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Bumblebees are, as generalist foragers, essential pollinators in natural and managed 

ecosystems (Heinrich, 1979; Goulson, 2003; 2010). Like for many pollinator species, most 

bumblebee species undergo a worldwide observed decline (e.g. Williams & Osborne, 2009; 

Potts et al., 2010; Cameron et al., 2011; Carvalheiro et al., 2013). This general phenomena, 

which is observed to have a distinct impact on bumblebees, is instigating both ecological and 

economic concerns (Kremen et al., 2002; Steffan-Dewenter et al., 2005; Klein et al., 2007; 

Goulson & Osborne, 2010). Several hypotheses have been proposed to explain the observed 

declines in bee populations, e.g. the impact of pathogen infections and possible pathogen 

spill-over from managed pollinators, the use of pesticides, diet specialization, landscape 

modification and loss of forage (e.g. Potts et al., 2010; Goulson, 2010; Vanbergen & the 

Insect Pollinators Initiative 2013). These factors and their interactions with each other, 

influence pollinator populations on different locations and on different scales. Also 

population genetic aspects will play a role in bee declines with genetic threats such as 

inbreeding and loss of genetic diversity (Reed & Frankham, 2003; Spielman et al., 2004; 

Frankham, 2005; Goulson et al., 2008; Zayed, 2009). In order to secure the pollination 

services of wild bumblebees and improve conservation strategies, a better understanding of 

genetic factors influencing natural bumblebee populations is vital (Goulson et al., 2008; 

Zayed, 2009). 

 

Furthermore, several bumblebees species, such as Bombus terrestris, are intensively reared 

and used in agriculture, as they can provide an improved pollination of several important 

greenhouse vegetables, such as tomatoes and peppers, compared to other pollinators 

(Velthuis & van Doorn, 2006; Goulson, 2010). This commercially valuable service of 

bumblebees can be improved by associating genotypes with commercially interesting 

properties. Enhanced foraging was chosen to be an interesting study target for its dual 

importance, with obvious commercial benefits but also as it is very important in the 

ecological context. In this thesis, the main goal is to implement microsatellite technology to 

assess the pollination service in both natural and managed ecosystems. 

 

Chapter 1 is a general introduction of bumblebees: their life-cycle, sex determination, 

morphology, foraging behaviour and economic value. As there is no red list of bumblebee 

species in Belgium, the red list status of the 29 bumblebee species in The Netherlands will be 

discussed and placed in the European context. Furthermore, the several hypotheses (partially) 
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explaining the observed declines will be described. Finally, a brief overview of the 

microsatellite technology, its limitations, applications and in particularly their use in 

quantitative trait loci (QTL) analyses will be given. 

 

In a first part of results within this dissertation, we studied the loss of the pollination service 

(chapter 2 and 3) by focussing on bumblebee decline and the genetic parameters associated 

with it. With the use of microsatellite DNA markers, we will examine the genetic diversity of 

pin-mounted bumblebee specimens sampled from extensive historical collections of wild 

bumblebees. Museum collections provide a unique opportunity to examine the population 

structure and the genetic diversity of past populations (Wandeler et al., 2007). This approach 

will allow us to check for currently formulated hypothesis which are based on assessments of 

contemporary specimens of both declined and stable bumblebee species (Goulson et al., 

2008; Lozier et al., 2011). Knowing the population structure and the genetic parameters 

before the actual decline began, will provide an increased insight into the importance of 

population genetic parameters in the decline of bumblebees (Wandeler et al., 2007; Goulson 

et al., 2008; Lozier et al., 2011). 

 

One goal is to examine how genetic diversity and population structure are correlated with 

species extinction. More specically in chapter 2 we will use the developed PCR multiplexes 

of microsatellites to study the impact of genetic parameters on natural populations of the in 

Belgium almost extinct bumblebee species, Bombus veteranus. After this case study, we will 

verify these initial findings in their bigger context and compare the historical genetic 

diversity between declining and stable Bombus species in chapter 3. 

 

Aside from describing the genetic viability of natural populations, microsatellite analyses can 

also be used to search for genetic markers associated with a specific phenotype (Wilfert et al., 

2007a; 2007b). This phenotype can be an enhanced feature of an interesting commercial 

characteristic of bumblebees. In chapter 4 and 5, we will use the microsatellite technology to 

identify genes correlated with foraging behaviour. Microsatellite markers linked with a 

phenotype of interest could then be used for selective breeding or marker-assisted selection 

(MAS; Williams, 2005). In this way the foraging service, or an phenotype associated with the 

commercial potential of this service can be enhanced. We will focus on two phenotypes: the 

impact of light intensity and body size. 
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In chapter 4, we will investigate the connection between light sensitivity and foraging. We 

will assess the foraging behavior of different B. terrestris colonies in changing light 

conditions and investigate if differences could be explained by an improved vision of the 

workers. To achieve this, we developed bioassays that could distinguish light sensitivity 

differences between colonies (colony level) and between individuals (individual level). 

Furthermore, we will test if bumblebee body size, weight and morphological parameters of 

the eye correlate with the measured light sensitivity of the workers. Finally, we will perform 

a QTL analysis to search for one or more microsatellite marker(s) linked with light 

sensitivity, body weight, body size, and morphological eye parameters in chapter 5. Thereby 

identifying potential markers for MAS. 

 

Finally, in chapter 6, we show a direct application of the microsatellite technology in 

bumblebee breeding facilities. Microsatellites can be integrated within a bumblebee mass-

breeding to detect diploid drones. After all, the presence of diploid drones can be used as a 

validation of their production process. 
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1.1 Bumblebees - Bombus 

1.1.1 Taxonomy and phylogeny 

Kingdom:     Animalia   Linnaeus, 1758 

  Subkingdom:    Eumetazoa   Buetschli, 1910 

    unranked,     Bilateria   Hatschel, 1888 

      Infrakingdom:    Protostomia  Grobben, 1908 

        Superphylum:    Ecdysozoa   Aguinaldo et al. 1997 

          Phylum:    Arthropoda  von Siebold, 1848 

            Subphylum:    Hexapoda   Latreille, 1802 

              Class:    Insecta   Linnaeus, 1758 

                Subclass:    Pterygota   Lang, 1888 

                  Infraclass:   Neoptera  Martynov, 1923 

                    Superorder:   Endopterygota  Sharp, 1898 

                      Order:    Hymenoptera  Linnaeus, 1758 

                        Suborder:   Apocrita  Gerstaecker, 1867 

                            Infraorder:   Aculeata  Latreille, 1802 

                            Superfamily:  Apoidea  Latreille, 1802 

                              Family:   Apidae   Latreille, 1802 

                                Subfamily:  Apinae   Latreille, 1802 

                                  Supertribe:  Apiti   Latreille, 1802 

                                     Tribe:  Bombini  Latreille, 1802 

                                       Genus:  Bombus   Latreille, 1802 
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Bumblebees are insects belonging to the Hexapoda. Furthermore, they are holometabolous 

insects or Endopterygoya as they undergo a metamorphosis during their pupal stage resulting 

in adults which have huge morphological differences compared to their larval stage. Together 

with bees, wasps, sawflies and ants, bumblebees belong to the large and successful insect 

order of Hymenoptera. Currently, there are over 150,000 known species of Hymenoptera of 

which approximately 25,000 known species of bee, belonging to over 4,000 genera (Goulson, 

2010). 

 

Within the large order of Hymenoptera, bumblebees, bees, wasps and ants, belong to the 

suborder Apocrita. Species belonging to this suborder are characterized by the presence of a 

narrow “waist’ formed between the first two segments of the abdomen (the petiole), and the 

fusion of the first abdominal segment with the thorax (the propodeum). The Apocrita have 

been split into two groups, the “Parasitica” and the ‘Aculeata”. The phylogenetic 

relationships within the group of aculeate Hymenoptera were for a long time uncertain 

(Brothers, 1999; Pilgrim et al., 2008; Debevec et al., 2012). However, recent research based 

on genomic data revealed the phylogenetic relationships between the major lineages (Johnson 

et al., 2013; Figure 1.1). 

 

 

Figure 1.1 Evolution of the Aculeate Hymenoptera. Branch colours: green means 
parasitoidism; orange means nest construction and/or predation. Asterisks indicates for 
lineages containing eusocial species. Picture adapted from Johnson et al. (2013). 
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In contradiction with the earlier idea that ants are more closely related to ectoparasitoid 

wasps, they found that Formicidae (ants) and Apoidea (spheciform wasps and bees) were 

sister groups. The other lineages are clades of ectoparasitoid wasps (Johnson et al., 2013; 

Figure 1.1). 

 

Within the Apoidea, bees belong to the Apidae. This family has a common ancestor with 

predatory and parasitic wasps (Spheciform wasps) belonging to the Sphecoidea (Goulson, 

2010; Johnson et al., 2013; Figure 1.2). 

 

 

Figure 1.2 Maximum-Likelihood Tree of Aculeate Hymenoptera, with three different 
settings: Bayesian posterior probabilities, bootstrap values based on 1,000 replicates 
and bootstrap values from a separate species tree analysis, respectively. Unlabeled 
nodes have maximum support values (1/100/100). Scale bar indicates number of 
substitutions per site. Picture adapted from Johnson et al. (2013). 
 

All bumblebee species are classified in a single genus Bombus (Williams, 1994; 1998; 

Goulson, 2010). Most bumblebee species are ‘true’ bumblebees which means that they have a 

sterile social worker caste (although they can produce unfertile eggs or haploid males). The 

other 45 species are “cuckoo” bumblebees. These social parasitic bees live within the nests of 
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true bumblebees feeding on the food gathered by their hosts (Goulson, 2010). Formerly, they 

were placed in a separate genus Psithyrus. However, this genus is now regarded as one of 

many Bombus subgenera (Williams, 1994; Cameron et al., 2007; Goulson, 2010). 

 

In the past scientists attempted to divide the genus Bombus in several subgenera based on 

coat colour patterns (Dalla Torre, 1880; 1882; Goulson, 2010) and male genitalia (Kruger, 

1917; Skorikov, 1922; Goulson, 2010). As most bumblebee species have different colour 

patterns both within and between populations the first subdivision was of limited value, while 

the latter subdivision was more useful. Although there were still problems with the 

phylogenetic relationships between these subgenera (Cameron et al., 2007; Goulson, 2010). 

Today, the genus Bombus can be divided into two clades: a ‘short-faced’ clade (SF) and a 

‘long-faced’ clade (LF). This division is based on sequencing data for four nuclear and one 

mitochondrial gene (Cameron et al., 2007; Goulson, 2010; Figure 1.3). Furthermore, this 

subdivision supported most of the existing subgenera on the basis of morphological 

characters (Cameron et al., 2007; Goulson, 2010). 

 

There are now approximately 250 bumblebee species described of which 29 known for 

Belgium and The Netherlands. Although most scientists presume that most bumblebee 

species are known, it is probable that some species remain undiscovered. For instance, the 

widespread species B. cryptarum, remained undetected until 2005 due to its morphological 

similarities with B. lucorum (Bertsch et al., 2005; Murray et al., 2008; Goulson, 2010). A 

phylogenetic tree of 218 different bumblebee species is presented in Supplementary File S1, 

Supplementary File S2, and Supplementary File S3 following Cameron et al. (2007). 
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Figure 1.3 Bumblebee phylogeny showing only the subgeneric relationships with strong 
support (P = 0.95). The values on the branches are Bayesian posterior probability 
values. The abbreviations stand for: SF Short faced clade; LF, Long faced clade; and 
NW; New World Clade. Within NW: Rb, Robustobombus; Fr, Fraternobombus; Ds, 
Dasybombus; Fn, Funebribombus; Sp, Separatobombus; Cr, Crotchiibombus; Cc, 
Coccineobombus; Rc, Rubicundobombus; and Br, Brachycephalibombus. Figure adapted 
from Cameron et al. (2007). 
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1.1.2 Life-cycle 

Here the life-cycle of Bombus species is described, largely based on the detailed descriptions 

given by Alford (1975) and Goulson (2010), but with the exclusion of the Cuckoo 

bumblebees (subgenus Psithyrus). In general, for most bumblebees this is an annual life cycle 

(Figure 1.4). After a hibernation period, fertilized queens emerge in late winter or spring 

depending on: (i) species, (ii) weather conditions, and (iii) location. These newly emerged 

queens start foraging for pollen and nectar to replenish their loss of fat during hibernation. In 

a next step, she starts searching for suitable nest sites, which are highly variable between 

different bumblebee species (Osborne et al., 2008; Goulson, 2010). Some bumblebee species 

prefer to build their nest on or just above the surface of the ground, some prefer to nest in 

trees, while other species nest underground. Abandoned holes of small mammals or nests of 

birds are often used. Generally, the nest consists out of a central chamber with a single 

entrance and insulating material found within the abandoned nest such as moss, hair, dry 

grass and/or feathers. The first days or even weeks, the forming queen gathers pollen in 

which she will lay her first batch of eggs (between 8 and 16 eggs). On the outside, this pollen 

is covered with a mixture of pollen and wax secreted by the queen. 

 

The brood is incubated by the queen sitting on top of this pollen lump. To ensure the high 

amount of energy needed for the maintenance of incubation heat, the queen creates a wax pot 

stored with nectar at the entrance of her nest. Furthermore, in this stage of nest making (see 

Figure 1.4) the queen will still forage to provide sufficient nectar and pollen. 

 

Based on the way of feeding of the larvae, bumblebees can be divided in 2 groups; the 

‘pocket makers’ (corresponds to the ‘long faced’ clade of Cameron et al., 2007, as described 

in chapter 1.1.1) and the ‘pollen storers’ (‘short faced’ clade; see chapter 1.1.1). The larvae of 

the ‘pocket makers’ feed all together from the pollen clump. New pollen are given to the 

larvae first collectively from the underside of the pollen clump and later regurgitated food 

will be given directly through the wax cap. In the ‘pollen storers’ the larvae are fed 

regurgitated pollen initially together and later separately in self-made cells from wax and silk. 

As ‘pocket makers’ are more difficult to rear, mostly species of ‘pollen-storers’ are 

intensively reared commercially, which biases our knowledge of bumblebee ecology towards 

the latter group (Goulson, 2010). The total development time from larvae to adults is about 4 
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to 5 weeks: two weeks for the larvae to go through 4 instars and starts to pupate in a silk 

cocoon, and then another two weeks to hatch. The first batch of eggs are normally all 

workers. A part of the workers take over the foraging task of the queen, using the empty 

cocoons for storage of pollen and/or nectar, while others help the queen with the care and 

nursing of the next batches of offspring. In this way the nest grows rapidly, to a 10 times 

increase in weight within 3 to 4 weeks (Goulson et al., 2001). Colonies of the buff-tailed 

bumblebee, B. terrestris can contain even up to 350 workers (Goulson et al., 2001). While for 

bumblebee species belonging to the subgenera Alpinobombus (B. polaris, B. balteatus, and B. 

hyperboreus) and the mountain species B. (Thoracobombus) inexspectatus, it is known that 

nests can be very small containing only a few workers or even none (Yarrow, 1970; Løken, 

1973; Richard, 1973; Gjershaug, 2009; Hines & Cameron, 2010). As these species live only 

in Artic and high mountain regions, the reduced colony production and the bias to the 

production of reproductive stages may be caused by the brief window of favourable climatic 

conditions (Hines & Cameron, 2010). 

 

 

Figure 1.4 The bumblebee life-cycle. Picture adapted from Prŷs-Jones & Corbet (2011). 
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At a certain colony size, the density of workers in the nest triggers the queen to switch to the 

production of reproductives: drones and daughter queens. After this ‘switching point’, no 

more workers are produced. As developing daughter queens require more food over a longer 

period, they are produced when enough food and workers are available. The number of 

reproductives produced in a colony depends largely on the nest size. Small nests may rear no 

reproductives, moderate-sized nests only males, while both males and daughter queens are 

only produced by the largest nests (Schmid-Hempel & Schmid-Hempel, 1998). In contrast to 

daughter queens which stay a period in the nest, regularly foraging for pollen and nectar for 

themselves to build up their fat reserves, males do not contribute to tasks in the colony and 

after a few days they leave the colony. Once left, they feed on pollen and nectar of flowers, 

and search for a virgin queen. Molecular studies showed that the offspring of most 

bumblebee species were full sibs, which indicates that queens mate only once (= 

monoandrous) (Estoup et al., 1995; Schmid-Hempel & Schmid-Hempel, 2000). However, 

queens of some species such as B. hypnorum mate more frequently (Paxton et al., 2001). 

After mating, the queens start searching for a suitable hibernation site. Queens survive this 

dormancy period burning their fat reserves. In B. terrestris the critical weight of fat reserves 

to survive hibernation is about 0.6 g (Beekman et al., 1998). After the departure of the 

reproductives, the nest degenerates rapidly. The former queen and the remaining workers will 

die and the remains of the comb will be consumed by parasites and commensals. Nests have 

last for 14 to 25 weeks in B. pratorum and B. pascuorum, respectively (Goodwin, 1995). 

 

1.1.3 Ploidy, sex determination and sociality 

Like other Hymenoptera, such as ants and wasps, bumblebees are haplodiploid insects in 

which the fertilized eggs of the queen will develop in diploid female offspring (workers and 

daughter queens), while the unfertilized eggs will develop in haploid males (drones). The 

queen has the ability to control whether her eggs are fertilized, and thus if her eggs will 

develop into sons or daughters. 

 

The consequence of this sex-determination system is that all sisters within a nest are more 

related than when they would be in case of diploid organisms. In diploid species, all offspring 

from the same 2 parents share 50% of each other’s genes. Their relatedness (r) is 0.5. In 

haplodiploid organisms the genetic relationship between sisters is higher, r = 0.75. Indeed, in 

haplodiploid species, diploid specimens (= sisters) receive half of the genes of their mother 
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(queen) and all the genes of the father (haploid male). As their father develops from an 

unfertilised egg, he has only one set of chromosomes. Every sperm contains the same set of 

chromosomes, thus all diploid offspring will receive the same genetic material. Their 

relatedness is thus minimal 50%. From the mother’s side, sisters receive one of the two sets 

of chromosomes. So, they will receive either the same genes or either different genes from 

their mother (r = 0.5 or r = 0, respectively). In general, sisters have a mean relatedness of: r = 

(0.5 + 1.0) / 2 = 0.75. Furthermore, the relatedness between a female and her offspring will 

be r = 0.5; and between workers and their brothers only 0.25 (Figure 1.5). 

 

 

Figure 1.5 (a) An example of a haplodiploid, and (b) a diploid family tree indicated by 
the full lines. The dotted lines are indications of the relatedness of a female (indicated 
with a star) to her kin assuming monoandrous species. 
 

This implies that females are more related to a sister (r = 0.75) than they would be to her own 

daughters (r = 0.50). Thus, a worker will profit more by helping her mother to produce more 

sisters than by producing her own daughters. Haplodiploid females are also more related to 

their nieces (r = 0.375) than diploid females are to their nieces (r = 0.25; Figure 1.5). The 

consequence of the haplodiploid sex-determination system predispose bumblebees, and 

Hymenopterans in general, to evolve sociality (Goulson, 2010). Actually, the estimation of 

relatedness between nest mates is or could be even more complex, as it depends heavily on 

the number of patrilines within a colony (Schmid-Hempel & Schmid-Hempel, 2000). 

The above mentioned calculations of relatedness were based on a monoandrous mating 

system, as the majority of bumblebee species appears to be monoandrous (Goulson, 2010). 

However, also polyandrous bumblebee species exist (such as B. hypnorum; Paxton et al., 
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2001). If in a polyandrous colony, sisters have the same father, r = 0.75; but if they have 

unrelated fathers their relatedness will be between 0.25 and 0.5, depending on the number of 

males the queen has mated with (Figure 1.6). 

 

 

Figure 1.6 (a) An example of a monoandrous versus (b) a polyandrous haplodiploid 
family tree with indication of the relatedness of a female (indicated with a star) to her 
kin. 
 

Another consequence of this haplodiploid sex-determination system is that all females can 

produce male offspring without ever mating. Thus, even workers have the ability to produce 

male offspring from their unfertilized eggs, a phenomena which can sometimes be seen at the 

‘switching point’ (see 1.1.2). A worker will then have a greater genetic 'interest' in raising her 

own and/or her sister's sons (r = 0.50, r = 0.375; respectively) than she will have with raising 

her brothers (r = 0.25) (see Figure 1.5 and Figure 1.6A; Goulson, 2010). 

 

In Hymenoptera the fertilized eggs develop into diploid females and unfertilized eggs in 

haploid males. However, this is not always true. Indeed, in Hymenopterans the sex is 

determined by the presence of complementary alleles at a single sex-determining locus (Cook 

& Crozier, 1995). As unfertilised haploid eggs are hemizygous (having only one gene copy) 

they will all develop in males. Bumblebees, heterozygous at this locus (having two different 

alleles) will develop in females, while bees homozygous at this locus will develop in diploid 

males (Duchateau et al., 1994; Whitehorn et al., 2009). The occurrence of these diploid males 

will depend on the number of alleles at this loci (at least 46 alleles for B. terrestris; 

Duchateau et al., 1994). In a healthy population the probability of matched-pair matings at 
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the sex locus is low, however in small inbred populations this probability is much higher. The 

presence of diploid males is seen as a negative ‘burden’ for the colony, because: half of the 

workers will develop in diploid males. These males will not contribute to colony tasks, and 

have also a low fertility (Duchateau & Marien, 1995). Queens who mate with these diploid 

males are normally unable to initiate a colony (Cook & Crozier, 1995; Gerloff & Schmid-

Hempel, 2005; Whitehorn et al., 2009). 

 

However, several research papers have shown that successful mating between diploid males 

and queens does occur and then this leads to the formation of triploid offspring which in turn 

is sterile (Ayabe et al., 2004; Darvill et al., 2012). This triploid offspring will develop either 

in workers when one of the three alleles at the sex determination locus is different 

(comparable with ’heterozygous’) or either in drones when all alleles at this locus are the 

same (comparable with ‘homozygous’) (Ayabe et al., 2004; Darvill et al., 2012). 

 

This observation triggered a recent study to investigate if queens have the ability to avoid 

mating with diploid males (Lecocq et al., 2014). Although no differentiation between 

diploids and haploids males was found for male cephalic labial gland secretion (CLGS, a 

main chemical reproductive trait), which argues that there is no diploid male discrimination 

by queens through CLGS compositions, no precise conclusions can be made yet (Lecocq et 

al., 2014). 

 

1.1.4 Morphology 

The bumblebees’ body consists out of an exoskelet. These are hard plates of chitin which 

deny bumblebees the ability to grow as an adult (Wigglesworth, 2008). As in other insects, 

the bumblebee body can be divided into three typical tagmata: (i) the head, with eyes, 

mouthparts and antennae; (ii) the thorax, with legs and wings; and (iii) the abdomen, which 

contains the digestive and reproductive organs and the sting (Sladen, 1912; Figure 1.7). 
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Figure 1.7 Drawing of a bumblebee with indication of the three tagmata: (i) the head, 
(ii) the thorax, and (iii) the abdomen (image from Heinrich, 1979). 

 

Bumblebees have 3 pairs of legs. A figure of the legs is shown in Figure 1.7. These legs are 

fairly unspecialized, especially the claws, femur, trochanter and coxa, which have similar 

design as found in many other insects (Figure 1.7). However, like honeybees, bumblebee 

workers have also specialized morphological structures on their legs, especially the hind legs, 

for the collection of nectar and pollen (Sladen, 1912; Michener, 1999; Thorp, 2000; Figure 

1.8). Indeed, workers and queens have a pollen basket or corbicula on the outside surface of 

the tibia of each hind leg. The tibia surface is concave and hairless, but is also bordered by a 

fringe of long and stiff hairs which forms the pollen basket (Figure 1.8). Also the tarsus, 

which consists out of 5 segments of which the first 4 segments are similar, has special hairs 

and combs on the much larger fifth segment or metatarsus (Figure 1.8). The female bee uses 

the combs and brushes on her legs to gather pollen that sticks to her hair and body, and stores 

this in her corbicula (Michener, 1999; Thorp, 2000). Male bumblebees have no corbicula. 
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Figure 1.8 Picture of the fore wing and hind leg of a Bombus terrestris male. Coxa not 
shown. 

 

Furthermore, bumblebees have on each front leg a pair of antennal cleaners which are used to 

remove dirt or pollen from the antennae (Sladen, 1912; Beattie, 1971). These antennae 

consist out of a long pedicel and 12 smaller segments, which form the flagellum (Figure 1.9). 

This is true for queens and workers. However, males have 13 segments in their flagellum 

(Sladen, 1912). On top of the final segment of the flagellum bumblebees have pore plates for 

detecting odours (Agren & Hallberg, 1996; Spaethe et al., 2007; Figure 1.9). The pore plates 

sensilla are the most abundant antennal olfactory sensilla, with connection to 13-20 sensory 

neurons (Agren & Hallberg, 1996; Spaethe et al., 2007). 

 

Bumblebees have two pairs of wings. The rear wings are small and attached to the front 

wings by a row of hooks or hamulae (Slade, 1912). The big wing muscles take all thorax 

space and need a temperature of 30°C (Heinrich, 1975; 1979; Goulson, 2010). In flight, the 

muscle temperature is regulated to stay between 30 - 44°C. 
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Figure 1.9 Picture with: (a) frontal view of a antenna, (b) detailed view of the five top 
segments of the flagellum, and (c) detailed view of the pore plate of the top segment of a 
Bombus terrestris female. Picture adapted from www.bumblebee.org. 

 

Bumblebees generate heat (i) through shivering the flight muscles, and (ii) through substrate 

cycling in the flight muscles (Heinrich, 1975; 1979; Goulson, 2010). (i) The two sets of 

powerful wing muscles contract alternately during flight. However, during warm-up they will 

contract at the same time, generating heat, and little or no movement (Heinrich 1979; 

Goulson, 2010). (ii) bumblebees are able to burn sugars to generate heat in the flight muscles 

through substrate cycling. The key enzyme in this process is fructose bisphosphatase and this 

enzyme has an unusually high activity in the flight muscles of bumblebees. This enables the 
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bees to maintain a stable internal temperature when inactive. Once they are attacked by a 

predator, they need to generate heat rapidly to take off, and they do so through substrate 

cycling (Goulson, 2010). Furthermore, the thorax is more than 20°C warmer than ambient 

and 10°C warmer than the abdomen. Heat loss from the thorax to the abdomen is reduced by 

the narrow waist (the petiole) separating the two, and by an insulating air sac in the anterior 

section of the abdomen where it contacts the thorax. 

 

The petiole acts as a countercurrent heat exchanger. Cool haemolymph in the heart flows 

forwards from the abdomen to the head, and in the petiole is forced into intimate contact with 

the warm haemolymph flowing backwards from the thorax. Inevitably, heat will be 

transferred between the two as they pass alongside each other, so that rather little heat is lost 

to the abdomen. Furthermore, from colder regions have much longer hairs then species from 

warmer climates (Peat et al., 2005). Just as there must be a minimum temperature (30°C) at 

which bumblebees can fly, there is also a maximum (42-44°C). The larger the insect, the 

more heat is generated, and the less surface area (proportionally) is available through which 

to lose it. Thus queens and large foragers are liable to overheat at high ambient temperatures 

(Heinrich 1975; 1979; Goulson, 2010). Due to this thermoregulation system, bumblebees are 

capable of foraging on days when it is too cold to forage for other pollinators (Heinrich, 

1975; 1979; Goulson, 2010). 

 

Structurally, queen and worker bumblebees are identical in their external morphology, 

although queens are remarkable bigger than workers (Michener, 1974; Alford, 1975; Cnaani 

& Hefetz, 2001; Goulson, 2010). The abdomen of young queens is full of fat; while workers 

have very little fat. As their main task is foraging, workers need more place for the honey 

stomach in which nectar can be stored on their foraging trips. This is also why queens are 

heavier for their size than workers (Goulson, 2010). Bumblebee workers weigh mostly 

between 0.2 g to 0.4 g, while queen are normally more than 0.6 g with some large queens can 

reach 0.89 g (Alford, 1975; Michener, 1974; Přidal & Hofbauer, 1996; Hagen et al., 2011). 
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1.1.5 Bumblebee vision 

Bumblebees have two types of eyes: simple and compound eyes (Meyer-Rochow, 1981; 

Warrant et al., 2006; Wcislo & Tierney, 2009; Figure 1.10). The three simple eyes or ocelli, 

which looks like shiny bumps, are arranged in a triangular pattern located dorsally on top of 

the head (Warrant et al., 2006; Wcislo & Tierney, 2009; Figure 1.10). They focus light 

through a single lens (cornea) with underneath a layer of photoreceptors (Wcislo & Tierney, 

2009; Figure 1.10). Bees use their ocelli to stabilize the flight, to navigate and to orientate 

themselves towards the sun (Warrant et al., 2006; Wcislo & Tierney, 2009). 

 

 

Figure 1.10 Picture of the head of a bumblebee Bombus terrestris, with indication of the 
two apposition compound eyes and the three simple eyes or ocelli. 

 

Bumblebees also have apposition compound eyes, which are typical for diurnal insects 

(insects which are mostly active during daytime) (Warrant et al., 2004; Somanathan et al., 

2008; Kelber et al., 2011). In general, compound eyes consist out of a large number of 

individual hexagonal visual units called ommatidia, each equipped with a tiny single lens 

(Meyer-Rochow, 1981; Nilson, 1989; Warrant et al., 2004; Greiner, 2006; Kelber et al., 

2006; Warrant, 2008; Kelber et al., 2011; Figure 1.11). Apposition compound eyes consist 

Compound eyes 

Simple eyes 
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out of thousands of these tiny individual optical units, also called facets (Warrant et al., 2004; 

2006; Greiner, 2006; Kelber et al., 2006; Somanathan et al., 2008; Warrant, 2008). 

 

 

Figure 1.11 Drawing and picture of an ommatidium of an apposition compound eye of 
the nocturnal wasp Apoica pallens and several longitudinal sections. With indication of 
the different structures of an ommatidium: the dioptric apparatus which consists out of 
the corneal facet (C) and the crystalline cone (CC); primary pigment cells (PPC); 
secondary pigment cells (SPC); and the fused rhabdom (Rh) which contains nine 
retinula cells (RC). The ninth retinula cell (RC9) an the crystalline cone extensions 
(CCEP) appears only in the proximal end of the rhabdom. The axons of the retinula cell 
axons (RCA) pass as bundles through the basement membrane (BM). When in light-
adapted state, the pigments of the retinula cells (RCP) tightly surround the rhabdom 
(adapted from Greiner, 2006). 
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Underneath each facet lies the crystalline cone, generally formed by four Semper cells. Both 

corneal lens and crystalline cone build up the dioptric apparatus of the compound eye. Under 

the crystalline cone are the visual cells which are connected to a nerve axon and thus the 

brain. In bees there are 8 to 9 retinula cells or photoreceptors within each ommatidium which 

collectively form a central axis or transparent tube, called the rhabdom (Meyer-Rochow, 

1981; Nilson, 1989; Greiner, 2006; Figure 1.11). There are three types of retinula cells: 

ultraviolet-sensitive (347-353 nm), blue-sensitive (430-436 nm) and green-sensitive (533-548 

nm) (Meyer-Rochow, 1981; Skorupski et al., 2007; Dyer et al., 2011; Figure 1.11). 

 

 
Figure 1.12 The representative sensitivity of the three photoreceptors of bumblebees 
(solid line) and honeybees (dotted line). In contrast, humans can perceive longer-
wavelength radiation which is indicated by the visible light spectral bar above the 
graph. Figure adapted from Dyer et al., 2011. 

