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Summary 

Summary 
 

Nuclear Factor-κB (NF-κB) is an ubiquitously expressed transcription factor that is 

activated in response to a broad spectrum of inflammatory stimuli, including the 

proinflammatory cytokine Tumour Necrosis Factor-α (TNF-α). Whereas NF-κB is 

pivotal for coordination of the immune/inflammatory response, its excessive 

activation is associated with the onset and propagation of multiple disease processes. 

NF-κB activity is mostly studied in cells subjected to proinflammatory stimuli, but in 

"real life" cells are simultaneously exposed to a plethora of signalling molecules that 

can modulate NF-κB activity. It has been known for many decades that sympathetic 

stress modulates immunity and inflammation, yet the molecular bases are not 

completely understood. Therefore, in this thesis, we focused on the activity of the β2-

adrenergic receptor (β2-AR), one of the key mediators of the stress response, as a 

modulator of NF-κB function.  

In line with other reports describing the anti-inflammatory action of β2-AR agonists 

(β-agonists), we observed that cotreatment of human astrocytes with TNF-α and a β-

agonist, inhibited the expression of several NF-κB-driven genes. However, we found 

that at the same time it potently enhanced the expression of other prototypical NF-κB 

target genes, including the proinflammatory cytokine Interleukin-6 (IL-6). We found 

that the IL-6 synergy, depended on the formation of an enhanceosome structure, and 

hypothesized that the IL-6 promoter acted as a "coincidence" detector, which requires 

input from multiple signalling cascades for maximal activation. Our previous research 

was limited to the study of β2-AR/NF-κB crosstalk in the central nervous system, 

using astrocytes as a cellular model system. In this thesis, we have extended our 

previous research to skeletal muscle cells. In addition, we have attempted to further 

unravel the molecular details of the very strong transcriptional synergy apparent at the 

IL-6 gene using a proteomics approach. 

Firstly, we have investigated signalling in response to TNF-α/β-agonist cotreatment in 

C2C12 cells, a murine skeletal muscle model, representing a physiologically relevant 

cell type to study β2-AR/NF-κB crosstalk. We observed many similarities in the 

outcome of β2-AR/NF-κB crosstalk in skeletal muscle cells as compared to astrocytes, 

although cell-type specific differences in the signalling cascades induced by β-

agonists/TNF-α were also apparent. In particular, the very potent synergy at the IL-6 
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promoter was also detected in skeletal muscle cells. In addition, we found that the 

expression of several chemokines, influencing the migration potential of 

undifferentiated skeletal muscle cells, was upregulated upon TNF-α/β-agonist 

costimulation At the molecular level, we demonstrated that β-agonist-induced 

potentiation of NF-κB-dependent transcription of the IL-6 gene was associated with 

histone modifications, chromatin relaxation and formation of an enhanceosome 

structure.  

Secondly, using an unbiased proteomics approach, combining DNA-affinity 

purification and mass spectrometric analysis, we identified Transcription Enhancer 

Factor 1 (TEF-1) as a novel interactor of the IL-6 promoter. We found that TEF-1 

recruitment to the IL-6 promoter was induced upon TNF-α/β-agonist costimulation 

and that it acted as a transcriptional repressor. Our results furthermore indicate that 

TEF-1 modulates the transcriptional activity of CREB, but not NF-κB, and that this is 

associated with altered accessibility of the IL-6 promoter to transcriptional regulators. 

Importantly, TEF-1 modulated NF-κB-dependent transcription in a gene selective 

manner. As the effects of β-agonists appear to be highly gene-selective, further 

elucidation of its molecular basis might lead to the identification of novel targets for 

the development of selective NF-κB inhibitors.  

In conclusion, these findings indicate that β2-AR/NF-κB crosstalk promotes potent 

transcriptional synergy for a subset of NF-κB target genes, including IL-6 and several 

chemokines. This synergy is apparent in multiple relevant cell types, suggesting it 

might have general significance. As IL-6 has been attributed with devastating 

properties in inflammatory disease, and as β-agonists are mainstream therapy for 

respiratory disease, our data warrant further investigation into the outcome of β2-

AR/NF-κB crosstalk in vivo. 
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Nuclear Factor-κB (NF-κB) is een alomtegenwoordig geëxpresseerde 

transcriptiefactor die geactiveerd wordt als antwoord op een breed spectrum aan 

inflammatoire stimuli, waaronder het inflammatoire cytokine Tumour Necrosis 

Factor-α (TNF-α). Alhoewel NF-κB onmisbaar is voor de coördinatie van de 

immuun/inflammatoire respons, is excessieve activering geassocieerd met de aanvang 

en voortzetting van verschillende ziekteprocessen. NF-κB activiteit wordt meestal 

bestudeerd in cellen die onderworpen zijn aan pro-inflammatoire stimuli, maar in 

werkelijkheid worden cellen simultaan blootgesteld aan een heel gamma van 

signaalmoleculen die NF-κB activiteit kunnen moduleren. Alhoewel het reeds 

verschillende decennia geweten is dat sympatische stress immuniteit en inflammatie 

moduleert, is de moleculaire basis van dit proces niet volledig ontrafeld. Daarom 

hebben we in deze thesis gefocust op de activiteit van de β2-adrenerge receptor (β2-

AR), één van de sleutelmediatoren van de stress respons, als modulator van NF-κB 

werking. 

In overeenstemming met andere rapporten die de ontstekingsremmende werking van 

β2-AR agonisten (β-agonisten) beschrijven, observeerden we dat een gecombineerde 

behandeling van humane astrocyten met TNF-α en een β-agonist de expressie van 

verschillende NF-κB-gedreven genen inhibeerde. Daarentegen vonden we dat deze 

gecombineerde behandeling terzelfdertijd heel sterk de expressie van andere 

prototypische NF-κB doelwitgenen, waaronder het pro-inflammatoire cytokine 

Interleukine-6 (IL-6), opreguleerde. We observeerden dat de IL-6 synergie 

afhankelijk is van de totstandkoming van een enhanceosoom structuur, en 

veronderstellen dat de IL-6 promotor werkt als een detector die input van 

verschillende signaalcascades integreert. Ons eerder onderzoek was beperkt tot het 

bestuderen van β2-AR/NF-κB crosstalk in het centraal zenuwstelsel, waarbij 

astrocyten als cellulair modelsysteem gebruikt werden. In deze thesis hebben we ons 

vorig onderzoek uitgebreid naar skeletspiercellen. Daarbovenop hebben we 

geprobeerd om de moleculaire details van de sterke transcriptionele synergie die 

werkzaam is aan het IL-6 gen verder te ontrafelen met behulp van een proteomics 

aanpak. 
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Eerst hebben we signaaloverdracht als antwoord op TNF-α/β-agonist gecombineerde 

behandeling onderzocht in C2C12 cellen, een muis skeletspiermodel dat een 

fysiologisch relevant celtype representeert om β2-AR/NF-κB crosstalk te bestuderen. 

We observeerden vele overeenkomsten in de uitkomst van β2-AR/NF-κB crosstalk in 

skeletspiercellen vergeleken met astrocyten, alhoewel celtype specifieke verschillen 

in signaalbanen geïnduceerd door β-agonists/TNF-α ook merkbaar waren. De heel 

sterke synergie aan de IL-6 promotor werd, in bijzonder, ook gedetecteerd in 

skeletspiercellen. Daarenboven vonden we dat de expressie van verschillende 

chemokines die het migratie potentieel van niet-gedifferentieerde skeletspiercellen 

beïnvloeden, opgereguleerd was na TNF-α/β-agonist costimulatie. Op moleculair 

niveau toonden we aan dat β-agonist geïnduceerde potentiatie van NF-κB 

afhankelijke transcriptie van het IL-6 gen geassocieerd was met histon modificaties, 

chromatine relaxatie en vorming van een enhanceosoom structuur. 

Vervolgens identificeerden we Transcription Enhancer Factor 1 (TEF-1) als een 

nieuwe interactor van de IL-6 promotor door gebruik te maken van een proteomics 

aanpak die DNA-affiniteitszuivering en massa spectrometrische analyse combineert. 

We vonden dat TEF-1 rekrutering naar de IL-6 promotor geïnduceerd werd na TNF-

α/β-agonist costimulatie en dat TEF-1 functioneert als transcriptionele repressor. 

Onze resultaten toonden voorts aan dat TEF-1 de transcriptionele activiteit van 

CREB, maar niet van NF-κB, moduleert en dat dit geassocieerd is met veranderde 

toegankelijkheid van de IL-6 promotor voor transcriptionele regulatoren. Belangrijk is 

dat TEF-1 NF-κB afhankelijke transcriptie moduleert op een genselectieve manier. 

Aangezien de effecten van β-agonisten heel genselectief blijken te zijn, kan verdere 

opheldering van hun moleculaire basis leiden tot identificatie van nieuwe doelwitten 

voor de ontwikkeling van selectieve NF-κB inhibitoren. 

Samengevat tonen deze bevindingen aan dat β2-AR/NF-κB crosstalk sterke 

transcriptionele synergie promoot voor een subset van NF-κB doelwitgenen, inclusief 

IL-6 en verschillende chemokines. Deze synergie is duidelijk in verschillende 

relevante celtypes, wat suggereert dat het een algemeen mechanisme kan betreffen. 

Aangezien aan IL-6 verschillende verwoestende eigenschappen in ontstekingsziekten 

worden toegekend en β-agonisten mainstream therapie zijn voor ademhalingsziekten, 

motiveren onze data verder onderzoek naar de uitkomst van β2-AR/NF-κB crosstalk 

in vivo.  
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Le facteur de transcription NF-κB (Nuclear Facteur-κB) est exprimé de manière 

ubiquitaire et est activé en réponse à un large spectre de stimuli inflammatoires, y 

compris la cytokine pro-inflammatoire TNF-α (Tumour Necrosis Factor-α). Tandis 

que NF-κB est essentiel pour la coordination de la réponse 

immunitaire/inflammatoire, son activation excessive est associée à l'apparition et à la 

propagation de multiples processus pathologiques. L'activité de NF-κB a surtout été 

étudié dans des cellules soumises à des stimuli pro-inflammatoires, mais dans les 

« conditions réelles » les cellules sont simultanément exposées à une multitude de 

molécules capables de moduler l'activité de NF-κB. Il est connu depuis de 

nombreuses décennies que la stimulation sympathique module l'immunité et 

l'inflammation, cependant les bases moléculaires ne sont pas entièrement comprises. 

Pour cette raison, le travail de cette thèse se concentre sur l'activité du récepteur β2-

adrénergique (β2-AR), l'un des médiateurs clés de la réponse au stress, comme 

modulateur de la fonction de NF-κB. 

De façon cohérente avec d'autres études décrivant l'action anti-inflammatoire des 

agonistes β2-AR (β-agonistes), nous avons observé que la stimulation simultanée des 

astrocytes humains avec le TNF-α et l’β-agoniste inhibe l'expression de plusieurs 

gènes cibles de NF-κB. Néanmoins, nous avons observé que ce même traitement 

augmente fortement l'expression d'autres gènes cibles prototypiques de NF-κB, y 

compris la cytokine pro-inflammatoire Interleukine-6 (IL-6). Nous avons constaté que 

la synergie au niveau du promoteur de l’IL-6 dépendait de la formation d'une 

structure d’un enhanceosome. Par conséquent, nous avons émis l'hypothèse que le 

promoteur de l'IL-6 agit comme un détecteur de "coïncidences", qui requiert la 

contribution de plusieurs cascades de signalisation pour une activation maximale. Nos 

précédents travaux se limitaient à l'étude du crosstalk entre β2-AR et NF-κB dans le 

système nerveux central, en utilisant des astrocytes comme modèle cellulaire. Dans 

cette thèse, nous avons étendu nos recherches précédentes aux cellules des muscles 

squelettiques. De plus, nous avons essayé d’élucider les détails moléculaires de la très 

forte synergie transcriptionnelle visible au niveau du gène de l'IL- 6 en utilisant une 

approche protéomique. 
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Dans un premier temps, nous avons étudié la signalisation en réponse au co-traitement 

TNF-α/β-agoniste des cellules murines de muscle squelettique C2C12, représentant 

un type cellulaire physiologiquement pertinent pour étudier le crosstalk entre β2-AR et 

NF-κB. Nous avons observé de nombreuses similitudes dans les résultats (de crosstalk 

β2-AR/NF-κB dans les cellules des muscles squelettiques) par rapport aux astrocytes, 

bien que des différences dans les cascades de signalisation induites par β-

agonistes/TNF-α sont également apparues dues aux différents types cellulaires. En 

particulier, la synergie très puissante au niveau du promoteur de l'IL-6 a également été 

détectée dans les cellules des muscles squelettiques. De plus, nous avons constaté que 

l'expression de plusieurs chimiokines, qui influencent le potentiel de la migration des 

cellules du muscle squelettique indifférenciées, a été augmentée lors de la co-

stimulation TNF-α/β-agoniste. Au niveau moléculaire, nous avons démontré que la 

potentialisation de la transcription du gène de l’IL-6 dépendante de NF-κB induite par 

le β-agoniste est associée à des modifications d'histones, la relaxation de la 

chromatine et la formation d'une structure d’enhanceosome. 

Dans un deuxième temps, en utilisant une approche protéomique, combinant la 

purification liée à l’affinité d’ADN et l’analyse par spectrométrie de masse, nous 

avons identifié TEF-1 (Transcription Enhancer Factor 1) comme un nouvel 

interacteur du promoteur IL-6. Nous avons constaté que le recrutement de TEF-1 sur 

le promoteur IL-6 est induit par la co-stimulation TNF-α/β-agoniste et qu'il agi 

comme un répresseur transcriptionnel. Nos résultats indiquent également que TEF-1 

module l'activité transcriptionnelle de CREB, mais pas de NF-κB, et que cela est 

associé à la modification de l’accessibilité des régulateurs de transcritpion au 

promoteur de l’IL-6. De façon importante, TEF-1 module la transcription dépendante 

du NF-κB de manière sélective en fonction des gènes impliqués. Comme les effets 

des β-agonistes semblent être hautement dépendant des gènes, l’élucidation du 

mécanisme moléculaire permettra l'identification de nouvelles cibles pour le 

développement d'inhibiteurs sélectifs de NF-κB. 

En conclusion, les résultats présentés ici indiquent que le crosstalk entre β2-AR et NF-

κB favorise une forte synergie transcriptionnelle d’un sous-ensemble de gènes cibles 

de NF-κB, y compris l'IL-6 et plusieurs chimiokines. Cette synergie existe dans 

plusieurs types cellulaires exprimant des récepteurs β-adrénergiques, suggèrant qu'il 

pourrait y avoir une portée générale. Comme il a été attribué des propriétés néfastes 

importantes à l’IL-6 dans le développement des pathologies inflammatoires, 
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fréquentes et importantes pour la santé publique, et que les β-agonistes font partie du 

traitement de certaines maladies respiratoires courantes, nos données justifient une 

enquête plus approfondie sur la nature et les conséquences du crosstalk entre β2-ARet 

NF-κB in vivo. 
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List of abbreviations 

 

AC adenylate cyclase 

ACF apobec-1 complementation factor 

ADAM 

disintegrin and metalloproteinase domain-

containing protein 

Akt protein kinase Akt/protein kinase B 

AMP adenosine monophosphate 

AMPK AMP-activated protein kinase 

AP activator protein 

APEX-1 DNA-(apurinic or apyrimidinic site) lyase-1 

AR adrenergic receptor 

ARE AU rich elements 

Arid5a AT-rich interactive domain-containing protein 5a 

ASK-1 apoptosis signal-regulating kinase-1 

ASP acylation-stimulating protein 

ATF activating transcription factor 

ATM ataxia telangiectasia-mutated kinase 

ATP adenosine triphosphate 

AUF-1 ARE/poly(U) binding degradation factor-1 

BACH1 BTB and CNC homolog 1 

BCR B-cell receptor 

BRF butyrate response factor 

bZIP basic leucine zipper domain 

C/EBP CCAAT/enhancer-binding protein 

C3 complement component 3 

CAMKII Ca2+/calmodulin-dependent protein kinase 

cAMP cyclic adenosine monophosphate 

CBP CREB binding protein 

CCL xhemokine (C-C motif) ligand 

CD 

cluster of differentiation/cluster of 

designation/classification determinant 

cIAP cellular inhibitor of apoptosis 

CK2 casein kinase 2 

COX cyclooxygenase 

CRE site cAMP response element 

CREB cAMP response element binding protein 

CREM cAMP response element modulator 

CRTC CREB regulated transcription coactivator 

CTKD C-terminal kinase domain 

CUL cullin 

CXCL chemokine (C-X-C motif) ligand 

DAMP damage associated molecular pattern 

DD death domain 

DDB DNA damage-binding protein 
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DR death receptor 

Epac exchange protein directly activated by cAMP 

ERKs extracellular signal-regulated kinase 

FADD Fas-associated death domain 

G-CSF granulocyte colony-stimulating factor 

GCN histone acetyltransferase GCN5 

GDP guanosine diphosphate 

GM-CSF granulocyte/macrophage-colony-stimulating factor 

GNAT GCN-related N-acetyltransferases 

Gp glycoprotein 

GPCR G protein-coupled receptor 

Grb2 growth-factor-receptor-bound Protein 2 

GTP guanosine triphosphate 

Gαi Gα subunit of the G inhibitory protein 

Gαs Gα subunit of the G stimulatory protein 

Gβγ Gβγ subunit of the G protein 

HAT histone acetyltransferase 

HDAC histone deacetyltransferase 

HMG high mobile group protein 

HPA hypothalamic-pituitary-adrenal  

ICAM intercellular adhesion molecule 

IFN interferon 

IKK IκB kinase 

IL interleukin 

IL-6R IL-6 receptor 

iNOS inducible nitric oxide synthase 

IRF interferon regulatory factor 

IκB inhibitor of NF-κB 

JAK Janus kinase 

JNKs c-Jun N-terminal kinase 

KID kinase inducible domain 

KIX KID interaction domain 

KSRP 

Kaposi sarcoma-associated herpes virus open 

reading frame  

L-DOPA L-3,4-di-hydroxy-phenylalanine 

LPS lipopolysaccharide  

LUBAC linear ubiquitin chain assembly complex 
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κB site NF-κB response element 

CRF corticotropin-releasing factor 

POMC proopiomelanocortin 

ACTH adrenocorticitropic hormone  
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Chapter 1 

 

Inflammation and stress 

 

1. Inflammation, old victories and new concerns in medicine 

During the past century, remarkable progress has been made in medicine to counteract 

infectious diseases that in the middle of 20
th

 century still decimated thousands of 

human lives worldwide. This virtual victory on the “medical battlefield” was 

overshadowed by a plague of non-communicable diseases (NCDs). NCDs are tightly 

associated with the development of modern and aging societies, however, along with 

the popularisation of Western lifestyle, they also became common in low- and 

middle-income countries. The most prevalent types of NCDs are cardiovascular 

diseases, cancer, chronic respiratory diseases and diabetes. Overall, these disorders 

account currently for approximately 63% of premature deaths and constitute the major 

healthcare concern according to estimations by the World Health Organization 

(WHO). From the medical point of view, NCDs are a heterogeneous group of 

disorders with very diverse clinical manifestations. Nevertheless, most of them are 

characterized by a chronic inflammatory state that might be triggered by genetic, 

social, lifestyle and environmental factors (Global status on non-communicable 

diseases 2011, WHO).  

Inflammation (from the Latin inflammare: to set afire) is a protective tissue reaction 

to injury, irritation or infection that aims at neutralizing the extracellular insult and/or 

repair intracellular damage, ultimately restoring tissue homeostasis. The cardinal 

symptoms of inflammation are redness (rubor), swelling (tumor), heat (calor) and 

pain (dolor). At the molecular level, inflammation involves the orchestrated action of 

signals instructing components of the immune system how to defend and reinstate the 

internal balance in the organism. Nowadays, it is well accepted that inflammation 

involves many different cell types, including immune cells but also non-immune cells, 

such as glia cells, fibroblasts, and endothelial cells. In general, inflammation can be 

classified as either acute or chronic, each with its own collection of cellular and 

humoral components. Whereas the acute state is characterized by a prompt, temporary 

and localized immune response at the “inflamed site”, the chronic inflammatory 
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response, originating from the persistent presence of the insult, may acquire systemic 

characteristics and have devastating consequences. Chronic inflammation is 

associated with a shift in the type of cells present at the site of inflammation, 

disturbances in the circulating level of immunomodulatory mediators as well as 

changes in the morphology and function of the “inflamed tissue”. Finally, it can be 

considered as an abnormal type of immune response eliciting deleterious effects at the 

site of inflammation as well as on whole body homeostasis (Cone 2001; Lawrence 

and Gilroy 2007). 

Inflammation is orchestrated by the timely action of a variety of immunomodulatory 

factors, including diverse cytokines, chemokines, growth factors, receptors, adhesion 

molecules, enzymes, inhibitory proteins, peptides, lipid-derived mediators, etc., which 

act as “checkpoints” to control the course and magnitude of the inflammatory 

response. Deregulation of production and/or secretion of these mediators predisposes 

to the development of an inadequate immune response, which can trigger the 

transition of acute to chronic inflammation and the development of disease (Nathan 

2002). Although multiple classes of drugs are available in the clinic for treatment of 

inflammatory disorders (e.g. steroidal and non-steroidal anti-inflammatory drugs) a 

constant search for new therapeutics with improved specificity and reduced side-

effects is ongoing. To identify novel targets for combatting chronic inflammation, 

intensive research efforts are directed towards a better understanding of the molecular 

basis of inflammation. 

 

2. Tumour Necrosis Factor-α  

One of the key mediators of inflammation is Tumour Necrosis Factor-α (TNF-α). 

TNF-α was discovered as a macrophage-derived factor inducing necrosis of tumour 

cells (Carswell et al. 1975). In spite of this spectacular property, the anti-tumour 

action of TNF-α has not been exploited clinically because of its strong systemic 

toxicity (K. J. Tracey et al. 1987). Today, TNF-α is known as a pleiotropic cytokine, 

which plays an important role in the regulation of cell proliferation, differentiation, 

survival and apoptosis. It also substantially contributes to the regulation of the 

immune response and the maintenance of homeostasis (Wajant et al. 2003). Ample 

evidence indicates that deregulation of TNF-α production and signalling leads to the 

development of various chronic inflammatory disorders, suggesting the importance of 

the TNF-α axis as a drug target (Bradley 2008; Van Hauwermeiren et al. 2011). 
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2.1. Regulation of TNF-α expression 

TNF-α is expressed at very low or undetectable levels in healthy individuals, while 

elevated levels are found during inflammatory and infectious conditions. The primary 

sources of TNF-α are activated immune cells, mainly macrophages and T-cells at the 

site of inflammation, but multiple other cell types like for instance skeletal muscle, 

astrocytes or adipocytes can express this cytokine during various (patho)physiological 

circumstances (Bradley 2008; Cawthorn and Sethi 2008; Y. P. Li and Reid 2001; 

Montgomery and Bowers 2012; Van Hauwermeiren et al. 2011). 

The stimuli triggering TNF-α production are very diverse and include anything that 

causes an inflammatory response. Among these factors, there are viral and bacterial 

components collectively known as pathogen associated molecular patterns (PAMPs), 

molecules associated with host cell damage, collectively known as damage-associated 

molecular patterns (DAMPs), various cytokines, including TNF-α itself, complement 

factors, immune complexes and many others (Spriggs et al. 1992). 

The human TNF-α gene is approximately 3000 base pairs long, consists of four exons 

and localizes to chromosome 6p21. Expression of this cytokine is stringently 

controlled by the activity of several transcriptional regulators, primarily Activator 

Protein (AP)-1, AP-2, Nuclear Factor-κB (NF-κB), but also cAMP responsive 

element binding protein (CREB) (Spriggs et al. 1992). In addition, rapid production of 

TNF-α is made possible via tightly regulated post-transcriptional mechanisms. In 

homeostatic conditions, the TNF-α transcript is rapidly degraded due to the presence 

of AU rich elements (ARE) in its 3’ untranslated region (UTR). However, upon 

encountering inflammatory stimuli, the mRNA of TNF-α is stabilized via binding of 

tristetraproline (TTP) to the ARE, leading in turn to rapid upregulation of TNF-α 

protein levels (Clement et al. 2011; Deleault et al. 2008). Structurally, TNF-α exists 

as a homotrimer with a protein structure resembling a cone shape. A single monomer 

is composed of two anti-parallel β-pleated sheets that are formed by eight anti-parallel 

β-strands arranged in a β-jellyroll topology, typical for the TNF ligand family (Eck 

and Sprang 1989). 

Human TNF-α is synthesized as a 26 kDa transmembrane protein (tmTNF-α) that can 

be processed into a 17 kDa soluble form (sTNF-α) via the activity of an extracellular 

metalloprotease, the TNF Alpha Converting Enzyme (TACE also known as ADAM-

17) (R. A. Black et al. 1997). The sTNF-α and tmTNF-α show different biological 

activities, but in general sTNF-α is less active than tmTNF-α (Wajant et al. 2003).  
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TNF-α transmits its biological activity via binding to two different receptors: either 

TNF-R1 (p55 or CD120a), which is activated by both sTNF-α and tmTNF-α, or TNF-

R2 (p75 or CD120b), which is activated almost exclusively by tmTNF-α (Smith et al. 

1994). Whereas TNF-R1 is constitutively expressed in all nucleated cells, inducibly 

produced TNF-R2 is chiefly found on endothelial and hematopoietic cells (Carpentier 

et al. 2004). Each receptor displays a unique panel of activities but examples of 

redundancy, cooperation and crosstalk between the TNF-Rs exist (Naude et al. 2011). 

Interestingly, TACE can also “clip” the TNF-Rs generating soluble forms of each one 

(J. Wang et al. 2003). Thus, TACE may be recognized as a modulator of 

inflammation bearing pro- or anti-inflammatory properties depending on whether it 

acts on effector or target cells, releasing respectively ligand or receptor (Xanthoulea et 

al. 2004). TNF-α signalling mechanisms are summarized in Figure 1. 

 

Figure. 1. TNF-α signalling mechanisms. TNF-α is expressed as a transmembrane protein that can 

activate both TNF-R1 and TNF-R2. Processing by TACE generates sTNF-α, which mainly activates 

TNF-R1. Signalling through both receptors can result in a variety of cellular responses, depending on 

the cell type and biological context. TACE is able to cleave both TNF-Rs to generate sTNF-Rs, which 

can still bind and inhibit TNF-α. 

 

2.2. TNF-α signalling pathways 

Trimeric occupation of TNF-Rs by TNF-α induces receptor trimerization and 

consequently a cascade of receptor proximal events leading to the recruitment of 

signalling proteins (Dempsey et al. 2003). 
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TNF-R1 belongs to a group of death receptors (DR) containing a death domain (DD) 

responsible for interaction with adaptor proteins upon ligand triggering of the receptor 

(Dempsey et al. 2003). In the resting state, the receptors are associated with a 

cytoplasmic silencer of the death domain (SODD) that prevents signal transduction 

(Jiang et al. 1999). Ligand binding to TNF-R1 leads to receptor aggregation and 

SODD dissociation from its DD, which can then interact with the DD of the adaptor 

protein TNF Receptor Associated Death Domain (TRADD). Subsequently, TRADD 

recruits Receptor-Interacting Protein 1 (RIP1), TNF Receptor-Associated Factor 2 

(TRAF2) and Fas-Associated Death Domain (FADD) eliciting formation of the 

Signalling Complexes. Briefly, the Signalling Complex I, composed of 

TRADD/RIP1/TRAF2, triggers among others Mitogen-Activated Protein Kinases 

(MAPKs) and transcription factor NF-κB (these signalling events are summarized in 

Figure 2 and are discussed more extensively later), while the Signalling Complex II, 

composed of TRADD/RIP1/TRAF2/FADD, recruits procaspase-8/10 resulting in 

apoptosis (H. Li and Lin 2008; Naude et al. 2011; Schneider-Brachert et al. 2004). 

 

Figure 2. The signalling pathways activated downstream of TNF-R1. Activation of TNF-R1 leads to the 

recruitment of adaptor proteins, which in turn activate multiple kinases that ultimately launch the NF-

κB signalling pathway and various MAPK signalling cascades. MAPK can modulate the activity of 

NF-κB. 
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TNF-R2, on the other hand, belongs to a group of receptors bereft of a DD but 

containing a TRAF-interacting motif (TIM). Consequently, binding of tmTNF-α to 

TNF-R2 elicits TRAF2 recruitment (Dempsey et al. 2003). TRAF2 associates with 

cIAPs, which prevents caspase activation via an intrinsic ubiquitin-ligase activity. 

Moreover, TNF-R2 stimulation in several cell lines was shown to launch NF-κB 

(Naude et al. 2011). Some research groups also reported that TNF-R2 utilizes TRAF2 

to interact with TRADD and RIP1, which are typical mediators of TNF-R1 signalling, 

and in that way contributes to NF-κB activation (Faustman and Davis 2010). In 

comparison with TNF-R1 signalling, which is the predominant and strong activator of 

NF-κB, TNF-R2 activates the NF-κB-dependent transcriptional response poorly and 

slowly but for a longer time (McFarlane et al. 2002). 

Thus, TNF-α signalling is a very complex process. The main TNF-α signalling 

cascades are depicted in Figure 3 and culminate in activation of multiple protein 

kinases and transcription factors or triggering of apoptosis. The character and ultimate 

effect of the TNF-α signalling pathway depends on the adaptor proteins involved in 

formation of the signalling complex, the molecules transmitting the signals as well as 

crosstalk between activated pathways. Lastly, branches of TNF-α signalling can 

antagonise each other’s action, for example NF-κB activation antagonizes caspase-8-

induced apoptosis or p38-mediated signals that promote growth and differentiation 

are in opposition with 

caspase-8-mediated 

apoptosis (Dempsey et 

al. 2003; MacEwan 

2002a, 2002b). 

Figure 3. Overview of the 

TNF-α signalling pathway 

upon activation of TNF-R1 

and TNF-R2 as well as 

their main intracellular 

responses. Binding of 

sTNF-α to the TNF-R1 

initiates either activation of 

the NF-κB signalling cascade or apoptosis via activity of the Signalling complex I (composed of 

TRADD/TRAF2/RIP1/cIAPs) or Signalling complex II (composed of TRADD/TRAF2/RIP1/FADD), 

respectively. The Signalling complex I has antagonistic activity towards Signalling complex II. Binding 

of tmTNF-α to the TNF-R2 launches the NF-κB signalling cascade and inhibits apoptosis. 



Introduction 

 14 

2.2.1. Mitogen-activated protein kinases 

Within the signalling network in response to TNF-α, activation of the mitogen-

activated protein kinase (MAPKs) signalling pathway enables efficient orchestration 

of a wide range of cellular processes, including gene transcription, mRNA 

metabolism, protein biosynthesis, proliferation, differentiation, survival and 

apoptosis. Three families of MAPKs have been identified: the Extracellular Signal-

Regulated Kinases (ERKs), c-Jun N-terminal Kinases (JNKs), and p38 MAPKs 

(Sabio and Davis 2014). 

All of these MAPKs are activated as a result of dual phosphorylation of threonine and 

tyrosine in the three-step signalling cascade. The signalling cascade is composed of: 

MAP3Ks (MAPKKKs, MKKKs, MEKKs; activated by a receptor protein complex), 

MAP2Ks (MAPKKs, MKKs, MEKs; activated by an upstream component – a 

MAPK3K) and culminate on a MAPK protein. This multistep mode of activation 

enables amplification of the initial signal that is generated upon receptor triggering. 

Activated MAPKs in turn phosphorylate diverse proteins on serine or threonine 

residues. The determinant of the kinase specificity is the presence of a specific 

docking site for this kinase and vicinity of proline residue to the phosphorylated 

motif. 

In the context of inflammatory gene expression, MAPKs target transcriptional and 

translational (co)regulators, diverse enzymes and structural proteins in the nucleus, 

which directly or indirectly regulate transcription, the stability and transport of 

mRNA, and protein biosynthesis. Furthermore, MAPKs catalyse the phosphorylation 

of MAPK-activated protein kinases (MK), which represent the most downstream 

protein kinases in this signalling cascade. The MK family is composed of the 

Ribosomal S6 Kinases (RSKs), the Mitogen- and Stress-activated Kinases (MSKs), 

the MAPK-interacting kinases (MNKs), and the MAPK-activated protein kinases 2, 3 

and 5 (MK2, MK3 and MK5) (Kyriakis and Avruch 2012).  

Studies on MAPKs knockout animals demonstrated that individual MAPKs mediate 

processes essential for normal development and survival. Furthermore, they are 

required for a tightly tailored inflammatory response. However, it is impossible to 

assign specific functions to individual family members because of great functional 

redundancy (Aouadi et al. 2006). As overactivation of MAPKs has been reported in 

numerous chronic inflammatory disorders, such as rheumatoid arthritis, inflammatory 

bowel disease, neurodegenerative pathologies, this group of enzymes constitutes an 
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attractive target for the development of anti-inflammatory therapies (Boldt and Kolch 

2004; Gaestel and Kracht 2009; Kaminska 2005).  

 

2.2.1.1. ERK MAPKs 

ERK MAPKs are ubiquitously expressed protein kinases involved in the regulation of 

proliferation, differentiation and survival. There are five ERK family members, which 

are activated in response to mitogens, such as growth factors, and to a lower extent by 

cytokines (Kyriakis and Avruch 2012; Sabio and Davis 2014). In resting cells, ERKs 

localize in the cytoplasm. However, upon activation, which prototypically involves a 

cascade composed of Ras/Raf and MEK1/2, they rapidly translocate to the nucleus 

(Pouyssegur et al. 2002). In the nucleus, ERKs target multiple nuclear proteins, 

including NF-κB, hence, affecting cellular gene expression programs (Vanden Berghe 

et al. 1998). Alternatively, these protein kinases can transduce signalling by activation 

of several MKs, including MSK-1 (Yoon and Seger 2006). 

Whereas knockout of ERK2 causes embryonic death, animals with a targeted deletion 

of ERK1 are viable and fertile indicating functional compensation by another family 

member. Interestingly, these animals display an impaired development of T cells 

beyond the CD4+CD8+ stage (Aouadi et al. 2006). Several inhibitors targeting 

components of the ERK pathway enable to study the cellular response evoked by the 

ERKs family members. Among them, PD98059 and U0126, which inhibit MEK1/2 

are commonly used in vitro. 

 

2.2.1.2. p38 MAPKs 

The family of p38 MAPKs consists of four isoforms: α, β, γ and δ, which are 

activated in response to various environmental stressors. While p38 α and β are 

ubiquitously expressed, p38 γ and δ are synthesized only in selected tissues, such as 

skeletal muscle. Activation of this kinase is preceded by MEK3/4/6 activation. 

Whereas both MEK3 and MEK6 exclusively mediate p38 phosphorylation, MEK4 is 

more promiscuous as it induces both the JNK and p38 MAPK signalling cascades and 

displays only limited selectivity towards p38. p38 MAPK targets multiple 

transcription factors, including NF-κB, c-Jun (a component of the AP-1 transcription 

factor) and Activating Transcription Factor-1 (ATF-1), and furthermore 

phosphorylates several MKs, such as MSK-1/2 (Kyriakis and Avruch 2012; Sabio and 

Davis 2014). Ample evidence indicates the importance of p38 MAPK in the 
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regulation of immunity at the transcriptional level. Specifically, p38 MAPK 

orchestrates NF-κB, histone H3 and TATA-binding protein (TBP) phosphorylation 

via an intermediate kinase, called MSK-1 (Carter et al. 1999; Saccani et al. 2002; 

Vanden Berghe et al. 1998). 

Targeted disruption of the p38 α isoform is lethal, while isolated p38 β, γ and δ or 

double p38 γ and δ knockouts do not display a lethal phenotype. The p38 α knockout 

mice die due to defective placenta development. Interestingly, when the placental 

defect was rescued, p38 α deficient embryos developed normally, indicating that p38 

α is not crucial for other aspects of embryonic development. Conversely, lack of the 

p38 β, γ and δ isoforms can be sufficiently compensated by p38α (Aouadi et al. 2006). 

The p38 MAPK inhibitor SB203580 enables selective cassation of kinase activity. 

 

2.2.1.3. JNKs  

JNKs are the family of stress-activated protein kinases (SAPK) responding to a panel 

of cellular stressors as well as serum and growth factors. Three genes encode the JNK 

family members. Among them JNK 1 and 2 are ubiquitously expressed, while JNK3 

is primarily present in the brain. Furthermore, all JNKs exist in a number of spliced 

forms. JNKs are activated upon phosphorylation of multiple upstream kinases 

including MEK4/7. The main cellular targets of the JNKs are the transcription factor 

AP-1 family members, including c-Jun, JunB, JunD, c-Fos, ATF-2. In comparison to 

p38 and ERKs, JNKs do not target any MKs (Johnson and Nakamura 2007; Kyriakis 

and Avruch 2012; Sabio and Davis 2014). 

Knockout of individual JNK family members does not significantly affect the animal 

phenotype. These mice are viable, fertile and display normal development. However, 

alterations in T cell differentiation were observed in animals bearing targeted 

disruption of either JNK1 or JNK2. Interestingly, JNK1 deficient animals displayed T 

cell hyperproliferation and exhibited decreased apoptosis. Furthermore, these T cells 

preferentially differentiated into Th2 cells, which induce humoral response that is 

mediated by activated B cells. T cells from JNK2 knockout mice also had impaired 

differentiation into the Th1 effector cells, mediators of cellular response, due to 

defective interferon-γ (IFN-γ) production at the early stages of differentiation. 

Furthermore, targeted deletion of both JNK1 and JNK2 family members leads to 

death at the embryonic stage, while JNK1/3 and JNK2/3 knockout animals are 
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relatively normal (Aouadi et al. 2006). In cellular studies, JNK activity is commonly 

suppressed by SP600125. 

 

2.2.1.4. MSK-1 

MSK-1 is a member of the MK family and a downstream substrate of ERKs and p38 

MAPK (Deak et al. 1998; New et al. 1999; Pierrat et al. 1998; Vermeulen et al. 2003), 

which activity is controlled by multiple phosphorylation sites (McCoy et al. 2005). It 

shares over 60% homology with its sibling isoform, MSK-2. Both kinases derive from 

separate genes and display nuclear localization(Arthur 2008). The highest expression 

of MSK-1 has been reported in the brain, skeletal muscle and placenta (Deak et al. 

1998). 

The architecture of the MSK-1 polypeptide is quite unique as it is composed of two 

kinase domains combined by a linker. The N-terminal kinase domain (NTKD) 

resembles those belonging to the AGC family of protein kinases (which includes 

among others Protein kinase A), while the C-terminal kinase domain (CTHD) shares 

homology with the calmodulin-activated protein kinases. In addition, the C-terminal 

motif contains a nuclear localization signal (NLS) and a MAPK-docking site. From 

the functional point of view, the CTKD mediates kinase autophosphorylation and the 

NTKD targets diverse nuclear proteins (Manning et al. 2002). MSK-1 is involved in 

the regulation of gene expression. It was shown that MSK-1 mediates 

phosphorylation of diverse transcription factors, such as CREB and NF-κB (Deak et 

al. 1998; Vermeulen et al. 2003), as well as various structural proteins, like for 

instance histone H3 or high mobility group protein-14 (HMG-14) (Soloaga et al. 

2003; Thomson et al. 1999b). Furthermore, activated MSK-1 can interact with the 

transcriptional cofactor CREB-binding protein (CBP) and its paralog p300 (Janknecht 

2003). 

Single and double MSK knockout animals are viable and fertile. However, they 

express elevated levels of proinflammatory cytokines in response to Toll-Like 

Receptor (TLR) triggering due to diminished production of the anti-inflammatory 

Interleukin-10 (IL-10) by macrophages. This implicates that MSKs serve as negative 

regulators of TLR-induced inflammation by phosphorylation of CREB and histone 

H3 at the IL-10 promoter and activation of its gene transcription. Additionally, studies 

on MSK1/2 knockout revealed that these kinases fulfil an important role in regulation 
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of a subset of rapidly transcribed genes in a variety of cell types (Arthur and Elcombe 

2012). 

