
Universiteit Gent
Faculteit Wetenschappen

Vakgroep Toegepaste Wiskunde en
Informatica

Mining and Modelling Interaction Networks for Systems
Biology

Timur Fayruzov

Supervisors:
Prof. Dr. Véronique Hoste

Dr. Chris Cornelis
Prof. Dr. Martine De Cock

Dissertation submitted to the Faculty of Sciences of Ghent University
in fulfillment of the requirements for the degree of Doctor of Computer Science

October 2010





Contents

Acknowledgements 1

1 Introduction 2

2 Machine learning for text mining 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Natural language processing . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Lexical processing . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Syntactic processing . . . . . . . . . . . . . . . . . . . . . 10

2.3 Biological corpora . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Learning problems . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Support vector machines . . . . . . . . . . . . . . . . . . . 16
2.4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Feature analysis for PPI extraction from text 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 SVM with structured kernels . . . . . . . . . . . . . . . . . . . . . 31
3.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Systems biology and computer science 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



ii CONTENTS

4.2 Modelling approaches . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 π-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Pathway Logic . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Boolean networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 General definitions . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Random Boolean Networks . . . . . . . . . . . . . . . . . 60
4.3.3 Generalized boolean networks . . . . . . . . . . . . . . . 61
4.3.4 Threshold boolean networks . . . . . . . . . . . . . . . . . 61

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Modelling time-dependent systems with ASP 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Answer set programming . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Time-dependent programs . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Markovian programs . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Discovery of steady states . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Modelling biological regulatory networks with ASP 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Boolean networks and ASP . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Building a network model in ASP . . . . . . . . . . . . . . . . . . 104

6.4.1 Basic framework . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.2 Extended framework . . . . . . . . . . . . . . . . . . . . . 116

6.5 Network modelling and analysis algorithms . . . . . . . . . . . . 123
6.5.1 State Space Building approach . . . . . . . . . . . . . . . 124
6.5.2 Querying networks . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . 130
6.6.1 Budding Yeast network . . . . . . . . . . . . . . . . . . . . 131
6.6.2 Fission Yeast network . . . . . . . . . . . . . . . . . . . . 134
6.6.3 Mammalian cell cycle network . . . . . . . . . . . . . . . 138

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Systems for PPI retrieval and extraction 150
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Online tools for biologists . . . . . . . . . . . . . . . . . . . . . . 151



CONTENTS iii

7.3 Motivation for the development of PRISE . . . . . . . . . . . . . . 155

8 PRISE 158
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3 Backend architecture . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3.1 PPI extraction task . . . . . . . . . . . . . . . . . . . . . . 161
8.3.2 Domain models . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3.3 Application mode . . . . . . . . . . . . . . . . . . . . . . . 165
8.3.4 Evaluation mode . . . . . . . . . . . . . . . . . . . . . . . 167
8.3.5 PRISE backend implementation . . . . . . . . . . . . . . . 168

8.4 Frontend architecture . . . . . . . . . . . . . . . . . . . . . . . . 169
8.4.1 Server-side architecture . . . . . . . . . . . . . . . . . . . 169
8.4.2 Client-side architecture . . . . . . . . . . . . . . . . . . . 171

9 Summary 177

Bibliography 183





Acknowledgements

Doing a PhD is hard work, and finishing this thesis would not have been
possible without the help of many people I have met in these four years. My
biggest acknowledgement is to Martine. Your trust and support provided me
with the power to accomplish this work. Your guidance gave me many bright
ideas, and you always knew the right words in the moments of my desperation.
I would like to say a separate thank you for your patience with proofreading
my English. Chris, thank you for your help with shaping my research goals
and with writing of papers. Veronique, your help on language processing was
invaluable and meetings with you and with the LT3 team were always a cheerful
experience. I also would like to thank Els, although it is not in this thesis, the
Web People Search project was an interesting experience.

Another portion of appreciation goes to people in the University of Washing-
ton, Tacoma, who made my stay there both productive and enjoyable. Ankur,
thank you for the endless source of ideas that you generously share with every-
one. Richard, Nick, Seth, Aparna, your help with PRISE implementation was
invaluable. Rinkesh, thank you for your company during my stays: our coffee
breaks were great.

A special thanks goes to my UGent office mates Gilles and Nele for never
saying a word against being distracted from their work with endless questions
about life in Belgium. Nele, thank you for being so devoted to teach me Dutch.
Jeroen, your ASP expertise was an invaluable help that made this thesis much
better.

I am grateful to my parents that were willing to meet me at any reachable
place on earth. Although we did not meet too often, I felt your support every-
were.

The last, but the most important gratitude goes to my family – Tanya and
Masha. You have learned fully what it means to be a family of a PhD student,
without you I would not be able to come to this point. Your love and support is
filling my life with joy every day.



1 Introduction

Almost twenty years ago the World Wide Web started a new era in informa-
tion search by bringing new ideas on how information should be organized and
accessed. Information has never been as widely available as in our days - using
a search engine one can get thousands of documents on almost any topic with
a few keystrokes and a mouse click. Moreover, in the last decade the concept
of the social web has emerged, which has created a new trend of producing
information rather than simply consuming it. However, problems of managing
this information come along with the many obvious benefits of the Web. Get-
ting a lot of search results is great, however users are left with the burden of
processing this data to find the pieces of information they really need.

The field of biology is a striking example of this problem. Biology takes full
advantage of the information dissemination technologies provided by the Web.
MEDLINE [102], is the most comprehensive database of biomedical article ci-
tations, is a great example of the new information age in biology. Moreover,
hundreds of biological journals provide open access to their articles, many re-
search groups and biological laboratories maintain freely available databases
of biological experiments such as BIND [11], UniProt [166] or DIP [145] and
biologists make use of the latest Web developments such as ontologies by build-
ing knowledge bases such as the Gene Ontology [6]. On the other hand, the
abundance of information makes it increasingly difficult to browse information
on specific topics and stay informed on the latest developments.

The immense growth of biological data is due to the development of new
high-throughput experimental techniques that capture data about thousands of
genes and proteins at once. With the development of such techniques in the
biological community came the understanding that it is not possible anymore



3

to study a particular gene or protein in isolation, and that new system level
methods are needed to comprehend the available data and build realistic mod-
els of living organisms. These factors gave rise to the new discipline of systems
biology that emerges from biology, statistics and computer science domains to
create instruments to build comprehensive models of biological processes. Sys-
tems biology tries to achieve this goal by attempting to create in silico models
that reflect the behaviour of real living organisms [141].

This thesis addresses the problem of information overload in the biological
domain. We study two aspects of this problem: information extraction and mod-
elling. These two aspects are interconnected, as the ultimate goal of collecting
the information is to build models, and building models is only possible when
enough information is available.

We address the first aspect by studying methods for protein-protein interac-
tion (PPI) extraction from text of biological articles. In the last ten years many
approaches to handle this problem were proposed, each of them taking into
account specific textual features. Modern text mining approaches may employ
thousands of features induced from the text, striving to find the combination
that would be the most useful for PPI extraction. These features, although all
coming from text, can be classified into several groups, such as lexical (explic-
itly present in text), shallow syntactic (induced with lightweight natural lan-
guage processing) and deep syntactic (induced with full parsing techniques)
ones. Many efforts have been made to build a good PPI extraction system, little
attention has been devoted to the study of the usefulness of the particular cate-
gories of features for this task. We address this problem by studying the impact
of different feature types on the accuracy of PPI extraction methods.

To address the second aspect, namely the biological network modelling, we
propose a logic-based modelling framework that allows us to construct and an-
alyze biological regulatory networks. In the field of systems biology many ap-
proaches have been proposed to build biological models ranging from Boolean
networks to differential equations. Each modelling formalisms has advantages
and drawbacks; usually the ability to incorporate many fine details in a model
comes at a cost of scalability and modelling complexity. We follow an incremen-
tal strategy and start with the most simple boolean network representation and
extend it by adding capabilities to capture complex relationships in an intuitive
way. Moreover, we provide a querying mechanism that enriches the biologist’s
modelling experience and allows him to study a system’s behaviour by posing
complex queries to that system.

This thesis contains three parts. In the first part, we study methods for
protein-protein interaction extraction from texts. Chapter 2 is an introduction



4 1 Introduction

to the techniques that are employed in the PPI extraction task: natural language
processing (NLP) and machine learning. NLP is a necessary prerequisite for any
information extraction task as it introduces structure into the otherwise unstruc-
tured (from the information extraction point of view) textual data. NLP includes
lexical, morphological and syntactic processing steps that are detailed in Chap-
ter 2. Another component of many PPI extraction systems is a machine learning
algorithm that is used to actually find the interactions. In our research, we
have used the Support Vector Machines (SVM) algorithm, which is explained in
Chapter 2. The essential component of an SVM is a kernel function, that can be
modified to the needs of any particular classification task. In Chapter 3 we use
non-standard convolution kernels, thus we provide the necessary background
on this kernel type in Chapter 2 as well.

In Chapter 3, we study the influence of different feature types on the per-
formance of PPI extraction methods. Different types of features can be induced
from text, starting with the most obvious ones such as words themselves, word
sequences (n-grams), orthographic and punctuation features to more elaborate
features that do not explicitly occur in the text such as part-of-speech tags and
grammatical relations between words in a sentence. In the quest of finding
PPIs, researchers generate thousands of features hoping that these will include
the ones that are the most indicative for the extraction task. However, little at-
tention has been devoted to studying the impact of different feature types on the
performance of the PPI extraction task. We divide features into three groups:
lexical, shallow syntactic and deep syntactic features. We devise four SVM clas-
sifiers with different kernels that use these groups of features and analyze how
elimination of certain feature types affects the performance. This work stems
from our research papers ([52, 50] and [51]).

The second part of the thesis deals with the modelling aspect of systems biol-
ogy. In Chapter 4, we provide an overview of formalisms proposed to deal with
the task of modelling biological processes, and discuss their potential. More-
over, in this chapter we provide the formal description of Boolean networks and
threshold boolean networks that are essential for understanding Chapter 6.

In Chapter 5, we employ Answer Set Programming (ASP) to present a theo-
retical framework for modelling systems that evolve with time. To this end, we
introduce a notion of time-dependent programs. The usual problem that arises
when analyzing these systems is to find their steady states. Traditional ASP solv-
ing approaches are suboptimal for finding steady states in scenarios where the
number of time steps is not known in advance, which is usually the case in the
real world. Therefore, we propose a theoretical framework that can be used to
model temporal systems, and more in particular first-order Markovian systems,



5

where the next state depends only on the previous state and does not depend
on any future states of the system. We flesh out the theoretical underpinnings of
this framework and provide an algorithm that finds steady states in cases where
the number of steps is not known in advance.

In Chapter 6, we use the Markovian programs proposed in Chapter 5 to
build a framework for biological regulatory network modelling. We start by
simulating boolean network semantics in an ASP setting. We extend this seman-
tics with additional constructs that cannot be directly modelled with Boolean
networks. Moreover, we devise a framework-specific algorithm for state space
building. Another advantage of our framework is a more explicit model repre-
sentation compared with the Boolean networks. Additionally, we employ the
techniques developed in Chapter 5 to develop a querying mechanism that finds
steady states and allows the use of queries for arbitrary states/trajectories that
can be reached in the network, thus allowing to perform a fine-grained network
analysis.

Part of the work presented in the second part of this thesis has been pub-
lished ([53], [56] and [55]).

In the third part of the thesis we describe the implementation of PRISE – a
PRotein Interaction Search Engine. Chapter 7 provides an overview of informa-
tion retrieval and extraction systems for biological data. This chapter motivates
the need for an integrated framework for interaction extraction methods devel-
opment. Chapter 8 introduces a framework based on the RapidMiner machine
learning library. We present the PRISE system, that contains this framework in
the backend. PRISE combines the developments proposed in first two parts of
this thesis in a single application that extracts protein-protein interactions from
texts and can potentially use this information as a basis for building regulatory
networks. These networks can be analyzed with the techniques proposed in
the second part of the thesis. Moreover, the libraries constituting PRISE are
designed in a modular way and provide a convenient workbench for the re-
searchers and practitioners of PPI extraction methods. A part of the work, pre-
sented in this chapter has been summarized in our paper [54].

Overall, this thesis contributes to two important aspects of biological in-
formation processing: information extraction and reasoning. We believe that
information management in the biological domain is a challenging area for
computer science applications, and it can benefit from new developments in
information extraction and knowledge representation and reasoning, such as
those described in this dissertation.



2 Machine learning for
text mining

2.1 Introduction

Biology has experienced a drastic increase in the rate of information production.
Synthesizing information from different data sources has the great potential to
build new hypotheses and come up with discoveries. However, this idealistic
picture is often not seen in reality. The downside of the rich information flow is
that it is often very loosely structured; for example when the search process re-
turns the set of papers on a topic, a researcher still needs to read these papers in
order to be able to use this information. Therefore, it is increasingly difficult to
keep track of the new developments in a certain subfield and to consult existing
knowledge.

Computer science has a long-standing interest in text understanding, infor-
mation extraction and reasoning methods (see e.g. [155, 26]). More specifically,
data and text mining techniques are seen as a potential solution to the problem
of efficient information management. By data mining we mean knowledge ex-
traction from structured sources such as databases. By analyzing correlations
between data sets that were possibly never studied together before, data min-
ing can aid in formulating new hypotheses that can be further evaluated by
researchers. However, biologists are often confronted with unstructured data,
presented as natural language articles on the topic. To deal with this type of
information, text mining is used.

Text mining, as described by Hearst [74], is the process of extracting knowl-
edge from unstructured textual data. The process of text mining includes three
steps: information retrieval (IR) to find relevant texts, information extraction
(IE) to derive a structural representation of a retrieved text and data mining that



2.1 Introduction 7

finds new knowledge by analyzing the outcome of the IE step. It is important to
distinguish between IR and IE. IR algorithms (many of which can be found in
e.g. [98] or [31] and other proceedings of the SIGIR conference series) are typ-
ically designed to work on a scale of thousands or even millions of documents
in order to find the ones that are most likely to answer an (often superficially
defined) user query. IR provides methods that return documents that should be
further processed by a user in order to make use of the knowledge expressed in
these documents. In the field of IE, the scale is usually smaller and the focus is
much narrower. For example, in biology, IE methods generally look to extract
particular types of information from texts, such as gene and protein names,
their functions and interactions between proteins described in texts. It is often
the case that IE techniques work on the level of a single document to extract
the facts expressed in the text. These facts can be represented in a structured
form, which opens up the way to use them in data mining systems to extract
new knowledge or to use this data as input for further human analysis.

In the first part of this thesis we focus on the IE aspect of the text mining
process applied to biology, and more in particular on extracting protein-protein
interactions (PPI). Indeed, with specialized IR systems such as PubMed [126] it
is easy to find thousands of texts related to a particular topic in biology, how-
ever the processing of these results still poses a problem. In the last decade a
whole new subfield of text mining in biomedicine has emerged, consolidating
researchers from the domains of computational linguistics and machine learn-
ing. This new area is a source of many new approaches that address the IE and
data mining tasks outlined in this section.

This chapter introduces the basic concepts from machine learning and nat-
ural language processing and set the scene for machine learning applications
in IE for biology. In Chapter 3, we discuss methods proposed to extract PPI
descriptions from text. These methods rely on different lexical and syntactic
features extracted from text. An interesting question to ask is which kind of
features is more important for PPI extraction. In Chapter 3 we investigate the
impact of lexical, shallow and deep syntactic features on the performance of PPI
extraction methods.

The remainder of this chapter is structured as follows. In Section 2.2 we
first recall the principles of natural language processing on the lexical and syn-
tactic levels and in Section 2.3 we discuss the corpora that we will use for the
interaction extraction task. In Section 2.4 we recall the formal definition of ma-
chine learning and explain the Support Vector Machines classifier we will use as
well as discuss the performance metrics that can be applied to evaluate the PPI
extraction task. Finally, we conclude in Section 2.5.



8 2 Machine learning for text mining

2.2 Natural language processing

Analyzing natural language is a difficult task sometimes even for human ex-
perts, let alone automated methods. The same information in natural language
can be represented in an extremely rich variety of forms, and the first step to
take in order to extract this information is to split the monolithic text of a doc-
ument into smaller pieces that are interconnected in meaningful ways. The
structured representation of a text is essential in order to apply any automated
method, because such methods generally cannot work on unstructured data.
The preprocessing step shapes a text structure by splitting it into tokens, rec-
ognizing specific token types and eventually by finding syntactic and semantic
dependencies between tokens. Generally, natural language processing (NLP)
can be divided in three stages: lexical, syntactic and semantic. The output of
all three stages can be used for information extraction purposes, however cur-
rently nearly no systems are available which can accurately model the semantics
of biomedical texts, thus in this section we discuss only the former two stages.

2.2.1 Lexical processing

Lexical processing includes two connected steps: tokenization and stemming.

2.2.1.1 Tokenization

Although seemingly simple, tokenization is an important step in text processing.
It is the very first step, and errors made here will propagate to other levels, dete-
riorating the performance of high-level tasks such as Named Entity Recognition
(NER) or PPI extraction.

Tokenization is the task of segmenting the input character stream into lin-
guistically plausible units called tokens [5]. The tokens can be classified into
several categories such as words, punctuation, acronyms, numbers, Greek let-
ters, etc. A straightforward way to perform tokenization is to separate tokens
on white spaces and punctuation marks, however this may lead to a number of
problems that arise from the fact that we want tokens to be sensible.

For example, hyphenation may be ambiguous. Consider the string p53-
dependent, which semantically should be treated as two tokens, while co-transcribed
apparently needs to be a single word. Moreover, cases such as alpha- and beta-
catenin that occur in biological texts also require attention, as this string de-
scribes two entities alpha-catenin and beta-catenin. Information about entities



2.2 Natural language processing 9

that occur in a text may be crucial for further information extraction tasks, thus
it is important to properly handle such cases.

Another case where whitespace and punctuation tokenization may fail is the
representation of number and dates. Numbers can be represented in various
formats: digits can be grouped by white spaces, commas or dots or not grouped
at all, and the decimal separator can vary as well, e.g. 1 123,56 may be equiva-
lent to 1,123.56 or 1123,56. Dates arguably should be treated as single tokens
as well, but the richness of representations makes date parsing a non-trivial task
too.

Moreover, some biology-specific constructs may challenge even very sophis-
ticated tokenizers by constructs like (26.0 +/- 1.8 vs. 19.1 +/- 2.2 micro-
grams/mg wet wt) or erythro-9-(2-hydroxy-3-nonyl)adenine. Inline citations,
that sometimes occur in biological texts are another source of potential prob-
lems, e.g. (Crute, J.J., Tsurumi, T., Zhu, L., Weller, S.K., Olivo, P.D., Challberg,
M.D., Mocarski, E.S. and Lehman, I.R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86,
2186-2189).

Typically, the tokenization problem is handled with lexicon-based approaches
and/or regular expression matching. For example, in a work of Grefenstette and
Tapanainen [68] regular expressions are used to extract dates and numbers and
a lexicon- and rule-based system to detect abbreviations. However, such ap-
proaches do not scale well, as the context of periods in the biological domain is
very different from the one in general text.

One of the most important problems in tokenization is to detect sentence
boundaries, or in other words to disambiguate periods. Abbreviations pose a
problem to this task, as periods may denote abbreviations, such as in the bac-
teria name E.coli or in U.S. However if the latter appears at the end of the
sentence, the period will denote the end of sentence as well, and it is not trivial
to classify this period as an end-of-sentence token. Simple dictionary lookup
may not catch all cases, since new abbreviations are constantly generated.

Alternatively, this problem can be approached as a classification task. Ma-
chine learning-based approaches provide more flexibility than rule-based ones,
as a tokenization strategy is learned from the text itself, and does not contain
hand-crafted rules. Palmer and Hearst [120] propose using a neural network
that considers parts-of-speech tags around the period to classify it as the end of
a sentence or as an abbreviation punctuation mark. Their system called SATZ
achieves 98.5% accuracy on the Wall Street Journal (WSJ) corpus, which is a
typical benchmark corpus for NLP tasks. Another approach described by Rey-
nar and Ratnaparkhi [139] uses the tokens around a potential end of sentence
period as a set of features and applies a Maximum-Entropy classifier to recog-



10 2 Machine learning for text mining

nize whether the period is at the end of a sentence. This approach yields a
performance of 98.8% on WSJ.

2.2.1.2 Stemming

Morphological analysis is used to convert various syntactic forms of a word to
its canonical form. This is arguably an important step because it reduces the
variation among tokens and thus reduces the sparseness in the lexical repre-
sentation of the text. For example, the phrases ‘a inhibits b’ and ‘a inhibiting
b’ will be cast to a single bag-of-words representation {a, b, inhibit} which po-
tentially simplifies the task of recognizing an interaction between a and b. The
most common algorithm for English words base form derivation was described
already in 1980 by Porter [123]. The Porter stemming algorithm uses a list of
English inflections such as es, ed, ing, ly etc. and strips the longest subsequence
from every token considered. This algorithm, although being extremely simple,
is a standard approach in tasks where a bag-of-words document representation
is used.

2.2.2 Syntactic processing

Syntactic processing is an essential part of most NLP applications, as syntactic
information sometimes exposes a connection between the structure and seman-
tics in the text (such as the fact that a protein name most probably will be a noun
phrase). Syntactic processing may be divided into three stages: part-of-speech
(POS) tagging, chunking and deep syntactic processing.

POS tagging is the first step and its outcome is essential for the following
processing. POS tags contain information derived from the text that can further
be used in IE tasks. Usually, it is not possible to use a lexicon-based approach,
i.e., to assign a POS tag looking at a word in isolation, and the surrounding
context is often needed to determine it properly. For example, the word report
can be either a noun or a verb depending on the context.

Automated approaches for building POS tagging systems can be divided
into rule-induction and statistical ones. Both approaches require training data,
which are texts with manually assigned POS tags. The rule-induction taggers
derive the set of rules that should be used to assign POS tags to words. An
example of a rule-induction tagger is Brill’s tagger [17] that takes an initial set
of rules and applies it to data. A rule can make an error in POS tag assignment,
which can be fixed by adjusting the rule. The algorithm extends and modi-
fies the set of rules and iteratively estimates the error-level and finally comes



2.2 Natural language processing 11

up with a ranked list of rules that provide the best POS tag assignment. This
system obtains an accuracy of 96.6% on the WSJ corpus.

Many approaches to POS tagging, such as TnT [15] or HunPos [71] are
based on Hidden Markov Models (HMM). An HMM contains a hidden state
sequence and a known observation sequence. In a hidden state sequence every
next state depends only on the previous state and does not depend on the states
that follow, i.e., it is a Markovian sequence. In the case of POS tagging this
is the sequence of POS tags in a sentence. An observation sequence contains
the observations that are associated with hidden states, which are represented
as tokens in the case of POS tagging. The parameters of the HMM model are
conditional probabilities that are estimated from the training data. In the TnT
tagger a dynamic programming algorithm (the Viterbi algorithm [170]) is used
to find the most probable sequence of states in the model.

More sophisticated statistical POS taggers employ different approaches such
as maximum entropy [162] and SVM [65]. In both of these approaches a
rich feature vector is built from the context surrounding the word of interest.
Toutanova et al. [162] derive from the data a (cyclic) dependency network con-
sisting of words and POS tags with directed arcs representing the influence of
the nodes on each other. Each node’s neighborhood is considered in isolation,
and therefore presents a non-cyclic network for which conditional probabilities
can be induced from the data. At application time the sequence that maximizes
the product of these local conditional probabilities is derived and used as the
most probable sequence of POS tags. In this way, when predicting a POS tag
for a word not only preceding words and POS tags are considered, as in tradi-
tional HMMs, but also the words from the right-hand side together with their
possible POS tag assignments that are yet to be determined. This approach
yields 97.24% accuracy on the WSJ corpus. The SVM approach [65] employs
a very rich feature vector that considers features up to trigrams (consequent
word triples) and uses a polynomial kernel SVM to obtain an accuracy of 97.2%
on the WSJ corpus (see Section 2.4.2 for more details about SVM). Adapting
POS taggers to the biomedical domain requires re-training on a collection of
biomedical documents with the de facto standard choice being the GENIA [119]
corpus. The performance of state of the art classifiers such as [164] that is built
on the same ideas as [162] achieves an accuracy of 98.26%.

Chunking is the process of combining continuous pieces of text into phrasal
sequences such as nouns, verbs, prepositions or adjective phrases, using both
lexical and POS information. A more general task than chunking is full parsing,
also referred to as deep syntactic processing. Full parsers try to build a complete
sentence structure also known as a parse tree. Parsing is the culmination of the



12 2 Machine learning for text mining

NLP task as it combines the data obtained in all previous steps including POS
tags and phrases and adds even more information about the structural depen-
dencies between phrases. All modern NLP parsers are built as supervised sys-
tems, which means that the training data should contain manually constructed
parse trees for every sentence in a corpus, called a treebank. A parse tree is the
complete syntactic representation of a sentence, however building such repre-
sentation is a costly process, therefore it is still not clear whether the additional
information provided by parse trees is worth the computational efforts. This
problem, in an application to the PPI extraction problem, is discussed in depth
in Chapter 3.

Parser development is an active area of research that has resulted in many
publicly available tools. Parsers can be divided into two categories: constituent
parsers, such as the Charniak-Lease parser [92], Enju [144], Link Parser [69]
and Stanford Parser [88], and dependency parsers such as MST [101] and MALT
[117]. Constituent parsers produce parse trees, which contain syntactic tags as
inner nodes and the actual words of a sentence as leaves. Dependency parsers
produce dependency trees, which reflect the interconnection between words in
a sentence, i.e., all nodes of a dependency tree are represented by words. Note,
that while there is a common scheme for building parse trees, there exist several
independent dependency schemes. This is explained by the fact that the notion
of dependencies between words is open for interpretation (e.g. some parsers
may provide untyped dependencies, while others may provide dependencies
typed with syntactc or semantic roles). Some dependency schemes, such as the
Stanford Dependency scheme that was developed with the application to the IE
task in mind, are better suited for the task of interaction extraction than others
[130]. Importantly, a parse tree structure can be converted to a dependency
representation (or even to different dependency representations), while the re-
verse conversion is more problematic, i.e. constituent parsers can be used as
the replacement for dependency parsers. Dependency parsers are much faster
than constituent parsers [21], however, the latter provide better accuracy when
used to build dependency trees, therefore in our work we opt for a constituent
parser. A comparative study of full parsers’ accuracy for biomedical text parsing
is provided by Clegg and Shepherd [28].

2.3 Biological corpora

Machine learning approaches as well as most of the NLP components require
annotated training data for learning. Another observation that we made in



2.3 Biological corpora 13

Section 2.2.1, is that the language of biological texts is very different from the
general domain, which implies that specific linguistic resources are needed in
order to perform NLP tasks with reasonable accuracy.

GENIA [119] is one of the largest publicly available annotated corpora of
biomedical texts, and contains both syntactic and semantic annotations and a
treebank for parser training. This corpus is often used to retrain general-purpose
NLP instruments such as parsers, named entity recognizers and tokenizers for
application in the biomedical domain.

Moreover, there exists a number of smaller data sets created for different
purposes. In the overview in this section we provide details for the data sets
we use in Chapter 3 that are built specifically for the PPI extraction task. These
publicly available data sets are AIMed [18], BioInfer [131], HPRD50 [58], LLL
[114] and IEPA [41]. These data sets have been frequently used in recent work
[1, 87, 66, 169]; therefore we use them in our current work. Table 2.1 gives an
overview of the annotated interaction statistics in the different data sets.

The AImed data set consists of 225 abstracts extracted from the Database
of Interaction Proteins [145], 200 of which contain annotated human gene and
protein interactions. These 200 abstracts contain 1955 sentences that we have
used for the evaluation purposes.

The BioInfer data set is the largest data set among these 5; it contains 1100
sentences describing protein-protein interactions. Besides the interaction an-
notations, BioInfer contains additional information about the biological inter-
action type, protein roles in the interaction, syntactic dependencies between
words, etc. Moreover, there is a knowledge base behind the corpus, which al-
lows a researcher to analyze it in more detail (see [131]).

HPRD50 contains sentences that were extracted from a subset of 50 ab-
stracts, referenced by the Human Protein Reference Database (HPRD) [86] and
annotated with protein names and interactions between them.

The LLL data set consists of 77 sentences describing interactions concerning
Bacillus subtilis transcription. Protein roles for interactions are annotated along
with the interactions themselves. Additionally, the data set contains annotations
for lemmas and syntactic dependencies between the words in the sentences.

Finally, the IEPA data set was built by querying MEDLINE with 10 diverse
queries, reflecting 10 different biological topics. 303 abstracts were retrieved,
and a data set was constructed with sentences extracted from these abstracts.
The data set annotation includes an interacting verb along with the protein
names and interactions.

The BioInfer and LLL data sets provide syntactic dependencies for every sen-
tence in their own formats, while the other data sets do not provide this infor-



14 2 Machine learning for text mining

mation.

All data sets use different annotation schemes that emphasize different in-
teraction properties. For example, in AIMed homodimeric proteins, i.e. proteins
that interact with themselves, are annotated which may limit the utility of PPI
extraction approaches that expect two entities to be involved in an interaction.
Moreover, in BioInfer some proteins have gaps in annotations, i.e., there is a
gap between two parts of one protein name, which can potentially decrease the
performance of PPI methods as well. The quality of the annotation itself (mea-
sured as e.g. inter-annotator agreement) may affect the quality of a classifier
trained on the annotated data. If an annotator misses an interaction between
two proteins, the data point related to this protein pair would be treated as a
negative instance, although containing an interaction pattern, which is harmful
to the overall performance.

An extensive comparative analysis of the 5 datasets is presented by Pyysalo
et al. [128]. One of the most important observations is that the choice of corpus
has a determining effect on the evaluation figures of a PPI extraction method,
thus it is important to use several corpora (‘hard’ ones as well as ‘easy’ ones)
to get a better estimate of the method’s accuracy. The authors hypothesize that
the difference between results is correlated with the number of non-interacting
entities annotated in the corpus, that can be expressed as the proportion I/EP ,
where I is the average number of interacting entity pairs per sentence and EP
is the average number of annotated entity pairs per sentence.

To unify the experimental setup, we need to cast all corpora to a common
ground format. Pyysalo et al. [128] designed custom software that converts
all 5 data sets to a single XML format that contains only minimal protein and
interaction annotations, which is sufficient for our training and evaluation pur-
poses in Chapter 3. However, not all annotation differences can be eliminated
in this way. Table 2.1 shows that different data sets have very different ratios
of interactions per sentence. This can be partially explained by different anno-
tation strategies, e.g. for LLL only proteins that are involved in interactions are
annotated, while for other data sets all protein names are annotated. Since we
consider every possible protein pair within a sentence to be an instance, this
leads to a combinatorial growth of the total number of instances, while in fact
the number of positive instances remains the same.



2.4 Machine learning 15

Data set Number of sentences Average number per sentence
proteins interactions

AIMed 1955 2.2 0.5
BioInfer 1100 4.2 1.3
HPRD50 145 2.8 1.1
LLL 77 3.1 0.7
IEPA 486 2.3 2.1

Table 2.1: Corpora statistics.

2.4 Machine learning

Information extraction and text mining methods rely heavily on machine learn-
ing. Machine learning is generally associated with the question of how to con-
struct computer programs that automatically improve with experience [108].

2.4.1 Learning problems

One frequent situation that machine learning aims to handle is when we do
not have an explicit definition of how to solve the problem, but (many) exam-
ple solutions are available. This setting corresponds to the supervised machine
learning paradigm and captures the problem of information extraction that we
tackle in this thesis. More formally:

Definition 2.1 (Learning problem [108]). A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E.

According to this definition, to formally define a learning problem we need
to define a task T, experience E and a performance measure P. Given the infor-
mation extraction problem, and more in particular the PPI extraction task we
can define the learning problem as follows:
• Task T: extract the interactions between genes and proteins from English

texts

• Performance measure P: f-score with respect to positive instances

• Experience E: English texts with annotated gene and protein interactions



16 2 Machine learning for text mining

The goal of the PPI extraction task is to learn the mapping

f : X → {0, 1}

where f is called a target function that maps the representation of the text
(which, in fact, could be a feature vector, phrase, sentence or an abstract) x ∈ X
to 1 if the text described by x contains an interaction, and 0 if the text described
by x does not contain an interaction. In reality we use a limited amount of
training data that is not enough to find f , thus instead of learning f we learn
the approximation of this function denoted as f̂

f̂ : X → {0, 1}

which is approximated using the available training data E. For every PPI extrac-
tion method the choice of the appropriate text representation is crucial for the
method’s performance. In the following discussion we represent the training
experience E as a collection of examples (x1, c1), . . . , (xn, cn), where xi is a text
we want to analyze, and ci ∈ {0, 1} is a label, associated with every text.

This high-level definition covers all machine learning-based approaches to
PPI extraction such as [1, 19, 66, 58, 87] to name a few. We have already
described the training experience represented by annotated corpora in Section
2.3. In the next subsection we provide a description of the Support Vector
Machines approach that we employ in Chapter 3 to study the impact of various
textual features on PPI extraction accuracy. Further, in subsection 2.4.3 we
discuss performance measures that can be used to evaluate the PPI extraction
task.

2.4.2 Support vector machines

A machine learning algorithm that has become very popular for information ex-
traction tasks (see e.g. [66, 87, 96]) is Support Vector Machines (SVM) [30].
To describe SVM, let us first describe the idea of an optimal hyperplane classi-
fier that is a linear version of SVM. Consider a data set consisting of instances
(x1, c1), . . . , (xn, cn) with ci ∈ {−1, 1}, i = 1 . . . , n and its vectorial represen-
tation (x1, c1), . . . , (xn, cn). Vector xi defines the instance xi in some feature
space X . Assume that these instances can be linearly separated, e.g. in the two
dimensional case we can draw a line that will separate the two sets of points,
belonging to different classes. A hyperplane Hw,b is defined by the equation

〈w,x〉+ b = 0 (2.1)



2.4 Machine learning 17

Figure 2.4.1: There can be infinitely many hyperplanes that separate the class
of instances represented by stars from the class of instances represented by
diamonds.

where 〈·, ·〉 represents the inner product of two vectors, w ∈ X is a vector
orthogonal to the hyperplane, b ∈ R is the distance from the hyperplane to the
point of origin.

Next, let us define the distance function d as follows

d(x, Hw,b) =
〈w,x〉+ b

‖w‖
.

The hyperplane Hw,b is called a separating hyperplane if for every training in-
stance xi it holds that d(xi, Hw,b) > 0 if ci = 1, and d(xi, Hw,b) < 0 if ci = −1.
The decision function that can be used to classify a new instance x is then de-
fined as

f̂(x) = sgn(d(x, Hw,b))

or, since ‖w‖ > 0,

f̂(x, Hw,b) = sgn(〈w,x〉+ b). (2.2)

As illustrated in Figure 2.4.1 there may be many hyperplanes that separate the
training data. We want to pick one that generalizes best over unseen data, i.e.,
we would like to find a hyperplane that maximizes the ‘margin’ between the
training instances and the hyperplane itself. To this end we need to solve the



18 2 Machine learning for text mining

following optimization problem

max
x,b

C (2.3)

C ≤ dabs(xi, Hw,b), i = 1, . . . , n (2.4)

where

dabs(xi, Hw,b) = ci
〈w,x〉+ b

‖w‖
Note, that there can be many solutions to the problem described by (2.3) and
(2.4). Indeed, we can rescale an optimal solution (w, b) with a constant λ > 0,
and it will remain an optimal solution. To eliminate the scaling problem let us
fix the length of w as follows

‖w‖ =
1
C

Now we can rewrite the problem (2.3)-(2.4) as follows

min
x,b
‖w‖

ci(〈w,xi〉+ b) ≥ 1, i = 1, . . . , n

This problem can be reformulated as follows

min
x,b

‖w‖
2

(2.5)

ci(〈w,xi〉+ b) ≥ 1, i = 1, . . . , n (2.6)

This is a constraint optimization problem that can be solved by introducing
Lagrange multipliers α1, . . . , αn, αi ≥ 0 and a Lagrangian

L(w, b,α) =
‖w‖

2
−

n∑
i=1

αi(ci(〈w,xi〉+ b)− 1). (2.7)

where α is a shorthand for α1, . . . , αn. To solve the optimization problem (2.5)-
(2.6), the Lagrangian (2.7) should be maximized with respect to α and min-
imized with respect to w and b [91]. Consequently, the derivatives of L with
respect to w and b must turn to zero

∂

∂b
L(w, b,α) = 0

∂

∂w
L(w, b,α) = 0



2.4 Machine learning 19

which leads to
n∑
i=1

αici = 0 (2.8)

w =
n∑
i=1

αicixi (2.9)

According to the Karush-Kuhn-Tucker (KKT) theorem [91] for every xi should
hold

αi(ci(〈w,xi〉+ b)− 1) = 0

This means that either αi = 0 or ci(〈w,xi〉 + b) = 1. From (2.9) we can see
that if αi = 0, then instance xi has no influence on w. The instances for which
αi > 0 are used to calculate w and called support vectors.

To find the values of αi we substitute (2.8) and (2.9) in (2.7) and arrive at
the dual optimization problem that does not contain w and b

max
α

W (α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjcicj〈xi,xj〉 (2.10)

subject to αi ≥ 0 for all i = 1, . . . , n and
n∑
i=1

αici = 0 (2.11)

which is a quadratic optimization problem that has an optimal solution. Several
techniques have been proposed to solve this problem in the context of SVM such
as [48, 83].

Finally, after substitution of (2.9) into (2.2) the decision function will be of
the form

f̂(x) = sgn

(
n∑
i=1

αici〈xi,x〉+ b

)
(2.12)

Equations (2.10) and (2.12) provide the basis for the training and classifica-
tion procedure for the optimal margin classifier. However, often the classes in
a data set are not linearly separable. The idea of SVM is that the training data,
defined in space X , can be mapped into a higher-dimensional feature space H
through a non-linear mapping φ, and in this feature space the classes are sepa-
rable and an optimal hyperplane classifier can be applied. Consider an instance
x ∈ X from a training data set, its mapping to H will be

x := φ(x)



20 2 Machine learning for text mining

and the inner product between instances x and x′ is denoted as

k(x, x′) = 〈x,x′〉

Function k is called a kernel on X × X . Note that the feature vectors in (2.10)
and (2.12) appear only in inner products, thus these equations can be reformu-
lated in terms of kernels, which is called the kernel trick. It turns out that for
certain feature mappings φ that comply with Mercer’s theorem [104], the kernel
function can be computed in terms of input vectors without explicit transforma-
tion to a higher-dimensional space, which allows for an efficient classification
algorithm. Moreover, the kernel implementation is decoupled from the classi-
fication algorithm itself and to consider another feature space we can simply
change the kernel.

Example 1 Consider two instances x = (x1, x2) and x′ = (x′1, x
′
2) described in

a two-dimensional space R2, and consider a mapping φ that maps a vector to
a higher-dimensional space H that contains 2nd order products of its features
(monomials), i.e.,

φ(x) = (x2
1, x

2
2, x1x2, x2x1)

Here we consider ordered monomials, i.e. x1x2 and x2x1 are considered as
different features. It is easy to write this mapping for two-dimensional vectors
and for 2nd order products, however, in the general case for n-dimensional
vector with dth order products the size of H is(

d+ n− 1
d

)
=

(d+ n− 1)!
d!(n− 1)!

It turns out that we can compute the inner product of two vectors represented
in H in the original space. Consider the vectors x and x′, then

〈φ(x), φ(x′)〉 = 〈(x2
1, x

2
2, x1x2, x2x1), (x′21 , x

′2
2 , x

′
1x
′
2, x
′
2x
′
1)〉

= x2
1x
′2
1 + x2

2x
′2
2 + 2x1x2x

′
1x
′
2

= 〈x, x′〉2

Thus, to find the inner product of the vectors that contain 2nd order monomials
we need to square the inner product of the vectors in the initial space. This
result was generalized to dth order monomials and called a polynomial kernel
[12]

k(x, x′) = 〈x, x′〉d



2.4 Machine learning 21

To build a proper kernel, a number of non-trivial requirements need to be
met [147]. Therefore, it is common to use previously defined kernels that have
proved to be efficient in many situations. Examples of such kernels are the
polynomial kernel

k(x, x′) = 〈x, x′〉d,

the gaussian kernel

k(x, x′) = exp
(
‖x− x′‖2

2σ2

)
, σ > 0

and the sigmoid kernel

k(x, x′) = tanh(κ〈x, x′〉+ ϑ), κ > 0, ϑ < 0

Finally, let us recall two propositions that will give us the basis to introduce
the kernels for structured objects.

Proposition 2.1 (Tensor products [147]). If k1 and k2 are kernels defined respec-
tively on X1 ×X1 and X2 ×X2, then their tensor product,

(k1 ⊗ k2)(x1, x2, x
′
1, x
′
2) = k1(x1, x

′
1)k2(x2, x

′
2),

is a kernel on (X1 ×X1)× (X2 ×X2). Here, x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2.

Proposition 2.2 (Direct sums [73]). If k1 and k2 are kernels defined respectively
on X1 ×X1 and X2 ×X2, then their direct sum,

(k1 ⊕ k2)(x1, x2, x
′
1, x
′
2) = k1(x1, x

′
1) + k2(x2, x

′
2),

is a kernel on (X1 ×X1)× (X2 ×X2). Here, x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2.

