 0.045 
(103×g) 20 2.85b,y 3.06b,y 3.50x 2.87b,y 0.06 <0.001 

40 2.89b,y 3.86a,x 3.88x 3.17ab,y 0.10 <0.001 
60 2.82b,y 2.95b,y 3.71x 3.38a,xy 0.11 0.007 

SEM2 0.09 0.08 0.06 0.07 
 

 
P 0.003 <0.001 0.056 0.047 

 
 

     
 

Chewiness  day 1 2.04a 1.92b 2.07 1.96 0.03 0.329 
(103×g) 20 1.73ab,y 1.82b,y 2.10x 1.74y 0.03 <0.001 

40 1.68b,y 2.28a,x 2.30x 1.87y 0.06 <0.001 
60 1.57b,y 1.68b,y 2.18x 1.97xy 0.07 0.003 

SEM2 0.05 0.05 0.04 0.04 
 

 
P 0.009 <0.001 0.098 0.085 

 
 

 
     

 
Adhesiveness day 1 -28.93b -27.80ab -16.49a -19.02 1.96 0.050 
(g×s) 20 -12.76a,x -31.12b,y -32.39b,y -22.31xy 2.16 <0.001 

40 -13.89a,x -17.93a,xy -28.36ab,y -17.85xy 1.97 0.045 
60 -16.82ab,x -15.60a,x -32.94b,y -18.76xy 2.11 0.011 

SEM2 2.05 1.91 2.16 1.83 
 

 
P 0.023 0.004 0.012 0.841 

 
 

5RC: 5 g/kg Rosa canina L.; 30RC: 30 g/kg Rosa canina L.; PC: Positive control, NC: Negative 
control; 
a–b Effect of storage: values with a different letter within a column of the same treatment are 
different (P < 0.05); 
x-y Effect of treatment: values with a different letter within a row of the same storage day are 
different (P < 0.05); 
1 Standard error of the mean within the same storage day (n=36); 
2 Standard error of the mean within the same treatment (n=36). 
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DISCUSSION 

According to the literature, the ascorbic acid content of dog rose ranges between 23.7-27.5 g/kg 

fresh matter (Demir & Ízcan, 2001; Egea et al., 2010). Assuming that the major part of ascorbic 

acid can be extracted from the fresh matter, about 0.125 and 0.750 g ascorbic acid per kg 

frankfurter could be present in the 5RC or 30RC frankfurters, respectively. These amounts are 

comparable to what is usually added in commercial frankfurters as sodium ascorbate. For the 

total phenolic content of the frankfurters, approximately 200 and 1000 mg GAE/kg for 5RC and 

30RC respectively could be expected, taking into account the measured total phenolic content of 

the RC extracts. Although these values are only indicative and not supported by analyses on the 

material used in the present study, they provide insight on the antioxidant potential of RC in the 

experimental frankfurters. According to the results, the incorporation of RC in frankfurters 

inhibited both lipid and protein oxidation. In previous studies, specific phenolic components of 

dog rose such as cyanidins and catechins were found to be efficient inhibitors of lipid and protein 

oxidation in emulsions and suspensions of meat proteins (Estévez et al., 2008; Estévez & 

Heinonen, 2010). The present study confirms the efficiency of dog rose phenolics as antioxidants 

in a more complex food system. The previously mentioned authors attributed the antioxidant 

effects on proteins to the ability of dog rose phenolics to act as radical scavengers and metal 

chelators. These mechanisms are also applicable to the present study as protein carbonylation is 

usually initiated by reactive oxygen species (ROS) and involves metal-catalyzed oxidation of 

particular amino acid residues (Estévez, 2011). This outcome compares well with the effects 

previously reported in cooked burger patties (Ganhão et al., 2010c; Ganhão et al., 2010c). It is 

worth noting that the RC extracts are as efficient as the combination of sodium nitrite and 

sodium ascorbate (PC samples) for lipid oxidation, while the latter was more effective against 

protein oxidation. Likewise, previous studies that investigated the effect of various antioxidants 

on the oxidative stability of meat products reported lower efficacy of such antioxidant 
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compounds against protein oxidation than against lipid oxidation (Mercier et al., 2004; Estévez 

et al., 2008; Haak et al., 2009). Estévez et al. (2008) also found that phenolic compounds were 

more effective against lipid oxidation than in preventing protein oxidation in vitro. These authors 

suggested that the phenolic compounds could be mainly located in the inner layer of the 

interphase, exposed to the lipid phase where lipid oxidation occurs. In addition, the likely 

covalent binding between phenolic compounds and proteins was suggested to decrease the 

ability of the former to act as a radical scavenger. This implies that the direct antioxidant effect 

of phenolic compounds on protein oxidation may be rather limited. However, protein oxidation 

could be indirectly inhibited by phenolic compounds by decreasing the formation of primary 

lipid oxidation products that are known to initiate protein oxidation (Estévez, 2011). In addition, 

ascorbic acid and nitrite have been known for a long time to exhibit antioxidant activity against 

lipid oxidation (Honikel, 2008; Ranken, 1981), while this has been less clear for protein 

oxidation. Different authors reported both pro- and antioxidant activity of ascorbic acid against 

carbonyl formation (Estévez, 2011) and according to Vossen et al. (2012a), no effect of nitrite on 

carbonyl formation was found in liver pâté. In the present study, the combination of those 

additives shows efficient protection against the formation of specific protein carbonyls in 

frankfurters.  

Irrespective of the treatment or storage day, higher amounts of AAS were formed during 

oxidation compared to GGS. Moreover, at the onset of the trial, AAS was present in all samples, 

while GGS lacked in some cases. AAS is derived from lysine, while GGS is the main oxidation 

product originating from arginine and proline (Requena et al., 2001). Apparently, in this study 

lysine was more easily oxidized compared to proline and arginine, which was also found by 

Utrera et al. (2011). Nevertheless, opposite results were published by Armenteros et al. (2009) 

and Ganhão et al. (2010c), in which higher amounts of GGS and lower amounts of AAS were 

found in different meat products. Protein carbonylation has been linked to loss of protein 
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functionality and deterioration of various sensory and technological properties of muscle foods, 

including its water holding capacity (Estévez et al., 2011; Lund et al., 2011). The inhibition of 

protein carbonylation by dog rose extracts could provide a substantial benefit to the quality 

characteristics of the present frankfurters. In addition, oxidative modifications of proteins can 

lead to the loss of essential amino acids and a decreased digestibility affecting ultimately the 

nutritional quality of muscle foods (Lund et al., 2011). The oxidation of proteins may cause an 

altered susceptibility of protein substrates to proteolytic enzymes, as the formation of protein 

aggregates and the oxidative degradation of specific amino acid side chains could alter 

recognition sites both chemically and physically leading to a decreased proteolytic susceptibility 

(Estévez 2011). This implies that even small amounts of oxidative modifications could have an 

effect on the nutritional value. 

Regarding the lipid oxidation products, hexanal was more abundantly present compared to the 

other volatiles. Furthermore, during storage of the frankfurters, hexanal increased more 

intensively compared to the other volatiles. In literature, hexanal is reported to be the most 

sensitive indicator for lipid oxidation (Ahn et al., 1998). However, other lipid-derived volatiles 

such as heptanal, octanal, and nonanal should also be taken into account due to their low flavour 

threshold values (Specht & Baltes, 1994). Hexanal and heptanal are degradation products from 

long chain polyunsaturated n-6 fatty acids, mainly linoleic acid, while nonanal, octanal as well as 

heptanal arise from oxidation of monounsaturated n-9 fatty acids, e.g. from oleic acid (Meynier 

et al., 1998). Long chain polyunsaturated fatty acids are known to be less stable towards 

oxidation compared to monounsaturated fatty acids, which in the present study resulted in high 

hexanal values. 

In general, no dose response of RC on lipid and protein oxidation was observed. Moreover, in 

some cases higher amounts of lipid derived volatiles were measured in the 30RC samples, 

implying that the addition of natural antioxidants should be applied with care. As 
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aforementioned, the antioxidant activity of phenolic compounds is attributed to their free radical 

scavenging and metal chelating activities, in which hydroxyl groups attached to phenolic rings 

play an important role (Bravo, 1998). However, during auto-oxidation of these antioxidants, 

hydroxyl forms can convert to their corresponding pro-oxidant quinone structures. The overall 

pro- or antioxidant effect displayed by plant phenolics might therefore be the result of the 

balance between both forms (Estévez & Heinonen, 2010). Moreover, the effect of a certain 

potential antioxidant might vary considerably depending on a complex interaction between 

various factors, involving the type and concentration of active compound(s) and the nature of the 

food system (Madsen & Bertelsen, 1995). In addition, also ascorbic acid may act as a pro-

oxidant in specific conditions, most likely due to the strong reducing power and weak metal-

chelating ability (Yen et al., 2002). Various other studies have reported pro-oxidant effects of 

phenolic compounds or ascorbic acid, both for lipid or protein oxidation in pork (Haak et al., 

2009), frankfurters (Estévez et al., 2007b) and chicken (Tang et al, 2000). However, although in 

some cases 5RC was more effective against lipid and protein oxidation compared to 30RC, both 

RC treatments showed clear antioxidant activities compared to the negative control without 

antioxidants. 

For the colour, only the PC treated frankfurters showed the common pink colour found in 

commercial frankfurters. Sensory analysis should be carried out to investigate the consumer’s 

acceptability towards these experimental frankfurters. Noteworthy are the higher a* values in the 

RC frankfurters compared to the NC samples: perhaps some nitrosopigments were formed, as 

RC contains approximately 1 g nitrate per kg fresh matter (Cakilcioglu & Khatun, 2011). Taking 

into account this amount, about 5 and 30 mg nitrate per kg frankfurter could roughly be present 

in the 5RC and 30RC frankfurters respectively. However, nitrate is only effective after being 

reduced to nitrite, which can be accomplished by microorganisms found in the natural flora of 

meat (Sindelar et al., 2007b). Although this reduction is only possible in raw batters and not in 
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cooked meat products, no more than 4 to 6 mg nitrite/kg frankfurters is necessary for cured 

colour development in frankfurters (Fox Jr (1987), as cited in Heaton et al. (2000)). These small 

amounts could possibly have been formed during the manufacturing of the frankfurters. It would 

thus be of interest to study the potential of RC in colour formation in more detail. Another 

possible explanation could be that the extracts, which were slightly coloured, contributed to the 

higher a* values. The a*values of NC and 5RC remained stable during storage, but what is 

unusual about the results of the PC and 30RC treatments, is that the a* values increased during 

storage, while a loss in redness was expected. This increase is difficult to explain as various 

endogenous factors can change the conditions of the meat, such as pH, reducing conditions, 

degree of denaturation, and reactivity of endogenous meat compounds, which can affect the 

chemical state, structure, and reactivity of the pigments. Some of these factors may result in 

pinking of cooked meat (Holownia et al., 2011). The b* value of the RC frankfurters were higher 

compared to the other treatments and a dose response was observed. As the extracts were 

yellowish, this result could be expected.  

Texture is a major parameter of cooked sausages and consumer acceptance of food products 

strongly depends on textural characteristics. The mechanical characteristics hardness, chewiness 

and adhesiveness can be explained in terms closely related to actual consumer perception: 

hardness is the force required to compress a substance between the molar teeth, chewiness is the 

length of time required to masticate a sample at a constant rate of force application, to reduce it 

to a consistency suitable for swallowing and adhesiveness is the force required to remove 

material that adheres to the mouth during the normal eating process (Bourne, 1982). When 

changing the composition of a well known meat product such as frankfurters, one should verify 

that the desired textural characteristics are maintained. In this study, the effect of omitting 

sodium nitrite as well as the effect of RC addition in the frankfurters should be explored. In a 

work carried out by Dong et al. (2007), altering the sodium nitrite concentrations from 0 to 150 
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mg/kg, resulted in changed texture attributes and the nitrite concentration was negatively 

correlated with hardness and adhesiveness. In this study, no differences in texture parameters 

was found between the nitrite containing (PC) and nitrite-free (NC) frankfurters, which is in 

contrast with the results found by Dong et al. (2007). On the other hand, adding different doses 

of RC did affect the texture parameters dose-dependently. On average, frankfurters containing 

30RC were harder and showed an increased chewiness compared to 5RC, NC and PC. Ganhão et 

al. (2010b) found an increased hardness in cooked pork patties containing 30 g/kg RC fruits 

compared to a control without added fruit extracts, while no significant effects on other texture 

parameters such as adhesiveness and chewiness were found. In previous studies, the 

deterioration of particular texture traits such as hardness during storage of meat products was 

closely linked to the oxidative deterioration of meat proteins (frankfurters, Estévez et al., 2005a 

and Estévez et al., 2011; cooked patties, Ganhão et al., 2010b). On the same line, the impact of 

phenolic-rich extracts on the texture properties was ascribed to the ability of these 

phytochemicals to inhibit protein oxidation and hence, the derived texture deterioration. The 

connection between protein oxidation changes and texture deterioration during chilled storage of 

frankfurters was not observed in the present study. 

In addition to the important function of nitrite regarding colour and oxidative stability of the 

meat product, nitrite plays a key role in cured meat as a bacteriostatic and bacteriocidal agent. 

Nitrite is a strong inhibitor of anaerobic bacteria, most importantly Clostridium botulinum and 

contributes to control of other micro-organisms such as Listeria monocytogenes (Sebranek & 

Bacus, 2007). Therefore, caution should be exercised when meat products without or low 

amounts of nitrite are produced. Although not investigated in this research, it should be explored 

if RC can be used against harmful micro-organisms. From literature it appears that RC has 

antibacterial activities (Kumarasamy et al., 2003) and other polyphenolic-rich fruits were 

reported to be effective against human pathogens such as Clostridium (Heinonen, 2007). 
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CONCLUSIONS 

Addition of Rosa canina L. revealed clear protection against lipid and protein oxidation in 

frankfurters during 60 days of chilled storage, while the textural properties of the frankfurters 

only changed slightly. Data also suggest that Rosa canina L. extracts may have the potential to 

contribute to pink colour formation. Further studies should include an assessment of 

microbiological risk and sensory research on the acceptability of these frankfurters to verify the 

efficacy of Rosa canina L. to extend the shelf life of sodium nitrite-free frankfurters without 

compromising the safety of the meat product.  
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The antioxidant role of nitrite is partly replaced by a plant extract containing ascorbic acid 

(CH1). 

Can sodium ascorbate replace the antioxidant role of sodium nitrite in liver pâté? 

 

Part I  Lowering the ingoing nitrite dose Part II  Increasing the n-3 PUFA content 

CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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ABSTRACT 

The effect of sodium ascorbate (SA; 500, 750, 1000 mg/kg) and sodium nitrite (SN; 40, 80, 120 

mg/kg) dose on the shelf-life stability of liver pâtés was investigated in a full factorial design. 

Clear dose-dependent responses of the added SN or SA were found for the concentrations of 

nitrite, ascorbic acid and dehydroascorbic acid in the raw batters and in the cooked pâtés before 

and after 48h of chilled display. Decreasing the SN dose to 80 mg/kg had no negative impact on 

the colour stability (a* value) and lipid oxidation (TBARS), and no additional antioxidant effect 

of SA was noticed. Lowering SN to 40 mg/kg resulted in proper colour formation, but the colour 

stability was inferior and lipid oxidation increased. Yet, increasing the amount of SA, at this low 

SN dose, resulted in lower TBARS values. Decreasing the SN dose to 80 or 40 mg/kg had no 

distinct effect on protein oxidation, which was however only measured by carbonyl content. 
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INTRODUCTION  

Liver pâté, a traditionally cooked and widely consumed meat product in many countries, consists 

of a comminuted mixture of liver and fat to which additives are added. Due to its chemical 

composition and manufacturing process, liver pâté is considered as being a product highly 

susceptible to oxidation (Estévez et al., 2007a). Liver pâté is rich in fat and non-haem iron, with 

the latter being considered as the most important pro-oxidant in meat systems (Kanner, 1994). In 

addition, mincing and cooking makes meat products more susceptible to oxidation compared to 

fresh meat, due to the facilitated interaction between free fatty acids and oxygen in the presence 

of catalysts such as heat and metalloproteins (Morrissey et al., 1998). Oxidation leads to several 

changes in fat components and meat pigments, thereby reducing the quality of the product in 

terms of taste, colour and shelf-life. In the past, the main focus on oxidation in meat and meat 

products was on colour and lipid oxidation, but nowadays also protein oxidation seems to 

influence specific meat quality traits (Lund et al., 2011). 

Two important ingredients influencing the oxidative stability of liver pâté are nitrite and ascorbic 

acid (AA). Nitrite plays an important role during meat processing, colour development, lipid 

oxidation, flavour formation and microbiological safety (Honikel, 2008). After adding nitrite to a 

batter of meat, the nitrite has different fates: it is partially oxidized to nitrate by sequestering 

oxygen, bound to myoglobin and bound to proteins or other substances (Honikel, 2008). The rate 

of nitrite depletion is dependent on different factors such as pH, initial nitrite concentration, 

processing technique and storage temperatures, meat-to-water ratio and the presence of 

antioxidants (Kilic et al., 2002). According to Honikel (2008) residual nitrite levels in meat 

products vary between 5 and 20% of the ingoing amount. The antioxidant AA works as a potent 

radical-scavenging component, improving the oxidative stability and colour formation of meat 

and meat products (Perlo et al., 1995; Sahoo & Anjaneyulu, 1997). Also, AA can act 

synergistically with tocopherols by regenerating and restoring their antioxidant properties (Niki 
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et al., 1995) and interacts with nitrite (Izumi et al., 1989). When nitrite is added to a batter, an 

equilibrium reaction occurs between nitrite and nitrous acid. From the nitrous acid, nitric oxide 

can be formed by the action of endogenous meat enzymes or reducing agents (Ranken, 1981). 

For the colour formation, nitric oxide reacts almost instantly with metmyoglobin forming 

nitrosylmetmyoglobin. The nitrosylmetmyoglobin is subsequently reduced to the red cured 

colour nitrosylmyoglobin. As AA is a strongly reducing agent, it plays an important role in the 

colour formation of cured meat products since it accelerates the reducing steps (Ranken, 1981).  

The American Institute for Cancer Research (2007) suggests that dietary nitrites are to be 

considered as human carcinogens, because they may be converted to carcinogenic N-nitroso 

compounds (Demeyer et al., 2008). Consumers are concerned about the possible harmful effects 

of nitrite and the meat industry is challenged to reduce the concentrations of nitrite in their meat 

products. Regarding the formation of N-nitroso compounds, knowledge about the residual nitrite 

concentration could be just as important as focusing on the initially added nitrite concentration. 

Because of the significant role of AA in the colour development and oxidative stability of meat 

products and the concerns about residual nitrite, a partial replacement of nitrite with AA in meat 

processing could be valuable. Generally, an amount of 40 mg/kg ingoing nitrite is considered to 

be sufficient for colour-fixing purposes and to achieve the expected cured meat appearance 

(USDA, 1995). The colour stability and oxidative stability at this low dose is however less 

documented, especially in liver pâté. Therefore, the objective of this study is to investigate the 

effect of increased sodium ascorbate supplementation on the residual nitrite levels, colour 

stability, lipid and protein oxidation as well as antioxidant concentrations of reduced nitrite liver 

pâtés.  
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MATERIALS AND METHODS 

1. Experimental set-up and sampling 

The experiment consisted of a 3 × 3 full factorial design with three levels of sodium nitrite (SN, 

E250) (Kerry Ingredients and Flavours, Bornem, Belgium) (40, 80 and 120 mg/kg) combined 

with three levels of sodium ascorbate (SA, E301) (Kerry Ingredients and Flavours, Bornem, 

Belgium) (500, 750 and 1000 mg/kg) added to the batters. In commercial conditions, 120 mg/kg 

SN and 500 mg/kg SA are generally used (according to the information given by the supplier). 

The basic composition of each batch was based on a commercial recipe (g/kg): 290 g pork liver, 

380 g pork subcutaneous fat, 290 g broth (the boiling water in which the fat was cooked), 18.0 g 

sodium chloride, 5.0 g dextrose, 10.0 g sodium caseinate and spices (2.0 g white pepper, 0.5 g 

nutmeg, 0.5 g ginger, 0.2 g cardamom, 0.5 g onion powder). All spices were purchased from 

RAPS (Beringen, Belgium) and the other additives were from Kerry Ingredients and Flavours 

(Bornem, Belgium). 

The preparation of the batters and cooking of the pâtés was performed on three subsequent days, 

with the preparations for all levels of SA and per SN dose done on one day. Beforehand, separate 

mixtures of raw livers and subcutaneous fat from several commercial slaughter pigs (Impens NV, 

Melle, Belgium) were made. These mixtures were divided in three batches to be used for the 

three processing days, frozen until -21 °C and stored for maximum three days. For the 

preparation of the batter, first the cold liver part was minced for 8 minutes at 3000 rpm (Stephan 

vertical cutter-mixer, model UM12-F/3, consisting of two blades aligned at 180 degrees to each 

other), curing salts (sodium nitrite and sodium chloride) were added and the cutting process was 

continued under vacuum for 2 minutes at 1500 rpm. The cured liver was kept refrigerated (1-

7 °C) during the preparation of the fat. The fat was scalded for 20 minutes in boiling water until 

it reached a temperature of 40 °C. The fat was then minced and homogenised with sodium 

caseinate and broth for 5 minutes at 51 °C in the Stephan vertical cutter-mixer. Subsequently the 
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cured liver and the other additives were added to this warm emulsion in the cutter. The mixture 

was further homogenised for 3 minutes until a homogeneous raw batter of 40 °C was obtained. 

Finally, the ready batters were manually distributed into metal cans until completely full (250 g, 

can height: 6 cm) and these were then hermetically closed using a can sealing machine (Indosa, 

type M160).  

Three cans per treatment were immediately frozen (-21 °C) for further analysis, and are referred 

to as the batter samples. The other cans (six per treatment) were cooked in saturated steam 

conditions at 75 °C for 90 minutes. The cans were rapidly cooled in an ice bath and were stored 

in the dark at 4 °C. After 7 days, the cans were opened and two slices of 2 cm thickness were 

sampled after removing 1 cm of the top and bottom layer. Six slices per treatment were 

immediately vacuum packed and stored at -21 °C for further analysis. Six other slices per 

treatment were wrapped in an oxygen permeable polyethylene film (purchased from a local 

supermarket (Delhaize), thickness 0.010 mm), and placed in an illuminated chilled cabinet (1000 

lux, 4 °C). Permeability characteristics of the film were not available from the supplier, but 

according to Massey (2002), this kind of low density polyethylene film has an oxygen gas 

permeability in the range of 255-470 cm3 × mm × m-2 × 24h-1 × atm-1 and a water vapour 

transmission rate in the range of 1.25-1.85 g × mm × m-2 × 24h-1. After 48 h of chilled display, 

the polyethylene film was removed and the samples were vacuum packed and stored at -21 °C 

until further analysis. All analyses were performed in duplicate.  

 

2. Composition analyses 

Dry matter, crude protein and crude fat content were analysed on three pooled pâté samples 

according to the ISO 1442-1973, ISO 937-1978 and ISO 1444-1973 methods, respectively. The 

pH was measured on minced samples using a glass pH-electrode. 
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The AA and dehydroascorbic acid (DHAA) content was determined according to the method of 

Zapata & Dufour (1992) and Dodson et al. (1992). This assay is based on the reaction of DHAA 

with orthophenylenediamine (OPD). Briefly, AA and DHAA were extracted using 

methanol/water (5/95; v/v) containing 0.1 M citric acid and 0.2 mM EDTA. DHAA is able to 

react with OPD, but AA first needs to be converted into DHAA, using active carbon. By 

measuring total DHAA (i.e. the present DHAA and DHAA formed from converted AA), and 

DHAA present in the samples, the AA concentration was calculated. Samples were analysed by 

reversed phase HPLC (Agilent, Waldbronn, Germany), using a Pursuit XRS C18 column (15 cm 

× 4.6 mm × 5 µm; Varian, Sint-Katelijne-Waver, Belgium) with fluorimetric detection at an 

excitation and emission wavelength of 350 and 430 nm respectively. The mobile phase was a 

mixture of methanol/water (5/95; v/v), containing 5 mM cetrimide and 50 mM KH2PO4 (pH 4.6). 

The elution was performed at a flow rate of 1.0 ml/min. Quantification was done by comparison 

of peak areas with those obtained from a standard solution of converted (L)-ascorbic acid. 

Results were expressed as mg AA or DHAA/kg batter or pâté. 

The residual nitrite was determined by the ISO 2918-1975 reference method. After a reaction 

with sulfanilamide and naftylethylenediamine, nitrite was measured spectrophotometrically at 

538 nm. The nitrite concentration was calculated based on a standard curve obtained with SN 

and expressed as mg/kg batter or pâté. 

The α-tocopherol content was determined according to the method of Desai (1984) with some 

improvements. After saponification and n-hexane extraction, all samples were analysed by 

reversed phase HPLC (GE Healthcare, Diegem, Belgium), using a Supelcosil LC18 column (25 

cm × 4.6 mm × 5 µm; Sigma-Aldrich, Bornem, Belgium). The mobile phase was a mixture of 

methanol/water (97/3; v/v) and the elution was performed at a flow rate of 2.0 ml/min. UV-

detection was accomplished at a wavelength of 292 nm. The α-tocopherol content of the samples 
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was determined by comparison of peak areas with those obtained from a standard curve of α-

tocopherol. The results were expressed as mg α-tocopherol/kg batter or pâté. 

 

3. Oxidative stability measurements 

Lipid oxidation was assessed by measuring the 2-thiobarbituric acid-reactive substances 

(TBARS), with the extraction method using perchloric acid (0.64 M) as described by Ventanas et 

al. (2006). In this method, malondialdehyde (MDA), a secondary oxidation product, forms a 

coloured complex with 2-thiobarbituric acid (TBA). This complex was determined 

spectrophotometrically at 532 nm. Results were expressed as mg MDA/kg batter or pâté. 

Protein oxidation was assessed by determining the carbonyl content of the samples. The protein 

were extracted from the meat matrix with of phosphate buffer (20 mM, pH 6.5 containing 0.6M 

NaCl) and four aliquots of the homogenate were treated with TCA (10% w/v) to precipitate the 

proteins. The measurement of protein carbonyls following their covalent reaction with 2,4-

dinitrophenylhydrazine (DNPH) was done according to Ganhão et al. (2010b). This reaction 

leads to the formation of a stable 2.4-dinitrophenyl hydrazone product. Total carbonyl content 

was quantified spectrophotometrically at 370 nm, using a molar absorption coefficient of 

21.0/(mM·cm) and expressed as nmol DNPH incorporated/mg protein. Since the pâtés were 

manufactured from the same homogeneous mixtures of livers and fat, the variation in the 

composition of the liver pâtés was minimal. Therefore, to calculate the carbonyl content, the 

average protein content obtained from the crude protein analysis (8.56 g/100g pâté) was used.  

Colour coordinates (CIE L*a*b* colour system 1976) were measured with a HunterLab 

Miniscan Minolta XE plus spectrocolorimeter (light source of D65, standard observer of 10°, 

45°/0° geometry, 1 inch. light surface, white standard). Samples were measured in six fold, every 

10 minutes for the first 3 h, every hour from 3 h until 8 h and at 24 h and 48 h of display in the 



chilled cabinet. The colour fading, measured as a decline in a* values, 

two-phase exponential decay curve (GraphPad Prism5, Demo2010)

Y = plateau + A × exp

with  A = (Y0–plateau) × %Fast × 0.01

B = (Y0–plateau) × (100

Kfast and Kslow (expressed in minutes

Y0 = initial a* value (intercept)

Plateau = the ultimate a* value after 48 h of displ

%Fast = the fraction of the span (from Y0 to plateau) accounted for by the faster of the 

two components. 

Figure 2.1. Illustration of a two

 

Six replicate pâté samples per treatment were measured and fitted separately, an

plateau, %Fast, Kfast and Kslow were further used for statistical analyses. The goodness of fit 

was checked by the R2 value, which was at least 0.990.

 

4. Statistical analysis 

Data were analysed using the general linear model ANOVA procedure with the 

SN dose (n=3 levels) and SA dose (n=3 levels). The 2
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The colour fading, measured as a decline in a* values, was fitted to a non

phase exponential decay curve (GraphPad Prism5, Demo2010) using the equation: 

Y = plateau + A × exp( –Kfast × X ) + B × exp(–Kslow × X

plateau) × %Fast × 0.01 

plateau) × (100-%Fast) × 0.01 

Kfast and Kslow (expressed in minutes-1) = the two rate constants 

Y0 = initial a* value (intercept) 

Plateau = the ultimate a* value after 48 h of display  

%Fast = the fraction of the span (from Y0 to plateau) accounted for by the faster of the 

Illustration of a two-phase exponential decay curve

Six replicate pâté samples per treatment were measured and fitted separately, an

plateau, %Fast, Kfast and Kslow were further used for statistical analyses. The goodness of fit 

value, which was at least 0.990. 

using the general linear model ANOVA procedure with the 

SN dose (n=3 levels) and SA dose (n=3 levels). The 2-way interaction term was only included in 

Chapter 2 

was fitted to a non-linear, 

the equation:  

Kslow × X) 

) = the two rate constants  

%Fast = the fraction of the span (from Y0 to plateau) accounted for by the faster of the 

 

phase exponential decay curve 

Six replicate pâté samples per treatment were measured and fitted separately, and values for Y0, 

plateau, %Fast, Kfast and Kslow were further used for statistical analyses. The goodness of fit 

using the general linear model ANOVA procedure with the fixed effects of 

way interaction term was only included in 
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the model when significant (P<0.05). The data of the batter and the pâté samples before and after 

display were analysed separately. Treatment means were compared using Tukey’s post hoc test 

operating at a 5 % level of significance. All the statistical analyses were carried out by SAS 

Enterprise guide 4. 

RESULTS 

The average dry matter, fat and protein content was 46.6±0.2, 35.0±0.3 and 8.56±0.08 g/100g 

pâté respectively. The mean pH value of the batters was 6.35±0.04 and increased to 6.56±0.04 

after heating (mean value of all pâtés before and after display).  

Results concerning the batters are shown in Table 2.1. The initially added SN and SA doses 

affected significantly the nitrite and AA levels of the batters. Increasing SN and SA doses 

resulted in increasing nitrite and AA levels in the batters respectively. Also increasing DHAA 

levels were found with increasing SA doses. On the other hand, the 120 mg/kg SN dose resulted 

in a significantly lower AA level and higher DHAA level compared to the lower SN doses. 

Similarly, the nitrite concentration was significantly lower for the 1000 mg/kg SA dose 

compared to the 500 mg/kg SA dose. Overall, 53, 69 and 75 % of the initially added SA was 

measured as AA+DHAA in the batters containing 500, 750 and 1000 mg/kg SA respectively. A 

significant SN×SA interaction was found for the α-tocopherol levels, indicating that the effect of 

SA on α-tocopherol differed depending on the amount of SN initially added. However, no clear 

pattern was apparent. Also the effect of SA on lipid oxidation was affected by the SN dose: 

among the batters with 40 mg/kg SN, significantly lower TBARS values were found in samples 

with 750 mg/kg SA compared with batters containing 500 mg/kg SA, while for the batters with 

80 mg/kg SN, a dose of 1000 mg/kg SA resulted in significantly higher TBARS values 

compared to 500 mg/kg SA. No effect of SA was found on lipid oxidation among the batters 

with 120 mg/kg SN. For the carbonyl content of the batters, higher SA doses resulted in higher 

carbonyl contents and no effect of the SN dose was seen.   
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Table 2.1 Effect of sodium ascorbate (SA) and sodium nitrite (SN) doses (mg/kg batter) on the 
content of nitrite, ascorbic acid (AA), dehydroascorbic acid (DHAA) and α-tocopherol, and on lipid 
oxidation (TBARS) and protein oxidation (carbonyls content), in raw batters 

  
Nitrite 
(mg/kg) 

AA 
(mg/kg) 

DHAA 
(mg/kg) 

α-
Tocopherol 

(mg/kg) 

TBARS 
(mgMDA/k

g) 

Carbonyls 

(nmol 
DNPH/mg 
protein) 

Main effects 
      

SN 
       

401 

 
11.8c 393a 130b 7.91b 0.90c 3.94 

801 

 
31.3b 389a 128b 8.54a 1.03b 3.77 

1201 

 
66.8a 304b 199a 8.53a 1.35a 4.02 

 
SA 

      
 

5002 39.4a 140c 127b 8.32b 1.10 3.71b 

 
7502 36.2ab 370b 152ab 7.70c 1.05 3.95ab 

 
10002 34.4b 576a 179a 8.96a 1.14 4.08a 

Interaction 
      

SN SA 
      

40 500 13.7 148 116 7.87bc 1.09bcd 3.76 

 
750 11.3 417 111 7.96bc 0.78e 4.06 

 
1000 10.5 613 163 7.91bc 0.85de 4.01 

        
80 500 35.9 170 112 9.24a 0.93de 3.42 

 
750 30.4 392 126 6.93c 0.99cde 3.82 

 
1000 27.7 605 146 9.45a 1.18abc 4.06 

        
120 500 68.6 103 152 7.85bc 1.28ab 3.95 

 
750 67.0 301 218 8.21b 1.38a 3.96 

 
1000 64.9 509 227 9.54a 1.38a 4.16 

        
RMSE3 

 
2.60 25.7 23.0 0.25 0.06 0.22 

        
P SN <0.001 <0.001 <0.001 0.003 <0.001 0.173 

 
SA 0.016 <0.001 0.006 <0.001 0.091 0.041 

 
SN×SA - - - <0.001 0.002 - 

a-e Means within a column and within SN or SA (or within SN×SA in case the interaction term is 
significant) with no common superscript are significantly different at p<0.05; 
1 Means within SN dose across SA doses; 
2 Means within SA dose across SN doses; 
3 Root mean square error; 
‘-‘ refers to non significant (P>0.05) 2-way interaction, removed from the statistical model. 
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Results concerning the pâtés before display are shown in Table 2.2. Again clear dose-dependent 

responses were seen: lower SN doses resulted in lower nitrite levels in the pâtés and higher SA 

doses resulted in higher AA and higher DHAA levels. For the AA levels, a significant SA×SN 

interaction was observed and the dose-dependent response was clearly present within the three 

SN doses. Unlike the batters, nitrite was not affected by the SA dose. DHAA was affected by the 

SN dose with the DHAA level being significantly higher on the 120 mg/kg SN dose compared to 

the 80 mg/kg dose. Similar to the batters, significant SN×SA interactions were found for the α-

tocopherol levels and TBARS values of the pâtés. No clear patterns were seen for the α-

tocopherol levels. The TBARS values of the pâtés with 40 mg/kg SN, were significantly lower in 

samples with 750 and 1000 mg/kg SA compared with those containing 500 mg/kg SA, while no 

effect of SA was found for lipid oxidation among the pâtés with 80 and 120 mg/kg SN. No 

significant effects on the carbonyl content were found for the different SN and SA doses. 
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Table 2.2 Effect of sodium ascorbate (SA) and sodium nitrite (SN) doses (mg/kg batter) on the 
content of nitrite, ascorbic acid (AA), dehydroascorbic acid (DHAA) and α-tocopherol, and on 
lipid oxidation (TBARS) and protein oxidation (carbonyl content), in liver pâté before chilled 
display 

  
Nitrite 
(mg/kg) 

AA 
(mg/kg) 

DHAA 
(mg/kg) 

α-
Tocopherol 

 (mg/kg) 

TBARS 
(mgMDA/kg) 

Carbonyls 

(nmol 
DNPH/mg 
protein) 

Main effects 
      

SN 
       

401 

 
18.0c 341b 120ab 7.39 0.88b 4.03 

801 

 
36.1b 382a 112b 7.73 0.80b 3.94 

1201 

 
67.5a 390a 128a 7.82 1.11a 3.76 

 
SA 

      
 

5002 41.4 168c 95.0c 7.59ab 0.94 3.80 

 
7502 41.8 371b 125b 7.27b 0.92 3.94 

 
10002 38.4 573a 141a 8.09a 0.93 3.99 

Interaction 
      

SN SA 
      

40 500 20.1 132d 92.3 6.88bc 1.03ab 3.93 

 
750 19.3 372c 129 7.90ab 0.78c 3.92 

 
1000 14.7 520b 139 7.40abc 0.85bc 4.23 

        
80 500 40.5 192d 89.3 8.54a 0.77c 3.66 

 
750 36.0 368c 119 6.37c 0.76c 4.18 

 
1000 31.7 585ab 129 8.27ab 0.87bc 3.98 

        
120 500 63.7 180d 103 7.34abc 1.03ab 3.81 

 
750 69.9 374c 127 7.55abc 1.21a 3.71 

 
1000 69.0 615a 154 8.58a 1.08ab 3.76 

        
RMSE3 

 
6.86 17.5 7.85 0.38 0.06 0.28 

        
P SN <0.001 0.002 0.016 0.182 <0.001 0.290 

 
SA 0.661 <0.001 <0.001 0.016 0.839 0.517 

 
SN×SA - 0.030 - 0.002 0.005 - 

a-d Means within a column and within SN or SA (or within SN×SA in case the interaction term is 
significant) with no common superscript are significantly different at p<0.05; 
 ‘-‘ refers to non significant (P>0.05) 2-way interaction, removed from the statistical model; 

1 Means within SN dose across SA doses;  
2 Means within SA dose across SN doses; 
3 Root mean square error. 



Chapter 2 

56 

Results concerning the pâtés after chilled display are shown in Table 2.3. Again significant dose-

dependent responses were found for SN and SA after chilled display on respectively the nitrite 

and AA levels. Similar to the results found in the batters, higher SA doses resulted in lower 

nitrite levels and lower SN doses resulted in higher AA levels. There was also a dose-dependent 

response of the DHAA levels to both the SN and SA doses, but the significant SN×SA 

interaction indicated that these responses varied within the different SN and SA doses. A 

significant SN×SA interaction was also found for lipid oxidation. Lipid oxidation was more 

intense at a SN dose of 40 mg/kg combined with 500 mg/kg SA compared to the other treatments, 

while a combination of 80 mg/kg SN and 500 mg/kg SA resulted in the lowest TBARS values. 