 

2.2.2. Nuclear Factor-κB 

One of the key transcription factors activated in response to TNF-α is Nuclear Factor-

κB (NF-κB). NF-κB is a ubiquitously expressed transcriptional regulator for genes 

involved in inflammation and immunity as well as other biological processes. The 

activity of this transcription factor can be also induced by a wide array of other 

inflammatory and environmental stimuli (Bonizzi and Karin 2004; Hayden and Ghosh 

2011). Importantly, deregulation of NF-κB signalling is associated with a long list of 

inflammatory disorders (Baker et al. 2011; DiDonato et al. 2012). Hence, it is not 

surprising that NF-κB activation must be precisely coordinated. The activation of NF-

κB can be grossly divided into two phases: cytoplasmic and nuclear.  

The first phase involves cytoplasmic events culminating in the activation of the 

Inhibitor of NF-κB Kinase (IKK) signalosome that in turn phosphorylates the IκB 

inhibitory molecules, hence targeting them for ubiquitin-dependent degradation via 

the proteasome. The liberated NF-κB complexes enter the nucleus, ending the first 

phase. Fine-tuning of cytoplasmic NF-κB activation is made possible by the existence 

of several family members of IKK, IκB and NF-κB. 

The second phase occurs in the nucleus and involves the following regulatory 

mechanisms: an interaction between NF-κB dimers and DNA response elements, 

epigenetic events at the promoters of NF-κB target genes, interaction of NF-κB with 

other transcriptional (co)regulators in the enhanceosomes structure, an array of post-

translational modifications of NF-κB family members and negative feedback loops 

(Smale 2011). 

Another layer of complexity is imposed via the omnipresent regulatory molecules, 

called microRNA (miRNA). miRNAs are short RNA of 20-25 nucleotides in length 

that negatively regulate gene expression by targeting 3’UTR in transcripts. Several 

miRNAs participate in the degradation of mRNAs that encode upstream regulators 

and effector as well as key components of the NF-κB signalling cascade. Thus, these 

powerful molecules orchestrate signalling events by affecting key molecules 

participating in positive and negative feedback loops. Interestingly, their production 

can depend on the transcriptional activity of NF-κB as well as other transcription 
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factors. Finally, deregulation of miRNA production can lead to development of 

various disorders (Boldin and Baltimore 2012; Ma et al. 2011). 

Finally, both cytoplasmic and nuclear events can be shaped by crosstalk with other 

signalling cascades, which can amplify or attenuate the NF-κB signalling cascade 

(Chapter II). 

All of these regulatory mechanisms are interrelated and determine the strength as well 

as duration of the NF-κB-dependent transcriptional responses (Smale 2011). 

 

2.2.2.1. Members of the NF-κB signalling cascade 

NF-κB is actually a generic term for a family 

of proteins that share a similar structural and 

functional architecture. Mammals have five 

NF-κB family members: RelA/p65, RelB, c-

Rel, NF-κB1 (p50 deriving from a precursor 

protein p105) and NF-κB2 (p52 deriving from 

a precursor protein p100). All of them are 

characterized by an N-terminal Rel-homology 

domain (RHD), which is responsible for 

sequence specific DNA-binding, dimerization, 

interaction with inhibitory proteins (the IκB 

family members) and nuclear translocation. 

Only RelA, RelB and c-Rel possess a C-

terminal transactivation domain (TAD) that 

enables interaction with transcriptional 

cofactors. NF-κB1 and NF-κB2 contain 

multiple copies of ankyrin repeats that serve to 

inhibit their function. These regions are 

required for proteosomal processing, yielding 

respectively p50 or p52 that are able to 

modulate target gene expression (Hayden and 

Ghosh 2012). 

NF-κB regulates transcription as homo- or 

heterodimers. In the context of inflammatory 

gene expression, the activity of the p65-p50 NF-κB heterodimer has been the most 

Figure 5. Members of the NF-κB, IκB 

and IKK families are depicted. RHD, Rel 

hompology domain; TAD, 

transactivation domain; LZ, leucine 

zipper domain; ANK – anykine domains; 

GRR, glycine-rich region; HLH, helix-

loop-helix domain; Z, zinc finger 

domain; CC1/2, coiled-coil domains; 

NBD, NEMO-binding domain; MOD/ 

UBD, minimal dimerization domain and 

ubiquitin-binding domain; and DD, 

death domain (Hayden and Ghosh 

2012). 
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extensively explored. However, it is necessary to emphasize that there are fifteen 

possible NF-κB dimer combinations that regulate a broad spectrum of genes. In 

general, it is considered that dimers berefted of a TAD acts as transcriptional 

suppressors, while dimers containing a TAD domain stimulate transcription 

(Hoffmann et al. 2006). 

The transcriptional activity of NF-κB dimers is halted by the IκB inhibitory 

molecules. The IκB family consists of six members: IκBα, IκBβ, IκBγ, IκBε, IκBζ 

and Bcl-3 (Hayden and Ghosh 2012). Furthermore, as mentioned before, the 

precursor molecules NF-κB1 and NF-κB2 can also act as NF-κB inhibitors. All of 

these proteins contain ankyrin repeats, which cover the nuclear localization sequence 

(NLS) within the RHD of NF-κB subunits, and hence sequester NF-κB dimers in the 

cytoplasm. Furthermore, IκBα can complex and “pull out” NF-κB dimers from the 

nucleus because they contain a nuclear export signal (Arenzana-Seisdedos et al. 1995; 

Arenzana-Seisdedos et al. 1997). Finally, in the resting state, the NF-κB dimers 

actually shuttle between the nucleus and the cytoplasm because the NLS is only 

partially masked by the ankyrin repeats. Of note, the inhibitory proteins Bcl-3 and 

IκBζ display a rather non-canonical function as they can mediate transcriptional 

activation upon complexing with p52 and p50 homodimers, hence, acting as 

transcriptional coactivators (Gilmore 2006; Hayden and Ghosh 2012). 

Activation of NF-κB dimers is made possible by the Inhibitor of NF-κB Kinase (IKK) 

complex, which is essentially composed of two catalytic subunits (IKKα and IKKβ) 

possessing kinase activity, and a regulatory subunit (IKKγ or NF-κB Essential 

Modulator (NEMO)). There are two NF-κB signalling pathways, which are 

distinguished based on the IKK subunits involved: the canonical (IKKβ and NEMO) 

and the non-canonical (IKKα) cascade. Their triggering is primarily dependent on the 

stimulus and the cell type (Gilmore 2006; Hayden and Ghosh 2012).  

A graphical summary of the domain structures of NF-κB, IκB and IKK families are 

displayed in Figure 5.  

 

2.2.2.2. NF-κB signalling cascades 

As mentioned before, NF-κB activation is achieved via the classical (canonical) or 

alternative (non-canonical) signalling cascade. In response to TNF-α stimulation, the 

classical NF-κB signalling cascade is activated. 
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Activation of the classical or canonical signalling pathway occurs also in response to 

various other proinflammatory cytokines, ligation of pattern recognition receptors 

(PRR) or the engagement of T/B cell receptors (TCR/BCR). Subsequently, a cascade 

of adaptor proteins acting in the proximity of the receptor leads to activation of 

NEMO and IKKβ, which phosphorylates IκBα inhibitory molecules. This in turn 

engenders proteasome-dependent degradation of IκBα. Liberated NF-κB dimers, 

chiefly p65-p50, can then enter the nucleus and drive transcription of various 

inflammatory mediators (Hayden and Ghosh 2008). 

In response to a distinct set of stimuli, such as CD40 or lymphotoxin β, NF-κB 

activation occurs via the alternative or non-canonical signalling cascade. In that case, 

the signalling events include IKKα-mediated activation of NF-κB inducing kinase-1 

(NIK-1), which induces proteasomal processing of NF-κB1/p100 to p52. p52 forms 

complexes with RelB and operates at a different pool of NF-κB-dependent promoters, 

transcribing genes involved in multiple non-inflammatory responses, such as 

lymphoid development and B cell maturation (Hayden and Ghosh 2008). 

Interestingly, it was also described that triggers of the canonical NF-κB pathway, such 

as TNF-α, lead to IKKα activation. In that context, IKKα phosphorylates a diverse 

pool of intracellular targets, such as histone H3, promoting expression of TNF-α-

responsive genes that are expressed as a result of the classical NF-κB pathway (Anest 

et al. 2003). Furthermore, IKKα was shown to interact with the transcriptional 

cofactor CBP enhancing histone H3 acetylation and as consequence NF-κB-

dependent transcription (Yamamoto et al. 2003). 

Apart from the above-described signalling cascades, various atypical mechanisms 

exist. For instance, UV exposure launches the p38-dependent activation of casein 

kinase 2 (CK2), which in turn phosphorylates IκBα molecules leading to the 

ubiquitinylation and proteasomal degradation of inhibitory molecules and NF-κB 

activation (Kato et al. 2003; Neumann and Naumann 2007).  

Figure 6 presents a scheme illustrating the classical, alternative and atypical NF-κB 

signalling pathway. 
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Figure 6. Figure summarizes the main signalling events occurring during the activation of the 

classical, alternative or atypical NF-κB. (Left) The canonical (classical) NF-κB pathway depends on 

the site specific phosphorylation of IκBs by activated IKK complex. Phosphorylated IκBs are degraded 

in proteasome, allowing for nuclear entry of p65-p50 NF-κB dimers. (Middle) The non-canonical 

(alternative) NF-κB pathway is dependent on NIK-1, which phosphorylates IKKα. Subsequent 

phosphorylation of p100 by IKKα leads to the proteasome processing of this NF-κB subunit. RelB-p52 

NF-κB dimers can then translocate to the nucleus. (Right) In response to cellular stressors, such as 

UV, NF-κB is activated in atypical manner. In response to UV, p38 becomes activated and triggers 

CK2 activation which in turn phosphorylates IκBs. 

 

2.2.2.3. Interaction of NF-κB dimers with DNA response elements 

A fundamental feature of NF-κB-driven transcription is the selective induction of 

genes bearing a DNA motif, called a κB element, in their promoter/enhancer(s). Most 

of these transcription factor binding sites are 10 bp long with the following consensus 

sequence 5’-GGGRNWYYCC-3’, where N – denominates any base; R – purine, W – 

adenine or thymine; Y – pyrimidine. Furthermore, this regulatory motif can be 

divided into two functional half-sites depending on the interacting NF-κB subunit. 

Whereas the first half-site is recognized by p50 and p52 subunits, the second one is 

targeted by p65, RelB or c-Rel (Hoffmann et al. 2006; Natoli 2009). Despite the 

transparency and simplicity of this model, recent studies pointed out that NF-κB 
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dimers interact with a panel of non-canonical DNA binding motif as well as shorter 

sequences than the classical consensus. For instance, the nonameric CD28 reponse 

element in the IL-2 enhancer binds the c-Rel NF-κB homodimers with high 

efficiency. Yet, another example constitutes κB site (AGGAAAGTAC) in the 

urokinase plasminogen activator gene promoter, which is recognized by the p65-c-Rel 

NF-κB heterodimers (Natoli et al. 2005). More recently, three distinct groups of NF-

κB dimers, which display diverse DNA binding preferences, were described in 

literature. First group encompasesses p50 and p52 homodimers, which display high 

affinity for 11-12 bp motifs, second cluster heterodimer that interact with 10 bp 

motifs, while third contains p65 and c-Rel homodimers 

that preferentially interacts with 9 bp motifs Recognized 

consensus for each group is depicted in Figure 7. 

Furthermore, it has been suggested that transactivation of 

binding sites for RelA and c-Rel homodimers as well as 

heterodimers requires interaction with coregulators, while 

the repression of binding sites recognized by p50 and p52 

homodimers is achieved via completion with other 

transcriptional regulator or recruitment of repressory 

complex (Siggers et al. 2012; Smale 2012). 

The interaction between an NF-κB dimer and its binding site is highly specific as 

targeted deletion of Rel family members cannot be compensated for other subunits to 

provide comparable level of a gene transcript (Weih et al. 1995). Interestingly, κB 

elements can function as gene selective allosteric regulators, which are able to induce 

different conformations in the NF-κB subunits modulating their activity (Chen-Park et 

al. 2002). These conformational changes, furthermore, can affect binding of 

additional transcriptional coregulators (Leung et al. 2004). Whereas recruitment of a 

selected NF-κB dimer to its respective recognition motifs is highly dependent on the 

stimulus as well as on the promoter context (Hoffmann et al. 2003), some genes 

recruit all NF-κB proteins with no apparent specificity (Saccani et al. 2003). Finally, 

the association between NF-κB dimer and DNA sequence is a very dynamic process 

(Bosisio et al. 2006). 

 

2.2.2.4. Epigenetic events at NF-κB-dependent promoters 

In the cell, DNA is organized in chromatin. The fundamental unit of chromatin is the 

Figure 7. Representative 

DNA-binding site motifs 

for each NF-κB dimer class 

(Siggers et al. 2012). 
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RESULTS

Designing an NF-kB-specific protein-binding microarray

To examine the DNA-binding specificities of NF- B dimers in a 

systematic and unbiased manner, we used PBM technology. PBMs 

are double-stranded DNA microarrays that allow the in vitro char-

acterization of protein binding to tens of thousands of unique DNA 

sequences in a single experiment24,26,27. The universal PBM (uPBM) 

developed earlier23 allows a comprehensive, unbiased assessment of 

protein-DNA binding to all ungapped and gapped 8-bp sequences. 

We carried out uPBM experiments with six human and mouse  

NF- B dimers (c-Rel–c-Rel, RelA-RelA, p52-p52, p50-p50, c-Rel–p50,  

RelB-p52) for an initial, comprehensive survey of potential B site 

sequences. DNA-binding site motifs derived from the uPBM experi-

ments were in agreement with published SELEX data on cRel-cRel, 

RelA-RelA and p50-p50 homodimers13 (Supplementary Fig. 1), 

demonstrating highly specific binding in our assay.

The uPBM platform assesses binding to 8-bp sequences; however, 

the canonical B site is 10 bp long6,7. Therefore, we created a custom 

NF- B PBM containing 10-bp sequences prioritized according to the 

uPBM 8-bp data (Supplementary Methods). We compiled the 1,000 

top-scoring 10-bp sequences determined for the six NF- B dimers 

into a list of 3,285 nonredundant sequences 

that represent the top-scoring set of poten-

tial B site sequences. We incorporated these  

10-bp B sites into a custom NF- B PBM 

with each site situated within constant flank-

ing sequence (Fig. 1a, Online Methods).

We initially examined the binding of RelA-

p50 to our custom NF- B PBM. To assess sig-

nificance of the results, we transformed the 

natural log of the median PBM signal inten-

sity of each 10-bp site into a z score using the 

scores from 1,200 randomly chosen 10-bp 

sites as a background distribution (Fig. 1b; 

Online Methods). Many potential B sites, 

including a set of validated B sites, scored significantly higher than 

the background distribution (z score > 4), indicating that the custom  

PBMs show the specific binding sites on DNA for NF- B dimers. 

Thus, our custom NF- B PBM provides a platform for assessing the 

DNA-binding specificities of different NF- B dimers for a large set 

of potential B site sequences.

Three distinct DNA-binding classes

To examine the DNA-binding preferences of different NF- B dim-

ers, we carried out custom NF- B PBM experiments for ten dimers 

from mouse or human. We compared the DNA-binding specificities 

of different dimers by correlating their B site z scores. Hierarchical 

clustering showed that the NF- B dimers separated into three dis-

tinct classes: p50 or p52 homodimers; heterodimers; and c-Rel or 

RelA homodimers (Fig. 1c). This subdivision is similar to the basic 

division of the NF- B family members into two subclasses on the 

basis of protein sequence of the Rel-homology domains: p50 and 

p52 (subclass 1) and c-Rel, RelB and RelA (subclass 2). The common 

binding specificity we observed for the heterodimers is suggestive 

of a canonical DNA-binding contribution from members of each  

NF- B subclass.
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Figure 1 Examining NF- B dimer binding by 

custom NF- B PBMs. (a) Design of 60-bp DNA 

sequence probes on custom NF- B PBM.  

B sites (10 bp) are at a fixed position along the 

probe (relative to the glass slide surface) within 

constant flanking sequence. Each 10-bp  

B site is present at four replicate spots in both  

the forward (Probe) and reverse complement 

(RC probe) orientation (eight spots in total).  

(b) Distributions of PBM-derived binding  

site z scores for mouse RelA-p50 binding to 

3,285 B sites and to a background set of 

1,200 random 10-bp sequences. z scores for 

15 B sites described in literature.  

(c) Pairwise comparison of B site binding for 

ten NF- B dimers. Pairwise binding similarity 

was assessed by Pearson correlation of B 

site z scores, and hierarchical clustering was 

carried out on the comparison matrix (Online 

Methods). Representative DNA-binding site 

motifs were determined for each dimer class 

using the top 25 highest-scoring B sites bound 

by each group member (Online Methods; see 

Supplementary Fig. 2 for individual motifs). 

Data are representative of single experiments 

(b,c; median of eight replicates) or derived from 

pooled data of two (d, top logo), five (d, middle 

logo), or three (d, bottom logo) experiments.
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nucleosome, which consists of a DNA fragment wrapped around an octamer of the 

four core histones (H2A, H2B, H3 and H4). Binding of nucleosome to a linker histone 

H1 forms the chromatosome structure. Positioning of these nucleosomes determines 

the condensation state of chromatin and consequently its transcriptional activity. 

Whereas condensed chromatin (euchromatin) is regarded as transcriptionally inactive 

due to steric hindrance for the interaction between transcription factors and their 

respective DNA motifs, relaxed chromatin (heterochromatin) is highly accessible for 

transcription factors and concomitantly more prone for the initiation of transcription. 

Alterations in chromatin structure can be achieved by two coupled mechanisms: the 

post-translational modifications of histone tails and nucleosome repositioning. 

Histones are a family of small, positively charged globular proteins with unstructured 

N-terminal “tails”. The serine, threonine, arginine, lysine, arginine, glutamic acid and 

proline residues within the histone tails undergo a panel of post-translational 

modifications by various histone-modifying enzymes. There are at least eight 

different types of histone modifications, of which acetylation and phosphorylation of 

lysine and serine/threonine residues have been most intensively studied. These histone 

modifications define chromatin accessibility via a so-called “histone code”. 

Consequently, there are specific proteins able to read this code. Another layer of 

complexity is imposed by crosstalk between several types of modifications 

simultaneously deposited on the histones’ tail contributing to the fine-tuning of 

transcriptional response (Kouzarides 2007). 

 

2.2.2.4.1. Chromatin remodelling complexes 

NF-κB-dependent genes can be grossly divided into two groups depending on their 

requirement for chromatin remodelling complexes to enable gene expression: the 

constitutive/immediate accessible genes and the regulated/late accessible genes. 

Whereas the first group does not depend on chromatin remodelling events, the 

transcription of the second group is preceded by the recruitment of the chromatin 

remodelling machinery (Natoli 2009; Smale 2010; Vanden Berghe et al. 2006). 

Changes in the chromatin environment are executed by chromatin remodelling 

complexes, such as Switch/Sucrose Non-Fermentable (SWI/SNF), that mediate a shift 

in nucleosomes position using energy deriving from ATP hydrolysis (Tang et al. 

2010). In line, silencing of the SWI/SNF subunits, namely Brg1 and Brm1, resulted in 

a drop of the transcription rate of all late NF-κB-dependent genes, such as IL-6 or 
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chemokine (C-C motif) ligand-5 (CCL-5), while expression of immediate early genes, 

such as chemokine (C-X-C motif) ligand-2 (CXCL-2) or TNF-α, remained 

unaffected. Hence, it was proposed that the SWI/SNF complex induces nucleosome 

repositioning to generate a relaxed chromatin environment easily accessible for NF-

κB culminating in a potent transcriptional response (Ramirez-Carrozzi et al. 2006). 

 

2.2.2.4.2. Histone phosphorylation 

Nowadays, a clear connection has been established between histone phosphorylation 

and positive regulation of gene expression (Kouzarides 2007). It is postulated that 

histone phosphorylation mediates changes in nucleosome and chromatin structure by 

altering the histone-DNA interface, thereby facilitating access for transcription factors 

to the underlying DNA sequence. One of the histone marks with a crucial role in 

transcriptional regulation is phosphorylation of histone H3 at serine 10. In yeast for 

example, this modification stimulates transcription by promoting subsequent 

acetylation (Lo et al. 2000; Lo et al. 2001). Similarly, in higher eukaryotes, 

phosphorylation of histone H3 induces other covalent modifications of the histone H3 

tail, such as acetylation of lysine 14 (S. J. Nowak and Corces 2004). Relatively few 

interactors of this modification have been identified. In mammals, the histone H3 

serine 10 mark is recognized by a domain within the 14-3-3 protein, which is a 

sequence-dependent phosphoserine/phosphothreonine motif-binding protein 

(Macdonald et al. 2005; Walter et al. 2008; Winter et al. 2008b; Winter et al. 2008a). 

Interaction of this protein with phosphorylated histone H3 engenders enrichment of 

SWI/SNF chromatin-remodelling complexes at the gene promoter (Drobic et al. 

2010), followed by enhanced recruitment of RNA polymerase II (Vicent et al. 2006). 

Several kinases, including Protein kinase A (PKA), IKKα and MSK-1, can 

phosphorylate histone H3 serine 10. Cessation of their activity by means of 

pharmacological inhibitors or gene silencing was shown in multiple studies to disrupt 

histone phosphorylation and concomitantly suppress or substantially affect the profile 

of gene expression (Anest et al. 2003; DeManno et al. 1999; Drobic et al. 2004; 

Drobic et al. 2010; G. Y. Park et al. 2006; Salvador et al. 2001; Soloaga et al. 2003; 

Thomson et al. 1999a; Thomson et al. 1999b; Yamamoto et al. 2003). Finally, p38 

MAPK-mediated phosphorylation of histone H3 at serine 10 on a subset of NF-κB-

dependent promoters, such as IL-8 and CCL2, augments the accessibility of NF-κB 

transcription factor binding sites. Oppositely, histone H3 at the IκBα promoter 
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undergoes rapid phosphorylation that is independent of p38 MAPK, suggesting the 

existence of alternative mechanisms to efficiently “fine-tune” gene expression at other 

genes populations (Saccani et al. 2002). 

 

2.2.2.4.3. Histone acetylation 

Prototypically histone acetylation is almost exclusively associated with transcriptional 

activation, while deacetylation correlates chiefly with gene repression. Deposition or 

removal of acetyl groups is mediated via distinct families of enzymes, termed 

respectively histone acetyltransferases (HATs) and histone deacetylases (HDACs). 

HATs can be grouped into three main families: GNAT, MYST and CBP/p300. In 

general, they are promiscuous regarding the targeted residue but in some cases limited 

specificity has been described. HDACs are also divided into three distinct families: 

the class I HDACs, the class II HDACs and the class III NAD-dependent enzymes of 

the Sir family. In general, these enzymes are present in various repressive complexes. 

Finally, histone acetylation is recognized via proteins possessing a bromodomain, 

which in turn can recruit chromatin-remodelling complexes (Kouzarides 2007). 

Some of the above-described factors were shown to be inducibly recruited to NF-κB-

regulated promoters and mediate chromatin opening/shutting. For instance, CBP, 

p300 and p300/CBP-associated factor (PCAF) enhance transcriptional rate by 

acetylation of histone H3 and H4 at the E-selectine, Vascular Cell Adhesion 

Molecule-1 (VCAM-1), TNF-α and cyclooxygenase-2 (COX-2) promoters upon 

TNF-α stimulation (Edelstein et al. 2005; Lee et al. 2006; Miao et al. 2004). On the 

other hand, HDAC1 and HDAC2 inhibit IL-8 gene expression by the removal of 

acetylmoieties from histone tails within surrounding chromatin (Ashburner et al. 

2001; Zhong et al. 2002). In the context of NF-κB-dependent gene expression, 

acetylation of histone H3 on lysine 9 and lysine 14 has been reported in literature 

(Anest et al. 2003; Ashburner et al. 2001; Saccani et al. 2002; Yamamoto et al. 2003). 

 

2.2.2.4.4. Histones phosphoacetylation 

The transcriptional process can be effectively controlled and highly fine-tuned via 

deposition of several covalent modifications on a single histone tail, which can be 

“read” by various proteins in the frame of the “histone code”. In line, signal-induced 

histone phosphoacetylation has been reported in a number of cellular systems using 

diverse stimuli (Clayton and Mahadevan 2003). Although the precise function of this 
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dual histone modification is unknown, it probably serves as a highly specific mark for 

the recruitment of chromatin remodelling complexes that are necessary for the 

removal of transcriptional barriers and repressors (Mateescu et al. 2004) as well as 

recruitment of coactivators that are required for concomitant transcriptional activation 

(Winter et al. 2008b; Winter et al. 2008a). It was also demonstrated that the 

synergistic coupling of histone phosphorylation and acetylation at promoters occurs in 

a highly coordinated fashion to ensure high rates of transcription. For instance, 

histone H3 phosphorylation can affect the efficiency of a subsequent acetylation 

reaction as the GCN5 HAT exhibits 10-fold higher preference for phosphorylated 

over nonphosphorylated histone H3 (Cheung et al. 2000). However, not always the 

prior presence of phosphorylation at a histone tail marks it for subsequent acetylation 

(Clayton and Mahadevan 2003). 

 

2.2.2.5. NF-κB-dependent enhanceosomes 

The association of multiple proteins with gene promoters and enhancers tightly 

regulates transcription of genetic information. Whereas the promoter localizes in the 

close proximity of a gene’s transcription starting site, enhancers are usually embedded 

more distal from the transcription starting site. These two regulatory elements are 

usually separated in the genomic sequence by many thousands of base pairs. 

However, promoter and enhancer can be brought into proximity via looping. This 

physical vicinity between regulatory regions in a native nuclear environment 

contributes to potent transcriptional activation (Nolis et al. 2009). Both promoter and 

enhancer contain a collection of short DNA motifs that are recognized by sequence 

specific transcription factors. These factors are instrumental for the recruitment of 

additional cofactors, either coactivators or corepressors, as well as components of the 

basal transcriptional machinery. By contrast to transcription factors, accessory 

proteins do not directly interact with DNA sequence but have other functions that are 

indispensable for efficient and precisely regulated transcription (Smale 2011). 

Bazett-Jones et al. (Bazett-Jones et al. 1994) were the first to propose that efficient 

gene expression requires the assembly of an “enhanceosome”. This three dimensional 

and highly dynamic structure is created by cooperative binding of transcription factors 

to the control regions in the promoter/enhancer regions of a given gene. Together, 

these transcriptional regulators via direct interaction with the DNA sequence form a 

platform for the recruitment of additional cofactors, chromatin remodelling 
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complexes and general transcription factors, that is essential for a stringent and tightly 

tailored transcriptional response driven by RNA polymerase II (Merika and Thanos 

2001). 

One of the best-characterized enhanceosomes is the one formed at the regulatory 

regions of the virus-triggered IFN-β. Expression of the IFN-β gene requires 

concomitant activation and cooperative binding of several transcription factors, 

including ATF-2, c-Jun, isoforms of Interferon Regulatory Factor-3 (IRF-3) and IRF-

7 as well as the NF-κB p65-p50 heterodimer, to the respective DNA-response 

elements within a 55 bp nucleosome-free region of the IFN-β promoter (Agalioti et al. 

2000; Maniatis et al. 1998). The architectural protein HMG-I/Y is also important for 

enhanceosome assembly. It facilitates binding of transcriptional factors to unbended 

DNA sequence by mimicking the fully assembled complex. HMG-I/Y is, however, 

displaced from the final enhanceosome complex by other transcriptional regulators 

due to steric hindrance (Falvo et al. 1995; Thanos et al. 1993). The nucleosome-free 

region of the IFN-β promoter is flanked by two nucleosomes that bind respectively in 

the vicinity of the TATA box and the transcription starting site. Enhanceosome 

formation is associated with the recruitment of transcriptional coregulators CBP/p300 

and GCN5, which interact with each of the predeposited transcription factors through 

distinct protein-protein interactions. Whereas CBP/p300 mediates histone acetylation, 

GCN5 promotes displacement of the nucleosome masking the TATA box via 

recruitment of the SWI/SNF chromatin-remodelling complex. These events enable 

access by the transcription factor II D (TFIID) complex that contains the TATA-

binding protein (TBP), along with other general transcription factors and the RNA 

polymerase II to the IFN-β enhancer (Agalioti et al. 2000; Merika and Thanos 2001). 

Subsequent crystallography studies provided significant insight into DNA-protein and 

protein-protein interactions occurring within the IFN-β enhanceosome (Figure 8). 

These studies clearly demonstrated that virtually every nucleotide matters for the IFN-

β enhancer activity by creating a composite surface for the eight transcriptional 

regulators: ATF-2, c-Jun, IRF-3A, IRF-7B, IRF-3C, IRF-7D, p50 and p65 (Panne 

2008). 
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Figure 8. The model of INF-β enhanceosome (Panne et al. 2007). The p50 is in light blue and RelA in 

dark blue. IRF-7B and IRF-7D are in yellow and IRF-3A and IRF-3C are in green. ATF-2 is in red and 

c-Jun in blue. The DNA sequence is shown with the core-binding sites coloured accordingly. 

 

A similar enhanceosome architecture has been proposed for various other NF-κB-

dependent gene promoters, such as IL-6 (Vanden Berghe et al. 1999), CXCL-1 (Amiri 

and Richmond 2003; Amiri et al. 2006; Ueda et al. 2007), IL-8 (Amiri and Richmond 

2003) (Figure 9).  

Figure 9. Schemes of promoter architecture of prototypical NF-κB target genes for which the 

enhanceosome structure is well characterized or being extensively explored. 
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The central role in all of these complexes is played by NF-κB, which enables 

transcriptional activation via the recruitment of the transcription cofactor CBP/p300. 

CBP/p300 functions among others as a scaffold protein that brings together diverse 

groups of transcriptional factors, cofactors, and components of the basal 

transcriptional machinery and recruits chromatin-remodelling complexes increasing 

their relative concentration in the transcription area. Furthermore, CBP/p300 takes 

advantage of either its intrinsic HAT activity or other HATs assembled in 

multiprotein complexes to modulate the strength of these protein-protein and/or 

protein-DNA interactions via deposition of acetyl moieties on enhanceosome 

components. Both bridging and acetyltransferase activity substantially contribute to 

upregulation of target gene expression (Chan and La Thangue 2001; McManus and 

Hendzel 2001). Another feature of these NF-κB-dependent enhanceosomes is 

transcriptional cooperation of NF-κB with other transcription factors, such as HMG, 

CCAAT/enhancer-binding protein (C/EBP), ATF, CREB, IRF, Specificity Protein-1 

(SP-1) and/or AP-1, to ensure potent gene expression (Amiri and Richmond 2003; J. 

M. Park et al. 2005; Spooren et al. 2010; Ueda et al. 2007). 

 

2.2.2.6. Post-translational modifications of NF-κB 

Activity of all NF-κB subunits is fine-tuned by a broad spectrum of post-translational 

modifications (Perkins 2006). Here, we will focus on the modifications important in 

TNF-α signalling cascade. In that context, the role of phosphorylation and acetylation 

in the modulation of p65 transcriptional activity has been the most extensively 

explored. The NF-κB p65 

subunit possesses a number 

of amino acid residues, 

localized within the RHD 

and TAD, which are targets 

for post-translational 

modification (Figure 10). These 

reversible modifications 

regulate the intracellular localization, dimerization, DNA binding ability, 

transcriptional potential and protein-protein interactions of NF-κB subunits (Calao et 

al. 2008; Vermeulen et al. 2006). 

 

Figure 10. Scheme presenting different described post-

translational modifications of the p65 NF-κB subunit (Perkins 

2006). 
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2.2.2.6.1. Phosphorylation of p65 at serine 276 

Phosphorylation of serine 276, a residue embedded within the RHD of p65, is 

instrumental for the efficient transcription of a specific pool of NF-κB target genes, 

which do not constitutively associate with RNA polymerase II (D. E. Nowak et al. 

2008). Initially, this post-translational modification was described to be deposited by 

the lipopolysaccharide (LPS)-activated PKAc (Zhong et al. 1997) but further studies 

demonstrate that it is also imposed by MSK-1 upon activation of upstream p38 and 

ERK1/2 MAPK in TNF-α stimulated cells (Vermeulen et al. 2003). 

Overall, serine 276 phosphorylation of p65 augments the NF-κB transcriptional 

activity by disrupting the intramolecular association of the N- and C-terminal ends 

(Zhong et al. 1997), producing in turn conformational changes that promote 

association with CBP/p300. Together, p65 and CBP/p300 ensure potent induction of 

NF-κB-dependent genes (Zhong et al. 1998). Subsequently, another study 

demonstrated that serine 276 phosphorylation of p65 promotes displacement of the 

repressive complex, composed of p50-p50 NF-κB homodimers and HDAC1, from the 

gene promoters (Zhong et al. 2002). 

Significant insight into the importance of p65 serine 276 phosphorylation was 

provided by two in vivo studies using knock-in mice. In one study, Dong et al. (Dong 

et al. 2008) demonstrated that constitutive inactivation of p65 by serine to alanine 

mutation leads to suppression of a subset of NF-κB target genes due to recruitment of 

HDAC3. Interestingly, the result of the HDAC3 recruitment was epigenetic 

suppression of genes positioned in the vicinity of NF-κB-binding sites. These 

molecular changes manifested themselves in embryonic death due to variegated 

developmental abnormalities. Opposite study performed by the same group (Dong et 

al. 2010) demonstrated that constitutive activation of p65 by serine to aspartic acid 

mutation of serine 276 leads to enhanced expression of NF-κB-dependent 

inflammatory mediators, including several cyto-/chemokines. These mice eventually 

died because of amplification of the inflammatory state. Strikingly, the inflammatory 

phenotype could be partially reversed by crossing the p65 knock-ins with the TNF-R1 

deficient mice indicating the destructive potential of the TNF-α/NF-κB axis. 

Nevertheless, some effects are independent of TNF-α as deleterious effects of NF-κB 

overactivity become again apparent upon aging of these rescued mice, which suffer 

from chronic keratitis accompanied by increased corneal expression of several 

inflammatory mediators. 
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2.2.2.6.2. Phosphorylation of p65 at serine 536 

Phosphorylation of p65 at serine 536, which localizes within the TAD, is another 

modification that modulates the NF-κB transcriptional responsiveness. It is mediated 

by multiple kinases IKKα, IKKβ or TANK binding kinase-1 (TBK-1) upon TNF-α 

treatment (Sakurai et al. 1999a; Sakurai et al. 1999b). 

It was shown that p65 phosphorylation on serine 536 is pivotal for NF-κB 

transcriptional potential. Similarly to serine 276 phosphorylation, phosphorylation at 

serine 536 induces conformational changes in the p65 NF-κB subunit, modulating its 

interaction with transcriptional cofactors (L. F. Chen et al. 2005b). For instance, 

phosphorylation of serine 536 has been reported to promote p65 association with the 

transcriptional coactivator CBP/p300, while hampering binding with the Silencing 

Mediator for Retinoic acid receptor and Thyroid hormone receptor (SMRT) 

transcriptional corepressor (Buss et al. 2004; L. F. Chen et al. 2005b; Hoberg et al. 

2006; Sasaki et al. 2005). Finally, this modification inhibits the reassociation of IκBα 

with DNA-bound NF-κB, hence, hampering its nuclear export and consequently 

regulating the duration of the NF-κB-dependent transcriptional response (Adli and 

Baldwin 2006; Sasaki et al. 2005). 

Finally, it is not well understood whether phosphorylation of p65 at serine 536 by 

IKKβ is part of the activation mechanism that is required for the nuclear entry of NF-

κB dimers (Perkins 2006). 

 

2.2.2.6.3. p65 Acetylation 

The p65 subunit of NF-κB is acetylated at multiple lysine residues, including lysine 

122, 123, 218, 221, 310, 314 and 315, which are spread across the protein chain. The 

majority of these lysines are targeted by CBP/p300, but some can be modified by 

PCAF or members of the p160 family of steroid-receptor coactivators (SRC-1) in 

response to various stimuli, including TNF-α (Calao et al. 2008). 

Acetylation of p65 regulates distinct nuclear properties of NF-κB. CBP/p300-

mediated acetylation of p65 at lysine 218 and 221 specifically enhances its DNA 

binding ability and impairs assembly with IκBα (with a pivotal role played by lysine 

221), while modification of lysine 310 is required for full transcriptional activity (L. 

F. Chen et al. 2002). Conversely, HDAC3-mediated deacetylation of these residues is 

involved in termination of the NF-κB-dependent transcriptional responses by the 

reassociation with IκBα and subsequent nuclear export of newly formed complexes 
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(L. Chen et al. 2001; L. F. Chen et al. 2002). Furthermore, TNF-α-induced 

phosphorylation of p65 at either serine 276 or 536 promotes its subsequent 

association with CBP/p300 that in turns acetylates p65 at lysine 310. Combination of 

these two modifications (phosphoacetylation) at a single transcription factor is 

required to achieve full transcriptional activation. These specific marks deposited on 

the p65 subunit of NF-κB correspond to a “transcription factor code” that governs the 

recruitment or displacement of selected transcriptional cofactors that contribute to the 

transcriptional activity (L. F. Chen et al. 2005b; Hoberg et al. 2006). Oppositely, 

acetylation of p65 at lysine 122 and 123 by CBP/p300 or PCAF diminishes p65 DNA 

binding ability and facilitates its interaction with IκBα (Kiernan et al. 2003). Finally, 

acetylation of p65 at lysine 314 and 315 was observed to have no effect on interaction 

with DNA and intracellular localization (Buerki et al. 2008). It is noteworthy that in 

response to TNF-α, p300 acetylates various p65 residues (Perkins 2006), which in 

tune differentially regulate the expression pattern of NF-κB target genes (Buerki et al. 

2008; Kiernan et al. 2003). 

 

2.2.2.7. Negative feedback mechanisms 

Cessation of NF-κB transcriptional activity occurs via various negative feedback 

loops.  

The most common mechanism involves synthesis of negative regulators. The 

prototypical example is IκBα, an NF-κB target gene and powerful inhibitor of its 

signalling cascade. The protein, upon synthesis, enters the nucleus, associates with 

DNA-bound NF-κB complexes and drives them to the cytoplasm, terminating in that 

way the transcriptional response. This process is also tightly linked with the removal 

of post-translational modifications, such as phosphorylation of p65 serine 536 (Adli 

and Baldwin 2006; Sasaki et al. 2005) and acetylation of p65 lysine 221 (L. Chen et 

al. 2001; L. F. Chen et al. 2002), which impede association with the inhibitory 

molecules.  

Another important protein, which turns off the NF-κB signalling cascade, is TNF-α-

induced protein 3 (A20). Its expression is also upregulated via NF-κB-dependent 

mechanisms. The protein by itself is a ubiquitin-editing enzyme that possesses a 

deubiquitinase and an E3 ligase domain. A20 interacts with RIP-1 and using the 

enzymatic activity removes the K63-ubiquitin chain and subsequently attaches a K48-

ubiquitin chain, targeting RIP-1 for proteosomal degradation (Wertz et al. 2004). 
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More recently, A20 was demonstrated to interact with other receptor adaptor proteins, 

such as TRAF-2, as well as other downstream components of the NF-κB signalling 

pathway, like for instance NEMO. Finally, it acts downstream multiple receptors able 

to activate NF-κB signalling cascade (Heyninck and Beyaert 2005). 

Alternatively termination of NF-κB-dependent gene expression occurs via 

proteasome-dependent degradation of NF-κB dimers occupying promoters of target 

genes (Saccani et al. 2004) or exchange of NF-κB dimers interacting with promoters 

of target genes (Saccani et al. 2003). 

 

2.2.2.8. Physiological and pathological role of NF-κB 

NF-κB is a pivotal transcription factor regulating expression of genes involved in 

inflammation and immunity. Activation of this powerful transcription factor 

upregulates expression of various effector molecules, such as cytokines, chemokines, 

enzymes, signalling molecules, receptors, receptor ligands, adhesion molecules and 

many others. Several of these gene products directly activate the NF-κB signalling 

cascade creating a positive feedback loop that promotes amplification of 

inflammatory response and prolongs its duration. In line, lack of NF-κB 

transcriptional activity leads to higher susceptibility to infections, augmented severity 

of disease processes and the inability to resolve inflammation and restore 

homeostasis. Furthermore, NF-κB is known to govern several other cellular processes, 

such as proliferation, differentiation and apoptosis by driving expression of genes 

involved in cell cycle and cell death (Hayden and Ghosh 2011; Lawrence 2009). An 

extract from the long list of NF-κB targets can be found in Table 1. 