The notion of tensor product and of direct sum is useful if we have a het-
erogeneous input, and different parts of this input call for different kernels to
be applied. This approach was further investigated by Haussler [73] to define
a kernel between structured objects as a combination of kernels that assess the
respective parts of these objects. Consider the instance x ∈ X that is composed
of parts xd ∈ Xd with d = 1, . . . , D. Note, that according to Propositions 2.1
and 2.2 feature spaces Xd’s need not be the same. Let us denote the relation



22 2 Machine learning for text mining

R(x1, . . . , xD, x) that defines the set of allowed decomposition of instance x into
x1, . . . , xD, then we can define the R-convolution as

(k1 ? . . . ? kD)(x, x′) =
∑
R

D∏
d=1

kd(xd, x′d).

where kd is a kernel defined on Xd × Xd for d = 1, . . . , D. Intuitively, we con-
sider all possible decompositions of object x into x1, . . . , xD and of object x′

into x′1, . . . , x
′
D and for every such decomposition compute a tensor product of

kernels on corresponding parts. The direct sum over all such kernels is a final
kernel that can be used for classification purposes. We further use this version
of kernel computation in Chapter 3 to compute kernels on dependency trees.

2.4.3 Performance metrics

In principle, classifiers can be built to deal with any number of classes, however
for the purpose of PPI extraction we consider only two classes: positive and
negative. An accuracy metric that is often used to evaluate the performance of
classification methods, computes the fraction of correctly classified instances in
a given test set. However, in our case we are interested in correctly classifying
positive instances, and generally do not care about the negative instances, which
limits the applicability of accuracy metrics. In the PPI extraction task there
are typically much more negative instances than positive ones, thus a classifier
may achieve a high accuracy score due to the correct classification of negative
instances alone.

The problem described above occurs in the area of information retrieval(IR)
as well, therefore we adopt the evaluation metrics of recall and precision in-
troduced in IR to evaluate the performance of PPI methods. Additionally, we
employ ROC (receiver operating characteristic) curves for the analysis of a clas-
sifier’s performance. Let us reproduce their definitions. Let TP denote the num-
ber of true positives, i.e., the number of positive instances that are classified as
such, let FP denote the number of false positives, i.e., the number of negative
instances that are incorrectly classified as positive, and analogously, let TN and
FN stand for the number of true negatives and false negatives respectively. The
following metrics can then be defined:

recall = TP/(TP + FN)
precision = TP/(TP + FP )
true positive rate = recall
false positive rate = FP/(FP + TN)



2.4 Machine learning 23

Recall stands for the fraction of correctly classified instances (TP ) among all
positive instances (TP +FN) in a data set, while precision denotes the fraction
of correctly classified instances (TP ) among all instances that are classified as
positive (TP + FP ). Recall is sometimes called true positive rate, while false
positive rate counts how many of the negative instances were wrongly classi-
fied as positive. A combined measure that takes into account both recall and
precision is called F-score and defined as:

F =
2 · recall · precision
recall + precision

Often, a classifier’s output can be ordered, i.e., the classifier also provides a
degree of confidence for each prediction it makes. In this case, we can trade
precision for a higher recall by lowering the confidence threshold to capture
more positive instances. In this way we can build a recall-precision curve that
shows the relationship between these two metrics. The closer to the top-right
corner a curve is, the less precision is lost with recall growth and the better the
performance of the classifier is.

Precision, recall and F-score are de-facto standards for interaction extraction
evaluation. However, these metrics are very sensitive to data set skewedness,
i.e., the large difference between the number of positive and negative instances.
As shown in Table 2.1, this difference varies greatly for different corpora. On
the other hand, ROC curves are being used in the machine learning commu-
nity to evaluate classifier performance and they do not depend on data set
skewedness. As shown by Davis and Goadrich [37], there exists a strong re-
lationship between ROC and recall-precision curves, however, ROC curves have
complementary features discussed below that make them worth using for PPI
extraction evaluation.

The false positive rate together with the true positive rate correspond to a
point in ROC space. By varying the trade-off between these two metrics we
obtain a curve in ROC space. The AUC-score is the area under this ROC-curve.
It can be interpreted as the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative instance.

However, this metric should be used carefully, because it is suitable to eval-
uate the recall of a classifier (percentage of extracted positive instances), but it
gives no information about precision, and thus makes the evaluation of a clas-
sifier difficult. For example, if we increase the number of negatives 10 times,
then the number of FP on average increases 10 times as well. This will lead
to a significant drop in precision and consequently in F-score, but it does not
influence the false positive rate:



24 2 Machine learning for text mining

precision = TP/(TP + 10 · FP )
false positive rate = 10 · FP/10 · (FP + TN)

Based on this observation, we can outline an application area for both eval-
uation metrics. The ROC curve and the corresponding AUC value should be
used to compare the performance of a classifier on different corpora, since they
show the relative number of extracted positive instances. Recall-precision and
F-score can be used to compare the quality of several classifiers on the same
data set, since they indicate how ‘clean’ the classification is without regarding
the proportion of negative instances.

2.5 Conclusions

The introduction of new experimental methods and adoption of knowledge dis-
semination techniques in the domain of biology in the last decade have led to
the overwhelming growth of information, both explicitly presented in databases
and hidden in papers. As the amount of published articles in biological domain
keeps growing, it is important to develop the methods for automated informa-
tion extraction. The task of protein-protein interaction extraction from biologi-
cal texts is an important problem that attracts a lot of attention from computa-
tional linguistics and computer science communities.

In this chapter we have described the steps for building PPI extraction meth-
ods. Natural language processing is a necessary step to convert an unstructured
text into a structured representation that can be used for information extraction
tasks. We separate two NLP stages: lexical and syntactic processing. Lexical
processing includes tokenization and stemming steps that separate texts on ba-
sic blocks and reduce the representation variance. Syntactic processing includes
POS tagging and deep parsing, that is used to discover the interconnections be-
tween words in the text. Every step in this sequence produces features that can
potentially be used for information extraction tasks, such as protein-protein in-
teraction extraction. The amount of features may be overwhelming (consider,
for example, a number of words that can appear in a text), therefore it is impor-
tant to use the features that are potentially useful for the PPI extraction task.
This is an interesting problem, that we address in Chapter 3. As our study in
Chapter 3 rely on the SVM algorithm, we have provided a description of this
algorithm.

Moreover, we describe five benchmark datasets that are used to evaluate PPI
extraction tasks. We discuss the differences in these datasets and the potential



2.5 Conclusions 25

influence of these differences on a classifier performance. Finally, we recall the
definitions of performance metrics, namely of recall-precision and ROC curves.
We propose to use both these metrics to evaluate the performance of a classifier,
as they provide complementary information. More in detail, recall-precision
can be used to compare the quality of several classifiers on the same data set,
while ROC curve should be used to compare the performance of one classifier
on different corpora.



3 Feature analysis for
protein interaction
extraction from text

3.1 Introduction

As discussed in Chapter 2, the need for automated information extraction meth-
ods in biomedicine has become critical, and many efforts are invested in creat-
ing such methods. Recently proposed approaches for protein-protein interaction
(PPI) extraction are based not only on explicit textual information that contain
in publications, but also on a comprehensive language analysis that includes
part-of-speech (POS) tags and deep syntactic structure extraction. To achieve
state of the art performance, researchers employ lexical information (words)
along with shallow syntactic information (POS) and/or deep syntactic features
(grammatical structures) (e.g., [1, 19, 58, 66, 84, 87, 142, 169, 171, 172]).

As a consequence, extraction methods tend to become more complex, use
more features and require more memory and computational efforts. However,
little attention has been devoted to studying the individual impact of different
feature types. We believe that this question is of great importance, because

1. When two types of features have a substitute rather than a complemen-
tary effect, one of them can be dropped to obtain a computationally more
efficient method, and

2. Dropping one type of features might make the mining algorithm more
robust

The latter reason is especially relevant for lexical features since lexicons tend to
be subdomain-specific. This problem can be alleviated by combining different
biological phenomena in one corpus; however in practice corpora are often built
for a particular organism or a particular set of proteins. Despite this fact, it is



3.1 Introduction 27

common practice to train and evaluate systems on the same data set with an n-
fold cross-validation technique, thus partially avoiding this lexicon-dissimilarity
problem which is inherent to real-life problems.

In this chapter, we study the impact of different feature types on the perfor-
mance of a relation extraction system that uses a SVM classifier with kernels as
its core, since at present this is the most popular choice in the relation extrac-
tion field. In particular, we use the approach suggested by Kim et al. [87], which
relies on lexical, shallow and deep syntactic features represented as parts of a
dependency tree, and consequently apply Occam’s razor principle by cutting off
the former two to get rid of all lexical and shallow syntactic information. In
other words, we would like to exploit different aspects of the dependency tree
and compare the net advantage that is obtained by these feature types.

To the best of our knowledge, besides us, only [142, 160, 169, 171] have
looked at the impact of syntactic information in addition to lexical features for
the protein interaction extraction task (all in the context of SVMs). Shallow
syntactic features such as POS added to a lexical feature set are reported not to
increase the performance of the classifier in the study of Xiao et al. [171], while
the deep+shallow syntactic- and lexical-feature based classifier [142] showed a
poor performance when the set of lexical features is limited. However, neither of
these studies has looked into how much performance can be obtained by using
only deep syntactic features. The closest to our work is [169] which compares
the performance of an interaction extraction system using only lexical features
versus using syntactic (both shallow and deep) features. The work presented
by Tikk et al. [160], that studies different kernel methods for PPI extraction can
be seen as an indirect expansion of our work. Here, the authors provide an
extensive comparative evaluation of nine kernel-based methods in order to find
the best performing one, but do not focus on studying the contribution of the
different feature types. We highlight the difference with our work at the end of
Section 3.4.

The contribution of this chapter is twofold. First, we perform an extensive
evaluation of a recently published SVM-based approach [87], which was evalu-
ated only on the LLL data set before. We evaluate it on 5 data sets (AIMed [18],
BioInfer [131], HPRD50 [58], LLL [114] and IEPA [41]) that were discussed in
Chapter 2 using cross-validation as well as 10 cross-data set experiments. Sec-
ondly, we compare this approach with stripped down versions which take into
account different feature subsets, and we demonstrate that omitting the lexical
and part of the syntactic features does not significantly change the performance
of the relation extraction method.

In the remainder of this chapter, we first formalize the protein interaction



28 3 Feature analysis for PPI extraction from text

extraction problem as a classification task in Section 3.2, in which sentences
containing protein pairs are represented by dependency trees. In Section 3.3,
we present the various classifiers that we use in this chapter, all of them mod-
ifications of [87], and in Section 3.4 we clarify the relationship with related
methodologies. We continue with a description of our experimental setup and
present the results on the different data sets in Section 3.5. Our final conclu-
sions are presented in Section 3.6.

3.2 Problem statement

Whereas the general PPI extraction task is concerned with finding all interac-
tions among proteins in a given text, several assumptions are usually made to
simplify it. The first assumption is that the extraction task is restricted to binary
interactions, i.e., exactly two proteins are involved in the interaction. The sec-
ond assumption is that the interaction is assumed to be fully expressed in one
sentence, i.e., interactions which are described across several sentences are not
considered. The final assumption is that the interaction extraction task is eval-
uated separately from the protein name recognition task. Named entity recog-
nition (NER) is another area of text mining, which is usually performed and
evaluated separately, thus it is generally assumed that interaction extraction is
performed on a text with annotated protein names (e.g., [19, 50, 58, 84]). We
further refer to this problem as the protein-protein interaction detection (PPID)
subtask of the PPI task.

Let us consider the following sentence containing 4 protein names.

Example 1 “In the shaA1 mutant, sigma(H)2-dependent expression of spo0A3

and spoVG4 at an early stage of sporulation was sensitive to external NaCl.”

This sentence contains 6 protein pairs: shaA-sigma(H), shaA-spo0A, shaA-
spoVG, sigma(H)-spo0A, sigma(H)-spoVG, and spo0A-spoVG. A protein pair is a
positive instance if the original sentence expresses an interaction between mem-
bers of this pair, and a negative instance if they just co-occur in the sentence.
In the example above, there are two positive instances, sigma(H)-spo0A and
sigma(H)-spoVG while the other 4 instances are negative. As such, the task of
protein interaction extraction can be treated as a classification problem, to be
solved by learning a suitable decision function that can distinguish between the
positive and the negative instances.

In particular, we need to choose a formal protein pair representation and



3.2 Problem statement 29

Figure 3.2.1: Dependency tree of the sentence from Example 2.

a machine learning algorithm. The protein pair representation should include
information from the sentence that can be used to distinguish between positive
and negative instances. The type of information (features) used, depends on the
machine learning methods employed, the available tools and the researcher’s
strategy. Although feature selection for interaction extraction has received lit-
tle attention [143], several researchers [47, 169] report that applying feature
selection techniques significantly speeds up the processing and in some cases
increases the performance of the classifier. The difference between the feature
selection problem and the focus of our study in this chapter is explained in detail
in Section 3.4.

Let us now turn to the representation of a potential interaction. We use a
dependency tree because in this representation it is easy to include and exclude
different types of features. A dependency tree represents the syntactic structure
of a sentence. The nodes of the tree are the words of the sentence, and the edges
represent dependencies between words. In a typed dependency tree, edges are
labeled with syntactic roles. The dependency tree for the following sentence is
depicted in Figure 3.2.1.

Example 2 “Sigma F1 activity regulates the processing of sigma E2 within the
mother cell compartment.”

The most relevant part of the dependency tree to collect information about
the relation between the two proteins is the subtree corresponding to the short-
est path between these proteins, which is shown in Figure 3.2.2a. This is a
lexicalized path as it contains the words that appear in the sentence connected



30 3 Feature analysis for PPI extraction from text

regulates

NE1 NE2

activity processing

(a) Lexical path

ns
ub
j dobj

VBZ

NE1 NE2

NN NN

(b) POS path

ns
ub
j dobj

ns
ub
j dobj

(c) Syntactic path

Figure 3.2.2: Lexical, POS and dependency shortest paths for the pair Sigma F -
Sigma E from the sentence in Example 2.

NE1

expression

NE2 NE1

NN

NE2

(a) Lexical path (b) POS path (c) Syntactic path

Figure 3.2.3: Lexical, POS and dependency shortest paths for the sentence in
Example 1.

with syntactic relationships. From this path, we can learn that ‘NE1 activity’ is a
noun phrase that is the subject of the verb ‘regulates’ and that the object of this
verb is ‘processing’, which, in turn, is related to NE2 by means of the preposi-
tion ‘of’. Both protein names are replaced with dummy strings NE1 and NE2

in order to generalize the interaction pattern.
Moreover, we introduce a POS dependency tree, where nodes represent part-

of-speech information instead of the corresponding words. The shortest path
between the two proteins in the POS dependency tree for Example 2 is repre-
sented in Figure 3.2.2b. Note that a dependency tree contains lexical as well as
deep syntactic information, while a POS dependency tree contains shallow and
deep syntactic information.

We can obtain a syntactic shortest path by only retaining the syntactic roles
in either the shortest path or the POS shortest path, as shown in Figure 3.2.2c.
Figure 3.2.3 depicts similar information for the sentence from Example 1.

We refer to these paths as (shortest path) dependency trees. Such a depen-
dency tree can be either a lexical dependency tree (like Figure 3.2.3a or 3.2.2a),
a POS dependency tree (like Figure 3.2.3b or 3.2.2b) or a syntactic dependency



3.3 SVM with structured kernels 31

tree (like Figure 3.2.3c or 3.2.2c). We will use t = (N,E,L) to denote a depen-
dency tree t consisting of a set of nodes N , a set of edges E, and a function L
that maps nodes and edges to their labels. If there is an edge from node n1 to
node n2, we denote this edge by e(n1, n2).

3.3 SVM with structured kernels

Our feature impact study uses support vector machines (SVM) approach which
are explained in Chapter 2. SVM view input data as vectors in a high-dimensional
space and attempt to induce a maximum margin hyperplane that separates
training data points belonging to different classes.

In order to build a syntactic kernel, the dependency tree space has to be
kernelized. Each data point of our data set is a dependency tree corresponding
to a part of the sentence in which the protein pair occurs. Such a tree can be
represented as a vector in the m-dimensional space made up by all subtrees in
the data set [29]. In particular, assuming that all unique subtrees in the data
set are enumerated from 1 to m, the function hs(t), s ∈ {1, . . . ,m}, is defined
as the number of occurrences of subtree s in tree t. Then, each tree t can
be represented by a vector φ(t) = {h1(t), h2(t), ..., hm(t)}. A kernel function
measuring the similarity between trees t1 and t2 based on whether they contain
the same subtrees, is defined as the inner product

K(t1, t2) = 〈φ(t1), φ(t2)〉 =
∑
s

hs(t1) · hs(t2) (3.1)

The underlying vector representation is very rich since the number of subtrees
of a tree grows exponentially with the number of nodes in the tree, which makes
the computation of the inner product intractable. However, the right hand side
of (3.1) can be interpreted as the number of common subtrees of t1 and t2, and
can be computed efficiently [29].

Kim et al. [87] follow this procedure in developing a SVM classifier based
on a kernel KFULL that is a combination of a kernel KLEX comparing lexical
dependency trees, with a kernel KPOS comparing POS dependency trees. Note
that, because of their construction, KLEX relies on lexical and deep syntactic
information, while KPOS is based on shallow and deep syntactic features. We
propose a way in which the kernel KFULL can be stripped down to a kernel
KS , that uses only deep syntactic features. We compare the performance of all
these kernels in Section 3.5. For ease of explanation, in this section we follow



32 3 Feature analysis for PPI extraction from text

a bottom-up approach by first defining KS , and then extending it to the full
system [87].

The trees from Figures 3.2.2a and 3.2.3a have no subtrees in common, while
when we switch to a shallow or pure syntactic representation in Figures 3.2.3b,c
and 3.2.2b,c, we have one common fragment, namely the subtree consisting
only of the edge prep of and its adjacent nodes. In general, we use a recursive
formula to compute the number of common subtrees between dependency trees
t1 and t2. This formula relies on the notion of common child pairs of node n1 in
t1 and node n2 in t2, i.e., the set of pairs of nodes that have parents n1 and n2

respectively, and that are connected to these parents by the same type of edge.
When traversing down the trees in search of common subtrees, these are the
nodes at which we want to continue our exploration.

Definition 3.1. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be dependency
trees. For n1 ∈ N1 and n2 ∈ N2, the set of common child pairs is defined
as Com(n1, n2) = {(x, y)|(x, y) ∈ N1 × N2, e(n1, x) ∈ E1, e(n2, y) ∈ E2,
L1(e(n1, x)) = L2(e(n2, y))}.

Definition 3.2. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be dependency trees.
For n1 ∈ N1 and n2 ∈ N2, the number of common subtrees rooted at n1 and n2 is
defined as

Cm(n1, n2) =
{

0 if Com(n1, n2) = ∅,∏
(x,y)∈Com(n1,n2)

(Cm(x, y) + 2)− 1 otherwise.

The recursive formula reflects the fact that a new common subtree rooted
at n1 and n2 can be found either by picking 1 of the Cm(x, y) subtrees or by
adding the x/y nodes, or just by staying as is (therefore +2). 1 is subtracted
from the whole result to exclude the combination with the tree consisting of the
n1/n2 node only.

Example 3 Let t1 and t2 be the dependency trees from Figure 3.2.3a and 3.2.2a
respectively. Com(n1, n2) is the empty set for all node pairs with exception of
Com(processing, expression) = {(NE2, NE2)}. Hence

Cm(processing, expression) = (Cm(NE2, NE2) + 2)− 1 = 1

while Cm(n1, n2) = 0 for all other node pairs. This means that there is only one
common subtree between t1 and t2, rooted at the processing, expression nodes
and ending at NE2.



3.3 SVM with structured kernels 33

Note that the calculation above of the number of common subtrees disre-
gards node labels, i.e., it treats dependency trees as they are shown in Figure
3.2.3c and Figure 3.2.2c. Using Definition 3.2 we are now able to define a ker-
nel KS that looks only at deep syntactic information. It computes the similarity
between syntactic dependency trees as the number of grammatical structures
that they have in common.

Definition 3.3. The kernel function KS is defined as

KS(t1, t2) =
∑

n1∈N1,n2∈N2

Cm(n1, n2) (3.2)

for syntactic dependency trees t1 = (N1, E1, l1) and t2 = (N2, E2, l2).

Example 4 Let t1 and t2 be the syntactic dependency trees from Figure 3.2.2c
and Figure 3.2.3c respectively. Since |N1| = 5 and |N2| = 3, the summation
in the right hand side of (3.2) consists of 15 terms. In Example 3, we already
established that all of these terms are 0 with the exception of one term that
equals 1. Hence KS(t1, t2) = 1.

To arrive at kernels that consider additional lexical and/or shallow syntactic
information, we need to extend Definition 3.1 to look at the labels of nodes.

Definition 3.4. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be dependency trees.
For n1 ∈ N1 and n2 ∈ N2, the set of common child pairs, taking into account the
labels of the nodes, is defined as Comlab(n1, n2) = {(x, y)|(x, y) ∈ Com(n1, n2),
L1(n1) = L2(n2), L1(x) = L2(y)}.

In this case and further in the section function L maps words in the tree
nodes to corresponding lemmas eliminating the differences arising from differ-
ent word forms. The superscript “lab” refers to the fact that the labels of the
nodes are taken into account. The appearance of Com(n1, n2) in the definition
of Comlab(n1, n2) illustrates that the latter builds on the former. Furthermore,
it holds that

Comlab(n1, n2) ⊆ Com(n1, n2)

indicating that using syntactic trees leads to a more general approach (more
nodes are explored when traversing down the trees in search for common sub-
trees).

The number Cmlab(n1, n2) of common subtrees rooted at n1 and n2, can
now be defined in a recursive manner entirely analogous to Definition 3.2,



34 3 Feature analysis for PPI extraction from text

however relying on Comlab(n1, n2) instead of on Com(n1, n2). Since they have
different labels at the nodes, the value of Cmlab(n1, n2) might be different de-
pending on whether a lexical dependency tree or a POS dependency tree is used.
In both cases, it holds that

Cmlab(n1, n2) ≤ Cm(n1, n2) (3.3)

Example 5 Let t1 and t2 be the lexical dependency trees from Figure 3.2.2a and
Figure 3.2.3a respectively. For all node pairs it holds that Comlab(n1, n2) = ∅
and Cmlab(n1, n2) = 0.

Example 6 Let t1 and t2 be the POS dependency trees from Figure 3.2.2b and
Figure 3.2.3b respectively. It holds that Comlab(NN,NN) = {(NE2, NE2)}
and Cmlab(NN,NN) = 1, while for all other node pairs Comlab(n1, n2) = ∅
and Cmlab(n1, n2) = 0.

The potentially different behaviour of Cmlab(n1, n2) on lexical dependency
trees and POS dependency trees gives rise to the definitions of the kernel func-
tions KLEX and KPOS respectively. Both of them consider the tree structure
when computing the similarity between trees, i.e., they both rely on deep syn-
tactic information. In addition, KLEX takes the actual words of the sentence
into account (lexical information) whileKPOS considers POS (shallow syntactic
information).

Definition 3.5 ([29]). The kernel function KLEX is defined as

KLEX(t1, t2) =
∑

n1∈N1,n2∈N2

Cmlab(n1, n2) (3.4)

for lexical dependency trees t1 and t2.

Definition 3.6 ([87]). The kernel function KPOS is defined as

KPOS(t1, t2) =
∑

n1∈N1,n2∈N2

Cmlab(n1, n2)

for POS dependency trees t1 and t2.

Finally, Kim et al. [87] combine KLEX and KPOS into a kernel KFULL that
takes into account lexical, shallow and deep syntactic information.



3.4 Related work 35

Notation Formula Used information
KS(t1, t2)

∑
n1∈N1,n2∈N2

Cm(n1, n2) syntactic
KLEX(t1, t2)

∑
n1∈N1,n2∈N2

Cmlab(n1, n2) lexical
KPOS(t1, t2)

∑
n1∈N1,n2∈N2

Cmlab(n1, n2) shallow
KFULL(t1, t2) KLEX +KFULL lexical + shallow

Table 3.1: Summary of kernels introduced in Section 3.3.

Definition 3.7 ([87]). The kernel KFULL is defined as

KFULL(t1, t2) = KLEX(t1, t2) +KPOS(tPOS1 , tPOS2 ) (3.5)

for dependency trees t1 and t2 and their corresponding POS dependency trees tPOS1

and tPOS2 .

Notice that KLEX is a refinement of KS in the sense that all the information
used by KS is also used in the same way by KLEX . As a consequence, KFULL

is also a refinement of KS , enriching the deep syntactic information of KS by
lexical information (through KLEX) as well as shallow syntactic information
(through KPOS).

Example 7 Let t1 and t2 be the lexical dependency trees from Figure 3.2.2a
and Figure 3.2.3a respectively, and tPOS1 and tPOS2 their corresponding POS
dependency trees from Figure 3.2.2b and Figure 3.2.3b respectively. One can
verify that

KLEX(t1, t2) = 0

and

KPOS(tPOS1 , tPOS2 ) = 1

henceKFULL(t1, t2) = 1. Notice that although the trees do not show any resem-
blance on the lexical level, their similarity at the more general syntactic level is
picked up by KPOS . In Example 4, we found that their syntactic similarity is
also already reflected by KS .

A short summary of the kernels described above is provided in Table 3.1.



36 3 Feature analysis for PPI extraction from text

Method Information Algorithm Data sets
[19] lexical SVM AIMed
[66] lexical SVM AIMed

shallow LLL
[171] lexical Maximum entropy IEPA

shallow
deep

[172] lexical SVM AIMed
shallow

deep
[84] lexical BayesNet AIMed

deep NaiveBayes
K-nearest neighbour

Ensembles
[58] lexical Hand-built rules HPRD50

shallow LLL
deep

[50] shallow C4.5 AIMed
deep BayesNet LLL

[142] lexical SVM AIMed
deep

[1] lexical Sparse RLS AIMed
shallow BioInfer

deep HPRD50
IEPA
LLL

[87] lexical SVM LLL
shallow

deep
[160] lexical SVM AIMed

shallow BioInfer
deep HPRD50

IEPA
LLL

[169] lexical SVM AIMed
shallow HPRD50

deep IEPA
LLL

Table 3.2: Overview of features and machine learning algorithms used by PPID
extraction approaches.



3.4 Related work 37

3.4 Related work

In Table 3.2, an overview of recent approaches to interaction extraction is pre-
sented along with the characteristics that are relevant in the context of our
work. Below we describe these approaches in more detail.

Many approaches exploit the idea of using explicit feature vectors to repre-
sent a possible interaction. In particular, approaches based on various combina-
tions of lexical features are very popular in the relation extraction community.

Bunescu et al. [19] propose to use the sentence context, obtained by split-
ting a sentence into three parts, i.e. before the first protein, between the two
proteins, and after the second protein, and they combine them in predefined
ways to obtain 3 types of patterns. Using this information, the authors pro-
pose a kernel that naturally emerges from the subsequence kernel described by
Lodhi et al. [96] and obtain good results on the AIMed corpus. Giuliano et
al. [66] start from the same pattern types, but treat them as bags-of-words, and
define a global context kernel. Moreover, they define a local context kernel by
taking a window of predefined size around the candidate proteins and adding
more shallow linguistic information, such as the lemma of the word and some
orthographic features. The resulting kernel function in this case is a linear com-
bination of the global context kernel and the local context kernel. Their method
obtains state of the art results on the AIMed and LLL data sets.

Some researchers focus on sentence structure, i.e., on the parse and depen-
dency tree, to construct a feature vector. Xiao et al. [171] study the impact of
features, starting with simple words end finishing with parse and dependency
trees on the IEPA corpus, and they obtain a remarkable 90.9% F-score using a
maximum entropy model with lexical and shallow syntactic features. Yakushiji
et al. [172] suggest that full parsing information could be very useful in the bi-
ology domain because the distance between entities in a sentence can be much
longer than in general-purpose domains. Therefore, they propose a method that
builds complex predicate-argument structures (PAS), and apply an SVM with
an RBF kernel to these patterns to obtain a classifier model. They evaluate this
model on the AIMed data set and obtain a 57.3% F-score. Katrenko et al. [84],
also focus on sentence structure and use dependency trees to extract the local
contexts of the protein names, the root verbs of the sentence, and the parent
of the protein nodes in the dependency tree. Classification is further done by
BayesNet and ensemble classifiers. Another approach proposed by Fundel et
al. [58], where a manually constructed set of rules uses information from the
dependency trees and a predefined vocabulary to classify possible interaction
instances. This approach is evaluated on the HPRD50 and LLL data sets, as well



38 3 Feature analysis for PPI extraction from text

as on a large-scale data set consisting of 1 million MEDLINE abstracts. The
extracted set of interactions contained 40% of the HPRD interaction database.

In our own previous work [50], we proposed to abstract from lexical fea-
tures and use only syntactic information to obtain a more general classifier that
would be suitable for different data sets without retraining. We used features
extracted from dependency and parse trees to build decision trees and BayesNet
classifiers, and obtained promising results using AIMed as test data and LLL as
training data.

Another group of approaches does not rely on an explicit feature vector but
rather makes use of structured data as input information for the classifier. This
means that structured features, such as dependency trees, can be used as an
input to the classifier without any additional transformations, thus reducing the
risk of losing useful information. One particular way to use structured features
that we adhere to in the current chapter, is to exploit structured kernels.

The approaches [1, 87, 142, 160] are closest to our work as they also use
structured kernels. Structured or convolution kernels were introduced by Haus-
sler [73], who proposed how to compute a kernel for structured objects. This
work gave rise to many tree kernel methods in the text mining domain. Al-
though this idea is quite popular in general text mining, it has not been widely
explored in the interaction extraction literature.

Saetre et al. [142] apply a structured kernel to the protein-protein interac-
tion domain. In this approach, a mix of flat and structured features is used to
calculate the similarity of two protein pairs. The flat part of the feature vector
contains lexical features, while the structured part is a shortest path dependency
tree, referred to as a partial tree. This definition was introduced by Moschitti
[111] who studied different tree partitioning strategies and their impact on tree
kernels for dependency and parse trees. Using these features, Saetre et al. ob-
tain promising results on the AIMed data set, especially in combination with a
rich lexical feature set.

In another very recent approach [1], the authors propose to use the whole
dependency tree to build a classifier. They use a graph kernel that takes into
account all paths in dependency trees, and exploit it with an RLS (regularized
least squares) machine learning method. The experimental evaluation is per-
formed on 5 data sets: AIMed, BioInfer, HPRD50, IEPA and LLL, and for all of
them, the method shows remarkably good results.

Tikk et al. [160] propose the k-band shortest path spectrum kernel (kBSPS),
that uses the concept of v-walks in dependency trees, which is a sequence of
nodes of length l connected with labeled edges. kBSPS is computed on the
shortest path dependency trees but also has the option to extend this path with



3.4 Related work 39

all nodes that lie within k steps in the original dependency tree. To accommo-
date the rich lexical variety of dependency tree nodes, the tolerance degree for
computing the similarity of v-walks is introduced. The tolerance degree varies
for nodes, candidate interaction agents and edge labels and can be adjusted with
the appropriate parameters. The kernel was evaluated on 5 data sets: AIMed,
BioInfer, HPRD50, IEPA and LLL, and has shown the best results for HPRD50
and IEPA. Moreover, the authors provide a comparison of nine kernels on the
five above mentioned data sets. These kernels used shallow linguistic features,
parse and (lexicalized) dependency trees and combinations thereof. Their con-
clusion was that the parse trees are less useful for PPI extraction, while there
is no clear leader among the kernels that use shallow features and dependency
trees.

Collins and Duffy [29] developed a tree kernel that counts the number of
common subtrees, but used it for parsing and not for interaction extraction.
Kim et al. [87] apply this kernel to a dependency tree and to a modified depen-
dency tree with POS instead of words, and propose a combined kernel, which
is a sum of these two. This approach obtains state of the art performance on
the LLL data set. In the same paper they describe a flat feature vector-based
approach that also utilizes dependency trees to extract graph walks as features.
In their work [169], the authors study the relative feature importance for the
latter approach by using the gain ratio feature selection technique. Moreover,
they study the impact of different feature types as well by comparing the per-
formance of methods that use syntactic features versus methods that use lexical
features. Our approach is also based on Kim’s work, however it is different from
the aforementioned in several aspects. First of all, our approach is different
from the feature selection task, because we focus on the type of the information
(lexical, POS, grammatical relations) rather than on separate features. In other
words, we do not use feature selection techniques to discriminate useful indi-
vidual features, but fit an existing relation extraction method to consider only
a subset of features of a certain type, and study the impact of this feature class.
Secondly, when we study the impact of different feature types we do not rely on
a flat vector, but on a structured representation. Moreover, we use an additional
data set and define more extensive experimental setups in order to perform a
complete study of different use cases.

A recent interesting work of studying feature importance for the biological
event extraction problem (which is different from the PPID task, but shares the
same principles) is presented by Van Landeghem et al. [168]. Here, the authors
build a feature vector by combining words, v-walks of dependency trees, certain
trigrams and manually constructed keyword features and consecutively apply



40 3 Feature analysis for PPI extraction from text

an ensemble feature selection method to reduce the number of features that
are actually used for classification. The authors observe that syntactic features
are highly ranked by the feature selection method, while lexical features and
trigrams carry less event-related information.

3.5 Results

3.5.1 Experimental setup

In our experiments used the adaptation of SVMLight [83] which is able to han-
dle tree-based input [111]. We build the 4 SVM classifiers that use the KFULL

kernel, KPOS kernel, KS kernel and KLEX kernel. Furthermore, we organized
3 experimental setups. The first setup uses 10-fold cross-validation (CV), where
each data set is split into 10 parts, of which 9 are used for training and one
for testing. Despite the fact that this is the most common way of evaluation, it
should be used carefully. Since we work on instance level, it can be the case that
two nearly identical instances from the same sentence fall into a train and a test
fold at the same time. This ‘leak’ can cause a performance boost [142, 169].

In the second setup (4-1) we join 4 data sets to form a training set, and use
the remaining one as a test set. Compared to CV, this alternative experimental
setup is closer to a real world situation where information for processing is
obtained from different sources and the lexicon is not as uniform as in one
precompiled data set.

In the third setup (1-4), we use 1 data set as training set and the remaining
4 as test sets, thus making another step to the real world. Typically, biologists
have a very limited amount of annotated data compared to the size of available
unlabeled information. We try to model this situation by making the training
set much smaller than the test set.

For each experimental setup we run all classifiers with all data set combina-
tions. An analysis of the results obtained is provided in the following section.

3.5.2 Discussion

Table 3.3 and Figures 3.5.1 - 3.5.4 give an overview of the evaluation results
for all experimental setups. In line with our evaluation metric review in Section
2.4.3, we use recall-precision and ROC curves to analyze the obtained experi-
mental results. On the basis of these results, we can make the interesting obser-
vation that the performance of different kernels is roughly comparable, while



3.5 Results 41

the amount of information they use is very different. In the analysis below
we will omit the +syntactic postfix when talking about the lexical+syntactic
(KLEX), shallow+syntactic (KPOS) and lexical+shallow+syntactic (KFULL)
kernels.



42
3

Fe
a

tu
re

a
n

a
lysis

fo
rPPIe

xtra
c

tio
n

fro
m

te
xt

Data set Exp. Synt kernel Sh+Synt kernel Lex+Synt kernel Lex+Sh+Synt kernel
F-score AUC F-score AUC F-score AUC F-score AUC

AIMed CV 0.33 0.69 0.37 0.66 0.37 0.67 0.39 0.7
4-1 0.33 0.67 0.35 0.66 0.35 0.68 0.4 0.72
1-4 0.23 0.64 0.24 0.63 0.22 0.61 0.24 0.67

BioInfer CV 0.3 0.69 0.29 0.68 0.29 0.75 0.34 0.75
4-1 0.3 0.69 0.32 0.68 0.25 0.65 0.31 0.7
1-4 0.31 0.68 0.34 0.67 0.26 0.64 0.35 0.7

HPRD50 CV 0.58 0.69 0.59 0.73 0.44 0.72 0.56 0.73
4-1 0.48 0.73 0.48 0.72 0.47 0.75 0.56 0.75
1-4 0.33 0.67 0.31 0.64 0.26 0.63 0.3 0.65

IEPA CV 0.76 0.81 0.71 0.8 0.66 0.7 0.72 0.8
4-1 0.35 0.69 0.32 0.64 0.19 0.56 0.29 0.68
1-4 0.36 0.66 0.33 0.63 0.3 0.55 0.33 0.62

LLL CV 0.74 0.81 0.74 0.76 0.67 0.67 0.76 0.73
4-1 0.43 0.68 0.44 0.71 0.31 0.6 0.39 0.74
1-4 0.37 0.67 0.34 0.63 0.3 0.55 0.33 0.62

Table 3.3: Evaluation results for the experiments on 5 PPI datasets.



3.5 Results 43

Data set CV 4-1 1-4 Most useful types
AIMed Synt Lex Lex Lex

Lex+Sh
BioInfer Lex Lex Lex+Sh Lex

HPRD50 Lex Lex Lex Lex
Lex+Sh

IEPA Lex+Sh Synt Synt Biased to Synt
Lex+Synt

LLL Synt Lex+Sh Synt Synt

Result Not clear Lex+Sh Not clear

Table 3.4: Summary of the information types that provided the best results in
different experimental settings.

Precision plays a particularly important role in the interaction extraction
task, because if the extracted information is processed by a biologist, s/he would
not like the system if it produces too much rubbish. Therefore, we are particu-
larly interested in the left side of the recall-precision charts, where precision is
typically high, although recall may be quite low.

Table 3.3 shows the F-measure results calculated for classifier confidence
threshold 0.5, as well as the AUC values which are not dependent on any thresh-
old. Let us note that the F-measure values could be tuned up, because on most
recall-precision charts precision does not drop significantly after a certain point,
while recall keeps growing. However, this is not the aim of the current research,
thus we leave the task of looking for the optimal operation point aside. Table
3.4 sums up our empirical observations over recall-precision curves provided in
Figures 3.5.1 - 3.5.3 particularly in the area before 0.2-0.3 recall values. For
example, Figure 3.5.1d clearly shows that the lexical kernel performs best for
the recall up to approximately 0.18 in this experimental setting. These empiri-
cal observations serve as the basis for building Table 3.4. The table gives some
insight on how different types of information affect the performance of the re-
lation extraction system. Note that these observations are different from Table
3.3, because typically a 0.5 threshold covers more than 30% of recall. Below
we provide a more detailed analysis of the results shown in Table 3.3 and in
Figures 3.5.1 - 3.5.3.



44 3 Feature analysis for PPI extraction from text

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) LLL 10-fold CV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) BioInfer 10-folds CV

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Test on LLL

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Test on BioInfer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) Train on LLL

0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) Train on BioInfer

Recall

P
re
ci
si
o
n

Syntactic

Lexical+Syntactic

Shallow+Syntactic

Lexical+Shallow+Syntactic

Figure 3.5.1: Recall-precision curves for all experimental setups for LLL and
BioInfer.



3.5 Results 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)IEPA 10-fold CV

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)Test on IEPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b)HPRD50 10-fold CV

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)Test on HPRD50

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e)Train on IEPA

0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f)Train on HPRD50

0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

ci
si

on

Syntactic

Lexical+Syntactic

Shallow+Syntactic

Lexical+Shallow+Syntactic

Figure 3.5.2: Recall-precision curves for all experimental setups for IEPA and
HPRD50.



46 3 Feature analysis for PPI extraction from text

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)AIMed 10-fold CV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)Train on AIMed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b)Test on AIMed

Syntactic

Lexical+Syntactic

Shallow+Syntactic

Lexical+Shallow+Syntactic

P
re

ci
si

on

0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lexical+Shallow+Syntactic

Recall

Figure 3.5.3: Recall-precision curves for all experimental setups for AIMed.



3.5 Results 47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Syntactic kernel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lexical+Syntactic kernel

0.8

0.9

1
Shallow+Lexical+Syntactic kernel

0.8

0.9

1
Shallow+Syntactic kernel

T
ru

e
 p

o
si

ti
v
e

 r
a

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

Train on LLL

Test on LLL

LLL 10-folds CV

Train on BioInfer

Test on BioInfer

BioInfer 10-folds CV

Figure 3.5.4: ROC curves for different classifiers.



48 3 Feature analysis for PPI extraction from text

The cross-validation setup reveals no clear leader for all data sets. For the
LLL data set, the syntactic kernel shows the best performance (Figure 3.5.1a).
This can be explained by the fact that the LLL data set is very small and contains
relatively short hand-picked sentences with a simple syntactic structure. How-
ever, experiments with other data sets show that the lexical kernel gives the best
results for the HPRD50 and BioInfer data sets (Figures 3.5.2b and 3.5.1b). In
the case of BioInfer, this can be explained by the fact that the training set size
is large enough to discriminate useful lexical features. For IEPA, the full kernel,
i.e., lexical+shallow, performs best, while the lexical kernel shows the worst
result (Figure 3.5.2a), and for the AIMed data set the syntactic kernel shows
better results for small recall values (Figure 3.5.3a). The predictive power of
deep syntactic features by themselves is very interesting, given that the lexical
and lexical+shallow methods in theory can take additional advantage of the
lexicon similarity within the same data set that is caused by the nature of the
cross-validation set up.