 

The rhabdom is made of 8 to 9 open or fused rhabodmeres which consist out of specially 

photon-absorbing, visual pigments arranged in microvilli (Meyer-Rochow, 1981; Figure 

1.13). These microvilli are bristle-like membrane projections from the photoreceptor cells 

which increase the membrane surface area, and thus increase the amount of visual pigments 

in the cell (Meyer-Rochow, 1981; Land, 1997; Figure 1.13). The microvilli of a single 

retinula cell collectively form a rhabdomere. 
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Figure 1.13 Longitudinal drawing of a rhabdom from the ommatidum of an apposition 
compound eye, with indication of the individual rhabdomere which consists out of the 
microvilli from the photoreceptors or retinula cells. 

 

Furthermore, each ommatidium contains several types of pigment cells: (i) two primary 

pigment cells which surround the crystalline cone; (ii) a varying number of secondary 

pigment cells which ensheath the entire ommatidium, and (iii) retinula cell pigments which 

are present within the retinula cells (Meyer-Rochow, 1981; Greiner, 2006; Kelber et al., 

2011; Figure 1.13). 

 

In general, (i) the tight apposition of the crystalline cone and the rhabdom, together with (ii) 

the thick sheath of pigments present in the secondary pigment cells and (iii) the crystalline 

cone extensions which covers the basement membrane, are the major characteristics of 

apposition eyes to absorb stray light (Greiner, 2006; Figure 1.13). Axial light from a single 

facet is thus focused onto the respective rhabdom underneath (Warrant et al., 2004; Kelber et 

al., 2006; Warrant, 2008). Light reaching the eye off-axis will be absorbed by the pigments 

(Warrant, 2004; Greiner, 2006; Somanathan et al., 2009a). 
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The other types of compound eyes are: neural superposition and refracting superposition eyes 

(Nilson, 1989; Greiner, 2006; Figure 1.14). The division in three major groups are based on 

variations in eye optics or neural wiring between the eye and the first optic ganglion or 

lamina (Nilson, 1989; Greiner, 2006; Figure 1.14). 

 

 

Figure 1.14 Longitudinal sections of the three major types of compound eyes: (a) 
apposition, (b) neural superposition and (c) refracting superposition eyes. The size of 
the aperture (A) reflects differences in sensitivity whereas the arrows in the grey shade 
are showing the path of light absorbed by the photoreceptor. C = cornea, CC = 
crystalline cone, CZ = clear zone, and Rh = rhabdom (adapted from Greiner, 2006). 

 

In neural superposition eyes, which can be found in flies (Diptera, suborder Brachycera), the 

rhabdomeres are separated and can receive light from slightly different angles. The retinula 

cell axons of the rhabdomeres, which receive light from the same angle but originated from 

different ommatidia, converge onto the same neural unit of the lamina (Figure 1.14b). In this 

way, sensitivity can be increased 6-fold in these diurnal insects (Greiner, 2006). 

 

In refracting superposition eyes, typically for nocturnal insects, the optics and the light-

absorbing rhabdom layer are separated by a pigment-free or ‘clear’ zone (Figure 1.14c). 

Through special optics, the light rays from a large number of facets can be focused onto a 

single rhabdom (Figure 1.14c). Thus, each rhabdom receives light through the ’clear zone’ 

from hundreds or thousands of facets. This greatly improves photon catch and thus sensitivity 

(Greiner, 2006). 
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Animals with apposition compound eyes are usually restricting to a diurnal lifestyle, because 

their eye design works best at bright light intensities (Warrant et al., 2004; Kelber et al., 

2006; Somanathan et al., 2008; Wcislo & Tierney, 2009). Their small aperture limits the 

absolute sensitivity of their eyes and therefore the use at night or under dimmed light 

conditions (Warrant et al., 2004; Kelber et al., 2006; Warrant, 2008; Somanathan et al., 

2009). Indeed, low light intensities result in a poor photon catch and unreliable visual signals 

(Warrant, 2004). However, an increase in ommatidial diameter can improve the sensitivity 

towards lower light conditions and higher spatial acuity, as the photoreceptors of these 

ommatidia will capture more photons (Spaethe & Chittka, 2003; Warrant, 2004; Kelber et al., 

2006; Kapustjanskij et al., 2007). Therefore, bees and other Hymenopterans which show a 

nocturnal or crepuscular lifestyle, and thus become active when light conditions are poorer, 

possess (i) relatively larger eyes with reasonably larger ommatidial facets, (ii) larger ocellar 

diameters, and (iii) unusual wide rhabdoms (compared to diurnal species of similar size) 

(Kerfoot 1967; Jander & Jander, 2002; Warrant et al., 2004; Kelber et al., 2006; Somanathan 

et al., 2009a) (for a review, see Warrant, 2008; Wcislo & Tierney, 2009). However, not all 

dim-light foraging bees have enlarged ocelli and compound eyes (Wcislo & Tierney, 2009). 

Furthermore, apposition eyes have to search for a balance between spatial resolution (by 

increasing the number of ommatidia) and absolute sensitivity (by larger ommatidia) (Warrant 

et al., 2004; Somanathan et al., 2008). 

 

Aside from type of lifestyle, also body size usually correlates with the eye size (Spaethe & 

Chittka, 2003), facet and ocellar diameters and thus presents a good predictor of overall light 

sensitivity of the visual system in Hymenopterans (Jander & Jander, 2002; Kelber et al., 

2006). Furthermore, Kapustjanskij et al. (2007) showed that random sampled bumblebees 

with a larger eye morphology have a higher ability to fly in weaker light conditions. 

 

In conclusion, several studies with nocturnal sweat bee Megalopa genalis (Warrant et al., 

2004; 2006; Kelber et al., 2006), nocturnal and diurnal paper wasps (Warrant et al., 2006), 

crepuscular bees (Kelber et al., 2006), and Indian carpenter bees (Somanathan et al., 2008, 

2009) showed that morphological parameters of the eye can affect the sensitivity in different 

light conditions. Furthermore, bumblebees with larger ocelli and/or ommatidia will be more 

light sensitive (Kapustjanskij et al., 2007, for review: Warrant, 2008; Wcislo & Tierney, 

2009). 
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1.1.6 Cast determination and division of labour 

Bumblebees do not have a strict age-related division of labor as honeybees (A. mellifera) do 

(Cameron, 1989; O’Donnell et al., 2000). Young honeybees perform in-hive tasks, whereas 

older bees undergo a transition from a nurse to a forager worker bee, collecting food outside 

the nest (Robinson, 1992). The division of labor for bumblebees is mainly based on worker 

size, as several studies have revealed a correlation between workers size and their probability 

for a certain task, a phenomenon known as alloethism (O’Donnell et al., 2000; Jandt & 

Dornhaus, 2009). Small workers are more found to stay inside the nest and fulfill nest duties 

whereas large workers have a higher probability of foraging (Goulson et al., 2002; 

Yerushalmi et al., 2006; Jandt & Dornhaus, 2009), although task switching is possible (Jandt 

& Dornhaus, 2009). In contrast, some indication of age-related division of labor was found in 

B. terrestris colonies by Yerushamli et al., (2006) and Jandt & Dornhaus, (2009). They 

observed that younger bumblebees are more likely to perform brood care and ‘in nest’ tasks, 

whereas older bees are more likely to forage. However, those age effects are not strict, as 

many bumblebees never initiate foraging and stay in their nest throughout their entire life 

(Brian, 1952; Free, 1955; Yerushalmi et al., 2006). The division between forager and nester 

is not strict, and bumblebees can already start to forage as early as 2 days after emergence 

(Pouvreau, 1989; Yerushalmi et al., 2006) with large bees performing foraging flights earlier 

than small bees (Yerushalmi et al., 2006). Also Robinson (1992) described that the age of 

foraging depends on the needs of the colony. In the absence of foragers, the smaller bees that 

normally stay inside will start foraging to comply with the nutritional needs of the bumblebee 

colony (Goulson, 2010). 

 

So, a correlation between worker size and caste determination is found, but what causes this 

size variation in bumblebee workers? In pollen-storing species, larvae are fed directly on 

nectar and pollen mixes regurgitated by the adults (Alford, 1975; Goulson, 2003). Thus, 

adults could determine the size attained by each larva (Ribeiro, 1994) as well-fed larvae will 

eventually become larger adults than less-fed larvae (Spaethe & Weidenmuller, 2002). 

However, given the fact that larvae are reared in a controlled environment by a team of 

specialized nest workers, it seems implausible that a 10-fold variation in worker mass could 

result from the accidental neglect of some larvae at the expense of others (Alford, 1975; 

Sutcliffe & Plowright, 1988; 1990; Goulson et al., 2002; Goulson, 2010). So, most research 
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was concentrated towards size variation as an adaptive function, in which colonies will 

benefit from rearing workers of a range of sizes (Goulson et al., 2002; Spaethe & 

Weidenmuller, 2002; Powell & Franks, 2006; Spaethe et al., 2007). However, Couvillon & 

Dornhaus, (2009) recently showed that size differences in pupae of Bombus impatiens were 

indeed made by intentional neglect of the larvae at the periphery of the nest which received 

less care than those in the centre. 

 

1.1.7 Foraging, light sensitivity and size 

The visual system of bumblebees consist out of two apposition compound eyes and three 

ocelli (Wcislo & Tierney, 2009), while the olfactory system consist out of several pore plate 

sensillae on their antennae (Spaethe et al., 2007; as described in 1.1.4 and 1.1.5). Both 

sensory systems determine the foraging abilities of an individual bumblebee. Thus, an 

improvement of one or both sensory systems will increase the foraging efficiency (Chittka et 

al., 1999). Indeed, bumblebees use a combination of color and spatial relationships to learn 

from which flowers to forage (Spaethe et al., 2001; Goulson, 2010). They normally visit the 

same patches of flowers every day, which is called ‘flower constancy’ (Free, 1970; Chittka et 

al., 1999). Moreover, dependent on the species, they can visit patches of flowers up to 2.4 km 

from their nest (Walther-Hellwig & Frankl, 2000; Chapman et al., 2003; Wolf & Moritz, 

2008; Charman et al., 2010). Nectar can be extracted from the flower using their long tongues 

(or glossae), or by "nectar robbing”, biting at the base of the flower to extract nectar (Irwin & 

Brody, 1999). After visiting a flower some bumblebee species leave a scent mark on the 

flower which marks visitation of the flower to other bumblebees (Schmitt & Bertsch, 1990). 

 

Furthermore, bumblebees have an thermoregulation system (Heinrich, 1975; 1979; Goulson, 

2010). This make them capable of foraging in bad weather conditions and on cold days, even 

when it is too cold to forage for other pollinators (Heinrich, 1975; 1979; Goulson, 2010). 

Next to temperature and weather conditions also other environmental conditions like 

humidity and light intensity determines bumblebee foraging activity (Corbet et al., 1993; Peat 

& Goulson, 2005; Goulson, 2010). Also external factors such as food quality play a role in 

this (Chittka et al., 1997; Roldán-Serrano & Guerra-Sanz, 2005; Goulson, 2010). 
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In social insects, the food influx of a colony is determined by how work is allocated among 

the members of the colony (Goulson, 2003). The size-dependent division of labor, discussed 

in chapter 1.1.6, could help to maximize the nectar and pollen influx of a colony (Goulson et 

al., 2002; Spaethe Weidenmüller, 2002). Larger workers are able to forage early in the 

morning (and also late at dusk) when small workers and other small bees are prevented from 

foraging due to low temperatures and/or inadequate light conditions (Heinrich, 1975; 1979; 

Heinrich & Heinrich, 1983). Furthermore, large bumblebees have bigger eyes and can see 

better in lower light conditions than small conspecifics (Kapustjanskij et al., 2007). Larger 

bumblebees exhibit also an increased odor (Spaethe et al., 2007), are faster learning (Worden 

et al., 2005) and have a better visual resolution (Spaethe & Chittka, 2003). As many flowers 

accumulate nectar and pollen overnight a colony might be able to significantly increase its 

overall food intake rate by allocating large workers to forage, especially at dawn and dusk 

(Corbet et al., 1995). 

 

1.2 The value of pollination and bumblebee decline 

1.2.1 The value of pollination 

Many wild flowers and agricultural crops depend heavily on insects for their pollination. 

Pollination, the transfer of pollen from the anther of a flower to the stigma of the same (self 

pollination) or of a different flower (cross pollination), is a key step in the sexual 

reproduction of plants (Free, 1993). Cross pollination is essential for the production, quality, 

earliness and uniformity of seed set and fruit quality (Corbet et al., 1991; Free, 1993). 

Pollination is a crucial process in the persistence and viability of both wild and managed 

plant populations (Kevan et al., 1990; Kearns & Inouye, 1997; Allen-Wardell et al., 1998). 

Pollinators contribute for more than €22 billion to European agriculture per year (STEP-

project), of which bumblebees are extremely important as three of the five most important 

pollinator species of European crops are bumblebee species. Bumblebees pollinate several 

main agricultural crops such as: pepper (Capsicum annuum), melon (Cucumis melo), 

watermelon (Citrullus lanatus), cucumber (Cucumis sativa), strawberry (Fragaria x 

ananassa), raspberry (Rubus idaeus) and apple (Malus domestica) and the greenhouse tomato 

(Solanum esculentum) as the main agricultural crop (Velthuis & van Doorn, 2006). Velthuis 

& van Doorn (2006) reported in 2006 that worldwide, 95% of all bumblebee sales were made 

for tomatoes. Although now, bumblebee breeders are diversifying the use of bumblebees for 
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pollination purposes. In 2006, more than 40,000 hectares of bumblebee pollinated tomatoes 

were cultured in greenhouses with a total estimated crop value of €12,000 million per year 

(Velthuis & van Doorn, 2006). Within a few years after the introduction of the use 

bumblebees for their pollination service in greenhouses, nearly 100% of growers in Belgium 

and the Netherlands switched to bumblebee pollination in their greenhouses. Honeybees 

(Apis mellifera) can also pollinate most of the above mentioned crops, but they are often less 

efficient than bumblebees (e.g. Velthuis & van Doorn, 2006; Goulson, 2010). That is 

because, commercial bumblebees perform better in the artificial environment of the 

greenhouse than honeybees, as they can cope with lower temperatures and/or lower light 

intensities. While honeybees normally do not forage in temperatures less than 16 °C, 

bumblebees forage even in temperatures lower than 10 °C (Heinrich, 1979; Goulson, 2010). 

Bumblebees also can stay active in temperatures up to 32-35°C (Heinrich, 1979; Goulson, 

2010). Furthermore, bumblebees are capable of "buzz pollination", which honeybees cannot. 

Indeed, as some plant species release their pollen from small holes in the anther and do not 

split open to release pollen, a bumblebee is still able to collect the pollen by producing a 

strong vibration that shakes the pollen out of the anthers due to rapidly contracting of the 

flight muscles (Buchmann, 1983). In addition, honey bees fly out of greenhouse vents when 

other more rewarding flowers are available outside the greenhouse, while bumblebees will 

remain working in the greenhouse as they are not able to communicate about a food source 

outside the greenhouse (Griffiths & Robberts, 1996). 

 

The major bumblebees species being commercially reared and being used are B. terrestris in 

Europe, B. ignitus for Asia, and B. impatiens in the U.S.A and Canada. The loss of 

bumblebee species, certainly when the species is a key pollinator, could lead to a decrease in 

plant seed set, genetic diversity and ultimately to extinction of these plants (flower). In turn, 

this could lead to a cascade of effects on other animals dependent on the plant for food and 

shelter (Kearns & Inouye, 1997). The severity of the plants extinction depends on whether the 

plant is pollinated by one or more pollinator species, on self compatibility and/or on seed 

production (Kearns & Inouye, 1997). 

 

1.2.2 Red list 

All over the world different pollinator species are undergoing major declines (e.g. Potts et al., 

2010). Many bumblebee species, essential pollinators in natural and managed ecosystems (as 
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described in chapter 1.1.8), are no exception to this general phenomenon (Williams & 

Osborne, 2009; Cameron et al., 2011, Carvalheiro et al., 2013). 

Currently, a red list of bee species in Belgium is not existing. However, in The Netherlands 

they had already a red list of bee species in 2003 (Peeters & Reemer, 2003). In this work, 16 

of the 29 Bombus species received a red list status corresponding to the decline in their 

distribution before and after 1970. Two bumblebee species were described as ‘vulnerable’, 5 

species as ‘endangered’, 5 species as critically endangered, and even 4 species ‘disappeared’ 

from the Netherlands (see Table 1.1; Peeters & Reemer, 2003). The other 13 bumblebee 

species were considered as stable and or ‘Least Concern’. 

 

Table 1.1 List of Bombus species on the Red list of the Netherlands following Peeters & 
Reemer (2003). 
Species Red list status   Species Red list status 

Bombus barbutellus Critically Endangered Bombus pomorum Disappeared 

Bombus confusus Disappeared Bombus ruderarius Vulnerable 
Bombus cullumanus Disappeared Bombus ruderatus Critically Endangered 

Bombus distinguendus Critically Endangered Bombus rupestris Endangered 
Bombus humilis Endangered Bombus soroeensis Critically Endangered 

Bombus jonellus Vulnerable Bombus subterraneus Disappeared 
Bombus magnus Endangered Bombus sylvarum Critically Endangered 

Bombus muscorum Endangered Bombus veteranus Endangered 

 

In a recent study, researchers belonging to the Status and Trends of European Pollinators 

(STEP) project examined all known bumblebee species of Europe. In this study, which also 

contributes to the European Red List of pollinators, they found that 24% of the 68 European 

bumblebee species are threatened with extinction (The IUCN Red List of Threatened 

Species™, 2014; Table 1.2). Furthermore, most bumblebee species had a declining 

population trend (46%), while 42% had a stable or increasing population trend (29% and 

13%, respectively) (The IUCN Red List of Threatened Species™, 2014; Table 1.2). 

Information on criteria and rules concerning the different red list classifications used by the 

IUCN can be found in Figure 1.15, in the document (IUCN, 2012) and the IUCN website 

(http://www.iucnredlist.org/technical-documents/red-list-documents). 

 

A comparison between the red list of the Netherlands and the European red list showed that 

from the 16 Red List species of The Netherlands, only 4 species were indicated as 
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‘vulnerable’ and 1 species as ‘Critically Endangered’ on the European Red List, while all 

other bumblebee species had a status of ‘Least Concern’ in Europe (Table 1.1 and Table 1.2; 

Peeters & Reemer, 2003; The IUCN Red List of Threatened Species™, 2014). The difference 

in status of the red list species between both lists was most strikingly seen in the case of B. 

subterraneus, this bumblebee disappeared from The Netherlands, but on an European scale 

this species received only a status of ‘Least Concern’ (Table 1.1 and Table 1.2; Peeters & 

Reemer, 2003; The IUCN Red List of Threatened Species™, 2014). 

 

 

Figure 1.15 Structure of the different red list categories. Picture from IUCN, (2012). 
With the extinction risk going from low (indicated with a “-”) to high (indicated with a 
“+”). 
 

Different hypotheses aim to explain the observed declines in bee populations (as reviewed in: 

Williams & Osborne, 2009; Potts et al., 2010; Cameron et al., 2011, Carvalheiro et al., 2013; 

Vanbergen & the Insect Pollinators Initiative, 2013). In the next chapter 1.2.3, the most 

important hypotheses of bumblebee decline will be briefly discussed. 
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1.2.3 Causes of bumblebee decline 

Many potential drivers can affect pollinator abundance and diversity in particular (Natural 

Research Council, 2006). The most important drivers are: (i) land-use change with a 

decreased resource diversity (Biesmeijer et al., 2006), and the loss and fragmentation of 

habitats (Goulson et al., 2008; Winfree et al., 2009; Steffan-Dewenter et al., 2002; Hendrickx 

et al., 2007); (ii) use of pesticides (Kevan et al., 1997; Rortais et al., 2005); (iii) non-native 

species and the spread of pathogens (Thomson, 2006; Cox-Foster et al., 2007; Stout & 

Morales, 2009; Neumann & Carreck, 2010); and (iv) climate change (Williams et al., 2007; 

Dormann et al., 2008). These different environmental drivers rarely act alone (Didham et al., 

2007). Indeed, these factors and their interactions with each other, influence pollinator 

populations on different locations and on different scales (Potts et al., 2010, Figure 1.16). 

However, as most studies have analyzed the impacts of specific drivers in isolation 

(Tylianakis et al., 2008; Schweiger et al., 2010), they will also be briefly described here. 

 

 

Figure 1.16 Interactions among the three main groups of drivers of bee loss. Here, blue 
boxes represent the three main groups of drivers; red arrows represent direct effects of 
drivers; green arrows represent interactions between drivers, and blue arrows 
represent interactions within drivers, adapted from Potts et al. (2010). 

 

1.2.3.1 Loss of habitat and food resources 

The agricultural intensification occurring during the latter half of the twentieth century, is 

presumed to be one of the main causes of bumblebee decline and the loss of biodiversity in 

general (Williams, 1986; Osborne & Corbet, 1994; Goulson et al., 2006; Goulson, 2010). By 
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the development of artificial fertilizers and new grass varieties, farmers could improve their 

lands productivity by changing unimproved grassland to monocultures of grasses (Stapledon, 

1935; Waller, 1962, Goulson, 2010). This practice has lead to major losses of unimproved 

grassland in whole Europe and North America (Fuller, 1987; Howard et al., 2003; Wilcove et 

al., 1998; Hines & Hendrix, 2005). For instance, in the United Kingdom over 90% of 

unimproved lowland grassland is lost between 1932 and 1984 (Fuller, 1987; Howard et al., 

2003). 

 

Furthermore, since the introduction of cheap artificial fertilizers, crop rotations involving 

legumes (mostly Trifolium spp.) have been almost entirely abandoned (Goulson, 2010). The 

abandoning of the use of these leguminous crops, which are highly preferred food sources for 

long-tongued bumblebees, is one major cause responsible for the observed decline of long-

tongued bumblebees (Rasmont, 1988; Rasmont and Mersch, 1988; Goulson, 2010). Hence, 

an increase in use of selective herbicides, which could entirely eliminate broad-leaved weeds 

within the crop further reduced the botanical diversity (Haughton et al., 2003; Hawes et al., 

2003; Goulson, 2010). 

 

As bees are entirely dependent on flowers, the decline of the European flora and changed 

crop rotations which decreased the food availability for bees, inevitable had negative effects 

on bumblebee populations and their distribution (Goulson, 2010). Several studies showed a 

direct correlation between the floral diversity and the number of bee species within an area 

(Banaszak, 1983; Kells et al., 2001; Backman & Tiainen, 2002). Indeed, uncropped areas of 

farmland, such as hedgerows, old fields, scrublands, forests, roadside verges, shelterbelts, 

borders of streams and ponds, green lanes and unimproved grasslands can provide flowers 

throughout the season, and tend to support far greater numbers of foraging bumblebees than 

cultivated areas (Goulson, 2010). 

 

On farmland, the crops themselves may provide an abundance of food during their brief 

flowering periods (Goulson, 2010). However, bumblebees require a continuous succession of 

flowers from April to July, something which flowering crops alone cannot provide. 

Bumblebees do not store large quantities of honey in the way honeybees do, which makes 

them more vulnerable to discontinuities in the food supply (Shelly et al., 1991; Williams & 

Christian, 1991). Thus, unless farms contain areas of wild flowers, there may be gaps in the 
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succession of flowering plants during which bumblebee colonies will starve and die. In turn, 

the plants normally pollinated by bumblebees will set less seed, and therefore have less 

progeny the following years resulting in even less food for the bumblebees which is described 

as an ‘extinction vortex’ (Corbet, 1987; Osborne et al., 1991; Osborne & Corbet, 1994). 

 

In addition, the scarcity of weeds and field flowers means that there are also fewer seeds to 

eat for rodents, such as voles and mice. Lower populations of these mammals will lead to 

fewer nest sites for both below and above-ground nesting bumblebee species (Goulson, 

2010). McFrederick & LeBuhn (2006) found a positive correlation between the number of 

rodent holes and bumblebee abundance in urban parks, indicating that the need for nest sites 

may be a limiting factor. Bumblebees need also suitable hibernation sites where young 

queens can remain undisturbed through the autumn and winter. And as these hibernation sites 

are quite different from nesting sites, the decreased availability of these sites can also 

contribute to the observed bee declines (Goulson, 2010). Indeed, as nesting site bumblebees 

prefer abandoned holes of small mammals or nests of birds under or above ground or even in 

trees, while for a hibernation site bumblebee queens prefer loose soil, such as in a mole hill or 

compost in a flower pot, as their digging abilities are not very well developed (Goulson, 

2010). Furthermore, modern farming practices also have an impact on bumblebee suitable 

nesting sites. The loss of hedgerows and unimproved pastures have reduced the availability of 

nest sites for both above-ground and below-ground nesting bumblebee species (Banaszak, 

1983; von Hagen, 1994), and nests above the ground are frequently destroyed by farm 

machinery. Although exact empirical data of the latter is missing, the loss of nests or 

hibernation queens caused by farm machinery, for instance plowing, would be an interesting 

research topic. 

 

Habitat fragmentation, emerging discontinuities in habitat, probably also has a negative affect 

on wild pollinator populations (Stefan-Dewenter et al., 2006; Winfree et al., 2009). Indeed, 

Stefan-Dewenter et al. (2006) reported a declining species richness and abundance for bees 

related to a decreased fragment size. However, several other studies did not find an effect of 

fragmention on overall community richness or abundance of bee pollinators (Donaldson et 

al., 2002; Cane et al., 2006; Brosi et al., 2008). Although these studies also showed that some 

bee species were favored by increased native habitat, while others were favored by an 

increased non-native matrix area (Donaldson et al., 2002; Cane et al., 2006; Brosi et al., 
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2008). Furthermore, other studies demonstrated positive effects of urbanization or agriculture 

probably by the introduction of novel foraging and/or nesting resources or micro-habitats 

(Cane et al., 2006; Winfree et al., 2007; Carre et al., 2009). Thus, habitat fragmentation 

probably has a negative effect on some bees species but not all as certain species can tolerate 

or benefit from a moderate level of disturbance, including moderate levels of habitat loss 

(Winfree et al., 2009, Carre et al., 2009). 

 

1.2.3.2 Use of pesticides 

The widespread introduction of insecticides is another plausible cause of bumblebee decline. 

Neonicotinoids, nicotinic acetylcholine receptor agonists, are now the most commonly used 

insecticides (Goulson, 2013). Three possible exposure routes to pesticides are possible: (i) 

through direct contact of sprays on foragers; (ii) through contact with contaminated plants; 

and (iii) through the uptake of contaminated food (nectar or pollen). The latter one is 

probably the most important route of exposure for bumblebees. Indeed, neonicotinoids can be 

found in the nectar and pollen (Goulson, 2013). The concentrations in nectar range from <1 

to 23 ppb, with concentrations in pollen ranging from <1 to 66 ppb, depending on the way the 

neonicotinoids are applied on to the crops (as seed dressings, or by irrigation water direct in 

the soil) (Goulson, 2013). The fact that a large volume of nectar is consumed by bumblebees 

and their offspring, these pesticides can accumulate in bees (Goulson, 2013). 

 

Most insecticides are broadly toxic for both, honeybees and bumblebees, and in high doses 

will lead to bee mortality (Thompson & Hunt, 1999). Although it is unlikely that a normal 

field-realistic application of neonicotinoids will cause direct bumblebee mortality, there is 

now strong evidence for sublethal effects (Goulson, 2013). Chronical exposure to sublethal 

doses of neonicotinoids is known to reduce bumblebee learning, foraging and homing ability 

(Mommaerts et al., 2010, and as reviewed in Goulson, 2013). Indeed, Whitehorn et al. (2012) 

found an reduced queen production in queenright (= a colony with a properly functioning 

queen) B. terrestris colonies exposed to field realistic doses of imidacloprid produced, which 

could be caused by an reduced fecundity of the queen or foraging efficiency of the workers 

(Goulson, 2013). Hence, Gill et al. (2012) showed that exposure to 10 ppb imidacloprid in 

sugar water reduced the foraging success of workers. Indeed, they observed a higher 

proportion of foragers that did not return to the colony, fewer workers emerged from pupae, 
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and bees exhibited increased foraging activity (Gill et al. 2012). A study with field-realistic 

doses of imidacloprid confirmed the impact on foraging ability, when collecting pollen 

(Feltham et al., 2014). Recently, Scholer & Krischik (2014) showed that chronical exposure 

to two neonicotinoids: imidacloprid and clothianidin significantly reduced colony health of 

queenright colonies of B. impatiens. They observed higher queen mortality starting at 20 ppb, 

as a result of an decreased foraging ability of the workers (reduced worker movement, 

consumption, wax production, and nectar storage) (Scholer & Krischik, 2014). Also for other 

insecticides such as: λ-cyhalothrin, negative (sub)lethal effects are observed. Indeed, B. 

terrestris colonies exposed to the pyrethroid pesticide lambda (λ)-cyhalothrin showed higher 

mortality of worker bees in the nest during the early stages of colony development (Gill et al., 

2012). However, a longer term only reduced body mass was observed (Baron et al., 2014). 

Thus, that pesticides have a sublethal effect on bumblebee populations is certain, but their 

interaction with other stressors and the severity of their impact on the observed declines is yet 

unclear (Goulson, 2013). 

 

However, recent studies already tried to fill in this gap in our knowledge on pesticides 

(Fauser-Misslin et al., 2014 and Baron et al., 2014). Both studies searched for the influence 

of combined pesticides and parasite exposures on bumblebee colonies (Fauser-Misslin et al., 

2014 and Baron et al., 2014). Combined exposure to thiamethoxam and clothianidin under 

laboratory circumstances reduced worker production, life duration of workers and colony 

reproductive success (Fauser-Misslin et al., 2014). The combined exposure of a trypanosome 

gut parasite Crithidia bombi with these two neonicotinoids reduced queen survival (Fauser-

Misslin et al., 2014), but the combination of C. bombi with λ-cyhalothrin had no additional 

effects (Baron et al., 2014). Further research is needed to study the influence of combined 

pesticides and parasite exposures on bumblebee colonies. 

 

1.2.3.3 Impact of non-native species and the spread of pathogens 

As discussed in chapter 1.1.8, a low number of bumblebee species is commercially reared for 

pollination in greenhouses. For B. terrestris alone, probably more than one million colonies 

are shipped to 60 countries worldwide. These bumblebee colonies and also widely shipped 

honeybees (Apis mellifera), which are native to Europe, Africa and the Middle East, can have 

negative effects on the presence and distribution of other pollinator species by: (i) 
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competitive displacement; (ii) introgression (hybridization); (iii) introduction of pathogens or 

‘pathogens spill over’ into wild populations (Goulson, 2010; Pott et al., 2010). 

 

Competitive displacement at the preferred host plants can lead to declines in native pollinator 

populations, particularly specialist species (Traveset & Richardson, 2006). Indeed, honeybees 

which have been introduced by man to almost every country in the world are highly 

polylectic (flower generalist) (e.g. Butz Huryn, 1997; Coffey and Breen, 1997) and have the 

potential to displace native organisms from preferred forage sources (Goulson, 2010). There 

is increasing evidence that honeybees have indeed negative effects on bumblebees by 

competition for food (Thomson, 2004; 2006; Forup & Memmott, 2005; Walther-Hellwig et 

al., 2006; Goulson & Sparrow, 2009). 

 

Introgression is the interbreeding of managed bee species with endemic populations. This is 

also called genetic dilution and could thereby erode the genetic diversity of the native 

populations (Franck et al., 1998). 