Given the broad spectrum of cellular processes under the control of NF-κB, it is not 

surprising that deregulation of this powerful transcription factor is tightly associated 

with a variety of disease processes, such as autoimmune disorders, chronic 

inflammatory diseases and cancer. Indeed, whereas coordinated activation of NF-κB 

is beneficial in terms of whole body homeostasis, its aberrant activation has 

deleterious effects (Courtois and Gilmore 2006; Karin 2006; Sarkar et al. 2008). 

With respect to autoimmune and chronic inflammatory disorders, NF-κB-dependent 

cyto-/chemokines attract and activate various immune cells at the site of inflammation 

augmenting the severity of the inflammatory process. Concomitantly, the same 

products further amplify NF-κB activity via a positive feedback loop (Karin et al. 

2006; Tak and Firestein 2001). Recently, it has become evident that tumour 
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development is tightly associated with the generation of an inflammatory 

microenvironment. In that context, NF-κB was shown to drive expression of genes 

stimulating cell growth (e.g. IL-6, TNF-α) and division (e.g. cyclin D1, Ephrin) as 

well as tumour malignancy (e.g. MMP-2, MMP-9) and angiogenesis (e.g. VEGF). In 

addition, NF-κB governs expression of pro-survival genes (e.g. cIAP1, Bcl-XL) 

resulting in augmented therapy resistance of malignant cells (DiDonato et al. 2012). 

 

Cytokines IL-1α, IL-1β, IL-1ra IL-2, IL-4, IL-6, IL-10, IL-12, IL-18, IL-23, IL-27, 

TNF-α, INF-β, 

Chemokines CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-3, CXCL-5, IL-8/CXCL-8, 

CXCL-10, eotaxin, G-CSF, M-CSF, GM-CSF, 

Enzymes iNOS, COX-2, MnSOD, MMP-2, MMP-9, elastase, MuRF1 

Receptors and 

signalling factors 

CD40, CD86, c-IAP1, c-IAP-2, TRAF-1, TRAF-2, IκBα 

Adhesion 

molecules 

CD44, ICAM-1, VCAM-1, P-selectin, Fibronectin, 

Cell growth and 

division 

Cyclin D1, Cyclin D2, Cyclin D3, Ephrin  

Cell death Bax, Bcl-2, Bcl-xL, Bim, caspase-11, Fas, FasL, c-Flip 

Table 1. Examples of prototypical NF-κB target genes grouped in functional categories. For more 

extended list, it is advised to refer to an online resource available at http://www.bu.edu/nf-kb/gene-

resources/target-genes. 

 

Deregulation of NF-κB activity might occur at all levels of the signalling cascade. 

Principally, it involves augmented activation of the IKK signalosome, diminished 

level of IκB inhibitory molecules and elevated transcriptional activity of NF-κB. 

Furthermore, it couples with the ameliorated stimulation of positive feedback loops or 

diminished activity of negative feedback mechanisms. Perturbations of these 

processes have been observed in a number of inflammatory disease processes 

(Hayden and Ghosh 2011; Lawrence 2009). In this thesis, we have studied the 

molecular mechanism associated with NF-κB activity in skeletal muscle and brain. 

The pathological role of NF-κB will be illustrated on these organs. For instance, 

aberrant activation of NF-κB signalling pathway from immune and muscle cells has 

been detected and implicated in the pathogenesis of numerous muscular dystrophies 

and myopathies (Jackman et al. 2013; Mourkioti and Rosenthal 2008; Peterson and 
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Guttridge 2008). Interestingly, enhanced NF-κB activity has also been detected in 

muscle biopsies obtained after an acute boost of exercises (Kramer and Goodyear 

2007). In the central nervous system (CNS), deleterious effects of Alzheimer’s 

disease, Parkinson disease, and multiple sclerosis are associated with aberrant 

activation of the NF-κB signalling axis and deregulation of its transcriptional program 

(Camandola and Mattson 2007; Kaltschmidt and Kaltschmidt 2009; Memet 2006). 

Enhanced activation of NF-κB is also tightly linked to development of various 

metabolic disorders, such as atherosclerosis, diabetes and obesity (Baker et al. 2011). 

 

2.3. Role of the TNF-α/TNF-Rs axis in immunity 

TNF-α-induced signals launch several downstream transcription factors, which in turn 

drive the expression of various genes involved in inflammation. Examples include 

inflammatory cytokines (e.g. IL-6, IL-1β, TNF-α), chemokines (e.g IL-8, CCL-5, 

CXCL-5), receptors (e.g. TNF-R1, TNF-R2), adhesion molecules (e.g. VCAM-1, P-

selectin), enzymes (e.g. COX-2, inducible NO synthase (iNOS)), acute phase proteins 

(e.g. C reactive protein (CRP)) and matrix metalloproteases (e.g. MMP-2, MMP-9). 

Stringently controlled expression of these immunomodulatory mediators is critical for 

resolution of infection and restoration of homeostasis (Feldmann and Steinman 2005). 

Studies on TNF-R-deficient mice have shed light on the role of TNF-α in the immune 

system. TNF-R1 signalling is crucial for the development and maintenance of 

lymphoid organs (Hehlgans and Pfeffer 2005). Furthermore, cessation of TNF-R1 

signalling sensitizes animals to infection with several pathogens, including bacteria, 

yeast and certain viruses (Ehlers et al. 2000; Everest et al. 1998; Flynn et al. 1995; 

Laichalk et al. 1996; Pasparakis et al. 1996; Pavic et al. 1993; Rothe et al. 1993). The 

TNF-α/TNF-R1 axis is required for the activation of various immune cells, such as 

lymphocytes and neutrophils. It also stimulates the formation and maintenance of 

granulomas, in which macrophages limit pathogen growth, at the site of 

inflammation. TNF-α induces expression of chemokines and cell adhesion molecules, 

which enable navigation of leukocytes and their migration through endothelium to the 

“inflamed tissue” (Kneilling et al. 2009). Genetic deletion of TNF-R1 precludes 

formation of splenic primary B cell follicles as well as the organization of follicular 

dendritic cell networks and germinal centres (Pasparakis et al. 1996). Moreover, TNF-

α regulates proliferation and differentiation of various immune cell-types, such as T-

cells into Th-cells (Ehlers 2003) and drives the humoral immune response to T-cell-



Introduction 

 37 

dependent antigens (Pasparakis et al. 1997; Rothe et al. 1993). The biological activity 

of TNF-α is manifested during the inflammatory process through a number of clinical 

symptoms, such as vasodilatation, oedema, blood coagulation and fever (Zelova and 

Hosek 2013). Altogether, these findings indicate that TNF-α shapes the outcome of 

the innate and adaptive immune response. 

Although TNF-R2 signalling has not received as much attention as the one 

downstream of TNF-R1, recent evidence indicates that the tmTNF-α/TNF-R2 axis 

also plays an important role in the regulation of immunity. For instance, activation of 

T cells (Aspalter et al. 2003; E. Y. Kim and Teh 2004) as well as proper proliferation 

and function of T regulatory cells (X. Chen et al. 2007) are dependent on signalling 

downstream of TNF-R2. Moreover, tmTNF-α plays a non-redundant role in the 

dendritic cells-mediated activation of natural killer (NK) cells (Xu et al. 2007). 

Finally, the above-mentioned reports point out some important and non-redundant 

immunomodulatory functions of the TNF-α/TNF-R axis that cannot be compensated 

for other proinflammatory factors.  

 

2.4. Pathophysiological role of TNF-α 

Although TNF-α plays a crucial role in the normal host immune response, 

uncontrollable TNF-α expression and signalling contributes to the pathogenesis of 

several chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, 

inflammatory bowel disease, inflammatory myopathies and various 

neurodegenerative disorders. In all of these conditions, TNF-α mediates various 

deleterious effects promoting disease development. Furthermore, elevated levels of 

the cytokine in serum correlate with pathological changes in whole body metabolism, 

such as insulin resistance and type II diabetes (Bradley 2008; Clark 2007; De Paepe et 

al. 2012; Montgomery and Bowers 2012; Van Hauwermeiren et al. 2011). 

As the TNF-α/TNF-R axis is disrupted in a number of pathological conditions, it is an 

excellent target for development of immunomodulatory therapies. Currently, four 

monoclonal TNF-α antibodies (infliximab, adalimumab, certolizumab and 

golimumab) and one TNF-R Fc fusion protein (etanercept) are on the pharmaceutical 

market. All of these inhibitors are among the most successful protein-based drugs, 

showing a remarkable clinical efficacy against various chronic inflammatory 

disorders, such as arthritis, psoriasis, Crohn’s disease and ankylosing spondylitis. 

(Croft et al. 2013; Kontermann et al. 2009). Although TNF-α antagonistic approaches 
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are becoming a part of standard therapy against arthritis and inflammatory bowel 

disease, several obstacles push researchers towards further improvement of these 

therapeutic strategies. An important subpopulation of patients exists that is refractive 

to anti-TNF-α treatment. Furthermore, long-term administration of antagonists 

promotes side effects, such as a greater predisposition to infection, congestive heart 

failure, neurologic changes or development of autoimmune disorders and tumours. 

Thus, it was proposed that selective targeting of the proinflammatory sTNF-α/TNF-

R1 axis, while keeping the immunomodulatory tmTNF-α/TNF-R2 axis intact, could 

be much more beneficial in the treatment of inflammatory disorders with elevated 

levels of TNF-α. Finally, the widespread clinical use of anti-TNF-α monoclonals is 

hampered by their complicated route of administration (injection) and relatively high 

cost (D. Tracey et al. 2008). 

 

3. Adrenergic signalling 

Norepinephrine and epinephrine are mediators of the “fight or flight response”. The 

principle aim of this evolutionary conserved reaction is to prepare the “stressed 

subject” to escape or surmount the threat by eliciting immediate and fairly brief 

changes in the functioning of individual organs, tissues and cell types. With a few 

exceptions, the two hormones exert the same effects. The action of epinephrine is 

manifested in a stimulation of metabolic activities, bronchial dilatation, and increased 

blood flow to skeletal muscles and heart, while norepinephrine has the greater 

influence on peripheral vasoconstriction and blood pressure. Overall, the ultimate aim 

of these changes is to deliver maximum energy and oxygen to muscles for combat or 

escape. 

The release of epinephrine and norepinephrine in response to various psychosocial or 

environmental stressors is a tightly regulated physiological process. Perception of 

“stress” by the high cortical centres of the brain initiates a series of impulses, which 

are relayed to the limbic system to release various neuromodulators, such as 

norepinephrine. These neuromodulators activate the hypothalamus to secrete 

corticotropin-releasing factor (CRF), which is the primary coordinator of the stress 

response as it activates the hypothalamic-pituitary-adrenal (HPA) axis and the 

sympathetic nervous system (SNS). CRF stimulates the pituitary gland to produce 

proopiomelanocortin (POMC), a polyprotein that is subsequently cleaved to form 

adrenocorticitropic hormone (ACTH), β-endorphin, and α-melanocyte stimulating 
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hormone (α-MSH). Concomitantly, CRF also triggers the locus coeruleus, a dense 

collection of neuron cells in the brain, to release norepinephrine from the sympathetic 

nerves axonal terminals. The action of norepinephrine and ACTH converges at the 

level of the chromaffin cells in the adrenal medulla, which are responsible for 

production of epinephrine and small amounts of norepinephrine (P. H. Black 2002). 

At the cellular level, the production of norepinephrine and epinephrine is also precise 

controlled. These neuroendocrine factors belong to a group of monocatecholamines. 

Both of them are synthesized from the amino acid tyrosine in a multistep biochemical 

pathway. Briefly, tyrosine is converted by tyrosine hydroxylase into L-3,4-di-

hydroxy-phenylalanine (L-DOPA). L-DOPA undergoes decarboxylation via activity 

of aromatic L-amino acid decarboxylase to produce dopamine. Hydroxylation of 

dopamine via dopamine β-hydroxylase yields in turn norepinephrine. Subsequent 

methylation of the amine group in norepinephrine by phenylethanolamine N-

methyltransferase generates the homologous catecholamine epinephrine. The fate of 

norepinephrine does not finish upon release from the axonal terminal as this 

catecholamine may undergo rapid uptake by sympathetic nerve terminal, hence 

resulting in the termination of the response. “Recycled” norepinephrine can be 

metabolized by monoamine oxidase in neuronal cells or catechol-O-methyltransferase 

in non-neuronal cells, rendering its inactive forms (Kvetnansky et al. 2009). 

It was also postulated since the earliest days of medicine that the “mind” can affect 

the severity and course of physical illness. Today, this classical paradigm is supported 

by multiple lines of evidence showing that the brain and immune system are indeed 

interconnected through the HPA axis and the SNS. Each route involves the secretion 

of various hormones, including epinephrine and norepinephrine, which in turn 

modulate, mostly suppress, multiple aspects of both innate and adaptive immune 

response, by acting on a wide variety of immune organs and cell types (Elenkov et al. 

2000; Ley et al. 2010; Nance and Sanders 2007; Padro and Sanders 2014; Powell et 

al. 2013; Sanders 2012). Furthermore, diverse non-immune cell types, such as glial 

cells display immune-like behaviour, are also targets of norepinephrine and 

epinephrine (Marino and Cosentino 2013). Finally, the communication between the 

neuroendocrine and immune system is bidirectional, meaning that the immune system 

is able to instruct the brain how to shape the course of immune response. This 

“instruction” constitutes of a wide panel of immunomodulatory factors, which are 

produced by the immunogen-activated immune cells. Importantly, some 
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immunomodulatory factors are able to traverse the blood-brain barrier (Galea et al. 

2007). Thus, a reciprocal communication between neuroendocrine and immune 

system guards homeostasis in the organism as depicted in Figure 11 (Eskandari and 

Sternberg 2002). 

 

 

3.1. Adrenergic receptors 

Norepinephrine and epinephrine specifically target adrenergic receptors (AR). There 

are two major families of adrenergic receptors: the α-ARs and β-ARs and molecular 

cloning led to identification of nine AR subtypes: α1A, α1B, α1D, α2A, α2B, α2C, β1, β2 

and β3. All of these receptors belong to the family of G-protein coupled receptors 

(GPCRs) (Philipp and Hein 2004). 

GPCRs, also known as seven transmembrane receptors, constitute the largest, the 

most ubiquitous and the most versatile class of membrane receptors. They sense a 

variety of extracellular stimuli and transduce them to diverse intracellular responses 

(Pierce et al. 2002). ARs, like all members of the GPCR family, interact with 

heterotrimeric G proteins that are composed of an α, β and γ subunit. Ligand 

triggering of the receptor induces its guanine nucleotide exchange factor activity, 

which mediates the substitution of GDP for GTP in the Gα subunits of the G protein 

and allows for its detachment from the Gβγ subunits (Neves et al. 2002). As a 

consequence, these subunits stimulate different effector molecules, thereby activating 

or inhibiting the production of a wide variety of second messengers which in turn 

initiate downstream signal transduction. Alternatively, GPCRs can induce cellular 

responses that are independent of the heterotrimeric G protein and instead involve 

members of the β-arrestin protein family (Shenoy and Lefkowitz 2011). 

Figure 11. Bidirectional 

communication between 

the nervous and immune 

system. 
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One of the ARs that attracted a lot of attention in the field of inflammation and drug 

discovery is the β2-AR (Kobilka 2011). Drugs activating the β2-AR (β2-agonists) are 

widely used in clinical practice to treat airway disorders, such as asthma and chronic 

obstructive pulmonary disease, as they provoke relaxation of airway smooth muscle 

resulting in bronchodilatation (Cazzola et al. 2011; Theron et al. 2013). On the other 

hand, nonselective β-antagonists (drugs inhibiting the activity of β1-AR and β2-AR), 

in addition to selective β1-antagonists, are employed in management of cardiovascular 

disease as they lower the heart rate and reduce blood pressure (Barrese and 

Taglialatela 2013). Recently, administration of β2-AR antagonist has been also 

suggested to have a therapeutic potential in the menagment of asthma (Thanawala et 

al. 2014). Since we have studied β2-AR-mediated effects in this thesis, the relevance 

of this receptor subtype and its downstream signalling in (patho)physiological 

conditions will be highlighted.  

In humans, the β2-AR is expressed in several organs, such as lungs, skeletal muscle 

and brain (Perez et al. 2014). Furthermore, lymphoid organs (for instance: spleen and 

thymus) and various immune cell types (for instance: lymphocytes and macrophages) 

display a high number of functional receptors (Ley et al. 2010; Nance and Sanders 

2007; Padro and Sanders 2014; Sanders 2012). Studies on knockout mice showed that 

the β2-AR is not an essential gene for prenatal and postnatal development and 

reproductive function. In fact, adult animals appear grossly normal under basal 

conditions, while β2-AR deficiency results in alteration of vascular tone and energy 

metabolism, promoting greater resistance to the stress of exercise (Chruscinski et al. 

1999). Since the report by Chruscinski and colleagues, the function of β2-AR in the 

regulation of immunity and other physiological processes has been intensively 

studied. Here, we will discuss only those studies in which the link between immunity 

and stress has been investigated. One of the earliest studies showed that β2-AR 

deficient mice have a normal adaptive immune response and possibly non-adrenergic 

mechanisms developed early in life can contribute to compensatory effects in vivo 

(Sanders et al. 2003). Furthermore, cold restrain as a psychological and physiological 

stressor does not influence the course of the innate immune response upon Listeria 

challenge in animals lacking β2-ARs. However, changes have been observed in case 

of adaptive immune response. Precisely, these animals displayed a predominance of 

the humoral over the cellular immune response that correlated with substantially 

higher production of antibodies (Emeny et al. 2007). Another report demonstrated 
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sexual dimorphism for murine leukocyte migration. Female mice recruit four times 

more leukocytes than male mice upon LPS exposure but this difference is not 

apparent in β2-AR-deficient animals (de Coupade et al. 2007). β2-AR knockout was 

shown to prevent recruitment of inflammatory cells to the lungs during asthma 

development (Nguyen et al. 2009). Finally, a recent study by Vida et al. (Vida et al. 

2011) has shown that the presence of β2-ARs on splenic regulatory lymphocytes is 

crucial to control the inflammatory response as transfer of this lymphocyte population 

from wild type to β2-ARs knockout mice could reestablish the anti-inflammatory 

potential in response to β2-agonist administration. In line, treatment with β2-agonists 

also suppressed cytokine production in an in vitro culture of wild type but not β2-ARs 

deficient splenocytes and prevented from systemic inflammation, organ damage and 

lethal endotoxic shock upon LPS challenge in wild type but not β2-ARs knockout 

animals.  

Using these full β2-AR knockout animals, the repertoire of β2-AR functions was also 

extensively studied in other tissues. For instance, it was shown that the β2-AR in 

skeletal muscle promotes clenbuterol-induced tissue hypertrophy and concomitantly 

protects from atrophy (Hinkle et al. 2002). In addition to these anabolic properties, β2-

ARs are modulators of the skeletal muscle capacity for endurance exercise (Davis et 

al. 2008). In the brain, β2-ARs deficiency has a neuroprotective effect that results 

from the downregulation of NF-κB signalling components as well as its effector 

genes. Suppression of NF-κB signalling and its target gene expression prevents the 

inflammatory and apoptotic phenotype (White et al. 2012). 

 

3.2. β2-adrenoreceptor signalling 

Signalling from the β2-AR, is prototypically initiated by either a G protein or β-

arrestin (Neves et al. 2002; Shenoy and Lefkowitz 2011).  

 

3.2.1. Signalling pathways dependent on the G protein 

According to the classical paradigm, β2-AR triggering activates coupling of the 

receptor to Gs, resulting in activation of adenylyl cyclase (AC), which converts ATP 

to cAMP (McKnight 1991). Cyclic AMP acts as a second messenger, launching either 

the cAMP-dependent protein kinase A (PKA) (Walsh et al. 1968) or the guanine 

exchange proteins directly activated by cAMP (EPACs) (de Rooij et al. 1998). 

EPACs (EPAC-1 and EPAC-2) further transduce signals though the Rap family of 
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small Ras-like GTPases (Bos 2003; Gloerich and Bos 2010). PKA is a tetrameric 

holoenzyme, composed of two regulatory (PKAr) and two catalytic subunits (PKAc), 

which in the inactive form reside in the cytoplasm. Binding of cAMP to the PKAr 

induces conformational changes resulting in release of the PKAc. Subsequently, 

PKAc targets multiple cytoplasmic and nuclear proteins bearing a consensus motif 

RRXS/T where X represents any amino acid. Some variations with regard to spacing 

and basic residue are permissible. Vicinity of phenylalanine to the phosphorylated 

motif hampers PKA-mediated phosphorylation of serine/threonine residues in the 

target protein because of steric hindrance (Ubersax and Ferrell 2007). Subsequently, 

PKA phosphorylates cytoplasmic kinases, including c-Src kinase (Schmitt and Stork 

2002) and p38 MAPK (Zheng et al. 2000) or translocates to the nucleus to 

phosphorylate the cAMP response element-binding protein (CREB transcription 

factor, which activity will be discussed later (Mayr and Montminy 2001). More 

recently, it was demonstrated that in cardiomyocytes and airway smooth muscle cells, 

the β2-AR can also couple to the Gi protein (McGraw et al. 2007; Xiao et al. 1995). 

The molecular mechanism underlying this phenomenon was investigated in Hek293T 

cells and is based on PKA-mediated phosphorylation of β2-ARs. This event serves as 

a molecular switch, changing receptor coupling from Gs to Gi, which leads to release 

of Gβγ from activated Gi and launches the c-Src/ERK1/2 signalling cascade (Daaka et 

al. 1997). Furthermore, the Gβγ subunit deriving from the Gαi/o protein was 

demonstrated to activate phosphoinositide-3-kinase (PI3K), which in turn stimulates 

Akt in cardiomyocytes (Yano et al. 2007). The most important β2-AR-dependent, G 

protein-mediated, signalling pathways are summarized in Figure 13. 

 

3.2.2. Signalling pathways dependent on β-arrestin 

Alternatively, β2-ARs can induce cellular responses that involve the members of the 

arrestin protein family. The latter comprises four members; of these, β-arrestin-1 (also 

called arrestin-2) and β-arrestin-2 (also called arrestin-3) are ubiquitously expressed, 

while arrestin-1 and arrestin-4 are exclusively present in the retina. β-arrestins were 

initially demonstrated to play an important role in attenuation of β2-AR signalling and 

receptor internalization, while recent reports point to their role as signal transducers, 

connecting ARs to multiple signalling pathways, such as p38 and ERK MAPKs and 

NF-κB. Moreover, it was also suggested that β-arrestins have a nuclear function and 

participate in the regulation of transcription (Ma and Pei 2007; Shenoy and Lefkowitz 
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2011). The most important β2-AR-dependent, β-arrestin-mediated signalling pathways 

are summarized in Figure 12. 

 

Figure 12. The main signalling cascades initiated by ligation of β2-ARs depend on interaction of the 

receptor with either a heterotrimeric G protein or β-arrestin. Coupling of the β2-AR to Gs or Gi 

proteins respectively activates or inhibits the adenylate cyclase, hence modulating intracellular cAMP 

levels and the activity of cAMP-dependent effector proteins, including PKA and EPAC. Coupling of the 

β2-AR to β-arrestin or the Gβγ subunit of Gi triggers activation of ERK and p38 MAPKs. Finally, β-

arrestin coupling promotes receptor internalization and subsequent recycling or degradation. 

 

3.2.3. cAMP response element binding protein 

The transcription factor cAMP response element binding protein (CREB) was the first 

identified transcription factor regulated by phosphorylation and this was crucial for 

expression of the somatostatin gene in PC12 pheochromocytoma cells. Since then 

CREB was shown to occupy the promoters of multiple genes bearing a cAMP 

response element (CRE). CREs typically appear as palindromic (TGACGTCA) or 

half-site (either TGACG or CGTCA) sequences (B. Mayr and Montminy 2001), 

although a small number of atypical variants have also been described in the 

literature. For instance, the IL-8 promoter possesses the CRE-like site (TGACATAA) 

with two changes from a canonical CRE consensus that are well tolerated by CREB 
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(Iourgenko et al. 2003). Another noncanonical CRE site (TTACGTAA) was 

described in the glucose-6-phosphatase gene and its sequence has been reported to 

alter CREB binding (Hornbuckle et al. 2004). It is noteworthy that half site CRE 

motifs are less active than the full CRE palindrome for CREB binding (B. Mayr and 

Montminy 2001). Furthermore, most of CRE sites are unable to bind CREB due to 

disruptive cytosine methylation within CREB-binding motif (Iguchi-Ariga and 

Schaffner 1989; Zhang et al. 2005). The ability of CREB to drive transcription further 

depends on the relative vicinity of CRE site to the TATA box (B. Mayr and 

Montminy 2001). 

CREB belongs to the family of transcription factors that encompasses also cAMP-

Response Element Modulator (CREM) and Activating Transcription Factor 1 (ATF-

1). All family members share a similar modular organisation. They all contain a 

transactivation domain (TAD) and a basic leucin zipper domain (bZIP). The bZIP 

domain is responsible for DNA binding and dimerization. The TAD contains the 

kinase-inducible domain (KID) that enables interaction with transcriptional cofactors. 

The KID is flanked by two glutamine-rich domains: the Q1 and Q2 domain, which are 

necessary to elicit the maximal transcriptional activity of CREB. Whereas Q2 

interacts with the components of the basal transcriptional machinery, Q1 interactors 

have not been identified (B. Mayr and Montminy 2001). Scheme illustrating domains 

organization in CREB is shown in Figure 13. 

 Figure 13. Structure of CREB. CREB: various phosphorylation sites are marked. Q1 and Q2 are 

glutamine-rich domains; the TAD (transactivation domain) is responsible for interaction with 

transcriptional cofactors, which occurs predominantly via the kinase-inducible domain (KID), the 

bZIP domain is responsible for DNA binding, nuclear localization, dimerization and interaction with 

transcriptional cofactors.  
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CREB is activated in response to 

the intracellular accumulation of 

cAMP via AC activity. Nuclear 

PKAc leads to phosphorylation of 

CREB at serine 133 (Figure 14). 

This event is pivotal for the 

recruitment of the transcriptional 

cofactor paralogues CBP and p300 

(Chrivia et al. 1993; Lundblad et 

al. 1995). Apart from cAMP, other 

intracellular signals, such as 

protein kinase C (PKC) or MSK-1, 

are known to modulate the 

transcriptional potential of CREB via serine 133 phosphorylation in response to a 

diverse panel of environmental stimuli (Shaywitz and Greenberg 1999). Finally, 

calmodulin-dependent kinase II (CaMKII) and ATM phosphorylate different serine 

residue within the TAD of CREB as shown in Figure 13, hampering its interaction 

with CBP/p300 (Shi et al. 2004; P. Sun et al. 1994). 

 

3.2.3.1. Regulation of CREB-dependent gene expression 

Expression of CREB-dependent genes is regulated at multiple levels. First of all, most 

of the CREs in the human genome are repressed via cytosine methylation, which has a 

disruptive effect on CREB binding (Iguchi-Ariga and Schaffner 1989; Zhang et al. 

2005). By contrast, transcriptionally active sites are primarily localized in the 

proximal promoter region, which is usually within 250 base pairs upstream to the 

transcription start site and in the close vicinity of the TATA box (Impey et al. 2004; 

Zhang et al. 2005). Furthermore, transcription from CREB-dependent promoters is 

regulated by as yet unknown epigenetic mechanisms because only a limited pool of 

CREB-occupied promoters, which contain a TATA-box, is transcribed in response to 

elevation of cAMP (Altarejos and Montminy 2011). The pattern of CREB 

phosphorylation also plays a pivotal role in the recruitment of transcriptional 

cofactors, which affects the transcriptional activity (Altarejos and Montminy 2011; B. 

M. Mayr et al. 2001). Finally, whereas it is commonly accepted that CREB is 

Figure 14. The canonical signalling pathway activated 

upon β2-AR triggering. For detailed description, we 

refer to the above-section and section dedicated to 

cAMP-response element binding protein.  
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constitutively bound to its target gene promoters and transcriptional activation 

requires its phosphorylation, several reports have demonstrated that at selected gene 

promoters, CREB is recruited by certain stimuli (Figure 12). For instance, it has been 

demonstrated that CREB is enriched at the c-fos promoter in neurons treated with 

brain-derived nuclear factor (Riccio et al. 2006), at the glucagon-responsive gene 

promoter in Hek293T treated with forskolin (Y. Wang et al. 2010) or at the IL-6 

promoter upon combinational treatment with TNF-α and isoproterenol (Spooren et al. 

2010). Finally, activation of CREB-dependent genes is terminated by 

dephosphorylation of CREB, a process regulated by the serine/threonine 

phosphatases: protein phosphatase 1 (PP1) and PP2A (B. Mayr and Montminy 2001). 

Multiple lines of evidence indicate that association of CREB with its transcriptional 

coregulators, such as CBP/p300 or cAMP-regulated transcriptional coactivators 

(CRTCs, previously referred to as transducers of regulated CREB activity (TORCs)), 

is a crucial step for its transcriptional activity (Altarejos and Montminy 2011; 

Conkright et al. 2003b; B. Mayr and Montminy 2001). It is now a well-established 

fact that phosphorylation of CREB at serine 133, which is localized within the KID, is 

crucial for interaction with the KID interaction domain (KIX) of CBP/p300 (Parker et 

al. 1998). Remarkably, although CBP and p300 bind CREB to a similar extent and 

can compensate for each other in vitro, their role in vivo was shown not to be 

completely interchangeable (Vo and Goodman 2001). Furthermore, simultaneous 

knockout of both CBP and p300 genes in mouse embryonic fibroblasts disrupts the 

expression of certain CREB target genes, such as areg or rgs2. Nevertheless, a subset 

of genes with multiple CREs, including crem, is still transcribed by CREB, probably 

due to recruitment of another group of transcriptional coregulators, namely 

CRTCs/TORCs, to those CREB-dependent promoters (Kasper et al. 2010). 

CRTCs/TORCs are a group of cofactors, which are kept in the cytoplasm through 

phosphorylation-dependent interaction with the 14-3-3 protein. Elevation of the 

intracellular levels of cAMP and calcium, but not other signalling messengers, 

promotes calcineurin-mediated dephosphorylation and nuclear entry of CRTC, which 

in turn interacts with the bZIP domain of CREB at certain promoters independently of 

serine 133 phosphorylation (Conkright et al. 2003a). Importantly, it seems that 

CBP/p300 and CRTCs/TORCs may provide a cooperative mode to induce 

transcription from CREB occupying promoters (Rarnskjaer et al. 2007).  
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3.2.3.2. Physiological and pathological role of CREB 

As evident from genome-wide studies, CREB promotes the expression of over 5000 

genes or grossly one-quarter of the mammalian genome. CRE motifs are frequently 

present in cAMP-regulated genes, with a function linked to cellular proliferation and 

differentiation, survival and regulation of metabolism and immunity (Impey et al. 

2004; Zhang et al. 2005). 

Indeed, CREB was shown to play an important role in proper functioning of highly 

metabolic tissues, such as skeletal muscle, liver, pancreas, adipose tissue and the 

brain. For instance, CREB is an essential factor for differentiation of embryonic 

skeletal muscle progenitors and survival of adult skeletal muscle. In particular, 

expression of various myogenic factors, such as Pax3, MyoD and Myf5, which 

regulate myotome formation, is dependent on the cAMP/PKA/CREB-dependent 

pathway as shown using CREB knockouts (A. E. Chen et al. 2005a). Furthermore, 

stimulation of β2-AR in skeletal muscle augments CREB-dependent expression of 

salt-inducible kinase, which in turn phosphorylates HDAC5 leading to its nuclear 

exclusion and activation of myogenic program driven by the myocyte enhancer 

factor-2 (Berdeaux et al. 2007). Activation of a CREB-dependent transcriptional 

program in both myogenic precursor cells and newly regenerating myofibers 

contributes to skeletal muscle regeneration upon acute injury (Stewart et al. 2011). 

CREB also plays an instrumental role in CNS homeostasis. It plays an important role 

in long-term memory, regulation of behaviour, food intake and drug addiction 

(Altarejos and Montminy 2011; Carlezon et al. 2005). Furthermore, CREB regulates 

neuronal activity and survival (Riccio et al. 1999). In addition, this transcription factor 

governs various processes in glial cells. In that context, CREB was shown to regulate 

the expression of neurotrophins, such as nerve growth factor (NGF), as well as 

cytokines, like for instance IL-6, which are crucial for communication between the 

nervous and immune system (Otten et al. 2000).  

As CREB is a sensor of hormonal and metabolic signals in various tissues, 

deregulation of its activity may underlie a number of pathological changes such as 

insulin resistance, hyperglycaemia, hyperinsulinaemia, and obesity (Altarejos and 

Montminy 2011). 

Finally, inflammatory stimuli can launch the p38/MSK-1 axis that promotes CREB 

activation, which in turn contributes to the induction of several inflammatory 

mediators, including various cyto-/chemokines and cell adhesion molecules (Kang et 
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al. 2008; C. Kim et al. 2008). In this context, CREB-dependent expression of these 

inflammatory mediators appears to be independent of the recruitment of the 

CBP/p300 cofactor as shown using embryonic fibroblasts from the knock-in mice 

bearing the CREB serine 133 to alanine mutation (Naqvi et al. 2014). 

 

3.2.4. Influence of the adrenergic and cAMP-dependent pathway on the 

Interferon-β enhanceosome 

The IFN-β enhanceosome is composed of four positive regulatory domains (PRD), I 

through IV, which are recognized by several transcription factors. More specifically, 

the PRDI and PRDIII are bound by various isoforms of the IRF transcription factor 

family, while PRDII and PRDIV are recognized respectively via the ATF-2/c-JUN 

and the p65-p50 NF-κB heterodimer. The highly cooperative binding of these 

transcriptional regulators enables synergistic activation of the intact IFN-β enhancer 

in response to viral infection. Interestingly, the cAMP-dependent signalling has no 

effect on the activity of the full-length IFN-β enhancer or its isolated IRF-binding site 

(Thanos and Maniatis 1995). 

Noteworthy, adrenergic signals via the PKA-dependent pathway impair TLR3-

induced IFN-β expression in both lymphoid and myeloid dendritic cells by interfering 

with transactivation of IRF binding factors. In addition to IFN-β, norepinephrine also 

supresses INF-α transcription (Collado-Hidalgo et al. 2006). In line, stimulation of β2-

AR inhibits IFN-γ production in a cAMP-dependent manner in Th1 cells (Cole et al. 

1998, Borger et al. 1998). These data corroborate the suppressive effects of adrenergic 

activation on immune response during infection (Sloan et al. 2008). 

There are also some reports showing opposite effects of adrenergic signalling on IFN-

γ expression. For instance, exposure in vitro to norepinephrine induces naive T cells 

to differentiate into Th1 cells that produced an augmented level of IFN-γ upon 

restimulation (Swanson et al. 2001). In vivo study performed in mice infected with 

Listeria monocytogenes or Mycobacterium tuberculosis showed that norepinephrine 

ensured immunoprotection by increasing the level of IFN-γ produced by CD4+ T-

cells (Alaniz et al. 1999). However, the precise molecular mechanisms remain to be 

elucidated. 

Literature lacks mechanistic reports that investigated the influence of adrenergic 

signals with cytoplasmic or nuclear events leading to IRF activation upon stimulation 

with INFs. 
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Chapter 2 

 

Mechanisms of NF-κB modulation  

by β2-AR-dependent signals 

 

Adapted from manuscript entitled: 

 “β2-adrenergic receptors in immunity and inflammation: stressing NF-κB” 

by Krzysztof Kolmus, Jan Tavernier, Sarah Gerlo 

submitted to “Brain, Behavior, and Immunity”  

 

 

 

In both physiological and pathological circumstances, cells are exposed to a wide 

variety of environmental stimuli, which intersect intracellularly and are integrated to 

ensure appropriate context-dependent gene expression. 

In this chapter, we will summarize the progress that has been made in understanding 

the molecular mechanisms of β2-AR/NF-κB crosstalk. We will show that the NF-κB 

signalling cascade provides multiple targets for negative and positive regulation by 

adrenergic signals. This chapter is organized according to the different steps in NF-κB 

activation, starting at the cell membrane and ending in the cell nucleus, at the 

promoters/enhancers of NF-κB target genes. 

 

1. Interactions at the level of plasma membrane receptors 

Wang et al. (Wang et al. 2009) showed that 

fenoterol, a selective β2-AR agonist, elicits 

translocation of β-arrestin-2 to the cell membrane 

in THP-1 monocytes. β-arrestin-2, via a non-

defined mechanism, subsequently mediates 

redistribution of TLR4/CD14 complexes in the cell 

membrane and downregulates plasma membrane 

Figure 1. Negative β2-AR/NF-κB 

crosstalk at the level of cell 

membrane. 
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display of CD14 costimulatory molecules, hampering NF-κB-dependent gene 

expression (Fig. 1). These findings suggest β2-AR activation can disrupt NF-κB 

activity already at an early step in the TLR4 signalling cascade.  

 

2. Cytosolic interactions 

 

2.1. Effects of β2-AR modulators on IKK activation and cellular IκB levels 

 

2.1.1. Inhibitory effects 

Phosphorylation of IκB by the IKKβ kinase, leading to IκB ubiquitinylation and 

proteasome-dependent degradation, is the key regulatory event in canonical NF-κB 

activation. A large body of evidence suggests β2-AR triggering attenuates NF-κB via 

upregulation of cellular IκBα levels. The inhibitory effects can be grossly divided in 

those engaging cAMP-regulated effector proteins and those involving members of the 

β-arrestin family (Gerlo et al. 2011; Ma and Pei 2007). 

 

2.1.1.1. cAMP-mediated 

The influence of β2-AR triggering on the upregulation of basal IκBα levels (Madrigal 

et al. 2006) or on the repression of stimulus-induced IκBα degradation (Gavrilyuk et 

al. 2001; Loop et al. 2004; Mortaz et al. 2008; Strell et al. 2009; Yang et al. 2010) has 

been investigated in a number of studies, using a variety of cell types and different 

stimuli to activate both NF-κB and β-AR-dependent signalling cascades (For details 

refer to Table 1) but the precise mechanism(s) explaining the observed effects have 

not been elucidated in most of these studies. 

Farmer and Pugin (Farmer and Pugin 2000) showed that in monocytic cells inhibition 

of LPS-induced NF-κB by isoproterenol is the result of elevation of intracellular IκBα 

levels. Isoproterenol had no influence on basal IκBα levels and also did not affect 

immediate LPS-induced IκBα degradation, while it significantly increased IκBα 

protein levels upon prolonged cotreatment with LPS (Fig. 2A). In line with these 

findings, norepinephrine was reported to upregulate astroglial IκBα expression in a 

dose-dependent manner at the mRNA and protein levels, hence elevating the 

threshold required for NF-κB activation (Gavrilyuk et al. 2002). Studies investigating 

molecular mechanism underlying NF-κB suppression by 2-agonists reported 
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enhanced IκBα gene transcription upon 2-AR triggering (Farmer and Pugin 2000; 

Gavrilyuk et al. 2002). The IκBα promoter contains a transcription factor binding site 

for the CREB transcription factor and it was postulated that CREB could mediate β-

agonist induced IκBα transcription (Gavrilyuk et al. 2002), yet this hypothesis was not 

supported by experimental evidence (Fig. 2B). Interestingly, whereas these 

publications indicated that the inhibitory effects of β2-agonists on IκBα degradation 

are mediated via the cAMP/PKA-dependent cascade (Farmer and Pugin 2000; 

Gavrilyuk et al. 2002), Dello Russo et al. (Dello Russo et al. 2004) proposed that 

suppressive signals could be also mediated via other cAMP-responsive proteins. 

Indeed, inhibition of the PKA pathway did not attenuate the effect of norepinephrine 

on NF-κB activity in primary microglia, leading to the speculation that an alternative 

signalling cascade is implicated. In line with this, Oldenburger et al. (Oldenburger et 

al. 2012) recently demonstrated that in airway smooth muscle cells, fenoterol, a 

selective β2-AR agonist, hampers IκBα degradation via a cAMP-dependent 

mechanism depending on the Epac proteins (Fig. 2C). 