No significant effects were found for both the α-tocopherol levels and the carbonyls content of 

the pâtés after chilled display.  
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Table 2.3. Effect of sodium ascorbate (SA) and sodium nitrite (SN) doses (mg/kg batter) on the 
content of nitrite, ascorbic acid (AA), dehydroascorbic acid (DHAA) and α-tocopherol, and on 
lipid oxidation (TBARS) and protein oxidation (carbonyl content), in liver pâté after chilled 
display 

  
Nitrite 
(mg/kg) 

AA 
(mg/kg) 

DHAA 
(mg/kg) 

α-
Tocopherol 

 (mg/kg) 

TBARS 
(mgMDA/kg) 

Carbonyls 

(nmol 
DNPH/mg 
protein) 

Main effects 
      

SN SA 

      
401 

 
13.1c 217ab 54.9c 7.31 1.42a 3.70 

801 

 
29.3b 229a 66.3b 7.43 1.20b 3.61 

1201 

 
58.1a 210b 121a 7.35 1.49a 3.46 

        
 

5002 37.5a 76.0c 57.0c 7.12 1.41a 3.56 

 
7502 32.1b 206b 79.9b 7.13 1.31b 3.44 

 
10002 30.8b 374a 105a 7.85 1.39ab 3.77 

Interaction 
      

SN SA 
      

40 500 15.0 77.1 40.7f 7.18 1.68a 3.54 

 
750 14.6 207 55.7e 7.56 1.25cd 3.47 

 
1000 9.76 367 68.4d 7.20 1.31cd 4.08 

        
80 500 33.5 93.2 46.6ef 7.85 1.08d 3.60 

 
750 27.0 211 61.6de 6.30 1.10d 3.60 

 
1000 27.3 384 90.7c 8.15 1.43bc 3.63 

        
120 500 64.2 57.8 83.7c 6.34 1.48abc 3.55 

 
750 54.9 201 122b 7.53 1.57ab 3.23 

 
1000 55.2 372 156a 8.19 1.42bc 3.60 

        RMSE3 

 
2.36 9.06 2.72 0.94 0.06 0.27 

        
P SN <0.001 0.009 <0.001 0.975 <0.001 0.333 

 
SA 0.001 <0.001 <0.001 0.339 0.036 0.133 

 
SN×SA - - <0.001 - <0.001 - 

a-f Means within a column and within SN or SA (or within SN×SA in case the interaction term is 
significant) with no common superscript are significantly different at p<0.05; 
1 Means within SN dose across SA doses; 
2 Means within SA dose across SN doses; 
3 Root mean square error; 
‘-‘ refers to non significant (P>0.05) 2-way interaction, removed from the statistical model. 
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During 48 h chilled display, the a* value of all pâtés decreased in time, rapidly during the first 4 

h followed by a slower decrease later onwards. The results obtainede from the fitted a* values to 

the bi-exponential model are shown in Table 2.4. The added amount of SA did not affect any 

model parameter. The rate constants Kfast and Kslow were affected by the SN dose. For Kfast 

significant higher values for samples containing 40 mg/kg SN were found, compared with 80 and 

120 mg/kg SN, while for Kslow the samples with 40 mg/kg SN had only significant higher 

values compared to those containing 120 mg/kg SN. Although significant SN×SA interactions 

were found for Y0 and the plateau, it can be generalized that samples with 120 mg/kg SN 

showed lower Y0 values compared to the 40 or 80 mg/kg SN dose. A 80 mg/g SN dose resulted 

in higher plateau values compared to the 40 or 120 mg/kg SN dose. No significant differences 

between all treatments were found for %Fast. 
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Table 2.4 Effect of sodium ascorbate (SA) and sodium nitrite (SN) doses (mg/kg batter) in liver pâté 
during chilled display on model parameters derived from fitting a* values to a two-phase exponential 
decay curve 

Colour Y04 %Fast5 Kfast6 (×10-2) Kslow6 (×10-2) Plateau7 
Main effects  

SN SA  

401 

 10.4a 38.2 3.52a 0.262a 4.61b 
801 

 
10.4a 40.9 2.23b 0.216ab 4.89a 

1201 

 
10.1b 39.7 2.19b 0.171b 4.37c 

  
 

 
5002 10.4 40.1 2.92 0.219 4.58 

 
7502 10.3 40.3 2.56 0.221 4.67 

 
10002 10.3 38.4 2.47 0.209 4.62 

Interaction  
SN SA  
40 500 10.2bcd 37.6 4.38 0.279 4.38d 

 
750 10.5ab 41.3 2.99 0.240 4.70bc 

 
1000 10.5ab 35.7 3.19 0.268 4.76bc 

  
 

80 500 10.6a 41.1 2.23 0.210 4.88ab 

 
750 10.5ab 40.3 2.45 0.247 5.06a 

 
1000 10.2bcd 41.3 2.01 0.192 4.72bc 

  
 

120 500 10.3abc 41.7 2.13 0.167 4.48cd 

 
750 9.91d 39.4 2.25 0.176 4.24d 

 
1000 10.1cd 38.1 2.21 0.168 4.39d 

  
 

RMSE3 

 
0.19 12.5 0.00 0.098 0.16 

  
 

P SN <0.001 0.813 0.031 0.022 <0.001 

 
SA 0.314 0.877 0.700 0.926 0.251 

 
SN×SA <0.001 - - - <0.001 

a-d Means within a column and within SN or SA (or within SN×SA in case the interaction term is 
significant) with no common superscript are significantly different at p<0.05; 
1 Means within SN dose across SA doses; 
2 Means within SA dose across SN doses; 
3 Root mean square error; 
4 Initial a* value (intercept); 
5Fraction of the span (from Y0 to plateau) accounted for by the faster of the two components.  

6Rate constants, expressed in inverse minutes; 
7 Ultimate a* value after 48 h chilled display; 
‘-‘ refers to non significant (P>0.05) 2-way interaction, removed from the statistical model. 
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DISCUSSION  

Nitrite is a highly reactive chemical. When added to a meat system, it reacts with different 

components and a small amount of residual nitrite remains. In the present study, also during 

chilled display the residual nitrite levels continued decreasing. Sebranek et al. (1973) found that 

the residual nitrite decreased with time during display until a fairly constant low level was 

reached. In the batters, after manufacturing of the pâtés and after chilled display, the initially 

added amounts were reflected in the residual nitrite concentrations of the samples. However, the 

European Food Safety Authority (2003) concluded, based on several studies in which 0 to 300 

mg/kg product SN was added, that there is no simple and direct relationship between the in-

going and residual nitrite level. Fujimaki et al. (1975) found in a meat-curing model system that 

all nitrogen in nitrite, after curing and heating, is recovered as residual nitrite, nitrate, nitrosyl 

groups of denatured nitrosomyoglobin and gaseous nitrogen compounds. The distribution of 

these components however, depended on the concentrations of the remaining myoglobin, AA 

and nitrite in the model after heating. When AA is added to a cured meat product it accelerates 

all the reducing steps. Consequently, the formation of nitric oxide from nitrite is accelerated 

which can result in diminished residual nitrite levels in the product. Indeed, higher levels of SA 

in our study resulted in an increased nitrite depletion, similar to what Brown et al. (1974) found 

in cured hams. Unexpectedly, higher levels of residual nitrite were found after heating compared 

to the levels in the batters, while other studies have found a decrease of residual nitrite after 

heating (Gibson et al., 1984; Izumi et al., 1989; Okayama et al., 1991). Regrettably, as no other 

studies were found that report on increased nitrite concentrations after cooking, it was not 

possible to unravel a mechanism behind this observation. It is known that proteins in cured meats 

serve as a reservoir for NO and nitrosating agents that may be released during storage and 

cooking (Skibsted, 2011). One might therefore hypothesize that nitrite bound to proteins is 

similarly released during cooking. 



Chapter 2 

62 

In the batters, only 57 to 85 % of the added SA was recovered as AA and DHAA, taking into 

account that 11% of the weight of SA is sodium. In fact, independent of the initially added 

amount of AA, a similar absolute amount (about 152 ± 22 mg/kg) was not determined as AA or 

DHAA. Most probably, the electrophile AA and DHAA molecules reacted with ingredients like 

proteins and other nucleophile compounds, resulting in reaction products from which AA and 

DHAA as such could not be recovered. For the determination of AA and DHAA an extraction 

buffer consisting of 5 % methanol was used. However, according to Dodson et al. (1992) food 

products that contain very low levels of AA and DHAA, and are high in starch and/or fat should 

be extracted with 95 % ethanol in order to eliminate sample matrix interferences. Although AA 

and DHAA are not naturally present in the pâtés major ingredients, but were derived from SA 

added during manufacturing, some reaction products from AA and DHAA with other 

compounds, were probably not extracted due to the high fat content of the pâtés. Oxidation 

during chilled display may have further contributed to a decrease in AA. Importantly, the 

concentrations AA and DHAA were also affected by the initially added SN dose. This implies 

that SA not only influences the residual nitrite concentrations, but that also vice versa, SN 

influences the AA and DHAA levels. These reactions however, were not always dose-dependent. 

Although no α-tocopherol or α-tocopherol acetate was added during manufacturing, relatively 

high amounts of α-tocopherol were measured compared to other meat products (Bunnell et al., 

1965), most likely due to the high α-tocopherol content of liver and pork fat (Gebert et al., 2006). 

After cooking, a significantly lower α-tocopherol content was observed in the pâtés. Also Bou et 

al. (2006) found significantly lower α-tocopherol concentrations in cooked chicken meat 

compared to raw meat. They suggested that cooking-related lipid oxidation could be the main 

factor responsible for the loss of α-tocopherol. Considering its antioxidant activity, α-tocopherol 

itself is subject to destruction by oxygen, giving rise to a number of products including quinones, 

dimers, trimers and epoxides (Bramley et al., 2000).  
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The dose of SA had an effect on the α-tocopherol content in the batters and pâtés before chilled 

display, but this effect depended on the amount of SN initially added. In the case of batters 

containing 120 mg/kg SN, higher levels of SA resulted in higher α-tocopherol concentrations, 

which was expected as AA reduces the semistable tocopheroxyl radical, resulting in the 

regeneration of α-tocopherol (Kitts, 1997). However, different results were found in samples 

with 40 or 80 mg/kg SN, which emphasizes the complex reactions and interactions taking place 

between nitrite, AA and α-tocopherol. These interactions are yet not fully elucidated. 

Igene et al. (1985) showed that during heating nitrite decreases the release of non-heme iron and 

hypothesized that this effect decreases the catalysis of lipid oxidation. This could explain the 

lower TBARS values and lower AA levels of some pâtés before display compared to their batters. 

After chilled display, the lipid oxidation intensity depended both on the SN and SA dose. 

Morrissey & Tichivangana (1985) found higher TBARS values after 48 h of chilled display 

when lower nitrite concentrations (from 0 to 200 mg/kg SN) were added in cooked minced 

muscles of beef, pork and chicken. Dineen et al. (2001) found significantly higher TBARS 

values in low nitrite hams (25 mg/kg SN) compared to control hams (100 mg/kg SN) after 10 

days of chilled display, while Sammet et al. (2006) did not find any effect of nitrite on TBARS 

during 8 weeks of chilled display in low-nitrite salami-type sausages containing 100, 50, 25 or 0 

mg/kg SN and stored under protective atmosphere. Conversely, in the present study, higher 

TBARS values were found in the samples with 120 mg/kg SN compared to 80 mg/kg. The 

variety of meat product composition in these studies, all differently susceptible to lipid oxidation, 

could maybe explain these contrasting results. No antioxidant effect of SA was seen in pâtés 

containing 120 or 80 mg/kg SN after chilled display. Moreover, a pro-oxidant effect of SA was 

found in 80 mg/kg SN pâtés at the SA dose of 1000 mg/kg compared to the doses 750 or 500 

mg/kg SA. Likewise, Sahoo & Anjaneyulu (1997) found higher TBARS values in ground 

buffalo meat when 600 mg/kg SA was added compared to 500 mg/kg. On the contrary, when 
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lowering the added SN dose to 40 mg/kg, an additional antioxidant effect of SA was found after 

chilled display in pâtés containing 750 and 1000 mg/kg SA compared with pâtés containing the 

conventionally used dose of 500 mg/kg SA. 

Carbonyl compounds are formed as a result of the oxidative degradation of side chains from 

lysine, proline and arginine residues (Stadtman & Levine, 2003). In this study, the carbonyl 

values of the pâtés were similar to those reported by Estévez et al. (2005b), Estévez et al. (2006b) 

and Armenteros et al. (2009) for liver pâté. The carbonyl content was not affected during heating, 

while it was expected that due to the increased temperature the formation of reactive oxygen or 

nitrogen species was enhanced and oxidation would occur. Ganhão et al. (2010b) found 

increased carbonyl compounds in cooked porcine burger patties after heating raw patties for 18 

minutes in an oven of 170 °C. Maybe, the applied temperature in the present study, in 

combination with a relatively short exposure time, was too low to induce protein oxidation in 

liver pâté. Gatellier et al. (2010) observed an increase in carbonyl content in fresh meat after 

heating up to 207 °C, but no increase was found after heating at 65 °C or 96 °C. An increase of 

protein carbonyls was also expected during chilled display, analogous to what was observed in 

other studies (Lund et al., 2007; Ganhão et al., 2010b; Ganhão et al., 2010c), but on the contrary, 

a small decrease in carbonyl groups was found. Possible reasons could be the shorter chilled 

display period and the difference in meat products, as the above mentioned studies investigated 

cooked porcine burger patties and raw beef patties during 12 and 6 days chilled display 

respectively. As reviewed by Estévez (2011), carbonyl compounds are reactive and may 

disappear as a result of their participation in other reactions. A decrease in carbonyl content was 

seen in muscles homogenates after in vitro induced oxidation, using different metal-catalyzed 

oxidation systems (Martinaud et al., 1997; Batifoulier et al., 2002; Mercier et al., 2004). Induced 

oxidation is more intense compared to 48 h of chilled display conditions, but because of the high 
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concentrations of iron in liver pâté, it could be hypothesized that more intense oxidation and the 

same kind of reactions occurred in the present study.  

From our results, SN did not affect the carbonyl content of the pâtés and as far as we know, this 

study is the first to investigate the effect of SN on protein oxidation in meat products. As nitrite 

chelates iron (Skibsted, 2011) and transition metals are essential to the formation of major 

protein carbonyls from lysine, arginine and proline (Estévez, 2011), it could be hypothesized that 

SN has an effect on carbonyl formation during protein oxidation. On the other hand, SN also acts 

as an antioxidant by sequestering oxygen (Honikel, 2008), but the formation of protein carbonyls 

does not require molecular oxygen (Estévez, 2011). Regrettably, no other protein oxidation 

markers were analysed in the present study to investigate this further. An interesting marker 

would be 3-nitrotyrosine, a protein oxidation product originating from tyrosine residues (Means 

& Feeney, 1998). According to Woolford et al. (1976), the major nonheme muscle protein, 

myosin, has the ability to bind appreciable amounts of nitrite with resulting modifications of the 

protein, mainly in 3-nitrotyrosine. For SA, higher carbonyl contents were found in batters 

containing 1000 mg/kg SA compared with batters containing 500 mg/kg. It is well known that 

AA can act as a pro-oxidant by reducing Fe3+ to Fe2+ and Cu2+ to Cu+, thereby increasing the 

pro-oxidant activity of these metals (Morrissey et al., 1998). Lund et al. (2007) also found a pro-

oxidant effect of ascorbate:citrate (1:1) during chilled storage of minced beef patties in 

combination with modified atmosphere packaging. They assigned this observation to the fact that 

protein carbonyl compounds are primarily formed through metal catalysed oxidation, and that 

the presence of ascorbate enhances the conversion of some amino acids to carbonyl derivatives 

due to ascorbate-driven redox cycling of metal ions such as Fe2+ and Cu+ (Amici et al., 1989).  

The results revealed that SA and SN had overall an effect against lipid oxidation, but not against 

protein oxidation. According to Lund et al. (2007), the efficiency of an antioxidant is dependent 

on the rate of reaction between the antioxidant and the radical intermediates in the autocatalytic 
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process relative to other possible reactions of the radical intermediates with other oxidation 

substrates present in the product. Hence, the substrate radicals formed during oxidation have to 

be relatively long-lived in order to be quenched by antioxidants. Although the exact mechanism 

of antioxidants towards protein oxidation is not yet elucidated (Lund et al., 2011), one might 

hypothesize that the conditions prevailing in the pâtés of the present study gave rise to the 

formation of protein radicals that were more reactive than lipid radicals, allowing SA and SN to 

exert antioxidant protection only against lipid oxidation but not against protein carbonyl 

formation. However, this remains to be further investigated. 

Since meat purchasing decisions are influenced by colour more than any other quality factor 

(Mancini & Hunt, 2005), good colour formation is important. In addition, as liver pâté is highly 

susceptible to oxidation, the colour shelf life of liver pâté is very short. The 48 h of display used 

in the present study simulates the use of liver pâté by consumers: after opening the package, the 

liver pâté is exposed to light and air and is generally consumed within a few days. From previous 

results (unpublished data), it was found that an immediate drop in redness of the pâtés takes 

place during the first hours of chilled display. Therefore, in the present study, the a* values were 

measured every 10 minutes for the first 3 h. This loss of redness displayed a non-linear two-

phase exponential decay pattern (Figure 2.1). However, little is known about the biochemical 

mechanisms related to this two-phase colour fading. Other studies investigating the colour of 

pork liver pâté did not look at the a* values in detail during the first hours of chilled display 

(Perlo et al., 1995; Estévez et al., 2005b; Estévez et al., 2006b; Kaack et al., 2006). In the present 

study no differences in the initial a* values were found between the different SA treatments, 

pointing out that increasing the conventional 500 mg/kg SA dose to 750 or 1000 mg/kg gives no 

additional colour gain. Importantly, the initial a* values of samples containing 120 mg/kg SN 

were lower than those with 40 and 80 mg/kg, while the opposite was expected. Apparently, using 

40 mg/kg SN is sufficient to have proper colour formation. However, this dose was less effective 
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in retaining the redness of the samples during chilled display compared to the 80 and 120 mg/kg 

SN doses. No benefit of increasing the dose of SA to using 750 or 1000 mg/kg on the stability of 

the cooked cured colour was found either.  

 

CONCLUSIONS 

Lowering the use of nitrite in liver pâté to 80 or even 40 mg/kg SN should be possible without 

facing major problems concerning the oxidative stability of the liver pâtés. Additional research 

should be done to verify if these lower doses still have a sufficient protective effect against 

microbiological risks. Also, sensory research on the acceptability of low-nitrite liver pâtés is 

warranted. Due to the multifunctional roles of nitrite, an approach where several additives are 

used to replace nitrite will be necessary. Sodium ascorbate is one of these potential additives. 
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The ingoing sodium nitrite level can be lowered to 40 mg/kg in liver pâté, without major 

problems concerning the oxidative stability (CH2). 

What happens when the ingoing nitrite content is lowered to 20 mg/kg using nitrite from a 

pre-converted plant extract? 

 

Part I  Lowering the ingoing nitrite dose Part II  Increasing the n-3 PUFA content 

CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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ABSTRACT 

The effect of reduced nitrite liver pâtés using a pre-converted plant extract as source of nitrite 

was investigated on colour stability (a* values), protein oxidation (carbonyls) and lipid oxidation 

(TBARS and hexanal). Five treatments were prepared: 20, 45 and 90 mg/kg nitrite from a pre-

converted extract, a negative control without nitrite and a positive control with 120 mg/kg 

sodium nitrite. Samples were subjected to illuminated chilled display for nine days. Decreasing 

the ingoing nitrite dose resulted in lower residual nitrite levels, but did not affect the colour 

formation and colour stability. Inconsistent results for the treatment effects on the protein 

carbonyls content of the liver pâtés were found. Compared to the positive control, lipid oxidation 

was lower in the treatments with 45 and 90 mg/kg ingoing nitrite at the end of display, which 

illustrates that the antioxidant effect of sodium nitrite was partly replaced by other compounds 

present in the extract. 
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INTRODUCTION 

Worldwide, nitrite is used in meat products for its multifunctional properties. It is a highly 

reactive molecule responsible for cured meat colour, cured flavour, lipid oxidative stability and 

bacterial inhibition (Honikel, 2008). However, this reactivity is also a concern, as it is related to 

the potential formation of carcinogenic nitrosamines in cured meat or during digestion (Sindelar 

& Milkowski, 2011). Although it is not clear to what extent the nitrite used in curing salt is 

related to this issue, public concern on conventionally produced foods raises, and there is a shift 

in consumers preferences towards the consumption of natural foods (Sebranek & Bacus, 2007). 

As a result, meat scientists and meat producers are challenged to search for reliable alternatives 

for conventional cured meat products. 

In this context, meat products are processed without the use of synthetic sodium nitrite, but to 

which nitrite is added through natural sources. This nitrite is mostly formed from the conversion 

of nitrate, present in vegetables and fruits, by nitrate-reducing micro-organisms during 

manufacturing. Cherry powder in emulsified cooked sausages (Terns et al., 2011), celery with 

carrot concentrate in cured cooked sausage (Magrinya et al., 2012), celery juice in ham (Sindelar 

et al., 2007a) and celery juice in emulsified cooked sausages (Sindelar et al., 2007b) have been 

tested as indirect curing agents. With the addition of a nitrate reducing bacterial starter culture, 

all of them have been found effective alternatives to traditional curing processes. The drawback 

of this approach is the lack of knowledge about the doses of nitrite actually added during meat 

processing and because of the high reactivity of nitrite, it is impossible to deduce the ingoing 

amount from the residual nitrite after production. For this reason, pre-converted powders and 

extracts have become commercially available for the production of naturally cured meat products 

(Krause et al., 2011). These pre-converted powders and extracts are produced by combining 

nitrate-reducing organisms with vegetable products with a sufficient amount of nitrate, resulting 

in a product with a known amount of nitrite. By this way, a more controlled addition of nitrite 
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from a natural source is possible. However, these meat products still contain residual nitrite, so 

lowering the ingoing nitrite levels remains of interest. 

Studies investigating natural curing are generally conducted in cooked sausages and ham, while 

liver pâté is hardly investigated. Liver pâté is widely consumed in many countries and the 

increasing demand of natural meat products therefore also concerns liver pâté. In addition, as the 

main ingredient is liver instead of muscle tissue, one might expect a different effect of natural 

curing processes on the oxidative stability of this product compared to other cooked and cured 

meat products. Liver pâté is very prone to oxidation due to its chemical composition, e.g. high in 

fat and iron content, and manufacturing process such as mincing and cooking (Estévez et al., 

2007a). These oxidation processes can lead to colour deterioration (Mancini & Hunt, 2005), lipid 

oxidation with the occurrence of lipid oxidation products such as malondialdehyde and hexanal 

(Morrissey et al., 1998) and protein oxidation, with the formation of e.g. protein carbonyl 

compounds (Lund et al., 2011). Liver pâté is therefore an interesting product when studying the 

effect of natural curing on oxidation processes. 

The objective of this study is to investigate the colour stability, lipid oxidation and protein 

oxidation processes in reduced nitrite liver pâtés using a pre-converted vegetable extract as 

source of nitrite.  

 

 

MATERIALS AND METHODS 

1. Manufacturing of the liver pâtés, experimental design and sampling procedure 

A pre-converted extract (PE, Herba Pure) was supplied by RAPS (Beringen, Belgium) and 

consists of a liquid kombucha tea extract containing flavouring spices. The nitrite content of PE 

was analysed and found to be 1.25 g/kg. Three doses of the extract were added to the 
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experimental pâtés: 17.5, 35 and 70 g PE/kg pâté, corresponding to approximately 20, 45 and 90 

mg nitrite/kg pâté (PE20, PE45 and PE90 treatments respectively). Additionally, a negative 

control (NEG0) without added NaNO2 or PE, and a positive control (POS120) consisting of 120 

mg NaNO2 mg/kg liver pâté was included in the trial. For each treatement 2 kg of batter was 

made. The composition of the pâté batters was (g/kg): 300 g liver, 400 g of back-fat, 300 g water 

(in the case of the addition of PE, the amount of water added was 300 g minus the amount of PE 

added), 18 g sodium chloride, 0.5 g sodium ascorbate, 10 g sodium caseinate, 5 g dextrose. The 

ingredients were purchased from Kerry Ingredients and Flavours (Bornem, Belgium).  

The pâtés were manufactured as described by Vossen et al. (2012a) with minimal modifications. 

Two different batches were prepared on two subsequent days. Each day all treatments were 

prepared from the same homogenized common ingredients. Before manufacturing the pâtés, 

separate mixtures of liver and subcutaneous fat from several commercial slaughter pigs were 

made. Each mixture was divided in five parts to be used for the different treatments. First, the 

liver mixture was minced for 8 minutes at 3000 rpm (Stephan vertical cutter-mixer, model 

UM12-F/3). Sodium chloride and, in the case of POS120, 120 mg/kg NaNO2 were added and the 

cutting process was continued under vacuum for 2 minutes at 1200 rpm. The fat mixture was 

scalded for 20 minutes in boiling water. The fat was then minced and homogenized with sodium 

caseinate and broth (i.e. liquid where the fat had previously been boiled in) for 5 minutes at 

51 °C in the Stephan vertical cutter mixer. Thereafter, the liver with the curing salts was added 

and the whole mixture was homogenized for 3 minutes until the raw batter reached 40 °C. The 

finished batters were manually distributed into metal cans of 250 g of capacity, until completely 

full. Cans were hermetically closed with a can sealing machine (Indosa, type M160). The cans 

were cooked in saturated steam conditions at 75 °C for 90 minutes. Subsequently, the cans were 

rapidly cooled in an ice bath and stored in the dark at 4 °C. After 7 weeks, six cans per treatment 

were opened and two slices of 2 cm thickness were sampled from each can after removing the 
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top and the bottom layer. Three slices per treatment and per batch were immediately vacuum 

packed and stored at -80 °C (Day 0). Six other slices per treatment and per batch were wrapped 

in an oxygen permeable polyethylene film and placed in an illuminated chilled cabinet (1000 lux, 

4 °C). After 5 and 9 days of display, the polyethylene film was removed and the samples were 

vacuum packed and stored at -80 °C until further analysis. 

 

2. Composition analysis 

Dry matter, crude protein and crude fat content were analyzed in duplicate on unexposed 

samples according to the ISO 1442-1973, ISO 937-1978 and ISO 1444-1973 methods, 

respectively for each treatment and each batch (n=4). The results are expressed as g/100g of pâté. 

Nitrite content was determined on the Herba Pure extract and unexposed liver pâté samples 

according to Zuo et al. (2006) with some modifications as described by Doolaege et al. (2012) 

using a HPLC (Agilent 1200 series) with DAD detector. The column employed was ZORBAX 

Eclipse XDB-C18; 4.6×150 mm, 5 µm (Agilent) and the elution was performed at a flow rate of 

0.4 ml/min following a gradient. Detection was done by UV absorption measurement at 225 nm. 

The peak area of NO2
- (retention time 25 min) was read and the quantification was done by 

comparison with the peak areas obtained from a standard solution of sodium nitrite. Analyses 

were carried out in duplicate and results were expressed as mg NaNO2/kg pâté.  

 

3. Colour stability 

Colour coordinates (CIE L*a*b*colour system 1976) were measured with a HunterLab Miniscan 

Minolta XE plus spectrocolorimeter (light source of D65, standard observer of 10°, 45°/0° 

geometry, 1 inch. light surface, white standard). Three slices per treatment and per batch were 

measured (n=6 per treatment), every 10 minutes for the first 3 h, every hour from 3 h until 7 h 
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and after 1, 2, 5 and 9 days of illuminated display in the chilled cabinet. The colour fading from 

day 0 until day 2, measured as a decline in a* values, was fitted to a non-linear, two-phase 

exponential decay curve (GraphPad Prism6, Demo 2014) using the equation:  

Y = plateau + A×exp( – Kfast × X) + B × exp (–Kslow × X) 

with  A = (Y0–plateau) × %Fast × 0.01 

B = (Y0–plateau) × (100-%Fast) × 0.01 

Y0 = initial a* value (intercept) 

Plateau = the ultimate a* value after 48 h of display  

Kfast and Kslow (expressed in inverse minutes) = the two rate constants  

%Fast = the fraction of the span (from Y0 to plateau) accounted for by the faster of the 

two components. 

 

The measurements were fitted separately per replicate, and the fitted parameters for Y0, 

plateau, %Fast, Kfast and Kslow were further used for statistical analyses. The goodness of fit 

was checked by the R2 value, which was at least 0.99. NEG0 was not fitted to a two-phase 

exponential decay curve as a linear decrease was seen for these samples. 

 

4. Lipid oxidation 

Lipid oxidation was assessed by the measurement of malondialdehyde and hexanal. 

Malondialdehyde, a secondary oxidation product, was determined following a TBARS method 

using extraction with perchloric acid (Ventanas et al., 2006). Malondialdehyde forms a coloured 

complex with 2-thiobarbituric acid (TBA) which was determined spectrophotometrically at 532 

nm. The analysis was carried out in duplicate for each treatment and each batch (n=4) and results 

are expressed as µg malonaldehyde/g pâté sample. 
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Hexanal was assessed by SPME-GC/MS (Solid Phase Micro-Extraction – Gas 

Chromatography/Mass Spectroscopy), based on Ventanas et al. (2006) and Fernando et al. (2003) 

with some modifications. Hexanal was extracted from the headspace using a carboxen-

polydimethylsiloxane (CAR/PDMS) fiber (85 µm thickness) (Supelco, Bellefonte, Pennsylvania, 

USA). One g of homogenised pâté with 3 ml deionized water was put in a 10 ml vial and after 

gently swirling hexanal was extracted in a heating block for 60 min at 37°C. Hexanal was 

analyzed using a gas chromatograph (Agilent model 6890N) coupled to a mass-selective detector 

(Agilent model 5973, Agilent Technologies, Diegem, Belgium). Compounds were resolved on a 

HP-5 column (30 m × 250 µm × 1 µm, 5% phenyl methyl siloxane, Agilent Technologies, 

Diegem, Belgium), at an inlet temperature of 280°C. Hydrogen flow was 1.1 ml/min and the 

temperature program was as follows: 40°C for 10 min, increase at 5°C/min to 190°C, increase at 

30°C/min to 250°C and hold for 5 min. N-alkanes were run under the same conditions to 

calculate the Kovats index (KI). Hexanal was identified by comparing its mass spectra with those 

contained in the NIST05 mass spectral library and by comparison of KI with those reported in 

literature. Area of peaks was measured by integration of the total ion current of the spectra or by 

calculation of the total area based on integration of a single ion. Samples were analyzed in 

quadruplicate per treatment and per batch (n=8) and results are provided in arbitrary area units 

(AAU×106). 

 

5. Protein oxidation 

Total protein carbonyl content was quantified using dinitrophenylhydrazine (DNPH) according 

to Ganhão et al. (2010b). A covalent reaction between protein carbonyls and DNPH leads to the 

formation of 2,4-dinitrophenyl hydrazones. Total carbonyl content was quantified 

spectrophotometrically at 370 nm, using a molar absorption coefficient of 21.0 (mM·cm)-1 and 

expressed as nmol DNPH incorporated/mg protein. The protein concentration used to calculate 
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the carbonyl content was the one obtained from the crude protein analysis. The analysis was 

carried out in duplicate for each treatment and each batch (n=4). 

 

6. Statistical analysis 

Data obtained from the colour measurements were analysed using one-way ANOVA considering 

‘treatment’ as fixed effect. Lipid and protein oxidation measurements were analysed using the 

general linear model ANOVA procedure with the fixed effects of treatment, storage day and the 

interaction term. The interaction term was excluded from the model when not significant 

(P>0.05). When the interaction term was found significant, a new factor called “experimental 

unit” was computed combining treatment and storage day and one-way ANOVA considering 

“experimental unit” as fixed effect was conducted. Significant differences were tested using 

Tukey’s post hoc test and significance was determined at p<0.05. All the statistical analyses 

were carried out by SPSS Statistics 22.0. 

 

RESULTS 

1. Composition analysis 

The crude composition did not differ among treatments (P>0.05). The mean values ± standard 

deviations across treatments were 39.83±0.41, 25.27±0.35 and 11.85±0.11 g/100 g pâté for dry 

matter, fat and protein content respectively.  

The residual nitrite concentration was 0.45±0.64, 5.63±3.8, 16.1±0.4, 47.8±9.6 and 53.3±3.38 

mg/kg pâté for respectively NEG0, PE20, PE45, PE90 and POS120. Higher residual nitrite 

concentrations were found in POS120 and PE90 samples compared to the other treatments 

(P<0.05). 
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2. Oxidative stability 

Colour stability results are shown in Table 3.1. At the start of the trial (day 0), the highest a* 

values were found for the POS120 and PE45 treatments and intermediate a* values for the PE20 

and PE90 treatments, while the a* values of NEG0 samples were the lowest and significantly 

different from all other treatments (P<0.05). During illuminated chill display, the a* value of all 

pâté’s decreased in time. The a* values decreased rapidly in the POS120 and the experimental 

pâté’s, while a slow decrease was seen for NEG0, resulting in higher a* values for NEG0 at day 

2 and 9 (P<0.05) compared to the other samples. 

In all samples, except for NEG0 samples, this fading was fast during the first 4 hours and slowed 

down further onwards. Therefore, data until day 2 were fitted to a two-phase exponential model. 

The a* values at day 0 and the Y0 values, and the a* values at day 2 and the plateau values were 

comparable respectively, indicating that the model fitted well to the data. Kfast and Kslow 

reflect the rate of colour change during display. Kfast varied between 1.37 and 2.69×10-2/min, 

meaning that the a* value decreased between 0.8 and 1.6 units per hour. No significant 

differences between POS120 and the experimental pâtés were found for Kfast (P>0.05), while 

for Kslow a significantly lower (P<0.05) value was found for PE90 samples, meaning that at the 

end of two days of display the a* value of PE90 samples decreased slower compared to the 

others. No significant differences between treatments were found for %Fast (P>0.05). 

At the start of the trial, L* and b* values did not differ (P>0.05) between the PE treated and 

POS120 samples (data not shown), indicating no colour effect, except for the redness, of the pre-

converted extract on the experimental pâtés.   



Chapter 3 

81 

Table 3.1. Effect of nitrite originating from a pre-converted extract in liver pâté during illuminated 

chill display on measured a* values and results obtained from fitting a* values to a two-phase 

exponential decay curve 

 
NEG0 PE20 PE45 PE90 POS120 ptreatment 

a* at day 0 8.80±0.67d 10.3±0.2c 12.1±0.6a 10.9±0.5bc 11.6±0.3ab <0.001 

a* at day 2 7.36±0.61a 5.38±0.19c 6.23±0.68b 6.30±0.09b 6.35±0.27b <0.001 

a* at day 9 4.30±0.26ab 2.88±0.13c 3.88±0.41b 4.63±0.16a 4.07±0.26b <0.001 

 
 

   
  

Y01 - 10.2±0.2b 12.0±0.6a 10.7±0.1b 11.5±0.4a <0.001 

%Fast2 - 44.2±20.9 39.6±8.8 62.5±7.5 37.6±16.3 0.089 

Kfast (×10-2)3 - 2.22±1.33 2.69±1.35 1.37±0.20 2.17±0.79 0.343 

Kslow (×10-2)3 - 0.346±0.252a 0.338±0.063a 0.062±0.046b 0.366±0.129a 0.028 

Plateau4 - 5.29±0.37b 6.41±0.55a 5.66±0.64ab 6.41±0.24a <0.001 

NEG0: negative control without nitrite; PE20, PE45 and PE90: experimental pâtés with respectively 

20, 45 or 90 mg/kg ingoing nitite originating from a pre-converted extract. POS120: positive control 

with 120 mg/kg ingoing sodium nitrite; 
a-d Different letters indicate significant differences between treatment means at p<0.05; 
1Initial a* value (intercept); 
2Fraction of the span (from Y0 to plateau) accounted for by the faster of the two components; 
3Rate constants, expressed in inverse minutes; 
4Ultimate a* value after 48 h illuminated chill display. 
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The lipid stability of the liver pâte’s during illuminated chill display was measured by TBARS 

and hexanal content (Table 3.2). During the nine days of illuminated chill display, lipid oxidation 

progressed as TBARS values of all treatments, except for PE90, increased significantly (P<0.05). 

Within day 5 and day 9, higher TBARS values (P<0.05) were found in NEG0 and PE20 samples, 

compared to the other treatments. 

Higher hexanal values were measured at day 9 compared to day 0 (P<0.05), except for liver 

pâtés from the NEG0 treatment which had considerably high hexanal values at all time points. 