 

The spread of pathogens from managed bumblebees or honeybees to the wild bee populations 

is not yet proven but quite possible. Indeed, it is shown that in the past commercial 

bumblebee colonies could be infested with Crithidia bombi and Locustacarus buchneri 

(Colla et al., 2006; Otterstatter & Thomson, 2008; Yoneda et al., 2008) and honeybees are 

infected with multiple parasites and viruses (Genersch, 2010). Furthermore, they can act as 

dispersal vectors for parasites and pathogens, for example: Varroa mites in Apis, Nosema 

spp. in Bombus, and Ascosphaera apis fungus in Megachile (Potts et al., 2010). Furthermore 

viruses, notorious in honeybees, can invade multiple host species and have thus the potential 

to infect other pollinator species (Genersch et al., 2006; Eyer et al., 2009; Meeus et al., 

2014). Especially in North America the rapid decline of several wild bumblebee species 

during the last 15 years fueled the speculation that an non-native pathogen or strain got 

accidentally imported and is causing the decline (Thorp, 2005; Thorp & Shepherd, 2005; Rao 

& Stephen, 2007; Goulson, 2010). However, no evidence is presented to proof a causal link, 

like there is for the other stressors, which is of course also very difficult to accomplish. On 

the other hand, the mechanism and the potential of spillover is getting clear. Fürst et al. 

(2014), showed that managed bees can disrupt host parasite and virus interaction in sympatric 

bumblebee species. Murray et al. (2013) showed that spillover of a protozoan parasite is 
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possible from bumblebees escaping the greenhouse. Thus, it is clear that there are risks 

associated with these kind of spillovers, especially for endangered pollinator communities, as 

reviewed by Meeus et al. (2011). 

 

1.2.3.4 Climate change 

Finally, also climate change has an impact on the decline of pollinators (Williams et al., 

2007; Dormann et al., 2008; Potts et al., 2010; Iserbyt & Rasmont, 2012). Climate change 

can have direct and indirect effects on bumblebee species, colonies, populations and 

communities. Hence, climate change can have a direct impact by: (i) changing the temporal 

activity of bees (Stone & Willmer, 1989), (ii) changes in phenology, and by shifting climatic 

niches (Williams et al., 2007; Hegland et al., 2009; Iserbyt & Rasmont, 2012) and (iii) 

changing composition and functioning of pollinator communities (Memmott et al., 2007; 

Iserbyt & Rasmont, 2012). An example of an indirect effect of climate change is mismatches 

in temporal and spatial co-occurrence of species (Schweiger et al., 2008; Hegland et al., 

2009). 

 

1.2.4 Genetic impacts 

Also genetic factors can have an impact on the observed declines of bumblebee populations. 

Due to the different drivers discussed in chapter 1.2.2, bumblebee populations can become 

increasingly small and isolated. These small (bumble)bee populations will disappear, despite 

the apparent suitability of the remaining habitat. They will have a reduced genetic diversity as 

a result of genetic drift, and will be more vulnerable than genetic rich populations to 

inbreeding (mating with relatives) and inbreeding depression (Reed & Frankham, 2003; 

Spielman et al., 2004; Frankam, 2005; Zayed, 2009; Goulson, 2010). This will in turn lead to 

low adaptive ability in response to current and future changes in the environment, such as 

new pathogens, climate change and habitat loss, and so this can ultimately lead to extinction 

(Frankham, 2005; Zayed, 2009; Goulson & Osborne, 2010). 

 

In a normal metapopulation, local extinctions of populations will be balanced with 

recolonization. By dispersal or gene flow genetic cohesion and diversity will be maintained 

(Goulson, 2010). However, in fragmented populations dispersal will be limited or absent. In 
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turn, extincted patches may never be repopulated and small populations will lose genetic 

diversity through drift (Goulson, 2010). The rate of genetic drift is determined by the 

effective population size (Ne). In social insects, Ne will be low as it depends not on the 

amount of workers, but on the colonies reproductive success: the number of egg-laying 

queens and their mates from each individual colony. As most bumblebee species have 

colonies which consist out of one founder queen and are mostly monoandrous, Ne will be 

even very low (Estoup et al., 1995; Schmid-Hempel & Schmid-Hempel, 2000). 

 

Furthermore, bumblebees’ dispersal ability, between 3 to 140 km in one year, differs greatly 

between species and the study (Hopkins, 1914; Stout & Goulson, 2000; Hingston, 2006, 

Kraus et al., 2009; Goulson, 2010; Darvill et al., 2010; Lepais et al., 2010). Although 

bumblebees can colonize islands up to 30 km off shore (Macfarlane & Griffin, 1990), sea 

barriers of more than 10 km can already restrict gene flow (MacFarlane & Gurr, 1995). 

Indeed, the latter could even lead to the development of subspecies (Rasmont, 1983). For 

example, B. terrestris canaeriensis and B. terrestris xanthopus, two subspecies of B. 

terrestris occur on the Canarian islands and Corsica, Capraia Island and Elba Island, 

respectively (Rasmont, 1983; Widmer et al., 1998; Rasmont et al., 2008). The dispersal 

ranges of the reproductives stages of bumblebees (daughter queens and males) may differ 

between subgenera (Darvill et al., 2010; Goulson et al., 2011). Bumblebees of the subgenera 

Pyrobombus (B. pratorum, B. jonellus, and B. hypnorum) may have a high dispersal ability 

than bumblebees belonging to the subgenera Thoracobombus (B. pascuorum, B. muscorum, 

B. sylvarum, B. humilis, and B. ruderarius) (Darvill et al., 2010; Goulson et al., 2011). 

Populations of bumblebee species with a more limited dispersal rate will have less chance of 

a successful recolonization event and will be more vulnerable to inbreeding. 

 

Inbreeding can cause a decrease in polymorphism of the loci involved in the sex 

determination which leads to the presence of sterile diploid or triploid males (Duchateau et 

al., 1994; Whitehorn et al., 2009). Furthermore, inbreeding can lead to inbreeding depression 

caused by the expression of deleterious recessive alleles (Frankham, 2005; Zayed, 2009). 

Although, it has been reported that haplo-diploid species, as is the case for bumblebees, are 

considered not to be as sensitive to genetic pauperization and inbreeding depression as 

diploid species do, because deleterious alleles are purged from the population in the haploid 

males (Sorati et al., 1996; Packer & Owen, 2001). 
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1.2.5 Conservation 

The conservation of bumblebee species demands big and different efforts. Viable bumblebee 

populations need large areas of suitable habitat. It is not enough to protect and manage a few 

small areas of suitable habitat surrounded by unsuitable farm land. However, many small 

patches (such as field margin strips) may also be sufficient to support viable populations. The 

connection of these habitat ‘islands’ could increase the population size and so reduce 

inbreeding and even extinction (Goulson, 2010). Furthermore, the conservation of bumblebee 

populations can be supported by: (i) the restoration of areas with unimproved flower-rich 

grassland, (ii) the reintroduction of clover (e.g. Trifolium pratense), (iii) decreasing the use of 

artificial fertilizers which promotes rapid growth of grasses, (iv) changes in pesticide use, and 

(v) increased restrictions on transportation of bees and for stricter quarantine and monitoring 

systems or (vi) the use of native bumblebee species (Carvell, 2002; Winter et al., 2006; 

Carvell et al., 2007; Pywell et al., 2006; 2007; Rundlof et al., 2008; Goulson, 2010). In 

addition, long-term monitoring and recording of bumblebee populations is required to be able 

to follow these populations and bumblebee species (Goulson, 2010). 

 

1.3 Microsatellites 

1.3.1 General 

Microsatellites, also called simple sequence repeats (SSRs), variable number tandem repeats 

(VNTRs), or short tandem repeats (STRs), are short tandemly repeated DNA sequences 

present in the genomes of eukaryotic and prokaryotic organisms (Chambers & MacAvoy, 

2000; Oliveira et al., 2006; Selkoe & Toonen, 2006; Leclercq et al., 2010; Miah et al., 2013; 

Figure 1.17). These short DNA fragments are usually 1 to 6 base-pairs long (Chambers & 

MacAvoy, 2000; Oliveira et al., 2006; Selkoe & Toonen, 2006; Leclercq et al., 2010). 

Typically, these are repeated 5 to 40 times, but this can also be longer (Chambers & 

MacAvoy, 2000; Selkoe & Toonen, 2006; Figure 1.17). 

 

Microsatellites will be classified as mono-, di-, tri-, tetra-, penta- or hexa-nucleotide repeats 

based on the number of nucleotides per repeated unit (Chambers & MacAvoy, 2000; Oliveira 

et al., 2006; Selkoe & Toonen, 2006; Miah et al., 2013). Although in most species, the 

majority of microsatellites is dinucleotide repeats (Chambers & MacAvoy, 2000; Selkoe & 
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Toonen, 2006; Miah et al., 2013). Microsatellites were for many years considered to be 

selectively neutral, it is now known that they are also present in coding regions and 

influenced by selective pressures. Indeed, for instance changes in the number of repeats can 

cause diseases in humans (Oliveira et al., 2006 and see references therein). In coding regions, 

especially tri-, and tetra-nucleotide repeats are found (Oliviera et al., 2006). 

 

 

Figure 1.17 Example of a 116 bp microsatellite fragment, which consists out of an 
dinucleotide repeat CA, eight times repeated and two flanking regions of 50bp each. 
The grey sequences at both 5’ ends, flanking these microsatellite loci, are the PCR 
primers which allow amplification through PCR. 

 

Furthermore, microsatellites can also be classified as being perfect, imperfect, interrupted or 

composite based on the constancy of their repeated unit (Oliveira et al., 2006; Miah et al., 

2013). Perfect microsatellites consist out of one tandemly repeated unit (e.g. 

ACACACACAC), while composite microsatellites consist out of the combination of two or 

more tandemly repeated units (e.g. ACACACACACTCTCTCTCTC). Imperfect and 

interrupted microsatellites have their tandemly repeat unit interrupted by one pair of bases or 

by a small non-repeated sequence, respectively (e.g. ACACACCTACACAC and 

ACACACCTAGACACAC, respectively; Oliveira et al., 2006; Miah et al., 2013). A 

particular microsatellite locus can often be identified by its flanking DNA sequences, which 

are generally conserved across individuals of the same species, populations and/or even 

between species (Chambers & MacAvoy, 2000; Selkoe & Toonen, 2006; Figure 1.17). 

 

One important characteristic of microsatellites is that they have a high mutation rate, which is 

estimated to be between 10−2 and 10−4 per generation (Chambers & MacAvoy, 2000; Oliveira 

et al., 2006; Selkoe & Toonen, 2006; Leclercq et al., 2010; Miah et al., 2013). As this high 

rate of mutation slippage within short evolutionary times will lead to multiple alleles of 

different length per locus, microsatellites have often high levels of polymorphism (Oliveira et 
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al., 2006; Selkoe & Toonen, 2006; Leclercq et al., 2010). The number of repeats in the 

repeated region generates the polymorphism of that microsatellite locus (Chambers & 

MacAvoy, 2000; Selkoe & Toonen, 2006; Figure 1.18). 

 

 
Figure 1.18 Example of three alleles for a certain microsatellite loci, each with a 
different number of CA repeat. In 1: CA is repeated 15 times; in 2, 17 times; and in 3, 
CA is repeated 18 times. 

 

Due to their high variability within species, microsatellites are useful for discriminating 

between individuals within populations, and populations among each other. Microsatellites 

have become state-of-the-art markers for a large number of studies, for instance: in 

population genetics, QTL mapping, genome mapping, conservation genetics, marker-assisted 

rearing or breeding (MAS), and even forensic research through genetic fingerprinting (Estoup 

et al., 1995; Solignac et al., 2004; Kraus et al., 2009; Wilfert et al., 2007; Stolle et al., 2011; 

and reviewed in: Chambers & MacAvoy, 2000; Oliveira et al., 2006; Selkoe & Toonen, 

2006; Miah et al., 2013, and see chapter 1.3.2). 

 

For microsatellites, four mutation models are described: (i) the Initial Alleles Model (or 

IAM), (ii) the Stepwise Mutations Model (or SMM), (iii) the Two Phase Mutation Model” (or 

TPM), and (iv) the K-alleles model (or KAM) (Di Rienzo et al., 1994; Chambers & 

MacAvoy, 2000; Oliveira et al., 2006). They differ in how mutations are formed. Following 

IAM, a certain repeat can result in a random repeat. This because of mutation slippage a 

random number of tandem repeats are added or lost, while following SMM, mutation 

slippage will occur only in small steps of adding or losing one single tandem repeat at the 

time (Figure 1.19). The TPM is a combination of these two mutation models, which consist 

out of a proportion p of single step mutations, and 1-p larger step mutations (Di Rienzo et al., 

1994; Chambers & MacAvoy, 2000; Oliveira et al., 2006). Finally, following KAM the 

probability of a given allel to mutate in another allel is μ/k-1,in which μ is the mutation rate 

and k the exact number of possible alleles at the given locus (Oliveira et al., 2006). 
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Figure 1.19 Schematic presentation of the different mutation steps between: a) the IAM 
and b) the SMM mutation models. The underlined sequence represent the tandemly 
dinucleotide repeat “CT”. The numbers next to the arrows indicate the number of 
repeats that are added or lost during one step, starting from a 7 repeated dinucleotide 
repeat “CT”. 

 

To detect microsatellites, one needs to design polymerase chain reaction (PCR) primers with 

matching sequences in the conserved flanking regions unique to one locus in the genome. A 

single pair of PCR primers should work for all individuals of a species and even better also in 

closely related species. Each primer couple produces different sized products for each of the 

different length microsatellites. As microsatellites can be amplified with PCR, identifying 
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them is easy and fast, (Benson, 1999; Chambers & MacAvoy, 2000; Selkoe & Toonen, 2006; 

Miah et al., 2013; Figure 1.20). 

 

 

Figure 1.20 PCR amplification process. 

PCR amplification 

Double stranded DNA 

Denaturation 

Annealing 
ACTGCATCG 

ACTGCATCG 
CGTATCTG ...... 

CGTATCTG 

oligonucleotide primers 

Elongation 

······SOMESTUFFACTGCATCGMORESTUFFGCATAGACYETMORE······ 

······somestuffTGACGTAGCmorestuffCGTATCTGyetmor<>····· 

··· ···SOMES!FACTGCATCGMORESTUFF!~Iti!I~YETMORE· ····· 
· · · · · ·some s tuff'J'Tt?Tf trymores tuffCGTATCTGye tmore ..... . 

ACTGCATCG 

(using polymerase) ÏÏÏÏffiTfTTWTTillî'ilïffTTWTIIT 
TG Ac ........llo,. ··· ···SOMESTUFFACTGCATCGMORESTUFFGCATAGACYETMORE-····· 

Tc cT ___,.... 

A GA G ······somestuffTGACGTAGCmorestuffCGTATCTGyetmore······ 

nucleotides !6J~6!J6~~ÓJJMJ~M6!J!~!Mt.~.1 .1 

Dena tura ti on and -'" 
annealing 

Elongation 

..... ,uffTGACGTAGCmorestuffCGTATCTG· 

· · · · · ·SOMESTUFF!~!~~!!~~MORESTUFF!!IU!UYETMORB · · · · · 
· · · · · ·Some s tuffTGACGTAGCmore s tuffCGTATCTGye tmore· · · · · · 

16~!61~6! rrftfrfr 
"'"ACTGCATCGMORESTUFFGCATAGACYE······ 

· · · · · ,uffTGACGTAGCmore s tuffCGTATCTG 
11111111111111111111111111 
ACTGCATCGMORESTUFFGCATAGAC 

fTGACGTAGCmore s tuffCGTATCTG· 
111111111111111111111111111 

From now on , the regio SOMESTUFFACTGCATCGMORESTUFFGCATAGACYETMORE······ 
between the primers 

will amplify exponentia~ .. -somestuffTGACGTAGCmorestuffCGTATCTGyetmore······ 
1111111111111111111111111111111 Repea t cycle AcTGcATcGMoREsTuFFGcATAGAcYE······ 

·~~ TGACGTAGCmorestuffCGTATCTG· I... 11111111111111111111111111 
..._ ACTGCATCGMORESTUFFGCATAGACYE······ 
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During PCR, extracted DNA is repeatedly denatured at a high temperature to separate the two 

strands, then cooled to allow annealing of the primers, and the extension of nucleotide 

sequences through the microsatellite. This exponential process results in the production of 

high amounts of DNA and thus only a small start concentration of DNA is needed for 

amplification (Figure 1.20). 

 

The amplified microsatellite PCR fragments can then be separated and visualized through 

high resolution gel electrophoresis or capillary electrophoresis (Chambers & MacAvoy, 

2000; Selkoe & Toonen, 2006; Figure 1.21). Although traditional agarose or acrylamide gel 

electrophoresis methods are cumbersome and toxic, the use of recyclable superfine resolution 

gel (SFR) can be an cheaper and reasonable alternative capable of resolving DNA bands that 

differ by only 2% in the range of 100-1000bp (Seng et al., 2013). However, capillary 

electrophoresis is now the standardized method of microsatellite visualization (Guichoux et 

al., 2011). 

 

 

Figure 1.21 Visualization of microsatellites, comparison between the bands of gel 
electrophoresis (left) versus the peakes of capillary electrophoresis (right), with MW = 
molecular weight size marker. The grey bands (left) and the smaller peakes (right) are 
“stutter peakes”. These artifacts occur due to DNA-replication slippage during PCR 
amplification of the microsatellites. Most stutter bands are shorter than the actual 
microsatelilite allele (Schlötterer, 2004). Number 1 to 3 are examples of heterozygote 
specimens, while number 4 is an homozygote specimen. 

 

To visualize the different DNA fragments in capillary electrophoresis fluorescent dyes are 

used, by fluorophore labelling of the oligonucleotides (primers) for PCR. This will enable the 

detection of multiple microsatellite loci in one reaction. One will be able to distinguish 
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between the results or peaks of each primer by their transmitted colour. Fluorescent dyes used 

in the dissertation are: 6-FAM (blue), NED (yellow), PET (red), and VIC (green). 

 

In diploid organisms microsatellites are co-dominant, each microsatellite on the coupled 

homologous chromosomes is amplified during PCR, and will be visualized in the 

electrophoresis. The different lengths a microsatellite can generate are called alleles, in 

analogy with gene nomenclature. When this organism is heterozygous, which means having 

two different alleles for a certain locus, this will result in two separate bands on the gel or two 

peaks on the electropherogram in capillary electrophoresis, and this while homozygotes will 

produce only one band or peak. In this way, heterozygotes can be differentiated from 

homozygotes (Caterino et al., 2000; Chambers & MacAvoy, 2000; Selkoe & Toonen, 2006; 

Figure 1.21). 

 

1.3.2 Limitations 

Table 1.3 gives an overview of the advantages and weaknesses of microsatellite markers 

(Miah et al., 2013). One major limitation of microsatellites is their incapacity for higher-level 

systematic, which is due to their high mutation rate (Oliveira et al., 2006; Selkoe & Toonen, 

2006; Miah et al., 2013). The microsatellite primer sites may not be conserved anymore, due 

to possible point mutation(s) between different classes. Indeed, microsatellites developed for 

a particular species can often be used for closely related species, but the percentage of loci 

that amplifies decreases with increasing genetic distance (Jarne & Lagoda, 1996; Chambers 

& MacAvoy, 2000; Dakin & Avise, 2004; Oliveira et al., 2006; Miah et al., 2013). 

 

Table 1.3 The advantages and disadvantages of microsatellite markers (adapted from 
Miah et al., 2013). 

Benefits Weakness 
-Easy to automate -Not well-examined 
-Genomic abundance high -Sometimes not suitable across species 
-Highly reproducible -Sequence information needed 
-High polymorphism 
-Multiple alleles 
-Moderate genome coverage 
-No radioactive labeling   
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Furthermore, because of the high mutation rate of microsatellites, ‘homoplasy’ is more likely 

to occur. This means that we cannot assume that two alleles identical in state are identical by 

descent, as explained in Figure 1.22 (Estoup et al., 1995; Chambers & MacAvoy, 2000; 

Selkoe & Toonen, 2006; Miah et al., 2013). 

 

 

Figure 1.22 Example of ‘homoplasy’: from a common ancestor (species 1), species 2 and 
3 arose with the difference that species 3 obtained an extra CAG repeat through 
mutation. Species 6 and 7 are descendents of species 3, and species 6 has lost one CAG 
repeat. Therefore, when studying these different species one would assume that species 
6 has a closer common ancestry with species 4 and 5 opposed to species 7, which is not 
the case. Mutation steps are marked with an asterisk. 

 

Another limitation is the occurrence of ‘null alleles’, which is the absence of one or both 

alleles after PCR. This phenomena, which can heavily complicate the interpretation of 

microsatellite allele frequencies, can be caused by: (i) poor primer annealing due to sequence 

divergence in flanking regions, or (ii) preferential amplification of alleles with a particular 

size (Selkoe & Toonen, 2006; Miah et al., 2013). This could lead to PCR failure of a 

particular loci or the differential amplification of only one allele (homozygous), when in 

reality the specimen has two alleles (heterozygous) (Selkoe & Toonen, 2006; Chapuis & 

Estoup, 2007; Miah et al., 2013). 
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1.3.3 Applications 

Microsatellite markers are used in different types of research (Figure 1.23). In forensics, 

microsatellite markers have become the primary marker for DNA testing (estimating of the 

relatedness between individuals or groups and for parentage analysis) due to their high 

specificity (Evett & Weir, 1998; Selkoe & Toonen, 2006). Indeed, the probability of 

matching microsatellite profiles (the alleles of a combination of different microsatellites 

markers) can be very low (probability of a match is less than one in millions). 

 

 

Figure 1.23 List of applications where microsatellites are used (adapted from Miah et 
al., 2013). 

 

In population genetics, microsatellites are used to estimate the genetic diversity, inbreeding 

levels, and the genetic structure of subpopulations and populations (e.g. Selkoe & Toonen, 

2006; Zayed, 2009). Generally, the genetic diversity of a population is determined by the 

calculation of two genetic parameters: the allelic richness (AR) and the expected 

heterozygosity (HE). The allelic richness is the number of alleles corrected for sample size. 

HE is calculated based on the allele frequencies, and range between 0 and 1. It is an 

estimation of the amount of heterozygous specimens you should normally find in your 

population following Hardy-Weinberg’s equilibrium of random mating. Often population 

genetic studies also estimate the observed heterozygosity (HO), which also ranges between 0 

and 1, and is the proportion of homozygous specimens in the population. Both parameters of 
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heterozyosity can be used to estimate the inbreeding coefficient or FIS = (HE-HO)/HE. This 

genetic parameter, which ranges from -1 to 1, indicates if a population is under inbreeding 

(FIS-values significant different from 0 and towards 1) or outbreeding (FIS-values significant 

different from 0 and towards -1). 

 

Furthermore, the demographic history can be assessed by: (i) searching for evidence of 

population bottlenecks, (ii) assess the effective population size, and (iii) investigate the 

magnitude and directionality of gene flow between populations (e.g. Selkoe & Toonen, 2006; 

Zayed, 2009). Population genetic studies also often calculated F-statistics to determine the 

population structuring by calculation of FST (Weir & Cockerham, 1984; Nei, 1987). For 

microsatellites this parameter range from 0 to 1, with zero representing no differentiation and 

a value of FST = 1, means fixation of different alleles between the populations and thus 

population structuring (Meirmans & Hedrick, 2011). Recently, the use and accuracy of FST- 

values were under debate (Jost, 2008; Whitlock, 2011; and as reviewed in Meirmans & 

Hedrick, 2011). Indeed, due to its dependency on within-population diversity, FST-values are 

not always trustworthy. Therefore, a new estimated parameter (Dest) was described based on 

the effective number of alleles (Jost, 2008). Currently, both parameters are estimated and 

used together in population genetic studies (Meirmans & Hedrick, 2011; Cameron et al., 

2011; Lozier et al., 2011, Jha & Kremen, 2013). 

 

For bumblebees, several population genetic studies have been performed on different Bombus 

species. Most studies in Europe were done on B. terrestris (Estoup et al., 1995; Schmid-

Hempel et al., 2007; Wilfert et al., 2007; Whitehorn et al., 2009; Kraus et al., 2009; 2011), 

but also other bumblebee species were genetically studied such as: B. muscorum (Darvill et 

al., 2006; Darvill et al., 2010), B. jonellus (Darvill et al., 2010), B. humilis (Connop et al., 

2010), B. sylvarum (Ellis et al., 2006; Connop et al., 2010), and B. hortorum (Goulson et al., 

2011). In America and Japan the most studied bumblebee species are B. impatiens (Lozier & 

Cameron, 2009; Cameron et al., 2011) and B. ignitus (Shao et al., 2004; Takahashi et al., 

2008), respectively. Although in America also many other Bombus species were studied 

(Lozier & Cameron, 2009, Cameron et al., 2011; Lozier et al., 2011, Jha & kremen, 2013). 

The genetic diversity parameters observed in populations of declining bumblebee species 

were lower than in the populations of more stable bumblebee species (Charman et al., 2010; 

Cameron et al., 2011; Lozier et al., 2011, and reviewed in Goulson et al., 2008). While 
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several studies show population structure for island populations (Darvill et al., 2006; Ellis et 

al., 2006; Goulson et al., 2008; Darvill et al., 2010; Goulson et al., 2011), no population 

structuring was found for continental populations of the more stable and abundant bumblebee 

species such as B. terrestris and B. pascuorum (Widmer et al., 1998; Widmer & Schmid-

Hempel, 1999; Goulson et al., 2008). Although Widmer & Schmid-Hempel (1999) detected 

two isolated gene pools for B. pascuorum separated by the alps. 

 

All studies, with the exception of Lozier & Cameron (2009) used contemporary bumblebee 

specimens. Lozier & Cameron (2009) compared the genetic variation between recent and 

historical populations of the declining and stable bumblebee species, B. pensylvanicus and B. 

impatiens respectively, in America. With the exception of this study, comparison of the 

genetic variation between the historical and current situation is still undiscovered territory, 

certainly for European bumblebee species. 

 

Microsatellite markers are also useful markers for genome mapping. Indeed, the high number 

of available microsatellites in bumblebees (Estoup et al., 1995, Reber-Funk et al., 2006; 

Wilfert et al. 2009; Stolle et al., 2011) allowed for the construction of several linkage maps in 

B. terrestris (Gadau et al., 2001; Wilfert et al., 2006; Stolle et al., 2011). In Hymenoptera, 

like B. terrestris, a genetic linkage map can be easily constructed as the queens meiotic 

recombination rates can be reliably measured from her male offspring (Gadau et al., 2001; 

Wilfert et al., 2006; 2007a,b; Stolle et al., 2011). Furthermore, the construction of a genetic 

linkage map allows quantitative trait loci (QTL) analysis (Slate, 2005). The goal of a QTL 

analysis is to determine the genes responsible for the phenotypic variation of a certain trait, 

by identification of the markers linked with these genes (Slate, 2005; Wilfert et al., 2007a,b). 

In B. terrestris several QTLs for important traits have been discovered, such as: QTLs for 

immune defence, reproduction (Wilfert et al., 2007b), host-parasite interactions and body size 

(Wilfert et al., 2007a). Hence, the publication of the genome of both B. terrestris and B. 

impatiens allow us to go even a step further, and thus not only to identify the QTL region and 

the markers linked to a certain trait but also to identify the genes associated with these linked 

markers (Consortium IBG, 2014). 
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2.1 Introduction 

Just as many other pollinator species, also many bumblebees species are under decline (e.g. 

Klein et al., 2007; Goulson & Osborne, 2010; Potts et al., 2010). The main hypotheses to 

explain these observed declines in bee populations were already told in chapter 1.2.2 

(reviewed in Potts et al., 2010,). As a consequence of this decline, bumblebee populations 

gradually become smaller, generating new genetic threats, such as: (i) a reduced genetic 

diversity which may lead to a more limited evolutionary potential against future changes in 

the environment (Frankham, 2005; Zayed, 2009; Goulson & Osborne, 2010), and (ii) 

inbreeding (mating with relatives) which can lead to the presence of sterile diploid or triploid 

males (Duchateau et al., 1994; Whitehorn et al., 2009), and to inbreeding depression caused 

by the expression of deleterious recessive alleles (Frankham, 2005; Zayed, 2009; see also 

chapter 1.2.3). However, due to purging of deleterious alleles from the population in the 

haploid males, bumblebees are, as haplo-diploid species, not as sensitive to genetic 

pauperization as diploid species (Sorati et al., 1996; Packer & Owen, 2001). So the question 

remains: whether populations of haplo-diploid bumblebees are under danger of extinction 

when severe inbreeding is detected as has been reported before for mammals (or diploid 

species) (i.e. Keller & Waller, 2002), or can bumblebees sustain several years of inbreeding? 

 

In this chapter, we will develop PCR multiplexes of microsatellites DNA markers which we 

then will use to study the impact of genetic parameters, inbreeding and genetic diversity, on 

natural populations of declined bumblebee species. Therefore, we examine the genetic 

diversity of pin-mounted bumblebee specimens sampled from extensive bumblebee 

collections which allows a comparison of more recent populations with those sampled in the 

past. This approach may increase the power to detect recent changes in population structure 

and diversity. Our goals are to examine how genetic diversity and population structure are 

correlated with species extinction and to learn more about bumblebee decline worldwide. 

Here, we used historical populations of the declined species Bombus veteranus 

(Thoracobombus) (Fabricius, 1793) as a case study to study the impact of genetic parameters 

in bumblebee decline. This species is a good example of a declining bumblebee species in 

Belgium. Indeed, B. veteranus, which lives in the plains of Northern Europe and has a highly 

patchy distribution, (Rasmont & Iserbyt, 2010), was one of the most abundant bumblebees in 

Belgium one century ago, but it started to decline in 1950 and to date this species is almost 

vanished (Rasmont & Mersch, 1988; Rasmont et al., 1993). Samples were collected spanning 
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a period of three decades (1895-1923), before the decline occurred, and we analyzed how the 

allelic richness, heterozygosity and inbreeding coefficients responded over this period. These 

findings can increase our understanding of genetic parameters of bumblebee populations 

before their actual decline or extinction. 

 

2.2 Material and methods 

2.2.1 Museum specimens 

Belgian specimens of B. veteranus were selected from the Banque de Données Fauniques de 

Gembloux & Mons (Pauly & Rasmont, 2010). Between 1890-1950, B. veteranus represented 

10% of all bumblebees. This proportion decreased rapidly towards 2% between 1950-1970 

and less than 0.5% after 1970. Multiple bumblebee workers (BV1-BV111; Supplementary 

File S4) present in the museum collection of The Royal Belgian Institute of Natural Sciences 

(RBINS) were chosen for three different time periods before the actual decline in 1950: 1895 

(n = 10), 1915 (n = 47) and 1923 (n = 32). For each of these time periods a maximum 

distribution of this species was created, see Figure 2.1. 

 

 

Figure 2.1 Distribution of the Bombus veteranus specimen collected for each year in the 
microsatellite analysis. 
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Although, our setup was not perfect we created a maximum distribution in Belgium over the 

three time periods with the low amount of available specimens within each year. In this way, 

the specimens were sampled from different but in general comparable environments. 

Furthermore, the specimens are collected between March and September. As bumblebee 

colonies stay in the neighbourhood of their nest, this will not have an effect on the genetic 

diversity measurement of bumblebees sampled in one location. In addition, 10, 20 and 20 

drones were selected out of each respective time period. 