Although upregulation of IκBα as a result of β2-AR-induced, cAMP-dependent, 

signalling appears to be a common mechanism controlling NF-κB activity, the 

molecular events behind this phenomenon remain poorly understood. It was 

postulated that in monocytes augmentation of the IκBα levels results from 

stabilization of IκBα protein (Farmer and Pugin 2000) (Fig. 2A). Nevertheless, to date 

no detailed study evaluating IκBα protein phosphorylation and ubiquitinylation was 

performed to determine where β2-AR-mediated signals interfere with the IκBα 

degradation cascade. In astrocytes, the elevated level of IκBα mRNA is independent 

of post-transcriptional events, such as mRNA stabilization, indicating transcriptional 

upregulation of IκBα levels. Intriguingly, elevated protein levels of IκBα were 

observed not only in the cytoplasm but also in the nucleus upon norepinephrine 

treatment. This observation implies that IκBα, besides inhibiting NF-κB nuclear 

translocation, might stimulate prompter nuclear export of NF-κB dimers and/or inhibit 

inflammatory gene expression via interaction with promoter-bound NF-κB (Gavrilyuk 

et al. 2002) (Fig. 2B). 
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Figure 2. Negative β2-AR/NF-κB crosstalk at the level of cytosol via the cAMP-dependent pathway. 

Fig. 2B compiles mechanisms described in two different reports. 

 

Table 1. 

Summary of reported effects of β2-AR modulators on NF-κB activity. 

Cell type or tissue β2-AR modulator NF-κB stimulus Overall effect 

on NF-κB 

activity 

Reference 

Lymphocytes 

Human T cells 

 

Clenbuterol PMA   (Loop et al. 2004) 

Isoproterenol PMA   (Loza et al. 2006) 

Norepinephrine * CD3+CD28+   (Strell et al. 2009) 

Carvedilol PMA + 

Ionomycin, H2O2 
  (Yang et al. 2003) 

Mouse B cells Terbutaline F(ab’)2 anti-IgM   (Kohm et al. 2002) 

Monocytes/Macrophages 

THP-1 

 

Isoproterenol 

Albuterol 

Fenoterol 

Epinephrine 

Norepinephrine 

LPS   (Farmer and Pugin 

2000) 

Norepineprine * None   (Bierhaus et al. 

2003) 

Norepineprine * None   (Djuric et al. 2012) 

Neutrophils 

Human 

Neutrophils 

Salmeterol Cigarette smoke 

extract 
  (Mortaz et al. 

2008) 

Mast cells  

HMC-1 Epinephrine IL-1β   (Chi et al. 2004) 

Dendritic Cells 

Mouse Dendritic 

Cells 

Salbutamol LPS   (Herve et al. 2013) 

Neurons 

Rat Primary 

Neurons 

Norepinephrine * None   (Madrigal et al. 

2006) 

Glial cells 

C6/ Rat Primary 

Astrocytes 

Norepinephrine * LPS/IFN-γ   (Gavrilyuk et al. 

2001) 

Norepinephrine * None   (Gavrilyuk et al. 

2002) 

Rat Primary Glial 

Cells 

Norepinephrine * LPS   (O'Sullivan et al. 

2009) 

Rat Primary 

Microglia 

Norepinephrine LPS   (Dello Russo et al. 

2004) 

N9/ Primary 

Microglia  

Norepinephrine 

Isoproterenol 

None   (Kong et al. 2010) 
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132.1N1 Isoproterenol 

 

 

TNF-α = (Spooren et al. 

2010b) 

Isoproterenol IL-1β, TNF-α = (Spooren et al. 

2011) 

Airway Smooth Muscle cells 

Human ASM Isoproterenol 

Formoterol 

Salmeterol 

Albuterol 

TNF-α   (Ammit et al. 2002) 

Salmeterol TNF-α   (Nie et al. 2005) 

Salbutamol IL-1β   (Kaur et al. 2008) 

hTERT-ASM/ 

Primary ASM 

Fenoterol Cigarette smoke 

extract 
  (Oldenburger et al. 

2012) 

Fibroblasts 

Bronco5 

MyoICIG7 

Salmeterol TNF-α   (Baouz et al. 2005) 

Mouse Neonatal 

Cardiac 

Fibroblasts 

Isoproterenol None   (Yin et al. 2006) 

NIH-3T3 

And other cell 

lines: 

A549, Human 

Bronchial 

Smooth Muscle, 

HEK293 

Salbutamol TNF-α   (Yang et al. 2010) 

Epithelial cells 

ACHN Terbutaline Shiga Toxin 2   (Nakamura et al. 

2001) 

Endothelial cells 

Mouse Cardiac-

Derived 

Endothelial Cells 

Isoproterenol None   (Chandrasekar et 

al. 2004) 

Mouse Aortic 

Endothelial Cells 

Isoproterenol None   (Ciccarelli et al. 

2011) 

Skeletal muscle cells 

C2C12 Myoblasts Epinephrine LPS = (Frost et al. 2004) 

Parotid gland 

Rat Parotid Gland Isoproterenol None   (Yeh et al. 2012) 

 
* Involvement of β2-AR not confirmed 

  enhanced activity  upon β2-AR (co)stimulation 

  decreased activity upon β2-AR (co)stimulation 

= no change in activity upon β2-AR costimulation 

 

2.1.1.2. β-arrestin-mediated 

Members of the β-arrestin family, acting downstream of the β2-AR, have emerged as 

important modulators of NF-κB. Both β-arrestin-1 and β-arrestin-2 bind IκBα 

directly, preventing its phosphorylation-induced proteasomal degradation (Gao et al. 

2004; Luan et al. 2005; Witherow et al. 2004). Whereas stimulation of β2-ARs in 
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multiple cellular backgrounds induces a stable physical association of β-arrestin-2 

with IκBα, the strength of the interaction between β-arrestin-1 and IκBα appears to be 

cell type-specific and in co-immunoprecipitation experiments β-arrestin-1 and IκBα 

interacted with different affinities in Hek293, HeLa and COS-7 cells. The basis of this 

cell type-specificity, however, remains to be established. In line with these findings, 

pretreatment of cells with β2-AR antagonists entirely abrogates β-arrestin-IκBα 

complex formation (Gao et al. 2004; Luan et al. 2005). Using deletion mutants, it was 

shown that the N-terminal amino acid sequence of β-arrestin-2 is essential for the 

interaction with the C-terminal region of IκBα. These data suggest that β-arrestin-2 

may impair the IκBα degradation pathway, which requires phosphorylation of four C-

terminal serine residues within the PEST domain (Gao et al. 2004). In addition, it was 

shown that in response to UV exposure, CK2 phosphorylates IκBα and other target 

proteins, including β-arrestin-2, while stimulation of β2-ARs promotes β-arrestin 

dephosphorylation. Unphosphorylated β-arrestin binds IκBα and masks its CK2 target 

sites, hence preventing its degradation and activation of NF-κB (Luan et al. 2005) 

(Fig. 3A). Yet another study showed that a non-selective β-blocker, carvedilol, 

inhibited IKKβ kinase activity, thereby preventing phorbol 12-myristate 13-acetate 

(PMA)/ionomycin-induced IκBα degradation in T cells (Yang et al. 2003) (Fig. 3B). 

The molecular events associated with suppression of IKK activity remain to be 

established but they probably rely on the induction of β-arrestin by this biased agonist 

for β-AR In conclusion, β-arrestin appears to act as a negative regulator of NF-κB. 

 

Figure 3. Negative β2-AR/NF-κB crosstalk at the level of cytosol via β-arresting. Fig. 3A represent the 

action of β2-AR agonists, while Fig. 3B depicts the action of an antagonist. 

 

2.1.2. Stimulatory effects. 

Few reports describe activation of canonical NF-κB signalling by β2-AR stimulation. 

For instance, Chandrasekar et al. (Chandrasekar et al. 2004) showed that β2-AR 

triggering activates NF-κB in cardiac endothelial cells. At the molecular level, 
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signalling was initiated by the Gβγ subunit of the Gi/o protein and involved activation 

of the PI3K/Akt pathway, which in turn activated the IKKβ kinase. The latter resulted 

in NF-κB-dependent expression of IL-18 (Fig. 4A). Stimulation of NF-κB activity by 

β-agonists was also reported in N9 microglia cells, where β2-AR-dependent activation 

of the p38 MAPK, promoted degradation of IκBα and consequently activated NF-κB-

driven transcription of the mouse formyl peptide receptor (mFPR2) gene (Kong et al. 

2010) (Fig. 4B). 

 

 

 

 

 

 

 

Figure 4. Positive β2-AR/NF-κB crosstalk in the cytosol. 

 

2.2. Effects of β2-AR modulators on the function of NF-κB subunits 

In addition to the above-described reports of β2-AR-mediated regulation of NF-κB at 

the level of the IκB inhibitor protein, several reports showed that β2-AR stimulation 

mitigates NF-κB nuclear translocation, DNA binding and transcriptional activity, in 

both immune (Farmer and Pugin 2000; Herve et al. 2013; Loop et al. 2004; Loza et al. 

2006; Mortaz et al. 2008; Strell et al. 2009; Yang et al. 2003) and non-immune cell 

types (Baouz et al. 2005) (For details refer to Table 1). In many cases NF-κB activity 

was measured via electrophoretic mobility shift assay (EMSA), which assesses DNA 

binding, or using microscopy to image NF-κB localization in the cell. However, in 

most of these studies, the exact level of the β2-AR/NF-κB crosstalk was not 

established. Nevertheless, some reports indicate that regulatory events occur 

downstream of the release of NF-κB from its inhibitor. 

In renal tubular epithelial cells, treated with Shiga toxin, β2-AR triggering modulates 

NF-κB activity via cooperation of the cAMP/PKA pathway, which inhibits the DNA 

binding ability of the p65 subunit, and an unidentified cAMP/PKA-independent 

pathway that represses p50 DNA binding (Nakamura et al. 2001) (Fig. 5A). Whereas 

β2-AR stimulation is prototypically associated with cAMP-dependent activation of 

PKA or Epac, Yin et al. (Yin et al. 2006) demonstrated that in cardiac fibroblasts, the 

isoproterenol-induced increase in cAMP, via an unidentified cAMP effector, leads to  
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the activation of the p38 MAPK, which in turn enhances NF-κB DNA binding and IL-

6 expression (Fig. 5B). Also, in THP-1 monocytic cells, norepinephrine treatment 

promotes activation of the PI3K, the Ras/Raf, ERK1/2 and the p38/JNK pathway and 

inhibition of these kinases reduces NF-κB DNA-binding and IL-6 transcription 

(Bierhaus et al. 2003) (Fig. 5C). Another study, also in THP-1 cells, showed that 

norepinephrine simultaneously activates p38 MAPK, protein kinase C (PKC) and 

PI3K, which promote nuclear entry and enrichment of, respectively, p65, c-Rel and 

p50 NF-κB complexes, at target gene promoters. Via chromatin immunoprecipitation 

(ChIP), it was furthermore demonstrated that this control of individual NF-κB 

subunits by diverse signalling proteins is crucial for selective regulation of 

inflammatory gene expression, such as intracellular adhesive molecule 1 (ICAM-1), 

tissue factor (TF) and manganese superoxide dismutase (MnSOD). How the different 

kinases modulate the activity of the different NF-κB family members was however 

not established (Djuric et al. 2012) (Fig. 5D). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Influence of β2-AR signals on the activity of NF-κB subunits. 

 

3. Nuclear interactions 

 

3.1. Effects of β2-AR modulators on enhanceosome formation 

The efficient transcription of many genes requires formation of an enhanceosome 

structure, composed of multiple transcription factors, cofactors and the basal 

transcriptional machinery, which is essential for fine-tuning and selectivity of gene 

expression (Kim and Maniatis 1997). The formation of enhanceosome-like structures 
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has also been described at prototypical NF-κB-dependent target genes such as the pro-

inflammatory cytokine Interleukin-6 (IL-6) (Vanden Berghe et al. 1999) and several 

chemokines (Richmond 2002). Ample evidence suggests that β-agonists modulate the 

composition of the IL-6 enhanceosome. Using IL-6 promoter mutants, it was 

demonstrated that in airway smooth muscle cells β-agonists potentiate TNF-α-induced 

IL-6 transcription via an additive effect between κB and CRE response elements 

(Ammit et al. 2002). In accordance, we found that in astrocytes and skeletal muscle 

cells β2-AR/TNF-R1 coactivation results in enhanced accumulation of NF-κB and 

CREB transcription factors at the IL-6 promoter, and that this leads to cooperative 

recruitment of the transcriptional coactivator CBP and components of the basic 

transcriptional machinery, hence promoting transcriptional synergy (Spooren et al. 

2010b) (Fig. 6). These findings are in contrast with previous studies demonstrating 

competition between NF-κB and CREB for a limiting amount of CREB-binding 

protein (CBP) (Parry and Mackman 1997). Importantly, the synergy observed at the 

IL-6 promoter did not occur at other NF-κB target genes, such as IL-8, ICAM-1 or 

VCAM-1, indicating it is a gene-selective event unique for a subset of NF-κB-

dependent target gene promoters (Spooren et al. 2010b). 

Figure 6. β2-AR/NF-κB crosstalk in the nucleus. 

CBP is an essential component of NF-κB enhanceosomes. Interestingly, upon TLR4 

triggering, PKA, a key mediator of β2-AR signalling, was shown to phosphorylate the 

p65 subunit at serine 276 and this was essential for recruitment of CBP and NF-κB-

induced transcriptional activation (Zhong et al. 1997; Zhong et al. 1998). Although in 

the original report of Zhong et al. (Zhong et al. 1997), PKA phosphorylated p65 in an 

unusual, cAMP-independent manner, several more recent studies have reported p65 

phosphorylation at serine 276 in cells treated with cAMP-elevating agents (Gao et al. 

2010; Moon et al. 2011; Yoon et al. 2008). As in many studies the role of p65 serine 

276 phosphorylation is solely supported by the use of phosphospecific antibodies, the 

specificity of which has however been questioned, whether the cAMP/PKA cascade 
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promotes serine 276 phosphorylation of p65 is still controversial (Herkenham et al. 

2011; Spooren et al. 2010a). Also, whether β2-agonist-activated PKA can 

phosphorylate p65 at serine 276 remains to be elucidated. 

 

3.2. Epigenetic effects induced by β2-AR modulators  

A wealth of evidence is available on epigenetic regulation of NF-κB-dependent gene 

transcription (Bhatt and Ghosh 2014; Vanden Berghe et al. 2006) and recent studies 

indicate that signals transduced via the β2-AR can also modulate NF-κB-dependent 

gene transcription at the chromatin level. Kohm et al. (Kohm et al. 2002) showed that 

β2-AR/BCR coactivation of B-cells launches multiple intracellular kinases, including 

PKA, PKC, p38, and an unidentified protein tyrosine kinase (PTK), that promote 

cooperative binding of NF-κB, SP1 and Transcription Factor II D (TFIID) associated 

with the recruitment of chromatin remodelling complexes, promoting B7-2 (CD86) 

gene expression (Fig. 7A). Frost et al. (Frost et al. 2004) found that cotreatment of 

C2C12 skeletal muscle cells with LPS/epinephrine promoted IL-6 transcriptional 

synergy that unexpectedly was associated with histone deacetylation. They 

furthermore showed that the JNK MAPK, acting downstream of both TLR4 and β2-

AR, was required for the transcriptional response (Fig. 7B). Finally, Nie et al. (Nie et 

al. 2005) showed that salmeterol prevents TNF-α-induced histone H4 acetylation at 

the promoter region of the chemokine eotaxin. This, in turn, hampers p65 subunit 

recruitment to the promoter, reducing eotaxin gene expression. Interestingly, these 

effects appear to be gene selective, as β2-AR costimulation did not interfere with 

chromatin loosening and p65 recruitment to the IL-8 promoter (Fig. 7C).  

Figure 7. Nuclear β2-AR/NF-κB crosstalk involving epigenetic events. 

 

3.3. Effect of β2-AR modulators on NF-κB-dependent gene expression 

In Table 2, we have summarized the reported effects of (nor)epinephrine and 

pharmacological ligands of 2-ARs on the expression of selected NF-κB target genes. 
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Effects have been reported in different immune cell types, but also in non-immune 

cells, such as glia, fibroblasts, epithelial and endothelial cells and smooth and skeletal 

muscle cells. As evident from the Table, the transcription of several prototypical NF-

κB target genes, such as IL-2, IL-8 and TNF-α, appears to be consistently inhibited by 

2-agonists, while the effects on other targets, like for instance IL-6, IL-10 and IL-13, 

are less uniform. Interestingly, IL-6, IL-8, IL-13, CXCL-2, CXCL-3, B7-2 and COX-

2 genes undergo synergistic expression upon co-activation of 2-ARs and the NF-κB 

pathway in various cell types. 

 

Table 2. 

Summary of reported effects of β2-AR agonists on NF-κB target gene expression. 

Effect on 

target gene 

expression 

Cell type NF-κB stimulus β2-AR ligand Reference: 

Cytokines, chemokines and complement components 

C3 

- 132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

CCL-5 / RANTES 

- Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

132.1N1,  

Rat Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

CXCL-2 / MIP-2α 

++ 132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

CXCL-3 / MIP-2β 

++ 132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

CXCL-10 / IP-10 

- Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

Neutrophil elastase 

= Human 

Neutrophils 

Cigarette smoke extract Salmeterol (Mortaz et al. 

2008) 

Eotaxin 

- Human Airway 

Smooth Muscle 

TNF-α Salmeterol (Nie et al. 2005) 

IL-1β 

+ Rat Cortex None Clenbuterol  (McNamee et al. 

2010) 

- LPS Clenbuterol (McNamee et al. 
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2010) 

- Rat Primary 

Glial Cells 

LPS Norepinephrine (O'Sullivan et al. 

2009) 

IL-1ra 

+ 

 

Rat Cortex None Clenbuterol (McNamee et al. 

2010) 

LPS Clenbuterol (McNamee et al. 

2010) 

IL-1RII 

+ Rat Cortex None Clenbuterol (McNamee et al. 

2010) 

LPS Clenbuterol (McNamee et al. 

2010) 

IL-2 

- 

 

Human T-cells Phytohemagglutinin 

Concanavalin A 

α-CD3/α-CD28 mAb 

Carvedilol (Yang et al. 

2003) 

PMA+Calcimycin 

α-CD3/α-CD28 mAb 

Isoproterenol (Loza et al. 

2006) 

α-CD3/α-CD28 mAb Norepinephrine (Strell et al. 

2009) 

Mouse 

Dendritic Cells 

LPS Salbutamol (Herve et al. 

2013) 

IL-4 

- Human T-cells Phytohemagglutinin 

Concanavalin A 

α-CD3/α-CD28 mAb 

Carvedilol (Yang et al. 

2003) 

IL-6 

+++ HMC-1 IL-1β Epinephrine (Chi et al. 2004) 

C2C12 

Myoblasts 

LPS Epinephrine (Frost et al. 

2004) 

132.1N1 TNF-α Isoproterenol (Spooren et al. 

2010b) 

132.1N1 IL-1β, TNF-α Isoproterenol (Spooren et al. 

2011) 

132.1N1,  

Rat Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

++ Human Airway 

Smooth Muscle 

TNF-α Isoproterenol 

Formoterol 

Salmeterol 

Albuterol 

(Ammit et al. 

2002) 

+ THP-1 None Norepineprine (Bierhaus et al. 

2003) 

Mouse Neonatal 

Cardiac 

Fibroblasts 

None Isoproterenol (Yin et al. 2006) 

- Bronco5 

MyoICIG7 

TNF-α Salmeterol (Baouz et al. 

2005) 

Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

= Human Airway 

Smooth Muscle 

IL-1β Salbutamol (Kaur et al. 

2008) 

IL-8 / CXCL-8 

+++ HMC-1 IL-1β Epinephrine (Chi et al. 2004) 

= Human Airway 

Smooth Muscle 

TNF-α Salmeterol (Nie et al. 2005) 

Human Airway IL-1β Salbutamol (Kaur et al. 
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Smooth Muscle 2008) 

- THP-1 LPS Isoproterenol (Farmer and 

Pugin 2000) 

Human T-cells PMA Clenbuterol (Loop et al. 

2004) 

Human 

Neutrophiles 

Cigarette smoke extract Salmeterol (Mortaz et al. 

2008) 

A549, Human 

Bronchial 

Smooth Muscle 

TNF-α Salbutamol (Yang et al. 

2010) 

132.1N1 TNF-α Isoproterenol (Spooren et al. 

2010b) 

hTERT-Airway 

Smooth Muscle/ 

Primary Airway 

Smooth Muscle 

Cigarette smoke extract Fenoterol (Oldenburger et 

al. 2012) 

IL-10 

+ Mouse 

Dendritic Cells 

LPS Salbutamol (Herve et al. 

2013) 

- Human T cells 

 

PMA Clenbuterol (Loop et al. 

2004) 

Phytohemagglutinin 

Concanavalin A 

α-CD3/α-CD28 mAb 

Carvedilol (Yang et al. 

2003) 

IL-12 

- Mouse 

Dendritic Cells 

LPS Salbutamol (Herve et al. 

2013) 

IL-13 

+++ HMC-1 IL-1β Epinephrine (Chi et al. 2004) 

+  Human T- cells 

 

PMA Isoproterenol (low 

doses) 

(Loza et al. 

2006) 

- PMA Isoproterenol (high 

doses) 

(Loza et al. 

2006) 

IL-18 

+ Mouse Cardiac-

Derived 

Endothelial 

Cells 

None Isoproterenol (Chandrasekar et 

al. 2004) 

INF-γ 

- Human T- cells PMA Isoproterenol (Loza et al. 

2006) 

Phytohemagglutinin 

Concanavalin A 

α-CD3/α-CD28 mAb 

Carvedilol (Yang et al. 

2003) 

TNF-α 

- THP-1 LPS Isoproterenol (Farmer and 

Pugin 2000) 

ACHN Shiga Toxin 2 Terbutaline (Nakamura et al. 

2001) 

Rat Primary 

Glial Cells 

LPS Norepinephrine (O'Sullivan et al. 

2009) 

Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

Rat Cortex, 

Hippocampus 

LPS Clenbuterol (Ryan et al. 

2013) 

= C2C12 

Myoblasts 

LPS Norepinephrine (Frost et al. 

2004) 

Growth factors 

GM-CSF 
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- Human Airway 

Smooth Muscle 

IL-1β Salbutamol (Kaur et al. 

2008) 

VEGF 

+ Primary 

Endothelial 

Cells 

None β2-AR deficiency (Ciccarelli et al. 

2011) 

Adhesion molecules 

ICAM-1 

+ THP-1 None Norepineprine (Djuric et al. 

2012) 

- Human Airway 

Smooth Muscle 

IL-1β Salbutamol (Kaur et al. 

2008) 

132.1N1 TNF-α Isoproterenol (Spooren et al. 

2010b) 

Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

Rat Cortex, 

Hippocampus 

LPS Clenbuterol (Ryan et al. 

2013) 

132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

VCAM-1 

- 132.1N1 TNF-α Isoproterenol (Spooren et al. 

2010b) 

- 132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

Immunoreceptors 

CD40 

- Rat Primary 

Glial Cells 

LPS Norepinephrine (O'Sullivan et al. 

2009) 

- Rat Cortex LPS Clenbuterol (McNamee et al. 

2010) 

CD86/ B7-2 

+++ Mouse B-cells F(ab’)2 anti-IgM Terbutaline (Kohm et al. 

2002) 

FPR2 

+ N9/ Mouse 

Primary 

Microglia  

None Norepinephrine 

Isoproterenol 

(Kong et al. 

2010) 

TF/ CD142/ Tromboplastin 

+ THP-1 None Norepineprine (Djuric et al. 

2012) 

Enzymes 

COX-2 

+++ 132.1N1 TNF-α Isoproterenol (Spooren et al. 

2010b) 

iNOS/ NOS2 

- Rat Primary 

Microglia 

LPS Norepinephrine (Dello Russo et 

al. 2004) 

- Rat Primary 

Glial Cells 

LPS Norepinephrine (O'Sullivan et al. 

2009) 

MMP-2 

= Human 

Neutrophils 

Cigarette smoke extract Salmeterol (Mortaz et al. 

2008) 

MMP-9 

= Human Cigarette smoke extract Salmeterol (Mortaz et al. 
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Neutrophils 2008) 

MnSOD 

+ THP-1 None Norepineprine (Djuric et al. 

2012) 

Modulators of NF-κB signalling pathway components 

A20 

= 132.1N1, Rat 

Primary 

Astrocytes, Rat 

Brain Tissue 

TNF-α Clenbuterol (Laureys et al. 

2014) 

IκBα 

+ C6/ Rat Primary 

Astrocytes 

None Norepineprine (Gavrilyuk et al. 

2002) 

Rat Primary 

Microglia 

LPS Norepinephrine (Dello Russo et 

al. 2004) 

Rat Primary 

Neurons 

None Norepinephrine (Madrigal et al. 

2006) 

Rat Cortex None Clenbuterol  (McNamee et al. 

2010) 

Rat Cortex, 

Hippocampus 

None Clenbuterol  (Ryan et al. 

2013) 

= Rat Primary 

Astrocytes 

LPS+IFN-γ Norepinephrine (Gavrilyuk et al. 

2001) 

C2C12 

Myoblasts 

LPS Epinephrine (Frost et al. 

2004) 

- C6 LPS+IFN-γ Norepinephrine (Gavrilyuk et al. 

2001) 

 

+ upregulation upon β2-AR (co)stimulation 

++  additive effect upon β2-AR costimulation 

+++  synergistic effect upon β2-AR costimulation 

-  inhibition upon β2-AR costimulation 

= no change upon β2-AR costimulation 
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Chapter 3 

 

Molecular biology of IL-6 

 

In the present thesis, we have used the IL-6 gene as a model system to explore the 

nuclear crosstalk events associated with the coactivation of the β2-AR/NF-κB 

signalling cascades. 

 

1. Interleukin-6 

IL-6 was originally discovered as a lymphocyte-derived factor that stimulates the final 

maturation of B-cells to immunoglobulin-secreting plasma cells (Muraguchi et al. 

1981). Since then, the cytokine has been linked to a dizzying array of 

immunomodulatory functions (Scheller et al. 2011). Its multifunctionality is reflected 

in a wide number of alternative names (interferon-β2, B-cell stimulatory factor 2, 

hepatocyte stimulatory factor, myeloma/plasmocytoma growth factor, macrophage-

granulocyte-inducing factor and T-cell-replacing factor) that had been assigned to this 

cytokine by different investigators before the research community realised that it is 

one and the same factor (Wolvekamp and Marquet 1990). Today, IL-6 is known to 

regulate various aspects of the immune response and deregulation of its expression 

was observed in several disease processes (Tanaka and Kishimoto 2012; Yao et al. 

2014). Naugler and Karin (Naugler and Karin 2008) compare IL-6 to “the wolf in 

sheep’s clothing”, where IL-6 is “the sheep” in a physiological immune response but 

becomes “the wolf” when its expression is persistently elevated as in chronic 

inflammatory conditions. Furthermore, mounting evidence indicates that IL-6 is an 

important player in the regulation of whole body metabolism (Hoene and Weigert 

2008; Pedersen and Febbraio 2005; Pedersen and Febbraio 2008). 

 

2. Regulation of IL-6 expression 

In homeostatic conditions, IL-6 levels are low, while during inflammation, disease 

processes, psychosocial stress and upon exercise, the amounts of the cytokine are 

rapidly and substantially elevated. Multiple cell types have been shown to produce 

and secrete IL-6. Whereas monocytes and macrophages are the primary source of this 

cytokine at the site of acute inflammation, IL-6 in chronic inflammatory conditions 
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additionally derives from T-cells (Naugler and Karin 2008). Furthermore, in the 

resting state, adipocytes are the chief producers of systemic IL-6 (Kern et al. 2001; 

Mohamed-Ali et al. 1997), while upon exercise skeletal muscle produces substantial 

amounts of IL-6 (Steensberg et al. 2002). Finally, in the CNS, both glial cells and 

neurons constitute a source of IL-6 (Spooren et al. 2011). 

The stimuli that trigger IL-6 production, just like in the case of TNF-α, include 

multiple cytokines, growth factors, PAMPs and DAMPs. Furthermore, various 

hormones, such as epinephrine, and neurotransmitters, like for instance 

norepinephrine, substantially elevate IL-6 production (Naugler and Karin 2008; 

Tanaka et al. 2014; Vanden Berghe et al. 2000). 

The human IL-6 gene is over 6000 base pairs long and has been mapped to 

chromosome 7p21. It consists of six exons and gives rise to ten alternative transcripts. 

IL-6 expression is regulated at the transcriptional and posttranscriptional levels, and 

separate sections will be devoted to these events. Human IL-6 is produced as a 20 

kDa protein which includes a short signal peptide marking the protein for secretion. 

Before secretion, the cytokine undergoes glycosylation that accounts for the 21-26 

kDa size of the native IL-6 protein. Mature IL-6 has four-α helix structure connected 

by three loops (Kishimoto 1989; Tanaka et al. 2014). 

IL-6 transduces its biological activity via the classical or alternative signalling 

pathway. In the classical cascade, the cytokine binds to its membrane-bound receptor 

(IL-6Rα), while in the alternative pathway, signalling is initiated via a soluble form of 

this receptor (sIL-6Rα) present in serum. IL-6Rα (also known as gp80 or CD126) by 

itself is unable to transmit signals. Moreover, in contrast to other soluble forms of 

receptors, such as those for IL-1β and TNF-α, sIL-6Rα exhibits agonistic but not 

antagonistic properties (Heinrich et al. 2003). How sIL-6Rα is generated is not 

entirely clear, however, it was postulated that it involves alternative splicing (Lust et 

al. 1992) or proteolytic cleavage of the receptor expressed on the cell surface by 

ADAM10 and ADAM17 proteases (Chalaris et al. 2010; Matthews et al. 2003). Both 

soluble and membrane-anchored IL-6Rα interact with gp130, which functions as a 

signal transducer protein. An additional level of complexity is added by the existence 

of a soluble form of gp130 (sgp130), which was proposed to act as a negative 

regulator of IL-6 signalling. Specifically, sgp130 binds preformed IL-6/sIL-6Rα 

complexes in the serum and prevents their interaction with membrane bound gp130, 
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which is a key component to initiate intracellular signalling (Heinrich et al. 2003; 

Scheller et al. 2011). IL-6 signalling mechanisms are summarized in Figure 1. 

 

Figure 1. IL-6 signalling mechanisms. Secreted IL-6 can initiate the classical or alternative signalling 

pathway. In the classical signalling cascade, the cytokine binds to the membrane anchored IL-

6Rα/gp130 complexes to induce intracellular events. Alternatively, IL-6 is “caught” by the sIL-6Rα to 

form complexes that together trigger the membrane-bound gp130 to initiate intracellular signalling. 

Additionally, the alternative IL-6 signalling cascade can be fine-tuned by a soluble form of gp130, 

which displays antagonist properties. 

 

3. IL-6 signalling pathways 

At the cellular level, binding of IL-6 to its receptor induces homodimerization of the 

gp130 signal transducer protein. Dimerization of gp130 engenders recruitment of 

Janus kinases (JAK1 and JAK2), which in turn phosphorylate specific tyrosine 

residues in the intracellular portion of gp130 forming a platform for recruitment of the 

Signal Transducer and Activator of Transcription (STAT) transcription factor. 

Subsequently, JAKs phosphorylate STATs. Phosphorylated STAT dimerizes and 

translocates from the cytoplasm to the nucleus, where it controls a transcriptional 

program of genes containing STAT-responsive elements (Heinrich et al. 2003). In the 

context of immunity, the STAT-3 family member is responsible for the vast majority 

of the IL-6-induced responses. STAT-3 promotes expression of genes involved in 

proliferation, differentiation and apoptosis. Furthermore, STAT-3 drives expression of 

negative regulators of IL-6 signalling, such as suppressor of cytokine signalling 3 

(SOCS-3) (Aggarwal et al. 2009). 
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IL-6 also induces other intracellular responses. For instance, the cytokine engenders 

the JAK-mediated binding of SHP2, a protein-tyrosine phosphatase, which in this 

case forms a bridge to Growth-Factor-Receptor-Bound Protein 2/Son of Sevenless 

(Grb2/SOS) that in turns promotes the signalling via the Ras/Raf/ERK1/2 signalling 

axis culminating in the activation of the transcription factor C/EBPβ. Alternatively, 

IL-6 stimulates the PI3K/Akt signalling pathway. Activated Akt can launch the 

classical NF-κB signalling cascade (Heinrich et al. 2003). Intracellular events 

downstream of IL-6R are depicted in Figure 2. 

 

 

Figure 2. Intracellular events upon formation of the IL-6/(s)IL-6Rα/gp130 complexes. Assembly of 

complexes is followed by the recruitment of JAK, series of phosphorylation events, dimerization of 

STATs and its nuclear entry. Alternative signalling pathways promote activation of NF-κB or C/EBPβ 

transcription factors. 

 

4. Physiological role of IL-6 

Substantial insight into the role of IL-6 in immunity has been provided by studies on 

IL-6 knockout mice. Although, animals with genetic deletion of IL-6 develop 

normally, they display a markedly impaired response to infection due to abolishment 

of the acute-phase response mediated by the liver and a severe defect in T-cell-

dependent antibody production (Kopf et al. 1994). Another study using IL-6 
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knockouts demonstrated that IL-6 is a crucial mediator of the localized inflammatory 

response and lack of IL-6 can be compensated to a certain extent by TNF-α (Fattori et 

al. 1994). In line with the above, the IL-6 knockout animals are resistant to the 

development of B lineage neoplasm indicating an essential role of the cytokine in the 

development of these tumours in vivo (Hilbert et al. 1995). 

Furthermore, IL-6 is a crucial factor mediating the switch from the initiatory innate 

immune response to the more focused adaptive immune response. In that context, the 

cytokine orchestrates the shift of leukocyte populations from predominantly 

neutrophilic to mainly monocytic via upregulation of CXC and CC motif chemokine 

expression (Hurst et al. 2001). Accumulating evidence shows that IL-6 is also 

important for regulating T-cell differentiation. For instance, IL-6 induces 

differentiation of CD8+ T cells into cytotoxic T cells (Okada et al. 1988). 

Furthermore, the cytokine together with TGF-β promotes development of Th17 

lymphocytes from naive T cells, while in the absence of IL-6, cell differentiation 

towards the suppressive T regulatory population dominates (Bettelli et al. 2006). 

Whereas T regulatory lymphocytes contribute to progressive quenching of the 

immune response, via the production of among others IL-10 and TGF-β, Th17 

lymphocytes have a proinflammatory action via secretion of substantial amounts of 

IL-17 (Park et al. 2005). Deregulation of the balance between these populations 

underlies the development of various pathological conditions (Bettelli et al. 2006). 

Finally, IL-6 governs differentiation of follicular T helper cells as well as the 

production of IL-21, which regulates antibody production (Ma et al. 2012). Hence, 

IL-6 modulates the immune response at multiple levels acting at diverse cell 

populations. 

In addition to its role in immunity, IL-6 is an important regulator of other 

physiological processes. In this thesis, we have studied regulation of IL-6 expression 

in skeletal muscle and brain. Thus, the role of this cytokine will be exemplified on 

these organs. IL-6 is synthesized and secreted from skeletal muscle in response to 

exercise and this muscle-derived cytokine was show to modulate several metabolic 

processes within skeletal muscle as well as other organs acting in a hormone-like 

manner. Whereas locally acting IL-6 increases muscles glucose uptake and fat 

oxidation, upon release into the circulation, it potentiates hepatic glucose production 

or lipolysis in adipose tissue (Pedersen and Febbraio 2008). Mounting evidence also 

shows the importance of IL-6 in the process of hypertrophic muscle growth and 



Introduction 

 83 

myogenesis (Munoz-Canoves et al. 2013). In the CNS, IL-6 also displays variegated 

functions. This cytokine is one of the regulators of appetite, energy expenditure and 

body composition (K. Wallenius et al. 2002a). Furthermore, IL-6 promotes 

proliferation, differentiation and regeneration of neurons, influences neuronal activity, 

secretion of neurotransmitters to synaptic cleft and finally affects the cellular fate of 

neuronal stem, progenitor and differentiated cells (Spooren et al. 2011). 

 

5. Pathophysiological role of IL-6 

Accumulating evidence indicates that elevated levels of IL-6 are associated with the 

development of multiple chronic inflammatory and autoimmune diseases, such as 

rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, asthma, various 

neurodegenerative disorders as well as conditions leading to skeletal muscle wasting 

(Carson and Baltgalvis 2010; Naugler and Karin 2008; Spooren et al. 2011). In 

support of these observations, studies on IL-6 knockout mice indicate that blockage of 

IL-6 signalling could have therapeutic potential for the treatment of multiple sclerosis 

and rheumatoid arthritis (Ohshima et al. 1998; Samoilova et al. 1998). Furthermore, 

elevated serum levels of IL-6 have been measured in patients with obesity and insulin 

resistance (Kern et al. 2001). On the other hand, IL-6 deficiency was also reported to 

have a substantial impact on the development of mature-onset obesity due to 

increased expression of muscle and adipocyte-derived factors that participate in the 

formation of acylation-stimulating protein (ASP), a cleavage product of the C3 

complement component. ASP stimulates synthesis and uptake of triacylglycerol by 

adipocytes, hence contributing to development of obesity in IL-6 knockout mice (V. 

Wallenius et al. 2002b; Wernstedt et al. 2006). Finally, a progressive increase in IL-6 

expression is observed during aging (Maggio et al. 2006; Sarkar and Fisher 2006). 

The primary initiator of the abovementioned conditions remains obscure, however, a 

milieu rich in inflammatory mediators, including IL-6, is present in all. Furthermore, 

these disease processes are often associated with elevated levels of TNF-α and 

enhanced NF-κB activity. Both factors are well-known upstream regulators of IL-6 

expression (Naugler and Karin 2008). Thus, expression of IL-6 and the IL-6/(s)IL-

6Rα signalling axis appears to be a promising targets for therapeutic intervention. 

Administration of corticosteroids and non-steroidal anti-inflammatory drugs is 

routinely used for the treatment of chronic inflammatory and autoimmune diseases 

with elevated levels of IL-6 (Ataie-Kachoie et al. 2013; Yao et al. 2014). Although 
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these drugs effectively interfere with inflammatory process via suppression of 

multiple inflammatory mediators, more selective anti-IL-6 therapies are available or 

are under development. Tocilizumab is the only monoclonal antibody-based IL-6Rα 

inhibitor currently available on the pharmaceutical market and this monoclonal 

antibody is used for treatment of rheumatoid arthritis. Clinical responsiveness to this 

drug was also demonstrated for other chronic inflammatory disorders, such as 

Castleman’s disease and systemic juvenile idiopathic arthritis. Furthermore, it is 

expected to be applicable for various other autoimmune and chronic inflammatory 

disorders (Tanaka and Kishimoto 2012). At the molecular level, it neutralizes IL-6-

mediated activities by blocking the binding site in both sIL-6Rα and membrane-

bound IL-6Rα (Mihara et al. 2005). Additionally, several therapeutic interventions 

based on monoclonal antibodies targeting IL-6 or IL-6Rα are in clinical trials. 

Examples include Sarilumab, which is also designed to interfere with the signalling 

originating from IL-6Rα, or Olokizumab, Sirukumab, Siltuximab and Clazakizumab 

that specifically target the IL-6 cytokine. As these protein inhibitors show clinical 

efficacy and are well tolerated, they constitute a promising alternative for strategies 

aimed at blocking the TNF-α/TNF-R axis. Finally, all of these drugs are developed 

primarily against rheumatic disease, while there is a gap in the testing of IL-6 

blockage strategies against other chronic/autoimmune disorders in which IL-6 levels 

are elevated (Neurath and Finotto 2011; Woodrick and Ruderman 2012).  

