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Chapter 1

Introduction

One of the most conspicuous properties of nature is the great diversity of size or

length scales in the structures of the world [1]. An ocean, for example, has currents

that persist for thousands of kilometers. It also has waves of less than a centime-

ter to several meters. At far more finer resolution, sea water must be regarded as

an aggregate of molecules whose characteristic scale of length is roughly 10−10m.

Thereby, every scale exhibits particular properties and phenomena which are de-

scribed by totally different physical concepts.

This example illustrates a fundamental issue in all branches of physics, namely,

to find the appropriate degrees-of-freedom. It is obvious that a fully microscopic

model of a physical structure can contain the correct constituents and dynam-

ics but, frequently, it will fail in describing phenomena extending over a larger

scale. Therefore, it is often much more efficient to identify some global, “non-

fundamental” constituents on this larger scale. Of course, it is of crucial impor-

tance to understand the connections between the various scales and the appro-

priate degrees-of-freedom at every level. Only then, the physical problem can be

identified as fully understood.

In the area of nuclear and subatomic physics, one is confronted with a similar

situation as the one sketched above, in the sense that the fundamental constituents

of matter do not represent themselves as the proper degrees-of-freedom to describe

the richness of phenomena which one is facing in the subatomic world.

In the sixties, one realized that the hundreds of hadrons that had been identified

experimentally, did not represent the fundamental constituents of matter. As it
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turned out, hadrons contained an internal structure and could be classified on the

basis of a restricted set of new particles at a lower level. These findings marked the

start of the development of a totally new description of the constituents of matter

and the strong interaction in terms of quark and gluon degrees-of-freedom. Since

then, the fundamental equations for the description of the dynamics of quarks and

gluons have been summarized in a concise theory which is known as Quantum

Chromo Dynamics (QCD).

In hadronic physics, the length scale is mostly expressed as an energy scale. For

very high energies in the multi-GeV regime, corresponding to circumstances which

can only be reached in a few highly specialized facilities in the world, the QCD

Lagrangian can be solved perturbatively and describes the behavior of the (asymp-

totically free) quarks and gluons perfectly. On the other hand, at lower energies,

which corresponds to the world we live in, the strong coupling constant becomes

too large for ordinary perturbative techniques to be applicable and it becomes a far

from trivial task to solve the basic equations of QCD theory. The increasing strong

coupling constant by decreasing energies is also responsible for the fact that, at this

level, individual quarks and gluons cannot be revealed anymore. There are strong

indications that only well defined conglomerates of quarks and gluons can survive

in nature. This observation is coined as the ”confinement principle”. It explains

why nature presents itself in terms of hadrons like protons, neutrons and pions

although they are not the basic constituents of matter.

Summarizing, it is well established that QCD is at the basis of the composite

structure of the hadrons, but it turns out that in many cases QCD does not provide

the appropriate degrees-of-freedom to describe the properties of hadronic matter

at a larger scale. For example, the concept of structureless hadrons turns out to be

much more efficient in describing the properties of nuclei. At intermediate ener-

gies, though, some of the properties of the hadrons are surprisingly well explained

in terms of constituent quarks without taking explicitly the gluons into account.

The idea of multiple scales in nuclear physics is made clear in Fig. 1.1. At low

energies in the MeV regime, hadrons can be treated as structureless particles. At

medium energies, part of the substructure of the hadrons is revealed and the con-

cept of constituent quarks turns out to be effective for understanding their major

properties (like magnetic moments e.g.). Upon further decreasing of the length
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Figure 1.1 A proton and a kaon at different energy (or length) scales. At low energy, the
hadrons are structureless. By increasing energy, the constituent quarks are revealed and at
high energies, the full QCD dynamics in terms of quarks and gluons is observed.

scale, the full QCD dynamics and the partonic nature of hadronic matter becomes

accessible.

It is an intellectual challenge for humanity, though, to fully understand the

mechanisms that govern the physics of subatomic matter as it presents itself in

our every-day world. Thereby, it is essential to bridge the gap between nuclear

physics, where hadrons are the basic degrees-of-freedom and the QCD theory of

quarks and gluons. At present, it is far from being fully understood what kind of

mechanisms make quarks and gluons to create the hadrons as they are observed.

What is the nature and the driving mechanisms of the “phase transition” between

those different scales?

It speaks for itself that to gain deeper insight into the structure of the nucleon it

is essential to fully understand its excited states. After all, the excitation spectrum

of the nucleon reflects its underlying structure and must contain in some way a

signature stemming from the constituents at a lower level. Information about the

nucleon resonances can be gathered by a rich variety of experiments. Thereby, a



4

general principle is to transfer an amount of energy to the nucleon by means of a

hadronic or electromagnetic probe. Due to this energy-momentum transfer, the nu-

cleonic system is left into one of its excited states which eventually decays into a set

of final particles. In the plethora of experiments, the ones which employ an electro-

magnetic probe take advantage of the fact that to date the electromagnetic coupling

to a nucleon is better understood than its hadronic counterpart. At present, high-

duty electron and photon facilities like CEBAF, ELSA, MAMI, SPring-8, GRAAL,

LEGS, MIT-Bates. . . provide data for electromagnetically induced reactions on the

nucleon with unprecedented accuracy. One of the major challenges for the field is

extracting from those data reliable information about the properties of resonances,

in an as model independent fashion as possible.

Over the last few decades, a substantial amount of information concerning the

spectrum of the nucleon has been gathered. Most of this knowledge has been ex-

tracted from pion induced and pion production reactions. Since long, however, it

has been realized that pionic reactions may be too restrictive with regard to the

specific type of intermediate resonant states which can be excited. This assumption

is supported by recent (constituent) quark model calculations [2–5] predicting far

more excited states than observed in pion production experiments. This observa-

tion is known as the “missing resonance” phenomenon in medium energy physics.

A fundamental question which awaits further investigations is whether it is possi-

ble to observe those “missing resonances” in decay channels which do not involve

a pion or whether there is something seriously wrong with the present (constituent)

quark models as a basis for our understanding of the structure of hadrons.

Reactions, which have internationally received a lot of attention in recent years,

are photoproduction reactions that involve “open” and “closed” strangeness in the

final channel. It is believed that the occurrence of a strange ss quark pair in the

reaction dynamics, in addition to the presence of up and down quarks, can shed

a new light on our understanding of the spectrum and the underlying dynam-

ics of hadrons. Moreover, quark models predict appreciable decay of some of

the missing resonances into the strange channels [4]. All this makes strangeness

production a very promising field. One of the reactions involving strangeness in

the final channel is the electromagnetic production of kaons, in brief denoted as

p(γ, K)Y with Y = Λ, Σ. The theoretical modeling of photon and electron induced
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open-strangeness production in the resonance region (i.e. photon lab energies from

threshold up to 2 GeV) constitutes the subject of this thesis.

The modeling of kaon photoproduction processes started back in the sixties by

the pioneering work of Kuo [6] and Thom [7]. This work marked the start of a long

series of theoretical efforts in this field [8–16]. The earliest works clearly lacked

the presence of a reliable database. In those days, pioneering kaon photoproduc-

tion experiments were performed at Bonn, Tokyo, Cornell and CalTech [17–22] but

the experimental facilities did only cover a limited energy range above the kaon

production threshold. To make matters even worse, the accuracy of the measure-

ments suffered from the very low counting rates, reflecting cross sections of the

order of microbarns, compared to for example π photoproduction which are char-

acterized by cross sections in the milibarn range. One had to wait until 1998, when

the SAPHIR collaboration at Bonn [23, 24] released the first extensive and accurate

database for all three γp → K+Λ, K+Σ0 and K0Σ+ reactions. The results of this ex-

periment clearly triggered renewed interest at various theoretical groups [25–32].

In general, the theoretical description of meson photoproduction goes along

two major paths. On one hand, there are the parton based models. Thereby, a (con-

stituent) quark model is at the basis of calculations of the reaction dynamics [33–35].

The partonic constituents can also be taken into account along the lines proposed

by Regge theory [16] which is a high energy theory or in chiral models which are

a low energy approximation of the QCD formalism [36, 37]. The problem can also

be tackled starting from purely hadronic degrees-of-freedom. In such an approach,

the hadrons are treated as effective particles with specific properties [13, 27]. From

this dual approach, it is hoped that one can reach a deeper level of understanding of

the “phase transition” between the low and high energy description of subatomic

matter.

This work falls apart in two major parts which closely follow this twofold way.

In Chaps. 2-4, the starting point for modeling p(γ, K)Y and p(e, e ′K)Y reactions is

a description in terms of hadronic degrees-of-freedom. This type of description is

commonly referred to as the ”isobar model”. Despite the long history and the large

amount of both experimental and theoretical efforts, a complete understanding of

the p(γ, K)Y reaction mechanisms in such a model remains elusive. One of the

major reasons for this rather limited knowledge is that the reaction is fully located
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in the so called third resonance region. From a kinematic point of view, there are

more than twenty resonances as likely candidates to participate in the reaction. A

number of those resonances is only poorly characterized. Thereby, it is believed

that they all have large widths of hundreds of MeV, resulting in a broad energy

smearing of every state. This complicates the theoretical description since various

resonances overlap in the same energy region, resulting in an erratic interference

pattern. In that respect, in processes like p(γ, π)N or p(γ, η)p near threshold, one

does not face similar difficulties since their reaction dynamics is dominated by a

single (isolated) resonance.

In this work we have tried to identify the most important resonance contribu-

tions in the p(γ, K)Y reaction dynamics. Thereby, special attention is paid to the

issue of the missing resonances and there is looked for signals of such states. By

determining the various resonance contributions, one can extract values for the

coupling constants. These quantities, which express the strength of each resonance

in the process, can be compared to quark model predictions.

Apart form a limited knowledge with respect to the various resonance con-

tributions, also the description of the non-resonant, so called background, dia-

grams poses a serious challenge to models which aim at describing p(γ, K)Y and

p(e, e ′K)Y processes. It turns out that some model dependence in determining

these background contributions cannot be avoided. In this work, a profound study

of the issue of the background terms is performed. Various possibilities to parame-

terize this part are presented and consequences for model predictions and extracted

parameters are explored.

In addition to an isobar description, Chap. 5 collects the results of a Regge the-

ory based model for p(γ, K)Y and p(e, e ′K)Y processes. Regge theory has a rich

history going back to the late fifties and has proven to be a successful and efficient

approach for understanding a variety of high energy reactions involving hadronic

and electromagnetic probes. The basic idea here, is not to start from individual

hadronic particles as key players in the reaction dynamics, but, rather start from

classes of particles, called trajectories, with some general properties determined

by partonic degrees-of-freedom. In that respect, Regge theory can constitute a di-

rect bridge between the hadronic and partonic picture of certain processes. The

presented Regge model is known to provide an excellent description of the high
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energy p(γ, K)Y data at forward angles [16, 38, 39]. In this work, we will mainly

concentrate on possible extensions of Regge based models into the resonance re-

gion.

For the sake of improving the general readability of this work, the more tech-

nical aspects with regard to the isobar and Regge model, have been collected in a

series of appendixes.





Chapter 2

Isobar Model for KY Production

In this chapter, we give an outline of the isobar model that will be used to describe

and interpret the strangeness photo- and electroproduction processes. In Sec. 2.1,

we concentrate on the Lagrangian formalism which is at the basis of the isobar

model. The issue of gauge invariance is addressed in Sec. 2.2. An important part

of this work is dedicated to the treatment of the background contributions in the

process. We sketch the main ideas of this issue in Sec. 2.3. Finally, in Sec. 2.4 we

come to a general description of the reaction dynamics in the isobar model.

2.1 Lagrangian Formalism

In an isobar model, the physical degrees-of-freedom are the hadrons and their ex-

cited states. In such a framework, meson photoproduction reactions are modeled

with the aid of effective Lagrangians. Every (intermediate) particle in the reac-

tion dynamics is treated as an effective field with its own characteristics like mass,

photocoupling amplitudes and strong decay widths. To calculate the reaction am-

plitude for a given process, the dominant Feynman diagrams have to be identified.

In an initial step, only the first order terms are taken into account. Those terms,

referred to as the “tree level”, only contain diagrams as collected in Fig. 2.1 and do

not introduce additional loops. Obviously, this approximation can only be a first

step towards developing a more complete description of the reaction. An impor-

tant drawback is that final state interaction effects, generated through the rescatter-

ing of the final state particles, are not taken into account in those first order terms.
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Figure 2.1 Diagrams contributing to the p(γ,K+)Λ process at tree level. The upper row
corresponds to the Born terms in which a proton is exchanged in the s-channel, a Λ or
Σ0 in the u-channel and a K+ in the t-channel. The lower row shows the corresponding
diagrams with the exchange of an excited particle or resonance. Analogous diagrams exist
for the other isospin channels.

Rescattering contributions such as γp → πN∗ → KY are of second order and can

for example be handled in a full coupled-channel analysis. Recently, Chiang et al.
estimated the effects of coupled-channel mechanisms on the p (γ, K+) Λ cross sec-

tions of the order of 20% [28]. Admittedly, this is a substantial effect. However,

apart from the uncertainties inherent to coupled-channel approaches, such as un-

known phase shifts and off-shell rescattering ambiguities, these results indicate that

tree level diagrams constitute the major part of the p(γ, K+)Λ reaction dynamics.

In this work, we will show that even in a tree level description of p(γ, K)Y pro-

cesses, a reliable extraction of resonance parameters is far from evident and subject

to uncertainties. Therefore, we believe that, in addition to directing efforts towards

dealing with the coupled-channel final state interaction effects, a proper treatment

and understanding of the first order tree level terms is mandatory.

In this light, we have restricted ourselves to a tree level description of the re-

action and only diagrams of the type as shown in Fig. 2.1 (for the case of the

p (γ, K+) Λ reaction) are taken into account. To evaluate these diagrams, one can

rely on an effective field theory which determines the structure of the propaga-

tors and the vertices. The major ingredients of this theory are outlined in detail in
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App. A. For the propagators of the spin-1/2 baryons, pseudo-scalar mesons and

(axial) vector mesons, the standard expressions are used. For the spin-3/2 particles,

the Rarita-Schwinger form for the propagator is adopted. For the interaction La-

grangians, describing the coupling of the particles, there is some ambiguity with re-

spect to the structure of the KYN vertex in the sense that one can make use of either

pseudo-scalar or pseudo-vector coupling (or, a combination of both). For the kaon

photoproduction case, this issue has been studied by several authors [26, 40, 41],

but neither of the two possible schemes has as yet been identified as favorable. All

results reported in this work are obtained with the pseudo-scalar option.

The interaction Lagrangians depend on an effective coupling, determining the

strength of the corresponding underlying interaction. In an effective field theory,

the coupling constants for each of the individual resonances are not determined

by the theory itself. They are treated as free parameters and must be extracted

by performing a global fit of the model calculations to the available data base. In

a second step, these values can be compared to quark model predictions [2, 4, 5,

42], although the effects of final state interactions, which are expected to be partly

absorbed in the effective couplings, may somehow obscure the results. Throughout

this work, we will compare our model predictions to the SAPHIR data base [23,24]

to determine the vertex couplings. When performing a global fit to N data points,

the optimum set of coupling constants is the one that produces the lowest value for

χ2, which is defined in the standard manner:

χ2 =
1

N

N∑

i

[Xi − Yi (a1, . . . an)]2

σ2
Xi

. (2.1)

Here, Xi are the measured observables, σ2
Xi

the corresponding standard deviations

and Yi (a1, . . . an) the theoretical prediction for the variables Xi. The aj’s denote

the parameters of the theory, being coupling constants and cutoff masses. Apart

from the two Born term coupling constants gK+Λp and gK+Σ0p, all the extracted res-

onance (R) parameters GR are a combination of a photocoupling (sometimes called

a magnetic transition moment) and a strong hadronic coupling. A description of

the various types of resonance parameters GR, their normalization and their con-

nection to the Lagrangian structure is given in App. A. The technical details of the

χ2 minimization procedure and some related numerical problems are postponed to

App. B.
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The effective Lagrangians of the hadronic vertices describe point-like interac-

tions. To account for the finite extension of the hadrons at the strong vertices, it is a

common procedure to introduce phenomenological form factors [43]. In this work,

these form factors take on a dipole form:

Fx (Λ) =
Λ4

Λ4 + (x − m2
x)

2
(x = s, t, u) , (2.2)

where x represents the off-shell momentum squared at the vertex. Λ is the cutoff

value which can be interpreted as a short-distance scale of the effective theory. We

note that there is some arbitrariness in the functional form of the form factor. In

order to minimize the number of free parameters, we adopt one cutoff mass Λ for

all the Born diagrams (upper row of Fig. 2.1) and one global cutoff parameters for

all the resonance exchange terms (lower row of Fig. 2.1).

2.2 Gauge Invariance

A major implication of introducing hadronic form factors is that gauge invariance

of the amplitude is broken at the level of the Born terms. Gauge invariance cor-

responds to charge conservation and consequently represents a fundamental sym-

metry of any theory dealing with electromagnetic interactions. This reflects itself

in a strict relation between the amplitudes which involve an electric coupling. For

the Born terms and the p(γ, K+)Λ case, those amplitudes with an electric coupling

part read:

εµM
µ
s−electric = εµegK+ΛpuΛγ5

6 p+ 6 k + mp

s − m2
p

γµup , (2.3a)

εµM
µ
t = εµegK+ΛpuΛ

2p
µ
K − kµ

t − m2
K

γ5up . (2.3b)

Here, pµ, kµ and p
µ
K are the four momenta of the proton, photon and kaon, respec-

tively. Further, εµ is the polarization vector of the photon and up and uΛ are the

spinors of the proton and Λ-hyperon. The Lorentz invariant Mandelstam variables

are defined as:

s = (p + k)2 , t = (pK − k)2 , u = (pΛ − k)2 . (2.4)
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Note that for the other isospin channels similar electric coupling amplitudes exist

as those given in Eq. (2.3), although they can appear in other Born amplitudes. In

the n(γ, K+)Σ− case, for example, the two amplitudes which contain an electric

coupling emerge in the t- and u-channel.

To be gauge invariant, the total amplitude has to fulfill the Lorentz condition:

kµMµ = 0 . (2.5)

Using the Dirac equation, it is easily proven that for on-shell external particles the

combination of both amplitudes in (2.3) vanishes in the contraction with kµ. How-

ever, this will no longer be the case if the amplitudes of Eqs. (2.3a) and (2.3b) are

modified by Fs(Λ) and Ft(Λ) as defined in Eq. (2.2), respectively. Note that the (ax-

ial) vector meson and resonance exchange terms, which are characterized by the

electromagnetic interaction Lagrangians of the type (A.6), (A.7), (A.11) and (A.14),

are gauge invariant by construction. Consequently, the gauge invariance of those

terms is not effected through the introduction of form factors.

As suggested by Haberzettl, the gauge invariance of the Born terms can be re-

stored by adding extra contact terms [44]. Those contact terms, which introduce a

new form factor F̂, are determined in such a manner that the gauge violating terms

are exactly canceled. For the p(γ, K+)Λ case these terms read:

εµM
µ
contact = εµegK+ΛpuΛγ5

[
2pµ+ 6 kγµ

s − m2
p

(
F̂ − Fs

)

+
2p

µ
K

t − m2
K

(
F̂ − Ft

)]
up . (2.6)

This contact term indeed cancels the gauge violating terms and eventually results in

a modification of all electric terms with the same form factor F̂. With regard to the

functional form of the additional form factor F̂, Haberzettl argued that this form

factor is acting on terms of different channels (on s- and t-channel terms, in the

p(γ, K+)Λ case) and therefore, he proposed a linear combination of the form [45]:

F̂ = F̂H ≡ asFs (Λ) + atFt (Λ) + auFu (Λ) . (2.7)

The ax coefficients have to satisfy the relation as + at + au = 1, in order to produce

the correct infrared or soft photon limit (k → 0).
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Recently, Davidson and Workman criticized the functional form for F̂ of Eq. (2.7)

[46]. They argued that after introducing a form factor F̂H of the type proposed, the

contact term of Eq. (2.6) contains poles and, although these poles are outside the

physical region of the process, the term cannot be considered as a contact term.

Indeed to be a contact term, F̂ has to fulfill the conditions:

F̂ = Fs if: s = m2
p , (2.8a)

F̂ = Ft if: t = m2
K , (2.8b)

to counterbalance the poles. It is obvious that with the prescription of Eq. (2.7),

both conditions can not be simultaneously met, except in the soft photon limit. An

alternative recipe, that fulfills the conditions (2.8) by construction, was suggested

by Davidson and Workman and reads [46]:

F̂ = F̂DW ≡ Fs (Λ) + Ft (Λ) − Fs (Λ) Ft (Λ) . (2.9)

Unless specified otherwise, in the forthcoming numerical calculations we have

adopted this gauge restoration procedure by Davidson and Workman.

2.3 Background Contributions

2.3.1 SU(3)-flavor Symmetry

When constructing qqq and qq states, where the q can be either an up, down or

strange quark, one is left with 27 (= 33) possibilities to obtain a (ground state) baryon

and 9 (= 32) possibilities to construct a (ground state) meson. Those mixed flavor

states are described by the SU(3) symmetry group. According to this flavor sym-

metry, the two sets that represent the baryons and the mesons, can be decomposed

in irreducible multiplets. For the 27 states in the baryon set, the reduction becomes:

[10] ⊕ [8]D ⊕ [8]F ⊕ [1]. Here, a distinction is made between the symmetric (D) and

anti-symmetric (F) octet. For the 9 mesons, the reduction goes as: [8]⊕ [1]. The octet

and singlet of the low lying pseudo-scalar mesons and the octet of the physical spin-

1/2 baryons are schematically depicted in Fig. 2.2. The relevant quantum numbers

that organize these multiplets are the isospin projection I3 and the strangeness quan-

tum number S. Alternatively, the S quantum number can be replaced by the hyper
charge Y , which is defined as Y = S + B, with B the baryon number.
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Figure 2.2 The spin-1/2 baryon octet and the pseudo-scalar nonet as organized by SU(3)-
flavor symmetry. The particles are depicted according to their isospin projection I3 and
hyper charge Y .

The SU(3) symmetry, governing the baryon and meson multiplets, can be ex-

ploited to establish relations between the coupling constants that connect the par-

ticles of the different sets. As such, these SU(3) relations will permit to connect the

coupling constants of the up-down (πN) sector, which are mostly very well deter-

mined, to the coupling constants of the strange sector. Following de Swart, who

made an extensive study of this topic in Ref. [47], one can derive the relations:

gKΛN = −
1√
3

(3 − 2αD) gπNN , (2.10a)

gKΣN = (2αD − 1) gπNN . (2.10b)

Here, αD is the fraction of symmetric coupling in the πNN vertex. To define this

quantity, is important to note that the mathematical decomposition of the 27 baryon

states into the irreducible multiplets, does not completely correspond with the phys-
ically observed particles. For example, the physical JP = 1/2+ baryon octet, given

in Fig. 2.2, is conceived as a linear combination of the two octets [8]D and [8]F. This

composite nature of the physical particles is also reflected in the meson baryon cou-

plings. The degree of mixing is expressed by the quantity αD which is determined

to be 0.644 [48]. With the experimental knowledge of g2
πNN/4π = 14.4, the coupling
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constants gK+Λp and gK+Σ0p are in principle nailed down through Eq. (2.10).

Since the substantial mass difference between the mass of the proton (mp =

938.3 MeV) and the Λ (mΛ = 1115.7 MeV), which essentially originate from inter-

changing an up into a strange quark, it is well known that the SU(3)-flavor symmetry

is broken and the relations (2.10) are not exact. However, it is not unambiguously

determined how to define a scale parameter for this symmetry breaking and how

to implement this breaking in the coupling constants. Nevertheless, it is commonly

assumed that a symmetry breaking of 20% at the level of the coupling constants is

reasonable. With this 20% deviation from the exact SU(3) predictions, the following

ranges for the gK+Λp and gK+Σ0p emerge:

−4.5 ≤ gK+Λp/
√

4π ≤ −3.0 , (2.11a)

0.9 ≤ gK+Σ0p/
√

4π ≤ 1.3 . (2.11b)

2.3.2 Background Models

In calculating the contributions from the Born diagrams to the p(γ, K)Y cross sec-

tions, the gK+Λp and gK+Σ0p coupling constants are the only input parameters. One

of the striking observations when dealing with the p(γ, K)Y processes in terms of

hadronic degrees-of-freedom, is that these Born terms on their own, calculated with

values in the ranges of Eq. (2.11), give rise to cross section values which largely

overshoot the data. This becomes clear in Fig.2.3 where the computed total cross

sections are plotted in a naive model that only retains point-like (this means be-

fore introducing hadronic form factors) Born terms in the reaction process. It is

clear that one encounters here a severe problem. Reasonable SU(3) predictions for

the coupling constants in the Born terms fail completely when they are compared

with the experimental observations. It has to be stressed that Born terms on their

own cannot be expected to be responsible for an entire reaction amplitude since

they have no imaginary part. On the other hand, the deviation between the cal-

culated strength stemming from the Born terms and the data is so dramatic that it

stands beyond doubt that the introduction of mechanisms that can reduce this Born

strength to a more realistic level is of primary concern to any model which aims at

providing a realistic description of p(γ, K)Y processes. Here, we will present four

plausible schemes, coined models A, B, C and D, that try to accomplish the goal of

properly counterbalancing the Born strength.
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Figure 2.3 The total cross sections for the three strangeness photoproduction processes off
the proton as a function of the photon lab energy. The cross sections are obtained in a model
which solely includes Born terms in the reaction dynamics and introduces no hadronic
form factors. For the solid line, the exact SU(3) predictions for gK+Λp and gK+Σ0p are used
while for the dashed line, the under limit values of Eq. (2.11) are taken. The data are from
Refs. [23, 24].



2.3 Background Contributions 18

0

0.25

0.5

0.75

1

1000 1500 2000 2500

0

0.25

0.5

0.75

1

1000 1500 2000 2500

0

0.25

0.5

0.75

1

1000 1500 2000 2500

0

0.25

0.5

0.75

1

1000 1500 2000 2500

0

0.25

0.5

0.75

1

1000 1500 2000 2500

Fs
Ft
Fu

cos θ = 0.9

cos θ = 0.9

cos θ = 0

F
x 

(Λ
)

cos θ = 0

cos θ = - 0.9

ωlab (MeV)

cos θ = - 0.9

ωlab (MeV)

0

0.25

0.5

0.75

1

1000 1500 2000 2500

Figure 2.4 The energy dependence of the hadronic form factors for three different kaon
center-of-mass angles. The left panels correspond with a cutoff mass Λ = 0.8 GeV, for the
right panels a value of Λ = 1.8 GeV is used. The solid, dashed and dotted curves refer to
the form factor in the s-, t- and u-channel, respectively.

• Model A: The introduction of hadronic form factors in an effective field the-

ory is motivated by the argument that the finite extension of the particles at

the hadronic vertex is not taken into account. As such, form factors result

in a purely phenomenological masking of the short-range effects of the in-

teraction. The functional form of the form factors is rather arbitrary, but the

global effect should always be a smoothing of the high energy behavior of

the theory. The energy dependence of the (dipole) hadronic form factors in

the three different Born diagrams is given in Fig. 2.4. It is clear that the intro-

duction of hadronic form factors results in a “damping” of bare amplitudes.

The scale of reduction depends to a large extent on the adopted value for the

cutoff mass. This idea is also made clear in Fig. 2.4. For a soft form factor

with a Λ = 0.8 GeV, the reduction is much more pronounced than for the hard
form factor where Λ = 1.8 GeV. So, it is obvious that hadronic form factors are
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able to reduce the strength stemming from the Born terms. The smaller the

cutoff mass Λ, the larger the reduction of the bare amplitudes will be. How-

ever, in order to sufficiently cut the strength from the Born terms without any

further modifications of the theoretical framework, the introduction of (unre-

alistically) small cutoff masses appears necessary. Only when values of the

order of the kaon mass are used, the Born strength approaches the order of

the observed strength (see Fig. 2.5). It goes without saying that one can pose

some serious questions about this procedure. With such small cutoff masses,

the form factors start playing a predominant role in the reaction dynamics,

not only in the high energy region but even at threshold. At this point, it is

worth stressing that in isobar descriptions of p(γ, π)N or p(γ, η)p reactions,

hadronic form factors do not seem to exhibit such a dominant role [49,50]. De-

spite this, the application of this technique is able to reproduce the available

data fairly well, as will be shown in Chap. 3.

• Model B: A second option for counterbalancing the strength from the Born

terms is the introduction of hyperon resonances in the u-channel. We observe

a destructive interference of the u-channel hyperon resonance terms with the

other background terms. In this way, this procedure is a natural mechanism

to reduce the Born strength. In Fig. 2.5, we show the total cross section for the

p(γ, K+)Λ process where we have added two Λ∗ resonances (S01(1800) and

P01(1810)) to the Born terms. For those Born terms, we have now used a hard

form factor cutoff value. As can be seen in the figure, a reasonable amount

of background strength is obtained. It should be remarked that the particular

choice of the two Y∗ resonances is not made on solid physical grounds. We

have observed that also other combinations of Λ∗ and Σ∗ resonances are able

to reduce the strength by destructive interferences with the other background

terms.