 

2.2.2 DNA extraction and microsatellite protocol 

Bumblebee DNA was extracted from one middle leg of each selected pin-mounted museum 

specimen using sterilized forceps. Before each extraction, the area and equipment were 

treated to remove potential contaminants. The DNA extractions were performed with 5% 

Chelex (InstaGeneTM Matrix, BioRad) using a modification of the Chelex protocol (Walsh 

et al., 1991) adding of 400 μl of InstaGeneTM matrix and 20 μl of proteinase K (20 mg/ml) to 

the sample followed by a first incubation step at 37°C overnight (17 h) and a second 

incubation step at 97°C for 1 h. Amicon Ulta-0.5 Centrifugal Filter Devices (Millipore) were 

used for purification and to concentrate the extracted DNA following the manufacturer’s 

guidelines, as they were essential for obtaining enough good quality DNA out of museum 

samples of more than 90 years old. All extractions and subsequent polymerase chain 

reactions (PCRs) were accompanied by negative controls. Extractions were stored at -20°C. 

 

Workers were then genotyped at 8 microsatellite loci that have a range lower or around 200 

bp to avoid the chance of null alleles (Wandeler et al., 2007) and that gave a reliable signal in 

the museum samples. Microsatellite loci used here were: B11, B126 and B132 (Estoup et al., 

1993) and BT04, BT08, BT10, BT11 (Reber-Funk et al., 2006) originally developed from B. 

terrestris, and BL02 (Reber-Funk et al., 2006) derived from Bombus lucorum. 

 

Microsatellites were amplified by PCR in 15 μl volumes using the Type-it QIAGEN PCR kit. 

Each reaction contained 2 μl template DNA, Type-it Multiplex PCR Master Mix (2x, 

Qiagen), and 0.5 μM of the forward and reverse primers for mix 1 (MP1) and mix 2 (MP2) 

(Table 2.1). The forward primer of each microsatellite loci was 5’-end labeled with 

fluorescent labels for capillary electrophoresis. Samples were initially denatured at 95°C for 5 
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min, followed by 28 cycles of denaturing at 94°C for 30 s, annealing at 49-52°C for 30 s for 

mix 2 and mix 1, respectively, and extension at 72°C for 30 s. The PCR protocol ended with 

a final extension step at 72°C for 30 min. Final PCR products were visualized on a ABI-

3130xl or ABI-3730xl sequencer (Applied Biosystems) using an internal size standard 

(Genescan 500 LIZ, Applied Biosystems). The fragments were then examined and scored 

manually using Peak Scanner Software v 1.0 (Applied Biosystems). To ensure data quality, 

museum specimens were amplified twice at each locus; there was no evidence of 

amplification or scoring errors based on those repeated genotyping. 

 

2.2.3 Data analysis 

Because there is a possibility of sampling multiple sisters from the same colony, which could 

potentially affect estimates of population genetic parameters, we used the program Colony 

1.2 (Wang, 2004) to examine family relationships for each time period, employing 

corrections for genotyping errors (5% per locus). We checked our data also with the program 

Kinalyzer (Ashley et al., 2009) with both the ‘2 allele’ algorithm and the ‘consensus’ method 

to exclude problems using Colony 1.2 on populations with low genetic variability (Ashley et 

al., 2008). All further analyses were made after removal of the identified sisters. 

 

Tests for genotypic linkage disequilibrium and departures from Hardy-Weinberg (HW) 

equilibrium were performed for each population with randomization methods implemented in 

FSTAT 2.9.3 (Goudet, 2001). The program GENALEX 6.3 (Peakall & Smouse, 2006) was 

used for testing genotype frequencies against HW equilibrium expectations. When excess 

homozygosity was found, the program MICROCHECKER 2.2.3 (van Oosterhout et al., 

2004) was used to check for evidence of null alleles and their frequencies at different loci 

were estimated with the program FREENA (Chapuis & Estoup, 2007). 

 

2.2.4 Genetic diversity and inbreeding 

Estimation of the population genetic diversity was performed by calculating the expected and 

observed heterozygosities (HE and HO, respectively), and the allelic richness (AR). The 

program GENALEX 6.3 (Peakall & Smouse, 2006) was also used to calculate HE and HO for 

each microsatellite loci. We estimated HE in each population using Nei’s unbiased expected 

heterozygosity (Nei, 1978) because this statistic is unbiased by sample size and does not 
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appear to be seriously affected by null alleles (Chapuis et al., 2008). The allelic richness (AR) 

corrected for sampling size (El Mousadik & Petit, 1996) and the inbreeding coefficient (FIS) 

were estimated in FSTAT 2.9.3 (Goudet, 2001). We used a paired Student’s t-test in SPSS 

(version 20.0.0.1) to examine whether the mean genetic diversity and allelic richness 

significantly differed between different time periods. As null alleles can reach high levels 

when studying old museum specimens (Wandeler et al., 2007; Strange et al., 2009), the 

inbreeding coefficients were corrected for null allele frequencies based on the individual 

inbreeding model (IIM) using the program INEst (Chybicki & Burczyk, 2009). The estimated 

distribution was used to estimate corrected allele frequencies and inbreeding coefficients 

using 10000 iterations (Chybicki & Burczyk, 2009). 

 

2.2.5 Population structure 

Pairwise differentiation values (FST) among the different time periods were calculated using 

1000 permutations in FSTAT 2.9.3 (Goudet, 2001). Because null alleles may affect F-

statistics (Chapuis & Estoup, 2007) the pairwise FST-values were re-calculated after applying 

the ENA correction for null alleles as implemented in FREENA. We also estimated Jost’s D 

(Dest; Jost, 2008). This recently developed statistic provides a true measure of differentiation 

for highly variable markers, such as microsatellites, using the software SMOGD v2.6 

(Crawford, 2010). 

 

2.2.6 Bottleneck presence 

Evidence of recent genetic bottlenecks in the temporal samples was tested using Garza & 

Williamson (M) statistic (Garza & Williamson, 2001). The program assumes that a reduction 

in population size has a stronger effect on the number of alleles (k) than the range of allele 

sizes (rs). This leads to a smaller M-ratio (= k/rs) in size-reduced populations compared to 

equilibrium populations (Garza & Williamson, 2001). In order to evaluate the likelihood of a 

bottleneck occurrence (95% criterion), the M-ratios calculated and averaged across loci were 

compared with the distribution of simulated MC-ratios of a population in equilibrium. The 

MC-ratios were simulated based on parameters describing the evolution of the analyzed 

microsatellite loci (μ: the mutation rate/locus/generation, Δg: the mean size of larger 

mutations and ps: fraction of mutations larger than a single step) and the effective population 

size of pre-bottlenecked populations (Ne). Each sample estimate of M-ratio (M critical or MC) 
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was thus tested under different evolutionary scenarios as suggested by Guinand & Scribner 

(2003). 

 

2.2.7 Simulation of gene diversity over time 

We observed no significant decrease of the genetic diversity in B. veteranus. So, we made 

simulations of how the genetic variation would be affected by a change (decline) in 

population size. And this in an equivalent data set and time periods like we found in our 

studied B. veteranus populations. 

 

Therefore, we created models of populations that have sample sizes equivalent to our B. 

veteranus samples. For those created populations we constructed a simple model of decline in 

population size of 28 generations starting from a stable population. We used the program 

BayeSSC, a modification of the simulation program Serial SimCoal (Excoffier et al., 2000; 

Anderson et al., 2005), for coalescent simulations of data collected at multiple time points. 

We used the same parameters as described in Lozier & Cameron (2009) except that we let the 

growth factor range from 0% to 5% over 28 generations and the ancestral effective 

population sizes (NAe) from 15000 to 100. Indeed, we changed the negative growth factor (as 

for a decline) range from 0%, 1%, 2% and 5% over 28 generations and the ancestral effective 

population sizes (NAe) from 15000, 10000, 5000, 1000, 500 to 100. Other parameters we used 

were: a mutations probability for microsatellite loci of 5 × 10–4 per generation (average 

mutation rate, Selkoe & Toonen, 2006) according to a stepwise mutation model and a limit of 

40 allele states per locus. We performed 7000 simulations for each population size 

combination or 1000 simulations for each microsatellite loci. To evaluate the loss of genetic 

diversity between the different time points we averaged the HE estimates across loci and 

determined the drop in HE. 

 

2.3 Results 

2.3.1 Microsatellite data 

Of the eight microsatellite loci screened, seven (B11, B126, B132, BT04, BT10, BT11 and 

BL02) amplified strongly and were consistent across replicates. The locus BT08 could not be 

scored in a reliable manner and was therefore excluded from further analyses (Table 2.1). 
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Table 2.1 Overview of the selected microsatellite loci for the two multiplexes, their 
range, number of alleles and fluorescent dyes used. Label = fluorescent dye; N = 
number of alleles. 

Locus Label Multiplex Range NA 
BL02 NED MP1 148-158 5 
BT04 NED MP1 154-180 10 
BT08 PET MP1 160-210* 3* 
BT10 VIC MP1 112-140 13 
BT11 6-FAM MP1 92-118 14 
B11 NED MP2 124-136 6 
B126 PET MP2 146-176 13 
B132 VIC MP2 144-158 6 

* = not completed because of scoring difficulties.
 

 

Analysis with Colony 1.2, and controlled with Kinalyzer, revealed that most of the 

populations contained some full-sib pairs. For populations with identified sisters, we 

randomly selected one individual for further analysis. Of the originally selected numbers of 

bumblebees: 1895 (n = 10), 1915 (n = 47) and 1923 (n = 32), we used in all further analyses 

only the numbers after removal of the identified sisters: 1895 (n = 6), 1915 (n = 34) and 1923 

(n = 18). Furthermore, we based all our analyses and conclusions on the time periods 1915 

and 1923 as the numbers of specimens in the time period 1895 became too low. However, we 

still find the information obtained for the time period 1895 indicative. 

 

Six of the seven loci displayed heterozygote deficits under the Hardy-Weinberg equilibrium 

that could be indicative for inbreeding or the presence of null alleles. However, 

MICROCHECKER 2.2.3 revealed only low null allele frequencies for those loci over the 

different time periods (<10%). A significant linkage disequilibrium (P < 0.05) was found 

between 3 pairs of loci: BL02-BT10, BL02-B11 and B11-B132, when testing each locus pair 

across populations. The exclusion of locus BL02 and/or B11 had no major effect on the 

results. 

 

2.3.2 Changes in genetic diversity 

The allelic richness (AR) and expected heterozygosity (HE) varied widely among loci, 

although differences between time periods were less pronounced (Table 2.2). The mean HE 

was 0.607 ± 0.164 (mean ± SD) in 1895, 0.577 ± 0.310 in 1915, and 0.578 ± 0.313 in 1923, 
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with the difference being not significant for 1915-1923 (paired t-test, t = -0.034, d.f. = 6, P = 

0.98). The allelic richness estimate showed a slight increase from 3.47 ± 0.91 in 1895 over 

3.68 ± 1.66 in 1915 to 3.71 ± 1.71 in 1923, although this difference was not significant for 

1915-1923 (paired t-test, t = -0.119, d.f. = 6, P = 0.91). 

 

Table 2.2 After removal of identified sisters, the number of workers (n), the number of 
alleles (NA), allelic richness (AR), observed heterozygosity (HO), expected heterozygosity 
(HE), inbreeding coefficient (FIS) and the for null alleles corrected inbreeding coefficient 
(FIS IIM; Cybicki & Burczyk, 2009) for all microsatellite loci over the populations for 
each time period, with mean values and SD. 

Population BT11 BL02 BT10 BT04 B11 B132 B126 Mean SD 
1895 (n=6) 

NA 4.0 2.0 6.0 3.0 4.0 4.0 4.0 3.9 ±1.2 
AR 4.00 1.91 4.89 3.00 3.58 3.33 3.58 3.47 ±0.91 
HO 0.000 0.000 0.833 0.250 0.600 0.500 0.600 0.398 ±0.322 
HE 0.750 0.278 0.778 0.656 0.580 0.625 0.580 0.607 ±0.164 
FIS 1.000 1.000 -0.071 0.619 -0.034 0.200 -0.034 0.383 ±0.484 

FIS IIM 0.530 0.464 0.095 0.266 0.132 0.178 0.153 0.260* ±0.171 
1915 (n=34) 

NA 10.0 3.0 11.0 7.0 5.0 4.0 10.0 7.1 ±3.2 
AR 5.60 1.77 5.18 4.19 2.57 1.64 4.79 3.68 ±1.66 
HO 0.545 0.000 0.706 0.421 0.379 0.042 0.654 0.392 ±0.279 
HE 0.872 0.213 0.841 0.745 0.406 0.157 0.804 0.577 ±0.301 
FIS 0.374 1.000 0.161 0.435 0.066 0.765 0.187 0.423* ±0.338 

FIS IIM 0.194 0.718 0.068 0.245 0.087 0.256 0.117 0.241* ±0.223 
1923 (n=18) 

NA 9.0 3.0 7.0 8.0 5.0 2.0 7.0 5.9 ±2.6 
AR 5.00 1.62 4.84 5.87 2.80 1.61 4.24 3.71 ±1.71 
HO 0.231 0.056 0.529 0.500 0.529 0.000 0.692 0.362 ±0.267 
HE 0.820 0.156 0.824 0.859 0.471 0.165 0.749 0.578 ±0.313 
FIS 0.718 0.644 0.357 0.418 -0.125 1.000 0.075 0.441* ±0.386 

FIS IIM 0.445 0.342 0.195 0.228 0.061 0.647 0.071 0.284* ±0.211 
* = Inbreeding coefficient significantly different from 0 (P < 0.05). 

 

2.3.3 Population structure 

Comparison of the different time periods revealed no significant genetic differentiation (FST) 

between the years (Table 2.3). In agreement, the genetic differentiation grouped over all 

different time periods was also small and not significantly different from zero (FST = 0.039, 

Confidence Interval (CI): -0.008-0.090, one sample t-test against 0, t = 0.861, d.f. = 6, P = 
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0.42). Correction for the occurrence of null alleles, i.e. the ENA correction, had no effect on 

the genetic differentiation and was not significantly different from zero (FST = 0.024, CI: -

0.058-0.071, one sample t-test against 0, t = 0.739, d.f. = 6, P = 0.48). Calculation of Jost D, 

another statistic to measure differentiation, among the different time periods was 0.034 and 

this was not significantly different from zero (CI: -0.047-0.113, one sample t-test against 0, t 

= 1.768, d.f. = 6, P = 0.13). 

 

Table 2.3 Pairwise FST for the different time periods (with ENA correction) under the 
diagonal and the harmonic mean of Dest across loci above the diagonal. 

FST/ Dest 1895 1915 1923 
1895 - 0.039 0.045 
1915 0.055 - 0.005 
1923 0.037 -0.003 - 

 

2.3.4 Inbreeding and presence of diploid males 

We detected high inbreeding coefficients (FIS) across all loci (0.415 ± 0.387, mean ± SD) 

(Table 2.2). Both the year 1915 and 1923 were significantly different from zero (one sample 

t-test against 0, d.f. = 6, t = 3.31, P = 0.028 and t = 3.03, P = 0.038, respectively). The 

inbreeding corrected for null alleles based on IIM (FIS IIM) across all loci was much lower: 

0.262 ± 0.194 (Table 2.2), but was still significantly different from zero for each time period 

(one sample t-test against 0, d.f. = 6, t = 5.75, P = 0.001 for 1915; t = 4.86, P = 0.003 for 

1923; and t = 5.81, P = 0.001 for 1895) (Table 2.2). Significant inbreeding was supported by 

the occurrence of diploid males in each time period: one in 1895 (n = 10) and three in both 

the years 1915 (n = 20) and 1923 (n = 20). 

 

2.3.5 Test for bottleneck presence 

The calculated M-ratios averaged across loci, were 0.650 in 1895, 0.673 in 1915 and 0.662 in 

1923. Based on the generally accepted critical M-ratio of MC ≤ 0.680 as described by Garza 

& Williamson (2001), the population of all three time periods showed evidence of a 

bottleneck. When comparing the calculated M-ratios averaged across loci with the here 

simulated MC-ratios, which ranged from 0.639 to 0.831, each population showed also signs of 

having passed through a bottleneck except for combinations using extreme parameter values. 
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The parameter settings of the calculation were Δg=3.5, μ=0.20 and ps=5 and 10, and the 

resulting MC-ratios were 0.639 and 0.643, respectively. It should be noticed that for small 

data sizes, as is here the case for the year 1895, the interpretation of the results can be 

problematic because of stochastic effects (Garza & Williamson, 2001), however, the 

generated data are valid for the other time periods. 

 

2.3.6 Simulation of HE evolution in declining populations 

The simulations for different ancestral effective population sizes (NAe=100 to 15000) over 28 

generations resulted in marginal losses of HE of around or less than 0.05 even when starting 

with a strong negative growth factor of 5%. 

 

2.4 Discussion 

In this chapter, we used a set of eight microsatellites to genotype museum specimens of B. 

veteranus. Then, we analyzed how genetic parameters of bumblebee populations (i.e. allelic 

richness, observed and expected heterozygosities, genetic differentiation and inbreeding) 

evolved over a period of three decades (1895-1923). In all the time periods, we detected low 

heterozygosities and positive inbreeding coefficients (the FIS-values ranged from 0.383 to 

0.441) which can be caused by several factors such as the presence of null alleles, population 

subdivision and inbreeding (Callen et al., 1993). For null alleles, the program 

MICROCHECKER 2.2.3 confirmed the presence of null alleles in our data, but the 

frequencies were low in all loci. After we corrected for null alleles based on the individual 

inbreeding model IIM, the inbreeding coefficients stayed high (FIS IIM ranging from 0.241 to 

0.284) which is indicating that the high inbreeding coefficients cannot be explained by the 

occurrences of null alleles. Similarly, population subdivision can be excluded as a factor here 

for our data since the genetic differentiation observed in B. veteranus (FST = 0.024) was 

small. In continuation of our analysis, it seemed to be more likely that the significant positive 

inbreeding coefficients have been influenced by high levels of inbreeding. Indeed the 

presence of inbreeding was confirmed by the occurrence of sterile diploid males in the three 

time periods. Our data demonstrated that the population of B. veteranus in Belgium showed 

inbreeding between 1915-1923, with the indication that this phenomenon was already present 

since 1895. Thus inbreeding was already present 25-30 years before the actual decline of B. 
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veteranus that started in Belgium around 1950 (Rasmont & Mersch, 1988; Rasmont et al., 

1993). As a consequence, we believe that the data obtained here suggests that the observed 

inbreeding did not directly result in the collapse of B. veteranus. 

 

As reported by Goulson et al. (2008), it is expected that populations of declining species 

become rare and isolated. As a consequence, populations of declining species exhibit a loss of 

genetic diversity (drop in heterozygosity and allelic richness) and gene flow over time, while 

for stable populations such changes are less likely to occur (Goulson et al., 2008). In this 

context we ran a simulation over 28 generations with B. veteranus. However, these 

simulations demonstrated that in most of the cases a reduction in population size (simulating 

bumblebee decline) resulted in a marginal loss of HE of around or less than 0.05. 

Interestingly, our simulation data agree with those of Lozier and Cameron (2009) as these 

authors could also not detect a major drop in HE in a simulation over 38 generations in the 

declining bumblebee species B. pensylvanicus. So both simulations do not show a major drop 

in HE over time. In their review, Goulson et al. (2008) presented the hypothesis that the 

genetic diversity (AR and HE) in current declined species is reduced as compared to other 

common Bombus species. But without actually knowing the ancestral HE, it is difficult to 

conclude if a drop of HE really occurred. Indeed our data are strong indicatives that B. 

veteranus already had a low HE before its decline. This agrees with a low HE in the old 

specimens of B. pensylvanicus that is a declined bumblebee species in the USA (Lozier & 

Cameron, 2009). 

 

As reported by Rasmont & Mersch (1988), Rasmont et al. (1993) and Goulson et al. (2008), 

general drivers like the reduction in floral resources by agricultural intensification acted 

around 1950 for bumblebee decline. With the data obtained in this chapter, we can postulate 

the hypothesis that bumblebees with a low genetic diversity were then the first to decline. 

Hence, they were less prepared to face these troubled times or less adapted to this new 

environment. Furthermore, the low HE we found in all populations could also be explained by 

the fact that B. veteranus was a source-sink population in Belgium, as this species is well 

known for its sudden appearance in different parts in Europe (Söderman, 1999; Rasmont & 

Iserbyt, 2010). Indeed, in agreement with the low genetic diversity, each time period 

demonstrated signs of the occurrence of a genetic bottleneck. Here, the presence of a 

bottleneck is based on the M-values; however we notice here that some M-values should be 
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interpreted with some caution since they can be sensitive to outliers in small data sets. 

 

In addition to those general drivers affecting the bumblebee populations, Voveikov (1953) 

described that B. veteranus is often inquilines of other Thoracobombus species such as B. 

sylvarum, B. muscuorum, B. humilis and B. ruderarius. This phenomenon of B. veteranus 

being dependent on the nesting behavior of other species, could have made this species even 

more vulnerable toward extinction. Our data showed that B. veteranus remained abundantly 

present in Belgium until the fifties and this in spite of the high inbreeding coefficients and the 

low genetic diversity presented in the population. This is unexpected in the case that 

inbreeding would have had major effects on the species success. Nonetheless, no inbreeding 

depression was detected here. These results are similar to those of B. terrestris in Tasmania 

(Schmid-Hempel et al., 2007). The latter study demonstrated that, despite a drastic genetic 

bottleneck, B. terrestris could successfully invade and colonize Tasmania. Therefore, we 

believe that this population was robust against the possible effects of a low genetic diversity 

and/or associated inbreeding. But it has also to be noted that in Tasmania there was a very 

favorable environment with no direct inter-species competition and no pathogens. However, 

negative effects of inbreeding have been reported, like the production of diploid males. In the 

case this happens, the queens which mate with diploid males are unable to initiate a colony 

and also diploid males do not work for the colony which will also have a negative effect on 

the population growth rate (Cook & Crozier, 1995; Gerloff & Schmid-Hempel, 2005; 

Whitehorn et al., 2009). Furthermore, our result of detecting inbreeding without further 

inbreeding depression could be explained by the hypothesis that the haplo-diploid sex 

determination system of Hymenoptera is leading to a strong effect of purging selection 

against recessive deleterious alleles in the haploid males (Sorati et al., 1996; Packer & Owen, 

2001). 

 

In conclusion, our data with B. veteranus demonstrated inbreeding over a period of 1895 to 

1923 while the population remained stable, implying that inbreeding does not directly trigger 

the actual decline and/or extinction of bumblebees. However, inbreeding might still play an 

indirect role in the decline of bumblebee populations because of the appearance of diploid 

males and because a low HE might reduce the capacity of the bumblebee population to react 

on environmental changes. 

 



 

 



 

 

 

 

 

3 Chapter III: Historical low genetic diversity in 
declining Bombus species: a case-study with 11 

species in the Netherlands 
 

 

 

 

 

 

Historical low genetic diversity in 
declining Bombus species: a case-study 

with 11 species in the Netherlands 
 

 

 

Redrafted after: 

Maebe, K., Meeus, I., Ganne, M., De Meulenmeester, T., Biesmeijer, K., 

Smagghe, G. (2015) Microsatellite analysis of museum specimens reveals 

historical differences in genetic diversity between declining versus stable Bombus 

species. PLoS ONE. Submitted, under review. 



 

64 
 

 
CHAPTER III 

 
  

3.1 Introduction 

All over the world different pollinator species are undergoing major declines (e.g. Potts et al., 

2010). Generalist foragers like many bumblebees, that are essential pollinators in natural and 

managed ecosystems, are no exception to this general phenomenon (Williams & Osborne, 

2009; Cameron et al., 2011; Carvalheiro et al., 2013). Different hypotheses aim to explain the 

observed declines in bee populations, as explained in chapter 1.2.2. 

 

Genetic processes can also play a role in this observed decline (chapter 1.2.3). For example, 

there are two mechanisms through which low genetic diversity might contribute to declines. 

Firstly, low genetic diversity might threaten populations by limiting their ability to adapt to 

future environmental changes (Spielman et al., 2004; Frankham, 2005; Goulson & Osborne, 

2010). For instant, low diversity may predispose populations to disease epidemics (Cameron 

et al., 2011; Whitehorn et al., 2011). Secondly, low diversity may result in inbreeding, 

thereby reducing individual fitness and threatening population extinction (Reed & Frankham, 

2003; Spielman et al., 2004; Frankham, 2005; Zayed, 2009). Based on contemporary 

specimens, several studies have shown that populations of declining bumblebee species have 

lower levels of genetic diversity compared to stable species (Darvill et al., 2006; Ellis et al., 

2006; Goulson et al., 2008; Charman et al., 2010; Cameron et al., 2011). This reduction in 

genetic diversity is thought to be caused by population decline or recent bottlenecks (e.g. 

Goulson et al., 2008; Charman et al., 2010). However, as discussed by Lozier et al., (2011), 

without information on the historic situation, the question remains: is this low diversity 

actually the result of recent declines, or is it due to historical, e.g. pre-decline, differences in 

genetic variation among species? 

 

In this chapter, we compared the genetic diversity of declining and more stable bumblebee 

species before their major recent decline. We used microsatellites to genotype a set of pin-

mounted museum specimens of 4 more stable bumblebee species: Bombus pascuorum, B. 

hortorum, B. pratorum and B. lapidarius, and 7 declining species: B. muscorum, B. 

veteranus, B. ruderarius, B. sylvarum, B. humilis, B. ruderatus and B. subterraneus (Peeters 

& Reemer, 2003). Samples were all collected in the Netherlands (1918-1926) before the 

recent declines started (between 1950-1980) (Rasmont & Mersch, 1988; Rasmont et al., 

1993; Biesmeijer et al., 2006; Carvalheiro et al., 2013). Furthermore, we compared our 

results with currently available data (time period: 1975-2010) on genetic diversity in 
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bumblebees (Ellis et al., 2006; Schmid-Hempel et al., 2007; Kraus et al., 2009; 2011; Darvill 

et al., 2010; Connop et al., 2010; Goulson et al., 2011; see also chapter 2) to obtain further 

insights whether the genetic diversity is similar in historical and current populations of 

declining and stable species. Together, these findings contribute to our understanding of the 

role of genetic parameters of bumblebee populations in population shifts and can provide 

valuable information for future conservation strategies. 

 

3.2 Material and methods 

3.2.1 Museum specimens and their distribution 

Museum specimens of 11 bumblebee species were selected from the Hymenoptera collection 

of the Naturalis Biodiversity Center in Leiden taking into consideration their distribution in 

the Netherlands (Figure 3.1). 

 

We divided the selected species in groups based on their presence and status on the red list of 

the Netherlands (Peeters & Reemer, 2003) (Supplementary File S5). Bumblebee species 

grouped as ‘declining’ have been given a red list status of ‘vulnerable’, ‘endangered’, 

‘critically endangered’ or ‘disappeared’, while species grouped as ‘stable’ did not have a 

special red list status although these species also had range reductions. This first division of 

the species according to their red list status corresponds to the decline in their distribution (= 

trend, Table S1). Here, species distribution is calculated as the relative areal size (i.e. the 

amount of hour blocks a species has been found / the total amount of hour blocks checked) x 

100%, with a hour block representing a 5 x 5 km square area. The decline in distribution is 

calculated as: (the relative areal size of after 1970 - relative areal size before 1970) / relative 

areal size before 1970) x 100% (Peeters & Reemer, 2003). The species assigned to the 

‘declining’ group showed a decline in distribution of 65% or more between 1970 and 2003, 

while for the ‘stable’ species the decline in distribution was less than 40% ((Peeters & 

Reemer, 2003), see Supplementary File S5). Furthermore, we divided the group of declining 

species in two based on their distribution before 1970: species with a distribution lower than 

10% were considered as restricted (with mean (SD): 6.1% (2.8%)) while declining species 

with a distribution between 15-25% were considered as widespread (19.1% (2.4%); T-test, t = 

-6.465, d.f. = 5, P < 0.001). The group of declining and widespread species was not 
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significantly different in range from the group of widespread but stable species (23.2% 

(2.8%); T-test, t = 1.937, d.f. = 4, P = 0.125; Peeters & Reemer, 2003). 

 

 

Figure 3.1 Distribution of the specimens of the declining and more stable Bombus spp. 
Specimens collected in The Netherlands between the years 1918-1926 before the recent 
bumblebee declines started (1950-1980), with a picture of each Bombus spp. used in the 
analysis. Species pictures from Rasmont & Iserbyt (2010). The letters refer to each 
sampling location: A = N-Holland, B = Z-Holland, C = Overrijssel, D = Gelderland and 
E = Limburg. Symbol size refers to the number of species sampled at that location, 
while the numbers refer to which species: 1 = B. hortorum, 2 = B. lapidarius, 3 = B. 
pratorum, 4 = B. pascuorum, 5 = B. humilis, 6 = B. ruderatus, 7 = B. subterraneus, 8 = B. 
sylvarum, 9 = B. muscorum, 10 =  B. ruderarius, and 11 = B. veteranus. 
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Based on these criteria, we identified 4 stable and widespread bumblebee species: B. 

pascuorum; B. hortorum, B. pratorum and B. lapidarius, 3 declining but widespread species: 

B. muscorum, B. veteranus and B. ruderarius, and 4 declining but restricted species: B. 

sylvarum, B. humilis, B. ruderatus and B. subterraneus. Populations were collected in the 

period 1918-1926 and in 5 Dutch provinces: North-Holland, South-Holland, Gelderland, 

Overijssel and Limburg (Figure 3.1). Samples from a province were from one locality or 

different localities close together (within a 5 x 5 km frame). Before analyzing all Bombus 

species, we estimated the genetic diversity of one stable species: B. pascuorum. As this 

species was and still is abundantly present in the Netherlands, we suspected the genetic 

diversity to be fairly stable in space and time. If we detect low genetic diversity in the past for 

B. pascuorum, this could suggest artefacts associated with the genotyping of museum 

specimens, such as the presence of null-alleles. For this species, we selected additional 

specimens from two more recent time periods, 1949-1955 and 1975-1990 and from one 

additional province: Drenthe. For all populations, 7 to 10 bumblebee workers were chosen 

and genotyped. 

 

3.2.2 DNA extraction and microsatellite protocol 

Bumblebee DNA was extracted from one middle leg of each selected museum specimen with 

the same method as described in chapter 2. Workers were genotyped at 10 microsatellite loci 

that have a size range lower or around 200 bp to avoid the chance of null alleles (Wandeler et 

al., 2007): B11, B100, B121, B126 and B132 (Estoup et al., 1993) and BT04, BT08, BT10, 

BT11 (Reber-Funk, 2006) originally developed from B. terrestris, and BL02 (Reber-Funk, 

2006) derived from B. lucorum. Microsatellites were then amplified by PCR and visualized 

with capillary electrophoreses as described in chapter 2. Genotype replications of random 

individuals (n = 48 or 16%) were conducted of which only 4 specimens showed an error at 1 

of the 10 loci. We have thus a correct repetition of a single microsatellite locus of 99.2%. 

 

3.2.3 Data analysis 

Not all genotyped individuals of a population were included in the analysis due to several 

extra validation steps. First, specimens which could not be scored in a reliable manner for a 

minimum of 5 microsatellite loci, were excluded. Second, we used the program Colony 2.0 

(Wang, 2004) employing corrections for genotyping errors (5% per locus) to search for the 
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presence of multiple sisters from the same colony. To exclude problems using Colony 2.0 on 

populations with low genetic variability (Ashley et al., 2008), we checked our data also with 

the program Kinalyzer (Ashley et al., 2009) with both the ‘2 allele’ algorithm and the 

‘consensus’ method. 