The treatment × display time interaction was significant, meaning that the increase in lipid 

oxidation products with time depended on the treatment. After 9 days of illuminated chill display, 

two and three fold lower hexanal values were found in PE45 and PE90 samples respectively, 

compared to POS120 (P<0.05). A dose effect of the PE against lipid oxidation was seen, as 

higher PE doses resulted in lower TBARS and hexanal values in the experimental pâtés. 

 

Protein oxidation was measured by protein carbonyl compounds and is summarized in Table 3.2. 

During the illuminated chill display, across treatments, higher carbonyl compounds were 

observed at day 5 and day 9 compared to day 0 (P<0.05). At the three time points, lower 

carbonyl compounds were found in the POS120 samples compared to all other treatments, but 

this difference was only significant between the PE90 and POS120 treatments across days of 

display (P<0.05). There was no interaction between treatment and days of chilled display 

(P>0.05). 
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Table 3.2. TBARS values (mg/kg pâté), hexanal formation (AAU × 106 ) and protein carbonyl content 
(nmol carbonyl compounds/mg protein) in liver pâté with added nitrite from a pre-converted extract during 
illuminated chill display 

 Day NEG0 PE20 PE45 PE90 POS120 Mean 
TBARS1 0 0.435±0.06c 0.416±0.034c 0.337±0.054b 0.263±0.076 0.262±0.029b 0.34 

 5 2.67±0.64b,x 2.19±0.34b,x 1.03±0.09a,y 0.675±0.116yz 0.606±0.150b,z 1.35 
 9 4.07±0.19a,w 3.11±0.35a,x 1.53±0.14a,y 0.840±0.055z 1.16±0.15a,yz 2.14 
 Mean 2.39 1.85 0.97 0.59 0.68  
        

Hexanal2  0 164±55x 6.55±2.37c,y 5.86±2.17b,y 5.00±0.00b,y 5.00±0.00b,y 37.3 
 5 163±48w 78.4±18.9b,x 48.3±14.1a,xy 20.1±4.4a,y 6.28±1.59b,z 61.5 
 9 152±15x 155±17a,x 57.1±18.6a,z 32.3±7.5a,z 102±19a,y 100 
 Mean 160 80.3 37.1 19.1 37.6  

    

 

  

Carbonyls3  0 1.76±0.51 1.68±0.47 1.87±0.24 1.94±0.64 1.47±0.61 1.74b 

 5 2.81±0.14 2.83±0.31 2.60±0.41 2.85±0.42 2.26±0.53 2.65a 

 9 2.93±0.36 2.76±0.21 2.90±0.28 2.90±0.20 2.44±0.28 2.79a 

 Mean 2.50ab 2.34ab 2.46ab 2.56a 2.06b  
NEG0: negative control without nitrite; PE20, PE45 and PE90: experimental pâtés with respectively 20, 45 
or 90 mg/kg ingoing nitite originating from a pre-converted extract. POS120: positive control with 120 
mg/kg ingoing sodium nitrite; 
a-c Effect of display: values with a different letter within a column are different (P<0.05); 
w-z Effect of treatment: values with a different letter within a row are different (P<0.05); 
1Ptreatment<0.001; Pdisplay <0.001; Ptreatment×display<0.001; 
2Ptreatment<0.001; Pdisplay <0.001; Ptreatment×display<0.001; 
3Ptreatment=0.019; Pdisplay <0.001; Ptreatment×display: not significant. 
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DISCUSSION 

Using nitrite from a pre-converted extract and lowering the ingoing nitrite amount to even 20 

mg/kg pâté did not affect colour formation of the liver pâtés. Vossen et al. (2012a) and Doolaege 

et al. (2012) also found proper colour formation in liver pâté with 80 and 40 mg/kg sodium 

nitrite. However, these studies found inferior colour stability of pâtés with 40 mg/kg sodium 

nitrite, which is not the case in the present study. Generally, an amount of 40 mg/kg ingoing 

nitrite is considered to be sufficient for colour-fixing purposes and to achieve the expected cured 

meat appearance (USDA, 1995), but the present results show that for liver pâté even lower 

concentrations are applicable. The pâtés with lower amounts of nitrite from the pre-converted 

extract showed similar colour stability as the control pâtés with even higher concentrations of 

ingoing sodium nitrite. It is hypothesized that additional colour stability was achieved from the 

added spices in the pre-converted extract. One should remember that 33% of the weight of 

sodium nitrite belongs to sodium, which implies that the actual amount of added nitrite in the 

positive control samples would be 80 mg/kg NO2
-. This could explain the similar residual nitrite 

levels in the positive control samples and the PE90 experimental samples. However, PE20 and 

PE45 pâtés had similar colour stability and significantly lower residual nitrite concentrations 

compared to the sodium nitrite treated samples. 

The initial values found in the present study for TBARS, hexanal and carbonyl compounds 

compare well with those found by Doolaege et al. (2012), Vossen et al. (2012a) and Pateiro et al. 

(2014) in liver pâté. From the results a clear antioxidant effect of the pre-converted extract 

against lipid oxidation was found. Moreover, better antioxidant properties in pâtés with 90 mg/kg 

nitrite from pre-converted extract and a similar residual nitrite content were found compared to 

pâtés treated with 120 mg/kg sodium nitrite. As the added amount of sodium ascorbate was equal 

for all treatments, this finding implies that the spices present in the pre-converted extract also 

have antioxidant properties against lipid oxidation. Regrettably, little is known about the spices 
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in the commercial pre-converted extract based on kombucha. Kombucha is composed of two 

portions: a floating cellulose pellicle layer and the sour liquid broth. It is also frequently called 

“tea fungus”, which is the most usual name for a symbiotic growth of bacteria and various yeast 

strains cultured in sugared tea. Bacteria and fungus present in kombucha form a powerful 

symbiosis able to inhibit the growth of potential contaminating bacteria (Mo et al., 2008). 

Although scarce scientific information is available concerning the composition and the effects of 

kombucha, it is considered a healthy drink and therapeutic agent in diseases (Dufresne & 

Farnworth, 2000) and also free-radical scavenging activity has been reported (Jayabalan et al., 

2008). It could be speculated that the extract contains phenolic compounds with antioxidant 

properties against lipid oxidation, but this was not confirmed by the supplier. 

On the other hand, on average higher carbonyl compounds were found in pâtés containing the 

pre-converted extract at the highest dose compared to the control with 120 mg/kg sodium nitrite, 

which suggests that those compounds present in the pre-converted extract do not exhibit an 

antioxidant effect against protein oxidation. It was hypothesized that the extract contains 

phenolic compounds. The antioxidant activity of phenolic compounds is attributed to their free 

radical scavenging and metal chelating activities, in which hydroxyl groups attached to phenolic 

rings play an important role. However, during oxidation of these antioxidants, hydroxyl forms 

can convert to their corresponding pro-oxidant quinone structures. The quinone derivatives of 

phenolic compounds, formed in the presence of transition metals, are able to react with the δ-

amino group of alkaline amino acids (lysine, arginine and/or proline), catalyze the oxidative 

deamination of the original amino acid and yield, eventually, in the corresponding carbonyl 

compound. The overall pro- or antioxidant effect displayed by plant phenolics against protein 

oxidation might therefore be the result of the balance between both forms (Estévez & Heinonen, 

2010). Other studies also reported an effective antioxidant activity of extracts against lipid 
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oxidation, while no or less activity against protein oxidation was found (Estévez, 2006a; Haak et 

al., 2009; Rodriguez-Carpena et al., 2011; Vossen et al., 2012b; Cando et al., 2014). 

The increase in carbonyl content between day 0 and day 9 of display was comparable for all 

treatments, suggesting that the residual nitrite content after processing had no protective effect 

against protein oxidation. On the other hand, the carbonyl content was at all time points 

numerically lower in the POS120 samples compared to all other treatments, suggesting some 

protective effect of nitrite curing against protein oxidation in liver pâté. From chapter 2 it was 

found that lowering the ingoing nitrite dose has no effect on protein carbonyls content in liver 

pâté during chilled display, which is in accordance with Villaverde et al. (2014). These authors 

reported that nitrite has a negligible effect on protein carbonyl formation in myofibrillar protein 

isolates. On the other hand, Van Hecke et al. (2014) found less carbonyl formation during in 

vitro digestion of nitrite-cured meat products compared to uncured meat products. Regarding the 

liver pâté’s treated with the pre-converted extract, the combination of nitrite with other 

compounds from the extract resulted in similar protein oxidation as the negative control. It seems 

that the assumed antioxidant effect of nitrite was compensated by the pro-oxidant properties of 

the extract compounds. To our knowledge, except for Villaverde et al. (2014), no other in-depth 

studies have been performed investigating the effect of nitrite against protein oxidation in meat 

proteins and more research in this respect is needed. 

CONCLUSIONS 

 

This study showed that the ingoing nitrite content for liver pâté can be lowered without major 

changes in colour parameters in terms of colour formation and colour stability. Less lipid 

oxidation occurred in the pâtés prepared with pre-converted extracts, which seemed to result 

from other compounds present in the extract. The role of nitrite in the formation of protein 

carbonyls was unclear and needs more research. 
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CHAPTER 4 

PROTEIN OXIDATION AND PROTEIN NITRATION INFLUENCED BY 

SODIUM NITRITE IN TWO MEAT MODEL SYSTEMS  
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ABSTRACT 

This study focuses on the effect of NaNO2 on induced protein oxidation in isolated pig 

myofibrillar proteins suspensions (20 mg/ml) and in two batches of raw porcine patties produced 

from the longissimus muscle of two different pigs. In addition, the possible use of 3-nitrotyrosine 

as a specific marker for reactive nitrogen species mediated nitration in processed muscle foods 

was investigated. In the myofibrillar protein isolate, higher protein carbonyl concentrations were 

found in the NaNO2 treated samples (100 and 1000 mg/kg myofibrillar proteins) immediately 

after addition of oxidants and NaNO2, suggesting an initial pro-oxidative effect of NaNO2. Thiol 

compounds decreased rapidly but no clear effect of NaNO2 was observed. No effect of NaNO2 

was observed at later time points of induced oxidation at 37°C. Conversely, NaNO2 exhibited 

antioxidant activity against protein carbonyl formation in raw porcine patties at a dose of 200 

mg/kg muscle, but not at 20 mg/kg muscle. However, this antioxidant effect was only seen in 

patties from one animal, while no effect was seen in the patties of the other animal. 3-

Nitrotyrosine, a good marker for oxidative stress in vivo, was present in all samples, which was 

assessed by Western blot and spectrophotometric analyses, but no clear effect of NaNO2 addition 

or oxidation time was observed on this protein modification. 
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INTRODUCTION 

Nowadays, protein oxidation in meat products receives increasing research interest. Protein 

oxidation is defined as the covalent modification of a protein induced either by the direct 

reactions with reactive oxygen and nitrogen species or indirect reactions with secondary 

oxidation products. As many other macromolecules, myofibrillar proteins are susceptible to 

oxidative reactions with myosin being the most sensitive (Lund et al., 2011). Oxidative 

modifications of proteins can change their physical and chemical properties, which has impact 

on fresh meat quality and the properties for processing (Zhang et al., 2012). Consequently, there 

is growing interest on antioxidants to inhibit protein oxidation. Mainly phenolic compounds are 

investigated for this purpose, but also other antioxidants such as carotenoids and tocopherols 

have shown an antioxidant effect against protein oxidation (Ventanas et al., 2006; Vossen et al., 

2012b; Jongberg et al., 2013). Strangely, nitrite has scarcely been investigated for its antioxidant 

capacity against protein oxidation, although it is commonly used when curing meat and it has 

several properties affecting proteins (Vossen et al., 2012a; Villaverde et al., 2014). Four different 

mechanisms have been proposed for the antioxidant effect of nitrite in meat (Arendt et al., 1997): 

it forms a stable complex by coordination to the iron center of haem proteins and thereby 

prevents catalytic breakdown of hydroperoxides by the haem proteins; it chelates trace metals 

which might be possible pro-oxidants; it reacts with meat constituents forming nitroso and 

nitrosyl compounds, which possess antioxidant activity and it stabilizes the lipid fraction by 

reaction with the carbon-carbon double bonds, as the amount of reacted nitrite increases with the 

number of double bonds in lipid model systems.  

Several biomarkers, such as the formation of protein carbonyls, loss of thiol groups, protein 

fragmentation and aggregation, are commonly used to quantify or characterize protein oxidation 

processes in muscle foods (Lund et al., 2011). As the generation of carbonyl derivatives is orders 

of magnitude greater than other kinds of protein oxidation, the carbonyl content of proteins has 
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become the most generally used method for estimation of protein oxidation (Stadtman & Levine, 

2000). However, for this study, utilization of a more specific marker that evaluates the role of 

NaNO2 in the oxidative stability of food products was desirable. In this respect, 3-nitrotyrosine 

could be an interesting marker. After exposure to reactive nitrogen species, like peroxynitrite, 3-

nitrotyrosine is formed and it has extensively been used as marker for nitroxidative stress in vivo 

(Souza et al., 2008). Altered 3-nitrotyrosine concentrations were previously found in oxidatively 

modified chicken muscles (Stagsted et al., 2004) and isolated myofibrillar porcine muscles 

treated with sodium nitrite (Villaverde et al., 2014), but its usefulness as a marker in cured and 

uncured processed meats during shelf life remains unknown. 

The isolation of myofibrillar protein is a widely applied technique to investigate meat proteins in 

vitro without the interference of other meat compounds (Park et al., 2006; Estévez & Heinonen, 

2010). However, for oxidation processes the importance of the matrix can not be ignored. In 

addition to the examination of isolated myofibrillar proteins, a more complex meat model system 

should be considered. 

The objective of this study was to investigate the effect of NaNO2 on induced protein oxidation 

in isolated pig myofibrillar proteins and in raw porcine patties during illuminated chilled display. 

In addition, the potential use of 3-nitrotyrosine as a specific marker for protein oxidation in 

combination with NaNO2 will be explored. 

 

MATERIALS AND METHODS 

1. Experimental set-up 

Myofibrillar protein isolate (MPI) 

Three porcine longissimus muscles were purchased from a local slaughterhouse (2 days post 

mortem). The muscles were trimmed from visible fat and connective tissue and subsequently 
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diced into approximately 5 g pieces. The muscle dices of all three animals were mixed well by 

hand and subsequently vacuum packed and stored at -80°C until use. 

Myofibrils were isolated according to Park et al. (2006). Thawed and minced muscle was 

homogenised by blending 30 s in an ultraturrax with four volumes (w/v) of a cold isolation 

buffer (10 mM sodium phosphate buffer, 0.1 M NaCl, 2 mM MgCl2 and 1 mM EGTA, pH 7.0). 

The muscle homogenate was centrifuged at 2000 g for 15 min, and the supernatant was 

discarded. The pellet was washed two more times with four volumes of the same isolation buffer 

using the same blending and centrifugation conditions as indicated above. The myofibril pellet 

was then washed three more times with four volumes of 0.1 M NaCl under the same conditions 

as above except that in the last wash, the myofibril suspension was filtered through a strainer to 

remove connective tissue, and its pH was adjusted to 6.0 with 0.1 N HCl prior to centrifugation. 

The MPI was stored in a tightly capped bottle, kept on ice, and used within 24 h. The protein 

concentration of the myofibril pellet was measured by the Biuret method (Gornall et al., 1949) 

using bovine serum albumin as standard. 

The MPI was oxidized under meat processing conditions according to Estévez et al. (2009). 

Briefly, MPI was suspended in 15 mM piperazine-N,N bis(2-ethane sulfonic acid) (PIPES) 

buffer (pH 6.0) containing 0.6 M NaCl (total volume: 30 ml; 20 mg protein/ml). The MPI 

suspensions were oxidized with 0.01 mM FeCl3, 0.1 mM ascorbic acid and 1 mM H2O2. Three 

doses of NaNO2 (0, 100 or 1000 mg NaNO2/kg protein) were added and the samples were 

incubated at 37°C for seven days while constantly stirring. After 30 min (without incubation at 

37°C), and 4 and 7 days, suspensions were divided in aliquots of 1.2 ml and stored at -80 °C 

until analysis. MPI suspended in PIPES buffer without oxidants or NaNO2 was used as non-

oxidized control. 
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Raw porcine patties 

Two lean porcine longissimus muscles from different animals were purchased from a local 

slaughterhouse (2 days post mortem). Two separated batches from the two muscles were made 

and are referred to as “patties A” and “patties B”. Three treatments were considered: 0, 20 or 200 

mg NaNO2 per kg patty. In the basic formulation, the ingredients per batch were as follows: 500 

g of meat, 35 g of distilled water, 8.5 g of sodium chloride and 0, 0.01 or 0.1 g NaNO2. This 

resulted respectively in patties with 0, 20 or 200 mg/kg NaNO2 or respectively 0, 100 and 1000 

mg/kg protein taking into account that the muscles consists of approximately 20% proteins. The 

muscles were trimmed from visible fat and connective tissue and subsequently diced into 

approximately 5 g pieces. The meat was ground in a grinder (Omega T-12) equipped with a 10 

mm plate. NaCl and NaNO2 were dissolved in the distilled water and immediately added to the 

meat. After mixing the batter by hand, the mixture was grounded once more with a 3.5 mm plate. 

Nine patties of 40 g were made per treatment and per batch. Three patties were immediately 

vacuum packed and stored at -80°C (day 0) and the six remaining patties were wrapped in an 

oxygen permeable film and subjected to illuminated chilled display (4°C, 1000 lux). After 4 and 

7 days of display, three patties per treatment were vacuum packed and stored at -80°C until 

analysis. 

 

2. Chemical analyses 

Thiol concentration of the MPI suspensions 

The thiol concentration was determined in the MPI samples after derivatisation by Ellman’s 

reagent, 5,5’-Dithiobis(2-nitrobenzoic acid) (DTNB) adopted from Jongberg et al. (2013) An 

aliquot of 1.2 ml MPI suspension was defrosted and centrifuged for 20 min at 2000 g. The 

supernatant was carefully discarded and 1.0 ml of 0.1 M tris(hydroxymethyl)-aminomethane 

(TRIS) buffer (pH 8) was added to the pellet, vortexed and centrifuged at 2000 g for 20 min. 
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After discarding the supernatant, 1.0 ml of TRIS buffer was added to the pellet and everything 

was transferred to a test tube. The microtube was rinsed twice with 1 ml TRIS buffer, which was 

also transferred to the test tube. Three ml of 10.0 % sodium dodecyl sulphate (SDS) in 0.1 M 

TRIS buffer (pH 8.0) was added and the proteins were dissolved by one hour of incubation in a 

water bath heated to 80°C. After cooling, samples were centrifuged at 1400 g for 10 minutes and 

the thiol concentration in the supernatant was analyzed. Two ml of 0.1M TRIS buffer (pH 8) and 

0.5 ml of 10 mM DTNB dissolved in 0.10 M TRIS buffer (pH 8.0) was added to 0.5 ml 

supernatant. For each sample a blank was included containing 0.5 ml supernatant and 2.5 ml 0.10 

M TRIS buffer (pH 8.0). A solution containing 0.5 ml 5.0 % SDS in TRIS buffer (pH 8.0), 0.5 

ml 10 mM DTNB and 2.0 ml 0.1 M TRIS buffer (pH 8) was used as reagent blank. All mixtures 

were protected against light and allowed to react for exactly 30 minutes. The absorbance was 

measured spectrophotometrically at 412 nm and the thiol concentration was calculated using the 

formula of Lambert-Beer (ε412 = 14000 M-1 cm-1) and expressed in nmol thiol/mg protein. The 

protein concentrations of the extracts were calcultated from the sample blanks, which were 

determined spectrophotometrically at 280 nm using a BSA standard curve.  

 

 

 

Protein carbonyl content 

The protein carbonyl content of the MPI samples and patties was determined by derivatization 

with DNPH (2,4-dinitrophenyl hydrazine) as described by Levine, Williams, Stadtman, & 

Shacter (1994) with some modifications. An aliquot of 1.2 ml MPI suspension was defrosted and 

centrifuged for 20 min at 2000 g. The pellet was then re-suspended in 1 ml phosphate buffer (20 

mM, pH 6.5) and four aliquots of 0.2 ml were taken. For the raw patties, 3 g of meat with 30 ml 

of phosphate buffer (20 mM, pH 6.5 containing 0.6M NaCl) was homogenized and four aliquots 



Chapter 4 

98 

of 0.2 ml were treated with 1 ml icecold TCA (10%) to precipitate the proteins. The samples 

were left for 15 min in an ice bath and after centrifugation at 2000 g for 30 min, the supernatant 

was discarded. Another milliliter of icecold TCA (10%) was added and the above mentioned 

procedure was repeated. For both the MPI suspensions and the patty pellets, two aliquots were 

treated with 0.5 ml 10 mM DNPH dissolved in 2.0 M HCl and two aliquots were treated with 0.5 

ml 2.0 M HCl (blank). The samples were placed on a vortex (350 rpm) for 1h covered from light 

to derivatise. Subsequently, 0.5 ml icecold 20% TCA was added, vortexed and placed on ice for 

15 minutes before centrifugation at 2000 g for 20 min after which the supernatant was discarded. 

Excess DNPH was removed by washing three times with 1.0 ml of ethanol:ethylacetate (1:1 v/v), 

vortexing and centrifuging at 2000 g for 20 minutes. After every wash the supernatant was 

discarded. Following the final wash excess solvent was removed by leaving the samples for 15 

min under the hood. The pellets were dissolved in 1.0 ml 6.0 M guanidine hydrochloride in 20 

mM phosphate buffer (pH 6.5) and placed on a vortex (350 rpm) for 30 min covered from light. 

The final solution was centrifuged at 9500 g for 10 minutes to remove insoluble material. The 

carbonyl concentration (nmol/mg protein) was calculated from the absorbance at 280 nm and 

370 nm of the samples using the equation below (Levine et al., 1994). 

 

��������	
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 � 10!  

 

Where εhydrazone,370 is 22000 M-1
 cm-1 and the carbonyl concentrations obtained from the blanks 

were subtracted from the contribution obtained from the corresponding treated sample. 
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3-Nitrotyrosine 

3-Nitrotyrosine and actin were qualitatively detected by western immunoblotting in MPI 

suspensions (n=1) using respectively a mouse monoclonal anti-nitrotyrosine antibody (Abcam, 

UK, 1:500 dilution) and rabbit anti-actin antibody (Sigma-Aldrich, Belgium, 1:2000 dilution) as 

primary antibody and IRDye 800 goat anti-mouse IgG (Li-COR, USA, 1:5000 dilution) and 

IRDye 680 Goat anti-Rabbit IgG (Li-COR, USA, 1:5000 dilution) as secondary antibodies. Gels 

were scanned and band intensities were measured with an Odyssey infrared fluorescence 

detection system. 

 

In addition, 3-nitrotyrosine was quantified spectrophotometrically after alkalinisation in both the 

MPI suspensions and patties according to Fontana et al. (2012) with some modifications.  

Aliquots of 1.2 ml MPI suspensions were defrosted and two aliquots of 0.5 ml were taken. After 

centrifugation at 2000 g for 30 min, the supernatant was carefully discarded. For the raw patties, 

3 g of meat with 30 ml of phosphate buffer (20 mM, pH 6.5 containing 0.6M NaCl) was 

homogenized and two aliquots of 0.2 ml were treated with 1 ml icecold TCA (10%). The 

samples were left for 15 min in an ice bath and after centrifugation at 2000 g for 30 min, the 

supernatant was discarded. Another milliliter of icecold TCA (10%) was added and the above 

mentioned procedure was repeated. To both the MPI and patty pellets 1 ml guanidine-HCl (6M) 

was added. After one hour on a vortex, 0.6 ml was transferred into a microtube, an equal amount 

of bicarbonate buffer (0.2 M, pH 10.5) was added and the samples were centrifuged at 9500 g for 

10 min. The 3-nitrotyrosine content was quantified spectrophotometrically at 430 nm, using 3-

nitro-L-tyrosine as standard. The total protein content of the pellet was quantified at 280 nm 

using BSA as standard. According to Yang et al. (2010), tyrosine and nitrotyrosine both exhibit 

an absorption peak at 280 nm, and nitrotyrosine has an additional peak at 430 nm in basic 

solutions (pH ≥9.5). Results were expressed as nmol 3-nitrotyrosine/mg protein. 
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Statistical analysis 

Statistical analysis was performed using SPSS 22.0. Results were analysed by ANOVA with 

oxidation time and NaNO2 concentration as fixed effects. The interaction term time × NaNO2 

was excluded from the model when not significant (P>0.05). When the interaction term was 

found significant, a new factor called “experimental unit” was computed combining oxidation 

time and NaNO2 concentration and one-way ANOVA considering “experimental unit” as fixed 

effect was conducted. Mean differences were tested using Tukey’s post-hoc test operating at a 5% 

level of significance.  

 

RESULTS 

MPI 

Results concerning the oxidized MPI samples are shown in Table 4.1. From the moment the 

oxidants were added, the thiol concentrations decreased 5-fold compared to the untreated MPI. 

During the following 7 days a further decrease of thiol groups was noticed (P<0.05), however 

this decrease was not as pronounced compared to the initial decrease. The addition of sodium 

nitrite did not affect the thiol content (P>0.05). 

Induced in vitro oxidation of MPI resulted in up to ten fold higher content of carbonyl 

compounds when compared to the untreated MPI. During the following 7 days, an overall 

increase of protein carbonyl compounds (P<0.05) was observed. Also, the addition of sodium 

nitrite affected the formation of carbonyl compounds as on average higher carbonyl 

concentrations were found in the oxidized MPI samples treated with 1000 mg/kg NaNO2 

compared to the average carbonyls content of the samples without NaNO2 (P<0.05), with 

intermediate values for the samples treated with 100 mg/kg. This effect resulted mainly from the 

two fold higher carbonyl concentrations after 30 min of induced oxidation in the nitrite treated 

samples, while at day 4 and day 7 similar values were found among treatments. 
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Table 4.1. Effect of nitrite dose on protein thiol, carbonyl and 3-nitrotyrosine content (nmol/mg 
protein) in myofibrillar protein isolates (MPI) after induced oxidation for 7 days 

 
Time 

NaNO2 (mg/kg) Mean 
0  100  1000  

Thiol groups1 MPI* 51.0±4.2 
  

 

 
30 min 20.0±18.3 12.9±4.9 12.0±5.4 14.9a 

 
4 days 12.2±1.7 5.74±4.70 6.91±5.61 7.4b 

 
7 days 9.84±1.02 11.8±0.49 7.87±0.78 9.6ab 

 
Mean 15.1 9.4 8.8  

 
  

  
 

Carbonyl compounds2 MPI* 1.42±0.46 
  

 

 
30 min 3.91±1.38 7.38±1.33 8.57±2.62 6.5c 

 
4 days 11.3±3.1 11.0±0.6 11.3±1.86 11.2b 

 
7 days 13.2±1.2 13.8±0.9 14.3±2.6 13.8a 

 
Mean 9.0y 10.7xy 11.2x  

 
  

  
 

3-Nitrotyrosine3 MPI* 3.31±0.48   
 

 
30 min 3.28±0.71x 1.51±0.50b,y 1.31±0.17b,y 2.1 

 
4 days 3.11±0.69 3.26±0.66a 3.55±1.16a 3.3 

 
7 days 3.23±0.08 3.02±0.52ab 3.33±0.60a 3.2 

 
Mean 3.2 2.5 2.8  

*MPI: the non-oxidized myofibrillar proteins isolates, suspended in a PIPES buffer without pro-
oxidants and NaNO2, was not included in the statistical model; 
1pnitrite =0.174; ptime = 0.044; pnitrite×time = not significant; 
2pnitrite =0.037; ptime < 0.001; pnitrite×time= not significant; 
3pnitrite = 0.105; ptime <0.001; pnitrite×time = 0.015; 
a-c Effect of oxidation time: values with a different letter within a column are different (P<0.05); 
w-z Effect of NaNO2: values with a different letter within a row are different (P<0.05). 

 

 

  



Immunoblotting using an antibody against 3

occurrence of 3-nitrotyrosine in the oxidized 

nitrotyrosine in all samples. A spect

The 3-nitrotyrosine concentrations (Table 4.1) remained constant during the experiment, except for 

two fold lower 3-nitrotyrosine concentrations in samples treated with 100 and 1000 mg/kg after 30 

min of induced oxidation. Interestingly, although only measured in one sample, also two fold 

lower 3-nitrotyrosine/actin band intensity ratios were observed after 30 min of induced oxidation 

on the Western Blot in samples treated with 100 and 1000 mg/mg so

 

 

 

Figure 1. Representative Western blot for 

myofibrillar protein isolates with different NaNO

proteins isolate, suspended in a PIPES buffer without pro

serum albumin, negative control. 
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Immunoblotting using an antibody against 3-nitrotyrosine was performed to investigate the 

nitrotyrosine in the oxidized MPI. Figure 1 confirms the presence of

A spectrophotometric method was used to quantify 3

nitrotyrosine concentrations (Table 4.1) remained constant during the experiment, except for 

nitrotyrosine concentrations in samples treated with 100 and 1000 mg/kg after 30 

min of induced oxidation. Interestingly, although only measured in one sample, also two fold 

nitrotyrosine/actin band intensity ratios were observed after 30 min of induced oxidation 

on the Western Blot in samples treated with 100 and 1000 mg/mg sodium nitrite (data not shown).

Figure 1. Representative Western blot for 3-nitrotyrosine during induced in vitro

myofibrillar protein isolates with different NaNO2 levels. MPI: non-oxidized 

a PIPES buffer without pro-oxidants and NaNO
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nitrotyrosine was performed to investigate the 

confirms the presence of 3-

rophotometric method was used to quantify 3-nitrotyrosine. 

nitrotyrosine concentrations (Table 4.1) remained constant during the experiment, except for 

nitrotyrosine concentrations in samples treated with 100 and 1000 mg/kg after 30 

min of induced oxidation. Interestingly, although only measured in one sample, also two fold 

nitrotyrosine/actin band intensity ratios were observed after 30 min of induced oxidation 

dium nitrite (data not shown). 

 

in vitro oxidation of 

oxidized myofibrillar 

NaNO2. BSA: bovine 
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Patties 

The results of patties A and patties B are shown separately (Table 4.2) as a significant effect of 

animal was observed on 3-nitrotyrosine (P<0.05), but not on carbonyl content (P>0.05). In 

addition, the effect of NaNO2 and days of display on the carbonyl and 3-nitrotyrosine content 

differed between the two animals. 

The carbonyl concentrations in patties A were not affected by the added sodium nitrite (P>0.05), 

nor by the display period (P>0.05). Higher 3-nitrotyrosine concentrations were found across days 

of display in patties treated with 20 mg/kg NaNO2 compared to the 200 mg/kg treatment 

(P<0.05), with intermediate values for untreated patties. No significant changes occurred during 

illuminated chill display (P>0.05).  

For patties B, lower carbonyl concentrations were found across days of display in patties treated 

with 200 mg/kg sodium nitrite compared to 0 and 20 mg/kg (P<0.05). The carbonyl 

concentrations of the patties did not change significantly during the whole period of illuminated 

chilled display (P>0.05). The 3-nitrotyrosine content was up to 1.5 fold lower compared to the 

concentrations in the patties A, but was not affected by the added sodium nitrite content (P>0.05), 

nor by the display period (P>0.05). 
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Table 4.2. Effect of nitrite dose on protein carbonyl and 3-nitrotyrosine content (nmol/mg protein) in 
raw patties A and B (n=3) after illuminated chilled display for 7 days 

 
Time 

NaNO2 (mg/kg) 
Mean 

0 20 200 
Carbonyl compounds   

  
 

Patties A1 0 days 2.72±1.03 4.04±0.83 3.32±0.84 3.30 

 4 days 3.64±0.32 3.96±1.60 3.15±0.78 3.54 

 
7 days 3.99±1.37 4.32±2.16 2.31±0.17 3.66 

 
Mean 3.43 4.11 3.03  

 
  

  
 

Patties B2 0 days 4.72±0.99 4.50±1.77 1.99±0.35 3.94 

 4 days 4.52±0.84 3.51±1.54 2.74±0.43 3.58 

 
7 days 3.78±0.81 2.58±0.61 2.61±0.54 3.06 

 
Mean 4.32a 3.69a 2.44b  

3-Nitrotyrosine   
  

 
Patties A3 0 days 7.54±0.95 8.59±1.00 6.57±0.55 7.57 

 4 days 7.11±0.47 8.75±1.52 6.30±0.44 7.39 

 
7 days 6.99±0.47 7.41±1.53 6.42±0.76 6.93 

 
Mean 7.21ab 8.25a 6.43b  

 
  

  
 

Patties B4 0 days 5.58±1.19 5.62±1.80 6.26±1.51 5.80 

 4 days 5.10±0.24 5.69±1.16 5.13±0.68 5.38 

 
7 days 4.55±0.32 5.54±1.72 5.20±0.52 5.15 

 
Mean 5.12 5.63 5.50  

1pnitrite = 0.115; ptime = 0.892; pnitrite×time = not significant; 
2pnitrite = 0.003; ptime = 0.209; pnitrite×time = not significant; 
3pnitrite = 0.001; ptime = 0.331; pnitrite×time = not significant; 
4pnitrite = 0.468; ptime = 0.341; pnitrite×time = not significant; 
a-c Effect of oxidation time: values with a different letter within a column are different (P<0.05); 
w-z Effect of NaNO2: values with a different letter within a row are different (P<0.05). 
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DISCUSSION 

This study investigates the effect of sodium nitrite on protein oxidation and nitration in two 

different meat model systems. 

NaNO2 has antioxidant activity against lipid oxidation, which is mostly explained by its ability to 

break the radical chain processes after its conversion to NO• and by chelating iron, a known 

oxidation promoter (Skibsted, 2011). As the mechanism behind the oxidation of proteins is 

believed to proceed via a free radical chain reaction similar to that of lipid oxidation (Lund et al., 

2011), it was expected that NaNO2 would have an antioxidant effect against protein oxidation. Yet, 

this positive effect was only found in the raw patties from one animal at a dose of 200 mg/kg 

muscle.  

On the other hand, NaNO2 could also act as pro-oxidant. After its reduction to NO•, peroxynitrite 

(ONOO-) can be formed by reacting with O2•
-. Peroxynitrite can induce lipid oxidation in food 

systems (Brannan et al., 2001), protein oxidation in vivo (Tiago et al., 2008) and can cause 

discolouration of muscle food by oxidizing oxymyoglobin (Connolly & Decker, 2004). 

According to Rubbo et al. (1994), the pro-oxidant versus antioxidant outcome critically depends 

on the relative concentrations of individual reactive species such as O2•
-, H2O2 and OH•. These 

reactive species are abundantly present in in vitro oxidation systems, which could explain the 

pro-oxidative effect of sodium nitrite in the MPI samples, half an hour after the addition of the 

oxidants. Maybe the intensity of the induced oxidation masked this effect at later time points. 

Also, sodium nitrite and the pro-oxidants were added simultaneously, which could have affected 

the reaction pathways of the nitrite. In the porcine patties sodium nitrite can firstly react with the 

meat components before oxidation during shelf life occurs, possibly explaining why a different 

effect of nitrite was found in the myofibrillar isolates compared to the patties. For example, 

nitrite reacts with myoglobin resulting in nitrosylmyoglobin (Sullivan & Sebranek, 2012), which 

appears to be active as an antioxidant both through dissociation of nitric oxide and through direct 
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reaction with activated oxygen species (Skibsted, 2011). Likewise, nitric oxide reacts with the 

free radical intermediates of lipid oxidation and these compounds can function both as nitric 

oxide donors and antioxidants (Nicolescu et al., 2004). We did not include measurements after 

30 min of oxidation for the patties as the oxidation processes during chilled display were less 

intense compared to induced oxidation with pro-oxidans and no effect at that time point was 

expected. Villaverde et al. (2014) reported a negligible effect of sodium nitrite on α-aminoadepic 

semialdehyde (a specific protein carbonyl compound) after 4 days of induced oxidation in a 

similar in vitro MPI system, which is in accordance with the present results. 

The oxidation of thiol groups leads to a series of complex reactions resulting in the formation of 

various oxidized products such as sulfenic acid, sulfinic acid and disulfide cross links (Lund et al., 

2011). In addition, Sullivan & Sebranek (2012) found decreasing thiol groups with increasing 

ingoing sodium nitrite, and dedicated this to the formation of S-nitrosothiol groups. A lower thiol 

content was therefore expected in the sodium nitrite treated samples, but it is likely that the 

intensity of the induced oxidation, which resulted in an overall large loss of thiol groups, masked 

this effect. The values obtained for the loss in thiol groups and progress of protein carbonyl 

formation in induced in vitro oxidation of MPI compare well with the observations of respectively 

Liu & Xiong (2000) and Estévez & Heinonen (2010). The effects are greater compared to those 

usually found in real meat products, as the concentrations of oxidants applied in a model system 

are designed to stimulate oxidation.  