• Model C: A third option consists of simply ignoring the ranges for the cou-

pling constants of Eq. (2.11). This inevitably amounts to using coupling con-

stants that are significantly smaller than what is expected on the basis of (bro-

ken) SU(3) symmetry. With values of only 1/4 of the SU(3) predictions, a rea-

sonable background strength is produced (see Fig. 2.5). It has to be stressed

that purely hadronic reactions, such as pp → pKY processes [51, 52] or Kp
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Figure 2.5 Background strengths for the total cross section of the p(γ,K+)Λ process. The
solid line is the strength produced by Born terms with coupling constants in the SU(3)
range and modified by a hard form factor with a cutoff mass of Λ = 1.6 GeV. The dashed
line (model A) is obtained from Born terms with soft hadronic form factors (Λ = 0.7 GeV).
The dotted line (model B) introduces two hyperon resonances (S01(1800) and P01(1810))
in combination with a hard cutoff (Λ = 1.6 GeV). For the dot-dashed curve (model C), the
Born term coupling constants gK+Λp and gK+Σ0p are reduced to a value of 25% of the SU(3)
predictions and a cutoff value of 1.6 GeV is used. The data are from Ref. [23].
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Model SU(3) restrictions Λ under limit (GeV) Y∗ in u-channel NFP

A yes ≥ 0.4 no 3
B yes ≥ 1.5 / 1.6 yes 5
C no ≥ 1.1 no 3
D yes ≥ 1.1 no 3

Table 2.1 Schematic description of the four models used for treating the Born terms and
the “reduction mechanism”. The SU(3) restrictions for the gK+Λp and gK+Σ0p coupling
constants refer to the ranges determined in Eq. (2.11). The Λ cutoff masses are those of the
hadronic form factors introduced in the Born terms. The table gives the under limit for Λ

imposed in the fitting procedure. The two values for model B refer to the KΛ and the KΣ

case, respectively. “NFP” refers to the number of free parameters.

scattering [53], can be understood in terms of values for gK+Λp and gK+Σ0p

which are in good agreement with the SU(3) predictions. Also from a Regge

analysis of the high energy p(γ, K)Y data [16], values for the coupling con-

stants in agreement with SU(3) predictions are retrieved. These observations

may suggest that there is little room for flavor symmetry breaking beyond

the assumptions which led to Eq. (2.11). Despite these reservations, we will

retain model C in the forthcoming discussions. In literature, the procedure

of freely varying gK+Λp and gK+Σ0p parameters is adopted by several au-

thors [11, 12, 26] and, in general, leads to very satisfactory descriptions of the

data.

• Model D: This scheme is an attempt to unite the virtues of the models A

and B, at the same time minimizing the number of free parameters which are

introduced in the process of computing the background diagrams. In this

model, the SU(3)-flavor constraints of Eq. (2.11) are respected during the fit-

ting procedure and no Y∗ hyperon resonances are included in the u-channel.

Moreover, the hadronic cutoff mass Λ is allowed to vary freely in the fitting

procedure in a range defined by the under limit of 1.1 GeV.

Table 2.1 summarizes the basic assumptions for each of the four models to treat

the background contributions. To conclude this section, we make some comments
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on model D. This type of background is used in our studies that aimed at deter-

mining the N∗ and ∆∗ resonances that play a non-negligible role in the γp → KΣ

processes. This allows us to explore different sets of resonances with the same type

of background. This type of background model contains a minimal number of free

parameters but at the same time is considered physically acceptable with respect to

the hadronic cutoff values and the SU(3) coupling constant restrictions. However,

it will turn out that model D gives rise to results which are systematically inferior

to those obtained with the three other models. This illustrates that compromising

between the major features of model A, B and C does not necessarily lead to an

improved description of the background diagrams.

2.4 Reaction Dynamics

When describing meson photoproduction, the different Feynman diagrams can in

general be divided into two broad classes: the resonant part and the background. The

resonant part consists exclusively of s-channel Feynman diagrams which contain

resonant N∗ and ∆∗ particles in the intermediate state. By gradually increasing the

photon energies, the s-channel resonances go through their respective poles and are

expected to produce “structures” in the observables. Recent isobar models identi-

fied a set of three nucleon resonances as leading N∗ contributions to the p(γ, K)Y

processes [25, 27, 29, 54]. This set of nucleon resonances consists of: S11(1650),

P11(1710) and P13(1720). Characteristics of those and other resonant states are sum-

marized in Table A.4 in App. A. In the forthcoming sections we will further discuss

this selection. It will be shown that in some cases, the introduction of additional

intermediate resonances may lead to substantial improvements in the quality of

agreement between the calculations and the data.

In contrast to this resonant part, the background contains several classes of

Feynman graphs. First the Born terms (the upper row in Fig. 2.1), involving an

off-shell proton in the s-channel, a kaon exchange in the t-channel and hyperon

exchange in the u-channel. Second, there are terms involving the exchange of (ax-

ial) vector meson resonances in the t-channel and Y∗ hyperon resonances in the u-

channel. Despite the fact that in the latter case a resonant state is exchanged, they

do not “resonate” in the same way as s-channel resonances do. Indeed, the poles

in the t- or u-channel are never reached in the physical region of the process and as
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Figure 2.6 Contribution from the t-channel diagrams as a function of t for various photon
lab energies. The solid line is the combined strength of both the kaon and the K∗ ampli-
tude. The dashed and dotted curves are the result of the individual kaon and K∗ exchange,
respectively. In order to preserve gauge invariance, the kaon exchange term is extended
with the nucleon pole term.

such are considered as background processes. In the u-channel, only Y∗ hyperon

resonances can be exchanged due to the conservation of the total strangeness quan-

tum number S. This type of diagrams are only included in the background of model

B as an ingredient to reduce the Born strength. In the t-channel, the exchange of the

vector meson K∗(892) is taken into account. The introduction is motivated by the

well known observation that for meson photoproduction, the t-channel processes

start dominating the reaction dynamics at higher energies [16]. This is reflected in a

diffractive, forwardly peaked behavior of the differential cross sections. Even in the

resonance region, the differential cross sections are observed to peak in the forward

direction. This feature is usually interpreted in terms of kaon and K∗ exchange in
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the t-channel. However, for some photon energies one discerns in both the K+Λ

and the K+Σ0 channel, differential cross sections which steeply rise as one moves

out of the forward direction, reach their maximum and fall off again as more back-

ward angles are probed [23, 24, 55]. The peak of the angular cross section does not

coincide with exactly zero degrees and one experiences a short rise as one moves

out of the very forward direction. This behavior can be understood as a subtle inter-

ference between the K and K∗ diagrams. In Fig. 2.6 the calculated differential cross

sections dσ/dt are plotted as a function of t (note that forward angles correspond

with low t) for various photon lab energies. For kaon exchange, a clear forward

peaking emerges. Note that, in order to preserve gauge invariance, we have also

added the nucleon s-channel pole term. For the K∗ vector meson, however, the op-

eratorial form of the amplitude yields a vanishing strength at very forward angles.

As can be seen in the figure, it is a balanced combination of both amplitudes that

results in the observed non-forward peaking. For the p(γ, K+)Λ reaction, also the

exchange of the axial vector meson K1(1270) has been included in the description

of the background. This axial vector meson has not the forward peaking behavior

as its vector meson counterpart but the introduction seems to improve the overall

description of the data. This meson is not found to be essential for the description

of the KΣ production reactions. As such, it is not included in those isospin channels.



Chapter 3

Strangeness Photoproduction

In this chapter, we discuss our results for the strangeness photoproduction pro-

cesses as obtained within the context of the model outlined in Chap. 2 and App. A.

In Sec. 3.2, we focus on the γp → K+Λ reaction. The isospin counterpart γp → KΣ

is discussed in Sec. 3.3. In Sec. 3.1, we review the observables, including those

involving polarizations, which can be determined within the context of kaon pho-

toproduction on the nucleon.

3.1 Observables for KY Photoproduction

We want to determine the cross section for a process whereby a photon (γ) scatters

on a proton (p), producing a kaon (K) and a hyperon (Y) in the finale state:

p (pµ) + γ (kµ) → K
(
p

µ
K

)
+ Y

(
p

µ
Y

)
. (3.1)

In the center-of-mass frame, the four momenta read:

kµ = (ω,~k) , p
µ
K = (EK,~pK) ,

pµ = (Ep, −~k) , p
µ
Y = (EY , −~pK) .

(3.2)

The z-axis of the reference frame is chosen along the photon’s three momentum

and the xz-plane defines the reaction plane (see Fig. 3.1). The hadron energies are

defined by the mass relations in the standard manner. The photon three momentum

is given by |~k| = ω and the kaon three momentum |~pK | is uniquely determined by

the energy conservation relation:
√

m2
p + ω2 + ω =

√
m2

K + |~pK |
2 +

√
m2

Y + |~pK |
2 . (3.3)
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Figure 3.1 Orientation of the reference frames for the p(γ,K)Y photoproduction process.

With these conventions, the differential cross section in the center-of-mass frame

reads:
dσ

dΩK

=
1

64π2

|~pK |

ω

1

W2

∑

λiλfλ

∣∣∣Mλiλf

λ

∣∣∣
2

, (3.4)

where W ≡ √
s is the invariant energy of the reaction and s is defined as in Eq. (2.4).

The reaction dynamics is entirely governed by the Feynman amplitude M
λiλf

λ which

depends on the photon (λ), nucleon (λi) and hyperon (λf) polarizations. The explicit

expression for this transition amplitude can be written as:

∣∣∣Mλiλf

λ

∣∣∣
2

=
(
u

λf
Y (pY) Tµελ

µ uλi
p (p)

) (
uλi

p (p) T
ν
ελ∗

ν u
λf
Y (pY)

)
. (3.5)

Here, Tµ is the current where the spinors of the external proton and hyperon field

are removed. Further, T
µ is defined as γ0 (Tµ)† γ0 and ελ

µ is the photon field polar-

ization vector.

When the photon polarization remains unknown, the summation over the po-

larization λ can be carried out using the expression:

∑

λ=±1

ελ
µελ∗

ν → − gµν . (3.6)

Remark that additional terms in the expression are required if the amplitude is not

gauge invariant [56]. In addition, if the polarization of the participating hadrons

remains undetected, the averaging and summation over the λi and λf spins reduce
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the Feynman amplitude to:
∑

λiλfλ

∣∣∣Mλiλf

λ

∣∣∣
2

= −
1

4
Tr

{
(6 pY + mY) Tµ (6 p + mp) Tµ

}
. (3.7)

Here, we have made use of the spin sum rule
∑

λ uλ (q) uλ (q) = 6q + m of the

Dirac algebra. It turns out that the determination of the dynamical part of the cross

section can be reduced to computing a trace of γ-matrices. The calculation of this

trace results in a closed expression for |M|2 as a combination of the four vector

products (p · k), (pK · k), (p · pY). . . .

When the polarization of the nucleon or the hyperon is specified in the reaction,

a spin projection operator can be inserted in front of the appropriate spinor [56]:

Π± (n) =
1

2
(1 ± γ5 6 n) , (3.8)

This still allows us to write the final expression for the polarized cross section as a

trace of γ-matrices. In the rest frame of the polarized particle with momentum pn,

the projection four vector nµ is defined as nµ = (0, ~n) with ~n the spin quantization

axis. Note that with this definition, n2 = -1 and (n · pn) = 0 in any other frame.

Due to the occurrence of an additional γ5-matrix in the trace, the result of the trace

calculation now also contains determinants of the type det (k, p, pK, n).

Polarized particles give rise to asymmetries. The asymmetry observables and

their particular quantization axes are summarized in Table 3.1. The axes are de-

picted in Fig. 3.1. These asymmetries are defined in the standard manner:

asymmetry =
dσ+ − dσ−

dσ+ + dσ−
, (3.9)

where the + (−) refers to a polarization parallel (anti-parallel) with the respective

quantization axis or helicity state (in the case of circularly polarized photons). Dou-

ble polarization asymmetries are defined as:

asymmetry =
dσ(++)+ dσ(−−)− dσ(+−)− dσ(−+)

dσ(++)+ dσ(−−)+ dσ(+−)+ dσ(−+)
. (3.10)

One can choose the quantization axes such that: dσ(++) = dσ(−−) and dσ(+−) =

dσ(−+). Eq. (3.10) can then be rewritten as:

asymmetry =
dσ(++)− dσ(+−)

dσ(++)+ dσ(+−)
,

=
dσ(−−)− dσ(−+)

dσ(−−)+ dσ(−+)
. (3.11)
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Observable γ p Λ

dσ/dΩ

Σ l

T y

P y ′

beam-target
E c −z

F c −x

G t −z

H t −x

beam-recoil
Cx c x ′

Cz c z ′

Ox t x ′

Oz t z ′

target-recoil
Tx −x x ′

Tz −x z ′

Lx −z x ′

Lz −z z ′

Table 3.1 Definition of the photoproduction observables. The quantization axes for the
polarization asymmetries are defined as follows: ~z ∼ ~k, ~y ∼ (~k × ~pK), ~x = ~y × ~z, ~z ′ ∼ ~pΛ,
~y = ~y ′, ~x ′ = ~y ′ × ~z ′. l → linearly polarized photon (⊥,‖ with respect to scattering plane);
t → linearly polarized photon (±π/4 with respect to scattering plane); c → circularly
polarized photon. The axes are also shown in Fig. 3.1
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It is well known that the sixteen quantities, as given in Table 3.1, are not indepen-

dent. There exist six non-linear relations between them [10, 57]:

E2 + F2 + G2 + H2 = 1 + P2 − Σ2 − T2 ,

FG − EH = P − ΣT ,

C2
x + C2

z + O2
x + O2

z = 1 + T2 − P2 − Σ2 ,

CzOx − CxOz = T − PΣ ,

T2
x + T2

z + L2
x + L2

z = 1 + Σ2 − P2 − T2 ,

TxLz − TzLx = Σ − PT , (3.12)

which reduce the number of independent observables necessary to determine the

full transition amplitude.

3.2 KΛ Photoproduction

In this section, we present our results on the K+Λ photoproduction reaction. First,

we discuss the resonant and background contributions. Further on, we focus on

the role of hadronic form factors and conclude with some remarks on the issue of

the missing resonances.

3.2.1 Resonance Contributions

In our selection of the intermediate N∗ particles contributing to the p(γ, K+)Λ pro-

cess, we have been guided by a recent coupled-channel analysis [25]. This study

established the importance of three intermediate nucleon states: two spin-1/2 res-

onances (S11(1650) and P11(1710)) and one spin-3/2 resonance (P13(1720)). These

findings are confirmed by the isobar model calculations of Refs. [27, 29]. Those nu-

cleon resonances are also the only ones in the tables of the Particle Data Group with

significant branching into the strange channels [58]. In our numerical calculations,

these three resonances (S11(1650), P11(1710), P13(1720)) constitute the “core” of the

reaction dynamics. In order to confront this set of intermediate states with the data,

a particular background has to be constructed. In a naive approach, we would only
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include the Born terms (modified with a hadronic form factor with a hard cutoff,

Λ = 1.6 GeV) and the K∗ and K1 meson exchange contributions. An attempt to fit

the K+Λ cross section and polarization data with this naive background and the

core set of three N∗ resonances was not very successful. Indeed, the agreement

did not get any better than χ2 = 10.32 (see Table 3.2). This χ2 expresses the con-

formity of the model calculations to the data. A value about 10 clearly indicates

that there is room for improvements. The most important reason for the failure of

this calculation is the absence of a proper strategy to counterbalance the strength

stemming from the Born terms (see discussion in Sec. 2.3.2). Indeed, adopting the

scheme of model A or B to handle the background contributions, a considerable

improvement of the overall agreement of the model calculations with the data is

observed. χ2 values of 4.36 and 3.43 were obtained for the models A and B, re-

spectively. This improvement in the quality of the description clearly illustrates the

need for a proper description of the background diagrams.

The research in this field has experienced a new impulse with the advent of

the p(γ, K+)Λ data from the SAPHIR experiment at Bonn [23]. These data provide

some indications for a structure in the total p (γ, K+) Λ cross section about ωlab =

1.5 GeV. Due to limited energy resolution and statistics, this structure could not be

revealed in previous experiments. Recently, the George Washington group pointed

out that model calculations could account for this structure in the measured cross

sections after including an additional spin-3/2 nucleon resonance (D13(1895)) in

the s-channel [27]. This D13 state has never been observed in pionic reactions but

the existence of this resonance with considerable branching into the strange chan-

nel, was predicted by the constituent quark model calculations of Capstick and

Roberts [4]. Therefore, the authors of Ref. [27] legitimately claimed support for the

existence of one of the “missing resonances”. Our calculations confirm the con-

clusions drawn by the G. Washington group. When including the D13(1895) in

addition to the core set of N∗ resonances, we arrive at a promising χ2 ' 2.9 (see

Table 3.2). Again, the necessity of a realistic description of the background terms

is observed. Within model A, B or C for describing the background, compara-

ble χ2 values are obtained. When no attempts are made to cut the Born strength,

this means that no Y∗ resonances are introduced in the u-channel and a hard cutoff

value Λ ≥ 1.6 GeV is adopted in the calculations, a χ2 no better than 9.74 is reached.
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Resonance Contributions Background χ2 NFP
N∗core set D13(1895) Model

✦ - 10.32† 16
✦ A 4.36† 16
✦ B 3.43† 18
✦ ✦ - 9.74 20
✦ ✦ A 2.99 20
✦ ✦ B 2.89 22
✦ ✦ C 2.85 20

Table 3.2 The table summarizes the χ2 values for the different combinations of N∗ reso-
nances with a particular type of background as obtained from comparing the model cal-
culations with the p(γ,K+)Λ SAPHIR data. With “N∗core set” we refer to the S11(1650),
S13(1710) and P13(1720) nucleon resonances. “NFP” indicates the number of free parame-
ters in the fitting procedure. The χ2 values with a † are obtained with the Haberzettl recipe
for the gauge restoration procedure. If the background model is indicated with “-”, no at-
tempts have been made to cut down the Born strength. Only a cutoff value of Λ ≥ 1.6 GeV
is imposed for the Born terms.

After all, we can conclude that the core set of S11(1650), P11(1710), P13(1720),

extended with the D13(1895) resonance is able to reproduce the K+Λ photoproduc-

tion data from the SAPHIR collaboration, as long as the background contributions

are properly taken into account.

3.2.2 Background Contributions

As detailed in Sec. 2.3.2 and also numerically observed in the previous Sec. 3.2.1, an

effective Lagrangian approach to the p(γ, K+)Λ process requires additional mecha-

nisms to counterbalance the unreasonable amounts of strength arising from point-

like Born terms. We have performed model calculations along the lines of the

three different techniques to deal with the background diagrams described in the

Sec. 2.3.2. We refer to those three different treatments as the models A, B and C and

their major features are summarized in Table 2.1.

• Model A: In this model, the background is restricted to the Born terms and

t-channel diagrams involving the K∗ vector meson and K1 axial vector meson

exchange. The strength of the Born diagrams is primarily tempered by the

action of hadronic form factors. During the fitting procedure, we imposed
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Figure 3.2 The total p(γ,K+)Λ cross section versus the photon lab energy as obtained with
three different techniques to treat the background contributions. Panel (a), (b) and (c) use
model A, B and C respectively. In each panel, the contribution from the background terms
to the total cross sections is denoted by the dashed line. In addition to the background
terms, the dotted line includes the S11(1650) and the P11(1710) nucleon resonances. The
dot-dashed curve adds also the P13(1720) resonance. Finally, for the solid line also the
D13(1895) resonance is included. The data are from Ref. [23].

an under limit of 0.4 GeV for the (freely varying) value of the cutoff mass

Λ. It emerges that the best fits to the data are obtained with values of Λ

that approach this imposed under limit, corresponding with an extremely

soft hadronic form factor. As can be seen in Fig. 3.2a, the photon energy

dependence of the background is smooth and steadily rising. Concerning the

contributions from the resonant terms in model A, the strength produced by

the P13(1720) is rather small and the structure about photon lab energies of 1.5

GeV is clearly dominated by the D13(1895). Despite the fair agreement with

the data reached in model A (χ2 = 2.99), one can raise serious doubts about

the realistic character of cutoff masses as small as the kaon mass. Indeed, a

form factor represents a purely phenomenological description of the short-

range dynamics of the inter-baryon interaction and sets a short-distance scale

beyond which the theory is believed to fail. With cutoff masses approaching

the kaon mass, the form factor will unavoidably start playing a predominant

role in the theoretical description of the reaction dynamics, which is a rather
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unsatisfactory situation for an effective theory.

• Model B: Here, we have extended the background (Born terms plus K∗ and K1

t-channel exchange) with two Λ∗ resonances (S01(1800) and P01(1810)) in the

u-channel. Through destructive interference, the total background strength

gets reduced to acceptable levels (see Fig. 3.2b), a virtue which is now reached

with realistic values of the cutoff mass of the order 1.5 GeV. The overall agree-

ment with the SAPHIR data set is χ2 = 2.89. The hyperon coupling constants

which arise from the fits are relatively large (GΛ∗(1800)= -4.38 and GΛ∗(1810)= -

1.75) and can be subject to discussion. To clarify this issue, we have performed

fits to the data using a model which introduces seven spin-1/2 hyperon reso-

nances in the u-channel. The same qualitative destructive interference effect

was observed but now with smaller values for GY∗ . In the light of these find-

ings, we argue that the two hyperon resonances which were introduced in

model B could be interpreted as effective particles which account for a larger

set of hyperon resonances participating in the process. Note that u-channel

resonances do not reach their pole in the physical region of the process and

consequently exhibit a smooth energy behavior. From Fig. 3.2 it becomes

clear that the final result for the total cross section, calculated in model B, dis-

plays a more complicated pattern than what is typically observed for model

A. Whereas model A predicts that the resonances peak at their corresponding

invariant masses, in model B a rather complex interference pattern (especially

at higher photon energies) between the different resonances appears.

• Model C: As a third option for controlling the magnitude of the background

contributions, we have performed a set of fits to the data where we ignored

the restrictions of Eq. (2.11) imposed by broken SU(3)-flavor symmetry. We

only put limitations on the signs of gK+Λpand gK+Σ0p. Completely analogous

as model A, in model C the background consists of the Born diagrams and the

two spin-1 t-channel contributions. An under limit of 1.1 GeV was imposed

for the Born term form factor cutoff mass but during the fit, Λ arrived at a

rather hard value of 1.85 GeV. Also within this model, the data can be reason-

ably well described (χ2 = 2.85). Nevertheless, the overall best fit was obtained

for a value gK+Λp/
√

4π = -0.40 which is far below the SU(3) prediction of -3.75.
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All three techniques to deal with the background terms, eventually lead to a

fair agreement of the model calculations with the available data. To illustrate this,

Table 3.2 summarizes the χ2 per degree-of-freedom obtained in the three models.

The model predictions for the differential cross sections and the recoil polarization

asymmetries are displayed in Figs. 3.3 and 3.4. A complete list of all numerical in-

put parameters of the three models can be found in Table A.2 in App. A. Despite

the fact that the χ2 values are comparable and uniform results are observed for

the cross sections and recoil asymmetries, Fig. 3.5 clearly shows that the extracted

values for the N∗ coupling constants (as defined in App. A) differ drastically in

the three models. From this observation, we draw the conclusion that the model

assumptions, with respect to the treatment of the background terms, heavily influ-

ence the extracted information about the resonances. Remarkably, it appears that

the choices made with respect to modeling the background terms not only affect

the magnitude of the different N∗ contributions, but also the interference pattern

between the overlapping resonances (see Fig. 3.2). Through the χ2 minimization

procedure, though, the final agreement between the numerical calculations and the

data appears reasonable in all models to deal with the background.

One may now look at the predictive power of these models for observables for

which no data exist to date. Such an observable, for example, is the photon beam

asymmetry (Σ). Fig. 3.6 summarizes the predictions for the photon beam asymme-

tries as a function of the photon lab energy and cos θ for the three background mod-

els. In addition, we also have plotted the corresponding differential cross sections

over the same phase space. Visual inspection learns that the computed differential

cross sections do not vary that much as one proceeds from one background model

to another. A completely different picture is observed for the calculated photon

beam asymmetries. Dramatic variations in cos θ and ωlab are perceived between

the three background models. In Fig. 3.7, the same erratic behavior is observed

in the angular distribution of the double polarized observables as the beam-recoil

(Ox) and beam-target (E) asymmetry. Recent measurements of the single photon

beam asymmetry Σ at GRAAL [59] and SPring-8 [60] will in this light be a first im-

portant step to distinguish between the three background models and further pin

down the details of the underlying reaction dynamics.
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To conclude, we make the following remark. In addition to the three frame-

works to deal with the background diagrams presented here, one could think of an

alternate method to improve the overall agreement with the data. Other N∗ reso-

nances beyond the set consisting of S11(1650), P11(1710), P13(1720) and D13(1895),

could be introduced as likely candidates for playing a significant role in the re-

action dynamics of p(γ, K+)Λ. We have performed calculations introducing ad-

ditional spin-1/2 N∗’s in the s-channel, but keeping the number of additional free

parameters in the fitting procedure at a reasonable level. In these computations, the

cutoff mass Λ was forced to adopt (realistic) values larger than 1.1 GeV. However,

none of the numerical calculations reached a χ2 better than 8 (which has to be com-

pared to typical values of χ2 ' 2.9 produced by the other models). In other words,

the introduction of additional resonances in the s-channel can not be invoked as

a viable mechanism for cutting down the background strength and improve the

description.

3.2.3 Hadronic Form Factors

Up to now, in all numerical calculations we have used the gauge restoration pro-

cedure as suggested by Davidson and Workman [46]. This recipe is outlined in

Sec. 2.2. However, in the literature the Haberzettl form [45] for the form factor F̂ is

frequently adopted. In this section, we explore the implications of this two differ-

ent prescriptions. In that respect, we have performed numerical calculations for the

p(γ, K+)Λ reaction using both the F̂H and the F̂DW functional form in the contact

term. Those form factors are defined in Eqs. (2.7) and (2.9). For those numerical

calculations using F̂H, we have put au = 0. This choice is motivated by the obser-

vation that in the p(γ, K+)Λ process, the gauge violating terms only occur in the s-

and t-channel. As a result, calculations using the F̂H form have two remaining free

parameters (Λ and as). In practice, we found that the best fits were obtained for

as ' 1 and accordingly F̂H ' Fs(Λ). Fig. 3.8 compares the values of F̂H and F̂DW

at various photon energies ωlaband kaon center-of-mass angles θ. The left panels

show the form factors for a cutoff mass Λ = 0.8 GeV, the right panels use Λ = 1.8

GeV. They are representative for a rather soft and hard option for the form factors,

respectively. It becomes obvious from Fig. 3.8 that the magnitude of the form factor

F̂ heavily depends on the adopted recipe, both in the soft and hard limit for the
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Figure 3.8 The energy dependence of the hadronic form factor F̂ for different kaon center-
of-mass angles θ. The left panels use Λ = 0.8 GeV, the right panels Λ = 1.8 GeV. The dashed
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proposed by Davidson and Workman.

cutoff mass.

In order to assess the sensitivity of the results to differences in the functional

form of F̂, we have computed p(γ, K+)Λ observables using the two forms for F̂.

Both recipes resulted in a comparable agreement with the data and from the ob-

tained χ2 values, no conclusions can be drawn. However, the results for the ex-

tracted N∗ coupling constants are given in Fig. 3.9 for the background models A

and B. In model A, where by construction a large role in the reaction dynamics is

attributed to form factors, the effect is huge. In model B, where hyperon resonances

are introduced to counterbalance the strength from the Born terms and hadronic

form factors are not so dominant, the extracted coupling constants are a little more

stable against variations in the functional dependence of F̂, although also here siz-

able variations are observed. A similar trend is for example also seen in the photon

beam asymmetry in Fig. 3.10. Whereas for model A different choices for F̂ even
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flip the sign of the predicted asymmetry, in model B the situation looks reasonably

stable. Only at the highest photon energies considered here, the predicted asym-

metry in model B becomes sensitive to the adopted recipe for the form factor in the

contact term.

These conclusions are compatible with earlier observations concerning the dif-

ference between the form factor prescriptions of Ohta and Haberzettl. Ohta orig-

inally suggested to put the form factor F̂ in the contact term equal to 1 [61]. As

becomes clear from Fig. 3.8, the recipe for F̂ suggested by Davidson and Workman

gives rise to values in between those produced by the Haberzettl and Ohta form.

In several works [25, 41, 45], it was stressed that p(γ, K+)Λ calculations with the

Haberzettl or Ohta recipe for F̂ can lead to very different results. So in fact, it comes

as no real surprise that a similar remark applies to the recently introduced novel

form for F̂.

In Ref. [62], Davidson and Workman studied the effect of hadronic form factors

on a multipole analysis of charged pion production. They concluded that the ex-

tracted multipoles, for example those listed in Ref. [63], are not heavily affected by



3.2 KΛ Photoproduction 42

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1

Σ
ωlab = 1000 MeV ωlab = 1500 MeV ωlab = 1900 MeV

Σ

ωlab = 1000 MeV

cosθ

ωlab = 1500 MeV ωlab = 1900 MeV

-1

-0.5

0

0.5

1

-1 0 1

Figure 3.10 The angular distribution of the beam polarization asymmetry for p(~γ,K+)Λ at
three photon lab energies. The upper (lower) panels are results with model A (model B) for
treating the background diagrams. Solid and dashed lines use the hadronic form factors
F̂DW and F̂H, respectively.

the form factors. Our calculations indicate that for kaon photoproduction, where

the effect of the background terms is larger than in the pion case, great care must

be exercised when introducing hadronic form factors and the corresponding gauge

restoring contact terms.