 

As the microsatellites used here were developed from B. terrestris and B. lucorum, we 

needed to validate if they could be used in a reliable manner in the different Bombus spp. We 

tested for genotypic linkage disequilibrium with FSTAT 2.9.3 (Goudet, 2001) and for 

genotype frequencies against HW equilibrium expectations with GENALEX 6.3 (Peakall & 

Smouse, 2006). When excess homozygosity was found, the program MICROCHECKER 

2.2.3 (Van Oosterhout et al., 2004) was used to check for evidence of null alleles. We 

randomly selected one individual per sibship for further analysis. 

 

3.2.4 Genetic diversity 

We estimated genetic diversity in each population using the allelic richness (AR) and Nei’s 

unbiased expected heterozygosity (HE; Nei, 1978). The latter statistic is not biased by sample 

size and appears not to be affected by null alleles (Chapuis et al., 2008). The program HP-

RARE (Kalinowski, 2005), with hierarchical rarefaction to correct for sampling size, and 

GENALEX 6.3 (Peakall & Smouse, 2006) were used to estimate AR and calculate HE for each 

microsatellite locus, respectively. As some of our groups did not pass the Levene test, we 

used only nonparametric tests (e.g. Independent samples Mann-Whitney U test) in SPSS 

(version 21.0.0.0) to examine if the genetic diversity differed significantly between the 

widespread stable versus the restricted and widespread declining species and an ANOVA 

with Repeated Measures Factors was used to examine the genetic diversity between 

populations of B. pascuorum. 

 

We conducted a sensitivity analysis of the calculated mean expected heterozygosity (HE) for 

each population of the different Bombus spp. in the time period 1918-1926 based on more 

stringent exclusion policies for missing data. We started this analysis from a maximum of 

50% missing values (or 5 loci) within one specimen towards a more stringent exclusion step 

of only 10% (or one locus) missing data. 
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3.2.5 Population structure and inbreeding 

Genetic differentiation values (FST) between the B. pascuorum populations within years and 

within a location between years were calculated using 1000 permutations in FSTAT 2.9.3 

(Goudet, 2001) and re-calculated after applying the ENA correction for null alleles as 

implemented in FREENA (Chapuis & Estoup, 2007). We also estimated the true measure of 

differentiation, Dest (Jost, 2008), using the software SMOGD v2.6 (Crawford, 2010). 

 

Inbreeding coefficient (FIS) were estimated in FSTAT 2.9.3 (Goudet, 2001). The inbreeding 

coefficients were also corrected for null allele frequencies based on the individual inbreeding 

model (IIM) using the program INEst (Chybicki & Burczyk, 2009). The estimated 

distribution was used to estimate corrected allele frequencies and inbreeding coefficients 

using 10000 iterations (Chybicki & Burczyk, 2009). 

 

3.3 Results 

3.3.1 Data analysis 

Genotype replications of random individuals showed only 4 specimens with an error at 1 of 

the 10 loci. Thus, we have a correct repetition of a single microsatellite locus of 99.2%. 

 

Almost all microsatellite loci amplified strongly in each Bombus species and were consistent 

across replicates (Supplementary File S6). Analysis with Colony 2.0, controlled with 

Kinalyzer, revealed that most populations contained some full-sib pairs (Supplementary File 

S6). We randomly selected one individual per sibship for further analysis. Of the 302 

specimens (116 of 7 declining bumblebee species and 186 of the more stable species), 234 

specimens were kept for further analyses after removal of sisters (86 specimens of 7 declining 

species and 148 specimens of the stable species; Supplementary File S6). 

 

No significant linkage disequilibrium was found between the pairs of loci, when testing each 

locus pair across populations. All loci displayed heterozygote deficits under the Hardy-

Weinberg equilibrium which is indicative for the presence of null alleles. However, 

MICROCHECKER 2.2.3 revealed low null allele frequencies for those loci. 
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3.3.2  Genetic diversity, inbreeding and differentiation of B. pascuorum 

The genetic diversity of the B. pascuorum populations was stable over the different locations 

(ANOVA with Repeated Measures Factors; AR, F = 1.032, df = 4, p = 0.408; HE, F = 1.262, 

df = 4, p = 0.308) and the three time periods (ANOVA with Repeated Measures Factors, AR, 

F = 0.0116, df = 1, p = 0.743; and HE,  F = 0.276, df = 1, p = 0.615; Figure 3.2). Thus, the 

genetic diversity of B. pascuorum populations in the Netherlands can be regarded as stable 

across locations and time periods, and the microsatellite analysis of old specimens is reliable. 

 

 

Figure 3.2 Genetic diversity of the Bombus pascuorum populations. The mean allelic 
richness (AR) and expected heterozygosity (HE) averaged across loci (and S.E.) between 
the B. pascuorum populations over the different locations and the three time periods. 
 

Comparison of the B. pascuorum populations within and between the different time periods 

revealed only in a few cases significant genetic differentiation (FST) (Supplementary File S9). 

Correction for the occurrence of null alleles, i.e. the ENA correction, had no effect on the 

genetic differentiation. Furthermore, the calculation of Dest, another statistic to measure 

differentiation, within each time period was low: 0.057 for 1918-1926, 0.060 in 1949-1955, 

and 0.013 in 1975-1990, and not significantly different from zero (one sample T-test against 

0, t = 2.202, p = 0.064; t = 1.742, p = 0.125; and t = 1.204, p = 0.268; respectively). So, B. 

pascuorum populations showed no or only marginal genetic differentiation. 

 

Within each population of B. pascuorum, we detected low inbreeding coefficients (FIS) across 

all loci (0.100 ± 0.232, mean ± SD). Both FIS and the inbreeding corrected for null alleles (FIS 

IIM) were not significantly different from zero for each population (one sample t-test against 

0, d.f. = 7, P > 0.05). 
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3.3.3 Genetic diversity in declining versus stable species 

For each population of the declining and more stable species, we estimated the genetic 

diversity Table 3.1). Next, we assessed whether declining Bombus species (B) had a lower 

genetic diversity than stable species (A) before their recent decline (Figure 3.3). The allelic 

richness (AR) and expected heterozygosity (HE) of the declining species: 3.281 (SE = 0.199) 

and 0.476 (SE = 0.038), were significantly lower than that of the stable bumblebee species 

with 4.696 (SE = 0.293) and 0.672 (SE = 0.032) (AR and HE, respectively) (Mann-Whitney U 

test, Z = -2.646, p = 0.008; and Z = -2.268, p = 0.023; Table 3.1). Although two declining 

species (B. ruderatus and B. subterraneus) had a comparable mean HE as some of the stable 

species (Figure 3.3). 

 

Table 3.1 Historical genetic diversity within all Bombus species. Here, we describe the 
mean values (and SE) of the allelic richness, and the expected heterozygosity for each 
Bombus spp. over all the microsatellite loci and populations within the time period 
1918-1926. With n: the number of samples used for this analysis after removal of the 
identified sisters. 
        AR

x HE
y 

Group Abundance Species n Mean SE Mean SE 
Stable 
(A) 

Widespread B. hortorum 22 5.362  0.746  
  B. lapidarius 12 4.302 0.632 
  B. pratorum 8 4.114 0.604 
   B. pascuorum 33 5.006 0.704 
    Total 75 4.696a 0.293 0.672a 0.032 
Declining 
(B) 

Restricted B. humilis 16 2.717  0.396  
  B. ruderatus 12 3.808 0.606 
  B. subterraneus 7 4.111 0.625 
  B. sylvarum 11 2.947 0.455 
  Subtotal 46 3.396b 0.335 0.521ab 0.056 
 Widespread B. muscorum 15 3.486 0.452 
  B. ruderarius 18 2.957 0.413 
  B. veteranus 7 2.942 0.382 
   Subtotal 40 3.128b 0.416 0.416b 0.020 
    Total (declining) 86 3.281b 0.476 0.476b 0.038 

x = allelic richness 
y = expected heterozygosity 
abc = significance level, P < 0.05 
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The lower genetic diversity within the declining species as reported here could be the result 

of the smaller distribution range of some species in the declining group (B). This was not the 

case. Indeed, when we divided the group of declining species (B) in restricted and widespread 

species following Peeters & Reemer (2003), the result remained the same. The genetic 

diversity of the widespread & declining group was significantly lower than that of the stable 

species (AR, Z = -2.121, p = 0.034; and HE, Z = -2.121, p = 0.034) and the restricted & 

declining group was also significantly lower than that of the stable species for AR (Z = -2.309, 

p = 0.021) and showed the same but not significant trend for HE (Z = -1.732, p = 0.083, 

Figure 3.3). Both groups of declining species were not different from each other (AR, Z = -

0.354, p = 0.857 and HE, Z = -1.414, p = 0.229; Table 3.1 and Figure 3.3). This indicates that 

historically declining species already had a lower genetic diversity than bumblebee species 

with stable populations. 

 

 

Figure 3.3 Historical genetic diversity of declining versus stable bumblebee species. 
Comparison of the mean allelic richness (AR) and expected heterozygosity (HE) 
averaged across loci between the populations of the declining and more stable Bombus 
species within the time period 1918-1926. With indication of the significance level, * = P 
< 0.05. 

 

The sensitivity analysis of the calculated mean heterozygosity showed that HE was stable 

over the different exclusion steps (Supplementary File S7). Furthermore, the differences of 

HE between stable and declining species remained. A few populations had non-amplifications 

for a certain microsatellite loci for all their individuals, which could have a possible impact 

on our estimate of genetic diversity. After removal of three species (B. subterraneus, B. 

ruderatus and B. lapidarius) and some populations which had non-amplifications for a 
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certain microsatellite loci we re-analyzed the genetic diversity with the same 8 microsatellites 

(B11, B121, B126, B132, BT04, BT08, BT10, and BT11). This analysis showed no major 

impact of these non-amplifications on our dataset (Supplementary File S8). 

 

3.4 Discussion 

3.4.1 Genetic diversity in declining versus stable species 

Our results showed that historical populations of declining bumblebee species had a 

significantly lower genetic diversity than found within the historical populations of co-

distributed more stable species (Figure 3.3). This result is relevant for the interpretation of 

other studies which solely used recent specimens to assess genetic diversity (Darvill et al., 

2006; Ellis et al., 2006; Goulson et al., 2008; Charman et al., 2010; Lozier et al., 2011). 

Indeed, when we compared the genetic diversity of declining versus stable bumblebee species 

based on historical and recent data from the study performed in this chapter and the literature 

(Supplementary File S10), we observed the same trend in genetic diversity (Figure 3.4). 

 

 

Figure 3.4 Comparison of the genetic diversity as the mean allelic richness (AR) and the 
expected heterozygosity (HE) averaged across loci (± S.D.) between the historical and 
recent data of a) the declining and b) the more stable bumblebee spp., with data from 
our project and from the literature. See also Supplementary File S10 for referees and 
genetic parameters of these populations. With time periods: ‘historical’ = 1895-1930; 
and ‘recent ‘= 1975-2010’. 
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In studies with recent specimens, this lower genetic diversity in declining bumblebee species 

is sometimes explained as a reduction in genetic diversity in response to environmental 

drivers (e.g. Goulson et al., 2008; Charman et al., 2010). Interestingly, our results were 

obtained with museum specimens of nine decades ago, that is two to three decades before the 

declines of most bumblebees started. As reported for Belgium by Rasmont & Mersch, (1988) 

and Rasmont et al., (1993) and for the Netherlands and Britain by Biesmeijer et al., (2006) 

and reviewed in Goulson et al., (2008), general drivers like the reduction in floral resources 

by agricultural intensification started around 1950. Thus here, the observed difference in 

genetic variation between declining and stable bumblebee species was not due to a recent 

reduction in genetic diversity but was already present in the years 1918-1926. 

 

3.4.2 Comparison of genetic diversity between groups of species 

Here, we compared the genetic diversity of several declining and stable bumblebee species. 

Such comparison of intra-population genetic diversity levels between different bumblebee 

species, could be a promising step in the detection of populations at risk of decline (Goulson 

et al., 2008; Lozier et al., 2011). However, the interpretation of the observed inter-specific 

differences cannot be made easily due to: (i) mutation rates which may vary at different 

microsatellites loci and (ii) differences in polymorphism of the microsatellite loci. To remedy 

these effects, we used the same microsatellite loci for each species and bumblebee specimens 

with similar distribution in The Netherlands. In addition, we compared a group of 7 declining 

species with a group of 4 stable (or less declining) bumblebee species instead of single 

species. Furthermore, each group consisted of bumblebee species of multiple subgenera. In 

this way we minimize inconsistencies and perform a valid comparison between groups of 

species (Goulson et al., 2008; Charman et al., 2010; Lozier et al., 2011), while admitting that 

one can never rule out biases from undetected problems completely. 

 

3.4.3 Genetic diversity and rarity 

One possible explanation for low genetic diversity of the declining species in the early 20th 

century could be a lower abundance of these species in this time period. Indeed, small 

bumblebee populations can have a reduced genetic diversity as a result of higher genetic drift 

(Frankham, 2005; Zayed, 2009). However, there are indications that rarity alone cannot 

totally explain the observed low genetic diversity of the declining species: (i) some declining 
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species were present in the collection with a magnitude comparable to some of the stable 

species between the years 1900-1940. However, this method is not fully reliable as it has 

caveats, e.g. collector biases and preference for collecting rare species over common ones 

(Wandeler et al., 2007), (ii) by referring to historical publications or expert judgement 

indicating a fairly common status. No historical information of the Netherlands is present but 

some of these declining species were reported as abundant in Belgium (Ball, 1914; 1920). For 

example: B. veteranus (then called B. equestris) ranked with second lowest allelic richness 

(2.942) was described as “assez commun” (= fairly common) in Belgium (Ball, 1914; 1920). 

While other species like B. subterranus with a relatively high allelic richness (4.111) 

comparable with the very common species is described as rare. However, as both indications 

have their own drawbacks, rarity is still a valid explanation of the low genetic diversity 

observed in the declining species. 

 

There are also some other possible explanations of the low genetic diversity in the declining 

bumblebees: (i) having small effective population sizes could be an intrinsic characteristic of 

those species. If this would be the case it makes those species originally more vulnerable for 

the major drivers of bumblebee decline; (ii) the genetic diversity in the populations of the 

declining species could be altered due to habitat fragmentation or population isolation events 

before the dates used in this chapter (1918-1926). Therefore we could search for a genetic 

bottleneck. However, the use of bottleneck tests for haplodiploid species is somewhat 

dubious, as there are many violations of the model assumptions certainly when the power is 

low due to low samples size (Peery et al.,2012). So, we cannot exclude that the declining 

species had undergone a historical decline before 1918-1926; (iii) the populations of the 

declining species could be at the edge of their ecological range in The Netherlands. Indeed, 

Williams et al., (2009) found a link between bumblebee species decline and being at the edge 

of their climatic tolerance. The differences in species’ ecological range could cause thus the 

results observed here. We found that the distribution and thus the ecological range of the 

stable species (IUCN, 2014) was further to the North than those of the declining species 

(Supplementary File S6). Indeed, the declining species have a distribution until the middle of 

Scandinavia, while most of the more stable species have a distribution until North 

Scandinavia (IUCN, 2014). Although the range of the declining species is thus smaller than 

the range of the more stable species, their range is not so much smaller (Supplementary File 

S6). Thus we believe that the populations of the declining species are, in The Netherlands, 
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not at the peripheral of their range. Or certainly not that close to the peripheral to cause the 

much lower genetic diversity levels within the declining species versus the stable species. 

 

3.4.4 Implications of low levels of genetic diversity 

Whatever the cause of the low genetic diversity in the declining bumblebee species may be, 

populations with low levels of genetic diversity will be more sensitive to local extinction. 

Firstly, the low levels of genetic diversity may result in inbreeding and inbreeding 

depression, reducing the individual fitness. Although for bumblebees individual negative 

effects of low levels of inbreeding are not proven, the production of diploid males in a colony 

is a clear negative effect of higher levels of inbreeding (Duchateau et al., 1994; Whitehorn et 

al., 2009). Secondly, populations with a lower genetic variation will be more vulnerable to 

changes and stressors in the environment, such as climate change, habitat loss and new 

pathogens (Reed & Frankham, 2003; Spielman et al., 2004; Frankham, 2005; Zayed, 2009; 

Goulson et al., 2011). Genetically pauperized bumblebees are also more susceptible to 

disease. Whitehorn et al., (2009) demonstrated a link between the gut trypanosome Crithidia 

bombi and genetic diversity. In the UK, populations of B. muscorum with a lower level of 

heterozygosity showed a higher prevalence of this gut parasite. Furthermore, declining 

bumblebee species with low levels of genetic diversity had a higher prevalence for the 

microsporidian Nosema bombi in northern America (Cameron et al., 2011). So, the link 

between the level of genetic diversity and bumblebee decline as we found here, could also be 

due to an increased vulnerability to pathogens. 

 

3.4.5 Conservation 

Our results have strong implications for conservation strategies. Determination of the genetic 

diversity of bumblebees can reveal which species are more vulnerable to local extinction in 

the longer term. Indeed, as shown is Figure 3.3, all bumblebee species with a low genetic 

diversity and thus predicted to be vulnerable to decline, suffered more severe declines than 

the other species. However, it should be remarked that knowing the genetic diversity will not 

always identify which population is threatened. Indeed, two declining species showed similar 

levels of expected heterozygosity but had stronger declines than stable species with similar 

levels of heterozygosity (Figure 3.3). Thus clearly also other factors than genetic diversity 

can play a role in the observed bumblebee declines. However and in general, these results 
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suggest that determination of the genetic diversity is still a very good tool to predict 

bumblebee decline, as all five species with historically low genetic diversity levels (HE lower 

than 0.550 and a AR lower than 3.5) have subsequently suffered strong declines in their 

distribution. 

 

As bumblebee populations with high genetic diversity may be less likely to decline or to 

undergo local extinction, improving the genetic diversity of the populations of restricted 

bumblebee species is a valuable strategy. Populations can be restored by connecting 

neighbouring populations as for example this will reduce the loss of diversity through drift 

and thus eventually result in an increase in diversity. Another, potentially risky, strategy is 

the introduction of bumblebees from foreign ranges. To increase success, introduced bees 

need to be from geographical and climatically comparable regions. Release of new pathogens 

in the habitat needs to be avoided, thus screening for pathogens prior to the introduction is 

needed (Meeus et al., 2011). But as probably not all pathogens are known, this could still 

impose a risk. A good recent introduction example is the second attempt of reintroducing B. 

subterraneus in the UK with specimens from Sweden (The Bumblebee Conservation Trust, 

2009-2013). 

 

Our results demonstrate that species with a lower genetic diversity are the ones that are 

currently endangered. However, species with a high genetic diversity could still be at risk for 

extinction. Indeed, the more stable species also underwent distribution declines but not as 

severe as the declining group. So, to preserve bumblebee diversity one must tackle also the 

current drivers of bumblebee decline, to ensure that these low and even high genetic diversity 

species will not go extinct. It is therefore recommended that conservation strategies create 

more suitable habitat for sustaining bumblebee populations. 
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Maebe, K., Meeus, I., Smagghe, G. (2013) Recruitment to forage of bumblebees 

in artificial low light is less impaired in light sensitive colonies, and not only 

determined by external morphological parameters. J. Insect Physiol. 59, 913-918. 
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4.1 Introduction 

Bumblebees are essential pollinators in natural and managed ecosystems (Heinrich, 1979; 

Goulson, 2003). Like honeybees, bumblebee workers have specialized morphological 

structures for the collection of nectar and pollen such as a corbicula and adapted mouthparts 

(Michener, 1999; Inouye, 1980; Thorp, 2000). Due to their thermoregulation system, 

bumblebees are capable of foraging on days when it is too cold to forage for other pollinators 

(Heinrich, 1975; 1979; Goulson, 2010). The foraging abilities of bumblebees also rely on 

their sensory systems, the visual and the olfactory system, which consist out of two 

apposition compound eyes and three ocelli (Wcislo & Tierney, 2009) and several pore plate 

sensillae on their antennae as described for Bombus terrestris L. by Spaethe et al. (2007), 

respectively. An increase in size of the morphological parameters of both sensory systems 

increases the ability to detect and discriminate between different flowers which in turn can 

increase their foraging efficiency (Chittka et al., 1999). 

 

As bumblebees are social insects, the food influx of a colony is affected by how the work is 

allocated among all members of the colony (Goulson, 2003). Typically, bumblebee colonies 

consist out of hundred workers that differ in size (Goulson, 2010). The size differences within 

a colony are related to a specific task, a phenomenon known as alloethism (O’Donnell et al., 

2000; Jandt and Dornhaus, 2009). Small workers are found more inside the nest where they 

fulfill all kinds of nest tasks, whereas large workers are more likely to become foragers 

(Goulson et al., 2002; Spaethe & Weidenmüller, 2002; Jandt &Dornhaus, 2009). However, 

this size-dependent division of labor is not strict and task-switching is possible (Jandt & 

Dornhaus, 2009). For instance, when there is a shortage of foragers, the smaller bees can be 

recruited or start foraging to comply with the nutritional needs of the bumblebee colony 

(Dornhaus & Chittka, 2005; Molet et al., 2008; Kitaoka & Nieh, 2009). 

 

Bumblebee foraging activity depends also on external factors such as food quality (Chittka et 

al., 1997; Roldán-Serrano & Guerra-Sanz, 2005; Goulson, 2010) and environmental 

conditions like temperature, humidity, weather conditions and light intensity (Corbet et al., 

1993; Peat & Goulson, 2005; Goulson, 2010). The latter parameter turned out to be of 

importance in relation to foraging activity and foraging initiation of bumblebees in 

greenhouses (Blacquière et al., 2007; Roman & Szczęsna, 2008; Johansen et al., 2011). 
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Bumblebees (B. terrestris) are used worldwide in greenhouses for the pollination of different 

crops (Velthuis & van Doorn, 2006). Although commercial bumblebees perform better in the 

artificial light environment of the greenhouse than honeybees, they also show some problems 

particularly when the artificial light environment of a greenhouse deviates from the natural 

light environment in intensity and spectral composition (Morandin et al., 2001, Blacquière et 

al., 2006; 2007; Johansen et al., 2011). Indeed, under these reduced artificial light conditions 

the activity of the bumblebees is decreased (Roman & Szczęsna, 2008). 

 

Here in this chapter, we wanted to determine which parameters of individual bumblebees are 

linked with the lower performance of colonies in artificial light conditions. Therefore, we 

used eight queenright bumblebee colonies from a mass-rearing program and developed a new 

bioassay which determines the number of workers triggered to forage in two different 

standardized light intensities. Furthermore, we measured different external morphological 

parameters and the light sensitivity of 15-20 individual bumblebees of each of those colonies. 

In this way, we obtained more insights in the plasticity or variability of these parameters 

within the same colony and between colonies. The data obtained may help to improve the 

criteria for selecting towards light sensitive bumblebees and their link with the foraging 

capacity of these bumblebees. 

 

4.2 Material and methods 

4.2.1 Laboratory conditions for maintenance of bumblebee colonies 

In this project we used 8 commercial queenright colonies of B. terrestris from a mass-rearing 

program at Biobest (Westerlo, Belgium) (Figure 4.1a,b). These colonies were provided with 

commercial sugar water (BioGluc, Biobest) and pollen (Apihurdes, Spain) ad libitum. All 

experiments were performed in a controlled laboratory environment at 28-30°C and 60-65% 

air humidity. 
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Figure 4.1 Panel with (a) Bombus terrestris colony, (b) B. terrestris worker, (c) 
compound eye and (d) facets. 

 

4.2.2 Determination of the initial nest-leaving capacity under different light conditions 

We developed a new bioassay to determine the initial foraging activity (Fa), which is the 

number of bumblebees leaving the colony in a time period of 1 h divided by the total number 

of workers in the colony at that moment. With the use of this bioassay we measured both the 

initial foraging activity of a colony in weak and strong light conditions (Fa
w and Fa

s, 

respectively). The initial nest-leaving, Fc, was calculated as the ratio of the initial foraging 

activities at weak and strong light intensity, Fa
w/Fa

s. This parameter (Fc) is a measure for the 

ability of a colony to keep its baseline initial foraging activity even with a decrease in light 

intensity. 

 

In detail, for the 8 different queenright colonies we measured the foraging activity by placing 

each colony individually in a meshed fly cage (60 x 60 x 60cm, BugDorm-2, MegaView Ltd, 
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Taichung, Taiwan) in strong light intensity (Fa
s, 14000-14500 lux or 2.2- 2.3 x 1020 photons 

m–2s–1) and weak light intensity (Fa
w, 4000-4500 lux or 5.3 - 6.0 x 1019 photons m–2s–1; 

Figure 4.2). Light was provided by a Halogen Floodlight (PowerPlus Light, Varo, PowLI023, 

W400/500) which was placed at 30 cm in front of the entrance of the colony. The light 

intensity was measured with a calibrated luxmeter (Taschen-Luxmeter LM37, Karlsruhe, 

Germany) at the opening of the colony. As foragers are only active during the period of day, 

due to a robust internal circadian clock (Stelzer et al., 2010; Stelzer & Chittka, 2010), both 

measurements were performed during 1 hour each, on the same day between 10 a.m. and 12 

p.m., and by alternating weak and strong light intensities as first measurement. Bumblebee 

activity was recorded by manually counting the workers leaving their nest. All foragers were 

placed back in the colony before the light conditions were changed. As bumblebees cannot 

see in the red part of the visual spectrum, they become inactive when being exposed to red 

light conditions (see chapter 1.1.5). In this way, we were able to easily catch and place the 

workers back in their colony. Furthermore, colonies were placed in continuous darkness 

outside the test periods. 

  

 
Figure 4.2 Picture of the developed bioassay to determine the initial foraging activity 
(Fa) in alterning light conditions. 
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The foraging test was performed 20 times for each colony, following a three days cycle of 

overnight starvation, one day of measurement and a day of recuperation. In the latter step, 

colonies were allowed to feed on sugar water. Colonies were starved overnight to trigger each 

nest towards maximal foraging. During the experiment we determined Fc and measured Fa
w 

and Fa
s, while the colonies developed from a workforce of 20 until 99 workers. For each 

colony these values of Fc, Fa
w and Fa

s were placed in different classes based on the size of the 

workforce in the colony at the moment of measurement (with class 1: a workforce from 20 

until 29 workers; class 2: a workforce of 30 until 39 workers; …; class 8: from 90 until 99 

workers). Thereafter we calculated Fc, Fa
w and Fa

s as the mean (±SE) over all the classes. 

After logarithm transformation of the measured Fc, Fa
w and Fa

s values, the data were tested 

for normal distribution and analyzed by one-way ANOVA followed by a post-hoc Tukey test. 

 

4.2.3 Measurement of different morphology parameters of bumblebee workers 

For 15-20 workers of the 8 different bumblebee colonies, we determined 8 morphology 

parameters: (i) thorax width (intertegular span) of workers; (ii) total fresh weight; (iii) dorsal-

ventral length of compound eye; (iv) width of compound eye; (v) total surface of compound 

eye; (vi) diameter of facet; (vii) total numbers of ommatidia of the compound eye; and (viii) 

diameter of median ocellus (Figure 4.1c,d). 

 

Each bumblebee and its left compound eye were photographed with a Leica DFC295 (Leica 

Microsystems Ltd, Switzerland) digital camera mounted on a Leica S6D microscope by using 

the software LAS vs 3.6.0 (Leica Application Suite). Measurements of all the morphological 

parameters were done on the images with the free software program Image J 

(http://rsb.info.nih.gov/ij/index.html) (Figure 4.1c,d). Worker size was measured as the 

thorax width (Goulson et al., 2002) and the total surface of the compound eye (S) was 

estimated by using the formula of measuring an ellipse surface as described by Jander & 

Jander (2002). We calculated the diameter of a facet as the mean of a row of 10 facets 

measured in three dimensions (w, y and z) (Kapustjanskij et al., 2007) and always at the 

centre of the compound eye (Jander & Jander, 2002). The ommatidia surface, a hexagon, was 

calculated using the formula S=3√3/2*z2 with z as the radius of the ommatidia. Ommatidia 

numbers were then estimated by dividing the eye surface with the ommatidia surface. As 

ommaditia diameter is not uniform across the eye, measurements of the ommatidia number at 
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the centre of the eye will be an estimate and not the actual ommatidia number. Correlations 

between morphological characters were tested by the Pearson correlation test in SPSS 

(version 21.0.0.0) and we also performed sequential Bonferroni corrections for multiple 

significance tests (Rice, 1989). 

 

4.2.4 Determination of the critical light sensitivity for flight 

The critical light sensitivity (CLS) is defined as the lowest light intensity at which a worker 

of a colony is able to fly. This parameter could be measured with use of the bioassay as 

described by Kapustjanskij et al., (2007) with some small modifications (Figure 4.3). In brief, 

an individual worker was placed on a platform (9 cm in diameter) and exposed to light. A JC-

G4 W/20 lamp positioned at 55 cm above the platform was used and the light intensity was 

measured at the centre of the platform with a calibrated luxmeter (Taschen-Luxmeter LM37, 

Karlsruhe, Germany; Figure 4.3). The bees were encouraged to fly with the help of tweezers. 

 

 

Figure 4.3 Picture of the developed bioassay to determine the critical light sensitivity. 
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The first evaluation if a bumblebee could fly in a certain light intensity was done at 50 lux. A 

bumblebee was scored as flying when the bee could lift up from the platform towards the 

light. We repeated the test 5 times for each light intensity. If a bumblebee could fly at least 3 

out of 5 times, the light intensity was lowered. If not, the light intensity was increased until 

the lowest intensity at which the bumblebee could fly was found. Due to these stepwise 

measurements, individual bumblebees were measured at different light intensities: 5, 10, 20, 

30, 40, 50, 60, 70 and 80 lux. A dimming device (EMD200, Elix) was used to change the 

light intensity between 0.25 lux (9.3 x 1014 photons m–2s–1) and 235 lux (2.1 x 1018 photons 

m–2s–1). After measuring the CLS for 15-20 workers of each of the 8 bumblebee colonies, the 

data were logarithm transformed and analyzed with a one-way ANOVA followed by a post-

hoc Tukey test. 

 

4.3 Results 

4.3.1 Initial nest-leaving capacity of the colonies 

During the experiment we determined Fc and measured Fa
w and Fa

s, while the colonies 

developed from a workforce of 20 until 99 workers. The colony size increased but the Fa and 

Fc values stayed constant. Indeed the dividing in classes showed no significant differences 

(One-way ANOVA, Tukey HSD post hoc tests, F = 0.415, d.f. = 88, P = 0.890 for Fa
s; One-

way ANOVA, F = 0.610, d.f. = 88, P = 0.746, for Fa
w; One-way ANOVA, F = 0.803, d.f. = 

88, P = 0.587 for Fc). So, colony size did not have an effect on Fa and Fc. The nest-leaving 

capacity (Fc) was significantly different between the colonies (One-way ANOVA, F = 3.598, 

d.f. = 49, P = 0.004; Table 4.1). 

 

Table 4.1 The grouping of the mean and standard error of the nest-leaving capacity (Fc) 
of each colony. 

Colony number Mean SE 
3 0.616a 0.068 
8 0.565ab 0.141 
4 0.553ab 0.221 
6 0.495ab 0.269 
1 0.470ab 0.131 
7 0.459ab 0.098 
2 0.420b 0.036 
5 0.292c 0.066 

abc = significance level, P < 0.05 
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Furthermore, the foraging activities in strong and weak light intensity (Fa
s and Fa

w) were also 

significantly different between the colonies (Fa
s, One-way ANOVA, F = 6.265, d.f. = 49, P = 

0.000 and Fa
w, One-way ANOVA, F = 4.293, d.f. = 49, P = 0.001). 