 

6. Molecular biology of IL-6 expression 

 

6.1. Transcriptional regulation of IL-6 

The IL-6 promoter has a unique architecture with multiple motifs that are recognized 

by various transcriptional regulators, suggesting it could serve as a platform for 

crosstalk between multiple signalling pathways. Indeed, IL-6 expression is induced by 

a wide array of environmental stimuli (Sehgal 1992), which in turn activate a panel of 

transcription factors converging their activity at the IL-6 promoter. These factors 

include among others: Nuclear Factor-κB (NF-κB), Specificity Protein-1 (SP-1), 

CCAAT/enhancer-binding protein (C/EBP), cAMP response element binding protein 

(CREB) and Activator Protein 1 (AP-1) (Dendorfer et al. 1994; Grassl et al. 1999; 

Vanden Berghe et al. 1998) (Figure 3). Among these transcription factors, NF-κB is 
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indispensable for efficient IL-6 expression (Libermann and Baltimore 1990). The 

contribution of other transcriptional regulators differs between cell types and stimuli. 

 

 

Figure 3. Schematic representation of the human IL-6 promoter. 

 

Previous studies showed that TNF-α triggering leads to assembly of an enhanceosome 

structure composed of NF-κB, CREB, C/EBP, AP-1 that are spatially organized by 

CBP at the IL-6 promoter (Vanden Berghe et al. 1999). Recently, Spooren et al. 

(Spooren et al. 2010) have reported that concurrent treatment with TNF-α and 

isoproterenol results in the assembly of enhanceosome at the IL-6 promoter to ensure 

synergistic gene expression in the human 1321N1 astrocytes. The foundations of the 

latter structure consist of NF-κB p65 subunit and CREB, which cooperatively recruit 

CBP and RNA polymerase II to ensure high rate of transcription. 

 

Figure 4. Hypothetical models of the IL-6 enhanceosomes upon TNF-α stimulation (left) (scheme 

reproduced from (Vanden Berghe et al. 1999)) and combined treatment with TNF-α/isoproterenol 

(right). 

 

Epigenetic regulation of IL-6 expression has also attracted a lot of attention. IL-6 is 

prototypically classified as a “late gene” because its transcription requires histone 

modifications and reorganization of chromatin structure within its promoter sequence. 

In that context, phosphorylation of histone H3 at serine 10 has been recurrently 

reported to promote IL-6 transcription (Anest et al. 2003; Pathak et al. 2006; Saccani 

et al. 2002; Vanden Berghe et al. 2006; Yang et al. 2008). Furthermore, histone 

acetylation has been both positively (Kim et al. 2012; Lee et al. 2013; Vanden Berghe 
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et al. 1999; Wada et al. 2014) and negatively (Frost et al. 2004; Mishra et al. 2003) 

associated with expression of IL-6, suggesting a context-dependent role of this 

modification in the regulation of gene transcription. 

 

6.2. Post-transcriptional regulation of IL-6 

At post-transcriptional level, the fate (stabilization/degradation) of IL-6 mRNA is 

controlled through both the 5’ and 3’ UTR (Anderson 2008). Whereas the 5’UTR is 

responsible for initiation of translation, the AREs localized within the 3’UTR govern 

the stability of IL-6 mRNA (Chen and Shyu 1995). Multiple RNA-binding proteins 

and microRNAs control IL-6 mRNA decay via interaction with regulatory motifs in 

the UTRs and recruitment of accessory proteins, which mediate mRNA cleavage or 

stabilization (Jing et al. 2005; Khabar 2010; Schott and Stoecklin 2010; Stoecklin et 

al. 2006).  

Several RNA-binding proteins, such as TTP, butyrate response factor-1 (BRF-1) and 

BRF-2, ARE/poly(U) binding degradation factor-1 (AUF-1), Kaposi sarcoma-

associated herpes virus open reading frame (KSRP) are implicated in regulation of IL-

6 mRNA decay (Paschoud et al. 2006; Tanaka et al. 2014; Winzen et al. 2007). 

Furthermore, various microRNAs, such as microRNA-26, microRNA-365, 

microRNA-608 and let-7, promote IL-6 mRNA degradation (Iliopoulos et al. 2009; 

Jones et al. 2009). Finally, the regulatory RNA nuclease Regnase-1 has been recently 

appointed as a new regulator of IL-6 mRNA fate and its IKK-induced degradation 

inversely correlates with IL-6 mRNA stability (Iwasaki et al. 2011). 

Oppositely, AT-rich interactive domain-containing protein 5a (Arid5a) was shown to 

selectively stabilize the IL-6 transcript in response to stimulation with inflammatory 

triggers, such as LPS, IL-1β and IL-6 itself. In addition, Arid5a counteracts the 

Regnase-1 activity on IL-6 mRNA (Masuda et al. 2013). Interestingly, HuR and 

apobec-1 complementation factor (ACF) were also reported to protect IL-6 mRNA 

from degradation (Blanc et al. 2010; Nabors et al. 2001; Zhou et al. 2007). Finally, 

the influence of KSRP on the IL-6 transcript appears to be context dependent as this 

protein was demonstrated to compete with miRNA-608 to IL-6 mRNA, thereby 

leading to its stabilization (Tanaka et al. 2014). 
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Scope of thesis 

 

NF-κB is the generic name of a family of transcription factors that regulates the 

expression of genes involved in immunity, inflammation but also other biological 

processes. In research settings, NF-κB activation is classically triggered by typical 

proinflammatory stimuli, such as LPS or TNF-α (Hayden and Ghosh 2012). Whereas 

NF-κB activation is instrumental for successful coordination of the 

immune/inflammatory response, excessive NF-κB activation is associated with the 

onset and propagation of chronic inflammatory and auto-immune diseases (Baker et 

al. 2011; DiDonato et al. 2012). In this respect, developing strategies that block NF-

κB signalling have become a major focus for research. However, the same functions 

that make NF-κB attractive for developing inhibitors for treating disease also play a 

role in homeostasis, and disruption of the NF-κB pathway during development or in 

adults has unfavourable consequences. It is this balance, between treating human 

disease and unwanted side-effects, that remains a big challenge in NF-κB drug 

discovery. Importantly, various environmental stimuli can activate/modulate NF-κB, 

and the kinetics and gene expression spectrum associated with NF-κB activation is 

highly context-dependent. Designing efficient, yet safe, NF-κB inhibitors will 

therefore require an in depth understanding of signalling crosstalk with the NF-κB 

pathway in physiological and pathological conditions (Karin 2005). 

There is overwhelming physiological evidence for immunomodulatory, mostly 

immunosuppressive, effects associated with sympathetic stress (Padro and Sanders 

2014; Powell et al. 2013, Chapter 2). The molecular basis of these effects and their 

impact on NF-κB function are however still poorly understood. As a paradigm to 

study how stress signals affect NF-κB activity, we investigated how coactivation of 

the β2-AR, a prototypical GPCR that is activated by catecholamine stress 

hormones/neurotransmitters, modulates NF-κB function. Previous work from our 

group showed that in human astrocytoma cells, β2-agonists modulate NF-κB activity 

in a gene-selective manner, via nuclear crosstalk mechanisms involving cooperation 

of NF-κB and CREB transcription factors. Importantly, we observed that the 

expression of selected NF-κB target genes, including IL-6, was synergistically 

enhanced upon β-agonist/TNF-α cotreatment, which seems counterintuitive in view of 
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previous reports mainly showing anti-inflammatory effects of adrenergic stress 

(Spooren et al. 2010). 

The aims of the present study were to extend these findings and 1) investigate 

whether the unexpected regulation we observed in astrocytes also applies to other cell 

types responsive to adrenergic stimulation, 2) further elucidate the molecular basis of 

the nuclear crosstalk between β2-AR and NF-κB. 

Therefore, in a first part of this thesis, we investigated β2-AR/TNF-α crosstalk in 

C2C12 cells, a murine model for skeletal muscle. Using this model system, we 

performed an in depth biochemical analysis of β2-AR/TNF-α crosstalk and the result 

of this crosstalk at the chromatin level. In a second part of the thesis we used a 

proteomics approach to identify nuclear factors involved in the synergistic IL-6 

transcription apparent upon TNF-α/β-agonist cotreatment. 
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Abstract 

Uncontrolled expression of Interleukin (IL)-6 in the central nervous system is a 

hallmark of neuroinflammation and is associated with the development of several 

neurodegenerative diseases. IL-6 transcription is initiated by proinflammatory stimuli, 

including the proinflammatory cytokine Tumour Necrosis Factor (TNF)-α, and 

depends on the formation of a cell-type and context-dependent enhanceosome 

structure at the IL-6 promoter. We and others previously reported that β-agonists 

potentiate IL-6 transcription in astrocytes. The molecular basis of the transcriptional 

synergy that is promoted by β-agonists is however not fully understood. We used a 

proteomics approach to identify novel components of the IL-6 enhanceosome that 

might play a role in the potentiation of IL-6 transcription by β-agonists. Using DNA 

affinity purification followed by mass spectrometry, we identified Transcription 

Enhancer Factor (TEF)-1 as a novel interactor of the IL-6 promoter. We confirmed 

the interaction in the native IL-6 promoter environment and found that TEF-1 

functions as a transcriptional repressor. The inhibitory effects of TEF-1 on IL-6 

expression probably involve modulation of chromatin remodelling and cAMP 

response element binding protein (CREB), but not Nuclear Factor (NF)-κB 

transcriptional activity. We also demonstrated that TEF-1 is a target of the 

cAMP/Protein Kinase A pathway. Finally, we observed that the action of TEF-1 as a 

repressor is gene-selective, acting only at selected pro-inflammatory gene promoters.  

 

2.1. Introduction 

During the past decade, evidence has accumulated indicating that deregulated 

interactions between glia cells and neurons are involved in the pathogenesis of 

neuroinflammation and neurodegenerative disease. The proinflammatory cytokine 

Tumour Necrosis Factor (TNF)-α is a pivotal factor driving neuroinflammation 

(Montgomery and Bowers 2012). One of the key transcription factors activated in 

response to TNF-α is Nuclear Factor (NF)-κB. NF-κB is a generic term for a family of 

transcription factors that act as dimers and share a similar structure and function 

(Hayden and Ghosh 2012). Whereas most studies have focused on the role of 

microglia in neuroinflammation, accumulating evidence also points to astrocytes as 

important effectors of inflammatory responses. Indeed, recent reports have shown the 

involvement of astrocytic NF-κB in neuroinflammatory disorders in vivo (Brambilla 

et al. 2005; van Loo et al. 2006). 
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NF-κB dimers, upon binding to specific motifs in target gene promoters, drive 

expression of a panel of inflammatory mediators (Hayden and Ghosh 2012). The 

nuclear activity of NF-κB is fine-tuned by interaction with other proteins in 

enhanceosome structures and via diverse epigenetic mechanisms (Bhatt and Ghosh 

2014; Vanden Berghe et al. 2006). NF-κB function is also modulated by crosstalk 

with other signalling pathways, which interfere with NF-κB activity at different levels 

of the signalling cascade (Oeckinghaus et al. 2011). The G-protein-coupled receptor 

(GPCR) family is the largest class of transmembrane receptors in the human genome 

and their ligands are important modulators of NF-κB function (Fraser 2008). One of 

the GPCRs that has drawn a lot of attention in the field of inflammatory research is 

the β2-adrenoreceptor (β2-AR) (Kobilka 2011). In the central nervous system (CNS), 

this receptor is targeted by the neurotransmitter norepinephrine, which is released by 

noradrenergic neurons in the locus coeruleus. Noradrenergic neurons project to 

different brain areas involved in arousal and attention. Along with epinephrine, 

norepinephrine also coordinates the “fight-or-flight response”. Interestingly, it has 

been demonstrated that locus coeruleus destruction in rodent models of Alzheimer’s 

and Parkinson’s disease promotes neuroinflammation (Marien et al. 2004), indicating 

it has an anti-inflammatory action in the brain. This is supported by several in vitro 

studies in which norepinephrine suppressed the expression of intracellular cell 

adhesion molecule-1 (ICAM-1) (Ballestas and Benveniste 1997), inducible nitric 

oxide synthase (iNOS) (Feinstein 1998) and TNF-α (Nakamura et al. 1998). 

As opposed to these studies, we observed that β2-AR triggering engenders 

bidirectional effects on NF-κB-dependent gene expression in vitro in astrocytes 

(Spooren et al. 2010) and in vivo in the CNS (Laureys et al. 2014). Whereas 

transcription of certain NF-κB targets was inhibited, expression of others, and in 

particular Interleukin (IL)-6, was synergistically potentiated. IL-6 plays an important 

role in neuroinflammation (Spooren et al. 2011). To identify enhanceosome 

components that might explain the very potent transcriptional synergy at the IL-6 

gene that is apparent upon combined triggering of β2-AR and TNF-Receptors (TNF-

R), we used a proteomics approach based on DNA affinity purification (AP) and 

identified and further validated Transcriptional Enhancer Factor (TEF)-1 as a 

repressor of IL-6 transcription, whose activity is regulated by β2-AR-dependent 

signals.  
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2.2. Materials and Methods 

2.2.1. Reagents and Antibodies 

Isoproterenol and forskolin were purchased from Sigma Aldrich (St. Louis, MO, 

USA) and used at 10 µM. Murine TNF-α was obtained from the VIB Department for 

Molecular Biomedical Research of Ghent University (VIB-UGent, Ghent, Belgium) 

and was used at 2000 IU/ml. Anti-p65 was from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Anti-Lamin A/C and anti-phospho-PKA substrate were from Cell 

Signaling Technology (Danvers, MA, USA). Anti-TEF-1 was from BD Biosciences 

(San Jose, CA, USA). Anti-Flag M2 was from Sigma-Aldrich. XbaI restriction 

enzyme and MNase nuclease were obtained from New England BioLabs (Ipswich, 

MA, USA). 

 

2.2.2. Cell culture 

The human astrocytoma cell line 1321N1 was a gift from Prof. Dr. Müller (University 

of Bonn). Human HEK293T cells were obtained from ATCC. 1321N1 and HEK293T 

cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM, Gibco by 

Life Technologies, Grand Island, NY, USA) supplemented with 10% foetal bovine 

serum (Gibco, Paisley, UK), 100 IU/ml penicillin and streptomycin (Gibco by Life 

Technologies). Cells were cultured in an incubator at 37°C in a humidified 

atmosphere containing 5.5% CO2. Cells were passaged using 0.05% Trypsin-EDTA 

(Gibco by Life Technologies). Prior to all experiments, cells were starved in DMEM 

containing 1% foetal bovine serum.  

 

2.2.3. Nuclear Extract Preparation 

Nuclear extracts for AP-mass spectrometry (MS) were prepared from 40x10
6
 cells of 

untreated and TNF-α/isoproterenol treated cells for 60 minutes. Cells were washed 

first with 20 ml of PBS, then with 20 ml of PBS with 2 mM Na2MoO4 and 10 mM 

NaF and finally with 20 ml of hypotonic buffer HB (20 mM Hepes pH 7.5, 10 mM 

NaF, 2 mM Na2MoO4, 0.2 mM EDTA pH 7.5). After aspiration of the final washing 

buffer, 1.2 ml of lysis buffer (20 mM Hepes pH 7.5, 10 mM NaF, 2 mM Na2MoO4, 

0.2 mM EDTA pH 7.5, 0.05% NP40, Complete Protease Inhibitor Cocktail without 

EDTA (Roche Applied Science, Penzberg, Germany)) was added. Subsequently, cells 

were scraped and collected. Samples were centrifuged at 17900 g for 1 minute at 4°C. 

The pellet was recovered and resuspended in 200 μl Resuspension Buffer (20 mM 
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Hepes pH 7.5, 0.1 mM EDTA pH 7.5, 5 mM NaF, 1 mM Na2MoO4, 20% glycerol) 

supplemented with the Complete Protease Inhibitor Cocktail without EDTA (Roche). 

Next, an equal volume of Salt Buffer (20 mM Hepes pH 7.5, 1.6 M NaCl, 0.1 mM 

EDTA pH 7.5, 5 mM NaF, 1 mM Na2MoO4, 20% glycerol, Complete Protease 

Inhibitor Cocktail without EDTA (Roche)) was added. Samples were incubated for 60 

minutes by shaking at 4°C and subsequently centrifuged at 17900 g for 10 minutes at 

4°C. Protein contents of the supernatant obtained after the last centrifugation were 

determined using the Bio-Rad protein assay (Hercules, CA) according to the 

manufacturer's instructions. Samples were next diluted to equal protein concentrations 

(1 mg/ml). The extracts were used subsequently for DNA-affinity purification (see 

below). 

 

2.2.4. Plasmids 

The wild type 1168-base pair (bp) human IL-6 promoter construct coupled to 

luciferase, the NF-κB-luciferase reporter plasmid and the β-galactosidase control 

constructs were described elsewhere (Vanden Berghe et al. 1998). The CRE-

luciferase reporter plasmid was from Stratagene (LaJolla, CA). The Flag-TEF-1 

expression vector was generated via Gateway cloning (Invitrogen by Life 

Technologies) by the transfer of the TEF-1 gene from a Gateway entry clone (Internal 

ID: 56266) of the human ORFeome v8.1 collection (http://horfdb.dfci.harvard.edu) to 

a Gateway destination vector for expression of N-terminally Flag tagged proteins 

under control of the SR-α promoter. 

 

2.2.5. Site-directed mutagenesis 

The Flag-TEF-1-S87A mutant construct was generated by site directed mutagenesis. 

Briefly, the codon corresponding to serine 87 in the Flag-TEF-1 construct was 

mutated according to the manufacturer's instructions using the QuikChange Site-

Directed Mutagenesis Kit from Stratagene (LaJolla, CA, USA) with primers listed in 

Supplementary Table 1. 

 

2.2.6. DNA affinity purification followed by mass spectrometry  

The DNA affinity approach using a desthiobiotin-tagged DNA bait followed by mass 

spectrometry (MS) was performed as described earlier (Tacheny et al. 2012). This 

method is referred to throughout the manuscript as “Method A”. The bait in Method 
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A consisted of a 329-bp-long desthiobiotinylated double stranded oligonucleotide 

encompassing 333 base pairs upstream of the transcription start site of the wild type 

IL-6 promoter, produced by polymerase chain reaction (PCR) using the 1168-bp 

human IL-6 promoter construct as template and primers listed in Supplementary 

Table 1. Upon amplification via PCR, the DNA bait was resolved on agarose gel and 

purified using NucleoSpin (Macherey-Nagel MN GmbH, Duren, Germany). Using 

this technology, two independent biological replicates for each experimental 

condition (untreated and TNF-α/isoproterenol treated cells) were performed. 

The DNA affinity purification approach for DNA-binding proteins using a TEG-

biotinylated DNA bait followed by MS analysis was developed based on the method 

by Tacheny (2012) (Tacheny et al. 2012) and adapted according to Mittler (2009) 

(Mittler et al. 2009). This method is referred to throughout the manuscript as “Method 

B”. In this method the same IL-6 promoter fragment as in Method A was used as bait, 

but an XbaI restriction enzyme site and a 6-bp spacer sequence were added to allow 

release of the DNA from the streptavidin beads using restriction enzyme digest 

instead of excess biotin competition in Method A. Primers used for PCR amplification 

of the bait are listed in Supplementary Table 1. Upon amplification, the DNA bait was 

resolved by agarose gel electrophoresis and purified using NucleoSpin. Next, 20 pmol 

of DNA bait in a final volume of 200 μl of low saline phosphate buffer (PBS50) (10 

mM NaH2PO4 pH 7.4, 50 mM NaCl) was incubated for 1 hour at room temperature 

on a rotary wheel with 1 mg of streptavidin-coupled beads (Dynabeads MyOne 

Streptavidin C1, Invitrogen by Life Technologies) that had been washed six times 

with 200 μl of PBS50. Excess unbound DNA bait was removed by three washes with 

PBS50. One mg of nuclear extract was pre-incubated on ice with 1.5x volume of 

binding buffer (4 mM Hepes pH 7.4, 120 mM KCl, 8% glycerol, 2 μM DTT (Sigma), 

0.166 mg/ml salmon sperm DNA (Sigma) and 0.166 mg/ml PolydIdC (Sigma or 

Roche)) and subsequently with the immobilized DNA bait for 1 hour at room 

temperature. DNA-protein complexes immobilized on magnetic beads were then 

washed with 500 μl of binding buffer, three times with 1 ml of PBS50 + 0.1% Tween-

20 and twice with 1 ml of 50 mM NH4HCO3. The DNA-protein complexes were 

eluted from the beads upon incubation for 2 hours (room temperature) in 30 μl of 

NH4HCO3 supplemented with 20 IU of XbaI (New England BioLabs (Ipswich, MA, 

USA)) and NEBuffer#4 (20 mM Tris-acetate, 10 mM magnesium acetate, 50 

potassium acetate, 1 mM DTT, pH 7.9) in a shaker with vigorous agitation. The 
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supernatant containing the DNA-protein complexes was collected and the beads were 

discarded. Subsequently, isolated proteins were reduced for 30 minutes at 50°C with 5 

mM DTT, alkylated for 30 minutes at room temperature in darkness using 15 mM 

iodoacetamide and then digested overnight at 37°C with 1 μg of trypsin (1 mg/ml in 

50 mM NH4HCO3, 1 mM CaCl2; Trypsin Gold, Mass Spectrometry Grade; Promega). 

After digestion, the peptides were acidified by adding acetic acid to a final 

concentration of 5%, incubated at 37°C for 45 minutes and possible debris was 

removed by centrifugation for 10 minutes at 17900 g (4°C). 

Peptides were separated on a reverse phase column (made in-house, 100µm I.D. x 

20mm, 5µm beads C18 Reprosil-HD, Dr. Maisch) using the Ultimate 3000 RSLC 

nano system (Dionex, Amsterdam, The Netherlands) in-line connected to an LTQ 

Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany) for identification. The 

sample was loaded in buffer A (0.1% trifluoroacetic acid, 2% acetonitrile), and 

separated using a linear gradient from 2% buffer A (0.1% formic acid) to 50% buffer 

B (0.1% formic acid and 80% acetonitrile) at a flow rate of 300 nl/minute followed by 

a wash reaching 100% buffer B. The mass spectrometer was operated in data 

dependent mode, automatically switching between MS and MS/MS acquisition for the 

ten most abundant peaks in a given MS spectrum. In the LTQ-Orbitrap Velos, full 

scan MS spectra were acquired in the Orbitrap at a target value of 1E6 with a 

resolution of 60 000. The ten most intense ions were then isolated for fragmentation 

in the linear ion trap, with a dynamic exclusion of 30 seconds. Peptides were 

fragmented after filling the ion trap at a target value of 1E4 ion counts. Mascot 

Generic Files were created from the MS/MS data using Distiller software (version 

2.4.3.3, Matrix Science, www.matrixscience.com/Distiller). While generating these 

peak lists, grouping of spectra was allowed in distiller with max intermediate 

retention time of 30 seconds and maximum intermediate scan count of 5 was used 

where possible. Grouping is done with 0.005 precursor tolerance. A peak list is only 

generated when the MS/MS spectrum contains more than 10 peaks. There was no de-

isotoping and the relative signal to noise limit was set at 2. Using this technology 

three independent experiments for each experimental condition (untreated and TNF-

α/isoproterenol treated cells) were performed. A scheme of the two DNA AP-MS 

methods is presented in Figure 1. 
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Figure 1. Schematic representation of the mass spectrometry-coupled DNA affinity purification (AP) 

approaches. (A) Method using desthiobiotinylated DNA bait and competition between desthiobiotin 

and biotin to liberate DNA-protein complexes as described by Tacheny (2012) (Tacheny et al. 2012) 

(B) Method using biotinylated DNA bait and restriction enzyme digestion to liberate DNA-protein 

complexes adapted from Mittler (2009) (Mittler et al. 2009).  

 

2.2.7. Mass spectrometry data analysis 

MS/MS spectra were searched with SearchGui (Vaudel et al. 2011), a bioinformatics 

tool that employs two search engines, OMSSA (Geer et al. 2004) and X!TANDEM 
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(Craig and Beavis 2003), to obtain peptide-to-spectrum matches. Corresponding 

proteins were searched using Peptide-Shaker (Barsnes et al. 2011) by confronting 

peptide-to-spectrum matches with the human subsection of the UniProt database. The 

search settings were as follows: (1) trypsin as protease with a maximum of two 

missed cleavage sites, (2) MS and MS/MS tolerance of 10 ppm and 0.5 Da, (3) 

cysteine S-carbamidomethylation as fixed modification, (4) pyroglutamic acid and 

methionine oxidation as variable modifications, (5) a decoy database generated 

automatically from the human subsection of the UniProt database was used and the 

major criterion to consider proteins was a False Discovery Rate (FDR) < 1%. Proteins 

recovered with at least two unique peptides yielded in both DNA AP approaches were 

considered for further validation. To achieve relative quantification of the different 

proteins bound to the IL-6 promoter bait, the total number of peptides and the 

exponentially modified protein abundance index (emPAI) (Ishihama et al. 2005) were 

calculated per protein. 

 

2.2.8. siRNA silencing 

Transient silencing of TEF-1 in 1321N1 cells was accomplished by transfecting 40 

nM siGENOME SMART pool specifically targeting TEF-1 (Dharmacon RNAi 

Technology, Lafayette, CO, USA). Cells transfected with an equal amount of Renilla 

luciferase siRNA (Dharmacon) were used to assess for unspecific effects. 3x10
5
 cells 

in 6-well plate format were transfected using Lipofectamine 2000 Transfection 

Reagent (Invitrogen by Life Technologies) according to the manufacturer's 

instructions. 48 hours after transfection and after overnight starvation, cells were left 

untreated or induced for the indicated time.  

 

2.2.9. Luciferase reporter assay 

Transient transfection with reporter gene constructs and siRNA was done using the 

Lipofectamine 2000 Transfection Reagent (Invitrogen by Life Technologies) 

according to the manufacturer's instructions. Briefly, 3x10
5
 cells were seeded in a 6-

well plate and cotransfected with 1 µg of luciferase reporter constructs (the IL-6 

promoter construct, NF-κB- or CRE-reporter gene constructs), 200 ng of a β-

galactosidase-coupled housekeeping reporter construct and either TEF-1 or control 

siRNA. Total lysates were incubated with luciferase substrate and luminescence was 

measured on a TopCount luminometer (PerkinElmer Life Sciences, Canberra-
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Packard, Waverley, UK). Luciferase activity was expressed as fold induction 

(treated/untreated) upon normalisation for transfection efficiency. 

 

2.2.10. RNA isolation, cDNA synthesis and Real-Time Quantitative PCR (RT-

qPCR) 

Total RNA was extracted with the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). 

Reverse transcription was performed on 0.5 µg of total mRNA using the PrimeScript 

RT reagent kit from Takara Bio Inc. (Shiga, Japan). For real time cDNA amplification 

we used the Roche SYBR Green Mastermix (Roche Applied Science, Penzberg, 

Germany) and primers listed in Supplementary Table 1. Fluorescence was monitored 

using the Light Cycler 480II (Roche). A serial dilution of a representative cDNA 

sample was used to generate a standard curve and determine the efficiency of the PCR 

reaction for all primer sets, which was used in the subsequent calculation of relative 

mRNA inputs. Expression of each gene was normalized to expression of the HPRT or 

GAPDH housekeeping genes and results are presented as fold induction compared to 

untreated cells. For clarity the Y-axis is interrupted in some cases. 

Chromatin accessibility assay via Real-Time PCR (CHART-qPCR) 

Cells (1x10
6
) were washed in PBS, scraped and collected by centrifugation at 453 g 

for 5 minutes at 4°C. Next, cells were re-suspended in 600 μl buffer A (10 mM Tris-

HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.3 M sucrose) and incubated for 10 

minutes at 4°C. Subsequently, an equal volume of lysis buffer was added (10 mM 

Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.3 M sucrose, 0.4% NP40 and 2 mM 

Na-butyrate) and cells were incubated for 10 minutes at 4°C. After centrifugation at 

240 g for 5 minutes at 4°C, the chromatin pellet was resuspended in buffer R (10 mM 

Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2) digested for 10 minutes at 37˚C with 

3.3 IU/ml MNase and MNase Buffer (New England BioLabs). Reactions were 

terminated by adding PBS to obtain a final volume of 200 μl. Following proteinase K 

(Qiagen) and RNase A (Qiagen) treatment, genomic DNA (gDNA) was isolated using 

the QIAamp DNA purification kit (Qiagen). Purified gDNA (10 ng/reaction) was 

quantified by qPCR using the Roche SYBR Green Mastermix (Roche). Primers were 

designed to amplify sequences within the human IL-6 promoter (Supplementary 

Table 1). A serial dilution of a representative gDNA sample was used to generate a 

standard curve and to determine the efficiency of the PCR reaction for all primer sets 

and to calculate the relative gDNA concentration ([gDNA]) of the samples. Data are 
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presented as chromatin opening which was defined as the ratio of [gDNA] of samples 

digested with restriction enzymes over [gDNA] of undigested samples (Chromatin 

opening = [gDNA]digested/[gDNA]undigested). 

 

2.2.11. Chromatin immunoprecipitation (ChIP) 

For ChIP experiments, protein/DNA complexes were crosslinked in cellulo by adding 

formaldehyde directly to the culture medium to a final concentration of 1%. After 10 

minutes, glycine was added to a final concentration of 125 mM and cells were 

incubated for 5 minutes, then washed with 30 ml PBS, scraped and collected. 

Pellets were lysed in FA lysis buffer (50 mM HEPES pH 7,5, 140 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.01% SDS and 0.1% sodium deoxycholate) supplemented 

with Complete Protease Inhibitor Cocktail without EDTA (Roche)). Cells were 

sonicated at high settings (twice for 8 minutes using 30 s on/ 30 s off cycles with an 

intermediate cooling on ice) using the Diagenode Bioruptor (Liège, Belgium). 

Sonicated lysates were pre-cleared by centrifugation at 17900 g for 10 minutes at 4°C, 

followed by immunoprecipitation with 5 µg of anti-p65 or anti-TEF-1 using Protein A 

Sepharose 4 Fast Flow beads (Amersham). Samples were decrosslinked overnight at 

65°C. All samples were treated with 50 µg/ml of RNase A and 100 µg/ml of 

Proteinase K. Immunoprecipitated genomic DNA (gDNA) was purified with the 

QiaQuick PCR purification kit (Qiagen) and subsequently quantified by qPCR using 

the Roche SYBR Green Mastermix (Roche). Primers used for amplification of the IL-

6 promoter and β-actin (control) are listed in Supplementary Table 1. qPCR was 

performed on the Light Cycler 480II (Roche). Determination of [gDNA] in the input 

and immunoprecipitated samples (IPs) was performed as for CHART-PCR. Data are 

presented as the percentage (%) of [gDNA] in the IPs as compared to the [gDNA] in 

the corresponding input sample (%IP = ([gDNA]IP/[gDNA]input) ×100).  

 

2.2.12. Overexpression experiments 

For overexpression of TEF-1, HEK293T cells were transfected with either the Flag-

TEF-1 or the Flag-TEF-1 S87A expression constructs. Briefly, 1x10
6
 cells were 

seeded in a 10 cm plate and transfected with 8 µg of DNA using the calcium 

phosphate method. 48 h after transfection and after overnight starvation, cells were 

treated with different inducers for the indicated time periods. Subsequently, cells were 

subjected to immunoprecipitation. 
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2.2.13. Immunoprecipitation (IP) 

For IP experiment, cells were lysed in 500 μl of Lysis Buffer (50 mM Tris-HCl pH 

7.5, 20 mM NaCl, 1% NP40, 1 mM Na3VO4, 10 mM NaF and Complete Protease 

Inhibitor Cocktail without EDTA (Roche)). After 20 minutes of incubation at 4°C, the 

lysates were cleared by centrifugation at 17900 g for 10 minutes at 4°C. 

Subsequently, supernatants were incubated overnight with 20 µl monoclonal anti-flag 

M2 agarose beads (Sigma) at 4°C to precipitate the Flag-TEF-1 protein. The 

protein/bead complexes were washed four times with 1 ml of lysis buffer. Proteins 

were released from the beads by incubation with 50 µl of SDS-PAGE sample buffer. 

After centrifugation of the beads, phosphorylation of immunoprecipitated TEF-1 as 

well as the level of TEF-1 expression were evaluated by Western blotting. 

 

2.2.14. Western blotting 

25 µl of SDS sample buffer protein lysates was resolved using SDS-PAGE on 12% 

polyacrylamide gels, proteins were then transferred to a nitrocellulose membrane 

(Amersham, Dubendorf, Switzerland) and analysed by Western blotting. Briefly, 

membranes were incubated with a 1:1 dilution of Blocking Buffer (LICOR 

Biosciences, Lincoln, NE, USA) in PBS. Subsequently, membranes were probed with 

primary antibodies, targeting either phosphorylated PKA substrate (1:1000) or anti-

Flag (1:5000), diluted in Blocking Buffer (1:1 in PBS containing 0.1% Tween (PBS-

T)). After three washes in PBS-T, DyLight secondary antibody (Pierce, Rockford, IL, 

USA) diluted 1:10000 in Blocking Buffer/PBS-T (1:1) was applied. The membranes 

were then washed three times in PBS-T and detection was performed using the 

Odyssey Imaging System (Licor). 

 

2.2.15. Statistical analysis 

Statistical significance was determined using Student’s t-test or one-way ANOVA 

followed by Bonferroni’s multiple comparison test. Results are considered significant 

when p-value < 0.05. 

 

2.3. Results 

2.3.1. Identification of proteins binding to the IL-6 promoter 

As a model for this study we used the human 1321N1 astrocytoma cell line, in which 

we previously observed synergistic IL-6 expression upon cotreatment with TNF-α and 
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the β-agonist isoproterenol (Spooren et al. 2010). To identify mediators of this 

synergistic IL-6 transcription, we here used a proteomics approach based on DNA 

AP. As a DNA bait, we used the minimal IL-6 promoter (Vanden Berghe et al. 1998) 

and fished for interactors in nuclear extracts of untreated cells or cells co-treated for 

60 minutes with TNF-α and isoproterenol to enrich for transcriptional (co)regulators. 

We used two independent approaches for the MS-coupled DNA AP and a scheme 

presenting the two approaches is depicted in Figure 1. A list of all proteins identified 

in the different experiments is shown in Supplementary Table 2. Combining data from 

all experiments and considering only proteins identified with at least two unique 

peptides, whilst excluding common contaminants, we recovered a total of 142 

putative IL-6 promoter interactors (Supplementary Table 3). 

Although we expected to identify differential recruitment of proteins to the IL-6 

promoter upon TNF-α and isoproterenol treatment, our approach did not reveal this. A 

few proteins were identified only when using lysates from either untreated cells (e.g. 

DPY30, HMGA1) or cells treated with TNF-α/isoproterenol (e.g. JDP2, NFKB2), 

however, they were not reproducibly identified (Supplementary Table 3). Therefore, 

we further analysed our dataset irrespective of the treatment cells underwent.  

To prioritize proteins for further analysis, we focused on 17 proteins that were 

identified in both independent AP-MS approaches. Next, we compared the abundance 

of the recovered proteins using the emPAI abundance index values, which enable 

comparison of protein abundance (Ishihama et al. 2005). Putative IL-6 promoter 

interactors were ranked according to their mean emPAI value per sample (Tables 1 

and Supplementary Table 3). The validity of this prioritization becomes clear by the 

fact that this list contains eight transcription factor (JUNB, C/EBPB, FOSL2, JUND, 

FOSL1, JUN, NFKB1, RELA) that were previously shown to drive IL-6 expression 

(Dendorfer et al. 1994; Grassl et al. 1999; Szabo-Fresnais et al. 2008; Vanden Berghe 

et al. 1998) (Table 1, marked in bold). As expected we also identified proteins linked 

to the regulation of the DNA damage response, such as Poly (ADP-ribose) 

polymerase 1 (PARP1), DNA-(apurinic or apyrimidinic site) lyase 1 (APEX1), 

members of the DNA damage-binding (DDB) protein and cullin (CUL) protein 

families. According to the CRAPome database (Mellacheruvu et al. 2013), these 

proteins are also frequently identified in AP-MS control samples (Supplementary 

Table 4). Although, according to CRAPome, DDB2 was identified only in a limited 

number of negative control samples, we assumed that
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Table 1. Shortlist of putative interactors of the IL-6 promoter identified via AP-MS. 
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Q16531 

DNA damage-binding protein 1  

(DDB1) 435 2,46 X DNA-binding protein 

(Iovine et al. 

2011) 

 

  

Q92466 

DNA damage-binding protein 2  

(DDB2) 230 2,24 X DNA-binding protein 

(Stoyanova et al. 

2009) 

 

  

P17275 

Transcription factor jun-B  

(JUNB) 99 1,08 X Transcription 

(Shaulian and 

Karin 2002) X 

 (Grassl et al. 

1999) 

P17676 

CCAAT/enhancer-binding protein beta 

(CEBPB) 79 0,87 X Transcription 

(Tsukada et al. 

2011) X 

 (Grassl et al. 

1999) 

P15408 

Fos-related antigen 2  

(FOSL2) 59 0,52 X Transcription 

(Shaulian and 

Karin 2002) X 

 (Szabo-Fresnais 

et al. 2008) 

P09874 

Poly [ADP-ribose] polymerase 1  

(PARP1) 202 0,52 X Transcription 

(Thomas and 

Tulin 2013) 

 

  

Q13619 

Cullin-4A  

(CUL4A) 136 0,38 X DNA-binding protein 

(Jackson and 

Xiong 2009) 

 
  

P17535 

Transcription factor jun-D  

(JUND) 37 0,37 X Transcription 

(Shaulian and 

Karin 2002) X 

 (Grassl et al. 

1999) 

P15407 

Fos-related antigen 1  

(FOSL1) 27 0,29 X Transcription 

(Shaulian and 

Karin 2002) X 

 (Grassl et al. 

1999) 

Q13620 

Cullin-4B  

(CUL4B) 83 0,20 X DNA-binding protein 

(Jackson and 

Xiong 2009) 
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P28347 

Transcriptional enhancer factor TEF-1 

(TEAD1) 30 0,18 X Transcription 

(Anbanandam et 

al. 2006) 

(Pobbati and 

Hong 2013) 

 

  

P27695 

DNA-(apurinic or apyrimidinic site) lyase 

(APEX1) 22 0,14 X Transcription (Tell et al. 2009) 

 
  

P05412 

Transcription factor AP-1  

(JUN) 14 0,13 X Transcription 

(Shaulian and 

Karin 2002) X 

 (Grassl et al. 

1999) 

O14867 

Transcription regulator protein BACH1 

(BACH1) 30 0,10 X Transcription 

(Motohashi et 

al. 2002) 

 
  

Q04206 

Transcription factor p65  

(RELA) 12 0,07 X Transcription 

(Hayden and 

Ghosh 2012) 

(Bhatt and 

Ghosh 2014) X 

 (Grassl et al. 

1999) 

Q14938 

Nuclear factor 1 X-type  

(NFIX) 11 0,06 X Transcription 

(Gronostajski 

2000) 

 
  

P19838 

Nuclear factor-kappa-B p105 subunit 

(NFKB1) 14 0,04 X Transcription 

(Hayden and 

Ghosh 2012) 

(Bhatt and 

Ghosh 2014) X 

 (Grassl et al. 

1999) 
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this protein is also non-specifically captured in our study just like its sibling family 

member, DDB1. Hence, we considered PARP1, APEX1, DDB1, DDB2, CUL1A, 

CUL1B proteins as likely contaminants and excluded them from further analysis. It 

must, however, be emphasized that the CRAPome database is primarily built using 

AP-MS data with proteins and not DNA as baits. Thus, we finally limited our initial 

list to 3 putative novel interactors of the IL-6 promoter: TEF-1, BTB and CNC 

homolog 1 (BACH1) and Nuclear factor 1 X-type (NF1X) (Table 1, marked in 

italics). Each of these proteins has a known function linked to regulation of gene 

transcription (Anbanandam et al. 2006; Gronostajski 2000; Motohashi et al. 2002). 

We further focused on TEF-1 as this transcriptional regulator is a direct target of 

protein kinase A (PKA) (Gupta et al. 2000), which we have previously identified as 

an indispensable mediator of IL-6 transcriptional synergy upon concurrent β2-

AR/TNF-R triggering (Spooren et al. 2010). Interestingly, phosphorylation of TEF-1 

by PKA can affect its DNA binding ability (Gupta et al. 2000). 