When we train on 4 data sets and test on 1, the lexical+shallow kernel is
among the best for all but the BioInfer data set. Figure 3.5.1d shows that the
lexical kernel outperforms the others on BioInfer for small recall values. A sig-
nificantly better performance of the lexical kernel for small recall values can be
interpreted as a sign of overfitting, i.e., a classifier with a lexical kernel pro-
duces too specific patterns, which causes a successful classification of several
instances, but is followed by a significant precision drop due to the inability to
generalize over less frequent cases. On the other hand, other classifiers avoid
overfitting and a steep precision drop, but at the cost of missing some very reli-
able patterns. Moreover, the lexical kernel shows a performance similar to the
lexical+shallow kernel for HPRD50 and AIMed (Figures 3.5.2d and 3.5.3b), but
fails on IEPA (Figure 3.5.2c). On the other hand, the syntactic kernel performs
good on the IEPA and LLL data sets (Figures 3.5.2c and 3.5.1c), but is not that
good on others.

Although with the 1-4 experimental setup there is no best kernel either, we
can still observe some interesting patterns. The lexical kernel shows a signif-
icantly better performance for small recall values when trained on the AIMed
and HPRD50 data set (Figures 3.5.3c and 3.5.2f), while the syntactic kernel
performs best on the whole curve when trained on the LLL and IEPA data sets
(Figures 3.5.1c and 3.5.2e). As shown in Figure 3.5.1e, training the classifier
on LLL results in extreme curve shapes caused by the significant difference in
size between the training set and the test data set. The first instances for the
lexical+shallow and the shallow kernels were classified correctly, but further
precision drops dramatically. After the 0.25 recall value, the lexical kernel basi-



3.5 Results 49

cally neglects all positive instances, and the curve shows simply the percentage
of positive instances in the data set. Other kernels perform slightly better and
the syntactic kernel is able to consistently outperform others. This can be ex-
plained by the fact that 80 sentences (the size of the LLL data set) is definitely
not enough to train a classifier. Moreover, it shows that in the case of training
information shortage the syntactic kernel can offer a better solution than others.

The last two experiments illustrate the case when the vocabulary of train
and test data sets differ, which is often the case in the real world. In the former
case the training set is large enough to successfully train the lexical+shallow
kernel, making the difference in the vocabularies not so crucial. However, in
the latter case, when the training set is much smaller than the test set (train on
LLL case on Figure 3.5.1e) we can clearly see the influence of this fact on the
performance difference between syntactic and lexical methods.

From the experiments above we can observe the following trends:

• Lexical and combined methods are able to build better generalizations
(due to large amount of available lexical data) and thus perform better
with large (relative to test) training sets

• Syntactic methods are able to achieve better results than lexical ones when
the training set is small in comparison with the test set

Moreover, there seems to be a correlation between better performing ker-
nels and data sets. For example, the syntactic kernel always obtains good re-
sults on the LLL and IEPA data sets, while the lexical+shallow kernel performs
well for the BioInfer data set. Moreover, the lexical kernel is always on top for
the HPRD50 data set. These observations show that the data set origin and
properties such as annotation strategy, have a strong influence on classifier per-
formance.

Compiling ROC curves for one method on one chart allows us to analyze
the robustness of this method on different data sets. In Figure 3.5.4, each chart
displays ROC curves for one method for all experimental setups. The less spread
the curves are in the ROC space, the more predictable the performance of the
method is. In most cases, the LLL cross-validation setup is out of the trend,
because of its small size and density. Otherwise, the shallow (Figure 3.5.4c)
and syntactic (Figure 3.5.4a) kernels exhibit more or less coherent behaviour
for all setups for the given data sets. The lexical+shallow kernel (Figure 3.5.4d)
shows some spread, but again mostly due to the LLL data set’s based setups, and
the lexical kernel (Figure 3.5.4b) proves to be the most unpredictable.



50 3 Feature analysis for PPI extraction from text

3.6 Conclusion

In this chapter, we have examined different structured kernels with SVM’s to
study the impact of different features on the relation extraction process. We
took four kernels that reflect different degrees of using syntactic and lexical
information and performed three types of experiments to study the behaviour
of these methods under different conditions. We performed our experiments on
five benchmark data sets, being AIMed, BioInfer, IEPA, HPRD50 and LLL.

The most important observation is that by using only grammatical relations
(syntactic kernel) we can obtain a similar performance as with an extended fea-
ture set (lexical kernel). This indicates the relative importance of grammatical
information for the interaction extraction task. Another finding is the correla-
tion between training/test set sizes and the method choice. We observed that
when the training set is much smaller than the test set, then the syntactic kernel
performs better. This might be explained by the fact that there are too few in-
stances to induce useful lexical features, whereas syntactic features require less
instances to produce better results.

When the training set grows, the performance of the full kernel becomes
better, and when the training data set is larger than the test set (which rarely
happens in real life), the full kernel outperforms all other kernels. From the
stability point of view (i.e., the expected performance on unseen data), we can
conclude that the syntactic kernel provides the best results, whereas the lexical
kernel provides the worst results.

We believe that these findings can be helpful in building faster and less com-
plicated classifiers, as well as for choosing a proper kernel according to the data
set at hand.

The question of how different features within one feature type affect the
quality of classification still remains open and represents an interesting direction
for future work.



4 Systems biology and
computer science

4.1 Introduction

One of the ultimate goals of biology in general is being able to understand the
structure of complex living organisms, which would allow explaining an organ-
ism’s development cycles and its responses to the environment. The discipline of
systems biology is pursues this goal by attempting to create in-silico models that
reflect the behaviour of real living organisms [141]. The value of accurate mod-
els is extremely high as they, for example, can predict the influence of a drug
on an organism or provide insights on how organism development could be di-
rected without performing many costly wet lab experiments, but rather using
cheap computational resources. Moreover, such models could provide feedback
for future research directions as they could aid in developing new hypotheses
regarding organism properties.

To build such models, systems biology adopts the holistic viewpoint, as op-
posed to the reductionist viewpoint widely adopted by many scientific fields
including biology itself. The idea of the reductionist approach is in reducing
the complexity of a research subject by dissecting it in parts. Every part then is
analyzed independently to determine its function in the research subject. An il-
lustration to this approach would be the view of cellular biology for most of the
20th century: “genes are transcribed to mRNA, mRNA is translated to proteins,
proteins carry the biological functions; ergo, listing the genes allows us to un-
derstand all characteristics of the organism” [167]. However, scientists realized
that proteins and genes are combined in complex networks that define their
functions in an organism, thus another view on the subject was needed. The
holistic approach takes an opposite position to reductionism by suggesting that



52 4 Systems biology and computer science

different parts of the subject are tightly connected to each other and perform
their function only in connection with other components, thus the only way to
study the subject is to consider it as a whole.

Following this approach, systems biology combines data from disciplines
such as genomics, transcriptomics, proteomics and metabolomics (collectively
known as ‘omics’ data) and tries to build models that assimilate this data using
mathematical frameworks and methods. Recent advances in high-throughput
experimental techniques have led to a rapid growth of experimental results,
however, this data is poorly structured and error prone [148]. Many of the ex-
isting modelling formalisms are not directly applicable to such data, and this
fact gave rise to new approaches aimed at accommodating the large amounts of
available data to build consistent and comprehensive models.

Nevertheless, building all-subsuming models is still beyond the reach of cur-
rent approaches, thus these models still focus on different representation levels.
Metabolic networks modelling is concerned with modelling biochemical reac-
tions where the concentrations of different chemical compounds change over
time, thus modelling formalisms should be capable of representing consump-
tion/production processes [14]. Signaling networks that model pathways or
signal transduction systems are concerned with the events that accompany sig-
nal propagation and response to this signal, not the chemical interactions per
se, thus different modelling approaches are needed in this case [154]. Gene reg-
ulatory networks are again different as genes affect each other indirectly, thus
their activity is defined by interactions with proteins which in turn may call for
specific modelling formalisms [36].

In this chapter we provide an overview of various modelling formalisms that
take different views on the modelling problem and provide solutions to solve it.
In Section 4.2 we explain several general approaches viz. π-calculus, Petri Nets
and Pathway Logic, while in Section 4.3 we focus more specifically on another
approach that is based on Boolean networks as this approach serves as a basis
for our research explained in Chapter 5 and Chapter 6.

4.2 Modelling approaches

According to Fisher & Henzinger [57] the models built to analyze biological
systems can be divided in two camps: mathematical and computational. These
two types provide different insights in the model structure and functions due
to the nature of the modelling language used. Mathematical models typically
present the model as a set of equations. The building block of a mathematical



4.2 Modelling approaches 53

model is a transfer function that describes a relationship between input and
output quantities. The composition of various transfer functions describes a
biological model, which is analyzed by solving these equations.

In computational approaches the model is typically defined as a (possibly
non-deterministic) state machine that defines how a model switches between
certain states. The main difference between mathematical and computational
approaches is that computational methods lend themselves well to computer
simulation as the models themselves describe a set of instructions that should be
executed, while mathematical models require non-trivial approximation meth-
ods in order to simulate the model on a computer.

Mathematical models are represented by various differential equation tech-
niques (see e.g. [38]). Such models require specific mathematical skills and
a lot of empirical data (kinetic data) to build, which makes their construction
costly and time-consuming. Kinetic data is difficult to measure and it depends
on the environmental conditions which are often not normalized in the experi-
ments and thus it is impossible to combine it from different experiments. Note
that the large amount of omics data available from high-throughput techniques
is typically qualitative data that describes concentrations and expression lev-
els, while kinetic data deals with exact quantitative values [148]. While be-
ing extremely useful in cases when such information is available, mathematical
models are difficult to apply when some data is missing or when the system is
iteratively expanded with new components.

Computational modelling on the other hand, provides more flexibility as
some approaches make it possible to build models solely from qualitative data,
while others allow for a mix of qualitative and quantitative data. Many of these
approaches are rooted in computer science formalisms and were adapted to
accommodate the needs of systems biology. In the remainder of this section we
give an overview of the major computational methods for modelling biological
systems.

4.2.1 π-calculus

One large group of computational modelling approaches, many of which are
described by Ciocchetta and Hillston [27], is based on process algebras [107]
that were initially developed to build and analyze concurrent computer systems.
The distinguishing features of process algebras are formality - the system can
be described using a formal and unambiguous framework, compositionality -
the system can be built by defining the interactions between explicitly defined
components (compartments) and abstraction - the ability to build high-level



54 4 Systems biology and computer science

systems that may disregard the internal behaviour of comprised components.
Regev et al. [138] developed an approach for π-calculus, a process algebra
formalism, that defines the semantics of π-calculus elements in the context of
biological modelling. In this approach, protein molecules and their domains are
represented as processes and interactions are represented as communication
channels between these processes.

Let us consider a toy example describing the cyclin and cdk binding process
in the cell cycle to get a highlight of syntactic features provided by π-calculus.
Cyclin activates the cdk molecule by binding to it, and activated cdk may trigger
other interactions or may fall back to an inactive state if the bound cyclin is
degraded. We start our π-calculus program with the following statement

(1) CELL CY CLE ::= CY CLIN |CDK

Which defines a main process CELL CY CLE and two components of this pro-
cess, viz. CY CLIN and CDK which are the molecular compounds represented
as processes themselves. A vertical bar means that these two processes may be
executed in parallel, i.e. that both cyclin and cdk may exist and act at the same
time. The following statement

(2) CY CLIN ::= (new bb)BINDING SITE

defines the behaviour of CY CLIN , by saying that it is defined by the behaviour
of another process BINDING SITE. The expression in brackets defines the
communication channel for the subprocess BINDING SITE. Further in the
program BINDING SITE may use the channel bb to send messages to other
processes. In the next statement

(3) BINDING SITE ::= bind < bb > .CY CLIN BOUND

the process BINDING SITE is allowed to send a message over the channel
bind. The overline over the channel name means that the message in brackets is
being sent. The content of this message is the name of another communication
channel bb that was defined in statement (2). Another process, that listens
to channel bind will receive the name of channel bb and will be able to use
it for private communication with process BINDING SITE. This concept
is called name-passing and it allows a user to dynamically define connections
between processes, thus changing the network structure over time. Dot (.)
defines a sequential execution of the statement, thus after sending the message
BINDING SITE will behave as the CY CLIN BOUND process (not shown



4.2 Modelling approaches 55

in this program). The next statement

(4) CDK ::= bind(bb).CDK ACTIV E

defines the behaviour of another component of CELL CY CLE, CDK. It reads
the message from channel bind (which is the name of another channel as we
defined in (3)) and then behaves as CDK ACTIV E. Essentially, rules (3) and
(4) model the binding process of cyclin and cdk, where the binding is presented
by the fact that CY CLIN BOUND and CDK ACTIV E now share a commu-
nication channel bb. The next statements

(5) CDK ACTIV E ::= INACTCDH1 +NEWCDK

(6) INACTCDH1 ::= cdh1r.CDK ACTIV E
(7) NEWCDK ::= degc.CDK

define the further behaviour of CDK ACTIV E. It can proceed in two mutually
exclusive ways, which is denoted by ‘+’. One option is to repress the activity
of cdh1 (the process itself is not shown) by sending an (empty) message over
channel cdh1r and then returning to the initial state (rule (6)). Another option
is that cyclin subunits degrade when a message over channel degc is received
(rule (7)). The part that sends this message is not shown here. When the
cyclin molecule degrades, the cdk molecule returns to its inactive state which
is reflected in the last part of rule (7). From this state its behaviour is again
defined by rule (4).

The above example provides a purely qualitative way to model protein inter-
actions. To build more fine-grained models, π-calculus was extended to stochas-
tic π-calculus [125] that incorporates interaction rates in the model. π-calculus
and stochastic π-calculus were applied to model a number of biological net-
works as described by several authors [34, 93, 124].

The π-calculus description language provides a great toolbox to model many
aspects of actual biochemical systems such as parallel execution, modularity,
compositionality. π-calculus provides means to execute the model and observe
its evolution over time, however it provides little support for reasoning other-
wise, i.e. it is not clear how reachability of a state (the set of states that lead to
a given state) and prediction can be checked and/or explained.

4.2.2 Petri Nets

Another set of approaches to model biological networks derived from the con-
current systems modelling domain is based on Petri Nets [113, 122]. An early



56 4 Systems biology and computer science

Figure 4.2.1: An example of a Petri net and its evolution over time

attempt to apply Petri Nets to model biological networks was described by
Reddy et al. [137]. Here the authors defined how the elements of Petri Nets
can be mapped to biological entities and processes and explored the properties
of Petri Nets that are useful to analyze the behaviour of interaction networks.

Petri Nets are a formalism to model and analyze concurrent discrete event
systems. Informally, a Petri net is defined as a directed bipartite graph that
contains two types of nodes: places and transitions. Weighted directed edges
are used to connect places to transitions and transitions to places. Tokens can
be assigned to places, and the combination of tokens in places, called marking,
describes the state of a Petri net. Every transition has a set of input and output
nodes, and is said to be enabled if the input nodes contain a number of tokens
that is greater than or equal to the weight of the corresponding edge. If a
transition is enabled, it can fire by taking tokens from input nodes and placing
them to the output nodes. The number of tokens that are taken and placed is
defined by the weight of the corresponding edge.

Example 1 Consider the network depicted in Figure 4.2.1 on the left. This
is a Petri net with places N1, N2, N3, N4, N5, one enabled transition R1 and
one disabled transition R2. The initial marking of this network is [2, 2, 0, 1, 0].
After the transition R1 is fired, the tokens were consumed from the places N1
and N2 and one token is placed in the place N3, enabling transition R2. This
transition has an input from place N4 denoted by a dashed line, which means
that the transition does not remove the token from that place. After firingR2 the
network arrives to the rightmost state in Figure 4.2.1, where no more transitions
are allowed.



4.2 Modelling approaches 57

Reddy et al. [137] model an oxidative pentose phosphate pathway and the
main glycolytic pathway of the erythrocyte cell by representing chemical com-
pounds as places and interactions between them as transitions in a Petri net.
Tokens represent the concentration of every compound in an abstract way. The
model was then analyzed using Petri Nets analysis techniques that proved to be
useful for biological networks. These techniques include structural reduction,
boundedness checking and liveness. Structural reduction is a method to ‘col-
lapse’ certain parts of a Petri net into smaller parts without altering the global
network behaviour. This method may be useful to abstract from certain network
components, which structure is not yet well studied. Boundedness checking is
another technique that does not depend on any marking. This technique ana-
lyzes whether the number of tokens in a node is bounded by a finite number,
thus allowing to detect the possibility of uncontrolled accumulation of a certain
compound. Liveness detects the reachability of the transitions in a network,
and can be used to determine deadlocks that prevent a certain reaction from
completion.

A recent overview of Petri Net-based modelling for biology have been done
by Chaouiya [22]. The authors discuss different extensions of the Petri Net
formalism such as Coloured Petri Nets that were used to simplify modelling
of genetic networks [24] and Stochastic Petri Nets that were used to model
uncertainty in biological models (see e.g., [67]). The relations between Petri
Nets and pi-calculus were discussed by several authors [20, 40, 110] where the
translation of different fragments of π-calculus into Petri Nets is proposed.

4.2.3 Pathway Logic

Another interesting approach to model biological networks was proposed by
Eker et al. [45, 46] and is called Pathway Logic. A very good introduction to
Pathway Logic is presented by Talcott [157]. This approach stems from rewrit-
ing logic [105] - a logical formalism designed to represent concurrent systems.
In rewriting logic, states are represented as elements of certain types and the
transitions between the states are represented by rewrite rules. A user can de-
fine his/her own types such as proteins, genes, cell locations, etc., and define
elements of this type. A rewrite rule is of the form t → t′ if c where t, t′ are
patterns represented as sets of elements (possibly with variables) and c is the
condition for rule execution. If the condition c is satisfied, the rule can be ap-
plied, which means that the part of the system state that matches the pattern t
is rewritten with the pattern t′. A system can be executed by iteratively applying



58 4 Systems biology and computer science

rewriting rules until the desired state is reached, or until no more rules match
the current state.

Pathway Logic is implemented in the Maude1 language that provides a for-
mal specification for the state and rule description. The description of elements
and rules comprise a knowledge base that captures the semantics of a certain bi-
ological system. The knowledge base description may use variables to e.g. rep-
resent a family of proteins that may interact with some specific protein, and
thus it provides an abstract way of representing information. To actually reason
about a biological network, a specialized tool called Pathway Logic Assistant
(PLA) is used. This tool transforms the representation in a knowledge base to
an intermediate knowledge base that can be transformed to Petri Nets. This
representation instantiates the knowledge base variables with values, but also
allows for graphical model representation. As the derived network can be very
large, PLA supports queries to specify the parts of the network that are of inter-
est for biologists. These queries can be of three types: goals, avoids and hides.
Goals specify the state that should be reached in the network, avoids specify the
states that should not be encountered during the network execution and hides
specify the rules (reactions) that should not be fired during the network execu-
tion. Once the queries are issued, PLA computes the relevant subnetwork of the
original network and model checking is employed to assess whether the goal is
reachable in this subnetwork. Other properties of the derived subnetwork can
be analyzed using the Petri Nets techniques described above. Pathway Logic has
been used to model different biological systems, see e.g. [161, 156].

4.3 Boolean networks

The approaches described above provide very fine-grained model description
capabilities, which can be used to build detailed and precise models and ob-
tain informative predictions. On the other hand, the amount of available infor-
mation does not always allow a biologists to build such detailed models, thus
sometimes it is necessary to use coarser-grained modelling tools to analyze the
system. In the following section we describe boolean networks that can be used
for this purpose.

1http://maude.cs.uiuc.edu



4.3 Boolean networks 59

4.3.1 General definitions

Boolean networks are one of the first formalisms employed to study gene reg-
ulatory networks and were proposed by Kauffman [85]. A boolean network
captures interactions between genes and proteins (further referred to as ‘enti-
ties’) in the form of a directed graph G = (V,E) with V a set of nodes and
E a set of edges. The nodes represent entities while the edges represent the
influence of one entity on another. At any given time, a node is in one of two
states: either it is active, denoted by 1, or it is not active, denoted by 0 (hence,
the name Boolean networks). The state of a regulatory network at any given
time is defined in terms of the states of its nodes.

Definition 4.1 (Network state). Let G = (V,E) be a graph representing a regu-
latory network. Then a mapping S : V → {0, 1}, that maps every entity in V to a
state in {0, 1}, is called a network state.

Every node may have input nodes that are determined by the inbound edges,
and output nodes that are determined by the outbound edges of the node. For
every node in the network a deterministic transition function can be defined
that determines the next state of the node depending on the node’s inputs. The
network can switch from one state to another by applying such update functions
on its nodes. The transition function can be represented as a boolean function
(as e.g. in Figure 4.3.1), although different representations are also possible
as discussed later in this section. For the purpose of this work we consider a
network transition function that is merely a combination of transition functions
on the nodes. Other transition functions are possible in case of e.g. completely
asynchronous network where only one node is updated at a time.

Definition 4.2 (Transition function). A function f(S) = S′ that maps a network
state S to another network state S′ is called a transition function.

To analyse the dynamics of Boolean networks, discrete time is usually con-
sidered, i.e. there is an external ‘clock’ that consequently iterates over the values
1, 2, . . . At every time step, a transition function is applied to the network which
causes a change of the network state at the next time step. The network evolu-
tion over time is called a trajectory and is formally described below.

Definition 4.3 (Trajectory). A sequence T of network states S0, f(S0), f(f(S0)) . . .
is called a trajectory of the network.

For notational convenience we use Si to denote the ith element of the tra-
jectory, i.e. the state that is obtained after applying f to some initial state S0 i
times.



60 4 Systems biology and computer science

Figure 4.3.1: A transition function representation example that is equivalent to
the boolean equation X4 = X1 ∨ (X2 ∧X3)

Due to the deterministic nature of the network, at most after 2|V | steps the
network will visit a previously visited state and either will stay in this state, or
start to loop through a set of visited states. Such states are called attractors or
steady states and are defined below.

Definition 4.4 (Steady state, steady cycle). A state S of a network is called a
steady state if f(S) = S. A subsequence Sm . . . Sn(m < n) of a trajectory is called
a steady cycle if f(Sn) = Sm. The set of trajectories that lead to a given steady
state or cycle is called a basin of attraction.

A number of studies applied this approach to model regulatory networks,
for example [3, 2, 49, 70]. Moreover, translations of Boolean networks to other
formalisms were studied, e.g. Maurin et al. [100] discussed the translation of
Boolean networks to π-calculus and Chaouiya et al. [23, 24] described rewriting
Boolean networks in Petri Nets.

4.3.2 Random Boolean Networks

In the late 1960s Kauffman proposed to study Random Boolean Networks (RBN)
in order to understand the behaviour of gene regulatory networks [85]. At that
time little was known about the structure of real gene regulatory networks,
thus using random networks was a reasonable choice. A RBN is a boolean
network that is characterized by the average connectivity K of the nodes (how
many input edges has a node in the network on average) and the set of boolean
functions that are allowed to determine the transition function (certain boolean
functions such as tautology may be disallowed). The connections between the
nodes and the boolean functions are assigned at random and the behaviour of



4.3 Boolean networks 61

the system is studied through computational simulations. This analysis revealed
a surprising behaviour of these networks that depends on the parameter K.
With K ≤ 2 the network shows ordered behaviour, which means that nodes
in the network change their state relatively infrequently and stable cycles are
short, while when K > 2 the network exhibits chaotic behaviour when nodes
change their state very often, and stable cycles have a length exponential in
the number of nodes in the network. This approach, although being abstract
and not backed by any biological data, provided useful insights in how gene
regulatory networks are organized and provided a basis for a research domain
that still attracts a lot of attention (see e.g. [4], [149]).

4.3.3 Generalized boolean networks

Another approach that involves Boolean networks for regulatory network anal-
ysis was proposed by Thomas & Kaufman [159]. This approach extends the no-
tion of Boolean networks to Generalized boolean networks, where a node can
take more than two states to better approximate the concentrations of chem-
ical compounds. This generalization better assimilate the observed data and
consequently obtain more realistic simulation results. Moreover, the study of
particular network patterns, called feedback loops, was performed [153, 159],
where it was shown that the analysis of these loops helps to analyze network
dynamics. This approach was applied to model regulatory networks, see for
example [103, 158].

4.3.4 Threshold boolean networks

Threshold networks are a subset of Boolean networks [140]. In these networks
the transition function on the node is defined as the sum of input signals on the
node. To define these networks, let us introduce the notion of network marking.

Definition 4.5 (Network marking). Let G = (V,E) be a graph representing a
regulatory network. Then a mapping M : V 2 → {−1, 0, 1}, that maps every pair
of nodes to {−1, 0, 1}, is called a network marking.

Intuitively, given the pair of nodes 〈v1, v2〉, a negative marking denotes the
existence of the suppression edge between v1 and v2, a positive marking denotes
the activation edge between v1 and v2 and 0 denotes the absence of the edge.
The transition function for the node can then be defined as follows



62 4 Systems biology and computer science

Figure 4.3.2: Threshold boolean network execution. Green node denotes active
state, red node denotes inactive state

St+1(i) =


1

∑|V |
j=1M(j, i)St(j) + h > 0,

0
∑|V |
j=1M(j, i)St(j) + h < 0,

St(i)
∑|V |
j=1M(j, i)St(j) + h = 0,

(4.1)

where St+1(i), St(j) are states of node i at time point t + 1, and of node j at
time point t correspondingly, j and i are the nodes of the network, and h is a
threshold parameter. By setting h = 0 we obtain an intuitive interpretation of a
regulatory network where a gene is activated if it receives a positive input and
inhibited if it receives a negative input.

Example 2 An example of threshold boolean network and its evolution over
time is depicted in Figure 4.3.2. The network contains two nodes a and b, and
a activates b while b inhibits a thus forming a negative feedback loop. In its
initial state a is active and b is inactive, thus according to the function (4.1) the
state of a does not change and b becomes active at the next time step. In the
following step, a becomes inhibited because b is active and it has an inhibition
edge to a.

4.4 Conclusion

In the last decade biological network modelling attracted a lot of attention from
the theoretical computer science field. As we discussed above, there are many
attempts to adopt existing modelling frameworks to the domain of biological
modelling. However, there is still no general agreement on the tools that suit
the needs for any particular modelling task. Some approaches, such as Petri
Nets, are best suited for modelling metabolic networks since they provide a nat-



4.4 Conclusion 63

ural representation for production/consumption processes, while others, such
as Boolean networks, are more suitable for gene regulatory network modelling,
since gene states are easily approximated by boolean states. For different net-
works a different level of details can be derived from experimental data and
from the literature, which makes approaches such as Pathway Logic too compli-
cated to study models where e.g. no compound localization is provided and the
amount of information about the interactions is limited.

On the other hand, Boolean networks provide an extremely simple abstrac-
tion that allow a biologist to construct a model using a relatively small amount
of information. The drawback of Boolean networks is their perturbation-observation
nature, i.e. the model acts as a black box, and no means to explain the behaviour
of the model itself are provided. Another problem of this approach is that the
model itself may contain crucial information in an implicit way, i.e. it may be
difficult to reproduce the behaviour of the model without investigating implic-
itly presented features such as thresholds in the case of threshold networks.

Another problem that is common for all approaches above is that it is not
clear how easy it is to integrate new information in the model, and whether it
can be done in a (semi) automatic way, thus leveraging the model construction
with data and text mining techniques that extract gene and protein interactions
from the otherwise unused data.

In the following chapter we aim to address these issues and propose a formal
framework that on one hand proposes a clear and comprehensive description
of Boolean networks, while on the other hand provides means for their analysis
and provides a trajectory query mechanism. Moreover, the framework that we
propose offers the possibility of a modular representation which means that it
can be easily extended with the information that comes from external sources
in a convenient way.



5
Modelling
time-dependent
systems with Answer
Set Programming

5.1 Introduction

When modelling biological networks it is often desirable to have a highly con-
figurable system where concepts such as gene, interaction, positive regulation,
etc., can be defined globally in the system so that they should not be redefined
for every interaction in the model. On the other hand, it is extremely difficult to
describe every possible type of interaction that would suit every particular case
in advance. A biological network modelling tool thus should provide enough
flexibility to model new interactions while being abstract enough to allow easy
manipulation of its building blocks.

Declarative languages provide a possible solution to this problem as they
provide a mechanism to abstract away from the actual procedural implemen-
tation of the interplay between entities and interactions. These languages fo-
cus on the declarative level of expressing our knowledge about genes, proteins
and interactions. Information about the entities and interactions between them
is represented as a knowledge base, and the network modelling is performed
through reasoning over this knowledge base.

Initially, declarative languages were implemented based on classical logic.
However, since classical logic is monotonic, which means that conclusions ob-
tained from a knowledge base remain to hold no matter how this knowledge
base is extended later, it was not possible to model situations where conclu-



5.1 Introduction 65

sions may change when we observe a more complete picture. This fact led to
the development of nonmonotonic logics that allow overcoming this problem;
an overview of different approaches have been done by Brewka [16]. One of
the most fruitful achievements in the field was the establishment of answer set
or stable model semantics that gave birth to a new declarative programming
paradigm Answer Set Programming (ASP)[62].

ASP has already been successfully applied to different tasks in the biologi-
cal domain. Ray [134] proposes an ASP-based reasoning system that explains
how a particular biological model can be extended in order to assimilate a new
observation. Another use of ASP was described by Gebser et al. [59] where it
is used to repair biological networks when their structure does not correspond
to the observed data. In this thesis, and more particularly in Chapter 6, we
develop a framework for modelling biological networks in ASP. Our approach
extends the boolean network modelling formalism by the possibility to model
‘meta-interactions’, i.e. the influence of entities on other interactions, not just
on other entities. Moreover, we augment our framework with a flexible query
mechanism that simplifies the analysis of the constructed models.

Time is an important notion in biological network modelling as it is essential
to describe the rules of network evolution. For example, the rule

act(a, T + 1)← act(b, T ).

intuitively says that if b is active at time step T then a should be active at the
next time step as well. A biological network can be described by a set of rules
like that, and by executing these rules it can evolve from one state to another.
Eventually, a network will either settle in a steady state, i.e. it will not change its
state at the following time points, or it will oscillate over a set of states, i.e., it
will converge to a steady cycle. Steady states and cycles of a biological network
model often correspond to important states of a modelled living organism, and
thus we are interested in finding these states. However, it is generally not known
how many time steps it takes a network to reach a steady state, i.e., the upper
time bound is unknown. Traditional ASP solving techniques cannot solve this
problem efficiently, as for every new time bound the ASP program should be
solved from scratch, thus repeating the computations for previously observed
time states over and over again.

In this chapter, we develop efficient solving techniques that take a variable
time bound into account. To this end, we introduce a specific class of ASP pro-
grams called Markovian programs. This type of time-dependent programs is
defined in such a way that every next state directly depends only on the pre-
vious state, and does not depend on any of the future states (hence the name



66 5 Modelling time-dependent systems with ASP

Markovian). In Section 5.2 we recall ASP preliminaries, then in Section 5.3 we
formally define time-dependent programs and in Section 5.4 we define Marko-
vian programs, while proposing a method to solve these programs efficiently in
Section 5.5. We explain the difference with other approaches in Section 5.6 and
finally conclude in Section 5.7.

We intentionally keep the description of this formalism decoupled from a
specific biological application to emphasize the general nature of Markovian
programs. Further, in Chapter 6 we illustrate the utility of Markovian programs
in biological network modelling.

5.2 Answer set programming

Answer set programming [62] is a declarative formalism that expresses relations
between truth values of propositions with rules of the form α ← β. Such a
rule intuitively states that whenever β is true, proposition α should be true as
well. The basic building blocks of answer set programs are constants, denoted
by lower-case strings (e.g. a, b), that represent the entities; variables, denoted
by upper-case strings (e.g. X,Y ) that are substituted by constants during the
program grounding stage; and predicates (e.g. protein(a), activates(a,X)) that
represent properties of, or relations between entities.

Answer set programming allows two types of negation: classical negation
denoted by ¬, and negation-as-failure (naf) denoted by not. Classical negation
is used to express the information that we know to be negative, e.g. ¬act(a) says
that a is not active. Negation-as-failure is used to express the lack of knowledge,
e.g. not act(a) says that we have no evidence that a is active, as opposed to the
classical negation.

Formally, answer set programs are built from a signature σ = 〈 γ, υ, π 〉,
where γ is a set of constant symbols, υ is a set of variable symbols, and π =⋃m
i=1 πi(m ∈ N) is the union of sets πi of i-ary predicate symbols. To denote the

arity of a predicate p ∈ πi we use notation p/i. To facilitate the definition of
time-dependent programs, in addition, we define a set of variable expressions ε
containing expressions of the form t′±t′′ where t′ ∈ υ and t′′ ∈ γ. This construct
is introduced to express the number addition and is handled during grounding
as discussed below.

An atom over σ is an object of the form p(t1, . . . , tn), where p ∈ πn and
ti ∈ γ ∪ υ ∪ ε for each i ∈ 1 . . . n. A literal over σ is either an atom, or an atom
preceded by ¬. Naf-literals over σ, denoting negation-as-failure, are of the form
notl, where l is a literal over σ. For a set of literals X, we introduce the notation



5.2 Answer set programming 67

not X = {not l|l ∈ X}. For a literal or a naf-literal l, we use vars(l) to denote
the set of variables contained in l. If vars(l) = ∅ then l is called ground.

In general, a rule is of the form

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln. (5.1)

in which L0, L1, ..., Ln are literals.1 If each Li is ground, it is called a ground
rule. Given a rule r of the form (5.1):
• The left-hand side of the rule is called the head, and defined as head(r) =
L0.

• The right-hand side of the rule is called the body, and defined as bodyr =
{L1, . . . , Lm, not Lm+ 1, . . . , not Ln}.
• The set of all positive literals in the body of the rule is defined as pos(r) =
{L1, . . . , Lm}.
• The set of all literals in the body of the rule preceded with not is defined

as neg(r) = {Lm+1, . . . , Ln}.
• The set of all literals is defined as Lit(r) = {head(r)} ∪ pos(r) ∪ neg(r).
A fact is a rule with an empty body. We usually write these as ‘α.’ instead of

‘α← .’.

Definition 5.1 (Answer set program). A set of rules of the form (5.1) over a
signature σ is called an answer set program, or program for short. Similarly to
the definitions on the rule level, the following shorthand notations are defined for
a program P :

pos(P ) =
⋃
r∈P pos(r) Lit(P ) =

⋃
r∈P Lit(r)

neg(P ) =
⋃
r∈P neg(r) head(P ) =

⋃
r∈P {head(r)}

If all rules in P are ground, it is called a ground program. The process of
grounding constructs a ground program Gnd(P ) from an answer set program P
over a signature σ by replacing each rule r by the set of rules obtained from r
by all possible substitutions of the constants of σ for the variables in r. If any of
the predicate arguments takes on a composite form t′ ± t′′ with t′, t′′ grounded
as numbers, they are substituted with the resulting value.

Example 1 Consider the following program P with signature

1We do not consider constraints of the form← β in our formal language, it can be simulated by
a rule l← not l, β, where l is a literal not occurring in the program.



68 5 Modelling time-dependent systems with ASP

〈{a, b}, {Y }, {protein, act, activates}〉

protein(a).
protein(b).
act(Y ) ← activates(X,Y ), protein(X), protein(Y ).

The grounding of this program will be as follows

protein(a).
protein(b).
act(a) ← activates(a, a), protein(a), protein(a).
act(a) ← activates(b, a), protein(b), protein(a).
act(b) ← activates(a, b), protein(a), protein(b).
act(b) ← activates(b, b), protein(b), protein(b).

Moreover, we use two extra syntactic constructs, first proposed by Simons
[152]: conditional literals and cardinality constraints. Both constructs are only
allowed in the body of a rule. A conditional literal is of the form

p(Xi1 , . . . , Xin) : p1(Xi1) : . . . : pn(Xin)

where {i1, . . . , in} ⊆ {1, . . . , n}. In the grounding phase variables Xi1 , . . . , Xin

are grounded with the range of values defined by the corresponding predicate
pi.

Example 2 Consider the program

p(a).
p(b).
q(c).
w ← p(X) : q(X).

After grounding the program will be as follows

p(a).
p(b).
q(c).
w ← p(a), p(b).



5.2 Answer set programming 69

A cardinality constraint is a construct of the form

B{L1, . . . , Ln, not Ln+1, . . . , not Ln+m}T

where Li are ground literals and B, T ∈ N with B ≤ T . A cardinality constraint
holds with respect to a set of ground literals S if

B ≤ |S ∩ {L1, . . . , Ln}|+ (m− |S ∩ {Ln+1, . . . , Ln+m}|) ≤ T.

This construct was introduced by Simons [152] as an extension of ASP where
the authors define a new semantics for the programs containing it. In Chapter 6
we use this construct, however, we do not consider the extended semantics as it
is shown that cardinality constraints can be expressed by means of the standard
ASP semantics [8], which is described below.

A rule r that does not contain negation-as-failure, i.e. neg(r) = ∅, is called
a simple rule. A program that contains only simple rules is called a simple
program.

To define what it means for a program to be solved, we recall the concepts
of consistency and interpretation. A set of positive ground literals S is said to be
consistent if it does not contain the literals a and ¬a together. An interpretation
of a program P over a signature σ is any consistent set of positive ground literals
I over a signature σ.

Definition 5.2 (Model). An interpretation I is a model of a ground simple rule r
iff pos(r) 6⊆ I ∨ head(r) ∈ I. An interpretation I that is a model of all rules of a
ground simple program P is called a model of P .

Definition 5.3 (Answer set of a simple program). An interpretation I is called a
minimal model or an answer set of a ground simple program P iff I is a model of
P and there is no model K such that K ⊂ I.

Example 3 Consider the rule p← q. The possible models of this rule are {p, q},
{p} and ∅. Indeed, if q is in the model, then p should be in the model by Defini-
tion 5.2; if there is no information on q then we can make any conclusion about
p, which means that p can be present or absent. The minimal model of the rule
is ∅.

The concept of an answer set is extended for programs containing negation-
as-failure as follows. Suppose that an interpretation I is a model of a program
P (with negation-as-failure), and our hypothesis is that I is an answer set of



70 5 Modelling time-dependent systems with ASP

P . Then we first transform P into a simple program P I with respect to the
hypothesis I and solve this program as explained above. More formally,

Definition 5.4 (Gelfond-Lifschitz transformation). [62] Let P be a ground an-
swer set program. For an interpretation I, let P I be the program ( called the reduct
program) obtained from P by deleting (1) all rules that contain a naf-literal notL
with L ∈ I and (2) all the naf-literals from the bodies of the remaining rules, in
other words,

P I = {head(r)← pos(r)|r ∈ P, I ∩ neg(r) = ∅}

Example 4 A program with negation-as-failure can have more than one answer
set. Suppose that we have one seat and two persons p and q, and we want to
assign the seat to a person. We can model this by the following program P

seat(p) ← not seat(q).
seat(q) ← not seat(p).

It has two answer sets S1 = {seat(p)} and S2 = {seat(q)}. Indeed, by ap-
plying the Gelfond-Lifschitz transformation we can obtain the reduct program
PS1 consisting of the only rule seat(p) ← . The second rule is removed in the
first step of the transformation, and the body of the first rule is removed in the
second step. PS1 is a naf-free program, and has a unique answer set {seat(p)}.
This answer set coincides with our hypothesis S1, which means that it is an an-
swer set of the initial program P . One can verify in a similar way that S2 is an
answer set too.

Definition 5.5 (Answer set). An interpretation I is an answer set of a ground
program P iff it is an answer set of the reduct program P I .

In the remainder, we denote the set of all answer sets of a program P as
AS(P).

5.3 Time-dependent programs

The number of ASP applications is growing fast (we refer to Chapter 6 for the
in-depth discussion on the examples in the domain of biology). Some of these
approaches require an adaptation of the general-purpose solving process to their



5.3 Time-dependent programs 71

specific needs to allow for faster answer set computation. One domain of ASP
applications uses programs that depend on a time parameter that bounds the
size of a solution. In this section, we define these programs formally and pro-
pose a technique to solve the subset of these programs efficiently in Section
5.4.

In the remainder of this chapter, we designate certain predicates as time-
dependent predicates and denote atoms built with these predicates as

p(t1, . . . , tn−1)@θ

where θ is called a time argument. This is a convenience notation that separates
the (semantic) notion of time from the underlying syntactic representation. This
notation is translated to a conventional atom of the form p(t1, . . . , tn−1, θ) at
grounding time.

Definition 5.6 (Time-dependent program). A time-dependent program P is a
tuple 〈P, τ 〉 over a signature σ = 〈 γ, υ, π 〉, such that P is an answer set program
over σ and τ ⊆ π is a set of time-dependent predicates. We denote the set of n-ary
time-dependent predicates as τn. We define the set of free time-dependent literals

FP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,
θ ∈ υ ∪ ε, p ∈ τn

}
and the set of bound time-dependent literals

BP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,
θ ∈ γ, p ∈ τn

}
.