It is not clear whether the addition of sodium nitrite affected the 3-nitrotyrosine content post 

mortem and additional investigations are necessary to explore the occurrence of 3-nitrotyrosine in 

muscle foods and its potential influence on the quality. An increase in 3-nitrotyrosine content in 

the sodium nitrite treated samples was somehow expected, but on the contrary, even a decrease 

was seen after 30 min of induced oxidation in myofibrillar protein isolates. From this observation 

we would conclude that 3-nitrotyrosine is probably not a good marker for protein oxidation in 
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cured meat products, but conversely, Villaverde et al. (2014) did find increased concentrations in 

myofibrillar protein isolates treated with sodium nitrite. However they added 19 and 38 fold higher 

amounts of sodium nitrite compared to our study. One item to be further explored is the variation 

between animals and between muscles of the basal 3-nitrityosine content. The occurrence of 3-

nitrotyrsosine in muscle proteins is a result of oxidative stress in vivo (Tiago et al., 2008), so basal 

levels of 3-nitrotyrosine in the porcine patties as well as in the myofibrillar protein isolates were 

expected. To my knowledge this is the first time that 3-nitrotyrosine was quantified per milligram 

of meat protein, although Stagsted et al. (2004) did find 3-nitrotyrosine in chicken meat using 

Western Blot. Stagsted et al. (2004) found significantly higher basal concentrations of 3-

nitrotyrosine in meat of chickens fed a low antioxidant diet compared to chickens fed a low 

antioxidant diet in combination with corn. These authors suggested that the nitration of actin could 

have possible implications on the texture and water holding capacity of fresh meat. As 3-

nitrotyrosine can affect a protein's structure and function (Kuo et al., 2000), it was hypothesized 

that 3-nitrotyrosing could be a marker for protein oxidation in cured meat products affecting the 

quality of muscle foods. From the present results it can be concluded that nitrite-curing has no 

effect on 3-nitrotyrosine post mortem, implying that it is not a good marker for this purpose, but 

this has to be confirmed in further research. Other compounds originating from the reaction of 

nitrite with proteins, such as nitrosotryptophan and S-nitrosocysteine, are reported, but it should be 

investigated whether these compounds are relevant markers for the effect of reactive nitrogen 

species on the quality of meat products.  

 

CONCLUSIONS 

The present study demonstrates the importance of individual animal and matrix effects when 

investigating protein oxidation in meat systems. Sodium nitrite showed pro-oxidative activities in 

isolated myofibrillar proteins, but antioxidant activities in raw porcine patties. It would therefore 
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be interesting to investigate the effect of nitrite in cooked pork patties as nitrite is abundantly used 

in cooked meat products. 3-Nitrotyrosine is abundantly present in untreated myofibrillar proteins, 

but whether other compounds, such as antioxidants, can influence its occurrence post mortem and 

whether this is a good marker for protein oxidation in processed meats, remains to be elucidated. 
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CHAPTER 5 

FATTY ACID COMPOSITION OF FRESH MEAT, SUBCUTANEOUS FAT, 

DRY FERMENTED SAUSAGE AND DRY CURED HAM INFLUENCED 

BY LINSEED OIL, FISH OIL OR MICROALGAE INCLUDED IN THE 

PIG FEED 
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ABSTRACT  

It is now well established that n-3 polyunsaturated fatty acids have a protective influence on 

several chronic diseases. The objective of the present study was to investigate the fatty acid 

profile of fresh meat, subcutaneous fat, dry fermented sausages and dry cured ham of pigs fed 

different n-3 polyunsaturated fatty acid sources. Crossbred pigs were given an experimental diet 

supplemented with 0.6g/100g linseed oil (LIN), 0.8 g/100g fish oil (FISH) or dried microalgae 

(ALG) at 0.3, 0.6 or 1.2 g/100 g (ALG LOW, ALG MEDIUM and ALG HIGH respectively). In 

the control group soybean oil was added to the diet. The fatty acid composition of the samples 

was analyzed by gas chromatography. Similar results were found for the different products 

investigated: significantly higher C18:3n-3 (ALA) proportions in the LIN group and higher 

proportions of C20:5n-3 (EPA) in the FISH group were found compared to all other groups. The 

C22:6n-3 (DHA) proportions in the FISH group and ALG groups were significantly higher 

compared to the SOY and LIN group. The DHA and EPA proportions increased with increasing 

amounts of microalgae in the feed, which was unexpected for EPA, as no EPA was originally 

present in the ALG diets. Lower proportions of the long chain n-3 and n-6 were found in the 

subcutaneous fat compared to the fresh meat. Manufacturing processes such as fermentation and 

long term dry curing did not drastically affect the fatty acid profile of the meat products. The 

daily recommended intake of EPA and DHA (%RNI) can be increased considerably with these 

n-3 polyunsaturated fatty acids enriched products, even up to 34% by consuming 50g of dry 

fermented sausage of the ALG HIGH group. 
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INTRODUCTION  

It is generally accepted that the n-3 polyunsaturated fatty acids (PUFA), α-linolenic acid (ALA; 

C18:3n-3) and especially its metabolites eicosapentaenoic acid (EPA; C20:5n-3) and 

docosahexaenoic acid (DHA; C22:6n-3) have a protective influence on several chronic diseases 

(Ruxton et al., 2004; Narayan et al., 2006; Simopoulos, 1999). Also n-6 FA and in particular 

linoleic acid (LA, C18:2n-6) and arachidonic acid (AA, C20:4n-6) have important metabolic 

functions (Johnson & Fritsche, 2012), however, the diets of Western countries do provide 

sufficient amounts of these n-6 FA. On the contrary, the daily intake of n-3 PUFA does not fulfil 

the recommendations in most countries. Belgian adolescents and women consume on average 

0.07-0.1% EPA+DHA and 0.57-0.64% ALA of their total daily energy intake (%E), while the 

Superior Health Council of Belgium (2006) recommends that at least 0.3%E should originate 

from EPA+DHA and 1%E should originate from ALA (Sioen et al., 2006 and Sioen et al., 2007). 

Despite attempts to provide education about healthier eating patterns, there are several barriers 

such as a lack of interest towards changing one’s diet, or concerns about having to compromise 

on taste or enjoyment (Kearney & McElhone, 1999). A successful strategy to improve the n-3 

PUFA content of the overall diet would be to provide these fatty acids in food products that are 

already popular. Although meat only partly contributes to the total fat intake of the diet, 

optimizing its fatty acid profile still deserves attention due to the high meat intake in 

industrialized countries (Howe et al., 2006). Even though people nowadays consume less meat, it 

is still one of the principal food components of our diets, so I believe that when several meat 

products are enriched with n-3 PUFA it can be a possible solution to increase the daily n-3 

PUFA intake. According to the human consumption database of Belgium (Devriese et al., 2006), 

75% of the Belgian population consumes 5-7 times a week meat. Of course, the enrichment of 

meat should be only one aspect of a larger strategy for enriching other widely consumed 

foodstuffs with n-3 PUFA. Besides adding n-3 PUFA sources during the processing of foods or 
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administering supplemental oils and capsules, incorporation of n-3 PUFA rich products like 

grass, rapeseed, linseed and fish oil in livestock feeds, resulting in accumulation of these fatty 

acids in animal products, received a lot of interest (Wood et al., 2008; Raes et al., 2004). This 

approach is of particular interest, since fatty acids provided through this route are thought to be 

more stable to the effects of processing than are fats and oils added to foods during 

manufacturing (Williams, 2000). In addition, Deckelbaum et al. (2008) stated that habitual 

consumption of n-3 PUFA may be more beneficial than short-term consumption.  

As the conversion of ALA to EPA is low (<10%) and further conversion to DHA is even worse 

(Hussein et al., 2005), the direct supply of EPA and DHA in animal feeds instead of ALA-rich 

sources such as linseed and rapeseed is considered to be more efficient for increasing the long-

chain n-3 PUFA content of animal products. Generally, fish oil or fish meal is used as a direct 

source of EPA and DHA in feeds, but caution is needed as many species have been fished almost 

to extinction and we are on course to eliminate the world’s supply. Brunner et al. (2009) 

concluded that urgent national and international action is necessary to address the tensions 

arising from increasing human demand for fish and seafood, and rapidly declining marine 

ecosystem health. Given that microalgae are the original source of EPA and DHA in the marine 

food chain, dried marine algae have also been included in animal feeds (Nieto & Ros, 2012). 

However, studies including marine algae focus mainly on poultry (Rymer et al., 2010), while 

experiments conducted on pig and its meat products are rather limited (Marriott et al., 2002; 

Sardi et al., 2006; Sárraga et al., 2007; Meadus et al., 2009) and our present knowledge of animal 

response to dietary microalgae is relatively scanty.  

This research was performed to evaluate the incorporation of n-3 PUFA in meat and 

subcutaneous fat through different n-3 PUFA sources in pig feed. As only a small part of pork is 

consumed as fresh meat cuts, investigating the manufacturing of meat products enriched in n-3 

PUFA through pig feed is of interest. Dry fermented sausages and long term dry cured hams 
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were produced to assess the effect of manufacturing conditions on the fatty acid profile of these 

products. Special attention was paid to the use of microalgae as a sustainable source for long 

chain n-3 PUFA. 

 

MATERIALS AND METHODS 

1. Experimental set-up and sampling 

Six groups of ten female crossbred pigs each were fattened under commercial conditions on 

different diets from 75 kg until 110 kg live weight. Water and feed was offered ad libitum. The 

six experimental diets consisted of different sources of n-3 PUFA: 0.8 g/100 g feed linseed oil 

(LIN group, rich in ALA), 1.3 g/100 g feed fish oil (FISH group, rich in EPA and DHA) or dried 

microalgae (ALG group, rich in DHA). Three ALG groups were considered: ALG LOW, ALG 

MEDIUM and ALG HIGH with respectively 0.3, 0.6 and 1.2 g dried microalgae per 100 g feed. 

In the control group (SOY group) soybean oil was included in the feed as n-6 PUFA source. 

Linseed oil was added to the ALG diets to obtain equal amounts of n-3 PUFA in the LIN, FISH 

and ALG diets. As the n-6 PUFA content was also kept constant, equal ratios of n-6/n-3 were 

provided through those diets. All diets were based on barley, wheat and soybean meal and 

manufactured by Lambers-Seghers (Baasrode, Belgium). The total PUFA content was kept 

constant and the total fat content was similar for all groups (between 4.3 and 4.8 %, as fed) by 

the addition of rendered animal fat or coconut fat. All diets were formulated to an equal energy 

supply (2230 kcal/kg, as fed) and supplemented with 150 mg/kg α-tocopheryl acetate and 0.4 

mg/kg organic selenium (Selplex, Alltech, Deinze, Belgium). The fish oil was supplied by INVE 

Technologies NV (Dendermonde, Belgium), the freeze-dried Schizochytrium microalgae from 

Martek Biosciences Corp. (Martek DHA gold®, Colombia, MD, USA), linseed and other 
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ingredients were purchased on the local market. The composition of the experimental diets is 

presented in Table 5.1. Feed samples were collected for fatty acid analysis. 

All pigs (ten per treatment) were slaughtered at approximately 110 kg live weight in a 

commercial slaughterhouse after electrical stunning (Westvlees, Westrozebeke, Belgium). After 

slaughtering and cooling for 24h, fresh meat samples were obtained from M. longissimus dorsi 

(slices of 2.5 cm) and subcutaneous fat was taken from the back-fat. Samples were stored 

vacuum packed at -20°C until analysis. From three animals also left shoulder meat and additional 

subcutaneous fat was sampled for the production of dry fermented sausages (a mixed sample was 

made per group) and the left hams of six animals per group were sampled for the production of 

dry cured hams.  
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Table 5.1. Composition of the experiment diets (g/100g feed, as fed) 

 SOY LIN FISH 
ALG 

low 

ALG 

medium 

ALG 

high 

Corn 10.0 7.0 9.0 9.0 9.0 9.0 
Wheat gluten 8.0 7.0 7.8 10.0 10.0 10.0 
Barley 15.0 16.5 15.0 15.0 15.0 15.0 
Wheat 16.9 17.0 16.0 15.0 15.0 15.0 
Wheat shorts 10.0 9.1 11.0 10.0 10.0 10.0 
Sorghum 10.0 10.0 10.0 10.0 10.0 10.0 
Soybean meal 47% CP 8.8 8.9 8.0 6.8 6.7 6.6 
Maniok  6.0 7.0 6.0 5.0 5.0 5.0 
Peas 3.0 4.0 3.5 3.0 3.0 3.0 
Rapeseed scrap 3.0 4.0 4.0 6.0 6.0 6.0 
Palm kernel shell 3.6 4.0 4.0 3.9 3.7 3.4 
Rendered Animal Fat 2.0 1.7 1.45 - - - 
Coconut oil - - - 2.40 2.44 2.48 
L-Threonine 0.08 0.07 0.08 0.07 0.07 0.07 
DL-Methionine 0.02 0.01 0.02 0.01 0.01 0.01 
L-Lysine 1.05 0.91 0.99 1.03 1.03 1.04 
Ca carbonate 38% 1.1 1.0 1.1 1.0 1.0 0.93 
Vitamin-mineral premix 1  1.0 1.0 1.0 1.0 1.0 1.0 
α-tocopheryl acetate2 0.20 0.20 0.20 0.20 0.20 0.20 
Soybean oil 0.38 - - - - - 
Linseed oil - 0.55 - 0.31 0.21 - 
Fish oil - - 0.83 - - - 
Dried microalgae - - - 0.30 0.60 1.22 
Energy (kcal/kg, as fed) 2250 2237 2233 2225 2225 2225 
1Vitamin-mineral premix contained 5 g/kg α-tocopheryl acetate and 0.04 g/kg organic selenium 
(Selplex, Alltech, Dienze, Belgium);  
2
α-tocopheryl acetate concentrate contained 50 g/kg α-tocopheryl acetate. 
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2. Carcass measurements 

Warm carcass weight and carcass lean meat percentage was assessed at the slaughterhouse for all 

pigs (n=60). At 24h post mortem, pH (Knick portamess 654, Knick Elektronische Messgeräte 

GmbH, Berlin, Germany) with Schott N5800A electrode (Schott Instruments, Mainz, Germany) 

and conductivity (Pork Quality Meter, Kombi, Intek GmbH, Aichach, Germany) were measured 

in the ham (M. semimembranosus) and in the loin (M. longissimus dorsi).  

 

3. Production of dry fermented sausage and dry cured ham 

Dry fermented sausage 

Dry fermented sausages were produced at Ter Groene Poorte (Brugge, Belgium) using a 

standard commercial recipe. For each treatment, a batch was made that consisted of 2.1 kg lean 

shoulder meat, 0.9 kg subcutaneous fat, 84 g NaCl, 3 g KNO3, 30 g spices (Raps, Beringen, 

Belgium) and 1.5 g starter culture (Biosprint from Raps, Beringen Belgium). All sausages were 

prepared on the same day. Frozen shoulder meat from three different animals was minced in a 

bowl chopper, together with all additives, except NaCl. Subsequently, the frozen subcutaneous 

fat was added and mincing was continued until a homogenous batter was reached. Then, NaCl 

was included and the batter was further chopped until a temperature of -2°C was reached. The 

mixture was stuffed into 60 mm diameter casings, hand-linked at 30 cm and the sausages were 

left for six hours at ambient temperature (day 1). After that, the sausages were placed in a 

fermentation chamber and the following conditions of temperature and relative humidity (RH) 

were applied: 24°C and 95% RH (day 2), 23°C and 92% RH (day 3), 21°C and 90% RH and 

smoking for one hour (day 4), 20°C and 88% RH (day 5 until day 7) and from day 8 until day 23 

the temperature was kept at 17°C with 76% RH. Finally, the dry fermented sausages were 
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vacuum packed and stored at 4°C for colour measurements and sensory analysis (See Chapter 6) 

and at -20°C for chemical analyses.  

 

Dry cured hams 

The dry cured hams, containing essentially 3 muscles (M. semimembranosus, M. biceps femoris, 

and M. semitendinosus), were manufactured at Grega (Buggenhout, Belgium) using a standard 

commercial protocol under controlled conditions of temperature and relative humidity. The fresh 

hams were embedded in sea salt and left in a cool room for 1 week. Then, the salt was removed 

and the hams were salted again with sea salt. The second salting period lasted two weeks. After 

that, the salt was removed and the hams were allowed to rest for 56 to 70 days under cooled 

conditions. Subsequently, the hams were washed with water and the surface was covered with a 

thin layer of fat with spices. Finally, the hams were hung in a drying room for drying and 

maturation. After 19 months of ripening, the hams were deboned and shipped to the laboratory. 

The subcutaneous and intramuscular fat was removed and the dry cured hams were subsequently 

vacuum-packed and stored at 4°C for colour measurements and sensory analysis (see Chapter 6) 

and at -20°C for chemical analyses (slices of 2.5 cm were stored separately).  

 

4. Proximate composition  

Dry matter, crude protein and crude fat content of the fresh meat (n=3), dry fermented sausage 

(n=2) and dry cured ham (n=6) were determined according to the ISO 1442-1973, ISO 937-1978 

and ISO 1444-1973 methods, respectively. Samples were taken at random from three animals. 

Analysis was carried out in single and expressed as g/100 g fresh matter. The pH of the dry cured 

hams (n=6, M. semimembranosus) and dry fermented sausages (n=3) were measured per 

treatment. 
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5. Fatty acid analysis 

The lipids were extracted from the samples using chloroform/methanol (2/1; v/v) (modified after 

Folch et al., 1957). Fatty acids were methylated according to Raes et al. (2001) and analysed by 

gas chromatography (HP6890, Brussels, Belgium) on a CP-Sil88 column for FAME (100 m × 

0.25 mm × 0.25 µm; Chrompack, The Netherlands). Peaks were identified based on their 

retention times, corresponding with standards (NuChek Prep., IL, USA; Sigma, Bornem, 

Belgium). Nonadecanoic acid (C19:0) was used as an internal standard to quantify the individual 

and total fatty acids. A number of samples were taken at random per treatment, i.e. n=5 for fresh 

meat, n=6 for subcutaneous fat, n=3 for dry fermented sausage and n=6 for dry cured ham. The 

fatty acid profiles are expressed in g/100 g of total FAME (fatty acid methyl esters) and the 

EPA+DHA and total fatty acid content is expressed as g FA/100 g fresh matter. 

The EPA+DHA content expressed per 100 kcal was calculated using the mean fat and protein 

content and the Atwater nutrient conversion factors 9 and 4 kcal/g of fat and protein respectively. 

The recommended daily intake of EPA+DHA in Belgium is 0.3%E (Superior Health Council of 

Belgium, 2006) which corresponds to 667 mg EPA+DHA/day taking into account an average 

daily total energy intake of 2000 kcal. The percentage of the daily recommended nutrient intake 

for the experimental meat products (%RNI) was calculated assuming a daily intake portion of 50 

g product and a recommended daily intake of 667 mg EPA+DHA per day. Finally, it was 

investigated whether the n-3 PUFA enriched products could be claimed being ‘a source of’ or 

‘high in’ n-3 PUFA. 

‘A claim that a food is a source of n-3 PUFA, and any claim likely to have the same meaning for 

the consumer, may only be made where the product contains at least 0.3 g ALA per 100 g and 

per 100 kcal, or at least 40 mg of EPA+DHA per 100 g and per 100 kcal. A claim that a food is 

high in n-3 PUFA, and any claim likely to have the same meaning for the consumer, may only be 
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made where the product contains at least 0.6 g ALA per 100 g and per 100 kcal, or at least 80 mg 

of EPA+DHA per 100 g and per 100 kcal’ (European Commission, 2010). 

 

6. Statistical analysis  

The data were submitted to analysis of variance with diet as main effect (SPSS Statistics 22.0). 

Mean differences between groups were tested using the Tukey post hoc test operating at a 5% 

level of significance.  

 

RESULTS 

1. Carcass characteristics 

The mean (± standard deviation) warm carcass weight (100 ± 6 kg) and carcass lean meat 

percentage (62.6 ± 2.7%) did not differ between feeding groups (P>0.05). Likewise, conductivity 

in the loin (4.80 ± 1.24) and the ham (6.07 ± 2.07) were not influenced by the diet (P>0.05), nor 

was the pH value of the ham (5.57 ± 0.11). The pH of the loin was not different among the 

feeding groups (overall average 5.60 ± 0.13), except for a lower pH value for DHA MEDIUM 

group (5.54 ± 0.10) compared to the LIN group (5.70 ± 0.13; P<0.05). 

 

2. Proximate composition  

For the fresh meat, no effect of diet was found for the mean (± standard deviation) dry matter 

(29.2 ± 0.9 g/100 g meat), fat (1.18 ± 0.63 g/100 g meat) and protein (25.1 ± 0.6 g/100 g meat) 

content (all P>0.05).  

The mean dry matter content of the dry fermented sausages was 64.3 ± 1.3 g/100 g sausage and 

no effect of treatment was found (P>0.05). However, for the fat and protein content significant 
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differences among treatments were found (both P<0.05). The mean fat content of the dry cured 

sausages was 33.4 ± 1.7 g/100 g sausage, with the highest fat content in the ALG HIGH group 

(36.1 ± 1.6 g/100 g sausage) and the lowest in the LIN group (31.6 ± 1.2 g/100 g sausage). The 

mean protein content was 22.7 ± 1.6 g/100 g sausage, with the highest content in the ALG 

MEDIUM group (25.5 ± 0.7 g/100 g sausage) and the lowest content in ALG HIGH group (21.2 

± 0.58 g/100 g sausage). 

For dry cured ham no effect of feeding group was found for the dry matter (46.4 ± 1.18 g/100 g 

ham), fat (3.46 ± 0.78 g/100 g ham) and protein (28.7 ± 0.96 g/100 g ham) content (all P>0.05).  

The mean pH of the dry fermented sausages was 5.07 ± 0.06 and 5.66 ± 0.07 for the dry cured 

hams. Differences between feeding groups were found for both the sausages and hams (P<0.05), 

however, these differences were limited in magnitude and are not further discussed. 

 

3. Fatty acid composition  

Table 5.2 shows the PUFA composition of the feed. In agreement with the trial design, the total 

PUFA content was similar for all diets, with the main difference between SOY and the other 

groups being the amount of n-3 PUFA. ALA was the major PUFA in the LIN diet. The FISH 

diet provided the long chain n-3 PUFA EPA and DHA, whereas the ALG diets provided DHA in 

different doses.   
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Table 5.2. Fatty acid composition of the experimental diets (g FA/100g total FA) 

 SOY LIN FISH 
ALG 
low 

ALG 
medium 

ALG 
high 

C18:3n-3  3.51 6.70 2.73 3.45 3.40 2.63 

C20:5n-3  <0.10 <0.10 2.19 0.12 0.13 0.25 

C22:5n-3 <0.10 <0.10 0.30 <0.10 <0.10 <0.10 

C22:6n-3 <0.10 0.19 1.87 1.80 3.62 7.12 

       

C18:2n-6 32.5 24.6 24.4 29.9 28.8 26.7 

C20:4n-6 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

       

PUFA  36.3 31.9 32.2 35.4 36.1 37.0 

SFA 29.3 33.8 33.3 43.6 44.4 42.9 

MUFA 32.2 32.1 30.9 19.0 16.3 15.2 
Total FA  
(g/100 g feed) 

4.34 4.39 4.59 3.60 3.68 4.02 

SOY=soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1;  
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3. 
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The fatty acid composition of the fresh meat is summarized in Table 5.3. The fatty acid 

composition of the experimental diets is clearly reflected in the fresh meat samples. The LIN diet 

resulted in a higher ALA proportion compared to all other groups (P<0.05). As expected, the 

EPA proportion was the highest in the FISH group, with a seven fold higher proportion 

compared to the SOY group (P<0.05). Relatively high concentrations of EPA were found in the 

ALG groups, although only low amounts of EPA were present in the ALG experimental feeds. 

The EPA proportions of the three ALG groups increased with increasing amounts of microalgae 

in the experimental feeds and moreover, the EPA proportion of ALG HIGH was comparable to 

the proportion found in the FISH group. The EPA proportion of the LIN group was three fold 

lower compared to the FISH group and did not differ from the ALG LOW and ALG MEDIUM 

groups (P>0.05). Still, the EPA proportion of the LIN group was almost three fold higher 

compared to the SOY group (P<0.05), which indicates a modest but significant conversion of 

ALA to EPA. As expected, the DHA proportions in the FISH group and ALG groups were 

higher compared to the SOY and LIN group (P<0.05). The highest DHA proportion was found in 

the meat of the ALG HIGH group, which was ten fold higher compared to the SOY group 

(P<0.05). The DHA content in the meat of the ALG groups increased with increasing amounts of 

microalgae in the experimental feeds and the DHA proportion of the FISH group was 

intermediate between ALG LOW and ALG MEDIUM. DPA was found in the meat samples of 

all experimental groups, although it was not present in the diets. The DPA proportion in the fresh 

meat was two to three fold higher in the LIN and FISH groups compared to the other groups 

(P<0.05). 

The LA proportion was the highest in fresh meat of the LIN group, which was not expected as 

higher amounts of LA were present in the other diets, especially the SOY diet. The LA 

proportion of the fresh meat from the LIN group was 1.5 fold higher compared to the ALG LOW 

group (P<0.05) which had the lowest proportion of LA. AA, the metabolite of LA, was not 
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affected by the diets, but was considerably high when comparing with the long chain n-3 fatty 

acids.  

 

 

Table 5.3 Fatty acid composition of fresh meat (M. longissimus dorsi, g FA/100 g total FA; n=5) 

 SOY LIN FISH  
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

C18:3n-3 0.535b 1.38a 0.622b 0.601b 0.506b 0.524b 0.060 <0.001 

C20:5n-3 0.168d 0.488c 1.30a 0.312cd 0.704bc 1.06ab 0.084 <0.001 

C22:5n-3 0.557b 0.918a 0.988a 0.395b 0.422b 0.493b 0.049 <0.001 

C22:6n-3 0.198d 0.452cd 1.02bc 0.784cd 1.69ab 2.32a 0.148 <0.001 

         

C18:2n-6 11.9ab 15.4a 11.9ab 9.69b 12.0ab 12.9b 0.500 0.024 

C20:4n-6 2.96 3.57 2.55 2.39 3.52 3.95 0.182 0.066 

         

PUFA 17.7ab 23.8a 19.5ab 15.3b 20.4ab 23.0ab 0.875 0.030 

SFA 33.0 33.7 33.9 36.8 35.0 34.8 0.444 0.179 

MUFA 45.0a 39.2ab 42.9ab 44.5a 40.3ab 36.7b 0.798 <0.001 
Total FA  
(g/100 g meat) 

1.44 1.18 1.42 1.49 1.28 1.07 0.057 0.197 

SOY= soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1; 
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SEM= standard error of the mean calculated from all groups (n=30); 
a-dValues with different letters in the same row indicate significant differences (P<0.05). 
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The fatty acid composition of the subcutaneous fat is tabulated in Table 5.4. As for the fresh 

meat samples, higher (both P<0.05) proportions of ALA and EPA were found in the 

subcutaneous fat of the LIN and FISH groups respectively, compared to all other groups. The 

EPA proportion of the ALG HIGH group was again unexpectedly high, however still 2 fold 

lower than for the FISH group. In contrast to the fresh meat, the EPA proportions in the 

subcutaneous fat of the LIN and ALG MEDIUM groups did not differ from the SOY group 

(P>0.05). Again, DHA proportions in the FISH group and ALG groups were higher compared to 

the SOY and LIN group (P<0.05). In addition for the ALG groups, increasing DHA proportions 

with increasing amounts of microalgae in the feed were found. The DHA proportions in the 

subcutaneous fat of the SOY and LIN groups were respectively 30 and 13 fold lower compared 

to the ALG HIGH group. Results concerning DPA were not analogous with the fresh meat: 

while in the meat samples the FISH and LIN group showed the highest and comparable 

proportions of DPA, in the subcutaneous fat the highest DPA proportion was found in the 

subcutaneous fat of the FISH group, which was three fold higher than the proportion of the LIN 

group (P<0.05). The LA proportion was again the highest in the LIN group and the lowest in the 

ALG LOW group, while the AA proportion did not differ among groups except for almost a two 

fold higher proportion in the ALG HIGH group compared to all other groups. It should also be 

noted that the subcutaneous fat of all groups contained lower proportions of long chain n-3 and 

n-6 PUFA compared to the fresh meat, while around two fold higher proportions of ALA and 

similar proportions of LA were found in the subcutaneous fat compared to the corresponding 

fresh meat samples. 

  

  



Chapter 5 

129 

Table 5.4. Fatty acid composition of subcutaneous fat (g FA/100 g total FA; n=6) 

 SOY LIN FISH  
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

C18:3n-3 1.40b 2.92a 1.28b 1.37b 1.22b 1.24b 0.108 <0.001 

C20:5n-3 0.022c 0.039c 0.350a 0.041c 0.065c 0.144b 0.020 <0.001 

C22:5n-3 0.146d 0.209cd 0.631a 0.176cd 0.215c 0.372b 0.029 <0.001 

C22:6n-3 0.034d 0.100d 0.567c 0.409c 0.879b 1.87a 0.106 <0.001 

         

C18:2n-6 14.9ab 16.0a 13.1bc 11.3c 13.1bc 14.2ab 0.354 <0.001 

C20:4n-6 0.294 b 0.274 b 0.240b 0.222 b 0.294b 0.411a 0.012 <0.001 

         

PUFA 18.0 abc 20.8a 17.0 bc 14.6 c 17.0 bc 19.8 ab 0.458 <0.001 

SFA 33.2 b 32.9 b 34.6 b 39.3 a 37.7 a 38.4a 0.508 <0.001 

MUFA 45.4 a 42.4 a 44.5 a 43.5 a 42.4 a 38.9 b 0.457 <0.001 
Total FA (g/100 g 
fat) 

62.1 59.9 63.9 65.0 63.3 62.1 0.961 0.760 

SOY= soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1; 
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SEM= standard error of the mean calculated from all groups (n=36); 
a-dValues with different letters in the same row indicate significant differences (P<0.05). 
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Table 5.5 shows the fatty acid composition of the dry fermented sausages. Again, the LIN diet 

resulted in higher ALA proportions in the dry fermented sausages compared to all other groups 

and higher EPA proportions were found in the FISH group (both P<0.05). Also the effect of EPA 

and DHA was still present in the dry fermented sausages: higher concentrations of microalgae in 

the experimental diets resulted in higher proportions of EPA and DHA in the dry fermented 

sausages. However, the DHA proportion of the sausages from the ALG LOW group was lower 

than for the FISH group (P<0.05), whereas the sausages of the ALG HIGH group contained an 

almost 3 fold higher DHA proportion compared to the FISH group. It is clear that the fatty acid 

profile of the dry fermented sausages is a result of the fatty acid composition of the fresh meat 

and the subcutaneous fat.  
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Table 5.5. Fatty acid composition of dry fermented sausages (g FA/100 g total FA; n=3) 

 SOY LIN FISH  
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

C18:3n-3 1.36cd 2.73a 1.31d 1.53b 1.40c 1.12e 0.124 <0.001 

C20:5n-3 0.044e 0.072d 0.353a 0.067d 0.181b 0.139c 0.028 <0.001 

C22:5n-3 0.194c 0.361b 0.687a 0.240c 0.328b 0.349b 0.043 <0.001 

C22:6n-3 0.047e 0.106e 0.579c 0.412d 0.911b 1.385a 0.123 <0.001 

         

C18:2n-6 14.8a 14.2ab 13.5b 11.5d 14.4a 12.9c 0.272 <0.001 

C20:4n-6 0.444a 0.401b 0.355c 0.393b 0.472a 0.473a 0.012 <0.001 

         

PUFA 18.1a 19.1a 17.8b 15.3c 18.9a 17.8b 0.295 <0.001 

SFA 35.3b 34.4b 35.5b 39.6a 38.9a 39.0a 0.533 <0.001 

MUFA 43.0a 41.6ab 42.8a 40.6abc 38.4c 39.9bc 0.473 <0.001 
Total FA  
(g/100g sausage) 

26.4 24.4 27.2 27.1 25.7 29.0 0.494 0.123 

SOY= soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1; 
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SEM= standard error of the mean calculated from all groups (n=18); 
a-eValues with different letters in the same row indicate significant differences (P<0.05). 
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Table 5.6 shows the fatty acid composition of the dry cured hams. The fatty acid composition of 

the diets was again clearly reflected in the dry cured hams and similar results as for the fresh 

meat were found. The LIN diet resulted in a higher ALA proportion compared to all other groups 

(P<0.05). The EPA proportion was the highest in the dry cured hams of the FISH group (P<0.05), 

with a seven fold higher proportion compared to the SOY group. Also in the dry cured hams a 

relatively high proportion of EPA in the ALG HIGH group was found. The EPA proportion of 

the LIN group was three fold lower compared to the FISH group (P<0.05), but 2.5 fold higher 

compared to the SOY group (P<0.05) and did not differ from ALG LOW and ALG MEDIUM. 

The highest DHA proportion was found in the ALG HIGH group, which was 17 fold higher 

compared to the SOY group. The DHA proportions of the FISH and ALG MEDIUM group were 

similar and significantly higher than the SOY and LIN group. The DHA content in the dry cured 

hams increased with increasing amounts of microalgae in the feeds. For the ALG LOW group, 

the DHA proportion was three fold lower compared to the ALG HIGH group, but two fold 

higher compared to the LIN group. The DPA proportions in the dry cured hams was in the order 

of FISH>LIN>all ALG=SOY. For the n-6 FA, the highest proportions of LA and AA were found 

in the LIN group. It should be noted that for all groups the proportions of ALA were higher in 

the dry cured hams compared to the fresh meat, while on the contrary all long chain n-3 PUFA 

and AA were lower in the dry cured hams. 
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Table 5.6. Fatty acid composition of trimmed dry cured hams (g FA/100 g total FA; n=6) 

 SOY LIN FISH 
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

C18:3n-3 0.910bc 1.92a 1.00b 1.01b 0.868bc 0.776c 0.068 <0.001 

C20:5n-3 0.125d 0.321c 0.907a 0.202cd 0.288cd 0.508b 0.047 <0.001 

C22:5n-3 0.378c 0.565b 0.858a 0.326c 0.321c 0.407c 0.034 <0.001 

C22:6n-3 0.105d 0.274d 0.836b 0.614c 1.03b 1.70a 0.090 <0.001 

         

C18:2n-6 13.3ab 15.7a 13.5ab 11.0b 11.9b 12.5b 0.353 <0.001 

C20:4n-6 2.35ab 2.88a 2.01b 1.92b 2.14ab 2.51ab 0.090 0.010 

         

PUFA 18.4b 23.3a 20.3ab 16.3b 17.9b 19.9ab 0.526 <0,001 
SFA 32.2b 30.8b 31.6b 35.6a 35.1a 34.5a 0.348 <0,001 
MUFA 42.7a 38.2b 40.9ab 41.9ab 40.6ab 38.9ab 0.462 0.039 
Total FA  
(g/100 g ham) 

4.03 3.05 3.50 3.79 3.62 3.12 0.123 0.161 

SOY= soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1; 
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SEM= standard error of the mean calculated from all groups (n=36); 
a-dValues with different letters in the same row indicate significant differences (P<0.05). 
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To verify the potential nutritional benefit of the enriched meat and meat products, the amount of 

EPA+DHA per 100 g meat was calculated. The amount of EPA+DHA per 100 kcal and %RNI 

was derived from those results (Table 5.7). For the fresh meat, a two to three fold higher intake 

of EPA+DHA was found for the LIN and ALG LOW group compared to the SOY group. For 

ALG HIGH and the FISH group even a six fold increase of EPA+DHA was achieved in the fresh 

meat cuts. Taking into account a recommended daily intake of 667 mg EPA+DHA and an intake 

portion of 50 g of meat, this results in a %RNI of 2.2% for the fresh meat from the ALG HIGH 

group instead of 0.3% from the SOY group. However, no claim for an n-3 PUFA enriched meat 

product could be made.  

For the dry fermented sausages all diets resulted in a significantly higher EPA+DHA content 

compared to the SOY group, varying from a two fold increase for the LIN group to even an 18 

fold increase for the ALG HIGH group. The latter gave rise to a %RNI of 34%, which is one 

third of the daily recommended intake. The dry fermented sausages from the FISH, ALG LOW 

and ALG MEDIUM groups could be claimed as “source of n-3 PUFA” and from the ALG HIGH 

group as “food product high in n-3 PUFA”. 

The dry cured hams originating from pigs fed the FISH and ALG diets, had three to seven fold 

higher concentrations of EPA+DHA compared to the SOY fed group, resulting in the same 

increase for %RNI. Still, only the dry cured hams from the FISH and ALG HIGH groups could 

be claimed “source of n-3 PUFA”.  