 

2.3.2. Ablation of TEF-1 expression leads to increased IL-6 transcription 

To establish whether TEF-1 plays a role in the regulation of IL-6 gene expression 

upon treatment with TNF-α and/or isoproterenol, we silenced TEF-1 using siRNA 

targeting selectively this family member (siTEF-1). In agreement with our previous 

data, in control siRNA-transfected cells (siCtrl), TNF-α/isoproterenol co-treatment 

synergistically induced IL-6 promoter activity in 1321N1 human astrocytoma cells. 

As we were unable to detect endogenous TEF-1 at the protein level in 1321N1 cell 

lysates using an anti-TEF-1 antibody, that according to the supplier should enable 

detection of TEF-1 expression via Western blotting, we checked the level of TEF-1 

silencing only at the mRNA level, via RT-qPCR. Using siRNA targeting TEF-1, we 

achieved approximately 50% downregulation of the TEF-1 mRNA level (Figure S1 

A). As evident from Figure 2 A, TEF-1 silencing modestly promoted IL-6 promoter 

activity in all treatment settings, yet the most pronounced effects were apparent in 

cells treated with isoproterenol alone or in combination with TNF-α. Subsequently, 

we investigated the effect of TEF-1 silencing on endogenous IL-6 transcription 

(Figure 2 B). In this set of experiments, we also observed only 50% reduction of TEF-

1 mRNA level (Figure S1 B). IL-6 mRNA levels were undetectable both in control 

siRNA or TEF-1 siRNA-treated cells. TEF-1 silencing upregulated IL-6 transcript 
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levels in all treatments, and the most pronounced effects were again seen in cells 

treated with isoproterenol alone or in combination with TNF-α. 

Next, we explored whether TEF-1 physically interacts with the endogenous IL-6 

promoter by means of ChIP. However, we could not recover TEF-1 interaction with 

the IL-6 promoter upon concurrent TNF-R/β2-AR triggering or in untreated cells 

(Figure 2 C). It is still possible that interaction is indirect, too weak or too transient to 

be detected using ChIP. The specificity of the observed responses is indicated by the 

fact that we did not detect any of the observed responses at an irrelevant 

housekeeping gene (β-actin) or using beads only for the immunoprecipitation (Figure 

S1 C). Furthermore, in our hands the TEF-1 antibody did not produce consistent 

results in ChIP assays and we were able to immunoprecipitate TEF-1 with the IL-6 

promoter in two out of four experiments. Similar problems using anti-TEF antibodies 

were previously reported by others (Cuddapah et al. 2008; Ribas et al. 2011). 

These results indicate that TEF-1 might indirecty interact with the IL-6 promoter and 

probably acts as a repressor of IL-6 transcription. 

 

 

Figure 2. Role of TEF-1 as a regulator of IL-6 expression. (A) Influence of TEF-1 silencing on IL-6 

promoter activity in 1321N1 cells. 1321N1 cells, cotransfected with an siRNA targeting TEF-1 and IL-

6-luciferase reporter plasmid, were treated for 6 hours with vehicle (veh), isoproterenol (iso) and/or 

TNF-α (TNF), before analysis of luciferase production. The specificity of observed responses was 

evaluated by comparison to cells transfected with control siRNA. Fold induction values are normalized 

to that of untreated siCtrl-transfected cells for which fold induction was set as 1. (B) Influence of TEF-

1 silencing on IL-6 mRNA level in 1321N1 cells. 1321N1 cells, transfected with an siRNA targeting 

TEF-1, were treated for 2 hours with veh, iso and/or TNF, before analysis of IL-6 mRNA via RT-qPCR. 

The specificity of the observed responses was evaluated by comparison to cells transfected with control 

siRNA. Fold induction values are normalized to that of untreated siCtrl-transfected cells for which fold 

induction was set as 1. (C) Effect of TNF/iso cotreatment on the recruitment of TEF-1 and NF-κB p65 

to the IL-6 promoter. 1321N1 cells were treated with veh or TNF/iso for 1 hour. Recruitment of TEF-1 

and NF-κB p65 was measured via ChIP. The experiment was performed four times. All data presented 
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in Figure 2 are displayed as mean ± SD of three independent experiments. (*) Statistically different 

from untrated, siCtrl transfected cells. (**) Statistically different from untreated, siTEF-1 transfected 

cells. (#) Statistically different between siCtrl and siTEF-1 condition. 

 

2.3.3. TEF-1 regulates the accessibility of the IL-6 promoter for transcription 

factors 

Since silencing of TEF-1 enhanced the expression of the IL-6 gene and as we 

expected association of this factor with the IL-6 promoter, we explored the molecular 

mechanism of these effects. An in silico analysis of the proximal IL-6 promoter using 

the JASPAR database did not predict a consensus binding site for TEF-1, indicating 

that the interaction of TEF-1 with the IL-6 promoter is most likely indirect (data not 

shown). The TEF-1 transcription factor was previously reported to function as a 

transcriptional repressor, downregulating target gene expression via interaction with 

other transcriptional (co)regulators (Liu et al. 2014). 

The IL-6 gene has a complex promoter architecture and, among others, contains 

functional transcription factor binding sites for NF-κB and CREB, binding of which is 

pivotal for synergistic transcription upon TNF-α/isoproterenol co-treatment (Spooren 

et al. 2010; Vanden Berghe et al. 1998). To investigate whether TEF-1 modulates the 

transcriptional activity of NF-κB and CREB, we first tested the effect of TEF-1 

silencing using synthetic NF-κB- and CREB-dependent luciferase constructs. As we 

previously reported (Spooren et al. 2010), TNF-α activated NF-κB-dependent 

luciferase activity, whereas isoproterenol activated CREB-dependent luciferase 

activity in control siRNA-treated cells. Co-treatment did not lead to synergistic 

activation of the isolated CREB or NF-κB response elements. Silencing of TEF-1 

(Figure S1 D and Figure S1 E) did not affect the activity of the NF-κB reporter, 

whereas a modest stimulation of the CRE reporter gene was apparent (Figure 3 A and 

Figure 3 B). The accessibility of a gene promoter to transcription factors is reflected 

in its susceptibility to nuclease digestion. In CHART-PCR, this feature is exploited 

and the accessibility of a selected DNA sequence is determined by digesting 

chromatin using nucleases and then quantifying the amount of remaining uncut gDNA 

in the digested chromatin sample via qPCR. Here, we digested the proximal IL-6 gene 

promoter using MNase that non-selectively cuts DNA. Then, we amplified the 

sequence of interest via qPCR, using primers that recognise the sequence flanking the 

DNA motifs for NF-κB and CREB transcription factors (Figure 3 C). Results were 
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normalised as explained in the Materials and Methods section and expressed as 

chromatin opening. We found that the IL-6 promoter is susceptible to digestion with 

MNase in the vicinity of CREB and NF-κB binding sites, only upon co-treatment with 

TNF-α and isoproterenol (Figure 3 D and Figure 3 E). Interestingly, silencing of TEF-

1 promoted further chromatin loosening at the IL-6 promoter in the proximity of the 

transcription factor-binding site for NF-κB and CREB (Figure 3 G and Figure 3 H). 

As expected, neither TNF-α/isoproterenol treatment nor TEF-1 silencing affected 

chromatin opening at the β-actin promoter, which we considered as an irrelevant 

region (Figure 3 F and Figure 3 I). The efficiency of silencing TEF-1 in CHART-PCR 

experiments is represented in Figure S1 F. 

These results show that TEF-1 acts as a repressor at the IL-6 promoter, interferes with 

transcriptional activity of CREB and regulates the accessibility of IL-6 promoter for 

transcription factors. 

 

Figure 3. Effect of TEF-1 on nuclear events associated with synergistic IL-6 expression. (A) Effect of 

TEF-1 on the activation of NF-κB. 1321N1 cells, cotransfected with an siRNA targeting TEF-1 and the 
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NF-κB-luciferase reporter plasmid, were treated with veh, iso and/or TNF for 6 hours, before analysis 

of luciferase production. The specificity of the observed responses was evaluated by comparison to 

cells transfected with control siRNA. Fold induction values are normalized to that of untreated siCtrl- 

transfected cells for which fold induction was set as 1. (B) Effect of TEF-1 on the activation of CREB. 

1321N1 cells, cotransfected with an siRNA targeting TEF-1 and the CRE-luciferase reporter plasmid, 

were treated with veh, iso and/or TNF for 6 hours, before analysis of luciferase production. The 

specificity of observed responses was evaluated by comparison to cells transfected with control siRNA. 

Fold induction values are normalized to that of untreated siCtrl-transfected cells for which fold 

induction was set as 1. (C) Schematic representation of the localisation of CREB- and NF-κB-

responsive elements and the transcription start site (TSS) in the IL-6 promoter. Relative positions of 

primers used in the chromatin accessibility assay via Real Time PCR (CHART-PCR) are indicated. (D, 

E, F) Influence of TNF/iso cotreatment on the accessibility of the IL-6 promoter and irrelevant region. 

1321N1 cells were treated for 1 hour with veh, iso and/or TNF. Chromatin opening of the promoter 

region was determined by CHART-PCR as detailed in Materials and Methods. (G, H, I) Role of TEF-1 

in IL-6 promoter relaxation upon TNF/iso cotreatment. 1321N1 cells, transfected with an siRNA 

targeting TEF-1, were treated for 1 hour with veh, iso and/or TNF. The specificity of observed 

responses was evaluated by comparison to cells transfected with control siRNA. Chromatin opening of 

the promoter region was determined by CHART-PCR as detailed in Materials and Methods. The 

experiment was performed 2 times. Data present in Figure 3 are displayed as mean ± SD of 

independent experiments. If not mentioned otherwise experiments presented in Figure were performed 

three times. (*) Statistically different from untrated, siCtrl transfected cells. (**) Statistically different 

from untreated, siTEF-1 transfected cells. (#) Statistically different between siCtrl and siTEF-1 

condition. 

 

2.3.4. Gene selectivity of TEF-1 repressor action 

To assess the gene selectivity of TEF-1 as a transcriptional coregulator, we performed 

RT-qPCR analysis to investigate how TEF-1 silencing modulates the effects of β-

agonist co-treatment on the expression of well-known NF-κB target genes with a 

previously demonstrated role in neuroinflammation, such as cyclooxygenase-2 (COX-

2), chemokine (C-X-C motif) ligand 2 (CXCL-2), ICAM-1 and IL-8, which we 

previously reported to be affected by TNF/isoproterenol co-treatment in astrocytes 

(Laureys et al. 2014; Spooren et al. 2010). 

In line with our previous reports, we found bidirectional effects of β2-AR co-treatment 

on TNF-α-induced NF-κB-dependent transcription (Figure 4). Specifically, we found 

that in 1321N1 cells transfected with control siRNA, TNF-α potently induced 

expression of IL-8 and ICAM-1, and TNF-α-induced expression of these genes was 

inhibited by isoproterenol co-treatment. Silencing of TEF-1 did not modulate the 
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effect of TNF-α and isoproterenol on IL-8 and ICAM-1 transcription (Figure 4 C and 

Figure 4 D). COX-2 and CXCL-2 mRNA levels expression were induced both with 

TNF-α and isoproterenol and co-treatment potentiated mRNA expression of these 

genes. Whereas silencing of TEF-1 showed trend towards upregulation of COX-2 

transcription in both untreated cells and in cells treated with TNF-α and/or 

isoproterenol, CXCL-2 mRNA levels remained unchanged in all treatment settings 

upon TEF-1 knockdown. Interestingly, knockdown of TEF-1 doubled basal 

expression of COX-2, while it did not have an effect on CXCL-2 expression (Figure 4 

A and Figure 4 B). 

We thus conclude that in 1321N1 astrocytes a subset of NF-κB-dependent genes 

exists that is under transcriptional control of TEF-1. 

 

Figure 4. Influence of TEF-1 on NF-κB-dependent gene expression in 1321N1 cells upon TNF-

α/isoproterenol cotreatment. Expression of inflammatory markers was measured via RT-qPCR after 2 

hours induction with veh, iso and/or TNF in 1321N1 cells transfected either with siRNA targeting TEF-

1 or control siRNA. All data present in Figure 4 are displayed as mean ± SD of three independent 

experiments. (*) Statistically different from untrated, siCtrl transfected cells. (**) Statistically different 

from untreated, siTEF-1 transfected cells. (#) Statistically different between siCtrl and siTEF-1 

condition. 
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2.3.5. TEF-1 is a substrate of the PKA signalling cascade 

The canonical signalling pathway activated upon β2-AR triggering involves activation 

of adenylyl cyclase, which catalyses the production of cAMP that in turn activates 

PKA. PKA enters the nucleus and phosphorylates multiple proteins bearing the 

RRXS/T consensus sequence (Ubersax and Ferrell 2007). The TEF-1 serine 102 

residue is part of a consensus recognition site for PKA (Gupta et al. 2000). Since 

specific antibodies recognising the phosphorylated form of TEF-1 are not available, 

we transfected HEK293T cells with an expression plasmid encoding either Flag-TEF-

1 wild type or Flag-TEF-1 serine 87 to alanine mutant (S87A). The TEF-1 isoform 

that we obtained from the ORFeome collection displayed only 79 % identity to the 

amino acid sequence deposited in UniProt, lacking 15 amino acids at the N-terminus 

and 58 amino acids in the transactivation domain, whilst harbouring a 4 amino acid 

insertion in position 110 (Figure 5 A). Thus, the previously reported phosphorylated 

serine 102 in the TEF-1 protein (Gupta et al. 2000) is on position 87 in the ORFeome 

isoform we cloned. Importantly, we observed that the PKA-phosphorylated motif was 

not altered.  

To investigate whether TEF-1 is a substrate of the cAMP/PKA signalling cascade, 

HEK293T cells, transfected with either wild type Flag-TEF-1 wild type or mutant 

Flag-TEF-1, were left untreated or induced with forskolin (Fsk), an adenylyl cyclase 

activator raising intracellular cAMP levels, TNF-α or a combination of both. Next, the 

TEF-1 proteins were immunoprecipitated, probed in Western blotting with an 

antibody detecting motifs phosphorylated by PKA and re-probed with anti-Flag 

antibody. As expected in the Fsk-treated cells, we observed multiple immunoreactive 

bands corresponding to various cellular targets of PKA. Upon immunoprecipitation, 

fewer bands were detected, one of which had a molecular weight of approximately 43 

kDa, corresponding to the expected weight of the Flag-tagged TEF-1 protein. Probing 

of the blot using an anti-Flag antibody confirmed that the 43 kDa band indeed 

represented Flag-TEF-1. Furthermore, we found that in HEK293T cells, Fsk induced 

phosphorylation of TEF-1 (Figure 5 B). TNF-α by itself did not have any significant 

effect on TEF-1 phosphorylation and it did not affect Fsk-induced phosphorylation of 

TEF-1. As expected, the S87A mutation in the TEF-1 protein abrogated 

phosphorylation by PKA (Figure 5 C).  

Collectively, these data demonstrate that TEF-1 is phosphorylated by PKA at serine 

87. 
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Figure 5. TEF-1 is a target of cAMP/PKA-dependent pathway. (A) Schematic representation of the 

domain structure of TEF-1. The upper panel depicts the domain structure of the protein sequence 

deposited in the UniProt database. The lower panel depicts the domain structure of the isoform 

recovered from the v8.1 ORFeome. (B-C) TEF-1 phosphorylation was evaluated in HEK293T cells 

overexpressing either Flag-TEF-1 or Flag-TEF-1 S87A. TEF-1 was immunoprecipitated from cells 

stimulated with veh, forskolin (fsk) and/or TNF. Blots were probed with antibody targeting PKA 

substrates (red channel) and Flag (green channel) motif. Merge of green and red signals gives a 

yellow signal. A representative blot from three independent experiments for Flag-TEF-1 and two 

independent experiments for Flag-TEF-1 S87A is shown. 
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Discussion 

The ambiguous role and transcriptional regulation of IL-6 in health and disease are 

not fully understood (Spooren et al. 2011). We recently reported that concurrent 

treatment of human 1321N1 astrocytes with TNF-α and isoproterenol, a β-

adrenoreceptor agonist, results in recruitment of NF-κB, CREB and CREB-binding 

protein (CBP) to the IL-6 promoter and that these factors cooperate in an 

enhanceosome structure to ensure synergistic gene expression (Spooren et al. 2010). 

Here, we used a proteomics approach to identify unknown elements of the IL-6 

enhanceosome. 

We used two independent methods that are adaptations of previously reported 

technologies (Mittler et al. 2009; Tacheny et al. 2012), to capture and identify 

proteins interacting with the minimal IL-6 promoter. The validity of our method is 

supported by the recovery of several known IL-6 promoter interactors belonging to 

the NF-κB, AP-1 and C/EBP transcription factor families (Dendorfer et al. 1994; 

Grassl et al. 1999; Szabo-Fresnais et al. 2008; Vanden Berghe et al. 1998). However, 

we did not recover all proteins previously reported to interact with the IL-6 promoter. 

For instance, via ChIP analysis we also detected CBP at the IL-6 promoter in TNF-

α/isoproterenol co-treated 1321N1 cells (Spooren et al. 2010) and this protein was not 

among the hits of our AP-MS study. Possibly, the synthetic DNA bait lacks certain 

features of the native IL-6 promoter environment, which are required for interaction 

with some nuclear proteins. Another potential explanation could be that the binding 

buffer that we have used in our DNA AP assays might not provide the optimal 

conditions to capture the interaction of very diverse groups of transcriptional 

(co)regulators with the synthetic DNA bait. In addition, we cannot exclude that 

certain transcriptional (co)regulators of low abundance are lost before subjecting 

samples to MS sequencing (Tacheny et al. 2013). Nevertheless, we identified 3 

putative novel IL-6 promoter interactors: TEF-1, BACH1, and NFIX. All of these 

proteins possess a nuclear function linked to gene expression (Anbanandam et al. 

2006; Gronostajski 2000; Motohashi et al. 2002) but have never been shown to 

interact with the IL-6 promoter. An in silico analysis of the 500 bp IL-6 promoter 

fragment upstream of the transcriptions starting site using JASPAR database of 

transcription factor binding sites revealed the presence of putative DNA responsive 

motifs for TEF-1 and BACH1. Interestingly, our bioinformatics approach also 

identified a binding site for NFIC, a transcription factor closely related to the NFIX 
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transcription factor here identified (data not shown). 

We decided to focus on TEF-1 as a novel interactor of the IL-6 promoter. TEF-1, also 

called TEAD-1, is a member of a transcription factor family that consists of four 

members (TEF-1, TEF-3, TEF-4 and TEF-5). TEAD genes are ubiquitously expressed 

in embryonic and adult tissues, and display a distinct but overlapping expression 

pattern. All TEAD proteins share a TEA domain that enables binding of specific 

DNA elements and a transactivation domain responsible for interaction with 

coactivators (Pobbati and Hong 2013).  

Our results suggest a repressive role of TEF-1 at the IL-6 promoter. We observed that 

silencing of TEF-1 upregulated IL-6 transcription as measured via reporter gene assay 

or RT-qPCR. Although the effect of TEF-1 silencing that we observed was rather 

modest, this could be explained by the fact that we only obtained partial knock-down 

using our siRNA-based approach (Figure S1). In addition, although these did not pass 

our selection filter, we also identified two other TEAD family members, TEF-3 and 

TEF-5. As all TEAD family members recognize the same consensus motif, it is 

possible that there is redundancy between TEFs in the regulation of IL-6 expression, 

which could also contribute to the modest effect of TEF-1 silencing.  

TEF-1 can act both as a transcription factor and cofactor, interacting respectively with 

DNA or modulating the activity of other transcription regulators, such as serum 

response factor (SRF), and its action appears to be cell type and gene specific 

(Anbanandam et al. 2006; Liu et al. 2014; Pobbati and Hong 2013). Furthermore, the 

transcriptional activity of TEF-1 is controlled by its interaction with several 

coregulators belonging to three main categories: YAP/TAZ, Vgl1 and p160 nuclear 

coactivator proteins (Pobbati and Hong 2013). However, none of these proteins got 

identified in our AP-MS study. 

Since the IL-6 promoter probably does not contain a binding site for TEF-1, the action 

of TEF-1 as a repressor could result from modulation of the activity of other 

transcriptional (co)factor(s) or component(s) of the basal transcriptional machinery 

that are essential for IL-6 transcription. Here, we observed that silencing of TEF-1 

potentiates transactivation of isolated CREB but not NF-κB response elements, 

suggesting that TEF-1 regulates the transcriptional activity of CREB. In line with our 

data, Kessler (2008) (Kessler et al. 2008) showed that overexpression of TEF-1 in 

uterine decidual cells has a dominant negative effect on the activity of the prolactin 

promoter probably via interference with an unidentified transcription factor. As 
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expression of decidual prolactin is primarily driven by CREB (Gerlo et al. 2006), one 

might speculate that this unidentified transcription factor inhibited by TEF-1 at the 

prolactin promoter is CREB. TEF-1 also is a general repressor of muscle-specific 

genes, interfering with the binding of SRF and myocardin to particular smooth muscle 

gene promoters (Liu et al. 2014). As the IL-6 promoter contains a binding site for 

SRF at the position -158 upstream of the transcription starting site, it is possible that 

this factor mediates the interaction of TEF-1 with the IL-6 promoter (Ray et al. 1989). 

Interestingly, the SRF-binding site is also recognised by the C/EBP transcription 

factor, that we fished out in our AP/MS approach (Grassl et al. 1999; Tsukada et al. 

2011). We also observed that silencing of TEF-1 promotes chromatin loosening at the 

IL-6 promoter, suggesting that TEF-1 could alter the recruitment of a chromatin 

remodelling complex to the IL-6 promoter. Previously, TEF-1 was shown to be 

required for SWI/SNF-like BAF complex-mediated chromatin remodelling necessary 

for transcription of the interferon inducible transmembrane (IFITM) gene (Cuddapah 

et al. 2008). Alternatively, TEF-1 can inhibit target gene expression via binding of 

TATA binding protein (TBP), a component of the basal transcriptional machinery, 

hence inhibiting its interaction with the TATA box and disrupting the formation of the 

pre-initiation complex (Jiang and Eberhardt 1996). Finally, it is possible that several 

mechanisms operate at the same time to precisely control and fine-tune IL-6 

transcription. 

Intriguingly, in addition to IL-6, silencing of TEF-1 alters expression of a selected 

pool of NF-κB-dependent targets in 1321N1 astrocytes. Previously, we found that 

combined triggering with TNF-α/isoproterenol elicits bidirectional effects on the 

expression of NF-κB-dependent genes (Spooren et al. 2010). Here, we additionally 

showed that TEF-1 selectively modulates expression of synergistically induced NF-

κB targets, such as IL-6 and COX-2, but not those that are inhibited by β-AR co-

stimulation, like IL-8 or ICAM-1. These data indicate that TEF-1 could be a unique 

coregulator affecting only a selected pool of NF-κB-dependent promoters that are 

susceptible for synergistic upregulation by β-adrenergic signals. TEF-1 is a 

prototypical transcriptional regulator of muscle specific genes (Liu et al. 2014; Ribas 

et al. 2011) and it has never been linked to modulation of TNF-α-induced gene 

expression. Nevertheless, TEF-1 was reported to modulate the interferon-α-induced 

transcriptional program, further strengthening the hypothesis that the pool of genes 

regulated by TEF-1 is larger than was previously assumed (Cuddapah et al. 2008). 
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We observed that cAMP-dependent signals stimulate phosphorylation of TEF-1 by 

PKA. Although we did not investigate how this phosphorylation affects the 

interaction of TEF-1 with the IL-6 promoter and other transcriptional (co)regulators in 

1321N1 cells, it was previously shown that PKA-mediated phosphorylation of TEF-1 

at serine 102 represses its DNA binding without affecting its interaction with the Max 

transcription factor in cardiac myocytes (Gupta et al. 2000). Interestingly, there is also 

evidence linking elevated levels of cAMP to inhibition of TEF-1-dependent 

transcription (Thompson et al. 2003). Whereas TEF-1 activity was shown to be 

regulated by signals downstream of the α1-AR (McLean et al. 2003; Ueyama et al. 

2000), our findings suggest that TEF-1 phosphorylation can also be regulated by β-

adrenergic signals.  

In summary, we here used a proteomics approach to identify novel regulators of IL-6 

transcription in human astrocytes. We focused on TEF-1 and demonstrated that it 

represses the endogenous IL-6 promoter, probably via indirectly interaction that we 

could not reproducibly capture using ChIP asssay. The action of TEF-1 as a repressor 

of IL-6 transcription involves modulation of CREB activity and unidentified 

chromatin remodelling complexes. Our data indicate that TEF-1 is phosphorylated by 

PKA, acting downstream of the β2-AR. Finally, we show that the inhibitory effect of 

TEF-1 on the expression of inflammatory mediators is gene selective. In view of the 

crucial role of IL-6 as a driver of neuroinflammation, it would be interesting to further 

explore how TEF-1 and the other TEAD family members modulate inflammatory 

processes in the central nervous system.  
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General discussion & Perspectives 

 

Ample evidence indicates that adrenergic stress and β2-AR ligands can modulate 

various aspects of inflammation and immune function during health and disease 

(Padro and Sanders 2014; Powell et al. 2013). Furthermore, as evident from the 

literature summarized in Chapter 2, 2-adrenergic signals interact with the NF-κB 

signalling cascade at multiple levels. Interestingly, whereas the immunosuppressive 

effects of adrenergic stress and β2-agonists are widely accepted and often associated 

with inhibition of NF-κB-driven transcriptional programs, we have shown before that 

stimulation of astrocytic β2-ARs elicits bimodal effects (potentiation vs. inhibition) on 

the expression of NF-κB-dependent genes (Spooren et al. 2010). Importantly, these 

dichotomic effects were observed both in vitro and in vivo indicating their 

(patho)physiological relevance (Laureys et al. 2014). Here, we further explored 

whether potentiation of selected NF-κB-dependent gene expression by β-agonists is a 

general phenomenon occurring in different cell types. In addition, we zoomed in on 

the molecular basis of this crosstalk. 

 

1. β2-AR/NF-κB crosstalk might be a general phenomenon 

In the first part of the thesis, we have investigated whether the upregulation of 

selected NF-κB-dependent genes by β2-AR-mediated signals, which we observed in 

astrocytes, also occurs in other cell types responsive to adrenergic stimulation. As a 

model for our research, we chose skeletal muscle cells since they display a high level 

of β2-ARs and several studies suggested a therapeutic potential of β2-agonists in 

skeletal muscle wasting disorders (Lynch and Ryall 2008). We and others observed 

that combination of a proinflammatory stimulus and a β2-AR agonist results in strong 

synergistic IL-6 expression in skeletal muscle (Frost et al. 2004; Kolmus et al. 2014). 

Although there are many reports of cytoplasmic crosstalk mechanisms, targeting IKK 

activity and IκB degradation (Chapter 2), that lead to modulation of NF-κB activity, 

we did not find any proof for that in the C2C12 skeletal muscle cell line we used as a 

model. We observed that TNF-α launched the classical NF-κB signalling cascade and 

the p38 MAPK/MSK-1 axis, while activation of the β2-AR induced the PKA/CREB 

pathway. Concurrent receptor triggering did not produce cytoplasmic crosstalk, but 

converged in the nucleus, at the promoters of NF-κB target genes. This nuclear 
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crosstalk involved chromatin remodelling and the formation of enhanceosome 

structures, which were associated with activation of transcription. Specifically, we 

found that combined β2-AR and TNF-R triggering promoted phosphorylation of 

histone H3 and chromatin relaxation at the IL-6 promoter. This was paralleled by 

enhanced recruitment of NF-κB and CREB, which cooperatively recruited the CBP 

transcriptional cofactor that integrated synergistic transcription driven by RNA 

polymerase II (Kolmus et al. 2014). Additionally, we have abundant evidence that β2-

AR-mediated effects in skeletal muscle and astrocytes are dependent on the cAMP 

pathway and almost solely originate from this receptor subtype. In line with this, we 

also found the IL-6 synergy in macrophages upon combined stimulation with LPS 

(acting as an NF-κB-activating stimulus) and an cAMP analogues. As β2-AR 

triggering potentiated, via the cAMP-dependent pathway, NF-κB-dependent gene 

expression in skeletal muscle and astrocytes, a similar mode of regulation might also 

occur in other cell types expressing a high level of β2-AR, such as airway smooth 

muscle cells or hepatocytes but also in immune cells, such as macrophages. This 

hypothesis requires, however, further experimental verification.  

 

2. Subtle differences in intracellular signalling might account for the robustness 

of nuclear crosstalk 

Although the overall outcome of β-agonist/TNF-α cotreatment was very similar when 

skeletal muscle cells were compared to astrocytes, we observed some interesting cell-

type specific differences in signalling. One of the most striking differences was the 

activation of the p38/MSK-1 axis upon TNF-R triggering, which was apparent in 

C2C12 cells, but not in astrocytes. We found that MSK-1 potently phosphorylated 

CREB at serine 133 in C2C12 cells but this was not associated with augmented 

recruitment of neither CREB nor CBP to the IL-6 promoter. In line, Naqvi et al. 

(Naqvi et al. 2014) showed that phosphorylation of CREB on serine 133 by MSK-1 

does not promote strong recruitment of the CBP/p300 cofactor in response to phorbol 

myristate acetate (PMA), another inflammatory trigger. Nevertheless, CREB serine 

133 phosphorylation was indispensable for the induction of CREB-dependent genes, 

including IL-6. Overall, these findings suggest that although MSK-1 and PKA both 

phosphorylate CREB at serine 133, they promote the use of different cofactors. In 

C2C12 cells, we observed that TNF-R/β2-AR coactivation promotes potent 

recruitment of CREB at the IL-6 promoter that is paralleled by enrichment for CBP. 



General discussion & Perspectives 

146 

An outstanding question is whether other unidentified cofactors interacting with 

MSK-1-phosphorylated CREB are also recruited to the IL-6 promoter. In addition to 

CREB, MSK-1 also phosphorylates the NF-κB p65 subunit at serine 276, and this 

accounts for potent interaction with CBP and selective gene expression (Vermeulen et 

al. 2003; Zhong et al. 1998). Interestingly both p65 and CREB can be phosphorylated 

by PKA and MSK-1 at the same residues, serine 276 for p65 and serine 133 for 

CREB. It would be interesting to identify additional substrates of both PKA and 

MSK-1 that could perhaps explain differences in gene expression profiles activated by 

both kinases. 

 

3. Gene selectivity of β2-AR/NF-κB crosstalk 

Overall, our findings in C2C12 skeletal muscle cells closely parallel what we 

previously reported in astrocytes in vitro (Laureys et al. 2014; Spooren et al. 2010) 

and in the CNS in vivo (Laureys et al. 2014) and indicate β-agonists potentiate IL-6 

expression in different cell types subjected to proinflammatory stimuli, supporting the 

general relevance of this phenomenon. Although we focused on IL-6 as a model gene 

to study the β2-AR/TNF-R crosstalk, we found that in C2C12 cells β-agonists not only 

promote IL-6 expression but also that of other NF-κB target genes that are important 

in skeletal muscle (patho)physiology. Positive crosstalk was apparent for CXCL-5, 

CCL-2 and ICAM-1 transcription. Other genes, such as CCL-5 and IκBα, were not 

affected by β2-AR cotreatment. Although β2-AR triggering also inhibited the 

expression of a subset of NF-κB target genes in astrocytes (eg. ICAM-1, VCAM-1 

and IL-8), none of the NF-κB target genes we investigated in C2C12 cells were 

inhibited by β-agonists. These data further indicate that potentiation of TNF-α-

induced, NF-κB-dependent target gene expression by β2-adrenergic signals is a 

general phenomenon occurring in different cell types at selected pool of promoters. 

Moreover, our data suggest that there is probably a universal mechanism underlying 

synergistic gene expression during β2-AR/NF-κB crosstalk as we detected activation 

of the same signalling pathways in astrocytes and skeletal muscle cells. Furthermore, 

our data indicate that the “skeleton” of the IL-6 enhanceosome is identical in skeletal 

muscle and astrocytes as we found that the same principal components (the NF-κB 

p65 subunit, CREB, CBP and RNA polymerase II) were recruited to the promoter 

upon β2-AR/TNF-R coactivation (Kolmus et al. 2014; Spooren et al. 2010). In line, 

the variegated outcome of β2-AR/NF-κB crosstalk in the context of inflammatory 
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gene expression is probably due to differences in the enhanceosome composition that 

are generated at promoters of inflammatory mediators. A model summarizing the 

intracellular events in response to combined β2-AR and TNF-R triggering in skeletal 

muscle cells is depicted in Figure 1. 

 

Figure 1. Model summarizing the intracellular events in response to combined β2-AR and TNF-R 

triggering in skeletal muscle cells. 

 

4. TEF-1 as a novel regulator of inflammatory genes 

In the second part of this thesis, we employed MS-coupled DNA affinity purification 

to capture and identify novel components of the IL-6 enhanceosome involved in 

synergistic transcription upon concurrent TNF-R/β2-AR triggering. Using this 

strategy, we recovered several known and three novel IL-6 promoter interactors: TEF-

1, BACH1 and NF1X. Interestingly, TEF-1, BACH1 and NF1X are known 

transcriptional regulators, but have never been connected to transcriptional regulation 

of the IL-6 gene (Kolmus et al. in preparation). Because it is a known substrate of 

PKA (Gupta et al. 2000), we further focused on TEF-1 and demonstrated that it 

interacts with the endogenous IL-6 promoter and acts as a transcriptional repressor. 

The action of TEF-1 as a repressor of IL-6 transcription involved modulation of 

CREB but not NF-κB activity (Kolmus et al. 2014 in preparation). Although the 
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molecular mechanism underlying TEF-1-dependent inhibition of CREB remains to be 

established, we hypothesize that TEF-1 inhibits CREB transcriptional activity via 

blockage of its KID domain, which is responsible for contact with CBP. It is generally 

accepted that CBP mediates transcriptional activation by its intrinsic acetyltransferase 

activity or by recruiting additional acetyltransferases, hence promoting chromatin 

loosening (Vo and Goodman 2001). Thus, one could speculate that TEF-1 represses 

chromatin remodelling via precluding cooperative CBP recruitment by CREB and 

NF-κB upon blockage of the KID domain in CREB (Kolmus et al. in preparation). A 

model summarizing our current understanding of the enhanceosome generated at the 

IL-6 promoter in astrocytes upon combined β2-AR and TNF-R triggering is depicted 

in Figure 2. 

 

Figure 2. Model summarizing the composition of the IL-6 enhanceosome upon β2-AR/TNF-R 

triggering in astrocytes. 

 

We also observed that the TEF-1 represses only a subset of NF-κB-dependent genes. 

Interestingly, we found that TEF-1 acts as a repressor of both IL-6 and COX-2, both 

of which display synergistic upregulation upon β-agonist/TNF-α cotreatment. 

Intriguingly, IL-6 and COX-2 are important mediators of inflammation. It will be 

interesting to further elucidate the role of TEF-1 in fine-tuning the inflammatory 

response and to investigate whether it could be a target for selective inhibition of NF-

κB-dependent gene expression (Kolmus et al. in preparation). 
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5. Role of β2-adrenergic signals in the modulation of TEF-1 nuclear activity 

As we found that TEF-1 is phosphorylated by PKA acting downstream of the β2-AR, 

these data further strengthen the importance of modulatory input originating from β2-

AR. Previous findings showed that PKA-phosphorylated TEF-1 displays a diminished 

ability to interact with DNA, whilst this post-translational modification did not 

modify the ability of TEF-1 to interact with the Max transcription factors (Gupta et al. 

2000). Here, we would like to propose two possible roles of PKA-mediated 

phosphorylation of TEF-1 in the regulation of IL-6 expression. As TEF-1 can act both 

as a transcription factor and cofactor, phosphorylation of TEF-1 could serve as a 

switch button “turning on” cofactor ability and “turning off” the transcriptional 

activity by altering its interaction with DNA. In that context, PKA-phosphorylated 

TEF-1 would not interact directly with the IL-6 promoter but instead binds CREB, 

precluding recruitment of cofactors and chromatin remodelling complexes. 

Alternatively, phosphorylation could induce dissociation of TEF-1 from the IL-6 

promoter or mark the protein for deposition of other post-translational modification(s) 

that evokes its degradation. In that context, phosphorylation would contribute to 

abolishment of TEF-1 repressor activity. Clearly, further studies will be required to 

resolve the exact mechanism via which TEF-1 represses IL-6 transcription (Kolmus et 

al. in preparation). 

 

6. TEF-1 as a therapeutic target in inflammatory disorders 

TEF-1 is an imperative transcription factor for expression of developmental genes and 

its role in inflammatory/immune processes is not really well understood. Studies 

using TEF-1 knockout mice demonstrated that lack of TEF-1 leads to embryonic 

lethality due to cardiac defects (Chen et al. 1994). Subsequent in vitro and in vivo 

reports showed that this protein also regulates the transcriptional programs in skeletal 

and smooth muscle. Intriguingly, in some of cases TEF-1 acted as a transcriptional 

coactivator while in others as a corepressor (Yoshida 2008). Overall, it appears that 

TEF-1 is a mediator in a broad spectrum of nuclear processes via a variegated panel 

of activities. 

To our best knowledge, we are the second group showing the importance of TEF-1 in 

the regulation of inflammatory mediators (Cuddapah et al. 2008). Thus, it is difficult 

to immediately answer the question whether TEF-1 could be a good therapeutic target 

in inflammatory disorders. Nevertheless, as TEF-1 acts in a gene selective manner to 
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regulate expression of two important mediators in inflammatory process, namely IL-6 

and COX-2, it is possible that enhancement of TEF-1 binding to promoters of 

inflammatory genes could be a novel strategy to deliver a therapeutic gain. However, 

more in-depth characterization of the molecular mechanisms governing TEF-1 

activity and TEF-1-mediated coregulation during gene expression is required. 

 

7. Effect of β2-AR modulators on NF-κB-dependent gene expression 

Currently, it is clear that (nor)epinephrine and pharmacological ligands of 2-ARs 

differentially affect the expression of selected NF-κB target genes. These effects have 

been reported in different immune cell types, but also in non-immune cells, such as 

glia, fibroblasts, epithelial and endothelial cells and smooth and skeletal muscle cells 

(Chapter 2). As evident from Table 2 in Chapter 2 and the findings summarized in the 

present thesis (Kolmus et al. 2014), the transcription of several prototypical NF-κB 

target genes, such as IL-2, IL-8 and TNF-α, appears to be consistently inhibited by 2-

agonists, while the effects on other targets, like for instance IL-6, IL-10 and IL-13, are 

less uniform. Interestingly, IL-6, IL-8, IL-13, CXCL-2, CXCL-3, CXCL-5, B7-2 and 

COX-2 genes undergo synergistic expression upon co-activation of 2-ARs and the 

NF-κB pathway in various cell types. 

We previously speculated that promoter context may play an important role in 

determining the effect of 2-AR stimulation on NF-κB-dependent gene expression 

(Spooren et al. 2010). Using the Regulatory Sequence Analysis Tool 

(http://rsat.ulb.ac.be), a bioinformatics tool that is designed for detection of regulatory 

elements in non-coding sequences, we performed a search for genes that have NF-κB 

and CREB binding sites in close vicinity (<300 bp) in their proximal promoters (500 

bp upstream to the transcription starting site). We searched for CRE and κB motifs 

identical to the ones present in the IL-6 promoter and this analysis recovered only the 

IL-6 gene. When more flexible settings were applied, searching for consensus κB and 

CRE sites or, in the latter case, also functional half-sites, we retrieved a total of 991 

genes. However, except IL-6, there were no other genes in the hit list for which 2-

AR/NF-κB synergy was previously reported. This indicates that coexistence of 

binding motifs for NF-κB and CREB cannot explain all synergistic effects described 

in literature and probably gene-selective mechanisms are at play.  



General discussion & Perspectives 

151 

A major limitation of our study is the focus on a limited and biased selection of NF-

κB target genes. It would be interesting to use an unbiased RNAseq analysis to verify 

these in silico predictions and reveal how β2-AR/TNF-R coactivation globally affects 

gene expression patterns. 

 

8. Association of enhanceosome architecture and global changes in gene 

expression patterns during 2-AR/NF-κB crosstalk 

Most studies investigating 2-AR/NF-κB crosstalk published to date focused on a 

limited pool of NF-κB target genes (Chapter 2) (Kolmus et al. 2014). In addition, 

most experiments were performed in highly controlled ex vivo or in vitro conditions 

and their translation to in vivo situations remains to be tested. Therefore, we believe a 

more translational approach, applying state-of-the art genome-wide technologies (e.g. 