The literals from FP contain a variable or a variable expression as the time ar-
gument, while the literals from BP contain a constant as the time argument.
The set of time-dependent literals of a time-dependent program P is defined as
Lit(P)τ = FP ∪ BP. Furthermore, for l ∈ Lit(P)τ , we use targ(l) to refer to the
time argument θ of l. A time-dependent program P is called well-typed iff

∀r ∈ P · (Lit(P)τ ∩ (pos(r) ∪ neg(r)) 6= ∅)⇒ (head(r) ∈ Lit(P)τ )

Intuitively, if a rule in a well-typed time-dependent program contains a time-
dependent literal in its body, it should contain a time-dependent literal in its
head. In the remainder we will only consider well-typed time-dependent pro-
grams.

Consider e.g. the following time-dependent answer set program, for which
the grounding size depends on the parameter tmax.



72 5 Modelling time-dependent systems with ASP

tmax Answer set
0 A = {r(str), time(0), p(0)}
1 B = {r(str), time(0), p(0), time(1), p(1), q(1)}
2 C = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2)}

D = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2)}
3 E = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),

time(3), p(3), q(3), v(3)}
G = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), w(3)}
F = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), w(3)}
H = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), v(3)}

4 I = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), v(3), time(4), p(4), q(4), v(4)}
J = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), w(3), time(4), p(4), q(4), v(4)}
K = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), w(3), time(4), p(4), q(4), v(4)}
L = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), v(3), time(4), p(4), q(4), v(4)}
M = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), v(3), time(4), p(4), q(4), w(4)}
N = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), w(3), time(4), p(4), q(4), w(4)}
O = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), w(3), time(4), p(4), q(4), w(4)}
Q = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), v(3), time(4), p(4), q(4), w(4)}

Table 5.1: Answer sets of the program from Example 5 for different time bounds



5.3 Time-dependent programs 73

Example 5 Time-dependent program P = 〈P, {v, w, q, p, time}〉 consists of the
following rules:

time(0 . . . tmax).
q@T ← p@(T − 1), time(T ), time(T − 1).
v@T ← q@(T − 1), not w@T, time(T ), time(T − 1).
w@T ← q@(T − 1), not v@T, r(X), time(T ), time(T − 1).
p@T ← time(T ).
r(str).

where time(0 . . . tmax) is a shorthand for the facts time@0, . . . , time@tmax. This
well-typed program describes the behaviour of a system whose properties de-
pend on time. The answer sets for this program change as the time boundary
tmax increases, as illustrated in Table 5.1. When tmax = 0 there is only one
answer set A, for tmax = 1 the unique answer set is B, which is twice the size
of the previous one. For tmax = 2, negation as failure comes into play, result-
ing in two different answer sets C and D. For tmax = 3 there are already four
different answer sets, and this number will double with every next time step.
As this example illustrates, the number of answer sets as well as the size of the
answer sets of a time-dependent program can increase combinatorially in the
time boundary.

An important task when modelling and simulating a time-dependent system
is to find its steady states. Answer set E in Table 5.1 contains a steady state
of the system described by program P , as time, p, q, and v (and no other time-
dependent predicates) belong to E both for time step 2 and 3.

The main problem in finding these steady states is that it is typically not
known in advance at what time steps they occur. Furthermore a system may
converge to several steady states, e.g. in answer sets

E = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), v(3)}

and

G = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), w(3)}

in Table 5.1, we can observe different steady states formed by the underlined
predicates. Alternatively, it may oscillate among several states repeatedly, e.g. a



74 5 Modelling time-dependent systems with ASP

cycle that manifests itself in answer set Q for tmax = 4

Q = {r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), v(3), time(4), p(4), q(4), w(4)}

in Example 5 is composed of states, formed by underlined predicates. When
analyzing a system behaviour, we may want to find all such steady states and
cycles. A brute force approach of estimating a time upper bound and ground-
ing and solving the program w.r.t. that upper bound may lead to a suboptimal
solving time: if the upper bound is estimated too high, the grounded program
is larger than necessary to find the steady states, hence requiring unnecessary
work, and if it is estimated too low, not all steady states are found, meaning the
process needs to be redone for a larger estimate.

Next, we define concepts related to time-dependent programs that will be
useful for devising an efficient solving procedure.

Definition 5.7 (t-grounding of a time-dependent literal). Let P = 〈P, τ 〉 be
a time-dependent program and t ∈ N. The t-grounding of a literal l ∈ Lit(P),
denoted as Gnd(l)t, is obtained as follows: 1) if l ∈ Lit(P)\FP then Gnd(l)t = l;
2) if l ∈ FP then the variable in targ(l) is replaced by t, and in case of a variable
expression the resulting value is calculated. In all cases, the obtained literalGnd(l)t
is subsequently translated to the conventional ASP notation. For a set of literals L,
we define the t-grounding of this set as Gnd(L)t =

⋃
l∈LGnd(l)t, i.e. we take the

pointwise t-grounding of its elements.

Example 6 The 2-grounding of literal l = p(X, a)@(T + 1) is Gnd(l)2 =
p(X, a, 3).

Definition 5.8 (t-grounding of a rule). Let P = 〈P, τ 〉 be a time-dependent
program and t ∈ N. The t-grounding of a rule r ∈ P is defined as

Gnd(r)t = Gnd(head(r))t ← Gnd(pos(r))t, not Gnd(neg(r))t.

Definition 5.9 (tmax-grounding of a time-dependent program). Let P = 〈P, τ 〉
be a time-dependent program and tmax ∈ N. The tmax-grounding of P is defined
as

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t′ ∈ N, t′ ≤ tmax})



5.3 Time-dependent programs 75

Intuitively, to obtain Gnd(P)tmax we instantiate all time-dependent literals
with a set of time points {t′|0 ≤ t′ ≤ tmax} and then ground the resulting
program in the conventional way.

Example 7 Let P = 〈P, {v, w, q, p, time} 〉 where P is the program from Exam-
ple 5. Its 2-grounding Gnd(P)2 is defined as

1 : time(0).
2 : time(1).
3 : time(2).
4 : q(0) ← p(−1), time(0), time(−1).
5 : q(1) ← p(0), time(1), time(0).
6 : q(2) ← p(1), time(2), time(1).
7 : v(0) ← q(−1), not w(0), time(0), time(−1).
8 : v(1) ← q(0), not w(1), time(1), time(0).
9 : v(2) ← q(1), not w(2), time(2), time(1).

10 : w(0) ← q(−1), not v(0), r(str), time(0), time(−1).
11 : w(1) ← q(0), not v(1), r(str), time(1), time(0).
12 : w(2) ← q(1), not v(2), r(str), time(2), time(1).
13 : p(0) ← time(0).
14 : p(1) ← time(1).
15 : p(2) ← time(2).
16 : r(str).

Here we omit the grounded versions of rules that include literals r(0), r(1), r(2)
for conciseness. These rules do not contribute to answer sets anyway, since
these literals are not defined in the program.

Definition 5.10 (State of an answer set). Let P = 〈P, τ 〉 be a time-dependent
program and A be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N.
Furthermore let t ∈ N with t ≤ tmax. The state of A at time point t is defined as

At = {l | l ∈ A, targ(l) = t}

Intuitively, the state of answer set A of Gnd(P)tmax at time point t is the
set of ground time-dependent literals in A that were grounded with t in the
time argument. Two states are called equivalent if the only difference between
literals in these states is in the values of the time points (see Example 10). We
denote state equivalence as At

′
=time A

t′′ .



76 5 Modelling time-dependent systems with ASP

Example 8 Consider the program Gnd(P)2 from Example 7. The answer sets of
this program are C and D as defined in Table 5.1. The states of answer set C at
time points 0, 1 and 2 are C0 = {time(0), p(0)}, C1 = {time(1), p(1), q(1)} and
C2 = {time(2), p(2), q(2), v(2)}.

Definition 5.11 (Trajectory of an answer set). Let P = 〈P, τ 〉 be a time-dependent
program and A an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N.
The trajectory of A is defined as

TA = 〈A0 . . . Atmax 〉

Example 9 The trajectory of answer set C of program Gnd(P)2 from Example
7 is

TC = 〈 {time(0), p(0)}, {time(1), p(1), q(1)}, {time(2), p(2), q(2), v(2)} 〉

Definition 5.12 (Steady state, steady cycle). Let P = 〈P, τ 〉 be a time-dependent
program and A be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N.
The state of A at time point t, with t < tmax, is called a steady state iff At =time

At+1. The sequence 〈Ak 〉t1≤k≤t2 , with t1 ∈ N, t2 ∈ N and t1 < t2 ≤ tmax, is
called a steady cycle iff At1 =time A

t2 .

Note that to define whether a state is a steady state it is enough to check the
next state, because if it does not change in the next step it will not change in the
following steps as well due to the deterministic nature of the network model.

Example 10 The 3-grounding Gnd(P)3 of P = 〈P, {v, w, q, p, time} 〉 where
P is the program from Example 5, has answer sets E,F,G, and H as de-
fined in Table 5.1. The states of answer set E are E0 = {time(0), p(0)},
E1 = {time(1), p(1), q(1)}, E2 = {time(2), p(2), q(2), v(2)}, and finally E3 =
{time(3), p(3), q(3), v(3)}. E2 is a steady state, as E2 =time E

3.

Example 11 The 4-grounding Gnd(P)4 of P = 〈P, {v, w, q, p, time} 〉 where P
is the program from Example 5, has answer sets I, J,K,L,M,N,O and Q as



5.4 Markovian programs 77

defined in Table 5.1. The states of answer set Q are Q0 = {time(0), p(0)}, Q1 =
{time(1), p(1), q(1)}, Q2 = {time(2), p(2), q(2), q(2)}, Q3 = {time(3), p(3), q(3),
v(3)} and Q4 = {time(4), p(4), q(4), w(4)}. Sequence 〈Q2, Q3, Q4〉 is a steady
cycle, as Q2 =time Q

4.

When solving time-dependent programs, one is usually interested in finding
steady states, steady cycles and trajectories leading to these states, as they can
help to verify the model’s correctness and/or provide new hypotheses about the
behaviour of the underlying system. An important problem is that it is in general
impossible to accurately estimate an upper time bound tmax that suffices to find
all steady states. Thus, one should manually adjust the bound and recompute
answer sets over and over, which is very inefficient. In the following section
we narrow down time-dependent programs to Markovian programs and pro-
pose an approach that does not require a time bound estimation for trajectory
computation.

5.4 Markovian programs

In this section we define a subclass of time-dependent programs, called Marko-
vian programs. This type of time-dependent programs is defined in such a way
that every next state directly depends only on the previous state, and does not
depend on any of the future states (hence the name Markovian). This is a rea-
sonable assumption as real-world models are normally unaware of any future
events and make their decisions based on the information directly available.
We illustrate the use of Markovian programs for biological regulatory network
modelling further in Chapter 6.

Recall that steady states and steady cycles for a time-dependent program
P can be found by grounding the program for a manually chosen time up-
per bound tmax (see Definition 5.9), solving the resulting ground program
Gnd(P)tmax to obtain its answer sets, and verifying whether the answer sets
reveal steady states or cycles (see Definition 5.12). The Achilles’ heel in this pro-
cedure is in the manual choice of tmax. Iteratively incrementing it and repeating
the above process until reaching a time point tmax at which a steady state or
cycle is encountered is inefficient, because that would require solving Gnd(P)0,
Gnd(P)1, Gnd(P)2, . . . , Gnd(P)tmax , or, in other words, grounded versions
of the original time-dependent program for time intervals {0, 1}, {0, 1, 2}, . . .,
{0, . . . , tmax}. Instead, we propose to consecutively solve smaller programs for
intervals {0, 1}, {1, 2},. . ., {tmax − 1, tmax}. This approach is more efficient be-



78 5 Modelling time-dependent systems with ASP

cause we ground only for one time step at a time and solve smaller programs in
every iteration. Further in this section we show that by doing so we obtain the
same answer sets as by solving the initial program for interval {0, . . . , tmax}.

Definition 5.13 (Markovian program). A time-dependent program P = 〈P, τ 〉
is called Markovian iff it satisfies the following conditions for every r ∈ P with
head(r) ∈ Lit(P)τ and t ∈ N:

1. targ(head(r)) ∈ γ ∪ υ

2. for all l ∈ Lit(r) ∩ Lit(P)τ it holds that

(a) targ(Gnd(head(r))t) = targ(Gnd(l)t) or

(b) targ(Gnd(head(r))t) = targ(Gnd(l)t) + 1

The first constraint in the definition, which says that the head literal may
contain only a constant or a variable as a time argument, is purely syntacti-
cal and intended to simplify the formal treatment below. Note that we can
do this without loss of generality, as a rule in a time-dependent program with
a head of the form l@T + k can be transformed by subtracting k from every
time argument in the rule. The second constraint essentially says that if the
head of a rule depends on time point t then the time-dependent literals in its
body may depend only on time point t or t − 1, i.e., the current state of the
system only depends on its previous state and does not depend on any earlier
states. As can be seen in the definition, Markovian programs are a proper subset
of time-dependent programs, and all definitions for time-dependent programs
hold for Markovian programs as well. Rules in a Markovian program P can
be divided into two subsets: a program that describes temporal relationships
P τ = {r|r ∈ P,Lit(r) ∩ Lit(P)τ 6= ∅} and a program that describes the rest
of the relationships P e = P \ P τ . Program P e can be interpreted as environ-
mental conditions that are invariant over time. By definition, P e is independent
from the program’s temporal part, thus it can be solved separately to obtain its
answer sets that represent the values of these conditions.

Example 12 Consider Markovian program P as defined in Example 5. Here the
program P τ contains the first five rules, while the program P e contains the last
rule.

Definition 5.14 (Partial temporal grounding). Let P = 〈P, τ 〉 be a Markovian
program and t ∈ N. The partial temporal grounding of P for time point t is



5.4 Markovian programs 79

defined as

Pt = {Gnd(r)t|r ∈ P, head(r) ∈ Lit(P)τ , targ(Gnd(head(r))t) = t}

In other words, the partial temporal grounding for a time point t is the set
of t-grounded rules whose head depends on time point t.

Example 13 The partial temporal grounding of P built in Example 7 for time
point 2 is the program P2 that is defined as follows

3 : time(2).
6 : q(2) ← p(1), time(2), time(1).
9 : v(2) ← q(1), not w(2), time(2), time(1).

12 : w(2) ← q(1), not v(2), r(X), time(2), time(1).
15 : p(2) ← time(2).

Assume that the tmax-grounding Gnd(P)tmax of a Markovian program P has
an answer set A. Once A is known, using Definition 5.10, we can straightfor-
wardly find its states at time points 0, 1, . . . , tmax, i.e., A0, A1, . . . , Atmax . Be-
low we show that it is also possible to find states of an answer set without prior
knowledge of the answer set itself. In particular, the state At of an (unknown)
answer set of Gnd(P)tmax at time point t can be computed based on knowledge
of the state At−1 at time point t − 1, as well as knowledge of an answer set
A−1 of Gnd(P e). This means that from the answer sets of Gnd(P e), the set of
states at time point 0 can be found, and from this the set of states at time point
1, etc. This is done by building P ′t = Gnd(Pt ∪ {l ← .|l ∈ At−1 ∪ A−1}) and
transforming it by replacing literals from At−1 ∪ A−1 with true values, which
is formally defined in Definition 5.15. Solving the resulting (small) program
yields as answer sets the possible states at time point t given the state At−1 and
the environmental conditions A−1.

Definition 5.15 (Partial reduct). Let P be a ground program, I an interpretation
of P and PI = {l ← .|l ∈ I} such that PI ⊆ P and head(P \ PI) ∩ I = ∅. The
partial reduct of P w.r.t. I is the program RI(P ) defined as

RI(P ) = {head(r)← (pos(r) \ I), not neg(r). |r ∈ P\PI , neg(r) ∩ I = ∅}

Intuitively, I is the information we know a priori, but do not want to include
in the answer set of a program P . Partial reduct grounds P with respect to this
knowledge, and remove this prior information before computing answer sets.



80 5 Modelling time-dependent systems with ASP

Example 14 Assume we known that {time(1), p(1), q(1)} is the state at time
point 1 of a (possibly unknown) answer set of program Gnd(P)2 from Example
7. We also know an answer set of P e, namely {r(str)}. Let P2 be the partial
temporal grounding of P for time point 2 as described in Example 13. We
construct the set I = {time(1), p(1), q(1)} ∪ {r(str)} and the program P ′2 =
Gnd(P2 ∪ {l← .|l ∈ I}) as follows:

time(1).
time(2).
p(1).
q(1).
r(str).
q(2) ← p(1), time(2), time(1).
v(2) ← q(1), not w(2), time(2), time(1).
w(2) ← q(1), not v(2), r(str), time(2), time(1).
p(2) ← time(2).

Adding the literals from I as facts to program P2 is necessary in order to ground
the rules in P2 consistently with the full grounding of P. For example, without
adding the literal r(str) ∈ I to P2 it would not be possible to obtain the ground-
ing of rule 12 in this program, because variable X would not be grounded with
constant str in this rule.

The partial reduct RI(P ′2) is then defined as

time(2).
q(2) ← time(2).
v(2) ← not w(2), time(2).
w(2) ← not v(2), time(2).
p(2) ← time(2).

By applying the partial reduct we remove the literals from I that appear posi-
tively in rule bodies as well as the facts that appear as literals in I. The answer
sets of the resulting program are {time(2), p(2), q(2), v(2)} and {time(2), p(2),
q(2), w(2)} which correspond to C2 and D2 with C and D as in Table 5.1.

The theorem below states that instead of computing answer sets of the tmax-
grounding of a Markovian program Gnd(P)tmax directly, we can compute an-
swer sets of smaller programs for every time step 0 ≤ t′ ≤ tmax consecutively
and obtain the same result. This fact has as the important implication that we



5.4 Markovian programs 81

can arrive at answer sets of a Markovian program without considering tmax at
all, which makes possible to impose not only a stable state observation, but ar-
bitrary network state as the termination condition. The technique sketched in
the example above forms the basis for an algorithm for computing steady states
explained in the following section.

Theorem 5.4.1. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be
the tmax-grounding of P for tmax ∈ N, then

AS(Gnd(P)tmax) =

{
tmax⋃
t=−1

Bt
∣∣∣∣ B−1 ∈ AS(P e),
Bt ∈ AS(RB

t−1∪B−1
(P ′t ))

}

with P ′t = Gnd(Pt ∪ {l← .|l ∈ Bt−1 ∪B−1}).

Note that in the definition of P ′t we add facts from Bt−1 and from B−1 to
the partial temporal grounding Pt. These facts are further removed by taking
the partial reduct of P ′t w.r.t Bt−1 ∪ Bt, but this addition is needed to properly
ground Pt. To prove Theorem 5.4.1 we first formulate and prove the following
lemma.

Lemma 5.4.2. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be the
tmax-grounding of P for tmax ∈ N. Let A ∈ AS(Gnd(P)tmax). As usual, let
At ⊆ A denote the state of A at time point t, for t ∈ N with t ≤ tmax, and let
A−1 ⊆ A denote the set of literals from A that are not time dependent. Let Pt be
the partial temporal grounding of P for time point t and

P ′t = Gnd(Pt ∪ {l← .|l ∈ At−1 ∪A−1})

be a ground program obtained from Pt. Then for all t ∈ N with t ≤ tmax

At ∈ AS(RA
t−1∪A−1

(P ′t ))

Proof. According to Definition 5.4 we need to show that At is a minimal model
of

X = {head(r)← pos(r).|r ∈ RA
t−1∪A−1

(P ′t ), A
t ∩ neg(r) = ∅}

Let us first write down some facts we know about the rules ofRA
t−1∪A−1

(P ′t ).
From Definition 5.14 (partial temporal grounding) and Definition 5.15 (partial
reduct) it follows that for every rule r ∈ RAt−1∪A−1

(P ′t ):



82 5 Modelling time-dependent systems with ASP

targ(head(r)) = t (5.2)

pos(r) ∩ (At−1 ∪A−1) = ∅ (5.3)

neg(r) ∩ (At−1 ∪A−1) = ∅ (5.4)

Furthermore, for every rule r ∈ RA
t−1∪A−1

(P ′t ) there is a corresponding rule
r′ ∈ Gnd(P)tmax with

head(r) = head(r′) (5.5)

pos(r) = pos(r′) \ (At−1 ∪A−1) (5.6)

neg(r) = neg(r′) (5.7)

From (5.2) and (5.5) it follows that targ(head(r′)) = t. Then, from Definition
5.13 (Markovian program) it follows that

The literals in the body of r′ depend on time t or t− 1
or are not time dependent at all. (5.8)

Note that, using (5.6) in the second equivalence below,

pos(r) ⊆ At ≡ (∀l)(l ∈ pos(r)⇒ l ∈ At)
≡ (∀l)(l ∈ pos(r′) \ (At−1 ∪A−1)⇒ l ∈ At)
≡ (∀l)(l ∈ pos(r′) ∧ l /∈ At−1 ∪A−1 ⇒ l ∈ At)
≡ (∀l)(l ∈ pos(r′)⇒ l ∈ At−1 ∪A−1 ∨ l ∈ At)
≡ (∀l)(l ∈ pos(r′)⇒ l ∈ At ∪At−1 ∪A−1)
≡ pos(r′) ⊆ At ∪At−1 ∪A−1

from which we can conclude that

pos(r) 6⊆ At ≡ pos(r′) 6⊆ At ∪At−1 ∪A−1 (5.9)

First we show that At is a model of X.
To show that At is a model of X we need to show that all rules of X are

satisfied w.r.t. At, i.e., for every r ∈ RAt−1∪A−1
(P ′t ):

At ∩ neg(r) = ∅ ⇒ pos(r) 6⊆ At ∨ head(r) ∈ At (5.10)



5.4 Markovian programs 83

Below we prove the implication (5.10) for r ∈ RAt−1∪A−1
(P ′t ):

At ∩ neg(r) = ∅
⇒ 〈(5.4)〉

(At ∪At−1 ∪A−1) ∩ neg(r) = ∅
⇒ 〈r′ is the rule from Gnd(P)tmax that corresponds to r; (5.7)〉

(At ∪At−1 ∪A−1) ∩ neg(r′) = ∅
⇒ 〈Definition 5.10 (state of an answer set); (5.8)〉

A ∩ neg(r′) = ∅
⇒ 〈A is an answer set of Gnd(P)tmax〉

pos(r′) 6⊆ A ∨ head(r′) ∈ A
⇒ 〈Definition 5.10 (state of an answer set); (5.5); (5.2)〉

pos(r′) 6⊆ At ∪At−1 ∪A−1 ∨ head(r) ∈ At
⇒ 〈(5.9)〉

pos(r) 6⊆ At ∨ head(r) ∈ At

Thus, At is a model of X.
Next, we show that At is a minimal model of Xt, where Xt is a partial

temporal grounding of X for a time point t. We prove it by contradiction.
Assume there exists a model B of Xt with B ⊂ At. Consider

A′ = A−1 ∪A0 ∪ . . . ∪At−1 ∪B ∪At+1 ∪ . . . ∪Atmax (5.11)

Also keep in mind that , because of Definition 5.10 (state of an answer set),

A = A−1 ∪A0 ∪ . . . ∪At−1 ∪At ∪At+1 ∪ . . . ∪Atmax (5.12)

Thus, A′ ⊂ A. According to Definition 5.4 (Gelfond-Lifschitz reduct):

Gnd(P)Atmax = {head(r′)← pos(r′)|r′ ∈ Gnd(P)tmax , A ∩ neg(r′) = ∅}

where Gnd(P)Atmax is a reduct of Gnd(P)tmax w.r.t. A. If we show that A′ is
a model of reduct Gnd(P)Atmax then A is not a minimal model of this reduct
and thus not an answer set of Gnd(P)tmax , which contradicts the formulation
of the lemma. This would mean that our assumption about the existence of B
is invalid, and hence At is a minimal model of Xt.

To show that A′ is a model of Gnd(P)Atmax we need to show that for every
r′ ∈ Gnd(P)tmax

A ∩ neg(r′) = ∅ ⇒ pos(r′) 6⊆ A′ ∨ head(r′) ∈ A′



84 5 Modelling time-dependent systems with ASP

For rules r′ ∈ Gnd(P)tmax that do not contain time-dependent literals we have

A ∩ neg(r′) = ∅
⇒ 〈A is a model of Gnd(P)tmax〉

pos(r′) 6⊆ A ∨ head(r′) ∈ A
⇒ 〈5.12; r does not contain time-dependent literals〉

pos(r′) 6⊆ A−1 ∨ head(r′) ∈ A−1

⇒ 〈5.11; r does not contain time-dependent literals〉
pos(r′) 6⊆ A′ ∨ head(r′) ∈ A′

For time-dependent rules r′ ∈ Gnd(P)tmax we distinguish between the fol-
lowing two cases:

1. targ(head(r′)) = k with k ∈ {0, 1, . . . , t− 1, t+ 1, . . . , tmax}.

2. targ(head(r′)) = t

Note that A ∩ neg(r′) = ∅ implies (Ak−1 ∪ A−1) ∩ neg(r′) = ∅ for all k ∈
{0, 1, . . . , tmax}, hence the existence of a rule r ∈ RAk−1∪A−1

(P ′k) corresponding
to r′.

Proof for the first case:

A ∩ neg(r′) = ∅
⇒ 〈(5.12)〉

Ak ∩ neg(r′) = ∅
⇒ 〈(5.7); r ∈ RAk−1∪A−1

(P ′k) is the rule that corresponds to r′〉
Ak ∩ neg(r) = ∅

⇒ 〈definition of Xk〉
head(r)← pos(r). ∈ Xk

⇒ 〈Ak is a model of Xk〉
pos(r) 6⊆ Ak ∨ head(r) ∈ Ak

⇒ 〈(5.5); (5.9)〉
pos(r′) 6⊆ (Ak ∪Ak−1 ∪A−1) ∨ head(r′) ∈ Ak

⇒ 〈(5.8); Ak ⊆ A′ since k 6= t〉
pos(r′) 6⊆ A′ ∨ head(r′) ∈ A′



5.4 Markovian programs 85

Proof for the second case:

A ∩ neg(r′) = ∅
⇒ 〈(5.12)〉

At ∩ neg(r′) = ∅
⇒ 〈(5.7); r ∈ RAt−1∪A−1

(P ′t ) is the rule that corresponds to r′〉
At ∩ neg(r) = ∅

⇒ 〈definition of Xt〉
head(r)← pos(r). ∈ Xt

⇒ 〈B is a model of Xt by assumption〉
pos(r) 6⊆ B ∨ head(r) ∈ B

⇒ 〈(5.5); (5.9)〉
pos(r′) 6⊆ (B ∪At−1 ∪A−1) ∨ head(r′) ∈ B

⇒ 〈(5.8); B ⊆ A′〉
pos(r′) 6⊆ A′ ∨ head(r′) ∈ A′

To proceed, we recall the notions related to splitting sets and sequences,
introduced by Lifschitz and Turner [95].

Definition 5.16 (Splitting set). A splitting set for a program P is any set U of
literals such that, for every rule r ∈ P , if head(r) ∩ U 6= ∅ then Lit(r) ⊆ U . The
set of rules r ∈ P such that Lit(r) ⊆ U is denoted as botU (P ), and the set of rules
P \ botU (P ) is denoted as topU (P ).

Definition 5.17 (Partial evaluation). The partial evaluation of a program P with
splitting set U with respect to a set of literals X is the program evalU (P,X) =
{head(r)← pos(r)\U, not (neg(r)\U).|r ∈ P, pos(r)∩U ⊆ X,neg(r)∩U ∩X =
∅}.

Definition 5.18 (Solution). Let U be a splitting set of P . A solution to P with
respect to U is a pair 〈X,Y 〉 of literals such that
• X is an answer set of botU (P )

• Y is an answer set of evalU (topU (P ), X)

Theorem 5.4.3 (Splitting theorem). Let U be a splitting set for a program P . A
set S of literals is an answer set of P iff S = X ∪ Y for some solution 〈X,Y 〉 to P
with respect to U .



86 5 Modelling time-dependent systems with ASP

Example 15 Consider a program P

1 : a ← not b.
2 : b ← c, not a
3 : c.

The set U = {c} splits P such that botU (P ) contains rule 3 and topU (P ) contains
rules 1 and 2. The answer set of botU (P ) is A = {c}. The partial evaluation
of topU (P ) with respect to A is then defined as evalU (P,A) = {a ← not b. b ←
not a}. The answer sets of evalU (P,A) are sets {a} and {b}, and the possible
solutions of P with respect to U are 〈{c}, {a}〉 and 〈{c}, {b}〉, that indeed corre-
spond to the answer sets of P {c, a} and {c, b}.

Further on, we will need another lemma:

Lemma 5.4.4. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be the
tmax-grounding of P for tmax ∈ N. LetGnd(P e) = Gnd(P \P τ ), i.e., the program
that contains all the non time-dependent rules from P . Let A ∈ AS(Gnd(P)tmax)
and let A−1 ⊆ A denote the set of literals from A that are not time-dependent,
then A−1 ∈ AS(Gnd(P e)).

Proof. Let us consider U−1 = Lit(Gnd(P e)). U−1 is a splitting set for program
Gnd(P)tmax by Definition 5.13 (Markovian program) and Definition 5.16 (spli-
iting set). Furthermore, botU−1(Gnd(P)tmax) = Gnd(P e).

According to Theorem 5.4.3 (Splitting theorem) answer set A = X−1 ∪X0

where according to Definition 5.18 (Solution) X−1 ∈ AS(botU−1(Gnd(P)tmax))
and X0 ∈ AS(evalU−1(topU−1(Gnd(P)tmax), X−1)). Note that X0 does not
contain non time-dependent literals, because due to Definition 5.13 (Marko-
vian program) every rule in program evalU−1(topU−1(Gnd(P)tmax), X−1) has
a time-dependent literal as its head. On the other hand, X−1 does not con-
tain time-dependent literals since program botU−1(Gnd(P)tmax) does not con-
tain time-dependent literals. Thus, X−1 = A−1. Since X−1 is an answer set
of botU−1(Gnd(P)tmax) and botU−1(Gnd(P)tmax) = Gnd(P e), this concludes the
proof that A−1 ∈ AS(Gnd(P e))

Corollary 5.1. Let P = 〈P, τ 〉 be a Markovian program andGnd(P e) = Gnd(P \
P τ ). If Gnd(P e) does not have an answer set, then for any tmax ∈ N, Gnd(P)tmax
does not have an answer set either.



5.4 Markovian programs 87

Next, we introduce the notion of ordinals and sequences that is necessary to
introduce the concept of splitting sequences described by Lifschitz and Turner
[95].

The finite ordinals are the nonnegative integers. The first ordinal 0 is defiend
by the empty set, ∅. The second ordinal 1 = {0} = {∅}. The third ordinal
2 = {0, 1} = {∅, {∅}} and so forth. The first infinite ordinal is the set of natural
numbers ω = {0, 1, 2, . . .}. The successor of an ordinal α is α+1 = α∪{α}. The
ordinal other than 0 that is not a successor of any other ordinal is called a limit
ordinal. ω is the first limit ordinal.

A sequence 〈Uα〉α<µ is a family whose index set is an initial segment of or-
dinals {α : α < µ} where µ is the length of the sequence. A sequence is mono-
tone if Uα ⊆ Uβ for α < β and continuous if, for each limit ordinal α < µ,
Uα =

⋃
η<α Uη.

Definition 5.19 (Splitting sequence). A splitting sequence for a program P
is a monotone continuous sequence 〈Uα〉α<µ of splitting sets for P such that⋃
α<µ Uα = Lit(P ).

Definition 5.20 ([95]). Let U = 〈Uα〉α<µ be a splitting sequence for a program
P . A solution to P with respect to U is a sequence 〈Xα〉α<µ of sets of literals such
that
• X0 is an answer set of botU0(P ),

• for any ordinal α such that α+1 < µ, Xα+1 is an answer set of the program
evalUα(botUα+1(P ) \ botUα(P ),

⋃
ν≤αXν),

• for any limit ordinal α < µ, Xα = ∅, and

•
⋃
α≤µXα is consistent

Theorem 5.4.5 (Splitting sequence theorem [95]). Let U = 〈Uα〉α<µ be a
splitting sequence for a program P . A set S of literals is an answer set of P iff
S =

⋃
α<µXα for some solution 〈Xα〉α<µ to P with respect to U .

Example 16 Consider program P for Example 15. A sequence 〈{c}, {c, a}〉 is a
splitting sequence since {c} is an answer set of bot{c}(P ) and {c, a} is an answer
set of eval{c,a}(bot{c,a}(P ) \ bot{c}(P ), {c, a}).

Now we can prove Theorem 5.4.1. Let us repeat the formulation here again:

Theorem 5.4.1. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be



88 5 Modelling time-dependent systems with ASP

the tmax-grounding of P for tmax ∈ N, then

AS(Gnd(P)tmax) =

{
tmax⋃
t=−1

Bt
∣∣∣∣ B−1 ∈ AS(Gnd(P e)),
Bt ∈ AS(RB

t−1∪B−1
(P ′t ))

}

with P ′t = Gnd(Pt ∪ {l← .|l ∈ Bt−1 ∪B−1}).

Proof. Let us denote the right hand side of the formula in the theorem for-
mulation as C. To prove the theorem in the right direction we show that
AS(Gnd(P)tmax) ⊆ C. Consider A ∈ AS(Gnd(P)tmax). Obviously, A = A−1 ∪⋃tmax
t=0 At, where A−1 is an answer set of Gnd(P e) according to Lemma 5.4.4. It

is now sufficient to show that for 0 ≤ t ≤ tmax we haveAt ∈ AS(RA
−1∪At−1

(P ′t )),
which follows immediately from Lemma 5.4.2.

To prove the theorem in the left direction, we show thatC ⊆ AS(Gnd(P)tmax)
using splitting sequences.

Let U−1 = Lit(Gnd(P e)), then by Definition 5.13 (Markovian program) and
Definition 5.16 (splitting set) U−1 is a splitting set for program Gnd(P)tmax .

Let Ut = Lit(Gnd(P)t) with 0 ≤ t ≤ tmax, i.e., the set of literals from P that
is grounded up to time point t. Then by Definition 5.13 (Markovian program)
and Definition 5.16 (splitting set) Ut is a splitting set for Gnd(Gnd(P)tmax).
Note that Ut−1 ⊆ Ut for 0 ≤ t ≤ tmax.

According to Definition 5.13 (Markovian program) botUt(Gnd(P)tmax) in-
cludes all rules r such that head(r) is non time-dependent or targ(head(r)) ≤ t,
and topUt(Gnd(P)tmax) includes all rules r such that targ(head(r)) > t for
0 ≤ t ≤ tmax.

Since Ut′ ⊆ Ut for t′ < t and
tmax⋃
t=−1

Ut = Lit(Gnd(P)tmax) then by Definition

5.19 (splitting sequence) U = 〈Ut〉−1≤t≤tmax is a splitting sequence for program
Gnd(P)tmax .

We now show that for every B ∈ C with B = B−1 ∪ . . . ∪ Bt ∪ . . . Btmax it
holds that 〈Bt〉−1≤t≤tmax is a solution to Gnd(P)tmax w.r.t. U . Using Theorem
5.4.5 it then follows that B is indeed an answer set of Gnd(P)tmax .

In line with Definition 5.20, first we need to show that B−1 is an answer
set of botU−1(Gnd(P)tmax). This holds because botU−1(Gnd(P)tmax) = Gnd(P e)
and, by definition, B−1 ∈ AS(Gnd(P e)).

Next, we need to show that for t ≤ tmax

Bt ∈ AS(evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax),
⋃
t′<t

Bt
′
))



5.5 Discovery of steady states 89

Note that the program botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax) contains
all rules which have t as a time argument in the head, and no other rules.
Therefore, by Definition 5.13 (Markovian program) we can write that

evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax),
⋃
t′<t

Bt
′
) =

evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax), B
−1 ∪Bt−1)

Now, by Definition 5.15 (partial reduct) and Definition 5.17

evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax), B
−1 ∪Bt−1) =

RB
t−1∪B−1

(P ′t )

By definition, Bt ∈ AS(RB
t−1∪B−1

(P ′t )) and hence

Bt ∈ AS(evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)tmax),
⋃
t′<t

Bt
′
))

Next, we need to show that for any t > tmax

AS(evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)t−1),
⋃
t′<t

Bt
′
)) = ∅

Note, that for any > tmax program

evalUt−1(botUt(Gnd(P)tmax) \ botUt−1(Gnd(P)t−1),
⋃
t′<t

Bt
′
)

is empty, as Gnd(P)tmax is grounded only till time point tmax and thus does not
contain any literals that depend on t. Thus, for any t > tmax this program has a
single answer set {∅}.

Finally,
⋃
t≤tmax B

t is consistent because every Bt is consistent for t ≤ tmax

(since it is an answer set), and Bt ∩Bt′ = ∅ for t 6= t′ by Definition 5.10.
We have shown that 〈Bt〉−1≤t≤tmax is a solution to Gnd(P)tmax w.r.t. U

which concludes the proof.

5.5 Discovery of steady states

Assume that we have a Markovian program that models the behaviour of a sys-
tem. The practical question of interest is to find the steady states and cycles



90 5 Modelling time-dependent systems with ASP

observed in the answer sets of an ASP program that models a biological sys-
tem, and all trajectories that lead to these steady states and cycles. To solve
this problem we propose the Temporal Algorithm. This algorithm explores the
space of solutions in a breadth-first search manner. It starts with all possible
combinations of environmental conditions (answer sets of P e), continuously in-
crements the time boundary and computes the answer sets of a program, which
correspond to changing states of a biological model at the current time point.
The algorithm maintains the list of trajectories T that is updated with every
new time step and a list of ‘active’ states A, which the system has reached on
the current time step. Eventually, some trajectories converge to steady states
or cycles, and the states that correspond to the current states of these trajecto-
ries are removed from A so that they are not considered in the following steps.
Eventually, all trajectories will reach steady states or cycles and A will become
empty, which terminates the algorithm. The list of trajectories will contain all
trajectories that have been found by the algorithm, every trajectory finishing
with a steady state or cycle. The pseudocode for this algorithm is shown below.
Require: P = 〈P, τ 〉;{A Markovian program}

1: V = ∅;{The set of visited states}
2: A−1 = List(AS(P e));{The list of sets of initial conditions that will be used

for grounding}
3: n = size(A−1);
4: A = List(A−1[k]|1 ≤ k ≤ n);{The list of sets of current states that are

rooted in the k-th set of initial conditions}
5: T = A−1; {The list of trajectories}
6: t = 0;
7: repeat
8: Obtain the partial temporal grounding Pt of P;
9: for k = 1 to n do

10: A−1 = A−1[k];{Obtain the k-th set of initial conditions}
11: Anew = ∅;
12: {Iterate over the sets of current states rooted in the k-th set of initial

conditions}
13: for all A ∈ A[k] do
14: {Iterate over the current states rooted in the k-th set of initial condi-

tions}
15: for all At−1 ∈ A do
16: P ′t = Gnd(Pt ∪ {l← .|l ∈ At−1 ∪A−1}); {Grounding Pt}
17: S = AS(RA

t−1∪A−1
(P ′t ));{Obtaining states for time point t}



5.5 Discovery of steady states 91

18: for all At ∈ S do
19: Add state At to all trajectories in T that contain At−1

20: if At is not in V then
21: Add state At to the set V of visited states
22: Add state At to the set Anew of states that should be consid-

ered in the following iteration
23: end if
24: end for
25: end for
26: end for
27: A[k] = Anew;
28: end for
29: t = t+ 1;
30: until A is empty or A contains only empty sets
31: return T

Example 17 Let us consider the program from Example 5 and look how the
Temporal Algorithm is applied to this program.
• We initialize V = ∅,A−1 = [{r(str)}],A = [{{r(str)}}] and T = [{r(str)}].

In this case n = 1 since P e has only one answer set.

• After finding the states for time point 0

– A = [{{time(0), p(0)}}]
– T = [{r(str), time(0), p(0)}]
– V = {{time(0), p(0)}}

• After the next step for time point 1

– A = [{{time(1), p(1), q(1)}}]
– T = [{r(str), time(0), p(0), time(1), p(1), q(1)}]
– V = {{time(0), p(0)}, {time(1), p(1), q(1)}}

• After the next step for time point 2

– A = [{{time(2), p(2), q(2), v(2)}, {time(2), p(2), q(2), w(2)}}]
– T = [{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2)},
{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2)}]

– V = {{time(0), p(0)}, {time(1), p(1), q(1)}, {time(2), p(2), q(2), v(2)},
{time(2), p(2), q(2), w(2)}}

• After the next step for time point 3

– A = [∅]



92 5 Modelling time-dependent systems with ASP

– T = [{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), v(3)},
{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), w(3)},
{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), v(2),
time(3), p(3), q(3), w(3)},
{r(str), time(0), p(0), time(1), p(1), q(1), time(2), p(2), q(2), w(2),
time(3), p(3), q(3), v(3)}]

– V = {{time(0), p(0)}, {time(1), p(1), q(1)}, {time(2), p(2), q(2), v(2)},
{time(2), p(2), q(2), w(2)}}

A graphical representation of the algorithm flow and the obtained trajecto-
ries is shown in Figure 5.5.1. Here the expanded execution tree is shown for
every iteration of the outermost loop of the algorithm. Highlighted leaves cor-
respond to the states of the answer set of the Markovian program at time point
t, i.e., to the content of A. In the first three iterations of the outermost loop
new states are discovered, while the fourth iteration (for t = 3) leads only to
already visited states. Every path from the root of the tree to a leaf corresponds
to a trajectory in T . In case when P e has more than one answer set we would
start with a separate tree for every answer set of P e, but these trees may further
have some branches in common. The final tree may be collapsed to represent a
state space of the program as it is shown on the right side of Figure 5.5.1. By
keeping the set of trajectories T and the set of visited states V, this algorithm
is capable to find all steady states and cycles of the modelled network. If the
system arrives again at one of the states that have already been passed (line
19), the state is not included into Anew and thus not considered at following
steps. Using this algorithm we do not need to specify the number of time steps
any more, which solves the problems stated in the beginning of this chapter.