Considering the ALA content of all samples, only the dry fermented sausages contained more 

than 0.3 g ALA/100 g sausage (data not shown). However, they did not contain more than 0.3 g 

mg ALA per 100 kcal, so no claim based on the ALA content could be made.   
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Table 5.7. Nutritional value of the n-3 PUFA enriched meat and meat products 

 
SOY LIN FISH 

ALG 
low 

ALG 
medium 

ALG 
high 

Fresh meat 
      

EPA+DHA (mg/100 g product) 4.46 8.76 26.7 13.1 23.6 29.0 
EPA+DHA (mg/100 kcal)1 4.02 7.89 24.0 11.8 21.2 26.2 
Claim2 - - - - - - 
%RNI3 0.3 0.7 2.0 1.0 1.8 2.2 

       
Dry fermented sausage 

      
EPA+DHA (mg/100 g product) 24.8 45.7 263 135 291 458 

EPA+DHA (mg/100 kcal) 6.34 11.7 67.3 34.7 74.6 117 
Claim - - source source source high 
%RNI 1.9 3.4 20 10 22 34 

       
Dry cured ham 

      
EPA+DHA (mg/100 g product) 9.93 19. 8 64.7 32.9 50.6 72.8 

EPA+DHA (mg/100 kcal) 6.80 13.6 44.4 22.6 34.7 49.9 
Claim - - source - - source 
%RNI 0.7 1.5 4.9 2.5 3.8 5.5 
1Calculated using mean fat and protein content as reported in the result section and the Atwater 
nutrient conversion factors 9 and 4 kcal/g for fat and protein respectively; 
2Source of n-3 LC PUFA: > 40 mg EPA+DHA per 100 g product and per 100 kcal; 
High in n-3 LC PUFA: > 80 mg EPA+DHA per 100 g product and per 100 kcal; 
3%RNI was calculated with a daily recommended nutrient intake of 667 mg EPA+DHA (=0.3% 
of the total daily energy intake) and assuming a daily intake portion of 50 g product. 
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DISCUSSION 

The addition of different n-3 PUFA sources to the diets of pigs alters correspondingly the fatty 

acid composition of the pig muscle and subcutaneous fat and consequently also the composition 

of the meat products. A higher presence of n-3 PUFA in fresh pork or processed pork products, 

after supplying n-3 PUFA through the feed was also found by others: in dry cured sausages and 

subcutaneous fat after supplying linseed (Warnants et al., 1998), in longissimus muscle and 

subcutaneous fat after supplying algae (Marriott et al., 2002), in dry cured shoulder after 

supplying algae (Sárraga et al., 2007), in longissimus muscle after supplying linseed or fish oil 

(Haak et al., 2008), and in dry cured ham after supplying linseed oil or extruded linseed (Musella 

et al., 2009). However, it is difficult to quantitatively compare the incorporation of the FA in the 

tissues with those found in the present study as different n-3 PUFA concentrations, feeding 

conditions and pig breeds were used in the studies. 

As substantial DHA proportions were incorporated in animal tissues from the microalgae fed 

groups, it can be concluded that dried microalgae in pig feed can be used as DHA source. A clear 

dose dependent effect was observed, which was also found in other studies in which marine 

algae were added to pig feed: Marriott et al. (2002) in different raw muscles, Sardi et al. (2006) 

in longissimus muscle and subcutaneous fat and Meadus et al. (2009) in bacon. In the present 

study, relatively high proportions of EPA were found in the ALG groups. As these proportions 

are too high to originate solely from the small quantities present in the feed or from conversion 

of ALA to EPA (considering the results of the SOY and LIN groups), it is likely that part of the 

EPA originated from DHA by retroconversion. Retroconversion is a minor metabolic pathway, 

involving one cycle of β-oxidation (Sprecher et al., 1995). Feeding high concentrations of DHA 

increased the EPA concentration in rat liver (Kaur et al., 2010) and after high DHA intake, EPA 

concentrations rose in human plasma phospholipids (von Schacky & Weber, 1985), implying 
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that retroconversion took place. We assume that the addition of 1.8 to 7.1 g/100 g FA DHA in 

the present study induced some retroconversion. 

Regarding DHA, it is worth mentioning that the DHA proportions in the tissues and meat 

products of the LIN group did not statistically differ from the SOY group, implying that it is not 

sufficient supplying only ALA, when the objective is to increase also long chain PUFA in ones 

diet. On the other hand, compared to the SOY group, a significant increase of EPA and DPA was 

seen in the LIN group, which compares well with other studies supplying a linseed source in pig 

feed (Santos et al., 2008; Musella et al., 2009; Haak et al., 2009). According to Brenna (2002) 

only 25% of administrated ALA is available for the production of very long chain PUFA in 

humans, whereas the largest part is used for energy. The low conversion of ALA to DHA is 

mostly explained by the rate-limiting enzyme ∆6-desaturase. As described by Blank et al. 

(2002), the synthesis of EPA and DPA from ALA requires only one pass of the ∆6-desaturase, 

while the synthesis of DHA from DPA requires a second pass at the ∆6-desaturase after it is 

elongated to C24:5n-3. Thus C24:5n-3 would be in direct competition with 18 carbon fatty acids 

for access to the ∆6-desaturase, which may explain the complex kinetics between dietary ALA 

and tissue DHA. 

 

Compared to the fresh meat lower proportions of long chain PUFA were found in the 

subcutaneous fat. This is probably due to relatively high amounts of phospholipids in the 

intramuscular fat of the fresh meat, while subcutaneous fat consists almost exclusively of 

triacylglycerols. Phospholipids are characterised by a high PUFA content, as they are 

constituents of cell membranes, mainly represented by long chain fatty acids (Wood et al., 2008). 

On a tissue weight basis, however, the content of total and individual PUFA is of course higher 

for the subcutaneous fat than for the fresh meat as a result of the much higher total fatty acid 

content. This resulted in higher EPA and DHA content in the dry fermented sausages and for the 
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FISH and ALG groups it is possible to claim the products “source of” or “high in” n-3 PUFA. 

The fatty acid profiles of the fresh meat and subcutaneous fat are different, but these differences 

are not reflected in the fatty acid profile of the dry fermented sausage. For the dry fermented 

sausages lean shoulder meat was used instead of loin, which could explain these differences. In 

addition, the drying process can also alter the fatty acid profile of the dry fermented sausages as 

the loss of water mainly affects the fatty acid content of the meat fraction and to a lesser extend 

that of the subcutaneous fat. As the dietary treatment was still reflected in the dry fermented 

sausages, it can be concluded that the processes inherent to the production of dry fermented 

sausages, such as microbiological activity, lipolysis and oxidation (Warnants et al., 1998), did 

not greatly alter the fatty acid profile of the sausages. Also dry cured hams are subjected to 

lipolysis during processing, which can promote lipid oxidation, especially in PUFA (Coutron-

Gambotti & Gandemer, 1999). Maybe the long chain fatty acids were more oxidized during 

ripening compared to the less unsaturated ALA, explaining the higher proportions of ALA and 

the lower proportions of the long chain unsaturated FA in dry cured ham, compared to fresh 

meat. However, as different muscles are compared here, caution is needed with this hypothesis. 

Nevertheless, also after a long ripening period the effect of dietary treatment was still present. 

In the present study, relatively low concentrations of n-3 PUFA were added to the feed for costs 

arguments, however still a significant increase in EPA and DHA content was achieved in the 

meat products compared to the control treatment. For example, when 50 g of fresh meat, dry 

fermented sausages or dry cured ham originating from the ALG HIGH group is consumed, the 

intake of EPA+DHA is respectively 14.5, 229 and 36.4 mg of EPA+DHA. This is respectively 2, 

34, and 5% of the recommended daily intake of EPA and DHA (Table 5.7), which is resp. 6.5, 

18 and 7.3 fold higher compared to the meat products originating from pigs fed the control diet. 

It should be mentioned that the recommended daily intake of EPA+DHA varies among countries 

and ranges between 140 to 667 mg/day depending on the authority guidelines (Aranceta & 
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Pérez-Rodrigo, 2012), which consequently alters the calculated %RNI. As in Belgium a daily 

intake of 667 mg EPA+DHA (0.3% of our daily energy intake) is recommended by the Superior 

Health Council of Belgium (2006), the reported %RNI value is lower than when for example 300 

mg EPA+DHA would have been used as recommended daily intake. 

According to Sioen et al. (2006), the consumption of total meat, poultry and eggs contribute for 

10.1% to the daily intake of total n-3 PUFA and for 5.2% and 11.8% to the daily intake of EPA 

and DHA respectively for Belgian women. Likewise, Howe et al. (2006) emphasized the 

importance of meat in the daily intake of long chain n-3 PUFA in Australia. They estimated that 

43% of the consumed long chain n-3 PUFA originated from meat, poultry and game, because of 

the much larger consumption of meat and meat products compared with that of fish and seafood. 

Giving the fact that pork is the major meat source in most industrialized countries, 

supplementing pig feeds with microalgae could considerably contribute to the achievement of 

the recommended daily intake of EPA and DHA, without the need of fish oil. 

 

CONCLUSIONS 

This study aimed at increasing the long chain n-3 PUFA of pig meat by including linseed oil, 

fish oil or microalgae in the pig feed. From the results it is clear that the fatty acid composition 

of the experimental diets was reflected in the meat products. Moreover, microalgae were found 

to be an excellent source to considerably increase the DHA content of these products. This 

outcome is of interest in terms of improving the nutritional value of pork, without the use of fish 

oil. Furthermore, different processing conditions such as fermentation and a long ripening period 

did not drastically change the fatty acid profile of dry fermented sausages and dry cured hams. 

Still, PUFA are more prone to oxidation, which could alter the taste and shelf life of these 

products and additional research is necessary in this respect.  
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The EPA and DHA content of loin, dry fermented sausages and dry cured ham is 

substantially increased when adding microalgae to the pigs feed (CH5). 

But how does this affect the sensory quality of these products? 

 

Part I  Lowering the ingoing nitrite dose Part II  Increasing the n-3 PUFA content 

CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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CHAPTER 6 

MICROALGAE INCLUDED IN THE PIG FEED: EFFECT ON 

OXIDATIVE STABILITY AND SENSORY QUALITY OF N-3 PUFA  

ENRICHED FRESH MEAT, DRY FERMENTED SAUSAGE AND DRY 

CURED HAM 
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ABSTRACT  

This experiment was set up to investigate the sensory quality in terms of lipid oxidation, colour, 

texture and consumers acceptability of n-3 fatty acids enriched fresh meat cuts (longissimus 

dorsi), dry fermented sausages and dry cured hams. Crossbred pigs were given an experimental 

diet supplemented with 0.6 g/100g linseed oil (LIN), 0.8 g/100g fish oil (FISH) or dried 

microalgae (ALG). Three ALG groups were considered: ALG LOW, ALG MEDIUM and ALG 

HIGH with respectively 0.3, 0.6 and 1.2 g dried microalgae per 100 g feed. In the control group 

soybean oil was added to the diet. The colour and lipid stability of the fresh meat cuts were not 

affected by the added n-3 fatty acids. In the n-3 fatty acids enriched dry fermented sausages 1.2 

to 1.5 fold higher TBARS values compared to the control were found and colour and texture 

parameters (measured by hardness and chewiness) were altered. Problems of fishy and rancid 

off-flavours in the ALG HIGH and FISH groups were reported in the dry fermented sausages 

from the taste panel survey. The dry cured hams from all ALG treatments had 1.2 fold higher 

TBARS values and inferior texture scores, however these differences were not noticed by the 

consumer panelists. There were no colour differences between the control dry cured ham and the 

n-3 fatty acids enriched hams. The volatile compound (E)-2-penten-1-ol, typical from long chain 

n-3 fatty acid oxidation was 2.7 fold higher in dry cured ham from the ALG HIGH group 

compared to the control. 
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INTRODUCTION  

The long chain n-3 polyunsaturated fatty acids (n-3 PUFA), eicosapentaenoic acid (EPA, 

C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), exert positive effects on human health 

(reviewed by Narayan et al., 2006). However, intake of these fatty acids is low in Western 

societies and direct enrichment of meat with these long chain n-3 PUFA by dietary means could 

help bridging the gap between the recommended and actual intake. In a previous experiment 

(chapter 5), we succeeded to considerably increase the EPA and DHA content of fresh meat, dry 

fermented sausage and dry cured ham by supplementing microalgae in the pig feed, which makes 

microalgae a sustainable alternative for the widely used fish oil. Unfortunately, the increased 

degree of unsaturation of these fatty acids makes enriched meat products more susceptible to 

oxidative damage which can negatively affect the meat quality (Wood et al., 2008), so 

assessment of the sensory quality traits of n-3 FA enriched meat products is needed. Dry cured 

hams are particularly susceptible to oxidation due to their long ripening time. While a small 

amount of oxidation products is required to get the typical aroma of dry cured ham, an excessive 

oxidation leads to off-flavours (Coutron-Gambotti & Gandemer, 1999). As microalgae are 

supplemented in this study, the off-flavours from EPA and DHA deserve special attention. 

Although not as long as dry cured hams, also dry fermented sausages are exposed to a ripening 

period. Moreover, the fermentation process, mincing and high fat content could also influence 

the oxidation processes of this product. Pork back-fat is traditionally used in the formulation of 

dry fermented sausages, due to its relevant contribution to the properties of the final product, 

including its appearance and consistency (Valencia et al., 2006). Yet, changing the fatty acid 

composition of the muscular and subcutaneous fat changes the lipid melting point and fat 

firmness (Wood et al., 2008), which subsequently could influence texture and palatability of the 

meat products.  
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The aim of present trial was to further investigate the effect of microalgae, added to the diet of 

pigs, on the oxidative stability and sensory quality of n-3 FA enriched longissimus muscle, dry 

fermented sausage and dry cured ham. Meat products originating from linseed and fish oil fed 

pigs were included in the experiment for comparison. 

 

MATERIALS AND METHODS 

This study was conducted using the samples obtained from a previous trial (chapter 5). Therefore, 

for the experimental set-up, sampling, carcass measurements and manufacturing of the meat 

products please consult chapter 5. Briefly, crossbred pigs were given an experimental diet 

supplemented with 0.6 g/100g linseed oil (LIN), 0.8 g/100g fish oil (FISH) or dried microalgae 

(ALG). Three ALG groups were considered: ALG LOW, ALG MEDIUM and ALG HIGH with 

respectively 0.3, 0.6 and 1.2 g dried microalgae per 100 g feed. In the control group soybean oil 

was added to the diet (SOY). 

1. Colour measurements 

Colour coordinates (CIE L*a*b* colour system, 1976) were measured with a HunterLab 

Miniscan Minolta XE plus spectrocolorimeter (light source of D65, standard observer of 10°, 

45°/0° geometry, 1 inch. light surface). The L*, a* and b* values are a measure of lightness, 

redness and yellowness respectively. Measurements on the loin (M. longissimus dorsi, n=10) and 

subcutaneous fat (n=10) were conducted approximately 30h after slaughter. The loin cuts (slices 

of 2.5 cm) were subsequently exposed to illuminated chilled display (1000 lux, 4°C) and colour 

parameters were measured after five days. Measurements on the dry fermented sausages (n=4) 

and the dry cured hams (n=12, semimembranosus muscle) were conducted at room temperature 

immediately after slicing. 
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2. Lipid oxidation 

Malondialdehyde (MDA), a secondary lipid oxidation product, forms a coloured complex with 

2-thiobarbituric acid (TBA) which was determined spectrophotometrically at 532 nm. The 

longissimus dorsi (n=5) and trimmed dry cured hams (n=6) were assessed using a distillation 

method based on Tarladgis et al. (1960). The longissimus dorsi samples were firstly exposed to 

illuminated chilled display (1000 lux, 4°C) for five days. As the dry fermented sausages (n=3) 

contain nitrate and nitrite, an extraction method with perchloric acid was applied (Ventanas et al., 

2006). Results are expressed as mg MDA/ kg meat.  

The peroxidisability index (PI) of the feed was calculated from the fatty acid composition of the 

feed (reported in Chapter 5) according to Kang et al. (2005). PI = (%monoenoic acid*0·025) + 

(%dienoic acid*1) + (%trienoic acid * 2) + (%tetraenoic acid*4) + (%pentaenoic acid*6)+ 

(%hexaenoic acid*8), with 0.025, 1, 2, 4, 6 and 8 being the relative oxidation rates of fatty acids 

containing 1, 2, 3, 4, 5 or 6 double bonds respectively.  

 

3. Volatile compounds 

Volatile compounds of the dry cured hams were assessed by SPME-GC/MS (Solid Phase Micro-

Extraction – Gas Chromatography/Mass Spectroscopy), based on Ventanas et al. (2006) with 

some modifications. The volatile compounds were extracted from the headspace using a 

carboxen-polydimethylsiloxane (CAR/PDMS) fiber (85 µm thickness) (Supelco, Bellefonte, 

Pennsylvania, USA). One gram of homogenised trimmed ham was put in a 10 ml vial and 

volatile compounds were extracted in a heating block for 60 min at 37°C. Extracted volatiles 

were analyzed using a gas chromatograph (Agilent model 6890N) coupled to a mass-selective 

detector (Agilent model 5973, Agilent Technologies, Diegem, Belgium). Compounds were 

resolved on a HP-5 column (30 m × 250 µm × 1 µm, 5% phenyl methyl siloxane, Agilent 

Technologies, Diegem, Belgium), at an inlet temperature of 280°C. Hydrogen flow was 1.1 
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ml/min and the temperature program was as follows: 40°C for 10 min, increase at 3°C/min to 

170°C, increase at 30°C/min to 250°C and hold for 5 min. N-alkanes were run under the same 

conditions to calculate the Kovats index (KI). Volatiles were identified first by comparing its 

mass spectra with those available in the Wiley Mass Spectral Database and then by comparison 

of the KI with those reported in literature. The area of each peak was integrated using 

ChemStation software and the total peak area was used as an indicator of volatile generated from 

the samples. Samples were analyzed in triplicate per feeding group and results are provided in 

arbitrary area units (AAU×106).  

 

4. Sensory analysis 

For the dry fermented sausages, a consumer test was carried out at the laboratory of animal 

nutrition and animal product quality (Melle, Belgium). Eight slices (1 mm thickness) of dry 

fermented sausage from SOY, ALG LOW and ALG HIGH, were randomly presented to an 

untrained panel of 56 consumers aged between 15 and 80 years. Simultaneously, two other 

treatments (T1 and T2) from another experiment were included in the sensory analysis. It was 

not possible to exclude them from the trial as they were offered simultaneously to the panellists. 

Therefore, statistical analysis was conducted including these two treatments, but they will not be 

further discussed. The slices were taken from the refrigerator and distributed on plates 30 

minutes before the start of each session so that the slices were at room temperature when 

consumed. The consumer panellists were asked to score the overall taste of the product on a 5-

point scale (1 = very bad; 5 = very good). Panel members were also asked to mention off-

flavours. Each consumer had two times four slices of sample sausage that were placed on white 

plastic dishes, identified by random three-digit numbers and served to the consumer panel at 

room temperature. On each plate one treatment was offered twice. In total each treatment was 

tasted 92, 85, 91, 87, 89 times for respectively SOY, T1, T2, ALG LOW and ALG HIGH. 
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Consumers were isolated in individual booths, and distilled water and unsalted crackers were 

provided to cleanse their palates between tasting the samples.  

 

For the dry cured ham, the assessments were carried out in a sensory laboratory (VG Sensory, 

Deinze, Belgium) equipped according to ISO 8589-standards. Forty two male and forty eight 

female adults who regularly eat dry cured ham were recruited to participate. Each panellist 

received 4 whole slices (0.5 mm thickness). The slices were taken from the refrigerator and 

distributed on plates 30 minutes before the start of each session so that the slices were at room 

temperature when consumed. The slices were randomly coded using a three-digit number. A 

semi-monadic method was used according to Association Francaise de Normalisation (2000): the 

slices were assessed one after another, removing the previous slice before the following one was 

served. The judgments were expressed on a 9-point hedonic scale ranging from disliked 

extremely (score 1) to excellent (score 9). The evaluated traits were: taste, visual perception, 

colour of the fat border, odour, mouth feel and overall acceptance of perception. In the beginning 

of the product assessment, after tasting but before the detailed questions, panellists were also 

asked to write down spontaneous likes and dislikes. 

 

5. Texture measurements 

Texture profile analysis was carried out at room temperature with a ТА 500 Texture Analyser 

(Lloyd Instruments Ltd, Bognor Regis, United Kingdom). The head of the texture analyser was 

equipped with a massive cylinder of 1.2 cm diameter and was programmed to move vertically at 

a speed of 100 mm/min. The test consisted of two successive compression ramps to a value of 

50% of the unloaded specimen height. Slices of 2.0 cm height were subjected to this two-cycle 

compression test (n=18 for dry cured ham and n=4 for dry fermented sausages). The parameters 

hardness (N) and chewiness (N×mm) were determined and represent respectively the maximum 
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force required to compress the sample and the work needed to masticate the sample for 

swallowing (Bourne, 1982). 

 

6. Statistical analysis 

Results were submitted to one-way ANOVA with diet treatment as fixed effect (SPSS 22.0). 

Mean differences between groups were tested using the Tukey’s post hoc test operating at a 5% 

level of significance. For the dry fermented sausages, differences in overall taste and frequency 

of detecting off-flavours were investigated using one-way ANOVA considering treatment as 

fixed effect. For the sensory analysis of the dry cured hams, a balanced, incomplete block design 

(BIBD) was used. Differences were considered significant when p<0.05. 

 

RESULTS  

1. Colour 

Colour L*a*b* values of the longissimus muscle and subcutaneous fat 30h after slaughter did not 

differ among feeding groups (p>0.05; data not shown). Likewise, no differences on the colour 

parameters were noticed in the longissimus muscle after five days of illuminated chilled storage 

(Table 6.1). On the other hand, dietary treatments did significantly affect the colour of dry 

fermented sausages and dry cured ham (p<0.05, Table 6.1). 

For the L* values of the dry fermented sausages, all ALG and FISH groups did not differ 

(P>0.05) from the control SOY group, whereas the LIN group was darker (P<0.05). The a* 

values varied from a maximum of 15.1 in the LIN group to a minimum of 13.1 in the ALG 

MEDIUM group, but none of the n-3 FA enriched dry fermented sausages differed from the 

control dry fermented sausage (P>0.05). The b* values of the LIN, FISH and ALG HIGH groups 
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were 1.1 fold higher (P<0.05), while similar values P>0.05) were found for the ALG LOW and 

ALG MEDIUM groups in comparison to the SOY group.  

For the dry cured hams, no differences among treatments were noticed for the L* values. There 

was a significant effect of diet on the a* and b* values, but differences between treatments were 

not consistent. Both lower and higher values for the n-3 feeding groups compared to the SOY 

group were found.  

 

Table 6.1. Colour parameters of longissimus dorsi (n=10), dry fermented sausage (n=4) and dry 
cured ham (n=6) 

 SOY LIN FISH 
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

Longissimus dorsi1         

L* 55.2 54.0 53.9 54.6 55.9 54.4 0.212 0.498 

a* 9.68 9.55 10.2 10.1 9.39 10.3 0.104 0.518 

b* 16.4 16.3 16.8 16.8 16.7 17.0 0.063 0.320 

Dry fermented sausages         
L* 47.6ab 43.9c 45.8bc 48.1a 48.7a 49.3a 0.417 <0.001 
a* 13.9abc 15.1a 14.5ab 14.1abc 13.1c 13.6bc 0.160 <0.001 

b* 9.61c 10.6a 10.4ab 9.86bc 9.65c 10.6a 0.102 <0.001 

Dry cured ham         

L* 38.4 38.4 38.5 39.0 36.4 37.2 0.290 0.079 

a* 15.0 13.8 15.4 13.4 15.2 14.1 0.211 0.0182 

b* 11.3ab 9.80b 12.8a 10.3b 11.4ab 10.5b 0.230 0.001 

SOY=soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SEM = standard error of the mean calculated from all groups; 
1Measurements were carried out after 5 days of illuminated chilled display (1000 lux, 4°C); 
2Although p<0.05 according to the ANOVA analysis, no differences were reported by the Tukey 
Post Hoc test. 
a-cValues with different letters in the same row indicate significant differences (P<0.05). 
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2. Lipid oxidation  

The TBARS values of the longissimus muscle, after five days of illuminated chilled display, 

were relatively low and did not differ (P>0.05) between treatments (Table 6.2). The higher 

peroxidisability index of the feed is reflected in a lower oxidative stability of the resulting meat 

products: 1.2 to 1.5 fold higher TBARS values in the n-3 FA enriched dry fermented sausages 

and dry cured hams compared to the control were found. However, no significant differences for 

the LIN and FISH groups compared to the SOY group in both the dry cured hams and dry 

fermented sausages were noticed and also the dry fermented sausages of the ALG LOW group 

did not differ from the SOY group (P>0.05). ALG HIGH and ALG MEDIUM showed the 

highest TBARS values in both dry fermented sausage and dry cured ham. 

 

 

Table 6.2. Peroxidisability index of the feed and mean TBARS values of the longissimus dorsi 
(n=10), dry fermented sausages (n=3) and dry cured hams (n=6), expressed as mg MDA/kg meat 

 SOY LIN FISH ALG  
low 

ALG 
medium 

ALG  
high 

SEM pdiet 

Peroxidisability index         

Feed 41.2 41.7 63.0 55.5 72.1 103 - - 

TBARS         
Longissimus dorsi1 0.138 0.132 0.149 0.165 0.147 0.169 0.068 0.725 
Dry fermented sausage 0.871b 1.02b 1.04b 1.03b 1.40a 1.54a 0.068 <0.001 

Dry cured ham 0.321b 0.376ab 0.439ab 0.468a 0.495a 0.478a 0.015 0.002 

SOY=soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SEM = standard error of the mean calculated from all groups; 
PI =peroxidisability index of the feed calculated from the fatty acid composition of Chapter 5 = 
(%monoenoic acid×0·025) + (%dienoic acid×1)+ (%trienoic acid×2) + (%tetraenoic acid×4) + 
(%pentaenoic acid×6)+ (%hexaenoic acid×8); Kang et al. (2005); 
1Measurements were carried out after five days of illuminated chilled display (1000 lux, 4°C). 
a,b Values with different letters in the same row indicate significant differences (P<0.05). 
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Expressed in arbitrary area units, no differences (P>0.05) for hexanal, heptanal and nonanal, n-

aldehydes frequently used as lipid oxidation markers, were found in the dry cured hams 

originating from pigs fed different experimental diets, nor for (Z)-1-octen-3-ol and acetic acid 

(p>0.05). On the other hand, the amount of (E)-2-penten-1-ol was the lowest in the SOY and 

ALG LOW groups, being significant lower than those found in ALG HIGH samples (P<0.05). 

Intermediate values were measured for LIN, FISH and ALG MEDIUM samples. The main 

volatiles, ethanol, 1-pentanol, 1-hexanol, 2-propanone, 2-pentanone, 2-heptanone, ethyl 

butanoate and 2,2,4,6,6-pentamethylheptane did not show any significant differences among 

treatments (P>0.05, data not shown). The remaining volatiles were not quantified nor analysed, 

as focus in the present study was on oxidation products originating from PUFA.  

Similar results were found when expressing the results as percentage of area relative to the total 

peak area. 
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Table 6.3. Volatile compounds of the dry cured hams (n=3) expressed as arbitrary area units 
(AAU×106) and as percentage of area relative to the total peak area (%) 
 SOY LIN FISH ALG 

low 
ALG 

medium 
ALG 
high 

SEM pdiet 

AAU×106         

Hexanal  764 494 506 483 845 923 68.9 0.224 

Heptanal 85.5 90.4 109 88.9 97.5 105 6.15 0.892 

Nonanal 7.92 13.7 8.19 8.33 8.73 16.2 1.44 0.456 

Acetic acid 30.0 32.4 32.6 32.2 28.5 32.6 7.2 0.998 

(E)-2-penten-1-ol 28.8b 52.6ab 42.9ab 34.9b 38.6ab 78.4a 4.9 0.017 
(Z)-1-octen-3-ol 20.7 24.2 16.1 17.2 18.3 29.7 1.65 0.124 

         

%         

Hexanal  8.18 4.74 3.92 5.07 7.67 8.96 0.74 0.242 

Heptanal 0.857 0.867 0.825 0.936 0.888 1.02 0.06 0.968 

Nonanal 0.106 0.131 0.080 0.086 0.080 0.160 0.012 0.356 

Acetic acid 2.45 3.34 5.62 3.28 2.56 3.11 0.54 0.634 

(E)-2-penten-1-ol 0.281b 0.523ab 0.334b 0.354b 0.354b 0.752a 0.047 0.008 
(Z)-1-octen-3-ol 0.202 0.246 0.126 0.173 0.162 0.287 0.018 0.059 
SOY=soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SEM = standard error of the mean calculated from all groups (n=18). 
a,b Values with different letters in the same row indicate significant differences (P<0.05). 
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3. Sensory Analysis 

Significant differences (P<0.05) for overall taste of the dry fermented sausages were found by 

the consumer panellists. Mean consumer scores were 3.61±0.81, 3.24±0.94, 2.81±0.99 for 

respectively SOY, ALG LOW and ALG HIGH. According to the panellists, the taste of the ALG 

HIGH sausages was unacceptable and different from ALG LOW and ALG SOY (P<0.05), while 

the taste of the SOY and ALG LOW groups was acceptable and did not differ among each other. 

A rancid and fishy taste was found in all groups, however, big differences in frequency were 

found: in 3.3, 6.8 and 24.4% of the consumed samples a rancid or fishy taste was noticed by the 

consumers in respectively SOY, ALG LOW and ALG HIGH treated dry fermented sausages. 

According to VG Sensory, a frequency higher than 10% indicates a remarkable off-taste of the 

product. 

  

No significant differences between the treatments for the sensory acceptability of the dry cured 

hams were found (P>0.05). Average values for “overall acceptance of perception”, “aspect”, 

“colour fat border”, “odour”, “mouth feel” and “taste” were respectively 6.56±0.23, 6.56±0.14, 

6.26±0.16, 6.27±0.13, 6.57±0.20, 6.48±0.20. The overall acceptance of perception was strongly 

correlated with mouth feel and taste (r²>0.90). No fishy odour and flavour were detected in any 

sample by the consumer panel.  
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4. Texture 

The hardness and chewiness of the dry fermented sausages and dry cured hams were affected 

(P<0.05) by the dietary treatments (Table 6.4). Compared to the SOY group, the dry fermented 

sausages from the FISH and LIN group were clearly softer (P<0.05), while the sausages from the 

ALG groups did not differ (P>0.05). The chewiness of the ALG LOW group was comparable to 

the SOY group (P>0.05), while all other groups had lower values (P<0.05). 

Both the hardness and chewiness of the dry cured hams were clearly affected by the long chain 

n-3 fatty acids, as all ALG groups and the FISH group showed lower values compared to the 

SOY group (P<0.05). On the contrary, the hardness and chewiness of the LIN group were not 

affected (P>0.05) when comparing to the SOY group. 

 

 

 

Table 6.4. Texture parameters, hardness (N) and chewiness (N×mm), of dry fermented sausages 
(n=4) and dry cured hams (n=18) 

 SOY LIN FISH 
ALG 
low 

ALG 
medium 

ALG 
high 

SEM pdiet 

Dry fermented sausage         

Hardness  56.6ab 45.1c 44.5c 57.2a 47.8bc 47.7bc 1.31 <0.001 

Chewiness  225a 151b 143b 202a 159b 153b 7.02 <0.001 

Dry cured ham         

Hardness 52.6a 49.5ab 35.5c 33.9c 35.9bc 37.3bc 1.54 <0.001 

Chewiness 105a 94.9ab 56.3c 43.8c 58.7bc 64.4bc 4.16 <0.001 

SOY=soybean oil fed control group; LIN=linseed fed group; FISH=fish oil fed group; ALG= 
microalgae fed group with different concentrations of microalgae (low, medium, high); 
SEM = standard error of the mean calculated from all groups. 
a-cValues with different letters in the same row indicate significant differences (P<0.05). 
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DISCUSSION 

The aim of this research was to investigate the oxidative stability and sensory quality of n-3 FA 

enriched fresh meat, dry fermented sausage and dry cured ham, produced from pigs fed 

microalgae, rich in DHA. 

The limited degree of oxidation in the fresh meat cuts (<0.2 mg MDA/kg muscle) is probably 

due to the low intermuscular fat content of the muscle (approx. 1.2g/100g meat). According to 

Wood et al. (2008) TBARS values above 0.5 mg MDA/kg muscle are considered critical for 

fresh meat since they indicate a level of lipid oxidation products which produce a rancid odour 

and taste which can be detected by consumers. In addition, the colour and colour stability was 

not affected by the added algae suggesting that it is possible to increase the EPA and DHA 

content of fresh meat using microalgae in the pig feed, without major sensory consequences. 

Likewise, Sárraga et al. (2007) did not find any differences in TBARS values in raw ham 

containing 2.1 g/100 g FA EPA+DHA (which is similar to the ALG MEDIUM group of the 

present study) compared to pigs fed a conventional diet. Also, no fishy or rancid odour was 

found in their DHA enriched cooked ham. Also Marriott et al. (2002) did not find differences in 

off-flavour, juiciness, and overall flavour of the semimembranosus muscle containing 0.55 g/100 

g FA EPA+DHA originating from microalgae in the pig feed. Lipid oxidation and myoglobin 

oxidation in meat are coupled and both reactions appear capable of influencing each other 

(Faustman et al., 2010). During oxidation of oxymyoglobin, both superoxide anion and hydrogen 

peroxide are produced and further react with iron to produce hydroxyl radicals. The hydroxyl 

radical has the ability to penetrate into the hydrophobic lipid region and hence facilitates lipid 

oxidation. On the other hand, lipid oxidation results in a wide range of aldehyde products, which 

are reported to induce the oxidation of oxymyoglobin. In addition, metmyoglobin formation is 

generally greater in the presence of unsaturated aldehydes than their saturated counterparts of 

equivalent carbon chain length (Chaijan et al., 2008). As in the present study the PUFA profile of 
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the meat products differed considerably between treatments, it was expected that also different 

amounts of lipid oxidation products among groups were formed, which consequently would 

influence the colour stability of the meat products. However, in the present study it was found 

that the colour parameters were not or only little affected by the PUFA content of the meat. 

Many volatiles compounds were retrieved from the dry cured hams, being mainly alcohols, 

ketones, esters and (branched) alkanes, which already have been characterized in dry cured hams 

(Garcia-Esteban et al., 2004; Ruiz et al., 1999). Oxidation of unsaturated fatty acids in fish is 

related to the formation of (E)-2-pentenal, (E)-2-hexenal, (Z)-4-heptenal, (E,E)-2,4-heptadienal 

and 2,4,7-decatrienal and other volatiles formed during oxidation of fish lipids are 1-penten-3-ol, 

1-octen-3-ol, 1,5-octadien-3-one, hexanal, heptanal and 2,6-nonadienal (Iglesias & Medina, 

2008). In addition, induced oxidation of fish oil particularly rich in EPA and DHA, resulted in 

the formation (assessed by SPME) of acetic acid, (Z)-3-octen-1-ol, (E)-2-penten-1-ol, (E,E)-2,4-

heptadienal, (E,Z)-2,6-nonadienal, 4-octene, (E,Z)-3,6-nonadien-1-ol, and (Z,Z)- 2,5-pentadien-

1-ol, propanoic acid, (Z,Z,Z)-4,6,9-nonadecatriene, 2-undecanone, ethyl decanoate, (E)-2-octene, 

ethyl dodecanoate, (Z)-9-octadecenal, (Z,Z)-2,5-pentadien-1-ol, (E)-2-pentenal, 1-penten-3-ol, 2-

(1-pentenyl) furan (Lee et al., 2003). Therefore, especially these volatile compounds were 

searched for in the present study. Yet, from all above mentioned volatile compounds, only 

hexanal, heptanal, acetic acid, (E)-2-penten-3-ol and (Z)-1-octen-3-ol were detected. Other 

studies investigating the effect of EPA and/or DHA-enriched feed on the volatile profile of meat, 

however, did find quite a lot of these abovementioned volatiles in poultry (Rymer et al., 2010), 

beef (Elmore et al., 1999) and lamb (Elmore et al., 2005). Maybe the long time curing process 

affected the occurrence of these volatiles in the dry cured hams of the present study. To the best 

of our knowledge, this is the first time that the volatiles of dry cured hams enriched with EPA 

and DHA originating from algae was investigated. Acetic acid is a product of carbohydrate 

fermentation (Soto et al., 2008), while hexanal, heptanal and (Z)-1-octen-3-ol originate from the 
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oxidation of n-6 fatty acids (Meynier et al., 1998). The lack of differences between treatments 

compare well with the fatty acid profile (See Chapter 5), as the n-6 PUFA content of the dry 

cured hams was similar between treatments. On the other hand, (E)-2-penten-3-ol is formed from 

oxidation of EPA and DHA (Lee et al., 2003), which explains the higher occurrence of (E)-2-

penten-3-ol in the ALG HIGH group. Similarly, Elmore et al. (2005) found much more (E)-2-

penten-3-ol in the headspace of grilled longissimus muscle from lambs fed on diets 

supplemented with algae and fish compared to linseed fed lambs. 

The consumer panel did not perceive any differences between the dry cured hams, which is in 

agreement with the overall low TBARS values and the few differences in volatile compounds. 

On the other hand, the present results are in contrast with other studies where adverse affects of 

n-3 fatty acids in dry cured hams were noticed by sensory panellists (following feeding of 

rapeseed, Pastorelli et al., 2003; pure DHA extracted from fish oil, Sárraga et al., 2007; linseed 

oil, Santos et al., 2008; extruded linseed, Musella et al., 2009). The n-3 fatty acid percentages of 

the dry cured hams in the present study were similar or even higher compared to the above 

mentioned studies (except for Santos et al., 2008). Most likely, the difference in total n-3 fatty 

acid content per 100 g of dry cured ham, due to differences in fat content, explain the differences 

between the present results and the cited studies for the consumers’ acceptability. The fat content 

of the dry cured hams may greatly differ according to slaughter weight, pig genotype and 

ripening period of the dry cured hams. Musella et al. (2009) suggested that dietary addition of 

antioxidants can preserve the long chain fatty acids in products with a long shelf life such as dry 

cured ham. Possibly the high supplementation of α-tocopheryl acetate in the present study (150 

mg/kg) delayed the oxidation processes and consequently influenced positively the sensory 

characteristics of the dry cured hams. Santos et al. (2008) reported no adverse effects on sensory 

traits of dry cured hams originating from pigs fed linseed oil with 220 mg/kg α-tocopheryl 

acetate, while dry cured hams with 20 mg/kg α-tocopheryl acetate were not accepted by trained 
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experts. Also, the expertise of the sensory panellists (trained versus naive persons) could have 

affected the results of the sensory analysis. 