 

4.3.2 Correlations between eye morphology and whole body parameters 

Fifteen to twenty workers were measured per colony and this was done for the 8 colonies. 

Typically, the parameters of body size correlated significantly with the body mass and the 

different eye morphology parameters both within and between the colonies (Table 4.2). The 

only exception was the number of ommatidia as this eye parameter did not correlate with the 

bumblebee size within all colonies (Table 4.2) and also not between colonies (rs = 0.146, P = 

0.082; Table 4.2). 

 

Table 4.2 The correlations between the thorax length (as parameter of bumblebee size) 
and the different morphological parameters of the workers on the intra and inter colony 
level. With N = number of workers tested for each colony and rs = the correlation 
coefficient. 

Thorax 
length 

  Weight Eye 
length1 

Eye Eye 
surface1 

Facet 
diameter 

Ommatidia 
number1 

Ocellus 
diameter width1 

Colony N rs rs rs rs rs rs rs 

Intra 
colony 

1 19 0.888** 0.814** 0.756* 0.860** 0.823** 0.612* 0.469** 
2 16 0.928** 0.810* 0.689* 0.808* 0.549* 0.492 0.700** 
3 20 0.949** 0.936** 0.826** 0.919** 0.810** 0.045 0.766** 
4 15 0.834** 0.593 0.698* 0.733* 0.647* 0.291 0.830** 
5 15 0.893** 0.655* 0.706* 0.721* 0.736** 0.422 0.713** 
6 16 0.676** 0.580 0.701* 0.694* 0.505* 0.530 0.556* 
7 19 0.915** 0.784* 0.709* 0.795* 0.780** 0.379 0.876** 
8 20 0.904** 0.891** 0.900** 0.937** 0.875** 0.201 0.725** 

Inter 
colony All 143 0.831** 0.730** 0.658** 0.750** 0.694** 0.146 0.681** 

With indication of the significance level, ** = P < 0.01 and * = P < 0.05 and 1 after 
sequential Bonferroni corrections. 
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4.3.3 Determination of the critical light sensitivity for flight and correlations with body 

size, mass and eye morphology 

The mean CLS of 4 days-old workers (n = 15-20, for each colony) was determined for the 8 

colonies and ranged from 6.50 ± 0.91 lux (colony 3) to 15.88 ± 1.91 lux (colony 2) (Table 

4.3). Significant differences between colonies were found (One-way ANOVA, F = 5.731, d.f. 

= 142, P < 0.001). Due to those significant differences we categorized the colonies as low, 

medium and high light sensitive colonies (Table 4.3). 

 

Table 4.3 The grouping of the light sensitiveness of each colony. Based on the critical 
light sensitivity (= CLS) of each colony as the mean of the CLS of the individual 
workers, with indication of the standard error. 

Colony 
number 

CLS (Lux) 
Category Mean SE 

3 High a 6.50 0.91 
8 Medium ab 8.70 0.62 
1 Medium abc 9.21 1.48 
6 Medium abc 9.38 0.90 
7 Medium abc 11.37 1.87 
4 Medium bc 11.47 1.19 
5 Medium bc 13.22 1.59 
2 Low c 15.88 1.91 

abc = significance level, P < 0.05 

 

Within a colony the morphological parameters were negatively correlated with the CLS 

(Table 4.4). But this negative correlation was not significantly present for all colonies tested. 

Indeed when comparing the means of the different parameters (worker mass, worker size and 

eye morphology) with the mean critical light sensitivity over the different colonies, we found 

no significant correlation. The correlation coefficients rs ranged from -0.057 to 0.614 for 

weight and facet diameter (P = 0.894 and P = 0.105, respectively). 
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Table 4.4 The correlations between the critical light sensitivity (= CLS) and the 
morphological parameters of the workers of each colony on the intra colony level and 
the inter colony level. Furthermore, we presented here also the correlation of the 
morphological parameters and the nest-leaving capacity (Fc). With N = number of 
workers tested for each colony and rs = the correlation coefficient. 

  
  

Thorax 
length Weight Eye 

length1 
Eye 

width1 
Eye 

surface1 
Facet 

diameter 
Ommatidia 

number1 
Ocellus 

diameter 

Colony 
number N rs rs rs rs rs rs rs rs 

CLS 

Intra 
colony 

1 19 -0.484* -0.487* -0.499 -0.528 -0.551 -0.311 -0.612* -0.356* 

2 16 -0.785** -0.627** -0.540 -0.565 -0.591 -0.479* -0.238 -0.506* 

3 20 -0.504* -0.452* -0.497 -0.505 -0.506 -0.363 -0.196 -0.340 

4 15 -0.480* -0.524* -0.505 -0.259 -0.443 -0.364 -0.139 -0.472* 

5 15 -0.699** -0.770** -0.653* -0.627* -0.666* -0.567* -0.528 -0.344 

6 16 -0.521* -0.366 -0.552 -0.63 -0.641 -0.465* -0.297 -0.357 

7 19 -0.363 -0.292 -0.470 -0.443 -0.463 -0.324 -0.442 -0.424* 

8 20 -0.269 -0.323 -0.325 -0.346 -0.358 -0.245 -0.224 -0.421* 

Inter 
colony All 8 col. 0.446 0.614 0.233 0.311 0.316 -0.057 0.340 0.418 

Fc 
Inter 

colony All 8 Col. -0.274 -0.470 -0.360 -0.202 -0.315 -0.117 -0.457 -0.088 

Indication of the significance level, ** = P < 0.01 and * = P < 0.05 and 1 after sequential 
Bonferroni corrections. 
 

 

4.3.4 Correlation with the nest-leaving capacity and foraging activity 

The only strong significant correlation we found was between the mean CLS and the initial 

nest-leaving capacity of the colonies (rs = -0.724, P = 0.042, Figure 4.4). No significant 

correlation was found between Fa and CLS with rs = 0.496, P = 0.211 for Fa
s and rs = -0.194, 

P = 0.645 for Fa
w. 

 

We checked also for differences between Fc and the mean of the morphological parameters of 

the workers for each colony. None of those parameters were significantly correlated with Fc, 

with rs ranging from -0.470 to -0.088 for weight and ocelli diameter (P = 0.240; P = 0.836, 

respectively) (Table 4.4). 
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Figure 4.4 Correlation of the nest-leaving capacity (Fc) with the critical light sensitivity 
(CLS) of each colony, with indication of the colony number. 

 

4.4 Discussion 

Here in this chapter, all eye morphological parameters, except the ommatidia numbers, were 

positively correlated with bumblebee body size and weight. These results confirmed the 

correlations of these morphological parameters with body size described by Kapustjanskij et 

al. (2007), for review see Wcislo & Tierney (2009). So both on the intra and inter colony 

level, we saw that bigger bees have bigger eyes, and these bigger eyes are mainly a 

consequence of bigger facets and not by an increase in the numbers of ommatidia. 

 

Several studies showed that the morphological parameters of the eye affect the sensitivity in 

different light conditions as is described for the nocturnal sweat bee Megalopa genalis 

(Warrant et al., 2004, 2006; Kelber et al., 2006), nocturnal and diurnal paper wasps (Warrant 

et al., 2006), crepuscular bees (Kelber et al., 2006), and Indian carpenter bees (Somanathan et 

al., 2008, 2009). So, larger bumblebees would have larger eye parameters and should thus 

have a better light perception. Kapustjanskij et al. (2007) described that bigger is better, 

meaning that bigger bumblebees have bigger eyes and are more light sensitive, which in turns 

means being able to fly in weaker light conditions. Indeed, looking to the individuals within 
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one colony our results confirmed this. But between colonies this correlation was lost. It was 

striking that some colonies containing small bumblebees had a better light perception 

compared to colonies with bigger specimens (Table 4.4). Thus, within one bumblebee family, 

size is an important parameter for better light perception. But it should be remarked that 

improved vision is not only a consequence of improved light perception. Therefore, we 

expect that between bumblebee families other morphological parameters such as larger 

photoreceptors (rhabdomeres) or genetic parameters like the molecular capturing of photons, 

signal transduction and neuron composition can play a more important role as has also been 

discussed by Warrant (2004) and Kapustjanskij et al. (2007). 

 

The ability to capture more light and being able to fly at weak light intensities is a first step 

towards foraging but it does not necessarily mean that these bumblebees will indeed leave 

their nest and forage in these conditions. We therefore tested if colonies with different critical 

light intensities had a different foraging behaviour in changing light conditions. For this we 

developed a bioassay measuring the number of workers allocated to forage without the 

presence of a food stimulus. This bioassay measures a subset of the complex behaviour of 

foraging. In our opinion our assay describes the number of workers that a colony is willing to 

sacrifice to explore the environment, as these workers are sent out to forage without a reward 

being present or brought back to the hive. Our bioassay was performed in-house with 

artificial lighting to exclude other parameters influencing the results. Indeed when placing 

colonies outside different external parameters are not kept under control. For instance, light 

conditions are also correlated with temperature. 

 

We determined how our different light sensitive bumblebee colonies (see Table 4.3) are 

triggered to forage in different light conditions. A striking observation was that colonies, 

which consisted out of light sensitive bumblebees (which had a low CLS), were not the 

colonies with a high initial foraging activity in weak light intensity, as Fa
w did not correlate 

with the mean CLS. Thus, the initial foraging activity in weak light intensity is not strictly a 

consequence of light perception alone. Other parameters such as the intrinsic characteristic to 

be less reluctant to leave the nest for foraging will also play an important role. We corrected 

for colony activity by calculating the initial nest-leaving capacity as the ratio of the initial 

foraging activities of a colony in weak and strong light intensities (Fc = Fa
w/Fa

s). When 

comparing the initial nest-leaving capacities of the colonies with the critical light sensitivity 
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scores, we showed that both parameters are significantly correlated (rs = -0.727, P = 0.041, 

Figure 4.4). Thus, showing that the recruitment to forage of bumblebees in artificial low light 

is less impaired in light sensitive colonies. Bumblebee size, nor the different morphological 

parameters of the eye correlated with the initial nest-leaving capacity (Fc). 

 

Our results have important implications for rearing strategies to select for more light sensitive 

bumblebees. For instance a simple morphology-based selection strategy towards bigger 

bumblebees will not necessarily results in more light sensitive bumblebees or better foragers 

in weaker light conditions. Although these bumblebee workers will be better equipped to 

capture light, other genetic parameters are also crucial for optimal light perception. Further 

research is needed to identify suitable markers which could be used for the selection of 

bumblebees towards improved foraging in artificial light. 
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5.1 Introduction 

Bumblebees are essential pollinators in natural and managed ecosystems (Heinrich, 1979; 

Goulson, 2003). Several bumblebee species, such as the buff-tailed bumblebee Bombus 

terrestris L., are used worldwide in greenhouses for the pollination of different crops 

(Velthuis & van Doorn, 2006). In the artificial light environment of a greenhouse bumblebees 

perform better than honeybees (Apis mellifera). However, when the artificial light 

environment of a greenhouse deviates from the natural light environment in intensity and 

spectral composition, bumblebees also have troubles finding their way back to the colony and 

have decreased foraging activity (Morandin et al., 2001, Blacquière et al., 2006; 2007; 

Roman & Szczęsna, 2008, Johansen et al., 2011). 

 

Bumblebee performance in greenhouses with artificial light could be enhanced by selection 

towards more light sensitive bumblebees. One rearing strategy could be simple morphology-

based selection towards bigger bumblebees. Larger bumblebees have bigger eyes which 

should have better light perception and thus should be more light sensitive (Kapustjanskij et 

al., 2007; Wcislo & Tierney, 2009). Indeed, an increase in the size of the morphological 

parameters of the sensory system enhances the ability to detect and discriminate between 

different flowers which in turn can increase foraging efficiency (Chittka et al., 1999). In 

chapter 4 we found that at both intra and inter colony levels, larger B. terrestris individuals 

had larger eyes. However, some colonies containing smaller bumblebees also had better light 

perception compared to colonies with larger specimens. Thus, a large body size did not 

necessarily correlate with greater light sensitivity or increase foraging efficiency in weak 

light conditions. Indeed, other morphological parameters, such as larger photoreceptors 

(rhabdomeres), better molecular photon capture, signal transduction and neuronal 

composition can play a more important role in optimizing light perception (see chapter 4) as 

has also been discussed by Warrant (2004) and Kapustjanskij et al. (2007). 

 

An alternative strategy could be a marker based selection for more light sensitive 

bumblebees. For marker-assisted selection (MAS) we need to identify at least one marker 

linked to the gene or genes responsible for light sensitivity (Dekker, 2004; Williams, 2005). 

Identification of markers linked with the genes responsible for the phenotypic variation of a 

certain trait can be determined by quantitative trait loci (QTL) analysis (Slate, 2005; Wilfert 

et al., 2007a,b). The first step in a QTL analysis is the construction of a genetic linkage map 



 

95 
 

 
CHAPTER V  

  

(Slate, 2005). In social Hymenoptera, like B. terrestris, a genetic linkage map can be easily 

constructed as the queen’s meiotic recombination rates can be reliably measured from her 

male offspring (drones) (Gadau et al., 2001; Wilfert et al., 2006; 2007a,b; Stolle et al., 2011). 

For B. terrestris several linkage maps have already been constructed (Gadau et al., 2001; 

Wilfert et al., 2006; Stolle et al., 2011). Stolle et al. (2011) created a second generation 

linkage map which showed 18 linkage groups (LGs) with a total length of 2047 cM, 

representing the 18 chromosomes of haploid bumblebee males (Ayabe et al., 2004). QTLs 

have been discovered for several important traits related to immune defence, reproduction 

(Wilfert et al., 2007b), host-parasite interactions and body size of B. terrestris (Wilfert et al., 

2007a). 

 

Here, we performed a QTL analysis on drones of B. terrestris to determine QTL regions and 

to identify markers linked with light sensitivity and body size. To this end, we measured the 

light sensitivity under both blue and UV light conditions of each drone, as well as body size, 

body mass and several other morphological parameters of the eye and the hind leg for each 

individual. Furthermore, we genotyped each drone using 136 microsatellite markers. The 

QTLs and markers identified here show the first promise to be used in marker assisted 

breeding to improve selection for light sensitive bumblebees. 

 

5.2 Material and methods 

5.2.1 Mapping population 

For this project we received 10 commercial queenright colonies of B. terrestris from a mass-

rearing program (Biobest, Westerlo, Belgium). From each colony we randomly selected 10 

workers and determined their critical light sensitivity (CLS), the lowest light intensity at 

which an individual bumblebee is able to fly, as described in chapter 4. From the colony with 

the most variation in CLS, we selected additional workers with whose we created 4 micro-

colonies consisting of 5 workers each. Micro-colonies are nests made of a small group of 

new-born worker bees. Within 2 days, one worker becomes dominant, i.e. pseudo-queen, and 

starts laying unfertilized or haploid eggs that develop into drones while the other workers 

take care of the brood. The pace of colony development follows a well-defined pattern (i.e., 

time until first oviposition, first larvae developed, and first pupae) for colonies receiving the 

same diet ad libitum (Mommaerts et al., 2010; Blacquière et al., 2012). The 96 drones 
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produced by these 4 micro-colonies were used for genetic linkage mapping (Figure 5.1). All 

queenright colonies and micro-colonies were provided with commercial sugar water 

(BioGluc; Biobest, Westerlo, Belgium) and pollen (Apihurdes, Cáceres, Spain) ad libitum in 

a controlled laboratory environment at 28-30 °C and 60-65 % air humidity and in continuous 

darkness. 

 

 

Figure 5.1 Genetic mapping population. From 10 queenright bumblebee colonies we 
selected 1 colony (X). Four micro-colonies were developed with 4-5 workers of colony X 
(X1-X4). The unfertilized eggs (haploid males) produced by the ‘pseudo-queen’ of these 
micro-colonies were used for the QTL analysis. In addition, the heritability of three 
hypothetical loci (L1-L3) are shown, base on the maternal alleles (A and A’) of the 
queen in colony X, and the paternal allele B of the drone the queen of colony X has 
mated with. 

 

5.2.2 Critical light sensitivity in blue and ultraviolet light 

For each drone we determined, under blue and ultraviolet (UV) light conditions, the lowest 
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light intensity at which it is able to fly, applying the bioassay for determination of CLS 

described in Kapustjanskij et al. (2007) and in chapter 4, with some small modifications. An 

individual drone was placed on a platform (9 cm in diameter) and exposed to blue or UV 

light. For the blue light condition we positioned a JC-G4 W/20 lamp at 55 cm above the 

platform and in front of the lamp we placed a Tokyo Blue LEE colour filter (Phlippo 

Showlights, Lier, Belgium) allowing the transmission of light in the blue spectrum (400-500 

nm) together with a LEE UV filter (Phlippo Showlights) to ensure no transmission of UV 

light. For the ultraviolet light condition, we used a Mini-Lynx 20W BL350 lamp (Havells 

Sylvania, Tienen, Belgium) allowing the transmission of UV light between 315 and 400 nm 

with a peak at 352 nm. LEE Neutral Density filters of 0.15, 0.3, 0.6, 0.9 and 1.2 (Phlippo 

Showlights) were used to reduce the light intensity without altering the spectral composition 

of the light. Light intensities were measured at the centre of the platform with a calibrated 

luxmeter (Taschen-Luxmeter LM37, Karlsruhe, Germany). When the drone, encouraged to 

fly with the help of tweezers, could lift up from the platform towards the light, he was scored 

as “flying”. If he could not, the light intensity was increased until we found the lowest 

intensity at which he was still able to fly. For further analyses, the CLS values were log 

transformed. 

 

5.2.3 Morphological characteristics 

For each drone we measured several parameters related to body size and eye morphology as 

described in chapter 4: total fresh body mass, forewing radial cell length, dorsal-ventral 

length of compound eye, width of compound eye, total surface of compound eye, diameter of 

facet, total numbers of ommatidia of compound eye, diameter of median ocellus, length of 

hind leg, trochanter length, trochanter width, femur length, femur width, tibia length, tibia 

width, metatarsus length, metatarsus width, and tarsus length. 

 

The right forewing and hind leg of each drone were dissected from the body, taped on a 

transparent paper, and scanned to allow measurements of the wing and different leg 

parameters with Image J (Abramoff et al., 2004). The forewing radial cell length was 

considered as representative for bumblebee size as radial cell length correlates well with head 

width, body mass and wing length (Gerloff et al., 2003; Owen, 2012). 
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5.2.4 Correlations 

Correlations between the different morphological characters were tested by the Spearman 

correlation test in SPSS (version 22.0.0.0). Instead of the more conservative sequential 

Bonferroni corrections for multiple significance tests (Rice, 1989), we calculated the false 

discovery rate by the Benjamini & Hochberg (1995) formula [P(i)  (α * i) / m], with α being 

the significance threshold value, m the number of performed tests and i the number of null 

hypotheses arranged by ascending P-values. Instead of the significance threshold of α = 0.05, 

we created with this formulae a ‘new threshold value’ for rejection of the null hypothesis, and 

this for the first i-value which has a lower calculated P-value than P(i). To achieve this, we 

searched for the first P-value which follows this formula. Here, with α = 0.05 and m =190, 

we compared each P(i) with 0.05(i)/190, starting from P(190). As P(156) = 0.034 < 

(0.05*156)/190, our new significance threshold was 0.041. 

 

For datasets with many correlated traits, multivariate methods, like PCA, are often performed 

to reduce the dimensionality of the dataset without losing much of the original variation 

(Choe & Rocheford, 2012). Thereby, the principal components (PCs) can serve as traits in the 

QTL analysis (Choe & Rocheford, 2012). Here, we performed a PCA for the different body 

size traits and also for the different eye traits with Primer 6 (Clarke & Gorley, 2006). The 

PCs with the largest eigenvalues were used for PC-QTL mapping. 

 

5.2.5 DNA extraction and microsatellites protocol 

Bumblebee DNA was extracted from one middle leg of each drone as described in chapter 2. 

Bumblebees were genotyped at 131 microsatellite loci developed for B. terrestris: 12 loci 

from Stolle et al. (2009), 11 loci from Reber-Funk et al. (2006), 106 loci developed from a 

BAC-library (Wilfert et al., 2009) by Stolle et al. (2011), one new locus by Stolle et al. 

(2011) and one locus from Estoup et al. (1993; 1995) (Supplementary File S12). 

Additionally, we used 4 loci derived from B. lucorum (Reber-Funk et al., 2006) and one 

locus from honeybee, Apis mellifera (Solignac et al., 2007) (Supplementary File S12). All 

136 microsatellite loci, used in this chapter, were already used before to construct a second 

generation genetic map of B. terrestris (Stolle et al., 2011). 
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For detection of the microsatellite alleles, we used a tailed-primer approach (Schuelke, 2000): 

a universal M13-primer (= tail, 5’-GAGTTTTCCCAGTCACGAC-3’) is coupled to a HEX, 

6-FAM, VIC or NED fluorescent label to allow detection of the microsatellite alleles by 

capillary electrophoreses. Furthermore, for incorporation of this universal tail during PCR, 

the specific forward primers are prolonged at its 5’-end with the same (but unlabeled) 

sequence as the tail. 

 

Each microsatellite locus was amplified in simplex by PCR. PCR reactions were carried out 

in 10 μl total volume. Each reaction contained 1.5 μl template DNA, 1 μl of 10x PCR buffer 

(Qiagen), 0.2 μl of 10 mM dNTP’s (Qiagen), 0.1 μl of 10 μM forward primer, 0.4 μl of 10 

μM reverse primer, 0.4 μl of 10 μM labeled M13-primer and 0.05 μl of 2.5 units/reaction 

Hotstar Taq DNA Polymerase (Qiagen). Samples were initially denatured at 95 °C for 15 

min, followed by 30 cycles of denaturing at 94 °C for 30 s, annealing at 48, 52 or 58 °C for 

30 s, and extension at 72 °C for 30 s. The PCR protocol ended with a final extension step at 

72 °C for 10 min. After pooling the final PCR products, they were visualized on a ABI-

3730xl sequencer (Applied Biosystems) using an internal size standard (Genescan 500 LIZ, 

Applied Biosystems). The fragments were examined and scored manually using Peak 

Scanner Software v 1.0 (Applied Biosystems). 

 

5.2.6 Linkage mapping and phase determination 

First, a preliminary linkage mapping was established using 100 microsatellite loci with 

Kosambi’s mapping function. These loci were chosen based on their known distribution on 

the 18 linkage groups described in Stolle et al. (2011) to obtain an as high as possible cover 

of the bumblebee genome. The mean number of markers on each linkage group was 5.55 

(range: 2 - 9), with the minimum and maximum distance between two markers ranging 

between 2.72 cM and 65.56 cM (Supplementary Table S13). After identifying different QTL 

regions with this mapping on 16 linkage groups (LG), we conducted a fine mapping with 36 

additional SSR markers, specifically chosen to cover better the preliminary QTL regions. 

Furthermore, knowing that the bumblebee genome size is 2047.09 cM (Stolle et al., 2011), a 

power estimation of 136 markers based on the formula c = 1-e-2md/L with m = number of 

markers, d = distance between markers (in cM), L = genome length and c = proportion of the 

genome within this distance d, as described in (Lange & Boehnke, 1982) and used in ref. 
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Stolle et al. (2011), showed that 93.0% of the bumblebee genome is at average located within 

20 cM of a marker and 73.5% within 10 cM of a marker. 

 

Linkage analysis was performed with JoinMap software version 4.0 (Van Ooijen, 2006). 

Linkage groups were estimated by applying independent Logarithm of the Odds (LOD) 

threshold ranges from 1.0 to 10.0 in steps of 1.0. The initial grouping for mapping was 

selected from the groupings tree, preferentially by taking (smaller) nodes that showed a stable 

number of markers at the higher LOD score. We preferred to start from smaller but highly 

stable linkage groups. Regression linkage maps were established under the standard 

calculation settings of JoinMap 4.0 (linkages with a recombination frequency smaller than 

0.45 and LOD higher than 1; goodness-of-fit jump threshold for removal of loci 5 and 

performing a ripple after adding one locus). The order of the SSR-markers in our grouping 

was compared with their order in the second generation linkage map constructed on 577 

males of one B. terrestris colony as described by Stolle et al. (2011). Linkage phases were 

then estimated by JoinMap 4.0. 

 

5.2.7 QTL analysis 

First, we performed the Kruskal-Wallis (KW) test, a single marker non-parametric method 

imbedded in the software program MapQTL5.0 (Van Ooijen, 2004) to detect possible QTL’s 

as is done in several other studies (e.g., Moghaddam et al., 2012; De Keyser et al., 2013). 

Secondly, we performed a composite Interval Mapping analysis (IM) with MapQTL 5 (Van 

Ooijen, 2004). The LOD thresholds for declaring a linkage group wide significant QTL were 

obtained by standard permutation tests (1000 iterations) with MapQTL 5.0 (Van Ooijen, 

2004) for the significance level p = 0.05 and p = 0.01. This permutation test reduces the 

environmentally-induced variation. Third, we performed also a multiple QTL model mapping 

(MQM) within MapQTL 5.0. The selection of obtained QTLs in IM were used as cofactors 

during MQM-mapping, which allowed for the detecting of additional QTLs (Wilfert et al., 

2007a). When the LOD value of the QTL, assigned as cofactor, dropped during the MQM 

mapping below the threshold value, then the QTL was removed as cofactor and MQM was 

run again. We repeated this procedure until the list of cofactors remained stable. For both IM 

and MQM, the traits need to follow a normal distribution. Most traits were significantly 

different from normality (Supplementary Table S14). However, the Box-Cox transformation 
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had none or only very small effects on the size of the observed QTL regions. For the 

graphical presentation of the QTLs and markers we employed the software MapChart version 

2.2 (Voorrips, 2006). 

 

5.2.8 Identification of candidate genes 

Candidate genes for light sensitivity were selected around the 95% confidence interval (= 

C.I.) of the QTL. The two SSR markers which determined the 95% C.I. of the QTL, were 

found in the bumblebee genome (http://www.ncbi.nlm.nih.gov/genome/2739) and all genes 

on this sequence (± 500k bp) were selected as candidate genes. We searched in UniProt 

(http://www.uniprot.org/) for the known function of those candidate genes, and selected the 

candidate gene which function could be directly linked with vision or light perception as 

primary target gene. 

 

5.3 Results 

5.3.1 Correlation between traits 

In total, 96 drones were measured for 20 different traits (Table 5.1). The distribution of each 

of these traits can be seen in Supplementary File S15. There were no indications of 

significant colony effects (for all traits: Kruskal-Wallis test, P > 0.05). 

 

Most morphological parameters of the leg and the body size correlated significantly with 

body mass and the different eye morphology parameters (Table 5.2). The only two exceptions 

were: (i) the number of ommatidia did not correlate with facet diameter (rs = -0.171, P = 

0.098); and (ii) body mass did not correlate with tibia length and width (rs = 0.156, P = 0.128; 

rs = 0. 207, P = 0.043, respectively), femur width (rs = 0.146, P = 0.157), and both the 

trochanter length and width (rs = 0.088, P = 0.395; rs = -0.020, P = 0.846, respectively). 

Furthermore, we detected no correlation between birth order of the males and both 

bumblebee body size and body weight. 

 

The mean critical light sensitivity (CLS), being the lowest light intensity at which a 

bumblebee is able to fly, of 4 days-old drones (n = 96) in blue and UV light conditions was 

3.58 ± 2.89 lux and 1.73 ± 0.47 lux, respectively (Table 5.1). 
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Table 5.1 Means (± S.D.), skewness and kurtosis of the investigated traits. 

 Code N Mean ±SD Skewness Kurtosis 

Radial cell (cm) RC 95 0.319 0.035 -0.449 -0.511 

Metatarsus length (cm) MT_L 96 0.285 0.038 -0.564  -0.273 

Metatarsus width (cm) MT_W 96 0.090 0.012 -0.096  0.211 

Tibia length (cm) Ti_L 96 0.429 0.054 -0.705 -0.037 

Tibia width (cm) Ti_W 96 0.119 0.018 0.020 -0.527 

Femur length (cm) Fe_L 96 0.372 0.056 -0.640 -0.276 

Femur width (cm) Fe_W 96 0.124 0.063 5.993 43.288 

Trochanter length (cm) Tr_L 96 0.067 0.012 -0.030 -0.295 

Trochanter width (cm) Tr_W 96 0.091 0.021 -0.889 2.889 

Tarsus length (cm) Tarsus 92 0.585 0.079 -0.665 -0.323 

Leg length (cm) Leg 92 1.452 0.187 -0.619 -0.423 

Eye length (mm) E_L 95 2.554 0.214 -0.994 0.542 

Eye width (mm) E_B 95 1.080 0.088 -1.199 1.298 

Facet length (mm) Facet 94 0.025 0.002 -0.161 -0.052 

Median ocellus (mm) MOc 94 0.279 0.031 -0.436 -0.430 

Eye surface (mm2) E_S 95 2.180 0.340 -0.974 0.479 

Ommatida number Om 94 5587 760.7 0.695 1.177 

Dry weight (g) Weight 96 0.211 0.064 0.038 -0.314 

CLS under blue light* CLS_Blue 96 0.431 0.317 0.278 -0.834 

CLS under UV light* CLS_UV 96 0.223 0.117 0.248 -0.454 
* after log transformation 

 

As light sensitivity could be linked with size parameters (Kapustjanskij et al., 2007; Wcislo 

& Tierney, 2009; see also chapter 4), we searched for correlations between different 

parameters of bumblebee body size, eye and hind leg with CLS. For most of these 

morphological parameters we found no significant correlation with the CLS in blue or UV 

conditions (P > 0.041). The CLS in blue and UV light conditions correlated only with the 

metatarsus length (rs = -0.228, P = 0.025; rs = -0.218, P = 0.033; respectively), the metatarsus 

width (rs = -0.227, P = 0.026; rs = -0.265, P = 0.009; respectively), and the tibia width (rs = -

0.238, P = 0.020; rs = -0.241, P = 0.018; respectively). Furthermore, CLS in blue light 

sensitivity correlated also with the tarsus length (rs = -0.221, P = 0.034; Table 5.2). 
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CHAPTER V  

  

5.3.2 QTL analysis 

Of the 136 SSR markers, 111 were polymorphic across our population (Supplementary File 

S12). By composite interval mapping (IM) we found 88 QTLs for 19 of the 20 traits 

evaluated (Table 5.3), with the only exception being for the CLS under UV light conditions. 

Individual QTLs accounted for 7.5-53.3% of the phenotypic variation and were distributed in 

16 LGs (Table 5.3, Figure 5.2). We found one QTL for CLS in blue light conditions (qBLU3) 

explaining 10.6% of the genotypic variation, seven QTLs for body mass, five QTLs for radial 

cell length, 12 QTLs for eye traits, and 7 QTLs for leg traits (Table 5.3). Of those 88 QTLs 

significant at the LG specific significance level of 0.05 %, 34 QTLs were also significant at 

the 0.01% LG specific significance level (Table 5.3). 