5.6 Related work

In this chapter we have proposed a method to find all steady states of a Marko-
vian program efficiently. However, our approach is not the only way to deal with
the problem. Gebser et al. have recently proposed an incremental program solv-
ing approach and a specially constructed solver iclingo that allows for solving
incremental programs [60]. Even though this solver, when used for the Marko-
vian programs that we introduced in this chapter, terminates as soon as the first



5.6 Related work 93

Figure 5.5.1: An illustration of the Temporal Algorithm execution for the pro-
gram from Example 5



94 5 Modelling time-dependent systems with ASP

steady state is encountered, and hence unlike our approach does not find all
steady states, Gebser et al.’s proposal is relevant to our work. Here we provide
a more detailed description of the incremental program solving approach and
highlight the differences with our proposal.

An incremental program in the sense of [60] includes a special incremental
parameter k and consists of three parts: base, cumulative and volatile. Each
part contains ASP rules that conform to certain restrictions. The base part does
not use the incremental parameter anywhere in the rules; it contains constant
(with respect to k) information. The cumulative part can use parameter k in
the head of rules and parameter (k − n), n ∈ N in the body of rules. This
part accumulates the information that is being generated by the incremental
program during solving. The volatile part, which can be thought of as a query
to the program, can use parameter k, both in the body and in the head of rules.
This part essentially contains constraints imposed on an answer set, and as soon
as these constraints are satisfied, the solving process is terminated as an answer
set is found. During the solving process the base part is grounded only once,
as it does not depend on k. Parameter k is incremented automatically, and for
every value of k the cumulative part is grounded once, while keeping the rules
obtained for previous values of k. In the volatile part, only the rules that are
grounded for the current value of k are considered. For every value of k, the
solver tries to solve the program obtained by merging all three parts together,
and the process terminates as soon as an answer set is found. The advantage
of this approach compared to the usual solving process is that it reduces the
effort of computing the answer set for unknown k. In the common answer set
program solving setting, a user would be forced to compute the grounding for
every k until an answer set is found. This results in multiple groundings of the
base and cumulative part, which is avoided in the incremental setting.

If we regard the incremental parameter k as time, we can simulate a Marko-
vian program P = 〈P, τ 〉 by putting P e in the base part and P τ in the cumula-
tive part. However, implementing the volatile part is not straightforward. Given
the set τ of time-dependent predicates we can write rules to capture steady
states or cycles and define a constraint over the occurrence of such a state or
cycle in the volatile part, as illustrated below.

Example 18 Let P = 〈P, τ 〉 be a Markovian program over a signature σ =
〈 γ, υ, π 〉 and τ = {u, v} where u, v ∈ π are unary time-dependent predicates.
We define an incremental program P ′ from P as explained above, i.e. by putting
P e in the base part of P ′ and P τ in the cumulative part of P ′. The exact contents
of P e and P τ do not matter for the sake of this example. Next, we add the



5.6 Related work 95

following set of rules to the cumulative part of P ′:

int k(0..k − 1).
h(k) ← not u(k), not u(k − T1), not v(k), not v(k − T1), int k(T1).
h(k) ← u(k), u(k − T1), not v(k), not v(k − T1), int k(T1).
h(k) ← v(k), v(k − T1), not u(k), not u(k − T1), int k(T1).
h(k) ← v(k), v(k − T1), u(k), u(k − T1), int k(T1).

In this set of rules we define the termination conditions of the program. As
we have two time-dependent predicates in the program, there are four possible
states: only v or only u is present, both are present, and both are absent. To
check whether a given state produces the steady state or cycle at time point
k we need to iterate through all time points in the past, i.e., from 0 to k − 1
and to check whether this state was observed before. Every state requires a
separate rule that checks the specific combination of predicates for this state, as
illustrated in the program above.

Finally, we initialize the volatile part of P ′ with the rule ← noth(k). The
appearance of h(k) in an answer set of P ′ indicates that a steady state or cycle
is found. The constraint in the volatile part only allows answer sets that contain
h(k).

However, there are two pitfalls associated with the above encoding. First,
the number of rules that needs to be added to the cumulative part grows ex-
ponentially with the number and the arity of time-dependent predicates; recall
that we do not only need all combinations of time-dependent predicates, but
also all their possible groundings. Secondly, the solver terminates as soon as the
first steady state is encountered, and hence does not generate all steady states
of the program. Applying a meta-procedure similar to the Temporal Algorithm
from Section 5.5, i.e., running the incremental program for every possible start-
ing state would provide only a partial solution to this problem, because one
starting state may converge to several steady states, and all but one of these
states will be omitted in the answer set of an incremental program. For these
reasons, the approach we proposed in this chapter is a more suitable candidate
to tackle the steady state search problem in Markovian programs.

Action languages [63], another set of formalisms applicable to solve time-
dependent programs, provide a high-level description language that can be
adopted to model time-dependent systems. However, they suffer from the same
drawback as incremental programs: it is not possible to define a set of con-
straints that allow finding all steady states and cycles. A more elaborated dis-
cussion on action languages is presented in the next chapter.



96 5 Modelling time-dependent systems with ASP

5.7 Conclusions

In this chapter we have introduced time-dependent answer set programs, which
are useful to model systems whose behaviour depends on time. An important
task when modelling such systems is to find their steady states and cycles. Un-
fortunately, it is typically not known in advance at what time steps these steady
states manifest themselves. A brute force approach of estimating a time upper
bound and grounding and solving the program w.r.t. that upper bound may lead
to a bad solving time: if the upper bound’s estimate is too high, the grounded
program is larger than necessary to find the steady states, hence requiring un-
necessary work, and if it is too low, not all steady states (if any) are found and
the process needs to be redone for a larger estimate.

We have proposed an efficient algorithm for solving Markovian programs,
i.e., time-dependent programs for which the next state of the program depends
only on the previous state of the program. This is a reasonable assumption as
real-world models are normally unaware of any future events and make their
decisions based on the information directly available. Instead of solving Marko-
vian programs for some long time interval {0, . . . , tmax} we consecutively solve
smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax − 1, tmax}, which can be
done more efficiently. We have shown that by doing so we obtain the same
answer sets as by solving the initial program for interval {0, . . . , tmax}.



6
Modelling biological
regulatory networks
with Answer Set
Programming

6.1 Introduction

Answer Set Programming (ASP) has applied to various domains ranging from
computer games [90] and tourism [78] to code optimization [32] and space
shuttle diagnosis [7]. In the field of systems biology ASP also finds its place, as
will become clear in this chapter.

ASP is a declarative programming language, i.e., it provides a means to de-
scribe a system using a high-level language and to analyze its behaviour and
properties. Being able to represent a system in an abstract way is a very ap-
pealing feature from the biological perspective. There is a multitude of ways
biological entities may interact in the real world, and it is impossible to cap-
ture every specific aspect of these interactions in a formal model. ASP provides
a theoretically founded approach to abstract away from a specific representa-
tion and to express information in terms of general concepts. Of course, one
should always keep in mind the tradeoff between the level of abstraction and
the actual usefulness of the system – a too abstract representation would not
capture any interesting facts, while too many low-level details may complicate
the system description. As we will show in this chapter, ASP provides a very
good foundation to build such balanced frameworks.

In the last several years there has been an increased interest in using ASP for
biological needs. However, approaches to use ASP for biological modelling do



98 6 Modelling biological regulatory networks with ASP

not provide a framework that describes a semantics for system development,
which means that for each system the whole program has to be built from
scratch and every interaction has to be defined with its own rule. In this chap-
ter we study this problem and propose a unified ASP framework describing a
semantics that can be used to build biological regulatory networks.

Inspired by the boolean network modelling approach, this chapter proposes
an ASP implementation of the Boolean network semantics that is described in
Section 6.4. Moreover, we expand this semantics with new operations that
are impossible to model in Boolean networks such as meta-interactions, or the
influence of one entity on the interaction between two other entities. Previ-
ously created boolean network models can not only be easily represented in
our framework, but also structurally simplified as the richer expressivity of our
framework allows for more concise (and intuitively understandable) represen-
tations.

The main reason for building such network models is to analyze their dy-
namics, i.e., the way systems evolve over time. As we have discussed in Chapter
5, traditional ASP approaches are not efficient to model network dynamics. In
Section 6.5 of this chapter we propose an efficient algorithm to model network
dynamics that is based on the ideas developed in Chapter 5. Additionally, we ex-
tend the capabilities of the proposed framework by providing a way to not only
find the steady states, but also to answer arbitrary queries about the network
states and trajectories.

We start the discussion with Section 6.2 where we describe existing ASP ap-
proaches that leverage biological network models with reasoning capabilities.
Further, in Section 6.3 we informally introduce a new framework to represent
threshold boolean networks with ASP, while in Section 6.4 we define this frame-
work more formally and bridge the connection with the theoretical work pre-
sented in Chapter 5. In Section 6.5 we discuss efficient modelling techniques
and provide the query answering extension for the framework, while in Section
6.6 we describe an evaluation on cell cycle models of budding yeast, of fission
yeast and of mammals, which shows the usefulness of our approach and high-
lights the advantages over standard boolean network representation. Finally,
we conclude the chapter in Section 6.7.

6.2 Related work

In recent years there have been several attempts to employ ASP to build bio-
logical models. One application of ASP in the domain of biology was proposed



6.2 Related work 99

by Ray [134]. In this approach the author describes a system called XHAIL that
takes a background theory B and a set of examples E as an input and provides
a hypothesis H such that B ∪H |= E. In other words, the system makes a hy-
pothesis how a current system B can be extended in order to accommodate the
observations in E. To this end the author develops a theoretical approach that
is based on abductive and inductive logic programming which is then imple-
mented in ASP. [135] describes the application of XHAIL to build and restore a
model of the Aromatic Amino acid pathway of S. cerevisiae after corruption with
respect to given experimental data. The initial model was built manually, and
then different corruption scenarios were evaluated, and in most cases XHAIL
was able to restore the initial model structure.

A different approach that deals with network correction using ASP, was pro-
posed by Gebser et al. [59]. Here the authors consider large biological networks
constructed from experimental data and describe a technique to automatically
repair the networks to assimilate given initial and final observations. The core
of this approach is a Sign Consistency Model (SCM) [151] which represents net-
works in a similar way as threshold boolean networks, described in Section 4.3.
SCM postulates that a node can be repressed (activated) if there is at least one
repression (activation) link in the graph that points to this node. If the initial
and final observations do not conform with a given network, then the network
is repaired to assimilate the observations. The repair function may add an input
edge, change the type of an edge (from inhibition to activation or vice versa) or
activate a node in an initial observation. This approach was evaluated on the
E. coli transcriptional network and has shown very promising results allowing
to repair the network after it had been corrupted in different ways.

XHAIL and the SCM repair model can be crucial for reconstructing a network
built from literature and/or experimental data; however they do not deal with
network dynamics, i.e., they do not consider the question of how the network
state changes over time. Genes and proteins that make up the network influ-
ence each other and change their state in time. Analysis of these changes is an
important task in systems biology. Below, we review two other approaches that
are designed for network dynamics analysis.

These approaches, investigated by several authors [9, 44, 163], are based on
action languages. Action languages, first introduced by Gelfond and Lifschitz
[64], provide an instrument to describe the behaviour of transition systems and
reason about such systems using a high-level language that is internally trans-
lated into ASP. Although the notion of time is not present in the action language
descriptions explicitly, in the underlying encoding a discrete time component is
usually assumed.



100 6 Modelling biological regulatory networks with ASP

The most basic action languageA contains fluents (entities such as genes and
proteins) and actions (such as interactions) and is defined by three components:
a domain description language, an observation language and a query language.
The domain description language is used to describe how the actions change
the state of fluents by means of rules of the form

a causes f if p1, . . . , pn (6.1)

where a is an action and f, p1, . . . , pn are fluent literals. The observation lan-
guage expresses information about the state of fluents by means of rules of the
following form

f after a1, . . . , an (6.2)

initially f (6.3)

where f is a fluent and a1, . . . , an is a sequence of actions. Intuitively, the first
rule says that after executing a given sequence of actions f will hold, while
the second rule is a shorthand of the first rule for the case when the sequence
of actions is empty, i.e., it corresponds to the initial state of the system. The
query language also contains rules of the form (6.2); contrary to the observation
language, in this language they express the goals that we want to evaluate and
are thus translated to ASP in a different way. A number of extensions for this
action language were proposed, some of which were used to describe biological
models.

The first attempt to use action languages for modelling biological systems
was made by Baral et al. [9]. In this paper the authors describe an extension
for the action language A, a language A0

T , that is aimed at expressing biological
events such as triggering or inhibiting an interaction. The query language is
extended to allow prediction, explanation and planning in biological networks.
Prediction queries are used to find out whether a certain fluent is true (a gene
is active) in a certain situation in the future with respect to the given initial
conditions. Explanation queries are used to find out the state of a fluent in
the past, given observations about the current moment. Planning queries are
aimed at finding a sequence of actions from the initial state that would allow
the system to achieve a given query state. The language was implemented in
the BioSigNet system [163]. The system was applied to model the NFκB signal
transduction pathway and to reason about the different aspects of this model.

A subsequent application of action languages to model a high-level sulphur
starvation response pathway of Arabidopsis thaliana was presented in the work



6.2 Related work 101

Figure 6.2.1: An illustration for the action language model

of Dworschack et al. [44]. Here the authors take A0
T and another action lan-

guage C and extend it with the concepts of static casual laws and allowance
rules in order to be able to express the model of interest. Static casual laws
express a relation between fluents that is independent of any particular action,
i.e.,

f if g

where f and g are the fluents.
An allowance rule says that a particular action a can happen, however it is

not forced to happen in the next time step. Similarly to the approach of Baral
et al. [9], prediction, explanation and planning are supported in this language.

These two approaches are similar in nature and provide a means both to
describe the model in a high-level language and to analyze its behaviour and
properties. However, these approaches do not provide a framework that de-
scribes a semantics for model development, which means that for each model
the whole program has to be built from scratch and every interaction has to
be defined with its own rule. In other words, the framework describes only
the description language, and the biologist has to describe every interaction
separately. In the approach we propose further in this chapter we go one step
further, and provide the biologist with a background theory based on a boolean
network model semantics.

Let us consider an example where protein b is activated by a and c and in-
hibited by d (solid lines in Figure 6.2.1). In the threshold boolean network
semantics, if the number of activating links is higher than the number of inhibi-
tion links, then protein b is activated, if it is lower it is inhibited, if it is equal, the
state remains unchanged. To express this with action languages we need two
actions: activating prot b, inhibiting prot b, and the following set of statements:



102 6 Modelling biological regulatory networks with ASP

Figure 6.3.1: Examples of Boolean networks

activating prot b causes b
inhibiting prot b causes ¬b
a,¬d causes activating prot b
c,¬d causes activating prot b
a, c causes activating prot b
d,¬a,¬c causes inhibiting prot b

The number of required rules grows combinatorially with the number of
interactions, and small changes in the network (e.g. adding an extra node e
that inhibits b) may require many changes in the underlying model. In the
following sections we propose a more succinct and modular representation that
overcomes these problems.

6.3 Boolean networks and ASP

As discussed in Chapter 4 many approaches have been proposed to address
the task of biological modelling. Among them, discrete dynamical networks
based on Boolean networks are one of the best established qualitative mod-
elling methods that are widely used by biologists to model protein regulatory
networks (e.g., [3, 35, 103]). The nodes of a boolean network represent protein
molecules and the directed edges represent interactions. Edges can be typed to
represent different kinds of interactions, such as inhibition and activation. For
example, in Figure 6.3.1a, proteins a and b activate each other. When at least
one of the proteins is active at the initial state, the network settles in the state
{act(a),act(b)}, i.e., both proteins will eventually become active.

While liked for their simplicity, dynamical networks have the disadvantage
of not being self-descriptive, i.e., they are built under some background assump-
tions that are not explicitly stated in the network itself. Moreover, dynamical



6.3 Boolean networks and ASP 103

networks provide little support for reasoning about network behaviour. As ar-
gued by Tran [163], reasoning can leverage a biologist’s experience and simplify
tasks of model analysis and observation assimilation.

In this thesis we propose to represent biological regulatory networks by an-
swer set programs. Example 1 introduces our idea and illustrates the notation
we will use throughout the chapter.

Example 1 Program P1, consisting of the rules G1-G6 and S1-S6 below, models
the network in Figure 6.3.1a. Rule labels, preceding the rules and separated
from them by a colon ‘:’, are introduced to refer to a particular rule as well
as to distinguish general rules from specific ones. The specific rules or S-rules
describe the structure of a particular network, in this case S1-S4, and initial
conditions, in this case S5 and S6. The general rules or G-rules describe the
semantics of the network, i.e., what ‘activates’ or ‘inhibits’ means in the context
of our network. Section 6.4 contains more details.

G1 : time(0..2).
G2 : act(Y, T ) ← act(X,T − 1), activates(X,Y, T − 1), T > 0.
G3 : inh(Y, T ) ← act(X,T − 1), inhibits(X,Y, T − 1), T > 0.
G4 : ← act(X,T ), inh(X,T ).
G5 : act(X,T ) ← act(X,T − 1), not inh(X,T ), T > 0.
G6 : inh(X,T ) ← inh(X,T − 1), not act(X,T ), T > 0.
S1 : protein(a).
S2 : protein(b).
S3 : activates(a, b, T ).
S4 : activates(b, a, T ).
S5 : act(a, 0).
S6 : inh(b, 0).

The answer set of P1 is {act(a, 0), inh(b, 0), act(a, 1), act(b, 1), act(a, 2), act(b, 2)}.
Here the predicate act(a, 0) means that protein a is active at time 0, and corre-
spondingly, inh(b, 0) means that protein b is inhibited at time 0. In this answer
set there is no difference between the states at time steps 1 and 2, as both pro-
teins remain active. Hence we conclude that, under the given initial conditions,
the steady state of the system is {act(a), act(b)}. As we will see later, the actual
answer set of the program includes more information that is not relevant to
our task such as the literals built with predicates protein, time, activates and
inhibits. In our answer set representation we omit this information for the sake
of conciseness.



104 6 Modelling biological regulatory networks with ASP

Note that in principle only network specific rules such as rules S1-S6 need to be
redefined for a given regulatory network, while the other rules model general
biological properties. This makes the representation of such networks as answer
set programs intuitively simple, while at the same time the ASP machinery be-
comes available to analyze and predict the behaviour of the described network
at hand.

One of the main advantages of representing regulatory networks by answer
set programs is that all background information can be expressed explicitly in
the program itself. This allows normalizing differently expressed networks with
one standard representation, thus avoiding the ambiguity of different descrip-
tions. Furthermore, the use of ASP eliminates the need for specific network
execution algorithms to retrieve the steady states of the networks. In fact, an-
other main advantage of using ASP is that all supporting tools such as solvers
and grounders are readily available.

6.4 Building a network model in ASP

In this section we set up the framework for describing biological regulatory net-
works as answer set programs. The framework is presented in two steps. First,
we explain the basic set of rules for modelling boolean threshold networks. Sec-
ond, we extend the basic framework with the features that cannot be modelled
by Boolean networks directly. In this way we provide a more elaborate explana-
tion of the rules behind the network as well as reflect the thought process that
led to the final implementation.

In Section 6.4.1, we give a detailed explanation of the S-rules and G-rules
of P1 in Example 1. Next we deal with issues such as conflicts, exceptions and
self-degradation that do not occur in the network in Figure 6.3.1a, but might
manifest themselves in other interaction networks. In Section 6.4.2, we extend
the framework with the ability to model complex interactions that target other
interactions rather than than genes or proteins.

6.4.1 Basic framework

6.4.1.1 Describing entities and their influences

The first step in describing a protein network is to introduce the network struc-
ture, cfr. rules S1-S6 in Example 1. Rules S1 and S2 define the proteins in the



6.4 Building a network model in ASP 105

network, rules S5 and S6 define the initial state of these proteins, while rules
S3 and S4 describe activation interactions between proteins. We add the extra
time parameter T in these predicates to be able to model the dynamical network
structure. Some interactions can be affected by external factors and be present
or absent at different time points.

By themselves these rules (facts) do not model anything; although they de-
fine the connection between proteins, they do not describe the influence of these
connections on the proteins at different time steps. To this end, we introduce
the G-rules.

First of all, rule G1 is merely a shorthand for

time(0). time(1). time(2).

to introduce time steps into the program. Rules G2 and G3 define the actual
semantics of the activation and inhibition concepts.

Rule G4 is a constraint that says that at any time point T a protein X cannot
be both active and inhibited at the same time. Rules G5 and G6 are called inertia
rules, that are introduced to express the fact that at time point T a protein X
keeps the same state as at time point T−1 in case no external influence changes
its state at T .

Once we have described the problem using ASP, the grounder is used to
substitute the variables with all possible constants. The activation rule G2, for
example, says that protein Y will be active at time step T if protein X is active
and there is an activating connection between X and Y at the previous time
step. When grounded, this rule will result in the following rules:

act(b, 1) ← act(a, 0), activates(a, b, 0), 1 > 0.
act(b, 2) ← act(a, 1), activates(a, b, 1), 2 > 0.
act(b, 1) ← act(b, 0), activates(b, b, 0), 1 > 0.
act(b, 2) ← act(b, 1), activates(b, b, 1), 2 > 0.
. . .

In the programs presented in this chapter, we omit some predicates for the
sake of brevity. In the full version of the program every rule that contains vari-
able T would additionally contain the predicate time(T ), and every rule that
contains at least one of the variables X,Y, Z would contain a corresponding
predicate protein(X), protein(Y ), protein(Z) in its body if not explicitly stated
otherwise.

After grounding, the task of an ASP solver is to find an answer set of the
ground program. In our application, an answer set contains a sequence of pro-
tein states for each time point (e.g., Example 1). Therefore, we can retrieve



106 6 Modelling biological regulatory networks with ASP

the steady state of the network with respect to the transition function implicitly
defined by the G-rules by looking at the protein states in an answer set at each
time step. When the protein states in two consequent time steps do not change,
a steady state has been reached. In Example 1, we reach the steady state at time
point 1, because the protein states do not change after this point.

Example 2 If we change rule S4 in program P1 to inhibits(b, a, T )., we obtain
the network from Figure 6.3.1b. The answer set of the resulting program P2 is
{act(a, 0), inh(b, 0), act(a, 1), act(b, 1), inh(a, 2), act(b, 2), inh(a, 3), act(b, 3)} (in
the rest of the chapter we omit from answer sets the predicates that are not
essential for constructing the trajectory, e.g., protein(a), activates(a, b, 0), etc).
Intuitively, this answer set can be explained as follows: all facts are in the an-
swer set by definition, thus the predicates from rules S1-S6 are in the answer
set; rules S3 and S5 trigger a ground version of rule G2 that causes the presence
of act(b, 1); rule G5 causes the presence of predicate act(a, 1); the fact act(b, 1)
that is already in the answer set together with the new version of rule S4 trig-
gers a ground version of rule G3, resulting in inh(a, 2), and rules G5 and G6
result in the other predicates that are in the answer set. From the above we
conclude that the steady state of this network is {inh(a), act(b)}.

6.4.1.2 Resolving conflicts

Rules G2-G4 might fail to work for more complex regulatory networks. Below
we explain why they should be replaced with more refined rules, as well as
supplemented by supporting rules.

Example 3 Let us consider the network in Figure 6.3.1c. This network can be
presented as follows

S1 : protein(a). S4 : activates(c, b, T ). S6 : act(a, 0).
S2 : protein(b). S5 : inhibits(a, b, T ). S7 : act(b, 0).
S3 : protein(c). S8 : act(c, 0).

The program consisting of these facts S1-S8 together with the rules G1-G6 from
Example 1 does not have an answer set under initial conditions S6-S8. Indeed,
S5 together with S6 trigger the rule G3, thus forcing inh(b, 1) to be in the an-
swer set. On the other hand, S4 together with S8 triggers the rule G2, thus
pushing act(b, 1) to the answer set. However, due to constraint G4 these pred-
icates cannot be in the same answer set, thus the program does not have an



6.4 Building a network model in ASP 107

answer set at all.

To resolve this conflict, we implement threshold boolean network behaviour
as explained in Chapter 4: if there are more incoming activation links than
inhibition links, then the protein is active; if there are more inhibition links,
then the protein is inhibited; if their number is equal, then the protein keeps
the previous state. To implement this, we need to adjust the constraint as well
as the activation and inhibition rules. The superscript in the rule labels below
denotes the version of the rules.

G21 : act(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
A− I > 0, T > 0, int(A), int(I).

G31 : inh(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
I −A > 0, T > 0, int(A), int(I).

G7 : int(0..# of prot).

Rules G21 and G31 implement the idea behind the threshold network: we count
the number of activation and inhibition links for every instance and make the
decision based on this count. Literals int(A) and int(I) define A and I to be
integers from 0 to the number of proteins defined in the model as stated in rule
G7. The number of incoming edges to any given node cannot be more than the
number of the nodes in the network. Rule G4 remains untouched. Note, that
when the number of incoming activation and inhibition links is equal, no rules
G21 or G31 are applicable, and the entity remains in the state it was before due
to inertia rules G5 and G6.

The predicates # act/3 and # inh/3 are defined as follows

G8 : # act(Y,A, T ) ← A{act(X,T ) : activates(X,Y, T ) : protein(X)}A,
protein(Y ), int(A).

G9 : # inh(Y, I, T ) ← I{act(X,T ) : inhibits(X,Y, T ) : protein(X)}I,
protein(Y ), int(I).

The rules G8 and G9 count the number of activation and inhibition links that
influence an entity Y in the current state. The concepts of conditional literal and
cardinality constraint are explained in Section 5.2.

Example 4 Let us consider the network with 3 entities a, b and c, where b
and c activate a (i.e. facts activates(b, a, 0) and activates(c, a, 0) are present).
Let us consider the grounding of rule G8 for an entity Y = a for time point



108 6 Modelling biological regulatory networks with ASP

0, with conditions that b is active (i.e. act(b, 0) is present) and c is inhibited
(i.e. inh(c, 0) is present). The rule G8 then can be grounded as follows

# act(a, 0, 0) ← 0{act(b, 0), act(c, 0)}0, protein(a), int(0).
# act(a, 1, 0) ← 1{act(b, 0), act(c, 0)}1, protein(a), int(1).
# act(a, 2, 0) ← 2{act(b, 0), act(c, 0)}2, protein(a), int(2).
# act(a, 3, 0) ← 3{act(b, 0), act(c, 0)}3, protein(a), int(3).

Since, as we said above, act(b, 0) is present in the program as a fact, while
act(c, 0) is not present, the only rule that is satisfied in this case is

# act(a, 1, 0) ← 1{act(b, 0), act(c, 0)}1, protein(a), int(1).

because exactly one literal between brackets is satisfied in the program. Thus,
the number of activation links for entity a in this case is 1.

In this way, we solve the problem of resolving conflicting influence by count-
ing the number of activation and inhibition edges that influence a protein in the
current network state, as shown further in Example 5.

This setup already allows us to model fairly complex interaction networks,
such as the Budding Yeast network [94]. We describe our ASP representation of
this network in Section 6.6.

6.4.1.3 Sensitivity thresholds

Some features still cannot be expressed in this framework. For example, pro-
teins can become active when their inhibitors are not active, even without an
external activation input. Another example is that some proteins can have a
certain ‘tolerance’ to an inhibition/activation influence. For instance, a protein
can become inhibited only if two or more proteins that suppress it are active,
otherwise it is not affected. To address these issues, we introduce the inhibition
and activation thresholds. Let us return to Figure 6.3.1c. Under the current def-
initions, protein b does not change its state when both a and c are active, i.e., if
b is active it remains active. Imagine now that we want to modify the behaviour
of b to change its sensitivity to the activating or inhibiting influence such that
it requires less effort (less activation/inhibition inputs) to change the state of
the protein. This requirement can be implemented in the system by introducing
inhibition/activation thresholds. The compound numeration in the rule labels



6.4 Building a network model in ASP 109

below denotes the supporting rules for the main rule.

G22 : act(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
act th(Y, Th), A− I > Th, T > 0,
int(A), int(I).

G32 : inh(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
inh th(Y, Th), I −A > Th, T > 0,
int(A), int(I).

G10 : act th(X, 0) ← not mod act th(X).
G10.1 : mod act th(X) ← act th(X,Th), Th 6= 0.
G11 : inh th(X, 0) ← not mod inh th(X).

G11.1 : mod inh th(X) ← inh th(X,Th), Th 6= 0.

Rules that do not change are omitted here. We replace G21 and G31 by
G22 and G32 so that now they take into account the possible presence of a
threshold. Rules G10 and G11 set the activation and inhibition threshold of
every protein to 0 in case it was not set explicitly by a special S-rule (G10.1 and
G11.1). If the threshold values are not modified, the G-rules described above
will lead to the same answer sets as the ones in Section 6.4.1.2. Having both
inhibiting and activating thresholds instead of one threshold is not redundant,
since these thresholds do not characterize the ‘on/off’ level of the protein, but
rather the effort that is needed to change its state. The thresholds can be viewed
as tolerance degrees of a protein to a corresponding input. Positive values make
the protein more tolerant and negative ones make it less tolerant. The default
value can be altered by a specific rule as illustrated in Example 6.

Example 5 Let P3 be the answer set program consisting of general rules G1,
G22, G32, G4, G5, G6, G7, G8, G9, G10, G10.1, G11, G11.1 and the spe-
cific rules from Example 3 corresponding to Figure 6.3.1c. The activation and
inhibition thresholds of these proteins are not explicitly defined; hence they
are automatically set to the default value. The answer set of this program
is {act(a,0), act(b,0), act(c,0) act(a,1), act(b,1), act(c,1), act(a,2), act(b,2),
act(c,2), act(a,3), act(b,3), act(c,3)}. The state of protein b does not change
over time since its inhibiting and activating inputs are equal, and its thresholds
for activation and inhibition are both 0. From the answer set we retrieve that
the steady state is {act(a), act(b), act(c)}.

Example 6 For the network in Figure 6.3.1c, let us explicitly set the inhibition



110 6 Modelling biological regulatory networks with ASP

a b c

Figure 6.4.1: An example network with a self-activation node

threshold of b to −1 to indicate that this protein is susceptible to inhibition. In
other words, let P4 be the answer set program containing all the rules from P3

as well as the additional rule S9 inh th(b,−1). The answer set of this program
is {act(a,0), act(b,0), act(c,0), act(a,1), inh(b,1), act(c,1), act(a,2), inh(b,2),
act(c,2), act(a,3), inh(b,3), act(c,3)}. The steady state in this case is {act(a),
inh(b), act(c)}.

6.4.1.4 Self-activation and self-degradation

The phenomena of self-activation and self-degradation can also be modelled
by adjusting activation and inhibition thresholds. Self-activation/degradation
means that a protein is able to change its state when no external influence
is applied. To model this type of interaction, we can follow two paths: use
thresholds or introduce a loop interaction. These two approaches, although
used to model the same phenomenon, exhibit different behaviour.

In the first approach, we set a negative activation (inhibition) threshold on a
protein, then this protein will activate (inhibit) itself even without any external
influence. Consider the following example

Example 7 Let P5 be the answer set program consisting of general rules G1,
G22, G32, G4, G5, G6, G7, G8, G9, G10, G10.1, G11, G11.1 and the following
specific rules corresponding to Figure 6.3.1c

S1 : protein(a). S4 : activates(c, b, T ). S6 : inh(a, 0).
S2 : protein(b). S5 : inhibits(a, b, T ). S7 : inh(b, 0).
S3 : protein(c). S8 : inh(c, 0).
S9 : act th(b,−1).

These rules describe the structure of the network, and reflect the fact that all
proteins are inhibited at the initial time point. Moreover, rule S9 sets the ac-
tivation threshold of b to −1, which indicate that b is susceptible to activation.



6.4 Building a network model in ASP 111

Figure 6.4.2: Node b is inhibited only if both a and c are active

According to rule G22, in this case protein b activates itself when no inhibition
influence is applied, i.e., self-activation takes place. The answer set of pro-
gram P5 is {inh(a,0), inh(b,0), inh(c,0), inh(a,1), act(b,1), inh(c,1), inh(a,2),
act(b,2), inh(c,2), inh(a,3), act(b,3), inh(c,3)}. The steady state in this case is
{inh(a), act(b), inh(c)}.

The second option to model self-activation (self-inhibition) is to change the
network structure and introduce an activation (inhibition) edge that points to a
protein itself, which is probably a more obvious way of modelling self-activation
(self-inhibition). Let us consider the following example

Example 8 Let P ′5 be the answer set program containing the same rules as pro-
gram P5 from Example 7, except rule S9 which is changed to activates(b, b, T ).
In this case the answer set of program P ′5 is {inh(a,0), inh(b,0), inh(c,0), inh(a,1),
inh(b,1), inh(c,1), inh(a,2), inh(b,2), inh(c,2), inh(a,3), inh(b,3), inh(c,3)}. As
one can see, in this case behaviour of the network is different from P5, because
rule S9 does not affect b while b is not active. Rather, it will prevent b from
being inhibited when both a and b are active, like in Example 6.

6.4.1.5 Encoding exceptions

It may be the case that certain interactions in a biological network model do
not conform with the threshold network assumptions and thus cannot be rep-
resented within the framework semantics we have provided above. Let us illus-
trate this with the following example.

Example 9 Consider the network in Figure 6.4.2 where we want b to be in-
hibited only if both a and c are active, but not if only one of them is active.
This behaviour can be easily captured with the following propositional boolean
formula



112 6 Modelling biological regulatory networks with ASP

b = a ∧ c

However, it does not conform to the boolean threshold network semantics
and thus cannot be modelled yet within the framework we have proposed so
far.

In order be able to model arbitrary behaviour in the framework we intro-
duce the notion of an ‘abnormal situation’, or exception. This notion can be
introduced by replacing G22 and G32 by

G23 : act(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1), act th(Y, Th),
not ab(Y, T − 1), A− I > Th, T > 0, int(A), int(I).

G33 : inh(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1), inh th(Y, Th),
not ab(Y, T − 1), I −A > Th, T > 0, int(A), int(I).

We modified these rules to include the exceptional behaviour in the frame-
work by means of a predicate ab/2. Now the state of a gene or protein Y tagged
with predicate ab/2 will not be governed by the framework semantics, and can
be redefined according to the user needs.

Example 10 Consider the situation in Example 9. We build our framework
with rules G1, G23, G33, G4, G5, G6, G7, G8, G9, G10, G10.1, G11, G11.1 and
the following S-rules

S1 : protein(a).
S2 : protein(b).
S3 : protein(c).
S4 : ab(b, T ) ← both active(a, c, T ).
S5 : inh(b, T ) ← both active(a, c, T − 1), T > 0.
S6 : both active(a, c, T ) ← act(a, T ), act(c, T ), T > 0.

Rule S4 says that b should be processed in an exceptional way in case both a
and c are active (as defined in rule S6). Rule S5 defines how b should be pro-
cessed, i.e., that it should be inhibited in this case. Note that since the facts
inhibits(a, b, T ) and inhibits(c, b, T ) are not present in the program, nothing
happens with b when only one of agents a or c is active.

The possibility to include a custom-tailored behaviour for every gene or
protein makes it easy to model e.g. conventional Boolean networks that have



6.4 Building a network model in ASP 113

boolean functions as transition functions on the nodes. As shown by Niemela
[116] any propositional boolean formula can be translated to an ASP program,
which then can be plugged in as a set of S-rules in the main program. How-
ever, excessive use of exceptions may complicate the program code and make
it difficult to maintain. Further in Section 6.4.2 we discuss an extension of our
framework that will reduce the necessity of such manual adjustments.

6.4.1.6 Starting conditions

By writing S-rules, a user can model various networks and observe their be-
haviour under certain initial conditions. This requires the user to set various
initial protein activation combinations and analyze the results of each execu-
tion. On large networks with tens of proteins, the number of different possible
combinations is very high, which makes this task very cumbersome. To au-
tomate this process, we introduce two additional general rules that deal with
different initial condition combinations:

G12 : act(X, 0) ← not inh(X, 0).
G13 : inh(X, 0) ← not act(X, 0).

These rules force the solver to make a choice for each protein: either it is
active at the initial time point, or inhibited. In this way, different answer sets are
automatically generated for each possible combination of active and inhibited
proteins, which drastically decreases the need for manual input.



114 6 Modelling biological regulatory networks with ASP

6.4.1.7 Framework summary

To properly conclude Section 6.4.1 we bundle all rules that constitute our mod-
elling framework as follows

G1 : time(0..2).
G23 : act(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),

act th(Y, Th), not ab(Y, T − 1), A− I > Th,
T > 0, int(A), int(I).

G33 : inh(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
inh th(Y, Th), not ab(Y, T − 1), I −A > Th,
T > 0, int(A), int(I).

G4 : ← act(X,T ), inh(X,T ).
G5 : act(X,T ) ← act(X,T − 1), not inh(X,T ), T > 0.
G6 : inh(X,T ) ← inh(X,T − 1), not act(X,T ), T > 0.
G7 : int(0..# of prot).
G8 : # act(Y,A, T ) ← A{act(X,T ) : activates(X,Y, T ) :

protein(X)}A, protein(Y ), int(A).
G9 : # inh(Y, I, T ) ← I{act(X,T ) : inhibits(X,Y, T ) :

protein(X)}I, protein(Y ), int(I).
G10 : act th(X, 0) ← not mod act th(X).

G10.1 : mod act th(X) ← act th(X,Th), Th 6= 0.
G11 : inh th(X, 0) ← not mod inh th(X).

G11.1 : mod inh th(X) ← inh th(X,Th), Th 6= 0.
G12 : act(X, 0) ← not inh(X, 0).
G13 : inh(X, 0) ← not act(X, 0).

This set of rules is the complete description of the modelling framework built so
far. To briefly summarize the distinguishing features of this framework in a sin-
gle point of reference, in Table 6.1 we compile the descriptions of the examples
modelled with this framework that occurred in Section 6.4.1.



6.4
Bu

ild
in

g
a

n
e

tw
o

rk
m

o
d

e
lin

A
SP

115

Network Structure Steady states Notes

a b protein(a). activates(a, b, T ).
protein(b). activates(b, a, T ).

act(a) act(b).
inh(a) inh(b). Positive feedback

a b protein(a). activates(a, b, T ).
protein(b). inhibts(b, a, T ).

inh(a) act(b).
inh(a) inh(b). Negative feedback

a b c
protein(a). inhibits(a, b, T ).
protein(b). activates(c, b, T ).
protein(c).

act(a) act(b) act(c).
inh(a) act(b) act(c).
act(a) inh(b) act(c).
inh(a) act(b) inh(c).
act(a) inh(b) inh(c).
inh(a) inh(b) inh(c).

Conflict

a b c
protein(a). inhibits(a, b, T ).
protein(b). inhiibts(c, b, T ).
protein(c). act th(b,−1).

act(a) act(b) act(c).
act(a) inh(b) inh(c).
inh(a) act(b) inh(c).
inh(a) act(b) act(c).

Activation threshold

a b c
protein(a). inhibits(a, b, T ).
protein(b). inhiibts(c, b, T ).
protein(c). activates(b, b, T ).

act(a) act(b) act(c).
act(a) act(b) inh(c).
act(a) inh(b) act(c).
inh(a) act(b) act(c).
act(a) inh(b) inh(c).
inh(a) act(b) inh(c).
inh(a) inh(b) inh(c).

Self-activation

Table 6.1: The summary of examples presented in Section 6.4.1



116 6 Modelling biological regulatory networks with ASP

Figure 6.4.3: Additional interaction types for the extended framework

6.4.2 Extended framework

The framework described above provides an instrument to model the behaviour
of threshold boolean networks. However, the modelling capabilities of this
framework are still limited to modelling interactions between genes and pro-
teins only. Consider the networks depicted in Figure 6.4.3, where a protein
may influence an interaction. These types of interactions cannot be modelled
directly within the boolean networks semantics. It is, however, important to be
able to express this type of interactions as they occur fairly often in biological
models (see Section 6.6 for examples).

In light of this, it would be desirable to extend our formalism to model the
influence of a protein on the interaction between other proteins. As we are
concerned with two types of interactions, viz. activation and inhibition, the ex-
tension of our framework should handle interactions of the four types depicted
in Figure 6.4.3.

6.4.2.1 Semantics of interactions

Let us discuss the semantics of these interactions before turning to the imple-
mentation. In the cases when c inhibits the interaction (activation/inhibition)
between a and b, we want to disregard the interaction between a and b when c
is active, and consider it as usual when c is inactive.