We conclude this section with a more general remark. In principle, a correction

to a hadronic form factor is not supposed to have a large impact on the reaction

dynamics. At best, hadronic form factors are a purely phenomenological tool to

polish the (unknown) high energy behavior of the effective field theory. If for some

reason, the influence turns out to be large it is obvious that one runs into a rather

unsatisfactory situation. In that respect, the introduction of soft hadronic form fac-

tors (model A) in modeling the kaon photoproduction process, appears to lead to

an unacceptable level of (unphysical) model dependency in the extracted informa-

tion from fits to p(γ, K+)Λ data.
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Figure 3.11 Model calculations for the total p(γ,K+)Λ cross section. The solid curves in-
clude the “missing” D13, the dashed lines include a P13 resonance. The left (right) panel
uses model A (model B) to describe the background contributions.

3.2.4 Missing Resonances

The SAPHIR data [23], released back in 1998, made it clear that the total p(γ, K+)Λ

cross section is not characterized by a smooth energy dependence above the thresh-

old peak. The data displayed a structure about photon lab energies of 1.5 GeV.

Mart and Bennhold [27] interpreted this structure as evidence for an additional res-

onance and they identified it as a D13 state with a mass of 1895 MeV. This N∗ state

remained unobserved in pion induced and pion photoproduction processes but its

existence and appreciable decay in the K+Λ channel was inferred from the con-

stituent quark calculations of Capstick and Roberts [4]. As such, the D13(1895) ap-

peared as a good candidate for a “missing” resonance. Our calculations, displayed

in Fig. 3.11, essentially confirm the observations made in Ref. [27] and reveal that

the structure at ωlab ∼ 1.5 GeV can be reasonably accounted for after including in

the model calculations a D13 resonance in the s-channel. Apart from a D13 state,

the quark model calculations of Ref. [4] also predict other N∗’s with decay in the

strange channels in the mass range about 1.9 GeV. Other candidates are S11(1945),

P11(1975) and P13(1950). We have performed calculations adding a “missing” P13

resonance to the core set of S11(1650), P11(1710) and P13(1720). The results of these

model calculations are also contained in Fig. 3.11. It is clear that the procedure of

either introducing an extra D13 or a P13 resonance does equally well in reproduc-
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ing the resonant structure in the energy dependence of the total p(γ, K+)Λ cross

section, independent of the adopted model to handle the background terms. Simi-

lar observations were already made in Ref. [27] and there is common agreement on

the fact that the reproduction of a visual “bump” in the total cross section should

not be interpreted as rock solid evidence for the occurrence of a missing resonance.

Nevertheless, in Ref. [27] the D13 was considered to be the preferred candidate

on the basis of the agreement between the extracted coupling constants in the fits

and the values predicted by the quark model. In the light of the discussions of the

model dependences in Secs. 3.2.2 and 3.2.3, we argue that great care must be exer-

cised in drawing conclusions on the basis of the values of the extracted coupling

constants. Furthermore, we stress that the calculations of Mart and Bennhold use

the Haberzettl recipe for the form factor F̂ and employ a relatively soft cutoff mass

(Λ = 0.8 GeV) for the Born terms. In that respect, their model comes close to what

we referred to as model A.

An alternative interpretation of the “bump” in the total cross section of the

p(γ, K+)Λ reaction is put forward by Saghai in Ref. [29]. He pointed out that the

structure can be explained in terms of a spin-3/2 Λ∗ resonance in the u-channel.

We have performed such a calculation that included the P03(1890) resonance but,

as is made clear in Fig. 3.12, we were not able to reveal the observed structure in

the total cross section. In this respect, we also argue that a u-channel resonance is

not likely to produce “structure” in the observables since it never reaches its pole.

In the forthcoming section, a profound study of intermediate resonances for

the γp → KΣ channels will be presented. The existence of a missing D13(1895)

resonance could be put on more solid grounds if it would turn out that the inclusion

of this particle also substantially improves the description of the p(γ, K+)Σ0 and

p(γ, K0)Σ+ data.

3.3 KΣ Photoproduction

In the forthcoming sections, we report our results for the p(γ, K+)Σ0 and p(γ, K0)Σ+

photoproduction reactions. In the discussion, we focus on the both the resonant

and background contributions in the reaction amplitude. An important feature

which helps in minimizing the number of free parameters, though, is the observa-

tion that the Σ0 and Σ+ particles are part of the Σ isospin triplet. Consequently,
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Figure 3.12 Model calculation for the total p(γ,K+)Λ cross section. In the s-channel, the
nucleon resonances S11(1650), P11(1710) and P13(1720) are taken into account. In the u-
channel, the Λ∗ resonances P01(1810) and P03(1890) are introduced. The data are from
Ref. [23].

one can rely on isospin symmetry to relate the coupling constants needed in the

description of the p(γ, K+)Σ0 reaction to those required for the p(γ, K0)Σ+ process.

The technical details of such a procedure are outlined in App. A.2. Within such a

scheme, a common analysis of both reaction channels becomes possible. In prin-

ciple, the n(γ, K0)Σ0 and n(γ, K+)Σ− channels could also be implemented in this

scheme [12]. Data for those reaction channels are sparse, though. Moreover, the

procedure of extracting “elementary” neutron cross sections from measurements

on nuclei, like the deuteron, induces severe model dependences. To make mat-

ters even worse, connecting proton to neutron electromagnetic coupling constants

demands the knowledge of the rather poorly known helicity amplitudes for the dif-

ferent nucleon resonances. For all of the above arguments, we have excluded from

our global analyses the Σ photoproduction channels off the neutron.

3.3.1 Resonance Contributions

Recent isobar models identified the three nucleon resonances S11(1650), P11(1710)

and P13(1720) as leading N∗ contributions to the p(γ, K+)Λ reaction [25, 27, 29, 31].

It thus appears natural to consider them as privileged candidates to participate in
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Resonance Contributions Background χ2 NFP
N∗core set D13(1895) S31(1620) S31(1900) P31(1910) Model

✦ D 6.52 13
✦ ✦ ✦ D 4.16 15
✦ ✦ ✦ D 5.66 15
✦ ✦ ✦ D 3.20 15
✦ ✦ ✦ ✦ D 3.19 16
✦ ✦ D 5.29 18
✦ ✦ ✦ ✦ D 2.88 20
✦ ✦ ✦ A 2.03 15
✦ ✦ ✦ ✦ A 1.98 20
✦ ✦ ✦ B 1.95 17
✦ ✦ ✦ ✦ B 1.81 22
✦ ✦ ✦ C 1.96 15
✦ ✦ ✦ ✦ C 1.89 20

Table 3.3 The table summarizes the χ2 values for the different sets of N∗ and ∆∗ resonances
and a particular model to treat the background diagrams. The χ2 values are from the best
fits obtained from comparing the model calculations with the SAPHIR p(γ,K)Σ data. With
“N∗core set” we refer to the S11(1650), P11(1710) and P13(1720) nucleon resonances. “NFP”
indicates the total number of free parameters in the corresponding fitting procedure.

the Σ photoproduction channels [54]. On the other hand, we do not have similar

guidelines concerning the leading ∆∗ contributions. In our numerical investiga-

tions, we rely on a χ2 procedure to judge whether a particular set of resonances is

suited to describe the data. In the process of determining an optimum set of N∗

and ∆∗ particles, we have fixed a basic set consisting of the three aforementioned

N∗ resonances to which we have gradually added other combinations of N∗ and ∆∗

states. All results reported in this subsection are obtained with a particular choice

(in Sec. 2.3.2 coined model D) for treating the background. A profound discussion

of this background implementation is postponed to Sec. 3.3.2.

Starting with a “core set” consisting of the S11(1650), P11(1710) and P13(1720)

nucleon resonances, we arrive at χ2 = 6.52 for an overall fit to the combined set

of p(γ, K+)Σ0 and p(γ, K0)Σ+ cross section and polarization asymmetry data. This

quality of agreement surely allows room for improvement and, consequently, for

additional N∗ and ∆∗ resonances playing a non-negligible role in the reaction dy-

namics. Table 3.3 summarizes the achieved χ2 values for various combinations of

resonances. In an attempt to minimize the number of free parameters, we started
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out with introducing only spin-1/2 ∆∗ states. Note that in an effective Lagrangian

approach, a spin-1/2 resonance adds only one free parameter while five extra pa-

rameters are introduced per spin-3/2 resonance (two coupling constants and three

off-shell parameters). Candidates for spin-1/2 ∆∗ resonances are the S31(1620),

S31(1900) and P31(1910) states [58]. With those three ∆∗ resonances and the afore-

mentioned core of three N∗ resonances, we arrive at a global best fit with χ2 = 3.19.

So, the introduction of spin-1/2 ∆∗ resonances clearly improves the description

of the data. A similar quality of agreement (χ2 = 3.20), however, can already be

achieved by the mere action of only two of these ∆∗’s, the S31(1900) and P31(1910).

Other combinations selected out of the three aforementioned ∆∗ states were also

able to improve the description of the data (see Table 3.3), although the combina-

tion of the S31(1900) and P31(1910) clearly produced the best χ2. Note that these

two ∆∗ resonances were also recognized as most likely I = 3
2

resonance candidates

by Mart in his analysis of the Σ photoproduction data [54].

In Sec. 3.2, it was put forward that the introduction of a missing D13(1895) res-

onance is able to enhance the overall agreement of the calculations with the K+Λ

data. Therefore, we have investigated in how far the inclusion of the D13(1895)

resonance improves the fits of the KΣ photoproduction data. Including the core set

of three N∗’s and the D13(1895) in the s-channel, we arrive at a best fit with χ2 =

5.29. Inspection of Table 3.3 learns that this quality of agreement is inferior to what

was obtained in the calculation with two ∆∗ resonances, despite the fact that the

D13 and ∆∗ resonances have their poles in the same energy region. A resonance set

consisting of the core of three N∗ resonances, the D13 and the two ∆∗’s leads to a fit

with χ2 = 2.88. Compared to the χ2 of 3.20, achieved without introducing the D13,

this represents only a minor improvement, in view of the fact that the introduction

of a spin-3/2 resonance comes at the expense of throwing in five additional free

parameters in the fitting procedure.

Summarizing the findings of Table 3.3, we are tempted to conclude that ∆∗ reso-

nances seem to constitute an essential part of the dynamics of KΣ photoproduction.

No convincing evidence for a salient role for the D13(1895) resonance in p(γ, K)Σ is

found. In this subsection, we have drawn our conclusions on the basis of numerical

calculations within one particular model (“model D”) for treating the background

diagrams. Alternative models for implementing the background diagrams will be
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introduced in the forthcoming section. Anticipating these investigations, the rela-

tive role of the different N∗ and ∆∗ particles turns out to be rather independent of

the choices made with respect to the treatment of the non-resonant diagrams. As

it happens, this will turn out not always to be the case for the extracted resonance

information.

3.3.2 Background Contributions

As alluded to in Sec. 2.3.2, one of the long standing issues in modeling strangeness

photoproduction is the unrealistically large amounts of strength produced by the

“bare” Born terms. In the process of trying to counterbalance the strength from

these amplitudes by adding extra ingredients to the theory, it appears that some

model dependence in the treatment of the background terms cannot be avoided.

We now discuss four models which all succeed in cutting down the background

strength in KΣ photoproduction. In all schemes, the background contains at least

the usual Born terms and the K∗(892) vector meson exchange in the t-channel. For

the investigations presented in this section, the resonant part includes the N∗ reso-

nances S11(1650), P11(1710) and P13(1720) and the ∆∗ states S31(1900) and P31(1910).

Those five resonances were identified in Sec. 3.3.1 as an appropriate set for describ-

ing p(γ, K)Σ with a minimal number of free parameters.

• Model A: The hadronic form factors Fx(Λ), described in Eq. (2.2), cut the high

momentum dependence of the different amplitudes and emerge as a mecha-

nism to reduce the strength stemming from the Born diagrams to magnitudes

of the order of the measured cross sections. To fully exploit the power of

this reduction mechanism, we imposed an under limit of 0.4 GeV for the cut-

off mass Λ during the fit. Thereby, no Y∗ contributions in the u-channel are

considered. Despite our reservations regarding the use of soft cutoff masses,

eventually we arrive in this scheme at a very satisfactory χ2 = 2.03 with a cut-

off mass Λ close to the under limit of 0.4 GeV. It should be stressed again that

with cutoff masses as small as the kaon mass, the hadronic form factor starts

playing a predominant role in the description of the reaction dynamics and

heavily affects the predicted values of the observables, not only in the high

energy regime but even at threshold.
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• Model B: In Sec. 2.3.2, we pointed out that for the description of p(γ, K+)Λ

processes, the introduction of hyperon resonances in the u-channel can be an

efficient and physically relevant way of counterbalancing the strength pro-

duced by the Born terms. More specifically, we showed in Sec. 3.2.2 that the

destructive interference between the u-channel amplitudes of the S01(1800)

and P01(1810) hyperon resonances and the Born terms results in a very satis-

factory description of the p(γ, K+)Λ data. We have made an attempt to iden-

tify an equivalent procedure for KΣ photoproduction. Unfortunately, there is

relatively little theoretical guidance on how to select the proper intermediate

hyperon resonances and how to determine realistic values for their coupling

constants. Nevertheless, after including the Λ∗(1810) and Σ∗(1880) in the u-

channel, we arrive at a fair description of the p(γ, K+)Σ0 and p(γ, K0)Σ+ data

with a χ2 of 1.95.

Note that the Λ∗ resonance does not feed the γp → K0Σ+ channel. Conse-

quently, the procedure of introducing hyperon resonances in the u-channel,

as a natural physical mechanism to counteract the background amplitudes,

is expected to be less effective in the p(γ, K0)Σ+ channel. However, as can

be seen in Fig. 3.13, a stronger destructive interference between the K∗ vector

meson contribution in the t-channel and the Born diagrams is noted for the

p(γ, K0)Σ+ process. One may wonder why this mechanism does not seem

to prevail so strongly in the Σ0 photoproduction case. This can be naturally

explained by looking at the respective electromagnetic coupling constants of

the K∗ vector mesons. On the basis of Eq. (A.38), one finds that the loss of

destructive interference with the Λ∗ resonance in the p(γ, K0)Σ+ process is

likely to be counterbalanced by an enhanced destructive interference with

the t-channel vector meson exchange.

One of the obvious advantages of the “model B” described here, is that the

role of the hadronic form factors can be diminished to levels that appear phys-

ically acceptable. Indeed, good fits (χ2 = 1.95) of the Σ photoproduction data

can be obtained with a hard cutoff mass of the order Λ = 1.6 GeV. One argu-

ment that may speak against model B is that the extracted values of the Y∗

coupling constants turn out to be large, compared to the corresponding N∗

and ∆∗ coupling strengths. However, the two u-channel particles, introduced
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Figure 3.13 Total cross sections for the p(γ,K+)Σ0 and p(γ,K0)Σ+ processes. The dashed
curve denotes the computed strength from the Born terms (with hard hadronic form fac-
tors, Λ = 1.6 GeV). For the dotted line, the K∗ t-channel contribution is added. The dot-
dashed curve includes the Y∗ hyperon resonances and consequently is the result of the full
background contribution as computed within model B. The solid line embodies, in addition
to the background, the s-channel N∗ and ∆∗ resonances. The data are from Refs. [23, 24].
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in the computations, could be interpreted as effective particles for a larger set

of u-channel processes as outlined in Sec. 3.2.2.

• Model C: A third option is simply to disregard the constraints of Eq. (2.11)

imposed by (broken) SU(3)-flavor symmetry. Then, the gK+Λp and gK+Σ0p

coupling constants can be treated as free parameters in the minimization pro-

cedure. The p(γ, K)Σ results reported by Mart et al. in Ref. [12] are based on

such a procedure. In calculations with model C we are solely constraining the

relative sign between the two coupling constants. Ignoring Y∗ exchange in the

u-channel, we arrive at an overall agreement with the data of χ2 = 1.96 with

gK+Λp/
√

4π = -0.23 and gK+Σ0p/
√

4π = 0.28. These numbers are dramatically

smaller than what is predicted on the basis of SU(3)-flavor symmetry (-3.75

and 1.1, respectively). In this fit, the cutoff mass was allowed to vary freely

and adopts a value of 2.5 GeV. This value of Λ alludes to a rather modest role

for the hadronic form factors in the description of the reaction dynamics.

• Model D: This scheme is an attempt to unite some of the virtues of the mod-

els A and B, at the same time minimizing the number of free parameters that

are introduced to compute the background diagrams. In this model, the con-

straints of Eq. (2.11) are respected during the fitting procedure. In an attempt

to keep the model as simple as possible, no Y∗ particles are introduced. The

hadronic cutoff mass Λ is treated as a parameter and allowed to vary freely

in a range defined by the under limit 1.1 GeV. In the optimum fit, the value

of Λ always approaches this under limit, stressing the essential role of the

hadronic form factors for keeping the strength from the Born diagrams at

realistic levels. In the previous Sec. 3.3.1, this scheme for treating the back-

ground diagrams was adopted when investigating the dominant resonance

contributions. Inspecting Table 3.3, it becomes obvious, though, that for a

fixed set of resonances, model D systematically leads to χ2 values which are

inferior to those obtained in the models A, B and C.

With all suggested models for implementing the background diagrams, we ar-

rive at a satisfactory description of the available data. This feature becomes appar-

ent from the χ2 values contained in Table 3.3 and can also be illustrated by directly

comparing model predictions with the data points. A complete list of all numerical
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input parameters for the three models A, B and C are summarized in Table A.3 in

App. A.

Fig. 3.14 shows the energy dependence of the total cross section for the back-

ground models A, B and C. In these plots, the strength from the background di-

agrams is also shown. In Figs. 3.15-3.17, model calculations for the angular dis-

tribution of the p(γ, K+)Σ0 and p(γ, K0)Σ+ differential cross section and recoil po-

larization asymmetry (P) are given. Note, however, that the data points for the

asymmetry of the K0Σ+ process, are binned over the whole experimental energy

range. Consequently, they hardly affect the χ2 of the global fit.

Predictions for the energy and angular dependence of the differential cross sec-

tion and the photon beam asymmetry (Σ) are displayed in Figs. 3.18-3.20 for the

models A, B and C described above. From visual inspection of the three figures,

it indeed becomes apparent that the energy and angular dependence of the dif-

ferential cross sections is rather similar for the three models. The sudden rise in

the predicted K+Σ0 cross sections at very backward angles and the highest pho-

ton energies should not be considered as physical. It illustrates the limits of the

hadronic models for predicting observables in “unmeasured” regions of the phase

space. Note that the data used in the fitting procedure do not extend beyond 2.0

GeV (Σ0 production) and 1.55 GeV (Σ+ production). For the angular and energy

dependence of the p(~γ, K+)Σ0 photon beam asymmetry, models A, B and C pro-

duce comparable results. Although no published data exist for this observable to

date, the model dependences in the predictions for this observable seem to be mod-

est. On the other hand, large variations between the different predictions for the

p(~γ, K0)Σ+ photon beam asymmetry are observed. To fully appreciate this, we have

gathered the calculations for the photon beam asymmetries at some fixed photon

lab energies in Fig. 3.21. With no doubt, more precise data for the various polariza-

tion observables would help in further constraining the model dependences in the

treatment of the background diagrams.

Not only the predictions for some of the asymmetries, but also the extraction

of resonance parameters, turns out to be reasonably sensitive to the adopted pro-

cedure to treat the background. This feature is illustrated in Fig. 3.22, where the

extracted resonance coupling constants are plotted for the background models A, B

and C. For the I = 3
2

∆∗ resonances, the extracted coupling constants are rather
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Figure 3.14 Photon energy dependence of the total p(γ,K+)Σ0 and p(γ,K0)Σ+ cross sec-
tions. The dashed curves denote the computed strength from the background diagrams.
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Figure 3.19 As in Figure 3.18 but now for background model B.
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insensitive to the choices for the background. Larger variations, exceeding the

20% level, are observed for the extracted N∗ parameters. The discerned model

dependences in the resonance parameters show that a model independent extrac-

tion of this information from the available strangeness photoproduction data is not

at hand. This is rather unfortunate, given that these variables play a crucial role

in linking the predictions of (constituent) quark models and the photoproduction

data.

To conclude this section, we come back to the aforementioned issue of the miss-

ing D13 nucleon resonance. Adopting background model D, the inclusion of this

N∗ particle improved the quality of the global fit from χ2 = 3.20 to χ2 = 2.88. We

stress again that this comes at the expense of adding five extra parameters. We

have investigated whether a similar qualitative feature emerged with background

models A, B and C. In all cases, a global fit with the core of the three N∗ and the

two ∆∗ resonances with and without the D13(1895) was performed. The results are

contained in Table 3.3. The improvement in the quality of the fit varied from 3%

(model A) to 8% (model B). We appreciate this improvement as rather modest in

view of the number of extra parameters. For the sake of reference, we mention that

in the analysis of the p(γ, K+)Λ data in Sec. 3.2, the inclusion of an extra D13(1895)

resonance improved the fits from 22% up to 40%, depending on the choices made

for computing the background contributions.





Chapter 4

Strangeness Electroproduction

In the previous chapter we have presented and discussed the results for the strange-

ness photoproduction processes. In this chapter, the extension to the electro-induced

reactions is made. The modeling of an electroproduction process ep → e ′KY amounts

to describing a virtual photon production reaction of the type γ∗p → KY. Tech-

nically, this is achieved in the standard fashion by separating the electron and

the hadron current in the electromagnetic interaction Lagrangian. In this proce-

dure, the virtual photon plays the role of intermediate particle that transfers a

four momentum kµ = (ω,~k) to the hadron current. As a consequence, all effec-

tive electromagnetic couplings introduced in the field theory become a function of

Q2 ≡ −kµkµ for which the limit Q2 → 0 reduces to the photoproduction case. Im-

mediately, it becomes clear that the scope of the problem to be addressed widens

in comparison to the real photon case.

In the literature , only a limited number of theoretical studies on the p(e, e ′K)Y

reaction can be found [11,13,38,39,64,65]. Most of those studies are based on isobar

models which try to account for the photo and electroproduction data simultane-

ously. At present, however, the available p(e, e ′K)Y data base is too sparse to allow

a “dynamical extraction” of a set of Q2-dependent coupling constants. Therefore,

our theoretical analysis of the p(e, e ′K)Y reactions proceeds according to the fol-

lowing major principles. The leading class of diagrams in the reaction dynamics

is assumed to be identical for the photo- and electro-induced cases. In a first step,

the coupling constants are fixed at values which were determined in the analysis of

the photoproduction data reported in the previous chapter. For the Q2-evolution,
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a widely used parameterization is employed for the nucleon electromagnetic form

factors and acceptable recipes are adopted at the other electromagnetic vertices.

The details of those parameterizations can be found in App. A.3. In what follows,

it will become clear that the extrapolation of the photoproduction models into the

finite Q2 region reveals very interesting features. A refitting procedure of the cou-

pling constants to a combined set of both the photo and electroproduction data will

be performed. The overall Q2-dependence of the virtual photon vertices remains

fixed by the electromagnetic form factors. In the foreseeable future, the amount of

electroproduction data will grow substantially [66] and a dynamical, Q2-dependent

extraction of the coupling constants may become feasible.

Before discussing our results for the p(e, e ′K)Y reactions in Sec. 4.3, in Sec. 4.1 a

brief outline is given of the notations and conventions for the observables that are

used in this work. The issue of gauge invariance is discussed in Sec. 4.2.

4.1 Observables for KY Electroproduction

We now discuss electron scattering processes off the proton with the production of

a kaon and a hyperon in the final state:

p (p) + e (k1) → e ′ (k2) + K (pK) + Y (pY) . (4.1)

The corresponding four momenta are defined as:

k
µ
1 = (ε1,~k1) , k

µ
2 = (ε2,~k2) , kµ = (ω,~k) ,

pµ = (Ep, −~k∗) , p
µ
K = (EK,~pK) , p

µ
Y = (EY , −~pK) ,

(4.2)

with kµ = k
µ
1 − k

µ
2 the four momentum of the virtual photon in the lab frame. To

construct the cross section, it is a common procedure to describe the electron kine-

matics in the lab frame and the hadron physics in the center-of-mass (c.m.) frame of

the proton target and the virtual photon. This is schematically depicted in Fig. 4.1.

Accordingly, the hadron four momenta are evaluated in the c.m. frame. The vir-

tual photon four vector establishes the relation between the kinematical variables

in the two frames. Its four momentum will be denoted as k∗µ =
(
ω∗,~k∗

)
when it is

expressed in the c.m. frame. The Lorentz boost factors connecting those quantities
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Figure 4.1 Orientation of the reference frames and definition of the kinematic quantities
for the p(e, e ′K)Y electroproduction process.

are:

~k∗ = ~k
(mp

W

)
, (4.3)

ω∗ = W − (ω + mp)
mp

W
,

=
s − m2

p − Q2

2W
. (4.4)

Herein, W ≡ √
s is the total c.m. energy and Q2 = − kµkµ. Then, the electropro-

duction cross section can be written as:
dσ

dε2dΩ2dΩK

=
1

32 (2π)5

1

mp

|~pK |

W

ε2

ε1

∑

λ′s

|Mλ′s|
2 , (4.5)

where Mλ′s now depends on the incoming and outgoing electron polarization and

the nucleon and hyperon spin state. The structure of the virtual photon, which

connects the electron to the hadron current, allows a separation of the amplitude

in terms of longitudinal and transverse parts. For unpolarized electron scattering,

one gets:

dσ

dε2dΩ2dΩK

=

Γ

[
dσT

dΩK

+ ε
dσL

dΩK

+ ε
dσTT

dΩK

cos (2φK) +
√

ε (1 + ε)
dσTL

dΩK

cos (φK)

]
. (4.6)

Herein, the virtual photon flux factor is given by:

Γ =
α

2π2

ε2

ε1

KH

Q2

1

1 − ε
, (4.7)
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with KH = ω − Q2/(2mp) the equivalent real photon lab energy. Further, ε is the

degree of transverse polarization of the virtual photon:

ε =

(
1 +

2|~k|2

Q2
tan2 θe

2

)−1

. (4.8)

Note that the φK-dependence is extracted from the various structure functions. As

a consequence, they solely depend on the variable set (ω∗, |~k∗|, θK) or equivalently

(s, t, Q2). The various contributions to the virtual photon cross sections are defined

as:

dσT

dΩK

= χ
1

(4π)2
(H1,1+ H−1,−1) , (4.9)

dσL

dΩK

= 2 χ
1

(4π)2
H0,0 , (4.10)

dσTT

dΩK

= − χ
1

(4π)2
(H1,−1+ H−1,1) , (4.11)

dσTL

dΩK

= − χ
1

(4π)2
(H0,1+ H1,0− H−1,0− H0,−1) . (4.12)

The factor χ is given by:

χ ≡ 1

16

1

W2

|~pK |

KH

W

mp
. (4.13)

The hadronic tensors occurring in the Eqs. (4.9)-(4.12) can be expressed in terms of

traces:

Hλλ′ =
∑

λiλf

Mλiλf

λ

(
M

λiλf

λ′

)†
,

=
∑

λiλf

(
u

λf
Y (pY) Tµελ

µ uλi
p (p)

) (
uλi

p (p) T
ν
ελ′∗

ν u
λf
Y (pY)

)
,

= Tr
{

(6 pY + mY) Tµελ
µ (6 p + mp) T

ν
ελ′∗

ν

}
, (4.14)

where λ and λ ′ denotes the polarization of the virtual photon. The virtual photon

polarization vectors are defined as:

ελ=0=
1√
Q2

(|~k∗|, 0, 0, ω∗) , ελ=±1= ∓ 1√
2

(0, 1,±i, 0) . (4.15)

Remark that ελ=0has to be evaluated with the virtual photon energy and momen-

tum determined in the frame in which the hadronic tensor is computed.
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So far, the expressions for electroproduction were derived for unpolarized par-

ticles both in the initial as well as in the final state. When polarized electrons are

used in the experiment, two additional terms enter the expression for the cross sec-

tion:

dσ

dε2dΩ2dΩK

=
dσ

dε2dΩ2dΩK

∣∣∣∣
unpol

+

h Γ

[√
1 − ε2

dσTT ′

dΩK

+
√

ε (ε − 1)
dσTL ′

dΩK

sin (φK)

]
. (4.16)

Herein, h is the helicity of the incident electron. Further, the two additional virtual

photon cross sections are defined as:

dσTT ′

dΩK

= − χ
1

(4π)2
(H1,1− H−1,−1) , (4.17)

dσTL ′

dΩK

= χ
1

(4π)2
(H0,1+ H1,0+ H−1,0+ H0,−1) , (4.18)

where the hadronic tensors are as in Eq. (4.14). Because of the structure of the

hadron current, the TT ′ term is identical to zero if no baryon polarizations are in-

volved in the process. In case one of the baryons (the p or Y) becomes polarized, the

same technique as in the real photon case can be applied: insert an additional spin

projection operator Π± (n) = 1
2

(1 ± γ5 6 n) in the trace calculation. The polarized

cross section can again be expressed in terms of the various response functions.

More details can be found in e.g. Ref. [67].