RNAseq, ChIP-seq) to relevant animal models of disease or primary human samples 

of patients undergoing β-(ant)agonist treatment would yield highly useful 

information, that could then be validated in vitro. For instance, a recent microarray 

study demonstrated that psychological stress, associated with cancer patient 

caregiving, mitigates glucocorticoid receptor gene transcription but promotes that 

driven by NF-κB (Miller et al. 2008). In line, a transcriptomics analysis of 2-AR 

knockout mice brains after ischemia showed lower expression of NF-κB signalling 

components as well as its target genes when compared to wild type mice (White et al. 

2012). 

Furthermore, combining transcriptomics analysis with ChIP-seq to profile NF-κB, 

CREB, CBP and TEF-1 recruitment to regulatory regions could yield valuable 

information on how these transcriptional coregulators interact to regulate 

transcription. More specifically, it might provide an answer to the question whether 

“synergy susceptible genes” have a particular promoter signature. This strategy could 

perhaps lead to the identification of novel targets for the development of highly 

selective anti-inflammatory drugs, with a nuclear action at selected gene promoters. 

 

9. Explaining the heterogeneous outcome of studies on 2-AR/NF-κB crosstalk 

A large number of reports showed that the outcome of β2-ARs/NF-κB in the context 

of inflammatory gene expression can be bidirectional, either positive or negative. The 

dichotomy in the reported effects probably reflects the use of different model systems 
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and illustrates the importance of cell type- and stimulus-specific factors in 

determining the outcome of 2-AR/NF-κB crosstalk. Interestingly, the variegated 

impact of 2-agonists on NF-κB function also reflect a dose-dependent switch in 

signalling originating from the 2-AR localized in different microdomains of the 

plasma membrane (Bruzzone et al. 2014). This fascinating area of regulation has only 

recently gained more attention. Overall, 2-adrenergic signals indeed regulate NF-κB 

activity by various mechanisms, operating at the level of the plasma membrane, in the 

cytoplasm and in the nucleus, engaging diverse molecular switches, scaffolding 

proteins, signal transducers and transcriptional cofactors.  

 

10. Universal patterns in 2-AR/NF-κB crosstalk and their therapeutic relevance 

Although no systematic analysis of 2-AR/NF-κB crosstalk has been performed, 

based on the reports published to date several universal patterns can be identified 

(Table 1 and Table 2 in Chapter 2). 

Firstly, β2-AR triggering was recurrently observed to stimulate NF-κB activity in the 

absence of an inflammatory trigger in cell populations belonging to the immune and 

cardiovascular system. In line with these findings, several clinical reports showed that 

administration of β-antagonists to patients suffering from burn trauma could hold a 

therapeutic promise as elevated levels of stress catecholamines in these patients were 

associated with enhanced production of inflammatory mediators and detrimental 

effects on the cardiovascular system (Friese et al. 2008; Jeschke et al. 2011; Jeschke 

et al. 2007).  

Secondly, all studies performed to date show that β2-AR triggering inhibits NF-κB-

driven expression of IL-2 in activated T cells. β2-AR activation also represses the 

LPS-induced NF-κB-dependent pro-inflammatory program (IL-1β, IL-8 and TNF-α) 

and augments expression of anti-inflammatory factors (IL-1ra, IL-10 and IκBα) in 

cells belonging to the immune and central nervous system. Based on those 

observations, one can propose that 2-AR stimulation could offer a therapeutic 

intervention against sepsis, a condition in which severe infection cause production of 

NF-κB-dependent inflammatory mediators that in turn activate a positive feedback 

loop (de Montmollin et al. 2009). Concomitantly, 2-agonists also counteract 

expression of pro-inflammatory mediators suggesting their utility in the management 

of neurodegenerative disorders (McNamee et al. 2010; Ryan et al. 2013). On the other 
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hand, as there are also reports showing potentiation of inflammatory factors, such as 

IL-6, upon β2-AR triggering (Laureys et al. 2014), it is necessary to carefully test 

administration of 2-agonists in various animal models of inflammatory disease prior 

to considering their evaluation in patients. 

Despite the fact that our observations (Kolmus et al. 2014), and those of others (Table 

2 in Chapter 2), clearly indicate β-agonists trigger the release of selected 

proinflammatory mediators, β-agonists are mainstream therapy for respiratory 

diseases, such as asthma and chronic obstructive pulmonary disease (COPD). If 

enhanced production of proinflammatory mediators would result from β-agonist 

treatment and have deleterious effects, one would expect that there would be reports 

of that. Epidemiological evidence indeed indicates that the use of long-acting beta-

agonists (LABAs) as monotherapy for asthma is associated with increased risk for 

exacerbations and morbidity, and current asthma guidelines recommend the use of 

LABAs only in combination with glucocorticoids. A detailed analysis of 

inflammatory parameters in the lungs of patients experiencing deleterious effects of 

LABA treatment has to our knowledge, however, not been performed. Nevertheless, it 

was demonstrated in mice that chronic β2-agonist treatment exacerbates lung 

inflammation (Lin et al. 2012). Also, an in vitro study on human airway epithelial 

cells indicated that β2-agonists promote IL-1β-induced expression of IL-6 and 

glucocorticoid cotreatment inhibited this effect (Holden et al. 2010). In line, a recent 

study exploring the influence of air pollution on the expression of IL-6 showed that 

particular matter air pollution potentiates sympathetic tone, which via the 

cAMP/CREB-dependent pathway enhances NF-κB-mediated transcription of IL-6 in 

human and murine alveolar macrophages, resulting in a prothrombotic state and 

accelerated arterial thrombosis. Importantly, in vitro administration of β2-agonists 

mimicked the effects of stress catecholamines on the particular matter-induced IL-6 

expression (Chiarella et al. 2014). 

Finally, we (Kolmus et al. 2014) and others (Table 2 in Chapter 2) observed that not 

only IL-6 but also several chemokines can be synergistically or additively upregulated 

in different cell types in response to combined situation with a proinflammatory 

stimulus and 2-agonist. As these factors are known to affect cell migration, the 

synergistic upregulation of a selected pool of NF-κB-dependent cyto-/chemokines by 

2-agonists may have substantial physiological consequences. For instance, a recent 
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study demonstrated that intracerebroventricular coadministration of a 2-agonist and 

TNF-α was associated with synergistic expression a subset of NF-κB target genes and 

modulated leukocyte infiltration in the brain, with a skewing of the T-cell population 

towards a double-negative phenotype, whilst promoting neutrophilic predominance in 

the myeloid subset (Laureys et al. 2014). Based on these observations, future studies 

should elucidate whether production of chemoattractants in vivo have relevance for 

the recruitment of immunocompetent cells and cells contributing to tissue 

regeneration in relevant models of inflammatory disorders or upon exercise. 

Importantly, recent evidence has also linked excessive adrenergic signalling to 

tumour-related biological processes, such as metastasis, and β2-antagonists were 

proposed to hold therapeutic potential against tumour malignancies (Cole and Sood 

2012; Powell et al. 2013). In this context, our finding that β2-AR/TNF-R coactivation 

leads to potent upregulation of IL-6 as well as C-C and C-X-C motif chemokines, 

which are typical malignancy-promoting components of the tumour 

microenvironment, deserves further attention.  

 

11. Selective modulation of NF-κB-dependent gene expression by means of 

biased agonists 

Recently, the crystal structure of the human β2-AR was solved and has provided 

molecular insights that will be key to the design of selective modulators of receptor 

signalling (Cherezov et al. 2007; Rosenbaum et al. 2007). In particular, biased ligands 

or nanobodies could become important therapeutic tools and could also provide 

opportunities for selective manipulation of NF-κB activity. For instance, as 2-AR-

dependent activation of -arrestin represses NF-κB activity (Gao et al. 2004; Luan et 

al. 2005), one could envisage that selective stimulation of the -arrestin pathway 

using biased ligands for the 2-AR could deliver an anti-inflammatory effect by 

inhibiting NF-κB (Yang et al. 2003), without affecting G-protein dependent 

signalling, the outcome of which is currently less clear (Chandrasekar et al. 2004; 

Farmer and Pugin 2000). In line with this, the β2-AR agonists S-albuterol and R,R-

formoterol were shown to have differential effects on the concentration of 

inflammatory mediators in the bronchoalveolar lavage fluid in a mouse model of 

acute lung injury (Bosmann et al. 2012). Although no molecular explanation for the 

discrepant effects of both agonists was provided, one could envisage that they trigger 



General discussion & Perspectives 

155 

different activation states of the 2-AR. Recently, a systematic screen was published 

in which an attempt was made to quantify ligand bias (towards cAMP generation, 

ERK MAPK activation, calcium signalling and receptor endocytosis) for 19 clinically 

relevant -adrenergic ligands (van der Westhuizen et al. 2014). It would be highly 

relevant to extend this study and investigate also ligand bias towards effects on NF-

κB activation. 

 

12. Modulation of NF-κB-dependent gene expression at inflammatory gene 

promoters 

Whilst biased ligands and nanobodies might hold promise for treating inflammation, 

they interfere with the initial steps of cytoplasmic NF-κB signalling and will probably 

trigger global inhibition of NF-κB, which has been associated with defects in 

immunity and an enhanced risk for infection (Powell et al. 2013). Enhanced 

selectivity could be accomplished if one could inhibit NF-κB at selected gene 

promoters, suppressing transcription of only a subset of NF-κB target genes, 

preferentially those with the most deleterious properties. Compounds that interfere 

with the interaction of transcription factors with their cofactors are already known. 

For instance, a small molecule, called chetomin, disrupts interaction of hypoxia-

inducible factor with p300 offering a therapeutic window against tumours (Kung et al. 

2004). As we and others have demonstrated that only selected NF-κB target genes, 

including IL-6 and several chemokines, are susceptible to β2-AR-induced 

transcriptional synergy, a better understanding of the molecular basis of this synergy 

might identify novel, more selective, therapeutic targets. 

 

13. Novel strategies to investigate 2-AR/NF-κB crosstalk 

In addition, several interesting technologies, such as enChIP (engineered DNA-

binding molecule-mediated chromatin immunoprecipitation) coupled to mass 

spectrometry (Fujita and Fujii 2013) or FAIRE (Formaldehyde-Assisted Isolation of 

Regulatory Elements) (Giresi et al. 2007), have recently emerged and could be used to 

gain a better insight into transcription factor recruitment and chromatin remodelling 

events associated with β2-AR/TNF-R co-activation. 
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14. Summary of outstanding questions for further research 

 What is the outcome of systemic administration of β2-(ant)agonists in various models 

of inflammatory disorders and tumour? 

 What is the signature of synergy susceptible promoters as compared to those that are 

repressed? 

 What are the global changes in inflammatory gene expression profile upon β2-AR 

coactivation? 

 Does targeting of TEF-1 offer a novel selective approach to combat inflammatory 

disorders with uncontrolled IL-6 expression? 

 Does β2-AR coactivation enhancer expression of chemotactic factors in vivo to 

modulate cell migration in various disease models and upon exercise? 

 

15. Overall conclusion 

Taken together, we believe that our findings warrant caution in the use of β2-agonists 

in any therapeutic disorder and urge for further study into their immunomodulatory 

properties. 
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Supplementary data for the paper entitled:  

“β-agonists selectively modulate proinflammatory gene expression in skeletal 

muscle cells via non-canonical nuclear crosstalk mechanisms”. 

 

Figure S1. 

 

Figure S2. 
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Figure S3. 
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Figure S4. 
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Table S1. Summary of primer sequences used in the present study.  

Name     Sequence   

Hypoxanthine guanine 

phosphoribosyl transferase 

(HPRT) 

fw 5' CCTAAGATGAGCGCAAGTTGAA 3' 

rv 5' CCACAGGACTAGAACACCTGCTAA 3' 

Interleukin-6 (IL-6) fw 5' AGTCCTTCCTACCCCAATTTCC 3' 

rv 5' TTGGTCCTTAGCCACTCCTTC 3' 

Interleukin-7 (IL-7) fw 5' GTGCTGCTCGCAAGTTGAAG 3' 

rv 5' AGTTCACCAGTGTTTGTGTGC 3' 

Interleukin-15 (IL-15) fw 5' CATCCATCTCGTGCTACTTGTG 3' 

rv 5' GCCTCTGTTTTAGGGAGACCT 3' 

Brain-derived neurotrophic 

factor (BDNF) 

fw 5' TCATACTTCGGTTGCATGAAGG 3' 

rv 5' AGACCTCTCGAACCTGCCC 3' 

Chemokine (C-C motif) 

ligand 2 (CCL2)  

fw 5' TTAAAAACCTGGATCGGAACCAA 3' 

rv 5' GCATTAGCTTCAGATTTACGGGT 3' 

Chemokine (C-C motif) 

ligand 5 (CCL5)  

fw 5' TTTGCCTACCTCTCCCTCG 3' 

rv 5' CGACTGCAAGATTGGAGCACT 3' 

Chemokine (C-X-C motif) 

ligand 5 (CXCL5) 

fw 5' GTGTTTGCTTAACCGTAACTCCA 3' 

rv 5' CTTCCACCGTAGGGCACTG 3' 

Intercellular adhesion 

molecule1 (ICAM-1) 

fw 5' CCGCAGGTCCAATTCACACT 3' 

rv 5' TCCAGCCGAGGACCATACAG  3' 

Nuclear factor of kappa B 

inhibitor α (IκBα) 

fw 5' TGAAGGACGAGGAGTACGAGC 3' 

rv 5' TTCGTGGATGATTGCCAAGTG 3' 

Myogenin (MYOG) fw 5' GGGCAATGCACTGGAGTTCG 3' 

rv 5' CAGATTGTGGGCGTCTGTAG 3' 

IL-6 NheI, CHART-PCR fw 5' CGTGCATGACTTCAGCTTTAC 3' 

rv 5' TGCAGCTTAGGTCGTCATTG 3' 
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IL-6 AatII, CHART-PCR, 

ChIP 

fw 5' GCCTCAAGGATGACTTAAGC 3' 

rv 5' TGTGACGTCGTTTAGCATCG 3' 

IL-6 aspecific region, 

CHART-PCR 

fw 5' ACCGCTATGAAGTTCCTCTC 3' 

rv 5' AACCCACAATGCTGGCTCTC 3' 

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 

ChIP 

fw 5' GATGCAGGGATGATGTTC 3' 

rv 5' TGCACCACCAACTGCTTAG 3' 

 

Table S2. Summary of the position and sequence of NF-κB binding sites in the proximal 

promoters of selected genes.  

Name Position   Sequence   

Interleukin-6 (IL-6) -91 5' GGGATTTTCC 3' 

Interleukin-7 (IL-7) -24 5' TCAGATCCCC 3' 

Interleukin-15 (IL-15) -243 5' CGCCTTGTTT 3' 

Brain-derived neurotrophic factor (BDNF) -117 5' AGAAGTTTCC 3' 

Chemokine (C-C motif) ligand 2 (CCL2)  -152 5' GGAAACACCCG 3' 

Chemokine (C-C motif) ligand 5 (CCL5)  -90 5' GGAAACTCCC 3' 

Chemokine (C-X-C motif) ligand 5 (CXCL5 ) -29 5' GGGAATTTCC 3' 

Intercellular adhesion molecule1 (ICAM-1) -174 5' TGGAAATTCC 3' 

Nuclear factor of kappa B inhibitor α (IκBα) -29 5' GGAAATTCCC 3' 

 

Bioinformatics analysis of promoters was performed using P-Scan. A region of 500 bp 

upstream to the transcription starting site of the selected promoters was investigated with the 

Transcription Factor Binding Sites matrices from TRANSFAC databases. 
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Supplementary data for the paper entitled:  

“A proteomics strategy identifies TEF-1 as a regulator of IL-6 transcription  

in astrocytes” 

 

Supplementary Figure 1. 

 

Figure S1. Control of siRNA-mediated TEF-1 silencing. (A, B, D, E, F) Level of TEF-1 

mRNA levels was measured via RT-qPCR in untreated 1321N1 cells transfected either with 

siRNA targeting TEF-1 or control siRNA. Data are presented as average ± SD of independent 

experiments. (C) Control of ChIP assay gene specificity. Control ChIP experiments showing 

specificity of the observed responses for the IL-6 promoter. ChIP samples from the 

experiment shown in Figure 2C were reanalysed using primers amplifying the β-actin gene 

promoter. Data are presented as average of technical replicates ± SD of three independent 

experiments. (#) Statistically different between siCtrl and siTEF-1 condition. 

  



Supplementary data 

166 

 

Supplementary Table 1. Supplementary Table 1. Summary of primer sequences 

used in the present study. 

Name     Sequence   

Hypoxanthine guanine phosphoribosyl 

transferase (HPRT) 

fw 5' TGACACTGGCAAAACAATGCA 3' 

rv 5' GGTCCTTTTCACCAGCAAGCT 3' 

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 

fw 5' TGCACCACCAACTGCTTAGC 3' 

rv 5' GGCATGGACTGTGGTCATGAG 3' 

Interleukin-6 (IL-7) fw 5' GACAGCCACTCACCTCTTCA 3' 

rv 5' AGTGCCTCTTTGCTGCTTTC 3' 

Interleukin-8 (IL-8) fw 5' GCTCTCTTGGCAGCCTTCCTGA 3' 

rv 5' ACAATAATTTCTGTGGCGC 3' 

Chemokine (C-X-C motif) ligand 2 

(CXCL2)  

fw 5' CCCATGGTTAAGAAAATCATCG 3' 

rv 5' CTTCAGGAACAGCCACCAAT 3' 

Cyclooxygenase 2 (COX-2) fw 5' GCCCTTCCTCCTGTGCC 3' 

rv 5' AATCAGGAAGCTGCTTTTTACCTTT 3' 

Intercellular adhesion molecule 1 (ICAM-

1) 

fw 5' GCAGACAGTGACCATCTACAGCTT 3' 

rv 5' CTTCTGAGACCTCTGGCTTCGT 3' 

Desthiobiotin IL-6 DNA bait fw 5' TCGTGCATGACTTCAG 3' 

rv 5' CTTCGTGCATGACTTCAG 3' 

TEG-biotin IL-6 DNA bait fw 5' cccggttctagaGCATGACTTCAGCTTTAC 3' 

rv 5' CTTCGTGCATGACTTCAG 3' 

IL-6 ChIP, CHART-PCR κB site fw 5' ACCCTCACCCTCCAACAAAG 3' 

rv 5' CAGAATGAGCCTCAGACATC 3' 

IL-6 ChIP, CHART-PCR CRE site fw 5' GGGCTGATTGGAAACC 3' 

rv 5' CACCGGGAACGAAAGAGAAG 3' 

β-actin (Actin) ChIP fw 5' TCCACCTTCCAGCAGATGTG 3' 

rv 5' GCAACTAAGTCATAGTCCGCCTAGA 3' 

Transcription Enhancer Factor-1 (TEF-1) fw 5' GCTAAAGGATCAGACTGCAAAGG 3' 

 rv 5' TTATGAATGGCAGTGGCCGA 3' 

Transcription Enhancer Factor-1 (TEF-1) 

mutagenesis primers 

fw 5' GCTTGGAATGAAAATCTCG 

AGCTTTCCTTCTGGCAAGAACC 

3' 

 rv 5' GGTTCTTGCCAGAAGGAAA 

GCTCGAGATTTTCATTCCAAGC 

3' 
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Supplementary Table 2. List of all proteins identified in the different AP-MS 

experiments. 

 
Exp 1 TNF+iso Method A  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 68 4,28937 

Q13619 Cullin-4A (CUL4A) 25 0,73020 

Q13620 Cullin-4B (CUL4B) 30 0,78690 

Q92466 DNA damage-binding protein 2 (DDB2) 25 2,16228 

P04264 Keratin, type II cytoskeletal 1 (K2C1) 9 0,37550 

P35908 Keratin, type II cytoskeletal 2 epidermal (K22E) 6 0,23682 

P02538 Keratin, type II cytoskeletal 6A (K2C6A) 7 0,27662 

P04259 Keratin, type II cytoskeletal 6B (K2C6B) 7 0,27662 

P17275 Transcription factor jun-B (JUNB) 7 0,56475 

P13645 Keratin, type I cytoskeletal 10 (K1C10) 6 0,34171 

P08779 Keratin, type I cytoskeletal 16 (K1C16) 7 0,39905 

P08651 Nuclear factor 1 C-type (NFIC) 3 0,13921 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 2 0,10294 

Q14938 Nuclear factor 1 X-type (NFIX) 3 0,15478 

P02533 Keratin, type I cytoskeletal 14 (K1C14) 5 0,23764 

P02768 Serum albumin (ALBU) 2 0,05777 

P15407 Fos-related antigen 1 (FOSL1) 4 0,40653 

P27695 DNA-(apurinic or apyrimidinic site) lyase (APEX1) 2 0,11034 

P17535 Transcription factor jun-D (JUND) 2 0,16016 

O14867 Transcription regulator protein BACH1 (BACH1) 5 0,15478 

P15408 Fos-related antigen 2 (FOSL2) 3 0,20526 

P05412 Transcription factor AP-1 (JUN) 2 0,16016 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 3 0,21153 

P35527 Keratin, type I cytoskeletal 9 (K1C9) 2 0,09648 

Q99594 Transcriptional enhancer factor TEF-5 (TEAD3) 1 0,04914 

Q15699 ALX homeobox protein 1 (ALX1) 3 0,18850 

Q04206 Transcription factor p65 (RELA) 2 0,10294 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 2 0,03056 

P02545 Prelamin-A/C (LMNA) 1 0,02239 

P21802 Fibroblast growth factor receptor 2 (FGFR2) 1 0,02883 

P19838 Nuclear factor NF-kappa-B p105 subunit (NFKB1) 2 0,05311 

Q00653 Nuclear factor NF-kappa-B p100 subunit (NFKB2) 1 0,02682 

O15525 Transcription factor MafG (MAFG) 1 0,07711 

P02656 Apolipoprotein C-III (APOC3) 1 0,29155 

Q7L2Z9 Centromere protein Q (CENPQ) 1 0,05133 

O75531 Barrier-to-autointegration factor (BAF) 1 0,19378 

O95497 Pantetheinase (VNN1) 1 0,07007 

Q99958 Forkhead box protein C2 (FOXC2) 1 0,05777 

    

Exp 1  veh Method A  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 65 3,91461 

Q92466 DNA damage-binding protein 2 (DDB2) 26 2,31131 

Q13619 Cullin-4A (CUL4A) 23 0,65595 

Q13620 Cullin-4B (CUL4B) 21 0,50131 

P17275 Transcription factor jun-B (JUNB) 6 0,46780 
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P04264 Keratin, type II cytoskeletal 1 (K2C1) 6 0,23682 

P13645 Keratin, type I cytoskeletal 10 (K1C10) 4 0,21648 

P15408 Fos-related antigen 2 (FOSL2) 4 0,28265 

P02768 Serum albumin (ALBU) 4 0,11887 

O14867 Transcription regulator protein BACH1 (BACH1) 1 0,02920 

P15407 Fos-related antigen 1 (FOSL1) 2 0,18597 

    

Exp 2 TNF+iso Method A  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 5 0,13029 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 9 0,14505 

Q92466 DNA damage-binding protein 2 (DDB2) 4 0,20226 

P04264 Keratin, type II cytoskeletal 1 (K2C1) 4 0,15223 

P35908 Keratin, type II cytoskeletal 2 epidermal (K22E) 3 0,11213 

P13645 Keratin, type I cytoskeletal 10 (K1C10) 3 0,15832 

P02768 Serum albumin (ALBU) 2 0,05777 

    

Exp 2 veh Method A  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 4 0,10294 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 3 0,04618 

Q92466 DNA damage-binding protein 2 (DDB2) 2 0,09648 

P04264 Keratin, type II cytoskeletal 1 (K2C1) 5 0,19378 

P35527 Keratin, type I cytoskeletal 9 (K1C9) 1 0,04713 

P13645 Keratin, type I cytoskeletal 10 (K1C10) 1 0,05021 

Q13619 Cullin-4A (CUL4A) 1 0,02217 

P17275 Transcription factor jun-B (JUNB) 2 0,13646 

P35908 Keratin, type II cytoskeletal 2 epidermal (K22E) 1 0,03606 

P02768 Serum albumin (ALBU) 2 0,05777 

P05412 Transcription factor AP-1 (JUN) 1 0,07711 

P04259 Keratin, type II cytoskeletal 6B (K2C6B) 1 0,03550 

    

Exp 1 TNF+iso Method B  

Accession Description #Validated 

Peptides emPAI 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 73 2,00002 

Q16531 DNA damage-binding protein 1 (DDB1) 47 2,16228 

P12956 X-ray repair cross-complementing protein 6 (XRCC6) 42 2,07873 

P13010 X-ray repair cross-complementing protein 5 (XRCC5) 42 1,96422 

P02545 Prelamin-A/C (LMNA) 27 0,81809 

P02751 Fibronectin (FINC) 23 0,34652 

P39880 Homeobox protein cut-like 1 (CUX1) 20 0,31324 

Q92466 DNA damage-binding protein 2 (DDB2) 21 1,63027 

P08670 Vimentin (VIME) 20 1,10175 

P46063 ATP-dependent DNA helicase Q1 (RECQ1) 22 0,89881 

P49916 DNA ligase 3 (DNLI3) 15 0,26689 

Q5T5X7 BEN domain-containing protein 3 (BEND3) 17 0,46234 

P17275 Transcription factor jun-B (JUNB) 16 1,78256 

Q13619 Cullin-4A (CUL4A) 14 0,35936 

Q14764 Major vault protein (MVP) 15 0,39390 

P61978 Heterogeneous nuclear ribonucleoprotein K (HNRPK) 15 0,91875 
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P18887 DNA repair protein XRCC1 (XRCC1) 13 0,49857 

Q00059 Transcription factor A, mitochondrial (TFAM) 11 0,67683 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 10 0,93070 

Q04206 Transcription factor p65 (RELA) 10 0,63217 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 10 0,89574 

P20700 Lamin-B1 (LMNB1) 9 0,26896 

Q8IVF2 Protein AHNAK2 (AHNK2) 7 0,02248 

P02768 Serum albumin (ALBU) 9 0,28753 

P27695 DNA-(apurinic or apyrimidinic site) lyase (APEX1) 9 0,60157 

P15408 Fos-related antigen 2 (FOSL2) 8 0,64519 

P68104 Elongation factor 1-alpha 1 (EF1A1) 9 0,42083 

Q09666 Neuroblast differentiation-associated protein AHNAK 

(AHNK) 

6 

0,01616 

P11142 Heat shock cognate 71 kDa protein (HSP7C) 8 0,25535 

P19838 Nuclear factor NF-kappa-B p105 subunit (NFKB1) 8 0,22995 

P09429 High mobility group protein B1 (HMGB1) 8 0,47983 

P09651 Heterogeneous nuclear ribonucleoprotein A1 (ROA1) 8 0,58489 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 8 0,47983 

O15527 N-glycosylase/DNA lyase (OGG1) 6 0,45265 

P60709 Actin, cytoplasmic 1 (ACTB) 8 0,66810 

Q13620 Cullin-4B (CUL4B) 6 0,12310 

P02452 Collagen alpha-1(I) chain (CO1A1) 5 0,10069 

Q14204 Cytoplasmic dynein 1 heavy chain 1 (DYHC1) 5 0,02059 

P17535 Transcription factor jun-D (JUND) 5 0,44974 

P04075 Fructose-bisphosphate aldolase A (ALDOA) 5 0,35388 

P14866 Heterogeneous nuclear ribonucleoprotein L (HNRPL) 6 0,25418 

Q96AE4 Far upstream element-binding protein 1 (FUBP1) 5 0,24262 

P05204 Non-histone chromosomal protein HMG-17 (HMGN2) 5 0,68761 

P15407 Fos-related antigen 1 (FOSL1) 5 0,53174 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 5 0,46780 

Q14938 Nuclear factor 1 X-type (NFIX) 4 0,21153 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 5 0,31537 

Q00653 Nuclear factor NF-kappa-B p100 subunit (NFKB2) 5 0,14149 

P26583 High mobility group protein B2 (HMGB2) 4 0,22713 

P35579 Myosin-9 (MYH9) 4 0,02866 

P07355 Annexin A2 (ANXA2) 3 0,14207 

O15525 Transcription factor MafG (MAFG) 4 0,34596 

P22415 Upstream stimulatory factor 1 (USF1) 3 0,25893 

P26599 Polypyrimidine tract-binding protein 1 (PTBP1) 3 0,15478 

Q06330 Recombining binding protein suppressor of hairless (SUH) 3 0,13921 

Q15853 Upstream stimulatory factor 2 (USF2) 3 0,25893 

Q9Y2S6 Translation machinery-associated protein 7 (TMA7) 2 0,27427 

O14867 Transcription regulator protein BACH1 (BACH1) 3 0,09018 

P05412 Transcription factor AP-1 (JUN) 2 0,16016 

P08123 Collagen alpha-2(I) chain (CO1A2) 1 0,02040 

P09382 Galectin-1 (LEG1) 3 0,77828 

P17544 Cyclic AMP-dependent transcription factor ATF-7 (ATF7) 3 0,15832 

P21333 Filamin-A (FLNA) 1 0,00964 

P31943 Heterogeneous nuclear ribonucleoprotein H (HNRH1) 3 0,16999 

Q14103 Heterogeneous nuclear ribonucleoprotein D0 (HNRPD) 3 0,16591 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 2 0,22168 

P62987 Ubiquitin-60S ribosomal protein L40 (RL40) 2 0,20226 

P06733 Alpha-enolase (ENOA) 2 0,08902 
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P17096 High mobility group protein HMG-I/HMG-Y (HMGA1) 2 0,23285 

P35527 Keratin, type I cytoskeletal 9 (K1C9) 2 0,09648 

P35637 RNA-binding protein FUS (FUS) 2 0,09854 

P51991 Heterogeneous nuclear ribonucleoprotein A3 (ROA3) 2 0,10530 

P52926 High mobility group protein HMGI-C (HMGA2) 2 0,27427 

P61956 Small ubiquitin-related modifier 2 (SUMO2) 2 0,46780 

P62937 Peptidyl-prolyl cis-trans isomerase A (PPIA) 1 0,12202 

Q13409 Cytoplasmic dynein 1 intermediate chain 2 (DC1I2) 2 0,07115 

Q15365 Poly(rC)-binding protein 1 (PCBP1) 2 0,17210 

Q92945 Far upstream element-binding protein 2 (FUBP2) 2 0,07978 

Q96T60 Bifunctional polynucleotide phosphatase/kinase (PNKP) 1 0,03912 

P05114 Non-histone chromosomal protein HMG-14 (HMGN1) 1 0,10069 

P06748 Nucleophosmin (NPM) 1 0,06082 

P16949 Stathmin (STMN1) 1 0,07461 

P17844 Probable ATP-dependent RNA helicase DDX5 (DDX5) 1 0,02813 

P23246 Splicing factor, proline- and glutamine-rich (SFPQ) 1 0,02746 

P23284 Peptidyl-prolyl cis-trans isomerase B (PPIB) 1 0,07227 

P55145 Mesencephalic astrocyte-derived neurotrophic factor (MANF) 1 0,07461 

P60903 Protein S100-A10 (S10AA) 1 0,19378 

P63167 Dynein light chain 1, cytoplasmic (DYL1) 1 0,21153 

P68363 Tubulin alpha-1B chain (TBA1B) 1 0,06082 

Q15233 Non-POU domain-containing octamer-binding protein 

(NONO) 

1 

0,03393 

Q9H299 SH3 domain-binding glutamic acid-rich-like protein 3 

(SH3L3) 

1 

0,25893 

Q9P016 Thymocyte nuclear protein 1 (THYN1) 1 0,06605 

P19338 Nucleolin (NUCL) 2 0,04160 

P63167 Dynein light chain 1, cytoplasmic (DYL1) 3 0,77828 

    

Exp 1 veh Method B  

Accession Description #Validated 

Peptides emPAI 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 81 2,38386 

Q16531 DNA damage-binding protein 1 (DDB1) 60 3,34808 

P13010 X-ray repair cross-complementing protein 5 (XRCC5) 57 3,36968 

P12956 X-ray repair cross-complementing protein 6 (XRCC6) 48 2,61526 

P08670 Vimentin (VIME) 40 3,41734 

P21333 Filamin-A (FLNA) 31 0,34638 

P02545 Prelamin-A/C (LMNA) 30 0,94295 

Q92466 DNA damage-binding protein 2 (DDB2) 29 2,80189 

P02751 Fibronectin (FINC) 25 0,38181 

P39880 Homeobox protein cut-like 1 (CUX1) 24 0,38679 

P35579 Myosin-9 (MYH9) 21 0,15989 

Q13619 Cullin-4A (CUL4A) 17 0,45179 

P49916 DNA ligase 3 (DNLI3) 17 0,30749 

P17275 Transcription factor jun-B (JUNB) 15 1,61016 

P04075 Fructose-bisphosphate aldolase A (ALDOA) 15 1,48163 

P46063 ATP-dependent DNA helicase Q1 (RECQ1) 17 0,64131 

P60709 Actin, cytoplasmic 1 (ACTB) 15 1,61016 

Q00059 Transcription factor A, mitochondrial (TFAM) 13 0,84207 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 15 1,68270 

P06733 Alpha-enolase (ENOA) 12 0,66810 

P61978 Heterogeneous nuclear ribonucleoprotein K (HNRPK) 14 0,83718 

P02768 Serum albumin (ALBU) 13 0,44058 
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P68104 Elongation factor 1-alpha 1 (EF1A1) 10 0,47738 

P07355 Annexin A2 (ANXA2) 10 0,55707 

P18887 DNA repair protein XRCC1 (XRCC1) 12 0,45265 

Q14764 Major vault protein (MVP) 12 0,30432 

P15408 Fos-related antigen 2 (FOSL2) 9 0,75083 

P62736 Actin, aortic smooth muscle (ACTA) 10 0,89574 

P09651 Heterogeneous nuclear ribonucleoprotein A1 (ROA1) 10 0,77828 

P62937 Peptidyl-prolyl cis-trans isomerase A (PPIA) 10 2,16228 

P11142 Heat shock cognate 71 kDa protein (HSP7C) 9 0,29155 

Q09666 Neuroblast differentiation-associated protein AHNAK 

(AHNK) 

8 

0,02160 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 9 0,77828 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 7 0,46780 

Q5T5X7 BEN domain-containing protein 3 (BEND3) 8 0,19583 

P27695 DNA-(apurinic or apyrimidinic site) lyase (APEX1) 7 0,44242 

P20700 Lamin-B1 (LMNB1) 8 0,23582 

P26038 Moesin (MOES) 6 0,14658 

Q13620 Cullin-4B (CUL4B) 6 0,12310 

Q14103 Heterogeneous nuclear ribonucleoprotein D0 (HNRPD) 7 0,43072 

Q16658 Fascin (FSCN1) 7 0,32035 

Q96AE4 Far upstream element-binding protein 1 (FUBP1) 6 0,29780 

Q99594 Transcriptional enhancer factor TEF-5 (TEAD3) 6 0,33352 

P17535 Transcription factor jun-D (JUND) 4 0,34596 

Q8IVF2 Protein AHNAK2 (AHNK2) 4 0,01278 

P09382 Galectin-1 (LEG1) 6 2,16228 

P05204 Non-histone chromosomal protein HMG-17 (HMGN2) 6 0,87382 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 6 0,58489 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 6 0,34171 

O15527 N-glycosylase/DNA lyase (OGG1) 5 0,36501 

P07900 Heat shock protein HSP 90-alpha (HS90A) 5 0,11249 

P09429 High mobility group protein B1 (HMGB1) 6 0,34171 

P13639 Elongation factor 2 (EF2) 6 0,14207 

P15407 Fos-related antigen 1 (FOSL1) 4 0,40653 

P16949 Stathmin (STMN1) 5 0,43301 

P02452 Collagen alpha-1(I) chain (CO1A1) 4 0,07978 

P11021 78 kDa glucose-regulated protein (GRP78) 4 0,11304 

P14866 Heterogeneous nuclear ribonucleoprotein L (HNRPL) 5 0,20772 

P62826 GTP-binding nuclear protein Ran (RAN) 4 0,42510 

Q13263 Transcription intermediary factor 1-beta (TIF1B) 4 0,12365 

Q14204 Cytoplasmic dynein 1 heavy chain 1 (DYHC1) 2 0,00818 

P60174 Triosephosphate isomerase (TPIS) 3 0,25893 

Q14938 Nuclear factor 1 X-type (NFIX) 4 0,21153 

O14867 Transcription regulator protein BACH1 (BACH1) 4 0,12202 

O15525 Transcription factor MafG (MAFG) 3 0,24961 

P04264 Keratin, type II cytoskeletal 1 (K2C1) 3 0,11213 

P08107 Heat shock 70 kDa protein 1A/1B (HSP71) 4 0,12202 

P08238 Heat shock protein HSP 90-beta (HS90B) 3 0,06800 

P14618 Pyruvate kinase PKM (KPYM) 4 0,16298 

P18846 Cyclic AMP-dependent transcription factor ATF-1 (ATF1) 2 0,17877 

P19338 Nucleolin (NUCL) 3 0,06304 

P20810 Calpastatin (ICAL) 4 0,09750 

P22415 Upstream stimulatory factor 1 (USF1) 3 0,25893 

P26599 Polypyrimidine tract-binding protein 1 (PTBP1) 3 0,15478 
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P31943 Heterogeneous nuclear ribonucleoprotein H (HNRH1) 4 0,23285 

P60660 Myosin light polypeptide 6 (MYL6) 4 0,93070 

P78527 DNA-dependent protein kinase catalytic subunit (PRKDC) 1 0,00482 

Q15233 Non-POU domain-containing octamer-binding protein 

(NONO) 

4 

0,14280 

Q15853 Upstream stimulatory factor 2 (USF2) 3 0,25893 

Q92945 Far upstream element-binding protein 2 (FUBP2) 2 0,07978 

P31946 14-3-3 protein beta/alpha (1433B) 3 0,25893 

P04083 Annexin A1 (ANXA1) 3 0,15140 

P07437 Tubulin beta chain (TBB5) 3 0,21153 

P15311 Ezrin (EZRI) 3 0,07227 

P17096 High mobility group protein HMG-I/HMG-Y (HMGA1) 3 0,36887 

P17544 Cyclic AMP-dependent transcription factor ATF-7 (ATF7) 3 0,15832 

P23284 Peptidyl-prolyl cis-trans isomerase B (PPIB) 3 0,23285 

P26583 High mobility group protein B2 (HMGB2) 2 0,10776 

P27797 Calreticulin (CALR) 2 0,11034 

P40926 Malate dehydrogenase, mitochondrial (MDHM) 3 0,23285 

P63167 Dynein light chain 1, cytoplasmic (DYL1) 3 0,77828 

P63241 Eukaryotic translation initiation factor 5A-1 (IF5A1) 3 0,53993 

P68363 Tubulin alpha-1B chain (TBA1B) 3 0,19378 

P68363 Tubulin alpha-1B chain (TBA1B) 3 0,19378 

P80723 Brain acid soluble protein 1 (BASP1) 3 0,26896 

Q13409 Cytoplasmic dynein 1 intermediate chain 2 (DC1I2) 3 0,10860 

Q15365 Poly(rC)-binding protein 1 (PCBP1) 3 0,26896 

Q15366 Poly(rC)-binding protein 2 (PCBP2) 3 0,27980 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 2 0,22168 

P62987 Ubiquitin-60S ribosomal protein L40 (RL40) 2 0,20226 

Q07666 KH domain-containing, RNA-binding, signal transduction-

associated protein 1 (KHDR1) 