In the cases when c activates the interaction (activation/inhibition) between
a and b, the situation is slightly different. In the semantics defined by our
framework so far the interactions are ‘on’ by default, i.e., the potential effect of
every interaction is considered when computing the next state of the system (of
course if it is not inhibited by another protein as in the case above). However,
this assumption does not allow us to model interactions that are active only
under certain conditions, i.e., interactions that are ‘off’ by default. The notion



6.4 Building a network model in ASP 117

of activating an interaction is aimed at overcoming this issue. When we say that
c activates the interaction between a and bwe assume that this interaction is not
functional without c. Thus, according to this reasoning the interaction between
a and b is taken into account only when c is active.

6.4.2.2 Adjustments to the S-rules

To accommodate interactions that target other interactions, we need to slightly
change the perspective that we took while building our framework in Section
6.4.1. Initially, we assumed that every interaction in the network is present by
default, which was reflected in the way we defined the interactions in a network,
for example

activates(a, b, T ).

By placing the time variable into the interaction definition we expressed that
the interaction between a and b holds at any given time point. However, with
the possibility to switch interactions on and off no longer this assumption holds
and we need to change our formulation as follows

activates(a, b).

This we describes network structure independently of time, and the currnent
state of the network decides whether an interaction is allowed at the current
time point. Now, for example, the network depicted in Figure 6.4.3a can be
expressed as follows

S1 : protein(a).
S2 : protein(b).
S3 : protein(c).
S4 : activates(a, b).
S5 : activates(c, activates(a, b)).

Further, we introduce a new type ‘interaction’ as follows

G14 : interaction(activates(X,Y )) ← activates(X,Y ).
G15 : interaction(inhibits(X,Y )) ← inhibits(X,Y ).

These rules declare that predicates activates/2 and inhibits/2 are of type ‘in-
teraction’. We need this type because now we can have an interaction as an
argument of another interaction, so we need the means to distinguish between



118 6 Modelling biological regulatory networks with ASP

proteins and interactions. Additionally, we introduce a general supertype ‘entity’
as follows

G14 : entity(X) ← protein(X).
G15 : entity(X) ← interaction(X).

These rules say that both proteins and interactions are of type entity.

6.4.2.3 Adjustments to the G-rules

Next, we need to adjust rules G8 and G9 to the new semantics. These rules,
which count the number of activation and inhibition links with an active source
in the current framework, rely on the fact that all interactions are allowed at any
time step. To accommodate the new semantics we need to account for the fact
that some interactions can be inhibited at one time step and active at another.
These are the only G-rules that need to be modified. To support modified rules
G81 and G91, we add several extra rules as described below.

Firstly, we reformulate rules G8 and G9 as follows

G81 : # act(Y,A− I, T ) ← # potential act(Y,A),
I{inh act(X,Y, T ) : activates(X,Y ) :
protein(X)}I,
protein(Y ), int(A), int(I).

G91 : # inh(Y,A− I, T ) ← # potential inh(Y,A),
I{inh inh(X,Y, T ) : inhibits(X,Y ) :
protein(X)}I,
protein(Y ), int(A), int(I).

where # potential act(Y,A) and # potential inh(Y,A) are used to calculate
the number of activation/inhibition links that may potentially influence the
node Y based on the network structure. These predicates are defined as fol-
lows

G8.1 : # potential act(Y,A) ← A{activates(X,Y ) : protein(X)}A,
protein(Y ), int(A).

G9.1 : # potential inh(Y, I) ← I{inhibits(X,Y ) : protein(X)}I,
protein(Y ), int(I).

Rules G8.1 and G9.1 count the number of inbound activation/inhibition
links without taking into account whether the interaction agent is active or



6.4 Building a network model in ASP 119

not. Rules G81 and G91 take this number and subtract from it the number
of links that are inactive at the current time point due to the specific network
configuration. This is implemented by means of the predicates inh act(X,Y, T )
( inh inh(X,Y, T ) ) that reflect the fact that activation (inhibition) between
X and Y at time point T is inhibited. According to the semantics defined in
Section 6.4.2.1 an interaction can be inhibited in three cases.

The first case is derived from the previous framework: an interaction is not
active if its trigger is not active. This condition can be implemented as follows

G8.2 : inh act(X,Y, T ) ← not act(X,T ), activates(X,Y ),
protein(X), entity(Y ).

G9.2 : inh inh(X,Y, T ) ← not act(X,T ), inhibits(X,Y ),
protein(X), entity(Y ).

In rule G8.2 (G9.2) we say that if protein X potentially activates (inhibits) a
protein or another interaction Y , but X is not active itself, then the interaction
between X and Y (where Y may be an interaction itself) will be treated as
inhibited. This is consistent with Section 6.4.1, where we do not count the
influence of such an interaction on Y if X is not active, with the only difference
that Y can be not only a protein but also an interaction. In this case, we do not
need to check whether the interaction between X and Y is affected by other
proteins (as in Figure 6.4.3), because without the active trigger this interaction
will not fire anyway.

The second case when an interaction can be inhibited is when there exists
an inhibition link that suppresses this interaction as in Figure 6.4.3b,d. This
influence can be expressed as follows

G8.3 : inh act(X,Y, T ) ← act(Z, T ), inhibits(Z, activates(X,Y )),
protein(Z), protein(X), entity(Y ).

G9.3 : inh inh(X,Y, T ) ← act(Z, T ), inhibits(Z, inhibits(X,Y )),
protein(Z), protein(X), entity(Y ).

Rule G8.3 says that if protein X potentially activates a protein or another
interaction Y , but at the same time there exists an active protein Z that inhibits
this activation, then the interaction between X and Ywill be deactivated. The
situation can be illustrated with Figure 6.4.3b where c is active. Rule G9.3
expresses the same idea for inhibition. However, note that the inhibiting link
from c can be in turn deactivated as in Figure 6.4.4, which is taken into account
in the following rule modification



120 6 Modelling biological regulatory networks with ASP

Figure 6.4.4: Examples of suppressed interactions. In (a) the inhibiting interac-
tion from c will be deactivated if d is active, while in (b) it will be deactivated if
d is not active

G8.31 : inh act(X,Y, T ) ← act(Z, T ), inhibits(Z, activates(X,Y )),
not inh inh(Z, activates(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

G9.31 : inh inh(X,Y, T ) ← act(Z, T ), inhibits(Z, inhibits(X,Y )),
not inh inh(Z, inhibits(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

Essentially, we just add the (recursive) condition that the link from Z to
activates(X,Y ) or inhibits(X,Y ) should not be deactivated itself.

The third case when an interaction can be deactivated according to our se-
mantics is when this interaction should be activated by an external protein, but
this protein is not active. For example, in Figure 6.4.3a,c, the interaction be-
tween a and b will be inactive if c is not active. This condition can be captured
by means of the following rules

G8.4 : inh act(X,Y, T ) ← activates(Z, activates(X,Y )),
inh act(Z, activates(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

G9.4 : inh inh(X,Y, T ) ← activates(Z, inhibits(X,Y )),
inh act(Z, inhibits(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

Rule G8.4 makes use of the previously defined rules: G8.2 and G8.31. The
interaction between X and Y will be considered inactive if Z is not active, or,



6.4 Building a network model in ASP 121

even if Z is active, if there is some other interaction that restricts the influence
of Z.

The extended framework subsumes the one designed in Section 6.4.1, which
means that the models built in that framework remain valid in the new frame-
work with only a few alterations. Time argument should be removed from
S-rules and every interaction should be typed with the interaction predicate.

Example 11 Consider the network depicted in Figure 6.4.4a. To model this
network we build the ASP framework with rules G1, G23, G33, G4, G5, G6, G7,
G81, G8.1, G8.2, G8.31, G8.4, G91, G9.1, G9.2, G9.31, G9.4, G10, G10.1, G11,
G11.1, G14, G15, G16, G17 and describe the network with the following rules

S1 : protein(a).
S2 : protein(b).
S2 : protein(c).
S2 : protein(d).
S3 : activates(a, b).
S4 : inhibits(c, activates(a, b)).
S5 : inhibits(d, inhibits(c, activates(a, b))).
S6 : act(a, 0).
S7 : inh(b, 0).
S8 : act(c, 0).
S9 : act(d, 0).

In this example, activation of a by b should be suppressed by c, because it is ac-
tive. However, d is active as well, and it blocks the influence of c, thus eventually
a will activate b. The answer set of this program is {act(a,0), inh(b,0), act(c,0),
act(d,0), act(a,1), act(b,1), act(c,1), act(d,1), act(a,2), act(b,2), act(c,2), act(d,2),
act(a,3), act(b,3), act(c,3), act(d,3)}. The steady state is {act(a), act(b), act(c),
act(d)}.

6.4.2.4 Extended framework summary

Here we summarize the modifications that we have introduced in Section 6.4.2
and present a set of rules that constitute the final version of our modelling



122 6 Modelling biological regulatory networks with ASP

framework.

G1 : time(0..2).
G23 : act(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),

act th(Y, Th), not ab(Y, T − 1),
A− I > Th, T > 0, int(A), int(I).

G33 : inh(Y, T ) ← # act(Y,A, T − 1),# inh(Y, I, T − 1),
inh th(Y, Th), not ab(Y, T − 1),
I −A > Th, T > 0, int(A), int(I).

G4 : ← act(X,T ), inh(X,T ).
G5 : act(X,T ) ← act(X,T − 1), not inh(X,T ), T > 0.
G6 : inh(X,T ) ← inh(X,T − 1), not act(X,T ), T > 0.
G7 : int(0..# of prot).
G81 : # act(Y,A− I, T ) ← # potential act(Y,A),

I{inh act(X,Y, T ) : activates(X,Y ) :
protein(X)}I,
protein(Y ), int(A), int(I).

G8.1 : # potential act(Y,A) ← A{activates(X,Y ) : protein(X)}A,
protein(Y ), int(A).

G8.2 : inh act(X,Y, T ) ← not act(X,T ), activates(X,Y ),
protein(X), entity(Y ).

G8.31 : inh act(X,Y, T ) ← act(Z, T ), inhibits(Z, activates(X,Y )),
not inh inh(Z, activates(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

G8.4 : inh act(X,Y, T ) ← activates(Z, activates(X,Y )),
inh act(Z, activates(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

G91 : # inh(Y,A− I, T ) ← # potential inh(Y,A),
I{inh inh(X,Y, T ) : inhibits(X,Y ) :
protein(X)}I,
protein(Y ), int(A), int(I).

G9.1 : # potential inh(Y, I) ← I{inhibits(X,Y ) : protein(X)}I,
protein(Y ), int(I).

G9.2 : inh inh(X,Y, T ) ← not act(X,T ), inhibits(X,Y ),
protein(X), entity(Y ).

G9.31 : inh inh(X,Y, T ) ← act(Z, T ), inhibits(Z, inhibits(X,Y )),
not inh inh(Z, inhibits(X,Y ), T ),
protein(Z), protein(X), entity(Y ).



6.5 Network modelling and analysis algorithms 123

G9.4 : inh inh(X,Y, T ) ← activates(Z, inhibits(X,Y )),
inh act(Z, inhibits(X,Y ), T ),
protein(Z), protein(X), entity(Y ).

G10 : act th(X, 0) ← not mod act th(X).
G10.1 : mod act th(X) ← act th(X,Th), Th 6= 0.
G11 : inh th(X, 0) ← not mod inh th(X).

G11.1 : mod inh th(X) ← inh th(X,Th), Th 6= 0.
G12 : act(X, 0) ← not inh(X, 0).
G13 : inh(X, 0) ← not act(X, 0).
G14 : interaction(activates(X,Y )) ← activates(X,Y ).
G15 : interaction(inhibits(X,Y )) ← inhibits(X,Y ).

6.5 Network modelling and analysis algorithms

Each network has 2N possible states, where N is the number of proteins in
the network. As shown in Example 2, in the answer set representation, the
state of a protein corresponds to a predicate in the set, and a network state
corresponds to a subset that contains all protein states for one time point. For
example, {act(a, 1), act(b, 1)} is a part of the answer set for the program in
Example 2 that describes the state of the network at time point 1. There are
two problems associated with finding the steady states of a network by solving
a corresponding answer set program as proposed in Section 6.4. First of all,
when computing a trajectory from an initial state it is impossible to estimate
how many time steps are needed (the upper time bound). Trajectories within
too short time intervals may not reach the steady state, while too long intervals
increase computational expenses. For instance, if we limit the upper time bound
in Example 2 by 1 (set ruleG1 as time(0..1).) the steady state will not be present
in the answer set. On the other hand, if we set the upper time bound to e.g. 5,
we will find a steady state but at the same time we will compute 2 extra states
that do not contain any additional information about the network behaviour.

Secondly, the problem which follows from the first one, is related to the
attraction basin computation. An attraction basin is a set of trajectories that
converge to the same steady state (see Section 4.3 for details). Finding these
trajectories is computationally expensive, as we need to consider the whole
network state space. We can iterate over all possible initial states, but for every
initial state we need to adjust the time interval every time, which, again, makes
the whole process computationally heavy.



124 6 Modelling biological regulatory networks with ASP

This problem was addressed in Chapter 5, where we have proposed the
Temporal Algorithm to efficiently solve Markovian programs. As it can be seen
from Section 6.4, answer set programs that built in our ASP framework conform
to the definition of Markovian programs, and thus the Temporal Algorithm can
be applied to find the steady states of these networks.

Moreover, our framework, besides being Markovian, exhibits other proper-
ties that allow for introduction of another algorithm for steady states computa-
tion as explained in Section 6.5.1. A new algorithm called State Space Building
(SSB) algorithm, can be used to build a state space of a network described in our
framework and to find the steady states occurring in this space. This algorithm
allows building a state space in one ASP solver run, which makes it superior
to the Temporal algorithm for the task of state space building. However, more
fine grained analysis such as finding particular trajectories and querying a state
space in general is not straightforward with the SSB approach. Therefore, in
Section 6.5.2 we propose an extension of the Temporal algorithm that makes
possible to pose arbitrary queries about a network state space.

6.5.1 State Space Building approach

To explain an efficient way of finding the steady states of a network, let us
point out the following fact: any answer set obtained with the framework we
proposed contains a complete description of the network state at any time point,
i.e., for every node n either fact act(n, T ) or inh(n, T ) is defined. This trivially
follows from the framework definition, where the state for every node is defined
by the states of other nodes or by the inertia rules G5 and G6. Predicates act
and inh define the state of the network, thus every answer set of a program
in our framework will contain a complete description of the network state at
every time point. This is an important observation, because partial network
state definitions do not make sense in our framework.

The idea of the State Space Building (SSB) algorithm is based on two ob-
servations. The first observation is that since the complete network state is
described explicitly by the predicates act and inh, we can automatically gener-
ate all possible states of a network by means of rules G12 and G13, explained
in Section 6.4.1.6. The second observation is that our modelling framework is a
Markovian program, which means that any next state depends only on its direct
predecessor. Combining these observations together, we can build a framework
with rules G1, G23, G33, G4, G5, G6, G7, G81, G8.1, G8.2, G8.31, G8.4, G91,
G9.1, G9.2, G9.31, G9.4, G10, G10.1, G11, G11.1, G12, G13, G14, G15 and
extend it with the description of a network presented as a set of S-rules (the



6.5 Network modelling and analysis algorithms 125

act(a,0) act(b,0)

act(a,1) act(b,1)

act(a,0) inh(b,0)

act(a,1) act(b,1)

inh(a,0) act(b,0)

act(a,1) act(b,1)

inh(a,0) inh(b,0)

inh(a,1) inh(b,1)

act(a) inh(b) inh(a) act(b)

act(a) act(b)

inh(a) inh(b)

Figure 6.5.1: The SSB algorithm execution for the network depicted in Figure
6.3.1a. Nodes represent the states of the network. The topmost part of the
figure denotes the transitions obtained by the answer set framework, while the
bottom part denotes the state space of the network built with the SSB algorithm.

actual instances of S-rules are non-essential for the algorithm). Here, rules G12
and G13 provide all possible network states at time point 0. We explicitly fix
the upper temporal bound by setting rule G1 to time(0..1), which restricts the
program to find only immediate consequent states for any given starting state.
Now, solving this program will give us at least 2N answer sets, where each an-
swer set will contain an initial state and a transition of this state to a possible
following state, which in turn appears as initial state in some other answer set
(due to the complete starting set enumeration). In this way we obtain a com-
plete set of network transitions that can be merged in a network state space
graph. The SSB algorithm execution for the network depicted in Figure 6.3.1a
is shown in Figure 6.5.1.

Note that the SSB algorithm can be efficiently distributed in a multi-threaded
environment, because every state transition can be computed independently.
Indeed, if we consider every possible state of the network as a starting state,
then the only operations we need are to compute the network evolution for
one step, and then combine the obtained state-state transitions and join them
together to obtain all possible trajectories.



126 6 Modelling biological regulatory networks with ASP

6.5.2 Querying networks

The SSB algorithm described above is well suited to build the whole state space
of a network, however its applicability for network analysis is limited. Consider
the case when we want to find only trajectories that conform to certain con-
straints. For example, in a network that contains proteins a, b and c we want to
get only the trajectories where b is active only after a is inhibited, independently
of the state of c. This is not possible to do with SSB unless we build the whole
state space first. However, this can be a computationally expensive operation,
as the number of states of a network grows exponentially with the number of
nodes. Thus, we need a more efficient way to deal with the task of answering
queries about network states and trajectories, which is described below.

The representation of regulatory networks with ASP programs makes such
reasoning about network behaviour much easier than in the boolean setting. In
this section we explain how we can plug in queries for a (partial) network state.

Let us consider the situation that a biologist observes a certain state of a
regulatory network and would like to get an explanation of how this state can
be reached in the model, i.e., the trajectories that lead to this state. Let us
consider the example where a biologist wants to get the trajectories, which lead
to states where a is active and b is inhibited. Such a query can be incorporated
by adding to a network description the following set of rules

q ← act(a, T ), inh(b, T ), time(T ).
← not q.

Intuitively, the first rule says that query q would appear in an answer set when
a is active and b is inhibited. The second rule is a constraint which says that any
answer set of our program should contain q, i.e., the query should be satisfied.
However, just plugging these lines in our program would not lead to the desired
result. First of all, the first rule is not valid in terms of Markovian programs, as
its body has time-dependent predicates while the head is not time-dependent.
This can be fixed by replacing q with q(T ). However, the second problem is
more serious - as it was explained in Section 5.5 we compute the states of a
network for each time step separately, and the query would be added to the
program for every time step according to the definition of partial grounding.
This would lead to the fact that only states that satisfy the query would be in
answer sets, and the actual trajectories would not be computed, which is not
the desired behaviour.

To overcome this problem, we make a straightforward extension of the Tem-
poral algorithm that handles a query as a separate program. As described in



6.5 Network modelling and analysis algorithms 127

Section 5.5 the algorithm keeps all possible trajectories that have been reached
at the current time point. As every trajectory is represented as a sequence of
states, we can can impose our queries on this sequence.
Require: P = 〈P, τ 〉;{A Markovian program}
Require: Q;{Query program}

1: V = ∅;{The set of visited states}
2: A−1 = List(AS(P e));{The list of sets of initial conditions that will be used

for grounding}
3: n = size(A−1);
4: A = List(A−1[k]|1 ≤ k ≤ n);{The list of sets of current states that are

rooted in the k-th set of initial conditions}
5: T = A−1; {The list of trajectories}
6: t = 0;
7: repeat
8: Obtain the partial temporal grounding Pt of P;
9: for k = 1 to n do

10: A−1 = A−1[k];{Obtain the k-th set of initial conditions}
11: Anew = ∅;
12: {Iterate over the sets of current states rooted in the k-th set of initial

conditions}
13: for all A ∈ A[k] do
14: {Iterate over the current states rooted in the k-th set of initial condi-

tions}
15: for all At−1 ∈ A do
16: P ′t = Gnd(Pt ∪ {l← .|l ∈ At−1 ∪A−1}); {Grounding Pt}
17: S = AS(RA

t−1∪A−1
(P ′t ));{Obtaining states for time point t}

18: for all At ∈ S do
19: Add state At to all trajectories in T that contain At−1

20: query satisfied = true;
21: for all trajectories T that end with At do
22: if AS(Q ∪ {t← .|t ∈ T} ∪ {time(0..t).}) = ∅ then
23: query satisfied = false;
24: else
25: T ′ = T ′ ∪ T ;
26: end if
27: end for
28: if At is not in V then
29: Add state At to the set V of visited states



128 6 Modelling biological regulatory networks with ASP

30: if query satisified=false then
31: Add state At to the set Anew of states that should be con-

sidered in the following iteration
32: end if
33: end if
34: end for
35: end for
36: end for
37: A[k] = Anew;
38: end for
39: t = t+ 1;
40: until A is empty or A contains only empty sets
41: return T

The new lines added to the original Temporal algorithm are 20-27, 30 and
32. The effect of these lines is that when extending trajectories with newly
computed states, we check whether a trajectory satisfies the query Q. If the
trajectory satisfies Q, we add it to the resulting set and do not consider this
trajectory in the following steps.

Example 12 Let us consider a program in our framework built for the network
in Figure 6.3.1b and suppose that we want to know the trajectories that lead to
the states where a is inhibited. The query program would look as follows

q ← inh(a, T ), time(T ).
← not q.

The Temporal algorithm computes all possible states for time point 0: {act(a, 0),
inh(b, 0)}, {inh(a, 0), inh(b, 0)}, {act(a, 0), act(b, 0)}, {inh(a, 0), act(b, 0)}. These
answer sets lead to four query evaluations, for example for the first state the
query program would be

time(0).
act(a, 0). inh(b, 0).
q ← inh(a, 0), time(0).

← not q.

If a query program has an answer set, this means that the query is satisfied
and the trajectory that leads to this query is marked and not considered on the
following steps of the Temporal algorithm.



6.5 Network modelling and analysis algorithms 129

After time point 0, states {inh(a, 0), act(b, 0)} and {inh(a, 0), inh(b, 0)} sat-
isfy the query and are not considered further. The state {act(a, 0), act(b, 0)}
leads to the state {inh(a, 1), act(b, 1)}, and the query program for this trajectory
is

time(0). time(1).
act(a, 0). act(b, 0).
inh(a, 1). act(b, 1).
q ← inh(a, 0).
q ← inh(a, 1).

← not q.

The program has an answer set, thus the query is satisfied and the trajectory
is marked and not considered for further processing. The algorithm proceeds
until it finds all steady states to guarantee that no trajectory satisfying the query
is omitted, and then all marked trajectories are returned to the user. After the
Temporal algorithm finishes, it outputs four trajectories that lead to the query
state:

1. [{inh(a, 0), act(b, 0)}]

2. [{inh(a, 0), inh(b, 0)}]

3. [{act(a, 0), act(b, 0)}, {inh(a, 1), act(b, 1)}]

4. [{act(a, 0), inh(b, 0)}, {act(a, 1), act(b, 1)}, {inh(a, 2), act(b, 2)}]

Note, that a query can be incomplete, i.e., we are not forced to specify the
complete state of the network, as shown in Example 12. Another appealing
feature of the query mechanism is that the whole trajectory is exposed to the
query program. This means that arbitrary conditions not only on the current
state but also on any previous states can be imposed to a query, as illustrated
further in Example 13. Note that this example does not have to conform to the
Markovian program definition since query program is an extra component, not
a part of the modelling framework.

Example 13 Since queries are ASP programs themselves, we can construct com-
posite queries with minimal effort. Consider a network with nodes a, b and c. A
simple program

q ← inh(a, T ), act(b, T1), T < T1.
← not q.



130 6 Modelling biological regulatory networks with ASP

Cln3
MBF

Cdh1

Cdc20&Cdc14

Cln1,2

Swi5

Clb1,2

SBF

Sic1

Cell size

Clb5,6

Mcm1/SFF

Figure 6.6.1: The dynamical network model of the Budding Yeast cell cycle [94].

expresses the query that requires that node a should be active at some time
point T and at some time point T1 after that b should be inhibited. This pro-
gram is not Markovian, as it may be that T1 − T > 1. This query is partial,
because it does not impose any restriction on node c. Note that a very simple
program expresses a rather intricate query that involves sequence dependency
between states as well as incomplete state definitions.

6.6 Experimental validation

In this section we describe three proof-of-concept experiments for the analysis
of real interaction networks. As Boolean networks are a popular formalism to
describe cell cycle processes, we selected three cell cycle networks represented
with boolean models and model them in our framework. First, we take the
dynamical network model of the Budding Yeast cell cycle network [94]. The
second experiment involves the modelling of the Fission Yeast cell cycle network
[35]. These two experiments are performed within the basic framework, de-
scribed in Section 6.4.1, as they do not require the extended expressivity of the
full framework. The third experiment was performed with the Mammalian cell
cycle network, which was modelled with the full framework described in Sec-
tion 6.4.2. We use the clingo [61] system that combines a grounder and solver



6.6 Experimental validation 131

SK
Rum1

Slp1

Cdc2/Cdc13*

PP

Wee1/Mik1

Cdc25

Ste9 Cdc2/Cdc13

Start

Figure 6.6.2: The dynamical network model of the Fission Yeast cell cycle [35].

in one package to compute the answer sets.

6.6.1 Budding Yeast network

The structure of the Budding Yeast network, depicted in Figure 6.6.1, is cap-
tured by means of the following S-rules:

protein(cln3). protein(clb56).
protein(sbf). protein(cdh1).
protein(mbf). protein(clb12).
protein(cln12). protein(mcm1).
protein(sic1). protein(cdc20).
protein(swi5).



132 6 Modelling biological regulatory networks with ASP

inhibits(cln3, cln3, T ). activates(cln3,mbf, T ).
inhibits(cdc20, cdc20, T ). activates(mcm1, cdc20, T ).
inhibits(cln12, cln12, T ). activates(cln3, sbf, T ).
inhibits(mcm1,mcm1, T ). activates(swi5, sic1, T ).
inhibits(sic1, clb56, T ). activates(mbf, clb56, T ).
inhibits(clb12, swi5, T ). activates(cdc20, swi5, T ).
inhibits(clb56, sic1, T ). activates(clb56,mcm1, T ).
inhibits(clb12, cdh1, T ). activates(cdc20, sic1, T ).
inhibits(sic1, clb12, T ). activates(clb56, clb12, T ).
inhibits(cdh1, clb12, T ). activates(cdc20, cdh1, T ).
inhibits(clb12, sic1, T ). activates(mcm1, clb12, T ).
inhibits(cdc20, clb12, T ). activates(clb12, cdc20, T ).
inhibits(cln12, sic1, T ). activates(clb12,mcm1, T ).
inhibits(cdc20, clb56, T ). activates(sbf, cln12, T ).
inhibits(clb12, sbf, T ). activates(mcm1, swi5, T ).
inhibits(clb56, cdh1, T ).
inhibits(clb12,mbf, T ).
inhibits(cln12, cdh1, T ).
inhibits(swi5, swi5, T ).

There are 11 proteins, 19 inhibiting and 15 activating interactions in total, each
modelled with an S-rule.



6.6
Exp

e
rim

e
n

ta
lva

lid
a

tio
n

133

time cln3 mbf sbf cln12 cdh1 swi5 cdc20 clb56 sic1 clb12 mcm1
1 1 0 0 0 1 0 0 0 1 0 0
2 0 1 1 0 1 0 0 0 1 0 0
3 0 1 1 1 1 0 0 0 1 0 0
4 0 1 1 1 0 0 0 0 0 0 0
5 0 1 1 1 0 0 0 1 0 0 0
6 0 1 1 1 0 0 0 1 0 1 1
7 0 0 0 1 0 0 1 1 0 1 1
8 0 0 0 0 0 1 1 0 0 1 1
9 0 0 0 0 0 1 1 0 1 1 1

10 0 0 0 0 0 1 1 0 1 0 1
11 0 0 0 0 1 1 1 0 1 0 0
12 0 0 0 0 1 1 0 0 1 0 0
13 0 0 0 0 1 0 0 0 1 0 0
14 0 0 0 0 1 0 0 0 1 0 0

Table 6.2: Budding Yeast network execution flow



134 6 Modelling biological regulatory networks with ASP

In Table 6.2 we provide the results for the Budding Yeast network trajectories
respectively from an initial state that corresponds to the point of cell division
initiation. The table is a structured representation of the derived answer set.
Rows stand for time steps, and columns stand for proteins, i.e. one column
shows the changes of one particular protein over time. For brevity, we denote
an act/2 predicate with 1 in the appropriate cell and inh/2 with 0. For example,
act(SK, 1) converts to 1 in row 1 and column SK, etc. The same description
applied to Tables 6.3 and 6.4 that presented further.

Table 6.2 corresponds to the model of cell division process occurring in the
Budding Yeast. It starts with an initial state in which the cell have enough
resources to start the division process and eventually the model arrives at a
steady state as can be seen in rows 13 and 14, which corresponds to a steady
state of the cell. This trajectory and the resulting steady state have also been
found by Li et al. [94]. All other steady states found by our framework have also
been reported in the work [94], which proves that the models exhibit identical
behaviour. In Figure 6.6.3 the largest attraction basin of this network is shown.

6.6.2 Fission Yeast network

The structure of the Fission Yeast network, depicted in Figure 6.6.2, is captured
by means of the following S-rules

protein(sk). protein(cdc25).
protein(ste9). protein(pp).
protein(rum1). protein(wee1).
protein(cdc2). protein(slp1).
protein(cdc2 star). protein(start).

inhibits(sk, ste9, T ). inhibits(cdc2, wee1, T ).
inhibits(sk, rum1, T ). inhibits(ste9, cdc2 ∗, T ).
inhibits(cdc2, ste9, T ). inhibits(slp1, cdc2, T ).
inhibits(ste9, cdc2, T ). inhibits(cdc2 ∗, ste9, T ).
inhibits(cdc2, rum1, T ). inhibits(rum1, cdc2 ∗, T ).
inhibits(rum1, cdc2, T ). inhibits(cdc2 ∗, rum1, T ).
inhibits(pp, cdc25, T ). inhibits(slp1, cdc2 ∗, T ).
inhibits(pp, pp, T ). inhibits(slp1, slp1, T ).
inhibits(sk, sk, T ). inhibits(start, start, T ).
inhibits(wee1, cdc2 ∗, T ).



6.6 Experimental validation 135

Figure 6.6.3: The biggest attraction basin of the Budding yeast cell cycle net-
work model



136 6 Modelling biological regulatory networks with ASP

activates(cdc2, cdc25, T ). activates(slp1, pp, T ).
activates(pp, ste9, T ). activates(cdc25, cdc2 ∗, T ).
activates(pp, rum1, T ). activates(cdc2 ∗, slp1, T ).
activates(pp, wee1, T ). activates(start, sk).

inh th(cdc2 ∗,−1).
act th(cdc2,−1).

There are 10 proteins, 18 inhibiting and 7 activating interactions in total,
each modelled with an S-rule.

Some facts such as the activation threshold of Cdc2/Cdc13 or the inhibition
threshold of Cdc2/Cdc13* are not explicitly seen on the network in Figure 6.6.2;
to figure out the exact execution flow one has to read the corresponding article
[35]. This shows one of the advantages of an ASP model in comparison with
Boolean networks. The ASP model is self-descriptive, i.e., it does not rely on any
implicit assumptions or background knowledge, while with Boolean networks,
the user needs to check the conditions for every node before execution.



6.6
Exp

e
rim

e
n

ta
lva

lid
a

tio
n

137

time start SK cdc2 ste9 rum1 slp1 cdc2 * wee1 cdc25 pp
1 1 0 0 1 1 0 0 1 0 0
2 0 1 0 1 1 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0 0
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 0 0 0 0 1 0
6 0 0 1 0 0 0 1 0 1 0
7 0 0 1 0 0 1 1 0 1 0
8 0 0 0 0 0 1 0 0 1 1
9 0 0 0 1 1 0 0 1 0 1

10 0 0 0 1 1 0 0 1 0 0
11 0 0 0 1 1 0 0 1 0 0

Table 6.3: Fission Yeast network execution flow



138 6 Modelling biological regulatory networks with ASP

Table 6.3 presents the division Process of the Fission Yeast, where the initial
state of the network corresponds to a state of a cell ready for division and the
states at time points 10 and 11 represent the steady state of the cell after the
division finishes. This trajectory and the resulting steady state have also been
found in the work of Davidich and Bornholdt [35]. All other steady states found
by our framework have also been reported this work. In Figure 6.6.4 the largest
attraction basin of this network is shown and in Figure 6.6.5 an interesting basin
that attracts to a steady cycle is shown.

6.6.3 Mammalian cell cycle network

Faure et al. [49] constructed a boolean model of the mammalian cell cycle net-
work. The original structure of this network is depicted in Figure 6.6.6. We
argue that this version of the model suffers from the constraints imposed by the
boolean network formalism, which in turn leads to some unintuitive modelling
choices.

Let us first focus on the relationship between the cyclin-dependent kinase
inhibitor p27/Kip1 (denote as p27 in the model) and cdk2/Cyclin A (denoted
as CycA). When both p27 and CycA are active, p27 forms a complex with CycA
and blocks activity of CycA. However, the cyclin remains present, and to model
this fact rather than drawing an inhibiting edge from p27 to CycA the blocking
effect of p27 is represented by drawing edges from p27 to the targets of CycA,
but with opposite signs, i.e. if CycA activates E2F then there is also an inhibiting
edge between p27 and E2F. Apparently, this is a workaround due to the fact
that in Boolean networks it is not possible to declare an interaction between a
node and an edge.

This problem arises in modelling the interactions of p27 with CycA and CycE
but also in modelling the activity of the Anaphase Promoting Complex (APC).
APC is responsible for the progression and proper finishing of mitosis (the sep-
aration of the cell into two cells) and is presented in the model by proteins
Cdh1 and Cdc20. Cdh1 is known to be an inhibitor of CycA; however, during the
transition from the growth phase G2 to mitosis, the level of CycA is rised high
enough to inactivate Cdh1. Since Cdh1 is active in the G2 phase, it was long un-
clear how CycA can overrule the inhibitory influence of Cdh1. Recent research
has revealed the role of the E2 ubiquitin conjugating enzyme UbcH10 in this pro-
cess by showing that Cdh1-dependent degradation of CycA can happen only in
the presence of UbcH10 [132]. Moreover, Cdh1 triggers UbcH10 ubiquitination,
but only in the case when the Cdh1 targets are not active, or in the terms of
the logical model, when CycA, CycB and Cdc20 are inactive. These observations



6.6 Experimental validation 139

Figure 6.6.4: The biggest attraction basin of the Fission yeast cell cycle network
model



140 6 Modelling biological regulatory networks with ASP

Figure 6.6.5: The attraction cycle of the Fission yeast cell cycle network model



6.6 Experimental validation 141

Figure 6.6.6: The model of the mammalian cell cycle regulatory network [49].

were formalized [49] and implicitly depicted in the network in Figure 6.6.6 by
means of activation edges from the Cdh1 targets to UbcH10 and by an inhibi-
tion edge from Cdh1 to UbcH10. Note again, that the relationships among the
proteins in this model do not directly reflect the facts stated above.

After the establishment of the new framework we can address the aforemen-
tioned issues and create a more understandable model of the mammalian cell
cycle shown in Figure 6.6.7. First of all, we can directly model the influence of
p27 on cyclin A and Cyclin E complexes. Now p27 influences not the targets of
these cyclin complexes, but their interactions with other entities directly using
the following rules

inhibits(p27, inhibits(cycE, rb)).
inhibits(p27, inhibits(cycE, p27)).
inhibits(p27, inhibits(cycA, p27)).
inhibits(p27, inhibits(cycA, rb)).
inhibits(p27, inhibits(cycA, cdh1)).
inhibits(p27, inhibits(cycA, e2f)).
inhibits(p27, inhibits(cycA, cycE)).

Moreover, the functioning of APC can now be described more intuitively,
as now we can model the fact that cdh1 inhibits CycA only in the presence of



142 6 Modelling biological regulatory networks with ASP

Figure 6.6.7: The mammalian cell cycle network model represented with the
updated framework. Updated edges are shown in red.

UbcH10 with the following rule

activates(ubcH10, inhibits(cdh1, cycA)).

Additionally, we can model the fact that the APC substrates CycA, CycB and
Cdc20 prevent UbcH10 from degradation using the following rules

inhibits(cycB, inhibits(cdh1, ubcH10)).
inhibits(cdc20, inhibits(cdh1, ubcH10)).
inhibits(cycA, inhibits(cdh1, ubcH10)).

In this way, we simplify the interaction diagram by redirecting some interac-
tion edges, but also make it more intuitive as relationships such as ‘p27 inhibits
the activity of Cyclin A complex’ can be expressed in a more straightforward way.

Another peculiarity of the existing boolean model that we did not address
yet is concerned with the inhibition of p27. According to the original model,
p27 is inhibited only when both CycA and CycE are active, which contradicts
the boolean threshold semantics implemented in our framework. We can model
this behaviour by exploiting the exception mechanism, thus representing this



6.6 Experimental validation 143

condition as follows

ab(p27, T ).
inh(p27, T ) ← cyclins active(cycA, cycE, T − 1), T > 0.
act(p27, T ) ← not cyclins active(cycA, cycE, T − 1),

active(p27, T − 1), T > 0.
cyclins active(cycA, cycE, T ) ← act(cycA, T ), act(cycE, T ).

which say that p27 is inhibited if both CycA and CycE are active and it active
otherwise. The final structure of the mammalian cell cycle network is captured
by means of the following S-rules

protein(cycA). inhibits(cycA, inhibits(cdh1, ubc)).
protein(cycB). inhibits(cycB, inhibits(cdh1, ubc)).
protein(cycD). inhibits(cdc20, inhibits(cycA, cdh1)).
protein(cycE). inhibits(cdc20, inhibits(cdh1, ubc)).
protein(rb). activates(ubc, inhibits(cdh1, cycA)).
protein(e2f). inhibits(p27, inhibits(cycE, rb)).
protein(p27). inhibits(p27, inhibits(cycE, p27)).
protein(cdc20). inhibits(p27, inhibits(cycA, p27)).
protein(cdh1). inhibits(p27, inhibits(cycA, rb)).
protein(ubc). inhibits(p27, inhibits(cycA, cdh1)).

inhibits(p27, inhibits(cycA, e2f)).
inhibits(p27, inhibits(cycA, cycE)).

inhibits(cycD, rb). inhibits(cdh1, cycA).
inhibits(cycD, p27). inhibits(cdh1, cdc20).
inhibits(rb, e2f). inhibits(cdh1, ubc).
inhibits(cycE, p27). inhibits(cdh1, cycB).
inhibits(cycE, rb). inhibits(cycB, p27).
inhibits(cycA, rb). inhibits(cycB, e2f).
inhibits(cycA, e2f). inhibits(cdc20, cycB).
inhibits(cycA, cycE). inhibits(cdc20, cycA).
inhibits(cycA, cdh1). inhibits(cycA, p27).



144 6 Modelling biological regulatory networks with ASP

act th(e2f,−1). activates(e2f, cycE).
act th(rb,−1). activates(e2f, cycA).
act th(cdh1,−1). activates(cycB, cdc20).
act th(cycB,−1).
act th(ubc,−1).
act th(p27,−1).

ab(p27, T ).
inh(p27, T ) ← cyclins active(cycA, cycE, T − 1), T > 0.
act(p27, T ) ← not cyclins active(cycA, cycE, T − 1),

active(p27, T − 1), T > 0.
cyclins active(cycA, cycE, T ) ← act(cycA, T ), act(cycE, T ).



6.6
Exp

e
rim

e
n

ta
lva

lid
a

tio
n

145

time CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB
1 1 0 0 0 0 0 1 1 1 0
2 1 0 1 0 0 0 0 1 1 0
3 1 0 1 1 0 0 0 1 0 0
4 1 0 1 1 1 0 0 1 0 0
5 1 0 0 1 1 0 0 0 1 0
6 1 0 0 0 1 0 0 0 1 1
7 1 0 0 0 1 0 1 0 1 1
8 1 0 0 0 0 0 1 1 1 0

Table 6.4: Mammalian cell cycle execution flow



146 6 Modelling biological regulatory networks with ASP

In Figure 6.6.8 the largest attraction basin of this network is shown and in
Figure 6.6.9 an basin that attracts to a steady cycle is shown.

Table 6.4 represents a steady cycle characterized by the states at time points
1 and 8. This cycle almost literally corresponds to the original cycle reported
by Faure et al. [49], with the only exception that UbcH10 is expressed one step
earlier (denoted with the bold font face in the table). This alteration, however,
does not change the general flow of the process and thus can be considered a
model-specific alteration.

6.7 Conclusions

In this chapter we have proposed modelling regulatory networks as answer
set programs. Answer set programming is an area of logic programming that
is capable of describing systems that exhibit non-monotone behaviour using
negation-as-failure. These system models, represented as programs, can be exe-
cuted to produce the set of steady states of a given protein interaction network.

We started with the development of an ASP framework that covers threshold
boolean network semantics. The framework, described in Section 6.4.1 is a set
of rules that expresses threshold boolean networks and analyzes their evolution
over time. Besides the essential activation and inhibition link modelling, we
introduce the concept of thresholds that characterize the susceptibility of a pro-
tein to activation or inhibition influence. Moreover, we explain how to use these
notions for modelling phenomena of self-activation and self-inhibition and ex-
plain the subtle differences in the behaviour that can be achieved by different
implementations of these phenomena.