4.2 Gauge Invariance

Gauge invariance is a fundamental symmetry of every theory dealing with electro-

magnetic interactions. We will present the discussion for the p(e, e ′K+)Λ reaction,

but extension to the other isospin channels is straightforward. In order to impose

gauge invariance, the total amplitude has to fulfill the Lorentz condition:

kµMµ = 0 . (4.19)

In the effective Lagrangian approach, all terms naturally obey this constraint in-

dividually, apart from those Born terms that contain an “electric coupling”. As

outlined in Sec. 2.2, it is only the sum of all the amplitudes containing an electric
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couping which fulfill the Lorentz condition. With the introduction of electromag-

netic form factors, however, the individual electric parts are modified by different

functions F
p
1

(
Q2

)
and FK

(
Q2

)
:

Lγ∗pp = −e F
p
1

(
Q2

)
NγµNAµ +

eκp

4mp
F

p
2

(
Q2

)
NσµνNFµν , (4.20)

Lγ∗KK = −ie FK

(
Q2

) (
K†∂µK − K∂µK†

)
Aµ , (4.21)

Lγ∗ΛΛ = −e FΛ

1

(
Q2

)
ΛγµΛAµ +

eκΛ

4mp
FΛ

2

(
Q2

)
ΛσµνΛFµν . (4.22)

In addition, the γ∗ΛΛ interaction Lagrangian of Eq. (4.22) receives and additional

electric γµ coupling proportional to FΛ

1

(
Q2

)
. This contribution is comparable to the

Q2-dependent electric part of the neutron, which is observed to be small, though.

It is obvious that after those modifications, the gauge invariance of the combined

electric terms is lost.

To restore current conservation, we follow the procedure of Gross and Riska

[68], based on the Ward-Takahashi identity. They suggest the following replace-

ments in the vertex functions:

F
p,Λ
1

(
Q2

)
γµ −→ F

p,Λ
1

(
Q2

) [
γµ +

6 k
Q2

kµ

]
− F

p,Λ
1 (0)

6 k
Q2

kµ , (4.23)

FK

(
Q2

)
(2pK − k)µ −→ FK

(
Q2

)[
(2pK − k)µ +

(2pK − k) · k
Q2

kµ

]

− FK (0)

[
(2pK − k) · k

Q2
kµ

]
. (4.24)

With those replacements, it is straightforward to see that the Lorentz condition of

Eq. (4.19) is fulfilled at any Q2 provided that the total amplitude in the real pho-

ton limit (Q2 → 0) respects gauge invariance. In other words, if the effective field

theory conserves the current for the real photon process, the procedure of Gross

and Riska allows to construct a gauge invariant theory for the virtual photon pro-

cess. It is important to remark that the extra terms, introduced in Eqs. (4.23) and

(4.24) in order to ensure the gauge invariance, do not contribute to the observables.

Since all the additional terms in Eqs. (4.23) and (4.24) are proportional to kµ, they

effectively vanish in the calculations of the observables since they are orthogonal to

the virtual polarization vector εµ (k · ε = 0). In Ref. [69], Nozawa and Lee showed
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that this procedure can be related to the vector meson dominance model for the

electromagnetic form factors.

4.3 Results and Discussion

To date, very few p(e, e ′K)Y data are available. With no doubt, the amount of data

is too small to perform a reliable extraction of Q2-dependent coupling constants.

However, it is interesting to confront the models constructed for real photon pro-

duction processes with the available electroproduction data. In this section, the

K+Λ and KΣ reactions are treated separately.

4.3.1 KΛ Electroproduction

We start from the three models which have been developed in Sec. 3.2 to describe

real photon induced K+Λ production. In the extrapolation of the calculations into

the finite Q2 region, the sets of coupling constants are taken from the real photon

cases and in order to account for the Q2-dependence, electromagnetic form factors

are inserted as outlined in App. A.3. The results of those calculations are presented

in Fig. 4.2, where the Q2-dependence of the dσL/dΩ and dσT/dΩ term is plotted.

Let us first discuss the transverse component dσT/dΩ. In the limit Q2 → 0, all

three models are constrained by the real photon K+Λ data. At finite Q2, however,

the model calculations fall off more rapidly than the data. This may indicate that

the Q2-dependence of the resonance coupling constants, here reflecting itself as the

nucleon Pauli form factor, is not appropriate. Anticipating this shortcoming, we

have performed calculations with a simple dipole form factor at the electromag-

netic vertex of the resonances. By variation of the dipole cutoff mass, we were able

to raise the strength for this transverse response function. However, by comparing

the JLab data point at Q2 = 0.5 GeV2 and the corresponding SAPHIR point of about

0.3 µb/sr for the same kinematics but Q2 = 0, a very smooth fall off or even a slow

rise in the low Q2 region seems to emerge. So far, all of our predictions for the

transverse p(e, e ′K+)Λ response fall off with increasing Q2 and we are not able to

reproduce this effect.

For the longitudinal cross section dσL/dΩ, the situation is completely different.

Since the longitudinal component of the amplitude is not “probed” by real photons,
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Figure 4.2 Q2-dependence of the dσL/dΩ (left) and dσT/dΩ (right) terms for the
p(e, e ′K+)Λ process at W = 1.84 GeV and cos θ = 1. The solid curve is the full calcula-
tion. The dashed line is the strength produced by the Born terms with hadronic form fac-
tors included. The dotted line represents the contributions from all background diagrams.
The panels refer to the three different models (A, B and C) which have been introduced to
implement the contributions from the background. The data are from Ref. [70].
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this part remains absent in the real photon observables. As a consequence, the lon-

gitudinal part of the amplitude is not constrained by the real photon data. In this

light, this response function can serve as a good test for the predictive power of

the models and their corresponding parameters. From Fig. 4.2 it becomes obvious

that the models A and C badly fail in describing the longitudinal part of the elec-

troproduction data. Only with model B, one obtains the correct order of magnitude

for this term. This feature illustrates the importance of the background diagrams

in the longitudinal response. In order to trace the origin for the dramatic failure

of model A and C, we have plotted the contributions of the Born terms as dashed

lines in this Fig. 4.2. It is important to note that this curve does not represent the

point-like Born terms. They are modified by the hadronic form factors. In model

A, a soft form factor is applied with a cutoff mass of Λ = 0.4 GeV. On the contrary,

for model B, the Born terms are weighed with a hard hadronic form factor (Λ = 1.5

GeV). It is clear that when adopting a soft form factor, the longitudinal component

of the Born terms is too strongly suppressed. A similar remark appears to model

C where a moderate cutoff mass (Λ = 1.85 GeV) is introduced, but where small

values for the coupling constants gK+Λp and gK+Σ0p, out of the SU(3)-flavor sym-

metry ranges, are adopted. Fig. 4.2 also shows the total background strength. For

models A and C, the background consists of the Born terms and the t-channel K∗

and K1 exchange terms. For model B, the Born terms are extended with the same

two t-channel terms and two hyperon exchanges in the u-channel. Note that the

full background strength for the longitudinal response differs not that much from

the strength produced by the Born terms alone. This indicates that the contribution

from the t-channel exchanges to the longitudinal response is small. The most sig-

nificant deviation exists for model B. The difference here can be attributed mostly

to the hyperon resonances which are included in the u-channel.

The same tendencies with respect to the predictions of model A, B and C are ob-

served when the model calculations are compared to the data for the φK-averaged

virtual photon differential cross section for which only two terms survive:

dσT

dΩK

+ ε
dσL

dΩK

. (4.25)

The model calculations are plotted in Fig. 4.3 against the available data from Cor-

nell [71, 72] and the CEA facility at Harvard [73]. From this figure, it is obvious
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Figure 4.3 Model calculations for the Q2-dependence of the φK-averaged p(e, e ′K+)Λ dif-
ferential cross section. The solid, dashed and dotted curves are from the models A, B and
C, respectively. The kinematics are defined by W = 2.15 GeV, θK = 8◦ and ε = 0.85. The data
are from Refs. [71–73].

again that the models A and C, which produced fair results in the real photon case,

badly fail in describing the electron scattering results.

We feel that the confrontation with the electroproduction data represents a se-

vere test for the different models. There are indications that the procedure of cut-

ting the Born terms, either through the use of soft hadronic form factors (model A)

or by strongly reducing the coupling constants (model C), leads to unrealistic pre-

dictions as soon as one moves out of the real photon point. Only model B, which

adopts gK+Λp and gK+Σ0p values in conformity with (broken) SU(3) symmetry and

cutoff masses corresponding with relatively hard hadronic form factors, succeeds

in getting close to the experimentally determined longitudinal strength.

In order to make sure that the models A and C are indeed unable to reproduce

the electroproduction K+Λ data, we have refitted the parameters for the three mod-
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Figure 4.4 Q2-dependence of the φK-averaged p(e, e ′K+)Λ differential cross section. The
solid, dashed and dotted curve are from the refitted model A, B and C, respectively. The
data and kinematics are as in Fig. 4.3.

els against the data of both the real and virtual photoproduction processes. For the

virtual photon data, the results from the JLab [70], Cornell [71,72] and CEA [73] ex-

periments are included. For the K+Λ case, this amounts to a total of 126 real photon

and 34 virtual photon data points. The results of those model calculations with a

refitted set of coupling constants, are plotted in Figs. 4.4 and 4.5. For the sum of the

longitudinal and transverse part as defined in Eq. (4.25), good results are obtained

and the new model calculations are able to reproduce the data. Exploring the sep-

arated response functions, though, similar global features, as previously observed,

emerge. The predictions for the longitudinal cross sections of model A and C are

only marginally enhanced after the refitting procedure and badly undershoot the

data. This clearly illustrates the fundamental shortcomings of model A and C. The

fact that after the refitting procedure, model A and C also fail in describing the lon-

gitudinal response points to the fact that s-channel resonance contributions cannot
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process. Calculations are obtained with the refitted models and line conventions as in
Fig. 4.4. The data and kinematics are as in Fig. 4.2.
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Figure 4.6 W-dependence of the dσL/dΩ and dσT/dΩ terms and the sum of both for the
p(e, e ′K+)Λ process at Q2 = 0.5 GeV2 and cos θ = 1. Calculations are obtained with the
refitted models and line conventions as in Fig. 4.4. The data are from Refs. [70, 71].
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held responsible for this underestimation.

It is a remarkable feature that the data of Fig. 4.4 can be reproduced fairly well

by all refitted models while the models A and C badly fail in reproducing the lon-

gitudinal response of Fig. 4.5. First of all, it should be stressed that the Cornell and

CEA data of Fig. 4.4 correspond to W ' 2.15 GeV while the JLab data of Fig. 4.5

are taken at W = 1.84 GeV. They clearly correspond to a different energy region. To

further clarify this issue, we have plotted the W-dependence of the response func-

tions in Fig. 4.6. Inspecting those plots, it can be understand why the data points

at high W are better accounted for by the three models than the data from the JLab

experiment at low W. The drop in the longitudinal strength, especially at lower W,

is indeed responsible for this failure. In general, one can conclude that the refitted

models still exhibit a different energy behavior, not only in the dσL/dΩ term but

also in the dσT/dΩ part at higher W.

4.3.2 KΣ Electroproduction

In the previous section, we have concentrated on the p(e, e ′K+)Λ process and pre-

sented results of model calculations mainly tailored for its real photon counterpart.

An analogous analysis can now be performed for the p(e, e ′K+)Σ0 process. How-

ever, to our knowledge, there is no published data available for the separated lon-

gitudinal (dσL/dΩ) and transverse (dσT/dΩ) response functions. There exists only

measurements for their sum. The predictions for the dσL/dΩ and dσT/dΩ terms

are presented in Figs. 4.7. The parameters are taken as in the real photon case and

the Q2-dependence of the electromagnetic vertices is addressed by a form factor

as explained in App. A.3. A striking observation is that the predicted longitudinal

p(e, e ′K+)Σ0 strength, in the contrary to the p(e, e ′K+)Λ case, is fairly independent

of the model adopted to compute the background diagrams. Note also that in the

K+Σ0 channel, the contributions from the s-channel resonances is more pronounced

than in the K+Λ counterpart.

In a subsequent step, we have performed a new fit of the coupling constants,

now including the available p(e, e ′K+)Σ0 data from Cornell [71, 72] and the CEA

facility [73]. The total fit includes now 130 points for the real photon reactions γp →

K+Σ0 and K0Σ+ and 24 data points for the ep → e ′K+Σ0 process. Within all three

models, reasonable overall χ2 values are obtained. The predictions of the refitted
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Figure 4.7 Q2-dependence of the dσL/dΩ (left) and dσT/dΩ (right) response for the
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Figure 4.8 Model calculations for the Q2-dependence of the φK-averaged p(e, e ′K+)Σ0 dif-
ferential cross section. The solid, dashed and dotted curves are from the refitted models A,
B and C, respectively. The kinematics are defined by W = 2.15 GeV, θK = 8◦ and ε = 0.85.
The data are from Refs. [71–73].

model calculations for the φK-averaged virtual cross section are collected in Fig. 4.8.

It is clear that after the refitting, all three models, primary constructed for the real

photon KΣ reactions, seem to be in accordance with the available electroproduction

K+Σ0 data.





Chapter 5

Regge Model for KY Production

Back in 1959, Regge introduced a new concept for dealing with scattering am-

plitudes [74]. When discussing solutions of the Schrödinger equation for non-

relativistic potential scattering, he suggested to regard the angular momentum l

as a complex variable. From quantum mechanical principles, angular momentum

is a fundamentally integer quantity. However, Regge showed that an extension

into the complex plane could help in determining the dispersion properties of the

scattering amplitudes. A few years later, it became clear that this technique of ex-

tending angular momentum was extremely useful in high energy particle physics.

In fact, it is probably in this branch of science that the idea of a complex angular

momentum has been most fruitfully exploited. For a profound discussion of Regge

theory and its applications, we refer to the work of Collins [75]. Some excellent

reviews can also be found in Refs. [76–78].

A few years ago, Regge theory has experienced a renewed interest in the field of

meson production after reports of Regge based models that accurately describe the

high energy data [16,38,39,79]. Triggered by these observations, in this chapter we

will explore the possibility of using Regge theory to account for the global behavior

of the p(γ, K)Y and p(e, e ′K)Y data in the resonance region and beyond. We wish

to stress that the investigations reported in this chapter are rather exploratory in

nature and that various extensions and modifications of the framework presented

here belong to the possibilities for future work.

The organization of this chapter is as follows. In Sec. 5.1 some general concepts

of Regge theory are outlined. The results of the model calculations for the photo-
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and electroproduction processes are summarized in Sec. 5.2. Finally, in Sec. 5.3

some limitations and possible extensions of the Regge model are discussed.

5.1 Regge Theory

A detailed mathematical outline of the construction of the Regge amplitude for a

a + b → c + d scattering process is contained in App. C. Here, we will restrict

ourselves to sketching the general physical ideas lying behind Regge theory.

As is commonly known, the principle of crossing symmetry predicts that the

direct s-channel (a + b → c + d) process and its crossed t-channel (a + c → b + d)

counterpart can be described by one unique amplitude M (s, t). Obviously, this

amplitude has to be evaluated in different regions of the (s, t)-Mandelstam plane

when describing the two different processes (see Fig. C.1).

Let us now consider the case that the crossed t-channel process a + c → b + d

is dominated by one single pole. The amplitude M (s, t) can then be appropri-

ately approximated in terms of the partial wave amplitude that includes this pole.

This approach will reasonably account for the physical behavior of the (crossed t-

channel) process. However, when the same amplitude is now used in the physical

region of the direct s-channel process a + b → c + d, as is suggested by crossing

symmetry, it turns out that the results have to be handled with the greatest care

since it cannot be excluded that one comes across an unphysical divergent behav-

ior. The reason for this failure has to be sought in a convergence problem of the

partial wave decomposition for the t-channel amplitude. It can be shown that one

goes beyond the convergence domain of the t-channel partial wave decomposition

when applying it in the s-channel region. Summarizing, it seems that the knowl-

edge of M (s, t) in a certain part of the (s, t)-Mandelstam plane does not necessarily

imply that this amplitude can be evaluated in any other region of the (s, t)-plane.

A possible way to master this difficulty is based on a procedure which sums

over all partial waves of the t-channel inside the convergence region, before using

the amplitude in other parts of the (s, t)-Mandelstam plane. To perform this sum-

mation, Regge suggested to replace the infinite sum over the discrete eigenvalues of

the angular momentum by a contour integral over the complex angular momentum

plane. This replacement is referred to as the Sommerfeld-Watson transformation. The

contour integral in the complex momentum plane can then be deformed in such
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a manner that a closed expression for the partial wave decomposition is obtained.

The resulting expression for the amplitude M (s, t) can now be applied safely in

other regions of the Mandelstam plane. To simplify the mathematical descriptions,

it is appropriate to focus on the so called Regge limit (high s and small negative t).

Under those conditions, the Regge amplitude for the reaction a + b → c + d reads:

Mζ=±
Regge(s, t) = C

(
s

s0

)α(t)
β (t)

sin (πα (t))

1 + ζe−iπα(t)

2

1

Γ (α (t) + 1)
. (5.1)

For the detailed derivations which lead to this result, we refer the reader to App. C.

By construction, the Regge form for the scattering amplitude is unitary and obeys

the appropriate analyticity properties. Since the Sommerfeld-Watson transforma-

tion of Eq. (C.15) includes all partial waves in the t-channel, the amplitude of

Eq. (5.1) is not restricted to the exchange of some isolated poles. To the contrary,

a whole family of particles with the same internal quantum numbers as charge,

baryon number and strangeness but with different spin, participate in this ampli-

tude. Formally, this is reflected in the exchange of the α (t) “trajectory”, which

accounts for an entire class of particles. On every occasion that α (t) goes through

a (half) integer value, this corresponds with the exchange of an individual particle

with a mass
√

t and spin α (t). In the s-channel, however, one has t ≤ 0 and the

individual t-channel poles can never be reached. Accordingly, it is the exchange of

the whole trajectory that determines the physics of the s-channel reaction now.

As mentioned, a Regge trajectory α (t) connects the spin of a physical particle

with its mass squared. When the spins of a set of resonant states are plotted against

their mass squared in a so-called Chew-Frautschi plot (see Fig. 5.1), it is phenomeno-

logically observed by visual inspection that all Regge trajectories can be reasonably

parameterized by means of a linear function:

α (t) = α0 + α ′
(
t − m2

α0

)
. (5.2)

Here, α0 is the spin and mα0
the mass of the first materialization of the trajectory.

Further, α ′ is the slope of the trajectory which turns out to be close to an universal

constant and can be related to a string tension. For all observed baryon and meson

trajectories, one has α ′ ' 0.8 GeV2. It is believed that this linear behavior and the

universal slope of the trajectories reflect the behavior of the underlying partonic

degrees-of-freedom of the hadronic spectrum. The trajectories are often named af-

ter their first materialization. Examples are the kaon trajectory or the K∗ trajectory.
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Figure 5.1 The Chew-Frautschi plot for the non-strange and strange mesons. The curves
represent the π, ρ and ω trajectories for the S = 0 case, and the K and the K∗ trajectories for
the S = 1 sector.
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In the following discussions, we will sometimes refer to this first materialization

as the α0 particle. This should not be confused with the spin value α0 in Eq. (5.2).

In the forthcoming, the context will make it clear whether we refer to a physical

particle or its spin.

The Regge scattering amplitude as derived in the App. C and given in Eq. (5.1)

contains some undetermined quantities like the constant C and the residue function

β (t). To determine those quantities, one can rely on the fact that in the vicinity of

a certain t-channel pole αn, the Regge amplitude MRegge(s, t) has to coincide with

the Feynman exchange amplitude for this pole:

MFeynman(s, t)
t→m2

αn−→
βαn (t)

t − m2
αn

. (5.3)

Here, βαn (t) is defined as the residue of the Feynman amplitude at the pole. In

the Regge limit (s À and |t| ¿), the nearest t-channel pole is the one correspond-

ing to the first materialization or α0 particle. As such, it is appropriate to compare

both descriptions in the vicinity of this pole as a way to identify the β (t) func-

tion and the constant C. According to Eq. (5.2) and under the assumption that the

first materialization is a spin-less particle (α0 = 0), there holds that α (t) → 0 and

sin (πα (t)) → πα ′ (t − m2
α0

)
in the vicinity of the pole α0. By comparing Eq. (5.1)

and (5.3), evaluated with those limits, it is easily found that:

C = πα ′ , (5.4)

if the β (t) function of the Regge amplitude is taken as the βα0
(t) residue of the

Feynman amplitude. Eventually, with the identification of these two quantities,

one arrives at the following form for the Regge amplitude:

Mζ=±
Regge(s, t) =

(
s

s0

)α(t)
πα ′βα0

(t)

sin (πα (t))

1 + ζe−iπα(t)

2

1

Γ (α (t) + 1)
. (5.5)

By construction, this amplitude coincides with the Feynman amplitude at the pole

α0. When moving away from the pole, deviations between the above expression

(5.5) for the scattering amplitude and the Feynman amplitude cannot be ruled out.

One advantage of the Regge amplitude is that all the unitary and analyticity con-

ditions are met. Comparing again Eq. (5.3) and (5.5), we can now easily identify

everything but the residue function βα0
(t) as a propagator:

Pζ=±
Regge(s, t) =

(
s

s0

)α(t)
πα ′

sin (πα (t))

1 + ζe−iπα(t)

2

1

Γ (α (t) + 1)
. (5.6)
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The Regge propagator PReggereplaces the standard
(
t − m2

α0

)−1 propagator in the

α0 exchange Feynman amplitude. As such, one can propose a model in which

the operatorial structure of the vertices as determined in an effective Lagrangian

approach are maintained and only the propagator is modified. As a consequence

of this so called reggeization procedure, the Feynman amplitude corresponding with

α0 exchange in the t-channel effectively incorporates the exchange of a whole class

of particles as represented by the trajectory α (t).

In the previous derivation, the constant C and the residue β (t) were deter-

mined for a scalar α0 particle. When the first materialization of the trajectory does

carry spin, α0 takes on an integer (for mesons) or half-integer (for baryons) value

in Eq. (5.2). This effect of spin can be easily incorporated in the Regge propagator

by the following replacement:

α (t) −→ α (t) − α0 . (5.7)

This modification ensures that the Regge amplitude matches the corresponding

Feynman expression at the appropriate pole of the first materialization where α (t) =

α0.

5.2 KY Photo and Electroproduction

In the previous section, we have identified a Regge propagator which incorporates

the exchange of a whole class of particles with the same internal quantum numbers

as charge, baryon number and strangeness but with different spin. It can be moti-

vated that the Regge propagator replaces the Feynman propagator in the exchange

amplitude of the first materialization. In Ref. [16], it was shown that this reggeiza-

tion procedure gives rise to fair theoretical predictions for the kaon photoproduc-

tion observables. Indeed, the high energy p(γ, K+)Λ and p(γ, K+)Σ0 photoproduc-

tion data at forward angles are well described when the kaon and K∗(892) t-channel

exchange Feynman amplitudes are implemented with the aid of a reggeized propa-

gator. In essence, this reggeization procedure amounts to the following substitution
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when dealing with p(γ, K)Y processes:

1

t − M2
K

⇒ (5.8a)

∑

ζK=±
ηζK

(
s

s0

)αK(t)
πα ′

K

sin (παK (t))

1 + ζKe−iπαK(t)

2

1

Γ (1 + αK (t))
,

1

t − M2
K∗

⇒ (5.8b)

∑

ζK∗=±
ηζK∗

(
s

s0

)αK∗(t)−1
πα ′

K∗

sin (π (αK∗ (t) − 1))

1 + ζK∗e−iπ(αK∗(t)−1)

2

1

Γ (αK∗ (t))
.

The linear trajectories αK (t) and αK∗ (t) are shown in Fig. 5.1 and can be parame-

terized as:

αK (t) = 0.7
(
t − m2

K

)
, (5.9a)

αK∗ (t) = 1 + 0.85
(
t − m2

K∗

)
. (5.9b)

As explained in App. C, in determining the Regge propagator one has to distin-

guish between the two signature parts of the trajectories (ζ = ±) in order to obey

the convergence criteria. In brief, ζ = + corresponds with the even and ζ = − with

the odd partial waves. Therefore, the propagator contains a summation over the

signature factor ζ. Unfortunately, the theory does not determine the relative sign

between the odd and even parts of the trajectory. For that reason, an additional

sign, denoted by ηζ, needs to be introduced. Obviously, a microscopic description

of the trajectories should be able to determine this sign ηζ, but at present, there is

no firmly established theory which allows to do so. This freedom results in two

different solutions for the overall phase:

1 + e−iπα(t)

2
± 1 − e−iπα(t)

2
=






1 : constant phase

e−iπα(t) : rotating phase
. (5.10)

As can be inspected, the two different choices for the relative sign ηζ result in a

so called constant phase option, identical to 1 and in a rotating phase option, giv-

ing rise to the complex factor e−iπα(t). The option with the constant phase leaves

no imaginary part in the amplitude which would make the target and recoil po-

larization asymmetries to vanish. Therefore, we do not retain this option. The two
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extreme situations for the overall phase are the result of the fact that the odd (α (t)−

= 1,3,5. . . ) and even (α (t)+ = 0,2,4. . . ) signature parts of the kaon and K∗ trajectory

are fully degenerated (see Fig. 5.1). Consequently, both trajectories can be described

by one and the same parameterization for α (t) and the amplitudes Mζ=±(s, t) dif-

fer only by a phase factor. On the other hand, in case that the odd and even parts

are not fully degenerated (see for example the nucleon and N∗(1520) trajectory in

Fig. 5.8), two different parameterizations (α+ (t) and α− (t)) have to be introduced.

In such a case, the amplitudes differ by more than a phase factor and the extreme

situation of a purely constant or rotating phase does not occur.

Before discussing the results of the Regge model when describing p(γ, K)Y re-

actions, we comment on the important issue of gauge invariance. Whether or not

a reggeized propagator is used, it is well known that the t-channel kaon exchange

diagram is not gauge invariant. In order to restore this fundamental symmetry

at the level of the Feynman diagrams, it is straightforward to prove that an addi-

tional (electric) nucleon pole term is also required in the amplitude (see for exam-

ple the discussion in Sec. 2.2). For that reason, we explicitly include the nucleon

pole term in the total amplitude. However, when the kaon propagator is even-

tually reggeized, it appears natural to apply the same reggeization procedure to

the nucleon pole to preserve the correct gauge invariant structure. The reggeiza-

tion procedure of the kaon amplitude can be formally achieved by multiplying

the amplitude determined by standard Feynman diagram techniques, with a factor

PK

Regge·
(
t − m2

K

)
. The above recipe was suggested by Guidal et al. in Ref. [16] and

eventually results in a total amplitude which takes on a form:

Mtotal= MK + MK∗ + Mp · PK

Regge·
(
t − m2

K

)
. (5.11)

Remark that the nucleon pole amplitude Mp contains only the electric part propor-

tional to a γµ coupling. The magnetic coupling, proportional to σµν, is not included

on the basis of the duality hypothesis (see App. D). This hypothesis states that ei-

ther all t-channel or all s-channel poles have to be included. A combination of both

could lead to a double counting of the poles. As the Regge model takes into account

all t-channel poles, the amount of s-channel contributions is limited to a very strict

minimum.

As only two exchange amplitudes are taken into account, those of the kaon and

K∗, the number of free parameters in the proposed Regge model description of the
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K+Λ: gK+Λp/
√

4π = -3.242 Gv
K∗ = 0.265 Gt

K∗ = 1.159

K+Σ0: gK+Σ0p/
√

4π = 1.297 Gv
K∗ = 0.325 Gt

K∗ = -0.766

Table 5.1 The couping constants obtained from comparing Regge model calculations to the
high energy data of Ref. [80]. The coupling constants are defined in App. A.

p(γ, K+)Y reactions is limited to three. We have fitted the coupling constants to

the high energy p(γ, K+)Λ and p(γ, K+)Σ0 data at forward angles. The values are

summarized in Table. 5.1. Those numbers slightly differ from the ones obtained in

Ref. [16] (note that the authors used another definition for the coupling constants).

This can mainly be attributed to the difference in the parameterization for the K∗

trajectory in Eq. (5.9b). The results of our model calculations are summarized

in Fig. 5.2. One can conclude that the data, covering a large energy range (5 GeV

≤ ωlab ≤ 16 GeV), are fairly well described. Further, it is observed that the con-

tribution of the K∗ trajectory accounts for the major part of the computed strength.

Only for the p(γ, K+)Λ process at small t, the kaon trajectory provides most of the

strength.

As already outlined in Ref. [38, 39], a Regge model description on the basis

of Eq. (5.11) also succeeds to satisfactorily account for the electroproduction data.

The results of our model calculations are shown in Figs. 5.3 and 5.4. Thereby, the

Q2-dependence of the electromagnetic couplings was materialized through the in-

troduction of electromagnetic dipole form factors with a cutoff of 1.2 GeV. Both the

older data [71–73] for dσT+εdσL, as well as the new JLab data [70] for the separated

transverse (dσT) and longitudinal (dσL) response, are reasonably well described.

The results presented so far, indicate that a Regge based model naturally repro-

duces the correct s and t dependence of the p(γ, K)Y data in the high energy do-

main at forward angles. Moreover, the small number of free parameters is a clear

asset of this approach. With only three coupling constants, the data for each isospin

channel can be described. An important additional observation is that the gK+Λp

and gK+Σ0p coupling constants, governing the strength of the kaon trajectory, are
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Figure 5.2 The t-dependence of the differential p(γ,K+)Λ and p(γ,K+)Σ0 cross sections
for various photon lab energies. The solid line includes both the K and K∗ trajectories. The
dashed line includes only the K∗ part. The data are from Ref. [80] and account for photon
lab energies of 5 (●), 8 (■), 11 (▲) and 16 (▼) GeV.
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Figure 5.3 A Regge model calculation for the Q2-dependence of the φK-averaged differen-
tial p(e, e ′K+)Λ cross section. The kinematics are defined by W = 2.15 GeV, θK = 8◦ and ε =
0.85. The data are from Refs. [71–73].
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Figure 5.4 A Regge model calculation for the Q2-dependence of the longitudinal (left) and
transverse (right) p(e, eK+)Λ response. The data are from Ref. [70] and correspond with W

= 1.84 GeV and cos θK = 1.
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in accordance with predictions based on a rather modest breaking of SU(3)-flavor

symmetry.