 

When considering the 19 traits for which we found a QTL with IM, 15 traits had at least 1 

QTL with multiple QTL model mapping (MQM). Indeed, with the MQM mapping we 

identified 29 and 20 QTLs significant at the LG specific significance level of 0.05% and 

0.01%, respectively (Table 5.3). These QTLs, distributed in 7 LGs, explained 6.7-41.2% of 

the phenotypic variation. For the CLS under blue light conditions we found one significant 

QTL explaining 8.7% of the genotypic variation, while for CLS under UV light we found no 

significant QTL. For body mass of drones we found three significant QTLs (qDWE6, 

qDWE10 and qDWE15) while for the length of the radial cell we found only two significant 

QTLs (qRAC1 and qRAC15.2), cumulatively explaining 40.7% and 23.8% of the phenotypic 

variation, respectively. With MQM, we detected 2 or 3 significant QTLs for most of the eye 

traits: for the dorsal-ventral length (qEYL1.1, qEYL9, qEYL15.2), width (qEYW1.3, qEYW9) 

and total surface of the compound eye (qEYS1.1, qEYS9, qEYS15.2), the amount of 

ommatidia of a compound eye (qONN3.2, qONN9), and the diameter of median ocellus 

(qMOc9, qMOc15.2) cumulatively explaining 40.1%, 57.2%, 33.9%, 46.4% and 23.8% of the 

phenotypic variation, respectively. 
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Figure 5.2 Genetic linkage map showing the distribution of the QTLs. QTLs for each 
trait are colour coded: (i) forewing radial cell length (RC), body mass (weight), and 
length of hind leg (Leg) in black; (ii) metatarsus length (MT_L), metatarsus width 
(MT_W), and tarsus length (tarsus) in red; (iii) trochanter length (Tr_L), and 
trochanter width (Tr_W) in fuchsia; (iv) femur length (Fm_L), and femur width 
(Fm_W) in yellow; (v) tibia length (Ti_L), and tibia width (Ti_W), length of compound 
eye (E_L), width of compound eye (E_W), and total surface of compound eye (E_S) in 
green; (vi) diameter of facet (Facet), and total numbers of ommatidia (Om) in maroon; 
and (vii) diameter of median ocellus (MOc) in light blue. PC-QTLs of the eye 
parameters and body size are all coloured black: for eye size (E_PCA_1 and E_PCA_2) 
and for body size (S_PCA1, S_PCA_4 and S_PCA_5). Linkage group number are 
shown on top of the groups, and map distance (cM) is shown on the left margin of the 
figure. The genetic map originated from Stoll et al., 2011. The significant markers 
within QTL regions are shown with there corresponding Kruskal-Wallis significance 
level (* = 0.10; ** = 0.05; *** = 0.01; **** = 0.005; ***** = 0.001; ****** = 0.0005; and 
******* = 0.0001). 

 

For facet diameter (qFAC11) we found one QTL explaining 9.7% of the variation. For the 

different hind leg traits we found only significant QTLs for: (i) metatarsus length and width 

(qMTL1, qMTL6 and qMTW6; respectively) explaining 34.2% and 22.0% of variation, (ii) 

tibia length and width (qTIL15.2 and qTIW6, respectively) explaining 9.7% and 17.8% of 

variation, (iii) femur length (qFML7 and qFML15) cumulatively explaining 28.8% of 

variation, and finally (iv) three QTLs for tarsus length (qTAR1.2, qTAR9, qTAR15.1) 

explaining 72.9% of variation. 

 

5.3.3 PC-QTL 

The PCA for body size parameters showed 5 PCs of which two had eigenvalues higher than 

1: 5.91 and 1.57 (PC1 and PC2, respectively; in Figure 5.3, Supplementary File S16). 

Together, these 5 PCs accounted for 89.5% of the total variance over these traits 

(Supplementary File S16). In total, we found 8 QTLs for three PCs: PC1 (4), PC4 (2) and 

PC5 (2). The most informative PC is PC1 with 53.8% of the total variance of the trait while 

PC4 and PC5 accounted only for 6.5% and 6% of the total variance, respectively. Three of 

the four QTLs (qSPC1_6, qSPC1_15.1 and qSPC1_15.2) of PC1 are linked with body size in 

general as confirmed by the QTLs of the individual body size traits (Table 5.3 and Figure 52). 

QTL qSPC1_10 was only confirmed by the traits linked with tarsus size (Table 5.3 and 

Figure 5.2). 
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Figure 5.3 PCA graph of the different body size parameters. 

 

The PCA on the different eye parameters showed 3 PCs which accounted for 74.1% (PC1), 

10.9% (PC2) and 8.1% (PC3) of the total variance (Figure 5.4, Supplementary File S16). 

Only PC1 had an eigenvalue higher than 1: 4.45 (Supplementary File S16). All eye 

parameters showed negative correlations with PC1, ranging from -0.458 to -0.325. For 

compound eye length, eye width and eye surface, we found the highest correlations: -0.458, -

0.456 and -0.453, respectively. Three of the 4 QTLs found for PC1 (qEPC1_1.1, qEPC1_1.2 

and qEPC1_9) were confirmed by the univariate QTLs for these three eye parameters, while 

QTL qEPC1_7 was only confirmed by ommatidia number (Table 5.3 and Figure 5.2). The 

three QTLs for PC2 (qEPC2_6, qEPC2_7 and qEPC2_12) correlated with the univariate 

QTLs found for median occelus and ommatida number on LG6, LG7 and LG12 (Table 5.3 

and Figure 5.2). 
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Figure 5.4 PCA graph of the different eye parameters. 

 

5.3.4 Candidate genes of light sensitivity 

Candidate genes were identified for the QTL qBLU3. Therefore, we used SSR-marker BT08 

which determine the QTL region, and the markers BT07 and 0291_60p14 as borders for the 

95% C.I. of the QTL. The 64 genes within the range created by the markers BT07 and 

0291_60p14 on linkage group 3, were all identified as candidate genes (Supplementary File 

S17). Based on the possible function in phototransduction and visual perception, locus 

Loc100650954, with as description a Phosrestin-1-like gene, was selected as the primary 

candidate gene. 

 

5.4 Discussion 

Here, we have identified several significant QTLs for morphological traits related to 

bumblebee light sensitivity, body mass, body size and several eye and hind leg traits (Table 
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5.3). The presence of multiple QTLs for 16 of the 20 traits clearly demonstrate their 

polygenic genetic character. For three traits: i.e. femur width, trochanter length and trochanter 

width, we identified only one QTL. We were unable to find a QTL for only light sensitivity 

under UV light conditions. As UV light is important for bumblebee foraging (Raine & 

Chittka, 2007) and UV receptors are present in bumblebees (Skorupski et al., 2007), loci 

linked with UV detection could be under strong selection resulting in low genetic variation. 

Hence, it is quite possible that in our population with maximum 3 alleles for each locus, these 

loci could be present as homozygous. Furthermore, developmental and environmental factors 

could have caused no detection of QTLs for UV light. Finally, it is also possible that small 

effect QTLs are not detected here. 

 

Our sample size (n = 92 to 96) was comparable or smaller in comparison with the sample 

sizes of other QTL studies in bumblebees, such as in Wilfert et al. (2007a;b) where sample 

size ranged from n = 76 to 359 and n= 153 to 173 respectively, depending on which trait and 

population was investigated. Our sample size was also consistent with the sample size of 

other QTL studies, e.g. in plants (n = 90 or less; Moghaddam et al., 2012). However, due to 

the Beavis effect, which causes biases in QTL effects, it is possible that small QTLs were not 

detected even with an increased sample size (Xu et al., 2003). Thus only remarkably 

increasing the population size would increase the detection of yet unfound small effect QTLs. 

Although detection of all possible QTLs should be the ultimate target, the goal of the study 

performed in this chapter was to identify genetic markers linked to some specific phenotypes 

for their later use in MAS. For this purpose, small effect QTLs are not as useful. 

 

In this chapter, we found a significant QTL for light sensitivity under blue light conditions in 

a region where there is no QTL linked with body size or any other related morphological 

parameter. We already showed before that although larger bumblebees are better equipped to 

capture light, other genetic parameters influence bumblebee light sensitivity (see chapter 4). 

For this trait, we identified 64 candidate genes of which we identified the Phosrestin-1-like 

gene as the primary candidate gene due to the known phototransduction function of 

Phosrestin-1 (Xiong & Bellen, 2013). Indeed, in the Fruit fly (Drosophila) Phosrestin-1, also 

known as Arrestin-B or Arrestin-2, is identified as interacting directly with light-activated 

rhodopsin thereby activating the phosphorylation of metarhodopsin (Xiong & Bellen, 2013). 

Furthermore, low and high levels of Arrestin-2 in the rhabdomeres will enhance the 
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photoreceptor sensitivity in weak light conditions, and prevent hyperactivity of the 

photoreceptors in strong light conditions (Xiong & Bellen, 2013). Further research is 

necessary to validate this gene’s impact on improved light sensitivity in bumblebees and its 

effect on foraging activity in diminished light conditions. 

 

Not surprisingly we also found several overlapping univariate QTLs between the length of 

the radial cell, as measurement of bumblebee body size, and most of the other measured size 

related morphological parameters (Table 5.3 and Figure 5.2). Several QTLs overlapped also 

between drone body mass and body size: e.g. one QTL region at LG6, LG9 and LG15, but a 

more interesting result was that not all QTLs overlapped for these parameters (Table 5.3 and 

Figure 5.2). Indeed, drone body mass showed unique QTL regions at LG2 (qDWE2), LG3 

(qDWE3), LG5 (qDWE5), and LG 10 (qDWE10), while radial cell and body size parameters 

had unique QTL regions at LG1, LG7 and LG15. These regions were confirmed by the PC-

QTL. Indeed, PCs showed size related QTLs on LG6, LG10 and LG15. Only one QTL on 

PC4 overlapped with one of the unique univariate body mass QTLs on LG3 (Figure 5.2). The 

presence of these specific genetic regions for drone body mass and body size indicates 

regulation of different genes. 

 

Although preliminary, these results support the idea of marker assisted breeding towards 

larger bumblebees, with the use of the identified markers at those unique QTLs. However, 

before these QTLs could be used they need to be validated in a broader genetic background, 

using multiple bumblebee populations. For QTL studies it is common that most of the QTLs 

found in one population will not withstand this validation, even if there are only very small 

differences in the experimental setup (Wilfert et al., 2007a). Indeed, in Wilfert et al. (2007a) 

the authors used three bumblebee populations in which they detected several QTLs for the 

traits: Crithidia infection intensity, general immune response (encapsulation of a novel 

antigen), and body size (measured by the length of the radial cell of the forewing) at different 

places and on different linkage groups. Wilfert et al. (2007a) found 10 QTLs for body size 

measured as the size of the radial cell of the forewing, with only low phenotypic effects 

(between 2% and 15%). Of those 10 QTLs, only one QTL (BS-8) was recovered in our study 

(qRAC15.1). This QTL, which accounts in our study only for 9.6% of the phenotypic 

variation, is a potential candidate for use as a genetic marker in MAS. Thus, in our study we 

were not only able to confirm a minor QTL for body size from Wilfert et al. (2007a), but we 
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also found several major QTLs explaining more than 15% to even 50% of the phenotypic 

variation within a certain trait which are restricted to our bumblebee population and need 

validation in a broader genetic background. 

 

In conclusion, our study identified one QTL for light sensitivity under blue light conditions 

explaining 10.6% of the phenotypic variation of the trait. Furthermore, we identified a list of 

64 possible candidate genes for this trait of which the Phosrestin-1-like gene is identified as 

the primary candidate gene. Finally, we also found several QTLs for body weight, body size 

and the morphological parameters of the eye and hind leg. Further research needs to 

determine if the QTLs found here, resist validation in a broader genetic background and if 

some of the SSR markers linked with those QTLs could be used as genetic markers in marker 

assisted breeding, to improve the pollination service of bumblebees. 
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6.1 Introduction 

Bumblebees as Bombus terrestris (L.) are used worldwide in greenhouses for the pollination 

of different crops such as tomatoes and sweet pepper (Velthuis & van Doorn, 2006). The 

commercial breeding of bumblebees was already in 2006 estimated to represent a yearly 

turnover of €55 million, and the pollinated greenhouse tomatoes had an estimated value of 

€12,000 million per year (Velthuis & van Doorn, 2006) and have increased since then. 

 

The breeding of bumblebees occurs in-house with strict procedures in place to exclude 

contact with the outside environment and to prevent inbreeding. For B. terrestris this in-

house production has been extensively optimized (Velthuis & van Doorn, 2006). However, 

not all queens will start up typical worker-producing colonies, which switch into sexual 

producing colonies after the ‘switching point’ (i.e., the moment that a queen switches from 

laying diploid workers into laying only haploid drones and/or diploid daughter queens). In a 

small number of colonies, the first offspring already contains drones instead of only female 

workers. This early production of drones, at a worker/drone sex ratio of 1:1, has already been 

reported in a range of haplo-diploid insects. These drones are typically diploid, and could be 

a consequence of inbreeding or homozygote alleles at the sex determination loci (Duchateau 

et al., 1994; Whitehorn et al., 2009). As in bumblebees, sex is determined by the presence of 

complementary alleles at a single sex determination locus (SDL) where heterozygotes at this 

locus will develop into diploid females and hemizygotes into haploid drones, while 

homozygotes develop into diploid drones (Duchateau et al., 1994; Whitehorn et al., 2009). 

 

Quality assurance (QA) within the breeding facility eliminates early drone-producing 

colonies; such colonies are disapproved for sales into the market. This phenomenon of early 

diploid drone producing can be easily scored by sexing the first batch of offspring. Here, we 

received 6 QA failed colonies (i.e., early drone-producing colonies) from a commercial mass 

rearing facility in order to investigate why these colonies produced males so early. 

 

6.2 Material and methods 

All specimens from the 6 QA failed colonies of a commercial mass rearing facility were 

killed and sex determination of each specimen was done with the use of a microscope 

(Kyowa optical SDZ-P, Kyoto). We separated workers and drones based on the presence or 
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absence of a sting and male genitalia (Figure 6.1). 

 

 

Figure 6.1 Micrograph of the male genitalia (white stars) of a diploid drone. 

 

Based on the frequency of drones in each colony, we divided these colonies in two groups: 

colonies which seemed to have a biased 1:1, worker:drone ratio (group 1), and colonies 

which consisted of almost only drones (group 2) (Table 6.1). Subsequently, we investigated 

what could be reason for the early drone production in these colonies. Is it the typical diploid 

drones production with a biased sex-ratio towards more drones or does the queen produces 

haploid drones, because the mated queens have problems to fertilize her eggs? 

 

To investigate if the colonies produce diploid or haploid drones, we used microsatellites. 

From each colony, we genotyped the queen and 5 other specimens: 1 or 2 worker(s) if 

present, and 3 to 4 drones (Table 6.1). Bumblebee DNA was extracted from one middle leg 

of each bumblebee specimen with the same method as described in chapter 2. Workers were 

genotyped at 10 microsatellite loci: B11, B100, B121, B126 and B132 (Estoup et al., 1993) 

and BT04, BT08, BT10, BT11 (Reber-Funk et al., 2006) as originally developed from B. 

terrestris, and BL02 (Reber-Funk et al. 2006) as derived from B. lucorum. Microsatellites 
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were then amplified by PCR and visualized with capillary electrophoreses as described in 

chapter 2. 

 

Table 6.1 Overview of the morphological and genetic data for each of the colonies, 
divided in two groups based on the sex ratio: group 1 contains 3 colonies with a biased 
worker:drone sex ratio of 2:3, while group 2 contains 3 colonies which consisted out of 
almost only drones. Data present the numbers of drones and workers within each 
colony, worker:drone sex ratio, presence of workers laying eggs and a queen helper, 
and ploidy of the drones (diploid/haploid) as determined with microsatellite analysis. 

Group Colony 
Numbers of Worker:drone Worker Queen 

Ploidy of drones drones workers sex ratio laying eggs helper 
Group 1 Colony A 17 9 2:3 No - Diploid 

Colony B 11 7 2:3 No - Diploid 
Colony C 9 5 2:3 No Present Diploid 

Group 2 Colony D 16 1 9:10 No Present Haploid 
Colony E 8 1 9:10 Yes Present Haploid 

  Colony F 21 3 9:10 Yes Present Haploid 
 

As shown in Table 6.1, queens, workers and drones were identified being diploid when they 

scored being heterozygous at minimum one loci, while bumblebees that scored homozygous 

for each microsatellite were scored as haploid. Based on 10 microsatellite loci, the probability 

of scoring a true haploid drone as a haploid and not as a homozygote diploid drone is high. 

Even when using a high allele frequency (f) in all microsatellite loci of 0.5, the probability 

(P) is still 99.9% with P = (1-(f)10)*100. 

 

6.3 Results and discussion 

All drones produced by the 3 colonies belonging to group 1 (colony A, B and C), were 

diploid and were all offspring of their founding queen (Table 6.1). Furthermore, we tested if 

the sex ratios in those colonies were biased from the expected 1:1, worker:diploid male ratio. 

Based on a χ2 test (with Yates correction) the three colonies A, B and C showed no 

significant deviation from the 1:1 sex ratio (Yates χ2 = 1.885, P = 0.170; Yates χ2 = 0.500, P 

= 0.480 and Yates χ2 = 0.643, P = 0.423; respectively). However, we found a slight but 

significant bias from the normal 1:1 sex ratio when we pooled the data over all three colonies 

(Yates χ2 = 3.879, P < 0.05). This was surprising as one might expect the opposite because 

diploid males have a reduced viability in comparison to workers. However, it should be 

remarked here that the breeding facility made the selection of the colonies based on the 
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number of drones in the first brood. We therefore speculate that the unexpected 2:3 ratio can 

be explained by a sampling bias for colonies with larger numbers of drones. The colonies 

tested can thus be considered as typical examples of diploid drone-producing colonies 

explained by inbreeding or mating of non-related specimens with the same alleles for the sex 

loci (Table 6.1). 

 

The colonies belonging to group 2 produced only haploid drones (Table 6.1). However, not 

all of these haploid drones originated from the founding queen. Some of those haploid drones 

were offspring produced by the queen helper, that is a bumblebee worker placed together 

with the queen to induce egg laying (Table 6.1). This indicates that the queen of those 

colonies had problems to fertilize her eggs and could lay only unfertilized eggs which will 

develop into haploid drones (Colony D, E and F; Table 6.1). Furthermore, it also indicates 

that the queen helpers started producing haploid drones themselves, probably induced by the 

inferior egg laying capacity of the queen (Colony E and F; Table 6.1). 

 

In conclusion, the data of this chapter showed that early drone-producing colonies from mass 

producing facilities can produce diploid or haploid drones. The early presence of haploid 

drones indicates that the queen had problems in the fertilization of her eggs, while the 

presence of diploid drones confirms some level of inbreeding. In addition, we remark that 

morphometrics and wing landmarks are interesting for future research to evaluate if these can 

be used for separating diploid drones from haploid ones. 
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7.1 Impact of measuring genetic diversity: conclusions and future perspectives 

Bumblebees species are important pollinators in natural and managed ecosystems. Here, in 

this dissertation microsatellite DNA technology was employed to measure population genetic 

parameters of endangered and more stable bumblebee populations, to assess and to identify 

genetic loci linked with the commercial pollination service. 

 

7.1.1 Genetic diversity of historical bumblebee populations 

In chapter 2 and 3, we examined the role and impact of genetic parameters on the observed 

bumblebee declines in natural populations. Therefore, we genotyped pin-mounted bumblebee 

specimens sampled from extensive historical bumblebee collections. This provided a unique 

opportunity to examine genetic parameters of past populations and compare these parameters 

with those of recent bumblebee populations presented in the literature. This approach allowed 

for the unique investigation of the role of these genetic parameters in bumblebee decline. In 

the case-study of B. veteranus (chapter 2) and the comparison between populations of 

declining and more stable bumblebee species (chapter 3), we detected low levels of genetic 

diversity in the historical populations of the declined bumblebee species. These levels of 

genetic variation are lower than the observed levels of genetic diversity within the 

populations of the more stable species, but are comparable with those found in the 

contemporary populations of these declining species. Furthermore, the historical populations 

of B. veteranus showed indications of inbreeding. These results indicate that inbreeding and 

low levels of genetic variation were already present several decades before the general 

drivers of bumblebee decline (around 1950) are believed to have acted on these bumblebee 

populations (Rasmont & Mersch, 1988, Rasmont et al., 1993; Goulson et al., 2008). As a 

consequence, we believe that: (i) inbreeding does not directly result in the collapse of 

populations, (ii) that there was no major drop in genetic diversity caused by the general 

drivers of bumblebee decline in the populations of the declined bumblebee species, and (iii) 

that bumblebee species with low levels of genetic diversity were the first to decline. 

 

At first sight, the conclusion of the first and last point, saying that inbreeding does not 

directly result in the collapse of the populations of B. veteranus in Belgium and that low 

levels of genetic diversity will lead to the collapse of bumblebee populations, seems 

contradictory as inbreeding populations generally have a low genetic diversity. However, 
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these conclusions are not contradictory. The case-study of B. veteranus merely presents the 

fact that inbreeding and thus low genetic diversity on itself must not lead towards decline, 

while the third conclusion predisposes species with a low genetic diversity to decline when 

the environment is less suited for these low HE or inbred species. 

 

That inbreeding does not directly result in the collapse of a population in Hymenoptera has 

already been demonstrated in the fire ant Solenopsis invicta (Ross & Fletcher, 1986), in the 

solitary bee Lasioglossum leucozonium (Zayed et al., 2007), in the stingless bee Melipona 

scutellaris (Alves et al., 2011), and in the bumblebee B. terrestris (Schmid-Hempel et al., 

2007). The latter study demonstrated that B. terrestris could successfully invade and colonize 

Tasmania despite a drastic genetic bottleneck. The success is due to the very favourable 

environment with no direct inter-species competition and no pathogens (Schmid-Hempel et 

al., 2007). The results of these studies combined with our data, indicates that under optimal 

or good environmental conditions, high levels of inbreeding does not necessary restrict 

bumblebees (Hymenoptera) to become locally abundant. That no direct negative fitness 

effects occur within these populations could be due to the strong effect of purging selection 

against recessive deleterious alleles in the haploid males (Sorati et al., 1996; Packer & Owen, 

2001). 

 

Furthermore, our results showed that the historical populations of the declining bumblebee 

species had lower levels of genetic diversity than found within the historical populations of 

co-distributed more stable species. Following conclusion one, this result should not be a 

major problem when the environment is favourable. However, this result was before the 

general drivers of bumblebee decline are believed to have acted (Rasmont & Mersch, 1988, 

Rasmont et al., 1993; Goulson et al., 2008). Due to these stressors, the environment changed 

rapidly which had a major impact on bumblebee populations. Especially on species with 

lower genetic diversity as they will decline first in comparison with species which have 

higher levels of genetic variation in their populations. Indeed, it is known that populations 

with a lower genetic variation will be at risk of decline as they will be more vulnerable to 

changes and stressors in the environment (Reed & Frankham, 2003; Spielman et al., 2004; 

Frankham, 2005; Whitehorn et al., 2009; Zayed, 2009; Goulson et al., 2011). For instance, 

populations which have lower levels of genetic variation on the genes responsible for light 

sensitivity, body size or the eye parameters will be lesser adapted to an environment with 
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lower light intensities. When these populations would be exposed to repeated long periods of 

bad weather, or undergo large shifts in their geographic distribution range to the North due to 

climatic change, or other shifts in their daily rhythm, this could lead to an increased food 

pressure. Indeed, as many flowers accumulate nectar and pollen overnight (Corbet et al., 

1995), a colony which is not able to forage at dawn will have less access to high quality food 

resources. 

 

7.1.2 Implications for conservation of natural bumblebee populations 

What do these results imply for the conservation of bumblebee populations? Goulson et al. 

(2008) and Lozier et al. (2011) stated before that populations at risk of decline could be 

detected by comparing the intra-population genetic diversity levels between different 

bumblebee species. However, from which level of genetic diversity do we say that a 

population is threatened to decline? This critical level of genetic diversity or cut-off value of 

HE above which a population is viable, is not (yet) known. Finding this value is one goal 

within population genetic studies (as discussed in Markert et al., 2010). Although this value 

will again highly depend on the suitability of the environment, our results in chapter 3 show 

that the level of genetic diversity of populations, measured with HE and AR, can give a pretty 

good prediction for which population would crash and deserves the most attention for 

conservation. 

 

Indeed, if one would have performed the same genetic analysis as presented in chapter 3 

around the year 1930, and had made then a prediction of which bumblebee species will be 

more vulnerable for decline and which not, based on the detected levels of both genetic 

diversity parameters (HE and AR), one would have made a good prediction (Figure 7.1). Of 

the five species with low historically genetic diversity levels, meaning HE lower than 0.550 

and AR lower than 3.5, all showed more severe declines after 1950 (Figure 7.1). Of the 6 

species, which one would have predicted to be able to be more resistant to possible future 

declines based on their higher levels of genetic diversity (HE higher than 0.550 and a AR 

higher than 3.5; Figure 7.1), 4 species belong now to the more stable Bombus species. Thus, 

based on the estimated genetic diversity levels one should have made a prediction in 1930 

which determined the fate of 9 out of 11 bumblebee species or 82% correctly (Figure 7.1). In 

general, this result suggests that determination of the genetic diversity is a very good tool to 

predict bumblebee decline. 
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However, knowing the genetic diversity will not always identify which population is 

threatened. Indeed, although not as severe as the declining group, also the more stable species 

underwent distribution declines. Thus, even species with a high genetic diversity could still 

be at risk for extinction. 

 

 

Figure 7.1 Comparison of the mean allelic richness (AR) and expected heterozygosity 
(HE) averaged across loci between the populations of the declining and more stable 
Bombus species within the time period 1918-1926. With indication of the significance 
levels, * = P < 0.05 and ** = P < 0.01. 

 

Bumblebee populations can be restored by enhancing the size and connectivity of 

neighbouring populations as this will result in an increased genetic diversity. The scale on 

which these conservation measures need to be applied depends heavily on the species 

dispersal ability (Goulson et al., 2011). Populations of bumblebee species with a more limited 

dispersal rate will have less chance of successful colonize a neighbouring patch than species 

with higher dispersal ability. This is why we consider that this species dependent dispersal 

range is essential for a correct implementation of mitigation measures. Although some studies 

have indications of different dispersal abilities for species from different subgenera (see 

chapter 1.2.3; Darvill et al., 2010; Goulson et al., 2011), the actual dispersal abilities of the 

reproductive’s of many bumblebee species are not well known. The male or queen dispersal 

range is very difficult to determine. Many attempts of a theoretical calculation of the 

dispersal range are made, and this based on bumblebee nest density, foraging range and 

sibship reconstruction methods (Kraus et al., 2009; Lepais et al., 2010). However, only by 

successfully following a bumblebee one could reliable determine its dispersal range. A 



 

132 
 

 
CHAPTER VII  

  

harmonic radar system for tracking insect movements is already developed (Osborne et al., 

1997; 1999). With this technique foraging distances of workers can be obtained (Osborne et 

al., 1999). However, the range of the radar is limited and can easily be disrupted by landscape 

or other features. Thus, although the harmonic radar is an unique method to measure foraging 

paths and distances of bumblebees, it cannot give the maximum foraging ranges or the 

dispersion distances of reproductive’s (Goulson, 2010). In our opinion this could only be 

accomplished by the use of very small transmitters with gps-technology. Once developed for 

their use in bumblebees, one would gain also much information of bumblebee biology, 

especially of their dispersal, mating and nest behaviour. Thus, it is clear that this kind of 

technology will, aside from dispersal rate, reveal a vast variety of data, important for the 

conservation biologist, to setup effective conservation measures for particular species and 

within certain environments. Thus although improving the genetic diversity of the 

populations of restricted bumblebee species is still a valuable strategy, as bumblebee 

populations with high genetic diversity are less likely to decline or to go locally extinct, in 

our opinion, restoration of genetic diversity should not be the primary goal in conservation. 

 

Indeed, we recommend that future conservation strategies primarily focus on creating more 

suitable habitat for sustaining bumblebee populations. It is often argued that low genetic 

diversity could lead towards an extinction vortex. As described in chapter 1.2.3 small 

bumblebee populations will have a reduced genetic diversity and go extinct, despite the 

presence of an apparent suitable habitat (Reed & Frankham, 2003; Spielman et al., 2004; 

Frankam, 2005; Zayed, 2009; Goulson, 2010). That bumblebee populations can become 

increasingly small and isolated is due to the different drivers of bumblebee decline such as: 

land-use change, use of pesticides, the spread of pathogens, and climate change (as discussed 

in chapter 1.2.2; reviewed in Potts et al., 2010). So, to preserve bumblebee genetic diversity 

and to ensure that both bumblebees species with low and high levels of genetic diversity will 

not go extinct, one must tackle the current drivers of bumblebee decline. 

 

7.1.3 Future perspective: from population genetics to population genomics 

When we screened the historical populations of bumblebee species which exhibit dramatic 

loss of their distribution range, no apparent effect on their level of genetic diversity was 

noticed. This is actually supported by simulation studies (e.g. Lozier & Cameron, 2009). 

However, no loss of alleles at a few microsatellite loci (n = 10) does not actually mean that 
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selection which happened the latest century did not leave traces in the genome of these 

insects. Indeed, the low amount of genetic neutral markers are too scattered and have too few 

power to detect any selection on different QTLs (Ouborg et al., 2010). And thus will also not 

be able to detect any selection on the QTLs which are possible associated with the survival of 

bumblebees after the introduction of the stressors inflicted on bumblebees after 1950. 

However, recent developments in genomic techniques, such as next generation sequencing 

(NGS) and whole genome scans, made genome-wide estimates of functional genetic variation 

possible (Ouborg et al., 2010). This transition of conservation genetics to conservation 

genomics allows the investigation of genes under selection and their interaction with 

environmental conditions. In human genetics, the integration of NGS and automatic SNP 

analysis has revolutionized the search for genes under selection pressure (Oleksyk et al., 

2010; Sturm & Duffy, 2012). In insects, and more specially in bumblebees, these 

technologies have so far been untouched to study population dynamics. The publication of 

the bumblebee genome (expected end 2014) will allow the use of the same innovative 

approaches to investigate how genetic variation on QTLs interacts with the sustainability of a 

species towards different stressors and how this is implicated in decline and extinction of 

bumblebees. 

 

7.2 Selection of markers for MAS: conclusions and future perspectives 

7.2.1 Microsatellites to improve bumblebee populations within a mass-rearing facility 

The microsatellite DNA technology was also used to selectively validate and improve the 

mass-breeding of bumblebees for biological pollination. In order to be able to perform the 

ultimate goal: MAS to improve the pollination service of managed bumblebees, different 

criteria need to be met. Firstly, a trait needs to be selected which has the potential to improve 

the pollination service. In this dissertation two phenotypes associated with the commercial 

potential of this service were chosen: light sensitivity and body size. 

 

The choice of light sensitivity was made because some studies showed that bumblebees also 

have troubles finding their way back to the colony and have a decreased foraging activity 

within the artificial light environment of the greenhouse (Morandin et al., 2001, Blacquière et 

al., 2006; 2007; Roman & Szczęsna, 2008, Johansen et al., 2011). Furthermore, the selection 

of this trait was chosen based on its usefulness in greenhouses. When managed bumblebees 
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are used, there is a chance that some specimens will escape from the greenhouse and interact 

with the native population, which in turn could cause pathogen spillover (Colla et al., 2006; 

Otterstatter & Thomson, 2008). When interbreeding of managed species with wild species is 

still possible, which is the case here with bumblebees, the application of MAS is somewhat 

more difficult. Indeed, escaped reproductives could mate with the reproductive castes of 

neighbouring populations, resulting in (i) the accumulation of an allel or alleles which could 

imply negative fitness effects for the native population on a longer term or (ii) eroding 

genetic diversity of the native population (Potts et al., 2010). Although bumblebee queens 

can be prevented to escape from the greenhouse with the use of a queen lock or a queen 

excluder opening (= a smaller opening of the bumblebee nest which prevent new queens from 

escaping the nest), drones are still able to disperse freely. However, within a greenhouse, the 

use of nets can prevent that a majority of drones are able to escape into the wild (Koide et al., 

2008). These measures are not yet obliged in Europe but could be implemented in a 

greenhouse, like for example in Japan where nets are obliged by law (Koide et al., 2008). 