The mechanical characteristics hardness and chewiness can be explained in terms closely related 

to actual consumer perception: hardness is the force required to compress a substance between 

the molar teeth and chewiness is the length of time required to masticate a sample at a constant 

rate of force application, to reduce it to a consistency suitable for swallowing (Bourne, 1982). 

The n-3 enriched dry cured hams originating from algae fed pigs showed inferior hardness and 

chewiness compared to the control group, due to their high EPA and DHA content which affects 

the fat firmness (Wood et al., 2008). In addition, more lipid oxidation was found in those dry 

cured hams. So even though not noticed by the consumer panel, the increased n-3 FA did to 

some extent influence the quality parameters of the n-3 enriched dry cured hams. For the dry 

fermented sasuges, the lowest values for hardness were unexpectedly found in the LIN and FISH 

groups, which can not be explained by their fatty acid profile or by their crude composition. 

Other factors must have affected the texture parameters of these sausages, which however can 

not be determined using the present data 

Regarding the n-3 FA enriched dry fermented sausages through high concentrations of dietary 

algae, distinct fishy and rancid flavour was observed by a great part of the consumer panellists. 

Apparently, the supplementation of 150 mg/kg α-tocopheryl acetate was not sufficient to protect 

against lipid oxidation in these dry fermented - high fat - sausages. As the algae fed groups did 

not contain any fish oil, no fishy off-flavour was expected in these meat products. Although no 

other study producing dry fermented sausages from pigs fed microalgae was found to confirm 

this, it appears that oxidation of EPA and DHA contribute to these fishy off-flavours, 

independently which source was used. Likewise, Meadus et al. (2009) reported problems of off-

odours and off-flavours in cured bacon from pigs fed 0.6 g/100 g microalgae, however they did 

not mention a fishy taste. It should be further explored whether it is possible to circumvent the 
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negative effects in these highly n-3 FA enriched meat products by either dietary means or 

processing practices. On the other hand, the investigated quality traits of the dry fermented 

sausages originating from pigs fed 0.3 g/100g microalgae, did not differ from the control group. 

This dry fermented sausage contains 135 mg EPA+DHA/100 g product (see chapter 5) and 

eating 50 g of this dry fermented sausage would contribute five times more to the recommended 

daily intake of EPA and DHA compared to a conventional dry fermented sausage. 

 

CONCLUSIONS 

Results demonstrate that it is possible to produce fresh meat cuts and long ripened dry cured ham 

from pigs fed the up to 1.2 g/100 microalgae with improved nutritional properties and minor 

negative effects on the sensory properties. Dry fermented sausages produced from pigs fed the 

lowest dose of microalgae (0.3 g/kg) had a similar quality to the conventional dry fermented 

sausages, but with still a five fold higher concentration of EPA and DHA. Feeding pigs 0.6 and 

1.2 g/100 g microalgae resulted in unacceptable dry fermented sausages. 
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Dry fermented sausages enriched with n-3 PUFA have inferior sensory quality compared to 

conventional sausages (CH6). 

Does supplementation of supra-nutritional α-tocopherol doses in the feed improve the 

oxidative stability? 
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CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 
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CHAPTER 7 

OXIDATIVE STABILITY OF PORK, SUBCUTANEOUS FAT AND D RY 

FERMENTED SAUSAGE FROM PIGS FED DIETS SUPPLEMENTED 

WITH FISH OIL AND DIFFERENT LEVELS OF ALPHA-TOCOPHE RYL 

ACETATE 
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ABSTRACT 

The effect of feeding supra-nutritional levels of α-tocopheryl acetate on lipid oxidation, colour 

and colour stability of loin (M. longissimus dorsi) and dry fermented sausages enriched with 

very long chain n-3 polyunsaturated fatty acids was studied. Pigs were fed a diet supplemented 

with 1.75 g/100 g fish oil and three levels of α-tocopherol: 95, 175 and 400 mg/kg. Loin and 

subcutaneous α-tocopherol levels were elevated as a result of the dietary α-tocopherol 

supplementation (P<0.05). About two fold higher α-tocopherol concentrations were present in 

the subcutaneous fat as compared to the corresponding loin samples. During 8 days of chilled 

display the α-tocopherol concentrations of the loins decreased considerably. Lipid oxidation, as 

measured by thiobarbituric acid reactive substances, in the loin and dry fermented sausages was 

not improved (P>0.05). However, in the subcutaneous fat reduced lipid oxidation was found 

when comparing 95 mg/kg versus 175 and 400 mg/kg α-tocopherol (P<0.05) supplementation 

after induced oxidation (seven days at 30°C). Initial colour L*, a*, b* values of the loin and 

subcutaneous fat were not affected (P>0.05), while some modest differences (P<0.05) in the dry 

fermented sausages indicate a slight positive effect of the α-tocopherol supplementation. Colour 

stability of defrosted loins and dry fermented sausages was not affected by the investigated 

dietary α-tocopherol levels (P>0.05). 
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INTRODUCTION 

The nutritional recommendation for optimum animal performance under normal management 

and environmental conditions in fattening pigs stipulates the use of 15-40 mg all-rac-α-

tocopheryl acetate/kg feed. However, numerous studies have shown that the use of supra-

nutritional levels of α-tocopherol is an efficient approach to improve the quality and storage 

stability of pork (reviewed by Jensen et al., 1998). Alpha-tocopherol is considered as the primary 

lipid soluble antioxidant in biological systems, which acts by disrupting the chain of lipid 

oxidation in cell membranes, thus preventing the formation of lipid hydroperoxides (Bramley et 

al., 2000). The presence of α-tocopherol in membranes, where lipid oxidation is initiated, allows 

it to function very efficiently compared to other antioxidants (Lauridsen et al., 1997). Dietary 

supplementation results in the incorporation of α-tocopherol within membranes, making this a 

more effective approach than adding α-tocopherol post-mortem to meat. The post-mortem 

exogenous addition probably results in extensive surface contact with muscle, but this contact is 

only superficial and not intramembranal; only prolonged dietary supplementation allows for 

incorporation of α-tocopherol into subcellular compartments (Liu et al., 1995). The effect of 

dietary α-tocopherol on lipid and colour stability in fresh pork has been extensively studied and 

has been shown to be effective (Jensen et al., 1998; Sales & Koukolova, 2011; Trefan et al., 

2011).  

The increasing awareness of the need to augment the daily intake of n-3 polyunsaturated fatty 

acids (n-3 PUFA) and especially the very long chain eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) for health reasons (Simopoulos, 1999), has prompted research into 

means of manipulating the fatty acid composition of meat. As these n-3 PUFA are more prone to 

oxidation (Wood et al., 2008), it can be hypothesized that increasing n-3 fatty acid levels 

requires increased levels of dietary antioxidants, such as α-tocopherol, to avoid negative effects 

on meat quality. Positive effects of supra-nutritional supplementation of α-tocopherol on the 
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oxidative stability of n-3 PUFA enriched fresh pork have been reported (Onibi et al., 2000; Rey 

et al., 2001; Juárez et al., 2011; Botsoglou et al., 2012; Sobotka et al., 2012; Botsoglou et al., 

2014), but its effect on the oxidative stability of n-3 PUFA enriched meat products is less well 

documented (Hoz et al., 2004). As the antioxidant effect of endogenous α-tocopherol in meat 

products may depend on their fat content, it should be investigated if supplementation of α-

tocopherol also enhances the oxidative stability of n-3 PUFA enriched meat products high in fat.  

The objective of this study was to investigate the colour and lipid oxidative stability of dry 

fermented sausages produced from pigs fed fish oil and high levels of α-tocopherol. 

 

MATERIALS AND METHODS 

This experiment was conducted simultaneously with the experiment of chapter 5. The 

experimental set-up, sampling, carcass measurements and manufacturing of the meat products 

and chemical analyses are therefore generally the same. However, the material and methods 

section is still included because of some experimental differences. 

1. Experimental set-up and sampling 

Three groups of ten female crossbred pigs each were fattened under commercial conditions on 

different diets from 75 kg until 110 kg live weight. Water and feed was offered ad libitum. The 

feed was based on barley, wheat and soybean meal and manufactured by Lambers-Seghers 

(Baasrode, Belgium). The three experimental diets consisted of different levels of α-tocopheryl 

acetate (50, 150, 300 mg/kg feed) and 1.75 % fish oil (g/100 g feed) to increase the very long 

chain n-3 PUFA content of the pork products. All diets were formulated to an equal fat content 

(5.1%, as fed) and energy supply (2270 kcal/kg, as fed) and supplemented with 0.4 mg/kg 

organic selenium (Selplex, Alltech, Deinze, Belgium). The fish oil was supplied by INVE 

Technologies NV (Dendermonde, Belgium) and other ingredients were purchased on the local 
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market. The composition of the experimental diets is presented in Table 7.1. Feed samples were 

collected for fatty acid analysis and α-tocopherol content. As the α-tocopherol analysis revealed 

that higher amounts of α-tocopheryl acetate were supplemented instead of the proposed 50, 150 

and 300 mg/kg, treatments are referred to as T95, T175 and T400 with respectively 95, 175 and 

400 mg/kg α-tocopherol in the feed.  

All pigs (ten per treatment) were slaughtered at approximately 110 kg live weight in a 

commercial slaughterhouse after electrical stunning (Westvlees, Westrozebeke, Belgium). After 

slaughtering and cooling for 24h, loin samples were obtained from M. longissimus dorsi and 

subcutaneous fat was taken from the back-fat. The samples were transported to the laboratory 

and part of them were used for colour measurements (approximately 30h after slaughter). The 

other samples were stored vacuum packed at -20°C until analysis. From three animals per dietary 

group also left shoulder meat and additional subcutaneous fat was sampled and pooled for the 

production of dry fermented sausages. 
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Table 7.1. Composition of the feed (g/100g feed, % as fed) 
 T95 T175 T400 

Corn 15.0 15.0 15.0 
Wheat gluten 14.7 14.5 14.2 
Barley 15.0 15.0 15.0 
Wheat 15.0 15.0 15.0 
Wheat shorts 12.0 12.0 12.0 
Sorghum 11.0 11.0 11.0 
Soybean scrap 47% CP 8.7 8.7 8.7 
Peas 3.0 3.0 3.0 
Rendered Animal Fat 0.28 0.28 0.28 
L-Threonine 0.09 0.09 0.09 
DL-Methionine 0.02 0.02 0.02 
L-Lysine 1.0 1.0 1.0 
Ca carbonate 38% 1.15 1.15 1.15 
Vitamin-mineral premix 1  1.00 1.00 1.00 
α-tocopheryl acetate 5%2 0.00 0.20 0.50 
Soy oil 0.27 0.27 0.27 
Fish oil 1.75 1.75 1.75 
Energy (kcal, as fed) 2270 2270 2270 
T95, T175, T400: experimental feed supplemented with fish oil and 
respectively 50, 150 and 300 α-tocopheryl acetate (mg/kg feed).  

1Vitamin-mineral premix (“kern” Lambers-Segehrs of Nutreco) contained 
5 g/kg α-tocopheryl acetate and 0.04 g/kg organic selenium (Sellplex). 
2
α-tocopheryl acetate concentrate contained 50 g/kg α-tocopheryl acetate. 
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2. Carcass measurements 

Warm carcass weight and carcass lean meat percentage was assessed at the slaughterhouse for all 

pigs (n=30). At 24h post mortem, pH (Knick portamess 654, Knick Elektronische Messgeräte 

GmbH, Berlin, Germany) with Schott N5800A electrode (Schott Instruments, Mainz, Germany) 

and conductivity (Pork Quality Meter, Kombi, Intek GmbH, Aichach, Germany) were measured 

in the loin (M. longissimus dorsi).  

 

3. Production of dry fermented sausage 

Dry fermented sausages were produced at Ter Groene Poorte (Brugge, Belgium) using a 

standard commercial recipe. For each treatment, a batch was made that consisted of 2.1 kg lean 

shoulder meat, 0.9 kg subcutaneous fat, 84 g NaCl, 3 g KNO3, 30 g spices (Raps, Beringen, 

Belgium) and 1.5 g starter culture (Biosprint from Raps, Beringen Belgium). All sausages were 

prepared on the same day. Frozen shoulder meat from three different animals was minced in a 

bowl chopper, together with all additives, except NaCl. Subsequently, the frozen subcutaneous 

fat was added and mincing was continued until a homogenous batter was obtained. Then, NaCl 

was included and the batter was further chopped until a temperature of -2°C was reached. The 

mixture was stuffed into 6 cm diameter casings, hand-linked at 30 cm and the sausages were left 

for six hours at ambient temperature (day 1). After that, the sausages were placed in a 

fermentation chamber and the following conditions of temperature and relative humidity (RH) 

were applied: 24°C and 95% RH (day 2), 23°C and 92% RH (day 3), 21°C and 90% RH and 

smoking for one hour (day 4), 20°C and 88% RH (day 5 until day 7) and from day 8 until day 23 

the temperature was kept at 17°C with 76% RH. Finally, the dry fermented sausages were 

vacuum packed and stored at 4°C for colour measurements and at -20°C for chemical analyses.  
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4. Proximate composition  

Dry matter, crude protein and crude fat content of the fresh meat and dry fermented sausage 

(n=2) were determined according to the ISO 1442-1973, ISO 937-1978 and ISO 1444-1973 

methods, respectively. Fresh meat samples were taken at random from three animals and 

analyses were carried out in single (n=3), while one dry fermented sausage, chosen at random, 

was analysed in duplicate (n=2). Results were expressed as g/100 g fresh matter. For the fatty 

acid analysis, lipids were extracted from the samples using chloroform/methanol (2/1; v/v) 

(modified after Folch et al., 1957). Fatty acids were methylated according to Raes et al. (2001) 

and analysed by gas chromatography (HP6890, Brussels, Belgium) on a CP-Sil88 column (100 

m × 0.25 mm × 0.25 µm; Chrompack, The Netherlands). Peaks were identified based on their 

retention times, corresponding with standards (NuChek Prep., IL, USA; Sigma, Bornem, 

Belgium). Nonadecanoic acid (C19:0) was used as an internal standard to quantify the individual 

and total fatty acids. A number of samples were taken at random per treatment, i.e. n=5 for fresh 

meat and n=3 for dry fermented sausage, while pooled samples of six animals (equal weight) 

were analysed in duplicate for the subcutaneous fat (n=2). The fatty acid profiles were expressed 

in g/100 g of total fatty acid methyl esters and total fatty acid content is expressed as g FA/100 g 

fresh matter. 

The α-tocopherol content of the loins was determined according to the method of Desai (1984) 

with slight modifications and involves a saponification step and hexane extraction. Since 

saponification often leads to losses of α-tocopherol in feed and samples with a high fat content, a 

method for the determination of α-tocopherol in feed and subcutaneous fat was developed 

without a saponification step (Claeys et al., 2014). In this method, α-tocopherol was extracted 

with hot ethanol, and the co-extracted fat was removed by centrifugation. Removal of the fat 

fraction was made possible by the addition of water, to achieve an ethanol/water ratio of 40/7, 
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followed by cooling on ice before centrifugation. The α-tocopherol was extracted from the 

ethanol fraction with hexane. 

For all matrices the hexane was evaporated using nitrogen gas and the residue was mixed in 1 ml 

of methanol. All samples were analysed by reversed phase HPLC (GE Healthcare, Diegem, 

Belgium), using a Supelcosil LC18 column (25 cm × 4.6 mm × 5 µm; Sigma-Aldrich, Bornem, 

Belgium). The mobile phase was a mixture of methanol/water (97/3; v/v) and the elution was 

performed at a flow rate of 2.0 ml/min. UV-detection was accomplished at a wavelength of 292 

nm. The α-tocopherol content of the samples was determined by comparison of peak areas with 

those obtained from a standard curve of α-tocopherol. The results were expressed as mg α-

tocopherol/kg sample. 

 

5. Oxidative stability 

Lipid oxidation was assessed by the TBARS method. Malondialdehyde, a secondary lipid 

oxidation product, forms a coloured complex with 2-thiobarbituric acid (TBA) which was 

determined spectrophotometrically at 532 nm. The loin and subcutaneous fat samples were 

assessed using a distillation method based on Tarladgis et al. (1960). Before the distillation step, 

the meat or fat was homogenized with water and butylhydroxytoluene was added as antioxidant. 

The fresh loin samples (n=5) were never frozen, but exposed approximately 30h after slaughter 

to illuminated chilled display (1000 lux, 4°C) for five days. Slices of 2.5 cm were wrapped in an 

oxygen permeable plastic foil. Other loin slices (n=6) were frozen at -18°C for nine months and 

after thawing subjected to the same display conditions (1000 lux, 4°C) for eight days. To induce 

lipid oxidation in the subcutaneous fat, five grams were weighted in a plastic jar, covered with an 

oxygen permeable plastic foil and left in an oven at 30°C in dark for seven days. The dry 

fermented sausages (n=3) were immediately frozen after ripening and as they contain nitrate and 
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nitrite, an extraction method with perchloric acid was applied (Ventanas et al., 2006). Results 

were expressed as mg malondialdehyde/ kg meat. 

6. Colour stability 

Colour coordinates (CIE L*a*b*colour system, 1976) were measured with a HunterLab 

Miniscan Minolta XE plus spectrocolorimeter (light source of D65, standard observer of 10°, 

45°/0° geometry, 1 inch. light surface). The L*, a* and b* values (CIE L*a*b* colour system) 

were assessed as a measure of respectively lightness, redness and yellowness. Measurements on 

the loin (n=10) and subcutaneous fat (n=10) were conducted approximately 30h after slaughter. 

For colour stability measurements, defrosted loin cuts (slices of 2.5 cm) were wrapped in an 

oxygen permeable foil and subjected to illuminated chilled display (1000 lux, 4°C) during eight 

days. Measurements on the dry fermented sausages (n=4) were conducted at room temperature 

immediately after slicing and each day for the following seven days. Before slicing, the whole 

dry fermented sausages were allowed to achieve room temperature and before the first colour 

measurements, slices were wrapped in an oxygen permeable plastic foil. 

The colour fading of the defrosted loins was measured as a decline in a* values from day 0 until 

day 8 and data were fitted to a non-linear, one-phase exponential decay curve. In general, 

exponential decay equation models many chemical and biological processes. It is used whenever 

the rate at which something happens is proportional to the amount which is left. The equation for 

an one-phase exponential decay curve is:  

 

Y=(Y0 - plateau) × exp (-K × X) + Plateau 

with  Y0 = initial a* value (intercept) 

Plateau = the ultimate a* value  

K (expressed in inverse minutes) = the rate constant  
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As the dry fermented sausages have a high fat content and due to oxidation this fat becomes 

yellowish during display, it was more suitable to report the increased yellowness of the dry 

fermented sausage for colour stability. The b* values from day 0 until day 7 were fitted to a non-

linear, one-phase exponential association curve (GraphPad Prism6, Demo 2014). However, 

generally this equation describes the pseudo-first order association kinetics of the interaction 

between a ligand and its receptor. During each time interval a certain fraction of the unoccupied 

receptors become occupied. But as time advances, fewer receptors are unoccupied so fewer 

ligand bind and the curve levels off. The equation for an one-phase exponential association curve 

is:  

Y =Y0 + (plateau - Y0) × (1 – exp (–K × X)) 

with  Y0 = initial b* value (intercept) 

Plateau = the ultimate b* value  

K (expressed in inverse minutes) = the rate constant  

 

The measurements were fitted separately per replicate, and the fitted parameters for Y0, plateau, 

and K were further used for statistical analyses. The goodness of fit was checked by the R2 value, 

which was at least 0.90 for the defrosted loin and 0.98 for the dry fermented sausages. Four 

ambiguous fittings were found for the defrosted loins, which were not included in the statistical 

analyses. 

 

7. Statistical analysis  

The data were submitted to analysis of variance with diet as main effect (SPSS Statistics 22.0). A 

new factor combining exposure day with diet was made to assess the differences between the α-

tocopherol content of the unexposed and the exposed loin samples and one-way ANOVA was 
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used. Mean differences between groups were tested using the Tukey post hoc test operating at a 

5% level of significance.  

RESULTS 

Relatively high concentrations of EPA and DHA, originating from the supplemented fish oil, 

were found in the diets (Table 7.2). We did not succeed at adding 50, 150 and 300 mg/kg α-

tocopherol in the feed, instead 93, 175 and 400 mg/kg α-tocopherol was recovered (Table 6.2). 

This implies that there is no control treatment with a basal level of 50 mg/kg α-tocopherol. 

Luckily, still clearly different levels of dietary α-tocopherol were supplied. 

 

Table 7.2. Fatty acid composition (g FA/100 g total FA) and α-tocopherol content (mg/kg) of the 
experimental diets 
 T95 T175 T400 
C18:3n-3  3.16 3.15 3.07 
C20:5n-3  5.78 6.70 6.58 
C22:5n-3 0.73 0.87 0.83 
C22:6n-3 5.03 5.93 5.66 
C18:2n-6 31.9 30.2 29.6 
C20:4n-6 <0.10 <0.10 <0.10 
PUFA  48.0 48.5 47.4 
SFA 23.3 22.9 24.0 
MUFA 23.1 22.8 22.9 
Total FA (g/100 g feed) 4.07 4.28 4.51 
α-tocopherol  93.6 175 400 
T95, T175, T400: experimental feed supplemented with fish oil and respectively 95, 175 and 400 
mg/kg α-tocopherol; PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + 
C22:4n-6 + C22:5n-6 + C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1. 
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The mean (± standard deviation) warm carcass weight (102 ± 6 kg) and carcass lean meat 

percentage (62.0 ± 2.7%) did not differ between feeding groups (P>0.05). Likewise, conductivity 

in the loin (4.59 ± 0.95 ) was not influenced by the diet (P>0.05) and nor was the pH value (5.57 

± 0.09). For the loin, no effect of diet was found for dry matter (29.2 ± 0.9 g/100 g meat), crude 

fat (1.07 ± 0.46 g/100 g meat) and crude protein (25.0 ± 0.9 g/100 g meat) content (P>0.05). 

Similarly, no differences were found among groups for the dry matter (62.6 ± 1.5), crude fat 

(30.4 ± 1.8) and crude protein (23.9 ± 1.2) content of the dry fermented sausages (P>0.05). 

Relatively high amounts of EPA, DPA and DHA were found in the loin, subcutaneous fat and 

dry fermented sausages (Table 7.3). No effect of α-tocopherol supplementation on the FA profile 

of the loin was observed (P>0.05), while a significant effect was found in the subcutaneous fat 

and in the dry fermented sausages (P<0.05). However, the differences between treatments were 

limited in magnitude and are not further discussed. 
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Table 7.3. Fatty acid profile (g/100 g total fatty acids) of the loin (M. longissimus dorsi, n=5), 
subcutaneous fat (pooled sample, n=2) and dry fermented sausage (n=3) 

 
T95 T175 T400 SEM pdiet 

Loin 
     

C18:3n-3 0.522 0.500 0.548 0.021 0.689 
C20:5n-3 2.12 1.93 2.23 0.179 0.820 
C22:5n-3 1.01 1.05 1.04 0.067 0.970 
C22:6n-3 1.31 1.39 1.34 0.104 0.955 
C18:2n-6 12.0 11.1 12.0 0.756 0.861 
C20:4n-6 2.36 2.28 2.32 0.231 0.992 
PUFA 20.3 19.2 20.5 1.37 0.925 
SFA 34.5 34.0 33.8 0.717 0.932 
MUFA 41.3 41.8 39.3 1.18 0.690 
Total FA (g/100 g loin) 1.33 1.52 1.19 0.093 0.370 
Subcutaneous fat 

     
C18:3n-3 1.29a 1.35ab 1.37b 0.015 0.024 
C20:5n-3 0.742c 0.833a  0.792b 0.017 <0.001 
C22:5n-3 0.972ab 1.02a 0.936b 0.016 0.020 
C22:6n-3 1.13b 1.23a 1.13b 0.021 0.015 
C18:2n-6 14.3b 14.6b 15.0a 0.132 0.010 
C20:4n-6 0.241 0.243 0.237 0.016 0.306 
PUFA 19.8b 20.4a 20.6a 0.149 0.010 
SFA 32.9b 34.0a 33.5ab 0.217 0.015 
MUFA 41.9a 40.5b 40.7b 0.266 0.006 
Total FA (g/100 g fat) 78.1 83.9 88.8 2.27 0.128 
Dry fermented sausage 

     
C18:3n-3 1.30 1.29 1.36 0.013 0.051 
C20:5n-3 0.849b 0.900a 0.907a 0.011 0.017 
C22:5n-3 1.03b 1.13a 1.18a 0.024 0.004 
C22:6n-3 1.15c 1.23b 1.31a 0.022 <0.001 
C18:2n-6 14.0b 14.1b 15.0a 0.175 0.032 
C20:4n-6 0.375b 0.410a 0.356b 0.009 0.003 
PUFA 19.7b 20.1b 21.1a 0.234 0.013 
SFA 35.6 36.3 35.1 0.316 0.325 
MUFA 39.7 38.5 37.0 0.507 0.089 
Total FA (g/100 g sausage) 27.1a 23.5b 25.7ab 0.677 0.019 
T95, T175, T400: loin, subcuteneous fat and dry fermented sausages produced from pigs fed fish oil 
and respectively 95, 175 and 400 mg/kg α-tocopherol; 
PUFA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6 + 
C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 +C22:5n-3 + C22:6n-3; 
SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0; 
MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1; 
SEM = standard error of the mean calculated from all groups; 
a-cValues with different letters in the same row indicate significant differences (P<0.05). 
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The α-tocopherol content and lipid oxidation results are summarized in Table 7.4. Increased 

dietary supplementation of α-tocopheryl acetate resulted in elevated levels of α-tocopherol in the 

loin and subcutaneous fat (P<0.05). About two fold higher α-tocopherol concentrations were 

present in the subcutaneous fat compared to the corresponding loin samples. During the eight 

days of chilled display the α-tocopherol concentrations decreased significantly. 

The TBARS values found in defrosted loin cuts after eight days of chilled display were about ten 

fold higher compared to those found in fresh loin samples after five days of chilled display. For 

both cases, no effect of the α-tocopherol dose was observed, as no significant differences 

between treatments were found (P>0.05). On the contrary, TBARS values in the subcutaneous 

fat from pigs fed 95 mg/kg α-tocopherol were on average two fold higher compared to T175 and 

T400 samples after seven days of induced oxidation at 30°C. The α-tocopherol level did not 

influence lipid oxidation in dry fermented sausages (P>0.05). 

 

Table 7.4. α-tocopherol content (mg/kg) and lipid oxidation (mg MDA/kg) in loin (longissimus 
dorsi, n=6), subcutaneous fat (n=6) and dry fermented sausage (n=3) 

 T95 T175 T400 SEM pdiet
 

α-tocopherol content      
Loin 2.43b,x 3.13a,x 3.31a,x 0.117 <0.001 
Loin after eight days of display 1.30b,y 2.04a,y 1.89ab,y 0.132 0.036 
Subcutaneous fat1 4.36b 5.23ab 7.10a 0.457 0.031 
Lipid oxidation      
Loin after 5 days of display 0.160 0.164 0.136 0.011 0.557 
Defrosted loin after 8 days of display 1.63 1.59 1.76 0.103 0.810 
Subcutaneous fat1 

13.9a 5.95b 7.96b 0.903 0.001 
Dry fermented sausage 2.43 1.83 2.32 0.156 0.243 
T95, T175, T400: loin, subcuteneous fat and dry fermented sausage produced from pigs fed fish 
oil and respectively 95, 175 and 400 mg/kg α-tocopherol; 
1Measurements were carried out after seven days of induced lipid oxidation at 30°C in dark; 
SEM = standard error of the mean calculated from all groups; 
a,bValues with different letters in the same row indicate significant differences (P<0.05); 
x,yEffect of display on α-tocopherol content of the loins: values with different letters within the 
same treatment indicate significant differences (P<0.05). 
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Colour measurements of the unexposed fresh loin and subcutaneous fat did not reveal significant 

differences among the groups for the L*, a* and b* values (Table 7.5). The dietary α-tocopherol 

supplementation did not affect the Y0, plateau and rate contant K, obtained from fitting the 

individual a* values of the defrosted loins to a one-phase decay exponential curve (Figure 6.1).  

For the dry fermented sausages (Table 7.5 and Figure 7.2), significantly higher L* and lower a* 

values were found in the sausages produced from pigs fed 400 mg/kg α-tocopherol as compared 

to those from pigs fed 95 or 175 mg/kg α-tocopherol acetate (P<0.05). The b* values at day 0 

and the Y0 values obtained from fitting the b* values to a one-phase association exponential 

curve were different between all three groups (P<0.05) and the order was T175<T400<T95, 

while no effect of dietary α-tocopherol supplementation was observed for the plateau and the rate 

constant K. 

Table 7.5. Colour measures of freshly cut loin (longissimus dorsi, n=10), subcutaneous fat (n=) and 
dry fermented sausage (n=3) 

 T95 T175 T400 SEM pdiet 

L*      

Fresh loin 51.4 51.3 52.7 0.426 0.345 

Subcutaneous fat 
78.5 78.6 78.2 0.442 0.946 

Dry fermented sausage 
45.9b 46.3b 47.8a 0.266 0.001 

a*      

Fresh loin 7.17 7.27 7.26 0.153 0.962 

Subcutaneous fat 
3.89 4.11 4.27 0.226 0.792 

Dry fermented sausage 
14.5a 14.3a 13.4b 0.188 0.010 

b*      

Fresh loin 14.3 14.6 14.7 0.124 0.459 

Subcutaneous fat 
11.7 11.6 12.1 0.184 0.551 

Dry fermented sausage 
10.5a 9.62c 9.91b 0.115 <0.001 

T95, T175, T400: loin, subcuteneous fat and dry fermented sausage produced from pigs fed fish oil 
and respectively 95, 175 and 400 mg/kg α-tocopherol; 
SEM = standard error of the mean calculated from all groups; 
a-cValues with different letters in the same row indicate significant differences (P<0.05). 
  



Figure 7.1. One-phase exponential decay curve fitted to the mean colour a* values

for illustration purposes. Parameters obtained from the individually fitted data are summarized in 

the table beneath the figure. 

respectively 95, 175 and 400 mg/kg

from all groups. 
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phase exponential decay curve fitted to the mean colour a* values

illustration purposes. Parameters obtained from the individually fitted data are summarized in 

the table beneath the figure. T95, T175, T400: defrosted loin cuts produced from 

, 175 and 400 mg/kg α-tocopherol. SEM = standard error o

 

Chapter 7 

 

phase exponential decay curve fitted to the mean colour a* values per treatment 

illustration purposes. Parameters obtained from the individually fitted data are summarized in 

produced from pigs fed 

SEM = standard error of the mean calculated 



Figure 7.2. One-phase exponential 

treatment for illustration purposes. Parameters obtained from the individually fitted data are 

summarized in the table beneath. 

fed fish oil and respectively 95, 175 and 400 mg/kg 

mean calculated from all groups. 

significant differences (P<0.05). 
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phase exponential association curve was fitted to the mean colour 

illustration purposes. Parameters obtained from the individually fitted data are 

summarized in the table beneath. T95, T175, T400: dry fermented sausage produced from pigs 

fed fish oil and respectively 95, 175 and 400 mg/kg α-tocopherol. SEM = standard err

mean calculated from all groups. a-cValues with different letters in the same row indicate 
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fitted to the mean colour b* values per 

illustration purposes. Parameters obtained from the individually fitted data are 

T95, T175, T400: dry fermented sausage produced from pigs 

SEM = standard error of the 

Values with different letters in the same row indicate 



Chapter 7 

183 

DISCUSSION 

The purpose of this study was to investigate whether high levels of dietary α-tocopherol can 

enhance the colour and lipid oxidative stability of n-3 enriched PUFA meat products.  

Increased dietary supplementation of α-tocopherol resulted in elevated levels in the M. 

Longissimus dorsi and the results compare well with those reported by Sales & Koukolova 

(2011) and Trefan et al. (2011). The level of α-tocopherol after dietary intake varies between 

tissues, which probably depends on the metabolic activities and fat content of the tissue. The 

highest levels of α-tocopherol are found in the kidney fat and subcutaneous fat, followed by the 

liver, lung, heart, kidney, muscle and brain (Morrissey, et al., 1996), which explains the higher 

α-tocopherol content in the subcutaneous fat compared to the loins.  

It was expected that the elevated α-tocopherol concentrations in the loin would be reflected in an 

improved oxidative stability of the loin, but this was not the case. As the α-tocopherol content 

decreased during illuminated chilled display, which implies that the α-tocopherol was utilized 

during oxidation processes, it may be suggested that there was no additional benefit of 

supplementing 175 or 400 mg/kg α-tocopherol compared to the antioxidant effect of 95 mg/kg 

dietary α-tocopherol. Botsoglou et al. (2014) conducted an analogous experiment, investigating 

the effect of dietary α-tocopherol (20 versus 200 mg/kg) on lipid oxidation in M. longissimus 

dorsi from pigs fed 2 g/100 g fish oil. Compared to the present study, very similar EPA and 

DHA proportions (3.6 g/100 g fatty acids) and TBARS values after six days of illuminated 

chilled display (approx. 0.15 µg MDA/kg meat) were found in the samples supplemented with 

200 mg/kg α-tocopheryl acetate, while in the loins of pigs fed only 20 mg/kg α-tocopheryl 

acetate four fold higher TBARS were found. Extrapolation of these results would imply that in 

the present study supplementation of 95 mg/kg α-tocopherol did exhibit an antioxidant effect. 

Regrettably, no control treatment with basal levels of α-tocopherol was included in the present 

study to verify the antioxidant effect of 95 mg/kg dietary α-tocopherol. 
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Studies reporting positive effects of dietary α-tocopherol on lipid oxidation in n-3 PUFA 

enriched pork all compared against a basal diet containing 0-40 mg/kg dietary α-tocopherol 

(Onibi et al., 2000; Rey et al., 2001; Juárez et al., 2011; Botsoglou et al., 2012; Sobotka et al., 

2012; Botsoglou et al., 2014) and no additional benefit of increasing dietary α-tocopherol 

supplementation from 200 to 400 or 500 mg/kg was found (Onibi et al., 2000; Juárez et al., 

2011). In addition, Trefan et al. (2011) also reported a gradual decrease in TBARS in 

conventional pork as levels of dietary α-tocopherol increased up to 100 mg/kg, with no further 

changes at higher levels of supplementation. On the other hand in subcutaneous fat, levels of 175 

mg/kg α-tocopherol had a greater protective effect compared to 95 mg/kg α-tocopherol. 

It was expected that the improved antioxidant properties of the subcutaneous fat would have 

been reflected in an enhanced oxidative stability of the dry fermented sausages, but the higher α-

tocopherol levels of the raw materials offered no apparent advantage in reducing lipid oxidation 

or improving colour stability of the dry fermented sausages. Only the modest differences in 

colour parameters just after slicing, indicate a slight positive effect of α-tocopherol, with the 

lower b* values indicating less lipid oxidation in the fat fraction of the dry fermented sausages. 

Of course, the oxidation reactions in dry fermented sausages are more complex compared to 

fresh meat and subcutaneous fat, due to factors such as processing procedures and additives used. 

Mincing and mixing disrupt muscle structure and increase the surface exposed to oxygen and 

other oxidation catalysts (Chizzolini et al., 1998). The pro-oxidant effect of NaCI seems in part 

to be attributed to the capability of NaC1 to displace iron ions from binding macromolecules for 

oxidative reactions (Kanner, 1994), while the curing agents may act as antioxidants (Honikel, 

2008). The fermentation process is based on the interaction between meat, fat, bacterial growth, 

physico-chemical phenomena and biochemical processes. Oxidation of unsaturated fatty acids 

can occur during maturation and, to a certain extent, it is a useful phenomenon as it produces 

flavour compounds (Ordóñez et al., 1999). 
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Doses of 400 mg/kg α-tocopherol in the pig diet are already high and supplementing even higher 

concentrations would not be useful. Hence, there is a need for other approaches to reduce 

oxidation processes in n-3 PUFA enriched meat products, for instance, by added antioxidants 

during processing (Valencia et al., 2007; García-Íñiguez de Ciriano et al., 2009; García-Íñiguez 

de Ciriano et al., 2010). 

 

CONCLUSIONS 

The oxidative stability, in terms of lipid oxidation and colour stability, of n-3 PUFA enriched 

loin and dry fermented sausage was not improved by supplementing 175 or 400 mg/kg dietary α-

tocopherol levels, compared to the supplementation of 95 mg/kg. A beneficial effect of α-

tocopherol against lipid oxidation was observed in the subcutaneous fat, but this was poorly 

reflected in the oxidative stability of the dry fermented sausages.  
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It is possible to produce n-3 PUFA enriched meat products that substantially increase the 

daily recommended nutrient intake of EPA and DHA. 

Do these enhanced products improve the health status after consumption? 