It is interesting to explore the possibility of extending the Regge model into the

resonance region. There are various motivations for doing this. First, the small

number of free parameters is remarkable. In isobar models, one is typically dealing

with 15 free parameters or more when attempting to describe the same type of

reactions. More important is the fact that Regge theory naturally bridges the gap

between the observed hadrons and the underlying parton degrees-of-freedom that

constitute the basis of the meson and baryon trajectories. In this respect, the theory

offers excellent opportunities to connect the p(γ, K)Y observables (in the resonance

region) with the more fundamental QCD based degrees-of-freedom.

Strictly speaking, the Regge propagator of Eq. (5.6), as it has been derived in

App. C, is only valid in the limit of large values for s. Therefore, one cannot ex-

pect miraculous results of the theory in the resonance region. Despite those reser-

vations, we simply took the parameters determined in the high energy regime and

computed the p(γ, K+)Λ and p(γ, K+)Σ0 cross sections in the resonance region. The

results of these numerical calculations are compared to the measured total cross

sections and presented in Fig. 5.5. Not unexpectedly, the quality of agreement with

the data is inferior to what was observed at higher energies. Nevertheless, in the

light of the parameter-free nature of the model, the overall agreement is not bad

either. For the p(γ, K+)Σ0 process, the energy dependence of the data is reasonably

well reproduced. In the p(γ, K+)Λ channel, the model calculations overshoot the

data by a factor of two. Our Regge based prediction of the K+Σ0 cross section in the

resonance region differs from the one obtained with the parameterization of Guidal

et al. in Ref. [16]. The variations can be traced back to differences in the coupling

constants and different parameterizations for the K∗ trajectory. From Fig. 5.6, one

notices that without any adjustment in the parameters, the Regge model also suc-

ceeds in giving a fair account of the recoil polarization data at forward angles. For

example, the difference in sign at forward angles between the K+Λ and K+Σ0 chan-

nel is naturally explained. In addition, Fig. 5.7 collects some model predictions for

the photon beam asymmetry. At present, no published data are available for this

observable but preliminary results of GRAAL and SPring-8 all points towards a

positive sign in both the K+Λ and K+Σ0 channel [59, 60]. At backward angles, the
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Regge model calculations result in a vanishing asymmetry. This is not surprising

given that the Regge amplitude of Eq. (5.5) was derived for small t, or, forward

angles. Remark that at backward angles, a u-channel reggeization procedure could

be appropriate.

5.3 Extensions of the Regge Model

5.3.1 Duality Corrections

In the previous section, exploratory Regge based calculations in the resonance re-

gion were reported. Such a description based on t-channel dominance, will in-

trinsically not be able to account for resonant s-channel structures in the energy

dependence of the observables. At best, a Regge description can only be expected
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Figure 5.7 Regge model calculation of the angular dependence of the photon beam asym-
metry for the p(~γ,K+)Λ (upper panels) and p(~γ,K+)Σ0 (lower panels) process.

to provide an overall description of the physics in the resonance region. This is

not surprising, given that the theory does not contain any explicit information on

specific s-channel resonances. Therefore, in a first step, one can think of using a

Regge model to constrain the background diagrams and adding resonance contri-

butions on top of it. However, in doing so, one runs into a situation which clashes

with the duality hypothesis [75]. In Regge theory, all t-channel poles are taken into

account and when additional s-channel resonances are introduced, the possibility

exists that the poles are doubly counted.

A way to master this duality difficulty was suggested by Veneziano [81]. He

constructed a phenomenological model in which both s- and t-channel resonances

were included, at the same time excluding any possible source of double counting.

The Veneziano model turns out to produce reaction amplitudes which exhibit ordi-

nary t-channel Regge behavior. In addition, the presence of s-channel poles gives
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rise to an additional term in the phase factor of the scattering amplitude which

translates itself in the following substitution for the Regge amplitude (5.5):

1 + e−iπα(t)−→ 1 + e−iπα(t)+ sin (πα (t))
1 + eiπα(s)

sin (πα (s))
. (5.12)

In what follows, we will refer to the last term as the duality correction. The essen-

tial features and assumptions of the Veneziano model are summarized in App. D.

Despite the fact that it is based on rather severe assumptions , the Veneziano model

possesses some interesting features. In the literature, the model has been applied to

a variety of reactions [82–84]. In general, however, the “bare” Veneziano amplitude

appears too restrictive to provide a realistic description of the production processes

in the resonance region [75]. Nevertheless, the additional term in Eq. (5.12) can be

considered as a characteristic feature of all dual models [84]. Therefore, we will

use this prescription in the Regge formalism in order to introduce direct s-channel

poles in a way that respects the duality between the (t-channel) Regge and the (s-

channel) resonance amplitude.

When s-channel poles are introduced, it is appropriate to take into account the

finite lifetime of those resonances. Therefore, we introduce an imaginary part for

the α (s) trajectory:

α (s) = αn + α ′ (s − sαn ) + i Im {α (s)} ,

= αn + α ′
(

s − sαn + i
√

sαn

Im {α (s)}√
sαnα ′

)
. (5.13)

Here, αn is the spin of a pole with mass
√

sαn . The above equation can be made to

fit the well known Breit-Wigner form for the propagator if the following association

is made:

Im {α (s)} = α ′√sαnΓαn (s) . (5.14)

The real and imaginary parts of the α (s) trajectories for the N∗ and ∆∗ s-channel

resonances are displayed in Fig. 5.8. For the imaginary part of the α (s) trajectories,

we have used the following parameterizations:

Im{αN∗ (s)} = −0.85 + 0.37 s , (5.15a)

Im{α∆∗ (s)} = −0.20 + 0.20 s . (5.15b)
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Note that the relatively large error bars on the experimental widths, contained in

the bottom panels of Fig. 5.8, do not put stringent constraints on these parameteri-

zations. Thereby, it should be stressed that an observable impact on the predictions

is noticed for modest variations in the parameters of the expressions (5.15). The

slope of the real part is for all trajectories of the order 0.9 GeV−2. According to the

general expression (D.11) and in order to guarantee that the correct resonance struc-

ture at the poles is imposed, the α (s) trajectories that enter Eq. (5.12) are subject to

a shift according to the spin of the first materialization:

α (s) −→ α (s) − α0 . (5.16)

Considering the duality correction of Eq. (5.12) proposed by Veneziano, the

Regge propagator of Eq. (5.6), gains an additional term in the phase factor and

takes on the form:

PVen(s, t) =

(
s

s0

)α(t)
πα ′

sin (πα (t))

1

Γ (1 + α (t))

1

2

[
1 + ζte

−iπα(t)

−i ζtζs sin (πα (t))
eiπαR(s)− ζs e−παI(s)

cosh (παI (s)) − ζs cos (παR (s))

]
. (5.17)

Here, the duality correction term is rewritten in order to make the dependence

on the real and imaginary part of α (s) = αR (s) + iαI (s) more explicit. We have

also introduced the appropriate signature factors ζs and ζt for the s- and t-channel

trajectories. The behavior of the real and imaginary part of the duality correction

term (for ζs = +) are plotted in Fig. 5.9a. From those surfaces, it becomes obvious

that for a vanishing imaginary part αI (s), the resonant structure of the duality term

is revealed. If no width would be associated to the trajectory α (s), the duality term

would simply introduce additional s-channel Breit-Wigner resonances, when α (s)

moves through the half integer values 1/2, 5/2, 9/2. . . . Note that the negative

signature (ζs = −) part produces poles at α (s) = 3/2, 7/2. . . . The appearance

of an imaginary part in α (s) guarantees that the global effect of the duality term

remains confined to the resonance region. On the basis of the parameterizations of

the αI (s) in Eq. (5.15), it is found that towards the tail of the resonance region (s '
7 GeV2) one has αI (s) ' 1.5. For this value of αI (s), visual inspection of Fig. 5.9

learns that both the real and imaginary part of the duality term become negligible.

From the above discussion, it emerges that the Veneziano procedure is able to

introduce the physically relevant s-channel resonant contributions into a t-channel
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subtracted in order to avoid double counting. Finally, in the panels (c), a correction for the
unphysical offset in the imaginary part of panel (b) is made.
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dominated Regge model. Thereby, the major concern of the duality hypothesis,

namely not to double count poles, is properly imposed. With respect to this dou-

ble counting, there remains one difficulty. Indeed, by adding s-channel poles at

every half integer value, also the nucleon pole at αR (s) = 1/2 gets introduced. As

explained in the discussion preceding the Eq. (5.11), the requirement of gauge in-

variance makes one to add a nucleon pole term (with a reggeized propagator) to

the total reaction amplitude. To avoid double counting, one has to subtract this

nucleon pole contribution from the duality correction term. This subtraction is il-

lustrated in Fig. 5.9b, where indeed the Breit-Wigner resonance structure is missing

at αR (s) = 1/2. Mathematically, this procedure amounts to subtracting in Eq. (5.17)

the term:

ζt sin (πα (t))

[
πα ′

R

(
s − m2

p

)

cosh (παI (s)) − 1 + 1
2

[
πα ′

R

(
s − m2

p

)]2

−i
1 − 1

2

[
πα ′

R

(
s − m2

p

)]2
− e−παI(s)

cosh (παI (s)) − 1 + 1
2

[
πα ′

R

(
s − m2

p

)]2

]
. (5.18)

The functional form of this term which subtracts the nucleon pole contribution is

obtained when expanding the duality correction term about the nucleon pole αR (s)

= 1/2. According to Eq. (5.16), the functions cos (παR (s)) and exp (iπαR (s)) in

Eq. (5.17) receive a spin shift -1/2 in αR (s) before they are evaluated. This makes

that the nucleon pole corresponds to:

αR (s) −
1

2
= πα ′

R

(
s − m2

p

)
= 0 , (5.19)

as one should expect. Consequently, one can rely on cos x ' 1 − 1
2
x2 and eix '

1 + ix − 1
2
x2 in the expansion of Eq. (5.17) to arrive at the above expression.

An indirect consequence of the above subtraction procedure of Eq. (5.18) is that

the imaginary part is shifted by -1 at large αR (s) and small αI (s) (see Fig. 5.9b).

This displacement reflects the coupling between the different materializations of a

trajectory and indicates that the removal of a pole has implications for the entire tra-

jectory. A disadvantage of this displacement is the loss of the correct Breit-Wigner

behavior at the poles. Therefore, we have opted to correct for this (unphysical)

effect by adding the following term to the phase factor in Eq. (5.17):

ζt sin (πα (t))

[
πα ′

R

(
s − m2

p

)]2

eπαI(s)+
[
πα ′

R

(
s − m2

p

)]2
. (5.20)
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The effect of this modification can be appreciated by comparing Fig. 5.9b with

Fig. 5.9c. Indeed, with the prescription of Eq. (5.20), the Breit-Wigner shape around

the poles is restored.

Inspecting Fig. 5.8, it is clear that there is a whole series of N∗ and ∆∗ s-channel

trajectories. It is not a trivial exercise to determine which ones to include as α (s)

trajectories in the duality correction term when performing p(γ, K)Y calculations

with the Veneziano extension to the Regge model. In the light of the duality hy-

pothesis, it could be argued that every trajectory in the t-channel should have its

counterpart in the s-channel. This would provide a selection criterion for the α (s)

trajectories. It is not clear, though, how this “duality connection” between the s-

and t-channel trajectories manifests itself. On the basis of gauge invariance, it can

be argued that such a connection exists between the kaon and the nucleon tra-

jectory. They both have to be included to obey charge conservation. For the K∗

t-channel trajectory, such a reasoning is not readily available and it is not clear how

to determine its s-channel counterpart. Therefore we have chosen to include the

most dominant nucleon trajectory with unnatural parity, namely the D15(1675) tra-

jectory. For the KΣ production channels, also ∆∗ trajectories have to be taken into

account. Candidates are the P33(1232) and the D33(1700) trajectories.

The corrections produced by the Veneziano duality term on the total p(γ, K+)Λ

and p(γ, K+)Σ0 cross section are illustrated in Fig. 5.10. Obviously, typical s-channel

resonance contributions, superimposed on top of the original Regge curves, appear.

However, the corrections as obtained within this formalism do not reproduce the

data very well. For the K+Λ channel, the resonance contributions are far too pro-

nounced and do not improve the original Regge description. In the K+Σ0 channel,

on the other hand, the Veneziano extension seems to account for more realistic cor-

rections, although also here the results are not fully matching the total cross section

data. It has to be stressed that the results are very sensitive to the choices made

regarding the relative signs between the various α (s) trajectories. As mentioned in

Sec. 5.1, the different trajectories of defined signature receive an additional sign ηζ

which remains undetermined in Regge theory. Calculations with various combina-

tions for those relative signs of the trajectories were performed. The results of two

combinations are presented in Fig. 5.10, and the adopted ηζ values are summarized

in Table 5.2.
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Figure 5.10 Total cross section for the p(γ,K+)Λ and p(γ,K+)Σ0 process. The solid line is
the Regge model calculation. The dashed and dotted curves are results after including the
duality correction term of Eq. (5.12). They differ by the choices with respect to the relative
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ηζ N∗(939) N∗(1520) N∗(1675) N∗(1990)

dashed line: + + - +
dotted line: - - - -

∆∗(1232) ∆∗(1700) ∆∗(1905) ∆∗(1930)

dashed line: - + + +
dotted line: - - - -

Table 5.2 The relative signs ηζ of the α (s) trajectories which are used in the calculations of
Fig. 5.10.

To conclude this section, one can state that the duality correction term, inspired

by the Veneziano model, is able to introduce “resonant structure” in a Regge model

calculation for p(γ, K)Y reactions. The corrections are effective in the appropriate

resonance region and do not alter the Regge model calculations at the higher en-

ergies where the coupling constants are determined and where there is no obvious

need to introduce extra resonant structures in the predictions. The s-channel cor-

rections in the K+Σ0 channel appear more realistic than those in the K+Λ case. For

the latter channel, the corrections stemming from s-channel resonances are far too

large.

5.3.2 Beyond the Regge Limit

The derivation of the Regge amplitude in App. C and the identification of a Regge

propagator in Sec. 5.1 were done in the so called Regge limit (s À and |t| ¿). So,

strictly speaking, the expressions are only valid in this regime. As shown in Fig. 5.2,

though, reasonable predictions for the KY production data are obtained at values of

-t as large as 1.5 GeV2. It is questionable if such a magnitude of |t| still can be con-

sidered as sufficiently small. In this section, we report results of exploratory studies

which aim at figuring out the validity and possible ways of extending Regge the-
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Figure 5.11 The kaon and K∗ trajectories as a function of t. For large negative t, the trajec-
tories are saturating at -0.5. An exponential function is used in the t ≤ 0 region.

ory for describing p(γ, K)Y processes beyond the strict boundaries imposed by the

high s and low |t| limit.

A first feature, which appears not properly implemented in the results of Sec. 5.2,

is that there are strong indications that the α (t) trajectories should saturate in the

limit t → −∞. On the basis of counting rules of a constituent inter-exchange model

one can prove that α (t) cannot be a linear function at large negative t but, to the

contrary, saturates at a finite value [85, 86]. Such a saturation of the trajectories is

also predicted by Sergeenko on the basis of an inter-quark potential [87]. This idea

is made clear in Fig. 5.11 for trajectories tending toward a value of -0.5. Imple-

menting an exponential saturation in the model calculations, it is immediately clear

that the results are extremely sensitive to the saturation value. Indeed, in Fig. 5.12

some predictions for various choices for the saturation value are displayed. On

the basis of these curves, one can conclude that a satisfactory description of the t-

dependence of the cross section can only be achieved with saturation values smaller

than -2. For smaller (absolute) saturation values, the calculated strength largely

overshoots the data for -t ≥ 0.5 GeV2. It can be argued that also the introduction

of hadronic form factors could help in reducing the cross sections at higher -t [79].

This option is not further explored in this work.

We now wish to determine the range of validity in the variable t of the reggeized
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amplitude of Eq. (5.5). In deriving the latter equation, use is made of the following

expression for the asymptotic behavior of the Legendre function:

Pα (z)
z→∞−→






1√
π

Γ(α+1/2)
Γ(α+1)

(2z)α , Re {α} ≥ −1
2

,

1√
π

Γ(−α−1/2)
Γ(−α)

(2z)−α−1 , Re {α} ≤ −1
2

.

(5.21)

In the derivation of the Regge amplitude in App. C the expression for Re{α} ≥ −1
2

is used. It is this asymptotic proportionality of zα that eventually gives rise to the

Regge behavior for the energy dependence of the amplitude:

MRegge∼ sα(t) . (5.22)

As was illustrated in Fig. 5.2, this functional dependence on the variables s and t

clearly resembles the experimental observations. According to Eq. (5.21), on the

other hand, a proportionality factor of the type z−α−1makes its appearance when

α (t) ≤ −1
2

, resulting in an amplitude with the following energy dependence.

MRegge∼ s−α(t)−1. (5.23)
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It is obvious that this amplitude diverges in s for α (t) < -1. So, on the basis of

a mathematically correct implementation of the asymptotic form of the Legendre

function, one may exclude the option that the trajectories saturate at values smaller

than -1. On the basis of the findings of Fig. 5.12, however, trajectories saturating at

large negative values seem highly preferable.

This is an apparent contradiction which deserves to be better studied. First we

wish to point out how the Legendre function exactly appears in the expression for

the Regge amplitude. Referring to the derivations of App. C, it turns out that the

Legendre function in the Regge amplitude of Eq. (5.5) is approximated by:

Pα(t)(− cos θt) −→
(

s

s0

)α(t)
1

Γ (1 + α (t))
. (5.24)

This expression is based on the asymptotic form of Eq. (5.21) and is a fairly good

approximation for the Legendre function as long as α (t) is close to zero. In practice,

this corresponds with t values which make α (t) to reside in the vicinity of the pole

α0. For the kaon trajectory, for example, this pole emerges at t = +0.24 GeV2.

In order to appreciate the impact of the various asymptotic forms for the Legen-

dre function, we have collected in Fig. 5.13 the exact Legendre function and the two

approximations of Eqs. (5.21) and (5.24). The panels (a), (b) and (c) correspond to

a saturating trajectory at -0.5, -1 and a linear trajectory, respectively. First, it seems

that the asymptotic form (5.21) depicted by the dashed line describes well the exact

Legendre function (solid line), as long as α (t) does not approach -0.5. At this value,

the gamma function Γ (α (t) + 1/2) has a pole. In the asymptotic form of Eq. (5.24),

the divergence from the function Γ (α (t) + 1/2) has been artificially removed. This

can be inspected from the dotted curves of Fig. 5.13. However, this figure also

makes clear that the expression (5.24) has a t-dependence which strongly differs

form the exact Legendre function when α (t) departs from the α0 pole. In Fig. 5.13c

where a linear trajectory is used, the deviation is the most severe. Note that the

dotted line of this panel corresponds exactly with the form used to obtain the nu-

merical results in Sec. 5.2. From the panels (a) and (b) of this figure, obtained with

a saturating α (t), one can conclude that the expression of Eq. (5.24) produces by

far smaller values than the exact Legendre function.

From the above discussion of the behavior of the Legendre functions and its

asymptotic approximations, one can conclude that in many cases the Regge am-
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Figure 5.13 The t-dependence of the Legendre function (solid line) and its asymptotic
forms as given in Eq. (5.21) (dashed line) and Eq. (5.24) (dotted curve). The latter one is
used in the Regge amplitude of Eq. (5.5). Panel (a) contains a saturating trajectory at a
value of -0.5 whereas the trajectory of panel (b) saturates at -1. For panel (c), a linear trajec-
tory is used. The photon lab energy is 8 GeV. Similar behavior is observed for other photon
energies.

plitude of Eq. (5.5) is used under physical conditions extending the strict range of

applicability of the mathematical formula which lies behind its derivation. Only

for very small values of α (t), the approximation of Eq. (5.24) and the proportion-

ality factor sα(t)can be mathematically justified. For α (t) values corresponding to

t ≈ 0, the approximation (5.24) becomes poorer and for α (t) values beyond -0.5, a

behavior as s−α(t)−1is predicted by the exact Legendre function.

In view of the above restrictions, we have made an attempt to derive a mod-

ified Regge propagator which is based on an exact expression for the Legendre

functions. Starting from Eq. (C.32) and along the same lines of App. C and Sec. 5.1,

one can construct a modified propagator P̃Reggewhich has the following form:

P̃ζ=±
Regge(s, t) = − (2α (t) + 1)

πα ′

sin (πα (t))

1 + ζe−iπα(t)

2
Pα(t)(− cos θt) . (5.25)
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Figure 5.14 The t-dependence of the propagators P̃Regge (solid line) and PRegge (dot-
ted line) as defined in the Eqs. (5.25) and (5.6), respectively. The phase factor
[1 + ζ exp (−iπα (t))] /2 is not included. The different panels use α (t) trajectories as in
Fig. 5.13. The photon lab energy is 8 GeV.

It can be easily proven that in the limit α (t) → 0, P̃Regge(s, t) is identical to the

original and commonly adopted propagator PRegge(s, t) of Eq. (5.6). Both the orig-

inal and modified Regge propagator proposed here, are displayed in Fig. 5.14 for a

linear trajectory (c), and a trajectory saturating at -0.5 (a) and -1 (b). Inspecting this

figure, it is observed that in all cases PReggeconverges at larger values of −t, due

to the proportionality sα(t). The modified Regge propagator, on the other hand,

diverges at larger values of −t. An exception should be made for the case where

the trajectory is made to converge at the value -0.5. This peculiar behavior can be

attributed to the presence of the factor [2α (t)+ 1] in Eq. (5.25) and the convergence

of the other factors. In panel (b), where α (t) → -1, the Legendre function adopts

a value of about 1 (Fig. 5.13b). However, in this particular case, the divergence of

P̃Reggeis due to the pole produced by [sin (πα (t))]−1. In panel (c), the steep raise

is a combination of the sin (πα (t)) pole at α (t) = -1 and the diverging Legendre

function at large t (Fig. 5.13c).

From the above investigations of the modified propagator P̃Regge, it seems that

only a trajectory saturating at a value approaching -0.5 can produce acceptable re-
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Figure 5.15 Contribution of the kaon trajectory to the differential p(γ,K+)Λ and p(γ,K+)Σ0

cross section. The solid line is obtained with the modified P̃Regge propagator of Eq. (5.25)
and a saturating trajectory at -0.5. The dashed line is the result of a calculation with the
original PRegge propagator of Eq. (5.6) and a linear trajectory. The photon lab energy is 8
GeV and the data are from Ref. [80].

sults which are free from divergences. Right at the start of this section, it was al-

ready mentioned that there are strong arguments which speak in favor of trajec-

tories α (t) saturating at large negative values of t. In Fig. 5.15 we have plotted

the amplitude produced by a saturating kaon trajectory at -0.5, reggeized with the

P̃Reggepropagator. In addition, the kaon strength obtained with the original PRegge

and a linear trajectory is shown. It seems that the variations in the predictions of

both approaches are not spectacular. This feature is not that surprising given the

t-dependence of the propagators in Fig. 5.14. The solid line of panel (a) and the

dotted line of panel (c) are relatively close.

As mentioned in Sec. 5.2 and exemplified in Fig. 5.2, in a Regge model the

largest fraction of the p(γ, K+)Y strength can be attributed to the exchange am-

plitude stemming from the K∗ trajectory. However, a difficulty emerges with the

K∗ trajectory when introducing a modified Regge propagator as it was written in

Eq. (5.25). A K∗ trajectory which saturates at a value of -0.5 is physically acceptable

but in order to force the amplitude to match the corresponding Feynman expres-

sion at the α0 pole, the K∗ trajectory receives an offset of -1 according to the spin

shift of Eq. (5.7). This results in an effective saturation value of -1.5 that enters
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Figure 5.16 Contribution of the K∗ trajectory to the differential p(γ,K+)Λ and p(γ,K+)Σ0

cross section. The solid lines are obtained with the original PRegge propagator and a linear
trajectory. The dashed lines are the result of a calculation with the modified P̃Regge prop-
agator and a saturating trajectory at +0.5. For the dotted curves, the coupling constants of
the dashed-line model were adjusted. The data are as in Fig. 5.2.

the calculations. From Eq. (5.21), it is obvious that this inevitably gives rise to a

diverging Legendre function and an unphysical amplitude.

A possible way out may be the following. If the K∗ trajectory is made to saturate

at +0.5, the “spin shift” of -1 will force the saturation to occur at an effective value

of -0.5. To our knowledge, however, there are no physical arguments for introduc-

ing a positive saturation value. Anyway, we have plotted the result for this option

in Fig. 5.16. It turns out that the exchange of the K∗ trajectory, calculated with the

modified P̃Reggepropagator produces much larger cross sections than what is ob-

tained with the original Regge propagator. However, the values for the two K∗

coupling constants were adjusted to the data and can in principle be refitted. By

doing so, the numerical calculations can be made to reproduce the right order of

magnitude of the cross sections but the s-dependence of the amplitude seems not

to correspond to what is experimentally observed. The difference in the computed

strength for the 5, 8, 11 and 16 GeV photon lab energies is too small, pointing to

problems with the s-dependence of the used propagator. It should be stressed that

this failure of the s-dependence is not observed in similar calculations for the kaon

trajectory although this is not explicitly made clear in Fig. 5.15. For the kaon am-
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plitudes, the correct separations in s are revealed.

The reason for this different energy behavior of the two trajectory exchanges has

to be sought in a different energy dependence of the corresponding vertex func-

tions. For the kaon coupling, the vertex function is almost independent on the

energy whereas this is not the case for the vertex function of the K∗ particle. Since

the modified P̃Reggepropagator for the kaon and K∗ exhibit a comparable behavior

(they both have a α (t) that saturates at an effective value of -0.5), the differences

in the energy dependence of the vertex function is revealed in amplitudes. The

original Regge propagator, calculated with a linear trajectory, behaves like:

PK
Regge ∼ sαK(t) = s0.70 t−0.17,

PK∗

Regge ∼ sαK∗(t)−1 = s0.85 t−0.68.

(5.26)

This difference in powers of s seems to absorb the s-dependence of the vertex func-

tions and results in an energy dependence of the amplitude in accordance with the

experiment.

The bottom line of the above discussion is that the original form of the Regge

amplitude can be successfully applied over a relatively wide area in the (s, t)-

Mandelstam plane. This area in (s, t) greatly outreaches the range of applicability

which one could expect on rigorous mathematical grounds. Straight extensions of

the theory based on seemingly more rigid mathematical expressions appear to cur-

tail the general applicability of Regge theory. In that respect, Regge theory appears

to have a considerable phenomenological basis.

To conclude this subsection, we wish to stress that we are aware of the fact that

the material presented here raises more questions than it actually answers. We are

hopeful, though, that the considerations presented here may eventually contribute

to a more profound understanding of the successes and limitations of Regge theory

and to its possible extension into the resonance region.





Chapter 6

Conclusion and Outlook

In this work, we investigated the open-strangeness production off the proton in-

duced by real and virtual photons. To be more specific, we addressed the issue of

describing and interpreting p(γ, K)Y and p(e, e ′k)Y reactions in a (virtual) photon

energy range which extends from threshold up to a few GeV. We have adopted two

fairly complementary techniques based on different ways of assessing the underly-

ing degrees-of-freedom. In the isobar model, the basic degrees-of-freedom are the

hadrons and their excited states and they are described in terms of effective fields.

In the Regge model, the description does not take into account individual particles

but rather goes out from properties of classes of hadronic states, called trajecto-

ries, determined by partonic degrees-of-freedom. The two descriptions provide a

complementary picture of the problem under investigation.

In the isobar model, the kaon production reactions are studied in terms of hadro-

nic degrees-of-freedom employing a field-theoretic approach. We have reached a

fair description of the available SAPHIR database for the three reaction channels

γp → K+Λ, K+Σ0 and K0Σ+. Model calculations are presented for the total and

differential cross sections as well as for the recoil polarization asymmetries for all

three channels. In addition, predictions are made for observables for which there

are at present no data available. Such an observable, for example, is the photon

beam asymmetry.

From our model calculations for the K+Λ channel, the data seems to support

evidence for a significant role of the four nucleon resonances S11(1650), P11(1710),

P13(1720) and D13(1895). For the KΣ processes, we were able to identify a set of
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three N∗ resonances (S11(1650), P11(1710), P13(1720)) and two ∆∗ states (S31(1900)

and P31(1910)), with which a satisfactory description of the data can be obtained.

In the search for the dominant resonant contributions, the issue of the “missing

resonances” was thoroughly addressed. In the K+Λ channel, there is clearly some

need for an additional, formerly unobserved, resonance in the mass range about

1.9 GeV. We find that the overall description of the data is significantly improved

after introducing a D13(1895) state, as was recently also suggested by the George

Washington group. However, in this work it is shown that also alternative reso-

nances with other quantum numbers could account for the observed “structure”

in the energy dependence of the data. In that respect, it is stressed that the iden-

tification of the quantum numbers of this new state and a further characterization

have to be addressed with the greatest care. With no doubt, further confirmation in

other observables is necessary to pin down the exact nature of this missing nucleon

resonance. A possibility is also to look for indications of this missing resonance in

other isospin channels. In KΣ photoproduction reactions, our calculations do not

provide evidence for a salient role for the missing D13(1895) resonance.