Further, we extended this framework with the possibility to model ‘meta-
interactions’, i.e., the influence of proteins on other interactions, not on other
proteins, which allows for simpler more intuitive network descriptions. This
functionality goes beyond standard boolean network semantics, since in Boolean
networks one can only specify the interactions between proteins, but not be-
tween protein and interaction. Moreover, we augmented our framework with
a flexible query mechanism that simplifies the analysis of constructed models.
Queries can be used to compute only those trajectories in a state space that a bi-
ologist is interested in. A query is represented as an ASP program, which allows
for building complex statements that may involve conditions and may evaluate
different states of a network evolution trajectory. Finally, we devised an efficient
algorithm that computes a complete state space of a network in a single solver
run.



6.7 Conclusions 147

Figure 6.6.8: The biggest attraction basin of the Mammalian cell cycle network
model



148 6 Modelling biological regulatory networks with ASP

Figure 6.6.9: The attraction cycle of the Mammalian cell cycle network model



6.7 Conclusions 149

One of the main advantages of our ASP framework is that it is more for-
mal compared to Boolean networks, since it allows a user to describe all im-
plicit assumptions and background knowledge explicitly in the program, while
in Boolean networks this knowledge often remains hidden in the non-formal
description. This was illustrated in Sections 6.6.2 and 6.6.3, where the back-
ground information not explicitly expressed in the network description was rep-
resented with explicit rules in the ASP formulation. The approach remains how-
ever straightforward to apply; it does not require any formal logics knowledge
from the biologist, who can operate with ready-to-apply blocks to build a model.
At the same time the approach is very flexible due to the fact that nonmonotonic
reasoning is used and any specific case which does not fit in the general picture
can be incorporated with minimal effort. This was illustrated in Section 6.6.3,
where the problem of expressing an interaction that does not fit in the frame-
work semantics was solved by adding three simple rules.

Moreover, readily available answer set solvers can be used to find the steady
states of a network. In Chapter 8 we present a software implementation of our
framework using a third-party solver clingo [61].



7
Systems for gene and
protein interaction
retrieval and
extraction

7.1 Introduction

Creating user interfaces and making text mining algorithms available for use
to a broad audience is an important step for uniting computer science achieve-
ments with biological applications. In the last years an increasing amount of bi-
ological information has become available from different sources, ranging from
highly structured databases of protein names, gene sequences and interactions
such as BIND [11], Gene Ontology [6], UniProt [166], DIP [145] to name a few,
to collections of loosely structured biomedical article abstracts such as HighWire
[75] and MEDLINE [102], which create a rich ground for this synergy.

This thesis focuses on the specific problem of extracting and utilizing gene
and protein interactions, thus in this chapter we will focus on information ex-
traction and retrieval systems built to work with interactions. A typical scenario
for interaction extraction or retrieval is when a user queries for a protein name
and the system returns a structured representation of interactions of the query
protein with other genes and proteins. The representation may range from a
simple search engine-like list of interacting proteins to an interactive interaction
graph. Online application architecture, which provides a single access point to
various information sources, is an obvious choice for building such systems that
provides a natural way of handling biomedical data. We provide an overview of
the available online tools for interaction retrieval and extraction in Section 7.2.
Given the substantial amount of existing online tools to explore the biomedical



7.2 Online tools for biologists 151

literature for protein interactions, it is quite remarkable that we encountered
two – at least from our perspective – obvious needs that have not been properly
addressed so far:
• A unified framework for development and evaluation of PPI extraction

methods.

• An extension of PPI extraction systems with modelling capabilities.

The development and evaluation framework we propose will address the needs
of computer scientists that create new methods for PPI extraction and want to
concentrate on this specific task, without spending much time on essential, but
time-consuming preparatory work. On the other hand, the extension of PPI ex-
traction systems with modelling capabilities will leverage biologists’ experience
with the ability to build models based on freshly extracted data. We discuss
these two aspects in more detail in Section 7.3. Moreover, we address these
needs by implementing a prototype of the system that includes these features in
Chapter 8.

7.2 Online tools for biologists

Currently, most of the available online systems are focusing on the integration
of different sources of structured biological information, while providing limited
or no support for text mining algorithms. Systems that aim at handling unstruc-
tured data such as article abstracts mostly still rely on structured information
sources such as gene and protein name lists or known interactions lists. These
systems can be broadly divided into two classes: information retrieval (IR) and
information extraction (IE) systems. Both types of systems are aimed at pro-
viding the user with information about an input query (e.g. the protein Cdk1);
however the methodology and the output of these systems are different. IR
systems typically operate on unstructured data such as text documents in order
to find a subset of documents that are most relevant to the query. The output
of such systems is typically a list of relevant documents that should be further
processed by the user. IE systems on the other hand, use structured information
sources such as databases and thesauri along with unstructured documents as
well as sophisticated information processing algorithms to extract knowledge
about a query concept. The output of such systems thus is not just a set of rele-
vant documents, but is a structured representation of relationships between the
query object (Cdk1 in our case) and other entities, proteins, genes, organisms



152 7 Systems for PPI retrieval and extraction

where this protein appears, etc. Typical IE systems include an IR system as a
component.

Table 7.1 provides an overview of systems that provide advanced informa-
tion retrieval facilities for exploring the biomedical literature, which may al-
ready exploit some basic IE techniques such as statistical co-occurrence or man-
ual rule matching. Table 7.2 describes systems that go beyond information
retrieval, employ text mining approaches to extract information and provide
more comprehensive means for exploring biomedical texts. Below we describe
PubMed [126] as it is a prototypical IR system that is furthermore very often
used as a component of IE systems. Further, we focus on the interaction extrac-
tion task and provide more details on IE-oriented systems.

PubMed is among the most popular IR systems for biologists. This is an in-
formation retrieval system that provides a web interface for MEDLINE [102],
a database of references to articles in the life sciences. PubMed uses a vector
space model, where every document is represented as a vector of words, and a
weight is assigned to every element of the vector according to some frequency
weighting scheme [98]. Every document vector in the collection is compared
to a user query that is transformed to the vector representation as well, sorted
according to the obtained relevance score and then presented to the user. More-
over, PubMed uses a query expansion technique [89] to provide a better result
coverage. For example, if a user enters yeast as a query, this term is looked up
in the UMLS [115] database and expanded with the term Saccharomyces cere-
visiae, such that the abstracts that do not mention yeast but its Latin name will
be included in the results as well.

PubGene [81] and STRING [80] are examples of IE systems that represent
two of the most comprehensive tools that integrate a vast amount of biolog-
ical information and data mining techniques to leverage biologists’ research
experience. However, while providing powerful algorithms for finding interac-
tions based on structured information such as databases of curated interactions
and gene sequences, these tools rely on relatively simple information extraction
techniques such as co-occurrence based relation extraction and manual rules
matching, and do not apply machine learning approaches when dealing with
natural language texts.

PubGene maintains its own database of gene names and synonyms that are
used to extract information about gene relations from the abstracts retrieved
from PubMed. First, it tags the names of genes that occur in the abstracts, using
a heuristic algorithm to resolve ambiguous gene names to corresponding gene
identifiers. In the next step the frequency of co-occurrence for every pair of
genes in every abstract is calculated, thus creating an association between two



7.2 Online tools for biologists 153

Table 7.1: Online systems for advanced biomedical information retrieval
Method name Description
EBIMed [136] Uses a set of external biological databases and ontologies

to annotate the entities that can be related to the user
query in the retrieved abstracts.

GoPubMed [43] Expands the user query and structures and reranks
PubMed search results using Gene Ontology.

iHOP [76, 79] An IR engine that connects the abstracts by hyperlinking
them through gene and protein names.

Kleio [118] An IR engine that implements an algorithm for gene and
protein name disambiguation and acronym recognition.

LitMiner [39] A tool that couples the functionality of a digital library
with information extraction techniques based on manu-
ally built vocabularies and co-occurrence.

MedBlast [165] Resolves a biological sequence to gene names and per-
forms a search on PubMed.

ProLinks [13] Uses a predefined vocabulary and statistical co-
occurrence method to extract the relation between genes
and proteins in abstracts.

PubMatrix [10] A text analysis tool that employs a statistical co-
occurrence metric to determine relationships between
concepts in PubMed.

PubMed [126] A state of the art information retrieval system for biolo-
gists.

PubReMiner [127] Reranks and regroups PubMed search results by a num-
ber of criteria such as MESH terms, journal of publication
etc., and provides word frequency statistics that facilitate
building more efficient queries.

Textpresso [112] Species-oriented full text IR engine enriched with a
manually-defined ontology for semantic query expansion.

XplorMed [121] An IR engine that groups the retrieved results by associ-
ated MESH terms and provides basic statistics for word
importance in these abstracts.



154 7 Systems for PPI retrieval and extraction

Table 7.2: Online systems for biomedical information extraction
BioIE [42] Uses a set of predefined templates to match specific rela-

tions between entities in abstracts.
ChiliBot [25] A rule based information extraction system that extracts

the relations between genes and proteins.
MEDIE [109] An information extraction system that operates on syn-

tactic sentence structure to answer queries.
PubGene [81] A comprehensive tool that integrates many information

sources into a single information extraction system.
STRING [80] A tool that integrates many information sources and in-

volves text analysis to answer user queries.

genes with the weight corresponding to the number of co-occurrences. This
information is then used to construct literature-based gene networks.

STRING implements a more sophisticated interaction extraction algorithm
than the one in PubGene, which includes not only statistical co-occurrence of
gene and protein names in the abstracts but also involves natural language pro-
cessing [146]. Here the authors use a rule-based approach implemented as a
cascaded finite state automaton to annotate gene and protein names and to
extract regulation and (de-)phosphorylation relations between them from the
abstracts retrieved from PubMed and other sources (see [80] for more details).
Similarly to PubGene, the authors build a list of gene and protein names using
public databases but also expand it with orthographic variants. The input text
is tagged with part-of-speech tags and the entities from the list are matched
against this text. These entities are then expanded to accommodate the cases
where the actual tagged entity is modified by adjectives, nouns or prepositional
phrases. For example in the phrase the ArcB sensory kinase, ArcB is a tagged pro-
tein name, but the entity referred to in the sentence is described by the whole
phrase. In the next step the annotated text is passed to another rule-based sys-
tem that recognizes interaction verbs such as phosphorylate, regulates, increase
and their grammatical forms in order to establish the relation between genes
and proteins.

BioIE [42] proposes a more information retrieval-inspired approach that
is based on matching a predefined set of templates and rules against a set
of biomedical texts. These templates may be words and/or (not) contiguous
phrases that are built manually to capture a certain relation of interest. The
set of predefined patterns is aimed at detecting five categories of relations:



7.3 Motivation for the development of PRISE 155

structure, function, diseases and therapeutic compounds and localization and
familial relationships. These patterns can be extended by the user and also new
patterns can be created to extend the functionality of the BioIE system.

ChiliBot [25], similarly to BioIE, is a rule-based interaction extraction sys-
tem. Also, unlike in most other systems, in ChiliBot the user is expected to
enter two (not one) protein names. In contrast to BioIE, ChiliBot employs nat-
ural language processing, namely parts-of-speech tagging and shallow parsing,
to match the text against templates. These templates look for verb phrases
between two query terms and for specific verbs within these phrases that de-
fine the relationship types. These relationships are divided into six categories:
stimulatory, inhibitory, both stimulatory and inhibitory, neutral, parallel and co-
occurrence only. The latter two are non-interactive categories that indicate that
two genes or proteins only co-occur in the same sentence (parallel) or abstract
(co-occurrence) but do not match any pattern. The system works online and
thus the extracted information is limited to the 100 most recent relevant ab-
stracts retrieved from PubMed to keep the response time acceptable.

MEDIE [109] is another information extraction system that employs more
sophisticated text mining techniques to extract relations between genes and
proteins. First, this approach preprocesses the whole MEDLINE database offline
by tagging gene and protein names and related concepts with the help of ex-
ternal resources, and then parses these abstracts in order to obtain a syntactic
structure for every sentence. The obtained structured information is then stored
in a database, and user queries are transformed and looked up in the database
online using a nested region algebra formalism [99].

PubGene, STRING and ChiliBot provide an additional functionality of con-
structing a network representation of gene and protein interactions. PubGene
relies only on co-occurrence to build such networks and thus it does not indi-
cate the direction or the nature of the relationship, while ChiliBot and STRING
indicate both for certain relationship types.

7.3 Motivation for the development of PRISE

As we have discussed in Section 7.1 there are two aspect of PPI extraction pro-
cess that have received little attention so far: the need for a unified develop-
ment and evaluation framework, and the extension of conventional extraction
systems with reasoning capabilities.

A unified framework is needed, because the current development of inter-
action extraction algorithms is complicated by the fact that a researcher has



156 7 Systems for PPI retrieval and extraction

to make a lot of effort in setting up the experimental environment in order to
evaluate the value of his or her idea. Although conventional machine learning
frameworks like Weka [72] can be used to facilitate the development and evalu-
ation process of an interaction extraction algorithm, and some efforts are being
made to unify the preparation of training and evaluation corpora [128], it still
requires significant effort to set up an entire text mining pipeline that involves at
least establishing the back-end data structure and implementing text database
querying, NER and interaction extraction. This is especially frustrating if a re-
searcher aims at contributing only to one part of the pipeline without delving
too much in the other components. All systems described above do not explic-
itly share any implementation code or documentation, thus it is not possible to
tell how much effort it would take to substitute any desired features.

The @Note framework [97] has been developed to address this problem.
The goal of this framework is to facilitate the cooperation of biologists, data
miners and computer scientists by combining a general purpose Natural Lan-
guage Processing framework GATE [33] and a machine learning framework
YALE [106] and to provide the extracted information in different perspectives
for different types of users. However, although this framework provides excel-
lent tools for annotation and overall textual data management, the tight inte-
gration with GATE NLP tools as well as limited documentation and rigid API
limit the applicability of this framework for our purposes.

Another candidate framework for rapid data mining application develop-
ment is the RapidMiner workbench [133]. This workbench follows the same
path as @Note and encapsulates the YALE and Weka machine learning frame-
works as well as many conventional modules that facilitate data pre- and post-
processing. Although it does not specifically focus on the task of biomedical
data mining like @Note, it provides a rich set of basic tools that facilitate fast
development of custom modules. Moreover, the framework is well maintained
and new releases are issued regularly.

To justify the need of information extraction and modelling integration, let
us briefly review the paradigm of systems biology. The goal of systems biol-
ogy is to build a reliable model that is consistent with the modelled organism,
such that the perturbations in the organism and in the model cause the same
responses. In order to build such a model, systems biology uses an iterative
approach as described by Ideker et al. [77]:

1. Define all the components of the system.

2. Systematically perturb and monitor components of the system.

3. Reconcile the experimental results with those predicted by the model by



7.3 Motivation for the development of PRISE 157

proposing model refinement hypotheses.

4. Design new perturbation experiments to distinguish between suggested
model refinements and repeat steps 2-4.

All systems described above are concentrated on mining information and
combining it together in a coherent model, i.e., performing step 1 in the algo-
rithm above. On the other hand, as described in Chapter 4, there are a num-
ber of modelling approaches available that analyze biological models by means
of executing them and observing the output, thus representing step 2 and in
some cases step 3 of the algorithm above. However, to the best of our knowl-
edge there is no system that combines these steps together in order to build a
one-stop systems biology framework that seamlessly integrates information ex-
traction and modelling. Such a framework would allow for better integration
of existing knowledge in biological models and simplify the process of model
development, thus potentially leading to more descriptive and accurate models.

In order to deal with the two major problems outlined in the beginning of
this section we have implemented our own PRotein Interaction Search Engine
(PRISE) – an open, configurable biomedical interaction extraction framework.
To solve the first problem of providing an easy to use biomedical text min-
ing testbed, with the arguments provided before in mind we chose RapidMiner
as a development platform for PRISE as it is ideally suited for our purposes
of constructing an easily extensible system. This choice leverages PRISE with
all machine learning algorithms and data transformation methods that exist in
RapidMiner and significantly reduces the amount of code that needs to be writ-
ten from scratch.

To solve the second problem of providing a synergy between text mining and
modelling, PRISE aims at making the first steps in uniting information extrac-
tion with biological model construction and analysis by implementing not only
a relation extraction functionality but also providing a tool for building and an-
alyzing the model from this data. A complete description of PRISE is provided
in Chapter 8.



8
PRISE - a PRotein
Interaction Search
Engine

8.1 Introduction

In Chapters 2 and 3 we have studied methods for protein-protein interaction
(PPI) extraction. To briefly recall the details of the PPI extraction task, let us
consider the following example.

Example 1 Consider the sentence

In the shaA mutant, sigma(H)-dependent expression of spo0A and
spoVG at an early stage of sporulation was sensitive to external
NaCl.

This sentence contains 4 protein names, namely shaA, sigma(H), spo0A and
spoVG. The first step of the PPI extraction task, which is called Named Entity
Recognition (NER), is to extract these names from the text. Assume that the 4
proteins in this sentence were successfully recognized by a NER method. These
proteins can be combined into 6 unordered pairs, namely shaA-sigma(H), shaA-
spo0A, shaA-spoVG, sigma(H)-spo0A, sigma(H)-spoVG, and spo0A-spoVG. A pro-
tein pair is a positive instance if the original sentence expresses an interaction
between the members of this pair, and a negative instance if they just co-occur
in the sentence. In the example above, there are two positive instances, namely
sigma(H)-spo0A and sigma(H)-spoVG, while the other 4 instances are negative.
The second step in PPI extraction is to detect which pairs are positive instances;
this phase is called PPID (protein-protein interaction detection).



8.1 Introduction 159

More specifically, in Chapter 3 we were focusing on the PPID task, assuming
that NER was performed in advance. In that chapter we studied the impact of
different types of features extracted from text to represent a potential interac-
tion on the accuracy of PPID methods. We studied lexical, shallow and deep
syntactic features, and one interesting result of this study is that syntactic rela-
tions between words in a sentence, which represent a small subset of all induced
features, allow obtaining a similar performance as a much more extended fea-
ture set that includes lexical data, i.e., words themselves.

Next, in Chapters 4, 5 and 6 we proposed an answer set programming (ASP)
framework for regulatory network modelling. This framework extends the func-
tionality of traditional Boolean networks with the ability to model ‘meta-interactions’,
i.e., interactions that have other interactions as their targets. Moreover, in Chap-
ter 6 we proposed a mechanism to answer queries about network states and
trajectories as well as devised an efficient algorithm for finding network’s stable
states.

In this chapter, we present a system that we have implemented along the
way, i.e., while we carried out the research that led to the results presented in
the previous chapters. It encompasses both the methodology for PPID which
we studied in Chapter 3, as well as the answer set programming framework for
regulatory networks modelling which we proposed in Chapter 6. In addition,
this framework can be used to address the problems outlined in Chapter 7.

As we already mentioned in Chapter 7, it is desirable to have a unified de-
velopment framework that simplifies the development and evaluation of PPI
extraction methods. However, most of the methods developed for NER and
PPID do not follow any standard specification, which means that they are im-
plemented in different languages, with different data preprocessing techniques
and for different platforms. Additionally, some researchers evaluate their sys-
tems on non-publicly available data sets, which makes it difficult to reproduce
their experiments. Moreover, the NER and PPID components that are needed to
build a full interaction extraction pipeline are often developed independently of
each other in a research context and thus are not compatible. This also hampers
the use of the developed methods in the real world, e.g. to build standalone ap-
plications containing the NER and PPID methods for the benefit of the biological
community.

The chapter is divided in two parts. First, we present a framework that
simplifies the development and evaluation process of PPI extraction methods.
Second, we implement PRISE – a PRotein Iteraction Search Engine that includes
this framework, but also includes a reasoning module that incorporates the find-
ings from Chapter 6.



160 8 PRISE

Backend PRISE architecture Frontend PRISE architecture

Query Module NER Module

PPID Module

Index

Modelling Interface

Web Interface

Graphical Interface

ASP Reasoning Module

Figure 8.1.1: Component structure of PRISE

The first part is an attempt to take the first steps towards a flexible unified
text mining framework for extracting protein-protein interactions. This frame-
work aims to provide an easy way to:

1. build and evaluate PPI extraction systems, and to simplify the use of dif-
ferent data sets for training and testing purposes

2. build a stand-alone application server that is capable of processing and
accumulating PPI data continuously, and disclosing this data to the user
through a query mechanism

The implementation of this functionality is outlined in Section 8.3.
The second part, PRISE, is the application that summarizes the contributions

of this thesis. The structure of this application is shown in Figure 8.1.1. Here
one can see that the PRISE backend system actually constitutes a PPI extraction
system that contains NER and PPID components as well as a separate reasoning
module. The algorithms of the reasoning module are extensively described in
Chapter 6, therefore we do not specifically focus on this module in the rest of
the chapter (which does not mean that this module is not important). Most of
the discussion in this chapter will focus the implementation of the PPI extrac-
tion pipeline and of the frontend part. As we already justified at the end of
Chapter 7, we choose the RapidMiner machine learning framework as the basis
for our implementation. To familiarize the reader with RapidMiner we provide
an overview of the essential RapidMiner concepts in Section 8.2. Further in
Section 8.3 we describe the structure of the implementation plugin, which is
followed by a description of the PRISE frontend components in Section 8.4.



8.2 RapidMiner 161

8.2 RapidMiner

RapidMiner is a machine learning framework that provides a modular view on
machine learning processes, and can be used both as a standalone application
and as a software library. For more information on RapidMiner we refer to
[133].

The basic concepts of RapidMiner are Operator and Process. Operator
and OperatorChain are terms used in RapidMiner to denote units that perform
certain operations, such as reading data from a file, training a classifier, etc. An
OperatorChain can contain other operators as its parts. A Process is a special
case of an OperatorChain that is used to denote a set of operators aimed to
solve a certain task, e.g. PPI extraction.

Every Operator has input and/or output ports that are used to receive and
transmit data. Operators can be linked together on their ports to build a data
processing pipeline, where each operator either transforms the input data or
produces new data for a given input. For example, operator Sample may remove
some entries from the input data set, while operator k-NN does not transform
the input, but learns a model from it.

Typically, data in RapidMiner is stored in a specific data structure called
ExampleTable that is connected to a persistent storage (database) containing
all instances. The actual operators use ExampleSets which are views over an
ExampleTable that may represent partial information from the corresponding
ExampleTable. An ExampleSet consists of Examples that usually correspond
to feature vectors of instances. In the standard RapidMiner framework, data
are passed between operators only in the form of ExampleSets. However, if
RapidMiner is used as a library it is possible to define other objects that can be
passed between ports by inheriting the IOObject class. This is an important
feature that we use in our framework as it allows us to build a domain model
and operators that act directly on this model as we explain below.

8.3 Backend architecture

8.3.1 PPI extraction task

Supervised machine learning techniques can be used to address both NER and
PPID. In general, for the NER task, a ‘window’ of several words around a can-
didate protein name or even a whole sentence is represented as a vector of
features, such as words themselves, orthographic features (capitalization, hy-



162 8 PRISE

phenation, alphanumeric characters), Greek letters, punctuation, etc. These
feature vectors are further used to train a classifier based on a conventional ma-
chine learning technique. The results of NER can then be used to solve the PPID
task.

To address the PPID problem, one needs to build representations for can-
didate interactions, i.e., for protein pairs. Such a protein pair representation
should include information (features) from the sentence that can be used to
distinguish between positive and negative instances. The difference with the
NER task is that in PPID we already have a fixed pair of terms in a sentence
and the task is not to detect an entity name, but to extract a (potentially im-
plicit) relationship between these terms. This means that the strategy to build
a feature vector for this task is likely to be different and potentially can include
more elaborate features such as syntactic dependencies between words or other
structural information. For an elaborated discussion on features that can be
used for the PPID task we refer to our work described in Chapter 3.

As we will see in Sections 8.3.3 and 8.3.4, a system to solve the PPI extrac-
tion problem can be decomposed into independent modules that generally fit
well in the RapidMiner paradigm. The main difference between the NER and
PPID tasks from the structural point of view is the way to obtain the feature
vector representation of a candidate entity/interaction. Thus abstracting the
operations that convert a sentence into a feature vector representation gives us
a flexible framework that is suitable to build both NER and PPID components.
To this end we have developed a set of additional RapidMiner operators that
simplify this task and that provide extra functionalities specific to PPI extrac-
tion.

8.3.2 Domain models

8.3.2.1 Domain model structure

To better accommodate the PPI extraction domain we have developed our own
data representation model shown in Figure 8.3.1 and called AbstractSet. It
preserves the textual data on different granularity levels, rather than converting
it to RapidMiner’s ExampleTable immediately. In this structure, an abstract
can contain 1 or more sentences; a sentence can contain 0 or more proteins
and 0 or more interactions; an interaction involves exactly 2 proteins. The
additional wrapper classes (with IO suffix) are intended to pass data between
RapidMiner operators. The reason for introducing this representation is that
RapidMiner assumes that every instance in the data set is represented as an



8.3 Backend architecture 163

Figure 8.3.1: Diagram of the central data representation model called
AbstractSet.

Example, but merely loading text in a RapidMiner Process does not provide us
with a desirable feature vector. Moreover, as we do not want to restrict a user
to any certain set of features, we want to provide a flexible mechanism for text
to feature vector conversion that a user can implement depending on his needs,
and the domain representation depicted in Figure 8.3.1 simplifies this task.

8.3.2.2 PPI database

Another design choice is to use an external database to store the interaction re-
lated data. It is important to distinguish between RapidMiner’s internal database
used to store an ExampleTable and the database we use. In RapidMiner, a
database is a medium to store the data set loaded in a Process, and this
database is used to operate with data exclusively within this Process, i.e. it is a



164 8 PRISE

abstracts

PK abstract_id

 external_id

 source

 text

 title

 date_added

 date_written

sentences

PK sentence_id

FK1 abstract_id

 sentence_number

 sentence

 position

 length

 dependency_tree

entities

PK entity_id

entity_names

FK1 entity_id

 name

 preferred

 entity_type

 verified

interaction_predictions

PK interaction_id

FK1 sentence_id

FK2 abstract_id

FK3 p1_id

FK4 p2_id

 p1_offset

 p2_offset

 p1_length

 p2_length

FK5 interaction_type_id

 confidence

 date_time

 source

interaction_types

PK interaction_type_id

 name

Figure 8.3.2: Entity-Relationship diagram of the PRISE database

transient storage.1 In our case, to build a stand alone PPI extraction application,
we need a persistent storage that contains the same information no matter what
the Process’s structure is. The structure of this database is presented in Figure
8.3.2.

This database contains tables that store the information about the main data
objects: abstracts, sentences, gene and protein names (table entities) and
mined interactions. Abstracts can come from different sources (e.g. we can
load annotated data sets in the same table that contains data from PubMed)
and the field source stores the source of every abstract, while external id
stores the abstract’s id in this source. The field date written contains the time
stamp of writing the abstract to this table and the field date added is a PubMed-
specific field that contains the time stamp of adding this abstract to the PubMed
database.

Every sentence in table Sentences has a link to a corresponding abstract, the
number of this sentence in the abstract, the character offset of the first sentence
character and a dependency tree for this sentence.

Tables Entities and Entity names contain the information about gene and
protein names. Two tables are used for this representation as one protein may

1http://rapid-i.com/wiki/index.php?title=Data_core



8.3 Backend architecture 165

PubMedReader

TextWrapper

Parser

FeatureVectorConverterModelApplier

Converter

ModelReader

DatabaseWriter

SentenceSplitter TextWrapper

ProteinRecognizer

Figure 8.3.3: Diagram of a PPI extraction system that reads articles from MED-
LINE (PubMed) and stores the mined interactions in a database. The labels
correspond to RapidMiner operators.

have several names. For every name the type of entity is kept (gene or protein).
The flag preferred indicates the canonical name for a given entity, the flag
verified indicates that this name was checked manually and is a correct name.

Finally, table Interaction predictions contains all information that is nec-
essary to identify an interaction. Every interaction is associated with a corre-
sponding sentence, contains information about two entities that take part in it
and contains the confidence score assigned by a PPID tool. The field source
contains the information about the tool that has assigned the confidence score.

8.3.3 Application mode

The starting point for PPI extraction are articles from the MEDLINE text database.
PubMed provides a query interface to this library that retrieves information
from MEDLINE. To access this data we have built a PubMedReader operator that
queries the online service with parameters such as keywords and date range,
and provides a list of abstracts as output. These are stored in an AbstractSet
as depicted in Figure 8.3.1. The initial text mining step to perform next is to
split the text of these abstracts into sentences. To perform this preprocessing
step one can use an existing sentence splitter that takes the text as input and
outputs the list of sentences. To encapsulate this component we have built



166 8 PRISE

a SentenceSplitter operator that takes an AbstractSet containing a list of
Abstract objects as input and returns the same AbstractSet that additionally
contains a list of Sentence objects for every abstract.

The next step in the application pipeline is to determine the entities (gene
and protein names) which are potential interaction arguments. Here again one
can use an existing NER tool that processes texts sentence by sentence and re-
turns the sentences with annotated protein names. To this end we have devel-
oped a RapidMiner operator TextWrapper that has a parameter Granularity
which regulates the granularity level of the iterator that reads the data (per ab-
stract, per sentence or per (potential) interaction). This operator is connected to
the ProteinRecognizer operator that encapsulates an external NER tool. Pro-
teinRecognizer converts the format produced by the NER tool to the format
of the data representation model we use, which now contains abstracts with
sentences that contain annotated gene and protein names. If further syntac-
tic preprocessing needs to be done, a natural language parser can be plugged
in. Typically, parsers accept a sentence and output a parsing structure for this
sentence; in this case a parser can also be encapsulated with TextWrapper to
ensure correct input/output processing. For a discussion of the actual tools used
in our implementation we refer to Section 8.3.5.

For the PPID step we do not follow the ‘wrapping’ strategy we used for NER
and sentence splitting. Instead, we offer the user the ability to take advantage
of readily available classifiers implemented in RapidMiner, as well as provide
him with a mechanism to prepare arbitrary feature vectors as was discussed in
Section 8.3.1. To this end we need to support the conversion of a candidate
interaction to a feature vector representation. Note that typically more features
beyond mere terms are induced from the text for complex information extrac-
tion tasks. The induced features may range from n-grams, lemmas, POS tags to
more complex ones such as syntactic roles and dependency trees. To perform
this conversion we have developed a FeatureVectorConverter operator chain
that takes the domain data structure as input and processes it interaction by
interaction in its inner chain, converting every instance to an Example object
that represents a feature vector for this instance. The operator Converter in
the inner chain that performs the actual conversion should be implemented by
the user. In the application mode we assume that the classifier was trained else-
where (see Section 8.3.4) and thus it is being read by a standard ModelReader
operator.

To complete the picture we have implemented a DatabaseWriter operator
that provides access to the underlying interaction database. The input of this
operator is an AbstractSet that is being written to the database.



8.3 Backend architecture 167

LoadInteractions
train file

TextWrapper

Parser

FeatureVectorConverter

ModelLearner

Converter

ModelApplier

LoadInteractions
test file

Evaluator
labels

unlabelled data

model

train

test

train

labelled data

Figure 8.3.4: Diagram of the evaluation of a PPID method on an annotated
benchmark data set.

8.3.4 Evaluation mode

Our RapidMiner framework for PPI extraction can be used for evaluation pur-
poses too. In this section we discuss an evaluation pipeline for PPID as shown
in Figure 8.3.4; evaluation of NER follows a similar path.

Instead of pulling in unseen articles from MEDLINE, in the evaluation mode
one typically has annotated data that is used both for training and evaluation.
One of the problems with annotated data sets is that they can come in different
formats. Recently, a unified XML format for PPID was proposed [129]. We have
implemented a LoadInteractions operator that reads such an XML file and
produces an AbstractSet as output. Alternatively, a user can read the interac-
tions from the domain database using the operator DatabaseReader or imple-
ment an operator that converts a proprietary data format to an AbstractSet
for further processing. Typically, PPID benchmark data sets contain texts that
are split into sentences with interactions, gene and protein names already anno-
tated. This means that the output of this operator is a fully populated AbstractSet,
as opposed to the application case in Section 8.3.3 where several preprocessing
steps were needed to arrive at this stage. The subsequent feature vector con-
struction step is the same as in Section 8.3.3.

The next steps involve training and evaluating a classifier. RapidMiner pro-
vides a number of popular classification algorithms that can be readily applied
through learner operators, as well as allows for inclusion of new algorithms by
implementing custom learner operators for them. In Figure 8.3.4 we abstract
from any particular algorithm and denote the learner as ModelLearner. The
input to a learner is an ExampleSet and the output is a RapidMiner Model that
stores the parameters of the model learned by a classifier. This model can be



168 8 PRISE

further applied to classify new instances by means of the ModelApplier oper-
ator. The Evaluator operator takes predictions from the ModelApplier along
with actual labels of instances and computes various evaluation metrics such as
accuracy, and classification error values.

8.3.5 PRISE backend implementation

We have used the RapidMiner framework described above to build PRISE - a
system that scans PubMed entries and provides a web interface for querying
the extracted interactions. To build the application pipeline we have used an
implementation of a sentence splitter provided in the OpenNLP2 framework
and a NER tool called ABNER [150].

For PPID, we used the combined kernel as explained in Chapter 3. How-
ever, dependency trees are not in our domain model, thus we needed to include
an extra step to parse the sentences. We implemented a Parser operator that
wraps the Stanford Parser3 and enriches our data structure with parse and de-
pendency trees, which potentially allow us to extract not only shortest paths
but also POS tags, chunks, phrases etc. To build a classifier we used a TreeSVM
implementation [111] of the SVMLight classifier [82]. TreeSVM takes the trees
in the Penn Treebank notation as input, thus the Converter operator merely ex-
tracts the shortest path from the sentence dependency tree for a given protein
pair and returns an Example that contains a shortest path in the Penn Treebank
notation as a single feature. Further, the Converter in a straightforward way
extends the feature vector with different types of shortest paths such as those
that contain POS as nodes and those that contain only syntactic dependencies
as described in Chapter 3.

Note that having a tree as a feature vector generally poses a problem in
machine learning frameworks such as Weka [72] as trees are difficult to fit into
the concept of feature vectors implemented there. However, in the modular
framework built with RapidMiner we isolate this problem in one component,
namely the classifier itself, and keep the rest of the pipeline untouched, which
means that we can switch to another application setup by merely changing the
Converter operator and the classifier.

So far, we restricted our attention to the interaction extraction pipeline, and
we did not say anything about the ASP reasoning module depicted in Figure
8.1.1, although it is a very important part of PRISE. The implementation of

2http://opennlp.sourceforge.net/
3http://nlp.stanford.edu/software/lex-parser.shtml



8.4 Frontend architecture 169

Browser

J2EE Container

IndexDB
Web container

Servlet
JSP

Figure 8.4.1: The general architecture of a J2EE web container

this module is, in fact, a straightforward implementation of the SSB algorithm
described in Chapter 6, Section 6.5.1 and of the extended Temporal algorithm
described in the same chapter, Section 6.5.2. To solve ASP programs we have
used the Clingo package [61] that provides a grounder and a solver under a
common hood.

8.4 Frontend architecture

8.4.1 Server-side architecture

The frontend component should provide online access to the data, gathered
by the backend component. A natural choice for online frontend systems is to
use the Java EE (J2EE) framework that provides a formal specification of web
server interfaces. The advantage of using J2EE is that many publicly available
implementations of this specification such as Tomcat4 or GlassFish5 can be used
to facilitate the application development. Moreover, there exist frameworks
that provide templates for typical web application needs such as Apache Struts6

or Spring7 that allow a developer to focus only on the implementation of the
application parts that are essential to the system. In this section we briefly
outline the typical web application architecture and emphasize the choices we
made for our application.

The structure of a J2EE web container is shown in Figure 8.4.1. A client,
represented as a web browser, sends a request to a web server that implements

4http://tomcat.apache.org/
5https://glassfish.dev.java.net/
6http://struts.apache.org/
7http://www.springsource.org/



170 8 PRISE

Browser

Web container

Struts
Controller View

Request Response

Model
Struts Config

Struts Taglib

Servlet JSP

Figure 8.4.2: Struts application architecture

the J2EE web container specification. According to the specification the request
is transmitted to a servlet, which decides which response to a client should be
generated. Java Server Pages (JSP) are often used to model templates for differ-
ent response types. The response generation process is typically associated with
requesting domain data which can be queried from a database or some other
source. Finally, the generated response page is returned to the web container,
which in turn returns the response to a browser.

This specification follows the MVC (Model-View-Controller) architectural
principle, that decouples the application into three components, each of which
can be developed independently. Model represents the application logic and
typically consists of data structures that are populated from databases and trans-
formed according to the application needs. In our case the model is presented
by the database depicted in Figure 8.3.2 and the domain data structure depicted
in Figure 8.3.1. View is used to represent the model to a user and allows a user
to interact with it. In our case the view is presented as the PRISE web interface.
Finally, controller connects the view and the model by defining the interaction
logic between them.

The MVC pattern is a best practice to use when developing web applica-
tions, thus to simplify the development we have chosen to use the Apache Struts
framework that supports development compliant with this pattern. Struts en-
forces the MVC pattern on J2EE web application development by providing an
extension of the servlet container and facilitating the development of view com-
ponents. The architecture of a Struts application is shown in Figure 8.4.2. As



8.4 Frontend architecture 171

cluster The action used to query the interactions for a given en-
tity and to represent the results as a list. Interaction evi-
dences are grouped per second interacting entity.

graph The action used to query the interactions for a graphi-
cal representation. Retrieved interactions are returned in
XML format and further processed in a browser.

xml The action to update the existing graphical representa-
tion. See Section 8.4.2 for more details.

model The action that runs the modelling algorithm described
in Chapter 6.

Table 8.1: Description of Struts actions implemented in PRISE

can be seen from Figure 8.4.2, Struts is built on top of the J2EE web container.
It provides an extension of the servlet class that is governed by the Struts config-
uration file. Requests from a browser come as ‘actions’ defined in the configura-
tion file. Each action has an associated controller, that interacts with the model.
Each action has a set of associated views, one of which is returned depending
on the outcome of the controller execution. A library of Struts tags that extends
the conventional JSP tag library is used to eventually shape the response to a
browser. The list of actions implemented in the system with short explanations
is provided in Table 8.1.

8.4.2 Client-side architecture

The web interface should allow a user to
1. query the interactions for a given gene or protein from the database and

represent the results in textual and graphical form,

2. expand the existing query results with interactions for other proteins,

3. filter the results,

4. edit interaction networks obtained by multiple queries,

5. run network modelling algorithms that compute the network’s steady states.



172 8 PRISE

The textual representation of search results can be straightforwardly imple-
mented with plain HTML, while the graphical representation poses a problem in
a browser setting, as web browsers are poorly suited to represent graphical in-
teractive content. To overcome this problem many extensions were proposed to
build interactive browser applications such as Flash, ActiveX, Java Applets, etc.
However, most of these technologies either require to install additional software
and/or are not cross-platform, i.e. they do not work in all browsers. With these
arguments in mind we opted for the HTML5 canvas model that allows a pro-
grammer to create interactive graphics within a browser window. The fact that
it is a part of the HTML5 specification makes it work on most modern browsers.
Moreover, for advanced visualization of network state spaces we have used the
Protovis library http://vis.stanford.edu/protovis/.

The problem with the incremental query feature is that the browser should
store already obtained results when sending the request for new interactions
and processing the response. Initially, browsers were designed to be stateless,
i.e. when they receive a new portion of data they ‘forget’ everything that they
had before. However, in many cases it is useful to store the information obtained
earlier, i.e. to keep the state of the browser. The standard way to implement this
functionality is to use the AJAX (Asynchronous JavaScript and XML) technology
that sends requests and receives responses without reloading the full page. To
implement the incremental update in our application, when extending the query
results we call a special action xml (see Table 8.1), which returns a response
that is recognized by the browser as an incremental update, and thus it does
not reload the page.

Using the canvas model we can represent the interactions retrieved from the
database as a graph, as shown in Figure 8.4.3. The nodes represent entities and
the links between them represent the interactions mined from abstracts. The
thickness of the links reflects the number of citations that support this interac-
tion - a thicker line means more abstracts describe this interaction. The color of
the link represents the confidence of a PPID method in this interaction - darker
lines represent more certain interactions.

The results can be incrementally extended, as shown in Figure 8.4.4. To
this end, a user can click on a node already presented in the interaction graph
and click the button ‘Search for interactions’. This will expand the displayed
network with the interactions for the new query protein. The result of query
expansion is shown in Figure 8.4.4, where the query proteins are depicted with
red nodes.



8.4 Frontend architecture 173

Figure 8.4.3: Graphical representation of search results

Figure 8.4.4: Incremental search results



174 8 PRISE

Figure 8.4.5: Filtered results

Additional controls shown on the left can be used to filter the results. Two
sliders filter the results by frequency and by classifier confidence. Figure 8.4.5
depicts the interactions from the Figure 8.4.4 that have at least 3 supporting
evidences.