 

Part I  Lowering the ingoing nitrite dose Part II  Increasing the n-3 PUFA content 

CH1    With a dog rose extract CH5      Role of n-3 PUFA source 

CH2    With sodium ascorbate CH6      Effect on sensory quality 

CH3    With a pre-converted extract CH7      Role of α-tocopherol in feed 

CH4    Nitrite and protein oxidation? CH8      Effect on health 

CH9     General discussion and future prospects 
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CHAPTER 8 

DIETS CONTAINING N-3 PUFA ENRICHED PORK: EFFECT ON 

BLOOD LIPIDS, OXIDATIVE STATUS AND ATHEROSCLEROSIS IN 

RABBITS 
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ABSTRACT 

The beneficial health effects of n-3 fatty acids are mainly attributed to the very long chain n-3 

fatty acids eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-6, DHA). 

However, in most n-3 enriched food products α-linolenic acid (C18:3n-3, ALA) is used as the 

source of n-3 fatty acids, assuming that conversion of ALA to EPA and DHA will occur in the 

body after consumption. In this research health biomarkers were evaluated in rabbits after 

consumption of pork enriched with n-3 fatty acids originating from linseed oil (ALA) or fish oil 

(DHA+EPA) fed pigs. Rabbits were fed a pelleted diet simulating a meat-based adult human diet. 

The meat fatty acid profile was steered by feeding pigs a diet with linseed- or fish oil. Significant 

changes in the fatty acid profile of different tissues and blood were found in the rabbits. During 

the experiment, the Total Cholesterol/HDL-Cholesterol (TC/HDL-C) ratio decreased and the 

TC/LDL-Cholesterol (TC/LDL-C) ratio increased in the fish oil pork group, while for the linseed 

oil pork group the TC/HDL-C ratio increased and no effect was measured for the TC/LDL-C 

ratio. The oxidative status was altered by the dietary treatments compared to the baseline and 

atherosclerosis developed during the experiment, but no differences between the two feeding 

groups were found. The results highlight the importance of selecting the appropriate n-3 fatty 

acid source for enriching food products, since pork from fish oil fed pigs differently affected 

health parameters compared to pork from linseed oil fed pigs. 
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INTRODUCTION 

Health authorities in industrialized countries are nowadays advising to increase the consumption 

of n-3 fatty acids, particularly the very long chain fatty acids EPA and DHA. The n-3 fatty acids 

are considered important for normal growth and development and for decreasing or delaying the 

development of a number of chronic diseases including cardiovascular disease, hypertension and 

diabetes (Simopoulos, 1999). The main effects of n-3 fatty acids on human health can be divided 

into three main categories: their essentiality in specific organs, their significant role in lowering 

blood lipids and their role as precursors for mediating biochemical and physiological responses 

(Williams, 2000; Ruxton et al., 2004; Narayan et al., 2006). However, besides the claimed 

positive health effects, these fatty acids are more prone to oxidation due to their highly 

unsaturated character. Increased oxidation of lipids can disturb the oxidative status of an 

organism and consequently affect the endogeneous antioxidant enzyme activity of GSH-Px and 

CAT (Hsu et al., 2001). There is evidence that an altered oxidative status is associated with 

diseases such as diabetes, Alzheimer’s disease and atherosclerosis (Stocker & Keaney, 2005).  

Despite attempts to provide education about healthier eating patterns, there are several barriers 

such as a lack of interest towards changing one’s diet, or concerns about having to compromise 

on taste or enjoyment (Kearney & McElhone, 1999). A more successful strategy to improve the 

n-3 fatty acid content of the overall diet would be to provide these fatty acids in food products 

that are already popular. Besides adding n-3 fatty acid sources during the processing of foods, 

incorporation of n-3 fatty acid rich products like grass, rapeseed, linseed and fish oil in livestock 

feeds, resulting in accumulation of these fatty acids in animal products, is receiving increasing 

interest (Raes et al., 2004). Most of these n-3 fatty acid rich products provide ALA as source for 

n-3 fatty acids, claiming that conversion of ALA to EPA and DHA will occur in the body. 

However, according to Brenna (2002), only 25% of the administrated ALA is available for the 

production of very long chain polyunsaturated fatty acids, since the other part is used for 
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metabolic pathways through β-oxidation. The equal amounts of linoleic acid (C18:2n-6, LA) and 

ALA in both diets in this study, allows assessing the effects of the very long chain fatty acids 

versus the effect of enriching feeds with ALA to be converted to longer chain derivatives in the 

animal. The hypothesis of this study was that the use of fish oil or linseed oil in the pigs feed, 

results in different fatty acid profiles and consequently affect in a different way the health effects 

and oxidative status of humans consuming the n-3 enriched meat.  

To verify this hypothesis, the objective of this study was to investigate the effects of 

consumption of dietary n-3 fatty acid enriched pork on the fatty acid composition, oxidative 

status, blood lipid profile and the development of atherosclerotic lesions. As in vivo animal 

studies have established that rabbits are susceptible to experimental atherosclerosis induced by 

feeding a high-cholesterol diet and this animal species shares several aspects of lipoprotein 

metabolism with humans (Moghadasian, 2002), the rabbit was chosen here as an experimental 

model. 

 

MATERIAL AND METHODS 

1. Experimental set-up 

For this experiment 10 male New Zealand rabbits were used. From the age of 8-9 weeks and a 

mean weight of 2.20 ± 0.12 kg, the rabbits were housed for 8 weeks in individual cages at the 

Institute for Agricultural and Fisheries Research (ILVO, Melle, Belgium). They were separated 

in two equal groups (n=5 per group) based on live weight and feed intake. One group received a 

diet including pork and lard from pigs fed linseed oil (LP group) and the other group a diet with 

pork and lard from pigs fed fish oil (FP group) (see further). The animals received water ad 

libitum and 140 g feed per day in the morning, in accordance with their requirements for 

maintenance and growth. Feed refusals were removed daily and weighed. Live weight was 
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recorded weekly. Blood samples of the rabbits were taken from the ear vein at the start of the 

trial and after 4 and 8 weeks. The blood was immediately separated into plasma and red blood 

cells (2000 g, 10 min), and stored at –21°C until analysis. After 8 weeks, the rabbits were 

euthanized by intravenous injection of T61 (Intervet, Mechelen, Belgium). At necropsy, samples 

were taken from the heart, coronaries, ascending aorta, thoracic aorta, abdominal aorta and 

femoral artery. The vessels were fixed immediately in phosphate buffered 10% formaldehyde. 

The samples were embedded in paraffin according to standard techniques. Heart and part of the 

thoracic aorta were stored vacuum packed at -21°C for fatty acid analysis. The study was 

approved by the Ethical Committee of ILVO, Belgium (2005/34). 

2. Feed composition 

The two experimental diets consisted of conventional rabbit feed ingredients, to which different 

sources of cooked pig meat and lard were added to simulate a meat-based human diet. The diets 

were supplemented with 1% of cholesterol to induce atherosclerosis. The pork products were 

available from a previous trial (Haak et al., 2008), in which the pork fatty acid profile was 

steered by feeding pigs either a diet with linseed oil (rich in ALA) or fish oil (rich in EPA and 

DHA). To incorporate the pig meat in the feed pellets, the meat (longissimus thoracis muscle) 

was cooked for 40 min at 70°C, ground (2700 g, 20 s) and lyophilized. Subsequently the 

lyophilized meat was ground again (22400 g, 20 s). The cholesterol, pig meat powder and melted 

lard were mixed with the basic feed and pelleted. The ingredient composition of the rabbit feed is 

presented in Table 8.1. The cholesterol content was not measured in the final diet, but it can be 

calculated that the contribution of cholesterol from the meat and the lard used in the diets is 

negligible compared to the 1% added cholesterol. The amount of pig meat and lard included in 

the feed was calculated based on the human consumption database of Belgium (Devriese et al., 

2006). According to these data, the daily intake of an adult is on average 135.0 fresh meat and 

43.6 g meat products. Assuming that meat products consist of 50% lard and 50% meat, the total 
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average daily intake is 156.8 g meat and 21.8 g lard. This daily intake corresponds to 146.6 kcal 

for the meat fraction (based on a content of 20% protein × 4 kcal/g protein and 1.5% fat × 9 

kcal/g fat) and 157.0 kcal for the lard fraction (based on 80% fat × 9 kcal/g fat). Assuming an 

average daily total energy intake of 2200 kcal, the contribution of meat to the total energy intake 

was estimated at 6.66% and the contribution of lard at 7.14%. The daily rabbit energy intake was 

set at 600 kcal, so proportionally 40 kcal (42.8 g) meat and 42.8 kcal (5.9 g) fat, had to be 

included in the experimental diet. Taking into account the daily allowance of 140 g feed, this 

corresponded to 30.55% meat (=7.64% lyophilized pork) and 4.25% lard. 
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Table 8.1. Composition (g/100 g) of the experimental rabbit feed 

Composition Content 
Wheat shorts 30.20 
Wheat 7.00 
Sunflower seed scrap 13.00 
Beet pulp 9.00 
Flax chaff 21.00 
Molasses 4.00 
Calcium carbonate 0.20 
Mineral-vitamin premix a 2.50 
Salt 0.11 
Methionine 0.10 
Lyophilised pork 7.64 
Lard 4.25 
Cholesterol 1.00 
Chemical composition  
Crude fat  9.53 
Crude protein 17.60 
Crude fibre 14.12 
Dry matter 89.62 
  
ME b(kcal/kg feed) 2476 
aKonimix 25 Green®:11.9% calcium, 4.4% phosphor, 6.2% sodium, 320 UI/g vitamin A, 70 UI/g 
vitamin D3, 0.80 mg/g vitamin E, 0.020 mg/g vitamin K3, 0.020 mg/g vitamin B1, 0.11 mg/g 
vitamin B2, 0.27mg/g calcium-D-pantothenate, 0.020 mg/g vitamin B6, 0.00060 mg/g vitamin 
B12, 0.71 mg/g nicotinic acid, 4.46 mg/g choline, trace elements; 
bMetabolisable energy, derived from rabbit feedstuff tables (Maertens et al., 2002). For the 
enriched meat and lard fraction, the Atwater nutrient conversion factors 4, 9 and 4 kcal/g of 
carbohydrate, fat and protein respectively were used. 
 
  



Chapter 8 

196 

3. Chemical analyses 

As a measure of oxidative stability of the feeds the peroxide value was determined, indicating 

the quantity of reactive oxygen present in the feed. The fat was extracted from the feed with 

petroleum ether and the peroxide value of the extract was subsequently determined by 

iodometric titration according to Gray et al. (1978). The amount of iodine that is released by the 

addition of KI is equivalent with the amount of reactive oxygen present in the sample. The 

peroxide levels in the feeds were measured after 1 and 8 weeks storage at 7°C and are expressed 

in meq O2/g fat. 

The lipids from the feed, plasma, red blood cells, heart and thoracic aorta were extracted using 

chloroform/methanol (2/1; v/v) (modified after Folch et al., 1957). Fatty acids were methylated 

and analyzed by gas chromatography (HP6890, Brussels, Belgium) on a CP-Sil88 column for 

FAME (100 m×0.25 mm×0.25 µm; Chrompack, The Netherlands), according to Raes et al. 

(2001). Peaks were identified based on their retention times, corresponding with standards 

(NuChek Prep., USA; Sigma, Bornem, Belgium). Nonadecanoic acid (C19:0) was used as an 

internal standard to quantify the individual and total fatty acids. The fatty acid profiles are 

expressed in g/100g of total FAME (fatty acid methyl esters) and the total FA content was 

expressed in mg FA/100g or µg FA/ml. 

Plasma total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C) and 

triacylglycerols (TAG) were determined using commercial kits (Randox, Crumlin, United 

Kingdom). The concentrations are expressed in mmol/L. 

The ferric reducing/antioxidant power (FRAP) assay for plasma is based on a redox reaction in 

which an easily reduced oxidant (Fe3+) is used in stechiometric excess and antioxidants act as 

reductants (Benzie & Strain, 1996). At low pH, the ferric–tripyridyltriazine (Fe3+ – TPTZ) 

complex is reduced to the ferrous (Fe2+) form. The reaction results in an increased absorbance 
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due to the development of an intense blue chromogen, which was monitored for 20 min at 593 

nm and 37°C. FRAP values are expressed in µmol Fe2+/L plasma. 

Red blood cells were repeatedly washed with a 0.9% NaCl solution (1000 g, 10min) until 

colourless. The pellets were used to determine the catalase (CAT) and glutathione peroxidase 

(GSH-Px) activity. 

The CAT activity assay was performed as described by Aebi & Bergmeyer (1974). Diluted red 

blood cell pellets were mixed with 30 mmol/L H2O2 in 50 mmol/L phosphate buffer (pH 7.0) at 

22°C. The resulting H2O2 decomposition was monitored by measuring the absorbance at 240 nm 

during the initial 30 s. An extinction coefficient of 40 L/(mol·cm) was used for the calculation. 

The CAT activity was expressed as µmol H2O2 oxidized/(min·ml). The GSH-Px activity was 

determined by measuring the oxidation of NADPH at 25°C (Hernández et al., 2004). The assay 

medium consisted of 1 mmol/L reduced glutathione, 0.15 mmol/L NADPH, 0.15 mmol/L H2O2, 

40 mmol/L potassium phosphate buffer (pH 7.0), 0.5mmol/L EDTA, 1 mmol/L NaN3, 500 units 

of glutathione reductase and diluted red blood cell pellets or plasma. Absorbance at 340 nm was 

recorded over 3 min. An extinction coefficient of 6220 L/(mol·cm) was used for calculation of 

the NADPH concentration. GSH-Px activity was expressed as µmol NADPH oxidized/(min·ml). 

4. Histological and immunohistochemical examination  

Paraffin embedded samples were cut at 4 µm and stained with Haematoxylin Eosin, Von Kossa 

and Von Giesson staining. All arteries were inspected for atherosclerosis by measuring the 

proportion of the cross sectional circumference covered with plaques. In addition, the thickness 

of the neointima and media were measured. An overall score (expressed as %) was calculated as 

follows: (Thickness neointima/(thickness neointima+media))×proportion of the circumference 

covered with plaques. 
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5. Statistical analyses 

Data concerning blood measurements were analyzed using the general linear model procedure 

with time (week 4 and 8) and dietary group (FP and LP) as fixed factor and rabbit as random 

factor. Baseline values were not included in this analysis. Baseline values, calculated across the 

dietary groups, were compared with the overall mean, calculated across dietary group and time, 

using a two sample T-test. Data concerning other tissues were analyzed using one-way ANOVA 

with dietary group as fixed factor. Significance was accepted at P<0.05 (SAS Enterprise guide 4). 

 

RESULTS 

1. Experimental diets and animal performances 

The fatty acid composition of the experimental diets is shown in Table 8.2. There were no 

differences between the diets, except for EPA, docosapentaenoic acid (DPA, C22:5n-3) and 

DHA, which were respectively 5-, 3- and 24-fold higher in the FP diet compared to the LP diet. 

The peroxide values of the FP and the LP diet were 42.8±0.4 and 38.5±0.8 meq O2/g fat 

respectively at the start of the trial, and 24.0±2.4 and 21.7±1.1 meq O2/g fat respectively at the 

end of the trial. The experimental diets did not affect feed intake (117±12 g/day) and live body 

weight (3.44±0.37 kg at the end of the trial) of the rabbits. 
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Table 8.2. Fatty acid composition (g/100g fame) of the two experimental diets 
 LP FP 
SFA 26.4 27.7 
MUFA 31.0 31.8 
LA 25.4 26.0 
AA 0.26 0.21 
ALA 13.6 13.1 
EPA 0.06 0.31 
DPA 0.13 0.41 
DHA 0.02 0.47 
∑ n-6 25.8 26.6 
∑ n-3 13.8 14.3 
Total FA (mg FA/100g feed) 8511 8042 
n-6/n-3 1.87 1.86 
PI (%) 56.3 63.1 
LP=linseed oil enriched pork group; FP=fish oil enriched pork group; 
SFA=C12:0+C14:0+C16:0+C17:0+C18:0+C20:0 +C22:0; 
MUFA=C14:1+C16:1+C17:1+C18:1t9+C18:1t11+C18:1c9+C18:1c11+C20:1; LA=C18:2n−6; 
AA=C20:4n−6; ALA=C18:3n−3; EPA=C20:5n−3; DPA=C22:5n−3; DHA=C22:6n−3; 
∑n−6=C18:2n−6+C18:3n−6+C20:3n−6+C20:4n−6+C22:4n−6; 
∑n−3=C18:3n−3+C20:5n−3+C22:5n−3+C22:6n−3; PI=peroxidisability index=(%monoenoic 
acid*0·025)+(%dienoic acid*1)+(%trienoic acid*2)+(%tetraenoic acid*4)+(%pentaenoic 
acid*6)+(%hexaenoic acid*8); Kang et al. (2005). 
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2. Fatty acid profile  

Both for red blood cells and plasma, no differences were present between the two feeding groups 

at the start of the experiment (P>0.05, data not shown). A significant 2 to 3-fold increase of the 

total fatty acid content in plasma and red blood cells, compared to their baseline values, was 

observed in both groups during the trial (Table 8.3 and Table 8.4). A significant twofold increase 

of the total n-3 fatty acids and a small, but significant, increase of the total n-6 fatty acids, 

compared to their baseline values, occurred due to the administration of the experimental diets, 

resulting in lower n-6/n-3 ratios in both groups. 

Compared with the baseline values, the saturated fatty acid (SFA) proportions significantly 

decreased, the peroxidizability index (PI), arachidonic acid (C20:4n-6, AA), ALA, EPA and 

DPA proportions significantly increased and the monounsaturated fatty acid (MUFA) 

proportions stayed constant in both plasma and red blood cells after administration of cholesterol 

rich diets. The LA proportion increased significantly in the red blood cells, but stayed constant in 

plasma, while the DHA proportions significantly increased in plasma and no significant changes 

were seen in the red blood cells, compared to the baseline values.  

During the 8 weeks of experimental feeding, significant treatment effects were observed for both 

plasma and red blood cells: EPA, DPA and DHA were higher in the FP group compared to the 

LP group, resulting in a significantly lower n-6/n-3 ratio. In plasma, but not in red blood cells, a 

significant diet effect was noted for the total n-3 fatty acids and PI, which was higher in the FP 

group. Also significant time effects were observed for both the red blood cells and the plasma. 

The total fatty acid content increased significantly between week 4 and week 8, while the total n-

3 fatty did not increase in time, probably due to the high ALA proportion that did not change 

along the feeding experiment. The total n-6 fatty acid content, EPA, DPA, DHA, LA and AA 

proportions increased significantly in red blood cells between week 4 and week 8. On the 

contrary, these fatty acids remained constant in plasma, except for EPA which decreased 
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significantly during the trial. Between week 4 and 8, a significant increase of SFA in the plasma 

and a significant decrease of MUFA in the red blood cells was observed. 

 

Table 8.3. Baseline values and diet and time effects on the fatty acid composition (g/100g fame) 
of plasma 
 Baselinea LPb  FPb  SEMc P-valuesd 

  W 4 W 8  W 4 W 8   Pdiet Ptime Pinteraction 

SFA 36.2±0.4 30.2 33.5  30.6 33.9  0.45 0.45 <0.001 0.99 
MUFA 24.8±0.9 26.2 25.3  26.4 25.5  0.28 0.67 0.15 0.99 
LA 26.0±0.8 27.1 26.9  26.6 26.8  0.14 0.35 0.98 0.41 
AA 1.36±0.13 2.96 2.84  2.81 2.76  0.12 0.67 0.76 0.90 
ALA 3.74±0.15 7.29 6.95  7.01 6.38  0.17 0.23 0.17 0.65 
EPA 0.13±0.01 0.24 0.20  0.56 0.49  0.04 <0.001 0.04 0.47 
DPA 0.25±0.02 0.78 0.84  1.00 1.19  0.05 0.004 0.12 0.41 
DHA 0.11±0.01 0.13 0.18  0.79 0.92  0.08 <0.001 0.05 0.36 
∑ n-6 27.7±0.8 30.8 30.3  30.1 30.1  0.33 0.33 0.64 0.55 
∑ n-3 4.2±0.1 8.37 8.18  9.37 8.98  0.16 0.01 0.23 0.79 
Total FAe 1912±153 3400 5287  2995 6108  362 0.68 <0.001 0.18 
n-6/n-3 6.6±0.3 3.67 3.73  3.21 3.38  0.08 0.02 0.45 0.72 
PI,% 44.1±1.2 63.7 62.5  70.2 70.4  1.08 0.001 0.76 0.67 
For description of variables see footnote Table 8.2; 
aMean value of both groups ±standard error of the mean (n=10); 
bMean values after 4 weeks and 8 weeks of experimental feeding (n=5); 
cStandard error of the mean (n=20); 
dP-values from the statistical analysis of the results of week 4 and 8 (baseline values not included); 
eexpressed as µg/ml plasma. 
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Table 8.4. Baseline values and diet and time effects on the fatty acid composition (g/100g fame) 
of red blood cells 
 Baselinea LPb  FPb  SEMc P-valuesd 

  W 4 W 8  W 4 W 8   Pdiet Ptime Pinteraction 

SFA 42.2±1.2 32.7 31.4  33.8 32.5  0.43 0.27 0.12 0.99 
MUFA 29.1±1.5 32.8 29.8  32.7 30.2  0.41 0.83 <0.001 0.55 
LA 16.0±0.6 22.2 24.2  20.7 23.2  0.42 0.10 0.01 0.66 
AA 2.28±0.20 3.00 3.72  3.00 3.35  0.13 0.49 0.03 0.38 
ALA 2.73±0.18 5.84 5.77  5.59 5.34  0.15 0.30 0.63 0.77 
EPA 0.13±0.02 0.20 0.22  0.35 0.49  0.03 <0.001 0.03 0.08 
DPA 0.40±0.03 0.71 1.17  1.04 1.48  0.07 0.002 <0.001 0.97 
DHA 0.53±0.05 0.12 0.29  0.41 0.73  0.06 <0.001 <0.001 0.12 
∑ n-6 19.0±0.8 25.9 28.7  24.3 27.2  0.48 0.05 0.002 0.94 
∑ n-3 3.79±0.12 6.86 7.44  7.38 8.04  0.16 0.08 0.05 0.89 
Total FAe 424±62 1017 1235  916 1442  67 0.64 0.01 0.19 
n-6/n-3 5.09±0.33 3.81 3.88  3.30 3.39  0.09 0.01 0.52 0.93 
PI, % 41.1±1.6 55.5 64.7  58.4 67.8  1.31 0.08 <0.001 0.96 
For description of variables see footnote Table 8.2; 
aMean value of both groups ±standard error of the mean (n=10); 
bMean values after 4 weeks and 8 weeks of experimental feeding (n=5); 
cStandard error of the mean (n=20); 
dP-values from the statistical analysis of the results of week 4 and 8 (baseline values not included); 
eexpressed as µg/ml rbc. 
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In the aorta and heart no effects were seen for the SFA, LA and ALA proportions (Table 8.5). In 

the heart a higher amount of MUFA and lower amount of AA was detected in the FP group 

compared to the LP group, whereas in the aorta no effects were observed. The fatty acid profile 

of the aorta was clearly affected by the diet: EPA, DPA and DHA proportions were 2- to even 5-

fold higher in the FP group. In the heart the EPA and DHA proportions were respectively a 1.4- 

and 3-fold higher in the FP group compared to the LP group, while on the contrary the DPA 

proportion was higher in the LP group compared to the FP group. The total n-3 fatty acids were 

significantly higher and the total n-6 fatty acids significantly lower in the heart of FP group 

compared to the LP group, resulting in a lower n-6/n-3 ratio, but this was not the case in the aorta. 

The PI was not affected in the aorta or heart. The total fatty acid content was 2.7-fold higher in 

the aorta of the LP group compared to the FP group, while in the heart no significant difference 

in total fatty acid content was observed. 

 

Table 8.5. Fatty acid composition (g/100g fame) of aorta and heart 

  Aorta  Heart 
  LP FP SEM P-value  LP FP SEM P-value 
SFA  26.8 26.2 0.43 0.48  24.7 25.4 0.47 0.51 
MUFA  32.9 33.7 0.48 0.45  24.9 27.3 0.54 0.01 
LA  23.0 21.2 0.62 0.15  23.6 23.6 0.40 0.99 
AA  1.07 1.66 0.26 0.28  11.2 7.96 0.72 0.01 
ALA  9.36 7.68 0.78 0.31  4.61 5.05 0.27 0.44 
EPA  0.11 0.27 0.32 0.003  0.36 0.49 0.03 0.01 
DPA  0.38 0.63 0.07 0.03  1.72 1.30 0.01 0.03 
DHA  0.07 0.34 0.05 <0.001  0.55 1.73 0.20 <0.001 
∑ n-6  24.5 23.4 0.42 0.22  35.6 32.2 0.81 0.03 
∑ n-3  9.92 8.91 0.71 0.51  7.24 8.58 0.30 0.01 
Total FAa   234 87.9 36.4 0.04  2911 3606 184 0.05 
n-6/n-3  2.61 2.66 0.15 0.87  4.97 3.78 0.27 0.02 
PI,%  51.6 53.9 1.31 0.42  97.6 92.9 2.35 0.34 
For description of variables see footnote Table 8.2. Data were analysed using one-way ANOVA 
with dietary group as fixed factor (P<0.05); 
aexpressed as mg/100g tissue. 
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3. Blood lipids  

No differences were found at the start of the experiment between the two feeding groups (P>0.05, 

data not shown). Due to the high cholesterol content of the experimental feeds, the values of 

TAG, TC, TC/HDL-C and LDL-C, but not HDL-C, were significantly higher at week 4 and 

week 8 compared to the baseline values, while TC/LDL-C was significantly lower (Table 8.6). 

During the feeding trial the overall concentration of TAG in plasma increased significantly 

between week 4 and 8. Both TC/HDL-C and TC/LDL-C showed a significant time×treatment 

interaction. TC/HDL-C ratio decreased and TC/LDL-C increased during the trial for the FP 

group, while in the LP group TC/HDL-C increased and TC/LDL-C remained constant. 

4. Oxidative status parameters  

No differences were found between the two feeding groups at the start of the experiment (P>0.05, 

data not shown). The rabbits responded to the experimental diets with increased plasma FRAP 

values and decreased GSH-Px activity compared to the baseline values (Table 8.6). In red blood 

cells, no differences for the GSH-Px activity and higher values for the CAT activity were found 

following administration of cholesterol rich diets. During the trial, the GSH-Px activity of 

plasma was higher at week 8 compared to week 4, irrespective of the feeding group. 
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Table 8.6. Baseline values and diet and time effects on plasma lipid and oxidative status 
parameters 

 Baselinea LPb  FPb  SEMc P-valuesd 

  W 4 W 8  W 4 W 8   Pdiet Ptime Pinteraction 

TAGe  1.16±0.05 1.84 3.81  1.01 3.01  0.44 0.33 0.04 0.98 
TCe  2.26±0.11 29.3 39.6  27.5 22.9  3.26 0.23 0.62 0.21 
HDL-Ce 1.07±0.08 0.98 0.82  0.57 1.09  0.10 0.71 0.35 0.09 
TC/HDL-C 2.20±0.16 33.4 55.6  49.7 24.5  5.13 0.52 0.84 0.01 
LDL-Ce 0.67±0.11 27.5 37.1  26.5 20.4  3.06 0.24 0.74 0.16 
TC/LDL-C 5.14±1.43 1.07 1.08  1.04 1.13  0.01 0.55 0.03 0.04 
            
FRAPf 377±23 682 908  707 709  61.5 0.57 0.30 0.31 
GSH-Pxg,  
plasma 

0.58±0.02 0.422 0.505  0.415 0.521  0.02 0.90 0.03 0.76 

GSH-Pxg,  
rbc 

0.15±0.01 0.248 0.192  0.259 0.234  0.03 0.71 0.55 0.82 

CATg 298±51 1463 1561  1409 1897  171 0.75 0.32 0.50 
LP= linseed oil enriched pork group; FP= fish oil enriched pork group; Wk = week; TAG = 
triacylglycerol, TC = total cholesterol, HDL-C = HDL-cholesterol; LDL-C= LDL-cholesterol, 
FRAP= ferric reducing/antioxidant power; GSH-Px = Glutathione peroxidase; CAT = catalase; 
rbc = red blood cells, U= µmol NADPH oxidized/min for GSH-Px and µmol H2O2 oxidised/ min 
for CAT; 
aMean value of both groups ±standard error of the mean (n=10); 
bMean values after 4 weeks and 8 weeks of experimental feeding (n=5); 
cStandard error of the mean (n=20) ; 
dP-values from the statistical analysis of the results of week 4 and 8(baseline values not included); 
e expressed as mmol/L; 
f expressed as µmol Fe2+/L plasma; 
g expressed as U/ml. 

 

  



5. Atherosclerosis 

All rabbits in both groups did present atherosclerotic lesions that varied in extent of affected area 

from minimal to severe (Figure 8.

For the coronaries, femoral artery, ascending, thoracic and abdominal aorta a mean 

atherosclerotic plaque deposition of 14.0±17.6, 15.8±10.7, 36.4±14.1, 29.7±16.0 and 24.0±10.8% 

respectively was found. Some small cardiac arteries had a thickened, eosinophilic tunica media 

with associated narrowing of the lumen. Examination of the ascending, thoracic and abdominal 

aorta revealed lesions consisting of thickening of the tunica intima by the prese

smooth muscle cells/myofibroblasts, extra cellular lipids, lymphocytes and macrophages and 

fibrous cap formation. 
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All rabbits in both groups did present atherosclerotic lesions that varied in extent of affected area 

1), but no significant differences were seen between the groups. 

For the coronaries, femoral artery, ascending, thoracic and abdominal aorta a mean 

atherosclerotic plaque deposition of 14.0±17.6, 15.8±10.7, 36.4±14.1, 29.7±16.0 and 24.0±10.8% 

was found. Some small cardiac arteries had a thickened, eosinophilic tunica media 

with associated narrowing of the lumen. Examination of the ascending, thoracic and abdominal 

aorta revealed lesions consisting of thickening of the tunica intima by the presence of foam cells, 

smooth muscle cells/myofibroblasts, extra cellular lipids, lymphocytes and macrophages and 
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DISCUSSION 

In the experimental diets, next to the enriched pork, also the enriched lard of the same pigs was 

used. Lard contains less long chain n-3 polyunsaturared fatty acids compared to muscle, 

explaining why the proportions of EPA and DHA are lower in the experimental diets compared 

to the added pork, originating from Haak et al. (2008). For the FP group, the lard most probably 

contained slightly more DHA than EPA, which consequently altered the ratio EPA/DHA in the 

diet compared to the ratio of the meat reported in Haak et al. (2008). Analysis of the fatty acid 

composition of the feed revealed a daily consumption of 8.3 mg EPA and DHA for the LP group 

and 71.1 mg EPA and DHA for the FP group. These concentrations represent 0.02% of the daily 

total energy intake (E) for the LP group and 0.25% E for the FP group. The Superior Health 

Council of Belgium (2006) recommends for healthy humans that at least 0.3% E should originate 

from EPA and DHA. Hence, the recommended level was approached in the FP group, but an 

additional intake of EPA and DHA from other sources is required for the LP group. According to 

Burdge (2004), conversion percentages of ALA to EPA vary between 0.2% and 8%. The extent 

of conversion of ALA to DHA is less clear. The highest estimated fractional conversion is 4%, 

while others have either failed to detect significant DHA synthesis or estimated that less than 

0.05% of ALA was converted to DHA (Burdge, 2004). The latter was also observed in our 

results, showing no enhanced DHA proportions in plasma and red blood cells of the LP group 

compared to their baseline values. Consequently, enrichment of foods with ALA is not as 

effective as enrichment with EPA and DHA to enhance the long chain fatty acid pool in the body. 

It should be mentioned that in the present study both diets contained similar levels of ALA, 

hence the FP diet supplied more EPA and DHA in addition to the same supply of ALA. The 

major source of ALA in the diets was flax chaff, which was added to meet the absolute dietary 

requirement of rabbits for sufficient fibre. As a result, the effects observed in the present study 

for the FP diet cannot be exclusively ascribed to the higher supply of EPA and DHA, but might 
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be a combined effect of the supply of all n-3 fatty acids. The differential effects between the LP 

and the FP diet must however originate from the very long chain n-3 fatty acids. Additional 

experimental groups fed on a low total n-3 diet, and a low ALA – high EPA and DHA diet 

would have been interesting and should be envisaged in future research aiming at investigating 

the potential of enriched meats. 

Mantzioris et al. (2000) showed that, when consuming n-3 enriched food (ALA or DHA and 

EPA), the concentrations in red blood cells of healthy adults were changed after 2 weeks, thereby 

indicating the relatively short time required for n-3 fatty acid concentrations to rise. In the 

present study, the n-6/n-3 ratios in plasma and red blood cells were significantly lowered after 

administration of the n-3 fatty acid enriched diets, meaning that the n-3 fatty acids were absorbed 

and incorporated in red blood cell membranes and that the meat matrix did not inhibit the 

absorption of these fatty acids. The significantly different fatty acid profiles in the heart and 

aorta between the two feeding groups in the present study confirm this. In a study of Coates et al. 

(2009) significant effects in humans consuming n-3 fatty acid enriched pork were found. The 

subjects consumed daily about 0.7% E long chain n-3 fatty acids (mainly DHA). DHA levels 

rose 15% in red blood cells of the n-3 group, whereas they decreased by 5% in the control group 

that consumed non-enriched pork. In addition, serum TAG decreased to a greater extent in the n-

3 group. In most supplementation studies in which beneficial effects on the blood lipid profile 

were achieved, 1 g/day (about 0.4% E) EPA and DHA or more was administered (Lovegrove et 

al., 1997; Garg et al., 2007). It is remarkable that in the present study, with lower intakes of EPA 

and DHA, a significant decrease of TC/HDL-C and increase of TC/LDL-C was found in the FP 

group. Deckelbaum et al. (2008) stated that habitual consumption of n-3 fatty acids may be more 

beneficial than short-term consumption. Importantly, n-3 fatty acids need not to be considered as 

a monotherapy in prevention of and/or treatment for cardiovascular disease. Rather, higher n-3 

fatty acid intakes need to be considered as a biologically active partner to lifestyle changes. 
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The PI represents the degree of unsaturation of the lipids and can be used as an indicator of 

peroxidation susceptibility. In the plasma, significantly higher PI values were found in the FP 

group compared to the LP group. However, no significant differences were found between the 

two feeding groups for the oxidative status parameters in the plasma, meaning that diets enriched 

with very long chain fatty acids do not affect the oxidative status in a different way compared to 

diets enriched with long chain fatty acids. In concordance, no differences in atherosclerosis were 

observed. On the other hand, clear responses were observed following cholesterol feeding in the 

experimental diets. The total fatty acid content of the plasma and RBC increased with time 

probably due to the high cholesterol content of the feed. Similar results in rabbits were found by 

Mahfouz & Kummerow (2000) and Risé et al. (2004). Mahfouz & Kummerow (2000) attributed 

the increase in total fat content to the increased hepatic secretion of β-very low-density 

lipoproteins (β-VLDL), which is inherent to hypercholesterolemia. These β-VLDL’s are 

remnants derived from mutant chylomicrons and very-low-density lipoproteins that cannot be 

metabolized completely and accumulate in the blood.  

Similar to Alipour et al. (2006), FRAP values increased after the administration of a cholesterol-

rich diet. These authors suggested that more antioxidants could be circulating in the rabbits 

plasma as a response to the cholesterol. On the contrary, Lecumberri et al. (2007) did not observe 

any difference in FRAP values between normocholesterolemic and hypercholesterolemic rats. 

Also the higher fat and increased unsaturated fatty acid content of both the FP and LP diets could 

have enhanced the FRAP levels. However, studies investigating the effect of fat and/or 

unsaturated fatty acids on plasma FRAP levels have reported inconsistent results (rabbit, Zheng 

et al., 2006; rat, Walczewska et al., 2010; human, McAnulty et al., 2010). An increased red blood 

cell CAT activity was observed during the time of the experiment, while the GSH-Px activity in 

red blood cells remained constant. In a study of Mahfouz & Kummerow, (2000) an increased 

CAT activity and decreased GSH-Px activity was seen after 2 months feeding a basal diet plus 1% 
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cholesterol to rabbits, implying an adaptation of CAT, as a response to the failure of GSH-Px. 

Shull et al. (1991) reported a 3-fold increase of CAT mRNA after addition of the oxidant H2O2 

(250 µmol/l), whereas the increase of GSH-Px mRNA was less striking. Our results are in 

accordance with these studies, although no change in GSH-Px activity was found in red blood 

cells. It seems that the activity of GSH-Px does not respond in a similar way in plasma as in red 

blood cells, since GSH-Px activity in plasma first decreased and then increased again, which 

suggests that the organism adapted to its oxidative environment. 

 

CONCLUSIONS 

The blood lipid profile response in rabbits to feeding cholesterol was slightly improved in a diet 

containing pork enriched with EPA and DHA compared to pork enriched mainly in ALA. The 

fatty acid profile of blood and different tissues, but not the plasma oxidative status and 

atherosclerosis development, was affected by the source of dietary n-3 fatty acid supply. 
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GENERAL DISCUSSION 

“Healthy natural food”... the new concept of the 21st century...Although often used for 

commercial purposes, it is widely accepted that a balanced diet contributes to a healthier life.  