From the investigations presented in this work, it becomes clear that the treat-

ment of background processes in the p(γ, K)Y reactions is not free of ambiguities.

We have shown that the “bare” Born amplitudes, which are constrained on the ba-

sis of SU(3)-flavor symmetry, produce cross sections which dramatically overshoot

the measured ones. Therefore, additional ingredients in the model calculations be-

yond resonance contributions appear essential. We have presented three different

schemes which accomplish to cut down satisfactorily the magnitude of the Born

amplitudes. They are based on the introduction of soft hadronic form factors for

the Born terms (model A), the introduction of hyperon resonances in the u-channel

(model B) or the presumption of a very strong SU(3)-flavor symmetry breaking

at the level of the coupling constants (model C). With the existing database, it is

impossible to decide on empirical grounds which one of the three approaches ap-

pears favorable. All three schemes succeed in reproducing the photoproduction

data fairly well. However, through the background diagrams, some model depen-

dence in the extracted resonance parameters gets introduced. This dependence

turns out to be small for the ∆∗ particles. For some of the N∗ resonances, though,

the extracted coupling constants may vary up to an order of magnitude, depend-
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ing on which model is used to implement the background. Predictions for some of

the unmeasured observables also exhibit these model dependences. Calculations

for the p(γ, K+)Σ0 photon beam asymmetry are only moderately sensitive to the

implementation of the background terms. This is not the case for the photon beam

asymmetries in the p(γ, K+)Λ and p(γ, K0)Σ+ channel. Similar variations are also

observed in double polarization asymmetries.

Closely related to the treatment of the background, we have investigated how

sensitive the predictions are to the adopted recipes for the phenomenological ha-

dronic form factor F̂, appearing in the contact terms which are introduced to con-

serve gauge invariance. Former investigations mainly used the Ohta or Haberzettl

prescription for the form factor F̂ . Recently, Davidson and Workman pointed out

that both of these recipes are theoretically unacceptable and provided an alternate

form. A systematic study on the consequences of these corrections for the com-

puted p(γ, K+)Λ observables has been made. In the energy range under investi-

gation, the corrections are rather large and the effects on the extracted coupling

constants is substantial.

Apart form the photoproduction processes, the electroinduced p(e, e ′K)Y reac-

tions are addressed. The current database is small and a reliable extraction of Q2-

dependent resonance parameters remains unfeasible at present. The recent JLab

data for the longitudinal K+Λ response, a quantity which is not probed by the real

photons, seems to have the potential to discriminate between the different back-

ground models which are constructed to describe the photoproduction data. The

schemes introducing soft hadronic form factors or strong SU(3)-flavor symmetry

breaking seem not to be favored by the electroproduction data. Such strong varia-

tions between the different model predictions are not observed in the K+Σ0 chan-

nel. At present, however, no data is available for the separated p(e, e ′K0)Σ+ re-

sponse functions. After all, the longitudinal component of the electroinduced pro-

cess seems to be a powerful tool to further constrain the reaction dynamics and will

likely have its impact on the models constructed on the basis of photoproduction.

Summarizing, it is clear that even an extensive and accurate data base as the one

produced by the SAPHIR collaboration, does not allow to determine unambigu-

ously the various contributions to the p(γ, K)Y reaction dynamics. The measured

cross sections and recoil polarization asymmetries do not suffice to fully nail down
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the complicated interference pattern between the various contribution. This is not

very surprising given that a complete meson photoproduction experiment needs at

least seven observables to fully constrain the reaction amplitude at a fixed photon

energy [57].

In the foreseeable future, however, the available amount of strangeness pro-

duction data in the resonance region will dramatically increase. Research efforts at

JLab [88], GRAAL (Grenoble) [59] and SPring-8 [60] and continuing analysis work

from the SAPHIR collaboration [55] will substantially extend the amount of Λ and

Σ photo- and electroproduction data and will shed light on the capability or inca-

pability of hadronic approaches to model the physics at higher photon energies.

They will also provide large and accurate sets of polarization data. With such an

extensive data base at hand, one can be hopeful to better constrain the theoretical

models, reveal the full dynamics of strangeness production reactions and extract

reliable information regarding the mass position and various decay widths of the

resonances.

In the second part of this work, a Regge theory based model is applied to de-

scribe the same strangeness photo- and electroproduction data. In literature, it was

shown that such a model is able to excellently account for the high energy p(γ, K)Y

data at forward angles. In a Regge based model description, very few parame-

ters are required and they can all be fixed by comparing the model calculations

to the data above the resonance region. In this work, we have made an attempt

to extend the Regge model to the lower energies and apply it in the resonance re-

gion. We have shown that even without introducing additional ingredients in the

theory or without modifying the parameters, the Regge based model succeeds in

providing a fair description of the data in the resonance region. For example the

correct signs and magnitudes in the observed asymmetry observables for both the

K+Λ and K+Σ0 channels are reproduced in a natural way. On the other hand, the

structure in the observables, usually attributed to the occurrence of s-channel reso-

nances, cannot be accounted for in a Regge based model.

In an attempt to add the physics of the N∗ and ∆∗ resonances to a Regge based

description, a correction term, based on the Veneziano model, is introduced. This

correction term takes into account the duality hypothesis and avoids double count-
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ing of s- and t-channel poles. It is shown that the correction term introduces res-

onant structures in the observables. For the K+Σ0 channel, the results are in rea-

sonable agreement with what is experimentally observed. In the case of the K+Λ

process, however, the resonance corrections of the Veneziano model are far too pro-

nounced.

Further, we have explored the possibilities to apply Regge inspired models be-

yond the so called Regge domain of large s and small t (s À and |t| ¿). The Regge

amplitude is derived under those strict conditions and is in principle only appli-

cable in this limited Regge domain. Surprisingly, a Regge inspired model appears

able to account for the p(γ, K)Y data in a wide kinematical domain which largely

exceeds the strict Regge domain determined by the conditions s À and |t| ¿. We

have made an attempt to formulate possible modifications to the Regge amplitude

which could make it theoretically more acceptable in this wider kinematical range.

In doing so, we came across a number of technical and mathematical difficulties for

which no clear-cut solutions could be put forward. As a matter of fact, it appears

that both conceptually and technically the extension of the powerful ideas of Regge

theory into the resonance region is far from straightforward and more theoretical

efforts are clearly needed.





Appendix A

Effective Field Theory and
Pseudo-scalar Meson Production

In an isobar model, the hadrons and their excited states are treated as individual

particles and described by effective fields. In this appendix, the building blocks of

such a field theory are presented. The effective Lagrangians used in meson pho-

toproduction calculations are given in numerous works [15, 25, 50, 89]. However,

for the sake of defining our notation and normalization conventions, we summa-

rize the ones which are relevant for the “strange” meson production processes. In

Sec. A.1, the expressions for the p(γ, K+)Λ process are summarized. In Sec. A.2,

we point out how these expressions can be generalized in order to cover the other

isospin channels. In the process of describing the electroproduction of hadrons,

electromagnetic form factors become an essential ingredient. In Sec. A.3, we list the

electromagnetic form factors which are needed for modeling p(e, e ′K)Y reactions.

A.1 Effective Lagrangians for p(γ, K+)Λ Reactions

A.1.1 Interaction Lagrangians

The interaction Lagrangians indicate how the electromagnetic and hadronic fields

couple to each other. Thereby, the coupling strength at each vertex is expressed by

a coupling constant. Since the fields are effective, those coupling constants are not

determined by the theory itself, but treated as a parameter.

Hereafter, the interaction Lagrangians are listed according to the type of reso-
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nance exchange.

Born Terms

The electromagnetic interaction Lagrangians for the Born terms are given by:

Lγpp = −eNγµNAµ +
eκp

4mp
NσµνNFµν , (A.1)

LγΛΛ =
eκΛ

4mp
ΛσµνΛFµν , (A.2)

LγΛΣ0 =
eκ

Σ0Λ

4mp
Σ0σµνΛFµν+ h.c. , (A.3)

LγKK = −ie
(
K†∂µK − K∂µK†

)
Aµ . (A.4)

The electric charge is defined as e = +
√

4π/137 and the anti-symmetric tensor for

the photon field Aµ is defined as Fµν = ∂νAµ−∂µAν. N, Λ and K represent in those

expressions the nucleon, lambda and kaon fields, respectively. For the hadronic

KΛp interaction, a pseudo-scalar (PS) or pseudo-vector (PV) option is viable:

LPS
KΛp = −igKΛp K†Λγ5N + h.c. , (A.5a)

LPV
KΛp =

fKΛp

mK

∂µK†Λγµγ5N + h.c. . (A.5b)

All results in this work are obtained with the PS variant. For the anomalous mag-

netic moments we have used the values κp = 1.793, κΛ = -0.613 and κΣ0Λ = 1.61 [58].

Spin-1 Meson Exchange

The electromagnetic coupling to a vector meson (V) is described by:

LγKV =
eκKV

4m
εµνλσFµνVλσK , (A.6)

where the vector meson tensor is given by Vµν = ∂νVµ−∂µVν and Vµ is the vector

field. The photon coupling to an axial vector meson (Va) reads:

LγKVa = i
eκKVa

m
(∂µAν∂µVν

a − ∂µAν∂νVµ
a) K , (A.7)

where V
µ
a is the axial vector field. The mass scale m for the transition moment

is arbitrary chosen as 1.0 GeV. The complete anti-symmetric tensor is defined as
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ε0123 = 1 according to the conventions in Ref. [90]. The hadronic vertex has a

vector (v) and a tensor (t) part:

LVΛp = − gv
VΛp ΛΓµNVµ

+
gt

VΛp

2 (mΛ + mp)
ΛσµνV

µνΓN + h.c. , (A.8)

where V is now a short-hand notation for both a vector and an axial vector meson.

Furthermore, Γ = 1 (γ5) and Γµ = γµ (γµγ5) for vector (axial vector) meson reso-

nances. The information about the (axial) vector meson coupling constants which

can be extracted from fits to the data is a combination of the electromagnetic and

the hadronic coupling. In this work, those values are normalized as:

Gv
V =

egv
VΛp

4π
κKV , (A.9)

Gt
V =

egt
VΛp

4π
κKV , (A.10)

with V a vector or axial vector meson.

Spin-1/2 Resonance Exchange

For spin-1/2 resonances, the electromagnetic interaction reads:

LγBR=
eκBR

4mp
RΓµνB + h.c. , (A.11)

where the hadronic vertices are described by a pseudo-scalar (PS) or a pseudo-

vector (PV) part:

LPS
KBR = −igKBR K†BΓR + h.c. , (A.12a)

LPV
KBR =

fKBR

mK

(
∂µK†

)
BΓµR + h.c. . (A.12b)

Herein, Γµν = γ5σµν(σµν) for odd (even) parity resonances. Γ and Γµ are defined

as before. Further, B is the baryon field (a p or Λ depending on the corresponding

vertex) and R is the spin-1/2 baryon resonance field (a N∗ or Y∗). In this work

we have used the PS scheme for the hadronic coupling. For spin-1/2 resonance

exchange, the information regarding the extracted coupling constant takes on the

form:

GR =
gKBR√

4π
κBR . (A.13)
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Spin-3/2 Resonance Exchange

For spin-3/2 resonances, there are two terms in the Lagrangian describing the elec-

tromagnetic interaction:

LγBR = i
eκ

(1)
BR

2mp
R

µ
θµν(Y) ΓλBFλν

−
eκ

(2)
BR

4m2
p

R
µ
θµν(X) Γ (∂λB) Fνλ+ h.c. . (A.14)

The hadronic vertex is given by:

LKBR=
fKBR

mK

R
µ
θµν(Z) Γ ′B (∂νK) + h.c. . (A.15)

Here, Γ and Γµ are defined as above and Γ ′ = γ5 (1) for odd (even) parity res-

onances. The function θµν(V) reflects the invariance of the free Lagrangian of a

spin-3/2 field under a point transformation and is given by [91]:

θµν(V) = gµν−

(
V +

1

2

)
γµγν . (A.16)

The parameters V = X, Y, Z are the so called off-shell parameters. For spin-3/2 res-

onance exchange, the fits of the model calculations to the data give access to the

following combination of coupling constants:

G
(1)
R =

efKBR

4π
κ

(1)
BR , (A.17)

G
(2)
R =

efKBR

4π
κ

(2)
BR . (A.18)

A.1.2 Propagators

The free Lagrangian of an effective field determines its propagator. For the (pseudo)

scalar and the (axial) vector particles, we have adopted the standard expressions:

P0 (q) = i
1

q2 − m2
, (A.19)

Pµν
1 (q) = i

1

q2 − m2

[
−gµν+

qµqν

m2

]
, (A.20)

where q is the transferred momentum and m the mass of the intermediate particle.

For spin-1/2 fermions, the propagator reads:

P1/2(q) = i
6 q + m

q2 − m2
. (A.21)
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The optimal choice for a spin-3/2 propagator remains a subject of discussion [91].

In this work we have used the Rarita-Schwinger form:

Pµν

3/2
(q) = i

6 q + m

3 (q2 − m2)

×
[
3gµν− γµγν −

2qµqν

m2
−

γµqν − γνqµ

m

]
. (A.22)

In order to account for the finite lifetime of the resonances, a width Γ is included

in the propagators of the s-channel particles. This is formally done by the replace-

ment:

q2 − m2 −→ q2 − m2 + imΓ . (A.23)

It should be stressed that this procedure is not fully compatible with the request

of unitarity for the total scattering amplitude [91]. However, a unitarization proce-

dure as performed for π production in the ∆-region [49, 92], is not feasible for KΛ

production, due to the lack of knowledge about the appropriate phase shifts.

A.2 Effective Lagrangians for p(γ, K)Y Reactions

Sec. A.1 summarizes the interaction Lagrangians and the propagators which are

relevant for the K+Λ photoproduction case. However, open-strangeness photopro-

duction on the nucleon involves six different isospin channels in total:

γ + p → K+ + Λ0 , γ + n → K0 + Λ0 ,

γ + p → K+ + Σ0 , γ + n → K0 + Σ0 ,

γ + p → K0 + Σ+ , γ + n → K+ + Σ− .

In what follows, we will first summarize the extensions to Sec. A.1 which turn out

to be necessary to cover all of the above six channels. Further on, we will point out

relations amongst the coupling constants over the different isospin channels.

A.2.1 Born Terms

The electromagnetic interaction Lagrangians in Sec. A.1 were specifically designed

for the p(γ, K+)Λ process. For a more general N(γ, K)Y reaction, global electromag-

netic interactions can be constructed.

The Lagrangian describing the general coupling of a photon to a kaon is:

LγKK= −ieK

(
K†∂µK − K∂µK†

)
Aµ , (A.25)
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Anomalous Value
magnetic moment

κp 1.793
κn -1.913
κΛ -0.613
κΣ+ 1.458
κΣ− -0.160
κΣ0 0.790
|κΣ0Λ| 1.610

Table A.1 The anomalous magnetic moments used in the calculations presented in this
work. The numeric values are from Ref. [58].

with eK the charge of the kaon. It is obvious that this interaction vanishes for neutral

kaon production.

For every intermediate baryon in the Born diagrams, there exists a general elec-

tromagnetic interaction of the type:

−eBBγµBAµ +
eκB

4mp
BσµνBFµν . (A.26)

The first term corresponds to the coupling of the real photon to the charge of the

particle and is proportional to the charge eB. Consequently, this term vanishes if the

(real) photon couples to a neutral baryon like the neutron, Λ or Σ0. The anomalous

magnetic moments κB, which determine the strength of the spin coupling part σµν,

are summarized in Table A.1. The Σ0 hyperon has a very short lifetime (7.4 ·10−20s)

and decays electromagnetically via Σ0 → Λ + γ. This decay is too fast to determine

its magnetic moment experimentally. Therefore, we resort to a quark model predic-

tion for this quantity [93]. Remark that the Particle Data Group tables [58] collects

the magnetic moments µB. The relation with the anomalous magnetic moments κB

given by:

µB = κB +
eB

e
. (A.27)

Note also that all values of µB in Ref. [58] are normalized to the nuclear magne-

ton (µN = e/2mp), which is in agreement with our definition of the interaction

Lagrangians in Sec. A.1.
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A point of confusion is the sign of κΣ0Λ, since this is experimentally not accessi-

ble. Using the conventions of de Swart [47], based on (ideal) SU(3) symmetry and

commonly used for the hadronic vertices, it turns out that the product κΣ0Λ·gK+Σ0p

must have the opposite sign of the coupling constant gK+Λp . In the same spirit,

gK+Λp is predicted to be negative and gK+Σ0p positive. Consequently, we take:

κΣ0Λ = +1.61 , (A.28)

as value for the electromagnetic Σ0Λ transition moment.

A.2.2 Isospin Symmetry and Coupling Constants

Isospin symmetry considerations are extremely useful tools to establish ranges and

relative signs between series of coupling constants. In this section we sketch how

isospin arguments can be used to construct relations between the different hadronic

and electromagnetic coupling constants which are required to describe photoin-

duced open strangeness production on the nucleon. We assume the isospin sym-

metry of the various meson and baryon multiplets to be exact. In what follows we

will briefly address both hadronic and electromagnetic coupling constants.

Hadronic Decays of N∗ and ∆∗ Resonances

The calculation of hadronic transitions of baryon resonances poses a challenging

task to Constituent Quark Models (CQM). The major difficulty of such models is to

determine the structure of the operators which govern the decay mechanism. This

reflects the insufficient basic insight into the quark dynamics in low energy hadron

phenomenology. Most CQM’s that study hadronic decays of baryon resonances

(for a recent example see Ref. [94]), start from a transition operator at quark level

which does not contain isospin-dependent terms. In such a model, the amplitude

for a pseudo-scalar hadronic decay of a non-strange baryon into a KY-system of the

type:

B(I1, M1) −→ K(I2, M2) + Y(I3, M3) , (A.29)

is proportional to the isospin part:

(−1)I2−I1

√
2I1 + 1

〈I2 M2 I3 M3 | I1 M1〉
〈
I2 ‖ T̂ (I3) ‖ I1

〉
, (A.30)
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where Ii and Mi are the isospin and isospin projection of the respective particles

and T̂ (I) denotes a spherical tensor operator of rank I. From the expression (A.30),

one easily obtains the following relations between the different isospin channels in

N → KΣ:

gK+Σ0p =
gK0Σ+p√

2
= − gK0Σ0n =

gK+Σ−n√
2

. (A.31)

In determining these relations we adopted the following conventions for the isospin

states of the physical Σ particles:

Σ+ : − |I = 1, M = +1〉 ,

Σ0 : + |I = 1, M = 0〉 , (A.32)

Σ− : + |I = 1, M = −1〉 .

For the hadronic decays of the type N → KΛ, starting from Eq. (A.30), even simpler

relations can be written down:

gΛK+p = gΛK0n . (A.33)

We now consider hadronic decays of the type ∆ → KΣ. Defining the corresponding

isospin states for the ∆+,0 particles as
∣∣I = 3

2
, M = ± 1

2

〉
, one obtains the following

relations from Eq. (A.30):

gK+Σ0∆+ = −
√

2 gK0Σ+∆+ = gK0Σ0∆0 =
√

2 gK+Σ−∆0 . (A.34)

Note that all relations contained in Eqs. (A.31), (A.33) and (A.34), also hold when a

N∗, K∗, Σ∗ or Λ∗ resonance is involved at the vertex.

Electromagnetic vertices

For the determination of some of the electromagnetic coupling constants, one can

rely on experimental quantities. The measured decay widths for the K∗+(892) and

K∗0(892) vector mesons are [58]:

ΓK∗+→K+γ = 50 ± 5 keV , (A.35)

ΓK∗0→K0γ = 116 ± 10 keV . (A.36)

In principle, one can determine the value of the magnetic transition moment on the

basis of the proportionality κ2
K∗K ∼ ΓK∗→Kγ. Within the context of isobar models,
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however, the coupling constants are frequently considered as “effective couplings”

wherein, for example, part of final-state interaction effects are absorbed. It is a

common procedure to use only the ratio of the measured decay widths to connect

isospin related coupling constants. This leads to the following expression:

κ2
K∗0K0

κ2
K∗+K+

=
ΓK∗0→K0γ

ΓK∗+→K+γ

, (A.37)

or:

κK∗0K0 = −1.52 κK∗+K+ . (A.38)

The relative sign in the last expression was allocated on the basis of a CQM predic-

tion [95].

The nucleon magnetic transition moments are related to the photohelicity am-

plitudes through the interaction Lagrangians. From the isospin structure of the

N∗ helicity amplitudes, it is easily proven that they are sensitive to the isospin of

the final state. To determine the electromagnetic vertex coupling at a neutron tar-

get from the knowledge of the electromagnetic coupling at a proton target, those

differences have to be taken into account. We adopt the same procedure as for

the vector meson transition moments and use the experimental amplitudes as a

conversion coefficient. The expressions, which directly follow from the interaction

Lagrangians, read:

spin-1
2

:
κN∗n

κN∗p
=

An
1/2

A
p
1/2

, (A.39)

spin-3
2

:
κ

(1)
N∗n

κ
(1)
N∗p

=

√
3An

1/2
± An

3/2√
3A

p
1/2

± A
p
3/2

, (A.40)

κ
(2)
N∗n

κ
(2)
N∗p

=

√
3An

1/2
−

mp

mN∗
An

3/2√
3A

p
1/2

−
mp

mN∗
A

p
3/2

, (A.41)

where +/- refers to even/odd parity. Note that some of these helicity amplitudes

are rather poorly known, especially those of the neutron. For the electromagnetic

decay of the ∆∗ resonances, the following simple relation holds:

κ∆∗p = κ∆∗n , (A.42)

regardless of the spin state of the ∆∗ resonance. This is not the case for the elec-

tromagnetic decay of Σ∗ resonances. In principle, one can make use of the same
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procedure adopted for the K∗ and N∗ transition moments and take the ratio of the

helicity amplitudes as a conversion coefficient. Due to the lack of knowledge about

the latter quantities, we have used ratios of the Σ ground state transition moments

as conversion coefficients. This produces the following relations:

κΣ∗Σ0 =
µΣ0

µΣ+

κΣ∗Σ+ =
µΣ0

µΣ−

κΣ∗Σ− , (A.43)

in which we have used µΣ+ , µΣ− , and µΣ0 values as deduced from the κ’s in Ta-

ble. A.1.

A.2.3 Numerical Values

In Figs. 3.5 and 3.22, the extracted resonance coupling constants are plotted for

the three different models which are used in the discussions of the K+Λ and KΣ

photoproduction processes. As a matter of fact, the model calculations depend

on more parameters than the resonance coupling constants which are presented

in those figures. For the sake of completeness, all numbers entering the isobar

model calculations for the K+Λ and K+Σ0 photoproduction reaction are collected in

Tables A.2 and A.3. The normalization conventions with regard to those coupling

constants and their connection with the structure of the interaction Lagrangians

have been summarized in App. A.1.1. A list of relevant particles in the strangeness

production processes and some of their properties can be found in Table A.4.

A.3 Electromagnetic Form Factors for p(e, e ′K)Y Reactions

This subsection summarizes the adopted function forms for the electromagnetic

form factors in the p(e, e ′K)Y calculations. Those form factors reflect the composite

nature of the hadrons when they are probed by virtual photons. We first discuss

the baryonic form factors and then proceed with the mesonic ones.

A.3.1 Baryonic Form Factors

The γpp vertex is extensively studied in the literature and different parameteriza-

tions for the form factors are suggested. For the Dirac (F1) and Pauli (F2) form fac-

tors, we have used a parameterization from Gari and Krümpelmann [96–98] which

was recently modified by Lomon [99]. This model combines the low Q2 vector
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model A model B model C

Born terms gK+Λp/
√

4π -3.191 -2.908 -4.044·10−1

gK+Σp/
√

4π 1.007 9.799·10−1 3.131·10−1

K∗ Gv
K∗ -2.216·10−2 8.792·10−2 1.325·10−1

Gt
K∗ -2.563·10−1 -1.580·10−1 -1.671·10−2

K1 Gv
K1

-3.221·10−1 -6.547·10−2 7.992·10−2

Gt
K1

-2.335·10−1 -9.509·10−1 -1.083·10−1

S01(1800) GS01
-4.389

P01(1810) GP01
-1.750

S11(1650) GS11
-8.418·10−2 -4.227·10−2 -8.364·10−2

P11(1710) GP11
-3.706·10−2 -9.538·10−3 -7.307·10−2

P13(1720) G
(1)
P13

4.165·10−5 1.719·10−2 1.748·10−3

G
(2)
P13

5.593·10−3 1.502·10−2 6.820·10−2

XP13
9.055 1.240 -2.034·10−1

YP13
9.601 -1.552 -25.951

ZP13
-1.154 -7.810·10−2 -3.558·10−1

D13(1895) G
(1)
D13

-2.919·10−2 -3.556·10−2 -6.261·10−2

G
(2)
D13

-1.322·10−1 -1.096·10−1 -1.132·10−1

XD13
1.843 -6.333 -3.666

YD13
2.525·10−1 1.142 -1.585

ZD13
-5.262·10−2 -5.964·10−2 -1.851·10−1

cutoff mass Λborn 412.92 1538.17 1855.95
Λres 1524.76 2039.73 1601.41

Table A.2 Numerical values of the coupling constants and hadronic cutoff masses (in MeV)
in the isobar model calculations for the p (γ,K+)Λ process.
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model A model B model C

Born terms gK+Σp/
√

4π 9.949·10−1 9.215·10−1 2.811·10−1

gK+Λp/
√

4π -4.487 -3.017 -2.261·10−1

K∗ Gv
K∗ 6.926·10−2 7.598·10−2 6.828·10−2

Gt
K∗ 8.047·10−2 4.087·10−2 1.411·10−1

P01(1810) GP01
21.838

P11(1880) GP11
-9.451

S11(1650) GS11
-4.568·10−2 -4.516·10−3 -2.511·10−2

P11(1710) GP11
-1.213·10−1 -1.583·10−1 -1.879·10−1

P13(1720) G
(1)
P13

2.367·10−2 1.706·10−2 2.699·10−2

G
(2)
P13

5.238·10−2 8.343·10−2 5.213·10−2

XP13
12.351 6.943 14.863

YP13
3.781 4.765 3.861

ZP13
-1.122 -1.129 -1.089

S31(1900) GS31
5.131·10−2 4.279·10−2 4.351·10−2

P31(1910) GP31
3.726·10−1 3.599·10−1 3.920·10−1

cutoff mass Λborn 439.68 1605.04 2509.22
Λres 1616.20 1602.43 1601.54

Table A.3 Numerical values of the coupling constants and hadronic cutoff masses (in MeV)
in the isobar model calculations for the p (γ,K+) Σ0 process. Note that those numbers can
also be applied to the p(γ,K0)Σ+ process with the aid the isospin conversion relations
summarized in App. A.2.2.
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Notation L(2I),(2J) Jπ Mass (MeV) Width (MeV) PDG-ranking

p P11 1/2+ 938.272
n P11 1/2+ 939.565
Λ P01 1/2+ 1115.68
Σ0 P11 1/2+ 1192.64
Σ+ P11 1/2+ 1189.37
Σ− P11 1/2+ 1197.45
K+ 0− 493.677
K0 0− 497.672

K∗ (892)+ 1− 891.66 50.8
K∗ (892)0 1− 896.10 50.7
K1 (1270) 1+ 1273.0 90.0
N (1440) P11 1/2+ 1440 350 ****
N (1520) D13 3/2− 1520 120 ****
N (1535) S11 1/2− 1535 150 ****
N (1650) S11 1/2− 1650 150 ****
N (1675) D15 5/2− 1670 150 ****
N (1680) F15 5/2+ 1680 130 ****
N (1700) D13 3/2− 1700 100 ***
N (1710) P11 1/2+ 1710 100 ***
N (1720) P13 3/2+ 1720 150 ****
N (1895) D13 3/2− 1895 350 †
N (1895) P13 3/2+ 1895 350 †
N (1900) P13 3/2+ 1900 500 **
Λ (1405) S01 1/2− 1406 50 ****
Λ (1520) D03 3/2− 1520 15.6 ****
Λ (1600) P01 1/2+ 1600 150 ***
Λ (1670) S01 1/2− 1670 35 ****
Λ (1690) D03 3/2− 1690 60 ****
Λ (1800) S01 1/2− 1800 300 ***
Λ (1810) P01 1/2+ 1810 150 ***
Λ (1820) F05 5/2+ 1820 80 ****
Λ (1830) D05 5/2− 1830 95 ****
Λ (1890) P03 3/2+ 1890 100 ****
Σ (1385) P13 3/2+ 1385 36 ****
Σ (1660) P11 1/2+ 1660 100 ***
Σ (1670) D13 3/2− 1670 60 ****
Σ (1750) S11 1/2− 1750 90 ***
Σ (1775) D15 5/2− 1775 120 ****
Σ (1880) P11 1/2+ 1880 200 **
∆ (1232) P33 3/2+ 1232 120 ****
∆ (1600) P33 3/2+ 1600 350 ***
∆ (1620) S31 1/2− 1620 150 ****
∆ (1700) D33 3/2− 1700 300 ****
∆ (1900) S31 1/2− 1900 200 **
∆ (1905) F35 5/2+ 1905 350 ****
∆ (1910) P31 1/2+ 1910 250 ****
∆ (1920) P33 3/2+ 1920 200 ***

Table A.4 Properties of known baryons which can play a role in the reaction dynamics of
strangeness production processes. The nucleon resonances denoted with a † are “missing
resonances”. Note that for the hyperon resonances, the quantum numbers are denoted as
L(I),(2J). The values are from the Particle Data Group [58].
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κiv κis gρ/fρ κρ gω/fω κω gφ/fφ κφ µφ

3.706 -0.12 0.4466 4.3472 0.4713 21.762 -0.8461 11.849 1.1498

Λ
ρ,ω,φ
1 ΛD

1 Λ2 ΛQCD

0.9006 1.7038 1.1336 0.0312

Table A.5 Parameters for the nucleon electromagnetic form factors obtained by Lomon [99]
(model GR(3)). The Λ’s are given in GeV.

meson dominance hypothesis with the high Q2 perturbative QCD approach. The

form factors are expressed in terms of their isoscalar (is) and isovector (iv) parts,

according to:

F
p
1 ≡ 1

2

(
Fis

1 + Fiv
1

)
, (A.44)

F
p
2 ≡ 1

2κp

(
κisF

is
2 + κivF

iv
2

)
. (A.45)

The isoscalar and isovector parts are defined as:

Fiv
1

(
Q2

)
=

gρ

fρ

m2
ρ

m2
ρ + Q2

F
ρ
1

(
Q2

)
+

(
1 −

gρ

fρ

)
FD

1

(
Q2

)
, (A.46)

κivF
iv
2

(
Q2

)
= κρ

gρ

fρ

m2
ρ

m2
ρ + Q2

F
ρ
2

(
Q2

)
+

(
κiv − κρ

gρ

fρ

)
FD

2

(
Q2

)
, (A.47)

Fis
1

(
Q2

)
=

gω

fω

m2
ω

m2
ω + Q2

Fω
1

(
Q2

)
+

gφ

fφ

m2
φ

m2
φ + Q2

F
φ
1

(
Q2

)

+

(
1 −

gω

fω

)
FD

1

(
Q2

)
, (A.48)

κisF
is
2

(
Q2

)
= κω

gω

fω

m2
ω

m2
ω + Q2

Fω
2

(
Q2

)
+ κφ

gφ

fφ

m2
φ

m2
φ + Q2

F
φ
2

(
Q2

)

+

(
κis − κω

gω

fω
− κφ

gφ

fφ

)
FD

2

(
Q2

)
. (A.49)
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Herein, gρ, gω and gφ are the vector meson nucleon coupling constants. Further,

the parameters m2
ρ/fρ, m2

ω/fω and m2
φ/fφ determine the vector meson photon

coupling and the κ’s are the magnetic moments of the corresponding particles.