1 

0,04197 

P00558 Phosphoglycerate kinase 1 (PGK1) 2 0,09450 

P23246 Splicing factor, proline- and glutamine-rich (SFPQ) 2 0,05567 

P23528 Cofilin-1 (COF1) 2 0,17877 

P27816 Microtubule-associated protein 4 (MAP4) 1 0,02022 

P30050 60S ribosomal protein L12 (RL12) 1 0,09648 

P36578 60S ribosomal protein L4 (RL4) 1 0,02591 

P50454 Serpin H1 (SERPH) 2 0,09260 

P52926 High mobility group protein HMGI-C (HMGA2) 2 0,27427 

P61313 60S ribosomal protein L15 (RL15) 1 0,05372 

P61956 Small ubiquitin-related modifier 2 (SUMO2) 2 0,46780 

P62917 60S ribosomal protein L8 (RL8) 2 0,09450 

Q9H299 SH3 domain-binding glutamic acid-rich-like protein 3 

(SH3L3) 

2 

0,58489 

Q9Y2S6 Translation machinery-associated protein 7 (TMA7) 2 0,27427 

P63313 Thymosin beta-10 (TYB10) 1 0,33352 

O00148 ATP-dependent RNA helicase DDX39A (DX39A) 1 0,04618 

P38159 RNA-binding motif protein, X chromosome (RBMX) 1 0,03444 

P00338 L-lactate dehydrogenase A chain (LDHA) 1 0,06082 

P02795 Metallothionein-2 (MT2) 1 0,33352 

P05114 Non-histone chromosomal protein HMG-14 (HMGN1) 1 0,10069 

P05386 60S acidic ribosomal protein P1 (RLA1) 1 0,38950 

P06703 Protein S100-A6 (S10A6) 1 0,21153 

P06748 Nucleophosmin (NPM) 1 0,06082 

P08123 Collagen alpha-2(I) chain (CO1A2) 1 0,02040 

P10412 Histone H1,4 (H14) 1 0,04197 
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P10599 Thioredoxin (THIO) 1 0,23285 

P10809 60 kDa heat shock protein, mitochondrial (CH60) 1 0,03250 

P18858 DNA ligase 1 (DNLI1) 1 0,01954 

P29034 Protein S100-A2 (S10A2) 1 0,29155 

P35527 Keratin, type I cytoskeletal 9 (K1C9) 1 0,04713 

P35637 RNA-binding protein FUS (FUS) 1 0,04811 

P37802 Transgelin-2 (TAGL2) 1 0,11034 

P51858 Hepatoma-derived growth factor (HDGF) 1 0,07007 

P51991 Heterogeneous nuclear ribonucleoprotein A3 (ROA3) 1 0,05133 

P55145 Mesencephalic astrocyte-derived neurotrophic factor (MANF) 1 0,07461 

P59998 Actin-related protein 2/3 complex subunit 4 (ARPC4) 1 0,11034 

P60903 Protein S100-A10 (S10AA) 1 0,19378 

P62328 Thymosin beta-4 (TYB4) 1 0,33352 

P62906 60S ribosomal protein L10a (RL10A) 1 0,05925 

P83731 60S ribosomal protein L24 (RL24) 1 0,05777 

Q06330 Recombining binding protein suppressor of hairless (SUH) 1 0,04440 

Q13148 TAR DNA-binding protein 43 (TADBP) 1 0,06082 

Q8NC51 Plasminogen activator inhibitor 1 RNA-binding protein 

(PAIRB) 

1 

0,03606 

Q92841 Probable ATP-dependent RNA helicase DDX17 (DDX17) 1 0,02714 

Q96T60 Bifunctional polynucleotide phosphatase/kinase (PNKP) 1 0,03912 

Q9BQ61 Uncharacterized protein C19orf43 (CS043) 1 0,08902 

Q9P2V4 Leucine-rich repeat, immunoglobulin-like domain and 

transmembrane domain-containing protein 1 (LRIT1) 

1 

0,03663 

P07737 Profilin-1 (PROF1) 1 0,16591 

Q9UKF2 Disintegrin and metalloproteinase domain-containing protein 

30 (ADA30) 

1 

0,02591 

P21802 Fibroblast growth factor receptor 2 (FGFR2) 1 0,02883 

Q09028 Histone-binding protein RBBP4 (RBBP4) 1 0,07711 

P14316 Interferon regulatory factor 2 (IRF2) 1 0,05925 

    

Exp 2 TNF+iso Method B  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 68 4,28937 

Q13619 Cullin-4A (CUL4A) 29 0,88882 

Q92466 DNA damage-binding protein 2 (DDB2) 36 4,24807 

Q13620 Cullin-4B (CUL4B) 16 0,36287 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 15 0,25325 

P15408 Fos-related antigen 2 (FOSL2) 17 1,88044 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 18 2,16228 

P17275 Transcription factor jun-B (JUNB) 17 1,96635 

O14867 Transcription regulator protein BACH1 (BACH1) 13 0,45378 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 10 0,93070 

P02768 Serum albumin (ALBU) 11 0,36190 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 10 0,63217 

Q99594 Transcriptional enhancer factor TEF-5 (TEAD3) 9 0,53993 

P02545 Prelamin-A/C (LMNA) 10 0,24783 

Q15561 Transcriptional enhancer factor TEF-3 (TEAD4) 7 0,45476 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 6 0,38950 

P15407 Fos-related antigen 1 (FOSL1) 7 0,81660 

P17535 Transcription factor jun-D (JUND) 7 0,68192 

P05412 Transcription factor AP-1 (JUN) 6 0,56152 

P17544 Cyclic AMP-dependent transcription factor ATF-7 (ATF7) 6 0,34171 
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O15525 Transcription factor MafG (MAFG) 4 0,34596 

O60675 Transcription factor MafK (MAFK) 3 0,26896 

P19838 Nuclear factor NF-kappa-B p105 subunit (NFKB1) 4 0,10903 

P53539 Protein fosB (FOSB) 2 0,20226 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 1 0,10530 

P23246 Splicing factor, proline- and glutamine-rich (SFPQ) 3 0,08466 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 2 0,16591 

P62877 E3 ubiquitin-protein ligase RBX1 (RBX1) 1 0,23285 

P15336 Cyclic AMP-dependent transcription factor ATF-2 (ATF2) 2 0,10294 

Q15233 Non-POU domain-containing octamer-binding protein 

(NONO) 

1 

0,03393 

Q8WYK2 Jun dimerization protein 2 (JDP2) 2 0,17877 

Q96AE4 Far upstream element-binding protein 1 (FUBP1) 1 0,04440 

Q9ULX9 Transcription factor MafF (MAFF) 1 0,08264 

P09651 Heterogeneous nuclear ribonucleoprotein A1 (ROA1) 1 0,05925 

P62273 40S ribosomal protein S29 (RS29) 2 0,51991 

Q9UKF2 Disintegrin and metalloproteinase domain-containing protein 

30 (ADA30) 

1 

0,02591 

O00178 GTP-binding protein 1 (GTPB1) 1 0,02996 

P02751 Fibronectin (FINC) 1 0,01302 

P12956 X-ray repair cross-complementing protein 6 (XRCC6) 1 0,02714 

P22415 Upstream stimulatory factor 1 (USF1) 1 0,07978 

P29372 DNA-3-methyladenine glycosylase (3MG) 1 0,06247 

P51991 Heterogeneous nuclear ribonucleoprotein A3 (ROA3) 1 0,05133 

Q00839 Heterogeneous nuclear ribonucleoprotein U (HNRPU) 1 0,02135 

Q14938 Nuclear factor 1 X-type (NFIX) 1 0,04914 

Q8N108 Mesoderm induction early response protein 1 (MIER1) 1 0,04440 

P20700 Lamin-B1 (LMNB1) 2 0,05436 

P14866 Heterogeneous nuclear ribonucleoprotein L (HNRPL) 2 0,07842 

Q92945 Far upstream element-binding protein 2 (FUBP2) 2 0,07978 

P61978 Heterogeneous nuclear ribonucleoprotein K (HNRPK) 1 0,04440 

Q9BW61 DET1- and DDB1-associated protein 1 (DDA1) 1 0,15478 

    

Exp 2 veh Method B  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 28 0,98551 

Q92466 DNA damage-binding protein 2 (DDB2) 26 2,31131 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 22 3,08424 

P17275 Transcription factor jun-B (JUNB) 21 2,83119 

P17535 Transcription factor jun-D (JUND) 12 1,43835 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 10 0,73020 

P15408 Fos-related antigen 2 (FOSL2) 11 0,98288 

P02768 Serum albumin (ALBU) 9 0,28753 

P02545 Prelamin-A/C (LMNA) 8 0,19378 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 5 0,38950 

Q13619 Cullin-4A (CUL4A) 8 0,19176 

O14867 Transcription regulator protein BACH1 (BACH1) 5 0,15478 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 5 0,07815 

P05412 Transcription factor AP-1 (JUN) 6 0,56152 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 4 0,21648 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 4 0,49250 

P15407 Fos-related antigen 1 (FOSL1) 5 0,53174 
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O15525 Transcription factor MafG (MAFG) 4 0,34596 

Q9ULX9 Transcription factor MafF (MAFF) 3 0,26896 

P17544 Cyclic AMP-dependent transcription factor ATF-7 (ATF7) 3 0,15832 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 4 0,35936 

P23246 Splicing factor, proline- and glutamine-rich (SFPQ) 2 0,05567 

P20700 Lamin-B1 (LMNB1) 2 0,05436 

Q15233 Non-POU domain-containing octamer-binding protein 

(NONO) 

2 

0,06902 

Q13620 Cullin-4B (CUL4B) 4 0,08047 

O60675 Transcription factor MafK (MAFK) 2 0,17210 

P22415 Upstream stimulatory factor 1 (USF1) 2 0,16591 

Q15853 Upstream stimulatory factor 2 (USF2) 2 0,16591 

P15336 Cyclic AMP-dependent transcription factor ATF-2 (ATF2) 1 0,05021 

P09651 Heterogeneous nuclear ribonucleoprotein A1 (ROA1) 1 0,05925 

P02751 Fibronectin (FINC) 1 0,01302 

Q14938 Nuclear factor 1 X-type (NFIX) 1 0,04914 

O60282 Kinesin heavy chain isoform 5C (KIF5C) 1 0,01601 

P29372 DNA-3-methyladenine glycosylase (3MG) 1 0,06247 

P39880 Homeobox protein cut-like 1 (CUX1) 1 0,01372 

P51991 Heterogeneous nuclear ribonucleoprotein A3 (ROA3) 1 0,05133 

P62273 40S ribosomal protein S29 (RS29) 1 0,23285 

Q00839 Heterogeneous nuclear ribonucleoprotein U (HNRPU) 1 0,02135 

Q92945 Far upstream element-binding protein 2 (FUBP2) 1 0,03912 

Q9UKF2 Disintegrin and metalloproteinase domain-containing protein 

30 (ADA30) 

1 

0,02591 

    

Exp 3 TNF+iso Method B  

Accession Description #Validated 

Peptides emPAI 

Q16531 DNA damage-binding protein 1 (DDB1) 70 4,55496 

Q92466 DNA damage-binding protein 2 (DDB2) 40 5,30957 

Q13619 Cullin-4A (CUL4A) 14 0,35936 

P02768 Serum albumin (ALBU) 14 0,48160 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 6 0,09450 

P02751 Fibronectin (FINC) 7 0,09478 

P04264 Keratin, type II cytoskeletal 1 (K2C1) 5 0,19378 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 4 0,24520 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 6 0,48398 

P13645 Keratin, type I cytoskeletal 10 (K1C10) 4 0,21648 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 4 0,29155 

P15408 Fos-related antigen 2 (FOSL2) 2 0,13254 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) 1 0,05021 

P17275 Transcription factor jun-B (JUNB) 2 0,13646 

P17535 Transcription factor jun-D (JUND) 2 0,16016 

P29372 DNA-3-methyladenine glycosylase (3MG) 1 0,06247 

P35908 Keratin, type II cytoskeletal 2 epidermal (K22E) 2 0,07342 

P62273 40S ribosomal protein S29 (RS29) 2 0,51991 

Q13951 Core-binding factor subunit beta (PEBB) 1 0,07978 

P04908 Histone H2A type 1-B/E (H2A1B) 1 0,09648 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 1 0,07978 

P35527 Keratin, type I cytoskeletal 9 (K1C9) 1 0,04713 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 1 0,10530 

Q8N108 Mesoderm induction early response protein 1 (MIER1) 1 0,04440 
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Q9NZB2 Constitutive coactivator of PPAR-gamma-like protein 1 

(F120A) 

1 

0,02059 

Q9H251 Cadherin-23 (CAD23) 1 0,01011 

    

Exp 3 veh Method B  

Accession Description #Validated 

Peptides emPAI 

P02545 Prelamin-A/C (LMNA) 41 1,47874 

P23246 Splicing factor, proline- and glutamine-rich (SFPQ) 25 0,96842 

Q92466 DNA damage-binding protein 2 (DDB2) 23 1,88403 

P02751 Fibronectin (FINC) 22 0,32922 

Q16531 DNA damage-binding protein 1 (DDB1) 18 0,55414 

Q09666 Neuroblast differentiation-associated protein AHNAK 

(AHNK) 

17 

0,04646 

Q15233 Non-POU domain-containing octamer-binding protein 

(NONO) 

18 

0,82335 

P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 (ROA2) 17 1,53958 

P08670 Vimentin (VIME) 16 0,81161 

P17275 Transcription factor jun-B (JUNB) 13 1,29674 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) 12 1,15443 

P21333 Filamin-A (FLNA) 13 0,13284 

P09651 Heterogeneous nuclear ribonucleoprotein A1 (ROA1) 6 0,41254 

P61978 Heterogeneous nuclear ribonucleoprotein K (HNRPK) 12 0,68428 

Q96AE4 Far upstream element-binding protein 1 (FUBP1) 13 0,75907 

P04406 Glyceraldehyde-3-phosphate dehydrogenase (G3P) 10 0,93070 

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) 8 0,12794 

P51991 Heterogeneous nuclear ribonucleoprotein A3 (ROA3) 6 0,35031 

P62937 Peptidyl-prolyl cis-trans isomerase A (PPIA) 9 1,81838 

Q14103 Heterogeneous nuclear ribonucleoprotein D0 (HNRPD) 8 0,50584 

P02768 Serum albumin (ALBU) 9 0,28753 

P04075 Fructose-bisphosphate aldolase A (ALDOA) 8 0,62378 

P14866 Heterogeneous nuclear ribonucleoprotein L (HNRPL) 8 0,35253 

P20700 Lamin-B1 (LMNB1) 6 0,17210 

P11387 DNA topoisomerase 1 (TOP1) 3 0,04122 

Q99729 Heterogeneous nuclear ribonucleoprotein A/B (ROAA) 7 0,45476 

P10412 Histone H1,4 (H14) 7 0,33352 

P16401 Histone H1,5 (H15) 7 0,32035 

Q92841 Probable ATP-dependent RNA helicase DDX17 (DDX17) 6 0,17427 

P35579 Myosin-9 (MYH9) 6 0,04329 

O14979 Heterogeneous nuclear ribonucleoprotein D-like (HNRDL) 5 0,21957 

P12956 X-ray repair cross-complementing protein 6 (XRCC6) 5 0,14325 

Q92945 Far upstream element-binding protein 2 (FUBP2) 5 0,21153 

P17535 Transcription factor jun-D (JUND) 5 0,44974 

Q8IVF2 Protein AHNAK2 (AHNK2) 3 0,00957 

P15408 Fos-related antigen 2 (FOSL2) 5 0,36501 

P06748 Nucleophosmin (NPM) 5 0,34340 

P0C0S8 Histone H2A type 1 (H2A1) 6 0,73780 

P13010 X-ray repair cross-complementing protein 5 (XRCC5) 4 0,10903 

Q13619 Cullin-4A (CUL4A) 5 0,11588 

P07355 Annexin A2 (ANXA2) 3 0,14207 

P27695 DNA-(apurinic or apyrimidinic site) lyase (APEX1) 4 0,23285 

P13639 Elongation factor 2 (EF2) 4 0,09260 

Q07666 KH domain-containing, RNA-binding, signal transduction-

associated protein 1 (KHDR1) 

1 

0,04197 
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Q92804 TATA-binding protein-associated factor 2N (RBP56) 3 0,11034 

P06733 Alpha-enolase (ENOA) 2 0,08902 

P15311 Ezrin (EZRI) 3 0,07227 

P60660 Myosin light polypeptide 6 (MYL6) 3 0,63789 

P98179 Putative RNA-binding protein 3 (RBM3) 4 0,58489 

Q13263 Transcription intermediary factor 1-beta (TIF1B) 4 0,12365 

O15525 Transcription factor MafG (MAFG) 3 0,24961 

P18754 Regulator of chromosome condensation (RCC1) 2 0,11304 

P50454 Serpin H1 (SERPH) 3 0,14207 

P52943 Cysteine-rich protein 2 (CRIP2) 2 0,19378 

P62273 40S ribosomal protein S29 (RS29) 3 0,87382 

P62826 GTP-binding nuclear protein Ran (RAN) 2 0,19378 

P63241 Eukaryotic translation initiation factor 5A-1 (IF5A1) 3 0,53993 

P53567 CCAAT/enhancer-binding protein gamma (CEBPG) 2 0,22168 

Q9C005 Protein dpy-30 homolog (DPY30) 2 0,58489 

Q9P258 Protein RCC2 (RCC2) 1 0,03663 

P09429 High mobility group protein B1 (HMGB1) 1 0,05021 

O60814 Histone H2B type 1-K (H2B1K) 2 0,18597 

P07910 Heterogeneous nuclear ribonucleoproteins C1/C2 (HNRPC) 2 0,10294 

P10809 60 kDa heat shock protein, mitochondrial (CH60) 1 0,03250 

P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) 2 0,16591 

P24534 Elongation factor 1-beta (EF1B) 1 0,09648 

P25398 40S ribosomal protein S12 (RS12) 2 0,27427 

P29401 Transketolase (TKT) 1 0,03550 

P31949 Protein S100-A11 (S10AB) 2 0,42510 

P33240 Cleavage stimulation factor subunit 2 (CSTF2) 1 0,04528 

P62805 Histone H4 (H4) 1 0,10069 

P68104 Elongation factor 1-alpha 1 (EF1A1) 1 0,03980 

P82979 SAP domain-containing ribonucleoprotein (SARNP) 2 0,12534 

Q13151 Heterogeneous nuclear ribonucleoprotein A0 (ROA0) 2 0,14976 

Q13409 Cytoplasmic dynein 1 intermediate chain 2 (DC1I2) 1 0,03496 

Q8WXF1 Paraspeckle component 1 (PSPC1) 2 0,06701 

Q9NP97 Dynein light chain roadblock-type 1 (DLRB1) 2 0,46780 

Q9ULX9 Transcription factor MafF (MAFF) 2 0,17210 

P05204 Non-histone chromosomal protein HMG-17 (HMGN2) 1 0,11034 

P27797 Calreticulin (CALR) 1 0,05372 

A5A3E0 POTE ankyrin domain family member F (POTEF) 1 0,01695 

O95785 Protein Wiz (WIZ) 1 0,01388 

P00558 Phosphoglycerate kinase 1 (PGK1) 1 0,04618 

P05386 60S acidic ribosomal protein P1 (RLA1) 1 0,38950 

P11021 78 kDa glucose-regulated protein (GRP78) 1 0,02714 

P16949 Stathmin (STMN1) 1 0,07461 

P17096 High mobility group protein HMG-I/HMG-Y (HMGA1) 1 0,11034 

P22415 Upstream stimulatory factor 1 (USF1) 1 0,07978 

P30050 60S ribosomal protein L12 (RL12) 1 0,09648 

P35637 RNA-binding protein FUS (FUS) 1 0,04811 

P51858 Hepatoma-derived growth factor (HDGF) 1 0,07007 

Q15365 Poly(rC)-binding protein 1 (PCBP1) 1 0,08264 

P60174 Triosephosphate isomerase (TPIS) 1 0,07978 

P61158 Actin-related protein 3 (ARP3) 1 0,05372 

Q00839 Heterogeneous nuclear ribonucleoprotein U (HNRPU) 1 0,02135 

Q12888 Tumor suppressor p53-binding protein 1 (TP53B) 1 0,01332 

Q12905 Interleukin enhancer-binding factor 2 (ILF2) 1 0,06421 
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Q13765 Nascent polypeptide-associated complex subunit alpha 

(NACA) 

1 

0,11034 

Q15651 High mobility group nucleosome-binding domain-containing 

protein 3 (HMGN3) 

1 

0,11034 

Q16630 Cleavage and polyadenylation specificity factor subunit 6 

(CPSF6) 

1 

0,03847 

Q92499 ATP-dependent RNA helicase DDX1 (DDX1) 1 0,02591 

Q99832 T-complex protein 1 subunit eta (TCPH) 1 0,03550 

Q9Y224 UPF0568 protein C14orf166 (CN166) 1 0,07007 

Q9Y3I0 tRNA-splicing ligase RtcB homolog (RTCB) 1 0,04122 

Q9Y6D9 Mitotic spindle assembly checkpoint protein MAD1 (MD1L1) 1 0,02059 

P68431 Histone H3,1 (H31) 2 0,17210 

P26038 Moesin (MOES) 1 0,02306 

P55145 Mesencephalic astrocyte-derived neurotrophic factor (MANF) 1 0,07461 

Q9UKF2 Disintegrin and metalloproteinase domain-containing protein 

30 (ADA30) 

1 

0,02591 

Q9BQ61 Uncharacterized protein C19orf43 (CS043) 1 0,08902 

Q9H910 Hematological and neurological expressed 1-like protein 

(HN1L) 

1 

0,11588 

P02452 Collagen alpha-1(I) chain (CO1A1) 1 0,01937 

Q14847 LIM and SH3 domain protein 1 (LASP1) 1 0,07461 

Q9BRJ9 Mesoderm posterior protein 1 (MESP1) 1 0,07978 

P16949 Stathmin (STMN1) 2 0,15478 

Q9BVC5 Ashwin (ASHWN) 1 0,07007 

P63313 Thymosin beta-10 (TYB10) 1 0,33352 

P19338 Nucleolin (NUCL) 1 0,02059 

Q15853 Upstream stimulatory factor 2 (USF2) 1 0,07978 

Q9ULV4 Coronin-1C (COR1C) 1 0,03980 
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Supplementary Table 3. Overview of proteins identified in the different AP-MS experiments after elimination of technical contaminants 

and proteins identified with only 1 unique peptide. Blank boxes indicate that the protein was not identified in a given treatment/experiment. 

 Exp 1 Method A Exp 2 Method A Exp 1 Method B Exp 2 Method B Exp 3 Method B   

    TNF/iso veh TNF/iso veh  TNF/iso veh  TNF/iso veh  TNF/iso veh    
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Q13619 Cullin-4A (CUL4A) N DNA nucleic 

acid-associated 

protein 
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P02545 Prelamin-A/C 

(LMNA) 

N Transcription 

related protein 
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P13010 X-ray repair cross-

complementing 

protein 5 (XRCC5) 

N Transcription 

related protein 
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P17275 Transcription factor 

jun-B (JUNB) 

N Transcription 

related protein 
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P12956 X-ray repair cross-

complementing 

protein 6 (XRCC6) 

N Transcription 

related protein 
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Q13620 Cullin-4B (CUL4B) N DNA nucleic 

acid-associated 

protein 
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P17676 CCAAT/enhancer-

binding protein beta 

(CEBPB) 

N Transcription 

related protein 
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P02751 Fibronectin (FINC) O Not described 

nuclear 

function 
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P08670 Vimentin (VIME) O Not described 

nuclear 

function 
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P15408 Fos-related antigen 2 

(FOSL2) 

N Transcription 

related protein 
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P04406 Glyceraldehyde-3-

phosphate 

dehydrogenase 

(G3P) 

N Transcription 

related protein 

        

1
0
 

0
,9

3
0
6

9
7
7

2
 

1
5
 

1
,6

8
2
6

9
5
7

9
 

1
0
 

0
,9

3
0
6

9
7
7

2
 

5
 

0
,3

8
9
4

9
5
4

9
 

6
 

0
,4

8
3
9

8
1
7

8
 

1
0
 

0
,9

3
0
6

9
7
7

2
 

5
6
 

0
,5

3
4
8

2
6
6

3
 

P22626 Heterogeneous 

nuclear 

ribonucleoproteins 

A2/B1 (ROA2) 

N RNA nucleic 

acid-associated 

protein 
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P21333 Filamin-A (FLNA) O Not described 

nuclear 

function 
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P39880 Homeobox protein 

cut-like 1 (CUX1) 

N Transcription 

related protein 
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P61978 Heterogeneous 

nuclear 

ribonucleoprotein K 

(HNRPK) 

N Transcription 

related protein 
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P46063 ATP-dependent 

DNA helicase Q1 

(RECQ1) 

N DNA nucleic 

acid-associated 

protein 
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P17535 Transcription factor 

jun-D (JUND) 

N Transcription 

related protein 
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P23246 Splicing factor, 

proline- and 

glutamine-rich 

(SFPQ) 

N Transcription 

related protein 
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P49916 DNA ligase 3 

(DNLI3) 

N DNA nucleic 

acid-associated 

protein 
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P35579 Myosin-9 (MYH9) O Not described 

nuclear 

function 
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Q09666 Neuroblast 

differentiation-

associated protein 

AHNAK (AHNK) 

N Not described 

nuclear 

function 
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O14867 Transcription 

regulator protein 

BACH1 (BACH1) 

N Transcription 

related protein 
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P28347 Transcriptional 

enhancer factor TEF-

1 (TEAD1) 

N Transcription 

related protein 
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P04075 Fructose-

bisphosphate 

aldolase A (ALDOA) 

O Not described 

nuclear 

function 
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P15407 Fos-related antigen 1 

(FOSL1) 

N Transcription 

related protein 

4
 

0
,4

0
6
5

2
7
2

4
 

2
 

0
,1

8
5
9

7
1
0

1
 

    

5
 

0
,5

3
1
7

4
0
4

6
 

4
 

0
,4

0
6
5

2
7
2

4
 

7
 

0
,8

1
6
5

9
9
7

8
 

5
 

0
,5

3
1
7

4
0
4

6
 

    

2
7
 

0
,2

8
7
9

1
0
6

2
 

P20700 Lamin-B1 (LMNB1) N Transcription 

related protein 
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Q14764 Major vault protein 

(MVP) 

N RNA nucleic 

acid-associated 

protein 
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P18887 DNA repair protein 

XRCC1 (XRCC1) 

N DNA nucleic 

acid-associated 

protein 
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Q5T5X7 BEN domain-
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N Transcription 

related protein 
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P09651 Heterogeneous 

nuclear 

ribonucleoprotein A1 

(ROA1) 

N RNA nucleic 

acid-associated 

protein 
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Q00059 Transcription factor 

A, mitochondrial 

(TFAM) 

O Not described 

nuclear 

function 
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Q15233 Non-POU domain-

containing octamer-

binding protein 

(NONO) 

N Transcription 

related protein 
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Q96AE4 Far upstream 

element-binding 

protein 1 (FUBP1) 
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related protein 
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P60709 Actin, cytoplasmic 1 

(ACTB) 

O Not described 

nuclear 

function 
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P27695 DNA-(apurinic or 

apyrimidinic site) 

lyase (APEX1) 
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related protein 
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P14866 Heterogeneous 

nuclear 

ribonucleoprotein L 

(HNRPL) 

N Transcription 

related protein 
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P16220 Cyclic AMP-

responsive element-

binding protein 1 

(CREB1) 

N Transcription 

related protein 
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P62937 Peptidyl-prolyl cis-

trans isomerase A 

(PPIA) 

O Not described 

nuclear 

function 
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P68104 Elongation factor 1-

alpha 1 (EF1A1) 

O RNA nucleic 

acid-associated 

protein 
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O15525 Transcription factor 

MafG (MAFG) 

N Transcription 

related protein 
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Q14103 Heterogeneous 

nuclear 

ribonucleoprotein D0 

(HNRPD) 

N Transcription 

related protein 
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P11142 Heat shock cognate 

71 kDa protein 

(HSP7C) 
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P07355 Annexin A2 

(ANXA2) 

O Not described 

nuclear 

function 
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P06733 Alpha-enolase 
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related protein 
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P17544 Cyclic AMP-

dependent 

transcription factor 

ATF-7 (ATF7) 

N Transcription 

related protein 
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Q99594 Transcriptional 

enhancer factor TEF-

5 (TEAD3) 

N Transcription 

related protein 
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P05412 Transcription factor 

AP-1 (JUN) 
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P09429 High mobility group 

protein B1 (HMGB1) 

N Transcription 

related protein 

        

8
 

0
,4

7
9
8

3
3
1

9
 

6
 

0
,3

4
1
7

1
2
8

3
 

        

1
4
 

0
,0

8
2
1

5
4
6

0
 



Supplementary data 

188 

P19838 Nuclear factor NF-

kappa-B p105 

subunit (NFKB1) 

N Transcription 

related protein 
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Q8IVF2 Protein AHNAK2 

(AHNK2) 

N Not described 

nuclear 

function 
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Q04206 Transcription factor 

p65 (RELA) 

N Transcription 

related protein 
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O15527 N-glycosylase/DNA 

lyase (OGG1) 

N DNA nucleic 

acid-associated 

protein 
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P05204 Non-histone 

chromosomal protein 

HMG-17 (HMGN2) 

N Transcription 

related protein 
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Q14938 Nuclear factor 1 X-

type (NFIX) 

N Transcription 

related protein 
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Q92945 Far upstream 

element-binding 

protein 2 (FUBP2) 

N Transcription 

related protein 
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P13639 Elongation factor 2 

(EF2) 

O Not described 

nuclear 

function 
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P53567 CCAAT/enhancer-

binding protein 

gamma (CEBPG) 

N Transcription 

related protein 
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P62736 Actin, aortic smooth 

muscle (ACTA) 

O Not described 

nuclear 

function 
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P09382 Galectin-1 (LEG1) O Not described 

nuclear 

function 
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P22415 Upstream 

stimulatory factor 1 

(USF1) 

N Transcription 

related protein 
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P51991 Heterogeneous 

nuclear 

ribonucleoprotein A3 

(ROA3) 

N RNA nucleic 

acid-associated 

protein 
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Q13263 Transcription 

intermediary factor 

1-beta (TIF1B) 

N Transcription 

related protein 
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Q15853 Upstream 

stimulatory factor 2 

(USF2) 

N Transcription 

related protein 
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P10412 Histone H1,4 (H14) N Transcription 

related protein 
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related protein 

                  

7
 

0
,3

2
0
3

5
1
7

 

7
 

0
,0

3
2
0

3
5
1

 

P16949 Stathmin (STMN1) O Not described 

nuclear 

function 
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P31943 Heterogeneous 

nuclear 

ribonucleoprotein H 

(HNRH1) 

N RNA nucleic 

acid-associated 

protein 
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P60660 Myosin light 

polypeptide 6 

(MYL6) 

O Not described 

nuclear 

function 
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P62273 40S ribosomal 

protein S29 (RS29) 

O RNA nucleic 

acid-associated 

protein 
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Q14204 Cytoplasmic dynein 

1 heavy chain 1 

(DYHC1) 

O Not described 

nuclear 

function 
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Q15561 Transcriptional 

enhancer factor TEF-

3 (TEAD4) 

N Transcription 

related protein 
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Q16658 Fascin (FSCN1) O Not described 

nuclear 

function 
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Q99729 Heterogeneous 

nuclear 

ribonucleoprotein 

A/B (ROAA) 

N RNA nucleic 

acid-associated 

protein 
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P0C0S8 Histone H2A type 1 

(H2A1) 

N Transcription 

related protein 
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P15311 Ezrin (EZRI) O Not described 

nuclear 

function 

          

3
 

0
,0

7
2
2

6
7
2

2
 

      

3
 

0
,0

7
2
2

6
7
2

2
 

6
 

0
,0

1
4
4

5
3
4

4
 

P26038 Moesin (MOES) O Not described 

nuclear 

function 
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P26583 High mobility group 

protein B2 (HMGB2) 

N Transcription 

related protein 
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P26599 Polypyrimidine tract-

binding protein 1 

(PTBP1) 

N RNA nucleic 

acid-associated 

protein 
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P62826 GTP-binding nuclear 

protein Ran (RAN) 

N Transcription 

related protein 
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P63167 Dynein light chain 1, 

cytoplasmic (DYL1) 

O Not described 

nuclear 

function 
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P63241 Eukaryotic 

translation initiation 

factor 5A-1 (IF5A1) 

O RNA nucleic 

acid-associated 

protein 
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Q92841 Probable ATP-

dependent RNA 

helicase DDX17 

(DDX17) 

N Transcription 

related protein 
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O14979 Heterogeneous 

nuclear 

ribonucleoprotein D-

like (HNRDL) 

N Transcription 

related protein 
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O60675 Transcription factor 
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related protein 
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P06748 Nucleophosmin 

(NPM) 

N Transcription 

related protein 
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P07900 Heat shock protein 

HSP 90-alpha 

(HS90A) 

O Not described 

nuclear 

function 
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P19338 Nucleolin (NUCL) N Transcription 

related protein 
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P50454 Serpin H1 (SERPH) O Not described 

nuclear 

function 
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Q00653 Nuclear factor NF-

kappa-B p100 

subunit (NFKB2) 

N Transcription 

related protein 
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Q13409 Cytoplasmic dynein 

1 intermediate chain 

2 (DC1I2) 

O Not described 

nuclear 

function 
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Q15365 Poly(rC)-binding 

protein 1 (PCBP1) 

N Transcription 

related protein 
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Q9ULX9 Transcription factor 

MafF (MAFF) 

N Transcription 

related protein 
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P08107 Heat shock 70 kDa 

protein 1A/1B 

(HSP71) 

O Not described 

nuclear 

function 
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P11021 78 kDa glucose-

regulated protein 

(GRP78) 

O Not described 

nuclear 

function 
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P14618 Pyruvate kinase 

PKM (KPYM) 

O Not described 

nuclear 

function 
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P20810 Calpastatin (ICAL) O Not described 

nuclear 
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P52926 High mobility group 

protein HMGI-C 

(HMGA2) 

N Transcription 

related protein 
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P61956 Small ubiquitin-

related modifier 2 

(SUMO2) 

N Transcription 

related protein 
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P62987 Ubiquitin-60S 

ribosomal protein 

L40 (RL40) 

N RNA nucleic 

acid-associated 

protein 
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P98179 Putative RNA-

binding protein 3 

(RBM3) 

N RNA nucleic 

acid-associated 

protein 
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Q9Y2S6 Translation 

machinery-associated 

protein 7 (TMA7) 

O Not described 

nuclear 

function 
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P04083 Annexin A1 

(ANXA1) 

N Not described 

nuclear 

function 
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P07437 Tubulin beta chain 

(TBB5) 

O Not described 

nuclear 

function 
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P08238 Heat shock protein 

HSP 90-beta 

(HS90B) 

O Not described 

nuclear 

function 
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P08651 Nuclear factor 1 C-

type (NFIC) 

N Transcription 

related protein 
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P11387 DNA topoisomerase 

1 (TOP1) 

N DNA nucleic 

acid-associated 

protein 
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P17096 High mobility group 

protein HMG-

I/HMG-Y (HMGA1) 

N Transcription 

related protein 
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P23284 Peptidyl-prolyl cis-

trans isomerase B 

(PPIB) 

O Not described 

nuclear 

function 

          

3
 

0
,2

3
2
8

4
6
7

3
 

        

3
 

0
,0

2
3
2

8
4
6

7
 



Supplementary data 

198 

P31946 14-3-3 protein 

beta/alpha (1433B) 

N Transcription 

related protein 
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P40926 Malate 

dehydrogenase, 

mitochondrial 

(MDHM) 

O Not described 

nuclear 

function 
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P60174 Triosephosphate 

isomerase (TPIS) 

O Not described 

nuclear 

function 
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P68363 Tubulin alpha-1B 

chain (TBA1B) 

O Not described 

nuclear 

function 
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P80723 Brain acid soluble 

protein 1 (BASP1) 

N Transcription 

related protein 
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Q06330 Recombining 

binding protein 

suppressor of hairless 

(SUH) 

N Transcription 

related protein 
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Q15366 Poly(rC)-binding 

protein 2 (PCBP2) 

N Transcription 

related protein 
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Q15699 ALX homeobox 

protein 1 (ALX1) 

N Transcription 

related protein 
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Q92804 TATA-binding 

protein-associated 

factor 2N (RBP56) 

N Transcription 

related protein 
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O60814 Histone H2B type 1-

K (H2B1K) 

N Transcription 

related protein 
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P00558 Phosphoglycerate 

kinase 1 (PGK1) 

N DNA nucleic 

acid-associated 

protein 
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P07910 Heterogeneous 

nuclear 

ribonucleoproteins 

C1/C2 (HNRPC) 

N RNA nucleic 

acid-associated 

protein 
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P15336 Cyclic AMP-

dependent 

transcription factor 

ATF-2 (ATF2) 

N Transcription 

related protein 
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P18754 Regulator of 

chromosome 

condensation 

(RCC1) 

N DNA nucleic 

acid-associated 

protein 
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P18846 Cyclic AMP-

dependent 

transcription factor 

ATF-1 (ATF1) 

N Transcription 

related protein 
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P23528 Cofilin-1 (COF1) N Not described 

nuclear 

function 
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P25398 40S ribosomal 

protein S12 (RS12) 

O RNA nucleic 

acid-associated 

protein 
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P27797 Calreticulin (CALR) N Transcription 

related protein 
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P31949 Protein S100-A11 

(S10AB) 

N DNA nucleic 

acid-associated 

protein 
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P52943 Cysteine-rich protein 

2 (CRIP2) 
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P62917 60S ribosomal 

protein L8 (RL8) 

O RNA nucleic 

acid-associated 

protein 
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P68431 Histone H3,1 (H31) N Transcription 

related protein 

                  

2
 

0
,1

7
2
1

0
2
2

9
 

2
 

0
,0

1
7
2

1
0
2

3
 



Supplementary data 

202 

P82979 SAP domain-

containing 

ribonucleoprotein 

(SARNP) 

N RNA nucleic 

acid-associated 

protein 
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Q13151 Heterogeneous 

nuclear 

ribonucleoprotein A0 

(ROA0) 

N RNA nucleic 

acid-associated 

protein 
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Q8WYK2 Jun dimerization 

protein 2 (JDP2) 
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like protein 3 
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O Not described 
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Q9NP97 Dynein light chain 

roadblock-type 1 

(DLRB1) 

O Not described 

nuclear 

function 
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Supplementary Table 4. Results of CRAPome analysis of 17 common IL-6 promoter interactors detected using both AP-MS 

methodologies. 

Accession Protein Name User Input Mapped Gene 

Symbol 

Num of Expt. 

(found/total) 

Ave SC Max SC 

Q16531 DNA damage-binding protein 1 (DDB1) DDB1 DDB1 103 / 411 4.8 52 

Q92466 DNA damage-binding protein 2 (DDB2) DDB2 DDB2 2 / 411 1.5 2 

P17275 Transcription factor jun-B (JUNB) JUNB JUNB 9 / 411 1.4 3 

P17676 CCAAT/enhancer-binding protein beta (CEBPB) CEBPB CEBPB 4 / 411 1.3 2 

P15408 Fos-related antigen 2 (FOSL2) FOSL2 not found    

P09874 Poly [ADP-ribose] polymerase 1 (PARP1) PARP1 PARP1 182 / 411 11.8 151 

Q13619 Cullin-4A (CUL4A) CUL4A CUL4A 46 / 411 3.5 25 

P17535 Transcription factor jun-D (JUND) JUND JUND 2 / 411 1.5 2 

P15407 Fos-related antigen 1 (FOSL1) FOSL1 not found    

Q13620 Cullin-4B (CUL4B) CUL4B CUL4B 58 / 411 3 16 

P28347 Transcriptional enhancer factor TEF-1 (TEAD1) TEAD1 TEAD1 3 / 411 1.3 2 

P27695 DNA-(apurinic or apyrimidinic site) lyase (APEX1) APEX1 APEX1 54 / 411 2.7 8 

P05412 Transcription factor AP-1 (JUN) JUN JUN 6 / 411 1.5 3 

O14867 Transcription regulator protein BACH1 (BACH1) BACH1 not found    

Q04206 Transcription factor p65 (RELA) RELA RELA 9 / 411 1.2 2 

Q14938 Nuclear factor 1 X-type (NFIX) NFIX NFIX 10 / 411 1.4 3 

P19838 Nuclear factor NF-kappa-B p105 subunit (NFKB1) NFKB1 NFKB1 9 / 411 1.5 4 

       

SC Spectral Counts      
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