These nets could also help to keep the with MAS selected bumblebees in the greenhouse. 

Even if some reproductives are still able to escape the greenhouse, the by MAS selected 

allel(es) would give only a selective advantage within the artificial light conditions of a 

greenhouse. Thus, selection for this trait will normally cause no extra problems for the native 

bumblebee populations. 

 

We identified that different bumblebee colonies indeed respond differently in changing light 

conditions and saw that these differences were linked with the critical light sensitivity (CLS) 

of these bees. Therefore, improving CLS of bees could be a good strategy to enhance 

foraging in an artificial light environment or in weak light conditions, and in turn may 

improve the pollination service of bumblebees within greenhouses. 

 

Selection towards an improved CLS is not an easy task. As Kapustjanskij et al. (2007) 

suggested bigger is better, one could select for bigger bees, having better light perception. 

However, a simple morphology-based selection strategy towards bigger bumblebees will not 

necessarily result in more light sensitive bumblebees or better foragers in weaker light 

conditions. Indeed, although we confirmed in chapter 4 that bigger bees had bigger eyes 

within colonies, between colonies this correlation was lost. Colonies containing small 

bumblebees had a better light perception compared to colonies with bigger specimens. Thus, 
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although body size is an important parameter for better light perception, as bigger bumblebee 

workers will be better equipped to capture light, improved vision is not only a consequence of 

improved light perception. Other genetic characteristics like signal transduction will disrupt 

the result of the bumblebee body size based selection for an improved CLS. Indeed, as 

hypothesized in chapter 4, other morphological parameters such as larger photoreceptors 

(rhabdomeres) or genetic parameters like the molecular capturing of photons, signal 

transduction and neuron composition could play a more important role between bumblebee 

families. Thus, a morphological based breeding program selecting for light sensitive bees is 

impossible to perform. For MAS, we can first identify the QTL(s) linked with CLS, which 

actually could lead to an improved CLS. In chapter 5, we identified the Phosrestin-1-like 

gene as the major candidate gene for an improved CLS due to the known phototransduction 

function of Phosrestin-1 (Xiong & Bellen, 2013). By implementing the SSR genetic marker 

linked with this QTL in the breeding program, one can make a more controlled selection 

towards bumblebees with improved CLS. In addition, this result indicates that signal 

transduction could be the factor causing the differences in light sensitivity between the 

bumblebee families observed in chapter 4. 

 

7.2.2 Future perspective: validation of the selected markers for their use in MAS 

The SSR marker that is linked with the Phosrestin-1-like gene could be used in marker-

assisted breeding towards the breeding of bumblebees with an improved CLS. Furthermore, 

also the identified markers at the unique QTLs for drone body mass and body size could be 

used in MAS towards bigger bumblebees. However, before these QTLs could actually be 

used to breed bigger bumblebees or even bigger insects, with the idea to create a possible 

higher product for the food market, these QTLs need to be validated. First, in a more broad 

genetic background, using multiple bumblebee populations and secondly, in populations of 

other insects for their more general use. 

 

7.3 Inbreeding detection within a bumblebee mass-rearing facility: conclusion and 

future perspective 

Furthermore, the microsatellite technology could be used as an additional validation step 

within a mass-rearing facility. The detection of diploid males and their abundance could be a 

very helpful and may even be an essential validation step of the production process within 
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these mass-rearing facilities. Indeed, by detecting for the presence of diploid drones the level 

of inbreeding within this selection system can be monitored. By early detection of inbreeding, 

the outbreak of negative effects can be avoided. However, other techniques such as 

morphometrics and wing landmarks could be an easier, more direct and even cheaper way for 

separating diploid drones from haploid ones, and thus to evaluate the production process of a 

mass-rearing facility. Indeed, an smartphone app which is capable of the identification of 

bumblebee species and male ploidy, based on recognizing wing landmarks on a photo, could 

help in monitoring bumblebees. The data obtained by application of this tool would create a 

huge database which would become valuable for further bumblebee conservation strategies. 

Currently, Dr. De Meulemeester of the Naturalis Center in Leiden (The Netherlands) is under 

supervisor of Prof. Biesmeijer performing this research in two projects: “Better tools for 

identification and monitoring of bees” and “Monitoring trends in wild bee populations based 

on wing shape morphometric”. 
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Supplementary File S1. Phylogenetic tree of 218 species from the genus Bombus, 
estimated from Bayesian analysis of combined sequence data from five gene fragments 
(16S rRNA, opsin, ArgK, EF-1α, and PEPCK). The subgenera are individually colour-
coded and labelled. Values above and below the branches are Bayesian posterior 
probabilities and parsimony bootstrap values, respectively. From Cameron et al. (2007). 
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Supplementary File S2. Phylogenetic tree of 218 species from the genus Bombus. Values 
above and below the branches are Bayesian posterior probabilities and parsimony 
bootstrap values, respectively. NW stands for New World clade and SF for short-faced 
clade. From Cameron et al. (2007). 
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Supplementary File S3. Phylogenetic tree of 218 species from the genus Bombus. Values 
above and below the branches are Bayesian posterior probabilities and parsimony 
bootstrap values, respectively. The outgroups are represented as dashed lines and have 
been shortened for visual purposes. LF stands for long-faced clade. From Cameron et 
al. (2007). 
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SUPPLEMENTARY DATA 

 
  

Supplementary File S5. Distribution, trend of decline and red list status of the different 
Bombus spp. In this table we presented, the distribution before and after 1970, trend of 
decline and red list status of the different Bombus spp. following Peeters and Reemer 
(2003). Species distribution is calculated as the relative areal size = (amount of hour 
blocks a species is found / the total amount of hour blocks checked) *100%, with an 
hour block = 5 x 5 km block. The decline in distribution or trend is calculated by 
Peeters and Reemer (2003) as: (the relative areal size of after 1970 - relative areal size 
before 1970) / relative areal size before 1970 * 100%). 

Distribution in the Netherlands 
Before 1970 1970-2001 Red list status 

Species Area 
size 

Hour 
block 

Area 
size 

Hour 
block Trend 1970-2003 

Widespread / stable 
B. pascuorum 42.2% 373 31.2% 343 -26.2% 
B. hortorum 20.3% 179 16.0% 176 -21.0% 
B. pratorum 23.5% 208 21.6% 238 -8.1% 
B. lapidarius 25.9% 229 16.1% 177 -37.9% 

Widespread / declining 
B. ruderarius 16.4% 145 5.5% 61 -66.2% vulnerable 
B. muscorum 21.0% 186 3.6% 40 -82.8% endangered 
B. veteranus 19.9% 176 1.2% 13 -94.1% endangered 

Restricted /declining 
B. humilis 7.8% 69 1.9% 21 -75.5% endangered 

B. sylvarum 5.3% 47 0.1% 1 -98.2% critically endangered 
B. ruderatus 8.7% 77 0.5% 6 -93.8% critically endangered 

B. subterraneus 2.5% 22 0.0% 0 -100.0% Disappeared 
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Supplementary File S7. Sensitivity analysis of genetic diversity. After removal of 
identified sisters, we conducted a sensitivity analysis of the calculated mean expected 
heterozygosity (HE) for each population of the different Bombus spp. in the time period 
1918-1926, based on more stringent exclusion policies for missing data. From a 
maximum of 5 microsatellite loci with missing values within one specimen towards only 
one locus with missing data. With n = the total number of workers in each exclusion 
step and * = too low number of specimens. 

Maximum microsatellite loci with missing values 
Species Location Year 5 4 3 2 1 

n 161 159 154 139 112 
Widespread / 

stable         
B. hortorum Gelderland 1918 0.697 0.697 0.708 0.688 - * 

Overijsssel 1918 0.763 0.763 0.763 0.767 0.767 
Z-Holland 1923 0.778 0.778 0.765 0.773 0.703 

B. lapidarius Limburg 1918 0.553 0.553 0.553 0.644 0.622 
Overijssel 1918 0.710 0.710 0.710 0.710 0.710 

B. pratorum Overijssel 1918 0.604 0.604 0.604 0.613 0.613 
B. pascuorum Limburg 1918 0.694 0.694 0.694 0.691 0.691 

N-Holland 1924 0.702 0.702 0.659 0.608 0.611 
Overijssel 1918 0.685 0.685 0.685 0.685 0.685 
Gelderland 1925 0.733 0.733 0.733 0.734 0.690 

Total 0.692 0.692 0.687 0.691 0.677 
Restricted / 

declining         
B. humilis Gelderland 1926 0.425 0.425 0.425 0.425 0.372 

Limburg 1918 0.366 0.366 0.366 0.366 0.299 
B. ruderatus Z-Holland 1923 0.543 0.543 0.543 0.509 0.493 

Overijssel 1918 0.669 0.685 0.685 0.594 0.525 
B. subterraneus Overijssel 1925 0.625 0.625 0.625 0.625 0.605 

B. sylvarum Limburg 1918 0.451 0.451 0.451 0.470 0.484 
Limburg 1920 0.458 0.458 0.458 0.458 0.458 
Subtotal 0.508 0.508 0.508 0.492 0.462 

Widespread / 
declining         

B. muscorum Limburg 1918 0.401 0.383 0.383 0.383 0.389 
Overijssel 1918 0.503 0.498 0.498 0.498 0.498 

B. ruderarius Limburg 1918 0.496 0.496 0.496 0.570 0.570 
N-Holland 1924 0.490 0.490 0.490 0.496 0.458 
Overijssel 1918 0.252 0.252 0.252 0.250 0.289 

B. veteranus Limburg 1918 0.382 0.382 0.382 0.364 0.364 
Subtotal 0.421 0.417 0.417 0.430 0.428 

Total 0.466 0.466 0.466 0.464 0.446 
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Supplementary File S8. Estimation of genetic diversity after extra data exclusion steps. 
Recalculations of the genetic diversity after removal of three species (B. subterraneus, B. 
ruderatus and B. lapidarius) and populations with non-amplifications and based on the 
same eight microsatellite loci in each species. 

        AR HE 
Species Location Year n Mean SE Mean SE 
Widespread / 
stable 
B. hortorum Gelderland  1918 8 5.428 0.845 0.720 0.081 

Overijsssel 1918 7 5.515 0.429 0.779 0.025 
Z-Holland 1923 7 5.648 0.468 0.787 0.023 

B. pratorum Overijssel 1918 8 4.945 0.589 0.727 0.044 
B. pascuorum Limburg  1918 9 4.962 0.582 0.694 0.085 

N-Holland 1924 9 4.777 0.692 0.702 0.072 
Overijssel 1918 8 5.035 0.704 0.685 0.089 
Gelderland  1925 7 5.250 0.457 0.733 0.041 

  Total   63 5.195 0.118 0.728 0.014 
Restricted  /  
declining 
B. humilis Gelderland  1926 8 3.546 0.410 0.574 0.078 

Limburg  1918 8 3.182 0.363 0.522 0.072 
B. sylvarum Limburg  1918 6 3.821 0.610 0.601 0.089 

Limburg  1920 5 3.286 0.565 0.589 0.069 
  Subtotal   27 3.459 0.143 0.572 0.017 
Widespread / 
declining 
B. muscorum Limburg  1918 7 3.603 0.640 0.516 0.109 

Overijssel 1918 8 4.360 0.517 0.613 0.078 
B. ruderarius Limburg  1918 7 4.149 0.594 0.620 0.102 

N-Holland 1924 5 3.750 0.697 0.610 0.089 
Overijssel 1918 6 3.663 0.792 0.566 0.107 

B. veteranus Limburg  1918 7 4.153 0.423 0.619 0.064 
  Subtotal   40 3.946 0.128 0.591 0.017 
  Total   67 3.751 0.144 0.583 0.014 
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Supplementary File S10. Comparison of the genetic diversity in historical and recent 
populations of declining and more stable bumblebee species. The data was obtained 
from our study and from the available data on recent populations found in the 
literature. With time periods: ‘historical’ = 1895-1930; and ‘recent ‘= 1975-2010’. 

Bombus species Country 
Sample 

size 
Collection 

time HE SE AR SE Reference 
Declining spp. 

B. humilis Netherlands  16 1918-1926 0.396 0.096 2.717 0.435 This chapter 
B. humilis UK  150 2005 0.460 0.070 4.000 0.340 Connop et al., 2010 

B. muscorum Netherlands  15 1918-1926 0.477 0.107 3.514 0.620 This chapter 
B. muscorum UK  35.5 2003-2005 0.509 0.013 4.010 0.060 Darvill et al., 2010 
B. ruderarius Netherlands  19 1918-1926 0.413 0.106 2.957 0.600 This chapter 
B. ruderatus Netherlands  12 1918-1926 0.606 0.067 3.808 0.475 This chapter 

B. subterraneus Netherlands  5 1918-1926 0.625 0.078 4.111 0.526 This chapter 
B. sylvarum Netherlands  11 1918-1926 0.455 0.110 2.947 0.595 This chapter 
B. sylvarum France  18 2004 0.530 0.090 4.000 0.850 Ellis et al., 2006 
B. sylvarum UK  173 2003-2004 0.390 0.020 3.120 0.100 Ellis et al., 2006 
B. sylvarum UK  150 2005 0.520 0.110 5.570 1.590 Connop et al., 2010 
B. veteranus Belgium  6 1895 0.607 0.062 3.470 0.345 Chapter 2 
B. veteranus Belgium  34 1915 0.577 0.117 3.680 0.626 Chapter 2 
B. veteranus Belgium  18 1923 0.578 0.118 3.710 0.645 Chapter 2 
B. veteranus Netherlands  7 1918-1926 0.636 0.060 4.236 0.388 This chapter 
Stable spp. 
B. hortorum Netherlands  21 1918-1926 0.746 0.045 5.362 0.593 This chapter 
B. hortorum UK  86 2003-2005 0.890 5.700 Goulson et al., 2011 
B. lapidarius Netherlands  12 1918-1926 0.632 0.083 4.302 0.786 This chapter 
B. pascuorum Netherlands  33 1918-1926 0.704 0.036 5.013 0.292 This chapter 
B. pascuorum Netherlands  30.5 1975-1995 0.692 0.036 5.148 0.344 This chapter 
B. pascuorum UK  32 2003-2004 0.520 0.110 7.070 1.240 Ellis et al., 2006 
B. pratorum Netherlands  8 1918-1926 0.671 0.057 4.46 0.603 This chapter 
B. terrestris Poland  238 2008-2009 0.720 0.072* 7.933 2.517* Kraus et al., 2011 

B. terrestris UK  24 1998-2000 0.826  0.019 5.079 0.700 
Schmid-Hempel et 

al., 2007 
B. terrestris Spain  53 2003 0.600 0.080* 4.200 1.600* Kraus et al., 2009 
B. terrestris Germany  337 2004-2005 0.730 0.100* 7.150 2.200* Kraus et al., 2009 
B. jonellus UK  42 2003-2005 0.755 0.071 10.02 1.980 Darvill et al., 2010 

* = SD used instead of SE 
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Supplementary File S11. Distribution maps of the different Bombus species used in 
chapter 4. Distribution maps adapted from IUCN, (2014). In orange = resident; and red 
= extinct. With a) the distribution maps of the widespread more stable species; b) the 
distribution maps of the widespread declining species; and c) the distribution maps of 
the restricted declining species. 
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SUPPLEMENTARY DATA 

 
  

Supplementary File S13. Distribution information of the 100 markers used for 
preliminary linkage mapping. The number of markers on each linkage group (n), the 
size of this linkage group (size LG), and the minimum (Min. d) and maximum (Max. d) 
distances between two markers on each linkage group. 

size LG (cM) n Min. d (cM) Max. d (cM) 
LG01 121.01 6 6.95 22.29 
LG02 125.20 6 8.23 26.05 
LG03 96.35 7 7.18 18.26 
LG04 80.66 4 3.68 25.33 
LG05 102.84 5 12.93 22.95 
LG06 171.70 9 2.72 65.56 
LG07 161.43 8 5.26 49.87 
LG08 91.64 6 2.58 17.91 
LG09 109.48 6 8.30 23.70 
LG10 126.46 7 10.42 28.13 
LG11 116.30 7 12.09 28.72 
LG12 111.39 7 9.78 20.00 
LG13 105.74 5 11.97 22.53 
LG14 73.44 4 7.12 26.03 
LG15 96.55 5 13.22 36.44 
LG16 77.87 3 9.97 40.38 
LG17 83.14 3 17.98 40.55 
LG18 51.01 2 6.01 45.00 
Mean 105.68 5.56 8.69 31.09 
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SUPPLEMENTARY DATA 

 
  

Supplementary File S14. Kolmogorov-Smirnov test of normality for each trait. 

Trait 
Kolmogorov-Smirnova 

Statistic df Sig. 

RC 0.091 87 0.071 
MT_L 0.088 87 0.095 
MT_B 0.102 87 0.026 
Ti_L 0.094 87 0.057 
TI_B 0.053 87 0.200 
Fe_L 0.119 87 0.004 
Fe_B 0.300 87 0.000 
Tr_L 0.074 87 0.200 
Tr_B 0.120 87 0.004 

Tarsus 0.092 87 0.066 
Poot 0.104 87 0.021 
E_L 0.124 87 0.002 
E_B 0.186 87 0.000 
Facet 0.135 87 0.000 
Ocel 0.077 87 0.200 
E_S 0.147 87 0.000 

Omma 0.102 87 0.027 
BLUE 0.271 87 0.000 

UV 0.177 87 0.000 
Weight 0.060 87 0.200 

log_blue 0.174 87 0.000 
log_uv 0.166 87 0.000 
Pc1_E 0.134 87 0.001 
Pc2_E 0.152 87 0.000 
Pc3_E 0.066 87 0.200 
Pc1_S 0.081 87 0.200 
Pc2_S 0.131 87 0.001 
Pc3_S 0.176 87 0.000 
Pc4_S 0.066 87 0.200 
Pc5_S 0.150 87 0.000 
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SUPPLEMENTARY DATA  

  

Supplementary File S16. Principal Component Analysis (PCA) of the different body size 
traits and eye parameters.The eigenvalues and eigenvectors of the PCA are given for: (i) 
the different body size traits and (ii) the eye parameters. 

(i) Principal Component Analysis (PCA): body size parameters 
 
Eigenvalues 
PC Eigenvalues %Variation Cum.%Variation 
1 5.91 53.8 53.8 
2 1.57 14.2 68.0 
3 0.996 9.1 77.1 
4 0.716 6.5 83.6 
5 0.656 6.0 89.5 

 
Eigenvectors 
(Coefficients in the linear combinations of variables making up PC's) 

Variable PC1 PC2 PC3 PC4 PC5 
Radial cell -0.239 -0.179 -0.129 0.783 -0.395 

Mt_L -0.373 -0.085 -0.189 0.053 0.055 
Mt_W -0.362 -0.092 -0.173 -0.205 0.126 
Ti_L -0.395 -0.044 -0.153 -0.043 0.070 
Ti_W -0.346 -0.101 -0.179 -0.313 -0.081 
Fe_L -0.356 -0.049 -0.311 -0.113 -0.055 
Fe_W -0.210 -0.130 0.575 -0.218 -0.681 
Tr_L -0.225 -0.319 0.461 -0.162 0.285 
Tr_W -0.250 -0.104 0.430 0.391 0.516 
Tarsus -0.239 0.635 0.135 0.045 0.005 

Leg -0.237 0.636 0.136 0.029 -0.015 
 

(ii) Principal Component Analysis (PCA): eye parameters 
 
Eigenvalues 
PC Eigenvalues %Variation Cum.%Variation 
1 4.45 74.1 74.1 
2 0.654 10.9 85.0 
3 0.488 8.1 93.2 

 
Eigenvectors 
(Coefficients in the linear combinations of variables making up PC's) 
Variable PC1 PC2 PC3 

E_L -0.458 -0.013 0.118 
E_W -0.456 -0.021 0.113 
Facet -0.325 0.829 -0.319 
MOc -0.388 -0.235 0.521 
E_S -0.453 0.030 0.134 
Om -0.347 -0.506 -0.763 
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SUMMARY  

  

The decline of pollinator species is an emerging threat that is gaining attention worldwide and 

is instigating both ecological and economic concerns. Bumblebees are, as generalist foragers, 

essential pollinators in natural and managed ecosystems. Several hypotheses have been 

proposed to explain the observed declines in bee populations, including pathogen infections, 

pesticides and landscape modifications. Also population genetic aspects will play a role in 

bee declines with genetic threats such as inbreeding and loss of genetic diversity. In order to 

secure pollination services and improve conservation strategies a better understanding of 

genetic factors influencing bumblebee populations is vital. 

 

In this dissertation, we first studied the loss of the pollination service of natural populations 

(in chapter 2 and 3) by focussing on the genetic parameters associated with bumblebee 

decline. To do this, we examined microsatellite data of pin-mounted bumblebee specimens 

sampled from extensive bumblebee collections. Museum collections provided a unique 

opportunity to examine the population structure and the genetic diversity of past populations. 

The use of historical specimens allowed for unique analyses of comparison between genetic 

parameters of past populations and recent populations. Our goals were to examine how 

genetic diversity and inbreeding are correlated with species extinction. In the case-study of B. 

veteranus (chapter 2), we detected low levels of genetic diversity and inbreeding in all 

populations in a time period of three decades (1895-1923) in Belgium. Furthermore, in 

chapter 3, we further investigated the genetic diversity levels of historical bumblebee 

populations. In this case study, we compared the level of genetic diversity of historical 

populations from seven declining Bombus species and four more stable species collected 

between 1918 and 1926 from 6 provinces of the Netherlands. Historical populations of 

declining bumblebee species showed significantly lower genetic diversity than co-distributed 

stable species. These results indicate that inbreeding and low levels of genetic variation were 

already present several decades before the general drivers of bumblebee decline are believed 

to have acted on these bumblebee populations. As a consequence we believe that: (i) 

inbreeding does not directly result in the collapse of populations, (ii) that there was no major 

drop in genetic diversity caused by the general drivers of bumblebee decline in the 

populations of declined bumblebee species, and (iii) that bumblebee species with a low levels 

of genetic diversity were the first to decline. 
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Aside from describing the genetic viability of natural populations, microsatellite analyses 

were also performed in this dissertation to search for genetic markers associated with a 

specific interesting commercial characteristic of bumblebees. In chapter 4 and 5, we used the 

microsatellite technology to identify genes correlated with two phenotypes: the impact of 

light intensity and body size. Before we were able to achieve this, we needed to develop 

bioassays that could distinguish light sensitivity differences between colonies (colony level) 

and between individuals (individual level). In chapter 4 we described the developed bioassays 

and investigated the connection between light sensitivity and foraging behavior. Furthermore, 

we tested if bumblebee body size, weight and morphological parameters of the eye correlated 

with the measured light sensitivity of the workers. We found that the recruitment to forage in 

artificial low light is less impaired in light sensitive colonies and that not only the external 

morphology parameters determine the light sensitivity of bumblebees and their eagerness to 

forage in weak light conditions. Although we confirmed that bigger bees had bigger eyes 

within colonies, between colonies this correlation was lost. Colonies containing small 

bumblebees had a better light perception compared to colonies with bigger specimens. Thus, 

although body size is an important parameter for better light perception, as bigger bumblebee 

workers will be better equipped to capture light, improved vision is not only a consequence of 

improved light perception. Other physiologic-genetic characteristics like signal transduction 

will disrupt the result of the bumblebee body size based selection for an improved critical 

light sensitivity. In chapter 5, we performed a quantitative trait loci (QTL) analysis to search 

for one or more microsatellite marker(s) linked with light sensitivity and body size. By both 

composite interval mapping and multiple QTL model mapping using 135 microsatellite DNA 

markers we identified several QTLs for 19 of the 20 investigated traits in B. terrestris drones. 

Multivariate principal components analysis confirmed these univariate QTLs. For light 

sensitivity, we also identified several candidate genes, with the Phosrestin-1-like gene as a 

primary candidate for its phototransduction function. The QTLs and markers we identified 

here, could be used in marker-assisted breeding to improve selection towards light sensitive 

bumblebees. 

 

Finally, in chapter 6, we show a direct application of the microsatellite technology in 

bumblebee breeding facilities. Microsatellites can be integrated within a bumblebee mass-

breeding to detect diploid drones. The presence of diploid drones can be used as a validation 

of their production process. 
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De achteruitgang van bestuivers is een bedreiging voor het ecosysteem, dat wereldwijd steeds 

meer aandacht krijgt en waarbij de bezorgdheid zowel op ecologisch als op economisch vlak 

toeneemt. Hommels zijn als generalistische bestuivers essentieel in enerzijds de natuurlijke 

en anderzijds ook de antropogene ecosystemen. Verschillende hypotheses zijn vooropgesteld 

om de waargenomen achteruitgang van hommelpopulaties te verklaren, waaronder: 

pathogeen infecties, gebruik van pesticiden en veranderingen in het landschap. Ook populatie 

genetische aspecten spelen een rol in de waargenomen achteruitgang van hommels. Inteelt en 

verlies aan genetische diversiteit zijn de grootste genetische bedreigingen. Met het oog op het 

behoud van de natuurlijke en commerciële bestuivingdiensten en het verbeteren van de 

huidige conserveringsstrategieën is het beter begrijpen van de impact van genetische factoren 

op hommelpopulaties van levensbelang. 

 

Als eerste, in hoofdstuk 2 en 3 van dit proefschrift, werd het verlies aan natuurlijke 

bestuiving van hommelpopulaties onderzocht door de focus te leggen op de hommel 

achteruitgang en genetische parameters die hiermee verbonden zijn. Dit werd onderzocht via 

het bemonsteren van opgepinde hommelspecimens uit uitgebreide historische 

hommelcollecties en het genotyperen ervan met behulp van microsatelliet DNA merkers. 

Deze museum collecties bieden een unieke gelegenheid om de populatie structuur en de 

genetische diversiteit van oude hommel populaties te onderzoeken. Door middel van deze 

historische stalen is het nu mogelijk om de genetische parameters van oude populaties te 

vergelijken met deze verkregen uit meer recente populatie teruggevonden in de literatuur. 

Onze doelstellingen hierbij waren:  onderzoeken hoe de genetische diversiteit en inteelt 

gecorreleerd zijn met het uitsterven van hommels. In de studie van B. veteranus in België 

(hoofdstuk 2), detecteerden we lage niveaus aan genetische diversiteit en inteelt in alle 

populaties over een periode van dertig jaar (1895-1923). In hoofdstuk 3 zette het onderzoek 

zich verder door de genetische diversiteit binnen historische hommelpopulaties na te gaan. In 

dit hoofdstuk, vergeleken we de genetische diversiteit van de historische populaties van 

zeven achteruitgaande Bombus soorten en vier stabieler soorten verzameld tussen 1918 en 

1926 in 6 provincies van Nederland. De historische populaties van achteruitgaande 

hommelsoorten vertoonden een significant lagere genetische diversiteit dan stabiele soorten 

met eenzelfde distributie. Deze resultaten geven aan dat inteelt en lage genetische variatie 

reeds aanwezig waren enkele decennia voordat de algemene oorzaken van 

hommelachteruitgang ook maar konden gehandeld hebben op deze hommelpopulaties. 



 

195 
 

 
SAMENVATTING 

 
  

Bijgevolg besluiten we dat: (i) inteelt niet direct leidt tot de ineenstorting van populaties, (ii) 

er geen grote daling in genetische diversiteit veroorzaakt werd in populaties van dalende 

hommelsoorten door de algemene oorzaken van hommel achteruitgang, en (iii) 

hommelsoorten met lage niveaus aan genetische diversiteit als eerste een achteruitgang 

vertonen. 

 

Naast het beschrijven van de genetische levensvatbaarheid van natuurlijke populaties, werden 

als tweede aspect in dit doctoraat ook microsatelliet analyses uitgevoerd voor het 

identificeren van genetische merkers geassocieerd met een specifiek commercieel 

interessante eigenschap van hommels. In hoofdstuk 4 en 5, hebben we gebruik gemaakt van 

de microsatelliet technologie om genen gecorreleerd met twee fenotypes te identificeren: de 

invloed van lichtintensiteit en lichaamsgrootte. Hiervoor werden ten eerste bioassays 

ontwikkeld die verschillen in lichtgevoeligheid tussen kolonies (kolonie-niveau) en tussen 

individuen (individueel niveau) kunnen onderscheiden. In hoofdstuk 4 beschreven we de 

ontwikkelde bioassays en onderzochten we het verband tussen lichtgevoeligheid en 

foerageergedrag. Verder werd getest of de hommel lichaamslengte, gewicht en morfologische 

parameters van het oog correleerden met de gemeten lichtgevoeligheid van de foerageerders. 

In dit hoofdstuk hebben we vastgesteld dat het uitsturen van werksters om te gaan foerageren 

in kunstmatig lage licht condities minder wordt aangetast in lichtgevoelige kolonies, en dat 

niet alleen de externe morfologische parameters de lichtgevoeligheid van hommels en hun 

gretigheid om te foerageren in zwakke lichtomstandigheden bepalen. Inderdaad, binnen 

kolonies bevestigden we dat grotere hommels grotere ogen hadden, maar tussen kolonies was 

deze  correlatie verdwenen. Sommige kolonies met kleinere hommels hadden een betere licht 

perceptie dan kolonies met grotere exemplaren. Desondanks lichaamslengte een belangrijke 

parameter voor een betere licht perceptie is, doordat grotere hommels beter uitgerust zijn om 

licht op te vangen, is een verbeterd zicht niet alleen een gevolg van een verbeterde 

lichtperceptie. Ook andere fysiologisch-genetische processen, zoals signaaltransductie, zullen 

het resultaat van een op lichaamsgrootte gebaseerde selectie voor een verbeterde kritische 

lichtgevoelig verstoren. In hoofdstuk 5 werd een ‘quantitative trait loci’ (QTL) analyse 

uitgevoerd waarbij één of meer microsatelliet merker(s) gekoppeld aan lichtgevoeligheid en 

lichaamsgrootte werden gezocht. Met gebruik van 135 microsatelliet DNA merkers in B. 

terrestris darren werden zowel door de ‘composite interval mapping’ en de ‘multiple QTL 

model mapping’ meerdere QTLs voor 19 van de 20 onderzochte kenmerken geïdentificeerd. 
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Multivariate principale-componentenanalyse bevestigde deze univariate QTLs. Voor 

lichtgevoeligheid werden ook verscheidene kandidaat-genen geïdentificeerd, met de 

‘Phosrestin-1-like’ gen als primaire kandidaat door haar fototransductie functie. Ook andere 

QTLs en merkers die hier geïdentificeerd werden, kunnen worden gebruikt in de selectie naar 

lichtgevoelige hommels via ‘marker-assited breeding’. 

 

Tenslotte beschrijven we in hoofdstuk 6 een directe toepassing van de microsatelliet 

technologie in hommelkwekerijen. De microsatelliet technologie kan worden geïntegreerd 

binnen een hommel massakwekerij voor de detectie van diploïde darren. De aanwezigheid 

van deze diploïde darren kan gebruikt worden ter validatie van het productieproces. 
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