F
ρ
i , Fω

i and F
φ
i denote the meson nucleon form factors. FD

i describes the nucleon

non-resonant quark structure, which is responsible for the asymptotic behavior at

Q2 → ∞. To achieve a smooth transition between the low and high Q2 domains,

the following parameterization is adopted for these meson nucleon form factors:

Fα
1

(
Q2

)
=

Λ2
1

Λ2
1 + Q̃2

Λ2
2

Λ2
2 + Q̃2

, (A.50)

Fα
2

(
Q2

)
=

[
Λ2

1

Λ2
1 + Q̃2

]2
Λ2

2

Λ2
2 + Q̃2

, (A.51)

for α = ρ, ω, D. For the φ form factors, an extra factor is added:

F
φ
1

(
Q2

)
=

Λ2
1

Λ2
1 + Q̃2

Λ2
2

Λ2
2 + Q̃2

[
Q2

Λ2
1 + Q2

]1.5

, (A.52)

F
φ
2

(
Q2

)
=

[
Λ2

1

Λ2
1 + Q̃2

]2
Λ2

2

Λ2
2 + Q̃2

[
Λ2

1

µ2
φ

µ2
φ + Q2

Λ2
1 + Q2

]1.5

. (A.53)

In order to approach the logarithmic Q2 behavior predicted by pQCD, Q̃2 is defined

as:

Q̃2 = Q2 ln

(
Λ2

2 + Q2

Λ2
QCD

) /
ln

(
Λ2

2

Λ2
QCD

)
. (A.54)

The values of the parameters, as reexamined by Lomon [99] (model GK(3) in the

reference), are given in Table A.5.

At the γΛY vertices (with Y = Λ, Σ0), we have used the neutron form factors,

defined as:

FΛ,Σ0

1 = Fn
1 ≡ 1

2

(
Fis

1 − Fiv
1

)
, (A.55)

FΛ,Σ0

2 = Fn
2 ≡ 1

2κn

(
κisF

is
2 − κivF

iv
2

)
, (A.56)

where the isoscalar and isovector parts are as in the Eqs. (A.46)-(A.49). Conse-

quently, the neutral Y-hyperon receives a small contribution from the electric cou-

pling due to a finite F1 contribution which vanishes in the real photon limit.
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p: F
p
1 = 1 K+: FK+ = 1

F
p
2 = 1

n,Y: Fn,Y
1 = 0 K0: FK0 = 0

Fn,Y
2 = 1

N∗: FN∗ = 1 K∗, K1: FK∗ = 1
Y∗: FY∗ = 1

Table A.6 The real photon limit (Q2 → 0) of the electromagnetic form factors at the different
photo coupling vertices.

For the electromagnetic N∗ and Y∗ form factors, one should in principle use

unique Q2-dependent effective coupling constants. As a matter of fact, at present

there is hardly any knowledge about the shape of those functions for the Y∗ hy-

peron resonances and the N∗’s in the third resonance region. An extraction of these

form factors from the data seems impossible at this stage. Therefore, we will adopt

the Pauli form factor of the proton for charged resonances and the neutron one for

neutral excited states. More precisely, we use F
p
2 at γ∗N∗p and Fn

2 at γ∗Y∗Λ and

γ∗Y∗Σ0 vertices.

For the sake of completeness, we report the real photon limits (Q2 → 0) of all

the form factors in Table A.6.

A.3.2 Mesonic Form Factors

For the γ∗KK vertex in the t-channel, we have adopted two different parameteriza-

tions for the electromagnetic form factor. A first one is derived within a relativistic

constituent quark model, based on the light-front formalism [100]. This form fac-

tor is refitted as the sum of a monopole and a dipole term by David et al. [13] and

parameterized as:

FK+

(
Q2

)
=

a

1 + Q2/Λ2
1

+
1 − a

(
1 + Q2/Λ2

2

)2
, (A.57)
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with a = 0.398 , Λ1 = 0.642 GeV, and Λ2 = 1.386 GeV. An alternative monopole form

for this form factor is proposed by Maris and Tandy [101] and reads:

FK+

(
Q2

)
=

1

1 + Q2/Λ2
, (A.58)

with Λ2 = 0.61 GeV2.

Although K0 is a neutral particle, the mass difference between the up and strange

quark causes a nonzero form factor at finite Q2. At the γ∗K0K0 vertex, we use a form

factor derived by Ito [102] within a vector meson dominance model:

FK0

(
Q2

)
=

−1/3

1 + Q2/m2
ω

+
1/3

1 + Q2/m2
φ

, (A.59)

with mω = 0.782 GeV and mφ = 1.019 GeV.

At the vector meson γ∗K∗+K+ , γ∗K1K
+ and γ∗K∗0K0 vertices, David et al. [13]

suggested a monopole transition form factor, parameterized as:

FK∗

(
Q2

)
=

1

1 + Q2/Λ2
, (A.60)

with ΛK∗+ = 0.95 GeV, ΛK1
= 0.55 GeV and ΛK∗0 = m2

ρ. An alternative for the

charged and neutral γ∗K∗K transition form factors is given by Münz et al. [103] and

is displayed in Fig. A.1.

The real photon limits of the different mesonic electromagnetic form factors are

also summarized in Table A.6. All electroproduction calculations presented in this

work are performed with the FK+

(
Q2

)
and FK∗+

(
Q2

)
form factors of Eqs. (A.57)

and (A.60), respectively. We have performed calculations with the other options

(Eq. (A.58) and Fig. A.1) and observed deviations in the results. However, the lack

of an extended strangeness electroproduction data base prevents us at present from

drawing well founded conclusions for the different options.
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Figure A.1 The transition form factors for the vector meson decay K∗+ → K+γ and K∗0 →
K0γ according to Ref. [103]



Appendix B

Minimization Procedure

In this appendix, we spend a few words on a rather important technical aspect of

the hadronic model calculations, namely the procedure which is required to obtain

an optimum set of coupling constants.

As outlined previously, the isobar model is an effective field theory which lets

the coupling constants undetermined. These numbers constitute an essential part

of the physical information that can be extracted from the model calculations. There

are two strategies which can be followed to deal with the information regarding

the coupling constants. First, one can gather physically acceptable values for the

coupling constants, either from experimental analyses or from calculations in e.g.

a constituent quark model. Those values can be used as input parameters in the

isobar model calculations. In this case, the isobar model serves as a test for those

analyses or (quark) models. Another approach is to extract values for the free pa-

rameters by optimizing the isobar model calculations to the available data set. The

extracted quantities can then be compared to e.g. quark model predictions. How-

ever, in both approaches the connection with quark model predictions has to be

made with some reservations. Coupling constants computed within the context

of quark models should not always be regarded as identical to those that are in-

troduced in hadronic effective Lagrangian theories. For example, dressing mecha-

nisms may somehow obscure this comparison.

In this work, we have adopted the second approach. In the determination of an

optimum set of n free parameters, we rely on a χ2 procedure. The objective function
χ2 is defined as in Eq. (2.1) as a function of n parameters. The best set of parame-
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ters is the one that produces the lowest χ2 value. In order to obtain this optimum

set, one is forced to minimize χ2 in the n dimensional parameter space. For the

calculations presented in Chaps. 3 and 4, n roughly varies between 12 and 22. Al-

though various minimization engines are available and described in literature, it

goes without saying that finding a global minimum in a 22 dimensional space is

not a trivial task.

To tackle the problem, we use a minimization algorithm known as simulated an-
nealing and for example described in Ref. [104]. At the heart of the method is an

analogy with thermodynamics, specifically with the way that liquids freeze and

crystallize or metals cool and anneal. At high temperatures, the molecules of a

liquid move freely with respect to one another. If the liquid is cooled slowly, ther-

mal mobility is lost and the atoms are lining up. They form a pure crystal that is

completely ordered over a distance up to billions of times the size of an individual

atom. This crystal is the state of minimum free energy of the system. The amazing

fact is that, for slowly cooled systems, nature is able to find this minimum energy

state. In fact, if a liquid metal is cooled quickly or “quenched”, it does not reach

this state but rather ends up in a polycrystalline or amorphous state with a higher

energy. So, the essence of the process is slow cooling, allowing time for redistribu-

tion of the atoms as they lose mobility. This is essential for ensuring that eventually

a low free energy state will be reached.

Although the analogy is not perfect, the idea can be implemented starting form

a downhill simplex algorithm. Therefore, a (n + 1) dimensional hypercube is con-

structed in the n dimensional space. This hypercube is deformed by subsequent

contractions and reflections of its vertex points in such a way that it results in a

shrinkage of the hypercube into the lowest point. This idea is schematically made

clear in Fig. B.1 for a 3-dimensional hypercube on a χ2 surface in a 2-dimensional

parameter space. The hypercube indicated by the vertex points 1-2-3 is here the

starting point. The highest (1) and lowest (3) point are determined. Then a reflec-

tion away from the highest point 1 results in a new hypercube 1’-2-3 with highest

vertex point 2 and lowest point 1’. A new reflection away from 2 would result in an

uphill step. Therefore, a contraction of vertex point 2 towards 1’ is a better option.

The procedure is well known to work excellently as long as it can be assured

that there is only one (or, a few) minimum in the n dimensional surface. How-
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y

Figure B.1 A schematic picture of a χ2 surface in a 2-dimensional parameter space. The 3-
dimensional simplex hypercube is depicted and indicated by the vertex points 1-2-3. After
a reflection away from the highest point 1, the hypercube 1’-2-3 is obtained. A subsequent
contraction of the highest point 2 towards 1’ is then the best option and results in the new
hypercube 1’-2’-3.
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Figure B.2 Time evolution of the parameters for the N∗ resonances S11(1650), P11(1710),
P13(1720) and D13(1895) in the p(γ,K+)Λ process. The results for four fitting procedures
are indicated by different colors. For every fit, the optimum set is plotted after every gen-
eration. A generation accounts for about 2000 χ2 evaluations at a fixed temperature.



B Minimization Procedure 137

ever, it appears realistic to assume that this latter condition is not fully met in our

calculations. So, to overcome this problem and to avoid getting trapped in one of

the local minima, the downhill simplex method is combined with a Metropolis al-

gorithm. The introduction of this Metropolis procedure basically implements the

idea that a true downhill step is always accepted but sometimes also an uphill step,

proportional to a temperature T , is retained. Consequently, at high T , the simplex hy-

percube is able to cross various local edges in this search of the global minimum. By

decreasing temperature, the wells that can be crossed, become smaller and smaller.

At every temperature, a fixed number (∼ 2000) of χ2 evaluations are performed. A

set of calculations at one T is called a generation. In the limit T → 0, the algorithm re-

duces to a simple downhill simplex procedure, which ends up in a local minimum.

However, it is hoped that, in analogy to the annealing of a metal, the system has

“cooled down” slowly enough and will arrive eventually in its global minimum

energy state.

By minimizing χ2 in a large parameter space, it is important to make sure that

eventually the absolute global minimum has been reached. In the course of per-

forming the various fitting procedures, we have realized that within the frame-

work of hadronic models, the n dimensional χ2 surface has indeed numerous local

minima. This becomes clear by plotting the evolution of the resonance parameters

during the fitting procedure. An example of such a plot is given in Fig. B.2. This

plot illustrates the time evolution of the minimization of the parameters for the

p(γ, K+)Λ process. For four different minimization “runs”, indicated by different

colors, the optimum set is plotted after every generation. From this figure, one can

conclude that the χ2 surface has a very erratic behavior over the whole parame-

ter space. Nevertheless, this plot contains some interesting information. As a first

observation, one sees that the light blue calculation arrives at values for the cou-

pling constants that strongly differ from the three other runs. Since the χ2 value for

this particular calculation is also higher than the three other ones, we can conclude

from this combined information that the run gets trapped in a local minimum. For

the other three runs, comparable χ2’s are obtained and also the coupling constants

tend toward the same values. An exception is observed for the G(2) parameter of

the P13(1720) resonance. For this parameter, the three minimization calculations ar-

rive at different optimal values. It appears that this coupling constant can vary over
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a large range, even flip sign, thereby producing comparable results for the quality

of agreement with the data, expressed by χ2. This may be an indication that the

presence of this resonance is rather unimportant for reproducing the energy and

angular dependence of the data.

To conclude, we can state that most of the coupling constants arrive at values

in a relatively small range, illustrating the effectiveness of the minimization pro-

cedure which we adopted. Nevertheless, the curves of Fig. B.2 clearly show that

the results have to be regarded with the greatest care. To some extent, the mini-

mization procedure is a numeric-technical problem. On the other hand, the erratic

χ2 behavior for (some of) the extracted coupling constants is part of the physics

of the isobar model which reproduces the data through a subtle interplay of dif-

ferent resonant and background contributions. It is to be expected, however, that

the upcoming data for the various (polarization) observables will polish the wild

variations on the χ2 surface and further constrain the identification of the various

coupling constants.



Appendix C

Regge Scattering Amplitude

In this appendix, we give a brief outline of the ideas lying behind Regge theory.

For the sake of simplifying the mathematics, we focus on the scattering process

a + b → c + d, where the particles carry no spin and have equal masses (m). The

introduction of spin and non-equal masses is rather straightforward and does not

alter the general conclusions.

Since total momentum is conserved in the a + b → c + d reaction, it is a com-

monly adopted technique to expand the amplitude into a Legendre series:

M (s, t) =

∞∑

l=0

(2l + 1) Ml (s)Pl (cos θs) , (C.1)

where the partial wave amplitude Ml (s) is given by:

Ml (s) =
1

2

∫+1

−1

d cos θsM (s, t (cos θs)) Pl (cos θs) , l = 0, 1, 2 . . . (C.2)

The Mandelstam variables are defined in the standard manner:

s = (pa + pb)2 , t = (pa − pc)
2 , u = (pa − pd)2 . (C.3)

In the partial wave decomposition, cos θs can be defined as a function of the Man-

delstam variables s and t (or u):

cos θs = 1 +
2t

s − 4m2
= −

(
1 +

2u

s − 4m2

)
. (C.4)

The Legendre expansion of Eq. (C.1) is valid in the whole physical region of the

“direct” or s-channel process a + b → c + d. This physical region is defined by the
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u = 4m

s = 4m

2 t = 4m2

u = 0 t = 0

2

Figure C.1 The (s, t)-Mandelstam plane. The shaded areas indicate the physical regions
for the s-, t-, and u-channel processes. The arrows indicate the direction of increasing
Mandelstam variables. The dashed lines represent the respective thresholds at 4m2. Note
that also the u variable is depicted although this is not an independent quantity in the
(s, t)-plane.

conditions that:

s ≥ 4m2 , −1 ≤ cos θs ≤ +1 , (C.5)

and is indicated in Fig. C.1. Despite these restrictions for the physical region of the

direct process, the concept of crossing symmetry implies that the same amplitude

M (s, t) should also be able to describe the physics of the “crossed” process a+c →

b+d. Obviously, for the crossed process, M (s, t) has to be applied in another region

of the (s, t)-Mandelstam plane. The direct and crossed processes are schematically

depicted in Fig. C.2. For the crossed, or so called t-channel process, an analogous
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Figure C.2 The direct (left) and crossed (right) process for the a + b → c + d reaction. The
arrow indicates the exchanged four momentum.

decomposition as in Eq. (C.1) can be constructed:

M (s, t) =

∞∑

l=0

(2l + 1)Ml (t) Pl (cos θt) , (C.6)

with:

cos θt = 1 +
2s

t − 4m2
= −

(
1 +

2u

t − 4m2

)
. (C.7)

In the forthcoming derivations, we will often use the shorthand notation z ≡ cos θt.

Let us now consider the specific case where the t-channel is strongly dominated

by the exchange of one single pole with spin l and mass ml. This dominance can,

for example, be motivated by the experimental observation of a resonant structure

in the t-channel process, or, by the diffractive behavior in the corresponding direct

s-channel reaction. According to the decomposition of Eq. (C.6), the amplitude is

dominated by the corresponding partial wave Ml (t) and one can write:

M (s, t) ∼
gac(t) gbd(t)

t − m2
l

Pl (cos θt) , (C.8)

with gac(t) and gbd(t) the corresponding vertex functions. Since the amplitude

M (s, t) of Eq. (C.8) contains the relevant physical ingredients of the crossed t-

channel process a + c → b + d, one could also try to utilize this expression for

the description of the direct s-channel process, as suggested by crossing symmetry.

It can be shown, however, that such an extrapolation has to be handled with the

greatest care since one can run into unphysical situations. To make this clear, we

will restrict ourselves to the high s limit since this greatly simplifies the mathemat-

ical derivations. For example, there holds cos θt À 1 according to Eq. (C.7). Note
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that in this regime, cos θt is not a physical quantity anymore. As a result, we can

make use of the asymptotic behavior of the Legendre function, which reads:

Pl (z)
z→∞−→






1√
π

Γ(l+1/2)
Γ(l+1)

(2z)l , Re {l} ≥ −1/2 ,

1√
π

Γ(−l−1/2)
Γ(−l)

(2z)−l−1 , Re {l} ≤ −1/2 ,

(C.9)

where Γ is the gamma function. Consequently, for the exchange of a spin-l particle

in the high s limit, one has:

Pl (cos θt) ∼ (cos θt)
l , (C.10)

and, according to (C.7) and (C.8):

M (s, t) ∼ sl . (C.11)

From the optical theorem it is known that σtot ∼ Im {M (s, t = 0)} /s. With the rela-

tion (C.11), the following s-dependence for the total cross section arises:

σtot∼ sl−1 . (C.12)

It is clear that this asymptotic behavior gives rise to unphysical divergences for

l > 1. Indeed, it was proven by Froissart [105] on the basis of unitarity, that the

total cross section at high energies is constrained by:

σtot

s→∞
≤ C (log s)2 . (C.13)

This complication can be attributed to the partial wave expansion. Under the con-

dition of the occurrence of one dominant pole, the expansion gives rise to Eq. (C.8).

This expression is legitimate in the t-channel physical region. However, attempts

have been made to employ the same expression in the physical plane of the direct

s-channel where the convergence of the partial wave expansion can no longer be

guaranteed.

In Refs. [106, 107], Lehmann and Martin showed that the convergence of a par-

tial wave expansion of the type (C.1) or (C.6) can only be guaranteed for s ≥ 4m2

and t ≥ 4m2, respectively and inside the so called Lehmann-Martin ellipse. This

ellipse defines the convergence boundaries for the partial wave expansion in the

complex cos θ plane for fixed s or t. The Lehmann-Martin ellipse is shown in
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Figure C.3 The Lehmann-Martin ellipse in the complex cos θt plane, for the equal mass
t-channel scattering process. The figure also shows the s- and u-channel branch cuts.

Fig. C.3 for the t-channel process for the specific case that all particles participat-

ing in the reaction have equal masses. It has foci at ±1 and a large axis which is

determined by:

cos θ0 = 1 +
8m2

t − 4m2
. (C.14)

Note that this value cos θ0, according to Eq. (C.7), corresponds to the branch points

of M (s, t) in the complex cos θt plane which occur at s = 4m2 and u = 4m2. In

extrapolating the partial-wave expansion of Eq. (C.8) towards the physical region

of the direct s-channel process, one goes beyond the boundaries of the Lehmann-

Martin ellipse in the cos θt plane and it cannot be guaranteed that the expansion

will converge.

A method to master this difficulty, is to sum over all t-channel partial waves

first and, in a next step, extrapolate beyond the convergence region. Thereby, the

summation must be carried out in such a way that a good analytic function is ob-

tained which can be used outside the Lehmann-Martin ellipse. This idea constitutes

the basis of Regge theory. A plausible technique which succeeds in summing the

partial waves up to infinity is the transformation of this sum into a contour inte-

gral in the complex plane of the summation variable. To obtain this, we introduce

a complex angular momentum l, which will be denoted by λ. According to the
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Figure C.4 The contours C1 and C2 in the complex angular momentum plane. The poles
at the real axis and at α (t) are indicated.

residue theorem, Eq. (C.6) can in this complex momentum plane be written as:

M (s, t) = −
1

2i

∮

C1

dλ
(2λ + 1) Mλ (t) Pλ (− cos θt)

sin (πλ)
. (C.15)

This expression is known as the Sommerfeld-Watson transformation. The poles are

produced by the [sin (πλ)]−1 since:

sin (πλ)
λ→l−→ (−1)λ (λ − l) π . (C.16)

The contour C1 is shown in Fig. C.4. Necessary condition for the Sommerfeld-

Watson transformation is the postulate of maximal analyticity of the second kind which

requires that Mλ (t) has only isolated singularities in the λ-plane. This theorem can

not be proven on the basis of fundamental principles. The theory, however, seems

to be confirmed by strong interaction models [75] and, more importantly, does not

lead to expressions which contradict the available experimental information.

To simplify the integral in Eq. (C.15), it it will be necessary to deform the contour

to infinity. Therefore the condition Mλ (t) → 0 for |λ| À 0 is required. To verify this
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convergence, we start from a dispersion relation for M (s, t), based on the Cauchy

integral formula, that includes the branch cuts of the amplitude in the complex

cos θt plane:

M (s (cos θt) , t) = pole terms +
1

π

∫+∞

cos θ0

dz
Ds (z, t)

z − cos θt

−
1

π

∫− cos θ0

−∞
dz

Du (z, t)

z − cos θt
. (C.17)

The discontinuity functions along the branch cuts are defined as:

Ds (z, t) = lim
ε→0

1

2i
(M (s + iε, t, u) − M (s − iε, t, u)) , (C.18a)

Du (z, t) = lim
ε→0

1

2i
(M (s, t, u + iε) − M (s, t, u − iε)) . (C.18b)

The dispersion relation (C.17) can be inserted in the definition of the partial wave

amplitude:

Mλ (t) =
1

2

∫+1

−1

d cos θtM (s (cos θt) , t) Pλ (cos θt) ,

=
1

2

∫+1

−1

d cos θt
1

π

∫+∞

cos θ0

dzPλ (cos θt)

[
Ds (z, t)

z − cos θt
+

Du (−z, t)

z + cos θt

]
(C.19)

With the aid of the Legendre function of the 2nd kind, defined as:

Qλ (z) =
1

2

∫+1

−1

dz ′Pλ (z ′)

z − z ′ , (C.20)

and the interchange of the integration variables, one eventually arrives at the Froissart-
Gribov projection:

Mλ (t) =
1

π

∫+∞

cos θ0

dz Qλ (z)
[
Ds (z, t) + (−1)λ Du (−z, t)

]
. (C.21)

We can now make use of the asymptotic behavior of the Legendre function of the

2nd kind:

Qλ (z)
|λ|→∞−→ λ−1/2e−(λ+1/2) ln(z+

√
z2+1) , (C.22)

which ensures that Mλ (t) in Eq. (C.21) converges for large λ except for the factor

(−1)λ. As a solution to this problem, it turns out to be appropriate to introduce the

concept of signature ζ = ± corresponding with two distinct types of partial waves:

Mζ=±
λ (t) =

1

π

∫+∞

cos θ0

dzQλ (z) [Ds (z, t) + ζDu (−z, t)] . (C.23)
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For each of the two possibilities, Mζ
λ (t) now converges for |λ| → ∞. The connection

to the physical partial wave amplitudes is straightforward and reads:

Mλ (t) = M+
λ (t) , λ = 0, 2, 4 . . . (C.24a)

Mλ (t) = M−
λ (t) , λ = 1, 3, 5 . . . (C.24b)

As such, it is proven that the amplitude Mλ (t) has the required convergence prop-

erties (Mλ (t) → 0 for |λ| À 0), as long as the amplitudes of a well defined signature

are treated separately.

The contour C1 of the Sommerfeld-Watson transformation of Eq. (C.15) can now

be deformed into the contour C2 as depicted in Fig. C.4 since the contributions at

infinity will vanish. Through deforming the contour, also other singularities of

the amplitude Mζ
λ (t) have to be taken into account. It was Regge who postulated

that the only singularities of the amplitude are the poles in the complex plane at

λ = αi (t). In the vicinity of such a pole αi (t), the amplitude Mζ
λ (t) takes on the

form:

Mζ
λ (t)

λ→αi(t)−→
βi (t)

λ − αi (t)
, (C.25)

with βi (t) the residue of the amplitude at the pole. Assuming that Mζ
λ (t) has only

one pole in the complex λ-plane (for fixed t), the Sommerfeld-Watson representa-

tion of the amplitude becomes:

Mζ (s, t) = −
1

2i

∫−1/2+i∞

−1/2−i∞
dλ

(2λ + 1)Mζ
λ (t) Pλ (− cos θt)

sin (πλ)

−
2πi

2i
(2α (t) + 1)

β (t)

sin (πα (t))
Pα(t)(− cos θt) . (C.26)

The first term is called the “background integral”. Due to the asymptotic behavior

(C.9) of Pl (z), the background integral behaves like s−1/2for high s. Consequently,

this term can be neglected in the high s limit and the second term, stemming from

the pole α (t), represents the dominant contribution to the amplitude.

To ensure that Mλ (t) → 0 for |λ| À 0, the Sommerfeld-Watson amplitude is de-

rived for a specific signature. The total amplitude can now be obtained by adding

the even (ζ = +) and the odd (ζ = −) parts. From Eq. (C.23), it is clear that Mζ
λ (t)

has well defined symmetry properties under the exchange of the s and u Mandel-
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stam variables. The following relations are easily proven:

(s, u) ←→ (u, s) ,

z ←→ −z ,

M+
λ (t) ←→ M+

λ (t) ,

M−
λ (t) ←→ −M−

λ (t) . (C.27)

In order to impose these symmetry properties on the total scattering amplitude,

it is appropriate to write the functional dependence of the amplitudes of defined

signature of Eq. (C.26) as Mζ (z, t) instead of Mζ (s, t) and then combine them as:

M (s, t) =
1

2

[
M+ (z, t) + M+ (−z, t) + M− (z, t) − M− (−z, t)

]
. (C.28)

Building up the total amplitude in this way, it is ensured that the correct symmetry

properties are included. Assuming that the “background integral” in Eq. (C.26) can

be neglected, we obtain the following expression for the amplitude:

Mζ (s, t) = −π (2α (t) + 1)
β (t)

sin (πα (t))

1

2

[
Pα(t)(− cos θt) + ζPα(t)(cos θt)

]
.