While people may be aware of main nutrition messages, they do not perceive these as personally 

relevant to themselves (Kearney & McElhone, 1999). Therefore, enhancing food products that 

are already popular can improve the health status of the population, without changing the 

consumption pattern and, for some cases, without the risk of overdosing. The aim of this PhD 

research was to contribute to this approach by producing healthier meat, namely by lowering the 

ingoing nitrite content or increasing the n-3 PUFA content, without compromising its sensory 

quality.  

 

Meat curing is a preservation technology that has been practiced for centuries and can be traced 

back to 3000 B.C. People found that salt contaminated with potassium nitrate resulted in meat 

with an appealing pink colour. Only later it was discovered that actually nitrite, which was 

accidentally formed from the conversion of nitrate by micro-organisms, was responsible 

(Honikel, 2008). Although we were not able to repeat this observation by adding nitrate from a 

Rosa canina L. extract directly to frankfurters, probably due to the low nitrate-reducing ability of 

the natural flora of the meat, this story illustrates how little nitrite is needed to produce a desired 

pink colour. For example, in liver pâté only 20 mg/kg nitrite was needed to have colour 

formation (H1 rejected) and it should be further explored if even lower concentrations can be 

used.  

Yet, not only colour formation, but also its stability is of great importance. In the present 

dissertation colour stability was investigated by exposing the samples to light and air at a 

controlled temperature of 4°C (chilled display conditions). However, many other factors can 

influence the colour stability of the meat and meat products. To start with, animal and production 
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factors, such as animal genetics, muscle biochemistry, nutritional background and pre-harvest 

stress, have an effect on the oxidative status of the raw materials. Also the chilling conditions 

(e.g. temperature, carcass size and chilling × pH interaction) and post-mortem age of the meat 

have an influence. In minced meat products the disruption of tissue also affects the colour and 

increases the oxidative susceptibility due to the release of pro-oxidative compounds such as iron. 

Further, the processing conditions with mainly the processing ingredients, pH and heating 

settings have large effects on colour stability of the meat products. The above mentioned 

processing conditions, except for the processing ingredients, were controlled and kept constant in 

all samples to be sure that the differences in oxidative stability were caused solely by the factor 

that was investigated. In addition, all samples were prepared from the same batch of raw 

materials to exclude animal-depend variations. A primary objective of display studies is to 

evaluate colour deterioration (or maintenance) over a given time. The quantification of this 

discolouration is generally not done by fitting the data to a mathematical model. Instead, colour 

parameters at specific end-points are compared, ignoring the processes between the initial colour 

and the end-point. As shown in this dissertation, the rate of discolouration can be derived from a 

mathematical model, given that enough measurements are performed over a certain time frame. 

The rate of discolouration, which represents the colour stability, can be subjected to statistical 

analysis, making this approach a potential tool to investigate different factors influencing the 

colour stability. In addition, as absolute colour values may vary between laboratories, using 

discolouration rates makes it possible to compare results in a more standardized way. 

Lowering the ingoing nitrite to 40 mg/kg resulted in inferior colour stability in liver pâté (H2 

accepted), which, on the other hand, was not the case with 20 mg/kg nitrite originating from a 

pre-converted plant extract. It is likely that other compounds present in the pre-converted extract 

increased the colour stability (H5 accepted for colour stability).  
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For many years already, researchers are trying to reproduce the characteristic pink colour 

without the use of nitrite. Colourants mimicking the pink meat colour are available on the market, 

however, the resulting meat product looks rather artificial. Pegg & Shahidi (1997) produced the 

nitrosomyochromogen in vitro, but its application in commercial meat products lacks, probably 

because the stability of this preformed cooked cured meat pigment was limited when light and 

oxygen were present. More recently, Zinc-porphyrine, a red pigment from dry cured ham 

(Wakamatsu et al., 2004), is studied for its potential use in other cured meat products. However, 

little success is reported until now. Consequently, one could question whether it is feasible to add 

very small amounts of nitrite to produce the cured colour and improve the decreased colour 

stability with other compounds. For example, it is possible to produce cooked porcine patties 

with 10 mg/kg ingoing nitrite, which results in a product showing the characteristic pink colour 

with residual nitrite content similar to that of uncured patties (unpublished data).  

Nitrite is a powerful antioxidant against lipid oxidation, but various alternatives were found to 

replace this property of nitrite. Lowering the nitrite content in frankfurters and liver pâté clearly 

resulted in higher TBARS and volatile compounds (H3 accepted), however the Rosa canina L. 

extract, pre-converted extract and sodium ascorbate were able to counteract this effect (H5 

accepted for lipid oxidation). Less clear is the effect of lowering nitrite on protein oxidation. 

Positive controls tended to be less susceptible to protein oxidation, but interfering factors 

hindered us to elucidate the precise role of nitrite against protein oxidation. Moreover, even 

when conducting a more in depth study, still contradicting results between isolated myofibrillar 

proteins and raw porcine patties were found (H4, H6 and H5 for protein oxidation undecided). 

Possible reasons for these differences are given in the discussion part of chapter 4, however, a 

critical point that should not be ignored is that most of the times only carbonyl compounds were 

analysed. The main reason why this parameter was used, is that carbonyl groups arise from a 

variety of oxidative processes and consequently provide a generalized or integrated assessment 
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of oxidative damage (Stadtman & Levine, 2000). Still, other muscle protein oxidation parameters, 

e.g. cross-linking and fragmentation (Lund et al., 2011), should be further explored to have a 

broader view on the role of nitrite on protein oxidation.  

In this context, 3-nitrotyrosine, a marker extensively used for nitroxidative stress in vivo (Souza 

et al., 2008) was introduced for meat products. There are many parallels between biological 

processes in vivo and meat, e.g. lipid oxidation results in harmful oxidation products, which can 

induce both meat deterioration and disease. The occurrence of protein oxidation in biological 

systems has been known and studied for about 50 years because of the relation between the 

oxidative damage to proteins and the development of disease (Shacter, 2000). On the contrary, 

the discovery that muscle proteins were susceptible to oxidative reactions leading to potential 

deleterious effects on meat quality lasts for only 20 years (Estévez, 2011). As a result, many (if 

not all) markers used for protein oxidation in meat science originate from biomedical research. In 

general, these protocols are developed for purified proteins or single amino acids and are not 

adequate for complex matrices. When adapting a method to suit meat analysis, this should not be 

ignored. In this dissertation, the DNPH method was frequently used to determine protein 

carbonyl compounds in meat products. Although this method is often applied in meat research, I 

want to emphasize that caution is needed. To start with, oxidized proteins have different 

solubility compared to non-oxidized ones, so carefulness is required when proteins are extracted 

from the matrix. I used a buffer containing 0.6 M NaCl to increase the solubility, but this is not 

always done in other studies investigating meat quality. In addition, interferences with lipid 

carbonyl compounds are possible and extensive washing with ethanol:ethyl acetate is mandatory, 

especially for meat products with high fat content. Finally, the determination of the protein 

content measuring the absorbance at 280 nm gave in my studies impossible results for liver paté, 

which is the reason why I used the crude protein content (Kjehldahl method) to express the 

carbonyl content per mg of protein. Taking into account al these issues, I have some doubts 
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whether this method is correctly used in meat research. Although many interesting and relevant 

findings about the effect of protein oxidation on the quality of meat are found in numerous 

studies, the large variations among replicates that are often reported point out that more caution 

is needed when adopting a method from another research field. In this view, the use of 3-

nitrotyrosine as a marker for protein nitration in meat products, should be approached with the 

same care. Maybe this partly explains why it is not yet clear whether 3-nitrotyrosine is a good 

marker for meat products or not (H7 undecided).  

Amusingly, much of the biochemistry of nitrite has been understood for decades in meat science, 

but has only recently been rediscovered in human physiology. Research within the biomedical 

science community has revealed therapeutic benefits of nitrite that is currently being developed 

as novel therapies for conditions associated with NO insufficiency (Parthasarathy & Bryan, 

2012). Without ignoring the fact that meat and especially cured meat products contribute to an 

increased risk of cancer development (World Cancer Research Fund, 2011), we should revise our 

long-standing view that nitrate and nitrite are only harmful substances in our diet. In fact, recent 

studies found a protective effect of nitrite against lipid and protein oxidation during in vitro 

digestion of cured meat model products (Van Hecke et al., 2014). 

 

There is a great interest in improving the fatty acid profile of food to better meet nutritional 

recommendations. This work showed that the n-3 PUFA content of pork products can be 

significantly increased by adding moderate levels (0.3-1.2%) of an n-3 PUFA source to the diet. 

As EPA and DHA are believed to be the bioactive compounds regulating a wide range of 

biological functions, the main focus in this work was to increase the EPA and DHA content of 

the products. The addition of linseed oil to the feed resulted in lower EPA and DHA 

concentrations in the meat products compared to those originating from pigs fed fish oil and 

microalgae (H8 accepted). Similar to humans, the conversion of ALA to EPA in pigs is low, 
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pointing out the importance of using adequate sources for EPA and DHA in the feed. The little 

conversion of ALA to EPA that was found in the present dissertation resulted in a nutritional 

significant increase of EPA when comparing to soybean oil. However, it is important to note that 

no changes of DHA concentrations in the meat products were observed, while with fish oil and 

microalgae both EPA and DHA were substantially enhanced.  

Many fish species have been fished almost to extinction and we are on course to eliminate the 

world’s supply (Brunner et al., 2009), so we are urged to seek for alternatives. Microalgae are 

easy to grow and after separation of the n-3 PUFA from the microalgae lipids, the excessive 

lipids can be used for biodiesel production, while the biomass can find uses as valuable protein-

rich animal feed (Adarme-Vega et al., 2012). If the production of microalgae is carried out at a 

large scale this would address three major areas of importance: human health, transportable 

energy and food security. Hence, it can be concluded that microalgae are a sustainable source of 

EPA and DHA in pig feed, without pressuring the marine ecosystem and therefore a suitable 

alternative to fish oil (H9 accepted). Another sustainable strategy to increase the EPA and DHA 

content through the pigs diet could be plants high in stearidonic acid (C18:4n-3), such as 

primrose, echium and hempseed (Lenihan-Geels et al., 2013). The basis of this proposal lies in 

the ability to bypass the rate limiting enzyme, ∆6-desaturase, as stearidonic acid is the first 

desaturation product in the conversion of ALA to its long-chain derivatives. However, Kitessa et 

al. (2012) presented data to suggest that echium oil has no advantage over linseed oil in 

enhancing n-3 PUFA in lamb tissues. Likewise, Tanghe et al. (2013) concluded that echium oil 

at a 1% dose in pig feed had no benefit over linseed oil in increasing the EPA and DHA 

concentration in the tissues.  

Recently, transgenic plants and animals have been designed with increased EPA and DHA 

content (Venega et al., 2010; Houdebine, 2014), however, the use of these products for human 

consumption in the near future is not very likely due to the consumer aversion to genetically 
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modified food. On the other hand, these transgenic enriched plants can be added to animal feed 

as genetically modified plants are already commonly used as feedstuff (Aumaitre et al., 2002). 

The major part of a pig carcass is processed to various meat products, while a smaller part is 

used for fresh meat cuts. As the composition and processing techniques influence the oxidative 

stability of a meat product, it is relevant to not only asses the impact of supplementing n-3 PUFA 

in fresh meat, but also in processed products. This is of interest when commercialising entire 

carcasses of pigs fed an n-3 PUFA enriched feed. The oxidative susceptibility of n-3 PUFA 

enriched meat products was increased (H10 accepted), while the stability of the fresh loin was 

little affected. Loin is consumed shortly after production, has a relatively low fat content and no 

processing is involved, whereas dry cured ham and dry fermented sausages are exposed to a 

more oxidative environment, e.g. long ripening periods and mincing, which influences the 

oxidative stability. In further research, also cooked meat products should be taken into account, 

as heating can induce oxidation. Also, these products have generally a high fat content, which 

obviously can lead to more lipid oxidation products, similarly to what was observed in the dry 

fermented sausages. The advantage of meat products over fresh meat is that off-flavours can be 

reduced or even masked by the addition of antioxidants or other compounds such as spices 

during manufacturing. Though, this implies that for all meat products new recipes should be 

developed, which is time-consuming and has a cost. Of course, a solution could be not to 

produce meat products highly susceptible to oxidation, but this would imply that the n-3 PUFA 

enriched carcasses can not be processed simultanously with the conventional carcasses. 

Moreover, these susceptible meat products generally have a high fat content and would therefore 

contribute more to the daily intake of EPA and DHA. 

Another approach is to add antioxidants in the pig feed, which in addition could benefit the 

oxidative status of the feed, the animal, fat tissue and unprocessed fresh meat. In this dissertation, 
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however, we did not succeed to improve the oxidative stability of the pork products with 

increasing dietary α-tocopherol levels from 90 to 400 mg/kg (H11 rejected).  

As the sensory quality of enriched products greatly depends on the absolute EPA and DHA 

content, the focus should not be on extremely increasing the EPA and DHA content of one food 

product, but on increasing a number of widely consumed food products with moderate amounts 

of EPA and DHA. Consider Table 9.1 as an example. The average daily meat intake was based 

on the human database of Belgium (Devriese et al., 2006) with 135 g/day fresh meat and 43.6 

g/day processed meat. For this example it was assumed that all fresh meat was pork loin and 

meat product intake consisted of 50% dry fermented sausages and 50% dry cured ham. Daily 

EPA and DHA intake was calculated using the EPA and DHA content of the meat products from 

chapter 5 (Table 5.7). The conventional, moderate and high diets were calculated from 

respectively the SOY, ALG LOW and ALG HIGH groups. As the dry fermented sausages of the 

ALG HIGH were sensory unacceptable, the conventional product was used for the calculations. 

Similar amounts of EPA and DHA were consumed in both enriched diets, but with the moderate 

diet, problems with oxidative stability and sensory quality are omitted and no economical losses 

from useless carcass parts should be taken into account. When consuming these moderate 

enriched products, about 54 mg EPA+DHA is ingested and this corresponds with 8% of the daily 

recommeded intake. Moreover, four fold higher intakes were achieved when compared to a 

conventional diet. 
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Table 9.1. Contribution of n-3 PUFA enriched meat products to a healthier diet 

 
Average intake 

(g/day)1 
EPA+DHA intake (mg/day)2 

 
conventional moderate high 

Fresh meat  135 6 18 39 
Dry fermented sausage 21.8 5 30 5*  

Dry cured ham 21.8 2 7 16 
Total 

 
14 54 60 

   
 

 
%RNI3 

 
2 8 9 

*As the dry fermented sausages were sensory unacceptable, the conventional product was 
used; 
1Based on the human database of Belgium (Devriese et al., 2006); 
2Based on Table 5.7, conventional = SOY, moderate = ALG LOW and high = ALG HIGH. 
3%RNI was calculated with a daily recommended nutrient intake of 667 mg EPA+DHA 
(=0.3% of the total daily energy intake). 

 

As meat is one of the main sources of long chain n-3 PUFA, apart from fish and seafood (Howe 

et al., 2006), even moderate improvements of their fatty acid composition are valuable. In this 

view, it is more of interest to enrich meat through animal feeding, with the production of various 

n-3 PUFA enriched meat products, instead of adding n-3 PUFA during processing, which results 

in only one kind of enriched product. In fact, increasing the n-3 PUFA content of meat needs to 

be part of the global strategy to increase the total daily intake through various enriched food 

products. 

Studies on improving the fatty acid composition of meat usually do not further investigate the 

consumption of these enhanced products. Yet, that is the key question: does the n-3 PUFA 

enriched meat truly contribute to a healthier life? 

In chapter 8, n-3 PUFA enriched meat was incorporated into the diet of a rabbit, used as a model 

for humans. The EPA and DHA content of the plasma and other tissues was higher when 

consuming meat from pigs fed fish oil, compared to meat origination from pigs fed linseed oil, 

again showing the importance of directly consuming EPA and DHA (H12 accepted). Improved 
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cholesterol parameters were found in the EPA and DHA enriched diet, but not in the ALA 

enriched diet (H13 accepted). From this, we should reconsider food products presently available 

on the market enriched with an ALA source, as they marginally contribute to an increased intake 

of EPA and DHA. There is a need to shift the production of (meat) products enriched with ALA 

towards the production of EPA and DHA enriched products.  

To conclude, dietary adjustments may not only influence the present health, but may determine 

whether or not an individual will develop diseases much later in life.  
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FUTURE PROSPECTS 

In the general discussion several issues that deserve further consideration and research came 

forward: 

i. Only small levels of nitrite are necessary to have proper colour formation. However, 

these levels will depend on the properties of the meat product (e.g. fat and meat content, 

processing conditions), meaning that the adequate nitrite level has to be determined 

separately for all kinds of meat products. In this context, also suitable active compounds 

to maintain the colour stability have to be searched for product-specifically.  

ii.  The role of nitrite during protein oxidation remains to be elucidated. Other levels of 

nitrite could be tested using the same experimental set-up of chapter 4. It is also advised 

that additional protein oxidation parameters (e.g. thiol groups and tryptophan depletion) 

are assessed. 

iii.  The marker 3-nitrotyrosine was present in meat, but apart from this the function of 3-

nitrotyrosine in meat products and in general the effect of protein and lipid nitration on 

meat quality remains to be elucidated. 

iv. Statements concerning the effect of nitrite intake on human health are contradictory and 

further studies to clarify these contrasting effects are necessary. 

v. Microalgae are a useful direct source of EPA and DHA in pig feed, but studies 

investigating the sensory quality of the resulting n-3 enriched meat products are scarce. 

For instance, the effect of cooking and preservation should be further investigated, 

especially for meat products with high fat content.  

vi. The most cost-effective level of microalgae in pig feed has to be determined. This level 

should result in meaningful levels of n-3 PUFA in meat that at the same time does not 

need special attention during processing and that can be used the same way as 
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conventional pork. From this dissertation it was found that this level will be between 0.3 

and 1.2 g algae/100g feed. 

vii.  A wide range of natural dietary antioxidants are available on the market and it could be 

explored whether these can be applied in pig feeds to increase the oxidative stability of n-

3 PUFA enriched meat products. Importantly, a main aspect that has to be considered is 

whether the antioxidant is incorporated in muscle tissue. 

viii.  There is a need to shift the production of (meat) products enriched with ALA towards the 

production of EPA and DHA enriched products. If all food products, that contain a 

relevant amount of fat, are moderately enriched with EPA and DHA the recommended 

daily intake of EPA and DHA could be achieved. 
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SUMMARY 

It is well established that inadequate dietary habits and physical inactivity are the major 

preventable risks for the occurrence of chronic diseases. Besides providing education about 

healthier eating patterns, improving the composition of widely consumed food products is an 

alternative approach. The aim of this dissertation was to investigate the effects of lowering the 

ingoing dose of potentially harmful nitrite, by replacing it with other compounds in cooked meat 

products (Chapter 1-4) and to increase the content of health-promoting n-3 polyunsaturated fatty 

acids (n-3 PUFA) in pork products through animal feeding (Chapter 5-8). The overall objective 

was to change the composition without compromising the oxidative stability and sensory quality, 

focussing on colour, lipid and protein oxidative processes.  

In chapter 1 the effect of a dog rose extract (Rosa canina L.) in nitrite-free frankfurters was 

investigated. Dog rose is a source of nitrate, polyphenols and ascorbic acid. Frankfurters were 

produced with 5 or 30 g/kg dog rose extract, without the addition of sodium nitrite or sodium 

ascorbate. The frankfurters with dog rose extract showed similar lipid oxidation compared to a 

positive control containing 100 mg/kg sodium nitrite and 500 mg/kg sodium ascorbate. The dog 

rose extract protected against protein oxidation, but not as efficiently as the positive control. As 

the dog rose treated frankfurters showed inferior colour traits compared to nitrite-treated 

frankfurters, it was concluded that dog rose could act as a natural antioxidant in frankfurters, but 

not as a full replacer for sodium nitrite. 

Chapter 2 deals with the effectiveness of partly replacing sodium nitrite by sodium ascorbate for 

its antioxidant activity in liver pâté. The effect of sodium ascorbate (500, 750, 1000 mg/kg) and 

sodium nitrite (40, 80, 120 mg/kg) dose on the shelf-life stability was assessed in a full factorial 

design. Decreasing the nitrite dose to 80 mg/kg had no negative impact on colour formation, 

colour stability and lipid oxidation. No additional antioxidant effect of sodium ascorbate was 
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noticed. Lowering sodium nitrite to 40 mg/kg resulted in proper colour formation, but the colour 

stability was inferior and lipid oxidation increased. At this low nitrite dose, increased amounts of 

sodium ascorbate resulted in less lipid oxidation. Decreasing the nitrite dose to 80 or 40 mg/kg 

had no distinct effect on protein oxidation. 

In chapter 3 the effect of reduced nitrite liver pâtés, using a pre-converted plant extract as source 

of nitrite, on the oxidative stability during chilled display was investigated. Lowering the ingoing 

nitrite levels to 90, 45 and 20 mg/kg did not affect the colour formation and colour stability, 

compared to a positive control containing 120 mg/kg sodium nitrite. Inconsistent results for the 

treatment effects on the protein carbonyls content of the liver pâtés were found. After nine days 

of illuminated chilled display, lowest amounts of hexanal (a lipid oxidation product) were 

formed in the treatments with 45 and 90 mg/kg ingoing nitrite, which suggests that the 

antioxidant effect of sodium nitrite was partly replaced by other compounds present in the 

extract. 

In chapter 4 the role of sodium nitrite on protein oxidation has been investigated from a more 

mechanistic point of view and a marker for protein nitration, 3-nitrotyrosine, was introduced in 

meat. Two meat models were investigated: isolated pig myofibrilar protein suspensions and raw 

pork patties. In the isolated pig myofibrillar protein suspensions, sodium nitrite initially (30 min 

after inducing oxidation with pro-oxidants) showed a pro-oxidative effect for protein carbonyl 

formation, but during the incubation at 37°C, no effect of sodium nitrite was observed. On the 

contrary, sodium nitrite tended to act as an antioxidant against protein carbonyl formation in raw 

pork muscles. However, this effect was observed in one batch of patties, while in the other batch 

no effect of sodium nitrite was found. The marker 3-nitrotyrosine was retrieved in all samples, 

but no clear effect of sodium nitrite was observed during illuminated chilled display. 

For many years already, but with little success, researchers are trying to reproduce the 

characteristic pink colour without the use of nitrite. Consequently, one could question whether it 
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is feasible to add very small amounts of nitrite to produce the cured colour and improve the 

decreased colour stability using other active compounds. Nitrite is a powerful antioxidant against 

lipid oxidation, but a dog rose extract, pre-converted extract and sodium ascorbate are potential 

substitutes. Less clear is the effect of lowering nitrite on protein oxidation and whether nitrite has 

an effect on protein oxidation at all. Without ignoring the fact that meat and especially cured 

meat products contribute to an increased risk of cancer development, we should revise our long-

standing view that nitrate and nitrite are only harmful substances in our diet, as therapeutic 

benefits of nitrite against diseases associated with nitric oxide insufficiency were recently 

reported. 

Chapter 5 describes an experiment in which different n-3 PUFA sources were added to pig feed 

and its effect on the fatty acid profile of fresh loin, dry fermented sausage and long ripened dry 

cured ham was investigated. Crossbred pigs were given an experimental diet supplemented with 

0.6 g/100g linseed oil (LIN), 0.8 g/100g fish oil (FISH) or dried microalgae (ALG). Three ALG 

groups were considered: ALG LOW, ALG MEDIUM and ALG HIGH with respectively 0.3, 0.6 

and 1.2 g dried microalgae per 100 g feed. In the control group (SOY) soybean oil was added to 

the diet. Similar results were found for the different meat products investigated. Compared to all 

other groups, significantly higher C18:3n-3 (ALA) proportions in the LIN group and higher 

proportions of C20:5n-3 (EPA) and C22:6n-3 (DHA) in the FISH and ALG groups were found. 

The EPA proportions of the meat products from the LIN group were slightly but significantly 

higher compared to the SOY group. It was calculated that the daily recommended intake of EPA 

and DHA can be increased considerably with these n-3 polyunsaturated fatty acids enriched 

products. 

The experiment in chapter 6 was performed to investigate the sensory quality of the n-3 fatty 

acids enriched meat products described in chapter 5. Colour and colour stability, lipid oxidation 

and consumers’ acceptability was assessed. Manufacturing processes such as fermentation and 
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long term dry curing affected the oxidative stability of n-3 PUFA enriched meat products as 

colour and lipid oxidation parameters were inferior in the dry fermented sausages and dry cured 

ham when comparing to the conventional counterparts. The n-3 PUFA enriched loin did not 

differ from the control group. Problems of fishy and rancid off-flavours in the ALG HIGH 

groups were reported by the consumer panelists in the dry fermented sausages, but not in the dry 

cured hams.  

In chapter 7, the effect of supplementing supra-nutritional levels of α-tocopherol (95, 175 and 

400 mg/kg feed) on the oxidative stability of n-3 PUFA enriched pork products was described. 

The susceptibility to lipid oxidation was not improved in the loin and dry fermented sausages 

and the initial colour values of the loin were not affected. Some modest colour improvements in 

the dry fermented sausages indicate a slight positive effect of the α-tocopherol supplementation. 

Colour stability of defrosted loins and dry fermented sausages was not affected by the 

investigated dietary α-tocopherol levels. 

In chapter 8 the effect of consuming n-3 PUFA enriched meat on the health status was assessed. 

Health biomarkers were evaluated in rabbits as a model for humans. A diet based on the human 

consumption pattern was formulated and contained pork enriched with n-3 fatty acids originating 

from linseed oil (ALA) or fish oil (DHA+EPA) fed pigs. The fatty acid profile of different 

tissues and blood reflected the fatty acid composition of the diet. The oxidative status of the 

rabbits was affected by the dietary cholestorol which was added to induce atherosclerosis, but 

not by the fatty acid profile of the diet. During the experiment, the total cholesterol/HDL-

cholesterol ratio decreased and the total cholesterol/LDL-cholesterol ratio increased in the fish 

oil pork group, while for the linseed oil pork group the total cholesterol/HDL-cholesterol ratio 

increased and no effect was measured for the total cholesterol/LDL-cholesterol ratio. 

Atherosclerosis developed during the experiment, but no difference between the two feeding 

groups was found.  
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Similar to humans, the conversion of ALA to EPA in pigs is low, pointing out the importance of 

using adequate sources for EPA and DHA in the feed to achieve improved products beneficial to 

health. Microalgae are a good alternative to replace fish oil as source of EPA and DHA in pig 

feed, without pressuring the marine ecosystem. As the sensory quality of enriched products 

greatly depends on the absolute EPA and DHA content, the focus should not be on strongly 

increasing the EPA and DHA content of one or a few food products, but on enriching a number 

of widely consumed food products with moderate amounts of EPA and DHA. As meat is one of 

the main sources of long chain n-3 PUFA, even moderate improvements of its fatty acid 

composition is valuable. In this view it is of interest to enrich meat through animal feeding, as 

the enriched tissues are entering the food chain through the production of various n-3 PUFA 

enriched meat products. 

 

 





Samenvatting 

233 

SAMENVATTING 

Epidemiologisch onderzoek heeft uitgewezen dat slechte voedingsgewoonten het risico op 

chronische aandoeningen verhogen. Naast initiatieven om mensen te sensibiliseren tot een 

gezonder eetpatroon, is het optimaliseren van de samenstelling van veel gebruikte 

voedingsmiddelen een andere strategie om tot een eetpatroon te komen dat beter aanleunt bij de 

voedingsaanbevelingen.  

Er wordt o.a. aanbevolen om meer producten te consumeren die rijk zijn aan EPA (C20:5n-3) en 

DHA (C22:6n-3), omdat deze meervoudige onverzadigde vetzuren de kans op hart- en 

vaatziekten verlagen. Ook wordt er aanbevolen om de nitrietinname te verminderen wegens 

mogelijks carcinogeen. Nitriet is een kleurstabiliserend additief met antibacteriële, 

smaakvormende en antioxidant eigenschappen. Dit proefschrift heeft zich toegespitst op vlees en 

vleesproducten en heeft twee specifieke onderzoeksdoelstellingen: de effecten op de sensorische 

kwaliteit en oxidatieve stabiliteit (vet-, pigment- en eiwitoxidatie) nagaan van het verlagen van 

het nitrietgehalte in gekookte vleeswaren (hoofdstukken 1-4) en van de aanrijking van 

vlees(producten) met n-3 vetzuren via het varkensvoeder (hoofdstukken 5-8).  

In hoofdstuk 1 werd onderzocht of een extract van hondsroos (Rosa canina L.) de rol van nitriet 

kan vervangen in nitriet-vrije frankfurters. Hondsroos is een bron van ascorbinezuur, polyfenolen 

en nitraat. Het extract werd in een dosis van 5 of 30 g/kg toegevoegd aan frankfurters. Deze 

frankfurters bevatten geen natriumnitriet of natriumascorbaat en werden vergeleken met een 

positieve controle (100 mg/kg natriumnitriet en 500 mg/kg natriumascorbaat). De experimentele 

frankfurters vertoonden dezelfde mate van vetoxidatie als de positieve controle, terwijl de 

eiwitoxidatie hoger was. Aangezien de kleureigenschappen van de experimentele frankfurters 

niet hetzelfde waren als die van de positieve controle, werd besloten dat hondsroos een goede 



Samenvatting 

234 

natuurlijke antioxidant is voor toepassing in frankfurters, maar niet gebruikt kan worden als 

volwaardige vervanger voor nitriet.  

In hoofdstuk 2 werd nagegaan of een verhoogde dosis natriumascorbaat (750 en 1000 mg/kg 

i.p.v. 500 mg/kg) de rol van nitriet kan opvangen in leverpâté, wanneer 40 of 80 mg/kg 

natriumnitriet wordt toegediend i.p.v. 120 mg/kg. Het nitrietgehalte verlagen naar 80 mg/kg had 

geen negatieve impact op de kleurvorming, kleurstabiliteit of vetoxidatie en het ascorbaatgehalte 

verhogen had geen bijkomend positief effect. Wanneer het nitrietgehalte verder verlaagd werd 

naar 40 mg/kg was de kleur hetzelfde als de pâtés met 120 mg/kg nitriet, maar de kleur- en 

vetstabiliteit waren minder goed. Wanneer bij deze nitrietdosis 750 of 1000 mg/kg ascorbaat 

werd toegevoegd, trad er minder vetoxidatie op vergeleken met 500 mg/kg. De verlaagde 

nitrietgehaltes of verhoogde ascorbaatgehaltes hadden geen effect op eiwitoxidatie. In conclusie 

kan men stellen dat het verhogen van ascorbaat nuttig is t.o.v. vetoxidatie, maar enkel wanneer 

verlaagd wordt naar 40 mg/kg nitriet. 

In hoofdstuk 3 werd nitriet afkomstig van een natuurlijk extract gebruikt om leverpâté’s met een 

verlaagd nitrietgehalte (20, 45 en 90 mg/kg) te produceren. De kleur en kleurstabiliteit werden 

niet beïnvloed door de verlaagde nitrietgehaltes, terwijl onverwacht minder vetoxidatie optrad, 

vergeleken met een positieve controle (120 mg/kg natriumnitriet). Dit wijst er op dat het 

plantenextract naast nitriet nog andere antioxidant componenten bevatte. Tijdens de blootstelling 

van deze producten werden eiwitten geoxideerd, maar het was onduidelijk of nitriet hier een 

invloed op had.  

In hoofdstuk 4 werd meer specifiek gekeken naar de rol van nitriet m.b.t. eiwitoxidatie en werd 

3-nitrotyrosine geïntroduceerd als merker voor eiwitnitratie in vlees. Helaas, opnieuw kon geen 

eenduidig besluit genomen worden of nitriet een pro- of antioxidant effect heeft op eiwitoxidatie, 

aangezien een pro-oxidant effect in geïsoleerde myofibrillen en een antioxidant effect in rauwe 

varkensburgers werd waargenomen. De merker 3-nitrotyrosine werd in alle stalen teruggevonden, 
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maar een duidelijk effect van nitriet op 3-nitrotyrosine tijdens blootstelling aan licht en lucht 

werd niet gevonden. 

Kortom, het is mogelijk om het nitrietgehalte in vleeswaren sterk te verlagen zonder dat de kleur 

en kleurstabiliteit drastisch beïnvloed worden en de vetoxidatie kan opgevangen worden door 

andere (natuurlijke) componenten. Het is niet duidelijk of eiwitoxidatie beïnvloed wordt bij 

lagere nitrietgehaltes. Anderzijds is het volledig weglaten van nitriet moeilijk, aangezien het niet 

mogelijk is om de gewenste roze kleur te reproduceren. Bovendien kan de vraag gesteld worden 

of het nodig is om nitriet volledig te bannen uit ons dieet, aangezien stikstofmonoxide, o.a. 

afkomstig van nitriet, ook een belangrijke regulerende functie heeft in het menselijk lichaam. 

Hoofstuk 5 beschrijft een experiment waarbij getracht werd het vetzuurprofiel van vers 

varkensvlees, gedroogde ham en salami te wijzigen door varkens een voeder aangerijkt met 

lijnzaadolie (0,6 g/100g), visolie (0,8 g/100g) of algen (0,3; 0, 6 of 1,2 g/100g) te geven. De 

controlegroep kreeg een standaard voeder op basis van soja olie. Voor de drie vleesproducten 

konden gelijkaardige besluiten getrokken worden: vergeleken met de controle zorgde de 

lijnzaadolie in het voeder voor hogere ALA (C18:3n-3) en - in mindere mate - EPA 

concentraties, terwijl toediening van visolie of algen resulteerde in verhoogde EPA en DHA 

concentraties in de vleesproducten. Aan de hand van deze data werd berekend dat de consumptie 

van een portie aangerijkte vleesproducten duidelijk bijdraagt tot een verhoogde inname van EPA 

en DHA.  

In hoofdstuk 6 werd vervolgens onderzocht welk effect de verhoogde concentratie onverzadigde 

vetzuren heeft op de kleur, kleurstabiliteit, vetoxidatie en sensorische kwaliteit van de 

aangerijkte producten. De kwaliteit van het verse vlees was niet veranderd door de verhoogde 

concentraties aan n-3 vetzuren, maar de kleur en oxidatieve stabiliteit van de gedroogde hammen 

en salami’s waren wel negatief beïnvloed. Bovendien werden de salami’s afkomstig van de 
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varkens gevoederd met de hoogste dosis algen afgekeurd door het consumentenpanel, wegens de 

aanwezigheid van onaangename ranzige geuren en smaken. 

Om de oxidatieve stabiliteit van salami’s die aangerijkt werden met n-3 vetzuren te verbeteren, 

werd een experiment uitgevoerd waarbij visolie en hoge dosissen α-tocoferol (95, 175 and 400 

mg/kg) toegevoegd werden aan varkensvoeder (Hoofdstuk 7). Naarmate meer α-tocoferol 

aanwezig was in het voeder, werden ook hogere concentraties α-tocoferol teruggevonden in het 

vet en vlees, maar dit had geen effect op de oxidatieve stabiliteit van het verse vlees of de salami. 

In hoofdstuk 8 werd onderzocht of de consumptie van vlees aangerijkt met n-3 vetzuren een 

effect heeft op de gezondheid. Hiervoor werd een konijn als model voor de mens gebruikt. De 

dieren kregen een experimenteel voeder toegediend dat gebaseerd is op het westers dieet en 

waarvan het varkensvlees en rugspek afkomstig was van varkens die gevoederd werden met 

ofwel lijnzaad ofwel visolie. Er werd 1 % cholesterol toegevoegd om atherosclerose te induceren. 

Het vetzuurprofiel van het hart, de aorta, het plasma en de rode bloedcellen vertoonden allen 

dezelfde trend: hogere EPA en DHA gehaltes in de visoliegroep vergeleken met de lijnzaadgroep 

en voor de andere vetzuren weinig verschillen tussen de twee groepen. Alle konijnen vertoonden 

atherosclerose, maar er werden geen significante verschillen tussen de groepen waargenomen. 

Ook wat de endogene antioxidatieve enzymen betreft, werden geen significante verschillen 

gevonden. Tijdens het experiment daalde de verhouding totaal cholesterol:HDL-cholesterol en 

steeg de verhouding totaal cholesterol:LDL-cholesterol in de visoliegroep, terwijl deze 

verhouding respectievelijk steeg en hetzelfde bleef in de lijnzaadgroep. 

Net zoals bij de mens is de omzetting van ALA naar EPA in het varken laag en is het belangrijk 

om de juiste n-3 vetzuurbronnen te gebruiken wanneer men vleesproducten wil maken met 

verhoogde EPA en DHA concentraties. Algen zijn een goed alternatief voor visolie omdat ze ook 

een bron zijn van DHA en EPA, en ze geen druk uitoefenen op het marien ecosysteem. 

Aangezien de sensorische kwaliteit sterk afhangt van de concentratie aan EPA en DHA, is het 
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niet aangewezen om voedingswaren aan te rijken met zeer hoge concentraties, maar dient de 

aandacht te gaan naar het aanrijken van meerdere veelvuldig gebruikte voedingsmiddelen met 

een matige dosis van deze vetzuren. Aangezien vlees en vleeswaren veel geconsumeerd worden, 

is het nuttig om deze ook aan te rijken met matige hoeveelheden EPA en DHA. In deze context 

is het interessant om dit via het diervoeder te doen, omdat op die manier de samenstelling van 

alle spieren en weefsels gestuurd wordt en hierdoor zowel vers vlees als een breed gamma van 

aangerijkte vleesproducten in de voedselketen terecht komt. 
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