Further, with the radio button in the top left corner we can switch to the
editing mode where the results are represented as a network that can be edited
and analyzed. The editing screen is presented in Figure 8.4.6. In this figure, the
interaction between insulin and leptin is selected, and on the left panel the user
can see the links to the abstracts that mention this interaction along with the
confidence score assigned by a PPID method.

Moreover, the application provides a way to build interaction networks from
scratch, as shown in Figure 8.4.7. Control buttons create new proteins and
interactions between them, set activation and inhibition thresholds and express
the exceptions to the framework semantics. Moreover, it is possible to enhance
edges with references linking to a relevant paper on PubMed.

In Figure 8.4.7 the Fission yeast cell cycle network model is depicted. This
model can be analyzed with our ASP framework by clicking the ‘Analyze’ button.
The state space of a network is represented on the following screen, depicted
in Figure 8.4.8. This screen allows a user to browse through attraction basins
of the modelled network. At every moment, one attraction basin is shown, and
the user can switch between the basins by means of a radio button on the left.
Labels describing the state associated with every node can be switched on and
off as well.



8.4 Frontend architecture 175

Figure 8.4.6: Editing mode

Figure 8.4.7: Editing mode



176 8 PRISE

Figure 8.4.8: Editing mode



9 Summary

The advances in biological research in the last two decades have provided many
new insights on the functioning principles of living organisms. This resulted
in the proposal of new methods to study the development of living organisms.
One of the most significant advances is the development of microarrays and of
high-throughput techniques that allow a biologist to collect a massive amount
of experimental information about a particular biological process, which can be
used for different purposes such as explanation of a living organism behaviour
or drug design.

The development of new experimental methods and rapid growth of biolog-
ical data repositories have contributed to building biological network models
that are aimed at reconstructing real biological processes in silico. On the other
hand, advances in experimental techniques have led to a rapid increase of re-
ports that describe new biological discoveries. Clearly, processing large amounts
of information calls for automated methods that (partially) remove the burden
of manual data processing from the shoulders of biologists.

These two aspects of effective biological data utilization, namely automated
text processing for information extraction and constructing and analyzing bio-
logical network models, have attracted a lot of attention in computer science. In
this thesis we have presented our contributions to these problems by studying
both information extraction and modelling aspects.

In the first part of the thesis, that comprises Chapters 2 and 3, we have dis-
cussed the problem of information extraction from biological article abstracts,
and in particular the problem of protein-protein interaction extraction. In Chap-
ter 2 we have introduced the basic notions necessary to perform the interaction
extraction task; we have discussed the natural language processing techniques



178 9 Summary

and the machine learning setting for this task. Further, we have described the
annotated corpora used for machine learning training and evaluation. These
explanations not only provided a solid foundation for understanding the meth-
ods described in Chapter 3, but were also useful for the implementation part of
our work, presented in Chapter 8.

In Chapter 3 we have studied the impact of different feature types on the
performance of protein-protein interaction extraction methods. To this end we
have examined different structured kernels with Support Vector Machines. We
have taken four kernels that reflect different degrees of using syntactic and
lexical information and have performed three types of experiments to study
the behaviour of these methods under different conditions on five benchmark
datasets. The most important observation in this chapter is that by using only
grammatical relations we can obtain a similar performance as with an extended
feature set. This indicates the relative importance of grammatical information
for the interaction extraction task. Another finding is the correlation between
training/test set sizes and the method choice. We observed that when the train-
ing set is much smaller than the test set, then the syntactic kernel performs
better. We believe that these findings can be helpful in building faster and less
complicated classifiers, as well as for choosing a proper kernel according to the
data set at hand.

The second part of this thesis consists of Chapters 4, 5 and 6. These chap-
ters address the problem of biological system modelling. In the last decade this
problem has attracted a lot of attention from the theoretical computer science
field; in Chapter 4 we have discussed some of the computational modelling tech-
niques that have been proposed as possible solutions. As we have discussed in
this chapter, there is still no general agreement on the tools that suit the needs
for any particular modelling task. Some approaches, such as Petri Nets, are best
suited for modelling metabolic networks since they provide a natural repre-
sentation for production/consumption processes, while others, such as Boolean
networks, are more suitable for gene regulatory network modelling, since gene
states are easily approximated by boolean states. One of the problems that is
common for all approaches is that it is not clear how easy it is to integrate new
information in the model, and whether it can be done in a (semi) automatic
way, thus leveraging the model construction with data and text mining tech-
niques that extract gene and protein interactions from the otherwise unused
data.

In Chapters 5 and 6 we have described a new approach to regulatory net-
work modelling based on Answer Set Programming (ASP) that combines an
easy network description language with powerful means for network analysis.



179

In particular, in Chapter 5 we have introduced Markovian answer set programs,
which are useful to model systems whose behaviour depends on time. An impor-
tant task when modelling such systems is to find their steady states and cycles.
A brute force approach for steady state finding may lead to a bad solving time.
To overcome this problem we have proposed an effective algorithm for solving
Markovian programs.

Next, in Chapter 6 we have proposed modelling regulatory networks as
Markovian programs. We started with the development of an ASP framework
that covers threshold boolean network semantics. Besides the essential acti-
vation and inhibition link modelling, we introduced the concept of thresholds
that characterize the susceptibility of a protein to activation or inhibition influ-
ence, and we explained how to use these notions for modelling self-activation
and self-inhibition phenomena. Further, we extended this framework with the
possibility to model ‘meta-interactions’, i.e., the influence of proteins on other
interactions, which goes beyond the reach of conventional boolean network se-
mantics. Moreover, we augmented our framework with a flexible query mech-
anism that simplifies the analysis of constructed models. Queries can be used
to compute only those trajectories in a state space that a biologist is interested
in. A query is represented as an ASP program, which allows for building com-
plex statements that may involve conditions and may evaluate different states
of a network evolution trajectory. Finally, we devised a specific algorithm that
computes a complete state space of a network in a single solver run.

As we discussed further in Chapter 6, one of the main advantages of our
ASP framework is that it is more formal compared to Boolean networks, since it
describes all implicit assumptions and background knowledge explicitly in the
program, while in Boolean networks this knowledge often remains hidden in
the non-formal description. However, the approach remains straightforward to
apply; it does not require any formal logics knowledge from the biologist, who
can operate with ready-to-apply blocks to build a model. At the same time the
approach is very flexible due to the fact that nonmonotonic reasoning is used
and any specific case which does not fit in the general picture can be incorpo-
rated with minimal effort. Finally, in the end of Chapter 6 we have provided
three regulatory network models for Budding Yeast, Fission Yeast and the mam-
malian cell cycle, that illustrate the features of our modelling framework.

The third part of this thesis consists of Chapters 7 and 8. This part draws
upon the research that we have performed in the previous chapters and de-
scribes the software implementation of the information extraction methods from
Chapter 3 and of the modelling algorithms from Chapter 6. Chapter 7 provides
an overview of online information retrieval and extraction systems that have



180 9 Summary

been built to address the information extraction problem in the biological do-
main. Further, we discussed the need for a development and evaluation frame-
work for interaction extraction. Such a framework can eliminate the need of
building a whole text mining pipeline from scratch, which would allow a re-
searcher to concentrate on the actual extraction task. Finally, in Chapter 8 we
have proposed an implementation of such a framework that is built on top of
the RapidMiner machine learning library. Moreover, in this chapter we have pre-
sented PRISE – a PRotein Interaction Search Engine that integrates this frame-
work. Furthermore, PRISE implements the modelling algorithms from Chapter
6 and provides a web tool to build and analyze regulatory networks.

The problem of biological data processing keeps attracting a lot of inter-
est from the computer science domain, and the state of the art in information
extraction and reasoning is constantly pushed forward by improving upon pre-
vious developments and proposing new approaches. One interesting path for
extending the work presented in this dissertation is to extend our modelling
framework with the possibility to model gradual activation. Other aspects that
can be studied include asynchronous execution and enrichment of the frame-
work with different interaction types beyond activation and inhibition.







Bibliography

[1] AIROLA, A., PYYSALO, S., BJÖRNE, J., PAHIKKALA, T., GINTER, F., AND

SALAKOSKI, T. A graph kernel for protein-protein interaction extraction.
In Proceedings of the Workshop on Current Trends in Biomedical Natural
Language Processing (2008).

[2] ALBERT, R. Boolean modeling of genetic regulatory networks. Lecture
Notes in Physics 650 (2004), 459–481.

[3] ALBERT, R., AND OTHMER, H. G. The topology of the regulatory inter-
actions predicts the expression pattern of the segment polarity genes in
drosophila melanogaster. Journal of Theoretical Biology 223, 1 (2003), 1
– 18.

[4] AMARAL, L. A. N., DIAZ-GUILERA, A., MOREIRA, A. A., GOLDBERGER,
A. L., AND LIPSITZ, L. A. Emergence of complex dynamics in a sim-
ple model of signaling networks. Proceedings of the National Academy of
Sciences 101, 44 (2004), 15551–15555.

[5] ANANIADOU, S., AND MCNAUGHT, J. Text Mining for Biology And
Biomedicine. Arttech House, 2005.

[6] ASHBURNER, M., BALL, C. A., BLAKE, J. A., BOTSTEIN, D., BUTLER, H.,
CHERRY, J. M., DAVIS, A. P., DOLINSKI, K., DWIGHT, S. S., EPPIG, J. T.,
HARRIS, M. A., HILL, D. P., ISSEL-TARVER, L., KASARSKIS, A., LEWIS,
S., MATESE, J. C., RICHARDSON, J. E., RINGWALD, M., RUBIN, G. M.,
AND SHERLOCK, G. Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nature genetics 25, 1 (2000), 25–29.

[7] BALDUCCINI, M., GELFOND, M., AND NOGUEIRA, M. Answer set based
design of knowledge systems. Annals of Mathematics and Artificial Intel-
ligence 47, 1-2 (2006), 183–219.



184 BIBLIOGRAPHY

[8] BARAL, C. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

[9] BARAL, C., CHANCELLOR, K., TRAN, N., TRAN, N., JOY, A. M., AND

BERENS, M. E. A knowledge based approach for representing and rea-
soning about signaling networks. Bioinformatics 20, 1 (2004), 15–22.

[10] BECKER, K., HOSACK, D., DENNIS, G., LEMPICKI, R., BRIGHT, T., CHEA-
DLE, C., AND ENGEL, J. Pubmatrix: a tool for multiplex literature mining.
BMC Bioinformatics 4, 1 (2003), 61.

[11] http://bond.unleashedinformatics.com/.

[12] BOSER, B. E., GUYON, I., AND VAPNIK, V. A training algorithm for opti-
mal margin classifiers. In COLT ’92: Proceedings of the 5th annual work-
shop on Computational learning theory (1992), pp. 144–152.

[13] BOWERS, P., PELLEGRINI, M., THOMPSON, M., FIERRO, J., YEATES, T.,
AND EISENBERG, D. Prolinks: a database of protein functional linkages
derived from coevolution. Genome Biology 5, 5 (2004), R35.

[14] BRAND, M. D. Regulation analysis of energy metabolism. Journal of
Experimental Biology 200, 2 (1997), 193–202.

[15] BRANTS, T. Tnt - a statistical part-of-speech tagger. In Proceedings of the
sixth conference on Applied natural language processing (2000), pp. 224–
231.

[16] BREWKA, G. Nonmonotonic reasoning: logical foundations of common
sense. Cambridge University Press, New York, NY, USA, 1991.

[17] BRILL, E. Transformation-based error-driven learning and natural lan-
guage processing: a case study in part-of-speech tagging. Computational
Linguistics 21, 4 (1995), 543–565.

[18] BUNESCU, R., GE, R., KATE, R. J., MARCOTTE, E. M., MOONEY, R. J.,
RAMANI, A. K., AND WONG, Y. W. Comparative experiments on learn-
ing information extractors for proteins and their interactions. Artificial
Intelligence in Medicine 33, 2 (2005), 139–155.

[19] BUNESCU, R. C., AND MOONEY, R. J. Subsequence kernels for relation
extraction. In Proceedings of 19th Annual Conference on Neural Informa-
tion Processing Systems (2005).

[20] BUSI, N., AND GORRIERI, R. A petri net semantics for pi-calculus. In
Proceedings of the 6th International Conference on Concurrency Theory
(1995).



BIBLIOGRAPHY 185

[21] CER, D., DE MARNEFFE, M.-C., JURAFSKY, D., AND MANNING, C. D. Pars-
ing to stanford dependencies: Trade-offs between speed and accuracy.
In Proceedings of the Conference on Language Resources, Technologies and
Evaluation (2010).

[22] CHAOUIYA, C. Petri net modelling of biological networks. Briefings in
Bioinformatics 8, 4 (2007), 210–219.

[23] CHAOUIYA, C., REMY, E., RUET, P., AND THIEFFRY, D. Qualitative mod-
elling of genetic networks: From logical regulatory graphs to standard
petri nets. In Proceedings of the 25th International Conference on Applica-
tions and Theory of Petri Nets (2004), pp. 137–156.

[24] CHAOUIYA, C., REMY, E., AND THIEFFRY, D. Qualitative petri net mod-
elling of genetic networks. In Transactions on Computation Systems Biol-
ogy (2006), pp. 95–112.

[25] CHEN, H., AND SHARP, B. Content-rich biological network constructed
by mining pubmed abstracts. BMC Bioinformatics 5, 1 (2004), 147.

[26] CHEUNG, D., AND SONG, I.-Y., Eds. CIKM ’09: Proceedings of the 18th
ACM conference on Information and knowledge management (New York,
NY, USA, 2009), ACM.

[27] CIOCCHETTA, F., AND HILLSTON, J. Process algebras in systems biology.
In Formal Methods for Computational Systems Biology (2008).

[28] CLEGG, A., AND SHEPHERD, A. Benchmarking natural-language parsers
for biological applications using dependency graphs. BMC Bioinformatics
8, 1 (2007), 24.

[29] COLLINS, M., AND DUFFY, N. Convolution kernels for natural language.
In Proceedings of 14th Annual Conference on Advances in Neural Informa-
tion Processing Systems (2001), pp. 625–632.

[30] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine Learning
(1995), 273–297.

[31] CRESTANI, F., MARCHAND-MAILLET, S., CHEN, H.-H., EFTHIMIADIS,
E. N., AND SAVOY, J., Eds. Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2010, Geneva, Switzerland, July 19-23, 2010 (2010), ACM.

[32] CRICK, T., BRAIN, M., VOS, M., AND FITCH, J. Generating optimal code
using answer set programming. In Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Reasoning (2009).



186 BIBLIOGRAPHY

[33] CUNNINGHAM, H., MAYNARD, D., BONTCHEVA, K., AND TABLAN, V. Gate:
A framework and graphical development environment for robust nlp
tools and applications. In Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics (2002).

[34] CURTI, M., DEGANO, P., PRIAMI, C., AND BALDARI, C. T. Modelling bio-
chemical pathways through enhanced pi-calculus. Theoretical Computer
Science 325, 1 (2004), 111–140.

[35] DAVIDICH, M. I., AND BORNHOLDT, S. Boolean network model predicts
cell cycle sequence of fission yeast. PLoS ONE 3, 2 (2008), e1672.

[36] DAVIDSON, E., AND LEVIN, M. Gene regulatory networks. Proceedings of
the National Academy of Sciences of the United States of America 102, 14
(2005), 4935–4935.

[37] DAVIS, J., AND GOADRICH, M. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning (2006).

[38] DE JONG, H. Modeling and simulation of genetic regulatory systems: A
literature review. Journal of Computational Biology 9, 1 (2002), 67–103.

[39] DEMAINE, J., MARTIN, J., WEI, L., AND DE BRUIJN, B. Litminer: integra-
tion of library services within a bio-informatics application. Biomedical
Digital Libraries 3, 1 (2006), 11.

[40] DEVILLERS, R. R., KLAUDEL, H., AND KOUTNY, M. A petri net translation
of π-calculus terms. In Proceedings of 3rd International Colloquium on
Theoretical Aspects of Computing (2006).

[41] DING, J., BERLEANT, D., NETTLETON, D., AND WURTELE, E. S. Mining
medline: Abstracts, sentences, or phrases? In Pacific Symposium on
Biocomputing (2002).

[42] DIVOLI, A., AND ATTWOOD, T. K. Bioie: extracting informative sentences
from the biomedical literature. Bioinformatics 21, 9 (2005), 2138–2139.

[43] DOMS, A., AND SCHROEDER, M. GoPubMed: exploring PubMed with the
Gene Ontology. Nucleic Acids Research 33, suppl 2 (2005), W783–786.

[44] DWORSCHAK, S., GRELL, S., NIKIFOROVA, V. J., SCHAUB, T., AND SEL-
BIG, J. Modeling biological networks by action languages via asp. Con-
straints 13, 1-2 (2008), 21–65.

[45] EKER, S., KNAPP, M., LADEROUTE, K., LINCOLN, P., MESEGUER, J., AND

SÖNMEZ, M. K. Pathway logic: Symbolic analysis of biological signaling.
In Pacific Symposium on Biocomputing (2002).



BIBLIOGRAPHY 187

[46] EKER, S., KNAPP, M., LADEROUTE, K., LINCOLN, P., AND TALCOTT, C. L.
Pathway logic: Executable models of biological networks. Electronic
Notes in Theoetical Computer Science 71 (2002).

[47] EOM, J.-H., AND ZHANG, B.-T. Pubminer: Machine learning-based text
mining for biomedical information analysis. Genomics & Informatics 2, 2
(2004), 99–106.

[48] FAN, R.-E., CHEN, P.-H., AND LIN, C.-J. Working set selection using
second order information for training support vector machines. Journal
of Machine Learning Research 6 (2005), 1889–1918.

[49] FAURE, A., NALDI, A., CHAOUIYA, C., AND THIEFFRY, D. Dynamical anal-
ysis of a generic Boolean model for the control of the mammalian cell
cycle. Bioinformatics 22, 14 (2006), e124–131.

[50] FAYRUZOV, T., DE COCK, M., CORNELIS, C., AND HOSTE, V. Deeper: A
full parsing based approach to protein relation extraction. In Proceedings
of EvoBIO08 (2008), pp. 36–47.

[51] FAYRUZOV, T., DE COCK, M., CORNELIS, C., AND HOSTE, V. The role
of syntactic features in protein interaction extraction. In Proceedings of
ACM Second International Workshop of Data and Text Mining Methods in
Bioinformatics (2008), pp. 61–68.

[52] FAYRUZOV, T., DE COCK, M., CORNELIS, C., AND HOSTE, V. Linguistic
feature analysis for protein interaction extraction. BMC Bioinformatics
10, 1 (2009), 374.

[53] FAYRUZOV, T., DE COCK, M., CORNELIS, C., AND VERMEIR, D. Mod-
eling protein interaction networks with answer set programming. In
Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine (2009).

[54] FAYRUZOV, T., DITTMAR, G., SPENCE, N., DE COCK, M., AND TEREDE-
SAI, A. A rapidminer framework for protein interaction extraction. In
RapidMiner community meeting (2010).

[55] FAYRUZOV, T., JANSSEN, J., VERMEIR, D., CORNELIS, C., AND DE COCK,
M. Efficient solving of time-dependent answer set programs. In Technical
Communications of the 26th International Conference on Logic Program-
ming (2010), pp. 64–73.

[56] FAYRUZOV, T., JANSSEN, J., VERMEIR, D., CORNELIS, C., AND DE COCK,
M. Modelling gene and protein regulatory networks with answer set



188 BIBLIOGRAPHY

programming. International Journal of Data Mining and Bioinformatics
(In press).

[57] FISHER, J., AND HENZINGER, T. A. Executable cell biology. Nature
Biotechnology 25, 11 (2007), 1239–1249.

[58] FUNDEL, K., KÜFFNER, R., AND ZIMMER, R. Relex - relation extraction
using dependency parse trees. Bioinformatics 23, 3 (2007), 365–371.

[59] GEBSER, M., GUZIOLOWSKI, C., IVANCHEV, M., SCHAUB, T., SIEGEL, A.,
THIELE, S., AND VEBER, P. Repair and prediction (under inconsistency)
in large biological networks with answer set programming. In Proceed-
ings of the 12th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (2010).

[60] GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB,
T., AND THIELE, S. Engineering an incremental asp solver. In Proceedings
of the 24th International Conference on Logic Programming (2008).

[61] GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. clasp : A
conflict-driven answer set solver. In Proceedings of the 9th International
conference on Logic Programming and Nonmonotonic Reasoning (2007).

[62] GELFOND, M., AND LIFSCHITZ, V. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on Logic
Programming (1988), pp. 1070–1080.

[63] GELFOND, M., AND LIFSCHITZ, V. Representing actions in extended logic
programming. In Proccedings of the Joint International Conference and
Symposium on Logic Programming (1992).

[64] GELFOND, M., AND LIFSCHITZ, V. Representing action and change by
logic programs. Journal of Logic Programming 17 (1993), 301–322.

[65] GIMENEZ, J., AND MRQUEZ, L. Svmtool: A general pos tagger generator
based on support vector machines. In In Proceedings of the 4th Interna-
tional Conference on Language Resources and Evaluation (2004).

[66] GIULIANO, C., LAVELLI, A., AND ROMANO, L. Exploiting shallow linguis-
tic information for relation extraction from biomedical literature. In 11th
Conference of the European Chapter of the Association for Computational
Linguistics (2006).

[67] GOSS, P. J. E., AND PECCOUD, J. Quantitative modeling of stochastic
systems in molecular biology by using stochastic petri nets. Proceedings
of the National Academy of Sciences of the United States of America 95, 12
(1998), 6750–6755.



BIBLIOGRAPHY 189

[68] GREFENSTETTE, G., AND TAPANAINEN, P. What is a word, what is a sen-
tence? Problems of tokenization, 1994.

[69] GRINBERG, D., LAFFERTY, J., AND SLEATOR, D. A robust parsing algo-
rithm for link grammars. In Proceedings of the 4th International Workshop
on Parsing Technologies (1995).

[70] GUPTA, S., BISHT, S. S., KUKRETI, R., JAIN, S., AND BRAHMACHARI,
S. K. Boolean network analysis of a neurotransmitter signaling pathway.
Journal of Theoretical Biology 244, 3 (2007), 463 – 469.

[71] HALÁCSY, P., KORNAI, A., AND ORAVECZ, C. Hunpos: an open source
trigram tagger. In Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions (2007).

[72] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,
AND WITTEN, I. H. The weka data mining software: an update. SIGKDD
Explor. Newsl. 11, 1 (2009), 10–18.

[73] HAUSSLER, D. Convolution kernels on discrete structures. Tech. rep.,
1999.

[74] HEARST, M. A. Untangling text data mining. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics (1999).

[75] http://highwire.stanford.edu/.

[76] HOFFMANN, R., AND VALENCIA, A. A gene network for navigating the
literature. Nature Genetics 36 (2004), 664.

[77] IDEKER, T., GALITSKI, T., AND HOOD, L. A new approach to decoding
life: systems biology. Annual review of genomics and human genetics 2, 1
(2001), 343–372.

[78] IELPA, S. M., IIRITANO, S., LEONE, N., AND RICCA, F. An asp-based
system for e-tourism. In Proceedings of the 10th International Conference
on Logic Programming and Nonmonotonic Reasoning (2009).

[79] http://www.ihop-net.org/.

[80] JENSEN, L. J., 0004, M. K., STARK, M., CHAFFRON, S., CREEVEY, C.,
MULLER, J., DOERKS, T., JULIEN, P., ROTH, A., SIMONOVIC, M., BORK,
P., AND VON MERING, C. String 8 - a global view on proteins and
their functional interactions in 630 organisms. Nucleic Acids Research
37, Database-Issue (2009), 412–416.



190 BIBLIOGRAPHY

[81] JENSSEN, T.-K., LÆGREID, A., KOMOROWSKI, J., AND HOVIG, E. A lit-
erature network of human genes for high-throughput analysis of gene
expression. Nature Genetics 28, 21-28 (2001).

[82] JOACHIMS, T. Making large-scale support vector machine learning prac-
tical. Advances in kernel methods: support vector learning (1999), 169–
184.

[83] JOACHIMS, T. Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. Kluwer Academic Publishers, Norwell,
MA, USA, 2002.

[84] KATRENKO, S., AND ADRIAANS, P. Learning relations from biomedical
corpora using dependency tree levels. In Proceedings of the Fifteenth
Dutch-Belgian Conference on Machine Learning (2006).

[85] KAUFFMAN, S. A. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology 22, 3 (1969), 437–
467.

[86] KESHAVA PRASAD, T. S., GOEL, R., KANDASAMY, K., KEERTHIKUMAR, S.,
KUMAR, S., MATHIVANAN, S., TELIKICHERLA, D., RAJU, R., SHAFREEN,
B., VENUGOPAL, A., BALAKRISHNAN, L., MARIMUTHU, A., BANER-
JEE, S., SOMANATHAN, D. S., SEBASTIAN, A., RANI, S., RAY, S.,
HARRYS KISHORE, C. J., KANTH, S., AHMED, M., KASHYAP, M. K.,
MOHMOOD, R., RAMACHANDRA, Y. L., KRISHNA, V., RAHIMAN, B. A.,
MOHAN, S., RANGANATHAN, P., RAMABADRAN, S., CHAERKADY, R., AND

PANDEY, A. Human protein reference database–2009 update. Nucleic
Acids Research 37, suppl 1 (2009), D767–772.

[87] KIM, S., YOON, J., AND YANG, J. Kernel approaches for genic interaction
extraction. Bioinformatics 24, 1 (2008), 118–126.

[88] KLEIN, D., AND MANNING, C. D. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics (2003).

[89] KNECHT, L. W. S., AND NELSON, S. J. Mapping in pubmed. Journal of
the Medical Library Association 90, 4 (2002), 475.

[90] KÖSTER, M., NOVÁK, P., MAINZER, D., AND FUHRMANN, B. Two case
studies for jazzyk bsm. In Agents for Games and Simulations: Trends in
Techniques, Concepts and Design (2009).



BIBLIOGRAPHY 191

[91] KUHN, H. W., AND TUCKER, A. W. Nonlinear programming. In Pro-
ceedings of the 2nd Berkeley Symposium on Mathematical Statistics and
Probability (1950), J. Neyman, Ed., pp. 481–492.

[92] LEASE, M., AND CHARNIAK, E. Parsing biomedical literature. In Pro-
ceedings of the Second International Joint Conference on Natural Language
Processing (IJCNLP-05), Jeju Island, Korea (2005).

[93] LECCA, P., PRIAMI, C., LAUDANNA, C., AND CONSTANTIN, G. A biospi
model of lymphocyte-endothelial interactions in inflamed brain venules.
In Pacific Symposium on Biocomputing (2004).

[94] LI, F., LONG, T., LU, Y., OUYANG, Q., AND TANG, C. The yeast cell-cycle
network is robustly designed. PNAS 101 (2004), 4781–4786.

[95] LIFSCHITZ, V., AND TURNER, H. Splitting a logic program. In Proceed-
ings of the 11th International Conference on Logic Programming (1994),
pp. 23–37.

[96] LODHI, H., TAYLOR, J. S., CRISTIANINI, N., AND WATKINS, C. J. C. H.
Text classification using string kernels. In Proceedings of 14th Annual
Conference on Advances in Neural Information Processing Systems (2000).

[97] LOURENO, A., CARREIRA, R., CARNEIRO, S., MAIA, P., GLEZ-PEA, D.,
FDEZ-RIVEROLA, F., FERREIRA, E. C., ROCHA, I., AND ROCHA, M.
@note: A workbench for biomedical text mining. Journal of Biomedi-
cal Informatics 42, 4 (2009), 710 – 720.

[98] MANNING, C. D., RAGHAVAN, P., AND SCHÜTZE, H. Introduction to Infor-
mation Retrieval, 1 ed. Cambridge University Press, July 2008.

[99] MASUDA, K., AND TSUJII, J. Nested region algebra extended with vari-
ables for tag-annotated text search. In Proceeding of the 17th ACM con-
ference on Information and knowledge management (2008).

[100] MAURIN, M., MAGNIN, M., AND ROUX, O. H. Modeling of genetic regu-
latory network in stochastic pi-calculus. In BICoB (2009), pp. 282–294.

[101] MCDONALD, R., LERMAN, K., AND PEREIRA, F. Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (2006).

[102] http://www.nlm.nih.gov/databases/databases medline.html.

[103] MENDOZA, L., THIEFFRY, D., AND ALVAREZ-BUYLLA, E. R. Genetic con-
trol of flower morphogenesis in arabidopsis thaliana: a logical analysis.
Bioinformatics 15, 7 (1999), 593–606.



192 BIBLIOGRAPHY

[104] MERCER, J. Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical Transactions of the
Royal Society, London 209 (1909), 415–446.

[105] MESEGUER, J. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science 96, 1 (1992), 73–155.

[106] MIERSWA, I., WURST, M., KLINKENBERG, R., SCHOLZ, M., AND EULER,
T. Yale: rapid prototyping for complex data mining tasks. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining (2006).

[107] MILNER, R. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[108] MITCHELL, T. M. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1997.

[109] MIYAO, Y., OHTA, T., MASUDA, K., TSURUOKA, Y., YOSHIDA, K., NI-
NOMIYA, T., AND TSUJII, J. Semantic retrieval for the accurate identifi-
cation of relational concepts in massive textbases. In Proceedings of the
44th annual meeting of the ACL (2006).

[110] MONTANARI, U., AND PISTORE, M. Concurrent semantics for the pi-
calculus. Electronic Notes Theoritcal Computer Science 1 (1995).

[111] MOSCHITTI, A. Efficient convolution kernels for dependency and con-
stituent syntactic trees. In Proccedings of the 17th European Conference
on Machine Learning (2006).

[112] MÜLLER, H.-M., KENNY, E. E., AND STERNBERG, P. W. Textpresso: An
ontology-based information retrieval and extraction system for biological
literature. PLoS Biol 2, 11 (09 2004), e309.

[113] MURATA, T. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE 77, 4 (apr 1989), 541 –580.

[114] NEDELLEC, C. Learning language in logic - genic interaction extraction
challenge. In Proceedings of the ICML-2005 Workshop on Learning Lan-
guage in Logic (2005).

[115] NELSON, S. J., POWELL, T., AND HUMPHREYS, B. L. The unified medical
language system (umls) project. In Encyclopedia of Library and Informa-
tion Science, A. Kent and C. M. Hall, Eds. Marcel Dekker Inc., New York,
2002, pp. 369–378.



BIBLIOGRAPHY 193

[116] NIEMELÄ, I. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence
25, 3-4 (1999), 241–273.

[117] NIVRE, J. Non-projective dependency parsing in expected linear time. In
In Proceedings of the 47th Annual Meeting of the Association for Computa-
tional Linguistics (2009).

[118] NOBATA, C., COTTER, P., OKAZAKI, N., REA, B., SASAKI, Y., TSURUOKA,
Y., TSUJII, J., AND ANANIADOU, S. Kleio: a knowledge-enriched infor-
mation retrieval system for biology. In Proceedings of the 31st Annual
International ACM SIGIR Conference (2008).

[119] OHTA, T., TATEISI, Y., AND KIM, J.-D. The genia corpus: an annotated
research abstract corpus in molecular biology domain. In Proceedings of
the second international conference on Human Language Technology Re-
search (2002), pp. 82–86.

[120] PALMER, D. D., AND HEARST, M. A. Adaptive multilingual sentence
boundary disambiguation. Computational Linguistics 23, 2 (1997), 241–
267.

[121] PEREZ-IRATXETA, C., BORK, P., AND ANDRADE, M. A. Xplormed: a tool
for exploring medline abstracts. Trends in Biochemical Sciences 26, 9
(2001), 573 – 575.

[122] PETERSON, J. L. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[123] PORTER, M. F. An algorithm for suffix stripping. Program 14, 3 (1980),
130–137.

[124] PRIAMI, C., MERELLI, E., GONZALEZ, P. P., AND OMICINI, A., Eds. Trans-
actions on Computational Systems Biology III (2005), vol. 3737 of Lecture
Notes in Computer Science, Springer.

[125] PRIAMI, C., REGEV, A., SHAPIRO, E., AND SILVERMAN, W. Application of
a stochastic name-passing calculus to representation and simulation of
molecular processes. Information Processing Letters 80, 1 (2001), 25–31.

[126] http://www.ncbi.nlm.nih.gov/pmc/.

[127] http://bioinfo.amc.uva.nl/human-genetics/pubreminer/.

[128] PYYSALO, S., AIROLA, A., HEIMONEN, J., BJORNE, J., GINTER, F., AND

SALAKOSKI, T. Comparative analysis of five protein-protein interaction
corpora. BMC Bioinformatics 9, Suppl 3 (2008), S6.



194 BIBLIOGRAPHY

[129] PYYSALO, S., AIROLA, A., HEIMONEN, J., BJORNE, J., GINTER, F., AND

SALAKOSKI, T. Comparative analysis of five protein-protein interaction
corpora. BMC Bioinformatics, special issue 9, Suppl 3 (2008), S6.

[130] PYYSALO, S., GINTER, F., HAVERINEN, K., HEIMONEN, J., AND

SALAKOSKI, T. On the unification of syntactic annotations under the
stanford dependency scheme: A case study on bioinfer and genia. In
Proceedings of the BioNLP Conference (2007).

[131] PYYSALO, S., GINTER, F., HEIMONEN, J., BJÖRNE, J., BOBERG, J., JÄRVI-
NEN, J., AND SALAKOSKI, T. BioInfer: A corpus for information extraction
in the biomedical domain. BMC Bioinformatics 8 (2007), 50.

[132] RAPE, M., AND KIRSCHNER, M. W. Autonomous regulation of the
anaphase-promoting complex couples mitosis to s-phase entry. Nature
432 (2004), 588 – 595.

[133] http://rapid-i.com/.

[134] RAY, O. Nonmonotonic abductive inductive learning. Journal of Applied
Logic 7, 3 (2009), 329–340.

[135] RAY, O., WHELAN, K. E., AND KING, R. D. A nonmonotonic logical ap-
proach for modelling and revising metabolic networks. In Proccedings of
the 2nd International Workshop on Computational Intelligence in Security
for Information Systems (2009).

[136] REBHOLZ-SCHUHMANN, D., KIRSCH, H., ARREGUI, M., GAUDAN, S.,
RYNBEEK, M., AND STOEHR, P. Protein annotation by ebimed. Nature
Biotechnology 24 (2006), 902–903.

[137] REDDY, V. N., LIEBMAN, M. N., AND MAVROVOUNIOTIS, M. L. Qualita-
tive analysis of biochemical reaction systems. Computers in Biology and
Medicine 26, 1 (1996), 9 – 24.

[138] REGEV, A., SILVERMAN, W., AND SHAPIRO, E. Y. Representation and
simulation of biochemical processes using the pi-calculus process alge-
bra. Pacific Symposium on Biocomputing 2001 (2001), 459–470.

[139] REYNAR, J. C., AND RATNAPARKHI, A. A maximum entropy approach to
identifying sentence boundaries. In Proceedings of the fifth conference on
Applied natural language processing (1997).

[140] ROHLF, T., AND BORNHOLDT, S. Criticality in random threshold net-
works: annealed approximation and beyond. Physica A: Statistical Me-
chanics and its Applications 310, 1-2 (2002), 245 – 259.



BIBLIOGRAPHY 195

[141] ROSEN, R. Essays on Life itself. Columbia University Press, 1999.

[142] SAETRE, R., SAGAE, K., AND TSUJII, J. Syntactic features for protein-
protein interaction extraction. In Proceedings of the 3rd International
Symposium on Languages in Biology and Medicine (Short Papers) (2007).

[143] SAEYS, Y., INZA, I. N., AND LARRAÑAGA, P. A review of feature selection
techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507–2517.

[144] SAGAE, K., MIYAO, Y., AND TSUJII, J. Hpsg parsing with shallow depen-
dency constraints. In Proceedings of the 45th Annual Meeting of the ACL
(2007).

[145] SALWINSKI, L., MILLER, C. S., SMITH, A. J., PETTIT, F. K., BOWIE, J. U.,
AND EISENBERG, D. The database of interacting proteins: 2004 update.
Nucleic Acids Research 32, suppl 1 (2004), D449–451.

[146] SARIC, J., JENSEN, L. J., OUZOUNOVA, R., ROJAS, I., AND BORK, P.
Extraction of regulatory gene/protein networks from medline. Bioinfor-
matics 22, 6 (2006), 645–650.

[147] SCHOLKOPF, B., AND SMOLA, A. J. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-
bridge, MA, USA, 2001.

[148] SCHONBACH, C. Molecular biology of protein-protein interactions for
computer scientists. In Biological data mining in protein interaction net-
works (2009).

[149] SERRA, R., VILLANI, M., GRAUDENZI, A., AND KAUFFMAN, S. Why a
simple model of genetic regulatory networks describes the distribution
of avalanches in gene expression data. Journal of Theoretical Biology
246, 3 (2007), 449 – 460.

[150] SETTLES, B. Abner: an open source tool for automatically tagging genes,
proteins and other entity names in text. Bioinformatics 21, 14 (2005),
3191–3192.

[151] SIEGEL, A., RADULESCU, O., BORGNE, M. L., VEBER, P., OUY, J., AND

LAGARRIGUE, S. Qualitative analysis of the relation between dna mi-
croarray data and behavioral models of regulation networks. Biosystems
84, 2 (2006), 153 – 174.

[152] SIMONS, P., NIEMELÁ, I., AND SOININEN, T. Extending and implement-
ing the stable model semantics. Artificial Intelligence 138, 1-2 (2002),
181–234.



196 BIBLIOGRAPHY

[153] SNOUSSI, E. H., AND THOMAS, R. Logical identification of all steady
states : the concept of feedback loop characteristic states. Bulletin of
Mathematical Biology, 55 (1993), 973–991.

[154] SOYER, O. S., SALATH, M., AND BONHOEFFER, S. Signal transduction
networks: Topology, response and biochemical processes. Journal of The-
oretical Biology 238, 2 (2006), 416 – 425.

[155] SUNDHEIM, B., AND GRISHMAN, R., Eds. Proceedings of the 6th Confer-
ence on Message Understanding, MUC 1995, Columbia, Maryland, USA,
November 6-8, 1995 (1995).

[156] TALCOTT, C. Symbolic modeling of signal transduction in pathway logic.
In Proceedings of the 2006 Winter Simulation Conference (2006).

[157] TALCOTT, C. Pathway logic. In Formal Methods for Computational Systems
Biology (2008), vol. 5016 of LNCS, Springer, pp. 21–53.

[158] THIEFFRY, D., AND THOMAS, R. Dynamical behaviour of biological regu-
latory networksii. immunity control in bacteriophage lambda. Bulletin of
Mathematical Biology 57, 2 (1995), 277–297.

[159] THOMAS, R., THIEFFRY, D., AND KAUFMAN, M. Dynamical behaviour
of biological regulatory networksi. biological role of feedback loops and
practical use of the concept of the loop-characteristic state. Bulletin of
Mathematical Biology 57, 2 (1995), 247–276.

[160] TIKK, D., THOMAS, P., PALAGA, P., HAKENBERG, J., AND LESER, U.
A comprehensive benchmark of kernel methods to extract protein-
protein interactions from literature. PLoS Comput Biol 6, 7 (July 2010),
e1000837+.

[161] TIWARI, A., AND TALCOTT, C. L. Analyzing a discrete model of aplysia
central pattern generator. In Proceedings of the 6th Conference on Compu-
tational Methods in Systems Biology (2008).

[162] TOUTANOVA, K., KLEIN, D., MANNING, C. D., AND SINGER, Y. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceed-
ings of the Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology (2003).

[163] TRAN, N. Reasoning and hypothesing about signaling networks. PhD the-
sis, Arizona State University, December 2006.

[164] TSURUOKA, Y., AND TSUJII, J. Bidirectional inference with the easiest-
first strategy for tagging sequence data. In Proceedings of the conference



BIBLIOGRAPHY 197

on Human Language Technology and Empirical Methods in Natural Lan-
guage Processing (2005).

[165] TU, Q., TANG, H., AND DING, D. MedBlast: searching articles related to
a biological sequence. Bioinformatics 20, 1 (2004), 75–77.

[166] http://www.uniprot.org/.

[167] VAN KLINKEN, J. B. The Modelling and Analysis of Dynamic Biochemi-
cal Systems – an integrative approach. PhD thesis, University of Siena,
February 2009.

[168] VAN LANDEGHEM, S., ABEEL, T., SAEYS, Y., AND VAN DE PEER, Y. Dis-
criminative and informative features for biomolecular text mining with
ensemble feature selection. Bioinformatics (in press) (2010).

[169] VAN LANDEGHEM, S., SAEYS, Y., DE BAETS, B., AND VAN DE PEER, Y.
Extracting protein-protein interactions from text using rich feature vec-
tors and feature selection. Proceedings of Third International Symposium
on Semantic Mining in Biomedicine (2008).

[170] VITERBI, A. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory
13, 2 (2003), 260–269.

[171] XIAO, J., SU, J., ZHOU, G., AND TAN, C. Protein-protein interaction
extraction: A supervised learning approach. In Proceedings of the 1st
International Symposium on Semantic Mining in Biomedicine (2005).

[172] YAKUSHIJI, A., MIYAO, Y., OHTA, T., TATEISI, Y., AND TSUJII, J. Auto-
matic construction of predicate-argument structure patterns for biomed-
ical information extraction. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing (2006).