(C.29)

The sum of the two Legendre functions in this expressions can be rewritten as:
[(

1 + ζe−iπα(t)
)

Pα(t)(− cos θt) − ζ
2

π
sin (πα (t)) Qα(t)(− cos θt)

]
. (C.30)

The term proportional to Qα(t)(z) can be neglected in the high s limit due to its

asymptotic behavior:

Qα (z)
z→∞−→

√
π

Γ (α + 1)

Γ
(
α + 3

2

) (2z)−α−1 . (C.31)

As such, our final result for the high s limit of the scattering amplitude reads:

Mζ (s, t) = −π (2α (t) + 1)
β (t)

sin (πα (t))

1 + ζe−iπα(t)

2
Pα(t)(− cos θt) . (C.32)

Note that α (t) is defined as the pole of the partial wave Mζ
λ (t). This means that

for a certain value of t, the situation α (t) = l, corresponds to a physical particle

or resonance with m =
√

t and spin l. In the standard partial-wave expansion of

Eq. (C.6), the exchange of all those poles is taken into account on a pole by pole
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basis. With the aid of the Sommerfeld-Watson transformation, we have obtained

a closed expression for M (s, t). Here, the various t-channel poles are still incor-

porated, though, by means of the sin (πα (t)) function. Every time α (t) passes

through a positive integer value, the sin (πα (t)) produces a pole in the expression

of Eq. (C.32). Phenomenologically it has been observed that α (t), which makes the

connection between the spin (= l) and the pole position in the variable t (= m2),

can be parameterized as a linear function. In should be noted here, that in the

s-channel process, those physical materializations of α (t) are never reached since

t ≤ 0. To the contrary, it is precisely the exchange of the trajectory α (t) as a whole,

representing a class of particles, that contributes.

The expression (C.32) can further be simplified if we restrict ourselves to the

so called Regge limit: high s and small negative t (s À and |t| ¿). Consequently,

α (t) is small and the following expression for the Regge scattering amplitude can

be directly obtained from (C.32):

Mζ
Regge(s, t) = C

(
s

s0

)α(t)
β (t)

sin (πα (t))

1 + ζe−iπα(t)

2

1

Γ (α (t) + 1)
. (C.33)

Here, use is made of the expression (C.9) for the high z behavior of the Pα(t)(z)

and the fact that, Γ (α (t) + 1/2) ' √
π and (2α (t) + 1) ' 1, for small α (t). The

gamma function in the denominator approaches 1 but ensures that non-physical

poles, generated by the function sin (πα (t)) at larger negative values of α (t) cannot

contribute. The constant C which is introduced, has to be defined in connection

with the residue function β (t). The scale factor s0 is arbitrarily fixed at 1 GeV2.

Note that the high s dependence of the Regge amplitude (C.33) is in accordance

with the Froissart bound of Eq. (C.13) as long as α (t = 0) ≤ 1.

The above scattering amplitude was derived for spin-less particles in an equal

mass hypothesis. To extend the theory to particles with non-equal masses, the

relevant physical regions in the Mandelstam plane (Fig. C.1) and the Lehmann-

Martin ellipse (Fig. C.3) become distorted. For example, the physical region of the

s-channel process is not bounded anymore by the conditions t = 0, u = 0 but receives

s-dependent thresholds tmin(s) and umin(s) [75]. When the external particles do

carry spin, this will reflect itself in the residue function β (t) that will contain more

complicated vertex functions.

To conclude this section, we summarize that we have constructed an amplitude
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for a general a+b → c+d reaction, which is valid in the so called Regge limit (s À
and |t| ¿). It is ensured that the amplitude is unitary and analytic. The amplitude

is not constructed on the basis of the exchange mechanism of isolated poles but on

the exchange of an entire family of particles which contribute to the process as a

whole.





Appendix D

The Veneziano Model

Back in 1968, a relatively simple and phenomenological model to describe π+π− →

π+π− scattering was developed by Veneziano [81]. In a traditional Feynman dia-

gram picture, this process is dominated by ρ and f2 meson exchange. In developing

his model, Veneziano was guided by the duality requirement for the crossing sym-

metric process. The duality hypothesis states that, when computing a scattering

amplitude, it does not really matter whether the summation is performed over all

the s-channel or all the t-channel poles [11, 75]. Or, formally:

M (s, t) =

∞∑

n

βn (s, t)

s − sn
=

∞∑

m

βm (s, t)

t − tm
. (D.1)

Here, βi denotes the residue at the respective poles. As a consequence, special

care has to be exercised when calculating M (s, t) with a limited set of both s- and

t-channel poles. Indeed, chances are real that certain poles will be doubly counted.

Veneziano suggested a form for the reaction amplitude which contains both the

s- and t-channel poles, at the same time respecting the duality hypothesis. The

poles are parameterized by means of a linear trajectory α in such a manner that

a pole occurs if α becomes positive and integer. Note that this procedure bears a

strong resemblance with the one that is adopted when parameterizing Regge tra-

jectories. The amplitude form put forward by Veneziano reads:

M (s, t) = V (s, t) ≡ g
Γ (1 − α (s)) Γ (1 − α (t))

Γ (2 − α (s) − α (t))
. (D.2)

Remind that Γ (z) is an analytic function over the entire complex plane, save for the

poles z = 0, -1, -2. . . where it possesses simple poles. Note that the function V (s, t)
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is crossing symmetric under the interchange of the variables s and t, as required for

the π+π− → π+π− process. The gamma functions in the nominator produce the re-

quired poles in the s and t variables for the exchange of entire ρ and f2 trajectories.

The gamma function in the denominator takes out the doubly counted poles when

both α (s) and α (t) take on integer values. Its presence guarantees that the duality

hypothesis is respected.

Let us now explore the high s limit of the amplitude of Eq. (D.2). Therefore, we

can make use of the asymptotic behavior of the gamma function:

Γ (z)
z→∞−→ (2π)1/2e−zz(z−1/2), if |arg z| < π , (D.3)

which is valid except for a wedge about the negative real z-axis. From this expres-

sion, it is straightforward to derive:

Γ (z + a)

Γ (z + b)

z→∞−→ za−b . (D.4)

This asymptotic behavior, in combination with the reflection formula:

Γ (1 − z) =
π

Γ (z) sin (πz)
, (D.5)

can be used to rewrite the Veneziano amplitude of Eq. (D.2) in the high s limit as:

V (s, t)
s→∞−→ g

π (−α (s))α(t)−1

Γ (α (t)) sin (πα (t))
. (D.6)

For linear trajectories α (s), which are phenomenologically observed as long as s >

0, this expression can be cast in the familiar (spin-1 exchange) Regge amplitude:

V (s, t)
s→∞−→ g

π (α ′s)α(t)−1
e−iπ(α(t)−1)

Γ (α (t)) sin (πα (t))
. (D.7)

The scale factor s0, introduced in Eq. (5.1) can be identified here in a natural way as

s0 = 1/α ′. The expression in (D.7) is quite a remarkable result with some striking

properties. First, the Regge behavior in the high s limit is retrieved in a very natu-

ral way. Assuming a linear trajectory α (s), one arrives at a rotating phase in α (t).

On the basis of Eq. (5.10), this is indeed expected for the π+π− → π+π− process

where the degenerated ρ and f2 meson trajectories are exchanged. Further on, the

Veneziano amplitude in the form (D.2) is manifestly crossing symmetric and, con-

sequently, possesses the same poles and Regge behavior in s and t. Accordingly,
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within his relatively simple model, Veneziano succeeded to incorporate some fun-

damental physical concepts.

So far, the Veneziano amplitude V (s, t) has been derived for the fully crossing

symmetric π+π− scattering process, dominated by vector meson exchanges. For

processes where the crossing symmetry under the interchange of the Mandelstam

variables is not manifestly present, one could think of writing the total amplitude

as a sum of three Veneziano contributions in order to take into account the different

s-, t- and u-channel exchange contributions:

M (s, t) = V (s, t) + V (s, u) + V (t, u) . (D.8)

The most general Veneziano function in s and t reads:

V (s, t) = g
Γ (a − α (s)) Γ (b − α (t))

Γ (a + b − α (s) − α (t))
, (D.9)

and analogous expressions exist for V(s, u) and V(t, u). Here, we have introduced

a, b and c as the spin values of the first materialization of the trajectory in each

Mandelstam channel. The sum (D.8) over the three Veneziano amplitudes can be

worked out with the aid of the Eq. (D.5) and the consistency condition [84]:

α (s) + α (t) + α (u) = Φ . (D.10)

This condition is the trajectory equivalent of the relation s+t+u =
∑

i m2
i , relating

the three Mandelstam variables in a two particle scattering process. After some

straightforward analytic manipulations and the particular choice of Φ = a+b+c−1,

the amplitude M (s, t) can be rewritten as:

M (s, t) = g
Γ (b − α (t)) Γ (c − α (u))

Γ (α (s) − a + 1)

×
[
1 + e−iπ(α(t)−b)+ sin (π (α (t) − b))

1 + eiπ(α(s)−a)

sin (π (α (s) − a))

]
. (D.11)

With the use of Eqs. (D.4) and (D.5), it can be shown that the factor in front again

exhibits the correct Regge behavior in the high s limit:

g
Γ (b − α (t)) Γ (c − α (u))

Γ (α (s) − a + 1)

s→∞−→ g
−π (α (s))α(t)−b

Γ (α (t) − b + 1) sin (π (α (t) − b))
. (D.12)
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At this stage, a remark concerning the phase factor of Eq. (D.11) is in order. Com-

paring Eq. (D.11) to the original Regge amplitude for a trajectory exchange in the

t-channel, an extra term:

sin (πα (t))
1 + eiπα(s)

sin (πα (s))
, (D.13)

emerges in the phase factor of the Veneziano amplitude. This term finds its origin

in the introduction of the s- and u-channel poles which is a peculiar property of the

Veneziano approach. The spin shifts -a and -b are omitted in the expression (D.13)

in order to simplify the notation. In the numerical calculations, they are always

taken into account according to the Eqs. (5.7) and (5.16).
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France, 1997.

[80] A.M. Boyarski et al., Phys. Rev. Lett. 22, 1131 (1969).

[81] G. Veneziano, Nuovo Cimento 57A, 190 (1968).

[82] M. Ahmad, Fayyazuddin, and Riazuddin, Phys. Rev. Lett. 23, 504 (1969).

[83] R. Brower and M. Halpern, Phys. Rev. 182, 1779 (1969).

[84] J. W. Alcock, Y. A. Chao, and R. E. Cutkosky, Nucl. Phys.B 84, 503 (1975).

[85] D. Sivers, S. Brodsky, and R. Blanckenbecler, Phys. Rep. 23C, 1 (1976).

[86] P. Collins and P. Kearney, Z. Phys. C 22, 277 (1984).

[87] M. Sergeenko, Z. Phys. C 64, 315 (1994).

[88] R. Schumacher, Nucl. Phys. A 663, 440c (2000).

[89] T. Feuster and U. Mosel, Nucl. Phys. A 612, 375 (1997).

[90] M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory (Perseys

Books, Reading, Massachusetts, 1995).

[91] M. Benmerrouche, R. Davidson, and N. Mukhopadhyay, Phys. Rev. C 39,

2339 (1989).

[92] D. Drechsel, O. Hanstein, S. Kamalov, and L. Tiator, Nucl. Phys. A 645, 145

(1999).



Bibliography 160

[93] D. H. Perkins, Introduction to High Energy Physics, 4th ed. (Cambridge Univer-

sity Press, Cambridge, 2000).

[94] T. Theussl, R. Wagenbrunn, B. Desplanques, and W. Plessas, Eur. Phys. J. A

12, 91 (2001).

[95] P. Singer and G. Miller, Phys. Rev. D 33, 141 (1986).
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Nederlandse Samenvatting

Inleiding

Een in het oog springend kenmerk van de natuur is de grote diversiteit aan lengte-

schalen die wordt waargenomen [1]. Hierbij valt op dat een bepaalde structuur of

een bepaald systeem op een zekere lengteschaal beschreven wordt door fysische

principes die op een kleinere of grotere schaal totaal onbruikbaar zijn. Een mi-

croscopisch model, bijvoorbeeld, kan de correcte bouwstenen bevatten, maar blijkt

dikwijls te falen wanneer het eigenschappen op een veel grotere schaal moet be-

schrijven. Een beschrijving van het systeem zal immers vele malen efficiënter zijn

wanneer de grootheden in acht worden genomen die op dat niveau of op die schaal

belangrijk zijn. Voor de fysica is het dus cruciaal om de juiste vrijheidsgraden van

een probleem te identificeren. Daarbij moeten uiteraard ook de onderlinge ver-

banden tussen de vrijheidsgraden op de verschillende niveaus begrepen worden.

Enkel dan kan het systeem als volledig gekarakteriseerd beschouwd worden.

In de nucleaire en subatomaire fysica wordt men geconfronteerd met een ge-

lijkaardige probleemstelling in de zin dat de fundamentele bouwstenen zich niet

manifesteren als de aangewezen vrijheidsgraden om de veelheid aan fenomenen

te verklaren die worden waargenomen in de subatomaire wereld. In de jaren ’60

kwam men tot de vaststelling dat de honderden waargenomen hadronen geen fun-

damentele bouwstenen van de materie vormen. Deze hadronen, die structuur ble-

ken te bevatten, konden echter worden geordend door het bestaan van een nieuwe

beperkte set deeltjes op een nog kleiner niveau te veronderstellen. Deze vaststelling

was het startschot voor de ontwikkeling van een totaal nieuwe kijk op de sterke

wisselwerking in termen van quark- en gluonvrijheidsgraden. De fundamentele

vergelijkingen voor de beschrijving van deze quarks en gluonen zijn sindsdien sa-

mengevat in de Quantum Chromo Dynamica (QCD). Hoewel de basisvergelijkin-

gen van deze QCD-theorie redelijk eenvoudig zijn, zijn ze enkel oplosbaar onder

omstandigheden waarbij de individuele quarks en gluonen als vrije objecten kun-

nen worden beschouwd. Deze voorwaarde doet zich echter enkel voor onder zeer
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extreme omstandigheden zoals bv. gecreërd in gespecialiseerde deeltjesversnel-

lers. Er zijn immers sterke aanwijzingen dat in onze natuur enkel welbepaalde

conglomeraten van quarks en gluonen kunnen overleven. Dit is het zogenaamde

“confinement” principe. Gevolg is dat QCD de juiste vrijheidsgraden en voorspel-

lingen levert in het zeer hoge energiegebied, maar zo goed als onbruikbaar is om

hadronen en hun onderlinge reacties bij lagere energieën te beschrijven. Quarks en

gluonen blijken hier niet meer de juiste vrijheidsgraden te vormen.

Een fundamentele uitdaging voor de medium-energie fysica is een brug te slaan

tussen de nucleaire fysica waar hadronen, zoals protonen, neutronen en pionen de

fundamentele vrijheidsgraden vormen en de QCD-theorie van de quarks en gluo-

nen. Het is vandaag immers allesbehalve duidelijk hoe quarks en gluonen zich

juist samenstellen tot de geobserveerde hadronen en wat de juiste aard en drij-

vende kracht van “confinement” is. Een veelbelovende manier om hierin beter

inzicht te verkrijgen en de structuur van het nucleon te ontrafelen is het bestude-

ren van zijn excitatie spectrum. De resonanties van het nucleon (en hadronen in

het algemeen) reflecteren immers een onderliggende structuur en moeten op één

of andere manier de signatuur dragen van hun quark- en gluonbouwstenen. De

zoektocht naar de structuur en de aard van de nucleonresonanties bekleedt dan ook

een vooraanstaande plaats in het huidige onderzoek. Elektron- en fotonfaciliteiten

zoals CEBAF, ELSA, MAMI, SPring-8, LEGS, MIT-Bates. . . leveren momenteel ex-

perimentele data van ongeziene kwaliteit. Eén van de grote uitdagingen voor de

medium-energie fysica is dan ook uit deze data informatie te vergaren over spe-

cifieke eigenschappen van de resonanties en dit op een zo modelonafhankelijke

manier als mogelijk.

De laatste decennia werd reeds heel wat informatie over de aangeslagen nucle-

ontoestanden bekomen. Hierbij werden de meeste gegevens verzameld uit pion-

productie en pion geı̈nduceerde reacties waarbij de resonanties als intermediaire

toestanden gecreëerd worden. Reeds lang is men zich echter bewust van het feit

dat men op deze manier slechts een gedeelte van het spectrum zichtbaar kan ma-

ken. Deze veronderstelling wordt bovendien ondersteund door de voorspellingen

van (constituent) quark modellen die inderdaad veel meer resonanties voorspellen

dan er tot nu toe experimenteel waargenomen zijn in de pionsector [2–5]. Onmid-

dellijk rijst een vraag die verder onderzoek verdient. Kunnen die overige of “mis-
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sende” resonanties in andere, niet-pionische kanalen geobserveerd worden of is er

iets grondig mis met de (constituent) quark modellen die de basis vormen voor de

beschrijving van de structuur van het nucleon?

Een mogelijke reactie om deze “missende” resonantietoestanden van het nu-

cleon te onderzoeken zijn vreemdheidsproductie reacties. Er wordt immers alge-

meen aangenomen dat de aanwezigheid van een vreemd quark anti-quark paar in

de reactie, naast de op en neer quarks uit de pion-nucleon sector, nieuwe inzichten

kan bieden die kunnen leiden tot een beter begrip van het spectrum van het nu-

cleon. Eén van de meest eenvoudige reacties die zo een ss quark anti-quark paar

betrekt in het reactieproces, is de elektromagnetische productie van kaonen, kort

genoteerd als p(γ, K)Y, waarin Y = Λ, Σ. De theoretische beschrijving en interpre-

tatie van dit soort reacties vormt het onderwerp van deze thesis.

De modellering van p(γ, K)Y valt uiteen volgens twee verschillende benaderin-

gen van het probleem. Een eerste aanpak vertrekt van een volledig hadronische

beschrijving. Hierbij worden de hadronen en hun aangeslagen toestanden als ef-

fectieve deeltjes beschouwd. Naar deze methode wordt in de literatuur gerefereerd

als “isobare modellen” [13, 26, 45]. Anderzijds kan men vertrekken vanuit een par-

tonische benadering. Hierbij worden QCD-geı̈nspireerde vrijheidsgraden aange-

wend om de reactie te beschrijven. Een mogelijke manier om dit te implementeren

wordt geboden door Regge-theorie [16]. In dit werk wordt zowel een isobaar als

een Regge geı̈nspireerd model voorgesteld.

Isobaar Model voor p(γ, K)Y Reacties

Steunend op een effectieve-veldentheorie werd een model opgesteld om de vreemd-

heidsproductie reacties te beschrijven in termen van hadronische vrijheidsgraden.

De hadronen en hun geëxciteerde toestanden worden beschouwd als effectieve vel-

den met specifieke eigenschappen. De theoretische beschrijving valt uiteen in twee

fundamenteel verschillende delen die echter onlosmakelijk met elkaar verbonden

zijn: het resonante stuk en de achtergrond.

Het resonante gedeelte wordt opgebouwd door alle nucleonresonanties die via

het s-kanaal tot het proces bijdragen. In dit werk werd veel aandacht besteed aan

het bepalen van de dominante resonantiebijdragen in de verschillende vreemd-

heidsproductie reacties. In het K+Λ kanaal werd vastgesteld dat de vier nucleonre-
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sonanties S11(1650), P11(1710), P13(1720) en D13(1895) een belangrijke rol spelen in

de reactiedynamica en in staat zijn om de recente SAPHIR data [23, 24] goed te be-

schrijven. In de KΣ reacties werden drie nucleonresonanties (S11(1650), P11(1710),

P13(1720)) en twee ∆∗ toestanden (S31(1900) en P31(1910)) geı̈dentificeerd als do-

minante intermediaire deeltjes.

In de zoektocht naar de resonante bijdragen werd veel aandacht besteed aan

het fenomeen van de missende resonanties. Recent werd door de George Washing-

ton groep gerapporteerd dat een D13 resonantie met een massa rond 1.9 GeV de

beschrijving van de K+Λ data gevoelig kan verbeteren [27]. De structuur in de to-

tale werkzame doorsnede rond 1.5 GeV foton lab energie kon hiermee duidelijk

verklaard worden. Hierbij moet opgemerkt worden dat deze D13(1895) toestand

nog niet werd waargenomen in pion-nucleon verstrooiing of pion productie re-

acties. Daarentegen werd deze nucleonexcitatie wel voorspeld door constituent-

quark modelberekeningen van Capstick en Roberts [4] met bovendien een signifi-

cante vervalbreedte in de vreemdheidskanalen. Als dusdanig is deze D13 resonan-

tie een goede kandidaat voor één van de missende resonanties. Onze modelbere-

keningen bevestigen de vaststelling van de G. Washington groep. De theoretische

beschrijving van de K+Λ data verbetert gevoelig. In dit werk werd echter vastge-

steld dat ook andere nucleon resonanties in staat zijn om de structuur rond ωlab=

1.5 GeV in de data te verklaren. Bovendien werd de verbetering niet waargenomen

in de beschrijving van de KΣ processen. Uit dit alles blijkt dat de identificatie van de

juiste quantumgetallen en een verdere karakterisatie van deze missende resonan-

ties met de grootste omzichtigheid behandeld moet worden. Verder onderzoek is

onontbeerlijk en de aanwezigheid van deze toestand(en) moet zeker nog bevestigd

worden in andere observabelen en andere reactiekanalen.

Naast het bepalen van de dominante resonanties werd in dit werk ook aandacht

besteed aan de parametrisatie van de achtergrond. Deze achtergrond wordt in het

isobaar model opgebouwd door alle niet-resonante termen (Born termen en t- en

u-kanaal resonanties) en blijkt een zeer belangrijke rol te spelen in de modellering

van het proces. Vertrekkend van een exacte SU(3)-symmetrie in de quark-smaken

ruimte, kan men, steunend op de goedgekende πN koppeling, de parameters van

de Born termen bepalen [47]. Het is echter geweten dat de SU(3)-smaken symme-

trie gebroken is. Over de juiste grootte van de breking bestaat nog onduidelijkheid,
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maar dit laat toch toe om realistische grenzen op te stellen waarbinnen de koppe-

lingsconstanten van de Born termen kunnen variëren. Wanneer met deze waar-

den de bijdrage van de Born termen tot de werkzame doorsneden wordt berekend,

worden resultaten bekomen die een factor vier tot vijf boven de waargenomen data

liggen. Deze discrepantie geeft duidelijk aan dat bijkomende ingrediënten aan de

theoretische beschrijving moeten toegevoegd worden om de bijdragen van de Born

termen te reduceren. In dit werk werden drie mogelijke methodes voorgesteld om

dit te bereiken.

• Model A: Een eerste methode steunt op het invoeren van “zachte” hadroni-

sche vormfactoren. Het is algemeen bekend dat vormfactoren een amplitude

kunnen afvlakken. Wanneer echter de bijdrage van de Born termen moet ge-

reduceerd worden tot een realistisch niveau, blijkt dat in de vormfactoren een

cutoff massa van de orde van de kaon massa moet gebruikt worden. Op deze

manier domineren de vormfactoren echter de fysica van het proces over heel

het reactiegebied.

• Model B: Een tweede manier bestaat erin om enkele Y∗ hyperon resonanties

in het u-kanaal te introduceren. Er werd vastgesteld dat deze Λ∗ en Σ∗ reso-

nanties destructief kunnen interfereren met de andere termen van de achter-

grond. Op deze manier wordt de sterkte van de Born termen gereduceerd tot

een accepteerbaar niveau. Hierbij moet één opmerking gemaakt worden. De

koppelingsconstanten die nodig zijn om dit effect te bekomen blijken groot

te zijn in vergelijking met de corresponderende koppelingsconstanten van de

nucleonresonanties. Om dit probleem uit te klaren, hebben we berekeningen

uitgevoerd met een zevental hyperon resonanties in het u-kanaal. Dezelfde

destructieve interferenties werden waargenomen, maar nu met kleinere in-

dividuele hyperon koppelingsconstanten. Op basis van deze bevindingen

concluderen we dat de twee geı̈ntroduceerde hyperon resonanties zouden

kunnen beschouwd worden als effectieve deeltjes voor een grotere set inter-

mediaire toestanden in het u-kanaal.

• Model C: Tenslotte kan men de SU(3)-relaties, die de koppelingsconstanten

van de Born termen vast leggen, gewoon negeren en de parameters volledig

vrij laten in de fittingprocedures. Het blijkt echter dat voor de koppelings-
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constanten van de Born termen waarden worden bekomen die slechts 10%

bedragen van wat op basis van exacte SU(3) berekeningen wordt verwacht.

Dit zou duiden op een zeer sterke symmetriebreking.

Alle drie de schema’s, voorgesteld om de achtergrond op te bouwen, slagen erin

een goede beschrijving te geven van de SAPHIR dataset, bestaande uit differentiële

en totale werkzame doorsneden en recoil polarisatie asymmetrieën.

Zonder twijfel is er echter met de parametrisatie van de achtergrond ook een ze-

kere modelafhankelijkheid geı̈ntroduceerd. Deze modelafhankelijkheid werd ver-

volgens grondig onderzocht in zowel de geëxtraheerde resonantieparameters als

in berekende voorspellingen voor observabelen die nog niet gemeten zijn. In som-

mige gevallen werd aangetoond dat de effecten van de verschillende achtergrond

parametrisaties niet te verwaarlozen zijn en grondig verschillende resultaten kun-

nen opleveren.

De modellen opgesteld voor reële foton productie, werden ook geëxtrapoleerd

in het Q2 6= 0 gebied van de elektron geı̈nduceerde reacties. Vergelijking met de

(schaarse) K+Λ data [70] bracht aan het licht dat vooral de longitudinale respons-

functie, een grootheid die niet waargenomen wordt door reële fotonen, als een zeer

geschikte test fungeert voor de opgestelde theoretische modellen. Aan de hand van

deze K+Λ data moeten we concluderen dat de introductie van zachte vormfactoren

(model A) en een sterke SU(3) symmetriebreking op het niveau van de koppelings-

constanten (model C) achtergronden creëren die niet in staat zijn om de geobser-

veerde sterkte in de longitudinale respons te verklaren. Enkel de introductie van

hyperon resonanties in het u-kanaal is in staat om de nodige sterkte te genereren.

Deze grote discrepantie tussen de verschillende modellen in voorspellingen voor

de longitudinale responsfunctie werd niet waargenomen in de KΣ kanalen.

Als besluit moet er dus gesteld worden dat een volledige en gefundeerde ka-

rakterisatie van de p(γ, K+)Λ en p(γ, K)Σ reacties aan de hand van een uitgebreide

en accurate dataset als die van de SAPHIR collaboratie nog niet mogelijk is. Er

is echter goede hoop dat de nieuwe data voor verscheidene polarisatieobservabe-

len en elektron geı̈nduceerde responsfuncties die momenteel geanalyseerd wor-

den [55, 59, 60, 66], in staat zullen zijn om de theoretische beschrijving verder te

verbeteren en de reactie dynamica van de vreemdheidsproductie reacties te ontra-

felen.
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Regge-Model voor p(γ, K)Y Reacties

Naast het isobaar model werd er ook een beschrijving van de vreemdheidsproduc-

tie reacties voorgesteld die gebaseerd is op Regge-theorie [74, 75]. Regge-theorie

slaagt erin om op een natuurlijke wijze een verband te leggen tussen partonische

vrijheidsgraden en de hadronen die worden waargenomen. Zodoende biedt deze

theorie een unieke mogelijkheid om vanuit een partonisch beeld voor de hadronen,

observabelen te beschrijven.

In de literatuur werd enkele jaren geleden een model voorgesteld dat er in

slaagt om een zeer goede beschrijving te geven van de hoge energie p(γ, K+)Λ

en p(γ, K+)Σ0 data bij voorwaartse hoeken [16, 39]. De theorie werd echter afge-

leid in het zogenaamde Regge-gebied (s À en |t| ¿) en is als dusdanig ook enkel

daar toepasbaar. Het model werd geı̈mplementeerd en er werd bevestigd dat de

beschikbare meetgegevens in dit hoge energiegebied inderdaad goed beschreven

kunnen worden. Er bestaat echter interesse om dit soort van modellen ook in het

resonantie gebied toe te passen. Het feit dat de theorie een minimum aan vrije

parameters bevat en volledig unitair en analytisch is, is immers een bevredigende

vaststelling. Daarom werd in dit werk getracht uitbreidingen te ontwikkelen die

deze extrapolatie theoretisch kunnen verantwoorden.

Een eerste vaststelling is dat Regge-theorie volledig steunt op t-kanaal uitwis-

selingsprocessen. Het model bevat dus geen enkele informatie over de N∗ en ∆∗

s-kanaal resonanties. Om deze toch te introduceren, werd gesteund op een model

ontwikkeld door Veneziano [81, 84]. Dit model stelt een correctieterm voor die kan

gebruikt worden om in de Regge-beschrijving op een correcte manier s-kanaal re-

sonanties mee te nemen. Op deze manier werd “structuur” in het resonantiegebied

geı̈ntroduceerd. De correcties voor het K+Σ0 proces gaan in de goede richting. In

het geval van de K+Λ schort er echter duidelijk iets aan de beschrijving en zijn de

resultaten niet bevredigend.

Naast het introduceren van resonante structuur, is er ook onderzocht in hoe-

verre de strikte beperkingen van het Regge-gebied (s À en |t| ¿) mathematisch

kunnen worden uitgebreid. Er werd immers empirisch vastgesteld dat de Regge-

amplitude ook goede resultaten geeft buiten het strikte Regge-gebied. De voorop-

gestelde vorm voor de Regge-amplitude is hier echter mathematisch niet meer te

verantwoorden. Er werd onderzocht in hoeverre de theorie aangepast kan worden
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om aan dit probleem te verhelpen, maar tot op heden is nog geen sluitend ant-

woord geformuleerd. Hier is dus absoluut verder onderzoek noodzakelijk om de

krachtige ideeën van Regge-theorie verder te extrapoleren en te exploiteren in het

resonantie gebied.


